
Durham E-Theses

Molecular aspects of resistance to late blight disease
in potato (solanum tuberosum L.)

Shehab, Gaber Mohamed Gomaa

How to cite:

Shehab, Gaber Mohamed Gomaa (2002) Molecular aspects of resistance to late blight disease in potato
(solanum tuberosum L.), Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4032/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4032/
 http://etheses.dur.ac.uk/4032/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Molecuiar Aspects of Resistance to Late Blight 

Disease in Potato (Solanum tuberosum L.) 

A thesis submitted by Gaber Mohamed Gomaa Shehab M.Sc. in accordance 

with the requirements for the degree of Doctor of Philosophy in the University 

of Durham 

The copyright of this thesis rests with the author. 

No quotation from i t should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

Department of Biological Sciences 

August 2002 

- 8 m 



Abstract 

ABSTRACT 

Diseases caused by micro-organisms are still a major threat to the agro-industry 

worldwide. Diseases not only have negative effects on crop yields, but also they can 

affect the quality of crops post-harvest. Genetic engineering is one of several strategies 

that have been developed to control plant diseases and to enhance plant disease 

resistance to pathogens. Although some genetic strategies have provided plants with 

enhanced disease resistance, some pathogens can easily overcome this resistance by 

rapid evolution resulting in a lack of durability in the field. 

The oomycete Phytophthora infestans, the causal pathogen of late blight disease of 

potato, is an example of a crop pathogen that causes a major problem in one of the most 

important crops worldwide. Many efforts have been made trying to control this 

pathogen including chemical controls and genetic engineering, but unfortunately it 

remains a severe problem and the control measures are rarely very successful. Due to 

the complexity of this pathogen, and to limit the need for chemical control, breeding 

programmes to incorporate durable forms of genetic resistance are crucially needed. 

Although, this type of resistance is believed to be effective against all known races of P. 

infestans and provide in additional some level of general resistance, until now the 

genetic bases of this type of resistance is still unknown and the molecular mechanisms 

poorly understood. 

This project set out to isolate and identify gene sequences that are induced during the 

compatible interaction between cultured potato plants and P. infestans, specifically 

those leading to the establishment of durable resistance. 

It was demonstrated that the potato variety Stirling is capable of developing this type of 

resistance as judged by the development of resistant shoots during the interaction with 

Phytophthora. These shoots showed very strong resistance not only to Phytophthora but 

also to other potato pathogens {R. solani and F. sulphureum) even after two generations 

of culturing the plants in the absence of the pathogen. 

The fast production of ROS and the tight deposition of callose surrounding the 

hypersensitive cells, which deprive the pathogen of nutrients and limit pathogen growth 

to a small region of the plant, may be important factors in the success of the durable 

plants in defending themselves against the pathogen attack. 
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cDNA subtracted libraries were constructed from Stirling plants treated with P. 

infestans and untreated control plants. In order to collect plant samples free of pathogen 

and cover the whole period from the start of infection until the establishment of durable 

resistance a preliminary testing of the progress of infection was carried out. The 

suppression subtractive hybridisation was employed successfully to enrich the low 

abundance differentially expressed sequences induced during the potato-P. infestans 

interactions. 

528 clones were randomly selected, grown and used in a screening exercise. Based on 

the hybridisation with the forward subtracted probe but not with the reverse subtracted 

probe, a selection of at least sixty of these clones have been sequenced and subjected to 

bioinformatics analyses. A database search of the sequenced cDNAs revealed that these 

sequences have homology to diverse classes of genes, and thus were organised into 

categories according to their putative functions. Some sequences may warrant inclusion 

in more than one category. As expected the largest category (37 sequences; compress 

63%) was stress- and defence-response related sequences. Among these sequences, six 

were homologous to ESTs isolated in similar stress situations (elicitor or fungal treated 

potato or tomato plants) but with unknown function. Moreover, 9 sequences categorised 

as unknown function as they had homology to gene sequences published in the 

databases but with unknown function. Among the sixty sequenced cDNAs, eighteen 

(30%) were novel potato gene sequences. 

Preliminary attempts were carried out to describe the gene expression associated with 

the establishment of resistance to P. infestans using appropriate gene expression assays 

(DNA array technology), but unfortunately the results were unsatisfactory and the 

approach requires further development. 
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Section 1 Introduction 

1 Introduction 

1.1 An overview of plant-patliogen interactions and 
plant defence meclianisms 

Plants constitute the largest and most important group of autotrophic life forms on the 

earth. Their abundant organic material serves as a nutritional source for all heterotrophic 

organisms including animals, insects, and microbes. Plants, like animals, are continually 

exposed to pathogen attack. The range of pathogenic organisms that attack plants is 

diverse and each has a unique mode of pathogenicity. Despite the vast array of potential 

pathogens, plants have evolved natural resistance to microbial attack (non-host 

resistance). Therefore, resistance is the rule and susceptibility is the exception 

(Hammond-Kosack and Jones, 1996). Non-host resistance is the consequence of either 

the inability of a parasite to infect a plant or the ability of a plant to successfully 

recognise a parasite and rapidly activate its defence mechanisms, leading to the 

resistance phenotype (incompatible interaction). In contrast, relatively few pathogens 

have evolved the means to successfully colonise a plant host and establish basic 

compatibility by escaping recognition, and thus avoiding induction of host defence 

responses, by damaging or weakening the plant cells with toxins, or by inhibiting host 

defence mechanisms. 

Generally, pathogens deploy one of three main strategies to attack plants: necrotrophy, 

biotrophy, or hemibiotrophy. Necrotrophs are pathogens that produce toxic enzymes 

and metabolites that kill the cells directly upon invasion then metabolise their contents. 

Some have a broad host range, and cell death is often induced by toxins and/or enzymes 

(Walton, 1996). Other necrotrophs produce host-selective toxins that are effective over 

a very narrow range of plant species. One of the best examples of host-selective toxicity 

1 



Section 1 Introduction 

is that of T toxin from Cochliobolus heterostrophus race T, which binds to a protein of 
the inner mitochondrial membrane of the host (Levings and Siedow, 1992). In contrast, 
biotrophs and hemibiotrophs initially feed on plants parasitically, keeping the cells in 
infected plant tissue alive for a significant fraction of the pathogen's life cycle; this is 
followed by a more necrotrophic existence during the later stages of infection by 
hemibiotrophic pathogens. Plant defences must be adapted to combat these three 
different types of pathogenesis. 

Because plants lack a circulatory system and antibodies, they have evolved complex and 

sophisticated defence systems that are different from the vertebrate immune system to 

survive a variety of pathogens that attack them. Their modes of defensive action may be 

to (i) kil l the pathogen directly, (ii) block the action of pathogen enzymes required for 

infection, or (iii) create barriers to pathogen growth. In contrast to animal cells, each 

plant cell is capable of defending itself by means of a combination of pre-formed and 

induced defence mechanisms. In spite of the recent focus on inducible defensive 

responses in plants, there is considerable evidence that pre-formed defences are a major 

component of non-host resistance. These pre-formed defence lines include cell walls, 

wax layers and chemical barriers such as preformed peptides, proteins, and non-

proteinaceous secondary metabolites which confer general resistance to a wide variety 

of pathogens (Broekaert et al, 1995; Heath, 2000a; Osboum, 1996). Plants produce a 

large number of secondary metabolites, many of which have antifungal activity. Some 

of these compounds, such as saponins, exist in healthy plants in their biologically active 

forms (constitutive compounds). Others, such as cyanogenic glycosides and 

glucosinolates, occur as inactive precursors and are activated in response to pathogen 

attack or tissue damage. This activation often involves plant enzymes, which are 
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released, mixed with the precursors which are converted to active forms as a 
consequence of plant cells breakdown. Compounds belonging to the latter category are 
still regarded as constitutive because they are derived, immediately, from preexisting 
precursors rather than complete de novo synthesis (Osboum, 1996). The term 
"phytoanticipin" has been proposed to distinguish between these preformed 
antimicrobial compounds and phytoalexins, which are synthesised from remote 
precursors in response to pathogen attack or environmental stresses, as a consequence of 
de novo synthesis of plant enzymes (Vanetten et ai, 1994). 

If a pathogen overcomes these first lines of plant defences (i.e. constitutive defence 

lines), there is a second line of weapons, which is mounted by proteins encoded by 

specific resistance plant genes (/?-genes). At this level at least three basically different 

resistance mechanisms can be recognised including: 

The /?-gene product mediates specific recognition of a complementary product of the 

corresponding pathogen avirulence gene (Avr-gene) (the gene-for-gene model) as 

proposed by Flor in the 1940s (Flor, 1947). In resistant plants, the specific recognition 

between a pathogen Avr-gene product, the so-called elicitor, and a host receptor, the 

product of the R-gene, causes induction of various defence responses often involving 

ion fluxes, generation of reactive oxygen species (ROS), protein phosphorylation and 

other signals (Hammond-Kosack and Jones, 1996; Somssich and Hahlbrock, 1998). 

These signals subsequently trigger transcription of plant defence genes encoding 

proteins such as pathogenesis-related (PR) proteins (e.g. proteinase inhibitors, PR-1, 

chitinases and l,3-|3-glucanases), glutathione S-transferases and enzymes involved in 

secondary metabolism. In addition, plant cells, which are in the immediate vicinity of, 

or in direct contact with the invading pathogen die. This phenomenon is called the 
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hypersensitive response (HR), which is a main feature of gene-for-gene-based resistance 
(see section 1.2 and the subsections therein). 

The R-gene product inactivates a toxin, which is produced by the necrotrophic 

pathogens to kill the plant cells directly upon invasion then metabolise their content or 

to inhibit the induction of active defence responses. The Hml gene from maize, the first 

/?-gene to be isolated, is the best example of this mechanism. The Hml gene 

{Helminthosporium maydis; racel) encodes a NADPH-dependent HC-toxin reductase 

that detoxify the HC-toxin produced by the leaf spot fungus Cochliobolus carbonum, 

which induces disease symptoms on susceptible plants by inhibiting histone deacetylase 

(Johal and Briggs, 1992; Walton, 1996). 

The R-gene product primes the plant defence responses. An example of this resistant 

mechanism is the Mlo gene of barley, which provides resistance against the fungal 

pathogen, Erysiphe graminis f . sp. hordei. The Mlo gene product might act as a negative 

regulator of plant cell death and other plant defence responses. Mutagenesis of 

susceptible plants carrying Mlo alleles, confers a leaf lesion phenotype and a broad 

spectrum resistance against a broad spectrum of fungal isolates (Buschges et al, 1997). 

1.2 Plant active defence mechanisms 
As mentioned earlier, plants have evolved a wide array of defence mechanisms against 

pathogen attack. Resistance or susceptibility to a particular pathogen depends on 

various factors, including pathogen recognition, activation of host plant signal 

transduction pathways and induction of active defence molecules. These defence 

mechanisms can be very complex and sophisticated (see figurel-1; Hammond-Kosack 

and Jones, 1996), so inevitably in this short introduction I will only discuss some of 
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Figure 1-1 Complexity of signalling events controlling activation of defence 
responses. Plant receptor proteins (Rp) act as receptor to detect the pathogen Avr-
dependent signal and thus initiate downstream signalling. The immediately downstream 
signalling events involve kinases, phosphatases, G-proteins, and ion fluxes. Several 
distinct and rapidly activated outcomes are recognized, including the production of 
reactive oxygen species, direct induction of defence gene transcription, jasmonic acid 
biosynthesis, and/or ethylene biosynthesis. Once the earliest defence responses have 
been activated, the complexity of the biochemical pathways within the responding cell 
increase enormously as new signal molecules are generated. The alterations of cellular 
redox status and/or cellular damage will activate preformed cell protection mechanisms 
and induce genes encoding various cell protectants. Considerable amplification of 
specific defence responses then occurs, via either positive feedback or signal cross-talk. 

(+) indicates positive and (-) indicates negative interactions. Components and arrows 
indicated in red are only postulated to be present in plant cells, whereas those in blue 
indicate known plant defence responses; green indicates plant defence responses also 
activated by JA, and piuple indicates plant protection mechanisms, ACC oxidase, 1-
aminocyclopropane-l-carboxylate oxidase; BAG, benzoic acid glucoside; BA2H, 
benzoic acid-2-hydroxylase; CA, ciimamic acid; CHS, chalcone synthase; E F E , 
ethylene-forming enzyme; HO2", hydroperoxyl radical; HPDase, hydroxyperoxide 
dehydrase; GP, glutathione peroxidase; GST, ^utathione S-transferase; k, kinase; O2", 
superoxide anion; OH, hydroxylradical; OGA and OGA-R, oligalacturonide fragments 
and receptor; p, phosphatase; PAL, phenylalanine ammonia-lyase; PGases, 
polygalacturonases; PUPS, plant polygalacturonic acid inhibitor proteins; Phe, 
phenylalanine; PR, pathogenesis related; Rp, plant receptor protein; SA and SAG, 
salicylic acid and salicylic acid glucoside; SA, and SOD, superoxide dismutase. 
(Adapted from Hammond-Kosack and Jones, 1996). 
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these response mechanisms thought to be involved in resistance. Several recent 
published reviews, which cover many of these defence mechanisms in more detail, can 
be consulted for further information (e.g. Dangl and Jones, 2001; Heath, 2000b; Morris, 
2001; Romeis, 2001; Takken and Joosten, 2000). 

1.2.1 Hypersensitive response (HR) 

The terms "hypersensitive response" (HR) and "hypersensitivity" describe the localized 

and rapid death of one or a few host plant cells in response to invasion by an avirulent 

pathogen. In plant-pathogen interactions, i f a plant contains a disease-resistance gene 

(/?-gene) product (receptor) that can recognize the matching avirulence gene (Avr-gene) 

product (elicitor) from a pathogen, the HR is triggered and the pathogen is contained 

within the infected tissue and the result is a defence response (incompatible interaction). 

Whereas, in the absence of a functional resistance gene or an avirulence gene product, 

no recognition occurs and the interaction between plant and pathogen results in disease 

(compatible interaction). 

Recent evidence suggests that the HR responses can occur in both incompatible and 

compatible plant-pathogen interactions by two mechanisms (i) as a result of a switch in 

cell metabolism to biochemical pathways that produce an array of compounds or free 

radicals that are toxic to both the pathogen and the plant cell, thus causing the latter to 

die rapidly, or (ii) it may be the outcome of pathogen recognition activating an internal 

pathway for plant cell suicide - programmed cell death (PCD) (Dangl et al, 1996; 

Mittler et al, 1997; Mittler and Lam, 1996). 

The hypersensitive response has been described as the most powerful defence system 

that plants have. It is a highly intensive, complex defence mechanism that involves a 
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rapid loss of membrane integrity in the infected host cells, local cell death, local 
accumulation of large quantities of phenolic compounds and cell-wall fortification in 
cells surrounding the area of cell death, and, more importantly, distal activation of 
general defence in uninfected parts of the plant, which prevents further infections on 
parts of the plant distant from the infection site, the so-called systemic acquired 
resistance (SAR) (see section 1.2.5) (Goodman and Novacky, 1994; Kamoun, 2001). 

The HR effect can be phenotypically diverse, depending on the genotypes of the 

interacting plant and pathogen, ranging from HR in a single or a few host plant cells to 

more spreading necrotic areas limiting the pathogen from further growth (Kamoun, 

2001). The HR has been proposed to play a central role in disease resistance. It plays an 

effective defence against biotrophic pathogens that require living host cells for nutrition, 

because plant cell death strips the pathogen of access to further nutrients thereby 

confining pathogen growth to a small region of the plant. The role of HR is less clear in 

interactions involving hemibiotrophic and necrotrophic pathogens, because these 

pathogens can obtain nutrients from dead plant cells. Nevertheless, cellular degradation 

may lead to the release of harmful preformed substances that are stored in the vacuole 

(Osboum, 1996). On the other hand, the levels of induced phytoalexins (see section 

1.2.4), which are usually rapidly accumulated in plant cells during the interaction with 

pathogens may accumulate to inhibitory concentrations because they are no longer 

metabolized. 

Although the HR is a common feature of many resistance reactions, several studies have 

demonstrated that HR is not an essential component in disease resistance. For example, 

under high humidity, the Cf genes of tomato confer resistance to particular pathotypes 

of the fungus Cladosporium fulvum without invoking a visible HR (Hammond-Kosack 

7 



Section 1 Introduction 

et al, 1996). By contrast, induction of cell death may be used by necrotrophic 
pathogens for their pathogenicity to aid in the invasion of the plant. For example, 
(Govrin and Levine, 2000) demonstrated that hypersensitive cell death does not protect 
Arabidopsis plants against infection by the necrotrophic fungal pathogens Botrytis 
cinerea that attacks over 200 different plant species and Sclerotinia sclerotiorum. By 
contrast, B. cinerea triggered HR, which facilitated its colonization of plants. 

Although the role of cell death in plant defence is not clear in all cases, it does seem to 

assist in slowing down the pathogen growth within the host cells. A better 

understanding of the control of cell death during various types of plant-pathogen 

interactions should help elucidate the role that this process plays in either host resistance 

or pathogen proliferation. 

1.2.2 Reactive oxygen species (ROS) and oxidative enzymes 

The production of reactive oxygen species (ROS), often referred to as the 'oxidative 

burst', plays a key role in plant defence. The oxidative burst is one of the earliest 

aspects of plant defence responses in the incompatible interaction with a pathogen. It 

has been suggested that the ROS produced in the oxidative burst could serve not only as 

protectants against invading pathogen, but could also be the signals activating further 

plant defence reactions, including the HR of infected cells (e.g. Baker and Orlandi, 

1995; Wojtaszek, 1997a). The oxidation of phenolic compounds as cells undergo the 

HR suggests that there is an increase in phenol oxidizing enzymes activity and the 

production of reactive oxygen species such as hydrogen peroxide (H2O2), hydroxyl 

radicals (OH ) and superoxide anions (O2'). These ROS result from the successive one-

electron steps in the reduction of molecular oxygen (see figure 1-2) (Goodman and 
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Novacky, 1994). 

Several possible mechanisms have been proposed for the generation of ROS during the 

plant defence response including: (i) the activation of NADPH oxidase, which reduces 

molecular oxygen to a superoxide anions O2' that rapidly dismutate via superoxide 

dismutase (SOD), to hydrogen peroxide (H2O2). (ii) the pH-dependent cell wall 

peroxidases that produce H2O2 during the alkalinisation of the apoplast (Bolwell et ai, 

1995). (iii) the germin-like oxalate oxidase system that can produce H2O2 from oxalic 

acid (Zhang et al., 1995); although this system seems to be limited to interactions with 

pathogens involving cereals, some evidence suggested the present of germin-like 

protein in dicotyledoneouns plants (Wojtaszek, 1997b), (IV) Copper-containing amine 

oxidases can also catalyse the oxidation of various amines and polyamines, compounds 

that form during wounding and pathogenesis yielding NH3 and H2O2 (Bolwell and 

Wojtaszek, 1997), and (v) lipoxygenase, which is also proposed as a possible source of 

ROS in the oxidative burst, but in most systems studied ROS production have been 

shown to precede lipoxygenase activity (Baker and Orlandi, 1995). The first two 

mechanisms have received the most attention as ROS generating systems during the 

pathogen infection. 

Several roles for ROS in plant defence responses during pathogen infection have been 

proposed: as direct antimicrobial agents against the invading pathogen; as agents for 

strengthening of plant cell walls by cross-linking structural proteins in the cell wall to 

limit pathogen invasion; as activators of defence genes and as stimulators of the 

hypersensitive response (HR), salicylic acid production, and systemic acquired 

resistance (SAR) (Guo and L i , 2000; Vranova et al., 2002) (see figure 1-2). For 

example, Peng and Kuc (1992) demonstrated that the concentration of H2O2 produced 

10 
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by elicited plants is sufficient to significantly retard microbial growth, and in addition 
H2O2 has been found to participate in reactions that strengthen the structure of plant cell 
walls by cross-linking soluble proteins into the matrix of the plant cell wall. Bolwell et 
al., 1995 have indicated that H2O2 is essential for the formation of lignin polymer 
precursors via peroxidase activity. It has also been demonstrated that hydroxyproline 
and proline-rich cell wall glycoproteins were rapidly oxidatively cross-linked in cell 
walls after fungal elicitor treatment. This protein cross-linking rapidly makes the plant 
cell wall more resistant to microbial penetration and enzymatic degradation (Brisson et 
al, 1994). 

H2O2 has also been shown to activate some protection mechanisms. For example, it has 

been reported that H2O2 from the oxidative burst not only promotes the cross-linking of 

cell wall structural proteins, but also functions as a local trigger of programmed death in 

challenged cells and as a diffusible signal for the induction of genes encoding cell-

protectant enzymes such as glutathione peroxidase and glutathione S-transferase in 

adjacent cells. Glutathione peroxidase and other peroxidative enzymes destroy ROS 

and block oxidant-mediated programmed cell death (PCD). While glutathione S-

transferase detoxifies lipid hydroperoxides generated by ROS. Levine et al., 1994 have 

shown that inoculation of soybean cells with avirulent P. syringae pv. Glycinea induces 

cell death only in the challenged cells and not in adjacent cells separated from the 

challenged cells by two dialysis membranes. As little as 2mM H2O2 was found to induce 

transcription of glutathione S-transferase and glutathione peroxidase in the second, 

uninfected set of cells. Since both enzymes participate in the detoxification of H2O2, 

their expression may help host plant cells to escape the damage effect of the generated 

ROS. 

11 
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A signalling role for some ROS has also been proposed. Leon et al., (1995) have 
demonstrated that infiltration of tobacco leaves with H2O2 increased benzoic acid-2-
hydroxylase activity, an enzyme that is required for salicylic acid (SA) biosynthesis. 
Salicylic acid is an important signalling molecule involved in both locally and 
systemically induced disease resistance responses (Metraux, 2001). Furthermore, the 
lipid peroxides formed as a consequence of action of ROS on plasma membrane fatty 
acid may also have a direct signalling role in SA accumulation (Leon et al., 1995). 

Wu et al., (1995) provided convincing evidence that H2O2 generation is involved in 

conferring disease resistance. The constitutive expression of an H202-generating 

glucose oxidase in transgenic potato plants resulted in good resistance to the bacterial 

soft rot pathogen Erwinia carotovora sp carotovora and enhanced resistance to the 

fungal pathogen Pytophthora infestans. More recently, (Hiickelhoven et al., 2001) 

reported that the non-host resistance of barley to Blumeria graminis f.sp. tritici is 

associated with H2O2 accumulation in papillae that form as potential barriers at the point 

of attempted infection by fungal hyphae (see section 1.2.3). 

Expression of resistance is often accompanied by the activation and/or de novo 

synthesis of the phenol-oxidizing enzymes peroxidase and polyphenoloxidase and the 

lipid peroxidizing enzyme lipoxygenase (Goodman and Novacky, 1994). Peroxidase 

activity often increases in response to infection and this enzyme may function in 

defence through production of antimicrobial quantities of hydrogen peroxide as well as 

in more traditional cell wall lignification and crosslinking (Rasmussen et al., 1995). 

Phenoloxidases may also contribute to plant defence. For example, (Lazarovits and 

Ward, 1982) indicated that an increase in activity (but apparently not in de novo 

synthesis) of phenoloxidase has been correlated with the onset of the hypersensitive 

12 



Section 1 Introduction 

response in soybean and the interaction of phenoloxidase with endogenous phenols in 
the dying cell could be a major cause of the brown pigmentations observed in the 
responding cells. Lipoxygenase, may also contribute to the hypersensitive response via 
disruption of cell membrane lipids (Goodman and Novacky, 1994), and in a direct 
defence response through the formation of toxic lipid oxidation products such as trans-
2-hexenal and cis-3-hexenol, which appeared to be highly bactericidal (Croft et al., 
1993). 

1.2.3 Cell wall modification 

The first barrier that most pathogens encounter before establishing an infection is the 

physical barriers that protect all plant cells, namely the cuticle and the cell wall. Most 

pathogens, particularly bacteria and viruses, depend on wounds or natural openings, 

such as stomata, to enter the plant cells. Other pathogens such as fungi have developed 

sophisticated ways to physically penetrate the cuticle with an appressorium form, which 

is an infection peg that extends into the plant cells. Others secrete extracellular 

hydrolytic enzymes such as cutinase, an esterase specific for cutin, which has been 

proposed as an essential enzyme for some pathogens to infect a plant (Schafer, 1994). 

After breaching the cuticle, fungal and bacterial pathogens secrete a large number of 

hydrolytic enzymes capable of digesting plant cell wall polymers. These enzymes 

include cellulases, pectinases, xylanases and proteases (Salmond, 1994; Walton, 1994). 

It is not surprising that plants have evolved means to perceive and respond defensively 

to the physical or chemical events associated with such penetration. Plant cells may 

respond quickly to infection by modifying cell walls in such a way that the walls 

become more effective barriers to pathogen ingress into and through tissues. Alterations 

in the structure of plant cell walls may contribute to resistance, either by stopping 

13 
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pathogen entry directly or by slowing down the penetration process, thus allowing the 
plant time to activate further defence mechanisms including de novo synthesis of 
enzymes and antimicrobial compounds. 

There are several types of cell wall modification that have been correlated with 

resistance. The formation of cell wall appositions (papillae) is an example of cell wall 

modification that occurs rapidly in response to fungal invasion at sites of attempted 

penetration. Papillae often form immediately beneath the penetration peg and are 

heterogeneous in composition. They are thought to physically block fungal penetration 

of host cells. They consist mainly of callose and silicon oxide. Callose deposition is also 

frequently associated with point of pathogen invasion. An important role for callose in 

the expression of resistance is supported by the Arabidopsis Isd (lesion simulating 

disease) resistant mutants, which show a stronger deposition of callose at the site of 

pathogen penetration than susceptible wild-type plants (Dietrich et al., 1994). 

Lignification and similar phenolic compound deposition have also been correlated with 

resistance (Nicholson and Hammerschmidt, 1992). Lignin is formed by polymerization 

of precursors produced in the phenylpropanoid pathway. The first step in this pathway 

is catalyzed by the enzyme phenylalanine ammonia-lyase (PAL). PAL provides 

precursors for lignin and for several other phenylpropanoid-derived secondary plant 

products involved in resistance. Examples are furanocoumarin and isoflavonoid 

phytoalexins in parsley and legumes, respectively, as well as salicylic acid (SA) (Ward 

et al., 1991). These deposits of lignin are often highly localized and appear to block the 

progression of the fungal hyphae (Stein et al., 1993). If lignification occurs after cell 

wall penetration, the entire cell may lignify, thus potentially trapping the pathogen 

within a lignified chamber (Hammerschmidt et al., 1985). Stein et al., (1993) observed 

14 
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that the same process may also aid in resistance by direct lignification of the pathogen 
cell walls. Lignification of fungal cell walls makes them more ligid and impermeable, 
thus hindering further growth of the pathogen as well as reducing the uptake of water 
and nutrients from the host cells. This has been observed for hyphae of Colletotrichum 
orbiculare in cucumber leaf tissue (Stein et al., 1993). Thus, this lignification process 
may also function to contain the pathogen in one place until other defences come into 
effect. 

After infection, strengthening of the cell wall can also occur by peroxidase-catalyzed 

cross-linking of hydroxyproline-rich structural cell wall glycoproteins (Bradley et al., 

1992). Hydroxyproline-rich glycoproteins (HRGPs) are thought to play an important 

role in the organization of primary cell wall architecture and in the initiation of lignin 

polymerization (Bolwell et al., 1995; Showalter, 1993). Bradley et al., (1992) indicated 

that the rapid oxidative crosslinking of preformed HRGPs may constitute one of the 

earliest defence responses associated with the oxidative burst. Quite frequently, more 

than one type of cell wall modification may occur in a plant actively restricting 

infection. 

In conclusion, modifying the plant cell wall can increase resistance in various ways. For 

example increasing the mechanical strength of the cell walls may (i) decrease the 

susceptibility to cell wall degrading enzymes, (ii) constitute a diffusion barrier 

preventing free nutrient movement (i.e. cytoplasmic contents) to the extracellular 

pathogen, and therefore help to reduce nutrient availability and starve the pathogen, (iii) 

retard the diffusion of toxins and degrading enzymes secreted by necrotrophic pathogen 

to sensitive plant cells. In addition, the low molecular weight phenolic precursors of 

lignin and the free radicals produced during polymerization reactions themselves might 
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exert a toxic effect on pathogens, inactivate pathogen enzymes or toxins or, by binding 
to fungal cell walls, make them more rigid, resistant to hydrolases and impermeable, 
thus hindering further growth or uptake of water and nutrients. 

1.2.4 Phytoalexins 

Phytoalexins are low-molecular-weight antimicrobial compounds that accumulate in 

plants as a result of infection or stress. Phytoalexins have been characterised from at 

least twenty different families including monocots and dicots. Depending on the plant 

species examined, the groups of compounds identified as phytoalexins include 

phenylpropanoid derivatives, flavonoid- and isoflavonoid-derived phytoalexins, 

diterpenes, sesquiterpenes, polyketides and more others. Phytoalexins represent a 

chemically diverse group of compounds derived from a number of different metabolic 

pathways. The major biosynthetic pathways, including shikimate, acetate-mevalonate 

and acetate-malonate, that provide phytoalexin precursors are common in all plants. 

Phytoalexin precursors can be derived from one of these three biosynthetic pathways or 

a combination of two or three of them (figure 1-3). For example, polyketide 

phytoalexins such as 6-methoxymellein and sesquiterpene phytoalexins such as rishitin 

are derived from the acetate-malonate and acetate-mevalonate pathways, respectively, 

while phenylpropanoid phytoalexins such as chlorogenic acid is produced from 

phenylalanine, a product of the shikimic acid pathway. Other phytoalexins, like the 

pterocarpan pisatin, is derived from products of the shikimic acid and acetate-malonate 

pathways. Phytoalexins like the kievitone and glyceollins are biosynthesised using 

precursors from three primary metabolic pathways (the shikimic acid, acetate-malonate, 

and acetate-mevalonate pathways). The production of phytoalexins after infection 

16 



Section 1 Introduction 

ACETATC-MAUONATE SHKMATE ACETATC-MEVALiONATC 

ACCTATCHMALONATC ACETATC-NEVAUOIIATC 

S m M A t l SNMMAtC 

KKVfTOIW M M K O U M iLmOIXW X 

Figure 1-3 Examples of phytoalexins representing a diversity of biosynthetic 

pathways (Taken from Kuc, 1995). 
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suggests that a product of the pathogen or the host-pathogen interaction is involved in 

triggering phytoalexin biosynthesis (Hammerschmidt, 1999; Kuc, 1995). 

The current definition of phytoalexins does not include any criteria that would allow 

discrimination between a primary role for phytoalexins in defence versus just a response 

as a consequences of infection. However, several lines of evidence support a role for 

phytoalexins in disease resistance. This evidence comprises data documenting: (I) 

localisation and timing of phytoalexin accumulation at or near the infection site and to a 

concentration inhibitory to the pathogen; (11) strong positive correlation between the 

degree of incompatibility and the phytoalexin content followed pathogen challenge of 

particular cultivars; (III) association of rapid phytoalexin accumulation with resistance 

genes that condition rapid restriction of pathogen development; (IV) a positive 

relationship between pathogen virulence and tolerance to phytoalexins; (V) an increase 

of plant tissue resistance by stimulation of phytoalexin production prior to inoculation 

(reviewed in Hammerschmidt, 1999; Smith, 1996). 

Associated with the synthesis and accumulation of phytoalexin is the induction of genes 

that involve in the biosynthesis of these compounds. For example infection of legumes 

with incompatible pathogens, or treatment of tissues with elicitors resulted in the rapid 

induction of phenylalanine ammonia-lyase and chalcone synthase, which are co-

ordinately regulate the phenylpropanoid and flavonoid pathways (Dixon and Paiva, 

1995), while in solanaceous plants, genes that regulate terpenoid phytoalexins 

biosynthesis (e.g. hydroxymethyl gluteryle CoA reductase) were induced (Kuc, 1995). 

1.2.5 Systemic acquired resistance 

Systemic acquired resistance (SAR), which is characterised by activation of a long-
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lasting systemic resistance against a broad-spectrum of pathogens, is one of the most 
important components of the inducible complex defence resistance mechanisms that 
plants have developed to defend themselves against pathogens. It was shown that 
inoculation of plants with a pathogen induced protection against subsequent infections 
with the same pathogen as well as to other pathogens including fungi, bacteria and 
viruses. The wide range of pathogen protection and the associated changes in gene 
expression, distinguish SAR from other disease resistance responses. 

Most necrotizing pathogens, which cause tissue necrosis, can induce resistance against a 

subsequent infection with widely different pathogens. This resistance is expressed 

locally at the site of pathogen invasion as well as systemically in distal uninfected parts 

of the plant. The induction of resistance in parts of the plant distant from the site of 

primary infection is believed to result from the translocation of a systemic signal 

produced at the site of primary infection, transported though the plant to uninfected 

tissues. This signal triggers the plant defence responses against further pathogen attack. 

The defence responses involved in SAR include a combination of physical changes such 

as cell wall lignification and callose deposition, and induction of various pathogenesis-

relate proteins (for reviews see; Mauch-Mani and Metraux, 1998; Metraux, 2001; Ryals 

et al, 1996 and Sticher et ai, 1997). 

The importance of salicylic acid (SA), as a signalling molecule in SAR was documented 

by experiments using transgenic plants, inhibitors of the biosynthetic pathway of SA 

and in vitro SA-labelling (reviewed in Ryals et al., 1996). However, a number of reports 

have indicated that SAR can be induced in plants independently of SA. For example, 

Pieterse et ai, (1996) demonstrated that plant growth promoting rhizobacteria (PGPR), 

root-colonizing bacteria, triggered a systemic resistance response in transgenic 
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Arabidopsis plants unable to accumulate SA due to overexpression of salicylic acid 
hydrolase that degrades SA to catechol. 

1.2.6 Pathogenesis-related proteins and antimicrobial peptides 

Among the most frequently observed biochemical events that follow plant infection by 

pathogens is the induction and accumulation of novel families of proteins collectively 

known as pathogenesis-related proteins (PR proteins). These PR proteins are defined as 

proteins coded for by the host plant but induced specifically in pathological or related 

stress situations (Van Loon et al, 1994). These proteins do not only accumulate locally 

in the infected leaf, but are also induced systemically, as part of the development of 

systemic acquired resistance (SAR) against further infection by fungi, bacteria and 

viruses (section 1.2.5). 

PR proteins were initially identified in soluble extracts of tobacco leaves reacting 

hypersensitively to tobacco mosaic virus infection. Since then they have been found in a 

wide variety of infected plant species belonging to various families, suggestive of a 

universal role for these proteins in adaptation to biotic stress conditions. Originally, the 

10 major acidic PR proteins, which were isolated from the infected tobacco leaves, were 

grouped into five families (PR-1 to PR-5) on the bases of their relative mobility on 

native polyacrylamide gels and on their serological relationships (Van Loon et al., 

1987). Then, in 1994 a unifying nomenclature for PR- proteins was proposed based on 

their grouping into families sharing amino acid sequences, their serological relationship, 

and/or enzymatic or biological activity. By then another six groups of protein induced 

by pathogens have been recommended for inclusion as PR proteins bringing the total to 

11 families (PR-1 to PR-11) (Van Loon et al., 1994) (see table 1-1). Different members 
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Table 1-1 The families of pathogenesis-related proteins in plants'' 

Family Type member Properties Target in pathogen 

PR-1 Tobacco PR-la Unknown Membrane 

PR-2 Tobacco PR-2 P-l,3-glucanase Cell wall glucan 

PR-3 Tobacco P, Q Chitinase type I , I I , 

IV, V, V I , VI I 

Cell wall chitin 

PR-4 Tobacco R Chitinase type I , I I Cell wall chitin 

PR-5 Tobacco S Thaumatin-like Membrane 

PR-6 Tomato Inhibitor 1 Proteinase-inhibitor Proteinase 

PR-7 Tomato P69 Endoproteinase Unknown 

PR-8 Cucumber chitinase Chitinase type I I I Cell wall chitin 

PR-9 Tobacco 'lignin-

forming peroxidase' 

Peroxidase ** 

PR-10 Parsley T R l ' Ribonuclease-like Unknown 

PR-11 Tobacco class V 

chitinase 

Chitinase, type I Cell wall chitin 

PR-12 Radish Rs-AFP3 Defensin Membrane 

PR-13 Arabidopsis THI2.1 Thionin Membrane 

PR-14 Barley LTP4 Lipid-transfer 

protein 

Membrane 

* Adapted from Fritig et al, 1998; Van Loon and Van Strien, 1999. 

** Peroxidase has indirect antimicrobial activity by catalysing oxidative crosslinking of 

proteins and phenolics in the plant cell wall, and thus protects the host from degradation 

by pathogen's hydrolytic enzymes. 
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within each family are assigned letters according to the order in which they are 
described. Thus, the same designation for a PR-protein in different plant species does 
not necessarily mean that they are the same protein. They must belong to the same PR 
family (number), but the lettering only reflects how many proteins of this family had 
been identified within those plant species before their discovery. Within one family, 
several members may share similar biological activities but differ significantly in other 
properties such as subcellular localisation, substrate specificities or physicochemical 
properties (Fritig et al., 1998). For example, each of the original five classical groups of 
PR proteins has two subclasses: a basic subclass found in the plant cell vacuole and an 
acidic subclass usually found in the extracellular space (Kitajima and Sato, 1999). 

Inclusion of three additional families of PR proteins was proposed in 1998 following 

discussions at the 5'** International Workshop on Pathogenesis-related Proteins in Plants, 

held at Aussois, France (Van Loon and Van Strien, 1999). These include the pathogen-

induced plant defensins (PR-12), thionins (PR-13) and lipid transfer proteins (LTPs) 

(PR-14) (table 1-1). These groups are families of peptides or low molecular mass 

proteins with antimicrobial activities and their induction has been observed in a number 

of plant species upon infection of the leaves by pathogens (Broekaert et al., 1997). 

Most PR proteins have a damaging effect on the structure of pathogen cells (see table 1-

1). The mode of action of some of the PR proteins, as antimicrobial proteins, has been 

clearly identified such as PR-2 and PR-3 families. PR-2 family members have P-1,3 

glucanase activity which hydrolyses the structure |3-1,3 glucan present in the pathogen 

cell wall resulting in weakened the cell wall. This weakened cell wall results in cell lysis 

and death. Also, PR-3, PR-4, PR-8 and PR-11 families (endochitinases) cleave pathogen 

cell wall chitin polymer (a linear homopolymer of P-1,4 A^-acetylglucosamine) also 
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resulting in a weakened cell wall. Chitinases can also display lysozyme activity and 
hydrolyse bacterial peptidoglycan. Also, PR-1 and PR-5 family members interact with 
the pathogen plasma membrane. 

Although the antimicrobial activities of the other groups have been demonstrated and 

the overexpression of their genes in transgenic plants has been shown to mediate host 

plant-pathogen resistance (for a review see Punja, 2001; Selitrennikoff, 2001), their 

mode of action is still unclear. 

1.3 Oomycetes and potato late blight disease 
Oomycetes morphologically and physiologically look like fungi. However, modem 

studies of metabolism and rRNA sequence analyses have shown that the oomycetes are 

taxonomically distant from fungi and are more closely phylogenetic relatives of brown 

algae, within the kingdom Stramenopiles (Cooke et al., 2000; Tyler, 2001). The 

oomycetes include many destructive pathogens of plants, animals and humans, and 

many of the strategies that have been developed for protection against fungal diseases 

fail when applied to oomycete diseases. Oomycetes have a physiology and biochemistry 

distinct from fungi, thus many of the most effective fungicides fail against them. For 

example, the azole fungicides block ergosterol biosynthesis, which is an essential 

metabolic pathway in fungi, by inactivating the key enzyme in this pathway 

(cytochrome P450 sterol 14-demethylase). The blocking of this enzyme decreases the 

conversion of 14-alpha-methylsterols to ergosterol, thus accumulation of C14-sterols 

leads to changes in membrane fluidity and function. Although these fungicides have 

been used extensively in agriculture and medicine against fungi, it does not affect the 

oomycetes because they do not synthesize sterols but acquire them from their host 
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plants. Moreover, as oomycetes contain no membrane sterols, the target for the toxic 
plant saponins, they can penetrate the epidermal cells of host and nonhost plants (see 
below). 

A further complication is that oomycetes reproduce sexually and asexually, thereby 

increasing genetic flexibility that enables them to adapt rapidly to and overcome 

chemical control measures and genetic resistance bred into plant hosts. Isolates resistant 

to previously effective chemicals in several oomycete species including Phytophthora 

infestans have been discovered. One such example is metalaxyl, the most effective 

fungicide against Phytophthora that was used extensively throughout Europe to combat 

potato late blight. Metalaxyl, a systemic fungicide, proved extremely effective and was 

often adopted as the only means of control. Even at low concentrations, metalaxyl 

immediately stops the development of mycelium and prevents sporulation of the 

pathogen upon entering the plant (Gisi and Cohen, 1996). In the mid 1990s, metalaxyl 

was lost as an effective chemical for the control of late blight in the USA and Canada, 

as metalaxyl-sensitive strains of P. infestans were displaced by resistant genotypes 

(Goodwin et al, 1998). 

The oomycetes comprise a large number of economically important and highly 

destructive plant pathogens and include the Phytophthora species (meaning "plant 

destroyer"; Birch and Whisson, 2001), which are an extremely broad host-range group 

of plant pathogenic organisms affecting potatoes, tomatoes, soybeans, peppers, and 

more than two hundred other plant species worldwide. Phytophthora species cause 

some of the most destructive plant diseases in the world. For example, Phytophthora 

infestans, the causal pathogen of the late blight disease of potato (Solanum tuberosum) 

and tomato (Lycopersicon esculentum), is reckoned to be the most damaging microbial 
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pest of potato crops worldwide. It attacks both tubers and foliage during any stage of 
crop development. When conditions are favourable, the fungus can spread rapidly 
through the foliage and if no controls are implemented, entire fields can be destroyed. In 
the mid-1800s, late blight caused widespread potato crop failures throughout Northern 
Europe, including Ireland where it was responsible for the Irish Potato Famine (one of 
the most awful tragedies recorded in human history). During that period, Ireland lost 
more than two million of its population (more than a quarter of its population) due to 
starvation and emigration, as a direct consequence of late blight disease, making this 
disease one of the most important crop diseases in history (Birch and Whisson, 2001). 

Late blight is controlled worldwide by the application of fungicides. The disadvantage 

of protection by chemicals is that the quantities used and frequencies of application, in 

practice, are often higher than necessary. This means financial and environmental 

consequences, and more importantly it leads to the evolution of resistance and more 

virulent fungal isolates (see below). Because of the recent spread of more virulent forms 

of P. infestans and the economic importance of potato, as the fourth most important 

food crop worldwide after wheat, maize, and rice, development of resistance to this 

pathogen is currently badly needed and one of the highest objectives in potato breeding 

programs worldwide (Ewing et al, 2000; Gebhardt and Valkonen, 2001). 

Several major resistance genes (nineteen /?-genes) to viruses, fungi, bacteria and 

nematodes have been identified in potato. Eleven of these genes play an important role 

in potato resistance to P. infestans. Unfortunately, resistance to late blight associated 

with the presence of some of these genes (race-specific or vertical resistance) is only 

effective against certain races of the pathogen and can be easily overcome by rapid 

evolution of the pathogen resulting in a lack of durability in the field. In contrast, race-
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non-specific or horizontal resistance so called "durable resistance", which means 
resistance that remains effective in a widely grown cultivar for a long period of time in 
an environment favourable to the disease (Johnson, 1993), is believed to be effective 
against all known races of the pathogen and provide a general resistance independent of 
the virulence of the pathogen. Therefore, this type of resistance, which is believed to be 
controlled by an unknown number of minor genes, is required (Gebhardt and Valkonen, 
2001; Swiezynski et ah, 2000; Vleeshouwers et al., 2000a). Until now the genetics of 
durable resistance is still unknown and such genes have not been identified. In fact, it is 
very difficult to define criteria suitable for the identification of such genes, and as a 
result it is not easy to predict which genes will provide durable resistance. Johnson 
(1993), who introduced the term "durable resistance", indicated that no single genetic 
model is appropriate to distinguish between durable and non-durable resistance. 

Although the genetics and physiology of P. infestans and its interaction with potato 

have been intensively studied (Freytag et al., 1994; Kamoun et ah, 1999), progress in 

understanding the molecular events involved in infection and resistance response to P. 

infestans attack is still limited. Nevertheless, it is clear that the outcome of 

Phytophthora-potato interactions, compatible or incompatible, is decided after the 

pathogen penetration of the host epidermal cells. Using a diverse set of wild Solanum 

species and potato cultivars with various levels of resistance to late blight as well as 

non-host plants, Vleeshouwers et al., (2000b) demonstrated that P. infestans is able to 

penetrate epidermal cells of many different plant species, including nonhost plants, 

which indicates that the host defence responses mainly occur post-penetration. Freytag 

et al., (1994) have shown that in the early phases of interaction there are only small 

differences between the compatible and incompatible reactions. Early reactions at the 
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penetration site include rearrangement of the cytoplasm, rapid apposition of callose and 
hypersensitive response (HR) in the penetrated cell. Once the infecting hyphae reach the 
mesophyll cells differences in the plant's reaction are visible. In the compatible 
interaction, some cells undergo HR, but the hyphae can escape this response and 
continue to colonize the tissue, while in the incompatible interaction, the pathogen is 
contained in the cells undergo HR and dies (figure 1-4) (Cuypers and Hahlbrock, 1988; 
Freytaget ai, 1994). 

During the interaction between potato and Phytophthora, specific genes have to be 

regulated as part of the infection and the defence mechanisms. Several studies have 

demonstrated that the infection of P. infestans leads to transcriptional activation of 

various genes in potato (e.g. Avrova et al, 1999; Beyer et al, 2001; Birch et al., 1999; 

Zhu et al., 1995a). An inclusive analysis of such genes that are induced during potato-

Phytophthora interactions, especially in systems leading to long-lasting "durable" 

resistance, might lead to a better understanding of the molecular processes involved in 

durable resistance, which might potentially lead to the development of biotechnological 

strategies for the fight against this destructive pathogen. 

In the last 150 years, enormous efforts have been made in order to control losses in 

potato yields due to late blight disease including: the use of certified seed programmes, 

crop rotation, use of fungicides, disease-forecasting and grower education. More 

recently, fungicides, which are particularly effective against P. infestans, and plant 

breeding programmes, which select for late blight resistance in host plants, have made 

great advances in controlling late blight in potatoes. Unfoitunately, despite all these 

achievements late blight is still a damaging disease. As mentioned earlier, isolates of P. 

infestans resistant to metalaxyl, such as US-8 that destroyed many potato crops in the 
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Figure 1-4 Schematic view of early infection events during susceptible and 

resistant interactions between Phytophthora infestans and plants. Penetration of 

plant tissue is observed on all plants. (A) In susceptible plants, no visible defence 

responses occur. Secondary hyphae grow into the intercellular space, form haustoria 

(digit-like feeding structures) inside mesophyll cells, and rapidly colonize the mesophyll 

tissue. (B) In resistant plants, cells display the HR. The infecting hyphae of the 

pathogen are contained within a group of dead plant cells or (C) within the penetrated 

epidermal cell, depending on the genotypes of the interacting plant and pathogen. 

Macroscopically, the HR lesions can be visible as brownish-black spots on leaves or 

may not be visible. In several nonhost plants, the HR is induced extremely quickly and 

is usually localized to one or two plant cells (Adapted from Kamoun, 2001). 
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United States in 1994, have been found. Moreover, recently. Groves and Ristaino, 
(2000) indicated that a wide range of chemically diverse fungicides can induce normally 
heterothallic metalaxyl-resistant isolates of P. infestans to form oospores in vitro after 
short exposures to the fungicides. This means fungicides can induce phenotypic changes 
in P. infestans and they have a non-target effect on the reproductive biology of the 
pathogen. Annually losses due to late blight and control measures are estimated to 
exceed $5 billion. Therefore, P. infestans is regarded as a serious problem to potato crop 
worldwide (Birch and Whisson, 2001; Tyler, 2001). 

Recently, the destructiveness of oomycete diseases, especially Phytophthora species, 

and the difficulty of controlling them, has led to an intensive effort to develop molecular 

genetic tools to investigate these organisms and the genetic bases of their pathogenicity. 

Phytophthora researchers around the world have set up the Phytophthora Genome 

Initiative (PGI) database (http://www.ncgr.org/pgc/pgi/index.html) to organise and 

support genome-scale studies of P. infestans and P. sojae (a soybean pathogen). Several 

thousand (approximately 2,000-3,000) expressed sequence tags (ESTs) of P. infestans 

and P. sojae are available in this public database (http://www.ncgr.org/pgc). Also, the 

US Department of Agriculture (Initiative for Future Agriculture and Farming Systems) 

funded a project to sequence 41,000 additional P. sojae ESTs and 14,000 P. infestans 

ESTs, two years ago (2000). In addition, 35,000 P. infestans ESTs developed by an 

international consortium funded by Syngenta are expected to become available to the 

public in 2003 (Birch and Whisson, 2001; Tyler, 2001). 
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1.4 An overview of eegieeering pathogen resistance in 
crops 

1.4.1 Introduction 

Diseases caused by micro-organisms are currently some of the major factors limiting 

crop production worldwide. Diseases not only have negative effects on crops yield, but 

also they can affect the quality of crops post-harvest. Since farmers started to cultivate 

plants, fungal diseases have been one of the main causes of considerable crop losses. 

Several disease control measures have been developed to control plant diseases and 

pests. These control measures are mainly based on chemical, biological, genetic and 

cultural methods. Currently, for reasons of cost, effectiveness and ecological 

considerations, much research is aimed at transgenic expression of genes that can confer 

significant levels of disease resistance to provide an environmentally friendly alternative 

to traditional control measures. 

In the early 1980's, with the beginning of the molecular era of plant biotechnology and 

with the improvements in transformation techniques and advanced molecular techniques 

for plant breeding, a major area of research has been to identify, characterise and clone 

various genes involved in disease resistance. Consequently, many resistance 

mechanisms that plants have evolved to respond to pathogen attack, have been 

elucidated and many genes involved in these responses and whose encoded products 

have antimicrobial activity or are involved in the synthesis of products with such 

activities have been identified. The identification of many of these genes has made it 

possible to subsequently evaluate their specific roles and importance in disease resistant 

using transgenic plants. These include: (I) genes that encode proteins, peptides, or 

antimicrobial compounds that are directly toxic to pathogens or that reduce their 
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growth. Examples of these include pathogenesis-related proteins (PR proteins) such as 
hydrolytic enzymes (chitinases, glucanases), antifungal proteins (osmotin and 
thaumatin-like), antimicrobial peptides (thionins, defensins, lectins), ribosome 
inactivating proteins (RIP), and enzymes involved in the generation of phytoalexins (see 
sections 1.4.3 and 1.4.4); (II) genes that directly or indirectly activate general plant 
defence responses pathways. These include the production of specific elicitors, salicylic 
acid (SA), hydrogen peroxide (H2O2), and ethylene (C2H4) (see section 1.4.2); (III) 
resistance genes involved in the interactions with avirulence factors and in the 
hypersensitive response (see sections 1.2.5 and 1.2.6); (IV) gene products that directly 
inhibit pathogen virulence products such as polygalacturonase and oxalic acid, and (V) 
gene products that enhance plant structural defences. These include elevated levels of 
peroxidase and lignin. Table 1-2 shows examples of genetically engineered plants, 
particularly emphasising potato and tobacco, to enhance resistance to fungal diseases. 
Success in these approaches is by no means assured and there are numerous papers 
describing failed strategies (e.g. table 1-2). Figure 1-5 illustrates some of the genes 
(from both plant and non-plant sources) that have been used to enhance fungal disease 
resistance in crop plants. 

This short introduction will try to mention some of the strategies used and advances 

made to enhance disease resistance against fungal pathogens, and will try to address 

some of the problems encountered these strategies. There are many recent reviews on 

the subject of genetic engineering for disease resistance and the reader is directed to 

them for more details in this area (e.g. Dempsey et al., 1998; Honee, 1999; Melchers 

and Stuiver, 2000; Punja, 2001; Shah, 1997; Stuiver and Custers, 2001). 
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Figure 1-5 Some of the genes that have been used to enhance fungal disease 

resistance in crop plants. Transgenic plants with enhanced disease resistance have 

been engineered to express gene products to counter fungal virulence products (from 

hypha on left), enhanced expression of plant-derived gene products (inside of cell) or 

through expression of gene products from non-plant sources (outside of cell) (Adapted 

from Punja, 2001). See Punja, (2001) for details of references to individual strategies. 
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1.4.2 Using molecules involved in signal transduction 
pathways as activators for plant defence responses 

Plants use several different defence pathways against different pathogens. Generally, 

these pathways are characterised by the signalling molecules that play an important role 

in the regulation of expression of defence proteins. Salicylic acid is the best known 

signalling molecule that induces expression of plant defence genes, and plays a crucial 

role in triggering systemic acquired resistance (SAR) to further infection by a broad 

range of pathogens (see section 1.2.5). Jasmonic acid and ethylene have also been 

shown to play an important role as a signalling molecules in activating other defence 

pathways. Activation of either of these pathways also leads to resistance, but to a 

distinct group of pathogens from those associated with salicylic acid induced resistance 

(Thomma et al, 1998). In addition to these three pathways, evidence suggests that other 

signalling molecules such as reactive oxygen species (ROS) might be involved in 

pathways leading to the activation of a diverse set of defence mechanisms resulting in 

the establishment of plant disease resistance (Grant et al., 2000). 

Treatment of plants with one or more of these signalling molecules causes the induction 

of plant defence responses. Therefore, an increase in these signalling molecules was 

seen as a possible strategy for engineering plants to enhance their resistance against 

pathogens. For example, Verbeme et al., (2000) demonstrated that the overexpression 

of SA in tobacco plants transformed with two bacterial genes coding for enzymes that 

convert chorismate into SA, enhanced PR-protein production and provided resistance to 

viral and fungal infection resembling SAR in nontransgenic plants. Also, Yu et al., 

(1999) demonstrated that expression of tobacco class n catalase (Cat2NT), an enzyme 

with SA-binding activity, in transgenic potato enhanced defence gene expression 
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leading to SAR and enhanced tolerance to P. infestans. Moreover, overexpression of the 

NPRI gene (non-expresser of PR genes; also called SAIl for salicylic acid-

insensitivity), which was identified as a key regulator in transducing the SA signal 

leading to general acquired resistance responses, in transgenic Arabidopsis increased the 

level of PR proteins during infection and enhanced resistance to Pseudomonas syringae 

and Peronospora parasitica (Cao et al, 1998). Furthermore, transgenic potato plants 

constitutively overexpressing H202-generating glucose oxidase from Aspergillus niger, 

resulted in enhanced resistance to P. infestans and Altemaria solani as a result of 

constitutively elevated levels of H2O2, which were sufficient to activate an array of host 

defence mechanisms (Wu et al, 1997). 

There are some disadvantages for engineering resistance through the use of these 

signalling molecules. Most mutants possessing constitutive expression of a defence 

pathway show reduced yield or plant vigour, and there seems to be antagonism between 

the different defence pathways, which leads to increased susceptibility to other 

pathogens. For example, Doares et al., (1995) have shown that salicylic acid (SA) and 

acetylsalicylic acid (ASA) are potent inhibitors of systemin- and jasmonic acid (JA)-

induced synthesis of proteinase inhibitor mRNAs and proteins. 

1.4.3 Antimicrobial proteins 

One of the well established and widely used strategies in the engineering of pathogen 

resistance is the overexpression of antipathogenic proteins such as chitinases and 

glucanases, which belong to the PR proteins and have been shown to exhibit antifungal 

activity in vitro. The antifungal activity of plant glucanases (PR-2) and chitinases (PR-

3) is thought to occur by hydrolysing the structural (|3-l-3) glucan and chitin present in 
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fungal cell wall resulting in weakened cell wall and rendering fungal cells osmotically 
sensitive and thereby reduce fungal growth (see section 1.2.6). Although this strategy in 
some respects is similar to the strategy of overexpression of signalling molecules 
described above, it is much more specific because only one or two genes from the entire 
defence system are transferred to the new transgenic crop. In contrast to the previous 
approach, the loss in yield or the interference/antagonism with other defence pathways 
is most likely to be limited or absent. 

The specific roles of these hydrolytic enzymes in resistance to disease have been 

difficult to prove in non-transgenic plants because in vivo rapid accumulation and high 

levels of these enzymes occur in resistant plants expressing a hypersensitive response, 

as well as in susceptible plants, and their expression can also be induced by 

environmental stress and plant senescence (Punja and Zhang, 1993). However, 

following expression of different types of chitinases and glucanases in a range of 

transgenic plant species, the important role of these enzymes in resistance to disease has 

been proven. The rate of lesion development and the overall size and number of lesions 

in transgenic plants were reduced upon challenges with many fungal pathogens, 

including those with a broad host range, such as Botrytis cinerea and Rhizoctonia 

solani. For example, Lorito et al, (1998) demonstrated that transgenic lines of tobacco 

and potato plants overexpressing a strongly antifungal endochitinase from a biocontrol 

fungus, Trichoderma harzianum, had no visible effects on the growth and development 

of the plants, and were highly resistant to the foliar pathogens Altemaria altemata, 

Alternaria solani, Botrytis cinerea, and the soilbome pathogen Rhizoctonia solani. 

Similarly, expression of the human lysozyme in transgenic tobacco plants resulted in 

enhanced resistance to Erysiphe cichoracearum. Both conidia formation and mycelial 
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growth were reduced in the transgenic plants (Nakajima et al., 1997). Also, Lusso and 
Kuc, (1996) reported that constitutive expression of a |3-l,3-glucanase in tobacco plants 
increased resistance of the foliage to the fungi Peronospora tabacina and Phytophthora 
parasitica. 

There are a number of studies indicating that the combined expression of chitinase and 

glucanase in transgenic plants was much more effective in preventing disease 

development by a number of pathogens than either one of them alone confirming the 

synergistic activity of these two enzymes. For example, Jach et al., 1995 demonstrated 

that the combined expression of barley chitinase and p-l,3-glucanase genes in tobacco 

plants confered higher levels of resistance to the fungal pathogen Rhizoctonia solani 

compared with protection levels obtained with transgenic tobacco lines expressing the 

single transgene to a similar level of expression. Moreover, transgenic tomato plants 

expressing either the tobacco chitinase gene or the tobacco P-l,3-glucanase gene, 

showed no protection to infection with Fusarium oxysporum f.sp. lycopersici, while 

tomato lines simultaneously expressing both genes, showed a 36% to 58% reduction in 

disease severity, again indicating a synergistic protective interaction of the co-expressed 

antifungal proteins in vivo (Jongedijk etal, 1995). 

Constitutive production of PR proteins not belonging to the PR-2 and PR-3 families can 

also improve disease resistance. For example, transgenic potato plants overexpressing 

tobacco osmotin (PR-5) showed a delay in disease progression upon inoculation with 

spore suspensions of Phytophthora infestans (Liu et al., 1994). 

The limitation of this approach is that in many cases resistance will be highly specific 

for only a few pathogens and generally it does not provide a broad-spectrum of disease 

resistance (Alexander et al., 1993). Nevertheless, these limitations do not weaken the 
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usefulness of this strategy, as often only a few pathogens are really important per crop. 

One of the more significant practical problems encountered with this strategy is that the 

newly introduced proteins have to f i t with the plant's endogenous defence systems. 

Punja and Raharjo, (1996) demonstrated the difficulty of achieving this result. They 

transferred different chitinase genes originating from petunia (acidic) and tobacco 

(basic) into two different crops (carrot and cucumber) and evaluated the transformed 

lines for response to different fungal pathogens. They found that while the carrot line, 

transformed with tobacco chitinase, becomes resistance, the carrot line transformed with 

petunia chitinase and transgenic cucumber lines did not, even when the same pathogens 

{Botrytis cinerea and Rhizoctonia solani) were used to challenge the two crops. 

Moreover, there were no detectable differences in disease development (rate and final 

levels) with Altemaria radicini or Thielaviopsis basicola in either group of transgenic 

carrot plants. These results demonstrate that the efficacy of chitinase gene 

transformation as a strategy for enhancing disease resistance in plants can be influenced 

by the nature of the recipient plants, the source and type of chitinase protein expressed, 

and the characteristics of the fungal pathogen tested. 

1.4.4 Phytoalexins 

Phytoalexins are low molecular weight secondary metabolites produced in a broad 

range of plant species, which have been demonstrated to have antimicrobial activity and 

are induced by pathogen infection, treatment of biotic or abiotic elicitors, or certain 

stresses (see section 1.2.4) (Grayer and Kokubun, 2001; Hammerschmidt, 1999). 

Overexpression of genes encoding certain enzymes that generate phytoalexins resulted 

in delayed development of disease and symptom production by a number of pathogens 
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on several plant species. For example, Hain et al., (1993) reported that transgenic 
tobacco plants overexpressing resveratol synthase genes, an enzyme required for the 
synthesis of the stilbene-type phytoalexin resveratol, from grapevine (yitis vinifera), 
reduced colonization by Botrytis cinerea. Also Thomzik et al, (1997) demonstrated that 
transformation and overexpression of the same genes in tomato resulted in a significant 
increase in the resistance to Phytophthora infestans. A similar accumulation of 
resveratol occurred after inoculation with Altemaria solani and Botrytis cinerea, but no 
significant increase in resistance was observed in transgenic tomato plants. 
Furthermore, transformation of alfalfa {Medicago sativd) with a peanut (Arachis 
hypogaea) cDNA encoding resveratrol synthase, resulted in significant inhibition of 
hyphal growth of the alfalfa fungal pathogen Phoma medicaginis as well as reduction of 
the lesion size (Hipskind and Paiva, 2000). 

Although engineering resistance using this strategy has worked in some plants, the 

number of successes has remained low, and the level of resistance relatively modest. 

One of the most important reasons for that is that phytoalexins are synthesised through 

complex biochemical pathways (as mentioned in section 1.2.4), and genetic 

manipulation of these pathways to enhance phytoalexin production has been difficult to 

achieve. For example, to synthesise pistatin (the pea phytoalexin) in tobacco, the 

introduction of genes encoding at least nine new enzymes is required. In addition, the 

specific activity of these compounds is relatively low, so the amounts needed to confer 

resistance are extremely high. Accumulation of such high amounts of phytoalexins is 

difficult to achieve when the appropriate gene/genes required for synthesis is/are 

transferred to other crops. Moreover, accumulation of such high concentration of 

phytoalexins is often toxic to the plant cells itself and might also affect the quality of the 
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crop plants and could present nutritional problems for human and/or animals that use 
them (Dempsey et al, 1998; Stuiver and Custers, 2001). 

1.4.5 Resistance genes and the hypersensitive response 

Resistance genes confer race-specific resistance which results from the highly specific 

recognition between a resistance gene product from a plant and a specific avirulence 

gene product from a pathogen that matches the resistance gene. This specific gene-for-

gene interaction triggers one or more signal transduction pathways that sequentially 

activate an array of plant defence responses to prevent pathogen growth and restrict the 

pathogen to the vicinity of the infection sites. The development of a hypersensitive 

response (HR) is regarded as the most powerful defence response by which plants resist 

pathogen infection. The strength of the hypersensitive reaction makes it highly suitable 

for combating a broad spectrum of plant pathogens (see section 1.2.1). 

Recently, many plant resistance genes have been isolated. The predicted products 

encoded by these genes show a high degree of similarity and can be divided into five 

broad groups depending on the presence of conserved structural domains, such as 

transmembrane region (TM), a nucleotide-binding site (NBS), a tool/interleukin 1 

receptor domain (TIR), a cytoplasmic or extracellular leucine-rich repeat (LRR) and a 

protein kinase domain (PK) (Bent, 1996). While, efforts to clone an array of resistance 

genes involved in disease resistance have met with some success, all resistance genes 

(with a few exceptions) have been shown to lack durability in the field (Pink and 

Puddephat, 1999). Although the defence response is powerful its limitations, to only one 

or even sometimes to a limited number of races of the pathogen, are that it is normally 

triggered only by the highly specific recognition between a resistance gene product and 
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a specific matching avirulence gene product. Pathogens are usually able to overcome 
resistance gene-mediated recognition either by shedding the corresponding Avr-gene, or 
by accumulating mutations in the gene, which prevents the gene product from being 
recognised by the host plant, and consequently a failure to trigger the hypersensitive 
response. For instance, Joosten et al., (1994) presented evidence that, in nature, a single 
base-pair change in the biotrophic fungus Cladosporium fulvum avirulence gene lead to 
virulence of races previously avirulent on tomato genotypes carrying the 
complementary Cf4 resistance gene. Therefore, the use of most known resistance genes 
is limited in plant biotechnology for conferring disease resistance. 

Despite the huge induction of defence responses that results from triggering a 

hypersensitive response, there are reports indicating that not all pathogens are stopped. 

In contrast, triggering a hypersensitive response, in some cases, enhanced the infection 

by a necrotrophic fungal pathogens (Govrin and Levine, 2000) (see section 1.2.1). 

1.4.6 Avr/R strategy for engineering broad-spectrum disease 
resistance (non-specific resistance) 

Based on the importance of the HR in triggering the activation of the plant defence 

responses after the specific interaction between the pathogen Avr-gene and the matching 

plant R-gene, De Wit proposed an interesting idea, the so called "Avr/R strategy" (De 

Wit, 1992) to engineer plants with a broad-spectrum disease resistance. This involves 

transfer of a pathogen-derived Avr-gene (such as the Cladosporium fulvum Avr9 gene) 

into a plant containing the corresponding resistance gene (such as the tomato Cf9 gene). 

The expression of this gene is made conditional on pathogen infection by putting it 

under the control of a tightly regulated pathogen-inducible plant promoter (figure 1-6). 
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Figure 1-6 The Avr/R gene strategy for engineering broad-spectrum disease 

resistance (Dewit, 1992). (a) The hypersensitive response (HR) is triggered by the 

highly specific recognition of a pathogen-derived elicitor by a plant resistance gene 

product. The powerful and concerted defence that constitutes the hypersensitive 

response stops the pathogen, (b) The transformation of a pathogen-derived avr gene 

(under control of a tightly regulated pathogen-inducible plant promoter) into a plant 

containing the corresponding resistance gene. A pathogen-inducible plant promoter 

drives expression of this pathogen elicitor gene. The elicitor formed will trigger a 

resistance reaction manifested by a hypersensitive response, which will followed by a 

general defence response that prevents further spread of any invading pathogen (adapted 

from Stuiver and Custers, 2001). 
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Pathogen-induced expression of this gene will then stimulate a resistance reaction 
manifested by a hypersensitive response. A localized HR will then be followed by a 
general defence response that prevents further spread of any invading pathogen (see 
section 1.2.1). 

Although constitutive expression of an Avr-gene in transgenic plants that contain the 

matching R gene results in necrosis and in the end death of the whole plant (Honee et 

al., 1995), this idea has been exploited using transgenic tobacco and tomato plants 

which have been successfully engineered with a broad-spectrum disease resistance 

(Keller et al., 1999; Stuiver and Custers, 2001). The key factor in this strategy is the 

tight regulation of the pathogen inducible promoter. Any leakiness of the promoter 

could influence plant vigour and yield. Nevertheless, both the Stuiver and Keller teams 

have produced transgenic tobacco and tomato plants that show no sign of spontaneous 

triggering of the hypersensitive response in the absence of pathogen challenge. 

Therefore, this is one of the most promising approaches to engineer broad-spectrum 

disease resistance in plants (Stuiver and Custers, 2001). 

1.5 The overall conclusions from the literature review 
Plants have evolved complex and sophisticated defence systems to survive a variety of 

pathogens that attack them. Each plant cell is capable of defending itself by a 

combination of constitutive and induced defences. 

Pathogens that attack plants are diverse (necrotrophy, biotrophy, or hemibiotrophy), and 

each has its own strategy to invade and colonise the plants. 

The oomycetes comprise a large number of economically important and highly 

destructive plant pathogens. Among the oomycetes are the Phytophthora species that 
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cause some of the most destructive plant diseases in the worid. 

Phytophthora infestans, the causal pathogen of the late blight disease in potato 

{Solanum tuberosum) and tomato (Lycopersicon esculentum), is the most damaging 

microbial pest of potato and tomato crops world-wide. 

Due to the complexity of this pathogen, and to limit chemical control, it has been 

recommended that the development of resistance should be based on breeding potato to 

incorporate durable forms of genetic resistance (Kamoun et ai, 1999; Vleeshouwers et 

aZ., 2000b). 

The destructiveness of oomycete diseases, and the difficulty of controlling them, has led 

to an intensive attempt to develop molecular genetic and genomic tools to investigate 

these organisms and the genetic bases of pathogenicity. 

Various strategies have been developed to engineer plants with enhanced disease 

resistance to pathogens. Some of these strategies have provided plants with limited 

disease resistance, while others provide a broad-spectrum disease resistance such as the 

Avr/R strategy (section 1.4.5.1), which is based on engineering plants with an Avr-gene 

whose expression is tightly controlled by a pathogen-inducible plant promoter. 

Efforts have been made to engineer durable disease resistance in economically 

important plants. Unfortunately, many of these attempts have failed, due to the 

complexity of disease-resistance signalling pathways and the different types of infection 

mechanisms that different pathogens use. 

Further understanding of the molecular mechanisms responsible for the pathogenicity 

and disease resistance is critical for establishing durable resistance in crops. 
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Although transgenic plants exhibiting resistance to pathogen diseases are not yet 
available commercially, the enormous scientific progress made in genetic engineering 
and in understanding the mechanisms of plant resistance to pathogens is promising to 
provide commercially broad-spectrum disease resistance crops in the near future. 
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2 Aims, objectives and project timeline 
2.1 Aims and objectives of the present research 

The ultimate aim of this project was to analyse genes induced during the interactions 

between potato plants and the pathogen Phytophthora infestans. The majority of studies 

looking for Phytophthora-induced genes in potato have targeted the resistance reactions 

of the host using an incompatible strain of the pathogen (i.e. race-specific resistance) 

with the aim of finding factors involved in such resistance (e.g. Avrova et al., 1999; 

Birch et al., 1999). Unfortunately, race-specific resistance is only effective against 

certain races of the pathogen, and is easily overcome by rapid evolution of the pathogen 

resulting in a lack of durability in the field. It has been proposed that for long-term 

control of late blight disease, potatoes that possess a durable genetic resistance are 

needed (Kamoun et al, 1999; Vleeshouwers et al., 2000b). Durable resistance is a 

phenomenon in which the plant shows some degree of resistance to a compatible 

pathogen in the field and the resistance is sustainable (section 1.3). Thus, in contrast to 

the previous studies, the present study aimed to identify the genes induced during the 

compatible interaction that ultimately leads to the establishment of a long-lasting and 

durable resistance. In order to achieve this, a compatible strain (strain 9.5.1) of 

Phytophthora infestans (race 1, 2, 3, 4, 6, 7) and a newly developed potato variety, 

'Stirling' which exhibits durable resistance were used. This variety was chosen after 

consultation with Dr Helen Stewart, a plant pathologist at the Scottish Crop Research 

Institute (SCRI). After years of field observations, the plant pathologists at SCRI have 

concluded that Stirling is capable of developing durable resistance. 

Although the molecular basis of the durable resistance is unknown, resistance is likely 
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to be controlled by a number of minor genes. Identifying these genes may lead to a 
better understanding of the molecular processes involved in establishing durable 
resistance. More importantly, these may also play a major role in the development of 
biotechnological strategies in the fight against late blight and other potato diseases, such 
as breeding new cultivars combining good agricultural traits with built-in durable 
resistance. 

The specific objectives for this study were as follows: 

1- To establish the experimental conditions for the development of durable resistance in 

Stirling potato plants by challenging tissue cultured Stirling plants with a compatible 

strain of Phytophthora infestans (races 1, 2, 3, 4, 6, 7) 

2- To confirm and characterise the Stirling durable resistance by molecular, cytological 

and biochemical approaches and by challenging with other potato pathogens such as 

Fusarium sulphureum and Rhizoctonia solani. 

3- To generate a cDNA library containing sequences induced in the potato variety 

Stirling during the development of durable resistance. 

4- To screen the library for differentially expressed gene sequences, and to identify and 

characterise some of the selected cDNA clones. 

5- To investigate which of these selected clones might be partly associated with 

establishing durable resistance using appropriate gene expression assays (DNA array 

technology). 

6- To study some of the cytological and biochemical changes in potato leaves in 

response to P. infestans challenged by comparing differences in response between the 
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control (unchallenged) Stiriing plant line and the established durable resistance plant 
lines. 

2.2 Project timeline 
Progress of the project is shown in figure 2-1. Preparation of tissue cultured plants and 

establishing the durable resistant plants to start the project and the subsequent testing of 

the durable potato variety Stirling took a long period of time. The long term experiment 

to collect plant materials covering the whole period starting from time point zero until 

the establishment of durable resistant shoots (after about seven weeks) (section 4.2.9) as 

well as repeating the experiment to collect enough plant materials for the 

characterisation experiments and molecular cloning similarly took a very long period. 

This project also proved to be problematic. I had to repeat this long term experiment 

several times due to a failure of the growth room cooling system resulting in the 

exposure of the tissue cultured plants to very high temperatures (37-39°C). Since this 

could have influenced the results through the isolation of stress induced (heat shock) 

gene sequences rather than pathogen-induced sequences, all this material was discarded. 

Unfortunately this problem happened on three different occasions during the project. 

Handling the plant pathogens also proved to be problematical. After the treatment of 

potato plants with Phytophthora, contamination was observed on several occasions. The 

source of the contamination proved to be the original Phytophthora culture, obtained 

from the SCRI and it was necessary to purify it. This purification process took a long 

time as the pathogen growth in the selective media was very slow (about 2.5 months) 

(see section 4.2.3). 

Purification of the mRNA from total RNA using the Promega PolyATtract mRNA 
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isolation kit failed several times, resulting in the loss of much valuable materials (see 

section 4.3.13). 

There was also a significant delay in the installation and setup of the microarraying 

suite. The instrumentation and software only became available during the last 6 months 

during which this thesis was being written. Optimisation of media and instruments (by 

Dr Croy) took up most of the time up to the point of submitting the thesis. 
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Section 3 Materials 

3 Materials 

3.1 Chemicals and media 
All general chemicals, unless otherwise stated, were obtained from Sigma-Aldrich 

Company Ltd, Poole, Dorset, UK and were of analytical grade or the best grade 

available. Other materials (product numbers are indicated in brackets) were obtained 

from the following sources: 

Potato dextrose agar (CM139), tryptone (L42), yeast extract (L21) and bacteriological 

agar grade 1 ( L I 1) were purchased from Oxoid UK Ltd. 

Rye seed was kindly provided by Prof. Peter Shewry of the Department of Agricultural 

Sciences, University of Bristol. 

> Silica fines were kindly provided by Dr. David Dixon of the Department of 

Biological Sciences, University of Durham. 

3.2 Kits, enzymes and DNA size markers 
PCR-Select™ cDNA Subtraction Kit (K1804-1) and Advantage 2 Polymerase Mix 

(8430-1) were purchased from Clontech Laboratories UK Ltd., Basingstoke, Hants, UK. 

TOPO™ TA Cloning Kit (45-0640) was from Livitrogen BV, CH Groningen, The 

Netherlands. 

GeneRuler 1Kb DNA ladder (SM0311) was purchased from M B I Fermentas, Hanover, 

USA. 

TRI reagent (T-9424) was from Sigma-Aldrich Company Ltd, Poole, Dorset, UK. 

Dynabeads mRNA purification kit (610.06) was from Dynal A.S, Oslo, Norway. 
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PCR DIG probe synthesis kit (1636090) was from Roche Diagnostics GmbH, 
Mannheim, Germany. 

Wizard Plus SV minipreps DNA purification System (A1460), Wizard PCR prep DNA 

purification kit (A7170), restriction endonuclease enzymes (various), PolyATtract 

mRNA isolation kit (Z5200) and Taq polymerase mini kit (U-1310) were purchased 

from Promega Corporation, Madison, USA. 

Pellet Paint™ co-precipitant was from CN Bioscience Ltd., Beeston, Nottingham, UK. 

3.3 Cultured potato plants and pathogens 
Tubers of potato varieties Stirling, Bintje and Desiree were kindly provided by Dr. 

Helen Stewart of Scottish Crop Research Institute (SCRI) in Dundee, Scotland. 

Potato pathogens; Phytophthora infestans strain 9.5.1 (race 1, 2, 3, 4, 6, 7) (compatible), 

Fusarium sulphureum and Rhizoctonia solani were also kindly provided by Dr. Helen 

Stewart of Scottish Crop Research Institute (SCRI), Dundee, Scotland. 

3.4 Potato cDNA clones 
Various characterised potato gene sequences and non-plant sequences were collected for 

use as controls in the gene expression assays. 

> A cDNA clone (pSTPR-1) encoding the pathogenesis related protein PR-1 was 

kindly provided by Dr F. Covers of the Laboratory of Phytopathology, 

Agricultural University Wageningen. The Netherlands. 

Extensin encoding cDNA clones pTEL15 and pTEL16 and three unknown tuber cDNA 

clones pYP3, 5 and 6 were kindly provided by Dr D. Bown of the Department of 

Biological Sciences, University of Durham, UK. 
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Lipoxygenase encoding cDNA clone pLOX28 was kindly provided by Dr S. Rosahl of 
the Institut fur Pflanzenbiochemie. IPB, Germany. 

cDNA clones GluA, GluB2, ChtA2 and ChtB3 encoding acidic and basic glucanases 

and chitinases were kindly provided by Dr. Erich Kombrink of the Max-Planck Institut 

fur Zuchtungsforschung, Abteilung Biochemie, Germany. 

Polyphenol oxidase (PPO) encoding cDNA clones Pot32 and Pot33 were kindly 

provided by Dr Simon Robinson of the Division of Horticulture, CSIRO, Australia. 

A cDNA clone encoding phenylalanine ammonia-lyase (PAL) was kindly provided by 

Prof. K. Hahlbrock of the Max-Planck Institute, Germany. 

cDNA clones encoding potato chloride-channel protein (pRR-8) a heat shock protein 

(pRR-12) and alcohol dehydrogenase (pRR-12, pRR20) were clones previously isolated 

and characterised from a potato subtraction hbrary by Dr. Romaan Raemaekers, 

Two non-plant cDNAs, NSE (nerone specific enolase) and GAP43 (growth activating 

protein) were kindly provided by Dr Stefan Przyborski, Department of Biological 

Sciences, University of Durham. 

3.5 Consumables 

Microcentrifuge tubes, pipette tips were obtained from Thistle Scientific, UK. 

Cuvettes, and 96 well microtitre plates were obtained from Sarstedt Ltd., Leicester, UK. 

Petri dishes were supphed by Bibby Sterilin Ltd (Staffordshire, UK). 

Nylon membrane (Hybond-NX) was from Amersham Biosciences Ltd., Little Chalfont, 

Bucks, UK. 
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X-Ray f i lm (RX type) was supplied by Fuji, Tokyo, Japan. 

3.6 Documentation and computer software/hardware 
utilised 

> Photographs were obtained using an Agfa e-photo 1680 digital camera. 

Light and fluorescence micrographs were obtained using a Nikon Coolpix 950 digital 

camera, MCD lens 0.82-0.29X, fitted to a Nikon Optiphot-2 microscope. 

Image manipulation was performed using Paint Shop Pro v6.02 (JASC software) and 

AGFA Photo Wise image software vl.6 (provided with the digital camera). 

Graphical and statistical analyses were performed using GraphPad Prism v3.0 

(GraphPad Software) and Excel (Microsoft). 

Sequence processing, alignment and primer design were performed using the DNAStar 

suite of Lasergene programmes (DNASTAR, Inc., Madison, USA). 
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4 Methods 

4.1 Plant tissue culture related techniques 

4.1.1 Preparation of tissue culture medium 

Throughout the whole project, Murashige and Skoog (MS) medium from Sigma was 

used for the maintenance of the cultured potato plants. The medium was prepared by 

dissolving 4.33g (MS), and 30g sucrose in distilled water. The pH was adjusted to 5.7 

with I M NaOH and the volume was made up to I L then autoclaved at 121°C for 15min 

after adding 2.0g Phytagel as a solidifying agent (MS-medium). 

4.1.2 Micropropagation of potato plantlets from tuber tissues 

Micropropagation of potato plants from tubers was carried out using organ culture (bud 

culture). A potato tuber containing several good buds (eyes) was selected and washed 

thoroughly but carefully to avoid damaging the bud tissues. To further reduce bacterial 

and fungal contaminants, the tuber was soaked overnight in a beaker with a continuous 

flow of water. The tuber was then dried in air before it was sliced at the bud area. The 

slices taken were about 2 to 3cm in diameter and 1 cm thick at the middle and each 

contained only one bud. Slices were surface-sterilised by gently shaking in 70% (v/v) 

ethanol for 10 s, followed by shaking for lOmin in 20% (v/v) Clorox with addition of 

one to two drops of Tween 80. The explants were then washed with sterile distilled 

water several times to make sure no residual chemicals remained. The sterilised 

explants were then placed into petri dishes containing a layer of sterile filter paper to 

absorb the remaining water from the tissue. Following sterilisation, the tuber slices were 

trimmed into a cube shape of approximately 1 cm width x 1 cm length x 0.75 cm deep 

55 



Section 4 Methods 

with the bud on the top. The buds were transferred into MS-medium in Kilner jars and 
sealed with parafilm. The jars were placed in a tissue culture growth room at 23-25°C 
under a regime of 16h light (90-100|iE.m"^.s"') and 8h dark. Newly developed shoots 
were excised and transferred onto fresh MS-medium to develop a potato plantlet. 
Plantlets were propagated and maintained using nodal cuttings every 4-6 weeks as 
described below. 

4.1.3 Maintenance of potato plantlets 

Potato plantlets were propagated using nodal cuttings. Prior to subculture, all leaves 

were removed from the stem of the cultured potato plants and the stem was then cut so 

that each cutting contained only one node. The cuttings were then transferred onto fresh 

MS-medium. The jars were then sealed with parafilm and at the sealing area a few holes 

were made to allow gaseous exchange and to prevent accumulating condensation. Al l 

plantlets were kept in the tissue culture growth room under the same conditions as 

described in section 4.1.2. This maintenance procedure was carried out every 4-6 weeks. 

4.2 Microbiological and phytopathological methods 

4.2.1 Preparation of pathogen media 

4.2.1.1 Rye A broth 

Phytophthora infestans was propagated in Rye A broth for elicitor preparation and total 

RNA extraction. The medium was prepared according to the procedure described by 

Caten and Jinks, (1968). Briefly, 60g of untreated rye seeds were soaked in distilled 

water (about 300ml) for 36h at room temperature after which the supernatant was 

decanted and retained. The swollen rye grains were then covered with distilled water 

56 



Section 4 Methods 

(about 300ml), blended using a high-speed blender (Waring commercial blender) for 
2min. The resulting homogenate was incubated in a water bath for Ih at 68°C. The 
cooked rye was then filtered through four thicknesses of cheese cloth, squeezed gently 
to remove residual liquid and the grain sediment discarded. The filtrate was combined 
with the original supernatant, together with 20g sucrose, made up to one litre and 
sterilised by autoclaving at 121°C for 15min. 

4.2.1.2 Rye A agar 

For mycelial growth and long-term maintenance of Phytophthora infestans Rye A agar 

was prepared from Rye A broth as described above but 15g agar was added per litre 

prior to autoclaving as above. 

4.2.1.3 Potato dextrose agar (PDA) medium 

For growing Fusarium sulphureum and Rhizoctonia solani, potato dextrose agar (PDA) 

medium was prepared according to the manufacturer instructions. 39g PDA was 

suspended in I L of distilled water, boiled to dissolve completely and then sterilised by 

autoclaving as above. 

4.2.1.4 Luria-Bertani (LB) media 

For growing bacterial clones LB-broth was prepared by suspending lOg tryptone, 5g 

yeast extract and lOg sodium chloride in I L of distilled water, boiled to dissolve 

completely and sterilised by autoclaving as above. Where appropriate antibiotic was 

added (100|J,g/ml either ampicillin or kanamycin) after autoclaving and cooling to 

<50°C. 

For LB-agar 15g/L bactoagar was added before autoclaving. 
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4.2.2 Maintenance of fungal pathogens 

All manipulations of fungal pathogens were performed in a negative pressure 

containment lab using a Microflow class I I biological safety cabinet. Phytophthora 

infestans was grown on a Rye A agar at 15°C in the dark and subcultured every 3 - 4 

weeks. Fusarium sulphureum and Rhizoctonia solani were grown on potato dextrose 

agar also 15°C in the dark but subcultured every 2 weeks. 

4.2.3 Purification of Phytophthora infestans cultures 

Purification of P. infestans from contaminated cultures proved to be a difficult task 

because the pathogen grows very slowly on Rye A agar (see section 4.2.2), thus, it can 

easily be overgrown in vitro by contaminants. P. infestans strain 9.5.1 (compatible; race 

1, 2, 3, 4, 6, 7) showed evidence of contamination as judged by bacterial colonies 

growing in the Rye A medium. Purification of the P. infestans culture was achieved 

either by plating the contaminated culture onto P. infestans selective media or by direct 

inoculation of the pathogen onto a potato leaf, or usually by a combination of the two 

methods. The selective medium was Rye A agar containing rifamycin, ampicillin and 

nystatin, and was recommended by Dr. Jenny P. Day of the Department of Biological 

Sciences, University of Bangor, Wales. The medium was prepared by adding 1ml of the 

antibiotic mixture (250mg rifamycin, 200mg ampicillin and 500mg nystatin dissolved in 

10ml dimethyl sulphoxide and filter-sterilised) into 500ml warm autoclaved Rye A agar 

medium (50°C). Generally, the pathogen grows very slowly on this selective media 

(about 7 weeks). The second method was by direct inoculation of the contaminated 

Phytophthora culture onto a sterile potato plantlet growing in tissue culture (leaf-bridge 

bioassay; section 4.2.10). The potato cultivar Bintje was most suitable for this because 
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Bintje does not posses any R gene and the P. infestans strains should be able to infect 
this variety regardless of their compatibility status. Diseased leaf material was then 
transferred onto the selective medium (above), and checked regularly to monitor growth 
of P. infestans. New mycelial growth of the pathogen was then isolated as soon as it 
appeared and inoculated onto a fresh Rye A agar plate and maintained as described in 
section 4.2.2 above. 

4.2.4 Maintaining the phytopathogenicity of potato pathogens 

Subculturing the pathogens in appropriate medium for a long period usually results in 

the loss of pathogenicity. In order to maintain the virulence of the potato pathogens 

throughout the experimental period, pathogen-challenged tissues were used as an 

inoculum to produce actively virulent pathogen. Infected leaves (those developing 

disease symptoms) produced as described in section 4.2.3 were excised and placed onto 

a suitable medium (see section 4.2.2) and incubated at 15°C in the dark. The newly 

isolated cultures were then used for the experimental purposes and preserved for future 

use as described in section 4.2.6. 

4.2.5 Preparation of P. infestans elicitor 

p. infestans culture filtrate elicitor was prepared according to the method of Rohwer et 

ai, (1987). Culture filtrate consisted of materials secreted into Rye A Broth medium in 

which P. infestans was cultured for 6 weeks. Four 250ml Erienmeyer flasks containing 

100ml Rye A broth medium were inoculated with two mycehum plugs (0.5cm in 

diameter each) of P. infestans (see section 4.2.6). The flasks were incubated at 15°C 

with slow shaking (llOrpm) in a temperature-controlled orbital shaker (S.H. Scientific, 

Northumberiand). The medium was separated from the mycelia by filtering through 
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sterile filter paper (Whatman No. 1) under vacuum. The filtrate (about 400ml) was 
dialysed for 48h against several changes of distilled water (4L) before freeze drying. 
The dried material was collected and dissolved in about 4ml (1/100 the original volume) 
phosphate buffer (lOOmM, pH 7.0), centrifuged at high speed (18,500xg for 30min at 
4°C; using a Beckman J2-21 centrifuge and JA-20 rotor) to pellet out undissolved 
materials and then filter-sterilised using a 0.22-^m sterile acrodisc (Gelman Sciences) 
and stored at -20°C until needed. 

4.2.6 Preparation of mycelium plugs 

Mycelium plugs were prepared from actively growing fungal cultures, excised when the 

size of the colony reached about half of the diameter of the petri dish (~2 weeks old for 

P. infestans and ~1 week old for F. sulphureum and R. solani). A sterile cork borer of 

5mm diameter was used to excise a plug at the advancing edges of the fungal colony. 

Each plug was assumed to contain mycelium of approximately the same age. 

4.2.7 Preserving viable pathogens 

Storage on slopes under mineral oil was successfully used to preserve fungal pathogens 

during this study. After autoclaving, the appropriate medium (see section 4.2.3) was 

cooled to about 45°C and about 15ml was dispensed into 30 ml sterilised tubes. The 

tubes were laid at an angle until the medium set. A small plug of actively growing 

mycelium was placed at the bottom of the slope and incubated at 15°C in the dark until 

the mycelium covered almost the whole surface of each slant. Double sterile mineral oil 

was then added to the cultures to make a layer of mineral oil of about 1.5 cm above the 

agar. The tubes were then stored in appropriate racks at room temperature in the dark 
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until needed. 

4.2.8 Pathogen retrieval from preserved cultures 

Retrieval of the fungus from mineral oil preserved cultures was done by removal of a 

small aliquot of mycelium from under the oil phase. The mycelium was placed on 

sterile filter paper to remove excess mineral oil, and then inoculated onto plates of 

appropriate medium (see section 4.2.3) and left to grow in the dark at 15°C. During 

incubation, the plates were orientated at -30° to the horizontal to allow excess oil to 

drain to allow the fungus to grow in the opposite direction. Newly grown mycelium was 

re-isolated from the edge of the colony and subcultured onto fresh medium. 

4.2.9 Exposure of potato plants to P. infestans 

Actively growing mycelium plugs of P. infestans prepared as described in section 4.2.5 

were used to challenge potato plants growing in tissue culture. Four-week old plants 

(after subculturing in killner jars containing MS-medium) were chosen to be 

approximately the same size and appearance. Plants were challenged by placing a disk 

of the pathogen mycelium plug (5mm diameter) adjacent to the plant stem. The jars 

were then sealed with parafilm and the plants (challenged and control) incubated in the 

phytopathology lab under the same environment conditions described in section 4.1.2 

except that the temperature was adjusted to 20°C (suitable for the plants and the 

pathogen). Two independent groups (eight - ten plants each) were used for each 

experiment. Treated and untreated samples from each group were collected at different 

time points (0, 4, 7, 15, 30 and 45 days post challenge), starting from leaf number four 

going upwards. These plant samples were used for isolating RNA for constructing the 

subtractive cDNA library (see section 4.3.18). Progress of growth and infection of 
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plants was recorded photographically using an Agfa e-photo 1680 digital camera. 

4.2.10 Treatment of potato leaves with a P. infestans 
concentrated elicitor 

The leaf-bridge bioassay method, which was developed in our lab (Abdullah, 1999), 

was used to study the responses of potato leaves to exposure to the P. infestans culture 

filtrate elicitor (prepared in section 4.2.5). Briefly, three-compartment petri dishes were 

used in which MS-medium (prepared as described in section 4.1.1) was placed in one 

compartment of each petri dish. Two detached leaves from the same position on the test 

plants, and of approximately the same size and appearance, were orientated in order that 

their petioles were immersed in the medium and the leaf tip laid over the dividing wall 

into the adjacent empty compartment (See section 6; Fig 6-1). The partition between 

compartments supported the leaf ("leaf-bridge") keeping it off the surface of the agar 

thus preventing liquid flow by capillary action. The leaves were elicited by applying 

15fil of the concentrated culture filtrate elicitor to the top left half of the leaf and 

allowing the liquid to infiltrate the leaf tissues. The infiltrated leaves together with 

appropriate controls (infiltrated with sterile phosphate buffer; lOOmM, pH7.0) were 

collected at different time points and used for the histochemistry and microscopy 

experiments (see section 4.4). 

4.3 Molecular biology techniques 

4.3.1 Preparation of RNase-free glassware and plastic ware 

Glassware was dry-sterilised by baking in an oven at 180°C for at least 8h or overnight, 

or by autoclaving after washing with DEPC-treated water. Plasticware was either 
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supplied as DNase and RNase free or was soaked in DEPC-treated water at 37°C for 2h 
to inactivate nucleases then rinsed several times with sterile water before autoclaving or 
heating to 100°C for 15min. Electrophoresis tanks used for RNA analyses were cleaned 
with detergent solution, rinsed in water, dried with ethanol, then filled with a solution of 
3% (v/v) H2O2 and incubated for lOmin at room temperature before rinsing thoroughly 
with DEPC-treated water. 

4.3.2 Preparation of RNase-free water and reagents 

RNase-free water was prepared by adding DEPC to deionised water to a final 

concentration of 0.1% (v/v), left at 37°C with stirring for at least 2h or overnight at 

room temperature and then autoclaved or heated to 100°C for 15min to decompose any 

residual DEPC. Whenever possible, solutions for molecular work were similarly treated 

with 0.1% (v/v) DEPC for at least 2h at 37°C or overnight at room temperature and then 

autoclaved prior to use. For solutions which could not be treated with DEPC (i.e. those 

containing chemicals with primary amine groups such as Tris) or autoclaved (i.e. 

volatile materials such as ammonium acetate), these were prepared in DEPC-treated 

water from unopened bottles to avoid any nuclease contamination. 

4.3.3 Polymerase chain reaction (PCR) 

In general, for a single 50fxl PCR reaction the following components were added to a 

0.5ml sterile microcentrifuge tube: 5^1 lOx PCR buffer (lOOmM Tris-HCl; pH=8.3, 

500mM KCl and 0.01% (w/v) gelatine); 5^1 dNTP mix solution (2mM, each); 5^1 

MgCh solution (25mM); l | i l of each primer (100pmole/|j,l); lOOng template DNA; and 

Z^l sterile distilled water (where Z = 50-sum of all other volumes). The components 
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were mixed and the tube then centrifuged briefly in a microfuge. The reaction tubes 
were then placed in the PCR instrument (Omn-E Thermal Cycler), and heated to 94°C 
for 3min. 2 units of Taq polymerase were then added to each microcentrifuge tube to 
start the reaction. The thermal cycle was run as follows; template denaturing; 94°C for 
30sec, primer annealing; 55°C for 45s, and extension; 72°C for 2min. The cycle was 
repeated 30 times. On completion of the multiple cycles a further extension period of 
7min at 72°C was included before the temperature was finally lowered to 25°C. The 
amplified products were then analysed on 0.8% (w/v) agarose gel and samples stored at 
-20°C. 

To detect any contamination problems in the PCR reactions, two control reactions were 

used in parallel with the test samples, a reaction containing no template and another one 

containing no primers. 

4.3.4 DNA Agarose Gel Electrophoressis 

Electrophoresis of DNA was carried out according to the method of Sambrook et ai, 

(1989) using a horizontal agarose gel made up and submerged in Ix TAE running buffer 

(40mM Tris base, 40mM acetic acid, I m M EDTA). 0.8% (w/v) agarose gel was 

prepared and ethidium bromide (EtBr) was added to both the gel and the tank buffer, to 

a final concentration of 1.0 Hg/ml. One fif th the DNA sample volume of 6x loading dye 

(provided with the DNA markers) was added and the samples were loaded onto the gel 

along with 1Kb DNA markers (MBI Fermentas). Electrophoresis was carried out at 50V 

initially then raised to 80V until the bromophenol blue dye had migrated two-thirds the 

length of the gel. DNA bands were detected by the orange fluorescence of the EtBr-

DNA complex under UV light (300nm). Gels were photographed through a red-orange 
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filter (Kodak 23A Wratten) and Polaroid Type 667 (3000 ASA) fi lm or the images 
cuptured using a Bio-Rad Gel Doc 2000 system. 

4.3.5 Purification of DNA from agarose gels 

The band of interest was excised from the gel using a sterile scalpel blade and put in a 

1.5 ml Eppendorf tube. The DNA was purified from the agarose gel according to the 

instructions in the Bio-Rad DNA purification kit. Briefly, the standard protocol adopted 

the following sequence of steps; (1) solubilizing the gels by adding 3x the gel volume of 

binding buffer (6M Sodium perchlorate; 50mM Tris-HCl, pH 8; lOmM EDTA, pH 8); 

(2) incubating at 37°C for several minutes; (3) adding 'silica fines' to bind the DNA; (4) 

pelleting the DNA-containing matrix; (5) washing the matrix two times with washing 

buffer (800mM sodium chloride, 40mM Tris-HCl pH 7.5, 4mM EDTA pH7.5); (6) 

washing the matrix with 80% (v/v) ethanol to remove any salts; and finally, (7) eluting 

the DNA from the matrix by adding sterile distilled water. The DNA was concentrated 

by precipitation with ethanol (see section 4.3.13). 

4.3.6 Cloning PCR products 

All cloning (GM) work was subject to appropriate ACGM risk assessment to permit this 

research to be carried out at the Durham GM centre 40. 

The TOPO™ TA cloning kit (Invitrogen) was used to clone PCR products as well as 

purified DNA bands (amplified by PCR) from agarose gels. The DNA fragments were 

directly inserted into the linearised plasmid vector (PCR II-TOPO) with a single 

overhanging 3'thymidine (T) residue by adding the DNA (1-4^1) to l^il PCR U-TOPO 

vector and adding sterile water to 5|j,l i f needed, mixed gently and incubated for 5min at 
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room temperature (TOPO™ Cloning reaction). Competent cells [TOPO One-Shot 
{50yd) or DH5a (100^1)] were transformed by adding 2-5 -̂1 of the TOPO™ cloning 
reaction mixing gently and incubating on ice for 30min. The cells were then heat 
shocked for 30s at 42°C without shaking. Immediately the tube was transferred to ice 
and incubated for 2min. 250|u,l of SOC medium at room temperature were added to each 
vial and the vials were shaken horizontally at 37°C for 30-60min. 50-200)0,1 from each 
transformation reaction were spread onto selective plates (LB-Agar containing 
100|ig/ml ampicillin, and 60|xl X-Gal (40mg/ml) was added to each plate and spread 
evenly) and incubated overnight at 37°C. Blue/white screening was used to detect the 
positive clones with inserted DNAs and the presence of the inserted DNAs confirmed 
by restriction analysis of the isolated plasmids (sections 4.3.8 and 4.3.9). 

4.3.7 Bacterial culture preparation and storage 

LB-agar medium was used as a general purpose growth medium for bacterial strains and 

when applicable an appropriate antibiotic was added. Bacterial colonies for regular use 

were stored on agar plates sealed with parafilm and inverted at 4°C for up to 3-4 weeks. 

For long-term storage clones were stored as suspensions in glycerol. Bacterial lawns or 

'thick streaks' were grown from a single colony on an appropriate selective medium and 

then transferred into a screw top glass vial containing 1ml aliquots of LB broth, then 

80% (v/v) sterile glycerol was added to a final concentration of 40% (v/v).After vortex 

mixing thoroughly the clones suspended in glycerol were stored at -80°C. 

Bacterial suspension cultures were prepared by inoculating 7-lOml of LB broth medium 

with a single colony (picked from an agar plate) or 5-10|J,l of a previously frozen clone 

stored in glycerol. For plasmid-containing strains, the medium was supplemented with 
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100|ag/ml ampicillin. All cultures were incubated overnight at 37°C on an orbital shaker 
running at 160rpm. 

4.3.8 Plasmid isolation 

Bacterial cultures (7-10 ml) were grown as described above (section 4.3.7). The cells 

were harvested by centrifugation at 6000rpm for 5-lOmin, then the supernatant decanted 

off and excess media was removed from the pellets by inverting the tube over paper 

towels for a few minutes. 

Two methods were used to isolate plasmid DNA during this study a) the Wizard Plus 

SV Plasmid purification kit (Promega) following the manufacturer instructions, and b) 

the alkaline lysis method according to the procedure described by Sambrook et al, 

(1989) as follows: the bacterial pellets were resuspended in 100^1 of ice-cold Solution 1 

(50mM glucose, lOmM EDTA, 25mM Tris-HCl; pH 8.0) by vigorous vortexing and 

transferred into a 1.5ml Eppendorf tube. 200\i\ of freshly prepared Solution I I (0.2N 

NaOH, 1% SDS) were added, and the contents were mixed by inverting the tube rapidly 

five times. The suspension was incubated in ice for 5min. Then, 150|xl of ice-cold 

Solution n i (a mixture of 60ml 5M potassium acetate, 11.5ml glacial acetic acid and 

28.5ml H2O) were added and mixed thoroughly by inversion and gentle vortexing for 

10s. The tube was incubated in ice for 5min and then centrifuged at 4°C for lOmin at 

14,000xg. The supernatant was transferred into a fresh 1.5ml Eppendorf tube and an 

equal volume of phenolxhloroform was added and mixed thoroughly by vortexing. 

After centrifuging at 14,000xg for 2min at 4°C, the supernatant was transferred to a 

fresh Eppendorf tube. Two volumes of ethanol were added to precipitate the plasmid 

DNA at room temperature for 2min. The DNA was then recovered by centrifugation at 

67 



Section 4 Methods 

14,000xg for 5min at 4^C. The supernatant was decanted and the DNA pellets were 
washed by rinsing with 1ml 70% (v/v) ethanol. The supernatant was removed as 
described above, and the pellet of nucleic acid was allowed to dry in the air for 5-lOmin. 
The DNA was redissolved in \00\i\ of Tris-EDTA buffer (pH 8.0) containing DNAase-
free pancreatic RNAase (20|ag/ml). 5|J,1 of the plasmid solution were run on 0.8% (w/v) 
agarose gel to check their purity. Purified plasmids were then restricted with appropriate 
restriction enzymes to check for the integrity and size of inserts and the plasmids were 
either sequenced immediately or stored at -20°C until required. 

4.3.9 Restriction analysis 

Restriction of DNA was carried out by mixing the following components; 5\i\ plasmid 

DNA (~l-5|a,g); 12|il H2O; 2|i.l appropriate restriction enzyme buffer (lOX); and 1̂ 1 of 

the appropriate restriction enzyme (10U/}il). This mixture was incubated in a water bath 

at 37°C for l-2h after which the restricted plasmid DNA was checked for the presence 

of insert by electrophoresis on a 0.8% (w/v) agarose gel. 

In some circumstances (for example, where the intensity of the restricted band was very 

low because the size of the insert was too small) the volume of plasmid DNA was 

increased and the H2O was decreased in order to see a clear band in the gel. 

4.3.10 Isolation of total RNA from potato tissues and 
P.infestans 

Total RNA was isolated using Trizol reagent (Sigma), a mono-phasic solution of phenol 

and guanidine isothiocyanate. According to the manufacturer instructions, during 

sample homogenisation, Trizol reagent maintains the integrity of the RNA, while 

disrupting cells and dissolving cell components. The method used was based on the 

68 



Section 4 Methods 

single-Step RNA isolation developed by Chomczynski and Sacchi, (1987). 500mg of 
frozen potato leaf tissues collected at different time points (as described in section 4.2.8) 
and P. infestans mycelium were each ground, separately, to a fine powder with liquid 
nitrogen in a mortar and pestle. Once the nitrogen had boiled off, the ground samples 
were then homogenised in 5ml Trizol reagent. The homogenised samples were 
incubated for 5min at room temperature to permit the complete dissociation of 
nucleoprotein complexes. Prior to the addition of chloroform (200nl/ml of Trizol 
reagent), the homogenised samples (about 5ml) were aliquotted into Eppendorf tubes 
(1ml each). Addition of chloroform was followed by vigorous shaking and 
centrifugation to separate the solution into an aqueous phase, an interphase and an 
organic phase. The RNA remained exclusively in the aqueous phase. After recovery of 
the aqueous phase, the RNA was recovered by precipitation with isopropanol, washed 
with 75% (v/v) ethanol, briefly dried (5-lOmin) and finally dissolved in RNase-free 
water. The isolated RNA samples were then checked for purity and integrity (section 
4.3.11). Pure and intact total RNA samples were stored at - 80°C until needed. 

4.3.11 Assessment of RNA quality 

The integrity of total RNA was assessed by visualisation of intact 18S and 28S 

ribosomal RNA (rRNA) bands by running the isolated RNA samples on 0.8% (w/v) 

denaturing agarose gels. The formaldehyde gels were prepared according to the method 

described by Sambrook et al, (1989). The samples were prepared by mixing 4.5 .̂1 

RNA sample (up to 20ng) with 2^1 of 5x gel-running buffer (50mM sodium acetate, 

0.2M MOPS (morpholinopropanesulfonic acid) and 5mM EDTA pH 8.0), 3.5^1 

formaldehyde and lOfil formamide. The samples were incubated at 55^0 for 15min then 
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loaded onto the denaturing agarose gel after addition of 4̂ .1 of 6x loading dye. The size 
of distinct 18S and 28S rRNAs are approximately 2000 and 4500 bases, respectively. 
Appearance of sharp 18S and 28S rRNA bands indicated the integrity of the isolated 
RNA; diffuse and smeared bands were an indication of RNA degradation. The 
appearance of distinct high molecular weight bands was indicative of possible DNA 
contamination in the isolated RNA. Low molecular weight 5S rRNA and tRNA 
sometimes appeared as faster migrating diffuse bands. 

The purity of RNA was checked by absorbance at 260nm and 280nm. The desired ratio 

of absorbances (A260/A280) should be >1.8. In addition, samples were routinely 

scanned between 240 and 320nm to confirm a characteristic clean spectrum without 

absorbance due to contaminants such as polyphenols, phenols and proteins. 

4.3.12 Quantitation of RNA Preparation 

RNA samples were appropriately diluted (1^1 RNA in 99\i\ DEPC-water) with sterile 

DEPC-treated distilled water and the absorbance measured at 260nm against DEPC-

treated distilled water using an acid-washed quartz microcuvette. RNA concentration 

was calculated using the following formula: 

RNA ^g/rrd = A260 x 40 x DP 

Where DP = dilution factor. 

4.3.13 Purification of Poly (A^) RNA 

At the start of this study a Promega 'PolyATtract' mRNA isolation kit based on Oligo 

(dT) immobilised on magnetic beads, was used several times, but unfortunately without 

70 



Section 4 Methods 

success as judged by absence of any amount of poly (A^) RNA. Subsequently, a 
Dynabeads mRNA purification kit was used following the manufacturer instructions. 
The use of the Dynabeads mRNA purification kit also relies on base pairing between the 
poly (A'*') residues at the 3' end of most messenger RNA and the oligo dT residues 
covalently coupled to the surface of the Dynabeads oligo (dT)25. Other RNA species 
lacking a poly (A"̂ ) tail do not hybridise to the Dynabeads oligo (dT)25 and are readily 
washed off. The mRNA is captured by the Dynabeads oligo (dT)25 and washed 
thoroughly using a magnetic separator. The mRNA is eluted from the beads by using a 
low-salt buffer (lOmM Tris-HCl; pH 7.5). Briefly, 75^ig total RNA (100|xl) was added 
to lOO^il binding buffer (20mM Tris-HCl pH 7.5, I M LiCl and 2 mM EDTA) and 
heated to 65°C for 2min. The denatured RNA was added to a tube contained the 
Dynabeads oligo(dT)25 in 100|xl binding buffer, and annealed by rotating the tube for 
5min at room temperature. Using a magnetic separator, the captured mRNA was washed 
twice with 200^1 washing buffer (lOmM Tris-HCl pH 7.5, 0.15M LiCl and I m M 
EDTA). The mRNA was eluted from the Dynabeads by the addition of 10\i\ lOmM 
Tris-HCl and heating to 65°C for 2min. These steps were repeated several times to 
isolate sufficient mRNA enough for checking the purity and starting the subtractive 
hybridisation technique (section 4.3.18). 

The purity of the isolated poly (A^) samples was checked by electrophoresis on 0.8% 

(w/v) denaturing formaldehyde agarose gels to monitor for any traces of the two major 

ribosomal RNAs (18S and 288). The RNA concentrations were determined in the same 

way as described for the total RNA as described in section 4.3.12. 

It is unclear why the Promega kit failed to work, though differences in the size of oligo 

(dT), concentration of oligo(dT) and minor differences in the handling procedure may 
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have contributed. 

4.3.14 Concentrating Poly (A^) RNA 

In order to optimise the initial concentration of poly (A'*') required to synthesise cDNA 

as required in the Clontech PCR Select procedure (section 4.3.18), the two mRNA 

preparations (tester and driver) were concentrated to 2\ig/\i\ using ethanol precipitation. 

In order to follow the RNA precipitate during the washing steps and prevent losses 

during handling 'Pellet Paint Co-precipitant' (Novagen), a coloured compound which 

coprecipitates with RNA during ethanol precipitation, was used. To a sample of poly 

(A*) RNA, 2^1 'pellet paint' and 0.1 volume of 3M sodium acetate (pH 5.2) was added 

and thoroughly mixed. This was followed by the addition of two volumes of 100% 

ethanol. The mixture was vortexed briefly and incubated at room temperature for 2min. 

The resulting precipitate of RNA was spun at 14,000xg for 5min at 4°C, followed by 

washing twice with 75% (v/v) ethanol. After each washing, the precipitate was collected 

by centrifugation at 14,000xg for 5min at 4°C. The pellet was air dried for 5min and 

then dissolved in an appropriate volume of RNase-free water to a final concentration of 

2|j.g/|xl. The concentrated poly (A^) samples were immediately frozen in liquid nitrogen 

and stored at -80°C until required. 

4.3.15 Synthesis of digoxigenin-labelled probes 

For screening the subtracted library with forward, reverse and characterised sequence 

probes, high specific activity, labelled probes were synthesised by digoxygenin (DIG)-

labelling of DNA fragments generated by PCR (see section 7.5). The incorporation of 

DIG-dUTP into the PCR products was carried out according to the instructions provided 

with the PCR DIG Probe synthesis kit (Roche, Mannheim, Germany). The PCR reaction 
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mix comprised 2^1 (lOx) PGR buffer (lOOmM Tris-HCl; pH=8.3, 500mM KCl 
containing 15mM MgC^), 2̂ ,1 DIG-labelling mix, l^ i l (100 pmole/^ll) of each 
appropriate primer ( M l 3 forward and reverse, SP6 and T7 or nested primers 1&2R), 1̂ 1 
DNA (0.5-lng) and sterile distilled water to a total volume of 20|LI1. After mixing and 
centrifuging the components, PGR was performed using the same conditions described 
in section 4.3.3. 

4.3.16 Evaluation of probe labelling efficiency 

It was important to check the efficiency of each labeling reaction by determining the 

amount of DIG-labelled product. This facilitated addition of the correct amount of probe 

to the hybridisation solution (too much probe leads to serious background problems and 

too little probe leads to little or no hybridisation signal). To estimate the labeling 

efficiency of the PGR-generated probe, 2|J,1 of each PGR product (both DIG-labelled and 

unlabelled (i.e., amplified in the absence of DIG-dUTP) versions of the experimental 

probe) were run on a 0.8% (w/v) agarose gel. 

The presence of DIG in the DNA gives it a higher mass than unlabelled DNA as well as 

slowes the polymerase reaction, so a highly-labelled probe ran slower in the gel and the 

intensity of the stained DIG-labelled probe should be equal to (or slightly less than) the 

intensity of the unlabelled probe DNA. 

4.3.17 Purification of DIG-labelled Nucleic Acids 

DIG-labelled probes were purified from PGR reagents and contaminants using the 

wizard PGR Preps DNA Purification System (Promega) following the manufacture's 

instructions. Briefly, the PGR amplified mixture (18|J,1) was added to 100)J,1 purification 
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buffer and 1ml binding resin then vortexed briefly three times over a Imin period. The 
resin plus bound DNA was pushed into a minicolumn (attached to a syringe) using a 
syringe plunger then the column was washed by passing 80% (v/v) isopropanol solution 
through it. The remaining isopropanol was removed by centrifugation after transferring 
the minicolumn to a 1.5ml microcentrifuge tube. The DNA fragment was eluted from 
the minicolumn with 20 ,̂1 sterile distilled water and stored in the microcentrifuge tube 
at -20°C until needed. 

4.3.18 Preparation of a subtracted cDNA library from potato 
plants 'var. Stirling' 

4.3.18.1 Strategy for constructing the subtracted cDNA Library 

A subtracted cDNA library from P. m/e^ton^-challenged Stirling plants was constructed 

using the suppression subtractive hybridisation technique according to the Clontech 

PCR-Select™ cDNA Subtraction Protocol based on the original method described by 

Diatchenko et al., (1996). The principle of the PCR-select technique is complex and the 

reader is directed to the Clontech web site (http://www.clonetech.com) and the original 

paper for detailed information about the method by Diatchenko et al., (1996). 

In the current study, two subtractions were made (i.e. forward and reverse subtractions). 

In the forward subtraction two populations of mRNA from two different plant materials 

being compared i.e. pathogen-treated material is referred to as the 'tester' and the 

corresponding untreated (control) material is the 'driver' from Stirling plants were used. 

In the reverse subtraction the driver was used as a tester and the tester as a driver (see 

below). The two subtraction were carried out in order to isolate gene sequences 

differentially expressed between the two experimental materials - in the forward 
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subtraction gene sequences expressed to a higher level in the pathogen-treated material 
compared with the control (untreated) material are preferentially amplified. In the 
reverse subtraction gene sequences down regulated in the pathogen-treated material 
compared with the control (untreated) material are preferentially amplified. The 
corresponding library clones are isolated using either of these subtracted probes. 

The strategy for constructing the subtracted cDNA library is outlined schematically in 

figure 4-1 below and is discussed in more detail in section 7. Briefly, identical amounts 

of total RNA isolated from each time point (0, 4, 7, 15, 30 and 45 days post pathogen 

treatment) were pooled together. Total RNA isolated from P. infestans was mixed with 

the total RNA from the control plant tissue to create the control RNA population (to 

subtract any pathogen sequences present in the tester). Poly (A" )̂ RNA (mRNA) was 

then isolated from each pooled total RNA population as described in section 4.3.13. 2M,g 

of each poly (A" )̂ RNA was used for the synthesis of the cDNAs, followed by Rsal 

digestion (a four-base-cutting restriction enzyme that yields blunt ends). The tester 

cDNA was then subdivided into two portions, and each was ligated with a different 

cDNA adaptor. The ends of the adaptor do not have phosphate groups, so only one 

strand of each adaptor attaches to the 5' ends of the cDNA. The two adaptors have 

stretches of identical sequence to allow annealing of the PCR primer once the recessed 

ends have been filled in. (See appendix A for sequences of the adaptors and the primers 

used). Two hybridisations were then performed. 

In the first hybridisation, an excess of driver was added to each sample of tester: the 

samples were heat denatured and allowed to anneal, generating the a, b, c, and d-type 

molecules in each sample (figure 4-2). The single stranded type a molecules were 
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Figure 4-2 The products of the first and second hybridization processes (adapted 
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significantly enriched for differentially expressed sequences, as cDNAs that are not 
differentially expressed form type c molecules with the driver. 

In the second hybridisation, the two primary hybridisation samples were mixed together 

without denaturing. Only the remaining equalized and subtracted single stranded tester 

cDNAs can reassociate and form new hybrids, type e. These new hybrids were double 

stranded tester molecules with different ends, which correspond to the sequences of 

adaptors 1 and 2R (appendix A). Fresh denatured driver cDNA was added (again, 

without denaturing the subtraction mix) to further enrich fraction e for differentially 

expressed sequences. After filling in the ends by DNA polymerase, the type e molecules 

(the differentially expressed tester sequences) have different annealing sites for the 

nested primers on their 5' and 3' ends. The entire population of molecules was then 

subjected to PCR to amplify the desired differentially expressed sequences. Finally the 

PCR products were cloned into the PCR n vector following the procedure described in 

section 4.3.6. 

In the reverse subtraction, the 'driver' cDNA was used as a tester without adding the 

pathogen total RNA and the 'tester' cDNA was used as a driver to produce amplified 

subtraction products used as probes in the differential screening procedure (4.3.18.4). 

4.3.18.2 Growing and transferring the subtracted colonies to nylon 
membrane (colony arrays) 

Randomly selected colonies from the subtraction libraries were picked and grown in 

100|xl of LB-broth medium containing 100|ig/ml ampicillin in a 96-well microplate at 

37°C for at least 5h with shaking. Nylon membranes (Hybond-NX; Amersham 

Biosciences Ltd.) were placed onto LB-agar plates containing lOO^g/ml ampicillin. A 

48 pin metal inoculator (constructed in University of Durham engineering workshop) 
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was used to transfer aliquots of each bacterial culture onto the nylon membranes. The 
membrane plates were then incubated at 37°C overnight. Several replica membranes 
were prepared for hybridisation with forward and reverse subtracted probes as well as 
with characterised sequence probes. 

For long-term storage, sterile 80% (v/v) glycerol was added to the bacterial cultures in 

the microplates to a final concentration of 40% (v/v) and mixed by pipetting up and 

down then the plates were sealed and stored at -80°C until needed. 

4.3.18.3 Preparation of the nylon membranes for hybridisation 

Colonies on nylon membranes were lysed and the DNA denatured by placing the 

membranes (colony side up) on Whatman 3MM paper soaked with denaturing solution 

(0.5M NaOH, 1.5M NaCl) for 15min. Membranes were neutralised by transferring to 

Whatman 3MM paper soaked with neutralising solution (l.OM Tris-HCl, pH 7.5; 1.5M 

NaCl) for 15min and then transferred onto filter paper soaked with 2x SSC for lOmin, 

finally the membranes were sandwiched between two sheets of dry Whatman paper and 

the DNA crosslinked to the membrane with UY-light (150 mJoule) (BioRad cross-

linker). The membranes were treated with proteinase K (2mg/ml) for Ih to digest away 

any interfering proteins before hybridisation with DIG-labelled probes. 

4.3.18.4 Hybridisation of DIG-labelled probes to colony arrays 

Hybridisations were carried out according to the instruction manual supplied with the 

DIG luminescent detection kit in a hybridisation incubator (Techne Hybridiser KB-ID), 

three membranes were placed in a hybridisation bottle and pre-hybridised for 2h at 

68°C in 30ml pre-hybridisation solution (5x SSC, 0.1% (w/v) N-lauryl-sarcosine, 0.02% 

(w/v) SDS, 1% (v/v) blocking reagent and 0.3mg/ml oligonucleotides corresponding to 
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the nested primers and the adaptor sequences (appendix A). Then 5-25ng/ml denatured 
probe, prepared by boiling at 95°G for 5min and rapidly cooled on ice, were mixed with 
fresh 20ml pre-hybridisation solution, pre-warmed to 68°G and added to the 
membranes. Membranes were incubated in the hybridisation mix overnight at 68°G after 
which the hybridisation solution was recovered into a falcon tube and stored at -20°G 
for future use. The membranes were then washed twice with 2x SSC, 0.1% (w/v) SDS 
for 5min at room temperature and twice in 0.5x SSG, 0.1% (w/v) SDS for 15min at 
68°G with gentle agitation. Finally the probe-target hybrids were detected following the 
procedure described below (section 4.3.18.5). 

4.3.18.5 Detection of DIG-labelled probes 

The detection of probe-target hybrids was carried out according to the instruction 

manual suppHed with DIG luminescent detection kit following, mainly, a three-step 

process. In the first step, the membranes were blocked, by gentle agitation for 30-60min 

in blocking solution (1% (w/v) blocking reagent in maleic acid buffer (lOOmM maleic 

acid, 150mM NaGl; pH 7.5)), to prevent non-specific interaction of the antibody with 

the membrane. In the second step, the membranes were incubated with a diluted 

alkaline phosphatase-conjugated antibody, specific for digoxigenin, (anti-digoxigenin-

AP 1:10,000 (v/v) in blocking solution) to recognise the DIG molecule on the labelled 

hybrid. Finally, the membranes carrying the hybridised probe and bound antibody 

conjugate were reacted with a chemiluminescent substrate (1% GSPD® in detection 

buffer (lOOmM Tris-HGl, lOOmM NaGl; pH 9.5) after washing twice with washing 

buffer (0.3% (v/v) Tween 20 in maleic acid buffer) for 15min each. The membranes 

were then exposed to X-ray f i lm (RX type; Fuji, Tokyo, Japan) for 15-25min to record 

the chemiluminescent signal. 
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4.3.18.6 Stripping membranes for reprobing 

Membranes used for an initial hybridisation experiment were stripped of DIG-labelled 

probe, with almost no loss of immobilised target sequences, and were then re-hybridised 

with a different probe. The mild stripping procedures were used to allow multiple, 

sensitive re-probing experiments. The membranes were rinsed thoroughly in H2O at 

room temperature then incubated twice in 0.2M NaOH/0.1% (w/v) SDS for 20min at 

37°C, finally rinsed in 2x SSC (0.3M NaCl; 0.03 M sodium citrate; pH 7.0) for 5min. 

The membrane was then used directly for hybridisation with a different probe or stored 

in 2x SSC until needed. 

4.4 Histochemistry and Microscopy 

4.4.1 Histochemical detection of callose deposition 

Formation of callose was determined by staining potato leaves with aniline blue 

according to the method of Dietrich et ai, (1994). Leaves for callose deposition 

examination were collected 7 days post elicitor treatment as described in section 4.2.10 

and were cleared by boiling for 2min in alcoholic lactophenol [2:l(v/v) 95% (v/v) 

ethanol: lactophenol (phenol, glycerol and lactic acid (1:1:1; v/v/v))], rinsed in 50% 

(v/v) ethanol, and then rinsed in water. Cleared leaves were stained for Ih at room 

temperature in a 0.01% (w/v) solution of aniline blue in 0.15 M K2HPO4. Stained leaves 

were mounted on slides in 70% (v/v) glycerol in water and examined under ultraviolet 

epifluorescence using a Nikon Optiphot-2 microscope (excitation filter UV-2A, Ex 330-

380nm; Dichroic mirror, D M 400nm; and barrier filter, BA 420nm). 

Micrographs were obtained using a Nikon Coolpix 950 digital camera, MCD lens 0.82-

0.29X fixed to a Nikon Optiphot-2 microscope. Callose deposition was indicated by a 
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yellow fluorescence. 

4.4.2 Histochemical detection of superoxide anions 

Generation of superoxide anions (O2') was detected by infiltrating leaves with nitroblue 

tetrazolium solution (NBT) following the method described by Schraudner et al, 

(1998). Elicitor-treated leaves (3, 6 and 12h post treatment) were vacuum-infiltrated 

with a 0.1% (w/v) solution of nitroblue tetrazolium in 50mM potassium phosphate (pH 

6.4) containing lOmM sodium azide. Infiltrated leaves were incubated in the light for 

30min and then immersed in a mixture of lactic acid, phenol and water (1:1:1, v/v/v) for 

2 days at room temperature in the dark. Cleared leaves were mounted on slides in 70% 

(v/v) glycerol in water and examined under normal illumination light using a Nikon 

Optiphot-2 microscope. Generation of superoxide anions was indicated by a blue 

coloration. Micrographs were obtained using a Nikon Coolpix 950 digital camera fixed 

to a Nikon Optiphot-2 microscope. 

4.4.3 Histochemical detection of hydrogen peroxide 

Histochemical detection of hydrogen peroxide (H2O2) generation was performed by 

vacuum infiltrating potato leaves with 3,3'-diaminobenzidine (DAB) according to 

Schraudner et al, (1998). Elicitor-treated leaves (3, 6, 12, 24 and 48h post treatment) 

were vacuum-infiltrated with a 0.1% solution of 3,3'-diaminobenzidine-4 HCl (DAB) in 

lOmM MES (2-(N-morpholino) ethanesulphonic acid), pH 6.5. Infiltrated leaves were 

incubated in the light for 30min, then cleared by boiling in ethanol (96% (v/v)) for 

lOmin according to the method described by Thordal-Christensen et al., (1997). The 

DAB reaction was examined under normal illumination light using a Nikon Optiphot-2 

microscope. The presence of H2O2 was indicated by a reddish-brown coloration. 
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Micrographs were obtained using a Nikon Coolpix 950 digital camera as described 
above. 

4.4.4 Histochemical detection of pathogen-infected tissues 

Leaves for microscopic examination of P. infestans-'mftcted tissue were first cleared 

and then stained according to the method described by Dietrich et ai, (1994). Selected 

leaves were harvested and vacuum infiltrated with lactophenol for lOmin and then 

incubated at room temperature with at least three changes of lactophenol overnight or 

until the leaves were clear. To stain the fungal tissue, cleared leaves were incubated for 

Ih at room temperature in 0.06% (w/v) aniline blue in lactophenol. Stained tissues 

were examined using Nikon Optiphot-2 microscope and micrographs were obtained 

using a Nikon Coolpix 950 digital camera as described above. 

4.5 Microarraying 
This part of the project was carried out in collaboration with Dr Ron Croy. 

4.5.1 Large-scale preparation of cDNA probes for arraying 

Plasmids from the subtraction library clones were prepared as described previously 

(section 4.3.8). A number of characterised potato clones were obtained from other 

sources, as detailed in section 3.4, including acidic and basic glucanases and chitinases, 

the pathogenesis related protein PR-1, lipoxygenase, polyphenol oxidase, phenylalanine 

ammonia lyase, alcohol dehydrogenase and extensins. Clones preserved as glycerols or 

in arrays in 96-well microplates, were inoculated directly into deep well microplates 

containing 1ml LB-amp broth (lOO^g/ml ampicillin) using a sterile 48 pin replicating 

fork. The plates were sealed with a sterile silicon mat and the plate incubated at 37 °C 
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on an orbital shaker at 600rpm overnight. The cells were harvested by centrifuging the 
culture plates at 4,100rpm (2,800g) for lOnain at 4°C in a Jovan BR4 centrifuge. The 
supematants were aspirated using a vacuum line and the pelleted cells resuspended in 
500\i\ of I m M EDTA, pH 8.0 using a vortex mixer. The cells were lysed by heating at 
95 °C for 5min and the cell debris removed by centrifugation at 4,100rpm (2,800g) for 
30min at 4°C. 200[i\ of the supematants containing the released plasmids were 
transferred to a fresh microplate and stored frozen at -20°C. 

lOjxl aliquots of each of the purified mini-prepped plasmids (section 4.3.8) or as 

released from lysed clone cultures were diluted into 200^1 of imM EDTA, pH 8.0. 20^1 

aliquots of the deluted mini-prepped plasmids containing about l-5ng plasmid were 

used for PGR amplifications. 

4.5.2 Amplification of cloned cDNA fragments 

PGR reactions were carried out on aliquots of the plasmids prepared from the selected 

clones. 100p,l reaction mixtures were prepared in 96-well thin wall PGR plates (Greiner 

thermoquick plates, # 651570) as follows: 50|xl Taq polymerase enzyme mix (Biomix 

Red 2x), 0.5jj,l of each primer (0.5|iM each), 29^1 water. Biomix Red (Bioline) was a 2x 

concentrate providing the following components: 125mM Tris-HGl pH=8.8, 32mM 

ammonium sulphate, 0.02% Tween 20, 2mM dNTP's, 0.05 units Taq polymerase/|al, 

3.0mM MgGl2. Primers were purchased from Helena Biosciences (Genset Oligos) with 

the following sequences (Table 4.1). 

Taq mix, primers and water were combined in each well of a 96 well PGR microplate 

using a 8-channel multipipette. The reactions were held at 0°G until after the final 
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Table 4,1 Primer sequences used for amplifying the cDNA inserts from purified 

plasmids. 

primer designation sequence Tm 

30-mer forward 
primer 

5'-CCC AGT CAC GAC GTT OTA AAA CGA CGG CCA-3' 73 

30-mer reverse 
primer 

5'-AAC AAT TTC ACA CAG GAA ACA GCT ATG ACC-3' 62 

Table 4.2 PGR amplification programmes 

step programme 1 programme 2 

initial denaturation T = 94°C 4 min T = 94°C 2 min 

X 1 cycle X 1 cycle 

cycle denaturation T = 94°C 30 sees T = 94°C 30 sees 

primer armealing T = 55°C 45 sees T = 55''C 45 sees 

extension T = 72°C Imin T = 72°C Imin 

X 35 cycles X 5 cycles 

final extension T = 72°C 7min 

interrupt after 35 cycles 

hold T = 10°C until required 
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addition of 20^1 of the templates and thorough mixing by multichannel pipette. The 
plate was then transferred to an Eppendorf Mastercycler Gradient 5331 thermocycler 
programmed with the settings shown in Table 4.2. Two programmes (Table 4.2) were 
used sequentially to allow extra nucleotides to be added at the end of the first set of 
cycles to increase the yield of product. After cycling was completed the PCR plates 
were sealed and stored at -20 °C until required. l-5nl of each sample was diluted to 10^1 
with 1 X TBE containing marker dyes and 3% glycerol and analysed on a FAST gel 
stretch system (Abgene) (see section 8, figure 8.1). 

4.5.3 Purification of PCR products 

PCR products in 96-well microplates were purified using either a PCR cleanup kit 

(Whatman, # 7905-0002) based on DNA binding to glass fibre filters or Wizard 

MagneSil magnetic silica beads (Promega, #A1930) using a Magnabot 96 well magnetic 

separation device (#V8151) used according to the manufacturers instructions except in 

both cases elution of the DNA from the filters or beads was carried out with only half 

the recommended elution volume of sterile water (50|il). The purified DNA's in water 

were stored at -20°C. The concentration of DNA's recovered was estimated either by 

fluorescence assay using Hoescht 33258 benzimidazole fluorescent dye as decribed by 

Sambrook and Russell, (2001) or by ethidium bromide fluorescence following 

electrophoresis. For arraying 10^1 aliquots of the DNA samples were diluted 1:1 with 

DMSO. 

4.5.4 Microarraying 

Microarrays were printed on coated glass slides using a Genomic Solutions GeneTAC 
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G3 workstation equipped with a 48-pin printing tool. Samples for arraying were made 
50% in dimethyl sulphoxide and transferred to 384-well microplate for printing. 
Purified, PGR amplified probes were printed as 8x8 matrices with quadruplicated 
samples as illustrated in figures 8.2 & 8.3 (section 8). Overall the array dimensions were 
(~20mm X ~40mm). To establish microarray formats and to check the performance of 
the microarrayer, test arrays were printed with food dyes diluted 1:1 with DMSO on 
agarose coated slides as follows. Standard microscope slides were thoroughly cleaned, 
acetone washed and coated with 0.5% (w/v) agarose in 50% (v/v) methanol. Once the 
agarose had set the slides were transferred to a Bio-Rad gel drier and the agarose dried 
down to an invisible f i lm. DNA microarrays were printed on slides with 
aminopropylsilane coating (APS) from Sigma (Sigmascreen APS slides, # S9936) or 
Coming (UltraGAPS, #40016). 

After printing the slides were allowed to dry for 30min and then prior to hybridisation 

were processed as follows. Arrays were rehydrated in steam by inverting the slide over 

a container of hot water (95-100°C) for 5s. Immediately the slide was transferred, DNA 

side up, to a heating block at 100°C to snap-dry it for 5-lOs. The DNA was then 

immobilised by heating the slides at 80''C for 2-4h in a clean oven (Techne, HB-ID). 

Printed slides were then stored desiccated at room temperature until used for 

hybridisation. The DNA on test arrays were visualised by staining in a 1:10,000 dilution 

of SYBR green I dye (Sigma #9430) in TBE buffer for 3-5min, washed briefly in TBE 

buffer and then in water before drying the slide by centrifugation at -lOOOg for 5min. 

Slides at various stages in the processing and storage kept singly or in pairs (back to 

back) in Falcon 50ml centrifuge tubes. 
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4.5.5 Labelling target RNA's 

Pooled-control and pooled-treated plant tissues from all stages (50mg each) during the 

development of durable resistant (section 4.2.9) were used for total RNA preparations 

(section 4.3.10). The two populations of total RNA's (from control and treated Stirling 

plants) were individually labelled with one of the fluorescent dyes Gyanine 3 (Gy3) and 

Gyanine 5 (Gy5). Labeling was carried out on total RNA preparations using a Micromax 

direct labelling kit essentially as described in the instruction manual (PerkinElmer Life 

Sciences, #MPS502). Briefly, total RNA's from the specified materials were isolated 

and the quality and quantity checked as described previously by electrophoresis and 

spectrophotometry (sections 4.3.11 and 4.3.12). The control RNA's were labelled with 

Gy5 and the pathogen challenged RNA's with Gy3. The labeling reactions contained: 

100|Xg RNA (either control or pathogen challenged), l^ i l primer mix (FF concentrate) 

and RNase-free H2O to 16nl total volume. The tubes were then incubated at 65°G for 

lOmin to denature the RNA's, cooled to 25°G for 5min to anneal the primers to the 

mRNA's. 1|J,1 of the cyanine nucleotide triphosphate (Gy3 to the pathogen challenged 

RNA's; Gy5 to the control, untreated RNA's) was added to each sample and the tubes 

prewarmed to 42°G for 2-3min prior to addition of 2.5^1 lOxRT reaction buffer and 2\i\ 

AMV Reverse transcriptase with RNase inhibitor mix. After mixing thoroughly the 

samples were incubated at 42°G for 60min to synthesise the labelled target cDNA. 

After the incubation the samples were cooled to 4 °G for 5min and then 2.5^1 of 0.5M 

EDTA, pH=8 was added to stop the reaction and 2.5|xl of I M NaOH to hydrolyse the 

RNA template. The mixtures were incubated at 65 °G for no more than 30min and then 

cooled to 4 °G for 5min and 6.5^1 of I M Tris-HGl buffer, pH7.5 added. The labelled 

cDNA's were purified prior to hybridisation by isopropanol precipitation. The two 
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cDNA samples (Cy3 + Cy5) were combined and mixed with 3̂ ,1 of 5M ammonium 
acetate and then 62\xl of 100% isopropanol was added and the mixture vortexed and 
incubated at 4°C for 30min. The cDNA's were recovered by centrifugation (10,000g x 
15min) at 4°C. The supernatant was removed and the pellet washed twice with 100)0,1 of 
ice-cold 70% (v/v) ethanol with centrifuging at 10,000g for lOmin each time. The final 
supernatant was removed and the pellet dried briefly and then dissolved in 20-40|j,l of 
the hybridisation buffer. Hybridisation buffers from Micromax (Perkin Elmer Life 
Sciences, #MPS502) or EasyHyb (U-Vision Biotech, #UVH002-1000) were used 
according to manufacturer instructions. Al l operations involving the cyanine dyes or the 
labelled cDNA's were performed in foil wrapped containers or in secluded fluorescent 
lighting to avoid any photodegradation of the dyes. 

4.5.6 Hybridisations 

Microarrays were hybridised with the labelled target cDNA's as follows: 20-40|a,l of 

labelled target cDNA's were pipetted as a single droplet directiy onto the surface of a 

sterile HybriSlip (20 x 40mm) (Grace Biolabs GS40, Sigma #Z36,591-2) on a flat clean 

surface (figure 4.3). HybriSHps were used to eliminate loss of any probe which can 

occur by binding to conventional glass coverslips. A printed slide with the microarray 

on the lower surface was gently touched onto the surface of the droplet ensuring the 

microarrayed spots were centred on the droplet and carefully lowered avoiding trapping 

of any air bubbles until the HybriSlip was drawn up onto the slide. The slide assembly 

was then placed right way up in a hybridisation chamber (Coming, # 2551), with 10^1 

of 2xSSC in each reservoir and then the chamber carefully assembled and fully 

immersed in a water bath. Hybridisations were carried out at 52°C for appropriate times 
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B) 

Hybrislip 

Assembly of microarray, labelled probe and 
HybriSlip 

Assembled microarray slide ready for insertion into 
hybridisation chamber 

C) Hybridisation chamber (Corning) 

The microarray slide is inserted in the base of a Coming hybridisation chamber (#2551) and lOfxl of 2xSSC 
placed in each of the two reservoirs, before the chamber is reassembled and immersed in a water bath at 52°C 
for the duration of the hybridisation period. 

Figure 4.3 Hybridisation of microarrays 
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according to the buffer manufacturer instructions (using EsyHyb buffer this was 2h). 
After the hybridisation period the chamber was removed, disassembled and the 
microarray slide removed and immersed intact into the first wash solution in a 50ml 
falcon tube. The HybriSlip detached itself and sank to the bottom of the tube. Arrays 
were processed through wash solutions and conditions as recommended in the suppliers 
instruction manuals (Micromax - Perkin Elmer Life Sciences, #MPS502; EasyHyb 
hybridisation solution kit -U-Vision Biotech, #UVH002-1000). Al l washing steps were 
carried out in 50ml Falcon tubes. After the final wash slide arrays were dried by 
centrifuging at -lOOOg for 5min and stored in foil wrapped 50ml Falcon tubes. Slides 
were scanned using a Genomic Solutions LSIV array scanner using lasers/filters 
optimised for detection of Cy3 (excitation 552nm; emission 565nm) and Cy5 (excitation 
650 nm; emission 667nm). 
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5 Establishment and testing of durable resistant 
potato plants 

5.1 Introduction 
The oomycete Phytophthora infestans, the causal pathogen of late blight disease of 

potato and tomato, is assessed as to be the most damaging pathogen of potato and 

tomato crops worldwide. Also, it is one of the major problems in the potato industry 

worldwide since this devastating pathogen attacks both tuber and foliage during all 

stages of crop development and causes severe losses in potato fields every year. Many 

efforts have been made to try to control this pathogen including chemical controls and 

genetic engineering. Unfortunately, it remains a severe problem and the control 

measures are seldom very successful. One of the main reasons for this is that P. 

infestans reproduces both sexually and asexually, thereby increasing genetic flexibility 

that enables it to adapt rapidly to, and overcome chemical control measures and genetic 

resistance bred into the host plants. In recent years, new isolates of P. infestans have 

shown more virulence and higher resistance to previously effective chemicals such as 

metalaxyl and the severity of this disease has increased dramatically. Annual losses due 

to late blight and control measures are estimated to exceed $5 billion world wide (see 

section 1.3). 

After the failure of vertical resistance programmes, based on the gene-for-gene 

hypothesis, and in order to limit needs for chemical controls and to tackle this disease in 

an environmentally friendly way, potato breeding programmes to incorporate durable 

forms of genetic resistance are underway. Although, this type of resistance is believed 

to be effective against all known races of P. infestans and provides in additional some 

level of general resistance, until now the genetic bases of this type of resistance is still 
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unknown and the molecular mechanisms poorly understood. A more profound 
understanding of the mechanisms of resistance to P. infestans, particularly leading to 
the establishment of durable resistance, is needed in order to develop novel control 
strategies. Therefore, it was of interest in this study to look at a molecular level in order 
to elucidate some biochemical and molecular events induced during the interaction 
between P. infestans and the establishment of durable resistance in the potato cultivar 
Stirling. It was anticipated that these initial studies would form the basis for further 
studies in the future. 

The potato variety Stirling was chosen as an experimental variety after consultation 

with Dr Helen Stewart, a plant pathologist at the SCRI. This selection was based on the 

unique character of this variety i.e. 'durable resistance' to late blight disease. 

It was essential to monitor the establishment of durable resistance to late blight in this 

variety before starting the ultimate objective of the current study, namely the isolation 

and identification of genes induced during the interactions between potato plants and P. 

infestans. 

5.2 The response of Stirling and Desiree plants to P. 
infestans challenge 

In order to establish and test the resistance to P. infestans of the potato variety Stirling, 

axenic plants in culture were challenged with a compatible strain of the pathogen (race 

1, 2, 3, 4, 6, 7) (as described in section 4.2.9) and these responses compared with those 

of the variety Desiree, which exhibits moderate resistance to P. infestans. Cultures of 

the potato varieties Stirling and Desiree were initiated from tubers into plantlets by 

direct bud culture under sterile conditions (see section 4.1.1). Four-week old plants 
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(after subculturing into new MS-medium) of approximately the same size and 
appearance were chosen and infected by placing a disk of a virulent P. infestans 
mycelium plug (5mm diameter) adjacent to the plant stem (see section 4.2.9). Progress 
of the infection during 8 weeks was recorded photographically. The two potato varieties 
showed different responses to P. infestans. As illustrated in figure 5-1 the pathogen 
rapidly established infection in Desiree plants after 2 weeks post challenge (figure 5-
IB), while at the same time stage no obvious disease symptoms appeared in Stirling 
plants (figure 5-lA). After 4 weeks post challenge, Desiree plants had collapsed 
completely (figure 5-lD), while the pathogen had only started to establish the infection 
of Stirling and the plant had started to produce new shoots (figure 5-lC). Although, the 
pathogen had infected the Stirling plants completely after 8 weeks the newly developed 
shoots continued to grow under this strong infection but without developing disease 
symptoms. The plants also produced microtubers (figure 5-2A). 

Surprisingly, when the microtubers were transferred into new MS-medium, new shoots 

started to grow still under the presence of the pathogen without developing any disease 

symptoms (figure 5-2B). Moreover, when the newly developed shoots, from the 

infected plants, were excised and subcultured in new MS-medium and then re-

challenged again with the fungus the pathogen also failed to infect them (figure 5-2 C). 

The newly developed shoots showing this strong resistance were subsequently 

designated 'durable shoots' and the plants produced from them (after subculturing in 

new MS-medium) as 'durable plants' (figure 5-2). 
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Figure 5-1 The response of Stirling and D6sir6e plants to P. infestans cliallenge. 
(A&B) Four week-old tissue culture Stirling and Desir^e plants were challenged by 
placing a disk (5mm diameter) of infective P. infestans mycelium adjacent to the plant 
stem. 2 weeks post challenge: (A) no obvious disease symptoms in Stirling plants and 
(B) the established infection in Desir^e plants. 
(C&D) 4 weeks post challenge: (C) the pathogen has started to establish the infection of 
Stirling and the plants have started to produce new shoots and microtubers, while (D) 
Desiree plants have collapsed completely and show surface mycelial infection. 



Section 5 Preliminary work 

new shoot 

infected tissue 

^microtuber 

Figure 5-2 Production of durable resistant Stirling plants. (A) Stirling plants, 8 
weeks post challenge with P. infesians showing the developed resistant shoots and 
microtubers; (B) a microtuber when transferred to new MS-medium produced new 
resistant shoots 2 weeks after subculturing in the presence of the pathogen; (C) Durable 
resistant plants developed from the excised newly developed shoots from the infected 
plarits, growing without any observed disease symptoms 4 weeks after rechallenging 
with P. infestans. 
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5.3 Is the durable resistance in Stirling a general 
pathogen resistance? 

In order to test whether the observed Stirling resistance was only specific to P. infestans 

or i f it was a general resistance to other pathogens, the Stirling control plants and the 

durable Stirling plants established from the durable shoots excised from infected 

Stirling plants (section 5.2), were independently challenged with two other potato 

pathogens-/?/i/zc»ctonia solani and Fusarium sulphureum. After three-weeks post 

challenge the durable plants showed strong resistance to both pathogens (no disease 

symptoms) compared with the control Stirling plants treated with the same pathogens, 

in which the young leaves started 'rolling' and the plants started to die back after three 

weeks post challenge (figure 5-3). 

5.4 Do the durable shoots inherit the resistance? 
In order to test whether the durable shoots inherit the resistance response property or 

that the newly developed plant showed this resistance simply because it is growing 

under the presence of the pathogen, the durable shoots were subcultured for two 

generations in MS-medium in the absence of any pathogen. The second generation of 

disease-free plants were then re-challenged with P. infestans. These plants continued to 

exhibit more resistance than the control Stirling plants when treated with the pathogen. 

This experiment confirmed that the durable plants maintained the resistance compared 

with the original Stirling plants (data not shown). 

5.5 Monitoring the progress of infection 
The ultimate objective of this study was to identify potato genes induced during the 
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Figure 5-3 The response of durable and control Stirling plants to the challenge 
with R. solani. Axenic potato plants were challenged after 4 weeks subculturing in new 
MS-medium. Plants were challenged as before by placing a disk of R. solani culture 
adjacent to the plant stem. (A) A durable plant three weeks post challenge growing 
normally without any evidence of disease symptoms; (B) control plant after the same 
period of challenge. The pathogen infected the lower part of the plants and the young 
leaves started rolling indicating stress responses and the plants started to die. The 
examples shown were representative of the replicates of similarly treated plants. The 
response was essentially the same with the pathogen F. sulphureum challenge. 
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establishment of resistance during the interaction with P. infestans using the 
suppression subtractive hybridisation technique (see section 4.4.18). In order to 
accurately select appropriate times for sampling and to avoid contamination with genes 
of pathogen origin, monitoring the progress of infection was crucial. 

Plant tissues were collected at different time points post pathogen challenge (4, 7, 15, 

21, 30, 45 and 60 days) and two methods were used to check for the presence of the 

viable pathogen in the plant tissues. 1) sampled plant tissues were placed on Rye A agar 

medium and the growth of the pathogen mycelium from them observed (figure 5-4A), 

or by 2) microscopic examination following clearing the plant tissues and staining them 

with aniline blue to detect the pathogen infection structures as described in section 4.5.5 

(figure 5-4B). Figure 5-5 shows the progress of infection over this time scale measured 

as the mean number of pathogen infected leaves on challenged test plants. In the first 

three weeks the progress of infection was very slow, the pathogen only infected the 

lower two leaves. Subsequently, the rate of infection increased exponentially until the 

pathogen infected the whole plant except for the newly established durable shoots. 

5.6 Conclusion 
The experiments in this study established the conditions necessary to establish durable 

resistant Stirling plants in culture. Additionally the observations indicated that potato 

plants of the variety Stirling develop a durable resistance response to P. infestans as 

judged by the delay in the infection process, compared with the moderately resistant 

variety Desiree, and by the production of newly green viable shoots in the presence of 

the pathogen. The derived durable shoots and plants showed a strong general resistance 

response as judged by their resistance to the compatible strain of P. infestans as well as 
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uppressorium 

Figure 5-4 Checking for the presence of P. infestans infection in Stirling leaves. (A) 
The presence of the pathogen in the challenged plant tissues was checked by placing the 
leaves on Rye A agar medium and the growth of the mycelium in the medium observed 
and (B) by clearing the plant leaves with lactophenol and staining for the pathogen 
infection structures by aniline blue 
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Figure 5-5 Quantifying the progress of infection of Stirling plants by P. infestam. 
Test Stirling plants, 4-week old (after subculturing into MS-medium) were treated with 
P. infestans by placing a disk of the actively growing mycelium plug (5mm diameter) 
adjacent to the plant stem. Plant tissues were harvested at different time points to check 
for the presence of the pathogen in it as described in section 5.5. 
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to the other potato pathogens R. solani and F. sulphureum even after two generations 
culture of the plants in the absence of the pathogen. 

The progress of infection of Stirling plants by P. infestans was very slow during the first 

three weeks and then the rate of infection increased exponentially. Thus the Stirling 

plants can recognise the pathogen and activate mechanisms that play an important role 

in halting or delaying the pathogen infection process. Eventually the pathogen 

overcomes these mechanisms and infects the plant. However during this process the 

plants established new shoots that the pathogen could not infect. 

For the purposes of clarification throughout the remaining sections of the thesis the 

types of experimental material used for testing were designated as indicated in table 5-1. 
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Table 5-1 The designations of the experimental materials used throughout this 

study 

Potato variety Plants produced by 

Desiree 
Axenic culture of nodal 

cutting 
Desiree control plants 

Desiree 

Axenic culture of nodal 

cutting and challenged with 

Pathogen 

Desiree treated plants 

Stiriing 
Axenic culture of nodal 

cutting 
Stirling control plants 

Stirling 

Axenic culture of nodal 

cutting from control plants 

and challenged with 

pathogen 

Stirling treated plants 

Stirling 

Generated from excised 

durable shoots from 

infected plants 

Stirling durable plants 
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6 Histochemical characterisation of Stirling 
durable resistance 

6.1 Introduction 
Plants react to pathogen invasion by inducing an array of defence mechanisms (see 

section 1.2). Pathogen recognition by the plant triggers intra- and intercellular signalling 

mechanisms to generate both local and systemic responses to pathogen infection. 

Following the signal transduction, biosynthesis and/or release of molecules acting to 

stop the progress of pathogen growth occurs. 

The production of active oxygen species (AOS) such as superoxide ions, hydrogen 

peroxide and hydroxyl radicals is one of the earliest responses to pathogen recognition. 

AOS have been associated with several aspects of plant defence responses, including 

direct toxicity to invading pathogens, strengthening of plant cell walls, a mobile signal 

inducing local and systemic acquired resistance by itself or its derivatives, triggering the 

transcription of defence-related genes, and induction of cell death by either oxidative 

damage of cell components or by triggering the programmed death of challenged cells 

(Guo and L i , 2000; Vranova al, 2002) (see section 1.2.2). 

Recognition of the pathogen, also, leads to a rapid tissue necrosis at the site of infection, 

which is called the hypersensitive response (HR). The HR deprives the pathogen of 

nutrients and/or releases toxic compounds, thereby limiting pathogen growth to a small 

region of the plant. This response provides resistance to the great majority of potential 

pathogens. Deposition of structural compounds such as callose at and around sites of 

hypersensitive cell death may be part of a complex cell wall-strengthening process 

meant to halt pathogen invasion. Also lignification, which is considered as a general 
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response to pathogen attack in several plant species, appears to play a role in resistance 
(see sections 1.2.1 and 1.2.3). 

One of the molecules responsible for the activation of the plant defence system is the 

elicitor. The term elicitor is used for molecules that stimulate any plant defence 

mechanism (Dixon and Lamb, 1990). There is a wide range of elicitors involved in 

plant-pathogen interactions ranging from glycopeptides, polypeptides, oligosaccharides 

and fatty acids (reviewed in Hahn, 1996). These elicitors are responsible for the 

induction of many defence mechanisms including the induction of a hypersensitive 

response (Kamoun et al., 1993; Kamoun et ah, 1998), oxidative burst (Fauth et al, 

1998; Numberger et al., 1994) and the production of lignin and other structural 

materials (Oelofse and Dubery, 1996). 

After the impressive observations of the establishment of Stirling durable resistance 

(section 5), it was of great interest to use some histological and biochemical markers to 

get an idea or explanation why the durable shoots showed strong resistance to the 

pathogen. Markers which correlate with a plant's response to pathogen invasion such as 

callose deposition, hypersensitive response, and active oxygen species were used to 

check the difference in the response between Stirling control and the durable plants. In 

some cases the Desiree plants were included in the comparison as an example of a 

moderate cultivar. 

In this study, crude elicitor was prepared from a P. infestans culture filtrate (as 

described in section 4.2.4) and was used to infiltrate potato leaves excised from the test 

plants and placed in MS-medium as described in section 6.2 below. 
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6.2 Leaf-bridge Moassays 
The leaf-bridge bioassay method, which was developed in our lab for investigating the 

progress of pathogen infection through leaves (Abdullah, 1999), was used for this study. 

In this method, sterile, detached leaves from potato plants grown in tissue culture were 

used. The excised leaves were placed in a three-compartment petri dish containing 

Murashige and Skoog (MS) medium as shown in figure 6-1. The MS-medium was used 

to support the base of the leaves and also to supply water and nutrients needed to 

prolong the life of the leaf in vitro. A quarter strength MS medium supplemented with 

20 g.L"' sucrose and 2 g.L'' phytagel was used. The sterile medium was poured into one 

compartment of the three-compartment petri dish (9cm) used for the bioassay. Leaflets 

of identical size and position on the plants were taken from 4 week-old potato plantlets 

growing in tissue culture. The leaves were cleanly cut with a sterile scalpel blade at the 

base of the petiole to avoid damaging the tissue. The excised leaflets were examined to 

ensure they were free from any physical damage caused by cutting. Any such damaged 

materials were discarded. Two leaflets were orientated in the bioassay plate so that the 

end of the petiole was completely embedded in the agar medium and the rest of the leaf 

was raised over the partition (bridge) to make contact with the base of the plate at the 

leaf tip as shown in figure 6-1. 

6.3 The response of Stirling, durable and Desiree 
plants to elicitor treatment 

Disease symptoms in the detached potato leaves infiltrated with P. infestans culture 

filtrate elicitor were monitored using the leaf-bridge bioassay method described above. 

Stiriing, durable and Desiree plants were grown in tissue culture as described in section 

4.1.3. Detached leaves, from 4-week old plants (from the same position in the test 
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Figure 6-1 Leaf-bridge bioassay set-up. Three-compartment petri dishes were used in 

which MS-sucrose medium was placed in one compartment and the other two left 

empty. Two detached leaves, approximately the same size and appearance, from the 

tested plants were orientated so that the petioles were immersed in the medium and the 

leaf tip in the empty compartment. The plastic wall of the compartments supported the 

body of the leaf above the medium and preventing direct contact with it. 
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plants, approximately the same size) were orientated in a three-compartment petri dish 
as described above. The leaves were elicited by applying 15|a.l of the concentrated 
solution of culture filtrate elicitor (prepared as described in section 4.2.4) to the top left 
half of the leaf and the liquid allowed to infiltrate to the leaf tissues. The response of the 
different potato lines to the elicitor treatment (seven days post treatment) is illustrated in 
figure 6-2. The treatment resulted in a large necrotic area in Desiree leaves (figure 6-
2C) and small necrotic areas in Stirling leaves (figure 6-2A). It was difficult to observe 
any necrosis occuring in the durable line (figure 6-2B). The microscopic examination 
revealed that the durable line reacted hypersensitively to the elicitor treatment but in 
only a few cells and these cells were surrounded by a border of callose deposition to 
restrict the pathogen spread as described in section 6.4 (figure 6-3A) below. 

These results confirmed the suggestion of Vleeshouwers et al, (2000b), which 

correlated the effectiveness of the HR with the level of resistance to P. infestans and 

indicated that the durable line was particularly primed for the HR. 

Vleeshouwers et al., (2000b) studied the relation between the HR and the cessation of 

P. infestans growth using Solanum clones displaying different types and levels of 

resistance to Phytophthora. The authors found that although all Solanum clones reacted 

with a similar type of response to P. infestans, major differences were observed in 

severity and timing of the HR between the Solanum clones. 

In the nonhost Solanum clones such as S. nigrum-SNlS, the HR was induced extremely 

quickly. One to three cells displayed the HR at 22 hai (hours after inoculation). In most 

cases the response remained limited to these cells and P. infestans was not detected at 

46 hai. In S. berthaultii-9, the HR was established at a slower rate but was finally 
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Figure 6-2 The necrotic lesion as a response of elicitor treatment. The leaf-bridge 

bioassay (described in section 6.2) was used to check the response of (A) Stirling, (B) 

durable and (C) Desiree plants to the treatment with P. infestans culture filtrate elicitor. 

Detached potato leaves from 4-week old plants were orientated in a three-compartment 

petri dish as described before. The leaves were elicited by applying \5\i\ of the 

concentrated culture filtrate P. infestans elicitor the top left half of the leaf (arrowed) 

and the liquid allowed to infiltrate to the leaf tissues. A Stirling control leaf infiltrated 

with phosphate buffer (lOOmM; pH7.0) is shown as non-elicitor control (D). 

Photographs were taken 7 days post treatment. 
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completed at 46 hai. 

Partially resistant Solanum clones such as S. berthaultii-ll exhibited a less effective HR 

as more cells displayed the HR before the pathogen was restricted. At 46 hai, it 

appeared that hyphae had grown out of the initially responding epidermal cells into 

mesophyll cells. These cells subsequently responded with the HR, resulting in increased 

sizes of HR lesions. In more susceptible clones, such as S. amezii x hondelmannii-12, 

the HR occurred later, hyphae escaped and growing disease lesions were formed. 

In the susceptible clones such as Bintje, no early plant response was visible. At 46 hai, 

the entire leaf disc was overgrown by hyphae, and extensive necrosis near the 

inoculation spot observed. 

These results suggest a correlation between the efficiency of the HR and the level of 

resistance to P. infestans. 

Kamoun et al, (1999) also reported that HR is associated with all known forms of 

genetic resistance to Phytophthora and downy mildew oomycetes. 

6.4 Cytological examination of callose deposition 
Detached potato leaves were treated as described above in section 6.3. Seven days post 

treatment the leaves were cleared by boiling in alcoholic lactophenol, and then stained 

for Ih in a 0.01% (w/v) solution of aniline blue as described in section 4.4.1. The 

stained leaves were examined with ultraviolet illumination (UV) for callose deposition, 

normal light for HR response or both UV using an Optiphot-2 microscope. A 

comparison between durable and Stiriing plant responses is shown in figure 6-3. Cells 

adjacent to HR cells usually showed callose deposited on cell walls, whereas HR cells 
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Figure 6-3 Histochemical detection of callose deposition. Detached potato leaves 

were treated with P. infestans elicitor or phosphate buffer (lOOmM; pH7.0) as described 

before. Seven days post treatment the leaves were cleared by boiling in alcoholic 

lactophenol, and then stained in aniline blue as described in section 4.4.1. The leaves 

were examined under normal, UV and combination of both UV and normal light using 

Optiphot-2 microscope. Callose is seen deposited on cell walls of the cells adjacent to 

HR cells. 

Horizontal rows display leaf morphology from (A) durable plant infiltrated with P. 

infestam elicitor, (B) Stiriing plant infiltrated with P. infestans elicitor and (C) control 

Stiriing plant infiltrated with phosphate buffer (lOOmM; pH 7.0). 

The magnification used was 20X in (A) and (B); lOX in (C). Scale bars: (A) and (B) 

lOO^irn; (C) 300(xm. HR = hypersensitive 
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usually did not show any callose staining (figure 6-3). In the durable line a very small 
HR area was observed and was found totally surrounded by a border of callose 
deposition (figure 6-3A), while the Stirling line showed a larger HR area also 
surrounded by callose deposition but not as tightly defined as found in the durable line 
(figure 6-3B). In the latter case, the HR appears ineffective in blocking the pathogen 
completely resulting in escaping hyphae and a typical phenotype of trailing HR, in 
which the pathogen hyphae remain ahead of the plant response. 

These results may explain why the durable plants were able to grow in the presence of 

P. infestans without any observed disease symptoms as the plants respond to the 

pathogen infection by a rapid HR response and callose deposition, thereby restricting 

the pathogen to the infection site and activating the plant defence responses. 

Although the deposition of callose observed in the Stirling plants, the large HR area, 

compared with durable plants and the more diffuse callose deposition may indicate that 

the response was slightly delayed compared with the durable plant response. It may also 

explain why the Phytophthora managed to infect the Stirling plants, but the induction of 

the HR response might activate the plant defence responses and the plants responded to 

the infection by the production of the resistant shoots (see section 5). 

In compatible and incompatible P. infestans-potato interactions, cell wall appositions 

with accumulated callose have been found (Cuypers and Hahlbrock, 1988; Gees and 

Hohl, 1988). Recently, Vleeshouwers et al, (2000b) demonstrated that lesions 

following HR were often found completely surrounded by callose depositions. In 

regions of penetration and hyphal growth, callose deposition was also found in papillae. 

Susceptible Solanum clones displayed a higher number of papillae as a result of 

Phytophthora growth throughout the tissue, whereas resistant clones mainly showed 

111 



Section 6 Markers of resistance 

callose deposition around HR cells. Partially resistant clones showed an intermediate 
phenotype. 

6.5 Histochemical detection of hydrogen peroxide 
The production of hydrogen peroxide (H2O2) in response to elicitor treatment was 

examined by vacuum infiltration of potato leaves with 3,3'-diaminobenzidine (DAB) as 

described in section 4.4.3. DAB polymerizes and turns deep brown in the presence of 

H2O2, and the intensity of the coloration can be qualitatively assessed and 

photographed. DAB can detect H2O2 in concentrations at levels as low as 0.1 \LM, but a 

strong colour develops only at higher concentrations of about 1-10 p.M (Thordal-

Christensen et al., 1997). DAB has been used for the detection of H2O2 in vivo in 

different plant species such as tobacco (Schraudner et al., 1998), barley (Thordal-

Christensen et al., 1997) and in 18 plant species including potato and tomato (Orozco-

Cardenas and Ryan, 1999). 

The development of the DAB-H2O2 reaction product in durable and Stirling potato 

leaves in response to elicitor treatment at different time points (3, 6, 12, 24 and 48h 

post treatment) is shown in figure 6-4. In durable leaves, H2O2 was detectable as early 

as 3h after elicitor treatment, with the colour deepening at 6h, where it remained high 

for about 12h, then declined (figure 6-4A). In comparison the production of H2O2 in the 

Stirling leaves was detected only after 6h post treatment with the colour deepening at 

12h, before declining. The colour initially was visible only at the elicited site, and then 

deepened in the tissues surrounding the ehcited site. 

These results indicated that the generation of H2O2 production was earlier and for a 

longer period in the durable plants. This timing difference may also explain why the 
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Figure 6-4 The generation of H2O2 in potato leaves in response to elicitor 

treatment. Detached potato leaves from 4-week old plants were orientated in a 

three-compartment petri dish and elicited as described before (section 6.2). The 

generation of hydrogen peroxide in response to elicitor treatment at the different time 

points (as indicated above) was examined by vacuum infiltrating the leaves with 

3,3'-diaminobenzidine (DAB) as described in section 4.4.3. 

(A) The microscopic examination of the leaf under normal light using Optiphot-2 

microscope (lOx magnification). 

(B) The time course of H 2 O 2 production in leaves from durable plants. 

(C) The time course of H2O2 production in leaves from Stirling control plants. 
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durable plants showed strong resistance to infections with P. infestans, R. solani and F. 
sulphureum as timing of the induction of defence responses in which ROS play an 
important role, can be a significant factor in the success or failure of the plant to defend 
itself against pathogen attacks (Dangl etal, 1996). 

It has been demonstrated that potatoes transformed with a constitutive glucose oxidase 

that generated a low level of H 2 O 2 in cells throughout the plants, exhibited elevated 

levels of plant defence proteins (Wu et al, 1997), and the tubers were strongly resistant 

to a bacterial soft rot and late blight diseases (Wu et al, 1995). 

6.6 Histochemical detection of superoxide anion 
The generation of superoxide anion (O2") in potato leaves in response to elicitor 

treatment was examined by nitroblue tetrazolium (NBT). NET has been used for in vivo 

detection of superoxide anion in different plants species such as tobacco (Schraudner et 

al, 1998) and Arabidopsis (Jabs et al., 1996). In this study, elicitor-treated leaves (3, 6, 

12 and 24h post treatment) were vacuum-infiltrated with a 0.1% (w/v) solution of NBT 

in 50mM potassium phosphate (pH 6.4) as described in section 4.4.2. The development 

of the scattered dark-blue formazan spots in leaves of durable and Stirling potato leaves 

in response to elicitor treatment at the different time points is shown in figure 6-5. 

In durable leaves, superoxide anions were detectable as early as 3h after elicitor 

treatment, with the colour deepening at 6h and reaching a maximum level at 12h 

before declining (figure 6-5A). The production of superoxide anions in Stirling leaves 

was only detected after 6h post elicitor treatment with the colour deepening up to 12h 

before declining. The colour initially was visible at the elicited site, and then deepened 
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Figure 6-5 The generation of superoxide anion in potato leaves in response to 

elicitor treatment. Detached potato leaves from 4-week old plants were orientated 

in a three-compartment petri dish and elicited as described before. The generation of 

superoxide anion in response to elicitor treatment at different time points (as 

indicated above) was examined by vacuum infiltrated the leaves with nitroblue 

tetrazolium (NBT) as described in section 4.4.2. 

(A) The microscopic examination of the leaf under normal light using Optiphot-2 

microscope (lOx magnification). 

(B) The time course of superoxide anion production in leaves from durable plants. 

(C) The time course of superoxide anion production in leaves from Stirling control 

plants. 
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in tissue surrounding the elicited site as well as in the other half of the leaf. 

These results together with the production of H 2 O 2 support the suggestion that durable 

plants resist pathogen infection as a result of early induction of ROS, which play an 

important role in the induction of plant defence responses. 

6.7 Conclusion 
The resistance of durable plants to pathogen infection could be explained by the 

effectiveness of the HR and the tight deposition of callose surrounding the HR cells, 

which deprive the pathogen of nutrients and limit pathogen growth to a small region of 

the plant. Moreover, the fast production of ROS, which play important roles in the 

activation of plant defence responses and in the direct toxicity to invading pathogens, 

can also be an important factor in the success of durable plants to defend themselves 

against the pathogens attack. 

These fast durable plant responses and timing differences between the Stirling plants 

and the durable plants propagated from them after the pathogen challenge, indicate that 

genetic changes have occurred. In section 7 the supression subtractive hybridisation 

(SSH) cloning was used in an attempt to identify gene sequences upregulated during the 

P. infestans-^o\.aX.o interaction leading to the establishment of durable resistance. 
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7 Isolation of genes that are induced during the 
establishment of durable resistance in response 
to i .̂ infestans challenge 

7.1 Introduction 
Late blight disease of potato and tomato is the most damaging disease of potato and 

tomato crops worldwide. How to tackle this disease in an environmental friendly way 

and how to reduce the expenses for the control measures, which are estimated to exceed 

$5 billion, of this disease are a major problem in the potato industry. A more profound 

understanding of the molecular and biochemical mechanisms underlying the resistance 

to P. infestans is needed to develop novel control strategies. 

As mentioned earlier (section 1.3), in spite of concerted research on the genetics and 

physiology of P. infestans and its interaction with potato, progress in understanding the 

molecular processes involved in infection and resistance is still limited. Several studies 

have demonstrated that the potato attack by P. infestans leads to transcriptional 

activation of various genes in potato (Avrova et al, 1999; Beyer K. et al., 2001; Birch 

et al., 1999; Zhu et al., 1995a). Unfortunately, the most commonly Studied type of 

resistance, in the P. infestans-potato interaction, is race-specific resistance, which is 

governed by single dominant resistant genes (R genes). Unfortunately, race-specific 

resistance is only effective against certain races of the pathogen, and is easily overcome 

by rapid evolution of the pathogen resulting in a lack of durability in the field (see 

section 1.3). In contrast, race-non-specific resistance is effective against all known races 

of the pathogen. This type of resistance is thought to be based on multiple genes, and 

may be durable (Vleeshouwers et al., 2000a). The identification and characterisation of 

these genes might lead to a better understanding of the molecular processes involved in 

117 



Section 7 Subtracted-cDNA library 

resistance, as well as potentially contributing to the development of biotechnological 
strategies for the fight against this disease. 

The experimental system of choice for this study was a compatible strain (strain 9.5.1) 

of Phytophthora infestans (race 1, 2, 3, 4, 6, 7) and tissue cultured potato plants of the 

variety Stirling, which exhibits durable resistance (see section 5). Tissue culture plants, 

growing under sterile and defined conditions were used to study the genes induced in 

the response to P. infestans infection without interference from external factors. 

7.2 Strategies for constructing subtracted cDNA 
libraries 

In this work, gene sequences induced during the compatible interaction between potato 

plants and P. infestans were isolated using the polymerase chain reaction-based 

suppression subtractive hybridisation (SSH) method (Diatchenko et al., 1996), 

following the instructions provided with the PCR-Select cDNA subtraction kit 

(Clontech) (section 4.3.18). Suppression subtractive hybridisation (SSH) is a PCR-

based method that has been developed to enrich rare transcripts and low-abundance 

genes in animal systems (Diatchenko et al., 1996). Recently, several applications, using 

this method, have been reported in plants (e.g. Beyer K. et al., 2001; Birch et al., 1999; 

Kim et al., 1999; Caturla et al., 2002). SSH is a powerful technique that produces a 

library of cDNA clones that are differentially expressed between one mRNA-population 

(tester) compared with a second, control, mRNA-population (driver). Here, the method 

was used to enrich gene sequences differentially expressed in potato upon challenge 

with P. infestans. 

Subtractive cDNA cloning is both technically challenging and very expensive so it was 
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essential early in the experimental programme to establish which stages during the 
development of resistant plants to focus on. In other words, which materials to sample 
and which pair or pairs to use for subtraction. After detailed considerations made in the 
light of the findings reported in sections 5 and 6 it was decided to use control Stirling 
tissues and treated Stirling tissues sampled at various time stages starting from the pre-
challenged plants "time 0" through to the establishment of the durable resistant shoots 
"45 days" post challenge (section 4.2.9) thus covering genes up/downregulated during 
early to late responses. This strategy was deemed the most likely to yield a set of 
differentially responding gene sequences which could be investigated in more detail in 
the later stages of this project or in subsequent research programes using techniques 
such as transcript profiling. 

Strenuous efforts were made to avoid cloning, selecting and sequencing genes of fungal 

(i.e. P. infestans) origin. A detailed explanation of this is given in section 7.4. 

To generate cDNA subtracted libraries enriched for gene sequences induced during the 

compatible interaction, two mRNA populations were prepared: a target sample from a 

pool of total RNA from potato plants challenged with P. infestans (tester) and a control 

from a pool of total RNA from untreated potato plants (driver). Starting from these 

samples, forward and reverse subtracted cDNA pools were made (section 4.3.18). 

All RNA samples were routinely assessed for quality (intactness) and quantity by 

electrophoresis and spectrophotometry (section 4.3.11). The isolated total RNAs 

appeared to be intact as judged from routine electrophoretic analyses in which the 

appearance of the band of 28S rRNA and the 18S rRNA band were discrete and showed 

no evidence of smearing which might indicate degradation (figure 7-1, A). In addition. 
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Figure 7-1 Representative electrophoretic and spectrophotometric analyses of 

RNA preparations. Preparation of total RNA and poly A"*̂  RNA for subtraction 

hybridization was carried out using Trizol reagent and Dynabeads mRNA purification 

kit, respectively. (A) electrophoretic analysis of total RNA isolated from control (lanes 

1-6) and treated Stirling potato plants with P. infestans (lanes 7-12) at different time 

points (0, 4, 7, 15, 30 and 45 days) using Trizol reagent. Each lane contains about 10|j,g 

total RNA. (B) typical electrophoretic analysis of poly (A*) RNA preparations . Total 

RNA from each time point following challenge, were pooled (400)utg total RNA) and 

poly (A*) RNA was purified using Dynabeads mRNA purification kit. Each lane 

contains about 2\ig Poly A^. (C) example of UV spectrum (scanned between 220nm and 

320nm) of a typical RNA preparation to check its purity. 
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the absorbance 260nm/280nm ratios of the total RNA samples were routinely measured 
and typically were more than 1.8 indicating that the RNA preparations were pure and 
free from protein, polyphenols and phenol. Identical amounts of total RNA from each 
time point were pooled and used for isolating poly (A"̂ ) mRNA. The poly (A"̂ ) mRNA 
preparations were also pure as judged by the appearance of discrete mRNA bands with 
minimal smearing and without visible traces of rRNAs (28S and 18S rRNAs) (Figure 7-
1, B). A characteristic UV absorbance spectrum was obtained with RNA preparations 
scanned between 220 and 320nm (example shown in figure 7-1, C). Preparations failing 
to meet these quality criteria were either repurified or if degradation was evident, were 
discarded. 

7.3 Constructing cDNA libraries 
For cDNA synthesis, adaptor ligation, hybridisations, and PCR amplification, the 

recommended PCR-select cDNA subtraction procedure was followed (Clontech 

instruction). For forward subtraction, mRNA from potato plants challenged with P. 

infestans was used as the 'tester' and mRNA from axenic plants as the 'driver'. A 

reverse subtracted cDNA pool was made with mRNA from challenged plants as a driver 

and control mRNA as a tester. 

To make these subtracted cDNA pools, tester and driver double stranded-cDNAs (ds-

cDNAs) were prepared from the corresponding mRNA populations. The ds-cDNAs 

produced form both control and challenged plants were in the size range of about 0.2 -

2.0Kb as estimated by agarose gel electrophoresis and these ds-cDNAs were subjected 

to Rsal digestion, separately, to generate short, blunt-ended fragments (figure 7-2, A). 

Two tester populations with different adaptors were made, but no adaptors were ligated 
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M 1 2 3 4 

Figure 7-2 Electrophoretic analyses of ds cDNA preparations, the corresponding 

Rsal digests and the secondary PCR products. (A) ds cDNA from the challenged 

(lane 1) and unchallenged Stirling plants (lane 2 ) , the corresponding Rsal digest from 

challenged (lane 3 ) and unchallenged Stirling plants (lane 4). (B) the secondary PCR 

products from the forward subtraction (lane 1), reverse subtraction (lane 2 ) , forward 

unsubtracted tester (lane 4), reverse unsubtracted tester (lane 5 ) and the subtracted 

skeletal muscle, control subtraction provided with the kit, (lane 7 ) . M = size marker-

GeneRuler Ikb DNA ladder. 
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to the diiver cDNA. Following the PCR-select subtraction procedure, the tester was 
subtracted twice by the addition of the driver and the differentially expressed sequences 
were subjected to PGR amplification (figure 7-2, B). 

The forward subtracted cDNA pool, enriched in upregulated cDNAs obtained from the 

RNA population of Stirling plants challenged with P. infestans, was cloned in a TOPO 

TA PCRJI cloning vector (section 4.3.6). These forward subtraction and cloning 

procedures were repeated twice during this study. In the first attempt 144 clones were 

isolated, so the procedure was repeated again after gaining more experience and getting 

familiar with the technique. In the second attempt another 384 clones were isolated. 

Thus, a total of 528 randomly clones were picked and transferred to 96-well 

microplates, grown, glycerol added and stored at -80°C until needed (section 4.3.7). 

The secondary PGR products from the forward and reverse subtraction were labelled 

with digoxigenine (section 4.3.15) and were used for the differential screening (section 

7.5). 

7.4 Avoiding isolation of clones carrying fungal gene 
sequences 

In order to avoid isolating clones in the subtraction library carrying gene sequences of 

fungal origin, several checks were made at all stages of the cloning operation starting 

from harvesting the plant tissues, through the cloning procedures, to searching for 

sequence similarities in the databases. These checks were: 

I) Sampling pathogen-free plant tissues. A preliminary experiment was designed to 

monitor the progress of the infection and the spread of the pathogen in the plant tissues 

(see section 5.5). Plant leaves were collected at different time points and the presence of 
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P. infestans in the plant leaves was checked by (i) microscopic examination (section 
4.4.5); (ii) placing the leaves in Rye A agar medium and observing the growth of the 
fungal mycelium (see section 5.5). 

II) Subtracting the P. infestans sequences from the tester "challenged plants" sequences 

by mixing the total RNA from a P. infestans mycelium culture with the pooled total 

RNA from the control plant tissues to create the control RNA population for the 

forward suppression subtractive hybridisation (SSH) method (section 4.3.18.1). 

Recently, Beyer et al., (2001) used the same idea to subtract constitutively expressed P. 

infestans sequences from potato plants challenged with zoospores of P. infestans, while 

constructing a library to screen for genes induced in potato during the interaction 

between potato and P. infestans using the SSH technique. 

ni) Screening the subtracted library with P. infestans DIG-labelled cDNA probe. The P. 

infestans dsDNA ligated to adaptors 1 and 2R, prepared according to the subtraction 

protocol, was used as a template. The PCR primer 1 was used for the PCR amplification 

to incorporation of DIG-dUTP into the PCR products (section 4.3.15). None of the 

selected clones showed a significant hybridisation with this probe. 

IV) During the bioinformatic processing of the sequenced clones, BLAST searching did 

not reveal any significant similarity to sequences in the P. infestans ESTs database at 

the Phytophthora Genome Initiative (PGI) database (http://www.ncgr.org/pgc). In 

contrast most of the cloned sequences showed very high homology to characterised 

plant sequences. 

7.5 Screening for differentially expressed sequences 
The subtracted cDNA library was intended to greatly enrich for differentially expressed 
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sequences; even so, the subtracted sample will still contain some cDNAs that are 
common to both the tester and driver samples through 'leakage' at the hybridisation 
stages. To determine which clones in the subtracted library truly represented transcripts 
that accumulated during the resistance response, and in order to determine the clones 
corresponding to the low-abundance mRNA, the PCR-select differential screening 
procedure was used instead of using probes synthesised as first-strand cDNA from 
tester and driver as recommended by Clontech. Two sets of probes were prepared using 
the PCR-select subtraction protocol performed in both directions. The forward-
subtracted probe was made from the same subtracted cDNA used to construct the 
subtracted library, while the reverse-subtracted probe was prepared by performing the 
reverse-subtractive hybridisation (i.e. the subtractive hybridisation was performed with 
the original tester cDNA as a driver and the driver cDNA as a tester) as described in the 
user manual for the PCR-select cDNA subtraction kit (Clontech). 

The probes were synthesised by direct digoxigenin (DIG)-labelling of DNA fragments 

generated by PCR using the nested primers for amplification (see appendix A for primer 

sequences). The arrayed libraries were spotted onto Hybond-NX membrane (Amersham 

Biosciences) in duplicate, grown and processed to lyse the cells and crosslink the DNA 

(sections 4.3.18.2 and 4.3.18.3). The membranes were hybridised, separately, with the 

forward- and reverse-subtracted cDNA probes. One example of the resulting blots is 

shown in figure 7-3). 

Two hundred and sixty eight clones hybridised only with the forward subtraction probe 

such as clone IA5 in figure 7-3 (clone designafion; I = microplate I , A = row letter and 5 

= column number). These clones were considered as representing sequences that are 

truly upregulated compared with the control plants (i.e. genes induced during the 
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microplate I 

i) Forward-subtracted probe ii) Reverse-subtracted probe 
1 2 3 4 5 6 

A 

B 

D 

E 

F 

G 

H 

Figure 7-3 Screening the subtracted library for differentially expressed cDNA 

sequences. PGR-Select subtraction was performed using Stirling plants challenged with 

P. infestans (tester) and unchallenged Stirling plants (driver). The subtracted cDNA was 

cloned using the TOPO TA Gloning Kit. 528 clones were randomly picked, transferred 

to microplates for storage and also arrayed in duplicate onto nylon membranes. The 

membranes were screened by hybridization with DIG-labelled cDNA probes prepared 

from i) forward subtracted cDNA (cDNA used to construct the library) and from ii) 

reverse subtracted cDNA (cDNA derived from subtractive hybridisation of the original 

tester as a driver and the driver as a tester). Arrows indicate differentially expressed 

clones; circles indicate clones that considered as representing sequences that are never 

differentially expressed. The other library plates were tested in a similar manner. This 

shows a typical result in which most clones hybridised to the forward probe and 

comparatively few hybridised to the reverse probe. Only clones showing positive 

hybridisation with forward probe were selected for future study. 
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pathogen challenge or establishment of durable resistance). Forty-three clones 
hybridised with both the forward- and reverse-subtracted probes with almost the same 
intensity such as clone IF6 in figure 7-3. These clones were considered as representing 
sequences that are not differentially expressed in this system (i.e. genes expressed more 
or less at the same level as in the control plants, throughout the pathogen challenged and 
establishment of durable resistance). Thirty-two clones hybridised with both probes, but 
with different intensities. These clones were regarded as probably corresponding to 
differentially expressed genes. The rest (one hundred eighty five clones) did not 
hybridise with neither of the subtracted probes such as clones l A l in figure 7-3. These 
clones were regarded as representing nondifferentially expressed cDNAs (Clontech; 
PCR-select differential screening kit). 

Defined probes such as phenylalanine-ammonia lyase (PAL), polyphenol oxidase 

(PPO), pathogenesis-related protein-1 (PR-1), superoxide dismutase (SOD), which was 

amplified during this project and published in the NCBI database (AC; AF354748), and 

acidic chitinase (AC) were also synthesised by direct digoxigenin (DIG)-labelling of 

DNA fragments generated by PCR using the M13 forward and reverse primers for 

amplification (figure 7-4). These probes were also used for screening the library. Table 

7-1 summarises the screening results. 

7.6 cDNA sequencing and sequence handling 
Sixty of the clones that hybridised with the forward subtracted probe as well as with 

defined probes but not with the reverse probe were selected for sequencing. The 

plasmids of these selected clones were isolated (section 4.3.8) and the cDNA inserts 

were checked by electrophoresis after restriction with EcoR I (section 4.3.9) (examples 
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M 
PAL AC EC AG 

1.5 Kb 

1.0 Kb 

0.75 Kb 

EG 

U L U L U L U L U L 

Figure 7-4 Evaluation of DIG-probe labelling efficiency. Digoxigenin-labelled 

probes were synthesised as described in section 4.3.15. 2[il of each PGR product (both 

DIG-labeled and unlabeled (i.e., amplified in the absence of DIG-dUTP) versions of the 

experimental probe) were run on a 0.8% (w/v) agarose gel. The presence of DIG in the 

labelled probe DNA gives it a higher mass than unlabelled DNA and the intensity of the 

stained DIG-labeled probe is slightly less than the intensity of the unlabeled probe 

DNA. 

M = size marker- GeneRuler Ikb DNA ladder; U = unlabelled PGR product; L = 

labelled PGR product. Probes were: PAL = phenylalanine ammonia-lyase; AG = acidic 

chitinase; EG = basic chitinase; AG = acidic glucanase and EG = basic glucanase. 
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Table 7-1: Summary of the screening results using defined probes 

Probe used Number of hybridised clones Clone designation 

PAL 7 
IIH1,IIH4,1113, AB9, AD12, 

CFlOandDDl 

SOD 2 AF12and D F l l 

PR-1 7 
I I B I , IIC2, IIC6, IID2, IIE5, CCS, 

and DB4 

AC 4 IIG5, AH2, CDS and CE2 

PPO 3 IIA6, AGS and DC9 
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are shown in figure 7-5). The cDNA inserts were sequenced using either the SP6 or T7 
promoter primers, flanking the vector's multiple cloning site (see appendix B). 
Sequence determination was carried out using the dideoxynucleotide method, using 
fluorescent bases and analysed on an automated Applied Biosystems Model 373 
sequencer (Stretch Version) by the DNA Sequencing Service, Biological Sciences, 
University of Durham. 

DNA sequences were edited to remove any primer or vector sequences associated with 

the sequence using the EditSeq module from the Lasergene suite of progranmies 

(DNAStar). DNA sequence comparisons were carried out with those entries in the 

primary databases, Genbank (at National Centre for Biotechnology Information (NCBI), 

Maryland, USA) and the TIGR consortium (The Institute for Genomic Research) 

potato, tomato and Arabidopsis databases using their corresponding BLAST (Basic 

Local Alignment Search Tool) search engines at 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and (http: //ti grbl ast. ti gr. or g/t gi/), 

respectively. 

The TIGR Solanum tuberosum gene index integrates research data from international 

Solanum tuberosum EST sequencing and gene research projects. The ultimate goal of 

the TIGR gene index projects is to represent a non-redundant view of all Solanum 

tuberosum genes and data on their expression patterns, cellular roles, functions, and 

evolutionary relationships. 

Just after this project started it was announced by the TIGR consortium, which is funded 

by the NSF (National Science Foundation), that a potato EST and genomic programme 

was starting to produce and sequence large EST libraries (comprising 60,000 sequences 
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kb M 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 7-5 Electrophoretic analyses of EcoR I restricted plasmid preparations. 

plasmids of the selected clones were isolated using Wizard Plus SV minipreps DNA 

purification system as described in section 4.3.8 and the cDNA inserts were checked by 

electrophoresis on a 0.8% (w/v) agarose gel after restriction with EcoR I (section 4.3.9). 

The restricted plasmid preparations presented here were from clones: AG2 (lane 1), 

A G l (lane 2), AE7 (lane 3), AE6 (lane 4), AE4 (lane 5), ACS (lane 6), AA3 (lane 7), 

IG9 (lane 8), IG7 (lane 9), ID2 (lane 10), I IGl (lane 11) and IIB2 (lane 12); M = size 

marker- GeneRuler Ikb DNA ladder. The other plasmid preparations were tested in a 

similar maimer. 
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from: stolons, P. infestans- challenged (incompatible and compatible), tubers, leaves, 
sprouting eyes and roots). These sequences formed the basis of a TIGR primary 
database but not all of these have been included in Genbank. Thus, during the sequence 
characterisations in the present project sequence searching had to be carried out not only 
just in Genbank but also duplicated in the TIGR databases. Many of the new sequences 
appearing in the TIGR databases were only published after those in the present project 
so routine searches had to be performed several times with sequences, which had not yet 
been identified. 

During this study the blastn programme, which compares a nucleotide query sequence 

against a nucleotide sequence database, was mainly used. A high similarity in the 

nucleotide sequence indicates a higher (or at least the same level of similarity) at the 

protein level. 

Multiple alignment of DNA or protein sequences was carried out using the Clustal W 

method in the Megalign module from DNAStar suite (Lasergene) program. Generally, 

this software was used to align the nucleotide sequence of the selected clone with the 

best hits retrieved from the databases, but when the length of the sequence was too large 

to f i t the clustal alignment onto one page such as clones AB9 and AD 12 (775 bp and 

768 bp; figure 7-8) and clone IC9 (599 bp; figure 7-9), or there were many sequences to 

be aligned such as proteinase inhibitors (figure 7-14), the protein sequence was used 

instead. 

Due to incompatibilities between Microsoft Word and the DNAstar software, the 

aligned DNAStar sequence images had to be imported into Word following image 

cupture and editing in Paint Shop Pro V6.2 (an imaging program). 
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7.7 Sequence analysis 
A summary of the homology search results against Genbank and TIGR (potato, tomato 

and Arabidopsis gene indices) databases is given in table 7-2. The detailed description 

of the sequences revealed follows in sections 7.7.1 to 7.7.8. Most of the cDNA inserts 

of the selected clones showed very high similarity (95% or more) with identified 

nucleotide sequence entries in the databases. Among the sixty clones, which were 

sequenced, one was found to be a mixed clone, so this clone was discarded from the 

table 7-2 and the following analyses. As expected the sequence search of the selected 

clones revealed homology to diverse classes of genes, and thus were organized into 

categories according to their putative function as summarised in figure 7-6. Inevitably in 

a classification scheme of this design many sequences may contribute to more than one 

type (i.e. may fit in more than one category). One such example was PAL, which could 

be categorised as a metabolism related sequence or as a stress response related sequence 

because it plays an important role in the phenylpropanoid metabolic pathways leading 

to the production of phytoalexins that are shown to be induced under various stress 

responses. In such cases, the most likely biological function for this sequence was 

chosen. The categories included: (A) defence and stress related sequences, which was 

the largest category of sequences - as expected - 37 sequences (comprising 63%), 

including sequences such as proteinase inhibitor (PR-6), peroxidase (PR-9), chalcone 

synthase, and heat shock protein; (B) signalling-related sequences: S sequences 

(comprising 8.5%), such as ADP-ribosylation factor 1 and patatin; (C) transciiption 

related sequences: 3 sequences (5%), such as Myb-like DNA-binding domain and 

CCR4-associated factor 1; (D) metabolism related sequences: 5 sequences (8.5%), such 

as malate dehydrogenase and myo-inositol-1-phosphate synthase; and (E) those with 
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a Stress and defence response 
O Metabolism 
• Unknown function 

1̂  Signaling 
• Transcription 

Signaling 
8.5% 

Metabolism 
8.5% 

Transcrption 
5% 
J 

Stress and 
defence 
response 

63% 

Unknown 
function 

15% 

Figure 7-6: Functional grouping of the 59 selected sequences 

Table 7-3: Representation and sequence identities of the abundant cDNAs from the 

selected clones. 

Sequence representation Identity 

5 Proteinase inhibitor (PR-6) 

4 Patatin and patatin-like protein 

4 Heat shock proteins (HSPs) 

3 Ubiquitin conjugating protein 

2 Phenylalanine ammonia-lyase (PAL) 

2 Myo-inositol-1-phosphate synthase 

2 Dehydration-responsive protein 

— 
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unidentified functions: 9 sequences (15%), such as JDl and hypothetical protein 
AT1G67360. 

Only two sequences (3%), clones AD4 and API , showed low similarity 60% and 61%, 

respectively, when compared with nucleotide and protein sequence databases, and 

probably represent new undescribed potato sequences. The rest had significant matches 

to known genes or EST sequences present in either Genbank or the TIGR databases at 

the time of writing the thesis. 

The level of the redundancy in the selected clones was calculated. Among the sixty 

sequences, seven (12%) were found at least twice. The most abundant sequence, of 

which 5 copies were found, was proteinase inhibitor, which is one of the pathogenesis-

related proteins (PR-6), (table 7-3). Four clones were homologous to heat shock 

proteins, three clones were homologous to ubiquitin conjugating protein and two clones 

of each of patatin, patatin like protein, phenylalanine ammonia-lyase, and myo-inositol-

1-phosphate synthase were found in the selected clones. The abundance of these 

sequences may reflect their importance in establishing the potato resistance response. 

Due to limitations on space only certain of these sequences will be discussed in detail 

regarding their significance in the present experimental context. 

7.7.1 Sequences related to phytoalexin production 

Phytoalexins are low-molecular-weight antimicrobial compounds that accumulate in 

plants as a result of infection or stress. Phytoalexins represent a chemically diverse 

group of compounds from a number of different metabolic pathways (see section 1.2.4). 

Since they are complex secondary metabolites, many genes are involved in the synthesis 

and regulation of phytoalexins. For example, phenylalanine ammonia-lyase (PAL) and 
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chalcone synthase (CHS) both function early in the biosynthetic pathway for 
phenylpropanoid phytoalexins, while flavonol synthase (FLS) functions on 
intermediates in the flavonoids biosynthetic pathway to produce a class of flavonols. 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), functions in the early 
mevalonate pathway for sesquiterpenoid phytoalexins biosynthesis. 

In the present study five clones, of the selected sixty clones, showed very high 

homology to sequences related to enzymes involved in phytoalexins production. These 

clones were: clone ACS showed homology to HMGR, clones AB9 and AD 12 showed 

homology to PAL, clone IC9 showed homology to CHS and clone AG2 showed 

homology to FLS (table 7-2). 

7.7.1.1 Clone ACS, 3-hydroxy-3-methylglutaryl coenzyme A reductase 
(HMGR) 

cDNA clone ACS is 293 bp long. Database searching revealed that it has a 100% 

homology, in the 293 bp overlapped region, to the nucleotide sequence of potato 

hydroxymethylglutaryl coenzyme A reductase (HMGR) (TC16S95) in the TIGR 

database (see table 7-2 and figure 7-7 for the sequence homology and clustal 

alignment). 

Hydroxymethylglutaryl-coenzyme A reductase (HMGR) (EC 1.1.1.3), an enzyme 

functioning early in the mevalonate pathway, catalyses the synthesis of mevalonate 

from 3-hydroxy-3-methylglutaryl-CoA. In plants, mevalonate is the precursor of all 

isoprenoid compounds. HMGR is essential for the biosynthesis of the sesquiterpenoid 

phytoalexins and steroid derivatives following stress imposed by wounding and 

pathogen infection. For example potato (Solanum tuberosum L.) tubers synthesize 
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antifungal sesquiterpenoid phytoalexins in response to fungal infection or arachidonic 
acid, an elicitor present in Phytophthora infestans, elicitation and toxic steroid 
glycoalkaloids in response to wounding via the mevalonate pathway. The activity of 
HMGR has been shown to increase rapidly in response to these stimuH. For example, 
Bianchini et al, (1996) demonstrated that in potato tubers the HMGR levels increased 
30-fold following arachidonic acid treatment and 15-fold following wounding. 

RNA gel blot analyses using probes of three classes of cDNAs encoding potato HMGR 

(hmgl, hmg2, and hmg3) showed that hmgl was strongly induced in tuber tissue by 

wounding, but the wound induction was strongly suppressed by treatment of the tissue 

with the fungal elicitor arachidonic acid or by inoculation with an incompatible or 

compatible race of the fungal pathogen Phytophthora infestans. The hmg2 and hmg3 

mRNAs also accumulated in response to wounding, but in contrast to hmgl, these 

mRNAs were strongly enhanced by arachidonic acid or inoculation with a compatible 

race of P. infestans (Choi et al., 1992). 

Laxalt et al., (1996) found that when tuber discs were treated with eicosapentaenoic 

acid (EPA), an elicitor found in P. infestans, the expression of the glycolytic enzyme 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a stress-related gene, is induced. 

This induction was parallel to that of the HMGR. Glucans obtained from the P. 

infestans cell wall acts synergistically with EPA on GAPDH and HMGR gene 

induction. 

Chappell et al., (1991) found that addition of cell wall fragments from Phytophthora 

species or cellulase from Trichoderma viride, to tobacco {Nicotiana tabacum) cell 

suspension cultures induced the accumulation of the extracellular sesquiterpenoid 

capsidiol due to the induced activities of the enzymes of the sesquiterpene biosynthetic 
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pathway, HMGR and sesquiterpene cyclase. 

Kang et al., (1998) have shown that HMGR and phenylalanine ammonia-lyase (PAL), 

involved in isoprenoid and phenylpropanoid biosynthesis, respectively, were mildly 

induced in tobacco leaves upon TMV infection at the late stage of the normal 

hypersensitive response (HR) or after salicylic acid treatment when compared with the 

PR-gene expression such as PR-1, beta-1, 3-glucanase and chitinase. However, in acute 

HR, they were strongly expressed at an early stage in the infection. 

Using transgenic tobacco plants expressing a construct containing 2.3 kb of the tomato 

hmg2 gene promoter fused to the beta-glucuronidase (GUS) reporter gene, Westwood et 

al., (1998) demonstrated that parasitisation by O. aegyptiaca, one of the Orobanche 

species that live parasitically on the roots of other plants and are capable of significantly 

reducing the yield and quality of their crop hosts, induces expression of the hmg2 gene. 

The expression of hmg2 was detected within 1 day following penetration of the host 

root by the O. aegyptiaca radicle and was localised to the region immediately around 

the site of parasite invasion. This expression continued and intensified over the course 

of O. aegyptiaca development. 

Nelson et al., (1994) suggested that HMGR may also play a key role as a component of 

the inducible defence mechanism in monocot plants as they found that it is strongly and 

rapidly induced in rice suspension cells by a fungal cell wall elicitor from the pathogen 

Magnaporthe grisea, the causal agent of rice blast disease. 

All the above examples and many others support the important role that HMGR plays in 

the production of sesquiterpenoid phytoalexins as a plant defence mechanism to the 

pathogen attack and wounding. The isolation of an HMGR clone (ACS) from the 
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subtracted library in this study provides further support for the involvement and 
importance of this enzyme in potato defence to P. infestans. 

7,7.1.2 Clones AD12 and AB9, Phenylalanine ammonia-lyase (PAL) 

cDNA clones AD 12 and AB9 are 768 and 775 bp long, respectively. A search for 

homologous sequences in the nucleotide sequence databases revealed identity with 

phenylalanine ammonia-lyase (PAL) as seen in the TIGR database (TC21425). The two 

inserts are slightly different in length but appear to be from the same gene. They 

showed 99% and 98% homology with TC21425 in the 720 bp overlapped region, 

respectively. The alignment of the predicted amino acid sequences of the inserts of these 

clones showed some mismatched residues at the end of the sequence that could be due 

to sequencing error especially because these were long sequences and were only 

sequenced in one direction (see figure 7-8). 

Phenylalanine ammonia-lyase (PAL) (EC 4.3.1.5) is a key enzyme of plant 

phenylpropanoid metabolism, which is involved in the biosynthesis of a wide variety of 

secondary metabolites such as isoflavanoid phytoalexins and lignin (a cell wall 

component). These compounds have many important roles in plants during normal 

growth and in responses to environmental stress. PAL catalyses the first committed 

step in the biosynthesis of phenylpropanoids by removing an ammonia group from L-

phenylalanine to form frans-cinnamate. This reaction is considered to be a key step in 

the phenylpropanoid pathway (Hahlbrock and Scheel, 1989). 

The wide range of PAL inducers ranging from abiotic to biotic stresses may be 

explained by the many intermediates that are associated with the phenylpropanoid 

pathway. Some of these intermediates are involved in disease resistance while others are 
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involved in wound healing and development. 

Since change in PAL activity is a key event in controlling the synthesis of 

phenylpropanoids, PAL has become one of the most extensively studied enzymes in 

plants. There are many published articles, some of which are recent, which prove that 

PAL activity is induced upon pathogen attack as well as during other stress responses, 

using cell suspension cultures or plants. For instance, Schmidt et al, 1998 demonstrated 

that rapid and transient increases in PAL activity was concurrent with induced 

incorporation of 4-hydroxybenzaldehyde, 4-hydroxybenzoate, and N-4-coumaroyl- and 

N-feruloyltyramine into the cell wall and secretion of N-4-coumaroyl- and N-

feruloyltyramine into the culture medium of potato cell suspension cultures treated with 

an elicitor from P. infestans. These phenolic compounds are thought to be involved in 

cell wall reinforcement and may also affect fungal growth in the apoplastic space 

(Schmidts? a/., 1998). 

In potato tuber discs treated with compatible and incompatible races of P. infestans, the 

induction of PAL activity was observed. The levels of PAL mRNA in both the total 

RNA and the polysomal RNA fractions, as well as the enzymatic activity, were higher 

in the incompatible than in the compatible interaction (Yoshioka et al, 1996). 

Ramamurthy et al., (2000) studied the effect of gamma irradiation on lignin 

biosynthesis during wound healing in potato tubers. They found that the level of PAL, 

the first enzyme involved in lignin biosynthesis was five-fold higher in irradiated 

potatoes than in control tubers during wound healing. 

El Modafar et al., (2001) showed that the inoculation of the roots of resistant and 

susceptible cultivars of date palm seedlings by Fusarium oxysporum f, sp. albedinis or 

the elicitation with a hyphal wall preparation (HWP) induces PAL activity. The 
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PAL activity post-inoculation in the resistant cultivar was faster and to a higher level 
than in the susceptible cultivar. However, the eUcitation of the seedlings by the HWP 
induced an identical PAL response in both resistant and susceptible cultivars, which 
indicated that the HWP elicitor was non-specific. 

Li et al, (2001a) demonstrated that the expression of PAL in wheat is organ-specific. 

Although, no detectable PAL expression was found in leaves, infection of leaves with 

Puccinia graminis f. sp. tritici (Pgt) induced, within 4 to 8 dayes, a high level of 

expression PAL transcripts in the Pgt-resistant line, while a delayed induction was 

observed in the Pgt-susceptible line. In cell suspension cultures, treatment with chitin 

oligomers or an elicitor derived from P. graminis germ tube walls also activated PAL 

gene expression. Kervinen et al., (1998) demonstrated that PAL activity was induced in 

infected or elicitor-treated leaves and in cell suspension- cultures of barley as well as by 

the treatment with mercuric chloride. 

Meena et al., (2000) demonstrated that application of a plant growth-promoting 

rhizobacterium, Pseudomonas fluorescens strain P f l significantly controlled late leaf 

spot and rust diseases of groundnut {Arachis hypogaea L.) due to the induction of 

pathogenesis-related proteins, phenolics and PAL. Spraying the plants with P. 

fluorescens, showed increase in PAL activity 1 day after application and the maximum 

enzyme activity was detected 3 days after treatment. 

Sharan et al., (1998) studied the effects of methyl jasmonate and an elicitor on 

phenylpropanoid metabolism in tobacco. They found that the treatment of tobacco cell 

suspension culture with methyl jasmonate or with an elicitor from the plant pathogenic 

fungus Fusarium solani induced PAL activity. PAL was induced transcriptionally and 

enzymatically faster in elicitor-treated cells as compared to MJ-treated cells. 
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As mentioned earlier, PAL activity has been used as an early response indicator to 
biotic and abiotic stress, so as expected two clones (AB9 and AD12) from the 60 
sequenced clones from the subtracted library showed strong homology to the PAL 
sequence (TIGR; TC21425) from the TIGR potato database. 

7.7.1.3 Clone IC9, chalcone synthase (CHS) 

The subtracted cDNA clone IC9 was 599 bp long and showed 99% homology, at the 

nucleotide level, to potato chalcone synthase (CHS) (TC25786) from the TIGR 

database. The alignment of the translated nucleotide sequence is shown in figure 7-9. 

Like PAL, chalcone synthase (CHS) (EC 2.3.1.74) is a classic stress responsive enzyme. 

CHS is the key enzyme of flavonoid biosynthesis. This enzyme catalyses the addition of 

three molecules of malonyl-CoA to 4-coumaroyl-CoA, producing a chalcone, the first 

compound in the flavonoid pathway. 

Biosynthesis of flavonoids, which are well characterised as defence substances 

including UV protectants and antimicrobial compounds, is one of the most significant 

defence responses that plants have adapted to protect themselves against environmental 

stresses such as UV, mechanical wounding and pathogen attack. CHS is induced by all 

of these stimuli (Sakuta, 2000). For example, chalcone synthase accumulated rapidly in 

barley leaves in response to inoculation with the fungus Blumeria graminis f sp. hordei, 

and the accumulation was also elicited by UV light (Christensen et al., 1998). 

Cui et al., (1996) found that the inoculation of sorghum seedlings with the sorghum 

fungi Peronosclerospora sorghi or the maize pathogen, Bipolaris maydis, which also 

elicits a hypersensitive response in sorghum, caused rapid accumulation of both CHS 

and PAL transcripts. Although, seedlings of both resistant and susceptible cultivars 
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accumulated higher levels of CHS and PAL mRNAs than uninoculated controls, the 
accumulation of mRNA in resistant cultivars was higher and longer lasting than that in 
susceptible cultivars indicating the important of these enzymes in the resistance 
response. 

Ebel et at., (1984) demonstrated that a glucan elicitor from cell walls of the fungus 

Phytophthora megasperma f . sp. glycinea, a pathogen of soybean (Glycine max), 

induced rapid increases in the activities and the transcription of CHS and PAL in 

suspension-cultured soybean cells. The induction of transcription and activities of these 

enzymes was correlated with phytoalexins accumulation. Similar degrees of induction 

were also observed when the soybean cells were treated with diverse microbial 

compounds such as xanthan, an extracellular polysaccharide from Xanthomonas 

campestris, and endopolygalacturonase from Aspergillus niger (Ebel et al., 1984). 

Like PAL, CHS was expected to be represented in the subtracted library as one of the 

most important elements in the production of phytoalexins and defence responces. 

7.7.2 Signalling related sequences 

7.7.2.1 Patatin and patatin-like sequences 

Four cDNA sequences, of the sixty clones that were sequenced, showed homology to 

patatin and patatin-like protein. These clones were IGIO, IH4, IG7 and IH12 (table 7-2). 

Clones IGIO and IH4 had different insert sizes and represented different regions of the 

patatin EST sequence (TCI3720) when compared with the nucleotide sequences in the 

TIGR database (table 7-2). IGIO clone was 238 bp long and was shown to have 94% 

homology at the nucleic acid level, while the IH4 clone is 191 bp long and was shown 

to have 100% homology in the 191 bp overlapped region to the 3' end of TC13720 (see 
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figure 7-10 for the clustal alignment). 

Clones IG7 and IH12 also had different insert sizes but they represent the same 

sequence region of the gene. They showed homology with the patatin-like protein 

sequence (TC18191) in the TIGR nucleotide sequence database (table 7-2). IG7 clone 

was 327 bp long, while IH12 clone was 310 bp long and both were shown to have 97% 

homology to patatin-like protein sequence (TC18191) in 299 bp overlapped region. 

These are truncated cDNAs containing the 3' coding and non-coding regions of the 

mRNA. A putative polyadenylation signal is located at the 3' end of the nucleotide 

sequences. The alignment of these sequences with the retrieved sequence from the 

database showed three gaps and five mismatched residues (figure 7-11). These 

mismatched sequences were the same in the isolated clones and there were no gaps 

which meant that there are genuine differences between the isolated clones and the 

sequence in the database, which indicate that they may represent different genes. 

Patatin is a member of a multigene family of vacuolar glycoproteins with a molecular 

mass of about 40 kDa. It represents 40% (w/w) of the total soluble potato tuber protein 

and is considered to be a storage protein- providing a source of nitrogen, sulphur and 

carbon for use when the tuber germinates and produce a new potato plant. However, 

unlike other storage proteins patatin also displays enzyme activity- lipid acylhydrolase 

and acyltransferase activities (see below) (Andrews et al., 1988). 

Two patatin multigene families with different expression patterns have been identified: 

class I patatin genes are mainly expressed in tubers whereas class 11 genes are found 

both in tubers and roots although at a much lower level as compared to class I genes 

(VikaaidetaL, 1987). 
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Section 7 Subtracted-cDNA library 

It has been hypothesized that, besides being the main storage protein of potato tubers, 
patatin might also be involved in resistance responses induced during pathogen attack. 
The lipid acylhydrolase activity of patatin could in this context be important for the 
rapid degradation of cell membranes and thus rapid degradation of certain metabolites. 
Senda et al., (1996) have shown that patatin is identical to a cytosolic phospholipase A2 
(PLA2) from potato shedding new light on its possible physiological function. By 
treating potato tuber discs with an incompatible race of P. infestans or by treatment with 
fungal elicitor hyphal wall components (HWC), Kawakita et al., (1993) showed that the 
activity of PLA2 increased to peak activity at 2-3 h following the treatment and 
indicated that PLA2 seems to be involved in signal transduction during the initiation of 
defence responses in potato tubers. Soybean cells have also been found to respond to 
treatment with bacterial and fungal elicitors by PLA2 activation (Chandra et al., 1996). 

Recent results demonstrated that, in tobacco leaves undergoing a hypersensitive reaction 

to tobacco mosaic virus, a strong increase in soluble PLA2 activity occurs at the onset 

of the appearance of necrotic lesions. This rapid PLA2 activation occurred just perior to 

the accumulation of 12-oxophytodienoic and jasmonic acids, two fatty acid-derived 

defence signals (Dhondt et al., 2000). These results point to a possible role for pafatin-

like phospholipases in inducible plant defence responses. Membrane phospholipids in 

plant cells contain linoleic acid at the sn-2 position of glycerol. The liberation of linoleic 

acid by PLA2 might be an important step in the production of derivatives such as 

oxylipins, oxidized lipid-derived molecules, that have been shown to play significant 

roles in inducible plant defence responses against pathogens, either by directly deterring 

parasite multiplication, or as signals involved in the induction of sets of defence genes. 

Patatin-like proteins have also been demonstrated in other plant species. Patatin-like 
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cDNAs have been cloned from various plants under different growth conditions such as 
cucumber seedlings (May et al., 1998), tobacco leaves infected with tobacco mosaic 
virus (Dhondt et al., 2000) and drought-stressed cowpea leaves (Matos et al., 2001). 
Cucumber, tobacco and cowpea proteins were shown to display phospholipase A2 
(PLA2) activity. Several other patatin-like homologs are published in sequence 
databases but their absolute identity and function remain putative. 

In the current study, the abundant representation of patatin and patatin-like sequences 

during the potato-F. infestans interaction may lend support to a signalling role for these 

proteins in the signal transduction leading to resistance. 

7.7.2.2 ADP-ribosylation factor 1 

cDNA clone IA5 is 368 bp long. A database search for similarity to this sequence 

showed that it had 99% homology to the nucleotide sequence of potato ADP-

ribosylation factor 1 (TC25479) in the TIGR database (figure 7-12). 

ADP-ribosylation factor (ARF) is a highly conserved, low molecular mass (21 kDa) 

GTP-binding protein implicated in vesicle trafficking and signal transduction in yeast 

and mammalian cells. In recent years, a number of ARF proteins and genes have been 

identified from various eukaryotic organisms, including plants. Comparison of the ARF 

amino acid sequences identified has shown that all the sequences were highly similar to 

each other, indicating that ARF is a family of highly conserved proteins. Such 

conservation suggests that ARF's play a very important role in eukaryotic cell 

signalling (Kobayashi-Uehara et al., 2001). In higher plants, cDNAs with high sequence 

similarity to mammalian ARF's have been isolated from Arabidopsis (Regad et al., 

1993), pea (Memon et al., 1993), potato (Szopa and Mullerrober, 1994) and wheat 

157 



< 
§ 
i 
i 
x> 
3 

1/3 

C>0 

o 

s 

0 tr G" !? tf tr 
l i u u 01 (U dj OJ V u 
n n n n n n IQ n n 

01 Ol tf (ji tf CJl 01 cn tf cn tf cn D-

HI f- u <U U (U u 
"J <n •T in "J (fl n n T T n 
10 10 10 • 10 • 10 • 10 • 10 • 10 10 • 10 • 

N 10 CM 10 CM 10 CM 10 (M 10 CM 10 N 10 CM 10 dJ 10 CM 10 
O u 4 U <i U u 4 U U 4 U U 4 
H H h H h H H H H H H H h H H H f H H h H 

^: Hi: '< 
ii- 6: 

;^ '•^ > ^ 

:^ 
<< is •=1! '4 'M !̂  

P. ̂ : 

^; it! 1̂  
'M i i : 

<< 

« i< i i : H< 

p. 
•i< ^: t> 
••H ^: -ii 'M. if 
lis ii) 0i its is 

i^- < :^ i? 

IH ti: i j 

?^ iii lis i i 

1̂  'if. 
:9 u 

!•!< i? 
-if :Cl! its ^ . 

•M ^• 

;C!) P. 
1^ iii 

lis .if) 
i? 

f> i^i 
« Hi! ii): i* 

<< << '< 

< :C5 'M 
til lili î  
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(Kobayashi-Uehai-a et al, 2001). However, little is known about the detailed functions 
of the plant ARF's. 

Generally, ADP-ribosylation factor, a small G-protein, is a cellular regulator for 

phospholipase D (PLD; EC 3.1.4.4), which is one of the plant phospholipases that 

hydrolyse phospholipids, the structural elements of biological membranes. The 

activities of these enzymes not only have a profound impact on the structure and 

stability of membranes but also play a key role in regulating many critical cellular 

functions. The activation of phospholipases is involved in many cell-signaling cascades 

(see also patatin section 7.7.2.1). These enzymes often perform their regulatory 

functions through the generation of second messengers that transduce biotic and abiotic 

stress into physiological responses. Phospholipase D (PLD) has been identified recently 

as an important signalling enzyme in various organisms (for a review see Liscovitch et 

al, 2000; Wang, 2000). Activation of PLD has been observed under a broad spectrum 

of biotic and abiotic stress conditions including water stress (Frank et al, 2000), 

wounding (Ryu and Wang, 1996; Wang et al., 2000), and pathogen challenge (Young et 

al., 1996; van der Luit et al., 2000). 

For example, PLD gene expression in rice leaves was induced in response to 

Xanthomonas oryzae pv. oryzae and PLD was shown to be accumulated at the plasma 

membranes of cells at the point where resistant plants were infected. However, PLD 

was distributed evenly along the plasma membrane, and this distribution was 

maintained in the rice leaves undergoing susceptible interactions (Young et al, 1996). 

This clustering along the plasma membrane could be related to the killing of the host 

cells and/or generating signalling messengers such as phosphatidic acid (PA) and its 

derivatives, free fatty acids and diacylglycerol (DAG). On the other hand, the change in 
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location could be the result of the hypersensitive response and might be involved in 
degrading cell membranes. 

There are several possible mechanisms by which PLD is involved in stress responses: 

I) PLD was found to release N-acylethanolamine (NAE) from N-

acylphosphatidylethanolamine (NAPE) in fungal elicitor-treated tobacco cell 

suspensions. NAE accumulated in the medium lOmin after xylanase or cryptogein 

elicitor treatment (Tripathy et al., 1999). The activation of NAPE metabolism in plants 

appears to be associated mostly with cellular stress. In response to pathogen elicitors, 

NAPE is hydrolyzed by PLD, and the resulting medium-chain, saturated N -

acylethanolamines (NAEs) are released by plant cells where they act as lipid mediators 

to modulate ion flux and activate defence gene expression (Chapman, 2000). 

II) Recently, (Sang et al., 2001) indicated that PLD plays a role in mediating superoxide 

production (oxidative burst) in plants through the generation of PA as a lipid messenger. 

PA promotes superoxide production by activating NADPH oxidase, which is a 

multicomponent enzyme composed of membrane-bound and cytosolic proteins. It 

becomes active^when its four cytosolic proteins translocate to the membrane. A PA-

dependent protein kinase mediates the functional reconstitution of this complex at the 

plasma membrane. 

III) PLD plays important roles in plant responses to stresses through mediating the 

action and production of the stress-related growth factors such as abscisic acid (Fan et 

at., 1997; Jacob et al., 1999), ethylene (Lee et al., 1998) and jasmonic acid (Wang et al., 

2000). 

IV) PLD may also participate in defence responses by regulating the trafficking and 
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secretion of defence compounds. Recent studies suggest that mammalian PLD plays a 
role in regulated exocytosis (Jones et al, 1999; Roth et ai, 1999). Although no reports 
address the role of PUD in protein secretion and vesicular trafficking in plants, several 
properties of plant PLD suggest future investigations in these areas. 

The isolation of clone IA5 in the current study may highlight the importance of an 

indirect role for an ADP-ribosylation factor in the potato defence response to pathogen 

attack as a cellular regulator of PLD activity. 

7.7.3 Sequences related to pathogenesis related proteins 

Among the most frequently observed biochemical events that follow plant infection by 

pathogens is the production and accumulation of a family of proteins collectively 

known as pathogenesis-related proteins (PR-proteins) (see section 1.2.6); Including 

thaumatin-like proteins (PR-5), proteinase inhibitors (PR-6) and peroxidases (PR-9). 

Some of the cDNA clones that were obtained during this study contained sequences 

showing very strong homology to several pathogenesis- related proteins. 

7.7.3.1 Clone IG9^peroxidase (PR-9) 

cDNA clone IG9 is 339 bp long and showed very strong similarity (99%) to a potato 

peroxidase (TC16647; TIGR) as well as to the EST536542 sequence from P. infestans-

challenged potato leaves (BI43378i; NCBI) (100%), which although unidentified is 

presumably also a peroxidase enzyme (table 7-2). The alignment of the predicted 

protein sequence from this cDNA and the sequences retrieved from the TIGR 

(TC16647) and NCBI (BI433781) databases is shown in figure 7-13. 
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ĉa • H CO CO 

s 

m 
H 
on 
W 
o 
1/1 

8 
c 

-•-» 

o 
1 

1 

O n 
O 

H - l 

O 

§ 
s 
1) 

g 
1 
(U 

o 
0) 

u 
tn 

O 
I—< 

•B 

U 
H 
u 

T 3 

X 

I 
O 

o a. 
1 3 

1/5 

I 
T 3 

U 

z 

s 
O 

m 

s 
O 

a 
•T3 
(U 
OJ) 

c 

? 
I 

bp 

o c 

1 

•4—' 

o 

0) 

.5? 
13 
<u 

C 
o 
'5b 

PH 

> o 
4 3 

(3 

o 

DC 

4^ o o 

4 3 
H 

I 
-T3 

CO 

cd 
•4—» 
C 

C <u 
[/I 

OH 

(U 
X 
O 

x> 

4 3 
1/1 
(D 

d 
M) 

00 
a 

O 

a 

u 
43 



Section 7 Subtracted-cDNA library 

It has been reported that an increase in the activity of peroxidases is associated with 

early responses to pathogen infection (Cook et al, 1995; Harrison et al, 1995). 

Peroxidases are key enzymes in the plant cell wall-strengthening processes, which 

constitute one of the first lines of the plant defence against pathogen invasion. These 

processes include peroxidase-mediated oxidation of hydroxycinnamyl alcohols into free 

radical intermediates, phenol oxidation, polysaccharide cross-linking, extensin 

monomers cross-linking, lignification and suberization. All of which protect the plant 

tissues against the spread of pathogens. 

Peroxidases have been proposed to enhance resistance by the construction of a cell wall 

barrier that slows down pathogen ingress and spread (Harrison et al., 1995; Kawalleck 

et al., 1995; Ostergaard et al., 2000; Zimmerlin et al., 1994). Peroxidases are also 

believed to be involved in several plant defence responses such as wound healing and in 

the production of antimicrobial compounds. For example, active oxygen species (AOS) 

generated within minutes after pathogenic interaction by an extracellular peroxidase are 

toxic to pathogens and are implicated in cell wall fortification (Thordal-Christensen et 

al., 1997). On the other hand, these active oxygen species may also act as messengers to 

activate the plant defence responses that contribute to resistance (Levine et al., 1994). 

Moreover, several papers reported the production of specific peroxidase isoforms during 

fungal infections of plants (Harrison et al., 1995; Caruso et al., 1999; Curtis et al., 

1997). 

Recently, Collinge and Boiler, (2001) isolated two genes using mRNA differential 

display, whose transcript levels increased during potato-Phytophthora interaction. One 

of these genes was a putative peroxidase, while the other was similar to putative 

163 



Section 7 Subtracted-cDNA library 

transcriptional activators from Arabidopsis. These Arabidopsis transcriptional activators 
were also shown to be induced by wounding. 

Isolation of sequence homologous to peroxidase in the subtracted library may support 

the participation of this enzyme in durable resistance by slowing down the pathogen 

spread until the other defence responses are activated, by the strengthening the cell wall 

barrier and the production of antimicrobial compounds. 

7.7.3.2 Clones ID9, IB12, I IGl , I I E l and IHl, proteinase inhibitor (PR-
6) 

The most abundant sequences in the subtracted library, represented by five clones out of 

60 (~ 8 % ) , showed strong homology to the potato proteinase inhibitors. Clones ID9, 

IB 12, nGl, DEI and I H l are truncated cDNAs 261 bp long except I H l clone which is 

255 bp long. Searching the Genbank and TIGR nucleotide databases with these 

sequences revealed strong similarities to several plant proteinase inhibitors including 

potato aspartic (TIGR; TC27525) and kunitz-type (NCBI; STU30814 and D17330) 

proteinase inhibitors. The highest similarity was observed with the proteinase inhibitor 

sequences from potato (table 7-2). Alignment of the protein sequences of the cDNAs 

sequence with the sequences retrieved form the databases showed some residue 

mismatches, but it is unclear whether these are due to genuine differences between the 

protein sequences as these mismatches agreed at least in two different sequences (figure 

7-14), or due to errors during constructing the library. 

Proteinase inhibitors (Pi's) belong to one group (family 6) of PR-proteins. However, 

several biological aspects of Pi's distinguish them from other PR protein families. For 

example. Pi's are structurally unrelated subclasses of proteins with different 

164 



< 
Q 
u 

I 
3 

I 

r 
• H U O 
• n 
(d 

n 

t r o* o* 'if 

. • n • o 
,H H • • N PI 
o . w H gj H p 
H H A tJ A f' 
H H H H H !rt 

n . 

O M 
CO lO 
oo 

• H 

o 
•m 
(d 
& 

n 

0) W H 

H H 

(U O tJ* 
to W <u 

. in n . 
• M 

n 

OJ H 
n CO 

o 
oo 

H H 

: O" 
» 4) 

. lO 
o 0̂ ]; 
CO ui 
.00 r> 

> }«: 

& a •A 
ii>: 

fe- >: >^ m Vi !A: 
!!̂ : E- R R : : R 

tS: ^ : > >: :|fi 
M H : : H JH R H : •f^ ^ : 

H: •t^ ir̂  h<: U ^: :0 ^ » : 

> >>• JH t»̂ : >̂  >>• 

i-A 
>• jJ=; >•: 1-3 . o . 

oo :i:4 
U :U & ^ • 

> ^ ^ tJ: >> th t^-
w iij U) P. Pi & 
Vi if! «n: ^^ )^ 

oo H: h: O 

in V : m pi 
H H- w j^: in ifS fti 

««: •< o o 

:^ > >i 1^ >:] :> >^ 
it* . o . :iH 

H R H : hi hi ^ Nil 
^ : : ^ 

I-:) 
^ • \^ ?^ It ^ : 

•4 ii( fji: '•'^ m pi 
. W . o . 

CS] i*^ E-il: I N in pi 
1̂  P lib M 

w Eiil: •1 

^'• : ^ 'P 
H itij 

ft ii>: O: H . o . 
R : :h h\ 

O ^' i H H*; it̂  
itij ii>: ti: 
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Section 7 Subtracted-cDNA library 

mechanisms of regulation, but, in general, have the property of binding to proteinases. 
Furthermore, Pis control proteinase activity, a general biochemical function likely to be 
involved in many physiological processes during the development of a plant. Therefore, 
the involvement of Pi's in defence may only represent one aspect of their function in the 
plant cell. Based on homology, number and location of disulphide bridges and reactive 
binding site position, there are ten structural groups (families) of plant proteinase 
inhibitors (Valueva et ah, 1998). Kunitz-type proteinase inhibitors, a member of the 
serine proteinase inhibitors, and aspartic proteinase inhibitors are examples of 
proteinase inhibitor that have been shown to be active on microbial or insect 
proteinases, and whose genes are induced in infected or wounded plants. Kunitz-type 
proteinase inhibitors are mostly single chain polypeptides of 20-24 kDa with four 
cysteines linked in two disulfide bridges with a single binding site. A group of proteins 
from potato tubers with molecular masses ranging from 20 to 25 kDa and having 
homology to Kunitz-type proteinase inhibitors, has been described (Ishikawa et al, 
1994a). It has also been shown that mechanical wounding of potato leaves results in the 
transcriptional activation of cysteine and aspartic proteinase inhibitor genes (Hildmann 
et al., 1992). Th^se inhibitors have also been shown to play a significant role in the 
natural defence mechanisms of the potato plant against insect and pathogen attack. For 
example, (Ishikawa et al., 1994b) demonstrated that treatment of potato with methyl 
jasmonate induces the expression of two gene families encoding cysteine and aspartate 
proteinase inhibitors. Northern blot hybridisation of total RNA, isolated from potato 
leaves and tubers under non-stress conditions revealed that the gene transcripts 
encoding aspartic proteinase inhibitors normally occur mainly in potato tubers, but 
treatment of the potato plantlets by jasmonic acid, at concentrations of 50 -100 }xM, 
dramatically induced the expression of the aspartic proteinase inhibitor gene transcripts 
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in leaves (Kreft al., 1997). 

The abundant representation of proteinase inhibitor (-8.0% of the sequenced clones) in 

the current study, most likely indicates an important role for proteinase inhibitor in the 

establishment of durable resistance in potato-P. infestans system. 

7.7.3.3 Clone IE9, thaumatin-like protein (PR-5) 

IE9 is a truncated cDNA 315 bp long. Comparison of the nucleotide sequence of clone 

IE9 with nucleotide sequences in Genbank and TIGR databases revealed strong 

similarities (98%) to EST537212 from P. m/e^mn^-challenged potato leaves (NCBI; 

BI434451), and 97% to potato P23 protein (thaumatin-like protein; PR-5) (TIGR; 

TC27525). Alignment of the nucleotide sequence of this clone with the retrieved 

sequences from the TIGR (TC27525) and NCBI (BI434451) databases is shown in 

figure 7-15. 

Pathogenesis-related proteins (PR-5) are a family of proteins that are induced by 

different pathogens in many plants and share significant sequence similarity with 

thaumatin, so PR-5 have been designated thaumatin-like proteins (TLP's). TLP's are 

not normally detected in leaves of young healthy plants, but they rapidly accumulate to 

high levels in response to biotic and abiotic stress in both dicot and monocot plants. For 

instance, a PR-protein named P23, a protein of 23 kDa, is accumulated in tomato leaves 

after infection with citrus exocortis viroid. P23 shows homology to tomato osmotin, 

which was found to be associated with osmotic stress in tomato (Rodrigo et al., 1991). 

Osmotin is a pathogenesis-related protein of group 5 (PR- 5) that displays antifungal 

activity in vitro and in vivo. For instance, Liu et at., (1994) demonstrated that 

constitutive overexpression of osmotin in transgenic potato plants to a level of 
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H< f« !̂  ilf h u 
tji iii! :^ jii i"i? 
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î  « jij i'S* î  ifi !fj 
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approximately 2% of total cellular protein, delayed development of disease symptoms 
after inoculation with spore suspensions of P. infestans. 

The site of accumulation of these proteins is important for their function. Basic 

(vacuolar) forms of PR-5 proteins have a C-terminal extension compared to the acidic 

forms which are secreted extracellularly. Liu et al., (1996) demonstrated that transgenic 

potato plants overexpressing truncated PR-5 protein, without the 20 C-terminal amino 

acids, which is then secreted extracellularly, exhibited resistance to P. infestans. 

Zhu et al., (1995b) have characterised three cDNAs encoding osmotin-like proteins 

from potato cell cultures and found that infection with the fungus P. infestans activated 

strong expression of all three osmotin-like protein genes. The accumulation of osmotin-

like proteins was detected only in P. infestans-infectcd tissues but not in plants treated 

with NaCl, low temperature, or wounding. Indicating this to be a pathogen-specific 

response. 

Hu and Reddy, (1997) reported that the expression of ATLP-3 and ATLP-1 

(Arabidopsis thaumatin-like proteins) genes, encoding PR5-like proteins, was induced 

by pathogen infection and saHcylic acid. They, also, suggested that ATLP-3 may be 

involved in plant defence against fungal pathogens as the ATLP-3 protein showed 

antifungal activity, in vitro, against several fungal pathogens. 

Lin et al., (1996) carried out an extensive analysis of the induction of TLPs in oat 

seedlings infected with the stem rust fungus Puccinia graminis. They showed that four 

distinct TLP mRNAs were induced, some as early as 24h after infection. Plants infected 

with an incompatible isolate of the stem rust fungus pathogen accumulated higher levels 

of TLP mRNAs compared with those using compatible isolates. They also demonstrated 

that the expression of TLP genes in oats, especially the TLP-1 gene, is associated 
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with resistance reactions in response to infection by incompatible isolates of the stem 
rust fungus. 

In the current study, the isolation of sequences homologous to TLP (PR-5) in the 

subtracted library was expected as it has been demonstrated that the expression of TLP 

increased after inoculation of potato plants with P. infestans, and the overexpression of 

TLP in transgenic potato resulted in delaying the development of disease symptoms 

after inoculation with P. infestans (Liu et al, 1994; Liu et al., 1996; Zhu et al., 1995b). 

7.7.4 Sequences related to ubiquitm-conjugatiEg protein 

Another one of the most abundant sequences found in the subtracted library encoded 

ubiquitin-conjugating protein. Three clones (AE3, IID2 and 1102) showed very strong 

homology with the potato ubiquitin-conjugating protein (TC27621) in the TIGR 

nucleotide database. Clones AE3 and IID2 are truncated cDNA sequences (310 and 317 

bp) containing the 3' end of the sequence. They showed 99% homology with the potato 

ubiquitin-conjugating protein (TC27621). Clone IIC2 (256 bp long) also showed 99% 

homology with the same gene but to a non-overlapping upstream sequence of the gene. 

The alignment o f the translated sequenc^is shown in figure 7-16. 

Ubiquitin is a widespread small protein found in all eukaryotes. It is involved in several 

important processes, including protein turnover, chromatin structure and in stress 

responses. Within the cell, ubiquitin is covalently Unked to substrate proteins, often 

targeting them for degradation via the so-called ubiquitin pathway. This pathway has 

been demonstrated to be required for both the bulk degradation of cellular proteins and 

the targeted proteolysis of specific regulatory proteins. Proteolysis participates in many 

aspects of plant physiology and development. For example, it is responsible for: 

170 



< 
o 
I 

T3 

on 

00 

0 0 

o 

o 

s 

CM 

O 

4 

u 

cr tr 0* 
(U <u <u ii 4J 

n n n n n n 
• • • tf • 

(U 0" H » H (U cr H il a- H N n N n ĉ  n N n t) (M n u CM 
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jî  ^. 
:Fi ii< 
i"^ P*. 
:^ ^ • 

M 
f-i.: Pi 

(J) en cn CTl 
•a* o CM KD CO CM OO 
CM U3 CO —t CO sr CM •a* 

i a 
o 
D 
O 

g 

u 

I 
1 
1 

Q 

t/3 

c 

o 
u 

I 
1 

TO 
»—« 

o 
'ao 
Si 

-o 
u 

I 
> o 

O 
-4-» 
U 

I 
X) 

I I 

5 
1 
1 

o 

C 

! 
P3, o o 

o 

I 
C3 
U 

CO 
(U 
X 
O 

-a 

1/3 

I 

i 
s 

u 

I-

1 
I 

1 3 

I 
C/3 

1 
C/3 

c/3 



Section 7 Subtracted-cDNA library 

recycling amino acids needed to make new proteins; in response to stress by removing 
abnormal/misfolded proteins; in regulation of transcription; in controlling metabolism 
and development by reducing the abundance of key enzymes and regulatory proteins; 
and in programmed cell death of specific plant organs or cells (for a review see; 
Belknap and Garbarino, 1996; Vierstra, 1996 and vonKampen et ai, 1996). 

Ubiquitin-dependent proteolysis of proteins occurs in two steps; first, ubiquitination-

covalent attachments of ubiquitin to the E-NH2 group of an internal lysine residue of the 

target protein then degradation of the ubiquitinated protein complex in the proteasome. 

The covalent attachment of a ubiquitin monomer to the target protein requires three 

distinct enzymes: ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and 

ubiquitin-protein ligase. 

It has been suggested that the ubiquitin-proteasome system may play a crucial role in a 

process which switches the signalling pathway for diverse plant defence responses into 

a functional state, as it is known to participate in many basic cellular processes in both 

animals and yeast (Becker et a/., 2000). 

More recently, the identification of the fifth subunit of ubiquitin ligase (Sgtl) as an 

essential component of R gene-mediated disease resistance suggested that the ubiquitin 

protein degradation pathway plays an important role in plant defence (Gray, 2002). 

Rickey and Belknap, (1991) found that mechanical injury and heat shock induced the 

expression of several stress-responsive gene families in potato tubers. The steady- state 

levels of mRNA-encoding ubiquitin, HSP70, and phenylalanine ammonia-lyase (PAL) 

all increased within 45min of impact injury. 

Basso et al, (1996) demonstrated that inoculation of susceptible and partially resistant 
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potato cultivars with low doses of P. infestans sporangia led to a 5-fold accumulation of 
potato ubiquitin transcripts in both cultivars. These results established the connection 
between ubiquitin expression and defence reactions in plants and agree with the results 
from the present work. Thus it is highly probable that ubiquitin and its associated 
enzymes are important participants in establishing the resistance in potatoes. 

7.7.5 Sequences related to oxidative burst 

Under different environmental stresses, active oxygen species (AOS) such as 

superoxide radicals and hydrogen peroxide are produced at high levels. When hydrogen 

peroxide accumulates to levels of 10 j iM, in chloroplasts, the enzymes of the Calvin 

cycle lose 50% of their activity. Superoxide dismutase (SOD) and ascorbate peroxidase 

(APX) protect these enzymes by scavenging active oxygen species reducing them to 

harmless products. In the reaction catalyzed by APX, ascorbate is oxidized to 

monodehydroascorbate (MDA). Rapid regeneration of ascorbate from its oxidized 

forms is required to support antioxidant capacity (scavenging of hydrogen peroxide by 

APX). During the regeneration of ascorbate in chloroplasts, some of the MDA is 

reduced to ascorbate by ferredoxin and the enzyme monodehydroascorbate reductase 

(MDAR) while some disproportionates to ascorbate and dehydroascorbate (DHA). 

DHA is reduced to ascorbate by glutathione-dependant dehydroascorbate reductase 

(DHAR) (EC 1.8.5.1) (Foyer and Mullineaux, 1998; Shimaoka et al., 2000). 

Two clones from the subtracted library (clones API2 and HDl) showed homology to 

database gene sequences encoding enzymes associated with oxidative stress. Clone 

AF12 (296 bp long) showed 100% homology to potato superoxide dismutase (SOD) 

(NCBI; AF354748) in 264 bp overlapped region (Appendix C-1). While clone I I D l 
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(277 bp long) showed 99% homology to GSH-dependent dehydroascorbate reductase 
(DHAR) (TIGR; TC25547) (Appendix C-2). 

Superoxide dismutase (SOD), an enzyme involved in detoxification of superoxide 

radicals, plays a key role in the cellular defence against reactive oxygen species. 

Superoxide dismutase catalyses the dismutation of superoxide radical into O2 and H2O2 

thereby maintaining a low level of activated oxygen molecules in the cell. 

It was found that overexpression of a manganese superoxide dismutase (MnSOD) in 

chloroplasts or mitochondria of transgenic tobacco plants could significantly reduce the 

amount of cellular damage which would normally occur by the generation of an 

oxidative burst (Bowler et al., 1991). 

Gupta et al., (1993) studied transgenic tobacco plants expressing a pea gene encoding 

chloroplast-localized Cu/ZnSOD. They demonstrated that SOD is a critical component 

of the active oxygen-scavenging system of plant chloroplasts and indicated that 

modification of SOD expression in transgenic plants improved plant stress tolerance. 

Also, Allen et al., (1997) demonstrated that increased activity of SOD in chloroplasts of 

transgenic tobacco plants generally leads to increased protection from membrane 

damage caused by exposure to the superoxide-generating herbicide methyl viologen 

(MV). In addition, they showed that overexpression of chloroplastic Cu/Zn SOD can 

lead to increased protection from photooxidative damage caused by growth under high 

light intensity and low temperatures. 

Ho and Yang, (1999) found that mRNAs of defence-related genes, known to be 

differentially induced during the HR in Arabidopsis, including PR-1, glutathione S-

transferase and Cu/Zn superoxide dismutase (SOD) increased significantly in the 

resistant Arabidopsis thaliana ecotype S96 leaves between 3 to 12 h after infiltration 
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with R. solanacearum strain Ps95 that causes bacteiial wilt. The induction of these 
genes in the susceptible ecotype N913 was clearly delayed, indicating that these genes 
play an important role in the efficiency of plant defence. 

Hernandez et al., (2001) reported the effect of plum pox virus (PPV) infection on the 

antioxidative enzymes of apricot plants, including SOD and DHAR. They observed an 

increase in total SOD and DHAR activities in the inoculated resistance cultivar 

(Goldrich), while in the susceptible cultivar (Real Fine), inoculation with PPV brought 

about a decrease in SOD while DHAR activities were raised in comparison to non-

inoculated (control) plants. The authors suggested a relationship between the SOD and 

DHAR activities and the apricot plants level of resistance to PPV. 

7.7.6 Sequences related to heat shock proteins 

Heat shock proteins (HSPs), which offer some protection from cellular damage, are 

present in both prokaryotic and eukaryotic cells. Some authors use the term "Stress 

Protein" instead of heat shock proteins as these proteins are induced not only under 

heat stress but also under a variety of other cellular stresses such as trace heavy metal 

exposure, organic pollutants, changes in temperature or osmolarity (water stress), 

oxidative stress, plant-pathogen interaction and exposure to ultraviolet radiation (Byth 

et al. ,2001; Lewis et al., 1999). 

There are several families of heat shock proteins basically classified according to their 

molecular weight, intracellular location, main inducer(s) and proposed function. 

According to their molecular mass there are three main groups; HSP90, covering the 

size range between 80 and 100 KDa; HSP70, covering sizes between 65 and 75 KDa 

and HSP60 and the small HSP's of sizes ranging from 16 to 40 KDa. The small HSP's 
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are most abundantly induced in plants by various stresses (Byth et al., 2001; Lewis et 
al., 1999). 

Four clones, from the subtracted library, showed homology to different families of HSP. 

cDNA clone A A l (412 bp long) showed 96% homology to tomato HSP90 (NCBI; 

AFl 23259), cDNA clone IG12 (382 bp long) showed 86% homology to tomato HSP70 

(TIGR; TC21404), cDNA clone AF5 (358 bp long) showed 98% homology to potato 

small HSP18 (TIGR; TC23617), and cDNA clone AC2 (240 bp long) showed 83% 

homology to an EST from tomato callus similar to HSP80 (TIGR; AW033426) (Table 

7-2; appendices C-3 to C-6). 

Recently, an HSP90-based multiprotein complex, which plays an important role in 

signalling pathways in animal and yeast cells, has been identified in plant cells, but it 

remains to be seen if the HSP90 chaperone system plays a critical role in signalling 

pathways of plant cells, as it does in animal cells (Krishna, 2000). 

It has been proposed that, at least in tomato, HSP70/HSC70 (inducible or constitutive 

70-kDa heat shock protein) is induced by avirulent strains of Ralstonia solanacearum as 

part of the defence response to protect newly synthesised defence proteins and to 

maintain cellular homeostasis essential for the execution of a full defence response 

(Byth et a/., 2001). 

Although, several components in plant resistance responses to pathogens are suppressed 

by heat shock (HS), it has been hypothesised that thermotolerance, marked by prior 

accumulation of HSP70/HSC70, protects the resistance response from heat-induced 

inhibition during simultaneous exposure to heat and to avirulent pathogens. This 

hypothesis was investigated in tomato by studying the effect of thermotolerance induced 

by a prior HS pulse, on phenylpropanoid metabolism activated by exposure to an 
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avirulent strain of Ralstonia solanacearum given simultaneously with a prolonged heat 
shock. This study indicated that thermotolerance associated with Hsp70/Hsc70 
accumulation protects the enzymes of phenylpropanoid metabolism against heat-
induced inhibition and in particular PAL enzyme activity during a second prolonged 
HS. In contrast, a prolonged HS without a prior HS pulse suppressed phenylpropanoid 
metabolism and promoted cell death (Kuun et al, 2001). 

In plants, some heat shock protein genes are inducible by oxidative stress. For example, 

it has been demonstrated that application of H2O2 and gamma irradiation to tomato cell 

suspension cultures induced the expression of a small heat shock protein (HSP22). Heat 

shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection 

against oxidative injury (Banzet et al, 1998). 

Eckey-Kaltenbach et al, (1997) characterised the first small heat shock protein cDNA 

clone from parsley {Petroselinum crispum L.), which has been shown to be induced by 

heat shock and by oxidative stress caused by exposure to ozone. 

A conformational change has been observed during moderate heat stress and oxidation 

treatments (as judged by a shift to lower mobility in non-denaturing electrophoresis) in 

the structural properties of HSP21. This was demostrable both in purified recombinant 

form and in transgenic Arabidopsis thaliana plants engineered to constitutively 

overexpress HSP21 (Hamdahl et al., 1999). The authors suggested that the over-

expression of the HSP21 in transgenic Arabidopsis may protect the plants from 

oxidative stress. 

Taken together, these results demonstrate that in plants some HSP genes are inducible 

by oxidative stresses and pathogen challenge and play important role in protecting the 
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plant cell and response enzymes from oxidative damage and may participate in 
signalling pathways, which is very relevant in the current study. 

7.7.7 Other stress and defence response related sequences 

7.7.7.1 Clone IB4, metallothionein-like protein 

The nucleotide sequence of clone IB4 (443 bp) showed 97% homology to a potato 

metallothionein-like protein (TIGR; TC25557) (table 7-2 and appendix D-1). 

Plant metallothioneins are metal binding, low molecular weight cysteine-rich proteins. 

The general function of these proteins appears to be in the binding of metals through 

coordinate complexes with the thiol side groups thereby reducing a potentially toxic 

level of the metal in the cell. In recent years, metallothioneins (MTs) and 

metallothioneins-like proteins (MTL) have generated enormous interest due to their 

involvement in various physiological and pathological events. Differential expression of 

MTs and MTL proteins has been observed during embryogenesis and plant 

development as well as in response to exposure to external heavy metal concentrations 

(especially of Cu "̂̂  and Fe '̂*̂ ), and various stress factors such as heat shock, oxidative 

stress, wounding and plant pathogens (Kotrba et ai, 1999). 

It has been proposed that antioxidant activity is an important function of MTs and MTL 

proteins in animal and plant cells, although the specific mechanisms of their antioxidant 

action are not known. For example, it has been reported that MTL protein genes of 

tomato are induced by oxidative stress (Giritch et ai, 1998). Choi et al, (1996) reported 

that wounding and virus infection of tobacco plant resulted in the induction of an MTL 

protein gene. 
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The induction of MTL protein in our system (P. infestant-potato interaction) may 
support the involvement of these proteins in the resistant response to pathogen infection. 

7.7.7.2 Clone IA4, auxin induced protein 

Clone IA4 was 391 bp long and showed 93% homology in 137 bp overlapped region 

with a tobacco lAA-induced protein mRNA sequence in the NCBI database 

(AF123509) (appendix D-2A). 

Indole-3-acetic acid (lAA) is the most abundant and widespread growth regulator in 

plants and mediates an enormous range of developmental and growth responses. 

Yamada, (1993) observed the attenuation of disease symptoms exhibited by plants 

infected with lAA-deficient mutants of Agrobacterium tumefaciens, so proposed the 

involvement of l A A in this plant-pathogen interaction. Furthermore, indole-3- ethanol, a 

storage form of auxins, was shown to inhibit zoospore germination and mycelium 

growth of different pathogenic fungi (Brown and Hamilton, 1992). 

Recently, Noel et al, (2001) demonstrated that pre-treatment of potato leaves with 10-

juM lAA resulted in a 50 % reduction of P. infestans disease severity. Also, lAA was 

shown to^exhibit aritimicrobial activity directly in vitro. A 45 % inhibition of growth of 

the P. infestans mycelia was observed in V8-agar medium containing 1 fiM lAA. The 

extent of protection and the percentage of mycelial growth inhibition were dose-

dependent. These data support a putative role of l A A in the potato-P. infestans as a 

natural defence for pathogen spread and disease development. 

7.7.7.3 Clone IIB2, formate dehydrogenase 

The short nucleotide sequence of clone IIB2 (85 bp) showed 98% homology with 

formate dehydrogenase (FDH, EC 1.2.1.2) when searched against the nucleotide 
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sequence in TIGR database (TC19814) (appendix D-2B). 

Formate dehydrogenase (FDH), a mitochondrial NAD-dependent enzyme, catalyses the 

oxidation of formate, which is a potential one-carbon source in higher plants and arises 

from various metabolic pathways, to CO2. FDH has been shown to be induced under 

various stress responses as well as by treatment with chemical factors. For example, 

Hourton-Cabassa et al, (1998) studied the effects of various environmental and 

chemical factors on FDH expression in potato leaves. They found that the abundance of 

FDH transcripts was strongly increased under various abiotic stresses including chilling, 

drought, hypoxia, dark, and wounding. They found that various chemical factors and 

metabolites such as formate, methanol, and ABA also induced the expression of FDH. 

Recently, L i et al., (2001b) reported the identification, and molecular characterisation 

of an Arabidopsis FDH cDNA clone. In studying the expression from the FAD gene 

they observed that the steady-state levels of FDH transcripts increased quickly (within 

hours) to high levels in response to various stresses. 

The increase of FDH transcripts under various stresses and in our experiment may also 

support a putative role of FDH in the P. infestans-potato interaction as a natural defence 

for pathogen infection. 

7.7.7.4 Clones AE6 and AH4 

Clones AE6 and AH4 showed homology to ESTs isolated from P. m/e^ton^-challenged 

potato leaves. Clone AE6 (246 bp) showed 100% homology to EST537479 isolated 

from P. infestans-chaWenged potato leaf in Genbank nucleotide sequence database 

(NCBl; BI434718). Also this clone showed 100% homology to the water-stress induced 

tonoplast intrinsic protein (a channel protein in tonoplast) when searched against the 
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TIGR nucleotide sequence database (TIGR; TCI8260) (see table 7-2; appendix D-3). 

Clone AH4 (310 bp) showed 99% homology to EST534164 isolated from P. infestans-

challenged potato leaf in the Genbank database (NCBI; BI431403) as well as 99% 

homology to chlorophyll a/b-binding protein type I precursor in the TIGR database 

(TIGR; TC23477) (see table 7-2; appendix D-4). It has been reported that the 

chlorophyll a/b-binding protein gene is induced in rice leaves 48h post-inoculation with 

the fungal pathogen Magnaporthe grisea (Rauyaree et al, 2001). 

7.7.7.5 Clones IG4, IIH5, AD2, A E l , IE7, ID2 and I C l 

These seven clones (~ 12% of the selected subtracted clones) also showed homology to 

ESTs isolated form potato or tomato leaf treated with the P. infestans or treated with 

mixed elicitor. For the length, homologoes, identities and other information about these 

clones see table 7-2 and for the sequence alignment see appendices D-5 to D-11. 

7.8 Conclusion 
The suppression subtractive hybridisation (SSH) method was employed successfully to 

construct a cDNA library rich in the differentially expressed sequences that are induced 

during the compatible interaction between potato (variety Stirling) and the causal agent 

of late blight disease, P. infestans. Also it used to subtract the pathogene sequences that 

may have been presented in the treated plant tissues. 

528 clones were randomly selected. At least sixty of these clones were sequenced and 

analysed in detail. The selection of these clones was mainly based on their hybridisation 

with the forward subtracted probe (i.e. up-regulated gene sequences) and in some cases 

with identified probes obtained from other labs. The sequence search for homology of 
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the sequenced cDNA's using the available databases revealed that all the cDNA's, 
except two, show high homology and probably identity with a diverse range of gene 
sequences. For the purpose of discussion these sequences have been organised into 
categories according to their putative function. Some sequences may warrant inclusion 
in more than one category. Among the categories identified were defence- and stress-
related sequences that alone comprised 63% of the total sequences, signalling-related 
sequences, which comprised 8.5% of the sequences, and transcription-related sequences 
that made up 5% of the sequences. These specific categories are very relevant to the 
potato-P. infestans studies. Indeed several of the homologous sequences identified have 
come from similar biological systems, which were pubhshed during the course of this 
project. Also among these categories were the metabolism-related sequences which also 
have some relevance to the current studies because many changes in metabolism are 
likely to occur, especially in a compatible interaction between a plant and a pathogen. 
Similar results were obtained, recently, in different studies of a plant-pathogen 
interaction (Beyer et al., 2001; Fristensky et al., 1999; Rauyaree et al., 2001). 

Interestingly, among the sixty sequenced cDNA's, eighteen (30%) were novel potato 

gene sequences (see table 7.2). These sequences will eventually be submitted to the 

DNA databases. Three sequences were submitted to the Genbank database during this 

study. These sequences were superoxide dismutase (AC; AF354748), myo-inositol-1-

phosphate synthase (AC; AF357837) and ubiquitin activating enzyme (AC; AF357838). 

A further 10 cDNA's were sequenced later in the project but were not subjected to 

detailed bioinformatics analysis- their putative identifies appear in table 8.1 (section 8). 

Identification of cDNA's for many genes previously characterised from other species in 

this system provides corroboration of the involvement and potential importance of these 
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components in similar plant-pathogen situations. While the identification of such 
cDNA's is important, the value of the 'unknown class' of cDNA's, comprising a 
significant 15% of the subtraction cDNA's plus 6 clones (10%) categorised with the 
stress- and defence-related sequences, as they have homology to ESTs isolated from 
pathogen or elicitor treated leaves or cell cultures, and showed strong homology to 
sequences in the databases of unknown function, should not be underestimated. Results 
on the expression profile of these genes during the compatible interaction between 
potato and P. infestans may shed light on their potential defence function. These genes 
are also only a subset from the total library of more than 500 clones, of which 25% 
equals more than 125 clones still to be evaluated. 

The abundant representation of some sequences such as proteinase inhibitors, patatins 

and heat shock proteins compared with others may indicate the importance of these 

genes in the resistance responses. 

In section 8 cDNA microarray chips technique has been used in a preliminary study of 

the differences of transcribed genes profiles between the control Stirling untreated 

plants and Stirling plants treated with P. infestans during the establishment of durable 

resistance. DNA arrays have been constructed using the selected 60 sequenced clones 

along with identified and control cDNA clones, in order to get more detailed 

information about these differentially expressed gene sequences. 
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8 Expression profiling by microarraying 
8.1 Introduction 

Since changes in the physiology of a cell or an organism are associated with changes in 

the pattern of gene expression, analysis of gene expression is important in many fields 

of biological research. Several routine methods have been utilised to assess gene 

expression based on mechanisms of measuring the mRNA level such as Northern 

blotting, RT-PCR, differential display, and RNA dotblot analysis. However, each of 

these methods has its disadvantages, which make them unsuitable particularly i f large 

numbers of expression products have to be analysed simultaneously. Recently, 

considerable improvement in sensitivity and throughput of expression screening has 

been obtained by the introduction of DNA microarray technology. The benefits of this 

approach over others for assaying gene expression are the huge numbers of genes that 

can be assayed simultaneously and the large number of transcript situations (RNA 

isolates) that can be easily investigated. The high initial cost of the precision robotic 

printing system, the expensive consumables and the demanding, time-consuming 

processing of large numbers of samples are disadvantages. 

The Department of Biological Sciences was fortunate to receive funding for the 

purchase of a microarraying facility which was only completed and the instruments 

installed towards the end of 2001. It was a great opportunity for me to learn this new 

technique while being here and to study the levels of specific potato gene expression 

during the establishment of durable resistance to P. infestans by expression profiling. A 

selection of the characterised clones from the cDNA subtraction library was used along 

with various control sequences as immobilised probes printed on coated glass shdes for 
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assaying the levels of transcription from individual genes. 

The microarraying procedures described in the Materials and Methods were largely 

established during the first 6-months of 2002 by Dr Croy. The successful production of 

the first microarrays was based on the subtraction library clones produced and 

characterised in the present project. The relatively small number of clones used for 

these microarrays compared with conventional microarrays is offset by the fact that 

these clones had already been selected as upregulated genes at two levels - i) the 

production of the subtraction library and ii) screening of the library with forwai-d and 

reverse subtraction cDNA probes. It was therefore anticipated that most i f not all of 

these clones would be confirmed as upregulated. 

Due to severe time limitations the experiments described here are essentially 

preliminary attempts and there was no opportunity to exploit the full time course of 

RNA samples available and necessary to describe fully the gene expression associated 

with the establishment of resistance to P. infestans. 

8.2 Preparation of cDNA probes for arraying 
Plasmids from the subtraction library clones along with a number of characterised 

potato clones, obtained from other sources as detailed in section 3.4, were prepared as 

described previously (section 4.3.8) or released from lysed cultures as described in 

section 4.5.1. The purified plasmids were used as templates for PCR amplifications of 

the cloned cDNA fragments as described in section 4.5.2. The amplified PCR products 

were purified (section 4.5.3) and then analysed simultaneously on 1% (w/v) agarose 

gels in TBE buffer ( 89mM Tris-borate, 2mM EDTA, pH8.3) using a 96-sample FAST 

gel 'stretch' system. Figure 8.1 shows a typical gel electrophoretic analysis of the PCR 
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Figure 8.1 Electrophoretic analysis of PCR products 
A) (above) Electro FAST gel equipment for analysing 96 
samples at the same time in 12 row ŝ of 8 (xylene cyanol, 
bromophenol blue dyes). Markers are run in the 12 adjacent 
set of wells near the top edge of the gel tank (red marker 
dye). Electrophoresis was carried out for 30-40 min. 

B) (right) Following PCR amplification of cDNAs from the 
library and characterised clones, the products were analysed 
on 1% (w/v) agarose gels in TBE buffer ( 89mM Tris-borate, 
2mM EDTA pH8.3) using a 96-sample FAST gel stretch 
system. Figure 9 shows a typical gel electrophoretic analysis 
of PCR products. Gel and buffers contained ethidium 
bromide (5-lOng/ml). Electro FAST DNA markers (M) 
were from ABgene, 3 DNA sizes: lOOObp, 500bp and 200bp. 
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products. The concentration of the amplified cDNAs was estimated either by 
fluorescence assay using Hoescht 33258 benzimidazole fluorescent dye or by ethidium 
bromide fluorescence following electrophoresis (section 4.5.3). Where necessary PGR 
products were concentrated by isopropanol precipitation and dissolved in smaller 
volumes or were printed using multiple transfers. 

8.3 Construction of DNA microarrays 
It was crucial to establish microarray formats, to identify the location of the cDNA 

probes on the microarray slides and to check the performance of the microarrayer before 

printing the cDNA probes. To achieve these, test arrays were printed with food dyes, 

diluted 1:1 with DMSO, on agarose coated slides using a Genomic Solutions GeneTAC 

G3 workstation equipped with a 48-pin printing tool as described in section 4.5.4. 

Figure 8.2 shows a test microarray slide using food dyes, showing half of the 8x8 

matrices (patch pattern). The same patch pattern was used for arraying the purified PCR 

amplified probes along with black ink markers as shown in figure 8.3. Use of black ink 

(Indian ink) produced markers which lasted throughout the slide hybridisation 

processing and showed up during fluorescence scanning. This allowed the location of 

individual patches and cDNA probes. The cDNA probe samples were printed in 32 

patches of 3 DNA samples each (=96 probes). To confirm that the cDNA's were 

arrayed successfully, the printed slide was stained with SYBR green I stain (section 

4.5.4) to visualize the DNA spots as shown in figure 8.3B and C. The location of the 

printed cDNA probes on the microarray slides are indicated (figure 8.4) and the full 

identity of the probes is summarised in table 8.1. 
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Figure 8.2 Test microarray 
using coloured food dyes 
showing the 8x8 matrix (patch 
pattern) used for arraying the 
gene probes. Each sample was 
printed in quadruplicate onto 
an agarose coated glass slide 
and represents 256 samples 
printed in 32 patches ̂ '4rows of 
8 patches). The scale below is 
in millimetres. Each spot is 
~400nm in diameter and 
500nm apart. This microarray 
represents only half the normal 
patch size (8X4) since only 
1X384 sample plate was 
printed. 
Figure 8.3 Example of a 
cDNA printed array 
comprising of 32 patches each 
of 3 DNA samples = 96 
samples 
A - Unstained array showing 
the positions of the black ink 
markers. The scale is in 
millimetres. 
B - the array stained with 
SYBR green I stain 
C - Closeup of a section of the 
stained array showing the 
stained quadruplicated cDNA's 
and markers. 
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Table 8.1 - cDNA probes printed on slide microarrays 
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1 AF5 Heat shock protein - HSP 18 1 H ID2 tomato mixed elicitor 

A 2 AF12 superoxide dismutase (SOD) F 2 •a 

1 
ID4 -A 3 AG1 PGPD14 {Petunia x hybrida} F 3 

•a 

1 ID7 -
4 AG2 flavonol synthase 4 

•a 

1 109 potato proteinase inhibitor 
5 AGS unknown 5 s ̂  IE3 major latex protein (ripening specific) 
6 AH2 40S Ribosomal protein 6 

s ̂  
IE4 -

7 AH3 CCR4-associated factor 1 7 P lES promoter binding protein 
g AH4 Chlorophyll a/b-binding protein 8 IE7 putative protein & eUcitor 
9 ADS mixed clone 9 I I IA4 lAA induced protein 
10 AD12 PAL 10 i ^ IAS ADP-ribosylation factor 1 
11 1 AE3 ubiquitin conjugating protein 11 <; ^ 184 metallothionein-like proteien 
12 i AE4 - 12 IBS unknown - catalase domain? 

B 1 i AE5 myo-inositol-1 -phosphate F 1 IB12 proteinase inhibitor B 2 AE6 ion channel protein F 2 1 - i IC1 unknown function & elicitor 
3 •o AE7 arogenate dehydrogenase 3 1 § 

o 

IC2 unknown - no clear sequence 
4 AF1 - 4 

1 § 
o 

IC9 chalcone synthase 
5 AA1 heat shock protein - HSP90 5 IH8 serine O-acetyltransferase 
6 AA3 EST-cTOS cDNA clone 6 a, IIHS EST P. infestans-diallaiged leaf, potato 

7 1 AB9 P A L 7 IG12 heat shock protein, HSP70 
8 1 AC1 - 8 A G ? A. Ihahana ORF, tomato 

9 1 AC2 heat shock protein - HSP 80 9 IE9 P23 protein, tomato 
10 

tis
su

e 
( 

ACS HMGR- CoA reductase 10 IIH4 PAL {Agastache rugosa) 
11 tis

su
e 

( 

ADS unknown 11 AD1 cyt NADP-malic enzyme, tomato 

12 AD4 putative splicing factor (60%) 12 AD2 EST P. ir^estans-cbail&iged leafj tomato 

C 1 •1 IIC2 ubiquitin conjugating protein G 1 AE1 EST P. infestans-diallaiged leat tomato C 2 IIF3 Kunitz proteinase inhibitor G 2 1E12 deliydratiosi-respesise p'otein RD22 

3 1 
.2 

IID1 dehydroascorbate reductase (GSH) 3 pRR8 chtoride channel protein A.thaliana 

4 1 
.2 

IID2 ubiquitin conjugating protein 4 pRR12 hetU shock tomato 
5 •s s IIE1 proteinase inhibitor 5 pRR19 alcohol dehydrogenase 
6 

•s s 
IIG1 proteinase inhibitor 6 pRR20 alcohol dehydrogenase 

7 -1 IIG3 - 7 PLOX28 lipoxygenase 

8 

cD
N

A
l 

IIH1 - 8 pYP3 unknown tuber sequence 

9 cD
N

A
l 

IG11 similar to JDl (tobacco) 9 pYPS unknown tuber sequence 

10 g IH1 potato proteinase inhibitor 10 pYP6 unknown tuber sequence 

11 1 IH4 patatin 11 pTELIS potato extensin 

12 1 IHQ myo-inositol-l-P synthase 12 PTEL16 potato extensin 

D 1 o 1H11 tomato EST - resistant H 1 SOD supercaide dismutase D 2 a IH12 patatin-like protein H 2 AC acidic chitinase 

3 IIB1 cold inducible (Ci21 A) gene 3 PP032 pidyphenoloxidase 
4 IIB2 formate dehydrogenase 4 

rd
s BC basic chitinase 

5 IF2 dormancy protein,auxin reg 5 rd
s 

PP033 pofyphenohxidase 
6 iF8 unknown - ethylene receptor? 6 

nd
a AG acidic glucanase 

7 IF11 dehydration responsive protein 7 nd
a 

NSE control 1 - NSE neurone specific enolase 

8 IG4 unknown - putative protein 8 BG basic glucanase 

9 IG5 DNA-binding protein 9 >3 6AP43 control 2 - ff-ow^-associated protien 
10 IG7 patatin-like protein 10 PAL pher^lanine-ammonia lyase 

11 IG9 peroxidase 11 pUC18 control 3 -pUClSplasmid 

12 IG10 patatin 12 PR-I pa0togenesis related protein 

Additional characterised clones I G l = glutathione S-transferase; GST (tomato) IH2 = kunitz proteinase inhibitor 
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8.4 Hybridisation and results analyses 
The cDNA microarray containing 76 potato subtraction library cDNA's produced and 

characterised in the present project, and 22 cDNA obtained from other groups was 

hybridised with a combined Cy3 and Cy5 fluorescent-labelled targets prepared from 

total RNA of a pooled potato tissues from treated and control Stirling plants during the 

development of durable resistant as described in section 4.5.5. Following hybridisation 

and washing, the microarray slide was scanned using a Genomic Solutions LSIV array 

scanner using lasers/filters optimised for detection of Cy3 (excitation 552nm; emission 

565nm) and Cy5 (excitation 650 nm; emission 667nm). A scan of Cy5 fluorescence is 

shows in figure 8.5. Clones that are expressed at detectable levels in untreated Stirling 

leaf tissues (control) such as AG2, AG7, IB4 and IC2 are indicated. As expected, none 

of the negative control sequences showed a detectable level of fluorescence. Under the 

conditions used the background Cy3 fluorescence was very high and non-uniform 

which hides many of the patches (example is shown in figure 8.6). The possible reasons 

for this were drying out of labelled target solution, precipitation of target, 

inadequate/inefficient washing steps or binding of the targets to the slide coating. 

However, by selecting different areas of the array and adjusting the laser gain and 

background levels it was just possible to come to conclusions about expression from 

some of the genes (see figures 8.7A and B). This was only possible where at least three 

of replicate spots showed about the same level of fluorescence such as AD2, PR-1, EG, 

BC and IC9 (figure 8.7A). It was however not possible to use the automatic spot 

detection and quantitation option produced by the scanner analysis software. Spots 

revealed in the Cy3 (green) channel represent hybridisation with target sequences from 

P. infestans treated leaves and in the Cy5 (red) channel, hybridisation with target 
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Figure 8.5 Scan of Cy5 fluorescence following microarray hybridisation. Whole DNA array 

equivalent to that shown in figure 8.4, hybridised with mixed Cy3/Cy5 labelled target cDNA's and 

imaged using Cy5 fluorescence showing those clones which are expressed at detectable levels in 

untreated Stirling leaf tissues (control) and the negative control sequences (pUC, NSE, GAP43). 

The hybridised array was scaimed in a Genomic Systems LSIV scanner using the Cy5 laser/filter. 

Clones which appear to be expressed in the control plants are indicated. See table for identities of ^ 

these clones. NSE, GAP43 = negative controls (animal specific sequences; NSE - neurone specific 

enolase; GAP43 - growth-associated protein). The array is flanked by black marker spots show up 

dark against the fluorescent background. 

Figure 8.6 Example of the high non

uniform background fluorescence in 

Cy3 channel obscuring many of the 

hybridising spots 
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\ l ) 2 U: I I I I f , p\ 

^ ^ ^ # 
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Figure 8.7 Scanned microarray 

A) Example microarray cyanin 3 scan 

Figure shows a high resolution scan of the selected area of the microarray indicated in figure 8.5 by 

the rectangle in the top right. Gene sequences in the patches covered in this part of the array are 

indicated (the clone designations are described in table 8.1). Hybridising spots represent gene 

sequences upregulated in the treated Stirling plants. 

B ) Example microarray cyanin 5 scan 

Figure shows the corresponding area shown in Figure 8.7 A) scanned for cyanin 5 fluorescence. 

Gene sequences showing hybridisation with labelled control target cDNA are indicated (the clone 

designations are described in table 8.1) 
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T a b l e 8.2 P r e l i m i n a r y data on gene expression assays f r o m microarrays 
lo
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Putative identity re
ss

ic
m

 

, to 
e £ o e Putative idtntity 

1̂  1 
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Ix] s| E
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AF5 Heat shock protein - HSP18 •? ID2 tomato mixed elicitor • 
AF12 superoxide dismutase (SOD) t? ID4 - • 
AG1 PGPD14 {Petunia x hybrida} t 107 - t 
AG2 flavonol synthase ID9 potato proteinase inhibitor t 
AGS unknown • IE3 major latex protein (ripening specific) ? 
AH2 40S Ribosomal protein •? IE4 - • 
AH3 CCR4-associated factor 1 t lES promoter binding protein t 
AH4 chlorophyll a/b-binding protein • IE7 putative protein & elicilOT t? 
ADS mixed clone • IA4 lAA induced |»rotein • 

AD12 PAL •? IAS ADP-ribosylation factor I •? 
AE3 ubiquitin ccxijugating protein • IB4 metallotliioneui-like i»-oteien -> 
AE4 - .? IBS unknown - catalase domain? t 
AES niyo-inositol-1 -phosphate • IB12 proteinase inliibitor • 
AE6 ion channel protein • IC1 unknown fiinction & eUcitor • 
AE7 arogenate dehydrogenase t IC2 unknown - no clear sequence 
AF1 - t IC9 chalcone synthase t 
AA1 heat shock protein - HSP90 • IH8 serine O-acetyhransferase 
AA3 EST-cTOS cDNA clone • IIHS EST P. intestaiu-challenged leaf potato t 
AB9 PAL t IG12 heat shock protein, HSP70 
AC1 - • AG7 A. thaliana hypothetical protein, potato -» 
AC2 heat shock protein - HSP 80 • IE9 P23 protein, tomato • 
ACS HMGR- CoA reductase •? IIH4 PAL (Agastache rugosa) t 
ADS unknown t AD1 cyt NADP-malic enzyme, tomato t? 
AD4 putative splicing factor (60%) • AD2 EST P. iitfestanx-chaMeaged leaf tomato t 

IIC2 ubiquitin conjugating protein t AE1 EST P. infestans-challei^ed leat tomato • 
IIF3 Kunitz proteinase inhibitor t IE12 dehydration-response protein RD22 t 
IID1 dehydroascorbate reductase (GSH) t pRR8 chloride chanmlproteiitAtkaliaaa 

IID2 ubiquitin conjugating protein t pRR12 heat shock tomato t? 
IIE1 proteiiuise inhibitor t pRR19 alcohol dehydrogemse t 
IIG1 proteinase inhibitor •? pRR20 alcohol dehydrogenase t 
IIG3 - T PLOX28 lipoxygenase t? 
IIH1 - t pYP3 unknown tuber sequence t 
IG11 similar to JDl (tobacco) t pYP6 unknown ttAer sequence •f 

IH1 potato proteinase inhibitor • pYPS unknown tuber sequence t 
IH4 patatin t p T E L I S potato extensin 

IH9 myo-inositol-l-P synthase t p T E L I S pcHato extensin t 
IH11 tomato EST - resistant t SOD superoxide dismuluse t 
IH12 patatin-like protein •? A C acidic ckitinase t 
IIB1 cold inducible (Ci21A) gene t PP032 p<Ayphenoloxidase 

IIB2 formate dehydrogenase t B C basic chitinase t 
IF2 dormancy protein, auxin reg t PP033 polyphenolaxidase t 
IF8 unloiown-etliylene receptor? •? AQ acidic glucanase t 

IF11 dehydration respaisive protein • NSE control 1 - PW neurone specific enolase • 
IG4 unknown - putative protein t B G basic glucanase -> 

IG5 DNA-binding protein t GAP43 control 2 - growth-associated protien • 
IG7 patatin-like protein •? PAL phenjHalanine-anmonia lyase t 
IG9 peroxidase pUC18 control 3 - pUClS plasmid • 

IG10 patatin t PR-1 pathogenesis related protein 

K e y : 
t up regulated 4̂  down -> same level of • no expression results not 

regulated expression detected good enough 
to assess 
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sequences from untreated (control) leaves. Spots showing up only in the green channel 
were taken to represent sequences upregulated in pathogen treated leaves, while spots 
showing up in both green and red channels was taken to mean that the sequences were 
expressed in both control and treated leaf tissues. The best examples of this are shown 
in figure 8.7 and the conclusions of the manual analysis are summarised in table 8.2. 

8.5 Conclusions 
The following conclusions are drawn from this piece of work: 

The results from the single microarray experiment undertaken in the last period of this 

project were disappointing. It was clear that hybridisation of both probes was taking 

place to some of the sequences and not to the negative control sequences. However, 

under the conditions used the background Cy3 fluorescence was very high and non

uniform which obscured many of the patches. 

It was impossible to assess the expression levels of certainty for some of the genes as a 

result of the very high and non-uniform background Cy3 fluorescence. 

Most of the clones that were selected for sequencing in sectiori 7 as containing 

upregulated gene sequences and where it was possible to detect them in the array, 

showed detectable levels of fluorescence with Cy3 channel but not with Cy5, which 

confirms that these gene sequences were most likely upregulated during the 

establishment of durable resistant. 

Some of the inserts, confirmed to be upregulated, were homologous to entries in the 

databases with unknown function, which provides the opportunity for further studies in 

the future. 
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Most of the clones that were acquired from other groups and known to be upregulated 
under stress conditions including pathogenesis related proteins such as PR-1, glucanase 
and chitinase, and cell wall glycoproteins such as extensin, showed hybridisation with 
the labelled target from the treated Stirling plants. 

The work described here provides the basis for a more extensive study using optimised 

microarray hybridisation and processing. 
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9 Final discussion and future work 

In the current study, the durable resistance of the potato plants of the variety Stirling to 

P. infestans has been confirmed. Once detecting the pathogen, Stirling plants respond 

by delaying the infection process, compared with the moderately resistant variety 

Desiree, which succumbs entirely to infection with the same pathogen. Durable 

resistance is first manifested by the production of newly green viable shoots in the 

presence of the pathogen and also by the production of microtubers (see section 5). 

These shoots and the plants derived from them as well as the plants drived from the 

infected microtubers showed a strong general resistance response (durable resistance) to 

the compatible strain of P. infestans and to the potato pathogens R. solani and F. 

sulphureum even after two generations culture of the plants in the absence of the 

pathogen indicating that the resistance character is sufficiently long-lived to be useful as 

a practical protection against pathogen attack. 

During the interaction between Stirling plants and P. infestans meristematic tissues 

developed into new resistant shoots. The bases of this phenomenon could be explained 

as a result of a systemic response to the pathogen infection (see section 1.2.5). Infection 

of the lower parts of the plant could activate the accumulation of high levels of 

antimicrobial compounds in distal uninfected parts of the plants through secondary 

messenger. Antimicrobial compounds such as phytoalexins and pathogenesis-related 

proteins as well as the induction of other defence genes could play a crucial role in 

preventing the distal parts of the plants from subsequent infection with the same 

pathogen as well as to other pathogens. During this study genes related to phytoalexin 

production such as HMGR, PAL and CHS, and genes related to pathogenesis-related 
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proteins such as thaumatin-like protein, peroxidase and proteinase inhibitors have been 
isolated (see section 7). 

The induction of resistance in parts of the plant distant from the site of primary infection 

is believed to result from the translocation of a systemic signal produced in the vicinity 

of the primary infection, transported though the plant to uninfected tissues. This signal 

triggers the plant defence responses in these distant tissues against further pathogen 

attack before any pathogen challenges these tissues. The defence responses involved in 

SAR include a combination of physical changes such as cell wall lignification and 

callose deposition, and induction of various pathogenesis-relate proteins (for reviews 

see: Mauch-Mani and Metraux, 1998; Metraux, 2001; Ryals et al, 1996 and Sticher et 

al, 1997). Besides such a role for salicylic acid, recent biochemical and genetic studies 

confirm that hydrogen peroxide, nitric oxide and polypeptides may function as 

signalling molecules (Delledonne et al, 1998; Klessig et al, 2000; Neill et al, 2002; 

Takayama and Sakagami, 2002). In the present study, the durable plants showed a fast 

production of ROS in response to the treatment with P. infestans culture filtrate elicitor, 

which could play an important role as signalling molecules in the activation of plant 

defence responses, and also in direct toxicity to invading pathogens (see section 6)7 Also 

these plants showed a tight deposition of callose surrounding the HR area, which 

deprive the pathogen of nutrients and limit pathogen growth to a small region of the 

plant (see section 6). These may indicate that durable plants are already activated to a 

level which only requires slightly more activation to inhibit pathogens growth. 

An Alternative explanation for the establishment of durable resistance of the newly 

developed shoots is the possibility of rearrangement in the chromatin structure resulting 

in the activation of genes encoding specific resistance proteins or peptides. There are 
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many ways in which genes may be regulated in this way. For example, recent results 
have shown that chromatin conformation can be dictated by methylation, acetylation, or 
phosphorylation of specific amino acids of the histones. In turn, these histone 
modifications can regulate local and sometimes more global gene expression 
(Hetherington and Waterhouse, 2002). 

In the present study, a subtracted cDNA library enriched for low abundance 

differentially expressed sequences that are induced during the compatible interaction 

between Stirling cultured potato plants and P. infestans was successfully constructed 

using the suppression subtractive hybridisation (SSH) method. 

This method, which is based on a technique called suppression PCR and combines 

normalisation and subtraction in a single procedure, has been a powerful approach used 

to identify and isolate cDNAs of differentially expressed genes in animal systems 

(Diatchenko et al, 1996). The normalisation step equalises the abundance of cDNAs 

within the target population and the subtraction step excludes the common sequences 

between the target and driver populations. It was reported that the SSH technique 

enriched for rare sequences over 1,000-fold in one round of subtractive hybridisation 

(Diatchenko et al., 1996). Recently, several applications, using this method, have been 

reported in plant systems (e.g. Beyer et al., 2001; Birch et al., 1999; Kim et al., 1999; 

Caturla et al., 2002). 

During this project, this technique was not only used to subtract the common sequences 

between the tester (treated-Stirling) and the driver (control-Stirling) populations but also 

included subtraction of the pathogen sequences, which may have been presented in the 

treated plant samples, in order to avoid isolating clones carrying gene sequences of 

fungal origin. This was achieved by mixing the total RNA from cultured P. infestans 
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mycelium with the pooled total RNA from the control plant tissues to create the driver 
RNA population for the forward subtraction. This approach along with strategy for 
sampling plant tissue free from pathogen were judged very effective for preventing the 
isolation of any clone carrying gene sequences of pathogen origin in the subtracted 
library since no positive hybridisation of any library clones with probe prepared from 
the pathogen. 

Recently, Beyer et ah, (2001) used the same idea to subtract constitutively expressed P. 

infestans sequences from potato plants challenged with zoospores of P. infestans, while 

constructing a library to screen for genes induced in potato during the interaction 

between potato and P. infestans using the SSH technique. They also eliminated the 

pathogenesis-related (PR) gene transcripts that accumulate to very high levels during 

infection from the resulting differential library by using control plant tissue in which PR 

genes were induced by treatment with BTH (benzo (1,2,3) thiadiazole-7-carbothioic 

acid S-methylester), which induces the same set of PR genes. Thus this technique, 

unlike normal libraries in which the abundant sequences represent the bulk of the library 

clones, can be adapted to subtract abundant and any other unwanted gene transcripts and 

enrich only the desired transcripts which makes the screening much more easier in the 

final stages of the procedure (i.e. this method can be selective). This is a particularly 

useful strategy where the aim is to study expression patterns of a selected subset of 

genes (e.g. microarray expression profiling). 

Constructing a subtracted cDNA library using the PCR-select subtraction kit is 

technically challenging but once the method is fully understood is relatively straight 

forward provided the initial mRNAs are good and undegraded. However, the screening 

process to identify the desired up-regulated clones can be problematic. For instance. 
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although using identified probes such as PAL and SOD revealed the correct sequence, 
others such as PR-1, AC, AG and PPO did not reveal the expected genes, nevertheless 
the selected clones showed hybridisation with these probes. The latter genes proved to 
be up regulated using the cDNA micro arraying technique. 

The reverse subtraction and differential screening were very powerful and allowed the 

identification of the truly up-regulated cDNA clones representing gene transcripts 

expressed by the potato plant during the establishment of durable resistance. 

Interestingly, among the sixty sequenced cDNAs, eighteen (i.e. 30%) were novel potato 

gene sequences, which highlight the importance of such approaches for identifying new 

gene sequences. 

The majority of the sequenced cDNAs had very strong homologies to sequence entries 

in the databases. These sequences were assigned to five main functional groups, 

according to their putative function. Some sequences may warrant inclusion in more 

than one category. These categories included: defence and stress, signalling, 

transcription, unknown and metabolism-related sequences. Defence and stress 

responses, signalling events and changes in transcription are known to be induced when 

the plant is colonised by a pathogen, so isolating such transcripts in the current study 

was not unexpected. Also many changes in metabolism are likely to occur, especially in 

a compatible interaction, as both plant and pathogen are competing with each other for 

the available resources. Changes in the metabolism are known to occurr in a similar 

plant-pathogen interaction and gene sequences representing these changes have been 

isolated (Beyer et al, 2001; Fristensky et al, 1999; Rauyaree et al, 2001). 

Not surprisingly, all the sequences with known identities were found to be of plant 

origin and not of pathogen origin because, as mentioned earlier, many precautions had 
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taken place while constructing the subtracted library to prevent isolating clones of 
fungal origin. Although all these precautions had taken place, it is more likely that some 
fungal gene transcripts that were up-regulated during the infection process may be 
present, which did not subtract. These types of gene transcripts are underrepresented in 
the library either because the Phytophthora biomass - i f any were present- was too low 
compared to the plant biomass, or because there is a difference in GC content between 
the pathogen and the plant genomes. This difference in GC content could direct the 
subtractive procedure towards retrieval of potato sequences rather than the pathogen 
sequences. Owing to the relatively high GC content of P. infestans genomic DNA, Van 
der Lee et al., (1997) had to modify AFLP DNA fingerprinting protocols to construct 
genetic linkage map based on polymorphic DNA markers. 

In the cDNA subtracted library, the abundant representation of some sequences such as 

proteinase inhibitors, patatins, heat shock proteins and ubiquitin conjugate proteins 

compared with other sequences may indicate the importance of these genes in the 

resistance responses. Proteinase inhibitors have been shown to play a significant role in 

the natural defence mechanisms of the potato plant against insect and pathogen attack 

and have also been shown to induced by wounding (Hildmann etal, 1992; Ishikawa et 

al., 1994b). The discovery of differential expression in patatin genes is interesting. 

Recent investigation of the physiological function of patatin as phospholipase A2 may 

shed new light on its possible role in the signal transduction leading to plant resistance 

(Senda et al., 1996). Heat-shock proteins have also been demonstrated to be induced 

under various stresses including oxidative burst and pathogen attack (Banzet et al., 

1998; Byth et al., 2001). Ubiquitin genes are frequently associated with protein 

turnover. Potato is likely to be metabolically very active during the resistance response 
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to Phytophthora and thus the expression of ubiquitin was not unexpected. Moreover, it 
has been demonstrated that ubiquitin transcripts are indeed induced in potato in 
response to Phytophthora, mechanical injury and heat shock (Rickey and Belknap, 
1991; Basso et al., 1996). These reports established a connection between the 
expression of these genes and the defence reactions in plants and agree with the results 
from the present work. Thus it is highly probable that these genes are important 
participants in estabhshing resistance in potatoes. 

Several sequences (15 sequences; i.e. 25% of the sequenced cDNAs) were homologous 

to sequences of unknown function. Six of them were categorised with the stress- and 

defence- related sequences as they have homology to ESTs isolated from pathogen or 

elicitor treated leaves or cell cultures, while the others (9 sequences; i.e. 15%) 

categorised as unknown function. The value of these unknown sequences should not be 

underestimated as our observation that these transcripts are induced during the 

interaction between potato and Phytophthora leading to the establishment of durable 

resistant may shed light on their possible defence function. Further studies and analyses 

of such unknown and novel genes may potentially contribute in understanding the basis 

of this type of strong resistance. 

The other isolated subtracted cDNA sequences in the library that have not been 

analysed in the present studies will be useful in the future. Because the cDNA library 

was constructed from Stirling tissue culture plants treated with P. infestans, further 

characterisation and functional analysis of this collection of gene sequences will lead to 

a more comprehensive understanding of host-pathogen interactions and the 

identification of new important host resistance genes. The information derived may lead 

to an understanding of some aspects of Stirling resistance to P. infestans. One possible 
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way of using these sequences is through the use of the cDNA microarray (DNA chip) 
technology. Using this technique with specific arrays of gene-specific sequences, one 
can assay the expression of thousands of genes in a single experiment or series of 
experiments. 

Initial attempts to use this technology to study the differences of transcribed genes 

profiles between the control Stirling untreated plants and Stirling plants treated with P. 

infestans using the selected sixty isolated cDNA's along with identified and control 

cDNA's gave rather unsatisfactory results. Although this technology looks promising 

for assaying the expression of thousands of genes, it proved to be very labour intensive 

and problematic. The normalisation of the cDNA's on the microarrays, choosing slides 

with the best coating, preparing the labelled target cDNA and the hybridisation 

conditions all proved to be very demanding. 

Using oligonucleotides designed specifically to known genes (e.g. those identified 

during this study) and other genes that play an important role in resistance is a possible 

way forward. These commercially designed oligos provide a better chance for 

producing high quality normalised microarrays with minimal effort. Publicly available 

printed microarrays containing 5,000 or 10,000 sequence-verified potato ESTs are 

produced by TIGR (The Institute for Genomic Research), are expected to be ready in 

Summer 2002 and is another alternative to 'home made' arrays to monitor gene 

expression patterns in potato plants challenged with Phytophthora. 

As microarraying facihties are not available in the Biochemistry Department, Faculty of 

Agriculture, Cairo University, Egypt, future work will rely on collaborations with other 

institutes to answer the questions raised in this project. The 'Inverse Northern' 

procedure may also be used for future studies. Although this technique required more 
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effort than the microarraying and the number of genes that can be studied is limited, the 
advantage of this technique is that the required facilities are available. Using this 
procedure, DNA gel blots of the PCR amplified cDNA inserts, can be prepared from the 
isolated clones and probes prepared from cDNA populations derived from the control 
and treated plant samples can be used for screening. Other interesting inserts can be 
identified using this technique. Moreover, instead of using a collective sample covering 
the whole period, the expression profiling during the establishment of durable resistance 
can be studied using probes prepared from each time point. 
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Appendix A: Adaptor and primer sequences 

flsal HM\\\ 
cDNA synthesis ^ , _ T T T T G T A C A A G C T T 3 O N I N - 3 ' 

pniner 

17 Promoter Natl ^sa | V2.site 
Adaptor 1 f 5 '-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCaGGT-3 ' 

3 ' - G G C C C G T C C A - 5 ' 

PCR primer 1 5 ' - C T A A T A C G A C T C A C T A T A G G G C - 3 ' 5 • - T C G A G C G G C C G C C C G G G C A G G T - 3 " 

Nested PCR primer 1 

faol/fael RsajVl-sHe 
Adaptor2R f 5 * - C T A A T A C G A C T C A C T A T A G G G C A G C G T G G T C G C G G C C G A G G T - 3 • 

T7 PromotBr 3 ' - G C C G G C T C C A - 5 ' 

5 ' - A G C G T G G T C G C G G C C G A G G T - 3 ' 

Nested PCR primer 2R 

Sequences of the PCR-Select cDNA synthesis primer, adaptors, and PCR primers 

provided with the PCR-select subtraction kit (adapted from PCR-select subtraction kit 

user manual). 



Appendix B: Vector Map 

Appendix B: pCRII-TOPO Vector Map 

Comments for pCR«ll-TOPO 
3950 nucleotides 

LacZagene: bases 1-588 
M13 Reverse priming site: bases 205-221 
Sp6 promoter: bases 239-256 
Multiple Cloning Site: bases 269-399 
T7 promoter: bases 406-425 
M13 (-20) Forward priming site: bases 433-448 
M13 (-40) Forward priming site: bases 453-468 
f1 origin: b^es 590-1004 
Kanamycin resistance ORF: bases 1338-2132 
Amplcillin resistance ORF: bases 2150-3010 
ColEI origin: bases 3155-3828 

M13 Reveiae Primer 
lacZaAJG 

CAS G A A ACA GCT Alfi Adc ATG ATT ACG CCA AGC 
GTC C T T TGT C P A TAG rdp TAG T A A T G C GOT TCG 

Sp6 Promolef 
iT TTA GGT GAC ACT ATA C f A 
•A AAT CCA C T G T G A T A T O T T 

Ns/I Mndlll Kpn\ Sac\ BanH I Spel 
TAC TCA AGC TAT GCA TCA AGC TTG GTA CCG AGC TCG GAT CCA CTA GTA ACG GCC ITC IOT TCG MA ?CT AG? TCG AAC CAT GGC TCG AGC CTA GGT GAT CAT TGC CGG 

SsKI EooRI 
I 

EcoRI EcoRV 

GCC AGT GTG CTG GAA TTC GCC CTTI 
CGG TCA CAC QAC CTT AAG CGG G A H 

PGR Product • A 6 GGC G R A T T C T G C A G A T A T 
[ T T C C C G C T T A A G A C G T C T A T A 

Apai esOCI AtofI Xhol NsflXtel ^ 
CCA TCA CAC TGG CGG CCG CTC GAG CAT GCA TCT AGA GGG CCC AAT TCG [CCC TAT 
GGT AGT GTG ACC GCC GGC GAG CTC GTA CGT AGA TCT CCC GGG TTA AGC 1^_&TA 

T7 PromotBf M13 (-20) Forward Primer M13(-40> Foward Primer 

AGT GAG TCG TAT T ^ AAT TCA 
TCA CTC AGC ATAMC TTA AGT 

,CTG GCC GTC GTT TTA cjftA CET CGT GAC TGG GAA AAC 
GAC CGG GAG CAA AAT qrT G|CA GCA CTG ACC CTT TTG 

p C R » S J - T O P O 
3.9 k b 

The sequence detaiied above 
represents the pCRll-TOPO vector 
sequence wttli a PGR product Inserted 
l>yTAClonlnfl*'. 

Amnra (i) ilKlicate the start of Itanscription for Spe and n RMA polymsrases. respedlvsly. 

The Map showing the features of the pCRII-TOPO plasmid vector and the sequence 

surrounding the cloning site. Restriction sites are labelled to indicate the actual cleavage 

site. The start of transcription for Sp6 and T7 polymerases is indicated by the arrows. 

This vector was used in the cloning of the subtracted cDNAs (section 4.3.18.1) (adapted 

from Topo™ TA cloning kit user manual; Invitrogen, The Netherlands). 
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