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Abstract 

In this Thesis, we study some of the classical properties of an extension of the 

Skyrme model defined by adding a sixth order derivative term to the Lagrangian. 

In chapter 1, we review the physical as well as the mathematical motivation 

behind the study of the Skyrme model and in chapter 2, we give a brief summary of 

various extended Skyrme models that have been proposed over the last few years. 

We then define a new sixth order Skyrme model by introducing a dimensionless 

parameter A that denotes the mixing between the two higher order terms, the Skyrme 

term and the sixth order term. 

In chapter 3 we compute numerically the multi-skyrmion solutions of this ex­

tended model and show that they have the same symmetries with the usual skyrmion 

solutions. In addition, we analyse the dependence of the energy and radius of these 

classical solutions with respect to the coupling constant A. We compare our results 

with experimental data and determine whether this modified model can provide us 

with better theoretical predictions than the original one. 

In chapter 4, we use the rational map ansatz, introduced by Houghton, Manton 

and Sutcliffe, to approximate minimum energy multi-skyrmion solutions with B <9 

of the SU{2) model and with B < 6 of the SU{3) model. We compare our results 

with the ones obtained numerically and show that the rational map ansatz works 

just as well for the generalised model as for the pure Skyrme model, at least for 

B <5. 

In chapter 5, we use a generalisation of the rational map ansatz, introduced by 

loannidou, Piette and Zakrzewski, to construct analytically some topologically non-

trivial solutions of the extended model in SU{S). These solutions are spherically 

symmetric and some of them can be interpreted as bound states of skyrmions. 

Finally, we use the same ansatz to construct low energy configurations of the SU(N) 

sixth order Skyrme model. 
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Chapter 1 

Solitons in particle physics 

1.1 Introduction and outline 

In the past few decades, particle physics has undergone a series of major develop­

ments that have drastically changed our understanding of the fundamental laws that 

govern Nature. In particular, experiments at high energies have revealed the exis­

tence of new particle states, resulting in a different picture of the subatomic world. 

Quarks and leptons are now considered as the building blocks of matter, whereas 

particles like the proton or neutron, which were previously regarded as elementary, 

are now believed to have a structure and to consist of quarks. Parallel to that, i t has 

been realised that within the theoretical framework the dynamics of these particles 

can be described by quantum field theories that exhibit local gauge symmetries. The 

successful application of these ideas not only resulted in a correct quantum theory 

for electromagnetism (QED), but also enabled us to unite electromagnetic and weak 

interactions into one theory, the electroweak model, bringing new interest into the 

possible unification of the four forces. In addition, the use of mathematical tools 

like perturbation theory and renormalisation group, has provided us with a way to 

compare theoretical predictions with experiment, both qualitatively and quantita­

tively. As a result of this progress, quantum field theory is now firmly established 

as the appropriate mathematical language to describe particle interactions. 

Recently, there has been increasing interest in the study of quantum field theory 

beyond the perturbation scheme. Non-trivial classical solutions, such as instantons, 

monopoles and solitons, are now considered as an important class of objects that 

have found many applications not only in particle physics, but in other areas like 

condensed matter physics. Among others, an idea that has attracted a lot of atten­

tion, is the possible description of particles, in particular nucleons, as topological 
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solitons. The foundations of this idea were placed by T.H.R. Skyrme [3] almost forty 

years ago, although at that time his suggestions were greeted with great scepticism. 

Skyrme's original motivation was to describe nucleons as extended objects rather 

as point-like ones. For this purpose he proposed a non-linear theory for nuclear 

interactions where particles like the proton emerge as topological solitons. 

In general, integrable solitons are defined in the literature as waves of non linear 

character with localized finite energy. They are solutions of non-linear partial dif­

ferential equations and they have particle-like behaviour, i.e. they interact strongly 

with each other but they continue to retain their identity after every interaction. 

This, and other remarkable properties of these solutions, originate from a number 

of conservation laws that characterise such non-linear theories. In a similar manner, 

topological solitons also behave as particles and their stability is due to their non-

trivial topology. They are also characterised by the conservation of the so-called 

topological charge. Skyrme's ingenious suggestion was to identify this topological 

charge with the baryon number, a quantum number that was introduced to particle 

physics by experimental observations, but for which there has been no satisfactory 

theoretical explanation for its conservation. 

Despite the above attractive features of the Skyrme model, this theory has been 

largely overshadowed by the success of pertubative gauge field theories. In recent 

years, however, after the realisation that nuclear interactions can be considered the 

low energy limit of strong interactions, there has been a renewal of interest in the 

Skyrme model. In particular. Quantum Chromodynamics (QCD), the theory that 

describes strong interactions, is of a non-perturbative character at the low-energy 

regime and hence, different mathematical methods are required for its study. As 

it has been shown recently [4, 5, 6], QCD simplifies greatly under certain approxi­

mations and the resulting effective theory surprisingly resembles the Skyrme model. 

This revived Skyrme's suggestions and to the present day the Skyrme model has 

been established as the strongest candidate for the low energy limit of QCD. 

There are, however, reasons to believe that the Skyrme model is the simplest 

effective theory that one can consider. Its phenomenological predictions are within 

30% accuracy [7] and to improve them, various extended Skyrme models have been 

proposed [8, 9, 10, 11, 12, 13]. In what follows we will explore these ideas further. 

Our investigation starts with a brief summary of the physical motivation that lies 
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behind the study of the Skyrme model. We then present the Skyrme model and its 

properties in greater detail. This will provide us with the necessary background for 

the next chapters. 

In chapter 2 we review the most characteristic extended Skyrme models that 

have been studied over the last few years. We then define a new sixth order Skyrme 

model that we study in the remainder of this thesis. In the same chapter we also 

introduce the physical quantities that we will help us determine the quality of our 

model's theoretical predictions. In chapter 3 we study multi-skyrmion solutions 

of the sixth order Skyrme model and discuss their symmetries and some of their 

classical properties [1]. We argue that the only possible way to obtain these solutions 

is by using advanced numerical methods. Our results show that our extended model 

has similar properties to the original Skyrme model. However, when we compare 

these results with the experimental values, we find that in some cases the sixth 

order Skyrme model provides us with better theoretical predictions than the original 

model. In chapter 4 we use a different, semi-analytical approach and we approximate 

the solutions of the model using the rational maps ansatz that has been recently 

introduced by Houghton et al. [14] and the harmonic map ansatz introduced by 

loannidou et al. [15]. The results of this chapter are compared with the numerical 

solutions of chapter 3 and we show that this ansatz works quite well, and in some 

cases even better for the extended Skyrme model [1]. Finally, chapter 5 explores the 

possibility of constructing analytically exact solutions in SU{N) that have spherical 

symmetry [2]. We find that this construction only works for the SU{N) Skyrme 

model and for the SU{3) extended model. Nevertheless, we show that by using 

a generalisation of the harmonic map ansatz, one can still construct low energy 

configurations of the SU(N) sixth order Skyrme model which correspond to bound 

states of skyrmions. 

1.2 Low energy limit of Q C D 

In this section we review some of the most important ideas that have led to the 

establishment of the Skyrme model as the strongest candidate theory for the low 

energy limit of strong interactions. For this purpose, we will follow closely Witten's 

approach [5] (for a brief summary see also chapter 9 of [16]). 
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1.2.1 Q C D formalism 

Initially, nuclear (or strong) interactions were thought to involve protons and neu­

trons, i.e. nucleons, and they were considered responsible for the binding of the 

nuclei. However, experiments revealed that nucleons are just the lightest among a 

spectrum of particles which are now called baryons. Moreover, as we have mentioned 

previously, i t has been shown experimentally that all these particles, including the 

proton and the neutron, have rich internal structure and can no longer be considered 

as elementary. Hence, it became evident that a different, more fundamental theory 

was needed in order to explain all these results. 

In 1964 Gell-Mann and Neeman [17] introduced a model where baryons can 

be interpreted as bound states of three elementary particles, called quarks. They 

assumed that these particles are fermions, i.e. they have spin one half, and in 

order to explain the ful l spectrum of baryons known at that time, they considered 

three different types (flavours) of quarks: up (u), down (d) and strange (s). Recent 

experimental discoveries revealed the existence of another three flavours: charm (c), 

bottom (ft) and top (t). In this context the proton and the neutron can be thought 

of as bound states of uud and udd respectively. Since we traditionally describe 

baryons as particles with integer electric charge, we have to assume that quarks 

have fractional electric charge. Moreover, the carriers of the nuclear force, which 

we refer to as mesons, can be considered as bound states of one quark and one 

anti-quark (qq). This description is compatible with the experimental picture where 

these particles obey Bose-Einstein statistics, i.e. they have integer spin. 

The quark model had enormous success in the interpretation of the spectrum of 

baryons and mesons. I t also managed to predict correctly the existence of heavier 

particles which were later discovered experimentally. However, it created one serious 

theoretical problem. The A'*'"*' state, with electric charge +2 and spin 3/2, was 

considered as a bound state described by three identical quarks, namely uuu. Since 

A"'""'" has zero orbital angular momentum, the three quarks all have parallel spins 

and there are indistinguishable. As a result, we have an undesired violation of the 

PauU principle. A solution to this problem was given [18, 19] with the introduction 

of a new quantum number called colour. In the simplest case, one can assume 

that quarks are characterised by three primary colours: red, green and blue. By 

assigning a different colour label to each u quark in the A"*"""" state, we can avoid 
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the violation of the Pauli principle. In addition, since this quantum number is 

unobserved experimentally, we require that all baryons are colour singlets, i.e. their 

are colourless. The introduction of colour is equivalent to the assumption that the 

quark fields exhibit a local gauge symmetry, namely SU{3)c. This is similar to 

Quantum Electrodynamics where the charged fermionic fields are described by the 

Lagrangian 

LQED = i'iiYD, - m)t/; - (1.1) 

The covariant derivative is defined using the gauge field as 

D^^ij = {d^ - ieA^)i^, (1.2) 

where e is the electric charge, i. e. the coupling constant of electromagnetic interac­

tions, and 

Ff,, = d^A^ - d,A^. (1.3) 

The Lagrangian (1.1) is invariant under f / ( l ) gauge transformations, i.e. transfor­

mations of the type ij) e^'^ip . 

The colour hypothesis solves many theoretical problems in its description of 

quarks as fields which are symmetric under transformations of the SU{3)c group. 

However, there a few important phenomenological questions that need to be an­

swered. Firstly, there is no experimental evidence of free quark states. Thus, a 

correct theory for strong interactions must somehow confine quarks into baryons. 

Secondly, experiments revealed that, quite surprisingly, quarks behave as if they were 

free at short distances. In other words, strong interactions are weak at high ener­

gies. This last property, which is referred to in the literature as asymptotic freedom, 

seemed to create serious obstacles to the theoretical visualisation of strong interac­

tions. However, when it was proven [20, 21, 22, 23] that theories with non-Abelian 

local gauge symmetries, like SU{3)c, are asymptotically free, it became evident that 

quark fields can be thought of as representations of the groups SU{3)c and SU{Nf) 

where Nf is the number of fiavours. Thus, in analogy to QED, strong interactions 

or Quantum Chromodynamics (QCD), can be formulated by the Lagrangian 

LQCD = & l ' D , - m^)q: - \G^.G^\ (1.4) 
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where a = I,.., Nf is the flavour index, a = 1, 2, 3 is the colour index and is the 
quark mass. The covariant derivative is now given by, 

D,q: = (s^td, - ig{^)ai>A,,^ q:, (1.5) 

where Â  are the Gell-Mann matrices and g is the colour coupling constant. More­

over, 

GU = - d.A^, + 9 r^'A^At, (1.6) 

where f^^^ are the structure constants of the SU{3)c symmetry group. The La­

grangian (1.4) describes the propagation of massive quarks q" and the interactions 

between them. The quanta of these interactions are massless and they are called 

gluons. However, in contrast to QED where the carriers of the electromagnetic in­

teractions, the photons, have no electric charge, the gluons have colour and hence, 

they can be considered as self-interacting fields. 

QCD is, at the moment, at the frontier of high energy particle physics. Although 

it manages to bring together a number of interesting ideas, it is still a very compli­

cated theory and is very difficult to treat systematically. Since a detailed discussion 

of these topics goes beyond the main subject of this thesis, we will not go into further 

details. Instead, we will refer the reader to general bibliography like [24, 25, 26, 27 

and references therein. In what follows, we wil l only concentrate on the possible 

applications of the Skyrme model in connection to QCD. 

1.2.2 The 1/Nc expansion of Q C D 

As we have mentioned in the previous section, QCD is an asymptotically free theory, 

i.e. the strong coupling constant g is small at high energies - or equivalently at 

short distances - and hence, it is possible to apply perturbation theory to extract 

qualitative results. However, at low energies - the regime that interests us - 5 is 

large and i t can no longer be used as an expansion parameter. In fact, in this limit, 

QCD is a zero parameter theory and conventional perturbation theory does not 

work. In the absence of an obvious free parameter, one has to look for a 'hidden' 

parameter that can be used for a perturbation expansion. For this purpose one 

can consider quantities that are normally fixed to a specific value, like the space 

time dimensions. Such methods have been known to work quite well for problems 
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that appear in Atomic or Statistical Physics. Before we illustrate how they can be 

applied to QCD, let us first consider a simple example that we find instructive and 

was first discussed by Witten [28 . 

In Atomic Physics, the hydrogen atom is described by the Hamiltonian 

H = (1.7) e' 
2m r 

In general, one can derive the ground state energy using perturbation expansion 

around the potential energy. However, this method cannot be used in the case of 

the Hamiltonian (1.7) since the parameter in the potential V = —e /̂r cannot 

be characterised as small. The reason is that e has dimensions and its value de­

pends on our choice of units. This can be made clearer if we consider the following 

transformation r —> r/me^ and p -> p • me^. Then (1.7) is given by 

(1.8) 
. 2 r 

We see that the parameter is now scaled out as an overall factor and the hydrogen 

atom can be equally described by the parameter-free Hamiltonian 

Hence, in the absence of an obvious expansion parameter, one has to look for an 

implicit one and in the case of the hydrogen atom the most suitable candidate is 

the number of dimensions. In particular, i f we assume that the Hamiltonian (1.7) 

describes a system in A'̂  dimensions instead of 3, then the Schrodinger equation for 

the wavefunction -0 = '0(r) will read 

J _ N - 1 d 
2m \dr'^ r dr r 

i){r) = Ei/jir). 

Under the transformation ip r ^^/'^ip equation (1.10) becomes 

[N - I f 
2m dr'^ 8m r^ r 

2U 

V(r) = E^{r), 

(1.10) 

(1.11) 

and by rescaling r as: r = [N — lyr', we have 

( N - 3 ) 1 1 . 21 

+ { N - i y L 2m{N-lYdr'^ ' 8m{N-l)r'^ ^ , j ^ ( r ' ) = W ) . (1.12) 

Equation (1.12) describes a particle that has effective mass mg/f = m(A'̂  — 1)^ and 

moves in the effective potential 

Veff = 
N-3 1 _ ^ 
N - 1 Smr'^ r' 

(1.13) 
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For large N the effective mass rrieff becomes significantly large and we can rea­
sonably assume that the particle is located at the absolute minimum of the effective 
potential. In other words, the energy of the ground state will be 

For N = 3 we have that E = — |me'* which is the expected result for the minimum 

energy of the hydrogen atom. 

Having demonstrated the idea of using implicit parameters in order to obtain 

correct qualitative results in a parameter-free theory, let us return to QCD which 

is our primary interest. As we have mentioned previously, in the low-energy limit, 

QCD does not have any parameter that can be used for a perturbation expansion. 

However, as 't Hooft indicated [4], one can generalise QCD from 3 to Â c number 

colours and consider the SU(Nc) gauge theory. In the large Nc l imit, QCD simplifies 

greatly and it is possible to perform an expansion in powers of 1/A^c- Like in the 

simple example of the hydrogen atom, one hopes that the resulting theory might be 

qualitatively and quantitatively close to the Nc = 3 theory. 

Let us give a brief review of the results obtained under the large Â c approxima­

tion by starting from a typical low order Feynman diagram that describes the gluon 

contribution to the one-loop gluon vacuum polarization [5] and i t is shown in Figure 

1.1. 

Figure 1.1: Gluon contribution to the one-loop gluon vacuum polarisation. The 

gluon field A'- has one upper colour index like the quark field q^ and one lower 

colour index like the anti-quark field qj. 

By observing Figure 1.1 carefully, it is easy to see that the internal gluon loop is 
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independent of the in i t ia l and final states, even where these are specified. As a result, 
we w i l l have Nc diff"erent possibilities of the intermediate contribution, introducing a 
factor of Nc in the diagram. Another factor associated w i t h this Feynman diagram 
comes f r o m the interaction vertices, i. e. the points where a gluon state is separated 
into two gluons or two gluons are united into one state. Each vertex has a coupling 
constant factor and since the diagram in Figure 1.1 has two vertices, we w i l l have 
a factor equal to the square of the coupling constant. I f we want QCD to have a 
smooth l im i t for Nc oo then we must choose the coupling constant to be g/y/Nc-
The combination of all the factors associated w i t h the Feynman diagram of Figure 
1.2 gives: Â c [g/s/NcY = g^ which is independent of the number of colours. 

One of the most important results of this approximation is that a certain class 

of diagrams, the so-called planar diagrams, are the only ones that 'survive' for large 

Ac whereas all the remaining diagrams vanish. To illustrate this, let us consider two 

higher order Feynman diagrams which are shown in Figure 1.2. 

(a) (b) 

Figure 1.2: Planar (a) and non-planar (b) Feynman diagrams. 

Each diagram in Figure 1.2 has six vertices which contribute a factor of {g/y/NlT-

The left diagram (Figure 1.2.a) has three closed colour loops which are self-contracted 

and thus, they contribute a total factor of A^^. As a result, the diagram 1.2.a is of 

order N^{g/y/Nc)^ = g^ and i t is independent of Ac. On the other hand, the 

right diagram of Figure 1.2 has only one large closed colour loop that contributes 

a factor of Ac. This diagram is called non-planar as i t is impossible to draw i t 

on the plane wi thout line crossings. The total factor of the non-planar diagram is 

Ncig/VKf = gVN^ and i t vanishes like l / A ^ for large A ĉ-

Hence, we have obtained the first 'selection' rule for the large Â c approximation 



C h a p t e r 1. Solitons in part ic le physics 10 

of QCD: Non-planar diagrams are suppressed and the only non-vanishing diagrams 
are the planar ones, i.e. diagrams like Figure 1.2.a. 

A second 'selection' rule concerns Feynman diagrams that involve quark loop 

contributions to the gluon propagator. For instance, consider the diagram shown in 

Figure 1.3. Unlike Figure 1.1, diagrams of the type 1.3 do not have any closed colour 

Figure 1.3: One quark loop contribution diagram to the gluon propagator. 

loops and because they have two vertices, they are of order {gl^/NcY = g^/Nc- We 

therefore conclude that diagrams w i t h internal quark loops are also suppressed. 

A l l the above results can be summarised in the following statement: For large Â c 

the dominant diagrams are the planar diagrams w i t h only one quark loop which runs 

to the edge of the diagram, i.e. i t is not an internal quark loop. The summation of 

these diagrams is equivalent to deriving an exact solution for Q C D at low energies 

and clearly this is a very dif f icul t problem. However, a few qualitative results can be 

extracted f rom the low energy l i m i t of QCD. In particular, as i t has been suggested 

by ' t Hooft [4] and W i t t e n [5], for Ac —> oo, mesons are free, stable and non-

interacting. Their decay amplitudes are of order 1 / V T ^ , whereas the meson-meson 

scattering amplitudes are of order 1/Ac. To find these amplitudes one needs to 

perform a summation over tree diagrams which involve physical mesons and not 

quarks and gluons [5]. 

Another important observation made by Wi t t en [5] is that for large Ac, Q C D can 

be regarded as a weakly coupled field theory of mesons. Such theories sometimes 

exhibit additional states whose masses diverge like 1/c where c is a weak coupling 

constant. These states are topological solitons and the most typical example of 

them is the ' t Hooft-Polyakov monopole that was found to exist as a solution of 

non-Abelian gauge theories. In a similar manner, in the large Â c approximation of 
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QCD, baryons have mass of order Nc, which can be rewritten as 1/(1/A^c)- Since 
1/iVc is the 'coupling constant' of Q C D for interactions among mesons, we can 
assume that baryons are the topological solitons of QCD at low energies. This last 
qualitative result is responsible for the revival of the Skyrme model as the simplest 
candidate theory for an effective low energy l i m i t of QCD. 

Besides VVitten's observation, Skyrme's ideas have found additional support in 

later efforts to derive an effective mesonic Lagrangian directly f rom Q C D ^ I n par­

ticular, by assuming spontaneous chiral symmetry breaking and by using functional 

integration methods and the large iVc diagramatic analysis, the following effective 

Lagrangian has been obtained 

LeffiU) ^ -^Tr{L,Ln + Lwz + Vo, (1.15) 

where = s/N^U is the pion decay constant, Lwz is the Wess-Zumino term which 

is proportional to 

Lwz oc e^''^'"'Tr{L^L,LxL,L,), (1.16) 

and Lf^ = U''^{d^U) is the left chiral current. The first term in (1.15) is the simplest 

chiral Lagrangian and is referred to in the literature as the non-linear o model. 

The potential VQ implies an expansion in powers of the chiral currents, resulting 

in terms of order four and higher in L ^ . I t turns out that in the lowest order 

approximation the additional term coming f rom VQ is the term that Skyrme has used 

in his effective meson Lagrangian. However, the determination of the exact form of 

Vo requires the summation of all planar diagrams in the Nc oo approximation 

and as previously mentioned, to the present day this is an unresolved problem. 

Let us close our review of the physical motivation behind the study of the Skyrme 

model by noting that the effective Lagrangian (1.15) suggests that the Skyrme model 

is the simplest candidate low energy theory of QCD and by extending i t to higher 

orders i t is possible to improve its predictions. In the following chapters we w i l l 

explore such generalisations in fur ther detail. 

^For further details see section 9.3 of reference [16] and references therein. 
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1.3 The Skyrme model 

I n the previous section we presented the theoretical developments in particle physics 

that have led to the revival of Skyrme's suggestions. I n this section we would like to 

pay t r ibute to the Skyrme model itself and expose i ts most important properties by 

mainly focusing on the mathematical motivation behind the study of such models. 

1.3.1 The sine-Gordon model in (1+1) dimensions 

Studying the dynamics of non-linear field theories like the Skyrme model is a highly 

non-tr ivial task since i t is very dif f icul t to obtain exact solutions, even at a classical 

level. I n general, i t is common practice in physics, as well as in mathematics, when 

one is dealing w i t h such complicated models, to consider first a reduced version 

of the problem in fewer dimensions. This approach has often provided us wi th a 

qualitative insight of the properties that characterise the f u l l theory. In our case, 

a very useful toy model, that can be classically solved exactly, is the sine-Gordon 

model which is the (1+1) dimensional analogue of the Skyrme model. 

The sine-Gordon model is described by the Lagrangian 

, _ 1 
w<t> - ^(t> 
Ot J \Ox 

( 1 - c o s . / ) ) , (1.17) 

where the angular variable (j) is ( f ) — 4){x,t). For a fixed t ime the classical field 

corresponds to mappings f rom >-)• 5 ^ From (1.17) we obtain the following Euler-

Lagrange equation 

which is referred to as the sine-Gordon equation. This equation has various types 

of solutions. Since we are interested in solutions w i t h finite energy we require that 

( f ) satisfies the following boundary conditions 

(/)(a;,i) ^ 0(mod27r), when | x | o o . (1-19) 

The energy for any given field configuration is 

/'+°° I f d V 1 / 9 V 
^ = / "^"^ oX^'l'] + 9 h r + (1 - cos 0) (1.20) 
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In the simplest case we can assume that (p takes the same value, say zero, at 

X — ±00. In this case, a non-tr ivial solution for the sine-Gordon equation, which 

satisfies the boundary (1.19), has the form [29] 

= 4 arctan 
\ / l — sm{u{t — to)) 

(1.21) 
u cosh( \ / l - u'^{x - xo)). 

where l i is a real constant w i t h 0 < w < 1. This class of solutions is the well known 

breather and its profile is shown in Figure 1.4. 

Figure 1.4: Breather solution of the sine-Gordon model for a given t. 

However, there is another class of solutions where the field, or equivalently the 

angular variable (f){x,t), takes two different values at ± 0 0 , i.e. (j){—oo) — 0 and 

(f){+oo) — 2n. In other words, (j) has two different vacuum states. I t is very easy to 

check that this solution has the fo rm [29, 16 

'{x - Xo) - u{t - toY 
(j){x, t) = i arctan exp (1.22) 

where 0 < u < 1 and its profile is shown in Figure 1.5. This solution is referred to in 

the literature as the one-soliton or the 27r-kink solution and i t describes a localised 

field configuration at x = XQ which moves without dissipation, i.e. without changing 

shape or size. 

The two types of solutions, the breather and the one-soliton solution, cannot be 

transformed to each other by any continuous deformation. This implies that the 

solution space of the sine-Gordon equation (1.18), w i t h the boundary conditions 

(1.19), has distinct components or else classes of solutions. The latter indicates that 

for the sine-Gordon model there exists a conserved quanti ty - the topological charge-
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Figure 1.5: One-soliton or 27r-kink solution of the sine-Gordon model for a given t. 

that follows f r o m the conservation of a current J'^ w i t h /u = 0 , 1 . The explicit fo rm 

of this current is 

2n du 
(1.23) 

and the conservation law is 5^ J'^ = 0. This implies that for the topological charge 

Q{t) we have 

W = Q ( 0 ) , (1.24) 

where Q{t) is given by 

A n important remark that can be made at this point is that the existence of the 

current is not due to the invariance of the Lagrangian (1.17) under any symmetry 

transformation. Hence, J^^ is not a Noether current. 

Let us now classify the solutions of the sine-Gordon model in terms of their 

topological properties. As we have mentioned previously, any field configuration 

of the sine-Gordon model at a fixed time t corresponds to mappings f rom to 

. However, under the boundary conditions (1.19), the two points at infini ty, i.e. 

X = ± o o , can be mapped to one single point, the 'nor th ' or 'south' pole of the circle 

5 ^ Hence, we w i l l have that any field configuration w i l l be a map f rom 5^ -̂» 5 ^ 

From expression (1.25) i t is easy to see that the topological charge of the breather 

solution is equal to zero. Topologically this can be simply visualised i f we assume 
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that i t describes a closed loop which does not cover the whole circle.^ As a result, 

these maps can be continuously transformed to a single point on 5^ and hence, their 

topology is t r iv ia l . 

On the other hand, the one-soliton solution (1.22) has topological charge Q = 1. 

In terms of topology, this solution corresponds to a closed loop that wraps around 

the whole circle once and which cannot be transformed under any continuous 

deformation to a single point on S^. Thus, i t can be characterised as a topologically 

non-tr ivial solution. 

Finally, i t is possible to construct a t h i r d type of solution of the sine-Gordon 

model which is non-static and is also topologically non-tr ivial . I t describes a field 

configuration wi th (/>(—oo,t) = 0 and (f){+oo,t) = 47r. The profile of this configura­

t ion is shown in Figure 1.6. 

An 

Figure 1.6: Two-soliton or two-kink solution of the sine-Gordon model for a given t. 

This solution has topological charge (3 = 2 and corresponds to maps which wrap 

around the circle twice and cannot be continuously transformed either to the 

breather solution nor to the one-soliton solution. 

In general, we can always construct multi-soli ton solutions of the sine-Gordon 

model by adding non-tr ivial field configurations. For example, i f we add two differ­

ent field configurations w i t h topological charge Qx and Q 2 then we obtain a th i rd 

configuration wi th topological charge = Q i + Q2- This last configuration is also 

a non-trivial solution of the sine-Gordon model, i.e. i t is a topological soliton. This 

^Due to the topology of these solutions, the topological charge is often referred to in the liter­

ature as the winding number. 
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implies that the solutions of the sine-Gordon model have particle-like behaviour; 

their 'quantum' number ~ the topological charge - is additive and hence, i t is pos­

sible to have annihilation of solitons. I n particular, i f we consider a soliton solution 

01 (—00) = 0 and 0i(-l-oo) = n27r, n e N , w i t h topological charge Qi and 

the corresponding anti-soliton solution (pi: ^i{—oo) = n27r and <^i(-t-oo) = 0 w i t h 

topological charge Q i = —Qi then the addition of these two configurations w i l l give 

us a soliton w i t h topological charge Q = 0 which is just the breather solution. 

There is a rather convenient way to summarise all the above results: The set of 

distinct classes of solutions of the sine-Gordon model, which satisfy the boundary 

conditions (1.19), forms a group, the first homotopy group that we denote as 7ri($). 

This group is an additive group. In other words the set { Q i } obeys the following 

composition law 

Q i e Q 2 = Q 3 , (1-26) 

where Qi are elements of 7ri($), i.e. they are distinct classes of solutions and we w i l l 

refer to them as homotopy classes. The additive property (1.26) of 7ri($) implies that 

two different homotopy classes can be added together and give a th i rd homotopy 

class. Since is can be shown that for the sine-Gordon model, 7ri(S'^) is isomorphic 

to Z , this additive action is equivalent to that of simple integer numbers. This 

isomorphism can be defined through the homotopic variable Q as 

Q : TTiiS^) ^ Z. (1.27) 

As i t can be shown [16] that Q is equal to 

we have that the homotopic variable Q is equivalent to the topological charge Q 

given by (1.25). 

1.3.2 Three dimensional Skyrme model 

In the light of the non-tr ivial results obtained for the sine-Gordon model, let us now 

consider the higher dimensional theory, i.e. the Skyrme model in (3-1-1) dimensions. 

I n its original f o r m [3], the Skyrme model is described by the Lagrangian 

/ -. \ 
Cskyrme = ^ k^Tr {L,L,) - -Tr [{L^L.f - [L^L^f] J, (1.29) 
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w i t h the summation convention 

L^L^ = LoLo - L,L,. (1.30) 

I n (1.29), L° are the left chiral currents and the constants e and k are parameters of 

the model which can be fitted f rom experimental data^. There exists an equivalent 

form of the Lagrangian (1.29) that we w i l l use in what follows 

Cskyrme = ^TT{d,Ud^^U^) + -l^Jr[{d,U)U\ {dM)U^]\ (1.31) 

where again and a are the parameters of the model. The first term in (1.31) 

is the non-linear a model whereas the second term was introduced by Skyrme and 

we w i l l refer to i t as the four th order Skyrme term. Moreover, the chiral field U is 

U = U{x,t) and for a fixed t ime t corresponds to maps i - ^ SU{Nf), where Nf is 

the number of quark flavors. As SU{Nf) is isomorphic to 5^, we w i l l have that 

U{x) : 5 ^ (1.32) 

I n analogy to the sine-Gordon model, we would like to impose boundary conditions 

to U so that any field configuration w i l l have finite energy. These conditions are 

U { x , t ) M as | f I - > oo, (1.33) 

where M is any constant Nf x Nf matr ix and wi thout loss of generality we can 

choose i t to be the identi ty matr ix I . The boundary (1.33) implies that the space 

is compactified to and hence, U{x,t) : ^ S^. 

Topological charge 

Since the corresponding homotopy group of the Skyrme model, 7r3(5'^), is isomorphic 

to Z , we w i l l have that each homotopy class, or equivalently each distinct class of 

solutions, w i l l be characterised by a topological charge, B , that takes integer values. 

To construct a topological charge associated w i t h a field configuration one can use 

a general algorithm as proposed by Isham''. In the case of the Skyrme model, this 

topological charge is given by the following expression 

1 

247r2 
f dx e'^''Tr\{diU)U^{djU)U^{dkU)U^]. (1.34) 

JR3 L J 

^The experimental fitting of these parameters will be shown in detail in the following chapter. 
''For a review on this construction see section 2.3 of reference [16]. 
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Like in the sine-Gordon model, the topological charge (1.34) does not follow f rom the 
invariance of the Lagrangian (1.31) under symmetry transformations and therefore 
i t is not a Noether charge. Instead, the conservation of B is due to the non-tr ivial 
topology of the solutions of the Skyrme model. 

As we have mentioned previously, Skyrme's suggestion was to interpret the topo­

logical charge B as the baryon number. In general, this quantum number has been 

introduced by particle physicists in order to jus t i fy the absence of certain types 

of interactions among baryons. For instance, i f we assume that every baryon is 

characterised by an integer baryon number B , then decays like 

p ^ e + T T o , (1.35) 

are forbidden^. The conservation of B also implies that since the proton p is the 

lightest state among baryons, i t must be stable against collapse which is in accor­

dance w i t h experimental observations. 

Even though the baryon number characterises strong interactions, i t has not been 

possible to relate i t to the strong coupling constant g, as i t has been done w i t h the 

electric charge i n Q E D . Hence, the conservation of B does not follow 'natural ly ' f r o m 

the invariance of the Q C D Lagrangian under local gauge transformations. Skyrme's 

idea to identify the topological charge of the Skyrme model w i t h the baryon number 

is quite appealing and unt i l now i t is the only theoretical explanation we have for 

the conservation of B. 

T h e H o b a r t - D e r r i c k theorem 

Let us now examine the stabili ty of the static solitonic solutions of the Skyrme 

model. To do so we can use the Hobart-Derrick theorem [30, 31] which provides us 

w i t h a necessary condition for a solution of any field equation to be stable against 

collapse. 

Let (f>i{x) be a static solution of an Euler-Lagrange equation derived f rom the 

variational principle 

(5$[0i] = O. (1.36) 

^Electrons e , positrons e"*" and in general leptons, together with mesons have zero baryon 

number. 
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I f we consider a scale transformation K such that 

X ^ Kx and 0i(r?) —>• 0^ = ( ^ ( A C T ) , 

then the variational principle (1.36) reads 

d^[(j){i^x) 

(1.37) 

OK 
5K. = 0. (1.38) 

K = l 

I f we assume that the functional $[(/)(Ki;)] is a funct ion of K, i.e. $ = $ ( K ) , then 

the condition 

dn 
= 0, (1.39) 

k;=1 

ensures the existence of static solutions of the equation (1.36). 

Let us now apply this theorem to the non-linear o model, i.e. the first term in 

the Lagrangian (1.31), which is of order two and has energy given by 

E(2) = J d^x [-Trid^Ud^'U^)] , (1.40) 

where we have assumed that the number of dimensions is D . I f we consider a scale 

transformation k of the type (1.37) then i t is very easy to check that 

£ ^ ( 2 ) ( « ) = K ' - ^ ^ { 2 ) . (1.41) 

By applying the Hobart-Derrick theorem, i.e. condition (1.39), to the energy func­

t ional (1.41) we have 

a £ ( 2 ) ( K ) 

dK 
(2 - D)E(2) = 0. (1.42) 

This last condition is only satisfied for D = 2. In other words, for D > 3 the a 

model admits no static solitonic solutions. To ensure the stability of these solutions 

we need to require the positive definiteness of the second variation of the energy 

functional , i.e. we need to ensure that 5'^£[(()] > 0. The latter is equivalent to the 

condition 

> 0. (1.43) 
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For the energy of the a model (1.41) we have that 

5 '^ (2 ) (^ ) 
= ( 2 - D ) ( l - D ) £ ; ( 2 ) . (1.44) 

We see that for D = 2, which is the only case where the a model has static solutions, 

we have that 5'^E(2)[4>] = 0. The latter implies that in order to ensure the stabili ty 

of these static solutions, we need to include further terms in (1.40) w i t h different 

scaling behaviour. 

Let us now consider the energy functional of the f u l l Skyrme model (1.31) which 

under a scale transformation K w i l l be given by 

£sM = K'-^'S^^) + (1.45) 

where f (4) denotes the contribution of the four th order Skyrme term. The first 

derivative of (1.45) w i t h respective to K is 

dSsK{i^) 

dK 
= ( 2 - D ) 5 ( 2 ) + ( 4 - D ) £ : ( 4 ) . (1.46) 

fe=i 
I f we want to ensure the existence of static solutions we must require 

(2 - £»)^(2) + (4 - L>)£(4) = 0. (1.47) 

Notice that for D = 3, condition (1.47) implies that £(2) = £"(4). 

To determine the stability of these solutions we need to calculate the second 

derivative of the energy functional £SK, i-^-

OK? 
(2 -D){1- D)£^2) + {4-D){3- D)£^ 4), (1.48) 

k=i 
and by using (1.47) we have that 

d'£sK{K) 
2{D-2)£(2). (1.49) 

k=l 
For D > 3 we have that 

d'£sK{K) 
> 0. (1.50) 

fc=i 

Hence, we can conclude that the (3+1) dimensional Skyrme model admits stable 

solitonic solutions under scale transformations. From the above, we also see that 

the addition of a Skyrme-like term of order higher than four w i l l also lead to stable 

solutions. 
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Topological bound on the energy 

Let us close our review of the Skyrme model by noting that i t is possible to obtain a 

bound on the energy of a corresponding solution. To achieve this we need to rewrite 

the energy of the model as a perfect square plus the topological charge, i.e. 

EsK^-J dx Tr (^^{d,U)U^ - I? [{d,U)U\ {dM)U^] j + ̂ ^^^^^ ̂  > 0, 

(1.51) 

where B is the topological charge given by expression (1.34). From (1.51) i t is easy 

to see that 

EsK > \B\ (1.52) 

This inequality, which has been introduced by Bogomol'nyi [32], imphes that the 

energy of a given field configuration in any homotopy class has a lower bound. 

Skyrme himself obtained a similar estimate for the energy when he was studying 

field configurations w i t h B = 1 [33 . 



Chapter 2 

Generalisation of the Skyrme mode'. 

2.1 Introduction 

In the previous chapter we saw that the Skyrme model, in its original fo rm, is 

considered as a non linear field theory w i t h great mathematical interest in its own 

right. I ts properties are quite fascinating, even at the classical level, and developing 

methods to investigate them systematically is a di f f icul t and challenging problem. 

However, f r o m the physical point of view, the main motivation to study the 

Skyrme model comes f rom its possible applications to particle physics. I n particular, 

as was emphasised previously, this model is established as a candidate theory for 

nuclear interactions. Its most attractive feature is that i t can provide us w i t h a 

qualitative understanding of strong interactions at low energies. I t is also the only 

model that can offer a rather simple interpretation of the baryon number and its 

conservation law. 

Nevertheless, despite the success of the Skyrme model in the description of 

baryons, this theory is only an approximation and improving its theoretical pre­

dictions is always an important issue. As we shall see in what follows, one possible 

way to achieve this improvement, is to modi fy the Skyrme Lagrangian by considering 

additional higher order terms. However, before we discuss such generalisations in 

greater detail, let us first stress the fact that since the Skyrme model is by itself an 

effective theory, generalising i t (or extending i t ) , is an arbitrary procedure. Hence, 

in order to consider the most appropriate generalisation, i t w i l l prove useful to iden­

t i f y first all the theoretical requirements that must be satisfied by a Skyrme-like 

Lagrangian. 

We start w i t h a short historical remark. Describing the low energy l i m i t of strong 

interactions using an effective meson Lagrangian is a problem that existed prior to 

22 
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QCD. Over the years, numerous models have been proposed, wi th the Skyrme model 
offering the most radical approach. From the modern perspective, however, nuclear 
interactions are thought of as a manifestation of quark dynamics in the low energy 
regime. Hence, i f these eff'ective theories are thought to originate f rom QCD, then 
they must have certain properties. In particular, besides Lorentz invariance that 
is present in any consistent physical theory, one also needs to require the so called 
chiral invariance. This symmetry is characteristic of the low energy l im i t of QCD 
where al l interactions are dominated by the l ight flavour quark fields {u,d). Since 
the masses of these quarks are only a few percent (0.5 - 1%) of the average hadron 
mass (typically of order 1 GeV), they can be considered massless. Assuming this 
approximation, Q C D is then invariant under transformations of the symmetry group 

SU{Nf)L®SU{Nf)R, (2.1) 

where Nf is the number of quark flavours and L, R distinguish between left and 

right rotations respectively. Any effective meson theory that is thought to describe 

correctly the low energy l im i t of Q C D must also exhibit the same chiral symmetry 

(2.1). 

In addition, Wit ten 's [5] observation^ that baryons behave as solitons in the 

l imi t as the number of colours goes to inf in i ty {Nc —> oo), provides us w i t h a 

further constraint: a meson Lagrangian must admit stable solitonic solutions. These 

solutions can then be thought of as particles that originate f rom a theory that 

involves mesons only. 

I t is remarkable that the Skyrme model - that appeared before QCD - can 

incorporate quite successfully all the above restrictions in a rather simple way. The 

Skyrme Lagrangian given in (1.31) can also be expressed using the right, i?^, chiral 

currents in the following compact fo rm 

Csk = - ^ T r R , R ^ + ^TriR^R-'liR^.R^ (2.2) 

where R^ = {d^U)U~^ and U is the Skyrme field. The coefficient F̂ r is the pion 

decay constant and a is a dimensionless parameter that is left free in order to tune 

the model's predictions appropriately. 

I t can be shown that the first term in (2.2) is a unique quadratic combination 

of Rjj, w i t h chiral invariance. The second term, which was imposed by Skyrme 

^See section 1.2.2 of chapter 1. 
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to stabilise the solitonic solutions, is also chiral invariant and ensures the positive 
definiteness of the energy. Moreover, i t is the only four th order term that leads 
to a positive definite Hamilotonian and to a second degree differential equation for 
the Skyrme fields. Although the latter property is not justified by any underlying 
physical symmetry, i t contributes to the simplici ty of the model especially when one 
tries to quantise i t using a semiclassical approach [6 . 

The above features of the Skyrme model have established i t as a strong can­

didate for a meson theory. Nevertheless, as we have mentioned previously, i t has 

been suggested that this model does not give the complete picture but rather an 

approximation. For example, Aitchison et al. [34] constructed an effective model 

as an expansion of the derivatives of the chiral fields. Their calculations showed 

that good agreement w i t h the low energy experimental 7r — TT scattering data can 

be achieved by a Skyrme type Lagrangian that also includes further four th order 

terms: 

'-'{Aitchison) = aCsk + Tr{p [R.R^^ + ^ d.d^U d.d'^U-'}, (2.3) 

where a, /? and 7 are coefficients that can be tuned phenomenologically. A similar 

Lagrangian is also known to occur when one attempts to derive an effective theory 

directly f rom QCD, like in the chiral bosonisation method by Adrianov [35] and 

Adrianov and Novozhilov [36].^ These extra four th order terms, however, destabilise 

the soliton and a possible way to resolve this problem is to extend the Skyrme 

Lagrangian by adding a sixth order term. Even though the particular fo rm of this 

extra term is unknown, i t is reasonable to require that the new model must satisfy 

the same constraints as the original one. 

We see therefore, that including higher derivative terms to the Skyrme model is 

supported not only by mathematical interest, but also by physical arguments. Of 

course, at this point the question of renormalisability arises; the Skyrme model is not 

a renormalisable theory and including higher order terms makes the situation even 

worse. Nevertheless, since the properties of such models and their extensions are 

not fu l ly exploited even at the classical level, a further study is needed before they 

can be used as effective field theories for the low energy l im i t of strong interactions. 

I n what follows we w i l l focus our attention to extended Skyrme models and 

investigate their static properties. However, we w i l l not take into consideration 

•̂ A detailed discussion on this and other similar methods can be found in section 9.3.3 of [16]. 
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the fourth order destabilising terms of (2.3). This is because their presence leads 
to a higher degree differential equation which is very difficult to solve even using 
numerical methods. Instead, we will restrict ourselves to possible extensions of the 
original Skyrme Lagrangian which is relatively simpler. Such models have been 
studied before for B = l and in the following sections we will give a short review of 
the most characteristic ones. We will then be able to define a similar generalised 
Skyrme model that we will study extensively in the next chapters. 

2.2 Extended Skyrme models 

The Skyrme model, in its simplest form, is described by the Lagrangian (2.2) or 

equivalently (1.31) where the field U{x,t) takes values in SU{N) and satisfies the 

boundary condition 

U ^ I as 1̂1 oo, (2.4) 

where / is the unit matrix. In this notation, any field configuration which corre­

sponds to mappings from to SU{N) is characterised by the conservation of the 

topological current 

B'^ = ^ e^^^'Tr{R, R, Rk). (2.5) 

The topological charge, which is associated with this current and as we have seen, 

can be interpreted as the baryon number, is given by 

B^^J^^dx' e'^' TT[R, Rj Rk). (2.6) 
The lowest energy solution of the Skyrme model is a single soliton {B — 1) which 

we will refer to as the skyrmion and we will identify i t with the nucleon. For this 

special case the field U takes values in SU(2) and can be described by the hedgehog 

ansatz, 

U = exp[iTT f{r)], (2.7) 

where r are the Pauli matrices and / ( r ) is an unknown profile function that depends 

only on r and can be determined numerically. The boundary condition (2.4) for the 

field U then becomes 

/(O) = TT and /(oo) = 0, (2.8) 
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and the baryonic current density (2.5) reads 

The hedgehog ansatz (2.7) was initially proposed by Skyrme [3] in order to describe 

the single skyrmion as a spherically symmetric configuration. As we shall see with 

greater detail in the following chapter, this particular ansatz describes an actual 

solution of the Skyrme model. 

A l l generalisations of the Skyrme model that have been studied in the past have 

focused only on the single skyrmion solution. Hence, for the next three sections we 

will assume that the field U is described by the ansatz (2.7). 

2.2.1 Introducing w-mesons 

In [8], Adkins and Nappi have argued that since the mass of the nucleon is of order 

1 GeV, the Skyrme model can include more mesons like the u or p mesons that 

have mass relatively smaller than the baryon mass. For simplicity, in their choice 

of Lagrangian they ignored the fourth order Skyrme term and only considered an LO 

vector meson field coupled to the non-linear a model in the following way: 

%TTR,R^ + \FI ml {Tr U - 2), (2.10) 
• 16 • 8 

where u;^ is the to field with mass m^. is the pion decay constant which is also 

present in the Skyrme model (2.2). Similarly 6 is the decay constant of the w-meson^. 

Both and 6 are left as free parameters of the model in order to determine the 

quality of its predictions. Moreover, the last term in the Lagrangian (2.10) is the 

chiral symmetry breaking term and the term 5u)^B'^ describes the coupling of the 

LO field with the pion field. 

The most interesting property of this model, is that the extra uj meson field sta­

bilises the soliton solution like in the Skyrme model. As Adkins and Nappi indicated 

8], this can be understood much easier if we eliminate u^^ from the Lagrangian using 

the corresponding Euler-Lagrange equation: 

iv^ir) = Sr^B^ir), with Bo{r) ^ 0, ^^(r) = 0. (2.11) 

^In particular, this constant is related to the decay rate of the process LJ Tr+Tr~n°. 
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The Lu field can then be expressed as 

uj^{r) = r dr' ^ , (e-^^V-^'\ _ e--^k+r'|\ Sr'''B^{r'). (2.12) 

Hence, the interaction between the two fields - chiral and uj- is described by a term 

which is chiral invariant and has the form 

A c A & i v ) - [Tr{B^)f. (2.13) 

Using a simple scaling argument'', i t is easy to prove that this term tends to stabilise 

the soliton in a similar way like the Skyrme term. Moreover, although the term (2.13) 

is of order six in derivatives of the pion fields U, we see from expression (2.9) that 

the Lagrangian (2.10) - or equivalently the action - is only up to second power of 

df /dr. Thus, the Euler-Lagrange equation for the field U is second order and the 

new model has similar features as the original one. 

After performing a semiclassical quantisation as in [7], one can calculate various 

physical quantities like the constant or the magnetic moment // of the proton and 

neutron. The values of these quantities are close to those predicted by the Skyrme 

model and in some cases improved when compared to the experimental ones [8 . 

We see therefore that by introducing cj-mesons in the Lagrangian (2.10), Adkins 

and Nappi were led to a sixth order model that preserves the simplicity and the 

properties of the original Skyrme model. 

2.2.2 The Skyrme model and the iVÂ  potential 

In a different approach, Jackson et al. [9] tried to reproduce qualitatively the low 

energy Nucleon-Nucleon (iVA'̂ ) interactions using the Skyrme model. In their anal­

ysis, they consider a two-skyrmion configuration that can be approximated using 

the product ansatz, defined as, 

UB=2= ^ i ( r - r i ) • C/2(r-r2), (2.14) 

where the field [/ (r - Fa) is the hedgehog field that is described by expression (2.7) 

and minimises the energy of the single skyrmion configuration {B = 1). This ansatz 

is considered to work quite well when the two skyrmions are well separated, i.e. 

when ri —r2 oo. However, for small distances numerical calculations show that 

'For example using the Hobart-Derrick theorem introduced in section 1.3.2 of chapter 1. 
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the total energy of this configuration is almost three times the energy of the single 
skyrmion and clearly this is not a bound state. Nonetheless, in this section we are 
mainly interested in the qualitative description of the two-skyrmion interactions and 
for this purpose the ansatz (2.14) can be considered as a rather good approximation. 

Traditionally, interactions between two nucleons at low energies can be described 

in terms of the pseudo-scalar TT, the pseudo-vector u) and the vector p mesons. In 

this context, both the scalar and uj mesons contribute to the central NN potential. 

In order to distinguish between their effects, one also needs to study the NN inter­

actions. This is because the pseudo-scalar TT mesons lead to attraction in both NN 

and A'̂ iV interactions whereas the UJ mesons have a similar effect only in the NN 

channel. In the Skyrme model, these hedgehog-antihedgehog (A '̂A'̂ ) configurations 

can be constructed quite easily by replacing one of the fields U by in the ansatz 

(2.14). However, as Jackson et al. indicate [9], when one tries these calculations 

in the Skyrme model, then the repulsive contribution in the central potential is not 

characteristic of an UJ meson exchange at all. To understand this in greater detail, 

let us give a short review of their analysis. 

The product ansatz (2.14) consists of two separate fields, Ui and U2. When the 

right chiral current acts on the field UB=2 we have 

R^. = {d,UB=2)Usl2 = {d,{U,-U2)){U,-U2r' 

= {d,U,)U2 U^'U^' + U,{d,U2)U:^'U^' 

= {d^Ui)U2U2-'U^' +U,RlU,-\ (2.15) 

where i2° denotes the right chiral current of the field Ua- I f we plug this ansatz into 

the Lagrangian of the Skyrme model (2.2) then the fourth order Skyrme term will 

give us three different types of term. Firstly we will have terms where all i?^ act on 

one field. Their contribution is in the total energy of this specific field and nowhere 

else. In the second type of term one will act on one field and three on the second 

field. Although these terms lead to a repulsion in the NN system, they can only be 

considered as correction terms for the scalar meson exchange. The remaining terms, 

where we have two acting on each field, are the ones that contribute to the 

interaction. However, their behaviour does not indicate any repulsive force coming 

from an UJ meson exchange. In general, as Jackson et al. argue [9], when an even 

number of R^^ act on each field then we get an attractive channel, whereas when we 
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have an odd number of R^^ acting on each field, then the contribution is repulsive. 
We see therefore that the fourth order term in the Skyrme Lagrangian ( 2 . 2 ) is not 
adequate to describe the NN interactions correctly. Hence, an extra term needs to 
be added. In order for this term to provide us with the desired contribution in the 
central NN potential, it must be of order six so that we can have an odd number 
(three) of R^ acting on each field. The term that was suggested in [9] was, 

C,(jack.) ~ Tr[B,B>^]. ( 2 . 1 6 ) 

This sixth order term is identical to the term that Adkins and Nappi found ( 2 . 1 3 ) 

within a numerical factor and hence, it has the same properties: it is chiral invariant, 

i t stabilises the soliton and leads to a second order variation equation. Thus this new 

extended model shares the same benefits as the original. However, while proceeding 

further in their investigation, Jackson et al. suggested that the coefficient of the 

fourth order Skyrme term must be negative in order to simulate correctly the effects 

of the scalar mesons. This of course, does not ensure the positive definiteness of 

the energy and hence, we will not consider i t as a valid possibility We will only 

emphasise the fact that the terms £6(A&Ar) ( 2 . 1 3 ) and £6{Jocfc.) ( 2 - 1 6 ) are almost 

identical even though they were adopted in a different context. 

2.2.3 A systematic approach for all orders 

In the previous two sections we saw that Adkins and Nappi [ 8 ] , and Jackson et al. 

9] generalised the Skyrme model using terms only up to sixth order. They claimed 

that these are the only higher order terms which lead to an action which is second 

order in terms of the derivatives of the fields. Thus, one cannot add more terms 

without destroying the simplicity of the original model. 

However, Marleau [10 , 1 1 , 3 7 , 12] managed to overcome this difficulty and con­

struct a model that includes all order terms of the pion fields. His work is the most 

characteristic example of a Skyrme model with infinite number of terms and in what 

follows we will give a brief account of i t . 

As we have mentioned a number of times before, there are no theoretical restric­

tions in the form of the extra terms and so their choice can be arbitrary as long as 

the condition of chiral invariance is satisfied. Keeping this in mind, we start our 

calculations by noting that the right chiral fields i?^ can be written in the hedgehog 
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ansatz in the following simple form, 

Rm=trklkm{a,i3,-f), ( 2 .17 ) 

where 

lij{a, /?, 7) = {5ij - f i f j ) a + f . f j P - tijkTkl (2.18) 

and 

^ ^ s i n / ( r ) c o s / ( r ) , ^ ^ 
r r 

I t is easy to prove that the following properties hold 

kmiauPi, li)ljm{a2, P2,72) = lij{aia2 + 7i72, f3ip2,0) (2.19) 

and 

4* = 4fc(r ,A,o) = ( A r - i ) r + A, (2 .20) 

where Â  is the number of dimensions, i.e. N = 3, and 

r = a' + ^' = ^^ and A = f 3 ' ^ p . ( 2 . 2 1 ) 
r 

If we rewrite the Skyrme Lagrangian (2.2) in the following more general form 

Csk = C2TrR^R*' + CiTr[R^,R''][R,,R% (2.22) 
V ' ^ V ' 

C2 C\ 

where C2 = -P^/16 and C4 = l/32a^, then using the properties (2.19), (2.20) and 

expression (2.21) we have that the o model term £ 2 is given by, 

£ 2 = C2 TrR^R" = C2 lkrTr{TkTr) = 2 C2 [(A^ - l ) r -t- A] . (2.23) 

Any term that is constructed as the trace of a product of i?^'s will always give a 

product of antisymmetric tensors [e^^^) which will contract with each other. The 

result will then be given in terms of Kronecker's deltas, 5'^'^ ... 5^'^5^'^ , which when 

multiplied by Ikr • • • ^pqkj will give Ikk • • • ifp • The term ifp denotes the mixing 

between indices, i.e. 5^M '̂/pq/i_, = Ipp . 

In general, we have that 

= /fc^(r". A", 0) = (A^ - l ) r " + A " . (2.24) 
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Having declared all the important properties of /fcfc's, we can proceed to the 
evaluation of the Skyrme term, 

£ 4 = C4 Tr[Rf„ R^jlR,,, R^] = C4 kmlrmlpjqn Tr[rk, rp][Tq, Tr 

= 8 c 4 ( W p p - 4 ? ) = 8 c 4 ( A ^ - l ) r [ ( A ^ - 2 ) r + A] . (2.25) 

As expected, both terms (2.23) and (2.25) are of order / '^ {i.e. they are propor­

tional to A) and hence, the corresponding Euler-Lagrange equation will be of second 

order. These results are the same as those obtained from conventional calculations 

and thus, this verifies the validity of this notation. 

Proceeding further, we consider a sixth order term which can be constructed 

according to Marleau [10] as 

A = ce Tr[R^, R-'jiR,, R^][R^, i?^]. (2.26) 

I t can be shown that for the hedgehog ansatz this term is equivalent to (2.13) and 

(2.16) within a numerical constant. Evaluating it explicitly we have, 

Ce = ceUp,lijTr[r',r%T^,TP][r\T'] 

= 16 Ce krlpghj iS'^^'^S'^'' - S'^^'^S^" + d'^n'^d"^ 

= 16C6(2/2-3Z2/p, + 

= 1 6 c 6 ( i V - l ) ( i V - 2 ) r 2 [ ( A r - 3 ) r + 3A]. (2.27) 

This term is also of order / '^ as required. Comparing the three results (2.23), (2.25) 

and (2.27) obtained so far, we observe that they seem to obey a general pattern, 

given by 

£ 2 n O c r " - ^ [ ( i V - n ) r - H n A ] . (2.28) 

where the index 2n denotes the order of a specific term. 

For a given order 2n one can always consider the general form, 

C2n = C2n Tr [R^, R''][Ru, R^] • • • K , R^]- (2-29) 

n commutators 
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However, explicit calculations of such higher order terms show that they are not 
proportional to / '^ . For example, if we calculate the 8*'̂  order term we find, 

Csa = CsTr[R^,R''][R„R^][R,,RP][Rp,Rf'] = 

= 3 2 c 8 ( A ^ - l ) ( N - 2 ) r 2 [ ( A ^ - 3 ) r 2 + 2 r A + A ^ ] . (2.30) 

If we want to restrict ourselves to the pattern (2.28) then we need to eliminate 

(or the / ' ^ ) from (2.30). A possible way to do this, is by constructing another S*'' 

order term given by, 

Csb = cg {Tr[R^, R-'][Rx, R"]) {Tr[R,, R^][R„ R'']) 

= 6 4 c 4 ( A ^ - l ) r ' [ ( i V - 2 ) r ' + 2A ' ] . (2.31) 

Using an appropriate linear combination of (2.30) and (2.31) we get 

= 3 2 c 8 ( N - 1 ) ( A ^ - 2 ) r ^ [ ( A ^ - 4 ) r - t - A ] . (2.32) 

From this last result we see that not only was A^ eliminated but in addition the 8*'' 

order term constructed in this special way, is consistent with the pattern (2.28). 

In general , for every order 2n one can consider [ | ] types of linearly independent 

terms where [z] denotes the integer part of z. These terms are constructed as 

Cna = CnTr{fXrj^f^...fi;), 

Cub = c „ T r ( / ; / ( ) r r ( / , V ; r . . . / ^ ^ ) , 

Cnc = c^Tr{fX)Tr{f^f:)Tr{f^fi---fi;). 

(2.33) 

where we have defined = [i?^, R"] for simplicity. The linear combination of these 

terms that eliminates all powers of A " for ?z > 1 will always be consistent with the 

pattern (2.28). This last property has been proven in the general case by Marleau 

in [12] where it was also shown, using the properties of the Pauli matrices r^, that 

all terms for n > 3 and n = odd are identically zero. 

At this point there is one important comment that needs to be made. Every extra 

term comes with an unknown coefficient that denotes its strength and in principle 

it can be tuned phenomenologically. In an all orders model, however, we have an 
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infinite number of these unknown coefficients and tuning them is very difficult. To 
resolve this problem one can link these coefficients to the coefficients of the Skyrme 
model. This has been done in various ways [10, 12, 38, 39]. The original Skyrme 
model can then be thought of as the first and second order of an expansion series 
of one initial function. This idea is quite interesting and has been investigated with 
great detail by Marleau [11, 12, 38 . 

As a concluding remark we note that while generalised Skyrme models includ­

ing all order terms are not entirely justified physically, they do possess some very 

interesting mathematical properties which need to be explored further. 

2.3 A general sixth order Skyrme model 

2.3.1 Definition of the model 

In the light of the above, we define in this section a generalised Skyrme model that 

is of order six in derivatives of the pion fields and is described by the Lagrangian, 

L = ^TrR^R^ + ~Tr[R^,R''][R,,R^'] + CeTr[R^,R''][R„R^][Rx,R'']. 

(2.34) 

The unknown coefficient Ce denotes the strength of the sixth order term and will 

be left as a free parameter of the model like a. The extra term we have considered 

here, is similar to expressions (2.13), (2.16) and identical to (2.27) that Marleau has 

used in his extension of the Skyrme model. I t is the most general term of order six 

that preserves chiral invariance and also leads to an Euler-Lagrange equation that 

does not involve derivatives of order higher than two. 

Al l the studies of generalised Skyrme models that we have seen so far, have 

focused on the properties of a single skyrmion {i.e. B—1) where the Skyrme field 

U takes values in SU{2). Our analysis, however, is going to be much more general. 

In particular, in the following chapters we will investigate the properties of multi-

skyrmion configurations {i.e. 5 > 1) of the model (2.34). For these configurations 

the hedgehog ansatz (2.7) is no longer a minimum energy solution and hence, we 

will not use i t to describe the field U. Instead, we will assume that U has the most 

general form, U = U{x,t), and is SU{N) valued. The topological charge is given by 

the general expression (2.6). 
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In addition, we will only focus our attention on static solutions and hence, we 
will also assume that U does not depend on time, i.e. U = U{x). In this perspective, 
the energy of the model is given by. 

E = - I dx' t:^TrR,R^ + ^Tr[R^,R''][R,,R^] 

+CeTr[R^,R''][R^,R^][R^,R^'] . (2.35) 
/ 

If we consider the transformation 

x ^ x v^ l + x/1 + K , (2.36) 

where K = 192ceF^a'^, then we can rewrite the energy (2.35) in the following conve­

nient form 

E = -A jdx4\TrRU^-^Tr[R,,R, 

+ Tr[Ri, R^][Rj, Rk\[Rk, R,] ) , (2.37) 

where 

(2.38) 
(4^/2a) V ̂  • ^ ^ ' " ( l + v T T ^ ) ^ ' 

The parameter A is the energy scale of the model and A is a numerical constant. 

Using this notation, we can also define the dimensionless energy expressed in the 

so-called topological units, 

1 \ 
+--\Tr[Ri,Rj][R^,Rk][Rk.Ri] • (2.39) yb J 

The advantage of this parameterisation is that A G [0,1] describes the mixing 

between the Skyrme term and the sixth order term. When A = 0 our model reduces 

to the usual pure Skyrme model while when A = 1 the Skyrme term vanishes and 

the model reduces to what we refer to in what follows as the pure Sk6 model. This 

last model is similar to the model that Adkins and Nappi have studied. 
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The Euler-Lagrange equations derived from (2.37) for the static solutions are 
given by 

d^(^R^-^{l-X)[Rj,[R,,R,]\ -^x[Rj,[Rj,Rk][Rk,Ri]]^ = 0 . (2.40) 

Moreover the following inequality holds for every configuration 

E > B. (2.41) 

When A = 0 this inequality is the Bogomol'nyi bound which we have introduced in 

chapter 1 and provides us with a lowest energy bound for any field configuration 

of the Skyrme model. However, when A = 1, the inequality (2.41) just shows the 

positive definiteness of the energy of the pure Sk6 model. 

2.3.2 Fitting the parameters of the model 

Our extended model depends on three parameters: F^, a and ce. To determine the 

values of these parameters one can evaluate different physical quantities. As our 

analysis will be purely classical, we will use the total energy (2.37) and the isoscalar 

mean square matter radius given by [7 

^ = < r >/=o— ôo , 5 T T ' l^ -^-^ j 
Jo drr^peir) 

where 

ps(r) =47 rB° ( r ) . (2.43) 

Notice that after performing the scaling (2.36) we can define the matter radius 

evaluated in dimensionless units as 

R = ^ ^ \ = aF, R. (2.44) 

To illustrate how we can determine the unknown parameters, let us consider 

first the original Skyrme model and set Ce = 0 in the Lagrangian (2.34). This is 

equivalent to setting A = 0 in the energy (2.37). Then the unit energy. A, is only a 

function of and a 

^Skyrme = ~ . (2.45) 
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Using expressions (2.37) and (2.39) we have that 

hskyrme = E/{\2TT^E). (2.46) 

The dimensionless energy E can be computed numerically by minimising expression 

(2.39). For the simplest configuration, where 5 = 1, we have that E = 1.232. This 

is the case of the single skyrmion that is identified with the nucleon. I f we consider 

that the static energy E is the mass of the proton or neutron, i.e. £ ~ 939MeV, 

we can obtain a value for h-skyrme from expression (2.46). The free parameter a is 

then determined by fixing to its experimental value, i.e. for Fr = 186MeV we 

get a = 7.22577. Using these values for a and F^, one can compute other physical 

quantities like the matter radius (2.42) and compare them with experimental data. 

Although in this approach our results are incomplete, since we did not consider any 

quantum corrections, we can still estimate the quality of the model's predictions. 

Similarly, the pure Sk6 model {i.e. when A = 1) also depends on two parameters, 

F^ and Ce. In this case the transformation (2.36) and the unit energy A (2.38) will 

read 

f ^ 4 (^3||y f and A^^e = ^ ( 3 C g F ; ^ ) ^ (2.47) 

By inputting the mass of the nucleon, one can also obtain a value for the unknown 

coeflRcient c^. 

In the general case, where both higher orders are present, we see from expressions 

(2.39) and (2.44) that E and R are functions of A only. Thus, instead of determining 

the values of the parameters a and Ce in the B = 1 case as we had done for the 

pure Skyrme and pure Sk6 models, we can calculate the ratio of the energy and 

matter radius for different solutions. Since these ratios are dimensionless, they can 

be compared directly with the experimental ratios which are also dimensionless. 

In the following chapter we will evaluate the energy and radius of multi-skyrmion 

solutions for the general model and evaluate these two quantities with the corre­

sponding value for the single skyrmion. We will then compare them directly to the 

experimental ratio, 

iB- _ Es(X) Rs_ ^ _Rs(Xl 
D rt / \ \ ^ ' EB=I F B = : I ( A ) RB=I RB=I{X) 

The advantage of this approach is that by varying the strength of the extra 

sixth order term one can gain an understanding of the eflFect that it has on the 
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general behaviour of the model. As we shall see, this behaviour changes for different 
multi-skyrmion solutions. 



Chapter 3 

Numerical solutions 

3.1 Introduction 

Understanding the properties of the Skyrme model is strongly related to obtain­

ing solutions for the corresponding Euler-Lagrange equations. To the present day, 

however, despite the significant theoretical progress that has been achieved in the 

field, we have no knowledge of any analytical solution of these differential equations. 

They are of such complexity, that we lack the appropriate mathematical tools to 

treat them systematically, even in the case of the simple fourth order Skyrme model, 

let alone its generalisations. 

In general, there are very few non-linear models that can be solved exactly. 

They are usually referred to as integrable models and they exist in (1+1) as well 

as in (2+1) and (3+1) dimensions. Their solutions can be obtained explicitly by 

applying a number of techniques like the inverse scattering method and the Backlund 

transformation among others. Unfortunately, none of these methods seem to work 

for the Skyrme model as the model is non-integrable. The only exception is when 

we restrict ourselves to (1 + 1) dimensions where the Skyrme model reduces to 

the well known sine-Gordon model. As we have seen in chapter 1, this simplified 

model is a fully integrable model with well known analytical solutions. However, 

our main interest lies in (3 + 1) dimensions where our results can be directly applied 

to particle physics. In this case the Skyrme model is non-integrable and in the 

absence of analytical solutions one has to rely on numerical methods for studying 

its properties. 

Solving the Skyrme equations numerically, is a problem that can be approached 

in two different ways. One can either try to solve the general Euler-Lagrange equa­

tions - in our case equations (2.40) - directly, using numerical methods or try to 

38 
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approximate the Skyrme fields first, by imposing a symmetry for a given configura­
tion. Although the latter simplifies the differential equations greatly, the numerical 
results obtained in this way are only an approximation and not an actual solution of 
the model. This semi-analytical approach will be studied in detail in the following 
chapters. 

In this chapter we will focus our attention on the first approach and we will 

try to compute static solutions of the general sixth order Skyrme model, defined 

by the Lagrangian (2.34). For what follows, we will not consider any approxima­

tions of the Skyrme fields and thus our results will correspond to true solutions of 

the model. Our investigation will start from the single skyrmion solution {B = 1). 

Since this configuration has been studied previously, i t provides us with an excellent 

testing ground for our methods. We will then study the properties of multi-skyrmion 

configurations with B = 2..5 and determine the quality of our model's theoretical 

predictions. For this purpose we will use the energy and matter radius ratios, that 

were defined in the previous chapter in (2.48), and compare our results with exper­

imental data. This wil l also help us to understand the effect of the additional sixth 

order term that we have considered in the Skyrme model. 

We would like to emphasise that this approach is a difficult and time-consuming 

problem. Not only does i t require a significant amount of computer power but one 

must always be careful when estimating the accuracy of the results. The numerical 

methods that we have used throughout this and the following chapters are quite 

advanced and in Appendix A we discuss them in some detail. 

3.2 The 0-formulation 

In the previous chapter we introduced our sixth order Skyrme model using the 

unitary field U = U{x). We noted that in the most general case U takes values 

in SU{N). However, as we have already mentioned, obtaining the solutions of this 

model numerically is a rather complicated procedure and for this reason we will 

restrict ourselves to SU{2). In this case, it is more convenient to use the four-

component vector (j) which is related to U by 

U = 4)QI + I T - ^ , (3.1) 
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where / is the unit matrix and r are the Pauli matrices. The boundary condition 
(2.4) then becomes |0p = 1, i.e. we assume that ^ is a unit vector. In this notation, 
the dimensionless energy E is given by 

+ 5 (l*;.!" - 3 • + 2 • M{4', • • ( 3 . 2 ) 

To derive the Euler-Lagrange equations, we minimise the above expression after we 

have added a Lagrange multiplier to impose the constraint |0p = 1. We have, 

(̂ 1 + (1 - A) + - ((/.. • 4>,)'^ + | ( / > J 2 • 0 

+ (1 - A) {{(f)^ • (f)^^) 0̂  - {(f)fj,f, • (fju - {(t>n • 4>u) (t>vii + \(IJH\^ ( f ) - {(j)^- (t)uf(f) 

1 \ 
+ 0 [ i^^r - 3 i^^r (0<' • <t>.?+2 (0;. • 0.)(0. • (/)^)(0. • 0.)] 0 = 0 . 

(3.3) 

As before, A is a dimensionless parameter with A G [0,1]. Let us remind the reader 

that when A = 0, expressions (3.2) and (3.3) correspond to the pure Skyrme model 

and when A = 1 they refer to the Sk6 model. In what follows, we will solve the 

above equations numerically, by treating A as a free parameter. 

3.3 The single-skyrmion solution 

When we were studying the Skyrme model and its possible modifications in chapter 

2, we have seen that in the simplest case, where .0 = 1, the field U is spherically 

symmetric and can be described by the hedgehog ansatz (2.7). There we have 

argued that this ansatz describes an actual solution of the model. To show that 

this is true, one needs to plug (2.7) directly to the Euler-Lagrange equations of the 

Skyrme model. Then the angular part of the resulting equations vanishes and one is 

left with a one-dimensional equation that depends only on the radius r. Therefore, 
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the solution for the single skyrmion is invariant under rotations with respect to all 
axes and hence, it is spherically symmetric. By performing the same calculations for 
our sixth order model (3.3) one can prove that it is also spherical symmetric for any 
value of A G [0,1]. In all these cases the solutions can be described by the hedgehog 
ansatz which in the 0-formulation is given by, 

( sin / ( r ) sin^ sin 99 \ 

sin / ( r ) smO cosy? 

s in / ( r ) cos^ 

\ cos/(r) ) 

where r, 6 and <p are the usual spherical coordinates, / ( r ) is the unknown profile 

function that satisfies the boundary conditions /(O) = TT and /(oo) = 0 and is 

determined numerically. Plugging (3.4) into (3.2) we have that 

EB=I = { j y + 2 sin^ / (1 + (1 - X ) f ^ ) 

sin^ / , ^ sin^ / 

0 = (3.4) 

+ ( 1 - A ) ^ + A ^ / . ^ ) . (3.5) 

The Euler-Lagrange equation for the function / ( r ) is an ordinary differential equa­

tion, given by 

r 2 

To solve this equation one can use different methods but since it is a one dimensional 

problem {i.e. it only depends on r ) we have used the shooting method because i t 

is the fastest and it gives very accurate results. In Figure 3.1 we give the profile 

function / and the energy density obtained for the two extreme cases: the pure 

Skyrme and the pure Sk6 model. We see that the two profile functions are very 

similar and the energy density seems to be more 'spread out' for the pure Sk6 

model. In addition, the total energy given in dimensionless units decreases when 

A increases, taking the minimum value when A = 1. This is shown in Figure 3.2 

where we have plotted the A dependence of the energy and matter radius of the 

solutions. In the same Figure we also see that in contrast to the energy, the radius 

increases with A. Al l these effects, however, are due to our choice of parameters and 
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given a different parameterisation, we would liave obtained different results. Tiie 

real quantities one has to investigate are the energy and radius ratios (2.48) which 

we will study in the next sections. 
• • • • • 1 I I I I I I I 1 I I I 1 

8 10 

Figure 3.1: Profile function / and energy density of the single skyrmion solution for 

the pure Skyrme model, A = 0, and the pure Sk6 model, A = 1. 

Figure 3.2: ^ (A) and ^(A) for the B = 1 solutions. 

As a final remark, let us note that the symmetry of a given configuration, i f any, 

can be identified by plotting surfaces of constant baryon density. In this way we 

have a picture of the shape of each specific solution. For example, as we already 
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Figure 3.3: Baryon density isosurface for 5 = 1. 

know, when B = I the solutions of our model are radially symmetric and hence, the 

surface of constant baryon density will have the shape of sphere like in Figure 3.3. 

3.4 T h e B = 2 case 

Besides the single skyrmion, i t is widely accepted that the bound state of two 

skyrmions {B = 2) in the Skyrme model also exhibits a characteristic symmetry. 

This has been suggested both analytically [40], using qualitative arguments, and 

numerically [41] where it was shown that the global minimum-energy configuration 

for B = 2 is axially symmetric. To give a brief description of the numerical approach 

that was used in [41], we mention that the initially considered system consisted of 

two skyrmions placed in the most attractive channel. As we have seen in the previous 

chapter, when two skyrmions are well separated, they can be described quite well 

using the product ansatz, given in (2.14). To obtain the minimum energy solution, 

these skyrmions where brought together adiabatically and the results showed that 

the system relaxed to an axially symmetric configuration. This has also been proven 

in greater accuracy using a more advanced numerical code [42] and recently using a 

different numerical method, based on the simulated annealing technique [43]. 

In the case of the general sixth order Skyrme model, which interests us here, the 

B = 2 configuration is also axially symmetric for different values of the parameter 

A. To prove this, we have solved equations (3.3) numerically. Our solutions have 

the same symmetry as the ones of the pure Skyrme model and hence, we can argue 
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that the axial symmetry of the B = 2 bound state is not disturbed by the additional 

sixth order term we have considered. The latter can also be shown by plugging an 

axially symmetric ansatz, expressed in cyhndrical coordinates, into equations (3.3). 

Like in the hedgehog ansatz, the angular dependence vanishes and the system is 

invariant under rotations with respect to one axis, i.e. is axially symmetric. 

The axially symmetric ansatz, that reduces equations (3.3) to a two-dimensional 

system, is given by 

^ sin / sinp sin(2t/p) \ 

sin / sin 5 cos(2(/?) 

sin / cos^ 

\ cos/ 

where ^p — ata,n{y/x). The two profile functions, f{p,z) and g{p,z) are functions 

(3.7) 

of the usual axial coordinates, (p = y/x^Ty^, z), and they satisfy the following 

boundary conditions: 

/ (0 ,0) = TT f{p^oo,z^oo) =0 fp{0,z) = 0 

g{0,z<0) = 0 

where R'^ = r'^ + z"^. 

Substituting (3.7) into (3.2) we get 

g{0,z> 0) = TT QRIR^OO = 0, 
(3.8) 

E Ul + f l ) + sin^ / [al + 9l) + sin' f sin' g 

- sin' f sin' g [f^ + f ] + sin'/{gj + g'j] + sin' / {f,g, - f.g.f 

+A - sinV sin'g{fpg, - f,gp)' p dpdz. (3.9) 
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The corresponding Euler-Lagrange equations are given by 

1 \ 2 1 

fpp + fzz + - /p J - ^ sin 2 / sin' ^ - - sin 2 / { g j + g j ) 

+ (1 - A) I ^ sin' / sin 2g { f p g p + f , g , ) + ^ sin' / {fpg^ - f . g p g , ) 

+ \ s i n 2 / i f p g , - f . g p f + 4 sin' / sin' g ( f p p + - - f p 
^ P V P / 

f { f p p 9 l + f z 

'^fzp9z9p + fpQzQzp - fzQppQz - SpQzzgp + fz9pgpz^ 

H—^ sin 2 / sin' g 
p ' 

^(/p' + / . ^ ) - s i n ' / ( 5 j + ^.') + sin' 

+A < — sin' / sin 2 / sin' g { f p g , - f . g p f + ~ sin" / sin' g [^fppg] + fpg^g^p 

-'^fzp9p9z - fz9ppgz + fzz9l + fz9p9pz - fp9zz9p - - { f p 9 l -

- - ^ sin 2 / sin' / sin' g - f^gpf | = 0 (3.10) 

/ 1 \ sin 2 / , , , , 2 . 
\9pp + 9zz + -9pj + Up9p + fz9z) + sm 2g 

+ (1 - A) I ^ sin' / sin 2g [g] + p,') + gin' g { 2 sin 2 / { f p g p + / ,p , ) 

+ sin' / [gpp + - j + J (/l^p - f p f z g z ) + f h p p + /'^z^ 

-4 sin 2^{ /^ ' + / , ' + sin' / [g] + 5,') } + f j ^ p g p - f p p g j , + f p f p . g , - 2 f p g , p f , 

- f z z 9 p f p } + ^ ' { - ^ sin' / sin 2c/ { f , g p - f p g , ) + — sin' / sin' g f z f z p 9 p + fz9pp 

- f p p f z 9 z - '^fpfz9zp + fpfpz9z + /p^z^ - f z z f p 9 p - - { f z 9 p - f p f z 9 z ) 

- - ^ sin' / sin 2g { f p g , - f . g p f | = 0. (3.11) 

In Figure 3.4 we have plotted the profile functions / (p , z) and g{p, z) and the profiles 

of the energy and matter radius for the pure Sk6 model, i.e. for A = 1. Moreover, 

in Figure 3.5, we present the A dependence of the energy and radius ratios for the 

B = 2 configuration obtained after solving equations (3.10) and (3.11). 
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f(r,z) 

(a) Profile function / ( r , z) (b) Profile function g{r, z) 

E(r,z) R(r,z) 

(c) Energy profile E{r, z) (d) Matter radius profile R{r, z) 

Figure 3.4: Profile function (a) / and (b) g, and profiles of (c) the energy E and 

(d) the matter radius R for the axially symmetric 5 = 2 solution of the pure Sk6 

model. 
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m 1.86 

Figure 3.5: E{X) and R{X) ratio of jB = 2/B = 1 for the numerical solutions. 

We see that when A increases the energy and radius ratios both decrease, taking 

their minimum value when A = 1, i.e. when our model reduces to the pure Sk6 

model. Hence, we argue that the additional sixth order term results in larger binding 

energy and in a spatially smaller configuration, and both effects are stronger when 

this term becomes dominant {i.e. when A —> 1). 

As expected, the symmetry of the B = 2 configuration does not change with A 

and in the next section we show in Figure 3.9 the baryon density of this solution for 

the pure Sk6 model {i.e. A = l ) . We see that i t has the shape of a torus like in the 

case of the pure Skyrme model [42, 41, 43 . 

3.5 Configurations with B > 2 

For configurations with topological charge larger than two we can no longer reduce 

the system of equations using a symmetry and hence, we have solved the three-

dimensional equations (3.3) directly. To estimate the accuracy of our numerical 

method, we have considered the B = 2 case and we have compared the solutions of 

equations (3.3) with the ones obtained from the reduced system of equations (3.10) 

and (3.11). The advantage of having a reduced two-dimensional system is that i t 

enables us to use much larger grids and thus to get much more accurate results. 

The difference between the value of the total energy computed in these two different 

ways was less than 0.1%, validating the accuracy of our methods^ 

^See Appendix A for further details. 
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D) 2 74 

LU 2 73 

Figure 3.6: E{X) and ^(A) ratio of B = 3/B = 1 for the numerical solutions. 

O ' '3 

O) 3 56 

Figure 3.7: ^ (A) and ^(A) ratio oi B = 4/B = 1 for the numerical solutions. 
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CO 4.45 

1,895 

Figure 3.8: E{X) and ^(A) ratio of B = 5/B = 1 for the numerical solutions. 

As in the previous two sections, we present in Figures 3.6, 3.7 and 3.8 the A de­

pendence of the energy and radius ratios for the B = 3..5 multi-skyrmion solutions. 

We see that in each case the energy ratio decreases when the coefficient of the sixth 

order term increases (A 1) while on the other hand, the radius ratio increases thus 

making the multi-Skyrmion solution broader in all cases. Comparing these graphs 

with the corresponding ones of the B = 2 solution, we see that the behaviour of the 

energy ratio is similar for all cases, whereas the radius ratio for i? = 2 is the only 

one that decreases with A. 

For the solution with 5 = 5, we also observe that there is a small local minimum 

when A ~ 0.2 but the effect is so small i t could be a numerical artifact. However, 

we believe that the general behaviour of the solution can be trusted. 

Alongside the energy and radius ratios, in Figure 3.9 we present surfaces of 

constant baryon density for the pure Sk6 model. The symmetries of these multi-

skyrmion solutions are the same as the ones obtained for the pure Skyrme model 

42, 43]. We have already discussed the axial symmetry of the B = 2 skyrmion. The 

solutions for the B = 3 and B = 4 skyrmions have the shape of a tetrahedron and 

a cube respectively while the B = 5 skyrmion solution has a symmetry. We 

can therefore argue that our extended model retains the symmetries of the original 

Skyrme model at least for solutions with B < 5. 



Chapter 3. Numerical solutions 50 

(a) B (b) B = 3 

(c) = 4 (d) B 

Figure 3.9: Baryon density isosurface for (a) B = 2, (h) B = 3, (c) B = 4 and (d) 

B = 5 with symmetries of a torus, a tetrahedron, a cube and respectively. Al l 

configurations are presented to scale. 



Chapter 3. Numerical solutions 51 

3.6 Comparison with experimental data 

Although our investigation so far has been restricted to a purely classical level and 

thus it has excluded all quantum effects, we would like to compare our results with 

the corresponding experimental values. This will help us determine whether the 

modification of the Skyrme model, which we have considered in our analysis, can 

improve - even qualitatively - the theoretical predictions of the Skyrme model. 

Since we have already identified the skyrmion with the nucleon (proton or neu­

tron), the multi-skyrmion configurations we have examined thus far, can be thought 

of as representations of light nuclei. Having associated the topological charge B 

with the baryon number, any solution of the model will describe a nucleus with 

mass number A = B. Moreover, in our numerical search, we have claimed that 

the solutions we have obtained, are global minima of the corresponding configura­

tion. Thus, we will assume that the value of the total energy we have computed 

corresponds to isotopes with minimum mass. 

Evaluating the experimental values of the energy ratio of light nuclei with the 

proton (or neutron) is a straightforward procedure. These masses were determined 

long ago and one can find their exact values in a number of nuclear physics textbooks. 

In our comparison we have used the tables of reference [44] ^. 

In contrast to the energy, determining the matter radius is a difficult task. Tra­

ditionally, information about the structure of stable nuclei has been obtained using 

direct reactions of ion beams onto target nuclei. Recently, with the availability of 

radioactive ion beams, it was also possible to study more exotic nuclei, i.e. more 

unstable nuclei like all isotopes of He, L i and Be. Since the details of these exper­

iments are not our primary concern, we refer the reader to the pioneering papers 

by Tanihata et al. [45, 46] and to the work of Egelhof [47], where an overview of 

this subject, together with more recent results is presented. For our purposes, it is 

sufficient to give a brief summary of the method that was used. Like in all scattering 

processes, the main quantity that was measured in these experiments was the total 

cross section a of the interaction between the projectile nuclei and the various target 

nuclei. To estimate a value for a one can use the change of intensity of the ion beam 

before and after the scattering. Then the matter radius of the projectile nucleus Rp 

More recently obtained values could be more accurate than the ones found in [44]. However, 

the difference is too small to affect quantities like the energy ratio which we compute here. 
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can be determined by the following relation [47 

o = Tr [Rp + RTj , (3.12) 

where R-r is the matter radius of the target nuclei. Expression (3.12) is rather simple 

and to get more accurate results one needs to use further, more complicated, analysis. 

However, using this naive approach it is possible to gain a deeper understanding of 

the nuclear structure. For example, from the results of [45, 46, 47], it appears 

that the matter radius becomes significantly large for exotic unstable nuclei, i.e. 

for nuclei with very small binding energy. This large radius is not the result of a 

deformed core but it is created by a 'halo' of a low density neutron distribution. 

Such properties of exotic nuclei are quite interesting and suggest that the nuclear 

structure is much richer than previously thought. 

Returning to our theoretical approach, in Tables 3.1 and 3.2 we give the exper­

imental values of the energy E and matter radius R and compare them with the 

energy and radius we computed numerically. We notice that the predicted values 

for the energy are always smaller than the experimental ones and the addition of 

the sixth order term makes the energy ratio even smaller. The difference in the pure 

Skyrme model is of order 5% for the ratio EB=2/EB=I {i-e. the ratio of the energy of 

the deuteron with the proton) and it increases for large B. This is also true for the 

pure Sk6 model where the error increases with B. On the other hand, the addition 

of the sixth order term makes the multi-Skyrmion solution broader, except when 

B = 2. However, i t is clear that in this case the predicted values are still much 

smaller than the experimental ones. 

For the radius ratio, the largest error is obtained for the deuteron {B = 2) and 

when B increases, the theoretical values seem to improve. This is not surprising 

since, as we have already argued, our sixth order model describes the two-skyrmion 

configuration as an axially symmetric system. I t is clear that this contradicts the 

experimental picture where all nuclei are thought to have a shell-like structure. 

As a concluding remark let us note that it is a well know problem that the 

binding energies predicted by the Skyrme model are too large. One usually argues 

that quantising the model will somewhat solve this problem. Our modification of 

the Skyrme model has not improved the situation and the binding energy is even 

stronger when we include a sixth order term. On the other hand the radius of the 

classical solutions of the Skyrme model are too small compared to experimental 
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Experiment Numerical solutions 

B Energy (MeV) Ratio Skyrme Ratio Sk6 Ratio 

1 939 

2 1876.1 1.99798 1.9009 1.8395 

3 2809.374 2.99188 2.7650 2.7103 

4 3728.35 3.97055 3.6090 3.5045 

5 4668.795 4.97209 4.5000 4.3780 

Table 3.1: Experimental energy ratio, EB/EB=I, and values obtained for the numeri­

cal solutions. The experimental values (MeV) correspond to isotopes with minimum 

mass [44 . 

Experiment Numerical solutions 

B Radius (fm) Ratio Skyrme Ratio Sk6 Ratio 

1 0.72 

2 1.9715 2.73819 1.3549 1.308 

3 1.59 2.2083 1.5080 1.5570 

4 1.49 2.06944 1.6850 1.7420 

5 - - 1.8890 1.9250 

Table 3.2: Experimental radius ratio, RB/RB=I and values obtained for the numer­

ical solutions. The experimental values (fm) correspond to nuclei with minimum 

mass [7, 48, 45, 47. 
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results. The additional sixth order term seems to remedy the situation since, with 
the exception of the B = 2 configurations, all other multi-skyrmion solutions are 
broader when this term is dominant, thus improving the theoretical values of the 
matter radius. 



Chapter 4 

The harmonic map approximation 

4.1 Introduction 

In the previous chapter we studied some of the classical properties of the sixth order 

Skyrme model (2.34) using numerical methods to solve the corresponding Euler-

Lagrange equations (2.40) (or (3.3)). Although this approach has the advantage of 

providing us with quantitatively correct results, i t is mainly limited by the large 

computing power required for such complicated problems, thus restraining us from 

more detailed investigations. In this chapter we will try to extend our understanding 

of the extended Skyrme model (2.34) by considering a different, more analytical 

approach. 

Recently, it has been shown by Houghton et al. [14] that multi-skyrmion solu­

tions of the pure Skyrme model in SU(2) can be approximated quite well if one uses 

the so called rational maps ansatz to describe the Skyrme fields. Their calculations 

showed that configurations with B < 9 that are constructed using this approxima­

tion have the same symmetries as the true solutions. In addition, the minimum 

energy of these static skyrmions is only a few percent higher than the corresponding 

numerical values. This ansatz was later generalised in terms of harmonic maps by 

loannidou et al [15] in order to approximate solutions of the SU{N) Skyrme model. 

The advantage of both approximations is that they simplify the differential equations 

of the Skyrme model significantly and thus, one no longer anticipates the problem of 

solving the full three-dimensional system. Hence, using such semi-analytical meth­

ods one is able to study the Skyrme model systematically in a manner that is both 

qualitatively correctly and easier to implement. 

In what follows, we will present both the rational and harmonic maps ansatz 

in greater detail and discuss some of their properties. We will then use them to 

55 
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approximate multi-skyrmion configurations for our extended Skyrme model. As in 
the previous chapter, we are going to treat the coefficient of the extra sixth order 
term as a free parameter of the model and we will calculate the energy and radius 
ratios of these configurations with the single skyrmion. Our study will concentrate on 
the SU{2) and SU{3) versions of the model (2.34). We will examine static solutions 
with topological charge S < 9 for SU{2) and with B < 6 for SU{3). This will 
reveal a number of interesting properties of these skyrmions under the rational and 
harmonic map approximation. Finally, we will compare our results with the ones 
we obtained numerically in the previous chapter and we will determine whether this 
is a good approximation for the extended model as well. 

4.2 Rat ional and harmonic map ansatz 

As has been mentioned previously, in the most general case, the Skyrme field U{x, t) 

takes values in SU{N) and satisfies the boundary condition U I when \x\ oo, 

where / is the unit matrix. In this description, the three dimensional Euclidean 

space is compactified into the three dimensional unit sphere and hence, U 

corresponds to mappings from ^ SU{N). I f we restrict ourselves to SU{2), any 

skyrmion solution will be a map from to SU{2) and since SU{2) is isomorphic 

to 5^ we will have that U{x,t) :S^^S^. 

The rational map ansatz, as introduced by Houghton et al. [14], is an approxi­

mation of multi-skyrmion solutions using rational maps between Riemann spheres. 

In general, these rational maps R{z) of degree N are holomorphic functions, i.e. 

they only depend on z, such that R : S' ^^ S' and have the form 

The polynomials p and q must be of maximum degree and they must have no 

common factors. 

Consider now a point x G given in spherical coordinates {r,6,(j)). It is conve­

nient for what follows, to map the angular coordinates {9, (p) to the complex plane 

(^,^) using the stereographic projection which is defined as ^ = tan(^/2) e^'^'^^ and 

is shown schematically in Figure 4.1. 

If we assume that a rational map R{^), given by expression (4.1), is a map from a 

two dimensional sphere, which is centered at the origin of , to an 5^ submanifold 
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N 

Figure 4.1: Stereographic projection of the unit sphere S'^ to the complex plane 

(^)O- The point A on the sphere is mapped to the point B on the complex plane 

via the 'north' pole A'̂ . 

of SU{2) = S^, then we can describe the static field configurations U{r,(,) using the 

rational map ansatz [14], 

U{r,^) = exp ig{r) 
l + |i?p 2R l i ^ P - l 

(4.2) 

The real function ^(r) is the usual profile function and in order for U to be well 

defined at the origin we require that g{r) satisfies the boundary conditions ^(0) = t t 

and ^(oo) = 0, like in (2.8). If we plug the ansatz (4.2) to the general expression of 

the topological charge B, 

B ^ y ^ d f 3 e'^''TridiUU-' djUU-' dkUU~^), (4.3) 

then i t is quite straightforward to show that B is equal to the degree of the rational 

map i?(0, « e. B = N. In addition, if we consider a general SU{2) matrix. 

with +|?7|2 = 1, (4.4) 

then, the Mobius transformation 

CR{0 + v (4.5) 

that acts globally on -R(^), corresponds to a rotation of the Skyrme field, i.e. it can 

be considered as an isospin rotation of U. Finally, for the single skyrmion, where 
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B =^ N = 1, the simplest map is R{^) = ^ and in this case the ansatz (4.2) is just 
the hedgehog ansatz given previously in equation (2.7). 

The main advantage of approximating the Skyrme fields using rational maps is 

that, in this way, the energy of the Skyrme model (2.2) simplifies significantly and 

one can minimise the angular part, given by R{^), and the radial part, given by g{r), 

separately. This can be illustrated by plugging expression (4.2) into the Lagrangian 

of the Skyrme model (2.2) and deriving the dimensionless energy ER, ^ 

E R = l f d r (^g',r' + 2Nsin'g{l + g ' , ) + l ' ^ y (4.6) 

where the X is given by, 

From (4.6) and (4.7) we see that the integration over the radius r and the angular 

part (C, 0 has decoupled. Hence, a solution of a given baryon charge, B, can be 

approximated by considering first, the most general rational map R{^) of degree B 

and then minimise the integral X with respect to the parameters of R. The map 

determined in this way is unique up to an arbitrary rotation. Given the minimum 

value for X, one can then minimise the effective energy by solving the Euler-Lagrange 

equation for the profile function g. This is a one-dimensional problem as for in the 

single skyrmion solution and i t can be solved numerically with great accuracy using 

for example the shooting method. As i t has been shown by Houghton et al. [14], 

the maps that minimise the integral X for 5 < 9 describe skyrmions that have the 

same symmetries as the actual solutions and the total energy of these configurations 

is only 1 or 2 percent higher than the numerical values. Hence, the rational map 

ansatz manages to approximate the solutions of the pure Skyrme model quite well 

and within this context one can study the properties of skyrmions in a simple and 

qualitatively correct way. 

As we mentioned at the beginning of this section, the rational map ansatz is 

restricted to the SU(2) Skyrme model and thus the question of whether we can use 

a similar approximation for SU{N) arises naturally. In practice, one can always 

obtain solutions for the Skyrme model in SU(N) by simply embedding the SU(2) 

ones into a given higher symmetry group. Similarly, all SU{2) skyrmions that 

^For reasons of simplicity we have kept similar notation to [14]. 
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are constructed using an approximation like the rational map ansatz, can also be 
embedded into SU{N) and to the present day i t seems that these skyrmions are 
the minimum energy configurations. In other words, non-trivial solutions which are 
not SU{2) embeddings seem to be local rather than global minima of the energy^. 
Nevertheless, the possibility of obtaining skyrmions in SU{N) that have different 
symmetries to their SU{2) embeddings is always an interesting subject to explore. 
Towards this direction, loannidou et al. [15] generalised the rational map ansatz to 
SU{N) by using harmonic maps. To give a brief summary of this generalisation we 
start by noting that the rational map ansatz can equivalently be expressed in the 
form 

f / ( r , ^ ) = exp (4.8) 

where g{r) is again the real profile function depending only on r, / is just the 

2 x 2 identity matrix and P is a 2 x 2 projector that i t is defined by the property 

= P = P^. The angular dependence of U comes from the projector P. I f we 

assume that i t has the form 

^ ^ ^ ^ = 1 ^ ' ( ' - '^ 

where V^(^) is an analytic {i.e. it only depends on ^) 2-component complex vector 

with entries polynomials in ^ of degree A ,̂ then P is a rational map P : 5^ CP\ 

Expressions (4.2) and (4.8) are equivalent and as before, the topological charge B 

is equal to the degree of the map P, i.e. B = N. For P = 1 the vector V = (1, ^)* 

reduces equation (4.8) to the familiar hedgehog ansatz. 

The rational maps P are a special case of harmonic maps from 5^ CP^~^ 

51]. These maps are solutions of the C]P^~^ a model which is described by the 

Lagrangian density 

Lc^N-, ^Tr{d^Pd^P), (4.10) 

where P is given by expression (4.9), but in this general case V is an N-component 

complex vector. The Euler-Lagrange equation of this model is 

d^d^P.P = 0 . (4.11) 

comparison between the SU(2), SU{3) and generally SU{N) minimum energy skyrmions 

can be found in [15, 49]. More details can also be found in [50] where all recent developments on 

this subject are being discussed. 
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Since the entries of the vector V are only functions of the complex variable ^, i.e. 
V is analytic, the projector P also satisfies the first order self-dual equations [51] 

Pd^P = 0 and d^PP^d^P. (4.12) 

Note that when N = 2, it can be shown [51] that the model (4.10) reduces to the 

well-known 0(3) a model which is nothing but the quadratic term of the Skyrme 

model (3.2) in two dimensions 

= (4.13) 

with the constraint |(/>|̂  = 1, where cj) E S'^. 

Assuming that an ansatz based on the harmonic maps 5^ i-> CP^~^ is a 'natural' 

generalisation of the rational map ansatz, then our 5^7(iV) field can be expressed as 

[15] 

I t is important to remark at this point that (4.14) is not the most general ap­

proximation we can consider. The reason is that SU{N) has N"^ — 1 dimensions, 

whereas the A'^-component complex vector, V, that describes the projector P in 

SU(N) has 2A'̂  — 1 degrees of freedom. In the next chapter we will exploit further 

generalisations of this ansatz by adding more projectors in (4.14). However, in what 

follows we will restrict ourselves to the simplest case of the single projector, P (4.9). 

Substituting the ansatz (4.14) in the dimensionless energy of the pure Skyrme 

model we get [15 

EH = ^ j d r (^A^glr' + 2Msm^g{l^gl)+X^^^ (4.15) 

where 

2^ 
j ciedeTr(|5^Pp), 

^ = ^ f d i d i { l - ^ m ^ T , { [ d , P , d - , P f ) . (4.16) 

The integral M is nothing but the energy of the two-dimensional Euclidean CP^~^ 

a model that we have already mentioned (4.10). Hence, by using the ansatz (4.14) 
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to approximate the Skyrme fields, we have included in the solutions of the model all 

holomorphic maps (or self-dual solutions)^ from h-)- ( C P ^ ~ ^ In addition, i f the 

projector is given by (4.9), then the energy J\f is equal to the degree of the harmonic 

map and equal to the baryon number 

B = d^d^Tr{P[d^P,d^P]). (4.17) 

In other words, the topological charge of the Skyrme model harmonic map ansatz is 

just the topological charge of the CP^~^ model, i.e. it is equal to the highest degree 

of the polynomials in ^ among the components oiV = f{^). 

The integral I in (4.15) is independent of r and it can be minimised with respect 

to the parameters of the harmonic maps. To do so, one first considers the most 

general map of degree B in SU{N), by assuming that the iV-component vector, 

V = f{^), has the form 

^ e+as-, e-' ^ 

rB-2 I cB-Z f 
7 B - 2 r ~ + 7 B - 3 C ' ' " ^ + + 7i + 7o 

V 

(4.18) 

where we have used the SU{N) invariance of the model to set = 1 and cvq = 0. 

A l l coefficients can be taken to be complex except PB-I, which can be considered to 

be real. We see therefore that finding minimum energy configurations is equivalent 

to finding the appropriate map that minimises the integral X. There are a number 

of numerical methods that can be used for this problem like the downhill simplex 

method''. Having found the minimum value of the integral I , we can easily solve 

the corresponding Euler-Lagrange equations that are given by 

^ . ,3s in^o \ 3sin2o 
4r^ I r Ar^ M{gl - 1) - J 

sm^ g 
= 0. (4.19) 

As i t has been shown by loannidou et al. in [15] the non trivial maps that 

give minimum energy configurations in ^[/(S) have different symmetries from their 

SU(2) embeddings but their energy is not a global minimum. Unfortunately, these 

configurations cannot be compared with any true solutions since, as we have already 

^An extensive review on these classical solutions of the C P ^ ~ ^ model can be found in [51] and 

also in [50]. 
•̂ For details on this and other methods see chapter 10 of [52]. 
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seen in the previous chapter, the only solutions that have been found numerically 
are the ones of the SU{2) model. 

In what follows we will study solutions of the extended Skyrme model (2.34) 

for both the SU{2) and SU{3) cases and hence, we will use the ansatz (4.14) to 

approximate the Skyrme fields. 

4.3 Extended sixth order Skyrme model in the 

harmonic map approximation 

In this and the following sections we will investigate the properties of the extended 

sixth order Skyrme model (2.34) under the harmonic map ansatz. 

We start our analysis by first substituting the ansatz (4.14) into expression (2.39) 

and thus obtaining the general energy in dimensionless units 

E = ^ j d r [ A j , gl + 2M sin' g {I + {1 - X)g',) 

, .^sin^o ,^s in ' ' o n 2 , ._sin^o\ 

where 

AN = - ( N - l ) , 

= d^d^Tr{\d,P\'), 

^ = ^fd^dUl + \^\yTT{[d,P,d^Pr), 

M = ^jdidUl + K H ' T r {[d,P, d-^P]') . (4.21) 

The integrals A/", X are the same as the ones derived for the pure Skyrme model. 

Moreover, like X, the integral M is also independent of r and it can be minimised 

with respect to the parameters of the harmonic map. However, we will show that the 

M integral is identically zero and hence, only X needs to be minimised, something 

that has already been done in [14, 15, 50 . 

To prove that M vanishes, we need to use some properties of the projector, P, 

which is given by 

PU) = (4.22) 
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and df /di = 0. As we have seen in the previous section, since / is analytic, P ( / ) 
satisfies the first order self-dual equations 

PP^ = 0 and P^P^Pi, (4.23) 

where P^ denotes the derivative of P with respect to ^. From (4.23) we have 

PP^P = 0 and thus P | = 0. (4.24) 

Using (4.24) we notice that 

rr[P^,P^-]" = Tr{P^P^-P^P^r 

= Tr {{p^p^r + i-mp^p^r) 

= ( l + ( - l ) " ) T r ( ( P ^ P | ) " ) , (4.25) 

proving that 

Tr[P(, P|]" = 0 for n odd, (4.26) 

and thus, M in (4.21) is identically zero. Al l angular dependence and therefore 

the symmetry of a given configuration, comes from the angular integrals I and M. 

Hence, we see that in the harmonic map ansatz the multi-skyrmion configurations 

of the usual and the extended Skyrme model have the same symmetries. This was 

also observed in the previous chapter when we obtained the true solutions of the 

extended Skyrme model. Thus, we can conclude that the harmonic map approx­

imation provides qualitatively correct results for the sixth order Skyrme model as 

well. 

By treating the J\f and I as two parameters we can then minimise the energy E 

by solving the following Euler-Lagrange equations for g 

^ , - 1 - A s i n ^ o ^ A sin' 'o\ 2 A ^ A sin^ o 

^ ( ^ ( c - ^ " ^ ' ^ - ^ ) + - 1 + A)) = 0. (4.27) 

Again, this is a one-dimensional equation and i t can be solved numerically with great 

accuracy. Before we use the above results to study the solutions of the extended 

Skyrme model (2.34) for both the SU{2) and SU{3) cases, let us first consider 

the SU{2) pure Sk6 model in the harmonic maps approximation, i.e. assume that 
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A = 1 and A^^ = 1 in (4.20) and (4.27). By considering the minimum values of the 

integral X [14] (see Table 4.1) we solve equation (4.27) and plot the profile function 

g{r), Figure 4.2, and the energy profile, Figure 4.3, of skyrmions with topological 

charge B — 2..9. The harmonic maps that minimise X are discussed in detail in the 

following section. 

9{r) 
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3 

2.5 

2 
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1 1—•• f — 1 1 1 1 
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' \ \ ' \ "Ov\"\"-. B=4 
8=5 - — 

\ "•, • • . \ ^ 8=6 -
8=7 
8=8 
8=9 

1 1 1 

Figure 4.2: The profile function g{r) of the Sk6 model for B = 2...9. 

These two figures are similar to the ones obtained for the pure Skyrme model [14]; 

the profile functions ^( r ) in Figure 4.2 are shifted to the right when the topological 

charge B increases, thus indicating an increase in size. The latter can also be 

observed in Figure 4.3 where the profiles of the energy density spread out for large 

B. 

4.4 Energy and radius ratio in SU{2) 

In this section, we analyse how the properties of multi-skyrmion configurations in 

the rational map approximation depend on the parameter A. For this purpose we 

will calculate the energy and radius ratios as a function of A. This is the same 

approach as in the case of the true solutions that we examined in the previous 

chapter. However, since the Euler-Lagrange equations (4.27) only depend on r, we 



Chapter 4. The harmonic map approximation 65 
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Figure 4.3: Energy profiles for B = 2...9. 

will be able to obtain minimum energy skyrmions using the shooting method and 

thus our results will have very good accuracy. 

At this stage we would like to remind the reader that A = 0 corresponds to the 

pure Skyrme model while A = 1 is equivalent to the pure Sk6 model. Moreover, the 

energy and radius ratios only depend on A, i.e. the mixing between the two higher 

order terms. 

The harmonic maps that minimise the integral I for skyrmions with B <9 have 

already been found in [14] and we present them in Table 4.1. The symmetries of 

these static configurations are the same as the numerical solutions. In particular, 

besides the first five skyrmions, with symmetries shown in Figures 3.3 and 3.9, the 

5 = 6, 7, 8 and 9 skyrmions in the harmonic map ansatz have the same symmetries as 

the numerical solutions, 1)4̂ , Y^, Ded and D^^ respectively. This subject is explored 

in great detail in [14, 42, 43] where one can also find plots of constant baryon density 

that demonstrate these specific symmetries visually. 

Since we have already checked in section 4.3 that the angular dependence of the 

pure and the extended Skyrme model are the same, we will treat the integral I as 

a parameter and use its corresponding values for a given baryon number, B, from 

Table 4.1. 
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SU{2) 
B Harmonic Map / ( ^ ) X 

1 (e, 1)* 1 

2 5.81 

3 13.58 

4 {e+2V3ie+i,e-'^vsie + iy 20.65 

5 35.75 

a = 3.07, b = 3.94 

6 ie {o.i6ie+i),^^+o.i6iy 50.76 

7 (e i e + + 7 e - P ) , /^^^ - re - pe - if 60.87 

P = ±7 /^ /5 

8 ie (o.i4e^ + i ) , e ' - o . i 4 ) ' 85.63 

9 / 5i5e-9e+^^se+l+le{e-ise~e\ 
1 1 9 8"? 

\ ei-e - 3zse+9^^ _ 5 ^ ^ • _^_^4_^^g^2_-^^ j i I Z . o O 

7 = -1.98,5 = VS 

5* 52.05 

5** ie, 1)* 84.425 

Table 4.1: Harmonic maps / ( ^ ) minimising the angular integral I for SU{2) [14 . 

The 5* and 5** configurations denote saddle points that we also consider. 
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4.4.1 Minimum energy configurations 

We first examine the skyrmion configurations with B < 9 that are believed to be 

global minima of the target space. They are described by the harmonic maps of 

Table 4.1 and their energy and radius ratios are shown in Figures 4.4 to 4.11. 

9 1 
'to 
cr 
>. 
0 I E c m 

,385 

DC 1.38 

1.375 

1.365 

0.4 0.6 
X 

Figure 4.4: E and R ratio of B = 2/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 

LU 284 

1.615 

Figure 4.5: E and R ratio of B = 3/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 
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Figure 4.6: E and R ratio of B = A/B = I as a function of A for the SU{2) 

harmonic map ansatz. 

0) 4.55 

CC 1 97 

Figure 4.7: E and R ratio of B = b/B = I as a function of A for the SU{2) 

harmonic map ansatz. 
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Figure 4.8: E and R ratio of S = 6/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 
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Figure 4.9: E and R ratio of B = 7/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 
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5 2.38 

Figure 4.10: E and R ratio of B = 8/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 

O 8.2 

3 2.55 

Figure 4.11: E and R ratio of B = 9/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 
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When comparing these results with the numerical solutions, we notice first of all 
that the energy ratio predicted by the ansatz is always too large. Apart from this, 
the prediction for the energy is rather good, except for the case B = 2 where the 
energy difference between the numerical solution and the rational map ansatz is 7 
times as large for the Sk6 model than for the pure Skyrme model. This will be made 
even more clear in the last section where we will compare the asymptotic values of 
the model with the corresponding numerical solutions. 

In addition, we observe that, unlike Figures 3.5 to 3.8 of the true solutions, the 

Figures obtained for the harmonic map approximation, exhibit local minima for 

B — 2..4 ^. Moreover, both the energy and radius ratio graphs seem to be quite 

similar in shape when S > 6 and they have no local minima or maxima. 

The radius ratio obtained with the harmonic map ansatz is always too large 

when compared with the radius ratio of the exact solution. For 5 = 2, the radius 

ratio increases with A and the error only gets worse as A increases. The case B = 3 

is rather surprising, as the radius ratio has a deep local minimum around the value 

A = 0.3; this is where the relative error is the smallest, otherwise the relative error is 

smaller for the pure Sk6 model than for the pure Skyrme model. The cases B = 4..9 

are very similar: the radius ratios decrease when A increases and the error for the 

pure Sk6 model is very small especially when B = 4. 

We can thus conclude that the harmonic map ansatz produces good approxima­

tions to the solutions of the generalised Skyrme model and the error is in most cases 

smaller for the pure Sk6 model than for the pure Skyrme model, the only exception 

being the case B = 2. 

4.4.2 Saddle point configurations 

So far we have examined the behaviour of the model for harmonic maps that min­

imise the angular integral X and correspond to minimum energy configurations. We 

next consider harmonic maps that correspond to saddle points of the energy for 

5 = 5. The reason for selecting these solutions is that their binding energies are 

much larger than the experimental values and it would be interesting to see their 

behaviour at larger energies. For this purpose, we have considered the two harmonic 

^As mentioned when we were analysing the graphs of the B = 5 true solution, the small local 

minimum observed in that case is most probably a numerical artifact. 



Chapter 4. The harmonic map approximation 72 

maps, B = 5* and B = 5**, given in Table 4.1. The first has octahedral symmetry 

whereas the second gives a toroidal Skyrme field. In general, rational maps that are 

expressed as R{z) = correspond to multi-skyrmion configurations that always 

have axial symmetry [14 . 
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.ii 2 .175 

DC 2 .17 

3 2.165 

ro 2.16 

2.155 

Z.146 

Figure 4.12: E and R ratio of 5 = 5*/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 
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Figure 4.13: E and R ratio of 5 = b**/B = 1 as a function of A for the SU{2) 

harmonic map ansatz. 

For the case oi B = 5*, shown on Figure 4.12, we see that the binding energy 
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is slightly larger than 5 for the pure Skyrme model and that it decreases when the 

strength of the sixth order term increases, going through the experimental value 

4.97 when A ̂  0.1. 

The second case, shown in Figure 4.13, is the only example where we have a 

global maximum for the energy and radius ratios. Notice that the maximum value 

of both ratios is obtained for A ~ 0.6, i.e. when the two terms are comparable to 

each other. 

4.5 Energy and radius ratio in SU{3) 

In this section we look at the harmonic map configurations for the SU(3) models. 

The harmonic maps that we use, together with the corresponding values of I , are 

given in Table 4.2 and can be found in [15, 50 . 

5[/(3) 

B Harmonic Map / ( ^ ) I 

1 (e, 1)* 1 

2 (e^^/2e, l )* 4 

3 ( eM.576e ,v^ -0* 10.51 

4 ( e ^ 2 . 7 l 9 u M ) * 18.05 

5 {e-2.7^,2e+i,9/2ey 27.26 

6 37.33 

Table 4.2: Harmonic maps / ( O minimising the angular integral I for SU{3) [15, 50 . 

The single St/(3) skyrmion is the well-known hedgehog ansatz and is just an 

embedding of the SU{2) solution. Moreover, the minimising map for B = 3 has 

been found in [50] and gives a slightly smaller value for the integral I than the 

map that was identified in [15]. In this last reference it was suggested that the 

minimising map should be: / ( O = {V2^^, 2.23^, 1)* and the corresponding value for 

X was found to be 10.65. However, this last map is not the global minimum of the 

5 = 3 configuration but rather a saddle point. 
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It is useful to note at this point that the numerical constant appearing in 

(4.20) and (4.27) is now equal to 4/3. We should also stress that these configurations 

approximate solutions that are believed to be saddle points of the energy. Their 

energy is larger than the corresponding SU(2) embeddings and they have different 

symmetries as well which can be found in [15, 50 . 
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Figure 4.14: E and R ratio of B = 2/B = I as a function of A for the SU{Z) 

harmonic map ansatz. 
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Figure 4.15: E and R ratio of S = 2,/B = 1 as a function of A for the 5C/(3) 

harmonic map ansatz. 
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Figure 4.16: E and R ratio of B = A/B = 1 as a function of A for the 5[/(3) 

harmonic map ansatz. 
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Figure 4.17: E and R ratio of B = 5/B = 1 as a function of A for the SU{3) 

harmonic map ansatz. 
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CO 55 

Figure 4.18: E and R ratio of B = 6/B = 1 as a function of A for the SU{3) 

harmonic map ansatz. 

From Figures 4.14 to 4.18 we observe that that unlike the SU{2) model, the 

energy of the B — 2 solutions increases with A . For a given B and a fixed value 

of A , the energy ratio of these configurations is always larger than the energy ratio 

of the corresponding SU(2) solutions, while on the other hand, the radius ratios is 

always smaller. 

I t is also interesting to note that the A dependence of the energy and radius 

ratios obtained for a given B looks very much like the curve obtained for the SU{2) 

model for i? — 1 Skyrmions. This can be explained by performing the change of 

variable r rk, where 

1 + W 1 + 
4A 

^ i v ( l - A ) 2 
(4.28) 

and rewrite (4.20) as 

Af^k 
E I dr Ar,glT^ + 2N' sm^g ( l + ( l - A V ) 

(4.29) 

where W = M/AN, T = XjAj^, and A' = Xjk'^. The function A;(A) monotonically 

decreases from A;(0) = 1 to A;(l) = A'j^^'^ = 0.931 and so it is relatively close to 1 for 

all values of A. 
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SU{2) SU{3) 

N I N I M' r 

2 5.81 3 10.65 2.25 7.98 

3 13.58 4 18.05 3 13.54 

4 20.65 5 27.26 3.75 20.44 

5 37.75 6 37.33 4.5 28 

Table 4.3: J\f' and I' for the SU{3) ansatz. 

In Table 4.3, we give the values of and I' for the 5(7(3) ansatz and we notice 

that the SU{3) solutions for B = 4 and 5 = 5 are closely related to the SU{2) 

solutions for 5 = 3 and 5 = 4 respectively. 

4.6 Comparison with numerical solutions 

Having examined the A dependence of the energy and radius ratios of the sixth order 

Skyrme model in the harmonic map ansatz (Figures 4.4 to 4.18), in this section we 

want to compare our results with the true solutions. Let us emphasise one more time 

that the harmonic map ansatz describes only an approximation and not the actual 

solution of the model. Hence, we cannot compare the skyrmion configurations of 

this chapter directly with experimental data. 

In Tables 4.4 and 4.5 we present the asymptotic values of the energy and radius 

ratios, i.e. the values for A = 0 and A = 1, for both the SU{2) and SU{3) versions 

of the model. We compare these values with the SU{2) numerical solutions that we 

found in the previous chapter. 

For the energy ratio we see that the values predicted by the harmonic map 

approximation are always too high and as mentioned previously, the largest error is 

observed for the B = 2 configuration. On the other hand, as B increases we see that 

the relative error becomes smaller. This is not surprising since, as previously noted 

for the SU(2) pure Skyrme model, the harmonic map ansatz seems to approximate 

the true solutions of the model better for large B. As expected, for the SU{3) version 
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SU{2) Numerical 

Solutions SU{2) SU{3) 

B Skyrme Sk6 Skyrme Sk6 Skyrme Sk6 

Ratio Ratio Ratio Ratio Ratio Ratio 

2 1.9009 1.8395 1.96223 1.95407 1.98468 1.99585 

3 2.7650 2.7103 2.88541 2.82888 2.95974 2.94756 

4 3.6090 3.5045 3.69164 3.52850 3.84491 3.76064 

5 4.5000 4.3780 4.65685 4.45345 4.72485 4.56766 

6 - - 5.54105 5.26743 5.57660 5.33739 

7 - - 6.29299 5.90659 - -
8 - - 7.26286 6.83536 - -
9 - - 8.20935 7.73077 - -

Table 4.4: Energy ratio, EB/EB=I, for the SU{2) numerical solutions, and the SU{2) 

and SU(3) harmonic map ansatz configurations. 

SU{2) Numerical 

Solutions SU{2) SU{3) 

B Skyrme Sk6 Skyrme Sk6 Skyrme Sk6 

Ratio Ratio Ratio Ratio Ratio Ratio 

2 1.3549 1.308 1.37023 1.39403 1.20691 1.234384 

3 1.5080 1.5570 1.63107 1.62894 1.45842 1.483996 

4 1.6850 1.7420 1.78911 1.746286 1.63002 1.62755 

5 1.8890 1.9250 2.013822 1.95551 1.78149 1.75505 

6 - - 2.178298 2.09768 1.909141 1.859916 

7 - - 2.272394 2.16623 - -

8 - - 2.454491 2.33477 - -

9 - - 2.614928 2.48059 - -

Table 4.5: Radius ratio, RB/RB=I, for the SU{2) numerical solutions, and the SU{2) 

and SU(3) harmonic map ansatz configurations. 
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of the model the values of the energy ratio are always larger than the corresponding 
SU{2) embeddings. Moreover, we notice that as in the actual solutions of the model, 
the additional sixth order term in the harmonic map ansatz increases the binding 
energies. The only exception being the B = 2 case in 5 [ / ( 3 ) . 

Similarly, from Table 4.5, we see that the sixth order term makes the skyrmions 

narrower except for JB = 2 in SU{2) and S = 2, 3 in SU{Z). It is also noticeable 

that the values of the radius ratio in SUii) are always much smaller that the cor­

responding ones in SU{2). This implies that the skyrmion configurations in 5 /7(3) 

are narrower in comparison to their SU(2) embeddings. 

As a concluding remark, we note that the harmonic map ansatz provides us 

with a rather good approximation of the multi-skyrmion solutions of the extended 

Skyrme model. I t predicts the symmetries of these configurations correctly, at least 

for 5 < 5. In addition, the values of the total energy and radius, obtained using 

this ansatz, are good approximations of the true solutions, and in many cases even 

better, for the extended model than for the pure Skyrme model. 



Chapter 5 

Spherically symmetric solutions in SU{N) 

5.1 Introduction 

Until now, our study of the sixth order Skyrme model (2.34) has mainly concentrated 

on finding static solutions that are global minima of the energy functional (2.35) 

and as we argued in chapter 3, one can only obtain such solutions numerically. In 

this chapter we will explore the possibility of constructing topologically non trivial 

solutions in SU{N) using analytical methods. Although these solutions will be 

saddle points, i.e. they will have higher energy than the solutions we have found 

previously, their properties are quite interesting from a mathematical point of view. 

In our construction we will follow the method that is described in [49] and is based 

on the harmonic map ansatz (4.14). In the previous chapter we showed that this 

ansatz can be used to approximate minimum energy solutions of the pure Skyrme 

model quite well. Under this approximation, the angular dependence of the SU{N) 

Skyrme fields is described by a harmonic map, P, of the form (4.22) whereas the 

radial dependence is given by a profile function ̂ ( r ) . However, as has been proven 

in [49], i f we include in this ansatz further projectors. Pi, which are constructed in 

a very special way, then we obtain exact solutions for the pure Skyrme model in 

SU{N). These solutions are all spherically symmetric and although they are local 

minima (or saddle points) rather than global minima, they correspond to bound 

states of skyrmions. 

In what follows, we will consider the same generalised harmonic map ansatz and 

wil l also try to construct radially symmetric solutions for the extended sixth order 

Skyrme model. We will show that for this model the multi-projector ansatz can 

provide us with exact solutions in SU{3). However, we will prove that due to an 

additional constraint that is coming from the extra sixth order term, this method 

80 
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does not work for the general SU{N) model. Nevertheless, this generalised ansatz 
can still be used to construct low-energy bound states in SU{N). As we shall see, 
these configurations have some quite interesting properties. 

5.2 Generalisation of the harmonic map ansatz in 

S U { N ) 

Our starting point will be the one-projector harmonic map ansatz that we introduced 

in the previous chapter, 

U{r,9,^) = e^'/W^^^'^')-^/^) 

= e - 2 ^ / « / ^ (7 + (ê ^̂ W - 1)P(^, 0 ) . (5.1) 

We remind the reader that the profile function / ( r ) describes the radial dependence 

of the field U and the projector P describes the angular part. In addition, P is a 

harmonic map from iŜ  to CP^"^, i.e. a solution of the CP^"'^ model, and satisfies 

the Euler-Lagrange equation 

'^d^d^P,p]=Q. (5.2) 

As we have mentioned previously, when the projector P is of the form 

m = (5.3) 

where the complex vector h G is holomorphic 

1 = 0, (a.4, 

then P also satisfies the first order self-dual equations 

Pd^P = 0 and d^PP = d^P. (5.5) 

Besides the map (5.3), there are further solutions of the CP^~^ model that can 

be constructed in a very special way. To illustrate how this is done, we need to 

introduce an operator which acts on any complex vector u G and is defined 

as 

P+u = d^u ~ ^2^- (5.6) 
I I 
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I f we take a holomorphic vector h{^), we can define P^h = h and by induction 

V, = P^h = P^{P^-'h). (5.7) 

Using these N-component vectors, we can then construct a sequence of solutions (or 

else projectors) of the CP^"^ model as follows: 

p . = = g = ^^^1^, * = 0 , . . . , ^ - l . ,5.8, 

I t is clear that the first projector PQ of the above sequence is the one previously 

defined in (5.3). 

I t can be proven that the harmonic maps (5.8) are solutions of the general second 

order equations (5.2). The details of this proof can be found in [51] and in Appendix 

B we repeat it for reasons of completeness. 

From (5.8), we see that the action of the operator P .̂ can be understood as a 

transformation from one solution of the CP^"^ model, to another [51]. Notice also, 

that any projector Pk iov k > 1, which is constructed like (5.8), no longer satisfies 

the self-dual equations (5.5). This follows quite easily from the following properties 

of the vectors P'^h [51, 49]: 

{P^hyPlh = 0, i f k j ^ l , 

5 , - ( P » = - P r / ^ ^ ^ , (5.9) 

5̂  , \ _ P^h 
.\Pt'h\^J |P |~ ' / iP ' 

These properties hold only if we assume that h is holomorphic. They also imply 

that the harmonic projectors Pk are mutually orthogonal [51], i.e. they satisfy the 

following relations 

P,P, = SkjPk, 
N-l 

Y^Pk = 1. (5.10) 
fc=0 

Using all the above, we can define a generalised multi-projector ansatz [49] as 

U = exp{igo{Po - j j ) + ̂ 9l{Pl - j^) + • • • + 19N-2{PN-2 - ^ ) ] 

(5.11) 
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where gk{r) are N — 1 unknown profile functions and Ak = e^^'' — 1. From the 
orthogonality property (5.10) we see that the projector PN-I can always be written 
as a linear combination of the remaining projectors and hence, we do not consider 
i t in the description of U. Moreover, for the ansatz to be well defined, the profile 
functions gk{r) must be a multiple of 2-K at the origin and at infinity. 

In what follows, we will use this ansatz to construct spherically symmetric solu­

tions for the pure and the extended sixth order Skyrme model. 

There is one final remark to be made at this point. In the previous chapter 

we argued that if we do not consider the radial dependence from ^( r ) , then the 

one projector ansatz, defined in (5.1), depends on the 2A'' — 1 real functions of the 

harmonic map. However, a general SU{N) field has N"^ — \ degrees of freedom 

and hence, using this approximation we cannot explore the whole target space of 

SU{N). To improve this ansatz, one can consider further projectors that do not 

depend on each other. By assuming that these projectors are mutually orthogonal, 

i.e. they satisfy equations (5.10), we ensure that the field U has 7V̂  - 1 degrees of 

freedom^ In order to obtain minimum energy solutions, one needs to consider the 

most general form for all maps and minimise them with respect to their parameters 

simultaneously. This has been done in [50] for SU{3). However, this generalisation 

is much more difficult to handle even numerically. Hence, we will restrict ourselves 

to the multi-projector ansatz (5.11), where all harmonic maps are constructed from 

the sequence (5.8). I t is clear that in this approximation the fields U have at most 

2iV — 1 degrees of freedom. 

5.3 Constructing radially symmetric skyrmions in 

S U { N ) 

Having defined the generalised multi-projector ansatz in (5.11), we proceed by ex­

pressing the general Euler-Lagrange equations of the model (2.40) in the usual spher­

ical coordinates {r,6,(f)). This will prove useful for the calculations that will follow. 

În general, a harmonic map PM in OP^" ' is described by a vector. A vector orthogonal 
to that is a C^^^ vector and hence it describes a harmonic map that is a solution of the CP^~^ 
model, i.e. a map with 2A'̂  — 3 degrees of freedom. 
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We have. 

dr < r^Rr + ^ — ^ (Aero + - ^ A ^ r J ] + T^A 
4 V sm^6' / 16 

1 
sin^^ 

1 
+—^^eS sin^-f-sm^ 

A 

1 - A 
sm^ ,9 

1 - A 

(5.12) 

where 

Ajij = and Bjjfcifc = P „ [i?y,Efc][i?,-,i?fc] . (5.13) 

At this stage we would like to remind the reader that, as before, the parameter 

A G [0,1] is dimensionless and denotes the mixing between the two higher order 

terms, the Skyrme and the sixth order term. I t is fairly easy to show that 

(5.14) 
3=0 ^ ^ 

where gj is the derivative of gj{r) with respect to r. In addition, if we map the polar 

angles {9,(1)) to the complex coordinates { ( , ^ ) using the stereographic projection, 

C = tan(6'/2)e'^, we have 

N-l 

(5 .15) 

1=1 

and the derivatives with respect to 6 and (p are given by 

Substituting the above into equations (5.12) we get 

(5.16) 
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dr r'Rr -t- (1 - A ) ^ i ± i ^ {A^,, + A,,^) 

+ ( 1 - A ) 
2^3 

(1 + leP) 
8r2 

(1 + m ' 

(^^U^-e^?««) + (l-A) 
A +(i-A)ii±i^(K,-.]^ + [A.,.],) + A a, 

16r2 

(1 + 

(1 + l en^ 
- V 
2 / 

.2 x^9, 

47-2 

2 ie | 2 r 

(i + i e i T 
8r2 

(a,- [ ( 1 + |eP)^s..ud - 5? [ ( 1 + \^\"?Brr^a]) 

^ ( - U C ^ C f r ^ r ) 2 l - « ? ^ a r ? r j 

5; 

(1 -f | e n ' ( - P ^ 5 , f r + ^ e f r f r + % r « r ) 0. (5.17) 

As has been shown in [49], one can construct topologically non-trivial solutions 

for the usual Skyrme model, i.e. solutions of equations (5.17) when A = 0, by 

considering the following spherically symmetric holomorphic vector 

VQ = h = (/io,/ii,... , / l A f - l ) S (5.18) 

where 

N-l (5.19) 

and where C^~^ denotes the binomial coefficients. To illustrate this construction, 

in the next section we briefly present some of the calculations performed in [49] for 

the pure Skyrme model. We then apply the same method to the extended Skyrme 

model and determine whether i t works equally well. 

5.3.1 Solutions for the pure Skyrme model 

In this section, we will only consider the terms of equations (5.17) that come from 

the pure Skyrme model and hence, we will ignore all terms which are proportional 

to A/16, i.e. we will set A = 0 in the equation (5.17). 
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We start by noting 

(5.21) 

[P., Pf] = X Y i9^a^ - k-iai) = Y ^ ^ T ^ ' (^-22) 
1=1 i=i 1^-1 

where a, = e'̂ *'" '̂-'̂  - 1. Using the above we have 

Ar^r = [Rr^ [-Rf) -^r]] = ^ | y /^ |2 ' 
. = 1 

(5.23) 

(5.24) 

where Pj, A, and Hi are functions of ̂ ^(r) and Qi also include the derivatives of 

9k{r). 

One of the most important properties of the vectors Vk — P+/i when h has the 

particular form (5.19) is that 

2 
<x{l + m - \ (5.25) 

This was proved in [49] and in Appendix B we present this proof in detail. Using 

(5.25) and keeping in mind that (1 + |^P)~^ = -2^ (1 -|- |CP)~^ we have that the 

terms 

^l±MLeA - and (l±m!r^ i .5 26^ 

in equations (5.17) will mutually cancel out their ^-dependence coming outside the 

projectors Pj. The only terms that will 'survive' are terms that involve the deriva­

tives of ^Vi'~i\^ • These terms are proportional to ^^^^^(1 + |C|^)~^(-Pi ~ Pi-i) Lt, 

where L j are functions of Qkir) only. 

Using similar arguments one can show [49] that all the remaining terms for the 

pure Skyrme model are proportional to either Pj - Pj_i or Pi - j^. Moreover, from 

(5.10) one can eliminate the projector P ^ - i and as a result equations (5.17) wi l l be 

the sum of the N — 1 terms Pi — ior i = 0 ... N — 2, with coefficients that depend 
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only on r. This implies that the Euler-Lagrange equations for the Skyrme model 
reduce to N — 1 ordinary diff"erential equations for the profile functions gi and their 
solutions, if they exist, will provide us with exact solutions of the SU{N) Skyrme 
model. 

Note that the latter is similar to the B = 1 skyrmion in SU{2) that we have 

studied in the previous chapters. There we saw. that if we use the hedgehog ansatz 

(2.7) to describe the fields U, then the angular dependence of the equations of 

motion vanishes and one is left with an ordinary differential equation of the profile 

function that depends only on r. The solution of this equation corresponds to an 

exact solution of the model. We can therefore understand the multi-projector ansatz 

(5.11) as a generalisation of the hedgehog solution for B = 1. Any solution obtained 

using this ansatz, with Pj constructed as (5.8) and Vk given by (5.18), wi l l be an 

exact spherically symmetric solution in SU{N). In fact, the B = 1 skyrmion is just 

the SU(2) special case of these solutions. 

5.3.2 Solutions for the extended sixth order Skyrme model 

In this section we wish to determine whether we can also construct spherically 

symmetric solutions for the extended sixth order Skyrme model. Since we have 

already shown that this is true for the pure Skyrme model, it is sufficient to consider 

only the extra terms of equations (5.17) that come from the sixth order term, i.e. 

terms that are proportional to A/16, and try to factorise their angular dependence 

similarly. 

Our calculations wil l start from the terms that involve B^^^^^ and B^ffrf • Using 

(5.20-5.22) it is straightforward to check that 

(5.27) 

where bi,Ci and di are functions of gk only. However, by using the property (5.25) 

we have that 

^^^4^ {B^ar, - B.an) « iP^ - ^ . - 0 • (5-28) 

Hence, we have proven that these two terms are proportional to Pi — Pi-i. Further-
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more, we notice that 

with Ci = e{gi) and Sj = s{gi). But in equation (5.17) this term appears as 

[(1 + \^?fB,^,,-^ = 2e (1 + mS^r^a + (1 + 9^ (Brna)- (5-30) 

As before, we have that ~2^ (1 + I^P)"^ and the only parts of (5.30) that 

are non-zero are the ones that involve the derivatives of '~|2 ^ i^h respect to ^. As 

these terms are proportional to J^f-'i' Q ( l + | ^ p ) - 2 (P, - P,_i) where d = C{gi), 

we see that the term Bj.^^^^in (5.17) is also proportional to (P - P i - i ) . 

Using a similar argument we see that the term in (5.17) involving 

where Ei = E{gi) and Si = 5(^j), is also proportional to (Pj — Pj_ i ) . 

We continue our calculation by considering the terms 

2 = 1 

i = l 

where all Mi, Ni,Ti,Ui, Xi,Yi are functions of pj(r) and their derivatives. Looking 

carefully to terms (5.32), (5.33) and (5.34) we observe that they have a similar 

structure to term (5.29) and hence, they too factorise in such a way that the {^,^) 

dependence outside the projectors p cancels out and the remaining terms are pro­

portional to ( p — P j - i ) . 

Similarly we have the terms 

' ' ^ ' ^ ~ t r V l ^ ' - l ' |V.|2 |v.|2 | v . _ , | 2 j ' (5.35) 
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^C^^C. - 1^ [ T . ^ , + t / , ( 5 . 3 6 ) 

i v - i 

. ' | I / , _ 2 | V l ^ . - l l 

where again M^, Ni,Ti,Ui, Xi,Yi are functions of ^^(r) and their derivatives. These 

terms have a similar form to term (5.31) and thus, they are also proportional to 

{Pi — P j - i ) after appropriate simplification. 

So far all terms we have considered are all proportional to {Pi — P j - i ) as in the 

case of the pure Skyrme model. We now look at the remaining two terms in (5.17). 

They involve the expressions 

B^^rir = ( « i ^ - l ^ - 2 - a i - 2 i ^ ^ i ^ : ^ - l ) p f ^ , (5.38) 
i=3 

iV-1 

Vi-,\ 

B^r-^r = ( « ' ^ - i ^ - 2 - a , . 2 K , K , _ , ) , (5.39) 

where Ki = i {gitti — Qi-iai) and = e'̂ '̂" '̂-'̂  — 1. I t is clear that these terms will 

always give a dependence besides the projectors P, and hence, i f we want (5.17) 

to reduce to A?̂  — 1 equations that involve only the profile functions gi then we have 

to make sure that (5.38) and (5.39) vanish, i.e. we must impose the conditions 

aiKi^iK,_2 - ai_2KiKi_i = 0 

aiOi -2(Pi-2 - gi-s) = aiai^2{gi - gi-i) 

9i - ^ i - i = gi-2 - 9i-3- (5.40) 

This last constraint which is a result of the additional sixth order term, implies 

that we can only consider two profile functions go and gi and that we should thus 

have only two equations. Unfortunately we have N — 1 equations which are not 

compatible with each other, i.e. we cannot express them as a linear combination of 

two equations. Al l the above imply that the ansatz (5.11) will provide exact solutions 

of the generalised Skyrme model only for the SU{2) and the SU{3) where we have 

by definition one and two profile functions gi respectively. For larger values of A'̂ , 

the ansatz will nevertheless give some low energy radially symmetric configurations. 
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5.3.3 Energy and topological charge in SU{N) 

As shown in the previous section, by using ansatz (5.11) one can obtain solutions 

or low energy bound states - which are not solutions - for the sixth order Skyrme 

model by solving N -1 equations that involve only the functions gi{r). However, it 

is much easier to derive these equations by minimising the energy (2.39). For this 

purpose it is convenient to write the energy density in terms of (^, ^ ) : 

Rr, R^] , [Rr,R^ R^, R^ 

(5.41) 

If we define 

Fi =gi-gr+i for i = 0, . . . , i V - 3 , 

FN-2 = 9N-2, (5.42) 

as well as 

Wi = (1 - cos(Fi)) and Wj,^, 
'i-ir \VN-2\'^ 

then the terms in expression (5.41) can be rewritten as 

(1 - cos(pjv-2)) , (5.43) 

TrR^^ 
^ I N-2 \ 2 N-2 

N 

i=l 
N-1 

Tr [Rr, R^][Rr, R^] = - 2 ^ Fl„ 

, 1=0 
i V - l 

j=0 

(5.44) 

(5.45) 

(5.46) 
fc=i 

N-2 

Tr[R^,R^]' = 4 W^ + Y{W,-W,+,r + W'^_, , (5.47) 

Tr Rr, R^], [-Rr J R^] [R^, R(^ 
N-2 

1=1 

+Fl,_,Wl -1 ) , (5.48) 
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where = ^ g , . However, since [49 

I T / 12 

" =^•(7V-A;)(l + | e^ ) -^ (5.49) 

we see that all the terms in (5.41) are proportional to (1 + |^P)"^ and that after 

integrating out the angular dependence the energy reduces to 

L \ i = 0 / i=0 k=l k=l 

where Zfc = fc(iV - A;)(l - cos(Ffc_i)). 

In [49], i t was shown that for the pure Skyrme model (A = 0), if we consider 

the fields defined by (5.42), then we can obtain very special solutions by taking 

FQ = Fi = • • • = Fi^^2 = F. In addition, i t was observed that when F(0) = 2-K and 

F{oo) = 0 this solution of the SU{N) pure Skyrme model has topological charge 

N 
B = {F- sin F ) ; = - Y.^k + l )( iV - k ~ \ ) = -{N' - 1). (5.51) 

A:=0 

The energy of these solutions is exactly equal to ^(A^^ — 1) times the energy of the 

single skyrmion solution. It is easy to show that, if one uses the same ansatz for 

the sixth order Skyrme model, the profile / = Fo/2 satisfies the hedgehog profile 

equation (3.5) and the energy of the configuration is given by E{X) = y(A''^ —l)£'o(A) 

where £'o(A) is the energy of the hedgehog solution for the generalised model. These 

configurations are not exact solutions, except for the SU{3) model where we have 

only two profile functions go and gi by definition. 

By minimising (5.50), one can derive the following equations for the profile func­

tions Fi, I = 0 , . . ( i V - 2). 
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1=0 A;=0 i=k 

' V i=0 k=0 \i=k / / 

(/ + l ) ( iV - / - 1) sin Fi - (/ + 1)\N - / - 1)2 (1 - cos Fi) sin F/ + 

~ / ^ ( ^ + l ) ( i V - / - l ) s i n F ; - cosF,_i) + ( / + 2 ) ( i V - / - 2 ) ( l - cosF/+i)] 
A 

+ ̂  | 2 + - / - 1)2(1 - cos FiY - Fi_,l{l + l ) { N - l ) { N - l - l ) 

(1 - cosFi_i)(l - cosF,) - + + 2)(A^ - I - 1){N -1-2) 

(1 - cosF) ( l - C O S F H I ) | + ^ | 2 F i ( ^ + 1)'(A^ - I - 1)'(1 - cosFi)^ - Fi^, 

l{l + l ) ( iV - 1){N - I - 1)(1 - cosF/_i)(l - cosF,) - F+i(Z + 1)(/ + 2)(iV - I - I) 

[ N - l - 2)(1 - cosF,)(l - c o s F + i ) | + ^ j s F ' a + l f { N - I - i f (I - cosF^) 

sinF, - Fl^l{l + 1)(A^ - 1){N - I - l ) s i n F , _ i ( l - cosF^) - Ff^^ + + 2) 

(iV - / - 1)(iV - / - 2)(1 - cos F,) sin F,+i 1 = 0 . (5.52) 

When iV = 3, the solution of the 2 equations describes an exact solution of the 

model, while for larger values of A'̂ , the ansatz (5.11) corresponds to low energy 

configurations. 

As proved in [15], the topological charge for the configuration (5.11) is given by 

i V - 2 

S = J ]2?fc(Ffc-s inF , )^Z- , (5.53) 
fc=0 

where 

| P | / l | 2 

l-[k + l ) { N - k - l ) . (5.54) 

Each configuration is thus characterised by the boundary conditions for the 

profile function Fj and we can, without loss of generality, impose the condition 

limr^ooFi{r) = 0. For the configuration to be well defined at the origin we must 
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also impose a condition of the type 

Fi{0) = n,27r, (5.55) 

where the rii E N. 

In the following sections we wil l consider the equations (5 .52) and obtain exact 

solutions for SU(3) and low-energy configurations for SU(4). We will also investigate 

some special cases in SU{N). 

5.4 Exact solutions in SU{3) 

In SU{3), the multi-projector ansatz ( 5 . 1 1 ) consists of two profile functions goir) 

and ^ i ( r ) and the constraint (5 .40) is always satisfied. Hence, equations (5 .52) lead 

to exact spherically symmetric solutions of the model. In order to describe these 

solutions i t is more convenient to use the profile functions Fi (5 .55) which in this 

case are F = FQ and g = Fx. In this notation the energy (5 .50) simplifies to 

^ 67r 
h I ^^dr!^^{g' + F' + gF) + ^[{l-cosF){{l-X)F' + 4) 

+ ( 1 - cos^)((l - X)g' + 4 ) ) - f ( 1 - A ) ^ ( ( 1 - cosF)2 

- ( 1 - c o s F ) ( l -cos^) + ( 1 -cos^)^) - f - ^ ( F 2 ( 1 - cosF)^ 

+g^{l-cosgf-{l-cosF){l-cosg)gF^'^. (5 .56) 

The equations for the two profile functions F and g are then given by 

5 + + f + 2 ^ + ^ ( ( 1 - A)(1 - cos ^ ) 5 + ^ sin 5 ( ( 1 - X)g' - 4 ) ) 

-t-^ s in5( (1 - A)^ ' - 4 ) + ( 1 - A ) ^ ( ( 1 - cos F) - 2 ( 1 - cos g)) sm{g) 

3A / 
+ - cosg) ( 2(singg^ -h ( 1 - cosg){g - 2 ^ ) ) 

•• Fr 
sinFF^ - ( 1 - c o s F ) ( F - 2 — ) ) = 0 (5 .57) 
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F + ^5 + 2 ^ + ^ + A ( s i n F ( ( l - A ) F ^ - 4 ) + 2 ( l - A ) ( l - c o s F ) F ) 

3 3A 
- ( 1 - A) — ( 2 ( 1 - cosF) - (1 - cos5)) s inF + — ( 1 - cosF) | 12(sinFF2 

+(1 - cosF)(F - 2 ^ ) ) - singg' - (1 - cosg){g - 2^)) ) = 0. (5.58) 

Moreover, the topological charge of the solution will now be 

i f 

5 = - j ^ ( F - s i n F ) | ; = - + ( 5 - s i n ( ^ ) ) | 

If we take the boundary conditions 

r=oo 
r=0 (5.59) 

F(0) = nF2n 

g{0) = n,27r, 

where np and Ug are integers, we will have that 

(5.60) 

Bsu{3) = 2(n; +ng). (5.61) 

When Up and Ug are of opposite signs, we can interpret the solutions as a mixture 

of skyrmions and anti skyrmions. 

In Table 5.1, we give the energy of the hedgehog solution {B = 1) for the SU{2) 

model and for the two asymptotic values, A = 0 and A — 1. As we have mentioned 

a number of times in the previous chapters, this solution is an embedded solution 

of any SU{N) model and i t is the solution with the lowest energy. We thus use i t 

as the reference energy for all the other solutions. 

SU 

Ug 

(2) 

B 

Ene 

F(0) F ( l ) 

1 1 1.2315 0.9395 

Table 5.1: Topological charge and energy of the hedgehog SU{2) solution. 

In Table 5.2 we present the properties of the different solutions for the SU{?>) 

models. The first two columns specify the boundary condition of the solution, and 
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SU{3) Total Energy Relative Energy 

Up Ug B F(0) F ( l ) Fs(0) / ( |B |Fi(0)) F B ( 1 ) / ( | 5 | F I ( 1 ) ) 

1 1 4 4.928 3.758 1 1 

1 0 2 2.377 1.819 0.965 0.968 

0 1 2 2.377 1.819 0.965 0.968 

1 -1 2-2 3.862 3.191 0.784 0.849 

Table 5.2: Topological charge and energy of some S'C/(3) solutions. 

I I I I ' I ' I I ' I I I I I I I I I 

Figure 5.1: Energy of the SU{2>) solution for the boundary condition (A) np 

0,ng = 1, (B) Up = l,ng = 0, (C) np = l ,ng = - 1 , (D) np = l,ng = 1. 



Chapter 5. Spherically symmetric solutions in SU{N) 96 

the third column gives the topological charge of that solution. In column 4 and 5 we 
give the energy of the solutions for the pure Skyrme model and the pure Sk6 model 
while columns 6 and 7 give the corresponding relative energy per skyrmion, that 
is the energy divided by the energy of the single skyrmion and the total number 
of skyrmions. For the solutions corresponding to the superposition of skyrmions 
and anti-skyrmions, we define the total number of skyrmions as the total number of 
skyrmions and anti-skyrmions. 

From Table 5.2 we see that with the exception of the first case, where Ug = 

I, Up = 1, all other solutions are more bound for the pure Skyrme model, i.e. they 

have relatively smaller energy per skyrmion in comparison with the pure Sk6 model. 

This is even true for the solution with topological charge B = 0. In addition, we 

observe that the configurations with Ug = 0,nF = 1 and Ug = l^tip = 0 correspond 

to the same solutions modulo an internal rotation. This last symmetry of the model 

is characteristic of the pure Skyrme model and as pointed out in [49], it follows from 

the invariance of 

Zk = k{N-k){l-cos{Fk-r)), (5.62) 

that appears in (5.50), under the interchange 

Pfc o PN-fc-2 for k = 0 , . . . , - 2. (5.63) 

Since the extra terms in the energy (5.50), that come from the additional sixth order 

term, are also proportional to Zl we see that the general model is also invariant 

under the symmetry (5.63). The latter can also be seen in Figure 5.1 where we have 

plotted the energy of the 3 different types of solution as a function of A. 

5.5 Radially symmetric skyrmions in SU{4:) 

In the last two sections we saw that the ansatz (5.11) describes an exact solution of 

the sixth order model, with A 7̂  0, only for the SU{3) model. However, for SU{N) 

with > 4, if we assume that the fields U are described by A'̂  — 1 profile functions, 

i.e. if we do not consider the constraint (5.40), then this approximation will still 

produce low energy configurations. In particular, when A is small, we can expect 

the ansatz to be very close to an exact solution. In this section we look at some 
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configurations of the SU{A) model. For this model, we have three profile functions 

Fo, Fi and F2 and the energy for the general ansatz (5.11) is explicitly given by 

F = ^ Jr^drl^^ (sF^ + ^F" + SF' + 4FoFi + 4F1F2 + 2F0F2) + ^ [3(1-cosFQ) 

^ ( l - c o s F i ) + 3 ( l - c o s F 2 ) ] + (1 - A ) ( ^ 3F^{l-cos Fo)+4F^{l-cos Fi}^ 

3F^{l-cosF2) + ^ { 9 ( 1 - cos Fo)2 + 1 6 ( 1 - cos Fi)2 + 9 ( 1 - cos F2)2 

-12(1 - cosFo)(l - cosFi) - 12(1 - cosFi)(l - cosFa)}' 

+ ~ (9Fo'(l - cosFo)2 + 16F2(1 - cosFi)^ + 9 F | ( 1 - cosFa)^ 

-12FoFi( l - cosFo)(l - cosFi) - 12FiF2(l - cosFi)( l - cosFs)) | , (5.64) 

from which we can derive the following equations 

/3A( l -cosFo)2 2 ( l - A ) ( l - c o s F o ) ^ ^ \ ^ ^ 1 
[ 2? + 7^ + l)Fo+ 3F2 

f 2 A ( l - c o s F o ) ( l - c o s F i ) \ " 4sinFo 6F0 + 4F1 + 2F2 
+ o Zl 1^1 o + 

3 H y ^ ' r 2 ' 3 r 

+ ^'-'^fosinFo _̂  _ , ) ! i ^ ( 4 ( i _ ,,3̂ )̂ _ _ ,,3̂ )̂) 

+X^-^^^{lF^sinF.-F^sinF,) 

- A ^ ^ — ^ ^ ^ ( 3 F o ( l - c o s F o ) - 2 F i ( l - c o s F i ) ) = 0 , (5.65) 

f l 3 A ( 1 - c o s F o ) ( l - c o s ( F i ) \ •• f l 3 A ( 1 - cosFi)( l - cosF2)\ -
[2 ~ 4 ? ) ^ ' ^ [ 2 4 H 

( 2 A ( l - c o s F i ) 2 2 ( l - A ) ( l - c o s F i ) > ^ ^ 
+ 1 + 7 1 5 r\ 

(1 - A)Ff sin Fi F0 + 2 F 1 + F 2 sinFi 
r 

(1 - A) ̂ -^^ (3(1 - cos Fo) + 3 ( 1 - cos F2) - 8(1 - cos F i ) ) 

- cosF i ) (4F i ( l - cosFi) - ^ Fo(l - cosFo) - ^ F2(l - C0SF2)) 

A / 3 3 \ 
+—(1 - cos Fl) ( 2 F? sin F i - - F Q sin FQ - -F2^ sin F2 I = 0 j-i Y 4 4 y 
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and 

f 2 A ( l - c o s F i ) ( l - c o s F 2 ) \ /3A(1 - cosFs)^ 

U 7^ J ^^ + l 2? + ^ 

, 2 ( 1 - A ) ( l - c o s F 2 ) > ^ ^ , 1 ^ , 2F0 + 4 F 1 + 6 F 2 ,sin 
+ ~2 j ^ 2 + 2^o + 4—• 3r 

^ ( 1 - A ) ^ s i r ^ + (1 - A ) ^ (4(1 - cos F,) - 6(1 - cosF.)) 

- A ^ ^ ~ ^ f (3F2 (1 - COSF2) - 2 F i ( l - cosFi)) 

O - c o s ^ / 3 ^.^ _ ^.^ ^^^^^ 
\ 2 ) 

functions as before, i.e. Fi(0) = Describing the boundary condition for the profile 

ni27r, the topological charge is given by 

5 = 3no + 4ni + 3n2 (5.68) 

In Table 5.3 we present the energy values of various types of configurations when 

A = 0 and A = 1. We notice that, as in the S'C/(3) model, when A = 0, the solutions 

are symmetric under the exchange FQ o F j , but that the sixth order term breaks 

the symmetry. This results in a difference of energy between the configuration with 

(no = 0,ni = 0,n2 = 1) and (no = l , n i = 0, n2 = 0) as well as between the 

configurations with (no = 1, n i = 1, n2 = 0) and (no = 0, n i = 1, n2 = 1). 

5C/(4) Total Energy Relative Energy 

no ni n-i B F(0) F ( l ) F B ( 0 ) / ( | 5 | F I ( 0 ) ) F B ( 1 ) / ( | 5 F I ( 1 ) ) 

0 0 1 3 3.51739 2.66653 0.95210 0.94598 

1 0 0 3 3.51739 2.72915 0.95210 0.96819 

0 1 0 4 4.78807 6.33322 0.97204 1.68507 

1 0 1 6 7.22464 6.04604 0.97780 1.07244 

1 1 0 7 8.45219 6.62998 0.98052 1.00802 

0 1 1 7 8.45219 7.28058 0.98052 1.10694 

1 1 1 10 12.311 9.39605 1 1 

Table 5.3: Topological charge and energy of some SU{\) configurations. 
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Let us stress one important point. I f we observe carefully the values of the 

energy for the configuration with (ni = 1, n i = 1, n2 = 1) in Table 5.3, we see that 

it describes a state of ten skyrmions that has energy exactly ten times the energy 

of the hedgehog configuration for all values of A. This configuration corresponds to 

taking 

Fo = Fi = F2 = F ^ 50 = 2^1 = 3^2- (5.69) 

In sections 1.3.1 and 1.3.2 we examined the construction of spherically symmetric 

solutions using the general ansatz (5.11). There we argued that the special config­

uration (5.69) describes an exact solution of the pure Skyrme model with baryon 

number B = ^{N'^ — 1). Therefore, for SU(4), where B = 10, this solution will have 

energy ten times the energy of the single skyrmion. Hence, one can easily assume 

that the configuration with (ni = 1, n i = 1, ^2 = 1) is also an exact solution for the 

general sixth order model since its energy is always ten times the energy of 5 = 10 

for any value of A. However, this assumption is misleading because this special case 

(5.69) does not satisfy the constraint (5.40) and thus, the angular dependence does 

not cancel out of the general equations of motion (5.17). Hence, in order to obtain 

exact solutions for the sixth order model, one has to ensure that all constraints are 

satisfied before any equation is derived from the energy (5.50). In a different case 

the ansatz will correspond to an approximation and not to a solution of the model. 

Another observation that can be made from Table 5.3 is that the configurations 

with baryon number B = 4, 6 and 7 correspond to bound states when A = 0 (as 

expected) but when A increases the relative energy per skyrmion becomes larger 

than one and clearly these are no longer bound states. We also see that the largest 

relative energy per skyrmion is obtained for (no = 0, n i = l,n2 = 0). The latter 

can also be seen in Figure 5.2 where we present the curve for the energy of the 

configurations as a function of A. 

In the same Figure one can also see how the sixth order term breaks the symmetry 

Fo •H' F j between the configurations with (no = 0, n i = 0, n2 = 1) and (no = 1, n i = 

0, n2 = 0) and between the configurations with (no = l ,?i i = l,n2 = 0) and 

(no = 0,ni = l,n2 = 1). 
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to 
c w 

Figure 5.2: Energy density of the SU{A) multi-projector ansatz (a) no = 0, n i = 

0,n2 = 1; (b) no = l , n i = 0,n2 = 0; (c) no = 0,ni = l ,n2 = 0; (d) no = l , n i = 

0,n2 = 1; (e) no = l , n i = l,n2 = 0; (f) no = 0,ni = l ,n2 = 1. 

5.6 Low energy configurations in SU{N) 

In the previous sections we inserted the ansatz (5.11) into the full equation for the 

SU{N) model and we found that we had only two independent profile functions 

go and gi. There we argued that for A'' > 4 these equations do not decouple and 

hence, this ansatz only provides solutions for the SU(3) model. In addition, we have 

explored the case of the SU(4) model and investigated the properties of various low 

energy configurations that can be constructed by the general ansatz (5.11) without 

imposing the constraint (5.40). In this section we will use this general ansatz in order 

to compute low energy configurations in SU{N). In particular we will consider the 

reduced ansatz defined by (5.11) together with the constraint gi = gi+2- I f we define 
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the profiles F = go - gi and g = gN-2 then the energy (5.50) becomes 

(1 - cos F) ( (1 - A)P2 + 4^ + (yy _ _ (,os^) - A)^ ' + 4) 

+ ( 1 - A ) 
A ^ - 1 

2r4 L6 

- 2 ( A ^ - 2 ) ( l - c o s P ) ( l - c o s 5 ) 

-(A^ - 2){N + 9)(1 - cosP)2 + {N- 1)(1 - cosgf 

+ 
A 

^{N - 2){N^ + 20N - 45)(1 - cosF)^F^ + {N ~ 1)^(1 - c o s ^ ) V 

- 2 ( - l ) ^ - i ( A ^ - 1)(A^ - 2)(1 - cosP)(l - cosg)gF 

where 

4iV A'̂  even 

^ iVodd 
and K-, 

^ Â  even 
N-l 

N N odd 

(5.70) 

(5.71) 

From (5.70) we can derive the following equations for F and g 

2 ^ 9 + i^2P + 2K2^ + 4 ^ ^ + ^ ( ( 1 - - '^'9)9 

+ i sin 5 ((1 - A)^ ' - 4) ) - f (1 - A ) ^ ^ sin5((A^ - 2)(1 - cosP) 

^99'^ 
\ A / 

.{N - 1)(1 - cos^)j + —{N - 1)(1 - cosg) \^{N ~ 1) [siu; 

+ ( l - c o s ^ ) ( ^ - 2 ^ ) ] - f ( A ^ - 2 ) ( - l ) ^ ( s i n P p 2 ^ ( l - c o s P ) ( P - 2 - ) ) ) = 0 
V T 

(5.72) 

and 

2K,F + K2g + 4Kr- + 2K2^ 
r r 

+ Y ^ ( A r 3 _ + 6) ( s inP( ( l - A)P2 _ 4) ^ 3(1 - A)(l - cosP)p) 

- ( 1 - A)^(A^ - 1)(A^ - 2) sinP (^~{N + 9)(1 - cosP) - (1 - cosg) 

- { -
4r4 \ 6 

(A^^ - f 18^2 _ 85jy + 90) (1 _ cos P) ( sin PP^ 

+ (1 - cosP)(P - 2:^)) + ( - l ) ^ ( N - 2)(A^ - 1)(1 - cosP)(sin5^2 

+ ( l - c o s 5 ) ( ^ - 2 ^ ) ) ' j = 0 . (5.73) 
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Moreover, one can easily show that the baryon number is related to the boundary 

values for F and g by the following expression 

B = 
1 / / N 3 \ 

+ {N-l){g-smg)\;z^ . (5.74) 

When solving the equations (5.72) and (5.73) for the profiles g and F we used 

various boundary conditions and found that in order to get configurations corre­

sponding to a bound state, i.e. a configuration with an energy per skyrmion smaller 

the energy of the hedgehog solution, we need to take n^ = 0 and nj, = 1. The 

energies found are given in Table 5.4. 

Total Energy Relative Energy 

Model B F(0) F ( l ) Fs(0) / ( |B |Fi(0)) EB{1)/{\B\EX{1)) 

SU{3) 2 2.377 1.819 0.965 0.968 

SU{4) 3 3.624 2.759 0.981 0.979 

SU{5) 4 4.811 3.632 0.977 0.966 

SU{6) 5 6.015 4.518 0.977 0.962 

Table 5.4: Topological charge and energy for the reduced ansatz with n^ = 0 and 

n„ 1. 

In Figures 5.3 and 5.4 we present the profile and the energy density for different 

values of and for A = 0.5. We observe that the energy density has the shape 

of a hollow sphere of radius r = 0.7\/iV. The profile g has the same shape for all 

values of N but is shifted to the right as Â  increases. The profile F on the other 

hand is also shifted as the shell radius increases, but its amplitude decreases like 

Notice that in Figure 5.4, the profiles for Â  = 100 and Â  = 200 have been 

multiplied by 100 to make them visible. For other values of A the graphs look very 

much the same except that the shell radius and width are slightly different. The 

conclusions, however, remain the same. 
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Figure 5.3: Energy density of the multi-projector solution with n^- = 0, n^ = 1, 

A = 0.5. (A) N=10, (B) N=20, (C) N=50, (D) N=100, (E) N=200. 

1 — I 0.03 I — I — I — I — I — I — I — r 

- J 0.02 h -

0.01 h-, 

-0.01 [— 

15 
J I I L 

15 

(a) (b) 

Figure 5.4: (a) profile g and (b) profile F of the multi-projector solution with UF = 0, 

ng = 1, A = 0.5. (A) ^ & F for N=10, (B) g k F for N=20, [C) g k F for N=50, 

(D) g & (100 X F) for N=100, (E) g & (100 x F ) for N=200. 
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Figure 5.4.(b) suggests simplifying the ansatz further for large N by taking 
F( r ) = 0. This implies that gi = g Mi and the multi-projector ansatz ( 5 . 1 1 ) be­
comes 

[/ = e x p ( - z ^ ( P ^ _ i - / / i V ) ) , (5 .75) 

where F^r-i can also be written aŝ  

Fiv-x = ^ , (5 .76) 

and where h is equal, up to a unitary rotation, to the complex conjugate of the 

holomorphic vector VQ defined in (5 .18) : h = AVq for some A £ SU{N) with 

d^A = d^A = 0. This is shown by using the fact that P^-i is an anti-holomorphic 

projector [51] and that solving (5 .49) recursively (see Appendix B) we have 

and so |W-i|2 = [(iV - 1)!]2 | 1 + |e|2|i-^. 

The topological charge of the anti-holomorphic projector PN-I is equal to I — N 

and as the profile function is —g, the baryon number for this configuration is N — 1. 

The ansatz (5 .75) is not a solution, but its energy 

E 

- f ^ ( i V - 1)2(1 - cos5)^ ( ( 1 - A) - f | , (5.78) 

can easily be computed by solving the equation 

N 
2grr + 4 ^ + ^ ( ( 1 - A)(l - cos^)^,, + ^ singiil - A)^^ _ 

A 
-^J^^^^ - - cosg){smgg^^ + ( 1 - cosg){grr - 2 ^ ) ) = 0. (5 .79) 

In Figure 5.5, we present the relative energy, E{X)/(EB=I{X){N — 1 ) ) , of this 

configuration as a function of for different values of A. We see that this configu­

ration corresponds to a bound state of skyrmions and that the energy per skyrmion 

decreases with A''. The energy of this configuration corresponds to an upper bound 

^See Appendix B for further details. 
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Figure 5.5: Energy E/{EB=I{N-1)) of the SU{N), configuration 5.75 for (a) A = 0, 

(b) A = 0.25, (c) A = 0.5, (e) A = 0.75, (f) A = 1. 

for the energy of the B = N - 1 radially symmetric solution of the SU (N) model 

and these configurations correspond to bound states of skyrmions for all values of 

N and all values of A. As every SU{p) solution can be trivially embedded in an 

SU{q) solution when p < q we can claim that for every B < N the SU{N) model 

has a radially symmetric solution of charge B corresponding to a bound state. With 

the exception of the hedgehog solutions, these solutions are expected to be unstable 

when the radial symmetry is broken as their energies are larger than the SU{2) 

solutions we computed numerically in chapter 3. 



Chapter 6 

Conclusions and discussion 

In this thesis, we have investigated some of the classical properties of an extension 

of the Skyrme model defined by adding to the Lagrangian a Skyrme-like sixth order 

term. We have argued that such generalisations of the Skyrme model are motivated 

by physical as well as by mathematical interest. In our definition of the extended 

Skyrme model, we introduced a dimensionless coupling constant A that denotes the 

mixing between the two higher order terms: the Skyrme and the sixth order term. 

This parameterisation enabled us to study the dependence of the energy and matter 

radius of classical solutions with respect to A. 

Our investigation of this model mainly concentrated on computing static multi-

skyrmion solutions with topological charge B = 2..5 using numerical methods. For 

the special configuration with B = 2 we showed that the minimum energy solution 

is axially symmetric as in the pure Skyrme model. This enabled us to use an axially 

symmetric ansatz in order to reduce the equations of the extended model to a two-

dimensional system and thus, obtain more accurate results. I t also provided us with 

a way to estimate the accuracy of the numerical methods we used to solve the ful l 

three-dimensional system. Overall, we found that the symmetries of multi-skyrmion 

solutions with B = 2..5 are the same as the ones obtained for the pure Skyrme model. 

By varying the strength of the additional sixth order term, we also computed the 

energy and radius ratios with the single skyrmion solution for different values of 

A. We compared our results with experiment and we showed that in some cases 

the extended Skyrme model provides us with better theoretical predictions than 

the pure Skyrme model. In addition, we observed that the extra higher order term 

makes the multi-skyrmion solutions more bound than in the pure Skyrme model 

and it also increases their radius, specially for large B. 

We then used the harmonic maps ansatz to approximate the above mentioned 
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solutions. This ansatz, as it was introduced in [14] and in [15], is considered as a 
rather good approximation of the solutions of the pure Skyrme model. We found 
that the harmonic maps ansatz works equally well for the sixth order Skyrme model 
and in some cases even better. To determine this, we firstly plugged this ansatz into 
the Lagrangian of the extended Skyrme model and showed that the multi-skyrmion 
configurations of this model have the same symmetries as the ones of the pure 
Skyrme model thus proving that this approximation provides us with qualitatively 
correct results at least for B = 2..5. We then investigated the energy and radius 
ratios of these multi-skyrmions by varying the parameter A. When we compared our 
results with the true solutions, we found that for certain values of A, the relative 
error between the approximate configurations and the corresponding solutions is 
smaller than the pure Skyrme model. 

In addition, we analysed the dependence of the energy and matter radius with 

respect to A for multi-skyrmions with topological B = 6..9 in SU{2) and B = 2..6 in 

SU{3). Unfortunately, i t was not possible to determine the quality of these results 

since obtaining solutions for configurations with B > b and for different values of 

A, is a time consuming numerical problem that becomes quite complex when B 

increases. Nevertheless, we showed that under the harmonic maps ansatz, these 

multi-skyrmions have the same symmetries as the ones of the pure Skyrme model 

and that the addition of a sixth order makes their energy more bound and decreases 

their matter radius. We also considered saddle point configurations with B = 5 and 

found that when the two higher order terms, the Skyrme and the sixth order term, 

are comparable, then the energy and radius ratios become maximum. 

Finally we explored the possibility of constructing spherically symmetric solu­

tions in SU{N) using a generalisation of the harmonic maps ansatz that was pro­

posed in [49]. We showed that, unlike the pure Skyrme model, this ansatz works 

only for the SU(2) and SU(3) extended Skyrme models due to an additional con­

straint coming from the extra sixth order term. Nevertheless, we argued that this 

ansatz can still be used to compute low energy configurations of the SU{N) model. 

In particular, we showed that for every iV there is a radially symmetric configuration 

with topological charge B < N which corresponds to a bound state of skyrmions. 

Our analysis of generalised versions of the Skyrme model suggests further inves­

tigation on this subject. For instance, in section 2.2.3 we reviewed the construction 
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of a Skyrme model with an infinite number of higher order terms as proposed by 
Marleau [10, 11, 37, 12]. However, this model was restricted to the case of the single 
skyrmion and hence, a further generalisation of this construction to multi-skyrmion 
configurations in SU{N) is always an interesting possibility. This work is currently 
under progress and some promising results have already been obtained. 

In addition, when we were examining the physical motivation behind the study 

of extended Skyrme models in chapter 2, we saw that a number of phenomenologi-

cal arguments suggest that an effective Lagrangian derived from QCD must include 

further fourth order terms which destabilise the solitons. However, in our definition 

of an extended Skyrme model, we did not consider these terms since their presence 

in the Skyrme Lagrangian leads to differential equations with degree higher than 

two and this is a very difficult problem to solve even numerically. Nevertheless, by 

using advanced numerical methods and by considerably increasing the amount of 

computing resources needed, we might be able to systematically study such com­

plicated models and determine whether they can provide us with better theoretical 

predictions than the original Skyrme model. 

We believe that topological solitons and in general, non-linear field theories, are 

of great mathematical and physical interest, and investigating their properties will 

always be an exciting subject to explore. 



Appendix A 

Numerical Methods 

In this appendix we describe the numerical methods that we have used throughout 

this thesis to compute solutions of the extended sixth order Skyrme model. 

A . l Numerical integration of ordinary and partial 

differential equations 

A.1.1 Finite differences method 

When defining a function f{x), or equivalently a field (j){x), on a discrete lattice, we 

associate this function with each lattice point as 

/ ( x ) ^ / ( x , ) = / i with i = l,...,N, (A . l ) 

where N is the number of lattice points. For a lattice with regular spacing Ax, 

we replace the spatial derivatives with their discretised versions using the finite 

differences method. For example, in order to evaluate the first derivative of f{x), we 

use the central difference operator, defined as 

d f j x ) _ / , - ! - f,+i 
~d^ - 2Ax • ^^-^^ 

Depending on the nature of the numerical problem, one can equivalently use the 

forward difference operator; 

dx Ax ' 

or the backward difference operator: 

df{x) ^ - / , 
dx Ax 
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(A.3) 

(A.4) 
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Similarly, to evaluate the second derivative of / with respect to x, we use the 
operator: 

d ' f i x ) _ / . - I + Z.+i - 2 f , 

In multi-dimensional problems, where we evaluate multi-variable functions such 

as ^ = ^(xi,a;2,... j^a) , we also need to consider their partial derivatives with 

respect to more than one variable. For example, in two dimensions, we replace the 

second order mixed derivative of a function F = F(x ,y ) , with the operator 

dxdy 4AxAy ' ^ ' ^ 

where i = 1 , . . . ,Nx and j = 1 , . . . , A^ .̂ In (A.6), Fij is the value of the function 

at each lattice point and Ax, Ay are the grid spacings in the x and y direction 

respectively^. 

Al l the above operators are of order two. One can increase the accuracy of the 

numerical results by using finite difference operators of higher order precision in Ax. 

For instance, the first order derivative can be evaluated using, 

dx 12Ax ^ ^ ^ ^ 

However, increasing the precision of the difference operators is not always favourable 

as i t decreases the convergence speed significantly. 

A.1.2 Integration methods 

To numerically solve an ordinary differential equation (ODE) of first order, given by 

the general form 

dfix) 
dx 

= F{x,f{x)), (A.8) 

we approximate f{x) by expanding f{x + dx) as a Taylor series. For example, up 

to first order precision in dx, we have 

f{x + dx) = f{x) + dx^ + 0{dx^) 

= f{x)-hdxF{xJ) + 0{dx''). (A.9) 

' I n general, we choose Ax = Ay = A and = Ny = N for simplicity. 
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By descretising f{x) on a lattice with spacing Ax, we have 

=fi + Ax F{x,, U) + 0(Ax2) . (A.IO) 

Given the value of the function / at the point Xo, we can evaluate F at this point 

and thus find / i up to first order precision in Ax. I f we repeat this procedure iV^ 

times, we can integrate equation (A.IO) from XQ to = XQ + Ax . This is called 

the Euler method and is the simplest way to approximate a solution for a first order 

ODE. However, this method is not very accurate since we evaluate / ( x ) only to first 

order precision in Ax. 

To achieve better accuracy in our numerical results, we use the 4th order Runge-

Kutta method. This method consists of expanding f{x + dx) as a Taylor series up 

to fourth order precision in dx and evaluate / j + i using the derivative value at the 

starting point Xj, the final point Xi+i and two midpoints. The explicit form of the 

4th order Runge-Kutta formula is 

Ax 
/ i+ i = / i + — (fci + 2 A;2 + 2 + ^4) + O(Ax^), ( A . l l ) 

D 
where 

ki = F{xiJi), 

k2 = F(x, + ^ , / , + | ) , 

= F{xi + AxJ^ + ks). (A. 12) 

The Runge-Kutta method is much more accurate than the Euler method and is 

preferred in the majority of numerical problems. Improved versions of the Runge-

Kutta method that use adaptive step size can further increase the accuracy of the 

integration (see for example chapter 16 of reference [52]). However, for our numerical 

problems the formula ( A . l l ) provides us with sufficient accuracy. 

The Runge-Kutta method can also be applied to higher order differential equa­

tions. In general, any ODE of order n can be reduced to a set of n coupled first 

order differential equations. For example, the equation 
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can equivalently be rewritten as a system of two first order equations as 

df{x) 
dx 

dgjx) 
dx 

F[x,f{x),gix)). (A.14) 

A.1.3 The shooting method 

When solving a differential equation numerically, i t is often required to impose a set 

of boundary conditions that must be satisfied by the solution at specific points of 

the integration interval. For example, consider the problem of finding the minimum 

energy of a one dimensional system. In other words, minimise the functional 

rro+L 

E= / dre[r,f{r)J'{r)], (A15) 
Jro 

where / ( r ) must satisfy the boundary conditions: /(ro) = A and /(ro + L) = B. 

Using the principle of least action, this problem is equivalent to solving the second 

order Euler-Lagrange differential equation, which is given by the general form 

d fdS\ d£ 

As mentioned previously, this second order ODE can be reduced to a system of two 

coupled first order ODEs which must also satisfy the two boundary conditions. 

The problem of solving (A. 16) numerically, is called a two point boundary value 

problem and can be approached by two different ways. One can start by imposing 

the values of all independent variables at one boundary point and integrate all ODEs 

in order to match the other boundary condition. Alternative we can use an initial 

configuration and try to adjust it so that it satisfies the finite differences equation 

and the two boundary conditions simultaneously. We will explore the latter case in 

the following section. 

The shooting method consists of transforming the two point boundary value 

problem into an initial value problem. Given the value of the function / ( r ) at the 

first boundary point, ro, we try different values of the derivative until the 

boundary value /(ro -I- L) is satisfied. This is shown schematically in Figure A . l . 

For the integration of the ODEs we use the 4th order Runge-Kutta method that 

we saw in the previous section. 
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y(x) 

Boundary 
Value at 
x=0 

S t e p ! 

Step 2 

X 

Boundary 
(Condition 
at x=L 

Figure A . l : The shooting method. Using the initial values of y{x) at the first 

boundary point we adjust the first derivative of y{x) in order to meet the second 

boundary condition. 

We applied the shooting method to find the minimum energy solution of the 

extended sixth order Skyrme model in the case of the single skyrmion and to obtain 

minimum energy configurations of multi-skyrmions in the harmonic map ansatz. In 

both cases, the Euler-Lagrange equation that needs to be solved is one dimensional 

and has boundary conditions at r = 0 and at r = oo, i.e. i t is a two point boundary 

value problem. 

The advantage of using the shooting method in this type of numerical problems, 

is that i t has large convergence speed and thus enables us to use a large number of 

integration points in order to obtain very accurate results. For the profile functions 

of the hedgehog ansatz or the harmonic map ansatz, we were forced to use an interval 

r G [0, 80] to get an accurate value for the matter radius as well as up to 160000 

lattice points. In all these cases, we compared the solutions obtained with grids 

of different sizes and different number of points to ensure that our results are not 

affected by edge effects, especially when computing the matter radius. 

The disadvantage of the shooting method is that it can only be applied to one 

dimensional numerical problems. For higher dimensional problems, one needs to use 

a different approach. 
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A.1.4 Relaxation methods 

The relaxation method consists of solving a two point (or many point) boundary 

value problem by using an initial configuration and iterate the system until a solution 

is found, which must also satisfy all boundary conditions. Consider, for example, 

the Euler-Lagrange equation (A.16) and rewrite it as a diffusion equation. 

dt dr^ dr 
(A.17) 

where the coefficient of the leading term, is dimensionless. In the limit where 

i —> oo, ^^f^ goes to 0 and / ( r ) satisfies the equation 

dr2 ^ y - v w , (A.18) 

In other words, for large t, the initial configuration of / is said to relax to a solution 

of equation (A.18) which also satisfies all boundary conditions. We show this method 

in Figure A.2 schematically. 

y(x) 

Boundary 
Value a t 
x=0 

I n i t i a l C o n f i g u r a t i o n 

Step 2 

o l u t i o n Boundary 
Value at 

X ^ 

Figure A.2: Relaxation method. We use an initial configuration (guess) of y{x), that 

does not need to satisfy the two boundary conditions. We then relax the system until 

y{x) simultaneously satisfies the finite differences equation, to a desired accuracy, 

and the boundary conditions a,t x = Xq and x = L. 

When applying the relaxation method to a numerical program, we replace equa­

tion (A.17) by its discretised version and integrate it using the Euler method. Using 

a higher precision integration method, like the 4th order Runge-Kutta method, is 

not necessary as we are interested in the asymptotic limit of the solution. Finding 
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an initial configuration that is close to the solution of the system is always important 
as it can decrease the number of iteration steps significantly. 

Although the main advantage of the relaxation method is that i t can be applied 

to multi-dimensional problems, i t has the disadvantage of converging quite slowly. 

To increase the convergence speed, we use a modified version of this method, the 

Successive Over-Relaxation method (SOR) [52], which consists of using a conver­

gence factor LO in (A. 17): 

df{r,t) 
dt 

where 0 < cu < 2. Determining the optimum value for u> is quite difficult, especially 

for complicated differential equations such as the ones arising from the Skyrme 

model. In general, we use an initial value around 1 and we choose the best value for 

our numerical problem by trial and error. We found that in the case of the extended 

Skyrme model, a; should be slightly higher than 1, but we had to adjust this value 

for each multi-skyrmion configuration. 

We used the SOR method to obtain solutions of the extended Skyrme model 

for multi-skyrmions with B = 2..5 and for diflFerent values of the parameter A. For 

boundary conditions, we imposed the vacuum value of the field on the edges of the 

grid. 

When computing the energy and the matter radius for each configuration, we 

found that our results are affected by two main sources of inaccuracy. The first is the 

finiteness of the field which increases the value of the energy by distorting the field 

slightly. The second is that the value of the energy is systematically underestimated 

by the finite differences method which we use to discretise the differential equations. 

Although one could expect that these two effects cancel each other, i t is very difficult 

to estimate their order of magnitude. 

One way to reduce the edge effects, is to compute the same solutions on grids of 

diflFerent sizes, but keep the lattice spacing, Ax = L/N constant. By looking at how 

the energy changes as a function of the size, i t is possible to find a value of L for 

which the edge effects are relatively small. For the solutions of the extended Skyrme 

model with B — 2..5 we chose a box ranging from -8 to 8 in all directions and used 

grids of 100, 120 and 140 lattice points. To estimate the relative error, we computed 

the topological charge, Q, since we already know that i t must take integer values 

from 2 to 5. We found that, after extrapolation, this error varied between 0.5 % and 
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0.1%. In addition, the values we obtained for the energy per Q of the pure Skyrme 
model, after extrapolation, all fit within 0.15% the value of E/Q that was found by 
Battye and Sutcliffe [43] using different numerical methods. For the matter radius 
we used the same method. However, the integrand of this quantity decreases slowly 
towards infinity and hence, i t is more sensitive to edge effects. We believe that the 
overall behaviour of the radius ratio as a function of the parameter A, Figures 3.5 
to 3.8, can be trusted, although some fine details might be numerical artifacts. 

In the case of the B = 2 skyrmion, we used an axially symmetric configuration 

and solved the Euler-Lagrange differential equations in a two dimensional grid. This 

enabled us to increase the accuracy of our results by using larger grids and more 

lattice points. We used a grid defined by 2 G [-20, 20] and r € [0, 20] with lattice 

spacing Ax = 0.05. We found that, in this case, the relative error was smaller than 

0.1%. Moreover, the value of the energy of the pure Skyrme model that we obtained 

in this way, fits the one that was found in reference [43] within 0.04%. We compared 

these results with the ones we obtained by solving the three dimensional system for 

B = 2 and found that the difference between the two energies was less than 0.1%, 

thus validating the numerical methods used. 



Appendix B 

!Ĵ roperties of the harmonic projectors Pj^ 

In this appendix, we prove in detail some of the properties of the harmonic projectors 

Pk which we used in chapter 5. 

We start by recalling that the projector P = P{^,0^ where (^,^) are the usual 

complex coordinates, is defined as a harmonic map from H-> C I P ^ " ^ In other 

words, we assume that P is a classical solution of the two dimensional CIP' '^"^ a 

model [51] and hence, i t satisfies the Euler-Lagrange equation 

d^d^P,p]=0. (B. l ) 

I f the projector P has the special form 

= (B.2) 

where the vector h E is holomorphic, i.e. 

1 = 0, (B.3) 

then Po is also a solution of the first order self-dual equations 

Poa^Po = 0 and a^PoPo = â Po. (B.4) 

As we already mentioned in chapter 5, i t is possible to construct further solutions 

of the CP''^"^ model through Gramm-Schmidt orthogonalisation procedure. To do 

so, we need to introduce the operator P+ which acts on any complex vector u G 

as 

P+u = a ^ u - u ^ ^ . (B.5) 

If we take a holomorphic vector h{^), with P^h = h, we can define by induction 

the N-component vectors 

Vk = P^h = P^{P^-'h), k = 0,...,N-l, (B.6) 

117 
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where = P^h = 0. Using these vectors, we then construct a sequence of solutions 
of the C F ^ - i a model as follows 

= = M = M ! , , = 0 i V - l . (B7) 

As the vectors Vk (B.6) are mutually orthogonal, i.e. 

(P^h)^ P^h = 0, i f A; / /, (B.8) 

the corresponding projectors P^ will satisfy the orthogonality relations 

N-l 

PkPj = SkjPk and Xli'fc = l - (B.9) 
fc=0 

In addition, when h is holomorphic, the following properties of the vectors Vk hold: 

a,(i'Jfc) = - p | - ' / . | ] g £ 5 (B.io) 

and 

[wrw) WW'- * ' 
To prove property (B.IO) we start by noting that when the vectors Vk have the form 

(B.6), then i t quite easy to show that 

\Vk\'= (d^Vl,) Vk. (B.12) 

From the orthogonality property (B.8) we have that Vit = 0 and hence, 

d^[vl,Vk)^[d^Vi,)Vk + Vl,{d^Vk) = 0. (B.13) 

If we multiply (B.13) from the left with Vfc_i and use (B.12), we have 

|14_i 1^(9^-14) = -14_i |14|2, or equivalently 

d^Vk = -Vk^,-^^,, (B.14) 

proving property (B.IO). 

To prove ( B . l l ) we start from the left hand side 



Appendix B . Properties of the harmonic projectors Pk 119 

and by using the hermitian conjugate of (B.14) and the orthogonality property (B.8) 
we have 

(B.16) 
Vk 
fc-ll 

Having constructed these special projectors Pk using the vectors we would like 

to show that they are indeed solutions of the CF^~^ model (see [51] and references 

therein). We start by noting that the Gramm-Schmidt orthogonalisation procedure 

implies that the vectors 14 are constructed by the sequence of the holomorphic 

vectors 

h,d^h,dlh,...,d1h,... (B.17) 

Let us define the normalised vectors obtained by the Gramm-Schmidt orthogonali­

sation of the sequence (B.17) as 

o i , a2, . . . , O f c , . . . , OAT. (B.18) 

Consider now the element of (B.17) and construct the projector 

P = akal (B.19) 

We can also construct another projector Q as follows 

fc-i 

Q = 5]a ,a l . (B.20) 

1=1 

The projector, Q, can be thought of as a solution of the grassmannian model 

G{k — 1,N) (see reference [51] for further details). A grassmannian model G{M, N) 

is the generalisation of the two dimensional CP^"^ a model in terms oi N x M 

matrix fields. When M = 1 these fields become N-component complex vectors and 

thus G{M,N) reduces to the CP^"^ model. A solution of the G{M,N) model can 

be obtained using a set of M linearly independent holomorphic vectors which are 

properly orthonormalised [51]. Since Q is constructed by such vectors (sequence 

(B.18)), we can consider it as a solution oi G{k — 1, N) which satisfies the first order 

self-dual equations of this model (by analogy to the CP^'~^ model). In other words, 

d^QQ = 0. (B.21) 



Appendix B . Properties of the harmonic projectors P^ 120 

Similarly, the projector P H- Q is a solution of the self-dual equations of the G{k, N) 
grassmannian model, i.e. 

(5f(P + Q)) (P + Q) = 0. (B.22) 

From the orthogonality properties (B.8),(B.10) and (B.U) i t is easy to check that 

d^aj = aj-iaj_^{d^aj) + ajaj(d^aj) (B.23) 

and 

d^aj = aj+ia]_^_^{d^aj) + aja]{d^aj). (B.24) 

Using relations (B.23) and (B.24) we have that 

{d^P) Q = 0 (B.25) 

and 

P{d^Q) = d^Q, (B.26) 

{d^Q) P = d^Q. (B.27) 

Substituting (B.25) and (B.27) to equation (B.22) we have 

(a^P) P + d^Q = 0 (B.28) 

and by hermitian conjugation, 

P (d^P) + d^Q = 0. (B.29) 

If we differentiate (B.28) with and (B.29) with and subtract them, we get 

d^d^P, P] = 0, (B.30) 

proving that the projector, P, is a solution of the Euler-Lagrange equations of the 

CP^-^ a model. 

There is one important remark that can be made at this point. The last vector 

V/v_i of the sequence (B.6) is, up to a unitary isorotation, equal to the complex 

conjugate of the vector h and hence, the projector PAT-I is an anti holomorphic 

projector. To prove this, we note that VAT = P^h = 0 and by using properties 

(B.IO) and ( B . l l ) it is very easy to check that 

PAr-i(a^-Piv-i) = 0 (B.31) 



Appendix B . Properties of the harmonic projectors Pk 121 

Equation ( B . 3 1 ) implies that P;v-i satisfies the complex conjugate of the first order 
self-dual equations ( B . 4 ) . However, as was previously mentioned, of the sequence of 
solutions of the C P A ^ - I model, only the holomorphic projector PQ satisfies the self-
dual equations. Hence, we can conclude that PN-\ is an anti holomorphic projector, 
i.e. it can be written in the form 

PN-r = ^ , ( B . 3 2 ) 

where h is equal to the complex conjugate of h, up to an overall factor. 

Finally there is another important property of the projectors that we have 

used in chapter 5 in order to construct spherically symmetric solutions of the pure 

and the extended Skyrme model in SU{N). There, we saw that this construction 

crucially depends on choosing the holomorphic vector h to be of the special form 

h = {ho,hu...,hr,-i)\ ( B . 3 3 ) 

where 

hk = e y f c f \ ( B . 3 4 ) 

and where C^~^ denotes the binomial coefficients. In this case, 

^ oc ( 1 + ( B . 3 5 ) 

Using this last property, we saw that the angular dependence of the Euler-Lagrange 

equations of the model vanishes. As a result, one is left with N — 1 ordinary differ­

ential equations that involve only the profile functions (/ j(r) . Hence, the solutions 

of these equations, if they exist, are exact solutions of the SU{N) model. 

Property ( B . 3 5 ) was proved by loannidou et al. [49] using induction and in what 

follows we give this proof for reasons of completeness. 

We start by noting that when the components of h are given by the form ( B . 3 4 ) 

then it is very easy to check that 

For the first projector Vi = P^h we have 

V. = m - (B .37) 
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and hence, 

| ^ | 2 | / , | 2 = \h\^\d^h\^ - \d^\h\''f 

= ( i V - l ) ( l + |<e|')'^"'|/i|', (B.38) 

or equivalently 

\V,\^ = {N-1){1 + \^\Y~'- (B.39) 

We now assume that = a{l + | ^ | 2 ) W - 2 A C - I ^^^^ calculate 114+11'̂ - We have that 

VkVlid.Vk) 

and hence, 

\Vk+^\'\Vk\' = \Vk\'\d^Vk\' - \d^W\\ (B.41) 

In addition, 

= d^\Vk\\ (B.42) 

where we used the complex conjugate of property (B.IO) and the orthogonality of 

the projectors. From (B.42) we have that 

where we also used the orthogonality properties (B.8) and ( B . l l ) . By substituting 

(B.43) to (B.41) we finally have 

|vi«P = a,a,W + J ^ - M ^ . (B .44) 

and by assuming that | \ 4 _ i | 2 = p{l + | ^ |2 )Ar-2fc+i^ 

l^fc+lp=7(l+|^n^-^ '=-^ (B.45) 

where 7 = a(iV - 2 k - l ) + f . If we use induction again for (B.45), then i t is quite 

easy to check that 

proving that indeed 
IT/.12 

oc ( 1 + (B.47) 
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