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Abstract 

We calculate the contribution of gluon-gluon induced processes to vector boson pair 

production at hadron colliders, specifically the production of W Z, W 1 and Z1 pairs. 

We calculate the tree level processes gg ---+ W Zqij, gg ---+ W "'fqif. and gg ---+ Z"'fqij, and 

the one loop process gg ---+ Z1. We use the helicity method and include the decay of 

the W and Z bosons into leptons in the narrow width approximation. We include 

anomalous triple gauge couplings in all of our vector boson pair production calcu­

lations. 

In order to integrate over the qij final state phase space we use an extended 

version of the subtraction method to NNLO and cancel collinear singularities ex­

plicitly. The general subtraction terms that are obtained apply to all vector boson 

pair production processes. 

Due to the large gluon density at low x, the gluon induced terms of vector boson 

pair production are expected to be the dominant NNLO QCD correction, relevant 

at LHC energies. However, we show that due to a cancellation they turn out to 

provide a rather small contribution, anticipating good stability for the perturbative 

expansion. This contribution remains small even when anomalous couplings are 

added, and when one considers energies far above the energies of currently planned 

hadron colliders. 
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Overview 

This thesis discusses vector boson pair production at hadron colliders, focussing on 

the gluon-gluon induced components of WZ, W')' and Z')' production. 

In chapter 1, we discuss the motivations for the thesis topic. The general features 

of vector boson pair production are described, with reference to the previous liter­

ature. We also discuss anomalous couplings and the means of investigating them 

through the study of vector boson pair production. We explain why one may now 

wish to focus on the (next-to-next-to-leading order) gluon-gluon induced part of 

vector boson pair production, and how this may add to previously known results. 

In chapter 2, we review the helicity method, and outline the basic method of 

calculating the helicity amplitudes used in this thesis. The calculation of the helicity 

amplitudes themselves is given in chapter 3. This covers tree level WZ, W')' and Z')' 

production in detail, including electroweak couplings, and the changes that must 

be made to incorporate anomalous couplings in our results. The required helicity 

amplitudes are included in Appendix B. We also calculate the one loop gluon-gluon 

induced production of z,, which consists of a box diagram in the Standard Model, 

plus a triangle diagram in the anomalous coupling case. 

In chapter 4, we discuss the removal of infrared singularities from our amplitudes, 

by means of the subtraction method. We introduce the principles of the subtraction 

method, and the particular version that we use, then perform a general calculation 

that applies to all vector boson pair production processes. 

The results of these calculations are presented and investigated in chapter 5. We 

draw conclusions from this work, as well as suggesting future work, in chapter 6. 
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Chapter 1 

Introduction to vector boson pair 

production 

Vector boson pair production is expected to be a particularly interesting process at 

future hadron colliders, and is the primary subject of this thesis. In this chapter, we 

will outline the main motivations for the study of vector boson pair production at 

hadron colliders, with reference to the literature. In particular, we explain why we 

choose to calculate the O(o:;) production channel gg--+ Vi V2 ( + qij). 

We use Vi and V2 to represent the two vector bosons, where V1 and V2 may be 

W, Z or I· These may be accompanied by quark or gluon jets in the final state. 

1.1 Motivation for studying vector boson pair pro­

duction 

The study of vector boson pair production is an interesting field, which is expected 

to become especially relevant in the next few years with results from the Tevatron 

Run II [1] and especially the LHC [2]. Here we will discuss why vector boson pairs 

are worth studying and will review the current experimental status, and discuss the 

developments that are anticipated at the new hadron colliders. 

The production of vector boson pairs is interesting both as a process in its own 

right and as a background for other processes. The most notable feature of vector 

boson pair production is the presence of a triple gauge vertex. It is possible for two 
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vector bosons to be emitted through coupling to another vector boson in a triple 

gauge vertex, even at leading order. The fact that this occurs at leading order 

and not just in higher order corrections makes it easier for the vertex to be probed 

experimentally. 

The triple gauge vertex is interesting because it is a non-abelian vertex that is 

accessible to experimental study. In testing this vertex, we test the gauge group of 

the Standard Model, as this vertex is a direct prediction of SU(3) x SU(2) x U(1). 

No variations of this vertex from the Standard Model have yet been detected, but the 

bounds on possible deviations should be improved by the increased rate of produc­

tion of vector boson pairs in future experiments. As yet, the triple gauge vertex has 

been much less precisely measured than, for example, the couplings of gauge bosons 

to fermions, so it is still a good place to look for non-Standard Model effects. 

Any variation of a triple gauge vertex from the Standard Model prediction would 

suggest the presence of new physics. New physics occurring at a high energy could 

influence the triple gauge coupling through virtual effects. In section 1.4 we will 

discuss the parameterisation of a vertex that varies from the Standard Model, and 

the kinds of new physics that may cause it. It is as a probe of this new physics that 

vector boson pair production is most exciting. 

Vector boson pair production is also relevant as the background to other pro­

cesses, including the decidedly contemporary topic of Higgs physics. Vector boson 

pair production becomes an important background to Higgs production when the 

Higgs is heavy. A Higgs of greater than 180 Ge V decays predominantly to WW 

(branching ratio about 75%) and ZZ (branching ratio about 20%) [3]. Zr is also a 

comparatively rare decay mode of the Higgs, which is significant between 100 Ge V 

and 160 GeV. It is therefore necessary to have a good Standard Model prediction of 

vector boson pair production in order to deal with the background to Higgs searches 

in these regions. 

Vector boson pair production is also a possible background for certain super­

symmetric processes. The trilepton signal (three leptons plus missing momentum) 

is considered to be one of the cleanest signals for observing supersymmetric particles 

in the mSUGRA model [4] [5]. It is clear that the leptonic decay of a WZ pair is a 

major background to this process. 

So, even if evidence for new physics is not seen directly in vector boson pair 
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production, predictions for vector boson pair production are likely to be important 

as a background to some of the most interesting physics advances of the next few 

years. 

The current experimental knowledge of vector boson pair production processes 

comes from e+ e- collisions at LEP and hadron collisions in the Tevatron Run I. 

As in most processes, e+e- colliders and hadron colliders have been complementary 

in this study, with e+ e- colliders having the advantage of a precisely known initial 

state energy, while hadron colliders can reach a higher centre of mass energy. 

For the production of vector boson pairs, this high centre of mass energy is very 

important. It takes a lot of energy for two vector bosons to be produced, especially 

if they are massive, and this has restricted the number of events that have been 

studied. The rates of production for vector boson processes will be substantially 

increased at the new run of the Tevatron, and hugely increased at the LHC. 

A number of results concerning vector boson pair production were obtained at 

LEP, where WW and Z Z production in particular were studied [6]. Limits were 

set on the triple gauge couplings through these processes [7]: these will be discussed 

further in section 1.4. 

Vector boson pair production has also already been studied in Run I of the 

Tevatron [1] [8] . Here the most studied production channel was W 1 production, 

where the W decays into an electron or a muon, with around 100 events for each 

experiment (CDF and DO). Also studied were WW, WZ and Z"(, with leptonic 

decays, and WW and W Z where one of the leptons decayed into jets. It is expected 

that Run II will improve these results [1]. As well as a substantial increase in rates 

of production, one can expect that detector upgrades and improved analysis will 

also lead to better results. 

We can also look forward to significantly increased vector boson pair produc­

tion at future colliders [9]. The LHC will certainly be a useful arena for studying 

vector boson pair production, much improving Tevatron results. Here, the best 

means for looking at charged triple gauge couplings is through W 1 and W Z pro­

duction [2]. WW production is more difficult to distinguish from the background. 

Considering only leptonic decays of the W and Z and making appropriate cuts to 

reduce the background, we would expect to see about 3000 W 1 and 1200 W Z events 

for an integrated luminosity of 30 fb- 1 [2]. 
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Of course, any future linear collider would also improve the results through 

increased energy and polarisation, and would also have the advantage of a cleaner 

signal. However, this is likely to be well in the future. For now, we will concentrate 

on the present and upcoming hadron collider processes. 

To summarise, vector boson pair production is valuable both as a probe for new 

physics and as a background. We have mentioned some of the experimental studies 

that have been carried out so far, and described some of the physics that may emerge 

from future ones. We will now discuss the theoretical studies of vector boson pair 

production, including the motivation for our own theoretical study. 

1.2 Previous studies of vector boson pair produc­

tion 

The tree level production of vector boson pairs, qq ~ V'i V2 , was calculated some 

time ago for all pairs of vector bosons that we want to look at [10][11][12]. In these 

calculations, spin states were summed over: the decay of the vector bosons was 

not included. Similar calculations were then made at the O(a8 ) level. Here, it was 

sometimes necessary to include loop diagrams as well as tree level, and both possible 

initial states, qq and qg, had to be included. Results were obtained for WW [13][14], 

Z Z [15] [16], W 1 and Z1 [17] [18], and W Z [19] [20]. Again, spin states were summed 

over. 

We have already mentioned the fact that electroweak couplings are spin depen­

dent. In order to compare theory and experiment, we want to include the decay of 

the vector bosons, as it is the decay products that we will see in the detector. By 

including the decay products, we can add arbitrary cuts to the final state and so 

compare with experiment. We choose to study the decay of the vector bosons into 

leptons (rather than hadrons) as this process is easier to distinguish experimentally. 

We also want to retain as much information as possible about the process, including 

the helicity of the decay products. In order to keep track of the spins of all exter­

nal particles, we shall calculate amplitudes in the helicity method, as described in 

chapter 2. This is particularly useful in performing calculations with many external 

particles. 
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Calculating vector boson pair production while including decay products can give 

interesting results. The tree level results for vector boson pair production including 

decay into leptons were initially given by Gunion and Kunszt [21], where angular 

correlations in the final state were discussed for the first time. 

One loop results including decay into leptons were initially obtained with spin 

information in the real but not in the virtual part [22] [23] [24]. Analytic amplitudes 

including all spin information were given in [25] and these amplitudes were used in 

the calculation of numerical results in [26] and [27]. 

All these calculations were carried out with decays included in the narrow width 

approximation. Here both vector bosons are assumed to be on shell: the diagrams 

are 'doubly-resonant'. Some available calculations extend this by including singly­

resonant as well as doubly-resonant diagrams [28], and by including one loop loga­

rithmic electroweak calculations [29]. However, we will continue to use the narrow 

width approximation and will not include higher order electroweak terms. 

We wish to calculate the process gg --t Vi V2 ( + qij), which includes one loop 

and tree level terms. Some calculations are already available. The loop diagrams 

for gg --t z, were calculated long ago [30], but without including decay of the Z 

into leptons. No loop diagrams are required for gluon-gluon induced W Z or W 1 

production. The general tree level vector boson pair production terms, gg --t V1 V2qij, 

have also been calculated [31] but with the requirement that two jets be seen in the 

final state. We will generalise this by integrating over the whole phase space for the 

vector boson pair production process. 

1.3 Motivation for the study of gluon-gluon in­

duced terms 

The original work presented in this thesis is a calculation of the gluon-gluon contri­

bution to vector boson pair production, gg --t Vi v2 ( + qij), where Vi and v2 are the 

two vector bosons. This is calculated for WZ, W1 and z, final states. 

The gluon-gluon initial state first contributes to vector boson pair production at 

NNLO. We explain the motivation for including an NNLO term in the calculation 

of vector boson pair production, and for selecting the gluon-gluon induced part. 
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Before we consider adding an NNLO term to the calculation, we have to consider 

the 10 and NLO terms. The papers in which these were calculated have been listed 

in subsection 1.2. We will look at the qualitative features of plots of the 10 and 

NLO results. In chapter 5 these plots will be discussed again more thoroughly: 

all details such as cuts and parton distributions are given in the relevant parts of 

chapter 5. 

The leading order term of vector boson pair production is straightforward. The 

initial state partons can only be qij (a gluon would lead to a factor of a 8 ). The 

two vector bosons V1 and V2 couple directly to the quark line, or come from an 

intermediate particle via a triple gauge vertex: both options are shown in figure 

1.1. Each outgoing vector boson may be a photon, in which case it is treated as an 

external particle, or a W or Z, with the decay of the particle included. The leading 

order diagrams for theW Z production process are given in figure 1.1 as an example. 

z-

[+ q 
[+ 

q 

Figure 1.1: Leading order diagrams for W Z production 

The NLO terms are slightly more involved. We can decompose the NLO (O(a 8 )) 

contribution to vector boson pair production into two parts. 

Firstly, there are the processes with a qij initial state: the one loop diagrams 

for qij -+ Vt V2, plus the tree-level process with an extra gluon in the final state, 

qif -+ v1 v;g. 
Secondly, we have a new channel at NLO with the initial state qg, giving the 

process qg-+ V1 V2q. In this qg, q can be either a quark or an antiquark. 

The NLO tree level diagrams for W Z production are shown in figure 1.2 for both 

the qg and qij initial states. Two examples of loop diagrams with a qij initial state 

are given in figure 1.3. 

7 



g 

q 

q 

g 

q 

q 

w-

Figure 1.2: Tree level NLO diagrams for W Z production 

ij 

q 

Figure 1.3: Some NLO loop diagrams for W Z production 
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The numerical contribution of the NLO part proves to be very significant. The 

correction to the LO result is very large, with the NLO part being considerably 

larger than the LO contribution in certain regions. For example, regions of high 

transverse momentum may lead to NLO contributions that are several times the 

LO result. This can be seen in figure 1.4 (this is the same as figure 5.1 and is 

further discussed in chapter 5). We show a transverse momentum distribution for 

W Z production, plotting the PT of the lepton that results from the decay of the 

W. This is separated into LO and NLO parts. It can be seen that the NLO part is 

substantial, especially at high PT· 

1 
d~[pb/GeV] LO 

NLO -------
0.1 

0.01 

0.001 

0.0001 

le-05 

le-06 L------1'------.l.....----........__ ___ _.__ ___ __j 

100 200 300 

Pr[GeV] 

400 500 

Figure 1.4: Comparing LO and NLO contributions to W Z production 

As these regions are also where one might expect to best see the effects of anoma­

lous couplings caused by physics beyond the Standard Model, it is important to 

have good Standard Model theoretical predictions in order to distinguish these from 

higher order Standard Model effects (see section 1.4 for a discussion of anomalous 

couplings and section 5.3 for anomalous coupling results). It is clear that the leading 

order result is not a good approximation to the overall vector boson pair production, 

and that including the NLO part is imperative. 
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An alternative approach to this would be to cut out the N10 term by using a 

jet veto (cutting out all jets above a certain energy). While this is quite effective 

in obtaining a result that approximates to the 10 result , it also drastically reduces 

the number of useful events. Including the N10 part and allowing jets seems to be 

the preferable option. 

In calculating the N10 contribution, we may consider the two channels sepa­

rately, comparing the size of the contribution from the term with the qij initial state 

to that with the qg initial state. These are compared to each other and to the 10 

term in figure 1.5, which is figure 5.2 of chapter 5 and is further discussed there. 

d~[pb/GeV] 

0.1 

0.01 

0.001 

0.0001 

100 200 300 

PT[GeV] 

LO 
NLOqq 
'I () qg -

400 500 

Figure 1.5: Comparing qij and qg N10 contributions to W Z production 

The contribution from the qg initial state at N10 is substantially bigger than 

the N10 qij initial state. This is because, at the high energies reached at the 1HC, 

the gluon density will become large. The gluon density can enhance the N10 qg 

term so that it becomes at least as large as the 10 term, despite being suppressed 

by as. 

The fact that the N10 terms are often of similar size to the 10 terms would 

suggest that calculating to a further order in as (a NN10 calculation) would be 
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advisable. It is clear that we do not have the resources to perform a full NNLO cal­

culation. This would include two-loop calculations that are not currently available. 

As well as loop contributions, a full NNLO calculation would include tree diagrams 

with quark initial states, qij-----* V1 V2gg, as well as terms with qg and gg initial states. 

With this in mind, we therefore choose to make an analogy with the NLO term. 

In the NLO case, it is the new channel, the qg induced term, that gives a very large 

result, which can be as big or bigger than the LO term. The qij term, in contrast, is 

quite small, as would normally be expected of a higher order correction. We can see 

that the new channel with the gluon in the initial state is definitely the dominant 

term. 

Therefore, for the NNLO case we choose to examine the new channel, which 

has two gluons in the initial state. We make a hypothesis that this term may be 

important, as the qg term was important at NLO. The gluon density may again be 

enough to cancel the suppression in a;. 
The processes with a gg initial state are gg -----* V1 V2 , which does not exist at tree 

level but may contribute as a loop diagram, and the tree level process gg -----* vl V2qq. 
In this thesis, we will calculate gluon-gluon induced vector boson pair production, 

with some unexpected results. 

1.4 Anomalous couplings and new physics 

In the earlier part of this chapter, it was indicated that one of the major motivations 

for the study of vector boson pair production is the search for new physics through 

deviations from the Standard Model in triple gauge boson couplings. We will now 

discuss anomalous (non-Standard Model) triple gauge couplings, and how to use 

these in a parameterisation of general new physics effects. We will present the 

relevant Lagrangians and vertices, discuss form factors, and review some previous 

studies of anomalous couplings in vector boson pair production. 

1.4.1 Principles of the anomalous coupling approach 

In using the anomalous coupling approach to the detection of new physics effects, we 

make a number of assumptions. First of all, it is assumed that any new physics only 
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has an effect on the triple gauge couplings. It will always be assumed that while 

gauge bosons may couple anomalously to each other, all couplings of gauge bosons 

to quarks and leptons are the normal Standard Model ones. We assume that the 

new physics is only to be detected through changes in the triple gauge couplings 

and that new physics will not be seen directly in the production of new particles. 

The implies that the new physics occurs at an energy much higher that the current 

experimental scale: we will call this new physics scale A. 

The basic principle is that high-energy new physics effects can influence lower­

energy processes through virtual effects. Deviations from the Standard Model cou­

plings would affect both the overall cross section for the appropriate vector boson 

pair production and the angular distributions. The fact that new physics is expected 

to occur at a scale much above the energies that can be measured implies that it 

is appropriate to take an effective Lagrangian approach. We add new parameters 

('anomalous couplings') to the appropriate Lagrangian. The couplings are modified 

by this but no new particles are introduced. 

We will not discuss the principles of effective theories here: instead we will 

just make use of known effective Lagrangians. All we will therefore need is the 

appropriate vertices, including the anomalous parameters that describe the variation 

from the Standard Model. 

We will state the appropriate Lagrangians for the triple gauge couplings that we 

consider. We will also explain how we selected the parameters that we use, and give 

the vertices that contribute in the Feynman diagram calculation. These vertices and 

the resulting diagrams are further discussed when we add anomalous couplings to 

our calculations in chapter 3. 

1.4.2 Lagrangians and vertices with anomalous couplings 

In this section we will describe the parameterisation of anomalous couplings that we 

will use. This should be as general as possible, and not dependent on a particular 

model. We do not know what kind of new physics to expect, because for the effective 

Lagrangian approach to be appropriate, the new physics will be at an energy that 

is not directly accessible. Therefore we want to keep as many coupling terms as 

possible, balancing this with a desire not to overcomplicate the calculation. If we 

12 



have a great many parameters, it will be more difficult to set bounds for them. 

We do make certain restrictions on the possible couplings. Lorentz invariance is 

always required, as is electromagnetic (U(1)em) gauge invariance. We also assume 

that only the lowest dimension operators will contribute significantly, with higher 

dimension operators being much suppressed. If the scale of new physics, A, is much 

greater than V1- as is required for the effective Lagrangian approach - only the 

operators of lowest dimension should be important and those of higher dimension 

can be neglected. 

We then have further choices to make when we consider the specific parameter­

isations of the different triple gauge couplings. We will first consider charged triple 

gauge boson couplings (WW Z and WW 1), and then neutral triple gauge boson 

couplings (ZZ1, Z11). There is another neutral triple gauge coupling (ZZZ) but 

this will not be required in our calculations later in this thesis. The WW Z and 

WW 1 couplings will be required for W Z and W 1 production respectively, and the 

ZZ1 and Z11 couplings for Z1 production. 

The WW Z and WW 1 triple couplings already exist in the Standard Model. We 

modify them by including new parameters, chosen to be as general as possible. 

Taking only the operators of lowest dimension, one obtains an effective La­

grangian with 7 parameters. This is as given by Hagiwara et al [32). We will use 

their parameterisation throughout our discussion of anomalous couplings. Using V 

to denote Z or 1, the Lagrangian is: 

.Cwwv / 9wwv = 

(1.1) 

Here VJlv = 8Jl Vv - Ov VJl and Vllv = !c: Jlva.B va.B. The overall couplings are 

straightforward: 9ww1 = -e and 9wwz = -e cot Ow. 

When carrying out calculations, we shall not retain all 7 parameters, but instead 

choose to select parameters by their symmetries. In the above parameterisation of 
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WWZ and WW/' COUplings, three of the couplings, gf, KV and Av, obey both C 

and P symmetries. ~v and ).V obey C but are P violating. gf violates C but obeys 

P and g¥ violates C but is C P invariant. 

We shall use only those parameters that are invariant under both C and P. This 

simply serves to reduce the number of parameters involved and is not a necessary 

choice. 

The w: (P+) Wj (p_) VI-I ( q) vertex that we shall use is [33]: 

(1.2) 

g{ is always 1 by electromagnetic gauge invariance. The other parameters are 

chosen appropriately. One may make assumptions about relations between these 

parameters (for example, that they are the same for Z and I') or choose them freely. 

The parameterisation for ZZI' and Z/'1' couplings is somewhat different. These 

couplings do not exist at all in the Standard Model. Any triple coupling that does 

occur is entirely anomalous. These couplings and the use of them are described well 

in [34]. 

The Lagrangian for this situation is given below. This is the one used by Ellison 

and Wudka [8] with a factor of i removed to make the expression hermitian. We 

need to go to terms of higher dimension than those for WW Z and WW I', and we 

do not restrict the symmetries of the parameters to the same extent. 

The Lagrangian is: 

Cz-yv = 

(1.3) 

As usual, 0 = 81-181-1. Again V can be either Z or I'· Vis the intermediate particle 

that decays into Z and /', and can be off-shell. This Lagrangian is not symmetric 

14 



between the two Zs, hence this symmetry is also not present in the vertex. In the 

case of a photon decaying to two Zs, it would be necessary to use a different vertex, 

which also parameterises the anomalous couplings differently. 

All the couplings hY are odd under C. hi and hr violate C P, while hj and h¥ 

are CP conserving. We retain all 4 of these couplings: it is no longer possible to 

have C and P conserving parameters as we did for the WW Z and WW 'Y case. 

The resulting Za(qi)"(13 (q2 )ZJ.L(p) vertex is: 

(1.4) 

The vertex for Za(qi)"(13 (q2 )'YJ.L(p) is as in equation (3.24), but with qr --+ 0 and 

hf--+ hJ. 

1.4.3 Form factors 

One unfortunate result of adding anomalous couplings and their associated new 

terms is that at high energies these new terms violate unitarity when we get near 

the scale of the new physics (although of course we should not really approach this 

scale if our effective theory is to be valid). This is not a problem at an electron­

positron collider, where collisions occur at a fixed energy, but is an issue at a hadron 

collider, where one integrates over a range of energies. The new parameters need to 

be controlled in some way, so that at very high energies they become the Standard 

Model couplings, and so obey unitarity. 

The method that we will use within this thesis is a conventional one. We intro­

duce a 'form factor' which will control the high-energy behaviour of the new terms. 

This allows the anomalous parameters to remain fairly constant at low energies, but 

to approach the Standard Model values at higher energies. 

(1.5) 

Here AC is any anomalous coupling, A is the scale of new physics, and n is a 
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parameter to ensure unitarity. 

This approach is quite straightforward and often used, and does produce the 

required behaviour. However, there are a couple of disadvantages. The form factor 

depends on the scale of the high-energy beyond the Standard Model behaviour. 

Making a choice of scale takes away some of the model independent behaviour that 

we were looking for, by forcing us to add extra parameters in a more or less arbitrary 

manner. Also, if different values for the scale and the parameter n are used in 

different publications, it can be hard to compare the results. 

Bearing in mind these reservations, we did use the form factor approach, taking 

a standard scale of 2 TeV for new physics, and putting n = 2 in equation (1.5). 

An application of a non-form-factor approach, with its advantages and disadvan­

tages, is given in (27]. 

1.4.4 Previous studies of anomalous couplings in vector bo­

son pair production 

A number of theoretical and experimental studies of anomalous couplings in vec­

tor boson pair production have been made. These may put limits on the size of 

anomalous couplings based on known experimental results, or may predict the effect 

of certain anomalous couplings on vector boson pair production at future colliders. 

We will briefly mention a few of these studies here. 

Anomalous couplings vertices like those in section 1.4.2 have been added to vector 

boson pair production calculations at LO and NLO. 

Anomalous couplings were added to LO Standard Model calculations for WW 

and W Z (35] and z, [36] production. It was found that the addition of anomalous 

couplings tend to increase production, especially at high PT· 

NLO QCD corrections were added along with anomalous coupling effects in a 

series of papers by Baur, Han and Ohnemus for W 1 [37], W Z (38], WW (39] and 

z, [24]. 

Some review papers deal with the experimental situation [1] [8]. It is possible to 

put some limits on the size of anomalous couplings. However, one must be careful 

when comparing results. Often, only one parameter is varied at a time, leaving others 

at their Standard Model value. If it turns out that several anomalous parameters 
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contribute at once, it may be that they interfere, and therefore that we require looser 

bounds. 

Some limits on anomalous triple gauge couplings as found at LEP are summarised 

in [40]. More detailed information on triple gauge couplings at LEP is available from 

the electroweak gauge couplings working group 1 . The LEP results that are quoted 

use data from W pair production at all four LEP experiments. It is also possible to 

set limits on the WW 1 vertex through single W or single photon production. 

For the anomalous WW Z and WW 1 vertices, the parameterisation is the same 

as in section 1.4.2, and C, P and CP violating terms are neglected. The WW Z 

and WW 1 parameters are related, so that there are only three independent cou­

plings [41]. We already know that gJ = 1 by electromagnetic gauge invariance. 

SU(2)L x U(1)1' symmetry gives the constraints "'z = gf- ("''~'- 1) tan2 Ow and 

>.z = >.T Then the only independent anomalous couplings are gf, "''~' and >.T 
The value for the couplings from LEP results are found to be: 

gz - 0 990+0.023 
1 - . -0.024 0 896+0.058 

"''~' = . -0.056 \ 0 023+0.025 
1\1' = - . -0.023' 

recalling that in the Standard Model, gf = 1, "''~' = 1 and >.1' = 0. 

(1.6) 

Limits on these anomalous couplings should improve substantially at the LHC, 

improving the sensitivity of some couplings by anywhere up to an order of magnitude 

[2]. 
Limits have also been set on neutral triple gauge couplings at LEP. The anoma­

lous parameters, hi, are not related to each other, but are considered separately. 

Here we give the 'one-dimensional' limits (where all anomalous parameters other 

than the one in question are set to zero). There is no evidence as yet for the exis­

tence of these couplings. Limits are at the 95% confidence level. 

-0.056 < hi < 0.055 -0.045 < h'J. < 0.025 

-0.049 < hj < 0.008 -0.001 < hJ < 0.034 

-0.130 < hf < 0.130 -0.078 < h~ < 0.071 
(1. 7) 

-0.200 < hf < 0.070 -0.050 < ht < 0.120 

Again, these will be improved at the LHC. 

1 http:/ jlepewwg.web.cern.ch/LEPEWWG/lepww jtgc/ 
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Of course, the triple gauge boson vertex is not the only area in which one may 

wish to look for anomalous couplings. Different anomalous couplings arise in the 

gauge boson four-vertex. These anomalous quartic couplings can be studied through 

processes which involve the production of three vector bosons, such as WWJ', ZZ1 

and Z/'/' production [42]. These processes have been studied at LEP, with no 

deviation from the Standard Model being found [43] [44]. The anomalous parameters 

arising in this case, a0 , ac and an, are less constrained than the triple couplings. 

In some of the work to follow in this thesis, we will examine the effect of the 

appropriate anomalous triple gauge couplings on vector boson pair production. In 

particular, we will investigate whether anomalous couplings are likely to have a 

substantial effect on the gluon-gluon induced term of vector boson pair produc­

tion processes. 
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Chapter 2 

Calculations in the helicity 

method 

In this chapter we shall explore the helicity method and its application to vector 

boson pair production calculations. We will explain why this method was chosen to 

carry out our calculations, and introduce the notation that will be used for helicity 

amplitudes in the rest of the thesis. We will then detail the steps that must be taken 

in performing a helicity amplitude calculation. 

2.1 Principles of the helicity method 

The helicity method ([45],[46],[47],[48] and many others) is a means of calculating 

amplitudes, and therefore cross sections, for QCD processes where all external par­

ticles are massless. We use the version as described in [49] and [50]. Articles such 

as [51] and [52] provide a comprehensive overview of the helicity method. 

In the helicity method, amplitudes are calculated for fixed helicities of all exter­

nal particles, with each possible helicity configuration treated as a separate term. 

In our calculation, we will obtain colour ordered terms, where the ordering of ex­

ternal quarks and gluons is fixed within each term. These colour ordered terms are 

separately gauge invariant. The colour ordering means that we can take the colour 

matrices out of the amplitudes, leaving the 'kinematic part'. Calculating the 'colour 

part' and the 'kinematic part' individually simplifies the procedure. The calculation 
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as a whole is decomposed by colour and helicity. 

Even though we need to calculate for each individual helicity configuration, many 

of these can be related and hence the overall calculation can be reduced. We can split 

up the amplitudes into gauge invariant subamplitudes, each of which is composed of 

a subset of diagrams. Relations between these subamplitudes can be used to reduce 

the amount of calculation required. 

In particular, we have the advantage that the kinematic part of the amplitude 

is just a complex number, and so the squaring of the amplitude is very easy. When 

we have many external particles in a process, it is particularly advantageous to 

use the helicity method. In the traditional mode of performing Feynman diagram 

calculations, the colour part would be retained within the calculation. This means 

that squaring an amplitude can lead to lengthy expressions. As the number of 

Feynman diagrams increases, the intermediate stages of a calculation become much 

more complicated than the final result, with many diagrams to calculate and many 

terms within each diagram. In the helicity method, the amplitude will be a number 

and this, along with the colour matrices, is all that has to be squared. 

In the vector boson pair production processes that we are interested in, the he­

licity method has another advantage in that the helicity information that it retains 

may be useful to us, as some couplings are spin-dependent. This aspect has been 

discussed in section 1.2 in relation to previous vector boson pair production calcu­

lations. 

We will now look at some of the details of performing calculations in the helicity 

method. We will first consider the technical details of notation and Feynman rules, 

and then go on to discuss the overall structure of a calculation. 

Specific details of vector boson pair production calculations are given in chap­

ter 3. 

2.2 The helicity method: notation and conven­

tions 

When performing calculations in the helicity method, we will use a specific notation, 

which will be explained below. We will start with a brief description of the colour 
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part of a Feynman diagram, and then consider the kinematic part in terms of spinors. 

The colour part of a helicity method calculation is straightforward. The basic 

unit of the colour calculation is the generator (Ta)iJ· Quarks and antiquarks have 

indices i, I = 1 ... Nc and gluons have the adjoint index a = 1 ... N;_ - 1. The 

generators (Ta)iJ are normalised by Tr(TaTb) = oab. This normalisation is the same 

as that used in helicity method reviews such as Dixon [52] but is a factor of 2 

different from the convention of mainstream QCD textbooks such as Ellis, Stirling 

and Webber [53] (where Tr(TaTb) = ~oab). 
The required colour structures are extracted directly from the Feynman dia­

grams. Each QCD vertex in a Feynman diagram contributes a colour factor: (Ta)iJ 

for a gluon-quark-quark vertex and rbc for a triple gluon vertex (with !abe fcde for 

a pure gluon four-vertex if required). A propagator gives a delta function (oii for a 

fermion propagator' oab for a vector propagator). 

We can simplify the expression by expanding rbc in terms of Ta: 

(2.1) 

The colour generators can then be manipulated as in normal QCD, remembering 

the somewhat non-standard normalisation used. 

We now calculate the kinematic part of the process. We consider a process where 

all external particles are massless and have a known helicity and momentum. We 

shall always work with the unphysical configuration where all particles are outgoing, 

and so the sum of all external momenta is zero. 

An appropriate way to describe the particles involved in this type of process 

is by means of Weyl spinors and their inner products, the details of which will be 

explored in this section. Once we can describe the external particles of our process, 

we go on to use the colour-subtracted Feynman rules of Appendix A to make a full 

calculation of the kinematic part. 

We take our spinor notation from Dixon [52]. Fermions must obey the massless 

Dirac equation: 

(2.2) 
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Here k is the momentum and ~ = '"YJ-LkJ-L, where '"YJ-L is the Dirac gamma matrix. 

There are both positive and negative energy solutions to this equation, corre­

sponding to particles and antiparticles, u( k) and v( k). These solutions are identical 

when particles are massless, as long as we fix the phase between them. 

Each particle or antiparticle has two helicity states, and these are given by the 

chiral projections of u(k) and v(k). 

U±(k) 

v'f(k) 

1 

2(1 ± '"'!5)u(k) 

1 
2(1 ± '"'!5)v(k) (2.3) 

In the case of the negative energy solution v(k), the helicity of the antiparticle is 

the opposite of its chirality. This explains the opposing signs in the equation above. 

We define the conjugate momenta: 

1 -
2(1 =t= '"'!5)u(k) 

1 -

2 (1 =t= '"'!5)v( k) (2.4) 

We then introduce the simple spinor notation as used in [49], [50]. The equiva­

lence of particles and antiparticles is made explicit here. 

(2.5) 

where ki is the momentum of particle i. 

These brackets, li±) and (i±l, give a concise form to our helicity amplitudes. 

Amplitudes are expressed in terms of spinor inner products, combinations of the 

spinor brackets above. 

Spinor products are defined by 

(2.6) 

We can explicitly evaluate the spinor product (ij). When both energies, ki and 
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kj, are positive: 

If one or both of the energies are negative, then we use: 

(ij) 

(ij) 

(ij) 

i(ki, -kj), k)4
) < 0 

i( -ki, kj), ki4
) < 0 

-(-ki, -kj), ki4
) < 0, k]4

) < 0 

It is then possible to obtain [ij), once we know that: 

(2.7) 

(2.8) 

(2.9) 

The quantity Sij will often appear in amplitudes, along with similar quantities 

tijl and Uijlm, where tijl = (ki + kj + kt) 2 and Uijlm = (ki + kj + kz + km) 2
. 

The explicit expressions for the spinor products (ij) and [ij] should make it clear 

that the spinor product of a particle with itself is zero, 

(ii) = [ii] = 0 (2.10) 

The spinor products are asymmetric, 

(ji) = -(ij), [ji] = -[ij] (2.11) 

In calculating and simplifying helicity amplitudes, we may also make use of other 

spinor product identities. 

(i+IJ~<IJ+) 

( i+ IJ~' lj+) (k+ Ill' ll+) 

(ik)(jl) + (il)(kj) 

u-h'~'li-) 

2 [ik] (lj) 

(ij)(kl) 

A comprehensive treatment of spinor product relations is given in [51]. 
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As stated before, the sum of the momenta in a process is zero, as all particles 

are outgoing. 
n 

I: [jiJ(ik) =a (2.13) 
i=l,i;ij,k 

where n is the number of particles. 

Once we combine spinor products with the ~ terms from internal lines (~ = 

1J.LkJ.L), we may get some very complicated terms. We write them in an abbreviated 

form: 

(illlj) 

(il(l + m)lj) 

(il(l + m)(n + r)lj) 

[il ... lj] 

(ki-,~ zlkj) 

(kil(~ l + ~ m)lkj) 

(kil(~ l + ~ m)(~ n + ~ r)ikj) 

(il ... IJ)' ktj --+ klj (2.14) 

These terms and other analogous ones are used in the amplitudes to follow in 

Appendix B. 

Thus far, we have only considered external fermions, which we now know are 

given as spinors li±) and (i±l. However, we also have external bosons: gluons and 

photons. We can express these too in the spinor formalism, with polarisation vectors 

constructed from spinor products. 

Each outgoing gluon or photon is written as a polarisation vector E± (p, k) where 

p is the momentum of the gluon and k is a reference momentum. 

(2.15) 

This reference momentum may be chosen at will: a different reference momentum 

implies a different gauge choice. Clearly the calculation of an individual diagram is 

not gauge invariant as we include difference reference momenta. However, when the 

terms from different diagrams are added to obtain a full amplitude or subamplitude, 

we obtain a gauge invariant expression. By making 'intelligent' choices of reference 

momenta we may make the calculation easier, even avoiding calculating a number 

of diagrams altogether. 
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The following identities may be used to remove terms by the choice of reference 

momenta. 

E±(p, k) · k 0 

E+(p,k) ·E+(q,k) 0 

E-(p,k) ·E-(q,k) 0 

E+(p, q) · E-(q, k) 0 

E+(p, k) · E-(q,p) 0 

¢ ±(p, k)lk±) 0 

(k±l¢ ±(p, k) 0 (2.16) 

We now have all the basic tools of the spinor formalism that we will require in 

making tree-level calculations. Note that the spinor formalism only works in four 

dimensions. 

2.3 A tree level amplitude calculation in the he­

licity method 

We will now consider the method of carrying out a helicity calculation. The basic 

steps could be described as 

1. Drawing all Feynman diagrams 

2. Calculating colour and classifying diagrams by colour factor 

3. Dividing set of diagrams into gauge invariant subamplitudes 

4. Calculating necessary diagrams, using appropriate gauge 

5. Using relations between subamplitudes to obtain remaining terms 

6. Evaluating amplitudes 

7. Squaring and combining with colour and other prefactors to obtain a cross 

section 
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To describe these steps more fully, we will use the process 99 -+ W Zqq as an 

illustration. This process will also be discussed comprehensively in section 3.1. 

1. Drawing all Feynman diagrams 

To calculate the tree level process 99 -+ W Zqq, we first draw all diagrams. There 

are four types of diagram- with and without triple gauge vertex, with and without 

triple gluon vertex. An example of each of these is given in Figure 2.1. The other 

diagrams are similar to these but with all possible permutations of gluon and vector 

boson legs. This includes swapping gluon 1 and gluon 2, which are distinct, and 

exchanging Wand Z. We end up with 38 diagrams in all. 

ij 

Figure 2.1: Tree level diagrams contibuting to 99-+ W Zqq. 

2. Calculating colour and classifying diagrams by colour factor 

In our case, the colour structures are rather simple as we only have one quark 

line and two gluons. The colour factors are (Ta 1 Ta2 )iJ for diagrams with gluon 

ordering 9192 and (Ta2 Ta 1 )iJ for diagrams with ordering 9291. (A diagram with a 

triple gluon vertex has the sum of both colour factors.) The kinematic part for gluon 
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ordering 9192 is A12 , and for gluon ordering 9291 is A21 . Each of these is the sum of 

appropriate diagrams. 

At this stage, while we are thinking about colour, we can also anticipate the end 

of the calculation when the amplitudes are squared to give the cross section. Then 

we will obtain overall colour factors. 

I(Talya2)iJA12 + (Ta2yal )iJA2112 = 

Nc ( 4C}(IA121
2 + IA21I

2
)- ~CJ(ReiA~2A21I + ReiA;lAd)) (2.17) 

Note the interference terms. 

The colour factors are the same for all tree level vector boson pair production pro­

cesses, as the QCD part of the process never changes. 

3. Dividing set of diagrams into gauge invariant subamplitudes 

We have already made one step towards dividing into gauge invariant subam­

plitudes, by classifying by colour part. The amplitudes A12 and A21 are gauge 

invariant. However, these too can be broken down. The set of diagrams containing 

a triple gauge vertex is separately gauge invariant from the rest, and the set of dia­

grams with a chosen ordering of W and Z (with respect to the quarks) is separately 

gauge invariant from the opposite ordering. 

4. Calculating necessary diagrams, using appropriate gauge 

In theory, we need to calculate each of these gauge invariant subamplitudes for 

every possible helicity configuration. In fact only a few of these subamplitudes must 

be calculated explicitly (they are given in Appendix B.l). When we do have to calcu­

late a subamplitude, we may be able to remove some diagrams by gauge choice. We 

then sum the remaining diagrams, which are calculated by using colour-subtracted 

Feynman rules as in Appendix A. Some details of calculation were described in 

section 2.2. 

5. Using relations between subamplitudes to obtain remaining terms 
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Having calculated the necessary subamplitudes for the required helicity configu­

rations, we then obtain all the other amplitudes and helicities by use of appropriate 

relations. There are a number of ways to relate amplitudes. We may be able to use 

discrete group relations like C and P, or gauge relations between amplitudes. There 

are also relations that are inspired by supersymmetry or string relations [52]. In 

some cases, going from one amplitude to another may just mean a simple exchange 

or substitution. Appendix B includes the relations used to obtain the helicity am­

plitudes that are not given explicitly. 

6. Evaluating amplitudes 

We give the gauge invariant subamplitudes as helicity amplitudes in the Appen­

dices. On evaluating these, we obtain just a complex number for each, which makes 

the squaring of the amplitude very easy. It is only necessary to sum the squares 

of the individual helicity configurations to obtain the full results, as the different 

helicity amplitudes do not interfere. 

7. Squaring and combining with colour and other prefactors to obtain a cross 

section 

Squaring the amplitude is just numerical, although we need to include colour as 

given in equation (2.17). We also need factors relating to the electroweak part of the 

amplitude: up till now, we have effectively just calculated in QCD, and now need to 

add in electroweak factors, changing vertices and propagators as appropriate. For 

the WZ case, these are given explicitly in section 3.1.3. 

The stages given above for W Z are applicable to a general helicity method pro­

cess and will also be used here for calculating W 'Y and Z')' production. These calcu­

lations will be carried out in chapter 3, including explicit couplings. The amplitudes 

themselves can be found in Appendix B. 

In practice, we obtained the amplitudes in terms of momenta (spinors) using 

Feynman rules implemented in Mathematica [54]. We then summed the amplitudes, 

added couplings and integrated over phase space using a Monte Carlo program 

written in Fortran 90. Numerical results for all vector boson pairs are given in 

chapter 5. 
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Chapter 3 

Production of vector boson pairs 

In this chapter we will discuss the calculation of helicity amplitudes for the tree 

level processes gg -r W Zqq, gg -r W !QQ and gg -r Z1qq, and for the one loop 

process gg -f z,. We will also add anomalous couplings and dress with electroweak 

couplings as appropriate. The helicity amplitudes discussed here and given explicitly 

in Appendix B were used in calculating the results for pair production as given in [55] 

and in chapter 5 of this thesis. 

3.1 Tree level WZ production 

We calculate the helicity amplitudes required for the production of a w-Z pair. 

From here onwards, we will just write 'W Z' and assume that the W is always w-. 
It is straightforward to use the amplitudes and techniques described to calculate 

the production of w+ Z: it can also be obtained from the w- Z case by a CP 

transformation. 

We first calculate a generic set of amplitudes for gg -r V1 V2qq, where V1 V2 
could be WW, W Z or Z Z. In this initial calculation, we do not include anomalous 

couplings or the electroweak couplings of theW and Z. We add anomalous couplings 

for W Z production in section 3.1.2 and add the correct electroweak couplings in 

section 3.1.3. 

At tree level in the Standard Model, the difference between W Z and WW am­

plitudes is just in their associated electroweak couplings. Z Z amplitudes are even 
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simpler, as the amplitudes with a triple gauge vertex are not required. To add 

anomalous terms, diagrams containing a triple gauge vertex would have to be recal­

culated using the appropriate vertex, which differs between processes. 

To calculate gg--+ WWqq and gg--+ ZZqq, we would also have to calculate the 

appropriate loop diagrams, and add these contributions to the tree level amplitudes. 

The potential loop diagrams for WW production are given in figure 3.1, and those 

for Z Z production have a similar form. Calculation of these loops would proceed in 

a similar way as for the Z"'( loops in section 3.4. 

g g 

g g 

g 

H 

g 

Figure 3.1: Potential loop diagrams for gg--+ WW 

We have not calculated WW or Z Z production in this thesis. WW and Z Z pro­

duction are less important phenomenologically than W1 and Z1 production, with 

more problems with background [2]. However, these calculations may be interesting 

as future work, especially as they involve extra diagrams that do not exist in the 

WZ case. 
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3.1.1 Standard Model amplitudes for W Z 

We want to obtain the helicity amplitudes for the process 99---+ W Zqq by carrying 

out a Feynman diagram calculation as described in the previous chapter. 

The types of diagram that contribute to the 99 ---+ W Zqq process have already 

been shown in Figure 2.1 on page 26. The remaining diagrams come from ordering 

the W, Z and gluon legs in every possible way along the quark line, remembering 

to include the exchange of gluon 1 and gluon 2. 

It is reasonably straightforward to separate these diagrams into gauge invariant 

subsets. Firstly, we can distinguish gluon ordering 9192 from 9291, knowing that 

these have different colour parts. We can also separate those with a triple gauge 

vertex from those without. Later on, we will label these as the 'A' amplitudes (not 

including a triple gauge vertex) and the 'B' amplitudes (including a triple gauge 

vertex, and thus containing the anomalous part). 

In this section we use the labelling 9b92,l3,D4,l' 5 ,l~,q7 ,qs, where 91 and 92 are 

the incoming gluons, l3 and D4 are the decay products of the W and f' 5 and l~ are 

the decay products of the Z. 

We need to obtain the helicity amplitudes for all possible helicity configurations. 

However, it is only necessary to calculate a few of these helicity amplitudes explicitly. 

The number of helicity configurations is also restricted because some of the particles 

have their helicity fixed by their couplings. The helicities of leptons 3 and 4 must 

be 13, vt as they are fixed by their coupling to the W. Similarly, the quark must be 

left-handed, giving q7, ift. 
Our amplitudes are calculated for a specific ordering of W and Z (where this 

is applicable- it does not matter for the case with the triple gauge vertex). They 

are given for the case where the W is on the same side as the quark, and the Z on 

the side of the antiquark. To obtain the amplitude with the opposite ordering of 

W Z we just have to swap the lepton pairs { 34} +--+ {56}. The two orderings have 

different couplings (as the Z couples to differently flavoured quarks). 

In every case, we need to consider the two different gluon orderings, knowing 

that these have different colour parts. 

In expressing the explicit amplitudes, we will suppress all quark and lepton 

helicities, and calculate with 13, vt, Pt, ~~-, q7, qt , obtaining the other helicities by 
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appropriate relations. The ordering of the W and Z with respect to the quark line 
. I fi d S . 't' A ( + +) A ( + + z- -+ l1+ l'- - ;;:-t-) IS a so xe . o m wn mg 12 91 92 , we mean 12 91 , 92 , 3 , v4 , 5 , 6 , q7 , q8 , 

with the Won the quark side, relative to the Z. 

The amplitudes that we need to calculate explicitly are: 

These helicity amplitudes are given in Appendix B.1, along with the operations 

used to obtain the amplitudes for all other helicity configurations and orderings. 

3.1.2 Adding anomalous couplings to WZ 

We want to add anomalous couplings to the amplitudes in order to parameterise 

possible new physics and study the effects of this new physics on couplings and 

therefore cross sections. The motivation for this has been discussed already in 

section 1.4, along with the parameterisation to be used. 

We use a form of the triple gauge (WW Z) vertex that includes anomalous cou­

pling terms 9f, "'z and _AZ, while retaining Lorentz invariance and C and P invari­

ance. The triple gauge vertex for w:(P+)W-(p_)11 ZJL(q), including the anomalous 

terms, is given below, with all momenta outgoing. This was previously discussed in 

section 1.4.2, where it is equation (1.2). 

(3.2) 

Adding anomalous coupling terms to the W Z amplitudes is straightforward. All 

that is required is that we recalculate all terms with a triple gauge vertex (the B 

amplitudes), using the anomalous vertex of equation (3.2) instead of the Standard 

Model vertex. In Appendix B.1 we give the amplitudes including anomalous terms: 

the Standard Model amplitudes can be obtained by using the Standard Model cou­

plings: 9f = 1, "'z = 1, _AZ = 0. 
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3.1.3 Electroweak couplings for WZ 

We now add the relevant electroweak couplings to the amplitudes of appendix B.l. 

The couplings are the same as those given for qij and qg induced W Z production 

in [25], except that we have two colour structures, and must average over initial 

state gluons rather than quarks. We have already defined the A and B parts of the 

amplitude (with and without a triple gauge vertex) in the same way as in [25]. 

We combine individual helicity amplitudes into the two amplitudes A 12 and A 21 , 

which correspond to the gluon orderings g1g2 and g2g1 respectively. Each of these 

is composed of the appropriate A amplitudes without a triple gauge vertex (one 

for each ordering of the W and Z) and the B amplitude including a triple gauge 

vertex (where ordering of W and Z is irrelevant). Where there is no triple gauge 

vertex, the different orderings of the W and Z imply different couplings, as the 

Z couples to an up- or a down-type quark, depending on its positioning. When 

the amplitude includes a triple gauge vertex, we have a term associated with the 

massive propagator: we must replace 8 12 with 8 12 - Mfv to account for the massive 

intermediate W. This only occurs in the diagrams with a triple gauge vertex so we 

have this relative term between the 'A' and the 'B' amplitudes. 

A12 and A21 are as follows: 

(3.3) 

(3.4) 

These add to give a total amplitude Awz, which includes dressing with the over­

all electroweak couplings. We then square this and include flux and normalisation 

factors. 

We already know the colour parts: a factor of (Ta1 Ta2 )iJ for the amplitude A 12 

and a factor of (Ta2 Ta1 )iJ for the amplitude A21 . The factors arising from the colour 
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part squared have been given in equation (2.17). All of the QCD couplings have 

already been included. 

However, when we performed the Feynman diagram calculations, we calculated 

everything with QCD-type vertices. This means that we need to change the cou­

plings of the W and Z to the appropriate electroweak coupling. Each W or Z vertex 

incurs a factor of J2 due to our normalisation of the colour matrices. The couplings 

of the W to fermions are gw I J2 = e I J2 sin Ow. The couplings of the Z are ev L,e 

(evR,e) for the left (right) handed coupling of a Z to a lepton and evL,q (evR,q) for 

the left (right) handed coupling to a quark, where: 

VL,q = 

sin20w 

±1- 2Q sin2 Ow 

2 sin2 Ow 
v ---:--R,e - . 2ll sm uw 

-2Qsin2 Ow 
VR,q = 

sin 20w sin 20w 

(3.5) 

(3.6) 

Q is the charge of the quark q and the ± signs in VL,q are + for up type and -

for down type quarks. 

We also require to change the propagators. In QCD, these would be massless 

gluons, giving simple 1 I 8 34 and 1 I 8 56 propagator terms. However, we now need to 

take into account the fact that the propagating W and Z are massive, and change 

the propagators accordingly to 1 I ( 8 34 - Mar +if w M w) and 1 I ( 8s6 - Mi +if z M z), 

where fw and fz are the widths of the W and Z. We should note here that we 

use the narrow width approximation, which uses only the diagrams with a resonant 

(on-shell) propagator. 

Adding all these factors, we obtain the equation with couplings: 

2v L,e Vud ( . e~ ) 
2 

sm w 
834 856 

834- Mar+ ifwMw 8s6- Mi + ifzMz 

[(Ta 1Ta2 )iJAI2(gt, gi) + (Ta2 Ta 1 )i.1A21 (gt, g:i)J 
(3.7) 
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We now square this expression. We need to know what happens when we square 

the propagators in the narrow width approximation. 

We use: 

where: 

r _ 1 9fvMw 
w- Bz(W) 4811' 

Mwrw 

-----,-----1 ( e ) 
2 

M w 
Bz (W) sin Ow 4811' 

B1 (W) is the branching ratio for the W decay. 

The same applies for the Z propagator: 

11' 

2 M · 2 n ( 2 2 ) 2M ( 2 2 ) 1 9W z Slll uw V L e + V R e 1 e z V L e + V R e fz = -- , , = -- , , 
Bz ( Z) 2411' B1 ( Z) 2411' 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

We also include a flux factor of 1/2s12 and average over colours. When we also 

consider the phase space factors, we obtain a total result of: 

M wz( ± ± z- -+ p+ l'- - ;;;-1-) -
91 ' 92 ' 3 ' v 4 ' 5 ' 6 ' q7 ' q8 - B,(W)BI'(Z) (si=~J ( 4: )' 

M2 M2v2 
W Z L,e IV.: 12 

4s12(N1- 1)2(vle + v~e) ud 
' ' 

I(Ta1 Ta2 )iJAI2(9t, 9~) + (Ta2 Ta1 )i3A21 (9t, 9~W 

(3.12) 

It is necessary to sum over all helicity configurations. If the leptons from the 

Z are [~-z~+ rather than [~-z~+ , the overall coupling vl,e will change to vk,e. Other 

helicity changes have no effect on the electroweak couplings. Appendix B.1 gives 

the helicity amplitudes for all possible helicity configurations. 
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3.2 Tree level Wf' production 

The calculation of gg ---+ W "'jqij at tree level is very similar to the calculation of 

gg ---+ W Z qij that was described in section 3.1. However, while the W decays into 

leptons as before, the photon does not decay and is treated as an external particle. 

This then is a 7 particle process rather than an 8 particle one, and the diagrams 

calculated are different from the W Z case. 

The basic types of diagram are given in figure 3.2. Again, we need to calcu­

late the diagrams for all orderings of legs along the quark line. These divide into 

subamplitudes, based on the two different colour terms for the two gluon orderings. 

91 91 

9'2 
q 

92 

q 
91 

9'2 

Figure 3.2: Tree level diagrams contibuting to gg ---+ W "'jqij. 

The W "'/ production case, despite having one fewer external particle than gg ---+ 

W Zqij, is actually slightly more complicated (it requires more independent helicity 

amplitudes), because the helicity of the photon can vary. In W Z production, while 

the decay products of the z could be either ~+ z~- or r~- z~+) these cases were related 

by a simple exchange. This is not true for the two helicities of the photon in W "'/ 

production, and more independent amplitudes must be calculated. These are listed 
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in Appendix B.2, both for the Standard Model case and for the case where an 

anomalous triple gauge vertex is included. 

3.2.1 Standard Model amplitudes for WI' 

We use the labelling 91 , 92 , h, D4 , { 5 , q6 , i}7, where 91 and 92 are the incoming gluons, 

l3 and D4 are the decay products of the W and { 5 is the outgoing photon. Note that 

the quark and antiquark have labels 6 and 7 here, as opposed to 7 and 8 in W Z 

production. 

We can fix the helicities of h and D4 by their coupling to the w-. The coupling 

must be left handed, so the helicities are l3, Dt. Similarly, the helicities of the quarks 

are fixed by the coupling to be qfj, iJi. The helicities of the gluons and the photon 

are free to vary. 

The diagrams for the process 99 -t W {qij consist of two separately gauge in­

variant subsets, which are labelled A and B. In the A diagrams, the photon is on 

the ij7 side of the diagram (when compared with theW) and in the B diagrams the 

photon is on the q6 side. Note that these A and B parts are different from the A 

and B for WZ in section 3.1. 

We still have to consider two different gluon orderings, so the diagrams form four 

basic subsets: A 12 , A 21 , B 12 and B 21 . Each of these subsets must be calculated for 

all possible helicity configurations. 

Only a few terms need to be calculated explicitly. To get all 32 combinations of 

helicity, vector boson ordering and gluon ordering, only 8 amplitudes are needed: 

A12(9t9t'Yt) B12(9t9t'Yt) A12(9t9t'Y5) B12(9t9t'Y5) 

A 12 (9t 92 'Yt) B12 (9t 92 'Yt) A21 (9t 92 'Yt) B21 (9t 92 'Yt) 
(3.13) 

Other amplitudes are found by exchanging gluon ordering, or using 'flip' rela­

tions. The details of this process, along with the explicit helicity amplitudes, are 

given in Appendix B.2. 

3.2.2 Adding anomalous couplings to Wf' 

We now need to add anomalous couplings to the process 99 -t W {qij. Unlike in 

the W Z case, every one of our Standard Model amplitudes includes diagrams both 
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with and without a triple gauge vertex. Instead of recalculating the amplitudes, we 

just add extra anomalous terms. 

This means that we want to express the anomalous parameters slightly differ­

ently. We can immediately use the fact that 9'{ = 1 by electromagnetic gauge 

in variance, so we have only K,"Y and ,\ "Y to consider (the origin of these terms is dis­

cussed in section 1.4). We express K,"Y as 1 + /:1K,"Y, with /:1K,"Y being the additional 

anomalous part (in the Standard Model, K,"Y = 1 and ,\"Y = 0). Our triple gauge 

vertex for w:(P+)W-(p_).tr"YJL(q) is then: 

(3.14) 

To calculate the anomalous terms, only the diagrams that contain a triple gauge 

vertex are calculated, using the vertex above to obtain the additional anomalous 

part. The anomalous terms are then added to existing amplitudes, combining with 

the appropriate A and B amplitudes to give the full anomalous amplitudes Aanom 

and Banom as follows: 

(3.15) 

(3.16) 

The anomalous part is always added to the A amplitude and subtracted from 

the B amplitude of the same helicity. 

In all, we need to calculate only 4 anomalous terms: 

A ac( + + +) Aac( + + -) Aac( + - +) Aac( + - +) 
12 91 92 Is 12 91 92 Is 12 91 92 Is 21 91 92 Is (3.17) 

These amplitudes are listed explicitly in Appendix B.2. 

The full amplitudes, Aanom and Banom, obey the same relations as the Standard 
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Model amplitudes, so the remaining helicity amplitudes can be found in the same 

way. 

3.2.3 Electroweak couplings for W1 

We now combine the A and B amplitudes, adding appropriate electroweak couplings 

and colour factors. 

For the anomalous case, we use Aanom and Banom as given in equations (3.15) 

and (3.16). If we only want the Standard Model result, we can use the A and B 

amplitudes without adding in their anomalous parts, which is equivalent to setting 

the anomalous coupling parameters to their Standard Model values: D,.;>,"Y = 0, 

XY = 0. 

The A and B amplitudes are combined to give two overall amplitudes A12 and 

A21 , which correspond with the two gluon orderings: 

A ( ± ± ±) [Q Aanom( ± ± ±) + Q Banom( ± ± ±)] 12 91 , 92 , 15 = 1 12 91 , 92 , 15 6 12 91 , 92 , 15 (3.18) 

A ( ± ± ±) [Q Aanom( ± ± ±) + Q Banom( ± ± ±)] 21 91 , 92 , 15 = 1 21 91 , 92 , 15 6 21 91 , 92 , 15 (3.19) 

Q6 is the charge of q6 and Q7 is the charge of ij7 . 

A 12 and A21 combine in the total amplitude Aw"Y. Now we also have to take 

into account their different colour factors, and the appropriate electroweak terms. 

Again we need to add a factor of J2 for each electroweak vertex, and we introduce 

the W coupling and propagator as before (section 3.1.3). The photon coupling to 

the quark gives a factor of eQ where Q is the quark charge, and there is a factor of 

9w cos Ow from the triple gauge vertex. The total amplitude is: 

Aw"Y(9t, 9i, l3, D4, rt, u6, d1) = J2 ( e

3 

) V. d 
834 

sin2 Ow u 834- M& + irwMw 
[(Ta 1 Ta2 )i3Al2(9t, 9i, rt) + (Ta 2 Ta 1 

)i.7A21 (9t, g~, rt)J 

(3.20) 
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The squared amplitude, including flux and normalisation factors, is 

BI(W)IVudl
2 

( . e~ )

2 

4
3 

4 (~~ 1)2 
Sill W 7r 812 c -

I(TaiTa2 )i]Al2(9t' 9~, It)+ (Ta2 Tai )i]A21(9t' 9~' lt)l2 

(3.21) 

This is then summed over all helicity configurations. 
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-----------------------------------------------------

3.3 Tree level Zry production 

The production of a Zr pair differs from the previously considered cases of W Z and 

W 1 production in two significant ways. 

Firstly, we can no longer describe the gluon-gluon induced vector boson pair 

production process in terms of only tree level diagrams. For the Zr case, loop 

diagrams must also be considered, and we will calculate these in section 3.4. 

Secondly, the anomalous coupling vertex required for Zr production is different 

from the one that was previously used. The ZZr and Zrr vertices are forbidden 

in the Standard Model and so no triple gauge vertices are to be found in Standard 

Model Zr production. These are only added with specific anomalous couplings. 

In this section, we calculate the helicity amplitudes for the tree level process 

99 ---+ ZrqiJ., for both the Standard Model and the anomalous coupling case. We 

include the decay of the Z into leptons. 

We use combinations of the amplitudes found for 99 ---+ W 1 production to as­

semble the Standard Model 99---+ Zr amplitudes. We then formulate explicit terms 

for the anomalous z, amplitudes, with the new helicity amplitudes being listed in 

appendix B.3. 

3.3.1 Standard Model tree amplitudes for Zry 

In calculating the amplitudes for Zr production, we will always use the labelling 

91, 92, hJ4, /5, q6, ij7 where 91 and 92 are the initial state gluons, l3 and l4 are the 

leptons resulting from the decay of the Z, 15 is the photon and q6 and ij7 are the 

quarks in the final state. 

Any of these particles can have either'+' or'-' helicity. We also need to consider 

the two possible orderings of the gluons, which produce the two possible colour terms. 

The amplitudes for W 1 production, which are already known and were given in 

Appendix B.2, can be used to assemble the Standard Model Zr amplitudes where 

the quark and lepton helicities are l3, ft, q(j, q:j. We make a symmetric combination 

of the 'A' and 'B' Wr amplitudes from section 3.2.1 (in the Wr amplitudes, the 

ordering of the vector bosons matters, so we have 'A' and 'B' amplitudes depending 

on which side of the W the photon is on). 

To combine the W 1 amplitudes, we have: 

41 



AZ-y,SM( ± ± ±) A ( ± ± ±) B ( ± ± ±) 
12 g1 ' g2 ' 1'5 = 12 gl ' g2 ' 1'5 + 12 g1 ' g2 ' 1'5 (3.22) 

(3.23) 

This allows us to obtain for Z')' all the helicity configurations that apply to WI' 

production. The combination of 'A' and 'B' amplitudes cancels out those diagrams 

with a triple gauge vertex, as required- these diagrams do not exist for Z')' in the 

Standard Model. 

To obtain the remaining helicity configurations, with zt, f4 and/or qt, iJ.7 rather 

than l3, zt, q(;, lfi, just requires some simple relations. To go from l3, zt to zt, Z4 
we exchange 3 f-t 4 in the amplitudes, and to go from q(;, lfi to qt, iJ.7 we exchange 

6f-t 7. 

3.3.2 Adding anomalous couplings to z, 
In adding anomalous terms to our expressions for Z')' production, we introduce new 

vertices. The Z Z I' and Z /'/' triple gauge vertices are not present in the Standard 

Model at tree level. 

New diagrams now contribute to the tree level amplitudes. The diagrams that 

include a triple gauge vertex are included, where they were omitted in the Standard 

Model case. The new anomalous amplitudes can be calculated separately from 

the Standard Model amplitudes and then added as appropriate. This process is 

analogous to adding anomalous couplings to WI' in section 3.2. 

We need an anomalous parameterisation where Z Z')' and Z')'/' are allowed. Using 

anomalous couplings hfh, h~h, hfh and h:h as introduced in section 1.4 and 

taking the form of the vertex from [34], the Za(q1 )!'f3(q2 )ZJL(p) vertex is: 

hz ) -hZcJLo:f3vq - _4_cJLf3vupo:p q 
3 <- 2v M2 c v 2u 

z 
(3.24) 

The vertex for Za(qt)')'f3(q2 )!'JL(p) is as in equation (3.24), but with qr --+ 0 and 

hf--+ hJ. 
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--------

Once we have the form of the vertex, we can carry out amplitude calculations 

as before. In expressing the amplitudes in Appendix B.3, we shall work with 'hfh, 
where we redefine the parameters to include the factors of ~ inside the couplings: 

z 

hZh 
hZh __ 1_. 

1 - M2' 
z 

hZh 
hZh __ 2_. 

2 - M4' 
z 

hZh 
hZh __ 3_. 

3 - M2' 
z 

(3.25) 

As was the case for W 1 production in section 3.2.2, it is not necessary to calculate 

many independent amplitudes in order to obtain the amplitudes with anomalous 

couplings for all helicity configurations. Suppressing the lepton and quark helicities, 

which are f3' zt' qfj' iii' the four independent terms required are: 

A Zh,ac( + + +) AZ/'y,ac( + + -) AZ/'y,ac( + - +) AZ/"{,ac( + - +) 
12 91 ' 92 f5 12 91 92 f5 12 91 92 f5 21 91 92 f5 

(3.26) 

AZ,ac has an intermediate Z (a ZZ1 vertex) while A7,ac has an intermediate pho­

ton (a Z11 vertex). The amplitudes obtained are the same, because the difference 

between the Z Z1 and Z11 vertices obtained above cancels the change in propagator 

between the intermediate photon and intermediate Z. 

The explicit helicity amplitudes for the four necessary anomalous terms are given 

in Appendix B.3, along with details of the method that is used to obtain amplitudes 

for all helicity configurations from the amplitudes listed above These other helicity 

configurations can be obtained by use of 'flip' relations or simple exchanges, just as 

they were in the Standard Model case. 

3.3.3 Electroweak couplings for z, 
We now combine the known amplitudes to give the complete amplitudes and cross­

sections for tree level 99 -t Z1qij. Here we shall give the full result, including 

anomalous couplings. To obtain the Standard Model result, it is only necessary to 

omit the relevant terms, A7,ac and AZ,ac. Terms with a triple gauge vertex do not 

exist at all for z, production and we may use just the Standard Model amplitudes 

that we obtained from W1 amplitudes in section 3.3.1. 

We shall first assemble the overall z, amplitudes, Af2
7 and A~?. We need to take 

into account the relative couplings resulting from the diagrams with and without a 

triple gauge vertex. 
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Once again we shall suppress the helicities of the leptons and quarks, using 

z:;, ft, q(;, fli. We can then calculate the remaining helicities in the usual way. 

For the Standard Model part of the amplitudes, we use Af21 '
8

M and Af?·SM 

as given in equations (3.22) and (3.23). Adding the anomalous terms, taking into 

account the relative couplings, we obtain: 

AZ-y( ± ± ±) 
12 91 , 92 , 'Ys 

Az'"Y( ± ± ±) 
~1 91 , 92 , 'Ys 

QvL,qAfi•SM (9t, 9~, 'Yt) 

+ QAI2ac(9t9~"ft) + VL,qAftc(9t9~"ft) 

QvL,qAf?•SM (9t, 9~, 'Yt) 

+ Q~tc(9t9~"ft) + VL,qAftc(9t9~"ft) 

(3.27) 

(3.28) 

Here Q is the quark charge. VL,q and VR,q are the left- and right-handed couplings 

of the Z to the quark line and VL,e and VR,e are the couplings of the Z to leptons. 

In combining the amplitudes Afi and Af? to give a cross section, we need to 

include the two colour factors, (Ta 1Ta2 )iJ and (Ta2 Ta1 )iJ· 

We add electroweak vertex factors and propagators as in the previous sections. 

Adding Af2
1 and Af? along with their colour factors and electroweak couplings gives: 

A z'"Y( ± ± z- [+ ± - ;;+) -
91 ' 92 ' 3 ' 4 ' 'Ys ' q6 ' Q7 -

We then square and add flux and normalisation factors. The total cross section 

is: 

M z-y( ± ± z- [+ ± - ;;+) 
91 , 92 , 3 ' 4 ' 'Ys ' q6 ' Q7 

B1 ( Z) is the branching ratio of the Z to leptons. 
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(3.30) 



When we exchange the helicities of the leptons from z:;, lt to zt, l:;, we must 

change the vl,e coupling in the numerator to v'k,e, as well as exchanging 3 and 4 in 

the amplitudes. 

To exchange helicities of the quarks from q(j, fli to qt, q7 , we exchange 6 and 7 

and change the vl,q coupling in the numerator to v'k,q· 
In this way, it is simple to obtain the tree level results for all helicities. In the 

next section, we will add the loop terms. 
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3.4 Production of Ztt at one-loop level 

Having calculated the tree diagrams that are required for Z1 production, we now 

add the loop diagrams for gg -t Z "'!· 

The loop diagrams that are required in the Standard Model and in the anomalous 

coupling case differ entirely, with box diagrams contributing only to the Standard 

Model, and triangles only to the anomalous contribution. 

The types of loop diagram that one could imagine for the process gg -t Z1 are 

given in figure 3.3. 

g 

g 
g 

g 

Figure 3.3: Potential loop diagrams for gg -t Z1 

Each of the diagrams in figure 3.3 is an example of a set of diagrams, the others 

being found by a reordering of legs. The three types of loop diagram are 

• box diagrams, 

• triangle diagrams with triple gluon vertex, 

• triangle diagrams with triple gauge boson vertex. 
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One type of diagram can be eliminated immediately. Any loop diagram for Z1 

production that includes a triple gluon coupling cannot contribute. For this diagram 

there is only one gluon coupling to the quark loop, so the colour part is just the 

trace of a single colour matrix and hence disappears. 

It is clear that the triangle diagram with the triple gauge boson vertex is allowed 

only in the anomalous case: the triple gauge vertex itself is forbidden in the Standard 

Model. We will consider this anomalous coupling contribution in section 3.4.2. 

But for now it is apparent that only the box diagrams can contribute to the 

Standard Model production of z, pairs. This is what we will calculate in section 

3.4.1. 

3.4.1 Box diagram contributions to Standard Model z, pro­

duction 

In figure 3.3, we showed an example of a box diagram that contributes to 99 ---7 z,. 
The other box diagrams that we require just differ by a reordering of legs around 

the loop. These box diagrams were originally calculated some time ago [30] [56] [57] 

but were summed over helicities and did not include the decay of the Z. 

We would expect to calculate the diagrams for both the vector and the axial 

vector couplings of the Z, with the vector and axial vector parts being separately 

gauge invariant. However, only the vector part contributes in this case. 

We consider all quarks except the top to be massless. The top is taken to be 

massive, but instead of a full calculation, we consider only an expansion in 1/m;. 

We will do this for all loop contributions. This approach is most appropriate for 

small energies, where we may expect that vis < mt. This may not be the case in 

LHC collisions. However, we expect the effect of the approximation to be a small 

one. The calculation of the Z1 box loop by van der Bij and Glover [56] shows that 

the difference between a calculation using mt = 0 and one with mt = oo is small. 

In analogy with our other helicity amplitudes, we label the gluons 91 and 92 , the 

leptons produced by the Z decay l3 and l4 , and the photon Is· All amplitudes will 

be given for zt' l:;. It is straightforward to reverse the helicities of these leptons by 

exchanging 3 +-+ 4 in the amplitudes. To reverse all helicities, we use (ab) +-+ -[ab]. 
There is only one colour structure for these diagrams, the trace Tr(Ta1Ta2 ) where 
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Ta1 and Ta 2 are the colour matrices of gluons 1 and 2. 

The structure for the amplitude of the box is simple. 

(3.31) 

This applies when the circulating quark is massless. 

B{';.F is a straightforward sum of the BNF terms as given below. The helicities 

given for the BNF terms are those for the gluons and the photon: B{';.F ( +, +, +) = 

B{;.F (gt, 9t, It)· 
The BNF terms come from Signer [58], equations (5.24) - (5.26). We must be 

very careful in labelling here, as in Signer the photon is labelled 3 rather than 5. 

Changing all 3s to 5s to correspond with our notation, we have: 

B{;.F( +, +, +) = 2BNF(+, +, +) 

B{';. F (-' +' +) = BN F (-' +' +) + ( BN F (-' +' +) hB5 

B{;.F(+,-,+) = BNF(+,-,+) + (BNF(+,-,+)hB5 

B{';.F(+,+,-) = BNF(+,+,-) + (BNF(+,+,-)hB2 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Results for the remaining helicity configurations can be found using the usual 

relations. 

It is now necessary to add electroweak couplings to this amplitude. This is much 

the same as for previous amplitudes. We need to add the appropriate couplings 

to the electroweak vertices, each of these also incurring a factor of .J2 when we go 

from a QCD to an electroweak vertex, due to our normalisation. The coupling of 

the photon to the loop is e Q1, and is summed over all the quarks in the loop. As 

usual, the Z propagator must be changed from 8 34 to 8 34 - M1 + ifzMz and we 

use the narrow width approximation. 

For the Z coupling to the loop, instead of splitting the coupling into left and 

right handed parts, we instead have to split the coupling into vector and axial vector 

parts, evv and evax. For the box, we need just the vector term, Vv, where 

(3.36) 
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This is summed over all the quarks. 

Adding these factors to equation (3.31) gives: 

(3.37) 

If we change from zt Ji to l3 Jt, we have to change v R,e to v L,e as well as 

changing the amplitudes. 

We then square this expression, using the narrow width approximation, and 

adding flux and normalisation factors. 

M box( z+ z-- ) 9b 92' 3 ' 4 ' /5 = 

(3.38) 

The result above applies only for massless quarks. 

For the top quark, we take the same approach as in Bern, Dixon and Kosower in 

[59], where e+ e- to four partons is calculated. We expand in ~t where mt is the top 

mass, and then neglect terms of 0(~), keeping only terms of 0(~) The diagram 
mt mt 

that we want is a collinear limit of the one of the diagrams discussed in [59]. The 

relevant part of the paper is section 11, where they discuss amplitudes where the Z 

couples directly to the fermion loop. Here it is found that the contribution of the 

top loop decouples rapidly and there are no terms in ~, the highest terms being in 
mt 

-4, so in this case we can ignore the top contribution. Hence we now have all the 
mt 

information we need to calculate 99 --+ Z 1 at one loop in the Standard Model. 

To find the explicit form of the 99--+ Z1 box amplitude given in equation (3.31), 

we used the results for qij--+ 991 that are given in Signer [58]. We are able to use 

these results as the coupling of the Z to the loop is only a vector coupling. Therefore 

the box loop for 99--+ Z1 has exactly the same form as the box for qij--+ 99/, and 

we need only to change the couplings, after selecting the appropriate box part of 

the qij--+ 991 expression from the other terms that are present. 

The process qij--+ 991 is more complicated than 99--+ Z1 as more diagrams are 

involved. There is more of a QCD part to deal with. Instead of only box diagrams, 
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there are also triangle diagrams where a photon can be emitted from the external 

quark rather than from the loop, or where a triple gluon coupling is involved. The 

types of diagrams involved in qq---+ 991 are given in figure 3.4. We tend to put the 

gluons to the left to make the analogy to 99---+ Z1 more apparent: as we calculate 

with all momenta outgoing, we do not have to distinguish between the incoming and 

the outgoing particles. 

g 

q q 

if 

' 
g g 

g 
q 

q 

if if 

Figure 3.4: Loop diagrams for qq ---+ 991 

Despite the number of diagrams involved, it is quite straightforward to pick out 

the terms that contribute to 99 ---+ Z1. We know that the relevant terms are box 

diagrams with the photon coupling directly to the loop. We also know that the 

colour part of 99---+ Z1 is always Tr(Ta1 Ta2 ). 

The colour factor allows us to make an initial selection. Only the diagrams on 

the upper line of figure 3.4 have the correct colour factor. The total amplitude for 

qq---+ 991 is the sum of two terms with different colour factors. 
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lheq (:7rr 
[ L (Ta1 Ta2 )qqb12(q, 1, 2, /, ij) + Tr(Ta 1Ta2 )ba1a2 btr(q, 1, 2, /, ij)] 

P(1,2) 

(3.39) 

This is equation (3.6) of Signer [58] with a slight simplification of notation. It 

includes the factors in 9, which we tend to leave till later, and also has a factor of 

J2eq which comes from the coupling of the photon to the quark (we wrote eq as 

eQ,). 

We can ignore the term with the colour factor (Ta 1 Ta2 )qq, which is b12 (q, 1, 2, /, ij). 

We need only consider the term btr(q, 1, 2, /, ij), which can be expanded as: 

N 
btr(q, 1, 2, /, ij) =iN; B{;F (q, 1, 2, /, ij) + iBtr(q, 1, 2, /, ij). (3.40) 

This is equation (5.69) of [58]. 

We still need to separate the diagrams that we want, where the photon couples 

directly to the quark loop, from the unwanted diagrams. We can do this simply by 

looking at the couplings of B{;F and Btr· We find that Btr contains the terms in 

which the photon couples to the external quark line, while B:.F contains the terms 

in which the photon couples to the loop. These are easily separated as the notation 

of [58] distinguishes between the coupling to the external quark eq and the coupling 

to the loop eLoop (eLoop is the coupling summed over all quarks in the loop). 

We can select just the term B{;F (q, 1, 2, /, ij) from the qij ---+ 991 amplitude, 

knowing that this is just the box amplitude that we require. We select the correct 

colour part and photon coupling, and need just to change the electroweak couplings 

to give us the result for the 99 ---+ z, box. 
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3.4.2 Triangle contribution to z, production with anoma­

lous couplings 

As we have already discussed, the box diagram is the only loop to contribute to 

z, production in the Standard Model. However, this situation changes when we 

include anomalous couplings. Anomalous couplings emerge through a triple gauge 

coupling: the triple zz, or Z11 coupling was forbidden in the Standard Model, 

but contributes in the anomalous terms. The presence of this triple coupling means 

that any contributing loop diagram must be a triangle rather than a box. It is in 

fact the third diagram of figure 3.3. 

For the triangle with two gluon legs and a vector boson leg to exist, it is necessary 

that at least one of the legs be off-shell: the on-shell case is zero by Yang's theorem 

[60], which forbids the decay of a spin-one particle into two massless photons, and 

similarly restricts the couplings of gluons. Even the triangle gg ---+ Z ---+ leptons 

is zero. However, the anomalous coupling that is present here leads to a non-zero 

result for our triangle diagram. 

The triangle diagram in which all couplings are vector couplings vanishes by 

Furry's theorem (charge conjugation). Therefore we can eliminate the diagrams 

with an intermediate photon or a vector coupling of the Z, and only have to think 

about the axial coupling of the Z, where Furry's theorem does not apply. For each 

helicity configuration, there is only one diagram, which is therefore gauge invariant. 

The diagrams are also infrared and ultraviolet finite. 

We require to calculate the diagrams with all possible quarks in the loop. How­

ever, we find that in the case of a triangle with an axial coupling, contributions from 

a massless isodoublet cancel. As we consider only the top quark to be massive, and 

all other quarks to be massless, we can neglect the { u, d} and { s, c} isodoublets and 

consider only the massless b quark and massive t quark in the loop. 

In examining the triangle integral, we made use of the paper of Hagiwara et al 

[61], in which the triangle is studied. 

In calculating the triangle, we use the notation of figure 3.5. 
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- PI 

z 
p7+]i; 

Figure 3.5: Notation for triangle calculation 

Then the general expression for the vertex TJ.Laf3 is: 

TJ.Laf3 = fi(p~ EJ.Laf3p~ +Pia [piP2]J.Lf3) + /2(p~ EJ.Laf3ppf_ + P213 [piP2]J.La) 

+ /3(p1 + p2)J.L [piP2]af3 + j4(p1 ~ p2)J.L [plP2]af3 (3.41) 

Here [PIP2]a,s = Eaf3pa pf_ P2 and Ea,Bpa is the totally antisymmetric tensor. Equa­

tion (3.41) is equation (2.8) of Hagiwara et al [61] with a change of notation for the 

gluon momenta. 

This is a general expression and does not just apply at one-loop. Hagiwara et 

al give the functions fi for the one loop case in terms of Feynman parameters. We 

will only need to calculate the term in h. 
In calculating our triangle diagram as in figure 3.5, the first thing we do is to 

consider the gluons as external particles. As the gluons are on-shell, we can remove 

the terms in p~ and p~. We contract our remaining expression for the vertex with 

gluons Ea(PI) and E.B(p2). This removes the remaining coefficients of !I and h as 

c(pi) ·PI == c(p2 ) • p2 = 0. We are left with only terms in h and / 4 . The term in / 4 

is antisymmetric and so vanishes: the expression must be symmetric on exchange of 

gluons. We need only calculate the function /3. 

Here we should note that h is not calculated in the paper of Hagiwara et al. 

This is because they assumed conservation of the axial vector current. The fact that 

this current is not necessarily conserved is well known (see, for example, chapter 19 

of Peskin and Schroeder [62]). We shall assume that current conservation need not 

be obeyed, allowing us to use the h term. 
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Our simple expression for our vertex is now: 

(3.42) 

The term [p1p2]a,a contracts with the external gluon terms E0 (pi) and E.B(P2)· 

We will write this as 

(3.43) 

where .s(pi,P2,EI,E2) = E'a,BpuE0 (pi)E.B(p2)PfP2· 

As well as looking at the general expression from Hagiwara et al, we also calcu­

lated this structure, starting from all possible terms and substituting for the relevant 

integrals. This allowed us to achieve this same structure from a different direction. 

The integral for h is given in Hagiwara et al. The general expression for f3 , 

when all particles are off-shell and there is a mass in the loop, is: 

fJ = _ _!_ l[dz] Z1Z3 
1r

2 m2 - Z1Z2PI - z2z3p~- z1z3(P1 + P2)2 (3.44) 

where z1 , z2 , z3 are Feynman parameters, m is the mass in the loop, and 

(3.45) 

This is equation (2.11) of [61]. 

This expression will always be simplified considerably in our case, as PI = p~ = 0. 

In the massless case the integral becomes trivial. With m = 0, we simply have: 

1 1 I 1 I j3 = 2 ( )2 [dz] = - 2- [dz] 
1T P1 + P2 1T s12 

(3.46) 

and f[dz] =~'so we have an overall 

(3.47) 

For the massive case, the situation is a bit more complicated. The expression for 

h including the mass circulating in the loop is: 
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13 = _2_ J[dzj Z1Z3 

7r
2 ffiF- ZIZ3(Pl + P2)2 

(3.48) 

This then has to be integrated over the Feynman parameters, leading to a more 

complicated expression. 

We however just require the term that is leading in 1/ m;. 

We find that: 
13 = _2__1_ + 0 (-1) 

'11'
2 24m2 m4 

II t t 

Our entire vertex term is then: 

(3.49) 

(3.50) 

(3.51) 

With the triangle part of the diagram known, we need to add the triple gauge 

vertex and outgoing particles. 

Figure 3.6: 'Iriangle diagram including triple gauge vertex 

We discussed possible anomalous couplings in section 1.4. The anomalous triple 

gauge vertex in figure 3.6 is parameterised as: 
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i((PI + P2)
2

- (P3 + P4)
2
) (hz( v 8>. 8 v>.) 

M2 I P5 9 - P5 9 
z 

+ ~ (PI + P2) 8 ((PI + P2) · P5 9v >. - P~ (PI + P2) >.) 
z 

hz v8>.~ hf v>.~p ( )8 ( ) ) 
- 3 E P5E - M; E PI + P2 PI + P2 ~ P5p 

(3.52) 

When we contract the anomalous coupling vertex of equation (3.52) with a factor 

of (PI + p2 )p. from the triangle and 9p.v from the propagator, the coefficients of h2 

and h4 cancel immediately and we are left with just terms in hi and h3 . 

We need to calculate the diagram for both helicities of the photon. We choose to 

set l3, lt initially, but exchanging these just entails setting 3 t-t 4 in the amplitudes 

and changing the coupling to the Z appropriately. 

The helicity amplitudes obtained are rather simple. When we just combine 

the anomalous vertex term and the external particles with the (PI + p2 )p. from the 

triangle, we get 

(3.53) 

tri( _ -+ _) _ (hi - ih3) (35)2 
A 9I,92,l3 ,l4 ,')'5 - M'} 2(34) (3.54) 

We then add in the extra terms from the triangle vertex. 

tri - -+ _ ( 1 1 ) (hi - ih3) (35) 2 

A (9I,92,l3,l4,/'5)= -247r2mr-27r28I2 c(ti,t2,PI,P2) M'} 2(34) 

(3.56) 

We then add electroweak couplings as before. We have two Z propagators to 

worry about, but the propagator in 8I2 just removes the prefactor term given by the 

vertex. (We change from 8I2 to 8I2- M; in the propagator by multiplying by 812
8~ki. 
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This cancels with the existing factor of ~ in the vertex.) So the situation is 
812 

very similar to the box, adding in one Z propagator and the electroweak couplings. 

Again, we have to divide the coupling of Z to a quark into vector and axial parts, 

this time keeping the axial part, which is very simple, Vax = 1/2sin2Bw. 

In 3 834 
2v L. e V£,eVax M 2 T M 

834- z + 'l z z 
Tr(Ta1Ta2)Atri( z- z-+ ) 

91 ' 92 ' 3 ' 4 ' /5 (3.57) 

This then squares to give: 

M tri( z- [+ ) 
91 ' 92 ' 3 ' 4 ' /5 

We can add this anomalous triangle to the existing Standard Model loop term, 

which comes from the box of section 3.4.1. 

M total ( z+ r- ) 
91 ' 92 ' 3 ' 4 ' /5 

_ 4 ( 3) M'iv1,e 
- Bl(Z)e 411" 2812(N'}- 1)2(vle + v~e) 

, ' 

1Tr(Ta1 Ta2
){ QfvvAbox(91' 92, zt' l;;' Is) + VaxAtri(91' 92, zt' l;;' ls)}l 2 

Note that as the box term and the triangle term have the same colour factor, 

there will be an interference term when this expression is squared. 
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Chapter 4 

Cancellation of singularities by the 

subtraction method 

We now have a method for calculating Feynman diagrams and combining them into 

amplitudes and cross sections. So we have much of the information that we need for 

a calculation of vector boson pair production. However, it is important that when 

we perform this calculation we end up with a physically relevant result: one that 

contains no divergences. Hence we have to consider the possible divergences in the 

QCD calculation and how they can be removed. In many ways, this is the core part 

of the vector boson pair production calculation. 

There are two types of divergences in QCD: infrared and ultraviolet. Infrared 

divergences arise from the low momentum limit of the integrals in the calculation, 

and ultraviolet divergences from the high momentum limit. Ultraviolet divergences 

are removed by the usual process of renormalisation. In this chapter we deal with 

infrared divergences and how they are removed, first for the general case and then 

for our specific cases of vector boson pair production. 

In treating the infrared singularities, we need only consider the QCD parts of the 

Feynman diagrams for much of the time, with the electroweak parts being irrelevant. 

The exception to this is when we have an external photon: this case is discussed 

in section 4.4. For the photon, we will use an isolation procedure to avoid singular 

regions, rather than using the subtraction method that we use to cancel singularities 

in the QCD parts. Apart from the singularities that could potentially be caused 
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by the photon, the structure of singularities for each pair production process is 

identical. Thus we shall initially neglect the electroweak part of the calculation, and 

just consider the incoming gluons and outgoing quarks. 

Almost everything we shall say is relevant to all vector boson pair produc­

tion processes. Where we have to be specific, we will use as an example the process 

gg -t W Zqij. Therefore the explicit equations given will be for an 8 particle process. 

However, it is straightforward to translate to the 7 particle case of W 1 or Z 1 pro­

duction, again because the electroweak particles do not contribute to the structure 

of infrared divergences that we are discussing. 

4.1 Introduction to infrared singularities 

In this section, we will discuss the issue of infrared singularities, where they come 

from and how they can be eliminated. We will include a discussion of different types 

of IR singularities, and will mention the KLN (Kinoshita-Lee-Nauenberg) theorem 

and the factorisation theorem in QCD, which will be required later. 

Two basic types of infrared singularity arise in QCD. Firstly, there is the 'soft' 

singularity. Here a final state particle becomes of very low energy: all components 

of its momentum go to zero. This soft particle cannot be detected in the final state. 

Secondly, we may have a 'collinear' singularity. A particle may emerge at so close an 

angle to another particle that they are indistinguishable. It is convenient to divide 

collinear singularities into two categories: final state collinear singularities, where 

both of the collinear particles are outgoing, and initial state collinear singularities, 

where an outgoing particle becomes collinear to an incoming particle. Soft singu­

larities are always in the final state by definition: it would not make physical sense 

for an incoming particle to disappear. 

We know that a physical quantity must be finite so somehow the inherent sin­

gularities in QCD must be eliminated. 

We differentiate between initial and final state singularities when eliminating 

singularities. Final state singularities cancel between the real and virtual terms 

in the cross section (section 4.1.1). Initial state singularities can be removed by 

absorbing them into the parton distribution functions (we will use the subtraction 

method to do this in section 4.1.2 and subsequent sections). 
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Because of this distinction, we now have to start separating incoming and out­

going particles, whereas in previous chapters we treated all particles as outgoing to 

simplify the amplitude calculations. 

4.1.1 Cancellation of real and virtual singularities 

We will now start to discuss the cancellation of infrared divergences. We will consider 

the cancellation of singularities between the real and virtual parts, and also introduce 

the idea of infrared safety and the factorisation theorem. 

First, we consider a soft photon (the same argument applies for a gluon). The 

photon is massless, and becomes soft by its 4-momentum going to zero. This causes 

a soft divergence. We cannot distinguish a physical state with a soft photon from the 

state without a soft photon, so the relevant physical process may have any number 

of soft photons. 

When we are only dealing with soft divergences within QED (where divergences 

are much less complicated than in QCD), these divergences cancel when we add 

the relevant virtual processes to the processes with real emission of soft photons. 

This is the essence of the Bloch-Nordsieck theorem [63]. The cancellation is shown 

explicitly in chapter 6 of Muta [64]. 

In QCD, we also have to deal with collinear singularities. In QED, these only 

occur when the external particles are massless. In QCD, they can occur even if 

the external quarks are massive, as the triple gluon vertex means that we have the 

additional possibility of massless gluons becoming collinear to each other. 

A pair of collinear particles is indistinguishable from the appropriate single par­

ticle. We need to consider all states with an indefinite number of collinear gluons, 

in order to obtain the physical process, and remove the collinear divergence. 

We extend the Bloch-Nordsieck theorem to the Kinoshita-Lee-Nauenberg (KLN) 

theorem [65], [66]. The KLN theorem states that we must include all indistinguish­

able initial states as well as all the final state processes. The final state processes 

may be real or virtual, and may contain soft or collinear gluons. 

Quantities that obey the KLN theorem are infrared safe. This is to say that 

what they measure does not change with the addition of soft or collinear gluons. 

Infrared safety is required for the factorisation properties of a calculation. A 

60 



------------------- -------

useful discussion of factorisation theorems is given in [67]. Here we shall just briefly 

mention the principles of factorisation: the process of separating the long distance 

(hadronic) from the short distance (partonic) part of a calculation. 

In QCD calculations, it is assumed that we can separate interactions that occur 

at the parton level - the hard scattering process - from events that occur at the 

hadronic level. 

We make the assumption that, in the hard scattering, each hadron is composed of 

fixed partons, each of which possesses a known fraction of the hadron's momentum. 

We will call this fraction of momentum x, where 0 :S x :S 1. The parton content 

of a hadron is given by the parton distribution function: fa;A(xA) is the probability 

of parton a being found in hadron A with momentum fraction XA· This can then 

be used to express an interaction of hadrons in terms of the hard scattering cross 

section. 

The general form of a differential cross section is: 

doAn(kA, kn) = L J dxA dxn !a;A(xA)fbfB(xn) daab(xAkA, xnkn), (4.1) 
ab 

where A and Bare hadrons, a and bare partons and fa/A and fb/B are the parton 

distribution functions. 

The partonic cross section given in this expression is daab, the subtracted par­

tonic cross section. This is the hard scattering cross section when the divergences 

have been removed. Final state soft and collinear divergences can be removed by 

cancelling with the divergences in the virtual part (the KLN theorem). In the sec­

tions to come, we will examine how initial state divergences may be removed: we 

will use the subtraction method to do this. 

We calculate the subtracted cross section for the vector boson pair produc­

tion processes that we wish to examine. Then we add in the parton distribution 

functions and integrate over phase space, in order to obtain a physical result. 
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4.1.2 Removing initial state singularities: the subtraction 

method 

We have already mentioned the factorisation theorem and our need to be able to 

calculate initial state collinear singularities. These need to be removed by absorbing 

them into the parton distribution function. 

Though IR singularities always cancel or can be absorbed, to give finite physical 

quantities, this does not happen automatically. We cannot numerically integrate 

over soft or collinear regions. Instead, we must separate these regions and calculate 

them analytically, before integrating the finite result. 

This can be done in several ways. We will just mention two: the phase space 

slicing method, and the subtraction method. In later parts of this chapter, we will 

use the subtraction method to remove initial state collinear singularities from the 

vector boson pair production calculation. 

One way of removing singular regions is to 'cut them out' of the calculation, 

replacing them by their limits. This is known as the phase space slicing method [68] 
[69] [70]. Here, and for the subtraction method, the one-dimensional example given 

in Kunszt [71] will be used for illustration. 

In the phase space slicing method, singular regions are cut out and replaced with 

their limits, with the integration in the excluded area performed analytically. The 

boundary is defined by a small parameter, here 8. 

Our one-dimensional example has the domain 0 :S x :S 1 and a simple pole at 

x = 0. The integration region is sliced into two parts, with the boundary being 8. 

The part surrounding the pole, 0 < x < 8, is replaced by its limit, and the finite 

part 8 < x < 1 remains. It is necessary for 8 to be much smaller than 1. 

The integration is then: 

I rv lim {F(O) {
5 

dx X€ + !l dx x€F(x)- !F(o)} 
€-tO 10 X 5 X € 

F(O) ln(8) + /
1 

dx F(x). 
5 X 

(4.2) 

This is equation (32) of [71]. The remaining integral can be evaluated by normal 

numerical integration. 
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Alternatively, we can use the subtraction method: this is the choice we will make 

in this chapter. We use a version of the subtraction method as introduced by Ellis, 

Ross and Terrano [72] and developed by Kunszt and Soper [73]. 

The singular behaviour is a simple pole with a known residue. We subtract the 

integral at the pole and then add it on again. We shall see in the next section how 

this works in practice. 

For our one-dimensional example, we have 

I = lim { t dx xe[F(x)- F(O)] + F[O] t dx xe} 
HO lo X lo X 

t [F(x)- F(O)] + ~F(O). lo E 
(4.3) 

Again, this results in a term that can be integrated numerically. 

In section 4.2 we will show how we use the subtraction method in order to 

give counterterms that cancel out our initial state singularities, resulting in the 

subtracted cross section that we require. 

4.1.3 Infrared singularities at NLO and NNLO 

Infrared singularities first arise at NLO. As previously discussed, these can be either 

soft (a particle becoming low-energy) or collinear (two particles becoming close in 

angle). 

We will discuss the overall structure of these soft or collinear singularities. The 

behaviour of infrared divergences is universal: it does not depend on the particular 

process being considered. 

We will mention the presence of soft and collinear singularities at NLO, then 

consider the NNLO case, where singularities can occur in combination, resulting in 

a much more complicated phase space. 

First, consider what happens when a single final state particle in a n particle 

process becomes soft. When the momentum of the soft particle goes to zero, this re­

duces the number of particles by one. So as long as this soft particle is of low enough 

energy, the amplitude may be written as the n- 1 particle amplitude, multiplied by 

a soft factor. This soft factor is normally called the eikonal factor. 
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If s is the soft gluon and a and b are its neighbouring particles (remembering 

that the amplitude is colour ordered), then: 

ks-->0 (ab) 
An( ... , a, s, b, .. . ) -=----7 (as)(sb) An-1(· .. , a, b, .. . ) . (4.4) 

The eikonal factor is the term (a~)~~b) (or [a~]flb], depending on the gluon helicity). 

This depends on the momenta of the soft gluon and its adjacent particles. 

The other simple infrared singularity is the collinear case. Here a pair of particles 

become so close in angle that they can be replaced by a single particle, which is 

capable of splitting into the pair. Again this mean that the number of particles is 

reduced by one. We rewrite the original n particle amplitude as a n - 1 particle 

amplitude, with the multiplying factor here being a splitting function. 

If a and b are the two particles that are becoming collinear, we introduce c, which 

may split into the collinear pair, and substitute c into the amplitude in their place. 

a lib 
An( ... , a, b, .. . ) ~ Bac(x)An-1(· .. , c, ... ) . (4.5) 

The splitting function Sac(x) corresponds to particle c producing particle a with 

a momentum fraction x. As kc = ka + kb, we know that ka = xkc and kb = (1- x)kc. 

If the splitting is an unphysical one then the splitting function is zero. IBacl 2 = Pac, 

where Pac is the Altarelli-Parisi splitting function. 

The only splitting function that is required in our vector boson pair produc­

tion calculation is the function for a gluon splitting into a quark-antiquark pair. 

This is the function Pq9 (x). It is independent of the flavour of quark produced, and 

is the same for production of an antiquark as it is for a quark. The leading-order 

splitting function is: 

(4.6) 

We can use this as long as we have summed over the helicities of the particles 

involved. If we have particles of specific helicity, the splitting function can be de­

composed into Sqg terms of different helicities, which are used in the amplitudes. 

These are then squared to give the overall Pqg splitting function above. 

The splitting function must obey some momentum restrictions. The quark pair 
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must always be q+, ij- or q-, q+: it is not possible for the quark and the antiquark 

to have the same helicity. 

In a NLO amplitude, it is only possible to have one soft singularity, or one 

collinear singularity. For each of these cases, we will calculate the amplitude as the 

leading order amplitude, multiplied by the appropriate prefactor. 

When we start to examine the NNLO case, we see that the situation becomes 

much more complicated. The singularities are no longer restricted to those involving 

just a single particle. A simple soft or collinear singularity will reduce the number 

of partons in the process to n - 1, meaning that we calculate an NLO process, 

multiplied by a prefactor. However, we know that NLO quantities can themselves 

have singularities, so therefore there may be a further soft or collinear factor. These 

singularities can occur in several different combinations, making the situation at 

NNLO much more complicated than it was at NLO. 

The new types of singularity that arise at NNLO are 

• double soft~ two separate particles each become soft. 

• soft-collinear- both a soft and a collinear singularity occur. 

• double-collinear - two pairs of particles separately become collinear. 

• triple-collinear - three particles all become collinear to each other, giving a 

splitting into three rather than two particles. 

The behaviour of tree level and one loop amplitudes in these limits has been 

studied in (74),(75),(76),(77),(78),(79),(80),(81),(82),[83]. The new singularities lead to 

a very complicated phase space, and therefore many difficulties with integrating over 

the phase space. 

However, we are very fortunate in our calculation of gg -r W Zqij, and other 

vector boson pair production processes. The singularities that occur in our case are 

straightforward and controllable. 

Firstly, there are no soft singularities. Only a final state gluon can become soft, 

and our gluons are in the initial state. If a quark becomes soft, the amplitude does 

not develop a singularity as it does in the case of the gluon. Instead the amplitude 

just decreases to zero, as the process without the final state quark does not exist (we 

would have a single quark rather than a quark pair, which would make no sense). 
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We only need to consider collinear singularities. The collinear singularities are 

of a particular type. It is possible for a final state (anti)quark to become collinear to 

an initial state gluon, causing a collinear singularity, but there is no such singularity 

if a final state quark and antiquark become collinear to each other. Hence we have 

no final state singularities, only initial state. 

We have single collinear singularities where either quark 7 or antiquark 8 becomes 

collinear to gluon 1 or gluon 2 - a total of 4 different scenarios. 

An example of a relevant single collinear process is given schematically in figure 

4.1. 
g 

g 

g g 

Figure 4.1: A single collinear limit of a gluon induced amplitude 

This shows that the collinear limit of an 8-particle diagram is the appropriate 

7-particle diagram multiplied by a splitting function, which in this case is that of a 

gluon splitting to a quark pair. 

We also have double collinear singularities, where the quark and antiquark each 

become collinear to an initial state gluon, to form two separate collinear pairs. We 

may have quark 7 II gluon 1 and antiquark 8 II gluon 2, or the same but with gluons 

exchanged. There is no singularity where both quark and antiquark become collinear 

to the same gluon. 

A schematic representation of a double collinear singularity, with two splitting 

functions, is given in figure 4.2. 

To express the singular terms, we need only use the splitting function as in 

equation ( 4.6). If two particles become collinear, we just use it twice. As it is not 

possible for the two final state partons to become collinear to the same initial state 

parton simultaneously, we can just treat the process as two separate splittings. 

These single and double collinear terms will come up in the calculation and as 
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g 

Figure 4.2: A double collinear limit of a gluon induced amplitude 

collinear counterterms in the subtraction method. They also allow us to perform 

checks on our NNLO amplitudes by relating them to the known 10 and NLO 

amplitudes, making sure that the collinear limits are correct. 

Now we proceed to subtract the initial state singularities and to obtain a finite 

result for vector boson pair production. We will explain the particular form of the 

subtraction method that we are using, and how it is applied to the calculation. 

4.2 The subtraction method in practice 

Here we will use the subtraction method to remove initial state collinear singularities. 

These are not process dependent, so we can discuss a general case before turning to 

the specifics of vector boson pair production in section 4.3. 

From the factorisation theorem, the general form of a differential cross section is 

as discussed before: 

daAn(kA, kn) = L J dxA dxn !a;A(xA)fbJB(xn) dflab(xAkA, xnkn). (4.7) 
ab 

This relates the partonic calculation to the hadron-level result. It describes a 

cross section as a subtracted cross section convoluted with parton density functions. 

Here we can make use of the universal nature of QCD. Not only does equation 

( 4. 7) apply to the partons in a hadron (the chance of finding each part on being deter­

mined by the parton distribution function), but the equation can also be rewritten 

as the chance of finding a parton within another parton (QCD allows us to make 

this formal substitution). 
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Here the incoming partons for our hard scattering, a and b, may come via a 

splitting function from initial partons c and d. 

dacd(ki, k2) = L J dx1 dx2 !a;c(xi)fb/d(x2) daab(x1k1, x2k2). ( 4.8) 
ab 

Now we will assign the incoming partons c and d the momenta k1 and k2 respec­

tively, as these will later become our incoming gluons 1 and 2. 

We already know the unsubtracted cross sections for our vector boson pair pro­

duction processes. These are just the hard scattering terms that we have already 

calculated. When we consider the parton level expression, we find that we also know 

the parton distribution functions. The probability of getting a parton from another 

parton is simply a splitting function at the appropriate order. To calculate the 

subtracted cross section, we need the unsubtracted hard scattering cross sections 

and the parton distributions at the correct order in QCD. We shall perform this 

calculation both at NLO and at NNLO. 

4.2.1 General subtraction terms at NLO 

Infrared singularities first occur at NLO, so this is the simplest case in which we can 

discuss the subtraction method. The calculation that we want to perform at NNLO 

is just an extension of this. 

To calculate the subtracted cross section at NLO, we need the NLO unsubtracted 

cross section, which we shall assume we know, and a NLO parton distribution. The 

NLO parton distribution is just a delta function (the probability of finding exactly 

the same particle with the same energy) plus an Altarelli-Parisi splitting function 

as described earlier, with the resulting parton having a fraction x of the energy of 

the parton that it originates from. 

The expression for the NLO parton distribution is: 

fa;c(x) = c5acc5(1- x)- as (~Pac(X, 0)- Kac(x)) + O(a;). (4.9) 
21r E 

Pac(x,O) is the Altarelli-Parisi splitting function forE= 0 (4 dimensions). From 

now on, we will suppress the zero, and use Pac(x). The splitting function depends 

68 



on the types of parton involved, and on the momentum fraction. 1/€ is defined by 

1/€ 1/t -IE+ log47r. 

The term Kad is dependent on which factorisation scheme is used. We will work in 

MS, where Kad 0. The fact that we have to make a choice indicates that the result 

will be dependent on the factorisation scheme. We must consider this dependence 

and whether it will affect the overall result. This is especially relevant later, when 

we calculate the NNLO gg induced vector boson pair production. However, when 

we calculate the gg term, we have already made an approximation in selecting only 

this one term from all possible NNLO terms. We assume that any effect due to 

scheme dependence will be less than the effect resulting from choosing only gg. 

Substituting the parton distribution of equation ( 4.9) into equation ( 4.8), we 

obtain an expression that relates subtracted and unsubtracted cross sections. 

duoo(k~, k,) = ~ J dx,dx, [o=O(l- xi)-;; ~P00(x,)] 

[8bd8(1- x2)- ;; ~Hd(x2)] daab(x1k1Jx2k2). (4.10) 

On expanding this expression, and retaining terms only up to NLO, we obtain: 

(4.11) 

Each term can then be broken up into the sum of its leading order and NLO 

parts, calling these da(o) and da(l) respectively (d&(o) and d&(l) for the subtracted 

cross section). This allows us to equate terms order by order in a 8 • 

At leading order there are no divergences, and therefore no need for subtraction, 

meaning that d&(o) is just the same as da(o). 

At NLO, we rearrange equation ( 4.11), using the fact that d&(o) = da(0), to 

give an expression for the NLO subtracted cross section in terms of unsubtracted 
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quantities. 

(4.12) 

The leading order terms that add to the unsubtracted terms are the collinear 

counterterms that are required to obtain a finite result. All that we need at NLO 

is these two counterterms. At NNLO it will be more complicated. We must then 

add a explicit O(a~) term to equation (4.9) as well as including another order in the 

cross section. 

4.2.2 General subtraction terms at NNLO 

Now that we have discussed the subtraction method at NLO, it is time to turn to 

the situation at NNLO, which is the case that we will need when discussing gluon­

gluon induced vector boson pair production. This is just an extension of the NLO 

calculation with more complicated expressions, and a greater number of possible 

singularities. We will follow the same procedure as in the previous section to give 

us the general counterterms for NNLO. In section 4.3 we will translate the general 

particles into our incoming gluons and outgoing quarks. 

Again we use equation ( 4.8), substituting in appropriate parton distributions. 

However, we now have to add an extra term to the distribution of equation (4.9): we 

can no longer ignore terms of O(a~). The new expression for the parton distribution 

function in MS is: 

(4.13) 

Pac(x) is the one-loop Altarelli-Parisi splitting function in 4 dimensions, while 

Qac(x) is the next order contribution, including two-loop splitting functions. 

70 



Substituting into equation (4.8): 

dacrJ(k,, k2) = ~I dx,dx2 [a.,O(l- x,)- ;; ~P~(xt)- (;;)' m 2 

Q.,(xt)] 

[abdO(l - x2) - ;; ~Pbd(x2 ) - (;;) 
2 

( ~) 
2 

Qbd(x2)] Mab(x 1k,, x2k,). 

( 4.14) 

Expanding this expression and retaining terms up to O(o:;), we get 

dacd(ki, k2) = dacd(k1, k2) 

-;;~I dx, ( ~P.,(x,) + ;; m 2 

Q.,(xt)) oo..,(x,k,, k2) 

-;; ~I dx2 ( ~P.,(x2) + ;; m 2 

Q.,(x2)) dU,,(k,, x2k2) 

+ (;;) 
2 L I dx1dx2 ( ~Pac(xi)) ( ~Pbd(xt)) daab(xiki, x2k2) 

ab 
+ O(o:~). (4.15) 

We expand the cross sections and compare terms order by order. 

dacd 

dacd 

(4.16) 

( 4.17) 

Once again, at leading order, da~~) = da~~). We will use this equality later. 

At O(o:8 ), we have the same result as was found in the previous section: 

da~~)(k1, k2) = da~~)(k1, k2) 

+ ;; L I dx1 (~Pac(xt)) dir~~(xik1,k2) 
a 

+;;~I dx2 GPbd(x2)) dU~1 (k1,x2k2 ). (4.18) 

This gives us an expression for the NLO subtracted cross section in terms of the 
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NLO unsubtracted cross section plus leading order counterterms. 

At 0( o:;) there are clearly more terms involved. A simple expansion of equa­

tion ( 4.15) gives: 

{2) ( ) dacd kl, k2 = d&~~)(kl, k2) 

- ;; L I dx1 (~Pac(xi)) dai~(x1k1,k2) 
a 

-~;~I dx2 GPbd(x,)) di7~)(k1 ,x2k2 ) 

- (;;) 
2 L I dxlQac(xi)dai~(xlki, k2) 

a 

- (;s r L I dx2Qbd(x2)d&~~)(kl, x2k2) 
7r b 

+ (;;)' ~I dx, dx, ( ~P.o( x,)) ( ~Pbd( x,)) M;~\ x 1k, x2k2 ) 

+ O(o:~). (4.19) 

We then use the expressions that we already have for d&(o) and d&{l) and sub­

stitute in to get the whole O(o:;) equation with all counterterms given explicitly. 

d&~~)(k1 , k2) = da~\k1, k2) 

+ ;; L I dx1 (~Pac(xi)) dai~(x1k1,k2) 
a 

+~;~I dx2 (~Pbd(x2)) dcr~)(k1 ,x2k2 ) 

+ (;;rL I dx1dx2 (~Pyc(xi)~Pzy(x2)) da~~(x1x2k1,k2) 
yz 

+ (;;) 
2 L I dx1dx2 ( ~Pyd(xi)~Pzy(x2)) da~~) (k1, x1x2k2) 

yz 

+ (;; r L I dxlQac(xi)da~~(xlkl, k2) 
a 

+ (;s r L I dx2Qbd(x2)da~~)(kl, x2k2) 
7r b 

72 



+ (;;r L j dx1dx2 (~Pac(xi)) (~Hd(x2)) dai~)(x1k1,x2k2). 
ab 

(4.20) 

This is the general expression for removing the initial state collinear singularities 

from a NNLO quantity by using collinear counterterms. One would expect to be 

able to expand the terms explicitly and remove the singularities analytically. It can 

be seen that some of the poles are explicit and some are 'hidden' inside (N)NLO 

cross sections. 

4.3 Applying the subtraction method to vector 

boson pair production 

We now have a general expression for the counterterms required to subtract initial 

state collinear singularities from an NNLO cross section: this is equation (4.20). 

We now want to apply this to the specific case of vector boson pair production. To 

do this, we need to consider only the two initial state gluons and the final quark­

antiquark pair. 

For the first half of this section, while establishing the counterterms, the expres­

sions will be appropriate for any vector boson pair production process. In the second 

half, the finite terms for a calculation of gg---+ W Zqij will be calculated, and we will 

indicate how to convert the result into W 1 or Z 1 production. 

We need to substitute actual particles for the generic a, b, c, d of equation (4.20). 

Our initial particles, c and d, are now specified as the two initial state gluons g1 

and g2 . These may be substituted for c and din either order, but for now we will 

just call them both g. A a99 term is the NNLO cross section including both gluon 

orderings. 

The particles a and b are particles which the initial gluons may split into. In 

theory, these may be either quarks or gluons. However, we have to remember that 

they are also the incoming particles for the vector boson pair production hard scat­

tering process. The incoming particles for LO vector boson pair production can only 

be qij, in either ordering. For NLO vector boson pair production, we can also have 
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qg or ijg, again in either ordering. These restrictions on the hard scattering process 

limit the number of counterterms. 

First we substitute gluons for the initial state partons c and din equation ( 4.20). 

This gives us: 

da~;)(k1, k2) = da~;)(k1, k2) 

+ ;; L I dx1 (~Pa9 (xi)) da~~(x1k1, k2 ) 

a 

+ ;; L I dx2 (~Pb9 (x2)) da~~)(k1,x2k2 ) 
b 

+ (;; r L I dxldx2 (~Pyg(xi)~Pzy(x2)) da~~)(xlx2kl, k2) 
yz 

+ (;;) 
2 L I dx1dx2 ( ~Py9 (xi)~Pzy(x2)) da~~)(k1, x1x2k2) 

yz 

+ (;;r2: I dx1Qa9 (xi)da~~(x1k~,k2) 
a 

+ (;; r L I dx2Qbg(x2)da~~)(ki, x2k2) 
b 

+ (;;) 
2 

~ j dx1dx2 ( ~P.,(x1 )) GP.,{x2)) do-~~)(x,k,,x,k,). 
(4.21) 

Examining this expression, we find some impossible terms -we cannot have a 

leading order vector boson pair production cross section with a gluon in the initial 

state. Therefore all terms including da~~ or da~~ can be removed. The remaining 

terms are: 
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+ (;; r L I dxldx2 (~Pag(xi)) ( ~Pbg(x2)) dai~)(xlkl, x2k2). 
ab 

(4.22) 

Now we may substitute q or q for each a or b. This gives us a LO term with 

a qij initial state and a NLO term with q9 or iJ9 initial state: these terms are all 

allowed. The counterterms result from the single and double collinear singularities 

as detailed in section 4.1.3, with all splitting functions as required. 

With these substituted in all possible ways, we get the expression: 

(4.23) 

These are all the necessary counterterms to produce a finite result. We now have 

to substitute in more explicit expressions for the terms themselves, and cancel the 

singularities. This is a lengthy procedure, so here we will just give the final result. 

This will be a finite expression that can be integrated numerically, and will use LO, 

NLO and NNLO cross sections for vector boson pair production. 

In calculating these terms we use the same conventions and parameterisation 

as Frixione, Kunszt and Signer [84], expressing momenta in terms of energy and 

angle variables. The incoming gluons are labelled 91 and 92 • We shall label the 

outgoing quark and antiquark as q7 and q8 , and the final electroweak decay particles 

as particles 3 to 6. Of course, this assumes that we have an 8 particle process, as 

in 99 -t W Zqq. For W 1 or Z1 production, we just have to remove one of particles 

3 - 6 and relabel the remaining particles, which is straightforward. 
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In the partonic centre of mass frame, incoming gluons 1 and 2 have momenta: 

JS12(1 0 1) 
2 ' ' 

( 4.24) 

JS12(1 0 -1) 
2 ' ' 

(4.25) 

The outgoing quarks have momenta parameterised as: 

(4.26) 

(4.27) 

where err is a D - 2 dimensional unit vector in transverse momentum space, 

Yi = cos (}i so that -1 ::; Yi ::; 1, and 0 ::; ~i ::; 1. s 12 is the partonic centre of mass 

energy. 

This parameterisation makes the soft and collinear limits apparent. The soft 

limit results from taking the energy variable to zero, ~i ---+ 0. The collinear limit 

where one of the outgoing quarks becomes collinear to one of the incoming gluons 

occurs when the angle variable y becomes the same as that of one of the gluons, 

Yi ---+ ±1. 

We then follow a procedure similar to that in [84] to cancel singularities explicitly, 

giving us a finite term. 

This is the sum of three separately finite pieces. 

dQ-(2) = da(fin,6) + da(fin,7) + da(fin,8) 
gg (4.28) 

da(fin,G) is the term containing the 6 particle LO amplitudes. da(fin,7) contains the 

7 particle NLO amplitudes, and da(fin,s) contains the 8 particle NNLO amplitudes. 

We should note here that only the 4-dimensional matrix elements need to be 

used, despite the fact that the subtraction calculation takes place in D = 4 - 2E 

dimensions. We must be careful to make sure that in only using 4-dimensional 

matrix elements, we do not lose extra finite pieces that may result from calculating 

in D dimensions. 

We need to consider both the initial state collinear singularities, which are ab-
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sorbed into the parton distributions, and the final state collinear and soft singular­

ities, which cancel with the singularities from the virtual part. 

Our version of the subtraction method deals with the latter situation by dividing 

the matrix element into a 4-dimensional part and a 1/t-term. Around the pole we 

have a reduced matrix element multiplied by a splitting function, as we explained 

earlier in this chapter. The reduced matrix element is subtracted from the full 

matrix element, and then added again separately and integrated analytically. There 

is a universal finite part associated with each 1/t pole. In this process of subtracting 

and the adding on the pole part, any finite part that may be associated with the 

pole is also subtracted and added, meaning that we do not miss any terms in just 

taking the 4-dimensional part. 

Initial state collinear singularities are absorbed into the parton distributions. 

When doing this, we only use 4 dimensional splitting functions in, for example, 

equations (4.9) and (4.13). We do this because we work in the MS scheme: a 

different choice of splitting function would imply the use of a different scheme. As 

we already stated in section 4.2.1, our result is scheme dependent, but the scheme 

dependence is not important at the level of accuracy of our calculation. 

We now give the finite terms explicitly. 

The explicit form of da(fin,B) is given by 

2 

da(fin,B) = (1- Yi)(1- y~)M~~ (k1, k2, {ki}J,6, k1, ks) 64~~~)6 6 ~s P(y7) P(ys) 

d6 d~s dy7 dys d1p7 d({Js d<I>(3-6) . ( 4.29) 

d<I>(3_ 6) is the phase-space integration over the vector-boson decay products. 

M~~ is the squared amplitude summed (averaged) over helicities, including the 

flux factor 1/(2s12). This is just the Mwz of equation (3.12). 

We have also included the distribution P(yi), where i is 7 or 8. This is given by: 

1 [( 1 ) ( 1 ) ] P(y·) = - -- + --
t - 2 1 - Yi 8r 1 + Yi 8r • 

(4.30) 

The distributions ( 1l . ) have been introduced in [84] and are defined for an 
y, 81 
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arbitrary test function f(Yi) through 

( 4.31) 

The two P distributions in equation ( 4.29) perform the subtraction of single and 

double collinear singularities in the 8-particle NNLO amplitudes. 

The expression for the 7 particle finite part is somewhat more complicated. 

da(fin,7) = ;; (C7Pq~(1- 6)- P~~(1- 6)) (1- Yi) 

{M~~ ((1- 6)k1, k2, {ki}3,6, k8) + M~~ (k1, (1- 6)k2, {ki}3,6, k8)} 

812 
8

(
2

11')3 ~8 P(y8) d6 d~8 dy8 d<p8 d<I>(3_6) 

+ ;; (C8Pq~(l- ~8)- P~~(l- ~8)) (1- Y?) 

{ M~~) ((1 - ~8)k1, k2, { kih,6, k7) + M~~ (k1, (1 ~ ~8)k2, { ki}3,6, k7)} 

812 

8
(
2

11' )3 6 P(y7) d6 d~8 dy7 d<p7 d<I>(3-6) . ( 4.32) 

Most of these terms are familiar. M~~ and similar terms are the NLO squared 

amplitudes for W Z production as stated in [25]. We also have the P distribution 

defined in equation (4.30), which subtracts the single collinear singularity present 

in the 7 particle amplitude. 

We have also used the functions £ 7 and £ 8 , which are defined by 

(4.33) 

s12 is the centre of mass energy. 81 is an arbitrary quantity that is present in 

all the finite terms, and cancels when they are summed to give the total finite cross 

section. 6 and ~8 relate to the energy of q7 and ij8 , and J-1 is the factorisation scale. 

We divide the unregularized Altarelli-Parisi splitting function into the 4-dimensional 

piece, P~, and the piece proportional tot, P~d_. Explicitly, 

(4.34) 
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(4.35) 

Finally, the 6 parton case is reasonably simple, and only uses quantities that 

have already been defined above. 

do-(fin,
6

) = (;;r (.c7Pq~(l- 6)- P~~(l- 6)) (.CsPq~(l- ~s)- P~~(l- ~s)) 
{M~~) ((1- ~7)k1, (1- ~s)k2, {ki}(3,6)) 

+ MW ( (1 - ~s)ki, (1 - 6 )k2, { ki}(3,6)) } d6 d~s d<I>(3-6). ( 4.36) 

We then implement all these finite terms in a numerical integration. We already 

mentioned the quantity 81 , which occurs in all the finite terms, but is cancelled 

when the terms are added. This provides a good check on our calculation: it must 

be invariant under a change in o 1 . 

As already mentioned, we have the necessary amplitudes for W Z production in 

[25] and Appendix B of this thesis. To calculate W 1 or Z1 production, we use the 

appropriate 5, 6 and 7 particle amplitudes from [25] and Appendix B and relabel as 

necessary. Otherwise the subtraction process is the same. 

These terms are then implemented in a numerical integration over phase space, 

using VEGAS [85]. 

4.4 Treatment of photons in W7 and Z7 produc­

tion 

We have already dealt with all the infrared singularities that arise in the case of 

gg ---+ W Zqq. In this case we were only concerned about quarks and gluons and 

could totally neglect the electroweak particles and their decay products when it 

came to thinking about singularities. 

This would still be the case if we were calculating, for example, production of a 

WW pair or a Z Z pair. The final state leptons could not become soft, or collinear 

to the final state quarks. However, if we have an external photon in the final state, 

as in the W 1 and Z1 production processes, we have a new scenario. It is possible 

for a photon to become collinear to a quark, as a quark may emit a photon: this is 
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known as fragmentation. We have to consider new singularities due to the photon 

behaviour. 

To treat these singularities properly, it would be necessary to add fragmentation 

contributions to our photon production. The calculation would be divided in to 

direct and fragmentation contributions, with the fragmentation term being a non­

perturbative term. However, the photon fragmentation is not known at this order 

(it is not even known at NLO for the process of interest). 

To get round this problem it is possible to use an isolation procedure that restricts 

the angle of the photon and does not allow it to become collinear to the quark or 

antiquark. It also removes the possibility of the photon being 'faked' by a quark 

jet. The easiest way to isolate the photon is to impose a cone round the photon, 

completely excluding all hadrons in this region. However, this complete exclusion 

within a cone is not infrared safe, nor is it realistic as far as the detector is concerned. 

Therefore the normal way to deal with the photon is to allow a small hadronic energy, 

Er < Ermax, in the vicinity of the photon. 

An infrared-safe photon isolation procedure was introduced by Frixione [86]. 

This also allows only a certain small hadronic energy in the neighbourhood of the 

photon, but this energy varies with the distance from the photon. The energy must 

be zero at the photon itself, and then grows with the distance from the photon until 

it reaches a specified cut-off. 

The hadronic momentum deposited in a cone of size Ro around the momentum 

of the photon must obey the condition: 

~ (1-cosR) ~PrJJ(R- Ri-r) :S Pr"Y 1 _cos Ro , 
l 

(4.37) 

for all R ::; Ro. PTi are the hadronic momenta present within the cone, and PT"Y 

is the photon momentum. 

The distance, ~"Y in pseudorapidity rJ and azimuthal angle¢ is given by 

( 4.38) 

Then only soft partons can be emitted close to the photon, and we can eliminate 

the possibility of troublesome collinear singularities. 
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This procedure is the one that we use in calculating the results given in chapter 6. 

Frbcione's procedure has been found to produce very similar results to the stan­

dard cone isolation. This is fortunate because, although Frixione's method is theo­

retically preferable to other cone isolations, it is still not clear whether it is experi­

mentally practical to implement. 
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Chapter 5 

Results 

The helicity amplitudes of chapter 3 and the subtraction method of chapter 4 allow 

us to calculate numerical results for gluon-gluon induced vector boson pair produc­

tion at the LHC. In this chapter, we study these results, illustrating them with the 

appropriate plots. In particular, we compare the gg induced terms to the qq and qg 

parts. All contributions are calculated using standard cuts, scales, parton distribu­

tions and so on, allowing us to make direct and fair comparisons between different 

terms. The relevant helicity amplitudes for the qq and qg induced terms are given 

in [25], and we have already calculated the helicity amplitudes for gg production 

within this thesis. 

We show transverse momentum plots for each production process, separating 

the total production into the contributions of the different initial states. We are 

particularly interested in the high Pr region. This is where one might expect to see 

anomalous couplings most easily, so it is an interesting and important region to look 

at. It is also where the large size of the NLO term compared with the LO term may 

be seen most clearly. 

We find that the real gg term in vector boson pair production often gives a small 

and negative contribution to the cross section. Even at high pr, the gg term does 

not become significant in the overall cross section. This had not been previously 

anticipated. We also find the one loop gg induced term in z, production to be 

smaller than in previous calculations, though it appears that the use of up-to-date 

parton distributions is responsible. 
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We briefly look at the scale dependence of the transverse momentum results. 

In section 5.2, we improve our understanding of the transverse momentum results 

by considering at the hard scattering part and the parton distributions separately, 

before they are convoluted together. 

Having presented our results in the Standard Model initially, in section 5.3 we 

go on to look at the possible anomalous terms. We use some sample values of 

anomalous couplings to see what effect they are likely to have on production at 

the LHC. While one might hope that anomalous couplings would enhance the gg 

induced contribution to vector boson pair production, it was actually found that the 

effect on qij and qg induced terms is much more substantial than the effect on the 

gg induced term. Thus the gg term is responsible for an even smaller proportion of 

the total cross section than before. We were unable to find allowed values for the 

anomalous couplings that would provide a substantial increase in the gg contribution 

at LHC energies. 

As a final investigation, we studied vector boson pair production at a hypothetical 

Very Large Hadron Collider or VLHC, imagined to have a centre of mass energy of 

200 TeV. This was to see whether a very much higher energy would cause the gg 

term to become important. We found that gg contributions were not substantially 

enhanced even at this huge energy. In fact, in no circumstances throughout our 

different investigations did we find a significant gg term: the gg contribution was 

always at the 1% level. 

It should be noted that throughout this chapter we shall mostly make use of 

results for W Z production, comparing toW"' and Z1 where appropriate. Generally, 

these results are very similar. The choice of W Z to show most features was simply 

a matter of convenience for the author. 
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5.1 Numerical results: PT distributions 

Before we go on to give explicit results for vector boson pair production, we must 

set some of the necessary parameters. These will be used throughout this chapter 

unless otherwise specified. 

The MRST 2001 parton distributions [87] are used throughout, with the one­

loop expression for the coupling constant (a8 (Mz) = 0.119). This is used even 

for the leading order results. We use the NLO parton distribution functions and 

coupling constant. NNLO parton distributions are not fully available yet, and are 

not expected to make much change to the results or alter our overall conclusions. 

The scales used routinely, where /-LF is the factorisation scale and /-LR the renor­

malisation scale, are: 

• for WZ production, /-LF = /-LR = J!(M'fv + Mi) + !(P~w + P~z)· 

• for W /'production, /-LF = J-LR = J M'fv + p~1 . 

• for z, production, J-LF = /-LR = J Mi + P~y 

These are chosen to suit both the total cross section and the transverse momentum 

distributions. 

The masses of the vector bosons used are Mz = 91.187 GeV and Mw = 80.41 

GeV. We do not include electroweak corrections, choosing a and sin2 (0w) in the 

spirit of the improved Born approximation [88], [89]. For couplings of vector bosons 

with the quarks we use a= a(Mz) = 1/128 and for the coupling of the photon we 

use a= 1/137. 

We neglect contributions from external band t quarks, assuming that these will 

be suppressed by the large top mass. The values for the CKM matrix elements that 

we use are IVudl = I"Vcsl = 0.975, IVusl = I"Vcdl = 0.222. 

We do not include branching ratios for the decay of the vector bosons. These 

depend on the decay that takes place, and must be added to the final result. 

The standard cuts, which we use throughout, are Pr > 20 GeV and TJ < 2.5 

for charged leptons, where Pr is the transverse momentum of the lepton and TJ is 

the rapidity. For photons, we also require that Pr > 20 GeV, and use R0 = 1 in 
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the isolation prescription in section 4.4. If there is a neutrino in the final state, the 

required missing momentum , Priss, is also at least 20 GeV. 

The energy of the 1HC collisions, VsLHC' is always assumed to be 14 TeV, and 

the energy of the hypothetical V1HC is taken to be 200 TeV. 

We start our numerical investigation of vector boson pair production by looking 

at transverse momentum distributions. We want to separate the contributions to 

vector boson pair production that come from different initial states. We can then 

see the relative sizes of these different terms. 
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Figure 5.1: Comparing 10 and N10 contributions to WZ production at the 1HC 

Figure 5.1 shows the results that were known previously, for 10 and N10 con­

tributions to vector boson pair production. In this figure, we show W Z production. 

The PT that is plotted is the PT of the lepton that results from the decay of the W. 

We plot the differential cross section dda against PT· The 10 contribution is a black 
PT 

solid line and the N10 contribution is a purple dashed line. It can be seen that the 

N10 term is of the same order as the LO term, and is considerably greater than 

10 at high transverse momentum (they scale is logarithmic). This was mentioned 

previously in section 1.3 as a motivation for the study of a further order in as and 
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the plot shows it explicitly. 
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Figure 5.2: Comparing qij and qg NLO contributions to W Z production 

Next, we break the NLO term into its two constituent parts: a qij induced 

term and a qg induced term. These different contributions are compared to LO 

in Figure 5.2 (for W Z production). The LO term, plotted as a solid black line, 

is exactly the same as that given in figure 5.1. However, the NLO contribution is 

divided into a qij induced part (purple dotted) and a qg induced part (green dashed). 

These individual parts can be compared to the LO term. 

We see that the new channel qg is responsible for the large NLO corrections. 

The qg NLO contribution is larger than LO except at low JJT, while the qij NLO 

term is smaller than NLO at all times, as would normally be expected of a higher 

order term. In the case of the qg induced part, the large gluon density compensates 

for the order in a 8 and makes this term of similar size to, or bigger than, the LO 

part. 

From now on, we will break down results by initial state. Rather than separating 

LO from NLO, we separate qij from qg. The qij induced term is the sum of the LO 

term and the qij induced part at NLO. We have the qg induced NLO term as before. 
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In figure 5.3, we add our newly calculated gg induced result, which is part of NNLO. 

We use a convention that qij is plotted in red (solid), qg in green (dashed) and gg 

in blue (dotted). 

Figure 5.3 shows the somewhat surprising result of adding the gg induced term. 

Earlier in this thesis (section 1.3), we speculated that the gg induced term would 

be large, due to the large gluon densities that are present at the LHC. In analogy 

with the qg induced term, we expected a situation where the suppression in a 8 was 

counterbalanced by the effects of the gluon density. 

However, it can be seen from Figure 5.3 that the resulting gg term is actually 

small and negative (it should be noted that the gg term plotted has been multiplied 

by -1 , and that Figure 5.3 is a logarithmic plot). Neither the size nor the change of 

sign was something that was anticipated in advance, and both are worthy of note. 

Figure 5.4 shows the corresponding results for W 1 production. It can be seen 

that small and negative behaviour is not specific to W Z production but also occurs 

in this gg induced term, with the plots having a very similar shape. 

The situation for Z1 production is shown in Figure 5.5. Here the gg induced 
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Figure 5.4: Adding gg induced NNLO term in W 1 
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term shows some different features from those in the W Z and W 1 cases. This is 

because the gg induced term in Z1 production consists of both the tree level term 

and a one loop contribution (see sections 3.3 and 3.4) . Figure 5.5 shows the total 

gg induced term compared to the qij and qg induced terms. We can see that the 

gg induced term is rather larger than previously, and that it is positive rather than 

negative. 

In Figure 5.6, we decompose the gg induced term of Z1 into its constituent part , 

showing the tree level and one loop parts separately. The tree level part is very 

much like the gg induced parts of W Z and W 1, being similarly small and negative. 

The one loop part is somewhat larger and positive. Though more significant 

than the tree level part, it is not quite as big as one might expect from results in 

the literature, in particular van der Bij and Glover [56]. However, when we compare 

to [56], using the same centre of mass energy and parton distribution functions , we 

reproduce their result. This result becomes smaller on changing from their Duke 

and Owens parton distributions [90] to our MRST [87] . 

The interesting part of the gg term is still the tree level part, as its shape and size 
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Figure 5.5: Adding full gg induced NNLO term in z, 
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came as a surprise. This term is investigated more thoroughly in section 5.2, where 

we separate the hard scattering part from the parton distributions, in an attempt 

to find out what causes the particular behaviour of the gg contribution. 

For the last investigation of this section, we examine the scale dependence of 

our results. In figure 5.7, we plot once again the transverse momentum distribution 

for W Z production, with the qq induced part in red, the qg part in green and the 

gg part in blue. However, this time we do so for three different scales. For each of 

these, the factorisation scale is the same as the renormalisation scale, Jl = JlF = f.lR· 

Jl = f.lst is the normal scale f.lst = J~(M'tv + M~) + ~(P~w + P~z)· This is plotted 

as a solid line. The dashed line represents the scale Jl = 2J-t8 t and the dotted line 

represents Jl = ~ f.lst. Figure 5. 7 shows that the results are similar for these different 

scales. 
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Figure 5.6: Separating tree level and one loop terms in the gg induced contribution 
to Z1 production 
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Figure 5.7: Comparing PT results at different scales: 2f.-L8t (dashed), f.-Lst (solid), ~f.-Lst 
(dotted), for qij (red), qg (green) and gg (blue) induced terms. 
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5.2 Understanding the gg contribution: hard scat­

tering plots 

We noted in the previous section that the gluon-gluon induced contribution to vector 

boson pair production tends to be small and negative. We now wish to further 

explore the properties of the gg term. 

It had been anticipated that the gluon parton distributions would have a large 

effect on this term, enhancing it to something comparable to the other terms. How­

ever, this proved not to be the case. To investigate the causes of the observed be­

haviour , we remove the parton distributions (that is, we set them to 1 everywhere) 

and look at the partonic hard scattering part of the results. 
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18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

/ 

' I 

•.' 

qq 
qg -- - --

10 X gg ----· ··· 

-2 ~~~~~~~~~~~~~~~-L~~~~~~ 
0 2500 5000 7500 10000 12500 

v's[GeV] 

Figure 5.8: qij, qg and gg partonic (hard scattering) cross sections for W Z 

The partonic hard scattering cross section of the W Z process is shown in Fig­

ure 5.8. 

The gg contribution has been multiplied by 10, and all cross sections have also 

been multiplied by 106 . 
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Figure 5.9: Hard scattering for W r 

It can be seen that the gg induced NNLO term is unlike the other terms in that 

it is negative at smalls. It is unexpectedly small in this region, while at high values 

of s the size and shape of the curve is more as expected, with reasonably good 

perturbative convergence. 

This also applies to W r and Zr production, with the W r result being given in 

figure 5.9. 

We examine the negative part of the gg induced term more closely in figure 5.10 

where we magnify the lows region of figure 5.8. Here we can see exactly where the 

gg term turns from negative to positive. The gg term is small and negative in the 

important region where the gluon density is largest, turning positive only at a level 

where the gluon density is not so important and does not significantly enhance the 

process. 

Considering the hard scattering plots and parton distributions separately enables 

us to understand the overall shape that results when we convolute them. This is 

useful in helping us to understand both why the qg induced term is larger than one 

would expect from its order in a 8 , and why the gg induced term is smaller than 
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Figure 5.10: Hard scattering for W Z at low vfs 

expected. 

The qg and gg induced luminosities are both steep functions of the momentum 

fraction carried by the initial partons. This is mostly due to the fact that the gluon 

distribution g(x) increases sharply as the momentum fraction x decreases. 

When looking at results as a function of partonic energy s, as we do in this 

section, we know that the partonic cross section is very often much less than the 

hadronic cross section. The average value of the partonic cross section, (s) is much 

less than the hadronic cross section s as the momentum fractions x1 and x 2 are 

involved, (s) = (x1x2)s. 

As s tends to be low, the behaviour of the qg and gg induced production cross 

sections is dominated by the behaviour of the hard scattering cross section at low s. 
In the case of qg, the partonic cross section reaches a maximum at lows. Hence 

this large result dominates and the overall hadronic contribution from the qg initial 

state is large. 

The gg case is very different as the partonic cross section is small at lows and also 

has a negative part. The negative and positive contributions will tend to balance 
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out, and the terms are already small. Therefore the hadronic contribution of the gg 

initial state remains small despite the high gluon density. 

We have seen how the smallness of the hard scattering part translates into a very 

small contribution when convoluted with parton densities. However, one may ask 

whether the smallness of the hard scattering part is due to numerically small matrix 

elements or to a large cancellation within the subtraction process. 

The answer to this can be found by examining a previous calculation of the 

gluon-gluon induced term at NNLO. Baur and Glover [31] calculated the processes 

gg--+ ZZqij, qg--+ ZZqg and qij--+ ZZgg, which are all of the same order. Here, the 

singularities caused by the final state partons becoming collinear or soft were avoided 

by requiring the presence of two well-separated, energetic jets in the final state. 

Under these conditions, it was found that the ZZjj cross section was dominated by 

the qg induced term, with the qij term contributing about 30% and the gg term at 

the level of 5- 10%. 

It seems that the gg induced contribution to vector boson pair production is 

essentially small and does not become enhanced by the inclusion of singular regions. 

The particular shape of the gg term means that even the large gluon densities at 

LHC energies do not produce a significant gg induced contribution to the overall 

cross section. 
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5.3 Further results: anomalous couplings and VLHC 

So far we have considered vector boson pair production at LHC energies and in the 

Standard Model, and have compared the terms caused by different initial states. We 

found that the gg induced term in vector boson pair production is likely to be small, 

and so one would expect good perturbative stability in a Standard Model vector 

boson pair production result. 

However, we also want to investigate the effects that non-standard couplings may 

have on vector boson pair production. We will now determine whether a change in 

the couplings has any dramatic effect on the results. 

We will also briefly look at the question of a hypothetical VLHC to see whether 

gluon-gluon terms could become significant at energies much higher than that of the 

LHC, or whether they will always be suppressed. 

In Figure 5.11, we plot the transverse momentum distribution for WZ production 

at the LHC if anomalous couplings are included. The anomalous couplings are 

gJ = 1; gf = 1.13; ~'Y = 1.2; ~z = 1.07; )..'Y = )..z = 0.1 (5.1) 

These couplings were defined in section 1.4. They actually deviate from the Standard 

Model a little more than the most recently quoted bounds from LEP (equation (1.6)). 

We use the form factors as given in equation (1.5) and we take A, the scale of new 

physics, to be 2 TeV. 

Adding anomalous couplings changes the shape of the PT plot. Figure 5.12 

compares the anomalous results plotted in figure 5.11 to the Standard Model results 

plotted in figure 5.3. The colours follow our normal convention but each anomalous 

term is plotted as a solid line, with the corresponding Standard Model term as a 

dotted line. 

We see that the qij and qg parts are enhanced at large PT· In particular, adding 

anomalous terms to the qij term causes a huge enhancement, and this term dominates 

the result, in contrast with the Standard Model case. Neither the qg nor the gg term 

is significantly increased by the addition of anomalous couplings. 

We may also examine the hard scattering cross section as before. From figure 5.13 

we see only that the qij is substantially enhanced: it dominates the plot. We can 
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Figure 5.11: qij, qg and gg contributions to WZ production with anomalous cou­
plings 

compare the other terms more easily when plotting to the same scale as figure 5.8: 

this also makes it easier for us to compare the anomalous case to the Standard 

Model case given in that figure. This is shown in figure 5.14, where it can be seen 

that the qij hard scattering cross section is massively increased, the qg part somewhat 

increased and the gg part scarcely changed. 

The anomalous results of figure 5.14 are explicitly plotted alongside the Standard 

Model results of figure 5.8 in figure 5.15. Again the results with anomalous couplings 

are given in solid lines, and the Standard Model results in dotted. 

Not only is the gg term not significantly enhanced by these anomalous couplings, 

it actually becomes less important as the other terms become larger. We were 

unable to construct a combination of anomalous couplings that would make the gg 

contribution important. 

In section 1.4, we discussed the search for anomalous couplings, saying that 

higher order effects tended to occur in the same regions as potential anomalous 

effects. This was one of the main motivations for calculating the gg term. Having 
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Figure 5.12: Comparing anomalous results of figure 5.11 to Standard Model results 
of figure 5.3 

found that the gg term is always small , we may effectively disregard it in calculations 

of both the Standard Model and anomalous cases. It can therefore be surmised that 

if we see deviations from expected (NLO) results , they may be due to anomalous 

couplings, rather than a large NNLO QCD correction. 
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Figure 5.13: Hard scattering for W Z with anomalous couplings 
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Figure 5.14: Hard scattering with anomalous couplings, scale as in figure 5.8 
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Finally, we look at a hypothetical VLHC: a proton-proton collider at a centre of 

mass energy of 200 TeV. This is an attempt to see whether higher energies would 

make the gg part more substantial or whether it would always remain small: we 

want to look at an extreme case. 

Figure 5.16 shows the result for a Standard Model calculation at 200 TeV. 

Here we can see that the gg term still remains at the 1% level and does not be­

come enhanced at the higher energy. The gg term does not remain negative above 

.PT=100 GeV but instead becomes positive, though very small. This can be seen in 

detail in figure 5.17, which, it should be noted, is on a normal plot rather than a log 

scale and shows the gg term itself rather than -1 times the gg part. 
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Figure 5.16: qq, qg and gg contributions to W Z production at VLHC 

Our study at VLHC energies was carried out in order to get a qualitative feel 

for what would happen at high energies and should not be considered to be a re­

alistic prediction for such a machine. We used ordinary parton distributions which 

presumably would not be valid at such high energies. We used the same cuts on 

momentum and rapidity as we considered to be appropriate at the LHC. In calculat­

ing the Standard Model result, we did not consider the appearance of new particles 

100 



0.005 I 

d~ [pb/GeV) 
I I I 

gg 
0 - ---- --------- _______ __ , ___ _ : .. -----:.::.c.:_-_,_:_-_,_:_-_, _ ,_._,_,_._ ,_, _._,_.__,_.~.- · - · - · - - -- --- - ~ 

.· 
-0.005 r- -

-0.01 r- -

-0.015 f- ... -

-0.02 r- : -

-0.025 ~ -

-0.03 I I I I 

100 200 300 400 500 

PT[GeV] 

Figure 5.17: gg term at VLHC 

or couplings from physics beyond the Standard Model. However, we can say that 

the gg contribution remained small and gave an overall negative contribution to the 

cross section. It is unlikely to have a great impact on results even at high energy. 

For all the scenarios in this chapter , we concluded that the gg induced term of 

vector boson pair production is not substantial. 
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Chapter 6 

Conclusion and Outlook 

In this thesis, we have discussed the production of pairs of vector bosons: specifically 

W Z, W ')' and Z ')' production. We have extended the known results for vector boson 

pair production by adding an extra production channel, the gluon-gluon induced 

term at NNLO. 

We initially explained the motivation for this investigation with reference to pre­

vious results in the literature. It was known that in vector boson pair production it 

is common for the NLO terms to be as large or larger than the 10 terms, especially 

in regions such as the high transverse momentum region. It was therefore desirable 

to calculate NNLO results, and it was thought that the gluon-gluon term ought to be 

the dominant term in NNLO due to the high gluon density at the LHC. However, it 

was found instead that a sign change in the gluon-gluon hard scattering, along with 

the small absolute value of the hard scattering result, leads to a small gluon-gluon 

induced term. If our assumptions about the small size of other NNLO terms are 

correct, this implies a good perturbative stability for vector boson pair production. 

We gave explicitly the tree level helicity amplitudes for gg ---+ V'i Y;qij in the 

Standard Model. These helicity amplitudes can be applied to any vector boson pair 

production process, including those not studied here. We added in the appropriate 

anomalous coupling terms for W Z, W ')' and Z ')'. All the amplitudes included the 

decay of the vector bosons into leptons as applicable. We also showed how to obtain 

the gg induced box loop for Standard Model Z')' production from the literature, and 

calculated the gg induced triangle diagram with an anomalous triple vertex. 
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We differed from previous studies of vector boson pair production in that we 

integrated the vector boson pair production process over the whole phase space, 

rather than requiring two jets to be seen and cutting out the singular regions. This 

allows us to keep more of the events, rather than losing a large number through a jet 

veto. We used the subtraction method to cancel singularities analytically. Again, 

this is a general process for all vector boson pair production processes, though it 

did not include the singularity caused by the photon becoming collinear, which was 

treated with Frixione's isolation procedure [86]. 

The amplitudes were implemented in a Monte Carlo integration using VEGAS. 

We presented results under a number of conditions, all of which led to the con­

clusion that the gg induced term of vector boson pair production is small. 

We showed PT plots indicating that the gg induced contribution is small and 

negative. The size of the gg term was seen to be due to the sign change in the 

hard scattering at low 8. We also calculated the vector boson pair production with 

anomalous couplings caused by new physics. Again we found that the gg term was 

unlikely to be significant, and the same was the case even at very high energies (the 

hypothetical VLHC). 

There are a few obvious extensions to this work that could potentially be carried 

out. 

The tree level amplitudes for gluon induced vector boson pair production could 

also be used in a calculation of WW or Z Z production. This would just require the 

calculation of more loop diagrams and is an obvious next step. This would add to 

the 10 and NLO terms from the literature. We would expect these terms also to 

be small, but the unknown contribution of the loop diagrams would suggest that it 

would make sense to carry out the calculations explicitly. 

A particularly interesting process is the gluon-gluon induced production of two 

photons, gg--+ qiJ!r· This is the part of the background to the process gg--+ H--+ 

11, which at the LHC is the main decay mode of the production of a light Higgs via 

gluon fusion. The process of di-photon production was discussed recently by Bern, 

Dixon and Schmidt [91 J. Here they calculated the appropriate loop diagrams for this 

di-photon background to Higgs production, and used the results of our investigation 

into W Z and W 1 production [55] to infer that the tree level process gg --+ qiJ!! 

ought to be small. (They neglected this term in favour of other gluon-gluon induced 
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NNLO terms, and some newly calculated terms at the next order.) However, an 

explicit calculation of our tree level term for 11 should still be interesting, at least 

to ensure that there are no 'surprises' in this term. 

The next step to take regarding the phase space of vector boson pair produc­

tion may be to calculate the contribution qg --+ Vi \12qg. This is another NNLO 

contribution. The gg induced contribution turned out to be so small that the qg 

result, even though suppressed by a power of a 8 , might be a bigger contribution. 

Here the phase space is made more difficult by the possibility of a final state soft 

gluon: one must combine singularities, allowing soft and collinear singularities to 

occur together. 

Further investigations on the gg induced term would just be checks to ensure 

that the gg induced contribution to vector boson pair production is always small. 

Assuming it is found that this contribution is at the 1% level always, as we have found 

in all our investigations, one may not need to conduct many more investigations on 

the explicit details of the gg term under all circumstances, as it would be reasonable 

to leave it out of realistic predictive calculations. 

However, the smallness of the gg term should not in any way be seen as a 

disappointment. It allows us to work just to the known NLO level when making 

experimental predictions, and be reasonably confident that the QCD corrections are 

not large. This stability in the QCD predictions suggests that any deviations from 

the expected (NLO) results could be due to new physics effects rather than this gg 

induced QCD correction. 

We await the LHC results on vector boson pair production with interest. 
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Appendix A 

Colour ordered Feynman rules 

These are the rules used to calculate the kinematic parts of Feynman diagrams 

in the helicity method. Note that we use the conventions of Dixon [52] and in 

particular that as Tr(TaTb) = sab, factors of /2 that we might otherwise expect to 

be associated with colour factors now appear in the Feynman rules. 

External particles are given by spinors as described in chapter 2, li±) and (i ±I· 
Propagators and vertices (with all momenta outgoing) are: 

p, 1/ ·fie. ..JVV\I'v -1, k2 

k-+ i 
/i; 

~ t 

.fi'Y/1 

~lA "" _/ . ~ v v ~ J,(9vp(P- q)" + 9p"(q- k)v + 9"v(k- p),) 

qp 
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Appendix B 

Helicity amplitudes 

B.l Helicity amplitudes for gg---+ WZqq 

Here we present all the helicity amplitudes required for a calculation of 99-+ WZqq. 

We give the amplitudes with anomalous couplings included. To obtain the 

Standard Model result, we would set the anomalous couplings to their Standard 

Model values, 9t = "'z = 1 and ).Z = 0 

We need explicit expressions for only 6 amplitudes: the amplitudes for all other 

helicity configurations can be obtained by some straightforward relations. 

The amplitudes that we require are: 

where these are the amplitudes with helicities 1 and 2 as given, and other he­

licities Z3 vt zt l6 q7 qt. The A amplitudes are those without a triple gauge vertex, 

while the B amplitudes contain a triple gauge vertex. Hence only the B amplitudes 

contain anomalous couplings. 

The helicity amplitudes without a triple gauge vertex are: 

(73) 
(71) (72)s34ss6t347 

{ (
(72)(61(7 + 3)14)(71(1 + 2 + 8)15) (72)(61(5 + 8)(1 + 2)17)[34][85]) 

(82)(12) + is6s(12) 
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+ (73)[34] ((61(3 + 4 + 7)11)(71(2 + 8)15) 
(28)u1347 

+ (615 + 812)(71(3 + 4)11)[85])} 
t568U1347 

1 { (73)(21(1 + 8)15)(61(3 + 7)14)[81] 2 

s12s34S56 [82]t347t12s 

+ (27) 2 (31(2 + 7)11)(61(5 + 8)14)[85] 
(17)tl27t568 

(B.2) 

+ (37)[81][85] ((72)(61(1 + 3 + 7)14) - (21(3 + 7)14)(61(3 + 4 + 7)11)) 
[28]u1347 (17) t347 

+ (61(5 + 8)11)[85][37] ((27)(21(1 + 3 + 7)14) 
t568 (17) 

+ (21(3+7)14)(21(3+4+7)11))} (B.3) 
t347 

1 { (28)(37)[18](21(1 + 8)15)(61(3 + 7)14) 
S12S34S56 (18)t347t128 
+ (27)[71][85](31(2 + 7)11)(61(5 + 8)14) 

[72]t127t568 

+ [85](21(3 + 7)14)(61(5 + 8)12) ((31(2 + 7)11) + (37)(21(3 + 4 + 7)11)) 
t568U2347 [72] i347 

+ (21(1 + 8)15) ((31(2 + 7)11)(61(2 + 3 + 7)14) 
(81)u2347 [27] 

+ (37)(21(3 + 7)14)(61(5 + 8)11))} (B.4) 
t347 

These 'A' amplitudes are the sums of diagrams where the W and Z are ordered 

so that the W is on the same side as the quark, and the Z on the side of the 

antiquark. To obtain the amplitudes with the opposite ordering of W and Z, we 

need to reverse the lepton pairs { 34} +-7 {56}. As we have l3 vt but v: z~-, opposite 

helicities, we have to reverse the order of the pair when swapping the pairs. 

• To reverse the ordering of theW and Z on the quark line, change {3,4,5,6} in 
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the helicity amplitudes to {6,5,4,3}. 

The helicity amplitudes with a triple gauge vertex, including anomalous cou­

plings, are: 

BI2(gigt) = 1/(2(12)(17)(28)s34s56u3456) 

{(67)[51(1 + 2 + 8)17](31(5 + 6)14)(gf + Kz + ,\z) 
,\z 

+ (71(5 + 6)(1 + 2 + 8)17)(63)[45](gf + Kz + M2 u3456) 

+ (61(3 + 4)15)((73)[41(1 + 2 + 8)7](2gf + ,\z) 
,\z 

- M2 (31(5 + 6)14)(71(5 + 6)(1 + 2 + 8)17))} 
z 

z 

(B.5) 

1 
{ [ 1~1

2

2] ( -2(76)[51(1 + 8)12](31(5 + 6)l4)(gf + Kz + ,\z) 
4s12s34S56U3456 t12s 

,\z 
+ ( (71(5 + 6)(1 + 8)12)- (71(3 + 4)(1 + 8)l2)[45](63)(gf + Kz + M2 u3456) 

z 
- 2(61(3 + 4)15)((37)[41(1 + 8)l2](2gf + ,\z) 

+ ~ (31(5 + 6)14)(71(5 + 6)(1 + 8)12))) 

+ ~~~~~~~l ( (31(5 + 6)14)(76)[58](gf + Kz + ,\z) 

,\z 
+ ( (71(5 + 6) 18) - (71(3 + 4) 18) )[45] (63)(gf + Kz + M2 u3456) 

z 
- 2(61(3 + 4)l5)((37)[48](2gf + ,\z) 

+ ~ (31(5 + 6)14)(71(5 + 6)18))) 

+ ({;~1:27 (2(31(5 + 6)14)[11(2 + 7)16][85](gf + Kz + ,\z) 

,\z 
+ ([11(2 + 7)(5 + 6)18]- [11(2 + 7)(3 + 4)l8])[45](63)(gf + Kz + M 2 u3456) 

z 
- 2(61(3 + 4)15)([11(2 + 7)l3][84](2gf + ,\z) 

+ ~ (31(5 + 6)14)[11(2 + 7)(5 + 6)18]))} (B.6) 
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1 
{ [ 18]~28? (2(31(5 + 6)14)(67)[51(1 + 8)l2)(gf + "'z + Az) 

4s12S34S56U3456 t128 81 
,\z 

+ ( (71(5 + 6)(1 + 8)12)- (71(3 + 4)(1 + 8)12) )[45](63)(gf + "'z + M2 u3456) 

- 2(61(3 + 4)15)((37)[41(1 + 8)l2](2gf + ,\z) 

+ ~(31(5+6)14)(71(5+6)(1+8)12)) 
1 

+ [
27

](
81

) ( -2(31(5 + 6)14)[11(2 + 7)16][51(1 + 8)l2](gf + "'z + ,\z) 

+ ([11(2 + 7)(5 + 6)(1 + 8)12]- [11(2 + 7)(3 + 4)(1 + 8)12]) 

l 
z z ,\z 

[45 (63)(gl + K, + M2 U3456) 
z 

+ 2(61(3 + 4)15)([11(2 + 7)13][41(1 + 8)12](2gf + ,\z) 

- ~ (31(5 + 6)14)[11(2 + 7)(5 + 6)(1 + 8)2])) 

+ ~2;j[17] (2(31(5 + 6)14)[11(2 + 7)6][85](gf + "'z + ,\z) 
2 t127 

z 

,\z 
+ ([11(2 + 7)(5 + 6)18]- [11(2 + 7)(3 + 4)l8])[45](63)(gf + "'z + M2 U3456) 

z 
+ 2(61(3 + 4)15)([11(2 + 7)l3][48](2gf + ,\z) 

- ~ (31(5 + 6)14)[11(2 + 7)(5 + 6)17]))} (B.7) 

We need some relations to transform all the amplitudes into amplitudes for all 

other helicity configurations. These relations are the same whether we have an A or 

a B amplitude. 

• To go from [~+ z~- to ~~- z~+ we simply swap 5 +-t 6 in the amplitudes above. 

• The operation 1 f-7 2 exchanges gluons 1 and 2, though the helicities must be 

the same, for example A12 (g{ gi) to A21 (g{ gi) 

To perform the remaining relation, reversing both gluon helicities simultaneously, 

we introduce the relation flipwz where 
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flipwz = 3 +-+ 5, 4 +-+ 6, 7 +-+ 8, (ab) +-+ [ab] (B.8) 

• To reverse both gluon helicities, keeping everything else the same, we use 

flipwz· An example: 

(B.9) 

Of course, we can also combine these relations as required. 

B.2 Helicity amplitudes for gg --+ W "'(qq 

Here we present all the helicity amplitudes required for a calculation of gg ---+ W /Qq. 

Initially we will state the independent amplitudes needed for a Standard Model cal­

culation. We will explain how to use the amplitudes to obtain all helicity config­

urations. We will then give the additional amplitudes needed for the anomalous 

case. 

For the Standard Model case, we need 8 independent amplitudes: 

A12(gtgt1t) B12(gtgt1t) A12(gtgt15) B12(gtgty5) 

A12(gtg21t) BI2(9t921t) A21(gtg21t) B21(9t921t) 
(B.10) 

For each helicity configuration, A is the amplitude with the photon on the same 

side of the diagram as the antiquark, and B has the photon on the same side as the 

quark. 

The explicit helicity amplitudes for these are given below. 

(36) ((63)[34](76) + 1 (((65)[54] 
(27) (21) (61) (66)s34 (57) 2(t345- S34) 

- (63)[34])(61(1+2+7)15)- (61(1+2+7)14)(61(3+4)15))) 

(B.ll) 
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~~~~~~~~~---· --

B ( + + +)- (36)((6j(3+4)j5)(6j(1+2+7)j4)+(6j(1+2+7)j5)((63)[34]-[45](56))) 
12 g1 g2 '"'~5 - 2(27) (21) (61) (65)834(t345- 834) 

(B.12) 

1 

(61) (62)[65]834 

(
(36) ((63)[34](61(1 + 2)17)[76] (816 + 826 + 876)(51(3 + 6)14)[62] 
t346 [75] (12) + (72) (12) 

- ( 2~~~~~:l57 ( (5j(2 + 7)11)(826 + 876)[75] + (61(2 + 5 + 7)11)[72][76](27)) 

(26) 
+ 2(27)(21)(t345- 834) ( (35)(61(4 + 5)13)(36)[46] 

+ ( 856 - 846) (35) (61 (3 + 5) 14) + (56) [45] (53) ( 816 + 826 + 876)) 

- 2(63) (61 (3 + 5) j4) [61 (3 + 4) 15])) (B.1 

1 

(61) (62) [65]834 

(
(35)(61(1 + 2 + 7)14)(26) - (65)(31(5 + 6)11)(61(2 + 7)14) 

(21) (27) (27)t156 

- (65)[74] ((61(1 + 2)(4 + 7)13) + (65)(31(4 + 7)12)[51]) 
t347 (21) t156 

(26) 
- 2(21) (27) ( t345 - 834)) ((53) (56) [51 (3 + 4) 16][46] 

+ (56)[45](53)(816 + 826 + 875)- (53)8s6(6l(3 + 5)14) 

+ 2(36)(61(3 + 5)14)[61(3 + 4)15)) (B.14) 

1/ ( (16) (35) [72] 812834t126t121) 

( (75) 
1 

{ (16)(36)t126( (21(3 + 6)l4)h27 
t257t346 

((21(5 + 7)11)(31(5 + 7)11)[72] + (31(4 + 6)l1)[17]8s7) 
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-------

+ (36)(57)(21(1 + 7)l5)[64][71]2t257) 

+ (26)tl27t346((36)tl26((2l(5 + 7)14)(31(5 + 7)11)[72] 

+ (31 (1 + 6) 14) [17]s57) + (62) (31 (2 + 6) 11) (31 (5 + 7) 14) [72]t257)} 

+ ( [45
1 ) ((16)(63)[71]2(21(1 + 7)(4 + 5)l3)tl26 

S34- t345 

+ (62) [71 ( 4 + 5) l3]tl27( (26) (31 (2 + 6) 11) [72] + (36) [17]tl26))) 

(B.15) 

B12(gi 921't) - 1/ ( (16) (12) (56)s34tl26) ( (26)3 (31 ( 4 + 7) 15) [7 4]/t347 

+ 2[72][21]tl2:(s34- t345) { (16)(36)[71]
2
t126 

( (21 (1 + 7) 15) ( (63) [34] - (65) [54]) + (61 (3 + 4) 15) (21 (1 + 7) 14)) 

+ (26)2[72]tl27( (31 (2 + 6) 11) (2(64) [45][7 4] + (63) ([34][75] + [35][7 4]) 

+ [45]((36)[74](41(2 + 6)11) + 2[75](35)(62)[21] + (63)[75](51(2 + 6)11))) 

+ [71](36)(26)tl26tl27((36)([74][35] + [75][34] + [45](1(4 + 5)17))}) 

(B.16) 

A2I(9i921't) = 1/((17)(35)[26]si2s34tl26tl27) 

( (57) 
1 

((36)(27)[62](21(3 + 6)14)(31(5 + 7)11)tl26tl27tl57 
tl57t346 

(27) (36? (57) (21 (1 + 7) 15) [62][64][71]tl26tl57 

+ (31(2 + 6)l1)tl27t346((75)(21(1 + 7)15)(31(2 + 6)l4)tl26 

+ (71)(21(3 + 6)14)(31(5 + 7)11)tl26 + (71)(26)(31(5 + 7)14)[61]tl57)) 

+ ( [54
] ) ((31(4 + 5)(1 + 7)11)tl26((27)(36)[62][71]- tl27(31(2 + 6)11)) 

S34- t345 

- (31(4 + 5)17)(17)(26)(31(2 + 6)l1)[61]ti27)) (B.17) 
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B21 (gig:; It) = 1/ ( (17) (35) [26]s12s34t126t127) 

( ( ) 
1 

((17)(26)[74]tl27((36)(2l(5 + 6)11)(31(4 + 7)11)[62]tl26 
65 t256t347 

+ (56) (31 (2 + 6) 11) ( (31 ( 4 + 7) l1)[65]tl26 + (31( 4 + 7) 15) [61]t2s6)) 

+ (21(1 + 7)14)ti26t347((56)(31(2 + 6)11)(31(2 + 6)l5)ti27- (27)(36)[71]t2s6))) 

+ ( [45
] ) (tl26(3l(4 + 5)(1 + 7)12)((27)(36)[62][71]- tl27(3l(2 + 6)11)) 

834- t345 

- tl27(3l(2 + 6)11)(31(4 + 5)17)(17)(26)[61])) (B.18) 

We now want to use the amplitudes above to obtain amplitudes for all possible 

helicity configurations. We know that the helicities of the leptons and quarks are 

fixed as l3' zt' q6' iii' but the helicities of gluons and photon can be '+' or ,_,. 

We introduce the relation fiipw"Y where 

fiipw"Y = 3 +-+ 4, 6 +-+ 7, (ab) +-+ [ab] (B.19) 

• To reverse gluon and photon helicities, use fiipw"Y· This also reverses gluon 

ordering and changes A amplitudes to B amplitudes and vice versa. 

Examples of the use of fiipw"Y are: 

A12(g! 9tlt) 

B21 (g! gt 15) 

fiipw"Y[B21 (gig:; 15)] 

fiipw"Y[AI2(9i 92 lt)J 

(B.20) 

(B.21) 

The only other relation that we need is to be able to swap the order of gluon 1 

and gluon 2. When we do this by swapping 1 +-+ 2 in the amplitudes, we also swap 

the helicity of 91 for the helicity of g2 . Hence 1 +-+ 2 on A12 (gi, gt, 1t) will give us 

A21 (gi, gt, It) but 1 +-+ 2 on A12(gi, g:;, It) will result in A21 (g!, gt, It). 

• To reverse the ordering of the gluons, use 1 +-+ 2. This will also exchange 

helicities 1 and 2. 

The two relations above are enough to relate all required helicities to those that 

are given above. 
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We now need the anomalous terms to add to these amplitudes. Here we just need 

four amplitudes, as each combines with both the A amplitude and the B amplitude. 

The four independent amplitudes that we need are: 

Aac( + + +) Aac( + + -) Aac( + - +) Aac( + - +) 12 91 92 "15 12 91 92 "15 12 9t 92 "15 21 9t 92 "15 

and explicit helicity amplitudes for these are given below. 

[54] (61 (1 + 2 + 7) 15) ( ~ (34) (61 (3 + 5) 14) + ~K'Y (36)) 

2(27)(12)(16)s34(t345- s34) 

(B.22) 

(B.23) 

(35)(56) (~(61(1 + 2 + 7)(4 + 5)13)[34] + ~K'Y(6I(l + 2 + 7)14)) 

2(27)(12)(16)s34(t345- s34) 
(B.24) 

A~~(9i92'Y5) - ([45]/(2(16)[27]s12s34t126t127(t345- s34)) 

{ (26)2[27][57]t127 ( ~~ (34) [41(3 + 5)(2 + 6) II] + ~K'Y (31 (2 + 6)1)) 

+ [17]t126((16)[17](2l(l + 7)15) + (26)[75]t127) 

( ~~ (34)[41(3 + 5)16] + ~K'Y (36))} (B.25) 

~H9i92'Yt) - ([45]/(2(17)[26]st2S34tl26t127(t345- s34)) 

{(27)(21(1 + 7)l5)[62][71]tl26 (~~ (34)(61(5 + 3)14) + (36)~K'Y) 
+ tl27((17)(26)[61][75]- (21(1 + 7)l5)t126) 

(~~ (34)[41(3 + 5)(2 + 6)11] + ~K'Y(3I(2 + 6)11))} (B.26) 
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These anomalous amplitudes combine with the Standard Model amplitudes to 

give a complete amplitude for the helicity configuration. 

A~~om (gi gt 1t) 

Bf;om(gi gt It) 

Aff1 (gt gt 1t) + A~~ (gt gt 1t) 

Bf2M (gi gt It) - A~~ (gi 9i It) 

(B.27) 

(B.28) 

All other helicity configurations can be found using the same relations as were 

required for the Standard Model case, but operating on Aanom and Banom rather 

than the Standard Model A and B. 

B.3 Helicity amplitudes for gg --+ Z '"'(qq 

Here we present all the helicity amplitudes required for a calculation of gg --+ Z1qij. 

We already have the necessary amplitudes for the Standard Model case, as they 

can be obtained directly from the W 1 amplitudes given in Appendix B.2. 

Here we only need to state the helicity amplitudes for anomalous couplings. We 

will always use the couplings 

(B.29) 

Though we need amplitudes for every possible helicity configuration of the par­

ticles (g~1 , g;2
, l~3 , ~4 , 1;5

, q~6 , ij;7
) we can obtain all results from just four explicit 

helicity amplitudes: 

(B.30) 

AZ,ac has an intermediate Z (a ZZ1 vertex) while A-y,ac has an intermediate 

photon (a Z 11 vertex). 

The necessary amplitudes can be written explicitly (suppressing the helicities of 

the quarks and leptons, which are always l3' zt' q6' q.{) as: 
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A Zh,ac( + + +) 12 91 , 92 , l5 
= [45)(613 + 415) (2(h,Zh _ (h,Zh)(63) 

4(12) (27) (61)834 1 3 

- (h,;h- ih;h)(6l(3 + 4)15)(53)) (B.31) 

A Zj'"'(,ac( + + -) 12 91 , 92 , l5 - (56)(53) (2(hZh- ii?h)(6l(3 + 5)14) 
4(12)(27)(61)834 1 3 

+ (h,;h- ih;h)[45](65)t345) (B.32) 

A~j'"'(,ac(9i, 92, It) = [
54

] ( (
26

)
2
[75) (2(h~h- ihfh)(3l(2 + 6)11) 

4(16)812834 t126 

+ (h;h- ih;h)(53)[5l(3 + 4)(2 + 6)11]) 

+ [7~~~~27 ([75)(62)(812 + 827) + (12)[71](61(1 + 7)15)) 

(2(h~h - ihfh) (36) + (ii;h- ih;h) (53) (61 (3 + 4) 15))) 

(B.33) 

AZh,ac( + - +) [54) ((72)[17](21(1+7)l5)(2(hZ1h-ih3Zh)(36) 21 91 ' 92 ' 15 = 4812834 (17)t127 

+ (ii;h- iii;h)(53)[5l(3 + 4)16]) 
1 

+ [26)(17)t126 ((12)[61](61(1 + 7)15) + (812 + 826)(21(1 + 7)15)) 

(2(h~h- iiifh)(3l(2 + 6)11) 

(h~h- ih;h)(53)[5l(3 + 4)(2 + 6)1])) (B.34) 

Once we have these amplitudes, we can obtain all other helicity configurations. 

• To reverse helicities of l3 and l4 , use 3 f-7 4 in the above amplitudes. 

• To reverse helicities of q6 and ih, use 6 f-7 7 in the above amplitudes. 
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Reversing the helicities of 91 and 92 is a little bit more complicated, as here the 

ordering of the gluons matters. By swapping 1 t-t 2 in the amplitudes, we reverse 

the ordering of the gluons. If both gluons have the same helicity, then this is just 

a simple swap from A12 to A21 or vice versa. However, if the gluons have different 

helicities, we go from A12(9i92) to A21 (9!9t) and from A12(919t) to A21 (9i92). 

• To exchange 91 (with helicity 1) for 92 (with helicity 2), use 1 t-t 2. 

These equations give us all helicities with 9i 9i 1t, 9{ 9t Is, 9i 92 1t and 91 9t 1t, 
with either gluon ordering. But we still need to fill in the remaining helicities and to 

do this we need a 'flip' relation. fiipz.., reverses the helicity of the gluons and photon, 

while keeping quarks and leptons unchanged, and also reverses gluon ordering. 

fiipz.., = 3 t-t 4, 6 t-t 7, (ab) t-t [ab], 'hf~..,--+ -hf~.., (B.35) 

An example: 

(B.36) 

• To reverse all gluon and photon helicities use fiip 2 ..,. This reverses the gluon 

ordering, but leaves quark and lepton helicities unchanged. 

We may also combine the relations to fill in the remaining gaps. 

A ( - - z+ z--:_ - + --) fl.' [A ( + + z- z-+ + - ::o+)J 12 91 , 92 , 3 , 4 , Is , q6 , q7 = 1Pz.., 12 91 , 92 , 3 , 4 , Is , q6 , q7 1t-t2,3t-t4,6t-t7 

(B.37) 

though of course in this case it helps to combine the relations in advance: 

A ( - - z+ r- - + --) - [A ( + + z- z+ + - :;;+)] 12 91 ,92' 3' 4,15 ,q6 ,q7 - 12 9r ,92' 3' 4,15 ,q6 ,q7 1H2 hZh_._h-Zh (ab)+-+[ab] 
' 12 12 ' 

(B.38) 

• To reverse all the helicities of an amplitude at once (also reversing the gluon 

ordering), use 'hf~..,--+ -hf~~', (ab) t-t [ab]. 
' ' 
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