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Abstract 

We investigate the dynamical generation of fermion mass in Quantum Electrody­

namics [QED) and in Quantum Chromodynamics {QCD). This non-perturbative 

study is performed using a truncated set of Schwinger-Dyson equations for the 

fermion and photon propagator and the quark propagator. 

First, we study dynamical fermion mass generation in QED using a cancellation 

mechanism for the full photon-electron vertex that respects multiplicative renor-

malisabihty and reproduces perturbation theory and determine the critical coupling 

in different approximations. We then study the quark equation using a model for 

the strong coupling with two parameters and compare this study with previous ones. 

Finally, we show how bound states masses derived by lattice calculations can be 

extrapolated to low quark masses using the Nambu Jona-Lasinio model (NJL) 

and demonstrate the limitation of the NJL model. As an outlook, we present a 

functional method to control the quantum fluctuations of a given theory. We derive 

an exact equation for the effective action T and using a gradient expansion for T we 

derive evolution equations for different couplings. 
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Chapter 1 

Introduction 

Despite the appeal, interest and promise of string theory, Quantum Field The­

ory (QFT) has been more phenomenologically successful in explaining the physical 

properties of particles which make up our knowledge of the universe. The so-called 

standard model of strong, weak and electromagnetic interactions is an achievement 

whose success continues to be revered. The only drawbacks one could point at are 

the use of the hypothetical Higgs boson and the number of parameters needed to 

fix the masses of the gauge bosons and leptons. In a classical treatment, the mass 

is just a parameter which has to be measured experimentally and used in models 

to describe the particles and their interactions. Obviously if we are looking for 

a theory of everything, then we must find an answer to the question of the ori­

gin of mass. Even if we consider a Yukawa coupling between the Higgs and each 

fermion, generating mass for the fermions, we still have to resolve the problem of 

fine tuning to keep the fermion masses at the scale at which they are experimentally 

measured. The concept of dynamical symmetry breaking is attractive since i t offers 

the possibility of mass generation without relying on the existence of a scalar field. 

Perturbative corrections are always proportional to the bare mass, so if we start 

with a vanishing seed, we cannot generate a non zero mass. Dynamical mass gen­

eration is therefore essentially a non-perturbative phenomenon. Schwinger-Dyson 

Equations {SDE) and lattice gauge theory are by now considered old subjects and 

both are non-perturbative techniques, each one with its own advantages and draw-
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backs. Schwinger-Dyson equations are derived in the continuum in either Minkowski 
or EucHdean space and they can be studied for any value of the bare quark mass. 
Their hmitations stem from the fact that they are a system of integral equation that 
are infinite in number. Each n-point function satisfies an integral equation which 
involves an m-point function of higher order i.e. m > n. In practice, we have to 
resort to a truncation scheme, which makes the prediction both scheme and gauge 
dependent. Lattice gauge theory is a discrete theory which in principle is valid for 
any value of the bare quark mass. However, the computer limitations of Monte 
Carlo simulations precludes the simulation of hght quarks. On one hand (SDE) we 
have to truncate the theory and use the right parameters, while on the other hand 
we can use the ful l theory but with non-physical parameters. The ultimate goal of 
this thesis is to try to reconcile these two conflicting approaches. 

SDE have already been solved for different field theories in various truncation 

schemes. The most evident one is to approximate the ful l fermion-gauge boson 

vertex by its bare value. This simplifies substantially the equations at the price of 

introducing non-physical artefacts, since this vertex does not satisfy the underly­

ing gauge symmetry as expressed in the Ward-Takahashi (WT) or Slavnov-Taylor 

identities (STI) or the multiplicative renormalisability of the theory. Improvements 

have of course been made, by trying to construct vertices that satisfy the STI, but 

these approaches are cumbersome since it complicates the equations. In our study, 

we will use a truncation scheme, first introduced by Bloch [4], which reproduces the 

perturbation theory results, satisfies the important property of multiplicative renor-

mahsability, believed to hold non-perturbatively, and spares us the construction of 

a complicated ful l vertex. We will therefore study this method and its predictions 

for renormahsed QED in four dimensions. After determining the critical values 

for dynamical mass generation in QED^^i, we treat the more interesting case of 

the quark equation in QCD, where the coupling function is modelled by the use 

of two parameters, one to fix the infra-red value of the coupling and the second to 
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fix the behaviour at intermediate momenta. We solve this equation in a way that 
leads to a mass function that is explicitly independent of the renormahsation scale 
p'^, i.e. does not need cancellation between the p^ dependent terms as is found in 
usual treatments. Once the quark propagator is known, it can be used to solve the 
integral equation satisfied by the Bethe-Salpeter (BS) amplitude describing a me­
son bound state. Unfortunately, the BS equation requires analytical continuation 
of the quark propagator into the complex domain and this task is too difficult for 
the moment when one uses complicated models for the couphng function. We will 
therefore use a model which is simple yet able to capture the essential features of 
QCD, i.e. the Nambu Jona-Lasinio model {NJL), which enables us to write the 
mass of the pseudoscalar and vector meson as a function of two couplings, a bare 
quark mass and a cut-off. Though meson masses depend on the bare quark mass 
in a complicated manner, they do so continuously. It is therefore here that we will 
try to make contact with lattice gauge theory, which is reliable only for high quark 
mass. Using the NJL model, we will try to reproduce the lattice predictions which 
is a way of testing the vahdity of the NJL model itself. While its prediction will 
agree with the lattice calculation, we will show that the claim that the NJL is able 
to describe the properties of the p meson seems to be fortuitous. We nevertheless 
show that the NJL model incorporates the right behaviour for the pion and can 
therefore be used to extrapolate lattice calculations to small quark mass, which is 
better than using empirical fitting formulae as is usually done. 
Finally, we will introduce a recent technique to calculate the effective action by 
varying a parameter of the Lagrangian. We will illustrate the method for the case 
of a four fermion interaction and derive exact and approximate relations between 
the couplings. Even though we do not explicitly solve these equations or apply this 
method to the more interesting NJL model, we demonstrate its potential. 
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Chapter 2 

Schwinger-Dyson Equations 

Schwinger-Dyson equations are a non-perturbative tool, namely a set of integral 

equations for the n-point functions. This set of equations is infinite and thus need 

to be truncated to be treated in practice. Such truncation schemes are not all con­

sistent, and it is still a challenge to find such a scheme, which would provide a 

proper understanding of non-perturbative physics. Notwithstanding this fact, there 

have been many attempts to solve this system of equations in different truncation 

schemes, which have shed light on the physics of confinement, dynamical mass gen­

eration and many other topics [1, 2]. In this chapter, we will give an introduction to 

the topic of Schwinger-Dyson equations [1] for QED and present some truncation 

schemes which have been applied to study dynamical symmetry breaking in QED 

[3, 4]. 

2.1 QED 

The Lagrangian for QED in d = D + 1 dimensions is given by 

^ / _ 1 

JC-QED = J2i^f{i^-ml + e l A ) i j f - -F,,F^\ (2.1) 
/= i 

and is the basis of our study. The index / denotes the flavour of the fermion field 

il)^{x) with mass rriQ and which couples to the photon field associated to the field 

strength F^^" defined as 

F^. = d^,A, - d,A^ . (2.2) 

13 
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The gauge invariance of the Lagrangian CQED, is assured by giving the fields v4 (̂a;) 
and ipix) the following transformation properties 

A^{x) %{x) = A^{x) - d^\{x) (2.3) 

Quantisation of CQED is achieved by the functional integral 2[f),rj, J^] defined as 

mv.J,] = I D[i,.i,.A,] e . p O * * - - ! ^ / ' " ' IEA*--'*1V>^^^']) _ (2.4) 

where f]^, T]^ and are the source fields for the fermion, antifermion and gauge 

boson, respectively, and where we have defined the measure 

D = n ^ ^ w n ^ ^ M - (2-5) 

The normalisation of the functional Z[fj,ri,J^], is set by fixing the value of Z, for 

vanishing sources 

^[0,0,0] = 1. (2.6) 

Because of the gauge invariance of the Lagrangian CQED, the functional Z[f], rj, J^] is 

for the moment only formally defined. Indeed the integration measure D -ip, ijj, 

does not discriminate between the different fields , ifj^ and v4 ,̂ and their gauge 

transform \p, and M ^ , thus giving an infinite value to the functional Z. In order 

to avoid integrating over fields that are equal up to a gauge transformation, one 

has to select one equivalent class of these fields. This is achieved by adding to the 

Lagrangian a non-gauge invariant term that selects only one orbit of the fields. The 

usual choice for this is the covariant gauge fixing term, which gives 

S[ij,^,A^] ^ = S[^,AA^] ! d^x {d.A^f , (2.7) 

where ô is the bare gauge fixing parameter. 

The functional Z[i),r], is the generating functional for the n-point functions G„, 

defined as 
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where Ft represent any of the fields -0, ip or A^. These n-point functions are non-local 
in space and it is thus better to introduce the connected functions G^{xi,X2, • • • ,Xn) 
generated by the functional W [ ^ ,77 , J^] defined as 

2[r7,77, J^] =e^t***'^''l. (2.9) 

These connected n-point functions still involve graphs that contains fermion or pho­

ton internal lines. These can be made more localised in space by introducing the 

generating functional for proper graphs T[ip, ip, A^], which is the Legendre transform 

of W[f],r],J^ 

ir[i^, V', A^] = W[r7,7], J^] - i I d'^x ( ^ 7 7 # + A^J"") • (2-10) 

The arguments of the effective action F are the fermion fields and the photon field 

ip, ip and Afj,, respectively defined by the relations 

<— 

I or] 

= J ^ W . (2.11) 

The relations define the fields as functions of the sources and are implicitly used to 

defined the effective action F, which is thus only a function of the fields rp, ip and 

Afj, as defined in Eq. (2.11). The definition of the eflfective action F of Eq. (2.10) 

permits us to write the following relations 

ST 
5A^ 

5T 
SiP = -r] 

^ F — = = -ii—W— (2 12) 
5xp 5ip 5ip \Sfi 5r] 
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The connected 2-point fermion Green's function or fermion propagator S{x,y) is 

(2.13) 
l i / i , i / ' ,A^=0 

We define the connected 2-point photon Green's function or photon propagator 

Di"'{x,y) as 
6^T 

5A''{y)5At'{x) 
(2.14) 

tp,ip,A^=0 

The I P I 3-points Green's function or vertex eoT{x,y; z) is defined by 

eoKb{^,y;z) = (2.15) 

The Schwinger-Dyson equations can be derived by applying the functional integral 

formalism to the QED Lagrangian. They correspond to the Euler-Lagrange equa­

tion for the quantum field theory defined by the Lagrangian CQED of Eq. (2.1). 

2.2 Unrenormalised Equation for the Photon Po­
larisation Tensor 

In order to obtain the Schwinger-Dyson Equations (SDEs) one has just to remem­

ber that, the functional integral of a total functional derivative is zero, with fields 

vanishing at infinity. Hence, for example [1 

5 
0 = | D [ ^ / i , V , A SA^{x) exp 

J [dA^{x) J 

SS, 
SA^{x) 

J _ J _ J _ 
iSJ' iSf]' iSri 

+ Jf,{x) } Z[ri,r],J^ (2.16) 

Differentiating the gauge fixed action Eq. (2.7) with respect to gives 

5S, 
SAf,{x) dpdPg^, - y - - - ^ ] (2.17) 
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which help us to rewrite Eq. (2.16) as 

5W 

(2.18) 

Using the relations involving the effective action T in Eq. (2.12) and setting to zero 

the sources -0 and ip, we can write 

ST 
5A^^{x) 

-iJ24Tr[r^S^{x,x,[A^]) 
f 

(2.19) 

We differentiate this equation one more time with respect to A„{y) and set the source 

Jfi{x) — 0. We also use the proper fermion-photon vertex defined in Eq. (2.15) and 

obtain the equation satisfied by the photon propagator 

'D-'Y^{x,y) = d,d'g^, - 1 - f 1 â a. 5\x-y) + U^,{x,y). (2.20) 

This equation involves the photon polarisation tensor, H^^ defined as 

U^,{x,y) = iJ2{elf I d^z, d^Z2Tx[i^S^{x,z{)Ti{y-zuZ2)Sf{z2,x) (2.21) 

In momentum space, the SD equation for the photon is 

1 
^W^q), (2.22) 

with 

^'"{q) = ^ / d'k TV [^^ S{k) T-'{k,k-q) S{k - q)] . (2.23) 
(27r) 

Because of the Ward-Takahashi identity [WTI] for the photon propagator. 

q.W'iq) = 0, (2.24) 

we can factor U'^''{q) in the following way 

n '̂̂ (g) = ( - 9 V ' ^ + 9'^On(9^) (2.25) 
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where Tl{q^) is a general function. We are thus able to write the full inverse photon 

propagator as 

D - 1 
(9) = (i + n(5^)) + (2.26) 

The inversion of the previous expression yields the ful l photon propagator, which is 

related to the inverse propagator in the following way 

D,x{q) D-' -I \v 

The most general tensor expression for the propagator is 

D^,{q)^Ag^, + q''q''/q'. 

(2.27) 

(2.28) 

If we use it in Eq. (2.27), we can determine the two terms A and B. In this way the 

ful l propagator has the form 

G{q') g,. 
q^q'^ 

+ 6 
q'^q'^ 

where G{q'^) is the photon renormalisation function defined as 

G{q') 

(2.29) 

(2.30) 
1 + Uiq^y 

This general expression for the ful l propagator permits us to derive the expression 

of the bare propagator, by setting the function G(g^) to unity or 11(9 )̂ to zero 

D%{q) = - -
q'^q-^ 

+ ^0 
q'^q'' 

(2.31) 
q- J q^ 

as is expected. 

The SDE for the photon propagator is represented diagrammatically in Fig. (2.1). 

The momentum-space representation of the SDEs is readily obtained by either 

Fourier transforming the coordinate-space form or by generahsing the standard rules 

for Feynman diagrams based on the lowest-order perturbative contribution to the 

nonperturbative quantities. For example, for the photon polarisation tensor we 

obtain 

{2^Y 

r d^k 

= (-l)E(eo)V j^^mh,){iSHm^Hk,k + q)){zSf{k + q))] , (2.32) 
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in 
0 ' W T Q A A / 

in iD. iD ^ - 0 iu iD 
Figure 2.1: The Schwinger-Dyson equation for the photon propagator [1] 

where the factor of (—1) arises from the fermion loop in the usual way. In momentum 

space, Eq. (2.20) corresponds to 

which can also be obtained from the Fourier transform of Eq. (2.21). 

(2.33) 

2.3 Unrenormalised Equation for the Fermion Self 
Energy 

We derive the equation satisfied by the self energy (inverse propagator) of the fermion 

by following very similar steps to those in the previous section. We can write [1 

0 = [DI^P^^P, A,] -J— exp{<^^ [^ ' ^ -^ ' ' l+ / '"^ [^^v'+¥¥^A,J'^])} 
J L -̂1 5ib(x) 

54){x) 
_6_ _S 5_ 

+ ri{x)\ Z[T],ri,J^ . (2.34) 

After differentiating with respect to rj and setting all sources to zero (rj — rj — — 

0) we can rewrite Eq. (2.34) as 

S^'ix-y) = (i ^-ml)S^{x,y) (2.35) 

-i{el)' I d^z, d^z^ d^z, ^^D^^^x, z,)Sf{x, z,)Tliz,; 2̂, zs)S^z,,y), 
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where D^„{x,y) and ^^(a:,^,^) are the photon propagator and the proper vertex 

defined in Eq. (2.14) and Eq. (2.15), respectively. We rewrite this equation in terms 

of the fermion self energy, —iT,^{x, y), defined such that 

(i ^ - m^) S^{x, y ) - j d^z, E^(x, z,) 5^(zi, y) = 5\x - y), (2.36) 

with 

-i^f{x,y) = {eif j d''z,d''z2^,D^''{x,z,)Sf{x,Z2)Tl{z, ',Z2,y)- (2.37) 

The equation for the fermion self-energy is represented diagrammatically in Fig. (2.2). 

iS ^ " - / Z iS 

Figure 2.2: The Schwinger-Dyson equation for the electron propagator [1] 

By applying usual Feynman rules or making a Fourier transform, we obtain the 

momentum-space form for the proper fermion self-energy —iYj^. We have 

d'^k 

Once we know the self energy —iE-^, we can determine the fermion propagator S^{p) 

by using 

i^Hp) - {elrj j^{h,){iSf{miD''''{p-mirl{k,p)) . (2.38) 

SHP) = 
1 

(2.39) 
[(5oO-^ - S/(p)] [ ^ - m o ^ - E / ( p ) ] ' 

which is obtained by multiplying Eq. (2.35) by S^{x,y) and then going to mo­

mentum space. 
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2.4 Unrenormalised Equation for the Fermion Pho­
ton Vertex 

This equation can be derived in a similar way to that used before, but the diagram­

matic approach is more intuitive. In momentum space it reads [1 

/

fjdu 

J^,{iS'{q'mir',{q', q)){iS^{q))K^n<l> q', k), (2.40) 

where q' = q + k, q = p + k and K^^ is the fermion-antifermion scattering kernel 

with flavours g and / . The diagrammatic representation of this is given in Fig. (2.3). 

The amplitude M is 1-PI with respect to the fermion lines and does not contain 

ir 

+ ... 

Figure 2.3: The Schwinger-Dyson equation for the proper vertex [1] 

any fermion-antifermion annihilation contributions and as such does no contain any 

intermediate single photon state, since these would not be 1-PI contributions to T^'^ 

with respect to the photon line. The kernel K has been resummed to form M, which 

is given by 

M = K + K{iSfK + K{iSfK{iSfK - f • • • = K + K{iSfM. (2.41) 
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The matrix M satisfies its own equation involving n-point functions of higher or­
der. In order to be tractable, we have to truncate the system of Schwinger-Dyson 
equations. This can be done by choosing an ansatz for M , i.e, for the kernel K. A 
common choice is the so-called ladder approximation which consists in approximat­
ing K by 

^ 5f%elf{i^^)iiD^''){i^,), (2.42) 

where DQ is the bare photon propagator. We then iterate it to form M by replacing 

the ful l fermion propagator by its bare value. Another well-known approximation, 

is to replace the vertex by its bare value, i.e. 

^^^(p',p) = ^7^, (2.43) 

which reduces the system to two-coupled equations. In the following section we will 

explore the case of the bare vertex approximation and its predictions for dynamical 

symmetry breaking. 

2.5 The Bare Vertex Approximation 

In the previous sections, we have derived the equations satisfied by the photon and 

fermion propagators and by the fermion-photon vertex. This system is not closed 

and is in fact quite complicated. The bare vertex approximation provides us with a 

simplification that permits the elimination of the equation for the vertex F^. 

2.5.1 The equation for the fermion 

In the bare vertex approximation, the equation for the self-energy Eq. (2.37), be­

comes 

j^,l,Sf{k)D^%p-k)^.. (2.44) 

In order to solve this equation we first write the most general form for the fermion 

propagator. Because of its spinor structure, we have 

S{p) = A{p')^+B{p'), (2.45) 
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where A and B are general functions of the Lorentz invariant p^. In order to make 

exphcit the appearance of a dynamical mass we rewrite this as 

where ^ is called the wave function renormalisation and E is the dynamical mass. 

In order to find the equations satisfied by and by S, we first take the trace of 

Eq. (2.44) and secondly multiply it by and then take the trace. We obtain 

|g| = m . + i T V ( E ' ( p ) ) , (2.47) 

We use the parametrisation of the fermion propagator in Eq. (2.46) to simplify the 

trace 

- 4(27r)4 J """P- E2(A;2) 

(2.49) 

= 1 
J^(p2) 4p2(27r)4 y A;2 - E2(A;2) 

(2.50) 

In 4 dimensions the traces of a product of Dirac matrices can be computed using 

the following relations 

Tr[J] = 4, 

= 4/c.p, (2.51) 

Tx[}t,}i^}iM - 4px.A;2)(fc3.^4)-(A;i.A:3)(A;2.A;4) + (A;i.fc4)(/c2.A;3)], 

Tr [^i,. . . ,/(f„] = 0 , if n is odd. 

We thus obtain the following relations 

;r(p2) (27r)4 y F - E2(P) 

(2.52) 
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jr(p2) p2(27r)4y - fc2-E2(fc2) 

We now contract the indices // and to write 

J i ^ ) = ^ ° - ( 2 ^ y ^ % 2 ( ^ 2 _ s 2 ( i f c 2 ) ) { 3 G ( 0 + 6 | , (2.54) 

1 ^ 1 + ^ 0̂ / . 4 . ^ ( /^^) 
J f ( p 2 ) p2(27r)4y g2(^2 _ J]2(^2)) 

'kV-{k.pf' 

. q' 
- 3k.p + ^0 

(fc2 + p^) k.p - 2 fcV 
g2 

In order to proceed further, and be able to treat these equations numerically, we 

perform a Wick rotation on both the loop momentum k and the external momentum 

p. This Wick rotation is the usual procedure encountered in perturbative studies 

where it is well defined. Indeed, in the complex ko plane, the bare propagator for a 

fermion has a pole at ko given by 

ko = ±^p'' + mlTie. (2.56) 

By performing a Wick rotation, which amounts to rotating the real ko axis anticlock­

wise by an angle of 7r/2, one does not encounter any poles. In non-perturbative stud­

ies, we do not know a priori, the location of the singularities of the full-propagator 

and so i t is an assumption that such a Wick rotation is well defined. It has been 

shown, in several studies [25] that in the bare vertex approximation and in oth­

ers as well, the ful l fermion propagator has poles located in the complex k'^ plane. 

These singularities can be viewed from two different perspectives: they either are 

an artifact of the approximation or they are a genuine effect of the non-perturbative 

treatment and their presence signals the confinement of the fermion. In either case, 

it is first assumed that the propagators do not have such singularities, to be able 

to go to Euclidean space. These singularities thus cast doubt on the Wick rotation. 

If we maintain that the physics is based on Minkowski space, then we face a real 

problem of how to relate the two spaces, but if we assume that the fundamental 
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metric is Euclidean, the singularities could be useful to signal dynamical symmetry 

breaking and confinement. In Lattice QCD, the metric is Euclidean and is able to 

predict physical quantities such as the masses of hadrons. We are here left with a 

real problem: What is the fundamental metric? This question could be addressed 

only when consistent calculations in Minkowski plane are undertaken, but for the 

moment it seems to be out of reach. Notwithstanding the theoretical issues with 

the Wick rotation, we perform it here to simplify the matter. We have 

HP') 
1 

= 1 
p2(27r) 

0 f 

X G{q') 

g2(A;2 + E2(A;2)) 

g2(A;2 + E2(F)) 

(2.57) 

(2.58) 

3k.p + 6 
+ p'')k.p - 2kY 

In Euclidean space a four-vector fc^ has co-ordinates 

ks = {ko,ki,k2,k3), 

which can be transformed to spherical coordinates by the following relations 

(2.59) 

ko — kcosO, 

ki = k sin 9 cos 0, 

k2 = fesin^sin^cosi/), 

k^ = ksin6sm(f)sinip, (2.60) 

where k = {kl + k1 + k2 + kiy^'^ is the modulus of the four-vector ks- The integration 

ranges of the new variables are: k E [0,oo], 6,4> E [0, TT ] and ^p € [0, 27r . 

If we now define the coupling constant ao = el/AIT and introduce the notation 

X = p"^, y = k^ and z = q^, then in spherical coordinates we are left with 

E{x) , a /• j /J^(y)S(y) f ,„sm^9 
T{x) 

1 

= mo + 

= 1 

2TT^I'^y r/ + E2(y) 

r , vHy) f 
w^x J + E2fy) J 

/ d ^ ^ { 3 G ( . ) + 6 } , 

sin^^ 

X G{z) 

2TT^X J " y + E2(?/) 
2xy sin^ 6 

(2.61) 

(2.62) 

— Z^/yxcosO + 6 
{y + x)y/yxcosd - 2yx 

z 
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Here, the angular integrals of the ^o-part can be computed analytically. We arrive 

then at the final form for the equations concerning the fermion propagator 

S(x) 3a f , yT(y)E(y) r ,^ . o . G(z) 

jdy y 
ATI J ^ y + E2(y) [x 

[ d y ^ ^ fde.in^9G{z) 

^e{x - y) + 9{y - x) (2.63) 

jdy Hy) 

2xys\n^9 3y/yxcos9 

'An J "''y + E2(y) 
,9{x-y)+0{y-x) (2.64) 

2.5.2 The equation for the photon 

To derive the equation for the photon propagator we recall that the polarisation 

tensor 11^^ satisfies 

iTl,^{q) = ( -1) j:{elr I J^,ni^l,){^SHm^'^{k, k + g))(^5^(fc + g))] , 

(2.65) 

with 

(2.66) 

The factor Tl{q^) can be isolated by applying the projection operator defined as 

q'^q^ 
(2.67) 

For any value of the integer value n, we have 

(2.68) 

This last relation permits us to write an equation for Il{q^), or introducing the 

function 

G{q') = i + n(g2) (2.69) 
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we can write 

After substituting the fermion propagator, we obtain 

(2.70) 

G{q^) ?,{2'n)W 

where T'"' is given by 

( P - E 2 ( P ) ) ( p 2 _ S 2 ( p 2 ) ) 1^ U.U-'- 1 (2.71) 

= 4 [k^'p'' + p'^k'' - [k.p - E(fc2)E(p')) g (2.72) 

The product V^uT^^ is readily computed as 

(n - 2)^ -
2n{k.q)' 

+ (n + 2)A;.g-(n-4)E(A;2)E(p') (2.73) 

So far we have not yet fixed the value of the integer n. In general such integrals 

are divergent and thus need regularisation. The most simple of the regularisation 

scheme is to use a cut-off' A^, which cuts off the momentum integration at k"^ — . 

Ideally, we would hope that the introduction of the cut-off A^ does not spoil the 

underlying gauge symmetry. If this statement is true when one uses dimensional 

regularisation, it is unfortunately not the case with a sharp cut-off regularisation. It 

can be seen at one loop already that the photon polarisation tensor does not factor 

as in Eq. (2.25) and it thus shows that in this scheme the photon acquire a mass. 

The presence of an ultra-violet cut-off A^ introduces a mass term proportional to 

g^^'^. In order to get rid of this term we choose n = 4 and obtain the so-called Brown-

Pennington projector. With n = 4, we have V^uQ^'' = 0 and we further assume that 

no mass term arises in the computation. After Wick rotation, we obtain the final 

form of the equation for 11(5^) 

1 
G{x) 

= 1-
4iVfQ; 
37r2 

de sin^ e Hz) 
^ + S2(2) 

(2.74) 
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The three equations Eq. (2.63,2.64,2.74) are the basis of the study of dynamical 
symmetry breaking in QED^^i in the bare vertex approximation. They were solved 
using a Chebyshev expansion for the functions S, T and G, as will be described in 
the next chapter. Even though we started with a theory defined in Minkowski space, 
we ended with equations defined in Euclidean space. We could have therefore started 
with an Euclidean theory and derived the same equations Eq. (2.63,2.64,2.74). We 
recall that the Euclidean metric is defined as 

4 
a - b = 5^1, a^b^ — ^ ai bi (2-75) 

where 5^^ is the Kronecker delta. The Euchdean Dirac matrices are hermitian and 

satisfy the algebra 

{7^,7.} = 2 5^., (2.76) 

and the matrix 7̂  is given by 

75 =-71727374, (2.77) 

so that 

Tr[75 7a 7/. 7̂  7p] = - 4 e^^.p, (2.78) 

where ex^^p is the completely antisymmetric Levi-Civita tensor in d = 4 dimensions. 

A possible representation of this algebra is 

7f = 7° and 7f = - i 7 ^ j = 1, 2,3, (2.79) 

where 7° and 7̂  can be taken to be any one of the commonly used Minkowski space 

representations of the usual Dirac algebra. 

Once we have derived an expression in Minkowski space it can be transformed to 

obtain an equivalent in Euclidean space by using the following rules 

/

M fE 
d^x^ -i I d^x"", (2.80) 

^ ^ i^'^-d^, (2.81) 

A^B'' -A^-B''. (2.82) 
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In the following section we will give the results obtained in the bare vertex approx­
imation. 

2.5.3 Results 

The equations Eq. (2.63,2.64,2.74) have been solved for a number of fermion species 

Nf = 1 and Nf = 2. Before quoting the results for the whole (E, !F, G) system, we 

can show further approximations that have been made to simplify this system. 

One loop approximation 

The momentum dependent couphng function a{x) defined in QED as 

a{x) = cc{k^)G{x), (2.83) 

where q:(A2) is the bare coupling at the cut-off, can be approximated by its one-loop 

value an 

This rids us of one equation and in the Landau gauge (̂ o = 0)) we are left with the 

system 

1 ^ 1 + W . . . vHy) 

/• ,^ 9„ / N f3,/xycos6 2xysm'^6 \ 
X J desin^dauiz) ( ^ - ^ ^ - ^ ^—^ , j , 

where z = x - f y — 2 y ^ c o s 9. The system can be either solved as it is written or with 

a further simplification by either approximating the wave function renormalisation 

^ by 1, which is a good approximation in Landau gauge (̂ o = 0); or by using the 

angular approximation, implemented by writing 

au{z) = au{x, y) = Q;if(max(a;, y)). (2.86) 
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The angular approximation leads to j ' ^ = 1 and permits us to compute the angular 
integrals analytically . There is then just one equation left and it involves only radial 
integration. It reads (in Landau gauge) 

E(a:) = A [dy ^ ^ (^ ) Mmax(a ; ,y ) ) 
^ ' 4TV J ^y-HS2(y) max(3:,y) ^ ^ 

In this case there is dynamical symmetry breaking when the bare couphng a:(A2), 

is greater than a critical value etc given by [3 

occiNf = 1) = 1.99953, 

a^iNf = 2) = 2.75233 . (2.88) 

If we adopt the approximation T = 1, the equation to be solved is 

3a(A^) f vSjy) f sin' 6 
(2.89) 

The angular integration has to be performed numerically, which we handle easily 

using a Chebyshev expansion. The critical coupling in this case is [3 

ac{Nf = 1) = 2.08431, 

ac{Nf = 2) = 2.99142, (2.90) 

which are bigger than in the angular approximation. 

The coupled system at one-loop approximation of Eq. (2.85) has also been solved 

and the critical couplings were the following [3 

a,{Nf = 1) = 1.67280, 

ac{Nf = 2) = 2.02025. (2.91) 

We can remark that in this case the critical couplings are smaller than in the former 

cases. 
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The system (E, J", G) 

This coupled system for the fermion and the photon has been solved using a Cheby-

shev expansion for the three functions and the critical couplings found were [3 

Qc(A^A^/ = 1) = 1.74102, 

a,(A^ N f ^ 2 ) ^ 2.22948, (2.92) 

which is an increase of 4% for Nf = I and of 10% for Nf = 2, when compared to 

the system (S, JT) at one-loop. 

2.5.4 Improvement of the vertex 

All the aforementioned values of the critical coupling assumed the bare vertex ap­

proximation. In order to improve the vertex, we need an ansatz that captures the 

relevant physics of the phenomenon. The underlying principles of the theory should 

be respected by the chosen ansatz. As has been mentioned before, the photon prop­

agator satisfies a Ward-Takahashi identity (WTI), namely 

q^U^^ = 0. (2.93) 

The vertex also obeys its own W T I , which relates the vertex to the fermion propa­

gator. It reads 

(k - p)^T'^{k,p) = S-\k) - S-\p). (2.94) 

In the limit (A; — p) —)• 0, we obtain the Ward Identity 

r''(̂ .̂  = ̂ y ^ . (2.95) 

The structure of the W T I Eq. (2.94) shows that it only restricts the part longitudinal 

to the vector {k — p)^. We will thus decompose the ful l vertex in two parts: one 

longitudinal and the other transverse to the vector {k — p)^ 

T>^{k,p) = rl{k,p) + TUk,p), (2.96) 
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where the transverse part r^(fc,p) has to be determined by other constraints such 

as having the right perturbative behaviour, being free of kinematical singularities or 

preserving multiphcative renormalisability. 

Using the W T I Eq. (2.94) and Ward identity Eq. (2.95), Ball and Chiu [5] have 

determined the longitudinal part of the vertex, which is given by 

1 1 
+ 

1 
+ -

^ ( P ) ^ (p2) 

1 1 

Y 

T{k^) J^(p2) 

E(fc2) E(p2) 

(fc + p)nA? + ^) 

[k + pY 
A;2 _ p2 • (2.97) 

.Hk') HP'). 

In order to improve further the ful l vertex, one has to determine the structure of the 

transverse part. Its general structure can be expanded in a vector basis [5, 7, 8, 9 

n{k,p) = T.^^ik\p\q')Tt{Kpl 

while assuring the transversality condition 

(A;-p)^r^(A;,p) = 0 , and r^(p,p) = 0. 

(2.98) 

(2.99) 

The vector basis T-^{k,p) can be taken to be 

T^iKp 

T^iKp 

n{k,p 

Tak,P 

U{KP 

Tnk,p 
Ts'{k,p 

= p^{k-q)-k^{p.q), 

= \p'{k-q)-k^{p-q)]{fi+^, 

q'r-q'i 

q^ li)-p^-k^'] + 2{p - k^kYaxu 

= Y{k^-p')-{k + pY{}t-^), 

= ^(P' - k^) [ril^ + ^f) - - ^ 1 + (fc + PY kYcrx. , 

= -Yk''p^<7,x + k>'l^-p^H, 

(2.100) 

with q = k — p and a^^ = |[7;h,7j/]. We thus have in general eight extra functions 

Ti{k'^, p^, q'^), i = 1,8 to determine. By imposing multiphcative renormalisability. 
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reproduction of perturbative results in the weak coupling limit and absence of free 

kinematical singularities in the massive case, Pennington and Curtis [6] were able 

to propose an ansatz for the transverse part of the vertex. They chose a simple form 

involving T^{k,p) only that meets these three requirements. The Curtis-Pennington 

(CP) vertex is defined as 

1 
(2.101) 

1 
-^2 ^ ( P ) jr(p2) 

(e+p')[r{k'-p')-{k-^pn}i-^)] 
(fc2_p2)2 + ( S 2 ( p ) + S2(p2))2 

Using this vertex, it is possible to write the SD equations for the fermion and photon 

propagators. They are [3] 

S ( £ l 
J^ix) 

= mo-\-
y + S2(y) / d0 sin^ d 

G{z) 

X <̂  3E{y) [A{y, x) + Te{y, x) {y - x)] -
y - X 

2yx sin^ 0 

ATTT{X) 
Jdy Hy) 

y + my) 

yS(y) 
X 

e{x-y) + j:{x)e{y-x) (2.102) 

T{x) 
= 1 a 

2xn^ J y + T?{y) 
2yx sin^ 9 

G{z) 

x{A{y,x) ?>,/yxcos9 

2vx sin^ 9 1 
+ [B{y, x){y + x ) - C{y, a;)E(y)] 3Te{y, x){y - x) ^ c o s 9 

j d y Hy) 
4nJ'{x)J y + E^{y) 

(2.103) 

X | 2 y l ( i / , 2 ) ?/(l - 1/Gos^^) + 3y/y^cos^ 

+B{y, z) {y + z~ 2S(y)E(.2)) (2y(l - 4 cos^ 9) + 3 ^ cos 9) 

- f 3 ( y - ^ ) ( 2 / - E ( y ) S ( z ) ) 

-C{y,z) [(E(y)-I-E(^)) (2y(l - 4cos2^) + 3 ^ c o s ^ ) + 3(y - ^)E(y)' 

-3re{y,z){y - z){y - ^cos9 + S(^/)E(^)) | , (2.104) 
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with 

A{y,x) = 

B{y,x) = 

C{y,x) = 

1 
+ T{y) T{x) 

2{y - x) 
1 

y - x 

1 

S(y) E(x) 

y + rc 1 1 

^ ( y ) ^ ( ^ ) 
(2.105) 

2 [ (2 / -x )2 + (S2(2/) + E2(a;))2] 

These equations are much more complicated than the ones derived for the bare 

vertex and illustrate the fact that the construction of the vertex by using the W T I 

is a cumbersome approach. Moreover, we have seen that by using gauge symmetry 

principles we can improve the vertex (BC vertex). So far, we have only discussed 

bare equations. In order to make contact with the physical world, it would be 

profitable to define renormahsed quantities and derive the equations they satisfy. In 

the next section we will show how the Schwinger-Dyson equations can be written for 

renormalised quantities and introduce a scheme, first used by Bloch [4] for the case 

of QCD, which respects multiplicative renormalisability without having to construct 

an exphcit vertex. 

2.6 Renormalised Equation in the MR Scheme 

In this section, we introduce the concept of multiphcative renormalisability {MR) 

and illustrate its application to the case of QED. We then introduce a new trunca­

tion scheme called MR scheme that respects MR and derive the new SD equations 

in this scheme. 

2.6.1 Multiplicative renormalisation 

All the quantities, i.e. the fermion and photon propagators, we have thus far used 

are bare quantities. They were defined using the bare effective action r[^/',^/;,A^ 

and they all potentially contain divergences, that have to be removed in order to 
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make the theory meaningful. In perturbative studies, the expansion of Ffi/i, ip, 
in term of number of loops permits the calculation of the different couplings, which 
thus emerge as momentum dependent. The multiplicative renormalisation allows us 
to write quantities that are independent of the cut-off A^, but instead depend on a 
mass scale which corresponds to the scale at which, quantities are defined. For 
the fermion propagator, we have seen that it could be written 

The dependence on the cut-off is implicit and we should write 

^''^P^^^ = ^ Y J - X ^ [^-m{p\K')\ , (2.107) Hp\h.^) 

which makes the role of the cut-off A^ more explicit and indicates the potential 

divergence of the function when A^ is taken to infinity. The scale //^ can be defined 

as 

S-\p) = ri-m{^?), (2.108) 

for p^ = at a large value. This sets the wave function renormalisation to unity 

at the same time. This approach is based on using bare fields '0o,V 'O)^Oi t^e 

action and is thus called bare perturbative expansion. Alternatively, we can define 

multiplicatively renormalised fields and couplings in the following way 

4 = 4zl^f-, A l ^ ^ ^ A ^ - el = - ^ e f . (2.109) 

The infinities are absorbed in the fermion wave function renormalisation, Z2, which 

relates the bare fermion field to the renormalised one; the photon wave function 

renormalisation, Z3, which relates the bare photon field to the renormalised photon 

field; and the vertex renormalisation, Z i , which relates the bare and renormalised 

charge. The W T I relating the vertex to the fermion propagator Eq. (2.94) permits 

us to write 

Z( = Zi. (2.110) 
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In order to obtain the renormalised action, we substitute in the bare action the bare 
fields by their expression in Eq. (2.109) 

•' /=i 
- / d'x ^F,,F^^ - ^ { d . A ^ f . (2.111) 

J 4 

This action can be wr i t t en i n the usual fo rm w i t h the kinetic term normahsed to 

uni ty for the fermion, by introducing so-called counter terms, which regulate the 

divergence encountered in the calculation of n-point functions. We then have 

'' f 

- I d-'x ^ ^ ' ~ ^ ^ F ^ , F ^ - , (2.112) 

w i t h 

W = Zlml-m^, (2.113) 

5e^ = {Z(-l)e^. (2.114) 

The renormalised gauge parameter ^ is 

^0 = Zs^, (2.115) 

and has no associated counter term. The W T I for the photon 

g'^n^. = 0, (2.116) 

ensures that only the transverse part of the photon polarisation tensor gets corrected, 

i.e. the photon remains massless under renormalisation. 

Using this renormalised action S^, we can derive a renormahsed effective action 

T]i[il),'ip,Aij], which is the generating functional for renormalised I P I graphs. The 
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renormalised fermion and photon propagators w i l l have the general fo rm 

_ - g ^ - + ( 9 V / ( g ^ + i6)) 1 
^^^^^ ~ q^ + te l + n « ( g ^ ) ^{q^ + ^eY^ ^^'^^^^ 

subject to the renormahsation conditions 

r H ^ P > P ) U w ( . ) = (2.119) 

nfl(O) = 0. (2.120) 

These renormalisation conditions fo rm the so-called on-shell renormalisation and 

are the usual choice for QED. I t ensures that the renormahsed fermion propagator, 

S'^(p), has a pole of residue one at the physical fermion mass m-^(/x) i.e. 

E^(p) = 0 at p ' = [ m f { p ) f ; (2.121) 

that when an on-shell fermion of flavour / is probed w i t h a zero-momentum pho­

ton we measure the physical charge, and that an on-shell photon has a pole 

at = 0 w i t h uni t residue after vacuum polarisation corrections. This approach 

has been used for the study of perturbative QED and i t has been very successful 

for the calculation of QED processes. Moreover, i t has been shown that QED is 

perturbatively multiplicatively renormalisable and i t is believed that this also holds 

non-perturbatively. 

Using these definitions of the renormaUsed quantities, i t is possible to write renor­

malised equations for the fermion and photon propagators and the vertex. Our goal 

is to wri te these equations in a scheme, where the exphcit construction of the ver­

tex is not needed. We w i l l thus only need to know how to relate the renormalised 

fermion and photon propagators to their bare counterpart. We first wri te the most 

general expressions for the fermion and photon propagators in Euclidean space. 

z ( p ^ A ^ ) 

D^^M = \ ^ ^ ^ - - - ^ \ J2 + ^ ^ ' (2.123) 
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where we have expUcitly wr i t ten the dependence on and 

The non-perturbative multiphcative renormahsation is achieved by wr i t ing 

Z{p',A') = Z,{iJi\A')Zn{p\ti\ (2.125) 

G{p\K^) = Z,{^,\K^)GR{p\,?), (2.126) 

which exchange the role of and ji^. The functions Z^ and GR are the renormaUsed 

dressing functions for the fermion and photon respectively and are normalised ac­

cording to 

Zn{^i\^i^) = G H ( / i ^ / i ' ) - 1. (2.127) 

The running mass funct ion M(p^ ) as defined in Eq. (2.122) is renormalisation point 

invariant, i.e. i t does not depend on /x^. The renormalised coupling is defined as 

e{^') = ^ ^ ^ ^ ^ 4 T ^ ^ e . ( A ^ ) = z ' A ^ \ A^)e,{A\ (2,128) 
A ^ j 

where Zif is the vertex funct ion renormalisation. 

2.6.2 MR scheme 

In the previous section, we have defined all the non-perturbative quantities needed 

to renormahse the SD equations for the fermion and photon propagators that we 

recall here for completeness. I n Euclidean space, they are 

[SFip)]-' = [S%{p)]-'- el j ^^YSF{q)V''{q,p)D^''{r), (2.129) 

'4 
{ ~ l ) N j e l j Al_^^Sp{q)VM,-r)SF{-T), (2.130) 

w i t h T = [p — q). 
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MR equations for the fermion 

Substituting the fo rm of the fermion and photon propagators, we obtain the following 

equations 

Z{p 

(2.131) 

g2 + M(g2) 

(2.132) 

where 

Uz{p\q\r',A') Tr 

X 

1 
UM{p\q\r\K') = ^ T V 7m 1 - ^ 

(2.133) 

X 

M(g2) r ^ ( p , g , - r , A^) 

(2.134) 
G(r2,A2) r2 

w i t h 5^^{r) = 5^"" - r'^r^'/r'^. The two functions UM and Uz are the kernels for the 

integral equations. They impl ic i t ly depend on Z and M, through their dependence 

on the f u l l vertex , using the W T I identity. We have made explicit the presence of 

the cut-off A^, which regulates the theory in a way that the bare mass mo is cut-off 

dependent, ie. mo = mo(A^), but the dynamical mass M is regulator independent 

M = M(p2) . 

The relations defining the renormalised dressed functions of Eq. (2.125) and the 

definit ion of the renormalised coupling in Eq. (2.128) , allows us to derive equations 

involving the functions Zfi(p^,/x^) and a{ij?) — e^(p^)/47r. We have 

= z 2 ( / . ^ A ^ ) + ^ z , 2 ( / . ^ A 2 ) (2.135) 

9̂  + M(92) 
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^^P'^ = Z 2 ( / . ^ A ^ ) m o ( A 2 ) - 4 z ^ ^ 2 ( ^ ^ ^ ' ) (2-136) 

G'H(r^//^) 
q^ + M{q^)' 

X / d'qZn{q\i,')M{q')^^^^UM{p\q\r\K'). 

I n these equations, i t is usual to use the W T I for the vertex to wri te Z2(/i^, A^) = 

Zif{fi'^,A'^) and to include a factor Zif in the integral so as to renormalise the fermion 

vertex V^. Here we w i l l not proceed in this way and leave for the moment the vertex 

unrenormalised. The A^ dependence of the integrals is such that i t is cancelled by 

the seeds mo(A^) and Z2(/i^, A^)mo(A^) to produce renormalised quantities ZR and 

M. The factor Z2(/x^, A^) is replaced in these two equations by its definition 

to produce the following equations 

^ = Z 2 ( / . ^ A ^ ) + 4 4 ^ (2.138) 
ZR{p\h') " - - ' - ^ • 47r3 

1 GR{r\^') 

= Z 2 ( . ^ A V o ( A V 4 4 ^ (2.139) ZR{p^,^i^) - v r - . ^ w - u v w 

^ ^ W , / ^ ' ) 9 ' + M ( 9 2 ) ^ (̂  ^^^(^ ,9 , r , A ). 

In order to derive a system of equations relating the fermion propagator to the QED 

coupling Q;(p^), we note that the product Q;(^^)Gfl(r^,//^) does not depend on the 

renormalisation point fj? and can be expressed in terms of bare quantities only 

a{fi')GRir\fi') = a{A')Gir\A'), (2.140) 

which allows us to choose the value of /j? at our convenience. Choosing fj? = r"^, in 

the integral equation and noting that GH(r^ , r^) = 1, we obtain 

(2.141) 
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^^P'^ = Z2 (^^A^)mo(A^) 

- 4 ; ^ y ^ ^ W , ^ 2 ) , 2 4 - M ( , 2 ) ^ 

(2.142) 

where the dependence of the kernels UM and Uz on the momenta p, q, r is not 

wr i t ten . So far we have made no approximations, but now introduce the trunca­

t ion that preserves Mult ipl icat ive Renormalisability in a non-perturbative way. We 

note that in both equations the f u l l unrenormalised vertex F'^ is mult ipl ied by the 

unrenormalised dressing function Z{q'^,A'^). The truncation consists of assuming 

that the factor Z'^{q'^,A'^) cancels both the nonperturbative correction to the bare 

fermion-photon vertex and the corrections due to the integration. This scheme was 

first proposed by J.Bloch [4] for the case of QCD. In this case the truncation con­

sists of assuming that a factor Z'^/G'^, where G is the ghost dressing funct ion cancels 

the nonperturbative correction to the bare quark-gluon vertex and the corrections 

due to the integration. This can be supported by recaUing the W T I for the quark 

(P - k),r^Jp, k , p - k ) = G[{p - k f ] [ S - \ k ) - S-'{k)], (2.143) 

which shows that the f u l l quark-gluon vertex receives G/Z non-perturbative cor­

rections. However, i t has been shown by Mandelstam [10], that perturbative loop 

corrections to the propagator introduce a double factor G/Z. The cancellation mech­

anism is thus plausible and i t is assumed that i t is a non-perturbative phenomenon. 

In QED, the W T I is 

{p - fc)^r'^(p, k) = [S-\k) - S-'{k)] (2.144) 

and here as well we assume that a double 1/Z corrections appears that is cancelled 

by the factor Z^ i n the integrals. This Ansatz is consistent w i t h perturbation theory 

at weak coupling and thus yields the correct resumed perturbative behaviour of the 

electron propagator. We w i l l thus make the replacement 
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Z'{q\A')Uz{p\q\r\A') ^ ^ / ^ ( p ^ 9 ^ r ^ ) , (2-145) 

Z\q\A')UM{p\q\r\A') -> t / ^ ( p ^ 9 ^ r ^ ) , (2.146) 

where Uz and [7^^ are calculated by replacing the f u l l vertex ^^{p, q) by its bare 

expression 27^. The equations for the fermion propagator are thus 

Y ^ ^ ) = ^ ^ ( ^ ' ' ^ ' ^ + 4 ^ / ' ' ' ^ Z h ( , ^ m ^ ) ^ ^ + M ( , ^ ) ^ -

(2.147) 

M{P') _ . ( , , 2 . 2 . 2. 1 M{q') a{r^) 
^ - p - ^ - ^ ^ ( ^ - A W A ) - —y 

(2.148) 

The calculation C/f and C/^ is straightforward, as i t is the same as the one that was 

performed for the bare vertex approximation. I n Landau gauge where ^ = 0, we 

have (see Eq. (2.54,2.55)) 

p2j,2 2̂ (2.149) 

U W . q ' y ) = (2.150) 

The main interest of this truncation scheme is that i t preserves multiplicative renor-

malisability and that there is no need to construct a fermion-photon vertex to satisfy 

this property. Mult ipl icat ive renormalisability is preserved i f solutions of the equa­

tions renormalised at the scales and z/̂  are related by 

Z^{v\A^) = Zn{u\^i^)Z2{^Ji\A^). (2.151) 

I f we assume that we have found a solution [Z^{p^, ij?), M{p^)) of the equations 

Eq. (2.141,2.142), for all p^ and renormalised at the scale / i ^ , then by mult iply­

ing these two equations by the funct ion Zji{u'^, fj/^), i t is clear that ZR^P^^V^') and 

the original M(p^) are solutions of the system w i t h the renormalisation condition 
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Zjilu"^, u^) = 1. We can also note that this truncation satisfies the leading order re-
summed perturbation theory, as was demonstrated in [12, 11]. Our present scheme 
does not display the same Z dependence but because the U V l imits are identical, i.e. 
ZR{P^) = 1 to leading order, then the mass functions have the same U V behaviour. 

MR equation for the photon 

The two equations relating the dressing funct ion Z and the mass funct ion M have 

been wri t ten to involve the coupling funct ion Q;(p^), that satisfies its own integral 

equation. Starting f rom the SD equation for the photon propagator, we can derive 

the equation for the coupling in the MR scheme. I t is easier to remember that the 

MR scheme can be obtained f rom the bare vertex approximation by modifying the 

Z dependence, i.e. absorbing a factor Z'^ in the f u l l vertex. From the bare vertex 

approximation equation for the photon propagator Eq. (2.74), we can derive the 

equation in the MR scheme. In Landau gauge, i t reads as 

1 ^ 47^Z3 ( /x^A^) 4iVy r y 
a{x) e2(/x2) 2,7^2^ J + ^Hy) ^ ' ' 

/
I r 1 

dOsin^e - — - y ( l - 4cos^6') + 3 v ^ c o s 6 ' , 

w i t h X — q'^, y = k'^ and z = p^ = {k — qY and 

. t f ) = ! V ) « « ( « i i f ! l . (2 ,53) 
47r 

Recapi tu la t ion 

For completeness, we wri te the QED equation in the MR scheme in the Landau 

gauge. 

Zn{x,fi^) ''2ix^J ' Zn{y,fM^)y + MHy) 

Jo X \ z z^ I 



Schwinger-Dyson Equations 44 

= Z,{fi\A')mo{A') + —,ldy-
Zn{x,^^') ^ ^ ' 2 7 r 2 y ^ ^^^(2/,/x^) y - f M2(y) 

d ^ s i n ^ ^ ^ , (2.155) f Jo 

4 7 r Z 3 ( A ^ ^ A ^ ) _ ^ 4A^^ ^ y 
a{x) e2(/x2) 37r23;y ' ' y + E 2 ( y ) 

/ s i n ^ ^ — - - [ y ( l - 4 c o s ^ ^ ) + 3 ^ c o s ^ l . (2.156) 

These equations involve the wave function renormalisation Z2 and Z3, which w i l l be 

removed by subtracting each equation by the same equation at some particular mo­

mentum cr^, which can be chosen arbitrarily. I n the next chapter, we w i l l introduce 

the numerical method that was employed to solve this system in different approxi­

mations, i.e. quenched QED, when the coupling is replaced by its bare value, one 

loop approximation and then the f u l l system. 



Chapter 3 

Numerical Method For Integral 
Equations 

I n this chapter, we introduce a powerful numerical method to solve the non-linear 

integral equations for the QED system. The system of equations Eq. (2.154-2.156), 

involve the coupling function a{q'^) in the angular integral, which is the term that 

proves to create difficulties in the numerical treatment of the system. Had i t not been 

for the presence of such a term, we could have used a tradit ional approach, which 

consists of replacing the unknown functions Z{x), M{x) and a{x) by their values 

Z{xi), M{xi) and a ( x j ) at some grid-points Xi,i — 1,N. This is equivalent to a linear 

fit of the unknown functions between the points Xi. The reconstructed functions are 

continuous but not smooth and this leads to numerical problems, namely there is 

not proper cancellation of the divergences and the couphng funct ion a{x) has a non-

physical behaviour [3]. I n order to avoid such problems, we use an approximation 

that maintains continuity and smoothness of the functions. This is achieved by 

making a Chebyshev expansion. We thus transform a system of integral equations 

into a non-linear system of (almost) algebraic equations, where the variables are the 

coefficients of the Chebyshev expansion. This non-hnear system can then be solved 

by the Newton method, or better by the so-called modified Newton method, which is 

a globahy convergent method. Once we have determined the expansion coefficients, 

i t is easy to reconstruct the functions. 

45 
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3.1 Chebyshev Expansion 

3.1.1 Chebyshev polynomials 

The Chebyshev polynomial of degree n is denoted Tn{x). I t has an explicit repre­

sentation given by 

Tn{x) = cos(narccos(a;)). (3.1) 

Its argument x has thus the range - 1 < a; < 1. Even though, the definit ion of Tn 

involves a trigonometric funct ion, i t is nevertheless a polynomial i n x and an explicit 

expression for can be calculated easily, analytically for the first few terms or by 

using a recurrence relation, as follows [13 

Toix) = 1 

Ti{x) = X 

T2{x) - 2x^-1 

Ts{x) = 4 x ^ - 3 a ; (3.2) 

T4{x) = 4^" -8x'^ + l 

T„+i(x) = 2 a ; T „ ( x ) - T „ _ i ( a ; ) n > 1. 

We plot the first few Chebyshev polynomials Tn{x), n = 0 , . . . ,4 in Fig. (3.1). The 

Chebyshev polynomial T„(a;) has n zeros located at the points 

X^. = COS 
n 

k = 1,2,... ,n. (3.3) 

I t also has n + 1 extrema, both minima and maxima, in the interval [—1,1], located 

at 

k = 0,l,...,n. (3.4) xl = cos 
n 

The maxima always occur at 1 and the minima always at — 1 . The Chebyshev 

polynomials also satisfy two orthogonality relations in the interval [—1,1], one con­

tinuous, over a weight (1 — x^)^/^, which involves an integral over the argument x 
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h." 0 

1 1 1 1 1 T„(x) 

\ \ /T , (x ) 

1 \ / 
- ••/ 

\ 

X 
\ 

Vr,(x) /ij 
\ ,..---'T,(x) / jl 

. J.../_ \.„ ' \ . J.../_ \.„ 

•••••..T,(x) 

\ \ / 7 / 
\ V / • -

\ / \ / / 
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Figure 3.1: Chebyshev Polynomials T„{x) for n=0,... ,4. 

and one discrete, which involves a sum over the index k of the zeros Xk,k = 1,... ,171 

ofTrnix). They are 

i 7̂  j 
7r/2 i = j^O (3.5) 

[ TT i = j = 0 

' 0 
m/2 i = 0 (3.6) 
m i = j = 0. 

Y.Ti{x,)Tj{x,) = 

3.1.2 Chebyshev approximation 

Because of the continuous orthogonality relation Eq. (3.5), the Chebyshev polyno­

mials can be used as a basis for any continuous funct ion. Any funct ion f{x), w i t h 

argument - 1 < a; < 1, can thus be rewrit ten i n terms of Chebyshev polynomials as 

follows 

f i x ) ^j:c,T,^,ix) - ^ = (3.7) 

where the Cj are an infini te number of expansion coefficients and where the shorthand 

X^' is defined. We w i l l make an approximation to the funct ion f{x), by truncating 

the sum to j < N 

N N 

/ ( a ; ) R . ^ ' c , T , _ i ( x ) ^ ^ c , T , _ i ( x ) 
Cl 

(3.8) 
j=i j=i 

such that the approximation becomes exact at the N zeros of T/v(a;). 
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For the zeros Xk, {k — 1, N), -we have 

N 

k=l,...,N. (3.9) 

B y mul t ip ly ing both sides by Ti{xk), w i t h i < N and summing over the index k, we 

obtain 

j2T,ix,)f{x,) = j2'cjj2Ti{x,)T,_,{xk). 
k=i j = i fc=i 

We now use the discrete orthogonality relation (3.6), which yields 

^ N 
Y,Ti{xk)f{xk) = — C i + i , 

fe=i ^ 

so the expansion coefficients Cj of Eq. (3.8) can be wr i t t en as 

c, = ^f:T,.,{x,)f{x,). 

(3.10) 

(3.11) 

(3.12) 
fc=i 

I f we substitute the expression Eq. (3.3) for the zeros of Ti^{x) we have 

2 ^ 

k=i 
cos 

(A: - l /2)7r^ 
/ cos 

' ( f c - l / 2 ) 7 r ' 

N 
(3.13) 

We use the explicit representation of the Chebyshev polynomial Tj{x) i n Eq. (3.1) 

to obtain an explicit representation for the expansion coefficients Cj 

N cos 
• (A; - l /2 )7r^ 

N 
(3.14) 

The use of Chebyshev polynomials for the expansion is not a pedantic one. There 

are other polynomials that could be used. However, the best choice seems to be the 

Chebyshev polynomials. I f we make a different approximation using another set of 

polynomials truncated at order A^, then by choosing an integer m , such that m < N, 

then the approximation 

f { x ) ^ j : ' c j T j . ^ { x ) , (3.15) 

yields the "most accurate" approximation of degree m [13]. Because the Tj are all 

bounded between ± 1 , the difference A / between a truncation at order A'̂ , and a 
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truncation at order m is smaller than the sum of the Ck,k = m + 1,..., N 

Af = E'c,T,.,{x)-f:'c,T,^r{x)< f: c,. (3.16) 
j = l j=\ k=m+l 

I f ah the Cfc, are rapidly decreasing, then Af is dominated by the term Cm+iTm{x), 

which is an oscillatory funct ion w i t h m - f 1 extrema smoothly distributed over the 

interval [-1,1]. The error generated by replacing the funct ion by its expansion is 

thus smeared out over the complete interval. Moreover, i t can be shown [13], that 

the Chebyshev polynomial is very close to the so-called minimax polynomial, which 

has the smallest maximum deviation f rom the true funct ion. The advantage of the 

Chebyshev polynomial is that i t is easily computed unlike the minimax polynomial. 

3.1.3 Summation of Chebyshev polynomials 

Once we are able to compute the expansion coefficients Cj i n Eq. (3.14), we w i l l 

need to evaluate the funct ion f{x). One approach is to use the recurrence relation 

Eq. (3.2) to generate the different T j , j = 1,N - 1 and then sum the calculated 

polynomials weighted by their associated coefficient. This approach is numerically 

dangerous, because the recurrence relation Eq. (3.14) is unstable and yields expo­

nentially growing solutions. Fortunately, there is a way to generate the values of 

the T,(a;)'s, and accumulate the sum to form f { x ) in one go. Clenshaw's recurrence 

formula is an elegant way to evaluate a sum of coefficients times functions that obey 

a recurrence formula, which is what we have when we expand a funct ion over the 

basis of the Chebyshev polynomials. We thus want to evaluate 

f { x ) = J2c,nix), (3.17) 
A:=0 

where the functions Tk{x) obey the recurrence relation 

Tn+i{x) = a{n,x)Tn{x) + /3{n,x)Tn.i{x), (3.18) 

w i t h some functions a{n,x) and ^{n,x). First define the quantities y^, by the 

following decreasing recurrence 

yN+2 = yN+i=0, (3.19) 
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yk = a{n,x)yk+i+l3in,x)yk+2 + Ck, {k = N, N - 1,... ,1). (3.20) 

I f we solve Eq. (3.19) for on the left , and then make explicit ly the sum Eq. (3.17), 

we w i l l get the following pattern [13 

f i x ) = ... 

+ [ys - a{8, x)yQ - /3{9, x)yw] Ts{x) 

+ [y-j - a{7, x)y^ - P{8, x)yg] T7{x) 

+ [ye - a{Q,x)yr - P{7, x)y8] Te{x) 

+ [ys - a(5, x)y6 - /3(6, x)y7] T^ix) 

+ ... 

+ [y2 - a{2,x)y, - /3{3,x)y4T2{x) 

+ [yi - a{l,x)y2 - p{2,x)y3]Ti{x) 

+ [ci + P{l,x)y2 - P{l,x)y2] To{x), (3.21) 

where we have added and subtracted j3{\,x)y2 i n the last fine. For example, the 

terms containing a factor y^ i n Eq. (3.21) sum to zero because of the recurrence 

relation Eq. (3.18), and this apphes to all the other y^. The only term left is thus 

the sum we wish to evaluate. We have 

f { x ) = P{l,x)To{x)y2 + T,ix)y, + To{x)cr. (3.22) 

The two equations Eq. (3.19) and Eq. (3.22) are Clenshaw's recurrence formula for 

evaluating the sum of coefficients times functions that obey a recurrence formula. 

I f we apply Clenshaw's formula to the Chebyshev polynomials obeying the recurrence 

relation Eq. (3.2), the funct ion approximating f { x ) in Eq. (3.8) is given by 

2/Ar+2 = VN+I = 0 , 

Vj = '^xyj+i - yj+2 + Cj j = N,N - 1 , . . . , 2 , 

f i x ) = yo = xy2 - y3 + ^ci. (3.23) 
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So far, we assumed that the function has an argument x in the same range as the 
Chebyshev polynomial. I f the range of the argument is more general, i.e. b < x < a, 
we only make a change of variables to map x to the range [—1,1]- We define the 
variable s as 

x_-j(b + al 

lib-a) ' ^"^-^^^ 

which satisfies, 

X e[a,b]y^ s e [ - l , l ] . (3.25) 

The Chebyshev approximation is now 

f{x)^'£'c,T,_r{s), (3.26) 

where x is mapped into s using Eq. (3.24). 

3.2 Globally Convergent Method for Non-Linear 
Systems 

As we have already mentioned in the introduction to the chapter, the system of 

integral equations is rewrit ten as a system of (almost) non-linear algebraic equations, 

which is equivalent to finding the zero of a vector funct ion F ( x ) , where x is the vector 

representing the expansion coefficients. We first start by discussing the Newton 

method in one dimension and then generalise to several dimensions. 

3.2.1 Newton method 

Suppose we have an estimate x, of the zero of a funct ion / in one dimension 

f{xz) = 0. (3.27) 

Algebraically, the Newton method consists of wr i t ing a Taylor expansion for x^ ~ 

X + 5, where S is small and x is an estimate of x^. We have 

fix + 5)^ f i x ) + 5 f i x ) + + ... (3.28) 
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because f{xz) = f{x + 5) = 0 , it implies 

The iteration procedure will thus be 

Xi+i = x, + 5 = X i - ^ ^ , (3.30) 

if of course the derivative at the point Xi does not vanish. 

The advantage of this method is that it yields a fast rate of convergence, once we 

are close to the zero. Indeed we have 

f{x + e) = f{x) + ef'{x) + e ' ^ + ..., 

f'{x + e) = f'(x)+ef"{x) + ... . (3.31) 

By applying the Newton formula Eq. (3.30), we get 

= - ^ 1 ^ ^ (3-32) 

where x is the zero of / . The Newton method thus converges quadratically when 

we are near a root. 

The case of several dimensions is similar to the previous one. We would have N 

functions (Fj, i = l,N), involving N variables (a;̂ , i = 1, A'̂ ), to be zeroed 

Fi{xuX2,...,xr,)^0 i = l , 2 , . . . , i V . (3.33) 

If X denotes the vector {xi,X2,... ,Xj\{), we can write the expansion 

N 

Fi(x + (5x) = Fi(x) + ^ JijSxj + 0{5x^), (3.34) 

where Jij is the Jacobian matrix associated to F 
J , = ^ . (3.35) 
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The increment 5x. satisfies the equation 

J.(5x = - F . (3.36) 

This equation is a hnear system that can be solved using the standard methods. I t 

yields the increment of the Newton method 

x„e„ = x„,d + 5x, (3.37) 

5x = -3-\F (3.38) 

3 .2 .2 G l o b a l m e t h o d 

As we have seen, the Newton Method has a quadratic rate of convergence once we 

are close to the root. Unfortunately, if we start far from the root, convergence is 

not assured. Simple examples where the convergence fails exist [13] and i t is thus 

necessary to find a method for which convergence occurs for almost any initial guess. 

A global method is one that will converge to a solution for almost any starting point. 

We would like to employ a method that ensures both quadratic convergence a la 

Newton plus global convergence to the root after each iteration [13 . 

After each Newton iteration Eq. (3.37), we should ask ourselves if we really want to 

keep the new approximation vector x„^^ or not. From the vector function F, we can 

form its normalised squared norm / defined as 

/ = |F|2 = F.F, (3.39) 

and ask that the new vector x„ew decreases / . The Newton step in Eq. (3.38) is 

actually a good candidate, as it ensures a descent for / . Indeed, we have 

V/.<5x = (F . J ) . ( - J -^F) = - F . F < 0. (3.40) 

Thus the procedure will be the following: we always try the ful l Newton step 

Eq. (3.38), that will ensure quadratic convergence when we are close to the root. 

However, we check at each iteration that the new approximation really decreases 
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the norm / of Eq. (3.39). If the proposed step does not represent a descent of / , we 
go back along the Newton direction until we have an acceptable step. Because the 
Newton step is a descent direction for / , we are bound to find an acceptable step. 
This method is essentially equivalent to minimising the norm / , by taking steps that 
bring F to zero. In practise the iteration will be 

x„ew = x„„ + Ap, 0 < A < 1, (3.41) 

where p is the Newton step Sx of Eq. (3.37) and A is a parameter so that /{'x.^ + ^p) 

has decreased sufficiently. We found in [13], a routine to achieve this task. 

3.3 Chebyshev Expansion for M, Z And a 

We have seen that when the function to be expanded has a general range [a, b], then 

it is possible to make the change of variable of Eq. (3.24). In our case, the integral 

equations will be written in Euclidean space and the radial integration variable y, 

corresponding to momentum squared has the range [0,oo]. Numerically, we will 

introduce an ultraviolet (UV) cut-off and a infrared (IR) cut-off ê . The UV 

cut-off is introduced to regularise the integrals, while the IR one serves a numerical 

purpose. The neglected part of the integration i.e. JQ , has to be either evaluated 

analytically or shown to be negligible. In our study, we will choose an IR cut-off 

ê , such that the neglected contribution is indeed negligible. The phenomenon of 

dynamical symmetry breaking is in effect an IR phenomenon and it is thus essential 

to have enough grid points to show the evolution from a zero UV mass to a definite 

IR mass. We will thus not use a linear scale between and A^, but rather a 

logarithmic scale. The momentum will be changed to 

t = Hp'), (3.42) 

with range 

K^n,t^J = [ln(e'),ln(A2)], (3.43) 
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and we will map this range to [—1,1] 

s = (3.44) 

which can be rewritten 

(3.45) 
A A 

The Chebyshev expansion for M , Z and a will be written 

NM 

M{t = \n{p')) = ^ ' a ,T ,_x(s ) , (3.46) 

Nz 

a{t) = £ ' c , .T ,_ i (5 ) , (3.48) 
j= i 

with 5 defined in Eq. (3.44). The advantage of using Chebyshev expansion is that 

we now have a smooth integrand and that we can compute the different functions 

at any point we want. We do not have to fix a set of grid-points, where all the 

functions are defined, thereby imposing on us a quadrature rule that has to use 

these grid points. Here, we can use any optimal set of grid-points which will be 

the zeros of the Legendre polynomials, i.e. we will use the powerful Gauss-Legendre 

quadrature formula to calculate the different integrals. This quadrature rule will be 

very efficient, because the integrand is now smooth. 

3.4 Quadrature Rule 

After having defined the Chebyshev expansion, we will need a quadrature rule to 

compute both the angular and radial integration. We will thus replace an integral 

by a summation 

fw{x)f{x)dx = i:w,f{x^) + (3.49) 

where w{x) is a weight function, Wj are the associated weights to compute the sum 

and Xj are a number a grid-points. En[f] is the error generated when one replaces 
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the integral by the sum. We would like to choose the weights Wj, such that the 
integral is exactly equal to the sum when the function is a polynomial of a certain 
order n. This happens when the n nodes Xj are the zeros of the polynomials Pn{x), 
which satisfy an orthogonality relation with weight w{x), i.e. 

/ w{x)pi{x)pj{x)dx = 5ij. (3.50) 

The Gaussian quadrature with weight w{x) = 1 over the interval [—1,1] is called 

the Gauss-Legendre quadrature. In this scheme we have 

[' f{x)dx = f2wjf{x,) + EM (3.51) 

and the quadrature is exact i f f{x) is a polynomial of order n. The orthogonal 

polynomials with weight w{x) = 1 are the Legendre polynomials Pn{x), which obey 

the following orthogonality relation 

£ P,{x)P,{x)dx = (3.52) 

They can be calculated explicitly by either the Rodrigues' formula 

or by recurrence 

(n + l)Pn+i{x) = (2n + l)xPr,{x) - nPn-i{x). (3.54) 

The abscissas Xj will be the zeros of the Legendre polynomials P„(a;) and their 

associated weight is 
2 

Wj — -, r r , (3.55) 
' {i-x^;)[p^{x,)r 

where the prime denotes a differentiation with respect to x. The error Ey\j\ is 

In the case, where we are integrating over an interval [a, 6], we use the same inte­

gration points Xi and the same weights lOj, with the formula 

/ ; / ( x ) d x = ^ t » , ( ^ + ^ x , ) . (3,57) 



Numerical Method For Integral Equations 57 

The error in this case will be 

3.5 Illustration 

In this section we illustrate the method by a simple case where we have only one inte­

gral equation. In the bare vertex approximation, when the renormalisation function 

Z is set to unity, and the couphng function a{q'^) is set to its one loop expression, 

the mass equation satisfies the following integral equation 

with X = e^, y = e*' and z = x + y — 2^Jxyco& 9 . 

We write M{t) as a Chebyshev expansion 

M{t)^Y.'a,Tj.r{s), (3.60) 

with 

s = _ . • (3.61) 

This expansion has NM unknown expansion coefficients that we would like to de­

termine. We will thus impose NM constraints to find the a/s. We impose that the 

integral equation has to be satisfied at NM points ti,i = 1, NM 

(3.62) 

where M{ti) is calculated using the Chebyshev expansion Eq. (3.60). These 

abscissas Sj = s{ti) will be chosen to be the zeros of the Chebyshev polynomial T A ^ ^ , 

which are known to be 

Si = cos(^^—^^Y i = l , . . . , i V M . (3.63) 
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The momentum on the t scale is thus 

ti = In(Ae) + Si ln(A/e), (3.64) 

and on the linear scale we have 

/ A \ '̂ 
p f ^ X i = Aei^-j . (3.65) 

We now rewrite the A'̂ ^ constraints Eq. (3.62), as sums using the Gauss-Legendre 

quadrature formula 

Miu) = ^ E ^> ^ ^ t ^ E (J ^ ^ ( ^ ) ) , • = > . • • . , A ' . . 

(3.66) 

with yj = e*j and = + yj — 2y^x~y]cos6k. is the number of nodes we use 

in the radial integration with weights w f , while A'̂ i is the number of nodes for the 

angular integration with weight . To simphfy the notation, we write 

We thus have 

-('•'^^l^ffH 
These NM algebraic equations form an (almost) algebraic non-linear system that we 

solve by the global convergent method described previously. Because the equation is 

non-hnear, the expansion coefficients aj cannot be taken outside the radial integral, 

and we have to recompute the radial integral after each iteration. The system is 

thus not an algebraic system, it would have been had we been able to rewrite the 

non-linear system as a sum of constant coefficients times unknown variables. We 

define the vector F to be zeroed 

( F, \ 
F = : , (3.69) 
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whose components Fj are 

We now have to define the Jacobian J. I t is given by 

whose explicit representation is 

M^) = (3.71) 

1 , 3a(A2) ^ l^^^^ 1 , 1 y]e,, {y, - M\t/)) 
J . , ( a ) = T , ( . 0 - ^ 5 i . - ^ E < , (3.72) 

(2/. + M2(t;.))' 

where rj maps t j ' to the interval [—1,1]. To write this expression we have also used 

dM{ti) r r . f . K f^^^. 
Tj{Si) - -5ij. (3.73) 

The Newton iteration is 

with 5a. satisfying 

da. ' ' ' ' 2 

a„+i = a„ - 5a, (3.74) 

J (a„)5a = F(a„) , (3.75) 

that is solved by using the exphcit expression Eq. (3.70-3.72). 

Once we have determined the expansion coefficients, we can compute the mass 

function M{x) for any values we want using the Clenshaw's recurrence formula 

Eq. (3.19). We postpone to the next chapter the actual implementation of this 

method for QED in the MR scheme, first when the couphng function is set to its 

one loop expression and then we apply it to the full system ( M , Z, a). 
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C h a p t e r 4 

N u m e r i c a l S o l u t i o n o f t h e QED 

S y s t e m i n t h e M R S c h e m e 

In this chapter, we apply the numerical method developed in the previous chapter to 

the system of equations Eq. (2.154-2.156), which are the SD equations for QED in 

the MR scheme. Before solving the ful l system, we illustrate what happens when we 

make further approximations. We first present the so-called case of quenched QED, 

which is obtained by approximating the coupling function a{q'^) by its constant 

bare value at the cut-off A^. We then show what happens when we set the coupling 

function to its one loop expression and finally solve the ful l system Eq. (2.154-2.156). 

4.1 Quenched QED in the MR Scheme 

The equations for quenched QED are obtained, when we set the coupling function 

to a constant, i.e. 

Q:(9 )̂ = Q;(A^), quenched case. (4.1) 

This amounts to neglecting fermion loops in the photon propagator. 

In order to treat the quenched case, we start from the Minkowski equations, keeping 

the gauge parameter 

i«(A^) f ^4f^ L 1 KG + K^, 

(4.2) 

61 
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- B f ) - - z(a^ A')m(A') ^ ( A ^ ) ^ , , _ M ( ^ _ _ J _ ^ ± i ^ 
Z ^ i M ~ ' ^ °^ ' ~ J Zn{k\ M )̂ F - M 2 ( F ) {p - kf ' 

(4.3) 

with 

KG = j ^ ^ ^ { k ' p ' - { k . p f ) - Z p . k , (4.4) 

% = j ^ , ( k ' + p ' ) { p . k ) - 2 p ' k ' ) . (4.5) 

We first consider the equation satisfied by M[p'^)/Zii{p^, y?). We do not at this 

point perform a Wick rotation, but note that the kernel l / ( p — kY has a Fourier 

transform that can be computed analytically, which corresponds to a maissless scalar 

particle 

/ ^ l e ' ^ . ^ . J L (4 6) 

Also the integrand in Eq. (4.3) is the product of a function of k'^ multiplied by a 

function of {p — k^ only i.e. the integrand is a direct product, and the Fourier 

transform of a direct product is the product of the Fourier transforms. We therefore 

take a Fourier transform from momentum space p^ to co-ordinate space w. If we 

write 

""^'^^ - Bip\,% (4.7) 
ZR{p\f^') 

^ ^ A{p',fi% (4.8) 
Znip^f^') 

M(ff^) 1 
Zn{p^,fx^)k^-M^k^) 

then in co-ordinate space we have 

a s i k ^ f / ) , (4.9) 

B{w,fi') = m,Z2{lx\K^)5\w) - ^ io)^^^,a{^^)aB{w, (4.10) 

or 

^^2(5(^/;,^2)-moZ2(/x^A2)5^(^i;)) = ^^^47ra (A2 )<TB(t( ; , / i ' ) . (4.11) 
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Because the factor w'^ is multiplying the delta function, m.o.̂ 2(M ,̂ A^)w'^5'^{w) disap­
pears and we lose any dependence on the mass scale This is understandable and 
natural since quenched QED has no intrinsic mass scale. By Fourier transforming 
back to momentum space, we obtain the following differential equation 

. B " i . ) ^ 2 B \ . ) ^ ^ I ± ^ — ^ ^ , = 0 , (4.12) 

47r X - {B(x)/A{x)) 

with X = and the prime denotes differentiation with respect to x. This equation 

is to be contrasted with the one we can derive in the bare vertex approximation 

47r A{x)x- {B{x)/A{x)y 

which differs from Eq. (4.12) by its A{x) dependence. In the often encountered A = l 

approximation, Eq. (4.12) and Eq. (4.13) are the same. I t should be noted here that 

Eq. (4.12) is valid in the whole x — Minkowski plane. Had we performed a Wick 

rotation, we would have in this particular case derived the same equation in the 

Euclidean space, but the Euclidean equation would need analytical continuation 

to negative p^, obtained from the consideration of the kernel of integral equation 

Eq. (4.3). Kugo et al. [14], have shown that the analytically continued equation 

take the same form. Our result in Minkowski space spares us the need for analytical 

continuation. However, this works here because the kernel l/{p—k)'^ is quite simple 

and its singularity structure is known. Instead of taking Fourier transform, we could 

have differentiated Eq. (4.3) twice with respect to the momentum variable pf^ and 

would have obtained the same equation using the relation 

• , - 4 = -i^n'—^, (4.14) 

where q is the momentum variable and w the spacetime variable. 

Unfortunately, for the equation Eq. (4.2) satisfied by Zji{x, ^ ^ ) , the form of the kernel 

does not allow us to treat this equation in the same way as we did for Eq. (4.3). 

We will thus follow the usual procedure of Wick rotation. Because of the absence of 

the coupling function in the angular integral, the angular integration is computable 
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analytically. After introducing the Heaviside step function (or theta function), Q{x) 

we have 

1 
= ^2( / /^A^) 

Q ( A ' ) r , y/ZR{y,fj,^) r ^.^2^ ^2xysiv?e 3^/xycosf 
" " J V + M'^(v) J 27r^x J " y + M^{y) 

47r 
j d y 

y^M^{y) \x^ 
(4.15) 

We use now [3 

L 8 
Q ( ^ - ^ ) Q ( y - ^ ) 

x^ 
^ ,^ sin^ d cos 6 

dO 
AJxy 

y-Q{x-y) + -Q{y-x) 
X y 

(4.16) 

(4.17) 

and obtain 

47r y + M^{y) \x^ 
(4.18) 

where we notice that the only contribution comes from the gauge fixing part of 

the photon propagator. The 9 functions in the integrand restrict the range of the 

variable y and Eq. (4.18) can be rewritten 

ZR{x,fi^) 
« ( A % r ,l/Zn{y,t^')y' 

47r 70 y + M^{y) x^ 
(4.19) 

poo 
/ dy 
Jx 

ATT J X y + M^{y) ' 

We use the notation of Eq. (4.8) i.e. A = l/Zn, and differentiate the last equation 

with respect to x. We obtain 

x'A'{x) = -
A-n Jo ^ y + M2(y) 

If we differentiate once more with respect to x, we obtain 

(4.20) 

X 'A'ix)] = / _ a(A2)^o , A{x) 
Jb 27r x + M'^{x) 

(4.21) 
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which can be rewritten as 

This equation with Eq. (4.12) have to be solved together to give the solution for 

quenched QED in the MR scheme. We will here focus only on the domain where x 

is much bigger than B'^{x)/A'^{x). In this case, we can rewrite Eq. (4.12,4.22) as 

x^A"{x) + 3xA'{x) + ^^^P^A{x) = 0 (4.23) 
27r 

x^B"{x) + 2xB'{x) + ^^-^a{A^)B{x) = 0. (4.24) 
AIT 

We use the following ansatz for the solution of the above system 

B{x) = X-' (4.25) 

A{x) = x", (4.26) 

and obtain the following relations 

,^ + 2u + ^ ^ = 0 (4.27) 

s^^s+^^-^aiA') = 0. (4.28) 
47r 

The solutions for s and v are 

V = - l ± ^ l - a ^ o / 2 7 r (4.29) 

s = ^ ± i y ^ l - a K , (4.30) 

where Q;(A^) has been written a and 

- ^ 

is the critical coupling. For a < ttc, we are in the sub-critical regime and the 

exponent s is real. For a > s \s complex and the function B{x) or the mass 

function M{x) has an oscillatory behaviour, which indicates a new phase in quenched 

QED. We shall not solve the system numerically here but rather look at the case 

of QED, where the coupling is approximated by its one loop value. 
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4.2 A Calculation in Minkowski Space 

We compare the Minkowski space calculation to the Euclidean formulation. We 

work in the bare vertex approximation and in the non-local gauge = G{q'^), 

where G{q'^) is the photon dressing function. Even though our apphcation will be 

for the case of quenched QED. 

The propagators are 

Z{p') 
S{P) - p2 M2(p2) {li+M{p')) , 

G{q'^) ( 
D^u{q) = -r- 9,^^ 

In Minkowski space, the SD equations in the bare vertex approximation are 

M{p') 
Z{p^) 

- " ^ 0 - ^ , I d'k aM(e) 
AG{q') 

(4.32) 

Z{p') 
(4.33) 

xG{q') 
2p^e - 2{p.kf oP-k 

+ 
(p2 + k^)p.k - 2p^k'' 

CTMik'^) = 
Z(P)M(A:^) 
fc2 - M2(fc2) ' 

Z{k') 
k2 _ M2(A;2) • 

The term in square bracket representing the contribution of the gauge parameter 

can be rewritten as follows 

{p' + e){p.k) = [q' + 2{p.k)]{p.k) 

= q\p.k) + 2{p.k)'. 

The equation for .Z'(p^) becomes 

Z(p2) 
= 1 

p.k 
(4.34) 
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We now consider the case of quenched QED and thus fix G{q'^) = 1. The system of 
integral equations in Minkowski space is now 

_„_g , , 3 5 , 

As we have seen in the previous section the integral equation for B{p^) = M ( p ^ ) / Z { p ^ ) 

can be converted into a differential equation which is 

xB"{x) + 2B'{x) -F ^ ^ a z { x ) = 0, (4.37) 
TT 

where a; = is the Minkowski squared momentum. 

The equation for Aip^) = {l/Z - 1) is more involved since the kernel involves the 

momenta p but not only through the combination {p— k). We rewrite Eq. (4.36) in 

the following way 

p.k 
p'A{p') = - A / d'kazie)^ 

PaPaA{p^) = -Xpaj d"k k^az{k^)^. (4.38) 

We can therefore eliminate the term pa on the right hand side, we have 

A ( / ) = - A | d'ka^^ik')^, (4.39) 

with Aa{p^) =^ PaA{p'^) and cr^(p^) — ka(Jz{p^)- I f we now take the Fourier transform 

to space time variable w then Fourier transform back to momentum space, we obtain 

the following differential equation 

kaAik')] = ^kaaziP), (4.40) 

or 

xA"{x) + 3A'{x) + ^ ^ a z { x ) = 0 , x ^ k \ (4.41) 

which, for a; < 0 is the same as we would have derived if we had performed a Wick 

rotation. 
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In this rather simple example, we have seen that i t is possible to write a differential 
equation for the mass function M{x) and the dressing function Z{x) that is valid in 
the whole x = line, without resorting to the Wick rotation. The equations derived 
after Wick rotation, i.e. those for a; > 0 have the same form. I t therefore shows us 
that the analytical continuation to negative x = is in this case straightforward. 
However it is known, that in the complex plane, the mass function M(p^) derived 
by performing a Wick rotation has branch points [25], whose location depend on 
the value of the bare coupling a(A^). These branch points should thus play a role 
when one performs a Wick rotation. I t is thus rather strange, that we find the same 
equation for a; < 0. The role played by these singularities is still not very clear and it 
seems that it is interpreted in a way that is convenient by the context in which they 
are found (as we have already mentioned in chapter 2, where we first introduced the 
Wick rotation). 

4.3 MR Scheme at One Loop Approximation 

In this section, we solve the MR scheme QED equations in the one loop approxi­

mation. This simplification allows us to treat the system as a nonlinear system for 

the expansion coefficients of the functions M{x) and Zii{x). The couphng function 

a{x) is 

where is the cut-off that we will choose to be 

A ' = 10^°, (4.43) 

so as to make comparison with earlier work [3]. We will thus plot for example the 

mass function M(p^) with 

10"' < < 10^°, (4.44) 

and show the axis with these units, which in the case of QCD would typically 

be GeV units. Once we have fixed a value to the cut-off A^, the mass function 
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for another cut-off = AA^ is obtained easily since the equation for the mass is 

invariant under the following transformation 

X 

M 

Xx, 

VXM. 

(4.45) 

(4.46) 

(4.47) 

The system to be solved is 

M{x) 
= moZ,{^i\A') + — l dy 

M{y) y 
Zn{y,ix^)y + M^{y) I de sin^ d 

(4.48) 

X J de sin^ e 
x 

R{y,fx^)y + M'{y) 

Zy/xycosO 2xysm^6 
(4.49) 

with X = p^, y = k'^, z = {p — = X + y — 2y/xycos9 and 0:1 (̂2:) is the one-loop 

expression Eq. (4.42). These equations still contain the unknown renormahsation 

function Z2{fJ-^, A^), which can be removed if we rewrite the system for an arbitrary 

momentum x that we will choose to be a; = Because of the renormalisation 

condition 

Zfi(/i^A^2) = l , (4.50) 

we have 

M ( / .2) = moZ,{fj,\A') + ^ l dy 
M{y) y 

1 - ^ ^ ( M ^ ^ J d y ^ ^ 

Zii{y,^^)y + MHy) 

y 

f d e s i n ^ e ^ ^ , 
J z„. 

(4.51) 

ii^)y^M\y) 

I X / d0 sin^ 9 
3y/xycosd 2xysin^6 

(4.52) 

where Zfj_ = (jr + y — 2iJ,y/ycosd. I f we subtract the two system of equations and 
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write M{iJ?) = we obtain 

M{y) f M{l I de sin^ e 

(4.53) 

1 _ J_ [ ^ L 

I de sm'^elauiz) 
3^Jy/xcos9 2ysin'^e 

(4.54) 

The system, we have just written is for the massive case mo ^ 0. In the massless 

case, the equation for M/Z does not need subtraction and we can thus replace 

Eq. (4.53) by 

M(x) M{y) f ^ U y 
f de sin^ e 

auiz) 
(4.55) 

Zn{x,i,^) 2ir^J Zn{y, f,^) y + M^y) 

In order to solve this system, we first make an expansion for the two functions M{t) 

and Zji{t,fi^), where the argument t — \n{x) has the range 

We have 

[^.i„,Ux] = [ln(e2),ln(A2)]. 

Nz 
Z{t) = ^'bjTj.,{s), 

(4.56) 

with 

s = 
^ 2 (̂ max ~t~ ^min) 

(4.57) 

(4.58) 

(4.59) 
m a x ' ' m i l l 

where we have chosen NM external momenta where we impose that Eq. (4.55) has 

to be satisfied and Nz momenta where we impose that Eq. (4.54) has to be satisfied. 

For the radial integration, we split the integrals at y = a; so as to avoid the integration 

over the kink. We have here to notice that the angular integrals depends on the 

variable z = {p — k)"^. For a squared momentum range [e ,̂ A^], the variable z has 
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range [0,4A^] and we thus have to extrapolate the coupHng function outside its range 

of definition. We will choose to extrapolate the coupling in a way that maintains its 

continuity, which is vital for good accuracy in the numerical calculation. We choose 

(4.60) 

(4.61) 

Using the Gauss-Legendre quadrature rule, we rewrite the integrals as sums. The 

angular integrals depend only on the coupling function a{x) and can thus be com­

puted once and for all and stored. In the massless case, the two angular integrals 

are 

^ Wk sin^ Ok 

z 
Ql£(^fc) (4.62) 

0z(t„*,) - sin^ ̂  I 
"isJyjxco^Q 2ysin^e 

Are 
^ s i n ^ ^ ^ ax(.{zk) 
k=i 

3 y / v j / x i cos Ok 2yj sin^ Ok 

Zk 

) 

- O ln(/i^) 

(4.63) 

with ti = ln(a:j), tj = ln{yj) and Zk — Xi + yj — 2y^x^cosOk- No is the number 

of quadrature points we choose for the angular integration. We now have a system 

of NM + Nz non-linear equations to determine the NM CLj expansion coefficients of 

M{t) and the Nz bj expansion coefficients of Zii{t,iJ?). The vector function to 

be zeroed and defined as 

^ — . . . , Fl.AfM) ^2,1) • • • ) F2,Nz) ) (4.64) 

has the explicit components 

M{ti) 
ZR{U) 27r2^tt '^'Zn{tj)y] + M^t,) 

l,...,7VAf(4.65) 
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F2, 
1 

1 

y 
2n^^,'"'Zn{t,)y] + M^t,) \x, 

(4.66) 

ez{ti,tj)-x ^ fi') , i = l,...,Nz, 

where Nji — NRI + Nii2 is the total number of integration points used in the Gauss 

formula to compute the split radial integrals. We now have to define the Jacobian 

J in order to implement the Newton iteration. It is 

Jij — 

daj dbj 

daj dbj 

\ 

(4.67) 

with exphcit expressions 

Ka,b) = 
d (M{t,) 3 ^ ^ M j t j ) y 

3 ^ y]ZR{t,) [y] - M\t,)) [T,(r,) - i ^ ^ , 

(4.68) 

{y]^M^{t,)y 

dbj 
(a,b) 

3 ^ ^ M i t , ) yl d_ ( Mjtj) 

dbj [Zn{t,) 27r2 fr{ ^'Znitj) y] - f M\tj) 

Mjtj) [Tjjsi) - 1̂ 1,-

0M( i i , ^ j ) 

3 ^ y][T,{r,)-lS,j]M{t,) 
— L ' 

{y] + MHtj)y 3) > (4.69) 

•-(a,b) = 
daj \ZR{ti) 

1 1 ^« 
- Z 2 ( / . ^ A ^ ) - ^ E ^ 

1 y''jQz{tutj)\ 

27r^x,^,"'^Zn{t,)y] + M^{t,) 
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NR 
(4.70) 

(a,b) 
d 

Z2{f^\A') 
1 ^ 1 y]QziU,t,) 

2 7 r 2 x , ; ^ ^ Z ; ^ ( t , ) y | + M2(f, .) 

ZUt^) 

ez{ti,tj). (4.71) 

The analytical computation of this Jacobian is done using the non-subtracted expres­

sion still involving the renormalisation function Z2(/x^, A^), which does not depend 

on X nor does i t involve the integration over y. 

The Newton vector increment 5x satisfies the following matrix equation 

J (a„,b„)(^x = F ( a „ , b „ ) (4.72) 

where n is the number of the Newton iteration. Explicitly we have 

^ g F i , ( a „ , b „ ) ^ ^ F i , ( a „ , b „ ) F u ^ , < M 
2^ ^ (<^a,n+l)j + 2^ ^ (< f̂a,n+l)i = Fi , i (a„,b„) , ^ < NM, dttj 

(4.73) 

^ a F , , ( a „ , b „ ) . , ^ a F 2 , ( a „ , b „ ) p U ^ ^ ^ M 
E —{Oa,n+l)j + 2^ ^7 {Ob,n+l)j = ^2,i(a„,b„), ^ < A^^. 
j=l ^ " j j = l <̂ 0j 

(4.74) 

The solution of this linear system gives the Newton increment 5x = (5a,n+i, (^b.n+i) 

which yields the new approximation by the following Newton relations 

^n+l — ^a,n+l) 

(4.75) 

b„+i — b„ — Sbn +1 
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To start with, we have to choose a guess for the function M and ZR, which provides 

us with ao and bo- In the program, we choose NM = Nz = 50. The Gauss-Legendre 

quadrature are performed with Ne = 32 angular points and NR = 120 + 120 radial 

points. In order to make comparisons with previous work, we choose the subtraction 

point fj? to be our cut-off A ^ , i.e. 

(4.76) 

For Np = 1, we find the critical coupling auc = Q;i^c(A^) to be 

auc = 2.084312 (4.77) 

We show in Fig. (4.1) and Fig. (4.2) the typical behaviour for the mass function 

M(p^) and the dressing function ZR{P'^,[J?) renormalised at /j? — A? for Nf — 1 

and for three different values of the coupling q;(A^). We also plot in Fig. (4.3) the 

infrared mass M(0, Nf = I) as a function of the bare coupling au{A'^). 
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Figure 4 .1: The Mass function M{p'^,Nf = 1) renormalised at /x^ = for ai^(A^) 
2.08450,2.08500,2.08750 
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Figure 4 . 2 : The dressing function Zn{p'^,y^,Nf = 1) renormalised at /x̂  = for auiA^) 
2.08450,2.08500, 2.08750 
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Figure 4 . 3 : T h e infrared mass M ( 0 , TV/ = 1) as a function of the bare couphng Q U ( A ^ ) 



Numerical Solution of the QED System in the MR Scheme 76 

In the bare vertex approximation, the non-renormahsed system ( M , Z) has been 
solved and the results were quoted in the first chapter. We recall that in this 
approximation, the critical coupling was 

auc = 1.67280. (4.78) 

Compared to our value auc — 2.084312, we see that the renormalisation plus 

the introduction of a scheme that respects Multiphcative Renormalisability has in­

creased the critical coupling by 25 %. Surprisingly, this value of the critical cou­

pling Eq. (4.77) has been also found by Bloch in [3], where he solved the system 

{M,aie,Z = 1) in the bare vertex approximation and where the integrals were 

regularised by a cut-off A^. 

We have also solved the system ( M , Z) at one loop for a number of flavour Nf = 2. 

The critical couphng we find is 

auc(A^ Nf = 2) = 2.99142, (4.79) 

to be compared to [3 

auc = 2.02025, (4.80) 

in the bare vertex approximation of Bloch [3]. Here again, our value Eq. (4.79) 

is the same as the one found in [3] for the {M,ali,Z = 1) in the bare vertex 

approximation and where the integrals were regularised by a cut-off A^. 

In Fig. (4.4) and Fig. (4.5) the typical behaviour for the mass function M(p^) and 

the dressing function ZR{P'^,/j,'^) renormalised at fi^ = A^ for TV/ = 2 is shown. We 

also plot in Fig. (4.6) the infrared mass M(0, Nf = 2) as a function of the bare 

coupling Q:i^(A^). 

In the next section we solve the full system ( M , Zn^a) and find out what happens 

to the critical coupling. 
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Figure 4.4: The Mass function M{p'^,Nf = 2) renormahsed at ij? = for QI«(A^ 
2.99143,2.99150,2.99160 

1.4 

1.35 

1.3 

1.25 

1.2 
N 

1.15 

1.1 

1.05 

10 10'' 

a = 2.99150 
0 = 2.99160 
0 = 2.99170 

Figure 4.5: T h e dressing function /x ,̂ iV/ = 2) renormahsed at fi^ = A^ for au{A'^) 
2.99143,2.99150,2.99160 
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2.991 2.992 2. 2999 3 

Figure 4.6: T h e infrared mass M(0, Nf = 2)as a function of the bare coupling aie{A'^) 

4.4 The System (M, ZR, a) in the MR Scheme 

For completeness we write the ful l system of integral equations involving the three 

functions ( M , Zji and a) 

M{x) 
ZR{x,fl^) 27r2 

f M l M{y) y 
^i^)y + MHy) I de sin^ e aiz) 2 

—^ - X ^ fl^ 

(4.81) 

ZR{x,fi^) 
= 1-^ 

1 

fi^)y + M^{y) 

X J de sin^ e I a{z) 
ZyJyJxcQse 2ysm^e 

- a; o //U , (4.82) 

1 4A^ 
+ 

Q{X) a{fx^) 3TV^ J ^t/ + S2(y) 
y 

I X / de 
sin^ e 

x{z + i:^z)) 
2/(1 - 4cos^6') + 3 v ^ c o s ^ - X ^ fj,^ j . 

(4.83) 
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As usual, the equation for a has been subtracted by its value at x — fj? to remove the 
renormalisation factor Zsdi'^, A'^). The angular integrals of the equation for M and 
ZR only involve the coupling function a{z) and we thus use the same extrapolation 
as the one we used in the last section, i.e. 

a{x)=aie^), x < e^ (4 .84) 

a{x) = a(A2), X > k \ (4 .85) 

The angular integral of the integral equations for the coupling a{x) involves the 

mass function M{z). We thus also have to extrapolate the mass function outside its 

definition range. In order to keep the continuity of the mass function,which is vital 

to ensure proper numerical behaviour, we will use the following extrapolation that 

assumes a decay of the mass function for high momentum 

M{x) = M{6^), x < e 2 , (4 .86) 

M{x) = M ( A 2 ) — , X > A\ (4 .87) 
X 

In this way, the mass function is no longer smooth at x = A^, i.e. the derivative is 

not continuous at x = A^ but the function M ( x ) retains its continuity. In practice, 

the mciss function at A^ = 10^° is still not very small and the use of this extrapola­

tion amounts to neglecting the mass function for high momentum, which causes an 

infrared instability for the coupling function. In order to avoid a rapid fall of the 

couphng function in the infrared, we have to be careful with the high momentum 

behaviour of the mass function. In practice we will just freeze the mass function to 

its value at A^ for above the cut-off A^. 

The best way to solve this system is to apply the global Newton method, we have 

used for the one loop approximation. Unfortunately, the presence of the coupling 

function a in the angular integrals with argument z, which can go outside the range 

of momentum poses a problem to define the Jacobian, i.e. the derivative with re­

spect to the expansion coefficients Cj of the coupling function a. This derivative is 

well defined for x < A^, but is ill-defined when the argument of a is the variable z. 
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Moreover, the application of the Newton method will require a recalculation of the 
radial as well as the angular integrals at each iteration. If we choose 50 expansion 
coefficients, we will have to solve a 150 x 150 system at each iteration with the 
task of recomputing the coefficients of this system. This is why we say that the 
non-hnear system is almost, but not quite algebraic. I t would have been algebraic 
if the coefficients of the Jacobian equation J.5x = F had been constants. We thus 
have to look for another method to solve the ful l system, trying to keep the advan­
tages of the Newton method. If we fix the coupling function a{x), then by using 
the global Newton method, we can solve the subsystem ( M , ZR) efficiently. The 
solutions (M„g„, ZR^„^„) can thus be used to recompute the new coupling function 
cVnew using the integral equation Eq. (4.83). This new couphng function is reused 
to solve the subsystem ( M , ZR) to produce another approximation to the coupling 
function. We repeat this iteration until we achieve convergence. In order to imple­
ment this procedure, we thus need to expand the three functions M , ZR and a on 
the Chebyshev basis using the t logarithmic momentum scale. We write 

M ( t ) = ^ ' a , T , _ i ( 5 ) , (4.88) 

Z{t) = Y.'bjTj.,{s), (4.89) 

a(t) = g'c,T,_i(.) (4.90) 

with 
S = ^ 2 ( ^ - ^ a . + ^ n . i n ) 

' 'max • 'min 

We introduce the Gauss-Legendre quadrature to rewrite the integrals as sums, i.e 

1 ffi w,y]ZR{tj) f 1 

ZRiti) 
= 1 + 

(4.93) 
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4T = 4 T , ^ ' ^ t ^ ^ A - e . ( u , t , ) - . ^ A , , = i N^. 
a{ti) a(yu2) 3n^ p { y j + ^^{y) [xi J 

(4.94) 

with the angular integrals 9 ^ and 6^ of Eq. (4.62-4.63). The angular integral Qa 

is 

Qa{U,tj) = Y.Wk sin^ 9k [yj ( l - 4 coŝ  Ok) + 3^/x^cos Ok] , (4.95) 

with Zk = Xi -\- yj — 2^Xiyj cos Qk and A^̂  the number of angular points for the 

Gauss-Legendre quadrature rule. We now have defined all the quantities we needed. 

We will thus start our procedure by choosing a starting guess ao for the coupling 

function a{x^ that we choose to be the one loop expression Eq. (4.42). Using this one 

loop expression we solve the subsystem (M^ZR), and use the solution to compute 

the new coupling function using its definition of Eq. (4.94). we write 

a{t,) (4.96) 

and use this expression to compute the new expansion coefficients Cj using the for­

mula of Eq. (3.14). Once the new Cj are determined, we recompute the coupling 

function a using Clenshaw's recurrence formula and solve the subsystem ( M , Z^) , 

with the extrapolated new coupling function. We stop the iteration when the ex­

pansion coefficients Cj have reached a relative accuracy of lO""*. For Nf = 1 and 

Nf = 2, the critical couplings Q!c(A^) are the same as the ones in the one loop 

approximation. In order to compare the one loop approximation with the full QED 

case, we plot for Nf = 1 in Fig. (4.7) the mass function M(p^) for the full QED case 

as well as the mass function Mu{p^) in the one loop approximation. We repeat the 

same procedure in Fig. (4.8) for the renormalisation function ZR and in Fig. (4.9) 

for the coupling constant. Lastly, we plot in Fig. (4.10), the infrared mass M(0) for 

ful l QED as well as its one loop expression for comparison. 

The coupling constant a{q^) develops a plateau as soon as < 10^. We recall that 

the one loop expression for the coupling constant an contains a term log(A^/p^) 
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which shows that it has no infrared mass cut-off. The equation for the coupling 

constant a{q'^) involves two fermion propagators and therefore we should expect 

that i t should behave according to log(j5^ - I - M ^ ) , where M is the generated mass. 

When M is much bigger than the momentum p^, it becomes a constant explaining 

the appearance of the plateau. If we look at Fig. (4.7), we see that the function 

M ( p 2 ) starts dropping around — 10^, which is consistent with the fact that the 

integral equation for M involves a term 1/ (y + M'^{y)). A look at the behaviour of 

the couphng function shows that the plateau occurs around the same value of p^, 

i.e. when the mass function starts to dominate. 

lull QED, a=2.0860 
one loop QED. a=2.0850 

lull QED, a=2.0844 
one loop QED, a=2.0844 

a 30 

F i g u r e 4.7: T h e Mass function M{p'^,Nf = 1) renormahsed at fj? = for full QED and 
compared to its one loop expression at a(A^) = 2.08440, 2.08500 

4.5 The Non-Local Gauge Fixing Method 

In this section, we present a method to reduce the number of integral equations to 

be solved for the fermion propagator. The following material is presented to connect 

with other studies and therefore no numerical calculations will be attempted. The 
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Figure 4.8: The dressing function ZR{p'^,n'^,Nf = 1) renormalised at / i^ = for fidl QED and 
compared to its one loop expression at a(A-^) = 2.08440, 2.08500 
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Figure 4.9: T h e coupUng function a{q'^) for Nf = 1 and its one loop expression 
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Figure 4.10: The infrared mass M(0) for full QED as a function of a(A2) for Nj = 1 and its 
one loop expression 

non-local gauge fixing method is based on the observation that the gauge fixing 

parameter ^o, usually thought of as a number can be generalised to a function 

dependent on the momentum z = {p — g)^, i.e. 

6 = ^o(^). (4.97) 

It is then possible to choose the specific form of ^o{z) so as to make the wave 

function factor Z}i{p^,iJ?) = Z2(/^^,A^), which is equivalent to setting the bare 

dressing function A^) to unity, i.e. Z(j9^,A^) = 1. 

In the bare vertex approximation the integral equations satisfied by Z;^(p^,/x^) and 

M{p^) are 

1 . a{A'] f^^^ yZiy) 
= 1 f d y 

Z{x) 2IT'^X 

2xy sin^ 9 

(4.98) 

Sy^COS^ 

{y + x)y/yxcos6 — 2yx 
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(4.100) 

In the MR scheme, we were able to write these equations so as to make the coupUng 

fmiction enter the angular integral. This was done in Landau gauge and was thus 

straightforward. If we make the gauge fixing parameter dependent on z in the 

following way 

^o = U^) = az)Giz), (4.101) 

then we can factor out the photon dressing function G{z) and rewrite the system as 

follows 

The integral kernel Kz is given by 

Kz{x,y) = r d9 sin^Oaiz) 
Jo 

.104) 

which is obtained by using 

We first note that 

x + y = z — 2y/xycos9, 

2xy = 2xy coŝ  9 + 2xy sin^ 9. 

sm^9cos9 = ^^(sm^9), (4.105) 
3d9 

and rewrite Kz as 

Kzix,y) = -y^^ d9sin'9^^{[3-^{z)]a{z)^^ 

-2 r d9 sin^ ̂  [1 - ^{z)] a{z)^, (4.106) 
Jo z^ 

after integrating the cos term by parts. 
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The 6 differentiation d/d9 is replaced by a differentiation witl i respect to tfie variable 
z since 

A=2Vrys,nel. (4.107) 

which allows us to write 

Kz{x,y) = -2xy T dO sin'^ 6 
Jo ^37 1 ( 3 - a ^ ) ) ^ (4.108) 

3dz 

The condition Kz = 0 can be guaranteed if ^{z) satisfies the differential equation 

\ ^ h - ( M f - ^ ] H i ' i ( ^ ) ) ^ = 0 ^ (4.109) 
O UZ \ Z I z 

The solution of Eq. (4.109) is [15 

i{z) = ——J^dvv^--a{v), (4.110) 
a[z)z^ Jo dv 

where the integration constant is taken so as to make ^{z) regular at 2: = 0. 

Using the non-local gauge fixing parameter Eq. (4.110), the dressing function Z{x) 

can be set unity and we are left with only one equation for the mass function M{x), 

i.e. 
Mix) 1 r , yZ(y)M(y) , , . 

with 

KM{X, y)^ [d9 — a ( z ) [3 + ^{z)] , (4.112) 
J z 

where ^{z) is given by its representation Eq. (4.110). 

The application of the non-local gauge technique to the MR scheme is straightfor­

ward. The equations are the same as the one in the ladder approximations, but with 

the amendments required to satisfy multiphcative renormahsation. The non-local 

gauge makes the dressing function ZR{X,H'^) equal the renormalisation constant 

Z^iy?^^)-, which shows that ^^ (x , ^^ ) is just a constant dependent on \j?. The 

QED system in the non-local gauge will thus be 
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1 1 4A^ 

a{x) 
y 

37r2 

XI de 
Z + S2(^) [x 

( l -4cos2^) +3J-cose 

/ dvv'^-^a(v). 
Jo dv 

(4.114) 

X ^ ^1 ) , 

(4.115) 
a{z)z'^ 

despite the interest of this method, we will not dwell on it here numerically since 

we are more interested in the prediction of the MR scheme for the quark equation 

in QCD, which is the topic of the next chapter. 
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Chapter 5 

A New Truncation Scheme for the 
Quark Equation in QCD 

We propose in this chapter a new truncation scheme for the quark equation in QCD. 

The truncation preserves Multiplicative Renormalisability as in the MR scheme and 

assumes a non-perturbative cancellation mechanism for the quark-gluon vertex that 

is different from but similar to the one in the MR scheme. 

5.1 The Quark Equation 

We start from the SD equation for the quark propagator in Euchdean QCD 

[ S f i p T ' = [5?(p)]"' - C^Po(A^) / ( 0 j7 .<5 / (9 ) r - (p ,g , - r )D ' ^ ' ^ ( r ) , (5.1) 

where Bp and 5° are the full and bare quark propagators respectively, F *̂ is the ful l 

quark-gluon vertex, Cp the colour factor with Cp = 4/3 for Nc = 3, the bare 

coupling constant and r = p - q. 

The most general expressions for the ful l and bare quark propagators, the gluon and 

ghost propagators are 

z (p^A^) 

89 
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p>^p^\F{p\K') , ^p^p 

p-
(5.3) 

(5.4) 

We have made explicit the dependence on the cut-off A^ to indicate possible diver­

gences. 

We use these expressions and derive the following relations for the mass function 

M(p^) and the dressing function Z{p'^) 

(5.5) 

Z(p2,A2) + M(g2) 

(5.6) 

with the kernels Uz and UM both depending on the momenta p^, g^, r^, A^ and 

given by 

1 
Uz{p\q\T\k') Tr 

X F(r2,A2) r2 
(5.7) 

t / M ( p ^ g ^ r ^ A ^ ) = — T V 7M 1 - ^ 

X 

M(g2) 
Tl'{p,q,-r,A^) 

(5.8) 
F(r2,A2) r2 

As usual, the A^ dependence of the integrals is cancelled by the A^ dependence of 

the bare mass mo(A^), such that the mass function is finite and independent of A^. 

5.1.1 Renormalisation and truncation 

These equations involve bare quantities only and are multiplicatively renormalised 

by writing 

Z{p\A') = Z^{^i\A')ZR{p\ii'), (5.9) 
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F(p^A2) = z3(/i^A^)Ffi(p^/x2), (5.10) 

G{p\A') = UIX\K')GR{P\^?), (5.11) 

, z y ^ ( / i ^ A ^ ) z , ( ^ ^ A ^ ) 
5(m) = — z , , ( y u ^ A ^ ) — ^ ' - ' ' ^ 

Zi( /X2,A2) 

7 3 / 2 / 2 A2\ 

where the dependence on the ultra-violet cut-off A^ is traded by a dependence on the 

arbitrary momentum scale ix^. Zif^Zi and Zi are the quark-gluon, triple gluon and 

ghost gluon vertex renormalisation constants respectively. Also Z2, Z3 and Z3 are 

the quark, gluon and ghost field renormalisation constants respectively. Because of 

gauge invariance, the couphng is universal and can be written as the three different 

expressions Eq. (5.12-5.14). The renormalised equations for the quark propagator 

are thus 

_ L _ = z . ^ % a ( , ^ ) Z l , j i U Z n i f ) ^ ^ ^ U . , ,5.15) 

where we have not indicated the dependence on the momenta scale ji^ and A^ ex­

plicitly. The subscript R denotes renormalised quantities and thus imphes a / i ^ 

dependence. The renormalised functions are all Zi/^2(^^, A^). Because of the 

universality of the coupling, we can rewrite Zif as a function of Z2 

Zrf = ^ Z , . (5.17) 

This relation is the extension of the relation Zi = Z2 that we have in QED. In 

QED, because of the equality of Zi and Z2, we can factor out Z2 and get rid of all 

renormalisation constants. We propose to do the same here and introduce the factor 

Z^^ as well as a factor Z2 in the integral by replacing them by their definition in 
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Eq. (5.9-5.11) and choose to apply it for the momentum r^. The equation for M/ZR 

becomes 

We now note as previously that the product 

(5.19) 

is independent of / i ^ by rewriting it as 

a{q') = a{k')F{q\K')G\q\K') (5.20) 

We thus fix ir = r and use the renormalisation conditions 

FR{q\q') = 1, 

GR{q\q') = 1, 

(5.21) 

(5.22) 

to write the definite expressions 

^ - 7 + / A Q(r2) 

g2 + M(g2) [G2(r2_A2) 
t / z ( p ^ g ^ r ^ A ^ ) (5.23) 

mo{A')Z2 -
47r3 / A 

M(g2)Q(r2) 
q^ + M{q^) 

Z{q\h') 
G2(r2,A2) 

UM{p\q\r\K') 

(5.24) 

Though up to now we have not introduced any approximation, it is clear that we 

will assume that the ful l quark-gluon vertex receives a G'^{r'^)/Z{q^) correction and 

make the replacement 

G'2(r2,A2) 

Z(g2,A2) 

UM{p\q\r\k') -> UUp\q'y), 

Uz{p\q\r\k') ^ UW,q\r% 

(5.25) 

(5.26) 
G2(r2,A2) 

where the subscript 0 indicates that we use bare quantities in the evaluation of the 

kernels UM,Z-
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We now introduce the notation 

Cp r . air-") 

S M ( P ' ) 
CF_ 
47r3 

92 + M(92) 

Z{q\K^) 

Uz{p\q\r\K') 

(5.27) 

G'2(r2,A2) 
UM{p\q\r\K') 

and notice that neither nor depend on the momentum scale //^ or on the 

renormalisation constant Z2(yL/̂ , A^). The only dependence is through Z2(/x^, A^) 

and it is straightforward to check that the system Eq. (5.23-5.24) preserves multi­

phcative renormalisation. By multiplying both equations in the system Eq. (5.23-

5.24) by the factor Z^{v'^, jj?')^ i t becomes clear after noting that 

ZR{iy^,IJ.^) 

Z2{u',A') = ZH(^^/x^)Z2(/.^A2), 

that ZRIP^, U^) and M(p2) is a solution of the system if the pair {Zfi{p^, ix^), M{p^)) 

is a solution. We rewrite the system of equations in a more compact form as 

M(p2) 
Z2(yu^A2) ( m o - S M ( p ' ) ) , 

(5.28) 

(5.29) 

which can, after elimination of the factor Z2 from the first equation, be rearranged 

as 

M(p^) = mo- (M(p2) s^(p2) + SM(p')) 

(5.30) 

(5.31) 

If we look at Eq. (5.31), we can see that it does not depend in any way on / i ^ . In 

other treatment, such as the MR scheme, the mass mo is multiplied by a factor 

Z2(/i2,A2), which cancels the //^ dependence of the integral. In our scheme, we 

were able to get rid of the / i ^ dependence for the mass function M{p'^) and only 
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left an explicit dependence on Z^ip?^ A2) through the equation for Zji. To eliminate 
Z2(//^,A2) from Eq. (5 .30) , we proceed as usual by subtracting at the momentum 
a; = //2 and obtain 

ZR{V\II^) = l - Z « ( p ^ / x ^ ) S ^ ( / ) + Ez (^2 ) , (5 .32) 

M(p2) = mo - (M(p2 )Ez (p ' ) + E M ( P ' ) ) . (5 .33) 

5.1.2 Model coupling 

The system of equations Eq. (5 .32-5.33) is the basis of study of chiral symmetry 

breaking in QCD, once we have specified the form of the coupling OL{(^). The gluon 

propagator satisfies its own SD equation and should be incorporated here to have a 

complete system. For the moment, this task is too ambitious and so we resort to a 

modelling of the coupling function. For the coupling function we use the following 

form, first introduced in [4 

A-K ( \ 1 
CQOCQ + — (5 .34) 

where t = /K^^^j^axid Po = {11 Nc — 2Nf)/3. The first term in the square bracket is 

responsible for the infrared fixed point of the couphng function, which is an expected 

feature of the coupling function [16, 17, 18, 19] , and the second term reproduces 

the correct perturbative behaviour. The factor l/{t — 1) is introduced to subtract 

the simple pole at q"^ = A Q ^ ^ [21] to make the couphng analytic for all spacelike 

momenta. I f we use the coupling function which has no pole in perturbation theory 

(PT), we obtain the so called analytical perturbation theory (APT), which converges 

more rapidly than the usual perturbation theory [22] . We will fix the value of QQ 

to 2.6, which is believed to be a good approximation of the IR fixed point. The 

value Co is for the moment fixed to 1 5 and Nj = 1. In a coming section treating 

the infrared behaviour of the gluon and ghost propagators, we will give more details 

about how to find the values of the parameter aQ. The coupling function with these 
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parameters is shown in Fig. (5.1) with the one loop expression to show the cross 

over from perturbative behaviour to IR fixed point 

model 
one loop 

0.0001 0.001 0.01 

P [A QCDI 

100 1000 10000 

Figure 5.1: T h e model coupl ing f u n c t i o n a(g^) i n uni ts of A Q ^ D w i t h QQ = 2.6 and CQ = 15 

As we have already noted neither EM(P^) nor Hzip^) depends on the wave function 

renormalisation Zji{p'^,fj?), so in effect the system of integral equations is just an 

equation for the mass function M(p^) alone 

M{p') 1 + Ez(p') = m o - E M ( p ' ) . (5.35) 

Once we have solved Eq. (5.35), we can compute the wave function renormalisation 

Z/j(p^,/i^) using the non-subtracted equation 

1 
= Z,{tj',A') l + Ezip') 

ZR{p\fi') 

The normalisation factor Z2( / i^ , A^) will be removed by fixing 

Z n i f i ^ f i ' ) ^ ! . 

(5.36) 

(5.37) 
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5.1.3 Chiral case 

We first solve the equation Eq. (5.35) in the chiral case for the parameters we have 

quoted so as to be able to compare with the results of J.Bloch [4], whose truncation 

scheme assumes a G^/Z^ cancellation mechanism for the full quark-gluon vertex. 

The evolution of M{x) and Zii{x,/j,'^) for 10"'* < x < 10'^ in units of A"^^^ is shown 

in Fig. (5.2) and Fig. (5.3). 

Figure 5.2: T h e mass func t i on M{p'^) i n u n i t of /j? = ^QCO w i t h ao = 2.6 and CQ = 15 

The wave function renormalisation ZR{X,IJ.'^) is renormahsed at A Q ^ Q . For these 

values of the parameters CQ and ao, we obtain a non-vanishing IR mass 

M ( 0 ) = 0 . 5 7 5 A Q C D , (5.38) 

which is to be compared to 

M B ( 0 ) = 1.057AgcD, (5.39) 

in the calculation of [4], where the generated mass M B ( 0 ) is of the order of the 

extension of the infrared plateau of the mass function which happens to be the same 
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1.35 

1.25 

1.15 

1.05 

0.95 

P'IA'QCDI 

Figure 5.3: T h e wave f u n c t i o n renormalisat ion Z[i{p'^,fj?) renormalised at /j? = Aq Q C D 

as the plateau of the coupling function a{q'^). In our case, the generated mass is 

around half of the extension of the infrared plateau of the coupling a{q'^) but is 

the same as the plateau of the mass function . Our infrared mass is about half the 

one calculated in [4] and therefore the cancellation mechanism assumed for the ful l 

quark-gluon vertex is relevant to the infrared behaviour of the mass function M ( p 2 ) . 

In real QCD, we do not know which cancellation mechanism occurs or i f any at all 

really occurs and more studies in this direction are needed. As already mentioned 

previously, it has been shown by Mandelstam [10], that perturbative loop correc­

tions to the propagator introduce a factor G'^/Z'^. This cancellation mechanism is 

different from the one we assumed but i t was shown to hold in perturbation theory. 

Nonperturbatively, the cancellation mechanism might be more subtle. 

5.1.4 Sensitivity to Q;O and CQ 

In this section, we study the sensitivity of the infrared mass M(0) to the two pa­

rameters ao and CQ. The parameter CQ fixes the behaviour of the coupling function 
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a(g^) at intermediate momenta as shown in Fig. (5 .4 ) . In theory, this behaviour 

can only be known once we have solved the system of SD equations satisfied by the 

gluon, ghost and quark propagators. 

one-loop 

Co=40 

1000 

[A^QCD] 

Figure 5.4: T h e coupl ing f u n c t i o n a{q'^) for di f ferent CQ'S w i t h QO = 2 . 6 

In table 5 . 1 , we give the value of M ( 0 ) for diflFerent values of CQ and compared to 

the calculation of [4], where as we have already mentioned the author assumed 

a G^/Z^ cancellation mechanism for the quark-gluon vertex. His equation for the 

mass function M B ( P ^ ) even though independent of //^ involves the scale p? unlike 

our scheme. 

Co M B ( 0 ) [4] M ( 0 ) 

5 0 .824 0.444 

1 0 0 .964 0.522 

1 5 1.057 0.575 

20 1.129 0 .615 

40 1.325 0.725 

Table 5 . 1 : T h e in f r a red mass M ( 0 ) i n units of A Q C D w i t h ao = 2 . 6 for different CQ and compared 
t o [ 4 ] 
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We now fix CQ = 1 5 and plot in Fig. (5 .5) the infrared mass M ( 0 ) as a function of 

the infrared fixed point ao- In table 5.2, we show some values and compare them 

to [4]. In our truncation scheme, the critical value a^ '^ for the appearance of an 

infrared mass is 

1.1, (5 .40) 

whereas the value quoted in [4] is Q;Q"' 0.9. For the same value of QQ, we are closer 

to our critical value and therefore it is normal to find a smaller infrared mass M ( 0 ) . 

ao M , ( 0 ) [4] M ( 0 ) 
1 0.028 0.000 

1.8 0.548 0.257 

2.6 1.057 0.575 

3.4 1.494 0.848 

4.2 1.874 1.086 

Table 5 .2 : T h e in f ra red mass M ( 0 ) i n uni ts of A Q C D w i t h CQ = 15 for diflFerent ao and compared 
to [4] 

8 
< 

Figure 5.5: The in f r a red mass Af(0) i n uni ts of A Q C D as a f u n c t i o n of QQ 
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5.1.5 Massive case 

We now extend our study to the massive case. We just have to fix the bare mass mo 

to a non-zero value. We study the case mo = 0 .0001 ,0 .001 , 0 . 0 1 , 0.1 in units of AQCD 

with Nf = 1 and where ZR{P'^) is renormahsed at ji^ = 10^ and the case mo = 1 in 

units of AQCD , with Nj — 1,3 because for such an ultraviolet mass it is sensible to 

consider that we have more than one flavour propagating in the loop correction to 

the gluon propagator. 

We plot in Fig. (5.6) and Fig. (5.7), the behaviour of the mass function M(p^) and 

ZR{P^) respectively for mo = 0 . 0001 ,0 .001 ,0 .01 ,0 .1 and in Fig. (5.8) and Fig. (5.9) 

for mo = 1. 

mo =10 
mo= l o r 
mo =10-^ 
mo =10-' 

Figure 5.6: The mass function M{p'^,Nf = 1) for non zero bare mass mo 
10-^ 10-3,10-2,10-1 

5.2 The Gluon-Ghost Sector 

In this section, we apply the previous method to the gluon-ghost sector of QCD. 

We recall that our goal is to factor out the renormalisation functions Z3 and Z3 of 
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mo = 10 
mo=10_ 
nno= 0 0.95 h 

0.9 h 

^ 0.85 

P [A QCDI 

Figure 5.7: The renormalisation function Zji{p'^,Nf = 1) for non zero bare mass mo 
10-", 1 0 - ^ 1 0 - ^ 10-1 renormalised at ji'^ = 10^ 

ci 
8 

< 

mo=1,N,= 1 

[A'QCDI 

Figure 5.8: T h e mass function M(p^, iV/ = 1, 3) for non zero bare mass mo = 1 
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mo= 1, N, = 3 

P^IA^QCDI 

Figure 5.9: The renormalisation function ZR{p'^,Nf = 1,3) for non zero bare mass mo = 1 
renormalised at /x^ = 10^° 

the gluon and ghost propagators, respectively. At the same time, we have seen that 

the running coupUng function a{q'^) appears inside the integrals after eliminating 

the Q(//^) term that arises when we renormalise the coupling function. We shall do 

the same here and move the running coupling function a{q'^) inside the integral. The 

only / i ^ dependence left will be through the renormalisation functions Z3, Z3 and 

the dressing functions FR(P^, /x^) and GH(P^, /^^) of the gluon and ghost propagators, 

respectively. 

5.2.1 The equations 

In Minkowskian formulation, the QCD Schwinger-Dyson equations for the gluon-

ghost sector, neglecting the quark contribution and four-gluon vertex, are 

[A(p)]- A°(p) ] " ' - N^glJ -^,Gl{p,q)A{q)GM.P)D'"'ir), (5.41) 
{2n) 
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[ D M ] - ' = [DUP)]"' (5.42) 

-i-mcOl I (0G ; ( - r , q)A{q)G^{q, - r ) A ( - r ) 

where is the bare coupHng, D^,, the gluon propagator, A the ghost propagator, 

r̂ ^̂  the triple-gluon vertex, the ghost-gluon vertex, the superscript 0 indicating 

bare quantities and r = p — q. 

The general expressions for the ful l gluon and ghost propagators in a covariant gauge 

^ can be written as 

p^ f + 
(5.43) 

A(p) = (5.44) 

which is the Minkowski representation of Eq. (5.3-5.4). 

As in QED, we introduce the projector defined as 

V^u = g^^u - 4 ^ , (5.45) 

to avoid spurious quadratic divergence. In order to find equations for F(p^) and 

G(p^), we apply the projector V^^ to the gluon equation Eq. (5.41) and we multiply 

the ghost equation Eq. (5.41) by the factor i/p^. After performing a Wick rotation 

and identifying x ^ p"^,y = q'^, z = r'^, we obtain [34 

1 . NrQ^, M 
= 1 / r de sin' 9 ydy [M{x, y, z) G{y)G{z) 

Jo Jo F{x) 87r3 

+Q{x,y,z)F{y)Fiz)] , (5.46) 

1 ^ ^_Nc9'o r rdesin'eydyT{x,y,z)G{y)F{z). (5.47) 
Jo Jo G{x) ^ 87r3 

The three kernels M,Q,T depends on the full and bare triple-gluon and ghost-gluon 

vertices and are given by [34] 

M{p',q'y) = -l—V'^''{p)Gli-T,q)GM,-r), (5.48) op q r 
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1 

Qi/3: 

^""(p) (-^' ' 9' 0 (P^ (5-49) 

2 ^ " 2 ^ ^ 

r2F(r2) 

p2 g2 2̂ 
(5.50) 

•r2F(r2) 

with 5 f (g) = g'^'' - q^q^/q'. 

We now introduce the renormalised dressing functions FR and Gn as well as the 

running coupling function a{fj,'^) from Eq. (5.10-5.12) to obtain [34 

GR[X) ZTT̂  JO JO 

' = Z 3 ( . ^ A V ^^^^^^^ 
FR{X) 27r2 

/ r dOsin^e ydy 
Jo Jo 

(5.52) 

Zl^(/x^ V)M(a^, y, z)Gniy)GRiz) + Zfifi^ A')Q{x, y, z)Fn{y)Fniz) 

We first consider the ghost equation Eq. (5.51). As we wish to introduce the running 

couphng a{p^) in the integrand, we now make use of the //^ independent function 

a{q^) of Eq. (5.20) and obtain 

^ - ^ 3 ( / . , A ) - ^ Jo Jo 
dO sir? 6 ydy a{z)T{x, y, z) Gniy) 

We now use G = Z^GR and obtain 

1 
GR{X) 

1 -
27r2 / /' 

Jo Jo 

dOsiu'e ydy ^^^T{x,y,z)aiz) 

(5.53) 

(5.54) 

To treat the gluon equation Eq. (5.52), we first use 

Z , ( / . ^A^) = | 4 ^ Z l ( / x ^ A ^ ) , (5.55) 
^3(A^^A2) 

which can be derived from the universality relations Eq. (5.13-5.14). We also choose 

to introduce the coupling function Q(Z) in the integrand as we did for the ghost equa­

tion. After introducing bare dressing functions F and G through their definitions. 
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we obtain 

FR{X) 
1 - ^ / r de sin^ e ydy 

Jo Jo 2TT'^ JO JO 

(5.56) 

From the two equations Eq. (5.56-5.54), it is clear we will assume the following 

non-perturbative cancellation mechanism 

^ ^ T ( p ^ g ^ r ^ A ^ ) r^ip^q^y), (5.57) 

| | f ^ Q ( p ^ g ^ r ^ A ^ ) ^ Q°(p^g^r^) , (5.58) 

M(p^9^r^A^) ^ M v , 9 ^ ^ ^ ) > (5.59) G(r2,A2)F(r2,A2)-

which amounts to assume that the ghost gluon vertex Gy{q,p) receives a non-

perturbative G^(r^)/G(g^) correction (in the kernel T) and that the triple-gluon ver­

tex r^^^(p, —r, —q) receives a nonperturbative C^ir"^)/F[q^) correction (in the kernel 

Q) and that the ghost vertex G^(Q', —r) receives a nonperturbative G(r^)F(r^) /G(g^) 

correction (in the kernel M). We have kept the dependence on the momenta p, g,r 

explicit since it is not obvious how the vertex gets corrected. We recall that in the 

treatment of the quark equation we assumed that the quark gluon vertex V'*J'{p^ q, —r) 

received a non-perturbative G'^{r^)/Z{q^), which is consistent with the cancellation 

mechanism we assume for the kernels T and Q. The kernel M has a different can­

cellation mechanism that could be attributed to the way it depends on the different 

momenta p, q, r. 

The system of equations we obtain, after being able to introduce the running cou­

pling inside the integrals and factoring out the renormalisation function Z3 and Z3, 

is (in Landau gauge) 

GR{X) 27r2 
/ r desm'^eydyT°{x,y,z)a{z) 

Jo Jo 
, (5.60) 
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FH{X) 

X {M\x,y,z)^Q\x,y,z)) ,(5.61) 

with [34 

i?o(^,y,^) = M° + Q° = 
X f l 1\ 1 / 15 34 15' 

8y^z^ yz \y z] 8 yy"^ yz z^ ^ 
I z 11 11 y\ 

+ 4 
Ax V r y z z^j 

1 fz^ 6z _ 6y 
+ -1 + 14 + - ^ + ^ 

2x'^ Ky' y z z^ 

(5.62) 

f x ^ y\ I 1 1\ I 1 

= (5.63) 

We can now write an equation that involves the running coupling a{x) only by using 

its definition in Landau gauge 

We have 

where 

a{x) = a{i,')FR{x,fi')GUx,f^'). 

1 _Z3(A^^A2)Z|(/x^A2) 
a{x) Q;(A*^) 

SG(X) = l - ^ ^ j ^ j\dsiv?eydyT''{x,y,z)a{z), 

(5.64) 

(5.65) 

(5.66) 

Sp(x) = 1-^1^^' sin'eydya{z) 

x{M'{x,y,z) + Q'ix,y,z)) . (5.67) 

We now use the definition of the renormalised coupling Eq. (5.13) and obtain in 

Landau gauge 
1 1 

a{x) a{A^) EFix) [J:G{X)Y (5.68) 
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which is a non-linear integral equation for the renormahsed running coupling a{x) 
and where the renormalised constants Z3 and Z3 as well as any / i ^ dependence have 
been eliminated. I t is interesting to note that the equation satisfied by the mass 
function M(p^) Eq. (5.35)depends on the functions -FR(P^) and GR{P') only through 
the couphng function a{q'). Once we determine a{q'), then the mass function 
M(p^) will be derived from it and Zuijp') will follow subsequently from Eq. (5.36). 
I t would be interesting to see if this procedure can be applied to the ful l QCD case 
where we should include the two loops diagrams and the quark contribution to the 
polarisation tensor of the gluon. 

5.2.2 Infrared behaviour 

In this section we review how to find the infrared behaviour of the dressing functions 

for the gluon and ghost. We first write the equations satisfied by the gluon and ghost 

propagators. They are 

-^llip) - 4liP) - <f(P) - KM . (5-69) 

[A(p)]-^ = [ A O ( p ) ] ' ' - i V , ^ o 2 | ^ G > , g ) A ( g ) G . ( g , p ) i ^ ' ' ' ^ ( r ) , ( 5 . 7 0 ) 

where the vacuum polarisation includes contributions from the ghost loop 7r^(^(p), 

gluon loop 7r^i,(p), three-gluon diagram 7r^^(p), four-gluon diagram 7r^^(p), tadpole 

diagram 7r̂ "'̂ (p) and quark loop 7r^i^(p). I f the contribution from the quarks and 

two loop diagram is neglected, we arrive at a system that has been solved in several 

approximations. The simplest used was the angular approximation [17], where it 

was found that the behaviour of the dressing functions in the infrared was 

FR{X)^X-"^ , G R { X ) ^ X - \ (5.71) 

These power laws lead to an infrared fixed point for the coupling function 

tto = lim a:(A^) FR{X) G\{X) constant. (5.72) 
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In the Landau gauge, the bare vertex approximation of Eq. (5.70) for the renor­
mahsed ghost dressing function becomes, 

- — i - ^ = Z3(//^ A ' ) - ^ / A To{x, y, z) GH(y, /x^) Fn{z, fi') • (5.73) 

After substitution of the power laws (5.71) in Eq. (5.73), the right hand side yields 

a sum of integrals of the form 

/ 
with Q: + /5 + 7 = K — 2. Integrals of this type can be easily calculated by introducing 

Feynman parameters, yielding [26, 27 

liah)- ! ^ ^ - 1 r(2-a)r(2-fe)r(a + 6 - 2 ) 

^ ' ^ ~ y (27r)4 y-^'- ~ 167r2 r(a)r(6)r(4 - a - 6) ' ^ ' 

Both sides of Eq. (5.73) yield a leading infrared power x", and equating their coef­

ficients gives 
27r r(3-2K)r(3 + K)r(l + K) 

ao = X.H(«:) = ^ P ( 2 - n)T{2K) • (^-'^^ 

The expression (5.76) gives the relation between the infrared fixed point ao and the 

exponent K. I f we use the gluon equation we will obtain another expression that 

would also relate and K i.e. 

" 0 = xAi^), (5-77) 

which, for consistency reason, has to be equal to Xgh('̂ )- This equality fixes the 

value of K. Recent calculations [16, 17, 18] predicted 0.4 < /t < 1.0 and lattice 

calculations [19, 20] predict K ^ 0.5. For K = 0.5 we obtain from the ghost 

equation QQ = 57r/6 2.6, i.e. the value that we used in the previous sections. The 

value Co = 15 was chosen so as to match the intermediate region to the results of 

[17]. 

We have seen that a study of the gluon-ghost sector at one loop predicts an infra­

red fixed point for the strong coupling. Obviously, it remains to be shown that this 

pattern subsists when one treats the gluon-ghost sector fully when i t is coupled to 

the quark equation. In such a treatment, we will need a truncation and the one 

proposed in [4] or ours seem to be good candidate. 



Chapter 6 

Bound States Masses 

6.1 Introduction 

The masses of hadrons built from quarks and gluons are determined by the strong 

physics aspects of QCD. These can be calculated, for instance, by Lattice Monte 

Carlo methods. However, these simulations are only tractable if the lattice is not too 

big. This in turn means that the quark masses should not be too small. Crucially 

the hadron world delivered by nature has very light up and down current quark 

masses. To reach such small masses lattice results have to be extrapolated from 

larger values. This introduces a major uncertainty in the lattice "prediction"for the 

masses of light flavour hadrons. Rather than use some purely statistical method of 

extrapolation, such as sphne fitting, i t is clearly far more reliable to use a model 

that contains the correct physics. The NJL model [28, 29] is one that naturally 

embodies chiral symmetry breaking and is known to reproduce the physics of the 

pion. Within an SU(2) flavour model one can in turn calculate the mass of the p and 

the strength of its interactions. It is known that this accords well with experiment 

for small quark masses. 

The purpose of this chapter is to use the SU(2) NJL model to calculate the masses 

of the TT and p as a function of quark mass. These can then be compared with the 

dependence given by lattice computations in the region of overlap. If these agree, 

then the NJL model can serve as a reliable way of extrapolating to physical quark 

109 
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masses. In the second part of the chapter, we introduce a new technique to compute 
the effective action by controlling the quantum fluctuations by a parameter in the 
Lagrangian. We apply this method to a four fermion interaction where the control 
parameter is the mass of the fermion and to the bosonised form of the four fermion 
theory. The equations we obtain deserve further study to show if this scheme is an 
improvement over the usual A'^JL model. 

6.2 T H E SU{2) NJL Model 

Many models have been designed to understand the low energy sector of QCD. The 

approach to model building is that it should be simple enough, yet able to capture 

the main characteristics of the fundamental theory under scrutiny. The NJL model 

is such an attempt and it aims at a unified description of the physical vacuum of 

mesons and baryons. It makes use of an attractive interaction in the scalar qq 

channel, which is strong enough to cause chiral symmetry breaking and which gives 

quarks a constituent mass. 

6.2.1 The Lagrangian 

The Nambu Jona-Lasinio model describes a system of quarks with four fermion 

interactions. The two-flavour version of the model (up and down quarks) is defined 

by the Lagrangian 

LMJL = ip{x){i^^'.d^-mo) + Lint (6.1) 

In writing the Lagrangian we have assumed that the bare quark masses are degen­

erate (m„ = md = mo). The four-fermion interaction is given by 

L -

G2 

2 

{^{x^x)) + (j/i(a:)z7V»-0(a;)) 

(Vi(a;)7^r"V(a;))^ + [^{x)i^^^^T'''ijj{x)) 

4-

2 
(6.2) 

The different four-fermion interactions will be referred to as the scalar, pseudoscalar. 
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vector and axial interactions respectively. The dynamical fields are -0 and xjj. The 
two couplings Gi and G2 have the dimension or unit GeV~^. Gi is chosen 
positive and G2 negative so as to make the interaction attractive in the quark-
antiquark channels. As we are working with the 5^7(2) formulation, the are just 
the three Pauli matrices. 

6.2.2 Symmetries of the NJL model 
Flavour symmetry 

Under a flavour rotation the quark fields transform as follows 

exp-^^o '̂'/^ ^ ^ ^ exp^^" '̂'/̂  ^ 3̂  

where the parameters 9a are the amplitudes of the flavour rotation. In the hmit 

w-u = where the masses are equal, the Lagrangian is invariant. This invariance 

with respect to isospin rotations gives rise to near degenerate isospin multiplets 

whose degeneracy is lifted by a few MeV due to the small difference between the u 

and d masses. In QCD, the invariance with respect to flavour rotations stems from 

the fact that the quark-gluon interaction is flavour independent and flavour rotation 

is broken by the flavour dependence of the current quark masses. 

Chiral symmetry 

A chiral transformation acts on the quark flelds as follows 

^ exp-^^'^"""/' ^ , V' ̂  ^ exp-'^'^"""/2 . (6.4) 

In the chiral limit, where TTZU, —> 0, the Lagrangian is formally invariant, but this 

symmetry is spontaneously broken, and the vacuum is not invariant. The appearance 

of massless Goldstone bosons is the hallmark of a spontaneously broken symmetry. 

The pion which is almost massless is identified with this Goldstone boson and its 

low mass reflects the non vanishing mass of the up and down quarks. 
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Even in the case of a vanishing bare quark mass, the vacuum is not invariant with 
respect to chiral symmetry. This breakdown of the chiral symmetry is dynamical 
and is reflected through the fact that quarks develop a constituent mass. This 
phenomenon occurs within the NJL model and is its raison-d'etre. 
As can be seen in the interaction Lagrangian, the couplings in the vector and axial 
channels are chosen to be equal to reproduce the near degenerate masses p(770), 
a;(782) and ai(1260), /i(1285). Different coupUngs in these channels would anyway 
leave chiral symmetry unbroken. 

UA{1) symmetry 

The axial transformation UA{1) acts on the quark fields as follows 

^ exp-^T'^ i;, i;^tP exp"'^'^" . (6.5) 

In the limit of vanishing quark masses (chiral limit m —> 0), the NJL Lagrangian 

is invariant under f / ^ ( l ) transformation. 

6.2.3 IVIasses and coupling constants in the NJL model 

The interaction part of the NJL model describe quarks interacting via four-fermion 

interactions. The usual way to deal with this kind of interaction is to rewrite it in 

terms of boson fields that have the same transformation properties. After boson-

isation, the quark fields are integrable and the theory contains only boson fields. 

Prom the Lagrangian thus obtained, i t is straightforward to recognise the different 

masses and coupling constants. Here, we will follow an approach based on one- and 

two-body equations. 

The gap equation 

In order to determine the constituent quark mass, we solve the Schwinger-Dyson 

equation associated to the quark mass. For the NJL, model it can be pictorially 

represented by Fig. (6.1), where the thick line represents the ful l quark propagator 



Bound States Masses 113 

and is parametrised by 

SF{P) = 
1 

m + ie 
(6.6) 

b 
Figure 6.1: Schwinger-Dyson equation for the quark propagator 

The Gap equation gives us an equation for the constituent mass, which reads 

f-A d'^p 1 
m = mo + mGiNcSi J (6.7) 

(27r)4 p2 _ • 

A cut-off A has been introduced to regularise the quadratic divergent loop integral. 

Thus mo, Gi , 6*2, A represent the parameters of the theory. I f we compute the loop 

integral the Gap equation becomes 

A2 
m = mo + ' A' -mHog{l + — 

27r2 
(6.8) 

Even when mo = 0, if Gi is sufficiently large the constituent mass m will be nonzero 

and chiral symmetry broken. In Fig. (6.2), we plot the constituent mass m for 

A = 1.05 GeV as a function of Gi for mo = 0,0.005,0.05 GeV. For mo = 0 we see 

that Gi has to be strong enough to generate a constituent mass m. 

The Bethe-Salpeter equation 

In order to investigate the meson fluctuations, we solve the Bethe-Salpeter equation 

associated to the T matrix. I t reads Fig. (6.3) 

d'^p 

where }C is the colour singlet two-body interaction Kernel, which can be decomposed 

into flavour and Lorentz tensor covariants in the quark-antiquark channel 

r ( . ) = /c + . . r / ^ }CSp{p+\q) r{q)SF(p-\q (6.9) 

+ K r , { i i , X , ® i ^ X , ) -t- ̂ ^5(7^7^A, ® 7 V A , ) (6.10) 
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Figure 6.2: The current mass m as a function of the couphng G i for mo = 0,0.005,0.05 Gev 

Figure 6.3: Schwinger-Dyson equation for the T matrix 

The K°j are given in terms of the couplings Gi and G2 and possibly others, had we 

included an anomaly term. In order to solve this equation, we decompose the T 

matrix in tensor invariants. We have 

T{q) = Tscalariq) + Tpseudoscalar{q) + Tvector{q) + TaxiaM) , (6.11) 

where the scalar, pseudoscalar, vector and axial vector terms refer now to the 

corresponding mesonic modes, i.e. quark-antiquark states with spin and parity 

J'^ = 0"*", 0", 1"*", 1", respectively. Each term can be decomposed into Lorentz co-

variant tensors as follows 

Zcalariq) = Ms5(l (g) 1) + M^y(1 ® Z^ 
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+Mvs{-i(i® 1) + M^yL^^'i'j^ (8) 7 , ) , (6.12) 

Tpseudoscalariq) = Mpp{i^^ 0 i j ^ ) + MpA{h^ 0 ih^) 

+ M A p { - i h ' ® i l ' ) + M^j^{-ih' ® i h ' ) , (6.13) 

%ecUq) = T'^'^M^yi^,®^,), (6.14) 

Ta^iaiiq) = r '" 'ML (7^7 '®7 .7 ' ) , (6-15) 

where 

L'^- = qt^q- T'"' = g^"" - q^q''jc^ (6.16) 

r = q'l\lq^ ^ = 7 ^ (6.17) 

In order to simplify the task of solving the Bethe-Salpeter equation for the T matrix, 

we decompose the kernel /C on a new basis. We write 

/C(g) = ICscalariq) + ^pseudoscalar{q) + K.^ector{q) + ^axiaM), (6.18) 

where 

ICpseudoscalariq) = K[.{i-f^Xi ® i^^\j) + Kf.{-i^f,-i^qt"Xi ® i^^^^q^\j) , 

JCscalariq) = Kf^{lX, ® I X j ) + ^{-i^^q>'Xi ® i^.q''X,) , 

^a.^al{q) = T ^ ' ' \ ® Y ^ j ) • (6-19) 

Using this basis and formally writing 

r - M(r, r')i,(rAi ® F ' A , ) , (6.20) 

permits us to write a matrix equation for T, where M is a block-diagonal matrix 

and Eq. (6.9) can be written as four independent matrix equations in the pseudo-

scalar, scalar, vector, axial channels. The matrix equation in fiavour and Dirac space 

obtained from Eq. (6.9) and using Eq. (6.20) is 

M = K[l +JM]^ K [ l - J K Y \ (6.21) 
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where J refers to the following fermion loop 

(6.22) 

In our case, we have degenerate masses for the up and down quark and the calcula 

tion of J is thus simplified. It can be evaluated in terms of the integrals 

him) = Z8nJ , ^ 

27r2 
- In 1 + 

A2 

(6.23) 

(6.24) 

and 

rA Mr) 

= r 
4m2 Jo 

(27r)4 (p + -m? + ie (p - ^q)^ - + ie 
- ,(6.25) 

A2 
+ ln 

A^ + y V2/ + A2 
(6.26) 

/°(m) = 12(9^ = 0,771), (6.27) 

where 

y{x,q ) = q (x - x) + m (6.28) 

In our case, we just want to consider the case of the n and p mesons, so the relevant 

J's are 

Jyv = JvV 

Jpp = J(^7^^7^) 

JpA ^ JAP = Jih^h^) 

JAA = J{il.lH\ -ilt^lH^) 

J ( T , ^ 7 ^ ^ ' ' " 7 « ) , 

h{m)-q^h, 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

Because of the explicit chiral symmetry breaking by the current quark mass 77Zo, there 

is a mixing between pseudoscalar and longitudinal axial fields, called TT - ai mixing. 
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Therefore in the pseudoscalar channel, we really have a 2 x 2 matrix equation. The 
matrix K, is 

/ C . = ( I ) , (6.33) 

and the matrix J is 

The matrix M is 

J. - . (6.34) 
V JAP JAA / 

y MAP MAA J 

We obtain the matrix for the pion from the equation Eq. (6.21). The information 

we want is Mpp, it is 

M^P = -^^Gr{l-G2JAA{q')) , (6.36) 

D^q') = d e t ( l - J . / C . ) , 

= {l-G,Jpp{q')){l-G2JAAiq')) 

-GrG,JAp{q')JpA{q'). (6-37) 

We also obtain the ratio 

- (6.38) 
Mj,p 1 - G2JAA 

Concerning the p meson, as we do not treat the six-fermion interaction term in our 

Lagrangian, the situation is much simpler. We have 

Kp = G 2 , (6.39) 

Jp = Jvv{q'), (6.40) 

= i-G%Aq^) = ^ y ^'-''^ 

Now that we have determined the two T matrices, we can extract the masses, as 

they appear in the T matrix as poles. We can also determine the couplings of the 

TT and p mesons to qq, which correspond to the residue at the poles. Close to a pole 

we parametrise the T matrix as follows [31 

i%iq^) ^ ( i 7V" ® i 7 V " ) ig^-gg{l + a^q) , , ig.-^,{l - a^q), (6.42) 
q "̂ TT 
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(6.43) 

An expansion of the T matrix obtained in Eq. (6.38 - 6.41), around the pole permits 

us to determine the couplings pTr-g, and Qp-qq. We have 

G i ( l — G^JAA) 

99 dDM^)/dq^ 
(6.44) 

1 M^PA Go 
1 - G.J 2'JAA 

(6.45) 

Go 
4p-qq 

(6.46) 
dDM^)/dq^\ 

We finally reached the point we wished. Starting from the NJL model, with four 

parameters, we can determine the TT and p properties. 

6.2.4 Meson masses as a function of quark mass 

Polleri & al. [31], set their goal to show that the NJL model is able to determine 

the properties of the p meson. They use the following parameters 

A = 1.05 GeV, G i A 2 = 10.1, 
mo = 3.33 MeV, GaA^ = -14.4, 

(6.47) 

with which they are able to fit the quark condensate < qq >, the pion mass m^, the 

p meson mass nip and the pion decay constant The values determined in this 

way are 
^ Fir, -^1/3^ _9Qq MoA/ rr, — 1 l\/TaV 

(6.48) 
< qq > i /3= _293 MeV , = 139 MeV , 

m(,'') = 834 MeV, A = 93 MeV. 

The prediction for the other quantities is 

m = 463 MeV, 

g^-qq = 4.94, 

= 0.46, 

9p-qq = 2.12. 

(6.49) 

(6.50) 

(6.51) 

(6.52) 
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Using these parameters, they proceed to compute the p —)• TTTT decay amphtude and 

its contribution to the self energy of the p. They find 

T p ^ , , = 118 MeV^ 

and a mass shift of —64 MeV , which produces 

ml = (mW)^ + 3?e S^. { { m f ) ' ) = 770^ MeV^ . 

(6.53) 

(6.54) 

We now embark on a study of the meson masses as a function of the current quark 

mass. Using the parameters in Eq. (6.47), we plot the tree level meson masses in 

Fig. (6.4) (mq is mo). 

0.05 0.1 0.2 0.25 

mq(GeV) 

Figure 6.4: TT and p (dash) meson mass in GeV as a function of current quark mass in Gev 

6.2.5 Meson masses on the lattice 

Our goal is to compare the meson masses obtained from the NJL calculation and the 

one computed on the lattice. Our data are obtained from the CP-PACS group [32 . 

The simulation is a ful l QCD computation using improved action. Hadron masses 

are obtained from the propagators computed on a 16^ x 32 lattice with P = 1.9. 

The lattice spacing a, is determined through the determination of the string tension 

cra^, that is fitted according to 

(6.55) 



Bound States Masses 120 

using -^/a = 440 MeV in the chiral hmit. In Fig. (6.5), we plot the pion and p mass 

obtained with the NJL model with the parameter of Eq. (6.47) and the lattice data. 

Already with these parameters, the pion mass agrees well with the lattice data. The 

a 0.8 

0.25 
mq(G8V) 

Figure 6.5: pion and p meson lattice data compared with NJL calculation 

p mass fails to agree, does not have the right slope and even becomes lighter than 

the pion at high quark mass. 

6.2.6 Fits 

In this section we proceed to fit the lattice data with the NJL calculation. We have 

three parameters to use, namely A, Gi, and G2. Wi th the parameters 

A = 0.9972 GeV, 

G i = 10.5 /A2, 

G2 = - 1 2 / A 2 , 

(6.56) 

(6.57) 

(6.58) 

we achieve a good fit for the pion and use the same parameters to compute the 

p meson mass. As can one see on Fig. (6.6), the quark mass dependence of the p 

meson mass does not agree with the lattice data. The NJL model fails to reproduce 

the right slope. The mass of the pion 171^^ = 139 MeV is reproduced for mo = 3.786 

MeV. For this particular quark current mass the calculated p mass is 

mj,°) = 867 MeV, (6.59) 
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0.25 

mq(GeV) 

Figure 6.6: fitted pion mass and predicted p mass (dash) in the NJL model 

and the dressed p has mass 

rup = 803 MeV, (6.60) 

where we have used the mass shift A M = —64 MeV as quoted before. This predicted 

p mass does not agree with the experimental value rup = 770 MeV. The value of 

for this current mass is found to be = 93.06 MeV. A fit of the p meson mass 

alone was attempted but failed. It thus seems that the finding of the right p meson 

mass from the NJL model is fortuitous. 

We now investigate whether it is possible to achieve a better fit for the p meson by 

introducing a fourth parameter. In the Gap and the Bethe-Salpeter equations, we 

have included a cut-off A , which is of the order 1 GeV. For high quark mass, the 

meson masses reach and even go above this value. In order to take into account the 

propagation of higher masses in the loop of the BS equation, we thus may need to 

increase the value of the cut-off. We thus try to fit the lattice data using the four 

following parameters: AQ, 0 0 , ^ 1 , ^ 2 , which define the parameters of the theory 

A = Ao + aomo , 

9i Gi = 10 
A2 

Go = -10 
A2 

(6.61) 

We use the data obtained by the CP-PACS group [33], which is a better simulation 
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than the one used previously. As the authors mention in [33], the study [32] was 

a preparatory work concerning the simulation of ful l QCD using improved actions. 

As can be seen in Fig. (6.5), the quark mass ranges from 15 to 250 MeV, whereas in 

Fig. (6.7), the range is smaller ([50,150]), but we can consider this simulation to be 

more reliable since it has more data points, which correspond to high quark masses. 

In Fig. (6.5), we can check that the first point, corresponding to mo = 15 MeV is 

unphysical since i t predicts a p mass that is smaller than the physical p. A good fit 

for the pion is obtained and gives a null value for the parameter cto- The prediction 

for the p meson mass calculated using the parameters found for the T T , and a total 

disagreement is found again as can be seen in Fig. (6.7). 

9 

mq(GeV) 

Figure 6.7: fitted pion mass and predicted p mass in the NJL model to compare with p mass 
obtained from the lattice 

The four parameter fit for the p is achievable and gives us 

Ao 

gi 

gi 

0.9975, 

0.9294, 

0.9946, 

1.6201. 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

In Fig. (6.8), we show the fit for the p, as well as the prediction for the TT using these 
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Figure 6.8: fitted p mass and predicted TT mass in the NJL model 

parameters. The good fit for the pion is now lost and the inconsistency of the quark 

mass dependence between the p and the TT is not resolved. 

6.3 A New Functional Approach 

In this section, we will introduce a functional approach to tackle the same problem of 

bound state masses. In principle this technique has a much wider scope and indeed 

has been used in very different contexts. We will apply this method to the problem 

of bound state masses to show how one could study dynamical mass generation from 

a new perspective. This approach enables us to write an exact functional integral 

equation for the effective action T which is also the generating functional of the 

I P I n-point functions. I t is also related to the Callan-Symanzik equations (CS) 

which in perturbation theory is an equation giving the dependence of the n-point 

functions with respect to the bare mass. What we propose to do is to generalise 

this CS method and derive an exact equation for the effective action directly from 

its definition [35, 36, 37, 38]. As this is our first endeavour to apply this technique, 

we will only consider the NJL model with the scalar interaction. 
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6.3.1 Evolution equation 

(6.67) 

We consider the Lagrangian of the NJL model given by 

The parameter z is introduced to control the amphtude of the fluctuations. For 

z » 1, the Lagrangian describes a heavy fermion and the theory is perturbative 

since the mass term dominates the action. As z decreases the interaction term 

becomes more and more important and quantum corrections increase in magnitude. 

Our purpose is to study the dependence on z of the effective action F^, the generating 

functional of proper graphs. 

The Lagrangian, we have written contains a four-fermion interaction term, which is 

not suitable for analytical treatment. We rewrite the Lagrangian by introducing a 

field $, which has the same transformation properties as the bilinear term ^{x)'^{x). 

The Lagrangian becomes 

1 

The functional [f], r],j] which generates the connected graphs is given by 

(6.68) 

expW^ [77,77, j ] = J V e x p | ? ^ £ + i ^ ( j $ + 77 ' I ' + * 7 7 ) | . (6.69) 

The derivatives of with respect to the sources 77,77, j are given by 

5 
Srj 

or] 
i < <b >= iip 

We also have 

The effective action F, 

—W^ = i<^>^i(b. 

077 077 

'ip,ip,4> is the Legendre transform of 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

(6.74) 
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with functional derivatives 

i r . = (6.75) 

= - f i , (676) 

We also have a relation between the second derivative of and the second deriva­

tive of r^, which is 

^Sip ^ Sip^ i^6fj ^ 5rj^ ^ ^ 
To compute the derivative of with respect to z, one has to remember that the 

independent variables are the the fields ip, ip and (f) and the parameter z. We 

therefore have 

J y dr] drj dj J 

= -id.W,, (6.79) 

after using the functional derivative of VF̂  in Eq. (6.70-6.72). The derivative of W^, 

with respect to z is 

-id^Wz = -mo < J^iptp > , 

= -mo Ij^-'^o [ ( j z ^ j , (6.80) 

which after using Eq. (6.78)can be rewritten as 

f - I s s \ 
iP,ij,(j)]+mo J i;iP^imoTT\^-^T,—j , (6.81) 

where Tr denotes the trace over spacetime and Dirac indices. The inverse matrix 

(5^r]~^ has to be taken with respect to field variables, spacetime indices and Dirac 

indices. We note that Eq. (6.81) is an exact equation since we have not yet adopted 
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any approximation. We can also note that Eq. (6.81) has the same form as the one 
derived in exact Renormalisation Group (RG) methods [39] . A similar equation has 
already been derived for the case of QED in d = 4 - e dimensions, which reproduced 
the usual one loop behaviour for the beta function but, has the advantage of avoiding 
the appearance of the Landau pole (in a specific ansatz for the effective action) by 
taking into account the running of the mass. This avoidance of the Landau pole 
by a running mass is the same way the Landau pole is claimed to be avoided in 
lattice QED [40]. Also the case of QED in an external field was treated using this 
technique and it was shown non-perturbatively how the ful l fermion propagator and 
the full vertex depend on the external gauge field. 

Before proceeding to the treatment of the functional integral equation Eq. (6.81), we 

first show how it can be rewritten as a first order functional integral equation for the 

efPective action F ^ . As was mentioned when deriving Schwinger-Dyson equations in 

section. (2.2), the functional integral of a functional derivative is zero. We can write 

0 = X> $] — exp 
[ i l c + i l { j ^ + fj^ + ^v)] , (6.82) 

which gives us 

< ^ ' ^ > - - < $ > + ; • = 0 , (6.83) 
9 

or after using the first derivative of the effective action in Eq. (6.77) 

— = <*^'>—(f), 
6(p g ( <- \ -1 

X f A (6.84) 
dip d^j J g 

This last relation permits us to rewrite the second order functional integral equation 

Eq. (6.81) as 

a , F , yj,^,cf>]+^ l j = -mo I j - ^ . (6.85) 

If we differentiate the last equation Eq. (6.85) with respect to z, we obtain 
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and the n"" derivative is 

Jxi,...,Xn 
^1 r . 

6(j){Xi) . . . 5<f){Xn) 

We now are able to make the resummation 

n=0 

which is, after using Eq. (6 .87) 

{-zmoY 

n\ 5z 

5^ 

z=0 

(6 .87) 

(6 .88) 

mo 

n=0 n! 5(f){xi)... 6(l){xn) 2 I 2=0 
l<t> (6 .89) 

= exp 

In the last equation F^ '4>,'ip,<P 

mo 

z=0 g (6 .90) 

z=0 
is the effective action in the chiral limit since z 

is zero. We denote the chiral effective action as follows 

( 6 . 9 1 ) 

and write the equation for the effective action F^ a& 

mo 

9 
/ 0 , (6 .92) 

since we recognise in Eq. (6 .90) the functional generahsation of the well known result 

exp I a— j f{x) = f{x + a). (6 .93) 

The effective action F^ for any z is therefore given by the chiral limit effective action 

FQ, where the scalar field 0 is translated by the amount —zruo. This mechanism is 

reminiscent of what is known in the background field methods [41]. This was also 

found for the case of QED in an external field, where it was shown in [36], using 

this functional technique, that the effective action in the presence of an external 

field A "̂* is the same as the one without the external field, but where the dynamical 

gauge field is translated by the vector A^^\ 
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The interest of the first order functional integral equation is that it allows us to 
derive relations similar to Ward identities in gauge field theory. I f we differentiate 
Eq. (6.85) with respect to '4>{x), then with respect to tp{y) we obtain 

We now define the ful l inverse propagator S~^{x, y) and the ful l •00 /̂' vertex Az{t; x, y) 

as 

5ip{x) Sipiy) 
(6.95) 

,/;=-̂ =</,=o 

6(f){t) Sip{x) 5ip{y) 
(6.96) 

and are able to write a relation between the ful l inverse propagator ^ and the full 

vertex A^ 

- i d , S ; \ x , y ) ^ - m o [ A,ixi-x,y). (6.97) 

This last relation Eq. (6.97) can be seen as a kind of Ward identity except that 

it is integral rather than derivative. It involves the z derivative of the fuh inverse 

propagator If we note that 

d , S ; \ x , y ) = - [ S : ' { x , x i ) d , S , { x i , X 2 ) S ; \ x 2 , y ) , (6.98) 

we can write a relation between the ful l propagator Sz{x,y) and the ful l vertex 

K { t ; x , y ) 

d,S^{x,y)+ imQ S^{x,X2) A;,{xuX2,X3) S:,{x3,y) = 0 . (6.99) 
Jxi,X2,X3 

6.3.2 Gradient expansion 

Up to know, we have been very formal and it is now desirable to show how this 

technique can be used to make predictions. Our main result is the functional integral 

equation Eq. (6.81). As it is written, it cannot be solved analytically and we therefore 
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need an ansatz for the effective action F^. We will make a gradient expansion to 

find an approximate solution to the evolution equation Eq. (6.81) 

F, ITP, ^ , 0l = / (P{x)V-'(f>{x) + iP{x)g-'iP{x) + X,{x)tP{x)(l>ix)ijix), (6.100) 

where V and Q are the scalar and fermion propagators, respectively and Xzix) is 

a coupling function. In the most general case the propagators in momentum space 

are 

V-\p) = p{z,p')p'-m^{z,p'), 

g-\p) = Z{z,p^)fi-m{z,p'')-zmo, 

(6.101) 

(6.102) 

and as a first approximation, we can choose 

A,(x) = X{z). (6.103) 

The evolution of the different functions P, Z and A are obtained when we expand 

both sides of Eq. (6.81) in powers of the scalar field and fermion field and by iden­

tifying the operators on both sides. As we have already mentioned earlier, the 

calculation of the trace requires us to compute the inverse matrix 

the inverse of the matrix of second derivatives 

r(2) , which is 

r(2) 

/ i E X _£r_ \ 
SijjS'^ 5xl>5'4> S<j)S'4> 

rs ST 5 srs 
SipSip SxpSxp 5<t>&ij} 

SV*S S'^T 6=r 

(6.104) 

\ 5<t>5i} &i>S4> S4>S<j> I 

We decompose F̂ ^̂  into a diagonal F^^ plus non-diagonal part F^fj and compute 

F̂ ^̂  by expanding in the diagonal part F^^ in momentum space 

-1 .(2) .(2) -1 

, rp(2)l-lp(2) rp(2)l 
+ A ] i [i A 

, rr(2)]- ip(2) rp(2)i-i (2) rp(2)]-i (2) [^(2)1-1 
"1" [•'• A J nd [^ A J ^ nd [••• A J nd [••• A J + • 

-1 (2) rp(2)]-i 
^ nd ^ A 

(6.105) 

where 

r(2) _ r(2) r(2) 
^ nd — ̂  ~ ^ A • (6.106) 
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In this way we obtain [37 

I = G+G (-C + cGc - cQcgc + aVh - aVbGc - cQaVh) 0+... , (6.107) 
dtpoip J ^ ' 

with [37 

a{j>,q) = \{z)^{-p-q), (6.108) 

6(p,g) = V ' ( - p - 9 ) A ( z ) , (6.109) 

c{p,q) = -\{z)cl>i-p-q), (6.110) 

and the tilde denotes transposition in momentum and spinor spaces. 

Following [37] the evolution equations are 

d,V-\p) = -2imoX\z) [ Tr\g^{q)g{p + q)] , (6.111) 
Jq L J 

d,g-'{p) + mo = -imoX'iz) f V{q-p)g'{q), (6.112) 
Jq 

d,X{z) = -2moX'{z) f V{q)g\q)g{q). (6.113) 

Jq 

A close look at these equations shows us that the integrals on the right hand sides 

are the usual terms that would appear in the Schwinger-Dyson equations except 

that the fermion propagator g{q) is squared. This can be understood easily since a 

change ZTUQ —> {z + 5z)mQ of the bare fermion propagator changes the propagator 

as g g + gSzTUog in the internal lines of Feynman graphs. These equations 

are integro-differential equations and need further study to give results concerning 

the infra-red behaviour of the fermion and scalar propagators. This approach has 

already been adopted in [37], where the case of QED was considered and as already 

mentioned, with a simple ansatz for the photon and electron propagators, it was 

shown analytically that the Landau pole is avoided by incorporating a running mass 

in the evolution of the coupling. 

6.3.3 Scalar theory 

After bosonisation of the purely fermionic Lagrangian of Eq. (6.67), we have a 

theory involving a fermion field ip interacting with a scalar field (j). The Lagrangian 
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is quadratic in the fermion field and therefore the integration over the fermionic field 

is analytical. After integrating the fermionic fields, we obtain a purely scalar theory 

whose Euclidean Lagrangian is 

£(0) = - i T r [ l + + m)-' (f)] + ^ 4 > ' ' , (6.114) 

where we have taken z = I. We have seen previously that it was possible to write an 

evolution equation in z for the effective action because the operator that multiplies 

z is quadratic. As we would like to have a new way to study dynamical symmetry 

breaking, we would like to write an evolution equation in the coupling g. The 

parameter g only appears after bosonisation in front of the quadratic operator 0̂  

and therefore we can apply the previous method and write an evolution equation in 

g for the effective action. It reads 

= - / 

2o2 ^ 2(72 
Tr 5 % (6.115) 

+ (6.116) 

2^2 ^ 2^2 

The gradient expansion for the scalar theory will be 

r , [0 ] = / z{<i>)d^cj>d''^ + vM 
Jx 

where Z{(f)) is the renormalisation function for the scalar field 0 and Vg((̂ ) the 

effective potential. The term . . . represents higher derivative contributions which 

we neglect. We work in the Local Potential Approximation Z{(p) — 1 and consider 

a constant configuration for the field (f) = 4)Q, which is enough to obtain an evolution 

equation for the effective potential Vg((/)). We have 

rg[<^o] = vy,(0o), (6.117) 

(6.118) 
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where V is the four-dimensional volume and ' denotes a differentiation w i t h respect 

to the argument. The evolution equation for the effective potential is thus 

1 
IQ^ J (2TT 

We introduce a cut-off in to regulate the integral and obtain 

1 
- ! / ; ' (< / . ) In 1 + 

A^ 

(6.119) 

(6.120) 

This partial differential equation contains the evolution equation for al l the different 

couplings since the effective potential Vg{(f)) can be Taylor expanded in 0 

Tl=0 

(6.121) 

where the c„ are coupling constants. We assume here that the potential has only 

two relevant couplings TUg = m and Ag = A and write 

F,(0) = ^mV-f^A^" (6.122) 

(6.123) 

I n order to obtain the evolution equations for the couplings m and A, we expand 

the integrand in Eq. (6.119) in 0 

A )i2 1 
(6.124) p2 + m2 + A02 p2 + rn^ 2 (p2 + ^2)2 v 4 (^2 + ^ 2 ) 3 

By identifying the operators f r o m the two sides of Eq. (6.119), we obtain the follow­

ing evolution equations for m and A 

d^p 1 U / 2\ 1 A /• d^j 

'^9 

which becomes after integration 

4c/2 J (27r)4 (p2 + ^ 2 ) 2 ' 

~8^2 / (2^0^ (p2 + m2)2 ' 

dgX 

647r2^2 

3A2 

In 
m 2 ' A2^ A2 

A" 

m2 + A2 

327r252 ^ 2 ( ^ 2 + A2)^ 

(6.125) 

(6.126) 

(6.127) 

(6.128) 
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The equation for m needs regulation but in theory the equation for A is free of d i ­
vergence since its associated integral is convergent. For A = oo Eq. (6.128) becomes 

but as we have an effective theory we need to treat as a parameter of the theory 

as we did in the standard NJL model. 

6.4 Conclusion 

We have presented in this chapter a well-known method for the treatment of bound 

states {NJL model) as well as a new approach [35, 36, 37, 38], which could be called 

functional Callan-Symanzik approach i f the fluctuations are controlled by the mass 

parameter or by some other name when the control parameter i n the Lagrangian is 

not the mass. I n order to obtain a tractable equation, we made a gradient expansion 

of the effective action T, which is more localised in space than the Lagrangian. I n 

the NJL model, i t is the Lagrangian that is expanded and the expansion produces 

the different masses and couphngs. However, this theoretical approach is l imited 

since i n practice, when one tries to compute the mass of a meson, say the pion, 

we have to adjust the parameters so as to be able to find a solution. Indeed, the 

polarisation funct ion hiq^), which appears i n the calculation diverges for q"^ > 4 M ^ , 

where M is the current quark mass. For the pion, all is well but when one treats 

the ai(1235), the equation 

maAq^) = q\ (6.130) 

has no solution in the physical range [0,4M^] [42] but always has a solution for 

> 4 M ^ . Therefore the model fails to bind the qq pair i n the ai channel because 

the on shell ai mass is above the mass gap 2 M . Even i f the gradient expansion for the 

Lagrangian predicts a mass term, in practice we may not find i t . I n our method, after 

including pseudo-scalar, vector and pseudo-vector channels, i t is believed that this 

problem w i l l not be met. Of course further study is needed to show this explicitly. 
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Chapter 7 

Conclusion 

I n this study, we have investigated some non-perturbative aspects of mass generation 

in Quantum Field Theory (QFT). We have started by introducing the Schwinger-

Dyson equations as a tool to investigate QFT in a non-perturbative way. As they 

are an infini te system of equations, we introduced the idea of truncation, which is 

necessary to treat the equations i n practice. We have wr i t ten the equations satisfied 

for the electron and photon propagators in the bare vertex approximation as well 

as introduced our non-perturbative truncation scheme which respects multiplicative 

renormahsability ( M i ? ) . We then presented the numerical method to solve systems 

of integral equations. The method is based on an expansion in Chebyshev polyno­

mial and the Newton method to solve non-linear system of algebraic equations. Even 

though, we do not actually solve an algebraic system, the method is very efficient 

for our purpose. 

I n chapter three, we apphed this model to the case of renormalised QED i n the MR 

scheme and solved the equations i n different approximations. For quenched QED, 

we found the usual critical coupling ac = n/3 and also showed the interesting result 

that i n the Feynman gauge ^ = 1, i t was possible to derive differential equations that 

do not stem f rom an Euchdeanisation of the action and are therefore valid on the 

whole X = line. This simple result is an incentive to study further the relation 

between Minkowski and Euchdean formulations. We also determined the critical 

couplings i n the one-loop approximation for the running coupling for a number of 

135 
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flavours Nf equal one and two, and solved the complete system by allowing the 
running couphng to satisfy its own equation. 

Af te r treating the case of QED, we proceeded to the quark equation and introduced 

a new truncation that is similar to the one of QED and to the one recently introduced 

by J. Bloch in [4]. The notable difference is that our truncation scheme makes the 

mass function explici t ly independent of the renormalisation scale fi^, as i t should 

be. Using a model for the running coupHng, we solved the equation for the mass 

function M(p^ ) and the dressing function Z(p^,/x^) and compared i t to previous 

studies [4 . 

The study of bound state masses using the SD equations have already been un­

dertaken by many authors. In this study, we used a simpler model, namely the 

Nambu Jona-Lasinio model to determine the masses of the p and TT mesons as a 

funct ion of four parameters: two couphngs, a cut-off and the bare quark mass. I n 

usual lattice calculations, meson masses are calculated for heavy quark masses and 

then extrapolated to small masses by using empirical methods such as cubic fit. As 

the NJL model is able to reproduce the pion mass correctly for any value of the 

bare quark mass, then i t should be used to extrapolate lattice calculations for the 

pion. However we have seen that the NJL model is unable to reproduce the right 

quark dependence for the p meson mass, even when one tries to introduce another 

parameter. 

Finally, as an outlook we have introduced a new method based on the control of 

quantum fluctuations by varying a bare parameter of the Lagrangian. I f this param­

eter is multiphed by a quadratic operator, then i t is possible to derive an integro-

differential equation for the effective action. This equation is exact but needs t run­

cation to be solved. The most promising approximation so far is to expand the 

effective action in a gradient expansion, which is believed to be more reliable than 

a gradient expansion of the Lagrangian as is usual i n bosonisation methods, since 

the effective action is more localised in space than the Lagrangian. Another out-
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look, would be to inprove the numerical method. The system of equations for QED 
involved the equation for the coupling funct ion, which had to be treated differently. 
The Newton method was only applied to the sub-system for the mass and dressing 
function, while we used an iteration process to determine the coupling function. A 
method in which al l functions would be determined using the Newton method only 
would therefore be welcomed and would bring us more exact results. We could also 
t r y to find a way to rewrite the SD equations as a purely algebraic system of non­
linear equation i.e. the unknowns coefficients should be mult ipl ied by constants . A 
possible way is the following. Suppose we would like to solve the integral equation 

m{x) = J dyg{y,m{y))K{x,y), (7.1) 

where K{x,y) is the kernel of the equation and g{y,'m{y)) is a known expression. 

Instead of expanding the function m{x) on the basis of Chebyshev polynomial, we 

expand the funct ion 

z{y) = g{y,m{my)) = ^^'a.T,- (7.2) 

which satisfies 

m{x) = I dyz{y)K{x,y). (7.3) 

The solution z{x) is obtained by solving 

z{x) ^ g{x,m{x)) = g(^x, j dyz{y) K{x,y)^ , (7.4) 

which after using Eq.(7.2) can be wr i t ten 

z{x) = g[x,Y,'ajVj{x,y)) , (7.5) 

w i t h 

vj{x,y) = I dyT,K{x,y). (7.6) 

The system of non-hnear equations derived f rom Eq.(7.4) is now purely algebraic 

since the Vj{x,y) can be computed once and for all . Once the funct ion z{x) is 

determined we can compute m{x) for any value of x using Eq.(7.3) or as i t could 
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happen by inverting the relation Eq.(7.2), which would give m,{x] as a funct ion of 
zix). 

Our ult imate goal is the study of dynamical mass generation in QCD. We have 

shown that our truncation scheme permitted the factoring out of the renormahsa-

t ion constants Z3 and Z3, when one treats the gluon-ghost sector at one loop. I t 

remains to be checked that this is s t i l l so w i t h the complete system by including 

the contributions f r o m the three loop, four loop and quark diagrams. On the same 

occasion, an infrared study of this system would confirm or i n f i r m the existence of 

an infrared fixed point for the coupling. 

Finally, the whole approach oi SD equations should maybe be abandonned to find 

a new and more powerful investigation tool . We hope that the functional approach 

or a similar one such as the exact renormalisation group approach can contribute to 

the advancement of our knowledge of infrared QCD. 
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