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Abstract 
The aim of this thesis is to develop and apply novel climate proxies to understand the 
palaeoceanographic evolution of the N.E. Atlantic during the late-Glacial and Holocene. The 
proxies investigated are based on organic molecular compounds called lipid biomarkers and bulk 
organic matter properties. The primary focus is on long-chain alkenones, molecules which have 
been extensively used in mid and low latitude open oceans to reconstruct sea surface temperatures 
(SSTs) during the Quaternary. Thus, the relative abundance of some alkenones is related to the 
growth temperamre of the algae at the time of the biosynthesis of these molecules (expressed in the 
I J ^ i i and U^M' indices). In high latitudes and coastal environments, the temperature dependence of 
alkenones is controversial, and the potential environmental information from alkenones is not yet 
well understood. In such locations there is increasing abundance of the CMA alkenone (quantified as 
% C 3 7 : 4 ) . The presence of this component has been related to changes in the relative budget of 
freshwater in the surface ocean. A central aim of this thesis is to carry out an empirical investigation 
to find out the key environmental factors that control %C37 :4 to assess its potential as a 
palaeoceanographic proxy. Research was conducted in the Nordic Seas and N.W. Scodand using 
samples from the water column, surficial sediment and sediment cores. The research undertaken 
can be broken down in three main sections: 

Alkenone distributions in the Nordic Seas. The aim was to clarify and extend the application of 
alkenones as palaeoceanographic proxies in subpolar to polar environments. Samples of filtered sea 
surface POM were analysed and extremely high %C37;4 values (up to 77%) were measured in polar 
waters (up to 80% sea-ice cover). Values of %C37:4 across the Nordic Seas showed a strong 
association with water mass tj'pe. A combined data-set revealed a stronger correlation of %C37;4 to 
sea surface saUnit}' (SSS, = 0.72) than to SST (R^ = 0.5). However, scatter was observed in the 
relationship of %C37:4 to SSS, preventing confirmation of %C37:4 as a palaeo-SSS proxy. Values of 
%C37:4 in sea surface POM were high compared to surficial sediments. We discount preferential 
degradation of the €374 alkenone and invoke dilution of the %C37;4 signal in sea surface sediments 
by advected allochthonous matter to explain this. The POM filter data suggest that, overall, U'<37 is 
a more appropriate SST index for the Nordic Seas than U'̂ 37'. Examination of the scatter in the 
U'̂ 37' versus SST relationship, shows that regions in the south of the Nordic Seas (including the 
Icelandic shelf) may jield reliable, alkenone based, palaeoceanographic reconstructions. 
Comparison of %C37:4 distributions with dinocyst proxies in a late Holocene core from the Barents 
Sea suggests %C37:4 may be a general marker for the influence of arctic/polar water in 
palaeoceanographic reconstructions. 

The palaeoceanographj of the Icelandic shelf ioT the post-Glacial period (0-15 kyr BP) was reconstructed 
from alkenone indices measured in three cores collected N and W of Iceland. One of the cores, 
JR51-GC35, contained a continuous record of Holocene sedimentation spanning 0 — 10.1 kyr BP. 
Superimposed on a general Holocene cooling trend in core JR51-GC35 were millennial scale 
oscillations of ~2°C. The timing of the oscillations was in close agreement with the variability in 
IRD records from the East Greenland shelf and the timing of glacier advances in northern Iceland. 
A comparison of the U'̂ 37-SST records from JR51-GC35 and a published core from the eastern 
Nordic Seas (MD952011) showed significant differences (superimposed on the general trend) in the 
timing of millennial scale climate events. This illustrates that Holocene climate evolution in the 
Nordic Seas was more complex than previously suggested, with significant climatic differences 
between the eastern and western Nordic Seas caused by the differential variabilit)' of the Irminger 
and Norwegian Currents with time. 

The potential application for reconstructing past sea-level changes in N.W. Scotland of lipid biomarkers 
(alkenones, «-alkanes and chlorophyll derivatives), and bulk organic parameters (%TOC, C o r g / N ) 

was assessed by a survey of modern basins (at different stages of isolation from the sea) and fossil 
basins (with known sea-level histories). A logit regression analysis of all the sediment samples was 
employed to find which of the biomarkers or bulk organic measurements could reliably characterise 
the sediment samples in terms of a marine/brackish or isolated/lacustrine origin. The results 
suggested an excellent efficiency for the alkenone index %C37 :4 at predicting the depositional origin 
of the sediments. This study suggests alkenones could be used as an indicator of sea-level change in 
fossil isolation basins. 
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Preface 

This thesis is the product of a NERC funded PhD project supervised by Prof. Antoni 

Rosell-Mele and Prof. Ian Shennan. This is the first PhD thesis from the Department of 

Geography, Universit)^ o f Durham, to be largely based on the analysis of organic matter in 

environmental samples (i.e. alkenones and other lipid extractable biomarkers). I t is a 

product of the department's organic geochemistry laboratory, started by Prof Rosell-Mele 

(now at UAB, Barcelona) and gready influenced (in a practical sense) by D r Marie Russell 

(now at FRS Marine Laboratory, Aberdeen). As such, this thesis benefits from organic 

geochemical experdse gained by Prof Rosell-Mele at the Organic Geochemical Unit, 

Universit)' of Bristol (School of Chemistr)') and the Fossil Fuels &c Environmental 

Geochemistry Institute (University of Newcasde upon Tyne) and by Dr Russell at the 

Universit}' of Aberdeen, Department of Geology, the Oceanography Laboratory 

(University of Liverpool) and at the Department of Environmental Chemistry (ICER-

CSIC), Barcelona. In Chapter 5 this thesis also benefits from the expertise of Prof. Ian 

Shennan and co-workers in the study of past sea-level changes. By encompassing a chapter 

concerned with past sea-level changes this thesis continues a tradition of sea-level 

research- within the Department of Geography - that goes back many decades. 

The overall aim of this thesis is to extend and develop the application of biomarker and 

organic matter proxies of environmental change to specific, palaeocUmaticaUy sensitive, 

marginal areas in the North East Adantic. Chapter 1 introduces the theory and use of the 

biomarkers and bulk organic properties that are applied as palaeoenvironmental tools in 

this thesis: long-chain alkenones and associated alkyl alkenoates, «-alkanes, chlorin 

pigments, %TOC and C^^JN ratios. Chapter 2 outlines the general methodology used to 

generate the biomarker and bulk organic data and gives details of the benefits, limits and 

reproducibility o f the analytical systems. Chapter 3 presents results from a study aimed at 

clarifying and extending the use of alkenone proxies for palaeoceanographic studies in the 

sub-polar to polar water regions of the Nordic Seas. Chapter 4 presents results o f 

biomarker reconstructions of post-Glacial and Holocene palaeoceanography in high-

resolution sediment cores from the Icelandic shelf The aim of Chapter 5 is to assess the 

potential application of certain biomarkers and bulk organic properties for reconstructing 

relative sea level (RSL) change in N.W. Scottish isolation basins. The work collected here is 

a small contribution towards the goal o f understanding the Earth's ocean-cUmate system. 
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Four papers - based on the data generated by this thesis - are in preparation for imminent 

submission to journals: 

Bendle, J.A., Rosell-Mele, A., deVernal, A. Ziveri, P,. The distribudon of long-chain 
alkenones in the surface waters and sediments of the Nordic seas: Palaeoceanographic 
implications (in preparation for submission to: Geochemistry, Geophysics, Geosystems). 

Bendle, J.A; Rosell-Mele, Jennings, A.E, Andrews, J.T., A., High resolution U'^37-SST 
records from the Icelandic shelf during the post-Glacial and Holocene (in preparation for 
submission to: Palaeoceanography). 

Bendle, J.A., Rosell-Mele, A., Cox, N.J.; & Shennan, I . , Biomarkers in coastal environments 
of N W Scotiand: assessment of potential for application to sea-level studies (in preparation 
for submission to: Earlh and Planatary Sciencel^tters). 

Bendle, J.A., Rosell-Mele, Further evaluation of a biomarker proxy for surface salinit}' 
changes in the North Atiantic (in preparation for submission to: Paleoceanography) 

Sections of this thesis have also been presented at several U K and international 

conferences over the past three years. 
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Chapter 1: Introduction 

I. 1. Quaternary palaeo-environmental indicators 
The Quaternar)' is the most recent geological period, beginning -2.6 Ma BP and 

extending up to, and including the present. I t consists of two epochs, the Pleistocene 

and the Holocene, the latter beginning at the termination o f the Younger Dryas event 

I I . 6 kyr BP (Grootes et al., 1993, from the GISP 2 ice core). The Holocene represents 

the most recent warm period in a Quaternary climatic range that extends from cold 

periods (glacials) - during which ice sheets reached maximal extent - to warm periods 

(inter-glacials) - during which ice sheets waned - and climate was similar to, or sUghtiy 

warmer than, the present day. The high frequency and amplitude of climatic oscillations 

during the Quaternary makes the period geologically distinct. Quaternary environmental 

responses to large (i.e. glacial - inter-glacial changes of up to 15°C) and more subtie 

(e.g. intra-Holocene changes of ~2°C) changes in climate have left a legacy, from which 

may be reconstructed the associated environmental conditions at the time of formation 

or deposition. 

There is a huge variety of techniques for reconstructing past climate change. Proxy 

methods' differ in longevity, sensitivit)', resolutioii and completeness. It does not fall 

within the scope of this chapter to describe or even outline this diverse field. However, 

an example of the breadth of proxy evidence (by major category) is given below (recent 

reviews can be found in Lowe & Walker (Lowe and Walker, 1997) and Williams et al. 

(Williams et al., 1998): 

Geomorphological evidence: 

e.g. Relict moraines, trimlines, striations, fossU dunes, cirque altitudes, 

periglacial landforms, raised shorelines, river terraces. 

Lithological evidence (from marine, lake, terrestrial sediments & ice): 

e.g. Particle size distribution, till classification, organic carbon content, stable 

isotope measurements, wind blown dust content, biomarkers. 

Biological evidence: 

e.g. Species assemblages of: pollen, diatoms, plant macrofossils, insects, 

moUusca, ostracods, foraminifera, radiolaria, coccolithophores, corals, 

vertebrates. 

' The terms proxy, proxy record or proxy method are used in this thesis to refer to any line of evidence 

that provides an /W/m/measure of former climates or environments. 
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1.2. Biomarkers as Quaternary palaeo-environmental indicators 

Organic carbon compounds are ubiquitous, abundant and sometimes overlooked 

components of oceans, lakes and sedimentaiy rocks (Summons, 1993). Direcdy, or 

indirecdy, they fuel all biogeochemical processes. Many types of organic material have 

been recognised in sediments, the range of geolipids being considerable (for example 

see the reviews by: Brassell, 1993; Cranwell et al., 1987; Hedges and Oades, 1997; 

Meyers, 1997; Meyers and Ishiwatari, 1993b; Rosell-Mele, in press; Simoneit, 2002; 

Volkman et al., 1998). The distributions of lipid compounds has received special 

attention because they are easily extracted from sedimentary^ rocks and are amenable to 

analysis by a range of common chromatographic and spectrometric methods (Hedges 

and Oades, 1997). Many lipids have source specific origins; all reflect enzymatic control 

on their molecular structures. Many organisms have been found to possess the ability to 

regulate the biosynthetic production of their constituent Upids and thereby retain their 

viability under changing environmental conditions, such as fluctuations in temperature, 

light or salinity (e.g. Harwood and Russell, 1984). 

This thesis is primarily concerned with biological marker compounds, or biomarkers. 

These are organic molecules found in the environment that can be unambiguously 

linked with biological precursor compounds. After biosynthesis, they can be 

incorporated into sedimentary rocks and preserved for geological periods in an 

unaltered or altered form. In this thesis we shall consider only those biomarkers soluble 

in organic solvents ("lipids"). A n ideal biomarker palaeo-indicator would meet the 

following requirements (BrasseU, 1993; Marlowe, 1984; Poynter and Eghnton, 1991; 

Rosell-Mele, in press): 

a) Biomarker data can be interpreted to relate to a palaeoenvironmental 

variable (e.g. SST). 

b) Target compounds should be biologically specific, preferably originating 

from organisms with a well constrained ecological niche. 

c) Known biological function in the source organism. 

d) Preservation: ideally compounds should survive quantitatively during 

deposition and subsequent burial. 

e) Established diagenetic pathway. 

f) Established transport mechanisms from production to burial (preferably 

quickly) in the sediments. 
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g) Compounds should occur widely in space and time to provide information 
that is generally applicable to a variety of sedimentary regimes, preferably 
over an extended period of geological time. 

h) Factors controlling the generation of the signal must be known and 

preferably quantifiable by observation. 

i) The signal recorded should be amenable to quantitative analysis and 

calibration (preferably through routine techniques). 

Additionally, in order to study the relationship between climatic variables and the 

biomarkers, it should be possible to carry out experimentation, both in the laborator}' 

and by field observation (Rosell-Mele, 1994). Several compound t̂ p̂es have potential or 

have been proved to be applicable as environmental indicators, for example: «-alkanes, 

carboxylic acids, «-alkanols, alkenones (and related alkyl alkenoates), alkenes, sterols, 

hopanoids and tetraethers. Their abundance and distribution may provide different 

sorts of information which can be used to attempt and/or contribute to the 

reconstruction of a climatic regime. In this thesis alkenones are the only biomarker 

group applied to all study areas, and n-alkanes in Scottish isolation basins. However, we 

take a multi-proxy approach, utilising - when feasible - additional methodologies that 

will provide supplementary or alternative environmental data. 

1.2.1. Alkenones 

The long-chain ethyl alkenones (alkenones) are long carbon chain (C„, C,),, C,y & C4,,) 

ketones with 2-4 double bonds or unsaturations. Together with the structurally related 

alkyl alkenoates, they form a suite of compounds that is almost ubiquitous in the 

sediments of the world's oceans. Alkenone and alkyl alkenoate strucmres are illustrated 

in Figure 1.1, while lUPAC nomenclature and shorthand notations are given in Table 

1.1 (page 8). A summary of alkenone and alkenoate measurements used in this thesis is 

given in Table 1.2 (page 9). They are known to be synthesized by a limited number of 

haptophyte microalgae (the order Isochr}^sidales) and hence, in organic geochemical 

terms, can be considered biomarkers (Conte et al., 1995; Conte et al., 1994b; de Leeuw 

et al., 1980; Marlowe et al., 1984; Volkman et al., 1995; Volkman et al., 1980a). The 

most common biological source in world's oceans and contemporary^ sediments is the 

abundant and cosmopolitan coccolithophorid Emiliania huxleyi (Volkman et al., 1980a; 

Volkman et al., 1980b). In low latitudes, the coccolithophorid Gephyrocapsa oceanica may 
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also be a significant contributor (Volkman et al., 1995). In the fossil record, E. huxleyi 
becomes the dominant marine haptophyte in the last 50 - 70 kyr and first appears -270 
kyr BP (Flores et al., 1997; Thierstein et a l , 1977). However, the occurrence of 
alkenones in the geological record precedes the appearance of E. huxleyi, as 
demonstrated by their identification in Eocene sediments (~45 Ma BP) (de Leeuw et al., 
1980; Marlowe, 1984; Volkman et al., 1980b) and in two Cretaceous black shales dated 
at 100 Ma BP (Farrimond et al., 1986). The producer of alkenones in pre 260 kyr BP 
sediments is not known. However, based on co-occurrence of coccoliths and alkenones, 
Marlowe (1990) speculated that species of Reticulofenestra may be the source organism. 

Since it was first demonstrated that alkenone abundance ratios in sediments changed in 

a systematic way with inferred temperature (Brassell et al., 1986a; BrasseO et al., 1986b; 

Marlowe, 1984), a great deal of research has been conducted with the aim of confirming 

and calibrating this relationship. The temperature dependent nature of the distribution 

of the C 3 7 2 and C37., alkenones has been confirmed by culture, surficial sediment and 

water column POM studies (e.g. BrasseU, 1993; Muller et al., 1998; Prahl et al., 2000; 

Prahl et al., 1988; Prahl and Wakeham, 1987; Rosell-Mele et al., 1995a; Sikes and 

Volkman, 199.'3; Sikes et al., 1997; Son2ogni et al., 1997; Ternois et al., 1997) (also see 

review by Herbert, 2001). 

The index was initially devised to quantify the degree of unsaturation o f C37 

alkenones (BrasseU et al., 1986b) (see Table 1.2 page 9). However, subsequent culture 

experiments with a N.E. Pacific strain of E. huxleyi found that C37.4 added non-linearity 

to the equation below 15°C (Prahl and Wakeham, 1987). A better regression was 

achieved using U"^,,', a simplified index that did not incorporate the C374 component 

(Prahl and Wakeham, 1987) (see Table 1.2 page 9). Moreover, this is practical as C374 is 

hardly measurable in most middle to low latitude ocean sediments. Thus only the 

simplified U'̂ 37' index is usuaUy reported, except in a few cases (e.g. Bard et al., 2000; 

Madureira et al., 1997; Rosell-Mele, 1998; Rosell-Mele et al., 1997). 

Values of 15^^-,' — once set biogeochemically by the algae - are not significantiy altered 

by degradation in sedimentary processes 
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T a b l e 1.2: A l k e n o n e / A l k e n o a t e m e a s u r e m e n t s a n d ind ices u s e d i n this thes is . 

Measure Equation ¥^jennce 

S L C K EC37 and £€38 alkenones 

C37:2Me - Cj7:4Me/(C37:2Me +C,7:3Me + 

C37:4Me) 
(Brassell et a l , 1986b) 

UST' C37:2Me/(C37:2Me +C37:3Me) (Prahl and Wakeham, 1987) 

%C,7:4 (C37:4Me/C37:2Me + C37:3Me + C37:4Me) ' 100 (Rosell-Mele ef al., 1998) 

CisEt/Me 
(C38:2Et + C38:3Et + C38:4Et)/ (C38:2Me + 

C38:3Me + C38:4Me ) 

Adapted for this thesis to include 

C38:4Me from Conte et al. (1998) 

2C,7/ZC,8 (ZC37 L C K ) / ( SC38 L C K ) (RoseU-Mele et al., 1993) 

% I:AA {ILAA 1 Z L C K ) • 100 (Sawada et al., 1996) 

Uf^wMe = 
C38:2Me/(C38:2Me + C38:3Me) (Conte and Eglinton, 1993) 

USaEt = 
C38:2Et/(C38:2Et + C38:3Et) (Conte etal., 1998) 

Ui-.wMe* = 
C38:2Me/(C38:2Me + C38:3Me + C38:4Me) 

Adapted for this thesis to include 

C38:4Me from Conte & Eglinton (1998) 

U S s E t * = C38:2Et/(C38:2Et + C38;3Et + C38:4Et) 
Adapted for this thesis to include C384Et 

from Conte etal. (1998) 

(e.g. Conte et al., 1992; Freeman and Wakeham, 1991; Madureira et al., 1995; Prahl and 

Muehlhausen, 1989; Teece et al., 1998) (also see recent review by Grimalt et al., 2000). 

Generally, the alkenone signal incorporated into sediments, reflects in a direct way the 

integrated temperature record for growth o f alkenone producers in surface waters 

(Prahl et al., 2000). Recent work by Rosell-Mele (2001) has also demonstrated that 

analysis of U"^,,' in standard samples by 24 leading laboratories produce data that are 

intercomparable within the considered confidence limits. This suggests that data 

produced by different scientific groups is comparable. 

Despite the positive results outlined above, alkenone indices are not devoid of 

uncertainties. The initial - SST calibration derived from a culture of E. huxleyi 

(N.E. Pacific strain) by Prahl and Wakeham (1987) shows a clear linear relationship 

between U*^,,' and temperature in the range of 8 - 25°C. Interestingly, this linear 

regression equation is statisticaUy the same as a regression between 11*̂ 37' measured in 

global (60°N - 60°S) sediment core-tops and ocean-adas mean annual SSTs (Muller et 
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al., 1998). However, a number of culture studies — on E. huxleyi and G. oceanica strains 
from various oceanographic locations - have produced different slopes for the 
relationship of - SST (see Herbert, 2001, for review). Also, there is a systematic 
difference in the slope of the U^,^' - SST relationship, between global water column 
POM samples (Conte and Eglinton, 1993; Harada et al., 2003; Sicre et al., 2002; Sikes 
and Sicre, 2002; Sikes and Volkman, 1993; Ternois et al., 1998; Ternois et al., 1997) and 
the data from the culture by Prahl & Wakeham (1987) and from core-tops by MuUer 
(1998). Whereby, the water column POM data generally lie in a field that gives warmer-
than-predicted growth temperatures at a given U'*,^', particularly in the range -5-15°C. 

A number of recent studies highlight a degree of nonlinerarity in the relationship of 

alkenones to SST at high (> 25°C) and low (<8°C) temperature extremes (Conte et al., 

2001; Pelejero and Calvo, 2003; Rosell-Mele, 1998; Sikes and Volkman, 1993; Sonzogni 

et al., 1997). I t is apparent that in certain regions absolute temperamres derived from 

the "recommended" Prahl & Wakeham (1987) or Muller et al. (1998) equations are 

unrealistic. I t has been suggested by Rosell-Mele (1995b) that this may apply to the 

Nordic Seas region, where - based on an extensive core-top data set - considerable 

scatter is seen in the - SST relationship. I n this region it is suggested that a 

calibration based on the original U"^,, index gives more accurate results. Other aquatic 

settings where the general oceanic Vi^y^ - SST relationship is not clearly applicable are 

marginal seas e.g. Schulz et al. (2000), coastal areas (e.g. Conte et al., 1994a) and lakes 

(e.g. Li et al., 1996; Thiel et al., 1997). High sedimentation rate, or low productivity sites, 

may also present a challenge to the use of alkenone indices as the alkenone signal has 

the potential to be diluted to levels below reliable detection (< 1 Ong peak area) (Grimalt 

et al., 2001). In the following sections further background is given; relevant to the 

application of alkenones to the marginal environments investigated in this thesis. 

1.2.1.1. Alkenones in Marginal Environments 

1.2.1.1.1. The Nordic Seas (low end of the temperature spectrum) 

In high northern latitude sediments the 11*̂ 37' index is subject to increasing error in cold 

waters below ~10°C (Rosell-Mele et al., 1993). This contrasts with the cold waters of 

the southern ocean, where is well correlated to SST down to ~3°C, or in the South 

Adantic where the correlation reaches 0°C (Sikes et al., 1997). In the Nordic Seas, 

10 
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increasing occurrence of the C37 4 compound (which is rare in mid to low latitudes) is 
coincident with the increase in scatter in the 1̂*̂ 37' - SST relationship. In the Nordic 
Seas surficial sediments the U'̂ 37 index - which incorporates the C374 compound - may 
be preferable to 1)^37', as it maintains a linear relationship to SST down to 6°C (Rosell-
Mele, 1998). However, below 6°C neither index is correlated to SST. This is frustrating 
for palaeoceanographic investigations, as the cold water regions of the Nordic Seas 
plays a key role in the production of deep water masses, which drive the global 
thermohaline circulation. I t has been shown that in such sediments the abundance of 
the C374 compound (relative to the other C37 alkenones = %C374) seems to have a 
stronger relationship to SSS than SST (Rosell-Mele, 1998). Given this relationship, 
%C37 4 has been proposed as a tentative proxy to reconstruct Quanternary SSS changes 
in the northern Adantic (Bard et al., 2000; Rosell-Mele, 1998; Rosell-Mele et al., 2002). 
I t has been shown that there is no globally applicable relationship of %C37.4 to SSS or 
SST (Sikes and Sicre, 2001). However, recent regional studies have supported a stronger 
relationship of %C37 4 to SSS than to SST, in a number o f water column POM samples 
from the Nordic and Bering Seas (Harada et al., 2003; Sicre et al., 2002). 

1.2.1.1.2. Alkenones in lacustrine, coastal and brackish environments 

As described above alkenones have been studied extensively in the mid-low latitude 

open ocean, where the sedimentary relationship between the alkenone 11*̂ 37' index and 

SST has been well established. Much less attention has been given to alkenone 

distributions and their precursor organisms in lacustrine (Cranwell, 1985; Li et al., 1996; 

Sheng et al., 1999; Thiel et al., 1997; Volkman et al., 1988; Zink et al., 2001) and coastal 

or brackish environments (Conte et al., 1994a; Ficken and Farrimond, 1995; Freeman 

and Wakeham, 1991; Schoner et al., 1998; Schulz et al., 2000). The lacustrine 

environments from which alkenones have been reported vary widely in their 

geographical location and environment and include fresh water lakes in the English 

Lake District, Russia and Germany (Cranwell, 1985; Zink et al., 2001) and saline lakes in 

China, Antarctica and Turkey (Li et al., 1996; Sheng et al., 1999; Thiel et al., 1997; 

Volkman et al., 1988) (the lakes in China and Turkey have never had a connection to 

the sea). The precursor organisms of alkenones from these environments have not been 

conclusively identified, and therefore culture experiments have not been carried out 

11 
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with alkenone lacustrine producers to establish a relationship between alkenone 
unsamration ratios and water temperature or other parameters. 

Only a few previous studies have highlighted the potential of alkenones for investigating 

environmental change in coastal or brackish environments. Ficken and Farrimond 

(1995) looked into the lipid geochemistry of Framvaren f)ord (Norway). Previously 

isolated from marine waters by isostatic uplift foUowing the retreat of the Scandinavian 

ice sheet in the early Holocene, Framvaren was reconnected to marine waters through 

human engineering, in the year 1850 A .D . (Ficken and Farrimond, 1995). Two sediment 

cores retrieved from the f)ord were shown to record a large increase in the abundance 

of alkenones coincident with the intrusion of marine waters. Alkenones were also 

deposited in the sediments during the earlier lacustrine phase, but at a much lower 

abundance relative to %TOC (Ficken, 1994). Re-examination of the data reveals that 

the alkenone distributions were characterised by prominent changes in values of %C37 4, 

with mean values of 8% and 26% for the recent marine/brackish sediments and pre-

1850 A.D. fresh water sediments respectively. 

Recentiy Shulz et al (2000) described alkenone distributions from the surface sediments 

of the marginal Baltic Sea. The distribution was characterised by increasing values of 

%C374 and generally decreasing abundances of total C37 alkenones along a salinity 

gradient from the Belt Sea (19.2 mean annual psu) to the Gulf o f Finland (6.3 mean 

annual psu) (Schulz et al., 2000). The authors classify the alkenone data into two 

different groups, based upon within-class-distributions o f the C37 and Cj^ alkenones; 

"pattern I " is for samples that resemble a "typical" £ . huxleyi alkenone suite and 

"pattern 11" for samples that are characterised by having no detectable Cj^Me alkenones 

and elevated values of %C37 4. Pattern I occurs in the surficial sediments of the western 

Baltic Sea where surface-water salinity is in excess of 7.7 psu, while pattern I I occurs in 

the eastern Baltic Sea sediments beneath waters of <7.7 psu. These patterns have been 

shown to alternate in a Holocene sediment core from the Gotiand deep and have been 

ascribed to the episodic occurrence of marine ingressions (Schulz et al., 1997). 

The elevated values of %C37.4 associated with the fresher Baltic Sea surficial sediments 

and the lacustrine phase of the Framvaren core contrasts with values from the global 

mid-low latitude oceans which typically have values of %C374 of less than 5%. 

12 
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Observations of "unusually" high values of "/oC,̂  4 have also been reported for modern 
lacustrine sediments (Cranwell, 1985; Li et al., 1996; Thiel et al., 1997; Volkxnan et al., 
1988), the Black Sea (Freeman and Wakeham, 1991) and from high latitudes regions of 
the north Atlantic (Rosell-Mele, 1998; Sicre et al., 2002, chapter 3 this thesis), southern 
ocean (Sikes and Volkman, 1997), the Sea of Japan (Ishiwatari et al., 2001) and the 
North Pacific (Harada et al., 2003). 

A number of studies have addressed the possibility that alkenone unsaturation patterns 

in areas of variable salinity (e.g. fjords, or open ocean settings with marine ice 

meltwater), may reflect a salinity dependent shift in the biochemical synthesis of 

alkenones, or may originate from different source organisms or genetic strains that are 

adapted to lower salinity (Bendle and RoseU-Mele, 2001; Conte et al., 1994a; Ficken and 

Farrimond, 1995; Harada et al., 2003; Rosell-Mele, 1998; Rosell-Mele et al., 1998; 

Schoner et al., 1998; Schulz et al., 2000; Schulz et al., 1997; Sikes and Sicre, 2001). Local 

and regional studies have highlighted correlations between higher values of %C-^-,.^ and 

lowered salinities (Harada et al., 2003; Rosell-Mele, 1998; Rosell-Mele et al., 1998; 

Schulz et al., 2000; Sicre et al., 2002). However there is great diversity in the slope of the 

%C374 - salinity correlation, between geographical locations and even between sample 

types from the same region (i.e. core top or water column) (Harada et al., 2003; Rosell-

Mele et al., 2002; Schulz et al., 2000; Sicre et al., 2002; Sikes and Sicre, 2001). The 

balance of evidence suggests that there is no global linear relationship between %C^-,.^ 

and salinity as there is between and SST (Sikes and Sicre, 2001). In Table 1.3 (page 

14) there is a summary of reported %C^-j.^ values in the literature. This illustrates the 

observations of elevated %C374 values from a range of environments outside the mid-

low latitude open oceans and in some cultures of haptophyte species that are not E. 

huxleyi. The work outlined above and summarised in Table 1.3 suggests that in coastal 

environments where sediments have been isolated or connected to the sea, the values o f 

% C „ 4 may be used to discriminate between relative inputs of C,7 alkenones of an E. 

huxleyi marine source and those o f a lacustrine or brackish source. 

Schulz et al (2000) suggested that changes in the ratio of the C,gEt to Cj^Me alkenones 

could help to distinguish marine E. Huxleyi source alkenones from alkenones produced 

either by an unknown source or from a physiological stressed E. huxleyi assemblage in 

<7.7 PSU waters. I t has been suggested that alkenone inputs from the species E. huxleyi 

13 
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and G. oceanica can be distinguished by their C37/C3^ alkenone or alkenoate/alkenone 
ratios (Prahl et al., 1993; Rosell-Mele et al., 1993; Sawada et al., 1996; Volkman, 2000 ) or 
by a plot of the U'^,^,;, vs U'̂ 3RM ,̂ unsaturation ratios (Conte et al., 1998). Therefore in a 
study of marginal environments where the alkenone patterns may be a fiinction of 
changes in biological precursor assemblages or a product of salinity induced 
physiological stress, it is important to monitor changes in the ful l suite of alkenones and 
alkyl alkenoates. 

1.2.2. /j-Alkanes 

These are organic compounds composed of straight-chains of carbon and hydrogen 

which are saturated, i.e. contain no carbon-carbon double or triple bonds. They are 

found in almost all sediments that contain organic matter, where they are usually the 

dominant compound class in the saturate fraction (Miles, 1994) . «-Alkanes are derived 

from algae, bacteria and land plants (Tissot and Welte, 1978) . Table 1.4 (page 17) is a 

summar}' of t^'pical «-alkanes distributions from different biological sources. Table 1.5 

(page 18) gives examples of how «-alkane distributions may be interpreted in recent 

sediments. 

The characteristic distributions from algae and terrestrial higher plants differ 

significantiy. The «-alkanes of algal origin show a predominance of odd-carbon chain 

lengths of low molecular weight (LMW) (typified by a maximum at C,7 in the Cjg-Cj, 

range) and a slight even-carbon or no predominance in the high molecular weight 

(HMW) C,7-C35 range (Brassell, 1993; Brassell et al., 1978; Clark and Blumer, 1967; 

Goutx and Saliot, 1980; Kennicutt I I and Comet, 1992) . In contrast, «-alkanes of 

terrestrial higher plant origin show a strong predominance of odd-carbon chain lengths 

in the H M W C23-C35 range and have essentially no predominance in the L M W Cjj-Cj, 

range. The relative predominance of odd-over-even carbon atoms number in n-alkanes 

is expressed numericaUy by the following index: 

1 f Z C w + l - C w + l SCw + l - C r t + n 
CPl„ „ = — X — + 

2 V 'LCm-Cn llCm + l-Cn + l ) 

(within the range from Cn to Cm of number of carbon atoms in the molecule (n and m are even numbers). 

The reason for this difference is that all plants synthesize predominantiy odd-carbon 

chain lengths, but vascular land plants synthesize long-chain cuticular waxes (C2S-C35) to 

1 6 



James A P Bendle - Ph.D. Thesis 

preserve their leaf water content, whereas the aquatic algae synthesize short chain n-
alkanes (C,5-C2,) (Hunt, 1979). Bacteria synthesize «-alkanes in the C,,, to C,, range in 
relatively low abundances, compared to the synthesis of other compound classes such 
as hopanes and acyclic isoprenoids (Comet and Eglinton, 1987). Therefore, the bacterial 
«-alkane signal in sediments will often be insignificant compared to algal or higher plant 
inputs. Terrestrial vs algal sources of «-alkanes can also be estimated by the ratio of 
H M W (mostiy higher plant) to L M W (mosdy algal) «-alkanes (see Table 1.5, page 18). 
However, L M W «-alkanes are more labile than H M W homologues and therefore the 
measure may be biased by their greater relative degradation (Cranwell, 1976; Kawamura 
et al., 1987). 

Table 1.4: Characteristic autochthonous inputs of n-alkanes of biological origin. 

Organism Environment 
Dominant 
Carbon 
No. (s) 

CPI 
Carbon 
No. 
Ranee 

Modality 
Example 
References 

Photosynthetic 
bacteria 
Non-
photosynthetic 
bacteria 

Aquatic 
(pelagic) 

Aquatic 
(benthic) 

Cl7, C26 

Cl7 - C20 
Cl7 & C25 

Low 

Low 
Low 

1 4 - 29 

1 5 - 28 
1 5 - 2 9 

Bimodal 

Unimodal 

(CranweU et al., 1987) 

(Han and CahTn, 

1970) 

Fungi ? -- 25-29 Bimodal (\'en, 1975) 

Blue-green 
alagae 

Aquatic 
(pelagic) C,7 High 1 4 - 1 9 Unimodal P u m e r et al., 1971) 

Algae 

Brown algae 

Aquatic 
(pelagic) 

Aquatic 
(benthic) 

C,7 

C,5 

High 

Low 

15-21 

1 5 - 2 6 

Unimodal 

Unimodal 

(Gelpietal , 1970) 

(\'oungblood and 

Blumer, 1973) 

Red algae 
Aquatic 
(benthic) C,7 Low 1 5 - 2 4 Unimodal 

(\'oungblood et al., 

1971) 

Zooplankton 
Aquatic 
(pelagic) 

Cl7, C18 & 
C24 

Low 
18 - 54 
or 
2 0 - 2 8 

Bimodal 

(Cranwell et al., 1987; 

Giger and Schaffner, 

1977) 

Higher plants Terrestrial C27, C2y 
or C51 

High 1 5 - 5 7 Unimodal 
(Caldicott and 

Eglinton, 1973) 

Rotifer worms 

Insects 

Aquatic 
(mostly fresh) 

Terrestrial 

C24 

? 

Low 

High 

2 0 - 52 

2 1 - 55 

unimodal 

? 

(CranweU et al., 1987) 

Qackson and 

Blomquist, 1976) 

«-Alkanes have been used extensively as indicators of inputs of terrestrial or land 

derived organic matter to the marine environment (e.g.Huang et al., 2000; Ikehara et al., 

2000; Kawamura, 1995; Ohkouchi et al., 1997; Philp, 1985; Zhao et al., 2003). 
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Moreover, they have been used in lacustrine environments to infer changes in the 
relative inputs of organic carbon from aquatic algal sources (including eutrophication) 
and watershed terrestrial biota (Cranwell, 1973; Cranwell et al., 1987; Kawamura and 
Ishiwatari, 1985; Kawamura et al., 1987; Meyers and Benson, 1988; Meyers and 
Ishiwatari, 1993b). 

Therefore, these compounds give an insight on the relative contributions of organic 

carbon to a basin (lacustrine, coastal etc) from algal versus terrestrial plant sources. This 

may be useful in determining whether the increase in bulk %TOC observed in many 

fossil isolation basins - and associated in the literature with the early stages of isolation 

(Kjemperud, 1986)) - is a product primarily of increased algal primary 

productivity/preservation within the basin, or rather of the enhanced accumulation, 

"trapping", of terrestrial plant carbon from the basin catchment area. However, it is 

important to note that marine and lacustrine algae have not been reported as producing 

«-alkane distributions that are characteristically different (Brassell et al., 1978; Cranwell, 

1973; Gelpi et al., 1970; Youngblood and Blumer, 1973; Youngblood et al., 1971). 

Therefore, «-alkanes may not be used as absolute indicators o f relative inputs of marine 

vs freshwater algal carbon. 

Table 1.5: Recognition of n-alkane inputs to recent sediments. 

n-Alkane parameter 
Characterisation of 
parameter 

Likely inference 

E «-alkane (ng/g 
Corjj) 

C P I 2 

Long/Short 
(Q7 + C:, + CM) I 
(Cn + C „ + Cl^) 

Highest abundance 
of Cn 

High relative 
abundance 
Low relative 
abundance 

High 

Low 

High 

Low 

Ci5 and/or C17 

C27, C2"J, C31 

High inputs from «-alkane producers/ preferential 
degradation of more labile (than «-alkane ) material 
Low inputs from «-alkane producers/ preferential 
degradation of «-alkanes (unlikely) 

Dominant higher plant inputs 

Lower higher plant inputs, and/or dominant algal inputs 

Greater relative higher plant inputs and/or degradation of 
L M W algal inputs 

Greater relative algal inputs 

^\lgal inputs dominant 

Lhgher plants dominant 
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1.2.3. Chlorophyll pigments 

Higher plants and algae synthesize a variet}' of pigmented organic compounds, 

principally for use in photosynthesis. The principal photosynthetic pigments used by 

plants and all the major algae classes are the chlorophylls, of which chlorophyU a (Chi a) 

is the most common Qeffrey and Vesk, 1995) (see Figuire 1.2). Chlorophyll pigments 

contain chromophore groups, typically conjugated C=C bonds, which absorb portions 

of the visible colour spectrum and give the molecules their characteristic colours. In 

addition they have oxygen containing functional groups. The double bonds and 

functional groups provide sites for microbial attack (Meyers, 1997). Incubation 

experiments with naturally-occurring sediments have shown that Chi a concentrations 

usually exhibit an exponential degradation, to a low background level (Sun et al., 1993). 

Various studies have shown that a series o f transforamation processes, including 

demetaUation of the magnesium chelate, decarbomethoxylation ('pyro'-formation) and 

ester hydrolysis occur either within the water column or at the sediment/water 

interface, forming sedimentary phaeopigments, collectively termed "chlorins" (e.g. 

Baker and Palmer, 1979; Baker et al., 1978; Keely and Maxwell, 1991; Louda et al., 1980; 

Louda et al., 2002; Spooner et al., 1995; Spooner et al., 1994) (see Figure 1.2). 

Therefore, although chlorophyll compounds are quickly degraded in the water column 

and surface sediments, a small but significant fraction can be preserved as chlorins. 

UV/vis spectrophotometric measurment of absorbtion at a wavelength of 410nm, in 

recent sediments, primarily records the abundance of such chlorins (Higginson, 1999). 

The feasibility of determining absolute marine primary export palaeoproductivity from 

chlorin pigments has been addressed by several authors (e.g. Higginson, 1999; Repeta et 

al., 1992). In the Atiantic Ocean, stratigraphic variations of chlorins in marine sediments 

have been related to palaeoproductivity in highly productive marine locations such as 

the upwelling areas of northwest, equatorial and southwest Africa (BrasseU et al., 1986b; 

Harris et al., 1996; Summerhayes et al., 1995) but also in the North Adantic and Nordic 

Seas (Rosell-Mele and K 0 9 , 1997; Rosell-Mele et al., 1997). 

The downcore trends in total abundance of chlorins depends - in common with all 

organic matter - on changes in export primary productivit)' and diagenesis. The latter 

being influenced by factors such as O, content of the water column and bottom water, 

residence time in the water column and at sediment/water interface before deposition, 
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molecular reacavity, formation of pigment complexes, adsorption and bioturbation 
(Higginson, 1999). Hence, due to the likely combined effect of the above factors, it can 
be complicated to isolate the palaeoproductivit}' signal from other variables at the time 
of deposition (Rosell-Mele, in press). 

A further use of pigment analysis, is the classification of pigments by use of the ratio of 

absorbance between certain wavelength bands. RoseU-Mele et al (1997) employed 

UV/vis spectrometr}' to detect and distinguish between chlorins and porphyrins in core 

BOFS 5K in the North Adantic. Porphyrins (red fully aromatic tetrapyrroles) are late 

stage diagenetic products of chlorins, and were unexpectedly found in association with 

ice rafted debris (IRD). Since they have never been observed as indigenous components 

of sediments younger than the Late Pliocene (Keely et al., 1994), these pigments were 

assigned an origin in ice-rafted, ancient organic rich sediments. The relative abundance 

of the chlorins and porphyrins can be estimated by measuring the absorbance in the 

Soret band (S; 360-420nm) and the satellite I region ( I ; 665nm) (Baker and Louda, 

1986). The changing ratio of absorbance maxima in these two regions (S/I), can be used 

to recognise chlorin (1-5) and porphyrin (>10) pigments (Rosell-Mele et al., 1997). 

Accumulation records o f chlorin pigments were used to shed further light on the origin 

and effect of abrupt Heinrich Events (HE) in the North Atiantic. Marked and abrupt 

changes in Chl-derived pigments across sedimentary Heinrich layers (HL) were ascribed 

to oceanic conditions produced by ice-rafting. In particular, chlorins were found in 

association with IRD, but were apparentiy absent when IRD levels decreased to 

background levels. The authors concluded that abundant meltwater enhanced 

preservation of chlorins during H L deposition due to a reduction in deep-water 

formation and a concomitant reduction in bottom water oxygenation (Rosell-Mele et al., 

1997). However, the concentration of chlorins dropped as IRD (and porphyrin) values 

maximised, presumably due to the dilution of these products of autochthonous marine 

production by the input of aUochthonous IRD material. 

Tetrapyrrole pigments in four cores from the Nordic Seas were again utilised by Rosell-

Mele and Koq (1997) to propose rapid and abrupt changes in the oceanic and climatic 

circulation system. The discovery of chlorins and porphyrins (by the S/I method 

described above) during the Younger Dryas and the end of the last glacial were 

interpreted as evidence for photosynthetic activit)' at these times. This, the authors 
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concluded, suggested the existence o f open ocean conditions during (at least seasonally) 
ice free episodes in these cold periods. 

1.3. Bulk organic matter properties as Quaternary palaeo-

environmental indicators 

1.3.1. % T O C 

The natural imprint of organic matter in marginal basin environments includes both 

autochthonous and allochthonous contributions. The autochthonous input is 

comprised of the material generated within the basin (e.g. products of microalgae and 

macrophytes). Whereas the aUochthonous input is transported into the sedimentary 

environment by water, wind, ice, human agency etc (e.g. refractor)^ products of higher 

plants) (BrasseU et al., 1978). Furthermore, organic inputs will be of either direct or 

indirect biological origin, since the organic matter may be incorporated directiy into the 

sediment after biosynthesis by a precursor organism, or indirectiy following 

modification either by biota, or by biological or chemical alteration during diagenesis 

(Summons, 1993). 

Due to the ease of analysis, the abundance o f organic matter in sediments is usually 

expressed as the relative dry weight percentage of organic carbon (%TOC). However, it 

should be noted that the relationship of %TOC to actual proportion of organic matter 

will vary according to the characteristics of the organic matter i.e. kerogen includes 

significant amounts of other elements especially hydrogen (3-10 wt%), oxygen (3-20 

wt%), nitrogen (0-4 wt%) and sulphur (0-4 wt%) (Tyson, 1995). Therefore, a %TOC to 

"total organic matter" conversion factor of 1.7-1.9 has been suggested for modern 

marine sediments (Tyson, 1995 and refs therein). 

The general trend of %TOC in modern, marginal sedimentary environments is 

illustrated by the composite transect in Figure 1.3. This relationship is characterised by 

decreasing %TOC from continental shelf to the abyssal depths. However, 

superimposed on this large scale trend are regional and local %TOC trends. For 

example, %TOC values generally increase toward localised depressions (sediment 

focusing) (Hue, 1988a; Hue, 1988b; Rashid, 1985). This is thought to be related to the 

correlations that exist between %TOC and particle granulometry and is regardless of 
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oxygen regime (Tyson, 1995). However, such patterns may be accentuated i f the 
localised depressions are prone to oxygen deficiency (Tyson, 1995). 

The environmental factors that control % T O C values in marginal sediments are 

numerous. Some commonly considered to be important are export primary 

productivity, allochthonous O C inputs, the content o f the water column and 

bo t tom water, residence time in the water column and at sediment/water interface 

before deposition, sediment accumulation rate and particle size/texture, particle carbon 

loading and format ion o f monolayers (e.g.Emerson et al., 1987; Henrichs, 1992; 

Henrichs, 1993; K e i l et ah, 1994; Meyers and Ishiwatari, 1993a; Meyers and Ishiwatari, 

1993b; Thompson and Egl in ton , 1978; T r o m p et al., 1995; Wakeham and Lee, 1993). A 

summary o f the major controls on % T O C values in marginal environments is given i n 

Table 1.6. 

Table 1.6: Some major controls on T O C content of marginal basins (adapted from (Tyson, 1995). 

Variables Correlation with TOC 

1. Primar)' productivit)': a. Mean producti\'it)' 
b. New producti^'it)' 
c. Production half-time 

2. Water depth 

3. Plankton type a. Mineralized (siliceous or calcareous) 
b. Organic-walled 

4. Allochthonous organic matter inputs: a.Terrestrial 
b. Marine 

5. Sediment grain size: a. Mean 
b. % silt -I- clay 

6. Sediment accumulation rate a. Biogenic component 
b. Siliciclastic component 

7. Mean dissolved oxygen o f bottom water: a. > 1.0ml 1' 
'= < 0.2-1.0 ml 1-1 

Correlations between the above controls 

(+) 
(+) 
(-) 

(-) 

(-) 
(+) 

(+) 
(+) 

(-) 
(+) 

{+,pars) 

(-) 

(+O2 - T O C ) 
(-0, + T O C ) 

1 and 2 (-) 2 and 4 (-) 3a and 5b (+) 4a and 5a (+) 
1 and 3 (+) 2 and 5 (-) 3a and 6a (+) 4a and 6b (+) 
1 and 6a (+) 2 and 6 (-) 
1 and? (-) 2 and 7 (±) 

A. Climate 
B. Watermass circulation 
C. Basin Topography 
D. Distance f rom fluvial inputs 
E. Tectonic regime 

(1,2,3,4,5,6,7) 
(1,3,4,5,6,7) 
( la, 2,4,5,6,7) 
(la,3,4a,5,6,7) 
(2, 4a, 5 6b) 
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A l l "other variables" are strongh' interrelated. \'ariables B, C and D , in conjunction with factor 2 (above) 
are the consequences of'sea-level'. 

1.3.2. C„g/N ratios 

The presence or absence o f cellulose i n the plant sources o f organic matter deposited i n 

sediments o f coastal basins influences the C„,g/N rado o f the sediments. As shown by 

the examples in Table 1.7 (page 24), nonvascular aquatic plants have low C^^^/N ratios, 

typically between 4 and 10, whereas vascular land plants, wh ich contain cellulose, have 

C„rg/N ratios o f 20 or more (Meyers and Ishiwatari, 1993b; MuUer and Mathesius, 

1999). I n theory i n coastal basins where the contr ibut ion o f organic matter f r o m 

vascular land plants is small relative to water-column product ion, the sediments wiU 

show lower C^^^/N ratios than those w i t h higher relative inputs o f vascular plant 

detritus. Therefore, C„^j,/N ratios can complement «-alkane distributions in elucidating 

changes i n the relative inputs o f terrestrial and algal organic matter during the isolation 

process. 
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Table 1.7: A compilation of atomic Corg/N ratios of assorted biota and lacustrine samples, (table 

continued over leal) 

Type of sample CJN Reference 

L a n d Plants 

White oak, modern 276 (Hedges et al., 1985) 

White oak, 25 Kyr -o ld 111 (Hedges et a!., 1985) 

Red alder, rrwjdem 264 (Hedges ct al,, 1985) 

Red alder, 2.5 kyr-old 106 (Hedges et a!., 1985) 

Spruce, mcxJcrn 546 (Hedges ctal . , 1985) 

Spruce, 2-5 Kyr -o ld 541 (Hedges et al., 1985) 

White spruce, m i x i e m 46 (Bourbonruere, 1979) 

White spruce, 10 K y r old 20 (Bourbonmere, 1979) 

Wi l low, m o d e m 58 (Meyers, 1990) 

Co t tonwofx l , modem 22 (Meyers, 1990) 

I ' inyon pine, m t x l e m 42 (Meyers, 1990) 

Algae 

Average x.ooplankton and phytoplankton 

Benthic organisms and bacteria 5-6 (Bordovskiy, 1965; Prahl et al., 1980) 

Walker Lake plankton 4.1-4.2 (Bordovskiy, 1965) 

Dia tom, /hterionella Formosa 8 (Meyers, 1990) 

CI reen alga, Chlumyiiiimonas 9 (Bourbonruere, 1979) 

Lake Biwa mixed plankton 7 (Bourbonniere, 1979) 

6-7 (Nakai and Koyama, 1991) 

Aquat ic Macrophytes 

Cifcifswalder Bodden saline lagoon 6-44 (mean 17.5) (Muller and Mathesius, 1999) 

Lacustr ine Surface Sediments 

Lake Biwa 6 (Meyers and Ishiwatari, 1993a; Meyers et al., 1984) 

1 ,ake Michigan 9 (Meyers et al., 1984) 

Lake Michigan* 8 (Meyers and Benson, 1988) 

Walker Lake 8 (Meyers and Ishiwatari, 199,1b) 

I 'yramid Lake 9 ( Q i u e t a l . , 1993) 

l^ake Baikal 11 ( H o and Meyers, 1994) 

C o b u m IV)nd 12 (Hatcher et al., 1982) 

Mangrove Lake 15 fFalbot and |ohannessen, 1992) 

Bosumt\vi 14 This thesis 

l ,och nan C^ore 12 'ITus thesis 

Loch nan Lala 18 

Marine N e a r Shore /Shel f 

Loch nan C^eall (5 sites) 7-9 'ITiis thesis 

Loch Sween 15 'ITiis thesis 

Saline Lagoons 

Rumach tidal pond, (5 sites) 7-8 'ITiis thesis 

Oa ig l in L i g o o n (2 sites) 11 'ITiis thesis 
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Cover image is a Varian 3400 gas cbromatograph. It was directly coupled to a Finnigan h/lAT TSO 700 triple stage 

quadrupole mass spectrometer and used for the analysis of alkenone and alkyl alkenoate within class distributions. 
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2.1. Introduction 
Many o f the experimental procedures performed for this thesis were carried out on a 
regular basis and were used in most study areas. However, some procedures were 
specific to an individual chapter. These included: 
Chapter 3: 

Measurement o f sea surface and water column physical parameters by shipboard 

instruments and C T D / X B T probes. 

Chapter 4: 

Tephra analysis. 

Radiocarbon dadng. 

Chapters 5: 

Isolauon basin hydrographic measurements. 

As such the details fo r these procedures are presented as part o f the relevant chapter. 

The aim o f this chapter is to present the methodolog)' for the fo l lowing organic 

geochemical procedures: 

1. Pre-cleaning o f glass-ware and reagents. 

2. Solvent extracdon o f organic matter (lipids). 

3. L i p i d class clean up and fracdonation. 

4. Pigment analysis. 

5. L i p i d biomarker analysis. 

6. % T O C analysis. 

7. C,„^/N analysis. 

Sampling strateg)', sample retrieval and sample storage fo r studies f r o m the Nord ic seas, 

Icelandic Shelf and N . W . Scodand are described in chapters 3,4 and 5 respecdvely. The 

general scheme applied for all organic geochemical analyses is shown in Figure 2.1. A l l 

samples for a particular study area underwent comparable treatment. The differences in 

the methods used for the sediment and filter samples are indicated in the diagram. 

Blank analyses were routinely carried out to check fo r contamination o f solvents, 

utensils or apparatus prior to and during the analysis o f samples. 
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2.2. Wet Chemistry 

2.2.1. Chemica l s and preparative equipment 

2.2.1.1. Glassware 

Reusable glassware was cleaned between uses according to the fo l lowing procedure. 

A f t e r removing residues w i t h tap water and detergent, glassware was immersed fo r 2hrs 

in a nitric acid ( B D H Chemicals L t d , Poole, U . K . ) solution (1%), then rinsed wi th tap 

water, immersed f o r 12hrs in a solution o f tap water and Decon soap (Decon 

Laboratories L t d , Hove , U K ) at 2%, rinsed wi th tap water and distilled water, dried in 

an oven and finally fired in a furnace at 4 5 0 ° C . N e w glassware (excluding volumetric 

flasks) was fired at 4 5 0 ° C before usage. 

2.2.1.2. Reagents and Solvents 

Details o f general-purpose solvents and reagents used f o r l ip id extraction, work-up and 

analysis are listed in Table 2.1. Deionised water was used fo r preparing reagent 

solutions. Anhydrous crystalline NajSO^ - used as a drying agent - was pre-extracted 

(soxhlet) w i th D C M in batches (lOOg), dried to remove residual water at 80°C and fired 

at 450°C for 12hrs. K O H pellets, used to prepare solutions o f K O H in M e O H (8% by 

mass), were pre-cleaned by ultrasonication w i t h D C M f o r 5 mins three times. 

Table 2.1: Notation, and properties of solvents and reagents used in experimental procedures. 

Name Shorthand Grade 

Notation 

2,2,4-trimethylpentane* wo-Octane Specified® 99.84% by G C 
Acetone* _ _ _ Certified® 99.99% by G C 
Hexane* _ _ _ Distol® 
Methanol* MeOH Distol® 
Methylene chloride* D C M Certified® 99.99% by G C 
Reagents 
NN-Bis (tnmethylsilyl) BSTFA 98% 
trifluoroacetamide 
Nitric acidf AnalaR® 69- 70.5% 
Potassium hydroxide K O H Certified® 87.99% 
Sodium Sulfate (anhydrous)* Na2SO., Certified® 99.50% 

Source notes: * Fisher Chemicals Ltd, Loughborough, U.K.; f B D H Chemicals Ltd, Poole, U.K. 

2.2.1.3. Standards 

Standards were prepared by dissolution in /jo-Octane in glass volumetric flasks on an ad 

hoc basis. Compounds used as internal and recovery standards are listed in Table 2.2 

(page 39). Synthetic alkenone standards (C,^, and C, , , ) were provided by P r o f J R 
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Maxwel l (University o f Bristol) and were used fo r method development and for 
calibradon o f GC-CI -MS and G C - F I D response to mass o f alkenones in the G C 
system. A "sediment standard" was used fo r measuring procedural and analytical 
precision. This consisted o f a homogenised mixture o f oceanic sediments mosdy 
( -80%) f r o m the Nord ic Seas. A "sediment blank" was used to moni tor f o r 
contamination o f the procedural and analytical methods. This consisted o f a 
homogenised mixture o f oceanic sediments and was prepared by combusdon in a 
furnace at 800°C to combust all organic matter. 

Table 2.2: Notation, and properties of standards used in experimental procedures. 

Name Notation Properties 

Dotriacontane nC32 9 7 % punt)' 

Hexatriacontane 9 7 % 

2-Nonadecanone nCigO 9 7 % 

Octacosane nC28 9 9 % 

5acholestan-3-one I ICZYO 9 7 % 

Cholestane nC27 9 8 % 

Colestetol nC270H 9 9 % 

1 -Docosanol nC220H 9 8 % 

Source notes: all standards were obtained from Sigma-^\ldrich, GUlingham, U.K. 

2.2.2. Special Laboratory E q u i p m e n t 

a) A M A R S 5 microwave accelerated reaction system equipped w i t h Greenchem 

pressure vessels w i th 100ml tef lon liners was used fo r microwave assisted extraction 

( M A E ) o f sediment samples. M A E allows processing o f up to 14 samples (20g 

maximum weight) simultaneously at controlled temperatures w i th magnetic stirring. 

b) Labconco Centr ivap® concentrator was attached to a cold trap unit (Labconco 

Corporat ion, Kansas City, IVOssouri 64132, U.S.) and a I < N F Labopor t® vacuum pump 

( K N F Neuberger, U K ) . The system eliminates solvent f r o m a sample by evaporation at 

low pressure. Heating and a centrifugal force could be appl ied- to speed the process 

and to prevent bumping, respectively. Typical conditions were negative pressure o f 8-10 

bar w i th heating o f 4 5 ° C applied after 20 minutes to remove methanol. Up to 12 

samples could be processed simultaneously. 
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c) A customised vacuum chamber was attached to a cold trap unit (Labconco 
Corporation, Kansas City, Ivlissouri 64132, U.S) and an Edwards RV5 Vacuum pump 
(Edwards, Crawley, Sussex, U . K . ) . The system eliminates water f r o m a sample by 
sublimination at low pressure (lyophilization or "freeze drying"). The system had the 
advantage that hundreds o f samples could be freeze-dried during ~48 hrs, unattended. 

d) A Biichi rotary evaporator R-114 and water bath B-480 (Biichi Labortecknik A G , 

Postfach, Switzerland) were used fo r the evaporation o f large volumes o f solvents f r o m 

round bo t tom flasks. This was used fo r filter samples. 

e) A vacuum mani fo ld (Alltech, Carnfor th , U .K. ) w i t h nitrogen b low-down was 

attached to a water pump and cold trap. This unit was used f o r the evaporation o f small 

volumes o f solvent in G C vials. 

f) A Grant Boekel B B A Block heater (Grant Instruments L t d , Cambridge, U.K. ) was 

fi t ted w i th a custom made mani fo ld fo r nitrogen b low-down. This unit was used as an 

alternative to the Labconco Centrivap® fo r the elimination o f solvent f r o m up to 24 test 

tube samples. 

g) A Dionex H i g h Pressure Liquid Chromatograph (HPLC) (Dionex Corp. Sunnyvale, 

California USA) consisting o f a P 580 series pump (manufacturer) attached to a 

photodiode array detector (PDA-) 100 and an ISCO Foxy J r ™ fraction collector (ISCO, 

Inc. L incoln , Nebraska, USA). The system was operated in o f f - co lumn mode, fo r U V -

vis spectrophotometry or attached to a co lumn f o r compound class fractionation. 

2.2.3. Sample W o r k - U p 

2.2.3.1. Lipid Extraction of Sediment Samples 

1) The freeze-dried sediments were broken up and ground to a fine powder in 

their glass storage vials w i th a spatula and glass pestie (both implements were 

rinsed w i t h D C M and dried between samples). 

2) Weighed aliquots o f the crushed samples (0.2-5g) were transferred to pre-

weighed Teflon' ' ' '^ microwave vessels. A known concentration o f internal 

standard and 9ml o f D C M / M e O H (3:1) was added. 
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3) Batches o f 12 vessels (10 validation samples, 1 blank and 1 "sediment 
standard") were loaded into the M A R S 5 microwave and extracted at 70°C for 5 
minutes. 

4) A f t e r extraction the solvent/sediment mixture was transferred f r o m the 

microwave vessels to test-tubes and centrifuged (3000rpm fo r 5min). The 

solvent supernatant containing l ip id extracts was decanted to a test-tube. 

5) T o increase recover\% an additional 3ml o f D C M / M e O H (3:1) was added to the 

extracted sediment and the mixture was shaken. The solvent/sediment mixture 

was again centrifuged (3000rpm fo r 5min) and the 2nd supernatant product was 

added to the test tube containing the first. 

6) The combined solvent extract was concentrated to dryness by centrifugal 

evaporator or w i th nitrogen blow-down. 

7) T o remove residual water, the dry extract was redissolved in 300//1 o f D C M and 

eluted through a glass pipette containing extracted cot ton w o o l and anhydrous 

crystalline sodium sulphate. This operation was repeated three times. 

8) The dried extracts were placed in a vacuum mani fo ld and the solvent was 

removed under a gentle stream o f nitrogen and a light vacuum, and 

subsequentiy stored (sealed) at -20°C unt i l pigment analysis or fractionation by 

H P L C . 

9) W h e n aU the samples fo r a study area were ready, the organic extracts were re-

dissolved in 500-2000//1 o f acetone. A n aliquot o f each vial o f 20ju\ was injected 

on the H P L C for pigment analysis, collected and combined wi th the total 

sample, taken to dryness w i th nitrogen and stored (sealed) at -20°C ready for 

H P L C fractionation. 

2.2.3.2. Clean-Up of Sediment Samples - Compound Class Fractionation. 

Clean-up is necessar)' to remove those compounds that may interfere during G C 

analysis o f the sample. The approach fo l lowed was to isolate a fraction containing the 

analytes o f interest (alkenones, alkyl alkenoates and «-alkanes). This was performed by 

H P L C using a system wi th consisted o f a The rmo Hypersil® column (50 x 4.6mm) 

packed w i t h Lichospher® SilOO 5//m silica, and a Thermo Hypersil® guard column. 

Fractions were collected using a Foxy Jr automatic coUector. The system was flushed 

w i t h M e O H between analytical sessions. A solvent program was adapted f r o m Schulz et 

al (2000). Modif icat ions included the use o f a shorter column for faster elution times. 
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Samples were redissolved in 110/^1 Hexane, drawn into a syringe and injected into the 
H P L C . Four fractions were coUected in test tubes by eluting at 1ml m i n ' w i th : 

1) hexane (1.375 ml) aliphatic and cyclic alkanes (nCy,& nC,,) 

2) h e x a n e / D C M (17:3; 3.5 ml) aliphatic ketones (nC.yO, C , , , & C,, ,) 

3) D C M (2.25 ml) cyclic ketones (nC , ,0 ) 

4) Acetone (2.25 ml) sterols, alcohols and polars ( n C j j O H , C j - O H ) 

The fractions were concentrated using a centrivap®. Fractions 1 and 2 were combined, 

dried under nitrogen (vacuum manifold) , and stored sealed at -20°C unti l analysis. 

The reproducibilit}' o f the procedure to fractionate organic extracts was tested wi th a 

mixture o f standards (hexatriacontane, cholestane, 2-nonadecanone, alkenone, C 3 7 3 

alkenone, 5acholestan-3-one, cholesterol, 1-docosanol) at a concentration o f 

~100ng / / / l fo r all standards except fo r the alkenones, which had a combined 

concentration o f ~20ng / / / l . Recoveries o f the fract ion classes were greater than 90-98% 

for all standards wi th a precision o f ± 3 . 3 % (at 95% confidence). The U'^ , , ' value o f the 

synthetic alkenone standards (-0.2) was not significandy altered by the procedure. The 

accuracy at 2 a being 0.008 U"^ , / units (by G C - F I D ) , or 0 .11°C using the MuUer et al 

(1998) caUbration. 

2.2.3.3. JJpid Extraction of Filter Samples 

1) Fol lowing removal f r o m storage (at -20°C) , a known quantity o f an internal 

standard was added (nCjj) to the Whatman G F / F glass fibre filters containing 

the particulate material. 

2) The lipids were extracted by ultrasonication w i t h 20ml o f D C M / M e O H (3:1, 

three times) and the supernatant was decanted and filtered through soxhlet 

extracted cot ton w o o l into 100ml round bo t tom flasks. 

3) The solvent extracts were taken to dryness in a rotary evaporator, adding small 

quantities o f acetone to remove residual water (by the format ion o f an 

azeotropic mixture). 

4) The dry extracts was re-dissolved in 3ml D C M / M e O H (3:1) and transferred 

(repeated X 3) to test-tubes which were taken to dryness in a centrivap. 
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2.2.3.4. Ckan-itp of filter samples — sapomfication 

The dty organic extract was hydrolysed in sealed test-tubes (screw tops were T e f l o n 

lined) w i th a 3-ml solution o f K O H / M e O H 8% f o r 36 hrs. The neutral fract ion was 

recovered w i t h 3ml o f hexane (three rimes). The combined hexane extracts were 

washed wi th water (previously distilled and solvent extracted), i n a test-tube to remove 

residual K O H traces. The hexane was transferred to a test-tube, and taken to dr)'ness. 

The extract was re-dissolved in 300//1 and filtered through a pasteur pipette containing 

cot ton woo l and sodium sulphate, dried under nitrogen and stored sealed, at -20°C, 

unt i l analysis. 

2.2.3.5. Derivatisation (all samples) 

Prior to analysis, sample extracts were derivatised by adding 40//1 o f B S T F A and 100//1 

D C M . The vial containing the sample was sealed and lef t overnight at room 

temperature, or fo r 1 hour at 80°C. Then the solution was dried (vacuum manifo ld or 

Centrivap®), and stored or re-dissolved in /Jo-octane (10-500//1) and spiked w i t h a 

recovety /GC standard o f a known concentration prior to G C analysis. 

2.3. Instrumental Analysis 

2.3.1. E lementa l analysis (Carbon and Nitrogen) 

W o r k up and analysis was performed at the Autonomous University o f Barcelona.. 

Measurements were done using 4x 3.2 m m silver cups (Cat. #D2000) previously 

cleaned by soxhlet extraction w i t h acetone/hexane mixture (1:1) fo r 8 hours, then dried 

in a fume cupboard and heated at 250°C for 12 hours. Approximately 1 mg o f the dty 

sediment was weighed into each silver cup. The cups were placed on the T e f l o n plate 

and lef t overnight i n a desiccator or to remove moisture. T o remove inorganic carbon 

(carbonate), samples were saturated wi th deionised water (1-2 drops were added to each 

cup using a syringe) and placed in a 2500 m l desiccator containing - 2 5 0 m l 

concentrated hydrochloric acid overnight in a fridge. The acid in the desiccator was 

replaced wi th each new batch o f samples (ca. 80 samples in a batch). H C l and water 

were removed by placing samples in an oven at ~ 5 0 ° C fo r 1.5 hours. A f t e r that, the 

cups were closed and left overnight in a desiccator. Determination o f total organic 

carbon contents (%TOC) and C„,j,/N was performed on C H N elemental analyser 

EA1108, (Carlo Erba Instruments). 
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2.3.1.1. Appraisal of elemental analysis (Carbon and Nitrogen) 

Procedural and analytical reproducibility was determined fo r the analyses wi th a 

homogeneous "sediment standard" (analysed once fo r ever}' 10 samples to be 

validated). The average reproducibility was: 

- 0.25% (2a) fo r % T O C 

- 1.42 (C,„^/N units at 2 a ) fo r C „ , / N 

2.3.2. T o t a l chlorins 

For total pigment analysis, the organic extract obtained after microwave extraction and 

before it was cleaned up, was re-dissolved in 500//1 o f acetone and mechanically stirred 

(Whir lmix) . A n aliquot o f the solution was analysed by absorbance spectrophotometr)', 

using an H P L C system, consisting o f Dionex P 580 series pump attached to a Dionex 

PDA-100 photodiode array detector. The system was operated in o f f - c o l u m n mode, 

w i t h an isocratic f l o w o f acetone ( I m l / m i n ) each sample being injected three times. A n 

absorbance spectrum was generated fo r a range o f visible wavelengths (k = 380nm -

800nm), the absorbance was measured fo r the whole range at a 5nm bandwidth, using 

770nm as a reference wavelength. Data acquisition and integration were made w i t h 

Dionex Chromeleon PC based software. Integration o f the last two absorbance peaks 

produced an averaged peak area (the first was to flush the system). The procedure 

fo l lowed aims to quantify the total pigment abundance o f the sample, not individual 

pigments. Provided that chlorophylls, their derivates, and some carotenoids have similar 

absorption maxima the absorbance measurement at a fixed wavelength o f 410nm and 

664nm is approximately representative o f such total abundance (RoseU-Mele, 1994). 

The relative magnitude o f an absorbance fo r a given wavelength (A;^) per gram dry 

sediment (M) was expressed as Vx and calculated by: 

P;, = (A,. X D F ) (2.1) 

M 

Where D F was the di lut ion factor 

The spectrophotometer light source was allowed to stabilise fo r one hour prior to 

analysis. Samples f r o m wi th in a core were generally analysed on the same day to avoid 

errors f r o m any systematic day-to-day shif t in instrumental response. I f analysis was 
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needed on subsequent days then several samples f r o m the first set o f analyses were 
taken as references, and analysed at the beginning o f the session to check fo r significant 
signal d r i f t (i.e. greater than 1 sigma), which in fact was never observed. The analysis o f 
pigments was non-destructive, and the aUquots put through the H P L C system were 
recovered and combined wi th the rest o f the sample. 

2.3.2.1. Appraisal of total chlorins 

Procedural and analytical reproducibility was determined fo r the analyses wi th a 

homogeneous "sediment standard" (analysed once for every 10 samples to be 

validated). The overall average reproducibility had a C V o f 12% (at 2a.). 

2.3.3. Gas Chromatography with F I D ( G C - F I D ) 

This was performed using a Fisons 8000 Series gas chromatograph fitted w i th a flame 

ionisation detector ( F I D ) . Aliquots o f XjA were injected either manually or by an AS 800 

auto-sampler. The split/splidess injector was held at 300°C. Injections were made in 

splidess mode (purge valve open wi th 3 m l m"' flow, split valve closed), using the hot 

needle technique (needle held in injector fo r 2 s before inject ion and 5 s after) the 

injector liner was purged after 20s (purge valve open w i t h 2 m l m ' flow, split valve 

open wi th 20mlm"'). T w o column tj^pes and temperature programs were used dur ing the 

thesis to pe r fo rm separation: 

a) A n SGE BP-1 fused silica co lumn (30m x 0.25mm i.d. , coated wi th 0.25//m film 

thickness). The oven temperature program was: 6 0 ° C held fo r 1 min , 6 0 ° C to 

200°C at a rate o f 20°C m i n ', 200°C to 290°C at a rate o f 6 ° C m i n ', held at 290°C 

for 30 min , 290°C . to 310°C at a rate o f 20°C m i n ' and held at 3 1 0 ° C for 2 min. 

b) A n SGE BP-1 fused silica co lumn (60m x 0.25mm i.d., coated w i t h 0.25//m film 

thickness). The oven temperature program was: 60°C held for 1 min , 6 0 ° C to 

200°C at a rate o f 2 0 ° C m m 2 0 0 ° C to 305°C at a rate o f 2 0 ° C m i n ' , held at 

305°C fo r 20 m m , 305°C to 320°C at a rate o f 15°C m i n ' and held at 3 2 0 ° C for 

35 min . 

Hydrogen was used as a carrier gas (18psi head pressure). Data acquisition and 

integration were made wi th Dionex Chromeleon PC based software. 
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2.3.4. G a s Chromatography Coupled to M a s s Spectrometry 

When quantif)dng «-alkanes by G C - F I D , the correct allocation o f G C peaks was 

checked for a number o f samples by conf i rming the chemical structure o f the individual 

compounds by mass spectrometry (MS). GC-MS was performed using HP6890 G C 

coupled to MS5973 MS (HP/Agi len t ) at the Autonomous University o f Barcelona. 

Injector temperature was 300°C (spUtiess mode). Separation was achieved wi th an H P -

5MS capillar}' co lumn (30 m x 0.25 m m internal diameter, f i l m thickness 0.25 |J,m). 

He l ium was used as a carrier gas (10.58 psi) and the oven-temperature program was 

80°C to 150°C at 15°C m i n ', 150°C to 300°C at 6 °C m i n ' and 300°C fo r 30 min . The 

mass spectrometer was operated in electron impact mode (ionising energy 70 eV); ion 

source temperature 250°C, mass range m / z 40-800. Individual compounds were 

identified by comparing mass spectra wi th those in the literature. 

2.3.5. G a s Chromatography Coupled to Mass Spectrometry with A m m o n i a 

C h e m i c a l lonisat ion ( G C - C I - M S ) 

The instrumental set-up was based upon the methods o f (Rosell-Mele, 1994). Analysis 

was performed by the author or by Dr 's J. Carter & I . BuU at the N.E.R.C. Organic 

Mass Spectometry Facility (School o f Chemistry, University o f Bristol) using a Varian 

3400 gas chromatograph f i t ted w i t h a septum equipped programmable injector (SPI) 

which was directiy coupled to a Finnigan M A T T S Q 700 triple stage quadrupole mass 

spectrometer. AJiquots o f 1 juX were injected by a C T C A200S autosampler. The SPI was 

operated in "high performance" non-vaporizing mode, whereby the injector was held at 

80°C during inject ion then rapidly temperature programmed f r o m 80-300°C at 

2 0 0 ° C m i n '. G C separation o f the analytes was achieved using a 50m, 0.32mm i.d. fused 

silica column, w i t h 0.12//m CPSIL5-CB f i l m thickness (Chrompack). The oven 

temperature program was: 200 -300°C at 6 ° C m i n ' w i th no initial hold time and a f inal 

isothermal period o f 10 minutes. Hydrogen was employed as a carrier gas wi th a head 

pressure o f 8psi. 

Operating conditions fo r the mass spectrometer were optimised for sensitivit}' w i th 

respect to the C,^ methyl alkenones. The conditions used were: i on source temperature 

160°C, electron energy 70eV, electron current 400//A, and electron multiplier voltage at 

1500V wi th an electrometer gain o f 10". Chemical ionisation was achieved using high 
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puri t) ' ammonia (BOC micrographic grade) introduced to the ion source through the 
conventional C I gas inlet. The pressure inside the ion source was regulated to ca. 0.85 
Tor r , giving rise to a pressure o f 4.5x10'^' T o r r in the vacuum manifold . Ten ions, 
corresponding to the p V I + N H J ^ species o f the analytes (Table 1.1, chapter 1) were 
monitored by scanning the third quadrupole w i t h a scan rate o f 0.1 sec per Dal ton . The 
overall analysis was governed f r o m the TSQ 700 using an Instrument Cont ro l Language 
( ICL) procedure, which controlled the autosampler, the G C and the MS. 

Once acquired the data were processed in D u r h a m by the author using PC based 

XcaUber software. Integrated peak areas were wri t ten into a Mic rosof t Excel 

spreadsheet fo r further processing. 

2.3.6. Identification and Quantif ication of Analytes 

The compounds identif ied and quantified in this thesis consist o f several alkenones and 

alkyl alkenoates spanning the carbon number range C,, -C^g and - to a lesser extent - n-

alkanes in the carbon range Cj j -C, ; . The l U P A C nomenclature, notation and other 

details fo r the alkenones and alkyl alkenoates are given in Table 1.1 (chapter 1.1). The 

method fo r identif icat ion and quantification was dependent on the method and analysis: 

2.3.6.1. GC-FID 

Peak identif icat ion was based on chromatographic relative retention times. 

Ident i f icat ion is based on the elution time o f each compound compared to a reference 

compound - either an internal standard injected w i t h the sample or an alkenone 

standard injected separately using the same conditions - or to several compounds that 

f o r m a recognisable pattern, according to their relative retention times and abundances. 

The alkenones f o r m a recognisable pattern in the G C trace, changing only sUghtiy 

amongst samples f r o m different oceanic locations. The «-alkanes typically f o r m a 

distinctive pattern o f a homologous series, and are of ten the most abundant compound 

class in the l ip id fraction. 

Thus, although the relative proportions o f the compounds vary, using a specific G C 

column the elution order is always the same. As a general rule, the elution order i n a G C 

trace, when using the chromatographic conditions described, is a func t ion o f the af f in i ty 

o f the compounds fo r the column and their boi l ing points. I n the case o f the alkenones 
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and alkyl alkenoates, those that have three double bonds are more polar than the 
diunsaturated species and hence are less retained, elute first, f r o m an apolar column. 
However, the selectivity o f this procedure is not guaranteed. Coelutions o f other 
compounds wi th the targeted analytes are d i f f i cu l t to recognise, unless the peak shape is 
distorted. However, this method o f analysis remains the most commonly applied in 
palaeoceanographic studies. Moreover, the samples were cleaned-up to minimize the 
likelihood o f coelutions w i t h the targted analytes. Representative traces displaying a 
typical nor th Adantic open-ocean pattern fo r alkenones and «-alkanes, and a brackish 
coastal N W Scottish sample pattern o f alkenones and «-alkanes, are illustrated in 
Figures 2.2 and 2.3, respectively. 

Quantif icat ion o f an analyte per gram dty' sediment or gram organic carbon ( M \ ) was 

made wi th reference to the mass o f internal standard added before extraction (M^) 

according to the fo l lowing calculation: 

M , = (M , s /R , s ) X R,, (2.2) 

M 

Where M is the mass o f dty sediment or organic carbon, and R^ and R,̂  are the G C -

F I D response o f the internal standard and target alkenone, respectively (expressed as 

the integrated peak area). 

The percentage recovety (W) o f the sample was quantified wi th reference to mass and 

response o f the internal standard, and to the mass (Mj^j) and response (R,,^) o f the 

recovety or G C standard - added to a sample just before analysis - using the fo l lowing 

calculation: 

W = M„s X R „ (2.3) 

2.3.6.2. Appraisal of GC-FID 

The detection limit o f G C - F I D was established at -0 .5 ng//LA. This was determined 

by injecting a number o f increasingly dilute solutions o f alkenone standards unt i l the 

signal obtained was not statistically different (95% confidence) f r o m the background 

noise. Below 0.5 ng/ /vl the analyte peaks can be detected but not accurately measured. 

Errors in the estimation o f the U'^,-,' index at alkenone concentrations near the l imi t o f 
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detection (<10ng alkenones) have been reported in the literature (Grimalt et al., 2001; 
RoselJ-Mele, 1994; Roseil-Mele et al., 1995a). The linearity o f the U V index on the 
G C - F I D system used in this saidy was tested by injecting (x 3) a di lut ion series o f 
synthetic alkenones wi th an expected U'^37' value o f 0.19 (C„3:C37 2 = ~5:1) (Figure 2.4). 
A t total alkenone concentrations o f above 5ng, mean U^ ,^ ' values were close to 
predicted (0.20 ± 0.01) w i th a high precision (C.V. <2 .3%) , below 5ng there was 
increasing scatter i n the mean U'^37' value (± 0.05) and more variable precision (C.V. 1 -
8%) (Figure 2.4). Therefore, during analysis o f alkenones fo r this thesis, by G C - F I D , 
concentrations were moni tored and adjusted, whenever possible, so that were above 
5ng. 

Procedural and analytical reproducibility was determined fo r the analyses w i t h an 

homogeneous "sediment standard" (analysed once f o r eveij 10 samples to be 

validated). The overall average reproducibility fo r the fo l lowing measures was: 

Absolute quantification o f alkenones & alkenoates = C V o f 5.92% (at 2a). 

Absolute quantification o f «-alkanes = C V o f 9.3% (at 2a). 

«-alkanes CPLs.,, = 0.33 (2a o f C P I 2 5 „ units). 

- U'^,7' = 0.011 (2a o f U"",, ' units), this gives an error o f 0 .33°C using the Prahl 

(1988) calibration. 

2.3.6.3. GC-Cl-MS 

The idenification o f alkenones by this technique was first performed by Rechka & 

Maxwell (1988), w h o performed probe C I spectra o f a synthetic C^y^Me standard. 

Rosell-Mele (1994) later developed the method for identif ication and integration o f the 

f u l l suite o f alkenones and alkenoates using the GC-CI -MS system at Bristol . G C - C I -

MS has an advantage over electron impact ionisation in that it barely fragments the 

target molecule — providing better in format ion on the molecular ion o f the compound. 

The alkenones and alkenoates f o r m an adduct w i th the reagent ions to f o r m a 

pseudomolecular ion [ M + N H J * through ionic association. The pseudomolecular ion is 

the base peak - there are also significant ions at [ ( M + N H 4 ) ^ + 1 ] and [ M + N H 4 ) ^ + 2 ] . I t 

has been suggested that the former may be given by the isotopic contr ibut ion o f '^C, 

and the latter by protonat ion o f pseudomolecular ion by the carrier gas (hydrogen) and 

the '''C2 isomer, although these assignments have not been proven (Rosell-Mele, 1994). 
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A n example mass chromatogram o f the total ion current and pseudo-molecular ions o f 
the alkenones and alkyl alkenoates is illustrated in Figure 2.5. 

Operating conditions for the analytical system and data system (Finnigan M A T ICISI) 

were supervised by J Carter foUowing the methods o f (Rosell-Mele, 1994). The peaks 

corresponding to the [ M - I - N H J * species o f the analytes were integrated to determine 

the alkenone within-class-distributions. 

2.3.6.4. Appraisal of GC-Cl-MS 

Rosell-Mele et al. (1995b) previously undertook a wide-ranging evaluation and 

optimization o f the GC-CI -MS system used in this thesis. The instrumental set-up f o r 

this study used the previously optimised parameters fo r source temperature and 

pressure o f ammonia chemical ionisation, established by Rosell-Mele et al. (1995b). The 

linearity o f the system was measured at the start o f analysis, using a di lut ion series wi th 

an expected U*̂ ,̂ ' value o f 0.19 - ~5:1) fo r comparison wi th the results 

obtained by Rosell-Mele et al. (1995b). The method was found to provide similar linear 

quantitation i n a range o f peak concentrations between 0.02 - 20 ng/)a.l (20 - 2 *10'' 

pg/ l^ l ) (Figure 2.6). A t peak concentrations above ~20ng/ |^ l the system was overloaded 

and the measured peaks were truncated. A t total alkenone concentrations between ~ 1 -

12 ng, mean values were close to predicted (0.20 ± 0.01) below ~ l n g there was an 

increase in value (± 0.035). Therefore, during analysis o f alkenones fo r this thesis, 

by GC-CI -MS, concentrations were moni tored and adjusted, whenever possible, so that 

they did not fal l below ~ l n g or d id not overload the system. 

Procedural and analytical reproducibility was determined for the analyses w i t h a 

homogeneous "sediment standard" (analysed once for every 10 samples to be 

validated). The overall average reproducibility fo r the fo l lowing measures was: 

- U'^,; = 0.017 (2a o f U V units), this gives an error o f 0.51 °C usmg the Prahl 

(1988) caUbration. 

- = 0.02 (2a o f 0*^37 units), this gives an error o f 0 .63°C using the Rosell-

Mele (summer) (1995c) calibration. 

- % C „ ^ , = 0.79 ( 2 a o f % ) . 
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The selectivity o f the method is ensured by identif}dng each compound f r o m its 
retention time and the m / z o f its pseudo-molecular ion , the abundance o f which is used 
fo r quantification. Therefore, erroneous peak identification and quantitation are less 
likely than i f only retention time were used. 

2.3.7. G C - C I - M S compared to G C - F I D . 

Rosell-Mele (1995a) have previously compared values o f U'^37' measured by GC-CI -MS 

and G C - F I D in the same samples. A n experiment using synthetic alkenone standards 

found no statistical difference between the methods. However, i n environmental 

samples greater scatter existed in the relationship, characterised by more frequent 

overestimation o f the C^^ , alkenone by G C - F I D at high U'^,^' values (i.e. relatively low 

abundance o f C,^.,). I t was suggested that this may be due to coelution o f the C,^,, w i th 

other compounds, wh ich results in integration errors at low abundances o f C „ 

Many o f the study areas in this thesis are concerned w i t h the accurate measurement o f 

the relative abundance o f the tetra-unsaturated alkenone (VoC^j.^. This compound 

typically occurs in vety low abundances in m i d and low latitudes in open ocean 

environments. I n samples f r o m such an environment the estimation o f % C 3 7 4 by G C -

F I D may be vulnerable to a bias introduced by coeluting compounds. Moreover, this 

thesis reports some unusually high values o f % C 3 7 4 observed in high-latitude open 

ocean samples. Therefore, uti l izing the selectivity o f the GC-CI -MS system was 

important fo r improv ing confidence in such novel results. The sea-surface filter samples 

(chapter 3) were analysed bo th by GC-CI -MS and G C - F I D . The results fo r values o f 

U"^,, ' and %C3y 4 are compared in Figures 2.7 and 2.8 respectively. The plot o f the values 

f o r U'^37' compares w i t h that previously reported by Rosell-Mele (1995a), w i t h bo th 

instruments providing similar results but w i t h a slight relative overestimation by G C -

F I D . The plot o f the values for % C 3 7 . , show a linear relationship, but w i t h G C - F I D 

of ten overestimating % C 3 7 4 - relative to GC-CI -MS - by - 1 0 % . This may be due to 

coelutions o f the C37 4 w i t h other compounds in the G C - F I D system. Something which 

has been reported as a problem by other workers (Sicre et al., 2002, & Bard pers. 

comm.) Hence, Figure 2.8 suggests, firstiy, the importance o f using the GC-CI -MS 

method in order to obtain accurate %C37.4 values. Secondly, i t demonstrates that care 

should be taken when comparing values o f % C 3 7 4 measured by GC-CI -MS to values 

measured by G C - F I D in the literature. 
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Cover image - The KRS James Clark Ross - steaming through sunshine and "pancake" ice - approaches the ice pack in the 

East Greenland Current, during cruise JR51 (August 2000). On this campaign samples, with remarkably high %Cj^^, 

values, were collected from polar waters. 
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3.1. Introduction 
Over the last decade, the alkenone unsaturation index V^-^-,' has been widely adopted by 

palaeoceanographers as a proxy to estimate past SSTs. This index measures the relative 

abundance of the di- and tri-unsaturated C,, alkenones (C,^,, C37.3). The tetra-

unsaturated compound (C374) is not incorporated in 13^^-,', this is practical because C37., 

is rarely found in measurable quantities in temperate to low latitudes. Moreover, a 

number of studies have demonstrated that while the temperature response of C,, 2 and 

C37.3 is relatively linear, the environmental controls on the biosynthesis of C37 4 are less 

certain (e.g. Freeman and Wakeham, 1991; Prahl and Muehlhausen, 1989; Prahl and 

Wakeham, 1987; Rahman, 1995; RoseU-Mele, 1998; Sikes and Sicre, 2002). 

In the northern North Adantic, SSTs reconstructed from alkenone indices are subject 

to increasing error in regions where present SST faUs below ~6°C (annual mean 0-30m) 

(Levitus, 1982; RoseU-Mele et al., 1993). Coincidentally, in these sub-polar and polar 

regions the abundance of C374, relative to the other C37 alkenones (%C37 4) increases 

significantiy (Rosell-Mele, 1998). GlobaDy, the main source organism of alkenones is 

assumed to be Emiliania huxlgi, however this species is rare in polar and arctic waters 

(Baumann et al., 2000) and the dominant polar coccolithophore Coccolithuspelagicus is not 

known to produce alkenones. Alkenone patterns, characterised by high values of %C37 4 

are found in lacustrine sediments, where they are produced by an unknown (but non- E. 

huxleyt) biological source (e.g. Cranwell, 1985; Zink et al., 2001). Therefore, it is 

uncertain whether the biological precursor of the oceanic cold water alkenones 

(characterised by high %C37 4) is £ . huxleyi or a currently unknown algae. 

Recent studies have suggested that %C37.4 in high northern latitudes may have a 

relationship to salinit}' (Harada et al., 2003; Rosell-Mele, 1998; Rosell-Mele et al., 2002; 

Sicre et al., 2002) and several studies have attempted to apply the %C37 4 measurement 
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downcore as a proxy for palaeo-salinity (Bard et al., 2000; Rosell-Mele, 1998; Rosell-
Mele et al., 2002). The prospect of a proxy that can estimate palaeo-salinity changes or 
identify meltwater events is highly desirable. This is especially true for the Nordic seas 
where winter sea surface densification and formation of deep-water masses play a key 
role in driving the global thermohaline circuladon. 

Further investigadon of alkenone distribudons in the Nordic seas surface waters is 

necessary, as previous North Adantic water column smdies have reported no (Conte 

and Eglinton, 1993; Thomsen et al., 1998) or very few (Sicre et al., 2002) results from 

the Arctic and Polar water masses. The advantage of studying water column particulate 

organic matter (POM) is that alkenone systematics can be directly compared to ocean 

parameters in situ. Moreover, an advantage of filtered seawater samples — compared to 

sediment traps - is that it enables a relatively large number of samples to be collected 

and a large geographic area to be covered. However, the approach is limited in that it 

can only provide a temporal and spatial "snap shot" measurement of environmental 

conditions, rather than an integrated seasonal and depth signal. Furthermore, in the case 

of senescent bloom material, potential temporal offsets exist between the time of 

alkenone synthesis and collection/measurement of temperature. 

Each approach has advantages and limitations, therefore it is important to combine and 

compare data obtained from water column POM, sediment and culture studies, in order 

to constrain the processes that set alkenone distributions in ocean sediments. I n the 

Nordic Seas, a more comprehensive water column POM survey is needed to 

compliment the extensive surface sediment studies of alkenone distributions by Rosell-

Mele (1998; 1995). 
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3.2. Aim and Objectives 
The overaU aim is to clarify, delimit and extend the application of alkenone proxies for 

palaeoceanographic studies in sub-polar to polar regions, with particular reference to 

alkenone distributions in sea surface POM. Samples from across the spectrum of 

property gradients (i.e. covering all the characterisdc water masses) of the Nordic seas 

were obtained during two cruises of the RRS James Clark Ross QCK) in 1999 & 2000. A 

special advantage of the JCR is the ice strengthened hull (see appendix I , Plate la). This 

facilitates sampling in environments such as the East Greenland Current, under 

conditions of up to - 80% sea ice (see appendix I , Plates lb & Ic). 

The main objectives were: 

To investigate the relationship between the relative abundance of alkenone 

distributions (especially %C374) in sea surface POM to sea surface variables and 

coccolithophore biogeography in the Nordic Seas. 

To compare alkenone distribution data from sea surface POM samples with 

previously reported sedimentary data from the Nordic Seas. 

To place the Nordic Seas sea surface POM data in a global context. 

To compare alkenone distributions with palaeoceanographic reconstructions of 

SST, SSS and ice-cover derived from dinoflageUate cyst (dinocysts) assemblages 

in the same core. 
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3.3. Background 

The background for biomarker and organic matter applications is given in chapter 1. 

The background in this section is a brief outline of the contemporary physical and 

ecological oceanography of the Nordic Seas, and is relevant to this chapter (3) and 

chapter 4. The classic work on the Nordic Seas region is The Norwegian Sea by Helland-

Hansen and Nansen (HeUand-Hansen and Nansen, 1909). Several syntheses have been 

written since, work up to 1945 is summarised by Sverdrup et al (1946), from 1945 to 

1963 by Lee (1969), from 1972-1985 by Hopkins (1991). Comprehensive reviews of the 

physical oceanography have been made by Coachman and Aagaard (1974) and by 

Johannssen (1986) and the hydrography of the water masses was reviewed by Swift 

(1986). In the last few decades, several reviews have concentrated on the formation of 

deep-water masses in the Nordic Seas and the exchange of water across the Greenland-

Scotiand ridge; processes that play a key role in the global thermohaline circulation (e.g. 

Dickson and Brown, 1994; Hansen, 1985; Hansen and 0sterhus, 2000; van Aken and 

Becker, 1996). Longhurst (1998) recentiy reviewed the region with special reference to 

the control of the physical oceanography on pelagic biogeography. 

3.3.1. The contemporary physical and ecological oceanography of the Nordic 

Seas 

3.3.1.1. Physical Oceanography 

The Nordic Seas are an area of strong east to west hydrographic gradients; characterised 

by seasonal and spatial variations in the physical properties of the surface waters (SST, 

SSS), sea ice distribution and deep water formation. The present surface current system 

is characterised by the interaction o f relatively warm (6 -15°C) and saline (>35 psu) 

Atiantic source waters and cold (<5°C), less saline (<34.4 psu) polar source waters. 

Table 3.1 (page 60) gives typical properties for the main surface water masses. Figures 

3.1 and 3.2 illustrate the surface to near surface circulation and deep water flows 

respectively. Figure 3.3 illustrates the major oceanic fronts. The bathymetr)' is also 

illustrated in Figures 3.1 -3.3. The bottom topography of the Nordic seas region 

strongly affects the complex circulation and distribution of the water masses. 
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Comparison of the figures highlights the correlations between topography, circulation 

and frontal systems. Current and water mass acronyms used in this thesis are 

summarised in Figures 3.1 - 3.2. 

Table 3.1: Typical ranges of physical properties for the main surface water masses of the Nordic 

Seas. 

Acronym Name Temperature range Salinity range (psu) 

(summer) 

N A W North Adantic Water ~ 6 ° C ^ 35.30 

M N A W Modified North Atiantic 7.0 8.5°C 35.10^35.30 

Water 

NCW Norwegian Coastal Water 5 1 7 ° C -30.0 35.0 

A W Arctic Water ~3 34.4 35.0 

PW Polar Water -1.5 ^ 5°C 34.4, in summer as low as 

29psu 

Sources: (Conknght et al., 1998; Hansen and Qsterhus, 2000; Johanessen, 1986; Swift, 1986) 

The Adantic inflow reaches the Nordic seas via the Greenland-Scodand ridge and has 

several branches (Figure 3.1). The North Adantic Current (NAC) sends one branch 

north; part of which passes west of Iceland (the Irminger Current, IC) (Stefansson, 

1962). The IC continues through the east of the Denmark Straight, where some of the 

water is diverted into a branch turning southwestwards to run parallel to the East 

Greenland Current, so that only a part ends up in the North Icelandic Current (NIIC) 

(Dietrich et al., 1975). This current flow is maintained even in winter when the 

proximity of the East Greenland Polar Front (PF) gives rise to strong property 

gradients (fohanessen, 1986). On its path further eastwards, the N I I C feeds the North 

Icelandic shelf area with relatively warm, saline water which, however, rapidly loses it's 

Atiantic character (heat and salt) so that the percentage of Adantic water reduces to less 

that 30% by the northeastern corner o f Iceland (Stefansson, 1962). 

Another more pronounced branch of Adantic water flows southeast of Iceland splitting 

into lesser currents - flowing over the Rockall-Hatton Plateau and east of the Faroes 

(Hansen and Osterhus, 2000). This is joined in the east by the Continental Coastal 

Current (CSC), whose waters are slighdy warmer and more saline, a result of having 
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some Mediterranean input and having not been partially mixed with northern waters in 
the Gulf Stream (Hansen and Osterhus, 2000). 

The advection north of Atiantic water has a profound influence on the Northern seas 

and climate of Western Europe, releasing a large amount of sensible heat (~5xlO^' 

cal/yr) to the atmosphere (Broecker and Denton, 1989). The NAC carries Adantic 

source water far north, even as far as the Kara Sea (Dickey et al., 1994). To the west, it 

forms a frontal jet (nomenclature varies; is this case the Arctic Front) and to the east, it 

is bounded by the salinity dominated Norwegian Coastal Front (NCF) (Johanessen, 

1986; Saetre and Mork, 1981) (Figure 3.3). This front is an unstable eddy field formed 

between the NAC and the Norwegian Coastal Current (NCC). The source of the latter 

is the return of Atiantic water heavily diluted by the brackish outflow from the Baltic 

Sea and runoff from the Norwegian f)ords and from Western Europe Qohanessen, 

1986). 

These two components flow north, being modified by eddy mixing at the front as they 

proceed (Johanessen, 1986). O f f North Cape, most water from the combined flow 

passes eastwards into the southern Barents sea, while some continues north, 

contributing to the West Spitsbergen Current (WSC) (Hopkins, 1991) (Figure 3.1). The 

water passing into the southern Barents Sea feeds the gyral circulation, which returns 

westwards to the south of Spitsbergen Qohanessen and Foster, 1978). 

Polar waters enter the upper layers of the region from the Arctic Ocean (Swift, 1986). 

The East Greenland Current (EGC) carries polar water southward and out through the 

Denmark Strait (Figure 3.1), while two branches transport smaD amounts eastward into 

the interior basins; the Jan Mayen Current QMC), to the north of the Jan Mayen 

Fracture Zone, and the East Icelandic Current (EIC), which flows southeast along the 

continental slope northeast of Iceland (Figure 3.1) (Swift, 1986). 

Between the regions dominated by the polar and Atiantic source waters, lies a region 

where the two source waters mix in two anticlockwise gyres. These regions are 

characterised by upper layer waters that are relatively cold (0 to 4°C) and saline (34.6 to 

34.9 psu) (see Figure 3.1). This is Swift's (1986) Arctic Province (or Arctic Waters AW). 

It's upper waters are warmer and more saline than the polar water in the East 
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Greenland Current though still cooler and less saline than the Adantic water. Moreover, 
the waters of this region are denser than either of the surface source-water masses (a, = 
27.5 to 28+) (Swift, 1986). 

This dense A W contributes greatiy to the vertical instability of the region; so that winter 

cooling and wind mixing cause strong deep convection (Dickson and Brown, 1994). 

Deep convection occurs most prominentiy at the locations illustrated in Figure 3.2 

(Hansen and 0sterhus, 2000). The processes o f formation are complex and vary with 

location and time. It is now recognised that there are two distinct mechanisms for 

creating deep water. In the Greenland Sea (in winter) surface water may be convected 

direcdy to the bottom waters masses by deep convection in the open ocean (e.g. 

Aagaard et al., 1985). The second formation mechanism involves dense water being 

formed in the shallow shelf regions surrounding the Arctic Ocean, through brine 

rejection during the formation of sea-ice (e.g. Aagaard et al., 1985; Midttun, 1985). The 

deep water and intermediate water masses accumulated in the Norwegian and 

Greenland basins overflows, intermittendy, the submarine ridge. Overflow occurs at 

various specific locations - through the Denmark Strait, between Iceland and the 

Faeroe Islands and through the Faeroe-Shedand Channel (Brown et al., 1998; Hansen 

and Osterhus, 2000). 

The complex systems of warm and cold currents in the Nordic Seas are arbitrarily de

limited by a number of ocean fronts, which reflect strong quasi-permanent boundaries 

in the temperature and salinity fields. The fronts are convergence zones of cold, less 

saline water with warm saline water such that the strong changes in the temperature and 

salinity compensate each other with regard to density (Johannessen, 1986). Figure 3.3 

illustrates the five distinct fronts found in the region as defined (geographically) by 

Johannessen (1986). I t should be noted that a problem with the graphical representation 

of fronts and o f currents - such as those in Figures 3.3 - is that they appear both 

misleadingly linear and permanent. Considerable water mass exchange of course takes 

place across fronts through small and mesoscale eddies (e.g. Allen and Smeed, 1996; 

Allen et al., 1994; Johanessen et al., 1983; NORSEX_Group, 1983). 

3.3.1.2. Ecological Oceanography 

The water masses and fronts identified in Figures 3.1 and 3.3, broadly coincide with the 

boundaries of ecological provinces of the region (Longhurst, 1998). These provinces are 
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distinguished by inter alia: data collected for phytoplankton productivity and herbivore 
and zooplankton ecology, which is controlled by seasonal insolation, mixed layer 
depths, brackish water stratification and pycnocline- and nutricline -depths. 
The ecolog)' of the polar waters is distinctive (from lower latitudes) as phytoplankton 
growth is primarily controlled by light availability and temperature, rather than by 
nutrient availability (Longhurst, 1998). Diatoms and haptophytes are the most abundant 
and important constituents of the nano- and micro-plankton of polar waters (Marchant 
and Thomsen, 1994). There is a relatively small — compared to warmer regions -
contribution from picoplankton (< 3.0 fim diameter) (Trotte, 1985). I t is principally the 
effects o f the freeze-thaw cycle that control the pelagic ecology. Thawing sea ice in 
spring releases fresh water to create strong density gradients, whereas freezing in the 
autumn results in brine rejection, causing instability and deep inixing. Therefore, in the 
early spring the water column is mixed, nutrient levels are high and net carbon fixation 
is not yet established (Smith and Brightman, 1991). In late spring, the thawing and 
receding ice edge results in strong stability conditions conducive to phytoplankton 
blooms (increase in standing stock) of extremely high productivity (15—700 mg 
C/mVday) (Longhurst, 1998). The colonial stage of the haptophyte Phaeocystis pouchetti 
commonly dominates the phytoplankton of the ice-marginal zone (Marchant and 
Thomsen, 1994). Coccolithuspelagicus is the most commonly reported coccoUthophore in 
polar waters, occurring at temperatures between 0 - 1 0 ° C as far north as 86° (Baumann 
et al., 2000; Honjo, 1990), while recent work has found a large number of Ughtiy 
calcified coccolithophore species in polar waters (Marchant and Thomsen, 1994, and 
refs. therein). The only known regional alkenone producer E. huxleyi is reported as rare 
in regions not influenced by Adantic surface water (Winter et al., 1994). Copepod 
species dominate the herbivore and mesozooplankton communities with protists only 
accounting for 10-20 % of biomass (Longhurst, 1998). 

In the Arctic waters, as in the Polar regions, the effect of the seasonal freeze-thaw cycle 

is important - although the occurrence of spring brackish layers is less pronounced -

and is spatially patchy (Longhurst, 1998). The seasonal production patterns also 

resemble the polar waters in that production tracks the irradiance cycle. However, a 

major difference is the greater wind stress, inherent pycnocline instability' and deep 

winter mixed layer depth (~500m) of the Arctic waters. This has implications for the 

seasonal ontogenetic migrations of the major herbivores (copepods), which may be 
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disturbed by deep water formation and suffer massive sporadic recruitment failures 
(Richter, 1994). The colonial haptophyte P. pouchetti is the dominant spring bloom 
organism (Smith et al., 1991). The most common coccolithophore is generally C. 
pelagicus, followed by E. huxleyi (Andruleit, 1997). Higher abundances (100-500 x l O ' 
ceUs/l) for E. huxleyi than C. pelagicus (10-100 xlO'' cell/1) have been reported in the 
arctic waters around Jan Mayen, but the species is much less common in the Greenland 
Sea (Baumann et al., 2000). 

In the Adantic type waters of the Nordic seas, wintertime deep mixing is more 

moderate than in the Arctic waters. Rapid near surface stabilization occurs in April and 

May and induces phytoplankton blooms (-3-4 mg chl/m^), typically diatoms, followed 

by the colonial form of P. pouchetti znd E. huxleyi, (Longhurst, 1998; Key, 1981; Sakshaug 

and Holm-Hansen, 1984). I n the mixed layer, chlorophyll values remain relatively high 

throughout the summer (>2.0 mg chl/m"') (Longhurst, 1998). E. huxleyi \s the dominant 

coccolithophorid followed by Coccolithus pelagicus and Algirosphara robusta may also be 

common (Andruleit, 1997; Winter et al., 1994). In late summer blooms of 

coccoUthophores are consistendy observed in surface colour images south of Iceland 

(Brown and Yoder, 1994). Copepods (especiaUy genus Calunus) dominate the herbivore 

and mesozooplankton and also perform seasonal depth migration as in the Arctic 

province (Longhurst, 1998). 

3.4. Study Specific Experimental 

3.4.1. Filter samples, retrieval and storage 

Filters of seawater POM were obtained onboard the RRS ]ames Clark Ross during 

summer cruises in 1999 (25/7/99 - 28/8/99) and 2000 (28/7/00 - 29/8/00). The 

cruises were funded by NERC under the Arctic Ice and Environmental Variability 

(ARCICE) thematic programme. Sample details are given in Tables 3.2 and 3.3 (page 68 

& 70), the cruise tracks and sample locations for both cruises are iUustrated in Figure 

3.4 and Figure 3.5. Uncontaminated seawater was continuously pumped to the ship's 

laboratories from a supply tube beneath the hull. The depth of the tube inlet beneath 

the sea surface was approximately 6m depending on ship's load. The supply tube was 

extended by a further 30cm below the hull, except in ice conditions, when it was flush. 
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The POM was filtered from seawater collected in the laboratory from the 
uncontaminated supply. Water column data (SST, SSS, fluorescence) was logged 
throughout the cruise using the ships oceanlogger system. The oceanlogger system is a 
PC-based logging system, with the primar)' purpose of logging measurements from the 
ship's continuously-run data sources. Accordingly, it draws data from the ship's pumped 
uncontaminated supply, plus assorted meteorological parameters. Seawater temperature 
was measured by a probe mounted near the huU close to the inlet. Salinity was 
measured, from the uncontaminated supply, by a SeaBird SBE45 thermosalinograph 
located in the prep room. Fluorescence (Chi. a ug/1) was measured by a Turners 
Instruments fluorometer, also located in the prep room. For each sample collected, the 
ship's position at start and finish was taken from a Trimble 4000DS differential GPS 
receiver located on the bridge and the time (GMT) noted. The high resolution 
oceanlogger data (measurements made every Is) was converted to files of 1 minute 
averages. The averaged files were then used to derive Ocean Data View cruise tracks 
and sea surface propert)^ maps and to calculate average measurements o f SST and SSS 
for the period (~20mins) when each POM sample was coUected. 

During JR44, the salinity readings from 2/8/1999 onwards (filter sample no.13) were 

considered erroneous due to a malfunction of the conductivity sensors (Bacon and 

Yelland, 1999). Therefore, for the remaining filter samples, the salinity was taken from 

the CTD profile obtained at the same station. The operator and work-up methods of 

the POM samples differed between the two cruises, the details are given below: 

a) Cruise JR44 (AKCICE 1999) 

Samples were obtained between 25/7/99 - 28/8/99. A seawater sample (volume 110-

140 1) was collected into carboys. A concentrated particulate suspension of 

approximately 1 1 in volume was obtained from the seawater sample using a MiUipore 

PeUicon tangential flow filtration system, fitted with two Millipore low protein binding 

"Durapore" microporous filter membrane cassettes in parallel. 

The POM was then isolated from suspension by filtration through a Whatman 70 mm 

G F / F glass fibre filter within a standard evacuated Buchner funnel/flask apparatus. The 

vacuum required was provided by a Brook Crompton Betts Model 8524 PVH-A12 

corrosion resistant pump. The dry particulate laden filters (~2 per station) were then 
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placed into a clean 50 ml Teflon — capped Pyrex sample botde using clean forceps. A 
40 ml mixture of D C M / M e O H (3:1) was added and the sample was then sealed and 
stored in the ship's -20°C refrigerator, until transfer to universit}' refrigerators (-20°C) 
for storage prior to lipid extraction and analysis. 
b) Cruise]K51 (ARCICE 2000) 

Samples were obtained on this cruise by the author between 28/7/00 — 29/8/00. Using 

the ship's underway uncontaminated seawater supply system, a seawater sample 

(volume 60-153 litres) was collected into carboys. The particulate material was then 

isolated direcdy from suspension by filtration through a manifold consisting of 5 

Buchner funnel/flask apparatus each holding a Whatman 70 mm GF/F glass fibre filter 

(pre-cleaned by firing at 450 °C) attached to a 201itre glass vacuum chamber. The 

chamber was evacuating by using a K N F Laboport® vacuum pump. 

From each station one filter was retained in a petri-dish for later identification of the 

coccolithophores. The remainder of the filters were prepared for organic geochemical 

analysis. The particulate laden filters were examined under binocular microscope and 

any large copepods were removed with a fine pick. The filters for a station were then 

placed into a clean 50 ml polypropelene capped (aluminium foil lined) glass botde using 

clean forceps. A 100 ml mixture of D C M / M e O H (3:1) was added and the sample was 

then sealed and stored in the ship's -20°C refrigerator, until transfer to university 

refrigerators (-20°C) for storage prior to lipid extraction and analysis. 

3.4.2. Cores 

The boxcores analysed in this study were part o f a series of cores obtained by successive 

cruises of the German vessel the Me/i?or between 1987 and 1989. The cores were sub-

sampled on board by A. Rosell-Mele, at 1cm intervals - for the top 5cm - and at 5cm 

intervals below 5cm. The sub-samples were stored frozen or in a cool room until being 

freeze-dried. The samples used in this study had been freeze-dried and stored sealed at 

room temperature since —1993, prior to analysis for this thesis. 

Core PL-96-126 was collected by gravit}' corer from onboard the R / V Professor 'Logachev 

in 1996. The core was sub-sampled on board at 10cm intervals by Anne deVernal and 

colleagues. Sub-samples were stored in a cool room and subsequentiy freeze-dried prior 

to analysis. 
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3.5. Results & Discussion 
3.5.1. Summary of in situ oceanographic conditions 

As described above sea surface propert)' (SST, SSS & chl. a) and ship's positional data 

were recorded continuously by the ]CK data logging systems. Additional, depth profile 

data was collected during both cruises. Temperature and salinit}' were measured by 151 

CTD probes during JR44. A primary mission of the JR44 cruise was to study the 

vertical circulation of the ocean, therefore a large number of CTD measurements were 

made. The primar}' mission of JR51 was the collection of high resolution bathymetry 

data, XBT probes (which measured only temperature) were used (27 in total) to 

calibrate the sonar equipment. The sea surface, depth profile and positioning data were 

combined and used to create Ocean Data View (ODV) files. O D V is a computer 

program "for the interactive exploration and graphical display o f oceanographic.. .data" 

(Schlitzer, 2001). Figure 3.6 - Figure 3.9 are O D V output maps which iUustrate the in 

situ oceanographic conditions measured during the two cruises. SST and SSS 

distributions are illustrated along with a selection o f depth profiles in Figure 3.6 & 

Figure 3.7. In situ chlorophyll a measurements are illustrated, with SeaWiFs remotely 

sensed chlorophyll a for comparison, in Figure 3.8 & Figure 3.9. The position and 

extent of sea-ice o f f the east coast of Greenland is also interpreted from the SeaWiFs 

images. The assignation of certain black areas in the SeaWiFs chlorophyll images as sea-

ice (rather than cloud) was confirmed by reference to SeaWifs true colour images (not 

shown). 

The tjfpical Nordic Seas ranges of SST and SSS listed in Table 3.1 (page 60) were used 

to delimit the major water masses and to estimate the positions of the PF, AF and NCF. 

Primarily, the SSS isoline at 34.4psu was used to estimate the position of the PF, 

likewise the 35psu isoline was used to estimate the position of the AF (in the northwest) 

and the NCF (in the southeast). Figures 3.4 - 3.9 reveal that there was considerable 

variation in the position of these fronts between August 1999 and 2000. 

In 1999, the PF seems to follow the continental shelf (Figure 3.4), relatively closely 

especially south of ~74°N. Also, the dense sea-ice does not seem to extend south 

beyond a position level with the Hold with Hope Penisula (Greenland) at 74°N (Figure 

3.8). The polar waters are characterised by cold SSTs of <5°C and as illustrated by the 

SSS profiles (Figure 3.6), a marked freshening of the top 10m (by meltwater). A contrast 
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is highlighted in Figure 3.6 between the Polar water depth profile furthest from the PF 
and two profiles obtained closer to the PF. In the later two cases, there is a warmer 
intermediate water mass occurring at 20m, presumably a result of mixing near the PF 
and the denser (more saline) waters sinking beneath the Polar water. In 1999, the AF 
seems to follow, relatively closely, the line of the Mohns ridge, a position often ascribed 
as t}'pical for the A F in reviews o f Nordic Seas oceanography (e.g. Johanessen, 1986) 
(see Figure 3.3). This results in a fairly large expanse of A W occupying the Greenland 
Sea between the Polar waters of the EGC in the west and the Adandc signature waters 
in the Norwegian Sea to the east. In the northeastern Nordic Seas, the WSC was 
observed to carry Adantic signature waters fairly far north to ~78°N where there 
appears to be a sharp gradient to Polar type waters at ~80°N. In the depth profiles, the 
Adandc and Arctic waters are distinguishable from the Polar waters by warmer 
temperatures and the absence of a shallow halocline. The profile from the N I I C shows 
Atiantic waters beneath a sharp halocline (and thermocLine) at ~10m depth. This N I I C 
profile may show the freshening influence of meltwater from the Icelandic Vantajokull 
ice cap (which partially drains to the northern fjords) and/or mixing with the EGC and 
EIC. This is consistent with studies which show the progressive loss of Atiantic 
properties of the N I I C on it's passage to the east (Stefansson, 1962). In 1999, the NCF 
seemed to follow, fairly closely, the Norwegian continental shelf (see Figure 3.4). 

The cruise track in 2000 did not extend as far to the northeast, therefore inter-annual 

comparisons for this region are not possible. However, in the central, southern and 

western Nordic Seas, there was a degree o f overlap and therefore comparisons can be 

made. In August 2000 there appeared to be some significant differences in the physical 

oceanogrpahy of the Nordic Seas compared to 1999. In the southwest Nordic Seas, in 

August 2000, the PF seems to extend much further from the continental shelf (Figure 

3.5). The sea-ice also appears to extend further south to a position level with the King 

Oscar's Fjord (Greenland) at 72°N (Figure 3.9). However, there appeared to a be a 

larger opening of the ice-pack further North, compared to August 1999, with a large 

polynya visible to the northeast of Greenland (Figure 3.9). In 1999 the AF seemed to 

follow, relatively closely, the line of the Mohns ridge, (see Figure 3.4) with a fairly large 

expanse of A W occupying the Greenland Sea. This contrasts with the situation in 2000 

where the PF and AF are, geographicaUy, much closer in the central Nordic seas, due to 

the PF occupying a position further east and Adantic signature waters pushing much 
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farther west into the Greenland Sea. North o f Iceland the SSTs appear to be warmer 
than those measured in 1999 despite the greater proximity of the PF. In 2000 the NCF 
seems to have pushed father west from the Norwegian continental shelf compared to 
1999 (see Figures 3.4 & 3.5). Overall, Figures 3.4 and 3.5 illustrate that there was 
considerable interannual variability between 1999 and 2000 in the positions of the 
oceanic fronts. However, POM filter samples were successfully collected from of aU the 
major water masses of the Nordic Seas in both 1999 and 2000. 

3.5.2. Alkenone Distributions in the Nordic Seas 

3.5.2.1. Absolute abundance 

Alkenones were detected in all of the major water masses of the Nordic seas, across a 

spectrum of SST values from -0.5 to 13°C and SSS values from 29.6 to 35.6 (psu). The 

geographic and water mass distributions of alkenone abundances are illustrated in 

Figure 3.10 and Figure 3.11. Concentrations of C 3 7 + Cjg alkenones (ELCK) as 

measured by GC-FID ranged from 1.8 - 109 ng/L of filtered seawater. Alkenones were 

absent or not detectable in 21 of the 50 samples after analysis by GC-FID (detection 

limit of ~ lng) . Further analysis by GC-CI-MS (detection limit 0.02 ng) measured 

alkenones in a further five samples, leaving 16 samples barren of alkenones after 

analysis by both GC-FID and GC-CI-MS. Ten of the barren samples were obtained 

from the Arctic waters o f the Greenland Sea gyre and six from the polar waters of the 

East Greenland Current (see Figure 3.1 & Figure 3.10). However, alkenones were 

measured in six of the eleven samples obtained from polar waters in conditions of up to 

80% sea ice (see appendix I - plates lb & Ic). The polar waters were distinct from the 

Arctic and Atiantic water masses by the consistentiy low concentrations (0- 7.8 ng/L). 

The highest concentrations (30 — 109 ng/L) were found in regions influenced by 

Atiantic source waters, specifically the North Icelandic Irminger Current (NIIC), the 

Shedand Current (SC) and the Norwegian Atiantic Current (NWAC) (see Figures 3.1, 

3.10 & 3.11). However, some low concentrations (<lng) were also found in the regions 

strongly influenced by Atiantic waters. 

Fluoresence was measured continuously during both cruises and converted to 

Chlorophyll a ( m g / m ^ It can be considered as a crude measure of phytoplankton 

standing stock. Higher alkenone concentrations were generally measured in samples 

with a chlorophyU a reading near to or the mean (20 mg/m'). However, a linear 
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regression (R- = 0.001) confirms there is no significant linear relationship between the 
concentration of alkenones and the fluoresence measurements. This suggests that non-
alkenone producing phytoplankton groups (e.g. diatoms, dinoflagellates, the haptophyte 
P. pouchetti) contributed significantiy to the fluorescence signal and that the productivity 
of such groups was not tightiy correlated with the main producer of the alkenones. This 
is supported by SeaWiFS data of PIC (a proxy for coccoUthophore blooms) which 
suggest that there were no E.huxleyi blooms in the Nordic seas during the periods of the 
two cruises (Brown, 2003). 

3.5.2.2. %C„:, 

3.5.2.2.1. %C37 4 in sea surface POM during August 1999 & 2000. 

Geographical distribution of values of %C37 4 are shown in Figure 3.13 and Figure 3.14. 

The most prominent aspect of the data, is the conspicuously high values of %C37 4 in 

samples obtained from the polar waters of the EGC. High values (i.e. >5%, the typical 

open marine, mid to low latitude maximum) of %C374 have been previously observed in 

a diverse range of lacustrine environments (CranweU, 1985; Li et al., 1996; Thiel et al., 

1997; Volkman et al., 1988; Zink et al., 2001), in coastal/brackish sediments (Ficken and 

Farrimond, 1995; Schoner et al., 1998; Schulz et al., 2000) and in the open ocean in high 

latitudes, (Harada et al., 2003; Rosell-Mele, 1998; Sicre et al., 2002; Sikes et al., 1997) 

(see Table 1.3, chapter 1). The highest previously reported value for °/oC^-^.^ - in the open 

ocean water column - is 4 1 % obtained from the sub-polar waters of the Bering Sea by 

(Harada et al., 2003). The highest value for the Nordic Seas is 35%; recorded in a 

Greenland Sea, POM filter sample by Sicre et al (2002) (see Table 1.3, chapter 1). This 

thesis reports %C37,, values o f >40% from the six Polar water samples that yielded 

alkenones, with a maximum %C37,, o f 77% in sample JR44-14 (Table 3.2, page 68). This 

contrasts with the previous investigation by Sicre et al (2002); which did not detect 

alkenones in the truly polar waters of the Nordic Seas (salinity o f <34.4). In fact, the 

37:4 two samples collected on 2" August 1999 from the EGC yielded the highest %C 

values (72 & 77%) observed in any environment: marine, brackish or lacustrine (see 

Table 1.3, chapter 1). 

Examples of the GC-traces of alkenones from different regions of the Nordic seas (and 

covering a spectrum of alkenone patterns) are illustrated in Figure 3.13. Figure 3.14 

highlights the clustering o f high %C374 values (40 - 77%) within the Polar waters, with 
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low values (0 - 3%) in Adantic waters. Low to intermediate values (0 - 28%) were 
obtained from water masses that are not classified as truly Polar or Adantic. Further 
inspection of the samples from the "intermediate" water masses reveal: 

Low "/oCjy 4 values of 0 - 4% in the Shedand current. The Shedand Current is an 

Atiantic source current which has lowered salinities as a result of mixing with 

the Norwegian Coastal Current (as opposed to low salinit)' Polar waters). 

Low to intermediate %C^-,.^ values of 4 — 13% in the Icelandic Sea, North 

Icelandic Irminger and East Icelandic Currents. These are water masses which 

result from varied mixing of Polar and Adantic sources. 

A relatively high %C37 4 value of 28% from the Jan Mayern Current, a current 

with a strong source in the East Greenland Current. 

Intermediate %C37 4 values of 10 - 12% from the region in the far north in 

which the West Spitsbergen Current (Atiantic source) mixes with the East 

Greenland Current. 

Examination of the VoC^^j.^ values plotted against SST and SSS (Figure 3.15); reveals that 

%C37 4 is linearly correlated to SST (equation 3.1). While, a correlation of slightiy higher 

significance (higher and lower relative error of the coefficients) is achieved with SSS 

(equation 3.2): 

%C„^4 = -5.5 (±5.5) X SST +56.5 (±4.5), R2 = 0.76 (n = 34) (3.1) 

% C „ 4 = -13.4 (± 1.2) X SSS+ 472.6 (± 42), R2 = 0.79 (n = 34) (3.2) 

Using a multiple regression o f %C374 vs SST and SSS, the following equation is 

obtained: 

%C374 = 311 (± 54.1)- 8 X SSS (±1.7) - 2.8 x SST (±0.7), R2 = 0.86 (n = 34) (3.3) 

Again the relative error is larger for SST than for SSS. Previous work - in the Nordic 

seas and northern North Adantic surface sediments (RoseU-Mele et al., 2002) and sea 

surface POM (Sicre, 2002) - has found a stronger relationship of %C374 to SSS, than to 

SST. A similar observation was made by Harada (2003) for a small number of sea 

surface POM samples from the Bering Sea. Results from this study, however, find litde 

difference in the significance of the correlations of %C374 to SST and SSS. Moreover, 

the distribution of %C37 4 plotted against SSS (Figure 3.15) displays considerable scatter 

- especiaUy in polar waters - and %C374 appears (visually) unconvincing as a linear 

predictor of SSS. 
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One problem of attempting to assess the relative influence of SST and SSS on alkenone 

distributions in the Nordic Seas is the fact that there is a degree of the correlation 

between the two parameters. However, as illustrated by the scatter of SST versus SSS 

measurements in 3.14a this relationship is far from linear. In the Nordic Seas both SST 

and SSS decrease with movement from Atiantic type waters to polar waters, however, 

SST initially decreases more rapidly than SSS, whereas in the colder waters SSS 

decreases more rapidly compared to SST. A linear regression suggests that each of the 

independent variables can only predict about 50% of the variance in the other (see 

Figure 3.14a). Therefore, i f only one independent varaible (SST or SSS) controlled 

%C37.4, and the other had no relationship to %C^j.^ it should be possible identify which 

one was dominant. 

3.5.2.2.2. Comparison of %C37 4 distributions with previously reported water column 

and surface sediment data 

Greater insight into the oceanographic significance o f the %C37 4 values reported in this 

thesis may be obtained by comparing the data with previous water column and 

sediment data obtained f rom the Nordic Seas and North Atiantic. Figure 3.16 compares 

the geographic distribution of water column and sediment surface samples collected for 

this thesis, with surface sediments collected by RoseU-Mele (1998) and POM samples 

coUected Sicre et al (2002). In the Nordic Seas region there is considerable overlap of 

sediment and water column samples; which facilitates a comparison. Figure 3.17 

illustrates plots of the water column and surface sediment samples vs SST (a) SSS (b) 

and by water mass (c). 

- Water column data 

Values of %C37 4 measured in sea surface POM in this study are similar, for a range of 

SST and SSS considered, to those from suspended POM measured in the fluorescence 

maximum in Atiantic and Arctic water masses between June and September 1999 (Sicre 

et al 2002). However, no alkenones were detected in polar waters by Sicre et al (2002) 

whereas in this study several samples contained them. At present we do not have an 

explanation for this discrepancy. I t is unlikely that the sensitivit}' of the technique used 

is a significant issue. The concentrations of alkenones measured in some of the polar 

water samples in this study were very low (<7ng/L) and beyond the sensitivity of the 

F ID used. Hence, samples were analyzed by GC-CI-MS, a much more sensitive 
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technique (see chapter 2). Sicre et al (2002) reported values as low as 0.8 ng/L, which 
suggest their methods should have been sensitive enough to detect alkenones in four of 
the samples from polar waters analyzed in this study. I t might be significant, however 
that the volume of water filtered by Sicre et al (2002) was lower (40 - 601) than in this 
study (mean volume filtrated of 125L). Perhaps more significant is that Sicre et al (2002) 
- presuming a correlation between chlorophyll pigments and alkenones - took samples 
at the depth of the in situ fluorescence maximum, which varied across the Nordic Seas. 
The sampling depth for this study was fixed at 7m. I t has been shown in this study that 
there is not necessarily a correlation between fluorescence and alkenone abundance (see 
Figure 3.12). Therefore it is possible that the Sicre et al (2002) sampling strategy did not 
guarantee the highest recoveries o f alkenones from the water column, in the Polar 
waters. 

I f the filtered POM data from the present smdy and that from Sicre et al (2002) are 

combined and used for regressions of %C374 against SSS & SST, the linear correlation 

for %C37.4 vs SST (equation 3.4) becomes weaker, compared to a regression based on 

just the data from this thesis (equation 3.1, R^ = 0.78): 

%C37̂ 4 = -2.7 (±0.3) x SST + 37.6 (±3.6), R2 = 0.5 (n = 69) (3.4) 

The weaker correlation appears to be due to greater scatter in the Sicre et al (2002) data 

for %C37.4 vs SST. Combining the data sets also results in a slighdy weaker linear 

correlation for %C374 vs SSS, when compared to a regression based on just the data 

from this thesis (R' = 0.79): 

%C374 = -12.7 (±0.9) X SSS + 450.1 (±33.1), R2 = 0.72 (n = 69) (3.5) 

Overall, the combined data set - despite giving a stronger correlation for %C37 4 with 

SSS than with SST - does not present %C37 4 as a convincing linear predictor of SSS: 

due to scatter in the polar water cluster and the inconsistency in the slope of the 

relationship. 

Recendy Sikes & Sicre (2003) assessed the global relationship of SST and SSS to %C37 4; 

the authors reported no discernable relationship of %C37 4 in the water column to SST 

or SSS on a global scale. Two new datasets are now available to add to the global 

database, since the publication of the Sikes & Sicre (2003) work: this study (Nordic 

Seas) and Harada et al (2003) (Bering Sea). Both new studies report high values of %C37 4 
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in the surface waters of high northern latitudes. Figure 3.18 illustrates the global 
distribution of water column %C37 4 versus SSS and SST, with the new data 
incorporated. The approach of Sikes & Sicre (2003) is adopted, in that samples which 
do not record %C37 4 are not included. As this would add a large number of zero points 
at temperatures greater than ~15°C, confounding the statistics. Values of %C374 showed 
no significant correlation to SST using the new global data-set: 

%C37 4 = -1.4 (± 0.3) X SST + 21.2 (±2.6), R' = 0.17 (n = 122) (3.6) 

This is partly due to the data from the Southern Ocean, which clearly contrasts with 

that from the northern hemisphere in the relationship of %C374 to SST. The global 

correlation of %iC37.4 to SSS was stronger, however, SSS only explains about half of the 

variation in %C37.4 on a global scale: 

%C37̂ 4 = -9.1 (± 0.8) X SSS + 321.3 (±27.2), R' = 0.52 (n = 122) (3.7) 

Figure 3.18b clearly highlights a difference in the relationship of %C374 versus SSS 

between the Nordic Seas and Bering Sea basins. Data from both basins feature high 

values of %C37.4, however, %C37.4 values are higher for the Nordic Seas (50-77%) than 

for the Bering Sea (18-44%), in polar waters with a similar salinity range (30 - 32 psu). 

This may suggest that other parameters not measured - such as nutrients — may have an 

additional influence. Another explanation is that this may reflect regional (i.e. genetic) 

differences in the physiological response of the of alkenone producers to a given 

environmental variable. This contrasts with the relationship of %C374 to SST, data from 

the two basins are grouped together when %C374 is plotted against SST (see Figure 

3.18a). In order to explore further the contradictions in the relationship of %C37 4 to SSS 

& SST in the northern hemisphere basins, regressions were made using the northern 

hemisphere data only. The equations show stronger relationships for both SST and SSS 

with %C37.4 for the northern hemisphere data-set (over the global data-set): 

%C374 = -2.9 (± 0.3) X SST + 39.9 (±3.4), R' = 0.51 (n = 77) (3.8) 

%C37 4 = -9.8 (± 0.8) X SSS + 348.1 (±27.6), R' = 0.66 (n = 77) (3.9) 

However, the relationship to SSS for the northern hemisphere is weaker than when the 

Nordic Seas (R' = 0.72) and the Bering Sea (R' = 0.76, Harada, 2003) are considered 

separately. This contrasts with the relationship to SST, which is similar in the Nordic 
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Seas (R" = .0.51) to the northern hemisphere as a whole (0.5), but is insignificant in the 
Bering Sea data-set (R' = 0.17). 

Overall there is no strong global or even hemispherical relationship of % C 3 7 t o SSS or 

SST. However, % C 3 7 4 clearly shows some correlation with both parameters in individual 

basins, the relationship with SSS being generally stronger in the northern hemisphere. 

Rather than a linear relationship with an individual parameter the data is clustered. In 

the Nordic Seas this takes the form of a cluster of high % C 3 7 4 values associated with 

polar waters and a low value cluster with Atiantic waters, with mixing between these 

two groups in the intermediate water masses (e.g. Arctic waters). The fact that E. huxleyi 

is rare in polar waters suggests that there may be two alkenone producing groups, one 

associated with polar waters (unknown) and one with Adantic waters (£. huxleyi). 

- Surface sediment data 

In the Nordic Seas higher values of %C374 are generally found in POM samples than in 

geographically proximal sediments (Figure 3.17). This is especially apparent in the polar 

water samples (<34.4 psu), where sediment values do not exceed 20% but water column 

values are 40 - 77%. Reasons for this discrepancy may include: 

Greater relative diagenetic alteration of the C374 compound than the C372 and 

C37.3 alkenones. 

The high % C 3 7 4 signal produced in polar surface water is diluted in the 

underlying sea surface sediments by resuspension and mixing with advected 

allochthonous matter containing relatively higher abundances of C373 and C372 

alkenones. 

-%C,j.^ in hoxcores and assessment of diagenetic bias 

Alkenones - like all lipid compounds - degrade in the water column and in sediments 

following sequestration. I t is sometimes argued that alkenone ratios may be biased 

through preferential degradation or incorporation - into macromolecular organic matter 

- of the components with more double bonds (C37 4>C37 4>C37 2) (Fliigge, 1997; Freeman 

and Wakeham, 1991; Gong and Hollander, 1999; Hoefs et al., 1998). However, smdies 

that report significant biases (e.g. >0.5°C in the U'^37' index) are outnumbered by papers 

reporting no or minor biases as a consequence of C37 alkenone degradation in the water 

column or sediments (Grimalt et al., 2000, and references therein). To investigate 
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whether is preferentially degraded - which may account for the discrepancy 

between sea surface POM and surface sediments described above - three box cores 

from the Nordic Seas were analysed. I f the most recendy deposited sediments can be 

retrieved intact, then early diagenesis of the C 3 7 alkenones may be invesdgated. 

However, i f the preferential degradation of the C 3 7 4 alkenone is severe, then a consistent 

trend of decreasing values of "/oC,̂  ^ should "overprint" any climatic signal in the top 

most sediments. Boxcores were preferred for this investigation as they usually preserve 

the top sediments without disturbance - unlike piston corers. The location o f the 

boxcores collected is illustrated in Figure 3.16, results of analysis are given in Figure 

3.19 and are summarised in Table 3.4 (page 81) with data from previous work. 

Figure 3.19 illustrates for each core the GC-CI-MS response of the C 3 7 alkenones in the 

top sediments (0 to 5 or 10cm) normalized to the top (0cm) sample and the values for 

%C37 4. The results from boxcores showed that all of the C,̂  isomers experienced an 

exponential decrease in concentration from the 0cm to 5cm of -80%. This was 

accompanied by some large changes in the values o f %C374 e.g. up to 8% between 

minimum and maximum values in HM71-14. However, C37.4 did not consistendy 

degrade faster than the other C 3 7 alkenones. Overall, between top (0cm) and bottom 

measurements (5 or 10cm) %C37,, was observed to increase by 4.7% in HM94-25 and 

decrease by 2.2% in HM71-14, while the overall change in HM80-43 of 0.05% was 

insignificant. The results o f the three cores give a mean change in %C,7 4 o f +0.8 (a 3.5). 

These results do not support suggestions that the C 3 7 . 4 compound is especiaUy 

susceptible to early diagenesis relative to the other C 3 7 alkenone compounds - at least 

once sequestered to sediments. 

The only previous work to focus significandy on the relative stability of the C374 

alkenone is an unpublished thesis by Fliigge (1997), who studied alkenones in laboratory 

degradation experiments, sediment traps and boxcores from the Norwegian Sea. The 

results of the Fliigge (1997) study are summarized in Table 3.4 (page 81). Fliigge (1997) 

estimated that C373 degrades 1.03 times faster than C372 and C374 -1.2 times faster, 

during the early stages of degradation. The mean effect on the %C37 4 value of aU the 

Fliigge (1997) experiments is a shift of -2.8%. I t should be noted that Fliigge used GC-

FID for analysis, which may have added uncertainty to the integration of the C374 

alkenone. Results from this thesis (chapter 2) and from Sicre et al (2002) have 
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highlighted problems relating to an unidentified compound that coelutes with the C374 
alkenone. This can be circumvented by using GC-CI-MS (this thesis) or GC-MS 
Selected Ion Monitoring (Sicre et al, 2002). Therefore, the results of Flugge (1997) may 
record the degradation signal of a coeluting compound as well as that of C37 4. Assuming 
that the Flugge (1997) data has not been biased by a coelutant, the C374 degradation 
experiments from this and Flugge's unpublished thesis cover timescales of 2 years 
(laboratory) to centuries (boxcores) and give a mean reduction of %C37 4 by 2.1%. 
Clearly, this is not sufficient to account for the huge differences in observed %C374 
values between the summer water column of the western Nordic Seas and the regional 
surface sediments. 

Therefore, an alternative explanation suggested previously must be invoked, that: 

alkenones with high %C374 values are produced in low abundances in polar waters (see 

Figure 3.11) and - due to the low abundances - the signal is vulnerable to dilution in the 

underlying sea surface sediments by resuspension and mixing with advected 

allochthonous matter containing relatively higher abundances of C373 and C372 

alkenones. 
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3.5.2.2.3. Comparison of high %C374 distributions to Coccolithophore biogeography 

One filter from each sampling station on cruise JR51 was preser\'ed for species counts, 

in order to further assess the source of the high %C37 4 alkenones in the Nordic Seas 

polar water. Counts of coccospheres and coccoliths were made by P. Ziveri, using 

microscopes (LM and SEM), the results are presented in Table 3.5 (page 83). 

Unfortunately, the counts contain an unknown error estimate; as the filter used (GFF), 

while typical for POM analysis, is not ideal for coccolithophore work and has an 

unknown fdtration efficiency (P. Ziveri pers. comm.). However, the results will still give 

presence or absence data and species ratios. The dominant species were E. huxleyi and 

C. petagicus f pelagicus with some minor contributions from C. pelagicus f hyalinus (C. 

pelagicus motile phase) and in one sample S. pulchra. Previous work has demonstrated 

that the ratio of E. huxleyi to C. pelagicus is >1 in Atiantic source waters of the Nordic 

Seas and <1 in arctic and polar water masses (Baumann et al., 2000). This pattern is 

generaUy seen in the coccolith counts from the JR51 filters but not in the whole 

coccosphere data, in which C. pelagicus is the dominant in most samples. This suggests 

that for the methodology used in this thesis, the primary signal may be best preserved 

by the coccoliths. 

Very high %C37.4 values were found in three of polar water samples from JR51, in 

samples 8, 12 and 13. In aU three samples the ratio of E. huxleyi to C. pelagicus was very 

low. No E. huxleyi coccospheres or coccoliths were found in sample 13, in sample 12 

only 74 /L E. huxleyi coccoliths were observed (no spheres) and in sample 8 83 /L and 

167/L cocco-spheres and —liths were observed respectively. I f the concentrations of 

ELCK were high for these samples then an alternative alkenone source would be 

logical, given the low representation of E. huxleyi. However, the alkenone 

concentrations were low (<5 ng/1) and some evidence of E. huxleyi^owth or advection 

was found in two of the samples. Therefore, there is not a compelling case for a novel 

source. 

This issue of the biological source can be further pursued with reference to published 

data on the coccolithophore biogeography of the region. Earlier work by Norwegian 

scientists reported E. huxleyi to be generally but not completely absent from truly polar 

waters (dominated by diatoms) of the Nordic Seas (Gran, 1929; Paasche, 1960, as 
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referenced by Winter et al. 1994; Smayda, 1958). A recent study of 410 plankton 

samples (collected during 1987 - 1995) found that the large E. huxleyi summer blooms 

are limited to the Norwegian and Barents Seas (>500xlO' cells/1) (Baumann et al., 

2000). Relatively high numbers (100-500x10^ cells/1) occured west of Jan Mayen, but 

further to the north/northwest in the Greenland Sea and EGC most samples were 

barren of E. huxleyi (Baumann et al., 2000). 

Table 3.5: Results of species counts of coccolithophotes and coccospheres for JR51 filters. 

Single Coavtiths Single Coccoliths 

Sample SST 
ELCK 

0/ A ' 
Total #/L Total #IL Notes from 

Sample SST 
H I ) 

E. C. Ratio E. C. Ratio SEM 
huxleyi petagicus E / C huxleyi pelagicus EIC 

1 11 19 0 - - - - - -

2 10 6 0 113 340 0.3 3629 454 8.0 

S 10 83 0 - - - - 116 0.0 

4 8 339 339 1.0 2539 508 5.0 

5 7 .3 3 116 463 0.3 347 347 1.0 

6 7 0 0 122 4146 0.0 - ,%6 0.0 Some corrosion 

7 6 - 488 0.0 975 610 1.6 

8 -1 .3 60 83 334 0.3 167 500 0.3 

9 6 - - - - - -

10 S - - - - - -

11 4 - - - - - -

12 

\S 

2 

1 

5 

0 

51 

52 

- 74 0.0 74 515 

76 

0.1 

0.0 

14 7 109 13 510 637 0.8 3950 -

15 8 39 11 - - - 92 369 0.3 .Major corrosion 

16 9 13 13 - - - - - - Some corrosion 

17 9 0 6 - - - -

18 1.1 7 0 425 142 3.0 3969 284 14.0 
M;iny S. pulchra 

The literature confirms that E. huxleyi is relatively rare and often absent in the Arctic 

and Polar water masses. However, E. huxleyi is known to be an extremely eur^'haline and 

eurj'thermal species - being able to withstand salinities much lower that the 29psu of 

the EGC (11 and 17-18 psu in the Sea of Azov and the Black Sea respectively) (Bukry, 

1974). Moreover, it has the largest natural temperamre range (1°C - 30°C) exhibited by 

any coccolithophore (Okada and Mclntyre, 1977). Furthermore, E. huxleyi's tolerance of 

different nutrient and light conditions in demonstrated by a natural distribution in both 

83 



Chapter 3: Distribution of long-chain alkenones in the Nordic Seas 

eutrophic (e.g. Norwegian Fjords, Conte et al., 1994) and oligotrophic (e.g. subtropical 
gyres, Ohkouchi et al., 1999) environments between 0 -200m and by laborator}' 
experiments (Prahl et al., 2003). Therefore, E. huxleyi is capable of producing alkenones 
in an environment as extreme as the EGC. However, in order to satisfactorily determine 
the source of the high % C 3 7 4 alkenones in the polar waters, E. huxleyi must be shown to 
be capable of reproducing such high values in culmre experiments, under similar 
physical conditions. 

3.5.2.3. U^.^andU^j/ 

U^jy and U^^j'in sea surface POM dunng August 1999 2000. 

Water mass distributions of U'̂ 37 and U'^37' are iUustrated in Figure 3.20 & Figure 3.21. 

Scatter plots of U'^37' and U'̂ 3̂7 vs SST are illustrated in Figure 3.22. Within the data 

from this study U'^37' has a relatively weak linear correlation with SST: 

U V = 0.014 (±0.003) X SST +0.13 (±0.24), R' = 0.44, (n = 33) (3.10) 

This is due, in part, to a loss of correlation between U'^37' and SST below ~10°C, 

whereby further decreases in temperature are not accompanied by a fall in the U'^37' 

index (which does not fall below — 0.2). A stronger correlation between 11*̂ 37' and SST 

is achieved with a 2""" order polynomial regression: 

U V ^ 0.002 X SST' - 0.011 X SST + 0.18, R' = 0.6 (n = 33) (3.11) 

In contrast to U'^37', a much strong linear correlation exists between U'^37 and SST: 

U''37 = 0.808 (±0.007) X SST -0.538 (±0.55), R' = 0.81 (n = 33) (3.12) 

This is due to the Linear correlation of the relative abundance of the C374 compound to 

SST and the inclusion of this compound in the U'^37 index (see Figure 3.15 & equation 

3.1, page 74). 

3.5.2.3.1. Comparison of U'^37 and U'^37' distributions with previously reported water 

column and surface sediment data 

K , 
37 In Figure 3.23 the data from this thesis is compared with global distributions of U 

and U'^37, measured on mixed layer POM. The data from this thesis includes the first 

successful measurements of alkenones on water column POM from below 4°C in the 

North Adantic; therefore it expands the global water column data-set. In Figure 3.23(a) 

the global relationship of water column U'^37' to SST is illustrated. The culture equation 

of Prahl et al (1988) - which is statistically the same as MuUer et ah (1998) core-top 
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equation - is included in Figure 3.23(a) fo r reference. A regression o f U'~ ,̂7' on SST was 
calculated using a 3"* order polynomial funct ion; this best represents the reduction in 
slope o f the relationship, at the two ends o f the temperature spectrum: 

U V = -3X10-' X SST'+0.0017 x SST'+0.007 x SST+0.067, R" = 0.94 ( n = 245) (3.13) 

A t SST > ° 5 the new Nord ic sea data plots w i th in the envelope o f previously reported 

global data (Conte and Egl in ton, 1993; Harada et al., 2003; Sicre et al., 2002; Sikes and 

Sicre, 2002; Sikes and Volkman , 1993; Ternois et al., 1998; Ternois et al., 1997). This 

reinforces the trend o f a systematic difference in slope o f the U'^,^' - temperature 

relationship, between that derived f r o m water column P O M and that derived f r o m 

culture by Prahl et al (1988) and f r o m core-tops by Muller (1998), whereby, the P O M 

data generally lie in a field that gives warmer-than-predicted growth temperatures at a 

given U'^37', particularly between ~ 5 - 1 5 ° C . 

The f o r m o f the global water column regression compares w i t h results f r o m culture 

experiments w i t h a number o f E. huxleyi and G. oceanica strains f r o m different ocean 

basins (Conte et al., 1998). The Conte et al (1998) study reported a reduction o f slope in 

the calibration o f U"^ , / to temperatures < 1 2 ° C and > 2 1 ° C (for some strains) and 

suggested that due to such inter-strain differences, locally derived SST calibrations may 

be preferable to applying the Prahl et al (1998) equation globally. However, such work 

does not explain the vexing offset between global surficial sediments (which mostiy 

fo l low the f o r m o f the Prahl et al (1998) equation and water co lumn P O M data. This has 

raised questions about what factors control the export o f alkenone material - produced 

in the euphotic zone - to depth and how these may influence the alkenone signamre 

imparted to sediments (Herbert, 2001). 

A t temperatures below 5°C , there is a distinct separation in the field o f 11*̂ 37' -

temperature data between the new observations f r o m the Nord ic Seas data and that 

f r o m the Southern Ocean. So that f o r a given growth temperature the value in the 

Nord i c Seas is ~0.1 units higher than the U'^37' value fo r the Southern Ocean. This 

deviation is emphasised by regressions - illustrated in Figure 3.23a - derived using 

N o r t h Adantic and non-Adantic data only. A similar divergence in temperature 

dependence o f the U'^37' index relationship has also been noted fo r surficial sediments 

o f the northern N o r t h Adantic and the Southern Ocean (Rosell-Mele, 1998). The new 
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Nord ic Seas water column data suggests that a significant part o f the trend observed in 
the surficial sediments may have a genuine biological component. 

I f the expanded global water column data-base is used to p lo t versus SST then the 

divergence o f values fo r the Nord ic Seas and Southern ocean - compared to U'^3y' - is 

accentuated (Figure 3.23b). This is due to the much higher concentrations o f C 3 7 4 

observed in northern waters. I n the surficial sediments o f the Nordic Seas there is no 

significant correlation between and SST below 10°C (Rosell-Mele, 1998). This is 

supported by a regression o f U'^37' measured on Nord ic Seas water co lumn P O M 

< 1 0 ° C : 

U V = 0.008 (± 0.0026) X SST + 0.16 (± 0.018), = 0.21 (n = 37) (3.14) 

However, the relationship U'^37 to SST measured on Nord i c Seas water column P O M 

< 1 0 ° C is much stronger: 

U^'jy = 0.082 (± 0.0093) x SST - 0.59 ( ± 0.064), R ' = 0.69 (n = 37) (3.15) 

Based on surficial sediments it has been suggested that the U*^,^ index is used to 

calculate SSTs in the Nord ic Seas region, rather than U'^37' (Rosell-Mele, 1998). The data 

f r o m this thesis suggest that U"^,, does indeed have a stronger relationship to SST than 

U'^37' at cold temperatures (<10°C) in the Nord ic Seas. However, as illustrated by Figure 

3.24 there are major differences between distributions o f U'^37 and U'^37' in the water 

column P O M and surficial sediments o f the Nord ic Seas fo r bo th indices. Therefore 

any SST calibration based on water co lumn data may have litde practical application to 

SST reconstruction in sediment cores i n parts o f the region. This contrasts w i t h the 

Southern Ocean, where the equation fo r sedimentar}' U'^37' and summer SSTs agrees 

w i t h that f r o m surface water P O M (Sikes et al., 1997). 

3.5.2.3.2. Reassessing the Limits o f the U'^37' index 

I t does not seem that the preferential diagenetic alteration o f the C37.3 compound 

(Grimalt et al., 2000, and references therein) or the C 3 7 4 compound (this thesis) can be 

severe enough to account f o r the differences between water column and core-top 

values. Alkenone resuspension and reworking is a more Likely alternative explanation. 

There are few studies which have specifically observed modern alkenone reworking in 

the Nord ic Seas. Thompsen et al (1998) suggested - on the basis o f two sediment traps 

sites - that i n the Norwegian Sea at least, biases may be introduced through 
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resuspension and lateral advectdon o f alkenone bearing material However, Flugge (1997) 
found that alkenone indices (including %C374) were not significandy biased in deep 
sediment traps f r o m the L o f o t e n basin. 

Indirect evidence o f potential alkenone bias i n the Nord ic Seas comes f r o m sediment 

traps which record coccolithophore assemblages. These show that temporal and 

regional input o f resuspended material to depth is highly variable (Andruleit , 1997; 

Samdeben et al., 1995). The most compelling evidence comes f r o m a recent sediment 

trap study which showed that coccolithophore assemblages in sediment traps 300m 

above the sea f loor in the Greenland and Norwegian Seas were strongly influenced by 

lateral advection wi th in the nepheloid layer (Andruleit , 1997). Pertinendy, E. huxleyi 

increased f r o m 25 to 5 1 % between 500m and 2300m in the Greenland Sea, but only 

increased f r o m 58 to 66% between 500m and 2300m in the Norwegian Seas (Andruleit , 

1997). This suggests that a warm bias "overprints" the local signal by advection and that 

this is more severe i n the Greenland Sea than in the Norwegian Sea. 

I t has been suggested that a '^/oC^i^ value o f 5% may be used as a threshold fo r the Umit 

o f the reliable application o f the U'^,^' index in the sediments o f the Nord ic Seas (RoseU-

Mele, 1998). This is based on empirical evidence o f alkenone abundances and 

coccoUthophores biogeography, i n modern ocean surface sediments the %C-^-,.j^ 5% iso-

line broadly coincides w i th the arctic f ron t (see Figure 3.3 and Figure 3.25). This f r o n t 

divides an E.huxlyei dominated coccolithophore assemblage (Adantic source waters) 

f r o m an assemblage dominated by C. pelagicus and which contains fewer E. huxleyi 

numbers (polar and arctic waters)(Baumann et al., 2000). 

The evidence outlined above suggests that sediment reworking may be a source o f error 

fo r the - SST relationship, i n the Nord ic Seas region and that this may be most 

severe in the Greenland Sea. Therefore, the samples that contribute scatter to the 

- SST relationship f o r the region may have a specific geographic distr ibution -

associated wi th areas o f a more active nepheloid layer or sediment mass movements. 

This may complicate any theoretical biological l imi t to the U ' ^ , / index. 

I n Figure 3.25 the geographic distribution o f the core-top values - that are 

responsible for scatter in the U'^37' -SST regression - are highlighted. The "scatter" 
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samples are defined as those that lie above an arbitrary envelope that contains 99% o f 
the data used fo r the MuUer et al (1998) core-top equation. The figure shows that the 
scatter samples are confined to the core-tops f r o m the East Greenland Shelf, the 
Greenland Basin, Mohns ridge, northern Iceland Plateau and upper Bear Island Fan. 
Samples f r o m the northern Adantic, Icelandic Shelf, Norwegian and L o f o t e n Basins 
and Barents Seas yield U*^,,' values that fal l w i t h i n the Muller et al (1998) data envelope. 
This division o f samples shows a reasonable agreement w i t h the %5 o f C37. , threshold, 
in that the 5% iso-line divides the Greenland basin f r o m the Norwegian and L o f o t e n 
basins. However it does not account for the "scatter" samples f r o m the Bear Island fan. 
This suggests that several factors must be satisfied to increase confidence in alkenone 
investigations in the Nord ic Seas. Firstiy that %C374 is moni tored and used generally as a 
marker downcore for Art ie water and the l imi t o f the U ' ^ ^ ' and U'^„ index. Secondly 
cores f r o m areas which yield modern \S^-^^ values f r o m wi th in the Muller et al (1998) 
data envelope should be preferred e.g. L o f o t e n plateau, Icelandic shelf. 

3.5.2.4. C38 alkenones 

I n addition to large changes in the relative abundances o f the C,^ alkenones, other 

prominent changes o f alkenone within-class-distributions are observed in the new sea 

surface P O M data. The representative GC-traces in Figure 3.13 illustrate increases in 

the unsaturation o f the Cjg alkenones coeval w i th the C37 alkenones. The general 

correlation between unsaturation o f the C37 and C,^ alkenones is demonstrated 

quantitatively by comparison o f C37 and C^^ alkenone indices and has been reported by a 

number o f previous workers (Marlowe et al., 1984; RoseU-Mele et al., 1993; Yendle, 

1989). 

Extremely high values o f %C37.4 (up to 77%) are reported f r o m polar water, i n this 

study. H igh values o f %C374 have also been previously reported in brackish and 

lacustrine environments (up to •-60%) (Cranwell, 1985; Ficken and Farr imond, 1995; 

Schulz et al., 2000; Z i n k et al., 2001). I n sediments f r o m these environments, values o f 

SC37/EC,j, and C3«Et /Me have been observed to take values distinctiy d i f ferent f r o m 

"normal open marine values" (Cranwell, 1985; Schulz et al., 2000). Specifically, in 

samples wi th high %C374 it has been observed that both the above measures o f t en 

increase in value, due to a drop in relative abundance o f the C^^^ alkenones, w i t h the C,^ 

Methyls in particular becoming reduced in abundance - o f t en to the point o f being 
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unmeasureable (Schulz et al, 2000). I n the Baltic Sea, i t has been suggested that changes 
in these indices could help to distinguish marine E . buxleyi source alkenones f r o m 
alkenones produced by an unknown source organism in low salinity (<8psu) waters. 

The polar water alkenones in this study may have a novel source, as E. huxleji is 

relatively rare in polar waters. Moreover, recent work presents evidence that 12 - 4 1 % 

o f D O M i n the Arc t ic Ocean is o f terrigenous origin and that fluxes o f terrigenous 

carbon through the upper 200m o f the E G C are 2.9-10.3 T g / y r (Opsahl et al., 1999). 

Alkenones have been observed in a number o f terrestrial lake sediments, including Lake 

Pichozero in Russia (Z ink et al., 2001). I t is not known what propor t ion o f the organic 

matter entering the Arct ic Ocean f r o m riverine sources bears lacustrine alkenones ( i f 

any) but it is a potential source o f bias. 

I n the data f r o m this study there is no significant correlation between SC37/SC3j, or 

C38Et/Me and the SST or SSS parameters (see Figure 3.27 & Figure 3.28). Moreover, 

the polar-water subset is not characterised by a significantiy d i f ferent range o f values fo r 

these parameters. Plot t ing the Cj^ ethyl versus Cjg methyl unsamration ratios (U'^j^Et 

and U'^jgMe respectively, see Table 1.2, chapter 1 f o r equations) has been suggested as 

method o f using the C,^ alkenone to con f i rm E. huxleyi as the main alkenone source 

(Conte et al., 1998). Figure 3.29 shows that the alkenones f r o m this study fall w i t h i n the 

data envelope fo r E. huxleyi determined by Conte (1998) on the basis o f culture work . 

Therefore, based on the Cjg alkenones, there is no evidence f o r a novel (non- E. huxleyi) 

source for the polar-water alkenones. 

3.5.3. Alkenone distributions in core PL-96-126 - further appraisal of VoCy^.^ as a 

palaeo-SSS indicator. 

The objective o f this section is to compare alkenone distributions in core PL-96-126 

w i t h data f r o m recendy developed proxies fo r palaeo-SSS, SST and sea-ice cover - based 

on dinoflagellate cyst (dinocysts) assemblages, which are applicable to the polar and 

sub-polar regions (de Vernal et al., 2001). The aim is to assess the responses o f 

alkenones distributions to environmental changes beyond the limits o f currendy 

established applications. The location o f the core and general oceanographic features o f 

the region are illustrated in Figure 3.30. Core PL-96-126 is located in a region which has 

a mean summer SST o f 5°C, a SSS o f 34.2 psu and which is subject to 3-7 months/year 
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o f > 5 0 % sea-ice (Conkright et al., 1998; Voronina et al., 2001). The core-top (10cm) 
value o f %C374 is 8%, therefore the region would be considered beyond the threshold 
for the reliable application o f the U'^ , , ' or U^jy. However the core-top value o f U'*'37, 
using the RoseU-Mele (1995) calibration, gives a reasonable summer SST estimate o f 
4 .7°C. 

The results o f the analysis are illustrated i n Figure 3.31. The alkenones were generally 

abundant throughout the core, but were not detected in two samples. The downcore 

%C37.4 record describes four significant phases dur ing which %Cy-^.^ values increase by 

~ 4 % . These phases broadly correspond to four events picked out by the dinocysts 

assemblages, during each event there is a ~3 psu decrease in the SSS proxy and a ~ 4 

mon th increase in the sea ice cover (month /y r ) proxy. However, the timing o f the 

%C37 4 and dinocyst events are not exacdy coeval T w o o f the events start 1 

sample/10cm earlier i n the %C37 4 signal at 320cm and 140cm, whereas at 240cm and 

30cm the events occur simultaneously in both records. Decoupl ing o f alkenone and 

microfossil records is possible under certain conditions (Bard, 2001). However, 

significant differential mixing o f the alkenones and dinocysts wou ld not be predicted, as 

alkenone producers (coccolithophores) - and dinocysts are both members o f the 

nanoplankton. Al though dinocysts (~20-100|Jm) are generally larger than 

coccolithophores (<20j^m) (Lalli and Parsons, 1997). 

The %C37 4 values were converted to a reconstruction o f palaeo-SSS using the equation 

o f Rosell-Mele et al, (2002). The results d i f fe r f r o m the reconstruction o f SSS using the 

dinocysts proxy. The values o f SSS derived f r o m %C37 4 being generally higher than the 

dinocysts at an equivalent depth. Moreover, the %C374 reconstruction is characterised 

by much lower amplitude fluctuations in SSS o f — generally - between 34 - 33 psu, 

whereas the dinocyst method is characterised by fluctuations o f between 34 -29 psu. 

Therefore, while the %C374 record is clearly responding to major changes in sea surface 

salinit}' (or a correlated variable), the results do not support a direct linear response o f 

%C37 4 to SSS, as modeled previously by the RoseU-Mele (2002) equation. I n Figure 3.31, 

it can be seen that the dinocyst sea-ice cover reconstruction is closely related to SSS. 

There is a clear association o f high % C , 7 4 values w i th ice-laden polar and arctic waters, 

as demonstrated in this thesis. Therefore in order to establish whether %C374 may be 

used to reconstruct sea-ice cover rather than SSS, values o f %C37 4 f r o m core-tops i n the 
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Nord ic Seas were regressed against average sea ice cover (months/yr) fo r the core-top 
localit)' obtained f r o m the W O D - 9 8 (Conkright et al., 1998). The results, illustrated in 
Figure 3.32, show that %C374 i n core-tops has no significant relationship wi th 
months /yr w i th 50% sea ice cover (R^ = 0.01). When the regression is made against 
months /y r w i t h 20% sea ice cover a more significant correlation occurs, however, this 
does not explain enough o f the variation fo r %C374 to be used as a sea ice proxy (R^ = 
0.42). 

The results o f the SST reconstructions using U'̂ 37 and dinocysts methods are also 

compared in Figure 3.31. The range o f summer SSTs reconstructed using the two 

methods are in reasonable agreement (4 -9°C). However, apart f r o m the bo t tom 100cm 

o f the core there is litde similarity i n the records. I n this case, the U^37 record must be 

rejected as % C 3 7 , , is maintained above the threshold o f 5% (aside f r o m one data point) . 

3.6. Conclusions 

Alkenones have been measured in P O M collected in the mixed layer f r o m across the 

spectrum o f water mass types in the Nord ic Seas. Alkenones distributions characterized 

by low abundances and extremely high %C^j,^ values (up to 77%) have been measured 

fo r the first time in polar waters (salinity <34.4 psu) under conditions o f up to 80% sea-

ice cover. Values o f % C 3 7 4 across the Nord ic Seas show a strong association w i t h water 

mass type, w i t h clustering o f high % C 3 7 4 values (40 — 77%) w i t h i n the Polar waters, low 

values (0 - 3%) in Adantic waters and low to intermediate values (0 - 28%) in other 

water masses (e.g. Arct ic , Norwegian coastal). The new % C 3 7 4 data is linearly correlated 

to both SST (R^ = 0.75) and SSS (R' = 0.79). However, the scatter i n the relationship 

does not yet con f i rm the use o f % C 3 7 4 as a palaeo-SSS proxy. When combined w i t h 

previous sea surface P O M data f r o m the Nord ic Seas and nor th Atiantic (Sicre et al, 

2001), the data-set shows a stronger correlation to SSS (R^ = 0.72) than to SST (R^ = 

0.5). Comparison w i t h a global data set shows that % C 3 7 4 has no consistent global 

relationship to either SST or SSS. 

Comparisons o f % C 3 7 4 measured in sea surface P O M and surficial sediments o f the 

Nord ic Seas, reveal large differences in the slope o f the relationship o f % C 3 7 . , vs. sea 

surface parameters. The magnitude o f the difference can not be explained by 

preferential degradation o f the C374 alkenone. Therefore, another explanation must be 
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invoked - the most obvious being that the % C 3 7 . 4 signal i n sea surface P O M is 
vulnerable to di lut ion in the underlying sea surface sediments by resuspension and 
mixing wi th advected allochthonous matter - containing relatively higher abundances o f 
C 3 7 3 and C 3 7 2 alkenones. This is supported by previous observations o f resuspension 
and biasing o f coccoUthophore assemblages — particularly in the Greenland Sea. 

Comparison o f alkenone distributions w i t h coccolithophore assemblage data collected 

on JR51 and w i t h published coccolithophore data, suggests that E. huxleji cannot be 

ruled out as the producer o f the polar alkenones wi th the unusually high % C 3 7 4 values. 

A n E. huxleyi source is supported by the C 3 8 alkenone within-class-distributions. 

Values o f U'^37' f r o m the new Nord ic Seas P O M data shows no correlation w i t h SST 

below 10°C. I n contrast to U'^37', a stronger linear correlation exists between 13*̂ 37 and 

SST (R^ = 0.69). This supports previous suggestions that, overall, U'^37 may be a more 

appropriate index fo r the Nord ic Seas than U%7' (RoseU-Mele et al., 1995). 

Comparison o f the new sea surface 0*̂ 37' data w i t h a global database reinforces the 

trend o f a systematic difference i n slope o f the U'^37' versus temperature relationship, 

between that derived f r o m water column P O M and that derived f r o m culture by Prahl et 

al (1988) and f r o m core-tops by Muller (1998). Whereby, the P O M data generally Ue i n 

a field that gives warmer-than-predicted g rowth temperatures at a given 0*̂ 37', 

particularly between ~ 5 - 1 5 ° C . A t temperamres below 5°C there is a distinct separation 

i n the field o f U'^37' vs. temperamre data, between the new observations f r o m the 

Nord ic Seas and observations f r o m the Southern Ocean. 

The new U'*^37' and U'^37 data highlights major differences between distributions o f U'^37 

and U'^37' in the water co lumn P O M and surficial sediments o f the Nord ic Seas fo r bo th 

indices. Therefore, any SST calibration based on water column data may have Utde 

practical application to SST reconstruction in sediment cores i n the region. A detailed 

examination o f the geographic locations that are responsible fo r the scatter i n the U'*'37' 

versus SST relationship i n surficial sediments o f the Nord ic Seas, was made. The results 

show a clear geographical division suggesting that East Greenland Shelf, the Greenland 

Basin, Mohns ridge, northern Iceland Plateau and upper Bear Island Fan are associated 

wi th the scatter, while samples f r o m the northern Adant ic , Icelandic Shelf, Norwegian 
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basin, Lofo t en Basin and Barents Seas yield U'^37' values that fall w i th in the expected 
(Muller et al 1998) range. This suggests that alkenone data f r o m the latter sites may yield 
reliable palaeoceanographic reconstructions o f SST. 

Comparison o f alkenone distributions wi th dinocysts proxies fo r SSS, SST and sea-ice 

cover in a late Holocene core f r o m the Barents Sea shows that the % C 3 7 4 record 

responded to major changes i n SSS and /or sea-ice cover. This supports the use o f 

% C 3 7 4 as a general marker fo r the influence o f arctic/polar water i n palaeoceanographic 

reconstructions. However, the use o f % C 3 7 4 to derive absolute palaeo-SSS values was 

not conf i rmed. 
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4.1. Introduction 
4.1.1. Background, aims and objectives 

Aside f r o m a few historically documented anomalies - e.g. the Litde Ice Age and the 

Medieval Warm Period- the Holocene was regarded, unt i l recendy, as a period o f 

climatic stability. Earlier arguments that challenged the stability concept failed to change 

the status quo (Denton and Karlen, 1973; Pisias et al., 1973). However, palaeoclimatic 

and palaeoceanographic research over the last decade has suggested that Holocene 

climate - on a global and regional scale - has experienced higher instabilities than 

previously thought (Oppo, 1997). A b r u p t millennial scale anomalies i n proxies fo r 

parameters such as temperature, ice raft ing, deep water f l o w strength, aridity and 

prevailing winds can be recognized in the sediments o f the N o r t h Atiantic Ocean (e.g. 

Bianchi and McCave, 1999; Bond et al., 1997; Bond et a l , 1999; Calvo et al., 2002; 

deMenocal et al., 2000; O p p o et al., 2003), ice cores f r o m Greenland (Mayewski et al., 

1997; O'Brien et al., 1995), South America (Thompson et al., 1995) and A f r i c a 

(Thompson et al., 2002) and terrestrial archives as diverse as lakes in Mexico (Hodell et 

al., 1995) and glacial moraine complexes in Iceland (e.g. Mackintosh et al., 2002; Stotter 

et al., 1999). 

The climatic variability in such records is small (~2°C) compared to the dramatic 

instability and strong cyclicity pervasive in the last glacial period (c.lO — 120 kyr BP). 

Most famously reflected by the abrupt changes during the period 20 - 80 kyr BP, i n 

which - during some 20 Dansgaard-Oeschger events - temperatures fluctuated over a 

range o f 5 to 8°C Qohnsen et al., 1992). However, understanding the more subtie 

variability o f the Holocene is important for three main reasons: 

Firstiy, cyclical changes in the ocean-atmosphere system must be constrained i f we are 

to determine possible recent anthropogenic effects on climate. The outcomes o f altering 

the proportions o f atmospheric gases can not be accurately modelled, unt i l the 

underlying natural variability is understood. 

Secondly, the amplitudes o f natural sub-Milankovitch interglacial variation may - in 

themselves - be large enough to place a significant strain on future human society and 

agriculture. D u r i n g several Holocene climate events sea surface temperatures in the 

northern N o r t h Atiantic changed abruptiy (<500 years) by more than 1°C (Calvo et al.. 

103 



Chapter 4: Post-Glacial and Holocene palaeoceanography o f the Icelandic shelf 

2002). Furthermore, evidence fo r variations in monsoonal intensit)' and markedly more 

cool /a r id conditions in nor th A f r i c a and southern Asia are coeval wi th Holocene I R D 

events in the Adantic (Bond et al., 1997; Heusser and Sirocko, 1997). 

Thirdly, the Holocene period has wimessed the rapid development o f human society, 

f r o m the first Neoli thic farmers, through to industrialization. Archaeology has all too 

of ten viewed the environment as an essentially passive back-cloth against which human 

history is acted out (Roberts, 1998). Recent work , such as that by Josenhans et al. (1997) 

has l inked sea-level changes to human migration, whilst deMenocal (2001) has 

correlated records o f increased Holocene aridity to discontinuities in human cultures. 

Such w o r k illustrates that an understanding o f Holocene human activity is impossible 

wi thout records o f Holocene environmental change. 

The aim o f this chapter is to look for evidence o f post-Glacial and Holocene climatic 

changes in high resolution Icelandic shelf marine cores. Accordingly the objectives o f 

this chapter are: 

T o investigate nor th & west Iceland Shelf biomarker records fo r the post-

Glacial and Holocene - especially to see whether i t is feasible to derive a 

meaningful alkenone stratigraphy f r o m this hitherto untackled (for biomarkers) 

sedimentary environment. 

T o place the biomarker records in a regional context by comparison wi th 

published palaeoceanographic regional data. 

T o compare the SST records f r o m the Icelandic Shelf w i t h terrestrial Icelandic 

records o f glacial advances and environmental change. 

Three o f the cores studied in this chapter (the B997-cores) were obtained as part o f the 

1997 I M A G E S (International M A r i n e Global changE Study) USA/Icelandic project. 

Hence investigation o f these cores forms part o f a post cruise analysis that is an 

international collaboration between workers f r o m the USA, Iceland, Norway, and the 

E U . The general goals fo r the I M A G E S project are as follows: 

T o gain an understanding o f the ice sheet/ocean interactions along the 

northern and western margins o f the Iceland Ice Cap and the eastern margin 

o f the Greenland Ice Sheet over the last glacial/deglacial cycle. 
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T o provide a high-resoludon comparison o f the Holocene histor)' o f the 
Adandc water mass o f f West and N o r t h West Iceland in comparison wi th 
variadons in Polar Water and Arcdc Intermediate Water o f f East Greenland. 

Core JR51-GC35 (studied in this chapter) was obtained as part o f the A R C I C E (ARCtic 

I C E and environmental variability) N E R C thematic program. The general aim o f the 

A R C I C E project is to enhance our understanding of , and capacity to, predict the 

fluctuations o f Arct ic sea-ice and glaciers, which influence climate and sea levels in N W 

Europe. The investigation o f JR51-GC35 forms part o f an A R C I C E sub-project 

entitied "Palaeoclimate and dynamics o f Arct ic continental margins" and contributes to 

the objective of: 

Geophysical and geological (in this case biogeochemical) investigations, to 

constrain sedimentation, ice and ocean variability on Arc t ic continental 

margins. 
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4.1.2. Context - the Ice landic continental shelf 

The cores studied in this chapter are located on the nor th and west Icelandic 

continental shelf. The core locadons are shown in Figure 4 .1 . I n Table 4.1 (page 108) 

pertinent collection and analytical details relating to the cores are summarised. Iceland is 

located in the southwest o f the Nord ic Seas (Figure 3.1). A region o f strong east west 

hydrographic gradients, characterised by seasonal and spatial variations in the physical 

properties o f the surface waters (SST, SSS), sea-ice distribution and deep water 

formation. A general outline o f the contemporary physical and ecological oceanography 

o f the Nord i c Seas is given in chapter 3 (page 59). 

Iceland is located in a posit ion which is sensitive to interactions o f the Atiantic source 

waters, advected by the Irminger (IC) and N o r t h Icelandic Irminger Currents ( N I I C ) , 

and opposing cold Arc t ic and Polar waters advected by the East Icelandic (EIC) and 

East Greenland Currents (EGC) (Hansen and 0sterhus, 2000; Hopkins , 1991; 

Malmberg, 1985) (see Figure 3.1). The sites studied in this chapter are today mainly 

influenced by the warm I C and N I I C . Benthic foraminiferal evidence suggests that the 

nor th Icelandic shelf is currendy influenced by the N I I C d o w n to a depth o f at least 

500m (Eiriksson et al., 2000b). Lateral and vertical mix ing as a result o f the parallel f l ow 

o f the N I I C and E I C and winter cooling leads to the format ion o f an intermediate 

depth water mass (Nor th Icelandic Winter Water, N I W W ) i n the Iceland sea, wh ich 

disintegrates by spring or summer (see Figure 3.2) (Swift and Aagaard, 1981). This water 

mass contributes to the format ion o f deep waters i n the Nordic seas, hence a 

mechanism exists whereby climatic changes on the Icelandic shelf are l inked to the 

thermohaline circulation. 

The nor th continental shelf o f Iceland today is subject to extreme variations i n 

hydrographic conditions which can lead to changes o f 5 ° C averaged through the entire 

water co lumn (Olafsson, 1999). The variability associated wi th Iceland's location 

proximal to the Arct ic Fron t (see Figure 3.1) was demonstrated in the late 1960s by the 

Great Salinity Anomaly (GSA), triggered by an excursion o f freshwater (sea-ice) f r o m 

the Arct ic Ocean (Dickson et al., 1988). This resulted in sharp decreases i n both 

temperature and salinity at hydrographic stations o n the nor th Icelandic shelf, including 

in Hunaf lo i trough (see Figure 4.1) (Olafsson, 1999). The Icelandic continental shelf 

has many troughs characterised by high sedimentation rates o f up to 2 m / k y r (Andrews 
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and Giraudeau, 2003). Given these attributes the area has high potential for the 
identification o f millennial scale climatic oscillations that occurred in the Holocene. This 
has been demonstrated by recent records f r o m the Icelandic shelf o f variations in 
sediment physical properties (Andrews et al., 2003; Andrews et al., 2002b; Andrews et 
al., 2001b), coccoUthophore assemblages and isotopic data (Andrews and Giraudeau, 
2003), and benthic foraminiferal assemblages (Eiriksson et al., 2000b). However, no 
alkenone proxy evidence (i.e. or U'^,^) o f palaeo-SST or other biomarker evidence 
has yet been obtained. 

Figure 4.2 illustrates the main environmental controls on the northern shelf. The sites 

on the nor th and west shelf are mainly influenced by the I C and N I I C respectively 

(Figure 3.1). However, on the northern shelf, i n particular, this surface flow can be 

interrupted by incursions o f cold and fresh Arct ic or Polar water (Olafsson, 1999). 

Changes in the relative contributions o f Adantic and Polar waters are driven by factors 

external to the shelf region (Mysak and Power, 1992; Serreze et al., 1992). A th i rd 

component is glacial, nivial and fluvial r u n o f f which transports freshwater and 

suspended sediments f r o m the adjacent land areas, to the f)ords and hence to the shelf 

Alkenone biomarkers should be particularly apposite fo r investigating past changes i n 

the relative influence o f the three components. Firsdy the indices may be used to 

reconstruct palaeo-SST, as long as values o f %C^-,.^ are below the threshold o f 5% 

(RoseU-Mele, 1998). Secondly, prolonged influence by Arct ic waters or a significant 

reduction in shelf SSS's by glacial-runoff waters should be detected by fluctuations in 

the %C37 4 index to values above 5%. 
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4.2. Study specific experimental 

The three B997- cores were obtained as part o f the 1997 I M A G E S USA/ Ice land 

project. They were opened, described and sub-sampled in the laboratories o f the 

Institute fo r Arct ic and Alpine Research ( I N S T A A R ) , Boulder, USA. Core JR51-GC35 

was obtained on the 2000 A R C I C E cruise and was opened, described and sub-sampled 

onboard the RRS James Clark Koss. A l l organic geochemical sub-samples were kept 

either refrigerated or (preferably) f rozen at -20°C , between sub-sampling and analytical 

work-up. Procedures for sampling and analysis f o r radiocarbon dates and tephra are 

discussed below i n section 4.2.2 ( f r o m page 110). Sub-samples fo r the analysis o f 

sediment physical properties (e.g. MS, particle size, density, T O C ) were obtained and 

analysed either at the I N S T A A R sedimentolog}' laboratory (under supervision o f J.T. 

Andrews) or the B O S C O R facility at SOC (by the present author). The sediment 

physical property data may be published by other workers and is not considered in 

detail i n this thesis. 

4.2.1. Biomarker analysis 

Details o f the analytical procedures f o r work-up and quantification o f alkenones and 

pigments are given chapter 2. I n high latitude environments, alkenone sedimentary 

concentrations can be very low, and the alkenone signal may be further diluted due to 

the greater relative inputs o f clastic material i n continental shelf environments. G C - C I -

MS has a greater sensitivity fo r the analysis o f alkenones than G C - F I D , and its higher 

selectivity also allows a greater confidence in measuring alkenone within-class-

distributions, particularly %C-^-i.^ (see chapter 2). Hence, GC-CI -MS was preferred fo r 

the analysis o f the sediment cores. However, no t all o f the samples could be analysed by 

GC-CI -MS due to unforeseeable operational constraints. Therefore, cores B997-350PC 

and JR51-GC35, w i t h the highest sedimentation rates (and potentially most diluted 

alkenone signal), were analysed by this method, and U"^,, ' , U'̂ 37 and %Cy-i.^ are reported. 

Cores B997-325PC & G C have a lower sedimentation rate were therefore were analysed 

by G C - F I D only. As the accuracy o f measuring C ^ ^ by G C - F I D is low (see chapter 2) 

only U'^37' is reported f o r these cores. A l l o f the cores had some sections where 

alkenones were undetectable, even after analysis by GC-CI-MS. Addit ionally, some 

samples were rejected due the integrated peaks being below the limits o f reliable 

detection identif ied in chapter 2. 
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4.2.2. Chronology 

A M S '''C dating o f either molluscs, planktonic or benthic foraminifera and in one case a 

tephra horizon, were used to establish the chronologies fo r cores B997-350PC, B997-

325GC/PC and JR51-GC35. Details o f the analysis and justification o f the adopted age-

models are given i n the fo l lowing sections. The lithostratigraphic logs (with dated 

horizons indicated) and age-depth diagrams f o r each core are illustrated in Figure 4.3 -

Figure 4.5. 

Kadiocarhon dates 

Foraminifera are the most commonly used source o f carbon fo r A M S '^C dating in 

Adantic marine cores. Foraminifera were present in most sub-samples i n the cores 

studied fo r this chapter, however, the total weight retrieved by dry picking o f ten fell 

below that recommended (>10mg) by the laboratory fo r a precise A M S '''C date (as 

recommended by S. More ton , pers. comm., N E R C radiocarbon lab). Therefore, as an 

alternative to foraminifera, moUusca (bivalves, gastropods, tube worms) were utilised 

where possible (individually or in combination), to achieve sufficient weight o f carbon. 

Molluscs were identif ied by D r H . A . Ten Hove and Dr . R. Moolenbeek at the 

Zoological museum. University o f Amsterdam. Most moUusca were bivalves or 

scaphopods (gastropods), except fo r one specimen o f Ditrupa arietina, an annelid (tube 

worm) . Annelids are not commonly used fo r radiocarbon dating i n palaeoceanography, 

due to their relatively rarity. However, the sample was considered valid fo r dating as 

Ditrupa arietina biosynthesises CaCO, (i.e. i t is not an agglutinate) (H.A. Ten Hove, pers. 

comm.). Also , A M S '""C radiocarbon dating o f annelid tubes f o r palaeoenvironmental 

work is not unprecedented (Pickard, 1985; Pickard et al., 1986; Reish and Mason, 2001). 

A total o f 26 new A M S '""C dates were obtained fo r this thesis, eight fo r B997-350PC, 

eight f o r B997-325GC/PC and ten fo r JR51-GC35 (Table 4.2, page 112). Material f o r 

dating was picked by the author. A t the N E R C radiocarbon facility (East Ki lbr ide , U K ) , 

the outer 20% by weight o f four samples (see Figure 4.2) was removed by etching w i t h 

dilute H C L . A l l samples were hydrolysed to C O j w i t h 85% w i t h ortho-phosphoric acid 

at 25°C. The gas was converted to graphite by F E / Z n reduction. Samples were sent to 

the NSF-University o f Ar izona A M S facility f o r analysis. T w o basal A M S '""C dates had 

been obtained previously for B997-350PC (418cm) and B997-325PC (257cm) by J.T. 

Andrews. Preparation o f these dates was at I N S T A A R , analysis for B997-350PC 
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(418cm) was at Arizona and for B997-325PC (257cm) at the Centre fo r A M S at 
Lawerence Livermore National Laboratory' (CvYMS). There is a discrepancy between the 
dates provided by Prof. Andrews and those obtained during this thesis (Figure 4.3 -
Figure 4.5). The reason is unclear. I t may be due to a systematic bias between the work
up and analytical methods carried out at the dif ferent institutions. Another reason may 
be that the basal dates, obtained previously, were obtained f r o m foraminifera taken 
f r o m the core catcher - and that this incorporated some younger material, during 
passage through the sediments at the head o f the core barrel. Inclusion o f all the dates 
wou ld lead to severe dating reversals i n the age-depth regressions. Therefore, i n order to 
derive sensible age-models, the previously obtained basal dates are rejected. 

We apply the modern reservoir age (AR) value o f 400 yr (Andersen et al., 1989) as a 

correction for all A M S ''*C dates. Andrews et al (2002a) have recendy constrained (by 

A M S '''C dates) the Saksunarvam (10180 ± 60 cal yr BP) tephra layer i n a number o f 

marine cores f r o m the N . W . Icelandic shelf Comparison o f the marine dates w i t h 

terrestrial '''C dates fo r this tephra indicates that the modern ocean reservoir correction 

o f 400 yr is applicable to the last 9000 " C yr BP (Andrews et al., 2002a). Previous 

workers have applied a 400 yr correction to N . Icelandic shelf, marine core A M S '''C 

dates as o ld as 14100 ± 140 '"C yr BP (Eirfksson et al., 2000b). The corrected A M S ''*C 

dates were converted to calendar ages using the C A L I B 4.3 program (Stuiver and 

Reimer, 1993). 

Tephra markers 

Five tephrochronostratigraphical marker horizons were preliminarily identif ied in the 

cores during the product ion o f the Uthostratigraphical logs. The horizons were selected 

visually, on the basis o f appearance and apparentiy higher concentration o f basaltic 

volcanic glass. Detailed petrological analysis was not undertaken. The horizons are 

indicated in Figure 4.3 - Figure 4.5. The bases o f the horizons were measured at: 

B997-350PC at 165 and 172cm 

JRGC-35 at 420 and 430cm 

B997-325PC at 207cm 

The horizons in B997-350PC and JR51-GC35 were relatively thin (<0.5 cm). The 

horizons in JR51-GC35, whilst discrete, occurred as lenses i.e. they did not cut across 

the fu l l thickness o f the core. The horizon in B997-325PC was over 4cm thick, and 
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Table 4.2: Radiocarbon dates in cores B997-350PC, B997-325PC, B997-325GC & JR51-GC35 from 

the North and West Icelandic Shelf. All matcnal was picked by the author, the samples were prepared to graphite at the 

N R R C radiocarbon facilit)' and sent to the universit)' of Arizona NSF-y\iMS facility for " C analysis.,. Except for samples marked 

with *, which were previously obtained by J .T . /Xndrews. H C L - outer 20"fi remrned by VK'J,. f estimated 5 " C - insufficient 

material for an independent measurement.. 

Corr Dep/hfrom 
lop (cm) 

LMboralory 
code 

Makrial and nvight (m^ "Cage 
(yrBP± la) 

Resenvir 
correclid age 

f ) rBP± )a) 

Calibraled 
age 

(yrBPt 2a) 
(±0.1) 

B997-350PC ( I I 46845 MisciJ btiithic tbnuTis (10) 2818 ± .39 2418 + 39 2601 
(27(H-2424) 

-0.3 

5 .\_\-53120 -Sepulid worm nibc trom 
Ditnilki diitlind (55) 

645 ± .36 245 ± 36 284 
(337-250) 

1.9 

42 
l i C l . 

j\-\-53100 Bivalve mollusc Ainnlhihd'iljii if 
aciiUai (jiir) (58.7) 

9713 ± 69 9313 ± 69 10325 
(11126-10202) 

1.3 

88 -\-\-53l01 rnigmtnts ot biviilvc mollusc, 
tiL\odont, Yturtiel/a {22.()) 

10698 ± 75 10298 + 75 11930 
(12802 - 11278) 

-1.1 

146- 147 53102 .\IL\ed benthic foniminiteni 
(6.8) 

10563 + 61 10163 ± 61 11661 
(12273-1(1870)) 

-1.3 

1% . \ - \ 53103 Gastropod mollusi: fn igmtnt 
Opislhobfv/ich. Atfs {22.5} 

10916 + 64 10516 ± 63 12585 
(12883-11589) 

-1.1 

249.25<1 
MCI. 

.•\.\-53104 Scaphopod mollusc (162.2) 11537 ± 66 11137 + 66 13012 
(1375,5-12676) 

0.2 

324 
HCI. 

.\.\-33105 Bivalve Inigment, mussel 
(106.3) 

11966 ± 8 7 11.5<i6 + 87 13445 
(13817-13045) 

-1.8 

* 418 .\-\-29211 [k-nthic torams, i \ \ Libnidoncii 
(7) 

10745 ± 75 10345 ± 75 11953 
(12805-11416) 

-1.3 

B997-32SGC 0-1 .V.\-46846 Mixed baithic tonims (10) 1247 ± 36 847 ± .36 778 
(888 694) 

-1.3 

9-10 .\.\-5312l Mixed henthic fomms -ind 
bivalve tragmeiits (14.9) 

2783 + 39 2383 + 39 2487 
(2685-2350) 

-.0.5 

31 .^-\-53l06 Gastropod mollusc Ljinalia 
^roenlnndica (24.5) 

4470 ± 47 4070 + 47 4634 
(4803-1508) 

0.4 

B997-325PC 87-88 
H C L 

53107 Mtxed beiithic torams (11.2) 6921 ± 72 6521 ± 72 7421 
(7557-7292) 

-1.5 

99-101 

139-141 

171-173 

.\.\-53108 

.\.\-53109 

.\A-53110 

MLXfd benihic loraminitera and 
small bivalves Thymiru cf mni 

(15 6) 
Mixed beiuhic foraminifera and 

small bivalves Thyasira if sani 
(Ti) 

Mixed benlliic lorams (17.4) 

7347 ± 66 

8759 ± 67 

9252 + 79 

6947 ± 66 

8359 +67 

8852 + 79 

7788 
(7934-7664) 

9234 
(9756-8988) 

9840 
(10288-9551) 

•1.6 

-2.0 

-3.0 

* 

211-213 

257 

.\-V53111 

C.\.\l-H869 

Scaphopod mollusc Denlaliiim 
enldljs, mixed benthic forams 
and bivalve fragments (23) 

IVnthic l o r a m , iV lahrudorica 
(10) 

10400 ± 150 

94.30 ± 50 

10000 ±1.VI 

'XI.30 ± .5(1 

11329 
(12250-10847) 

10206 
(10559-9815) 

-2,6 

-1.5t 

JR51-GC35 0-1 .3_\-46847 Mixed benthic torams (9) 473 ± 36 73 ± 36 70 
(217-0) 

-1.5t 

.\,V53112 Unknown bivalve mollusc 
fragments (i 1.3) 

1417 ± 65 1017 + 65 948 
(1100-832) 

-7.9 

112-113 

168 

-\-\-53113 

A.\-53114 

Gastropod mollusc fragment 
liuaiaid^ (and mixetl torams 

(15.2) 
Scaphopod mollusc Dentaliiim 

emails (30.2) 

2621 ± 58 

3706 ± .59 

2221 ± .58 

3306 ± 59 

2310 
(2424-2146) 

3620 
3783-3462) 

1.4 

0.7 

214-21.S AA-'M 15 Mixed benthic forams (9.2) 4612 ± 70 4212 ± 70 4826 
(4980-4634) 

-1.2 

276-277 .•V^-33116 Bualve molluscs Thyasit^i if sam 
(11.2)' 

5511 ± 44 5141 ± 44 5910 
(5TO7-5852) 

-5.1 

3.34 .\.\-53117 Ciastropod mollusc 
Opii/bobnjmh Inigments (35.8) 

6537 + 45 61.17 ± 45 7021 
(7172-6918) 

-0.9 

384 . \- \ 53118 Scaphopod mollusc Dfnfaliiim 
(Nldih (33) 

8286 ± 50 7886 ± ,50 8828 
(8946-8628) 

0.2 

42I1-421..S . \ - \ -53n9 Mixed benthic forams (9.9) 9041 ± 51 8641 + 51 9700 
(9842-9156) 

-1.8 

449-451 A.\ 46S4B .Mixed beiuhic foranis (10) 9403 ± .58 |J0()3 ± 58 10128 
(10.555-9810) 

-2.2 
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consisted o f what appeared to be 100% volcanic glass and had a sharp lower boundary. 
This had already been identif ied as the Saksunarvatn tephra as part o f a survey o f the 
distr ibution o f this tephra layer in the marine sediments nor th o f Iceland (Andrews et 
al., 2002a). We re-analysed the material f r o m B997-325PC (207cm) at the N E R C 
tephrochonological unit (Dept. o f Geosciences, University o f Edinburgh) in order to 
aid identif ication o f the unassigned tephra horizons in cores B997-350PC and JR51-
GC35. Analysis o f oxides was carried out under the supervision o f D r . P. HiU. Freeze 
dried samples were sieved at 64//m and dried in an oven at 60°C . A por t ion o f the 
sample was then prepared on a slide. Quantitative analysis was carried out w i t h a 
Cambridge Instruments Microscan M k 5 using wavelength dispersive spectrometry 
(WDS) w i t h an accelerating voltage o f 20kV, a beam current o f 15na and a beam 
diameter o f l / / m . For rhyoUtic shards a 10s peak count was employed fo r each element, 
w i th two elements measured simultaneously. Due to the relatively high stability o f the 
basaltic shards two peak counts o f 10s were undertaken to increase the precision (Hunt 
and HUl, 1993). Sodium was measured in the first and last counting period, to access the 
degree o f sodium mobilisation. A Z A F procedure (Sweatman and Long, 1969) was 
applied to correct for atomic number, absorption and fluorescence effects. I n addition, 
counter dead time was also corrected for. A n y d r i f t i n the readings was moni tored by 
regular analysis o f an andradite standard. Calibration was undertaken using a 
combination o f standards o f pure, metals silicates and synthetic oxides which contain 
most o f the major elements found in the tephra samples. 

The results o f the geochemical analysis were compared wi th tephra data obtained f r o m 

Iceland by workers at the Edinburgh Geosciences department (Dugmore and N e w t o n , 

1997; Wastegard et al., 2001a), as well as data f r o m published sources (e.g. Bjorck et al., 

1992; Boygle, 1999; Eiriksson et al., 2000; Hafl idason et al., 2000; Jennings et al., 2002a; 

Larsen et al., 2001). Tephra data obtained by workers f r o m the Edinburgh Geosciences 

department were preferred for use as a comparison because the measurements were 

made using the same equipment and standards, and consequendy minimal systematic 

bias was expected (P. H i l l pers. comm.). 

The oxide chemistry o f the horizons f r o m B997-350PC could not be satisfactorily 

matched w i t h any o f the comparison data. However, the geochemistry o f the horizons 

in JR51-GC35 and B997-325PC showed a good correlation to previously identif ied 
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samples o f the Saksunarvatn tephra analysed at Edinburgh. Results o f these 

comparisons are illustrated in Figure 4.6 and Figure 4.7. A sample 4 cm below the base 

o f the tephra hor izon in core B997-325PC yielded a " C date o f 10000 ± 150 yr BP 

(reservoir corrected). The closest dated interval i n the same core above the tephra 

horizon at 172cm yields a '""C date o f 8852 ± 79 BP (reservoir corrected). Considerable 

convergence o f data shows that the Saksunarvatn tephra was deposited —9040 '''C yr BP 

(e.g. Birks et d . , 1996; Wastegard et al., 2001b; Wasd et al., 1999). Given the average 

sedimentation rate in the section o f the core (~70cm/kyr) the lower bracketing date in 

B997-325PC is older than wou ld be expected fo r a level 4cm below the tephra (10000 ± 

150yr BP). However, the correlation o f geochemistry to the Saksunarvatn has been 

conf i rmed by analysis at two different laboratories and the thickness and depth o f the 

horizon is also consistent w i t h the occurrence o f the Saksunarvatn in proximal marine 

cores (Andrews et al., 2002a). Therefore, we allocated the base o f the tephra hor izon a 

calendar age o f 10180 ± 60 yr BP ( f r o m Andrews et al., 2002a) and use this date as an 

alternative to the dated mollusc shell at 211 cm in B997-325PC. 

Material f r o m immediately beneath the tephra at 420cm in JR51-GC35 yielded a 

reservoir corrected '''C date o f 8641 ± 51 yr. This is 400 yr younger than the expected 

date fo r the Saksunarvatn tephra o f - 9 0 4 0 yr BP. The basal (450cm) date o f the core is 

9003 ± 58 yr, therefore, we suggest that the tephra in GC-35 is reworked Saksunarvatn 

tephra and that genuine in situ Saksunarvatn horizon occurs just below the depth to 

which the core penetrated. The reworking o f the Saksunarvatn tephra into younger 

marine sediments on the N . Icelandic shelf has been previously observed (Andrews et 

al., 2002a; Andrews and Giraudeau, 2003). This is supported by the physical occurrence 

o f the tephra horizons; as thin discontinuous lenses. Therefore, we do not use the 

tephra in JR51-GC35 at 420 or 430cm as a chronological marker. 
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A^ge models and stratigraphy 

The age-depth relationships derived f r o m using the chronological methods outlined 

above are illustrated in Figure 4.3 - Figure 4.5. The age-model regressions used are listed 

in Table 4.3 (page 116). 

B997-350PC 

I n B997-350PC there are two distinctive units; between 0-20cm and 20-420cm depth. 

The transition between these two units is characterised by a change in colour and 

physical properties such as C a C O j and dry bulk density (see Figure 4.3). Radiocarbon 

dates f r o m the upper section (Table 4.2, page 112) give late Holocene ages but display 

an age reversal, suggesting reworking o f sediments i n the upper part o f the core or 

sediment scrambling by the piston coring method. The lower unit between 20 -420cm 

has consistent colour and physical properties. Based on the equally spaced dates '''C 

dates obtained during this thesis, there is a linear sedimentation rate o f 88cm/kyr 

through the post-Glacial. The high sedimentation rate is such that we expect no 

significant attenuation o f centennial-millennial scale data by bioturbat ion (Anderson, 

2001; Bard, 2001). Therefore, the lower unit o f B997-350PC is used in this thesis to 

study the early post-Glacial period. 

B997-325GC and B997-325PC 

A gravity core (B997-325GC) and piston core (B997-325PC) obtained f r o m the same 

station were spliced on the basis o f whole-core MS (see Figure 4.4). This was preferred 

because piston coring can disturb the top por t ion o f a core, whereas gravity coring is 

more efficient at preserving the integrity o f the top por t ion. The resulting combined 

core covers a por t ion o f the Holocene f r o m 2 - 1 1 kyr and hitherto is referred to as 

B997-325GC/PC. The age-depth diagram fo r B997-325GC/PC shows that the linear 

sedimentation rate has changed down-core. The upper sections experienced lower 

sedimentation rates, perhaps due to changes i n bo t tom current behaviour/sediment 

focusing over the Holocene. These possibilities have been invoked to explain the lower 

sedimentation rates — fo r some recent Holocene sediments - observed in a number o f 

marine cores obtained f r o m the N . Icelandic shelf (e.g. Eirfksson et al., 2000b). Four 

age-depth regressions were used to constrain the changes in sedimentation rates (see 

Table 4.3, page 116). The low sedimentation rates in the shallower part o f the core (see 

Figure 4.4) mean that there may be significant attenuation o f centennial-miUennial scale 
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data by bioturbat ion (Anderson, 2001; Bard, 2001). Therefore, thjs core is only used in 

the analysis o f general Holocene trends. JR51-GC35 (see below) is preferred for the 

analysis o f Holocene millennial scale variability. 

JR51-GC33 

JR51-GC35 consisted o f one massive unit o f consistent colour, occasionally cut by thin 

horizons o f coarser material, probably resulting f r o m small scale mass movements, such 

as contourites (Dr. Co lm O Cofaigh, pers. comm) (see Figure 4.5). Physical properties 

such as wet bulk density, show litt ie deviation down-core (see Figure 4.5). I n the top 

part o f the core (0-54cm) the age-depth relationship is characterised by a sedimentation 

rate o f 62 cm/kyr . Below this (54 - 450cm), the sedimentation rate is sUghdy lower and 

the age-depth relationship is remarkably linear (Figure 4.5). Thus, we use two linear 

regressions to derive the age-model (Table 4.3). The core covers a por t ion o f the 

Holocene f r o m 0 - 1 0 . 1 kyr BP. The sedimentation rates are sufficiendy high so that we 

expect no significant attenuation o f centennial-millennial scale data by bioturbation 

(Anderson, 2001; Bard, 2001). This , i n addition to the consistent spacing o f dated 

horizons, suggests that JR51-GC35 is suitable for the analysis o f centennial-miUennial 

scale variability i n the Holocene. 

Table 4.3: Age model regressions for cores linear sedimentation rates. 

Coir, segments Linear Sedimentation Kate 

B997-350PC (one linear segment, top was disturbed) 

Age (>42cm) = (depth + 884.36)/87.07 88cm/kyr 

B997-325GC/PC (three linear segments) 

Age (0-9.5cm)= (depth + 3.95)/5.01 6cm/k)'r 

Age (9.5-31cm) = (depdi + 15.4)/10.014 lOcm/kyr 

Age (31-120cm) = (depth +79.727)/23.297) 23cm/kyr 

Age (>120cm) = (depth -532.15)/72.45 70cm/kyr 

JR51-GC35 (two linear segments) 

Age (0-54.5cm) = (depth + 3.8)/0.061 62cm/kyr 

Age (>54.5cm) = (depth - 15.71)/0.043 43 cm/kyr 
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4.3. Results and discussion 
4.3.1. Biomarker stratigraphy & correlations 

This section describes the major changes in biomarker distributions in the Icelandic 

shelf cores. The data is compared and correlated - where possible - with published 

records, to place the results in a wider regional context. In doing so we attempt to gain 

an insight into the role o f the oceanic currents o f f north Iceland in past climate changes. 

Intensive changes - particularly in the alkenone indices - are recorded on the west and 

north Icelandic shelf during the last 15 kyr BP. In Figure 4.8 the results of the analysis 

of UVSST (B997-350PC & JR51-GC35), UV-SST (B997-325GC/PC), total pigments 

and S/I for the cores are plotted against calendar age. We use the Rosell-Mele et al. 

(1995) annual SST equation for the cores in which the index is used 0R51-GC35 

and B997-350PC) and the Weaver et al. (1999) equation for B997-325PC (where U " , ; 

rather than is used). Both calibrations are constructed from N E Atiantic core-top 

data-sets. The GRIP (ssOScc) ice-core event stratigraphy is included in Figure 4.8 to 

provide a palaeoclimatic framework for the Post-Glacial. The GRIP (ssOScc) age-model 

is currentiy recommended by the I N T I M A T E ' group as the type profile for the late-

glacial, for the synthesis o f marine, terrestrial and ice-core records (Lowe et al., 2001). 

Post-Glacial 11.5-15kyrBP 

Only core B997-350PC from the western Icelandic shelf contained sediments deposited 

prior to the Holocene. The alkenone record for this period was discontinuous, with 

certain sections barren of alkenones. In the sections of the core where alkenones are 

detectable, values o f %C,7.4 are above the threshold value o f 5%. This indicates the 

presence of arctic or polar waters and/or lowered SSS from terrestrial (glacial) run-off 

When % C 3 7 . 4 is above 5% in sediments, the U'^37-SST estimates have a higher 

uncertainty. This has been demonstrated in work using modern samples by Rosell-Mele 

[, 1998 #409], which first illustrated the increase in scatter o f U'^37' values in modern 

surface samples with >5% % C 3 7 4 and by this thesis (chapter 3) which shows that the 

majority of anomalous U'^37' in data from the Nordic Seas surficial sediments occurs 

above the 5% isoline. Also the association of >5% % C 3 7 . 4 values with anomalous down-

core 11*̂ 37' data has been observed by Rosell-Mele (1998). Nevertheless, changes in 

' Integration o f Ice-core Marine and Terrestrial Records - a core programme o f the International 

Quaternary Union ( I N Q U A ) Palaeoclimate Commission. 
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% C „ ^ and will indicate the relative changes in the influence of cold/low salinity 
waters versus warmer Adantic waters. Accordingly, some major changes in the %C374 
and values coincide with the major transitions in the GRIP ice-core event 

stratigraphy (Figure 4.8). 

The oldest few samples in the core were deposited between 14.7-15 kyr BP, during the 

Greenland stadial 2 event (GS-2) and are characterised by low values of —0.15. 

Values of % C 3 7 4 for this period are -15%, well above the 5% threshold that indicates 

the presence of arctic/polar water and/or lowered saUnides. This is followed by an 

increase in 11*̂ 37 and a fall in % C 3 7 4 to -6% indicating a warming trend which reaches a 

peak at 14.3 kyr BP to coincide with the early part of Greenland interstadial 1 (GS-1) or 

GS-le (i.e. the Belling period). In the Greenland ice cores, GS-1 is punctuated by two 

distinct episodes of cooling, denoted as GS-lb and GS-ld. In B997-350PC, the start of 

GS-ld at 14.3 kyr BP is marked by an increase in %C37.4 from - 6 % to 15% and 

associated fall in U'̂ 37 indicates an increasing cooling on the western Icelandic shelf. 

Subsequendy, the alkenones become undetectable, presumably this marks a further 

strengthening of cold conditions on the western shelf, such that conditions were 

unfavourable for alkenone producers, but not for phytoplankton in general as chlorin 

contents remain stable throughout the whole core span. The initiation of the warm G I -

Ic (Allerod) phase in the GRIP ice core at 13.7 kyr BP, sees alkenones accumulating in 

a few samples at -13.7 kyr BP. However, these are distinguished by very high values of 

% C 3 7 4 of -35%. By analogy with modern core-tops (chapter 3) this would indicate 

polar water conditions. Continuous deposition of alkenones resumes towards the later 

part of GI - l c at 13.3 kyr BP and continues until 12.8 kyr BP. Over this period the 

alkenone indices indicate a warming trend continuing up to 13 kyr BP with 

increasing and %C37.4 values falling from -15% to 10%. This warming trend occurs 

despite and in contrast to a cooling event (Gl- lb) in the GRIP ice core between 12.9 -

13.1 kyr BP. This is followed by a slight cooling in the last few samples between 12.8 -

12.9 kyr BP, with an associated increase in % C 3 7 4. 

Alkenones become undetectable in B997-350PC at 12.85 kyr BP, coeval with the 

initiation of the GS-1 (Younger-Dryas) event in the GRIP ice core stratigraphy. No 

alkenones are detected within the GS-1 interval from 11.5 - 12.8 kyr BP. As with the 
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GS-ld phase, this presumably marks an abrupt deterioration of conditions on the 
western shelf, such that conditions were unfavourable for alkenone producers. 
Alkenones abrupdy appear again in the core at 11.5 kyr BP, exacdy coeval with the 
inidadon of Holocene (pre-boreal) epoch in the GRIP stratigraphy. 

I n Figure 4.9, the alkenone data from B997-350PC is compared with a record of ice-

front oscillations of Ingolfsson et al. (1997) at Borgarfjordur, S.W. Iceland (see Figure 

4.1 for location). There is reasonable agreement between the interpretation of the 

alkenone record and the ice-front data. Specifically, the major retreats of the ice-front 

are coeval with "warming" in the alkenone trends (i.e. reduction in VoC^-;.^) and the 

major re-advances of the ice-fronts are coeval with the periods when the alkenones 

become undetectable or give extremely high "/oC ŷ 4 values (-30%). We do not attempt 

further - more detailed - correlations of the B997-350PC Late-Glacial record with the 

various Late-Glacial time series published from the region (e.g. Eirfksson et al., 2000b). 

This is due to the incomplete nature of the record, the low concentrations of alkenones 

and the uncertainties that remain in the interpretation of alkenones patterns with high 

VoC^j.^ in this region. 

In core B997-350PC, values for total chlorin pigments are low and show remarkably 

Utde variation from the mean. This is perhaps surprising, as significant perturbations to 

productivity, especially during GS-1, would be expected and are suggested by the 

interruptions to the deposition of alkenones. However, observations from this thesis 

(chapter 3) in the surface waters of the modern Nordic seas, found no correlation 

between alkenone and chlorophyU abundance. This suggests that the influence of 

alkenone producers (i.e. E. huxleyi) on chlorophyll levels may be insignificant compared 

to inputs from non-alkenone primary producers (e.g. diatoms, dinoflagellates). The 

pigments values suggest that low level but significant input of photosynthetic material 

from non-alkenone producers continued throughout the late-glacial period. 

The S/I ratio shows litde significant downhole variation, with values ranging between 4 

- 6. Thus it seems there is litde stratigraphic change in the general composition of the 

pigments. There is a small increase is values through the GS-1 event, perhaps suggesting 

a change in production/preservation conditions. However, this deviation is insignificant 

compared to the excursions in the S/I ratio of up to 150 units reported to occur across 
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Heinrich layers in the Nordic seas and north Adantic (RoseU-Mele and K09, 1997; 
Rosell-Mele et a l , 1997). 

Holocene 0- 11.6 kjrBP 

Biomarker records from the Holocene were obtained from B997-350PC (10.6 - 11.5 

kyr BP), B997-325GC/PC (1.8 - 10.8 kyr BP) and JR51-GC35 (0 - 10.3 kyr BP). The 

record from JR51-GC35 covers the longest period at the highest resoludon (~60cm/ 

kyr). However, in the early half of the Holocene there are some sections of JR51-GC35, 

at 8.2 - 8.75, —7.1 and ~6.2 kyr BP, where alkenones were undetected or were too weak 

to be integrated accurately. In the case of the 8.2-8.74 kyr BP section, the absence of 

alkenone may be related to the ~8.2 kyr BP cold event reported in many records 

including from the N . Icelandic shelf (Andrews and Giraudeau, 2003; Eiriksson et al., 

2000b), the North Adantic (Bond et al., 1997) and in the Greenland Ice cores (O'Brien 

et al., 1995). Convincing evidence has linked this event to the catastrophic drainage of 

glacial lakes Agassiz and Ojibwa through the Hudson straight at 8.47 cal. kyr BP (Barber 

et al., 1999). The other sections of low alkenone abundance in the early half of the 

Holocene may be related to the abundance of the main alkenone producer E. huxleyi on 

the N . Icelandic shelf. Recendy published coccoUthophore records from the N . 

Icelandic shelf show that accumulation rates of E. huxleyi fossils were generally much 

lower in the early Holocene, with - for example — rates ~25 time lower between 6 — 7.8 

kyr BP than for the period between 1.2 - 3 kyr BP (Andrews and Giraudeau, 2003) . 

Aside from a few small sections, the alkenones provide a record which covers most o f 

the Holocene and which highlights a large degree of SST variability on the Icelandic 

shelf. In addition to the more common C „ 2 and C37.3 compounds, C37 4 is also present 

in cores JR51-GC35 and B997-350PC (we do not report C,,^ for B997-325GC/PC). 

Values of °/oC^-,.^ are consistendy below the 5% threshold, suggesting that - f rom the 

very start of the Holocene - there was persistent dominance of Atiantic source waters 

on the Icelandic shelf The highest "/oC^^ values (-4%), in the Holocene, occur early in 

the epoch between 10.8-11.5 kyr BP in core B997-350PC. Later values (0 - 10.3 kyr 

BP) recorded in JR51-GC35 remain low (> 2%). The early higher values may be related 

to some freshening of the surface waters on the shelf due to higher run-off in the de-

glacial period (see Figure 4.1). Although, by analogy with modern core tops in the 
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Nordic seas, this would only represent a freshening of ~0.5psu (Rosell-Mele et al., 
2002). 

The Holocene records of total chlorin pigments show some variation over the 

Holocene in cores JR51-GC35 & B997-325GC/PC. Generally, higher values are seen in 

the early Holocene in B997-325GC/PC and in the late Holocene in JR51-GC35 and 

there appear to be a number of fluctuations on a millennial scale. However, the changes 

are of a relatively smaU order of magnitude and show no consistent relationship to the 

U^37-SST values. This lack of correspondence makes it difficult to link the changes to 

either productivity or preservation controls. 

The S/I ratios again shows littie significant downhole variation, with values of - 5 . 

Therefore, there is litde stratigraphic change in the general composition of the pigments 

and it seems that this biomarker proxy is insensitive to Holocene climatic (e.g. IRD) 

events. 

4.3.1.1. General Holocene UVSST trends 

The records from the N . Icelandic shelf display a general trend of cooling through the 

Holocene. This is characterised in B997-325GC/PC by a cooling o f 2.5°C (11 to 8.5°C) 

from 10.8 to 1.8 kyr BP and in JR51-GC35 by a cooling of 2.5°C (10 - 7.5°C) from 10.3 

to 0 kyr BP (Figure 4.8). 

The data is interesting in the context of recent work which has compared Holocene 

alkenone-SST trends in a number of cores from sites in the North Atiantic, 

Mediterranean Sea and northern Red Sea (Rimbu et al., 2003). Based on historical 

analogies from the period covered by instrumental data and GCM experiments, Rimbu 

et al. (2003) attribute such regional variation in Holocene SST trends to a long-term 

continuous weakening of a northern hemisphere atmospheric circulation pattern, similar 

in concept to that of the Arctic/North Adantic Oscillation. The surface expression is 

that temperature trends - over the Holocene - in northern Europe and the eastern 

Mediterranean/Middle East have been negative and positive respectively (Figure 4.10). 

This thesis reports the first high-resolution Holocene alkenone-SST data from the 

Icelandic shelf, a key region with regard to any studies of Holocene changes in N A O 
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type indices, because the N A O is defined by the surface atmospheric pressure 
difference between Iceland (Stykkisholmur) and the Azores. In Figure 4.10, the 
Holocene SST trend lines from B997-325GC/PC and JR51-GC35 are plotted alongside 
the data from Rimbu et al. (2003). The data from this thesis complement previously 
published data and strongly support the observations of negative Holocene SST trends 
in the northern Adantic and thus a negative trend (weakening) in the A O / N A O index. 
Based on G C M experiments, Rimbu et ai (2003) suggest the latitudinal pattern may be 
attributed to tropical warming during winter, due to increasing solar insolation 
associated with the earth's precession cycle. The tropical cooling induces a weaker 
Aleutian Low and a regional shift of the Northern Hemisphere jet. Rimbu et ai (2003) 
suggest that A O / N A O indices may have a role in generating millennial-scale SST 
trends. This is supported by Dickson et al (Dickson et al., 1996) who suggest that the 
N A O coordinates the intensity of deep convection at three main Adantic regions, the 
Greenland/Iceland Seas, the Labrador Sea and the Sargasso Sea, and thus links to the 
global thermohaUne circulation. 

However, Rimbu et al (2003) point out that millennial scale coolings in the northern 

Adantic, for example those defined by IRD events and linked to solar forcing (Bond et 

al., 2001), are discordant with the A O / N A O pattern. Therefore, odier processes must 

be investigated in order to understand the full Holocene SST variability. The records 

from this thesis are also consistent with recent work by Marchal et al (2002) who 

investigated Holocene trends of SST in 16 marine cores from the North Adantic and 

Mediterranean Sea (36 - 75°N). Al l of the records showed an apparent long-term 

cooling through the last 10 kyr of 0.5-3.6°C. The authors attempted to identify 

consistent trends in the cores, using various statistical methods. They concluded that 

one factor accounted for 67% of the total variance in SST and there were two possible 

explanations: a widespread surface cooling (i.e. consistent with many climate proxy 

records from the N . Adantic) or a change in the seasonal timing and/or duration of the 

growth period of alkenone producers (consistent with a divergence between alkenone-

SST and microfossil faunal SST observed in two cores). 

4.3.1.2. Holocene millennial-scale variability 

In this section we concentrate on the millennial scale variabilit)' that is superimposed on 

the mean Holocene cooling trend. For this purpose we use core JR51-GC35 as it has 
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the longest Holocene record, a linear sedimentation rate and superior dating control 
compared to B997-325GC/PC. JR51-GC35 has an average sedimentation rate of 43cm 
(for most of the core) and is sampled every 4cm for U'^37-SST. Therefore, there is a data 
point obtained every ~90 yr, enabling the resolution of millennial scale records. The 
SST oscillations in JR51-GC35 are of a large amplitude; with maximum and minimum 
U'^37-SSTs recorded on the Icelandic shelf as 12°C and 6°C. These osciUations appear to 
have a degree of cyclicity on a millennial scale, with SST maxima at around 0.5, 1.3, 3.2, 
4.2, 5.2, 7.3, and 9.3 kyr BP. The most prominent o f these maxima are in the early 
Holocene between 9 - 10 kyr BP and in the mid-Holocene between 5 - 5.5 kyr BP. 
Distinguishable in the youngest part of the record is a 3°C cooling. Starting at 300 yr BP 
this event is coeval with the 'Litde Ice Age' (LIA). There is abundant historical evidence 
for social hardship in Iceland during the L I A (Bell and Walker, 1992). I t is a story of 
failed harvests, declining fish catches and an impoverished population retreating from 
the most severely affected areas in the north of the country (Grove, 1988). A prominent 
warming in the JR51-GC35 U'^37-SST record occurred 1.3 kyr BP, which is broadly 
coeval with the 'Medieval Warm Period' recognised in a number of palaeoclimatic and 
historical records. For instance, during this period in the decade of the 870s A D (1.2 kyr 
BP) the Norse first setded in Iceland, where conditions were warm enough to grow 
barley (Grove, 1988). 

A spectral analysis to determine the periodicity of U'^37-SST variability could not be 

performed as the record is incomplete in parts. However, the 'event pacing' was 

estimated by measuring the mean time between the maxima of the main oscillations 

(defined as exceeding 2°C between peak maxima and trough). The peaks used to 

estimate the event pacing are labelled in Figure 4.8. This method derives an event 

pacing of 1450 yr ± 470 (1 CT). Such periodicity compares with the prominent —1500 yr 

cycles found in a number of palaeoclimatic archives from the northern North Adantic, 

including records of drift ice (Bond et al., 2001; Bond et al., 1997) and the speed of 

Iceland-Scotiand overflow water (Bianchi and McCave, 1999). 

Jennings et al (2002b) recentiy published Holocene records of palaeohydrology and 

iceberg rafting from core JM96-1207, on the East Greenland continental shelf 

(approximately 12° west of JR51-GC35). In Figure 4.9(a&c), we compare the U'^37-SST 

record from JR51-GC35 with the flux of calcium carbonate - a proxy of iceberg-rafting 
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debris on the East Greenland Shelf - from JM96-1207. The thermal maxima identified 
in the N . Icelandic shelf show a correlation with the minima in the IRD record from 
East-Greenland (interpreted as warmings). This is especially true for the most 
prominent thermal maxima in the record of JR51-GC35, between 9 — 10 kyr BP and 5 -
5.5 kyr BP, which correspond to pronounced minima in the IRD record. Furthermore, 
the termination o f the mid-Holocene optimum in JR51-GC35 at 5 kyr is followed by a 
trough in SSTs, which is coeval with a pronounced peak in the IRD record of JM96-
1207 and the onset of neoglacial conditions (Jennings et al., 2002b). Jennings et al. 
(2002b) suggest that - because of the rapidity of the changes - the IRD fluxes in JM96-
1207 are more likely to be related to the response of tide-water glaciers to sea surface 
cooling (or enhanced polar water flux), than to glacier osciUarions resulting from the 
internal dynamics o f the Greenland ice-sheet. Under conditions of increased polar water 
flux along East Greenland, icebergs calved in the fjords would retain their debris farther 
onto the shelf (where it would be recorded in JM96-1207), rather than lose their debris 
to melting within the fprds, especially i f the icebergs were not trapped in permanent 
sikussaq at the glacier margin (Syvitski et al., 1996). Such a pattern o f sensitivity o f 
iceberg melt and debris distribution has been suggested by DowdesweU et al. (2000) for 
both Nansen Fjord and Scoresby Sund. The data from JR51-GC35 supports this 
hypothesis, suggesting that advances of the polar front, associated with weakening of 
the IC/strengthening of the EGC resulted in increased deposition of calcareous IRD on 
the East Greenland shelf. 

Millennial scale climatic coolings of similar ages to those seen in the U'^jy-SST record 

from JR51-GC35 and the IRD record from JM96-1207 have recendy been reported in a 

number of proxy records from the Northern Iceland shelf (see Figure 4.9d). These 

include variations in the percentages of N . pachyderma and IRD (Eiriksson et al., 2000a), 

variation in benthic foraminiferal assemblages (Eiriksson et al., 2000b), from coccoliths 

flux changes - reflecting changes in sea-surface primary productivity (Andrews et al., 

2000; Andrews et al., 2001b) - and from integrated IRD proxies (Andrews and 

Giraudeau, 2003) (Figure 4.9d). The records coincide fairly closely with the record 

from JR51-GC35. Particular feamres that are in prominent agreement between records 

are: the L I A cooling starting at ~500 yr BP, a marked cool episode at ~2.5 kyr BP, and 

climatic optimum at ~ 5 kyr BP. 

124 



James A P Bendle - Ph.D. Thesis 

Holocene climatic events of similar ages to those defined on the Icelandic and 
Greenland shelf have also been interpreted from North Adantic deep-sea cores (Figure 
4.9d). In a Sargasso Sea core, Keigwin (1996) found a 1°C cooling during the L I A and 
during a similar event c. 1500 years ago, and a warming of 1°C during the MWP. 
Another cool interval associated with increased ice-rafted debris beginning between 4 
and 5 kyr BP was recognised, coeval with a trough in U^37-SSTs in JR51-GC35. Keigwin 

(1996) suggested that this event marks the beginning of Neoglacial cooling. Bond et al. 

(1997) have documented millennial scale coolings throughout the Holocene in two 

cores o f f Ireland (VM 29-191 and V M 23-81) and more recendy within a stacked 

record of cores from East Greenland, from the North Adantic o f f Ireland and Nova 

Scotia (Bond et al., 2001). The Holocene cool intervals are manifested by ice-rafted 

hematite-coated grains and increased abundances of N. pachyderma sinistral at around 

1.5, 3.0, 4.5, 5.8, 8.2 and 9.5 kyr BP. They argue that there is a 1470 ± 500-year cycle to 

these events that occurs unbroken through the Holocene and beyond and that this can 

be correlated to variations in solar radiation (Bond et al., 2001). 

Giraudeau et al. (2000) interpret sea-surface instabilities (EH events denoted by 

variations in the coccolithophore E. huxleyt) correlative to Bond et al.'?, (1997) events in 

a core from the Gardar Dri f t . They attribute the E H events younger than c. 6 ka to 

closer proximity of the subpolar front in response to decreasing solar insolation. 

However, they attribute the -8.2 ka E H event to meltwater from the Laurentide Ice 

Sheet (Barber et al., 1999). 

The sea-surface variability in JR51-GC35 generally corresponds with cooling events in 

the deep sea, but the closest correlation is achieved with the IRD record in JM96-1207 

from the East Greenland shelf (Figure 4.9). I t is likely that this is due to their positions 

relatively close to the polar front and IRD sources and interaction between the 

I C / N I I C and the EGC; therefore making them sensitive to climate change. Indeed the 

U'^37-SST fluctuations recorded in JR51-GC35 are of a high ampUmde, typically —2°, 

but as high as 4°C for the cooling that follows the mid-Holocene optimum at 5 kyr BP. 

Correlations with Icelandic glacial record 

Such extreme changes in U'^37-SST o f f N . Iceland should have corresponding events in 

the Icelandic terrestrial record. Figure 4.9e shows records of Holocene mountain glacier 
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T K advances in northern Iceland published by Stotter et al (1999), compared with the U 37-

SST record from JR51-GC35 (see Figure 4.1 for site locations). Evidence of climatic 

deteriorations coeval with the glacial advances have also been found in records of 

pollen assemblages and peat accumulation (e.g. Andrews et al., 2001a; Caseldine and 

Hatton, 1994; Rundgren, 1998). The glacier records show reasonable agreement with 

the U'^37-SST data, with most advances associated with troughs in U'^37-SST. The major 

exception being a glacial advance between c.3000-3700 which contrasts with a warm 

phase in the N . Icelandic shelf U'^37-SSTs and a reduced period of IRD flux in JM96-

1207. Possible explanations for this anomaly may be that this expansion - which is 

from one glacier (Vatnsdalur II) - is caused by internal glacier dynamics, or there may 

be a dating error. However, the two most prolonged periods o f glacier advance, at 10 -

11.5 kyr BP and 5.5 - 6.7 kyr BP are both coeval with cooler U V S S T s in JR51-GC35 

(Figure 4.9). Moreover, the termination of the advances are coeval with the two most 

prominent SST maxima on the N . Icelandic shelf - between 9-10 kyr BP and 5 - 5.5 

kyr BP. Stotter et al. (1999) suggest that reductions in SSTs and increases in winter sea-

ice north of Iceland reduces the precipitation input to Icelandic glaciers. However, this 

negative effect on glacier mass balance is more than compensated for by a reduction in 

equilibrium line altitude (ELA), thus resulting in a net gain in ice mass - and expansion 

of glaciers. The data from this thesis appears to support this theoretical model for the 

majority of Holocene glacier expansions in northern Iceland. 

Comparison of North Iceland and Norwegian Current 

Recent work by Eiriksson et al. (2000b) has suggested that during the Late-Glacial 

period some climatic events in western Europe were coeval with events of an apparendy 

contradictory sign on the North Icelandic shelf Benthic foraminiferal assemblages 

suggest a strong (warm) pre-BoUing palaeo-Irminger Current on the N . Icelandic shelf 

This contrasts with a particularly cold episode in the North Sea (Rochon et al., 1998) 

and in the GRIP ice-core (Bjork et al., 1998). Furthermore, preliminary oceanic 

modelling work at the Nansen Environmental and Remote Sensing Centre in Bergen, 

Norway apparendy indicates that increased strength of the Norwegian Current into the 

Norwegian Sea leads to a cooling of the Iceland Sea north of Iceland, and inversely, that 

a reduction of the Norwegian Current leads to warming of the Iceland Sea (Helge 

Drange, pers. comm. As cited by Eiriksson et al., 2000b). However, Eiriksson et al. 

(2000b) found no evidence of such discrepancies between the NI IC and other North 
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Adantic or Greenland records during the Holocene. This may have been due to the 
relative insensitivity of the benthic foraminiferal assemblages studied to lower amplitude 
Holocene changes. Moreover, the benthic foraminifera studied by Eiriksson et al. 
(2000b) responded to changes in water masses at 300 - 500 meters depth on the shelf, 
rather than SSTs in the mixed layer. 

In Figure 4.11 we compare changes in published Holocene alkenone-SSTs from 

MD952011, a high resolution core (7m Holocene section) from the Norwegian Sea 

(Calvo et al., 2002) with the U'^37-SST record from JR51-GC35 on the Icelandic shelf. 

The comparison shows that there are some general similarities between the records. For 

example, they both record an overall decrease in mean SSTs during the Holocene, a 

mid-Holocene Thermal Optimum (TO) and a marked cooling at -2.5 kyr BP. 

However, the records show some significant differences in the millennial scale climate 

events between the N I I C and NC, especially at 3.2, 5, 6.5 and 9 kyr BP. The most 

prominent example is the timing of the mid-Holocene TO. In MD952011 the mid-

Holocene T O is a distinct phase between 6 - 8 kyr BP (with the consistentiy highest 

SSTs between 6- -7 kyr BP). Calvo et al. (2002) suggest this is supported by data from 

diatom and foraminifera reconstructions in the eastern Nordic Seas (e.g. K09 and 

Jansen, 1992; K09 et al., 1993; Sarnthein et al., 1995), by records of mountain glacier 

retreat in Norway (Nesje and Kvamme, 1991) and European poUen data (Hundey and 

Prentice, 1988). However, in the records from the eastern Nordic Seas, during the 

period 6 -7 kyr BP, there is a trough in the U'^37-SSTs on the N . Icelandic Shelf, an 

increase in IRD events on the East Greenland shelf (Jennings et al., 2002b) and glacier 

expansion in northern Iceland. The T O in the northern Icelandic and East Greenland 

records instead occurs at 5- 6 kyr BP, at the same time as the termination of the T O in 

records from the eastern Nordic Seas and Northern Europe. 

A general trend of early-mid Holocene warm conditions, culminating in a mid-

Holocene T O and followed by neoglacial cooling is recognised throughout the Arctic 

areas of the North Adantic (e.g. Calvo et al., 2002; Jennings et al., 2002b; K09 et al., 

1993; Nesje and Dahl, 1993; Williams et al., 1995). An underlying cause of the general 

cooling trend is the reduction in summer insolation at high latimdes over the last 11 kyr 

(Berger and Loutre, 1991; Berger, 1978). However, this does not explain the abrupt shift 

from a thermal maximum to the neoglacial conditions seen in many records. The cause 
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of this shift is not well constrained (Jennings et al., 2002b). The postglacial isostatic 
rebound of the Arctic Island Channels has been invoked as a possible explanation 
(Williams et al., 1995). As these channels rose above the level of the Adantic layer in the 
Arctic Ocean, warmer saltier water was excluded from the outflow and dramaticaOy 
changed the character of the Baffin Current and the Labrador Current (e.g. Jennings, 
1993; Osterman and Nelson, 1989). Such a change in the bathymetry of the Arctic 
Island Channels would affect Baffin Bay, but not the outflow of water from the Arctic 
Ocean through the Fram Strait, to the Nordic Seas. 

Decreased solar insolation beyond a critical threshold, resulting in a change in preferred 

atmospheric circulation pattern (Andrews et al., 1997; K09 and Jansen, 1994) and N A O 

(North Adantic Oscillation) indices (Keigwin and Pickart, 1999) have been presented as 

possible causes for the neoglacial cooling. The data from this thesis is consistent with 

neoglacial cooling forced by decreased solar insolation beyond a critical threshold. 

However, rather than a simplistic advance of the Arctic front as suggested by K09 et al. 

(1993), we suggest that the response of the ocean circulation within the Nordic Seas was 

more complex than previously suggested; which included differences in the responses 

of the western (IC & NIIC) and eastern (NC) branches o f Adantic inflow to the Nordic 

Seas. 

The mechanism for a differential response is not proven. However smdies of 

instrumental data collected during the latter half of the 20'̂  century provide some 

intriguing possibilities. Alekseev et al. (2001) computed water temperature anomalies in 

the Nordic Seas at 100m for the 1980-1990 period. They found the most positive 

anomaly (+1) in the northern Norwegian Sea (73°N, 15°E) and the most negative 

anomaly (-1) in the seas to the north, east and south of Iceland. Blindheim et al. (2000) 

suggest that the instrumental data from 1950 onwards demonstrates that the 

oceanographic structure in the Nordic Seas is closely linked with the predominant wind 

system, which in turn is closely correlated to the N A O mode. This affects the 

westwards inflow of the Adantic water in the Nordic seas and the speeds of the currents 

advecting Adantic waters (Orvik et al., 2001). Blindheim et al. (2000) suggest that since 

the 1960s, conditions in the Norwegian Sea and Faeroe-Shedand area have shown litde 

correlation to the conditions in the north Icelandic shelf waters. Circulation of Atiantic 
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water into the western Nordic Seas has reduced, while there has been a temperature rise 
in the narrowing Norwegian Adantic Current (Blindheim et al., 2000). 

Most recendy Flatau et al. (2003) produced interesting results for the period 1992-1998 

using a synthesis of drifter, geostrophic flow (satilite alometry) and AVHRR-SST^ data 

(1992-1998). They suggest that N A O + years are associated with intensification of sub

polar westerlies in the Adantic and northerlies along the Greenland coast; resulting in 

the intensification of the cyclonic circulation in the Irminger basin. This is associated 

with negative SST anomalies on the North Icelandic shelf and northwest of Iceland to 

the East Greenland Shelf (including the region of JM96-1207), but positive SST 

anomalies further north and to the east. 

4.4. Conclusions 
Alkenones and chlorin pigments have been measured in three cores collected from the 

West and North Icelandic Shelf Major changes in the alkenone distributions are 

observed in the cores during the post-Glacial and Holocene periods. In the Late-Glacial 

(when alkenones were detectable) relative changes in % C 3 7 . , and U'^37 indicate relative 

changes in the influence of cold/low salinity waters versus warmer Adantic waters. 

Accordingly, major changes in the "/oC,,^ and U'^37 distributions coincide with the major 

transitions in the GRIP Late-Glacial ice-core event stratigraphy, with alkenone 

deposition apparendy ceasing during the most severe stadials (e.g. GS-1). There is good 

agreement between the interpretation of the alkenone record from the Late-Glacial and 

records of ice-front fluctuations from S.W. Iceland. 

The records from the N . Icelandic shelf display a general trend o f cooling through the 

Holocene. This is characterised in B997-325GC/PC by a cooling of 2.5°C (11 to 8.5°C) 

from 10.8 to 1.8 kyr BP and in JR51-GC35 by a cooUng of 2.5°C (10 - 7.5°C) from 10.3 

to 0 kyr BP. This data supports published reports of negative Holocene SST anomalies 

in the northern North Adantic towards the present. Contrasted with records of positive 

trends in eastern Mediterranean and Middle East, this suggests a negative trend 

(weakening) in the A O / N A O index during the Holocene (Rimbu et al 2003). 

- Advanced Very High Resolution Radiometer 
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The longest Holocene record, with superior dating control, was obtained from JR51-
GC35 from the N . Icelandic shelf The SST oscillations in JR51-GC35 are of large 
amplimde; with millennial scale oscillations characterised by deviations of - 2 ° C . The 
oscillations have a distinct cycHcity on a miUennial scale, with SST maxima at around 
0.5, 1.3, 3.2, 4.2, 5.2, 7.3, and 9.3 kyr BP. The most prominent of these maxima are in 
the early Holocene between 9 - 1 0 kyr BP and in the mid-Holocene between 5 - 5.5 kyr 
BP. Also, distinguishable in the record are events coeval with the Litde Ice Age and the 
Medieval Warm Period. 

The U'^37-SST record from JR51-GC35 shows a good correlation with recendy 

published Holocene records of iceberg rafting from on the East Greenland continental 

shelf The data from JR51-GC35 suggests that advances o f the polar front in the eastern 

Nordic Seas - associated with weakening of the IC/strengthening of the EGC - resulted 

in increased deposition of calcareous IRD on the East Greenland shelf 

The millennial scale oscillations in the JR51-GC35 U'^37-SST record also broadly 

correlate with a number of marine records of Holocene climatic events from the 

northern Iceland shelf and North Adantic deep-sea cores. However, the closest 

correlation is achieved with the IRD record in JM96-1207 from the East Greenland 

shelf. I t is likely that this is due to their positions relatively close to the polar front and 

IRD sources; therefore making them sensitive to climate change. 

The U'^37-SST record from JR51-GC35 also shows close agreement with records of 

Holocene glacial advances in northern Iceland. EspeciaUy, the termination of two major 

advances which are coeval with the two most prominent SST maxima on the N . 

Icelandic shelf - between 9- 10 kyr BP and 5 - 5 . 5 kyr BP. 

A comparison of the U'^37-SST records from JR51-GC35 and a core from the eastern 

Nordic Seas (MD952011) shows that there are some general similarities. However, the 

records suggest some differences (superimposed on the general trend) of miUennial 

scale climate events between the eastern and western Nordic Seas especially at 3.2, 5, 6.5 

and 9 kyr BP. The most prominent example is the timing of the mid Holocene Thermal 

Optimum (TO). In MD952011, the T O is a distinct phase between 6 - 8 kyr BP, (with 

the constandy highest SSTs at 6- -7 kyr BP). However, in the records from the eastern 
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Nordic Seas, during the period 6 -7 kyr BP, there is a trough in the U'*̂ 37-SSTs on the N . 
Icelandic Shelf, an increase in IRD events on the East Greenland shelf (core JM96-
1207) and glacier expansion in northern Iceland. Therefore, the data from this thesis 
suggest that the response of the surface ocean circulation within the Nordic Seas was 
more complex than previously suggested; possibly characterised by differential 
responses of the Irminger and Norwegian Currents. 
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Cover image: Sun setting on Raimach "tidalpond" diiringjield work August 2002. Image was taken at mid cycle during a 

spring-tide. 
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5.1. Introduction 

Isoladon basins are natural coastal rock depressions previously isolated from or 

connected to the sea by changes in relative sea-level (RSL). Their udUt)' in invesdgadons 

of RSL change is demonstrated by research in Scandinavia, Greenland and Scodand. 

They have proved particularly useful in the north and west coasts of Scodand where a 

comparative dearth of morphological, stratigraphical and biogenic material impeded 

previous research (Gray, 1983; Shennan, 1989; Shennan, 1992). In this region, isolation 

basin based studies have provided a rich record of Late Devensian and Holocene RSL 

changes from 13 k '̂r '''C to the present (Shennan et al, 2000c). The data obtained from 

isolation basin based studies tests h}'potheses derived from morphological work and 

various isostatic models (Shennan et al. 1996a; 1994; 1993; 1995; 2000c; 1996b). 

Previous work employs a combination of lithostratigraphic and biostratigraphic (i.e. 

microfossil) sea-level indicators to reconstruct sea-level changes within such basins. 

Novel proxies for reconstructing sea-level change are desirable because: 

Firsdy, established microfossil proxies - such as foraminifera - are sometimes partiaUy 

or entirely absent from isolation basin sediments. Organic carbon compounds are 

ubiquitous, often abundant, and sometimes overlooked components of oceans, lakes 

and sedimentary rocks. I f specific organic compound classes can be validated as reliable 

sea-level indicators, then the number of isolation basin sites suitable for investigation 

increases to include sites that yield an incomplete or inadequate microfossil record. 

Secondly, individual proxy methods each have intrinsic uncertainties and errors such as 

in the allocation of a correct indicative meaning (i.e. the vertical relationship between 

the local environment in which a sea-level indicator accumulated and a 

contemporaneous reference tide level). Therefore, multiproxy studies provide a more 

complete and subde record of RSL change, leading to greater confidence in 

conclusions. 
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5.2. Aims and objectives 
The overall aim is to assess the potential application of certain sedimentar)' components 

of organic matter (i.e. lipid compounds such as alkenones, «-alkanes and chlorophyll 

derivatives), and bulk organic parameters to RSL change in isolation basin in north-west 

Scodand. 

The objectives of this chapter are: 

1. To describe the modern distributions of the lipid compounds and bulk 

parameters of interest in a range of modern coastal basins, selected for their 

varying degrees of isolation from the sea. 

2. To describe the distributions of the lipid compounds and bulk parameters of 

interest in a number of down-core samples and to compare them with records 

of established sea-level indicators derived from the same cores. 

3. To determine the potential of alkenones to calculate an indicative meaning of a 

sea-level point and assess their potential for use in further studies. 

5.3. Background 
Background for the biomarker and organic matter applications is given in chapter 1, the 

following background section is specific to this chapter. 

5.3.1. Isolation basins and their application to sea-level studies 

5.3.1.1. Contemporary processes in modem isolation basins 

Modern isolation basins (i.e. those with an intertidal sill) may also be termed saline 

lagoons and further classified as silled, isolated, sluiced, or inlet t̂ 'pes, depending on the 

degree of isolation from the open sea (Joint Nature Conservation Committee, 1996). 

Any modern isolation basin has a number of inputs and outputs (hydrological, chemical, 

biological etc), which var\' on a diurnal, seasonal and annual basis. The marine input is 

controlled by the elevation of the sill, the orientation of the basin relative to the coast 

and the morphology of the conduit (Davies and Haslett, 2000). The balance of aU inputs 

and outputs together with issues such as basin morpholog)' and the prevailing cUmate 

will determine the environmental conditions within the basin. 
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Figure 5.1- Figure 5.4 describe in a graphical form the conceptual model of the changes 
in a basin through time during an isolation process caused by a fall in RSL. Figure 5.1 
represents a basin at five isolation stages (IS) during a fall in RSL. It illustrates the 
influence of the siU height and the tidal regime on the saUnitA' of the basin during the 
transition from fuUy marine to freshwater conditions. Figure 5.2 illustrates the typical 
changes in the in situ biological assemblage groups through the five stages and the 
common sediment types which accompany these changes. Figure 5.3 illustrates the 
three major changes in the hydrographic and deposidonal conditions in an isolation 
basin during a fall in RSL and Figure 5.4 illustrates the changes in the organic matter 
cycle associated with the physical changes highlighted in Figure 5.3 

5.3.1.2. Relative Sea-Level 

Mean sea-level (IVISL) for the UK is taken from the Newlyn tide gauge (1915 - 1921). 

The altitude of any tidal measurement for the UK can be calculated using the Newlyn 

tide gauge (1915 - 1921) as a reference. Mean tide level (MTL) is the mid-point of the 

tidal range at a given location. However, most tides are asymmetrical, with the corollary 

that MSL is often offset above or below MTL. The various key stages of the tidal cycle, 

together with the relevant acronyms used throughout this chapter, are given in Table 

5.1. 

Table 5.1: Key stages of the tidal cycle and acronyms used in this thesis 

Stage of Tide Acronym Tidal Zone 

Highest Astronomical Tide 

Mean High Water Spring-Tides 

Mean High Water Neap-Tides 

Mean Sea-Level* 

Mean Tide Level 

Mean Low Water Neap-Tides 

Mean Low Water Spring-Tides 

Lowest Astronomical Tides 

LL\T 

MHWST 

MHWNT 

MSL 

xMTL 

MLWNT 

iStLWST 

SUPR.\TID.\L ZONE 

INTERTIDAL ZONE 

SUBTIDAL ZONE 

*MS'L may be above or below MTL. 
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Changes in RSL at a regional scale are produced through the interaction of eustatic and 
isostatic factors. The regional signal, however, may be confused at the local scale 
(Shennan et al., 2000b). The change in RSL {At,^J for a site, at time X , and location cp, 
can be expressed schematically as: 

A^,.,, (r, (p) = A^^,„ (r) + A< ,̂,„ (r, (p) + A<̂ ,„,,,„ (r, (p) (5.1) 

where A^ .̂̂ J (̂T) is the time-dependent eustatic factor ; AE,^^,X'^, ( p ) is the total isostatic 

effect of glacial rebound, including the contributions from both ice (glacio-isostatic) and 

water (hydro-isostatic); and A4|„„|(T, ( p ) is the total effect of local processes. Such local 

processes can also be expressed schematically as: 

(r, (p) = Al,,, (r, (p) + A^„,, (r, <p) (5.2) 

Where A^(,JJ.(T, ( p ) is the total effect of changes in the tidal regime, and the elevation of 

the sediment with reference to tide levels at the time of deposition, and A^J -̂JCT, ( p ) is the 

total effect of sediment consolidation since the time of deposition (Shennan et al., 

2000b). 

^.3.1.3. Fossil isolation basins and the interpretation of former sea-levels 

Pioneering geomorphological work in Scodand in the mid-nineteenth century resulted 

in the identification of raised beaches and terraces (Chambers, 1848) and led Jamieson 

(Jamieson, 1865) to propose the glacio-isostasy theory-. However, it was not until the 

1960's that rigorous and consistent testing of this theon' was pursued by Sissons and 

co-workers (CuUingford and Smith, 1966; Sissons, 1962; Sissons, 1963; Smith et al., 

1969), whose approach was based on geomorphological mapping and accurate levelling 

of all identifiable terraces. This work was limited by the fact that palaeo-shorelines are 

subject to local variations in uplift resulting from the complex interplay of theology and 

ice mass distribution. The record is further complicated and fragmented as relict 

features are often covered or obliterated by till, aeolian sands and glacio-fluvial deposits 

etc (Sissons, 1962; 1963). 

Such problems are more apparent in Scotiand than in Scandinavia, Greenland or North 

America, where the Weichselian ice sheets were considerably thicker - resulting in faster 

and greater isostatic rebound, which produced larger sequences of well-defined 

morphological evidence. In comparison, Scottish morphological evidence of former 
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RSL change is disjointed, which makes inferences of age, based upon correladon of 
features from one area to another, particularly conjectural (Lambeck, 1993b). In 
contrast, studies over the last few decades, based on isolation basins have not relied on 
inferred dating but have utilised detailed Hthostratigraphic and biostratigraphic 
procedures, and absolute dating (i.e. radiocarbon) techniques. Work on isolation basins 
has been carried out it Scandinavia (Bondevik et al., 1997a; Bondevik et al., 1997b; 
Bondevik et al., 1998; Corner and Haugane, 1993; Kronen et al., 2001; Kjemperud, 
1981a; Kjemperud, 1981b; Kjemperud, 1986; Svendsen and Mangerud, 1987), Canada 
(Retelle et al., 1989), Russia (Corner et al., 1999; Snyder et al., 1997), Greenland 
(Bennike, 1995; Long et al., 1999) and Scodand (Lloyd, 2000; Shennan et al., 1996a; 
1994; 1993; 1995; 2000c; 1996b). 

Typically, the isolation histor}^ of basins can be divided into three basic phases: marine, 

brackish and fresh as represented by sedimentological and biological evidence (Hafsten, 

1983). The hydrological, depositional and organic geochemical changes during these 

phases are illustrated schematically in Figure 5.3 and Figure 5.4. The time-horizon of 

most interest to workers wishing to reconstruct former RSL change is the final isolation 

of the basin from the sea (Kjemperud, 1986), i.e. the transition from brackish to fresh 

or from IS 4 to IS 5 in Figures 5.1 - 5.4. This may be represented in the sediments by a 

horizon referred to as the isolation contact (see Figure 5.3). 

The identification and accurate dating of this horizon in sediment cores recovered from 

fossil isolation basins, is the prime challenge for palaeo sea-level workers. In theory, the 

definition of the isolation contact as representing the point at which the basin was 

finally isolated from the sea should be represented by the point in time when the HAT 

falls below the height of the sill. SpecificaDy, this is the hjdrological isolation contact, which 

describes the total cessation of marine incursions into the basin. 

However, Kjemperud (1986) has described how in reality an isolation contact identified 

in sediments may or may not be coincident with the hydrological isolation event. 

Kjemperud identifies up to four contacts in sediments resulting from differential 

processes during isolation and therefore have different implications for RSL 

reconstructions: 
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The sedimentological isolation contact is the change from a minerogenic "mosdy 
aUochthonous" sediment to a higher TOC "more autochthonous" sediment. 
This often occurs below the hydrological isolation contact as the main decrease 
in sediments transported in from the sea tj'pically occurs relatively early in the 
isolation process. 

The diatomological isolation contact (more generally: the phytological i.e.). Diatom 

assemblages are most frequendy used as markers for environmental change in 

isolation basin studies. Therefore, in the literature, isolation contact is often 

used synonymously with the diatomological isolation contact. It may be 

considered as "a horizon that was the sediment-water interface at the time when 

the water in the photic zone of the basin became fresh" (Kjemperud, 1986). 

The hydrological isolation contact. As mentioned above, this term describes the total 

cessation of marine incursions to the basin (Ingmar, 1975). In some studies this 

is argued to be coincident with the diatomological contact (e.g. Kjemperud, 

1986). However, in some basins it is possible for denser sea water to ventilate a 

basin at higher tides and circulate beneath a relatively fresh photic zone. In this 

situation the diatomological contact may occur up to 250 years earlier in the 

isolation process than the genuine hydrological contact (e.g. Faafeng, 1976 as 

cited by Laidler, 2002). 

The sediment/freshwater contact. This is related to the conditions prevailing at the 

sediment/water interface after hydrological isolation. It can be defined as 

representing "the time when all trapped sea water is replaced by fresh water" 

(Kjemperud, 1986). This is especially relevant to large and deep basins (i.e. deep 

enough so that the basins can not be fully mixed by wind), and can be a source 

of confusion when inorganic geochemical methods such as stable isotopes are 

used (Kjemperud, 1986). 

The relationship between the isolation contacts of Kjemperud (1986) and the basin 

hydrolog)' at different stages of isolation are illustrated in Figure 5.5. Much of the 

isolation theory oudined above has been developed from empirical work in Scandinavia. 

Isolation basins from that region and from Greenland may record RSL changes of 50-
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100m or more and experience a spring tidal range of l-2m or less (Laidler, 2002). In 
contrast, Scodand has experienced RSL change of a maximum of 50-40m near the 
centre of the ice (and considerably less further from the centre), since the last 
interstadial, with the present mean spring tidal range being c.4m around much of the 
western coast (Shennan et al., 1994). These factors combine to produce a longer 
transitional phase, typically of 500-1000 years or more (Long et al., 1999; Zong, 1997) to 
the more extreme 6500 cal years taken for the isolation of Loch nan Corr (Lloyd, 2000). 

Therefore, compared to Scandinavia and Greenland, Scottish basins may provide a 

higher resolution record of the isolation process and may resolve more subde changes 

in RSL over several millennia (Laidler, 2002). However, a disadvantage is that variations 

in tidal range are often significant when compared to actual differences in RSL change 

between sites in NW Scotiand (Shennan et al., 1994). Therefore, without accurate 

estimation of indicative meaning (see 5.3.1.6 page 150) and levelling of the basin siU, 

inter-site differences in the reference tide level may form an appreciable component of 

what appears to be variation in RSL between locations (Shennan et al., 1994). 

Unlike the sea-level research in, for example Scandinavia, there had been only limited 

focus on "staircases" of isolation basins in Scotiand until the series of papers produced 

by Shennan et al from the mid-1990s. These studies concentrate exclusively on the west 

coast of the country, where sheltered depositional environments are severely restricted, 

which in part explains the lack of previous research in the area (Shennan et al., 1994; 

1993; 1995). Isolation basins were investigated by Shennan and co-workers as one of 

three sets of depositional environments (raised tidal flats, isolation basins and 

dune/beach systems). Isolation basins and tidal marshes were determined as the 

providers of the most reliable, precise sea-level data, using a combination of the 

Uthostratigraphical and biostratigraphical record (Shennan et al., 1994; 2000c). 

5.3.1.4. Established sea-level indicators 

The following lithostratigraphical and biostratigraphical techniques are commonly 

employed as sea-level indicators: 

Pollen analysis. Palynology was used in the earliest works on isolation basins in 

Scandinavia (Fasgri, 1940) and has been widely used in the Scottish isolation 

basin studies of Shennan et al (1996a; 1994; 1993; 1995; 1996b) in the 
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determination of sea-level tendencies and reference water levels. As RSL 
changes, transitions between saltmarsh and terrestrial environments will be 
recorded in the pollen record. 

Diatom analysis. Diatoms are widespread microscopic unicellular alga of the class 

Bacillariophyceae, which colonise many wet environments exposed to sunlight. 

The species composition of diatom populations is controlled by particular 

ecological sensidvities, with the primar)' focus in most cases being salinit}', 

nutrient supply, compedtion and sometimes pH (Palmer and Abbott, 1986; 

Shennan et al., 1993). The resulting diatom assemblage can be used to 

reconstruct the environmental histor)' of the fossil isolation basins. 

Foraminiferal analysis. Foraminifera are protozoa of the class Rhizoflagellates. In 

saltmarsh environments foraminiferal assemblages often occur in weU-defined 

tidal zones (Scott and Medioli, 1978) and have been applied to sea-level research 

(e.g. Horton et al., 1999). In isolation basins, however, the elevation is 

standardised by the siU, therefore other environmental factors, such as salinity 

have been deemed to control assemblages. However, a recent study by Laidler 

(Laidler, 2002) did not find a clear relationship of foraminiferal assemblages to 

salinity. 

Stratigraphical analysis. Kjemperud (1986) lists the sediment transition as one of 

the four isolation contacts because it tj'picaUy characterises the visible change 

from clastic marine horizon to a transitional lacustrine clay gyttja, before a 

freshwater gyttja is deposited following isolation (e.g. ReteUe et al., 1989). 

During a faU in RSL this contact is usually the first to occur as the tidal energy 

reduces, lowering the rate of deposition of coarser sediments. It provides a 

useful indicator in the field - as it is usually visible - and can allow preliminary 

comparison between sites, prior to detailed laboratory analysis. 

5.3.1.5. Sea-kvel index points 

A sea-level index point is a damm which can be employed to show vertical movements 

of RSL, once information about the geographical position, environment, indicative 
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meaning, altitude and age of a sample are established (Shennan, 1982). Each index point 
should consist of: 

a geographical position; 

an indicative meaning; 

- an age; 

a tendency of sea-level movement. 

Through the correlation of numerous sea-level index points in a region, the regional 

oscillations of RSL during particular time periods can be established (Shennan et al., 

1983). 

5.3.1.6. Indicative Meaning 

To compare samples for age/aldtude analysis, a sea-level index point must have an 

indicative meaning (Shennan, 1982). The indicative meaning of a sample describes the 

vertical reladonship between the local environment, in which a sea-level indicator 

accumulated and a contemporaneous reference tide level (e.g. H A T or MHWST etc) 

(Horton et al., 1999; Shennan, 1982; Shennan, 1986; van de Plasshe, 1986). This 

assessment for each sample is especially important in macrotidal areas (Shennan, 1986). 

Each sample is firsdy related to its reference tide level, such as mean high water spring

tide (MHWST), before also being defined in terms of its indicative range, or modern 

vertical range (an estimate of how accurately the tide level can be estimated from the 

available evidence; (Horton et al., 1999; Shennan et al., 1995). In the case of isolation 

basins, the indicative meaning is not based on the sample itself, but rather on the 

elevation of the sill, thus standardising the indicative meaning for the whole site at any 

given point in time. In the north-west Scottish studies by Shennan et al., basins are 

assigned a reference tide level in the range MLWST to MHWST (Shennan et al., 1996a; 

1994; 1993; 1995; 2000c; 1996b) depending upon the freshwater input into the basin 

(Shennan et al., 1995). 

5.3.1.7. Application of Data from Sea-Level Reconstructions 

The acquisition of accurate sea-level index points through isolation basin studies — that 

employ a consistent methodolog)' - has facilitated the examination of: 

the validit}' and precision of RSL curves (age-altitude empirical) 

150 



James A P Bendle - Ph.D. Thesis 

isobase models such as those of Sissons (1963; 1966; 1972; 1983) 

ice-sheet extent/isostatic rebound models proposed by Boulton et al (1977; 

1985) and Lambeck (1991; 1993a; 1993b; 1995) for Great Britam. 

53.1.8. LeveZ of Accuracy 

In considering the value of particular samples as indicators of RSL it is important to 

consider the possible sources of error. The main sources are considered below: 

Indicative Meaning. Some RSL indicators, may not have a consistent reference tide 

level. The most probable source of error in indicative meaning from isolation 

basin research comes from the amount of freshwater entering a basin, relative to 

its volume (Laidler, 2002). Uncertainties have been displayed in the indicative 

meaning ascribed to the diatomological and hydrological isolation contacts of 

the upper and main basins at Loch nan Eala, "owing to the significant 

freshwater input into the system" (Shennan et al., 1994; 1995). 

Tidal Range. The tidal record for a site is taken from the nearest primar}' or 

secondary port and, as such disregards any variation which may be present 

between the port and the site. The indicative meaning of a site or sample is 

based upon its reference water level in the tidal cycle. A constant relative tidal 

regime (i.e. between sites) through time is assumed in the calculation of the 

indicative meaning. Past tidal regimes are assumed to relate, in absolute terms, 

to present tidal conditions. Shennan (1980) acknowledged that through making 

this assumption the value of the indicative meaning is decreased, but it is 

necessary whenever sea-level index points with different indicative meanings are 

being considered. A number of studies have suggested there have been 

significant changes in the Holocene tidal regime of the Bay of Fundy (Scott and 

Greenburg, 1993), the north-western European continental shelf (Austin, 1991) 

and the western North Sea (Shennan et al., 2000a). A n in depth study will be 

required for the western coast of the UK, i f past tidal regime changes are to be 

constrained, and this source of uncertainty confronted (Laidler, 2002). 
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Modem Samples. The use of modern samples as an analogue for former 
environments involves a number of basic assumptions which include the 
following: 

• Modern data-sets should be of consistent taxonomic origin. 

• The modern taxa (or their subsequent biomarkers) are related to the 

environment in which they live. 

• The taxa (or biomarkers) in the modern data-set are the same biological 

entities as those in the fossil data, and their response(s) to the 

environmental variables has not changed significantly over time. 

There is also an assumption that the sample being coUected is actually a modern 

sample and not the product of a disturbed sequence. Uncertainties regarding 

reworking can be minimised by avoiding areas of exposed coastline and basins 

with strong ddal currents. 

'Levelling. Altitudinal errors may occur, when levelling the altitude of stratigraphic 

boundaries, and the upper boundary of the bedrock sill. Shennan (1980; 1982; 

1986) identified three different main sources of errors: 

• Measurement of depth of a borehole. 

• Levelling of the site to an Ordnance Survey benchmark, or tying the 

elevation of a site in the OS National Grid system (via GPS). 

• Accuracy of benchmarks to the second Ordnance Datum (OD) at 

Newlyn. 

Additionally, levelling error may also have been introduced for some fossil 

isolation basins by human modification. Examples of this are Ardtoe (Shennan 

et al., 1996a) and Loch nan Eala (Shennan et al., 1994; 2000c) where engineering 

works have led to the partial removal or burial of the basin sill, making the 

altitude difficult to determine accurately. 

5.4. Approach 

5.4.1. Sampling rationale 

The aim was firstiy to investigate the distribution of the lipid biomarkers and bulk 

organic properties in a number of modern sites from N W Scotiand, which could be 
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considered analogous to the theoretical stages of isolation illustrated in Figures 5.1 -
5.4. Summary details of the modern sites and their isolation stage are listed in Table 5.2 
(page 164), justification for the isolation stage allocation is given in section 5.5 (page 155 
onwards). The second aim was to compare the records of the bulk organic and 
biomarker proxies in cores recovered from fossil isolation basins to records derived 
from established microfossil sea-level indicators. Details for the fossil basin sediment 
cores and the justification for their selection are given in Table 5.3 (page 165) and 
section 5.5.3 (page 162) respectively. 

5.4.2. Study specific experimental 

5.4.2.1. Modem basins 

The hydrographic measurements were made by deploying a sonde from a small boat. 

Two sondes which could record multiple parameters (multiprobes) were employed, an 

Idronaut Sri Ocean Seven 301 and a YSI 556. Both measured temperature, 

conductivity/salinity, oxygen and pH, however, only the Idronaut Sri could automatically 

log pressure/depth. Therefore, when the YSI 556 was used depth was calculated from 

the length of line deployed during the logging of a profile. The densit}' anomaly a, was 

derived by the author from salinity, temperature and pressure measurements using an 

UNESCO endorsed algorithm and Lab Assistant PC based software (Fofonoff and 

MiUard, 1983). 

Sediment samples were collected by a sediment grab deployed by wire from a boat and 

triggered remotely by a messenger weight or in the case of Rumach tidal pond collected 

by hand during low tide. 

5.4.2.2. Fossil basins 

Details of the analytical procedures used to obtain and radiocarbon date microfossil 

records and derive the resulting sea-level index points from the fossil isolation basins 

are described in Shennan et al (2000c) and references therein. A brief summar)' of the 

methodology is: 

For each fossil basin, a series of boreholes were cored to reconstruct a profile of the 

basin stratigraphy. One core location was then selected to represent the sequence and 

resampled to provide sediment for further analysis. Core and basin sill altitude were 

153 



Chapter 5: Biomarkers and organic matter in coastal environments of N.W. Scodand 

levelled to O D using an automatic level and staff. Lithostratigraphy, pollen, diatom, 
foraminiferal and radiocarbon analyses were prepared using standard procedures 
(Moore and Webb, 1978; Palmer and Abbott, 1986; Scott and Medioli, 1980; Troels-
Smith, 1955). Cores were sealed and refrigerated during the interim between the original 
microfossil and subsequent subsampling for lipid biomarkers. 

5.4.2.3. Particle si^e analysis 

Particle size distributions were measured from subsamples using a Coulter LS 230 

Particle Size Machine (PSM). The instrument measures particle sizes in the range of 

0. 375|J.m - 2mm by laser diffraction. Approximately 0.5 - 2 grams of wet sediment 

were placed in a 50ml test tube and 20mls of 20% hydrogen peroxide in distilled water 

were added. The tubes were placed in a water bath at 80°C until all the organic material 

had dissolved (more hydrogen peroxide was added i f needed). The samples were 

centrifuged at 4000 rpm for 4 minutes, and most of the supernatant was discarded. 

Distilled water was added to the sample and the process was repeated several times until 

the hydrogen peroxide was diluted. A volume of 20 ml of distilled water and 2 ml of 

sodium hexametaphosphate (dispersant) were added prior to analysis with the Coulter 

PSM. 

5.4.2.4. Analysis for lipid biomarkers and bulk organic properties. 

Following collection samples were stored at -20°C. vMl samples were prepared according 

to the procedures described in chapter 2. Quantification of alkenones and alkenoates in 

N.W. Scottish coastal sediments was by a combination of analysis by GC-FID and GC-

CI-MS and quantification of alkanes by GC-FID. The concentrations of alkenones in 

the majority' of the samples was extremely low compared to t}'pical samples from deep 

sea sediments, with concentrations often less than the minimum of l n g / / / l previously 

suggested for accurate peak measurement (Rosell-Mele, 1994) and the 10ng//il 

suggested for accurate estimation of within-class-distributions (Grimalt et al., 2001) 

when using GC-FID. In the case of within-class-distributions, this problem was 

circumvented by using GC-CI-MS. GC-CI-MS has an overaU sensitivity of ~10 pg/yUl 

1. e. it is two orders of magnitude more sensitive than GC-FID. At the time of the 

analysis for the N.W. Scottish samples the quantification of alkenones was linear 

between ~20pg//yl and ~20ng/fA (above 20ng//A there was overloading of the system 
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characterised by truncation of the analyte peaks). Moreover, GC-CI-MS has superior 
selectivity which adds to the accuracy of quantification of within-class-distributions. 
However, GC-CLMS was not ideal for accurate measurement of the absolute 
abundances of alkenones (i.e. IIC,^., + C,, , (ng/g C,,̂ ^̂ ) as there was no suitable internal 
standard and the peak response fluctuates with changes in the pressure of the N H / 
source. Therefore, both GC-FID & GC-CI-MS were used for the measurement of 
absolute abundances of ZC,7 2 + C,^., (ng/g C„,j^ and results are reported together. This 
way absolute alkenone abundances were measured relatively accurately when present in 
abundance (by GC-FID) and less accurate "order of magnitude" measurements were 
reported when alkenones were below the GC-FID detection limit. Moreover, accurate 
measurements of within-class-distributions were made down to extremely low 
concentrations using GC-CI-MS. 

5.5. Site descriptions and results of hydrographic measurements 

This section summarises the relevant information for the four study areas based upon 

the general environmental setting. Individual basins are described in terms of their 

characteristic morphology, sediments, vegetation, tidal regimes and freshwater inputs. 

The location o f the different geographical study areas and the individual study sites are 

illustrated in Figure 5.6. Each site description is accompanied by a site map (Figure 5.7 

- Figure 5.11) and site characteristics are summarized in Table 5.2 & Table 5.3 (pages 

164 & 165). Results of multiprobe profile measurements of water column properties are 

also presented - when available - and these provide additional insights into basin 

hydrography. 

5.5.1. North-west Scotland 

The coastline o f north-west Scotiand is characterised by a succession of sea lochs 

(fjords), with rocky headlands and sandy embayments. The existence of extensive quite-

water depositional environments is restricted (Shennan et al., 1993). The isolation 

basins/saline lagoons around Scotiand vary greatly in size and character. In this study 

the maximum depth range varied between 5.16m and 0.56m over the full tidal cycle for 

the isolation basins, while the depth of Loch nan Ceall (open sea loch) was measured at 

15.95m (mid cycle, of a tidal range of ~6m). 
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5.5.2. Modern Basins 

This section presents relevant site information for the modern basins studied in this 

chapter. A summary is given in Table 5.2 , page 164. 

5.5.2.1. Arisaig 

The rocky, glacially eroded landscape of the Arisaig area provides a series of rock-lipped 

depressions that have accumulated shallow marine, intertidal, lacustrine and terrestrial 

sediments since the time of the deglaciation (Shennan et al., 2000c). The geology of the 

area is part of the Moine succession consisting of sequences of metamorphosed arenites 

and pelates. Impure calcareous rocks make up a very small part of the sequence (Craig, 

1983). Figure 5.7 is a map of the Arisaig area. 

5.5.2.1.1. Loch nan Ceall 

Loch nan Ceall (56°54'N, 5°45'W) is a sea loch, open to and ventilated by waters from 

the continental shelf. I t is -15.5m O.D. at its deepest point, so that much of its surface 

sediments are well below L A T (-2.84m OD) (U.K.H.O., 2002). Such sediments are 

analogous (in terms of depth below OD) to the fully marine sequences described in 

local fossil isolation basins at -15 kyr BP when mean RSL was c. + 15m O D , relative to 

the sill of the basin (Shennan et al., 2000c). Its current isolation status corresponds to 

isolation stage (IS) 1-2 as illustrated by figures 5.1 -5.4. The location of the site is shown 

in Figure 5.6, a map of the area (including sampling stations) and site details are given in 

Figure 5.7 and Table 5.2 (page 164) respectively. Fresh water inputs consist of 

numerous streams debouching from the surrounding land. The vegetation in the 

surrounding catchment consists o f woodland, moorland and marsh communities on 

higher ground, grading through low marsh to marine macrophytes on the tidal flats. A 

vegetation transect across a tidal marsh in the north of the loch was carried out by C. 

HiUier in June 2002, (see Figure 5.7) and details are given in appendix I I . 

On 6''' August 2002, during mid-tide mid-cycle, Uronaut Sri multiprobe profiles were 

taken from sites LNC 2 and 3 (see Figure 5.12). The profiles illustrate that the water 

column was well mixed (by tidal friction) with a small range in salinities of ~32.8-33psu 

and temperamres of -14.8-16 °C through most of the water column. Some slight 

freshening (30.29psu) is evident in the topmost measurement (22cm) of station 2, 

possibly indicating the influence of terrestrial run-off, however this was only observed 

in one data point. 
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5.5.2.1.2. Rumach Tidal Pond 

Rumach Tidal Pond (RTP) is a basin at the head of the Ru peninsula. The pond is 

bounded by a rock sill to the north-west and a tidal marsh to the south. The altitude of 

the sill IS 0,27m O.D. (Zong, 1997), close to current M T L of 0.28m O D (U.K.H.O., 

2002) and the pond is inundated by the sea during all high tides (MHWNT = +1.18m 

OD) according to the tidal regime at the nearest port of Mallaig, 15 km away 

(U.K.H.O., 2002). Therefore, it may be considered to correspond to IS 3 as illustrated 

in Figures 5.1 - 5.4. The location of the site is shown in Figure 5.6 & Figure 5.7, while 

Figure 5.8 illustrates the basin (and sampling stations) in detail. Site characteristics are 

given in Table 5.2 (page 164) (see also photographic plates in appendix I I ) . 

C. Hiller carried out vegetation surveys of the basin in June 2002, the resulting 

description is given in appendix I I . The tidal pond is exposed to westerly waves and the 

surface sediment contains pebbles, shingle and coarse sand. The sediment becomes 

finer towards the marsh in the southern part of the basin (see Figure 5.41) for particle 

size results. A small stream runs into the pond from the higher Rumach basins, another 

stream drains into the south o f the basin. 

In August 2002, E. Mackie took depth profile measurements for temperature, salinity, 

dissolved oxygen and pH at stations 1-5 (Figure 5.8) using an Idronaut Sri multiprobe 

ever}' hour during a spring-tide (11/8/02, +2.55 m O D at Mallaig), a neap-tide (4/8/02, 

+ 1.15m O D at Mallaig) and a mid-cycle tide (7/8/02, +2.05m O D at Mallaig) for half 

the tidal cycle (i.e. either H T - L T or LT-HT). The results are summarized in Figure 5.13-

Figure 5.19. The figures illustrate that the basin is ventilated by marine water during aU 

tidal cycles including the neap-tide. At high tide the properties of the water in the basin 

closely resemble that of the August conditions of Loch nan Ceall with salinities of ~32-

33 psu and temperatures o f ~14-15°C. 

During aU of the low tides measured - including the spring-tide - there was a general 

freshening in the upper parts of the water column at most stations (at those where there 

was some remaining water). Salinity was reduced by a few psu at spring-tide but at mid-

cycle and neap-tide reductions down to~20psu and ~15psu were measured. However, 

the surface water data is patchy as the Idronaut multiprobe could not take measurements 

consistentiy in water depths of less than ~20cm, therefore a complete picaire of the 
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propert}' changes in the uppermost layer of the water column was not possible. Despite 
this the profiles clearly demonstrate the consistent influx of marine water at all high 
tides and the influence of the fresh water stream which is variable but more pronounced 
at low tides - even during the spring cycle. 

Occasional profiles were taken outside the basin in the waters of Loch nan CeaU 

(station 6, Figure 5.8). These measurements suggested that the freshening influence of 

the stream extended at least a short way beyond the basin sill, at least during neap and 

mid-cycle low tides. 

5.5.2.1.3. Loch nan Eala 

Loch nan Eala is a fresh water loch, fed by the Bruner\' Burn, at the eastern end of 

Loch nan Ceall (see Figure 5.7 & Table 5.2, page 164). I t is part of a complex of fossil 

isolation basins that have been studied by Shennan et al (1994; 1993). The present Loch 

nan Eala was reduced in size by the construction of a channel around A D 1850. The 

only connection to the sea is through the small vaUey through which the channel runs. 

The minimum altitude of the rock ridge between the basin and Loch nan Ceall is 

+15.27m OD. This would have last operated as a connection to the sea during high 

relative sea-level in the late Devensian (Shennan et al., 1994). Therefore, as a modern 

fresh water loch that was once connected to the sea it may be considered to correspond 

to IS 5 as illustrated in Figure 5.1 - 5.4. C. HiUer carried out vegetation sur\feys of the 

basin in June 2002, the resulting description is given in appendix I I . 

5.5.2.2. Knapdale 

Most of Knapdale is forested land with a gentie "rolling" relief interspersed with lochs. 

The geolog)' is predominandy metamorphosed rock, intruded or overlain by igneous 

rocks in places (Craig, 1983). 

5.5.2.2.1. Craiglin lagoon 

Craiglin lagoon is located on the margins of Loch Sween, a sea loch open at its southern 

end to the continental shelf (NR 775 878). The site location in shown in Figure 5.6, a 

site map (and sampling station locations) is shown in Figure 5.9, site characteristics are 

given in Table 5.2 (page 164). The lagoon is connected to Loch Sween via a narrow 

channel on its west side which passes through a culvert under a forestr)' road (see 

photographic plates in appendix I I ) . The culvert has a sill height o f 1.417m O D 
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(Laidler, 2002). There is a small freshwater spring in the channel to the east of the 
culvert. Some fresh water input will enter the basin from the surrounding land but this 
is Likely to be Limited by the forestry plantation. Most of the lagoon has a bottom of fine 
mud, with tasselweed {Kuppia sp) giving way to the seagrass Zostera marine at depth. 
The lagoon is colonised by a number of algal species from the Cyanophycota, 
Rhodophycota, Chr}'sophycota, Chromophycota and Chlorophycota. The marine 
biology of the lagoon was surveyed as part of a conservation review of coastal lagoons 
in Scodand (Covey et al., 1998), details are given in appendix I I . 

The tidal regime at the nearest port (5km away) - for which admiralty tide tables are 

available- Carsaig Bay has a MHWST of + 1.29m O D and a H A T of + 1.64m O D 

(U.K.H.O., 2002). When compared to the sill height of Craiglin lagoon (-Hi.417m OD) 

this tidal regime suggests that the lagoon is only ventilated by marine water during 

higher than average spring-tide high tides and some storm tides. This is supported by a 

previous site survey which determined that Craiglin lagoon had a tidal range of 

approximately only 10cm (Covey et al., 1998). Therefore, it might be considered as an 

excellent analog of a late stage of isolation - corresponding to IS 4 in Figures 5.1 — 5.4. 

To confirm tliis, a number of observations and water column profile measurements of 

the basin were made in August, September and October 2005. 

During spring-tides on 11/8/02 (+ 1.39 O D at Carsaig Bay) and 7/10/02 (+1.79m O D 

at Carsaig Bay) hourly depth profile measurements for temperature, salinity, dissolved 

oxygen and p H were made using an Idronaut Sri multiprobe (stations 1-6) and a YSl 556 

multiprobe (stations 1-5,6) respectively (see Figure 5.20 - Figure 5.23). The results 

indicated that on both occasions the basin was ventilated by marine water at high tide 

and for several hours preceding high tide, despite the admiralt}^ prediction that for 

11/8/02 the high tide should not quite breach the siU. This is clearly indicated by the 

increase in salinity at station 6 (closest to the channel) from brackish values (~15-25psu) 

to a value of ~33psu (the Loch Sween waters proximal to the basin gave salinity values 

of ~33psu). The ingress o f the marine waters was also detected at the deepest station (2) 

although the shift in values of salinity and temperature was considerably more subde 

than for station 6 on both occasions. 
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The profile measurements also elucidated the stratification within the lagoonal waters -
clearly expressed in aU of the properties. In August (11/8/02 ST-LT) the lagoon had an 
epilimnion with temperature and saUnit}' measurements of —20°C and -15psu 
respectively, grading through a pycnocline between 40-50cm to a hypolimnion with 
values of - 2 5 ° C and -27psu (see Figure 5.20). In October (7/10/02 ST-LT) the 
stratification was less pronounced - the epilimnion had temperature and salinit\^ values 
of - 1 4 ° C and -25psu respectively, grading through a deeper pycnocline between 60-
100cm to a hypolimnion with values of ~17.5°C and -29.5psu (see Figure 5.22). Such a 
situation - where denser seawater is able to ventilate a basin at higher tides and circulate 
beneath a brackish photic zone - has implications for the accumulation of sea-level 
indicators within the basin and may give rise to the non-contemporaneous deposition of 
a phytological and a hydrological contact (see section 5.3.1.3, page 145). 

The degree o f the stratification within such a lagoon wiD be a function o f the interplay 

of a number o f factors including: the densit)^ and volumes of the marine waters and 

fresh source waters ingressing the basin, the net radiative heating or cooling at the 

surface and mixing by wind stress. Stable stratification is unknown in lakes of less than 

40m depth at latimdes of <70°N (Killops and Killops, 1993). Whether this rule 

maintains for saline lagoons is not known. However, it is likely that given CraigUn 

lagoon's shallow depth and exposure to strong westerly winds the stratification has 

some temporal variability with greater mixing and breakdown in the winter months. 

Therefore, the observed decrease in the epilimnion-hypolimnion densitj' differential 

between August and October may well have been a function of increasing wind stress. 

One interesting feature o f the stratification is that the density gradient is clearly 

dominated by salinity and the temperature gradient is the opposite of what would be 

necessary in a stratified lake (i.e. in the lagoon there are higher temperatures in the 

hypolimnion than the epilimnion). This difference is quite considerable in August with 

temperatures of ~20°C and - 2 5 ° C in the epilimnion and hypolimnion respectively. The 

cause of this phenomena is not known, however one explanation may be that the heat 

energy released by the respiration of the organic matter in the lagoon sediments serves 

to preferentially warm the deeper waters proximal to the sediment water interface. This 

is supported by the oxygen profiles for the October (station 2), which suggest that in 

the hypolimnion there is decreasing dissolved oxygen with depth from lOpmm at 20cm 
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to the point of anoxia at the water-sediment interface at spring tide-low tide, with a 
slight increase in oxygen levels with ventilation by marine waters at spring tide-high tide 
(see Figure 5.22). 

The situation observed in August was more complicated with a decrease in oxygen with 

depth from 14ppm at 10cm to 8ppm at 40cm, an increase through the pycnocUne to 

17pmm at 50cm followed by a decrease to 15pmm at the sediment water interface (see 

Figure 5.20). Such variation in the oxygen conditions of the lagoon are not surprising 

considering the highly variable nature of the stratification suggested for the basin and 

the variable ingress of oxygenated marine waters. However, significant methanogenesis 

and therefore persistent anoxic respiration within the upper layers of the lagoon 

sediments was suggested by the strong smell of methane released when obtaining grab 

samples of the surface sediments in August 2002. Anoxic conditions within the upper 

layers of the sediment has implications for the early diagenesis and preservation of 

sedimentary lipids such as alkenones. 

On 3/8/02 and 30/9/02, the lagoon was visited during neap-tide tidal cycles and 

multiprobe measurements were taken for a few hours around high tide. Neap-tide high-

tide was +0.29m O D at Carsaig Bay on 3/8/02 and +0.35 on 30/9/02. On both 

occasions water was observed to be visibly draining/row the lagoon to Loch Sween at 

high tide. Moreover, measurements at station 6 revealed only brackish values of ~8psu 

and ~25psu in August and September respectively. On 9/8/02, the lagoon was visited 

during a mid-cycle tide (+1.29 O D at Carsaig Bay). On this occasion, the multiprobe 

equipment was not functioning, however as with the neap-tide high tides, the water was 

observed to be visibly draining/"ow the lagoon to Loch Sween at mid-cycle high tide. 

These observations support the suggestion that this basin is generally only ventilated by 

marine waters on certain spring tide-high tides and is therefore a good exemplar of the 

latter stages of isolation (i.e. IS 4). 

5.5.2.3. Kintail 

The geolog}' o f Kintail is dominated by Lewisian Gneiss, profoundly ancient (2900 Mya) 

intensely metamorphosed basement rocks cut locally with dykes of acid and basic 

igneous rocks (Craig, 1983). This produces a thin soil usually lacking in fertility' (Laidler, 

2002). 
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5.5.2.3.1. Loch nan Corr 

Loch nan Corr is a fresh water loch with a rock sill at +2.70 OD. Tidal predictions for 

the nearest port at Dornie Bridge suggest this is only 0.08m above present MHWST and 

0.54m below H A T at the (U.K.H.O., 2002). According to such measurements the Loch 

should be brackish, like Craiglin Lagoon. However, the Loch has been recorded as fresh 

by previous investigators (Lloyd, 2000), a categorisation confirmed by multiprobe 

measurement in August 2001 (E.Mackie pers. comm.). Such a discrepancy must be due 

either to errors in the levelling of the siU height (see 5.3.1.8 page 151) or to differences 

in local tidal regime in the 10km between Dornie Bridge (the nearest port, see 5.3.1.8 

page 151) and Loch nan Corr. The site location in shown in Figure 5.6, a site map (and 

sampling location) is shown in Figure 5.10, site characteristics are given in Table 5.2 

(page 164). The basin which contains the loch was previously connected to the sea and 

has been utilised in previous isolation basin studies (Lloyd, 2000; Shennan et al., 2000c). 

Therefore, as a modern fresh water loch that was once connected to the sea, it may be 

considered to correspond to IS 5 as illustrated in Figures 5.1 - 5.4. However, it differs 

from Loch nan Eala in that it was connected to sea as recentiy as 554 yr BP (Lloyd, 

2000). C. HiUer carried out vegetation surveys of the basin in June 2002, the resulting 

description is given in appendix I I . 

5.5.3. Fossil Basins 

This section presents relevant site information for the fossil basins studied in this 

chapter, a summary is given in Table 5.3 (page 165). 

5.5.3.1. Arisaig 

See section 5.5.2.1 (page 156) for a description of the Arisaig area. 

Loch Dubh, Torr a'Bheithe & Cnoc Pheadir 

Previous studies have used isolation basins from Arisaig (Shennan, 1999; Shennan et al., 

1994; 1993; 1995; 2000c) to securely constrain relative sea-level, the location of the sites 

is shown in Figure 5.6 and Figure 5.7, site details are given in Table 5.3 (page 165). 

Microfossil results from Loch Dubh and Torr a'Bheithe basins were presented in a 

recent study by Shennan et al (2000c) and form part of a "staircase" of basins recording 

a late Devensian - early Holocene fall in RSL. The two sites wall provide a comparison 

between the biomarker methods and established microfossil methods that in Shennan et 

al (2000c) record of a marine - fresh transition. Cnoc Pheadir is a basin from top of the 
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staircase sequence. A core from the basin shows a transitional Lithostratigraphy, 
superficially similar to the marine - terrestrial sequences identified in the lower basins of 
the Arisaig stair-case, but the diatom evidence in ambiguous. Therefore, this core will 
test the biomarker methods to see i f they resolve a situation where microfossil data does 
not sufficiendy support a fuUy marine phase. 

5.5.3.2. Coigach 

Although much of the coastUne of Coigach comprises of low cliffs, there are a number 

of sheltered embayments with accumulations of unconsolidated sediments such as 

Dubh Lochan (Shennan et al., 2000c). The geology consists of the ancient (c. 1000 -

800mya) red sandstones and occasional grey shales of the Torridonian and Stoer groups 

(Craig, 1983). Coigach is the most northern field site used by the Shennan group for 

isolation basin work. I t contrasts with Arisaig in that it was well outside the Younger 

Dryas Ice Limit and there is no evidence of Late Devensian sea levels higher than 

present day OD. 

5.5.3.2.1. Dubh Lochan 

The record from Loch Dubh is interpreted by Shennan et al (2000c) to record an early 

Holocene sea level rise followed by a steady regression and brackish phase until 

isolation in the mid-Holocene. Therefore, it provides a different test for the biomarker 

methods; contrasting with the marine — fresh sequences from Arisaig. The site location 

in shown in Figure 5.6, a site map (and sampling location) is shown in Figure 5.11, site 

characteristics are given in Table 5.3 (page 165). 

163 



-a c 
O 
u 

c 
u E c 
s 
> c 

o u 

4-) 
-t-J 

6 

c 
too 

c 

6 
o 
S 
o 
4-) 
OH 

u 

• SO 

^ ! 

0 
5 ^ 

g 
o 

g 
3 

u 

o 
X 

Z Z Z 
2 
Z 

o so m r-- o LT! 1— 

o 00 Tn CN rn OO OO 00 OO 
in in u-i in in 
z z' z' 
r- •* m X— NO OO so 
o o o o 00 
o o in o in •o in 

=; c- — 

V3 

1- 4 
3 



r 
s 
g 
3 

-5 

c2 

1 Q 
O 

3 

.1 

5 

1 

1 

H4 

o 
00 
o 

2 

c c 

a 
C/) 

Q Q 

o 

00 
o 

z 

00 
00 

00 

<N 

2 

oo 00 
<N eg 

\o eg LT) 
00 00 00 rO o o o o in ID in 
2 2 2 2 

o 00 
ON CM 

OO 00 00 o 
o O o o 00 

un 

o 

••6 
<u -a 

o 
H 

3 

SO 

o 
o 
o 
CM 

J3 
LO 

•c 

c 

o '-' 
^ -a 

« I 

c 
o 
"o 

00 
o 

o 
u 
2 

u M 
SP 
'o 
u 

3 
Q 



Chapter 5: Biomarkers and organic matter in coastal environments o f N . W . Scotland 

5.6. Results and Discussion 
5.6.1. Modem Basins 

5.6.1.1. Particle si^e distributions 

Particle size distributions vzry considerably between the sites (Figure 5.24). This 

emphasises the diversity o f the sedimentary regime represented by the various basins, 

which is a func t ion o f inter alia: basin orientation, morphology, depth, tidal regime and 

catchment inputs. Loch nan Ceall station 3 (IS 1-2) and RTP 1 (IS 3) bo th have < 7% 

clay + silt and a large content o f coarse sand. This may be explained by their exposed 

positions to the prevalent westerlies (see Figure 5.7). This is in contrast w i t h the Loch 

nan Ceall station 2 (IS 1-2), wh ich is situated in the deepest part o f Loch nan Ceall 

(~15m) and is partiy sheltered f r o m westerly storms by a bank o f shaUows and small 

islets. I n this case, clay and silt content rises to 38% (see Figure 5.7). I n Craiglin lagoon 

(IS 4) the abundance o f clay + silt is the highest o f all the sites rising to - 9 0 % . This 

suggests that although the lagoon is still ventilated by marine waters, the sheltered 

location - w i t h a narrow conduit to Loch Sween - effectively buffers the site f r o m tidal 

and storm energy. This obviously has a dramatic impact on the sedimentary regime, 

w i t h reduced inputs o f coarse material and greatiy reduced winnowing o f fine material. 

L o c h nan Corr and Loch nan Eala (IS 5) have similar particle size distributions w i t h 

72% and 77% clay + silt respectively. These sites are ful ly isolated f r o m the sea yet have 

a lower p ropor t ion o f clay and more coarse material than Craiglin. This may be 

accounted f o r by differences in sediment inputs f r o m the basin catchments. 

5.6.1.2. Bulk organic geochemistry 

The modern samples display a very wide range in values o f % T O C , f r o m 0.6% at RTP 

station 1, to 23.5% in Loch nan Corr (Figure 5.25). There is a general increase in 

% T O C w i t h isolation (Figure 5.39). Thus, the IS 5 sediments contain the highest values 

o f T O C (15.2% in Loch nan Eala; 23.5% in Loch nan Corr) and there is a marked in 

incresase % T O C between the sediments o f the exposed RTP (IS 3) and the highly 

sheltered Craiglin lagoon (IS 4). However, there is a slight decrease in the T O C values 

between IS 1-2 (the f jord ic sea loch sediments) and IS 3 (RTP). The increase in % T O C 

w i t h the increasing isolation stages w i l l be a func t ion o f a complex interplay o f factors 

(see chapter 1). I n this case we have observed that water mass circulation, bo t tom water 

oxygen concentrations and particle size vary across the basins, and one may expect 

autochthonous and aUochthonous carbon inputs to var}' as well , as discussed later. 
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Relative concentrations o f pigment absorbance at X= 410 nm displayed a pattern o f 
variation analygous to % T O C (Figure 5.27). I n general, there was a slight decrease in 
values between IS 1-2 and 3 w i t h an increase in values at IS 4 and IS 5 (Figure 5.39). 
Loch nan Eala was unusual i n that is had much higher values than other samples o f IS 4 
or IS 5. Results discussed below suggest this may be due to higher plant macrophyte 
abundance in Loch nan Eala. 

Values o f C„jj,/N f r o m the modern basins display a range o f values f r o m 7.5 at RTP-

stadon 1 to 20.1 in Loch nan Eala (Figure 5.26), w i th values decreasing slighdy f r o m IS 

1-2 to 3 and increasing w i t h isoladon through IS 4 and 5 (Figure 5.39). Muller and 

Mathesius (1999) used values o f C„,g/N and 6C''^ to reconstruct marine vs lacustrine 

phases in fossil lagoons f r o m the southern Baltic Sea. Based on previous work 

(Bordovskiy, 1965; Prahl et al., 1980) they suggested that a C„^j,/N >12 indicated 

predominandy terrestrial (lacustrine) organic inputs, a C^^^/N o f <8 indicated 

predominantiy algal (marine) organic inputs w i t h a C„,g/N o f 8 - 12 characterising 

mixed inputs. MuUer and Mathesius (1999) found that aquatic macrophytes in coastal 

samples had much higher values o f C„^g/N (mean 17.5) than measured i n other algal 

matter (see Table 1.7 page 24). Therefore, by analogy, i n the fuUy isolated basins in N W 

Scodand the aUochthonous inputs o f terrestrial detritus f r o m the catchment area and /or 

aquatic macrophyte product ion can overprint the signal f r o m the autochthonous 

phytoplankton product ion. Moreover, this suggests that a C„^j,/N > 12 may be a useful 

conf i rmat ion o f an isolated phase in fossil basin cores. 

5.6.1.3. Upid Biomarkers 

5.6.1.3.1. n-Alkanes 

n-Alkane concentrations 

The modern samples display considerable variation in concentrations o f //-alkanes (2 «-

alkane n g / g dr}^ sed). Values ranged f r o m 2.7ng/g at RTP 1 to 1993ng/g at Loch nan 

Eala (Figure 5.28a). Generally, values decreased slighdy f r o m IS 1-2 to 3 and increased 

w i t h isolation through IS 4 and 5 (Figure 5.39). Normalisat ion to organic carbon had 

Utde effect on the overall trend (Figure 5.39) but increased marginally the relative 

abundance o f the «-alkanes in the samples f r o m IS 1-2 & 3. The much higher 

concentrations o f «-alkanes i n the samples (normalised to dr\' sed. or organic carbon) 

f r o m IS stages 4 & 5 must be a func t ion o f inputs and/or preservation, however the 
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relative importance o f theses factors is d i f f i cu l t to separate. The higher IS stages 
however, wi l l likely be associated wi th greater preservational condidons fo r lipids given 
the higher observed % T O C , water column stradficadon and anoxia observed in IS 4 
compared to environments exposed to oxygenated marine water and tidal energy (IS 1-2 
& 3). There is considerable difference in the values fo r the two IS 5 sites o f Loch nan 
Core and Loch nan Eala. This may be a func t ion o f the dif ferent vegetation noted for 
the catchment areas (appendix I I ) , catchment inputs and possibly preservation. 

n-Alkam within-class-distributions 

The most abundant «-alkane in all o f the samples was the Cjy - suggesting significant 

contr ibut ion and preservation o f higher plant waxes at all the sites (Wakeham, 1976). 

The modern samples display a considerable range in values o f C P I j j . , , f r o m 2.4 at Loch 

nan Ceall station 3 to 6.82 at Craiglin station 1 (Figure 5.29). There is a general increase 

in CPI25 33 w i t h isolation stage f r o m IS 1 -2 to IS 4 and a slight decrease between IS 4 -

IS 5 (Figure 5.39). The C P I values f r o m Craiglin and Loch nan Corr are similar to those 

previously reported for lakes in Scodand and northern England by Cranwell (1973) who 

reported values f r o m 4.1 - 11.4 w i t h an average o f 7.3 This supports the results f r o m 

C„jg/N analysis i n suggesting considerable increases in the propor t ion o f terrestrially 

derived organic material w i t h isolation. There is one major inconsistency between the 

values o f C^^^/N and C P I j j ^ j - the Loch nan Eala sample records the highest values o f 

C„^g/N but a relatively lower value o f CPI25.33 (4) than the other samples f r o m isolation 

stages 4 & 5 (Figure 5.26 and Figure 5.29). O n the basis o f the C „ ^ / N values alone i t 

might be suggested that Loch nan Eala receives the greatest relative input o f organic 

carbon derived f r o m terrestrial higher plant sources. However, i t might be suggested 

f r o m the CPI25.33 values that Loch nan Eala received relatively less input o f terrestrial 

material than the other isolation stage 4 & 5 samples. The reason for this discrepancy 

may be due to high aquatic macrophyte inputs at Loch nan Eala which wou ld raise the 

C„rg/N values (MuUer and Mathesius, 1999) but lower the CPI ,5 33 values. This is 

supported by the obser\'ations o f the macrophyte Potamogeton sp. growing in the loch 

(appendix I I ) . 

;;-Alkane long/shor t chain length ratio range f r o m 1.8 at Craiglin to 5 at RTP 1 (see 

Figure 5.30). L o n g carbon chain-length «-alkanes inputs are predominandy f r o m higher 

plants and those w i t h shorter chains f r o m algae (see chapter 1). Therefore, an increase 
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in the index wou ld be expected wi th isolation stage, as observed generally for C^^^N 
and CPI , which are also influenced by terrestrial vs algal inputs (see Figure 5.39). 
However, this is not observed, and instead there is a maximum o f 5 at RTP (IS 3) w i th 
all other values ~2-3. The reason for this is unknown but may be explained by the fact 
that the short «-alkanes are much more vulnerable to degradation than the H M W 
compounds (Cranwell, 1976; Kawamura et al., 1987) and this may have biased the 
record in the more oxic basins. 

5.6.1.3.2. Alkenones & alkenoates 

- CAlkenone concentrations 

Alkenone distributions in the modern basins display considerable variation in 

abundance. Values fo r SC,^ , + alkenones (ng /g dry sed.) ranged f r o m undetectable 

in IS 5 (both freshwater lochs) to 75 n g / g at Craiglin lagoon station 3 (IS 4) (Figure 

5.31). Alkenones were detected in all those sites which receive inputs f r o m marine 

waters. The overall trend describes a decrease in concentrations between IS 1-2 and IS 

3, foDowed by a sharp increase in IS 4 (Craiglin) and a drop to undetectable levels i n the 

fuUy isolated IS 5 (freshwater lochs) sites (see Figure 5.41). 

The strong variations in alkenone concentrations normalised to dry sediment may have 

a number o f causes. I f equal preservation/dilut ion o f alkenones for all the sample sites 

was assumed then the differences wou ld have to be ascribed to variance in local 

alkenone product ion and/or impor t o f alkenone bearing material (i.e. E . huxleyi cells) by 

advection. Considerable variation in these parameters would be expected for the sample 

sites. Firstiy, w i t h regard to local product ion, E.huxleyi is known to populate f jo rd ic Sea 

Lochs (Conte et a l , 1994) in Norway and strains have been recovered f r o m continental 

shelf seas o f the U K and N e w England (IVIarlowe et al., 1984). But no reports o f known 

alkenone producers exist for shallow, variable salinit)' coastal basins such as Craiglin. A 

previous study o f surficial sedimentary alkenone distributions across a salinity transect 

in the Baltic sea - f r o m fuUy marine Atiantic source waters to brackish water - found 

decreasing values o f C37 alkenones towards the more brackish regions. Furthermore, a 

survey o f algal species in Craiglin lagoon found no known alkenone producers and no 

haptophytes species (Covey et al., 1998) (see appendix I I for species list). For the 

lacustrine sites, alkenone abundances wou ld be d i f f i cu l t to predict. Previous work has 

f o u n d alkenones present i n a variety o f lakes (see Table 1.3, page 14), some relatively 

close to N . W . Scotiand in the English lake district (Cranwell, 1985). However, in the 
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Lake Distr ict alkenones were reported present in the surface sediments o f only half o f 
the lakes sampled w i t h variable concentrations (CranweU, 1985). N o alkenones have 
been reported previously in Scottish freshwater lochs, and the controls on their 
lacustrine distributions are not known. 

Therefore, i f the major control on the sedimentary concentrations o f the SC, , , + C,^ , 

(ng /g dry sed.) alkenones was in situ product ion, we might predict the highest 

concentrations o f alkenones w i t h i n the f jord ic Sea Lochs, wi th decreasing values in the 

brackish basins and w i t h unpredictable results f o r the freshwater lochs. This trend 

wou ld be reinforced i f another significant driver o f alkenone sedimentar)' 

concentrations was the inf lux o f alkenone yielding material f r o m ful ly marine Adantic 

source areas. Again higher values wou ld be predicted in the openly ventilated f)ordic sea 

lochs, wi th lower values expected fo r the sites o f restricted marine circulation, especially 

fo r Craiglin lagoon which is only ventilated by marine waters during some spring-tide 

high tides (see 5.5.2.2.1, page 158). 

The results f r o m N . W . Scodand are more complex than the simple decrease w i t h 

isolation stage that might be predicted i f the only controls o f ^ 3 7 3 ("^g/g 

sed.) were in situ product ion or export product ion associated w i t h marine source waters. 

Therefore, the influence o f other control l ing factors must be considered, such as 

di lut ion by sedimentation rate, loss/sorting o f organic material (bearing alkenones) by 

tidal currents and the alkenone preservation potential o f the sediments. 

The great variation in sediment regime between the sites is iUustrated by their 

contrasting particle size distributions (Figure 5.24). I t is likely that concentrations o f the 

+ C37 3 alkenones (normalised to drj sediment) have been reduced at the more 

exposed sites relative to the sheltered locations through di lut ion by higher 

sedimentation rates/inputs o f clastic material and through greater loss (through tidal 

winnowing) o f alkenones associated wi th POC and fine mineral particles bearing 

adsorbed alkenones. This may account fo r the low values at the extremely exposed RTP 

station 1 (Figure 5.31a). 

Normalisat ion for T O C had a significant effect on the alkenone distributions. Values 

fo r S C „ , -I - C „ 3 ( ng /g C„^^ remained undetectable in the freshwater samples and 
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ranged up to 3845 n g / g at Loch nan CeaU station 3 (see Figure 5.31b). The trend in 
SC372 + C ŷ , concentrations between the IS 1-2 and IS 3 stations was reversed when 
normalized to % T O C , so that the highest values were observed in the open sea loch 
samples. However, values at RTP were still lower than those at Craiglin, so that the 
overall trend o f values f o r SC,,., + C,7., (ng /g C,^^^ describes a large decrease f r o m IS 1-
2 to IS 3, fo l lowed by a small increase to the IS 4 samples fol lowed by a drop to 
undetectable values in IS 5 sites (Figure 5.40). 

Some o f the variation in the concentrations o f the alkenones in the modern sites may 

result f r o m differences i n preservation due to sedimentary or water column oxygen 

content. Investigation o f the hydrographic regime at Loch nan Ceall (IS 1-2), RTP (IS 3) 

and Craiglin (IS 4) revealed the water co lumn o f the former two is well mixed and 

oxygenated, whilst at Craiglin there is at least seasonal stratification and sediment/water 

interface anoxia. Degradation rates for alkenones in sedimentary samples have been 

shown to be higher in oxic than in anoxic conditions (Gong and Hollander, 1997; G o n g 

and Hollander, 1999; Madureira et al., 1995; Sun and Wakeham, 1994). However, a 

microbial degradation study by Teece et al (1998) has suggested that degradation o f 

alkenones under certain anoxic conditions can be almost as significant - over a relatively 

short period - as under oxic conditions. Unfortunately, there is no reliable method fo r 

assessing — and correcting for — variation i n oxygen controUed biomarker degradation 

rates. 

The preservation o f alkenones in N W Scottish sediments may have been partially 

controlled by sorption to mineral surfaces — leading to stereochemical protection. 

Previous w o r k suggests that higher sedimentary % T O C (Bergamaschi et al., 1997; K e i l 

et al., 1994b; Mayer, 1993; Mayer, 1994; Premuzic et al., 1982; Tanoue and Handa, 

1979) and l ip id biomarker abundance (Thompson and Egl in ton, 1978) is associated w i t h 

finer average particle size and higher specific surface area (SSA) in a range o f marine 

environments, and that this is pardy due to protection by sorbtion (Keil et al., 1994a). I t 

is not possible to accurately account fo r the modif ica t ion o f alkenone concentrations 

due to sorption to fine particles. However, as an exploration, SC,^,, + C37.3 (ng /g C^̂ )̂ 

was normalised to %clay in Figure 5.32. The resulting values f o r DC,^., + C,-,., 

alkenones (ng /g C„^g/%clay) showed a general decrease o f alkenone concentration w i t h 

increasing isolation stage (Figure 5.40), but created a large variance benveen the values 
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for the IS 1-2 sites (Loch nan CealJ stations 2 and 3, Figure 5.32). Such a measure can 
not be recommended until the relationship between preservation o f alkenones and 
particle size distributions is better understood. 

- Alkenonelalkenoate within-class-distributions 

The alkenone and alkenoate "fingerprints" for the modern N W Scottish surface 

sediments are illustrated by the GC-CI-MS total ion chromatograms in Figure 5.33. 

There is a distinct difference in the distribution patterns observed in IS 1-2 (Loch nan 

Ceall) and IS 3 (RTP) and that observed in IS 4 (Craiglin). This distinction compares 

interestingly with the two patterns reported by Schulz et al (2000) for the Baltic sea. In 

this study, the alkenone and alkenoate suite in IS 1-3 (Loch nan CeaU and RTP) 

resembles a "typical" North Adantic pattern produced by E.huxleyi and Schulz et ats 

(2000) pattern I from the western Baltic. Whilst the alkenones and alkenoate pattern in 

IS 4 (Craiglin) resembles Schulz et ah (2000), pattern I I from the eastern Baltic Sea (SSS 

<7.7 psu) with distincdy higher C374 abundance, lowered adbundance of C372 and very 

low adundance of C,), methyl alkenones. 

The reason for such a divergence in alkenone patterns over a relatively small area can 

not be a function of physiological response of £ . Htixlgi producers to changes in 

ambient water temperature. Values for li^-^-l ranged from 0.13 at Craiglin station 1 to 

0.48 at Loch nan Ceall station 3 (Figure 5.38). Converted to SST using the calibration of 

MuUer et al (1998) this represents a large range of values from 2.7 - 13.2°C. A large 

range for such a small geographical area. The values for Loch nan Ceall and RTP give 

SSTs of ~11-13°C, which compare very well with mean annual W O D 98 values for the 

region (Conkright et al., 1998) whereas the temperatures from Craiglin (2.6-3°C) are not 

realistic. 

The alkenone patterns must be a function of either i) physiological response to other 

physiological stresses (such as salinity, or nutrient availability) by an E. huxleyii strain, ii) 

a product of different haptophyte populations, Lii) post-depositional bias. The later 

seems unlikely given the bulk of evidence which suggests modifications of the iS^^-, are 

rarely significant even when the concentrations of C37 alkenones are severely depleted 

(Grimalt et al., 2000, and references therein). Therefore, one or a combination of the 

first two explanations seems more likely. 
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Values for % C , 7 4 ranged f r o m 3.3% fo r Loch nan Ceall station 2 to 14.6% at Craiglin 
station 1 (Figure 5.34), w i th a general trend towards higher values o f %C^-;.^ w i th 
isolation (Figure 5.40). The samples f r o m IS 1-3 (Loch nan Ceall and RTP) are between 
3-5% which is a "no rma l" value for N o r t h Atiantic alkenones produced by E.huxleji in 
open marine conditions (see Table 1.3, page 14). The highest values o f - 1 4 % are f r o m 
Craiglin lagoon, which has brackish surface waters (average saUnit)' o f ~20 psu when 
measured on several occasions in August and October 2002). N o n e o f the '"'/oC^^.^ values 
exceed 17%, which is the highest value o f % C , 7 4 previously suggested to be produced 
by E.huxleji 'm a f )ord (Conte et al., 1994). None o f the %C37 4 values approach the high 
values ( - 2 0 % - 70%) reported for lakes, polar ocean waters or the <7.7 PSU waters o f 
the Baltic sea (Bendle and Rosell-Mele, 2001; CranweU, 1985; L i et al., 1996; Schulz et 
al., 2000; Thie l et al., 1997; V o l k m a n et al., 1988). 

As mentioned in chapter 1, the ratio o f C^^ methyl to Cj^ ethyl alkenones (C,sEt/Me) 

was noted by Schulz et al (2000) to vary noticeably i n sediments f r o m a salinity gradient 

across the Baltic Sea - w i t h the C,^ methyl alkenone being undetectable in the samples 

f r o m the fresher regions. I n the modern samples f r o m N W Scodand, values o f 

C,8Et /Me are consistentiy ~ 2 in the samples f r o m IS 1-2 & 3 but jump to - 1 1 in the 

samples f r o m IS 4, representing an approximately five fo ld decrease in the relative 

abundance o f the C,,, methyl to the Cj^ ethyl alkenones (Figure 5.35). There is also a 

sudden increase in the ratio o f EC^^/SCj^ f r o m IS 1-2 & 3 to IS 4 (Figure 5.36) which 

partially reflects the decrease in the C,^ methyls i n the IS 4 (Craiglin) samples. 

Variabili ty is also observed in the ratio o f alkenoates to alkenones wi th values fo r % A A 

ranging f r o m 3.6% at Craiglin station 1 to 10.8% at Loch nan Ceall station 2 (Figure 

5.37). I n general, values o f % S A A are significandy higher i n IS 1-2 than the other 

samples, while there is no significant trend in values o f % E A A between the IS 3 and IS 

5 samples. As fo r the other measures o f within-class-distributions the variation across 

the sites fo r % E A A may be a physiological response to environmental stress (salinity, 

nutrient availabiiit}'), or a product o f different haptophyte populations. However, the 

interpretation o f % E A A is more complex as alkenoates have been shown to be less 

resistant to degradation than alkenones (Teece et al., 1998). 
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The observations o f U'^„ ' values in the N W Scottish coastal environments does not 
negate the application o f fo r reconstructing SST for paleo-studies in near 

shelf/coastal environments. Rather they support previous evidence that SSTs derived 

f r o m measurements in shallow coastal environments should be treated wi th 

caution (Conte et al., 1994; Ficken and Farr imond, 1995). Specifically, attention should 

be paid to the within-class-distributions to assess i f the "f ingerpr in t" resembles that 

normally associated w i t h E.huxleyi product ion in the open ocean. I n other words, i f the 

palaeo-environment had open ventilation to a fuUy marine continental shelf then the 

resulting SST estimates may be reasonable, but SST estimates f r o m reduced salinity, 

lagoonal environments are unusable. 

5.6.1.4. Within Basin Variability - Riimach Tidal Pond. 

There is a high degree o f variability between coastal basins in parameters such as the 

elevation o f the sill, the orientation o f the basin relative to the coast and the 

morphology o f the conduit. Furthermore, the unique morphology o f each basin can 

lead to a high degree o f w i t h i n basin heterogeneity in the accumulation and preservation 

o f organic matter. I n some basins such as Craiglin lagoon, the long narrow conduit and 

late stage o f isolation results in a relatively homogenous sediment regime w i t h i n the 

basin. I n contrast, i n Rumach tidal pond, which has an exposed situation and open 

communicat ion w i t h the ocean, the interaction o f high tidal energ)' and basin 

morphology had resulted in an obvious w i t h i n basin heterogeneit)' expressed i n the 

parameter o f mean particle size. 

T o investigate the impact o f such heterogeneity on the organic geochemical parameters 

employed in this study, three samples were taken f r o m across the particle size gradient 

w i t h i n the basin. A map showing the sampling locations, G C traces and results o f 

analysis are illustrated in Figure 5.41. The sample f r o m station 1 is f r o m the deepest part 

o f the basin, which is permanendy submerged by the waters o f the pond even at low 

tides. Due to this location, station 1 was selected to represent the basin fo r the 

comparison o f modern coastal basins at various isolation stages. This is in keeping w i t h 

the methodology o f isolation basin workers i n using surface samples or cores f r o m the 

deepest sub-tidal parts o f basins. I n contrast, samples 2 and 3 are f r o m the lit toral 

fringe, locations that are exposed subareaUy during the tidal cycle. The variabilit}' o f the 

minerologic sediment regime between the sample sites is demonstrated by the particle 
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size distribution which revealed %clay + %si l t values o f 4.5, 12.6 and 19.4% at stations 
1, 2 & 3 respectively. 

The impact o f such heterogeneit}' on organic matter accumulation is demonstrated i n 

crude terms by the gradient i n % T O C which has values o f 0.6, 1.65 & 2.65% at stations 

1, 2 & 3 respectively. This variabiUt}^ is also reflected in the various bulk organic 

geochemical and l ip id biomarker measures. However there is great variation in the 

degree to which the individual measures are effected. I n appears that i n particular 

concentrations o f the alkenone, «-alkanes and chlorin pigments are effected. Some o f 

the alkenone within-class-distributions also show considerable variation, especially 

%C37.4 which displays values o f between 3.3 — 10%. 

These results highlight the impact o f the local variability on biomarker records. This 

reinforces the need to sample f r o m the deepest part o f the basin, avoiding the fringe. 

This is a policy which is already established fo r fossil isolation basin studies by current 

workers, whereby, a series o f boreholes is cored to reconstruct a prof i le o f the basin 

stratigraphy, then one core location is selected ( f r o m the centre o f the basin) to 

represent the sequence. 

5.6.2. Fossil Basins 

5.6.2.1. y4risaig 

Previous studies have used isolation basins f r o m Arisaig (Shennan, 1999; Shennan et al., 

1994; 1993; 1995; 2000c) to securely constrain relative sea-level changes during the 

Holocene and back to approximately 13 kyr '''C BP in the Late Devensian. Mic ro fossil 

results f r o m Loch D u b h and T o r r a'Bheithe basins were presented in a recent study by 

Shennan et al (2000c). The region was covered w i t h relatively thick ice (c. 900m) at the 

Last Glacial M a x i m u m and these sites f r o m part o f a "staircase" sequence that records 

the regression f r o m the L G M marine l im i t through to an early-Holocene min imum. 

5.6.2.1.1. Loch D u b h 

The results o f the biomarker and bulk organic geochemical analysis are given in Figure 

5.42 & Figure 5.43 along w i t h results o f previous Uthostratigraphic, microfossU and 

dating work . The previously reported diatom data shows a rapid transition f r o m marine 

to freshwater conditions between 540 -539 cm depth. Concentrations o f £C,72 + C 3 7 3 
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alkenones (ng /g C^̂ )̂ are between 250 - 650ng through the core, except fo r a 
pronounced peak o f 1082 ng at 540.7 just below the diatom isolation contact. The 
alkenones in the core are distinguished by tvvo distinct within-class-distribution patterns, 
w i th the bo t t om two samples (541.7 - 540.7cm) having values o f % C 3 7 4 < 15%, and a 
high C 3 j , E t / M e ratio (C,^ Methyls were undectected at 540.7cm). This pattern is 
comparable to that observed in modern samples at the brackish Craiglin lagoon (IS 4). 
I n the samples f r o m 539.7cm upwards in the core, the alkenone distribution pattern is 
distinguished by values o f % C 3 7 4 o f > 3 0 % , a fall in the ratio o f C, j ,Et /Me (i.e. Methyl's 
become relatively more abundant) and an increase in Z C 3 7 /SC,;, This distribution 
pattern is comparable to some o f the observations made in lacustrine environments in 
northern Europe (Cranwell, 1985; Z i n k et al., 2001), especially the high % C 3 7 4. The 
relative abundance o f alkenoates ( % A A ) is highest in the bo t tom two samples (541.7 -
540.7cm) at - 6 % , fal l ing to an intermediate value o f 3.7% at 539cm and is lowest i n the 
top three samples (538.7-536.7cm) wi th values < 1 % . This trend compares w i t h the 
modern samples, in which % A A was observed to decrease wi th isolation. Values o f 
U'^37' show some variation (0.11 - 0.17) up the core. The bo t tom two samples (marine 
phase) give cold SSTs o f 2.6 & 2.1 °C. This seems a reasonable estimate - fo r waters 
proximal to an ablating ice-sheet at 15500 Cal yr BP (the late DimUngton stadial). 
Brit ish coleopteran faunas f r o m this period indicate that Brit ish terrestrial temperatures 
reached a minimal , w i t h the mean temperature o f the warmest mon th no more than 9 ° C 
(Atkinson et al., 1987). Whi le , the earliest foraminiferal SST estimates f r o m the Barra 
Fan (located at the continental shelf ~ 100km west) date f r o m 15 Cal yr BP and are 
~ 4 ° C (±2) (summer SST, S I M M A X method) ( K r o o n et al., 1997). 

The «-alkanes show a sharp increase in abundance and CPI25.33 at the same depth (540.7 

- 541.7cm) that the concentrations o f alkenones drop and % C 3 7 4 increases, suggesting 

an increase in the trapping o f terrestrial plant detritus in the basin, over this period. This 

is also matched by a sharp increase in abundance o f chlorin pigments at this time. 

However, the «-alkane Long /Shor t ratio and «-alkane C^^^ gives a more complicated 

signal. The «-alkane long/shor t ratio is consistendy ~1.6 except for a higher value o f 2.9 

i n the bo t tom sample. This suggests liighest terrestrial inputs i n the lowest sample. C^^^ 

is quite variable w i t h C2y and C27 - typical o f higher plant waxes - dominant in the 

bo t tom two samples, fo l lowed by the algal marker C17 dominant for middle two samples 

(549.7-538.7cm), w i t h C,,; at 537.7cm and C23 in the top sample (536.7cm). This shows 
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that although relative inputs o f terrestrial material may have been increasing through the 
isolation process, the environmental changes in the basin were also conducive to 
increasing product ion and/or preservation o f algal inputs (Ci^), especially around the 
time o f the diatom isolation contact (549.7-538.7cm). 

The bulk organic geochemistry supports the inferences made by the concentrations o f 

SC,7 2 + alkenones (ng /g C„^g) and % C 3 7 4. Bulk % T O C increases steadily 

throughout the section o f core studied. The C„^j ,/N ratio increases f r o m 541.7 -

538.7cm suggesting steadily increasing inputs o f organic matter o f terrestrial source 

relative to algal inputs over this period. Values o f C„^j ,/N >12 - considered to be t}rpical 

o f terrestrial values (Bordovski)' , 1965) - coincided wi th the diatom isolation contact at 

539cm. 

Interpretation 

Overall, most o f the significant changes i n the organic parameters seem to occur sUghtiy 

earlier (1cm) in the core than the major transition recorded by the diatoms. This may be 

a genuine offset or a func t ion o f relatively lower sampling resolution f o r the biomarker 

samples. However, al lowing fo r a small error i n the depth measurements, the results 

f r o m biomarker and bulk organic property analysis compare well wi th the established 

microfossil proxies. I n particular there are "sharp" changes in the concentrations o f 

^ ^ 3 7 2 + C373 alkenones (ng /g C„^g) and values o f ^oC^-i.^ which suggest a marine 

isolation. I t must also be noted that the concentrations o f 2 C 3 7 2 + C37.3 (ng /g C,,^^ were 

high compared to measurements o n modern samples. The high concentrations may be a 

result o f the alkenones increasing as a p ropor t ion o f % T O C over time (—15 kyr) due to 

their relative stability compared to other more labile l ipid compounds. 

5.6.2.1.2. T o r r a'Breithe 

The results o f the biomarker and bulk organic geochemical analysis are given in Figure 

5.44 and Figure 5.45 along w i t h results o f previous lithostratigraphic, microfossil & 

dating work . The f o r m o f the transition f r o m marine to freshwater conditions i n T o r r 

a'Breithe as recorded by diatoms contrasts wi th Loch D u b h , in that there is just a brief 

"spike" in marine conditions pr ior to isolation between 779 -777 cm depth. Values for 

^ ^ 3 7 2 + C373 (ng /g C„^g) fa i thful ly recreate the marine transgression and subsequent 

isolation observed in the diatoms. This is characterised by maximal concentrations o f 
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1284 ng at 779cm wi th alkenones immeasurable for all the other samples by G C - F I D . 
However, alkenones (and the within-class-distributions) were measurable for the other 
samples by GC-CI -MS, although at a low response level compared to the sample at 
779cm. The alkenones in the core are distinguished by two distinct w i th in class 
distribution patterns. I n the marine spike, the value o f %C37.4 is 13.4%, C^^Et/Me and 
Z C 3 7 /2( . , j , are high due to the very low relative abundance o f the C3J, Methyls. This 
pattern is similar to that observed in the marine section o f the Loch D u b h core and the 
pattern f r o m the brackish Craiglin lagoon in the modern samples. I n the rest o f the core 
% C 3 7 ., is > 1 8 % and values fo r C j ^ E t / M e and E C 3 7 fZ^--^^ are much lower, this pattern is 
closer to that observed in the lacustrine phase o f Loch D u b h and lacustrine samples 
f r o m northern Europe (Ficken and Farrimond, 1995; Z i n k et al., 2001). This supports 
the contention that the alkenones deposited in the "spike" are o f marine/brackish 
origin and that the dilute alkenone signal in the rest o f the core may have an unknown 
haptophyte source associated w i t h a ful ly isolated lacustrine environment. 

The values o f % A A are highest i n the marine phase, w i t h a value o f - 8 % consistent 

w i t h the modern fu l ly marine observations. Values were generally much lower in the 

other parts o f the core, apart f r o m an increase in the bo t tom sample which contradicts 

the inferences f r o m alkenone concentrations and %C374 . Values o f U'^37' show 

considerable variation (0.12 - 0.4) up the core. The value fo r the marine "spike" gives a 

cold SST o f 2.1 °C . This is similar to the results f r o m Loch D u b h and again is a very 

cold estimation. However, foraminiferal SST estimates f r o m the Barra Fan during this 

period at - 1 3 kyr BP (Intra Al le rod Cold Period) also give cold temperatures o f 4 ° C 

(±2) (summer SST, S I M M A X method) ( K r o o n et al., 1997). 

«-Alkane concentrations show no overall trend but are characterized by a "spike" in 

concentration at 779cm. There is a steady increase i n CPl25_33 w i th isolation f r o m 789 -

767cm fol lowed by a sharp increase i n the top sample- suggesting an increase in the 

trapping o f terrestrial higher plant detritus over this period, but w i th a major inf lux 

f r o m the catchment coming after the main isolation event. Measurements o f the n-

alkane Long /Shor t ratio are characterized by a decrease at 779cm suggesting an increase 

in the relative inputs o f algal organic carbon, during the marine transgression, this is 

supported by the C,„^^ which is the algal C^ at 779cm but is dominated by the higher 

plant C,- below and C,,; above the 779cm. Greater algal product ion and/or preserx^ation 
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is also suggested fo r the top sample as «-alkane Long/Shor t drops and C,7 is the 
dominant homolog. 

The bulk organic geochemistry supports the inferences made by the concentrations o f 

^^37 2 + C,7 3 ( ng /g C„^g) and % C 3 7 4. Bulk % T O C increases sharply at 779cm, while the 

C „ ^ / N ratios surpassed the value o f 12 - considered to be r^'pical o f terrestrial values 

(Bordovskiy, 1965) - at 779cm coinciding w i t h the isolation contact. Furthermore the 

abundance o f chlorin pigments in the sediments also increases sharply at 779cm. 

Interpretation 

The results f r o m the measurements o f 2 C 3 7 2 + C37.3 (ng /g C „ ^ and alkenone wi th in -

class-distributions, especially %C37.4, compares well w i th the interpretation based on 

established microfossH proxies o f a marine/brackish incursion at 779cm fol lowed by 

isolation. The «-alkane measurements and bulk organic properties generally support the 

interpretation o f a major environmental change at 779cm. However, the exception is n-

alkane CPI25,33 wh ich shows no significant change at this time. 

5.6.2.1.3. Cnoc Pheadir 

Cnoc Pheadir is a basin f r o m top o f the Arisaig staircase sequence. A core f r o m the 

basin shows a transitional lithostratigraphy superficially similar to the marine -

terrestrial sequences identif ied in the lower basins o f the Arisaig staircase. I f this were 

genuine it wou ld be evidence o f a new local marine l imi t o f 42m O D . However, the 

core yielded an ambiguous diatom analysis not supportive o f a ful ly marine stage. 

The results o f the biomarker and bulk organic geochemical analysis are given i n Figure 

5.46 and Figure 5.47 along wi th results o f previous lithostratigraphic, microfossil & 

dating work . Alkenones were only measurable by G C - F I D i n the top sample o f the core 

wi th a value f o r the 2C37 2 + C373 (ng /g C,,̂ )̂ o f 178ng. Measurement by GC-CI -MS 

detected alkenones in all o f the samples except the bo t tom sample at 686cm. B o t h the 

concentration value derived f r o m G C - F I D and the responses on the GC-CI -MS were 

lower relative to the "marine" samples in the other Arisaig cores. Values o f %C37.4 are 

high (>27%) throughout the core, substantially higher than the highest values known 

for E.huxleji product ion in a sea loch (17% Conte et al, 1994). This supports the diatom 

evidence that there was no ful ly marine phase in this basin. Values fo r S C 3 7 /SC,^ and 
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C j ^ E t / M e both displayed fluctuations up core, whilst no alkyl alkenoates were detected 
i n any o f the samples. Values o f U^^,-,' vzry between 0.1 and 0.17 up the core but can not 
be not considered marine in origin and therefore can not give a useful 
palaeotemperature estimate. 

The «-alkanes showed a steady increase in CPI25.33, Long /Shor t ratio and overall 

concentrations upcore, suggesting increasing inputs o f terrestrial carbon. This is 

supported by the bulk organic geochemistry w i t h % T O C and the C^^^/N ratios steadily 

increasing upcore. The dominant «-alkane homolog is C27 for all the samples, suggesting 

a consistent source o f organic carbon inputs. I t is w o r t h not ing that i f the C„^j,/N values 

were relied on f o r a palaeoenvironmental reconstruction wi thout the alkenone data, 

then i t might be incorrecdy suggested that below ~673cm the organic carbon was 

marine i n origin. This is based upon the suggestion o f MuUer and Mathesius (1999) that 

C„jj , /N values o f < 8 are indicative o f dominandy marine carbon inputs. 

Interpretation 

The results f r o m the measurements o f 2C37 2 + C,, 3 alkenones (ng /g C„^g) and %C37 4 

support the interpretation o f Shennan (pers. comm.) that diatom evidence does not 

suggest a ful ly marine phase. Rather the combined data suggest that Cnoc Pheadir was a 

lacustrine basin that experienced increasing accumulation o f terrestrial material -

possibly due to a vegetation succession - during the period represented by the core. 

5.6.2.2. Dubh Eochan (Coigach) 

The record f r o m D u b h Lochan is interpreted by Shennan et al (2000c) to record an early 

Holocene sea-level rise fo l lowed by a steady regression and brackish phase unti l 

isolation in the mid-Holocene. Therefore i t provides an alternate test f o r the biomarker 

methods, because in contrast to a relatively rapid marine - fresh transition there is 

sequence that runs: fresh/terrestrial - saline lagoon/near-shore shelf - saltmarsh 

transition. 

The results o f the biomarker and bulk organic geochemical analysis are given in Figure 

5.48 & Figure 5.49 along w i t h results o f previous Uthostratigraphic, microfossil & dating 

work . The values fo r EC37.2 + C373 (ng /g C,,^^ were undetectable by G C - F I D below 

268cm in the section o f the core preceding the marine transgression identif ied by the 
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microfossil data. Alkenones were detected by GC-Cl-MS in this section but the 
response was weak. At 268cm (-9000 Cal yr BP) - at exacdy the depth where marine 
foraminifera appear in the core, alkenones become detectable to GC-FID with a ZC,^, 
+ C 3 7 3 (ng/g C„jg) value of 225 ng. Above this level, the SC,^,, + C .̂̂  alkenone (ng/g 
C„jj^ concentrations remain detectable to GC-FID with values of 50 - 254 ng. The 
alkenones in the core display a number of changes in within-class-distribution patterns. 
Below 268cm patterns are characterised by a "/oC^-j.^ of >18% except in the sample 
immediately below the marine transition at 272cm which has a value of 7%. Values for 
EC3- /DC,;, and C^^Et/Me show an increase in the lower unit followed by a sharp fall in 
values with the marine transgression. Values of % A A drop from ~7% to 0% in the 
lower unit before increasing sharply to 9% at the marine transgression. 

Above 268cm the alkenone distributions resemble those associated with production in 

the N . Adantic by E.huxleyi, featuring %C374 values of <5%. This suggests the 

alkenones deposited in the basin were o f a fully marine source. According to the 

foraminiferal data following a lagoonal phase, a saltmarsh environment colonises - at 

least some part - of the basin from 245 cm (-6000 Cal yr BP) upwards. There is a 

decrease in the alkenone abundances associated with the start of this phase but the 

%C37.4 remains low. This suggests that either i) the alkenone production was continuing 

in situ and the water in the basin must have had consistent fuUy marine qualities i.e. the 

foraminiferal signal must be influenced by marsh at the fringe of the basin or ii) the 

alkenones deposited in the basin were imported with marine water across the basin sill 

whilst a marsh developed throughout the basin. A t 176cm there is a marked increase in 

SC37+EC,a (ng/Corg) concentrations to the highest values of 254 ng before values fall 

to 68ng at 130cm. This peak is not matched by an increase in the abundance of fuUy 

marine foraminifera. This discrepancy suggests that this alkenone concentration peak is 

a function of either i) increased local or regional productivit)' by the precursor (J5. 

huxleyt) or ii) greater preservation of alkenones. 

Values of U^jy' vary from 0.2 - 0.4 down the core. The initial marine incursion value 

gives a SST estimate of 12°C, which matches present day mean annual SST for the 

continental shelf o f f Coigach (Conkright et al., 1998) and seems a reasonable estimate 

for the mid-Holocene. This is foDowed by a decrease in SST's to ~8°C which is cooler 

than would be expected. 
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The «-alkane concentradons, «-alkane CPIj; ,,, «-alkane Long/Short, %TOC, C,„j,/N 
and chlorin pigments all show a sharp spike before the marine incursion. This supports 
pollen and freshwater thecomebian data that suggests that prior to the marine incursion, 
there was a freshwater lake/marsh environment, that underwent a terrestrial vegetation 
succession. Coincident with the marine transgression there is sharp change in alJ these 
parameters. Interestingly C„,g/N falls to below <8, to levels considered to be typical of 
marine organic inputs (Prahl et al., 1980). Above the transition to a fuUy 
marine/lagoonal phase, there is an increase in all of the parameters, perhaps associated 
with the development of a saltmarsh in part of the basin. This is marked more sharply 
by the increase in the chlorin pigments and in the «-alkane Long/Short ratio. Al l o f the 
parameters show general increases throughout the upper part of the core — suggesting 
increasing inputs of terrestrial organic matter over this time. 

Interpretation 

The results from the measurements of SC37.2 + C,^, (ng/g C,̂ ĝ) and "/oC,̂ .,, clearly 

recreate the sudden marine transgression at -7000 Cal BP. This compares well with the 

interpretation based on established microfossil proxies. Following the fully marine 

lagoonal phase the foraminifera suggest the local development of a saltmarsh 

environment. This continues to see significant deposition of alkenones with low (<5) 

values of '^/oQ^-,.^ with an abundance peak at 176cm. This suggests that the alkenones 

deposited were either i) imported with marine water across the sill or ii) they were 

produced in situ in a fully marine environment and therefore saltmarsh signal is not 

representative of the whole basin. »-Alkane measurements and bulk organic properties 

generally support the interpretations previously made using microfossils and the 

lithographic description. 

5.7. Logit Regression Analysis 

I t is necessar}' to quantify the efficiency of the organic geochemical variables at 

discriminating between isolated and marine/brackish phases in all the samples (objects). 

Due to the number of variables (13) and objects (31), statistical analysis is necessary to 

reach systematic conclusions. In a previous, comparable, study in which lipid biomarker 

concentrations were investigated as indicators of environmental change in cores from 

Norwegian f)ords. Principal Component Analysis (PCA) was used (Ficken and 

Farrimond, 1995). In that case alkenone abundance was extracted from the data-set as 
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correlating highly with the first principal component (alkenone within-class-
distributions were not explored quantitatively). 

In this case, PCA was not considered to be the best approach. At best it provides an 

indirect answer to the question being considered here. Essendally, the aim is to find 

which explanatory variables (organic geochemical measurements) can predict the 

response variables (basin isolation status) with the smallest possible error. In this case 

the response variable is binar)? - i.e. "not isolated from the sea (marine/brackish)" or 

"fially isolated from the sea (lacustrine)" based on either previous microfossil work or 

modern observations. This aim for each explanatory variable is formalised by the 

following mutually exclusive hypotheses: 

H,;. There is no systematic relationship between the depositional environment 

(marine/brackish or fully isolated/lacustrine) and the explanatory' variable. 

Hf. There is a systematic relationship between the depositional environment 

(marine/brackish or fully isolated/lacustrine) and the explanatory' variable. 

For this question a model is required for binary response variables and quantitative 

(interval and ratio scale) explanatory' variables. An ideal discrimination by the 

explanatory variable would take the form of a step function. However, in practice, a 

single variable never captures all the information and there are always some sampling 

and measurement errors. Logit regression (a +bx) is a more appropriate approach 

Qongman et al., 1995). The function will change from near 0 to near 1 and therefore can 

be fitted for binary response variables. Moreover, unlike a step function, the slope of 

the output curve indicates how strong the discrimination is (Cox, pers. comm.). Logit 

regression comes under the category of generalised linear models (GLM), that includes 

ordinary regression and A N O V A models for continuous response variables as well as 

models for categorical response variables (Agresti, 1996). The response variable is 

coded 0 (isolated/lacustrine) or 1 (marine/brackish). InformaUy, the model can be 

thought of a quantifying the probability that a sample will either 0 or 1. 

A linear model: 

Y = a + hx (5.3) 

is not acceptable, i f only because it can lead to predictions above 1 or below 0. An 

alternative is to use: 
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logit ( 7 / ( 1 - 7 ) ) = a+bx 
which may also be written as: 
Y = exp(<7 + b x) / [ I + exp(a + bx)]. 

where a and b are coefficients and x is the value for the measured explanatory variable 

Qongman et al., 1995). This represents a sigmoid cur\'e which satisfies the requirement 

that its values are all between 0 and 1. This defines the systematic part of the response 

model and because the response can only have two values the error distribution is the 

binomial distribution with total 1. So the variance of Y isp{\-p)-

A major advantage of the method is the output of a median effective level (EL^f^, which 

occurs at the steepest slope of the curve where Y = 0.5 and x = -a/b. This represents 

the level at which each outcome has a 50% chance (Agresti, 1996). This has great 

practical implications for a study such as this, as it means that a convincing fit of a logit 

regression will yield a suggested threshold value for the explanatory' variable. 

Using Stata statistical software (StataCorp, 2003) a curve was fitted by logit regression 

for each of the explanatory variables (e.g. biomarker concentration, within class ratio 

etc) to assess their value as a predictor for the binary response variable Y. The model 

results are illustrated in Figure 5.50 - Figure 5.53 and model details are given in Table 

5.4 (page 185). The figures clearly highlight the explanatory variables which show the 

clearest discrimination in values between the two Y categories. From the figures it 

appears that the only convincing discrimination is by "/oC,̂ ^ and % A A , iUustrated in 

both cases by a clear sigmoid curve fitted by the regression. 

The P-value, the correlation between observed and predicted values and EL^g^ was 

calculated for each of the logit regressions and the results are given in Table 5.5. The P-

value gives the exact significance level associated with each regression i.e. the decision 

to reject a null hypothesis when P <0.01 is equivalent to a significance test using a 

significance level of 1%. Also, expressed as a percentage (P-value x 100), it gives the 

probabilit}' of making a type I error (incorrecdy rejecting H,^. The P-value test of 

significance goes some way to confirming the initial visual assessment of the logit 

regressions - at a 1% significance level H„ can be rejected (and H, accepted) only for 

% C „ 4 , % A A and C^., + C373 (ng/g Corg). The correlation between the values observed 

for the response variable and the fitted or predicted response by each explanatory 
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Marine/Brackish - Isolated/Lacustrine 

Explanatory Number of Coefficient P-Value Rejeet H,, Correlation Median 

Variable observations between observed Effective 

Level 
Significance 

and predicted 

values 

(GLA'ICORR) 

Effective 

Level 
5% 7% 

and predicted 

values 

(GLA'ICORR) 

(EL,J 

%C37:4 29 -0.3936 0.0000 Yes Yes 0.874 15.43 

% ZAA 29 0.6829 0.0000 Yes Yes 0.754 4.966 

SC37:2 + C37:3 31 0.0036 0.0050 Yes Yes 0.462 245 

(ng/g Corg) 

Pigments 31 -0.0002 0.0141 Yes N o 0.407 3995 

Il«-alkane 31 -0.0003 0.0256 Yes N o 0.395 2941 

(ng/dty sed.) 

SC37 / 2C38 29 -0.7411 0.0368 Yes N o 0.167 1.820 

C o r g / N 31 -0.108 0.1013 N o N o 0.293 13.22 

CssEt/Me 28 0.0784 0.1136 N o N o 0.265 5.879 

US7' 29 0.1426 N o N o 0.267 0.245 

«-alkane CPI25- 31 -0.2034 0.1534 N o N o 0.241 5.040 

33 

% T O C 31 -0.0596 0.2119 N o No 0.204 6.305 

Cmax 31 0.1314 0.2134 N o No 0.219 26 

«-alkane 31 0.5416 0.2824 N o N o 0.190 7.577 

Long/Short 

variable was calculated using GLMCORR, a Stata module designed by N.Cox (Cox, 

2003). Zeng and Agresti (2003) suggest this correlation as a general measure of 

predictive power for GLMs. The output is analagous to an value in that an output 

close to 1 may be considered as a strong correlation. Only C 3 7 4 (0.874) and % Z A A 

(0.754) gave "strong" values of greater than 0.5, with C^ j + C 3 7 3 (ng/g Corg) giving a 

correlation value of 0.462. A l l the other explanatory variables gave correlation values of 

0.167 to 0.407. This illustrates that the absolute concentration of alkenones is not a 

reliable sea-level indicator. However, what the model can not take account of is that in 

all of the fossil cores and in the modern sediments, a sharp change is seen in the relative 

concentration values associated with the transition between marine/brackish conditions 

and fuU isolation. 
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Based on a qualitative visual assessment o f the logit regressions and the tests of 
significance detailed above, only "/oC,̂ ,, and % A A appear to have the potential to 
successfully predict classifications for N W Scottish coastal sediments deposited under 
either marine/brackish or fuUy isolated/lacustrine conditions. Furthermore, of these 
two measures % C „ . 4 is the stronger candidate on several counts. First, it yielded the 
more compelling modelling results (see Figure 5.50 and Table 5.4). Second, it is stronger 
on the basis of chemical principles: % C „ 4 is based on within class variation of C37 
alkenones, a lipid group for which the consistency of within-class-distributions - under 
differing preservational conditions - has been well documented (as reviewed by Grimalt 
et al., 2000)). % A A is based on the ratio of alkenoates to alkenones, the interpretation 
of this measure is made more complex by observations that alkenoates are a more labile 
compound class than alkenones (Teece et al., 1998). 

From Figure 5.50 of the logit regression for % C „ 4 it can be seen that all of the marine 

samples had % C 3 7 4 of <15% and all the lacustrine samples - except one outlier - had 

%C37.4 values of >17%. The outlier point ("non-marine" % C 3 7 4 of 7%) was from the 

Dubh Lochan core, the sample immediately below the marine transition at 272 cm. The 

logit regression produced a median effective level of 15.53%. Therefore, this value may 

be used as a threshold to determine the marine/brackish (<15.5%) or 

lacustrine/isolated (>15.5%) origin o f sediments. 

On the basis of a combination of a qualitative assessment and the logit regression 

analysis, the results suggest that measurement of %C37.4, combined with a knowledge of 

relative changes in alkenone concentrations may be used to reconstruct sea-level change 

in N W Scottish isolation basins. 

5.8. Synthesis and Conclusions 

This is the first study to investigate alkenone distributions in such a diverse range of 

modern shallow coastal environments. Accordingly, no previous study has reported 

such diversit)' of alkenone abundance and within-class-distributions within a relatively 

small geographical area. Alkenones were present in varying concentrations in surface 

sediments of all the modern coastal basins that had some communication to the sea but 

were not detected in two freshwater (lacustrine) lochs. 
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In the modern basins, alkenone concentrations per gram dr\' sediment increased in the 
sheltered environment of Craiglin lagoon (IS 4) relative to the more open marine 
environments of Loch nan Ceall and RTP (IS 1-2 & RTP). This is suggested to be a 
function of greater preservation potential o f lipids in Craiglin lagoon, due to some 
combination of - i) less tidal winnowing of POC, ii) more fine sediments for lipids to 
adsorb to (and be stereo chemically protected), iii) anoxic sediments. However, once 
normalised to %TOC the highest values were observed in Loch nan Ceall (IS 1-2). 

Distinct differences were observed in the alkenone patterns in the more open basins of 

Loch nan Ceall and RTP (IS 1-2 & 3) compared to Craiglin lagoon (IS 4). This is 

characterised by increased values of % C „ ,, and lower relative abundances of C37 2 and 

the C^^ methyl alkenones in Craiglin. The reason for such a divergence in alkenone 

patterns over a relatively small area can not be a function of physiological response of 

E. Huxleyi producers to changes in ambient water temperature. The reason must be a 

function of either i) physiological response to other physiological stresses (such as 

salinity, or nutrient availability) by an E. huxleyii strain ii) a product of different 

haptophyte populations iii) post-depositional bias increasing isolation stage in modern 

basins. However, the values of %C ,7 4 in Craiglin remain <15%, therefore within upper 

limits previously recorded for E.huxleyi (17%) and do not approach values observed in 

lakes. This and the fact a marine biological survey of Craiglin found no haptophytes 

suggest the most likely explanation is a result of environmental stresses on E. huxleyi. 

Results from analysis of fossil isolation basin cores suggested that absolute 

concentrations o f alkenones can not be confidentiy ascribed to marine or freshwater 

phases. This may be because of diversity between coastal basins in terms of sediment 

regime/preservation potential o f alkenones. However, the results suggested that 

changes in the relative concentrations of alkenones within an individual basin down-

core are associated with marine-lacustrine transitions. 

A logit regression analysis of all the sediment samples was employed to find which of 

the measured response variables could reliably characterise the sediment samples in 

terms of a marine/brackish or isolated/lacustrine binomial response variable 

(depositional origin). The results suggested an excellent efficiency for ^oC^-i^ at 

predicting the depositional origin of the sediments, with % A A and alkenone 
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concentrations also showing a statistical relationship to the response variable. Other 
measures of biomarkers and organic geochemical parameters are less consistent in their 
response to sea-level change and therefore have less utilit\' for sea-level studies. 
However, «-alkanes, C,„j,/N and chlorin pigments may provide other useful 
"background" information for a more complete environmental reconstruction. 

These results suggest that alkenones may be used as an indicator of sea-level in fossil 

isolation basins. The most appropriate approach would be to use %C , 74 to initially 

predict a marine or non-marine source for the alkenones. The ultimate decision on the 

depth assignment for an isolation contact would then be based on a comparison of 

% C 3 7 4 with changes in the relative concentrations of the alkenones down-core. The 

results o f this study suggest the isolation contact can be identified by a sharp change in 

alkenone concentrations accompanied by a change in %C , 74 through a threshold value 

o f - 1 7 % . 

More work is necessary before an indicative meaning can be assigned to alkenones. 

However, in the modern basins abundant alkenone concentrations with a VoC^j.^ of 

<15% were present in CraigUn lagoon. The lagoon has a siU height 13cm above 

MHWST, and 22cm below H A T (i.e. the lagoon is only ventilated by marine water 

during higher than average spring-tide high tides and some storm tides). This suggests 

that the most appropriate indicative range to ascribe to an isolation contact identified by 

a change in alkenone abundances and associated within-class-distributions, would be 

between MHWST and HAT. 
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Overview 
General 

The main aim of thesis has been to develop and extend the palaeoenvironmental 

application of biomarkers (principally long-chain alkenones) and other components of 

sedimentary' organic matter in the N.E. Adandc region. In pursuing this aim we have 

focused on two study areas: 

The polar to sub-polar region of the Nordic Seas. 

The coastal environments of N.W. Scodand. 

In both study areas the research can be divided into two general goals: 

Firsdy, relating the distribution of biomarkers or organic matter parameters in 

the modern environment to controlling variables. 

Secondly, based on the above relationship, relating the distribution of 

biomarkers or organic matter parameters in sediments to past environmental 

changes. 

The Nordic Seas region is important in the broad context of understanding past 

changes in the ocean-climate system and predicting future responses, of that system, to 

perturbations (especially anthropogenic forcing). As such it has been the focus of 

intensive palaeoceanographic research over the past three decades. In the last fifteen 

years some of that research has included papers on the calibration and application of 

the alkenone indices U"^,, and This has been part of the process of rigorously 

testing alkenones, as proxies for reconstructing past absolute SSTs in the global oceans. 

In chapters 3 and 4 we built on the previous body of biomarker work in the region. In 

doing so we attempted to clarify and delimit the reliable application of alkenones in the 

Nordic Seas and to extend the application o f alkenone biomarkers to sub-polar, high 

sedimentation rate sites in the Icelandic Shelf. 

Prior to this thesis the utility of N.W. Scottish isolation basins in investigations of RSL 

change had been demonstrated by investigations which relied on lithostratigraphy and 

microfossil faunal assemblages to determine the palaeoenvironmental record. The 

organic components of isolation basins sediments had not been exploited as alternative 

proxies to constrain past RSL changes. In chapter 5 we explored the distributions of a 

number of lipid biomarkers and bulk organic parameters in modern and fossil coastal 

sediments to determine their potential application to RSL change studies. In doing so 
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we demonstrated the high potential of alkenones (abundance and within-class-
distributions) for further use in RSL studies. 

A major difference between the two saidy areas of the Nordic Seas and N.W. Scodand 

was the volume of previously published biomarker work. In the Nordic Seas there has 

been a number of studies which have employed biomarkers for palaeoclimadc 

reconstructions (e.g. Calvo et al., 2002; Fliigge, 1997; Higginson, 1999; Rimbu et al., 

2003; Rosell-Mele, 1994; RoseU-Mele, 1998a; Rosell-Mele et al., 1993; RoseU-Mele and 

Comes, 1999; Rosell-Mele et al., 1995; RoseU-Mele et al., 1997; RoseU-Mele et al., 1998; 

Sicre et al., 2002; Thomsen et al., 1998) and there has been a huge number of papers 

using alkenones in other parts of the global deep oceans. Whereas, there have been no 

previous attempts to apply biomarkers to reconstruct RSL change in isolation basins 

and only a few reports of alkenones in coastal or brackish environments (Conte et al., 

1994; Ficken, 1994; Schulz et al., 2000) The unifying theme across all study areas is that 

we have explored new ground for palaeoenvironmental work in the marginal 

environments o f the N.E. Atiantic. Where "marginal" refers to both the physical 

margins (coastal, continental shelf) and the climatic margins (low temperature, polar 

waters). 

Chapter 3: Distribution of long-chain alkenones in the Nordic Seas 

In chapter 3 the overaU aim was to extend the appUcation of alkenone proxies for 

palaeoceanographic studies in sub-polar to polar regions. We covered new ground by 

exploring the cUstribution of alkenones in the surface waters POM of the Nordic Seas 

with an unprecedented spatial coverage and concentration of samples. This 

compUmented earUer work, which had surveyed alkenone distributions in the surface 

secUments of the Nordic Seas (RoseU-Mele, 1998a; RoseU-Mele et al., 1993; RoseU-Mele 

et al., 1995). Samples from across the spectrum of property (SSS, SST) gradients (i.e. 

covering aU the characteristic water masses) o f the Nordic seas were obtained. We were 

particularly interested in assessing the relationship of %C ,7 4 to sea surface variables, as 

previous work had suggested that "/oC,̂ ^ in the Nordic Seas and North Adantic may 

have potential as a palaeo-salinity proxy (RoseU-Mele, 1998b; RoseU-Mele et al., 2002). 

The most remarkable discovery was alkenone distributions characterized by extremely 

high % C 3 7 4 values (up to 77%), measured for the first time in polar waters (saUnity 
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<34.4 psu) under conditions of up to 80% sea ice cover. Values of % C 3 7 4 across the 
Nordic Seas showed a strong associadon with water mass type. The %C-^-,,^ data was 
linearly correlated to both SST (R~ = 0.75) and SSS (R- = 0.79). The data-set showed a 
stronger correlation to SSS (R^ = 0.72) than to SST (R^ = 0.5), when combined with 
previous sea surface POM data from the Nordic Seas and North Adandc (Sicre et al., 
2002). However, the scatter in the relationship did not confirm the use of "^C-^-,,^ as a 
palaeo-SSS proxy. 

Comparisons of %C^j.^ measured in sea surface POM with the data from surficial 

sediments o f the Nordic Seas revealed large differences in the slope of the relationship 

of %C,7., versus SST and SSS. The magnitude of the difference could not be explained 

by preferential degradation of the C,, ., alkenone. Therefore we suggested that the "/oC,̂  ,, 

signal in sea surface POM is vulnerable to dilution in the underlying sea surface 

sediments by resuspension and mixing with advected allochthonous matter - containing 

relatively higher abundances o f C373 and C372 alkenones. This was supported by 

previous observations of resuspension and biasing of coccolithophore assemblages — 

particularly in the Greenland Sea (Baumann et al., 2000). 

Comparison of alkenone distributions with coccolithophore assemblage data coUected 

on JR51 and with published coccolithophore data suggested that E. huxleyi could not be 

ruled out as the producer of the polar alkenones (characterised by the unusually high 

%C374 values). An E. huxleyi source is supported by the Cj^ alkenone within-class-

distributions. 

Values of from the new Nordic Seas POM data shows no correlation with SST 

below 10°C. In contrast to U'^37', a stronger linear correlation exists between U'̂ 37 and 

SST (R^ = 0.69). Supporting previous suggestions that, overall, U'^37 may be a more 

appropriate SST index for the Nordic Seas than U'^37' (Rosell-Mele et al., 1995). The 

new U'^37' and 1)^37 data highlights major differences between distributions of 11% and 

U'^37' in the water-column POM and surficial sediments of the Nordic Seas for both 

indices. A detailed examination of the geographic locations that are responsible for the 

scatter in the U'^,7' versus SST relationship in surficial sediments of the Nordic Seas, was 

made. The results showed a clear geographical division suggesting that East Greenland 

Shelf, the Greenland Basin, Mohns ridge, northern Iceland Plateau and upper Bear 
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Island Fan are associated with the scatter, while samples from the northern Atlantic, 
Icelandic Shelf, Norwegian basin, Lofoten Basin and Barents Seas yield U'"',^' values that 
fall within the expected range, based on a global core top calibration (Muller et al., 
1998). This suggests that alkenone data from the latter sites may yield more reliable 
palaeoceanographic reconstructions of SST. 

Comparison of alkenone distributions with dinocyst proxies for SSS, SST and sea ice 

cover in a late Holocene core from the Barents Sea showed that the %C-^-,.^ record 

responded to major changes in SSS/sea ice cover. This supported the use of %C^-,.^ as a 

general marker for the influence of arctic/polar water in palaeoceanographic 

reconstructions. However, the use of "/oC,^ ^ to derive absolute values for a particular 

parameter was not confirmed. 

Chapter 4: Post-Glacial palaeoceanography of the Icelandic shelf. 

In chapter 4 we successfully used alkenone indices to reconstruct palaeoceanographic 

conditions on the Icelandic shelf for the post-Glacial period (0 -15 kyr BP). No 

previous work had applied alkenones to the Icelandic shelf, or to comparable sub-polar, 

high sedimentation rate, continental shelf sites. Major changes in the alkenone 

distributions were observed in the cores during the post-Glacial and Holocene periods. 

In the post-Glacial (when alkenones were detectable) reladve changes in "/oCjy 4 and 

indicated reladve changes in the influence of cold/low salinity waters versus warmer 

Adantic waters. Accordingly, major changes in the %C374 and distributions 

coincided with the major transitions in the GRIP Late-Glacial ice-core event 

stratigraphy. There was good agreement between the interpretation o f the alkenone 

record from the post-Glacial and records o f ice-front fluctuations from S.W. Iceland. 

The records from the N . Icelandic shelf displayed a general trend of cooling through 

the Holocene. This data supported published reports of negative Holocene SST trends 

in the northern North Atiantic (Marchal et al., 2002; Rimbu et al., 2003). This suggests a 

negative trend (weakening) in the A O / N A O index during the Holocene, when 

contrasted with records of positive trends in eastern Mediterranean and Middle East, 

(Rimbu et al., 2003) 

204 



James A P Bendle - Ph.D. Thesis 

Holocene SST oscillations in JR51-GC35 were of large amplitude; with millennial scale 
oscillations characterised by deviations of ~2°C. The oscillations had a distinct cyclicit)' 
on a millennial scale. The most prominent U'^,7-SST maxima occurred in the early 
Holocene between 9 - 1 0 kyr BP and in the mid-Holocene between 5 - 5.5 kyr BP. 
Also, distinguishable in the record were events coeval with the Litde Ice Age and the 
Medieval Warm Period. 

The millennial scale oscillations in the JR51-GC35 U'^37-SST record broadly correlated 

with a number of marine records of Holocene climatic events from the Northern 

Iceland shelf and North Adantic deep-sea cores. However, the closest correlation was 

achieved with the IRD record in JM96-1207 from the East Greenland shelf. I t is likely 

that this is due to their positions relatively close to the polar front and IRD sources; 

locations which are sensitive to climate change. The U*^37-SST record from JR51-GC35 

also showed close agreement with records of Holocene glacial advances in northern 

Iceland. 

A comparison of the U'^j^-SST records from JR51-GC35 and a core from the eastern 

Nordic Seas (MD952011) shows that there are some general similarities. However, the 

records suggest some differences (superimposed on the general trend) of millennial 

scale climate events between the eastern and western Nordic Seas especially at 3.2, 5, 6.5 

and 9 kyr BP. The most prominent example is the timing of the mid-Holocene Thermal 

Optimum (TO). In MD952011 the mid-Holocene T O is a distinct phase between 6 - 8 

kyr BP, (with the constandy highest SSTs at 6 -7 kyr BP). However, in the records from 

the eastern Nordic Seas, during the period 6 -7 kyr BP, there is a trough in the U % -

SSTs on the N . Icelandic Shelf, an increase in IRD events on the East Greenland shelf 

(core JM96-1207) and glacier expansion in northern Iceland. Therefore the data from 

this thesis suggest that the Holocene history of the surface ocean circulation within the 

Nordic Seas was more complex than previously suggested, possibly characterised by 

differential responses of the Irminger and Norwegian Currents. 

Chapter 5: Biomarkers and organic matter in coastal environments of N.W. 

Scotland: Assessment of potential application to sea level studies. 

In chapter 5 the overall aim was to assess the potential application of certain 

sedimentaiy components of organic matter (i.e. lipid compounds such as alkenones, n-
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alkanes and chlorophyU derivatives), and bulk organic parameters to RSL change studies 
in isolation basin in N.W. Scodand. This was the first study to investigate alkenone 
distributions in such a diverse range of modern shaUow coastal environments. 
Accordingly, no previous study has reported such diversit)' of alkenone abundance and 
within-class-distributions within a relatively smaU geographical area. 

A logit regression analysis of aU the sediment samples was employed to find which of 

the biomarker or bulk organic measurements could reliably characterise the sediment 

samples in terms of a marine/brackish or isolated/lacustrine origin. The results 

suggested an exceUent efficiency for the alkenone index "/oC,,^ at predicting the 

depositional origin of the sediments, with % A A and alkenone concentrations also 

showing a statistical relationship. Other biomarkers and organic geochemical parameters 

were less consistent in their response to sea-level change and therefore have less utiUty 

for sea-level studies. 

These results suggested that alkenones may be used as an indicator of sea-level in fossU 

isolation basins. The isolation contact could be identified by a sharp change in alkenone 

concentrations accompanied by a change in %C37 4 through a threshold value of -15%. 

More work is necessar}' before an indicative meaning can be assigned to alkenones. 

Observation from the modern basins suggested that the most appropriate indicative 

range to ascribe to an isolation contact - identified by a change in alkenone abundances 

and associated within-class-distributions - would be between MHWST and FLAT. 

Future work 

There are several lines of research that foUow logicaUy from the results of this thesis: 

Chapter 3: Distribution of long-chain alkenones in the Nordic Seas. 

The biological precursor of the polar water alkenones, characterized by unusuaUy high 

%C37 ,, values, should be isolated. Data from this thesis shows that E. huxleyi can not be 

ruled out, despite being relatively rare in coccoUthophore surveys of polar waters. 

Culture experiments on N . Adantic strains of E. huxleyi have been conducted in the 

past, at temperatures of >5°C and with set saUnities at ~35°C. Further studies should 

be conducted to see i f high VoC^-j.^ values can be induced in E. huxleyi populations 

subjected to polar water type conditions (<5°C, <34.4psu). 
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Populations of the lighdy calcified coccolithophore species that have recendy been 

reported as occurring in polar waters - need to be cultured and analysed as a potential 

source for alkenones (Marchant and Thomsen, 1994). In the past litde attention has 

been paid to these species as — unlike the heavily calcified E. huxleyi and C. pelagicus -

they are not well preserved in sediments and are difficult to identify by microscopy. 

Further POM filter samples, collected from polar waters, should be obtained for 

alkenone analysis. A portion of the seawater should be retained for a detailed survey of 

the phytoplankton. This should include naked and Ughdy calcified haptophytes. 

Once the biological source of the polar water alkenones has been determined the 

dominant variable/s which control %C37 4 (e.g. SST, SSS, nutrients, light) needs to be 

determined through culture experiments. This will conclusively determine the 

usefulness of the information contained in %C37 4 values for palaeoenvironmental 

reconstructions in subpolar to polar sediments. 

Chapter 4: Post-Glacial palaeoceanography of the Icelandic shelf. 

Some sections of the core JR51-GC35 in the early half of the Holocene, did not yield 

alkenones at detectable quantities, or the alkenones were too weak for integration. U'^37-

SST records for these sections will be completed by extraction and analysis of larger 

volume samples. 

Detailed records of sediment physical parameters in JR51-GC35 (e.g. sediment particle 

size, MS) wiU be produced in collaboration with INSTAAR, so that the U'^37-SST record 

can be compared with a histor)' of IRD events in the same core. 

The data from JR51-GC35 compared with records from the eastern Nordic Seas 

suggest that the Holocene history of the surface ocean circulation within the Nordic 

Seas was more complex than previously suggested, possibly characterised by differential 

responses of the Irminger and Norwegian Currents. Future collaboration with physical 

oceanographers and modellers may clarify the mechanisms for such behaviour. 

Chapter 5: Biomarkers and organic matter in coastal environments of N.W. 

Scotland: Assessment of potential application to sea-level studies. 
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Chapter 6 demonstrated the potential of alkenones for reconstruction of past sea-level 
changes in N.W. Scotiand. In order for this proxy to be adopted by the palaeo-sea-level 
communit}' a larger scale study of modern basins is needed. This is necessar}' before an 
indicative meaning can be confidentiy assigned to specific changes in the alkenone 
distributions. 

Also detailed phytoplankton surveys need to be conducted in parallel with collection of 

samples for alkenone analysis: in order to determine the contribution of alkenones (at 

different stages of isolation) from E. huxlgi or from other haptophytes known to 

produce alkenones in coastal areas such as Isochrysis galbana. 

I f specific organic compound classes can be validated as reliable sea-level indicators 

then the way is open for the application of compound-specific radiocarbon analysis in 

isolation basins, a development which may improve accuracy in the dating of sea-level 

index points. 
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Alkenones 
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AlkyI Alkenoates 

N C36.20Me 

N C o c . o O E t 

Figure 1.1: Structures and shorthand notation of the alkenones and 
alkyl alkenoates discussed in the text. The lUPAC names for the 
compounds are given in Table 1.1. 
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Sample Acquisition 
0.2- 5g of dry weight sediment or filters with particulates from 50-1501 of seawater 

Storage of Sample 
- 20°C Freezer 

Elimination of Water 
Lyophilization of total wet sample 

Homogenization* 
of total dty sediment samples 

Aliquot for C^^^ / N 
analysis 

Addition of Internal Standard 

Extraction 
Microwave assisted or repeated ultrasonication with dichloromethane/methanol 

Pigment Analysis* 
UV/vis spectrophotometr}' 

Sample Clean Up 
HPLC fractionation or saponification 

Derivatisation 
BSTFA 

Addition of GC/Recovery Standard 

Gas Chromatography or GC-CI-Mass Spectrometry 

Figure 2.1: Analytical scheme used in this thesis for the study of 
lipids, pigments and C^^g/N in marine and coastal sediment and 

filter samples. * Procedures not employed forfilter samples - pigment analysis was not necessary 

for filters as measurement of sea surface fluorescence was made onboard ship during sample collection. 
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Figure 2.2: Representative G C - F I D trace of the eluting region of n-
aUcanes, alkenones and alkyl alkenoates for a north Atlantic open 
ocean sediment sample, a) Identification of peak designations for «-
alkanes and internal standards (IS) b) Expanded alkenone and alkyl 
alkenoate region. Refer to Table 1.1 (chapter 1) for idendficarion of peak 
designadons. 
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Figure 2.3: Representative G C - F I D trace of the eluting region of n-
alkanes, alkenones and alkyl alkenoates for a N W Scottish brackish, 
coastal sediment sample, a) Identification of peak designations for n-
alkanes and internal standards (IS) b) Expanded alkenone and alkyl 
alkenoate region. Refer to Table 1.1 (chapter 1) for identification of peak 
designations. 
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Figure 2.4: Changes in the a) values (squares) and b) 
coefficient of variation (C.V.) (circles) when standards of synthetic 
alkenones with an expected V^^-j' of 0.19 are injected at different 
concentrations into the G C - F I D . The x-axis in a) is the mean U^7,j (of 
three injections) the x-axis in b) is the C.V. 
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Figure 2.5: Ammonia chemical ionization mass chromatograms of 
the total ion current and pseudo-molecvilar ions of the alkenones 
and alkyl aUcenoates quantified in a lipid extract from a sediment 
core extracted from the Icelandic continental shelf. See Table 1.1 
(chapter 1) For compounci identities. 
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Figure 2.6: Linearity of the G C - C I - M S method to quantify the C37.3 
and C37.2 alkenones and changes in U ^ j ^ ' values, a) The pseudo molecular 
ion is plotted versus the concentration of C,̂  ^ and C „ 2 iri the standard solutions. Both 
axis have logarithmic scales. The dashed line is a visual aid. B) Changes in the UK37' 
values (squares) for the standards with an expected UK37' of 0.19. The x-axis is 
logarithmic. The shaded areas in a) & b) highlight overloading of the system. 



o 

0.8 4 

Q 0.6 

3 
0.4 4 

0.2 4 

: ^ 

y : 

• i 
• i 

t̂ . i •„ 
r ! ! 

0.2 0.4 0.6 0.8 

U V GC-CI-MS 
Figure 2.7: The U'^j/values of marine sea-surface filter extracts, injected into 
the GC-FID, plotted against the ^i^rn values of the same samples injected in the 
GC-CI-MS. The sobd line reflects the linear calibration obtained from both sets of data 
(r^=0.757), the dashed line is a visual aid. 

100 

80 

9 
u. 
6 
t 3 

60 4 

40 

20 

7 

* 

i 
• I T . 

y^ • 

.y/. 

.J/ 
. \...mjm 

Jr ^ i 

y 

t. ; i 

• 
1 1 

20 40 60 80 100 
%C37^4 GC-CI-MS 

Figure 2.8: The "/oCj .̂̂  values of marine sea-surface filter extracts, injected into 
the GC-FID, plotted against the "/oCj,.,, values of the same samples injected in the 
GC-CI-MS. The solid line reflects the linear calibration obtained from both sets of data 
(r2=0.931), the dashed line is a visual aid. 

10 



Currents: 
C S C : Continental Slope Current 
E G C : East Greenland Current 
E IC: East Icelandic Current 
F C : Faroe Current 
IC: Irminger Current 
NAG: Nortti Atlantic Current 
NCC: Nonwegian Coastal Current 
NIIC: Nortti Icelandic Irminger 
Current 
NWAC: Norwegian Atlantic Current 
R F C : Recirculated Faroe Current 
S C : Stietland Current 
W S C : West Spitsbergen Cun-ent 
JMC: Jan Mayen Current 

PW 
Bathymetry 

1000 m 

NAW NCW 

Water masses: 
MNAW: Modified Nortti Atlantic 
Water 
NAW: North Atlantic Water 
NCW: Norwegian Coastal Water 
PW: Polar Water 
AW: Arctic Water 

Figure 3,1: Main features of the surface to near-surface circulation in 
the eastern North Atlantic and Nordic Seas. Red arrows show Adantic 
water flow. Blue, purple and orange arrows indicate flows of Polar, Arctic 
(mixed) and Norwegian coastal water masses respectively. Water masses 
transported by the main current branches are indicated. Sources: Hansen & 
0sterhus (2000);Johanessen (1986): Swift (1986). 
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Deep water masses: 
GSDW: Greenland Sea Deep Water 

AlW: Arctic Intemiediate Water 

NIWW: Northi Icelandic Winter Water 

MEIW: Modified East Icelandic Water 

NSAIW: Nonwegian Sea Arctic Intemnediate Water 

NSDW: Norwegian Sea Deep Water 

Bathymetry 

Prcxluction area for 
overflow water 

Buffer region for 
Iceland-Scotland 
overflow water 

Paths of overflow water 

• Atlantic water feeding 
overflow prcxiuction 

500 m 

1000 m 

GSDW 2000 m 

3000 ra 

•000 m 

NSAIW 
NSDW 

Figure 3,2: Main areas of densification in the Nordic Seas, paths of 
deep water flow to the Greenland-Scotland Ridge and overflow to the 
eastern North Atlantic. The thickness of the arrows crossing the ridge 
indicates magnitude and persistence of flow. Adapted from Hansen & 
0sterhus (2000). 

12 



Oceanic Fronts 
PF: Polar Front 
AF: Arctic Front 
BSPF: Barents Sea Polar Front 
NCF: Non/vegian Coastal Front 
IFF: Iceland-Faeroes Front 

Balhymetry 

500 m 

1000 m 

2000 m 

3000 m 

4000 m 

Figure 3.3: Main frontal systems of the Nordic Seas. Fronts are "leaky 
boundaries" — interfaces of cold and warmer water, with the cold water 
being less saline so as to have about the same density. Source Johannessen 
(1986). 
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a) 
Key: 

Cruise Track 

b) 

Figure 3.4: JR44 Cruise track (a) and location (b) of sampling stations 
for filter samples. Positions of ocean fronts derived from in situ 
measurements -see figure 3.6. 
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a) 
Key: 

Cruise Track 

Figure 3.5: JR51 Cruise track (a) and location (b) of sampl ing stations 
for filter samples. Positions of ocean fronts derived from in situ measurements -
see figure 3.7. 
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Figure 3.6: Phys ica l oceanographic properties measured in situ 

during cruise JR44 . A) Colour gridding shows temperature (°T) at 6m depth (from 
/ C R ocean logger). Depth profiles are derived from C T D probes, blue = temperature (°T), 
red = salinit)' (psu). B) Colour gridding shows salinit)' (psu) at Om depth (from CTD's) . 
Isolines show position of Polar and Arctic Fronts based on in situ oceanlogger 
measurements. SST & SSS ranges used to defme the water masses delimited by the fronts 
are given in Table 3.1. 
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s sTrc ] 

SSS [psu] 

Figure 3.7: Phys ica l oceanographic properties measured in situ 
during cruise JR51. A ) Colour gridding shows temperature (°T) at 6m 
depth ( f r o m ]CK ocean logger). Dep th profiles are derived f r o m X T B 
probes. B) Colour gridding shows saUnity (psu) at 6m depth ( f r o m ]CK 
ocean logger). 
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b) 

Figure 3.8: Chlorophyll s measurements for cruise JR44 . A ) Colour 
gridding shows chlorophyU a measured /'« situ at 6m depth during JR44 by 
ship's fluorometer. B) Remotely sensed CZCS Chlorophyll a concentrations 
for August 1999 (Provided by the SeaWil-S Project, NASA/Coddard Space I'light Center and 
ORBIMAGH). 
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Figure 3.9: Chlorophyl l measurements for cruise JR51. A ) Colour 
gridding shows ChlorophyU a measured in situ at 6m depth during JR51 by 
ship's f luorometer. B) Remotely sensed CZCS Chlorophyl l a concentrations 
for August 2000. Dark areas are ice, land or cloud (Provided by the ScaWii'S Project, 
NASA/CKxldard Space I'light Center and OltBIMACH.C). 
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• Barren sample 

/ / Sample subset 

Figure 3.10: Geographic distribution of Z L C K (ng / l ) i n the surface 
waters of the N o r d i c Seas. Sample subsets obtained f r o m the N o r t h 
Icelandic Irminger Currents ( N I I C ) , Shedand Current (SC) and the 
Norwegian Atiant ic Current ( N W A W ) are highlighted (dotted lines). See 
Figure 3.1 and Table 3.1 fo r water mass and current details. 

20 



a) ZLCK (ng/l) 

100 

I NAW 

MWAC 
NIIC. . - -

SSS (psu) 

b) 

10 
NWAC 

I L C K 
(ng/l) 

SSS 
(psu) 

Figure 3.11: Distributions of Z L C K ( n g / l ) in the surface waters of the 
Nord ic Seas by water mass , A) I L C K (ng/i) vs temperature and salinit)' with major water 
masses delimited (dashed lines) and sample subsets influenced by the North Icelandic Irminger Currents (NIIC) 
and the Norwegian Coastal Current (NCC) highlighted (dotted lines). B) ITie same data from a 3D perspective, 
circle symbols = samples from JR44, triangle symbols = samples from |R-51. Sec Figure 3.1 and Table 3.1 for 
water mass and current details. 

21 



100 J 

80 

60 _| 

O 
_j 
w 

40 J 

20 J 

y = -0.07X + 20.3 

R2 = 0.001 

- I W 1 ^ 1 1 1 1 1 1 
10 20 30 40 50 60 

Chlorophyll a 

Figure 3.12: Distributions of Z L C K (ng/1) vs chlorophyll a.(from 
ship's fluorometer). 
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Figure 3.13: Geographic distribution of %Cyj.^ in the 
surface waters of the Nord ic Seas wi th representative 
G C - F I D traces of alkenone patterns from different 
water masses . Sce Figure 3.1 and Table 3.1 for water rra.ss and current details. 
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Figure 3.14: Distributions of %C37.4 in the surface waters of the N o r d i c 

Seas by water mass . A) "/oCj^ ,, vs temperature and salinit}' with major water masses 
delimited (dashed lines). B) The same data from a 3D perspective , circle symbols = 
samples from JR44, tnangle symbols = samples from JR-51. See Figure 3.1 and Table 3.1 
for water mass and current details. 
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Figure 3.15: Distributions of %C37̂ 4 vs A ) S S T ( °C) and B ) SSS (psu) 
with linear regressions. 
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Key: 

• Water column POM fillers 
(this thesis). 

• Water column POM filters 
(Sicre e( a/, 2002). 

Q Core tops 
(Rosell-Mele. 1998 
and this thesis). 

Figure 3.17: Distributions of VoC^^.^ in the water co lumn and surface 
sediments of the N o r d i c Seas and northern north Atlantic. Scatter plots 
of %C37^vs SST (a) and SSS (b) from sample sets illustrated in Fig 3.16 B) 3-D plot of 

VoC^-j.^ vs SST and SSS with major water masses delimited (dashed Unes). 
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Figure 3.18: Distributions of %C37.4 in the global water column. Scatter 
plots of %C„ ,, vs SST (a) and SSS Ô )-
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Figure 3.19: Distributions of alkenones in boxcores from the N o r d i c 
Seas. 
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Figure 3.20: Distributions of U'^j , i n the surface waters of the N o r d i c 
Seas by water mass . A) U^,^ vs temperature and salinit}' with major water masses 
delimited (dashed lines). B) The same data from a 3D perspective, circle symbols = samples 
from JR44, triangle symbols = samples from JR-51. See Table 3.1 for water mass details. 
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Figure 3.21: Distributions of U ' ^ j , ' in the surface waters of the N o r d i c 

Seas by water mass . A) V^^^j vs temperature and salinity with major water masses 
delimited (dashed lines) B) The same data from a 3D perspective, circle symbols = samples 
fromJR44, triangle symbols = samples from JR-51. See Table 3.1 for water mass details. 
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Figure 3.22: Distributions of A ) IJ\' and B ) U \ vs S S T . Solid lines 
represent linear regressions; dashed Une is a second order polynominal 
regression. 
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X S . Ocean sed. traps (Ternois elal 1998) 
O S . Ocean water column POM (Sikes & Volkman, 1993) 

Nordic Seas and N. Atlantic ^ , p^^,^^3,^^ p o ^ g . ^ ^ 2002) 
O Nordic S e a s water column POM (this thesis) ^ ^Hanji^, ,g ^v. Africa (Sikes and Sicre. 2002) 

|A Nordic S e a s & N. Atlantic water column POM (Sicre et al. 2002) ,-, gering S e a water column POM (Harada, 2003) 
/ \ Meditterranean S e a water column POM (Ternois ef al, 1997)1 

K e y : 

0 N, Atlantic water column POM (Conte and Eglinton, 1993) 

Figure 3.23: Distributions of A ) 11^37' and B ) V^^-j measured on 
mixed layer P O M vs water temperature. Data f r o m tJiis thesis and 
reported in literature. Regressions 1 & 3 are 3'̂ '̂  order polynomial , 
regression 2 is 2"^ order polynomial . 
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Key: 

• Water column POM fillers 
(this thesis). 

A Water column POM filters 
( S i c r e e l a / , 2002). 

• Core tops 
(Rosell-Mele. 1998 
and this thesis). 

Figure 3.24: Nord ic Seas distributions of A ) U ^ j , ' and B ) IJ\^ 
measured on mixed layer P O M and surface sediments vs water 
temperature. Data f r o m this thesis and reported in Hterature. 
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Figure 3.26: a) T h e %C37.4 index plotted against %C38.4* b) the U'^j^ index 

plotted against for Nord ic Seas sea-surface P O M samples from this 

thesis. The solid lines are linear regressions, the dashed lines have been added for illustration 
purposes. 
1) "/oC,̂ .̂  = (Cjj.^Et + C3s.^Me)/(ZC3j,alkenones) 
2) = ( (C3K:2Et, C^,_^,Uc) - (C3,;,Et + C3,^,Me))/IC3, alkenones 
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Figure 3.27: Distributions ofI.C„/I.C^ vs a) S S T ( °C) and b) SSS (psu). 
Lines are liner regressions. 
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Figure 3.28: Distributions of C j g E t / M e vs a) S S T ( °C) and b) SSS 
(psu). Lines are linear regressions. 
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a) 

38Et 

b) 

38Et 

Figure 3.29: Distributions of a) U'^jgMe vs U ^ J J E , b) and U'^jgMe* vs 
lines are for 

data derived 
U'^ssEt* (t>) for N o r d i c Seas P O M samples. Solid 
comparison only and delimit distribution o f 11*̂ 3)̂ ;̂ ]̂ , vs U'^^jjpj 
fcom E. huxleyi cultures by Conte et al (1998) 
Index Equation 

U ^ 8 , : , = C3 ,^2Et / (C3»^,Et + C3,^3Et) 
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a) 
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R 2 = 0 . 4 3 
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Figure 3.32: Distributions of VoC^.^.^ in Nord ic Seas core-tops vs 50% 
sea ice cover (a) and 20% sea ice cover (b). Sea ice cover is months /y r 
f r o m W O D - 9 8 . 
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(> 10 cal ka) and lluvial 
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^ ^ ^ f reshwater plume 

Figure 4.2: Schematic description of the environment of the N . Iceland shelf 
showing the major controUing variations in sediment, isotope and biota on the N . 
Iceland shelf (adapted from Andrews and Giraudeau (2003). The cores are in positions where variations in 
local run-off, incursions of Polar or Arctic water (with sea ice and icebergs), and changes in the advcction of the 
Atlantic water have varied over the last lOcal ka (fig 4.2a). (halving glaciers srill remained on the Northwest 
Peninsula until 10 cal kyr BP (fig 4.2c). During the last 10 cal kyr insolarion at high northern latitudes decreased 
with renewed glaciation over the last 5 cal kyr (fig. 4.2b) (Stotter et all.. 1999). Relative sea level fell to present sea 
level by 9-10 cal kyr and then fell another 40m or more (fig. 4.2b). 
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Figure 4.6: Bi-plots of major oxide measurements (%) made on basaltic 
tephra from B9-97-325-PC2 207cm and previously identified samples of 
Saksunarvam tephra. The Saksunarvam data mark the geochemical distributions 
from two studies (Dugmore and Newton, 1997; Wastegard et a/, 2001). These data were 
preferred for use as a comparison because the measurements were made using the same 
equipment and standards, thus minimising systematic bias. 
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Figure 4.7: Bi-plots of major oxide measurements (%) made on basaltic 
tephra from JR51-GC35 420cm and previously identified samples of 
Saksunarvam tephra (sample from 430cm gave identical results). The 
Saksunarvatn data mark the geochemical distributions from two studies (Dugmore and 
Newton, 1997; Wastcgard eta/, 2001). These data were preferred for use as a comparison 
because the measurements were made using the same equipment and standards, thus 
minimising systematic bias. 
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Figure 4.8: Biomarker records plotted versus calendar age for 
Icelandic shelf cores. A indicates the A M S '^C dates and A shows the age of the Saksunarvatn 
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Figure 4.9: Comparison of Ui^j^-SST's from B997-350 & JR51-GC51 with Late-
Glacial and Holocene palaeo-environmental records from North Atlantic western 
Nordic Seas, a) U'^jy-SST's and %C^-;.^ records from the north and west Icelandic shelf 
(this thesis), coolings are demarcated as white areas, warmer periods as grey, b) Glacier 
advances in Northern Iceland, (Stotter et a/., 1999). c) Record of IRD intensity from the 
East Greenland Shelf Qennings et a/., 2002). d) Ice front oscillation in SW Iceland 
(Ingolfsson et al., 1997). e) Summary of inferred coolings (demarkated in black, 
superimposed on background derived from Jennings etal., 2002, IRD record) from various 
marine cores from N . Iceland (Andrews & Giraudeau, 2000, 20001; Andrews et al., 2000, 
2001; Eiriksson, etal. 2000a, 2000b) of f Ireland (Bond etal., 1997) and on the Bermuda rise 
(Keigwin, 1996). Records are aligned by calandar age BP (not ''*C age). 
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Figure 4.10: Comparison of alkenone-SST Holocene trend lines from cores B997-
325GC/PC and JR51-GC35 (graphs a,b) with data from Rimbu et al. (2003) (graphs 
c to m). Geographic location of SST trend lines are indicated in the map. 
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Figure 4.11: Comparison of Holocene U'^37-SST records from the 
north Icelandic Shelf (JR51-GC35) and the Norwegian Sea 
(MD952011). 
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Figure 5.1: Schematic representation of an isolation basin during a fall 
in relative sea-level (adapted from Shennan et al., 1996). Stages 1-5 
correspond with the sequence outlined in Figure 5.2. 
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Figure 5.2: Conceptual model of biological assemblage change during 
the isolation process. The biological assemblage diagram in the centre 
shows the up-core transition from marine through brackish, to freshwater 
species. The column on the left indicates the t}'pical sediment types 
associated with water environment. The column on the right indicates the 
RSL stage of the basin from as illustrated in Figure 5.1. 
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Figure 5.3: Schematic representation of the hydrological and 
depositional conditions in an isolation basin. Three major depositional 
stages are illustrated, the corresponding isolation stages from figure 5.1 is 
also indicated. Adapted from (Kjemperud, 1981). 
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Figure 5.4: Schematic representation of the organic matter cycle in an 
isolation basin. Three stages are illustrated which correspond to the 
depositional & hydrological stages (a, b & c) illustrated in figure 5.4. The 
corresponding isolation stages from figure 5.1 are also indicated. DOM, 
dissolved organic matter; POM, particulate organic matter. 
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Figure 5.5: Four isolation contacts. A) Sedimentological, B) 
diatomological/phytological, C) hydrological and D) the freshwater/ 
sediment inferface. The latter is rare, other than in deep, well mixed basins. 
MHWST is Mean High Water Spring Tides (after Kjempemd 1986). 
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Figure 5.6: Location map of the field study region. Insets show 
locations of the smdy areas witli the individual sites indicated (see tables 5.2 
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Figure 5.10: Kintail site map - showing details of Loch nan Core site, 
including surface sediment sampling location (diamond). 
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Figure 5.11: Coigach site map - showing details of Dubh Lochan site, 
including isolation basin and core location (circle). 
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Figure 5.14: Rumach tidal pond depth averaged salinities vs time for 
spring-tide H T - L T (11/8/02). 
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Figure 5.16: Rumach tidal pond depth averaged salinities vs time for 
mid-cycle tide L T - H T (7/8/02). 
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Figure 5.18: Rumach tidal pond depth averaged salinities vs time for 
neap-tide H T - L T (4/8/02). 

70 



RTP 
Station 6 
(Outside sil) 

a) 
High Tide 

0 
0 

0.2 

0.4 H 

0,6 

^ 0 8 ^ 

e 
^ 1 -I 
a . 

1.2 

1.4 1 

1.6 

1.6 

2 J 

Spring Tide 
11/8/02 
SaSnity (|»su) 

20 40 

Mid-cycle 
7/a€2 

Neap Tide 
4/8/02 

Salinity (()su) 
20 40 

X 

X 

b) 
Low Tide 

0 

0.1 

0.2 

0.3 

^ 0.4 

£ 0.5 
Q. ni 

Q 0.6 

0.7 

0 3 

0.9 

1 

SaSnity (psu) 

20 40 0 

Salinity (psu) SafinSy (psu) 

20 40 0 20 40 

X 

i 
X X 

X 

V 

Figure 5.19: Rumach tidal pond salinity profiles for station 6 (outside 
siU) at various stages of the tidal cycle. 
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Figure 5.21: Craiglin lagoon depth averaged salinities vs time for 
spring-tide L T - H T (11/8/02). 
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Figure 5.23: Craiglin lagoon depth averaged salinities vs time for 
spring-tide L T - H T (7/10/02). 
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Figure: 5.24: Particle size distributions in modem NW Scottish 
surface sediments. 
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Figure: 5.25: Values of %TOC in modem NW Scottish surface 
sediments. 
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Figure: 5.26: Values of C^^g/N in modern NW Scottish surface 
sediments. The shaded area in the plot C o r g / N plot divides predominantly marine 

(<8), f r o m predominandy terrestrial (>12) organic inputs according to the typical C / N 

ratios as described by Bordovskiy (1963) and Prahl et al. (1980) respectively. 
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Figure: 5.27: Values of absorbance at 410X by chlorin pigments in 
modem NW Scottish surface sediments. 
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Figure: 5.28: Concentratons of n-Alkanes in modern NW Scottish 
surface sediments, normalised to a) grams dry sediments and b) 
grams organic carbon. 
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Figure: 5.29: Values of n-Alkane C P I 2 5 . 3 3 and dominant C^^^ in 
modem NW Scottish surface sediments. 
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Figure: 5.30: Values of n-Alkane Long/Short ratio in modern NW 
Scottish surface sediments. 
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Figure: 5.31: Concentrations of C37.2 + C37.3 alkenones in modern NW 
Scottish surface sediments, normalised to a) grams dry sediments and 
b) grams organic carbon. 
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Figure: 5.32: Concentrations of C37.2 + C37.3 alkenones in modem NW 
Scottish surface sediments normalised to grams organic carbon and 
% clay. 
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Figure: 5.33: GC-CI-MS total ion chromatograms for modem NW 
Scottish surface sediments. 
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Figure: 5.34: Values of ^oC^j.^ in modem NW Scottish surface 
sediments. 
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Figure: 5.35: Values of C j g E t / M e in modem NW Scottish surface 
sediments. 
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Figure: 5.36: Values of ZC37/LC38 in modern NW Scottish surface 
sediments. 
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Figure: 5.37: Values of % ZAA in modem NW Scottish surface 
sediments. 
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Figure: 5.38: Values of \J\y' and derived SST °C in modern NW 
Scottish surface sediments. 
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Figure 5.50: Logit regressions for marine - non-marine categorisation 
of modem and fossil NW Scottish coastal sediments by a) VoC;^^.^, b) 
%IAA, c) C37^2 + ^37^3 (ng/g Corg) and d) P410 [AU/g dry sed]. 
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Figure 5.51: Logit regressions for marine — non-marine categorisation 
of modem and fossil NW Scottish coastal sediments by a) Ln-alkanes 
(ng/g dry sed.), b) EC37/IC38, c) Corg/N and d) CjgEt/Me. 
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Figure 5.52: Logit regressions for marine - non-marine categorisation 
of modem and fossil NW Scottish coastal sediments by a) U^^-j', b) 
CPI25.33, c)%TOC and d) C„^. 
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Figure 5,53: Logit regressions for marine - non-marine categorisation 
of modem and fossil NW Scottish coastal sediments by //-alkane 
Long/ Short. 
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