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Abstract 

Aspects of the Affine Superalgebra sl(2ll) at Fractional Level 

Ph.D. Thesis by Gavin Balfour Johnstone, April 2001 

In this thesis we study the affine su peralge bra ;z ( 2j1; C) at fractional levels of the 

form k = 1/ u - 1, u E N \ { 1}. It is for these levels that admissible representations 

exist, which transform into each other under modular transformations. 

In the second chapter we review background material on conformal field the­

ory, particularly the Wess-Zumino-Witten model and the connection with modular 

transformations. The superalgebra sl(2j1; C) is introduced, as is its affine version. 

The next chapter studies the modular transformation properties of ;l(2j1; C) 

characters. We derive formulae for these transformations for all levels of the form 

k = 1/u -1, u E N\ {1 }. We also investigate some modular invariant combinations 

of characters and find two series of modular invariants, analogous to the A- and 

D-series of the classification of ;z (2) modular invariants. 

In chapter 4 we turn to the study of fusion rules. We concentrate on the case 

k = -1/2. By considering the decoupling of singular vectors, we are able to find 

consistent fusion rules for this particular level. These fusion rules correspond to a 

modular invariant found in chapter 3. 

This study suggests that one may consistently define a conformal field theory 

based on sl(2j1; C) at fractional level. 



Declaration 

This thesis is the result of research carried out by the author between October 1997 

and March 2001 in the Department of Mathematical Sciences at the University of 

Durham. No part of this thesis has been submitted for a degree at this or any 

other university. 

Chapter 2 is a review of necessary background material. The work of chapters 

3 and 4 is entirely that of the author unless otherwise acknowledged. The results 

of chapter 3 have been published as [ 1] and those of chapter 4 are available as the 

preprint [2]. 

The copyright of this thesis rests with the author. No quotation from it should 

be published without their prior written consent and information derived from it 

should be acknowledged. 



Acknowledgements 

I would like to thank my supervisor, Peter Bowcock, for his support in the prepa­

ration of this thesis. Anne Taormina also deserves thanks, not least for suggesting 

the initial direction of this research. 

I would also like to thank all those in Durham I have shared this time with, 

particularly Michael Davies. 

Special thanks go to my family and to Clare Stother for her love and support, 

as well as being a constant reminder of the important things in life. 

This thesis was made possible by an EPSRC research studentship. 



Contents 

1 Introduction 1 

2 Conformal Field Theory and ;l(2ll; C) 4 

2.1 Conformal Transformations in Two Dimensions 4 

2.2 The Virasoro Algebra . . . . . . . 6 

2.3 The Wess-Zumino-Witten Model 13 

2.4 Characters, Modular Transformations and Fusion Rules . 19 

2.5 Overview of ;l(2l1; C) ..................... 26 

3 Modular Transformations and Invariants of ;z(2l1; C) Characters 36 

3.1 Introduction ........... 36 

3.2 Branching ;l(2l1; C) Characters 38 

3.3 Modular S Transformation of ;l(2l1; C)k Characters . 47 

3.4 Modular Invariants 52 

3.5 Conclusion ..... 59 

4 Fusion Rules at k = -1/2 61 

4.1 Introduction . . . . 61 

4.2 Review of ;l(2l1; C) 64 

4.3 Fields and States 66 

4.4 Differential Operators for sl(2ll) . 67 

4.5 sl(211) Invariant 3-point Function 71 

4.6 Singular Vectors for k = -1/2 .. 79 



CONTENTS 

4.7 Calculation of Fusions ................ . 

4.8 The Neveu-Schwarz Sector and the Verlinde Formula 

4.9 Conclusion . 

5 Conclusion 

AU= 2 

B U= 3 

Bibliography 

VI 

81 

88 

90 

91 

94 

98 

104 



List of Tables 

3.1 Effect of modular transformations on characters. . 42 

3.2 Class IV ;z ( 211; q _ !_ characters . 57 
2 

3.3 Class V ;l(211; C)_!_ characters 57 
2 

3.4 Class IV ;l(2l1; C)_~ characters . 58 
3 

3.5 Class V ;l(2l1; C)_~ characters 58 
3 

A.1 Class IV ;l(2l1; C)_!_ characters . 96 
2 

A.2 Class V ;z ( 211; q _ !_ characters 96 
2 

B.1 Class IV ;l(2l1; C)_~ characters . 100 
3 

B.2 Class V ;z(2l1; q_~ characters 100 
3 



List of Figures 

2.1 The root diagram of sl(2l1; q ..... . 

4.1 The action of x, () and 0 in root space. 

4.2 The embedding diagram for classes IV and V. 

4.3 The finite parts of the ;l(2I1;C)_!_ Ramond weights. 
2 

30 

71 

79 

84 



Chapter 1 

Introduction 

One of the most prevalent features of 20th century physics was the widespread 

application made of the concept of symmetry. While this has long been a guiding 

principle in many aspects of scientific endeavour, perhaps its most direct successes 

have come in the field of theoretical particle physics. The Standard Model of ele­

mentary particles, governed by the SU(3) x SU(2) x U(l) symmetry group classifi­

cation, is a triumph of agreement between theoretical prediction and experimental 

observation. Symmetry has also transformed our understanding of phase transi­

tions and critical phenomena. Recent times have seen a move towards ever more 

theoretical concepts awaiting the next generation of experimental corroboration: 

the introduction of supersymmetry has deep appeal and offers an elegant solution 

to a number of unresolved problems within theoretical physics. However, the most 

intractable issue within the subject remains the problem of unifying electromag­

netism and the nuclear forces of weak and strong interactions with gravity. The 

most promising candidate for such a unified framework is provided by the theory 

of superstrings. An essential tool in its description is that of two-dimensional con­

formal symmetry. The methods of conformal field theory underpin string theory, 

as well as the aforementioned study of critical phenomena. These and other areas 

of application maintain theoretical physicists' interest in the subject of conformal 

field theory. That much of the activity in this field is essentially of an abstract 
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nature cannot be denied: (two-dimensional) conformal field theory is one of the 

few arenas in modern physics where the complete solution of models is obtainable. 

As such, intense study is devoted to the analysis of this paradigm. A wide variety 

of sophisticated mathematical structures are encompassed in conformal field the­

ory, resulting in a rich and fruitful interplay on the boundary of mathematical and 

physical research. 

This thesis is particularly concerned with expanding the boundaries of confor­

mal field theory. While generally extremely well understood, there remain certain 

challenges to the researcher in this field. One of these is the status of conformal 

field theories with fractional level affine algebra symmetry. The simplest case to 

consider is fractional level ;z (2) and even for this situation the picture is not yet 

completely clear. From an algebraic point of view, one may consistently define a 

Wess-Zumino-Witten (WZW) model with a fractional level spectrum-generating 

algebra. However, when formulated in terms of an action, such a model is not 

well-defined. A longstanding problem is how to reconcile these two points of view. 

It may be the case that one may not define a consistent conformal field theory 

using a fractional level affine algebra, although the evidence would seem to indi­

cate otherwise. In any case, one may use such models as building blocks of a coset 

theory which is consistent. 

One way in which this study should be generalised is to consider algebras of 

higher rank than simply ;l(2); another to consider superalgebras, which is the path 

adopted here. The extension to ;z ( 211; C) is significant in that this su peralge bra 

involves many features of more complicated superalgebras, in contrast to the sim­

plest affine superalgebra osp(ll2). In particular, in ;l(2ll; C) we see the appearance 

of zero length roots, bringing additional complexity to the problem. This superal­

gebra is also important in the study of a particular string theory, that of the N = 2 

non-critical superstring. 

In this thesis we will attempt to unravel some aspects of a WZW model based 

on fractional level ;l(2ll; <C). We concentrate on two fundamental areas: modular 
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transformations of characters and fusion rules. Combining characters into combi­

nations invariant under modular transformations typically gives partition functions 

corresponding to some physical conformal field theory. In the situation of fractional 

level, it is not clear that this is necessarily the case. One should also examine fu­

sion rules, which are related to modular transformations by the Verlinde formula. 

Again, in the situation of fractional level, it is not clear how this relation should be 

interpreted; hence the necessity of considering this as a separate problem. Although 

finding consistent fusion rules and modular invariants does not entirely answer the 

question of whether a conformal field theory may be well defined in this context, 

it does at least give a strong indication that this may be the case. 

To begin with, we give a general overview of some features of conformal field 

theory, particularly WZW models. We will also give an introduction to superalge­

bras and in particular to sl(2ll). The question of establishing the general modular 

transformations of ;l(2ll; C) characters will then be addressed. We then consider 

fusion rules for a specific value of the level, k = -1/2. Finally, conclusions about 

the results of this work will be drawn and further possibilities for study arising 

from this research will be discussed. 



Chapter 2 

Conformal Field Theory and 

"' sl(2ll; C) 

This chapter examines background material that will be used throughout the the­

sis. The main tools of this work are those of conformal field theory and an intro­

duction to this vast subject is provided. In particular, the Wess-Zumino-Witten 

model is considered in its algebraic formulation as a conformal field theory with 

affine algebra symmetry. Vve then introduce the main object of study-the affine 

superalgebra sl(2l1; C). 

2.1 Conformal Transformations in Two Dimen-

. 
SlOllS 

Although conformal symmetry had been incorporated into quantum field theory in 

the early 1970s, it was the seminal work of Belavin, Polyakov and Zamolodchikov 

[3] in 1984 that ushered in a new era for the subject. One of the main attributes 

of their work was to realise that conformal symmetry, while certainly a powerful 

feature, took on another level of potency for the case of a two-dimensional euclidean 
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quantum field theory 1
. Considering the general case of ad-dimensional spacetime, 

with metric gilv' then a conformal transformation x -+ x' is one under which this 

metric tensor is left invariant up to a change of scale 

(2.1) 

These transformations are such that the angle between two vectors is preserved, 

where this angle is given by v · w/lvllwl = 9o:f3vo:wf3 j(g18v1v8gpuwPw 17
)

112
. 

The infinitesimal coordinate transformation xll -+ xll +Ell gives rise to a change 

in the metric 

(2.2) 

In order for this to be a conformal transformation, the change in the metric is 

required to satisfy 

(2.3) 

now in a flat spacetime of signature (p, q). This equation reveals the fact that the 

case of d = 2 may indeed be markedly different from the general situation. For 

the case d > 2, the finite transformations corresponding to solutions of the above 

restriction on E are translations, Lorentz transformations, dilatations and special 

conformal transformations (a combination of translation and inversion): 

x-+ x' = x +a, 

x-+ x' =Ax (A E SO(p, q)), 

x-+ x' = -Xx, 

1 X+ bx2 

X -t X = --------:----,--
1 + 2b · x + b2 x 2 

(2.4) 

For d ~ 2 spacetime dimensions, the conformal group is described by ~(d + 

2)(d + 1) parameters. In the case of d = 2, in a spacetime with euclidean signature, 
1 As well as [3] we draw heavily on the lectures by Ginsparg [4] and the comprehensive textbook 

by di Francesco, Mathieu and Senechal [5] in this and following sections. The works by Fuchs (6] 

have also been much consulted. 
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the equation (2.3) takes the form of the Cauchy-Riemann equations 

(2.5) 

It is now clear why the case of two dimensions is somewhat distinct from higher 

dimensions. We may use the language of complex analysis, the natural variables to 

consider being the complex coordinates z = x1 + ix2 and z = x1 
- ix2

. \Vi thin this 

context, the (holomorphic) Cauchy-Riemann equations are 8zf(z, z) = 0, with so­

lution any analytic mapping z --+ f(z): the set of local conformal transformations 

is thus coincident with the infinite-dimensional set of analytic coordinate trans­

formations. The number of parameters (six) obtained from the above formula is 

indeed the correct number specifying the global conformal group. However, in two 

dimensions this is distinct from the set of local symmetries, which are not well­

defined at all points on the Riemann sphere. It is this distinction which furnishes 

two-dimensional conformal field theory with an infinite-dimensional symmetry al-

gebra, giving rise to a vast number of constraints that permits, at least in principle, 

the complete solution of the theory. 

2.2 The Virasoro Algebra 

The analytic coordinate transformations z --+ f(z) and z --+ ](z) may be repre­

sented, on an infinitesimal level, by the transformations z --+ z' = z + E(z) and 

similarly for z, where it is assumed that the Laurent expansion E(z) = - L anzn+I 

holds. Acting on a function <P(z, z) these mappings yield 

<P(z', z') = <P(z, z) + E(z)8¢(z, z) + "t(z)B<P(z, z) 

= <P(z, z) + 2: { anln<P(z, z) + anln<P(z, z)} (2.6) 
n 

where the generators 

(2.7) 
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have been introduced (8 oz, [J = 82 ). These generators satisfy (two copies of) 

the Witt algebra 

[lm, ln] = (m- n)lm+n, 

[Zm, ln] = (m- n)lm+n 1 

(2.8) 

The appearance of these two isomorphic, independent Lie algebras invites us to 

consider the coordinates z and z as independent: we shall generally do so and 

often will only consider the dependence on the holomorphic coordinate z, with 

properties for z assumed to hold in similar fashion. Imposing the condition z = z* 

recovers the original physical coordinates. 

Consideration of the limiting behaviour of c( z) as z -t 0 and z -t oo tells us 

that it is only those transformations involving the generators L 1, l0 and h which 

are defined on the whole Riemann sphere. Similarly, only those anti-holomorphic 

transformations involving L 1 , [0 and l1 are globally well-defined. These six elements 

are the generators of the global conformal group mentioned earlier, giving rise to 

the finite transformations 

az + b 
z -t d' cz + 

az+b z -t --~ 
cz+d 

(2.9) 

where ad- be= ad- be= 1. This forms (twice) the group of projective conformal 

transformations S£(2, C)/Z2 . 

The discussion so far has been essentially classical. Consider now a two-

dimensional euclidean spacetime with space coordinate CJ and time coordinate T, 

such that for any field X ( CJ, T) the identification X ( CJ + 2n, T) = X ( CJ, T) is made. 

This is a typical scenario in string theory, where such a spacetime may be taken to 

be the worldsheet of a closed string. The cylinder thus defined may be conformally 

mapped to the complex plane via z = e7+ia and z = eT-ia, z and z taken to be 

independent. The infinite past T = -oo is mapped to the origin of the z-plane 

and the infinite future T = oo is mapped to the point at infinity on the Riemann 
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sphere. Curves of equal time are mapped to concentric circles (with centre z = 0) 

on the complex plane. This is of course similar to the picture described previously, 

but now we have in mind that we are dealing with a quantum field theory in terms 

of continuous operator-valued fields obeying canonical commutation relations. The 

above choice of space and time directions (somewhat arbitrary in the euclidean 

situation) leads to what is known as the radial quantisation of two-dimensional 

conformal field theories. 

One object which plays a central role in a two-dimensional conformal field theory 

is the energy-momentum tensor TJ.tv· This may be obtained by varying the action 

of the theory with respect to the metric, TJ.tv <X 6Sj6gJ.tv. In a two-dimensional 

conformally invariant theory, the energy-momentum tensor may be taken to be 

symmetric, conserved ( [)J.LTJ.tv = 0) and traceless. In terms of the coordinates z 

and z, these features mean that the energy-momentum tensor has two independent 

components, Tzz(z) = T(z) and T22 (z) = T(z). They may be expanded in Laurent 

series 

T(z) = L Lnz-n-2
, T(z) = L Ln:z-n-2. (2.10) 

nEZ nEZ 

Through the Noether prescription, it may be shown that the field T(z) gener­

ates conformal transformations of local fields A(z, z). More precisely, under the 

infinitesimal transformation z--+ z + E(z) the variation of the field A(z, z) is given 

by 

DeA(z, z) = ~ i dw E(w)T(w)A(z), 
27r'l Cz 

(2.11) 

with a similar relation holding for T(z). In the above, the contour of integration 

is understood as being around z in an anticlockwise direction. A little more than 

this should be specified: in the scheme of radial quantisation, products of operators 

A(w)B(z) are only defined for !w! > lzl. To this end, radial ordering is understood: 

{

A(w)B(z) 
R(A(w)B(z)) = 

B(z)A(w) 

if !w! > !z!, 

if !w! < !z! 

(2.12) 
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with the further requirement that if the operators are fermionic, then a minus 

sign must be introduced on the change of order. The contour integral should be 

split into two pieces accordingly. This amounts to time ordering within correlation 

functions and we will generally assume that when products of operators are written 

down, they are implicitly radially ordered. 

The operator product expansion tells us what singularities appear when two 

local fields become coincident. In conformal field theories, it is assumed that the 

set of local fields Ai(z, z) is complete, i.e. 

A(z, z)Aj(w, w) = L cijk(z- w, z- w)Ak(w, 1V), 
k 

(2.13) 

where the Cijk are numerical coefficients. In the case of the product of the energy­

momentum tensor with itself, the operator product expansion is given by 

c/2 2T(w) BwT(w) 
T(z)T(w)=( )4 +( )2+( )+ ... , z-w z-w z-w 

(2.14) 

where the unwritten terms are non-singular as z --+ w. Together with the inversion 

of the Laurent expansion (2.10) 

Ln = ~ i dzT(z)zn+l 
27rz Co 

this operator product expansion implies the Virasoro algebra 

J 
c 2 

[Lm, Ln = (m- n)Lm+n + 
12

m(m - 1)6m+n,o, 

(2.15) 

(2.16) 

There is also a corresponding algebra in terms of the modes Ln. It is this algebra 

which characterises a two-dimensional conformal field theory (at least in part). It 

is in fact possible to define the Virasoro algebra as the central extension of the Witt 

algebra previously discussed, the central term being the conformal anomaly telling 

us how the classical symmetry of the Witt algebra is modified at the quantum level. 

The subalgebra { L_ 1 , L 0 , L1 } of the Virasoro algebra is isomorphic to the sub­

algebra {L1 , l 0 , li} of the Witt algebra, since for commutators of these elements 

the central piece vanishes. Hence, this subalgebra generates the same S£(2, C)/7l2 

global conformal group as before, which remains an exact symmetry. 
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The Hilbert space of states of a conformal field theory is characterised by the 

local conformal algebra. This need not be simply the Virasoro algebra, but for the 

moment we shall discuss states assuming that it is. The vacuum of the theory IO) 

must be invariant under the global SL(2, C) transformations, which is to say that 

it must be annihilated by the elements L_ 1 , L0 and L1 (and their anti-holomorphic 

counterparts). In fact, given the mode expansion of the energy-momentum tensor 

(2.10), this is a requirement of having T(z) IO) well-defined as z ---7 0, which gives 

rise to the condition 

LniO) = 0, n ~ -1. (2.17) 

A similar requirement holds for the corresponding anti-holomorphic quantities. 

Further, the requirement that T(z) be self-adjoint under z ---7 1/z means that 

L~ = L_n. The relationship between states and fields of the theory is given by 

lA) = lim A(z, z)IO). 
z,z-+0 

(2.18) 

In order to define the state (AI, a similar construction for z ---7 oo is required. Using 

the map z ---7 1/ w, this suggests that we take 

(AI= li_m (OIA(w, w) 
w,w-+0 

(2.19) 

where the relation between A and A is given by 

A-( -)=A __ -2h--2h (1 1) -
w, w '- z z . 

z z 
(2.20) 

Hence 

(AI= ljm (OIA(z,z)z2hz21i. (2.21) 
z,z-Hx> 

The conformal transformation relating A and A is a specific example of a general 

result for the transformation of so-called primary fields, defined by 

(2.22) 

under the analytic coordinate transformations z ---7 f ( z), z ---7 f ( z). 
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The quantities h and h may be shown to be the eigenvalues of L0 and L0 : 

(2.23) 

with the result that 

Lolh, h) = hlh, h), Lnlh, h) = 0, n > 0 (2.24) 

for the highest weight state lh, h) created by a primary field c/Jh,h(z, z). Generally, 

we will only consider the holomorphic part lh), created by cPh(z). Now the Virasoro 

algebra tells us that 

(2.25) 

Together with the condition Lnlh) = 0 for n > 0, this shows that the operators 

L_m, m > 0 act as raising operators on the state lh). The state L-nlh) is an 

eigenvector of L0 , with eigenvalue h + n. Applying these raising operators in all 

possible combinations to lh) yields the descendant states corresponding to the 

descendant fields of the primary field cPh(z). The descendant fields (L-nc/J)(z) are 

those appearing in the operator product expansion of T(z) with a primary field: 

1 1 
T(z)¢h(w) = (z _ w) 2 (L0¢)(w) + z _ w (L-l¢)(w) 

+ (L_ 2 qy)(w) + (z- w)(L_ 3cjJ)(w) + .... (2.26) 

The set of primary field and its descendants comprise a conformal family [¢n] 

( cPn cPhn) and form a representation of the conformal (here Virasoro) algebra, 

transforming amongst themselves under a conformal transformation. The set of 

states lh) and descendants form a (reducible) Verma module. We will discuss this 

further in a more general setting in the next two sections. The point of organising 

the fields of a conformal field theory into conformal families is that properties of 

descendant fields follow from those of primary fields. In particular, correlation 

functions of descendants are determined by those of the primary fields: knowing 
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these quantities one may justifiably claim to have completely specified the theory 

in question. 

We conclude this section by discussing how the Virasoro generators may be 

used to calculate correlation functions of primary fields. It is a postulate of con­

formal field theory that these be invariant under global conformal transformations. 

Together with the assumption of an S£(2, q invariant vacuum state, we may write 

(OI1>1(zl,zl) · ··1>n(Zn,Zn)IO) = IT(ow)hi(/Jw)hi(OI1>1(wl,wl) ·· ·1>n(wn,wn)IO) 
j 

(2.27) 

where w = f(z) is of the form (2.9) and U E S£(2, C). Since such transformations 

are generated by L_ 1 , L 0 and £ 1 , we may rewrite this in the infinitesimal version 

(2.28) 

with one such equation for each of k = 0, ±1. Then using the expression for the 

commutator of a primary field and Virasoro generator 

(2.29) 

these may be written as 

n 

i=l 
n 

i=l 
n 

L(z;ai + 2zihi)(OI4JI(zl) · · ·1>n(zn)IO) = 0. (2.30) 
i=l 

The above expressions embody the invariance of correlation functions under trans­

lations, dilatations and special conformal transformations, respectively, and may 

be solved for n-point functions. From these equations it is possible to determine 

2- and 3-point functions exactly. For the 4-point function additional input is re­

quired, but knowledge of the 4-point functions of primary fields is enough to give 

the coefficients Cijk of (2.13), enabling the complete solution of the theory. 
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2.3 The Wess-Zumino-Witten Model 

As already mentioned, conformally invariant field theories may have symmetries 

associated to them beyond that specified by conformal invariance, encapsulated 

in the Virasoro algebra. One particular class of such theories are Wess-Zumino-

Witten (WZW) models [7, 8], reviewed in (for example) [5, 6, 9]. The WZW model 

arose from the search for a modification of the nonlinear sigma model that would 

be a conformally invariant theory. Witten added the Wess-Zumino term to the 

sigma model action, giving the action 

Swzw = _!:_jdCJdTTr((8mg)(Erg- 1
)) 

1671" 

+ 
2

:11" J d3yEmnl Tr((g- 18mg)(g- 18ng)(g- 18lg)). (2.31) 

The field g takes its values in a representation of the Lie group G associated 

with the sigma model. The Wess-Zumino term is defined on a three-dimensional 

space which has as its boundary the two-dimensional worldsheet of the sigma model 

action. In order for the WZW model to be well-defined (that is, for the path integral 

to be single-valued) the parameter k must be quantised and in fact should be an 

integer. 

The point about this action is that, as well as exhibiting conformal invariance, 

it is also invariant under 

g(T, CJ)---+ O(T + CJ)g(T, CJ)0-1(T ~ CJ), (2.32) 

where 0 and 0 take their values in the Lie group G in the same way as g. As 

previously discussed, we may take g(T, CJ + 211") = g(T, CJ): the WZW action then 

describes a closed string moving on a Lie group manifold. Mapping this closed 

string worldsheet (the infinite cylinder) to the complex plane as before, via z = 

e7 +ia and z = eT-ia, this symmetry becomes 

g(z, z) ---+ O(z)g(z, z)0-1(z). (2.33) 

The theory is therefore seen to have a local G ( z) x G ( z) in variance. 
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In terms of the variables z and z, the equations of motion of the WZW model 

are 

(2.34) 

Defining the currents J = -k(Bzg)g- 1 and J = kg- 18-zg we see that 

(2.35) 

and hence that J = J(z) and J = J(z). The currents J and J may be expanded 

in the Lie algebra elements ra, which form a basis for the algebra g associated to 

the group G: 
dimg dimg 

J(z) = L Ja(z)Ta, J(z) = L Ja(z)Ta. (2.36) 
a=1 a=1 

These Ja and Ja, being also functions of z and z alone, respectively, can therefore 

be expanded in the Laurent series 

JU(z) = L z-n-1 J~, Ja(z) = 2:: z-n-1 J~. (2.37) 
nEZ nEZ 

The modes of these expansions may be shown to satisfy two commuting (untwisted) 

affine Lie algebras 

dimg 

[J~, J~] = L irbcJ~+n + kmc5abc5m+n,o, 
c=1 

dimg 

[J-a J-b] ~ ·Jab J-c + k- -'ab-' 
m' n = ~ Z c m+n mu Um+n,o, 

c=1 

[J~, J~] = 0, (2.38) 

where the rb c are the structure constants of g, [Ta' Tb] = 'L:c irb eTC. 

At this point we make a short digression on the subject of affine Lie algebras. 

This subject is covered, for example, in [10, 5, 6]. For every Lie algebra g, one 

may consider the set of mappings g from the circle into g. The unit circle has a 

description in terms of the coordinate z = e21rit, which gives rise to a basis of g as 

{J~Ia = 1, 2, ... , dim g; n E Z}, where J~ = Ja 0 zn. The Ja are elements of g and 

g has the multiplication rule 
dimg 

[J~p J~] = L irbcJ~+n· (2.39) 
c=1 
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This algebra may be supplemented by a central extension in a unique non-trivial 

way to give 

dimg 

[J~, J~] = L irbcJ~+n + kmoabbm+n,o, 
c=l 

[J~, k] = 0. (2.40) 

To completely specify the affine Lie algebra g, we must also add the derivation d, 

such that 

[d, J~] = mJ~, [d,k] = 0. (2.41) 

This additional generator is required since upon choosing the Cartan-Weyl basis 

for g we see that the algebra without d has Cartan subalgebra {HJ, ... , H0, k} (r 

the rank of g). Then choosing the remaining generators E;:_ in the usual way to be 

combinations of the J~ such that 

(2.42) 

we see that the root vector (a\ ... , ar, 0) (0 from the relation [k, E;:_] = 0) is the 

same for each E;:_. The addition of d (in the Cartan subalgebra) removes this 

infinite degeneracy in the roots as they are then given by ( a 1
, ... , ar, 0, n). 

The vector space structure of g is thus 

(2.43) 

The affine Lie algebra g is infinite-dimensional, being made up of the generators 

{J~,k,dln E Z}. It contains as a subalgebra the finite Lie algebra g whose gener­

ators are the zero modes of g, { J0}. 

With these generalities established, we move on to consider states of the WZW 

model as defined by the affine algebra structure. In the same way as the Virasoro 

algebra, we can consider a vacuum state IO) which we can act on with Ja(z). Then 

requiring regularity of this expression at z = 0 gives rise to the condition 

J~IO) = o, n;?: 0. (2.44) 
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As Virasoro primary fields may be defined by their operator product expansion 

with the energy-momentum tensor (2.26), so the affine algebra primary fields are 

defined (following the conventions of [5]) by 

J a( )"' ( _) __ -Tf¢>.,11 (w, w) + 
Z<p>,,W,W ... , 

"" z-w 
_a _ _ c/J>.,11 (w, fu)T: 

J (z)¢>. ,(w, w) = + .... ,,... z-w (2.45) 

In the above, Tf denotes the matrix ya in the representation which has ,\ as its 

highest weight. We remind the reader that the equation (2.42) describing root 

vectors may be generalised from the adjoint representation to an arbitrary repre-

sentation with basis {I.\)} such that 

H~l.\) = .\(H~) I.\) ( i = 1, ... , r ), kl.\) = .\(k) I.\), dl.\) = .\(d) I.\), (2.46) 

the latter two relations being specific to the affine case. For a particular highest 

weight representation, there will be a unique highest weight state I.\) which is 

annihilated by all the raising operators of the algebra, 

(2.47) 

for a a so-called positive root. Then 

(2.48) 

States in the representation space are generated by acting with lowering operators 

on I.\). As the generator k commutes with all other generators, these states will all 

have the same eigenvalue and we use the notation k for this also. The highest weight 

vector is given by2 A= (.\I, ... , Ar, k, -h>.), with the eigenvalue of d suggestively 

chosen. 

Concentrating on the holomorphic sector, we associate the primary field ¢ >. ( z) 

to the highest weight state I.\) via 

lim ¢ >. ( z) I 0) = ¢ >. ( 0) I 0) = I A). 
--------------------~z~~o--

(2.49) 

2To make a clear distinction between affine weights and finite weights, one might label the 

former i As we will not make use of finite weights, we simply denote affine weights by A. 
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Then the operator product expansion (2.45) gives the following conditions defining 

a WZW primary field in terms of modes and states: 

Jgl-\) = -T~I-\) 

J~l-\) = o, n > o, (2.50) 

which is to say that lA) is annihilated by all the raising operators (now denoted J~ 

with n > 0) and provides a representation of the finite algebra. 

We have mentioned that the WZW model has conformal symmetry, so expect to 

see the Virasoro algebra making an appearance. It turns out that one may associate 

a Virasoro algebra to every affine Lie algebra using the Sugawara construction. The 

natural definition of the energy-momentum tensor T(z) in this setting is 

dimg 

T(z) = 1 L : JU(z)Ja(z): 
a=l 

[

dimg k d" ] 
={lim LJa(z)JU(w)- ( lm~2. 

z-+w Z- W 
a=l 

(2.51) 

The colons :: denote the normal-ordered product, the term of order (z- w )0 in the 

operator product expansion of JU(z)Ja(w); 

The antisymmetry of !abc ensures the disappearance of the (z-wt 1 term in (2.51). 

The value of the constant 1 may be fixed by, for example, requiring T(z) to 

have an operator product expansion with itself of the form (2.14). Then 

1 
(2.53) 

where 'ljJ is the highest root of g (typically, but not necessarily, normalised to 2) 

and h v is its dual Coxeter number. The central charge of the Virasoro algebra is 

given by 
kdimg 

c = -;::-----
k + hV'lj;2/2 

(2.54) 

In terms of modes, the expression (2.51) becomes 

(2.55) 
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the normal ordering now meaning that when n = 0 the term with larger subindex 

must be placed to the right, i.e. 

(2.56) 
m m~-1 m;o:o 

When n =/= 0, the modes simply commute. The link between the Virasoro (2.16) 

and affine Lie algebras (2.38) is completed with the relation 

(2.57) 

from which we see that L 0 is to be identified with the generator -d. Examining 

the conditions for a WZW primary field (2.50), it is clear that a WZW highest 

weight state is also a Virasoro highest weight state: 

1 
dimg oo 

LniA) = - """' """' : J:nJ~-m: lA) = 0, n > 0, 
2k + hY7j;2 ~ m~oo 

(2.58) 

since each term involves 1!1,\) = 0 with m > 0. As the generators of the Virasoro 

algebra are given in terms of the affine algebra generators, it suffices to consider 

states of the theory as 

(2.59) 

With the ni positive integers, the J-n; then are raising3 operators and the states 

correspond to descendant fields. 

Lastly, we define the level of the affine Lie algebra g. This is simply given 

by k = 2k/7/;2
: in the situation where 7/;2 = 2 we have k = k. It is the same 

parameter as appears in the WZW action (2.31). We mentioned that this should 

be an integer for a well-defined theory and in this situation particular highest weight 

representations, the integrable highest weight representations, appear. However, 

the WZW model may also be considered in a totally algebraic context, without 

reference to an action, as has been essentially done above. In that case we may 
3There is the usual confusion between the terms "raising" and "lowering" operators: while 

J'!_n and L_n raise the eigenvalue of L0 by +n, one can really only go down from a highest weight 

state, hence the mathematical description of I-A) annihilated by raising operators. 
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consider non-integer values for the level k. Specific choices of values of the level 

organise the representations of the affine Lie algebra, and hence the states of the 

theory, in a remarkable way: we will discuss this in the next section. 

2.4 Characters, Modular Transformations and 

Fusion Rules 

We have seen that a conformal field theory splits naturally into two chiral halves, 

with the chiral algebra of one half commuting with that of the other. In statistical 

mechanics, we imagine a physical system as having some continuous parameters 

associated with it. At some specific values of these parameters, the system reaches 

a critical point at which the system becomes conformally invariant: it is at this 

point that the decoupling between chiral halves occurs. One might imagine that 

the physical spectrum of the theory should deform continuously in moving away 

from this point, leading to restrictions on how the two chiral sectors can be joined 

together. It turns out that considering the theory still at the conformally invariant 

point but defined on higher genus Riemann surfaces4 , principally the torus, gives 

these additional constraints. Other motivations are that the torus is equivalent to 

the plane with opposite sides identified, relevant in many physical applications; and 

the perturbative treatment of string theory relies on summing over higher genus 

worldsheets in the calculation of scattering amplitudes. 

The complex plane may be transformed to the torus by considering two linearly 

independent vectors, w1 and w2 which define a lattice: on identifying points that 

differ by integer combinations of these vectors, we obtain a torus. There will be 

several choices of vectors that yield the same lattice and hence the same torus; our 

conformal field theory should be independent of such choices. For two new vectors 
4 We have thus far defined a conformal field theory on the complex plane plus the point at 

infinity, i.e. the Riemann sphere of genus zero. 
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(periods) wi and w~ describing the same lattice we must have 

(:J (: :) (::) (2.60) 

where a, b, c and d are all integers. Since the area of the basic cell of the lattice 

should remain the same, and since w1 and w2 can also be written as an integer 

combination of the primed periods, the determinant of the transformation matrix 

must be equal to 1. In terms of the modular parameter T, defined as the ratio of 

the two periods T = w2 / w1 , this transformation becomes 

, ar+b 
T --t T = d' 

CT + ad- be= 1. (2.61) 

The transformation matrices form the group SL(2, Z): since changing the sign of 

the parameters simultaneously does not affect the transformation of r, the rele­

vant symmetry group here is SL(2, Z)/Z2. The whole group is generated by two 

transformations, the modular S and modular T transformations: 

1 
S: T --t --, 

T 

corresponding to the matrices 

(2.62) 

(2.63) 

Before making contact with conformal field theory, we must consider those quan-

tities of particular relevance in terms of modular transformations: the characters 

of the affine Lie algebra g. These are defined as 

(2.64) 

In this expression, we sum over elements H~ of the Cartan subalgebra of the finite 

Lie algebra g. The parameter q is defined as q = e2i1fT, where T will turn out to 

be the modular parameter. If we are only dealing with Virasoro symmetry, the 

expression remains valid with this sum set to zero. In either case, the parameter 
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cis the central charge of the (associated) Virasoro algebra, given by (2.54) in the 

WZW situation. The character associated with a particular representation space 

generated by the action of J'!:_m on I.\) is a generating functional for the number of 

states at a given grade (the number of J'!:_m that have acted on I.\)). Specifically, 

evaluating (2.64) at Pi = 0 for all i gives the Virasoro specialised character 

00 

xik(T, {0}) = q-c/24Tr>..,kqLo = qh>.-c/24 Ld(n)qn, (2.65) 
n=O 

where d(n) is the number of states at grade n. The other parameters in (2.64) 

allow us to keep track of the other quantum numbers of the states. 

It may happen that in a given module, one produces a state which is also a high­

est weight state through the action of the J'!:_m, that is, the state J'!:_n1 J'!:_n2 · · · J'!:_nk I.\) 

is also annihilated by all the J~, n > 0. Such a state is called a singular vector and 

has zero inner product with all other states of the module, as do its descendants. 

It generates its own submodule which forms a representation of the algebra, so the 

original module is said to be reducible. An irreducible module may be constructed 

by factoring out all such submodules generated by singular vectors, which amounts 

to identifying states that differ by states of zero norm. Information about which 

states of a module are singular vectors is encoded in the Kac-Khazdan determinant 

formula, knowledge of which then permits the construction of irreducible modules 

and the characters corresponding to them. It is these irreducible representations 

which are of interest here. 

In the WZW model, the quantisation of the level k of the affine algebra g as 

an integer arose out of the need for a well-defined action. In purely algebraic 

terms, we have mentioned that this corresponds to the integrable highest weight 

representations. These are irreducible representations which are also unitary, by 

which we mean that the generators J~ satisfy the condition ( J'!:_n) t = J~. Requir­

ing representations to be integrable results in k being an integer. It so happens 

that there is a finite number of such highest weights for some specific value of k, 

which correspondingly means that there is a finite number of primary fields in the 
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model. What is particularly remarkable about this situation is that the characters 

corresponding to these primary fields transform into each other under the modular 

transformations S and T. 

It would seem from this discussion that the only representations of interest in 

the study of WZW models are integrable ones, at integer level k. However, Kac 

and Wakimoto [11] asked if it was possible to relax this condition yet retain a finite 

set of highest weight representations whose characters closed under the action of 

the modular group. They discovered the admissible representations, which retain 

these important properties, but where now the level kneed not be an integer. These 

representations are now generically non-unitary. The requirement for admissible 

representations is that k = tju, where t E Z, u E Nand gcd(t, u) = 1. Additionally, 

k + hv;? hv ju, where hv is the dual Coxeter number of gk. Restricting to positive 

values of t and u = 1 recovers the integrable representations. Clearly there is now 

a problem of interpretation of the WZW model: although the algebraic formula­

tion is sound, the WZW action is not well-defined. However, many systems are 

described by fractional level conformal field theories. It is also possible to relate 

fractional level models to integer level models via the coset construction. Addi­

tionally, probing the fractional level situation may allow for greater understanding 

of the relation between the two formulations of WZW models. 

Why should this area of modular transformations and their relation to charac­

ters be of any interest? The answer lies in the fact that the partition function of 

a WZW model may be written as a modular invariant combination of characters. 

Considering the complex plane, the Hamiltonian operator H of the theory will 

generate translations in time, along the imaginary axis; the momentum operator 

P will generate translations in space, along the real axis. The evolution operator 

corresponding to a translation along the period w2 (in distance and direction) is 

e-Himw2 +iPRew2 • The partition function of the theory is given by the trace of this 

operator 

(2.66) 
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the dependence on w1 being through H and P. The Hamiltonian on a cylinder 

is given by H = (21r jwi)(L0 + L0 - c/12) and the momentum operator by P = 

(27ri/w1)(L0 - L0 ), where the cylinder has circumference w1 (chosen to be real). 

We have taken c = c, the factor c/24 coming about from mapping the plane to the 

cylinder: in physical terms, this means that the vacuum energy density vanishes in 

the limit w1 ---+ oo. Inserting the expressions for H and P in (2.66) gives 

(2.67) 

where ij = e-2i1rr, with the identification f = r*. We recognise this expression as 

involving the Virasoro specialised characters (2.65). With more care [12] one may 

derive the complete partition function as 

(2.68) 

This trace over the full Hilbert space of states of the theory may be decomposed 

into a trace over irreducible modules and so we find 

(2.69) 

the sum being over all the weight labels of the set of characters closed under the 

action of modular transformations. 

Clearly, this partition function should be invariant under reparametrisations of 

the torus, i.e. modular transformations. We must therefore find matrices N such 

that under the action of S and T, the partition function is unchanged. Dropping 

the Pi dependence for clarity, with 

this means that 

x~k(-1/r) = L:s>-JLxtk(r), 

x~k (r + 1) = LT>-JLXtk (r) (2.70) 

(2.71) 

or [N, S] = [N, T] = 0. For the partition function to describe some physical theory, 

the entries of N must be positive-integer valued. Additionally, on combining the 



2.4 Characters, Modular Transformations and Fusion Rules 24 

holomorphic and anti-holomorphic sectors of the theory, there should be a unique 

vacuum state, requiring N00 = 1 (xo denoting the vacuum character). With these 

requirements, one may search for modular invariant combinations of characters of 

some given affine Lie algebra, which then stand a chance of describing the space of 

states of some physical conformal field theory. 

In general, it is an extremely difficult problem to classify all modular invariants 

of some particular algebra. The canonical example of a complete classification is 

that for ;l(2) [13], implying the classification of the minimal models. It involves a 

totally unexpected correspondence with the simply-laced simple Lie algebras, the 

discovery of which has prompted many years of intensive research by both physicists 

and mathematicians: the mystery of the A-D-E classification is as yet unsolved. 

The case ;l(3) has also been completed [14], revealing a similar pattern. The N = 1 

[15] and N = 2 [16] superconformal minimal models have also been classified, with 

the former again showing an A-D-E pattern. Beyond these examples, only special 

cases are known, with a complete investigation of the simple affine Lie algebras a 

distant goal. These classifications have all been carried out at integer level. The 

case of fractional level ;z (2) has also been investigated, with a full list of invariants 

for admissible representations given by [17] and [18]. The work in [1 J and this thesis 

is the first attempt at discussing the problem for fractional level superalgebras. 

A sensible physical theory is not guaranteed to arise solely from a modular 

invariant combination of characters. Conversely, not all conformal field theories 

exhibit modular invariance, although we will not be concerned with such here. One 

question one might ask is whether the theory admits a consistent fusion algebra. 

The operator product algebra (2.13) is generally quite a complicated structure. 

However, it is in principle possible to derive it from knowledge of the fusion rules 

and the symmetry algebra of the theory. Fusion rules tell us which primary fields 

appear in the operator product of two primary fields, 

c/Ji X cpj = L Ni/¢k· (2.72) 
k 
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The fusion rule coefficients Ni/ are non-negative integers: it may be that the family 

[4>k] can couple in several distinct ways to cPi and c/>j, resulting in coefficients that 

are greater than 1. IfNi/ = 0, then [4>k] does not appear in the operator product 

cPi(z)c/>j(w). Alternatively, this determines whether or not the 3-point function 

(4>'k4>jcPi) vanishes, where 4>'k is the field conjugate to cPk· This will be discussed 

more fully in chapter 4. 

Remarkably, there exists a formula for the fusion rule coefficients in terms of 

the modular transformation matrix S of (2.70), the Verlinde formula [19] (modified 

to include fermionic theories in [20]). This states that 

(2. 73) 

the entries Sij being the same as in (2.70), 0 again labelling the vacuum. This for-

mula means that, in general, once the modular transformations of characters are 

known, fusion rules may be determined; consistency of the operator algebra fol­

lows. We are thus no further along the road to a consistent conformal field theory. 

However, in the case of fractional level, the Verlinde formula does not always yield 

meaningful results: the coefficients may be negative. Some modification of the Ver­

linde formula would seem to be required, although when fractional level algebras 

are used as building blocks in the coset construction, these problems disappear. 

This perhaps indicates that it is not possible to define a consistent non-unitary 

conformal field theory based on a fractional level affine algebra. Other results do 

not support this conclusion and the issue remains unresolved. One may calculate 

fusion rules from the decoupling of singular vectors, which will be discussed later, 

allowing a comparison between these results and the Verlinde formula. As yet, 

results on both these approaches are only available for ;z (2) as discussed in [21] 

and partially ;/(3) [22]. The modular transformation matrices for the affine su­

peralgebra asp(112) were calculated in [23], where the authors made a preliminary 

attempt at calculating fusion rules from the Verlinde formula. Fusion rules for 

asp(112) have been calculated through singular vector decoupling in [24], but no 
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comparison was made there with the results of [23] and indeed the fusion rules 

given in these two works do not agree. The work in this thesis is a first step in 

presenting both the modular transformation results and the fusion rules for the 

affine superalgebra ;l(2l1; C) at fractional level. 

2.5 Overview of ;l(2jl; C) 

This section introduces the principal object of study in this thesis: the affine su­

peralgebra ;l(2l1; C)k. The finite superalgebra sl(2l1; C) is not quite the simplest 

superalgebra one may consider, that being osp(1l2; q, but it differs in important 

ways from this case which means it exhibits many features more common to su­

peralgebras as a whole. 

First, we review some general material on Lie superalgebras. These were first 

investigated by mathematicians in the early 1960s, before being rediscovered by 

physicists in the context of supersymmetry. A full classification by Kac appeared 

in 1977 [25] and a comprehensive modern review may be found in [26] as well as 

the book by Cornwell [27]. 

In the theory of Lie algebras, one considers a vector space together with a 

multiplication which is antisymmetric and satisfies the Jacobi identity. For Lie 

superalgebras, the vector space concerned may be split into an even part 9o and an 

odd part 91 . Elements of the even part are assigned a degree of zero, while elements 

of the odd part have degree one. The vector space is then Z 2-graded, 9 = 9o EB 91 . 

The multiplication is such that 

(2.74) 

The bracket [·, ·] satisfies the properties of graded antisymmetry 

[a,b] = -(-1)dega·degb[b,a] (2. 75) 

and the generalised Jacobi identity 

( -1)dega·degc[a, [b, c]] + ( -1)degb·dega[b, [c, a]]+ ( -1)degc·degb[c, [a, b]] = 0. (2.76) 
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The elements a, b and c are chosen from a homogeneous basis for g, that is, one 

in which they are wholly even or wholly odd. The property (2.75) defines an anti­

commutator when a and b are both odd and the usual commutator otherwise: we 

retain the notation [ ·, ·] for the "super bracket", bearing in mind its dependence on 

the elements within it and will often use {-, ·} when it is clear that the anticom­

mutator is required. The even part of g, g0 , forms a Lie algebra structure on its 

own. While g1 does not share this property, it does carry a representation of the 

even subalgebra. 

The most immediately useful example of objects which obey the properties 

necessary to be a superalgebra are a set of matrices, divided into those which are 

block diagonal and those which are block anti-diagonal. That is, matrices of the 

form 

($) (2.77) 

should be taken as the even elements comprising g0 and 

(2. 78) 

behave as the odd elements of g1 , with the partitioning being of the same form 

throughout. The supertrace of such a matrix is defined as 

STr ( ; I ; ) ~ Tr A - Tr D, (2.79) 

from which we see that the supertrace of an odd matrix is always zero. 

While definitions of quantities from the theory of Lie algebras generally carry 

over to superalgebras, there is a significant area which requires serious modification. 

It may happen that the metric on the root space of a superalgebra is not euclidean, 

as is the case for Lie algebras. The superalgebra of interest here, sl(2ll; C), is one 

such, whereas the simplest Lie superalgebra osp(ll2; C) actually has a euclidean 

metric on its space of roots. This is why we mentioned earlier that sl(2ll; C) is 
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more typical of superalgebras as a whole, having this additional complexity over 

osp(112; <C). The reason that a non-euclidean metric is of concern is that roots 

may then have zero length, so any definitions involving division by the length of 

roots (such as coroots and the dual Coxeter number) must be modified to allow for 

this situation. Additionally, it is not entirely straightforward to imagine a Weyl 

reflection about a root of zero length. With these provisos in mind, we proceed by 

looking at the relevant example: sl(2l1; <C). 

The Lie superalgebra sl(2l1; <C) 5 (also denoted A(1, 0)) has a representation as 

the set of 3 x 3 matrices with supertrace zero, that is, m 11 + m22 - m33 = 0 with 

the following partition: 

mn m12 m13 

m21 m22 m23 (2.80) 

m31 m32 m33 

Matrices with m 13 = m23 = m31 = m 32 = 0 are even, while those with m 11 

m12 = m21 = m22 = m33 = 0 are odd. The basis chosen in [28) is 

1 0 0 0 0 0 

hl= 0 0 0 h2 = 0 1 0 

0 0 1 0 0 1 

0 1 0 0 0 0 

eot+02 = 0 0 0 e-(ot +o2) = 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

eat~ 0 0 0 e_ot = 0 0 1 

0 1 0 0 0 0 

0 0 1 0 0 0 

eo2 = 0 0 0 e_o2 = 0 0 0 (2.81) 

0 0 0 1 0 0 

5 Most of the information in the remainder may be found in the references [28], [29] and [30]. 
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Writing h± = h 1 ± h 2 , one may calculate the (anti)commutation relations of the 

four bosonic generators H±, E±(o:t +o:z) and four fermionic generators E±o:t, E±o:z 

(with the obvious correspondence) of sl(2l1; q as 

{E02 ,E-o:2
} = (H+ + H-)/2, 

(2.82) 

The even subalgebra of sl(211; q is a direct sum of a u(1) algebra generated by 

H+ and an sl(2) algebra generated by H- and E±(o:t +o:2). The Cartan subalgebra 

is made up of H- and H+. The non-zero roots are made up of the even roots 

~0 = {±(a1 +a2 )} and odd roots ~ 1 = {±a1,±a2 }, where a 1 = (1,1) and 

a 2 = (1,-1) (with order (H-,H+)). The root diagram is shown in figure 2.1. 

Here we meet a new superalgebra feature: the Killing form must be generalised 

to incorporate the Z 2 grading. The definition is 

(2.83) 

where d(p) = 0 for p a bosonic index and 1 for p a fermionic index and the f 

are the structure constants of the superalgebra. These as usual define the adjoint 

representation, hence the second expression above. The supertrace is defined as in 

(2.79). Considering only the Cartan subalgebra elements H+ and H-, the Cartan-

Killing metric is Minkowski, with 

groat = (
1 

O ) . 
0 -1 

(2.84) 

As in the case of ungraded Lie algebras, the Killing form relates the Cartan 

subalgebra and weight space of a superalgebra. For every element 1 of the weight 
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Figure 2.1: The root diagram of sl(2ll; q. 

space there corresponds a unique element of the Cartan subalgebra H 7 through 

K(H, H 7 ) =!(H). (2.85) 

Then for a root a this element is given by H 0 = ~i ai Hi, with the scalar product 

of roots defined by 

(2.86) 

From this we see that the fermionic roots have zero length, ai =a~ = 0, while the 

bosonic roots have (±(a1 + a 2 ))
2 = 4 (in this normalisation). The root diagram 

is in a two-dimensional Minkowski space, with the fermionic roots along lightlike 

directions indicating their zero length. 

As previously mentioned, it is not obvious how to consider Weyl reflections 

about a zero length root. Although the definition of Weyl group has been extended 

to deal with this fact, we consider only the standard situation. The Weyl group 

then is l1V = Z2 generated by the reflection in the plane perpendicular to a 1 + a 2 . 

This leads to different inequivalent choices for the set of positive roots. One may 

choose~+ = {a1,a2 ,a1 + a2 } which yields the simple roots as {a1,a2}. The 

Cartan matrix is 

(2.87) 
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where the entries are calculated using AJ 

dividing by zero [27]. 

Another choice of positive roots might have been { o:1 +o:2 , o:1 , -a2 } with simple 

roots { o:1 + o:2 , - o:2 }. This variety of simple root systems available leads to the 

non-uniqueness of the Dynkin diagram [25, 26] although one may always choose a 

distinguished basis of simple roots, containing the smallest possible number of odd 

roots (the second alternative given here). The definition of highest weight state 

also depends on which simple roots we choose: we will use the (not distinguished) 

set { o:1 , o:2 } and define highest weight states shortly in the context of the affine 

version of s/(2!1; C). A quantity also of importance is the dual Coxeter number 

h v: however, it is independent of the choice of simple roots and is equal to 1 for 

sl(2!1; q. 

A superalgebra may be extended to an affine superalgebra in exactly the same 

way as for an ungraded Lie algebra, as previously described. Although we may 

extend the relations (2.82) to the affine case, as we do wish to make contact with 

conformal field theory, we first introduce the currents of ;l(2!1; q (the Ja(z) of 

(2.37)): 

n 

n n 

J( )( ) """ .t± -n-1 e±al z = L Jn z , (2.88) 
n n 
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The modes introduced here satisfy the (anti)commutation relations 

[ 
3 .'±] .'± 

2Jm,Jn = ±Jm+n' 

.'± .'± 
[2Um, Jn J = ±Jm+n' 

{j;;;,j~-} = (Um+n- J!+n)- 2km6m+n,o, 

{j;;, ];;-} = (Um+n + J!+n) + 2km6m+n,O, 

[2J!, j;] = ±j!+n' 

[2Um, j;] = =fJ!+n' 

{ .'± ·±} ± Jm,Jn =Jm+n· 

32 

(2.89) 

Together with the relation [L0 , Xn] = -nXn for all generators Xn and k commuting 

with all generators, this defines the affine Lie superalgebra sl(211; <C) at arbitrary 

level k. Taking the zero modes only gives the finite algebra sl(2l1; <C) (2.82), though 

now with a different normalisation of the Cartan subalgebra generators. The form 

of L 0 is given through the Sugawara construction. Rewriting (2.55) for a generic 

basis (i.e. one for which the generators are not necessarily orthonormal with respect 

to the Killing form) we have 

dim sl(2ll;C) oo 

L = 1 L ~ 
n 2k + hV1j;2 ~ 

a,b=l m=-oo 

·g xaxb . 
· ab m n-m ·' (2.90) 

where 9ab = (gab)- 1 and the X~ are the superalgebra generators. Then 

bearing in mind that when two fermionic generators are interchanged upon normal 

ordering a minus sign appears. In the present normalisation, 'lj;2 = (a1 + a 2 ) 2 = 1 

and so k = 2k. The central charge formula (2.54) is modified to 

k sdim sl(2l1; <C) c = ----:::;--_......:....._:________:_ 
k + hY1j;2 /2 

(2.92) 
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with sdim denoting the superdimension, equal to the number of bosonic minus the 

number of fermionic generators. For sl(2l1; C), this is zero and hence c = 0. 

With affine superalgebras, the fermionic generators have mode indices which 

may be integers or half-integers. This gives rise to two different versions (sectors) 

of the same algebra. In the Ramond sector, the odd generators haven E Z whereas 

in the Neveu-Schwarz sector, they have n E Z + ~. The even generators always have 

mode index n E Z. This structure naturally incorporates the periodic (Ramond) 

and anti-periodic (Neveu-Schwarz) boundary conditions for fermions on the torus. 

Indeed, it was in the construction of fermionic string theories (in the guise of 

dual models) by Ramond [31] and Neveu and Schwarz [32] that superalgebras 

(supersymmetric extensions of the Virasoro algebra) came to prominence amongst 

physicists. 

The weights of ;l(2l1; C) are specified by their eigenvalues with respect to the 

Cartan subalgebra {J5,U0 ,k,L0 }, as discussed earlier ((2.48)). The set of simple 

roots is augmented from the finite situation by a 0 = ( -(a1 + a 2), 0, 1), where the 

other simple roots are ai = (ai, 0, 0), i = 1, 2 (using the same notation for the 

affine roots as the finite roots). Highest weights are parametrised by the quantum 

numbers h_ and h+ as 

(2.93) 

which, with the present choice of a 1 = (1/2, 1/2) and a 2 = (1/2, -1/2) means that 

A= (~h_, ~h+, k, -h). 

Highest weight states lA) = l~h_, ~h+, h) have isospin, charge and conformal 

weight, respectively, defined by 

LolA)= hiA). (2.94) 



2.5 Overview of ;l(2l1; CC) 34 

The highest weight states are annihilated by all the raising operators of the algebra: 

J:IA) = o, J;;+IIA) = 0, 

J~+liA) = 0, Un+IIA) = 0, 

j:IA) = o, j~+IA) = o, 

j;;+liA) = 0, j~+ 1 IA) = 0, (2.95) 

where n E Z+. Additionally, Ln+1IA) = 0. Note that the mode indices are all 

integers, so this properly defines a Ramond highest weight state. The conditions 

(2.95) may all be obtained from 

lilA)= JriiA) = j~+IA) = 0. (2.96) 

To conclude this section, we relate the Ramond and Neveu-Schwarz sectors of 

;l(2l1; CC). There are several possible "spectral flows" which achieve this, but one in 

particular which means that a Ramond highest weight state is mapped to a Neveu­

Schwarz highest weight state [29, 30]. This is of some importance in computing 

;l(2l1; CC) character formulae, since then the transformation of a Ramond character 

built on a highest weight yields a Neveu-Schwarz highest weight character (as used 

in [29]). The relevant spectral flow corresponds to an order 2 automorphism 1 

(with 1 2 = 1) of the finite sl(211; CC) algebra, yielding 

I(Un) = Un, 

~(j~n = j~~!, 
2 

l(k) = k. (2.97) 

There is also the relation I(Ln) = Ln- J~ + ~kbn,O· Then 1 maps between the Ra­

mond and Neveu-Schwarz sectors, with highest weights mapping to highest weights. 

The fact that 1 is order 2 means that the fermionic Neveu-Schwarz generators are 

1/2 integer indexed. On flowing between the two sectors, the quantum numbers of 
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states are related in the following way: 

(2.98) 

This tool of spectral flow will be used in later calculations: for now, it ends our 

overview of ;l(2ll; C). 



Chapter 3 

Modular Transformations and 
A 

Invariants of sl(2ll; C) Characters 

This chapter examines the particular problem of calculating modular transforma­

tions of ;l(2l1; C)k characters, for fractional levels k = 1/u- 1, u EN\ {1}. With 

the solution of this problem, we are able to examine some modular invariant combi-

nations of characters, which may be taken as a first step in attempting to determine 

partition functions for conformal field theories. The work is entirely contained in 

[1]. 

3.1 Introduction 

The properties of the affine Lie superalgebra ;l(2l1; C)k at fractional level were 

much investigated in a series of papers, variously by Bowcock, Hayes and Taormina 

[28, 29, 33]. The motivation for this work was not solely abstract, although this is 

certainly not an insignificant one, given the limited study of affine superalgebras 

generally. In fact, the representation theory of sl ( 211; C)k seems to play a role in the 

study of non-critical string theory, specifically the N = 2 non-critical superstring 

[34]. It has long been held that a non-critical (super)string may be described in 

terms of a topological G /G Wess-Zumino-Witten model, with G a Lie (super)group 
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[23, 35, 36]. The physical states of the GIG model are believed to be in a one-

to-one correspondence with those of the relevant string theory. Establishing this 

correspondence between the states of the S L ( 2j1) IS L ( 2j1) model and those of the 

N = 2 non-critical superstring was one of the primary motivations of the works 

[28, 29, 33]. Then with the relationship in place, one might hope to say something 

about the string theory from purely algebraic investigations. Non-critical string 

theory may be described in terms of a matter sector, a Liouville sector describing 

the gravitational degrees of freedom and a ghost system. When related to the 

relevant GIG WZW model, in the case of the N = 2 string it is found that the 

level of the sl(2j1; C)k algebra describing the matter sector is given by 

p 
k =- -1, 

u 
p,u EN, gcd (p, u) = 1. (3.1) 

In the introduction we stated that Kac and Wakimoto [11] showed that for levels 

of the form k = tlu, gcd (t, u) = 1, admissible representations of an affine algebra 

exist. We see that this is precisely the case here, motivating the study of sl(2j1; C)k 

at fractional level. Additionally, fractional level sl(2j1; C) has also arisen in the 

study of Gaussian disordered systems [37], though not at levels of the form which 

we will consider. 

While the promise of this particular approach to the N = 2 non-critical string 

has yet to run its course, the work of this chapter continues a more general study 

based on the understanding developed in [28, 29, 33]. In particular, in [33] the 

branching functions of some sl ( 2j1; C) k characters were derived (for k = 1 I u -1)' re­

expressing these complicated objects in terms of simpler ones with known modular 

transformation properties. This was done with a view to calculating the behaviour 

of sl(2j1; C)k characters under modular transformations. While the behaviour un­

der T: T ----t T+ 1 was found to be standard, under S : T ----t -1IT only a few specific 

examples were worked out, namely fork = -112 [29) and the Neveu-Schwarz sector 

for k = -213 [30], being the first two cases of u = 2 and u = 3 respectively (the 

case u = 1 corresponds to integrable representations). The importance of finding 



3.2 Branching ;l(2l1; C) Characters 38 

modular transformations lies in the fact that one may then address the question 

of finding modular invariants, extending the understanding of the physical space 

of states of the S£(211)/S£(211) model. More generally, one may also attempt to 

define a conformal field theory based on fractional level ;l(2l1; <C)k. Attempts to 

develop fractional level conformal field theories have thus far mainly concentrated 

on ;l(2) and asp(112), more of which later. 

We begin by reviewing previous work leading to the branching formulae for 

;l(2l1; C)k characters. These must be manipulated somewhat in order to facilitate 

the calculation of their modular transformations. Having achieved this, we describe 

how the behaviour of ;l(2l1; <C)k characters under the S transformation may be 

found and give the form of this transformation for all levels k = 1/ u -1, u E N\ { 1}. 

In the final section we identify some modular invariant combinations of characters, 

which are analogous to the A- and D-series in the famous classification of ;l(2) 

modular invariants [13]. 

3.2 Branching ;l(2ll; C) Characters 

In [33], branching formulae for the Neveu-Schwarz class IV and class V characters 

of the affine superalgebra ;l(211; <C)k (k = 1/u - 1) were conjectured, based on 

patterns appearing for low values of u. These branching formulae have now been 

firmly established in [38]. The characters were branched into products of ;l(2; C)k 

characters, generalised theta functions and string functions, the modular transfor­

mation properties of which are known. This decomposition was found where the 

level is of the form k = 1/u- 1, rather than the more general k = pju- 1 and it is 

for this reason that we are restricted top = 1. Class IV and class V refer to specific 

sets of representations identified in [28, 29], satisfying certain restrictions on their 

quantum numbers. The reason for considering these classes only is that class I 

characters are modular forms rather than functions, transforming with additional 

factors under modular transformations, so it is not clear that they may be used to 
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construct modular invariants. Classes I I and I I I are believed to contain subsingu­

lar vectors, making the computation of their characters extremely difficult. Class 

IV and class V characters are thought not to be afflicted with these difficulties, 

being modular functions and not containing subsingular vectors, so stand a chance 

of forming a modular invariant set. The work of [38] further reinforces the fact that 

the relevant representations are class IV and class V, since in considering certain 

decompositions of ;l(211; q characters at level k = 1/u- 1 it is only these which 

appear. 

has now shown that for levels of the form considered here ( k = 1/ u - 1), 

the ;/(211; qk characters which appear are all equivalent to class IV and class V 

characters. 

From the definition (2.64), ;z(2l1; qk characters are given by 

;t(2I1;<Ch ( ) T {2 ·( l3 u, L )} xh_ ,h+ a, v, T = r exp 7r'l a 0 + v 0 + T 0 , (3.2) 

where JJ and U0 are the zero mode Cartan generators of ;l(2l1; qk· Note that 

there is no factor q-c/24 in this definition, since for ;l(2l1; C), c = 0. We label 

the characters by the isospin and charge quantum numbers which characterise the 

;l(211; C)k highest weight states lA) (defined in (2.95)) of the associated represen-

tations: 

(3.3) 

We now examine some properties of ;l(2; C)k characters, generalised theta func­

tions and string functions which are combined together in the expressions which 

we will use for ;l(2l1; C) characters. From [39] we have the following expression for 

;l(2; C)k characters: 

. {) (!!. T) - {) (!!. T) 
sl(2;<C)k( ) _ v+,w u' v_,w u' 

Xn n' a, T - 9 ( ) ( ) ' ' 1 1,2 a,T - {)_ 1,2 a,T 
(3.4) 

where the level is parametrised as 

gcd(t, u) = 1, u E N, t E Z, (3.5) 
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with 0 ~ n ~ 2u + t- 2 and 0 ~ n' ~ u- 1 and 

V± = u(±(n + 1)- n'(k + 2)), 

In the above, the generalised theta functions fJm,m1 [40] are defined as 

fJm,m~(a,T) = Lqml(n+t,;;-r)2Zml(n+2:~). 

nEZ 

The variables q and z are defined by 

q = exp(2niT), T E C, Im(T) > 0 ===> lql < 1, 

40 

(3.6) 

(3.7) 

z = exp(2nia). (3.8) 

The cases of interest here are those for which k = 1/u -1, that is, where t = 1- u: 

the ;l(2l1; C)k characters at level k involve ;l(2; C)k characters at the same level. 

Under the modular S transformation S : (a, v, T) --t (~, ~' -~), the ;l(2; C)k 

characters (3.4) transform via [39] 

si(2;C)k ~ - ~ - -i1rka2 /T L L s I I sl(2;C)k ( ) 
( ) 

2u+t-2 u-1 

Xm m 1 ' - e mm nn Xn nl a, T ' 
' T T ' ' 

n=O n 1=0 

(3.9) 

where 

S _ {;r;;( 1)m1 (n+l)+(m+l)n1 -i7r(k+2)m1 n 1 
• (n(m + 1)(n + 1)) 

1 1- - e stn . 
mm ,nn u2(k + 2) k + 2 

(3.10) 

For the generalised theta functions (3. 7) we have [40] 

.a (~ -~) _ -i1rm1 a 2 jr{Jf,iT 
2mL

1

-l -i1rrmjm1 .o ( ) Vm ml , - e e Vr m1 a, T 
' T T 2m1 

' 
r=O 

(3.11) 

and for the string functions [41] 

(u-1) ( 1) _ 1 ~ ~ ( t b') (u-1)( ) 
Ca,b -~ - J . ~ ~ S a, b, a, Ca1,b1 T , 

( -zT)(u- 1)(u + 1) ai=O b1=-u+2 

(3.12) 

a1=b1 mod2 

where 

( b ' b') _ i1rbb1 /(u-1) . (n(a + 1)(a' + 1)) s a, , a , - e sin . 
u+1 

(3.13) 
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The string functions have the following useful symmetry properties [42]: 

(u-1)( ) _ (u-1)( ) _ (u-1) ( ) _ (u-1) ( ) 
Ca,b T - Ca,-b T - Ca,b+2(u-1)Z T - Cu-1-a,u-1-b T ' 

(3.14) 

As already mentioned, in [33] branching formulae for ;l(2l1; C) Neveu-Schwarz 

characters were derived which expressed them in terms of the quantities discussed 

above. The result for class IV characters reads 

u-1 
N s,Iv,8t(211 ;ch ( ) _ L st(2;1Ch ( ) 

XhNS hNS a, v, T - Xa u-m-1 a, T - , + ' 
a=O 

u-2 

XL '!9(u-1)(m-2m')+u(u-1)(a+1)+2au(I-[I))-2ub,u(u-l) (~, T) 
b=O 

(u-1) ( ) ( S) 
X ca,a(u-1)+2a(I-[I))-2b T 3.1 

and for those in class V it is 

u-1 
NS,V,s1(211;1C)k ( ) _ "'""' si(2;1C)k ( ) 

Xhf!_S,h~s a, v, T - L..-t Xa,M+M'+1 a, T 

a=O 
u-2 

XL '!9(u-1)(M'-M)+u(u-1)a+2au(I-[I])-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) 
X ca,a(u-1)+2a(%-[%])-2b T ' 

where [~] denotes the integer part of~-

(3.16) 

For the Neveu-Schwarz sector, the isospin (~h:!5 ) and charge (~h~5 ) quantum 

numbers of highest weight states are given by 

NS 1 h_ = --(u- m- 1), 
u 

hN+s = ~(2m'- m), 0---- m' ---- m---- u 1 ::::::: ::::::: ::::::: -
u 

(3.17) 

in class IV and by 

1 
hf!5 = --(M+M'+1+u), 

u 
h~s = .!_(M- 1\11'), 0 ~!VI+ !VI'~ u- 2 (3.18) 

u 

in class V. We use the quantum numbers of the highest weight state upon which 

a character is built to label that character. 
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Under the modular transformations Sand T, characters of the Neveu-Schwarz 

and Ramond sectors mix according to table 3.1. This has been discussed in [43] in 

the context of superconformal field theory. In string theory, these transformations 

relate boundary conditions for fermions living on the string worldsheet, as discussed 

by Seiberg and Witten [44] (amongst others). Here we see the appearance of the 

supercharacters SxR and SxNs. Though these do not have the physical relevance 

of xR and xN s, they are useful here as can be seen in table 3.1, in that they are 

necessary for writing down a set of characters closed under modular transforma­

tions. In fact, the Ramond supercharacters form a closed set on their own; we 

discuss them here for completeness. The difference between a supercharacter and 

a character is an insertion of the factor ( -1V in the definition (3.2). This fermion 

number operator highlights states that are fermionic, giving rise to a minus sign in 

their presence. 

s T 

XNS XNS SxNs 

XR sxNs XR (3.19) 

sxNs XR XNS 

SxR sxR SxR 

Table 3.1: Effect of modular transformations on characters. 

Given then that we will come to consider the characters and supercharacters 

of the Ramond sector and the supercharacters of the Neveu-Schwarz sector, we 

mention that the Neveu-Schwarz supercharacters have the same quantum numbers 

as the characters while the Ramond characters and supercharacters have 

hR =-m 
- ' 1l 

hR+ = hN+ s' 0 / I / / 1 ~m ~m~u- (3.20) 

in class IV and 

h~ = .!_(M + M' + 2), h~ = h~5 , 0 ~ NI + 111' ~ u- 2 
u 

(3.21) 
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in class V. The conformal weight in both classes for the Ramond sector is given by 

(3.22) 

and in the Neveu-Schwarz sector by 

(3.23) 

At this point, we have given only the branching formulae for Neveu-Schwarz 

characters. vVe can obtain those for Ramond characters from (3.15) and (3.16) by 

the spectral flow (2.97). Neveu-Schwarz characters are defined as in (3.2): 

sl(2ll;C)k ,NS( ) T {2 "( J.3,NS rrNS LNS)} 
XhNs hNs a, v, T = r exp 7r't a 0 + vu0 + T 0 , 

- , + 
(3.24) 

to which the application of (2.97) gives 

Xst(2ll;C)k ,NS(a v T) = Tr exp{27ri(a(-.J.3'R + lk) + vU,R + T(LR- J.3'R + lk))} 
h_ ,h+ ' ' 0 2 0 0 0 4 

= q~kz~kTr exp{27ri( -(a+ T)J~,R + vU(; + T L~)} 

= qkl4zkl2xR,st(2ll;C)k (-a_ 7 v r) 
hl_!_,h~ ' ' ' 

with q and z defined in (3.8). Then we may write 

R,s1(2ll;C)k ( ) _ -k/4 J-k/2 NS,s1(2ll;C)k (- _ ) 
XhR hR a, v, T - q z XhNs hNs a T, v, T _, + - , + 

_ (1-u)/4u (1-u)/2u NS,sl(2ll;C)k (- _ ) 
- q z XhNS hNS a T, v, T 

- , + 

where z' = z-lq-1 and recalling that we are considering only k = 1/u- 1. 

(3.25) 

(3.26) 

This means that we must shift the variable a to -a-T in the ;l(2; C)k char­

acters, the only place where a appears. The effect of this may be calculated by 

using the definition of the generalised theta functions (3.7) and the definition of 

the ;l(2; C)k characters in terms of these given by (3.4). 

The theta functions which appear in (3.4) are of the form '!9m,m' (~, r) with r = 1 

or u, m = ±1 or V± and m' = 2 or w. From the definition (3.7) we find that 

{) (-a- T ) _ {) (~ ) -m'/4r2 -m'/2r 2 

m,m' ' T - m' -m m' ' T q z . r r , r 
(3.27) 
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In the case of '!9±1,2 (a, T) appearing in the denominator of (3.4), the index m' jr -m 

is simply equal to 1 for '!9 1,2 and 3 for '!9_ 1,2-but from (3.7) we see that '!93 ,2 = '!9_ 1,2. 

So spectral flow on the denominator of (3.4) introduces an overall factor q112 z in 

;1(2;1C)k ( ) 
Xn,n' -a- T,T. 

For the case of '!9 (=!!..=I. T) = '!9!!!._ (<!. T)q-wf4u
2 
z-wf2u

2 it can easily be 
V±,W U ' u V± 1W U' ' 

verified from the definitions (3.6) and (3.7) that '!9~-v±,w(;, T) = '!9v±,w(;, T) where 

v~ = u(±(u- 1 - n) + 1) - (u- 1 - n')(u + 1), again recalling that we take 

k = 1/u- 1. Hence 

;l(2;1C)k (- _ ) _ -(1-u)/4u -(1-u)/2u ;l(2;1C)k ( ) 
Xn,n' a T, T - q z Xu-1-n,u-1-n' a, T 

and thus 

u-1 
R,IV,;l(2ll;IC)k ( ) - L ;l(2;1C)k ( ) 

XhR hR a, v, T - Xu-1-a m a, T _, + ' 
a=O 

u-2 

XL '!9(u-l)(m-2m')+u(u-l)(a+1)+2au(%-[%])-2ub,u(u-1) (~, T) 
b=O 

(3.28) 

(u-1) ( ) ( g) 
X Ca,a(u-1)+2a(%-(%])-2b T 3.2 

and in class V 

u-1 
R,V,;l(2I1;1C)k ( ) - L ;1(2;1C}k ( ) 

XhR hR a, v, T - Xu-1-a u-M-M'-2 a, T _, + ' 
a=O 

u-2 

XL '!9(u-l)(M'-M)+u(u-1)a+2au(I-[%])-2ub,u(u-1) (~, T) 

b=O 

(u-1) ( ) 
X ca,a(u-1)+2a(%-(%])-2b T ' 

with definitions as given previously. 

(3.30) 

To obtain the Neveu-Schwarz supercharacters, we must shift the variable a ----t 

a + 1 in (3.15) and (3.16), then divide the results by eirrh:!s (this procedure corre­

sponding to an insertion of the operator ( -1 V in the definition of the character 
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[29]). For class IV we find 

u-1 

S NS,IV,sl(211;1C)k ( ) - L i7r(a-(u-m-1)) si(2;1C)k ( ) 
XhNS hNS a, v, T - e Xa u-m-1 a, T - , + 1 

a=O 

u-2 

X L '!9(u-1)(m-2m')+u(u-I)(a+1)+2au(~-[~])-2ub,u(u-1) (~, T) 
b=O 

45 

(u-1) ( ) ( 1) 
X ca,a(u-1)+2a(~-[~])-2b T 3.3 

and for class V we obtain 

u-1 

S NS,V,sl(2i1;1C)k ( ) _ ~ i1r(a-(M+M')) sl(2;1C)k ( ) 
Xhl!_s,h:;s a, v, T - L..-t e Xa,M+M'+1 a, T 

a=O 

u-2 

XL '!9(u-1)(M'-M)+u(u-1)a+2au(%-[~])-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) 
X ca,a(u-1)+2a(%-[~])-2b T · (3.32) 

The Ramond sector supercharacters are obtained in similar fashion from (3.29) 

and (3.30), shifting a--t a+ 1 and dividing by ei1rhl!: 

u-1 

S R,IV,sl(2I1;1C)k ( ) - L i7r(u-1-a-m) sl(2;1C)k ( ) 
XhR hR a, v, T - e Xu-1-a m a, T _, + ' 

a=O 

u-2 

X L '!9(u-1)(m-2m')+u(u-1)(a+1)+2au( ~-[~])-2ub,u(u-1) ( ~' T) 
b=O 

(u- 1) ( ) (3 33) 
X ca,a(u-1)+2a(%-[~])-2b T · 

and 

u-1 

S R,V,sl(211;1C)k( ) - L i7r(M+M'-a) sl(2;1C)k ( ) 
XhR hR a, v, T - e Xu-1-a u-M-M'-2 a, T _, + ' 

a=O 
u-2 

XL '!9(u-1)(M'-M)+u(u-1)a+2au(%-[~])-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) 
X ca,a(u-1)+2a(%-[~])-2b T . (3.34) 

On applying the modular S transformation to a particular character, a linear 

combination of class IV and class V characters is obtained. The calculation of 

the effect of S in the general case is thus simplified by combining the branched 
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;l(211; <C)k formulae. Examining the Neveu-Schwarz branching formulae (3.15) and 

(3.16), it is clear that the substitution 111 = m'- m- 1, M' = u- 1 - m' in 

the class V formula (3.16) gives us precisely the class IV formula (3.15). Since 

0 ~ M + M' ~ u- 2, these new values of m = u- 2-M- M' and m' = u- 1-M' 

are those for which 0 ~ m < m' ~ u - 1, whereas for class IV we have 0 ~ m' ~ 

m ~ u- 1. We can use the same branching formula (3.15) for both class IV and 

class V, with 0 ~ m ~ u -1 and now the range of m' extended to 0 ~ m' ~ u- 1, 

but the relevant M and lvf' and expressions for the class V quantum numbers must 

be used to obtain the correct values of hf'!.5 and hf_'/.5 . 

The story for the Ramond characters (3.29) and (3.30) is exactly the same; 

for the Neveu-Schwarz and Ramond supercharacters we must modify (3.31) and 

(3.33) slightly. The final versions of the branching formulae read (now labelling 

the ;l(2l1; <C)k characters by m and m'): 

u-1 
NS,sl(2i1;C)k ( ) _ """' sl(2;C)k ( ) 

Xm,m' a, v, T - D Xa,u-m-1 a, T 

a=O 
u-2 

XL '!9(u-1)(m-2m')+u(u-1)(a+1)+2au(~-[~})-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) XC r· 
a,a(u-1)+2a(~-[%])-2b ' 

u-1 
R,sl(2I1;C)k ( ) _ """' sl(2;C)k ( ) 

Xm,m' a, v, T - D Xu-1-a,m a, T 

a=O 
u-2 

XL '!9(u-1)(m-2m')+u(u-1)(a+1)+2au(%-[~])-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) XC r· 
a,a(u-1)+2a(~-[~])-2b ' 

u-1 
S NS,sl(2i1;C)k ( ) _ ""'(-1)G+a-(u-m-1) sl(2;C)k ( ) 

Xrn,m' a, v, T - D Xa,u-m-1 a, T 

a=O 
u-2 

XL '!9(u-1)(m-2m')+u(u-1)(a+1)+2au(~-[~])-2ub,u(u-1) (~, T) 
b=O 

(u-1) ( ) XC r· 
a,a(u-1)+2a(%-[~])-2b ' 

(3.35) 

(3.36) 

(3.37) 
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and 

u-1 
S R,sl(2i1;C)k ( ) _ "'(-1)G+u-1-a-m sl(2;C)k ( ) 

Xm,m' (]", V, T - L...J Xu-1-a,m (]", T 

where 

a=O 
u-2 

XL '!9(u-1)(m-2m')+u(u-l)(a+1)+2au(%-[%])-2ub,u(u-l) (~, T) 
b=O 

X (u-1) ( ) 
Ca,a(u-1)+2a(%-[%])-2b T ' 

if m ~ m', 

if m < m' 

and 0 :::; m, m' :::; u - 1 in both sectors. 

A 

47 

(3.38) 

3.3 Modular S Transformation of sl(2ll; C)k Char-

acters 

With the branched form of the ;l(2l1; C) characters now established, the action 

of S : (a, v, T) -t (~, ~' -*) on the branched ;l(2l1; C)k characters (3.35), (3.36), 

(3.37) and (3.38) may be obtained by use of (3.9), (3.11) and (3.12). For example, 

in the case of the Neveu-Schwarz characters (3.35) we find 

( ) 

irr(u-1)(u2-v2)/uT u-1 
NS,sl(2il;IC)k (]" V 1 _ e s't(2;C)k 

Xm,m' -;' --;' ---; - (u _ 1)J2u(u + 1) ~- Sa(u-m-1),nn'Xn,n' ((]", T) 
a,n,n -0 

u-2 2u(u-1)-1 

X ""' ""' e-irrr((u-1)(m-2m')+u(u-1)(a+1)+2au(%-[%])-2ub)/(u(u-1))'!9 (~ T) L...J L...J r,u(u-1) ' u 
b=O r=O 

where l = a(u- 1) + 2a (~- [il) - 2b. 

u-1 u-1 

x L L s (a, l, a', b') c~~.~~l)(T), (3.39) 
a'=O b'=-u+2 

a'=.b' mod 2 

At first sight the problem of extracting from this expression a linear combi­

nation of Neveu-Schwarz characters (3.35) would appear a fairly challenging task. 

However, having calculated the transformation matrices for the cases u = 2, 3 (the 
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results of which are listed in the appendices) an alternative way of proceeding 

presents itself. Looking at (3.35), we see that taking only the a= b = 0 term (say) 

provides us with a unique linear "signature" term for each Neveu-Schwarz charac-

ter, which appears only in that particular character. Hence the coefficient of this 

term is necessarily the coefficient of that particular character. It should be stated 

that this procedure makes the assumption that on the right hand side of (3.39) 

it is terms which may be rearranged exactly into class IV and class V characters 

which appear, i.e. that these characters are closed under modular transformations. 

This was certainly found to be the case for u = 2 and u = 3 which were consid­

ered fully by "brute force" (as described in the appendices) and this conclusion is 

also supported by [38], which shows that for certain decompositions of ;z(211; C) 

characters only class IV and class V characters appear at levels k = 1/ u - 1. 

The signature term for a Neveu-Schwarz character takes the following form: 

NS,;l(2I1;C)k ( ) ;1(2;C)k ( )~a (V ) (u-1)( ) (3 40) 
Xn,n' a, v, T I"V Xo,u-n-1 a, T ·u(u-1)(n-2n'+u),u(u-1) -;;,' T Co,o T . . 

The problem of computing the coefficients of ;l(2l1; C)k Neveu-Schwarz characters 

in (3.39) is reduced to a simple matter of extracting the correct coefficients for the 

signatures (3.40). We therefore have 

NS,;l(211;C)k 
Xm,m' ( ~' ~' -~) T T T 

u-1 u-1 
_ in(u-1)(a2 -v2 )juT ~ ~ SNS NS,;l(2I1;C)k ( ) 
- e L.....t L.....t mm' ,nn' Xn,n' a, v, T 

n=O n'=O 

(3.41) 

where 

NS 1 ~~~ smm',nn' = u(u- 1) 2(u + 1) ~ ~ Sa(u-m-1),0(u-n-1) 
a=O b=O 

X e-in(n-2n' +u)((u-1)(m-2m')+u(u-1)(a+1)+2au( I-[ I])-2ub)/u 

x { s(a, l, 0, 0) + s(a, l, u- 1, u- 1)}, (3.42) 

making use of the fact that, by (3.14), c~~~~~_ 1 (T) = c~~0- 1 )(T). Expanding the 
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various factors gives 

u-1 u-2 

sNS I I = 1 ""'""' ( -1 )(u-m-1)+(a+1)(u-n-1) 
mm ,nn 1t(u- 1)(u + 1) L L 

a=O b=O 

-in(u+1)(u-m-1)(u-n-1)/u . (1r(a + 1)u) 
X e Sill 

u+1 
X e -in(n-2n1 +u)((u-1)(m-2m1 )+u(u-1)(a+1)+2au( 't-[ ~ ])-2ub)/u 

{ . (1r(a + 1)) inl . (1r(a + 1)u)} 
X Sill + e Sill 

u+1 u+1 
(3.43) 

with as before l = a(u- 1) + 2a (~- [~]) - 2b. 

However, this expression simplifies considerably. The sum over b can trivially 

be performed to give a factor u - 1. As for the sum over a, we have 

~( -1)a(u-n-1)e-in(n-2n1 +u)(au(u-1)+2au('t-[~])-2ub)/u sin (7r(:: ~)u) 
a=O 

X Sill + e 2 2 Sill . ( . (1r(a + 1)) in(a(u-1)+2a(Y.-[Y.l)) . (1r(a + 1)u)) 
u+1 u+1 

For the case of u odd, this is equal to 

~( -1)ane-in(n+u)au sin (7r(a + 1)u) 
u+1 

a=O 

(
. (7r(a+1)) inau. (7r(a+1)u)) X Sill + e Sill 

u+1 u+1 

and for u even it is 

~( -1)a(n+l)e-inan(u-1) sin (7r(a + 1)u) 
u+1 

a=O 

X Sill + e Sill . ( · (1r(a+ 1)) ina(u-1) · (1r(a+ 1)u)) 
u+1 u+1 

(3.44) 

(3.45) 

(3.46) 
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In both cases the summation is equal to 

I: ( -1) a sin ( 1f (a + 1) u) (sin ( 1f (a + 1) ) + ( -1) a sin ( 1r (a + 1) u) ) 
a=O U + 1 U + 1 U + 1 

= I:2sin
2 (''~:11l) 

a=O 

= ~ (1- cos C"~:+/l)) 
= u- ~cos (::a1) 

u 

= u - L Re e2i7ra/(u+1) + 1 
a=O 

=u+l. 

Hence the final expression for the matrix entries S~~' nn' in (3.41) is 
' 

SNS = _!_ ( -1 )m+ne-i7r(u+1)(u-m-1)(u-n-1)/u e-i7r(u-1)(m-2m' +u)(n-2n' +u)/u (3.4 7) 
mm',nn' U ' 

a perhaps unexpectedly elegant result. 

For the Ramond characters and Neveu-Schwarz and Ramond supercharacters 

we proceed in an essentially similar way: the signature for the Ramond characters 

1S 

R,sl(2l1;C)k ( ) rv sl(2;C)k ( )·a (ll ) (u-1)( )· 
Xn,n' a, v, T Xu-1,n a, T U(u-1)(n-2n'+u),u(u-1) -:;;,' T Co,o T ' (3.48) 

for the Neveu-Schwarz supercharacters it is 

S NS,sl(2ll;<C)k ( ) rv (-1)G-(u-n-1) sl(2;<C)k ( ) 
Xn,n' a, v, T Xo,u-n-1 a, T 

X {)(u-1)(n-2n'+u),u(u-1) (~,T) cto-1)(r); (3.49) 

and for the Ramond supercharacters it is 

R,sl(2l1;<C)k ( ) ( 1)G+u-1-n sl(2;C)k ( ) 
Xn,n' a, v, T rv - Xu-1,n a, T 

(ll ) (u-1)( ) X {)(u-1)(n-2n'+u),u(u-1) -:;;,' T Co,o T , (3.50) 
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with G defined as before. AsS transforms Ramond characters into Neveu-Schwarz 

supercharacters and vice versa we must extract the coefficient of (3.48) in the 

S-transformed Neveu-Schwarz supercharacter (3.37). Similarly, we extract the 

coefficient of (3.49) in the S-transformed Ramond character (3.36). Again, the 

expressions simplify along similar lines to the Neveu-Schwarz case. We find 

R,sl(211;C)k 
Xm,m' ( ~' ~' _.!.) 

T T T 

u-1 u-1 
_ i1f(u-1)(a-2 -v2 )juT"'"" "'""5R S NS,sl(2i1;C)k ( ) 
- e L......t L......t mm' ,nn' Xn,n' a, v, T 

n=O n'=O 
(3.51) 

where 

5R = .!_ (-1)G' +m+n+u(u-n-1) e-i1f(u+1)m(u-n-1)/u e-i1f(u-1)(m-2m' +u)(n-2n'+u)fu. 
mm',nn' U ' 

(3.52) 

S NS,sl(2I1;C)k 
Xm,m' ( ~' ~' _.!.) 

T T T 

u-1 u-1 
_ i1f(u-1)(a-2 -v2 )juT"'"""'"" 5SNS R,.il(2i1;C)k ( ) 
- e L......t L......t mm' ,nn' Xn,n' a, v, T 

n=O n'=O 
(3.53) 

where 

5SNS = .!_ (-1)G+m+n+u(u-m-1) e-i1f(u+1)(u-m-1)nfue-i1f(u-1)(m-2m' +u)(n-2n' +u)fu. 
mm1 ,nn' U ' 

(3.54) 

and 

S R,.il(2i1;C)k 
Xm,m' ( ~' ~' _.!.) 

T T T 

u-1 u-1 
_ i1f(u-1)(a-2 -v2 )juT"'"""'"" 5SR S R,.il(2i1;C)k ( ) 
- e L......t L......t mm1 ,nn' Xn,n' a, v, T 

n=O n'=O 
(3.55) 

where 

SS R = .!_ ( -1 )G+G' +(u-l)(m+n) e-i1f(u+1)mnfue-i1f(u-1)(m-2m' +u)(n-2n' +u)fu (3.56) 
~~ u ' 

with 

if m;;::: m', 

if m < m' 

and 

if n ;;::: n', 

if n < n'. 
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This completes the derivation of the S transformation of ;l(211; C)k characters. 

Some expected properties of these matrices are that sNS and ssR are symmetric; 

that SR = (S5 N 5 ) T; that all of these matrices are unitary; and that the matrices 

as calculated by brute force for u = 2 (as found in [29]) and u = 3 (also calculated 

in [30] for the Neveu-Schwarz characters) given in the appendices agree with the 

above results. 

In order to consider modular invariant combinations of ;l(2l1; C)k characters, 

we must also know how they transform under the modular T transformation T: 

(a, v, r)----+ (a, v, T + 1). It can be shown that the action ofT is as follows [29, 30]: 

R,;l(2il;<C)k ( + 1) _ 2nihR R,;l(2il;<C)k ( ) 
Xm,m' a, v, T - e Xm,m' a, v, T ' 

NS,s,l(2il;<C)k ( + 1) _ 2nihNS S NS,;l(2il;<C)k ( ) 
Xm,m' a, v, T - e Xm,m' a, v, T ' 

S NS,;l(2il;<C)k ( + 1) _ 2nihNS NS,;l(2il;<C)k ( ) 
Xm,m' a, v, T - e Xm,m' a, v, T ' 

S R,;l(2il;<C)k ( + 1) _ 2nihR S R,;l(2il;<C)k ( ) 
Xm,m' a, v, T - e Xm,m' a, v, T ' (3.57) 

recalling that for class V characters ( m < m') we must use the appropriate lvf and 

Jvf' and the class V formulae to calculate the conformal weights. 

3.4 Modular Invariants 

With the behaviour of ;l(211; C)k characters under the modular S and T trans-

formations now established, we can now proceed by looking for modular invariant 

combinations of characters. Recalling the discussion of section 2.4, one can usu-

ally say that modular invariant combinations of characters correspond to partition 

functions of conformal field theories, which is why such objects are of considerable 

interest. For Wess-Zumino-Witten models based on affine algebras, this is gener-

ally (though not always) true when the level of the algebra is an integer. ·work has 

been done to define a rigorous model based on the affine superalgebra osp(112) at 

integer level in [45] (though not through looking for modular invariants). However, 

even for integer levels, full classifications of modular invariants (and indeed the 
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matrices of the S transformation) are very rare. The proof of the classification of 

;l(2) invariants [13] has not been found to adapt easily even to other ;z(n) algebras 

(but was extended successfully to classify N = 1 superconformal minimal models 

[15]), though Gannon [14] achieved the classification for the ;l(3) case and also 

classified the N = 2 superconformal minimal models [16]. The mysterious emer­

gence of an A-D-E pattern (relating each modular invariant to a simply-laced Lie 

algebra), which these classifications appear to fall into (to greater or lesser degrees 

of definiteness) continues to defy explanation. 

When the symmetry algebra is fractional, it is still unclear whether sound con­

formal field theories can be defined, though there has been much work on the 

subject for the case of ;l(2) which we will mention in the next chapter. As far as 

modular transformations are concerned, admissible ;l(2) representations were dealt 

with by Koh and Sorba [18] and Lu [17], who obtained a complete classification 

of modular invariants. These also fell into an A-D-E pattern, though now with a 

whole series of invariants associated to each Lie algebra. 

In general, the problem of classifying all modular invariants given the matrices 

of the SandT transformations is not at all straightforward and one which we have 

not attempted to solve. However, we have found all invariants for the cases u = 2 

and u = 3, special cases of which are analogous to the A- and D-series obtained in 

the ;l(2) case. We will also show that such modular invariants exist for all u ): 2. 

Modular invariant combinations of characters take the form 

u-1 

Z= N R R R NN s NS N s 
mm' nn' Xm m' X n n' + mm nn' Xm m' X n n' 

' ' ' ' ' ' 
m,m' ,n,n'=O 

u-1 

N SNS S NS S NS + mm'nn' Xmm' X nn' + , , , 
a,a' ,b,b' =0 

written in this way to emphasise the fact that the Ramond supercharacters form 

a closed set under modular transformations, whereas the remaining sectors mix 

as detailed previously. For "physical" modular invariants, the Nmm' ,nn' must be 

non-negative integers. In addition, the identity should be unique so NJ5,oo must be 
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equal to 1 (the identity character in this context is x~0 ). 

As discussed in section 2.4, on applying the S transformation, we see that to 

find these combinations we must solve the matrix equation st N S = N, using the 

appropriate matrix S for each sector. We can make life easier for ourselves by noting 

that for the character combinations to be invariant under T, non-zero entries in 

N may only occur where the factors e2nih arising in this transformation conspire 

to give non-negative integers. The cases u = 2 and u = 3 have been investigated 

exhaustively (see appendices) for which this amounts to the requirement that the 

characters have the same weight h associated with them, as is clear from the tables 

of values of h; in addition, as T interpolates between Neveu-Schwarz characters 

and supercharacters, NNs = NsNs_ 

For the case of u = 2, we find two possibilities: 

1 0 0 0 a 0 0 a-1 

NR= 
0 a a-1 0 

NNS = 0 1 0 0 
(i) (3.59) 

0 a-1 a 0 0 0 1 0 

0 0 0 1 a-1 0 0 a 

or 

1 0 0 0 a 0 0 a-1 

NR= 
0 a-1 a 0 

NNS = 0 0 1 0 
(ii) (3.60) 

0 a a-1 0 0 1 0 0 

0 0 0 1 a-1 0 0 a 

Clearly for non-negative integer entries, a EN. For u = 3 we find a similar 
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situation, with an additional parameter: 

1 0 0 0 0 0 0 0 0 

0 a b b 0 a-1 0 0 0 

0 b a a-1 0 b 0 0 0 

0 b a-1 a 0 b 0 0 0 

(i) NR= 0 0 0 0 a+b 0 a+b-1 0 0 ' 
0 a-1 b b 0 a 0 0 0 

0 0 0 0 a+b-1 0 a+b 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

(3.61) 

a+b 0 0 0 0 0 a+b-1 0 0 

0 a b 0 0 0 0 a-1 b 

0 b a 0 0 0 0 b a-1 

0 0 0 1 0 0 0 0 0 

NNS = 0 0 0 0 1 0 0 0 0 (3.62) 

0 0 0 0 0 1 0 0 0 

a+b-1 0 0 0 0 0 a+b 0 0 

0 a-1 b 0 0 0 0 a b 

0 b a-1 0 0 0 0 b a 
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or 

1 0 

0 b 

0 a 

0 a -1 

(ii) NR = 0 

0 

0 

0 

0 

0 

b 

0 

0 

0 

a+b 

0 

0 

0 

0 

0 

a+b-1 

0 

0 

0 

a 

b 

b 

0 

a-1 

0 

0 

0 

0 

b 

a 

0 

0 

0 

0 

b 

a-1 

0 

a-1 

b 

b 

0 

a 

0 

0 

0 

0 

0 

0 

0 

a+b 

0 

a+b-1 

0 

0 

0 

b 

a-1 

a 

0 

b 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

a+b-1 0 0 

0 0 0 

a+ b 0 0 

0 0 1 

0 1 0 

0 0 0 0 a+b-1 0 0 

a 

b 

0 

0 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 0 0 0 

a+b 

0 

0 0 0 0 

a-1 0 0 0 

b 0 0 0 0 

b a -1 

a -1 b 

0 0 

0 0 

0 

0 

b 

a 

0 

0 

a 

b 

56 

(3.63) 

(3.64) 

For non-negative integer entries we require a E N, bE Z+. The ordering of terms 

in these matrices is as given in the tables 3.2, 3.3, 3.4 and 3.5. We recall that the 

supercharacters in each sector have the same quantum numbers as the correspond­

ing characters. The relation between M and !vi' values in class V and the m and 

m' values which allowed us to combine classes IV and V in the branching formulae 

(3.35), (3.36), (3.37) and (3.38) ism= u- 2- Jvf- J\!I', m' = u- 1-M'. 

In the cases (3.59) and (3.61), when a= 1 and b = 0, we find that NR = NNs = 

I. This diagonal invariant we find at all levels (analogous to the ;z(2) A-series), 
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m m' hi! hR 
+ 

hR hf!.S hNS 
+ 

hNS 

Xo,o 0 0 0 0 0 1 0 1 
2 8 

X1,0 1 0 1 1 0 0 1 1 
2 2 -2 8 

X1,1 1 1 1 1 0 0 1 1 
2 2 2 8 

Table 3.2: Class IV ;l(2l1; <C)_!. characters 
2 

l\II(m) M'(m') hi! hR 
+ 

hR hf!.S hNS 
+ 

hNS 

Xo,1 0(0) 0(1) 1 0 1 3 0 1 
2 2 8 

Table 3.3: Class V ;l(2l1; <C)_!. characters 
2 

since the matrices SandT are unitary. With a= 1 and b = 0 in (3.60) and (3.63), 

the resulting expressions are permutation invariants of the form 

.'2.:.: Xm,m' Xrr(m,m')' (3.65) 

where 

IT(m, m') = (m, (m- m') mod u). (3.66) 

Alternatively, labelling the characters by (h_, h+) this is equivalent (see the defi­

nitions (3.17), (3.18), (3.20) and (3.21)) to IT(h_, h+) = (h_, -h+)- This pattern 

is also apparent in the Ramond supercharacters (analysis of which we leave to the 

appendices). Does this permutation give rise to a series of modular invariants? The 

easiest way to investigate this is by calculating N S and S N and seeing if these are 

equal, for then st N S = N. We take as an ansatz 

if n = m, n' = ( m - m') mod u 
(3.67) 

otherwise. 
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m m' hl! hR 
+ 

hR hl!_S hNS 
+ 

hNS 

Xo,o 0 0 0 0 0 2 0 1 
3 6 

X1,0 1 0 1 1 0 1 1 0 3 3 3 3 

X1,1 1 1 1 1 0 1 1 0 3 3 -3 3 

X2,o 2 0 2 2 0 0 2 1 
3 3 -3 6 

X2,1 2 1 2 0 1 0 0 1 
3 3 2 

X2,2 2 2 2 2 0 0 2 1 
3 3 3 6 

Table 3.4: Class IV ;1(211; C)_~ characters 
3 

M(m) M'(m') hl! hR 
+ 

hR hl!_S hNS 
+ 

hNS 

X1,2 0(1) 0(2) 2 0 1 4 0 1 
3 3 3 6 

Xo,1 0(0) 1(1) 1 1 2 5 1 0 -3 3 3 -3 

Xo,2 1(0) 0(2) 1 1 2 _§_ 1 0 3 3 3 3 

Table 3.5: Class V ;!(211; C)_~ characters 
3 

Then in the Neveu-Schwarz case we have 

(NSN
5

)mm1 ,nn1 = L Nmm',aa'S:/a~nn' 
a,a' 

5NS 
= m((m-m') mod u),nn1 

= ( -1 )m+ne-i1f(u+1)(u-m-1)(u-n-1)/u 

X e-i7r(u-1)(m-2((m-m1
) mod u)+u)(n-2n'+u)/u (3.68) 

and 

(SNS N)mm',nn' = s::,!1 ,n((n-n1 ) mod u) 

X e-i1f(u-1)(m-2rn'+u)(n-2((n-n1
) mod u)+u)/u. (3.69) 

Considering each possible combination of m ;;:=: m' or m < m' and n ;;:=: n' or n < n' 

it is a simple matter to verify that the phases in (3.68) and (3.69) are equal; similar 
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analysis applies to NSR and NSsNs for the same matrix N (3.67). We can also 

check that N commutes with T. Hence we have found another series of modular 

invariants, analogous to the D-series of the ;l(2) case. 

We might expect the D-type invariants to be related to an automorphism of 

the fusion rules, in the manner of Schellekens and Yankielowicz [46]. However, 

establishing fusion rules for fractional level algebras is a difficult problem and is 

the subject of the next chapter. These invariants might additionally have some de­

scription in terms of automorphisms of the ;l(2ll; C) Dynkin diagram [5]: however, 

as previously discussed, there is a choice of simple roots available for a superal­

gebra and so the Dynkin diagram is not unique, making such an interpretation 

not entirely straightforward. Other means of discovering modular invariants in­

clude looking for conformal embeddings of the algebra into larger algebras of the 

same central charge. For ;l(2ll; C), with central charge zero, there are no obvious 

candidate algebras since the only possible embeddings are in algebras which are 

essentially similar, in fact ;z(m +lim) [47]. The problem of finding all modular 

invariants, while interesting, remains uninvestigated at present. 

3. 5 Conclusion 

In this chapter, we have found expressions for the modular S transformation of 

;z ( 211; C) k characters at fractional level k = 1/ u - 1. This has allowed us to 

calculate all modular invariants for the cases u = 2 and u = 3, leading to the 

discovery of an A-series and D-series of modular invariants. The derivation of the 

general S transformation of ;l(2ll; C)k characters solves the problem left open in 

[33] and has enabled us to begin looking at modular invariants in this framework 

of affine superalgebras at fractional level, a subject not previously studied. It 

remains to fully investigate possible modular invariant combinations of characters 

and indeed establish beyond doubt that the set of class IV and class V characters 

at level k = 1/u - 1 is closed under the action of modular transformations, for 
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example by solving expressions of the type (3.39). However, the recent work of [38] 

also corroborates the results found here. As to whether these modular invariants 

may be regarded as partition functions-this is a question which we will begin to 

address in considering fusion rules, investigated in the next chapter. 



Chapter 4 

Fusion Rules at k -1/2 

In this chapter, we-investigate the structure of fusion rules for ;l(2ll; qk at level 

k = -1/2. The method discussed here is particularly practicable for this case and 

results are obtained in the Ramond sector, though as this is isomorphic to the 

Neveu-Schwarz sector we are able to remark on the form of fusion rules there as 

well. In the course of this work use is made of the N = 2 superconformal 3-point 

function, allowing us to relate work on this subject contained in [48], [49], [50] and 

[51]. The results of this chapter are contained in [2]. 

4.1 Introduction 

In the previous chapter, we were able to establish general expressions for the 

modular transformations of ;z(2ll; qk characters for fractional levels of the form 

k = 1/u- 1, u E N \ {1}. The obvious course of action, given matrices for the 

S transformation of characters, is to apply the Verlinde formula and derive fusion 

rules, which encode information on which fields may appear in the operator product 

expansion of two primary fields (2.13), through 

¢i X c/>j = L Ni/¢k· (4.1) 
k 

As was discussed in section 2.4, the Verlinde formula (2. 73), when applied in the sit-

uation of fractional level, does not seem to yield meaningful results. In particular, 
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the entries Ni/ in ( 4.1), which should be non-negative integers, may turn out to be 

negative. It is therefore important to study fusion rules by other means, which, in 

cases thus far investigated, yield non-negative integer fusion coefficients. This fur­

thers the attempt to define conformal field theories at fractional level, specifically, 

those permitting admissible representations for which the set of characters closes 

under the action of modular transformations. It is as yet still unclear whether frac­

tional level affine algebras may define conformal field theories in their own right, 

though the consensus seems to be that this is possible. That this issue remains 

unresolved and that other models may be derived through the coset construction 

from fractional level theories means that interest in this subject is maintained. 

The case of ;l(2) is the one where most effort has been concentrated. In partic­

ular, fusion rules for fractional level have been investigated in [52, 53, 54, 55], with 

more abstract analysis carried out in [56] and [57]. Recently, this question has also 

been addressed in the case of ;l(3) in [22], where an overview of the ;l(2) situation 

is also given. Conformal blocks for fractional level ;l(2) have also been studied ex­

tensively, for example in [55, 58, 59]. As for superalgebras, the case of osp(1J2) has 

been considered in [23] and [24]. This chapter sees the techniques of [24] extended 

to discuss the superalgebra ;z(2Jl; C). The situation for ;z(2Jl; C) is far more com­

plex, essentially arising from the fact that ;l(2Jl; C) is the simplest superalgebra 

where zero length roots appear, in contrast to osp(1J2). As mentioned earlier, it 

is not only worthwhile studying this from an abstract point of view, but is also of 

importance given the intimate link between non-unitary ;l(2Jl; C) and the N = 2 

non-critical superstring [34]. An understanding of fusion rules on the ;l(2Jl; Ch 

side and the string theory side would deepen the supposed correspondence between 

the SL(2Jl)/SL(2Jl) WZW model and theN= 2 non-critical string. 

Common to most of the works mentioned above is the understanding that for 

fractional level representations, one must work with fields which are not only a 

function of the usual coordinate z, but also of an isotopic coordinate x, represent­

ing an internal sl(2) symmetry. This technique was first applied to the unitary ;l(2) 
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case in [60] and was also developed in [61]. For fractional level, this overcomes the 

problem of needing to consider general infinite-dimensional representations, which 

are neither highest nor lowest weight. In [24], the authors extended this approach 

by including not only the coordinate x but also dependence on a Grassmann co­

ordinate (} to represent the supersymmetry present in osp(ll2) (being the N = 1 

extension of ;l(2)): for the case of ;l(2ll; C) we must additionally augment this 

by another Grassmann coordinate iJ, now with two supersymmetries present. Our 

basic approach will be to determine 3-point correlation functions involving fields 

with this dependence (amounting to a determination of the 3-point function for 

N = 2 superconformal field theory) and then determine this correlator involving 

a singular vector. We may then rewrite this as an expression involving differential 

operators acting on the 3-point function, which must equal zero since it involves 

a singular vector (which is, by definition, orthogonal to all other states). This 

will provide relations between the quantum numbers of the three fields present, 

determining which fusion rules are permitted. 

We begin by recalling some essential features of ;l(2ll; <C) from section 2.5. We 

then discuss the relation between highest weight states and primary fields, before 

going on to determine a realisation of ;l(2ll; <C) in terms of differential operators. 

This will allow us to determine the ;l(2ll; <C) invariant 3-point function, an issue 

discussed in the context of N = 2 superconformal field theory; in examining this 

issue we will relate the work of [48], [49], [50] and [51 J on this subject. A brief 

summary of singular vectors required (as determined in [28]) will then be given, 

before putting these pieces together in the calculation of fusion rules. The results 

of this calculation will be compared with those of the Verlinde formula, as applied 

to the results of the previous chapter. 
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4.2 Review of ;l(2ll; C) 

We begin with a brief reminder of some of the important features of ;z(2Jl; C), 

already introduced in section 2.5. 

The affine superalgebra ;l(2Jl; C) is made up of the even generators { J:j:, J~, Un} 

and odd generators {j:j:,j~±}, supplemented by the usual affine generators k, the 

central generator, and d, the derivative operator. This is identified with the gen­

erator -£0 of the Virasoro algebra associated to ;l(2Jl; C)k via the Sugawara con­

struction. The non-zero (anti)commutation relations of ;l(2Jl; <C)k are 

In addition, we have that 

[2J!,j;] = ±j!+n' 

[2Um,j;] = =Fj!+n' 

{ -'± ·±} J± Jm ,Jn = m+n· 

and the central generator k commutes with all other generators. 

(4.2) 

(4.3) 

The even generators have mode index n E Z, whereas the odd generators have 

n E Z in the Ramond sector and n E Z + ~ in the Neveu-Schwarz sector. Setting 

this index to zero recovers the finite sl(2Jl; C) algebra. For the work in this chapter, 

we consider only the Ramond sector unless stated otherwise. 

One natural way of splitting up an affine Lie (super)algebra is through a trian­

gular decomposition. Utilising the generators d and J8, we may define the principal 

gradation d = ad(J8) + 2ad(d) which has the following action on ;z(2Jl; <C) gener-
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a tors: 

d(J;) = 2n ± 1, d(J~) = 2n, 
- ·± 1 d(Jn ) = 2n ± 2, (4.4) 

- .1± 1 
d(Jn ) = 2n ± 2, d(Un) = 2n, d(k) = d(d) = 0. (4.5) 

Denoting the algebra by g, we obtain the decomposition 

g = g- EB g0 EB g+, (4.6) 

g- consisting of those elements having d < 0, g0 of elements with d = 0 and g+ of 

elements with d > 0. 

Highest weight states of ;z(2ll; C)k are characterised by their isospin ~h_, charge 

~h+ and conformal weight h: 

(4.7) 

where 

(4.8) 

lA) is annihilated by all the raising operators, which we can see to be simply the 

elements of g+. This condition is equivalent to the following three: 

(4.9) 

and corresponds to a particular choice of simple roots of sl(2l1; q (see section 2.5). 

The relationship between quantum numbers h, h_ and h+ is given by 

(4.10) 

where k is the level of the representation concerned (taken to be -1/2 for the bulk 

of this chapter). The Kac-Khazdan determinant formula dictates that the Verma 

module built on a highest weight state with certain specific h_ and h+ values will 

contain singular vectors, a full analysis of which was carried out in [28] and [29]. 

We shall make extensive use of the results of these references for the k = -1/2 

case. 
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4.3 Fields and States 

In section 2.3 we saw that, in conformal field theory, the link between highest 

weight states and primary fields is given by the state-field correspondence (2.49), 

namely 

lim ¢>(z, z) IO) = lA), 
z,z-+0 

(4.11) 

where IO) denotes the vacuum state of the theory. It has been noted by several 

authors-in, for example, [53, 54, 55, 56, 57, 58, 59]-that for the case of admis­

sible ;l(2) (and ;l(3) [22]) representations dependence on a second sl(2) coordi­

nate should be added. This overcomes the difficulty in describing these infinite-

dimensional representations, which are in general neither highest nor lowest weight. 

Various ways of seeing how this difficulty arises exist. When considering a free field 

approach, it is related to the fact that screening currents are required to involve 

rational powers of fields [55]. Most straightforwardly, as stated in [59], in the ;z (2) 

case the conformal weight of a state lj) (created by the primary field ¢>1 ( z)) is given 

by h1 = j (j + 1) / ( k + 2). This is equal to h_ 1 _1 and so operator product expansions 

are defined up to an identification of j and -j - 1, which can be overcome by the 

introduction of an additional parameter. For the case of integrable representations, 

the operator algebra closes with 0 :::;; j :::;; k/2 where the level k E N and this is not 

an issue. 

The case of osp(ll2) was studied in [24] where additionally a Grassmann co­

ordinate () was introduced to represent the supersymmetry present. For the case 

of ;l(2ll; <C)k, with two supersymmetries, it is necessary to consider not only the 

coordinate z, but also an additional sl(2) coordinate x as well as two Grassmann 

coordinates () and iJ. This approach has been formalised for superalgebras in [62], 

which we essentially follow (the definitions of Ennes and Ramallo [24] for fields and 

states are the same, arrived at in a different framework). Anti-holomorphic coun­

terparts of all these coordinates should also be included, although here we suppress 

any dependence on these coordinates for clarity. Thus in our case, the state-field 



4.4 Differential Operators for s/(211) 67 

correspondence is given by 

liiD c/Ya(z, x, (},e) IO) = IAa)· 
z,x,(J,(J~O 

(4.12) 

We will see shortly that it is possible to represent the action of the ;l(2l1; <C) 

modes on primary fields through the action of certain differential operators, using 

the commutation relations 

[J~, c/Ya(z, x, (},e)] = zn D~c/Ya(z, x, e, e), 

[j~, c/Ya(z, x, (},e)] = znd~c/Ya(z, x, (},B), 

(4.13) 

It should be noted that for the case of the fermionic modes j~, j~Ct the commutator 

should be replaced by an anticommutator as appropriate: we always take high­

est weight states to be bosonic. In addition, we have the standard relation with 

Virasoro modes (2.29) given by 

( 4.14) 

We will also find the definition of the action of c/Ya on the vacuum: 

(4.15) 

4.4 Differential Operators for sl(2jl) 

In [62], Rasmussen applied longstanding techniques (see for example [63] and ref­

erences therein) to discuss free field representations of affine superalgebras in the 

context of general (i.e. not just integrable) representations. The key to this ap-

proach, as mentioned in the previous section, is in extending the dependence of 

primary fields to additional coordinates. These arise in the context of the Waki­

moto free field representation of affine algebras where the finite algebra is realised as 

differential operators on a polynomial ring <C[xet;] (as detailed, for example, in [64]), 
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with a coordinate xa; for each positive root ai of the finite algebra. In the case of 

superalgebras, which involve fermionic roots, one must introduce fermionic (Grass­

mann) coordinates. The finite superalgebra is then realised on the ring C[xa;, I'J0i], 

with a1 denoting the positive fermionic roots. The full affine currents are defined 

by expressions involving free fields and these differential operators representing the 

finite (super)algebra. 

Above we mentioned the triangular decomposition of affine superalgebras: this 

arises from the corresponding decomposition of finite superalgebras, where 

(4.16) 

Here, the subspaces of lowering and raising operators are split into even and odd 

parts (recall g = g0 E9 g1 for superalgebras, where even elements have degree 0 and 

odd elements have degree 1). Elements in the superalgebra may be parametrised 

by coordinates xa; and I'J 0i in the following way [62): 

g+(xa;,I'Joi) = Lxa;Ea; +I'Joieoi, 
i,j 

where 

g-(xa;,I'Joi) = LXa;pa; +I'Joifoi (4.17) 
i,j 

pa; E g­
O' 

(4.18) 

Now states of the Verma module are defined as 

(4.19) 

with the dual states given correspondingly in terms of g+. The highest weight 

states should as usual be created by the action of a primary field on the vacuum: 

we should additionally have a dependence on the original variable z, which may be 

included by incorporating the translation (in z) operator L_ 1 into the exponential 

[61], giving rise to the relation 

(4.20) 

In the case of sl(2ll; C), the lowering operators (elements of g-) corresponding 

to the negative roots -(a1 + a 2 ), -a1 and -a2 (as described in section 2.5) are 
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J0, j 0 and j~-, where we have included the zero mode index to make contact with 

the affine generators. Hence we arrive at the advertised relation (4.15): 

(4.21) 

On the states exJo +Ojo +Oj~-IAa) the sl(2ll; q generators act as differential op-

erators: 

(4.22) 

We may write 

where ux is the differential operator corresponding to the sl(2ll; C) generator 

X 0 . Differentiation of the left hand side with respect to x and application of the 

relations ( 4.2) gives rise to the following conjugation formulae: 

_ I _ f 

e-xJo -Ojo -Ojo- J() exJo +Ojo +Ojo-IAa) = J() IAa), 

e-xJo -Oj() -Oj~- jd exJ() +Oj() +Oj~-IAa) = ( -xj~- + xOJ0 - O(JJ + Uo) + ~()Oj~-) IAa), 

- I - I 

e-xJ() -Oj() -Ojo- j() exJ() +Oj() +Ojo-IAa) = (jr; -OJ()) IAa), 

e-xJ()-Oj()-iij~-j~+exJ()+Oj()+Oj~-IAa) = (xj0 - x0J0 + O(JJ- Uo) + ~OOj())IAa), 
_ I _ I 

e-xJ()-Oj()-Ojo- j~-exJ()+Ojo+OJo-IAa) = (j~-- OJ())IAa), 

e-xJ() -Oj() -Oj~- u, exJ() +Oj() +Oj~ -lA ) = (U, + ~()J·- - ~OJ-'- - ~()01-) lA ) 
0 a 0 2 0 2 0 2 0 a, (4.24) 

where we have eliminated those terms which annihilate IAa). For example, in the 

case of J~, differentiating once with respect to x yields 

( 4.25) 
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which differentiated again gives 0. The overall expression is therefore linear in x. 
- , - , 

Setting x = 0 in e-xJ() -Bj() -Bjo- JgexJ() +Bj() +Bjo- and expanding gives 

_ I _ I 

e -Bj() -Bjo- J5 eBj() +Bjo- = 

(1- O.iiJ- 1J.i~-- eiJ.iiJ.i~- + ~e1JJ0 )J5(1 + O.iiJ + 1J.i~-- eiJ.iiJ.i~- + ~e1JJ0 ) 

= 13 - ~e.i- - ~ej'- ( 4.26) 
0 2 0 2 0 ' 

which is therefore the constant term. Setting x = 0 in ( 4.25) yields 

( 4.27) 

I 

since J0 commutes with j0 and j 0-, so this is the x term and we arrive at the 

stated result. 

Comparing the conjugation formulae ( 4.24) with the result of calculating 

e -xJ() -Bj() -iJj~- (a ox + b(}ox + c1Jox + doe + eOoo + f 1Joo 
- I 

+ go0 + h0o0 + l1Jo0 + me1Joo + n01Jo0)ex1o +B1() +B1o-jAa) = 

- 1 - 1 -
(aJ0 + b()J0 + cOJ0 + dj0 - 2deJ0 + e0j0 - 2eeOJ0 

- I 1 I -1 1 - - -1 + .f0j0 + gj0-- 2geJ0 + h0j0- + lej0- + 2zeeJ0 + m00j0 + n00j0-)IAa) 

( 4.28) 

we obtain the following differential operator realisation of sl(2j1; C): 

3 3 1 1- 1 
1 ---+ D = -xo - -eao- -eo0- + -h 

O X 2 2 2 -? 

2 - 1 -
Jfi ---+ D+ = -x ox- xOoo- x0o0 + xh_ + 2eeh+, 

Ji) ---+ D- =ox, 

·+ + 1 1 1 -
Jo ---+ d = -xo0 + 2xeox - 2e(h_ + h+) + 2eeo0, 

1-
.io ---+ d- = oo - 2eox, 

,1+ I+ 1 - 1- 1 -
Jo ---+ d = xoo- 2xeox + 2e(h_ - h+) + 2eeoo, 

I I 1 
j 0- ---+ d- = o0 - 2eox, 

u 1 1- 1 
Uo ---+ D = -eoo- -eo0 + -h+. 

2 2 2 
(4.29) 
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' /'a1 • • • • 
\I •• • ~· • • • 
I\ 
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• • 
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• • • • • • 
Figure 4.1: The action of x, 0 and 0 in root space. 

The operator product expansion between ;l(211; q currents and primary fields 

is given by the expression (compare (2.45)) 

- nx -
X(z)¢a(w, x, 0, 0) = _a_<Pa(w, x, 0, 0) + .... 

z-w 
(4.30) 

With the expansion of the currents X(z) = l::n Xnz-n-l (as in (2.88), bearing in 

mind that we are restricting to the Ramond sector) we find that 

- 1 f znDX -
[Xn, <Pa(w, X, 0, 0)] = -

2 
. dz--a </>a(w, X, 0, 0) 

1r'l z- w 

n X -
= W Da </>a(w, X, 0, 0), ( 4.31) 

which is the result already described in (4.13). 

4.5 sl(2ll) Invariant 3-point Function 

In order to discover ;l(2l1; C)k fusion rules, we wish to consider quantities such as 

( 4.32) 

where wA3 is a singular vector. Then ( 4.32) will be equal to zero and we may 

rewrite this expression as 

(differential operators)(Aii<P2(z, x, 0, O)IA3) = 0 ( 4.33) 
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using the relations (4.13). Evaluating (4.33) we then obtain conditions on possible 

quantum numbers of <h and if>t given those of ¢>3 , amounting to a specification of 

allowed fusings (the appearance of the conjugate field if>t will be addressed shortly). 

This procedure relies on knowledge of ;z(2ll; qk singular vectors, which we have 

from [28], and knowledge of the sl(2ll; <C) invariant 3-point function, which we now 

move on to discuss. 

The differential operator realisation ( 4.29) allows us to determine the sl(2ll; q 

invariant 3-point function (for the variables x, () and 0-the z dependence is stan­

dard), which is in fact the 3-point function for N = 2 superconformal field theory, 

since sl(2ll; <C) is isomorphic to the set of generators of the N = 2 super-Mobius 

group. This has been considered by several authors [48, 49, 50, 51], the interrelation 

of whose work will be clarified here. We note that our discussion of the Ramond 

sector directly parallels the discussion of the Neveu-Schwarz sector in these (and 

other) works on superconformal field theory: the algebra ( 4.2) has vanishing cen­

tral piece for the Ramond sector zero mode subalgebra, whereas the equivalent 

subalgebra in the usual superconformal discussion is in the Neveu-Schwarz sector. 

Indeed, there it is Neveu-Schwarz generators which give rise to the super-Mobius 

group, as discussed in [49]. Although our terminology derives from the fact that we 

are considering the situation where the fermionic modes have integer labels, when 

we discuss Ramond fields they are in fact more akin to Neveu-Schwarz fields, in 

the sense that they do not introduce branch cuts in the operator product expan­

sion with fermionic currents: our fermionic currents are expanded as, for example, 

J(e±nJ(z) = Lnj~±z-n-l whereas a typical fermionic current in superconformal 

field theory is G(z) = Ln Gnz-n-312
. This relative difference between the mode 

numbers and powers of z in the mode expansions means that the behaviour of 

operator products in the Ramond (Neveu-Schwarz) sector of superconformal field 

theory is like that of the Neveu-Schwarz (Ramond) sector in the present situation. 

As we will find that the fusion of two Ramoncl fields gives rise to another Ramond 

field, this interpretation means that our results are not in conflict with those of 
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(for example) [65] for the N = 1 superconformal case and [48] for N = 2, where it 

is discussed how the fusion of two Ramond fields produces a Neveu-Schwarz field, 

whereas the fusion of two Neveu-Schwarz fields gives another Neveu-Schwarz field. 

For a 3-point function to be sl(2j1; q invariant, we require that 

(4.34) 

for each of the sl(2J1; C) generators X 0 . Using the relations (4.13) yields 

3 

L D{ (OJ<f>l(zl, x1, 81, 01)</>2(z2, x2, 82, 02)4>3(z3, x3, 83, 03)jO) = 0, ( 4.35) 
i=l 

where n; is the differential operator corresponding to X 0 , taking its parameters h+ 

and h_ from the primary field <Pa· This assumes that the vacuum JO) is annihilated 

by elements of sl(2j1; C). As previously related in section 1.2, in conformal field 

theory solving the resulting differential equations determines the 3-point function 

exactly. In theN= 2 superconformal case, the 3-point function can depend on the 

nine variables xi, ()i and 1Ji· Finding a 3-point function which satisfies the differential 

equations arising from the generators Jci, j 0 and j~- will result in the automatic 

solution of the remaining equations, from the commutation relations ( 4.2). With 

nine parameters but only three independent equations available (although we make 

use of five equations for simplicity), there will naturally be some ambiguity in the 

final answer. With this in mind, we proceed with our analysis, closely following 

the above references and particularly [49]. We concentrate on the variables x, () 

and 0, the z dependence being straightforward to consider. 
I 

From the equations for J0 , j 0 and j 0-, it is clear that the 3-point function 

depends on the following variables: 

Then from the U0 equation (suppressing the z dependence of the fields for ease of 

notation) 
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we find that there are several distinct cases to be examined, that is, for which 

3 

H+ = Lh+,i = 0,±1,±2. (4.38) 
i=1 

To give an indication of how this comes about, note that we may only have terms 

involving up to Ot2023(}12(}23 , since 813 = 812 + 823 and similarly for tJ1 3. When the 

differential piece ~ (}i8o; - tJiaO; in the U0 equation acts on ( Sij )n, it gives zero so it 

is only the (}ij and tJkl pieces which are of concern. Terms involving an odd number 

of (}ijS and tJjks require H+ = ±1, while terms such as (}ij(jkl, (}ij(}kl(jmn(jpq and the 

constant term require H+ = 0. The only remaining options are 0 12023 and the 

barred counterpart, which require H+ = 2 and H+ = -2, respectively. However, 

consideration of the Jet condition eliminates the cases where H+ = ±2, so there 

are in fact three distinct 3-point functions to be obtained. It remains to solve the 

Jet equation subject to the conditions H+ = 0, ±1. 

Through the use of an ansatz based on the results of [48] and [51], for the case 

H+ = 0, we find (again suppressing the z dependence) 

(0 I,+. ,+. ,+. IO) c U3 Uj U2 [1 h+,l (}12{j12 
'1'1'1'2'1'3 = 123812823813 + -'-----

2812 

+ (h+,1 + h+,2)023{j23 + h+,l (h+,l + h+,2)012{j12(}23{j23 

2s23 4s12S23 

012tJ12s23 (012tJ23 + 023tJ12) 02ii23S12 
+a -a +a---

s12S13 813 S23S13 

h+ 1(}12{j12(}23{j23 (h+ 1 + h+ 2)012{j12(}23{j23] + Q ' + Q -'------'''-------'-' -----

2s23S13 2s12s13 ' 
(4.39) 

where a is an undetermined parameter and a1 = ~(/L,2 +h-,3 -h_,I), a2 = Hh-,1 + 

h_,3 - h_,2 ) and a3 = ~(h-,1 + h_,2 - h_,3 ). This is essentially the answer of [48] 

and [51], though the authors in both cases have additional (different) restrictions 

on a involving the parameters h_. It is straightforward to see that this is not the 

case. Writing the Jft equation for the above answer schematically as 

(4.40) 
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we require 

(4.41) 

Now D(sij)a = a(xi + Xj)(sij)a and so the term D(s~~s~~s~§)[ .. . ] is precisely equal 

to the term L h_,ixi(sss)[ .. . ] on the right hand side, from the definition of ai· We 

may cancel ( sss) in the remaining terms and see that there is no more involve-

ment of the parameters h_, which therefore cannot enter into the undetermined 

parameter a. 

The system of equations given by ( 4.35) is invariant under permutations of 1,2 

and 3: this is not reflected in the solution ( 4.39) and indeed any permutation of 

these labels will also give a solution. If we interchange 1 and 3 (keeping the same 

value of a) and add the resulting answer to the one above, we obtain a solution 

where we have used the fact that H+ = 0 and taken C123 = C321 . Strictly speaking, 

this is not the exact answer obtained by this procedure, since Sij = -sji means 

that the permuted answer differs from ( 4.39) by a factor ( -1)-a1-a3 -a2 • However, 

when the full dependence on anti-holomorphic variables is included, the overall 

multiplicative factor in (4.39) is modified to cl231sd-2a3 ls231-2a 1 1sl31-2a 2 (with 

h-,i = h_,i) and this discrepancy disappears. The expression ( 4.42) is in fact 

a particular case of the general solution obtained by Kiritsis [50]. Understanding 

( 4.39) as written for the labelling {123} we find that the solution obtained by adding 

( 4.39) written with {213} to that with {312} is also a particular Kiritsis solution, 

as is the expression resulting from the addition of {132} to {231}. When all six 

versions of ( 4.39) are added together, the solution obtained is precisely that given 

by Howe and West [49], which is again a specific instance of the solution described 

by Kiritsis, distinguished by the fact that it is a permutation invariant solution 
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of the equations ( 4.35). Before going on to clarify this situation, we consider the 

other 3-point functions for the cases H+ = ±1. 

When H+ = -1, we find that 

when H+ = 1 we have 

(OI"'- "'- "'- IO) _ C" a3 a 1 a2-112 [ 012 ()23 
'1'1'1'2'1'3 - 123812 823 813 1/2 -1/2 - -1/2 1/2 

812 8 23 S12 823 

_ (h+,1e23e12e12 + (-1- h+,1- h+,2)e12e23e23)] (4.44) 

2 
1/2 1/2 . 

812 823 

These are identical to the expressions given in [51] and corrected from [48]. Again, 

they are not invariant under permutations of the field labels. However, we find 

that (with the proviso discussed above that anti-holomorphic coordinates should 

be included) the form of these expressions for { 123} is the same as that for { 321}, 

etc. Indeed, if we sum the resulting three variants in each case, we obtain the 

solutions found by Howe and West [49]. 

To proceed with the calculation of fusion rules, we note that the expression 

( 4.33) is in terms of highest weight states rather than fields acting on the vacuum. 

We have the definition (4.12) to give us the highest weight in-state. The global 

superconformal transformations may be found by exponentiating the generators to 

be [50] 

, ax+ b eq()((l- ~E1l2)l1x + (1 + ~E2li)l2) 
X= +------~--~--~~~~~~ 

ex + d (ex + d)2 
e-q0((1 + ~E2EI)E1X + (1- ~E1E2)E2) 

+--------~----------~-----
(ex+ d)2 

()0((2dt:1E1 - e(E1E2 + E2li))x + d(t:1l 2 + E2EI)- 2et:2l 2) 

+ (ex+ d)3 ' 

()' _ E1X + E2 + eq()(l + ~(E2E1- E1E2)- tE1E1E2E2) + ()0(dt: 1 - et:2) 

- ex + d ex + d (ex + d)2 ' 

- 1 E1X + E2 e-qO(l + ~(E2E1- E1l2)- iE1E1E2E2) ()0(dll- el2) 
() = + - -'------'-

ex + d ex + d (ex + d)2 ' 
(4.45) 
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here corrected from [50) by checking that these transformations are superanalytic. 

In these expressions, a, b, c and dare the SL(2) parameters lad- bel = 1, E and f: 

are anticommuting parameters associated with the supersymmetry transformations 

and q with the transformation arising from U0 . 

For a suitable definition of out-state (AI, we wish to take x ---+ oo via the 

transformation 
1 

x' = -. 
X 

( 4.46) 

For the global transformation to be of this form, we require that E1 = E2 = E:1 = 

E:2 = 0. Consequently, the transformations for () and iJ are given by 

()' = eq() , 
X 

-qo iJ' = _e __ 
X 

(4.47) 

The point (0, 0, 0) is mapped to (oo, 0, 0) as its natural inverse, which is then the 

limit for the out-state 

(AI = lim xL (01¢ (_!_, ~, ~) . 
x-tO X X X 

/)=0=0 

( 4.48) 

The factor xh- arises from the transformation law for superprimary fields [50) 

the factor in which reduces to xL for the transformation given, evaluated at () = 

iJ = 0 and with the choice q = 0. 

Alternatively, we may consider the expansion of a superprimary field as given 

by 

¢(x, 0, iJ) = <p(x) + ()'lj;(x) + iJi/;(x) + OiJg(x). (4.50) 

We see that with our previous definition of in-state ( 4.12) we have 

<p(O)IO) = lA), ( 4.51) 

so then 

(AI = lim (OI<p(x)x-h_ 
x-too 

( 4.52) 
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with again () = e = 0. 

With the definition of out-state established, we arrive at the form of 3-point 

function which we will use for our calculations of fusion rules. For the even case 

( 4.39) for which h+,l + h+,2 + h+,3 = 0, the result is 

For the odd case ( 4.43) for which h+,I + h+,2 + h+,3 = -1 we find 

( 4.54) 

and the other odd case (4.44), where h+,l + h+,2 + h+,3 = 1, becomes 

(4.55) 

In the above, the z dependence is determined, as usual, by taking the commutator 

with L0 : 

( 4.56) 

which means that (from (4.14)) 

3 

L(ziaz; + hi)(Oicf>I¢>2cP3IO) = o. (4.57) 
i=l 

As the z dependence will not influence our discussion of fusion rules, we shall 

generally omit it in what follows. 

We should mention at this point that in the limit discussed above, where x1 --+ 

00, X3 = 0 and ()1 = 01 = ()3 = 03 = 0, the odd 3-point functions as given by 

Howe and West [49) reduce to the expressions (4.54) and (4.55). However, the 

expression obtained by this procedure from their even 3-point function differs from 

(4.53). We will show that (4.53) leads to sensible fusion rules, whereas use of the 

corresponding Howe and West expression only gives these in part. Beyond this, 

we can give no formal justification of why one might start from a non-permutation 

invariant expression for the 3-point function (which is thus intrinsically non-local). 
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We might also note that each of the possible ways of writing ( 4.39) leads to the 

same expression (4.53), that is 

. 2h; -h_ i - - -
hm zi xi · (Oi¢>i(zi, Xi, Oi, Oi)l/>j(zj, Xj, (}j, Oj)¢>k(zk, xk, Ok, Ok)IO) = 

Zi,Xi----1-00 

Zk=Xk=O 
O;,k=O;,k=O 

where i, j, k = 1, 2, 3, i =1- j =1- k. 

4.6 Singular Vectors for k = -1/2 

(4.58) 

In the Ramond sector of ;l(2l1; C)k at level k = -1/2, there are four primary fields 

¢>m,m', 0 ~ m, m' ~ 1 in the class IV and class V representations, corresponding to 

the ;l(211; C)_!. characters described in the tables 3.2 and 3.3. As discussed in the 
2 

previous chapter, these are the characters which close under modular transforma-

tions, motivating their relevance. In [28), the authors calculated general expressions 

for singular vectors using a Malikov-Feigin-Fuks type construction; we will make 

use of these expressions here. The embedding diagram describing singular vectors 

of these representations takes the form [29] of figure 4.2. 

Figure 4.2: The embedding diagram for classes IV and V. 

For each of the four highest weight representations specified by IAm,m') there 

are three singular vectors at the first level of the embedding diagram, from which 
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conditions obtained through the calculation of ( 4.33) must be simultaneously sat­

isfied. We shall list the appropriate form of singular vectors as given in [28] and go 

on to make use of them to calculate fusion rules in the next section. 

For IAo,o), with quantum numbers h_ = h+ = h = 0, the three singular vectors 

are 

(i) j 0 IAo,o), 

(ii) j~-IAo,o), 

(iii) (J+ )3/2( . _ _, __ _,_ ·-)(J+ )112iA ) 
-1 Jo Jo Jo Jo -1 o,o · ( 4.59) 

For IA1,0 ), h_ = h+ = -!, h = 0 the singular vectors are 

(i) j~-IA1,o), 

(ii) ]~1IA1,o), 

(iii) ( 4.60) 

The state IA1,1) hash_ = -!, h+ = !, h = 0 and singular vectors 

(i) j 0 IA1,1), 

( ii) l~1 IA1,1), 

(iii) (4.61) 

and for IA0,1) with h_ = 1, h+ = 0, h = ! the singular vectors are 

(i) (3 ·+ _,_ J+ )lA ) 2J-1 + Jo -1 0,1 , 

(iii) ( 3_,+ ·-J+)IA) -2J-1 + Jo -1 0,1 · ( 4.62) 

These expressions for singular vectors may be used in ( 4.32) to give expressions 

of the form (4.33), utilising the equations (4.13). The singular vectors generally 

involve fractional powers of generators, which may be rearranged using 

00 i 

AB" = ~ (:) w-'[· ··[[A, Bj, B), · · , B) (4.63) 
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to give expressions with integer powers. For the purposes of calculation, it is more 

convenient to keep the expressions as they stand, using the techniques of fractional 

calculus [66] which allow the manipulation of these quantities involving fractional 

powers. We should modify ( 4.13) accordingly, using 

<i>J(x, 0, ii)(X0 )• ~ t, ( ~) (Xo)•-i(- Df)'.P, (x, 0, ii) ~ (Xo - Dj')"q);(x, 0, ii), 

( 4.64) 

with an overall minus sign as required for the case of fermionic generators and a 

fermionic field ¢1. This results in the differential operators in ( 4.33) also involving 

fractional powers, in our case, of the differential operators corresponding to the 

generators J0 and Jt. To deal with this situation, we will make use of the following 

expressions in our calculations: 

(D-)afP01 xb = (Bx)a()'Y{j"fxb 

r(b + 1) ()'O"~xb-a. 
r(b-a+1) ' 

(4.65) 

( 4.66) 

These expressions may be verified as holding for integer values of a, with the validity 

for fractional values of a following by analytic continuation. 

4. 7 Calculation of Fusions 

The information presented in the above sections allows us now to calculate fusion 

rules. As we wish to calculate expressions of the form ( 4.33) 

(4.67) 

we note that since these are equal to zero, the procedure for deriving ( 4.33) from 

( 4.32) essentially amounts to replacing the generators by their corresponding dif-
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ferential operators, with any quantum numbers involved in those expressions being 

the ones associated to the field ¢2 , through which we are commuting. We may 

ignore factors of z arising from those generators with mode numbers not equal 

to zero and the possibility of having to use anticommutators between fields and 

fermionic generators, since this only gives rise to an overall minus sign. Consider 

the singular vector (iii) of (4.59). Using (4.64) we have 

(A* lA. ( e e-)(J+ )3/2( ·- _,_ _,_ ._)(J+ )1;2IA ) _ 
1 '1-'2 z, x, ' -1 Jo Jo - Jo Jo -1 3 -

(A;'I(J~1 - z- 1Di)312 (j0 - d?:)(j~-- d~-)-

(j~-- d2-)(j0 - d?:)(J~1 - z-1 Dt)1l2¢2(z, x, e, B)IA3) = o. (4.68) 

This expression may be rearranged using ( 4.63), with the generators arising from 

this procedure all such that they annihilate the out-state, as can be seen from 

the mode numbers involved. The only remaining part is the piece made up of 

the derivative terms, with an overall factor involving powers of ( -1) and z, which 

can be eliminated. The derivative terms may then be "unrearranged" to give the 

expression with fractional powers and we have 

(A;'I<P2(x, e, B)(J~1 ) 312 (j0 j~-- j~-j0 )(J~1 ) 1 12 IA3) = o--+ 

(Di) 312 (d?:d2-- d2-d2)(Dt)112(A;'I¢2(x, e, B)IA3) = 0. (4.69) 

The only instance where some care needs to be taken is for the case of IA0,1), where 

there are singular vectors made up of a term involving one generator and a term 

involving two generators, which will lead to a minus sign difference on commuting 

with ¢2 . It remains to apply each of the three singular vectors for each field to the 

three 3-point functions (4.53), (4.54) and (4.55). 

The results obtained tell us which 3-point functions are permitted, which in 

turn gives the fusion rules. One slight subtlety is the appearance of a conjugate 

field in this calculation. The fusion rules will take the form 

( 4.70) 
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corresponding to the non-vanishing of the 3-point function (¢'k¢j¢i)· To obtain 

the correct fusion rules from the calculations ahead, we need to bear in mind that 

the conjugate quantum numbers for <Pi will appear. The representation conjugate 

to that labelled by the highest weight vector A is given by -w0 A, where w0 is 

the longest element of the affine Weyl group. In the present situation, the Weyl 

group is just generated by the reflection in the plane perpendicular to the (affine) 

root a 1 + a 2, as described in section 2.5. As an example, consider the case of 

A1,o = (-~(a1 + a 2)- ~(a1 - a 2), -~, 0) (recalling the parametrisation of highest 

weight vectors (2.93)). For Weyl reflections with respect to roots associated to the 

zero mode subalgebra, only the non-affine part of A is affected. Then 

( 
(A1,o, a1 + a2) 1 ) 

-(s(o1 +o2 )Al,o)= -Al,o+2( + + )(a1+a2),--2 ,0 
a1 a2, a1 a2 

= (~al- (al, al + a2) (al + a2), -~, o) 
2 (a1 + a2, a1 + a2) 2 

= (~a1- ~(a1 + a2), -~, 0) = ( -~a2, -~, 0) 
= ( -l(al + a2) + l(a1 - a 2), -~, 0) 

( 4. 71) 

This result may easily be deduced from the root diagram as shown in figure 4.3. 

Clearly Ai,1 = A1,0 , while A0,0 and A0,1 are self-conjugate. 

<Po,o : h_ = h+ = 0 

We begin by examining ¢0,0 , the identity field in this context, where we hope 

the behaviour to be fairly transparent. For the even 3-point function (4.53), where 

now H+ = h+,l + h+,2 = 0 we calculate 

(i) d;-(A~I<P2(x, e, O)IAo,o) = o 

(ii) d2-(A~I¢2(x,e,e)IAo,o) = o 

(iii) (4.72) 

with 

(4.73) 
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~(al + a2)1. 

\ I al 

'\ Al,l 
I I I 

I 
Ao 1 , 

~~o,o 
I 

'\ 
I A1,0 I 

'\ 
I \ a2 

Figure 4.3: The finite parts of the ;l(211; C)_!. Ramond weights. 
2 

From the first two equations, we find that a 1 = !(h-,2 - h_,1) = 0 and a= 0. Then 

from the third equation we have two conditions: 

h-,2(h-,2- 1)- 3h~,2 = 0, 

1 
h+,2(h-,2 + 2) = 0. (4.74) 

When h+ 2 = 0 we have h_ 2 = 0 or h_ 2 = 1. When h_ 2 = - -2
1 we have h+ 2 = - -2

1 
' , ' ' ' 

or h+,2 = !· This unambiguously identifies the following possibilities: 

when cP3 = c/Jo,o, then cP2 = cPo,o and c/Ji = cPo,o 

or cP2 = cP1,o and c/Ji = cP1,1 

or cP2 = c/Jo,1 and c/Ji = c/Jo,1· (4.75) 

This is the sort of behaviour one would wish for, given that c/Jo,o is the identity 

field. However, when this calculation is performed with the even 3-point function 

of Howe and West (with limits taken as described), we only find the first and last 

of these results arising, with no coupling between the identity and ¢ 1,0 or ¢1,1. 

Repeating the exercise with the odd 3-point functions (4.54) and (4.55) requires 
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that these are identically zero. For example, considering case ( i) of ( 4. 72) using 

(4.54) gives 

(;:) 1 (J- ;:) )C-I al-1/2(} - c- I ( aJ-1/2 1 ( 1) (J(J- ai-3/2) - (4.76) 
urh - 2 2ux2 123X2 2 - 123 X2 + 2 a1 - 2 X2 - 0 

which implies that C~23 = 0. Hence the even case exhausts all possibilities. 

c/Jo,1 : h_ = 1, h+ = 0 

The next case we examine is that of ¢0,1 . The even 3-point function (with 

h+,I + h+,2 = 0) yields: 

when cP3 = c/Jo,1, cP2 = c/Jo,o and ¢i = c/Jo,1 

or cP2 = c/Jo,1 and ¢i = c/Jo,o· 

The odd 3-point function (4.54), for which h+,1 + h+,2 = -1 gives: 

when cP3 = c/Jo,1, cP2 = cP1,o and ¢i = cP1,o 

while the other odd 3-point function (h+,1 + h+,2 = 1) reveals: 

,/.. ·h- lh- 1 'f'l,O · - - -2, +- -2 

(4.77) 

(4.78) 

( 4.79) 

Turning now to ¢1,0 we notice that for this particular case of quantum numbers, 

the singular vector in case (iii) of ( 4.60) gives no additional information over case 

(i). Once the fact that j~-IA1 ,0 ) = 0 has been imposed, case (iii) vanishes after the 

first step and this singular vector need not be considered. 

For the even 3-point function, where h+,l + h+,2 - ~ = 0, we find: 

h_ 2 = -h+ 2 = a1 = ~ (h- 2 + (-~) - h_ 1) . , , 2 , 2 ' (4.80) 

While the quantum numbers of ¢i and ¢2 are not given explicitly, we can allow 

¢2 to take the quantum numbers of all the c/Jm,m' in turn and see what results this 

gives for ¢i. In fact, since h_,2 = -h+,3 we are immediately restricted to taking 

cP2 = c/Jo,o or cP2 = c/J1,1· Then 

when ¢3 = cP1,o, and cP2 = c/Jo,o then ¢i = cP1,1 

and when cP2 = cP1,1 then ¢i = cPo,o ( 4.81) 
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which is in agreement with results from the cf>o,o calculation (although with different 

values of the parameter a). 

In the case of the odd 3-point function ( 4.55) we find that this is identically 

zero. However, the 3-point function (4.54) (for which h+,1 + h+,2 - ~ = -1) gives 

1 1 
h_ 2 = a1 + - = - - h_ 1 . , 2 2 , 

Again, letting c/>2 take the quantum numbers of cf>m,m' yields 

* 
1 

d h* when c/>3 = c/>1 0, and c/>2 = c/>o o then h_ 1 = - an + 1 = 
' ' ' 2 ' 

when c/>2 = c/>1,0 then c/>i = c/>o,1 

1 

2 

when c/>2 = c/>1,1 then h*_,1 = 1 and h~, 1 = -1 

when c/>2 = c/>o,1 then c/>i = c/>1,0· 

( 4.82) 

(4.83) 

There are two cases here for which the quantum numbers do not correspond to 

any of the fields available. However, these results do not appear when considering 

fusions for cf>o,o above and c/>1,1 below: not being in the intersection of these rules, 

they may be discarded. The last result is as already obtained in the consideration 

of c/>o,1· 

A. ·h- 1h_1 'f/1,1 . - - -2, +- 2 

The situation for c/>1,1 is very similar to that for c/>1,0. The singular vector (iii) 

of (4.61) is of the form ( ... )( -j0j~- + J0 )IA1,1) which may be rearranged as 

( ... )(j~-j0 )IA1 , 1 ). This will again give no additional information over the result of 

using the singular vector (i) in (4.61), which is j 0 IA1,1). 

The even 3-point function, with h+,1 + h+,2 + ~ = 0 shows that 

h_ 2 = h+ 2 = a1 = ~ (h- 2 + (-~) - h_ 1) . , , 2 , 2 , ( 4.84) 

We see that the only options for c/>2 are c/>o,o and c/>1,0. Hence 

and when c/>2 = c/>1,0 then c/>i = c/>o,o, ( 4.85) 
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again with different values of a. As for the odd 3-point functions, it is now (4.54) 

which is identically zero and (4.55) (where h+,1 + h+,2 = ~ = 1) that gives 

1 1 
h_ 2 = a1 + - = - - h_ 1· , 2 2 , (4.86) 

Considering the remaining options for (h, we find 

when ¢3 = cP1,1, and cP2 = cP1,1 then ¢~ = cPo,1 

and when ¢2 = ¢o,1 then ¢~ = (PI,1· (4.87) 

The first of these results has already been seen in considering ¢1,0 while the second 

echoes the result of the ¢0,1 calculation. 

To summarise the above results, replacing the fields <Pi by their relevant conju­

gates, we have found that the following fusion rules hold for the Ramond fields of 

;l(2l1; C)k with k = -1/2: 

<Po,o x <Po,o = <Po,o, cP1,o x cP1,1 = <Po,o, 

<Po,o x cP1,o = cP1,o, 

<Po,o x ¢1,1 = cP1,1, 

<Po,o x cPo,1 = cPo,1, cP1,1 x cPo,1 = cP1,o, 

cP1,o x cP1,o = cPo,1, cPo,1 x cPo,1 = <Po,o- (4.88) 

These fusion rules form an associative algebra, as they should. One immediately 

obvious statement about these results is that on interchanging ¢1,0 and ¢1,1 the 

form of the fusion rules is unchanged. This precisely reflects what was discovered 

in the investigation of modular invariants in the previous chapter. There we found 

the permutation invariants (3.65), involving II(m, m') = (m, (m - m') mod u). 

This permutation leaves ¢0,0 and ¢0,1 unchanged, but interchanges ¢1,0 and ¢1,1 

and so the modular invariant (3.65) would seem to be a consequence of the fusion 

rule automorphism (though we have not explicitly established the form of fusion 

rules for the remaining sectors involved in the modular invariant). 
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4.8 The Neveu-Schwarz Sector and the Verlinde 

Formula 

We close with a few remarks on the fusion rules for Neveu-Schwarz fields and the 

results of the Verlinde formula applied to the S matrices derived in the previous 

chapter. The Ramond sector and Neveu-Schwarz sector of ;l(2ll; C) are isomorphic 

and as such we expect the fusion rules for Neveu-Schwarz fields to bear a strong re­

semblance to those derived above. However, as previously detailed, Neveu-Schwarz 

fields have operator product expansions that introduce branch cuts with fermionic 

currents. The moding of generators is changed on commuting with Neveu-Schwarz 

fields, so one has to be very careful about defining commutation relations. Ap­

proaches to this problem (in the context of superconformal field theory) are de­

scribed in (for example) [48], [65] and [67]. In superconformal field theory, where it 

is Ramond fields that introduce branch cuts (recall that our definitions of Ramond 

and Neveu-Schwarz are interchanged on this point) one considers a (degenerate) 

Ramond vacuum state, from which Ramond highest weight states are obtained by 

the action of Neveu-Schwarz primary fields. The Ramond vacuum is created from 

the true Neveu-Schwarz vacuum by the action of a so-called spin field a. Then 

correlators are (loosely) given by 

(4.89) 

The correlators may also be seen as (oNsi<Pr<P~s · ··</>~IONS) which in the appropri­

ate limit reduces to (Ari<P~ s · · · 4>~!1 IA~). The outcome of work on superconformal 

field theory, as discussed particularly in [67], is that the fusion rules respect the rel­

evant algebra automorphism. To obtain the appropriate fusion rules in the present 

case involving Neveu-Schwarz fields, we note that these should be of the form 

( 4.90) 

and we should simply replace the fields </> 1 and ¢3 in ( 4.88) by their Neveu-Schwarz 

counterparts. 
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As to the Verlinde formula, [20] established the appropriate extension of (2. 73) 

to fermionic theories. There use was made of the fact that the form of fusion rules 

in superconformal field theories is ¢Ns x ¢Ns = ¢NS and ¢R x ¢NS = ¢R. This 

was held in [20] to reflect the behaviour of characters under modular transforma-

tions, where Neveu-Schwarz characters are closed under the S transformation and 

Ramond characters and Neveu-Schwarz supercharacters are transformed into each 

other. The behaviour of characters remains the same in the present context, yet 

the behaviour of fusion rules is different and so we are not sure what to make of 

this point. However, naive application of the Verlinde formula introduced in [20] 

5NS SNS(SNS)-1 
N: k = "'"""' tm Jm mk 

t) ~ SNS 
m Om 

(4.91) 

which is the expression used in [20] to describe the ¢Ns x ¢Ns = ¢Ns fusion gives 

(using (A.2)) 

<Po,o x <Po,o = <Po,o, </Y1,0 X </Y1,1 = -¢o,1, 

<Po,o x <P1,o = <P1,o, </Y1,o x </Yo,1 = ¢1,1, 

¢1,1 x ¢1,1 = -<Po,o, 

<Po,o x ¢o,1 = </Yo,1, </Y1,1 x </Yo,1 = </Y1,o, 

<P1,o x <P1,o = -<Po,o, </Yo,1 x </Yo,1 = <Po,o· (4.92) 

This is typical of results for fractional level, as seen in [18] and [53] for ;z (2) 

and [23] for osp(112). These last two references argued for a prescription to change 

the negative signs into positive ones: in ( 4.92) we see that replacing -¢0,0 by ¢0,1 

and -¢0,1 by ¢0,0 reproduces the fusion rules (4.88). When the formula in [20] 

appropriate to the Ramond sector is used (with (A.2) and (A.4)), 

SR SR (SNS)-1 
.. k _ "'"""' im jm mk 

Nl) - ~ sNs 
m Om 

(4.93) 

describing the fusion ¢R x ¢R = ¢NS, a very similar set of results is obtained, with 

negative signs appearing in different relations. Again, the replacement of -¢0,0 by 

¢0,1 and -¢0,1 by ¢0,0 reproduces the fusion rules ( 4.88). While this indicates that 
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a replacement prescription along the lines of [23] and [53] could be established, it 

is in the first instance more important to justify an appropriate extension of the 

Verlinde formula. In studying osp(112) the authors of [23] simply applied the Ver­

linde formula to the S transformation matrix for Ramond supercharacters, which 

do close under modular transformations. If we do the same, we obtain fusion rules 

which do not agree with (4.88), such as ¢1,0 x 4>1,0 = 4>0 ,0 . It remains to suitably 

adapt the expressions of [20]. 

4. 9 Conclusion 

In this chapter we have considered fusion rules for the Ramond sector of ;l(2l1; <C)k. 

at level k = -1/2. The approach used to examine this problem is that of studying 

the decoupling of singular vectors, giving rise to conditions that determine non­

vanishing 3-point functions and hence fusion rules. The expressions for singular 

vectors are vastly more complicated than for the case of osp(112), which was studied 

in [24]. There the authors were able to determine fusion rules for all admissible 

levels using this approach. We have been unable to discuss the general case of k = 

1/u- 1, simply due to the difficulty in dealing with ;z(2l1; <C)k singular vectors. It 

is not impossible that the general solution may be obtained through these methods. 

However, other approaches, notably the Coulomb gas formalism as used in [48] to 

study N = 2 superconformal field theory, would seem to be much more promising. 

Such an approach would allow a direct consideration of the Neveu-Schwarz sector 

(not mentioned in [24]) and also the sl(211) invariant 4-point function. We have 

been able to determine consistent fusion rules for k = -1/2 and found these to be 

related to a modular invariant found in the previous chapter. These results indicate 

that one may consistently define a conformal field theory based on fractional level 

;z(211; q. 



Chapter 5 

Conclusion 

In this thesis we have considered the affine superalgebra ;z (211; C) at fractional level 

k = 1/u - 1, corresponding to admissible representations. These representations 

are more general than integrable ones but keep the important property that at a 

particular value of the level, the characters transform into each other under modular 

transformations. As such, one may construct modular invariant combinations of 

characters which one might hope could correspond to some physical conformal field 

theory. 

With this end in mind, we first began by establishing the general form of the 

modular transformations of ;z(211; C) characters. Although this was based on the 

assumption that the characters would indeed transform into each other, we did 

find this to be the case for explicit calculations at k = -1/2 and k = -2/3. 

Additionally, the work of [38], showing that all ;z(2l1; q characters at admissible 

levels of the form k = 1/ u - 1 are equivalent to class IV and class V characters 

supports the assumption that it is these classes of characters which form a closed 

set under modular transformations. The expressions for modular transformations 

allowed the beginning of the study of modular invariant combinations of characters. 

Finding all possible modular invariants remains an unsolved problem, which is still 

a challenge in conformal field theory generally. 

The Verlinde formula gives the relation between matrices of the modular S 
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transformation and fusion rules. In fractional level theories (sl(2) studied in [18), 

[21], [52] and [53], and osp(112) in [23]) it is observed that the Verlinde formula gives 

fusion rules with negative coefficients. Although prescriptions have been given to 

deal with these situations, the form of the Verlinde formula appropriate to fractional 

level (there does still seem to be a relation between S-matrices and fusion rules) 

has yet to be established. In the present work, we have found fusion rules which are 

consistent at fractional level, as also discovered in [24] for osp(112). The relation 

with the Verlinde formula is even more confused here due to the behaviour of the 

Ramond and Neveu-Schwarz sectors, which seems to be different to superconformal 

field theory. 

The study of conformal field theories based on affine algebras at fractional level 

is one that has been tackled somewhat sporadically over the last decade. As yet, no 

absolute consensus has been reached even for sl(2) as to whether these can actually 

define bona fide conformal field theories in their own right. However, the evidence 

does seem to suggest that this is possible; in any case, other models may be obtained 

through hamiltonian reduction or the coset construction. The work of [24] is a first 

indication that fusion rules are well-defined for fractional level superalgebras, a 

conclusion which is also borne out by this work. The authors of [24] were able to 

determine consistent fusion rules for all levels at which admissible representations 

of osp(112) exist (in the Ramond sector). Due to the far more complex nature 

of singular vectors of sl(2l1; C)k, we have only examined a particular case, that of 

k = -1/2. Even here we have restricted to Ramond fields, although fusion rules for 

Neveu-Schwarz fields may be at least strongly conjectured from these. It should be 

possible to calculate Neveu-Schwarz fusion rules explicitly through an adaptation 

of the techniques used in the previous chapter. Additionally, one may use these 

techniques to calculate fusion rules for higher values of u, although this would be 

hugely laborious. It may be possible to consider the general case k = 1/u - 1, 

although we have had little success in this regard. More promising (as the authors 

of [48] found for N = 2 superconformal field theory) would be to use an approach 
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based on the Coulomb gas formalism. Then Neveu-Schwarz fusion rules could be 

considered in a more straightforward manner and one could also consider the 4-

point function. As yet, the technology to implement this approach for fractional 

level superalgebras (other than osp(ll2)) has not been developed [62]. 

Conformal field theory has been an area of study popular amongst mathematical 

physicists for the last 20 years. Its successes have been many and varied, from 

statistical mechanics to string theory. Yet there remains much that is not well 

understood in this field, which will provide challenges for the researcher for some 

time to come. 



Appendix A 

u 2 

Here we list the explicit forms of the matrices S for each sector at u = 2. We then 

list the possible modular invariants satisfying the condition that the matrices N 

have non-negative integer entries. In what follows, we understand a sum over the 

repeated index (3. 

X~S,sl(2ll;IC)_ ~ (~, ~' _!) _ 1ri(a2 _ 1/ 2 )/27 sNS NS,sl(2ll;IC)_ ~ ( ) 
~ - e afJ X{J a, v, T , 

T T T 

a,/3 = 1,2,3,4, (A.1) 

where 

n,sl(2ll;IC) 1 
-'J 

X a 

1, 1 1 1, 

SNS =! 1 -1, 1, -1 
(A.2) 

2 1 1, -1, -1 

1, -1 -1 1, 

( ~' ~' _!) 
T T T 

·( 2 2)/2 R NS,sl(2ll;IC) 1 
1rt a -v T S S - 'J ( ) = e afJ X{J a, v, T ' 

a, (3 = 1, 2, 3, 4, (A.3) 
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where 

1 1 1 -1 

sR = ~ ~ -~ '/, ~ 

(A.4) 
2 

~ ~ -~ ~ 

1 -1 -1 -1 

Sx~S,il(2\l;IC)_~ (~ ~ -~) _ rri(o-2-v2)/27 SNS R,il(2\l;IC)_~ 
~ ' ' - e sa/3 X(3 (a, v, T), 

T T T 

a, f3 = 1, 2, 3, 4, (A.5) 

where 

1 ~ ~ 1 

SSNS = ~ 1 -~ ~ -1 
(A.6) 

2 1 ~ -~ -1 

-1 '/, ~ -1 

Sx~,il(2\l;IC)_ ~ (~ ~ -~) = rri(o-2-v2)/2T SSRS R,s-!(2\l;IC)_ ~ ( ) 
~ ' ' e a/3 X(3 a, v, T ' 

T T T 

a, f3 = 1, 2, 3, 4, (A.7) 

where 

1 1 1 -1 

5SR = ~ 1 1 -1 1 
(A.S) 

2 1 -1 1 1 

-1 1 1 1 

We use the definitions as laid out in the tables A.1 and A.2. The supercharacters 

in each sector have the same quantum numbers as the corresponding characters. 

The relation between M and Jvf' values in class V and the m and m' values which 

allow us to combine classes IV and V in the branching formulae (3.35), (3.36), 

(3.37) and (3.38) ism= u- 2-M- M', m' = u- 1-M'. 

With the above information, we have calculated modular invariant matrices N 
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m m' hl}: hR 
+ 

hR hf!S hNS 
+ 

hNS 

X1 0 0 0 0 0 1 0 1 
2 8 

X2 1 0 1 1 0 0 1 1 
2 2 2 8 

X3 1 1 1 1 0 0 1 1 
-2 2 2 8 

Table A.1: Class IV ;l(2l1; C)_!. characters 
2 

M(m) !VI'(m') hl}: hR 
+ 

hR hf!S hNS 
+ 

hNS 

X4 0(0) 0(1) 1 0 1 3 0 1 
2 2 8 

Table A.2: Class V ;l(2l1; q_!. characters 
2 

m 

u-1 

Z= NR R R + NNS NS NS 
mm' nn' Xm m' X n n' mm nn' Xm m' X n n' ' ' ' ' , ' 

m,rn' ,n,n'==O 

u-1 

NSNS S NS S NS + mm1 nn' Xmm' X nn' + , , , 
a,a' ,b,b' =0 

that is to say, N such that [S, N] = [T, N] = 0, using the appropriate matrices S 

and T. We find that the general form of these N is 

a-b 0 0 

NR= 
0 c+b a-c 

0 a-c c+b 

0 0 0 

a 0 

NNS = NSNS = 
0 c 

0 a-b-c 

b 0 

With the requirements that all the Nmm' nn' , 

0 

0 

0 

a-b 

0 b 

a-b-c 0 
(A.10) 

c 0 

0 a 

are non-negative integers and 
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N!}o 00 = 1, we find two possible cases: 
' 

1 0 0 0 a 0 0 a-1 

NR= 
0 a a-1 0 

NNS = 0 1 0 0 
(i) (A.ll) 

0 a-1 a 0 0 0 1 0 

0 0 0 1 a-1 0 0 a 

or 

1 0 0 0 a 0 0 a-1 

NR= 
0 a-1 a 0 

NNS = 0 0 1 0 
(ii) (A.12) 

0 a a-1 0 0 1 0 0 

0 0 0 1 a-1 0 0 a 

with a EN. For the Ramond supercharacters we find 

d+e+f+g-h d+f-h e+g-h 0 

NSR= 
d+e-h d e 0 

(A.13) 
f+g-h f g 0 

0 0 0 h 

Setting d = g = h = 1, e = f = 0 gives the identity matrix and e = f = h = 1, 

d = g = 0 gives us the permutation. 
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u 3 

( ~) ~) -~) T T T 

2 ·( 2 2 )/3 NS NS,;l(2\l;IC) 2 
_ 1n cr -v T S - :J ( ) - e a{3 X{3 a, v, T ) 

a, (3 = 1, 2, 0 0 0, 9, (B.1) 

where 

e27ri/3 e7ri/3 e7ri/3 1 1 1 e7ri/3 e27ri/3 e27ri/3 

e7ri/3 1 e-27ri/3 e-7ri/3 -1 e7ri/3 e27ri/3 e-?ri/3 -1 

e7ri/3 e-27ri/3 1 e7ri/3 -1 e-7ri/3 e27ri/3 -1 e-7ri/3 

1 e-7ri/3 e7ri/3 e-27ri/3 1 e27ri/3 -1 e27ri/3 e-27ri/3 

SNS = ~ 
3 1 -1 -1 1 1 1 -1 1 1 

1 e7ri/3 e-7ri/3 e27ri/3 1 e-27ri/3 -1 e-27ri/3 e27ri/3 

e7ri/3 e27ri/3 e27ri/3 -1 -1 -1 e27ri/3 e7ri/3 e7ri/3 

e27ri/3 e-?ri/3 -1 e27ri/3 1 e-27ri/3 e7ri/3 1 e-27ri/3 

e27ri/3 -1 e-7ri/3 e-27ri/3 1 e27ri/3 e7ri/3 e-27ri/3 1 
(Bo2) 

R,;1(2\l;IC) 2 (~,~,-~) 2 ( 2 2)/3 R NS,;/(2\l;IC) 2 -3" m cr -v T S c; - 3" ( ) 
X a = e a{3'- X{3 a, v, T ) 

T T T 

a, (3 = 1, 2, 0. 0, 9, (Bo3) 
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where 

1 1 1 1 1 1 -1 -1 -1 

e7ri/3 -1 1 

-1 

1 1 1 

(B.4) 

NS,;l(2il;C) 2 

Sxo: - ~ 
(

5?:_, ~' _ ~) _ e21ri(a2 -v2 )/3r SS{3NSXR,;l(
2

il;C)_ i (rr V T) 
- 0: {3 v, , , 

T T T 

where 

SSNS = ~ 
3 

1 -1 -1 

R,;l(2ll;C) 2 (IJ V 1) 
Sxo: -~ -,-,--

T T T 

a, j3 = 1, 2, ... , 9, (8.5) 

1 1 1 -1 1 1 

(B.6) 

2 ·( 2 2 )/3 SR R,;l(2il;C) 2 
1r2 a -v T S S - ~ ( ) = e o:f3 Xf3 IJ, v, T , 

a,/3=1,2, ... ,9, (B.7) 
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m m' hE! hR 
+ 

hR hl!_S hNS 
+ 

hNS 

X1 0 0 0 0 0 2 0 1 
3 6 

X2 1 0 1 1 0 1 1 0 3 3 3 3 

X3 1 1 1 1 0 1 1 0 3 3 3 3 

X4 2 0 2 2 0 0 2 1 
3 3 3 6 

X5 2 1 2 0 1 0 0 1 
3 3 2 

X6 2 2 2 2 0 0 2 1 
3 3 3 6 

Table B.l: Class IV ;l(2l1; C)_~ characters 
3 

l\1/(m) M'(m') hE! hR 
+ 

hR h:!_S hNS 
+ 

hNS 

X1 0(1) 0(2) 2 0 1 4 0 1 
3 3 3 6 

Xs 0(0) 1(1) 1 1 2 5 1 0 3 3 3 3 

X9 1(0) 0(2) 1 1 2 5 1 0 3 3 3 3 

Table B.2: Class V ;z ( 211; C)_~ characters 
3 

where 

1 1 1 1 1 1 -1 -1 -1 

1 1 e-27ri/3 1 e-27ri/3 e27ri/3 e-1fi/3 e7ri/3 e-7ri/3 

1 e-27ri/3 1 e27ri/3 e-27ri/3 1 e-7ri/3 e-7ri/3 e7ri/3 

1 1 e27ri/3 1 e27ri/3 e-27ri/3 e7ri/3 e-7ri/3 e7ri/3 

5SR = ~ 
3 

1 e-27ri/3 e-27ri/3 e27ri/3 e27ri/3 e27ri/3 e7ri/3 -1 -1 

1 e27ri/3 1 e-27ri/3 e27ri/3 1 e7ri/3 e7ri/3 e-7ri/3 

-1 e-7ri/3 e-7ri/3 e7ri/3 e7ri/3 e7ri/3 e27ri/3 1 1 

-1 e7ri/3 e-7ri/3 e-7ri/3 -1 e7ri/3 1 e-27ri/3 e27ri/3 

-1 e-7ri/3 e7ri/3 e7ri/3 -1 e-7ri/3 1 e27ri/3 e-27ri/3 

(B.8) 

In the above we use the definitions of tables B.1 and B.2. 
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For the u = 3 modular invariants we find: 

a-b+c-d 0 0 0 0 0 0 0 0 

0 a c b 0 d 0 0 0 

0 c a d 0 b 0 0 0 

0 b d a 0 c 0 0 0 

NR= 0 0 0 0 a+c 0 b+d 0 0 

0 d b c 0 a 0 0 0 

0 0 0 0 b+d 0 a+c 0 0 

0 0 0 0 0 0 0 a-d c-b 

0 0 0 0 0 0 0 c-b a-d 

a+c 0 0 0 0 0 b+d 0 0 

0 a c 0 0 0 0 d b 

0 c a 0 0 0 0 b d 

0 0 0 a-d 0 c-b 0 0 0 

NNS = NSNS = 0 0 0 0 a-b+c-d 0 0 0 0 

0 0 0 c-b 0 a-d 0 0 0 

b+d 0 0 0 0 0 a+c 0 0 

0 d b 0 0 0 0 a c 

0 b d 0 0 0 0 c a 
(B.9) 

Requiring that entries be non-negative integers and that N0~,oo = 1 leads to the 



B. U= 3 102 

following invariants: 

1 0 0 0 0 0 0 0 0 

0 a b b 0 a-1 0 0 0 

0 b a a-1 0 b 0 0 0 

0 b a-1 a 0 b 0 0 0 

(i) NR= 0 0 0 0 a+b 0 a+b-1 0 0 ' 
0 a-1 b b 0 a 0 0 0 

0 0 0 0 a+b-1 0 a+b 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

a+b 0 0 0 0 0 a+b-1 0 0 

0 a b 0 0 0 0 a-1 b 

0 b a 0 0 0 0 b a-1 

0 0 0 1 0 0 0 0 0 

NNS = 0 0 0 0 1 0 0 0 0 (B.10) 

0 0 0 0 0 1 0 0 0 

a+b-1 0 0 0 0 0 a+b 0 0 

0 a-1 b 0 0 0 0 a b 

0 b a-1 0 0 0 0 b a 
or 

1 0 0 0 0 0 0 0 0 

0 a c c-1 0 a 0 0 0 

0 c a a 0 c-1 0 0 0 

0 c-1 a a 0 c 0 0 0 

(ii) NR= 0 0 0 0 a+c 0 a+c-1 0 0 ' 

0 a c-1 c 0 a 0 0 0 

0 0 0 0 a+c-1 0 a+c 0 0 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 0 
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a+c 0 0 0 0 0 a+c-1 0 0 

0 a c 0 0 0 0 a c-1 

0 c a 0 0 0 0 c-1 a 

0 0 0 0 0 1 0 0 0 

NNS = 0 0 0 0 1 0 0 0 0 (B.ll) 

0 0 0 1 0 0 0 0 0 

a+c-1 0 0 0 0 0 a+c 0 0 

0 a c-1 0 0 0 0 a c 

0 c-1 a 0 0 0 0 c a 

For the Ramond supercharacters we find 

el e2 e3 e2 0 e3 0 0 0 

9 J h !4 0 h 0 0 0 

e 92 93 f 0 0 0 0 

9 !4 h J 0 h 0 0 0 

NSR= 0 0 0 0 k 0 )7 0 0 (B.12) 

e f 92 0 93 0 0 0 

0 0 0 0 )7 0 k 0 0 

0 0 0 0 0 0 0 ms mg 

0 0 0 0 0 0 0 mg ms 

where e1 = f + 9 + k + l, e2 = f + 9- h, e3 = e - f + h, h = 9 - j + k, 

!4 = -e + f + 9 - h + l, 92 = f + 9 - h - j + k, 93 = e - f - 9 + h + j, 

h = e- f- l, m 8 = -9 + h + j, m 9 = -e + f + 9- h- j + k + l. Setting j = k = 1, 

e = f = 9 = h = l = 0 gives us the identity and k = 1, e = f = 9 = h = j = l = 0 

the permutation invariant. 
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