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Abstract 

In this thesis we examine some of the interesting aspects of stability for some 

convection problems. Specifically, the first part of the thesis deals with the Benard 

problem for various Non-Newtonian fluids, whereas the second part develops a sta­

bility analysis for convection in a porous medium. 

The work on stability for viscoelastic fluids includes nonlinear stability analyses 

for the second grade fluid, the generalised second grade fluid, the fluid of dipolar 

type and the fluid of third grade. It is worth remarking that throughout the work 

the viscosity is supposed to be any given function of temperature, with the first 

derivative bounded above by a positive constant. 

The connection between the two parts of the thesis is made through the method 

used to approach the nonlinear stability analysis, namely the energy method. It is 

shown in the introductory chapter how this method works and what are its advan­

tages over the linear analysis. 

Nonlinear stability results established in both Part I and Part II are the best 

one can get for the considered physical situations. Different choices of energy have 

been considered in order to achieve conditional or unconditional nonlinear stability 

results. 
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Summary 

This thesis examines a variety of stability results for various convection problems. 

Among the numerous real phenomena which involve convection, there are two on 

which we concentrate here: convection in a layer of a fluid heated below and con­

vection in a porous medium. Both parts of this thesis analyse the stability for some 

of these situations. 

To begin, we introduce the energy method, which we shall employ throughout the 

thesis in order to derive nonlinear stability criteria. We illustrate this method within 

a complete study of the stability for an incompressible and homogeneous Navier­

Stokes fluid, when the viscosity is considered constant. We examine the stability 

and instability boundaries using linear theory, and then by the energy method. 

In Part I we study the effect of variation of the temperature-dependent viscosity 

on the flow of Non-Newtonian fluids heated from below. The generalised fluids 

on which we focus our analysis here are: the fluid of second grade, the fluid of 

generalised second grade, the dipolar fluid and the fluid of third grade. A complete 

nonlinear stability analysis is delivered for each of the fluids and we show that the 

analysis and the results are different with respect to the presence of some nonlinear 

terms in the stress tensor of each particular fluid. It is of interest to mention that 

the strongest result is achieved in the stability analysis for the third grade fluid, due 

to the extra structure provided by the constitutive equations. 

The object of Part II is to investigate the stability of penetrative convection 

in a porous layer, beneath the ocean bed and above the interface of the thawing 

subsea permafrost ground. In Part I, of most interest were the changes in viscosity, 

whereas here we are mostly concerned about variations of the temperature and the 

1 



Contents 2 

water salinity and their effects on the stability. A linearised analysis is performed 

first to deliver a linear instability boundary. Nonlinear energy results turn out to be 

very close to those of the linear analysis, eliminating the gap between the instability 

and stability boundaries. Two energy analyses are presented in order to improve the 

nonlinear stability criterion. A generalised energy leads to a conditional nonlinear 

result, whereas an weighted energy is necessary for a stronger mathematical result, 

an unconditional one, i.e. with no restrictions on the initial amplitudes. 

Some conclusions and speculations are presented at the end of this thesis. It is 

worth remarking at this point that all the results from Part I and Part II are new 

and most of the work has been already published or submitted for publication. 



Chapter 1 

Introduction and background 

1.1 Notations 

The notation used throughout the thesis is standard, with indicial and bold face 

notation for vectors and tensors. 

The symbol ~ is the three-dimensional Laplacian operator and ~ * denotes the 

Laplacian operator with respect to the x1 , x2 variables, i.e. 

Standard indicial notation with the Einstein summation convection is employed 

A subscript t denotes partial differentiation with respect to the time, whereas a 

superposed dot is used for the material derivative, e.g., 

As most of the applications deal with motion in a vertical plane, z E (0, d), we 

regard all the functions as periodic in x and y. We shall denote by V a periodic cell 

defined by the Cartesian product of a repetitive plan-form in (x, y) plan with (0, d), 

3 



1.2. Stability theory 4 

whereas r denotes the boundary of the periodic cell v lying in the plane z = d. 

L 2(V) is the space of square-integrable functions on V and W 1
•
2 (V) is the space 

of functions f E L 2 (V) with the first derivative in L 2 (V), as well; (.) denotes the 

integration over V and 11·11 is the L2 (V) norm, e.g., 

i j g dV = (!g), 

i f 2
dV = IIJW. 

D(.) is the Dirichlet integral over V, i.e. 

1.2 Stability theory 

The concept of stability in the mathematical study of a physical system has had a 

long and fruitful history. Real situations show that for the practical use of many 

technical systems stability properties can be a decisive criterion. Some examples 

where stability properties are important could be: engineering structures (bridges, 

plates, shells structures under pressure loading or unloading by flowing fluids), vehi­

cles moving at high speed, truck-trailer combinations, railway trains, hydrodynamics 

problems. 

Over the past decades, engineers have approached many of their stability prob­

lems using a linearised stability analysis. In addition, if a linear stability analysis 

does not seem to be sufficient, numerical simulations are employed. Such a numeri­

cal simulation allows one to check whether a linearised analysis provides practically 

useful results or not. However, contrary to the widespread belief that linearised 

stability analysis together with numerical simulation are a general method of treat­

ing stability problems, it has been proved that this is not the case. There exists 

a large number of problems where a linearised analysis does not give much infor­

mation about the behaviour of the nonlinear system at all and, hence, a numerical 

simulation would be very costly without yielding much insight into the qualitative 
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behaviour. Alternatively, a wide large range of nonlinear problems can be anal­

ysed and solved in a straightforward manner making use only of an appropriate 

mathematical background. 

We shall roughly explain in this introductory part what we mean by a nonlin­

ear investigation, when it is absolutely necessary to perform a nonlinear analysis, 

whether or not there are restrictions in carrying out a nonlinear stability analysis 

and what is the advantage of a nonlinear analysis over a linear one. 

To illustrate some of the mechanisms and concepts of stability we shall now work 

through a classical problem. 

Benard convection. Thermal instability often arises when a fluid is heated 

from below. The classical example, described in this section, is a horizontal layer of 

an incompressible and homogeneous Navier-Stokes fluid with its lower side hotter 

than its upper. The basic state is then one of rest with light fluid below heavy 

fluid. When the temperature difference across the layer is great enough, the stabil­

ising effects of viscosity and thermal conductivity are overcome by the destabilising 

buoyancy, and an overturning instability ensues thermal convection. The convection 

in a horizontal layer of fluid heated from below is called Benard convection. 

Consider then a layer of incompressible viscous fluid occupying the infinite hor­

izontal layer contained between the planes z = 0 and z = d, with velocity vector v 

and pressure p. The partial differential equations governing this situation are 

v· ~ 

v· ~.~ 

1 
-- P,i + v ~vi - kig[1- a(T- To)], 

p 

0, 

T ""~T, 

(1.1) 

where p, v, g, a, T, "" are respectively, density, kinematic viscosity, gravity, thermal 

expansion coefficient, temperature, thermal diffusivity and k is the vector (0, 0, 1). 

We treat here p (= p0 ) and v (= v0 ) as constants. We remark that we have employed 

the Navier-Stokes equations with a Boussinesq approximation; the basis for this 

approximation is that there are flows in which the temperature varies little, and 

therefore the density varies little, yet in which the buoyancy drives the motion. 

Then, the variation of density is neglected everywhere except in the buoyancy. 



1.2. Stability theory 6 

From the no slip in velocity condition, we write 

Vi = 0, Z = 0, d. (1.2) 

If we consider that the temperatures at the boundaries are fixed, 

T = T0 , z = 0 and T = T1 , z = d, (1.3) 

where T0 > T1 (i.e. the fluid is heated from below), then the boundary value problem 

(1.1)-(1.3) has a steady solution (v, f', p) 

v = 0, T = - f3 z + T0 , 

with f3 being a measure of the temperature gradient 

(3 = To : T1 > O. 

The pressure j5 is determined from (1.1h, up to a constant, namely 

_ Pogaf3 2 
p=pogz+ 2 z. 

A real system is always subject to some small fluctuations which may provide pertur­

bations from the stationary solution. If these perturbations are amplified with time, 

then the evolution naturally drives the system away from that stationary state. If, 

however, perturbations from the stationary solution decay in time, then the steady 

solution it is called stable. From a practical point of view it is then necessary that 

all disturbances decay rapidly. 

An important task of stability theory is to separate the stable solutions from the 

unstable ones, i.e. to generate a stability boundary. In order to test stability or 

instability of the stationary solution, let (u, 0, n) denote the perturbation from the 

steady solution. The total flow (v + u) must satisfy the equations of motions and 

the same boundary conditions as v, but the perturbation flow is otherwise arbitrary, 

in particular it is not necessarily small. One wishes to know if and under which 

conditions the two solutions come together or stay apart. To answer this question 

we form the initial-boundary problem governing the evolution of the disturbances 

u· l 

u·. 
l,l 

1 
--n · + v0 t:..u· + k· gaO ,'1 t t ' 

Po 
0, (1.4) 
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where w = u3 , along with the appropriate boundary conditions 

() = Ui = 0, Z = 0, d. 

We now introduce the dimensionless variables (the star ones) and consider the 

following notations 

Xi = x:d, ui = u:u, 7r = 7r* P, o = O*t, t = t*T, 

U= Vo 
P= 

Upo Vo t = ufj} d' d ag 

T= 
d2 

Pr 
vo R = Jafigd

4
, 

' Vo "" VoK-

where Pr is the Prandtl number and Ra = R 2 is the Rayleigh number. The non­

dimensionalized system is then (dropping all the stars) 

u·. 
~.~ 0, (1.5) 

Pr () 6.0 + R w, 

and the corresponding boundary conditions are 

() = ui = 0, z = 0, 1. (1.6) 

Note that the Rayleigh number is positive when the lower boundary is the hotter 

one (To > T1) and it is a characteristic ratio of the destabilising effect of buoyancy 

to the stabilising effects of diffusion and dissipation. Also note that the Prandtl 

number is an intrinsic property of the fluid, not of the flow, it measures the ratio of 

materials parameters. 

The aim of stability theory is to extract information about the evolution of the 

perturbations without solving the full nonlinear boundary problem in (1.5)-(1.6). 
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Linear stability analysis. We start the stability study of the steady solution 

of (1.1) with a linearised analysis. Therefore, we neglect the nonlinear terms in (1.5) 

and the system to be solved is now 

u·. t,t 0, (1. 7) 

Pr O,t tl(} + R w, 

where the boundary conditions (1.6) are considered. Since (1.7) and (1.6) are linear, 

the time evolution of this system of equations may be reduced to an eigenvalue 

problem by imposing a time dependence for solutions, i.e., 

with rJ being a complex constant. Next from (1.7) we may derive 

u·. t,t 0, (1.9) 

(J PrO tl(} + Rw. 

The operator whose spectrum is of interest in (1.9) is not generally self-adjoint, so 

the eigenvalues may be complex numbers. 

We shall show that in the particular example we discuss here, the rate of growth, 

rJ, is real. If we assume rJ = CYr + i CTi, CYn rJi E JR., then we expect to have complex 

solutions ui and (}, with the associated complex conjugates ui, respectively (}*. We 

now multiply (1.9)1 by ui, (1.9)3 by (}*, and integrate over the periodic cell V to 

obtain 

Pr rJ (0 0*) = -(O,i o;) + R(w 0*). 

Adding the last two identities it follows that 

(1.10) 



1.2. Stability theory 

Since 

(B w*) + (w B*) ((Br + iBi) (wr- iwi)) + ((wr + iwi) (Br- iBi)) 

2[(Brwr) + (wiBi)] E R, 

one can see that the imaginary part of (1.10) is 

Therefore, CJi = 0 and the proof of CJ E R is completed. 

9 

As CJ is a real number, the linearised equations (1.7) satisfy the Principle of 

exchange of stability. When this principle holds, convection set in as stationary 

convection. Now recalling (1.8), if CJ > 0 for all modes, the corresponding disturbance 

will be amplified, growing exponentially in time until it is so large that nonlinearities 

become significant and the mode is called unstable. In the case when the largest 

eigenvalue is zero, the mode is said to be marginal or critically stable, whereas if 

CJ < 0 such that the disturbances decay exponentially it is said that the mode is 

asymptotically stable. 

A small disturbance of the basic flow will in general excite all modes, so that 

if CJ > 0 for at least one mode, then the flow is unstable. Conversely, if CJ :::; 0 for 

all of the complete sets of modes, then the flow is stable. In conclusion, it is very 

important for one to know the characteristics of the critical flow, precisely when 

(J = 0. 

We shall then solve the linearised problem (1.9) for CJ = 0, namely 

u·. z,z 0, (1.11) 

t1() + Rw 0. 

In order to reduce system (1.11) to a one-dimensional eigenvalue problem, we 

first take the third component of the operation curl curl of equation (1.11)1 and 

using (1.11)2 we obtain 

(1.12) 

We now adopt a normal mode representation of form B(x, y, z) = 8(z)h(x, y), 

w(x, y, z) = W(z)h(x, y), with 8(z) and W(z) being z-dependent functions and 
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h(x, y) is a planform which tiles the plane (x, y) and satisfies the equation (see eg. 

Christoperson [9]) 

(1.13) 

where k2 is an arbitrary constant arising from the separation of the variables. The 

equation (1.13) is well known, called the reduced wave equation (Helmholtz equation, 

membrane equation), thus k is interpreted as a real horizontal wavenumber. In 

general, a disturbance excites components for each value of k. 

Considering D = dfdz, z E (0, 1), (x, y) E ~2 and replacing the normal mode 

representations of() and w in (1.11)3 and (1.12), the system is reduced to 

Rk28 - (D2
- k2? W 

RW + (D 2
- k2

) 8 

where the boundary conditions are given by 

0, 

0, 

W = DW = 8 = 0, z = 0, 1. 

(1.14) 

(1.15) 

It may be observed from the equations (1.14), that in fact Pr does not affect the 

conditions for the critical stability. 

The eigenvalue problem (1.14)-(1.15) is solved by the compound matrix method 

(see Appendix B) and provides a critical Rayleigh number of the linear analysis, 

which we denote by RaL. Hence, the critical linear Rayleigh number is that value 

RaL for which O"(k, Ra) > 0 for some k, whenever Ra > RaL, and O"(k, Ra) :::; 0 for 

all k, whenever Ra :::; RaL. In conclusion, for given critical values of the parameters 

on which the eigenvalue O" depends, i.e., Ra and k, the flow is unstable if O" > 0 for 

any mode with any real value of k, and stable is O" :::; 0 for all modes. Therefore, 

the linearization determines the parameter value for which loss of stability occurs, 

a value which can be calculated. Precisely, linear instability analysis provides a 

sufficient condition for instability. 

This leads to the important conclusion that whether a linear analysis is sufficient 

to describe the stability behaviour of a structure or not, can only be determined from 

a nonlinear analysis! 



1.2. Stability theory 11 

Nonlinear stability analysis. To obtain sufficient conditions for stability with 

respect to arbitrary disturbances the full nonlinear equations must be considered. 

In order to establish the nonlinear stability of the steady solution, it is sufficient 

to show that all perturbations vanish rapidly as t -----+ oo. For this is sufficient to 

prove that any relevant perturbation vanishes exponentially. One suitable way to 

demonstrate this is the energy method. A fuller account of the energy method and 

its applications on a various problems may be found in Straughan [64]. 

We return to the system (1.5) with the boundary conditions (1.6) and form the 

energy identities multiplying (1.5)1 by ui, (1.5)3 by() and integrating over the period 

cell V. After use of integration by parts and the boundary conditions we obtain 

1 d 
--d lluW = R (8w) -IIVuW, 
2 t 

!dd Pr II8W = R (8w) -IIV8W. 
2 t 

(1.16) 

(1.17) 

We now add equation (1.16) and equation (1.17) multiplied by.\, a positive coupling 

parameter to be selected later, to develop a variational problem. The resulting 

energy identity is 

~! lluW + .\~! Pr II8W = R (1 + .\) (8 w) - IIVuW- .\ IIV8W. (1.18) 

The next step is to define an energy by 

E(t) = ~ lluW + ~.\ Pr II8W. 

We do stress that the energy considered here has a natural form, as one may observe 

from equations (1.16)-(1.17). If we set now 

I (1 + .\)(8w), 

V IIVuW + .\II\78W, 

from (1.18) immediately follows 

~~ = RI-V. 

We derive further 

dE 1 I 1 I 
- = -RV(-- -) < -RV(-- max-) 
dt R V - R 11. V ' 

(1.19) 
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where 1i is the space of admissible functions over which the maximum is sought, 

() E W 1
•
2 (V),() = 0 at z = 0, 1} 

with ui and () satisfying a plane tiling periodic planform in x and y. Let us define 

1 I 
RE = m;xv, 

then recalling this definition in (1.19), it turns out that 

dE 1 1 
dt::::; -RV(R- RE). 

One may observe that provided 

R<RE, 

so R- 1 - RE - 1 = d > 0, then from (1.21) it follows 

dE - < -dRV. 
dt -

(1.20) 

(1.21) 

(1.22) 

It should be noted here that due to the definitions of V and E, there exist a positive 

constant 'lj;, by Poincare's inequality, such that 1) 2: 'lj; E. This result is crucial in 

proving the nonlinear stability result. Hence 

which by integration leads to 

dE< -d"'·RE 
dt - 'P ' 

(1.24) 

From (1.24) we deduce that all disturbances decay very rapidly. Therefore, we have 

established that provided R < RE, then the stationary solution of (1.1) is stable 

and moreover asymptotically stable. 

The criterion of importance is then (1.22), and everything is reduced to solving 

the maximum problem (1.20). 

The Euler Lagrange equations for the maximum problem (1.20) are derived as 

follows 

!!:__ I(()+ d, Ui + E TJi) 1£-0 
d E 1) ( (} + d, Ui + E TJi) -

b( I) = 1J bi - I bV 
1) 1)2 

1 I 
1) [bi- 1) lmax1i bV] 

1 1 
- [bi - - bV] = 0 
1) RE ' 
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where t, rJi are arbitrary C 2 (0, 1) functions with t(O) = t(1) = 0, rJi(O) = rJi(1) = 0. 

Hence, 
1 

bi- -b'D = 0 
RE ' 

(1.25) 

with 

bi ddE i (1 + .-\) (8 + Et) (w + ErJ3) dVIE=O, 

b'D ddE [[.-\ IO,i + Et,il 2 + lui,j + E'T/i,jl
2

] dVIE=O· 

Upon integrating by parts, (1.25) leads to 

i (1 + .-\) (t w + (} 'T/3) dV + ~E i (2.-\ !:1(} t + 2!:1uirJi) dV = 0, 

or, further 

Since t and 'T/i are arbitrary functions, we must have 

1 
(1 + .-\)w + - 2.-\ /:1(} 0, 

RE 
1 

(1 + .-\)8 ki + RE 2 b..ui 0. 

Since 1l is restricted to those functions that are divergence free, we must add into 

the maximum problem the constraint ui,i = 0 multiplied by a Lagrange multiplier, 

p(x), Uv p(x)ui,idx = 0). 

Therefore, the Euler Lagrange equations for the maximum problem (1.20), which 

give an eigenvalue problem for RE, are 

(1 + .-\)RE w + 2,\ /:1(} 0, (1.26) 

We now take the third component of (curl curl) (1.26)2 and decompose into normal 

modes and equations (1.26) become 

0, (1.27) 
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System (1.27) is solved subject to the boundary conditions 

W = DW = 8 = 0, z = 0, 1. 

This eigenvalue problem is solved numerically by the compound matrix method, 

with the optimal Rayleigh number of global stability, RaE, found by choosing >. 

such that 

RaE= R~ =max minR2 (>., k). 
>. k 

It turns out from the numerical code, that the optimal value for the coupling param­

eter >. is 1. We note that if we take >. = 1 in equations (1.27), one obtain the same 

equations as those of the linearised analysis, (1.14). Thus the critical Rayleigh num­

ber of nonlinear theory that guarantees stability is the same as the critical Rayleigh 

number of linear theory, that yields instability. The instability boundary is then the 

same as the nonlinear one, therefore no subcritical instability may arise. 

Finally, we have a complete picture of the stability for the problem which we 

have considered here. The main idea of using an energy method for nonlinear 

analysis consists of finding a suitable form of the energy function such that the 

nonlinear critical Rayleigh number is close to the one from the linearised analysis. 

The determination of an energy for specific problems is not so obvious as in the 

classical example considered here. There are situations when a natural energy may 

deliver a global nonlinear stability criterion, as (1.22), but there are situations when 

nonlinearities in the governing equations prevent useful analyses, even when more 

complicated forms of energy are employed. These are the cases when one may 

achieve nonlinear stability conditional upon a threshold for the initial amplitudes, 

a so-called conditional nonlinear stability result. 



PART lo Viscoelastic fluids 

Scope and plan of this part. We shall see in the following studies of different 

fluids of grade n, n = 2, 3, how the extra nonlinearities in the stress tensor may 

change the energy stability analysis and how they can influence the accuracy of the 

final nonlinear stability results. 

Chapter 2 is an introduction to the viscoelastic fluids, with emphasis on the 

associated constitutive equations. All of the stability analyses are undertaken for a 

temperature dependent viscosity, as it is stated in one of the sections here. 

We next consider in Chapter 3 the second grade fluid in the Benard problem, 

and prove that a generalised energy is necessary in order to establish a conditional 

nonlinear stability criterion. The extra nonlinearities in the stress tensor associated 

to the second grade fluid, improve the natural energy form, with an additional 

ll\7uW term, and the nonlinear analysis is less complicated than in the Navier­

Stokes theory. Still the nonlinear stability result relies upon a threshold for the 

initial amplitudes. A similar procedure works for the generalised second grade fluid, 

analysis presented in Chapter 4, though a trick is used to carry out a generalised 

energy analysis. Chapter 5 is devoted to the study of stability of another non­

Newtonian viscous fluid, namely the dipolar fluid. One step forward is made here, 

due to nonlinearities arising in the stress tensor for the dipolar fluid. A natural 

energy analysis is proved to be sufficient to provide a nonlinear stability criteria, 

though the result is a conditional one, in the sense that the size of the initial energy 

amplitude is restricted. 

In Chapter 6 we establish that it is the fluid of third grade, where not only is a 

natural energy strong enough to complete the nonlinear analysis, but the nonlinear 

stability boundary is found for all initial data, no matter how large they are. 
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Chapter 2 

On viscoelastic fluids 

2.1 Viscoelastic fluids 

In the introductory chapter of this thesis we have presented one of the best known 

thermally-induced stability situations, the Benard problem for a incompressible ho­

mogeneous fluid. The constitutive equations associated were taken to be the Navier­

Stokes equations with a Boussinesq approximation. The object of the following 

chapters is to deliver stability results for the Benard problem in a fluid being more 

complex than a Newtonian fluid (like air or water). The flow of such fluids (honey, 

molten plastic, petroleum oil, blood, paints, some greases, etc.) requires effects 

which are not present in a flow of a Newtonian fluid. The Navier-Stokes theory of 

incompressible fluids has succeeded in describing the behaviour of certain real fluids, 

but there are failures in modelling the responses of others, especially of those fluids 

with a high viscosity. 

Thus, many new theories have been proposed in an attempt to study the non­

Newtonian fluid behaviour. The aim of the non-Newtonian theories is to represent 

and predict more accurately the behaviour of a narrow class of natural fluids and 

we expect any of these theories to apply properly to a large variety of natural fluids, 

as do the classical theories. In order to study these special fluids, one should specify 

the type of material of which the fluids are made. This, in general, means proposing 

16 
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the constitutive equations of the considered fluid, which relate the stress tensor and 

heat flux vector to the motion. The stress tensor, which cumulates the contact forces 

acting on the fluid, is determined - for a simple fluid- by the history of the motion 

of that fluid. 

The relevant model for an incompressible homogeneous fluid, with a Boussinesq 

approximation, consists in the momentum equation 

(2.1) 

the continuity equation, 

vi,i = 0, (2.2) 

and the equation for temperature evolution, reduced to 

t = Kb.T, (2.3) 

where vi, p, g, Tare, respectively, the velocity, density, gravity and temperature; Tis 

the stress tensor, T0 a reference temperature, a the coefficient of thermal expansion 

and K the coefficient of thermal diffusivity. The superposed dot denotes the material 

derivative. 

For an incompressible simple fluid, in which case the present stress is determined 

by the history of the gradients of the deformation, the general constitutive equations 

for the extra stress tensor, T E = T + pI, are 

T +pi= F~0 (g(s) ), (2.4) 

where p contains all terms which are scalar multiples of the unit tensor I, and F is 

an isotropic functional with F~0 (0) = 0. The function g(s) is called the history at 

times, defined by 

g(s)=Ct(t-s)-1 

with Ct(T) being the right Cauchy-Green tensor at timer, relative to the configu­

ration at time t 

Here, Dt(T) is the gradient of the displacement function xi(X, r), which gives the 

position of the fluid at timeT having the position X at timet, i.e. Dt(T) = ~'and 

the superposed T here denotes the transpose. 
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As the value of :F vanishes when g(s) = 0 (i.e., the fluid has always been at rest), 

we may conclude that F describes the response of the fluid to disturbance from the 

equilibrium state. This functional is called the response functional. The response 

functional does not depend on the reference configuration, as a simple fluid has no 

preferred configuration and has no permanent memory for any particular state. 

The mechanical response of viscoelastic fluids to forces is much more compli­

cated than the response of Newtonian fluids. To study the stability of an initial 

value problem for a viscoelastic fluid, it is necessary to give an explicit formula for 

the functional expansion of F. The difficulty of formulating a stability theory for 

viscoelastic flows is the complexity of response. 

First attempts were made by Reiner (1945) and Rivlin (1948); they have pro­

posed an extension for the Navier-Stokes equations for a viscous fluid, considering 

that the stress components at a point in the fluid depend only on the velocity gra­

dients at that point. Later, Rivlin & Ericksen [56], determined the expressions for 

the stress components depending on the gradients of displacement, velocity, accel­

eration, second acceleration, ... , (n- 1)th acceleration. One class from those many 

constitutive assumptions that have been employed to study non-Newtonian fluids, 

a class that gained support from both experimenters and theorists, is that of the 

differential type of complexity n, introduced by the work of Rivlin & Ericksen [56]. 

For an incompressible fluid, this class is characterised by the stress constitutive 

assumption 

T + pI = f (A 1, ... , An), (2.5) 

where A 1 , ... ,An are the first n Rivlin-Ericksen tensors given by the recursive relations 

with L being the spatial gradient of velocity. Any fluid which is modelled by (2.5) 

is called a Rivlin-Ericksen fluid of complexity n. 

Coleman & Noll [11] have applied to constitutive equations of continuum me­

chanics, an approximation theorem which permits the asymptotic approximation of 

a memory functional for slow histories by a polynomial function of the derivatives 
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at an initial time of the argument functions of the functional. 

What they have defined by a memory functional is :F with a fading memory, 

i.e., the value ofT+ pi was considered to be more sensitive to the values of g for 

small s (recent past), than for very large s (distant past). On this account they have 

introduced a norm on the space of the histories functions, g, 

{ 
( J0

00 (Jg(t)J h(t))P dt )11P, 1 ::=; p < oo, 
JJgJJ = 

SUPt>O Jg(t) I h(t), p = oo, 

such that greater influence was assigned to the recent past than to the distant past, 

by using a real-valued non-negative function h(t), called the influence function, 

whose values vanish as t ----t oo. This function characterises the rapidity with 

which the memory is fading. 

They also considered a retardation on the history, r co replacing the given history 

by one which is essentially the same, but slower 

where a E (0, 1] is the retardation factor. 

With these assumptions, they have shown that the response functional is given 

by 
00 

:F~o ( 9a(s)) = L si (AI, A2, ... 'Ai), (2.6) 
i=l 

where Ai = o:i Ai and Ai are the Rivlin-Ericksen tensors. 

For sufficiently retarded motions, the partial sums 

n n 

i=l i=l 

approximate the extra stress tensor, T +pi, of an incompressible simple fluid with 

fading memory, with an error of order n + 1. They have also shown that the Navier­

Stokes form of the stress arises as the first order truncation of such a retardation 

expansion. 

For i = 1, 2, 3, 4, Si can be written explicitly, in terms of the Rivlin-Ericksen 
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tensors, like 

Sl=J-LAI, 

S2 = a1A2 + a2Ai, 

S3 = fJ1A3 + fJ2(A1A2 + A2A1) + f33(tr A2) A1, 

S4 = 11 A4 + 12(A3A1 + A1A3) + r3A~ + ')'4(A2Ai + AiA2) 

+rs(tr A2)A2 + /6(tr A2) Ai + [17 tr A3 + /8 tr(A2A1)] A1, 

20 

with J-L, a 1 , a 2, (31, (32, (33, 11, ')'2, ... 18 constants or temperature-dependent material 

moduli. They have introduced the notion of fluid of grade n being that fluid of 

which the stress tensor takes the following form 

(2.7) 

with S1, S2, ... , Sn defined as above. As one can easily observe, the fluids of grade 

n form a subclass of the differential type of complexity n fluids, the one for which 

the functional f of (2.5) is a polynomial function. The fluids of grade n are viewed 

as approximations for certain non-Newtonian fluids. However, the constitutive as­

sumptions from above may also be considered as exact models for some fluids. In 

other words, we may regard (2.7) as being an exact equation modelling the behaviour 

of a class of materials in all motions. I emphasise here that is not the object of this 

research work to decide whether or not one particular model of non-Newtonian flu­

ids is able to capture all the physics of some particular natural material. A detailed 

discussion on this matter can be found in the literature; see Truesdell & Noll (71], 

Green & Laws (29], Dunn & Fosdick (13], Joseph (40], Fosdick & Rajagopal (19]- (20], 

Rajagopal (52], Dunn & Rajagopal (14] for a comprehensive review of this subject. 

In order to proceed with the stability analysis, we must have some information on 

the material constants arising in the stress tensor expression attached to each partic­

ular fluid considered. The results of theoretical and experimental research on fluids 

of grade n, lead to the fact that there is a connection between thermodynamics and 

stability of a considered flow, concluding that thermodynamic incompatibility im­

plies instability. Therefore, we review here some arguments on the thermodynamic 

consistency of fluids of grade n, for n = 1, 2, 3. By consistency with thermodynam­

ics, we understand that the material satisfies a dissipation principle and meets the 
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requirement that the specific Helmholtz free energy be at its minimum value in the 

equilibrium. 

Case n=l. In the case n = 1, given that 

(2.8) 

with J-L 2:: 0, we deal with the classical Navier-Stokes formula, which is regarded not 

as an approximate, but as an exact definition of a particular fluid, flows of which are 

not restricted to any approximating sequence. The stability for the Benard problem 

in a fluid of first order with a constant viscosity has already been discussed in the 

first section of this thesis. It is briefly shown in one of the next sections that for 

a variable viscosity the stability analysis is dramatically changed. The extra terms 

arising in the energy equation lead to a more complicated energy to be considered 

in order to complete the nonlinear stability study. 

Case n=2. When the constitutive assumption for the fluid of grade n = 2 is 

regarded as an exact model, namely when the stress tensor has the form 

(2.9) 

then some constraints on the three material moduli, J-L, a 1 and a 2 arise. Although 

the matter is not studied here, there was much confusion around this special class 

of fluids of differential type, confusion arising from the consequences of the thermo­

dynamics and stability of this model. A detailed discussion on the status of fluids 

of second grade is given in Dunn & Fosdick [13] and Dunn & Rajagopal [14]. In 

fact, the various arguments were on the certain signs for the material moduli a 1 and 

a 2 . These moduli have been determined experimentally for several different fluids 

by observing the stress response under certain special slow steady flows and then 

correlating the observations with the associated response function. It has first been 

shown by Green & Laws [29] that the thermodynamic restrictions imposed by the 

Clausius-Duhem inequality are: 

More generally, the work of Dunn & Fosdick [13] motivated a sign for a 1 , and pro­

ceeded to give a detailed analysis of the two complementary situations corresponding 
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to a 1 ~ 0 and a 1 < 0. They have argued that in order for the second grade fluid 

equation to be compatible with thermodynamics and to have the Helmholtz free 

energy at its minimum value in the equilibrium, the material moduli must satisfy: 

(2.10) 

Moreover, according to their analysis, in the case when a 1 is positive, the model has 

a good behaviour in the sense that stability and unboundedness may be achieved, 

whereas if a 1 is taken to be negative, then in quite arbitrary flows instability and 

boundedness are unavoidable. Therefore, they have concluded that the only second 

grade fluid to be found in nature is one with a 1 ~ 0. Later, Fosdick & Rajagopal [19], 

have demonstrated that anomalous behaviour occurs if an exact model is assumed 

with 

(2.11) 

One anomalous behaviour is that for any closed sufficiently small but finite fixed 

rigid container which is filled with a fluid satisfying (2.9) under the restrictions 

(2.11), if the viscosity is large enough then for any initial disturbance at t = 0, the 

volume integral must become larger than any preassigned finite number at some 

time in (0, oo). 

Their second result on the anomalous behaviour of any incompressible fluid that 

is assumed to be modelled by (2.9) and (2.11) is concerned with the temporal evo­

lution of initial disturbances. They show that for any J.L, a 1 and a 2 which satisfies 

(2.11), for any smooth initial velocity field disturbances for the same problem as 

above, and for all sufficiently small containers w, the fluid motion caused by the 

initial disturbances can never subside. 

We note here that throughout our study on the second grade fluid, we consider 

that the normal stress coefficients a 1 and a 2 satisfy the restrictions (2.10). 

For certain applications to practical viscoelastic flows the above model of the 

second grade fluid has been recognised as inadequate. In particular, Man & Sun [43], 

apply viscoelastic fluid theory to the study of shear thickening and shear thinning. 

It seems that second order fluids fail to model these special effects. Therefore, a 
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generalisation of the second grade fluid model has been adopted, of the form 

with II = tr Ai and m being a real number. The model is a combination of the 

classical power law viscoelastic fluid and that of a fluid of second grade. 

Stability studies of the Benard problem in fluids of second grade, respectively, 

generalised second grade, are presented in the following chapters. Due to the non­

linear terms present in the model, we expect to obtain nonlinear stability results of 

conditional type. 

Case n=3. The fluid of third grade, namely when the stress relation is of the 

form 

has been studied by Fosdick & Rajagopal [20] who have deduced that the constraints 

on the material moduli are: 

(2.13) 

From the above relations, one can observe that when {33 = 0, then a 1 + a2 = 0 

and the results of Dunn & Fosdick [13] hold. 

When (2.13) holds, the base flow is stable relative to all disturbances that vanish 

at the boundary of the fluid domain, if the stretching and its diffusion are sufficiently 

small or if the viscosity is sufficiently large. Therefore, the result is a conditional 

criterion for nonlinear stability. The condition on both a 1 and a 2 plays an important 

role in the stability study, in the sense that, when the strict inequality holds then 

the energy decays exponentially, whereas for the case la1 + a21 = J24 p,/33 - which 

corresponds to the situation when the normal stress effects are comparable to the 

viscous effects - one is able to establish decay for the initial disturbances, but not 

necessarily exponentially. 

As for the case when a 1 < 0, the model is still compatible with the thermody­

namics, but the free energy is not a minimum in equilibrium; it has been proved 

that for this situation there exist a very general class of mechanical isolated flows 
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necessarily unbounded. The larger the viscosity is, holding everything fixed, the 

more rapidly the fluid motion becomes unbounded in time. These kinds of be­

haviour are similar with anomalous growth in the second order fluid study carried 

out by Fosdick & Rajagopal [19]. Therefore, negative a 1 gives rise to a fundamental 

asymptotic unstable theory of fluid behaviour. 

We assume ahead that (2.13) holds. Due to the incompressibility condition (2.2), 

the trace of A 1 is zero. Together, (2.13) and tr A 1 = 0, are easily seen to imply that 

(2.14) 

where f3 denotes the material modulus (33 . 

We investigate in one of the following chapters, the thermal convection in a layer 

of a third grade fluid with a constitutive relation (2.14), with viscosity depending on 

temperature variations. Due to the extra nonlinearity arising in (2.14), the nonlinear 

stability results are stronger than for the second grade fluid analysis. Moreover, 

the presence of the extra term related to the coefficient f3 enables us to provide 

unconditional nonlinear stability criteria using a natural energy approach. 

2.2 Viscosity-temperature relation 

We shall focus here on the stability of convection in some classes of generalised fluids 

whose viscosity varies with temperature. Much attention has recently been devoted 

to the subject of convection studies with variable viscosity, since viscosity is one 

of the fluid properties which may dramatically change with temperature; see e.g. 

Capone & Gentile [6]- [7], Depassier& Spiegel [12], Franchi & Straughan [23]- [25], 

Gertsberg & Sivashinsky [28], Oliver & Booker [48], Palm et al. [49], Richardson [53]­

[54], Selak & Lebon [58], Straughan [61] and [65], Tippelskirch [69], Torrance & 

Turcotte [70] and see also several references given in Lide [42], page 6-158, regarding 

the dynamic viscosity of glycerin; while glycerin exhibits a dramatic viscosity change 

there are many other examples, oily fluids, quoted in the tables in Lide [42]. For olive 
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oil, for example, the viscosity drops from 138 centipoise at 10°C to 12.4 centipoise 

at 70°C. 

Even though most of the stability results for incompressible fluids are delivered 

on the assumption of a constant viscosity, Straughan [61] studied a viscosity model 

of Torrance & Turcotte [70] for the earth's mantle, and a porous medium model, 

allowing for variable viscosity, v, of the form 

where v0 , 1 are constants and z is the vertical coordinate pointing upward through 

the fluid layer. Later, Richardson & Straughan [54] developed a nonlinear energy 

stability analysis for the case when vis given by the linear relation of Palm et al. [49], 

namely, 

v(T) = v0 (1- 1(T- T0 )), (2.15) 

with T0 , 1 constants, or in terms of dynamic viscosity J1-(T) = v(T)p0 , where p0 is a 

constant density for which 

J1-(T) = J1-o (1 - 1(T - T0 )) 

with fJ,o = v0 p0 . The same linear temperature dependent relation is used by Richard­

son & Straughan [55] in a porous medium, where they find need also for a Brinkman 

equation of momentum rather than a Darcy one. Richardson [53] has extended the 

linear relation to a quadratic one, for fluids like liquid sulphur which possess a 

viscosity maximum. The temperature dependency was considered to be 

v(T) = Vo (1- 1(T- T0 )
2
). 

Franchi & Straughan [24]- [25] have used the Palm et. al. linear relation in stability 

studies for such fluids as generalised second grade, third grade and dipolar type. It 

is shown that some of these fluids (the third grade one and the dipolar) possess just 

the right kinds of dissipative terms to control the nonlinearities which arise when 

the viscosity varies with temperature and one can proceed with a natural energy, 

rather that generalised one. The nonlinear stability results achieved in their studies 

are conditional for all cases, but in the light of one of the next chapters we remark 
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that an unconditional nonlinear stability result may be delivered for the third grade 

fluid when the viscosity is allowed to depend linearly on temperature. 

The general problem of how the viscosity depends on the temperature has been 

considered by Capone & Gentile, and it has been pointed out that for most fluids 

the exponential dependence seems to be the most appropriate, according to the 

experimental results. The thermal convection for fluids with viscosity depending 

exponentially on temperature is studied by Capone & Gentile [6]; the exponential 

dependence is of the form 

v(T) = Vo e--y(T-To)' 

which is a realistic fit for many real fluids, as stated in Torrance & Turcotte [70]. It 

is shown that the condition assuring linear instability assures conditional nonlinear 

stability, too. 

Tippelskirch [69] suggests another possible viscosity relation for a fluid, namely 

v(T) 
c 

(2.16) 
1+AT+BT2' 

for A, B, C positive constants. 

A nonlinear stability analysis for convection is presented by Straughan [66], when 

the viscosity may have a general dependence on temperature. A generalised energy 

analysis was necessary in order to deliver a conditional nonlinear stability result. 

Numerical calculations are given for a viscosity of the Tippelskirch form. 

Much stronger nonlinear stability results are obtained by Payne & Straughan [51] 

for a flow in a porous media where the Forchheimer equations are considered. The 

problem of thermal convection in such a medium is studied when the viscosity has 

a linear form as in (2.15), and unconditional nonlinear stability is achieved. It is 

important to stress that the result was obtainable in L3 or L 4 norms, instead of 

working with the L2 norm. 

In the next chapters, we focus on stability studies of convection in a layer of 

different generalized fluids, when the viscosity v is allowed to have a general depen­

dence on temperature, of the form 

v(T) vof(T), (2.17) 
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with f(T) being a function of temperature T, or in terms of dynamic viscosity, 

J-L(T) = J-Lof (T), (2.18) 

with J-Lo = PoVo. 

Additionally, we assume that j' (T) is bounded above by a positive constant 

1/(T)I ~ M. (2.19) 

The requirement is consistent with the physical properties for the viscosity of a 

fluid, as we may prove in the end of this section using some viscosity formulas of a 

selection of natural substances. 

We consider the Taylor expansion 

J(T + O) = J('i') + j' (T) o, 

where T(z) is the temperature linear in z in the steady state, 0 is the temperature 

perturbation and T arises through the remainder term in the Taylor expansion. If 

we denote f(T(z)) by F(z), then 

f(T + 0) = F(z) + j' (T) o. (2.20) 

The generalisation (2.17) with the restriction (2.19) covers some viscosity func­

tions found in the literature, such as Tippelskirch [69]. In addition to the results 

for the general viscosity, in some studies we provide numerical calculations for the 

viscosity in form (2.16) or for formulas used in Straughan [66], for the viscosity of 

aniline 

v1(T) 
0.31482 

1 + 0.48727 X 10-1T + 0.87490 X 10-3T 2 ' 

or for nitrobenzene 

2.6202 
1 + 0.26641 X 10-1T + 0.14832 X 10-4T 2 • 
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Note. We include here a brief note on some useful properties of the viscosity­

temperature dependence, properties which play a relevant role in the following anal­

yses. 

We plot two functions of T, the formulas for the viscosity of aniline, and of 

nitrobenzene. As we need estimates for the function F(z), we take the values of v1 

and v2 at T and we collect them in Figure 2.1 and Figure 2.2. It is easy to see that 

the graphs remain always in the positive section, which essentially may be written 

"there exists a positive constant N, small enough, such that F(z) > N, for each 

value of z in (0, 1)." 

If we represent the graphs of the first derivatives of v1 and v2 with respect off', 

Figure 2.3 and Figure 2.4, we observe that 

"there exists a positive value M such that lv' (T) I < Nl." 

We conclude that the positive constants N, M > 0 such that F(z) > Nand, respec­

tively If' (T)I < M, arise naturally and so the assumptions that we use throughout 

the present work are consistent with physical reality. 

Moreover, similar assumptions are considered in Flavin & Rionero work on con­

vection, [15]- [18], where not only the viscosity but also the thermal diffusivity, 

"'(T), depends in an arbitrary manner on the temperature, being bounded below by 

a positive constant, i.e. 

v(T) 2: 1, and "'(T) 2: 1. 
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Figure 2.1: Viscosity of aniline, with T between -50°C and +25°C 
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Figure 2.2: Viscosity of nitrobenzene, with T between -50°C and +25°C 
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Figure 2.3: The first derivative of the viscosity of aniline, with T between -50°C 

and +25oC 
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Figure 2.4: The first derivative of the viscosity of nitrobenzene, with T between 
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2.3 On stability for a Navier-Stokes fluid with 

v(T) 

Amongst the many assumptions that we have made when studying the Benard 

problem in a layer of a Navier-Stokes fluid, one was that the viscosity of the fluid 

has a constant value v0 . In that simplified situation a natural energy was employed 

to derive an unconditional nonlinear stability criterion. Nevertheless, as we have 

already stated in the previous section, there is a temperature-viscosity relation which 

plays an important role in the stability behaviour of any particular fluid. 

We do not intend here to present a fully nonlinear stability theory for a layer 

of a Navier-Stokes (first order) fluid with the viscosity being a general function of 

temperature, but for a complete picture of the stability for the viscoelastic fluids, we 

wish to highlight some important aspects of the analysis. We shall see why in the 

Navier-Stokes viscous stability analysis one cannot proceed with a natural energy 

method and what kind of analysis is necessary to be carried out in order to provide 

nonlinear stability results. 

Let the viscosity-temperature relation be of form (2.17). The stress tensor of a 

fluid of first grade, (2.8), is then 

where 

with L being the spatial gradient of velocity. The equations of motion (2.1)-(2.3) 

for an infinite horizontal Navier-Stokes fluid layer with z E (0, H) are rewritten as 

v·. 
t,l 0, (2.21) 

T ;;,fj.T, 

where p, v, g, a, T, ;;, are respectively, density, kinematic viscosity, gravity, thermal 

expansion coefficient, temperature, thermal diffusivity and k is the vector (0, 0, 1). 
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We treat here p ( = p0 ) as constant. On the boundaries 

Vi 0, z=O,H, 

T To, z = 0, (2.22) 

T TH, z=H,, 

with T0 > TH. 

Then the steady solution whose stability we investigate is (vi, T,p), with vi= 0, 

T = -( z + T0 and ( being the temperature gradient given by 

( = /:).;:, /:). T = T0 - T H > 0. 

Perturbations (vi, T,p) of (vi, T,p) are introduced via 

and the dimensionless perturbed equations are 

Ui,i 0, 

Pr () /:).() + Rw, 

with z E (0, 1), or equivalently, 

u· -1r · + b·3R() + {F(z)a··} · + {j'(T)Ba··} · t ,t t t) ,) t) ,] , 

u·. t,t 0, (2.23) 

Pr () /:).() + Rw, 

where (2.20) has been employed and scalings similar to those from the introductory 

part were considered. Here w = u3 , aij = ui,j + Uj,i, and the spatial domain has 

become 

{ ( x, y) E JR2 
} X { z E ( 0, 1)}. 

Though we do not develop a complete nonlinear stability analysis for the steady 

solution of (2.21), we briefly show how the general dependence of the viscosity on 

the temperature may change the stability analysis. 
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We form the energy identities by multiplying (2.23h by ui, (2.23)3 by() and then 

integrate over a periodic cell V to find 

1 1 I ~ 
R(Bw)- 2(F(z) aijaij)- 2u (T)Baijaij), 

R(Bw) -IIVBW. (2.24) 

Then, considering the combination (2.24h + -\(2.24)2, with ,\ being a positive con­

stant to be chosen later, the energy identity obtained is of form 

dE 1 I A 

-- = RT- D- -(J (T)B a· ·a··) dt 2 ~J ~] ' 

where 

E(t) = ~ [ lluW + -\PriiBWJ 

is the natural energy arising from (2.24) and 

T 

D 

The next step is to define the critical energy stability number RE by 

where 1-l is the space of admissible solutions we are working with. 

The nonlinear energy stability threshold requires 

R<RE, 

thus a= (RE- R)/ RE > 0. From (2.25) we may derive 

dE< -aD- !(j1

(T)Ba··a··). dt - 2 ~J t} 

An estimation of the cubic term 

(2.25) 

(2.26) 

is required in order to proceed with a nonlinear stability analysis. We first employ 

the estimate (2.19) to have 

1 I A M 
N = --(! (T)Ba··a··) < -(IBI a··a··). 2 ~J l] - 2 lJ l] (2.27) 
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To this stage, Cauchy's inequality proves to be inefficient as the energy form is not 

strong enough to handle the resulting terms. 

One idea is to make use of the result, that there exists a positive constant c such 

that 

sup 1111 S c 11~1111· (2.28) 
v 

The inequality for the supremum of a function 0 with Olz=O = Olz=l = 0 (it 

is proven to work for u, as well) is very important in the present analysis and 

furthermore, throughout the following work. The positive constant c depends on 

the geometry of the domain V. A complete proof for (2.28) is available in Galdi & 

Straughan [27] or Straughan [64], Appendix A. 

Upon using (2.28) in (2.27), the bound for N is found to be 

and from (2.26) we find 

dE 
dt S -aV + M c II~OIIIIV'uW. (2.29) 

The idea now is to estimate the cubic term from (2.29) in terms of VE 112 . It 

is easy to see that neither 11~1111 nor IIV'ull2 are present in the definitions of the 

natural energy, nor is 11~1111 in the dissipative term V. This suggests that another 

energy might include both terms II ~0 W and II \7 u W. A generalised energy is then 

defined by 
1 

E(t) = 2 [ lluW + -\PriiOW + I'II~OW + aiiV'uWJ, 

with ')', a being positive coupling parameters. 

Richardson [53], Chapters 3-6, presents a full discussion on stability analyses (lin­

ear and nonlinear) for a Navier-Stokes fluid heated from below, allowing the viscosity 

to have a linear or a quadratic dependence on the temperature. Though the study 

provides that the nonlinear stability boundary coincides with the linear instability 

one, the nonlinear stability criterion is a conditional one due to the nonlinearities 

inN. An analysis with a general viscosity-temperature relation was carried out in 

Straughan [66], with similar results. 



Chapter 3 

Nonlinear stability for the second 

grade fluid 

The thermal convection in a layer of fluid of second grade is investigated, with 

the viscosity being a general function of temperature. We address the nonlinear 

stability analysis and prove that conditional nonlinear stability may be achieved. 

A generalised energy analysis is found to be necessary to investigate the nonlinear 

stability for the Benard problem. 

This chapter is submitted for publication (Budu [4]). 

3.1 The convection equations for a second grade 

fluid 

The model for a layer of fluid of second grade between two horizontal plates, heated 

from below, consists of the momentum equation, 

(3.1) 

the continuity equation, 

vi,i = 0, (3.2) 

and the balance of energy equation, 

Pi = T, L · - q· · + pr t) t) t,t ' (3.3) 
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where vi, p, /i, T, r, c:, qi and L are respectively, the velocity, density, body force, 

stress tensor, heat supply, internal energy, heat flux and velocity gradient. Standard 

indicial notation is used and a superposed dot denotes the material derivative. 

The stress tensor associated to the second grade fluid is of form (2.9), namely 

where A 1 = [Aij] and A 2 are the first two Rivlin-Ericksen tensors, defined by 

L being the velocity gradient. We shall assume the normal stress coefficients a 1 , a 2 

are constants satisfying the restrictions (2.10), cf. Dunn & Fosdick [13] 

Throughout we shall refer to a general temperature dependent viscosity, as stated 

in (2.17). 

For the Benard convection problem it is sufficient to set here r = 0, then we may 

follow the analysis of Franchi & Straughan [22] and reduce the balance of energy 

equation (3.3) to 

T = I'L~T, 

with ~ being the Laplacian operator and fL the thermal diffusivity. We employ a 

Boussinesq approximation, so that p = p0 (constant) everywhere except in the body 

force term of (3.1), for which 

Here g is gravity, T0 is a reference temperature, and a is the coefficient of thermal 

expansion. 

Suppose the fluid is contained in the infinite horizontal layer with z E (0, H), 

then we may show that the governing equations (3.1)-(3.3) reduce to 

----------------~-- -



3.1. The convection equations for a second grade fluid 

+a1(Aij + vkAij,k + AimLmj + LmiAmj),j 

+a2 (AimAmj),j, 

T "'~T. 
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(3.4) 

If the top and the bottom surfaces are regarded as no-slip boundaries, then the 

velocity vector field boundary conditions are 

vi = 0, z = 0, H. (3.5) 

Further, the temperature boundary conditions are 

T = T0 , z = 0 and T = T H, z = H (3.6) 

with T0 , Ty being fixed temperature values and T0 > Ty (hotter below). 

A steady solution for the boundary problem (3.4)-(3.6) is (vi, T,p), with vi 0 

and T a function of z. From (3.4) it then follows 

0 ~ P,i - pogbi3 [1 - a(T- To)] 

0, (3.7) 

From (3.7)3, using the boundary conditions (3.6), 

T = -(z + T0 , (3.8) 

where ( = (To - Ty)H- 1. From (3.7)1 

_ Pog a( 2 
p = - pog z -

2 
z + Po, (3.9) 

is the steady pressure field with Po being a constant. 
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To study the nonlinear stability of the steady solution we let ( ui, (}, 1r) be pertur­

bations to (vi, T, p). The resulting perturbation equations are non-dimensionalized 

via 

Xi = x: H, Ui = u:u, 1f = 7r* P, (} = (}*T, t = t*T, 

U = vo U Po llo t = uffJ, H2 
P= T=-, H' H ' ag llo 

vo R = Jo{gH', r1 = poH2' r2 = 
PoH2 

Pr = -, 
/'i, lloK, a1 a2 

where Ra = R 2
, Pr are the Rayleigh and Prandtl numbers and f 1 , f 2 are absorption 

numbers. 

Omitting all stars, the non-dimensional perturbed equations, for (x, y) E JR2 and 

z E (0, 1), become: 

ui -K,i + 6i3R(} + {f(T + B)aij},j 

1 
+ f 

1 
( aij,t + Ukaij,k + aim Um,j + Um,iamj) ,j 

1 
+ r2 (aimamj ),j, 

u·. 
~.~ 0, (3.10) 

Pr(} /:1(} + Rw, 

where w = u 3 and aij = ui,j + Uj,i· 

The corresponding boundary conditions are 

Ui = (} = 0, Z = 0, 1, (3.11) 

with ui, (} and 1r having a periodic shape in (x, y). 

Taking into account the Taylor expansion (2.20), equations (3.10) may be written 

ui = -K,i + 6i3R(} + {F(z)aij},j + {/ (T)Baij},j 

1 
+ f 

1 
( aij,t + Ukaij,k + aim Um,j + Um,iamj) ,j 

1 
+ r2 (aimamj),j· 

Ui,i 0, 

Pr(} /:1(} + Rw. 

(3.12) 
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3.2 Conditional nonlinear stability analysis 

We now form the main energy identities. Multiply (3.12)1 by ui, (3.12)3 by (} and 

integrate over the period cell V. After use of integration by parts and the boundary 

conditions, we obtain 

R(Ow) -IIVOW. (3.14) 

We now form the combination (3.13)+.\(3.14), with ,\ being a positive parameter 

R (1 +.\)(Ow) - .\IIVOW 

1 1 f A 

- 2(F(z)aijaij) - 2(! (T)Oaijaij), 

and define the natural energy by 

Taking into account the bound for the first derivative of the viscosity, (2.19), it 

follows that 

~~ < R (1 +.\)(Ow) - .\IIVOW 

1 lv! 
- 2(F(z)aijaij) + 2(10iaijaij). (3.15) 

We next introduce 

(3.16) 

where 1l is the space of admissible functions over which the maximum is sought and 

I 

'D 

Here 1l is the space of functions 

0 E W 1
•
2 (V),O = 0 at z = 0, 1} 
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ui, 0 satisfying a plane tiling periodic planform in x andy. 

We do not calculate RE here, but we observe that the linearised form of (3.12) is 

symmetric and so the critical Rayleigh number RE is just that of linear instability 

theory, RL. A standard numerical calculation will yield R£. 

However, here the attention is focused on developing a nonlinear analysis. From 

(3.15) we derive 

dE - < 
dt 

Recalling further the definition (3.16) we obtain 

dE R M 
- < - V (1 - -) + -(lOla· ·a··). dt - RE 2 lJ lJ 

We require that R < RE, to conclude that 

dE 
dt 

where a= (RE- R)/ RE > 0. 

(3.17) 

The remaining problem is to handle the nonlinearity in (3.17). To this end, we 

remark that use of the Cauchy inequality to write 

leads to difficulties with the llaijaij II term. Though we may handle the 11011 term 

from the expression of E, by Poincare's inequality, the nonlinear term arising above 

cannot be controlled only with the (aijaij) term from V. 

To overcome this, we follow a similar procedure as for a Navier-Stokes fluid 

analysis. We employ the embedding inequality, (2.28), 

sup 101 :S c 11~011, 
v 

to deduce that 

M -(lOla· ·a··) 2 lJ lJ 
M 12 < 2 s~p IOIIIaijl 

< M cii~OIIII\7uW. (3.18) 

We remark that the natural energy would not be enough to control the nonlinearities 

in (3.18), as the 11~011 term does not appear in the expression of E. A generalised 
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energy analysis is found to be necessary to investigate fully nonlinear stability. The 

natural presence of a IIVuW term in E is essential in what follows. In the Navier­

Stokes fluid analysis such a term had to be added artificially, see the last section, 

and the analysis is then more complicated. 

The inequality (3.18) suggests that a suitable generalised energy might include 

a II60W term. With this aim, we take the Laplacian of (3.10)3 to find 

and we also conclude from (3.10) that 

60 = 0, on z = 0, 1. 

We multiply (3.19) by 60 and integrate over V to obtain 

~Prdd 1160112 = 
2 t 

Pr ( (60 6ui O,i) + 2(60 Ui,j o,ij) + (60 Ui 60,i)) 

IIV 60W + R(6w 60). (3.20) 

We define now the new generalised energy as 

£(t) = E(t) + ~Prii60W, 

with !'(> 0) a parameter to be chosen later. The new energy inequality is obtained 

by adding I' x (3.20) to (3.17) with the result 

d£ 
dt 

< a 'D -I'IIV 60112 + ')'R(6w 60) + M cii60IIIIVull2 

')'Pr[(606uiO,i) + 2(60ui,jO,ij) + (60ui60,i)], (3.21) 

where the estimation (3.18) has also been considered. 

One can see that new nonlinear cubic terms have arisen. To control these terms 

we employ the analysis below. 

First, the term (60 ui 60,i) is zero under the assumptions of the boundary con­

ditions considered here . We further observe that integration by parts leads to 

[(60 6u· 0 ·) + 2(60 u· · 0 · ·)] Z ,z Z,J ,ZJ [-(60 · u· · 0 ·) + (60u · 0 ··)] ,] Z,J ,z Z,J ,ZJ 
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For an estimation of the cubic terms in the square brackets, we do need a result for 

supv IVOI, cf. Franchi & Straughan [25] or Richardson [53], which states that there 

exists a positive constant c1 such that 

sup IVOI:::; c1 IIV ~011. (3.23) 
v 

A complete proof of (3.23) and suitable values for the positive constant c1 can be 

found in Adams [1] (p.99 and on). 

Upon using (3.23) and the Poincare inequality on the cubic terms of (3.22), it 

follows that 

-(~O,jui,jO,i)- (~O,iui,jO,j):::; 2 sup IVOIIIV ~OIIIIVnll:::; 2ctiiVniiiiV ~ow. 
v 

We may conclude that 

(3.24) 

with c1 > 0 suitably interpreted. 

It then follows from (3.21) that 

d£ 
dt :::; - a v - 'YIIV ~oW + 'YR(~w ~o) 

+ M cii~OIIIIVuW + 2')'CtPr IIVniiiiV ~ow. (3.25) 

We handle the term 'YR(~w ~0) with the aid of integration by parts and the 

arithmetic-geometric mean inequality to find 

where a is a suitable positive constant. Employing (3.26) in (3.25), one may deduce 

from the energy inequality 

~~ < - av + ~~IIVwW + 'Y~aiiV ~oW- 'YIIV ~oW 
+ M cii~OIIIIVuW + 2')'clPr IIVniiiiV ~ow. (3.27) 

We seek an exponential decay for the energy, therefore we try to use the negative 

terms from (3.27), -aV and -'YIIV ~OW, to dominate the positive quantities arising 

from (3.26). 
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We first choose a = 1/ R, such that 

1Ra 1 --,=--. 
2 2 

Hence 

~~ :::; - aD + 1~
2

IIVwW - ~ll\7 ~011 2 

+ A1 cii~OIIIIVuW + 21c1Pr IIY'ullll\7 ~ow. (3.28) 

Next we observe that 

therefore 
D 1 - > -(F(z) a· ·a··) 2 - 4 tJ t) • 

As F(z) > N, for a small enough N > 0, then 

D 1( ( N 2 N 2 - >- F z) a··a··) > -lla··ll = -IIY'ull 2 - 4 tJ tJ - 4 tJ 2 ' 

and eventually 
a aN 2 -aD:::; -2D- - 2-IIY'ull . (3.29) 

Upon using (3.29) in (3.28) it turns out that 

~~ :::; - ~D- (a;- 1~
2 

)IIVuW - ~I IV ~oW 
+ M cii~OIIIIY'uW + 21c1Pr IIY'ullll\7 ~011 2 · 

We take 1 =aN/ R2 to have 

~~ :S - ~[D + ; ll\7 ~OWJ + M cii~OIIIIVuW 
+ 2aN~~Pr IIY'ullll\7 ~ow, (3.30) 

or, equivalently 

where 

d£ A A 

- < -D+N 
dt - ' 

(3.31) 
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We may now provide a bound for the nonlinear term f.! in terms of V£q, as the 

generalised energy £ has the right properties to control the nonlinear terms of f.!. 
For each of the cubic terms it follows 

M cJJ~OJJJJVuW < 2v'2 M cR £1f2fy 
aN· JaN Pr ' 

2a~~1 Pr JJVuJJJJV ~oW < 4hc1Prv'r\£112V, 

where Poincare's inequality has also been used. The estimation for f.! is then 

with 

A= 
2vf2 M cR 

aN. JaN Pr + 4J2c1Pry'r\ > 0. 

We employ (3.32) in (3.31) to obtain 

d£ A 1/2 - < -TJ(1 - A£ ) . 
dt -

(3.32) 

(3.33) 

Upon using the Poincare inequality we show that there exists a positive constant 'ljJ 

such that V 2: 'ljJ £, hence 

d£ 1/2 
dt :::; -'1/J £ ( 1 - A£ ) . (3.34) 

Employing a continuity argument on £ ( t), (3.33) ensures nonlinear stability as long 

as 

(a) R < RE, (3.35) 

To prove the last statement, we define k = 1- A£112 (0) > 0, i.e. (3.35)(b) holds. 

There are now two possibilities, either 

1 
£ 112 (t) < A, for any t 2: 0 (3.36) 

or there exists an 7J > 0 such that £ 1
/

2 (77) = *' and £ 112 (t) < *' for any t E [0, 77). 

Therefore, from (3.34) it follows that 

d£ 
dt :::; 0, for t E [0, 77), 
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hence, £ 112 (t) ::; £ 112 (0) < ~'for any t E [0, 7J). As £(t) is a continuous function oft 

on [0, 77], then it is impossible that £ 112 (77) = ~- This contradiction leads to (3.36), 

and consequently 
d£ dt::; -'¢£ (1- A£ 112 (t)) < 0, t;:::: 0. 

Hence 

for any t 2': 0, and from (3.33) it follows that 

~~ ::; -'¢£ (1- A£ 112(t))::; -'¢£ (1- A£ 112 (0)) = -k'¢£(t). 

Integrating the last inequality one may get 

which essentially implies that £(t) ~ 0, as t ~ oo. 

Concluding remark. What we have established is that provided R < RE and the 

initial energy satisfies the threshold (3.35) (b), then conditional nonlinear stability is 

achieved for a fluid of second grade heated from below, when the viscosity is a general 

function of temperature. We remark that a generalised energy was employed in order 

to determine a boundary for the stability, though the analysis is less complicated 

than the one for the first grade fluid due to the presence of the IIVuW term in the 

natural energy. 



Chapter 4 

Nonlinear stability for the 

generalised second grade fluid 

The thermal convection in a layer of a generalised fluid of second grade is investi­

gated, with the viscosity being a general function of temperature. We attack the 

nonlinear stability analysis and prove that conditional nonlinear stability is achieved. 

A generalised energy analysis is found to be necessary to investigate the nonlinear 

stability for the Benard problem utilising the constitutive theory of Man & Sun [43]. 

This chapter is submitted for publication (Budu [4]). 

4.1 The convection equations for a generalised 

second grade fluid 

Man & Sun [43] adopt a generalisation of the stress tensor for the second grade 

fluid, to the study of glacier flows and they require a model capable of producing 

the effects of shear thickening and shear thinning. Hence, the generalised tensor 

considered is of form 

( 4.1) 

46 
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where IT = tr Ai, m is a real number and A 1 , A2 are the first two Rivlin-Ericksen 

tensors given by 

with L being the spatial gradient of velocity. In [43] they choose IT = ~tr Ai, 

but there is no mathematical loss in absorbing the ~ in J.L. This model is thus a 

combination of the classical power law viscoelastic fluid and of a fluid of second grade. 

If J..Lrrm/2 is regarded as the viscosity, then (4.1) clearly exhibits shear thickening 

when m > 0 - i.e., the viscosity increases with increasing velocity shear, whereas 

when m < 0, shear thinning is predicted, i.e., the viscosity decreases with increasing 

velocity shear. 

The equations of motion are, the momentum equation, 

(4.2) 

the continuity equation, 

Vi,i = 0, 

and the balance of energy, 

T = t;,l:::.T, 

where vi, p, fi, T, r, E and Qi are respectively, the velocity, density, body force, 

stress tensor, heat supply, internal energy and heat flux. Here !:::.. is the Laplacian 

operator and "' the thermal diffusivity. We employ a Boussinesq approximation so 

that p = p0 (constant) everywhere except in the body force term in (4.2), for which 

where g is gravity, To is a reference temperature, and a is the coefficient of thermal 

expansion. 

Considering once again that the fluid is contained in the infinite horizontal layer 

z E (0, H), the relevant equations of motion are 
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v·. t,t 

T 

0, 

+a1(Ai1 + vkAij,k + AimLmj + LmiAmj),j 

+a2 (AmAmj),j, (4.3) 

( 4.4) 

( 4.5) 

The appropriate boundary conditions for the velocity vector field reflect the no-slip 

assumptions at z .:..._ 0 and z = H, 

vi = 0, z = 0, H. 

The temperature is kept fixed at the vertical boundaries z = 0, H, such that 

T = T0 , z = 0, and T = T H, z=H, 

with T0 > TH, the fluid being heated from below. 

Then a steady solution for the boundary value problem from above is 

Vi - 0, 'l' = - (z + To 

where ( = (To - TH)H- 1
. To study the nonlinear stability of stationary solution 

we let ( ui, (), 1r) be perturbations to (vi, 'l', p), where j5 is the steady pressure field 

found from ( 4.3). The resulting perturbation equations are non-dimensionalized via 

similar scaling as in the second grade fluid analysis, and the dimensionless perturbed 

equations, for (x, y) E ~2 and z E (0, 1), are 

ui = - 1f,i + 6i3RO + { F(z)rrm12ai1 },1 + {/ (T)Orrm12ai1 },j 
1 

+ fl ( aij,t + Ukaij,k + aimUm,j + Um,iamj),j 

1 
+ r2 (aimamj),j· 

Ui,i 0, 

PrO !::::.0 + Rw 

(4.6) 

where Ra = R 2 , Pr are the Rayleigh and Prandtl numbers, f 1 , f 2 are absorption 

numbers. We have written w = u3 and aij = ui,j + Uj,i and the Taylor expansion 

(2.20) has been also considered. 
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At the boundaries z = 0 and z = 1 

Ui = () = 0, 

with ui, () and 1r having a periodic shape in (x, y). 

4.2 Conditional nonlinear stability analysis 

We multiply ( 4.6)I by ui and integrate over the period cell V, in order to obtain 

one of the energy identities. After use of integration by parts and the boundary 

conditions we obtain 

In the same manner we start with the equation ( 4.6)3, multiply by () and integrate 

over V, to have: 

~dd PriiBII 2 = R(Bw) - IIVBW. 
2 t 

(4.8) 

We now add equations (4.7) and .\(4.8), with .A being a positive parameter. It follows 

that 

~ dd [lluW + r
1 

IIVuW + .APriiBWJ 
2 t 1 

where rrm/2 was replaced by (trADm12. 

If we take into account the natural energy 

R (1 +.A)(() w) - .AIIVBW 

- (F(z) (trA2)m12a··a··) 2 1 lJ lJ 

- (j'(T)(trA2)mf2()a··a··) (4.9) 2 1 lJ lJ ' 

E(t) = ~ [lluW + _!_IIVuW + .APriiBWJ 
2 r1 

and denote 

I R(1 +.A)(() w), 

v' .AIIVBW + (F;z) (trAi)m12aijaij), 
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then identity ( 4.9) becomes 

dE = I - v' - ( J' (T) O(tr A 2 )m12a· ·a··). dt 2 1 tJ t) 
(4.10) 

The natural dissipation term in the energy stability analysis, v' appears to be not 

sufficient to control the terms which arise in the energy equation, and moreover the 
I 

existence of a solution for a maximum problem max1i ;, over a suitable functional 

space, 1i, is questionable. Hence, we propose to modify (4.1) in a way which is 

physically consistent, but simplifies the stability analysis. We employ 

where p,(T) is given by (2.18). This modification is consistent with the theory of 

Dunn & Fosdick [13], and if we regard p,(T)[1 + )'IIm/2] as the viscosity then the 

ability to describe the effects of shear thickening and shear thinning is retained. In 

our analysis we restrict attention to the case when m > 0. 

With w being a non-dimensional form for i we non-dimensionalize according to 

the same scalings, but with v0 instead of i/0 . 

The new perturbed equations lead to the following energy identity: 

dE 
dt 

or equivalently, 

R (1 +>..)(Ow) - >..IIVOW - (F;z) [1 + w(trAi)ml2 ]aijaij) 

( J' ~T) 0[1 + w( tr Ai)ml2 ]aijaij), 

dE 

dt 
2 F(z) 

R(1 +>..)(Ow)- >..ll\7011 - (-
2
-aijaij) 

( J' ~T) 0 aijaij) - ( J' ;T) 0 w ( tr Ai)m/2 aijaij). 

We define now 

and 

T 

v 

(1 +>..)(Ow), 
2 F(z) 

>..IIVOII + (-
2
-aijaij), 

1 T 
-=max-
RE 1i V' 

(4.12) 

(4.13) 
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with 1i being the same functional space as stated in the previous section. 

We require R < RE, such that a = (RE - R)/ RE > 0. Then from equation 

(4.12) we may derive 

dE 
-< dt -

aD - ~ (F(z)(tr Ai)m12aijaij) 

1 I A UJ I A 2 /2 2(! (T)Oaijaij) - 2(! (T)O(trA 1 )m aijaij), 

or if we use the estimation (2.19) 

dE 
-< dt -

( 4.14) 

(4.15) 

Again, using Cauchy's inequality on the last two terms of the RHS of (4.15), i.e. 

leads to difficulties in handling the ll(trA2)l+m/2 ll term, with theE or D forms as 

above. 

To overcome this, we again employ the embedding inequality, (2.28), 

sup 101 :S c 11~011, 
v 

to write 

M Muv 2 m/2 2(101 aijaij) + -
2
-(IOI(trA1) aijaij) 

:S Msup IOIII\7uW + Muv sup 101 ((trAi)l+m/2
) 

v 2 v 

::; Mcii~OIIII\7uW + M ;UJ11~011 ((trAi)l+m/2
). (4.16) 

We note again, similar to the analysis presented in the previous section, that the 

absence of the 11~011 term in the energy formula implies the need for a generalised 

energy analysis. In order to include such a term in the energy definition, we take 

the Laplacian of ( 4.6)3 to find 
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and we also conclude that 

!:10 = 0, on z = 0, 1. 

Now we multiply (4.17) by !:10 and integrate over V to obtain 

1 d 2 [ ( 2 Pr dt 116011 = - Pr (!:10 6ui o,i) + 2 60 Ui,j o,ij) J 

- ll\7 6011 2 + R(6w 60). (4.18) 

The LHS of ( 4.18) gives the extra term to be added to the natural energy in order 

to form the generalised one, which is now defined as 

£(t) = E(t) + ~Pr llt10W, (4.19) 

where 1 is a parameter at our discretion. The energy inequality is constructed by 

taking the combination 1 x (4.18)+(4.15), namely 

d£ w dt :S; - aV- 2(F(z)(trAi)m12 aijaij) 

+ Mcll60 IIVuW + M ;wllt10II ((trAi)l+m/2
) 

- 1Pr [(60 6ui O,i) + 2(60ui,j O,ij)J 

- 1IIV t10W + 1R(6w 60), 

where (4.16) has also been employed. 

Recalling the estimation (3.24) 

we obtain from (4.20) 

d£ w 
dt :S; - a V -

2 
(F(z)(trAi)m12 aijaij) 

- 1IIV 6011 2 + 1R(6w 60) 

+ Mcllt10IIII\7uW + M ;w 116011 ((trAi)l+m/2
) 

( 4.20) 

+ 21c1Pr ll\7nllll\7 60W. (4.21) 
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We integrate by parts and use the arithmetic-geometric mean inequality to find 

d£ w 
dt ::; - aV - 2(F(z)(trAi)m12aijaij) 

+ 1RIIY'wll 2 +,RallY' ~ow -1IIY' ~ow 2a 2 
+ Mcii~OIIIIY'uW + M ;wii~OII ((trAi)l+m/2

) 

+ 21c1Pr IIY'uiiiiV' ~ow, (4.22) 

The idea now is to use the -aV and -lilY' ~011 2 terms to dominate the positive 

terms, hence 

d£ w 
dt ::=; - aV - 2(F(z)(tr Ai)m12 aijaij) 

+ 1
2R II V' w W - (-1 Ra + ')II v ~ow 
a 2 

+ Mcii~OIIIIY'uW + M ;wii~OII ((trAi)l+m/2
) 

+ 21c1Pr IIY'ullll \7 ~ow. (4.23) 

We choose a = 1/ R, such that -"~~a+ 1 = -~ and 

d£ w 
dt :::; - aV -

2
(F(z)(trAi)m12aijaij) 

+ 1~
2

IIY'wW -~I IV' ~ow 
+ Mcii~OIIIIY'ull 2 + M ;wii~OII ((trAi)l+m/2

) 

+ 21c1Pr IIY'ullll \7 ~ow. (4.24) 

Next, observe that 

and recall F(z) > N, for z E (0, 1), with positive N. Thus 

Hence 

Finally, we conclude that 

( 4.25) 
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and (4.24) may be reduced to 

d£ 
-< 
dt -

- ~'D- w (F(z)(tr A 2)m12a· ·a··) 2 2 1 lJ lJ 

- (aN- 'YR
2

)IIY'uW- 211V' ~011 2 
2 2 2 

+ Mcii~OIIIIY'uW + M ;w 11~011 ((trAi)l+m/2
) 

+ 2'Yc1Pr IIY'uiiiiV' ~ow. 

Let 'Y =aN/ R2 and ( 4.26) becomes 

where 

'D 

d£ ~ ~ 
- < -'D+N 
dt -

Mcii~OIIIIY'ull 2 + M ;wii~OII ((trAi)l+m/2
) 

+ 2a~~1 Pr IIV'uiiiiV' ~ow. 
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( 4.26) 

(4.27) 

( 4.28) 

( 4.29) 

The generalised energy has now the right properties to control the nonlinear term 

N, which is bounded as 

(4.30) 

with 
MeR 2 ~ rr:;-

A = J ( 1 + -) + 4 v 2c1 Pry r 1· 
N 2aN Pr a 

We employ ( 4.30) in ( 4.27) to have 

d£ < - V(1 - A£112) 
dt - ' 

(4.31) 

which insures exponentially decay of the generalised energy £, provided that 

(a) R < RE, (b) £ 112 (0) < ~. (4.32) 

Concluding remark. Therefore, nonlinear stability of the steady solution of ( 4.3)­

( 4.5) has been established. The result is conditional and based on a generalised 

energy analysis. 



Chapter 5 

Nonlinear stability for the dipolar 

fluid 

The problem of convection in a dipolar fluid is studied, when the viscosity is a 

general function of temperature. A generalised energy approach is not necessary, as 

the presence of dissipative terms helps us to control the extra nonlinearities which 

arise when the viscosity varies with temperature. The equations of Bleustein & 

Green [2] are formulated in a way suitable to describe the convective instability 

which occurs when a layer of dipolar fluid is heated from below. 

We do include here the stability analysis of the dipolar fluid, to outline the 

advantages of some nonlinearities present in the dipolar stress tensor over those 

arising in the second grade tensor. It is useful to remark that the nonlinear analysis 

proceeds with a natural energy, rather than a generalised one, but still the nonlinear 

stability result is conditional. 

This chapter is submitted for publication (Budu [4]). 

5.1 The convection equations for a dipolar fluid 

In this chapter we study a particular class of generalised fluid whose viscosity varies 

with temperature, namely a fluid of dipolar type. The theory of a dipolar fluid was 

introduced by Bleustein & Green [2] and is thought capable of describing a fluid 
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containing long molecules or a suspension of long molecular particles. These writers 

took account of microstructure effects by including both the gradient of velocity 

and the second gradient of velocity as constitutive variables, and they also found it 

necessary to introduce an appropriate stress tensor. Bleustein & Green [2] also solved 

the problem of Poiseuille flow in a pipe for a dipolar fluid and showed that a flattened 

velocity profile could be expected. Since then other problems have been successfully 

solved; Hills [35], solved the problem of slow flow past a sphere for a dipolar fluid, he 

established a uniqueness theorem in [36], and demonstrated continuous dependence 

on the data in the improperly posed backward in time problem in [37]. Straughan 

[60] showed new effects could be predicted in wave motion and investigated nonlinear 

stability for the constant viscosity Bernard problem in [62] where the micro-length 

associated with the theory of [2] was shown to have a strong inhibiting effect on 

thermal convection. 

Franchi & Straughan [24] proposed a linear viscosity relation of Palm et al. [49] 

for the study of the Benard problem in a dipolar fluid. In the present work, we 

replace this linear relation by a more general dependence, as in (2.17). 

The appropriate equations for thermal convection in a dipolar fluid are intro­

duced now. The model of Bleustein & Green [2] consists of the momentum equation 

(5.1) 

the continuity equation 

Vi,i = 0, 

and the rate of work equation 

(5.2) 

where vi, p, fi, aji, r, A, T, S, Qi, are, respectively, the velocity, density, macroscopic 

body force, stress tensor, heat supply, Helmholtz free energy, temperature, entropy, 

and heat flux. The superposed dot denotes the material derivative. The tensors Dij 

and Aijk are 
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and the stress tensor has the form 

where Tij is a symmetric stress 

Here ¢> is introduced since vi is solenoidal, and J-l is the dynamic viscosity, of form 

(2.18). Fij is the microscopic body force and rji is the dipolar inertia whose form, 

see Green & Naghdi [30), is 

f ·· = d2 [(v·) · - V· kVk ·- V· kV · k + Vk ·Vk ·] Jt t ,J t, ,) t, ), ,t ,J 

where d2 (> 0) is the constant inertia coefficient. 

In [62] it is argued that since only the symmetric part ~(kj)i of the dipolar stress 

plays any part in the equations it is reasonable to introduce only this part for any 

situation which the dipolar fluid will model. We adopt this premise here and then 

the constitutive equations of Bleustein & Green [2] yield 

The function '1/Ji arises because vi is solenoidal and hi, '"'(d, K,, a are constants which 

satisfy inequalities (15.11) of [2]; the only two of which we require here are 

and we suppose these hold in the strict sense. 

We take a infinite fluid layer z E (0, H), H > 0 and Fji = 0. The Boussinesq 

approximation is considered here, that p = p0 (constant) everywhere except in the 

body force term in (5.1), for which 

where g is gravity, T0 is a reference temperature, and a is the coefficient of thermal 

expansion. 
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By setting k = - ~c, with c = T ~ (constant), it is shown in [62] that the rate 
Po u1 

of work equation may be reduced to 

T = k!:lT. 

Therefore, if we now define 't(kj)i as 

the governing equations (5.1)-(5.2) reduce to 

Po ( 1 - d2 !:l) v + Po d2 
{v · k vk · + v · kv · k - vk ·vk ·} · = t t, ,J t, ), ,t ,J ,J 

- P,i - Po9fJi3 [1- a(T- To)] 

+ 2 {p,(T) Dij L - t(kj)i,kj - /d tl'T,i' 

Vi,i = 0, 

T = k!:lT, 

where p = ¢ - '1/Ji,i acts like a pressure. 

No-slip boundary conditions for the velocity are 

Vi = 0, z = 0, H, 

and further, the temperatures are kept fixed on the vertical boundaries 

T = T0 , z = 0, 

with T0 > TH, so the fluid is heated from below. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Let (ui, (}, 1r) be perturbations to the steady solution (vi, T, p) of (5.3)-(5.6), 

where 

vi - 0, T = - ( z + T0 (5.7) 

with ( = (To - TH )H- 1 , and p being the steady pressure field found from (5.3)1. 
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The perturbed equations are non-dimensionalized via 

and 

xi = x; H, ui = u; U, 7f = n* P, 

U = Vo 
H' 

p = Vo fLo 

H2' 

t = t*T, Pr = Vo 
k' 

T=U~, y-z;g 

with t2 being the non-dimensional form of (h1 + h3) 1 fLo· 

o = O*i' 
' 

vo 

The non-dimensional perturbed equations, for z E (0, 1), become: 

(1 - 6_6.) U· + 6{u· kUk · + U· kU · k - Uk ·Uk ·} · = l t, ,J t, J, ,t ,J ,J 

- n · + 6·3RO + {f(T + O)a· ·} · ~ t D J 

1 ~ 

- J-LoH2 ~(ki)i,ki - f d .6.0,i, 

ui,i = 0, 

PrO = .6.() + Rw 

where w = u3 and aij = ui,j + Uj,i· 

Using (2.20), equations (5.8h may be written 

(1 - 6_6.) U· + 6{u· kUk · + U· kU · k - Uk ·Uk ·} · = t t., ,J t, ], ,z ,] ,] 

- n · + 6·3RO + {F(z)a· ·} · + {!' (T)Oa· ·} · ,t t lJ ,J lJ ,J 

1 ~ 

- J-LoH2 ~(ki)i,ki - f d .6.0,i, 

and, cf. Straughan [62]], on the boundaries 

ui = () = ~(33)i = 0, z = 0, 1, 

with ui, () and 7f having a periodic shape in (x, y). 
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(5.8) 

(5.9) 

(5.10) 



5.2. Conditional nonlinear stability analysis 60 

5.2 Conditional nonlinear stability analysis 

The two separate energy identities are derived by multiplying (5.9) by ui, (5.8)3 by 

0 and integrating over the period cell V. After use of integration by parts and the 

boundary conditions we obtain 

~ :t (llnW + 6ll\7uW) - R(Ow) - Ell~uW 
1 1 I A 

-2(F(z)aijaij) - 2u (T)Oaijaij), (5.11) 

Pr ~IIOW = R(Ow) - II\70W. (5.12) 
2 dt 

For ). > 0 to be chosen later, we may form the energy identity 

where 

dE 
dt 

R(1 + >.) (0 w) - >-II\7BW - Ell~uw 

1 1 I A 

- 2(F(z)aijaij) - 2u (T)Oaijaij), 

E(t) = ~(lluW + 6ll\7uW + >.PriiOW), 

(5.13) 

(5.14) 

is the natural energy arising from (5.11)-(5.12). If we take into account the estima­

tion (2.19) for the first derivative of the viscosity, from (5.13) we may see that 

dE 
dt < R(1 + >.)(0 w) - >-II\7BW - Ell~uw 

1 1 
- 2(F(z)aijaij) + 2M(IB1aijaij)· (5.15) 

We now define 
1 I 
-=max-
RE 1{ 1)' 

(5.16) 

where 1l is the space of functions 

1l = { Ui, 0 I Ui E W 2
'
2 (V), Ui,i = 0, Ui -:- 0 on z = 0, 1; 

() E W1
•
2 (V), () = 0 at z = 0, 1} 

ui, () satisfy a plane tiling periodic planform in x and y, and 
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I 

v 
(1 + >.)(() w), 

1 
>.IIVBW + Ell~ull 2 + 2 (F(z)aijaij)· 

The corresponding energy inequality is then 

dE 
- < R:I-V+N 
dt - ' 

where 

N 

Further, we derive 

and take 

R<RE, 

which implies that (1- R/ RE) =a> 0. 
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(5.17) 

We wish now to bound theN term by the energy, E and by the dissipative term, 

V. We take 

IBI = (signB)B, 

with sign() being -1 or 1, when () is negative, respectively, positive. 

We then proceed as follows 

!M(IBia··a··) = M((signB)Bu· u ·) + M((signB)Bu· ·u· ·) 2 tJ t] t,J t,J t,J J,t ' 

or further, integrating by parts, 

1 
-Jv!(IBia· ·a··) 2 ZJ ZJ - M((sign B) Bu· ·u·) - M((sign B)B ·u· ·u·) ,J z,J z ,J z,J z 

- M ( (sign 0)() ~ui ui) - M ( (sign B) ,iBui,jUj) 

- M ( (sign B)B,iui,jUj). 
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The first and the fourth term of the RHS of the last identity are zero. When 

() =/= 0 then sign() is a constant, therefore (sign()) ,j = (sign()) ,i = 0. When () = 0, 

then the terms are zero. Hence 

1 

2M(Ielaijaij) = -M((signe)e,jui,jui)- M((sign())etluiui) 

- M ( (sign e)e,iui,jUj) 0 (5.18) 

For the analysis ahead we need the result, ( cf. Galdi & Straughan [27], Straughan 

[64]), that there exists a constant e such that 

sup lui :S e llllull. (5.19) 
v 

The inequality for the supremum of a function (it is proven to work for (), as well) 

is very important in the following analysis and furthermore, throughout the present 

work. The positive constant e depends on the geometry of the domain. 

We now use the fact that the maximum value of sign() is 1, and employ the 

inequality (5.19) in (5.18), to have 

N :S 2Me ll\7()11 ll\7ull llllull + Me 11e11 lllluW. 

To this end, the cubic terms from above are bounded in terms of 'D E 112 , 

2M e ll\7011 ll\7ull II !lull 

Me 11e11 lllluW 

where Poincare inequality has also been used. The bound for the nonlinear term is 

then 

Thus, suppose (5.20) holds, we derive from (5.17) 

dE J2 J2 - < -a'D +Me(--+ )E112 V. 
dt - ...(ffj Evf>:PT 

Equivalently we may write 

dE < -a'D(1-AE112), 
dt 

(5.20) 
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where the positive constant A is given by 

A= Me ( J2 + J2 ) 
a ..jbJ. EV>:Pr . 

By a similar procedure as in the previous chapters, we observe that provided 

(a) R < RE, 

the energy decays to 0 as t ---+ oo. 

(b) E 112 (0) < 2_ 
A 
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Concluding remark. What we have established is that provided R < RE and 

there exists a threshold for the initial amplitude of the energy, then conditional 

nonlinear stability is achieved for a general viscosity depending on temperature. 

It is of importance to remark that the presence of the term Ell~uW in V was 

crucial in the analysis above. Due to this fact, it is possible to control the nonlinear 

term N using a natural form for the energy, rather than a generalised one. However, 

as we have already seen in the previous chapters, for a variety of situations, to 

establish a nonlinear stability result generalised energies are required. 



Chapter 6 

Nonlinear stability for the third 

grade fluid 

The thermal convection in a layer of fluid of third grade is investigated, with the 

viscosity being a general function of temperature. We attack the nonlinear stability 

analysis and prove that unconditional nonlinear stability is achieved using a natural 

energy approach. This shows that, in some sense, the equations for a fluid of third 

grade are preferable to those for a fluid of second grade or a dipolar fluid. 

This work is submitted for publication (Budu [5]). 

6.1 The convection equations for a fluid of third 

grade 

We present below the relevant equations for thermal convection in a layer of fluid 

of third grade heated from below. The stress tensor relation (2.14) is considered, 

namely 

where A 1 =[Aij] and A 2 are the first two Rivlin-Ericksen tensors, defined by 

with L being the velocity gradient. 
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We shall assume the normal stress coefficients a 1 , a 2 and the coefficient j3 are 

constants, satisfying the restrictions, cf. Fosdick & Rajagopal [20], 

(6.1) 

We take here a 1 > 0, j3 > 0 and impose (6.1)3 with J1 replaced by the constant p0 . 

We let the viscosity be a general function of temperature as considered in (2.17), 

and suppose its first derivative is bounded by a positive constant M, 

p(T) = Pov(T) =Po vof(T), iv' (T)I ::; M. 

We then employ a Boussinesq approximation so that p = p0 (constant) everywhere 

except in the body force term. 

With these considerations, the equations of motion (2.1)-(2.3) for a fluid of third 

grade heated from below, contained in the infinite horizontal layer z E (0, H), are 

PoVi = - P,i - Po96i3 [1- a(T- To)] + {p(T)Aij},j 

v·. z,z 0, 

(6.2) 

(6.3) 

where vi, p, g, t:, r, Qi, are, respectively, the velocity, density, gravity, internal energy, 

heat supply, and heat flux; g is the gravity, T0 a reference temperature, and a the 

coefficient of thermal expansion. 

We take here r = 0, then we may follow the analysis of Franchi & Straughan [22] 

and reduce the balance of energy to 

T = rd~.T, (6.4) 

with ~ being the Laplacian operator and r;, the thermal diffusivity. 

No-slip conditions on the boundaries z = 0, H are 

Vi= 0, (6.5) 

and the same boundaries are assumed to be held at fixed, constant temperatures 

T = T0 , z = 0, T = Tu, z = H, (6.6) 
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with T0 > TH. A steady solution for the boundary value problem (6.2)-(6.6) is then 

(6.7) 

where ( = (To - TH )H- 1 . 

To study the nonlinear stability of solution (6.7) we let (ui, (), 1r) be pertur­

bations to (vi, T, p), where p is the steady pressure field found from (6.2). We 

non-dimensionalize the resulting perturbed equations with the scalings 

xi = x;H, Ui = u;U, 7f = 7r* P, e = e*t 
' 

t = t*T, 

U= 
Vo 

P= 
U Po Va t = uffj, T= 

H2 

H' H ' ag vo 

Pr 
vo R Ja(gH', f1=poH2' r2 

PoH2 B = f3vo . 
PoH4 /'1, VoK a1 a2 

where Ra = R2
, Pr are the Rayleigh and Prandtl numbers, r 1 , r 2 are absorption 

numbers and B is a non-dimensional form of f3. 

Omitting all stars, the non-dimensional equations for the evolution of the dis­

turbances, when z E (0, 1), become: 

ui = -1f,i + 6i3R() + {F(z)aij},j + {/(T)()aijL 
1 

+ f 
1 

( aij,t + Ukaij,k + aim Um,j + Um,iamj) ,j 

1 2 + r2 (aimamj),j + B [(tr A )aijL· (6.8) 

Ui,i 0, 

Pr () /j,() + Rw, 

where w = u3 , A= [ai1], aij = ui,j + u1,i and the Taylor expansion (2.20) has been 

considered. 

On the boundaries 

Ui = (} = 0, Z = 0, 1, 

with ui, () and 7f having a periodic shape in (x, y). 
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6.2 Linear instability analysis 

To proceed with a linear instability analysis we discard the nonlinear terms in the 

previous equations. We must, therefore, solve the linearised system: 

1 
- 1r + 6 3R(} + {F(z)a· ·} · +-a·· t · ,~ ~ ~J ,J r 1 ~J, J, 

u·. 
~,~ 0, (6.10) 

Pr e,t ~(} + Rw, 

with the boundary conditions 

Ui = (} = 0, Z = 0, 1. (6.11) 

Since (6.10) and (6.11) are linear, we may take 

and then derive 

-1r · + 0·3R(} + {F(z)a· ·} · ~ ~ ~ Jl 

u·. 
~,~ 0, (6.12) 

aPr(} ~(} + Rw. 

The Principle of exchange of stability holds here in the strong sense, namely 

a E R In order to prove the last statement, we multiply (6.12)1 by ui, (6.12)3 by(}* 

( ui and (}* are complex conjugates) and integrate over the periodic cell V to obtain 

(6.13) 

respectively 

(6.14) 

We now rearrange the term aiiui,j = ( ui,j + Uj,i)ui,j as 

(6.15) 
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and add (6.13) to (6.14) to have 

a[lluW + PriiOW + 2~1 (aija;j)] -~(F(z) aii a;i)- II~OW 
+R[(Ow*)+(wO*)]. (6.16) 

Let a = O"r + i O"i, with O"r, O"i E R; smce (0 w*) + (w 0*) E R, we take the 

imaginary part of (6.16) to find that 

(6.17) 

Therefore, ai = 0 and the proof of a E R is completed. 

As a is a real number, to find the instability boundary, the lowest value of R 2 in 

(6.12) for which a> 0, we solve (6.12) for the smallest eigenvalue R~ when a= 0. 

The linear system to be solved is then 

0, (6.18) 

~0 + Rw 0. 

We eliminate the pressure from the equation above by taking the third component 

of the operation curl curl of equation (6.18h and using (6.18)2, obtain 

-R~*O- F" (z)(~w- 2Wzz)- 2F' (z) ~W,z- F(z)~2w = 0, (6.19) 

where ~ * = {]2 I ax2 + fJ2 I ay2
. 

The physical assumptions on the fluid layer enable us to adopt a normal mode 

representation for 0 and w of form 

O(x, y, z) = 8(z)h(x, y), w(x, y, z) = W(z)h(x, y), 

with 8(z) and W(z) being z-dependent functions and h(x, y) is a planform which 

tiles the plane (x, y) and satisfies the equation (see eg. Chandrasekhar [8]) 

with k being the wavenumber. 
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We denoteD= d/dz and replace the normal representations ofO and win (6.18)3 

and (6.19), to rewrite the system (6.18) as a one-dimensional eigenvalue problem 

Rk28- F"(z)(D2 + k2 )W- 2F' (z)D(D 2
- k2 )W- F(z)(D2

- k2
)

2 W = 0, 

RW + (D2
- k2)8 = 0, (6.20) 

with the boundary conditions for two fixed surfaces given by 

W = 8 = DW = 0, z = 0, 1. (6.21) 

The eigenvalue problem (6.20)-(6.21) is solved by the compound matrix method 

and numerical results are reported and interpreted in the final section of this chapter. 

The numerical approach is similar to the one presented in Appendix B, except that 

here we have 20 compound matrix equations. The first step is to vary R until the 

final condition is satisfied to some pre-assigned tolerance and find that particular 

value of R with the secant method. We then find numerically 

varying k2
, by using the golden section search algorithm. 

As one can easily see from (6.20), the Rayleigh number and the wavenumber are 

dependent on the viscosity variation, so we shall run the same routine for different 

values of F(z). 

For the function F(z) = f(T) we have employed the general formula of Tippel­

skirch and additionally, two formulas as used in Straughan [66], for the viscosity of 

aniline 
v (T) _ 0.31482 

1 
- 1 + 0.48727 X 10-1T + 0.87490 X 10-3T 2 ' 

(6.22) 

and, respectively, nitrobenzene 

v (T) = 2.6202 
2 1 + 0.26641 X 10-1T + 0.14832 X 10-4T 2 . 

(6.23) 

It was already emphasised in the introductory part of this thesis that the linear 

theory only yields a boundary for instability. As a > 0 implies instability, we expect 

to have at least one solution unstable for Ra > Ra£. The linear theory does not 

yield any information on nonlinear stability; therefore it is possible in general for 
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the solution to become unstable at a value of Ra lower than RaL, and in this case 

subcritical instability is said to occur. 

In order to complete the stability analysis for the third grade fluid, we develop 

next an energy method approach. The nonlinear stability analysis will provide a 

nonlinear critical Rayleigh number, below which nonlinear stability is assured. For 

a Rayleigh number between the nonlinear and the linear critical value, subcritical 

instabilities may still occur. However, one of our main results of the analysis below is 

that the nonlinear critical Rayleigh number is very close to the linear one, delivering 

a certain stability result. 

6.3 Unconditional nonlinear stability analysis 

To proceed with a nonlinear stability analysis, we consider the fully nonlinear equa­

tions of (6.8), 

ui -7r,i + 6i3R() + {F(z)aij},j + {/ (T)Baij},j 
1 

+r
1 

(aij,t + Ukaij,k + aimUm,j +um,iamj),j 

+ :
2 

(aimamj),j + B [(tr A2 )aij],j. 

Ui,i 0, 

Pr () b.() + Rw. 

We form the energy identities multiplying (6.8)1 by ui and integrating over the 

period cell V. After use of integration by parts and the boundary conditions we 

obtain 

1 d 1 

2 dt [iiuW + r
1

1IV'uWJ 

(6.24) 

Similarly, multiply (6.8)3 by () and integrate over V, to find: 

(6.25) 
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Adding (6.24) and --\(6.25), with ,\ being a positive parameter, the result is 

where 

dE 
dt 

R(1 +--\)(Ow) - -XIIY'OW- ~(F(z)aijaij) 
11A 11 1 3 B 4 - 2(! (T)Oaijaij) - 2(r

1 
+ r

2
)(tr A) -

2
(1AI ). 

E(t) = ~ [lluW + :
1
IIVuW + --\PriiOWJ 

is the energy in which terms naturally arise from (6.24) and (6.25). 

71 

(6.26) 

Note. We remark here that we split the analysis in two parts, according to 

whether a1 + a2 = 0 or 0 < la1 + a2l < y'24f3J-lo· The third case la1 + a21 = 

y'24f3J-lo leads to not very useful results. 

(i). The case a 1 + a 2 = 0. Equation (6.26) reduces to 

or equivalently, 

dE 
dt 

R (1 +--\)(Ow) - -XIIVOW - ~(F(z)aijaij) 
1 I A B 4 -2(! (T)Oaijaij) - 2(IAI ), 

dE ,..I I 

-=.L-D+N 
dt ' 

if we take into account the following notations 

R(1 +--\)(Ow), 

vi -XIIVOW + ~(F(z)aijaij), 

N 
1 I A B 4 - 2u (T)Oaijaij) -

2
(1AI ). 

(6.27) 

(6.28) 

At this point, it is of importance to highlight the role of the f3 term from the 

third grade fluid stress tensor. The extra-nonlinearity arising from this term in 

the corresponding energy equation, namely the ~(IAI 4 ) term, changes not only the 

type of the energy necessary to proceed in the stability analysis, but the nonlinear 

stability result as well. 

If we recall the natural energy equation for the second grade fluid, i.e. 

dE 
dt 

< R (1 +-X) (0 w) - -XIIVOW - ~ (F(z)aijaij) 

1 I -2(! (T)Oaijaij), 



6.3. Unconditional nonlinear stability analysis 72 

with E being the same as defined above, one can see that the difference between 

the two energy identities, corresponding to the third grade fluid, respectively, to the 

second grade fluid, is essentially the nonlinear term corresponding to the j3 term 

from (2.14). In the second grade fluid case it was impossible to control the cubic 

nonlinear term (/ (T)Baijaij) with the quantities from I and 7J', therefore a gener­

alised energy analysis was needed in order to deliver a conditional nonlinear stability 

result. Moreover, in the N avier-Stokes theory, the analysis was more complicated 

due to the absence of a natural term IIV'uW in the energy formula, which was added 

artificially in the equations. As we have remarked in the dipolar stability analysis, 

extra-nonlinearities from the stress tensor formula have allowed us to proceed with 

a natural energy formula ending with a conditional nonlinear criteria for stability. 

It is first for the third grade fluid analysis that we are able to handle the non­

linear terms by a natural energy analysis and deliver an unconditional boundary for 

stability. The key to this strong mathematical result is the presence of the extra 

term ~(IAI 4 ) which helps us to control the cubic nonlinearity, (/ (T)Baijai1), in a 

direct manner. 

Essentially, we use (2.19) and the Cauchy inequality to successively have 

N = 

Further, we employ the arithmetic-geometric mean inequality to obtain 

for a a positive constant. If we choose now a = 2B then M' 

Using this estimation of the nonlinear term N, we rewrite (6.28) as 

dE 
-<I-1J 
dt - ' 

(6.29) 

(6.30) 
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where 

I 
J..;J2 

R(1 +.\)(Ow) + BB IIBW, 

v .\II\7BW + ~(F(z)aijaij)· 

From (6.30) we derive 

~ I I 
- = -V(1- -) < -V(1- max-) 
dt v - 1-l v ' (6.31) 

where 1l is the space of functions 

0 E W 1
•
2 (V), 0 = 0 at z = 0, 1} 

Ui, {j satisfying a plane tiling periodic planform in X and y. 

Upon using Poincare's inequality in (6.31), the variational theory is then reduced 

to the maximum problem 
I 

max- < 1. 
1-l v (6.32) 

With this assumption we may deduce exponential decay of the energy E. Therefore, 

(6.32) is an unconditional nonlinear stability criterion. We thus have obtained a 

rigorous nonlinear energy stability result. 

The criterion of importance is then (6.32), and everything is reduced to solving 

the maximum problem. We take (6.32) at critically (equality), and we derive the 

appropriate Euler-Lagrange equations. Since 1l is restricted to those functions that 

are divergence free, we must add into the maximum problem the constraint ui,i = 0 

multiplied by a Lagrange multiplier, p(x), Uv p(x)ui,idx = 0). 

The Euler-Lagrange equations associated to the maximum problem (6.32) are 

M2 
R (1 + .\) w + 

4
B 0 + 2.\~0 0, (6.33) 

R(1 + .\) kiB + 2{F(z)ai1L 2P,i 

where p is a Lagrange multiplier. 

We take the third component of (curl cur1)(6.33)2 and decompose into normal 

modes 

0 = 8(z)h(x, y), w = W(z)h(x, y), 
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with 8(z) and W(z) being z-dependent functions and h(x, y) is a planform which 

tiles the plane (x, y) and satisfies the equation (see eg. Chandrasekhar [8]) 

with k being the wavenumber. 

The equations (6.33) now become 

JvJ2 
R (1 + .\) W + 

4
B 8 + 2.\(D2

- k2)8 = 0, 

R (1 + .\) k28 - 2F" (z)(D2 + k2 )W (6.34) 

- 4F' (z) D(D2 - k2 )W - 2F(z) (D2
- e) 2W = 0. 

System (6.34) is solved subject to the two sets of fixed boundary conditions 

W = 8 = DW = 0, z = 0, 1. (6.35) 

This eigenvalue problem is solved numerically by the compound matrix method, 

with the optimal Rayleigh number of global stability, RaE, found by choosing ,\ 

such that 

RaE= R~ =max minR2
(.\, k, M, B). 

,\ k 

The max/min calculations were carried out using the Golden Search algorithm. 

The numerical results and discussion, with values for RaE and critical values of kE 

are given in the next section. As RaE is dependent on F(z) and B we repeat the 

algorithm for different values of B and different viscosity variations. 

(ii). The case 0 < Ja1 + a2J < J24(3J-t0 . We note that 

1 1 
2JJVuW + (rl + r)(tr A3

) + B( JAJ 4
) 2: (6.36) 

(1 _ Ja1 + a2l ) 2 IIVuW + ( f3J-Lo _ wla1 + a2l )(IAI 4 ) 

2wp0H2J6 P5H4 2p0H2J6 

for w > 0 at our disposal. Select now 

J6(:0'fl2 - PoH2
) + J6(:0'fl2 - poH2)2 + (a1 + a2)2 

w = ----------------~----~-----------------
lal + a2l 
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and define E by 

(6.37) 

It is important for the following analysis to observe that 0 < E < 1, which implies 

(1 -c) > 0. 

We employ (6.36) and (6.37) in (6.26) to conclude that 

~~ < R (1 +-\)(Ow) + (1- c)IIVuW - -\IIVOW 

If one uses on the last two nonlinear terms the estimation (6.29), it follows 

~ < R (1 +-\)(Ow) + (1- c)IIVuW - -\IIVOII 2 

1 Jkf2 

- 2(F(z)aijaij) + BE IIOW, 

which may be reduced to 
dE --r'' -n" - < L - v 
dt - ' 

where 

r' Jkf2 

R(1 +-\)(Ow) + (1- c)IIVuW + BE IIOW, 

v" -\IIVBII 2 + ~(F(z)aijaij)· 
The criterion for global nonlinear stability is then 

r' m:xv, < 1. 

(6.39) 

(6.41) 

with 1i being the space of functions previously defined. The Euler-Lagrange equa­

tions for the maximum problem (6.41) are 

Jkf2 
R(1 + -\) w + 

4
B 0 + 2-\~0 = 0, (6.42) 

R(1 + -\) kiO- 2(1- E)~ui + 2{F(z)aij},j = -P,i 

where p is a Lagrange multiplier. 

Taking the third component of (curl cur1)(6.42)2 and decomposing into normal 

modes 0 = 8(z)f(x, y) and w = W(z)f(x, y), equations (6.42) now transform to 

Jvf2 

R (1 + -\) W + 
4

B 8 + 2-\(D2
- k2)8 = 0, (6.43) 

R (1 + -\) k28 - 2F" (z)(D2 + k2 )W - 4F' (z) D(D2
- k2 )W 

- 2[F(z) - 1 + c] (D2
- k2

)
2W = 0. 
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System (6.43) is solved subject to the fixed boundary conditions (6.35). This is 

an eigenvalue problem in R which is solved numerically by the compound matrix 

method, with the optimal Rayleigh number of global stability, RaE, found by choos­

ing A such that 

RaE= R2 =max minR2 (.\,k,c,M,B). 
>. k 

6.4 Numerical results and discussion 

We have derived unconditional nonlinear stability criteria for thermal convection 

in a layer of fluid of third grade, with the viscosity being a general function of 

temperature, provided that the first derivative is bounded by a positive constant. 

It is useful to remark that this strong unconditional nonlinear stability result is due 

to the extra nonlinear term in the stress relation associated to the third grade fluid. 

Although we have proved fully nonlinear stability criteria when v has a general 

form, we outline the method for some particular viscosity relations. We include the 

calculation for the Tippelskirch viscosity formula, completed with some numerical 

results associated to aniline and nitrobenzene viscosity formulas. The viscosities for 

these fluids are given by (6.22), respectively, (6.23). The two boundary surfaces are 

assumed fixed in all cases. 

In the present analysis, the two important dimensionless numbers are the critical 

Rayleigh number, Ra and the wavenumber k. In the following tables we denote the 

critical values of the Rayleigh numbers in the linear and nonlinear cases as RaL, RaE 

respectively. We next compare the behaviour of our numerical results, the critical 

wavenumbers and the critical Rayleigh numbers, in the linear theory and the energy 

method. 

As both of these numbers are dependent on B and F(z), we take B from very 

large values to very small ones coupled with different values for the viscosity. 
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(a) Numerical results for the Tippelskirch viscosity. The fluid viscos­

ity advocated by Tippelskirch [69], relation (2.16), yields for F(z) the following 

expression 

F(z) = f(T) 
1 

(6.44) 

where 

(6.45) 

and 

(6.46) 

Here C is v0 , the viscosity evaluated at T = 0°C. 

Table a.1 gives the linear critical Rayleigh numbers for various values of v, 

whereas Tables a.2.(1-4) present the critical wavenumbers k~, and critical Rayleigh 

numbers RaE of energy theory (unconditional nonlinear stability) for different values 

of v and B, provided that a 1 + a 2 = 0. 

For the case 0 < la1 + a21 < ../24f3J.1o, the numerical results are similar to 

those for the a 1 + a 2 = 0 case, with respect to the proportion between c and 1. The 

proportion is preserved in the critical Rayleigh number and the wavenumber results. 

Linear analysis. The eigenvalue problem arising from the variational characteri­

sation of the linear instability boundary, (6.20), suggests that the Rayleigh numbers 

depend on the variation of v with the temperature. 

The computational output presented below shows that for E1 = E2 = 61 = 62 = 0 

the critical Rayleigh number for the linear instability analysis is the same as the 

classical one for two fixed surfaces. 

Nonlinear analysis. As we have already stated, the important parameter in the 

nonlinear analysis is B, a non-dimensional form of the j3 coefficient of the extra 

nonlinearity term in the stress tensor formula for the third grade fluid. Employing a 

natural energy method, we obtain a critical Rayleigh number for nonlinear stability, 

which is very close to the linear one for sufficiently large values of B. 

It is now worth remarking that the coefficient of 8 from (6.34) which involves B, 

M 2 / 4B, is the relevant clue to this behaviour. It suggests that for B very large the 

coefficient tends to zero and the nonlinear results are the same as the linear ones, 
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as long as B does not dominate M 2 . As B decreases sufficiently, it will eventually 

dominate the M 2 term. At this point, the nonlinear results are still close to the linear 

ones, suggesting that the linear theory provides good predictions for the convection 

fluid motion. Naturally, as B gets smaller and smaller, the respective coefficient is 

getting bigger and bigger increasing the difference between the value of the nonlinear 

critical Rayleigh number and the associated linear result. This is precisely what is 

found numerically and presented in Tables a.2. (1-4) for various viscosity values 

Generally speaking, B can take any positive value, but the numerical calculations 

reveal some kind of threshold for it. As we may observe from the Tables a.2.(1-4), 

for each viscosity value, there is a value for B (italic) such that for any values 

above it the nonlinear critical Rayleigh number is kept close to the linear one, 

whereas for the values below it the Rayleigh number decreases faster. Moreover, the 

numerical code used for the calculations provides a minimal admissible value of B, 

with a corresponding critical nonlinear Rayleigh number. We stress again that this 

behaviour is predictable from the coefficient of e stated above. 

The comparison of the nonlinear theory against the linear one is very good, 

as long as B is above the associated threshold. Roughly speaking, the difference 

between the two methods is of order O(lo-1) for the Rayleigh numbers and of order 

0(10-2 ) for wavenumbers. 

In order to control the nonlinear term and provide a global nonlinear stability 

result, we have introduced the coupling parameter .X and employed an energy method 

to work out the optimal value for this parameter. The results shown in Tables a.2.(1-

4) demonstrate that the optimal value for the coupling parameter is close to 1 for 

high values of B, and significantly greater than 1 as B decreases below the mentioned 

threshold. For very large values of B, when the situation is technically reduced to 

the linear case, the coupling parameter is 1. 
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(b) Numerical results for aniline and nitrobenzene. To give some exam­

ples of viscosity fits by the Tippelskirch formula, we may use the viscosity formulas 

for aniline, (6.22), and for nitrobenzene, (6.23). When T0 = 10°C and ~T = 2oC, 

the numerical calculations for the case of two fixed surfaces are given in Table b.1 

and Table b.2. We can observe the influence of B on the RaE and k~ results. The 

tend is the same as for the previous results. 

Concluding remark. We have studied convection in a fluid of third grade, with 

variable viscosity of the general form (2.17). Under these assumptions, we have 

proceeded with a natural energy method and we have delivered a fully nonlinear 

stability criteria. The emphasis here is that the third grade fluid possesses a dissi­

pative term which allows us to control the extra nonlinearities which arise when the 

viscosity varies with temperature. Thus, the final stability result is strong, in the 

sense that an unconditional nonlinear stability criterion is provided. 

0 0 0 0 1707.7617 9.711472 

0.1 0.05 0.02 0.01 1563.8847 9.711429 

0.2 0.1 0.04 0.02 1437.5102 9.711329 

0.1 0.02 0.02 0.004 1566.3392 9.711425 

0.2 0.04 0.04 0.008 1445.8091 9.712286 

0.1 0.05 0.1 0.05 1626.4514 9.710295 

0.2 0.1 0.2 0.1 1552.5363 9.707239 

0.1 0.02 0.1 0.02 1627.7049 9.710182 

0.2 0.04 0.2 0.04 1556.9162 9.706802 

1.0 0.5 0.5 0.25 910.4098 9.709567 

Table a.1: Numerical calculation for critical values of the linear critical Rayleigh 

number RaL and the linear critical wavenumber kL, for various Tippelskirch's vis­

cosity values. 
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B 

LINEAR 1563.8847 9.711429 -

2:10 1563.8844 9.711428 1.000000 

1 1563.8816 9.711414 1.000004 

w-1 1563.8533 9.711292 1.000040 

w- 2 
1 1563.5703 1 9. 710082 11.0004021 

w-3 1560.7459 9.697979 1.004024 

w-4 1532.9599 9.579758 1.040485 

w-5 1295.7372 8.636968 1.425793 

5 x w-6 1099.6289 7.951929 1.884728 

3.5315 x w-6 964.74300 7.136395 2.000000 

Table a.2.1: Numerical calculation for nonlinear critical values of the Rayleigh 

number RaE and the wavenumber k1 against B, for the Tippelskirch viscosity, with 

E1 = 0.1, E2 = 0.05, 61 = 0.02, 62 = 0.01 and M = 0.01777. 

B 

LINEAR 1437.5102 9.711329 -

2 102 1437.5101 9.711328 1.000000 

10 1437.5092 9.711325 1.000001 

1 1437.5009 9.711287 1.000013 

w-1 1437.4180 9.710897 1.000128 

w-2 
1 1436.5888 1 9. 707032 11.0012831 

w-3 1428.3401 9.668642 1.012854 

w-4 1350.0211 9.312331 1.130971 

5 x w-5 1271.2145 8.969306 1.266785 

1.1265 x w-5 886.87478 7.136777 1.999934 

Table a.2.2: Numerical calculation for nonlinear critical values of the Rayleigh 

number RaE and the wavenumber k~ against B, for the Tippelskirch viscosity with 

E1 = 0.2, E2 = 0.1, 61 = 0.04, 62 __: 0.02 and M = 0.03175. 
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B 

LINEAR 1566.3392 9.711423 -

;::: 10 1566.3389 9.711421 1.000001 

1 1566.3362 9.711412 1.000004 

10-1 1566.3096 9.711296 1.000038 

10-2 
1 1566.0431 1 9. 710156 11.0003781 

10-3 1563.3822 9.698774 1.003784 

10-4 1537.1803 9.597413 1.038061 

10-5 1311.4523 8.687900 1.399343 

5 X 10-6 1121.7994 8.019206 1.828920 

3.321 X 10-6 966.3093 7.136605 2.000000 

Table a.2.3: Numerical calculation for nonlinear critical values of the Rayleigh 

numbers RaE and the wavenumber k1 against B, for the Tippelskirch viscosity with 

E1 = 0.1, E2 = 0.02, 61 = 0.02, 62 = 0.004 and M = 0.01724. 

B 

LINEAR 1445.8091 9.712286 -

;::: 102 1445.8090 9.712286 1.000000 

10 1445.8082 9.712282 1.000001 

1 1445.8008 9.712248 1.000011 

10-1 1445.7263 9.711902 1.000115 

10-
2 

1 1444.9817 1 9. 708448 1 1.oo1146 1 

10-3 1437.5705 9.674142 1.011473 

10-4 1366.8147 9.353196 1.116679 

3 X 10-5 1208.6611 8.681052 11.403232 

1.4 X 10-5 1011.3098 7.933856 1.900788 

Table a.2.4: Numerical calculation for nonlinear critical values of the Rayleigh 

number RaE and the wavenumber k1 against B, for the Tippelskirch viscosity with 

E1 = 0.2, E2 = 0.04, 61 = 0.04, 62 = 0.008 and M = 0.03. 
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B 

LINEAR 1131.8487 9.710549 -

2: 102 1131.8485 9.710548 1.000000 

10 1131.8466 9.710538 1.000004 

1 1131.8282 9.710428 1.000036 

10-1 1131.6433 9.709333 1.000363 

10- 2 
1 1129.7977 1 9.698403 11.0036321 

10-3 1111.6125 9.591409 1.036522 

10-4 954.0423 8.720068 1.382604 

5 X 10-5 820.2715 8.062755 1.793616 

3.19 X 10-5 698.5252 7.138520 2.000000 

Table b.1: Numerical calculation for nonlinear critical values of the Rayleigh 

number RaE and the wavenumber k1 against B, for aniline, with T0 = 10, !:lT = 2 

and M = 0.05341. 

B 

LINEAR 1376.4037 9.711203 -

2: 102 1376.4037 9.711203 1.000000 

10 1376.4027 9.711198 1.000002 

1 1376.3922 9.711143 1.000017 

10-1 1376.2874 9.710636 1.000169 

10-2 
1 1375.2400 1 9. 705533 11.0016931 

10-3 1364.8385 9.655016 1.016972 

10-4 1267.6745 9.196977 1.173868 

5 X 10-5 1172.8781 8.775278 1.355717 

2.5 X 10-5 1016.9793 8.138056 1.736935 

1.4887 X 10-5 849.8373 7.142488 2.000000 

Table b.2: Numerical calculation for nonlinear critical values of the Rayleigh 

number RaE and the wavenumber k1 against B, for nitrobenzene, with T0 = 10, 

!:lT = 2 and M = 0.03647. 



PART II. Convection in a porous 

medium 

Scope and plan of this part. Penetrative convection is investigated in a porous 

medium bounded above by the ocean bed and below by the interface of the thawing 

permafrost ground. 

In Section 1, we describe the physical phenomenon of such convection flow ob­

served off the coast of Alaska and the mathematical model is presented. 

Initially, in Section 2, we consider the linear instability analysis which provides 

us with a linear critical Rayleigh number. If the linear critical Rayleigh number 

boundary is exceeded, this ensures instability. It does not preclude the possibility 

of subcritical instabilities. In order to complete the stability analysis, in Section 3 

we use the energy method to determine a nonlinear critical Rayleigh number below 

which convection cannot develop. This critical value is found to be close to that of 

linear theory, and therefore no subcritical instability may arise. Finally, in Section 

4 we present the numerical results and draw some conclusions. 

Most of the work from this chapter has essentially appeared in Budu [3]. 
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Chapter 7 

Convection in a porous medium 

7.1 The mathematical model for thawing subsea 

permafrost 

The physical situation. The study of convective flow of a fluid in a porous medium 

is a subject driven by the immense variety of applications in which it arises. To 

mention some, these applications are in biological, environmental, geophysical and 

industrial contexts. 

lower air lemperarure 
18.00Cl years ago 

(salty sediments) 
{fresh water. less dense) 

BRINE 

(Waler+Salt) 

incrensi.ng air tempetarure '"-\··· 
sea level now 

100--ltom 

sealevel 

18.(X)() years ago 

Figure 7.1: The physical situation of the convection in thawing subsea permafrost 
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Here we present an analysis of the convective motion of brine in a layer of subsea 

sediments off the coast of Alaska. The physical picture, see Figure 1, arises due to 

the fact that during the last ice age, approximately 18,000 years ago, the level of 

the sea was some 100-110 m below its present one. This occurred because water 

was held in the form of ice in glaciers and massive ice sheets. The air temperature 

was much colder too with the result that a large layer of permafrost formed in the 

exposed soil. Even though the air temperature has since warmed and the sea level 

has risen, the permafrost layer still exists beneath the sea bed. The overlying ocean 

acts like an insulator to the atmospheric cold. As a result, the permafrost melts from 

above, with a phase boundary separating the thawed layer and the frozen permafrost. 

The present permafrost level is therefore a transient one, directly dependent on the 

relatively warm and salty oceanographic conditions. 

The ice in the permafrost is composed of relatively fresh water when compared 

to the saline water of the sea (brine). This results in a slow, 2-5 em yc1 , melting of 

the permafrost layer and has led to the formation of a layer of brine undergoing a 

convective motion in the soil between the sea bed and the deeper permafrost layer. 

As the air (and ocean) temperature increased with time, the brine in the thawed 

permafrost reached unstable conditions and started to circulate. This has led to 

much research on the topic of convective motion of salt in the layer of sediment 

beneath the sea bed off the coast off Alaska. The theory behind this motion is that 

the sea water melts the ice in the permafrost and this releases fresh and less dense 

water which then rises through the porous layer and a convective motion ensues. 

This phenomenon has been studied off the coast of Alaska by W. Harrison and 

co-workers and our analysis is based on a model developed by Harrison & Swift [34]. 

To incorporate the penetrative convection effect in thawing subsea permafrost, 

Harrison & Swift [34] and Galdi et al. [26] included the salt effect directly in the 

equation of state, via a linear dependence of the form 

p = Po(1 + S), 

where S is the salinity, p is the water density and p0 is the reference density. Galdi 

et al. [26] presented an analysis of linear instability and nonlinear stability. In 

the nonlinear case they pointed out that if the Rayleigh number is smaller than 
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the critical Rayleigh number, then unconditional nonlinear stability arises. For the 

case where the nonlinear stability result is conditional upon the existence of some 

threshold finite amplitude, they calculated a threshold. 

Merker et al. [47] and McKay & Straughan [45] studied convection with a non­

linear density depending on temperature, and have shown the nonlinearity can lead 

to significant effects. Hutter & Straughan [38] include salinity and choose a cubic 

equation of state for the density in S, from Marchuk & Sarkisyan [44], p.167 and 

from the UNESCO 1983 paper [72]. Their nonlinear stability result, using the gen­

eralised energy method, is a conditional one, which depends upon a threshold for 

the initial amplitude which they have calculated. 

In this work we consider the following UNESCO equation of state for the density, 

cf. Mellor [46], p. 114, 

p(T, S) = Po[1 + 6.795021 x 10-5T- 9.096721 x 10-6T 2 

+1.001842 x 10-7T 3
- 1.12o259 x 10-9T 4 

+6.53736 X 10-12T 5 + 8.246228 X 10-4 S 

-4.09054 x 10-6TS + 7.645003 x 10-8T 2 S 

-8.247998 X 10-10T 3S + 5.388348 X 10-12T 4S 

-5.725561 x 10-6s3;
2 + 1.022861 x 10-7TS312 

-1.654860 x 10-9T 2S 3
;

2 + 4.832160 x 10-7s2
] (7.1) 

with p0 = 999.842594 being a constant, S the salinity corresponding to a solubility 

of water measured in parts per thousand [%o] and T being the temperature [0 C]. 

We use (7.1) as it retains the accuracy of Hutter & Straughan [38]. But the 

previous work of Hutter & Straughan [38] has established only conditional nonlinear 

stability. We prove that using (7.1) we may have a stronger result. Since (7.1) has no 

cubic term in S as in Hutter & Straughan [38], we may establish a global nonlinear 

stability result, for all initial data. 

The mathematical model. The existence of subsea thawing at temperatures 

of negative degrees Celsius points to the significance of salt, which in sufficiently 

permeable sediments percolates through the ocean bed into the thawing layer. Tem­

perature variations may also play a role. However, this effect is much less significant 
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as temperatures are below the anomaly point and density variations are weak. In 

this model we assume that any convective motion is caused by salt effects rather 

than temperature. 

X 

,[ 
z=O ---- sea bed (T= -I C) 

-
- _ - CONVECflON LAYER 

z=D(t) ---- time-dependence interface 

Figure 7.2: Configuration of the thawed layer of salty sediments 

The physical situation is as in Figure 7.2. We shall assume for the purpose of 

calculating the Rayleigh number for the onset of instability, that the permafrost 

boundary at z = D(t) remains planar. Such an assumption seems reasonable be­

cause appreciable boundary movement is on a time scale of years whereas the salt 

convection is on a time scale of days, and we are analysing the situation before 

convection commences. The scalings necessary for such a model to be valid are 

analysed at length in Hutter & Straughan, (39]. The model for the porous layer 

in which convection may take place is assumed to be governed by Darcy's law, the 

fluid being incompressible. 

Thus, the equations of motion for a spatial domain IR2 x {z E (0, D)}, are 

U·. 
~.~ 0, (7.2) 

as - + U;S; K!:l.S, fJt . ,. 

where k = (0, 0, 1), ui, S, J-l, 1f, p, K, g are velocity, salt concentration, permeability 

divided by dynamic viscosity, pressure, density, salt diffusivity and gravity. The 

density is given by (7.1). Standard notation is adopted, the operator ,6. is the 
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Laplacian. Equation (7.2h is Darcy's law with a buoyancy term, equation (7.2)2 

states that the fluid is incompressible, and the last equation (7.2)3 describes the 

evolution of the salt concentration field. 

Since (7.2) employs Darcy's law, the velocity boundary condition for the porous 

medium is as follows: 

u3 = 0 , z=O,D. 

Further, the temperature and the salt concentration on the sea bed may be taken 

to be constant, namely: 

T = T 0 (constant), z = 0, 

S = S0 (constant), z = 0, 

and for the moving boundary z = D, two Stefan conditions must hold for the 

temperature field and for the salt field, cf. Harrison & Swift [34] and Hutter & 

Straughan [39], 

LD 
aT 

-K1 az iv-, z = D, 

S(D)D 
as 

-K, az iv- ' z =D. (7.3) 

Here L is the coefficient of latent heat per unit volume of the salty layer. The 

subscript n- indicates the derivative approaching D from the thawed layer and K 1 

is the thermal conductivity above the boundary. In deriving the last two equations, 

the gradients of temperature and the salt from the permafrost layer are assumed 

negligible. 

Equations (7.3) are combined to eliminate D. Since the temperature profile in 

the thawed sediments is nearly linear, the temperature gradient is replaced as follows 

aT T(D)- To 
az D 

Following Hutter & Straughan, [38], the temperature profile throughout the layer 

is then 

T = To- [To- T(D)] z 
D 

and the density becomes p(T, S). 

(7.4) 
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To complete the formulation of the model, Harrison [32] points out that the brine 

concentration and temperature are coupled by the requirement of phase equilibrium 

at the phase boundary. Phase equilibrium requires 

S(D) ex -T(D), 

where T(D) is the temperature at the phase boundary. With this condition we may 

write 
S(D) 

Sr 
T(D) 

To 
(7.5) 

where Sr is the salinity of water that would begin to freeze at the sea-bed tempera­

ture To. Here, T(D) < To < 0 and so S(D) > Sr. 

Using (7.5) and eliminating iJ between the Stefan conditions (7.3) for the moving 

boundary, the final nonlinear boundary condition is 

as = K1To S(D) [S(D) _ 1] z =D. 
az LKD ~ ' 

The problem on a moving region z E (0, D(t)) is hence converted to one in a 

fixed spatial region z E (0, D), but with the nonlinear boundary condition given 

above. So the boundary conditions for (t, x, y) E (0, oo) x JR2 are 

U3 = 0, z = 0, D, 

S = S0 , T = T0 , z = 0, (7.6) 

as = K 1T0 S(D) [S(D) _ 1] z =D. 
az LKD Sr ' 

The system (7.2), with the boundary conditions (7.6), admits a stationary (steady) 

solution 

(7.7) 

where f3s is the positive solution of the equation 

and the steady pressure j5 may be calculated from the first equation of (7.2). 

An investigation of the stability of the steady solution is performed by introduc­

ing the perturbation variables (ui, s,p) for (ui, S,p). 
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If we consider now the constants p0 = 999.842594 and c1 = 8.246228 x 10-4
, by 

using the following notations 

fo(T) = 1 + 6. 79502 X 10-5f'- 9.09672 X 10-6f'2 + 1.00184 x 10-7f'3 

-1.12025 X 10-9f'4 + 6.53736 X 10-12f'5 , 

fi (f') 1 - 4.96049 X 10-3f' + 9.27090 X 10-5f'2 - 1.00021 X 10-6f'3 

+ 6.53431 X 10-9f'4
, 

f2(T) -6.94324 X 10-3 + 1.24039 x 10-4f'- 2.00680 X 10-6f'2
, 

C 5.85984 X 10-4
, 

the density equation (7.1) becomes 

To derive the perturbation equations we write (7.9) as 

p(T,S+s) Po[fo(T) + cd1(T)(S + s) 

+ c1h(T)(S + s) 312 + c1c(S + s) 2
]. 

It turns out that 

p(T, s + s)- p(T, S) 

(7.9) 

Poci{h(T)s + h(T)[(S + s) 312
- S312

] 

+ c(2Ss + s2
)}. (7.10) 

By Taylor series we may write 

(7.11) 

where Sis a salinity between SandS+ s. We assumeS+ s > 0 everywhere. Then 

using (7.10) in (7.2) we find the perturbation (ui, s,p) satisfies 

ui -fJP,i + kigJJpocdh(T) + ~h(T)S112 + 2cS]s 

3 - = 1/2 2 
+ kigJJpoci[Bh(T)S- + c]s . (7.12) 

Equations (7.12) and a perturbed version of (7.2)3 are now non-dimensionalized via: 

ui = Uui*, p = Pp*, s = Ss*, Xi= Dx;, t = Tt*, 
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where R2 = Ra is the Rayleigh number and the starred variables are the non­

dimensional ones. We shall drop all the stars in what follows, but it is understood 

that the new variables are non-dimensional. The boundary initial value problem 

governing the evolution of the non-dimensional perturbation field is given by the 

dimensionless system 

u·. 
~.~ 0, zE(0,1), (7.13) 

~s+Rw, 

where w = u3 . On the boundaries, 

U3 = 0, Z = 0, 1, 

s = 0, z = 0, (7.14) 

as 2 
-=-as- bs z = 1, az ' 

with 

b = K1ITol S. 
LK Sr 

Here SD = S(D). The estimates of the constants given by Harrison & Osterkamp 

[33] suggest that a will always be positive. 

The functions g1 and g2 in (7.13) are given by 

g1 (z) 1 + 4.96049 x 10-3 (1 + bz) + 9.27090 x 10-5 (1 + bzf 

+ 1.00021 x 10-6 (1 + bz) 3 + 6.53431 x 10-9 (1 + bz)4 

6.16150 X 10-3(1- tz) 1
/
2 - 1.10073 X 10-4 (1 + bz)(1- EZ)

1
/
2 

1.78085 X 10-6 (1 + bz) 2(1- tz) 1
/
2 + 4.10188 X 10-4(1- tz), 

g2(z) ,88 D{2.6035 X 10-3
- 4.65146 x 10-5 (1 + bz) 

7.52515 X 10-7 (1 + bz)2]S-l/2 + 5.85984 X 10-4 } 



7 .2. Linear instability analysis 92 

with 

So- SD 
E= 

So 

Both, o and E, are varying with respect of the depth variable, D. From Harrison 

and Swift [34] typical values for o and E are o = 1.4, E = 2.857 x 10-4 respectively. 

Through we let D to vary in what follows, we take these typical values as an approx­

imation of o and E for our numerical calculations. As the coefficients of 91 ( z) and 

92 ( z) are small numbers, we expect that this constraint will not affect the accuracy 

of the final results. 

We next develop a linearised analysis for the system (7.13)-(7.14), and so find a 

critical Rayleigh number for linear convection in the porous medium. 

7.2 Linear instability analysis 

To investigate the linear instability we neglect the nonlinear terms in (7.13), (7.14). 

We must, therefore, solve the system of equations: 

u·. t,t 0, 

as b.s + Rw, 

for z E (0, 1), with boundary conditions being 

w = 0, z = 0, 1, 

s = 0, z = 0, 

as 
az = -as, z = 1. 

(7.15) 

(7.16) 

Here a represents the growth rate due to introducing a time dependence relation, 

eut, similar to the third grade fluid linearized analysis. The linearity of (7.15) and 

(7.16) ensures the validity of this time dependence. 

In order to reduce system (7.15) to a one-dimensional eigenvalue problem, we 

first take the operation curl curl of equation (7.15h and using (7.15)2 we obtain 
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with 6ij being the Kronecker Delta symbol, so 

_ { 0 for i =I= j, 
6ij -

1 fori= j. 

We consider only the third component of the last equality, for i = 3 

where 

We now adopt a normal mode representation for s and w of form 

s(x, y, z) = S(z)h(x, y), 

w(x, y, z) = W(z)h(x, y), 

93 

(7.17) 

with S(z) and W(z) being z-dependent functions and h(x, y) is a planform which 

tiles the plane ( x, y) and satisfies the equation (see Christopherson [9]) 

with k being the wavenumber. 

Considering D = d/dz, z E (0, 1), x, y E IR2 and replacing the normal mode 

representations of s and w in (7.15)3 and (7.17), the system is reduced to 

aS, (7.18) 

where the boundary conditions are given by 

w = 0, z = 0,1 

s = 0, z = 0 (7.19) 

DS +aS = 0, z = 1. 

The eigenvalue problem (7.18)-(7.19) is solved by the compound matrix method (see 

Appendix B) and numerical results are reported and interpreted in Section 7.4. 
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7.3 Nonlinear stability analysis 

The method of energy is used to develop a nonlinear stability analysis. The idea is to 

find sufficient conditions such that all disturbances s decay to 0 as t ---+ oo. Different 

forms of the energy functional deliver different conditions for nonlinear stability to 

take place. We shall prove that the use of a generalised energy formula leads to 

a conditional nonlinear stability result, only. Therefore, the theory of generalised 

energy stability is very useful, because we can achieve suitable nonlinear stability 

thresholds by an appropriate choice of generalised energy. But the strongest result 

for nonlinear energy analysis is when it can provide global stability for all initial 

data, no matter how large are they going to grow. Due to the equation of state 

formula used here, we can improve the conditional result above, providing a global 

one. The result is very strong, as we do not have constraints for the initial data. At 

this point we must stress that a choice of a weighted energy is the key in providing 

an unconditional criterion for nonlinear stability. 

Moreover, the Rayleigh number provided by this analysis is almost identical with 

the linear Rayleigh number from the linear theory developed in the previous section. 

The difference between those two numbers is very small, so the boundaries for linear 

instability and nonlinear stability are almost the same. In this case virtually no 

subcritical stability may arise, so the stability analysis for our model is completed. 

7.3.1 Conditional nonlinear stability analysis 

The boundary initial value problem governing the evolution of the non-dimensional 

perturbation field is given by the dimensionless system 

u·. t,t 0, zE(O,l), (7.20) 

!:l.s + Rw, 
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where the associated boundary conditions are 

U3 = 0, Z = 0,1 

s = 0, z = 0 (7.21) 

OS 2 
- = -as - bs z = 1. 
{)z ' 

We now form the energy identities multiplying (7.20h by ui, (7.20)3 by s and 

integrating over the period cell V. After use of integration by parts we obtain 

llnW = R(gl (z)s w) + (g2(z)s2 w), (7.22) 

~dd llsll2 = R(sw) -IIVsW- a { s2 dA- b { s3 dA. (7.23) 
2 t lr lr 

Adding the equations (7.22) and (7.23) to develop a variational problem, the result-

ing energy identity is 

~~llsW 
2 dt 

Setting then 

I 

v 

N 

R(s w) + R(g1 (z)s w) - IIV sW- llnll2 

a [ s2 dA-b [ s3 dA + (g2(z)s2 w). 

( s w) + (gl ( z) s w)' 

11Vsll2 + lluW +a [ s2 
dA, 

-b [ s3 dA + (g2(z)s2 w), 

from (7.24) immediately follows 

1 d 2 N --llsll =RI-V+ · 
2 dt 

The first approach would be to consider an natural energy defined by 

(7.24) 

(7.25) 

(7.26) 

But, we note that the natural L2 energy theory is not sufficient for our analysis, 

due to the presence of the quadratic s2 part in the nonlinear term (g2s2, w), that 

is hard to be manipulate. Instead, an L 4 theory is developed, in order to achieve a 

nonlinear stability result. The idea is to generalise the natural energy formula, by 
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adding an extra term to control the nonlinearity. We stress that due to the nonlinear 

term N, we expect the nonlinear stability result to be a conditional one, dependent 

upon a threshold for the initial amplitudes. 

Let us consider the energy functional define as 

(7.27) 

where J-l is a positive constant that we shall select later. 

We now derive the auxiliary equations necessary for our analysis. We start by 

taking the curl curl of (7.20h and then the third component of this equation is 

multiplied by w and integrated over V, to obtain 

(7.28) 

where V7* = 821 8x2 + 821 8y2
. 

We next differentiate E and add the result to the combination >.x (7.28), with>. 

a positive coupling parameter to be chosen later. The result is 

dE 

dt 
1 d II 2 J-L d 2 2 2 2 dt s II + 4 dt II s II - >-II V7 w II 

+ >.R(gl (z)V1* s V1*w) + >.(g2 (z)V7* s2 V7*w). 

For the £ 4 norm, the second term in the RHS of (7.29), the derivation is 

~i:t(s4 )dV=J-L fvs
3

stdV 

J-L i s3
( -uis,i + Rw + ~s) dV 

-~J-L i ui(s4 ),idV + RJ-L(ws3
) + J-L i s3~sdV 

(7.29) 

+~J-L i ui,is
4 

dV + ~J-l l uinis
4 

dA + RJ-L(W s3
) + J.L i s3 ~s dV 

RJ-L(W s3
) + J.L{- i V7 s3 V7 s dV + l s3 

Sz dA} 

RJ-L(w s3
) -

3
: i V7 s2 V7 s2 dV + J-L l s3

( -as- bs2
) dA 

RJ-L(w s3
)-

3
:IIV7s2ll- aJ-L l s4 dA- bJ-L l s5 dA. (7.30) 

Recalling (7.24) and considering the final result of the above derivation, (7.30), the 
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energy identity (7.29) becomes, 

dE 

dt 
R(8w) + R(g1(z)8w) -[[V'8W -[[u[[ 2 

- a l 82 dA - b l 83 dA + (g2 ( z) 82 w) 

+ RJ-t(w83
)-

3
f-L[[V'82 [[-aJ-t { 84 dA-bJ-t { 85 dA 
4 lr lr 

- .\[[VwW + .\R(gi(z)\7*8 V'*w) + .\((g2 (z)V'*82 V'*w)). 
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It is convenient to use the notations of (7.25)1-(7.25)2 and rewrite the last identity 

as 

Define now 

dE 

dt 
-V(1- RI)- b l 8 3 dA + (g2 (z)8

2 w) + RJ-t(w 3
3

) 

-
3

f-t [[V' 8 2
[[ - aJ-t { 8 4 dA- bf-t { 85 dA 

4 lr lr 
- .\[[V'w[[ 2 + .\R(g1 (z)V'* 8 V'*w) + .\(g2 (z)V'* 8 2 V'*w). (7.31) 

1 I 
-=max-
RE 1i V' 

(7.32) 

where 1i is the space of admissible functions over which the maximum is sought 

8 E W1
•
2 (V), 8 = 0 at z = 0} 

ui and 8 satisfying a plane tiling periodic planform in x and y. 

We may derive then: 

-V(1- RI) 

From (7.31) one may see that 

We take (RE- R)/ RE = m, and assume that R < RE; hence m > 0. 
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For clarity, we denote every term of the RHS of (7.33) by T1 to T10 . The first 

term on the right is associated with the L2 theory, whereas T2 , T5, n, T1 and Ts 

are evidently negative, so we try to dominate the remaining terms by these negative 

ones. We may do this with the help of the positive parameters JJ and .\. The idea 

is to estimate the nonlinearities by V Eq, with q > 0. 

Note that the second and the seventh term in (7.33) can be bounded in terms of 

D(8) and D(82 ) as follows below. First, we handle T2 by using the Cauchy-Schwarz 

inequality, a boundary estimate for 8
2 (A.0.4) and the Poincare inequality (A.0.2) 

for JJ8W and JJ82W, to get 

T2 = b l 8
3 dA < b (l 8

4 dA) 112 (l 8
2 dA) 112 

< 2 b JJ8WI2JJ82JJI/2 Dl/4(8)Dl/4(82) 

< i bDI/2(8)Dl/2(82). 
1f 

We use now the arithmetic geometric mean inequality which gives rise to a positive 

constant chosen to be m 

For T7 we use the fact that 8 = 0 on z = 0 to split the 8 5 term and then employ 

the Cauchy-Schwarz inequality twice. Furthermore, we observe that JJ8;JJ:::; D112(82) 

and use the Sobolev inequality (A.0.3) for JJ84JJ, to obtain 

T7 = JJb l 8
5 

dA ~JJb i 8
3

8; dV 

< ~JJb( { 8 6 dA) 112 ( { (8;)2 dA) 112 

2 lr lr 
< ~JJb JJ84

li 112 JI8
2

ll 112 li8;JJ 

< ~JJb JJ84JJ1f2JJ82JJI/2 DI/2 ( 82) 
2 

< ~JJb !Dl/2 ( 82) 11 82111/2 Dl/2 ( 82) 
2 
5J2 El/4 2 

< -JJb! ~14 D(8 ). 
2 jJ 

Next, both terms T9 and T10 are handled by the Cauchy-Schwarz inequality ap­

plied twice and the arithmetic geometric mean inequality, with the positive constant 
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arising upon calculation chosen to be >../3, i.e. 

T9 = >..R(g1 (z)V* s V*w) < >..RgrnaxiiV* sii IIV*wll 

< >..R 9rnax D1f2(s )D1f2( w) 

< 
3).. ).. 
4R2(grnax)2 D(s) + 3D(w), 

respectively, 

Tw = >..(g2(z)V* s2 V*w) < >..g;naxiiV* S2IIIIV*wll 

< >..g;nax D1/2 ( s2)D1/2 ( W) 
3).. ).. 

< 4(g;nax)2 D(s2) + 3D(w), 

where we have used that IIV*sll:::; IIVsll, IIV*s211:::; 11Vs211 and IIV*wll:::; IIVwll. 

It remains to estimate the third and the fourth term. We employ the Cauchy 

inequality, result (A.0.6), the Sobolev inequality and the fact that D 112 (s) :::; 7)1/ 2 . 

Thus, for T3 the result is 

'T' ( ( ) 
2 ) < 92max II s2llll w II 13 = 92 z s w 

< 9;naxiis2Wf2 lls2Wf27J1/2 

< 9;nax1n1f2(s) lls2Wf27J1/2 
E1/4 

< 9max1n1f2(s) J2--7J1f2 
2 ~1/4 

E1/4 'Y J2gmax 
< 9max'Y J2--1J = . 2 E1f47J. 

2 ~1~ ~1~ 

Finally, for T4 , the Cauchy inequality, the Poincare inequality, the Sobolev in­

equality, (A.0.5) and the arithmetic geometric mean inequality lead to 

T4 = R~(s3 w) < R~lls3 il llwll 

< R~lls4 W12 IIs2 W12 IIwll 

< R~lls4W/211s2W/2 ~D1f2(w) 
7r 

< R~'YD1f2(s2) iis2W/2 ~D1f2(w) 
7r 

< 2R~'Y D1f2(s2) D1f2(w) J2E1/4 
7r ~1/4 

< 
6R2 ~3/2"/2 E1/2 2 ).. 

).. 2 D(s ) + -D(w). 
7r 3 
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We now insert all these estimations in inequality (7.33), to conclude that 

dE 

dt 
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The D( w) terms are reduced by suitable choice of the positive constants arising from 

the arithmetic geometric mean inequalities applied. 

Recalling the definition of'D, one can observe that D(s)::; V, and upon grouping 

the remaining terms in a convenient way it follows 

dE 
-< dt -

(7.34) 

To this end, we choose the positive constants A and J1 such that the coefficients of 

V, respectively D(s2), to become m/4, respectively p/2. Consequently, 

3m_ 3A R2( max)2 = m 
4 4 91 4' 

and 

The values for A and 11 are founded to be 

respectively 
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Substituting). and J1 in (7.34), the result is 

dE 
dt 
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For an exponential decay of the energy, the requirement is that the new coefficients 

of V and D(s2 ), those in square brackets, be positive. 

We shall impose first that 

hence 
llffi4 

E ( 0) < ----:-::---;--t-"'--:------'-:---:-
2w ~-4 (g~IUX)-4 • 

For the coefficient of D(s2
) the condition is 

We split the last condition in two, to have 

(i) 

(ii) 

which gives us a second and third threshold for the energy, precisely 

( i) 

(ii) 

With these considerations, it easily follows that 

(7.35) 

We may then use a continuation argument and the Poincare's inequality on llsW, 
respectively lls2 ll 2 (see A.0.2, ii), to deduce that 

dE - < -N E(t) 
dt - ' 

(7.36) 
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for a positive constant N. Integrating (7.36) one obtains 

E(t) :S e-Nt E(O), 

showing that the energy decays exponentially to 0 as t --+ oo. This provides us with 

a nonlinear stability criterion. 

The important remark is that for this nonlinear result to hold, it is necessary 

that the next two restrictions be imposed 

1. R < RE, 

2. E(O) <A, where 

The R < RE condition determines the nonlinear critical Rayleigh number, whereas 

E(O) < A is a limitation on the size of the initial amplitudes. Nevertheless, we have 

achieved here a conditional nonlinear stability result. 

From the definition of E, provided both conditions above hold, we may see that 

also llsll and lls2 ll decay to 0 as t--+ oo. Moreover, from (7.22), using the fact that 

it is obvious that llull--+ 0 when t--+ oo, as well. 

Though we do not calculate the critical nonlinear Rayleigh number here, we 

expect the value of RaE to be very close to that of RaL as the system corresponding 

to the nonlinear case is 

2 (D2
- k2 )W + R[g1 (z) + 1] k2S 

2 (D2
- k2)S + R [g1 (z) + 1] W 

0, 

0. (7.37) 

One may see that, provided the values of g1(z) are very close to 1, the solutions of the 

nonlinear system (7.37) are almost the same as the solutions for the (7.18) system 

of the linearised analysis. In conclusion, the two critical Rayleigh numbers are very 

close and no subcritical instability will arise provided R < RE and E(O) < A. 

Therefore, the stability analysis for thawing subsea permafrost model is completed. 
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7.3.2 Unconditional nonlinear stability analysis 

We have first developed a variational energy stability criterion which effectively 

involved a generalised energy formula and this has led to a conditional nonlinear 

stability result. We have shown that for Rayleigh numbers which are smaller than 

the critical Rayleigh number obtained from a nonlinear analysis the solutions are 

stable, provided the initial perturbation is sufficiently small. We seek in this section 

a stronger result of nonlinear stability, an unconditional one, where the solution is 

stable no matter how large the initial amplitude is. 

To achieve this we choose an appropriate form for the energy -a weighted energy­

in order to remove the nonlinear terms that complicate the analysis. The energy 

functional employs in this case two parameters, to control both nonlinear terms 

which complicate the nonlinear analysis. 

Note. If we proceed directly from (7.11), 

then we do not know S and the equivalent term in a nonlinear analysis may become 

infinite. To overcome this we argue differently and consider only the linear term of 

the series above, namely 

(7.38) 

where S is a salinity between S and S + s. Using now (7.38) we find that the 

perturbation (ui, s,p) satisfies 

and the nonlinear system becomes 

U·. t,t 0, (7.39) 

~s+Rw, 
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for z E (0, 1), where C = c/38 D, and the functions G1 and G2 are given by 

G1 (z) 1 + 4.96049 x 10-3 (1 + c5z) + 9.27090 x 10-5 (1 + c5z) 2 

+ 1.00021 x 10-6 (1 + c5z) 3 + 6.53431 x 10-9 (1 + c5z) 4 

+ 4.10188 x 10-4 (1 - ~:z), 

G2 (z) -1.04148 x 10-2
- 1.86059 x 10-4 (1 + c5z) 

3.01021 x 10-6 (1 + c5z) 2
. 
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We now form the main energy identities. Multiply (7.39)1 by ui and integrate 

over the period cell V to obtain 

From the salt diffusion equation (7.39)3, multiplying by 8 and integrating over V it 

follows 

~dd 118W = R(8w)- D(8)- al 82 dA- b1 83 dA. 
2 t r r 

The result of adding the last two equations is 

~~118W 
2 dt 

R [ (8 w) + (G1 (z)8 w) + (G2(z)S1/28 w) ]- D(8) - lluW 

a [ 8
2 dA - b [ 8

3 dA + C ( 8 2 w). (7.41) 

At this point we mention that if we repeat the process involving the use of a 

generalised energy formula, an L 4 form instead of a natural £ 2 one, the nonlinear 

stability result is still a conditional one. Due to the density formula stated in (7.1), 

we believe that we can improve the conditional result above, providing a global one. 

Crucial in the proof ahead is a result stated in Galdi et al. [26]. They have 

delivered an unconditional nonlinear stability result for a density formula linear in 

S. The idea in their work was to remove the cubic term from (7.41), -b fr 8
3 dA, 

by using the following inequality 

(7.42) 

which is true for z = 1 and 
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The equality above follows from the nonlinear boundary condition, in these steps 

8 8z 
2 b 3 2 b 3 Sv b 2 Sv b 2 -a 8 - 8 = -a 8 - 8 + --- 8 - --- 8 

s s 
( Sv ) 2 2 Sv ) 2 2 Sv ) - a----=-b 8 -b8 (---+8 =-0:8 -b8 (---=-+8 s s s 

Taking into account that we have assumed 8 + S = S > 0 at z = D in dimensional 

variables, it turns out that non-dimensionalising gives S8 + Sv = S(8 + Sv/ S) > 0 

and finally we obtain (7.42). 

Using now (7.42) in (7.41), it immediately follows that 

~!118W < R[(8w) + (Gl(z)8w) + (G2(z)S1/28w)]- D(8) -llull2 

o: l 82 dA + C(82 w), 

or if we take into account the following notations 

Ia (8w) + (G1(z)8w) + (G2{z)S1128w), 

Va D(8) + lluW + o: l 82 dA, 

Na C(82 w), 

then inequality {7.43) may be written as 

{7.43) 

Although a device such as {7.42) removes the problem for the first nonlinear 

term, working with the natural energy, the Galdi et al. [26] technique does not work 

for our analysis because we run into difficulty with the other nonlinear term C(82 w) 

present in Na. 

To overcome the difficulty posed by the nonlinear terms we make use of a weighted 

energy. Payne & Straughan [50] used a weighted energy of form 

i (J-L- 2z) 8
2 dx, J-L > 2, 

to remove the 8
2 term in their analysis of penetrative convection. But a slightly 

different approach is considered here because of the cubic term from the nonlinear 

boundary condition. We take 

p = J-L- AZ, 
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where 11 > A > 0 are positive constants which we choose later. Note that jl > 0, as 

z E (0, 1). 

We now define the weighted energy by 

E(t) = ~({ts s). (7.45) 

The energy identity is formed multiplying (7.20)3 by jls and integrating over V to 

obtain 

~dd { {t(z)s2dV 
2 t lv -~ { ui{t(z)(s2),i dV + R { w{t(z)s dV 

2 lv lv 
+ l !J.s s{t(z) dV. 

For the first term in the RHS of (7.46), the calculations are 

Moreover, as ui,i = 0 and {t = 11- .\z, then 

1( A 2 .A[ 2 -2 Jv Uil1(z)(s ),i dV = - 2 Jv ws dV. 

The third term in (7.46) is 

l !J.s s{t(z) dV -1 s ·s .r, dV -1 s ·sri · dV + 1 s sil(z) dA ,t ,'l.r' ,t t-"','L z ("-"' 
v v r 

(7.46) 

(7.47) 

-l ftl\7 sl2 
dV + ~ l (s2

),z dV + l (s Sz)(l1- .Az)r(z=l) dA 

- r ftl\7 sl 2 dV + ~ r s2 dA + r (s Sz)(l1- >.) dA, lv 2 lr lr 
or employing the (7.42) estimation for the boundary integral, it follows that 

l !J.s s{t(z) dV < -l fll\7sl 2 
dV + ~ l s2 

dA + l ( -as
2
)(11- >.) dA 

< -({t l\7sl 2
)- [-~ + a(11- >.)] { s2 dA. (7.48) 

2 lr 
Upon using (7.47) and (7.48) in (7.46), we conclude that 

1 d (A ) -- 11s s 
2 dt 

(7.49) 
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Thus, provided (7.40) as well, the final energy inequality is 

dE 
dt 
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(7.50) 

We may now remove the nonlinear term ( s2
, w) requiring that its coefficient be zero, 

hence 
A 

C - - = 0 {::=:} A = 2 C. 
2 

Since we aim for a nonlinear stability result, we require the coefficient of the bound­

ary term, - fr s2 dA, to be a positive number, B. This implies 

A 1 
B = -- + a (Jl - A) > 0 ~ Jl > A (- + 1) ( > A). 

2 2a 

With these considerations, (7.50) becomes 

where 

dE A A A 

-<RI-'D+RT 
dt - ' 

i = (s jlw) + (G1 (z)s w), 

i> = lluW + (fll\7sl 2
) + B 1 s2 dA, 

T = (G2(z)S1
/
2 s w). 

(7.51) 

The S term, from T, may be bounded above by the maximum salinity on the 

ocean bed, which is found to be SA = 0.28856 (corresponding to a solubility of 

35.7 %o, as is stated in [41]). If we denote 

M = (SA) 112 max IG2(z)l, 
zE(O,l) 

then employing the Cauchy-Schwarz and the arithmetic-geometric mean inequalities, 

we may deduce the bound for the T term: 

Thus, (7.51) is reduced to 
dE 
-<RI-'D 
dt - ' 

(7.52) 
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with 

M M 
I= (s {tw) + (G1(z)sw) + 2llsW + 2llwW, 

D = lluW + (P, l\7sl 2
) + B [ s2 dA. 

From (7.52) we derive 

dE 1 I 1 I 
- = -RD(-- -) < -RD(-- max-) 
dt R D - R 1i D ' 

where 1l is the space of admissible functions over which the maximum is sought, the 

same as stated in the previous analysis. We now define 

1 I 
-=max-, 
Rw 1i D 

then 
dE 1 1 - < -RD(-- -). 
dt - R Rw 

Providing that 

R<Rw, 

then R- 1 - Rw -l = d > 0, and from (7.54) we obtain 

dE 
- < -dRD. dt -

(7.53) 

(7.54) 

(7.55) 

With the aid of Poincare's inequality, there exists a constant E such that D ;::: E E, 

hence 

Upon integration this yields 

dE - < -dERE. 
dt -

What we have established is that provided R < Rw, then global nonlinear 

stability is achieved. The criterion of importance is then (7.55), and everything is 

reduced to solving the maximum problem (7.53). 

Remark. We shall prove in what follows the existence of a maximising solution 

to (7.53). 
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Further ahead, we need two inequalities 

(7.57) 

and 

(7.58) 

where 
fv zl\7 sl 2dV 

U = max . 
zE(O,l) fv l\7 sl 2dV 

The proof of the first one is obvious, as fl = J1- ,.\ z; a proof for the second is now 

given. 

In order to prove (7.58), if we seek an inequality of form 

then we obtain step by step 

or 

D(s) 

(1- (ct)J-L)D(s) 

1- (ct)J-L 
(ct) 

< (ct)(fll\7sl 2
) = (ct)J-LD(s)- (ct)..\ i zl\7sl 2dV 

< -(ct)..\ i zl\7 sl 2dV 

fv zl\7 sl 2dV 
< -,.\ fv l\7 sl 2dV , for any z E (0, 1) 

( ct) J1 - 1 J v z I \7 s 12 dV 
(ct) > A fv l\7 sl2dV ' for any z E (0, 1) 

So, we can conclude that 

If we consider 

then 

and 

(ct)J-L- 1 

(ct) 
fv zl\7 sl 2dV 

A max . 
zE(O,l) fv l\7 sl 2dV 

(ct)J-L- 1 =.XU 
(ct) ' 

1 
(ct) = J1 _.XU 
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For z E (0, 1), then 
fv ziV' 81 2dV 

U = max J, IV' l2dV E (0, 1). 
zE(O,l) V 8 

Moreover, as p, > A, then p, - >.U > 0. Eventually 

1 
(ct) = 1-L _ >.U > 0. 

To prove existence of the maximising solution to (7.53), we first prove that 1l 

8 E W 1
'
2 (V), 8 = 0 at z == 0} 

where ui and 8 satisfying a plane tiling periodic planform in x and y, is a Hilbert 

space with respect of the norm generated by V. As 1l is a topological product of two 

complete spaces, it is therefore itself complete with respect to the norm endowed 

by V. The completeness of the space appropriate to u follows from, for example, 

Temam [68], whereas the space appropriate to 8 is a subspace of W 1,2 (V) endowed 

with a norm equivalent to the standard norm, 118W + D(8), due to the fact that in 

1l we impose only one boundary condition on 8. 

In order to prove the last statement we first observe that upon using the Poincare 

inequality on 118W we obtain 

118W + D(8) ::; cD(8) + D(8) = (c + 1)D(8), 

for a positive constant c. We recall now (7.58) in the last estimation, thus 

and moreover, 

118W + D(8) S c + 1 [ (P, IV'812
) + B { 82 dA], 

p,- >.U lr 
If we denote C1 = (c + 1)/(p,- >.U) > 0 then 

118W + D(8) ::; C1[ (P, IV'812
) + B l 82 dA]. 

On the other hand, using, respectively, inequality (7.58), the boundary estimation 

for 11811 2 , (A.0.4), the Cauchy-Schwarz inequality and the arithmetic-geometric mean 
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inequality we derive 

(P, 1Vsl2) + B h s2 dA < p,D(s) + 2BIIsiiD112(s), 

Finally, with C2 = p, + B > 0 

< p, [D(s) + llsWJ + B [D(s) + llsWJ, 

< (p, + B)[D(s) + llsWJ. 

[ (P, 1Vsl2) + B l s2 dA] S C2[llsW + D(s)]. 

Thus, (P, 1Vsl2) + B Ir s2 dAis equivalent to the standard W 1
•
2(V) norm. 
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It follows from Poincare's inequality that I/'D is bounded above by a constant, 

/3. Therefore, there exist a maximising sequence { Un, sn} such that 

This sequence may be chosen so that 'D(un, sn) = 1 and hence from this we deduce 

the existence of a subsequence, which will be denoted again by { Un, sn}, such that 

Sn ------t So, weakly in W 1
•
2 (V), 

Sn ------t so, strongly in L2 (V), 

for some (u0 , s0 ) E 1-l. Therefore 

II(wn, sn)- 'I(wo, so) I < I(G(z) So (wn- wo))l + I(G(z) Wn (sn- so)) I 

M 2 2 Ml( 2 2 + 2l(sn- so)l + 2 wn- wo)l 

(7.59) 

(7.60) 

with G(z) = G1 (z) + P,(z). Let Gm be the maximum of G(z) when z E (0, 1) and 

further we derive 

II(wn, sn)- 'I(wo, so) I < (G(z) so (wn- wo))l + Gm llwnllllsn- soli 
M M 

+ 2l(s~- s6)1 + 2l(w~- w6)1 

The first and the last terms converge to zero thanks to (7.59), whereas the middle 

ones tend to zero as well, due to (7.60). Hence, 'I(w0 , s0 ) = /3, and by a simple 
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argument one also shows that D(u0 , s0 ) 

to (7.53) is therefore established. 
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1. The existence of a maximising solution 

Since 1l is restricted to those functions that are divergence free, we must add into 

the maximum problem the constraint ui,i = 0 multiplied by a Lagrange multiplier, 

p(x), Uvv(x)ui,idx = 0). 

The Euler Lagrange equations for the maximum problem (7.53) are, 

Rw G(z, f-L, ,\) w + Rw M s + 2jl6.s (7.61) 

Rw G(z, f-L, ,\)ski+ Rw M w ki + P,i 2 ui 

where p is a Lagrange multiplier and 

G(z, f-L, ,\) = G1 (z) + fl(z) = G1 (z) + f-L- ,\ z. 

We take the third component of (curl curl)(7.61)2 and decompose into normal 

modes 

s = S(z)h(x, y), w = W(z)h(x, y), 

and equations (7.61) now become 

Rw G(z, f-L, ,\) W + Rw M S + 2jl (D2
- e)S 2,\ DS, (7.62) 

where D = d/ dz and k is the wavenumber. System (7.62) is solved subject to the 

boundary conditions 

W(O) S(O) = 0 

W(1) (f-L- -\)DS(1) + B S(1) = 0 

This eigenvalue problem is solved numerically by the compound matrix method, 

with the optimal Rayleigh number of global stability, Raw, found by choosing f-L 

such that 

Raw= R'fv =max minR2 (f-L,k,B). 
JL k 

The max/min calculations were carried out using the Golden Section Search 

algorithm. The numerical results and discussion, with values for Raw and critical 

values of kw are given in Section 5. As Raw is dependent on B we repeat the 

algorithm for different values of parameter B, from 0 to 108 . 
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7.4 Numerical results and discussion 

In the context of thawing subsea permafrost, the two important dimensionless num­

bers are the critical Rayleigh number, Ra and the wavenumber k. In the following 

tables we denote the critical values of the Rayleigh numbers in the linear and nonlin­

ear case as RaL, Raw respectively. We next compare the behaviour of our numerical 

results, the critical wavenumbers and the critical Rayleigh numbers, in the linear 

theory and the energy method. 

As a and B vary in terms of the depth D, we can find the suitable convection 

values of Ra which then determines the values of D at which brine convection 

develops. Table 1 presents the values for the critical Rayleigh number and the 

critical wavenumber for different values of a. Figure 3 and Figure 4 plot the critical 

Rayleigh number RaL and the wavenumber kL against a, with a varying from 0 

to 100. Table 2 presents the critical wavenumbers kL, kw, and critical Rayleigh 

numbers RaL, Raw of linear and energy theory (unconditional nonlinear stability) 

for different values of a, respectively B. 

ki II II a I RaL 

0 27.0083 5.41038 50 38.6317 9.67879 

1 30.1729 6.75016 70 38.8325 9.73196 

2 31.9786 7.46922 90 38.9474 9.76197 

3 33.1728 7.92148 102 38.9882 9.77255 

5 34.6725 8.45874 103 39.3301 9.85976 

10 36.4326 9.03958 104 39.3655 9.86862 

15 37.2309 9.28334 105 39.3690 9.86951 

20 37.6875 9.41688 106 39.3694 9.86960 

30 38.1906 9.55885 107 39.3694 9.86961 

40 38.4619 9.63314 108 39.3694 9.86961 

Table 1: Numerical calculations for critical values of the linear critical Rayleigh 

number RaL and the linear critical wavenumber kL against a, with 6 = 1.4 and 

E = 2.857 X 10-4 
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Figure 7.3: Critical values of the linear wavenumber kL against radiation constant 

a E (0, 100), with 15 = 1.4 and E = 2.857 x 10-4 
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Figure 7.4: Critical values of the linear Rayleigh number RaL against radiation 

constant a E (0, 100), with 15 = 1.4 and E = 2.857 x 10-4 
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I a I RaL I ki Ill B I Raw I k?v I Jlc 

1 o 1 27.0083 1 5.41038 111 o 1 26.838044 1 5.41036 1 1.009673 

1 30.1729 6.75016 1 30.142396 6.89454 0.8602851 

5 34.6725 8.45874 5 34.647985 8.59806 0.8637591 

10 36.4326 9.03958 10 36.307591 9.10897 0.9008954 

20 37.6875 9.41688 20 37.489249 9.44243 0.9384531 

30 38.1906 9.55885 30 37.968707 9.57156 0.9566910 

50 38.6317 9.67879 50 38.394222 9.68348 0.9745264 

70 38.8326 9.73196 70 38.590031 9.73421 0.9833017 

90 38.9474 9.76197 90 38.702707 9.76318 0.9885242 

100 38.9882 9.77255 100 38.742836 9.77346 0.9904157 

200 39.1756 9.82067 200 38.928097 9.82070 0.9993694 

210 39.1847 9.82298 210 38.937117 9.82299 0.9998147 

220 39.1929 9.82509 220 38.945333 9.82507 1.000221 

230 39.2005 9.82701 230 38.952848 9.82698 1.000594 

240 39.2074 9.82977 240 38.959748 9.82873 1.000937 

250 39.2138 9.83039 250 38.966106 9.83034 1.001253 

400 39.2717 9.84504 400 39.023744 9.84493 1.004139 

600 39.3041 9.85321 600 39.056095 9.85311 1.005776 

800 39.3203 9.85730 800 39.072360 9.85721 1.006604 

103 39.3301 9.85976 103 39.082149 9.85968 1.007103 

104 39.3655 9.86862 104 39.117569 9.86861 1.008920 

105 39.3690 9.86951 105 39.121127 9.86951 1.009103 

106 39.3694 9.86960 106 39.121483 9.86960 1.009121 

107 39.3694 9.86961 107 39.121519 9.86960 1.009123 

108 39.3694 9.86961 108 39.121522 9.86961 1.009123 

Table 2: Numerical calculations for critical values of the Rayleigh numbers RaL, 

Raw and the wavenumbers ki, k?v against a, B respectively, with c5 = 1.4, E = 
2.857 X 10-4

' Jllower = 2.331636 X 10-4 and Jlupper = 2. The Jlc denote the optimal 

coupling parameter Jl· 
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Linear analysis. From (7.15) and (7.16) is evident that the Rayleigh number 

will depend on the wavenumber and the parameter a from the boundary condition 

(7.16)3, soRa= Ra(k, a). Therefore, this parameter a is important in our analysis. 

Physically, a may be interpreted as the strength of how much salt is released from 

the permafrost and flows into the thawed layer across the phase change interface. 

Table 1 presents the critical Rayleigh numbers and wavenumbers for different 

values of this constant a. All these values are calculated employing a = 0 and a 

minimisation technique over the wavenumbers. As we can observe from this table, 

both the Rayleigh number and the wavenumber, are increasing quickly for small 

values of a and slowly as values of a increase. 

Figures 7.3-7.4 complete the analysis for the linear theory plotting the criti­

cal Rayleigh number against the release rate constant a, respectively, the critical 

wavenumber against the release rate constant a. The graphs reflect the above ob­

servation. As we can see, the Rayleigh numbers graph is going asymptotically to 

39.3694 as a is growing, whereas the wavenumber graph has the same behaviour and 

is asymptotic to 3.141593, close to the value of 1r. 

Nonlinear analysis. Using a nonlinear energy stability method, we obtained a 

critical Rayleigh number for the nonlinear stability, which is very close to that of 

linear theory. In order to control the nonlinear term and provide a global nonlinear 

stability result, we have introduced two coupling parameters, A and J..L, employing a 

weighted energy. As it turns out from Section 4, the A parameter is fixed, leaving us 

to work out only the coupling parameter J..L, for which we find an optimal value, f.Lc· 

The results shown in Table 2 demonstrate that the optimal value for the coupling 

parameter is close to 1. 

The comparison of nonlinear theory against the linear one is very good. The 

data presented in Table 2 shows that the linear theory provides predictions very 

close to those of the energy method. Generally speaking, the difference between 

both methods is of 10-1 order for the Rayleigh number and of w- 1-10-2 order for 

the wavenumber. These results suggest that the linear theory has captured the 

physics of the onset of convection in the porous medium. 
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As 

and 

B 
A -- + a(J-L- A) 
2 

K1ITol SD 
a= a+ Lr;, Sr' 
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where A = 2.331636 x 10-4
, we can observe that the difference between B and a 

is more or less the value of K 1 IT0 ISD/ Lr;,Sr. For a fixed depth, D = 20 m, the 

experimental results of Harrison and Swift, [34], state that the value of this quantity 

is varying between 29 and 290, for different values of r;,. This dependence of B and 

a is reflected roughly in Table 2, as for values of a and B between 1 and 210, the 

results for the wavenumber values are not those expected. However, as the values 

are greater than 220, the situation is stabilised and it reflects what we have stated 

above about the comparison of nonlinear theory against the linear one. 

Concluding remark. For the thawing subsea permafrost model values are ob­

tained for the critical Rayleigh number, for both linear and nonlinear stability. 

From the mathematical point of view the analysis reduces to studying convection in 

a porous medium with a nonlinear boundary condition. 

The critical nonlinear value is found to be close to that of linear theory, and 
-

therefore no subcritical instability may arise. We must stress that due to the en-

ergy formula which one may use for the nonlinear stability analysis, the nonlinear 

stability result may be a conditional one, dependent upon a threshold for the initial 

amplitudes, for a generalised energy, whereas for an weighted energy, the nonlinear 

critical Rayleigh number guarantees unconditional nonlinear stability. 



Concluding remarks 

In the work presented in Part I we have seen how the energy method works for 

different fluids of grade n, precisely for n = 1, 2, 3. However, nothing is known 

regarding nonlinear stability results as one increases the grade n. For example, the 

stress tensor of the fourth grade fluid is of the form: 

T = pi+ !-lA1 + a1A2 + a2A~ + fJ1A3 + fJ2(A1A2 + A2AI) + f33(tr A2) A1 

+ 1'1 A4 + 'Y2(A3A1 + A1A3) + 'Y3A~ + 'Y4(A2A~ + A~A2) 

+ 'Ys(tr A2)A2 + 'Y6(tr A2) A~+ [1'7 tr A3 + 'Ys tr(A2A1)] A1. 

To complete a nonlinear stability analysis for this fluid, one certainly needs spe­

cific information on /-l, a 1, a 2, /31, /32, (33 , 'YI, ')'2, ... 'Ys - constants or temperature­

dependent material moduli. Unfortunately, at the time of writing experimental work 

has not provided any helpful constraints on these material moduli. Also, a thermo­

dynamic development of higher grade fluids is not available. Therefore, there are 

still questions to be answered regarding stability results for fluids of grade n, with 

n > 3. 

On the other hand, work on viscoelastic fluids has employed the main assumption 

of a temperature-dependent viscosity, ignoring the temperature influence on the 

diffusivity or all other relevant physical quantities. Even if the present work looks 

restrictive from this point of view, it is useful to remark that for most fluids the 

dependence on temperature of the viscosity is much more significant than other 

physical quantities. Moreover, the results presented here may later help one to 

complete a more general nonlinear stability analysis of the Benard problem for fluids 

of grade n when most of the physical quantities are temperature dependent. 
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Appendix A 

Useful inequalities 

Throughout we have refered to various inequalities which are defined below: 

1. Cauchy-Schwarz inequality. 

(A.0.1) 

where a, bE L 2 (V), with all notations defined in the introductory part. 

2. Poincare inequality. 

(i) For arbitrary functions s regular in the three-dimensional region n, vanishing 

on the boundary and such that \l s E L 2 
( n), one has 

(A.0.2) 

the positive constant )q depending on the geometric form of the domain n. 

(ii) One also has 

11 

(sx) 2 
dx ~ A1 11 

s2 
dx, 

for arbitrary regular functions s E C(O, 1) with sx E £ 2 (0, 1) and either s(O) = 0 or 

s(l) = 0. 
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3. Sobolev inequality. 

For a regular functions on V (V defined in the introductory part of this thesis), 

which vanishes at z = 0, 

with 
16 

1,4 = 23 (1 + M1r + 1/4 1r
2 (a2 + M 2)) 

aJr 

(A.0.3) 

where M = maxA lxil and a= minr xini, A being the cross section of the periodic 

cell, with the boundary r A· Here n denotes the unit outward normal vector to r A 

(cf. Galdi et al. [26], p.101). 

4. A boundary estimation for s2 . 

For s E W 1•2 (V) a function that vanishes on z = 0 

(A.0.4) 

where r is the boundary of the periodic cell v' lying in the z = 1 plane. 

To see that (A.0.4) holds for s = 0 at z = 0, note that 

1
1 as 

S 
2 

(X, y, 1) = 2 O S a z dz. 

Integrating over V and using the Cauchy-Schwarz inequality, leads to (A.0.4) ( cf. 

Galdi et al. [26], p.99). 

The next three inequalities are strictly related to the analyses and notation of 

this thesis. They are called in the conditional nonlinear stability analysis for the 

thawing subsea permafrost model, Chapter 7, Subsection 7.3.1. 

5. Useful inequality for II s2 ll· 
For an arbitrary functions E L 4(V), with s = 0 for z = 0, one may get 

El/4 
lls211 ::; p,l/4 V2, 

where the generalised energy function, E(t), is defined by 

with p, a positive parameter. 

(A.0.5) 
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6. Useful inequality for llwW12
. 

One has 

llwWI2 :::; vl/4' 

where w = u3 and V = lluW + IIV sW +a fr s2 dA. 

7. Inequality for D 112 (s). 

One can obtain 
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(A.0.6) 

(A.0.7) 

since V = llull2 +D(s) +a fr s2 dA, with D(s) = IIVsW being the Dirichlet integral 

over V. 
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The compound matrix method 

Before presenting the method used throughout for the numerical calculations, we 

stress that the number of compound matrix equations are 2nCn where 2n is the order 

of the original differential equation system. For thawing subsea permafrost the initial 

system is of order 4, whereas most of the systems to be solved in the stability study 

for viscoelastic fluids are of order 6. Rather than describe the method to solve the 

system (1.14) for a Navier-Stokes fluid (20 equations in the compound matrix), we 

prefer to select the equations (7.18) from Part B (only 6 equations in the compound 

matrix). For all the systems from the first part, the method presented below still 

works, though the computation is more laborious due to the need to calculate and 

then numerically integrate 20 equations. 

Let us consider now the equations (7.18), i.e. 

(D2
- k2 )W + Rg1(z)k 2S 0, 

(D2
- k2 )S + RW CJS, 

with the boundary conditions given by 

(BC) W=O, z = 0,1 

(BC)o S= 0, z=O 

(BCh DS+aS = 0, z = 1. 

We now approximate the solution to the system above using the compound matrix 

method (cf. Straughan & Walker, [67]). To understand the necessity of using the 

compound matrix method we first employ the shooting method. 
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We introduce the vector 

v = (W wl s sl)r 
' ' ' 

(B.0.1) 

and replace the boundary conditions (7.19) at z = 0 on W, S by 

W
1

(0) = 1, 5
1

(0) = 0 and W
1

(0) = 0, 5
1

(0) = 1. (B.0.2) 

( 
I I )T ( I I )T . Then let V1 = W1 , W1 , 5 1,51 and V2 = W2 , W2 , 52 ,52 be the mdependent 

solutions for the initial values (W(O), WI (0), S(O), Sl (0)) = (0, 1, 0, 0), respectively 

(W(O), WI (0), S(O), 5
1 

(0)) = (0, 0, 0, 1). It follows that the final solution, V, is a 

linear combination of these two solutions 

aW~ + ,BW~ wl 

aS1 + ,BS2 S 

aS~+ ,Bs; 5
1 

We impose now the correct boundary condition at z = 1 and this requires 

W(1) = 0, 

5
1 

(1) + aS(1) = 0, 

or in matrix formulation 

We require a non-zero solution (a, ,B). Therefore, the determinant of the matrix 

has to be zero. Thus the condition at z = 1 is finally 

(B.0.3) 

which may lead to numerical instability due to round off errors because we may be 

subtracting very large and nearly equal quantities. 

One way to avoid this is to employ the compound matrix technique. The idea is 

to remove the troublesome location of the zero of a determinant by converting to a 

system of ordinary differential equations in the determinants themselves. 
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The compound matrix method introduces new Yi (i=1,2,3,4,5,6) variables and 

works directly with these. The six vector Y = (y1 , Y2, y3 , y4, Ys, Y6f is formed with 

the 2 X 2 minors of the matrix with columns V1 and V2 

and the new six variables are 

f f 

Y1 = w1w2- w2w1, 

Y2 = w1s2- w2s1, 

Y3 = wls;- w2s~, 

Y4 = W~S2- W~S1, 
I I I I 

Ys = W1S2- W2Su 

Y6 = s1s;- s2s~. 

In this new environment the correct condition at z = 1 is (B.0.3) and this becomes 

Y3(1) + ay2(1) = 0, (final condition) . (B.0.4) 

The Yi 's satisfy the system 

y' =Ay, (B.0.5) 

where A 
0 -Rg1(z) k2 0 0 0 0 

0 0 1 1 0 0 

0 k2 0 0 1 0 
A= 

0 k2 0 0 1 0 

R 0 k2 p 0 -Rg1(z) k2 

0 R 0 0 0 0 

The eigenvalues may be found by integrating (B.0.5) from 0 to 1 with the initial 

condition 

Ys(O) = 1, (B.0.6) 
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and iterating on the final condition 

(B.0.7) 

In order to find a linear instability threshold we take a = 0 in (7.18) and find 

critical values of R and the wavenumber k. A priori we cannot assume a E IR, 

which is equivalent to a = 0. However, we note that Hutter & Straughan [38] find 

a E lR in their analysis and so we expect it to be true here. Since the unconditional 

nonlinear stability result is found to be close to the linear one this provides further 

justification for this procedure. 

The first step is to vary R until the final condition is satisfied to some pre­

assigned tolerance and find that particular value of R with the secant method. We 

then find numerically 

varying k2 , by using the golden section search algorithm. The Rayleigh number and 

the wave number are dependent on a, so we run the same routine for different values 

of a> 0. 
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