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ABSTRACT  

The research in this thesis is presented in paper format with each of four chapters 

representing one complete study. Chapter two presents Re–Os and geochemical 

fingerprint data for UK Atlantic margin oils. organic and δ13C geochemical data 

demonstrate that the oil is sourced from Upper Jurassic marine shales and the Re–Os data 

yields an age of 68 ± 13 Ma. Comparison of this date with published basin histories and 

Ar-Ar geochronology demonstrate that Re–Os ages correspond with the timing of oil 

generation. Furthermore the similarities between oil and source rock 187Os/188Os at the 

time of oil generation (Osg) indicates that Osg can be used to identify oil source units. 

 Chapter three demonstrates, through the analysis of Kimmeridge Clay Fm. core and 

North Sea oil, that unradiogenic mantle like values within oils from wells in the Viking 

Graben and East Shetland Basin cannot be inherited from source. It is hypothesised that 

they are caused by contamination by a hydrothermal fluid sourced from either Cenozoic 

intrusive units or the mantle.  Strain localisation is suggested to have caused the main 

basin bounding faults within the Viking Graben and East Shetland Basin to be of 

sufficient depth to act as conduits for hydrothermal fluid to propagate through and 

contaminate oils within reservoirs. 

Chapter four investigates how Osi values across the Ordovician/Silurian boundary 

GSSP at Dob’s Linn, Scotland, tracks the Hirnantian glaciation within a globally 

important source unit: the Ordovician/Silurian “Hot” Shales. During the Late Katian, Osi 

values increase from 0.28 – 1.08, providing evidence for increased silicate weathering of 

radiogenic continental crust. A decrease to less radiogenic Osi (~0.60) occurs at the base 

Hirnantian and marks the onset of the Hirnantian Glaciation. This is ascribed to 

Hirnantian ice cover and reduced chemical weathering rates cutting the supply of 

radiogenic material. In the Late Hirnantian an abrupt increase in Osi values to ~1.1 over 

19 cm of stratigraphy, is attributed to the leaching of exposed radiogenic glacial deposits 

and increased weathering of silicate terrane during deglaciation. 

 Chapter five applies the Platinum Group Elements, specifically Pt/Pd ratios, to identify 

oil source units. It is demonstrated that asphaltenes from the well constrained UK Atlantic 

margin petroleum system contain similar Pt/Pd and Osg values to the known source unit. 

A further study of the poorly constrained West Canadian Tar Sands demonstrates that 

Pt/Pd ratios in source rocks are not affected by hydrocarbon maturation and are distinct 

between differing potential source units. Comparison of the Tar Sands with potential 

source units demonstrates that the Tar Sands are mainly sourced from the Lower Jurassic 

Gordondale Fm., with minor input from the Devonian/Mississippian Exshaw Fm. 
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1. INTRODUCTION 
A common problem for petroleum exploration is understanding the spatial and 

temporal controls on hydrocarbon formation.  Dating the timing of hydrocarbon 

generation in petroleum exploration has mainly been carried out through the use of 

basin modelling often with enigmatic parameters (e.g. Lamers and Carmichael, 1999 

and Scotchman et al., 2006 for the UK Atlantic Margin).  Therefore knowing the 

absolute age of petroleum generation provides vital information and controls on the 

understanding of a petroleum system.  Furthermore knowing the source of petroleum 

can provide invaluable data to model migration pathways and so identify possible 

undiscovered traps.  

 Rhenium – Osmium geochronology is based on the β decay of 187Re to 187Os over a 

half life of ~44Ga (Cohen, 2004) and is dissimilar to other lithopyllic geochronometers 

(e.g. Rb-Sr, U-Pb, Sm-Nd, Lu-Hf) in that Re and Os are siderophillic.  Furhtermore, 

both Re and Os have an “organophyllic” affinity meaning that they are enriched in 

organic rich sedimentary units (e.g. black shales, the main source of oil) relative to 

Upper Continental Crust (UCC; Pegram et al., 1992; Esser and Turekian, 1993; 

Peucker-Ehrenbrink and Jahn, 2001; Ravizza and Peucker-Ehrenbrink, 2003; Sun et al., 

2003; Dalai et al., 2006; Oxburgh et al., 2007).  Assuming that the 187Os/188Os 

composition at the time of deposition is constant, and the sample Re – Os systematics 

are undisturbed, the 187Re/188Os and 187Os/188Os ratios of samples will positively 

correlate and form an isochron age using the following equation; 
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where λ is the 187Re decay constant (1.666 ×10-11a-1; Smoliar et al., 1996) and t is the 

age (e.g. Dickin 1995).  Therefore, by using this isochron dating technique, the 

depositional age of black shales can be calculated (Ravizza and Turekian, 1989; Cohen 

et al., 1999; Peucker-Ehrenbrink and Hannigan, 2000; Creaser et al., 2002; Jaffe et al., 

2002; Selby and Creaser, 2003; Kendall et al., 2004; Selby and Creaser, 2005; Hannah 

et al., 2004; Yang et al., 2004; Selby, 2007; Turgeon et al., 2007; Azmy et al., 2008; 

Selby et al., 2009; Kendall et al., 2009a&b). 

There are three sources of Re and Os in a black shale, hydrogenous, detrital and 

extraterrestrial.  Under oxic conditions both Re and Os are soluble in sea water, 

however, under anoxic conditions Re and Os become insoluble.  Therefore, in anoxic 
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marine conditions, sediment at the sea-floor/seawater interface become enriched in 

hydrogenous Re and Os, with the 187Os/188Os composition reflecting seawater 

conditions at the time of deposition (e.g. Cohen 2004).  When the sediment is cut off 

from interacting with anoxic sea water the Re – Os system becomes closed and the 

isotopic clock commences recording the age of deposition.  Like the majority of metals 

it is uncertain in which organic fraction Re and Os reside, however it is likely that they 

are contained within metalloporphyins and heteratomic ligands (Selby et al., 2007).  The 

Carius tube Cr-H2SO4 digestion method, utilised in this thesis for Re – Os analysis (see 

below), has been demonstrated to digest the organic fraction of black shale, with 

minimal detrital and extraterrestrial input (Selby and Creaser, 2003).  Therefore by 

analysing the hydrogenous Re – Os composition of shale it is possible to not only 

provide a depositional age, but also calculate the sea water Os isotopic composition at 

the time of deposition. 

The four dominant sources of Os to the oceans are riverine and aeolian input 

from denuded continental crust, cosmic material and hydrothermal fluids.  

Hydrothermal fluids and cosmic material have unradiogenic Os isotopic compositions 

of 0.127 (Peucker-Ehrinbrink and Ravizza 2000; Cohen, 2004) where as continental 

crust varies from unradiogenic (~0.13; young) to radiogenic (~1.9; ancient) with an 

average value of ~1.4 (Peucker-Ehrinbrink and Ravizza 2000; Cohen, 2004).  Therefore 

the Os isotopic composition of sea water is controlled by the differing fluxes of each 

source.  For example, if there is increased mafic volcanism (e.g. from a large igneous 

province) or a meteorite event the Os isotopic composition of sea water will be 

unradiogenic (i.e. low 187Os/188Os), whereas if there is increased denudation of cratonic 

crustal material sea water will be radiogenic (i.e. high 187Os/188Os; Peucker-Ehrinbrink 

and Ravizza 2000; Cohen, 2004). 

 Petroleum maturation has been demonstrated to not observably disturb source rock 

Re – Os systematics (Selby et al., 2007 and references there in), likely due to the minor 

amounts of Re and Os being transferred to the generated oil (e.g. ~1-5 ppb Re).  Re and 

Os have been demonstrated to be enriched in the asphaltene fraction of oil and, 

importantly, both the Re and Os isotopic compositions of an asphaltene are similar to 

those of the oil it is separated from (Selby et al., 2007). Therefore it is possible to 

analyse the asphaltene fraction of oil (and so have larger sample Re and Os) and be 

confident that the Re – Os isotopic compositions reflect that of whole oil. To date only 

two petroleum Re – Os studies have been undertaken, firstly on the West Canadian Tar 

Sands (111.6 ± 5.3 Ma; Selby and Cohen, 2005) and Bitumin from the Polaris 
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Mississippi Valley Type Deposit (374.9 ± 9 Ma; Selby et al., 2005).  The 111.6 ± 5.3 

Ma age of the West Canadian Tar Sands agrees with proposed basin models (Barson et 

al., 2000; Riediger et al., 2000) and 374.9 ± 9 Ma age of Polaris bitumen agrees within 

uncertainty of previous Rb – Sr sphalerite ages (~366; Christensen et al., 1995).  

Therefore, it is hypothesised that Re – Os Petroleum ages record the timing of 

generation (Selby and Creaser, 2005; Selby et al., 2005; Selby et al., 2007).  However, 

the source of both the WCTS and Polaris bitumens are highly debated (e.g. generation 

of WCTS at 60 Ma, Cao and Bachu, 1992, as opposed to ~110 Ma, Barson et al., 2000; 

Riediger et al., 2000), consequently, we can not be certain if the Re – Os ages record 

petroleum generation, migration or emplacement.   

 Oil – source fingerprinting is commonly carried out through utilising C 

isotopes, the n-alkanes, Hopane and Sterane biomarker analysis (e.g. Peters et al., 

1999).    When oils have been severely biodegraded these methods can not be utilised as 

biodegradation mainly affects the light organic fraction and increases the asphaltene 

fraction (e.g. Speight, 1998; Peters et al., 2005). Greater than 90 % of Re and Os are 

found in the asphaltene fraction of an oil and it has been hypothesised that the 
187Os/188Os of oil at the time of generation (Osg) is inherited from the source rock 
187Os/188Os at the time of generation (Osg; Selby and Creaser, 2005; Selby et al., 2005; 

Selby et al., 2007).  Therefore if this hypothesis is correct, Os isotopes can be used to 

fingerprint both biodegraded and unbiodegraded oils. Furthermore the Platinum Group 

Elements (PGE; Pt, Ir and Pd) are enriched in ORS and oil (Coveney et al., 1992 

Colodner et al., 1992; Over et al., 1997; Sawlowics, 1999; Pearson and Woodland, 2000 

Jaffe et al., 2002; Juvonen et al., 2002; Pasava et al., 2003; Meisel  and Moser, 2004; 

Siebert et al., 2005; Schmitz et al., 2006; Fedorov et al., 2006; Jiang et al., 2006; Wille 

et al., 2007; Qi and Gao, 2008) Therefore as the PGEs share the same organophyllic and 

siderophillic characteristics as Re and Os it is possible that they can also provide an oil 

– source fingerprinting tool. 

Rhenium and Os analysis is complex and time consuming.  All Re – Os analysis 

in this thesis is a was conducted at the Northern Centre for Isotopic and Elemental 

Tracing facility at Durham University following the analytical protocols of Selby and 

Creaser (2003); Selby (2007) and Selby et al. (2007).  

Oils and oils and asphaltenes were digested, using the carius tube technique 

(Shirey and Walker, 1995). ~0.1 – 0.2 g of asphaltene was dissolved with a known 

volume of 190Os and 185Re spike solution in 9 ml of inverse aqua regia (6 ml of 16 N 

HNO3 and 3 ml of 12 N HCl) at 220°C for 24 hrs.  Osmium was purified from the 
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inverse aqua regia solution using solvent extraction (CHCl3) and micro-distillation 

methods.  After the removal of Os, the Re bearing inverse aqua regia solution was 

evaporated to dryness at 80˚C and then re-dissolved in 3 ml 0.2 N HNO3 in preparation 

for Re anion exchange chromatography (e.g. Selby and Creaser 2003).   

Shale samples were prepared by removing any drill core marks with a diamond 

polishing wheel, to avoid surface contamination, and then powdered in a ceramic mill to 

ensure Re and Os sample homogenisation. The analytical methodology varies from that 

of oil with ~0.5 g of whole rock powder was dissolved with a known volume of 190Os 

and 185Re mixed tracer (spike) solution in 8 ml of 0.25 g/g CrO3 in 4N H2SO4 at 220°C 

for 48 hrs in carius tubes.  Osmium was purified from the CrO3-H2SO4 solution using 

solvent extraction (CHCl3) and micro–distillation methods (e.g. Selby and Creaser 

2003). After the removal of Os, 1 ml of the CrO3–H2SO4 was mixed with 1 ml of Milli–

Q water and reduced from Cr6+ to Cr3+ by sparging with SO2 in preparation for Re anion 

exchange chromatography.  After chromatography the Re fraction was then further 

purified by single bead anion extraction. 

The purified Re and Os from both asphaltene and shale samples were loaded 

onto a Ni and Pt filaments respectively, and analysed for their isotopic compositions 

using Negative Thermal Ionisation Mass Spectrometry (NTIMS; Creaser et al., 1991) 

on a ThermoElectron (TRITON) mass spectrometer.  Re was measured using Faraday 

collectors and Os in peak hopping mode using a secondary electron multiplier. 

This thesis aims to utilise a suite of the Highly Siderophile Elements (Re, Os, Pt, 

Pd and Ir) to further our understanding of petroleum systems through: 

 

1.  Identifying if Re – Os oil ages are dating petroleum generation, migration or 

emplacement. 

2.  Investigating how the Re – Os petroleum system can be disturbed naturally 

3.  Investigating palaeoclimatic effects on sea water Os isotope composition and 

therefore variability in source rock Osi. 

4  Investigating the applicability of applying other HSEs (Pt, Ir and Pd) as an oil to 

source fingerprint. 

 

The research in this thesis is presented in paper format with each chapter 

representing 1 complete study.  Chapter 2 presents a geochronological study of the UK 

Atlantic Margin oil fields entitled “Rhenium-Osmium geochronology of UK Atlantic 

Margin oil: Implications for global petroleum systems”.  A version of this chapter has 
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been submitted for publication in the journal Geology co-authored by Selby (supervisor) 

and Osborne (BP Supervisor).  Finlay undertook project setup, sample preparation, 

geochemical analysis and data interpretation and manuscript composition.  Selby 

provided supervision and manuscript editing advice.  Osborne provided petroleum 

samples for analysis, supervision and manuscript editing advice.   

Chapter 3 presents a geochemical study of North Sea oil and source rock and is 

entitled “Fault charged hydrothermal fluid contamination of U.K. North Sea oils: 

Insights from Re-Os isotopes.” A version of this chapter has been accepted for 

publication in the journal Geology, co-authored by Selby, Osborne and Finucane. Finlay 

undertook project setup, sample preparation, Re – Os analysis, geochemical data 

interpretation and manuscript composition.  Selby provided supervision and manuscript 

editing advice. Osborne provided samples for analysis, δ13C data from BP, supervision 

and manuscript editing advice.  Finucane provided biostratigraphical analysis and 

interpretation.   

Chapter 4 presents a Re – Os and δ13C investigation of the basal Silurian GSSP 

entitled “Tracking the Hirnantian glaciation using Os isotopes.”  A version of this 

chapter has been accepted for publication in the journal Earth and Planetary Science 

Letters, co-authored by Selby and Gröcke. Finlay formulated the project, undertook 

fieldwork, sample preparation, Re – Os analysis, multi isotope data interpretation and 

manuscript composition.  Selby provided supervision and manuscript editing advice. 

Gröcke provided δ13C analysis and manuscript editing advice.  

 Chapter 5 presents the use of the PGEs as an oil source tracer entitled “PGE 

fingerprinting of oils to source in world wide petroleum systems”.  A version of this 

chapter is in preparation for submittal to Science, co-authored by Selby and Osborne.  

Finlay undertook project set up, sample preparation, geochemical analysis, data 

interpretation and manuscript composition.  Selby provided WCTS and WCSB samples 

for analysis, Re – Os data for the UK Atlantic margin shales, supervision and 

manuscript editing advice. Osborne provided UK Atlantic Margin petroleum samples 

for analysis, supervision and manuscript editing advice.   

The objective of chapter 2 is to understand if Re – Os petroleum geochronology 

is dating the timing of oil generation, migration or emplacement. Previous Re – Os 

petroleum studies suggest that the ages produced date generation and migration (Alberta 

Tar sands; Selby and Creaser, 2005; Polaris Mississippi Valley Type deposit; Selby et 

al., 2005).  However, these studies have been undertaken on areas with ambiguous 

source units, therefore leaving this question open to debate. The UK Atlantic Margin 
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(Fig. 1.1) is predominantly sourced from an Upper Jurassic, marine, organic rich shale 

(equivalent to the North Sea Kimmeridge Clay Fm.) with a slight input from Mid-

Jurassic shallow marine/terrestrial shale (Spencer et al., 1999; Mark et al., 2008; 

Scotchman et al., 2006; Leach et al., 1999; Lamers and Carmichael, 1999; Scotchman 

and Carr, 2005; Parnell et al., 2005; Hols et al., 1999; Rooney et al., 1998; Cornford et 

al., 1998; Scotchman et al., 1998; Mark et al., 2005; Scotchman et al., 2006), therefore 

analysis of oils from this area can answer this question. This study presents Re–Os data 

for 18 oils from the Clair, Schiehallion, Cuillin and Foinaven fields of the UK Atlantic 

margin. This study also present a geochemical fingerprint of the oils utilised in this 

study which confirms an Upper Jurassic marine shale source.  When compared to 

published basin histories and absolute geochronology (Mark et al., 2005; Scotchman et 

al., 2006; Lamers and Carmichael 1999) we demonstrate that Re-Os ages correspond 

with the timing of oil generation in the UK Atlantic margin. Our data confirms the 

hypothesis that Re–Os oil geochronology records the timing of petroleum generation.  

Furthermore, we build on the hypothesis of Selby and Creaser (2005), Selby et al. 

(2005) and Selby et al. (2007) that the Os isotopic composition of oil is related to the 

source unit and can therefore act as a fingerprint.     

 Chapter 3 tests a controversial hypothesis that unradiogenic Os isotope values 

reported from the Brent Oil Field (UK North Sea; Fig. 1.1.) are inherited from an 

unknown late Jurassic source (Graham et al., 2006).  This is carried out through the 

analysis of thirteen oils sourced from throughout the Northern North Sea and a 

Kimmeridge Clay Formation core, the known major source of North Sea oil, to produce 

Os isotope compositions calculated at the timing of generation. Eight oils from the 

Moray Firth and Central Graben contain radiogenic Os isotope compositions as 

expected from the Kimmeridge Clay Formation source, however, five oils sourced from 

the Viking Graben and East Shetland Basin contain unradiogenic, mantle like, Os 

values similar to those reported for the Brent Oil Field.  This study proposes an 

alternative hypothesis in that the unradiogenic Os isotopic values from the Viking 

Graben and East Shetland Basin are caused by contamination from hydrothermal fluids 

either sourced from intrusive mafic units or the mantle, not inheritance from an 

unknown source. The Viking Graben and East Shetland Basin have undergone 

increased crustal thinning and strain localisation, compared to the Moray Firth and 

Central Graben, allowing and increased intrusive mafic volcanism and boundary faults 

to propagate to sufficient depth to act as conduits for hydrothermal fluids to interact and 

contaminate oils in the Viking Graben and East Shetland Basin. This hypothesis is 
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supported by published studies of the Miller, Sleipner and Magnus oil fields which 

record mantle like δ13CCO2, He and Ne isotopic values (James 1990; Ballentine et al., 

1996; Lu et al., 2009) 

Both Chapters 2 and 3 demonstrate that the Osmium isotopic composition of 

undisturbed oil is inherited from source.  Chapter 4 investigates to what extent and over 

what time the initial 187Os/188Os Os isotope composition at the time of deposition (Osi) 

can vary within a shale section at the Ordovician/Silurian Global Stratotype Section and 

Point (GSSP), Dob’s Linn, Scotland. Ordovician/Silurian organic rich marine shales 

form major global source units (e.g. Lunig et al., 2000).  The climate changed from 

greenhouse to icehouse over the Late Ordovician – Early Silurian, resulting in glaciation 

and the second largest recorded mass extinction, followed by a return to greenhouse 

conditions (Trotter et al., 2008). Furthermore as this section contains a GSSP it has been 

heavily studied and has excellent biostratigraphic constraints, making it an ideal section 

to test.  We present Re – Os and δ13C data which track geodynamic processes 

throughout this period. The new Osi data provides evidence for a period of increased 

silicate weathering of radiogenic continental crust, most likely from the Caledonian 

Orogeny (the likely driving mechanism for the drawdown in atmospheric CO2 and 

global cooling that resulted in the onset of the Hirnantian Glaciation).  This is followed 

by a decrease to less radiogenic Osi at the base Hirnantian which coincides with the 

trend to more positive δ13Corg values that mark the onset of the Hirnantian Glaciation. 

The Osi stays constant during the glacial maximum, followed by a rapid increase in Osi 

which coincides with the deglacial limb of the δ13Corg profile (0.5 Osi units over 19 

Cm).  This study demonstrates the first use of 187Os/188Os chemostratigraphy for the 

Paleozoic as a proxy for reconstructing the Earth’s climate system, particularly 

palaeoceanography and demonstrates that Osi can be highly variable in a short amount 

of stratigraphy. 

  Chapters 2, 3 and 4 have all dealt with the Re – Os system to provide further 

information on the spatial and temporal constraints of petroleum systems.  Chapter 5 

tests if other Platinum Group Elements (PGEs), specifically Pt and Pd, can be used to 

further spatial constraints on petroleum systems by being used as an oil source 

fingerprint. A study of the UK Atlantic Margin oils and the known Kimmeridge Clay 

Fm. source unit demonstrate that Pt/Pd values are similar in oil sand source.  Therefore 

it is likely that Pt/Pd values in oils are inherited from source.  A further study of the 

West Canadian Tar Sands and potential oil source units, demonstrates that Pt/Pd ratios 

in source rocks are; not affected by hydrocarbon maturation; similar within the same 
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source unit; and that Pt/Pd values between differing source units are distinct.  Therefore 

by combining Pt/Pd with the 187Os/188Os composition at the time of hydrocarbon 

generation (Osg), within oils and source units of the West Canadian Tar Sands, the 

Gordondale Fm. is demonstrated to be the main source with a minor input from the 

Exshaw Fm. 
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Figure 1.1. Location map of areas studied in this thesis: U.K. Atlantic Margin, the 

Northern North Sea, Dob’s Linn, the Canadian Tar Sands, the Exshaw Fm. and the 

GordondaleFm.  

 

 

 

 

 

 

 

 

 

 



 21

2: RE-OS GEOCHRONOLOGY OF UK ATLANTIC MARGIN OIL: 

IMPLICATIONS FOR GLOBAL PETROLEUM SYSTEMS.  

A version of this chapter is in review with Geology, co–authored by David Selby 

(Durham University) and Mark Osborne (BP). 

 
2.1 Introduction  

Hitherto Re–Os geochronology studies of petroleum systems are suggested to 

record the timing of hydrocarbon generation and migration (West Canadian Tar Sands; 

Selby and Creaser, 2005; Polaris Mississippi Valley Type deposit; Selby et al., 2005).  

However, these studies have focused on petroleum systems in which both the timing of 

petroleum generation, and the identity of the source unit, is either unknown or highly 

debated.  Therefore, it is uncertain if the Re–Os ages record the timing of oil generation, 

migration, emplacement or another geological process. The UK Atlantic Margin (Fig. 

2.1) is a well understood petroleum system, predominantly sourced from an Upper 

Jurassic, marine, organic-rich shale (equivalent to the North Sea Kimmeridge Clay Fm.) 

with a minor input from Mid-Jurassic shallow marine/terrestrial shale (Spencer et al., 

1999; Leach et al., 1999; Lamers and Carmichael, 1999; Scotchman and Carr, 2005; 

Parnell et al., 2005; Holmes et al., 1999; Rooney et al., 1998; Cornford et al., 1998; 

Scotchman et al., 1998; Mark et al., 2005; Scotchman et al., 2006).  Therefore, 

comparison of Re–Os ages from UK Atlantic margin oil with basin models and absolute 

(Ar-Ar) geochronology will identify if Re–Os petroleum geochronology records the 

timing of oil generation, migration or emplacement.  

 This study presents Re–Os data for 18 oils from the Clair, Schiehallion, Cuillin and 

Foinaven fields of the UK Atlantic Margin. This study also presents a geochemical 

fingerprint of the oils utilised in this study that confirms an Upper Jurassic marine shale 

source.  When compared to published basin histories, that model the timing of 

generation, and absolute geochronology, that dates migration, (Mark et al., 2005; 

Scotchman et al., 2006; Lamers and Carmichael, 1999) we demonstrate that Re-Os ages 

correspond with the timing of oil generation in the UK Atlantic margin at 68 ± 13 Ma. 

This confirms the hypothesis that Re–Os oil geochronology records the timing of 

petroleum generation.  Furthermore, we demonstrate that the hypothesis that the Os 

isotopic composition of oil is related to the source unit and can therefore act as a 

fingerprint is valid (Selby and Creaser, 2005; Selby et al., 2005; Selby et al., 2007).     
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2.2 Geological Setting 

 

The West of Shetland Basin petroleum system is a rifted fault block and graben 

province of Tertiary to Mesozoic age running along the UK Atlantic margin between 

the West Shetland platform and Faeroe Islands (Carruth et al 2003; Mark 2010; Spencer 

et al 1999).  A large body of geochemical and basin modelling research indicate a 

significant Upper Jurassic marine source with minor Middle Jurassic terrestrial input for 

UK Atlantic margin oils (Spencer et al., 1999; Mark et al., 2008; Scotchman et al., 

2006; Leach et al., 1999; Lamers and Carmichael, 1999; Scotchman and Carr, 2005; 

Parnell et al., 2005; Hols et al., 1999; Rooney et al., 1998; Cornford et al., 1998; 

Scotchman et al., 1998; Mark et al., 2005; Scotchman et al., 2006).  Reservoirs are 

found in fractured  basement, Devonian (e.g. structural trapped Clair field; Spencer et 

al., 1999; Carruth et al., 2003),  Jurassic and Palaeogene sediments (e.g. 

Stratigraphically trapped Foinaven and Schiehallion fields; Fig. 2.1; Fig. 2.2; Spencer et 

al., 1999; Mark et al., 2010). 

The Devonian and Early Carboniferous collapse of the Caledonian orogenic belt 

formed deep, sinistral transtensional basins. Faulting reversed in the Carboniferous and 

transpression, lead to basin inversion (De Paola et al., 2005; Carruth et al 2003).  Boreal 

rifting in the Permian and Triassic reactivated existing faults and lead to the deposition 

of fluvial clastics and evaporates.  Jurassic marine transgression lead to localised early 

Jurassic deposition, however, the majority of Middle Jurassic costal sediments lie 

uncomfortably on Triassic deposits.  Late Jurassic/ Early Cretaceous central Atlantic 

rifting formed the Westray, Flett and Rona Ridge fault blocks and surrounding sub-

basins (Fig. 2.1).  Continued transgression lead to anoxic conditions within these sub-

basins and the deposition of an organic rich marine shale, equivalent to the North Sea 

Kimmeridge Clay Formation (Carruth et al., 2003; Spencer et al.,1999; Scotchman et 

al., 2006).  Thermal subsidence ensured continued sediment deposition which, by the 

end of the Cretaceous, caused buried Jurassic sediments to become mature (Carruth et 

al., 2003, Spencer et al., 1999, Scotchman et al., 2006). The Early Palaeocene Icelandic 

plume led to the formation of the Faeroes Platform through flood volcanism as well as 

uplift of the Shetland Platform.  Denudation of the Shetland Platform formed coarse 

turbidites in the Foinaven Sub-basin and periodic deposition, during marine lowstands, 

in the Flett Sub-basin (Carruth et al., 2003). Decreased subsistence rates in the Late 

Palaeocene / Eocence drove marine regression which, combined with filling of 

accommodation space, lead to the deposition of fluvial / deltaic sediments sourced from 
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the eroding east Shetland Platform (Carruth et al., 2003).  These sediments form a ~3 

km thick Palaeocene sedimentary succession containing present day reservoirs (Spencer 

et al., 1999).  Oligocene/Miocene north-south compressions reactivated major NW/SE 

trending faults and inverted Palaeocene basins. Miocene thermal cooling lead to the 

subsidence and collapse of the Atlantic margin and present day deep sea floor levels 

(Carruth et al., 2003; Spencer et al., 1999; Mark 2010). 

 

2.3 Re – Os analytical methodology 

Rhenium and Os analysis was conducted at the Northern Centre for Isotopic and 

Elemental Tracing facility at Durham University following the analytical protocols of 

Selby and Creaser (2003); Selby (2007) and Selby et al. (2007).  

Asphaltene was separated for from 18 oils from the UK Atlantic Margin (Fig. 

2.1) using the n–heptane based methodology of Speight (1998) and Selby et al. (2007), 

because Re and Os in oil is principally complexed within the asphaltene fraction and the 

Re–Os asphaltene isotope compositions approximate that of the whole oil (Selby et al., 

2007).  In summary, in a 60 ml glass vial, 40 ml of n–heptane was added to 1 g of oil.  

The contents were thoroughly mixed and agitated for ~12 hrs. The contents of the vial 

were then transferred to a 50 ml centrifuge tube and centrifuged at 4000 rpm for 5 

minutes to ensure complete separation of the soluble maltene and insoluble asphaltene 

fractions.  The maltene fraction was decanted to waste and the asphaltene fraction was 

dried on a hot plate at ~60˚C.   

Using the carius tube technique (Shirey and Walker, 1995) ~0.1 – 0.2 g of 

asphaltene was dissolved with a known volume of 190Os and 185Re spike solution in 9 ml 

of inverse aqua regia (6 ml of 16 N HNO3 and 3 ml of 12 N HCl) at 220°C for 24 hrs.  

Osmium was purified from the inverse aqua regia solution using solvent extraction 

(CHCl3) and micro-distillation methods.  After the removal of Os, the Re bearing 

inverse aqua regia solution was evaporated to dryness at 80˚C and then re-dissolved in 

3 ml 0.2 N HNO3 in preparation for Re anion exchange chromatography.  The purified 

Re and Os were loaded onto a Ni and Pt filaments respectively, and analysed for their 

isotopic compositions using Negative Thermal Ionisation Mass Spectrometry (NTIMS; 

Creaser et al., 1991) on a ThermoElectron (TRITON) mass spectrometer.  Re was 

measured using Faraday collectors and Os in peak hopping mode using a secondary 

electron multiplier. 

Total procedural blanks for Re and Os 2.4 and <0.7 pg, respectively, with 
187Os/188Os value of ~0.18 (n = 2). Raw Re and Os oxide values were corrected for 
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oxygen contribution and mass fractionation. The Re and Os isotopic values and 

elemental abundances are calculated by full propagation of uncertainties from Re and 

Os mass spectrometer measurements, blank abundance and isotopic composition, spike 

calibration and sample and spike weights.  Throughout the period of this study, in house 

Re and Os standard solutions were repeatedly analysed to monitor instrument 

reproducibility.  The Re standard runs produced average 185Re/187Re values of 0.59838 

± 0.00185 (1S.D. n = 41) indistinguishable from the reported values of Selby (2007; 

0.5977 ± 0.0012).   The NCIET Re standard is made from zone-refined Re ribbon in the 

same way to the in house Re standard (AB1) of the Department of Earth Sciences, 

University of Alberta, and the 185Re/187Re values are indistinguishable from AB1 values 

reported by Selby and Creaser (2003; 0.59863 ±0.00062) and Selby et al. (2005; 0.5986 

± 0.0006).  The measured difference between our reported 185Re/187Re values and the 

accepted 185Re/187Re value (Gramlich et al., 1973) is used to correct for sample mass 

fractionation.  The Os (AB2) standard is made from ammonium hexachloro-osmate.  

The average 187Os/188Os AB2 ratio, using the electron multiplier, is 0.10678 ± 0.00037 

(1 S.D. n = 45), indistinguishable from AB2 values reported by Selby and Creaser 

(2003; 0.106838 ±0.000029), Selby et al. (2005; 0.10684 ± 0.00009) and Selby (2007; 

0.10679 ± 0.00007).   

 

2.4 UK Atlantic margin source rock identification 

To confirm the oils analysed in this study are sourced from the Kimmeridge Clay 

Fm (KCF), high performance liquid chromatography (HPLC), carbon isotope (δ 13C), 

gas chromatography (GC) and high-resolution gas chromatography mass spectrometry 

(GCMS) analysis was undertaken (Table 2.1).  The δ13C and organic geochemical 

analysis were determined using the standard ENV/E1-1003, ENV/E1-2002, ENV/E1-

3008 and ENV/E1-3017 protocols at the Laboratory of the Government Chemist, 

Teddington (Table 2.1).  The HPLC analysis demonstrates that oils utilized in this study 

are composed of 39.6 – 70.1 % saturates, 25.5 – 42.7 % aromatics and 4.4 – 21.0 % 

residual (NSOs). δ13C analysis of whole oil (δ13CWO), saturate (δ 13Csat) and aromatic (δ 

13Caro  fractions range from -29.8 to -29.7 ‰, -29.7 to -30.3 ‰ and -28.8 to -29.3 ‰, 

respectively. GC analysis of isoprenoids and n-alkanes produced Pr/Ph values ranging 

between 1.4 and 1.9. The Pr/nC17 and Ph/nC18 results positively correlate (R2 = 0.97) 

and range from 0.5 to 1.6 and 0.3 and 1.0 respectively. GCMS oil analysis provides C27, 

C28 and C29 sterane biomarker values, that when normalised to 100 %, range from 29.5 - 



 25

35 % (mean 33.1; S.D. 1.7), 26.6 – 36.4 % (mean 30.0; S.D. 3.0) and 32.2 to 40.4 % 

(mean 36.9 %; S.D. 2.4), respectively. 

The δ13C data shows very little spread in δ13CWO (mean, -29.5; S.D. 0.1), δ13Csat 

(mean, -30.1; S.D. 0.2) and δ13Caro (mean, -29.0; S.D. 0.2) values, demonstrating the 

oils are all from the same source (Fig. 2.3a). The δ13Caro/ δ13Csat (~1) suggests the 

source organic matter was predominantly marine with a minor component of mixed 

terrigenous material (Sofer, 1984; Peters et al., 1999) as expected from an Upper 

Jurassic marine source (Cornford, 1998). The HPLC data indicate that oils from within 

the same oil field possess a similar composition; however, the four different oil fields 

have distinct compositions (Fig. 2.3b).  Previous studies of UK Atlantic margin oils 

suggest biodegradation as a control (e.g. Rooney et al., 1998), with the Clair field being 

the least biodegraded and the Cuillin, Schiehallion and Foinaven fields show increased 

levels biodegradation. The isoprenoid data confirms this increase in biodegradation 

from Clair to Foinaven fields (Fig. 2.3c).  Furthermore the isoprenoid data demonstrates 

that all samples contain a similar mix of Type II and III oils, supporting their formation 

from a single source unit. The C28 sterane data are all similar and therefore further 

support a single source unit and also suggest that the oil was mainly from a mixed 

planktonic-bacterial source with some terrigenous material (Fig. 2.3d).  Therefore, as 

expected, these oils are sourced from Upper Jurassic marine shales (KCF equivalent; 

e.g. Cornford, 1998).   

  

2.5 Re – Os dating of UK Atlantic Margin oil 

Rhenium-Os isotope data for the asphaltene fraction of oil from the Clair, 

Schiehallion, Cuillin and Foinaven fields are presented because Re and Os are 

predominantly complexed within the asphaltene fraction of oil. Furthermore Re–Os 

isotope data of the asphaltene fraction of oil approximate that of the whole oil (Table 

2.2; Selby et al., 2007).  These asphaltene fractions contain 0.74 – 20.77 ppb Re and 

54.6 – 316.9 ppt Os. The 187Re/188Os (35.1 – 673.0) and 187Os/188Os (1.037 – 1.340) 

positively correlate and yield an date of 68 ± 13 Ma (Fig. 2.4a), which is similar to 

generation and charging ages produced by basin modelling (Late Cretaceous – 

Palaeogene; Scotchman et al. 2006). 

To produce a reliable Re–Os age, three criteria must be met. 1) Re–Os isotopic 

systematics must remain undisturbed, 2) there must be a sufficient range in 187Re/188Os 

and 3) the 187Os/188Os at the time of oil generation (Osg) must be similar (Cohen et al., 

1999). Our Re–Os date has a large mean standard weighted distribution (MSWD) of 20, 
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suggesting that one of these criteria has not been met. Given the Re–Os date is in 

agreement with the basin models it is unlikely that the Re–Os isotope systematics have 

been disturbed. Our data have a significant spread in both 187Re/188Os and 187Os/188Os 

(637.8 and 0.7523 units, respectively; Fig. 2.4a). However, the majority of the samples 

have similar 187Re/188Os values (35.1–158), with two samples possessing higher 
187Re/188Os (G2762, 581; G2750, 673) and more radiogenic 187Os/188Os (G2762, 1.808; 

G2750, 1.741; Fig. 2.4a). Without regressing G2750 and G2762 the spread of 
187Re/188Os is limited (122), but it is greater than that used to date the Aptian/Albian 

boundary (Selby et al., 2009). Regression of all Re–Os data without samples G2762 and 

G2750 yields an imprecise age of 59 ± 66 Ma (MSWD = 19). This Re-Os date is similar 

to the original age, albeit with a large uncertainty, suggesting that the age is not forced 

by the spread of data between G2750, G2762 and the main data cluster.  Furthermore, 

as this subset of data has a smaller MSWD to that produced by all the data, the spread in 
187Re/188Os can not be accountable for the large MSWD of the full dataset.  

The majority of the Osg (calculated at 68 Ma) form two distinct groups, ~1.01 (n 

= 10) and 1.12 (n = 6), with two samples contain an Osg of 0.92 and 1.25 (Fig. 2.4b). 

Individual regressions of the Re–Os data for the 2 groups yield Re–Os dates of 71.9 ± 5 

Ma (MSWD = 1.02; Osg = 1.11 ± 0.02; Fig. 2.4c) and 64.3 ± 3.4 Ma (MSWD = 2.1; Osg 

= 1.02 ± 0.01; Fig. 2.4d). Therefore it is possible that the high MSWD given for the 

regression of all the Re–Os data is a product of combining Re–Os data that possess 

distinct Osg. A possible explanation for this is that different kerogen types undergo 

catagenesis at different pressure – temperature conditions. The oils reported here are 

mixed type II and III oils (Fig. 2.3c) and the oils comprising the 64.3 Ma isochron 

contain a slightly greater proportion of terrigenous material than the 71.9 Ma isochron 

(Fig. 2.3d).  Therefore, as typical marine organic matter will expel petroleum at lower 

temperatures than terrestrial organic matter (~110°C compared to ~135°C; Ruble et al., 

2001), it is possible that the older pulse is mainly sourced from marine kerogen and the 

younger mainly from terrestrial kerogen (e.g. Fig. 2.3d). It is important to note that the 

71.9 ± 5 and 64.3 ± 3.4 Ma ages are within uncertainty of each other and therefore must 

be treated with caution.  Therefore only the 68 Ma age is considered for the rest of this 

study 

A oil generation age of 68 Ma is supported by published 40Ar/39Ar 

geochronology and basin modelling of oil generation and charging in the UK Atlantic 

Margin (Lamers and Carmichael., 1999; Mark et al., 2005; Scotchman et al., 2006; Fig. 

2.5). 40Ar/39Ar geochronology of K-feldspar cement that contain mixed aqueous fluid 
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and hydrocarbon fluid inclusions has identified three periods of fluid flow within the 

Victory Field, UK Atlantic margin (Mark et al., 2005). Two charges of oil are 

recognised at 80.1 ± 5.6 Ma and 71.6 ± 7.1 Ma (indistinguishable by age but of different 

temperatures, ~115°C and ~94°C respectively). A third migration phase occurred at 

62.7 ± 8.6 Ma, which was only associated with an aqueous fluid charge (Mark et al., 

2005). The Re–Os date presented here overlaps within uncertainty with the two 
40Ar/39Ar dates associated with UK Atlantic margin oil charging, therefore supporting 

the hypothesis that Re–Os oil analysis yields the timing of petroleum generation within 

the UK Atlantic Margin (Selby and Creaser, 2005; Selby et al., 2005).  

Hydrocarbon generation and migration models (BasinMod 1-D; TemisPack 2-D 

and PresRo), which take into account the multiple rifting and igneous events in the 

Faroe-Shetland Basin as well as P-T conditions derived from fluid inclusion studies, 

further support our Re–Os dates (Scotchman et al., 2006; Fig. 2.5). This modelling 

suggests that 3 separate oil charges occurred; 1) during the Late–Cretaceous as 

subsiding source rocks in the Foinaven sub basin started to generate hydrocarbons and 

ceased in response to the End–Cretaceous uplift; 2) during the Palaeocene as a result of 

sudden renewed subsidence and 3) during the Oligocene/Miocene driven by basin 

inversion and a reduction in overpressure rather than increased generation (Scotchman 

et al., 2006). Our Re–Os date (68 ± 13 Ma) agrees with the modelled timing of the Late 

Cretaceous and Palaeocene charges, which may suggest that, in part, oil generation and 

migration was semi-contemporaneous. However, no evidence of the Oligocene/Miocene 

charge is observed in the Re–Os dates. The Oligocene/Miocene charge was produced by 

reduction of overpressure rather than increased oil generation, therefore, suggesting that 

the Re–Os dates solely record oil generation events. A separate study of 3D, 2D seismic 

and exploration wells confirms that oil generation commenced during the Late 

Cretaceous, with major expulsions occurring as a result of rapid burial during the Late 

Cretaceous and Early Palaeocene (Lamers and Carmichael, 1999).  

A further 40Ar/39Ar K feldspar cement date bearing oil and aqueous fluid 

inclusions, from a single Foinaven well, records an earlier oil charge at 113 ± 3.5 Ma 

(Mark et al., 2010). No oil to source correlation was undertaken in this study and 

therefore these oils could be sourced from deeper units than the Jurassic. Furthermore, 

the 40Ar/39Ar date is produced from a single well in the Foinaven field and has not been 

recorded in other UK Atlantic Margin 40Ar/39Ar studies (Mark et al., 2005), suggesting 

it is from a very minor generation event. It is possible that the 113 Ma charges (Mark et 
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al., 2010) are recorded by the two Foinaven samples that possess distinct Osg (G2075 

and G2763), and hence do not form part of either the 72 Ma or 64 Ma Re–Os isochrons.  

In addition, the Re–Os data can also provide information on the oil source unit 

as the produced oil will inherit the 187Os/188Os of the source rock (Selby and Creaser 

2005; Selby et al., 2007). Published Re–Os data for sections of the KCF (Cohen et al., 

1999; Selby, 2007) suggest that at 68 Ma the 187Os/188Os for the KCF would have been 

between ~0.9 and 2.4. The Osg for oil of the Atlantic margin are 0.92–1.12 and therefore 

provide further evidence that the oil was sourced from the Upper Jurassic KCF 

equivalent marine shale.  

 

2.6 Conclusions 

This is the first Re–Os study of a petroleum system with a clearly defined source 

and good understanding of the timing of petroleum generation events. Organic 

geochemistry of eighteen asphaltenes from the Clair, Schiehallion, Cuillin and Foinaven 

fields of the UK Atlantic margin demonstrate that they were sourced from Upper 

Jurassic marine shales, in agreement with published literature (e.g. Holmes, 1999).  The 

agreement of the Re-Os date produced from these oils (68 ± 13 Ma) with both Ar-Ar 

geochronology (Mark et al., 2005) and basin models (e.g., Scotchman et al., 2006) 

provides the first clear evidence that Re–Os petroleum analysis yields the timing of oil 

generation within a petroleum system. Furthermore, we demonstrate that the hypothesis 

that the Os isotopic composition of asphaltenes is inherited from the source unit and, 

therefore can be used to fingerprint an oil to its source, is valid (Selby and Creaser, 

2005; Selby et al., 2005; Selby et al., 2007). Thus we demonstrate how Re–Os 

petroleum geochronology can increase both our understanding of the temporal and 

spatial aspects of petroleum system evolution. 
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Table 2.1 Geochemical data for  UK Atlantic margin oil. 

Wella 206/8-
2 

206/8-
2 

206/8-
3A 

206/8-
3A 

204/20
-5 

204/20
-5 

204/19-
3A 

204/19-
3A 

204/19-
3A 

PFJ-
1160 

PFJ-
1187 

PFJ-
1247 

204/24A
-1 

204/24A
-1 

G Numberbc G540
0c 

G540
1c G0124b G0123b G2851c G2851c G2749c G2750c G2762c G5234c G5271c G5306c G2075b G2763b 

Oil field Clair Schiehallion Cuillin Foinaven 

Mea
n 

S.
D. 

Range for 
KCF 

sourced 
oilsg 

                  

Saturates (%) 39.6 39.8 46.5 39.0 59.9 70.1 47.3 51.5 54.2 62.0 N.D.f 61.8 63.9 58.6 53.4 
10.
3 N.D.f 

Aromatics (%) 41.4 42.7 37.1 40.0 30.9 25.5 42.0 39.6 37.7 34.3 N.D.f 34.9 32.7 37.1 36.6 4.9 N.D.f 
Residual (%) 19.1 17.5 16.4 21.0 9.2 4.4 10.7 8.9 8.1 3.7 N.D.f 3.3 3.4 4.3 10.0 6.4 N.D.f 

Saturates/Aroma
tics 1.0 0.9 1.3 1.0 1.9 2.8 1.1 1.3 1.4 1.8 N.D.f 

N.D.f 
1.8 2.0 1.6 1.5 0.4

8 0.6 - 8.0 

           N.D.f       

d13C Whole Oil  -29.5 -29.5 -29.5 -29.7 -29.5 -29.5 -29.4 -29.4 -29.4 -29.6 N.D.f -29.6 -29.6 -29.5 
-

29.5 0.1 
-27.1 - -

30.4 

d13C Saturates -30.2 -30.3 -30.2 -30.2 -30.3 -30.1 -29.7 -30.0 -30.1 -30.2 N.D.f -30.1 -30.1 -30.1 
-

30.1 0.2 N.D.†† 

d13C Aromatics -29.0 -29.0 -28.8 -28.9 -29.1 -29.3 -29.1 -28.9 -29.2 -29.0 N.D.f -28.9 -28.8 -28.8 
-

29.0 0.2 N.D.†† 
           N.D.f       

Prd/Phe 1.9 1.9 N.D.f N.D.f 1.5 1.4 h 1.9 1.5 1.7 N.D.f 1.6 N.D.f N.D.f 1.7 0.2 0.6 - 1.9 
Prd/nC17 0.5 0.5 N.D.f N.D.f 1.0 1.0 h 0.8 0.7 1.6 N.D.f 1.4 N.D.f N.D.f 0.9 0.4 0.3 - 1.0  
Phe/nC18 0.3 0.3 N.D.f N.D.f 0.7 0.7 h 0.5 0.5 1.0 N.D.f 0.9 N.D.f N.D.f 0.6 0.2 0.2 - 1.1 

                  
C27 sterane (%) N.D.f N.D.f 29.5 33.0 35.0 33.7 33.7 N.D.f 31.4 N.D.f 35.0 N.D.f 33.1 33.7 33.1 1.7 N.D.f 
C28 sterane (%) N.D.f N.D.f 33.0 26.6 29.0 29.6 28.7 N.D.f 36.4 N.D.f 30.0 N.D.f 28.3 27.9 30.0 3.0 N.D.f 
C29 sterane (%) N.D.f N.D.f 37.5 40.4 36.0 36.7 37.6 N.D.f 32.2 N.D.f 35.0 N.D.f 38.6 38.4 36.9 2.4 N.D.f 

                  
a UK grid 
b BP Unpublishe data 
c Data from this study 
d Pristane 
e Phytane 
f No Data 
g Cornford et al. (1998) 
h To biodegraded for analysis  
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Table 2.2  Re-Os Asphaltene data for UK Atlantic margin oil. 

   Asphaltene Re Os           
Wella "G" Number Field content % (ppb) (ppt) 187Re/188Os 187Os/188Os rho Osg

 b 
                    

206/8-2 G5399 Clair 3.5 2.18 ± 0.01 294.7 ± 3.5 40.0 ± 0.9 1.079 ± 0.031 0.684 1.03 ± 0.02 
206/8-2 G5400 Clair 1.9 2.24 ± 0.01 312.0 ± 2.8 38.7 ± 0.6 1.037 ± 0.021 0.656 0.99 ± 0.01 
206/8-2 G5401 Clair 1.6 2.32 ± 0.01 316.9 ± 2.8 39.6 ± 0.6 1.062 ± 0.021 0.656 1.02 ± 0.01 
206/8-2 G5402 Clair 3.1 2.18 ± 0.01 295.9 ± 2.7 39.8 ± 0.6 1.067 ± 0.021 0.654 1.02 ± 0.01 
206/8-2 G5403 Clair 3.1 2.64 ± 0.02 349.2 ± 3.1 40.9 ± 0.6 1.068 ± 0.021 0.653 1.02 ± 0.01 
206/8-2 G5404 Clair 4.5 1.83 ± 0.01 260.8 ± 2.4 38.0 ± 0.6 1.054 ± 0.022 0.658 1.01 ± 0.01 

206/8-3A G0124 Clair 8.0 1.39 ± 0.04 68.76 ± 1.67 111 ± 6 1.221 ± 0.081 0.688 1.09 ± 0.05 
206/8-3A G0123 Clair 4.3 1.47 ± 0.04 226.8 ± 2.8 35.1 ± 1.2 1.055 ± 0.032 0.485 1.02 ± 0.02 

                    
204/20-5 G2851 Schiehallion 1.2 2.80 ± 0.02 180.3 ± 3.8 84.7 ± 3.7 1.140 ± 0.068 0.719 1.04 ± 0.04 

                    
204/19-3A G2749 Cuillin 1.7 6.00 ± 0.04 208.4 ± 1.5 158 ± 2 1.163 ± 0.016 0.627 0.98 ± 0.01 
204/19-3A G2750 Cuillin 1.6 20.8 ± 0.1 180.0 ± 1.6 673 ± 9 1.741 ± 0.026 0.740 0.98 ± 0.01 
204/19-3A G2762 Cuillin 2.8 4.49 ± 0.03 45.43 ± 0.67 581 ± 16 1.808 ± 0.056 0.852 1.15 ± 0.02 

                    
PFJ-1160 G5234 Foinaven 0.4 2.58 ± 0.04 182.6 ± 2.0 77.7 ± 1.9 1.222 ± 0.028 0.589 1.13 ± 0.02 
PFJ-1187 G5271 Foinaven 0.4 2.57 ± 0.04 176.8 ± 1.9 79.6 ± 1.8 1.188 ± 0.027 0.598 1.10 ± 0.02 
PFJ-1247 G5306 Foinaven 0.4 2.74 ± 0.04 182.6 ± 1.9 82.4 ± 1.8 1.212 ± 0.027 0.604 1.12 ± 0.02 
PFJ-1246 G5307 Foinaven - 18.6 ± 0.1 151.4 ± 1.7 74.4 ± 2.0 1.200 ± 0.029 0.574 1.12 ± 0.02 
204/24A-1 G2075 Foinaven 1.2 1.63 ± 0.04 62.12 ± 1.18 142 ± 7 1.084 ± 0.050 0.731 0.92 ± 0.03 
204/24A-1 G2763 Foinaven 0.8 0.74 ± 0.04 54.61 ± 1.53 75.6 ± 6.3 1.340 ± 0.100 0.597 1.25 ± 0.07 
All uncertainties shown are 2σ. 
aUK North Sea grid. 
b Osg  = 187Os/188Os calculated at the time of oil generation (68 Ma). 
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Figure 2.1. Location map of fields used in this study (Carruth, 2000; Scotchmann et al., 2006)  
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Figure 2.2. Geological column for the UK Atlantic margin compiled from Nadin et al.,  

1997; Spencer et al., 1999; Carruth, 2003; Scotchman et al., 2006;  Mark et al., 2010. 
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Figure 2.3. Geochemical fingerprint data for oils from the Clair, Foinaven, Schiehallion and Cuillin oil 

fields. Fig. 2.3a – HPLC data; Fig. 2.3b – δ13CWO, δ 13Csat and  δ 13Caro results; Fig. 2.3c - Pr/nC17 and 

Ph/nC18 data, Type II and mixed type II/III lines from Peters et al. (1999);  Fig. 2.3d – Sterane biomarker 

data, Middle and Upper-Jurassic grouping (Cornford, 1998), Planktonic and terrestrial enrichments 

(Peters et al., 1999). See text for discussion. 
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Figure 2.4.  Re–Os isochrons for asphaltene from the Clair, Foinaven, Schiehallion and Cuillin oil 

fields.  Fig. 2.4a - formed by all data; Fig. 2.4b – groupings of similar Osg; Fig. 2.4c - Re–Os isochron for 

oils with an Osg of ~1.12; Fig. 2.4d - Re–Os isochron for oils with an Osg of ~1.12.  See text for 

discussion. 
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Figure 2.5.  Comparison of Re–Os ages with published models (Lamers and Carmichael, 1999; 

Scotchman et al., 2006) and Ar – Ar cement ages from mixed oil and aqueous fluid inclusions (Mark et 

al., 2005).  
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3: FAULT CHARGED HYDROTHERMAL-FLUID CONTAMINATION OF U.K. NORTH SEA 

OILS: INSIGHTS FROM RE-OS ISOTOPES.  

A version of this has been accepted for publication in Geology, co–authored by David 

Selby (Durham University), Mark Osborne (BP) and Dan Fincune (BP). 

 

3.1 Introduction 

Rhenium-osmium (Re-Os) oil geochronology has been shown to yield the 

timing of oil generation and migration (Selby and Creaser, 2005; Selby et al. 2005) and 

information regarding the source of an oil (Selby et al. 2007). Recently, this application 

has also been applied to oils of the North Sea (Graham et al., 2006). North Sea oil is 

predominantly sourced from the Late Jurassic – Early Cretaceous shales of the 

Kimmeridge Clay Formation (KCF; comprising the Kimmeridge Clay, Borglum and 

Draupne Fms.) which started to generate oil during the Late Cretaceous (Cornford, 1998 

and references therein). The KCF possesses radiogenic 187Os/188Os (Cohen et al., 1999; 

Selby, 2007; this study). Therefore, if generated oil inherits the 187Os/188Os of the source 

rock at the time of hydrocarbon maturation (Selby et al., 2007); oils of the North Sea 

should possess radiogenic 187Os/188Os (> 0.94 – 2.45). However, oil from the Brent 

Field (U.K. North Sea; Fig. 3.1) bears extremely unradiogenic 187Os/188Os compositions 

(~0.18; Graham et al., 2006). As a result the Os isotope data were used to suggest that a 

Late Jurassic shale containing an unradiogenic 187Os/188Os, and therefore different from 

the KCF, was the source of Brent oil. This conclusion conflicts with a large body of 

research that indicates that the oil is sourced from the KCF (e.g. Bailey et al., 1990; 

Gormly et al., 1993; Cornford, 1998; Underhill, 2003). 

We test the hypothesis that the oil is from an alternative source to the KCF 

through the analysis of oil samples from the Central Graben (CG), Moray Firth (MF), 

Viking Graben (VG) and East Shetland Basin (ESB) of the U.K. North Sea (Fig. 3.1). 

We show that oil from the CG and MF yield radiogenic 187Os/188Os as expected from 

being sourced from the KCF. However, oil from the VG with which the Brent field is 

associated, and main ESB display unradiogenic 187Os/188Os. We attribute these 

unexpected results to contamination through interaction with an unradiogenic 

hydrothermal fluid either sourced from intrusive mafic igneous units or the mantle that 

propagate through the main fault zone of the VG and ESB. This study enhances our 

understanding of the Re–Os oil systematics, and agrees with current ideas regarding 

fault architecture, crustal thinning and associated fluid flow and interaction in the North 

Sea oil system. 
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3.2 Analytical Protocols 

3.2.1 Re – Os  

The Re–Os abundance and isotope compositions of the North Sea oils were 

established by the analysis of the asphaltene fraction, because Re and Os in oil is 

principally complexed within the asphaltene fraction and the Re–Os asphaltene isotope 

compositions approximate that of the whole oil (Selby et al., 2007). Rhenium and Os 

analysis was conducted at the Northern Centre for Isotopic and Elemental Tracing 

facility at Durham University following the analytical protocols of Selby and Creaser 

(2003); Selby (2007) and Selby et al. (2007). The Miller Field CO2 abundance and 

δ13CCO2 values were provided by BP having been determined using the standard 

ENV/E1-1003 protocol at the Laboratory of the Government Chemist, Teddington.  

Asphaltene was separated from 13 oils from the UK North Sea (Fig. 3.1) using 

the n–heptane based methodology of Speight (1998) and Selby et al. (2007).  In 

summary, in a 60 ml glass vial, 40 ml of n–heptane was added to 1 g of oil.  The 

contents were thoroughly mixed and agitated for ~12 hrs. The contents of the vial were 

then transferred to a 50 ml centrifuge tube and centrifuged at 4000 rpm for 5 minutes to 

ensure complete separation of the soluble maltene and insoluble asphaltene fractions.  

The maltene fraction was decanted to waste and the asphaltene fraction was dried on a 

hot plate at ~60˚C.  Using the carius tube technique (Shirey and Walker, 1995) ~0.1 – 

0.2 g of asphaltene was dissolved with a known volume of 190Os and 185Re spike 

solution in 9 ml of inverse aqua regia (6 ml of 16 N HNO3 and 3 ml of 12 N HCl) at 

220°C for 24 hrs.  Osmium was purified from the inverse aqua regia solution using 

solvent extraction (CHCl3) and micro-distillation methods.  After the removal of Os, the 

Re bearing inverse aqua regia solution was evaporated to dryness at 80˚C and then re-

dissolved in 3 ml 0.2 N HNO3 in preparation for Re anion exchange chromatography 

(e.g. Selby and Creaser 2003).   

Five core samples of Kimmeridge Clay Formation (KCF) shale from the North 

Sea Miller oil field (well 16/8b–A01) were analysed for their Re and Os abundance and 

isotopic compositions.  The 5 samples are from a 1.1m interval spanning 4738.4 and 

4737.3 m depth.  Each sample represents half of the 10 cm diameter core with a 

stratigraphic thickness of ~3 cm thickness and a mass of between 75 and 80 g.  All 

samples were prepared by removing any drill core marks with a diamond polishing 

wheel, to avoid surface contamination, and then powdered in a ceramic mill to ensure 

Re and Os sample homogenisation. Applying the Carius tube technique (Shirey and 
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Walker, 1995) ~0.5 g of whole rock powder was dissolved with a known volume of 
190Os and 185Re mixed tracer (spike) solution in 8 ml of 0.25 g/g CrO3 in 4N H2SO4 at 

220°C for 48 hrs.  Osmium was purified from the CrO3-H2SO4 solution using solvent 

extraction (CHCl3) and micro–distillation methods (e.g. Selby and Creaser 2003). After 

the removal of Os, 1 ml of the CrO3–H2SO4 was mixed with 1 ml of Milli–Q water and 

reduced from Cr6+ to Cr3+ by sparging with SO2 in preparation for Re anion exchange 

chromatography.  After chromatography the Re fraction was then further purified by 

single bead anion extraction. 

The purified Re and Os from both asphaltene and shale samples were loaded 

onto a Ni and Pt filaments respectively, and analysed for their isotopic compositions 

using Negative Thermal Ionisation Mass Spectrometry (NTIMS; Creaser et al., 1991) 

on a ThermoElectron (TRITON) mass spectrometer.  Re was measured using Faraday 

collectors and Os in peak hopping mode using a secondary electron multiplier. 

Total procedural blanks for Re and Os for the inverse aqua regia methodology 

are 2.4 and <0.7 pg, respectively, with 187Os/188Os value of ~0.18 (n = 2). Total 

procedural blanks for Re and Os, using the CrO3-H2SO4 digestion, are 12 and <0.5 pg, 

respectively, with an average 187Os/188Os value of ~0.4 (n = 2).  Raw Re and Os oxide 

values were corrected for oxygen contribution and mass fractionation. The Re and Os 

isotopic values and elemental abundances are calculated by full propagation of 

uncertainties from Re and Os mass spectrometer measurements, blank abundance and 

isotopic composition, spike calibration and sample and spike weights.  Throughout the 

period of this study, in house Re and Os standard solutions were repeatedly analysed to 

monitor instrument reproducibility.  The Re standard runs produced average 185Re/187Re 

values of 0.5983 ± 0.0017 (1S.D. n = 35) indistinguishable from the reported values of 

Selby (2007; 0.5977 ± 0.0012).   The NCIET Re standard is made from zone-refined Re 

ribbon in the same way to the in house Re standard (AB1) of the Department of Earth 

Sciences, University of Alberta, and the 185Re/187Re values are indistinguishable from   

AB1 values reported by Selby and Creaser (2003; 0.59863 ±0.00062) and Selby et al. 

(2005; 0.5986 ± 0.0006).  The measured difference between our reported 185Re/187Re 

values and the accepted 185Re/187Re value (Gramlich et al., 1973) is used to correct for 

sample mass fractionation.  The Os (AB2) standard is made from ammonium 

hexachloro-osmate.  The average 187Os/188Os AB2 ratio, using the electron multiplier, is 

0.10682 ± 0.00020 (1 S.D. n = 40), indistinguishable from AB2 values reported by 

Selby and Creaser (2003; 0.106838 ±0.000029), Selby et al. (2005; 0.10684 ± 0.00009) 

and Selby (2007; 0.10679 ± 0.00007).   
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3.2.2 Biostratigraphy 

Biostratigraphic analysis were undertaken by BP on both palynological and 

micropalaeontological preparations of two KCF core samples from the 16/8b-A01 well 

of the Miller Field (4737.3m and 4738.4m measured core depth).The samples were 

processed using standard laboratory techniques to provide palynological and 

micropalaeontological preparations for transmitted-light and reflected light microscope 

analysis respectively.   

 

3.3 Results  

This study presents Re–Os data for 13 North Sea oils, Re–Os data and 

palynology of KCF core from well 16/8b–A1 from the Miller field and CO2 abundance 

and δ 13CCO2 analysis of 4 Miller field oils (Fig. 3.1; Table 3.1; Table 3.2; Table 3.3).  

Biostratigraphic analyses were undertaken on both palynological and 

micropalaeontological preparations of core samples AF01-06 and AF05-06.  Key 

biostratigraphic events identified include the first downhole occurrence of the dinocyst 

Senoniasphaera jurassica and the common occurrence of the radiolarian Parvicingula 

jonesi at a core depth of AF05-06 (4737.3 m), which can be calibrated with the 

anguiformis boreal ammonite biozone.  The core sample from AF01-06 (4738.4 m) 

exhibits the first downhole occurrence of Muderongia sp. A (Davey 1979), which is 

attributable to the kerberus biozone.  This biostratigraphic interpretation places the 

studied section of KCF that sourced the Miller Field oils within the Tithonian between 

the anguiformis and kerberus Biozones (146.3 ± 4 – 147 ± 4 Ma; Gradstein et al., 2004). 

The mature Miller core samples contain ~50 to 115 ppb Re and ~600 to 1700 

ppt Os and the 187Re/188Os and 187Os/188Os ratios positively correlate (Table 3.2). The 

Osi
 values calculated at 147 Ma, based on biostratigraphy (this study), range from 0.47 

to 0.49. Regression of all the Re–Os data using Isoplot v.3 (Ludwig, 2003) and the 187Re 

decay constant (λ = 1.666 ×10-11.a-1; Smoliar et al., 1996) produce a Model 3 Re–Os age 

of 145 ± 17 Ma (Osi = 0.49 ± 0.12, MSWD = 30; Fig. 3.2a). The large MSWD relates 

the deepest sample (AF01-06) possessing a slightly more radiogenic Osi (~0.49) than 

the remaining samples (~0.47). Regression of all Re–Os data, baring AF01-06, yield a 

Model 3 Re–Os age of 147 ± 13 Ma (Osi = 0.47 ± 0.01, MSWD 5.7; Fig 3.2b), which is 

in excellent agreement with the biostratigraphy of the Miller core. This supports 

previous studies that demonstrate that Re–Os systematics in shales are not disturbed by 

maturation (e.g. Creaser et al., 2002).  
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The North Sea oils contain between 0.5 and 5.5 % asphaltene, ~0.1 to 15 ppb Re 

and ~1 to 743 ppt Os (Table 3.1). The 187Re/188Os and 187Os/188Os values range between 

~1.5 to 653, and ~0.17 to 3.34, respectively. Samples with low volumes of asphaltene 

generally contain low concentrations of Re and Os (e.g. G2091, 2.6 % asphaltene, 0.13 

ppb Re, 1.3 ppt Os) and samples containing higher percentages of asphaltene contain 

higher concentrations of Re and Os (e.g. G0869, 5.4 % asphaltene; 1.99 ppb Re; 629 ppt 

Os). Samples G2091 and G2646 contain low Re and Os abundances and measured 
187Re/188Os and 187Os/188Os have greater uncertainties. Sample G2091 possesses a 

significant blank correction, particularly for Os, which with complete propagation of all 

uncertainties yields 187Re/188Os and 187Os/188Os compositions with large uncertainties 

(653.3 ± 1700, 2.897 ± 7.722, respectively; Table 3.1). However, the nominal Re–Os 

data of sample G2091 is similar to that of oil from the next westerly quadrant (sample 

G0072; well 14/20- 6A). Thus, though imprecise, we interpret the Re–Os data for 

sample G2091 to yield a good estimate of the Re–Os isotope composition of the 

analyzed sample. The 4 Miller oils (wells 16/7b- 24; 16-7b- 25; 16/7b- 28B and F0501) 

analysed for CO2 and δ13CCO2 contain between 21.6 and 24.6 mol. % CO2 and possess δ 

13CCO2 values between -5.6 and -7.5 ‰ (VPDB; Table 3.3).  

 

3.4 North Sea Re–Os Oil Systematics and Hydrothermal Fluid Contamination 

The Re and Os abundances and isotopic values of asphaltene fractions from 

wells 3/11b- 3, 13/28a- 5RE, 14/20- 6A, 15/30- 6, 21/01- 8, 22/18- 1, 30/16- 7 and 

30/24- 6 are similar to other global oil analysis (Table 3.1; Selby and Creaser, 2005; 

Selby et al., 2005; Selby et al. 2007). However, five asphaltene fractions from wells 

3/03- 3, 16/7a- 3, and 211/18a-N4, that have similar Re–Os abundances and 187Re/188Os 

to other oils from the North Sea possess extremely unradiogenic 187Os/188Os values, 

similar to those reported from the Brent oil field (Graham et al., 2006; Table 3.1; Fig. 

3.1. The Miller KCF shales analysed as part of this study have slightly enriched Re and 

Os abundances compared to Oxfordian/Kimmeridgian KCF shales from Skye (Selby 

2007), but are similar to Kimmeridgian KCF, Kimmeridge Bay, Dorset (Cohen et al., 

1999). The 187Re/188Os (~345 to 480) and 187Os/188Os (~1.42 to 1.50) for the Miller KCF 

shales fall within the range of the KCF of Skye and Dorset (Cohen et al., 1999; Selby 

2007).  

If the hypothesis is correct that oil inherits the 187Os/188Os of the source rock at 

the time of hydrocarbon maturation (e.g. Selby et al 2007) then given the radiogenic 

composition of the KCF we would expect the 187Os/188Os of the generated oil to be 
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radiogenic. Using the Miller KCF Re–Os data and a 65 Ma hydrocarbon maturation age 

the North Sea oil should possess 187Os/188Os greater than 0.94. If we also consider the 

Re–Os KCF data from Skye and Dorset (Cohen et al., 1999; Selby, 2007) we would 

again expect KCF sourced oil to have radiogenic 187Os/188Os (0.911 - 2.457). Oil from 

reservoirs in the CG and MF possess radiogenic 187Os/188Os values as expected (1.035 

to 3.341; Table 3.1, Fig. 3.1), however, oil from reservoirs within the main ESB and VG 

have anomalously unradiogenic 187Os/188Os (0.166 to 0.483; Table 3.1, Fig. 3.1), which 

cannot have been inherited from source.  

Given the likely radiogenic nature of surrounding rock units, such unradiogenic 
187Os/188Os as found in the ESB and VG may require interaction with unradiogenic 

hydrothermal fluids associated with either the mantle or intrusive mafic volcanic units. 

These hydrothermal fluids typically have 187Os/188Os of between 0.12 and 0.13 (e.g. 

Meisel et al., 2001) and therefore provide a suitably unradiogenic mixing end member. 

Typical hydrothermal fluid contains ~100 fg/g Os with an 187Os/188Os of ~0.11 (Sharma 

et al., 2000). If we consider an average asphaltene Osi of 1 and Os concentration of 20 

ppt (Selby and Creaser, 2005; Selby et al., 2007; this study) together with the Os 

abundance and 187Os/188Os of a hydrothermal fluid, it is possible to estimate the 

approximate percentage of contamination by unradiogenic Os required to alter the 

asphaltene Re–Os isotope systematics using a simple two-member mixing model 

(Faure, 1986). This model suggests that > 70 % of the Os in the unradiogenic oils is 

derived from hydrothermal fluids. Osmium is organophyllic (Selby et al., 2007), and 

our data suggests that Os can easily be complexed with oil during interaction with an Os 

bearing fluid, overprinting the original radiogenic KCF ratio (>1) with an unradiogenic 

ratio (~0.12). Hydrothermal fluids are reported to be essentially bereft of Re (-0.92 – 5.6 

pmol kg-1; Miller, 2009). This may be supported by our results that show that Re 

abundances and 187Re/188Os are similar in oils that possess unradiogenic 187Os/188Os 

(0.22 – 1.4 ppb; 1.5 – 339, respectively) to oils bearing radiogenic 187Os/188Os (0.13 – 

4.2 ppb; 17 – 653, respectively; Table 3.1).  

An indistinguishable conclusion is drawn from CO2 abundance, δ13CCO2, 
3He/4He and 21Ne/22Ne data of the Miller, Magnus and Sleipner oil fields (Fig. 3.1). 

Typically CO2 forms ~2 mol. % of oil (Lu et al., 2009). In contrast, the concentration of 

CO2 in the Miller and Sleipner oil is significantly higher than expected (Miller field, 

~21– 30 mol %; Sleipner field ~10 mol. %; this study; James 1990; Baines and Worden, 

2004; Lu et al., 2009). There are three main sources of CO2 in oil systems, mantle, 

biogenic and inorganic, with each possessing distinct δ13CCO2 values (Mantle sourced δ 
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13CCO2 ~ -5 ‰, organically derived δ 13CCO2 ~ -25 ‰ and degraded limestone δ 13CCO2 ~ 

-7 ‰; Clayton et al., 1990; Deines, 2002). Four δ 13CCO2 analyses from the Miller Field 

give δ 13CCO2 between –5.6 and –7.5 ‰ (Table 3.3),  similar to δ 13CCO2 values of oil 

from the Sleipner field (~ -5 ‰ to -12 ‰; James 1990). The δ 13CCO2 data presented for 

Miller agrees with data from the Sleipner Field that has been used to suggest a 

significant mantle/mafic volcanic CO2 contribution (9.8*10-7g cm-2 yr-1 over 60 – 70 

Ma; Lu et al., 2009) to the oil. Although it could argued that the δ 13CCO2 reflect 

atmospheric CO2, 3He/4He and 21Ne/22Ne data from the Magnus Oil Field, ~270 Km 

north of the Miller and Sleipner Fields (Ballentine et al., 1996; Fig. 3.1) suggest that 2.3 

– 4.5 % of the 4He (R/Ra values between 0.2 and 0.38; crustal end member ~ 0.012, 

mantle end member ~8) and 4.3 – 6.2 % of the 21Ne (average 21Ne/22Ne are 0.0334 ± 

0.0002; atmospheric end member ~0.028, mantle end member ~0.09, crustal end 

member 0.4; Ballentine et al., 1996; Ballantine 1997) is mantle derived. In addition, it is 

reported that the amount of radiogenic noble gas in the Magnus reservoir is too high to 

have been produced in-situ from radioactive decay over the lifetime of the oil system 

(~60 -70 Ma). Greater than 70 % of Os in the oil is hydrothermally derived, compared 

to ~5 % of mantle He and Ne (Ballentine et al., 1996). As Os is known to be highly 

organophyllic (e.g. Selby et al., 2007), we hypothesise that Os is more easily complexed 

into oil than He or Ne.   

The Os data suggests hydrothermal fluids interacted with oil throughout the VG 

and main area of the ESB and not just the area around the Miller, Magnus and Sleipner 

fields as a result indicate that there is no need to attribute Brent field oil to a non-KCF 

source as proposed by Graham et al. (2006). 

 

3.5 North Sea Structure Controlling Re–Os Oil Systematics  

Oil bearing unradiogenic Os as well as mantle/mafic CO2, Ne and He are shown 

only to occur in the VG and ESB, close to the Western Margin Fault Zone (WMFZ, Fig. 

3.1). In contrast, oil possessing typical radiogenic 187Os/188Os occurs in the CG and MF, 

away from the WMFZ (Fig. 3.1). The WMFZ forms the western edge of the VG that 

displays >4 km of extension as a result of strain accumulation towards the rift axis 

during rifting throughout the early Cretaceous (Cowie et al., 2005). The CG and MF 

show lower levels of crustal extension (β values = 1.04 – 1.30; Barr, 1985; Roberts et 

al., 1993; Barr 2002) than the ESB and VG (β values = 1.1 to 1.5; Badley et al., 1988; 

Roberts et al., 1993; Barr, 2002; Cowie et al., 2005). During the ~27 Ma of rifting in the 

North Sea strain migrated towards the rift axis in the ESB and VG, with the highest 
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amounts of slip occurring along faults close to the axis (e.g. WMFZ / Gullfaks Fault; 

Fig. 3.1; Cowie et al. 2005). 

Two hypothesized sources of unradiogenic hydrothermal fluid are the mantle or 

intrusive mafic volcanics.  As normal faults play a role as fluid conduits and only oil in 

the ESB and VG show evidence for interaction with an unradiogenic hydrothermal 

fluid, it is possible that large scale basin bounding faults within the VG and ESB 

propagate to sufficient depth to act as a conduit for mantle sourced hydrothermal fluid.  

Alternatively, within the Viking Graben, magmatic processes associated with graben 

formation suggest that Cenozoic intrusive igneous units may be a source of 

unradiogenic hydrothermal fluids (e.g. Bugge et al., 1980; Holliger and Klemperer, 

1989; Fjeldskaar et al., 2008). It is not possible to identify weather the source of the 

hydrothermal fluid is mafic volcanics or the mantle with the data in this study, however, 

we suggest that hydrothermal fluids associated with intrusive mafic igneous units are 

the more likely source. Interestingly, the enrichment of CO2 in oil directly to the east of 

the WMFZ decreases with distance away from the WMFZ, suggesting that the WMFZ 

acts as a route for hydrothermal fluids. As the western margin of the ESB has 

experienced only minor thinning and is ~100 km from the main fault zone in the basin 

(Cowie et al., 2005) there is no evidence for interaction between oil and hydrothermal 

fluids. Hence, oil from well 3/11b- 3, located in the western margin of the ESB, possess 

radiogenic 187Os/188Os.  

A potential problem for this explanation is that the Brent, Thistle and Magnus 

reservoirs are sealed by fault traps and therefore the associated faults should be 

impermeable to fluid flow. However, large-scale faults have been shown to have 

vertical permeability, enhanced by interconnected inclusions of fractured protolith, 

whilst remaining impermeable to cross flow (Faulkner and Rutter, 2001). This favours 

fluid transport from deep sources such as the mantle, further supporting our hypothesis. 

The Miller oil field was charged with CO2 bearing mantle like δ13CCO2 values, from ~ 70 

Ma that upwardly migrated along the major basin bounding fault of the VG (Lu et al 

2009). The Kimmeridge Clay Formation source of the Miller oil field started to produce 

oil from ~65 Ma, with peak oil production occurring at ~40 Ma (Marchand et al., 2001). 

Secondary migration of oil occurred through fault networks (Barnard and Bastow, 

1991), therefore, it is likely that the oil could have interacted with hydrothermal fluids 

during migration. Basin modeling indicates that this interaction would have occurred at 

temperatures of ~110 °C (BasinMod; Marchand et al., 2001). 
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3.6 Conclusions 

Previous geochemical studies of separate North Sea oil fields have results 

attributed either to mantle contamination or inheritance from an unknown source. 

However, this study that covers the entire North Sea system demonstrates that 

unradiogenic Os isotopic values in oil are not inherited from an unknown source rock as 

suggested by Graham et al. (2006). Alternatively we suggest that the fault architecture 

in the VG and ESB enables conduits to form that permit the interaction between oil and 

an unradiogenic hydrothermal fluid sourced from either Cenozoic mafic volcanic units 

or the mantle. This model also accounts for oils within the CG and MF containing Os 

isotopic signatures as expected form the KCF. Within the Miller field (VG) the 

interaction of oil and mantle fluids occurred either during migration or within the 

reservoir at ~110°C. In summary, the β, CO2, 187Os/188Os, 3He/4He and 21Ne/22Ne data 

suggest that there has been sufficient crustal thinning (~33 %) and strain amalgamation 

in the ESB and VG to allow faults and deep shear zones to act as conduits for 

hydrothermal fluid to interact with migrating and emplaced oils. Furthermore, this study 

demonstrates that Os isotopes can be applied to track crustal scale fluid dynamic 

processes as well as acting as a tool to identify oil migration pathways in extensional 

basins (e.g. Békés Basin, Hungary; Clayton et al., 1990). 
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Table 3.1  Re-Os asphaltene results for North Sea oils 
      Asphaltene Re Os              

Wella "G" Number Field content %  (ppb)  (ppt) 187Re/188Os 187Os/188Os Osg
d 

                 

15/30- 6 G1899 Britannia 2.6b 1.07 ± 0.07 41.3 ± 2.6 177.7 ± 26.3 3.341 ± 0.589 3.148 
13/28a- 5RE G2091 Ross 0.8b 0.13 ± 0.05 1.3 ± 1.2 653.3 ± 1700.2 2.897 ± 7.722 2.187 
14/20- 6A G0072 Unnamed 2.9b 3.87 ± 0.08 43.5 ± 2.1 579.6 ± 69.5 2.813 ± 0.363 2.186 
30/24- 6 G0228 Argyll 1b 0.72 ± 0.14 55.5 ± 4.1 82.1 ± 22.7 2.558 ± 0.526 2.468 
22/18- 1 G1981 Arbroath 1b 1.76 ± 0.06 89.7 ± 5.2 119.0 ± 10.8 2.084 ± 0.425 1.956 
30/16- 7 G2006 Fulmar 0.6b 0.90 ± 0.06 24.6 ± 1.6 219.8 ± 39.8 2.022 ± 0.365 1.784 
3/11b- 3 G0941 Cheviot 1.1b 4.24 ± 0.05 179.2 ± 4.4 137.3 ± 6.9 1.698 ± 0.114 1.549 
21/01- 8 G0869 Buchan 5.4b 1.99 ± 0.06 629.1 ± 12.8 17.1 ± 0.9 1.035 ± 0.060 1.017 
3/03- 3 G1717 Ninian 5.5b 1.27 ± 0.06 18.6 ± 1.4 339.0 ± 57.6 0.475 ± 0.136 0.123 
211/18a-N4 G2646 Thistle 0.8b 0.12 ± 0.05 11.0 ± 1.3 51.8 ± 27.6 0.266 ± 0.206 0.208 
16/07a- 3 G2422 Miller <1c 0.77 ± 0.01 51.8 ± 0.7 74.8 ± 2.0 0.483 ± 0.018 0.402 
16/07a- 3 G2421 Miller <1c 0.22 ± 0.11 742.6 ± 4.9 1.5 ± 0.7 0.301 ± 0.007 0.299 
16/07a- 3 G2423 Miller <1c 1.39 ± 0.03 202.4 ± 1.3 33.3 ± 0.9 0.166 ± 0.006 0.130 
All uncertainties shown are 2σ. 
a UK North Sea grid. 
b Asphaltine content isolated at the Northern Centre for Isotopic and Elemental Tracing.   
c Asphaltine content isolated at LGC, Teddington. 
d Osg = Os isotope composition at the time of petroleum generation (65 Ma). 
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Table 3.2  Re-Os results for Miller field core samples (well 16/8b-a01). 
  Well   Re  Os                  
Sample Depth (m) Mass (g)a (ppb) (ppt) 187Re/188Os 187Os/188Os Rho Osib 

            
AF05-06 4737.3 76 50.15 ± 0.16 600.4 ± 1.5 482.8 ± 1.7 1.656 ± 0.003 0.343 0.472
AF04-06 4737.7 77 115.33 ± 1.47 1697.2 ± 3.7 382.5 ± 4.9 1.417 ± 0.002 0.054 0.485
AF03-06 4738 78 94.33 ± 0.30 1285.4 ± 2.7 417.0 ± 1.4 1.501 ± 0.002 0.219 0.479
AF02-06 4738.2 78 84.71 ± 0.27 1362.1 ± 2.9 346.3 ± 1.2 1.320 ± 0.002 0.224 0.471
AF01-06 4738.4 79 58.30 ± 0.19 855.8 ± 1.9 384.2 ± 1.3 1.433 ± 0.002 0.270 0.491
All uncertainties shown are 2 σ.   
a Mass ground to a powder. 
b Osi = Os isotope composition at the time of deposition (147 Ma). 

 
 
 

Table 3.3 Miller oil field CO2 and stable carbon isotope 
analysisa  

Well Field δ13CCO2 (‰) CO2 (Vol %) 
    

16/07b- 24 Miller -6.2 21.58 
16/07b- 25 Miller -6.5 22.45 

16/07b- 28B Miller -7.5 22.77 
F0501 Miller -5.6 24.60 

a Provided by BP 
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Figure 3.1 Map showing location of North Sea sample wells and oil fields used in this 

study. Cross section from seismic interpretation (modified from Christiansson et al., 

2000). Base map, structural geology and depth of KCF modified from Cowie et al. 

(2005). β factors summarised from (Barr, 1985; Badley et al., 1988;Roberts et al., 1993; 

Barr 2002; Cowie et al., 2005). 
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Figure 3.2 Re-Os isochrons for Miller field Core samples.  Fig. 3.2a – All samples used 
in study, Fig. 3.2b – samples with similar Osi.  Uncertainty ellipses are at the 2σlevel. 
See text for discussion. 
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4:  TRACKING THE HIRNANTIAN GLACIATION USING OS ISOTOPES. 

A version of this chapter has been published in Earth and Planetry Science Letters, co–

authored by David Selby (Durham University) and Darren Gröcke (Durham University) 

and is attached as appendix 1.  

 

4.1 Introduction 

 Osmium isotopes within oil provide useful information on identifying oil source 

(Selby and Creaser, 2005; Selby et al., 2005; Selby et al., 2007; Chapters 2 and 3).  To 

further understand how Os isotopes can vary within a source unit this study investigates 

the Ordovician/Silurian “Hot” shales, a major global petroleum source unit   

The Late Ordovician Hirnantian stage records the second largest mass extinction 

of the Phanerozoic Eon (Sheehan, 2001). This extinction eradicated 85 % of species, 61 

% of genera and 12 – 24 % of families (Brenchley et al., 2001 and references therein). 

The extinction occurs during an abrupt change in climate (Hirnantian Glaciation) that 

culminated in ice-sheet growth over Gondwana and a global fall in sea-level that 

drained large areas of previously submerged marine shelf (Brenchley et al., 2001; 

Finney et al., 2007; Trotter et al., 2008). 

Global Hirnantian sections (Anticosti Is. Quebec, Long, 1993a; Dob’s Linn, 

Underwood et al., 1997; South China, Wang et al., 1997, Yan et al., 2009, Fan et al., 

2009; Nevada, Finney et al., 1999; Estonia/Latvia, Brenchley et al., 2003; Arctic 

Canada, Melchin and Holmden, 2006; North America and China, Young, 2008; Fig. 

4.1) record positive inorganic and organic carbon-isotope excursions at the onset of the 

glaciation (Fig. 4.2), which have been attributed to increased weathering of 13C-enriched 

carbonates exposed during the glacio-eustatic lowstand (e.g. Kump et al., 1999; Melchin 

and Holmden, 2006; LaPorte et al., 2009). The major positive δ13Corg excursion during 

the Late Ordovician is referred to as the Hirnantian Isotopic Carbon Excursion (HICE; 

Bergstrom et al., 2008), which broadly coincides with the phases of the Hirnantian 

extinction.  

During the Cenozoic, osmium isotope (187Os/188Os) values of organic-rich 

marine sediments have been used to reconstruct changes in seawater 187Os/188Os 

(Pegram et al., 1992; Ravizza et al., 2001; Ravizza and Peucker-Ehrenbrink 2003; 

Oxburgh et al., 2007; Dalai et al., 2006). During the Pleistocene interglacial, seawater 
187Os/188Os ratios are more radiogenic (~1.04) than during the glacial period (~0.94; 

Oxburgh et al., 2007). This has been interpreted to reflect the reduction in weathering of 

radiogenic continental crust in response to burial beneath ice sheets and decreased rates 
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of chemical weathering. However, following deglaciation increased chemical 

weathering combined with exposure of easily leached glacial deposits releases more 

radiogenic 187Os/188Os into the oceans (Peucker-Ehrenbrink and Blum 1998), thus 

causing a rise in seawater 187Os/188Os. In contrast to the Cenozoic glaciations, the 
187Os/188Os profile of the Hirnantian glaciation (recorded in the Dob’s Linn section) 

reflects a much more dramatic change (~0.4; this study).  

Herein, we document similar climatically driven shifts in silicate weathering 

through the application of initial 187Os/188Os (Osi) from ocean basin sediments preserved 

at Dob’s Linn (Point Linn Branch section) in the Southern Uplands of Scotland — the 

Global Stratotype Section and Point (GSSP) for the basal Silurian. We discuss how Os 

isotopes track events prior to, during and after the Hirnantian glaciation and the 

associated implications for Earth processes during this time.  In addition to the Osi data, 

we present a new δ 13Corg profile for the GSSP. The two complementary proxies track 

changes in climatic conditions and continental weathering to the Iapetus Ocean 

throughout the Hirnantian glaciation. During the Hirnantian the Iapetus Ocean was 

connected to the Rheic Ocean (Cocks and Torsvik, 2006). The climatic events that drive 

silicate weathering have a global rather than local influence (c.f. Sheehan, 2001).  

Therefore, as the Iapetus and Rheic Oceans were interconnected (Fig. 4.1), it is feasible 

that the general trend in Os isotope compositions during the Late Hirnantian presented 

here may reflect that of a global oceanic signature. This study also demonstrates the 

application of Os isotopes for understanding palaeoceanographic and geological 

processes. Furthermore, we present the first use of Osi stratigraphy for a Paleozoic 

sedimentary succession.  

 

4.2 Geological Setting 

The base Silurian GSSP is found in the Linn Branch section, Dob’s Linn, which 

is located in the Central Zone of the Southern Uplands Terrane, Scotland (Williams, 

1983; Cocks, 1985; Fig. 4.1; location, 55º25’47.56"N 003º16’72.91"W (OSGB-36), UK 

National Grid NT 1962, 1584).  The Linn Branch section is comprised of two 

geological formations of the Moffat Shale Group: the stratigraphically lower Upper 

Hartfell Shale, which is overlain by the Lower Birkhill Shale (Fig. 4.2). The Upper 

Hartfell Shale is comprised of two lithologies (Fig. 4.2).  The major lithology is an 

organic-poor (~0.1 - 0.4 % Total Organic Carbon [TOC]) grey shale, with no preserved 

graptolites or sedimentary structure and minor amounts of disseminated pyrite.  In the 

studied area this unit is interbedded with six, ~5 to 20 cm thick bands of organic-rich 
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(~1 – 2 % TOC) black to dark grey shale.  These bands are laminated and contain 

abundant graptolites and disseminated pyrite (Armstrong and Coe, 1997). 

The Lower Birkhill Shale is and organic-rich (TOC = 0.63 to 1.69 %), 

laminated, graptolite-rich black shale.  Disseminated pyrite is abundant throughout the 

unit and pyrite also forms regular sub mm layers parallel to lamination (Armstrong and 

Coe, 1997). Both units are interbedded with numerous <1 cm to ~5 cm scale bentonite 

horizons. This study also observed a poorly developed low angle cleavage through the 

section. 

The stratigraphy of the GSSP section represents a distal micro-turbidite that was 

deposited on the eastern continental margin of Laurentia during the closure of the 

Iapetus Ocean (Armstrong and Coe, 1997; Armstrong and Owen, 2002).  The 

Hirnantian, specifically the extraordinarius and persculptus Biozones (Figs. 4.1 – 4.3) 

records the glaciation that covered Gondwana up to ~30ºS (Cocks and Torsvik, 2006).  

The end of this glacial period is marked by the global deposition of black anoxic shales 

as the climate returned to greenhouse conditions (Armstrong and Coe, 1997).  

The black shale units of the Hartfell and Birkhill Shale Formations are rich in 

numerous species of graptolites that are used as the main criteria for defining the 

biostratigraphy of the Ordovician and Silurian (cf. Lapworth, 1878; Williams, 1983; 

Cocks, 1985; Fan et al., 2009; Fig. 4.1 – 4.3). Graptolites within these bands define the 

Dicellograptus anceps Biozone (Lapworth, 1878), that have been further subdivided 

into the Dicellograptus complexus and Paraorthograptus pacificus Subzones, and the 

younger Normalograptus  extraordinarius Biozone (Melchin et al., 2003; Fig. 4.1 and 

4.2).  The graptolites Climacograptus hastus and Glyptograptus posterus within the 

anceps Biozone of the Hartfell Shale are correlated with Australian and Chinese 

Ordovician/Silurian sections (Williams, 1988).  The first occurrence of Akidograptus 

ascensus within the Birkhill Shale, which is used to define the base of the Silurian, 

occurs 1.6 m above the base of the Lower Birkhill Shale units (Melchin et al., 2003; 

Rong et al., 2006).  The base Silurian is not marked by any major lithological change. 

It is important to note that there is a small fault, not discussed in detail in the 

published literature, ~50 cm below the GSSP (Fig. 4.1).  The displacement from this 

fault is masked by two bentonite horizons, smeared into each other. The exact loss of 

stratigraphy is unknown, but is likely to be ~15 cm from field observations (this study).  

This is likely to account for the different measured distances between the GSSP and 

Upper Hartfell / Lower Birkhill Shale formation contact of 1.72 m (Verniers and 

Vandenbroucke, 2006) and 1.6 m (Cocks, 1985; this study).   
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There are numerous bentonites within the Upper Hartfell Shale and the Lower 

Birkhill Shale at Dob’s Linn, however they are rare in the extraordinarius  to mid-

persculptus Biozone, which span the glacial maximum (Fig. 4.1 – 4.3). The rarity of 

bentonite horizons may be related to the suppression of eruptions in response to the ice 

cover of the Hirnantian glaciation. The numerous bentonite units within the Linn 

Branch section are suggested to be the product of subduction-related, explosively 

erupted ashes of intermediate to acid composition (Cameron and Anderson, 1980; 

Batchelor and Weir, 1988; Huff et al., 1988, 1991; Merriman and Roberts, 1990). Multi-

grain U-Pb zircon geochronology of bentonites ~4.5 m below and ~6 m above the 

Ordovician / Silurian boundary yield dates of 445.7 ± 2.4 and 438.7 ± 2 Ma, 

respectively (Tucker et al., 1990). Mathematical fitting of these dates gives an age of 

443 ± 1.5 Ma for the Ordovician / Silurian boundary (Geologic Time Scale 2008, Ogg 

et al, 2008). 

The bentonite units are dominated by illite and smectite with minor chlorite that 

formed during anchizone (prehnite-pumpellyite / low greenschist facies) metamorphism 

(Huff et al., 1991). Peak metamorphism occurred at ~340ºC during the Wenlock (428 – 

422 Ma; Oliver and Leggett, 1980), which coincides with the Scandian orogeny (435 – 

425 Ma; Trewin and Rollin, 2002).  However, determining the absolute timing of 

metamorphism at Dob’s Linn is challenging because of the low blocking temperature of 

the K-Ar systematics in illite / smectite (I/S; ~200˚C; Huff et al., 1991).  The < 0.5 µm 

I/S fraction from nine bentonites in the lower Llandovery at Dob’s Linn and correlated 

sections in County Down, Ireland, yield a mean age of 390 ± 10 Ma. The K-Ar dates 

from Dob’s Linn are 406 ± 10 Ma and 383 ± 10 Ma, suggesting that metamorphism and 

cooling to ~200˚C occurred by the early-mid Devonian (Huff et al., 1991).  

 

4.3 Samples and Analytical Protocols  

Samples (n = 23) were collected from within the Linn Branch Stratotype 

Section, Dobs Linn, for δ 13Corg and 187Os/188Os analysis during the summers of 2007 

and 2008. The samples were approximately 10 cm x 10 cm x 3 cm (stratigraphic height) 

in size, weighing ~50 – 80 g, and were collected from both black and grey shale 

horizons, 0.9 m above to 7.1 m below the GSSP.  

Carbon isotope analysis was conducted on decalcified bulk sediment powders by 

mixing 3M HCl with ~1 g powder in 50 ml centrifuge tubes for 24 hrs, after which they 

were thoroughly washed using ultra pure water (Milli-Q) until neutralised. The samples 

were dried in an oven at 60°C for 48 hrs. The residue was then reground to homogenise 
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the sample and loaded into tin capsules. Stable isotope measurements were performed at 

Saskatchewan and Durham using a Costech EA coupled to a ThermoFinnigan DeltaPlus 

XL and a Costech EA coupled to a ThermoFinnigan Delta V Advantage, respectively. 

Carbon-isotope ratios are corrected for 17O contribution (Craig, 1957) and reported in 

standard delta (δ) notation in per mil (‰) relative to the VPDB scale. Carbon-isotope 

data is calibrated against international standards, L-SVEC (δ 13C = –46.6 ‰ VPDB) and 

IAEA-CH6 (δ13C = –10.45 ‰ VPDB; Coplen et al., 2006). An intermediate 

international standard (IAEA-CH7) yielded a δ13C value of –32.14 ± 0.03 ‰ VPDB (n 

= 12), which is within uncertainty of the accepted value (δ 13C = –32.15 ± 0.10 ‰ 

VPDB; Coplen 2006). Data accuracy is monitored through routine analyses of in-house 

standards, which are stringently calibrated against the international standards noted 

above. Analytical uncertainty for δ13Corg measurements is typically better than ± 0.1 ‰. 

Total organic carbon (TOC) data was obtained as part of this method.  

Prior to crushing, all samples were polished to remove cutting and drilling marks 

to eliminate any contamination. The samples were dried at 60 °C for ~12 hrs and then 

crushed to a fine powder ~30 µm. The samples of ~50 – 80 g represent ~3 cm of 

stratigraphy and were broken into chips with no metal contact and powdered in a 

ceramic mill. Rhenium-Osmium isotope analysis was carried out at Durham 

University’s TOTAL laboratory for source rock geochronology and geochemistry at the 

Northern Centre for Isotopic and Elemental Tracing (NCIET) using CrVI-H2SO4 

digestion and solvent extraction (CHCl3), micro-distillation and anion chromatography 

methods and negative ionisation mass spectrometry (cf. Selby and Creaser, 2003; Selby 

2007).  

Rhenium-Os analysis of organic-rich rocks involves whole-rock digestion. 

Previous research has shown that the Re and Os abundances and isotopic compositions 

for organic-rich sediments predominantly reflect the hydrogenous uptake of Re and Os 

from seawater (Ravizza and Turekian, 1989; Cohen et al., 1999; Selby and Creaser, 

2003). Further, the Re and Os are complexed by organic matter (Ravizza and Turekian, 

1989; Cohen et al, 1999; Selby and Creaser, 2003). The detrital fraction of the sediment 

may also contain a minor abundance of Re and Os (~0.2 to 2 ppb Re and ~50 ppt Os; 

Esser and Turekian, 2003; Peucker-Ehrenbrink and Jahn, 2001). However, the CrO3-

H2SO4 digestion method employed here principally dissolves the organic fraction of a 

shale, thus principally liberates the hydrogenous Re–Os load of the sediment (Selby and 

Creaser, 2003; Kendall et al., 2004).  

Total procedural blanks for Re and Os are 12 and < 0.5 pg, respectively, with an 



 58

average 187Os/188Os value of ~0.4 (n = 2). Raw Re and Os oxide values were corrected 

for oxygen contribution and mass fractionation. The Re and Os isotopic values and 

elemental abundances are calculated by full propagation of uncertainties from Re and 

Os mass spectrometer measurements, blank abundance and isotopic composition, spike 

calibration, and sample and spike weights. Throughout the period of this study, in-house 

Re and Os standard solutions were repeatedly analysed to monitor instrument 

reproducibility. The NCIET Re standard is made from 99.999 % zone-refined Re ribbon 

and is considered to be indistinguishable from  the AB1 Re standard of the Department 

of Earth Sciences, University of Alberta. The Re standard runs produced average 
185Re/187Re values of 0.5980 ± 0.0019 (1S.D. n = 20) indistinguishable from  0.5977 ± 

0.0012 (Selby, 2007 and references therein). The measured difference between the 
185Re/187Re values and the accepted 185Re/187Re value of Gramlich et al. (1973) is used 

to correct for sample mass fractionation. The Os (AB2) standard is made from 

ammonium hexachloro-osmate. The average 187Os/188Os AB2 ratio, using an electron 

multiplier, is 0.10681 ± 0.00022 (1 S.D. n = 24), indistinguishable from  reported AB2 

values (0.10679 ± 0.00007, Selby, 2007 and references therein).  

Initial 187Os/188Os compositions (Osi) are calculated for the time of deposition 

using the age of the basal Silurian (443 ± 1.5 Ma; Ogg et al, 2008) and the 187Re decay 

constant of λ = 1.666 ×10-11a-1 (Smoliar et al., 1996). The calculated initial is taken to 

represent the Iapetus oceanic 187Os/188Os composition at the time of sediment 

deposition.  

 

4.4 Results 

A δ13Corg profile of the Dob’s Linn section was determined by Underwood et al. 

(1997) for chemostratigraphic correlation of Late Ordovician successions. However, no 

explanation of the excursion was given and no TOC data was reported. The TOC 

contents for our samples range between 0.03 and 2.18 %, which reflect lithological 

variations of the Upper Hartfell Shale and Lower Birkhill Shale (Table 4.1; Fig. 4.3). 

For example, the Upper Hartfell Shale black shale bands have TOC values between 1.06 

and 2.18 %, whereas grey shale units of the Upper Hartfell Shale are between 0.03 to 

0.17 % (Table 4.1). From the base of the Lower Birkhill Shale at 1.6 m below the GSSP 

within the persculptus Biozone TOC values increase from ~0.6 % to a maximum of 

~1.7 %, 0.05 m below the GSSP. Above the GSSP the TOC values are similar (~1.6 %). 

Our δ13Corg data range between –29.15 and –32.86 ‰ and fit the observed trend 

reported by Underwood et al. (1997; Figs. 4.2, 4.3; Table 4.1). Throughout the Katian 
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(complanatus to top of the anceps Biozone; 7.1 to 3.69 m below the GSSP) δ 13Corg 

values display a relative stable profile, with a minor (~0.5 ‰) shift to more positive δ 

13Corg values. Throughout this interval the mean δ 13Corg value is –30.9 ‰ (S.D. = 0.95, 

n = 14; Fig. 4.3). From the base of the Hirnantian (extraordinarius Biozone), δ 13Corg 

values become less negative, peaking at –28.2 ‰ at 1.72 m below the GSSP (mid-

persculptus Biozone). From here to 0.75 m below the GSSP (upper-persculptus 

Biozone) δ 13Corg values shift to more negative values after which they become 

relatively constant at ~ –32.5 ‰ (S.D. = 0.2, n = 14).  This profile is similar to other 

global HICE excursions (Fig. 4.2) suggesting minimal disturbance from metamorphism. 

The Re and Os abundances and 187Re/188Os and 187Os/188Os ratios are variable 

throughout the studied section (Re = 0.14 to 81 ppb; Os = 29 to 6393 ppt [common Os = 

28 to 5335 ppt]; 187Re/188Os = 14.23 to 832.54 and 187Os/188Os = 0.551 to 6.972, Table 

4.1). The uncertainty in Re and Os abundance varies from varies from 0.12 – 6.92 %, 

0.22 – 1.98 % and 187Re/188Os and 187Os/188Os varies from 0.34 – 6.80 % and 0.12 – 

5.99 % respectively.  The Osi values range from 0.28 – 1.08 and have uncertainties of 

0.41 – 1.08 % (Fig. 4.3; Table 4.1).  

From 7.1 to 4.85 m below the GSSP, within the complanatus and anceps 

Biozones, the Osi increases from 0.37 to 1.08. From 4.85 to 3.10 m below the GSSP 

within the late anceps to early extraordinarius Biozones Osi becomes less radiogenic 

(~0.4) and then remains constant at ~0.6 to 1.7 m below the GSSP within the 

persculptus Biozone. Between 1.7 and 1.5 m below the GSSP there is an abrupt increase 

to more radiogenic Osi compositions (0.6 to 1.1; Fig. 4.3). From 1.6 m below to 0.9 m 

above the GSSP within the persculptus and ascensus Biozones Osi values decrease to 

0.60 (Fig. 4.3).  

 

4.5 Discussion 

4.5.1 Updated Dob’s Linn δ13Corg profile throughout the Hirnantian Glaciation  

The new δ13Corg profile for Dob’s Linn shows the same general trend as other 

global late Ordovician / early Silurian profiles (Quebec, Long, 1993a; South China, 

Wang et al., 1997; Yan et al., 2009; Fan et al., 2009; Nevada, Finney et al., 1999; 

Estonia / Latvia, Brenchley et al., 2003; Kaljo et al., 2004; Arctic Canada, Melchin and 

Holmden, 2006; North America and China, Young, 2008; Fig. 4.2 and 4.3). During this 

interval the δ13Corg values change from being very similar throughout the Katian to 

becoming less negative values from the base of the Hirnantian until the mid-late 
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Hirnantian persculptus Biozone. At this point the δ13Corg becomes abruptly more 

negative and return to values similar to those prior to the excursion over ~1 m. This 

δ13Corg profile is known as Hirnantian Isotopic Carbon Excursion (HICE; Bergstrom et 

al., 2008). 

The HICE is proposed to have been triggered by the increased weathering of 

silicate terrains during the Caledonian Orogeny, which resulted in the draw down of 

atmospheric CO2 (Kump et al., 1999). This reduction in greenhouse gas drove global 

cooling that resulted in a glaciation and marine regression during the Hirnantian.  The 

marine regression caused significant areas of shallow marine carbonate (enriched in 
13C) to be exposed to weathering, increasing the flux of 13C into the oceans (e.g. Kump 

et al., 1999; Melchin and Holmden, 2006).  At Dob’s Linn this event occurs in the 

extraordinarius and early - mid persculptus Biozones, 3.69 to 1.72 m below the GSSP, 

where δ 13Corg values become less negative peaking at –28.2 ‰.  As global temperatures 

fell the chemical weathering rates decreased reducing silicate weathering and associated 

atmospheric CO2 drawdown. In response atmospheric CO2 levels increased back to pre 

glaciation greenhouse levels.  This drove rapid deglaciation and a marine transgression, 

which flooded previously exposed carbonates, thus limiting the flux of 13C to the 

oceans.   

 

4.5.2 Re – Os systematics in the Dob’s Linn section 

Although not collected specifically for Re-Os geochronology, samples spanning 

the GSSP (DS03-04, DS01-04, DS05-04, AF03-07, DS02-04 and AF04-07) possess 

similar Osi (0.71 – 0.81; Table 4.1; Fig. 4.3) when calculated at the age of the 

Ordovician / Silurian boundary (443 Ma; Ogg et al., 2008). These samples, similar to 

the majority of samples from organic-rich black shale horizons from the Dobs Linn 

stratigraphy, are enriched in Re and Os (6.71 to 81.01 ppb Re, 317.96 to 6393.04 ppt 

Os; Table 4.1). The Re-Os data for samples DS03-04, DS01-04, DS05-04, AF03-07, 

DS02-04 and AF04-07 yield a Re-Os age (449 ± 22 Ma, MSWD = 15, Isoplot v.3 

Model 3, Ludwig, 2003, Fig. 4.4a). This Re-Os age is within uncertainty of the 

determined GSSP age given by U-Pb zircon geochronology (443 ± 1.5 Ma; Ogg et al., 

2008). Given the positive correlation of 187Re/188Os with 187Os/188Os and the agreement 

of the determined Re-Os age with the known age of the stratigraphic interval, we are 

confident that our Re-Os analyses reflect the hydrogenous Re–Os load and that the Re-

Os systematics have not been significantly affected by weathering or Silurian lower 

greenschist metamorphism (Oliver and Leggett, 1980). This conclusion is consistent 
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with previous studies (e.g. Peucker-Ehrenbrink and Hannigan, 2000; Jaffe et al., 2002; 

Kendall et al., 2004; Kendall et al., 2009). As a result we infer the Osi values to record 

that of Iapetus Ocean contemporaneous with sediment deposition.  

In contrast to the organic-rich black shales of the Dobs Linn stratigraphy, grey 

shales from the Upper Hartfell Shale are less enriched in Re and Os (0.14 to 0.89 ppb 

Re; 29.58 to 102.64 ppt Os; Table 4.1). These samples have similar Re and Os 

abundances to the average upper continental crust (Esser and Turekian, 1993; Peucker-

Ehrenbrink and Jahn, 2001; Sun et al., 2003). As a result, a minor contribution of 

detritus with average upper continental radiogenic 187Os/188Os composition (~1.4) 

during the whole rock digestion process could modify the hydrogenous 187Os/188Os 

composition of the grey shale. However, we consider our Osi grey shale data to record 

the hydrogenous 187Os/188Os composition as explained below.  

Firstly, four grey shale samples (AF23-07, AF24-07, AF25-07 and AF26-07) 

with similar Osi (0.6 – 0.64; Table 4.1) show a positive correlation of 187Re/188Os and 
187Os/188Os values. The Re-Os age derived from the Re-Os data is imprecise (394 ± 200 

Ma) because of the limited spread in the Re-Os data (~15 187Re/188Os units; ~0.11 
187Os/188Os units; Table 4.1; Fig. 4.4b). However, the nominal agreement of the Re-Os 

age to the known age of the Dobs Linn section, may possibly suggest that the grey shale 

Re-Os data predominantly reflect the hydrogenous Re-Os load.  

It is beyond the scope of this research to identify every source of sediment 

shedding into the Iapetus Ocean during the Late Ordovician. However, we suggest that 

the majority of the detritus entering into the Iapetus Ocean was predominantly from 

radiogenic continental crust from the Laurentian, Avalonia-Baltican and Siberian 

cratons, with only minor mafic inputs (Wilde et al., 1986; McKaffrey and Kneller 1996; 

Oliver et al., 2000; Cocks and Torsvik, 2006). Thus, any detrital Re and Os contribution 

to the grey shales should result in radiogenic Osi compositions. In contrast, we observe 

significantly less radiogenic Osi compositions (0.4 to 0.64; Fig. 4.3; Table 4.1). To 

generate non hydrogenous Osi compositions of 0.4 and 0.6 would require detrital input 

from less radiogenic material (e.g., ultramafic/mafic or cosmic components), however 

there is no evidence for a major increase in sourcing of unradiogenic material during the 

Hirnantian (Wilde et al., 1986; Oliver et al., 2000; Shields et al., 2003).  Therefore it is 

unlikely that a detrital input to the analysis is the cause of the trend to unradiogenic 

values across the grey shales of the glacial maximum.  

The Osi of samples AF23-07 and AF32-07 (1.7 and 1.6 m below the GSSP), 

which border the stratigraphic interval between the Upper Hartfell shale and Lower 
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Birkhill are similar (0.6 and 0.7, respectively). Despite similar Osi for samples AF23-07 

and AF32-07 they contain significantly different Re and Os abundances (0.31 and 11.71 

ppb Re; 89.81 and 317.96 ppt Os; Table 4.1). This suggests that the Re-Os grey shale 

data reflects predominantly the hydrogenous Re and Os load and by inference the Osi is 

that of Iapetus Ocean at the time of sediment deposition.  

In addition, oxic organic-poor sediments (TOC not given; DSDP site 522; 

Angola basin; Ravizza and Peucker-Ehrenbrink 2003) are shown to yield the same 

hydrogenous Osi trends as sub-oxic organic-rich (TOC = ~0.5 to 4 %) sediments from 

the same correlative stratigraphic interval (ODP site 959; eastern equatorial Atlantic; 

Ravizza and Paquay, 2008), across the Eocene – Oligocene transition (including the 

first Oilgocene glaciation), therefore displaying no evidence that Osi is controlled by 

TOC and oxia/anoxia.  Furthermore, the organic-poor sediments contain similar Re and 

Os abundances to the grey shales of Dob’s Linn (6 to 256 ppt; Ravizza and Peucker-

Ehrenbrink, 2003; Oxburgh et al., 2007; Dalai et al., 2006). Also, similar to the Dob’s 

Linn grey shales, the Cenozoic sediments predominantly comprise a matrix that does 

not host hydrogenous Re and Os (e.g. carbonates and silicates). The hydrogenous Re 

and Os is complexed by organic matter (Selby and Creaser, 2003). From this we can 

suggest that the Re and Os contents for both Dob’s Linn and the Cenozoic sediments are 

similar and do not reflect detrital contamination. Given the above discussion we 

consider the Osi data for the grey shales at Dobs Linn to record the hydrogenous Osi 

signal of the contemporaneous Iapetus Ocean. 

 

4.5.3 Tracking the Hirnantian Glaciation using initial 187Os/188Os (Osi) 

Throughout the complanatus and anceps Biozones, from 7.1 to 4.85 m below the 

GSSP, Osi compositions become more radiogenic increasing from ~0.37 to 1.08. The 

Osi abruptly increase (0.48 to 1.08) over a short time interval (< 40 cms of the anceps 

Biozone, 5.22 to 4.85 m below the GSSP; Fig. 4.3). The most radiogenic Osi (1.08) is 

typically more radiogenic than the 187Os/188Os for seawater for the entire Phanerozoic, 

until the last 2 Myrs, and is comparable to present day sea water (~1.06; Peucker-

Ehrenbrink and Ravizza, 2000 and references there in; Selby and Creaser, 2003; 

Ravizza and Peucker-Ehrenbrink, 2003; Widom et al., 2004; Williams and Turekian, 

2004; Dalai et al., 2005; Dalai et al., 2006; Poirier, 2006; Burton, 2006; Turgeon et al., 

2007; Ravizza, 2007; Selby, 2007; Oxburgh et al., 2007; Turgeon and Creaser, 2008; 

Selby et al., 2009). Within the same stratigraphic interval (7.1 to 4.85 m below the 

GSSP) the δ 13Corg shows only a minor (~0.5 ‰ increase to heavier values; Fig. 4.3).  
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The increasingly radiogenic Osi across the late Katian suggest that the Os influx 

to the Iapetus Ocean became dominated by a radiogenic crustal component. This is 

supported by observed concordant increasingly radiogenic 87Sr/86Sr compositions 

(Shields et al., 2003). Throughout the Early and Middle Ordovician seawater 87Sr/86Sr 

decreased (0.7090 to 0.7088) with a sudden decrease across the Middle to Late 

Ordovician (Late Darwillian, Sandbian and Early Katian) to 0.7078. From this point to 

near the End Ordovician 87Sr/86Sr remains stable at ~0.7078 before becoming more 

radiogenic throughout the Silurian (Shields et al., 2003). The Ordovician unradiogenic 
87Sr/86Sr values are attributed to low continental erosion rates and an increased 

submarine hydrothermal exchange rate (Shields, 2003). The change to radiogenic 
87Sr/86Sr is coincident with the increasingly radiogenic Osi values (~0.3 to ~0.6). The 

source of Sr to the global ocean is similar (e.g. Shields, 2003) to Os, suggesting that the 

Iapetus Ocean became increasingly dominated by a radiogenic crustal component from 

the Katian.  Thus, we consider the predominant detritus shed into the Iapetus Ocean to 

be from the radiogenic Laurentian, Avalonia-Baltican and Siberian cratons, with only 

minor mafic inputs (Wilde et al., 1986; McKaffrey and Kneller 1996; Oliver et al., 

2000; Cocks and Torsvik, 2006). We suggest that the significant increase in Osi relates 

to increased silicate weathering of the Caledonian Orogen.  

From the peak of Osi (1.08) at 4.85 m below the GSSP, Osi compositions 

become abruptly less radiogenic within the extraordinarius Biozone (0.85; 3.69 m 

below the GSSP and 0.4, 3.1 m below the GSSP), and then remain stable (~0.6) until 

1.70 m below the GSSP in the persculptus Biozone. This stratigraphic interval coincides 

with the positive, glacial, limb of the δ13Corg excursion (δ13Corg = –31.3 to –28.2 ‰; Fig. 

4.3). Between 1.7 and 1.51 m below the GSSP there is a very abrupt increase to more 

radiogenic Osi compositions (0.6 to 1.05), which coincides with the negative, deglacial 

limb of the δ 13Corg excursion. From 1.6 m below the GSSP to the top of the studied 

section within the persculptus and ascensus Biozones Osi values decrease to ~0.6. 

Given the radiogenic 187Os/188Os input into the Iapetus Ocean from the 

Laurentian, Avalonia-Baltican and Siberian Cratons, unradiogenic Osi (0.4 to 0.64) 

would not be expected during the persculptus Biozone, as observed here (Fig. 4.3). To 

generate Osi compositions of 0.4 and 0.6 would require detrital input from less 

radiogenic material (e.g., ultramafic / mafic or cosmic components), however there is no 

evidence for a major increase in sourcing of unradiogenic material during the Hirnantian 

(Wilde et al., 1986; Oliver et al., 2000; Shields et al., 2003). 

The decrease in Osi coincides with the ~4 ‰ increase to heavier δ13Corg values 
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during the same interval that globally marks the onset of the Hirnantian glaciation. This 

shift in δ 13Corg is attributed to the flux of 13C into the oceans from the weathering of 

exposed marine carbonates as a result of sea level fall (Kump et al., 1999; Melchin and 

Holmden, 2003; LaPorte et al., 2009). The less radiogenic Osi compositions recorded 

during the glacial period are likely to have been caused by a decrease in chemical 

weathering rates, caused by a reduction in global temperatures coupled with glacial ice 

cover that diminished the flux of radiogenic 187Os/188Os material into both the Iapetus 

and global oceans (Trotter et al., 2008). Intriguingly the Osi during the glacial maximum 

(~0.6) are higher than at the start of the section (~0.3).  We attribute this to the 

weathering of radiogenic marine sediments exposed during glacial low stand. 

The observed Osi trend at Dobs Linn is similar to that associated with Cenozoic 

glacial periods and appears to be related to a marine regression causing the exposure 

and weathering of young, unradiogenic, continental shelf material (Williams and 

Turekian, 2004). An increased flux of unradiogenic 187Os/188Os will cause the seawater 
187Os/188Os to decrease during glacial periods, as observed at Dob’s Linn (Fig. 4.3). 

Given the short residence time of Os in the ocean (5 – 50 kyrs; Oxburgh et al., 2007), 

we interpret the change in the Osi at Dob’s Linn to capture the time when the Hirnantian 

glaciation and deglaciation caused drastic changes in continental weathering. Global 

cooling and the onset of the Hirnantian Glaciation are proposed to be caused by the 

drawdown of atmospheric CO2 driven by a period of high silicate weathering (Kump et 

al., 1999). This hypothesis is supported by the trend towards more radiogenic Osi (0.37 

to 1.08) during the Katian (7.1 to 4.85 m below the GSSP; Fig. 4.3), suggesting that 

increased silicate weathering was the driving process for the onset of the Hirnantian 

glaciation.  

The rapid increase to radiogenic Osi (0.6 to 1.05 over 19 cm) during the mid 

persculptus Biozone occurs at the correlative stratigraphic interval, in addition to the δ 

13Corg deglacial limb, as field evidence for deglaciation in North Africa (LeHeron et al., 

2008). Post-glacial erosion of glacial deposits provides an easily leachable source of 

radiogenic Os into the oceans (Peucker-Ehrenbrink and Blum, 1998). Consequently, 

erosion of glacial deposits, combined with an increase in chemical weathering rates, 

rapidly increases the flux of radiogenic Os into the Iapetus and Rheic Oceans as 

reflected in the rapid shift to radiogenic Osi compositions seen at Dob’s Linn.  The 

Hirnantian spans 1.9 Ma and covers ~3.75 m of stratigraphy at Dob’s Linn.  If a 

constant rate of sedimentation across the Hirnantian is assumed the compacted 

sedimentation rate is 2 m/Ma. Therefore, the rapid increase in 187Os/188Os (over 19 cms) 
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spans 95 ka across the deglacial period. However, the sedimentation rate across the 

Hirnantian was not constant, minor deposition occurred during the glacial maximum 

and maximum deposition occurring with the deglaciation.  Therefore the 19 cm of 

stratigraphy which covers the deglacial period likely has a duration <95 ka. 

  

4.5.4 Comparing the Hirnantian glacial Osi profile with Cenozoic glaciations 

Osmium isotope analysis of global Eocene/Oligocene and Pleistocene sediments 

show a correlation between 187Os/188Os compositions and glacial/interglacial climatic 

conditions (Ravizza et al., 2001; Ravizza and Peucker-Ehrenbrink, 2003; Williams and 

Turekian, 2004; Dalai et al., 2006; Oxburgh et al, 2007). These correlations highlight 

radiogenic values occurring during interglacial periods and less radiogenic values 

occurring during glacial periods. The changes seen in the Osi compositions during the 

Hirnantian glaciation (~0.6 to 1.1) are greater than that observed in the Pleistocene 

glacial / interglacial periods (~0.94 to 1.04; Williams and Turekian, 2004). This 

difference relates to the climatic and geographic conditions of the glacial and 

interglacial cycles of the Hirnantian and Pleistocene. 

 Although the Hirnantian glaciation was smaller in area than the Pleistocene 

(30,000,000 km2 as opposed to 44,000,000 km2; Sheehan, 2001) it was centred near the 

South Pole and thus covered a large proportion of the Gondwanan craton and little of 

the global ocean (LeHeron et al., 2008). In contrast, the Pleistocene glacial maximums 

covered large areas of open ocean as well as the Canadian and Fennoscandinavian 

craton. However, significant areas of Archean cratons with highly evolved radiogenic 

signatures remained exposed e.g. Australasian, South American, African and Indian 

(Mercer, 1983; Clark and Mix, 2002; Pearson and Wittig, 2008). From this tectonic 

setting / scenario the extensive cratonic glacial cover during the Hirnantian would have 

reduced the radiogenic 187Os/188Os flux into the oceans. Furthermore, sea level fall 

resulting from the Hirnantian glaciation is estimated to be <100 m compared to 100 – 

150 m for the Pleistocene glacial maximum (Sheehan, 2001; Brenchley et al., 2003; 

Williams and Turekian, 2004). Thus, Hirnantian glaciation lead to less exposure and 

reworking of radiogenic anoxic deep marine ORS (e.g. black shales) than the 

Pleistocene.  

Finally, CO2 levels at ~440 Ma were ~14 times higher than present (Berner, 

2006). This indicates, with oxygen isotopes (Trotter et al., 2008), that global 

temperatures and therefore chemical weathering rates were higher during the late 

Ordovician than in the Pleistocene. Therefore, the reduction in chemical weathering 
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rates as a result of the Hirnantian icehouse would have been greater than during the 

Pleistocene, further decreasing the input of radiogenic Os to the Iapetus Ocean. This has 

been observed during the Toarcian OAE where a similar magnitude Osi shift of ~0.6 is 

attributed to an increase in chemical weathering rates caused by a rise in temperature of 

~10°C (Cohen et al., 2004; Waltham and Gröcke, 2006). This temperature rise is 

indistinguishable from  that determined during the Hirnantian glaciation (Trotter et al., 

2008). 

 

4.6 Conclusions 

Through the integration of Osi and δ 13Corg profiles at Dob’s Linn it has proved 

possible to track the onset and cessation of the Hirnantian glaciation (Fig. 4.3). We 

interpret the Osi stratigraphy at Dob’s Linn to record the evolution in seawater Os 

isotopic composition of the Iapetus Ocean. However, given that this seaway was 

connected to the global ocean it may also reflect that of global seawater. The changes in 

climate that force the trends in the profile described for Dob’s Linn are global and 

therefore will have the same effect on both Iapetus and the global oceans. Thus, we 

hypothesise that although absolute data may vary between Iapetus and other global 

Ordovician/Silurian oceans (e.g. Rheic) the trends in the profile will be similar.  

Throughout the Katian, Osi becomes increasingly radiogenic, as a result of 

increased silicate weathering of radiogenic orogenic material associated with the 

Caledonian Orogen. As a result of atmospheric CO2 drawdown, global cooling ensued, 

causing the onset of the Hirnantian Glaciation. Reduced chemical weathering rates and 

growth of continental ice cover significantly reduced the input of radiogenic Os into the 

oceans. Increased ice volume resulted in falling sea levels, thus exposing marine 

carbonates and unradiogenic shelf to weathering. These new weathering regimes lead to 

an increased flux of 13C and unradiogenic Os into the oceans. As a direct result of the 

decrease in silicate weathering during the Hirnantian, atmospheric CO2 returned to 

greenhouse levels, causing rapid deglaciation during the Late Hirnantian mid 

persculptus Biozone. This de-glacial period is recorded by a dramatic rise in Osi (0.6 – 

1.05) over 19 cm of stratigraphy at Dob’s Linn. We interpret this dramatic rise to be a 

consequence of the leaching of radiogenic 187Os/188Os from glacial deposits and 

increased weathering of radiogenic 187Os/188Os silicate terrane.  

The results of this study further highlight the use of Osi as a powerful tool for 

understanding the Earth climate system and, in particular, aid in monitoring changes in 

weathering and its affect on palaeoceanography (e.g. Cohen et al., 1999; 2004; Ravizza 
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and Peucker-Ehrenbrink, 2003; Oxburgh et al., 2007; Ravizza and Paquay, 2008). In 

addition, the short residence time of Os (5 – 50 kyrs) in comparison to Sr (1 – 4 Ma) 

allows for a greater resolution for enhancing our understanding of palaeoenvironmental 

processes (cf. Cohen et al., 1999; Peucker-Ehrenbrink and Ravizza, 2000; Turgeon and 

Creaser, 2008; Selby et al., 2009; this study). For example, diachronous Neoproterozoic 

Sturtian deglacial sediments have been shown to have highly radiogenic Osi (0.82 – 

1.00; Kendall et al., 2006; Kendall et al., 2009). These values are remarkably similar to 

that reported here for the Hirnantian deglaciation. Thus, suggesting an increased 

continental weathering rate associated with deglaciation. However, we have no known 

values of seawater Osi for pre/syn Neoproterozoic Sturtian glaciation. Therefore, Osi 

data could provide increased understanding of weathering rates associated with 

Neoproterozoic global glaciations.   
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Table 4.1 Total organic carbon, d13Corg and Re – Os data for the Dob's Linn Basal Silurian GSSP 

Sample Distance from  TOCa d13Corg Re (ppb) Os (ppt) 187Re/188Os 187Os/188Os Osi
b 

[Os]*
c 

  O/S GSSP (m)  (wt. %) (‰, V-PDB)             
AF20-07 0.9 1.57 -32.7 59.33 ± 0.2 692.9 ± 2.8 728.4 ± 2.8 5.995 ± 0.013 0.598 ± 0.003 392 
DS03-04 0.07 1.57 -32.82 58.15 ± 0.19 671.4 ± 2.8 753 ± 2.9 6.291 ± 0.014 0.713 ± 0.003 371 
DS01-04 0.03 1.41 -32.17 63.2 ± 0.21 835.9 ± 3.1 607.5 ± 2.2 5.243 ± 0.009 0.744 ± 0.003 500 
DS05-04 0.03 1.41 -32.17 50.05 ± 0.17 571.1 ± 2.6 769.8 ± 3.1 6.437 ± 0.016 0.73 ± 0.003 313 
AF03-07 0 1.66 -32.6 66.27 ± 0.22 726.9 ± 3.2 831.5 ± 3.2 6.972 ± 0.016 0.812 ± 0.004 383 
DS02-04 -0.03 1.66 -32.86 64.03 ± 0.21 701.7 ± 3.1 832.3 ± 3.2 6.972 ± 0.016 0.806 ± 0.026 370 
AF04-07 -0.05 1.69 -32.6 66.44 ± 0.22 1043 ± 6 472.2 ± 2.1 4.259 ± 0.02 0.761 ± 0.004 676 
AF07-07 -1.1 0.54 -30.77 19.94 ± 0.07 505.1 ± 1.8 260.1 ± 1 2.944 ± 0.007 1.018 ± 0.005 368 
AF08-07 -1.51 0.91 -30.17 29.03 ± 0.1 465.3 ± 2 474.8 ± 1.9 4.567 ± 0.012 1.05 ± 0.005 294 
AF32-07 -1.6 0.63 -30.08 11.71 ± 0.04 318 ± 1.1 230.3 ± 0.9 2.407 ± 0.006 0.702 ± 0.009 244 
AF23-07 -1.7 0.14 -29.26 0.31 ± 0.01 89.8 ± 1.8 17.8 ± 0.8 0.729 ± 0.042 0.6 ± 0.042 83.2 
AF24-07 -2.2 0.11 -29.15 0.16 ± 0.01 57.1 ± 1.1 14.2 ± 0.8 0.71 ± 0.041 0.604 ± 0.048 53.0 
AF25-07 -2.4 0.15 -29.45 0.15 ± 0.01 48.1 ± 1 15.8 ± 0.9 0.758 ± 0.044 0.641 ± 0.052 44.4 
AF26-07 -2.7 0.13 -29.92 0.27 ± 0.01 47.5 ± 0.9 29.5 ± 1.4 0.823 ± 0.048 0.605 ± 0.045 43.5 
AF27-07 -3.1 0.12 -29.49 0.28 ± 0.01 37.4 ± 0.7 37.4 ± 1.8 0.685 ± 0.04 0.404 ± 0.03 34.8 
AF11-07 -3.69 1.06 -31.02 6.71 ± 0.03 1349 ± 9 26.9 ± 0.2 1.047 ± 0.016 0.85 ± 0.014 1202 
AF13-07 -4.85 1.25 -30.99 81.01 ± 0.27 6393 ± 14 73 ± 0.3 1.625 ± 0.002 1.084 ± 0.005 5335 
AF29-07 -5 0.17 -29.87 8.1 ± 0.01 102.6 ± 1.2 46.8 ± 1 1.069 ± 0.031 0.726 ± 0.026 91.2 
AF14-07 -5.22 2.18 -31.26 16.45 ± 0.06 578 ± 1.7 165.4 ± 0.6 1.702 ± 0.004 0.477 ± 0.002 478 
AF15-07 -5.88 2.11 -31.59 20.25 ± 0.29 914 ± 5 126.1 ± 1.9 1.517 ± 0.01 0.583 ± 0.009 772 
AF30-07 -5.9 0.03 -29.53 0.8 ± 0.01 44.5 ± 0.4 96.7 ± 2.1 0.983 ± 0.017 0.279 ± 0.007 40.0 
AF30 rpt - - - 0.8 ± 0.01 44.5 ± 0.4 96.7 ± 2.1 0.983 ± 0.017 0.28 ± 0.006 40.0 
AF31-07 -7.1 0.08 -31.88 0.14 ± 0.01 29.6 ± 0.6 24.9 ± 1.7 0.551 ± 0.033 0.381 ± 0.033 28.0 
Note: Uncertainties are given as 2s.  Samples are held by Alexander Finlay.    
aTotal organic carbon.  
b Osi - initial 187Os/188Os composition calculated at time of deposition (443 Ma). Osi uncertainties are calculated through full propagation of calculated 187Re/188Os and 187Os/188Os  
uncertainties  
c[Os]* - calculated common Os.          
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Figure 4.1 Location maps for the study area, Dob’s Linn, Scotland. 

Palaeogeographic map for 440 Ma (modified from Cocks and Torsvik, 2006) showing 

locations discussed in text; A – Dob’s Linn, Scotland; B – Anticosti Island, Quebec; C – 

South China; D – Nevada, USA; E, Estonia/Latvia; and F – Arctic Canada. Linn Branch 

Section at Dob’s Linn location; 55º25’47.56"N 003º16’72.91"W (OSGB-36), UK 

National Grid NT 1962, 1584. Contour lines represent 25 m elevation.  Photograph of 

Linn Branch section taken facing North East. 
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Figure 4.2 Stratigraphic column for the Linn Branch Section at Dob’s Linn.  

Periods, series and stages from Ogg et al. (2008). Biozones taken from Melchin et al. 

(2003). Lithostratigraphy and broad lithological changes taken from Williams (1986); 

Melchin et al. (2003); and field observations (this study). The δ 13Corg profiles modified 

from Fan et al. (2009) to fit Dob’s Linn biostratigraphy.  Abbreviations; Sil. – Silurian; 

Rhudd. – Rhuddanian; comp. – complanatus; extra. – extraordinarius 
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Figure 4.3 Stratigraphic column as in Fig. 4.2. The onset and end of glaciation placed as given for the Hirnantian (Brenchley et al., 2003). The 
δ13Corg profile comprise data from this study and Underwood et al. (1997). The Osi (calculated at 443 Ma) profile from the Dob’s Linn is used to 
produce a relative weathering rate. Note δ13Corg and Osi symbol sizes are greater than uncertainty for each point. See text for discussion.  
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Figure 4.4 Re-Os isochrons for the Linn Branch section.  Fig. 4.4a – area 

surrounding the GSSP, Fig 4.4b – area spanning Hirnantian glaciation.  Uncertainty 

ellipses are at the 2σ level. See text for discussion. 
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5: PGE FINGERPRINTING OF OILS TO SOURCE  
 

5.1 Introduction   

To date, Platinum Group Element (PGE; Os, Ir, Ru, Rh Pt and Pd) studies of 

organic-rich sedimentary rocks have dealt with metalliferous black shales (i.e., 

hydrothermally enriched; cf. Xu et al., 2007), units related to extraterrestrial impacts 

(i.e., Ir anomalies:  cf. Schmimitz et al., 2006) and weathered shales (disturbed PGE 

systematics: cf. Jaffe et al., 2002). There are also two studies that have investigated the 

PGEs abundance in petroleum which focus on new analytical methods, and, 

demonstrate that oil can be enriched in PGEs (Woodland et al., 2000; Fedorov et al., 

2007). Although these studies demonstrate that the PGEs are enriched in oils and 

organic-rich sediments there is only a limited understanding of the behaviour of PGEs 

in “standard” organic-rich shales and oils.   

The Re – Os system has been demonstrated to be an effective tool for providing 

spatial and temporal constraints for petroleum systems (this thesis; Selby and Creaser 

2005a; Selby et al., 2007). However, in some source units, (e.g. Ordovician/Silurian 

“Hot” shales) the Os isotopic composition at the time of deposition, and therefore 

generation, varied greatly (Osi ~0.3 – ~1.1; Finlay et al., 2010; Chapter 4), reducing 

their effectiveness at constraining oil source.  Rhenium and the PGEs are all 

organophyllic (e.g. Coloder et al., 1992; Woodland et al., 2000; Fedorov et al., 2007), 

therefore, the presence of PGEs in petroleum and petroleum source rocks means that, 

with better understanding of their behaviour and combined with the Re – Os system, the 

PGEs may provide a tool to fingerprint oil sources.  

To be effective as an oil source fingerprinting tool the PGEs must be: 

Unaffected by hydrocarbon maturation; similar within discrete source units; distinct 

between different source units within a petroleum system; and be similar between oils 

and their source.  These factors will be evaluated in this study using a new method of 

analysing PGEs, specifically Pt and Pd ratios, in organic-rich shales and oils from the 

United Kingdom Atlantic Margin (UKAM), and the West Canadian Tar Sands (WCTS) 

of the West Canadian Sedimentary Basin (WCSB).   

The UKAM is a well-constrained petroleum system with one predominant 

source unit, the Kimmeridge Clay Fm. (KCF; e.g. Chapter 2; Scotchman et al., 2006).  

This study demonstrates that Re and PGE values within UKAM oil reflect those of the 

KCF. Therefore, we can be confident that Re and PGEs of petroleum have been 

inherited from the source unit. 
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 The Western Canadian Tar Sands (WCTS; Fig. 5.1) contains approximately 

1.75 trillion barrels of crude oil making it one of the largest global petroleum deposits 

(Creaney and Allan, 1990), however, the WCTS are heavily biodegraded. 

Biodegradation preferentially removes light hydrocarbons (Peters et al., 1999). Even for 

moderately biodegraded oils, traditional oil to source fingerprinting techniques are 

challenged (e.g. Biomarkers and Carbon isotopes, Peters et al., 1999). A biomarker 

biodegradation scale (BBS) ranks the effects of biodegradation in oil from 1 - 10 (Peters 

et al., 2005).  For example, n-alkanes are destroyed under low levels of biodegradation 

(BBS = 1-3), the isoprenoids are destroyed under moderate levels of biodegradation 

(BBS = 2 - 4) and the aromatic steroids are destroyed under high levels of 

biodegradation (BBS = 8 - 10; Peters et al., 2005). Biodegradation varies in the WCTS 

from a BBS level of ~4 in the Peace River deposit to 8 in the Athabasca deposit (Zhou 

et al., 2008; Fig. 1). As a result, the source(s) of the WCTS are highly debated (Brooks 

et al., 1988; Riediger, 1990; Creaney and Allan, 1990; 1992; Allan and Creaney 1991; 

Barson et al., 2000; Riediger et al., 2000; Fowler et al., 2001; Zhou et al., 2008; Higley 

et al., 2009). 

There are currently two main theories for the source of the WCTS. The first 

proposes that mass balance calculations rule out a single source unit, and, as a result up 

to four units from the Western Canadian Sedimentary Basin (WCSB) could have 

formed / contributed to the WCTS. These are, in order of importance, the Lower 

Jurassic Gordondale Fm. (previously the Nordegg; Asgar-Deen et al., 2004), the 

Devonian-Mississippian Exshaw Fm., and the Middle Triassic Doig and Upper 

Devonian Duvernay Fms. (e.g., Creaney and Allan, 1990; 1992; Allan and Creaney 

1991; Higley et al., 2009). The second theory argues that, when the effects of 

biodegradation are removed, there is sufficient geochemical evidence available to 

suggest a single source (e.g., Brooks et al., 1988). Biomarker preservation is thought to 

have been sufficient to show that, after the effects of biodegradation are removed, the 

Exshaw Fm. is the principal source of the WCTS (Barson et al., 2000; Riediger et al., 

2000; Fowler et al., 2001; Zhou et al., 2008). Furthermore, it is suggested that the 

Gordondale Fm. cannot be the source of the WCTS as, except for a region in the east of 

the WCSB, generated oil would be trapped by the overlying impermeable Lower-

Jurassic Poker Chip Fm. and oil production from the exposed Gordondale Fm. would 

only be sufficient to fill the Peace River deposit (Riediger, 1990). However, Higley et 

al. (2009) demonstrate that the area of Gordondale Fm. that is hydrocarbon mature is 

17.3 times greater than that of Riediger (1990), and that that Poker Chip trapping 
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mechanisms are limited. Therefore, long distance petroleum migration of up to 500 km, 

the same scale as the Phosphoria petroleum system (Claypool et al., 1978), could have 

occurred during the formation of the WCTS (Higley et al., 2009). 

Rhenium and Os are concentrated in the asphaltene fraction of oil (Selby et al., 

2005; Selby et al., 2007). As a result of heavy biodegradation, both Re and Os are 

enriched in the WCTS (Selby and Creaser, 2005).  Petroleum Re – Os geochronology 

demonstrate that hydrocarbon generation occurred at 111.6 ± 5.3 Ma within the WCSB 

(Selby and Creaser, 2005). As Re and the PGEs share the same organophyllic 

behaviour, it is likely that PGEs are enriched in the WCTS, potentially making them 

suitable for PGE analysis.  Consequently this study uses PGE analysis to attempt to 

identify the source of the WCTS.  It demonstrates that maturation does not affect Pt/Pd 

values in source rocks; that Pt/Pd values within the same source unit are similar; and 

that Pt/Pd values between differing source units are distinct.  Furthermore, by 

combining Pt/Pd with the 187Os/188Os composition at the time of hydrocarbon 

generation (Osg) within the WCTS and WCSB, this study confirms that the Gordondale 

Fm. is the main source of the WCTS with a minor input from the Exshaw Fm., as 

previously hypothesised (Creaney and Allan, 1990; 1992; Allan and Creaney, 1991; 

Higley et al., 2009). 

 

5.2 Samples and Geological Setting. 

5.2.1 U.K. Atlantic margin 

The geological history of the United Kingdom Atlantic Margin (UKAM) is 

presented in Chapter 2 (section 2.2; Fig. 2.2). Briefly, the UKAM petroleum system 

comprises of a belt of Devonian to Miocene rift basins situated between the Shetland 

platform and Faroe Islands (e.g., Spencer et al., 1999; Carruth 2003; Fig. 2.1). Two 

main phases of rifting occurred during the Early Cretaceous and Late 

Cretaceous/Palaeocene forming local depocentres. Reservoirs are found in 

Devonian/Carboniferous sediments and fractured and weathered basement (e.g. 

structural trapped Clair field (e.g. Carruth 2003) and Jurassic and Palaeogene sediments 

(e.g. stratigraphically trapped Foinaven and Schiehallion fields; Spencer et al., 1999). A 

large body of geochemical and basin modelling research indicate a major Upper Jurassic 

marine source unit (equivalent to the North Sea KCF; e.g. Scotchman et al., 2006). 

Three asphaltene samples analysed for Re – Os in chapter 2 were analysed for 

PGE abundances (Clair oil field, sample G0123, well 206/8-3A; Foinaven oil field, 

samples G2075 and G2763, well 204/24A-1; Fig. 2.1). Five samples of KCF from the 



 80

North Sea Miller field (well 16/8b-a01; analysed for Re-Os in Chapter 3; Fig. 3.2) and 

three samples of UKAM KCF equivalent shale (Clair oil field, well 205/22-1A; Fig. 

2.1) were analysed for PGE abundances. The UKAM organic-rich sedimentary samples 

were also analysed for Re – Os abundances and isotopic compositions (Table 5.1).  

 

5.2.2 West Canadian Tar Sands petroleum system 

The West Canadian Sedimentary Basin (WCSB; Fig 5.1) covers an area of 

~1,400,000 km2 and contains ~1.75 trillion barrels of crude oil (cf. Creaney and Allan, 

1990). The sedimentary units within the basin were deposited in two distinct tectonic 

settings and range in age from the Early Palaeozoic to the Early Tertiary. Palaeozoic to 

Jurassic sedimentary units, dominated by carbonates, were unconformably deposited on 

the Laurention craton under passive margin conditions. Middle Jurassic to Palaeocene, 

dominantly clastic, units formed in a foreland basin succession in response to the 

Cretaceous Laramide orogeny (e.g., Creaney and Allan, 1990; Zhou et al., 2008). 

Petroleum generation in the WCSB was modelled to either have occurred as a 

result of sediment burial at ~110 Ma (e.g. Barson et al., 2000; Riediger et al., 2000; 

Zhou et al., 2008) or due to crustal down warping associated with the Laramide orogeny 

at ~ 60 - 65 Ma (e.g. Creaney and Allan, 1990; Higley et al., 2009). Direct Re – Os 

dating of oils from the WCTS demonstrated that oil generation occurred at 111.6 ± 5.3 

Ma (Selby and Creaser 2005a), which is supported by K-Ar geochronology of 

diagenetic illite from K-bentonites within the Exshaw Fm. (which forms at the same 

temperatures as hydrocarbon maturation; Meyer et al., 2008). Although the source of 

the WCTS is highly debated it is accepted that their present bituminous state is a result 

of the biodegradation of conventional oil during migration and emplacement (cf. Zhou 

et al., 2008 and references therein). 

 Despite there being no consensus on the proportion of oil sourced from the 

different units within the WCSB, the Upper Devonian Duvernay, 

Devonian/Mississippian Exshaw and Lower Jurassic Gordondale Fms. have all been 

proposed as possible source units (e.g., Higley et al., 2009 and references therein). 

Therefore, fifteen samples of these units were analysed as part of this study (Table 5.2; 

5.3). 

Two core samples of Upper Devonian Duvernay Fm were analysed for PGE and 

Re abundances as well as Re – Os isotopic composition (Table 5.2; Fig. 5.1). The 

Duvernay Fm. is comprised of two interbedded lithofacies controlled by bottom water 

oxia/anoxia: bioturbated, nodular, lime mudstones, deposited under oxic conditions and 
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unbioturbated bituminous mudstones, deposited under deep water anoxic conditions. 

The bituminous mudstones form the oil source intervals and vary from being mature to 

the south west to immature in the north east (c.f. Creaney and Allan, 1990; Cioppa et 

al., 2002).  

The PGE abundances of seven samples of regional Exshaw Fm. were 

determined (Table 5.2; Fig. 5.1). The Exshaw Fm. formed during a 

Devonian/Mississippian marine transgression and is continuous across the WCSB, 

varying in thickness from 2 – 16 m (Creaney and Allan, 1990; Creaser et al., 2002). The 

Exshaw Fm. comprises two lithofacies, a stratigraphically lower 

Devonian/Mississippian organic-rich member (TOC < 20%) and a stratigraphically 

higher Mississippian siltstone. The samples analysed in this study are all sourced from 

the lower organic-rich member, deposited in low energy anoxic conditions around 361.3 

± 2.4 Ma (Creaney and Allan, 1990; Selby and Creaser, 2005b). The Exshaw Fm. varies 

in maturity from being overmature in the south west to immature in the north east of the 

WCSB (Tmax 421 – 485 °C; Piggot and Lines, 1992; Creaser et al., 2002).  

Six samples of regional Gordondale Fm. (formally “Nordegg” member; Asgar-

Deen et al., 2004) were analysed for PGE and Re abundances as well as Re – Os 

isotopic composition (Table 5.2; Fig. 5.1). The Lower Jurassic (Sinemurian) 

Gordondale Fm. was deposited during a major marine transgression and varies from 19 

– 50m of stratigraphical thickness across the WCSB. It comprises dark brown, finely 

laminated, radioactive, calc-mudstones, containing up to 27 % TOC. The Gordondale 

Fm. is predominantly mature, only being overmature in the far south west and immature 

in the north east of the WCSB (Tmax 415 – 566°C; Creaney and Allan, 1990; Riediger 

et al., 1990; Asgar-Deen et al., 2004)  

The PGE abundances of Twenty four asphaltenes from the WCTS were 

determined. Three oils were sourced from the Athabasca deposit (wells 15-12-93-13W4, 

6-93-10W4, 95-9W4), five from Cold Lake (wells 1-14-65-2W4, 28-61-4W4), three 

from Grossmont (well 14-5-88-19W4), three from Lloydminster (wells 03-14-49-27W3, 

A12-19-50-24-W3, A13-35-49-24W3), three from Peace River (well 4-21-85-18W5), 

three from Provost (well 5-20-37-1W4) and four from Wabasca (wells 2-24-84-22W4, 

14-28-81-22W4; Table 5.3; Fig 5.1).  
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5.3  Analytical methodology 

5.3.1  Re – Os Analysis 

Previous Re – Os data from Miller oil field KCF (Chapter 3), UKAM oils 

(Chapter 2) WCSB Exshaw Fm. (Creaser et al., 2002) and WCTS (Selby and Creaser, 

2005) are reproduced in Tables 5.1, 5.2 and 5.3. Core samples from the Gordondale (n = 

6) and Duvernay (n = 2) Fms. were analysed for Re – Os abundance and isotopic 

composition (Table 5.2). Prior to crushing, the samples were polished, on a diamond 

polishing wheel, to remove cutting and drilling marks to eliminate any contamination. 

The ~50 – 80 g samples (represent ~3 cm of stratigraphy) were dried at 60 °C for ~12 

hrs, broken into chips with no metal contact and powdered in a ceramic mill. Rhenium-

Osmium isotope analysis was carried out at Durham University’s TOTAL laboratory for 

source rock geochronology and geochemistry at the Northern Centre for Isotopic and 

Elemental Tracing (NCIET) using CrVI-H2SO4 digestion. Osmium was purified from the 

CrO3-H2SO4 solution using solvent extraction (CHCl3) and micro–distillation methods. 

After the removal of Os, 1 ml of the CrO3–H2SO4 was mixed with 1 ml of Milli–Q 

water and reduced from Cr6+ to Cr3+ by sparging with SO2 in preparation for Re anion 

exchange chromatography. After chromatography the Re fraction was then further 

purified by single bead anion extraction (c.f. Selby and Creaser, 2003). 

The purified Re and Os were loaded onto Ni and Pt filaments respectively, and 

analysed for their isotopic compositions using Negative Thermal Ionisation Mass 

Spectrometry (NTIMS; Creaser et al., 1991) on a ThermoElectron (TRITON) mass 

spectrometer. Re was measured using Faraday collectors and Os in peak hopping mode 

using a secondary electron multiplier. 

Total procedural blanks for Re and Os are < 12 and < 0.5 pg, respectively, with 

an average 187Os/188Os value of ~0.4 (n = 2). Raw Re and Os oxide values were 

corrected for oxygen contribution and mass fractionation. The Re and Os isotopic 

values and elemental abundances are calculated by full propagation of uncertainties 

from Re and Os mass spectrometer measurements, blank abundance and isotopic 

composition, spike calibration, and sample and spike weights. Throughout the period of 

this study, in-house Re and Os (DROsS) standard solutions were repeatedly analysed to 

monitor instrument reproducibility. The NCIET Re standard is made from 99.999 % 

zone-refined Re ribbon and is considered to be indistinguishable from  the AB1 Re 

standard of the Department of Earth Sciences, University of Alberta. The Re standard 

runs produced average 185Re/187Re values of 0.5966 ± 0.0017 (1S.D. n = 1) 

indistinguishable within uncertainty to 0.5977 ± 0.0012 (Selby, 2007 and references 
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therein). The measured difference between the 185Re/187Re values and the accepted 
185Re/187Re value of Gramlich et al. (1973) is used to correct for sample mass 

fractionation. The average DROsS 187Os/188Os ratio, using an electron multiplier, is 

0.160797 ± 0.000214 (1 S.D. n = 3), indistinguishable from  reported DROsS values 

(0.160924 ± 0.000003 (2 SD, n=21; Nowell et al., 2008; 0.160965 ± 0.000337, Rooney 

et al., 2010)  

Source unit and oil 187Os/188Os compositions at the time of oil generation (Osg) 

are calculated using the Re – Os age of generation (UK Atlantic Margin, 68 Ma, see 

chapter 2; WCTS, 112 Ma , Selby and Creaser 2005a) and the 187Re decay constant of λ 

= 1.666 ×10-11a-1 (Smoliar et al., 1996).  

 

5.3.2  PGE Analysis 

Biodegraded oil samples from the WCTS (n = 24) and asphaltene separated 

from UK Atlantic margin oils (n = 3) were analysed for their PGE abundances using the 

following method. Asphaltene was separated from three UK Atlantic margin oils using 

the n–heptane based methodology of Speight (1998) and Selby et al. (2007). Forty 

millilitres of n–heptane was added to 1 g of oil in a 60 ml glass vial, thoroughly mixed 

and agitated for ~12 hrs. The contents of the vial were then transferred to a 50 ml 

centrifuge tube and centrifuged at 4000 rpm for 5 minutes to ensure complete separation 

of the soluble maltene and insoluble asphaltene fractions. The maltene fraction was 

decanted to waste and the asphaltene fraction was dried on a hot plate at ~60˚C.  

Oil was removed from the WCTS using a method modified from Selby et al., 

(2005). Approximately 1 g of WCTS was washed in ~1/2 ml of CHCl3 which was then 

decanted into a 15 ml centrifuge tube. This process was repeated until the CHCl3 

remained clear. The CHCl3  + oil solution was then repeatedly centrifuged to separate 

any suspended sediment from the solution. The CHCl3  + oil solution was then 

transferred to a 22 ml glass vial and the CHCl3 evaporated at ~ 60 C. The WCTS are 

heavily biodegraded and so are naturally enriched in asphaltene, rendering separation of 

asphaltene for analysis unnecessary. 

Shale and oil were digested for PGE analysis using a method modified from 

Dale et al. (2009 and references therein). One gram of powdered shale or ~ 0.1 g of 

asphaltene were loaded into quartz high-pressure asher (HPA) vessel with a mixed 191Ir, 
196Pt and 106Pd tracer (spike) solution and inverse aqua-regia (shale - 2.5 ml 11 N HCl 

and 5 ml  16 N HNO3; oil – 1.5 ml 11 N HCl and 3 ml 16 N HNO3). The vessels were 

placed into an Anton Paar HPA (housed at NCIET) and heated to 220 °C for 13 hours at 
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~110 bars. After digestion the inverse aqua regia solution was dried, converted to the 

chloride species and re-dissolved in 4 ml of 0.2 N HCl for purification of Pd and Ir and 

Pt using anion exchange chromatography. Briefly this chromatography involved loading 

1 cm3 of AG 1x8 (100 – 200 mesh) anion resin onto the column and washing with 6 ml 

of 6 N HCl. The column was then rinsed with 10 ml of Milli Q and preconditioned with 

5 ml of 0.5 N HCl. The sample in a HNO3 solution was centrifuged and added to the 

column. The column was then washed with 10 ml of 1N HCl/HF to remove high field 

strength elements and conditioned with 10 ml of 0.8 N HNO3. The Ir and Pt were eluted 

in 12 ml of 13.5 N HNO3. The column was rinsed in 5 ml of Milli Q, washed with 10 ml 

of 1N HCl/HF and rinsed with 5 ml of Milli Q. Finally the purified Pd was eluted in 20 

ml of 9 N HCl. 

Due to the low abundance of some PGE samples, Ir, Pt and Pd were measured 

by inductively coupled plasma mass spectrometry (ICPMS) on the highly sensitive 

ThermoFinnigan Element 2 at Durham University. Solutions were introduced using a 

MicroMist micro-concentric nebuliser and ESI stable sample introduction system (dual-

cyclonic quartz spray chamber). Mixed solutions of natural PGEs and solutions of Hf, 

Zr, Y and Mo (all 1ppb) were used to quantify the degree of mass fractionation and the 

production rates of HfO+, ZrO+, YO+, and MoO+ (which possess oxides of equivalent 

mass to isotopes of Ir, Pt, and Pd) before, during and after the analysis. 

During the course of this study PGE standard solutions and the USGS Devonian 

Ohio Shale standard (SDO-1 ; Kane et al., 1990) was repeatedly analysed for PGE 

abundances (n = 5; Table 5.4).  The standard PGE solutions produced results within 

uncertainty of the known value.  The SDO1 standard produced Ir values ranging from 

0.054 to 0.051 ppb, Pt values ranging from 1.39 to 1.50 ppb and Pd values ranging from 

2.22 to 3.41. The individual measured analysis of SDO-1 yield uncertainties of ~17 %, 

~3.4 % and ~13 % (at the 2 S.D. level) for Ir, Pt and Pd, respectively (Table 5.4). 

Repeat analysis of SDO-1 yield a 2 S.D. uncertainty of 18.4%, 5.9% and 35.7% for Ir, 

Pt and Pd abundances, respectively (Table 5.4). Therefore, so as to not underestimate 

the uncertainty in our PGE data, the 2 S.D. reproducibility uncertainties for SDO-1 are 

applied as the uncertainty for the Ir, Pt and Pd for shale and petroleum samples. A 

previous study that analysed the SDO-1 standard for PGEs present data that just lie 

within uncertainty of our values (Ir = 0.077 ± 112% ppb, Pt = 2.15 ± 28% ppb, Pd = 

2.42 ± 32% ppb (Meisel and Moser, 2004). However, not only are these values 

imprecise, but the presented Re and Os values are significantly different to those 

produced at NCIET (93 ± 140% ppb Re and 1.159 ± 38% ppb Os, Meisel and Moser, 
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2004; 76.6 ± 0.9 ppb Re, 0.638 ± 0.019 ppt Os (n=6), NCIET, Du Vivier, 2010). Meisel 

and Moser (2004) only utilised a three hour digestion, therefore, it is likely that these 

differences are caused by either incomplete sample digestion or incomplete 

sample/spike equilibrium.   

Eight full procedural blanks were undertaken throughout the period of this 

study. Iridium blank values ranged from 0.1 to 0.7 pg (mean = 0.3, S.D = 0.2), Pt blanks 

ranged from 0.3 to 22.7 pg (mean = 5.5, S.D. = 8.2) and Pd blanks ranged from 72 to 

547 pg (mean = 217, S.D. 172). The highest PGE blank values (90.7, 22.7 and 547 pg 

for Ir, Pt and Pd respectivly) were all from the same batch, contaminated by a N-

benzoyl-N-phenylhydroxylamine – Chloroform solution. This solution was applied, 

after anion exchange chromatography, to remove high field strength elements that have 

PGE isotope interferences (89Y16O = 105Pd; 92Zr16O = 108 Pd; 177Hf16O = 193Ir; 179Hf16O = 
195 Pt; 180Hf16O = 196 Pt; Shinotsuka and Suzuki, 2007). Because of the ability to 

introduce contamination, this stage was not repeated during subsequent analysis.  

 

5.4 Results 

5.4.1 Re – Os. 

In UKAM source units (n = 3), Re – Os abundances range from 110.5 to 242.1 

ppb and 0.754 to 1.383 ppt, respectively. 187Rhenium/188Os and 187Os/188Os values 

positively correlate and range from 958.6 to 1216.5 and 3.048 to 3.463, respectively. 

The 187Os/188Os values calculated at the time of petroleum generation (Osg; 68 Ma, see 

chapter 2) range from 1.414 to 1.575. Osg values are calculated from data presented in 

Chapter 3 (Table 3.2) for the Miller field and range from 0.943 – 1.129 (Table 5.1). 

 The regional Gordondale Fm. samples (n = 6) contain Re – Os abundances 

ranging from 7195.3 to 574.9 and 1.12 to 6.34 ppb, respectively. 187Rhenium/188Os and 
187Os/188Os values positively correlate and range from 178.6 to 933.2 and 1.372 to 

5.900, respectively. The 187Os/188Os values calculated for the time of petroleum 

generation (Osg; 112 Ma, Selby and Creaser 2005a) range from 1.041 to 2.796. The 

regional Duvernay Fm. samples (n = 2) contain Re – Os abundances ranging from 7.41 

to 11.55 and 0.327 to 0.569 ppb, respectively. 187Rhenium/188Os and 187Os/188Os values 

positively correlate and range from 104.4 to 109.5 and 1.037 to 1.036, respectively. The 
187Os/188Os values calculated at the time of petroleum generation (Osg; 112 Ma, Selby 

and Creaser 2005a) range from 0.830 to 0.841. Rhenium – Os data for regional Exshaw 

Fm. shales have been published by Creaser et al., 2002 and Selby and Creaser (2005). 

Osg values calculated from this data range from 1.239 – 4.163 (Table 5.2). 
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5.4.2 PGEs 

The Ir, Pt and Pd abundances of samples from the KCF from the North Sea 

Miller oil field (n = 5; Table 5.1) range from 0.020 to 0.047, 2.20 to 4.66 and 3.7 to 11.5 

ppb, respectively. The Pt/Pd values vary between 0.40 and 0.54. The Ir, Pt and Pd 

abundances of samples from the KCF from the UKAM (n = 3; Table 5.1) range from 

0.040 to 0.098, 4.28 to 4.64 and 7.3 to 13.9 ppb, respectively, similar to those from the 

North Sea. The Pt/Pd values vary between 0.33 and 0.63, indistinguishable within 

uncertainty to those from the Miller Field. The Ir, Pt and Pd abundances of samples 

from regional Exshaw Fm. shales (n = 7; Table 5.2) range from 0.025 to 0.099, 1.07 to 

3.33 and 0.78 to 2.49 ppb, respectively. The Pt/Pd values range from 1.15 to 2.0. The 

Regional Gordondale Fm. samples (n=6; Table 5.2) contain 0.022 to 0.143 ppb Ir, 1.27 

to 6.45 ppb Pt and 1.40 – 8.1 ppb Pd. The Pt/Pd values range between 0.25 and 0.65. 

Regional Duvernay Fm. samples (n = 2; Table 5.2) contain 0.016 and 0.036 ppb Ir, 0.75 

and 0.85 ppb Pt and 0.77 and 0.79 ppb Pd. The Pt/Pd values for the two samples are 

0.73 and 0.76.  

Two whole oil samples from the UKAM (G2749, G2851; Table 2.1) were 

analysed for PGE abundances. However, the low abundance, hence the ICP-MS low 

signal intensity meant that the data produced was extremely imprecise (G2749 

measured Pt uncertainty 24 %, Pd uncertainty 167 %; G2851 measured Pt uncertainty 

39 %, Pd uncertainty 218 %). Therefore as PGEs are likely to be enriched within 

asphaltene, the asphaltene fraction of oil was analysed. Asphaltenes separated from 

UKAM oils contain between 0.019 and 0.157 ppb Ir, 0.23 and 10.98 ppb Pt and 2.8 to 

16.8 ppb Pd (measured Pt uncertainty = 3 – 6 %, measured Pd uncertainty = 19 – 60 %; 

n=3; Table 5.1). The Pt/Pd values range between 0.05 and 0.44. Oils from the WCTS 

(n=24, Table 5.3) contain between 0.001 and 0.134 ppb Ir, 0.07 and 8.03 ppb Pt and 

0.11 and 8.4 ppb Pd. The Pt/Pd values range from 0.03 to 10.8. 

 

5.5 Discussion 

5.5.1 Re-Os 

Rhenium – Os data from the Miller oil field KCF has been discussed in detail in 

Chapter 3. In brief, the UKAM KCF samples (n = 3) contain similar amounts of Os to 

the Miller KCF, but are enriched in Re. Therefore, the UKAM 187Re/188Os (976.7 – 

1217) and 187Os/188Os (3.057 – 2.463) values are higher in UKAM KCF than in Miller 

KCF. The limited spread in UKAM 187Re/188Os data means that they produce extremely 

imprecise geochronological data (106 ± 520 Ma; MSWD = 379). The UKAM Osg 
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(Calculated at 68 Ma; Chapter 2) are more radiogenic (1.41 – 4.57) than Miller (0.943 – 

1.129; Table 5.1). The UKAM and Miller KCF display a range of 187Re/188Os and 
187Os/188Os (346.3 – 1217 and 1.320 – 3.463, respectively) similar to those of KCF from 

Kimmeridge Bay, Dorset (Cohen et al., 1999), and Staffin, Skye (Selby, 2007). 

Therefore, it is likely that the Osg data, from the UKAM and Miller oil field, are 

representative of regional KCF.  

Six regional samples of Gordondale Fm. core are highly enriched in both Re 

(195.3 – 574.9 ppb) and Os (1.12 – 6.34 ppb; Table 5.2) and have a large spread in 
187Re/188Os and 187Os/188Os (550.4 – 1674 and 1.372 – 5.900, respectively). Despite this 

large spread in isotopic data the Re – Os regression analysis gives an age that is 

imprecise (184 ± 29 Ma; MSWD 2153). To obtain a reliable Re–Os age, as well as 

having a large spread in 187Re/188Os, the Re–Os isotopic systematics must remain 

undisturbed and the 187Os/188Os at the time of deposition (Osi) must be similar (Cohen et 

al., 1999).  Hydrocarbon maturation has been shown to not disturb the Re – Os black 

shale geochronometer (Creaser et al., 2002) and there was no evidence for disturbance 

to the core samples (e.g. calcite veining).  The Gordondale Fm. samples were collected 

to represent the regional variations within the Fm rather than for geochronology, 

therefore, due to stratigraphic variation, they have a large spread in Osi (0.34 – 0.80) 

which is responsible for the imprecision in the age. The Gordondale encompasses 

Hettangian (~199 Ma) to Toarcian (~175 Ma) age shales (Asgar-Deen et al., 2004) and 

so, although imprecise, the Re – Os age is agreement with the biostratigraphic 

constraints. The two regional Duvernay Fm. samples analysed contain lower Re and Os 

abundances than the Gordondale Fm (0.383 – 0.569 and 7.41 – 11.55 ppb, respectively; 

Table 5.2). The 187Re/188Os (104.4, 109.5) and 187Os/188Os (1.036, 1.037) values are too 

similar for Re – Os geochronology. 

The majority of the WCTS oils produce a generation age of 111.6 ± 5.3 Ma and 

a range in Osg of 1.30 – 1.76 (Selby and Creaser, 2005a). Applying this 111.6 Ma 

hydrocarbon generation age to the Gordondale, Exshaw and Duvernay Fm. Re – Os 

results produces a range in Osg from 1.041 – 2.796, 1.24 – 4.16 and 0.830 – 0.841 

respectively. The Osg of oil is inherited from the source unit (Selby and Creaser, 2005a; 

Selby et al., 2005; Selby et al., 2007; Chapter 2), therefore, due to similarities in Osg the 

WCTS could have been sourced from either the Gordondale and/or Exshaw Fms., but 

not the Duvernay Fm (Table 5.3, 5.4).  
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5.5.2 PGE variations within oils and Source Rocks 

Reported PGE values in black shale units range from 0.003 – 3.00 ppb Ir (mean 

= 0.262, 1 S.D. = 0.458, n = 138), 0.2 – 180 ppb Pt (mean = 8.26, 1 S.D. = 21, n = 138) 

and 0.27 – 106 ppb Pd (mean = 7.80, 1 S.D. = 16.5, n = 90), however the majority of 

these studies deal with either metalliferous (i.e. enriched), impact related (i.e. Ir 

anomaly) or weathered (disturbed PGE values) shales (Coveney et al., 1992; Coloder et 

al., 1992; Sawlowicz, 1993; Over et al., 1997; Woodland et al 2000; Peucker-

Ehrenbrink and Hannibal, 2000; Jaffe et al., 2002; Meisel and Moser 2004; Siebert et 

al., 2005; Schmimitz et al., 2006; Ru et al., 2007; Jaing et al., 2007; Brookfield et al., 

2010). Therefore direct comparison with this data must be treated with caution; 

however, the data presented in this study do lie within the range of published values 

(Table 5.1, 5.2). The majority of published PGE data are presented normalised to 

chondrite therefore, to aid with comparison , when the data in this study is normalised to 

chondrite (Siebert et al., 2005) Ir is the most depleted PGE, Pt is less depleted and Pd is 

the least depleted (Fig. 5.2a, c). This is the same trend as observed in the published 

literature (Coveney et al., 1992; Siebert et al., 2005; Peucker-Ehrenbrink and Hannibal, 

2000; Peucker-Ehrenbrink and Jahn 2001; Brookfield et al., 2010). Hydrogenous Pt and 

Ir can be scavenged into organic-rich sediments and the lower Ir abundances, compared 

to Pt, reflect concentrations in sea water (Coloder et al., 1992). This hypothesis is in 

direct agreement with Os enrichment in organic-rich shales (e.g. Ravizza and Thracian, 

1989; Cohen et al., 1999; Selby and Creaser, 2003; Finlay et al., 2010). Therefore, it is 

likely that the PGE values reported in this study are hydrogenous and are complexed 

into the organic fraction of organic-rich sediments.   

Reported PGE values in oils range from 0.002 – 0.37 ppb Ir (mean = 0.098, 1 

S.D. = 0.144, n=14), 0.05 – 320 ppb Pt (mean = 19.7, 1 S.D. = 75 n=18) and .003 – 16.4 

ppb Pd (mean = 3.00, 1 S.D. = 4.78, n=15; Woodland et al, 2000; Fedorov et al., 2007). 

The data presented in this study lie within this range of data (0.006 – 0.157 ppb Ir, 0.07 

– 10.98 ppb Pt and 0.11 – 16.8 ppb Pd; Table 5.1, 5.3). Furthermore, the chondrite 

normalised oil PGE plots (Figure 5.2b, d) display the same trend as those of shales, 

(Fig. 5.2a, c), suggesting that they are inherited from source units, therefore further 

supporting the hypothesis that PGEs are complexed in the organic fraction of source 

units (Woodland et al, 2000; Coloder et al., 1992).  

Figure 5.2a and 5.2c show that the KCF, Exshaw, Gordondale and Duvernay 

Fms have Pt and Pd abundances that are similar, but are enriched compared to Ir (Table 

5.1, 2). However, the gradients between Pt and Pd values, and therefore Pt/Pd ratio, 
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differ between the contrasting source units. Consequently, the Pt/Pd value is tested as a 

tool for fingerprinting an oil to its source  

 

5.5.3 Testing the effect of hydrocarbon maturation on Pt/Pd and applying Pt/Pd 

as an oil source fingerprinting tool 

To be effective as an oil source fingerprinting tool Pt/Pd values in source units 

must be; undisturbed by maturation; similar within a source unit; distinct between 

different source units within a petroleum system; and similar between oils and their 

source units. Hydrocarbon maturation has been shown to have minimal effect on Re – 

Os shale systematics (Creaser et al., 2002; Selby and Creaser, 2005b). Therefore, as the 

PGEs share the same chemical characteristics as Re-Os, it is unlikely that Pt/Pd values 

will be affected by maturation. If maturation disturbs Pt/Pd ratios it would be observed 

by either a trend to higher or lower Pt/Pd values in immature, mature and overmature 

shales of the same source unit. This is not observed in samples of different maturity 

from within the Gordondale and Exshaw Fms. (Fig. 5.3a), so, it is unlikely that 

hydrocarbon maturation significantly disturbs the Pt/Pd ratio.  

Regional KCF (North Sea Miller field and UKAM Clair field samples) possess 

Pt/Pd values that are indistinguishable within uncertainty (Miller, 0.40 to 0.54; Clair, 

0.33 to 0.63; Table 5.1; Fig. 5.3b). Platinum/Pd values are also similar within source 

formations of the WCSB (Duvernay, 1.03 – 1.07; Gordondale, 0.36 – 0.91; Exshaw, 

1.15 – 2.0; Table 5.2, 3; Fig. 5.3b). Furthermore, despite some overlap within 

uncertainty, the main Pt/Pd data clusters for the Duvernay, Gordondale and Exshaw 

Fms are distinct. This demonstrates that, Pt/Pd values are similar within distinct source 

unit formations, but differ between the proposed source units within the WCTS 

petroleum system. 

Asphaltenes separated from UKAM oils contain Pt/Pd values that range from 

0.32 ± 0.21 to 0.65 ± 0.30, indistinguishable from the range observed in KCF (Table 

5.1; Fig. 5.3b). The KCF has been demonstrated to be the dominant source unit in the 

UKAM (Chapter 2; e.g. Scotchman et al., 2006). Therefore, it is likely that the Pt/Pd 

value of the oil has been inherited from the source unit.  

 It is possible to further test this hypothesis through comparison of Pt/Pd with 

Osg.  Platinum and Pd share the same chemical characteristics and organophyllic 

affinity as Re and Os (e.g. Woodland et al., 2000) and the Osg of oil has been 

demonstrated to be inherited from source (Selby and Creaser, 2005a; Selby et al., 2005; 

Selby et al., 2007; Chapter 2).   Therefore if the Osg values of oil and source correlate 
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with Pt/Pd, it is highly likely that Pt/Pd value of the oil has been inherited from the 

source unit.  

KCF equivalent core samples utilised for PGE analysis from the UKAM yield 

an Osg (at 68 Ma; Chapter 2) between 1.41 and 1.57 (Table 5.1), and KCF samples from 

the North Sea Miller oil field have a calculated Osg between 0.943 and 1.13 (Table 5.1), 

as a result, the regional variance in KCF Osg is 0.943 – 1.57. The Osg of the UKAM 

asphaltene samples utilised in this study varies from 0.92 – 1.25 (Table 5.1), a variation 

similar to the KCF Osg. When Pt/Pd is compared to Osg, the UKAM oil data field 

overlap with the KCF data field (Fig 5.4a, b), suggesting that, in addition to the Osg 

(Chapter 2, Chapter 3, Selby et al., 2007), the Pt/Pd value of oil is inherited from the 

source unit. Therefore, as Pt/Pd is; not disturbed by hydrocarbon maturation; is similar 

within a source unit; distinct between different potential source units within a petroleum 

system; and similar within oils and their source it suggests that Pt/Pd can be used to 

fingerprint an oil to its source. 

 

5.5.4  Rhenium and PGE Fingerprinting of oils to source in the WCSB 

Oils from the WCTS contain Pt/Pd values ranging from 0.15 to 10.8, however, 

21 of the 24 data are very similar (0.15 – 1.26; Table 5.3). The main WCTS data set 

contains Pt/Pd values that are almost indistinguishable from  those observed in the 

Gordondale Fm, except for two Provost samples that have lower Pt/Pd values (Fig 

5.3b). The higher main WCTS Pt/Pd oil values (n = 5) overlap, within uncertainty, with 

those observed in the Duvernay and Exshaw Fms. This suggests that the majority of the 

WCTS have been sourced from the Gordondale Fm. with a limited input from the 

Exshaw and Duvernay Fms.  

The WCTS Osg range from 0.52 ± 0.04 – 1.76 ± 0.04 (Selby and Creaser, 2005; 

Table 5.3), lower than the majority of the Exshaw Fm. and higher than the Duvernay 

Fm. The WCTS Osg are, however, similar to those of the Gordondale Fm (Fig. 5.4c). By 

comparing the Pt/Pd and Osg of the WCTS to the source unit samples it is apparent that, 

with the exception of the Provost deposit, the majority of WCTS data are similar to the 

Gordondale Fm. (Fig. 5.4d). Accordingly, this study hypothesises that the Gordondale 

Fm is the predominant source unit for the WCTS with minor inputs from the Exshaw 

Fm.  This further suggests that the Lower-Jurassic Poker Chip Fm. does not seal the 

Gordondale Fm. as suggested by Riediger (1990) and, therefore, supports the mass 

balance calculations of Creaney and Allan (1990); (1992); Allan and Creaney (1991) 

and the 4D modelling of Higley et al. (2009).  
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The three oil samples, separate from the main WCTS data, are from separate 

deposits and lie outside of two standard deviation of the mean of the main data set 

(mean = 0.56; 2 S.D. = 0.742 ; Athabasca, 2.5; Lloydminster, 6.0;  Peace River, 11; 

Table 5.3). Their Pt/Pd values are greater than any observed Pt/Pd value presented in 

this study.   Possible explanations for these data are that they have been sourced from a 

unit, not analysed as part of this study, that is extremely enriched in Pt compared to Pd, 

that the Pt/Pd values have been disturbed, or that source to oil Pt/Pd fractionation has 

effected these samples.  Woodland et al. (2000) reported extreme Pt enrichment in an oil 

sample from the Dauntless oil field (UK North Sea) and suggested that it was due to Pt 

contamination.  Therefore the Pt enriched data must be treated with caution.  

Oils from the Provost deposit have significantly lower Osg values than the other 

WCTS (Provost = 0.52 – 0.60; WCTS = 1.42 – 1.76). The Provost oils also display 

Pt/Pd values lower than the majority of the WCTS and the source samples analysed in 

this study (Fig. 5.4c, d). Therefore, it is likely that they have been sourced from a unit 

not analysed in this study. A potential separate source for the Provost deposit is the 

Lower Cretaceous Mannville Group Ostracode bed (e.g. biomarkers, Karavas et al., 

1998; 4D modelling, Higley et al., 2009).  As the Ostracode bed is younger than the 

other proposed source units of the WCSB, it is therefore less radiogenic as shown by the 

Osg. Additional PGE analysis may prove in identifying the Ostracode bed as the source 

of the Provost oil field.  

 

5.6 Conclusions 

This study has presented Re and PGE data from the well constrained U.K. 

Atlantic Margin (UKAM) petroleum system and the poorly constrained West Canadian 

Tar Sands (WCTS) petroleum system.  This study demonstrates that the PGEs, 

specifically Pt/Pd and Os, can be a useful oil to source correlation tool.   

To be applied as an oil source correlation tool Pt/Pd must not only be similar 

between oils and their source units but also be undisturbed by hydrocarbon maturation, 

similar within a source unit and distinct between different source units within a 

petroleum system. Within the U.K. Atlantic margin petroleum system, Pt and Pd have 

been demonstrated to be enriched in the asphaltene fraction of oil. Furthermore, 

asphaltene separated from UKAM oil display Pt/Pd values that are indistinguishable 

from  those of the Kimmeridge Clay Fm., the known source unit of the UKAM (e.g. 

Scotchman et al., 2006). 
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The West Canadian Tar Sands are highly biodegraded, reducing the 

effectiveness of traditional oil source correlation methods, as a result the source of the 

WCTS is highly debated (e.g. Riediger, 1990; Higley et al., 2009).  Three possible 

WCTS source units, the Gordondale, Exshaw and Duvernay Fms, have been analysed 

for Pt/Pd to attempt to solve this debate.  Analysis of immature, mature and overmature 

samples from the Gordondale and Exshaw Fms. demonstrates that hydrocarbon 

maturation does not disturb the Pt/Pd values. Furthermore within the Gordondale, 

Exshaw and Duvernay Fms. Pt/Pd values are similar, however, the Pt/Pd values differ 

between the three formations. The majority of Pt/Pd values from WCTS deposits 

contain Pt/Pd values that are similar to the Gordondale Fm., there is also some overlap 

between samples from the WCTS and the Exshaw and Duvernay Fms. 

As the Osg of oil is inherited from source (Chapters 2 and 3; e.g. Selby and 

Creaser 2005a), to further constrain the source of the WCTS, the Pt/Pd data are 

compared to oil and source rock Osg. Within the UKAM, asphaltene Pt/Pd and Osg is 

extremely similar to that of the Kimmeridge Clay Fm, justifying this approach.  When 

this is applied to the WCTS, the Duvernay Fm. samples contain Osg values (0.830-

0.841) that are significantly lower than those of the majority of the WCTS (1.42 – 1.76), 

disqualifying it as a potential source. The majority of the WCTS oils contain Pt/Pd and 

Osg values that correlate well with the Lower Jurassic Gordondale Fm., however, three 

WCTS samples contain Pt/Pd and Osg values that are similar to those of the Exshaw 

Fm.  Therefore it is likely that the Gordondale Fm. is the predominant source for the 

WCTS with a minor input from the Exshaw Fm.  Oils from the Provost deposit have 

Pt/Pd and Osg values that are significantly lower than the other WCTS deposits and the 

three source units analysed in this study, meaning their source remains ambiguous.   
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Table 5.1 United Kingdom Atlantic Margin Re and PGE results. 
Sample Well Depth (m) Os ± Ir ± Pt ± Pd ± Re ± Pt/Pd ± 187Re/188Os ± 187Os/188Os ± Osg

c ± 
   (ppb) (ppb) (ppb) (ppb) (ppb)         

Clair Oil Field KCF 
3178 205/22-1A 3178.0 1.383 0.003 0.057 0.010 4.64 0.27 13.9 4.9 219.8 1.3 0.33 0.12 1059 6 3.057 0.003 1.41 0.01 

3178.5 205/22-1A 3178.5 1.376 0.004 0.040 0.007 4.28 0.25 7.30 2.56 242.1 1.4 0.59 0.21 1217 7 3.463 0.004 1.57 0.01 
3179 205/22-1A 3179.0 0.754 0.002 0.098 0.018 4.60 0.27 7.31 2.56 110.5 0.7 0.63 0.22 976.7 5.9 3.068 0.004 1.55 0.01 

Miller Oil Field KCFa 
AF01-

06 16/8b-a01 4738.4 0.856 0.002 0.039 0.007 2.41 0.14 4.65 1.63 58.30 0.19 0.52 0.18 384.2 1.3 1.433 0.002 1.015 0.004 

AF02-
06 16/8b-a01 4738.2 1.362 0.003 0.045 0.008 4.66 0.27 11.5 4.0 84.71 0.27 0.40 0.14 346.3 1.2 1.320 0.002 0.943 0.004 

AF03-
06 16/8b-a01 4738.0 1.285 0.003 0.042 0.008 3.91 0.23 8.01 2.80 94.33 0.30 0.49 0.17 417.0 1.4 1.501 0.002 1.050 0.004 

AF04-
06 16/8b-a01 4737.7 1.697 0.004 0.047 0.009 4.48 0.26 10.3 3.6 115.3 1.5 0.44 0.16 382.5 4.9 1.417 0.002 1.01 0.01 

AF05-
06 16/8b-a01 4737.3 0.600 0.002 0.020 0.004 2.02 0.12 3.73 1.30 50.15 0.16 0.54 0.19 482.8 1.7 1.656 0.003 1.129 0.004 

Clair Oil Field Asphalteneb 
G0123 206/8-3A - 0.227 0.003 0.019 0.003 11.0 0.6 16.8 6.3 1.47 0.04 0.65 0.25 35.12 1.18 1.055 0.032 1.02 0.05 

Foinaven Oil Field Asphalteneb 
G2075 204/24A-1 - 0.062 0.001 0.157 0.029 2.12 0.13 3.69 1.38 1.63 0.04 0.57 0.22 142.0 6.5 1.084 0.050 0.92 0.06 
G2763 204/24A-1 - 0.055 0.002 0.016 0.003 4.23 0.25 13.0 4.9 0.74 0.04 0.32 0.12 75.63 6.28 1.340 0.100 1.25 0.14 

a            Re - Os data from chapter 3 (Table 3.2) 
b            Re - Os data from chapter 2 (Table 2.2) 
c            Osg - 187Os/188Os calculated at the time of oil generation (68Ma; see chapter 2) 
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Table 5.2. West Canadian Sedimentary Basin Re and PGE results. 
Sample Well Depth (m) Maturity Os ± Ir ± Pt ± Pd ± Re ± Pt/Pd ± 187Re/188Os ± 187Os/188Os ± Osg

c ± 

    (ppb) (ppb) (ppb) (ppb) (ppb)        (112 Ma) 

Gordondale Fm.a 
DS09-03 07-31-79-10w6 1557 M 6.34 0.02 0.14 0.03 6.45 0.38 7.27 2.54 574.9 1.9 0.89 0.31 550.4 1.9 2.116 0.003 1.096 0.004 
DS10-03 14-24-80-7w6 1183.5 M 1.86 0.01 0.022 0.004 2.90 0.17 7.01 2.45 369.2 1.2 0.41 0.15 1674 6 5.900 0.010 2.796 0.011 
DS11-03 14-24-80-7w6 1190.4 M 1.83 0.01 0.061 0.011 3.44 0.20 5.16 1.81 229.9 0.8 0.67 0.24 885.8 3.2 3.655 0.007 2.013 0.008 
DS12-03 8-26-69-7w6 2271.4 O 6.13 0.03 0.072 0.013 2.89 0.17 8.06 2.82 195.3 0.7 0.36 0.13 178.6 1.0 1.372 0.009 1.041 0.009 
DS14-03 10-17-84-22w5 2361 I 1.12 0.00 0.038 0.007 1.27 0.08 1.40 0.49 196.2 0.7 0.91 0.32 1352 5 4.748 0.012 2.243 0.011 
DS26-03 6-29-85-11w5 1148.68 M 3.05 0.01 0.14 0.03 5.96 0.35 6.95 2.43 402.6 1.4 0.86 0.30 933.2 3.3 3.716 0.005 1.986 0.008 
Exshaw Fm.b 
PEX10 3-19-80-23W5 1756.5 I 0.495 - 0.099 0.018 1.07 0.06 0.84 0.29 32.25 - 1.3 0.4 435.70 - 3.167 0.011 2.32 - 
PEX11 13-18-80-23W5 1748.8 I 0.644 - 0.034 0.006 1.14 0.07 0.81 0.28 49.10 - 1.4 0.5 535.30 - 3.685 0.002 2.64 - 
PEX12 13-18-80-23W5 1750.9 I 1.15 - 0.048 0.009 2.18 0.13 1.27 0.44 71.18 - 1.7 0.6 408.50 - 3.009 0.001 2.19 - 
PEX13 4-23-72-10W6 3570.4 O 0.290 - 0.025 0.005 1.53 0.09 0.78 0.27 31.28 - 2.0 0.7 904.60 - 5.955 0.004 4.16 - 
PEX14 4-23-72-10W6 3567.7 O 0.811 - 0.029 0.005 2.00 0.12 1.34 0.47 42.26 - 1.5 0.5 326.90 - 2.467 0.003 1.76 - 
PEX20 8-29-78-01W6 2099.1 M 1.38 - 0.060 0.011 3.33 0.20 2.49 0.87 92.53 - 1.3 0.5 409.43 - 3.038 0.001 2.71 - 
PEX21 8-29-78-01W6 2099.2 M 0.698 - 0.050 0.009 1.44 0.08 1.25 0.44 19.98 - 1.2 0.4 163.20 - 1.561 0.001 1.24 - 

Duvernay Fm. 
DS44-03 2-12-50-26W4 1751.6 - 0.383 0.002 0.036 0.007 0.79 0.05 0.77 0.27 7.41 0.03 1.0 0.4 104.4 0.6 1.037 0.006 0.841 0.007 
DS69-03 8-35-31-25W4 2340.9 - 0.569 0.002 0.016 0.003 0.85 0.05 0.79 0.28 11.55 0.04 1.1 0.4 109.5 0.5 1.036 0.004 0.830 0.006 
a             Maturity from Riediger and Bloch (1995)                   
b             Maturity and Re - Os data from Creaser et al. (2002)                 
c             Osg -  187Os/188Os calculated at the time of oil generation (112 Ma; Selby and Creaser, 2005)  
-         Undisclosed value                    
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Table 5.3 West Canadian Tar Sands Re and PGE  results.  
Samplea Well/Core Os ± Ir ± Pt ± Pd ± Re ± Pt/Pd ± 187Re/188Os ± 187Os/188Os ± Osg

b ± 
  (ppb) (ppb) (ppb) (ppb) (ppb)        (112 Ma) 

Athabasca 
DS49-

00 15-12-93-13W4 0.074 0.001 0.081 0.015 3.49 0.21 1.40 0.52 12.9 0.1 2.5 0.95 1231 28 3.680 0.093 1.42 0.05 

6403^ 6-93-10W4 0.144 0.002 0.018 0.003 0.48 0.03 0.63 0.24 26.2 0.1 0.77 0.29 1331 23 4.138 0.085 1.69 0.05 
6438^ 95-9W4 0.062 0.001 0.011 0.002 0.40 0.02 1.02 0.38 11.2 0.1 0.39 0.15 1291 33 3.800 0.11 1.43 0.05 

Cold Lake 
DS39-

00 1-14-65-2W4 0.169 0.002 0.090 0.017 5.78 0.34 5.16 1.93 25.8 0.1 1.1 0.4 1072 20 3.624 0.076 1.65 0.05 
655^ 28-61-4W4 0.288 0.006 0.007 0.001 1.54 0.09 4.26 1.60 50.1 0.2 0.36 0.14 1233 40 3.735 0.17 1.47 0.08 
667^ - 0.230 0.002 0.020 0.004 1.34 0.08 1.88 0.71 42.7 0.1 0.71 0.27 1369 17 4.210 0.006 1.69 0.02 
6400^ - 0.235 0.003 0.018 0.003 0.77 0.05 0.61 0.23 40.7 0.1 1.3 0.5 1227 17 3.738 0.067 1.49 0.03 
6401^ - 0.133 0.002 0.019 0.003 0.33 0.02 0.56 0.21 23.6 0.1 0.59 0.22 1257 21 3.762 0.069 1.46 0.04 

Grosmont 
DS46-

00 14-5-88-19W4 0.132 0.001 0.010 0.002 0.21 0.01 0.49 0.18 23.9 0.1 0.42 0.16 1304 12 3.961 0.040 1.57 0.02 

DS47-
00 14-5-88-19W4 0.168 0.001 0.060 0.011 5.40 0.32 8.06 3.02 29.9 0.1 0.67 0.25 1283 11 3.950 0.035 1.60 0.02 

DS48-
00 14-5-88-19W4 0.139 0.001 0.011 0.002 0.38 0.02 0.57 0.21 24.6 0.1 0.66 0.25 1192 11 3.696 0.034 1.51 0.02 

Lloydminster 
656^ 03-14-49-27W3 0.147 0.002 0.010 0.002 1.11 0.07 1.33 0.50 22.2 0.1 0.83 0.32 1028 17 3.303 0.007 1.42 0.02 
664^ A12-19-50-24-W3 0.136 0.002 0.060 0.011 8.03 0.47 6.95 2.61 24.0 0.1 1.2 0.4 1260 25 3.976 0.011 1.66 0.03 
666^ A13-35-49-24W3 0.150 0.002 0.018 0.003 4.44 0.26 0.74 0.28 24.2 0.1 6.0 2.28 1134 19 3.650 0.075 1.56 0.04 

Peace River 
DS28-

00 4-21-85-18W5 0.064 0.001 0.009 0.002 1.20 0.07 0.11 0.04 12.4 0.1 11 4 1404 44 4.018 0.13 1.44 0.07 

DS29-
00 4-21-85-18W5 0.058 0.001 0.074 0.014 5.87 0.35 7.27 2.73 11.3 0.1 0.81 0.31 1428 38 4.077 0.11 1.46 0.06 

DS30-
00 4-21-85-18W5 0.070 0.001 0.006 0.001 0.29 0.02 1.04 0.39 13.7 0.1 0.28 0.11 1429 34 4.102 0.10 1.48 0.05 
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Table 5.3 cont. West Canadian Tar Sands Re and PGE  results. 

Samplea Well/Core Os ± Ir ± Pt ± Pd ± Re ± Pt/Pd ± 187Re/188Os ± 187Os/188Os ± Osg
b ± 

  (ppb) (ppb) (ppb) (ppb) (ppb)        (112 Ma) 
Provost 
DS42-

00 5-20-37-1W4 0.041 0.001 0.001 0.000 0.07 0.00 1.65 0.62 2.78 0.03 0.04 0.02 372 14 1.204 0.076 0.52 0.04 

DS43-
00 5-20-37-1W4 0.045 0.001 0.024 0.004 0.24 0.01 8.37 3.14 2.88 0.02 0.03 0.01 354 10 1.200 0.058 0.55 0.03 

DS45-
00 5-20-37-1W4 0.057 0.001 0.006 0.001 0.33 0.02 1.49 0.56 3.92 0.03 0.22 0.08 383 13 1.312 0.070 0.60 0.04 

Wabasca 
DS31-

00 2-24-84-22W4 0.133 0.002 0.134 0.025 6.62 0.39 7.01 2.63 23.1 0.1 0.95 0.36 1230 23 3.693 0.096 1.44 0.05 

DS32-
00 2-24-84-22W4 0.127 0.001 0.005 0.001 0.19 0.01 1.22 0.46 21.7 0.1 0.15 0.06 1200 13 3.641 0.004 1.44 0.02 

DS34-
00 2-24-84-22W4 0.227 0.002 0.007 0.001 0.22 0.01 1.18 0.44 40.2 0.1 0.19 0.07 1259 11 3.791 0.035 1.48 0.02 

650^ 14-28-81-22W4 0.225 0.003 0.006 0.001 0.31 0.02 1.17 0.44 41.2 0.1 0.27 0.10 1359 18 4.252 0.067 1.76 0.04 
a           Re - Os data from Selby and Creaser, (2005) 
b                Osg - 87Os/188Os calculated at the time of oil generation (112 Ma; Selby and Creaser, 2005) 
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Table 5.4 USGS Devonian Ohio Shale Standard PGE results.  

Run Ir ± a Pt ± a Pd ± a 
 (ppb)  (ppb)  (ppb)  

1 0.049 18% 1.45 5.4% 2.22 14% 
2 0.051 20% 1.43 4.4% 3.41 11% 
3 0.041 17% 1.45 2.4% 2.30 12% 
4 0.050 13% 1.50 3.7% 2.66 13% 
5 0.044 18% 1.39 3.6% 2.87 16% 

Mean 0.047 17% 1.44 3.9% 2.69 13% 
       

2 Standard Deviations 0.009  0.09  0.96  
   2 Standard Deviations percentage 

of Mean 
18.4%  5.9%  35.7% 

 
       

a        Measured individual run uncertainties      
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Figure 5.1 Location Map of the West Canadian Tar Sands, Gordondale and Exshaw 
Fm samples utilised in this study. Abreviations; Sk = Saskatewan; AB = Alberta; BC = 
British Columbia (modified from Selby and Creaser 2005a; Creaser et al., 2002; 
Riediger et al., 1995). 
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Figure 5.2 Chondrite normalised PGE and Re values for a) Kimmeradge Clay Fm. Shales; b) UKAM oil; c) Gordondale, Exshaw and Duvernay 
Shales; d) West Canadian Tar sands. Condrite values are 486 ppb Os; 481 ppb Ir; 990 ppb Pt; 560 ppb Pd 36.1 ppb Re; (Siebert et al., 2005). See text 
for discussion. 
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Figure 5.3 Platinum/Pd values for a) oils and source units; b) Gordondale and Exshaw 
Fm samples of different maturities. See text for discussion. 
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Figure 5.4 Osg vs Pt/Pd (where Osg is 187Os/188Os at the time of petroleum generation) calplots for; a) UKAM raw data; b) UKAM source rock and oil 
PGE data; c) WCSB and WCTS raw data; d) WCSB and WCTS source unit and oil PGE data. Pt/Pd uncertainty bars are 2 S.D., Osg uncertainties are 
smaller than data points. See text for discussion.
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CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 
The research presented in this thesis has increased the knowledge of Platinum 

Group element (PGE) and Rhenium – Osmium systematics in petroleum systems.  

Specifically it is demonstrated that the Re – Os geochronometer absolutely dates the 

timing of oil generation.  Furthermore a new geochemical technique enables the 

isolation of Platinum Group Elements (PGEs) which, combined with Os isotopes, has 

enabled the development of a new oil – source fingerprinting tool unaffected by 

biodegradation. This demonstrates the applicability of utilising Rhenium and the PGEs 

to further both the spatial and temporal constraints on global petroleum systems. 

In Chapter 2 eighteen oils from the UK Atlantic Margin have provided a Re – 

Os age of 68 ± 13 Ma.  This age is in excellent agreement with both basin modelling 

and 39Ar/49Ar feldspar cement ages.  To date Re – Os geochronology of petroleum has 

been confined to oils with an uncertain source unit and, therefore, it is uncertain if the 

ages produced record oil generation, migration or emplacement. The oils studied in this 

chapter have a well constrained source, an Upper Jurassic marine shale, equivalent to 

the North Sea Kimmeridge Clay Fm.  Through the use of HPLC, δ13C, GC and GCMS 

the source of the oils is confirmed to be the Upper Jurassic marine shale. Also the 

hypothesis that the Os isotopic composition of oils and source units at the time of 

generation can be used as an oil – source fingerprinting tool is demonstrated to be valid.  

Therefore, using this data, it is concluded that the Re – Os ages record the timing of oil 

generation.  This provides important temporal constraints for future basin modelling and 

petroleum exploration in the UK Atlantic Margin and worldwide petroleum systems.  

In chapter 3 the controversial hypothesis that unradiogenic Os isotope values 

reported from the Brent Oil Field, UK North Sea, are inherited from a previously 

unknown late Jurassic source unit has been investigated.  It is demonstrated that wells in 

the Viking Graben and main East Shetland Basin contain oils with an unradiogenic Os 

isotope composition (0.13 – 0.40).  However, oils from the Moray Firth and Central 

Graben contain radiogenic Os isotope compositions (1.02 – 3.15).  Re – Os analysis of 5 

Kimmeridge Clay core samples demonstrates that the radiogenic values associated with 

oils from the Central Graben and Moray Firth are as expected from a Kimmeridge Clay 

Fm. However, the unradiogenic values from the Viking Graben and main East Shetland 

Basin can not be inherited from the Kimmeridge Clay Fm. The overwhelming body of 

evidence that the Kimmeridge Clay Fm. is the source unit for North Sea oil makes the 

hypothesis that the unradiogenic Os isotope values are inherited from an unknown 
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source unlikely.  An alternative hypothesis is proposed that the oils have had their Os 

isotope systematics altered by unradiogenic hydrothermal fluids either sourced from 

intrusive mafic igneous units or the mantle. This hypothesis is supported by studies of 

the Miller and Sliepner oil fields (Viking Graben) which demonstrate that they contain 

up to 30 mol% CO2 with a mantle/mafic igneous δ13C signature.  Furthermore Noble 

gas studies of the Magnus oil field (East Shetland basin) demonstrate that there has to 

have been a mantle component to these oils.  Structural analysis of the Viking Graben 

and main East Shetland basin demonstrate that they have undergone increased 

stretching and strain localisation along the main basin bounding faults when compared 

to the Moray Firth and central graben.  This has caused increased Cenozoic intrusive 

mafic volcanism within the Viking Graben and East Shetland Basin and also possibly 

has enabled the main basin bounding faults and shear zones in the to propagate to 

sufficient depth to act as a conduit for mantle fluids.  This demonstrates that Os isotopes 

can be used to track crustal scale fluid dynamic processes as well as acting as a tool to 

identify oil migration pathways in extensional basins, therefore increasing the spatial 

understanding of petroleum systems. 

Chapters 2 and 3 both demonstrate that it is possible to use Os isotopes to 

fingerprint an oil to its source if the Os isotope signature of the oil and source are 

known.  In chapter 4 the potential variability of Os isotopes within a global source unit, 

the Ordovician/Silurian shales found at the Ordovician/Silurian boundary GSSP at 

Dob’s Linn, Scotland, is investigated.  The late Ordovician was affected by a glacial 

episode which caused the second largest mass extinction.  Initial 187Os/188Os (Osi) 

values integrated with new δ13Corg data for this section to track this glaciation, are 

presented.  Increasingly radiogenic Os values at the base of the section (~0.3 to ~1.1) 

track increased silicate weathering which is thought to have draw down enough CO2 to 

cause global cooling and the glaciation.  The Hirnantian glaciation is reflected by the 

global positive Hirnantian Isotopic Carbon Excursion.  The Osi at Dob’s Linn over this 

period is relatively unradiogenic (~0.6), reflecting a reduced input of radiogenic Os into 

sea water due to reduced chemical weathering rates and ice cover.  There is a rapid 

increase to radiogenic Os isotopic values during the period of deglaciation as increased 

chemical weathering rates combined with easily leached glacial material lead to a 

sudden increase in radiogenic Os to sea water.  Before this study the Hirnantian 

glaciation has been identified by δ13C chemostratigraphy.  This study has demonstrated 

the first use of 187Os/188Os chemostratigraphy for the Paleozoic as a proxy for 

reconstructing the Earth’s climate system, particularly palaeoceanography.  This study 
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also demonstrates that source rocks can have significantly different Os isotope 

compositions within a small amount of stratigraphy (e.g. 0.6 – 1.1 over 19 cm of 

stratigraphy).   

In cases such as Chapter 4, where a source unit has a significant spread in Os 

isotopic values, the usefulness of Os isotopes as an oil source fingerprint is diminished.  

In Chapter 5 therefore it is demonstrated that combining the 187Os/188Os value at the 

time of hydrocarbon generation (Osg) with other PGEs, specifically Pt/Pd, can be used 

to fingerprint oil source.  It is demonstrated that Pt/Pd values are: Unaffected by 

petroleum maturation; similar within individual source units; distinct between differing 

source units within a petroleum system; and within the UK Atlantic margin, similar 

between oils and the known source.  Therefore this study applies this technique to a 

petroleum system with a highly debated source, the West Canadian Tar Sands.  The 

majority of oils from within the West Canadian Tar Sands contain Pt/Pd and Osg values 

that correlate well with the Lower Jurassic Gordondale Fm. There is also a slight 

overlap with data from the Exshaw Fm. Therefore, the Gordondale Fm. is proposed to 

be the major source unit for the West Canadian Tar Sands with minor inputs from the 

Devonian/Carboniferous Exshaw Fm.  

In conclusion, the aims of this project have been achieved through: 

 

1. Demonstrating that the Re – Os petroleum geochronometer records the timing of 

petroleum generation. 

2. Demonstrating that the 187Os/188Os value at the time of hydrocarbon generation 

can be used to help constrain the source of petroleum. 

3. Demonstrating that the Re – Os petroleum system can be disturbed by natural 

processes, yet, still provide important information about petroleum systems. 

4. Demonstrated that 187Os/188Os value at the time of deposition can vary 

dramatically within a small stratigraphic interval (Dcm scale) 

5. Demonstrate that the 187Os/188Os value at the time of deposition can act as a 

weathering proxy and so provide increased paleoclimate and palaeogeodynamic 

understanding.  

6. Demonstrating that Re and the PGEs, can be a powerful oil source fingerprinting 

tool. 
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6.2 Future Work 

The studies that form this thesis do raise some further questions.  Chapter 1 

produces two robust ages for generation in the UK Atlantic Margin.  However the Re – 

Os data from two samples do not form part on these ages.  It is possible that these 

samples relate to an oil generation event hinted at by 40Ar/39Ar K feldspar cement 

bearing oil and aqueous fluid inclusions, in a single Foinaven well (~113 Ma; Mark et 

al., 2010).  Further analysis of extra samples from other fields within the UK Atlantic 

margin (e.g. Loyell) and Faroes (e.g. Longan well; 6005/15-1) may identify any further 

oil generation events within the petroleum system. 

Chapter 3 records disturbance to the Re – Os geochronometer through 

contamination by mantle like fluids, hypothesised to have propagated up large scale 

basin bounding faults.  Rhenium – Os analysis of pyrite mineralisation within basin 

bounding faults could help prove this hypothesis.  If fluid related pyrite within these 

faults contained a mantle like initial Os isotope composition then it would be likely that 

the fluid is mantle sourced, however if the pyrite produces an age that corresponds to 

the Cenozoic intrusive volcanism, then that would be the probable source.  This is not 

possible in the Viking Graben, however, large scale carboniferous basin bounding faults 

outcrop within the UK (e.g. Ninety Fathom Fault; Knott et al., 1996). 

Chapter 4 demonstrates how Osi can record changes in silicate weathering over 

the Hirnantian glaciation.  This study only covers one section, the Ordovician/Silurian 

GSSP at Dob’s Linn, Scotland.  Therefore, whether the Osi signal recorded in Dob’s  

Linn is recording global sea water Osi  or just the Osi of the Iapetus Ocean is open to 

debate.  It is unlikely that the Global and Iapetus Oceanic Osi profiles would differ in 

shape; however they may differ in absolute Osi values (Du-Vivier, 2010).  Analysis of a 

Ordovician/Silurian section outside of Iapetus (e.g. South China; Fan et al., 2009) 

would answer this.  However, unaltered Ordovician/Silurian shale sections are rare. 

Chapter 5 applies Rhenium and the PGEs as an oil source fingerprinting tool 

within well and poorly constrained petroleum systems and identified the Gordondale 

Fm. as the likely main source of the WCTS. However, the source of the Provost oil 

deposit was also not identified.  Further analysis of other West Canadian Sedimentary 

Basin source units (e.g. Doig Fm., Manville Ostracode Fm.; Higley et al., 2009) could 

enable the identification of the source of this deposit.  Furthermore to confirm that the 

PGEs can be used as an oil source fingerprint several more studies should be 

undertaken. For example, analysing KCF from Kimmeridge bay, Dorset, and, Staffin, 

Skye will provide a full Pt/Pd variation within regional KCF of different maturities. 
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Also needed are further repeat analyses of the SDO-1 standard (n > 15) to constrain 

PGE uncertainty and achieve robust PGE SDO-1 values.  Furthermore, analysis of other 

well understood petroleum systems with known source units would confirm that the 

PGEs can be used for oil source fingerprinting.  

 The application of PGE fingerprinting also provide avenues of exciting new 

research outside of Geology, namely, Archaeology and Forensic Science. 

Archaeologically, I wish to test if Re, PGEs, Major and Trace elements can be utilised 

to identify where Ceramic Building Material (CBM; pottery, brick and other ceramics) 

were made, i.e. the source of clay.  The applicability of this elemental tracing is hinted 

at in figure 6.1 where a CaO – MgO plot shows that CBM made by the VI legion in the 

UK has distinct values to those of Roman CBM from The Netherlands, Belgium and 

Germany (De Clercq et al., 2008) and Southern Italy (Eramo et al., 2004) as well as 

typical kaolinite and illite (Deer et al., 1992).  To further investigate this, samples of 

Roman CBM and the known source clay have been collected from the York 

Archaeoological Trust (YAT; Hungate site).  An aliquot of clay will be air dried and a 

second aliquot will be baked in conditions similar to those hypothesised to have been 

used during the roman period (Eramo et al., 2004).  By analysing this large suite of 

elements (Major, Trace, Re and PGEs), and comparing the results, it will be possible to 

identify the level of analysis needed to fulfil the aims of this study.  For example, if 

major element compositions, analysed quickly and cheaply by XRF, are shown to be 

sufficient then there will be no need to apply the complex, time consuming and 

expensive PGE analysis in future studies.  If successful I will seek to develop these 

methods further to geochemically identify the sources of pottery within Medieval York 

and Roman Britian, through collaborative research with the YAT.   

A second area I wish to develop uses of the Re and PGE fingerprinting tool is 

Forensic Science.  Lead isotopes have been applied to demonstrate the applicability of 

utilising isotopic and elemental analysis to shooting incident investigations (Zeichner et 

al., 2006).  However, lead isotopes are easily contaminated, e.g. skin oil).  I aim to 

analyse and fingerprint ammunition from different batches and makes of .22 rimfire 

ammunition (Eley Tenex, Match, Sport and Club; RWS R50 and Rifle match; Lapua X-

Act, Midas+ and Centre X. .22 rimfire ammunition has been chosen for analysis 

because I may legally purchase and store it under my firearms licence).  It has been 

demonstrated that considerable variability exists amongst lead sources (Koons and 

Grant, 2002), making it likely that they will be amenable to PGE fingerprinting, which 

are less likely to be contaminated than lead isotopes.  If it can be shown that bullet 
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heads, cartridge cases, powder and powder residues are distinct between differing 

batches and makes of ammunition it will be possible to fingerprint a bullet removed 

from a crime scene to it’s batch.  Furthermore, Zeichner et al. (2006) demonstrate that 

thorough cleaning of firearms does not completely remove lead deposits, therefore it 

may be possible to fingerprint a bullet to the weapon it was fired from.    
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Figure 6.1 CaO vs MgO plot of Ceramic Building Material (CBM) and Clays from the VI 
Legion, UK (Finlay, unpublished data). The Low Countries (The Netherlands, Belgium and 
Germany; De Clercq et al., 2008), Southern Italy, (Eramo et al., 2004) as well as typical 
kaolinite and illite (Deer et al., 1992).  The CBM material from different sources appear 
distinct. 
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Here we present initial 187Os/188Os (Osi) values integrated with δ13Corg for the first Paleozoic section — the
Ordovician/Silurian boundary GSSP at Dob's Linn, Scotland. Our 187Os/188Os data tracks major changes in
climate that occurred during the Late Ordovician (Hirnantian glaciation), which coincides with the second
largest known mass extinction. During the complanatus and early anceps Biozones Osi values increase from
0.28–1.08. This provides evidence for a period of increased silicate weathering of radiogenic continental
crust, likely from the Caledonian Orogen. This increase in weathering was likely the driving mechanism for
the drawdown in atmospheric CO2 and global cooling that resulted in the onset of the Hirnantian Glaciation.
A decrease to less radiogenic Osi occurs at the base Hirnantian extraordinarius Biozone and coincides with the
trend to more positive δ13Corg values that mark the onset of the Hirnantian Glaciation. The trend in Osi during
this interval is ascribed to Hirnantian ice cover and reduced chemical weathering rates cutting the supply of
radiogenic material to the Iapetus Ocean. The reduction in silicate weathering enabled atmospheric CO2 to
return back to greenhouse levels, causing rapid deglaciation during the mid persculptus Biozone. This period
is marked by an abrupt increase in Osi values from 0.6 to 1.08 over 19 cm of stratigraphy and coincides with
the deglacial limb of the δ13Corg profile. We interpret the Osi data to reflect the leaching of exposed
radiogenic 187Os/188Os bearing glacial deposits and increased weathering of radiogenic 187Os/188Os silicate
terrane during the deglaciation. Previous workers have identified the Hirnantian glaciation primarily
through δ13C stratigraphy. However, our Os isotope data indicate that an initial mechanism (i.e. increased
silicate weathering) was the driving mechanism behind the Hirnantian Glaciation and subsequent mass
extinction. Thus, by coupling Osi and δ13Corg proxies we provide the most direct evidence for the initiation
and cessation of the Hirnantian glaciation. Furthermore, this study demonstrates the first use of 187Os/188Os
chemostratigraphy for the Paleozoic as a proxy for reconstructing the Earth's climate system, particularly
palaeoceanography.
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1. Introduction

The Late Ordovician Hirnantian stage records the second largest
mass extinction of the Phanerozoic Eon (Sheehan, 2001). This
extinction eradicated 85% of species, 61% of genera and 12–24% of
families (Brenchley et al., 2001 and references therein). The extinction
occurs during an abrupt change in climate (Hirnantian Glaciation)
that culminated in ice-sheet growth over Gondwana and a global fall
in sea-level that drained large areas of previously submerged marine
shelf (Brenchley et al., 2001; Finney et al., 2007; Trotter et al., 2008).

Global Hirnantian sections (Anticosti Is. Quebec, Long, 1993; Dob's
Linn, Underwood et al., 1997; South China, Wang et al., 1997, Yan
et al., 2009, Fan et al., 2009; Nevada, Finney et al., 1999; Estonia/Latvia,
Brenchley et al., 2003; Arctic Canada, Melchin and Holmden, 2006;
North America and China, Young et al., 2008; Fig. 1) record positive
inorganic and organic carbon-isotope excursions at the onset of the
glaciation (Fig. 2), which have been attributed to increased weath-
ering of 13C-enriched carbonates exposed during the glacio-eustatic
lowstand (e.g. Kump et al., 1999; Melchin and Holmden, 2006;
LaPorte et al., 2009). The major positive δ13Corg excursion during the
Late Ordovician is referred to as the Hirnantian Isotopic Carbon
Excursion (HICE; Bergstrom et al., 2008), which broadly coincides
with the phases of the Hirnantian extinction.

During the Cenozoic, osmium isotope (187Os/188Os) values of
organic-rich marine sediments have been used to reconstruct changes
in seawater 187Os/188Os (Pegram et al., 1992; Ravizza et al., 2001;
Ravizza and Peucker-Ehrenbrink 2003; Dalai et al., 2006; Oxburgh et
al., 2007). During the Pleistocene interglacial, seawater 187Os/188Os
ratios are more radiogenic (∼1.04) than during the glacial period
(∼0.94; Oxburgh et al., 2007). This has been interpreted to reflect the
reduction in weathering of radiogenic continental crust in response to
burial beneath ice sheets and decreased rates of chemical weathering.
However, following deglaciation increased chemical weathering
combined with exposure of easily leached glacial deposits releases
more radiogenic 187Os/188Os into the oceans (Peucker-Ehrenbrink and
Blum, 1998), thus causing a rise in seawater 187Os/188Os. In contrast to
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Fig. 1. Location maps for the study area, Dob's Linn, Scotland. Palaeogeographic map for 440 Ma (modified from Cocks and Torsvik, 2006) showing locations discussed in text; A —

Dob's Linn, Scotland; B — Anticosti Island, Quebec; C — South China; D— Nevada, USA; E — Estonia/Latvia; and F — Arctic Canada. Linn Branch Section at Dob's Linn location; 55°25′
47.56″N 003°16′72.91″W (OSGB-36), UK National Grid NT 1962, 1584. Contour lines represent 25 m elevation. Photograph of Linn Branch section taken facing North East.
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the Cenozoic glaciations, the 187Os/188Os profile of the Hirnantian
glaciation (recorded in the Dob's Linn section) reflects a much more
dramatic change (∼0.4; this study).

Herein, we document similar climatically driven shifts in silicate
weathering through the application of initial 187Os/188Os (Osi) from
ocean basin sediments preserved at Dob's Linn (Point Linn Branch
section) in the Southern Uplands of Scotland — the Global Stratotype
Section and Point (GSSP) for the basal Silurian. We discuss how Os
isotopes track events prior to, during and after the Hirnantian
glaciation and the associated implications for Earth processes during
this time. In addition to the Osi data, we present a new δ13Corg profile
for the GSSP. The two complimentary proxies track changes in
continental weathering to the Iapetus Ocean throughout the Hirnan-
tian glaciation. During the Hirnantian the Iapetus Ocean was
connected to the Rheic Ocean (Cocks and Torsvik, 2006). Climatic
events that drive silicate weathering are global (c.f. Sheehan, 2001),
and as the Iapetus and Rheic Oceans were interconnected (Fig. 1) it is
feasible that, although absolute the Os isotope composition may vary
globally, the general trend in Os isotope compositions during the Late
Hirnantian presented here may reflect that of a global oceanic
signature. This study also demonstrates the application of Os isotopes
for understanding palaeoceanographic and geological processes.
Furthermore, we present the first use of Osi stratigraphy for a
Paleozoic sedimentary succession.

2. Geological setting

The base Silurian GSSP is found in the Linn Branch section, Dob's
Linn, which is located in the Central Zone of the Southern Uplands
Terrane, Scotland (Williams, 1983; Cocks, 1985; Fig. 1; location,



Fig. 2. Stratigraphic column for the Linn Branch Section at Dob's Linn. Periods, series and stages from Ogg et al. (2008). Biozones taken from Melchin et al. (2003). Lithostratigraphy
and broad lithological changes taken fromWilliams (1986); Melchin et al. (2003); and field observations (this study). The δ13Corg profiles modified from Fan et al. (2009) to fit Dob's
Linn biostratigraphy. Abbreviations; Sil. — Silurian; Rhudd. — Rhuddanian; comp. — complanatus; extra. — extraordinarius.
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55°25′47.56″N 003°16′72.91″W (OSGB-36), UK National Grid NT
1962, 1584). The Linn Branch section is comprised of two geological
formations of the Moffat Shale Group: the stratigraphically lower
Upper Hartfell Shale, which is overlain by the Lower Birkhill Shale
(Fig. 2). The Upper Hartfell Shale is comprised of two lithologies
(Fig. 2). The major lithology is an organic-poor (∼0.1–0.4% Total
Organic Carbon [TOC]) grey shale, with no preserved graptolites or
sedimentary structure and minor amounts of disseminated pyrite. In
the studied area this unit is interbedded with six, ∼5 to 20 cm thick
bands of organic-rich (∼1–2% TOC) black to dark grey shale. These
bands are laminated and contain abundant graptolites and dissem-
inated pyrite (Armstrong and Coe, 1997).

The Lower Birkhill Shale is a black, organic-rich (TOC=0.63 to
1.69%), laminated, and graptolite-rich. Disseminated pyrite is abun-
dant throughout the unit and pyrite also forms regular sub mm layers
parallel to lamination (Armstrong and Coe, 1997). Both units are
interbeddedwith numerous b1 cm to ∼5 cm scale bentonite horizons.
This study also observed a poorly developed low angle cleavage
through the section.

The stratigraphy of the GSSP section represents a distal micro-
turbidite that was deposited on the eastern continental margin of
Laurentia during the closure of the Iapetus Ocean (Armstrong and Coe,
1997; Armstrong and Owen, 2002). The Hirnantian, specifically the
extraordinarius and persculptus Biozones (Figs. 1–3) records the
glaciation that covered Gondwana up to ∼30°S (Cocks and Torsvik,
2006). The end of this glacial period is marked by the global
deposition of black anoxic shales as the climate returned to
greenhouse conditions (Armstrong and Coe, 1997).
The black shale units of the Hartfell and Birkhill Shale Formations
are rich in numerous species of graptolites that are used as the main
criteria for defining the biostratigraphy of the Ordovician and Silurian
(cf. Lapworth, 1878; Williams, 1983; Cocks, 1985; Fan et al., 2009;
Figs. 1–3). Graptolites within these bands define the Dicellograptus
anceps Biozone (Lapworth, 1878), that have been further subdivided
into the Dicellograptus complexus and Paraorthograptus pacificus
Subzones, and the younger Normalograptus extraordinarius Biozone
(Melchin et al., 2003; Figs. 1 and 2). The graptolites, Climacograptus
hastus and Glyptograptus posterus within the anceps Biozone of the
Hartfell Shale are correlated with Australian and Chinese Ordovician/
Silurian sections (Williams, 1988). The first occurrence of Akidograp-
tus ascensuswithin the Birkhill Shale, which is used to define the base
of the Silurian, occurs 1.6 m above the base of the Lower Birkhill Shale
units (Melchin et al., 2003; Rong et al., 2006). The base Silurian is not
marked by any major lithological change.

It is important to note that there is a small fault, not discussed in
detail in the published literature, ∼50 cm below the GSSP (Fig. 1). The
displacement from this fault is masked by two bentonite horizons,
smeared into each other. The exact loss of stratigraphy is unknown,
but is likely to be ∼15 cm from field observations (this study). This
likely accounts for the differentmeasured distances between the GSSP
and Upper Hartfell/Lower Birkhill Shale formation contact of 1.72 m
(Verniers and Vandenbroucke, 2006) and 1.6 m (Cocks, 1985; this
study).

There are numerous bentonites within the Upper Hartfell Shale
and the Lower Birkhill Shale at Dob's Linn, however they are rare in
the extraordinarius to mid-persculptus Biozone, which span the glacial



Fig. 3. Stratigraphic column as in Fig. 2. The onset and end of glaciation placed as given for the Hirnantian (Brenchley et al., 2003). The δ13Corg profile comprise data from this study
and Underwood et al. (1997). The Osi (calculated at 443 Ma) profile from the Dob's Linn is used to produce a relative weathering rate. Note δ13Corg and Osi symbol sizes are greater
than uncertainty for each point. See text for discussion.
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maximum (Figs. 1–3). The rarity of bentonite horizons may relate to
the suppression of eruptions in response to the ice cover of the
Hirnantian glaciation. The numerous bentonite units within the Linn
Branch section are suggested to be the product of subduction-related,
explosively erupted ashes of intermediate to acid composition
(Batchelor and Weir, 1988; Huff et al., 1988; Merriman and Roberts,
1990; Huff et al., 1991; Cameron and Anderson, 2007). Multi-grain U–
Pb zircon geochronology of bentonites ∼4.5 m below and ∼6 m above
the Ordovician/Silurian boundary yield dates of 445.7±2.4 and
438.7±2 Ma, respectively (Tucker et al., 1990). Mathematical fitting
of these dates gives an age of 443±1.5 Ma for the Ordovician/Silurian
boundary (Geologic Time Scale 2008, Ogg et al, 2008).

The bentonite units are dominated by illite and smectite with minor
chlorite that formed during anchizone (prehnite–pumpellyite/low
greenschist facies) metamorphism (Huff et al., 1991). Peak metamor-
phism occurred at ∼340 °C during the Wenlock (428–422 Ma; Oliver
and Leggett, 1980), which coincides with the Scandian orogeny (435–
425 Ma; Trewin and Rollin, 2002). However, determining the absolute
timing of metamorphism at Dob's Linn is challenging because of the
low blocking temperature of the K–Ar systematics in illite/smectite
(I/S; ∼200 °C; Huff et al., 1991). The b0.5 µm I/S fraction from nine
bentonites in the lower Llandovery at Dob's Linn and correlated
sections in County Down, Ireland, yield a mean age of 390±10 Ma.
The K–Ar dates from Dob's Linn are 406±10 Ma and 383±10 Ma,
suggesting that metamorphism and cooling to ∼200 °C occurred by
the early-mid Devonian (Huff et al., 1991).
3. Samples and analytical methods

Samples (n=23) were collected from within the Linn Branch
Stratotype Section, Dobs Linn, for δ13Corg and 187Os/188Os analysis
during the summers of 2007 and 2008. The samples were approxi-
mately 10 cm×10 cm×3 cm (stratigraphic height) in size, weighing
∼50–80 g, and were collected from both black and grey shale
horizons, 0.9 m above to 7.1 m below the GSSP.
Carbon isotope analysis was conducted on decalcified bulk sediment
powders bymixing 3 MHClwith∼1 g powder in 50 ml centrifuge tubes
for 24 h, after which they were thoroughly washed using ultra pure
water (Milli-Q) until neutralised. The samples were dried in an oven at
60 °C for 48 h. The residuewas then reground tohomogenise the sample
and loaded into tin capsules. Stable isotope measurements were
performed at Saskatchewan and Durham using a Costech EA coupled
to a ThermoFinnigan DeltaPlus XL and a Costech EA coupled to a
ThermoFinnigan Delta V Advantage, respectively. Carbon-isotope ratios
are corrected for 17O contribution (Craig, 1957) and reported in
standard delta (δ) notation in per mil (‰) relative to the VPDB scale.
Carbon-isotope data is calibrated against international standards, L-
SVEC (δ13C=−46.6‰ VPDB) and IAEA-CH6 (δ13C=−10.45‰ VPDB;
Coplen et al., 2006). An intermediate international standard (IAEA-CH7)
yielded a δ13C value of−32.14±0.03‰ VPDB (n=12), which is within
uncertainty of the accepted value (δ13C=−32.15±0.10‰ VPDB;
Coplen et al., 2006). Data accuracy is monitored through routine
analyses of in-house standards, which are stringently calibrated against
the international standards noted above. Analytical uncertainty for
δ13Corg measurements is typically better than ±0.1‰. Total organic
carbon (TOC) data was obtained as part of this method.

Prior to crushing, all samples were polished to remove cutting and
drilling marks to eliminate any contamination. The samples were
dried at 60 °C for ∼12 h and then crushed to a fine powder ∼30 µm.
The samples of ∼50–80 g represent ∼3 cm of stratigraphy and were
broken into chips with no metal contact and powdered in a ceramic
mill. Rhenium–Osmium isotope analysis was carried out at Durham
University's TOTAL laboratory for source rock geochronology and
geochemistry at the Northern Centre for Isotopic and Elemental
Tracing (NCIET) using CrVI–H2SO4 digestion and solvent extraction
(CHCl3), micro-distillation and anion chromatography methods and
negative ionisation mass spectrometry (cf. Creaser et al., 1991; Selby
and Creaser, 2003; Selby 2007).

Rhenium–Os analysis of organic-rich rocks involves whole-rock
digestion. Previous research has shown that the Re and Os
abundances and isotopic compositions for organic-rich sediments
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predominantly reflect the hydrogenous uptake of Re and Os from
seawater (Ravizza and Turekian, 1989; Cohen et al., 1999; Selby and
Creaser, 2003). Further, the Re and Os are complexed by organic
matter (Ravizza and Turekian, 1989; Cohen et al, 1999; Selby and
Creaser, 2003). The detrital fraction of the sediment may also contain
a minor abundance of Re and Os (∼0.2 to 2 ppb Re and ∼50 ppt Os;
Esser and Turekian, 1993; Peucker-Ehrenbrink and Jahn, 2001).
However, the CrO3–H2SO4 digestion method employed here princi-
pally dissolves the organic fraction of a shale, thus principally liberates
the hydrogenous Re–Os load of the sediment (Selby and Creaser,
2003; Kendall et al., 2004).

Total procedural blanks for Re and Os are 12 and b0.5 pg,
respectively, with an average 187Os/188Os value of ∼0.4 (n=2). Raw
Re and Os oxide values were corrected for oxygen contribution and
mass fractionation. The Re and Os isotopic values and elemental
abundances are calculated by full propagation of uncertainties from
Re and Os mass spectrometer measurements, blank abundance and
isotopic composition, spike calibration, and sample and spikeweights.
Throughout the period of this study, in-house Re and Os standard
solutions were repeatedly analysed to monitor instrument reproduc-
ibility. The NCIET Re standard is made from 99.999% zone-refined Re
ribbon and is considered to be identical to the AB1 Re standard of the
Department of Earth Sciences, University of Alberta. The Re standard
runs produced average 185Re/187Re values of 0.5980±0.0019 (1S.D.
n=20) identical to 0.5977±0.0012 (Selby, 2007 and references
therein). The measured difference between the 185Re/187Re values
and the accepted 185Re/187Re value of Gramlich et al. (1973) is used to
correct for sample mass fractionation. The Os (AB2) standard is made
from ammonium hexachloro-osmate. The average 187Os/188Os AB2
ratio, using an electron multiplier, is 0.10681±0.00022 (1S.D.
n=24), identical to reported AB2 values (0.10679±0.00007, Selby,
2007 and references therein).

Initial 187Os/188Os compositions (Osi) are calculated for the time of
deposition using the age of the basal Silurian (443±1.5 Ma; Ogg et al,
2008) and the 187Re decay constant of λ=1.666×10−11 a−1 (Smoliar
et al., 1996). The calculated initial is taken to represent the Iapetus
oceanic 187Os/188Os composition at the time of sediment deposition.
Table 1
Total organic carbon, δ13Corg and Re–Os data for the Dob's Linn Basal Silurian GSSP.

Sample Distance from O/S GSSP TOCa δ13Corg Re
(m) (wt.%) (‰, V-PDB) (ppb)

AF20-07 0.90 1.57 −32.70 59.33±
DS03-04 0.07 1.57 −32.82 58.15±
DS01-04 0.03 1.41 −32.17 63.20±
DS05-04 0.03 1.41 −32.17 50.05±
AF03-07 0.00 1.66 −32.60 66.27±
DS02-04 −0.03 1.66 −32.86 64.03±
AF04-07 −0.05 1.69 −32.60 66.44±
AF07-07 −1.10 0.54 −30.77 19.94±
AF08-07 −1.51 0.91 −30.17 29.03±
AF32-07 −1.60 0.63 −30.08 11.71±
AF23-07 −1.70 0.14 −29.26 0.31±
AF24-07 −2.20 0.11 −29.15 0.16±
AF25-07 −2.40 0.15 −29.45 0.15±
AF26-07 −2.70 0.13 −29.92 0.27±
AF27-07 −3.10 0.12 −29.49 0.28±
AF11-07 −3.69 1.06 −31.02 6.71±
AF13-07 −4.85 1.25 −30.99 81.01±
AF29-07 −5.00 0.17 −29.87 8.10±
AF14-07 −5.22 2.18 −31.26 16.45±
AF15-07 −5.88 2.11 −31.59 20.25±
AF30-07 −5.90 0.03 −29.53 0.80±
AF30 rpt – – – 0.80±
AF31-07 −7.10 0.08 −31.88 0.14±

Uncertainties are given as 2σ. Samples are held by Alexander Finlay.
a Total organic carbon.
b Osi — initial 187Os/188Os composition calculated at time of deposition (443 Ma). Osi unc

188Os uncertainties.
4. Results

A δ 13Corg profile of the Dob's Linn section was determined by
Underwood et al. (1997) for chemostratigraphic correlation of Late
Ordovician successions. However, no explanation of the excursion
was given and no TOC data was reported. The TOC contents for our
samples range between 0.03 and 2.18%, which reflect lithological
variations of the Upper Hartfell Shale and Lower Birkhill Shale
(Table 1; Fig. 3). For example, the Upper Hartfell Shale black shale
bands have TOC values between 1.06 and 2.18%, whereas grey shale
units of the Upper Hartfell Shale are between 0.03 to 0.17% (Table 1).
From the base of the Lower Birkhill Shale at 1.6 m below the GSSP
within the persculptus Biozone TOC values increase from ∼0.6% to a
maximum of ∼1.7%, 0.05 m below the GSSP. Above the GSSP the TOC
values are similar (∼1.6%).

Our δ13Corg data range between −29.15 and −32.86‰ and fit the
observed trend reported by Underwood et al. (1997; Figs. 2, 3; Table 1).
Throughout the Katian (complanatus to top of the anceps Biozone; 7.1 to
3.69 m below the GSSP) δ13Corg values display a relative stable profile,
with a minor (∼0.5‰) shift tomore positive δ13Corg values. Throughout
this interval the mean δ13Corg value is −30.9‰ (S.D.=0.95, n=14;
Fig. 3). From the base of the Hirnantian (extraordinarius Biozone),
δ13Corg values become less negative, peaking at −28.2‰ at 1.72 m
below the GSSP (mid-persculptus Biozone). From here to 0.75 m below
the GSSP (upper-persculptus Biozone) δ13Corg values shift to more
negative values after which they become relatively constant at
∼−32.5‰ (S.D.=0.2, n=14).

The Re and Os abundances and 187Re/188Os and 187Os/188Os ratios
are variable throughout the studied section (Re=0.14 to 81 ppb;
Os=29 to 6393 ppt; 187Re/188Os=14.23 to 832.54 and 187Os/
188Os=0.551 to 6.972, Table 1). The uncertainty in Re and Os
abundance varies from varies from 0.12–6.92%, 0.22–1.98% and 187Re/
188Os and 187Os/188Os varies from 0.34–6.80% and 0.12–5.99%
respectively. The Osi values range from 0.28–1.08 and have uncer-
tainties of 0.41–1.08% (Fig. 3; Table 1).

From 7.1 to 4.85 m below the GSSP, within the complanatus and
anceps Biozones, the Osi increases from 0.37 to 1.08. From 4.85 to
Os 187Re/188Os 187Os/188Os Osib

(ppt)

0.20 692.9±2.8 728.4±2.8 5.995±0.013 0.598±0.003
0.19 671.4±2.8 753.0±2.9 6.291±0.014 0.713±0.003
0.21 835.9±3.1 607.5±2.2 5.243±0.009 0.744±0.003
0.17 571.1±2.6 769.8±3.1 6.437±0.016 0.730±0.003
0.22 726.9±3.2 831.5±3.2 6.972±0.016 0.812±0.004
0.21 701.7±3.1 832.3±3.2 6.972±0.016 0.806±0.026
0.22 1043±6 472.2±2.1 4.259±0.020 0.761±0.004
0.07 505.1±1.8 260.1±1.0 2.944±0.007 1.018±0.005
0.10 465.3±2.0 474.8±1.9 4.567±0.012 1.050±0.005
0.04 318.0±1.1 230.3±0.9 2.407±0.006 0.702±0.009
0.01 89.8±1.8 17.8 ±0.8 0.729±0.042 0.600±0.042
0.01 57.1±1.1 14.2±0.8 0.710±0.041 0.604±0.048
0.01 48.1±1.0 15.8±0.9 0.758±0.044 0.641±0.052
0.01 47.5±0.9 29.5±1.4 0.823±0.048 0.605±0.045
0.01 37.4±0.7 37.4±1.8 0.685±0.040 0.404±0.030
0.03 1349±9 26.9±0.2 1.047±0.016 0.850±0.014
0.27 6393±14 73.0±0.3 1.625±0.002 1.084±0.005
0.01 102.6±1.2 46.8±1.0 1.069±0.031 0.726±0.026
0.06 578.0±1.7 165.4±0.6 1.702±0.004 0.477±0.002
0.29 914±5 126.1±1.9 1.517±0.010 0.583±0.009
0.01 44.5±0.4 96.7±2.1 0.983±0.017 0.279±0.007
0.01 44.5±0.4 96.7±2.1 0.983±0.017 0.280±0.006
0.01 29.6±0.6 24.9±1.7 0.551±0.033 0.381±0.033

ertainties are calculated through full propagation of calculated 187Re/188Os and 187Os/



Fig. 4. Re–Os isochrons for the Linn Branch section. a — area surrounding the GSSP, b —

area spanning Hirnantian glaciation. Uncertainty ellipses are at the 2σ level. See text for
discussion.
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3.10 m below the GSSP within the late anceps to early extraordinarius
Biozones Osi becomes less radiogenic (∼0.4) and then remains
constant at ∼0.6 to 1.7 m below the GSSP within the persculptus
Biozone. Between 1.7 and 1.5 m below the GSSP there is an abrupt
increase to more radiogenic Osi compositions (0.6 to 1.1; Fig. 3). From
1.6 m below to 0.9 m above the GSSP within the persculptus and
ascensus Biozones Osi values decrease to 0.60 (Fig. 3).

5. Discussion

5.1. Updated Dobs Linn δ13Corg profile and δ13C throughout the
Hirnantian Glaciation

The new δ13Corg profile for Dob's Linn shows the same general
trend as other global late Ordovician/early Silurian profiles (Quebec,
Long, 1993; South China, Wang et al., 1997; Yan et al., 2009; Fan et al.,
2009; Nevada, Finney et al., 1999; Estonia/Latvia, Brenchley et al.,
2003; Kaljo et al., 2004; Arctic Canada, Melchin and Holmden, 2006;
North America and China, Young et al., 2008; Figs. 2 and 3). During
this interval the δ13Corg values change from being very similar
throughout the Katian to becoming less negative values from the
base of the Hirnantian until the mid-late Hirnantian persculptus
Biozone. At this point the δ13Corg becomes abruptlymore negative and
return to values similar to those prior to the excursion over ∼1 m. This
δ13Corg profile is known as HICE (Bergstrom et al., 2008).

The HICE is proposed to have been triggered by the increased
weathering of silicate terrains during the Caledonian Orogeny, which
resulted in the drawdown of atmospheric CO2 (Kump et al., 1999).
This reduction in greenhouse gas drove global cooling that resulted in
a glaciation and marine regression during the Hirnantian. The marine
regression caused significant areas of shallow marine carbonate to be
exposed to weathering, increasing the flux of 13C into the oceans. At
Dob's Linn this event occurs in the extraordinarius and early–mid
persculptus Biozones, 3.69 to 1.72 m below the GSSP, where δ13Corg
values become less negative peaking at −28.2‰. As global tempera-
tures fell the chemical weathering rates decreased reducing silicate
weathering and associated atmospheric CO2 drawdown. In response
atmospheric CO2 levels increased back to pre glaciation greenhouse
levels. This drove rapid deglaciation and a marine transgression,
which flooded previously exposed carbonates, thus limiting the flux of
13C to the oceans.

5.2. Re–Os systematics in the Dob's Linn section

Although not collected specifically for Re–Os geochronology,
samples spanning the GSSP (DS03-04, DS01-04, DS05-04, AF03-07,
DS02-04 and AF04-07) possess similar Osi (0.71–0.81; Table 1; Fig. 3)
when calculated at the age of the Ordovician/Silurian boundary
(443 Ma; Ogg et al., 2008). These samples, similar to the majority of
samples from organic-rich black shale horizons from the Dobs Linn
stratigraphy, are enriched in Re and Os (6.71 to 81.01 ppb Re, 317.96
to 6393.04 ppt Os; Table 1). The Re–Os data for samples DS03-04,
DS01-04, DS05-04, AF03-07, DS02-04 and AF04-07 yield a Re–Os age
(449±22 Ma, MSWD=15, Isoplot v.3 Model 3, Ludwig, 2003, Fig. 4a).
This Re–Os age is within uncertainty of the determined GSSP age
given by U–Pb zircon geochronology (443±1.5 Ma; Ogg et al., 2008).
Given the positive correlation of 187Re/188Os with 187Os/188Os and the
agreement of the determined Re–Os age with the known age of the
stratigraphic interval, we are confident that our Re–Os analyses reflect
the hydrogenous Re–Os load and that the Re–Os systematics have not
been significantly affected by weathering or Silurian lower greens-
chist metamorphism (Oliver and Leggett, 1980). This conclusion is
consistent with previous studies (e.g. Peucker-Ehrenbrink and
Hannigan, 2000; Jaffe et al., 2002; Kendall et al., 2004; Kendall et al.,
2009a,b). As a result we infer the Osi values to record that of Iapetus
Ocean contemporaneous with sediment deposition.
In contrast to the organic-rich black shales of the Dobs Linn
stratigraphy, grey shales from the Upper Hartfell Shale are less
enriched in Re and Os (0.14 to 0.89 ppb Re; 29.58 to 102.64 ppt Os;
Table 1). These samples have similar Re and Os abundances to the
average upper continental crust (Esser and Turekian, 1993; Peucker-
Ehrenbrink and Jahn, 2001; Sun et al., 2003). As a result, a minor
contribution of detritus with average upper continental radiogenic
187Os/188Os composition (∼1.4) during the whole rock digestion
process couldmodify the hydrogenous 187Os/188Os composition of the
grey shale. However, we consider our Osi grey shale data to record the
hydrogenous 187Os/188Os composition as explained below.

Firstly, four grey shale samples (AF23-07, AF24-07, AF25-07 and
AF26-07) with similar Osi (0.6–0.64; Table 1) show a positive
correlation of 187Re/188Os and 187Os/188Os values. The Re–Os age
derived from the Re–Os data is imprecise (394±200 Ma) because of
the limited spread in the Re–Os data (∼15 187Re/188Os units; ∼0.11
187Os/188Os units; Table 1; Fig. 4b). However, the nominal agreement
of the Re–Os age to the known age of the Dobs Linn section, suggests
that the grey shale Re–Os data predominantly reflect the hydrogenous
Re–Os load.

It is beyond the scope of this research to identify every source of
sediment shedding into the Iapetus Ocean during the Late Ordovician.
However, we suggest that the majority of the detritus entering into
the Iapetus Ocean was predominantly from radiogenic continental
crust from the Laurentian, Avalonia–Baltican and Siberian cratons,
with only minor mafic inputs (Wilde et al., 1986; McCaffrey and
Kneller, 1996; Oliver et al., 2000; Cocks and Torsvik, 2006). Thus, any
detrital Re and Os contribution to the grey shales should result in
radiogenic Osi compositions. In contrast, we observe significantly less
radiogenic Osi compositions (0.4 to 0.64; Fig. 3; Table 1). To generate
non hydrogenous Osi compositions of 0.4 and 0.6 would require
detrital input from less radiogenic material (e.g., ultramafic/mafic or
cosmic components), however there is no evidence for a major
increase in sourcing of unradiogenic material during the Hirnantian
(Wilde et al., 1986; Oliver et al., 2000; Shields et al., 2003).
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The Osi of samples AF23-07 and AF32-07 (1.7 and 1.6 m below the
GSSP), which border the stratigraphic interval between the Upper
Hartfell shale and Lower Birkhill are similar (0.6 and 0.7, respectively).
Despite similar Osi for samples AF23-07 and AF32-07 they contain
significantly different Re and Os abundances (0.31 and 11.71 ppb Re;
89.81 and 317.96 ppt Os; Table 1). This suggests that the Re–Os grey
shale data reflects predominantly the hydrogenous Re and Os load
and by inference the Osi is that of Iapetus Ocean at the time of
sediment deposition.

Across the Eocene–Oligocene transition (including the first
Oligocene glaciation), oxic organic-poor sediments (TOC not given;
DSDP site 522; Angola basin; Ravizza and Peucker-Ehrenbrink, 2003)
are shown to yield the same hydrogenous Osi trends as sub-oxic
organic-rich (TOC=∼0.5 to 4%) sediments from the same correlative
stratigraphic interval (ODP site 959; eastern equatorial Atlantic;
Ravizza and Paquay, 2008). The organic-poor sediments contain
similar Re and Os abundances to the grey shales of Dob's Linn (6 to
256 ppt; Ravizza and Peucker-Ehrenbrink, 2003; Dalai et al., 2006;
Oxburgh et al., 2007). Also, similar to the Dob's Linn grey shales, the
Cenozoic sediments predominantly comprise a matrix that does not
host hydrogenous Re and Os (e.g. carbonates and silicates). The
hydrogenous Re and Os is complexed by organic matter (Selby and
Creaser, 2003). From this we can suggest that the Re and Os contents
for both Dob's Linn and the Cenozoic sediments are similar and do not
reflect detrital contamination. Given the above discussionwe consider
the Osi data for the grey shales at Dobs Linn to record the hydrogenous
Osi signal of the contemporaneous Iapetus Ocean.

5.3. Tracking the Hirnantian glaciation using initial 187Os/188Os (Osi)

Throughout the complanatus and anceps Biozones, from 7.1 to
4.85 m below the GSSP, Osi compositions become more radiogenic
increasing from ∼0.37 to 1.08. The Osi abruptly increase (0.48 to 1.08)
over a short time interval (b40 cms of the anceps Biozone, 5.22 to
4.85 m below the GSSP; Fig. 3). The most radiogenic Osi (1.08) is
typically more radiogenic than the 187Os/188Os for seawater for the
entire Phanerozoic, until the last 2 Myrs, and is comparable to present
day sea water (∼1.06; Peucker-Ehrenbrink and Ravizza, 2000 and
references there in; Selby and Creaser, 2003; Ravizza and Peucker-
Ehrenbrink, 2003; Widom et al., 2004; Williams and Turekian, 2004;
Dalai et al., 2005; Dalai et al., 2006; Poirier, 2006; Burton, 2006;
Turgeon et al., 2007; Ravizza, 2007; Selby, 2007; Oxburgh et al., 2007;
Turgeon and Creaser, 2008; Selby et al., 2009). Within the same
stratigraphic interval (7.1 to 4.85 m below the GSSP) the δ13Corg
shows only a minor (∼0.5‰ increase to heavier values; Fig. 3).

The increasingly radiogenic Osi across the late Katian suggest that
the Os influx to the Iapetus Ocean became dominated by a radiogenic
crustal component. This is supported by observed concordant
increasingly radiogenic 87Sr/86Sr compositions (Shields et al., 2003).
Throughout the Early and Middle Ordovician seawater 87Sr/86Sr
decreased (0.7090 to 0.7088) with a sudden decrease across the
Middle to Late Ordovician (Late Darwillian, Sandbian and Early
Katian) to 0.7078. From this point to near the End Ordovician 87Sr/86Sr
remains stable at ∼0.7078 before becoming more radiogenic
throughout the Silurian (Shields et al., 2003). The Ordovician
unradiogenic 87Sr/86Sr values are attributed to low continental
erosion rates and an increased submarine hydrothermal exchange
rate (Shields et al., 2003). The change to radiogenic 87Sr/86Sr is
coincident with the increasingly radiogenic Osi values (∼0.3 to ∼0.6).
The source of Os to the global ocean is similar to Sr, suggesting that the
Iapetus Ocean became increasingly dominated by a radiogenic crustal
component from the Katian. Thus, we consider the predominant
detritus shed into the Iapetus Ocean to be from the radiogenic
Laurentian, Avalonia–Baltican and Siberian cratons, with only minor
mafic inputs (Wilde et al., 1986; McCaffrey and Kneller, 1996; Oliver
et al., 2000; Cocks and Torsvik, 2006). We suggest that the significant
increase in Osi relates to increased silicate weathering of the
Caledonian Orogen.

From the peak of Osi (1.08) at 4.85 m below the GSSP, Osi
compositions become abruptly less radiogenic within the extra-
ordinarius Biozone (0.85; 3.69 m below the GSSP and 0.4, 3.1 m
below the GSSP), and then remain stable (∼0.6) until 1.70 m below
the GSSP in the persculptus Biozone. This stratigraphic interval
coincides with the positive, glacial, limb of the δ13Corg excursion
(δ13Corg=−31.3 to−28.2‰; Fig. 3). Between 1.7 and 1.51 m below
the GSSP there is a very abrupt increase to more radiogenic Osi
compositions (0.6 to 1.05), which coincides with the negative,
deglacial limb of the δ13Corg excursion. From 1.6 m below the GSSP
to the top of the studied section within the persculptus and ascensus
Biozones Osi values decrease to ∼0.6.

Given the radiogenic 187Os/188Os input into the Iapetus Ocean from
the Laurentian, Avalonia–Baltican and Siberian Cratons, unradiogenic
Osi (0.4 to 0.64) would not be expected during the persculptus
Biozone, as observed here (Fig. 3). To generate Osi compositions of 0.4
and 0.6 would require detrital input from less radiogenic material
(e.g., ultramafic/mafic or cosmic components), however there is no
evidence for a major increase in sourcing of unradiogenic material
during the Hirnantian (Wilde et al., 1986; Oliver et al., 2000; Shields
et al., 2003).

The decrease in Osi coincides with the ∼4‰ increase to heavier
δ13Corg values during the same interval that globally marks the onset
of the Hirnantian glaciation. This shift in δ13Corg is attributed to the
flux of 13C into the oceans from the weathering of exposed marine
carbonates as a result of sea level fall (Kump et al., 1999; Melchin and
Holmden, 2006; LaPorte et al., 2009). The less radiogenic Osi
compositions recorded during the glacial period are likely to have
been caused by a decrease in chemical weathering rates, caused by a
reduction in global temperatures coupled with glacial ice cover that
diminished the flux of radiogenic 187Os/188Os material into both the
Iapetus and global oceans (Trotter et al., 2008). Intriguingly the Osi
during the glacial maximum (∼0.6) are higher than at the start of the
section (∼0.3). We attribute this to the weathering of radiogenic
marine sediments exposed during glacial low stand.

The observed Osi trend at Dobs Linn is similar to that associated
with Cenozoic glacial periods and is related to a marine regression
causing the exposure and weathering of young, unradiogenic,
continental shelf material (Williams and Turekian, 2004). An
increased flux of unradiogenic 187Os/188Os will cause the seawater
187Os/188Os to decrease during glacial periods, as observed at Dob's
Linn (Fig. 3). Given the short residence time of Os in the ocean (5–
50 kyrs; Oxburgh et al., 2007), we interpret the change in the Osi at
Dob's Linn to capture the time when the Hirnantian glaciation and
deglaciation caused drastic changes in continental weathering. Global
cooling and the onset of the Hirnantian Glaciation are proposed to be
caused by the drawdown of atmospheric CO2 driven by a period of
high silicate weathering (Kump et al., 1999). This hypothesis is
supported by the trend towards more radiogenic Osi (0.37 to 1.08)
during the Katian (7.1 to 4.85 m below the GSSP; Fig.3), indicating
that increased silicate weathering was the driving process for the
onset of the Hirnantian glaciation.

The rapid increase to radiogenic Osi (0.6 to 1.05 over 19 cm) during
the mid persculptus Biozone occurs at the correlative stratigraphic
interval, in addition to the δ13Corg deglacial limb, as field evidence for
deglaciation in North Africa (Le Heron et al., 2008). Post-glacial erosion
of glacial deposits provides an easily leachable source of radiogenic Os
into the oceans (Peucker-Ehrenbrink and Blum, 1998). Consequently,
erosion of glacial deposits, combined with an increase in chemical
weathering rates, rapidly increases the flux of radiogenic Os into the
Iapetus and Rheic Oceans as reflected in the rapid shift to radiogenic Osi
compositions seen at Dob's Linn. The Hirnantian spans 1.9 Ma and
covers ∼3.75 m of stratigraphy at Dob's Linn. If a constant rate of
sedimentation across the Hirnantian is assumed the compacted
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sedimentation rate is 2 m/Ma. Therefore, the rapid increase in 187Os/
188Os (over 19 cms) spans 95 ka across the deglacial period. However,
the sedimentation rate across the Hirnantian was not constant, minor
deposition occurred during the glacial maximum and maximum
deposition occurring with the deglaciation. Therefore the 19 cm of
stratigraphy which covers the deglacial period likely has a duration
b95 ka.

5.4. Comparing the Hirnantian glacial Osi profile with Cenozoic
glaciations

Osmium isotope analysis of global Eocene/Oligocene and Pleisto-
cene sediments show a correlation between 187Os/188Os compositions
and glacial/interglacial climatic conditions (Ravizza et al., 2001;
Ravizza and Peucker-Ehrenbrink, 2003; Williams and Turekian,
2004; Dalai et al., 2006; Oxburgh et al, 2007). These correlations
highlight radiogenic values occurring during interglacial periods and
less radiogenic values occurring during glacial periods. The changes
seen in the Osi compositions during the Hirnantian glaciation (∼0.6 to
1.1) are greater than that observed in the Pleistocene glacial/
interglacial periods (∼0.94 to 1.04; Williams and Turekian, 2004).
This difference relates to the climatic and geographic conditions of the
glacial and interglacial cycles of the Hirnantian and Pleistocene.

Although the Hirnantian glaciation was smaller in area than the
Pleistocene (30,000,000 km2 as opposed to 44,000,000 km2; Sheehan,
2001) it was centred near the South Pole and thus covered a large
proportion of the Gondwanan craton and little of the global ocean (Le
Heron et al., 2008). In contrast, the Pleistocene glacial maximums
covered large areas of open ocean as well as the Canadian and
Fennoscandinavian craton. However, significant areas of Archean
cratons with highly evolved radiogenic signatures remained exposed
e.g. Australasian, South American, African and Indian (Mercer, 1983;
Clark and Mix, 2002; Pearson and Wittig, 2008). From this tectonic
setting/scenario the extensive cratonic glacial cover during the
Hirnantian would have reduced the radiogenic 187Os/188Os flux into
the oceans. Furthermore, sea level fall resulting from the Hirnantian
glaciation is estimated to be b100 m compared to 100–150 m for the
Pleistocene glacial maximum (Sheehan, 2001; Brenchley et al., 2003;
Williams and Turekian, 2004). Thus, Hirnantian glaciation lead to less
exposure and reworking of radiogenic anoxic deep marine ORS (e.g.
black shales) than the Pleistocene.

Finally, CO2 levels at ∼440 Mawere ∼14 times higher than present
(Berner, 2006). This indicates, with oxygen isotopes (Trotter et al.,
2008), that global temperatures and therefore chemical weathering
rates were higher during the late Ordovician than in the Pleistocene.
Therefore, the reduction in chemical weathering rates as a result of
the Hirnantian icehouse would have been greater than during the
Pleistocene, further decreasing the input of radiogenic Os to the
Iapetus Ocean. This has been observed during the Toarcian OAEwhere
a similar magnitude Osi shift of ∼0.6 is attributed to an increase in
chemical weathering rates caused by a rise in temperature of ∼10 °C
(Cohen et al., 2004; Waltham and Gröcke, 2006). This temperature
rise is identical to that determined during the Hirnantian glaciation
(Trotter et al., 2008).

6. Conclusions

Through the integration of Osi and δ13Corg profiles at Dob's Linn it
has proved possible to track the onset and cessation of the Hirnantian
glaciation (Fig. 3). We interpret the Osi stratigraphy at Dob's Linn to
record the evolution in seawater Os isotopic composition of the
Iapetus Ocean. However, given that this seaway was connected to the
global ocean it may also reflect that of global seawater. The changes in
climate that force the trends in the profile described for Dob's Linn are
global and therefore will have the same effect on both Iapetus and the
global oceans. Thus, we hypothesise that although absolute data may
vary between Iapetus and other global Ordovician/Silurian oceans
(e.g. Rheic) the trends in the profile will be similar.

Throughout the Katian, Osi becomes increasingly radiogenic, as a
result of increased silicate weathering of radiogenic orogenic material
associatedwith the Caledonian Orogen. As a result of atmospheric CO2

drawdown, global cooling ensued, causing the onset of the Hirnantian
Glaciation. Reduced chemical weathering rates and growth of
continental ice cover significantly reduced the input of radiogenic
Os into the oceans. Increased ice volume resulted in falling sea levels,
thus exposing marine carbonates and unradiogenic shelf to weather-
ing. These new weathering regimes lead to an increased flux of 13C
and unradiogenic Os into the oceans. As a direct result of the decrease
in silicate weathering during the Hirnantian, atmospheric CO2

returned to greenhouse levels, causing rapid deglaciation during the
Late Hirnantian mid persculptus Biozone. This de-glacial period is
recorded by a dramatic rise in Osi (0.6–1.05) over 19 cm of
stratigraphy at Dob's Linn. We interpret this dramatic rise to be a
consequence of the leaching of radiogenic 187Os/188Os from glacial
deposits and increased weathering of radiogenic 187Os/188Os silicate
terrane.

The results of this study further highlight the use of Osi as a
powerful tool for understanding the Earth climate system and, in
particular, aid in monitoring changes in weathering and its affect on
palaeoceanography (e.g. Cohen et al., 1999; Ravizza and Peucker-
Ehrenbrink, 2003; Cohen et al., 2004; Oxburgh et al., 2007; Ravizza
and Paquay, 2008). In addition, the short residence time of Os (5–
50 kyrs) in comparison to Sr (1–4 Ma) allows for a greater resolution
for enhancing our understanding of palaeoenvironmental processes
(cf. Cohen et al., 1999; Peucker-Ehrenbrink and Ravizza, 2000;
Turgeon and Creaser, 2008; Selby et al., 2009; this study). For
example, diachronous Neoproterozoic Sturtian deglacial sediments
have been shown to have highly radiogenic Osi (0.82–1.00; Kendall et
al., 2006, 2009a,b). These values are remarkably similar to that
reported here for the Hirnantian deglaciation. Thus, suggesting an
increased continental weathering rate associated with deglaciation.
However, we have no known values of seawater Osi for pre/syn
Neoproterozoic Sturtian glaciation. Therefore, Osi data could provide
increased understanding of weathering rates associated with Neo-
proterozoic global glaciations.
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