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ABSTRACT 

Biosynthetic studies on the non mevalonatepathway to terpenes 

D.J.Fowler B.Sc. (Hons) Dunelm, GRSC 

Isoprenoids are a class of secondary metabolites that are widely distributed in Nature. 

This thesis describes the synthesis and feeding of isotopically labelled enriched 

substrates to elucidate features of a new mevalonate independent pathway to 

isoprenoids. 

Chapter 2 describes studies with a whole plant system, Mentha citrata, which produces 

the monoterpene linalyl acetate, and a bacterium Escherichia coli which produces 

ubiquinone-8. Feeding experiments with stable isotopically enriched compounds 

demonstrate that the terpene unit of linalyl acetate is biosynthesised via the mevalonate 

independent pathway. Incorporation of deuterium from [6,6-^H2]-glucose, [̂ HsJ-alanine 

and ['̂ C^H3]-alanine into linalyl acetate show that the conversion to isopentenyl 

pyrophosphate does not proceed via a series of dehydrations. Feeding experiments with 

putative intermediates bearing deuterium into E. coli show that none of the 

intermediates are incorporated. This suggests that E. coli lacks a kinase to activate 

exogenously administered substrates fed as the free alcohols. 

Chapter 3 outlines biosynthesis studies on a meroterpene rosnecatone produced by the 

fungus R. necatrix. Intact incorporation of '̂ C from the feeding of [l,2-'"'C2]-acetate 

shows that the terpenoid moiety is produced via the mevalonic acid pathway and the 

non-terpenoid unit is polyketide derived. Incorporation of deuterium from [6,6-^H2]-

glucose fully describes the pentaketide that delivers the non-terpenoid fragment. The 

effect on the metabolite production of changing the growth conditions of R. necatrix is 

investigated. Changing from a static culture to a submerged cultures causes an increased 

rate of growth, an upregulation of the production of cj^ochalasan E and a cessation of 

rosnecatone production. Screening of rosnecatone against two Human cancer cell lines 

shows IC50 values of 4.48|J,M and 5.78|a,M. 
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Chapter 1 

Introduction 



1 Introduction 

Of all the gifts Nature has to offer, none are as varied or colourful as the natural 

products that the hving planet produces. Man has used this diverse array of metabolites 

since the start of recorded history. Records found in Egyptian tombs show the use of 

camphor as a perflmie and the extraction of turpentine by distillation'. Ancient Britons 

used the plant pigment woad as war paint and even the Bible chronicles the use of 

myrrh as a gift to the Infant Christ̂ . In recent times natural products have been found to 

be as much a blessing as a curse - whilst bioactive drugs such as clavulanic acid (1) 

have greatly reduced disease and suffering, substances such as cocaine (2) have caused 

as much pain as they were originally prescribed to relieve. 

CO2CH3 

O 
H CO2H 

1.1 Primary and Secondary metabolism 

Primary and secondary metabolism, and hence primary and secondary metaboUtes, are 

often generally described as different classes of natural products. Bu'lock^ describes 

primary metabolites in plants as "substances which could be detected in all plants" 

whereas secondary metabolites are "a variety of substances each of which could be 

obtained fi-om one particular plant species which could be assigned no general 

function". A more recent and complete definition is provided by Mann''; "secondary 

metabolism is metabolism that is not essential for the growth and reproduction of the 

organism" i.e. secondary metabolites have a secondary role in the survival of an 

organism. Secondary metabolites have also been described as species that are produced 

by an organism but have a specific receptor in a different organism. The enzymes 

required for primary metabolism are ubiquitous to ahnost all living organisms whereas 

the machinery for producing secondary metaboHtes (idolites) are often unique to one 

species of a genus. It is difficult to draw a clear distinction between primary and 
2 



secondary metabolites, except in the case of bacterial idolites which are described 

below. Idolites are commonly derived from one of a small number of key intermediates 

as shown in Figure 1-1. 

glucose 

0 
- O H 
L o © 

HO-
=0 

glyceraldehyde 
3 phosphate 3 

e 9 © 
o 

=0 
-OH 
-OH 
- o © 

phosphoenol erythrose 
pyruvate 4 4-phosphate 5 

-OH 
L - 0 © 

1-D-deoxy xylulose 
5-phosphate 6 

pyruvate 7 

Quinones 
Aromatics 
Cinnamic acid 

0 

mevalonic acid 9 

isoprenoids 

SCoA -
acetyl Co-A 10 

O O 

malonyl Co-A 11 

OH shikimic acid — ' 
8 

aromatic amino acids 
"aliphatic amino acids 

Peptides 
Proteins 
Alkaloids 

Polyketides Penicillins 
Fatty acids 

Figure 1-1 Diagram showing the biogenesis of common intermediates and their fate 



1.1.1 Bacterial growth and secondary metabolism 

Figure 1-2 below shows the growth profile of a bacterial culture with the cell mass 

plotted against time. 

3̂ 

Time 

Figure 1-2 Graph showing cell mass versus time for a bacterial culture 

Initially cell growth is slow and almost linear until such a point as the organism begins 

to rapidly proliferate. This is followed by a period of rapid growth that is described as 

the "log phase" as the cell growth is logarithmic. It is during this time that the organism 

utilises primary metabolic pathways. These deliver metabolites such as DNA/RNA, 

proteins, and lipids - metabolites which are essential to life and are made from the 

exogenous sources such as C O 2 , sugars and amino acids by processes such as glycolysis 

and the tricarboxylic acid cycle (TCA cycle). These primary metabohtes are used to 

manufacture cells and cell machinery. 

As the organism exhausts the supply of nutrients the growth is retarded to such a degree 

that the logarithmic growth rate is halted and replaced by a period where no further 

growth takes place. This is described as the organism entering the "stationary" phase. 

The stationary phase is the time when bacteria change the rate at which metabolic 

pathways are employed by upregulating secondary metabolism at the expense of 

primary metabolism. This is when secondary metabolite production is maximal. These 

secondary metabolites, delivered from pathways such as the mevalonic acid pathway, 

the shikimate pathway and fatty acid biosynthesis, are non-essential to growth as is 

evident from their late production, but are very important to survival. The late onset of 

secondary metabolism is essential as many idolites are fatal to developing cells and thus 

early production would result in severe growth retardation. 

Organisms that grow slower than bacteria have a less clear distinction between primary 

and secondary metabolic production phases. Plants are capable of producing metabolites 
4 



that are non-essential for growth long before growth has finished; an everyday example 

is the smell of garden flowers before they are fully-grown. In systems like these the 

biomechanical machinery of primary and secondary metabolism is inherently linked and 

thus the difference between primary and secondary metabolites is expressed in terms of 

molecular structure rather than biological uses. 

1.2 The function of secondary metabolites 

The role of secondary metabolites in biological systems has been a source of mystery 

and controversy. Although secondary metabolites, in particular plant secondary 

metabolites, have been found to have a variety of functions, the exact reason for their 

biosynthesis is unknown. The vast array of structures, and thus the number of dedicated 

enzymes needed to produce the myriad of compounds, naturally leads one to the 

conclusion that secondary metabolites do perform a valuable function. The precedent 

for the use of idolites such as azadirachtin (12) from the Neme plant and senecionone 

(13) fi-om ragwort {Senecio jacobaea) as antifeedants is well estabhshed deterring 

insects and marrunals respectively. 

COzMe 
O j / O H o. 

HO. ,̂  

AcO' 

H MeA 

12 13 

Other idolites are known to possess valuable antibiotic activity and have been used by 

Man. The vast majority of idolites, however, appear to have no obvious purpose or 

reason for production. This has led to the rationalisation of idolite production in terms 

of their evolutionary significance. One hypothesis, proposed by Davies^, is that 

secondary metabolites, particularly antibiotics, were used as part of defence 

mechanisms in an RNA world, p Lactam antibiotics are known to target murein 

peptidoglycan which was present in the first cells, and thus it may appear that the first 

secondary metabolites were responsible for inter-bacterial chemical defence. This 

implies that azadirachtin and senecione are evolutionary supercedants which are more 

sophisticated owing to inter kingdom interaction. Davies' hypothesis has been rejected 

5 



by Cavalier-Smith^ because it fails to account for the initial origin of the required genes 

and because idolites such as the cytochalasins, which affect eukaryotes, appeared before 

the organisms that they adversely affect. Furthermore, as the genes coding for idolite 

production have been conserved over many miUions of years the notion that secondary 

metabolites were used as an evolutionary playground can be dismissed^. Over time 

genes that corresponded to secondary metabolites that give no advantage to the 

organism to the host would be lost with the result that very few secondary metabolites 

would be produced. 

1.3 Secondary metabolites 

1.3.1 Fatty acids andpolyketides 

Fatty acids are a class of compounds that have a common biosynthesis. Owing to their 

lipophilic nature, fatty acids are used by Nature in cell membranes as lipids and are 

employed in energy storage as fats. Both unsaturated and saturated chains are abundant 

in Nature and chain lengths of between eight and twenty carbon atoms are commonly 

encountered. One of the key features of fatty acid biosynthesis is that the chain is built 

up via a series of steps that occur on the surface of the fatty acid synthase that mediates 

chain building. Initially, acetyl-CoA (10) is activated to malonyl-CoA (11) which is 

then transferred onto the surface of an' acyl carrier protein (ACP) as the thioester. 

Subsequent decarboxylative condensation of acetyl-CoA with malonyl-ACP produces a 

P-keto species. Once bound to ACP the chain then proceeds to elongate by 

decarboxylative displacements of thiol ester bound pendant chains that are present on 

the ACP (step i). The P-keto ester is then reduced by enoyl-keto reductase to deliver the 

P-hydroxy acid via NADPH (step ii). The elimination of water by P-hydroxy 

dehydratase delivers the a,P-unsaturated ketone (step iii). The final step of the cycle is 

reduction of the olefmic bond by an enoyl reductase that produces, on the first iteration, 

butyryl-CoA. As the carbon chain is built up from acetate units, only even numbered 

fatty acids are found to occur in Nature. 



SCoA 
10 

SACP 

SCoA 

CoASH 

SACP 

O 
A SCoA 

O O 

HO'''^'^^^SACP 

OH O 

Scheme 1-1 A schematic representation of fatty acid biosynthesis 

After the first cycle, the saturated thioester can then react again with malonyl-CoA to 

repeat the process and increase chain length. 

Unsaturated fatty acids are produced using the same machinery as above. Nearly all 

double bonds produced via fatty acid biosynthesis are cis, which prevents efficient 

packing and affords cell wall rigidity. Fatty acids are also responsible for a high 

proportion of the rare fluorinated natural products, which are most probably derived 

from the use of fluoroacetate (14) as a starter unit^ 



o 
0 Dichapetalum 
O -

toxicarium 

14 15 

Scheme 1-2 Fluoro-oleic acid (15) from fluoroacetate (14) as a starter unit 

Polyketides are a class of secondary metabolites that are also produced via die 

condensation of successive malonyl-ACP units. As studies on the isolation and 

biosynthesis of some polyketide compounds are described later in this thesis, it is 

pertinent to only briefly outline some features of the polyketide pathway. Polyketides 

are formed from the condensation of acetyl-CoA (10) usually with malonyl-ACP (11) 

units in the same iterative manner as fatty acids (Scheme 1-1). The idea that polyketides 

could be built from the successive condensation of acetate units was formulated by 

CoUie^ although the development of the "polyketide hypothesis" was only fully realised 

by Birch"^ some fifty years later. Birch applied the rationale that polyketides were 

derived from the repeated condensation of acetate units to show that the proposed 

structure of eleutherinol (16) was incorrect as it could not be described in terms of head-

to-tail acetate linkages. The revised structure agreed with findings of degradative 

experiments. 

O O 

OH O 
0 0 0 

O OH 

Scheme 1-3 Birch's application of the acetate hypothesis to structure elucidation 

Polyketides are a structurally diverse class of idolites that are abundant in fungi, 

particularly fiingi imperfecti and are also feature heavily in bacterial secondary 

metabolism. The range of structures is increased by the use of units other than acetate. 
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Me Me-^,.. 

•"''"^CHO NMe2 

••.o"°^^l OH ^ 

18 

Figure 1-3 Disconnection demonstrating propionate build up of erthromycin A (17) and 

tylosin (18) 

Structures such as the bacterial polyketide erythromycin A (17) are derived uniquely 

from propionate units whereas structures such as the macrocylic component of tylosin 

(18) are formed from acetate, propionate and butyrate units. 

Bioactive polyketides are now known to include antibiotics (e.g. erthromycin A,17), 

carcinogens (aflatoxin B l , 19), nephrotoxins (patulin, 20) and antifungal agents 

(variotin, 21). 

0 OH 
OMe 

19 20 21 



1.3.2 Shikimate derived metabolites 

The shikimic acid pathway delivers aromatic amino acids to both the primary and 

secondary metabolic pathways and is important in higher plants and bacteria. The 

pathway delivers phenylalanine (22) and tyrosine (23), both of which are abundant in 

idolites, and tryptophane (24), which is used predominantly by primary metabolism. 

The pioneering work on the shikimate pathway was performed by Davies, some 70 

years after the first isolation of shikimic acid (8). The pathway is now Well understood 

and features the condensation of erthyrose-4-phosphate (5) with phosphoenol pyruvate 

(4) to produce shikimic acid (8). 

HQ. CO2 HO, CO2 HO, CO2 

^ ^ ^ " ^ ^ (P)6 OH (P)6) OH 

TPN —H (pp OH 

HO, CO2 

Scheme 1-4 Formation of shikimic acid (8) 

Shikimic acid (8) is then converted to chorismic acid (25) by the addition of 

phosphoenol pyruvate (4), which delivers the amino acids phenylalanine (22) and 

tyrosine (23) as shown in Scheme 1-5. 
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Scheme 1-5 Biosynthesis of phenylalanine (22) and tyrosine (23) from chorismic acid 

(25) 

1.3.3 Isoprenoids 

Isoprenoids are a broad class of idolites that include terpenoids, steroids and compounds 

containing prenyl chains such as carotenoids. It has recently been shown" that there are 

two biosynthetic pathways to isoprenoids and the elucidation of the new terpene 

biosynthesis is a major focus of this work. Isoprenoids are more fully described in 

section 1.5 
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1.4 Elucidation of a biosynthetic pathway 

Secondary metabolites are often grouped in terms of their biosynthetic origin. Despite 

the diverse array of secondary metabolites, almost all are derived from one of a small 

number of pathways with structural modifications performed later. Knowledge of a 

biosynthetic pathway can lead to new target compounds for drug discovery as specific 

inhibitors can be designed to knock out key enzymes. In order to understand fially a 

pathway, a number of techniques are available. 

1.4.1 Incorporation of isotopically labelled precursors 

It is often difficult to trace the biosynthesis or cataboHsm of a secondary metabolite. 

However, atoms or bonds can be followed, either by single or multiple labelhng with 

isotopes. Typically the organism is grown in the presence of an appropriately 

isotopically labelled precursor and the resultant metabolite is extracted and analysed by 

NMR or MS techniques. 

1.4.2 Radioisotopes 

The post war production of '''C and as nuclear by-products heralded a new age in 

biosynthetic elucidation by providing ready sources of [1-''*C] and [2-''*C]-acetate. 

Pioneering experiments by Calvin using ' '*C02 with photosynthetic algae showed 

incorporation of '"̂ C into the carbonyl carbon of 3-phosphoglycerate (26) demonstrating 

that atmospheric C O 2 is fixed via ribulose-l,5-bisphosphate carboxylase (Scheme 1-6) 
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Scheme 1-6 Incorporation of '"C labelled C O 2 into 3-phosphoglycerate (26) 
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The Table below shows the properties of the most frequently used radioisotopes. 

Radioisotope Emission Half life Specific activity 

(mCi/mA) 

P 12.35 y 2.92 X 10'* 

P 5730 y 62.4 

32p P 87.5 d 1.50 X 10̂  

33p 
P 25.5 d 5.32 X 10^ 

P 14.3 d 9.2 X 10̂  

Table 1-1 Selected properties of common radioisotopes 12 

Tritium (^H) has been used to trace the biosynthetic course of hydrogen atoms. It has 

magnetic properties that are similar to that of ' H but it is not found in Nature. 

Nucleus Natural abundance /% Spin Relative 

Magnetogyric ratio 

'H 99.976 Vi 1.000 

0 Vi 1.067 

Table 1-2 Comparison of magnetic properties of ' H and 

The disadvantage of as a probe is its relatively high levels of radioactivity. 

Radioisotopes have other associated problems. Being sources of ionising radiation, 

radioisotopes require carefiil monitoring in order to minimise exposure. Furthermore, as 

it is often impossible to discern which of the atoms is bearing the label, each structural 

motif needs to be isolated and analysed separately via degradative techniques. These 

can be technically demanding and time consuming. 
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1.4.3 Stable isotopes 

Stable isotopes are the most widely used chemical technique employed in the 

elucidation of biosynthetic pathways. Many compounds are commercially available 

bearing at least one isotopically enriched atom, typically ^̂ C or ^H. Both nuclei are 

magnetically observable. 

Nucleus Spin Natural Abundance/% 

1 0.016 

Vi 1.1 

Table 1-3 Magnefic properties of and '^C 

Deuterium, like tritium, is conventionally used as a probe to trace the fate of hydrogen 

atoms and is amenable to detection using NMR spectroscopy although the sensitivity is 

much lower than for ' H or ^ H . An attractive feature of deuterium labelling is that 

chemical shifts are comparable to proton chemical shifts of the same molecule, which 

alleviates the need for additional resonance assignments. As is a quadrapolar 

nucleus, deuterium signals are much broader than proton or triton resonances. 

Deuterium labelled acetate is commonly used to show that a metabolite is polyketide 

derived. The position of the deuterium label also shows the orientation of the growing 

chain'^ as in the case of altemariol (27). 

O' 

O 
0 X 2 

28 

Alternaria H3CO 

alternata *" 

OH OH O 
27 

'H 

O'Ha 

Scheme 1-7 Incorporation of [2-^H3]-acetate (28) into altemariol (27) 13 

Deuterium incorporation can also be assessed indirectly by '^C-NMR spectroscopy up 

to one carbon away from the site of enrichment. The heavier nucleus induces a subtle 

shift in electron density around the carbon nucleus compared to a C-H bond. This 

causes C-^H carbon resonances to come at higher field than the corresponding C-H 
14 



carbon resonances. This one bond shift is described as an a shift. A two bond p shift of 

0.06 ppm in a '^C-C-^H system is also observable. Similar shifts are found when using 
18 

O, but these are smaller in magnitude. 

Nucleus a-shift per atom /ppm P-shift per atom /ppm 

0.35 0.06 

18Q 0.03 0.001 

Table 1-4 a And p shifts caused by and '^0 

Oxygen-18 has been used to determine the fate of oxygen atoms along the biosynthetic 

pathway and is typically analysed via mass spectroscopy'"*. 

Carbon-13 was first fully realised as a potential tool m biosynthesis by Seto and co

workers in 1970'^ thirteen years after the first natural abundance '•'C NMR spectrum 

had been obtained'^. '^C Enrichments are typically observed via the increase in peak 

heights in the '^C NMR spectrum. This allows the position of the label to be established 

and, by comparison with other signals in the spectrum, the level of enrichment can be 

calculated. The use of single labelled carbon precursors is generally limited to late 

intermediates on a pathway as early intermediates such as [1-'''C] and [2-'^C]-acetates 

result in low incorporations due to other metabolic processes that occur. The 

correspondingly small increase in '^C-peak height may be below the detectable 

threshold of'^C-NMR. 

The use of double-labelled substrates provides much greater sensitivity and can provide 

additional information. For example, [l,2-'^C2]-acetate is routinely used in "bond 

labelling" whereby the fate of carbon-carbon bonds is followed'^. I f the acetate unit is 

incorporated intact then adjacent '^C nuclei wil l couple to each other, resulting in a 

doublet about the natural abundance '^C peak in the '^C-NMR spectrum. I f the acetate 

unit is catabolised then no doublet will be observed. 

The use of multiply labelled '^C and acetates provides a powerfixl tool for detection 

of the carbon-deuterium bonds'^. A ' ^ C ( ' H } NMR spectrum shows the carbon 

resonance corresponding to '^C-^H as a multiplet whereas a ' ^ C { ' H , ^ H } NMR spectrum 

shows the same resonance as a singlet. Subtracting one spectrum from the other shows 

carbon nuclei with intact C-^H bonds. The a-shift in the ' ^ C { ' H , ^ H } NMR spectrum is 

also additive and hence shows the number of deuterium atoms present 
15 



1.4.4 Cell free extracts 

Cell free extracts allow the study of biosynthetic reactions by providing the biosynthetic 

machinery in an in vivo setting. Cell free work allows investigation into such features as 

co-factor requirements in enzyme chemistry. It has the advantage over the feeding of 

isotopically enriched compounds that substrates are "turned over" directly by the 

appropriate enzyme rather than requiring activation or metabolic conversion. This has 

proved to be a very usefiil method in the study of the new terpene pathway and is 

discussed later. 

1.4.5 Blocked mutants 

A biosynthetic scheme can be considered in terms of a series of consecutive steps, each 

of which is mediated by a unique enzyme. Disabling one of the enzymes in a mutant 

organism can result in the accumulation of the preceding metabolite such that it can be 

isolated and analysed. 

b c d e f 
A B ^ C D • E F 

b 
A • B 

Figure 1-4 Use of blocked mutants to effect metaboHte isolation 

7.5 Isoprenoids 

The term isoprenoids is used to describe terpenes, terpenoids (oxygen containing 

terpenes), steroids, sterols (steroids containing an alcohol functionahty), and 

carotenoids. The name "terpene" derives from the 14"̂  century, and is a debasement of 

the Medieval Latin terbentina, from terebinthus, the free from which oil of turpentine 

was collected. Historically terpenes have fascinated Man and the mapping of their 

biosynthesis and properties reads as a "who's who" of eminent chemists and 

biochemists of the last century. 
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7.5.7 Terpene classification 

Terpenes are described according to the number of contiguous carbon atoms they 

possess. 

Number of carbon atoms Class 

10 monoterpenoids 

15 sesquiterpenoids 

20 diterpenoids 

25 sesterpemoid 

30 triterpenoids 

40 tetrapemoids 

>40 polyterpenoids 

Table 1-5 Classification of terpenoids according to carbon chain length 

Early studies observed that many terpenes known at the time could be described as 

being built up from two molecules of the C 5 isoprene unit. Isoprene (29) was known at 

the time to be a volatile emitted by plants. A retrosynthetic analysis of limonene using a 

Diels-Alder type reaction reveals two molecules of isoprene. Pyrolysis of monoterpenes 

supports this hypothesis yielding two molecules of isoprene (29). 

200°C 

30 29 30 

Scheme 1- 8 Disconnection and pyrolysis of limonene (30) to produce two molecules of 

isoprene (29) 

This approach was successfriUy applied to all terpenes that were known at the time as 

only simple monoterpenes had been isolated and characterised. In 1887, Wallach'^ 

formally proposed the "isoprene rule" which stated that all terpenoids could be 

described in terms of being assembled from a number of isoprene units linked together 
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in a head-to-tail fashion. Terpenoids that meet the isoprene rule are described as regular 

terpenoids. However, with the advent of greater analytical sophistication increasing 

numbers of irregular terpenoids were isolated, such as eremophilone (31)^°, that could 

not be rationahsed by the isoprene rule. 

O 

(31) 

Eremophilone caimot be discormected to give three molecules of isoprene although 

Robinson^° suggested that the structure could be rationalised by the following scheme 

(Scheme 1-9). 

The key step is the formation of a carbocation which promotes a transanuUar methyl 

shift. The resultant carbocation is then neutralised in an elimination reaction. 

(31) 

Scheme 1-9 The coimectivity of eremophilone (31) explained in terms of a 

rearrangment 

Such irregular terpenes led to the formulation of the "biogenic isoprene rule" by 

Ruzicka^'. This states that all terpenes can be described in terms of assembly from 

isoprene with structural modifications provided by simple transformations such as 

proton shifts. The biogenic isoprene rule has proved useful in the classification of 

terpenoids. Thus the irones, a class of C15 terpenoids produced by sword lily rhizomes 
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may appear to be sesquiterpenes by virtue of the number of carbons although they are 
22 

actually triterpenoids and are derived from the iridial group . 

O 

32 33 

Scheme 1-10 Conversion of iridial (32) to irone (33) 

The biogenic isoprene rule was correctly inspired and terpenoids are now known to 

derive biosynthetically from the condensation of C5 units. These have been identified as 

isopentenyl pyrophosphate (IPP, 34) and dimethylallyl pyrophosphate (DMAPP, 35) 

which are activated and less volatile forms of isoprene. The condensation of IPP and 

DMAPP is discussed below. 

1.5.2 Formation of terpenes: the interconversion of IPP (34) and DMAPP (35) 

0 (P) P ^ ^ ^0(P)(P 

34 35 

It is well established that DMAPP (35) is formed from IPP (34) by the action of IPP 

isomerase which stereoselectively removes the pro-R. hydrogen" in the isomerisation 

reaction. Concurrent with this is the addition of a proton from the medium to the other 

face of the double bond. As the reaction is stereospecific the methyl groups of DMAPP 

are non-equivalent. The new methyl group has E-geometry. 

19 



Cysi387-s-H 

Cysi39 - /s-H 

H H r H s 

Cysi38rs-H 

Cys i39 - /s 

207 207 

Figure 1-5 Stereochemistry of IPP isomerasê "̂  

Once DMAPP and IPP have been generated, they are then free to combine to form 

longer chain terpenoids. The nature of this condensation has been investigated in 

mammals, although the stereochemical details may differ for IPP and DMAPP 

generated by the new terpene pathway. The latter is described in Section 2.4. 

Comforth^" proposed that the condensation of IPP and DMAPP proceeds in a two step 

manner. The first is the addition of a nucleophilic species, X, across the olefmic bond 

which is followed by the elimination of X and the anti hydrogen atom. The new species, 

famesyl pyrophosphate can be used to deliver monoterpenes, or can react with a further 

molecule of IPP to produce geranyl pyrophosphate (GPP, 36). 

35 34 36 

Scheme 1-11 Proposed formation of GPP (36) from IPP (34) and DMAPP (35) 

The consecutive addition of IPP to GPP can continue indefinitely in an iterative manner 

to deliver the higher terpenoids from famesyl pyrophosphate (FPP, 37), geranylgeranyl 

pyrophosphate (GGPP, 38) and famesylfamesyl pyrophosphate (FFPP, 39). 
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diterpenoids 

sesterterpenoids 

Scheme 1-12 Illustration of how higher terpenes are built up 

Two polymers of the general formula (IPP)n are known - gutta percha (40) and rubber 

(41). The two differ in double bond geometry. Rubber possesses cis linkages and has 

free rotation about the methylene linkage that gives rubber its characteristic flexibility. 

Gutta percha (trans polyisoprene) has less rotation and is correspondingly hard and 

inflexible. It has been known in the West since the nineteenth century and found uses in 

electrical insulation, dentistry^^, and the preparation of the first golf balls. 

H Me 

Me H 

40 
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1.5.3 Monoterpenes 

Monoterpenes are amongst the most widely exploited class of natural products. Owing 

to their relatively low molecular weight, monoterpenes are fragrant and are used 

extensively in perfumes and as flavours in foodstuffs. Menthol (42) has been known for 

over 2000 years and thujone (43) is the hallucinogen found in the drink absynthe. 

Me 

42 43 

Despite their low molecular weight, monoterpenes display a remarkable structural 

diversity, which is accounted for by carbocationic rearrangements. Initially GPP 

isomerases to neryl pyrophosphate (NPP, 44) which can then deliver terpenoids such as 

citral (45) and linalool (46) directly or can eject pyrophosphate to initiate cyclisation via 

the menthane carbocation (47) 

Scheme 1-13 Conversion of GPP (36) to NPP (44), citral (45), linalool (46) and the 

methane carbocation (47) 
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The isomerisation to NPP occurs to bring the cyclising double bond closer to the 

leaving group. The product of the cyclisation, menthane (47), is highly versatile as is 

evident from the bicyclic products that contain between three and six membered rings. 

Monoterpenes such as limonene (30), thujone (43), camphor (48) and carene (49) are 

representative examples. 

30 43 48 49 

Scheme 1-14 Formation of monoterpenes from the menthane carbocation (47) 

1.5.4 Sesquiterpenes 

Sesquiterpenes are assembled by the extension of GPP by IPP (Scheme 1-12) and like 

monoterpenes, they are most abundant in higher plants. By analogy to monoterpene 

biosynthesis, cz5-FPP (37) is isomerised through nerolidyl pyrophosphate (50) to trans-

FPP (51). Both isomers undergo cychsation reactions to deliver a variety of skeletal 

structures. 
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Scheme 1-15 Formation of nerolidyl pyrophosphate (50) and trans FPP (51) from cis 

FPP (37) 

Sequiterpenes exhibit a range of structural diversity to match that of the monoterpenes 

owing to the four double bond centres that can participate in ring formation. 

Scheme 1-16 Formation of first generation sesquiterpene skeletons from FPP 

Sesquiterpenes are essential for the growth and maturation of insects, and plants have 

taken full advantage to construct effective defence mechanisms. The sesquiterpene 

juvabione (52) is a known inhibitor of insect maturity and is produced by the balsam fir 

free, Abies balsamea, in order to prevent insect development. The highly oxygenated 

plant terpenoid artemisinin (53) is a well-known antimalarial drug.^^ 
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1.5.5 Diterpenes 

Diterpenes are derived from the coupling of FPP with IPP to form GGPP (Scheme 1-17) 

and are found in higher plants, fungi, insects and marine organisms. Most are tricyclic 

compounds. 

Scheme 1-17 Formation of diterpene skeletons 
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Diterpenes are important as bioactive agents and three of the most widely studied 

terpenoids are diterpenoids, namely taxol® (54), gibberellic acid (55) and vitamin A 

(56). 

54 56 

Taxol (54) was first isolated from the bark of the Pacific Yew tree (Taxus brevifolia) 

and is highly effective in the treatment of cancer. As removal of the bark causes the tree 

to die, semisynthetic analogues are more viable clinical alternatives. 

GibbereUic acid (55) was the first gibberillin to be isolated and was purified from the 

broth of the fungus Gibberella fujikoroi. G. fujikoroi Is responsible for a disease that 

affects rice in Japan whereby the seedlings grow at a greatly accelerated rate but do not 

mature which renders the crop useless. Other gibberillins have been found in higher 

plants and are now recognised as hormones and growth promoters. Gibberillins share 

the same skeleton and lactone ring as the parent acid with structural variations coming 

from differing positions of hydroxy and double bonds. 

1.5.6 Sesterterpen es 

Very few sesterterpenes are known. Their distribution is the same as for the diterpenes 

and their biosynthesis is analogous with the previous descriptions. 

1.5.7 Triterpenes and steroids -the involvement of squalene 

Triterpenoids form the largest group of terpenoids although their structural diversity is 

relatively small, typically having three or four frised alicyclic rings. They are most 

abundant in higher plants although they are known in animals in small numbers. 

Squalene contributes their skeletons and is formed from the head-head linkage of two 
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molecules of FPP^^ Squalene (57) was first isolated from shark hver and has been 

found to be abundant in fiingi, vegetable oils and human earwax. The mechanism of 

squalene synthase proceeds via a carboeationic separated ion pair. Interestingly, the 

reaction proceeds through a cyclopropane intermediate which is formed by removal of 

the pro-S hydrogen from mevalonic acid. This is followed by ring expansion to a 

putative cyclobutane cabocation that is opened by the delivery of hydride from 

NADPH. The ring formation produces the unique head-to-head arrangement of isoprene 

units found in squalene (Scheme 1-18). 
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Scheme 1-18 Formation of squalene (57) 

In 1965 Bloch^^ demonstrated that 2,3-epoxy squalene (58) was the precursor of 

lanosterol (59) in animals and cycloartenol (60) in higher plants. Triterpenes, such as P 

amyrin (61) are also derived from the folding of 2,3-epoxy squalene. 
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Scheme 1-19 Biosynthesis of lanosterol (59), cycloartenol (60) and p-amyrin (61), 

Triterpenoids and steroids have similar applications - both are used in cell membranes 

to control cell rigidity. Cholesterol (62) controls its aligimient in membranes via its 

hydroxy group. The prenyl sidechain is non-polar and allows incorporation into lipid 

bilayers whilst the polar hydroxy head enables it to be incorporated into phospholipid 

layers. Cholesterol is biosynthesised from lanosterol in nineteen steps. The conversion 

may be lengthy, but is vitally important as membranes made from lanosterol are much 

more permeable than the cholesterol containing analogues. 

Scheme 1-20 Conversion of lanosterol (59) to cholesterol (62) 
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1.6 Terpenoid biosynthesis - the mevalonic acid pathway 

1.6.1 Features of the pathway 

Ruzicka's isoprene rule provided a rudimentry understanding of the biosynthesis of 

terpenoids. The first biosynthesis study on terpenoids was performed by Sanderhoff^^ in 

1937 who fed sodium [2-'̂ H3]-acetate to yeast. The high level of incorporation of 

deuterium into resultant sterols suggested acetate as a building block. Progress on the 

pathway was slow until the intervention of Comforth, Bloch and Lynden who were later 

awarded the Nobel Prize for chemistry in 1964. Initial feeding experiments^"'^' with 

sodium [l-''*C]-acetate and sodium [2-'''C]-acetate showed the terpenoid skeleton of 

cholesterol was built from alternating acetate-methyl and acetate-carboxylate carbons, 

and that the pendant methyl groups were derived from the methyl groups of acetate. 

Scheme 1-21 Incorporation of [1- C]-acetate (63) labelled into cholesterol (62) 

In 1951 it was shown by Lynen and co-workers''^ that acetate is activated in vivo to its 

thiol ester of coenzyme-A to form acetyl-CoA (10). Subsequently HMG-CoA (64) was 

identified as an intermediate which is formed from the combination of three acetyl-CoA 

units. The first step is a Claisen ester type condensation that is then followed by an aldol 

type condensation. HMG-CoA is an important intermediate as its formation is the rate-

Hmiting step in terpenoid biosynthesis via the M V A pathway. 
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Scheme 1-22 Formation of HMG-CoA (64) from acetyl-CoA (10) 

Conversion of HMG-CoA (64) to IPP requires the loss of one carbon atom. This had 

been noted by Comforth who observed that isotope from [l-'^'CJ-acetate also produced 

'''CO2, suggesting a decarboxylation process. In 1956, workers at Merck, Sharp and 

Dohme found that brewing sediment could replace acetate as the carbon source for a 

mutant sfrain of Lactobacillus acidophilus. Furthermore, when the sediment was fed 

terpenoids were produced at higher levels. Extraction and isolation of the active 

material revealed that the growth enhancing subsfrate was 3,5-dihydroxy-3-methyl 

valeric acid, which is now described as mevalonic acid (MVA, 9). Mevalonic acid was 

firmly established as an intermediate on the pathway when the lactone form of MVA 

(65) was converted by liver extracts into cholesterol. 
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Scheme 1-23 Synthesis and incorporation of [!-"*€] mevalonalactone (65) 
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Work by Arigoni showed that only the 3-i?(-) enantiomer of M V A is produced in vivo^^ 

which was confirmed by feeding experiments with 3-R{-)-MVA and 3-S{+)-MVA in 

which only exogenously administered 3-R{-)-MVA was incorporated. The final steps 

that converts M V A to IPP require the alcohols to become activated to phosphate esters, 

the removal of one carbon atom and the introduction of a terminal double bond. 

Phosphorylation is catalysed by mevalonate kinases that use ATP and Mg "̂̂  to produce 

the phosphate esters. Subsequent decarboxylation provides IPP as shown in Scheme 1-

24 and EPP is then converted to DMAPP as described in Figure 1-5. This sequence of 

steps, starting from acetate which is processed to HMG-CoA and mevalonic acid to IPP, 

is described as the mevalonic acid pathway. 
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Scheme 1-24 Formation of IPP (34) from HMG-CoA (64) via MVA (9) 
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1.6.2 Other sources of mevalonate 

The scheme outlined above represents the major pathway to MVA, but is not the only 

source of MVA. A minor contribution is from a pathway where leucine (66) is 

converted to HMG-CoA through 3-methylcrotonylcoenzyme A (67). The sequence is 

completed by carboxylation by biotin and finally hydration to produce HMG-CoA (64). 
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Scheme 1-25 Formation of HMG-CoA (64) from leucine (66) 

1.6.3 Unresolved issues on the mevalonate pathway 
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Although the sequence and stereochemistry of the steps on the M V A pathway is well 

known, as early as the 1960's results emerged that appeared to contradict the hypothesis 

that M V A was the universal precursor to isoprenoids. The incorporation of ''*C02 and 

[2-''*C]-MVA into the chloroplasts of seedlings was reported by Trehame and co

workers in 1966̂ *̂ who observed that (3 carotene and phytol were labelled by '^C02but 

not [2-''*C]-MVA. For sterols, the reverse was true. The conclusion was drawn that as 

both p carotene and phytol are biosynthesised in the chloroplasts, and sterols are made 

in the cytoplasm, the difference in incorporations was due to the relative permeability of 

the chloroplasts and cytoplasm to M V A and CO2. This agreed with findings'*^ that 

chloroplasts prepared in the laboratory were impermeable to MVA. Similar results were 

observed for the incorporation of ''*C02 and [2-'' 'C]-MVA into monoterpenes and sterols 

produced by Mentha piperita^^. Incorporation of [l-'''C]-acetate into monoterpenes was 
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also observed to be very low (<0.01%) which, it was argued, was due to acetate being 

used for other metabolic pathways. An exhaustive list of incorporations of acetate, 

MVA and CO2 into monoterpenes is provided in an excellent review by Banthorpe"''. In 

experiments where acetate was incorporated into terpenes, significant scrambling of the 

tracer occurred^*. 

Further evidence for the differences between the M V A pathways in the cytoplasm and 

chloroplasts was revealed when [2-"'C]-MVA was fed to Thuja occidentalias . 

Analysis of the thujone that was produced showed incorporation of the '''C label was 

two orders of magnitude higher in the IPP unit than the DMAPP unit. Similar 

asymmetrical labelling was later reported in both enantiomers of camphor'**̂  and in the 

sequiterpenes tutin and coriamyrtin'*'. These suggested that two pools of DMAPP 

existed- a pool that was free and sparsely filled and another that was enzyme bound and 

full. Further hypotheses were suggested, such as that high concentrations of 

exogenously administered MVA could inhibit the isomerisation process, resulting in 

low concentrations of DMAPP. 

However, all explanations seemed to overlook that the incorporations were almost 

insignificantly small ( 0.01% ) and prone to error and contamination. The answer to how 

plant monoterpenes are biosynthesised is discussed below. 

1.7 The 1-deoxyxyulose pathway 

1.7.1 Initial studies 

The pioneering work on the early stages of the l-D-deoxyxyulose-5-phosphate (DXP) 

pathway, or mevalonate independent pathway, was performed by Rohmer and co

workers. The first suggestion that an alternative pathway was operating followed the 

results of feeding experiments with [l- '^C] and [2-'''C]-acetate with the bacterium 

Rhodopseidomonas palustris''^. The aim of the experiment was to determine the origin 

of a non-terpene sidechain in a hopane. Incorporation showed that the sidechain was 

derived from a D-pentose but also revealed incorporation of '^C derived from acetate 

that did not concur with the processing of acetate via mevalonic acid. In addition the 

incorporations were relatively high and showed no evidence of scrambling. The result 

was explained in terms of compartmentation effects, and that the acetate was processed 

to MVA but that two non-equivalent pools of acetate existed. Feeding of [ l - '^C]-
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acetate to E. coli also showed an identical incorporation pattern into the ubiquinone 

sidechain to that found in R. palustris. 

Further experiments"'' in Zymomonas mobilis showed identical results. One of the 

attractive features about using the bacterium Z. mobilis is that many glycolytic enzymes 

are absent and it is capable of growing on a single carbon source. This can lead to 

relatively high levels of incorporation. Isotopically labelled glucoses were fed and the 

incorporation into the isoprenoid fraction of the hopanoids was analysed via '^C NMR. 

It was found that C-3 of IPP was derived from C-2 and C-5 of glucose and C-3 and C-6 

of glucose gave rise to C-5 of IPP. Similar relationships were found between C-1, C-2 

and C-4 of IPP and C-4, C-5 and C-6 of glucose respectively. Feeding experiments with 

Methylobacterium fujiawaense using '•'C enriched glucoses labelled IPP in a similar 

manner to the incorporations in Z. mobilis. Both organisms use the Entner-Doudoroff 

pathway rather than glycolysis for glucose metabolism. In the glycolytic pathway, 

glucose (68) is converted through fructose 1,6 bisphosphate (69) to dihydroxyacetone 

phosphate (70) and D-glyceraldehdye-3-phosphate (GAP, 3). The Entner-Doudoroff 

pathway metabolises glucose to glyceraldehyde-3-phosphate (3) and pyruvate (7). 

Feeding of [ l- '^C] and [6-'^C]-glucose to E. coli and Alicyclobacillus acidoterrestris^^ 

once again showed enrichment of C-1 and C-5 of IPP. 

These results inferred the involvement of pyruvate and a C3 intermediate that would be 

delivered by the Entner-Doudoroff pathway in Z. mobilis and M. fujiawaense and via 

glycolysis in E. coli to provide a branched C5 intermediate. 
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Scheme 1-26 Comparison of glycolysis and the Entner-Doudoroff pathway 
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The incorporation of [4,5-'^C2i-glucose into the ubiquinone of M. fujiawaense showed 

labelling of C-2 and C-4 of IPP with satellites corresponding to '^C-'^C coupling. As 

the carbon-carbon bond was incorporated intact, it was judged that the rearrangement to 

the branched skeleton is an intramolecular process. 

[U-'^C]-Glucose fed to Z. mobilis showed '•'C-^^C coupling between C-3 and C-5 in 

addition to ' j '^C-'^C coupling between C-1 and C-2'*^ An enrichment of C-4 was also 

observed. This proved that the C2 unit was derived from pyruvate and explained the 

previously anomalous result of Zhou and White'*'̂  who had observed that [methyl-^B.-i\-

lactate was incorporated into the ubiquinone of E. coli. In the context of the mevalonate 

independent pathway, the incorporation represents processing of lactate to pyruvate. 

Furthermore, the previous incorporations of acetate studied by radiolabelling represent 

the processing of acetate to pyruvate via oxaloacetate and incorporation of pyruvate via 

the DXP pathway rather than direct incorporation of acetate via the M V A pathway. 

Investigations into the identity of the C3 unit were conducted using mutants of E. colf^. 

In parallel experiments, cultures were supplemented with [l-'^C]-pyruvate and 

unlabelled glycerol or [l-'^C]-glycerol and unlabelled pyruvate. Pyruvate was 

incorporated into C3 and C5 of IPP irrespective of which enzymes were absent 

demonstrating that two carbons arise from the decarboxylation of pyruvate. The 

experiment also pinpointed GAP as the C3 intermediate. Mutants possessing only the 

enzymes required to convert pyruvate to GAP showed incorporation of '̂ C from [1-

'^C]-pyruvate whilst mutants possessing only the enzymes required to convert glycerol 

to GAP showed '^C enrichment from [l-'''C]-glycerol. 

1.7.2 The role of l-D-deoxyxylulose-5-phosphate 

The key intermediate on the mevalonate independent pathway, l-deoxyxylulose-5-

phosphate, was first isolated in 1976 from Streptomyces hydroscopicus'*^. Its 

identification as a precursor to terpenoids was stimulated by an observation by Yokota 

and Sasajima that bacterial and plant cell free preparations were capable of producing 

DXP from GAP and p y r u v a t e ' ' D X P had been shown to be the origin of the C5 units 

in vitamins Bi (71) and (pyridoxone, 72). Initial feeding experiments with E. coli 

inferred the free triol as the intermediate'*^ although more recent studies conducted by 

Laber̂ *̂  and co-workers have shown that the 5-phosphate ester is the active form in vivo. 
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Scheme 1-27 Incorporation of DXP into vitamins Bi (71) and Be (72) 

DXP was shown to be an intermediate on the mevalonate independent pathway by 

Arigoni^'. Deuterium incorporation from [5,5-^H2]-DX was observed into the 

polyprenyl group of ubiquinone of E. coli. The enzyme that produces DXP from GAP 

and pyruvate, DXP synthase (DXS), was first isolated by Sprenger and co workers^^ 

from E. coli. The enzyme required thiamin as a cofactor which was consistent with an 

acyloin type condensation of pyruvate and GAP. DXS behaves in a transketolase 

manner and has a sequence motif that is recognised to bind the thiamin diphosphate 

cofactor required for pyruvate decarboxylation. When the DXS sequence was compared 

to other known protein sequences significant homology was found between ORF's in 

the plant Arabidopsis thaliana, the cyanobacterium Synechocytis sp. and the Gram 

positive bacterimn Bacillus subtilis. A similar result was also reported by Rohmer^^ 

DXS has now been cloned from B. subtilis^* and was overexpressed from E. coli to 

upregulate ubiquinone and lycopene production. Following this, DXS was cloned from 

peppers^^ and peppermint^^ which showed the synthase gene was 2,172 base pairs long. 

Mechanistically, DXS operates by the thiamin mediated decarboxylative condensation 

of pyruvate and GAP. 
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Scheme 1-28 Formation of DXP (6) from GAP (3) and pyruvate (7) 

1.7.3 2-C-Methylerythritol-4-phosphate 

Clearly DXP must undergo a skeletal rearrangement in order to deliver the branched 

skeleton of IPP. Rohmer and co-workers^'' identified 2-C-methylerythritol-4-phosphate 

(MEP, 73) as the next intermediate on the mevalonate independent pathway. MEP had 

been isolated from various systems as both the 4-phosphate ester and the free tetrol. '^C 

enriched glucose was fed to Corynebacterium ammoniagenes which was known to 

produce MEP when treated with benzylviologen in the stationary phase. MEP and 

menaquinone were isolated and the carbon labelling patterns were compared. An 

identical distribution of '^C labelling was found in both molecules, which suggested a 

role for MEP as an intermediate. 

Synthetic 2-C-methyl-D-erythritol and 2-C-methyl-L-erythritol were fed to E. coli.^^ 

Incorporation of only the D enantiomer was observed. Further studies^^ showed 

incorporation of [2,3,4,5-'^C4]-DX into |3-carotene and ME from Liriodendron tidipa. 

The labelling patterns and levels of incorporation was identical for both molecules. 

'^C-'^C and '^C-'^C coupling constants showed that the C4 backbone of MEP was 

derived from an intramolecular rearrangement of DXP via a pinacol type rearrangement. 

MEP was shown unambiguously to be the first dedicated intermediate on the pathway 

when DXP was converted into p carotene via MEP by cell free extracts of Capiscum 

annum 60 
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MEP is the product of the enzyme, deoxyxylulose reductoisomerase, which initiates 

rearrangement and employs NADPH to afford aldehydic reduction. 
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Scheme 1-29 Formation of MEP (73) from DXP (6) 
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Identical transpositions are known in the biosynthesis of branched amino acids such as 

L-vaHne. In both reactions the hydride is delivered from the oppposite face to the 

migrating group 61 
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Scheme 1-30 Stereochemistry of reductoisomerases in MEP (top) and valine 

biosynthesis (bottom) ̂ ' 

DXP reductoisomerase has been cloned and expressed from A. thaliana^^, Mentha x 

piperita'^ and has been isolated from E. coli^. DXP reductoisomerase isolated from E. 

coli uses exclusively the pro-{S) hydride of NADPH which identifies DXP 

reductoisomerase as a class B dehydrogenase. 
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1.7.4 Post MEP intermediates 

One of the key features of the mevalonate independent pathway is both DX and ME, fed 

as the free alcohols, are incorporated at very low levels (-0.3%) into whole cells. 

Consequently, cell free work has been employed to elucidate details of the pathway 

after MEP. 

When E. coli exfracts were incubated with [2-''*C] MEP and ATP a radiolabelled 

product was formed^^. Isolation of the radiolabelled product showed MEP had been 

converted to 4-phosphocytidyl-2-C-methylerythritol (CDP-ME, 74). The enzyme 

responsible for the conversion was purified and the incubation with [2-'''C] MEP was 

repeated with different co-factors. CTP was found to act more efficiently as a substrate 

than ATP and that [a-^^P] CTP delivered •'̂ P into the product. [2-^''C] CDP-ME was 

incorporated into P carotene when incubated with chloroplasts of Capsicum annum 

which showed it to be an intermediate on the pathway. Identical results were reported 

shortly afterwards by Seto and co-workers^^. During these investigations, a previously 

unannotated gene, ychb, was found very close on the genome of E. coli to ygbp, the 

gene responsible for CDP-ME synthesis. Ychb was overexpressed in a homologous 

host̂ ^ and the recombinant protein was purified. When CDP-ME was incubated in the 

presence of ATP and the protein, 4-phosphocytidyl-2-C-methylerythritol-2-phosphate 

(CDP-MEPP, 75) was formed. [2-'''C]-CDP-MEPP was demonstrated to be an 

intermediate when it was efficiently incorporated into carotenoids produced by C. 

68 
annum chromoplasts. Again, the same result was reported shortly afterwards by Seto . 

The latest intermediate that has been reported was found using identical methodology to 

that above^ .̂ YgbP, the gene responsible for CDP-ME synthesis, was found to be fused 

to another gene, ygbB which expressed a protein, YgbB that converted CDP-MEPP, in 

the presence of Mn "̂̂  and Mg^" ,̂ to 2-C-methylerythritol-2,4-cyclodiphosphate (ME-2,4-

CDP, 76) and CMP. YgbB was also found to convert MEP-CDP to 2-C-methylerythritol 

3,4-cyclomonophosphate (ME-3,4-CMP, 77 ). Incubation of [2-''*C]-ME-2,4-CDP with 

C. annum chromoplasts revealed incorporation into carotenoids whereas [2-^'*C]-ME-

3,4-CMP did not. 
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Scheme 1-31 Formation of post MEP intermediates 

This results suggests that while ME-2,4-CDP (76) is an intermediate on the pathway, 

ME-3,4-CMP (77 ) is not and may simply be a shunt metabolite. ME-2,4-CDP had been 

previously isolated from benzylviologen treated Desulfovibrio desulfuricans^° although 

no connection to the mevalonate independent pathway had been established at that time. 

1.7,5 Distribution of the mevalonate independent pathway 

In the light of recent feeding experiments it is now known that higher plants and certain 

Gram negative bacteria, notably Pimelobacteria (cyanobacteria and proteobacteria) use 

the mevalonate independent pathway. Green algae^' are also known to use the new 

pathway. By contrast, animals are known to use the M V A pathway; searches for DXP 

reductisomerase in mammalian gene sequences have proved fruitless. Furthermore, 

mevalonin, a known inhibitor of the M V A pathway, has been clinically proven to 

reduce levels of patients' cholesterol which can only be explained in terms of the MVA 

pathway. 
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The pattern that '^C from [2-'^C]-acetate was incorporated into sesquiterpenes produced 

by the liverwort Heteroscyphus planus initially suggested a mevalonate origin of the 

terpene although the level of incorporation was low (0.3% atom)''^ and prone to 

significant error. Later studies with DX showed operation of the mevalonate 

independent pathway^'' although a minor contribution from the mevalonate pathway was 

observed. Similar simultaneous labelhng patterns have been found to be common in 

higher plants. Investigations with plant cultures revealed that the site of terpene 

manufacture determines the route of biosynthesis. When cultures of higher plants 

{Hordeum vulgare, Lemna gibba and Daucus carotta) were fed with [l-'''C]-glucose 

two clearly distinct incorporation patterns were revealed^''. Sterols were produced via 

the MVA pathway and carotenoids were synthesised via the mevalonate independent 

pathway. Identical results emerged from studies whereby sterols and carotenoids were 

produced by different pathways. These results can be rationalised in terms of the site of 

terpene biosynthesis. It is well established that sterols are produced from GGPP in the 

cell cytoplasm that clearly operates via the mevalonate pathway whereas carotenoids 

and monoterpenes are produced in plant chloroplasts that use the mevalonate 

independent pathway. However, there appears to be "cross talk" between the two pools 

and that IPP, FPP and prenyl pyrophosphates can be transported between the cytoplasm 

and chloroplasts. Striking evidence for this was reported by the group of Arigoni^^. 

When gingko embryos were incubated with [l-'^C]-glucose, 98% of GGPP was 

produced by the mevalonate independent pathway. The remaining 2% was of mixed 

origin; 20% was derived from IPP from M V A and FPP from the mevalonate 

independent pathway; the rest was composed of FPP produced from MVA and one unit 

of IPP synthesised via the mevalonate independent pathway. Similarly, lima beans 

showed incorporation of [l-'''C]-glucose that were consistent with monoterpenes 

derived from the mevalonate independent pathway, sesquiterpenes from an equal 

contribution from both pathways and diterpenes predominantly from the new pathway^^. 

In Gram Positive bacteria (those that are non photosynthetic and lack an outer 

membrane) both pathways have been shown to operate. Indeed, in Streptromyces 

aeriouver both pathways operate simultaneously^^. During the exponential growth phase 

the mevalonate independent pathway is used to deliver the prenyl chain of a 

menaquinone. When monoterpenes are produced in the stationary phase the mevalonic 

acid pathway is employed. Other Gram Positive bacteria such as Mycobacteria use only 

the mevalonic acid pathway^^. 
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In evolutionary terms the distribution of the mevalonate independent pathway correlates 

with current thinking about how organisms evolved. Gram Negative bacteria are 

thought to have been assimilated into cells that would later evolve to become plant cells. 

The Gram Negative bacteria, and all their biosynthetic pathways, then constitute the 

chloroplasts of Dictyozoa. The evolution of fiingi and animals, and plants and algae, 

represent a divergence in the pathways to terpene biosynthesis. The chloroplasts of 

Dictyozoa were retained in plants and algae, and hence the mevalonate independent 

pathway is found in these organisms. This contrasts with fimgal and animal cells which 

lost their chloroplasts and hence the ability to manafacture terpenes by the mevalonate 

independent pathway. 

1.7.6 Post ME-2,4-CDP intermediates and IPP formation 

As yet, no other features of the mevalonate independent pathway are known. 

Hypotheses relating to putative intermediates and issues regarding the interconversion 

of IPP and DMAPP are discussed in Chapter 2. 

1.8 Precis 

This thesis is divided into four main chapters. Chapter 2 relates to studies on the 

mevalonate independent pathway that operates in the plant Mentha citrata and the 

bacterium Escherichia coli. Feeding studies and synthesis of labelled intermediates are 

discussed. Chapter 3 concerns the growth and isolation of a meroterpene from the 

fungus R. necatrix. Structure analysis and biosynthetic studies are also described. 

Isolation and structure elucidation of a metabolite from Xylaria grammicin completes 

the chapter. Chapter 4 is the experimental section. 

43 



Chapter 2 

The biosynthesis of linalyl 

acetate by M . citrata and 

ubiquinone-8 by E . coli 
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2 The biosynthesis of metabolites by the mevalonate independent 

pathway 

This chapter describes studies that have been performed on the mevalonate independent 

pathway using whole plant cultures of Mentha citrata and cultures of the bacterium 

Escherichia coli. Initially the chapter describes the isolation and purification of linalyl 

acetate and the assignment of proton and carbon NMR resonances. The chapter then 

reports the results of feeding experiments using '^C and labelled compounds to M. 

citrata and E. coli and information about the extent that the mevalonate independent 

pathway operates in the context of compartmentalisation. The synthesis and feeding of 

stable isotope labelled compounds concludes the chapter. 

2.1 Introduction to M. citrata 

For this study of the mevalonate independent pathway, plant tissue cultures of M. 

citrata and whole cell cultures of E. coli were used. It is pertinent to briefly describe 

each system in turn. 

Plant tissue cultures have many advantages over whole plant cultures in biosynthetic 

studies as outlined below. 

Plant tissue cultures Whole plant culture 

Maturity in ~30 days 

Can be grown easily in simple medium 

Easy introduction of labelled precursors 

Low maintenance 

Maturation in 1 -4 months 

Typically require soil 

Complex transport mechanism via roots 

Require regular tending 

Table 2-1 Comparison between plant tissue and whole plant cultures 
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2.1.1 The production of linalyl acetate by M. citrata 

The cultures of M. citrata were a gift from Dr Richard Robins (CNRS, Nantes) and 

were initially generated by Hamill and co-workers^^. In order to enhance terpenoid 

production, shooty M. citrata cultures were transformed with a variety of strains of 

Agrobacterium tumefaciens. The use of Agrobacterium to effect secondary metabolite 

production is well described*'̂  although the mechanism is not well understood. 

Transformation involves infecting the plant with Agrobacterium which transfers T-

DNA which, in turn, decreases the auxin/cytokynin ratio in the transformed plant. This 

results in the retardation in growth of stem tissue with a concordant increase in leaf 

growth. Previous studies with M. citrata cultures had shown that linalyl acetate (78) 

production is localised in terpenoid producing glands that are situated on the underside 

of the leaf and thus enhanced leaf growth leads to increased terpenoid production. 

The work had also investigated the effect of external physical conditions on the rate of 

growth and terpenoid production^'. Linalyl acetate production was found to be maximal 

when the transformed cultures were grown in 3% sucrose and Murashige and Skoog 

medium. Under these conditions, it was reported that after 41 days growth up to 800jug 

of linalyl acetate per flask was produced. Linalool 46, the parent alcohol of linalyl 

acetate, was also produced, but at much lower level (21/ig/flask). 

,0H \ (DAc 

46 78 

2.7.2 Extraction of linalyl acetate from M. citrata 

One of the primary objectives in this programme was to isolate and fully characterise 

linalyl acetate. Intially the method of Hamill^' was used in which the plant tissue was 

collected and dried between filter papers and air dried for one hour. The tissue was then 

homogenised three times in a Waring blender with HPLC grade heptane at 4°C and the 

heptane decanted into a centrifiige tube. Following centrifrigafion at 4°C, the 

supernatant liquid was decanted and the solvent removed under reduced pressure. The 

46 



last traces of heptane were removed under high vacuum for one minute. This method 

proved to be very successfiil as it repeatably delivered lOmg of Hnalyl acetate per flask 

and was quick and effective. This method (Procedure 1) was employed for all of the 

initial experiments but was stopped when it was the result of a fire when the blender 

cracked. 

Other extraction procedures were explored to modify the procedure. The method found 

to be the best replacement was the soxhlet extraction of plant tissue with heptane. 

However, the amount of linalyl acetate that was extracted was found to be 

approximately half that when using the Waring blender (5mg/flask). The soxhlet 

method is herein-described as procedure 2. Both procedures gave samples of linalyl 

acetate that were identical to commercial linalyl acetate (GC-MS, NMR). 

2.1.3 Analysis of linalyl acetate 

It was important to have fully assigned ' H and '^C NMR spectra of linalyl acetate. 

A DEPT experiment allowed assignment of the resonance at 83 ppm to C-3 and the 

olefmic signal at 113ppm to C-1 . The carbon signal at 132 ppm did not appear in the 

DEPT spectrum and could thus be assigned to C-7. 

10 f .0 

12 

ISC 1!3 100 ' » /a BC 50 -10 20 pp=> 

Figure 2-1 DEPT of linalyl acetate showing the degrees of protonation of each carbon 
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Figure 2-2 ' H - ' H COSY of linalyl acetate 
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Figure 2-3 HETCOR Of linalyl acetate 
48 



COSY and HETCOR analysis in tandem enabled differentiation of the olefinic protons 

of C-2 and C-6. As the carbon resonance of C-1 had been assigned to the signal at 

113ppm, it was obvious from analysis of the HETCOR spectrum to assign the signals 

at 5.0 ppm to C-1. The COSY spectrum showed clear coupling to proton resonances at 

4.9 ppm which were shown in the HETCOR spectrum to correlate to the resonance at 

142 ppm. Thus the 142ppm resonance was assigned to C-2. Examination of the 

resonance at 124 ppm showed that it was attached to protons at 4.9 ppm which gave off 

diagonal coupHng to resonances in the COSY spectrum to signals at 2.0 ppm. Hence, 

the signals at 124 and 2.0 ppm represent the carbon and proton resonances respectively 

of C-6. Assignment of the aliphatic protons at C-4 and C-5 was made easier by the fact 

that the proton at C-6 couples to the diastereomeric protons at C-5. Analysis of the 

COSY spectrum showed coupling of C-6 to the cenfre of a pair of muliplets at l.Sppm , 

both of which correlate to the resonance at 22.5 ppm in the HETCOR. This is entirely 

consistent with those resonances being derived from C-5. Hence the remaining 

methylene resonances at 40.0 and 1.9 ppm are from C-4. This is further demonstrated 

by the proton muftiplicity (a doublet of doublets corresponding to coupling to the two 

non equivalent protons of C-5). Difficuhies were encountered when assigning the 

methyl resonances however. A literature search for similar structural motifs as those 

found in linalyl acetate revealed an assignment to chinesin I (79), a plant 

phloroglucinol*^. Chinesin possesses a pendant terpenoid derived unit that is identical to 

that in linalyl acetate. 

17.9 ppm 25.8 ppm 

Figure 2-4 Terpenoid motif in chinesin (79). '^C-NMR shifts of the terpene unit are 

shown 

The carbon NMR of chinesin showed that the cis and trans methyl groups gave signals 

at 17.9 and 25.8 ppm respectively. These corresponded almost exactly to two methyl 

resonances at 17.8 and 25.9 ppm in the spectrum of linalyl acetate, which tentatively 

suggested that the signals were due to C-8 and C-9 respectively. This was confirmed by 
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nOe analysis which showed that irridiation of the C-6 proton gave enhancement of the 

protons corresponding to the carbon at 25.9 ppm. 

:}.c 1 -J I . a 

Figure 2-5 N O E S Y of hnalyl acetate 

Carbon number 5c/ppm 5H/ppm 

1 113.3 5.25 

2 124.0 5.89 

3 83.1 -

4 39.9 1.75 

5 22.5 1.85 

6 142.0 5.10 

7 132.0 -

8 17.8 1.58 

9 25.9 1.69 

10 23.9 1.55 

11 170.1 -

12 22.4 2.01 

Table 2-2 ' H and ' ^ C - N M R resonances of linalyl acetate 

N M R is very useful as an analysis technique for biosynthetic studies, but is only 

moderately sensitive. In order to assess low levels of incorporation, a G C - M S protocol 
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was developed and samples of linalyl acetate were analysed by Dr Jack Hamilton 

(Queen's University, Belfast). GC-EIMS of Hnalyl acetate proved to be unfruitful as 

neither the molecular ion nor any useful daughter fragments were observed. However, 

when GC-CIMS was performed with methane as the carrier gas, an ion corresponding to 

the loss of acetic acid was detected. This pseudo molecular ion was used throughout the 

course of the experiments to determine levels of incorporation. In order to produce 

accurate results, GC-CIMS was recorded 10 times and the values were averaged to give 

levels of incorporation when corrected for natural abundance. 

137 

Figure 2-6 Illustration of the formation of the pseudo molecular ion of linalyl acetate 

(78) 

2.2 Biosynthesis of ubiquinone in E . coli 

In addition to whole plant cultures of M. citrata, E. coli was selected to investigate the 

mevalonate independent pathway as it was being used concurrently by other research 

groups. E. coli has many features that make it attractive for use in biosynthetic 

investigations such as the rate of cell growth (2-3d), the ease of maintenance and its 

ready availability. Of the broad spectrum of idolites that are produced by E. coli, 

ubiquinone (80) and menaquinone (81) are probably the most important in terms of 

biological activity and they have been used as tools for determining features of the 

mevalonate independent pathway in bacteria. 

MeP 

MeP 

80 
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Arguments have been put forward that categorise the quinones as primary, rather than 

secondary metabohtes. This reasoning, however, does not consider that ubiquinones are 

dehvered by secondary metabohc pathways such as the shikimate, mevalonate and 

mevalonate independent pathways. Both of the quinones are used to mediate respiratory 

electron transfers owing to the redox abiUty of the quinone nucleus. 

Scheme-2-1 Reduction of the quinone nucleus 

Ubiquinones are described by the number of IPP derived building blocks that form the 

prenyl chain. Ubiquinone-8, for example, has eight repeat units in the prenyl unit 

resulting in a C40 sidechain. Prenyl chain lengths between ten and fifty carbon atoms 

have been reported. 

Ubiquinone-10 was the first ubiquinone to be isolated, and was extracted from bovine 

heart by Morton and coworkers*^ in 1958. The name ubiquinone was coined by Morton 

owing to its universal distribution. Indeed, the only organisms in which ubiquinones 

have not been detected are blue green algae and Gram-positive bacteria, 

hi bacteria, ubiquinones are biosynthesised fi^om chorisimic acid, with extensive 

flinctionalistion afforded by molecular oxygen and SAM. 
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Scheme 2-2 Biosynthesis of ubiquinone from chromismate (25) in bacteria 

2.2.1 Growth ofE. coli 

Cultures of E. coli DH5a were obtained from Dr Tony Fawcett (Biological Sciences, 

Durham) and were grown in standard LB medium. In accordance with standard practice, 

starter cultures (35ml) were seeded and grown for three days. Starter cultures were 

initially inoculated from an agar plate, and subsequently from cultures stored in 

glycerol solution (10%) at -20°C. Production cultures (500ml) were inoculated from 

starter cultures (5ml) and grown for three days. At the outset a time course study of cell 

density was undertaken. The most straightforward method to record cell density is via 

absorbance at 600nm and a maximal absorbance of 1.96 A was found after 26 hours, 

which corresponds to the beginning of the stationary phase. 
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2.2.2 Extraction of ubiquinone 

The extraction and purification of ubiquinone is well documented although most 

literature methods describe its extraction from mammalian hearts. In this programme the 

procedure described by Rohmer '̂' from E. coli was followed. Cells were collected by 

centrifugation which were then freeze-dried overnight to afford 1 g/1 of cells. The cells 

were then extracted three times into chloroform/methanol by heating under reflux. 

Removal of the solvent yielded a brown oil which, after extraction with heptane and 

column chromatography, gave ubiquinone-8. Initially, purification was performed using 

preparative TLC, but this was found to be unsuitable owing to poor chromatographic 

resolution and the need to run multiple plates i f large amounts (200mg) of crude extract 

were obtained. This procedure allowed the isolation of relatively pure ubiquinone-8 

(NMR). 
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Figure 2-7 ' H N M R spectrum of ubiquinone-8 isolated from E. coli 

Ubiquinone-8 was routinely isolated at a level of ~800^g/l, which required that 4 litres 

of broth were innoculated in order to obtain sufficient ubiquinone for N M R analysis. 
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2.3 Preliminary feeding experiments 

The first objective of the program was to determine whether hnalyl acetate was 

biosynthesised using the mevalonate independent pathway or MVA pathway by M. 

citrata. The feeding of sodium [l,2-'''C]-acetate and [l-'''C]-glucose were identified as 

key experiments to estabhsh which pathway produced the terpene fragment of hnalyl 

acetate. It is was known that ubiquinone-8 from E. coli is produced via the mevalonate 

independent pathway, and consequently only [6,6-^H2]-glucose and [^Hs-methyl]-

methionine were fed in order to establish whether the cultures were behaving in a 

similar manner to those in the reported literature. 

2.3.1 Feeding of sodium [l,2-^C]-acetate (S2) to M. citrata 

Sodium [l,2-'^C2]-acetate was fed to two cultures of M. citrata to a final concentration 

of lOmM. The cultures were grown under standard conditions with fructose as the sugar 

source. At the end of the incubation, linalyl acetate was extracted using procedure 1. 

The resultant '^C-NMR spectrum (Figure 2-8) showed that all of the intact acetate was 

located in C-11 and C-12 as evident from the Ji3c-i3ccoupling of 58.9 Hz between C-11 

and C-12. No incorporation into the terpene moiety was evident from this experiment. 

M. citrata 

Scheme 2-3 Incorporation of [l,2-'^C2]-acetate into linalyl acetate 
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Figure 2-8 '^C-NMR of linalyl acetate after feeding [l,2-"C2]-acetate. ' V " c 

Coupling corresponding to the intact incorporation of an acetate unit are 

shown in the inset plots. 

13, 

2.3.2 Feeding of fl-'^CJ glucose (S3) to M. citrata - operation of the mevalonate 

independent pathway 

The feeding of [l-'^C]-glucose emerged as a key experiment to delineate which 

pathway produced the terpene fragment of linalyl acetate. Almost all organisms are 

capable of using glucose as a carbon source, which makes it ideal for biosynthetic 

investigations. [l-'''C]-Glucose is processed via glycolysis through known 

intermediates, as described in chapter one, which means that the biosynthetic route of 

the label can be elucidated from the incorporation pattern. 

[l-'^C]-Glucose labels IPP differently depending on which pathway is involved as 

shown below in Scheme 2-4. Thus, [l-'^C]-glucose is a powerful tool for determining 

which is the dominant pathway for terpene biosynthesis. 
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Scheme 2-4 Processing of [l- '^C] glucose (83) to IPP (34) via the mevalonate 

independent pathway and the MVA pathway 

[l-'^C]-Glucose was administered to two flasks of M citrata to a final concentration of 

8.4 mM and the cultures were harvested after 25 days. Linalyl acetate was extracted 

using procedure 1 and analysed by '^C NMR spectroscopy. 

In order to estimate the level of isotopic enrichment it was necessary to normalise the 

peak heights of the resultant spectrum relative to the natural abundance spectrum. C-3 

of linalyl acetate was selected a reference peak as it is labelled by neither pathway. 

Accordingly, each peak height in the spectrum that was obtained after feeding [l-'^'C]-

glucose was divided by the height of C-3. Finally, each peak height was corrected for 

natural abundance '"'C by dividing each peak height of the labelled linalyl acetate by the 

peak height of the same signal in the '^C-NMR of an unlabelled sample of linalyl 

acetate. This analysis provided the enrichments as shown in Table 2-3. 
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Carbon no Z,̂ ve/ of enrichment 

1 2.50 

2 1.60 

3 1.10 

4 1.40 

5 2.29 

6 1.31 

7 1.58 

8 2.44 

9 1.66 

10 2.31 

11 1.13 

12 3.90 

Table 2-3 Enrichment of carbon signals after feeding with [l-'^C]-glucose relative to 

C-3. Values in bold type indicate significantly enriched '^C signals 

There is a clear enrichment of carbon atoms 1, 5, 8,10 and 12 and a small enhancement 

of carbons 2, 7 and 9. The labelling pattern is consistent with [l-'^C]-glucose being 

processed via the mevalonate independent pathway as outlined in Scheme 2-4. The 

enrichments into C-2 and C-4, which are not a result of incorporation via the 

mevalonate independent pathway, are due to incorporation of C-1 of glucose through 

mechanisms other than those shown in Scheme 2-4. 
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2.3.3 Feeding of sodium [2,2,3,3-^H4]-succinate to M. citrata and E . coli 

Sodium succinate (84) was fed to M. citrata owing to its availability as a pyruvate 

surrogate. Succinate (84) is processed to pyruvate (7) via the TCA cycle. 

84 

pH 
0 

6 CO2 

° OH ® c 

H CO2 " D CO2 

Sclieme 2-5 Processing of sodium [2,2,3,3-^H4]-succinate (84) to pyruvate (7) 

It was anticipated that the feeding of succinate would result in deuterium incorporation 

into linalyl acetate and provide information about the concentrations of precursors that 

were required for successful enrichments. 

Accordingly, sodium [2,2,3,3-'^H4]-succinate was pulse fed to two cultures of M. citrata 

on days 7, 14, and 19 and the plant tissue was extracted using procedure 1. GC-MS 

analysis was performed ten times and the results were averaged to ensure that 

enhancements were statistically significant. Analysis of the linalyl acetate after feeding 

sodium [2,2,3,3-^H4]-succinate showed an enhancement of the M+1 ion (0.14%). The 

data is shown in Figure 2-9. 
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Figure 2-9 GC-MS Determined incorporation vs molecular weight after feeding 

[2,2,3,3-^H4]-succinate (84) to M. citrata 

The level of incorporation is low but significant and represents the incorporation of one 

deuterium atom into linalyl acetate. This is consistent with the processing of succinate 

via the TCA cycle and incorporation into linalyl acetate from [3-^H]-pyruvate as shown 

in Scheme 2-5. The result was very encouraging as it demonstrated that the GC-CIMS 

protocol was capable of detecting very low levels of enrichment and that whole cell 

plant tissue cultures of M citrata were capable of using exogenously administered 

substrates. Furthermore, the incorporation showed that the pyruvate end of DXP was 

amenable to investigation by the use of surrogate substrates. This prompted an 

investigation using a number of potential precursors that would allow the origin of the 

methyl hydrogen atoms of DXP to be traced. 

In the analogous experiment in bacteria, sodium [2,2,3,3-^H4]-succinate (84) was fed to 

eight production cultures (500ml) of E. coli to a concentration of l . l m M . Ubiquinone-8 

was extracted according to standard procedures and was analysed via ^H-NMR. 

However, no enrichment of deuterium was observed. This is possibly due to the low 

concentration at which sodium [2,2,3,3-^H4]-succinate was fed to E. coli 
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2.3.4 Feeding of alanine 

Previous work in Durham*'* had demonstrated the use of alanine as an excellent 

pyruvate surrogate in fimgus. Alanine is processed in vivo to pyruvate by 

transamination. 

O 

©NH3 O 

85 7 

Scheme 2-6 Formation of pyruvate (7) from alanine (85) 

One of the attractive features about the use of labelled alanine was that both [3-'^C] and 

[3-^H3]-alanine were commercially available and the preparation of enatiopure 

[3-'^C^H3]-alanine was reported in the literature. It was anticipated that alanine would 

provide a method of determining whether the methyl protons of MEP were abstracted 

during the conversion of MEP to EPP. 

2.3.5 Synthesis ofD-P-^C^HsJ-alanine (S6) 

The synthesis of D-[3-'^C^H3]-alanine (86) was followed using Seebach's oxazolidinone 

methodology*^ as modified by Chesters and O'Hagan*'*. Treatment of benzoyl-2-(;-

butyl)-3-methylimidazolidin-4-one (87) with LDA at -78°C yields the anion which can 

then be reacted with a suitable electrophile. In the case of methyl iodide, the 

methylation proceeds with stereochemical control owing to the steric bulk of the tert-

butyl group that hinders attack from one face to give benzoyl-2-(/-butyl)-3,5-

dimethylimidazolidin-4-one (88). Acid hydrolysis at elevated temperature and pressure 

yields alanine (85). 
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Sclieme 2-7 Synthesis of alanine (85) from benzoyl-2-(/-butyl)-3-methyhmidazolidin-4-

one(87) 

Treatment of benzoyl-2-(f-butyl)-3-methylimidazolidin-4-one (87) with methyl iodide 

gave benzoyl-2-(/-butyl)-3,5-dimethylimidazolidin-4-one (88) in a moderate yield 

(65%). Unreacted starting material was recovered by column chromatography. 

Hydrolysis in a sealed tube with 6M HCI at 180°C yielded a black powder, which after 

purification over Dowex, gave alanine as a white crystalline solid. 

The synthesis was repeated using ['''C^HaJ-methyl iodide with a similar yield for the 

first step to give benzoyl-2-(f-butyl)-3-methyl-5-['^C^H3]-imidazolidin-4-one (89). 

ydrolysis with 6M at 180°C and purificafion by Dowex yielded [3-'^C^H3]-alanine (86) 

as a white crystalline solid. 

2.3.6 Feeding of [3-^C]-alanine (9Qi) to M. citrata 

The feeding of [3-'^C]-alanine (90) was a key experiment as it was essential to 

determine the regiochemistry of the incorporation of alanine into linalyl acetate. 

Processing of alanine to acetate and incorporation via the M V A pathway would result in 

the retention of all three acetate methyl protons and hence an isolated M+3 

incorporafion from [3-^H]-alanine could not be conclusively interpreted as the retention 

of all three protons of pyruvate via the mevalonate independent pathway. 

Alanine was found to be acutely toxic to M. citrata and chronically toxic to cultures of 

E. coli. When cultures of M. citrata were supplemented with alanine at 5mM, the shoots 

blackened and died within 3 days. Feeding alanine above 5mM caused death within 24 

hours. Ultimately, labelled substrates were fed at 3mM to cultures of M. citrata, which 

caused significant growth retardation and a much lower yield of linalyl acetate 

(3mg/flask compared to a typical lOmg/flask). This is partly due to the onset of necrosis 

which required that the cultures were harvested on day 17 rather than day 23. A similar 

sensitivity to nitrogen was observed by Hamill^* who observed that the use of a medium 

with a high nitrogen content diminished the yield of linalyl acetate. Incubation oiE. coli 
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with unlabelled alanine at 2mM resulted in the cessation of ubiquinone production and a 

concomitant decrease in dry cell mass (250mg/l rather than lg/1). Consequently, 

experiments with labelled alanine and E. coli were not pursued. 

Accordingly, [3-^^C]-alanine was fed to two cultures of M. citrata that were harvested 

using procedure 1 and analysed via '^C-NMR. In order to assess incorporation, the peak 

heights were measured and normalised by dividing each individual peak height by the 

height of the C-3 peak. Each peak height was corrected for natural abundance '^C by 

dividing each peak height of the labelled linalyl acetate by the peak height of the same 

signal in the '^C-NMR of an unlabelled sample of linalyl acetate. This gives 

incorporations that are reported in Table 2-4. The peaks corresponding to C-7 and C-11 

were not observed in the '^C-NMR owing to the small amount of linalyl acetate that was 

isolated (3mg/flask). 

Carbon no Level of incorporation 

1 1.10 

2 1.25 

3 1.54 

4 1.22 

5 1.50 

6 1.28 

7 n.d. 

8 2.00 

9 1.22 

10 1.90 

11 n.d. 

12 2.33 

Table 2-4 Incorporation of [3-'^C]-alanine (90) into linalyl acetate. Bold figures 

indicate significant incorporation 

Enrichment was observed into C-8, C-10 and C-12. This corresponds to processing of 

[3-'^C]-alanine (90) to pyrvuate (7) and incorporation via the mevalonate independent 

pathway as shown in Scheme 2-8. 
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Scheme 2-8 Incorporation of [3-'^C]-alanine (90) into linalyl acetate (78) 

In separate experiments, [S-^H?] and [3-'^C^H3]-alamne were fed to two cultures of M 

citrata. Both experiments showed identical growth retardation and yielded similarly low 

levels of linalyl acetate (3mg/flask). GC-MS Analysis of linalyl acetate isolated after 

feeding [3-^H3]-alanine showed enhanced M-t-1 and M+3 ions. The feeding of [3-

'^C^H3]-alanine gave enhanced M-t-2 and M+A ions. Each sample was examined ten 

times and the mean incorporations are shown in Figure 2-10. 
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Figure 2-10 GC-MS Incorporation of [3-^H3] ( • ) and [3-'^C^H3]-alamne ( • ) into 

linalyl acetate 
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The enrichment in the M+3 ion after feeding [S-'̂ HaJ-alanine and incorporation into the 

M+4 ion after feeding [S-'̂ C^HsJ-alanine correspond to the incorporation of ^Ha and 

'•̂ C^Hs respectively. This shows that all three deuterium atoms were retained during the 

conversion of DXP to IPP by the mevalonate independent pathway. Furthermore, there 

is a significant M+1 enrichment after feeding [S-^HsJ-alanine and a corresponding M+2 

enrichment after feeding [3-'^C^H3]-alanine. In both cases, this corresponds to 

incorporation of one deuterium, which is due to the processing of [3-'^H3]-pyruvate (91) 

via the TCA cycle to succinate and incorporation of [3-^H]-pyruvate (92) as described 

in Scheme 2-9. 

0 ° 
A . D TPP 

O D 

91 

HO CO, 

D D QH 

0 O2C" Y 
CO2 Q 

cor 
Scheme 2-9 Loss of two deuterium atoms from pyruvate after processing via the TCA 

cycle 

As all three deuterium atoms are retained and thus the mevalonate independent pathway 

does not remove the methyl protons of MEP during linalyl acetate biosynthesis. This 

limits the processes by which MEP is converted to EPP by precluding a dehydration 

involving any of the methyl protons. 
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Scheme 2-10 Incorporation of deuterium into linalyl acetate (78) from [3- HsJ-alanine 

(93) which precludes the dehydration shown 

2.3.7 Feeding of [6,6-H2]-glucose to M. citrata 

Although the terminal protons of DXP had been shown to be retained during bacterial 

terpene biosynthesis by Rohmer analogous studies in plants had not been performed. 

Thus the origin of the C-5 protons of DXP in plants were unknown and this was 

approached by feeding [6,6- H2]-glucose (94). As already demonstrated with [1 - C]-

glucose, [6,6-^H2]-glucose will be processed via glycolysis to dihydroxyacetone 

phosphate (70) and GAP (3), which are interconverted by triose phosphate isomerase. 

Accordingly, [6,6-^H2]-glucose was administered to two cultures of M. citrata to a final 

concentration of 8.4mM. Linalyl acetate was extracted using procedure 1 and analysed 

via GC-CIMS. The sample was run ten times and the mean values are shown in Figure 

2-11. 
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Figure 2-11 GC-MS Incorporation of deuterium from [6,6- H2]-glucose into linalyl 

acetate 

There is an enrichment of M+1 and M+2 ions and a small but significant incorporation 

into the M+4 ion. Significantly, the M+2 ion shows the highest level of incorporation 

(5.97%) representing retention of both deuterium atoms. Accordingly it can be deduced 

that both C-5 protons of DXP (6) are retained during plant terpene biosynthesis. 

The high level of enrichment of the M+2 ion also gave rise to a statistically significant 

enhancement of the M+4 ion. This arises from a small population of linalyl acetate 

molecules which are derived from the statistical combination of two C5 units both of 

which are labelled with two deuterium atoms (5.97% x 5.97%= 0.36%). 
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Scheme 2-11 Incorporation of deuterium from [6,6-^H2]-glucose (95) into linalyl 

acetate (78) by M. citrata 
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The retention o f both deuterium atoms shows that the conversion o f MEP to IPP via the 

mevalonate independent pathway does not proceed via dehydration involving the C-4 

protons o f MEP. 
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OH 

Figure 2-12 Disallowed transformation 

These findings were consistent wi th those reported in bacteria and Irom the feeding of 

[6,6-'^H2]-glucose to cyanobacteria^^. 

The level o f incorporation in this experiment was significantly higher than that observed 

after feeding [l-^^C]-glucose. This is presumably due to the competing operation o f the 

oxidative pentose phosphate pathway that significantly metabolises C-1 o f glucose. 
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Scheme 2-12 Loss o f C-1 o f glucose by the pentose phosphate pathway 

The oxidative pentose phosphate pathway uses glucose to generate N A D P H and ribose-

5-phosphate for nucleic acid biosynthesis and can be upregulated to supply N A D P H 

when required. Following oxidation to 6-phosphonogluconolactone (96) and 6-
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phosphonogluconate (97) the carbon derived from C-1 o f glucose is lost as CO2 and 

would account for ^̂ C loss from [l-' ' 'C]-glucose. 

2.3.8 Feeding of [6,6-^HJ-glucose to E. coli 

Although the mevalonate independent pathway has recently been shown to operate in E. 

coli, it appeared appropriate to conduct an initial feeding experiment wi th a substrate for 

which the results were already known. Accordingly [6,6-^H2]-glucos© was fed to E. coli. 

to a final concentration o f 1.4 m M to E. coli and the cultures were grown under standard 

conditions for 3 days. Ubiquinone was isolated and purified according to the standard 

method. N M R Analysis o f the sample revealed incorporation o f deuterium, which 

was evident from the peaks at 1.6 and 2.0 ppm. 

Figure 2-13 H N M R Showing incorporafion o f deuterium from [6,6- H2]-glucose into 

ubiquinone-8 by E. coli 

These peaks represent incorporation o f deuterium into the methyl and methylene 

protons o f the prenyl chain after processing o f glucose to [3,3-'^H2]-GAP (98) and [3,3-

H2]-pyruvate (99) via the mevalonate independent pathway. 
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Scheme 2-13 Incorporation o f [6,6-^H2]-glucose (94) into ubiquinone (80) by E. coli 

2.3.9 Incorporation of /methyl-^HjJ-methionine into ubiquinone by E . coli 

^-Adenosyl methionine (SAM) is the source o f the methoxy methyl groups o f the 

quinone nucleus in ubiquinone. The feeding o f methionine was a valid experiment as it 

was anticipated that it would provide a another sample o f ubiquinone for ^H-NMR 

analysis. Accordingly, [we^Z-^HBl-methionine was fed to eight cultures (500ml) o f E. 

coli and the ubiquinone extracted according to the standard procedure. ^H-NMR showed 

two peaks in an approximate ratio o f 2 : 1 (Figure 2 - 1 4 ) . This represents incorporation 

into the methoxy groups and quinone methyl groups. Although the two methoxy groups 

are resolvable by ' H N M R , quadrapolar line broadening causes coalescence into a broad 

peak at 3.97 ppm. No incorporation o f deuterium into the prenyl chain was observed. 
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Figure 2-14 N M R o f ubiquinone after feeding o f [we^/ij/Z-^Hs]-methionine to coli 

This confirmed that the methoxy methyl groups are derived from methionine and, in 

turn from SAM. The experiment was encouraging as it reaffirmed that deuterium 

incorporation into ubiquinone could be readily observed by ^H-NMR. 

2.3.10 The fate ofH-3 ofDXP -feeding of labelled glycerols 

<>• 

Glycerol (100) has long been established as good surrogate for GAP (3). The conversion 

of glycerol (100) to GAP (3) via dihydroxyacetone phosphate (70) is mediated by triose 

phosphate isomerase. 
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Scheme 2-14 Conversion o f glycerol (100) to GAP (3) 

As the conversion proceeds through oxidation o f C-2, the deuterium atom at C-2 is lost 

which Umits the use o f [^H5]-glycerol as a probe to explore the fate o f the C-4 hydrogen 

o f DXP. As glycerol is prochiral, substitution o f a proton by a deuterium at C-1 or C-3 

renders the molecule chiral. This allows either the C-1 or C-3 protons to be mapped in 
2 87 

pairs, in the case o f chiral glycerols, or simultaneously, in the case o f [ HsJ-glycerol . 

2.3.10.1 Feeding of glycerol to M . citrata 

A n initial experiment was performed to test the toxicity o f glycerol to cultures o f M. 

citrata. Pulse feeding on days 4,11 and 21 to a final concentration o f 5mM was found to 

encourage growth with a concomitant 50% increase in the wet tissue mass. 

A repeat experiment was performed using [^HgJ-glycerol (101) (Sigma Aldrich 

chemicals, U K ) which was fed as described above. The cultures were grown under 

standard conditions and harvested using procedure 2. GC-CIMS Analysis o f the 

resulting linalyl acetate was performed ten times and the mean enrichment values are 

shown in Figure 2-15. 
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Figure 2-15 Incorporation o f deuterium from [^Hs]-glycerol 

Both the M + 1 and M+2 ions show significant enrichment and correspond to 

incorporation o f one and two deuterium atoms respectively. The M+2 ion shows 

mcorporation o f only two deuterium atoms into linalyl acetate and, in the absence of an 

M+3 enrichment, revealed that only two deuterium atoms from [^HsJ-glycerol (101) 

were incorporated into linalyl acetate. 

When [^HgJ-glycerol was fed at 3mM, the level o f incorporation was much lower but 

mirrored the 5 m M incorporations. The presence o f an M + 2 ion (0.45 ± 0.07%) was 

accompanied by a small M + 1 (0.15 ± 0.11%) with no observable M+3 ion (0.04 ± 

0.02%)). This confirmed that two deuterium atoms were carried through from [^Us]-

glycerol. 

2.3.10.2 Feeding of (2R)-[l,l-H2]-glycerol (Idl) and (2S)-[l,l-^H2]-glycerol to 

M . citrata 

There are two possible isotopomers o f GAP that would lead to incorporation o f two 

deuterium atoms into linalyl acetate. The incorporation o f two deuterium atoms could 

be the result o f glycerol delivering either [1,3-^H2]-GAP (104) or [3,3-^H2]-GAP (98) 

which could then be incorporated into linalyl acetate via the mevalonate independent 

pathway. 
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Scheme 2-15 Possible explanations for incorporation o f two deuterium atoms 

The difference in the two proposed isotopomers shown in Scheme 2-15 is the position 

o f the deuterium atoms. Isotopomer 104 has one deuterium derived f rom the each o f the 

pro-S and pro-R arms whereas 98 has both deuterium atoms from the pro-R arm of 

glycerol. Chiral glycerols bearing deuterium provide a convenient method of 

independently labelling each arm of glycerol and hence were identified as suitable 

substrates to determine which o f the deuterium atoms had become incorporated. 

H O H 

H O ^ ^ C . O H 

O H 

^ o y L ^ o © 
HSHR HR Hs HS HR HR 

Scheme 2-16 The fate o f the pro R and pro S protons o f glycerol 

Accordingly, both (2R)-[l,l-^H2]-glycerol (102) and (2S)-[l,l-^H2]-glycerol (103) 

(prepared by Dr Jens Nieschalk in Durham) were fed to cultures o f M. citrata. (2R)-

[l,l-'^H2]-Glycerol (102) was fed to two cultures o f M citrata to a final concentration of 

5 m M and the linalyl acetate was extracted using procedure 2 and analysed via GC-

CIMS. The sample was analysed ten times and the mean values are shown in Figure 2-

16. 
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Figure 2-16 Incorporation o f deuterium from (2i?)-[l,l-^H2]-glycerol (102) into linalyl 

acetate 

Both M+1 and M+2 ions showed enrichment, which corresponds to the incorporation o f 

one and two deuterium atoms respectively. Significantly, the M+2 ion shows that both 

deuterium atoms were incorporated from the pro-R arm o f glycerol. 

In the complimentary experiment, (2S)-[l,l-^H2]-glycerol (103) to a final concentration 

of 5mM. The linalyl acetate was extracted by procedure 2 and was analysed via GC-

CIMS. The mean values after ten runs showed that was no observable enrichment o f 

either the M + 1 or M + 2 ion. This corresponds to the loss o f both deuterium atoms from 

the pro-S arm of glycerol. 
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Scheme 2-17 Incorporation o f deuterium from [^Hsj-glycerol (101) into linalyl acetate 

(78) by M. citrata 

This supported the result after feeding [6,6-^H2]-glucose (94) which had shown that 

both o f the protons o f C-3 o f GAP are retained during the biosynthesis o f linalyl acetate. 
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2.3.10.3 Feeding offHgJ-glycerol (101) to E . coli 

k i the same experiment in bacteria, cultures o f E. coli were supplemented with [^Hg]-

glycerol ( Ig ) and the ubiquinone was harvested according to the standard procedure. 

N M R Analysis showed peaks at 1.59 and 2.04 ppm, which corresponded to 

incorporation o f deuterium into the prenyl methyl and methylene groups as shown in 

Figure 2-17. 

ftilH X.I Omxrr^ 

Figure 2-17 N M R O f ubiquinone after feeding [^HgJ-glycerol (101) to E. coli 

Two isotopomers o f ubiquinone can reasonably be formed after feeding [^HgJ-glycerol 

(101). These correspond to the loss or retention o f the aldehydic deuterium of the 

subsequently formed GAP. Loss o f the aldehydic hydrogen o f GAP introduces 

deuterium into the methyl and terminal methylene groups o f the prenyl chain (105) 

whereas retention of the aldehydic proton introduces an additional deuterium atom 

(106) into the prenyl chain as shown in Scheme 2-18. 
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Scheme 2-18 Possible incorporation o f deuterium from [ HgJ-glycerol (101) showing 

the isotopomers o f ubiquinone resulting from either loss or retention o f 

the aldehydic hydrogen o f GAP 

The abundant isotopomer can be estimated by the integral ratios o f the methylene 

protons to the methyl protons. The relative ratios o f the methylene and methyl peak 

areas after feeding [6,6-^H2]-glucose was 2.25:1. The deviation f rom 2:1 represents 

higher incorporation from GAP than pyruvate. 

Retention o f the aldehydic proton would cause incorporation into the methylene groups 

and increase the ratio to approximately 3:1. However, loss o f the aldehydic deuterium 

would cause labelling that is identical to that observed for [6,6-^H2]-glucose (2.25:1). 

fritegration o f the peaks o f ubiquinone after feeding [^HgJ-glycerol (101) showed that 

the ratio o f methylene to methyl peak areas after feeding [^HgJ-glycerol (101) was 

1.62:1. As the ratio is significantly lower than 3:1, the incorporation suggests loss o f the 
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aldehydic proton o f GAP, just as was observed in M . citrata. The discrepancy between 

the expected ratio (2.25:1) and that which was observed (1.65:1) is perhaps due to a 

poor signal to noise ratio. 

2.3.10.4 Discussion of feeding labelled glycerol to M . citrata and E . coli 

It was anticipated that two deuterium atoms would be lost from glycerol when it was 

metabolised to GAP (3). The deuterium at C-2 is removed upon oxidation o f glycerol 

(100) to DHAP (70), and one o f the C-1 protons is removed by the acfion o f triose 

phosphate isomerase. Incorporation o f the two deuterium atoms into linalyl acetate (78) 

by M. citrata f rom (2i?)-[l,l-^H2]-glycerol (102) and the corresponding absence of 

deuterium enrichment after feeding (25)-[l,l-^H2]-glycerol (103) indicated that the 

aldehydic proton o f GAP was lost. The incorporation o f deuterium into the ubiquinone 

of coli suggested an identical enrichment corresponding to the loss o f the aldehydic 

proton o f [1,3,3-^H3]-GAP (109) 

One o f the more obvious mechanisms where the deuterium atom could be lost is 

through a reversible oxidation. GAP Is known to be converted to 1,3-

biphosphoglycerate (BPG, 110) by the acfion o f glyceraldehyde-3-phosphate 

dehydrogenase in the presence of NAD*. BPG Is biologically important as it is used in 

the manufacture o f ATP. 

OH OH 

109 111 

Scheme 2-19 Conversion o f [1,3,3-^H3]-GAP (109) to [3,3-^H2]-BPG (112) wi th loss o f 

the aldehydic deuterium atom of GAP 

NAD^ INADP^H 

9 Q, D 

As GAP and BPG are in rapid equilibrium the action o f gIyceraldehyde-3-phosphate 

dehydrogenase would resuU in the complete loss o f deuterium from C - L 

Deuterium could also be removed by DXP synthase. DXP synthase catalyses the 

formafion o f DXP from GAP (3) and pyruvate (7) and utihses TPP (113) as a co-factor. 

The mechanism o f TPP mediated aldol type condensations is well established and the 
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formation o f DXP (6) is shown in Scheme 2-20. Initially the thiazoline ring reacts with 

an electrophile to a form a Schi f f s base. In the case o f DXP synthase, the electrophile is 

pyruvate. The complex then undergoes decarboxylation to generate an "activated 

aldehyde" species. This negative charge is readily localised into the aromatic ring which 

confers stability on the acyl anion equivalent. Nucleophilic attack o f GAP produces TPP 

bound DXP (114) and classically the reaction would be expected to proceed via the 

route marked A . Removal o f a hydroxy proton by a base produces DXP and releases 

TPP. 

HO 
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r 
HO, O 
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113 
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HO, / O H 
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B 

OH OH 

HO H D D 
OH D D 

115 

Scheme 2-20 Proposed mechanism of TPP mediated synthesis o f DXP (6) 

However, once the final Sch i f f s base complex has been formed, there is another site in 

addition to the hydroxy proton that can be attacked by the base. Rather than absfracting 

the hydroxy proton, the base could remove the deuterium atom at C-3 to generate a ene-

diol (115) which could collapse to dehver DXP (6). This differs from the classical 

mechanism in that the proton (in this case a deuterium) that is removed is not the most 
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acidic proton. Given that this is a deviation from the classical mechanism, i t seems more 

plausible that the deuterium is removed by reversible oxidation to DBG. 

2.4 Tracing the fate ofH-4 of DXP 

The final proton that was amenable to biosynthetic investigation was H-4 o f DXP which 

is derived from H-2 o f GAP. Before describing experiments that were performed, it is 

pertinent to describe how the fate of H-4 differs in plants and bacteria. H-4 is implicated 

in the isomerisation and prenyl transferase reactions. Studies on the isomerase and 

prenyl transferase for mevalonate independent pathway are ongoing. 

One o f the first studies on the fate o f H-4 o f D X was performed using [4-^H]-l-D-

deoxyxylulose (116)^1 When E. coli was fed labelled [4-^H]-DX, deuterium 

incorporation into ubiquinone (80) was observed only into the terminal olefinic bond 

that corresponds to the DMAPP unit. No incorporation into the IPP derived chain was 

found by either MS or ^H NMR. 

O HO D 
/^k^^X^OH E.coli 

OH 

go 

Scheme 2-21 Ijicorporation o f deuterium into the DMAPP unit o f ubiquinone (80) 

The authors argued that this demonstrated that i f both a prenyl transferase and EPP 

isomerase operated on IPP derived f rom the mevalonate independent pathway in 

bacteria, then their relative stereochemistries must be opposite. This contrasts with the 

M V A pathway the same proton {pro-K) is abstracted by both the isomerase and prenyl 

fransferase. 

Poulter and co-workers^^ demonsfrated that the interconversion o f IPP (34) and DMAPP 

(35) results in the loss o f the pro-R proton from C-2 o f IPP (34), which is derived from 

H-4 o f DXP. Whether the proton was retained during the course o f the biosynthesis 

from DXP was not investigated as the work focused on the incubation of IPP with EPP 

isomerase from E. coli. Poulter argued that these experiments show that the E. coli 
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isomerase removes the pro-R proton and the E. coli prenyl transferase abstracts the pro-

S proton. 

9 a OH 
O ® 

OH 

116 

prenyl 
transferase 
-Hs 

HR HS 

34 

isomerase 

0 © ( P ) 

H R = H 
Hs = D 

Sclieme 2- 22 Incorporation o f one deuterium (Hs) from [4-^H]-DX (116) as a result of 

a prenyl transferase and isomerase which abstract different protons o f 

IPP {E. coli) 

Analogous studies have been performed in plant systems. The work o f Arigoni^*' 

demonstrated that the relative stereochemistries o f the prenyl transferase and isomerase 

of Catharanthus roseus are the same, just as in the M V A pathway. When [2-'^C,4-^H]-

deoxyxylulose (117) was fed to Catharanthus roseus, incorporation o f '^C but not 

was observed. This inferred that either the deuterium atom was lost as a result o f 

unknown steps on the mevalonate independent pathway or was removed by both the 

prenyl transferase and the isomerase (Scheme 2-23). 

8 1 



9 Q. OH 
o ® 

OH 

115 

HR HS 

isomerase 

prenyl 
transferase 
-Hs 

HR = H 
Hs = D 

Scheme 2-23 Absence o f deuterium incorporation (Hs) from [4 -^H] -DX (116) as a 

result o f a prenyl transferase and isomerase which absfract the same 

protons o f EPP (34) in Catharanthus roseus 

Clearly, this contrasts with the case o f incorporation of deuterium from [4-'^H] 

deoxyxylulose into E. coli. This could be rationalised by one o f two hypotheses. The E. 

coli prenyl fransferase and isomerase could stereoselectively absfract different protons 

of C-2 o f IPP whereas in Catharanthus roseus the same proton is removed by both the 

prenyl transferase and isomerase. Alternatively, the incorporations could also be 

interpreted as being the result o f a difference in the mevalonate independent pathways 

in bacteria and plants which have prenyl fransferases and isomerases with identical 

stereochemistry. More work needs to be performed before a fuller understanding is 

gained. 

2.4.1 The role of IPP isomerase in the mevalonate independent pathway 

There is a growing opinion that the results o f incorporation into E. coli represent the 

divergence o f the mevalonate independent pathway into routes that deliver IPP and 

DMAPP separately. 

Poulter and co-workers have identified the prenyl fransferase o f E. coli as having the 

same relative stereochemistry as the isomerase''. This is incompatible wi th the 

interconversion o f IPP (34) and DMAPP (35) to infroduce deuterium from [4 -^H]-DX 

(116) into the DMAPP derived chain o f ubiquinone (80) and is represented in Scheme 

2 - 2 4 . 
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Scheme 2-24 Illusfration that IPP isomerase is not significant in the mevalonate 

independent pathway in E. coli. Hs (deuterium) is found to be 

incorporated but would be removed in the isomerisation reaction 

This is a clear demonstration that DMAPP (35) is not formed as the result o f EPP 

isomerase in E. coli. Furthermore, studies by Rohmer^^ have indicated that only one IPP 

isomerase is present in E. coli and that no other enzyme caters for the interconversion o f 

IPP (34) and DMAPP (35). This eliminates the possibility that numerous isomerases 

exist wi th alternative stereochemistry which would allow the incorporation o f deuterium 

from [4-^H]-DX (116) by Scheme 2-24. Conclusive proof that IPP isomerase is not 

essential for terpenoid formation in E. coli was provided when the ipi gene encoding for 

IPP isomerase was deleted^^. Growth o f the organism demonstrated that terpene 

production was occurring, as terpenoids such as ubiquinone are essential for growth. 

Furthermore, species such as Synechocytis sp., a cyanobacterium which produces 

terpenes via the mevalonate independent pathway, are known to be deficient in IPP 

isomerase^'* and genome analysis shows no homologue for the enzyme. When an ipi 

gene from yeast was inserted into Synechocytis sp. carotenoid producfion was not found 

to be enhanced which suggests that Synechocytis has developed a method to produce 

terpenoids via the mevalonate independent pathway without the use o f EPP isomerase. 

This contrasts wi th the pathway in plants and the bacterium Zymomonas mobilis^^ in 

which it has been demonstrated that IPP isomerase is essential to terpenoid formation. 
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2.4.2 Synthesis ofDX 

In order to investigate the fate of H-4 of DXP in M. citrata, a synthetic sample of [4-

^H]-DX was prepared.. 

Enzymatic methods had been used in the Hterature to prepare samples of DXP. The 

isolation of DXP synthase allowed preparation of samples of DXP carrying '^C or ''*C 

from the appropriately labelled pyruvate or GAP. The methodogy has been used to 

prepare samples of [l- '^C] & [2,3,4,4-^^C4]^^ [1,2-'^C2] & [2,3-^^C2f and [2,4-'^C2]-
98 2 

DXP . This method is unsuitable for the preparation of [4- H]-DX as it would require 

[1-^H]-GAP which is not commercially available. Furthermore, the product of the 

reaction, DXP, is not a suitable substrate for whole cell systems as cell walls are 

impermeable to phosphate esters. 

Spenser and co-workers^^ prepared [2,3-'^C2]-DX for use in studies on the biosynthesis 

of vitamins Bi (71) and Be (72). The synthesis was completed in twelve steps with a net 

yield of 16%. The C-5 framework was built using a HWE coupling using O-

benzylacetaldehyde (118) and triethyl-[l,2-'^C2]-phosphonacetate (119). The 

stereogenic centres were established by the use of a Sharpless epoxidation which was 

followed by a Payne rearrangement. Functional group interconversions produced the 

acetonide protected tetrose (120) which was converted to a pentose by a Grignard 

reaction. Deprotection yielded [2,3-'^C2]-DX (121). Whilst the stereochemical 

configuration of C-4 remained unchanged, C-3 was originally set up as an centre. 

Hydrolysis of the gew-acetoxy sulphide results in inversion of configuration of C-3 

which then retains its stereochemical integrity through the remaining steps (Scheme 2-

25). 
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Scheme 2-25 Synthesis of [2,3-'^C2]-DX 121' 

Reagents and conditions; i) (EtO)2PO'^CH2'^C02C2H5, ii) LiAlH4, DCM iii) Sharpless 

oxidation iv) NaOH then PhSH v) (CH3)2C(OCH3)2, POCI3 vi) MCPBA vii) NaOAc, 

AC2O viii) K2CO3 ix) MeMgBr x) Swem oxidation xi) 2M HCl, MeCN xii) H2, Pd/C 

199 

However, this route was unsuitable for the synthesis of [4- H]-DX (116) as the label 

would need to be introduced from the first step. 

A different approach was taken by Poulter and Blagg'°° to produce both DX (122) and 

DXP (6). Rather than using synthetic protocols to build in the required stereochemistry, 

a chiral starting material was used. Using (-)-2,3-0-isopropyhdene-D-threitol (123), DX 

(122) and DXP (6) were synthesised in five and eight steps respectively in overall yields 

of 69% and 58%..The synthesis initially employed protection of the primary alcohol as 

TIPS followed by oxidation and Grignard addition to yield the C-5 alcohol. Oxidation 

by TPAP and subsequent deprotections gave DX. DXP was produced using a similar 
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strategy except that the aldehyde was masked as a 1,2 dioxolane to enable phosphate 

ester formation with trimethyl phosphite (Scheme 2-26). 

H O - , y ^ O H T I P S O - . . 

° x ° — ° x ° 
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IV 

HO ' 

HO OH 

TIPSO- ^ TIPSO-

° viii.ix H-T—^"H < "̂ H' 
o. . 0 ° X ° X 

HO OH 

Scheme 2-26 Synthesis of DX (122) and DXP (6 ) (Poulter and Blagg) 

Reagents; i) NaH, TIPS-Cl, 96% ii) Swem oxidation iii) MeMgBr, 88% iv) TPAP, 

NMO, 97% v) AcOH, THF, H2O, 84% vi) HO(CH2)20H, TsOH, 88% vii) TBAF, THF, 

99% viii) P(0Me)3, TeCU ix) TMSBr, H2O, HCl, 90% 

Again, this method did not allow for a facile introduction of deuterium into C-4 

although it did provide an efficient route to [1-^H3]-DX and DXP. 

A similar methodolgy was employed by Boland and Piel"" whereby the stereochemistry 

was set from the outset using diastereomerically pure 2,3-0-isopropyhdene-D-tartrate 

(124). 

In order to differentiate between the two ester groups whilst maintaining stereochemical 

integrity, the dimethyl ester of 2,3-0-isopropyhdene-D-tartrate (124) was treated with 

pig liver esterase (PLE). Reduction of the remaining ester group using "superhydride" 

allowed facile introduction of deuterium and left the acid functionality unchanged. After 

treatment with methyl lithium to afford the methyl ketone the isopropylidene group was 

hydrolysed under standard conditions. 
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Scheme 2-27 Synthesis of [5,5-^H2]-DX 125 (Boland) 

Reagents i) PLE, 25°C ii) LiBEtjD/THF, Ih iii) MeLi iv) 2M HCI/H2O/CH3CN 

Later work'*'^ revised the procedure to combine the reduction and alkylation into a one 

pot procedure which reduced the number of equivalents of methyl lithium that were 

required. Again, the introduction of deuterium onto the C-4 position by this route was 

impractical, 

The most versatile syntheses of DX were outlined by Giner^°'^ who described three 

routes to DX bearing deuterium and '^C in a variety of positions. These syntheses differ 

from the syntheses using tartrate as in the preparations described by Giner, the 

stereochemistry is built in using a diastereoselective reaction and an achiral substrate. 

The syntheses use (E)-5-benzyloxy-3-pentanone (126) as an intermediate that can be 

converted to DX (122) in two steps. Stereoselective formation of 5-benzyl-l-deoxy-D-

xylulose (127) is achieved by the use of an asymmetric Sharpless dihydroxylation. 

BnO i BnO 
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129 

OH O 
ii HO 

OH 

122 

Scheme 2-28 Synthesis of DX (122) from (E)-5-benzyloxy-3-pentanone (126) 

Reagents i) AD-Mix p ii) H2, Pd/C 
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Three different routes to (E)-5-benzyloxy-3-pentanone (126) have been described which 

allow great synthetic flexibility. By the first route, the C-5 skeleton was built by the 

addition of methylmagnesium bromide with (E)-4-benzyloxy-2-butenal (130). 

Subsequent oxidation of the resulting primary alcohol (131) gave the required 

pentanone. 

BnO BnO 
II 

BnO 

130 131 126 

Scheme 2-29 Synthesis of (E)-5-benzyloxy-2-pentanone (126) from (E)-4-benzyloxy-2-

butenal (130) 

Reagents i) MeMgBr ii) Swem oxidation 

This route enabled labelling of C-1 with either '^C, or a combination of '^C and i f 

a labelled Grignard reagent was used. 

The routes that were most convenient were the use of a Wittig coupling or 

functionalisation of 0-benzylacetylene (132) to produce (E)-5-benzyloxy-2-pentanone 

(126). The latter route enabled introduction of deuterium at either the 3 or 4 position by 

the use of either LiAlH4 or D2O. Reduction of propagyl alcohol (133) with LiAl^H4 

infroduces deuterium into the 3 position whilst the 4 position is deuterated upon the use 

of LiAlH4 and quenching the reaction with D2O. 

-H 
BnO. 

BnO 
11 BnO BnO 

(132 (133 131 126 

Scheme 2-30 Synthesis of (E)-5-benzyloxy-2-pentanone (126) from benzylacetylene 

(133) 

Reagents i) Acetaldehyde ii) LiAlH4 i i i) Swem oxidation 
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The third route started with benzyloxyacetaldehyde (118) and delivered (E)-5-

benzyloxy-2-pentanone in one step (126). 

O 

H BnO 

OBn 

118 126 

OH O 
HO 

OH 0 
BnO 

OH 

122 

OH 

103 Scheme 2-31 Synthesis of DX (122) from benzyloxyacetaldehyde (118) 

Reagents i) Ph3P=CHCOCH3 ii) Ad-Mix p iii) H2, Pd/C 

This latter route appeared the most amenable to the introduction of deuterium at C-4 as 

the use of [l-^H]-0-benzylacetaldehyde (134) would enable straightforward access to 

[4-^H]-(E)-5-benzyIoxy-2-pentanone (135) and thus [4-^H]-DX (116). 

Benzyloxyacetaldehyde (118) is unstable to decomposition and thus must be prepared 

as required. There are several reports that describe the preparation of 

benzyloxyacetaldehyde (118) of which the most attractive appeared the deprotection of 

benzyloxyacetaldehyde diethyl acetal (136)'°'' (Scheme 2-32) 

BnO 
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O 

B n O ^ ^ 

118 

H 

Scheme 2-32 Synthesis of benzyloxyacetaldehyde (118) from benzyloxyacetaldehyde 

diethyl acetal (136) 

Reagents i) TFA, H2O, CHCI3 

Accordingly, benzyloxyacetaldehyde diethyl acetal (136) was treated with TFA, water 

and chloroform for 90 minutes. Work-up of the reaction after this time gave a 48% yield 

of benzyloxyacetaldehyde (118), which was purified by column chromotography. 
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Longer reaction times resulted in a lower yield corresponding to the formation of by

products due to decomposition. 

The aldehyde was then promptly reacted with l-triphenylphosporanylidene-2-

propanone ui THF to yield (E)-5-benzyloxy-2-pentanone (126) as outlined in Scheme 2-

3l"^^. None of the (Z) isomer was observed by ' H - N M R analysis, 

hicubation of the olefin with AD-Mix p overnight at 0°C cleanly produced a product 

with a lower Rf than that of (E)-5-benzyloxy-2-pentanone (126) which, after workup, 

gave 5-benzyl-l-deoxy-D-xylulose (127) as a white semisolid'''^. In order to establish 

the stereochemical purity of 127 a chiral shift reagent was employed. Titration of the 

diol against Eu(hfc)3 showed increased line broadening and shifting of the methyl 

resonance as the concentration of Eu(hfc)3 increased. However, even at a concentration 

of 20mg ml"' of Eu(hfc)3 only one methyl resonance was observed which suggested that 

the product was enantiomerically piire. This was supported by optical rotation 

measurements. The optical rotation ( [a ]D^53 .4 , c 0.1, CDCI3) o f the (E)-5-

benzyloxy-2-pentanone (126) was found to be almost identical to the material reported 

by Giner'"^ ([a]D=52.9, c 0.1, CHCI3) which was in turn identical to the optical 

rotation from the same material derived from D-tartaric acid^^. 

Removal of the benzyl protecting group via hydrogenolysis in the presence of catalytic 

Pd/C afforded DX (122) as a colourless oil'°^. In spite of a seemingly clean reaction for 

the AD-mix reaction it was essential to purify the diol via column chromatography as a 

constituent of the crude diol mixture prevented benzyl removal. 

DX (122) was found to decompose on standing to a complex mixture of products. DX 

(122) Is known to readily cyclise to give [3-1-deoxy-D-xylulofliranose (137) which can 

then eject a hydroxyl group and dimerise to from di-p-l-deoxy-D-xylulofuranose-

2,3':3,2'-dianhydride (138 f \ 
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99 Scheme 2-33 Cyclisation of DX 

Free DX was not amenable to GC-MS analysis and in order to obtain a suitable mass 

spectrum, DX was per-acetylated. Treatment of DX with a 1:1 mix of acetic 

anhydride and pyridine produced the per-acetylated sugar with a corresponding 

molecular ion at 278. The reaction was halted by the removal of pyridine under high 

vacuum and the crude mixture was analysed by GC-MS. A GC-MS protocol was an 

essential prerequisite for this study it allowed which calculation of the level of 

deuterium enrichment for the labelled product. 

One of the easiest methods to introduce deuterium is via reduction of a carbonyl 

group with a deuterated reducing reagent. Accordingly benzyloxyacetaldehyde (118) 

was reduced with LiAl^H4 to generate [l,l-^H2]-benzyloxyethanol (139). This enabled 

deuterium to be effectively incorporated into the alcohol terminus. 
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Scheme 2-1 Synthesis of [1,1-'^H2]- benzyloxyethanol (139) 

Reagents i) TFA, H.O, CHCI3 ii) KMn04 ii i)LiAlH4 
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Treatment of [l,l-'^H2]-benzyloxyethanol (139) under Swem conditions'*'^ produced [1-

^H]-benzyloxyacetaldehyde (134) in moderate yield (64%) and with complete retention 

of deuterium (GC-MS, '^C-NMR) 
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O 

-H 
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BnO 
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^H 
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Scheme 2-35 Swem oxidation of [1,1- H2]-benzyloxyethanol (139) 

Wittig coupling with l-triphenylphosporanylidene-2-propanone produced [4-^H]-(E)-5-

benzyloxy-2-pentanone (135) in good yield. Successfril dihydroxylation with AD-mix p 

gave [4-^H]-5-benzyl-DX (140) which had an identical optical rotation to the unlabelled 

product. Removal of the benzyl protecting group via hydrogenolysis gave [4- H]-DX 

(116). As [4-^H]-DX (116) was pulse fed over the course of the growth period, fresh [4-

^H]-DX (116) had to be prepared on the day of feeding. 

0 

OBn 

134 

BnO 
D O 

135 

HQ D O 
HO 

OH 

116 

HO .D P 
BnO 

OH 

(140) 

Scheme 2-36 Summary of the synthesis of [4-^H]-DX (116) 

Reagents i) Ph3P=CHCOCH3 ii) Ad-Mix P iii) H2, Pd/C 
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2.4.3 Feeding off4-^HJ-DX (116) to M.citriit!i 

[4-^H]-DX (116) Was fed to two cultures of M. citrata at a final concentration of 7mM 

on days 4, 11 and 18, and the crude extract was collected by procedure 2. Analysis of 

the resulting linalyl acetate by NMR showed a region of intensity at 5.1 ppm. 

Figure 2-18 ^H-NMR Of linalyl acetate (78) after feeding [4-^H]-DX (116) 

The weak signal intensity at 5.1 ppm suggested incorporation into the protons at 5.14 

ppm of linalyl acetate, corresponding to incorporation into the DMAPP derived unit. No 

incorporation into H-2 at 5.88 ppm was observed. However, this enrichment could also 

be due to deuterium incorporation into another metabolite in the product mixture. 

Confirmation of incorporation of deuterium into linalyl acetate (78) was pursued by 

GC-MS analysis. The analysis was performed ten times and mean values are presented 

in Figure 2-19. 
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Figure 2-19 hicorporation of [4-^H]-DX (116) into hnalyl acetate (78) 
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GC-MS analysis suggested enrichment of the M+1 ion although the level of 

incorporation was complicated by a large standard error that accompanied the data. 

Similarly, there is a large margin of error associated with the M+2 ion. The standard 

error of the M+1 ion is caused by two of the ten runs that have relatively high M+ ions. 

This data is presented in Table 2-5. 

Run no. M M+1 M+2 

1 99.66 0.52 -0.18 

2 100.31 -0.21 -0.09 

3 99.72 0.50 -0.22 

4 100.24 -0.35 0.11 

5 99.78 0.23 0.00 

6 99.79 0.35 -0.14 

7 99.32 0.44 0.24 

8 99.65 0.19 0.17 

9 99.41 0.38 0.22 

10 99.57 0.23 0.20 

Table 2-5 Data for each individual GC-MS analysis of Hnalyl acetate (78) after feeding 

[4-^H]-DX (116). High M+ ions are shown in bold 

Although the enrichment of the M+1 ion suggests the retention of one deuterium atom, 

due to the standard deviation the retention of neither or both deuterium atoms cannot be 

dismissed on the basis of GC-MS analysis. 

2.5 Synthesis of [4,5,5,-^H3J-DX(141) 

One of the problems when assessing incorporation into the M+1 ion is to determine a 

statistical significance above natural abundance. The problem is less significant for 

M+2 and M+3 as their natural abundance values are much lower. Accordingly, more 

accurate incorporations can often be obtained from double or triple labelled precursors. 

Feeding [6,6-^H2]-glucose (94) to M. citrata had already shown that the C-5 protons of 

DXP were retained during the biosynthesis of linalyl acetate and accordingly [4,5,5-

^H3]-DX (141) became a synthetic target, ft was expedient to synthesise [4,5,5-'^H3]-DX 
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using the same strategy that was used to make [4-^H]-DX (116). Retrosynthetic analysis 

of [4,5,5-^H3]-(E)-5-benzyloxy-3-pentanone (142j offered a synthesis from commercial 

[-Hfil-ethylene glycol (143) 

D O 
BnO 

D D 

142 

D. D 
- X Q 

D 
OBn 

152 

a .D 

^OD <̂  
D. D 

DO. 
OBn DO. 

D b D D 

143 

Scheme 2-37 Retrosynthesis of [4,5,5-^H3]-(E)-5-benzyloxy-3-pentanone (142) 

A survey of the literature revealed that the monobenzyl protection of ethylene glycol 

(144) had been performed previously with benzyl bromide (145) and sodium hydride'°^. 

However, when ethylene glycol was treated with one equivalent of NaH and one 

equivalent of benzyl bromide only the diprotected product (146) was isolated (Scheme 

2-38). When the reaction was monitored via TLC it was clear that the di ether was 

formed preferentially to the monoether (147). Attempts to introduce kinetic control by 

performing the reaction at 0°C and -78°C resulted in identical product profile but at a 

slower rate. 

HO. 
^OH BnO. 

OBn 

144 146 

Scheme 2-38 Formation of 1,2-0-dibenzyl ethylene glycol (146) 

Reagents i) NaH, BnBr 

In the event it was found that treatment of ethylene glycol with half an equivalent of 

potassium hydroxide and one equivalent of benzyl bromide (145) generated the mono 

ether (147). This was adapted from a procedure which used equivalent ratios to prepare 

3-(3-phenylprop-2-enyloxy)propanol (148) from cinnamyl bromide (149) and 1,3-

propandiol (150)"°. 
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149 148 

Scheme 2-39 Use of cinnamyl bromide (149) to prepare 3-(3-phenylprop-2-

enyloxy)propanol (148, Kizil"°) 

When ethylene glycol (144) and benzyl bromide (145) were substituted in the reaction 

in a 1:1 ratio in THF, none of the benzyl ether was formed. However, when DMSO was 

used as the reaction solvent a product was formed by TLC that possessed a lower Rf 

than the dibenzyl ether (146). After 30 minutes the reaction worked up. NMR Analysis 

showed that the new spot corresponded to the mono benzyl ether (147). When the 

reaction time was increased, formation of the dibenzyl ether (146) was observed until it 

was the only product. Attempts to enforce kinetic control by cooling the reaction and 

increasing the reaction time caused the products to be formed at a reduced rate, but in 

the same ratio as for the reaction under ambient conditions. In spite of a low yield (40% 

based on the amount of benzyl bromide), these conditions were used to prepare [1,1,2,2-

^H4]-benzyloxyethanol (151) from [l,l,2,2-^H4]-ethylene glycol (143). 

R D . D D 

" ° X ^ O H ^ " ° ^ 0 B „ 
D D D D 

143 151 

Scheme 2-40 Synthesis of [l,l,2,2-^H4]-benzyloxyethanol (151) from [1,1,2,2-^H4]-

ethylene glycol (143) 

Reagents i) BnBr (leq), KOH (0.5 eq), DMSO 

Treatment of [l,l,2,2-^H4]-benzyloxyethanol (151) with Swem conditions gave [1,2,2-

^H3]- benzylacetaldehyde (152). However, it was necessary to perform the oxidation 

using deuterium labelled reactants as triethylamine was found to abstract the acidic a-

protons. When the reaction was quenched by the addition of H2O, subsequent 

tauteromerisation gave rise to a distribution of [1,2-'̂ H2] (153) and [1-^H2]-

benzylacetaldehyde (134) in the ratio of 1:3 ('^C-NMR). 
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Scheme 2-41 Loss of deuterium during the Swem oxidation of by the action of residual 

triethylamine 

Standard Witfig coupling yielded [4,5,5-'^H3]-(E)-5-benzyloxy-2-pentanone (142) and 

successful dihydroxylation dehvered [4,5,5-^H3]-5-benzyl-DX (154). 

Hydrogenolysis of [4,5,5-^H3]-5-benzyl-DX (154) in EtOH with Pd/C gave rise to 

significant loss (-60%, NMR) of deuterium from C-5. This was possibly due to radical 

abstraction of deuterium and quenching by nascent hydrogen or transfer of the hydroxyl 

proton from ethanol. 

O HO D O HOD 

O HOD O HO D 
OBn 

OH D OH H D 

EtOH EtO« 

Scheme 2-42 Suggested loss of deuterium by radical abstraction in Vd/C/Hz reaction 

When hydrogenolysis was performed using EtOD, formation of DX was accompanied 

with a greater retention of deuterium. GC-MS analysis of the triacetate derivative 

showed that the major isotopomer was [4,5,5-^H3]-DX (141, 67%). Lower populations 

of [4,5-^H2]-DX (155, 31%) and [4-^H]-DX (116, 2%) were also present. 
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The mixture was fed to two sets of M citrata cultures and each was worked up 

separately via procedure 2. Each sample was then analysed ten times via GC-MS and 

the mean incorporation values are shown in Figure 2-20, 

C 0.4 

5 0.2 

c-0.2 

Figure 2-20 Incorporation of deuterium into linalyl acetate after feeding [4,4,5-^H2]-DX 

(141). Separate experiments are shown by adjacent bars 

On both sets of M+1 data, the standard error is large, and thus no conclusion can be 

drawn about whether a single deuterium atom was incorporated. Similarly, the M+3 

enhancements, which would correspond to retention of all three deuterium atoms, have 

small mean values and have large associated errors. Analysis of the M+2 ions does 

however suggest incorporation of two deuterium atoms, although in both cases the 

potential enrichment is subject to a wide margin of error. From these results, no definite 

conclusion can be draw; although the M+2 ion appears to indicate incorporation of two 

deuterium atoms the standard deviation is too large to have confidence that the 

enrichment represents a bona fide incorporation into linalyl acetate. 

98 



2.6 Working hypothesis for the conversion ofMEP to IPP 

A revised working hypothesis was subsequently developed based on the discovery that 

the mevalonate independent pathway proceeds via the cyclo-diphosphate (76, Figure 2-

43). Removal of the tertiary hydroxyl group yields a carbocation (156) that can be 

stabilised by the formation of an epoxide (157,158) from either of the two hydroxyl 

groups. Attack by NADPH (159) yields a source of hydride that can be used to effect 

dehydrations - in this scheme, the same hydrogen is added and removed and the 

hydrogen atoms that originate from MEP are left intact. Mapping of the protons of DXP 

and MEP showed that all the protons that were present in DXP and MEP were retained 

in the final isoprenoid, but did not shed light on any processes that would introduce and 

remove the same proton. Dehydration can proceed via the hydroxyl at either C-2 or C-4 

to produce a vinylic alcohol (160, 161). Attack of hydride, which may be preceded by 

activation of the alcohol to a good leaving group, yields IPP (34) or DMAPP (35). 

This would offer a rational account for the formation of the pyrophosphate group and 

mechanisms by which IPP and DMAPP are formed independendy. Four of the putative 

intermediates were identified as synthetic targets for feeding experiments, in addition to 

ME, isopentenyl alcohol and dimethylallyl alcohol and are shown in Figure 2-6. 
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Scheme 2-43 A working hypothesis for the formation of IPP and DMAPP via the 

mevalonate independent pathway in bacteria 
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Figure 2-6 Synthetic targets 

ME (166) was chosen as a target as it is the last known intermediate that is incorporated 

on the mevalonate independent pathway and would test whether incorporation into 

linalyl acetate could be detected. 

A potentially limiting feature of this strategy was whether free alcohols can be activated 

to the phosphate level for inclusion in the biosynthesis. To determine i f a kinase was 

present that could activate the alcohols to the required phosphate level, the parent 

alcohols of IPP and DMAPP were chosen as substrates. It was anticipated that these 

would be a gauge of which substrates could be expected to be incorporated when fed as 

alcohols. 

2.6.1 Synthesis of putative intermediates 

2.6.1.1 [Ul-^HJ-DMAA (167) 

3-Methyl-but-2-ene-l-ol (dimethyl allyl alcohol, DMAA), was synthesised in a one step 

reduction from the ethyl ester of 3-methyl-but-2-ene-l-oic acid (168) using Hthium 

aluminium hydride'''. 

OEt . ^Y^>^OH 

O 
(168 165 

Scheme 2-44 i) LiAlH4, ether 
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The reaction proceeded in good yield and prompted synthesis using LiAl^H4 which 

dehvered 2g of [1,1-^H2]-DMAA (167)"l 

2.6.1.2 Synthesis of[l, 1,2-H3]-1,2 dihydroxy 4-methyl but-3-ene (\ 60) 

A synthetic scheme for the synthesis of 1,2 dihydroxy-4-methyl-but-3-ene (160) was 

devised, starting from D-mannitol (169). It was anticipated that either '^C or could be 

incorporated into the olefmic methylene group during the Wittig coupling reaction. 
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Scheme 2-45 i) Zn,acetone,3h ii) NaI04, DCM, Ih iii) MeMgBr, ether 

iv) PDC, 3A Molecular sieves, acetic acid, DCM, 12h v) Ph3P=CH2, 

THF 

Protection of D-mannitol ((169) to form the acetonide (170 ) was achieved using zinc 

and acetone"^ and was oxidised to D-glyceraldehyde acetonide (171) by sodium 

metaperiodate"". Grignard addition gave the alcohol (172) in moderate yield (58%) as a 

mix of diastereomers (3:1)"^. 

Oxidation of the secondary alcohol proved to be difficuh. A variety of oxidising 

conditions were tested (MnOz , pyridinium chlorochromate and Swem conditions) but 

these did not afford oxidation to the ketone and only gave recovery of the starting 

material. The method that was found to work most efficiently used pyridinium 
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dichromate (PDC) with catalytic acetic acid and dry molecular sieves"^. Under these 

conditions, ketone 174 was produced cleanly. 

The Wittig olefination proved unsatisfactory and gave low yields (10-15%) of 174. This 

contrasts with literature reports which describes a 30% isolated yield, albeit on an 11 

gram scale^ .̂ The low yield is undoubtedly due to the product being held in the 

triphenyl phosphine oxide solid which is a byproduct of the reaction. Furthermore, the 

crude product readily decomposes on silica, and made isolation and purification very 

difficult. In light of this, an alternative strategy for 160 was employed. 

The synthesis of 160 was achieved by Dr Andy Humphrey (Durham). The carbon 

skeleton was built fi-om the Grignard addition of isopropenyl magnesium bromide to 

diethyl oxalate (175). The crude product was treated with LiAl^ILt to afford 176 

bearing three deuterium atoms. 
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Scheme 2-46 i) MeC(CH2)MgBr ii) L I A R H 4 

D. P 

H O 
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2.6.1.3 Synthesis of 177 
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Scheme 2-47 i) NaB^H4 i i ) THP, H"" iii) LiAl^H4 iv) MeOH, 

Compound 177 was synthesised by Dr Andy Humphrey with five deuterium atoms 

starting fi-om diethyl 3-oxoglutarate as outlined in Scheme 2-47. 
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2.6.1.4 Synthesis of \%2 
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Scheme 2-48 i) C H C I 2 , A; ii) THP, H "̂; iii) LiAl^H4; iv)H^, MeOH 

Compound 182 was synthesised by Dr Andy Humphrey in four steps from acetol. The 

carbon skeleton was built from a Wittig coupling which was protected by THP. 

Reduction by LiAl^H4 followed by deprotection gave 182. 

2.6.1.5 Synthesis of ISl 

O 

187 

Scheme 2- 49 i) LiAl^H4 

Compound 187 was prepared by Dr Andy Humphrey in a one step reduction of 3-

methyl-2(5 H)-furanone with lithium aluminium deuteride. 

2.6.1.6 Synthesis of [l,l-^H2]-isopentenyl alcohol (\88) 

[l,l-^H2]-Isopentenyl alcohol (188) was synthesised by Dr Andy Humphrey in two 

steps from allyl bromide 189. Conversion of allyl bromide to the Grignard (190) by 

refluxing with magnesium was followed by reaction with solid C O 2 . A standard 

LiAl^H4 reaction gave (188) in 45% yield. 
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2.6.2 Feeding of putative intermediates to E. coli 

The intermediates were fed at the concentrations outlined below and worked up 

following the standard protocol. 

Substrate Structure Cone 

176 
D OH 

1.3mM 

177 
OH OH 

l . l m M 

182 1.2mM 

187 D ^ y ^ ^ ^ OH 
OH 

1.4mM 

Table 2-6 Table showing the concentration of putative intermediates fed to E. coli 

In each experiment, ubiquinone was collected according to the standard procedure and 

analysed via ^H-NMR. The ^H-NMR spectrum of ubiquinone after feeding 176 , 182 

and 187 are shown in Figure 2-7. 
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Figure 2-7 NMR of ubiquinone after feeding 177,182 and 187 to E. coli 

None of the three spectra show significant signals that could be due to incorporation of 

deuterium into ubiquinone. However, NMR of the ubiquinone after feeding 176 to 

E. coli showed a sharp peak at 4.0ppm and regions of intensity at 3.7 and 1.7 ppm 

(Figure 2-8). The peak at 3.7 ppm is due to deuterium from residual ethanol used in the 

extraction process. 
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Figure 2-8 H NMR Spectrum of ubiquinone after feeding 176 to E. coli 
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Incorporation into the methoxy groups is evident from the signal at 4.1 ppm. As the 

methyl groups are derived from SAM, the incorporation of deuterium corresponds to 

labelling of SAM and hence methionine. A possible method by which deuterium could 

be incorporated into methionine is after oxidation of 177 to yield [1,1-^H2]-

formaldehyde (191). Loading of methionine (192) and incorporation into the methoxy 

groups would account for the observed peak. 

D 

OH 
D OH 

D 

O 

~CHD, 

191 

Scheme 2-51 Suggested labelling of methionine from 177 

© NH3 
192 

The peak at 1.7 ppm could represent incorporation into the prenyl chain but also could 

be due to incorporation of deuterium into lipids that contaminated the sample. From 

these results, no conclusion about whether 177 is an intermediate can be drawn. 

2.6.3 Feeding of [4,4-^H2]-ME (\ 62) to E. coli 

[ 4 , 4 - ' H 2 ] - M E was fed to E. coli in order to determine whether the cultures developed in 

Durham could incorporate M E in a similar maimer to as those described in the 

literature. Accordingly, [4 ,4-^H2]-ME (162) was fed to E. coli to a fmal concenfration of 

1.4mM and the resultant ubiquinone was analysed via N M R . The spectrum is shown 

in Figure 2-9. 
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Figure 2-9 ^H NMR of ubiquinone (80) after incubating of [4,4-^H2]-ME (162) with E. 

coli 

A region of intensity between 1.8-2.3 ppm suggests labelling of the prenyl chain. The 

signal could correspond to deuterium being carried through and incorporated into the 

prenyl chain as shown in Scheme 2-52. 

^H 
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80 

Scheme 2-52 Possible mode of incorporation of [4,4- H2]-ME (162) into ubiquinone 

(80) 

However, the weakness of the experiment is the low level of incorporation. The peak 

could be accounted for by contamination from small amounts (50 i^g) of highly labelled 

(40%) metabolites. Literature reports^^ describe incorporation of deuterium from 

deuterium labelled ME and show that E. coli is capable of accepting free ME as an 
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exogenously administered substrate. In these reports, significant signals in the ^H-NMR 

are reported. However, this may have been a consequence of the larger amounts of 

ubiquinone that were isolated in the literature examples (6-8mg) compared to 3mg from 

this study. 

2.6.4 Feeding of [1,1-^H2]-DMAA (167) and [1,1-H2]- isopentenyl alcohol to 

E. coli and M . citrata 

In order to establish whether latter intermediates on the pathway could be incorporated, 

[1,1-^H2]-DMAA (167; and [l,l-^H2]-isopentenyl alcohol (188) were fed to E. coli and 

M. citrata. Accordingly, [1,1-^H2]-DMAA (167) was pulse fed separately to two sets of 

M citrata cultures to final concentrations of 3mM and 5mM and the cultures were 

harvested via procedure 2 on day 17. Each sample was analysed ten times and the mean 

incorporations are shown in Figure 2-21. 
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Figure 2-21 Incorporation of [1,1-'^H2]-DMAA (167) into linalyl acetate by M citrata 

Feeding of [1,1-^H2]-DMAA (167) at 3mM showed enrichments of the M+1, M+2 and 

M+3 ions which suggested incorporation of one, two and three deuterium atoms 

respectively. This contrasts vAxh the incorporation into linalyl acetate after feeding 

DMAA at 5mM, which showed incorporation into the M+2, M+3 and M+4 ions. The 

relatively large standard errors and differences in the incorporations between each 

experiment do not provide any confidence that DMAA had been incorporated into 

linalyl acetate. Hence, the enrichments do not represent the straightforward 
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incorporation of deuterium into linalyl acetate by a prenyl fransferase/isomerase 

mechanism. The incorporations could be due to metabolism and re-introduction of 

deuterium. 

In the same experiment in bacteria, [1,1-^H2]-DMAA (167) was fed to eight cultures of 

E. coli to a fmal concenfration of l . l m M . The resultant ubiquinone was harvested 

according to the standard procedure and analysed via ^H-NMR. No signals or areas of 

intensity were observed, indicating no significant incorporation of DMAA (167) into 

ubiquinone by E. coli. 

In a parallel experiment, [l,l-^H2]-isopentenyl alcohol (188) was fed to two cultures of 

M citrata to a final concentration of 1.8 mM, and the resulting linalyl acetate analused 

by GC-MS. No enhancement of the M+1 or M+2 ions was observed. 

Likewise, cultures of E. Coli were supplemented with [l,l-'^H2]-isopentenyl alcohol 

(188). Analysis of the resultant ubiquinone by ^H-NMR did not show any signals. 

2.6.5 Analysis of results after feeding putative intermediates 

There is no evidence that the mevalonate independent pathway does not deliver IPP and 

DMAPP. Hence the lack of incorporation of [l,l-^H2]-isopentenyl alcohol (188) and 

[1,1-^H2]-DMAA (167) indicates that there is no kinase to activate exogenously 

administered alcohols to the required phosphate level. In the Ught of this, alcohols 176 , 

177, 182, 187, would not be incorporated as they lack the phosphate or pyrophosphate 

motif 

These results also suggest that E. coli is capable of activating ME to MEP in vivo. In the 

case of ME, only monophosphorylation is required to produce the relevant intermediate, 

whereas post MEP intermediates require the introduction of at least a pyrophosphate 

group. Furthermore, i f the pyrophosphate is delivered intramolecularly as depicted in 

the working hypothesis, all post MEP intermediates would be present in vivo as the 

pyrophosphate and hence the organism is less likely to recognise intermediates fed as 

the free alcohol. Although feeding of intermediates as their pyrophosphate esters seems 

like a feasible method of study, cell walls are impenetrable to phosphate and 

pyrophosphate esters. 

These findings are summarised in Figure 2-21. Dashed lines indicate that substrates fed 

as free alcohols are transported into the cell, converted to the phosphate and used. The 

bold lines indicate that all intermediates on the pathway are present as pyrophosphates. 
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Hence, although intermediates may be transported into the cell, they are not recognised 

or activated as pyrophosphates. Pyrophosphates are not transported into the cell. 
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Figure 2-21 Working hypothesis of the mevalonate independent pathway and the 

activation to the pyrophosphate level 
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2.7 Conclusions 

The feeding of [l,2-'''C2]-acetate and [l-'^C]-glucose to M. citrata reveal that linalyl 

acetate is biosynthesised exclusively via the mevalonate independent pathway. The 

results of feeding [3-'^C]-alanine to M. citrata show that alanine is processed via the 

mevalonate independent pathway and the incorporation of [3-^Ha]-alanine and [3-

•̂'C^HaJ-alanine show retention of all three methyl protons during the biosynthesis of 

linalyl acetate. Similarly, [6,6-'^H2]-glucose and [^HgJ-glycerol show retention of the C-5 

protons of DX. These results place limitations on the processes by which MEP can be 

converted to IPP in plants. 

The incorporation of deuterium into ubiquinone after feeding [6,6-^H2]-glucose to E. 

coli verify that ubiquinone is biosynthesised via the mevalonate independent pathway. 

Synthesis and feeding of [4-^H]-DX to M citrata suggests partial retention of deuterium 

although the level of incorporation is low and has a large variance. 

Feeding of synthetically prepared DMAA and isopentenyl alcohol bearing deuterium 

did not give any incorporation into linalyl acetate or ubiquinone. Likewise, putative 

intermediates bearing deuterium were fed to E. coli and showed no incorporation of 

deuterium into the terpenoid unit of ubiquinone. Perhaps these intermediates could not 

be activated to their pyrophosphate esters. 
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Chapter 3 

Studies on fungal metabolites 
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3 Studies on fungal metabolites 

This chapter describes the isolation and characterisation of a meroterpene, rosnecatone, 

from Rosellinia necatrix and studies on metabolite production as a function of growth 

conditions. The feeding of stable isotope labelled compounds and their incorporation is 

also discussed. 

The identification of a metabolite, epoxydon, from Xylaria grammicin is described and 

studies on metabolite production in X. grammicin conclude the chapter. Results of 

screening rosnecatone and epoxydon against Human cancer cell lines are described. 

3.1 Fungal metabolites 

Fungi produce a vast array of unique secondary metabolites, the distribution of which is 

very different to that in plants and bacteria. The majority of polyketides isolated have 

been obtained from fungal sources, particularly fiangi imperfecta Most ftangal 

polyketides are aromatic and are derived from one of three aromatic sources; 

acetylphloroglucinol (193), orsellinic acid (194) and 6-methylsalicylic acid (195)."^ 
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Scheme 3-1 Biosynthesis of acetylphloroglucinol (193), orsellinic acid (194) and 6-

methylsalicyhc acid (195) 

Fungal aromatics are largely polyketide rather than shikimate in origin, and hence the 

shikimate pathway is much less widely used in fimgi than in bacteria and plants. 

Nevertheless, the pathway is still used to deliver aromatic amino acids such as L-

phenylalanine (22) and L-tyrosine (23), as described in chapter 1. 

Far fewer fungal terpenes than fiingal polyketides are known and although fungal 

terpenes have a limited distribution, fimgi often represent a unique source of the few 

terpenes they produce. Monoterpenes and sesquiterpenes are rare, and collectively 

number less than forty. Those that are known demonsfrate a variety of hi and tri cyclic 

structures, which are similar to sesquiterpenes observed in plants. Likewise, diterpenes 

and sesterterpenes have similarly limited distributions, of which the gibberillins are the 

most important examples. Steroids and triterpenoids account for the majority of the 

fungal terpenoids. A l l fungal sterols possess the standard tetracyclic skeleton and are 

often found in bacteria. 
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3.2 Mixed metabolites 

In the context of this project, two of the most important classes of metaboHtes that are 

derived from more than one biosynthetic pathway are the meroterpenoids and the 

cytochalasins. 

3.2.1 Meroterpenes 

Meroterpenoids are a diverse class of secondary metabolites that exhibit a wide range of 

structures and biological activity. Over 700 such compounds have been reported"^, 

some of which demonstrate antifungal and larvicidal activities'^^, whilst others are 

inhibitors of mammalian acetylcholinesterase and protein famesyltransferase'^°. 

Originally the name "meroterpene" was coined by Comforth'^' to describe all mixed 

metabolites containing a terpene fragment. More recently Simpson's definition, that 

meroterpenes are mixed metabolites containing terpenoid and polyketide fragments'^^ 

has been gaining acceptance. 

Surprisingly few biosynthetic studies have been performed on meroterpenes. The most 

thorough study was performed by Staunton on metabolites produced by Aspergillis 

variecolor, Aspergillis ustus and Aspergillis terreus. Isotopic labelling studies showed 

that the Aspergillis meroterpenes 196 and 197 were produced by the condensation of 

orsellinic acid (194) with FPP (37). Most significantly though, incorporation of [1,2-

'^C2]-acetate (63) into the terpenoid derived imits showed that the terpene moiety was 

delivered by the M V A pathway 123,124 

116 



C H , CH 

O 

J-P H 

63 

"^"^ H3C 

63 

CH3 

197 

CO2R 

H.C CH3 

Scheme 3-2 Incorporation of [l,2-'^C2]-acetate (63) into meroterpenes produced hy A. 

utus 

More recently, incorporation of [l-^^C]-glucose showed diat the prenyl chain in 

boviquinone (198), a metabolite of Chrogomphus rutilus, was produced by the MVA 

pathway'^^. Meroterpenoid quinones fulf i l the same role as ubiquinones in bacteria and 

animals and appear to be membrane associated electron transfer agents. 

Surprisingly little is known about the extent to which the mevalonate independent 

pathway operates in fungi. Previous work'^^ in fungi feeding labelled glucose and 

acetate revealed exclusive operation of the mevalonic acid pathway in a study on 

hopanoid (199) biosynthesis. 
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Scheme 3-3 Feeding of [l-'^C]-glucose (68) to A. aleyrodis shows incorporation into 

the hopanoid (199) via the MVA pathway 

I f the hypothesis that the mevalonate independent pathway is largely localised in 

chloroplasts is correct, then as fUngi do not have chloroplasts, all fungal terpenes would 

be expected to be biosynthesised via the M V A pathway. 

3.2.2 Cytochalasins 

Cytochalasins are a class of compounds that are derived from acetate and L-

phenylalanine. They possess fused tricyclic structures comprising a fused pyrrole-

cyclohexane ring substituted with a macrocylic ring. The first cytochalasins A (200) 

and B (201) were isolated in 1966 by Tamm and Rothweiler'^^ and were shown to have 

the structures below. 

»0H / \ / .O 

200 201 

Nearly thirty cytochalasins have been isolated and characterised and have attracted 

attention because of their biological properties. The name cytochalasin is derived from 

the Greek K.VX.OC^, meaning cell, and xakacxC,, meaning relaxation and refers to the 

action of cytochalasins on mammalian cells. A l l cytochalasins inhibit cell division in 

vivo and, at high concentrations, cause ejection of the cell nucleus. In particular. 
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cytochalasin B inhibits cell movement by altering cells' shapes to that of a thin disc and 

cytochalasin E causes cells to develop bearing a "thick scalloped margin" 

By virtue of their nitrogen atom, cytochalasins are formally alkaloids, but it is most 

helpful to consider their biosynthesis in terms of a phenylalanine/polyketide pathway. 

Work by Tamm, Vederas and coworkers showed that cytochalasin B is built from 

acetate'̂ ^ and p h e n y l a l a n i n e T w o pendant methyl groups are derived from 

methionine and the lactone oxygen is derived from a Bayer-Villiger oxidation . 

»0H 

J O 

0 

methionone methyl 

Figure 3-1 The origin of cytochalasin B (201) from acetate, methionine and 

phenylalanine. 

3.3 Fungal growth techniques 

There are two techniques that are commonly employed for growing fungi in the 

laboratory. The first is to grow the mycelium on the surface of the static medium where 

the mycelium grows to cover the surface of the liquid. This method is widely employed, 

as it is straightforward and is very efficient in terms of space utihsation. However, it 

does suffer from a number of disadvantages, of which the most significant is 

inhomogeneous growth. As the mycelium spreads across the surface by sporulation, the 

mycelium mat contains patches of mature and immature mycelia. This can be used to 

advantage to ensure that the feeding of a substrate is concomitant with the appropriate 

period of growth. In a static culture, there is a significant nutrient gradient within the 

mycelium as the areas on the surface of the mat rely on nutrients being transported 

through the fungus. This results in static cultures growing much slower than submerged 

cultures. 

Submerged cultures represent an alternative method. In a submerged culture, the broth 

is inoculated with mycelium and shaken rapidly so that growth occurs within the 
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medium. As there is no nutrient gradient and there is increased aeration and greater 

dispersion of spores, submerged cultures grow at a much faster rate than static cultures. 

Subsequently, accelerated growth results in growth homogeneity. However, the 

production profile of submerged cultures may be radically different firom the same strain 

incubated as a static culture. 

3.4 Rosnecatone 

Rosnecatone was first isolated by Edwards'^' in 1997 fi-om Rosellinia necatrix The 

strain had been collected fi-om Portugal and represents one of over one hundred 

Rosellinia species that have been described to date'̂ ^. The structure of rosnecatone was 

determined by X-ray crystallography and notably possesses a hemiterpene moiety 

substituted with a hydroxyl group. The central nucleus displays extensive 

fLinctionahstion and oxygenation. 

OH O 

The primary basis for selecting rosnecatone as a candidate for biosynthetic study was 

the presence of the terpene derived moiety in this metabolite. The primary aim of the 

programme was to investigate the origin of the hemiterpenoid moiety from either the 

MVA or mevalonate independent pathway. In addition, the presence of a polyketide or 

shikimate derived nucleus afforded an additional detail of biosynthetic enquiry. 

Edwards had also found that in mature cultures o^ R. necatrix, rosnecatone production 

was accompanied by the producfion of cytochalasin E (203) 

203 
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Cytochalasin E is structurally different from other cytochalasins in that it possess a 

carbamate residue. It had also been isolated previously from R. necatrix'^'' and 

Aspergillis clavatus'^^ and possesses antibiotic and cytotoxic properties that are typical 

of the other cytochalasins. Although there is no formal report on the biosynthesis of 

cytochalasin E (203), it is almost certainly related to cytochalasin B (201) in that it is 

formed from phenylalanine, methionine and a polyketide chain. In the case of 

cytochalasin E (203), the polyketide derived chain is one acetate unit smaller than 

cytochalasin B (201). The presence of two oxygen atoms in the macrocycle suggests the 

intervention of a further Bayer- Villiger oxidation during the biosynthesis. 

R R 

O 
^ - O ^ P , . R"C020H R S 

c 
OH OH 

-R 
0 ' 

. 0 . 
HO 
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Scheme 3-4 Bayer-Villiger formation of the carbamate residue of cytochalasin E (203) 

3.4.1 Growth ofR. necatrix 

Rosellinia are slow growing fungi and require six to eight weeks to achieve cell 

maturity. One of the first objectives of the project was to determine the maximal growth 

conditions for rosnecatone production as a static culture. Using malt broth supplemented 

with 6% glucose, mycelial growth ceased after six weeks. This was evident by the 

formation of dark areas on the mycelium mat. 
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Figure 3-2 Six-week-old culture of R. necatrix showing the upper side mycelial mat and 

spores 

Extraction of the broth with ethyl acetate yielded a tacky brown oil that gave 

rosnecatone as a white crystalline solid after column chromatography. During initial 

investigations, rosnecatone production ceased after one generation with a concomitant 

decrease in the mycelial mat thickness. Repeated attempts to elicit rosnecatone 

production failed as subsequent generations did not grow. Fresh cultures were grown 

from a slant that had been used previously to seed the producing cultures. Rosnecatone 

production was restored, but at very low levels (3-5mg per 300ml flask) which 

decreased vanishingly in subsequent generations. 

A new sample of R. necatrix was obtained from Edwards (Bradford) and was initially 

found to yield rosnecatone in batches of 250mg from each flask (300ml). However, 

upon repeated subculturing from flask to flask, the amount of rosnecatone dramatically 

decreased with each subculturing, in spite of apparently healthy growth. 
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Figure 3-3 Rosnecatone production (mg/flask) as a function of the number of times 

subcultured (generation) 

When the cultures were inoculated from a new slide containing R. necatrix spores, 

rosnecatone production was resumed but at much lower levels, typically no more than 

20mg of pure rosnecatone per flask (300ml). Thus, it appeared that rosnecatone 

production decreases as a function of time. 

Edwards also found that rosnecatone production was maximal at 23°C but halted at 

27°C'" . Although this is difficult to rationalise it does support experimental findings as 

cultures of R. necatrix that were grown below 27°C produced rosnecatone more 

consistently than cultures grown at 31°C. Other external factors also caused variations 

in rosnecatone production. For example, light had a significant effect, as cultures grown 

in darkness were slow to reach maturity (typically 12 weeks), had correspondingly thin 

mycelium beds and did not produce rosnecatone. 

The propensity of fungi to alter their production profile is well known. Localised 

mutations can occur in a mycelium, which although may cause no apparent physical 

differences, can cause biochemical variations. These variations can manifest themselves 

as the cessation of secondary metabolite production. Subculturing from such a mutated 

mycelium area causes subsequent generations to lack the capacity for secondary 

metabolite production. Such mutations could account for the decreasing yields of 

rosnecatone although it was beyond the scope of this project to investigate this. 
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3.4.2 Extraction and purification of rosnecatone 

Following the procedure described by Edwards, the broth of a mature culture of R. 

necatrix was extracted several times with ethyl acetate. Removal of the solvent 

generated a dark brown oil which, after purification by preparative TLC, gave 

rosnecatone as a white crystalline solid. This initial method was of limited use as prep. 

TLC is only appropriate for small amounts of material. Furthermore, it was often 

difficult to perform EtOAc extractions due to the formation of emulsions caused by 

small mycelium fragments. This problem was overcome by saturating the broth with 

sodium chloride prior to extraction. I f a large amount of debris was present then a 

filtration under gravity was performed. Column chromatography of the crude extract 

gave rosnecatone that was of higher purity ( ' H , '^C N M R ) than that obtained by prep. 

TLC and afforded separation when large amounts of crude extract were delivered. The 

recovery of rosnecatone from the cells was insignificant. 

3.4.3 Spectral assignment of rosnecatone 

The structure of rosnecatone is secure from an X-ray crystal structure solved in 

Bradford. However, the '•'C and ' H N M R spectra had not been assigned unambigously. 

In order to conduct a biosynthetic study, a secure assigrmient of the ' H and ^̂ C N M R 

spectra was required. 

Figure 3-4 ' H - N M R of rosnecatone ( 202) 
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Figure 3-5 ' ^ C - N M R spectrum of rosnecatone ( 202) 

OH O 

12 o: 
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Assignment of the proton methyl resonances was trivial as the ' H N M R shows two 

singlets and one doublet in the high field region. Integration showed that each peak 

corresponds to three protons. The doublet is derived from C-9 and revealed coupling to 

the olefinic proton of C-8. A ' H - ' H C O S Y spectrum of rosnecatone showed the proton 

resonance at C-9 gave an off diagonal peak at 19.2 ppm whilst the two singlets 

correlated with carbon resonances at 25.9 and 18.7 ppm. These were in good agreement 

with the assignment of the terminal methyl groups in linalyl acetate. 

Once C-9 and H-9 had been assigned, it was relafively straightforward to assign the 

peaks for C-7 and C-8. Off diagonal coupling between the protons of C-9 and the 

multiplet at 5.92 ppm demonstrated that the C-8 proton came at 5.92 ppm. As expected, 

H-8 gave a further off diagonal resonance that corresponded to coupling to H-7. On this 

basis, H-7 was assigned as the resonance at 6.00 ppm. ' ^ C - ' H H E T C O R Analysis 

confirmed that C-7 and C-8 resonances were those at 121.6 and 135.0 ppm respectively. 

Further examination of the H E T C O R spectrum revealed that the carbon peak at 

62.0ppm gave rise to a correlation that was directly between the two proton resonances 

at 4.40 and 4.58 ppm. This could only arise from a diastereotopic methylene group 
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i.e. C-10. This left only two pairs of peaks that were left unassigned in the proton 

spectrum; a pair of doublets at 3.79 and 4.87 ppm and another pair downfield at 5.08 

and 5.10 ppm. The major difference between the signals was that although both H-3 and 

H-4 protons that were bonded to a tertiary alcohol, H-12 was olefinic. This was apparent 

in the HETCOR spectrum whereby the proton resonance at 5.10 ppm correlated with an 

olefinic signal at 120.2 ppm. From this the H-12 resonance was assigned to 5.10 ppm 

and the H-11 resonance to 5.08 ppm. Using the HETCOR spectrum, C-11 was found 

contribute the signal at 65.4 ppm. 

jLj^^i^jL....^ )_— 

7.0 5 .5 li.O fi.5 5 .0 3 .3 3 .B 2 .a f.O 1.5 

Figure 3-6 HETCOR of rosnecatone ( 202) 
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Figure 3-7 COSY of rosnecatone ( 202) 

By deduction, the remaining proton resonances were due to H-3 and H-4, which gave 

correlations in the HETCOR spectrum at 57.7 and 64.1 ppm respectively. Of the non-

protonated carbons, the carbonyl peak at 195.5 could be assigned in a straightforward 

manner to C-1. The remaining centres, C-5, C-6 and C-13, could however, not be 

assigned unambiguously without recourse to an HMQC experiment. 
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Figure 3-8 HMQC of rosnecatone ( 202) 

HMQC Analysis revealed the enhancements as shown below by correlation peaks. 

Proton number Enhanced signal 

12, 14, 15 139.3 

4,10a, 10b 147.7 

7 131.0 

Table 3-1 Results from HMQC of rosnecatone ( 202) 

r 'i" OH o / - N 

Figure 3-9 Selected HMQC coupUngs 



This data revealed that C-5 is assigned to 147.7, C-6 as 131.0 and C - 1 3 as 139.3. 

The complete assignment of rosnecatone is described below. 

Atom 5c 5H 

1 195.5 -

2 60.5 -

3 57.7 3.79 

4 64.1 4.87 

5 147.7 -

6 131.0 -

7 121.6 6.00 

8 135.0 5.92 

9 19.2 1.83 

1 0 62.1 4.40, 4 .58 

1 1 65.4 5.08 

12 120.2 5 . 1 0 

13 139.3 -

1 4 25.9 1.74 

15 18.7 1.70 

Table 3-2 ' H and '"'C resonances of rosnecatone 202) 
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5.5 Biosynthetic studies on rosnecatone (202) 

The biosynthetic origin of rosnecatone is not clear. The pendant C-5 unit is clearly of 

terpenoid origin whilst the remaining structure could be delivered from either the 

shikimate or polyketide pathways. 

0 ® ® 

H O ^ ^ ' " ^ - - - ^ C C § ^ ^ ^ I OH 0 

0 0 0 

OH 

OCP)(£ 
O 0 

O 0 0 

Scheme 3-5 Three putative biosynthetic origins for rosnecatone ( 202) 

Furthermore, there are two possible ways in which a polyketide skeleton could arise. 

The hydroxymethyl carbon, C-10, could derive from either a carboxylate carbon or a 

acetate methyl carbon depending on which way the polyketide chain is assembled. 

Clearly there are two pathways by which the terpenoid moiety could be generated either 

via the MVA pathway or the mevalonate independent pathway. 

The most straightforward way to determine the origin of the non terpenoid moiety was 

to feed isotopically labelled acetate to the fungus and assess the labelling pattern in 

rosnecatone. 
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3.5.1 Feeding of sodium [l,2-'^C2]-acetate 

The feeding of sodium [ 1,2-'^C2]-acetate emerged as a key experiment to delineate the 

pathway by which the terpene fragment was biosynthesised. As described in chapter 2, 

the MVA pathway delivers two intact acetate units into IPP whereas the mevalonate 

independent pathway delivers only one intact unit. Furthermore, the level of 

incorporation of acetate by the mevalonate independent pathway is usually very low as 

a consequence of processing via the TCA cycle, and hence the incorporation is often not 

observed. 

O 
II MVA pathway 

^ ^ ^ ^ ^ - ^ O © © 

63 34 

O Mevalonate J 

^OH independent uvc^vc.̂  
pathway 

63 34 

Figure 3-10 Incorporation of [l,2-'^C2]-acetate (63) into EPP (34) via the MVA or 

mevalonate independent pathway 

The feeding of sodium [l,2-'^C2]-acetate was also anticipated to delineate a shikimate 

or polyketide origin for the remainder of the molecule. The difference between the 

shikimate and polyketide pathways is the connectivities that each would employ to 

deliver the core of rosnecatone. Polyketide assembly from acetate units will maintain 

the integrity of the all carbon-carbon bonds of the non terpene unit whereas a shikimate 

origin would result in intact incorporation into only two bonds. 
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Scheme 3-6 Predicted incorporation patterns from sodium [l,2-^^C2]-acetate (63) into 

rosnecatone ( 202) by polyketide and shikimate assembly 

Sodium [l,2-'^C2]-acetate was pulse fed in three doses to cultures of R. necatrix to a 

final concentration of 4mM, and the rosnecatone was extracted after 36 days following 

the standard protocol. '^C NMR Analysis of the resultant rosnecatone showed 

incorporation of intact carbon-carbon bonds consistent with a polyketide assembly. 

OH 0 

C-13 C-9 

140 L39 120 

C-14 

OH 0 

c-ii 

C6.0 BS.S fiSi '1 ilZi. 0 

C-12 

Figure 3-11 '^C NMR resonances of the terpene unit of rosnecatone showing 'Juc-uc 

couphng. The peaks correspond to the bonds shown in bold on the 

structures 
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Carbon atom 4 //'/"w ^J("C-'^C)/Hz 

1 195.5 42.1 

2 60.5 42.4 

3 57.7 56.9 

4 64.1 56.9 

5 147.7 55.0 

6 131.0 54.6 

7 121.6 49.7 

8 135.0 48.6 

9 19.2 49.9 

10 62.1 49.5 

11 65.4 50.1 

12 120.2 50.1 

13 139.3 41.3 

14 25.9 41.3 

15 18.7 -

Table 3-3 'Ji3c-i3c Coupling constants from rosnecatone after '̂ C data (125.7 MHz) for 

rosnecatone showing [ 1,2-'̂ C2]-acetate incorporation. 

'•'C-'^C Couplings between C-11 and C-12 and between C-13 and C-14 was evident 

from the '^C NMR spectrum and indicated intact incorporation into four carbons of the 

terpenoid moiety. No coupling was observed to C-15. These enrichments are consistent 

with the incorporation of acetate into the terpene unit via MVA (9) and the MVA 

pathway. Furthermore, the 'Jl3c-I3c coupling constants of the non-terpenoid derived 

enrichments revealed contiguous incorporation of acetate as each carbon was coupled to 

one of its neighbouring carbon atoms. This pattern is consistent with a polylcetide 

origin of the non terpenoid moiety of rosnecatone. 
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Scheme 3-7 Incorporation of '•'C from [ 1,2-'̂ Ca]-acetate (63) into rosnecatone ( 202) 

This biosynthetic outcome adds further support to the hypothesis that the mevalonate 

independent pathway is localised in chloroplasts as fungi do not possess chloroplasts. 

3.5.2 Determining the orientation of the acetate assembly in the polyketide chain 

The feeding of sodium [ 1,2-'̂ Ca]-acetate (63) to a culture of R. necatrix indicated that 

the non-terpenoid derived nucleus of rosnecatone was polyketide derived, but the result 

does not delineate which carbon atoms were derived from C-1 and C-2 of acetate. As 

described in Scheme 3-7, there are two general ways by which a putative pentaketide 

can fold to form rosnecatone. Each carbon atom can be derived from either a methyl 

group or a carboxylate carbon depending on the orientation of the polyketide assembly. 

The classical method of determining which carbon atoms are derived from the methyl 

group of acetate is to feed acetate bearing an isotopic label at either C-1 or C-2. For this 

investigation, single label '^C was unsuitable as the levels of incorporation were very 

low. An enrichment of similar magnitude (0.3-0.4%) to that observed after feeding [1,2-

'•'Ca]-acetate would result in an undetectable increase in '^C-NMR peak height. In an 

alternative approach, sodium [2-^H3]-acetate (28) was chosen as a potential probe as 
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deuterium has a low natural abundance (0.016%) and deuterium incorporations can be 

measured by NMR. 

In the event, sodium [2-^H3]-acetate (28) was added to a culture of R. necatrix to a final 

concentration of 4mM. After 36 days the flask was worked up and the resultant 

crystaUine rosnecatone was analysed via deuterium NMR. The spectrum is shown in 

Figure 3-12. 

Figure 3-12 NMR Of rosnecatone after feeding sodium [^H3]-acetate (28) 

There is a region of intensity in the methyl group region between 1.7-1.9 ppm. The peak 

at 1.7 ppm is accompanied by a peak at l.Sppm which is approximately half the 

intensity indicating possible incorporation of deuterium into the three methyl groups at 

C-9, C-14 and C-15. The isolation of a crystalline sample of rosnecatone gave us 

confidence that the enrichment was due to deuterium that was incorporated into 

rosnecatone rather than deuterium incorporation into a contaminating metabolite, such 

as a lipid. 

Most significant is the apparent deuterium incorporation into C-9. If this is the case then 

the incorporation of acetate from a putative pentaketide can be summarised as shown in 

Scheme 3-8. 
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Scheme 3-8 Conversion of acetate (28) to rosnecatone ( 202) 

The incorporadon of deuterium from [̂ HaJ-acetate into C-14 and C-15 of the terpenoid 

group is again consistent with processing of acetate via the MVA pathway. 

In view of the low incorporation of deuterium from sodium [^HaJ-acetate, another 

experiment was undertaken to reinforce this result. [6,6-^H2]-Glucose (94) is 

metabolised to acetate and delivers deuterium into the C-2 of acetate in vivo. 

Accordingly, [6,6-^H2]-glucose was pulse fed to cultures of R. necatrix to a final 

concentration of 7mM. The sample of rosnecatone that was isolated after feeding [6,6-

^H2]-glucose was crystalline, which again gave confidence that signals in the NMR 

spectrum were due to incorporation into rosnecatone. Analysis by NMR revealed a 

similar spectrum to that recorded after feeding [^HaJ-acetate. The NMR is shown in 

Figure 3-13 

5 » T F n-H5» 

Figure 3-13 NMR of rosnecatone ( 202) after feeding [6,6-^H2]-glucose (94) 
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The H NMR spectrum of the resulting rosnecatone showed signals at 1.7 and 1.8 ppm 

which again indicated incorporation of deuterium into the three methyl groups C-9, C-

14 and C-I5. No other deuterium signals were apparent. 

Clearly, the signals in the NMR after feeding [6,6-^H2]-glucose are more intense 

than those in the NMR after feeding sodium [^H3]-acetate. This is a direct 

consequence of isolating more rosnecatone (43mg) from the flask supplemented with 

[6,6-^H2]-glucose than the flask fed with [^HsJ-acetate (23mg) which gives an increased 

signal to noise ratio and provides a more accurate and reliable indication of deuterium 

incorporation. It may also represent a higher level of incorporation, however a 

quantitative assessment of this was not carried out. The incorporations after feeding 

[6,6-^H2]-glucose into the terpenoid derived unit are again consistent with the 

processing of acetate via the MVA pathway. 

f=0 
OH 

H O H 

D-

- O H 
- O H 

OH 

D 

94 

OH O 

OH 

202 

Scheme 3-9 Incorporation of deuterium from [6,6-^H2]-glucose (94) into rosnecatone 

202) 

3.5.5 Analysis of deuterium incorporation into rosnecatone 

The polyketide origin of rosnecatone has some similarity to the biosynthesis of mellein 

(204). Mellein (204) was shown to originate from acetate by Simpson and Holker'"'^ and 

it bears a structural similarity to rosnecatone. Conomon structural features are the C3 and 

Ci groups that correspond to C-7 to C-10 of rosnecatone and a central six membered 

ring. 
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OH O 

The incorporation of acetate into mellein suggests that it is delivered from a putative 

pentaketide (205) which then undergoes modifications to mellein (204). 

-SEnz 
A-o 

63 

o o 

205 

o o 

206 

Scheme 3-10 Outline of the biosynthesis of mellein (204) 

Investigations with [2-^H3]-acetate revealed that a substantial loss of deuterium 

occurred. The methylene site marked * of 206 lost almost all the deuterium from 

acetate, presumably due to enolisation during the biosynthesis. This would correspond 

to the loss of deuterium from C-3 of rosnecatone, and indeed no deuterium was retained 

at that site in the experiment. Enolisation would also explain the loss of deuterium from 

C-7 in rosnecatone. The similarity between mellein and rosnecatone both in structure 

and biosynthesis allows a hypothesis to be developed in which mellein is a biosynthetic 

precursor to rosnecatone (Figure 3-11). 

An elimination of water establishes the pendant chains that form C-7 to C-10 of 

rosnecatone. Reduction of the carboxylic acid (207) followed by hydroxylation and 

oxidation would yield the polyketide nucleus (208). Epoxydation, electrophilic 

substitution of DMAPP and hydroxylation complete the transformation. 
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Scheme 3-11 Proposed biosynthesis of rosnecatone from mellein (204) 

3.6 The effect of changing from a static culture of R. necatrix to a submerged 

culture 

Static cultures of R. necatrix required six weeks to reach the stage at which they could 

be harvested for metabolite isolation. It would have been advantageous i f this time 

period could have been reduced and accordingly a method was sought which would 

facilitate faster growth. As described in section 3.3, shaken cultures generally grow 

much faster than static cultures due to improved aeration, spore dispersal and nutrient 

supply, and thus an experiment was undertaken to establish a submerged culture of R. 

necatrix. 

Both spores and mycelium were used as inoculate Erlenmeyer flasks containing either 

standard culture medium or defined medium. The defined medium contained 2% 

glucose and a trace mineral solution which had previously been developed for use with 

another submerged fungus, Beavaria bassiana, which was used in Durham'''^. No 

growth was observed for any conditions in which the defined medium was used. 

Initially the cultures grown in the standard medium were very slow to grow. After ten 

days a thin mycelium formed on the surface of the broth which, after extraction, gave 

the same metabolite profile as a stafic culture. 

However, when a sample of innoculum from this culture was used to seed flasks 

containing standard medium, growth of the submerged culture proceeded very rapidly. 
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Within three days a thick suspension of white mycehum had formed with a significant 

decolourisation of the broth. After five days the broth was highly viscous and no further 

decolourisation or growth was observed. 

Figure 3-14 Five day old submerged culture of K necatrix 

One of the key objectives was determine i f submerged cultures of R necatrix produced 

rosnecatone. The easiest way to compare the metabolite production profile was via 

TLC. Using EtOAc as the eluent and anisaldehyde stain, rosnecatone appears as a deep 

red spot with an Rf value of 0.66 and cytochalasin E (203) produces a blue spot with an 

Rf value of 0.73. 

Accordingly, samples of crude extracts of a six and twelve week old static cultures of R. 

necatrix were compared by TLC to a crude extract of a five day old submerged culture 

of R. necatrix. The crude extract of the submerged culture was prepared by extraction 

of the broth and mycelium with EtOAc to give a brown oil. TLC Showed that 

rosnecatone was not produced in the submerged culture of R. necatrix and that 

metabolite production had been channelled entirely towards cytochalasin E. which was 

confirmed by visualisation of the plate under UV prior to staining with anisaldehyde. 

Colimin chromatography of the crude extract of the subemerged cutlure gave 

cytochalasan E as a colourless oil which gave ^̂ C and ' H - N M R spectra which were 

identical to those rejwrted in the literature'^^. 
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ciitue 
Lane 3 Qude BO^c extract of 12 vOf static 
aitue 

Figure 3-15 TLC of broth extracts showing cytochalasin E production from a 

submerged culture of R. necatrix (lane 2). 
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Figure 3-16 ' H N M R spectrum 

culture of/?. necatrix 

of cytochalasin E (203) isolated from a submerged 

I ' 

J . I I i>i I 
I i i i l i l ' ' I ' J L . 

Figure 3-17 " C NMR spectrum of eytoehalasin E (203) isolated from a submerged 

culture of/?. necatrix 
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Cytochalasin E generally emerges only after six week in a static culture. The production 

of cytochalasin E within five days under submerged culture conditions, suggests that the 

rapid growth rate of the submerged culture caused production of the late onset 

metabolites rather than rosnecatone, which is observed during the course of growth. 

Alternatively, the production of cytochalasin E within five days by a submerged culture 

can also be rationalised in terms of a response to the conditions and represent the 

formation of a stress metabolite. I f this is the case, then the production of cytochalasin E 

in week six from a static culture represents a sudden stress to the organism. Such a 

stress could be caused i f all the nutrients in the medium became exhausted. 

3.7 Biological testing of fungal metabolites 

One of the significant features of natural products is their biological toxicity. In view of 

the low molecular weight and high level of functionality found in rosnecatone it 

appeared appropriate to screen rosnecatone for potentially useful activity 

In collaboration with workers at the Patterson Institute for Cancer Research, 

Manchester, rosnecatone was tested against two cancer cell lines. The National Cancer 

Institute protocol was followed whereby a fixed number of cells is plated in a 96 well 

plate with a dtrafion of the compound under invesdgation. These were incubated for 5 

days and the IC50 (the concentration of compound with inhibits 50% of cell growth) was 

measured. 

In experiments with two cell lines, rosnecatone was found to display micromolar levels 

of toxicity. The IC50 against Human ovarian carcinoma cells in DMSO was 4.48 |J.M 

and that for Human chronic myelogenous leukaemia was 5.78|iM. For a compound to 

progress to further testing against lung and colon cancer, compounds generally have an 

IC50 below 1|JM. The values for rosnecatone are low and suggest that analogues may 

possess desirable chemotherapeutic properties. 

Another fungus, Xylaria grammica, provided an additional candidate for screening. A 

culture of X. grammica was obtained from Edwards (Bradford) and extraction of the 

broth of X. grammica resulted in the isolation of a metabolite, which was shown to be 

epoxydon (209). A survey of the literature revealed that the metabolite had been 

previously isolated from Penicillium uritcae™. 
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OH 

Figure 3-18 Epoxydon (209) 

3.8 Structure determination of epoxydon (209) 

'^C N M R Spectroscopy showed the new compound had seven carbon atoms of which 

one was clearly a carbonyl and two others were olefinic. These assignments were made 

on the basis of chemical shifts. The remaining four carbon signals were clustered in the 

53-63 ppm region, suggesting carbon atoms bonded to oxygen. 

The ' H N M R indicated that there were six chemically distinct protons, of which two 

were clearly coupling to each other. Other proton signals were seen as broad doublets 

with small coupling constants. The presence of an AB system suggested a methylene 

group in a chiral environment. 
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Figure 3-19 ' H N M R spectrum of epoxydon (209) isolated from X. grammicin 

ii 
9 

, 1 1 

Figure 3-20 " C N M R spectrum of epoxydon (209) isolated from X. grammicin 

' H - ' H C O S Y N M R Indicated coupling of the signal at 3.40 to 3.78, 3.78 to 4.65 and 

4.65 to 6.74. This suggested three protons that were adjacent to one another. However, 
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coupling was also observed between 

methylene protons. 

the olefmic proton and the diastereotopic 

Figure 3 
.21 'H- 'H COSY speemtm of epoxydon (209) isolated from X. irammcin 

Figure 3 
-22 'H-'^C HETCOR Of epoxydon (209) isolated from X. grammicin 
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diastereomers, epoxydon (209) and ep.epxoydon (210). 

Penicillium uritcae 

In order to determine whether the metabolite was epoxydon (209) or epiepoxydon 

(210), it was necessary to determine the relative configuration at C-4. Both epoxydon 

and epiepoxydon (210) have been prepared by synthesis and thus data was available 

from a number of sources. Epiepoxydon (210) has an optical rotation that is nearly 

double that of epoxydon'"" {[ah (epiepoxydon) -1-256.4° whereas [ah (epoxydon) 

-1-106.7" ). The coupling constants between H-3and H-4 are also diagnostic. The trans 

relationship in epiepoxydon results in a coupling constant between H-3 and H-4 of 5Hz 

whereas the same coupling in epoxydon is smaller (4Hz). The optical rotation was 

found to be identical to that of epoxydon ([ah +102.2°, c 0.1, MeOH) and the coupling 

constant between H-2 and H-3 was 4Hz. 

It is concluded that the strain of X. grammicin that was used produced epoxydon (209). 

3.8.1 Growth of and extraction ofX. grammicin as a static culture 

X. grammicin was grown on standard medium to produce a mycelium bed very similar 

in appearance to that of R. necatrix. Six weeks of growth manifested a thin mat with a 

dark underside. Extraction of the mat with EtOAc yielded 20mg of epoxydon. 

3.5.2 Growth ofX. grammicin as a submerged culture 

In light of the unexpected result of transferring R. necatrix to a submerged cutlure, the 

same experiment with X. grammicin was repeated. Both mycelium and spores from 

mature cultures were used to inoculate standard medium and the cultures were shaken 
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(IVOrpm) with constant illumination. As in the analogous experiment with R. necatrix 

the first generation culture grew slowly whereas the second generation culture reached 

maturity within five days. Analysis by TLC showed that the metabolite production was 

identical to the static culture. 

3.8.3 Biological testing of epoxydon 

Epoxydon was screened at the Paterson Cancer Institute. The IC50 against Human 

ovarian carcinoma cells in DMSO was 2.54 \iM and 16.97 jxM against Human chronic 

myelogenous leukaemia. 

These figures are low and are similar to the results found for rosnecatone and suggest 

that analogues Of epoxydon may also possess desirable chemotheraputic properties. 
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3.9 Conclusions 

Static cultures of R. necatrix produce rosnecatone but production is difficult to control 

and ceases i f the incubation temperature is greater than 31°C. This could represent the 

presence of mutations in the mycelium that are incapable of rosnecatone production. 

Rosnecatone is produced by the polyketide and mevalonate pathways, and the 

orientation of the polyketide chain is such that C-10 is derived from an acetate methyl 

group. Mature cultures of R. necatrix produce the amino acid-polyketide derived 

metabolite cytochalasin E. 

Submerged cultures of R. necatrix produce cytochalasin E rather than rosnecatone and 

grow at an enhanced rate relative to static cultures. This suggests that cytochalasin E is 

produced as a stress metabolite and is a response to the exhaustion of nutrients in the 

medium. 

Biological testing of rosnecatone and epoxydon against cancer cell lines showed 

rosnecatone and epoxydon to possess significant cytostatic activity. 

Rosnecatone 

Epoxydon 

Human ovarian 

carcinoma/ICso (M-M) 

Human chronic myelogenous 

leukaemia/ICsod^M) 

4.48 

2.54 

5.78 

16.97 

• • a Pffecv of rosnecatone and epoxydon against 
Table 3-4 Bioactivity table summansmg effecy ot 

two cancer cell lines 
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Chapter 4 

Experimental 
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4 Experimental 

4.1 General 

All NMR were recorded on Varian Mercury 200MHz ('H at 199.99 MHz, '̂ C at 50.30 

MHz), Varian Unity 300MHz ( ' H at 299.908 MHz, '^C at 75.45MHz), Varian VXR 

400(S) ( ' H at 399.95 MHz, '̂ C at 100.58 MHz), or Varian 500MHz ( ' H at 500.137 

MHz, '^C at 125.76 MHz, ^H at 76.77 MHz). Chemical shifts are reported in parts per 

million quoted relative to the residual proton peak of CDCI3 at 7.27ppm or central '^C 

triplet peak at 77.0 ppm. Coupling constants are reported in hertz. 

Infra red spectra were recorded with absorbance values in cm"' using a Perkin Elmer 

257 between NaCl plates. 

Mass spectra of synthetic samples were performed using a VG Analytical 7070E mass 

spectrometer. Mass spectra of samples of linalyl acetate were recorded using a VG 

TRIO 1000 mass spectrometer equipped with a HP 1 Ultra column. 

The solvents used in reactions were dried, distilled and stored under nitrogen prior to 

use: diethyl ether (sodium, benzophenone), dichloromethane (calcium hydride), THF 

(sodium, benzophenone), acetone (phosphorus pentoxide), and pyridine (calcium 

hydride). Petrol refers to the 40-60°C boiling fraction of petroleum ether. HPLC grade 

heptane was used throughout. 

Reaction glassware was oven dried (120°C) prior to use and cooled under nitrogen. 

Where anhydrous conditions were required, reactions were carried out under dry 

nitrogen atmosphere. 

Thin layer chromotography was performed using Kieselgel 60 glass backed plates and 

preparative thin layer chromotography using Merck F254 glass backed plates with a 1cm 

thickness. Plates were visualised by the use of a UV lamp or by the use of 

permanganate, phosphomolybdic acid or anisaldeyde stains. 

Flash chromotography was performed using Merck, Kieselgel 60 (230-400 mesh). 

Melting points were measured on a Gallenkamp variable heater and are uncorrected. 
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4.2 
Growth and mainunance of U.citrataCU 

A solution of Murashige and Skooge medium (2.2g) and glucose (15g) or fructose 

(15g) in distilled water (500ml) was adjusted to pH 5.5 by the addition of I M NaOH. 

Transformed cultures of Af. citrata were subcultured at ^ 2g per flask (50ml of medium) 

after 20-25 days growth and grown under a 24h day at 29.1°C on an orbital shaker 

(99rpm). 

,.2J ExiracHon ofUnalyi aceUUe M. cUraU CIS (78) 

4.2.1.1 Procedure 1 

After 28 days of growth, the shooty teratoma were harvested, dried between filter 

papers and air dried for one hour to yield 1 Ig of material per flask. The dry plants were 

then blended using a Waring blender into heptane (3 x 200ml) in short bursts (Sxlmin) 

and the heptane decanted into a centrifuge bottle. The heptane was centrifuged (4''C, 

6000rpm, lOmin) and removed to produce a green oil containing linalyl acetate (Umg 

of linalyl acetate per flask). 

5H (CDCI3) 1.55 (3H, s, H-10), 1.58 (3H, s, H-8), 1.69 (3H, s, H-9), 1.75 (4H, m, H-4, 

H-5), 2.01 (3H, s, H-12), 5.10 (lH,m, H-6), 5.25 (2H, m, H-1), 5.89 ( IH , d, J 7.4, 7.6, 

H-2) 

5c (CDCI3) 17.8 (C-8), 23.9 (C-10), 22.4 (C-12), 22.6 (C-5), 25.9 (C-9), 39.9 (C-4), 

83.1 (C-3), 113.3 (C-1), I24.0(C-2), 132.0 (C-7), 142.0 (C-6), 170.1 (C-11) 
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4.2.1.2 Procedure 2 

After 28 days of growth, the shooty teratoma were harvested, dried between filter 

papers and air dried for one hour to yield 1 Ig of material per flask. After chopping into 

1 cm^ pieces, the tissues were soxhlet extracted into heptane (500ml) for 24 h. Removal 

of the solvent under reduced pressure followed by removal of residual heptane under 

high vacuum (1 min.) yielded a green oil containing linalyl acetate (6mg of linalyl 

acetate per flasks). 

Analytical data is described in 4.2.1.1. 

4.2.2 Feeding of substrates to M. citrata 

4.2.2.1 Feeding of[l-"C]-glucose (68) 

On days 7, 13 and 19, [l-'^C]-glucose (49 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two flasks of M. citrata to a final 

concentration of 8.4 mM. The cultures were worked up using procedure 1. 

^.2.2.2 Feeding of sodium [l,2-'^C2]-acetate (63) 

On days 7, 13 and 19, sodium [l,2-'^C2]-acetate (16 mg) was dissolved in water (2ml) 

and administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 5.6 mM. The cultures were worked up using procedure 1. 

4.2.2.3 Feeding of [6,6-^Hihglucose (94) 

On days 7, 13 and 19, [6,6-^H2]-glucose (49 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 8.4 mM. The cultures were worked up using procedure 1. 
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4.2.2.4 Feeding of[3-'^C]-alanine(90) 

On days 5, 11 and 17, [3-'^C]-alanine (10 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 3.2 mM. The cultures were worked up using procedure 1. 

4.2.2.5 Feeding offS-^HjJ-alanine (93) 

On days 5, 11 and 17, [3-^H3]-alanine (11 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 3.3 mM. The cultures were worked up using procedure 1. 

4.2.2.6 Feeding of [3-^^C^HsJ-alanine (86) 

On days 5, 11 and 17, [3-'''C^H3]-alanine (11 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 3.3 mM. The cultures were worked up using procedure 1. 

4.2.2.7 Feeding of [^HsJ-glycerol (101) 

On days 6, 13 and 18, [^Hg]-glycerol (17 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 5 mM. The cultures were worked up using procedure 1. 

A repeat experiment was also performed using the above procedure to feed to a final 

concentration of 8.8 mM 

^.2.2.5 Feeding ofR-[^H2]-glycerol (102; 

On days 7, 13 and 19, /?-[^H2]-glycerol (31 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentrafion of 9.7 mM. The cultures were worked up using procedure 1. 
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4.2.2.9 Feeding of S-[^H2]-glycerol (103) 

On days 7, 13 and 19, 5-[^Ha]-glycerol (28 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 9.1 mM. The cultures were worked up using procedure 1. 

4.2.2.10 Feeding of sodium [2,2,3,3-^ H4]-succinate (84) 

On days 7, 13 and 19, sodium [2,2,3,3-^H4]-succinate (38 mg) was dissolved in water 

(2ml) and administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 7.1 mM. The cultures were worked up using procedure 1. 

4.2.2.11 Feeding of[l,l-^H2]-isopentenyl alcohol(18H) 

On days 7, 13 and 19, [l,l-^H2]-isopentenyl alcohol (15.3 mg) was dissolved in water 

(2ml) and administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 5.2 mM. The cultures were worked up using procedure 1. 

4.2.2.12 Feeding of [1,1-^HzJ-dimethylallyl alcohol (167) 

On days 7, 13 and 19, [1,1-^H2]-dimethyl allyl alcohol (14 mg) was dissolved in water 

(2ml) and administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 4.8 mM. The cultures were worked up using procedure 1. 

4.2.2.13 Feeding of[4-'H]-DX (116) 

On days 7, 13 and 19, [4-^H]-DX (20 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 4.4 mM. The cultures were worked up using procedure 1. 
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4.2.2.14 Feeding of [4,5,5-'HsJ-DX (141) 

On days 7, 13 and 19, [4,5,5-^H3]-DX (21 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to two cultures of M. citrata to a final 

concentration of 4.7 mM. The cultures were worked up using procedure 1. 

4.3 Growth and maintenance ofE. coli 

E. coli cultures were grown in standard Luria-Bertani medium containing tryptic soy 

broth (lOg/1), yeast extract (5g/l) and NaCl (lOg/1) and the pH adjusted to pH 7.5 by the 

addiUon of 0.2M NaOH. Starter cultures were grown in lOOml conical flasks containing 

35ml of medium and production cultures were grown in 11 flasks containing 500ml of 

medium. 

Cultures were incubated at 29°C and 130rpm under constant illumination. 

4.3.1 Extraction of ubiquinone (SO) from E. coli 

O 

80 

Mature cultures of E. coli were decanted into centrifuge botties and centrifuged at 

14000rpm at 4°C for 35 min. The cells were collected (lg/1), combined and freeze-dried 

overnight and crushed to give a free flowing yellow powder. The cells were extracted 

by refluxing in a 3:1 mixture of DCM/MeOH (250ml) three times and the extracts 

combined. Removal of the solvent under reduced pressure yielded a dark yellow solid 

(up to 150mg). The solid was extracted using heptane (3 x 50ml) and the solvent 

removed to yield a tacky oil (typically 75mg). Column chromotography with EtOAc as 

the eluent gave ubiquinone-8 (80) (Rf = 0.29) as a yellow solid (4mg). 

6H (CDCI3) 1.56-1.59 (21H, br s, H-11, H-17), 1.69 (3H, s, H-21), 1.78 (3H, s, H-22), 

1.98-2.07 (28H, m, H-12, H-13, H-16, H-18), 3.20 (2H, d, J 7, H-8), 3.98 (3H, s, H-23), 

3.99 (3H, s, H-24), 4.95 ( IH, t, J 7, H-9), 5.05 (7H, s, H-14, H-19). 
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4.3.2 Feeding of labelled substrates to E . coli 

4.3.2.1 Feeding of [6,6-^H2]-glucose (94) to E . coli 

[6,6-'^H2]-Glucose (500 mg) was dissolved in water (2ml) and administered through a 

sterile filter unit to eight production cultures (500ml) f E. coli to a concentration of 

0.7mM. The cultures were worked up using the standard procedure. 

4.3.2.2 Feeding of [methyl-^ HsJ-methionine (192) to E . coli 

[me/Zify-^Hs]-Methionine (200mg) was dissolved in water (2ml) and administered 

through a sterile filter unit to eight production cultures (500ml) of E. coli to a 

concentration of 0.3 mM. The cultures were worked up using the standard procedure. 

4.3.2.3 Feeding offHsJ-glycerol (101) to E . coli 

['HsJ-Glycerol (766 mg) was dissolved in water (2ml) and administered through a 

sterile filter unit to eight production cultures (500ml) of E. coli to a concentration of 1.9 

mM. The cultures were worked up using the standard procedure. 

4.3.2.4 Feeding of [hl-^Hil-ME (211) to E . coli 

[1,1-^H2]-ME (640 mg) was dissolved in water (2ml) and administered through a sterile 

filter unit to eight production cultures (500ml) of E. coli to a concentration of 1.2 mM. 

The cultures were worked up using the standard procedure. 

4.3.2.5 Feeding of [l,l-^H2]-isopentenyl alcohol (34; to E . coli 

[l,l-^H2]-Isopentenyl alcohol (880 mg) was dissolved in water (2ml) and administered 

through a sterile filter unit to eight production cultures (500ml) of E. coli to a 

concentration of 2.5mM. The cultures were worked up using the standard procedure. 

157 



4.3.2.6 Feeding of [IJ-^Hil-dimethyallyl alcohol (167) to E . coli 

[l,l-^H2]-Dimethylallyl alcohol (800 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to eight production cultures (500ml) of E. coli 

to a concentrafion of 2.3mM. The cultures were worked up using the standard 

procedure. 

4.3.2.7 Feeding of [l,l,2-^H3]-3-methyl-but-3-ene-l,2-diol (176 to E . coli 

[l,l,2-^H3]-3-Methyl-but-3-ene-l,2-diol (430 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to eight production cultures (500ml) of E. coli 

to a concentration of l . l m M . The cultures were worked up using the standard 

procedure. 

4.3.2.8 Feeding of [4,4-^H2]-erythritol (111) to E . coli 

[4,4-^H2]-Erythritol (820 mg) was dissolved in water (2ml) and administered through a 

sterile filter unit to eight production cultures (500ml) of E. coli to a concentration of 1.7 

mM. The cultures were worked up using the standard procedure. 

4.3.2.9 Feeding of[I,l-^H2]-(E)-2-methyl-but-2-ene-l,4-diol (182) to E . coli 

[l,l-^H2]-(E)-2-methyl-but-2-ene-l,4-diol (980 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to eight production cultures (500ml) of E. coli 

to a concentration of 2.4 mM. The cultures were worked up using the standard 

procedure. 

4.3.2.10 Feeding of [4,4-^H2]-(Z)-2-methyl-but-2-ene-l,4-diol (187) to E . coli 

[4,4-^H2]-(Z)-2-methyl-but-2-ene-l,4-diol (600 mg) was dissolved in water (2ml) and 

administered through a sterile filter unit to eight production cultures of E. coli to a 

concentration of 1.5 mM. The cultures were worked up using the standard procedure. 
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4.4 Growth o/Rosellinia sp. and Xylaria grammicin 

4.4.1 Preparation of standard fungal broth 

A solution of glucose (18g) and Oxoid malt broth (9g) in distilled water (300ml) and 

the solution autoclaved at 110°C for one hour in the appropriate flask. After 

autoclaving, the bottles were allowed to cool to ambient temperature in a laminar flow 

hood. 

4.4.2 Growth of static cultures 

Mycelia (3 pieces, 6cm^ total area) from established cultures or from slants was used to 

inoculate P bottles or 20/20 bottles (Bottoms Up, Durham) containing standard fungal 

broth (300ml). Cultures were grown at an angle of 10° under constant illumination 

between 24-27°C and harvested after eight weeks. 

4.4.3 Growth of submerged cultures 

For the first generation of submerged cultures, 250ml conical flasks were charged with 

standard fungal broth (75ml), inoculated with mycelium (4 x 3cm^) from static cultures 

and grown at 29°C, 170 rpm under constant illuminafion. After 10 days growth a 

produce a thin mycellial suspension was used which was used to innoculate (5ml) 

250ml conical flasks containing standard fungal broth (75ml). Subsequent generations 

were inoculated flask to flask with 10% innoculum. 

4.4.4 Isolation of rosnecatone ( 202) from static cultures ofR. necatrix 

Culture supernatant of mature cultures of Rosellinia sp was decanted from the bottle and 

filtered under gravity. The supernatant was then saturated with sodium chloride and 

extracted with EtOAc (3 x 300ml). Removal of the solvent under reduced pressure 

afforded a dark brown tacky oil (typically 200mg) which was purified by column 

chromotography (silica, EtOAc) to yield rosnecatone ( 202) (up to 20mg) as a white 

crystalline solid (Rf = 0.66). 
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OH O 

M/z (EI) 280 (12.6%, [M]""), 263 (5.7%, [M-H2O]*) 

5H (CDCI3) 1.70 (3H, s. H-15), 1.74 (3H, s, H-14), 1.83 (3H. d, 6.4, H-9), 3.80 ( IH, 

d, 5.2, H-3), 4.40 ( I H , d, ' j 14.8, H-10), 4.58 ( IH, d, ' j 14.8, H-10), 4.87 ( IH, d, 

5.2, H-4), 5.08 ( IH, d, 8.8, H-11), 5.10 ( IH, d, ^J, 8.4, H-12), 5.92 ( IH, dq, J 6.4, 

15.6, H-8), 6.00 ( IH , d, 15.6, H-7) 

6c(CDCl3) 18.7 (C-15), 19.2 (C-9), 25.9 (C-14), 57.7 (C-3), 60.5 (C-2), 62.1 (C-10), 

64.1 (C-4), 65.4 (C-11), 120.2 (C-12), 121.6 (C-7), 131.3 (C-6), 135. (C-8), 139.3 (C-

13), 147.7 (C-5), 195.5 (C-1). 

4.4.5 Isolation of cytochalasan E (203j from submerged cultures o/R. necatrix 

A mycelium suspension of submerged cultures of R. necatrix was removed after 5 days 

growth by centrifugation (6000rpm, 4°C, 10 min) to produce a mycelium pellet and a 

yellow supernatant. Extraction of the supernatant with EtOAc (3x 100ml) followed by 

removal of the solvent yielded a pale brown oil (50mg). Column chromotography 

(silica, EtOAc) yielded cytochalasan E (203) as a colourless oil (6mg, Rf =0.77). 

O 7̂ 16 

m/z (EI) 495 (5.5%, [M]^) 

5H(CDC13)1.12 ( 3 H , d, J 7.2, H - 2 0 ) , 1.15 ( 3 H , d, J 7.3, H - 2 2 ) , 1.24 ( 3 H , H - 2 1 ) , 1.42 

( 3 H , s, H - 2 3 ) , 2 . 1 4 ( I H , m, H - 1 2 ) , 2.26 ( I H , m , H - 5 ) , 2.63 ( 3 H , m , H - 7 , H-8, H-12 ) , 

2 .70 ( I H , d, J 12.3, H - 2 5 ) , 2 .90 ( I H , d, J 12.3, H - 2 5 ) , 2.95 ( I H , m , H - 1 3 ) , 3.03 ( I H , 

dd, J 3, 5, H - 4 ) , 3.76 ( I H , m, H - 3 ) , 5.22 ( I H , ddd, J 5,5 8, H - 1 1 ) , 5.59 ( I H , d, J 11 , H -
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16), 5.89 ( IH , dd, J 8, 15, H-10), 6.43 ( IH , d, J 11, H-17), 7.15 (2H, d, Ar), 7.29 ( IH, t, 

Ar), 7.36 (2H, t, Ar) 

5c 13.2 (C-20), 19.7 (C-21), 20.1 (C-22), 24.3 (C-23), 35.8 (C-5), 39.1 (C-12), 40.8 (C-

13), 45.2 (C-8), 45.9 (C-25), 48.3 (C-8), 53.6 (C-3), 60.6 (C-7), 87.1 (C-9), 120.3 (C-

16), 127.2 (Ar), 128.4 (C-10), 128.9 (Ar), 129.7 (Ar), 131.4 (C-11), 135.9 (Ar), 142.1 

(C-17), 149.3 (C-19), 170.2 (C-1), 211.9 (C-14) 

4.4.6 Isolation of epoxydon (209) from static cultures ofX. grammicin. 

Culture supernatant of mature cultures of X. grammici. was decanted from the bottle and 

filtered under gravity. The supernatant was then saturated with sodium chloride and 

extracted into EtOAc (3 x 300ml). Removal of the solvent under reduced pressure 

afforded a dark brown tacky oil (typically 120mg) which was purified by silica column 

chromotography to yield epoxydon (209) (up to 20mg) as a white semisolid (Rf = 0.38). 

M/z (£1)156(1.7%, [M]*) 

[tto] +102.2° (c 0.1, MeOH) lit: +106.7° (c 0.1, MeOH)'^^ 

5H (CDCI3) 3.40 ( I H , d, J 3.6, H-6), 3.76 ( IH, br s, H-5), 4.25 (2H, dd, C-7, J 4.2, 1.4, 

H-7), 4.67 ( IH, d, J 4.2, H-4), 6.61 ( IH, br s, H-3) 

5c (CDCI3) 53.4 (C-6), 57.7 (C-5), 60.5 (C-7), 63.0 (C-4), 136.4 (C-2), 138.9 (C-3), 

194.1 (C-1) 
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4.4.7 Feeding of labelled compounds to R. necatrix 

4.4.7.1 Feeding of sodium [l,2-^^C2]-acetate (82) 

On days 7, 13 and 19, sodium [l,2-'^C2]-acetate (100 mg) was dissolved in water (2ml) 

and administered through a sterile filter unit to cultures of R. necatrix to a final 

concentrafion of 4.1 mM. The cultures were worked up using according to the standard 

protocol. 

4.4.7.2 Feeding of[6,6-^H2]-glucose (94) 

On days 7, 13 and 19, sodium [6,6-^H2]-glucose (Ig) was dissolved in water (2ml) and 

administered through a sterile filter unit to a culture of R. necatrix to a final 

concentration of 19 mM. The cultures were worked up using according to the standard 

protocol. 

4.4.7.3 Feeding of sodium [2-^H3]-acetate (28) 

On days 7, 13 and 19, sodium [2-^H3]-acetate (100 mg) was dissolved in water (2ml) 

and administered through a sterile filter unit to a culture of R. necatrix to a final 

concentrafion of 4.1 mM. The cultures were worked up using according to the standard 

protocol. 
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4.5 Synthesis 

4.5.1 Synthesis of dimethylallyl alcohol (165)^^' 

O 
OH ^OH 

(168 165 

Acrylic acid (168) (5.0g, 50niM) in ether (25ml) was added to a stirred solution of 

LiAlH4 (5.4g, 160mM) in ether (30ml) at 0°C over 1.5h via a dropping funnel. The 

reaction was quenched by the careful addition of iced water (5ml), followed by NaOH 

(15%, 4nil) and water (3ml). The slurry was filtered through silicon impregnated filter 

papers (Whatman) and the solvent removed to give a colourless oil. Distillation afforded 

dimethyl allyl alcohol (165) (3.35g, 78%). 

Bpt 140-143° (lit 141-142°)"' 

M/z(El) 86 (M+, 28.0%), 71 (M-CH3, 100%), 69 (M-OH, 16.7%) 

5H (CDCI3) 1.64 (3H, s, CH3), 1.70 (3H, s, CH3), 4.76 (2H, d, 'j=6.9, CH=CH20H), 

5.36 ( IH, m, CH=CH20H) 

5c (CDCI3) 17.7 (CH3), 25.6 (CH3), 59.1 (CH2OH), 123.6 (CH=CH(CH3)2). 136.0 

(CH=CH(CH3)2) 

4.5.2 Synthesis of [l,l-^H2]-dimethyl allyl alcohol (161 f'^ 

O 
OH 

165 167 

Acrylic acid (165) (5g, 50mM) in ether (25ml) was added to a stirred solution of LiAlD4 

(6.4g, 160mM) in ether (30ml) at 0°C over 1.5h via a dropping funnel. The reacfion was 

quenched by the careful addition of iced water (5ml), followed by NaOH (15%, 4ml) 

and water (3ml). The slurry was filtered through silicon impregnated filter papers 
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(Whatman) and the solvent removed to give a colourless o i l . Distillation afforded 

dimethyl allyl alcohol 167 as a colourless oil (2.75g, 64%) 

Bpt 142-MS*^ (lit 142-143"^) 

M/z(ET) 88 (M+, 30.4%), 73 (M-CH3, 100%), 71 (M-OH, 20.1%) 

5H (CDCI3) 1.65 (3H, s, CH3), 1.71 (3H, s, CH3), 5.36 ( I H , br, CH=CD20H) 

5c (CDCI3) 17.8 (CH3), 25.7 (CH3), 58.5 (pentet, ^JC-D 21.4 Hz, CD2OH), 123.4 

(CH=CH(CH3)2), 136.3 (CH=CH(CH3)2) 

4.5.3 Benzoyl-2-(t-butyl)-3,5-dimethylimidazolidin-4-one (SS) 

^ / 9H3 CH3 

87 88 

Benzoyl-2-(t-butyl)-3-methyIimidazolidin-4-one (0.5g, 1.91mM) was added to a 

solution of L D A (2.1 I m M ) generated f rom diisopropylamine (0.2lg, 0.29ml, 2.11mM) 

and n-butyllithium (1.32ml, 1.6M in hexanes) at -78°C, and the reaction stirred at 

-78°C for I h to produce a deep red solution. M e l (0.13ml, 1.91mM) was added 

dropwise and stirred at - 78°C for 45min, allowed to warm to room temperature and 

stirred for a further 16h. The reaction was quenched by the addition o f half saturated 

ammonium chloride (20ml) and the layers separated. The aqueous layer was extracted 

with ether (3x25ml) and the organic layers combined, dried (MgS04) and the solvent 

removed to afford a pale yellow powder. Column chromotography (silica, 

ether:petrol:methanol 60:35:5) afforded 88 (374mg, 71%) as a white amorphous solid. 

mp: found 145-146°C (lit : 145.6-146.2°*'*) 

Vn,ax2960, 2888, 1707, 1634 

5H(CDC13) 0.98 (3H, d, J=6.5, C H 3 ) , 1.09 (9H, s, -t-Bu), 3.11 (3H, s, N C H 3 ) , 4.30 ( I H , 

q, J=6.5, CH), 5.65 ( I H , s, CH), 7.55 (5H, m, Ar ) 
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5 c ( C D C l 3 ) 20.57 ( C H 3 ) , 27.43 ( € ( ^ 3 ) 3 ) , 33.02 ( £ ( ^ 3 ) 3 ) , 41.88 ( N C H 3 ) , 58.59 (Ar, 

C-5), 80.50 (Ar, C-2), 129.1 (Ar, C-3), 129.9 (Ar, C-4), 132.8 (Ar, C-5), 137.6 (Ar, C-

2), 173.4 (Ar ,C- l ) 

4.5.4 L-Alanine (9Qi)^'* 

CH3 

Bz -fcH 3 

e 

y 
© 

87 90 

Benzoyi-2-(NbutyI)-3,5-dimethylimidazolidin-4-one (87) (300mg, l.OSmM) was heated 

in a sealed tube with 6 M HCl (4inl) and heated at ISO^C for 15 hours. The solution was 

removed f rom the tube by washing with dichloromethane (20ml) and water (20nil) and 

the solvents removed to produce a brown solid. Purification over Dowex gave 90 as a 

white solid (235mg, 78% yield). 

M p 289-290 °C (decomp) [lit.,^^ 289-290 °C (decomp)] 

5H(D20) 1.37 (3H, d, J 8.0, CH3), 3.60 ( I H , q, J 8.0, C H ) 

5c (D2O) 18.6 (C-3), 53.8 (C-2), 178.7 (C-1) 

.84 4.5.5 Benzoyl-2-(t-butyl}-3-methyl-5-[^^(fH3]-methyUmidazolidin-4-onem 

CH3 Q|_j 

87 89 

Benzoyl-2-(t-butyl)-3-methylimidazoIidin-4-one (0.5g, 1.91mM) was added to a 

solution o f L D A ( 2 . l l m M ) generated f rom diisopropylamine (0.21g, 0.29ml, 2 . l l m M ) 

and n-butyllithium (1.32ml, 1.6M in hexanes) at -78°C, and the reaction stirred at for Ih 

to produce a deep red solution. ['^C^HsJ-Mel (0.13ml, 1.91mM) was added dropwise 

and stirred at -78°C for 45min, allowed to warm to room temperature and stirred for a 

further 16h. The reaction was quenched by the addition of half saturated ammonium 

chloride (20ml) and the layers separated. The aqueous layer was extracted with ether 
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(3x25ml) and the organic layers combined, dried (MgS04) and the solvent removed to 

afford a pale yellow powder. Column chromotography (silica, ether:petrol:methanol 

60:35:5) afforded pure 89 (374mg, 71%) 

mp 145.5-146.7°C (lit.,^'' 145.6-146.2°) 

Vmax2960, 2888, 1707, 1634 

5H(CDC13) 0.98 (3H, d, J 6.5, C H 3 ) , 1.09 (9H, s, -t^Bu), 3.11 (3H, s, N C H 3 ) , 4.30 ( I H , 

br s, J 6.5, CH), 5.65 ( I H , s, CH), 7.55 (5H, m, Ar ) 

5 c ( C D C l 3 ) 20.6 (septet, JI3C.2H 19.9, C^Hj), 27.4 ( € ( ^ 3 ) 3 ) , 33.0 (CiCHsh), 41.9 

( N C H 3 ) , 58.6 (d, J i3ci3c 34.8, C-5), 80.50 ( C - 2 ) , 129.1 (Ar, C - 3 ) , 129.9 (Ar, C-4), 

132.8 (Ar, C-5), 137.6 (Ar, C-2), 171.3 (C-4'), 173.4 (C-1), 

4.5.6 [S-^^CfHjJ-L-Alanine (86) 84 

^ / 9^3 0 

M.^ H 3 N H 

87 86 

Benzoyl-2-(r-butyl)-3,5-dimethylimidazoIidin-4-one 87 (300mg, 1.08mM) was heated 

in a sealed tube with 6 M HCl (4nil) and heated at 180°C for 15 hours. The solution was 

removed f rom the tube by washing with dichloromethane (20ml) and water (20ml) and 

the solvents removed to produce a brown solid. Purification over Dowex gave 86 as a 

white solid (229mg, 7 1 % yield). 

M p 290-292 °C (decomp) [lit.,^^ 289-290 "C (decomp)] 

M / z ( C I ) 9 4 ( 1 0 0 % , [ M - f l D 

5H(D2O )3 .60 (1H , br, CH) 

6c (D2O) 18.4 (septet, J13C-2H 19.4, C-3), 53.4 (d, J,3c-i3C 34.9. C-2), 178.6 (C-1) 
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4.5.6.1 D-Mannitol acetonide(170 113 

HO-
HO-
HO-

H-
H-
H-

-H 
-H 
-H 
-OH 
-OH 
-OH 

(169 

HO-
H-
H-
H-

-H 
-H 
-H 
-OH 
-O X 

170 

D-Mannitol (169 (20g, 110 mM) was added to a stirred solution of anhydrous zinc 

chloride (30g, 220 mM) in dry acetone (100ml) and the mixture stirred for 4h. Filtration 

to remove unreacted D-mannitol was performed and the filtrate dropped into a bi phasic 

solution containing potassium carbonate (34g) in water (50ml) and ether (150ml) and 

the mixture stirred for one hour. A slurry was precipitated upon concentration and then 

extracted into dichloromethane (3 x75nil). The extracts were combined, filtered and 

dried (MgS04) and the solvent removed to produce 170 as a white powder (11.4g, 

39%). 

Vn,ax/cm"' 3324, 3376, 2978, 2933, 2890, 1456, 1371, 1258, 1206, 1158, 1125, 1063, 

1005,941.4,855.7,650.1 

5H (D2O) 1.38 (6H, d, J 0.92, CH3), 1.41 (6H, d, J 0.92, C H j ) , 2.81 (2H, dd, J 1.28, 6.74, 

CHOH), 3.74 (2H, td, J 1.52, 6.50, CH(0)CH20), 3.980 (4H, m, CH(0)CH20). 

5c(D20) 25.2 (CH3), 26.7 (CH3), 66.7 (CH(0)CH20), 71.1 (CHOH), 76.1 

(CH(0)CH20), 109.3 (C(CH3)2) 

4.5.6.2 D-Glyceraldehyde acetonide (171) 114 

xt 
HO-

H-
H-
H -

-H 
-H 
-H 
-OH 

170 

H 

171 

NaI04 (8.10g, 37 mM) was added to a solution of 170 (5g, 19mM) in dichioromethane 

(50ml) and water (2ml) with vigorous sfirring. The reaction was monitored via TLC 

(silica, 85:15 DCM:acetone) and found to be complete after Ih . Dry MgS04 (2g) was 
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added and the reaction stirred for a further 15min and then filtered to produce a clear, 

colourless solution. The solvent was removed by distillation through a 6" Vigreux 

column and the residue distilled to produce 170 as a clear, colourless oil (3.13g, 63%) 

m/z (EU) 130 ( M ^ 28.09 %) 

bp 40-42 ° C ( 1 0 t o r r ) 

Vmax/cm'' 2985, 1732, 1456, 1370, 1257, 1211, 1152, 1063, 844.4 

5h (CDCI3) 1.37 (6H, s, CH3), 1.45 (3H, s, CH3), 4.01 (2H, m, CH2), 4.17 ( I H , dd, J 

1.53, 6.45,CH), 9.68 ( lH,s , CHO) 

5c (CDCI3) 25.3 (CH3), 26.4 (CH3), 65.8 (CH2), 80.0 (CH), 111.5 (C(CH3)2), 198.4 

(CHO) 

[a]^'D=+63.2° (c=0.03, EtOH) 

4.5.6.3 l-(2,2 Dimethyl-[l,3]-dioxolan-4-yl)-ethanol (172) 

O OH 

111 172 

Aldehyde 171 (3.13g, 24mM) was added to a 3 M solution of methylmagnesium 

bromide in ether (10.7 ml , 32mM) at 0°C under nitrogen and the reaction mixture stirred 

at 0°C for Ih . After warming to room temperature stirring was continued for 3h during 

which time the reaction was monitored by TLC (silica, 2:1 DCM:acetone) and IR. The 

reaction was quenched by pouring into iced water (25ml) and the layers separated. The 

aqueous phase was extracted with diethyl ether (3x75ml) and the organic fractions 

combined, dried (MgS04) and the solvent removed to produce a clear colourless oi l . 

Distillation afforded 172 (1.58g, 48%) 

m/z(Et) 146 (M*4.52%) 

bp 60 -63°C(10 to r r ) 

Vmax/cm"' 3439, 2977, 2886, 1456, 1369, 1252, 1211, 1152, 1053, 903, 849, 794, 726, 

645 

5h (CDCI3) 1.13 (3H, d, J 6.4, CH3), 1.17(3H, d, J 6.3, CH3). 1.38 (3H, s, 

C(CH3)(CH3)), 1.43 (3H, s, C(CH3)(CH3)), 3.50-4.30 (2H, m, CHOH) 
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5c (CDCI3) 18.5 (CH3CHOH), 25.3 (CH3CHOH)', 25.5 (C(CH3)(CH3)), 26.6 

(C(CH3)(CH3))', 26.7 (C(CH3)(CH3)), 26.8 (C(CH3)(CH3))', 67.0 (CH2), 68.9 (CH3)', 

79.6 (CH), 80.5 (CH), 109.2 (C(CH3)(CH3)), 109.6 (C(CH3)(CH3))' 

4.5.6.4 l-(2,2 Dimethyl-[1,3] dioxolan-4-yl)-ethanone( 174) 

OH 

172 174 

To a solution of 172 (1.58g, 10.7mM) in dry dichloromethane (100ml) was added 

pyridinium dichromate (6.60g, 17.6 mM), 3A activated molecular sieves (8g) and dry 

acefic acid (300|j1) and the reaction stirred under nitrogen for 48h. Hyf lo (2g) was 

added, the mixture sfirred for a further 20 mins and filtered through a MgS04 (2g) plug. 

After removal o f the solvent the dark residue was extracted into diethyl ether (3x75ml) 

which after solvent removal afforded a pale yellow oi l . Purification was performed 

using column chromotography (silica, 9:1 petrol:acetone) to produce 174 as a clear, 

colourless oil (791mg, 50%). 

Vn,ax2360, 1714, 1379, 1211, 1066, 907.8,727.1,645.6. 

m/z ( E f ) 144 ( M ^ 5.6%) 

5H 1.32 (3H, s, CH3), 1.42 (3H, s, CH3), 2.19 (3H, s, CH3CO), 3.94 ( lH,dd , J 5.6, 8.6, 

CH), ( I H , t, J 7.8, CH), 4.34 ( I H , dd, J 5.4, 7.6, CH) 

5c (CDCI3) 25.1 (CH3), 26.7 (CH3), 28.4 (CH3), 65.8 (CH2), 80.0 (CH), 111.5 

(C(CH3)2), 198.4 (CHO) 

[a]\=+l0l.2° (c=0.029, CDCI3) 
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4.5.7 Synthesis of benzyoxyacetaldehyde (118) from benzyloxyacetaldehyde diethyl 

acetal (136)^"^ 

OEt H 

136 118 

Benzyloxyacetaldehyde diethyl acetal (2.95g, 13.2mM) was stirred with TFA (5ml), 

water (5nil) and CHCI3 (5ml) at ambient temperature for Ih . The mixture was extracted 

with CHCI3 (3 X 100ml), dried over MgS04 and the solvent removed under reduced 

pressure to afford a colourless o i l . Column chromatography (silica, 5:1 EtOAc:Petrol) 

yielded benzyoxyacetaldehyde f l l 8 j as a viscous oi l (0.92g, 46%). 

M/z (EI) 150 (5.8%, [M]^) , 107 (86.2 %, [M-CH2CH0]^) 

5H (CDCI3) 3.94 (2H, s, CH2CHO), 4.45 (2H, s, OCHzPh), 7.21 (5H, m, Ar) , 9.52 ( I H , 

s, CHO) 

6c(CDCl3) 73.3 (CH2CHO), 75.5 (0CH2Ph), 128.1 (Ar), 128.5 (Ar), 128.7 (Ar), 137.2 

(Ar), 200.4 (CHO) 

4.5.8 Synthesis of benzyloxyacetaldehyde (118) from 0-benzyloxyethanol (147) 

H O ^ O B n ^ ° V ^ O B n 

H 

118 147 

Oxalyl chloride (320|il, 466mg, 3.7mM) was dissolved in CHCI3 (10ml) and cooled to 

-78°C. To the solution was added a solution of DMSO (440|iL, 484mg, 6.2mM) in dry 

CHCI3 and the mixture stirred at -78°C for 15 min after which 0-benzyloxyethanol 

(480mg, 3.0mM) was dissolved in CHCI3 (10ml) and added dropwise. Stirring was 

maintained at -78°C for 20 min. Et3N (2.00nil, 1.45g, 14.4mM) was added and the 

reaction stirred at -78°C for 30 min. and allowed to warm to RT overnight. The mixture 

was quenched with water (50ml) and the organic layer separated. The aqueous layer was 

extracted with CHCI3 and the organic extracts were combined and dried over MgS04. 

Removal of the solvent yielded a yellow oil which was purified by column 

chromatography (silica, 1:1 EtOAc:Petrol) to give benzyloxyacetaldehyde (118) as a 

colourless oi l . Analytical data was identical to that described in 4.5.7. 
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4.5.9 Synthesis of benzyloxyethanol (Ul) 

144 147 

To a suspension of K O H (796mg, 16mM) in DMSO (4ml) and benzyl bromide 

(0.90niL, 1.36g, 8mM) was added ethylene glycol 144 ( I g , 16mM). The mixture was 

stirred for 0.5h, poured into water (25ml) and extracted into D C M (3x 100ml). The 

aqueous phase was acidified with HCl and extracted into D C M (3x50ml). The organic 

phases were combined, washed with water (3x 100ml) and dried over MgS04. Removal 

of the solvent afforded a pale yellow oi l . Column chromatography (silica, 1:1 

EtOAc:Petrol) gave benzyloxyethanol 147 as a colourless oi l (644mg, 53%). 

IR (neat) 3345, 3028, 2946, 1640, 1486, 1447, 742 

5H 3.54 (2H, t, J=5.1 Hz, CH2OH), 3.70 (2H, t, J=5.1 Hz, CHzOBn), 4.53 (2H,s, 

OCHzPh) 7.34 (5H, m, Ar) 

6c 61.8 (CH2OH), 71.8 (CHaOBn), 73.4 (0CH2Ph), 128.0 (Ar) , 128.1 (Ar), 128.7 (Ar) , 

138.3 (Ar) 

4.5.10 (E)-5-Benzyloxy-3-penten-2-one (126)^"^ 

° Y ^ O B n .OBn 
H - - - - -

147 126 

To a suspension of l-triphenylphosphoranylidene-2-propanone (3.20g, lO.OmM) in 

T H F (20ml) was added benzyloxyacetaldehyde (147) (750mg, 5.0mM) and the mixture 

refluxed for 20h. The solvent was removed under reduced pressure to give a white tarry 

solid which was extracted into ether (4x 150ml). The solution was filtered through a 

silica plug to remove triphenylphosphine oxide and the solvent was removed to afford a 

brown oi l . Column chromotography (silica, PE.EtOAc 5:1) gave (E)-5-benzyloxy-3-

penten-2-one (126) as a colourless oil (817 mg ,86%) 
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M/z (EI) 190 (13%, [M]^) , 147 (7.28%, [M-COCHs]^ ) 

IR (f i lm) 3049, 2865, 1683, 1116, 742 

5H (CDCI3) 2.24 (3H, s, CH3), 4.20 (2H, d, J=4.6 Hz, CHjOBn) , 4.55 (2H, s, OCH2Ph), 

6.30 ( I H , d, CH=CHCH2), 6. 80 ( I H , dt, J=2.1, 4.6Hz, CH=CHCH2) 

6c (CDCI3) 27.4 (CH3), 70.0 (CHiOBn), 73.3 (OCHzPh), 127.7 (Ar), 127.9 (Ar), 128.8 

(Ar), 130.4 (CH=CHCH2), 137.7 (Ar), 143.3 (CH=CHCH2). 193.2 (COCH3) 

4.5.11 5-Benzyl-l-deoxy-D-xylulose (121^^ 

OBn 

OH 

126 127 

(E)-5-Benzyloxy-3-penten-2-one (126) (500mg, 2.42mM) was added to a solufion 

containing Ad M i x P (5.92g), Na2C03 (1.06g, 12.5mM), methanesulphonamide 

(402mg, 4.32mM) in 'BuOH/water (30ml/30ml) and the mixture stirred overnight at 

O^C. EtOAc (50 ml) was added and the reaction was quenched by the addiUon of NaS03 

(8g) and allowed to warm to room temperature. The aqueous layer was separated and 

extracted with EtOAc (3x300ml). The organic fractions were combined, washed with 

water (30ml) and dried over MgS04. Removal of the solvent afforded a colourless oil 

which was purified over silica (3:1 EtOAc:Petrol) to give 5-benzyl-l-deoxy-D-xylulose 

(127) as a colourless semisolid (417mg ,77%) 

M/z (CI) 242 ([M-^NH4]^ 88%), 224 ( [ M ] \ 12.6%) 

5H (CDCI3) 2.19 (3H, s, CH3), 3.57 (2H, m, CHzOBn), 4.14 (2H, m, CH(OH)-CH(OH)), 

4.53 (2H, s, OCHzPh), 7.31 (Ar) 

6c (CDCI3) 25.8 (CH3), 70.6 (CH(0H)CH20Bn), 71.5 (CH(OH)CH20Bn), 73.9 

(0CH2Ph), 77.3 (CH(0H)CH20Bn), 127.3 (Ar) , 127.9 (Ar), 128.3 (Ar) , 137.8 (Ar), 

208.6 (COCH3) 
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4.5.12 1-Deoxy-D-xylulose (122^^^ 

OH 

127 

10% Pd/C (Degaussa type, 50% water by weight) was added to a solution of 5-benzyl-

1-deoxy-D-xylulose (127) (35mg, 0.16mM) in 95% EtOH (10ml) The flask was filled 

with hydrogen three times and then evacuated, and the mixture was stirred for 3 hours. 

The catalyst was removed by filtration through Hyf lo and the solvent removed under 

reduced pressure to afford D X (122) (18mg, 86%) as a colourless oil . 

5H(CDC13) 2.31 (3H, s, CH3), 3.80 (2H, br, CH2OH), 4.25-4.56 (2H, m, 

COCH(OH),CH(OH)COMe) 

4.5.13 Analytical determination ofDX (122) as DX-triacetate 

'oh ""^^ 

Acetic anhydride (2ml) was added to a solution of D X (5mg) in pyridine (2ml) and the 

reaction was stirred until the formation o f product was evident by T L C (EtOAc, Rf 

(triacetate) = 0.73). The reaction was quenched by the addition of water (400|j,I) and the 

solvents removed under high vacuum for 3h. The crude mixture was applied neat to the 

GC colunm. 

M/z (CI) 276 (100%, [M+NH4]^) 
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4.5.14 Synthesis of [l-^H]-benzyloxyacetaldehyde (134)^ 

HO. 
X ^ O B n " ^ Y ^ O B n 

D D i 

139 134 

DMSO (472|J,L, 519mg, 6.65mM) In dry CHCI3 (5ml) was added to a solution of oxalyl 

chloride (343)LI1, 500mg, 3.97mM) in CHCI3 (5ml) at -78°C and the mixture stirred at 

-78°C for 15 min. A solution of [l,l-^H2]-benzyloxyethanol (139) (515mg, 3.21mM) in 

CHCI3 (10ml) was added dropwise to the reaction and stirring was maintained at -78°C 

for 20 min. EtsN (2.14ml, 1.56g, 15.4mM) was added and the reaction stirred at - 78°C 

for 30 min. and allowed to warm to RT for 12h. The reaction was quenched by the 

addition o f water (50ml) and the organic layer was separated. The aqueous layer was 

extracted into CHCI3 and the combined organic extracts were dried over MgS04. 

Removal of the solvent gave a yellow oi l which was purified over silica (1:1 

EtOAc:Petrol) to give [l-^H]-benzyloxyacetaldehyde (134) as a colourless oil (309mg, 

63%). 

M/z (EI) 151 (3.7%, [M]*) , 106 (75.2%, [M-CH2CDO]*) 

6H(CDC13) 4.07 (2H, t, JH-D 0.48, CH20Bn), 4.53 (2H, s, OCHzPh), 7.32 (5H, m, Ar) 

5c(CDCl3) 73.7 (0CH2Ph), 73.4 (CH20Bn), 127.3 (Ar) , 127.9 (Ar) , 128.3 (Ar), 137.8 

(Ar) , 200.1 (CHO, t, 'JC-D 27HZ). 

4.5.15 [3-^H]-(E)-5-Benzyloxy-3-penten-2-one (135/"^ 

O D 
OBn OBn 

D 

134 135 

To a suspension of l-triphenylphosphoranylidene-2-propanone (1.44g, 4.49mM) in 

THE (20ml) was added [l-^H]-benzyloxyacetaldehyde 134 (337mg, 2.25mM) and the 

reaction heated under reflux for 23h. The solvent was removed under reduced pressure 

to give a white tarry solid which was extracted into ether (4x200ml). The solution was 

filtered through a silica plug to remove triphenylphosphine oxide and the solvent 
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removed to afford a brown oi l . Purification over silica (PE:EtOAc 5:1) gave [3-^H]-(E)-

5-benzyloxy-3-penten-2-one ( 1 3 5 ) as a colourless oil (292mg, 68%). 

M/z (EI) 191(18%, [M]*) , 148 (9.3%, [M-COCH3]* ) 

IR ( f i lm) 3027, 2868, 1685, 1102, 738 

5H(CDC13) 2.09 (3H, s, CH3), 4.01 (2H, br, CH20Bn), 4,40 (2H, s, CH2Ph), 6.10 ( I H , 

br, CH=COMe), 7.20 (5H, Ar) 

5c(CDCl3) 27.2 (CH3), 68.8 (OCHsPh), 72.9 (CHiOBn), 127.7 (Ar), 127.9 (Ar), 128.4 

(Ar) , 130.2 (Ar) , 137.9 (CH=COMe), 143.1 (t, JC-D 23.4, CH=CD), 199.0 (COCH3) 

4.5.16 [3-^H]-5-benzyl-l-deoxy-D-xylulose (140)^"^ 

O D O D p H 
,OBn ^Ji^^J^^OBn 

HO 

1 3 5 ( 1 4 0 ) 

[3-^H]-(E)-5-Benzyloxy-3-penten-2-one ( 1 3 5 ) (280mg, 1.39mM) was added to a 

solution containing A d M i x |3 (3.3Ig), Na2C03 (0.59g, 7mM), methanesulphonamide 

(225mg, 2.37mM) in 'BuOH/water (20ml/20ml) and the mixture stirred overnight at 

0°C. EtOAc (50 ml) was added and the reaction was quenched by the addition of NaS03 

(5g) and allowed to warm to room temperature. The aqueous layer was separated and 

extracted into EtOAc (3x300ml). The organic fractions were combined, washed with 

water (30ml) and dried over MgS04. Removal of the solvent afforded a colourless oil 

which was purified via column chromatography (silica, 3:1 EtOAc:Petrol) to give [3-

^H]-5-benzyl-l-deoxy-D-xylulose (140) as a colourless semisolid (238mg,76%) 

M/z ( C I ) 243 ([M-t-NH4]^ 94%), 225 (M+, 18.2%) 

5H(CDC13) 2.27 (3H, s, CH3), 3.62 (2H, s, CH2Ph), 4.25 ( I H , br, CH(OH)C(OH )D) , 

4.47 (2H, br, CH20Bn), 7.20 (5H, Ar) 

5c(CDCl3) 25.6 (CH3), 70.5 (t, JC-D 31-5, CH(OH)C(OH )D) , 71.0 (OCH2Ph), 73.6 

(CH20Bn), 77.5 (CH(OH)C(OH )D) , 127.8 (Ar) , 128.0 (Ar), 128.3 (Ar) , 138.4 (Ar), 

208.1 (COCH3) 
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4.5.17 [4-^H]-l-Deoxy-D-xylulose (lUy 

0 D P H 9 D P H 

5H 

(140) 116 

[3-^H]-5-Benzyl-l-deoxy-D-xylulose (140) (46mg, 0.20mM) was dissolved in 95% 

EtOH (10ml) was 10% Pd/C (Degaussa type, 50% water by weight,lOmg ) added. The 

flask was flushed with hydrogen and then evaporated three times and the mixture was 

stirred under H2 for 3 hours. The catalyst was removed by filtration through Hyf lo and 

the solvent removed under reduced pressure to afford [4-^H]-DX (116) as a colourless 

oil (24mg, 89%) 

5H (CDC13) 2.25 (3H, s, CH3), 3.85 (2H, br, CH2OH), 4.25 ( I H , br, CH{OH)COMe) 

4.5.18 [4-^H]-DX-triacetate 

OAc 
OH 

[4-^H]-DX (116) (3mg) was stirred in pyridine (2ml) and acetic anhydride (2ml) until 

formation of product was evident by TLC (EtOAc, Rf (triacetate) = 0.77). The reaction 

was quenched by the addition of water (300fll) and the solvents removed under high 

vacuum for 3h. The crude mixture was applied neat to the GC column. 

M/z (CI) 279 (100%, [M+NH4]^), 160 (18.6%, [M-hNH4]*-2 x CO2CH3) 
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4.5.19 Synthesis of [1,1,2,2-^H4]-benzyloxyethanol (ISiy 

D D D D 

143 151 

[^He]-Ethylene glycol (143) (2g, 29mM) was added to a suspension of K O H (1.64g, 

29mM and benzyl bromide (1.69ml, 2.56g, 15mM) in DMSO (6m]) and the mixture 

was stirred for 0.5h. The mixture was poured into water (40ml) and extracted with D C M 

(3x 100ml). The aqueous phase was acidified with HCl and extracted with D C M 

(3x50ml). The organic phases were combined, washed with water (3xl00ml) and dried 

over MgS04. Removal of the solvent afforded an oil which was purified by column 

chromatography (silica, 1:1 EtOAc:Petrol) to give [l,l,2,2-'^H4]-benzyloxyethanol (151) 

as a colourless oil ( l .O lg , 43%). 

m (neat) 3343, 3020, 2941, 1645, 1472, 1438, 740 

Mz 156(72%, [M-^]) 

5H(CDC13) 4.43 (2H, S, OCHiPh) 7.26 (5H, m, Ar) 

6c(CDCl3) 64.6 (pentet, JC-D 22.5HZ, CD2OH), 74.6 (pentet, JC-D 23.2HZ, CD20Bn) 76.9 

(OCHzPh), 127.9 (Ar) , 128.3 (Ar), 128.5 (Ar), 138.6 (Ar), 

4.5.20 Synthesis of [1,2,2-^HjJ-benzyloxyacetaldehyde (152) 

D D D D 

^ ° X ^ O B n — ° Y ^ O B n 
D D D 

151 152 

[^H^l-DMSO (434)iL, 564mg, 6.12mM) In dry CDCI3 (5ml) was added to a solution of 

oxalyl chloride (315|il , 460mg, 3.64mM) in CDCI3 (5ml) at -78''C and the mixture 

stirred at -78°C for 15 min. 151 (474mg, 2.95mM) in CDCI3 (10ml) and added 

dropwise. Stirring was maintained at - 78°C for 20 min. Et3N (1.97ml, 1.44g, 14.2mM) 

was then added and the reaction stirred at -78°C for 30 min. and allowed to warm to RT 
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overnight. The mixture was quenched with water (50ml) and the organic layer 

separated. The aqueous layer was extracted with CHCI3 and the organic extracts 

combined and dried over MgS04. Removal of the solvent yielded a yellow oil which 

was purified by column chromatography (silica, 1:1 EtOAc:Petrol) to give [1,2,2-^H3]-

benzyloxyacetaldehyde (152) as a colourless oil which was stable to decomposition for 

2 d a y s a t O ° c . (321mg ,71%) 

M/z (EI) 153 (2.3%, [M]*) , 106 (86.1%, [M-CDzCDO]^) 

5H(CDC13) 4.56 (2H, s, 0CH2Ph) 7.30 (5H, m, Ar) 

8c(CDCl3) 73.8 (OCHjPh), 72.0 (t, 'JC-D 23, CD20Bn), 127.8 (Ar), 128.0 (Ar), 128.3 

(Ar) , 138.4 (Ar) , 200.1 (CHO, t, 'JC-D 27). 

4.5.21 [4,5,5-^H3]-(E)-5-Benzyloxy-3-penten-2-one (U2) 

Oc .>C„„ Q p 
OBn 

D 
OBn 

D' D 

152 142 

To a suspension o f l-triphenylphosphoranylidene-2-propanone (1.24g, 3.89mM) in 

THE (20ml) was added [l,3,3-^H3]-benzyloxyacetaldehyde (152) (292mg, 1.94mM) and 

the mixture refluxed for 23h. The solvent was removed under reduced pressure to give a 

white tarry solid which was extracted with ether (4x200ml). The solution was filtered 

through a silica plug to remove triphenylphosphine oxide and the solvent removed to 

afford a brown oi l . Column chromotography (silica, PE:EtOAc 5:1) gave [4,5,5-'^H3]-

(E)-5-benzyloxy-3-penten-2-one (142) as a colourless oil (303mg, 81%) 

M/z (EI) 193 (11%, [M]^ ) , 150 (4.4%, [M-COCH3]* ) 

IR ( f i lm) 3027, 2868, 1685, 1100, 738 

5H(CDC13) 2.26 (3H, s, CH3), 4.45 (2H, s, CHaPh), 7.34 (5H, Ar) 

8c(CDCl3) 25.6 (CH3), 70.5 (pentet, JC-D 22.6, CD20Bn), 71.0 (0CH2Ph), 137.9 

(CH=C0Me) , 143.1 (t, JC-D 23.4, C H = C D ) , 127.8 (Ar), 128.0 (Ar), 128.3 (Ar), 138.4 

(Ar) , 199.6 (COCH3) 
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4.5.22 [4,5,5-^H3]-5-Benzyl-l-deoxy-D-xylulose (154) 

HO D D 

Q D O D pH 
. O B n ^ ^jK^JK^OBn 

142 

[4,5,5-^H3]-(E)-5-Benzyloxy-3-penten-2-one 142 (200mg, 0.99 m M ) was added to a 

solution containing A d M i x P (2.36g), Na2C03 (420mg, 5.0 mM), 

methanesulphonamide (161mg, 1.69mM) in 'BuOH/water (17ml/17ml) and the mixture 

stirred overnight at 0°C. EtOAc (50 ml) was added and the reaction was quenched by 

the addition of NaS03 (5g) and allowed to warm to room temperature. The aqueous 

layer was separated and extracted with EtOAc (3x300ml). The organic fractions were 

combined, washed with water (30ml) and dried over MgS04 . Removal of the solvent 

afforded a colourless oi l which was purified via column chromatography (3:1 

EtOAc:Petrol) to give [4,5,5-^H3]-5-benzyl-l-deoxy-D-xylulose (154) as a colourless 

semisolid (127mg, 55%). 

M/z (CI) 245 ( [M+NH4]^ 96%), 227 (M+, 12.5%) 

5H(CDC13) 2.17 (3H, s, CH3), 4.15 ( I H , br, CH(OH)C(OH)D), 4.74 (2H, s, CH2Ph), 

7.26 (5H, Ar) 

5c(CDCl3) 25.6 (CH3), 70.5 (t, JC-D 31.5, CH(OH)C(OH)D), 71.0 (OCHaPh), 73.6 

(pentet, JC-D 22.5, CDjOBn), 77.5 (CH(OH)C(OH)D), 127.8 (Ar) , 128.0 (Ar), 128.3 

(Ar) , 138.4 (Ar) , 208.1 (COCH3) 
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4.5.23 [4,5,5-^HjJ-l-deoxy-D-xylulose (Ul) 107 

.OBn 

O H D D 

O D P H 

OH n D 

[4,5,5-^H3]-5-Benzyl-l-deoxy-D-xylulose ( 1 5 4 ) (40mg, 0.30mM) was dissolved in 95% 

EtOH (lOml) was 10% Pd/C (Degaussa type, 50% water by weight, ) added. The flask 

was flushed with hydrogen and evacuated three times and the mixture was stirred under 

H2 for 3 hours. The catalyst was removed by filtration through Hyf lo and the solvent 

removed under reduced pressure to afford [4,5,5-^H3]-DX ( 1 4 1 ) as a colourless o i l (36 

mg,91%) 

5H(CDC13) 2.25 (3H, s, CH3), 4.25 ( I H , br, CH(OH)COMe) 

4.5.24 [4,5,5-^HjJ-DX-triacetate 

O D P H ?\ 

D D ^ 
OH 

[ 4 , 5 , 5 - ' H 3 ] - D X ( 1 4 1 ) (2mg) was stirred in pyridine (2ml) and acetic anhydride (2ml) 

overnight until a the reaction showed the formation of product by TLC (EtOAc, Rf 

(triacetate) = 0.72). The reaction was quenched by the addition of water (200|J.l) and the 

solvents removed under high vacuum for 2h. The crude mixture was applied neat to the 

GC column. 

M/z (CI) 281 (100%, [M+NH4]^), 162 (19.2%, [M+NH4]^-2 x CO2CH3) 
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