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ABSTRACT 

The work in this thesis has concentrated upon the chemical functionalization of 

plasma polymer surfaces. The ability to deposit and then functionalize these 

surface layers has practical implications for many different areas, such as 

biomedical uses and heterogeneous catalysis and many different functional 

groups can be attached to surfaces using the plasma polymer layer as an 

intermediate. A variety of substrates, f rom glass to polymer f i lms have been 

studied. 

Two different monomers have been studied in this work. The majority of work 

was carried out using a maleic anhydride plasma polymer (MAPP), which can 

be deposited f rom maleic anhydride under pulsed plasma condit ions. The 

second monomer used was al lylamine, whose plasma polymer has previously 

been studied as a biomedical layer. 

For both of these monomers, a variety of functionalization reactions have been 

studied. In the case of the anhydride group the key reaction is that which 

occurs between the anhydride group and amines. The reaction of amines with 

the anhydride is through a ring opening of the anhydride group, leading to the 

formation of amic acid groups. This part of the thesis al lowed an understanding 

of the mechanism of vapour phase reactions to be acquired. Once this 

understanding had been achieved, many more amine containing groups were 

studied, such as poly(amidoamine) (PAMAM) dendr imers, functionalized 

polystyrene particles, polycations and molecules containing double bonds were 

reacted with the MAPP surface. These functional molecules can be used for 

immobil izing metal particles, stabilizing colloids adher ing surfaces and Diels-

Alder reactions. 

In the case of the allylamine, a variety of different functionalization routes we 

studied. Formation of amide groups at the surface was studied using 

heptafluorobutryl chloride and carboxylic acid functional ized polystyrene beads. 

The ability of the allylamine plasma polymer layer to act as a polycationic layer 

was investigated with an anionic polymeric dye, DNA and gold colloids. 
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OBJECTIVES 

The plasma polymerization of maleic anhydr ide has been previously studied, 

and good structural retention of the anhydride ring has been observed. The 

opt imum condit ions for the deposit ion of these plasma polymer layers have 

previously been determined, and using these optimal condit ions a maleic 

anhydride plasma polymer layer (MAPP) is used as the starting layer to 

investigate the fol lowing: 

1. To understand the mechanism by which maleic anhydride plasma polymer 

(MAPP) reacts wi th amines in the vapour phase, by using simple amine 

systems such as tr i f luoroethylamine. This understanding was then further 

applied to functionalize MAPP with a variety of amines, in the vapour phase, 

and in solut ion. 

2. To investigate a variety of different amine containing species could be 

attached to the plasma polymer surface, and introduce different surface 

propert ies. 

3. To attach functional groups to the MAPP that could not be deposited from a 

plasma. 

4. To compare the reactions of MAPP with those possible for a plasma polymer 

of al lylamine. 
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CHAPTER ONE 

Am Introduction to Low Pressure Plasmas, 

Plasma Polymerization, Surface IVIodification and 

1.1 PLASMAS 

1.1.1 The Fundamental Character is t ics of a Plasma^ 

The term p lasma was first used by Langmuir to describe the fourth state of 

matter, being at greater energy than solids, liquids or gases.^ They consist of a 

quasi-neutral mixture of charged and neutral gaseous particles and radiation 

characterized by a collective behaviour. With in the p lasma, the motions of the 

particles give rise to localized concentrat ions of posit ive and negative charges, 

which in turn give rise to long-ranging Coulombic effects that can affect the 

motion of particles within the plasma, even if they are a long way f rom the 

charge concentrat ion. The fact that different e lements in the p lasma can affect 

each other at large separat ions give rise to what is known as collective plasma 

behaviour. A charged particle within the p lasma will fol low a path through the 

p lasma governed by the average of the electric f ield. This is in contrast to the 

random Brownian mot ion of a neutral gas particle.^ The processes within the 

plasma are complex, but by varying the process parameters, such as pressure 

and power, their characteristics may be control led. 



1.1.1.1 Conditions for Creating Plasmas 

Non-equi l ibr ium plasmas are created when sufficient energy is appl ied to a gas 

causing ionization and the production of electrons. The subsequent 

recombinat ion of these electrons with ions leads to the format ion of neutral 

atoms and molecules. The energy suppl ied for excitation can be supplied by 

various sources, including direct current, alternating current, radio frequency 

and microwave sources. 

1.1.1.2 Plasma Parameters 

A p lasma contains many different neutral and charged species.^ It can be 

broadly characterized by the density of the neutral part icles, nn, the density of 

the ions, n, and the density of the electrons, He. In a quasi-neutral state, n, = /le 

= n, where n is the p lasma density. A plasma is also character ized by the 

energy distr ibutions of the neutral particles, fn(W), the ions, fi(W) and the 

electrons, fe(W). These plasma characteristics have a direct effect upon the 

eff iciency of the plasma processes and the reaction rates. With in the plasma, it 

is the electrons that are responsible for the transfer of energy f rom the external 

field to the bulk of the gas. Since electrons are the lightest consti tuent of the 

plasma, they are most easily accelerated and absorb the largest amount of 

energy f rom the applied f ield. Energy transfer occurs via coll isions of electrons 

with molecules, to give rise to excitation, ionization and dissociat ion. Increasing 

the electron density increases the effect iveness of the energy transfer. 

Particles within the plasma are in cont inuous mot ion, which leads to collisions 

between particles. There are two types of coll isions occurr ing within the 

p lasma, elastic and Inelastic. W h e n electrons coll ide with a heavy target, but 

do not excite the target, then the process is known as an elastic coll ision. If the 

coll ision of the electron with the target molecule leaves the target molecule in 

an excited state, then the collision is inelastic. The fract ion of energy 

transferred to the target in an elastic collision is determined by the mass ratio of 

the coll iding particles; 

Wj^ _ M 

Equation 1.1^ 



Here Hf̂ rris the energy transfer, \N is the energy of the electron, M is the mass 

of the heavy particle and Mm is the particle losing energy. 

In an inelastic coll ision between an electron and a heavy particle, an electron 

can transfer almost all of its energy to the heavy particle, creating energetic 

p lasma species. It is these inelastic coll isions, in particular those which cause 

ionization and create electron-ion pairs which sustain the p lasma against 

energy losses and give it many of its features, with energies in the range 0.1 eV 

to 30 eV. The density of the charged particles created by this p lasma is defined 

by the degree of ionization, a, where rii is the ion density and n is the plasma 

density. 

n. 
a = — 

n 
Equation 1.2 

This equat ion specif ies the fraction of the particles in the gaseous phase that 

are ionized. At low pressures, a typically has a value of 10"^ - 10 ' ^ . 

1.1.1.3 Plasma Temperature 

One of the physical parameters defining the state of a quasi-neutral gas in 

thermodynamic equil ibrium is the mean translational energy of molecules in the 

system, represented by T. Al though a p lasma is a mixture of particles of 

different charges and masses, it can broadly be considered as two separate 

systems, at low pressure. The processes undergone by these two sub-systems 

are character ized by their own specif ic average temperature: the ion 

temperature, Ti and the electron temperature, 7©. Electrons gain energy from 

the electric f ield, some of this energy is then transferred to heavy particles by 

coll isions. These heavy particles lose heat to the surroundings by radiation or 

heat transfer.^ 

For a more complete descript ion, other temperatures must also be considered. 

These are Tg, the translatory energy of the gas, Tex, the energy of the excited 

particles, Ton and Td, energy of ionization and dissociation and Tr, the radiation 

energy. Complete thermodynamic equil ibrium is not achieved in such systems 

because Tr at the envelope of the p lasma does not equal the temperature of 



the p lasma bulk. However, local thermal equil ibrium can be achieved in the 

p lasma in volumes of the order of the mean free path length. This is called 

Local Thermal Equilibrium Plasma, (LTE plasma). At low pressures, such as 

the p lasmas produced by DC or RF excitation, LTE is not achieved. This gives 

rise to what is known as a Non-Local Thermal Equilibrium Plasma (non-LTE 

plasma). In a non-LTE p lasma, the temperature of the heavy particles is 

usually too small to promote chemical reactions in thermodynamic equil ibrium. 

Te is therefore the most Important factor in non-LTE p lasmas. The fraction of 

electrons that will cause different reactions within the p lasma, the overall 

eff iciency of the p lasma process and the rate of reaction are increased as Te 

increases. 

1.1.1.4 Electron Temperature^'^ 

The velocity distribution function f(v) for a system of particles is def ined as the 

density of particles in the velocity space that satisfies the equat ion: 

oo 

n(cm~^) = 47r f(v)v^dv 
0 

Equation 1.3 

where v is the velocity, f(v) is the velocity distribution funct ion and n is the 

density of the particles in the geometrical space. There are several 

assumpt ions that can be made in this first approximat ion: 

1. The velocity distribution of electrons within a p lasma is isotropic. 

2. That inelastic collision effects act only as a perturbation to this isotropy. 

3. Electric field effects are negligible. 

Following these assumpt ions, the velocity distribution is Maxwell ian. A 

Maxwell ian distribution assumes that the temperature of the electrons, Te, is 

equal to the temperature of the gas, Tg. This Maxwel l ian distribution only gives 

us a first approximation of the electron energy (velocity) within the plasma. In a 

low-pressure p lasma system, we can use different approximat ion. These are:'* 



1. The electric field strength is low enough to neglect inelastic coll isions, but is 

large enough for the electron temperature, Te, to be much higher than the 

ion temperature, T). 

2. The electric field is of a frequency, co, much lower than the f requency of the 

coll isions, v. 

3. The coll ision frequency is independent of the electron energy. 

These assumpt ions give rise to a Druyvesteyn distribution of electrons within 

the plasma.^ This is a better approximation than the Maxwell ian one for energy 

distributions in non-LTE p lasmas. A Druyvesteyn distribution is characterized 

by an energy shift to higher electron energies compared to the Maxwell ian one. 

Both distributions have high-energy tails, and this is an important consideration 

for p lasma phase reactions that have a min imum energy threshold. For 

example, at an average electron energy of 5 eV, there will still be a significant 

number of electrons with energies of 30 eV and over. The Druyvesteyn 

distribution in particular predicts a large number of these higher energy 

electrons. These high-energy electrons can have a significant effect upon 

reaction rates even though they are present in small concentrat ions. 

The dif ference between the calculated electron energies using the Maxwell ian 

and Druyvesteyn equat ions is shown in Figure 1.1, page 6. 
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Figure 1.1 The differences on electron distribution as calculated for Maxwellian 

and Druyvesteyn approximations. 

At low pressures, Te is much greater than Tg. As the pressure increases, the 

amount of energy transferred from electrons to neutrals increases, causing Tg 

to rise and Te to fall. Te and Tg converge between 10 and 100 torr, and at this 

point, the plasma becomes arc-like. Within the arc, Te = Tg. At this point, 

equilibrium relations describe the species within the plasma, where as when Tg 

is much larger than Tg, the distribution of species is best represented by Te. 



1.1.2 Plasma Types. 

Plasmas that occur in nature cover a large range of electron densities and 

temperatures. The electron density can range from 1 to 10^° cm"^, and the 

electron energy can vary from 10'^ to 10^ eV. 

Table 1.1 Different Plasma Types and Parameters^ 

Plasma Type Electron Density/cm'^ Electron Energy/eV 

ionosphere 10̂ ^ 10-^ 

Solar corona lO'^-IO^ 10 

Glow discharges 10^- 10^° 1 - 1 0 

Low pressure discharges 10^^-10^' 1 - 10 

Thermonuclear fusion 10^^-10^' 10^-10^ 

Thermonuclear reaction 10^6-10^° 10"^- 10 ' 

1.1.2.1 Thermal Plasmas 

LTE plasmas exist under two circumstances: 

1. When the heavy particles are very energetic, at temperatures of 10^ - 10® K 

( 1 0 ^ - 1 0 ' eV). 

2. When the pressure is atmospheric, even at temperatures as low as 6000 K. 

The high temperature of these plasmas renders them highly destructive and 

unsuitable for most materials. This comparative lack of utility means that no 

further mention will be made of them, and references to plasmas in this thesis 

will be referring to non-LTE, or cold plasmas. 

1.1.2.2 Cold Plasmas 

In low-pressure discharges, thermodynamic equilibrium between the electrons 

and heavy particles is not reached. These plasmas are of the non-LTE type. In 

these plasmas the electron temperature, Te, is much greater than that of the 

heavy particles, Te » Tj ~Tg > Tex, where T, is the ion temperature, Tg is the gas 

temperature, and Tex is the excitation temperature that characterizes the energy 

of the excited particles in the plasma. Electron temperatures can reach lO ' -

10' K, (1-10 eV), whilst the temperature of the gas does not exceed room 
7 



temperature, hence these plasmas are termed cold plasmas. Cold plasmas are 

widely used for their non-equilibrium properties and their ability to cause both 

physical and chemical reactions at low temperatures. Their applications vary 

from microelectronic fabrication to surface hardening of metals. 

1.2 WHY USE PLASMA METHODS? 

The use of plasmas for the treatment of solid surfaces has several advantages 

over conventional solution phase chemistry. Some of these advantages are 

given below; 

1. Plasma polymer film thickness can be easily controlled. Typical thicknesses 

range from 50nm to 1 micron. 

2. Films produced by plasmas are often highly coherent and adhere to a 

variety of substrates. These include conventional polymers, glass and metal 

surfaces. 

3. The films deposited are pinhole-free and highly crosslinked. 

4. Multilayer films or films with grading of chemical and physical properties are 

easily made. 

5. The monomers used can be solid (e.g. maleic anhydride), liquid (e.g. allyl 

amine), or gas (e.g. hexafluoropropylene oxide). 

6. Altering the process parameters can vary the chemical composition of the 

plasma polymer. 

7. Substrate geometry is not a limiting factor, which means that substrates with 

complex shapes can be treated in the plasma. 

8. Very small amounts of precursor are required for plasma formation. 

9. Plasma processes are solvent free and energy efficient, rendering them an 

environmentally friendly and cost effective alternative to traditional methods. 

1.2.1 Surface Modification by Piasmas 

Plasma techniques for surface modification^ can be divided up into two general 

categories. The first of these is the use of non-polymerising gases such as 

tetrafluoromethane (CF4), argon (Ar) and helium (He). Generally, plasma 

treatment with inert gases results in physical ablation and the formation of free 

8 



radicals at the surface. Ablation occurs as a result of ion sputtering and 

collisions of energetic neutral species with the surface. The fragments removed 

from the surface in this way may be activated by the plasma and reincorporated 

in the polymer surface, or redeposited as a highly crosslinked layer. The 

ultraviolet radiation emitted by the plasma causes free radicals to be formed at 

the polymer surface. This can also enhance the crosslinking, because the free 

radicals created are able to migrate along the polymer chains. Plasmas of 

these non-polymerisable gases can be used to activate polymer surfaces as 

first suggested by Beauchamp and Buttril l/ allowing the improvement of 

surface characteristics without affecting the bulk properties. Surface activation 

reactions can affect the wetting properties, crosslinking, adhesion, barrier 

properties and even biocompatibilty.^'^° 

Plasma polymerization is the alternative method of plasma surface 

modification. It refers to the deposition of polymer films through plasma 

dissociation and excitation of an organic monomer gas and the subsequent 

deposition and polymerization of the excited species on the surface of the 

substrate. This technique can be used to deposit films of thickness from tens to 

thousands of angstroms. 

Plasma polymerization is a strongly system-dependent process. Whereas 

conventional polymerization processes are based upon molecular processes, 

polymer formation within a plasma is an atomic process. The polymers formed 

within the plasma tend to be highly branched and highly crosslinked. Free 

radicals formed on the polymer surface can be used to initiate graft 

polymerization. 

Plasma polymerization is characterized by several features: 

1. Plasma polymers have no obvious repeat units, as in conventional 

polymers. 

2. The monomer used is not necessarily required to have a functional group, 

such as a double bond for plasma polymerization to occur. 

Plasma polymerization occurs in several steps. These are (i) initiation, (ii) 

propagation, (iii) termination and (iv) reinitiation. In the initiation stage free 

9 



radicals and atoms are produced either by collision with energetic electrons and 

ions with monomer molecules or by ion impact leading to the dissociation of 

monomers adsorbed onto the surface. During the plasma the substrate surface 

adsorbs both monomer molecules and free radicals. In the propagation stage 

of the reaction, the formation of the plasma polymer chains takes place both in 

the gas phase and at the substrate surface, where the deposited polymer film 

lies. In the gas phase the propagation process requires the addition of a radical 

atom to another radical or molecule. At the surface, propagation occurs by 

interactions between surface free radicals and either gas phase or adsorbed 

monomers. Termination also occurs in both the gas phase and at the polymer 

surface in a manner similar to propagation, but ending with either the final 

product or a closed polymer chain. However, the neutral products formed by 

this termination step can subsequently undergo re-initiation and propagation 

reactions. In re-initiation, chain fragments are reconverted to radicals by 

collision with electrons in the gas phase, the impact of energetic particles or by 

photon absorption on the surface of the polymer film. 

In the case of pulsed plasma polymerisation there have also been studies to 

determine the deposition mechanism. 

10 



Figure 1.2 Diagram of Plasma Polymerization 
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Polymer deposition path. 
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Figure 1.2 summarises the homogeneous polymerization in the plasma phase 

and the heterogeneous polymerization at the film surface. Path 1 shows that 

the gaseous monomer can polymerize in the plasma and be deposited as a 

film. Essentially, it is a conventional molecular polymerization process, 

resulting in direct polymer formation. This stage occurs only if the starting 

monomer has polymerisable functional groups. Paths 2 and 3 represent 

plasma polymerization, a process that does not necessarily require the 

monomer to possess conventional polymerisable moieties. Path 2 shows that 

the monomer is also converted into reactive products, or non-reactive products, 

as shown in path 4. The reactive products can be either converted into polymer 

film, path 3, or converted to non-reactive products, path 5. Degradation of the 

polymer film can occur to form non-reactive products, path 6. The intermediate 

reactive products may be ions, excited molecules and free radicals, not 

necessarily preserving the original monomer. 

The polymers produced in this way are totally amorphous and exceptionally 

crosslinked. The final structure of a plasma polymer is dependent upon the 

11 



monomer that is used and the conditions under which the plasma is produced. 

Factors that may be varied include the monomer pressure, the power with 

which the plasma is produced and the duration of the reaction. They differ from 

conventional or step growth polymers, because there is no obvious repeat unit. 

Yasuda^° proposed the following process for plasma polymerization, known as 

the "rapid step-growth" model. Figure 1.3. 

Figure 1.3 Yasuda's rapid-step growtti model 
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Cycle I represents rapid step-growth by reactivation of reacted products with 

monofunctional activated species. 

Cycle II represents rapid step-growth via multifunctional activated species, such 

as di-radicals, ion-radicals, etc. 

1.2.2 Functionalization of surface groups and plasma polymers 

If plasma polymers with functional groups can be deposited, then there is scope 

for the surface functionalization of these layers. Work has already been carried 

out to functionalize polymers that have been deposited at surfaces through 

techniques such as the formation of self-assembled monolayers (SAMs) using 

conventional solution-based chemistry. The advantage of this type of 
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functionalization is that the bulk properties of the material under investigation 

remain unaffected, whilst new functionalities are introduced at the surface. 

The most common substrate for the formation of these SAMs is gold, since by 

using a thiol terminated hydrocarbon chain with a second functional group at 

the CD end well adhered layers can be produced through the sulphur - gold 

linkage, with the a) end free to undergo further reactions. The co groups of 

these chains are usually carboxylic acids,^^'^"^ although there has also been 

work reported with epoxysilane functionalized SAMs^^ and oligo(ethyleneglycol) 

terminated and amine containing alkanethiolates.''^ 

Figure 1.4 SAf^/IS on gold with terminal carboxylic acid groups'^ 

COOH COOH COOH 

Au substrate 

The potential of these SAMs for further functionalization reactions, was 

exhibited in work by Whitesides,^^ in which the carboxylic acid groups are 

reacted with trifluoroacetic anhydride and triethylamine to yield surface 

anhydride groups, Figure 1.4. These groups were then functionalized with 

poly(ethyleneimine), which was bound to the surface via amide linkages formed 

through reaction with the anhydride groups. Figure 1.5, page 14. As 

poly(ethyleneimine) contains many primary and secondary amine functionalities 

it can be used to attach and stabilize other groups which are reacted with the 
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surface, such as surfactants and co-polymers such as poly(octadecene-a/f-

maleic anhydride), and poly(styrene-a/f-maleic anhydride). 

Figure 1.5 Reactions of carboxylic acid terminated SAM's to give anydride 

groups, showing scope for further functionalization.^^ 
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Crooks has also used SAMs on gold to present functional groups at the surface 

which can then be used to form hyperbranched polymer layers at the surface. 

Again this requires the use of an alkylthiol terminated functional chain, present 

carboxylic acid groups at the surface. These carboxylic acid groups are then 

functionalized with a, to-diamino-poly(fe/t-butyl acrylate). Hydrolysis of the butyl 

acrylate groups gives a grafted layer of poly(acrylic acid).^^'^® Since these 

layers are extremely rich in carboxylic acid groups they have been used for 
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further reaction with many different functionalized amines and alcohols, in order 

to introduce groups such as pyrene, ferrocene, poly(ethylene glycol), 15-crown-

5, and dyes.^^ This demonstrated the potential for the functionalization of 

surface reactive groups, in order to control the surface properties. The amount 

of these groups attaching to the surface can be controlled through using known 

concentrations of solutions, as demonstrated in the example of p y r e n e . T h e 

advantages of introducing groups at the surface in this way is that it gives rise 

to a system by which the composition can be easily controlled, and 

functionalized further. These functionalized alkyi thiols have also been used by 

Crooks to directly immobilize poly(amidoamine) (PAMAM) dendrimers to gold 

surfaces, through the formation of multiple amide linkages between the terminal 

amine groups of the dendrimer and the carboxylic acid groups of the SAM.^° 

In this thesis, the bulk of the work has used a maleic anhydride plasma polymer 

as a substrate for surface functionalization reactions. The basis for this choice 

is that the anhydride functionality is more reactive than the corresponding acids, 

and will readily undergo reactions with amine functionalized molecules, leading 

to the anchoring of the reactive molecules to the surface via amide linkages. 

This will be discussed further in Chapter 2. 

Pulsed plasma polymerisation is of interest because it allows for greater control 

of the polymers deposited at the surface. A higher degree of structural 

retention is possible, since monomer fragmentation is only occurring for a short 

period of time, in comparison with the longer time intervals between each pulse. 

It is believed that this improved structural retention is due to the generation of 

free radicals in the plasma on-time, which allow conventional polymer 

processes, such as grafting to radical sites in the plasma off-time.^^ Once the 

free radicals have recombined or disproportionated, activation by another 

plasma pulse is required. The shorted the plasma on-time with respect to the 

plasma off-time, the better structure and composition of the plasma polymer 

layer. 

Another method of controlling the structure of the plasma polymer films is 

through controlling the power of the plasma used to deposit them. By reducing 

the power, effectively making the plasma less destructive, better retention of the 
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chemical structure is possible. The average power supplied to the plasma <P>, 

is given by the equation below:^^ 

(/>)=/>, 

Equation 1.4 

Pew is the continuous wave power of the plasma, sometimes called the peak 

power, ton is the plasma on-time, and toff is the plasma off-time. The plasma 

duty cycle is give by: 

Equation 1.5 

Plasma duty cycles and power can be varied to give a range of average 

powers. The general trend is that the lower that power, and the smaller the 

duty cycle, the better the retention of the chemical structure. A combination of 

low power, short on-time and long off-time appear to be most effective. 

Deposition rates are affected by the changes in the power of the plasma. In the 

case of acetylene it has been shown that there is a linear relationship between 

power and deposition rate for the pulsed plasma, but this is not observed for 

the continuous wave plasma. When referenced against plasma on-time, the 

deposition rate is considerably larger for a variety of pulsed plasma polymerized 

monomers than for the continuous wave. This was attributed to better 

monomer diffusion to the growing surface in the off-time and more complete 

attachment of fragments, as plasma enhanced desorption only occurs in the 

off-time.^^ 

Another area of work that has looked at controlling and modifying surfaces 

involves the deposition of alternating layers of polyanions and polycations, an 

approach which provides scope for the attachment and immobilization of 

functional molecules at the surface.^^"^^ Several active polymers have been 

used, either as the polyanion or polycation in the construction of these layers. 
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Examples include DNA,̂ "̂̂ ® other proteins,^^'^° (such as streptavidin), viruses,^^ 

and metal nanoparticles.^^ 

Plasma polymers of ally! amine have been used as the starting point for the 

attachment of biological molecules to surfaces^^, and studied with a view to 

providing amine groups for tissue culture studies.^' Allyl amine plasma 

polymers can be used as polycations, in a similar way to that described by Lvov 

and Decher as a starting point to build up electrostatic layers.̂ "̂̂ ®'̂ ®"̂ ^ 

1.3 ANALYTICAL TECHNIQUES USED 

1.4 X'RA Y PHOTOELECTRON SPECTROSCOPY (XPS) 

1.4.1 Background 

Surface analysis by XPS is achieved by irradiating the sample surface with 

monoenergetic soft X-rays and analysing the energies of the photoemitted 

electrons. The two most common X-ray sources are Mg K„ with an energy of 

1253.6 eV and a line width of 0.7 eV and Al K„ with an energy of 1486.6 eV and 

a line width of 0.85 eV. The narrow line widths of these sources avoids limiting 

the resolution of the technique, whilst their energies are large enough to provide 

detailed information over a sufficiently large energy range. These soft X-rays 

have a limited penetrating power in the solid, usually up to 10 micrometers. 

Their interaction with atoms in the surface region, causes electrons to be 

emitted in accordance with the photoelectric effect. The emitted electrons have 

a kinetic energy, KE, given by: 

KE = hv-BE-(/)^ 

Equation 1.6 

where hv is the energy of the photon, BE is the binding energy of the atomic 

orbital from which the electron originates and (ps is the spectrometer work 

function. 

Each element has a unique set of binding energies that XPS can use to identify 

and determine its concentration at the surface. In addition, binding energies 
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are sensitive to an element's oxidation state, allowing chemical information to 

be deduced. The presence of electron withdrawing substituents results in 

decreased nuclear screening by the valence electrons, and generally increases 

the binding energy by a few electron volts. Differences arising from the 

chemical shifts allow identification of different chemical states for the analyzed 

materials. In the case of carbon (C(1s)), the shifts in binding energy allow the 

functionality of the carbon atom to be deduced. Typically CHx has a binding 

energy of 285.0 eV, whereas 0 = C - 0 - C = 0 will have a binding energy of 

289.4 eV. 

Figure 1.6 XPS Processes 
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The surface sensitivity of XPS comes from the energy dependence on the 

escape depth of the photoelectrons. There are three processes of energy loss 

that can occur in a solid; lattice vibrations (phonons), excitation of collective 

density fluctuations (plasmons), and excitation of particles. Low kinetic energy 

(KE) electrons are not able to produce these effects and their escape depth is 

large. For high KE electrons the cross section for these interactions is again 

low and so their escape depth is large. However, medium KE electrons have a 

high cross section for these effects and their escape depth is much smaller. A 

graph of escape depth against energy is shown in Figure 1.7, page 19.^^ 
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Figure 1.7. Escape deptti curve. 

The escape depth goes through minimum of 1 nm at an electron KE of 

approximately 100 eV. The kinetic energies of photoelectrons produced by 

excitation from an X-ray source are about 100-1000 eV. The corresponding 

escape depth for these photoelectrons are about 1-5 nm, hence this is a 

surface sensitive technique. 

1.4.2 Instrumentation 

All analysis performed in this thesis utilized a VG ESCALAB Mk II surface 

analysis chamber, all descriptions of instrumentation are made with reference 

to this piece of equipment. 
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1.4.2.1 The Analyzer 

Electrons are ejected from the sample and are detected by an electron energy 

analyzer according to their kinetic energy. The analyzer operates as an energy 

window, and in order to maintain a constant energy resolution, the pass energy 

is fixed. The electron energy analyzer used in the ESCALAB Mk II is a 

concentric hemispherical analyzer, (CHA), Figure 1.8. It consists of two 

hemispheres of radii Ri (inner) and R2 (outer), positioned concentrically. 

Potentials -Vi and -V2 are applied to the inner and outer spheres respectively, 

such that V2 has greater magnitude than Vi^^ 

slit plate 
width, Wi 

slit plate 
width, W2 

Figure 1.8 Schematic of a Concentric Hemispherical Analyzer 

If electrons with energy E = eVo are injected tangentially to the median surface 

at radius Ro, they will follow a circular orbit of radius RQ. The potential along the 

median surface is VQ. Electrons of the correct energy E, injected tangentially at 

the source, S, are all focused at F for the hemisphere of radius RQ. By 

changing the voltages between the plates, electrons of specific kinetic energy 

will pass through the analyser and into a photomultiplier. The signal is 
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amplified and counts are accumulated on a PC. The output plot displays the 

binding energies (or kinetic) of the photo-ejected electrons against their 

intensities. 

1.4.2.2 The Use of Vacuum 

X-ray photoelectron spectrometry is carried out under vacuum for two main 

reasons. The first Is so that electrons emitted from the sample should meet as 

few gas molecules as possible so they are not scattered and lost. This means 

that the mean free path of the emitted electrons must be greater than the 

dimensions of the spectrometer. The second is that in order to avoid surface 

contamination by adsorption of gas molecules onto the surface, the pressure in 

the main chamber of the spectrometer must be less than 10"^ torr.^^ XPS is 

extremely surface sensitive and so is prone to contamination effects. 

1.4.2.3 X-ray Source 

The X-ray source consists of an earthed filament and an anode at high positive 

potential. Applying a current to the filament leads to thermionic emission of 

electrons. These electrons are accelerated towards the anode, and upon 

collision with the anode, cause photons of a known energy to be emitted. 

These photons pass out through an aluminium window at the front of the X-ray 

source and impinge upon the sample under investigation. The aluminium 

window acts as a barrier, screening the sample from stray electrons, heating 

effects and contamination arising from the source. In the case of a twin-faced 

anode each face is coated with a metal film, typically aluminium and 

magnesium, about lO^im thick. These films are thick enough to exclude Cu La 

radiation from the anode, but not thick enough to significantly impair heat 

transfer.^^ 

1.4.2.4 Details of XPS Spectrometer and Spectra 

X-ray photoelectron spectroscopy (XPS) analysis was carried out using a VG 

ESCALAB electron spectrometer equipped with a Mg Ka-] 2 X-ray source 

(1253.6 eV) and a concentric hemispherical analyzer. Photo-emitted electrons 

were collected at a take-off angle of 30° from the substrate normal, with 
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electron detection in the constant analyzer energy mode (CAE, pass energy = 

20 eV). Core level XPS spectra were fitted with Gaussian components all 

having equal full-width-at-half-maximum (FWHM) using Marquardt minimization 

computer software. Instrumental sensitivity factors determined from chemical 

standards were found to be in the following ratios: 

Table 1.2 Sensitivity factors for the ESCALAB Mk II used in this work 

Element (energy level) Sensitivity factor relative to Carbon 

(C(1s)) 

C(1s) 1.0 

0(1 s) 0.36 

F(1s) 0.23 

N(1s) 0.72 

Au(4f 7/2) 0.09 

CI (2p 3/2): 0.6 

P (2p 1/2 and 2p 3/2) 0.66 

Complete coverage by the plasma polymer layer was checked for by verifying 

the absence of any signal from the underlying substrate (which in the case of 

glass was the Si(2p) peak). 

1.4.3 Spectral Interpretation 

The XPS spectrum is displayed as a plot of counts per second against the 

electron binding energy. The number of electrons collected for a given atomic 

core level per unit time is a measure of the elemental abundance. The most 

intense photoelectron lines are moderately symmetrical and are typically the 

narrowest lines observed in the spectrum. The full width half maximum 

(FWHM) of the recorded peaks is a combination of the natural line width of the 

core level, the width of the photon source (X-ray line) and the analyzer 

resolution. This is shown in equation 1.7. 

Equation 1.7 
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Here A E n is the natural line width of the core level, A E p is the line width of the 

photon source and A E a is the analyzer resolution. When comparing XPS lines 

for the same element in different chemical environments, a change in the 

chemical shift is observable. This can be explained in terms of the change in 

binding energy. The attractive potential energy of the nucleus and the repulsive 

Coulombic interactions with other electrons determines the energy of the 

electrons bound in the core levels. When the chemical environment changes, a 

spatial rearrangement of the average charge distribution occurs because of the 

creation of different potentials by the nuclear and electronic charges of the 

other atoms present. The magnitude of the shift in binding energy is 

determined by the type and strength of the bond formed. 

1.4.4 XPS Peak Fitting 

In this work a Marquardt minimization is used to give a least squares fit. XPS 

line shapes are often represented by an asymmetric mixed Gaussian-

Lorentzian function. The basic shape of the XPS peak is Lorentzian, and this is 

then modified by instrumental factors, and other effects such as phonon 

broadening to give the Gaussian c o n t r i b u t i o n . T h e final peak shape is 

asymmetric because of various loss processes. Both intrinsic and extrinsic loss 

processes contribute. Intrinsic loss processes include plasmons, satellites and 

conduction band interaction in conductors. This makes up the primary 

spectrum, which is considered separately from extrinsic loss processes, such 

as plasmon peaks and tails to higher binding energy due to inelastically 

scattered electrons. Intrinsic processes are associated with photoemission and 

extrinsic processes occur after photoemission. 

1.5 ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM INFRA­
RED SPECTROSCOPY (ATR-FTIR) 

Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR 

FTIR) is used to obtain IR spectra of opaque materials. The sample is placed 

on top of a crystal (e.g. polished silica, silver chloride, germanium, or diamond) 

which is transparent in the region of the IR being used. The refractive index of 

the sample has to be much less than that of the crystal. The differences in 
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refractive indices between the optically more dense crystal and the sample 

causes internal reflection to occur at the interface for angles of incidence 

greater than the critical angle. The critical angle is defined by, 

0^ =s in Equation 1.8 

where 0c is the critical angle of incidence, and n2 and rii are the refractive 

indices of the sample and crystal respectively. The beam is not completely 

reflected at the interface but propagates a few îm into the surface, Figure 1.9. 

Penetration 
into sample Sample 

infra-red 
laser beam Diamond 

Figure 1.9. Reflection at tlie interface between the ATR crystal and sample. 

The reflected beam can be absorbed by the groups present in this interface 

region, resulting in an absorption spectra of the surface of the sample. The 

depth of penetration into the sample is dependent upon the wavelength, and is 

about 0.1 to 1 nm for infra red radiation,'*^ so good contact between sample and 

the crystal is necessary. The strength of the signal can be Improved by 

allowing multiple passes of the beam through the crystal thereby increasing the 

effective path length. 

ATR-FTIR was performed using a Graseby Specac Golden Gate ATR 

accessory fitted to a Mattson Polaris instrument. The plasma polymer layers 
24 



deposited onto pre-formed NaCI disks were employed for infrared absorption 

analysis using a. This was operated at 4 cm'^ resolution over the 400 - 4000 

cm"̂  range. 

1.6 OTHER ANALYTICAL TECHNIQUES 

1.6.1 Tapping Mode Atomic Force IVIicroscopy 

In Tapping Mode AFM a sharp tip is made to oscillate at or near to its 

resonance frequency so that it makes intermittent contact with the sample 

surface.'*^ This reduces the lateral forces associated with contact mode AFM, 

and so allows the examination of soft samples, such as polymers.'*^ Height 

images are recorded by using a feedback circuit to maintain a constant 

oscillation amplitude. In addition, phase shift images can be simultaneously 

recorded to allow the mapping of heterogeneous surfaces.'*'̂  This phase 

contrast has been attributed to adhesion,hydrophobicity'*® and elasticity."^^ In 

this thesis a Digital Instruments Nanoscope III atomic force microscope was 

used. The microscope was operated in Tapping Mode, where changes in 

oscillation amplitude of the cantilever tip provide a feedback signal 

corresponding to variations in height across the underlying surface.'*^ 

1.6.2 Transmission Electron l\/licroscopy 

In transmission electron microscopy (TEM), a beam of highly focused electrons 

is directed toward a sample with a thickness of less than 200 nm.'̂ ^ Electrons 

are often more useful than visible photons for generating images because they 

posses shorter wavelengths.^" This permits magnification and imaging of a 

specimen up to 800 times greater than with the best light microscope. These 

highly energetic incident electrons interact with the atoms in the sample 

producing characteristic radiation and particles, which can give information for 

materials characterization. Analysis is possible of both deflected and non-

deflected transmitted electrons, backscattered and secondary electrons, and 

emitted photons. Details about the interior of the specimen may also be 

obtained, because the electron beam penetrates through the sample. It gives 

the size, shape, and distribution of the phases that make up the material, as 

well as the composition of the material, the distribution of the elements, and 

segregation if present. It shows the crystal structure of the phases and the 
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character of the crystal defects. In TEM, the areas with the highest 

concentrations of heavy metal compounds are more dense than surrounding 

areas. Therefore, less of the electron beam passes through to the detector and 

the area appears darker in the final image. The signal from the detector is 

processed and displayed on a fluorescent material for observation, recorded on 

photographic film as a permanent record, or digitally captured for analysis 

and/or storage. For biological purposes samples are often stained to improve 

contrast, although in the case of metallic samples this is not necessary. The 

TEM's for this work were performed using a Philips Cf\/I100 (Compustage) TEM 

operated at lOOkV. For TEM the plasma polymer deposition and 

functionalization reactions were carried out onto copper grids of 400 mesh. 

These had been coated with the Pioloform (Agar), and then were carbon 

coated, prior to plasma treatment. 

1.6.3 Optical Microscopy 

The optical microscope uses photons of light, rather than electrons, as in the 

case of TEM. The theoretical limit of magnification for a light microscope is 

about 1200X whereas a high quality TEM can magnify and resolve a specimen 

greater than 1,000,000x.^° Optical microscopy is an easy and useful technique 

because it can be used to analyze samples in air or water, rather than under 

vacuum.^^ 

1.6.4 Gas Barrier IVIeasurements 

Mass spectrometric sampling devices^^ have previously been used to evaluate 

the permeability of common elastomers^ '̂̂ "*. Gas permeation measurements 

for the composite dendrimer layers (Chapter 3, section 3.2.5), were obtained in 

the manner described below, using a mass spectrometric sampling device.^^ 

This entailed placing the substrate between two drilled-out stainless steel 

flanges that were connected to a UHV chamber via a gate valve (base pressure 

of 5 X 10'̂ ° mbar). One face of the sandwich structure was then exposed to 

oxygen gas (BOG, 99.998%) at a pressure of 1000 mbar. Gas permeation 

across the substrate was monitored by a UHV ion gauge (Vacuum Generators, 

VIG 24) and a quadrupole mass spectrometer (Vacuum Generators SX200). 
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The quadrupole mass spectrometer's response per unit pressure was 

calibrated by introducing oxygen gas directly into the UHV chamber and 

recording the mass spectrum at a predetermined pressure of 4 x 10'^ mbar 

(taking into account ion gauge sensitivity factors). This value was then used to 

quantify the mean equilibrium permeant partial pressure (MEPPP) of gas 

permeation through the film in the steady state flow regime.^^ The barrier 

improvement factor (BIF) was then calculated by referencing to the MEPPP 

measured for two untreated pieces of polypropylene film loaded into the gas 

permeability apparatus. 

1.6.5 Adhesion Testing 

Single lap shear adhesion tests^ '̂̂ ® were performed using an Instron 5543 

tensilometer, operating at a crosshead speed of 10mm min'V The purpose of 

these tests was to see if the various diamine containing functionalities were 

capable of adhering two pieces of substrate treated with the maleic anhydride 

plasma polymer (MAPP). Adhesion test results are presented in Chapters 2 -

4. 

1.6.6 Film Thickness Measurements. 

Film thickness measurements were obtained in two ways. The first method is 

called the Quartz Crystal Microbalance (QCM), and this uses the piezoelectric 

sensitivity of a quartz crystal to added mass. When a voltage is applied across 

the faces of a properly shaped crystal, the crystal distorts, and changes shape 

in proportion to the applied voltage. At certain frequencies of applied voltage, a 

sharp electro-mechanical resonance is encountered. When mass is added to 

the face of a resonating crystal, the frequency of the resonance is reduced. 

This change in resonance frequency was found to be related to the change in 

mass from the added material. 

M j _ ( A F ) 

M„ F„ 

Equation 1.9 
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Where Mt is the mass of the added material, Mq is the mass of the uncoated 

crystal, AF is the change in frequency and Fq is the uncoated crystal resonance 

frequency. Substitution gives rise to the following equation: 

Equation 1.10 

Where the film thickness Tf, is proportional (through K) to the frequency change 

(AF), and inversely proportional to the density of the film, df. Using a quartz 

crystal sensor (Kronos QM300) assuming a film density of 1.5 gcm'^ located 

adjacent to the substrate in the plasma reactor, and found to be 34±5 nm. 

Film thickness' measurements were also obtained using a nkd-6000 

spectrophotometer (Aquila Instruments Ltd). The obtained transmission-

reflectance curves (over the 350 - 1000 nm wavelength range) were fitted to a 

Cauchy material model using a modified Levenburg-Marquadt method. 
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CHAPTER TWO 

Functionalizatlon of Maleic Anhydride Plasma 

Polymer (MAPP) Layer with TrifluoroethySaminie 

(TFEA) and Jeffamine® 

2.1INTRODUCTION 

Well-adhered polymeric surfaces containing anhydride groups are widely 

sought after for improving interfacial bonding\ polymer/polymer compatibility,^ 

as well as providing anchoring sites for chemical derivatization reactions,^ (e.g. 

adhesive coupling reagents). Conventional bulk homopolymerization,'^ 

copolymerization,^ and graft polymerization^ of maleic anhydride have been 

extensively studied in the past. Forming films from these materials require 

organic solvents^'^ or reactive polymer e x t r u s i o n , i n conjunction with 

elevated temperatures and/or pressures. A more straightfonward approach has 

been recently developed comprising of pulsed plasma polymerization of maleic 

anhydride, where the overall anhydride composition in the film can be controlled 

by simply programming the electrical discharge parameters (e.g. duty cycle, 

power, etc.).^^ Pulsing the plasma in this way restricts monomer fragmentation 

and reduces damage of the growing polymer layer during the duty cycle on-

time, as well as encouraging conventional polymerization reaction pathways 

during the off-period (Scheme 2.1), page 34.̂ "̂̂ "̂  
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Scheme 2.1 Plasma Polymerization of Maleic Anhydride 

Pulsed at 5W CW power 20|as 

O " " O on, 1200^8 off 'O ' 

Maleic Anhydride "^^'^'^ Anhydride Plasma Polymer 

A major benefit is that the surfaces of complex shaped substrates can be easily 

functionalized via chemical derivatization chemistry of surface anhydride groups 

(e.g. nucleophilic attack by amine- or alcohol-terminated moieties to produce 

amides / imides and ester linkages respectively^^'^^), as demonstrated in 

Scheme 2.2, page 35. 

In this chapter, the functionalization of maleic anhydride pulsed plasma polymer 

(MAPP) layers with 2,2,2-trifluoroethylamine (TFEA) and Jeffamine®-D230 

(poly(propylene glycol) bis(2-aminopropyl ether)) is reported. The former has 

been chosen as a model nucleophile in order to demonstrate the viability of the 

proposed derivatization chemistry, whilst surfaces functionalized with the latter 

reagent (an amine terminated polyether) are of potential interest for adhesion 

and biomedical purposes (e.g. controlled attachment of heparin), 

Vapour phase functionalisation reactions have been to modify these MAPP 

surfaces. Originally, surface functionalisation was carried out in solution used 

as a "marking" technique in order to make specific functionalities more easily 

seen by XPS. Trifluoroacetic acid was one of the first labelling reagents used, 

as a marker for hydroxyl groups and hydrazine for carbonyl groups.^ '̂̂ ° 

Subsequently, vapour phase functionalisation reactions have been 

performed^°'^^ and the use of TFEA and Jeffamine in this chapter are an 

extension of this idea. Vapour phase functionalisation provided a means of 

labelling surfaces that can not be placed into a liquid, and broadens the 

applications of these plasma polymer layers. 
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Scheme 2.2 Reaction of MAPP with amines 
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anhydride ring 

Amic acid 

OH 
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Finally, the ammonium salt loses a 

proton to the carbonyl anion, giving 

rise to the amic acid. 
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2.2. EXPERIMENTAL 

The typical reactor set up used is shown below, Figure 2.1, 
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pump 
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Liquid Nitrogen 
Cold Trap 

Glass 
Slide Glass Substrate 
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Tube / Gas 
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Matching Unit Power 
Meter 

Os cilloscope 
Pulse 

jGenerator RF Generator 

Power Supply 

Figure 2.1 Schematic of a typical plasma reactor set-up used in this thesis 

2.2.1 Pulsed Plasma Polymerization of Maleic Anhydride 

Briquettes of maleic anhydride (Aldrich, 99% purity) were ground into a fine 

powder and loaded into a monomer tube. Plasma polymerization experiments 

were carried out in an electrodeless cylindrical glass reactor (4.5 cm diameter, 

460 cm^ volume, base pressure of 5.2 x 10"̂  mbar, with a leak rate lower than 

1.0 X 10"̂ ° kg s'̂ ) enclosed in a Faraday cage. The reactor was fitted with an 

externally wound copper coil (4 mm diameter, 9 turns, spanning 8 -15 cm from 

the gas inlet), a gas inlet, a thermocouple pressure gauge, and a 30 L min"̂  

two-stage rotary pump attached to a liquid nitrogen cold trap. All joints were 

grease free. An L-C matching network was used to match the output 

impedance of the R.F. generator (13.56 MHz) to that of the partially ionized gas 

load; this was achieved by minimizing the standing wave ratio (SWR) of the 
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transmitted power. Pulsed plasma polymerization experiments were carried out 

by using a signal generator to trigger the R.F. power supply. The pulse width 

and amplitude were monitored with a cathode ray oscilloscope. The average 

continuous wave power output (Pew) of the R.F. supply spanned 5 - 9 0 W. 

Pulse on-times (^on) and off-times {toff) could be varied between 5 - 8 0 0 and 5 -

1 2 0 0 )is respectively. The average power <P> delivered to the system during 

pulsing was calculated using the following expression: 

Equation 2.1 

where ton/ {ton + toff) is defined as the duty cycle.^^ 

Prior to each experiment, the reactor was cleaned by scrubbing with detergent, 

rinsing in isopropyl alcohol, oven dried, followed by a 3 0 min high-power ( 5 0 W) 

air plasma treatment. The reactor was judged to be clean when the air plasma 

was a bright pink colour, due to transitions in the nitrogen. Experiments to 

determine the cleanliness of the reactor were not carried out. Next, the reactor 

was vented to air and the substrate to be coated (e.g. glass, silicon, 

polyethylene, etc.) placed at the centre of the chamber, and then evacuated 

back down to base pressure. The substrate to be coated depended upon the 

analytical technique being used. For XPS analysis, glass slides were used, for 

IP analysis either sodium chloride plates or silicon were used. For gas barrier 

and tensilometer measurements poly(propylene) or poly(ethylene) were used. 

Subsequently, maleic anhydride vapour was introduced into the reactor at a 

constant pressure of 2 . 6 x 1 0 ' ^ mbar, and a flow rate of approximately 1 .6 x 1 0 ' 

^ kg s\ At this stage, the plasma was ignited and left to run for 1 0 min. Upon 

completion of deposition, the R.F. generator was switched off, and the 

monomer feed allowed to continue to flow through the system for a further 5 

min prior to pumping to base pressure. The coating thickness was measured 

using a quartz crystal sensor (Kronos Q M 3 0 0 ) assuming a film density of 

1 .5 gem"* located adjacent to the substrate in the plasma reactor. Full details 

are given in Chapter 1 , section 1 . 6 . 6 , page 2 7 . 
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2.2.2 Reaction of MAPP with Trifluoroethylamine (TFEA) 

The deposited MAPP coatings were first reacted witli 2,2,2-TFEA (Fluorochem, 

99.5%). This was done without exposing the MAPP or the amine to air in order 

to avoid reaction of amine groups with atmospheric CO2 and HaO.̂ '̂̂ ^ This was 

achieved by customising the plasma reactor shown in Figure 2.1, page 36, to 

have two monomer inlets. This meant that once the MAPP had been deposited, 

the system could be evacuated down to base pressure and amine vapour fed in 

without requiring the system to be let up to atmosphere. The vacuum pump 

was isolated and amine vapour was allowed to fill and equilibrate into the empty 

chamber (TFEA: 68.5 mbar; Jeffamine: 10.6 mbar) at ambient temperature 

(-25° C). At this stage, timing of the surface functionalization reaction 

commenced. Upon termination of exposure, the amine reservoir was isolated, 

and the whole apparatus was pumped back down to its initial base pressure. 

Corresponding control experiments examined the reaction of ammonia (Aldrich, 

+99.99% purity) and diethylamine (Sigma, 98% purity) with the deposited MAPP 

layers. Also the vapour phase functionalization of poly(acrylic acid) with TFEA, 

Jeffamine, ammonia and diethylamine was carried out for comparison. 

2.2.3 Reaction of MAPP witli Jeffamine® 

Jeffamine®-D230 (H2N-CH(CH3)-CH2-[OCH2CH(CH3)]n-NH2, Aldrich, average 

molecular weight Mn = 230, which corresponds to 2-3 repeat units). This was 

done without exposure to air in order to avoid reaction of amine groups with 

atmospheric CO2 and H2O, as explained for the reaction of MAPP with TFEA, 

section 2.2.2.^^'^^ The vacuum pump was isolated and amine vapour was 

allowed to fill and equilibrate into the empty chamber (Jeffamine: 10.6 mbar) at 

ambient temperature (-25° C). At this stage, timing of the surface 

functionalization reaction commenced. Upon termination of exposure, the 

amine reservoir was isolated, and the whole apparatus was pumped back down 

to its initial base pressure. 

Details of XPS and IR experimental methods can be found in sections 1.4.2.4, 

page 21 and 1.5, page 23 respectively. 
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2.2.4 Adhesion of the MAPP Layers 

For the adhesion measurements, a drop (~ 3 jaI) of coupling agent solution 

(ethylenediamine (Aldrich, 99% purity), 0.5 M in 1,4-dioxane (Aldrich, +99%)) 

was placed between two MAPP coated strips of polymer film (polyethylene, PE, 

ICI, 0.08 mm thickness,), and then cured overnight at various temperatures. 

Details of the experiment are given in Chapter 1, section 1.6.5, page 27. 

MAPP 

1cm^ 
overlap of 
polymer 

Polyethylene 
substrate 

3|il drop of ethylenediamine in 
1,4 dioxane placed between 
the strips, and oven dried 
overnight. 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Dotted arrows show direction of tensilometer pull. 

Scheme 2.3 Sample preparation for adhesion testing 

2.3 RESULTS AND DISCUSSION 

2.3.1 Pulsed Plasma Polymerization of Maleic Anhydride 

In the past it has been demonstrated that radiation grafting of monomers onto 

inert polymeric supports can produce materials which combine the desirable 

surface properties of the graft with the good mechanical properties of the 

underlying substrate.^'' However the total number of grafting sites can be limited 

as well as uncontrollable, depending on the nature of the polymer backbone. 

Continuous wave plasma deposition of reactive monomers has also been 

utilized in this context with limited success;^^ since the selective incorporation of 

desired functional groups onto the plasma polymer layer tends to be poor due 
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to extensive molecular fragmentation processes within the electrical 

discharge.^^ In the case of pulsed plasma polymerization of maleic anhydride; 

the large and controllable concentration of surface anhydride groups^^ is ideally 

suited for subsequent derivatization chemistry (e.g. vapour-phase aminolysis). 

This approach alleviates many of the drawbacks associated with conventional 

solution-based and extrusion techniques (e.g. reorientation of surface functional 

groups and solvent extraction of low molecular weight species).^^ In fact the 

overall reaction yields measured for 2,2,2-TFEA and Jeffamine-D230 correlate 

well with previously reported model studies comprising the vapour-phase 

aminolysis of ethylene maleic anhydride copolymer surfaces.^^ 

Previous work carried out at the University of Durham into the pulsed plasma 

polymerisation of maleic anhydride has studied the optimum pulsing and power 

conditions to achieve maximum structural retention of the anhydride ring.^^ All 

of the plasma polymer layers deposited were studied by XPS and IR to 

determine which set of conditions was most effective. In brief summary, first of 

all the effect of pulse on-time was studied, whilst the continuous wave power. 

Pew was kept at 5W, and the off-time was maintained at 1200^s. It was shown 

that 20 |is was the optimum on-time for structural retention, as longer on-times 

led to a reduction in the amount of anhydride carbon groups detected. 

Secondly, the effect of varying the plasma off-time, whilst keeping Pew at 5W, 

and the on-time at 20|LIS was looked at. An off-time of 1200ns gave optimum 

retention of the anhydride ring, and shorter off-times gave poorer retention. 

Finally Pew whilst the on-time was kept at 20ns and the off time was kept at 

1200|uis. At high values of Pew there was little retention of the anhydride ring, 

but as Pew was reduced, the structural retention improved, reaching a 

maximum at 5W. It was therefore concluded that the use of lower average 

powers, achieved by a low value of Pew, long off-time and short on-time were 

the optimal conditions for the deposition and structural retention of maleic 

anhydride. 

High structural retention in the MAPP layers^^'^^ was confirmed by infrared 

analysis, which displayed strong absorbances from the cyclic anhydride group: 

asymmetric and symmetric C=0 stretching, anhydride group stretching, and C-
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O stretch vibrations as shown in Figure 2.2, page 44 and Table 2.1, page 42. 

XPS analysis indicated the presence of five types of C(1s) environment for the 

MAPP deposited onto glass:^^ hydrocarbon (CHx ~ 285.0 eV), carbon singly 

bonded to an anhydride group (C-C(O)-O- ~ 285.7 eV), carbon singly bonded to 

oxygen (-C-0 ~ 286.6 eV), carbon doubly bonded to oxygen (0-C-O / -C=0 ~ 

287.9 eV), and anhydride groups (0=C-0-C=0 ~ 289.4 eV), Figure 2.3(a), page 

45. Complete coverage was confirmed by the absence of any Si(2p) signal 

showing through from the underlying glass substrate. Pulsing the electrical 

discharge on the |xs - ms timescale allowed the coating composition to be 

controlled (i.e. the concentration of anhydride functionalities)^^. Optimum 

anhydride group retention (foff= 1200//S, ton = 20 fjs, Pew =5 W)^^ corresponds 

to 58% of the surface carbon atoms belonging to cyclic anhydride repeat units. 

Both ellipsometry and quartz crystal sensor found the MAPP film to be 34 ± 

5nm thick. Chapter 1, section 1.6.6, page 27. 
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Table 2.1 Infrared assignments of MAPP, nucleophilic reagents, and 

corresponding derivatized plasma polymer. 

Peak Position/ 
cm' ' 

Assignment l\/IA TFEA MA+TFEA Jeffamine MA+Jeffamine 

1849 C = 0 anhydride 
stretch 

* * * 

1780 C = 0 anhydride 
stretch 

* -* * 

1725-1700 Carboxylic acid 
stretch 

•k * 

1772, 1710 Imide bands *(after heating) 

1660 - 1563 
(Broad band) 

Amide 1 (C=0 
stretching)and 
Amide II (N-H 
bending) 

•k * 

1627-1590 NH2 bands * * 

1625 - 1560, 
and 1550 -
1505 

NH3", 
antisymmetric 
and symmetric 
deformations 

* 

1490-1400 C-NH stretch of 
monosubstituted 
amide 

* * 

1400-1000 CF3 stretches * it 

1288-1240 Cyclic anhydride 
stretch 

* 

1180-1000 C-N stretch * •k * 

1150 Imide stretch *(after heating) 

1150-1060 C-O-C stretch * * 

958-935 Cyclic 
unconjugated 
anhydride 

* 

950-780 C-C skeletal 
bands 

* * 

850 NH2 wag * * * 

42 



2.3.2 Functionalization Reactions with TFEA 

A key reaction between anhydride groups and primary amines is aminolysis.^° 

The deposited MAPP layer was exposed to TFEA vapour, with the aim of 

producing amide linkages at the surface, as depicted in Scheme 2.2, page 35. 

In this ring opening reaction, nucleophllic attack occurs at one of the carbonyl 

carbons. The resulting structure rearranges, giving rise to a carbanion and an 

ammonium ion. The ammonium ion loses a hydrogen atom to the carbanion, 

giving rise to what is termed an amic acid, containing an amide group and an 

acid group. Infrared spectroscopy confirmed that ring opening of the cyclic 

anhydride centres had occurred to yield amide and carboxylic acid groups, as 

seen by the appearance of the following new absorbances superimposed on 

the background MAPP spectrum: overlapping amide I and amide II bands (1660 

- 1563 cm"*), carboxylic acid stretching (1725 - 1700 cm"*), and C-NH 

monosubstituted amide stretching (1490 - 1400 cm"^). Figure 2.2, page 44 and 

Table 2.1, page 42. Furthermore, infrared spectroscopy indicated that heating 

at 120 °C gave rise to ring closure and the formation of cyclic imides, Scheme 

2.4, page 47. The presence of background spectral features from the 

underlying MAPP layer was consistent with functionalization occurring at just 

the surface (ATR-FTIR sampling depth is approximately 100 nm^^). The use of 

angle resolved XPS spectroscopy here might have provided information about 

the depth of functionalisation occurring, 

The reaction efficiency within the outermost 5nm of the surface was 

investigated by XPS. Details of the peak fitting parameters can be found in 

chapter 1, section 1.3.4, page 21. The C(1s) spectra following exposure to 

TFEA vapour could be fitted to six different types of carbon functionality:^® 

hydrocarbon (CHx - 285.0 eV), carbon singly bonded to an amide / carboxylic 

acid groups (CH2C(0)NHR / CH2C(0)0H) - 285.7 eV), carbon singly bonded 

to both nitrogen and a trifluoromethyl carbon (N-C-CF3 - 287.0 eV), amide 

group (RHN-C=0 - 287.9 eV), anhydride / carboxylic acid groups (0=C-0-C=0 

/ C(0)OH - 289.4 eV), and trifluoromethyl carbon (-CF3 ~ 292.5 eV), with a 

corresponding MgKa3,4 satellite - 283.7 eV), Figure 2.3(b). The unambiguous 

assignment of the trifluoromethyl C(1s) peak, as well as the contribution from 
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the three trifluoromethyi fluorine atoms (-CF3 ~ 687.7 eV)^^ to the F(1s) region, 

confirmed that surface functionalization had indeed taken place. The N(1s) 

peak was assigned to amide groups (RHN-C=0 ~ 399.8 eV)^^, and the peak 

areas were used to calculate the overall aminolysis efficiency,^°'^^ Figure 

2.4(b), page 46. Nitrogen incorporation at the surface reached a limiting value 

after approximately 30 min exposure to TFEA vapour, which corresponds to an 

overall conversion factor of 0.93 ± 0.01 in the outermost 2-3 nm region (the 

XPS sampling depth^^). Heating at 120 °C gave rise to no change in the N(1s) 

XPS spectrum. This was to be expected since the N(1s) binding energy values 

of amide and imide linkages are very similar (= 400 eV)^^, Scheme 2.4, page 

47. 

Figure 2.2 IR spectra of (a) TFEA liquid; (b) untreated MAPP; (c) plasma 

polymer functionalized with TFEA; and (d) heating of (c) to 12(fC. (A similar 

spectra appeared in the Ph.D. thesis of S.A. Evenson, University of Durham, 

1997). 
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Figure 2.3 C(1s) spectra of (a) untreated MAPP; (b) the plasma polymer 

functionalized with TFEA; and (c) the plasma polymer functionalized with 

Jeffamine®. (i) Indicates the position of the CF3 peak, (ii) indicates the position 

of the C(0)-0 peak. (A similar spectra appears in the thesis of S.A. Evenson, 

University of Durham, 1997). 
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Figure 2.4 N(1s) spectra of (a) untreated MAPP; (b) the plasma polymer 

functionalized witti TFEA; (c) the plasma polymer functionalized with Jeffamine® 

and (d) MAPP functionalized with Jeffamind^ and oven heated to 12(fC. (A 

similar spectra appears in the thesis of S.A. Evenson, University of Durham, 

1997). 
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Scheme 2.4 Imide formation upon heating of the functionalized MAPP. 
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It is interesting to note that in contrast to the other amines TFEA does not yield 

the additional ammonium salt during amide formation at each cyclic anhydride 

centre, Table 2.2, page 49. This can be accounted for on the basis of acid 

dissociation constants (Kg). TFEA has a Kg value of 2.5x10'^, whereas 

ammonia and diethylamine have values of 5.6x10'^° and 1x10 -11 

respectively' 33,34 Hence ammonia and diethylamine are much more basic 

compared to TFEA, and therefore far more likely to accept a proton from the 

carboxylic acid group formed adjacent to the amide linkage during cyclic 

anhydride ring opening, Scheme 2.2, page 35. Furthermore, the second 

dissociation constant for maleic acid is 8.57x10'̂ , '̂̂  this can be attributed to the 

proximity of the carboxyl groups in the cis configuration giving energetically 

unfavourable electrostatic effects^^; whereas poly(acrylic acid) is a stronger 

acid '̂* (Ka = 5.6x10'"^) compared to the carboxylic acid group formed adjacent to 

the amide linkage, and therefore poly(acrylic acid) is more capable of donating 

a proton to a weaker acid such as TFEA {Kg value of 2.5x10"^), Table 2.2, page 

49. 

2.3.3 Functionalization Reaction witli Jeffamine 

Jeffamine was also found to readily undergo reaction with the MAPP layer. 

Scheme 2.5, page 50. This was confirmed by infrared spectroscopy: 

overlapping amide I and amide II bands, carboxylic acid stretch, and C-NH 

monosubstituted amide stretching. Figure 2.5, page 51 and Table 2.1, page 42. 

Once again, heating at 120 °C indicated ring closure and the formation of cyclic 

imides. 
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On this basis, the following carbon functionalities were fitted to the C(1 s) XPS 

envelope of Jeffamine functionalized MAPP:̂ ® hydrocarbon (CHx ~ 285.0 eV), 

carbon singly bonded to amide / carboxylic acid groups (CH2C(0)NHR / 

CH2C(0)0H) ~ 285.7 eV), amine groups (C-NH2 - 286.0 eV), carbon singly 

bonded to oxygen (C-0 - 286.4 eV), carbon singly bonded to nitrogen in the 

Jeffamine end groups (C-NH-C(0)CH2- - 286.5 eV), amide groups (C(O)NHR -

287.9 eV), and anhydride / carboxylic acid groups (0=C-0-C=0 / C(0)OH -

289.4 eV)), Figure 2.3(c). Interestingly, the N(1s) XPS region indicated the 

presence of two different types of nitrogen environment in approximately equal 

concentrations, Figure 2.4(c), page 46 and Table 2.2, page 49. The higher 

binding energy peak (402 eV) can be assigned to ammonium salt formation 

following protonation of terminal amine groups on the Jeffamine chain by 

surface carboxylic acid centres generated during aminolysis of the cyclic 

anhydride groups. This was confirmed by reacting a series of amines with 

poly(acrylic acid). Table 2.2, page 49. The other N(1s) feature at approximately 

400 eV can be attributed to either amine (a free end of Jeffamine) or amide 

linkages^®. Since the N(1s) peak area ratio of amide/amine to ammonium salt 

is approximately 1:1, then each Jeffamine chain must be bonded via an amide 

linkage at one end and looped around to form an ammonium salt complex at its 

other end (if additional Jeffamine chains from the vapour phase had reacted 

with the carboxylic acid centres generated during aminolysis of the cyclic 

anhydride groups, then the ratio of amide/amine to ammonium salt N(1s) 

environments should have been greater than 1:1, i.e. much closer to 3:1). This 

assignment was confirmed by heating at 120 °C, this gave rise to the 

disappearance of the ammonium salt feature at 402 eV to produce the cyclic 

imide linkage (-400 eV), Figure 2.4(d), page 46, in conjunction with detachment 

of the other end of the Jeffamine chain, Scheme 2.5, page 50. Corresponding 

heating experiments conducted with ammonium salts of poly(acrylic acid) 

confirmed that amide formation via dehydration of the ammonium salt was not a 

possibility at 120 °C, Table 2.2, page 49. 
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Table 2.2 Influence of heating at 120 °C upon amide/amine (400 eV) versus 

ammonium salt (402 eV) N(1s) peak area ratios for MAPP and poly(acrylic acid) 

surfaces. 

Nucleophile MAPP Poly (acrylic acid) Nucleophile 

Unheated Heated Unheated Heated 

TFEA 1 peak at 1 peak at 1 peak at 1 peak at 

400 eV 400 eV 402 eV 402 eV 

Jeffamine -1:1 1 peak at 1 peak at 1 peak at 

400 eV 402 eV 402 eV 

Ammonia =2.9:1 1 peak at 1 peak at 1 peak at 

400 eV 402 eV 402 eV 

Diethylamine =3.6:1 =3.6:1 - -

Furthermore, the inability of a secondary amine (diethylamine) to undergo the 

imide cyclization reaction to form the maleimide (i.e. ammonium salt was 

retained) is consistent with this explanation (secondary amines are prevented 

from reacting beyond the amide because of the lack any additional N-H bonds). 

Scheme 2.5, page 50 and Table 2.2, page 49. On this basis, the extent of 

Jeffamine attachment was calculated to be 0.95 ± 0.02 from the N(1s) peak 

areas after 30 min reaction time. 
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Scheme 2.5 Reaction between the MAPP and Jeffamine (Looping around of 

the Polypropylene Glycol (PPG) need not necessarily occur at the adjacent acid 

site). 
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Figure 2.5 IR spectra of (a) Jeffamine liquid; (b) untreated MAPP; (c) plasma 

polymer functionalized with Jeffamine®; and (d) heating of (c) to 12(fC. 
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2.3.4 Adhesion 

Jeffamine and ethylenediamine, (EDAM), (a shorter chain analogue of 

Jeffamine) were used as coupling agents for adhering two pieces of 

poly(ethylene) together (each of which had been coated with MAPP and then 

exposed to the diamine). It was found that heating (imide formation) gave rise 

to good adhesion. Table 2.3. 

Table 2.3 Lap joint adhesion test measurements. 

Substrate Maximum Recorded Load / N 

cm'^ 

Polyethylene (PE) 15.7 

PE, MA deposited Did not adhere 

PE, MA deposited, Jeffamine labelled in 

vapour phase, no heating 

Did not adhere 

PE, MA deposited, Jeffamine labelled in 

solution phase, no heating 

2.78 

PE, MA deposited, Jeffamine labelled in 

vapour phase, heated to 120°C 

7.10* 

PE, MA deposited, Jeffamine labelled in 

solution phase, heated to 120°C 

10.27 

PE, labelled with EDAM, unheated Did not adhere 

PE, labelled with EDAM, heated to 60°C 12.4 

PE, labelled with EDAM, heated to 80°C 13.9 

PE, labelled with EDAM, heated to 

120°C 

13.9 

The breaking load of the polyethylene substrate is approximately 15.7 Ncm^. In 

the absence of a curing agent, such as Jeffamine or EDAM, no adhesion is 

observed between the samples. Similarly, if a curing agent is used, and 

forming amic acid groups at the two MAPP surfaces, but is not heated, no 

adhesion strength is recorded. When the curing agent it used, and the sample 

is heated to 120°C, then it has been shown that the amic acid groups will 

undergo a ring closure reaction, as shown in Scheme 2.4, page 47. This 
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results in a strengthening of the adhesive layer, and explains the increase in the 

measured adhesion of the layers. 

2.4 CONCLUSIONS 
Amine terminated nucleophiles can be chemically fixed onto any shaped solid 

substrate via reaction with a well-adhered MAPP layer. The intermolecular 

spacing and concentration of amine containing moieties attached to the surface 

can be finely tuned by controlling the level of anhydride group incorporation 

during pulsed plasma deposition. 

Once the MAPP has been deposited on the substrate, either glass, sodium 

chloride or polyethylene, a variety of reactions can be carried out to derivatize 

the surface, and introduce new functional groups. This has been demonstrated 

with TFEA and Jeffamine, used as two model nucleophiles in order to try and 

understand the reactions occurring at the surface. It has been shown that the 

TFEA, being more acidic than hydrocarbon amines will not form ammonium 

salts at the MAPP surface, whereas the more basic Jeffamine will do so. 

Furthermore, it has been demonstrates that the amic acid groups will form 

surface imide groups when heated. This was most readily observed in the case 

of the Jeffamine functionalized MAPP, through the loss of the peak in the N(1s) 

spectrum attributable to the ammonium salt. The imide groups formed were 

found to be effective in adhering polyethylene substrates that had been coated 

with MAPP. 
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CHAPTER THREE 

FunctionaBizatioRi of Maleic Anhydride plasma 

polymer (IVSAPP) with po!y(amfdoamirie) (PAMAIM!) 

dendrimers 

3.1INTRODUCTION 

Dendrimers are highly ordered, three-dimensional, tree-like, functional polymers 

comprising branched repeat units emanating from a central core.^ Their high 

density of terminal groups provides a large number of reactive sites.^ Potential 

applications include:^"^ nanoscale catalysts, micelle mimics, drug delivery 

agents, chemical sensors, high performance polymers, and adhesives. A 

number of studies have been reported in the literature describing the 

immobilization of poly(amidoamine) (PAMAM) dendrimers onto solid surfaces 

(predominantly multi-step wet chemical strategies), these include silica^'^^, 

gold^"^'^^, and mica^^ substrates. In the case of covalent attachment of 

dendrimers to solid surfaces, an intermediate coupling layer is normally 

required^°'^\ However, the substrate-specific nature of such reactions prohibits 

their more widescale applicability. 

Here an alternative methodology based on the aminolysis reaction^^'^^ between 
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amine terminated dendrimers and maleic anhydride pulsed plasma polymer 

(MAPP) surfaces. In this case, the concentration of anhydride functional groups 

present at the surface (and hence aminolysis with amine terminated 

dendrimers) can be controlled by programming the electrical discharge 

parameters (e.g. duty cycle, peak power, etc.). Scheme 3.1, page 63. 

Furthermore, the reactivity of such surface immobilized PAMAM dendrimer 

structures towards trifluoroacetic acid and gold (III) chloride are demonstrated. 

Adhesive and gas barrier performances have also been investigated. 

^ D 3 _r* 

4 v--^. 

HiN-

NH 

NH, 

Figure 3.1 A second generation PAMAM dendrimer 

PAMAM dendrimers have an ethylenediamine (EDA) core, and the structure is 

built out from both ends of the starting molecule, Figure 3.1, page 58. With 

each generation the number of terminal amine groups doubles. Table 3.1, page 

59. It is the primary amines on the outside of the PAMAM dendrimers and the 

secondary amines within the molecule that enable many different reactions to 

occur, some of which are detailed in this chapter. 
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3.2 EXPERIMENTAL 

Experimental details on the plasma polymerization of maleic anhydride can be 

fond in Chapter 2, section 2.2, page 36. 

3.2.1 Attachment of Dendrimers to the MAPP 

Drops of poly(amidoamine) (PAMAM) Starburst™ dendrimer solution (Aldrich, 

supplied as 10% wt. / vol. in methanol) were pipetted onto the plasma polymer 

surfaces under a nitrogen atmosphere. Any remaining unreacted dendrimers 

were removed by subsequent rinsing with methanol. Solutions containing 

different dendrimer generations and concentrations were employed in order to 

study the changes in dendrimer packing density at the surface. Details of the 

different dendrimer generations available are given in Table 3.1. 

Table 3.1 Details of different dendrimer generations 

Dendrimer 

Generation 

Molecular 

Weight 

Measured 

Molecular 

Diameter/nm' 

Calculated 

Molecular Volume / 

nm^^ 

Number of 

Surface Groups * 

0 517 1.5 1.8 4 

1 1430 2.2 5.6 8 

2 3256 2.9 12.8 16 

3 6909 3.6 24.4 32 

4 14215 4.5 47.7 64 

* Values taken from Dendritech Inc. product literature; ® - Calculated using 

A Digital Instruments Nanoscope III atomic force microscope (AFM) was used to 

identify individual dendrimers at the MAPP surfaces. Further details about the 

AFM can be found in Chapter 1, section 1.6.1, page 25. XPS was also used, 

and details can be found in Chapter 1, section 1.4.2.4, page 21 . 
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3.2.2 Functionalization of dendrimers with Trifluoroacetic Acid (TFAAcid) 

4^̂  generation PAMAM dendrimers immobilized onto MAPP surfaces were 

chemically functionalized by placing the dendrimer coated substrate into a glass 

vacuum apparatus and evacuating to a pressure of 5 x 10"^ mbar. The rotary 

pump was then isolated from the system and the dendrimer layer exposed to 

TFA Acid vapour for 30 mins. The whole apparatus was then evacuated back 

down to its initial base pressure. Samples were analysed by XPS and ATR-

FTIR, details of which can be found in Chapter 1, sections 1.4.2.4, page 21 and 

1.5, page 23 respectively. 

3.2.3 Functionalization of dendrimers with Gold (III) Chloride 

The PAMAM dendrimer layers were functionalized with gold (III) chloride (20% 

w/v in methanol). The gold (III) chloride was dropped onto the dendrimer 

functionalized MAPP films and left for 10 minutes and were then rinsed with 

methanol and allowed to dry in air. The gold (III) chloride functionalized layers 

were then subjected to a hydrogen plasma (20 watts, 5 minutes, 0.4 torr), to 

reduce the gold (III) chloride to gold. Samples were analysed by XPS, ATR-

FTIR, TEM, and AFM. Details of these techniques can be found in Chapter 1, 

sections 1.4.2.4, page 21 , 1.5, page 23, 1.6.1, page 25 and 1.6.2, page 25. 

3.2.4 Adhesion studies. 

Adhesion performance was explored by placing a 0.01 ml drop of 10% wt. / vol. 

4'^ generation PAMAM dendrimer solution between two MAPP coated strips of 

polypropylene film (ICI, 50mm x 10mm, 0.80//m thickness) to make a 1 cm^ 

overlap joint. This was then cured overnight at 120°C. Subsequently, single lap 

adhesion tests were performed on these laminates using an Instron 5543 

tensilometer operating at a crosshead speed of 10 mm min"\ The schematic 

diagram for producing samples for adhesion testing is given in Chapter 2, 

scheme 2.3, page 38. 
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3.2.5 Gas barrier studies. 

Finally, the gas permeation characteristics of immobilized 4*^ generation 

PAMAM dendrimer layers was evaluated by reacting one piece of MAPP coated 

polypropylene film with dendrimer solution followed by rinsing in methanol to 

remove any excess, Scheme 3.2, page 63. Next, a second piece of MAPP 

coated polypropylene was placed face down on top, in order to sandwich the 

PAMAM dendrimer layer between anhydride functionalities. This composite 

structure was then clamped between two pieces of glass and placed in an oven 

to cure at 120 °C for 12 hours. Details of how gas permeation measurements 

are obtained can be found in Chapter 1, section 1.6.4, page 26. 

ĝ) o o n 
^ Polypropylene 

substrate 

MAPP 

Dendrimer 

§ Glass plates 

Overnight in oven 
at 120°C 

Composite 
polypropylene / MAPP / 
Dendrimer structure for 
gas barrier testing. 

Scheme 3.1 Schematic of sample preparation for gas barrier testing 
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3.3 R E S U L T S AND DISCUSSION 

3.3.1 Pulsed Plasma Polymerization of Maleic Anhydride 

Details of XPS and ATR-FTIR characterization can be found in Chapter 2, 

section 2.3.1. The flat topography of the underlying glass substrate. Figure 3.1 

(a) as seen by AFM was retained at the surface of the deposited pulsed plasma 

polymer layer. Figure 3.1 (b). As discussed in Chapter 2 2.2.1, page 37, the 

MAPP layers are 34 ± 5 nm thick. 

3.3.2 Functionalization of MAPP with PAMAM Dendrimers 

Exposure of the MAPP film to dendrimer solution followed by rinsing in 

methanol gave rise to the stable attachment of dendrimers to the surface. The 

morphology, size and intermolecular spacing of the immobilized dendrimer 

moieties were examined by atomic force microscopy. Figure 3.2(c), page 64. 

AFM micrographs of 4'^ generation PAMAM dendrimers bonded to the MAPP 

layer appear as small dots (height = 2.5 ± 0.03nm; width = 5.3 ± 0.04nm, 

measurements obtained from Figure 3.2, page 64, from work done by S.A. 

Evenson), these represent individual dendrimers immobilized onto the 

underlying (darker shading) plasma polymer surface. Assuming a spherical 

shape, the dendrimers should be 4.5 nm wide^'*'^^. Therefore it appears that 

the dendrimers have slightly flattened out on the MAPP surface (in order to 

maximize amide bond formation). This is consistent with previous computer 

simulation and AFM studies which have reported a flattening and spreading out 

of PAMAM dendrimer molecules upon attachment to a surface^^"^^'^^. Scheme 

3.1 shows the deposition of the dendrimers at the MAPP surface. 
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Scheme 3.2 Immobilization of PAMAM dendrimers onto maleic anhydride 

pulsed plasma polymer surfaces. 
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Figure 3.2 Tapping mode AFM images of (a) the glass substrate; (b) maleic 

anhydride pulsed plasma polymer deposited onto glass (Pp = 5W; ton = 20 us; 

toff = 1200 JUS; 10 mins); and (c) 4" generation PAMAM dendrimers (white 

spots) attached to the maleic anhydride pulsed plasma polymer layer (darker 

background). These images were obtained by S. A. Evenson, and included in 

his thesis (University of Durham 1997) 
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XPS analysis verified that reaction had taken place at the surface Figure 3.2. 

The dendrimer species contribute three types of carbon functionality to the 

C(1s) spectra:^^ carbon singly bonded to an amide carbon / amine nitrogen (C-

C-NHR(=0) / C-N ~ 285.7 eV), carbon singly bonded to an amide nitrogen (-

CH2-NH-C=0 ~ 286.6 eV), and an amide group (RHN-C=0 ~ 287.9 eV), Figure 

3.3. These give rise to an attenuation of the anhydride group C(1s) signal 

(0=C-0-C=0 - 289.4 eV) as the surface coverage of PAMAM dendrimers 

increased. A corresponding rise in the N(1s) peak at ~ 400 eV was seen and 

can be taken to be indicative of dendrimer attachment to the MAPP surface via 

amide linkages^^ (a weak N(1s) component at 401.9 eV was attributed to 

reaction of dendrimer amine groups with atmospheric COa^®'̂ ^), Figure 3.4, 

page 67. The percentage of nitrogen present at the surface was determined 

by XPS analysis, and the use of the experimentally determine sensitivity factor 

for the N(1s) level. The packing density of dendrimers at the surface could be 

varied by diluting the solution with methanol. Figure 3.4. For all three dendrimer 

generations under investigation, the surface concentration of nitrogen (% N) 

was found to correlate to the degree of dilution. Submonolayer coverage 

corresponds to dilutions below 0.01% wt. / vol., this ties in with the 

reappearance of the anhydride group peak (0=C-0-C=0 - 289.4 eV) in the 

C(1s) XPS envelope, Figure 3.3, page 66. An alternate way of varying the 

number of dendrimers attached to the surface would be to change the 

concentration of anhydride groups (i.e. alter the pulsed plasma deposition 

conditions.^" 
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Figure 3.3 C(1s) XPS spectra of: (a) maleic anhydride pulsed plasma polymer 

layer; (b) the plasma polymer functionalized with a 0.00125% wt. / vol. solution 

of 4'" generation PAMAM dendrimers; (c) the plasma polymer functionalized 

with a 10% wt. / vol. solution of 4^ generation PAMAM dendrimers; and (d) 

following reaction of (c) with trifluoroacetic acid vapour. 

CO 
I -

O o 

280 284 288 292 296 
BINDING ENERGY/eV 

66 



Figure 3.4 Nitrogen concentration (% N) at the surface of the plasma polymer 

layer after functionalization versus the dilution of dendrimer molecules (% wt. / 

vol.). 

20 

16 

12 

• 4*^ Generation 
# 3"̂ ^ Generation 
A 2""̂  Generation 

T " 
I I 

10' 10-= 10"' 10^ 

Dendrimer Concentration / %w/v 

10' 

67 



Infrared spectroscopy showed the appearance of amide absorption bands^^ 

(1650 cm'^ and 1580 cm"^) characteristic of the dendrimer molecules (internal 

amide bonds and amic acid groups formed between terminal dendrimer amine 

groups and the MAPP surface). Figure 3.5, page 69. The absorbance at 

approximately 1450 cm"* can be attributed to CH2 groups present in the 

dendrimer molecules. Heating at 120 °C caused a decrease in the amide band 

intensities relative to the peak at 1450 cm \ This occurs as a consequence of 

the internal amide groups in the PAMAM dendrimer molecules undergoing a 

retro Michael reaction to form imide linkages (1710 cm'^);^^ there should also be 

imide bond formation at the dendrimer binding sites on the maieic anhydride 

pulsed plasma polymer surface. The described approach for attaching PAMAM 

dendrimers onto solid surfaces is applicable to a whole variety of substrates 

and therefore offers a distinct advantage compared to alternate methods (e.g. 

poly(maleic anhydride)-c-poly(methyl vinyl ether) layers fixed onto aminosilane 

functionalized silicon surfaces^Y 
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Figure 3.5 Infrared spectra of: (a) maleic anhydride pulsed plasma polymer 

layer (Pp = 5 W; ton = 20 jus; toff = 1200 jus; 10 mins); (b) 10% wt./ vol. solution 

of 4'^ generation PAMAM dendrimer solution; (c) 4'" generation PAMAM 

dendrimers deposited from 0.01% wt. / vol. solution onto maleic anhydride 

pulsed plasma polymer surface; and (d) following annealing of(c) to 120 °C. 
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3.3.3 React ion of PAMAM dendr imers with Trif luoroacetic ac id 

Further verif ication of the immobil ization of PAMAM dendr imers onto maleic 

anhydride pulsed p lasma polymer surfaces was obtained by reacting the 

remaining terminal PAMAM dendr imer amine groups with tr if luoroacetic acid 

vapour to produce amide l inkages. In this case, the CF3 functionality in the 

C(1s) XPS spectrum at 293 eV served as a marker, Figure 3.3(d), page 66. A 

good correlation was found between the amount of nitrogen measured at the 

surface, (i.e. dendrimer density) and the F(1s) signal detected by XPS following 

exposure to trif luoroacetic acid, Figure 3.5. These results are consistent with 

previous studies where 4-(tr i f luoromethyl)benzoyl chloride was used to 

functionalize a PAMAM dendrimer monolayer adsorbed onto a flat gold 

substrate 17 

Figure 3.6 XPS correlation between the amount of nitrogen present at the 

surface and fluorine detected following exposure to trifluoroacetic acid vapour, 

in the case of 4" generation PAMAM dendrimers immobilized onto maleic 

anhydride pulsed plasma polymer layers. 

% N 
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3.3.4 Reaction of PAMAM dendrimers with goid (III) chloride 

Gold (III) Chlor ide was used because it has previously been shown to interact 

with amide l inkages to form complexes which are stable under reducing 

condit ions, leaving elemental gold at the surface.^^ 

[Cl-Au-Cif 

\ 

C O, 

Au 

c / \ , 

Scheme 3.3 The interaction of gold (III) chloride with PAMAM dendrimer. 

Amide groups are capable of bonding to goid (III) chlor ide, due to the affinity of 

gold in the +3 oxidation state towards ni t rogen-based ligands,^'* which 

promot ing the co-ordination of the gold (III) chloride to the dendrimer. This 

Lewis acid-base interaction between metal chlorides and polyamides in solution 

has been observed before^^'^^ and generally leads to the format ion of ionic 

species of the type [LxMCIy.2r[MCIy]', where L is the dendr imer and M is the 

metal . 

It has also been observed that varying the dendr imer concentrat ion at the 

p lasma polymer surface al lows the amount of gold at tached to the surface to be 

control led. The greater the number of dendr imers at tached to the surface 
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the more gold detected in the Au(4f 7/2) spectra. This can be seen in Figure 

3.6, which shows the relationship between the percentage nitrogen at the 

surface, which corresponds to the number of dendr imers, and the percentage 

of gold detected at the surface after functional izat ion. 

Figure 3.7 The correlation between dendrimer concentration, percentage 

nitrogen detected by XPS and percentage gold detected by XPS. 

% Au After Gold Complexation 
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Table 3.2 Average particle sizes of gold (III) chloride functionalized dendrimers, 

as determined by TEM. 

Dendrimer Concentration Average Particle size, as measured by 

TEM/nm 

0.0025 6.884 ± 1.2 

0.01 7.313 ±1.4 

0.25 9.774 ± 1 

10 9.089 ±1.46 

Table 3.2 shows the changing size of the gold funct ional ized dendrimer 

particles as measured by T E M . All of these samples have been hydrogen 

p lasma reduced as explained in sect ion 3.2.3, page 60. Previous studies have 

suggested that the 4^^ generat ion PAMAM dendr imers are smaller when 

immobi l ized on surfaces than the measured dendr imer particle size.^''"^^ 

However, there are explanat ions given in the literature for this type of effect. 

The first possible reason is that different ratios of dendr imer to gold chloride 

produce particles of differing size.^^ At metal to dendr imer ratios of 1:1, the 

largest particles are observed by T E M . The particles have been recorded in the 

range 7.3 ± 1.5nm. As the metal to dendrimer ratio reduces (0.1:1 and 0.01:1), 

the sizes of the measured particles reduce. Final measurements for these 

particles are in the range 3.2 ± 0.7nm. The second possible reason is that the 

dendr imers can aggregate.^^ Fourth generat ion P A M A M dendr imers form a 

well def ined aggregate with a size of 7nm. The format ion of aggregates for low 

generat ion dendr imers could be due to the fact that a small dendrimer has 

insuff icient material to stabil ize one the surface of one gold col loid. Aggregat ion 

of these 4'^ generat ion PAMAM dendr imers on the MAPP surface would explain 

the greater than expected sizes recorded at the surface. 
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3.3.5 Adhesion using PAMAIVI dendr imers 

Adhesion studies were undertaken by placing a 0.1 ml drop of 4*^ generation 

PAMAM dendr imer solution between two pieces of polypropylene coated with 

MAPP fol lowed by heating to 120 °C. A max imum force per unit area of 20 N 

cm'^ was recorded for this sandwich structure. Figure 3.8. This compared 

favourably with the substrate failure value for the parent polypropylene fi lm of 

approximately 26 N. No adhesion was observed in the absence of dendrimer. 

It was found that the heating step (imide formation) was a prerequisite for 

achieving good adhesion. 

Figure 3.8 Lap-shear adhesion test: (a) bulk failure of polypropylene substrate; 

and (b) polypropylene / plasma polymer / 4^" generation PAMAM dendrimer / 

plasma polymer / polypropylene joint (heated to 120 C). 
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3.3.6 G a s Barrier 

Oxygen gas permeat ion measurements were also carr ied out for dendrimer 

layers sandwiched between MAPP coated polypropylene f i lm. Thermal curing 

at 120 °C gave rise to a significant improvement in gas barrier, Table 3.3. This 

can also be attr ibuted to imidization and retro-Michael chemistry giving rise to a 

highly crossl inked impermeable structure^^. Thermal ly induced retro-Michael 

reactions at the p-aminocarboxamide sites within the P A M A M dendr imer give 

rise to primary amines in place of tertiary amines, and it is the primary amines 

which further crossl ink through convent ional Michael chemistry to give the 

impermeable structure. As explained in section 1.6.4, page 26, the gas barrier 

improvement factor (GBIF) measured was referenced against two pieces of 

polypropylene fi lm placed on top of each other (i.e. no MAPP coating or 

dendr imer molecules). The GBIF is therefore unit- less, since it is a relative 

improvement factor, compared against the control. 

Table 3.3 Gas barrier measurements for dendrimer molecules sandwiched 

between polypropylene film and then cured at 120 °C 

Plasma Polymer Gas Barrier 

Yes 34.9 

No 2.1 

In the table given above, the dif ference between a layer using the MAPP as an 

adhesive layer for the PAMAM dendr imers and not using such a layer is clearly 

seen. It shows that the MAPP acts an effective binding layer to adhere the 

PAMAM dendr imers to the surface, since in it's absence of the chance in GBIF 

is much smaller, which can be attributed to considerably fewer PAMAM 

dendr imers attaching to the surface. 
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3.4 CONCLUSIONS 

Starburst PAMAM dendrimers can be chemical ly f ixed onto solid substrates by 

pre-deposit ing a wel l -adhered maleic anhydride pulsed p lasma polymer layer. 

The MAPP layer Is bel ieved to be wel l -adhered as XPS analysis of the 

deposi ted layers shows no evidence of the underlying substrate, normally glass, 

even after washing in a variety of solvents, predominately methanol in this 

chapter. It has been shown that the intermolecular spacing and concentrat ion 

of dendr imer molecules at tached to the surface can be control led by either 

varying the level of anhydride group incorporation Into the p lasma polymer fi lm 

or by changing the dilution of the dendrimer solut ion. 

The external amine groups associated with the f ixed dendr imers can undergo 

further chemical reaction, in this case f luorination, metal at tachment, adhesion 

and gas barrier). The amount of f luorine incorporated at the MAPP / PAMAM 

dendr imer surface was found to be proport ional to the concentrat ion of the 

dendr imers at tached. The ability of the PAMAM dendr imers to undergo further 

chemical modif ication was further demonstrated by using gold (III) chloride, 

which binds to the amine groups and is then capable of undergoing a reduction 

to give rise to elemental gold. This ability to immobi l ize metals on surfaces 

could have use in heterogeneous catalysis. The adhesion obtained between 

two MAPP layers through use of dendr imers is also interesting, as potentially 

gives a means using very thin layers to achieve large improvements in 

adhesion. Finally, the improvement in the gas barrier propert ies of these layers 

could have uses in packaging and other systems that require protection from 

the atmosphere for a period of t ime. 
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CHAPTER FOUR 

Further applications of amine reactions at the 

Maleic Anhydride Plasma Polymer (MAPP) surface 

4.1 INTRODUCTION 

It has been shown previously that the maleic anhydride, and its p lasma polymer 

layer can easily derivatized through processes such as nucleophil ic attack of an 

amine or alcohol at the anhydride centre to form amides, which can form imides 

upon heating, and ester linkages.^'^ Details of the reaction of MAPP with 2,2,2 

tr i f luoroethylamine, and Jeffamine (a poly(propylene glycol) bis (2-aminopropyl 

ether), have already been discussed in Chapter 2 (and references there in).^ In 

this chapter the scope for further reaction and the introduction of new functional 

groups at the surface is demonstrated. 

The MAPP layer has been functionalized with aminopropyl terminated polydimethyl 

si loxane (PDMS), to study another means of adhering surfaces together. Amine 

and carboxylic acid functionalized polystyrene spheres, were used to introduce 

new functional groups and to bring about a surface roughening effect and 
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polyethyleneimine was used as a means of immobil izing gold colloid particles on to 

the p lasma polymer surface.'^ 

4.2 EXPERIMENTAL 

4.2.1 P l a s m a Polymerization of Maleic Anhydride 

Experimental details for the deposit ion of the MAPP can be found in Chapter 2, 

section 2 .2 .1 , page 36. 

4.2.2 React ion of the l\/IAPP layer with Aminopropyl terminated 

Polydimethylsi loxane (NH2-PDMS). 

The deposited MAPP coatings were reacted with aminopropyl terminated PDMS, 

(Fluorochem, viscosity = 50, SG = 0.95, Mw = 2,500). This was done by applying 

0.1 mL of aminopropyl terminated PDMS to the MAPP layer. After 30 minutes the 

surfaces were rinsed with methanol to remove excess NH2-PDMS, and al lowed to 

dry in air. Analysis of the samples was carried out immediately using XPS. For 

adhesion experiments two pieces of MAPP coated poly(propylene), (ICI, 0.8M'm x 

1cm X 5cm) were used. One piece of the functional ized substrate was treated with 

the NH2-PDMS and rinsed, before a second piece of functional ized substrate was 

placed treated side down on the NH2-PDMS layer, and the whole system was cured 

in an oven at 120°C overnight. Details of the adhesion exper iment are given in 

Chapter 1, section 1.6.5, page 27. 

4.2.3 React ion of the MAPP layer with amine and carboxyl ic ac id 

functionalized Polystyrene beads . 

Functionalized polystyrene beads are supplied a solution in water (Bangs Labs. 

Inc., PS-NH2 beads are 0.66 nm mean diameter, PS-COOH beads are 

approximately 0.6nm mean diameter). These beads are di luted by ten t imes to 

give a bead concentrat ion of 6.327 x 10^° beads per ml . For surface modification 

reactions 0.2ml of the bead solution was placed on the p lasma polymer surface 

and left for between 10 minutes and 60 minutes. Samples were then rinsed with 

high purity water and left to dry in air before analysis. 
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4.2.4 React ion of the MAPP layer with Polyethyleneimine (PEI) . 

Polyethyleneimine (PEI) was made up into a 1 % weight by vo lume solution with 

isopropyl alcohol, and stored under a nitrogen atmosphere in a glove box. 

Samples were placed in the PEI solution and left for 1 hour, before being rinsed 

with isopropyl alcohol and al lowed to dry in air. These PEI layers were used to 

stabil ize gold colloids. (The gold colloids were suppl ied as a solution in water 

(average diameter = 250 nm, concentrat ion = 1.2x10° n /m l . Agar Ltd.)). T E M and 

XPS were used to characterize these layers. 

4.3 RESULIS AND DISCUSSION 

4.3.1 P u l s e d P l a s m a Polymerization of Maleic Anhydr ide 

Maleic anhydr ide p lasma polymer (MAPP) surfaces discussed in previous chapters 

were used. 

The C(1s) spectra of the functionalized MAPP layers is shown in Figure 4 . 1 , page 

84. Elemental abundances can be found in Table 4 . 1 . 

Table 4.1 Elemental XPS analysis. 

Substrate Atomic percentage Substrate 

C 0 Si N Au CI 

1) MAPP 67.6 
± 0 . 8 

32.5 
± 0 . 8 

2) MAPP exposed to aminopropyl 
terminated PDMS 

57.5 
± 0 . 1 

22.9 
± 1 . 6 

15.2 
± 1 . 6 

4.2 ± 
0.1 

3) MAPP exposed to amine 
functional ized polystyrene beads 

71.3 
± 0 . 8 

26.3 
± 0 . 7 

2.4 ± 
0.2 

4) MAPP exposed to 
polyethyleneimine 

63.5 
± 2 . 4 

21.4 
± 2 . 3 

14.4 
± 0 . 5 

5) Exposure of 4) to gold colloid 
solution 

68.3 
± 4 . 1 

19.4 
± 1.7 

12.2 
± 5 . 8 

0 . 1 5 ± 
0.04 

6) MAPP exposed to gold colloids 65.9 
± 0 . 4 

34.1 
±0.4 
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Figure 4.1 C(1s) spectra of (a) pulsed plasma polymerized maleic anhydride; (b) 

following reaction with aminopropyl terminated PDMS; (c) following reaction with 

amine functionalized polystyrene beads; (d) following reaction with 1-

pyrenemethylamine hydrochloride and (e) following reaction with 

poly (ethyleneimine). 

CO 

O 
o 

Anhydride 

280 284 288 292 296 
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4.3.2 Functionalization of the MAPP layer with Aminopropyl terminated 

PDMS. 

Functionalization of the MAPP layers with aminopropyl terminated PDMS gave rise 

to the at tachment of PDMS chains at the surface, as demonstrated in Scheme 4 . 1 . 

XPS studies of the sample showed two peaks in the N(1s) region at 400 eV and 

402 eV, corresponding to amine groups and ammon ium groups respectively, and a 

peak due to Si(2p) f rom the PDMS backbone at 102 eV. The peak in the C(1s) 

spectrum at 289.4 eV, attr ibuted to the anhydride group was reduced considerably, 

Figure 4.1 (b). In order to demonstrate that only one end of the PDMS chain had 

reacted with the anhydride group, which was indicated by the fact that the two 

N(1s) peaks were of equal intensity, adhesion studies were carr ied out. This was 

done in order to promote ring closure and hence imide format ion. An improvement 

in the adhesion was observed, as seen in Table 4.2, page 86. 

Scheme 4.1 Functionalization of MAPP wirh aminopropyl terminated PDMS. 

n + H,N PDMS 

PDMS 

PDMS 
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Table 4.2 Adhesion between MAPP functionalized polypropylene surfaces with 

aminopropyl terminated PDMS 

Plasma Polymer Aminopropyl 

terminated PDMS 

Heat Maximum Force N cm'^ 

No No No Did not adhere 

No No 120 °C Did not adhere 

Yes On one piece No Did not adhere 

Yes On one piece 120 °C 1 0 ± 3 

Polypropylene substrate failure occurs at 25 N. 

Adhesion levels similar to those obtained for Jeffamine ® were observed when 

aminopropyl terminated PDMS was used to adhere the polypropylene layers 

together. The mechanism for this reaction is identical to that occurring in the case 

of the Jeffamine ®, as shown in Scheme 4.1 . 

4.3.3 Functionalization of the MAPP layer with amine and carboxyiic acid 

functionalized Polystyrene beads. 

The relative reactivity of the MAPP films towards amine versus carboxyiic acid 

functionalized polystyrene spheres was investigated, Scheme 4.2, page 87. 

Optical microscopy confirmed that aminolysis was the preferred reaction pathway, 

Figure 4.2(a), whereas carboxyiic acid terminated beads did not adhere to the 

surface. Figure 4.2(b), page 88. For the amine functionalized polystyrene, the XPS 

C(1s) envelope changes its appearance in accordance with the presence of the 

following functionalities: CHx at 285.0 eV, C-G-NHR(=0) / C-N at 285.7 eV, CH2-

NH-C=0 at 286.6 eV, RHN-C=0 at 287.9 eV and C(0) -0 / COOH at 289.4 eV, 

Figure 4.1 (c), page 84. There is also a signal due to the N(1s), as shown in Table 

4.2. AFM imaging of these surfaces may be useful to show changes in the surface 

topography, but to date this has not been carried out. 
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Scheme 4.2 Reaction of amine functionalized polystyrene spheres with the MAPP. 
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Figure 4.2 (a) Amine functionalized polystyrene beads on MAPP. 
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Figure 4.2 (b) Carboxylic acid functionalized polystyrene beads on MAPP. 
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In this example it can be seen that the amine-functionalized beads react 

preferentially with the MAPP surface. This was predicted before the experiment, 

as amine groups have previously been shown to react with anhydride groups, 

Chapter 2 and references therein. Carboxylic acid groups do not react with 

anhydride groups, and the few visible on the surface are probably not chemically 

bonded. 

4.3.4 Functionalization of the MAPP layer with Polyethyleneimine. 

The deposited maleic anhydride layers were exposed to a 1 % w/v solution of 

polyethyleneimine in isopropyl alcohol for 1 hour inside a sealed beaker. The 

extent of functionalization was studied by XPS, which revealed a change in the 

C(1s) spectra, and nitrogen was also detected. The peaks present after reaction 

are attributed to CHx at 285.0 eV, C-C-NHR(=0) / C-N at 285.7 eV, CH2-NH-C=0 

at 286.6 eV, RHN-C=0 at 287.9 eV and C(0) -0 / COOH at 289.4 eV, Figure 4.1 

(d). The mechanism by which the PEI reacts with the MAPP surface will be the 

same as that detailed in Chapter 2, giving rise to amide linkages between the 

MAPP and the PEI, and leaving some free acid groups at the surface. 

These layers were further functionalized with a gold colloid suspension in water for 

1 hour. XPS of these samples revealed that the surfaces contained approximately 

0.15 % ± 0.07 gold, which is comparable with a low concentration of PAMAM 

dendrimers adhered to the surface. Table 4 .1 , Scheme 4.3. The gold colloid 

particles are stabilized at the surface by the presence of the amine groups in the 

PEI.^'^ The gold is therefore not covalently bound to the surface, and it is possible 

that leaching of the gold particles could occur over a period of time. 
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Scheme 4.3 MAPP functionalized by polyethyleneimine and then gold colloids. 
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4.4 CONCLUSIONS 

This chapter has been intended to demonstrate the further suitability of the f^APP 

surface for reaction with amine containing functionalities. By using a variety of 

functional groups attached to the amines, it has been shown that it is possible to 

attach many different moeities to the solid surface. This could have many 

applications, especially from a biological persepctive, where functionalized 

surfaces are of considerable interest for implant modification, to prevent adverse 

reactions with in the body. Reactive surfaces could also have application in sensor 

technology, as there will be preferential reactions occurring between the surface, 

and other species. 
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CHAPTER FIVE 

Surface Diels-ABder Reactioos 

5.1 INTRODUCTION 

5.1.1 Diels-Alder Reactions 

A Diels-Alder cycloaddition reaction forms two carbon-carbon bonds in a single 

step, and gives rise to cyclic molecules. It is named after Otto Diels and Kurt 

Alder who won the 1950 Nobel Prize for Chemistry for this discovery.^ It is a 

pericylic reaction, which means that the reaction takes place in a single step. It 

also involves the cyclic redistribution of bonding electrons. Simply, a Diels-

Alder reaction can be represented as shown below. Scheme 5.1. 

Scheme 5.1 Schematic of a Diels-Alder reaction. 

V. 
Diene Dienophile Cyclic Transition State Product 

A Diels-Alder reaction requires two components, a dienophile and a diene. The 

dienophile will be more reactive if it has electron-withdrawing groups attached, 

so by this analogy ethyl acrylate will be a better dienophile than ethene. The 

diene must be able to adopt a cis like configuration around the single bond in 

93 



order to bring carbons 1 and 4 sufficiently close together to react through a 

cyclic transition state to form the cyclic product, Scheme 5.2. 

Scheme 5.2 Bond rotation between cis and trans configurations 

2 

1 1 
^ ^ C H 2 C2-C3 2 ^ C H 

H c : ^ 

Bond Rotation 
3 ^ C H ^ . . <i 

4 2 HgC 
4 

The reaction is also stereospecific, so a cis dienophile will only yield a cis 

product, and similarly the trans dienophile will only yield a trans product. A 

reaction is only observed if the reactant molecular orbitals are of the same 

symmetry as product molecular orbital. If they are the same, then the reaction 

is symmetry-allowed. Symmetry allowed reactions may occur under mild 

conditions, i.e. room temp or mild heat. To decide if a reaction will occur, the 

frontier orbitals need to be considered. The orbitals are called the Highest 

Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular 

Orbital (LUMO). A reaction occurs when the HOMO of one reactant overlaps 

with the LUMO of a second reactant in a bonding manner. The symmetry of 

the orbitals is such that bonding overlap of terminal lobes can occur in 

suprafacial geometry. In the example given in Scheme 5.3, page 95, the diene 

is the LUMO and the dienophile is the HOMO. 
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Scheme 5.3 Molecular Orbital representation of a Diels-Alder reaction 

Diene ground-state LUMO Dienophile ground-state HOMO 

•; sp hybridized carbon 

sp hybridized carbon 

5.1.2 Diels-Alder reactions at surfaces 

Work has recently been carried out looking at Diels-Alder reactions occurring at 

surfaces. Theoretical studies have looked at the likelihood of such reactions^'^. 

In the first of these examples,^ a dimer on the reconstructed Si (100)-2x1 

surface acts as the dienophile, as it has two dangling bonds that are weakly 

coupled. This is because the (100) surface undergoes a 2 x 1 reconstruction, in 

which pairs of atoms are bonded by a strong sigma (a) bond and a partial pi (K) 

bond'*. These surface dimers can undergo reaction with dienes, in a manner 

analogous to the Diels-Alder reaction to form six-membered rings at the 

surface, Scheme 5.4, page 96. 
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Scheme 5.4 Diels-Alder reaction at the Si (100)-2x1 surface^ 

. .Si=Si.. 

This work showed that it was possible to passivate the dangling bonds at the 

surface, at the same time giving a product that contains a C-C double bond. 

Later work^ further demonstrated the potential for this type of reaction, 

suggesting that providing that the diene molecule has a 1,3 dipole, the silicon 

(100)-2x1 surface can act as a dienophile and attach molecules such as ozone, 

nitro compounds (R-NO2), azides (R-NNN), diazo compounds (R.R'CNN), and 

nitrile oxides (RCNO). The schemes proposed from the theoretical results are 

similar to the reaction given above, but lead to the formation three and five 

membered rings. 

The majority of the work to date on surface Diels-Alder reactions has been 

carried out assuming that specific surfaces of elements such as carbon'*'^, 

silicon^ and germanium^® have bonds at the surface are capable of acting as 

the dienophile). These results largely refer to the [4 + 2] reaction between a 

diene and a dienophiie. There is also evidence that the [2 + 2] reaction can 

occur, and this has been found to be facile.^ 

SAMs that present surface double bonds for Diels-Alder reactions have also 

been examined.^ The reduction of hydroquinone to quinone was studied using 

the Diels-Alder reaction as a marker to measure the attachment of biological 

molecules to the surface of the SAM, through the changes in the cyclic 

voltammograms measured as the reaction progressed.^ In this case the Diels-

Alder reaction occurring at the surface was shown to be an effective method for 

bio-immobilization, as well as providing a quantitative measure of the extent of 

the reaction through the reactions previously well characterized kinetics. This is 

demonstrated in Scheme 5.5, page 97. 
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Scheme 5.5 Surface reduction of hydroquinone to quinone 
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In this chapter the maleic anhydride plasma polymer (MAPP) has been 

functionalized with allyl amine to leave a free double bond at the surface. This 

has been reacted with ozone, butadiene and cyclohexadiene, and the surfaces 

produced characterized by XPS and ATR-FTIR, details of which can be found 

in Chapter 1, sections 1.4.2.4, page 21 and 1.5, page 23 respectively. 
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5.2 EXPERIMENTAL 

5.2.1 Plasma Polymerization of Maleic Anhydride. 

Details of the plasma polymerization of maleic anhydride can be found in 

Chapter 2, section 2.2, page 36. 

5.2.2 Reaction with Allylamine 

The deposited MAPP coatings were reacted with Allylamine (Aldrich, 99+%). 

This was carried out according to the method given in Chapter 2, section 2.2.1, 

page 36 and 2.2.2, page 38. The reaction of amines with the MAPP has 

previously been studied, and the mechanism shown here has been proved.^° 

5.2.3 Functionalistion with Ozone 

In order to expose the allylamine treated MAPP to ozone, the treated samples 

were placed in a dielectric barrier discharge, out of sight of the discharge itself, 

but close enough to react with the ozone produced by the reaction. 

5.2.4 Functionalization with Cyclohexadiene 

In order to expose the allylamine treated MAPP to cyclohexadiene, the treated 

samples were placed in a vacuum chamber, isolated from the pump and 

exposed to the cyclohexadiene vapour for 30 minutes. After the reaction was 

complete the vacuum chamber was evacuated back top base pressure. 

5.2.5 Functionalization with Butadiene 

In order to expose the allylamine treated MAPP to butadiene, the treated 

samples were placed in a vacuum chamber, isolated from the pump and 

exposed to the butadiene vapour for 30 minutes. After the reaction was 

complete the vacuum chamber was evacuated back top base pressure. 

All samples were analysed immediately after the completion of treatment. XPS 

and ATR-FTIR were used to characterize these layers. Experimental details 

can be found in Chapter 1, sections 1.4.2.4, page 21 and 1.5, page 23 

respectively. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Puised Piasma Polymerization of Maleic Anhydride 

The results of the plasma polymersiation of maleic anhydride can be found in 

Chapter 2, section 2.3.1, page 39. 

5.3.2 Functionalization of the MAPP Layer with Allylamine 

The mechanism by which amines react with MAPP has been discussed 

extensively in previous chapters. Evidence for the reaction between allylamine 

vapour and deposited MAPP layers was obtained by XPS analysis. The 

characteristic anhydride group feature in the C(1s) spectrum at 289.4 eV 

disappeared with the concurrent appearance of an amide shoulder at 287.9 eV, 

RHN-C=0, Figure 5.1, page 100. In addition, a doublet was seen in the N(1s) 

spectrum. Figure 5.2, page 101, at 400 eV and 402 eV corresponding to amide 

(76 %) and ammonium salt (24 %) linkages respectively at the ring opened 

maleic anhydride centres.^° Subsequent annealing at 120° C produced a much 

narrower N(1s) envelope at 400 eV, which can be taken as evidence for ring 

closure to yield imide linkages. Scheme 5.6, page 99.*° 

Scheme 5.6 Reaction of Allylamine with MAPP 
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Figure 5.1 C(1s) XPS spectra of (a) ([/lAPP; (b) MAPP exposed to allylamine 

vapour. 
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Figure 5.2 N(1s) XPS spectra of (a) MAPP; (b) MAPP exposed to allylamine 

vapour; and (c) following heating of (b) to 12(fC. 
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The maximum theoretical amount of nitrogen present after functionalization is 

7.7 %, but the percentage of nitrogen detected by XPS is 11.2 % ± 0.5. It may 

be that some of the ally! amine is bonding to form the ammonium salt with the 

free acid that is formed in the ring opening reaction. This is confirmed by the 

N(1s) spectra which shows a peak at 402 eV, which is attributable to the 

ammonium salt. It is possible to calculate the maximum possible nitrogen 

incorporation at the surface by using the method given below. After heating of 

the sample to 120°C overnight, 6% nitrogen was detected by XPS, as the imide 

group is formed, so it is likely that any allyl amine that was attached via the 

ammonium salt to the acid is removed by heating, thereby halving the amount 

of nitrogen detected. 

Assuming that there is a homogenous distribution of the elements throughout 

the XPS sampling depth, we can calculate the amount of functionalization 

occurring.^^'^^ If we neglect the number of hydrogen atoms in the original 

polymer, since they are not detected by XPS, experimentally determined 

elemental composition, of the maleic anhydride is [C] = 67% and [O] = 33%. 

For each molecule of allylamine that is reacted, four more atoms are 

introduced, three carbon atoms and one nitrogen atom. If we then introduce a 

conversion factor, called x, where, when x = 0, there is no functionalization of 

the surface, and when x = 1, there is complete functionalization of the surface, 

equations can be written to represent the amount of nitrogen, [N], present at the 

surface. 

[A^] = Equation 5.1 

where [0]o is the initial oxygen concentration and [C]o is the initial carbon 

concentration. 

These equations can easily be rearranged, and by using theoretical values of x, 

a graph of [N] against the x, theoretical degree of surface functionalization can 

be plotted. This allows the actual degree of functionalization to be calculated, 

102 



knowing the elemental abundance, as calculated from XPS, and reading from 

the graph shown below, Figure 5.3. 

c o 

c 
8 
c 
8 
5 
p 

0.4 0.6 0.8 
Conversion Factor, x 

1.2 

Figure 5.3 Theoretical amount of nitrogen incorporation witli increasing 

conversion factor 

Infrared spectroscopy provided further evidence for the reaction between 

allylamine and surface anhydride functionalities, as signified by Amide I (C=0 

stretching) and Amide II (NH bending) features at approximately 1680 cm'^ and 

1650 cm \ Figure 5.4, page 104.^^ The peaks at approximately 1440cm'^ and 

1400cm'^ are attributable to the presence of the alkene double bond, arising 

from the cis CH asymmetric rock. In all of the functionalized spectra, there is 

evidence of a peak in this region. The peak at 1250 cm'^ is attributable to the 

cis CH symmetric rock. 
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Figure 5.4 IR spectra of (a) MAPP, (b) MAPP exposed to ozone, (c) MAPP 

reacted with allylamine in the vapour phase and (d) MAPP reacted with 

allylamine in the vapour phase, and then exposed to ozone, (i) mar/cs the 

ketone band and (ii) mar/fs the NO band. 

2 0 0 0 1 5 0 0 1 0 0 0 

Wavenumber / cm -1 

5.3.3 Ozonolysis Of Surface Alkene Groups 
The reactivity of tlie terminal carbon-carbon double bonds innmobilized on the 

surface was probed by exposing the surface to ozone in order to yield ketone 

groups. XPS analysis showed a strong increase in the C(1s) component at 

287.9 eV corresponding to C=0 groups, Figure 5.5(d), page 105. Infrared 

spectroscopy provided supporting evidence in terms of a strong ketone band at 

1720 cm"̂  (marked (i) on spectra) , Figure 5.4(d), page 104. Potentially, there 

may also have been some nitro-containing species produced via the oxidation 

of NH bonds to NO (marked (ii) on spectra) by ozone. '̂̂ '̂ ^ 

A control experiment comprising ozone exposure to just the MAPP layer did not 

yield the observed ketone XPS and IR spectral features, thereby confirming 

ozonolysis must be taking place at the anchored alkene bonds. 
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Figure 5.5 C(1s) XPS of (a) maleic anhydride, (b) maleic anhydride exposed to 

ozone, (c) maleic anhydride reacted with allylamine in the vapour phase and (d) 

maleic anhydride reacted with allylamine in the vapour phase, and then 

exposed to ozone. 
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Ozone is a commonly used double bond cleavage reagent.^ The ozone used is 

generated by passing a stream of oxygen through a high-voltage electrical 

discharge. It then adds to the alkene to produce the molozonide, which in turn 

rapidly rearrange to form ozonides. The ozonide can be further reduced to give 

carbonyl compounds, Scheme 5.7. 

/ \ 
Or, 

CH2Cl2,-78°C 
\ / ,.o=c... 

Molozonide 

\ r v 
Ozonide 

Zn, 
CH3COOH/H2O 

:c=o 
+ 

o=c: 

Scheme 5.7 The reaction of ozone with hydrocarbon double bonds 

This reaction is of interest from a surface chemistry perspective, because it 

gives a method by which surface groups can be converted to functionalities that 

offer more scope for subsequent reactions that the starting material. The 

selective ozonlysis of a surface can also be useful for lithography.^'^ In a 

polystyrene / poly(butadiene) blend, ozone will selectively react with the 

poly(butadiene), reacting with the double bonds in the backbone. Washing 

removes the degradation products, and a highly ordered polystyrene template 

remains. 

5.3.4 Surface Diels-Alder Chemistry 
Diels-Alder reactions were investigated using two different dienes, 

cyclohexadiene. Scheme 5.8, page 107, and butadiene. Scheme 5.9, page 

107. In this case, the carbon-carbon double bond at the surface belonging to 
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the immobilized allylamine molecule acted as the dienophile. The results can 

be seen on Figure 5.6, page 108. 

Scheme 5.8 Butadiene reacting with allylamine functionalized MAPP 

O-

OH HN OH HN 

Scheme 5.9 Cyclohexadiene reacting with allylamine functionalized l\/IAPP 

O-

OH HN OH HN 
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Figure 5.6 IR spectra of (a) MAPP, (b) MAPP functionalized with allylamine, (c) 

cyclohexadiene liquid, (d) shows (b) functionalized with butadiene and (e) 

shows (b) functionalized with cyclohexadiene. 

2 0 0 0 1 5 0 0 

Wavenumber / cm 
1 0 0 0 

The IR spectra shown in Figure 5.6 show clear evidence of the reaction 

between the allylamine double bond and the dienes. Figure 5.6(a) shows the 

IR spectrum of the MAPP. The features which confirm that the layers is maleic 

anhydride are the peaks at 1849 cm"̂  and 1780 cm"̂  due to C=0 anhydride 

stretches, and at 1249 cm'^ and 958 cm'^ attributable to cyclic anhydride 

features. A further discussion of the IR spectra of MAPP can be found in 

Chapter 2, section 2.3.1, page 39. 

After reaction of MAPP with allylamine vapour. Figure 5.6(b), it is apparent that 

there has been a reaction between the two species, as the IR spectrum shows 

evidence of C=0 acid stretches between 1725 and 1700 cm"\ There is also 

evidence of the amide I & II features at 1660 cm'^ and 1560cm"^ respectively, 

arising from C=0 stretches and N-H bending. There is also a slight feature 

between 1490 and 1400 cm"* attributable to C-NH stretches. 
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Figure 5.6(c), page 108, shows the spectra of cyclohexadiene liquid. The peak 

at approximately 1700cm"^ arises from C=C stretches, and the peaks between 

1400 and 1450 cm'^ are due to C-C stretches within the ring structure the peaks 

between 950 and 1000 cm'^ are also due to these. Finally, CH / CH2 
deformations account for features in the spectra between approximately 1150 

and 1250cm"\ It is the presence of these features is particular which can be 

used to show that the Diels-Alder reaction between the allylamine and 

butadiene or cyclohexadiene has occurred. 

Figure 5.6(d) shows the IR spectra obtained after MAPP reacted with allylamine 

has been exposed to butadiene vapour. There are features present similar to 

those observed for the cyclohexadiene (Figure 5.6(c)), page 108. There is 

evidence of some C-C ring stretching between 1400 and 1450 cm"̂  and again 

between 950 and 1000 cm'\ There are still features attributable to the amide I 

& II, as discussed earlier for Figure 5.6(b), page 108. The CH / CH2 
deformations seen in the cyclohexadiene liquid spectra are also still apparent 

between approximately 1150 and 1250cm"\ Scheme 5.9, page 107, shows us 

that we can expect all the features of a cyclohexene-like structure after reaction 

of the butadiene with the allylamine, and the evidence in the IR spectra 

supports this. 

Finally, Figure 5.6(e), page 108, shows the IR spectra after reaction of MAPP 

reacted with allylamine has been exposed to cyclohexadiene vapour. This 

spectra is extremely similar to that seen in Figure 5.6(d), after reaction with 

butadiene. Figure 5.8 shows us the structure we would expect to have 

produced at the surface after this functionalization, and again the IR evidence 

supports this. As in Figure 5.6(d), there is still evidence of the underlying amide 

linkages, and all the ring features described for 5.6(d) apply here. 
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Table 5.1 shows the different peaks present, and on which spectra in Figure 5.6 

they can be found. 

Peak Position/ 
cm 

Assignment (a) (b) (c) (d) (e) 

1849 C=0 aniiydride 
stretch 

* •k 

1780 C=0 anhydride 
stretch 

•k 

1725-1700 Carboxylic acid 
stretch 

* 

1772, 1710 Imide bands 
1700 C=C stretch * * * 

1660-1563 
(Broad band) 

Amide 1 (C=0 
stretching)and 
Amide II (N-H 
bending) 

* 

1627-1590 NH2 bands 
1625-1560, 
and 1550 -
1505 

NH3^ 
antisymmetric 
and symmetric 
deformations 

1490-1400 C-NH stretch of 
monosubstituted 
amide 

* 

1450 C -C ring 
stretches 

* * * 

1288-1240 Cyclic anhydride 
stretch 

* 

1180-1000 C-N stretch * 

1250-1150 CH/CH2 
overlapping CH 
deformation 

* * * 

1150-1060 C-O-C stretch 
1050 H-C= stretching * * * 

950 Ring stretching * * * 

958-935 Cyclic 
unconjugated 
anhydride 

* 

950-780 C-C skeletal 
bands 

850 NH2 wag * 
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5.4 CONCLUSION 
In this chapter, the possibilty of performing Diels-Alder reactions at 

functionalized surfaces has been investigated. It has been shown that allyl 

amine can react with the MAPP to form amide linkages, whilst also presenting 

free double bonds at the surface which have the potential for further reaction. 

The first reaction studied for these double bonds was ozonlysis. Free alkene 

groups were functionalized with ozone, and the presence of ketones, the 

products of the reaction were seen in the XPS and IR spectra. 

The functionalization of the MAPP has been observed by XPS and IR analysis, 

and the presence of the double bonds was confirmed by IR spectroscopy. 

These double bonds can under go Diels - Alder type reactions with butadiene 

and cyclohexadiene. Functionalization was demonstrated by IR spectroscopy, 

which showed that double bonds are still present after the reaction. 

In conclusion, it has been shown that it is possible to present free, unreacted 

double bonds at a solid surface, and to carry out conventional double bond 

chemistry with these groups. 
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CHAPTER SIX 

Depositioo and Functionalization of AliylarriDne 

plasma polymers (AAPP) 

6.1 INTRODUCTION 
Amine containing coatings are of particular interest for biomaterial applications, 

and recently work has been carried out to look at the deposition of AAPP's and 

their suitability for use in such conditions.^ The AAPP's are of interest in this area 

because it is a solventless process that modifies the surface without altering the 

bulk properties of the material. Such films have recently been used to improve 

attachment of human cells, as the substrates produced in the plasma are superior 

to conventional surfaces.^ 

Polymers of allylamine have also been used in the formation of electrostatic 

multilayers.^ The poly(allylamine) acts as a polycation and various other polymers 

have been used as the polyanion, including poly(styrenesulfonate) and DNA. 

Alternate layering of polyanion and poycation builds up layers that are of the order 

of several hundreds of Angstroms. DNA attachment or adsorption at surfaces is 

desirable for many purposes such as the detection of human pathogens in 

molecular recognition tests, and to purify and extract nucleic acids.'*'̂  The 

poly(styrenesulfonate) acts as a polyanion through it's ability to interact with the 
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NH2 groups of the amine^, and the DNA is also considered to be a polyanion 

because of the negative charge on the sugar-phosphate backbone. DNA 

adsorption from solutions to positively charged lipid monolayers has also been 

carried out.^ Kinetic studies of the adsorption of DNA onto aminated surfaces 

indicate that the deposition process occurs rapidly^, but that pH can affect the rate 

of the deposition, as can the ionic strength of the system under investigation. 

Polycation layers have also been used to stabilize metal colloids onto surfaces. In 

a similar way to the electrostatic layers described above, metal colloids have been 

encapsulated into polycation layers and subsequently overlaid by polyanion 

layers.^ This technique allows conducting layers to be built up, and resisitivity 

measurements obtained for these polycationic / anion layers are similar to that of 

the bulk metal.^° Amine and carboxylic acid functionalized poly(styrene) spheres 

have been used to stabilize platinum, palladium and gold colloids. It was found 

that if the surface of the sphere had a net positive charge (i.e. the amine surface), 

that excellent adhesion of gold colloids were achieved.^^'^^ 

In this chapter the plasma polymerization of allylamine has been carried out. This 

plasma polymer layer has then been used to attach functionalized poly(styrene) 

spheres, stabilize gold colloids, immobilse dye molecules and adhere DNA. 

6.2 EXPERIMENTAL 

6.2.1 Deposition of AAPP 

The experimental method for depositing the AAPP layers was the same as 

outlined in Chapter 2, section 2.2, page 36. The only exception to this is that the 

pulse regime used in this case the on-time was 10Ojxs and the off-time was 4000|j, 

s and the peak power was 10 Watts. Using the equation given in Chapter 2, 

equation 2.1, page 37, this gives an average power of 0.25 Watts. 

6.2.2 Functlonalization of AAPP with lieptafluorobutryl chloride 
The AAPP layers were placed in a vacuum chamber and pumped down to base 
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pressure. This was done without exposure to air in order to avoid reaction of 

amine groups with atmospheric CO2 and H20.̂ '̂̂ '̂  The vacuum pump was isolated 

and heptafluorobutryl chloride vapour was allowed to fill and equilibrate into the 

empty chamber at ambient temperature (-25° C). At this stage, timing of the 

surface functionalization reaction commenced. Upon termination of exposure, the 

acid chloride reservoir was isolated, and the whole apparatus was pumped back 

down to its initial base pressure. 

6.2.3 Functionalization of AAPP with Poiymeric Dye 
Polyvinylamine with a sulphonate backbone (Sigma, R-478) was used to 

functionalize the AAPP. A 10% w/v solution of the polymeric dye was made, using 

water as the solvent. Glass slides with the plasma polymer coating had drops of 

the solution placed on them, and then left for 10 minutes. The samples were then 

rinsed with water and left to dry in air, prior to analysis. 

Figure 6.1 Polymeric dye molecule 

SOaNa 

NHC(0)CH3 

6.2.4 Functionalization of AAPP with DNA 
DNA was purchased from Sigma (sodium salt from salmon testes). A solution of 

the DNA was made up in a 0.02M NaCI solution in water, maintained at pH 5. 

O.lmg/mL of DNA was used.^ Samples of the AAPP were treated overnight with 

116 



the DNA solution, and then rinsed repeatedly In high purity water. The samples 

were then air dried, and studied by XPS. 

Figure 6.2 Schematic diagram of DNA 
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6.2.5 Functionalization of AAPP with COOH functionalized polystyrene and 

NH2 functionalized polystyrene. 

Functionalized polystyrene beads are supplied a solution in water (Bangs Labs. 

Inc. (PS-NH2 beads are 0.66 |iim mean diameter, PS-COOH beads are 

approximately 0.6|im mean diameter). These beads are diluted by ten times to 

give a bead concentration of 6.327 x 10^° beads per ml. The bead solution was 

applied to the plasma polymer surface as a solution. After the functionalization 

reaction had been allowed to occur, excess of beads was removed by rinsing In 

high purity water. 

6.2.6 Functionalization of AAPP with Gold Colloids 

The gold colloids are supplied as a solution In water (average diameter = 250 nm, 

concentration = 1.2x10^ n /ml. Agar Ltd.). They are visible under the optical 

microscope. They were applied to the AAPP surface directly from the supplied 

solution, and excess was removed by rinsing In high purity water after the 

functionalizatlon had occurred. 
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6.2.7 Surface Characterization 

XPS and optical microscopy were used to characterize the functionalized surfaces. 

Details can be found in Chapter 1, section 1.4.2.4, page 21 and 1.6.3, page 26 

respectively. 

6.3 RESULTS AND DISCUSSION 

6.3.1. Allylamine Plasma Polymer (AAPP) 

Poly(allylamine) layers are of interest for biological purposes, and as polycation 

layers for electrostatic interactions. They provide a amine rich surface which is 

capable of undergoing further reaction with many different species, from human 

cells to DNA to metal colloids to dye molecules. Plasma polymerization of the 

allylamine monomer is often desirable as it provides a simple, dry, one step 

method, rather than multi-step wet chemistry methods.^'^^"^^ It is also a useful 

process because any material can be used as the substrate for plasma polymer 

deposition, whereas other techniques which use aminpropyltriethoxysilane or 

similar to present amine groups at the surface require silica as a substrate. 

Ammonia plasmas have been used to introduce amine groups at surfaces, but 

these have been shown to break down rapidly, resulting in the loss of the 

functionalized surface.^^'^^ 

In this work the AAPP was deposited onto glass slides, as in earlier work using 

maleic anhydride (see Chapter 2). XPS analysis of the surface showed that there 

was good retention of the amine functionality at the surface, as seen in the C(1s) 

spectra. Figure 6.3 (a), page 119, and the N(1s) spectra. Figure 6.4, page 120, 

revealed one peak at -400 eV, which is indicative of the amine group. There was 

no evidence of ammonium salt formation, which would have been seen by a peak 

in the N(1s) at -402 eV. The ratio of carbon to nitrogen in the monomer is 3:1, 

and in the plasma polymer it is 2.2:1, suggesting that there is some monomer 

break down during the plasma deposition. 
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Figure 6.3 C(1s) XPS spectra of a) AAPP, b) AAPP functionalized with 

tieptafluorobutryl chloride, c) AAPP functionalized with polymeric dye, d) AAPP 

functionalized with DNA. 
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Figure 6.4 N(1s) XPS spectra of a) untreated substrate and b) AAPP. 
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6.3.2 Reaction of AAPP with heptafluorobutryl chioride. 

Amine groups react rapidly with acid halides to produce amides.^^ 

Hepatfluorobutrylchloride was used to functionalize the plasma polymer layers and 

to demonstrate that there were reactive. XPS analysis showed that 

functionalization of the AAPP layers with heptafluorobutryl chloride had occurred. 

The functionalized layers contained 4.3% ± 0.4 fluorine, and oxygen was also 

incorporated into the plasma polymer layer. The C(1s) spectrum shows evidence 

of a small amount of CF3 and CF2 in the layers. 

In this chapter the deposition of the AAPP has been with the aim of producing a 

surface which is capable of acting as a polycation. The ability of poly(allylamine) 

to behave in this manner has been discussed previously, and has been further 

demonstrated in this chapter. The subsequent reactions use the polycationic 

nature of the AAPP layers to introduce new functional groups at the surface. 

6.3.3 Reaction of the AAPP with the poiymeric dye. 

The polymeric dye was used because, like DNA, it can act as a poly(anion), 

through the sulphonate groups on the polymer backbone.^'^ This was attempted to 

try and introduce chromophores at the surface. The XPS results and the UV 

spectra do seem to indicate that this is possible. By using XPS it was possible to 

detect the sulphur present in the backbone, and 1.5% sulphur was detected in the 

overall elemental abundance. The reduction in nitrogen content of the surface is 

due to the introduction of other atomic species at the substrate surface. The 

samples were also slightly tinged purple, even after thorough washing. Since this 

is the colour of the dye solution it does seem that it is possible to attach this 

molecule to the AAPP surface. 
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Table 6.1 Elemental abundances for the AAPP, and allylamine plasma polymer 

functionalized with polymeric dye. 

Element Allyl amine plasma 

polymer 

Allyl amine plasma polymer 

functionalized with polymeric dye 

C 68.7 ± 1 69.7 ±0.7 

N 31.1 ±0.9 15.1 ±0.2 

0 0 13.7 ±0.8 

S 0 1.5 ±0.2 

Figure 6.5 UV-visible spectra of a) AAPP b), polymeric dye, c) AAPP reacted with 

polymeric dye, d) the difference between spectra c) and a), after subtraction of a) 

from c). 
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6.3.4 Reaction of the AAPP with deoxyribose nucleic acid (DNA). 

The AAPP has been functionalized successfully with a solution of DNA. XPS 

analysis revealed peaks in the C(1s) spectra corresponding to carboxylic acid 

groups at 289.4 eV. There is also approximately 2% phosphorous present, which 

is indicative of the deposition of DNA, which is approximately 4-5% phosphorous, 

Table 6.2. Like the AAPP, the DNA has the potential to stabilize gold colloids. 

AFM analysis of the samples did show that DNA was being attached to the 

surface. 

Table 6.2 Elemental abundances for AAPP, theoretical XPS values for DNA, and 

the practically obtained values after surface functionalization of the AAPP 

Element Allyl amine plasma 

polymer 

DNA theoretical 

values 

Allyl amine plasma 

polymer 

functionalized with 

DNA 

C 68. 7 ± 1 47.6 ±1.8 61 ±0.7 

N 31.1 ±0.9 18 ±6.4 19.8 ±0.6 

0 0 29.4 ±4.9 17.2 ±0.6 

P 0 4.9 ±0.3 2 ±0.1 
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Figure 6.6 (a) AFM image of AAPP 
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Figure 6.6 (b) AFM image of AAPP functionalized witfi DNA. 
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6.3.5 Reaction of the AAPP with carboxylic acid (COOH) and amine (NH2) 

functionalized polystyrene beads. 

The carboxylic acid functionalized and amine functionalized polystyrene beads 

were used to contrast with the work in Chapter 4, with MAPP, showed that amine 

functionalized PS beads will attach to an anhydride containing surface whereas 

carboxylic acid functionalized beads do not attach. In this case the AAPP should 

react with the COOH functionalized beads in preference to the NH2 functionalized 

beads. Optical microscopy has shown this to be the case. 

Figure 6.7 (a) Optical microscope image of COOH functionalized beads on AAPP. 

(Each image measures 100^m by 80^m). 
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Figure 6.7 (b) Optical microscope image of NH2 functionalized beads on AAPP 
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6.3.6 Reaction of the AAPP with gold colloid particles. 

The gold colloids were used in order to demonstrate that the AAPP layer was 

capable of stabilising this type of particle in a similar manner to other amine 

containing l a y e r s . E v i d e n c e for the presence of gold on these surfaces was 

obtained by optical and transmission electron microscopy. Gold colloid particles 

have been successfully deposited onto the AAPP surface. These were most 

readily seen by optical microscopy as small reflective beads at the plasma polymer 

surface. XPS analysis of the samples revealed no more than 0.2% gold present, 

which was consistent with the observation that the gold particles do not completely 

cover the surface. If there were complete coverage we would expect to see a 

completely gold surface in the XPS analysis, as the bead diameter is 250nm, 

which is much greater than the XPS sampling depth. 

Figure 6.8 TEM image of Gold Colloid Particles on AAPP 

The extent of coverage obtained can be better seen using optical microscopy. 
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Figure 6.9 Optical image of gold colloids on the AAPP. 
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6.4 CONCLUSIONS 

The plasma polymerization of allylamine has been successfully demonstrated 

here. It has also been shown that this layer is capable of forming polycation type 

layers that are of use for the attachment of polymeric dyes containing and ionic 

backbone, and DNA which can also be considered as a polyanion. Gold colloids 

can be stabilsed on the surface through the interaction of the NH2 groups with the 

gold particles. The plasma polymer also reacts with carboxylic acid functionalized 

polystyrene spheres in preference to amine functionalized polystyrene spheres. 
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CHAPTER SEVEN 

Conclusioims 

This thesis has concentrated on the deposition of functionalized plasma polymer 

films, and the scope of these films to undergo subsequent functionalization 

reactions. 

Much of the published work studying reactions at these functional group containing 

surfaces has been restricted to surfaces upon which self assembled monolayers 

(SAMs) can be formed, such as gold or silicon. The use of pulsed plasma 

polymerization to deposit functionalized layers as a starting point for further surface 

reactions means that the choice of substrate is broadened considerably, since 

plasma polymer layers can be deposited on a wide variety of surfaces. 

Initially it was demonstrated the plasma polymer layers of maleic anhydride could 

be successfully functionalized in the vapour phase and characterized. It was also 

shown that through the choice of a suitably functionalized reactant, adhesion 

between the plasma polymer layers could be achieved. 

The next two chapters showed further applications of the maleic anhydride plasma 

polymer, in the first case with poly(amidoamine) dendrimers. A high degree of 

control over the surface composition was demonstrated with these dendrimers, and 

this effect was in turn used to control the amount of gold that could be 

encapsulated at the surface. The second case utilized a wide variety of amine 
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containing moieties to introduce a variety of surface groups to the plasma polymer 

layer. These included fluorescent molecules, amine functionalized beads and 

polymeric amines. All of these surfaces were characterized and shown to be 

successfully attached. 

Surface reactions of double bonds were investigated, by using allylamine to react 

with the anhydride groups, presenting free double bonds at the surface. Ozone, 

was used to show the presence of the double bonds at the surface, and then Diels-

Alder reactions were carried out using cyclohexadiene and butadiene. IR analysis 

of these samples showed that the reactions had been successful. 

Finally allylamine plasma polymer layers were deposited to study a different 

functionalized surface, and to look at complimentary reactions to those observed 

for the maleic anhydride plasma polymer layers. This was demonstrated well with 

the use of carboxylic acid functionalized polystyrene beads, which did not react 

with the maleic anhydride plasma polymer layers, but did react with the allylamine 

plasma polymer layers. The reverse effect was seen for amine functionalized 

polystyrene spheres. The allylamine plasma polymer layers were also shown to 

act as a polycationic layer, stabilising polymeric dyes and DNA. The fact that DNA 

can be stabilized on these surfaces could be of interest for biological applications. 

In conclusion, the use of functionalized polymer surfaces, as deposited by the low 

power RF plasmas discussed here have been shown to be able to undergo 

subsequent reactions, with the possibility to introduce a wide range of species to 

the polymer surface. 

In terms of future work, there are several areas in this thesis that would benefit 

from further investigation. It would be interesting to study the plasma 

polymerisation process itself, using a mass spectrometer to confirm the reactions 

that we believe are occurring inside the reactor. Further work could also be carried 

out to better characterise the MAPP, chemically by secondary ion mass 

spectrometry and physically by mechanical abrasion studies. 
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With reference to the surface chemistry carried out, there is plenty of scope for 

further worl< to be carried out. Further investigation of the PAMAM dendrimers 

bound to the MAPP surface could yield applications in the pharmaceutical industry 

for targeted drug delivery, heterogeneous catalysis and novel gas barrier layers, 

and I believe they should continue to be studied. 

Allyl amine plasma polymer layers should be examined in future work as they 

provide amine rich surfaces, and have already been shown to be of interest in 

medical applications. The fact they can also be used as polycation layers has the 

potential to stabilize and attach many molecules of biological and chemical interest. 

I think that the next stage of this work should be to investigate the wide variety of 

applications the attachment of PAMAM dendrimers to any solid surface, via the 

MAPP layer, could have. 
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