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Abstract 

Late Holocene records of Antarctic Fur Seal (Arctocephalus gazelld) population 

variation on South Georgia, sub Antarctic. 

Foster, V. A (2005) 

The Antarctic fur seal {Arctocephalus gazelld) population at South Georgia has 

increased dramatically through the 20* and 21^' centuries following near extinction at 

the beginning of the 20* century. This rapid increase is now causing concern as the 

seals are damaging the coastal habitats of South Georgia including specially protected 

areas. To assess whether this population increase is part of a natural fluctuation or due 

to human induced changes in the marine ecosystem, the fur seal population has been 

reconstructed through the Holocene from seal hair abundance and geochemistry. 

Results firom the fur seal hair abundance record show fur seals have been present at 

South Georgia for at least the past 3439 ''*C yrs BP and the population today is not 

unprecedented during the late Holocene. Although previous studies have found a 

correlation between fur seal populations and geochemistry, this study highlights that 

this is not effective at all study sites due to the complex relationship between climate 

change, catchment sediment delivery processes and seal population dynamics. At South 

Georgia, Cu and Zn are found to be indicators of fiir seal activity once a threshold of 

1500 hairs per 1 g of dry weight is reached. 

The fiir seal hair abundance results suggest there is a link between fur seal populations 

and climate change. Although the largest increases in fur seal population occur during 

cooler periods, the fur seal population is primarily controlled by prey availability 

(Euphausia superba), which is in turn influenced by climate change. Pre 200 yrs BP, an 

increase in prey availability is associated with colder periods, which are linked to 

changes in oceanography and led to a consequent increase in sea-ice extent. Post 200 

yrs BP, the whaling industry has resulted in a krill surplus in the South Georgia region 

elevating krill availability, causing an increase in the fur seal population (that has been 

coincident with warming). Although the population has increased during the 20* and 

21^' century as a result of human induced causes, this increase cannot be sustained once 

the krill surplus ceases. As the population has been at similar levels previously and the 

krill surplus is thought to be ending, it is concluded that the fiir seal population increase 

during the 20* century is not abnormal and management of the fur seal population at 

South Georgia may not be necessary. 
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1: Introduction and Aim 

1 Introduction and Aim 

1.1 Research Context 

It is widely recognised that Antarctic fur seal (Arctocephalus gazella) populations on 

the Antarctic Peninsula and surrounding Sub-Antarctic islands have rapidly increased in 

the past few decades (Hodgson et al. 1998; Payne 1977). However, during the early 20* 

century fur seals were almost extinct following human exploitation during the 19''' 

century (Bonner 1968). It is estimated that by 1825, 1,200,000 fur seal skins had been 

taken from the sub-Antarctic region (Headland 1982). The most rapid population 

increase has occurred on the island of South Georgia, where the fbr seal population was 

almost 3,000,000 in 1999 (ATCM 1999). Such a fast increase in fur seals is now 

causing extensive changes to terrestrial and freshwater systems and in some areas 

damaging Antarctic Specially Protected Areas (ASPAs) (Hodgson et al. 1998; Lewis-

Smith 1988). I f the fur seal population continues to grow at the same rate, it is possible 

that the fur seal impact is likely to have a catastrophic and irreversible effect on the 

Antarctic ecosystem; however, it is not yet clear i f the increase in fur seal populations is 

due to climate change, recovery from exploitation or other natural variations. 

With respect to climate change there is a broad scientific consensus that the warming of 

the earth's climate since the 1970s is greater than any time in the last thousand years 

(IPCC 2001). This has caused concern regzirding the biological and ecological changes 

affecting the range and distribution of species (Croxall et al. 2002). The key to 

determining the impact of climate on the Antarctic ecosystem (and specifically fur 

seals) is to determine the range of natural variability in the ecosystem and to distinguish 

natural changes from human perturbations (Abbott and Benninghoff 1990). 

To overcome the problems distinguishing between the human impact and the impact of 

natural environmental change on fur seal populations, Hodgson and Johnston (1997) 

used RalaeolimnQlogy to reconstruct fur seal populations going back several centuries/ 

millermia, prior to human intervention. This study is based upon the theory that fur seals 

moult regularly, depositing hair in terrestrial and aquatic environments. This hair is 
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1: Introduction and Aim 

washed into lakes and incorporated into the lake sediments hence, providing a proxy 

record of fiir seal presence. 

1.2 Overall Aim 

The aim of this study is to reconstruct the far seal population of South Georgia by 

counting seal hairs from a South Georgia lake sequence as a proxy for fur seal 

abundance combined with geochemical analysis using techniques outlined by Hodgson 

et al. (1998) and Sun et al. (2004a). Comparing the fiir seal population fluctuations 

during the 20* century and the late Holocene will allow the controlling factors 

underlying these population fluctuations to be better understood and hence, aid 

management and conservation decisions. Within this cenfral aim lie a number of 

specific objectives which are outlined below. 

1.3 Specific Objectives 

1. To reconstruct fiir seal populations through the late Holocene by counting 

seal hairs from a lake on South Georgia. 

This objective seeks to assess the changes in fiir seal population, prior to, during and 

since exploitation. As highlighted by Ellis-Evans (1990), long-term monitoring studies 

are needed to determine the direction and rate of environmental and ecological change, 

assessing the resilience of ecosystems to and their recovery from these phenomena. 

Counting seal hairs in a lake sediment sequence provides a proxy for fiir seal 

populations through the late Holocene and hence, allows the reconstruction of a 

continuous record of fur seal populations both prior to and during human intervention. 

Comparing this record with other data on environmental and ecological changes will 

allow an assessment of the link between the ecosystem and environmental change. 

2. To reconstruct fiir seal populations indirectly using geochemical analysis, 

following the method outlined by Sun et al. (2004a). 

By analysing a range of geochemical proxies it wil l be possible to not only provide an 

additional proxy for the fur seal populations and help to validate the method outlined by 
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1: Introduction and Aim 

Hodgson et al. (1998), but it wil l also provide prox (ies) for climate change at the site 

and hence, allow comparison of the fur seal population and climatic change. 

3. To determine whether recent (20* -21^' century) increases in fur seals have 

exceeded the range of natural variability of past populations. 

As Croxall (1992) indicates, all documented population changes of fur seals relate to 

human exploitation. Using fur seal hair abundance and geochemical analysis as a proxy 

for fur seal populations during the Holocene allows a record of fur seal populations 

prior to the 20* century to be constructed, thereby allowing the magnitude of the 20* -

21^^ century changes in relation to changes prior to human intervention to be assessed. 

The record of fiir seal populations prior to human intervention wil l help to determine 

both the range of natural variability in the Antarctic ecosystem and the magnitude of 

human perturbations (Abbott and Benninghoff 1990). 

4. To review and assess the impact that environmental changes on South 

Georgia have had upon seal populations over the Late Holocene. 

Using a combination of published and instrumental climate data through the 20* 

century and published proxy data through the late Holocene, this record wil l provide a 

means of determining the environmental changes at South Georgia. This record wil l be 

correlated with the reconstructed fur seal population data to help to determine the 

impact environmental changes have had upon fiir seal population changes. 

5. To determine the factors controlling fiir seal population changes at South 

Georgia through the late Holocene. 

Reconstructing population changes through the late Holocene allows an assessment of 

factors contiolling the population variations prior to human intervention. Comparing 

these changes with 20* century variations, the impact of human intervention on the fur 

seal population can be assessed. This is essential to determine the appropriate 

management measures required to control the population explosion. 
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1.4 Mechanisms influencing fiir seal populations 

As discussed in section 1.1, there are two broad mechanisms for fiir seal population 

growth; natural environmental changes and human induced changes. As human induced 

changes correlate with the fur seal population data, to distinguish between these two 

mechanisms there is a need to reconstruct the fur seal population through the Late 

Holocene. To provide a context for the aims and objectives, these possible mechanisms 

for fur seal population growth are considered briefly, before being discussed in further 

detail in chapter 2. 

1.4.1 Natural environmental changes 

Natural envirormiental changes such as deglaciation and global warming alter the 

environment and its ecosystems. It is possible that natural changes in the environment 

could now be more favourable for fur seal siarvival than the early 20* century when 

populations were significanfly lower than today. However, this timing also corresponds 

to human intervention and so the impact of natural environmental changes may be 

obscured. As Lewis-Smith (1990) indicates, the present climate warming is central to 

local changes in terrestrial and marine ecosystems, directly and indirectly influencing 

biological processes. For example. Laws (1977) suggests that climate warming may 

produce fluctuations in food availability, which may indirectly affect changes in 

predator populations such as fur seals. Other changes occur as a function of the natural 

process of ecosystem development, strongly influenced by minor variations in climate 

or other components of the environment. For example, as Croxall (1992) documents, 

changes in krill populations correlate with major ENSO events. The magnitude and 

persistence of these changes cannot be explained by natural variations in krill 

demography and hence, must involve large-scale distribution changes influenced by 

ocean- atmospheric processes. This variation in fur seal food supply may directly affect 

the population changes. For example, on Possession Island, Guinet et al (1994) 

document significant decline in fur seal pup production the year after ENSO events. 

To determine whether an effect can be detected on the Southern Ocean scale, there is a 

need to examine long term data on demographic parameters obtained for seabirds and 

marine mammals for different breeding localities where long term monitoring 

programmes are conducted. This has been done on King George Island, where Sun et al. 
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(2004a) provide a 1500-year record of seal populations and highlight that before human 

influence, fur seal populations exhibited dramatic fluctuations. Comparing this record 

with paleoclimatic data suggests that increases in seal populations roughly corresponded 

to warm periods and decreases in population correlated with cooler periods, suggesting 

that natural environmental changes, such as sea ice cover and atmospheric temperature 

have historically had a large impact on seal populations. As King George Island is 

located to the south of South Georgia and experiences different climate conditions, the 

ecosystem is under different pressures than South Georgia, thus, it cannot be assumed 

that this correlation between fur seal populations and climate wil l also occur at South 

Georgia. 

1.4.2 Human induced changes 

Hodgson et al. 's (1998) study of Signy Island suggests there is a lack of correlation 

between fur seal populations and climate during the late Holocene. This is in contrast to 

Sun et al. (2004a) and Guinet et al. (1994) that state that populations have been a 

similar magnitude during the late Holocene as seen today. Hodgson et al. (1998) 

suggest there is a distinct correlation between a rapid decrease in fiir seal populations 

and human intervention, suggesting that human intervention is the causal mechanism for 

the recent 20* -21^' century changes. Evidence indicates that fur seal populations at 

Signy Island are now greater than pre-exploitation levels, implying that factors that 

were not present prior to exploitation have affected the population growth (Hodgson et 

al. 1998). As human intervention was limited before exploitation, it is thought that 

human interactions with environment are sufficient to alter the population. One of the 

prime influences on the fur seal population of South Georgia has been the sealing and 

whaling industries during the 18*, 19* and 20* centuries, which have been discussed in 

the following terms. 

1.4.2.1 Sealing 

Sealing at South Georgia developed rapidly in the latter part of the 18* and early 19* 

centuries (Headland 1982). Activities peaked around 1800, after this time the seal stocks 

were so depleted that sealers began to exploit other islands, such as the South Shetland 

Islands although the sealing on South Georgia continued at very low levels. In 1925, it 

was estimated that a total of 1,200,000 fur seal skins had been taken from South 
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Georgia during the sealing period and the quantity of elephant seal oil extracted was 

20,000 tons (Bonner 1968). During the beginning of the 20* century the fur seal 

population at South Georgia was near extinction and it was not until the 1930's the first 

fur seal pups were recorded at South Georgia (Boyd 1993). 

1.4.2.2 Whaling 

South Georgia was the principal centre for whaling in the Southern Hemisphere fi-om its 

establishment in 1906 to 1966 when stocks depleted, although restrictions had been 

enforced fi-om 1906 to prevent over-exploitation (Headland 1982). The prime impact of 

the whaling industry on the fur seal is thought to be the increase in abundance of krill . 

Whales feed primarily on kril l ; therefore a reduction in the number of whales caused a 

krill surplus (Croxall 1992). This increase in krill allowed a greater fur seal population 

to be supported and led to an increase in fur seals. It is this krill surplus that is now 

widely recognised as the most probable cause of the recent increase in fur seals (Doidge 

and Croxall 1985; Croxall and Prince 1979; Croxall 1992; Green et al. 1989). 

1.5 Summary 

This dissertation is structured in the following way in order to address the aim and 

objectives outlined above. Chapter two builds upon this background and outlines the 

rationale for the aims and objectives discussed above. Following this, chapter 3 outlines 

the methodology I used to produce the results, which are presented in chapter 4. Chapter 

5 discusses the results and the imphcations these results have on my objectives. I shall 

then briefly conclude the study by readdressing the overall aim in chapter 6 and then 

assessing the study's limitations and potential for future work in chapter 7. 
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Chapter 2 

Background and Rationale 

Plate 2: Maiviken bay 
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2: Background and Rationale 

This chapter outlines the background on which this study is based. Firstly I outline the 

study site and the reasoning for choosing South Georgia. This is followed by a 

discussion of the climate changes from proxy records through the late Holocene to use 

when answering objective 4. The chapter ends on an evaluation of the size and growth 

of the fur seal population in the 20*̂  century, the possible causes for this population 

growth and the impacts of this population growth. 

2.1 Rationale for study location 

The study uses two sediment cores from Maiviken, South Georgia, primarily because 

today 95% of the world's fur seal population breeds at South Georgia and secondly, as 

South Georgia has experienced the most rapid increase in 20**̂  century fur seal 

population growth throughout the Antarctic region (Croxall 1992). Such an increase in 

the fur seal population at South Georgia has resulted in the collection of extensive fur 

seal population census data and detailed research on the population structure and 

development (Bonner 1968; Croxall and Prince 1979; Laws 1973; Payne 1977). This 

record provides an important historical fur seal population record, against which the 

proxy evidence derived using palaeolimnology can be compared (Laws 1973). In 

addition to these factors, extensive research has been carried out on the biological 

interactions of the fur seal at South Georgia. For example, Doidge and Croxall (1985) 

provide evidence for the diet and energy budget of the fur seal at South Georgia, whilst 

North et al. (1983) and Barlow et al. (2002) both established the primary fur seal prey 

and competition. This additional biological research provides a good basis to understand 

fur seal interactions with the environment hence, aiding further analysis. 

It is widely implied that the human induced causes for the recent change in fur seal 

populations are the sealing and whaling industries (Croxall 1992). As these activities 

were generally more widespread and intensive on South Georgia, than elsewhere in the 

sub Antarctic region, the impact of these activities are more easily identified. Natural 

causes of the population increase are primarily thought to be climatic change {^\xn et al. 

2004a). As Rosqvist et al. (1999) indicate. South Georgia is situated in a prime location 

to study climatic connections between temperate and polar environments in the 

Southern Hemisphere. For this reason, extensive climate reconstruction has occurred 
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around South Georgia allowing comparisons between fur seal population fluctuations 

and climate changes to be evaluated. In addition to this. South Georgia is located on the 

boundary of the temperate and polar environments therefore, it experiences large 

climate fluctuations and as a consequence it is likely that the fur seal population here 

wil l respond more rapidly to these changes than in other areas of the Southern Ocean 

(Rosqvist et a/. 1999). 

2.2 Study Site 

2.2.1 South Georgia 

South Georgia is an isolated island in the Southern Ocean, located at 54° S and 34° W 

(see figure 2.1). The island is approximately 170 km long and ranges from 2 to 30 km 

wide (Headland 1984). Surrounding the island are several smaller islands, the major one 

being Bird Island off the western extremity (see figure 2.1.1). 

The principal mountain chain of the island is the Allardyce Range, with the highest 

peaks located towards the centre of the island, thus, providing a barrier against the 

severe weather that reaches the south west of the island (Headland 1984). The climate is 

governed by the island's position relative to the polar frontal zone and related 

westerlies. Due to this location the climate today is cold, wet and cloudy but with no 

great seasonal variation (ibid). Mean temperature is 1.8°C and mean precipitation is 

1393 mm per year (Rosqvist et al. 1999). Today the polar front is approximately 250km 

north of South Georgia in the eastward flowing Antarctic Circumpolar Current (ACC) 

(Atkinson et al. 2001). To the west of South Georgia, the Scotia ridge deflects the ACC 

northwards, looping the Southern Antarctic Circumpolar Current front (SACCF) 

anticyclonically around the island before being retroflected to the east, causing a 

Weddell - Scotia confluence around the eastern and northern flanks of the island (see 

figure 2.2) (Meredith et al. 2005; Thorpe et al. 2002; Ward et al. 2002). These currents 

are thought to have an effect on the South Georgia ecosystem through influencing the 

productivity of the ocean waters (Thorpe et al. 2002). 
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Figure 2.1: South Georgia in relation to South America and the Antarctic Peninsula. 

Source: Headland (1984: 2). 
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Figure 2.1.1: South Georgia and surrounding islands. The area in the square is shown in 

more detail in figure 2.3. Source: Clapperton et al. (1970) 
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Figure 2.2: Scotia Sea region showing South Georgia and key oceanographic features. 

Sub-Antarctic front (SAP), Polar Front (PF) (dashed line indicates the position of the 

Polar Frontal Zone), and the Southern Antarctic Circumpolar Current Front and 

Boundary (SACCF; SACCB). (Source: Murphy and Reid 2001) 
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2.2.2 Maiviken 

Humic lake cored in this study is located in the Maiviken area of the island (see figure 

2.4). Maiviken (54°15'S, 36°30'W) is the name given to a small bay in the headland 

(Sappho Point) that separates Cumberland West Bay and Cumberland East Bay (see 

figure 2.3) on the north eastern side of the island. The bay faces north north east, and 

along its western margin are steep rock walls forming the shoulder of the glacially 

scoured valley. Along its eastern and southern margins there are a number of small 

lakes (Evans Lake, Humic Lake, Arch pond and Loken pond). These lakes are located 

in a narrow low relief area between the bay and the high ridge forming Sappho Point. 

To the south the land rises to a larger lake, Maivatn and a col that separates Maiviken 

from the Bore Valley (see figure 2.4). 
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Figure 2.3: Central South Georgia. The area in the square is the Maiviken region and is 

detailed in figure 2.4. Adapted from DOS (1958) 
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Figure 2.4: Location of the study site in relation to Maiviken and Grytviken. Adapted 

from Clapperton et al. (1970). Map courtesy of Peter Fretwell, Mapping and 

Geographic Information Centre, British Antarctic Survey, 2006. 

The valley was glacially scoured during the retreat of the ice cap at the last glacial 

maximum, thought to have occurred c. 9700 '"̂ C years BP (Van der Putten and 

Verbruggen 2005). The relief of the valley is typical of a glacially scored landscape, 

primarily knob and tarn topography (Sugden and Clapperton 1977). Glacial scouring 

has formed the steep rock wall which forms the shoulder of the glacially scoured valley. 

The knob and tarn topography in the valley has resulted in the formation of the 

numerous lakes (Evans Lake , Humic Lake, Arch pond and Loken pond) (Sugden and 

Clapperton 1977). 

Evidence from peat formations and glacial features suggests that that Maiviken has been 

ice free throughout the Holocene (Smith 1981) although the presence of glaciers today 

and the variety of glacial geomorphology indicates that glaciers have fluctuated in the 

Grytviken region following deglaciation in the early Holocene. The largest glacier in the 

area is the Hamberg Glacier (see figure 2.5). Although at present it drains into Moraine 
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Fjord, the presence of roche moutonnees, moraines and glacial tills suggests that it has 

previously been more extensive and drained into the Cumberland East Bay south of 

King Edward Cove (see figures 2.5; 2.6). Further north, the Hodges Glacier (see figure 

2.5) flowed south east, draining into King Edward Cove. More recently, Hayward 

(1983) documents the movement of the glacier in the 20"" Century. From 1955 - 1974 

the glacier retreated 5 metres, however, due to the orientation of the glacier and the 

restraints of Mount Hodges, these fluctuations would affect fluvial and glacial systems 

in King Edward Cove rather than Maiviken. 

odges 
Stacier 

Figure 2.5: The location of the study site relative to the geomorphology of the Thatcher 

Peninsula. Black arrows indicate glacier flow following the LGM. Map courtesy of 

Peter Fretwell, Mapping and Geographic Information Centre, British Antarctic Survey, 

2006. 
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Cumberland West Ba Study Site 
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f 
Figure 2.6: Geomorphological map of Maiviken area. Adapted from Clapperton et al. 

(1970) 

To the North of the Hodges Glacier, a smaller unnamed glacier is located close to the 

peak of Mt Hodges. It is possible that during colder periods this advanced into the Bore 

Valley and drained into Maiviken. In addition to this, there are a number of cirques and 

cirque glaciers to the east and west of the valley (see figure 2.6). These drain into 

Lancetes Lake and Maivatn lake south of the study site prior to draining into Maiviken 

via Maidalen. Without further analysis it is difficult to determine the extent of these 

glaciers and the movement of these glaciers throughout the Holocene. However, it is 

thought that glaciation did not reach Evans lake catchment described in Bimie (1990), 

which is closer in proximity to the Hamberg glacier or Hodges glacier than Humic lake. 

The valley where Humic lake is located been formed during a past glacial period. Due 

to the altitude of the valley it is possible that due to the isostatic uplift that part of the 

valley was below sea level for some of the Holocene and the lake has formed recently. 

Without the reconstruction of relative sea level curves in this region this is difficult to 

quantify, however, it must be considered in analysis as this wi l l have an impact upon the 

depositional processes operating within the lake. 
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2.2.3 Lake Catchment 

Lake Humic cored in this study is approximately 250 metres long and 150 metres wide, 

located at low altitude (c. 15-20 m) (see figure 2.5; 2.6). The lake and its catchment are 

ice and snow covered for 4-5 months of the year, but the lake is thoroughly mixed when 

ice fi-ee (Moreton et al. 2004). In the lake there are 2 small islands and the water depth 

reaches 3.5 metres at the deepest point. Several small streams flow into the lake fi-om a 

closed catchment that measures approximately 400 metres by 300 metres and the lake 

drains c. 100 m into Maiviken bay firom its NW comer. As shown in figure 2.5, 

Maidalen drains the Bore Valley catchment to the south of the study site, hence, Humic 

lake is closed isolated catchment and not influenced directly by processes and sediment 

in the wider Maiviken area. The catchment is bounded to the east by a large ridge, 

which terminates at Sappho Point (see figure 2.5). This ridge reaches a height of 1050 

metres and is thought to be the shoulder of a glacially eroded valley, composed of 

quatzose greywackes, volcanic greywackes, igneous intrusions and slate (Clapperton et 

al. 1989). At present the ridge is a steep scree slope (see figure 2.7) and a major 

sediment source for the catchment.. The remaining catchment area is knob and tarn 

topography and is 100 percent vegetated, predominately with tussock grass (see figure 

2.5; 2.6). The area around the lake is an areally-scoured landscape of mounds and small 

hollows, which become water filled during periods of high precipitation. 
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Figure 2.7: An aerial view of the study site catchment. Source: Clapperton et al. (1990) 

Figure 2.8: The view from the lake towards Grytviken Valley. The snow-covered top of 

Mt Paget can be seen in the background. The figure illustrates the vegetation type and 

cover of the lake catchment during the summer. 
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2.2.4 Core Site 

The cores were taken fi-om a location between the central island and a small embayment 

on the eastern shore (figure 2.9 and 2.10), where the water reached a depth of c. 3.5 m. 

Two types of corer were used to ensure that both the sediment water interface was intact 

and to allow the maximum possible depth to be reached. The first core was taken using 

a KuUenberg corer to ensure the sediment-water interface was sampled. This core 

reached a depth of 100 cm, thus, necessitating the use of a modified piston corer to 

extract the lower core sediment (100-300 cm), as this reaches to greater depths but does 

not preserve the sediment water interface as effectively as the KuUenberg corer. The 

piston corer consisted of a large diameter plastic pipe with tight-fitting piston that was 

locked by a cable clamp when the core reached the sediment surface. The pipe was then 

driven into the sediment using a large shaped weight lifted and dropped on a rope 

(Rosqvist a/. 1999). 

The core site was chosen in a location closest to the deepest section of the lake as 

possible to ensure that the sediment was representative of the lake and any changes in 

sedimentation within the lake as a result of differing currents were not sampled hence, 

ensuring the core was not misrepresentative of the lake. 

Figure 2.9: Retrieving the core, showing the location of the core in the lake. One of the 

small islands in the lake can be seen in the background. 
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Figure 2.10: A view of the lake used in the study, looking north across Maiviken. The 

red crosses show the position of the cores. Figure 2.9 was taken looking from the right 

of this picture across to the island on the far left of this picture. Source: Sugden and 

Clapperton (1977) 

2.2.5 Lake processes 

To fully understand the processes operating at the site and therefore the mechanisms in 

which the sediment has been deposited and the effects this will have upon fur seal hair 

entrainment and deposition, the lake inputs, outputs and circulation must be evaluated. 

These processes are key to understanding the changing processes operating within the 

lake over time and the effect this may have upon the fiir seal hair record. 

2.2.5.1 Lake inputs 

The primary inputs into the lake are at present fluvial and slope processes which 

transport precipitation and surface run off from the localised catchment. This surface 

run of f is likely to transport clastic sediments from the scree slopes to the east of the 

catchment (see figure 2.7). In addition to this, vegetation debris and soils become 

entrained and are washed into the lake. Other elements in the catchment such as fur seal 

hairs and excrement wil l also be entrained in surface run o f f and enter the lake 

catchment. Furthermore, fiir seal populations wallowing in the lake wi l l entrain 

sediment, fiirther increasing the inputs. Aeolian processes may also transport some 

sediment from off shore winds, however, these are likely to be minimal due to the 

38 



2: Background and Rationale 

sheltered nature of the lake and will be minor in comparison to the sediment input fi-om 

fluvial and slope processes. 

From the discussion in section 2.2.2, it is clear that glacial processes are not influencing 

the sediment transport and input into the lake today. Although this may have been a 

sediment pathway previously when glacier extent was greater, evidence presented in 

section 2.2.2 suggests this is unlikely to be a major sediment source as the glaciers 

draining into the Bore Valley, drain into Maivatn to the south (and upstream)of the 

catchment which therefore, is likely to intercept most sediment. 

The lake and catchment are snow and ice covered for approximately 4 - 5 months of the 

year, although due to the relatively mild climate at South Georgia, the lake ice does not 

reach a thickness where it is likely to fi-eeze to, or disturb, the lakefloor sediment. Due 

to this ice and snow cover, direct sediment input is restricted during the winter period 

and there is likely to be very little activity in the catchment or the lake at this time. 

Snow and ice melt as the climate ameliorates in the spring and summer months 

transports a rapid flux of sediment into the lake. 

2.2.5.2 Lake circulation 

Without sediment traps within the lake, the lake circulation and affect this will have on 

sediment distribution sediment retention in the lake cannot be fully evaluated. However, 

due to the sheltered location of the lake and proximity relative to glacial activity, it is 

thought that lake mixing and sediment disturbance is minimal. As the lake is ice 

covered for 4 -5 months of the year and the lake is too deep to permit basal freezing, 

there are very few factors that would affect sediment deposition and retention in the lake 

during this period. In the summer months, fiir seals wallow in the lakes, however, this is 

on the surface of the lake and is unlikely to significantly affect the basal sediments. As 

discussed above, the sediment cores were taken from the deepest point in the lake to 

reduce any potential effect of sediment disturbance. 

2.2.5.3 Lake outputs 

The lake output is primarily via the outlet, which drains -100 metres to the sea. Flow in 

this outlet is not rapid, suggesting sediment transport from the lake is minimal and the 

majority is retained and deposited within the lake catchment. Analysis of the sediment 
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core and sedimentation rate will provide a greater understanding of the retention of the 

sediment within the catchment. 

2.3 Late Holocene Environmental Changes 

This section examines Late Holocene Environmental Changes at a firstly on South 

Georgia as a whole and then using this evidence associated with more site specific 

reconstructions, catchment environmental changes are evaluated. Finally the 

environmental changes in the Antarctic region are determined. This evaluation at 

varying scales is important to fully understand the processes operating within the 

catchment. Evaluating the climate changes on South Georgia with regional 

environmental change can provide an indication of the changes in ocean and 

atmospheric circulation in the region and help to define the causal mechanisms for such 

changes (Jones et al. 2000). 

The location of South Georgia 250 km south of the Polar Front, is key in 

comprehending the climate of the island. This location close to the Polar frontal 

boundary allows the movement of the Polar Front to be fracked and hence, records the 

effect this has upon the climate connections in temperate and polar environments to be 

evaluated (Van der Putten 2004; Rosqvist and Schuber 2003). Although this is 

recognised as a key area of research, studies implemented at South Georgia have been 

restricted primarily due to the numerous limitations of proxies in this harsh 

environment. Firstly, the use of pollen assemblages as a proxy is limited as only two 

genera of pollen (Gramineae and Acaena) account for 90% of the total pollen count 

therefore; these species have widespread dominance (Barrow 1978; Clapperton et al. 

1989; Van der Putten 2004). Very little is known about minor species as the modem 

ecology is poorly known and inhospitable conditions make further research difficult 

(Bimie 1990). Secondly, the wide ecological tolerance of these species restricts the 

extent to which past environmental change can be reconstmcted (Barrow and Lewis-

Smith 1983; Barrow 1978). Thirdly, a large number of pollen grains are blown across 

the Southem Ocean from South America and are deposited on South Georgia, hence, 

what may appear as climatic change may actually only reflect changes in southem 

westerlies or the influence of local topographic features on air currents and hence, the 

use of pollen assemblages in environmental reconstruction at South Georgia can be 

misinterpreted (Barrow and Lewis-Smith 1983). 
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Despite these problems in reconstructing the climate of South Georgia, it is recognised 

that South Georgia has experienced a range of climatic conditions through the 

Holocene. From the use of different proxies to reconstruct environmental change, it is 

clear that the enviroimiental response is not uniform and often evidence is conflicting as 

different proxies highlight the following different elements of environmental change. 

Firstly temperature affects the climate and influences the catchment in terms of the 

duration of the ice cover and the vegetation within the catchment. On South Georgia, 

Van der Putten (2004) and Barrow (1983) provide an account of the relative 

temperature changes on the island through the late Holocene. Secondly, precipitation 

has an influence upon the climate and the catchment regime. Precipitation can influence 

the vegetation cover, however, it also influences the glacial activity and greatly 

influences the inputs and outputs of the lake. Precipitation has been inferred through the 

late Holocene on South Georgia from pollen and macrofossil records (Barrow and 

Lewis Smith 1983). Finally, glacial activity; temperature is the most influential factor 

affecting glacier regime, however, fluctuations in precipitation also affect the mass 

balance of the glacier, thus, a decrease in temperature may not reflect a glacial advance 

i f precipitation input is insufficient (Clapperton 1990). In addition to this, a number of 

glaciers on South Georgia are ^ord glaciers; these are unreliable for dating climatically 

forced advances as response lags can be up to 100 years (Clapperton and Sugden 1988). 

However, it is essential to understand these glacial regimes specifically on a local scale 

as glacial process influence geomorphology and consequently sediment transport 

processes in the catchment. 

Using a combination of proxies allows the significant climate episodes to be more 

clearly understood and permits response times of different systems to be recognised, 

hence, reducing error and providing a more accurate picture of environmental change 

(Clapperton et al. 1989). Previous studies at South Georgia have used a range of proxies 

that include macrofossils (Van der Putten 2004; Taylor et al. 2001), glacier fluctuations 

(Clapperton and Sugden 1988; Clapperton et al. 1989), biogenic silica (Rosqvist et al 

1999), diatom assemblages (Van der Vijver 1996) and pollen assemblages (Bimie 1990; 

Barrow 1978; 1983a; 1983b; 1983c) and finally radiocarbon dates from peat layers have 

been used to indicate the duration of vegetation development (Van der Putten 2005, 

Gordon 1987). These different proxies will be evaluated and used to reconstruct the 

climate of the catchment at Maiviken, the South Georgian climate and the sub Antarctic 
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climate through the late Holocene. Figure 2.11 summarises the climate of South Georgia 

in terms of temperature, precipitation and glacial activity from analysis of these proxy 

records. 
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Figure 2.11: A summary of the climate at South Georgia through the late Holocene. 
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2.3.1 South Georgia Environmental Change 

It is widely agreed that in South Georgia deglaciation culminated approximately 10,000 

'"̂ C years BP, as many species of flora became established (Van der Putten 2004; 

Clapperton et al. 1989; Barrow 1978). Deglaciation was followed by climate 

amelioration, peaking at 5600-4800 '''C yrs BP (6350-5500 cal yrs BP) and conditions 

were more conducive to plant growth than today as pollen assemblages suggest 

temperatures were 0.6°C warmer than present (Bimie 1990; Clapperton 1989). During 

the late Holocene, significant climate deterioration occurred around 2500 ''*C yrs BP 

(2500 cal yrs BP) and again at 600 ''̂ C yrs BP (540 cal yrs BP) (see figure 2.11) 

(Clapperton and Sugden 1988; Van der Putten 2004). 

2.3.1.1 Pre 2600''^C years BP 

Climate changes inferred from pollen and diatom assemblages in lake sediments taken 

from the Maiviken region suggest that warmer conditions persisted from 3300 ''*C yrs 

BP (3500 cal yrs BP) until 2800 '"C yrs BP (2800 cal yrs BP) (Bimie 1990). This 

climate amelioration and restricted ice cover is supported by evidence from microfossil 

and pollen records. These records suggest a drier period from 4000 ''*C yrs BP to 2600 

''*C yrs BP (4400- 2600 cal yrs BP), similar and possibly warmer than the present day 

climate, often referred to as the Late Holocene Climate Optimum (Van der Putten et al. 

2004; Rosqvist and Schuber 2004; Barrow 1978). This climate amelioration is further 

supported by evidence from peat layers on glacial moraines to suggest that glacier 

extent was restricted from 3330 '''C yrs BP to 2230 ''̂ C yrs BP (Gordon 1987; 

Clapperton et al. 1989). Although the exact timing of this change differs, a large body 

of evidence suggests that the period prior to 2600 ''*C yrs (2600 cal yrs BP) was as 

warm or warmer than today. 

2.3.1.2 2600- 1600 "*C yrs BP 

Bimie (1990) suggests that the climatic optimum began to deteriorate at 2900 '''C years 

BP as the minerogenic content in the lake cores increases and from 2600 '''C years BP 

the climate was wetter. This coupled with an increase in olgiotrophic bogs at 2600 '''C 
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years BP (2600 cal years BP), provides a broad line of evidence to suggest that the Late 

Holocene Climate Optimum had ceased by 2600 ''*C years BP as the climate cooled and 

precipitation increased (Van der Putten 2004; Rosqvist and Schuber 2004). 

Glaciological evidence also supports this climate deterioration and increase in 

precipitation as glaciers began to advance at 2200 ''*C years BP (2200 cal yrs BP) 

(Rosqvist and Schuber 2004; Clapperton 1990; Clapperton and Sugden 1988). This 

climatic shift is further supported by radiocarbon dates from peat layers and moraines, 

which imply ice-free conditions had ceased by 2230 ''*C years BP (3500-2200 cal yrs 

BP) (Gordon 1987; Van der Putten 2005) 

In terms of the vegetation cover, evidence from pollen assemblages suggests that since 

deglaciation, conditions have not been harsh enough to prevent the survival of the 

woody herb genus Acaena (indicative of a warm, dry climate) for long periods (see 

figure 2.15) (Barrow 1978). Bimie (1990) provides a pollen assemblage to suggest that 

this phase (2600-1600 '''C years BP) was similar to the present day climate at South 

Georgia, however, Clapperton's (1990) glaciological evidence suggests a cooling of 

0.5-rC. Although the magnitude of the change is debatable, it is clear that the climate 

deteriorated after 2600 ''̂ C years BP (2600 cal yrs BP), and is thought to be 'the most 

striking event in the Holocene palaeoclimatological history of South Georgia', with 

major changes in atmospheric and oceanographic circulation (Van der Putten 2004: 

390). 

The culmination of this period of climatic deterioration is not frequently documented in 

the literature and it is likely that the change was gradual. Although pollen assemblages 

suggest the climate began to ameliorate at 2000 '''C years BP, the high content of silt 

and clay and loss on ignition (LOI) values in lake cores suggest the climate remained 

relatively cool until 1600 '''C years BP (Barrow 1978; Bimie 1990). 
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Figure 2.12: Relative temperatures at South Georgia through the late Holocene in 

comparison to the climate today. Values were calculated from pollen assemblages of 

Gramineae and Acaena in Barrow (1978). Relative temperatures were calculated from 

the percentage of Gramineae and Acaena today, with Gramineae indicating a warmer 

climate and Acaena indicating a warmer climate than today. The scale is the difference 

in percentage of Gramineae and Acaena between the sample and the percentage at the 

top of the core (i.e. the climate today). For example, positive 20 indicates at that point in 

the core there was 20% more Acaena than found in the top sample. A negative 20 

indicates 20 more Gramineae in the sample than in the top of the core. The age of the 

sample was calculated from a radiocarbon date at the base of the core. 

2.3.1.3 1000'"C years BP 

The next period of enviromnental change began around 1000 '̂'C years BP (850 cal yrs 

BP) as LOI values indicate a cooling (Rosqvist and Schuber 2003). Evidence from lake 

sediments suggest thaf deferidration peaked at 600 '''C years BP as minerogenic content 

in the lake increased (Bimie 1990). Associated with this deterioration are glacial 

fluctuations, suggesting the period from 600 ''*C years BP was particularly cold and wet 

(Clapperton et al. 1989; Rosqvist and Schuber 2003). This peak in cooling is fiarther 
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supported by evidence from peat layers which indicates that peat growth increased from 

990 '"C years BP (838 cal yrs BP) to 775 '''C years BP (686 cal yrs BP), suggesting a 

warmer interval after which the climate deteriorated. 

2.3.1.4 Post 200 '^C years BP 

This climatic deterioration lasted until approximately 200 ''*C yrs BP (200 cal yrs BP) 

when the climate ameliorated and glaciers began to advance (Clapperton et al. 1989; 

Bimie 1990). Small glacier expansion occurred during the 19* century, forming 

multiple moraines suggesting complex oscillations of glacier margins (Bimie 1990). 

This was followed by readvances during the 1920's and glacier refreat until the late 

1940's, after which all glaciers have been receding (Clapperton and Sugden 1988). 

Although this record suggests marked glacier fluctuations, these fluctuations reflect 

localised conditions and are dependant upon glacier type and form, thus, cannot be 

solely used to evaluate climate (Hayward 1983). It is thought that climatic conditions 

only significantly improved within the last 50 years, with the climate becoming warmer 

and wetter (Bimie 1990). This climate amelioration is supported by the 5 metre retreat 

of the Hodges glacier, south west of the catchment (see figure 2.5; 2.6) (Hayward 1983). 

2.3.2 Humic Lake Environmental Changes 

The catchment geology and geomorphology has evolved throughout the late Holocene 

in response to local and regional climate changes. To fully understand the mechanisms 

by which the fur seal hairs are incorporated into the lake sediments and the effect any 

changes may have upon the entrainment and preservation of fur seal hairs in the 

sediment, the differing lake inputs and depositional processes through the Holocene 

must be comprehended. Although there are a variety of climatic variables affecting the 

catchment, the primary factors affecting sediment transport processes can be defined as 

the catchment stability and vegetation cover and hence, catchment environmental 

changes wil l be evaluated under these factors. 

Past studies, specifically Clapperton et al. (1989) and Bimie (1990) have used 

palaeolimnology to analyse the climate of Maiviken area through the late Holocene. 

Although these catchment characteristics can be determined with analysis of the core in 
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this study, additional proxies provide a more robust estimate of the climate changes 

occurring during the late Holocene. Figure 2.13 summarises the climate changes in the 

Maiviken area. Differing proxies provide evidence for differing catchment conditions. 

To understand the impact this has upon sediment composition and transport 

mechanisms, figure 2.13 defines the proxy records having an effect on the catchment 

stability and vegetation cover to determine the processes operating within the catchment 

relative to the wider climatic changes. 

The summary presented in figure 2.13 considers the findings primarily by Bimie (1990) 

as this paper was based on lake sediment cores in close proximity to the Humic lake 

catchment and uses a multifaceted approach using sediment description, pollen and 

spore analysis and microfossil analysis to determine past envirormiental change. To 

supplement this record, further evidence wil l is summarised from Barrow (1983). This 

record uses micropollen analysis to evaluate the vegetation changes and identify warm 

and cold periods during the Late Holocene. However, as discussed in earlier sections, 

this record has inherent errors related to the variability of the pollen in this region and 

therefore cannot be used as a sole indicator of climate change in this region. Additional 

studies (Van der Putten 2005; Rosqvist and Schuber (2003)) are also used in analysis to 

provide an indication of the catchment stability or vegetation cover on South Georgia, 

however, these are not site specific. 
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Figure 2.13: A summary of late Holocene environmental changes in the Maiviken 

catchment. 
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2.3.2.1 General climate 

Bimie's (1990) paper analyses a core from Lake Maivatn and Evans Lake (see figure 

2.7). A date of 8657 '''C yrs BP at the base of the core indicates that the catchment of 

Evans Lake has been vegetated throughout the record. From this evidence it can be 

inferred that due to the close proximity of the Humic lake and the lower latitude, the 

catchment has been ice free and vegetated for the majority of the late Holocene. From 

this evidence it can be assumed that the catchment has remained relatively stable during 

the late Holocene and there is no evidence to suggest the geology and geomorphology 

of the catchment has changed dramatically since the LGM and therefore wil l not have 

had a significant impact upon the fiir seal hair deposition or lake sediment dynamics. 

2.3.2.2 Catchment specific environmental changes 

Pre 2900 ''*C yrs BP {Pre 2600 '"Cyrs BP) 

This relatively warm period documented on South Georgia (see figure 2.13) caused 

increase vegetation cover and as documented in Bimie (1990) an increase in organic 

input in the lake catchment. This is fiirther supported by pollen analysis which indicates 

peat development prior to 2700 '''C yrs BP (Bimie 1990). Licreased vegetation cover 

and a warm climate suggests a stable catchment where inputs are likely to be minimal. 

Comparing this to the climate record from South Georgia, it appears this climatic 

optimum ceased earlier in the catchment than in other areas on South Georgia, however, 

this can be attributed to slight dating errors or the maritime location of the study site. 

• 2900-2100 '''C yrs BP {Climate deterioration 2600 '"Cyrs BP) 

Although changes in diatoms often reflect changes in lake chemistry rather than a 

change in temperate, the presence of two new types of Diatom species in the lake record 

at 2600 ''*C yrs BP coupled with a change in stratigraphy suggests a cooling (Bimie 

1990). Associated with this cooling is a decline in vegetation cover, decreasing 

catchment stability and increasing minerogenic inputs into the lake. 
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• 2100-1000 yrs BP (2600 - 1600 '"C yrs BP) 

The presence of Compositae pollen at 2000 '"̂ C yrs BP suggests a climatic warming and 

associated increase in vegetation cover (Bimie 1990). Clapperton et al. (1989) indicate 

that glacier expansion occurred during this period, although there are no glaciers located 

in the catchment, this advance suggests an increase in precipitation and decrease in 

catchment stability, hence, increasing the inputs into the lake. From this evidence, it is 

likely that this period, although warmer than 2600 '''C yrs BP was not as warm as pre 

2600''*C yrs BP. 

• 1000 - 500''^C yrs BP 

Evidence presented by Bimie (1990) suggests that by 1000 '"̂ C yrs BP the climate began 

to deteriorate. An increase in minerogenic sediment in the core indicates a decline in 

organic content and a decrease in catchment stability. A peak in minerogenic content 

and increase in palynomorph concentration suggests this cooling and catchment 

instability peaked at 600 ''*C yrs BP. This is further supported by glaciological evidence 

presented by Clapperton et al. (1989). 

• 500 yrs BP - Present 

From 500 '''C yrs BP to present, proxy records indicate climate amelioration, increased 

vegetation cover and associated increase in catchment stability (see figure 2.13) 
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Figure 2.14: A summary of sub Antarctic climate change through the late Holocene. 
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2.3.3 Regional environmental change 

It is widely documented that the period from 4700 to 2000 '̂̂ C yrs BP was warmer than 

today (Hodgson et al. 2004), although the exact timing of this varies across the 

Antarctic region. From ice cores in Antarctica, Ciais et al. (1994), suggest that a 

warmer, more stable period occurred from 4500 ''*C yrs BP. This period of climatic 

optimum conditions occurs slightly later on the Antarctic Peninsula, at 4000-3000 '''C 

yrs BP (4400- 3100 cal yrs BP) and is delayed fiuther on Sub- Antarctic Islands 

(Ingolfsson et al. 1998). Pollen records from lake sediments on Livingston Island, 

(South Shetland Islands) suggest milder, more humid conditions from 2700 ''̂ C yrs BP 

(Bjorck et al. 1991a). This period is termed the Mid Holocene Hypsithermal and it is 

widely recognised that during this period, there was rapid sedimentation, high organic 

productivity and increased species diversity (Hodgson et al. 2004) 

2.3.3.1 2600-2000 '"̂ C yrs BP (South Georgia climate deterioration) 

Records from the Antarctic Peninsula, Antarctica and the Southern Ocean, indicate a 

significant climatic shift at 2400 '"̂ C yrs BP (2500 cal yrs BP) (Domack and Mayewski 

1999). Marine records from the Antarctic Peninsula suggest that the climate 

deterioration occurred at 2700 ''*C yrs BP causing reduced productivity and more 

extensive and persistent sea ice (see figure 2.14) (Ingolfsson et al. 1998). This correlates 

with evidence on South Shetland Island, which implies cooler conditions commenced at 

2700 •''C yrs BP (2800 cal yrs BP) (Bjorck et al. 1991a). Although this shift occurred 

slightly earlier in this region than on South Georgia, this may be a result of the lag time 

within the system and the more northerly location of South Georgia. Although, Hodell 

et al. (2001) provide a correlation of Holocene climate change at Taylor Dome, North 

Atlantic and the Southern Ocean in which all the records show a significant climate shift 

at 2500 '''C yrs BP (2500 cal yrs BP). This correlation throughout the Southern Ocean 

indicates a significant climate change occurred at this time that was likely to be caused 

by a global forcing mechanism. Domack and Mayewski (1999) identify this climate 

shift in GISP2 core from Greenland, which indicates a cool episode commencing at 

2500 *'*C yrs BP (2500 cal yrs BP). Evidence from Chilean records, suggest a less 

humid phase occurred from 2500 ''*C yrs BP (2500 cal yrs BP), suggesting this change 

in climate at 2500 ''*C yrs BP (2500 cal yrs BP) had regional implications and was 

possibly a result of a regional shift in the position and sfrength of the Westerlies (Lamy 

etal 2001). 
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The climate change widely documented to occur at 2500 ''*C yrs BP (2500 cal yrs BP) is 

not evident in all the records on the Antarctic Peninsula, suggesting the forcing 

mechanism for this change was of local origin. At James Ross Island, a warmer arid 

phase commenced at 3000 '"̂ C yrs BP (3100 cal yrs BP) and lasted until 1200 ''̂ C yrs 

BP (1050 cal yrs BP) (see figure 2.14) (Bjorck et al. 1996; Jones et al. 2000). This also 

correlates with the Palmer Deep record that indicates that fi-om 3000-2000 cal BP 

conditions were more humid than present with a reduced sea ice extent, with a 

particularly warm event occurring at 2680 cal BP (Noon et al. 2003). Although this 

warming is not documented in the South Georgia record or in other records fi-om the 

Antarctic Peninsula, the increase in humidity does correlate with the glacier advance on 

South Georgia that was delayed afl;er the onset of the climate deterioration, which Noon 

et al. 2003 infer to be related to a northward shift of the Southern Westerlies. 

2.3.3.2 2000-1000 yrs BP (South Georgia warm phase) 

On the Antarctic Peninsula, glacier advance occurred fi-om 2000 '"̂ C yrs BP (1850 cal 

yrs BP), suggesting a change in the precipitation regime but not necessarily 

deterioration (Ingolfsson et al. 1998). On the South Shetland Islands, the opposite 

occurred as Bjorck et al. (1991a) document deterioration fi-om 1300-700 ''*C yrs BP 

(1200-600 cal yrs BP). This is in agreement with records fi-om Antarctic ice cores, 

which record an important cooling which commenced at 2000 '"̂ C yrs BP (1850 cal yrs 

BP) and culminated at 1000 '''C yrs BP (850 cal yrs BP) (Ciais et al .1994). 

2.3.3.3 1000-200 '"̂ C yrs BP (Cooling, fluctiiating climate at South Georgia) 

The cooling experienced in South Georgia at 1000 ''̂ C yrs BP (850 cal yrs BP), is also 

evident in records fi-om the Antarctic Peninsula, Sub Antarctic Islands and ice core 

records at Taylor Dome (Noon et al. 2003; Hodell et al. 2001). Cooling commenced 

first at South Shetland Islands, as Bjorck et al. (1991b) document more continental 

conditions fi-om 1500- 500 "'C yrs BP, with the coldest period starting at 1300 "*C yrs 

BP (1200 cal yrs BP) and lasting until 700 ^̂ C yrs BP (600 cal yrs BP). On the Antarctic 

Peninsula, a cooling of 0.5-rC began earlier at 1400 "'C yrs BP (1250 cal yrs BP) 

(Clapperton 1990). This cooling was delayed until 1300 ''̂ C yrs BP (1200 cal yrs BP) on 

Signy Island, when a deterioration occurred following the long lasting climatic optimum 

(see figure 2.14) (Jones et al. 2000). 
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The maximum climate deterioration at South Georgia that commenced at 600 '"̂ C yrs 

BP correlates with regional climate fluctuations. At Signy Island, a relatively warm 

period ceased at 600 '''C yrs BP. This deterioration is documented earlier on James Ross 

Island, commencing at 750 "'C yrs BP and lasting until 500 '''C yrs BP (Zale and Karlen 

1989). However, these events are not documented on the South Shetland Islands as 

maximum deterioration commenced at 1300 '''C yrs BP (1200 cal yrs BP) and ceased at 

700 '"C yrs BP (600 cal yrs BP) (Bjorck et al. 1991). This fluctuation correlates with 

evidence from the Antarctic Peninsula, which indicates warming, termed the Medieval 

Warm Period (MWP) commencing at 1000 "*C yrs BP (850 cal yrs BP), ending at 500 

''̂ C yrs BP with the onset of the Littie Ice Age (LIA) (see figure 2.15), documented as 

the strongest of late Holocene cold and warm periods in the Antarctic Peninsula region 

(Khim etal. 2002). 
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Figure 2.15: A high-resolution magnetic susceptibility record from the Eastern 

Bransfield Basin, Antarctic Peninsula highlighting the timing of the Little Ice Age 

(LIA) and the Medieval Warm Period (MWP) in the region. Source: Khim et al. (2002: 

243). 
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2.3.3.4 200 •''C yrs BP 

Thompson et al. (1994) suggest a cooler period on the Dyer Plateau (Antarctic 

Peninsula) from 1850-1930 AD when accumulation rates and dust increased in ice 

cores. On Signy Island, from 1820-1880 AD a glacial advance occurred, thought to be a 

response to northward displacement of the Antarctic circumpolar trough (Noon et al. 

2003) . This movement of the Antarctic Circumpolar Trough correlates with the ice 

readvances on South Georgia at 200 ''*C yrs BP, reaching a maximum in 1875 AD 

(Bimie 1990). Peat deposits from Argentina suggest this climate deterioration also 

affected the Southern Ocean and Southern South America climates (Mauquoy et al. 

2004) . During the early 20* century, across the Antarctic regions glaciers advanced 

until 1950, when refreat began (Clapperton and Sugden 1989; Clapperton 1990; CoUins 

1976; Hayward 1983; Noon et al. 2003; Thompson 1994). This sfrong regional coupling 

during the 20* century across the Antarctic Peninsula and Sub Antarctic Islands implies 

a regional change in atmospheric and oceanographic circulation patterns (Noon et al. 

2004). 

2.3.3.5 Summary 

Evidence for environmental change in the Sub Antarctic Islands and Southem Ocean 

through the Holocene is conflicting as a result of the spatial interactions of the Polar 

Front and Westerlies (Jones et al. 2000). Although the climate signature across the 

region is varied there are some significant trends documented throughout the region, 

implying that regional factors are influencing these changes. Data from the Palmer Deep 

core suggests a mid Holocene climatic optimum (hypsithermal) culminated around 3360 

cal yrs BP (Domack et al. 2001). Records from the Antarctic Continent (Dome C) 

suggest a cooling followed this optimum from 2300 '''C yrs BP (Masson-Delmotte et al. 

2004) which can be correlated with the climatic deterioration at South Georgia from 

2600 ''*C yrs BP (2600 cal yrs BP) (Rosqvist and Schuber 2003). As this pronounced 

cooling is documented across the Antarctic region, it suggests that a significant climate 

shift of regional significance occurred at this time. 

Although the period of cliniatic deterioration is punctuated with periods of warming, 

there are no regional climatic frends evident in the records until approximately 1000 ''̂ C 

yrs BP (850 cal yrs BP), when a fiirther cooling occurred. Evidence from the Palmer 
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Deep core implies that after the mid Holocene optimum, which culminated at 2600 ''*C 

yrs BP (2600 cal yrs BP) on South Georgia, climatic deterioration occurred, which 

intensified at approximately 1000 '"̂ C yrs BP (850 cal yrs BP), correlating with the 

period known as the Little Ice Age from 700 cal yrs BP to 100 cal yrs BP (Domack et 

al. 2001). Evidence suggests that the period of warming from 2000-1000 '''C yrs BP 

(1850-850 cal yrs BP) is only documented at South Georgia. The forcing mechanism 

may be of regional origin, however, as there are a variety of regional responses to a 

single forcing event, it is possible that the effects on South Georgia are more 

pronoimced than other areas of the Southem Ocean (Hall and Perry 2004). The onset of 

enhanced cooling began at 1400 ''*C yrs BP (1250 cal yrs BP) in the Antarctic 

Peninsula, 1000 "*C yrs BP (850 cal yrs BP) on James Ross Island and 600 ''*C yrs BP 

on South Georgia and in the ice core record at Dome C (East Antarctica) (see figure 

2.11 and 2.14). This strong coupling of the timing of climatic change in the Antarctic 

region suggests that the forcing mechanism is of regional or global origin (Masson-

Delmotte et al. 2004; higolfsson et al. 1998; Bjorck et al 1996). 

The sfrong similarity between ocean and terrestrial records for the past 4000 '"'C years 

in the Antarctic Region suggests a sfrong coupling process is operating at this timescale 

(Masson- Delmotte et al 2004). hi all records the 2600 and 600 ''*C year BP (2600 and 

540 cal yrs BP) events are clear, however, there are a number of smaller climatic 

changes occurring on a local level, suggesting a variety of climatic forcing mechanisms 

are affecting the region (Fabres et al. 2000). 

2.4 Historical records of climate change 

The proxy record outiined in section 2.3 provides an indication of the climate conditions 

on South Georgia prior to human intervention. This can be compared to ftir seal 

population fluctuations and therefore, used to evaluate the impact of climate change on 

the fiar seal population. Natural climate changes must also be assessed during the time 

of human intervention to allow the impact of recent climate change on the fiir seal 

population to be evaluated in comparison to the human induced changes. Although it 

can be argued that human intervention has influenced climate in the recent past, this 

cannot be quantified and for the purpose of this study, all climatic changes are regarded 

as natural environmental changes and human induced changes are regarded as those 

outlined in section 2.5.1. 
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There is a broad scientific consensus that the climate has warmed by 0.6 °C during the 

20* century (IPCC 2001). Figure 2.16 shows the average armual temperature recorded 

on South Georgia fi-om 1905. It is clear fi-om this that there has been a significant 

warming trend since 1970, consistent with the Southern Ocean region and the Antarctic 

continent (Weimerskirch et al. 2003; Raper et al. 1983). 

3.0 

4 

1920 1940 1960 1980 1900 2000 

Figure 2.16: Average temperature record for Gryviken, South Georgia. The smoothed 

line is the running average, calculated on Sigma plot using the running average fiinction 

and sampling proportion set at 0.1. Data Source: www.antarctica.ac.uk/met/READER 

2.4.1 1920-1940 (Cooling) 

The coldest period during the 20'*' century occurred fi-om 1923- 1939 (see figure 2.16), 

when annual average temperatures were up to 1.7 °C cooler than today. This is reflected 

in the glaciological record as glaciers reached their maximum advance during the late 

1920's (Hayward 1983; Clapperton 1970). In conti-ast to this, Ainley et al. (2005) 

establish a warming of the sea surface temperatures fi-om 1925-1946 as a result of a 

positive Pacific Decadal Oscillation (PDO). Particularly warm years are thought to be 
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1929/30 and 1936/7 (Whitehouse et al. 1996). However, as figure 2.16 shows, although 

1936/37 was a warmer year within the colder period, it was still significantly cooler 

than the period from 1940-1960. 

2.4.2 1940-1960 (Warming frend) 

Following this cold period, figure 2.16 highlights a warming trend from 1940-1960. 

During this time, McGowan et al. (1998) provide evidence for a sfrong ENSO event in 

1957/58 that resulted in a warming of the oceanic temperatures, disturbing the structure 

of the plankton communities in the Southem Ocean and the South Pacific. This 

warming from the ENSO event is an anomaly within a negative PDO phase from 1947-

1976, causing a decline in sea surface temperatures (Ainley et al. 2005). Glacier 

fluctuations at South Georgia during this warming phase showed a slow refreat until the 

late 1940's and then a short rapid advance in the early 1950's, reaching a maximum in 

1956 (Hayward 1983). Variability in the glacier activity during this time reflects both 

the temperature regime and precipitation changes. The warming frend at South Georgia 

was also occurring on the Antarctic Peninsula from the 1940's and is correlated with the 

reduced frequency of winter sea ice since that time (Loeb et al. 1997). 

2.4.3 1960-Present day 

During the 1960's and 1970's temperatures remained relatively constant at South 

Georgia. Figure 2.16 shows that from 1970 the temperature increased more rapidly than 

previously during the 20* century. This is consistent with all other terrestrial and marine 

records in the Southem Ocean region and suggests a regional or global forcing 

mechanism influenced the climate at this time (Wiemerskirch et al. 2003). Coupled with 

this increase in temperature, sea ice extent declined across the Southem Ocean region 

and glaciers refreated on South Georgia (Croxall et al. 2002; Hayward 1983). This 

warming is also evident from the PDO index which was sfrongly positive from 1977 to 

1988, when two periodicities coincided, causing this to be the most intensive positive 

regime in the 20* centiiry (Ainley et al. 2005). 

From the mid 1980's, records from across the Southem Ocean region suggest the mean 

temperature remained constant (Weimerskirch et al. 2003). However, it is not clear 

whether this plateau occurred on South Georgia due to the incomplete data set (see 

figure 2.16). The PDO index suggests a short negative (cooler) phase from 1989-91 
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followed by a warmer phase that has lasted from 1992 until the present day (Ainley et 

al. 2005). Although this was a warming period, it is widely recognised that strong 

ENSO events occurred in 1982/83 and 1997/98, causing extreme cold anomalies in the 

Southem Ocean in the South Georgia region, a result of the intmsion of the Southem 

Aflantic Circumpolar Current front (McGowan et al. 1998). These cold intmsions 

correlate with air temperature measurements on South Georgia, implying that the 

climate of South Georgia is very susceptible to ENSO events (Meredith et al. 2005). 

2.5 Fur seal population on South Georgia 

South Georgia was first explored in 1775 (after first sightings by Cook in 1675), with 

sealing developing rapidly in the latter part of the 18* and early 19* centuries 

(Headland 1982). The exploitation of fiar seals commenced in 1786 therefore, the actual 

fiar seal population prior to exploitation was never documented (Headland 1984). Due to 

the high competition for the seals and thus, commercial secrecy, very few sealing 

expeditions following the discovery of South Georgia have been documented. The 

number of seals taken from the island during the sealing epoch from documented 

expeditions is also unknown as the sealers maintained secrecy about places with a large 

fiir seal population in the hope that they could exploit seals in subsequent seasons 

without any competition. 

2.5.1 Exploitation 

There are thought to have been 3 peaks in sealing activity, the first and largest 

exploitation took place from 1786-1802. Records of the number of skins taken during 

this time are very limited, however, some records suggest that in one season (1800/01) a 

minimum of 112,000 skins were taken (Headland 1984). Following this first sealing 

epoch, the Napoleonic wars prevented any sealing occurring again until 1814. During 

this second sealing epoch, exploitation was not as extensive as the seal stocks of South 

Georgia were depleted therefore, sealers began to exploit other islands such as the South 

Shetland Islands which had previously not been discovered. This shift to other islands 

reduced the pressure on South Georgian seal stocks, which were still very low, as they 

had not recovered from the first period of sealing (Headland 1984). By 1822 it was 

calculated that 1,200,000 fiir skins had been taken and the fiir seal population was 

nearly extinct, causing the sealing to cease in 1823 (Bonner 1994). A third peak 

occurred again in 1869, however, as the fiir seal population had been exploited so 
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extensively, the focus was predominantly upon the elephant and leopard seals rather 

than the fijr seals, and very few were taken from the island (Headland 1984). Elephant 

seal populations did not suffer in the way fur seal populations did, as elephant seal oil 

was not as valuable therefore, it was only profitable to hunt elephant seals in areas 

where they were abundant. Fur seals however, were more valuable hence, it was 

profitable to take fur seals even from areas with very few seals (Headland 1982). 

Although the population had reached almost extinction, small-scale hunting continued 

until 1907, which is thought to be responsible for the halting recovery of the population 

during the second half of the 19* Centiiry (Headland 1984). 

2.5.2 Post Exploitation 

Although census data has improved during the 20* century, the foraging nature of fur 

seals causes data collection to be problematic hence, many data sets are only estimates 

and there are no continuous records available (Payne 1977). Despite this lack of census 

data, it is widely documented that the fur seal population in the Southem Ocean 

increased rapidly following exploitation (Headland 1984; Hodgson et a/. 1997; Sun et al. 

2004; Payne 1977; Bonner 1985). Table 2.1 and figure 2.17 show the available census 

data at South Georgia. 
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Table 2.1: A l l the available fur seal population census data fi-om South Georgia 1930-

1999. Adapted firom Grant, S. (pers. comm.) 
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Figure 2.17: A graph showing the estimated rates of fur seal population increase at 

South Georgia from 1930-2000. Data is used from sources outlined in table 2.1 (note 

logarithmic scale for population) 

The census data for mainland South Georgia and specifically the study site (Maiviken) 

is limited, however, the record for Bird Island is more extensive as the rapid increase in 

ftir seals in this region caught the attention of many researchers. Table 2.1 indicates that 

in 1930 the first pups were bom at Bird Island following the sealing industry (Bonner 

and Walton 1985). By 1933 the population had reached 38 seals and by 1936 this had 

increased to 59 (Payne 1977). From this initial census, the population documentation is 

very limited until 1956, when thriving colonies were observed at Bird Island and on the 

main island of South Georgia. On Bird Island, during the 1957/58 season, 5,350 pups 

were counted, increasing to 11,500 in 1963/64 and 102,000 in 1976/77 (Croxall and 

Prince 1979; Laws 1973). By 1963/4 the most suitable areas on Bird Island were 

occupied by breeding seals, forcing nuclei of further colonies to be established on the 

mainland of South Georgia (Payne 1977). During 1975/76 the population on the 
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mainland exceeded that of Bird Island, with over half the total pups bom on mainland 

beaches, the total fiir seal population of South Georgia being estimated at 369,000 and 

increasing at a rate of 16.8 % per annum (Bonner 1985; Payne 1977). 

Following the rapid increase in the population from the 1930's to 1970's, Croxall and 

Prince (1979) document reduced breeding success at Bird Island in 1977/78. This 

decline in the fiir seal population has been correlated with a reduced krill population as 

a result of a change in the water currents surrounding the island (Bonner and Walton 

1985). Following this brief decline in the growth rate, the 1980's saw the population 

stabilise and the rate of increase declined to 9.8% per annum as the population reached 

856,000 in 1982 (Bonner 1985). By 1999, the total population was estimated to be 

3,000,000 however, the rate of increase was declining with some years experiencing a 

negative growth rate (Boveng et al. 1998; Hucke-Gaete et al. 2004; ATOM 1999). 

Particularly significant years of decline were documented in 1991, 1994 and 1998, and 

were linked to ENSO events (Reid and Croxall 2001). 

As the fiir seal record is not continuous and most years are estimates, it is difficult to 

determine whether the population declined briefly in some years. Although the rate of 

increase has changed, the actual rate of change is difficult to determine as it is based on 

a few estimates hence, the precise timing of the change cannot be correlated accurately 

with climate changes and the short-term impacts on the fiir seal population cannot be 

assessed. 

2.5.3 The Situation Today 

At South Georgia the fiir seal population expanded rapidly from initial recolonisation on 

Bird Island during the early 20* century. Although the population has expanded onto 

the mainland today 75% of the fiir seal population in the Southem Ocean still breed 

within a 50 km radius of Bird Island (Barlow et al. 2002). The rate of increase at Bird 

Island has declined as the carrying capacity has been attained on the island therefore; 

the population is forced to migrate to other areas where the point of saturation has not 

already been reached (Barlow et al. 2002). At Maiviken there is no fur seal census data, 

however, due to proxihiity to Bird Island, it can be assumed that the population formed 

as Bird Island reached its carrying capacity and hence, immigration of the fur seals took 

place. Although the population of Bird Island has stabilised, evidence suggests that 
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populations on all mainland coastal areas continue to increase (SCAR 1999). 

Observations in 2003 at Maiviken suggest fur seals are present in large numbers and are 

causing damage to the tussock grass (Bentiey, M. , pers. comm.) supporting the 

inference of an increasing population 

2.6 Fur seal population of the Sub Antarctic Islands 

Although South Georgia is the main breeding ground for the Antarctic Fur Seal in the 

Southem Ocean, the population of fur seals on other sub Antarctic islands is also 

increasing at a rapid rate (Hodgson et al. 1998; Sun et al. 2004). It is thought that the 

rapid rate of population increase on the other islands in the Southem Ocean is 

augmented by the immigration of fur seals from South Georgia (Hucke-Gaete et al. 

2004). It is therefore necessary to consider the rate and timing of these population 

changes to evaluate the factors which may have caused this migration from South 

Georgia. 

In 1948, the South Orkney Islands were the first islands to be recolonised by fur seals 

after South Georgia. From 1977 to 1994 the population increased rapidly and in 1994 

the fur seal population reached 20,500 (Hodgson et al. 1998; Laws 1973). The South 

Shetland Islands were free from seal harvesting 20 years prior to South Georgia, and 

even though the extent of exploitation was not as great, recolonisation did not occur 

until 1958 (Boveng et al. 1998). Since then the growth rate of the main colonies has not 

exceeded 11 % per annum. The densities of the breeding colonies are much lower on the 

South Shetiand Islands than on South Georgia and it is unusual that the growth rate of 

the fiir seal population is lower than on South Georgia. This suggests that population 

density has not been a primary factor limiting population growth rates (Boveng et al. 

1998). Although some minor colonies on the South Shefland Islands have increased 

much more rapidly, with population growth rates reaching a maximum of 58%, such a 

rapid increase is biologically impossible from breeding alone therefore, the rapid 

increase is thought to be a result of immigration from South Georgia (Bonner 1985; 

Hucke-Gaete et al. 2004). After 1990, the growth rate of all the colonies on the South 

Shetland Islands slowed to 4.6% and the population is now 30,000 (Hucke-Gaete et al. 

2004; Boveng et al 1998). This stabilisation of the population growth rate suggests that 

immigration from South Georgia has ceased and the colonies on South Shetland are 

now self-regulatory. However, the population is of a magnitude lower than levels prior 
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to exploitation (Boveng et al. 1998). Calculating the magnitude of the South Georgia 
population in comparison to levels prior to exploitation will provide a key insight into 
the factors controlling population recovery and the impact the sealing industry has upon 
Antarctic ecosystems. 

Other islands in the Southern Ocean, for example Marion Island and Heard Island have 

experienced similar growth rates to South Georgia after exploitation (Hofineyr et al. 

1997; Page et al. 2003; Guinet et al. 1994). The reestabhshment of the fiir seal 

population after exploitation on these other islands was delayed in comparison to the 

South Georgia and populations were not established until the mid 20* century (Page et 

al. 2003). Although the rate of increase was similar to South Georgia, (growth rates 

reached 17% on Marion Island) rates were not sustained for as long and today the 

populations have reached maturity and the growth rates have slowed dramatically 

(Hofineyr et al. 1997; Guinet et al. 1994). From this evidence, it would appear that the 

South Georgia population is unique, as the high population growth rate has been 

maintained for a sustained period of time. 

2.7 Possible causes for the increase in fiir seals 

It is widely recognised that the primary influences on population growth are the 

availability of prey and predator competition (Croxall and Prince 1979; Reid et al. 1999; 

Murphy and Reid 2001). As Weimerskirch et al. (2003) demonstrate, decline in food 

availability at lower trophic levels may underlie the general decline of top predator 

populations such as fiir seals. The primary prey of the fiar seal is krill {Euphausia 

superba) therefore, factors influencing the abundance and distribution of krill are key in 

determining the growth of the fiir seal population. Long-term population studies of 

predators at South Georgia have shown that reductions in breeding performance occur 

in years of low krill abundance (McCafferty et al. 1999; Siegel et al. 1998; Croxall 

1992; Reid and Croxall 2001; Clarke and Harris 2002). Although extensive studies have 

outlined the impact of fluctuations in prey availability in influencing fiir seal 

populations, very little consideration has been given to the effect of predator 

populations (Boyd and Murray 2001; Thomson et al. 2000). Predator populations 

however, are is also a potential factor which may influence population growth and 

should be considered when evaluating the possible causes of a step change in population 

growth. 
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Although there are a number of factors that influence population growth, ultimately 

these factors relate to the availability of prey and the extent of predator competition. 

Factors influencing the predator competition and prey availability can be categorised in 

two ways, firstly natural environmental changes and secondly human induced changes. 

2.7.1 Human induced causes 

Following the discovery of South Georgia in 1775, human influences have altered the 

dynamics of the ecosystem and consequent predator- prey relations, which have 

impacted on the fur seal population. The human influence on prey availability and 

predator competition and the effect on fur seal populations are examined below. 

2.7.1.1 Prey Availability 

The full extent to which prey availability affects fiir seal populations is unknown as the 

system is complex and there are a number of contributory factors. The primary human 

induced cause of reduced prey at South Georgia is thought to be the whaling industry. 

As discussed in section 1.4.2.2, South Georgia was the principal centre for whaling in 

the Southern Hemisphere and this extensive whaling caused a reduction in whales and 

resulted in a krill surplus and allowing a greater fur seal population to be supported 

(Croxall 1992). Although this had an impact on other populations in the Southern 

Ocean, for example gentoo and chinstrap penguins (Croll and Tershy 1998; Croxall et 

al. 1981), fur seals are the third most important consumers of kril l , and so the impact 

upon the fiir seal population was greater than the impact on these other species. The krill 

surplus is now widely recognised as the most probable cause of the increase in fur seals 

(Doidge and Croxall 1985; Croxall and Prince 1979; Croxall 1992; Green et al. 1989). 

This is for several reasons as Croxall (1992) indicates; firsfly, the removal of the Baleen 

whale reduced competition for krill within the Southern Ocean is the most significant 

short-term perturbation the Southern Ocean has ever sustained. Secondly, although krill 

populations are vast, their distribution is patchy and hence, wil l sustain long-term 

increases in predators before limiting populations. In areas of high krill abundance, 

recovery rates and reproductive performance of species are faster and better than 

elsewhere. 

66 



2: Background and Rationale 

2.7.1.2 Predator Competition 

The primary hioman influence on the predator competition for the fur seal is the act of 

killing the fur seal. The ending of the sealing industry and the implementation of 

rational conservation measures made it illegal to kill flir seals without a permit 

(Headland 1982). This reduced the number of fiir seal predators (humans)therefore, 

allowing the population to recover (Lewis-Smith 1988). 

2.7.2 Summary of human induced factors 

It is clear that the sealing and whaling industries had a significant effect on the fur seal 

population, with changes in prey availability being the most influential factor 

controlling populations. For example, southern elephant seals were also exploited at 

South Georgia at the end of the 19**̂  century and the population is now stable at 300,000 

(Headland 1984). The difference between these two species is their prey; fiir seal prey is 

predominantly krill , however, elephant seals feed predominately on squid and hence, 

did not directly benefit from the krill surplus created as a result of the whaling industry. 

Although prey availability was affected by human induced changes (i.e. the sealing and 

whaling industries), natural environmental changes can also have a significant impact 

on krill availability and predator populations (Reid and Amould 1996). 

2.7.3 Natural Enviroimiental changes 

Natural environmental changes are often operating at a similar time to human induced 

changes, however, as human-induced changes are often more apparent, these natural 

changes are often difficult to establish or even ignored. These natural changes must also 

be considered to evaluate how the fur seal population responded to changes prior to 

human intervention, allowing the impact of human induced changes on the fur seal 

population to be assessed. I shall now briefly examine these various natural aspects of 

fiir seal population fluctuations. 

2.7.3.1 Prey Availability 

Although there is strong evidence in support of the krill surplus hypothesis, Reid and 

Amould (1996) indicate that the distribution and abundance of krill is likely to be 
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dependent on a number of oceanographic and biological characteristics, changing in 

response to natural climate changes, thus, demonstrating the difficulty of attempting to 

establish a single causal mechanism for the change. 

2.7.3.1.1 Climate 

As Weimerskirch et al. (2003) highlight, correlations of large-scale climate changes and 

population sizes worldwide relate to abiotic components such as sea ice extent, sea 

surface temperatures and air temperature anomalies. As these factors affect the extent of 

an ecological niche, it would appear that climate change is a prime factor affecting the 

ecosystems (Meredith et al. 2005). Ainley et al. (2005) indicate in the Southern Ocean, 

ocean circulation and temperature is affected by Pacific Decadal Oscillation (PDO) and 

to some extent North Atlantic Oscillation (NAO). These anomalies in the Southern 

Ocean can cause changes in pressure systems and wind regimes that in turn affect ocean 

processes. Although this can directly affect populations through determining the 

temperature and hence, the ecological niche, indirectly it can also affect the population 

through influencing prey availability and hence, affecting the competition for prey. 

As Croxall (1992) finds, years of major unavailability of krill correlate with major 

ENSO events. Studies suggest that although a reduction does not influence the adult 

population, ENSO years correlate with a significantly lower fur seal pup production 

(Guinet et al. 1994). ENSO events alter the ocean circulation and as the Antarctic 

Circumpolar Current (ACC) is the primary mechanism transporting krill to South 

Georgia any fluctuation in the ACC will have a major influence on the reproductive 

success of the fiir seal and other krill-dependent predators (Clarke and Harris 2002). The 

link between prey availability and ENSO events implies climatic change indirectly 

affects the fiir seal population and it can be argued that the increase in the fiir seal 

population correlates with recent 20**̂  centiuy warming. 

Regional warming on the Antarctic Peninsula within the last 50 years has had a 

significant impact on the sea ice extent and it is now widely recognised that changes in 

populations are correlated to changes in sea ice extent (Ainley et al. 2005; Curran et al. 

2003 Clarke and Harris 2002; Croxall et al. 2002). For example, as McCafferty et al. 

(1999) suggest, adelie penguins are inversely related to winter sea ice at Ross Island, 

and hence, have increased in the past 40 years as the sea ice during this time has 

declined. Alternatively Emperor penguins populations have declined over the past 50 
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years, suggesting a positive relationship with the sea ice conditions. Although few 

studies suggest that fur seals are affected directly by ice, populations may be affected 

indirectly i f ice cover influences the prey populations and competition from other 

predators or predation (Croxall 1992; Croxall and Nicol 2004). It is widely recognised 

that krill reproduction and survival are significantly affected by the extent and duration 

of ice cover and as Loeb et al. (1997) highlight, since the 1980's regional warming 

associated with reduced sea ice extent has reduced the krill abundance, thereby 

diminishing the prey available for fur seal populations (Smetacek et al. 1990; Reid and 

Croxall 2001). 

2.7.3.1.2 Competition 

Barlow et al. (2002) established that years of the lowest reproductive output by 

predators at South Georgia have become more frequent in the last decade. Competition 

for krill is increasing and populations are having more difficulty surviving in years of 

low krill abundance. As Reid and Croxall (2001) suggest, the period of krill surplus 

following the whaling industry has now ended at South Georgia and due to the decline 

in krill there is now increased competition for prey between top predators. As Boyd and 

Murray (2001) highlight, krill is the dominant constituent in the diet of fur seals, gentoo 

penguins and macaroni penguins therefore, a change in any of these populations is 

likely to impact upon the krill population and hence, indirectly affect the fur seal 

population. 

Extensive research has shown that other species such as Adelie penguins, gentoo 

penguins, fulmars and snow petrels have been affected by climate change during the 

20* cenhiry (Croxall et al. 2002). For example, Thompson et al. (2001) highlight that 

fulmar populations have expanded in the past two centuries as a result of the 

oceanographic changes taking place. These chEinges in population increase the 

competition for krill in the Southern Ocean and therefore, reduce the population of fur 

seals that can be sustained. 

By contrast Barlow et al. (2002) suggest that increased competition does not affect the 

fur seal population as significantiy as other populations. The decline in the krill 

population of the Southern Ocean does not appear to have significantly affected the fur 

seal population, however, the macaroni penguin population (also a krill predator) are 

reduced. Barlow et ai (2002) suggest this may be due to the competitive advantage fur 
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seals have over other krill predator populations. I f this is the case, as Scheffer et al. 

(2001) highlight, it is increasingly clear that competition and predation are much more 

important in driving oceanic community dynamics than previously thought. 

2.7.3.1.3 Summary of prey availability 

It appears that although fur seals are significantly affected by prey availability, this is 

not in response to increased competition for prey. In studies of the competition between 

fur seals and other species (macaroni penguins), the exploitation of krill favours fur 

seals (Barlow et al. 2002; Croll and Tershy 1998). Hence, a decline in fur seal prey 

availability is not a result of increased competition firom other predators but from large-

scale environmental changes. Although i f the fhr seal population continues to increase, 

and the krill population continues to decline, it is likely that small scale fluctuations in 

krill populations are more likely to affect the fur seal population dynamics. 

2.7.3.2 Predator competition 

As fur seals are top predators very few studies have analysed the effect of predator 

populations on the fur seals, however, as a study by Boveng et al. (1998) highlighted, 

predator populations can dramatically affect fiir seal populations and this factor must be 

taken into consideration when analysing past populations and possible influences on 

population growth. An increase in predators, as a result of natural environmental 

changes may have a negative effect on the fur seal population i f fur seals are prey for 

these species. The main predator of the fur seal is the leopard seal, whose distribution is 

affected by sea ice and terrain (Boveng et al. 1998) 

2.7.3.2.1 Sea Ice 

Boveng et al's (1998) study established that the fur seal population growth on the South 

Shetland Islands is influenced by leopard seal predation. Yet this does not appear to be 

the case at South Georgia as leopard seals are absent during the fur seal breeding 

season. As leopard seals abmdance increases with proximity to sea ice, (sea ice is 

within 200km of the South Shetland Islands during the fur seal breeding season, in 

comparison to within 800km o f South Georgia) this appears to be an influential factor 

(see figure 2.18) (Boveng et al. 1998). Although leopard seals do not appear to 

influence the fur seal population on South Georgia today, during the late Holocene, it is 

possible that sea ice extent was more extensive therefore, the leopard seals may be 
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within a closer proximity to the fiir seals at South Georgia, having a negative impact on 

the population as observed at the South Shetland Islands today. 

South Georgia 
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Figure 2.18: Mean sea ice distribution in the Antarctic region. Source: Hansom and 

Gordon (1998) 

2.7.3.2.2 Terrain 

The terrain of the fiir seal breeding sites on the South Shetland Islands is also influential 

in increasing the impact of the leopard seal on the fiir seal population. On the South 

Shetland Islands, breeding sites are backed by steep rocky slopes or gentle slopes that 

are more exposed to other species therefore, the fiir seals do not spend as much time on 

the shore as on South Georgia hence, are more exposed to predation by the leopard seal 

(Boveng et al. 1998). Climate changes such as glacial advance and retreat may have 

altered the environment of South Georgia, consequently fijr seal breeding sites were not 

as favourable as today, forcing the fiir seals into the ocean for longer periods and 

increasing the threat of predation. Although as discussed in section 2.3.2.1, the 
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Maiviken area has not been glaciated since the LGM hence, this factor is unlikely to 

have affected the fur seal population in the late Holocene. 

2.7.3.2.3 Summary of predator competition 

Although the affect of predator competition does not appear to be an issue at South 

Georgia today, as Boveng et al. (1998) indicate, i f environmental factors are favourable 

to leopard seals this can negatively affect the fiir seal population. Historically, the 

situation at South Georgia has changed and as a result it is possible that during the 

Holocene the environment of South Georgia has altered, making it more favourable to 

other species that were potentially fiir seal predators. 

2.4.1 Summary of natural environmental changes 

It is widely accepted that climate change has a profound affect upon biotic components 

of marine ecosystems, however, the direct impact upon the fur seal population is unclear 

and the role of climatic variation in regulating marine populations and communities is 

not well understood (McGowan et al. 1998; Weimerskirch et al 2003; Croxall and 

Nicol 2004). This is due to a number of reasons; firstly interpreting the biological 

response to climate change is complicated by the highly coupled nature of the 

atmosphere-ice-ocean systems of the Southern Ocean; making it difficult to determine 

the cause of such changes (Croxall et al. 2002). Secondly, as breeding performance 

integrates measures of predator and prey behaviour over relatively long time periods 

both predator and prey may respond to a number of interlinked envirormiental factors , 

generating difficulties associated in defining the primary cause of change in either 

predator or prey populations (McCafferty et al. 1999). Thirdly, the biological 

consequences of climatic variability of the atmosphere and ocean are largely unknown 

(McGowan et al. 1998). Despite these uncertainties, research has highlighted that 

marine populations do respond to climatic events and major changes have taken place in 

the marine ecosystems in the past twenty years (McGowan et al. 1998). 

2.7.4 Summary of factors affects fiir seal populations 

Evidence suggests that the primary forcing factor influencing the fiar seal population 

today is the availability of Antarctic krill . Although the abundance of krill is intimately 

linked to climate variability, it has also been influenced by human induced causes. To 
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determine the individual impact of these differing causes, it is necessary to obtain long-

term data sets extending back prior to human intervention. 

The possible long-term impacts of the growth in fur seal populations can only be fully 

comprehended fi-om an appreciation of the natural change in fur seal populations and its 

response to environmental change (Ellis-Evans 1990). However, due to the rapid 

increase in fiar seal populations during the 20* century, smaller, annual fluctuations in 

population caimot be identified and related to environmental change. Reconstructing 

Antarctic fur seal populations through the Holocene wil l allow an assessment of fur seal 

population fluctuations prior to human intervention and provide longer-term context 

within which to assess recent changes. This wi l l then help to determine the extent 

hviman induced changes have had on the population, aiding management decisions. 

2.8 Fur seals on South Georgia and their impacts 

One of the key reasons to determine the cause of the fiir seal population increase at 

South Georgia is to evaluate the controlling factors underlying the fur seal population 

fluctuations to aid management and conservation decisions. To fully determine the 

potential affect future fur seal population growth may have on the environment, the 

current effects of the fur seal population on the natural environment must be first 

evaluated. This section wil l evaluate the impact the increasing fur seal population is 

having on the environment at South Georgia. 

Today the rapid increase in fur seals is altering the natural environment of South 

Georgia and threatening the existence of many bird and plant species. Although this 

impact is thought to be significant, the full impact of the fur seals on the terrestrial and 

freshwater systems at South Georgia has not been fully assessed. However, on Signy 

Island, where population recovery began approximately 20 years earlier than South 

Georgia, the impact has been determined and it is thought that the fur seals are causing 

irreversible damage to the environment (Lewis-Smith 1988). Although the rate of 

recovery at Signy Island was more rapid than on South Georgia, today the fiir seal 

populations are at similar levels on both islands. 

The primary vegetation in South Georgia is tussock grass (poa flabellata), occurring on 

raised beaches and other lowland areas (see figure 2.10). This tussock grass is the main 
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breeding ground for the fur seals, however, it is being dramatically altered by their 

increase (Headland 1984). As the tussock grass is a major habitat for fur seals, their 

excreta enrich the soil, producing deep green luxuriant growth of grass. This increased 

growth of tussock grass increases the size and abundance of leaves, shading surrounding 

plants and consequently reducing their growth (Bonner 1985; Headland 1984). 

Although growth of the tussock has increased in areas abundant in fur seals, the tussock 

grass is being rapidly eroded. Fur seals lie on the crown of the tussock crushing leaves 

and shoots, i f this is only temporary the tussock grass recovers. The increased 

population however, is creating an increased pressure on the tussock grass and the 

tussocks do not have time to recover as the fur seals repeatedly lie on the tussocks, 

resulting in bare peaty mounds that may be colonised by algae (Bonner 1985). Seals 

moving across the tussocks further erode the vegetation and the soil between the plants, 

forming pedestals of vegetation (see figure 2.19) (Headland 1984). This destroys the 

habitats of many invertebrates such as permylopid beetles, coleopeta, diptera, 

collembola and acarina to such an extent that these species are now facing extinction 

(Bonner 1985). 

Figure 2.19: Fur seals sitting in tussock grass, illustrating the primary vegetation of 

South Georgia (tussock grass). 
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Figure 2.20: A fiir seal lying on a mound of tussock grass while feeding her pup. As the 

population increases, the tussocks are occupied by fiir seals for longer periods, not 

allowing the tussock grass to recover. Source: Bonner (1994:57) 

As Croxall et al. (1990) document, other larger species are also threatened as a result of 

the declining tussock grass. In the areas with most abundant seals, albatross breeding 

has declined; this is thought to be because the fur seals have destroyed the albatross' 

breeding habitat (tussock grass) depriving the birds of breeding and exposing them to 

predation (Bonner 1985). Although there is no evidence that seals are adversely 

affecting breeding success or survival, the proportion of birds being recruited into a 

breeding population are avoiding areas where seals are abundant and breeding in areas 

where fiir seals are absent. On Signy Island several giant petrel colonies have also been 

abandoned due to fiir seal disturbance (Lewis-Smith 1990). 

In several localities, extensive areas of moss carpet bog have been compacted and 

recolonised by nitrophilous alga and in some areas this erosion has been so extensive 

that all vegetation has been destroyed, leaving large areas of bare soil to be colonised by 

Prasida crispa and other resilient algae (Headland 1984). This movement of seals and 

the consequent destruction of vegetation have caused major peat and soil erosion as the 

reduction in vegetation cover is exposing the soil, increasing the amount washed away 

in surface run off. Removal of the soil in this marmer is also disrupting loosely attached 

mosses and lichens. Such erosion is increased further in areas where seals occupy the 
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tussocks as the water table is at or near the surface, pools of stagnant water form 

between the tussocks, further increasing the erosion of the tussock grass (see figure 

2.21) (Lewis-Smith 1981). 

Figure 2.21: Fur seals lying on tussock grass. As a result pools of mud have developed 

among the tussocks and increasing erosion. 

In addition to its erosion, the remaining soil is becoming more acidic and higher in 

nitrogen levels as seal excrement alters the chemistry of the soil. Although this has 

acted as a fertiliser, this has also had negative effects on the fresh water environments; 

causing eutrophication, leading to the domination by few taxa and modifying the 

microbiota of the freshwater system (Hawes 1990; Lewis- Smith 1990). 

As the fur seal population increases, the population is expanding from its initial 

breeding ground on Bird Island and the fur seals are migrating to the coastal areas on 

the mainland of South Georgia. Although the greatest impact is on the passage of the fur 

seals as they move from the sea to inland resting sites, population expansion means that 

coastal regions are overpopulated, causing the fur seals to migrate further and further 

inland, expanding the impact of fur seals. As a result of this, today slopes up to almost 

200 metres altitiide are now being threatened (see figure 2.22) (Croxall and Prince 1979; 

Bonner 1985; Lewis-Smith 1988). This is now causing extensive changes to terrestrial 

and freshwater systems and in some areas damaging Antarctic Specially Protected 

Areas (ASP As) as the composition of communities is being drastically altered (Hodgson 

et al. 1998; Lewis-Smith 1990). It is estimated that fur seal induced changes on Signy 
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Island are the greatest and most rapid since the retreat of the Pleistocene ice sheet 

(Lewis-Smith 1990). 

Figure 2.22: Fur seals on the beaches of Maiviken. The vegetated slopes behind the 

beach are now being eroded as the fur seal population increases. 

2.8.1 Management of fiir seals on South Georgia 

The sub Antarctic ecosystem is a fragile environment and recovery of this environment 

is slow even to minor damage (Headland 1984). Destruction of the environment poses 

important questions for conservationists and environmentalists (Lewis- Smith 1988). 

Firstly should seals remain a specially protected species in accordance with Antarctic 

Treaty Agreed Measures on the Conservation of Antarctic flora and fauna to permit 

numbers to increase and establish a breeding population, while destroying unique 

terrestrial and freshwater environments? Alternatively, should fur seal population 

growth be restricted through reducing these measures whist protecting the environment 

through a series of control measures? Fur seals were initially protected due to the near 

extinction of the species as a consequence of the rapid human exploitation. As this 

measure has been successfiil (perhaps too successfiil), should these protection measures 

be lifted to allow the environment to recover and reduce the dominance of fur seals? For 

example as Lewis-Smith (1988) outlines, on Bird Island, South Georgia enclosures have 

been formed using electrified fencing to prevent the advancement of fur seals. This has 

allowed substantial colonisation by green filamentous algae and encouraged the 

regrowth of the eroded tussock grass. I f the fiir seal population continues to grow at the 
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same rate, it is possible this population's impact is likely to have a catastrophic and 

irreversible affect on these systems. 

The key to answering this dilemma, as Abbott and Benninghoff (1990) outline, is to 

determine the range of natural variability in the Antarctic ecosystem and to distinguish 

changes fi-om human perturbations. This can only be comprehended fi-om an 

appreciation of the natural change in fur seal populations and its response to 

environmental change (Ellis-Evans 1990). The increase may be a naturally occurring 

fluctuation, cycle or unidirectional process, however, it may be a change in response to 

artificial influences such as pollution or commercial harvesting (Croxall and Prince 

1979). I f this increase in fur seals is a result of natural causes and a similar event has 

happened previously, then it is likely that the fur seal populations wil l regulate naturally 

and the system wil l recover and restore its equilibrium and management will not be 

necessary. However, i f this is not the case and fur seal populations in the 20'*' century 

exceed all historical populations, the likelihood that the equilibrium will be restored is 

lower hence, necessitating management measures to prevent the loss of unique and 

fragile environments. 

As Croxall (1992) establishes, assessing the effects in relation to natural variability and 

human induced changes is difficult for a number of reasons. Firstly, the fossil record is 

limited, and gives few clues to the history of the species in relation to the varying 

environments that have characterised the Antarctic. Secondly, all documented 

population changes relate to human exploitation therefore, any influence of natural 

causes and recovery of the ecosystem cannot be assessed. Thirdly, an important gap in 

the knowledge is an understanding of how the physical environment influences the 

distribution and abundance of prey, which in turn may affect the population (Croxall et 

al. 1990). In addition to this, fUr seals have low reproductive and mortality rates, thus, 

responses to such environmental change are slow and often hard to detect (Croxall 

1992). Lastly, there are few detailed understandings of the mechanisms by which the 

Southern Ocean top predator populations are regulated although some plausible 

hypotheses are now emerging for a regulation by prey availability (Reid and Amould 

1996, Boveng et al. 1998). As Croxall et al (2002) indicate, evidence is still limited and 

these processes operating within system are only one part of the picture and other 

processes triggered by mechanisms outside the system may be crucial to this 

understanding. 
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2.9 Summary 

This chapter outiines the background to the fiir seal population changes and the climate 

changes through the Late Holocene. This background knowledge wil l then be applied to 

the results that are presented in chapter 4. The next chapter will outline the methodology 

for reconstructing the fiir seal population through the late Holocene. 
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Chapter 3 

Methodology 
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Plate 3: Fur seal hair after preparation. 
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3: Methodology 

The use of palaeohmnology to reconstruct fur seal populations is a relatively recent 

development that has not been widely utilised and methodologies utilising this 

technique are still developing. As stated in the objectives (chapter 1), this study uses the 

methods outlined by Hodgson et al. (1998) to reconstruct the fur seal population from 

hair abundance in sediment cores however, due to the nature of the sediment at this site, 

I refined the methodology to suit the study site accordingly. Following this is 

geochemical analysis which is based upon techniques employed by Sun et al. (2004a), 

with alterations being made to suit the study site and the techniques available. 

3.1 Sediment cores 

The relative depths of the cores are shown in figure 3.1. HUM3 was extracted using a 

Piston Corer to get the deeper sediment record, while MIAV/K was extracted using a 

KuUenberg corer hence, ensuring the sediment water interface was intact. Cores were 

transported stored in tightly sealed plastic tubing and kept cool for transportation to the 

UK before being stored in a cold store. 

3.1.1 Core depth and scaling 

As figure 3.1 shows, the MAIV/K core extracted the top 90 cm of sediment. However, 

during transportation and storage the core shrunk due to the large volume of water 

present in the core during extraction. For this reason when the core was sub sampled in 

the UK it was only 68 cm long. HUM3 core was taken 100cm below the surface of the 

sediment to provide a deeper record and to continue the record taken from the MAIV/K 

core. This core shrank by 10cm, as the volume of water in the core was not as great as 

MAIV/K due to the depth of the core. 
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Figure 3.1: Relative depths of the cores 

The shrinkage of the cores left a gap of 32cm between cores. However, as the MAIV/K 

core was extracted to a depth of 90cm, the actual amount of sediment not extracted is 

only 10cm, (90-100cm below the surface of the sediment). As in both the cores, the 

whole core shrank, it is unclear exactly where most of the shrinkage took place. In my 

methodology I refer to samples, these are the sub samples of the core and the deepest 

sub sample in the MAIV/K core is MATV/K 67-68cm. However, in the results section, 

the depth of the total sediment extracted is referred to rather than the sub samples. As 

MAIV/K core actually represents the top 90cm of the lake sediment, I have expanded 

the depth scale to cover a total of 90cm (see equation 3.1) therefore, sub sample 

MAIV/K 67-68cm represents a depth of 90cm in the lake. 
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Depth in the whole core = Sub sample depth x (90/68) 

Equation 3.1 

Calculating the depth of the sub samples in the whole core. As 90cm is the depth within 

the lake the core covers, however, 68cm is the actual length of sample left over after 

shrinkage. 

3.1.2 Sedimentological and Strati graphic core analysis 

After extracting the core, prior to subsampling, the sedimentology of the core was 

analysed using the Troels- Smith criteria. This provided a broad understanding of the 

sedimentological changes within the core prior to analysis. 

3.1.3 Subsampling 

To provide a means of correlation, seal hair counts and geochemical analysis were 

carried out at the same depths. Analysis was carried out at 8cm intervals throughout the 

core and as time allowed this was increased to a 4cm resolution. A finer resolution of 

2cm sampling was carried out at the top of the MATVI/K core to reconstruct the 

population using the proxy technique to compare with historical far seal population 

records. This was specifically so that I could compare the accuracy of the proxy 

population to census data and hence, lead to more robust estimates of the actual 

populations through the Holocene, when the census data was not available. 

3.2 Fur seal hair abundance 

Hodgson et al. (1998) outline a method to reconstruct fur seal populations using fur seal 

hairs preserved in lake sediments. Fur seals have an abundance of insulating secondary 

hairs, which are lost during moulting and deposited in terrestrial and aquatic 

environments visited by the fiir seals hence, incorporated into the lake sediments. The 

hairs remain well preserved in the lake sediments and as Hodgson and Johnston (1997) 

establish, a variation in seal hair number in lake sediments can indicate fluctuations in 

visiting seaLpopulations; with more abundant seal hairs reflecting a larger visiting seal 

population (see figure 3.2). 
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Fur seal hair abundance can used as proxy from which relative fur seal populations, 

however, due to the complex differences in sediment input and output mechanisms 

between lakes, this technique cannot be used to quantify the fiir seal population which 

could be compared to other data sets, however, it does provide an indication of the 

relative size of the fur seal population through time. 
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Figure 3.2: Fur seal hair abundance record from Signy Island. Source: Hodgson et al. 

(1998). 

Hodgson et a/'s (1998) method suggested taking a known dry weight of sample and wet 

sieving the sediment through a 125|j,m sieve. Hair abundance was then expressed as 

number of hairs per 1 gram of dry weight. A test of this methodology on several 

samples at different intervals throughout the core did not prove successful for the 

sediment from Maiviken for a number of reasons. Firstly, hairs were difficult to identify 

and extract from the sediment due to the large amount of organic material, specifically 

tussock grass fragments in the samples and secondly, a number of hairs were washed 

through the sieve. Tests showed the proportion of hairs washed through was not 

consistent throughout the core due to the different organic-minerogenic composition 

throughout the core. To reduce this error, I tested a number of alternative techniques 

before deciding upon a final methodology. To allow the hair abundance to be expressed 

as number of hairs per 1 gram of dry weight, before any method was executed, samples 

were freeze-dried. Samples were frozen at -80°C, for 48 hours before being placed in a 
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fireeze drier with a vacuum of 1.030 for 16 hours. Samples were then weighed and 

stored in a dessicator before being used. 

3.3 Development and refinement of the Hodgson et al. (1998) technique 

As the method outlined by Hodgson et al. (1998) was unsuitable for the sediment at 

Maiviken, I adapted the technique to make the counting more accurate. 

3.3.1 Final methodology 

Before outlining the different methodologies I tested, below is a summary of the final 

method used for fur seal hair extraction, refined from Hodgson etal. (1998): 

1. Samples freeze dried and weighed. (Approximately 0.3-0.4 grams 

(dry weight) of sediment). 

2. Add 20ml of 20% hydrogen peroxide and put in a water bath for 2 

hours. 

3. Wash the residue back into the solution and add 45 ml of distilled 

water and 5 ml of ethanol. 

4. Centrifuge for 10 minutes at 4000 rpm, pour off excess water and add 

more distilled water. 

5. Sieve sample through 15)4,m, keeping the coarse material 

6. Allow the sediment to settle and pour off the excess liquid. 

Before finalising this methodology, I tried a number of different methods to separate the 

hairs from the organic matter. 

3.3.2 Physical separation 

3.3.2.1 Sieving 

Sieving the sediment through a variety of different sized sieves, larger than 125|j,m 

(710|xm and 1mm), allowed the hairs to pass through the sieve hence, partly separating 

the hairs from the coarser organic material. The hairs were found in both the coarse and 

fine sediment and the percentage of organic material relative to the number of hairs was 

not consistent in all samples. This was due to the differing sediment composition of 
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samples throughout the core; in organic samples more hairs were present in the coarse 

sample as the organic fi-agments trapped the hairs, hi a second test that aimed to remove 

all the minerogenic matter, a finer sieve (63|im) was used however, the same problem 

occurred. 

3.3.2.2 Particle shape analysis 

A particle shape analyser was used to see i f the hairs could be identified and counted, 

therefore, reducing the problems in identifying and extracting the hairs and providing a 

quick method for identifying the hairs, whilst guaranteeing that all hairs were accounted 

for. However, this method proved problematic as the hairs were a similar shape to wood 

and moss fibres making it difficult to distinguish between the two. 

3.3.3 Chemical separation 

3.3.3.1 Hydrogen peroxide (H2O2) 

Hydrogen peroxide is routinely used in diatom and pollen preparation to reduce the 

organic material in samples (Bimie 1990). hi this study H2O2 digestion was tested to see 

i f it would separate hairs from organic (vegetation) matter. This allowed the hairs to be 

more visible and reduced the problems of hair being incorporated in the organics. As 

Marshall (1998) states, seal hair contains keratin, as does human hair therefore, to 

ensure seal hair would not be desfroyed with the strength of the hydrogen peroxide used 

in diatom and pollen preparation, different strengths were tested on human hair (see 

table 3.1). The tests showed that H2O2, only affects the colour of the hair and does not 

significantly affect the structure of the hair. It was inferred from this that fur seal hairs 

would react in a similar manner and therefore, H2O2 was used on the sediment to reduce 

the organic material in the sediment and hence, aid in identifying the hairs. 

Samples from the core were placed in 20% hydrogen peroxide and left in a water bath 

for 2 hours. A large amount of debris accumulated around the top of the sampling tube 

and the amount varied depending upon the position in the core. Extracting some of the 

material I identified fur seal hairs therefore, this residue was washed baek into the 

sample. Distilled water was added and the sample was centrifiiged at 4000 rpm for 10 

minutes. After checking there were only occasional very small fragments of hair in the 

top of the sample, the excess water was poured off and the sample was examined. 
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Additional distilled water was added to the sample to dilute the solution hence, allowing 

the hairs to be more easily identified. 

Time/ Concentration 20% 10% 5% 
30 minutes The hair structure 

appeared the same, 
however the colour 
was lighter. 

Hair was not 
destroyed, it had just 
lightened, but not to 
the extent as 20% 
concentration. 

As 10%, but 
remained darker. 

1 hour Hair appeared 
lighter, however 
the structure was 
the same. 

< Lightened. 

2 hours As 1 hour but 
lighter. 

< —^Lightened. 

3 hours As 2 hours but 
lighter. 

< Lightened 

Table 3.1: Results of tests of varying H2O2 strengths on human hair 

3.3.3.2 Fine Sieving 

To reduce the H2O2 residue and allow the hairs to be more visible without increasing the 

amount of water in each sample, the sample was sieved through a 15 [im sieve to see i f 

the hairs would be retained and the cloudiness of the water reduced. Almost all the hairs 

were trapped in the coarse material of the sieve. Occasional fine particles of hair were in 

the fine section, however, these were all fragments of hair. As the organic material was 

reduced fi-om the H2O2 the proportion of hair trapped in the sieve was the same 

throughout the core hence, reducing the previous problems of differential effects 

incurred during sieving. Sieving the sample also reduced its cloudiness making 

identification of the hair easier. Although sieving the sediment diluted each sample 

significantly, once the sample had been left to stand overnight, the hairs settled and the 

excess solution was poured away. 

3.3.4 Identifying hairs 

Fiir seals have a dual layer of hair consisting of longer coarse guard hairs overlying a 

layer of shorter, finer underhair (Bormer 1968) (see figure 3.3). Hodgson et al. (1998) 

found that the hair incorporated into the sediment is primarily the underfur as it is in 

greater abundance than guard hairs on the fiir seal (ratio of 40:1). Primary hairs are 
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more likely to be transported through the lake without being incorporated into the 

sediment therefore, the underfurs are more representative of the actual fur seal 

population. Following the Hodgson et al. (1998) method, the finer underfur was counted 

and coarser guard hairs were ignored. The hairs were identified using the taxonomically 

distinct criteria listed in Scheffer (1964) and Bonner (1968). The criteria states the 

underfur is approximately 15|i - 20|xm in diameter and reaches a maximum length of 

2cm and individually the hairs are slightly waved (Scheffer 1964; Bonner 1968). The 

guard hairs are significantiy longer (approximately 60nim) and coarser (125-150)xm in 

diameter) and therefore, easily identified (see figure 3.3) (Bonner 1981). 

Guard hairs 

Undcrfur 

Figure 3.3: Cross section of the fur layers of an Antarctic fur seal. Source: Bormer 

(1994:23) 

3.1.1 Counting 

A black picking tray as used in foraminiferal analysis was used to count the hairs. This 

allowed the hairs to be identified, as the H202-bleached hair was obvious against the 

black background and grid squares on the tray allowed easy counting (see figures 3.4 

and 3.5). A small brush was used to move the hairs around to aid counting and hairs 

were identified using the criteria outlined above. Following Hodgson et al. (1998), all 

counts were expressed relative to 1-gram dry weight of sediment; calculated using 

equation 3.2. 
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Normalised number of hairs = Total count x (1/dry weight) 

Equation 3.2 

Calculating the normalised number of hairs per Ig of dry weight from raw counts of a 

known weight of sediment. 

Figure 3.4: Fur seal hair after preparation, as seen under a low- power dissecting 

microscope (magnification 4 times). 

r 

Figure 3.5: An individual fur seal hair separated from organic material, as seen under a 

low power dissecting microscope (magnification 4 times) 
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3.4 Geochemical analysis 

Geochemistry has also been used to aid reconstructions of past fur seal populations (Sun 

et al. 2004a). It is widely established that biological activity alters the chemistry of the 

soil (Zale 1994a; Lewis- Smith 1988; Zale and Karlen 1989; Hawes 1990; Ellis- Evans 

1990) and thereby provides an indication of species survival relative to time (Engstrom 

and Wright 1984). Based on this theory. Sun et al. (2004a) correlate changes in fur seal 

hair abundance with fluctuations in geochemistry to infer fur seal population 

fluctuations at King George Island for the past 1500 years. To date this is the only study 

to have used this as a means to reconstruct fiar seal populations, however, geochemistry 

has been extensively used to reconstruct penguin populations and climate in the 

Antarctic and Sub- Antarctic islands through the Holocene (Sun et al. 2004b; Sun et al. 

2000; Zale 1994a, b; Zale and Karlen 1989). 

3.4.1 Fur seal geochemistry 

Sun et al. (2004a) used geochemical analysis to infer fiar seal population fluctuations 

(see figure 3.6). They established that the organic matter in sediments at King George 

Island was marine origin and likely to have originated from seal excrement. 

Geochemical variations in sediments influenced by seal excrement are closely 

associated with historical seal population changes, providing an indirect measure of 

historical fiir seal populations. Reconstructions of penguin populations have correlated a 

range of different elements with fur seal populations at different sites therefore, it 

cannot be assumed that the elements which Sun et al. (2004a) used to reconstruct the fur 

seal populations at King George Island wil l be the same at South Georgia. As Zhu et al. 

(2005) indicate, the results from one study may be different to other similar studies due 

to the site-specific nature of ecological and environmental factors. 
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Figure 3.6: Geochemical analyses used to reconstruct fiir seal populations (Sun et al. 

2004a) 

As Sun et al. (2004a) suggest, the primary factor influencing the geochemistry of the 

sediment is the chemical composition of the seal excrement. This is enriched in Carbon 

(C), Oxygen (O), Nifrogen (N) and contains traces of Calcium (Ca), Phosphorus (P), 

Sulphur (S), Zinc (Zn) and Manganese (Mn) (Pomeroy, P., pers. comm.). The prime 

factor controlling the chemical composition of the seal excrement is the chemical 

signature of the prey, which is influenced by the Southern Ocean. As Schlesinger (1991) 

indicates, the composition of the ocean (see table 3.2) is reflected in the composition of 

phytoplankton. As krill feed off phytoplankton, the mineral content of krill is similar to 

that of the ocean. These elements are transferred along the food chain to krill and 

consequently to fur seals hence, it is likely that fluctuations in these elements will 

reflect the fur seal population changes. 
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Constituent Concentration in 
seawater (mg/kg) 

Sodium 10,760 
Magnesium 1,294 
Calcium 412 
Potassium 399 
Strontium 7.9 
Chloride 19,350 
Sulfate 2,712 
Bicarbonate 145 
Bromide 67 
Boron 4.6 
Fluoride 1.3 

Table 3.2: Major ion composition of seawater, adapted from Schlesinger (1991). 

3.4.2 Penguin geochemistry 

The use of geochemistry to reconstruct Holocene penguin populations and the 

associated environmental changes has been extensive (Sun et al. 2004b; Sun et al. 2000; 

Zale 1994a, 1994b; Zale and Karlen 1989). As the food source for fur seals and 

penguins is krill {Euphausia superba) (Reid and Croxall 2001; Barlow et al. 2002), it 

can be inferred that similar bio-elements wil l correlate with fur seal populations as 

penguin populations. 

Zale (1994) found in an analysis of 18 elements from sediment at Hope Bay that 

concentrations of Calcium (Ca), Cadmium (Cd), Copper (Cu), Phosphorus (P), 

Sfrontium (Sr) and Zinc (Zn) were elevated in areas with a higher penguin density. As 

Sun et al. (2004b) indicate, this change is due to the increase in deposition of penguin 

droppings that sfrongly influences the physical and chemical properties of soils via the 

effects of microbes. Elements found to reflect changing penguin populations from a 

range of studies are shown in table 3.3. As these elements are common in many penguin 

reconstructions, these elements are susceptible to changes in biology and therefore, it is 

possible that fluctuations in these elements may reflect changes in fur seal populations. 
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Sun et al. (2004a) 
(Fur Seals) 

Zale (1994): Hope 
Bay 
(Adelie Penguins) 

Zhu et al. (2005): 
Barton Peninsula 
(Gentoo 
Penguins) 

Sun et al. (2004b): 
Ardley Island 
(Penguin) 

Sulphur (S) Calcium (Ca) Calcium (Ca) Calcium (Ca) 
Selenium (Se) Phosphorus (P) Phosphorus (P) Phosphorus (P) 
Fluorine (F) Copper (Cu) Copper (Cu) Copper (Cu) 
Total Nitrogen (TN) Zinc (Zn) Zinc (Zn) Zinc (Zn) 
Total Organic Carbon 
(TOC) 

Sfrontium (Sr) Sfrontium (Sr) Sfrontium (Sr) 

Cadmium (Cd) Sulphur (S) Sulphur (S) 
Selenium (Se) Selenium (Se) 
Fluorine (F) Fluorine (F) 
Barium (Ba) 

Table 3.3: Element concentration increases that correlate with increases in penguin 

populations compared to element concenfrations found to increase with fur seal 

populations in Sun et al. (2004a). 

3.4.3 Geochemical hypotheses 

Due to time restrictions and the amount of sediment available, it was not possible to test 

for all elements that may increase with fur seal population growth. To reduce the 

number to evaluate, I used results from previous studies to hypothesize which elements 

may be indicative of fur seal populations (see table 3.4). 

Following Sim et al. (2004a), I tested for the following elements. Carbon, Nifrogen, 

Sulphur and Selenium. Fluorine was not tested for due to restrictions on the instrument 

and the limited sample size available. Analysis of the same elements as Sun et al. 

(2004a) helps to determine whether these elements are indicative of fur seal populations 

throughout the sub Antarctic and not restricted to King George Island. In addition to 

these elements, I tested for elements that commonly correlate with penguin populations 

(see table 3.4); Calcium, Copper, Zinc, Sfrontium and Cadmium. Although Phosphorous 

concenfrations are a common penguin bio indicator, due to the amount of sample 

available this could not be tested for. Based on the widely recognised hypothesis that 

abundant ions in seawater will be passed along the food chain to fur seals, I also tested 

for sodium. 
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Element Method of analysis Reason for analysis 

Carbon (TOC, Total organic 

carbon) 

Total carbon analyser, 

elemental combustion system. 

Sun et al. (2004) 

Nitrogen (TN, total 

nitrogen) 

Elemental combustion system 

(Costech instruments) 

Sun et al. (2004) 

Sulphur (S) Elemental combustion system 

(Costech instruments) 

Sun et al. (2004) 

Selenium (Se) ICP- MS (Inductively 

Coupled Plasma Mass 

Spectrometer) 

Sun et al. (2004) 

Calcium (Ca) ICP- MS Zale (1994); Sunef al. 

(2004b); Seawater 

Copper (Cu) ICP- MS Zale (1994); Sun a/. 

(2004b) 

Zinc (Zn) ICP- MS Zale (1994); Sunet al. 

(2004b) 

Cadmium (Cd) ICP- MS Zale (1994) 

Strontium (Sr) ICP- MS Zale (1994); Sxxnetal. 

(2004b); seawater 

Manganese (Mn) ICP- MS Pomeroy, P., 

(pers.com.) 

Sodium (Na) ICP- MS Seawater 

Table 3.4: Elements identified as possible bio indicators of fur seal presence. 

Although it is possible that these elements may fluctuate with fur seal presence, there 

are a number of additional factors that may cause concentrations to fluctuate and hence, 

obscure the fur seal signature thus, the behaviour and environmental pathways of the 

elements must first be considered. 

3.4.3.1 Carbon 

Carbon (CO2) is fundamental in photosynthesis and respiration hence, indicative of 

organic productivity within a catchment (total organic carbon (TOC)). Carbonate rocks 

are also a soxirce of Carbon therefore, concentrations may increase as weathering of 
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carbonate catchments increases (total inorganic carbon (TIC)). Without determining the 

difference between TOC and TIC, it is difficult to determine the source of Carbon in the 

catchment. As Sun et al. (2004) highlight, TOC correlates significantiy with fur seal 

hair abundance and is hence, a bio indicator of fur seal presence. 

3.4.3.2 Nifrogen 

As Nitrogen is an essential constituent of all organisms and represents a key nutrient, it 

is expected that the concentration of Nitrogen in fur seals would be significant enough 

to influence the geochemistry of the catchment (Talbot 2001). In studies of moss 

communities in the Antarctic, the primary source of Nifrogen has been found to be 

penguin and seal activity, suggesting that biology influences Nitrogen concentrations. 

Studies of penguin populations have indicated that Nitrogen concentrations are closely 

correlated with penguin populations and Nitrogen has been used as a proxy for penguin 

populations (Zhu et al. 2005; Christie 1987). 

3.4.3.3 Sulphur 

Sun et al's (2004) study of King George Island suggests a close correlation between 

Sulphur and fiir seal hair abundance. As Holmer and Storkholm (2001) indicate, 

deposition of Sulphur increases in eufrophic lakes. As eufrophication is a consequence 

of an increasing fur seal population, it is likely that the concentration of Sulphur 

associated with the eutrophication wil l indirectiy reflect fur seal populations (Lewis-

Smith 1988). 

3.4.3.4 Selenium 

As Ugolini (1972) indicates, the bioavailability of Selenium in animals is determined by 

other factors such as pH, redox conditions, soil texture, mineralogy and organic matter 

content. As there are so many influential factors affecting the concentration of 

Selenium, it is difficult to distinguish the fur seal component. However, as Selenium is 

one of the elements Sun et al. (2004) found to correlate with fur seal hair abundance, it 

may be a useful bio indicator of fur seal presence at South Georgia. 

3.4.3.5 Zinc 

As Andrews et al. (1996) establish. Zinc has a clear biological function and evidence 

from previous studies suggests Zinc is highly enriched and significantly correlated to 
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other biogeochemical markers (Sulphur, Calcium, Copper, Selenium, Strontium, 

Barium and Flourine). As a result. Zinc has been used as a proxy for fluctuations in 

penguin populations (see Sun et al 2004b; Zhu et al. 2005 and Zale 1994). 

3.4.3.6 Copper 

In previous biogeochemical studies. Copper has been used as an indicator for penguin 

activity and is commonly correlated with Zinc and to a lesser extent Selenium (Zhu et 

al 2005). Schlesinger (1991) highlight this link between Copper biological activity is 

due to high concentration in phytoplankton. Copper is incorporated into sediments as 

the organisms die and sink to deeper waters. Yet as Matsumoto (1993) indicates, a 

major source of copper within sediments is also chemical weathering. This double usage 

poses problems for interpretation however, the association of Copper with Zinc in past 

analyses of bio indicators suggests that Copper concentrations are dominantly 

influenced by bioactivity (Zale 1994; Zhu et al. 2005). 

3.4.3.7 Sfrontium 

Reimann and de Caritat (1998) indicate that the environmental paths for Strontium are 

sea spray, weathering and the dissolution of calcium carbonate, suggesting very little 

organic influence (AboUino et al. 2004). This implies that Strontium is more indicative 

of environmental change rather than a change in organic matter. Nonetheless, Zale 

(1994) and Zhu et al. (2005) suggest that Sfrontium is a bio indicator for penguins. As 

penguins have a similar diet to fur seals, it would be expected that similar elements 

would be present in fur seal excrement as penguin guano. Sun et al. (2004b) also came 

to this conclusion as the concentration of Sfrontium in the lake sediments within close 

proximity to penguin populations is elevated compared to other lake sediments in the 

maritime Antarctic. 

3.4.3.8 Cadmium 

Research suggests that Cadmium is closely associated with Zinc however, it does not 

have a biological role (Reimann and de Caritat 1998). Cadmium displays nutrient like 

behaviour as it is inadvertently taken up during biological processes (Andrews et al. 

1996). Due to these properties, it is likely that Cadmium is a good indicator of 

biological processes. Although in previous studies. Cadmium is not commonly 
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recognised commonly as a bio indicator, Zale (1994) establishes a correlation between 

Cadmium and penguin activity. 

3.4.3.9 Sodium 

As Schlesinger (1991) highlights, Sodium is very abundant in seawater, with 

concentrations reaching 10, 760 parts per million (ppm) (see table 3.2). As for seals 

spend the majority of their life in the ocean, the movement of the seals onto land is 

likely to increase the amount of seawater on land and hence, increase Sodium 

concentrations. However, as Reimaim and de Caritat (1998) indicate, there are a number 

of potential pathways for Sodium. Firstly sodium concentrations are likely to increase in 

the catchment i f sea level rises and the catchment becomes submerged. Secondly, i f sea 

spray increases reflecting a climatic change in wind direction and/ or strength this will 

increase the concentration of Sodium in the catchment. Thirdly, Sodium is abundant in 

allogenic elastics eroded from catchments therefore; it is a usefol element to assess 

weathering, soil development and erosion in a catchment (Last and Smol 2001). As 

Engstrom and Wright (1984) suggest, values are higher in late glacial sediments 

compared to those in postglacial sediments, therefore, providing a usefol indicator of 

deglaciation. As there are a number of potential sources of Sodium and concentrations 

vary with a variety of processes, concentrations must be analysed in association with 

other elements, to reduce the potential error in interpretation. 

3.4.3.10 Calcium 

A number of geochemical sfodies used to reconstruct past penguin populations have 

found Calcium to be highly correlated with penguin populations (Zale 1994). However, 

Ugolini (1972) suggest that Calcium concentrations are relatively low in guano layers 

and therefore, perhaps not indicative of penguin or other bioactivity. Further sfodies 

suggest that Calcium is a common element that occurs in most lake sediments and 

ground water hence, intimately linked to the carbon and nitrogen cycles (Ito 2001). As 

Engstrom and Wright (1984) highlight, the primary source of Calcium in lake sediments 

are allogenic elastics eroded from catchment soils and rocks. The ratio of Na:(Na+Cl) 

can be used to discriminate between rain and weathering sources and hence, an indicator 

of weathering processes in the catchment (Andrews et al. 1996). As Calcium could 

potentially be related to for seal activity, it is necessary to distinguish the influence of 
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Calcium from other sources in the catchment before evaluating the impact fur seals have 

upon the concentration. 

3.4.3.11 Manganese 

Studies suggest that Manganese concenfrations are elevated in fiar seal excrement and 

therefore, it can be inferred that concentrations would increase with fiir seal presence 

(Pomeroy, P. pers. com.). Chemical weathering is also a major source of Manganese, 

hence, to distinguish whether Manganese concentrations are indicative of fur seal 

presence or weathering, concentrations must correlate with fur seal hair abundance and 

other bio elements, thus. Manganese cannot be used solely as a proxy for fur seal 

populations (Reimann and de Caritat 1998; Matsumoto 1993). 

3.4.4 ICP-MS hypotheses 

Although the elements outlined in table 3.4 are the primary elements I tested for, the 

ICP-MS used to test for the majority of the metals outlined above, it also provides 

concentrations for a total of 29 metals from the same sample (see table 3.5). As a 

consequence of this, all these elements have been analysed to firstly assess the 

applicability as an indicator of fur seal presence and secondly to provide an indication 

of any environmental changes at the study site. 
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Analyte Symbol Mass 
Lithium Li 7 
Beryllium Be 9 
Boron B 11 
Sodium* Na 23 
Aluminium A l 27 
Potassium K 39 
Calcium* Ca 44 
Titanium Ti J 48 
Vanadium V 51 
Chromium Cr 52 
Iron Fe 54 
Manganese* Mn 55 
Iron Fe 57 
Nickel Ni 58 
Cobalt Co 59 
Copper* Cu 63 
Zinc* Zn 64 
Arsenic As 75 
Selenium* Se 82 
Strontium* Sr 88 
Molybdenum Mo 98 
Silver Ag 107 
Cadmium* Cd 114 
Antimony Sb 121 
Barium Ba 138 
Thallium Tl 205 
Lead Pb 206 
Lead Pb 207 
Lead Pb 208 
Bismuth Bi 209 

Table 3.5: Elements concentrations available from the ICP-MS (* (and bold) indicates 

the elements hypothesized as indicators of fur seal presence). 

Although these elements may not reflect fur seal presence, they provide an indication of 

the catchment conditions through the core relative to the fur seal population, hence, 

allowing the correlation between fur seal populations and changing environmental 

conditions to be determined. 

3.4.4.1 Aluminium 

Aluminium is generally associated with an increase in groundwater influx (Abollino et 

al. 2004). I f the pH in the catchment is low or high, Aluminiimi is more soluble and 
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hence, concentrations increase (Itkonen et al. 1999; Andrews et al. 1996). This 

alteration of pH may be associated with an increase in fur seal activity and hence, ftir 

seal presence may indirectly affect the concentrations. 

3.4.4.2 Potassium 

An enrichment of Potassium can be a result of a number of factors including 

atmospheric salts, glacial and snow melt waters, rock weathering and groundwater. As 

these elements are all non- organic elements, it is unlikely that fluctuations in Potassium 

wil l reflect fur seal presence in the catchment (Matsumoto 1993; Abollino et al. 2004). 

3.4.4.3 Titanium 

Very little is known about Titanium in lake sediments, and there are no studies to 

suggest that Titanium would increase with fiir seal abundance. Titanium is very 

abundant in the earths crust and geogenic dust is the main source of Titanium in the 

environment, suggesting that it is not indicative of fur seal presence (Marshall and 

Fairbridge 1999). 

3.4.4.4 Barium 

In terms of the overall geochemical cycle Barium most closely follows Strontium and 

Calcium (Marshall and Fairbridge 1999). Using this theory, as Strontium has correlated 

previously with fur seal abundance, it can be inferred that Ba has the potential to. There 

is however, debate to the conditions causing an increase in Barium. As Marshall and 

Fairbridge (1999) indicate. Barium rich areas commonly underlie zones of intense 

biological activity and occur near ocean ridges. Studies of Antarctic lakes however, 

suggest an increase with calcite and fluorite, implying a strong correlation with 

Aluminium, Chromium, Calcium and Silicon, elements not previously found to be bio 

indicators. 

3.4.4.5 Iron, Lithium, Vanadium and Chromium 

These elements are considered essential for biology, therefore, it is possible that these 

elements may correlate with fur seal abundance, yet neither has previously been linked 

to biological activity (Reimann and de Caritat 1998). Vanadium is a minor element in 

lake sediments and very little work has been done on the mechanisms causing it to 
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fluctuate however, the main environmental pathways for Vanadium are weathering and 

geogenic dust hence, it is unlikely that concentrations wil l reflect fiir seal presence 

(Reimann and Caritat 1998). The main environmental pathway for Iron is rock 

weathering, therefore. Iron is likely to be more indicative of the weathering in the 

catchment rather than fur seal presence (Reimann and de Caritat 1998) Although 

Chromium is an essential nutrient at low concenfrations and it can potentially 

accumulate in aquatic life (Reimann and de Caritat 1998), previous studies of penguin 

bio elements have not found Chromium to fluctuate with the changes in biology (Zale 

1994;Zhuefa/. 2005). 

3.4.4.6 Molybdenum 

There is debate as to how Molybdenum concenfrations fluctuate in lake sediments. 

Firsfly Molybdenum is considered essential for biology but it is also a conservative 

element that has little interaction with biological cycles and hence, is unlikely to 

fluctuate significantly with fur seal population changes (Andrews et al. 1996). 

Secondly, as Abollino et al. (2004) indicate, Molybdenum concentrations increase with 

sea spray and the presence of rocks hence, reflecting an increase in weathering or 

change in climate. As Molybdenum fluctuates variety of processes, it cannot be used 

solely to determine fur seal population fluctuations. 

3.4.4.7 Thallium 

Although Thallium is considered non-essential for biology, it does have a sfrong 

tendency to accumulate in aquatic life therefore, it is possible that Thallium accumulates 

in krill and hence fur seals (Reimann and de Caritat 1998). However, Reimann and de 

Caritat (1998) also highlight that Thallium is easily released during weathering hence, 

this double source makes interpretation difficult. 

3.4.4.8 Other elements 

The other elements are rare elements and previous geochemical studies using 

geochemistry as a proxy for past penguin and seal populations do not consider these 

elements, thus, there is very little literature on how these elements may fluctuate in lake 

sediments. 
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3.4.5 Geochemical summary 

Table 3.6 summarises the elements to be tested, the primary hypotheses for these 

elements and the method of analysis. 

Element Method of 
analysis 

Hypothesis Previous Studies 

Carbon 
(TOC; TC) 

Elemental 
combustion 
system. Total 
c£u-bon analyser 

Fundamental in respiration Sun et al. (2004a) 

Nitrogen Elemental 
combustion 
system 

Essential to organisms Sun et al. (2004a) 

Sulphur Elemental 
combustion 
system 

Increase in eutrophic lakes Sun et al. 
(2004a,b); Zhu et 
al. (2005) 

Selenium ICP- MS Previous studies suggest a 
correlation with fur seal 
abundance. 

Sun et al. 
(2004a,b); Zhu et 
al. (2005) 

Calcium ICP- MS Seawater Zale(1994); Sun 
et al (2004b); 
Zhu et al. (2005) 

Copper ICP- MS Required by phytoplankton 
Chemical weathering 

Zale (1994); Sun 
et al. (2004a,b); 
Zhu et al. (2005) 

Zinc ICP- MS Strong biological function Zale (1994); Sun 
et al. (2004b); 
Zhu et al. (2005) 

Cadmium ICP- MS Nutrient like behaviour Zale (1994) 
Strontium ICP- MS Sea spray Zale (1994); Sun 

et al. (2004b); 
Zhu et al (2005) 

Manganese ICP- MS Pomeroy, P. (pers.com.) 
Sodium ICP- MS Seawater 
Lithium ICP- MS Essential for biology 
Beryllium ICP- MS Unknown 
Boron ICP- MS Unknown 
Aluminium ICP- MS Increased with groundwater 
Potassium ICP- MS Enriched in groundwater 
Titanium ICP- MS Abundant in earths crust 
Vanadixam ICP- MS Essential for biology 
Chromium ICP- MS Essential for biology 
Iron ICP- MS Essential for biology 

Weathering is a primary 
environmental pathway 

Nickel ICP- MS Unknown 
Cobalt ICP- MS Unknown 
Arsenic ICP- MS Unknown 
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Molybdenum ICP- MS Essential for biology 
Silver ICP- MS Unknown 
Antimony ICP- MS Unknown 
Barium ICP- MS Follows Sr Zhu et al. (2005) 
Thallium ICP- MS Accumulate in aquatic life 
Lead ICP- MS Unknown 
Bismuth ICP- MS Unknown 

Table 3.6: A summary of the elements tested for, the method used in analysis, possible 

causes fluctuations and the use of the element in previous studies of bio indicators in the 

sub Antarctic region. 

3.4.6 Methodology 

To prepare the samples for analysis, all samples were freeze-dried. Samples were frozen 

at -80°C for 48 hours before being placed in a freeze drier with a vacuum of 1.030 mbar 

for 16 hours. The samples were then ground in a ball mill at 600 rpm for 5 minutes and 

stored in a dessicator before use. Table 3.6 summarises elements tested and the method 

of analysis. 

3.4.6.1 Elemental Combustion System 

The Elemental Combustion System uses a chromatography method to test for Carbon, 

Nifrogen and Sulphur. Approximately lOmg of sample was weighed out to two decimal 

places. The sample was placed in a foil capsule and sealed before being combusted in 

the Elemental Combustion System (Costech) for 15 minutes. A l l samples in one run 

were prepared on the day the machine was run and placed in the carousel before starting 

any analysis to ensure atmospheric gases would not contaminate the results. When the 

element is combusted, different elements are released as gases at different times; 

therefore, the concentration of these elements can be calculated (see Lewis 1997 for 

further details). To ensure the calibration of the machine was correct, standards were 

run at the start, end and after every 20 samples in each run. 

3.4.6.2 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) 

Element concentrations in samples were measured using an Elan DRC, Inductively 

Coupled Plasma Mass Spectrometer (IPC-MS). This technique allows a large number of 

elements in a small sample size to be detected with relatively low detection limits 

(Jarvis 1997). Samples were firstly freeze-dried and ball milled using the procedure 
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outlined above. The samples were then digested using the EPA 3051 method before 

being placed in the ICP-MS. 

3.4.6.2.1 EPA 3051 Method 

Approximately 250mg of dry sample was weighed out for digestion into a fluorocarbon 

sample vessel. The amount of sample used varied depending upon the amount of sample 

available after the other tests had been carried out therefore, in some cases only 50mg of 

sample was used. To each sample 2ml of hydrogen peroxide (H2O2) was added and left 

until the reactfion was finished. As the samples were particularly organic, an additional 

2ml of H2O2 was added. Once the reaction stopped, 2ml of hydrochloric acid (HCL) and 

9ml of nitric acid (HNO3) were added. The cap of the sample vessel was put on straight 

away as there were no carbonates in the samples. 

Once the reaction stopped, samples were put in a microwave (CEM MARSSX) for 10 

minutes. The sample was then filtered through qualitative filter paper using dilute nitric 

acid (10% v/v). After filtering, the sample was diluted 1000 times before being run 

through the ICP-MS (see Jarvis 1997 for forther information). For detection of certain 

elements, ammonia was used as a reaction gas. After every 20 samples, a standard was 

put through the machine to ensure the calibration was correct. 

3.4.6.3 Total Organic Carbon (TOC) 

From the results of the elemental combustion system, the amount of total carbon (TC) in 

each sample was known. To calculate the total organic carbon (TOC) content in the 

sample, the amount of total inorganic carbon (TIC) was calculated and subfracted from 

the total carbon (TC) concenfrations, calculated using the Elemental Combustion 

System as outlined above. Although TOC could be calculated independently the TIC 

method was not as time consuming and gave the same result. 

Due to the limited sample sizes, there was not enough sample to test every sample for 

TIC therefore, 6 samples were selected from the core based upon the TC results (e.g. a 

sample from a section of high TC, low TC and average TC, ensming they were all 

evenly spaced through the core). These samples were then freeze-dried and ball milled 

as outlined in section 3.4.4. Between 10 and 15mg of each sample was weighed out into 

a small glass capsule before being placed in the Total Carbon Analyser (TOC 1200). 
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Each sample was left to react for a minimum of 240 seconds or until the reaction 

stopped, hiitial tests of 2 samples (MAIV/K 50-51 and HIJM3 179-179.5) suggested 

that the concenfration was very low and therefore, all the samples were run on the low 

bench section of the machine, as detection limits were Ippm. Before any samples were 

run a standard of NaCOs: NaHCOa (2.2061:1.748) with concentrations of lOOppm, 

50ppm and lOppm was run to provide a calibration for the samples. 

3.4.6.4 Summary 

Using the multiproxy approach of fur seal hair abundance and geochemistry improves 

the robustness of the results, reduces error and reduces the influence of local factors on 

each proxy, hence, prevents the assumption that correlation is equal to causation. For 

example, as Engstrom and Wright (1984) outiine, geochemical analyses can provide 

evidence for climate change therefore, the geochemical record produced from my 

results may be reflecting climate change or change in penguin populations rather than a 

change in fur seal population. However, correlating the geochemical changes with the 

fur seal hair abundance wil l provide more robust evidence for fur seal populations. This 

will help to determine which chemicals reflect a change in fur seal populations and the 

chemicals which can be used as a proxy in further research without using the time 

consuming method of calculating the hair abundance. 

3.5 Dating 

To fulf i l objective 3 (To determine whether the recent (20* -21^* century) increases in 

fur seals have exceeded the range of natural variability of past populations), the section 

of the core that represents this time period must be found and therefore, it is necessary 

that the core is dated. Further dating was also necessary to f i i l f i l objective 5 (To 

determine the factors confroUing fur seal population changes at South Georgia through 

the late Holocene), so the fur seal and geochemical data can be correlated with the 

climate data outiined in section 2.3 and hence, allowing the factors controlling fur seal 

population changes to be determined. 
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3.5.1 Principles of radiocarbon dating 

Radiocarbon dating is a widely used technique for accurately calculating ages up to 

45,000 years BP; therefore, this technique is applicable for dating the majority of the 

core. Radiocarbon dating is only accurate to at least 50 years and often error is greater 

therefore, due to the dynamic changes in the 20* Century, it was necessary to use an 

alternative technique for the upper part of the core hence, ^"'Pb and '̂ ^Cs dating 

methods were used on the top section of the core. 

3.5.1.1 Radiocarbon dating methodology 

Three samples in the core were dated. Firstly the base of HUM3 (189-189.5 cm) was 

dated to determine the time span of the whole core. This sample was sent to NERC 

radiocarbon laboratories for AMS dating. The sample was firstly digested in 2M HCL at 

80°C for 8 hours before being washed free from mineral acid with deionised water. The 

sample was then dried under a vacuum (200 mbar) at 40°C for 16 hours before being 

homogenised. 

From the results of the fiir seal hair abundance and geochemical data, two additional 

samples at points of significant change were selected for radiocarbon dating and sent to 

BETA Analytic for AMS dating. These samples were sieved through an 180^m sieve. 

The bulk sediment sample fraction greater than 180 fxm, composed of woody/plant 

remains was freated as the woody/plant remains were not considered intrusive. 

Following sieving, the sample was dispersed in deionised water, then washed in hot HCl 

acid to eliminate carbonates and NaOH to remove secondary organic acids. This was 

followed by an additional alkali wash to neutralise the solution prior to drying. 

3.5.2 ^'°Pb and '"Cs dating 

The sealing industry began at South Georgia in the late 18'** century and it was from this 

time that rapid changes in the fur seal population took place. Determining the exact 

timing of this change within the core will allow the magnitude of this fluctuation to be 

compared to previous population changes and therefore, determine whether an event 

such as this as happened previously. Radiocarbon dates in the 20* century can be 

problematic due to the reworking of sediments, precision issues and the carbon 'bomb' 
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effect during this time hence, it is widely recognised that radiocarbon dates during the 

20* century are not accurate enough to provide robust dates. To provide a more accxarate 

indication of the dates at the top of the core, ^ '^b and '̂ ^Cs dating techniques were 

used. 

3.5.2.1 Principles of '̂"Pb dating 

Pb dating has been widely used to date very recent sediment sequences spanning the 

past 100 to 200 years and is increasingly the backbone upon which recent sedimentation 

time-scales depend upon (Walker 2005; Appleby and Oldfield 1982). The principle of 

the dating method is based on the escape of radon gas from the earth into the 

atmosphere and into sediments (Walker 2005). As the radon gas is an unstable isotope 

^^^Rn, with a half-life of 3.8 days, it rapidly decays. This rapid decay produces a number 

of daughter isotopes that decay with very short half-lives until the isotope ^'°Pb is 

reached (see figure 3.7) (Olsson 1986). Measuring the ratio of ^'°Pb: '̂'̂ Pb in sediments 

allows the time period since the lead was deposited to be determined and hence, the rate 

of accumulation can be established (Walker 2005). 

238u ^ 226^^ ^ 2 2 2 ^ ^ 210p^ ^ 206p^ 
4.51x10' 1602 yre 3.82 22.26 

yrs days yrs 

Figure 3.7: ^^*U decay series to form the daughter isotope ^'''Pb. Time beneath the 

arrows indicates the half-life of each element. 

Problems arise with the method as ^'°Pb accumulates in the sediments through two 

different mechanisms. Firstly, ^"'Pb enters the catchment from the in wash of ̂ ^^Rn into 

the lake or sediments. This is consequently incorporated into the sediment and decays to 

form ^'°Pb. This is termed supported ^'°Pb. Secondly, ^'"Pb, accumulates as a result of 

^^^Rn decaying prior to sediment incorporation and hence, ^'°Pb itself is washed into the 

catchment. This is termed unsupported ^'°Pb (Appleby and Oldfield 1982). In dating, it 

is the unsupported ^'°Pb that is used to calculate the age of the sediments as once 

incorporated into the sediment it decays exponentially with time (Oldfield and Appleby 

1978). The supported ^ ' ^b is calculated by the assay of the '̂̂ R̂a in the sediment, arid 

therefore, this provides an estimate of the amount of ^̂ ^Ra washed into the lake/ 

sediment that has not yet decayed into ^'°Pb. Subtracting the supported ^'''Pb from the 
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total ^'°Pb provides the unsupported ^'°Pb used in dating the sediment (Oldfield and 

Appleby 1978). 

3.5.2.2 Principles o f ' "Cs dating 

The concentration of '̂ ^Cs in lake sediments is widely used as a distinctive time-

sfratigraphic marker horizon in sediment sequences (Walker 2005). '̂ ^Cs concentrations 

increased from the fall out of testing atomic weapons after the Second World War. This 

caused a peak of '"Cs in the records in 1963 (Batterbee 1991; Olsson 1986). This 

known peak in the record can be used to supplement ^'°Pb dating, providing a check for 

the ^'°Pb timescale (Walker 2005). 

3.5.2.3 Methodology for ^'°Pb and '̂ ^Cs dating 

Al l samples were frozen at -80°C for 48 hours before being placed in a freeze drier with 

a vacuum of 1.030 for 16 hours. The samples were then ground in a ball mill at 600 rpm 

for 5 minutes and stored in a dessicator before use. Approximately 0.35 mg of sediment 

was weighed into small plastic fobes before being placed in an Ortec Gamma Well 

Detector (GWL series. High purity germanium, coaxial well photon detector system) for 

two days. After two days, the sample was removed and the '̂ ^Cs and ^"^b counts were 

recorded. 

3.6 Sources and magnifode of error 

Although the methodology outlined above attempts to minimise the error in the data, it 

is not possible to folly eliminate error hence, this must highlighted and considered in 

analysis. 

3.6.1 Seal hair abundance 

Hairs were treated to improve the ease of counting however, it is possible that some 

hairs may have been lost in this process through fransferring sediment bet\veen different 

vessels. As all samples were treated in the same way, this error should be systematic 

through the core and hence, not affect relative abundance. 
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To express the hairs per 1 g of dry weight (following Hodgson et al. 1998 method), 

approximately O.lg of sediment was weighed and freated before counting. However, 

multiplying the counts by a factor of 10 also increases the error by a factor of 10. To 

determine the effect this error would have upon the samples, different weights of sample 

(0.1, 0.2 and 0.3 g) were prepared for 2 samples through the core and counted to 

evaluate the error in the scaling up process. Results suggested that the initial weight did 

not alter the overall count therefore, due to the limited amount of sediment available, 

O.lg of sediment was used and scaled up. 

To ensure that the number of hairs counted was accurate, some samples were counted 

twice to determine the counting error. Al l the samples tested showed significant 

reduction in the amount of hairs when counted as second time. To ensure this error was 

not specific to some samples, all samples were pounted a second time. The difference 

between the two samples at all intervals throughout the core was both large and 

systematic and so cast doubt on the results. To reduce any uncertainty, all the samples 

were recounted a third time. The third counts were very similar to the second counts 

(see appendix 1). As the first counts were a magnitude higher than the following counts, 

I omitted the first counts in the results, and took an average of the second and third 

counts. The anomalous first counts are thought to be a result of adapting the technique 

and an incorrect identification of hairs and mistaking organic material for hairs. The 

standard deviations of the second and third counts for each sample were calculated and 

an average of all the standard deviations was used to calculate the average error of the 

whole data set (see appendix 1). 

3.6.2 Geochemistry 

3.6.2.1 Elemental combustion system (Nifrogen, Carbon and Sulphur) 

Each sample was tested twice and the average of the two values was taken. This ensured 

that in the machine or the effect of contamination would be eliminated. For any sample 

where the two values in the same run had a difference greater than 1%, the sample was 

run again, imtil this error was reduced (see appendix 2). As samples were weighed to 2 

decimal places, the results are expressed to 2 decimal places. 
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3.6.2.2 ICP-MS 

After every 20 samples, a standard was run to ensure the calibration was still correct. 

The calibration of Ag was not reliable and therefore, the results of the Ag 

concentrations will not be considered. As Ag has not been found previously as a bio 

indicator, it was not time-efficient to run the samples again to obtain concentrations for 

Ag. 

3.7 Summary 

This chapter has outlined the development of the methodology used to calculate fur seal 

hair abundance and a methodology to determine the concentrations of elements that are 

possible indicators of fur seal presence. The following chapter wil l outline the results 

obtained from this methodology. 
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4: Results 

This chapter outiines my results on which my analysis in chapter 5 is based upon. 

Firstly I wil l consider factors to account for when analysing the results. This wil l be 

followed by a stratigraphic and sedimentological description of the core followed by the 

resuhs of the fur seal hair abundance and the geochemical analysis before the results 

from the radiocarbon dating and ^'°Pb and '̂ ^Cs dating are addressed. Finally I consider 

how the dating results can be applied to form an age model. 

4.1 Core Stratigraphy 

As there are two separate cores used in the study, these were analysed individually prior 

to any analysis to provide a broad indication of the sedmentological changes prior to 

analysis. 

4.1.1 HUM3 

At the base of the core, the sediment is light grey, unsaturated material. This clay is 

present for 2cm, before a clean fransition to darker sediment. Using Troels- Smith 

(1955) analysis, this 2cm thick basal unit can be classified as Argilla Steatodes (As). 

Above the clay, the sediment is very dark, inelastic and horizontal bedding planes are 

visible. In this sediment, there are fragments of primarily herbaceous material, although 

there are also some small fragments of wood. The sediment is almost homogenous 

throughout the core, gradually becoming darker and increasingly saturated. Throughout 

the core organic fragments upto 2cm in length are visible. Very small elastics are also 

noticeable giving some sub samples a grittier texture. Al l the sediment in this section of 

the core can be described as Detritus Lignosis (Dl) (ibid). As noted in chapter 2, there 

is the potential that the lake was previously marine due to isostatic changes following 

the LGM. However, sedimentological analysis indicates there is no evidence of marine 

sediments in the core hence, implying that the lake has been freshwater for at least the 

past 3500 "*C yrs BP. 

112 



4: Results 

4.1.2 M A I V n C 

The sediment in the core when extracted was very satvirated and homogenous, hence, a 

detailed Troels - Smith analysis was not undertaken. There were no clear stratifications 

or changes in the sediment composition. The entire core was classified as Detritus 

Lignosis (DL) , nigror degree 4, stratification 0, siccitas 1 and elasticitas 2. 

4.1.3 Implications for analysis 

As no palaeocological analysis was done on the primary transition at the base o f the 

core the cause o f this change in sedimentation is unknown. However, this 

sedimentological change w i l l be considered in analysis and related to the age model to 

allow this transition to be analysed with proxy environmental changes and therefore, 

allowing potential causes o f this change to be inferred. 

4.2 Depth Scale 

In this section, depths are expressed relative to the whole core as I have outlined in 

section 3.1.1 (equation 3.1). 

4.3 Fur seal hair abundance 

Figure 4.1 shows the f i i r seal hair coimts relative to depth. A t the base o f the core the 

hairs are in low abundance, fluctuating between 250 hairs to 700 hairs per 1 g o f dry 

weight, but remaining relatively constant in comparison to the remainder o f the core. 

The hairs remain at this level to a depth o f 243 cm, when hair abundance begins to 

increase gradually fi"om 221 hairs to 2464 hairs at 191 cm. Following this increase, the 

hairs remain at a relatively constant level to 139 cm. A small decrease is observed from 

187 cm to 163 cm, reaching a minimum at 171 cm as hairs decrease to 687 hairs per 1 g 

o f dry weight. Following this brief decline, hairs increase to 2666 at 151 cm, before 

declining again to levels similar to those before the peak. From 131 cm the number o f 

hairs per 1 g o f dry weight increases to 3795 at 103 cm. 

After the gap in the core record a 3-point increase to 3330 hairs at 79.4 cm is observed. 

Following this increase, hair abundance declines to 1705 hairs at 66.2 cm, with a small 

interruption at 71.5 cm, as hairs increase again to 2913 hairs. From this minimum, hairs 
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increase to a peak at 47.6 cm o f 5244 hairs. This increase is constant wi th the exception 

o f a small decline at 55.6 cm to 1904. From this maximum, hairs rapidly decline to a 

minimum o f 1805 hairs at 42.4 cm before increasing and remaining relatively constant 

at 3200 hairs from 39.7 to 29.1 cm. This is followed by a one point increase to the 

maximum number o f hairs for the whole core at 26.5 cm as hairs increase to 6845 

before dramatically declining to 2615 hairs at 23.8 cm. Hairs then increase to a smaller 

peak (5045) at 8 cm. Hairs then decline to 2665 at 5.3 cm before increasing again to 

almost maximum levels at 2.6 cm as hairs reach 5541. A t the top o f the core, the 

number o f hairs declines to 2718 hairs at 0 cm. 
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Figure 4.1a): Fur seal hair abundance relative to depth. Note gap (between cores) at 

depths 90-100 cm. b): Smoothed fur seal hair abundance results. Results were smoothed 

using S i p i a Plot, running average function, wi th sampling proportions set at 0.1. 

The smoothing curve was calculated using running average function in Sigma Plot. In 

the fiinction running average, the sample proportion was set at 0.1, therefore, an average 
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is calculated for the data point and the surrounding 10% o f the whole data set. As a total 

o f 84 samples were tested, this is equivalent to an 8.4 point running average 

4.3.1 Error 

The average standard deviation for the whole core is 337.04 hairs (see appendix 1 and 

figure 4.2). Error for H U M 3 core (100-289 cm) is 142.95 hairs, whereas the error for 

M A T V K (0-68 cm) is slightly higher at 483.92 hairs. Compared to the number o f counts 

the large fluctuations are o f a magnitude greater than the error and therefore, can be 

classed as significant. 

8000 

m 4000 

D e p t h 

Figure 4.2: Fur seal hair abundance results wi th error bars. Error is calculated the 

average standard deviation o f all the counts (see section 3.6 and appendix 1). 

4.3.2 Summary 

Figure 4.1 indicates that hair abundance has increased from the base to the top o f the 

core. This increase has been accelerated with 3 step increases occurring at 250 cm, 125 

cm and 66.2 cm (see figure 4.1b). Hairs are relatively low from the base o f the core until 

250 cm as they begin to increase and plateau at approximately 2000 per 1 g o f dry 

weight. A second significant increase is observed at a depth o f 125 cm as hairs increase 

slightly too approximately 3000 per 1 g o f dry weight. The largest change through the 

300 
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core is then observed at 66.2 cm as the number o f hairs rapidly increases to 

approximately 4000 hairs per 1 g o f dry weight at the top o f the core. 

4.4 Geochemistry 

A total o f 32 elements have been tested for within the sediments. Carbon (C), Nitrogen 

(N) and Sulphur (S) concentrations were obtained using an elemental combustion 

system and concentrations are expressed as percentages. The remaining elements were 

analysed using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and are 

expressed in parts per bi l l ion (ppb). 

The elements were grouped together wi th elements showing similar fluctuations to 

improve the ease o f analysis (see table 4.1). 

Group A Group B Group C Group D Group E Group F 

Nitrogen (N) Potassium (K) Copper (Cu) Bismuth (Bi) Selenium (Se) Sulphur (S) 
Carbon (C) Titanium (Ti) Zinc (Zn) Molybdenum (Mo) Vanadium (V) Arsenic (As) 
Strontium (Sr) Barium (Ba) Cadmium (Cd) Antimony (Sb) Calcium (Ca) Nickel (Ni) 
Aluminium 57-Iron ("pe) Lithium (Li) Thallium (Tl) Chromium (Cr) 

Sodium (Na) Boron (B) Manganese (Mn) 
BeryUium (Be) Cobalt (Co) 

54 - I r o n (^^Fe) 

Table 4.1: Element groups, grouped according to their fluctuations through the core. 

4.4.1 Group A: Nitrogen (N), Carbon (C), Strontium (Sr), Aluminium (Al ) (figure 4.3) 

4.4.1.1 Nitrogen 

From the base o f the core, nitrogen concenfrations increase rapidly to a peak o f 3.64% 

at 199 cm. Concentrations remain constant at this level before peaking and reaching 

maximum concentrations through the whole core o f 3.72% at 179 cm. From this peak, 

the percentage o f nitrogen declines slightly, fluctuating around 3% wi th a significant 

decline at 175 cm as concentrations fall to 1.91%. Following this relatively stable 

period, a 5-point decline to 1.61% at 131 cm occurs. After the gap in the record, 

concentrations remain constant at 3.2% from 88.7 cm to the top o f the core, wi th minor 

declines to approximately 2.6% at 82.1, 68.8, 59.9 and 0 cm. 
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4.4.1.2 Carbon 

Following Sun et al. (2004a), total organic carbon (TOC) is an indicator o f fur seal 

populations. To obtain TOC, total carbon (TC) and total inorganic carbon (TIC) were 

tested for and used to calculate the TOC (see section 3.4.6.3). The fol lowing section 

presents the results o f the TC before the results o f the TIC (and hence TOC) results are 

considered. 

4.4.1.2.1 Total Carbon 

The percentage o f Carbon in the core fluctuates in a similar manner to Nitrogen, 

increasing f rom the base o f the core to a peak o f 4 1 % at 215 cm. From this peak, 

concentrations decline to 37% and fluctuate at this level from 207 cm to 100 cm. 

Significant declines occur at 175 cm and 131 cm as concentrations reduce to 19% and 

20% respectively. From 90cm, concentrations increase to a peak o f 46% at 76.8 cm 

before plateauing at 4 1 % for the remainder o f the core, wi th the exception o f a notable 

3-point decline, observed at 52.9 cm, where concentrations decline to 34%. 

4.4.1.2.2 Total Organic Carbon (TOC) 

To calculate the TOC, the TIC was measured and subtracted from the TC, as outlined in 

section 3.4.6.3. The TIC results are shown in table 4.2. In the samples tested the 

percentage o f TIC in the sediment was very low (approximately 0.08%), and therefore i t 

can be inferred that the majority o f the carbon is organic carbon and only a trace is 

inorganic carbon. 

Sample T I C 
(mg/kg) 

% T I C 

M A I V K 2-3 81.38 0.08138 
M A I V K 50-51 84.9 0.0849 
H U M 3 179-179.5 62.42 0.06042 

Table 4.2: Results o f the TIC analysis. Results are given in mg/kg; these were converted 

into percentages to correlate wi th the TC results. 

The samples were only tested once and for the results to be accurate, the samples should 

have been repeated. However, as the percentage o f TIC is so insignificant, the accuracy 
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o f this is not necessary as the amount o f TIC in the sample can be termed a trace and 

hence, i t can be assumed that the TC concentrations represent TOC concentrations. 

4.4.1.3 Strontium 

From the base o f the core, concentrations remain below detection limits (detection l imit 

is 5ppb) until a rapid 3-point increase occurs at 183 cm. This increase peaks at 175 cm 

as concentrations reach 45,000 ppb, a maximum concentration through the core. 

Following the peak, rapid declines are observed at 147 and 139 cm as concentrations 

decline to 0 ppb. Concentrations almost reach maximum levels again at 131 cm (44,000 

ppb), before a 4-point decline to 28,500 ppb at 115 cm. This is followed by a small peak 

at 111 cm (38,200 ppb) before another significant 3-point decline to a minimum at 100 

cm. Following the gap in the record, concentrations remain relatively constant at 28,000 

ppb from 90 cm to 71.5 cm. A rapid peak is observed at 68.8 cm (44,000 ppb), before a 

dramatic decline at 58.2 cm to 0 ppb. 

4.4.1.4 Aluminium 

Concenfrations o f aluminium remain below detection limits through the base o f the core 

to 183 cm, when a rapid 3-point increase begins, peaking at 20.3 ppm (parts per mill ion) 

at 179 cm. This peak is followed by a small decline to 11.7 ppm at 169 cm, before 

concenfrations increase again and peak at slightly lower concentrations than previously 

at 159 cm. This double peak is followed by a dramatic decline at 147 cm and 139 cm as 

concenfrations fal l to 0.22 ppm (218,000 ppb) and 0.10 ppm (104,000 ppb) respectively. 

Concentrations rapidly increase to almost maximum concenfrations at 131 cm reaching 

22.7 ppm. This peak is followed by a gradual decline to 100 cm interrupted by a small 

peak at 107 cm as concentrations reach 18 ppm. Following the gap in the data, a 6-point 

decline is observed to a minimum at 76.8 cm before a 3-point increase to a peak at 52 

cm as concenfrations reach a maximum o f 22.9 ppm. Following this peak, 

concenfrations are below detection at 44 cm before increasing and plateauing at 13 ppm 

to the top o f the core. A t the very top o f the core, concenfrations increase to 19.9 ppm at 

0 cm. 
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Figure 4.3: Element concenfrations o f group A compared to fur seal hair abundance, a) 

Nifrogeh; b) Carbon;!;) Strontium d) Aluminium. The siiiootli line is the smoothed 

average calculated in Sigma Plot using the running average function, wi th sampling 

proportion set at 0.1. 
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4.4.1.5 Summary o f group A 

This group o f elements show a dramatic increase at the base o f the core, although the 

increase is delayed in the Aluminium and Strontium record, i t is o f a similar magnitude 

to the increase in Carbon and Nitrogen. This rapid increase is the largest change through 

the core in all o f these elements. Following the increase, although Strontium and 

Aluminium fluctuate slightiy, this fluctuation is no greater than 10 ppm. 

4.4.2 Group B: Potassium (K) , Titanium (Ti) , Barium (Ba), Iron 57 ("Fe) and Sodium 
(Na) (figure 4.4) 

4.4.2.1 Potassium 

From the base o f the core concentrations remain below detection limits until 207 cm, as 

a rapid 7-point increase begins. Concentiations increase from 0.03ppm (33,600 ppb) at 

207 cm to 6.4 ppm at 175 cm. Following this peak, concenfrations fluctuate 

significantly wi th froughs at 167 cm, 155 cm and 139 cm as concentrations fa l l to 

approximately 2 ppb. Maximum concenfrations occur at 131 cm (6.9 ppm) before 

concentrations fall and remain constant at 4 ppm to 100 cm. After the gap in the record, 

a 6-point decline is observed to a minimum at 60 cm. Concentrations peak at 68.8 cm at 

4 ppm ppb before dramatically declining to 0 ppm at 58.2 cm. Concenfrations then rise 

again and remain constant at 1.9 ppm to the top o f the core. 

4.4.2.2 Titanium 

Concenfrations remain at below detection limits from the base o f the core to 183 cm, 

when concenfrations rapidly increase to a peak o f 3 ppm at 175 cm. Although the 

increase is not as rapid as seen in the concenfration o f Potassium, the magnitude is 

similar and peaks at the same point within the core. Following this peak, concenfrations 

decline and fluctuate around 1.3 ppm, wi th the exception o f a smaller peak at 159 cm to 

2.4 ppm. A dramatic decline occurs at 147 cm and 139 cm as concenfrations fal l below 

detection limits. Concenfrations then increase to a niaxii i i i im o f 3.8 ppm at 131 cm. 

From this maximum concenfrations decline gradually (with the exception o f a small 

peak at 107cm) to 1.5 ppm at 100 cm. A t the base o f M A I V K core, concenfrations 

decline continuously from 2 ppm at 90 cm to 1 ppm at 71.5 cm wi th the exception o f a 

121 



4: Results 

small peak at 74.1 cm. From this point, concentrations plateau at 1.1 ppm to the top o f 

the core, wi th the exception o f a dramatic decline to below detection limits at 58.2 cm. 

4.4.2.3 Barium 

The concenfration o f Barium is very similar to the fluctuations in Titanium, as 

concentrations remain below detection limits from the base o f the core to 183 cm. A t 

183 cm concentrations begin to increase and peak at 82,000 ppb at 175 cm. Following 

this peak, concenfrations fal l and fluctuate around 40,000 ppb. A peak at 159 cm 

interrupts this briefly as concentrations increase to 65,600 ppb. A dramatic decline in 

concenfration is observed at 147 and 139 cm as seen in the Titanium record, before a 

rapid increase at 131 cm to maximvim concenfrations through the whole core o f 91,800 

ppb. Following this peak, concenfrations decline to a minimum at 115 cm o f 47,700 ppb 

before a small peak o f 66,000 ppb at 107 cm. After the gap in the record, concenfrations 

decline from 90 cm to 79.4 cm before increasing to 56,000 ppb at 68.8 cm. From this 

point concenfrations decline to below detection limits ppb at 58.2 cm before increasing 

and plateauing at 35,000 ppb to the top o f the core. A t the very top o f the core, 

concentrations increase to 56,000 ppb. 
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Figure 4.4: Element concenfrations o f group B compared to fur seal hair abxuidance. a) 

Potassium; b) Thallium; c) Barium; d) 57- fron; e) Sodium. The smooth line is the 

smoothed average calculated i n Sigma Plot using the running average function, wi th 

sampling proportion set at 0.1. 
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4.4.2.4 57-Iron 

^^Fe fluctuates in a similar manner to Potassium, Barium and Titanium with 

concenfrations remaining at 0 ppb from the base o f the core to 183 cm and increasing 

rapidly to a peak at 175 cm o f 21 ppm. This is followed by a dramatic decline to below 

detection limits is seen at 147 cm and 139 cm before a rapid increase at 131 cm, as 

concentrations reach the maximum within the core o f 27 ppm. ^^Fe concentrations 

decline to a minimum at 123 cm before peaking at 107 cm as concenfrations reach 21 

ppm. Following the gap in the record, concenfrations decline to below detection limits 

at 58.2 cm before plateauing at 12 ppm from 50.3 cm to the top o f the core. 

4.3.2.1 Sodium 

Concenfrations again remain below detection limits through the base o f the core until 

183 cm when concentrations increase to 960,000 ppb at 175 cm. Concenfrations decline 

slightly to a minimum at 167 cm before peaking at 163 cm, which is followed by a 

larger peak at 154 cm as concentrations reach maximum concentrations o f 2 ppm 

(2,000,000 ppb). After peaking, concenfrations rapidly decline to below detection limits 

at 147 cm and 139 cm, fol lowing the same frend as the other elements in the group. 

Following the decline, concenfrations increase to smaller peaks o f 1 ppm (1,000,000 

ppb) at 115 cm and 103 cm, peaks not observed in the other element concenfrations in 

this series. After the gap in the record, concenfrations remain relatively constant from 

90 cm to 74.1 cm, peaking at 68.8 cm at 1 ppm. Concenfrations then decline rapidly to 

below detection at 58.2 cm, before gradually increasing to a small peak at 26.5 cm. 

From this peak, concenfrations decline slightly to 18.5 cm before gradually increasing 

again to 900,000 ppb at the top o f the core. 

4.4.2.5 Summary o f group B 

This group o f elements show a significant increase from below detection at 183 cm to a 

peak at 175 cm. Following this rapid increase, concentrations decline slightiy to a 

minimum at 147 and 139 cm. Concentrations then reach a maximum at 131 cm. 

Following the gap in the record, a peak at 68.8 cm is observed in most element 
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concenfrations before a decline at 58.2 cm. Concenfrations then remain relatively 

constant to the top o f the core. 

4.4.3 Group C: Copper (Cu), Zinc (Zn), Cadmium (Cd) and Lithium (Li) (See figure 
4.5) 

4.4.3.1 Copper 

Concenfrations remain at below detection from the base o f the core to 179 cm, when a 

small increase to 40,000 ppb is observed which is maintained to 155 cm before 

concenfrations decline to 0 ppb. Concenfrations remain below detection limits wi th the 

exception o f two small peaks at 127 cm and 111 cm to 19,000 ppb. The next significant 

change occurs at 84.7 cm as copper begins to gradually increase from below detection 

limits. A t 74.1 cm fol lowing the gradual increase, concentrations rapidly increase from 

10,000 ppb to a maximum (309,400 ppb) at 68.8 cm. From this maximum, the 

concentration o f copper declines rapidly to below detection limits at 58.2 cm before 

peaking at 40 cm at 24,000 ppb. Concenfrations then plateau from 50.3 cm to 2.6 cm, 

fluctuating between 19,000 ppb and 23,000 ppb. In the top 2.6 cm o f the core 

concenfrations increase slightly to 281,700 ppb, reaching a similar level to the 

concentration observed at 52 cm. 

4.4.3.2 Zinc 

Zinc concenfrations remain minimal from the base o f the core to 175 cm. From 175 cm 

concenfrations increase from 14,800 ppb to a peak o f 544,000 ppb at 183 cm. Following 

a small decline to a minimum at 167 cm, concentrations peak at a similar level to 183 

cm at 159 cm. Concenfrations decline to below detection limits at 147 cm and 139 cm. 

Following this double frough, concenfrations increase to a peak at 131 cm before 

declining and reaching a minimum at 123 cm. From this minimum, concenfrations 

increase again to 424,000 ppb at 107 cm. After the gap in the record, concenfrations 

remain constant until 79.4 cm, when a 4 point increase is observed to a maximum value 

o f 1,500,000 ppb at 71.4 cm. A decline to below detection limits is then witnessed at 

58.2 cm as also observed in the copper fluctuations. From this point the concenfration o f 

zinc is very similar to the copper concenfrations, peaking slightly at 52.9 cm before 

remaining relatively constant until 2.6 cm, when concenfrations increase from 1,100,000 

ppb to 1,400,000 ppb at 0 cm. 
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4.4.3.3 Cadmium 

Cadmium concenfrations fluctuate to a greater extent than that observed in the Zinc and 

Copper concentrations through the base o f the core. Concentrations remain at 

approximately 650 ppb through the base o f the core, wi th the exception o f small peaks 

at 283 cm, 275.5 cm and 251 cm as concenfrations reach 2,100 ppb, 1,477 ppb and 

2,500 ppb respectively. From 183 cm to 159 cm, concentrations increase from 578 ppb 

to 4,600 ppb, wi th concenfrations peaking again at 154 cm before declining to 

approximately 1,000 ppb. A small peak occurs at 143 cm before concenfrations decline 

to 17 ppb at 139 cm. Concenfrations remain low until 119 cm when they increase to a 

peak o f 2,500 ppb at 107 cm. Following the gap in the record, concenfrations increase 

from 964 ppb at 84.7 cm to a small peak at 71.4 cm before rapidly increasing from 

1,500 ppb to a maximum o f 7,900 ppb at 63.5 cm. As observed in the other elements, 

concenfrations then rapidly decline to below detection limits at 58.2 cm. From this 

decline, concenfrations fluctuate around 1,500 ppb for the remainder o f the core. 

4.4.3.4 Lithium 

Lithium concenfrations are similar to the rest o f this group, as concentrations increase 

from very low concenfrations at the base o f the core to 195 cm when concenfrations 

increase to a peak o f 12,000 ppb at 175 cm. Although the increase begins slightly earlier 

than the other element concenfrations in this group, the most significant increase 

commences at 183 cm, similar to the frend observed in the rest o f the group. Following 

a small decline at 167 cm, a 4-point increase to 154 cm is observed as concenfrations 

peak at 24,000 ppb. Concenfrations decline to a minimum at 147 cm and 139 cm (as 

observed in other records) before a small peak at 131 cm as concentrations reach 12,200 

ppb. From this point concenfrations decline to 500 ppb and remain stable at this level to 

100 cm. After the gap in the record, from 90 cm to 82.1 cm concenfrations remain at a 

similar level as to before the gap. From 76.8 cm lithium concentrations increase and 

reach a maximum at 71.5 cm as concenfrations peak at 43,600 ppb. From here 

concenfrations decline and fluctuate around 5,000 ppb to the top o f the core. The 

significant decline observed in the elements i n the rest o f the group at 58.2 cm is also 
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observed in the li thium concenfrations however, this does not appear as significant as 

other records as concenfrations remain relatively low though the top o f the core. 

4.4.3.5 Summary o f group C 

This group of elements show a general trend o f a small increase in concenfrations 

commencing at 187 cm, peaking at 175 cm and again at 154 cm. Concenfrations decline 

to a minimum at 139 cm, before increasing and peaking at 131 cm (copper 127 cm) and 

107 cm (copper 111 cm). Following the gap in the record, concenfrations remain 

relatively constant until the rapid increase to maximum concentrations at 68.8 cm 

(Cadmium 63.5 cm and Lithium 71.5 cm). Following the increase, a decline to below 

detection limits at 58.2 cm is observed in all concenfrations. From this rapid decline, 

concenfrations plateau until 2.6 cm, where an increase is observed in all the elements. 

4.4.4 Group D: Bismuth (Bi) , Molybdenum (Mo), Antimony (Sb), Thallium (Tl) , 
Boron (B), Beryllium (Be) (See figure 4.6) 

4.4.4.1 Bismuth 

Bismuth concentrations remain at below detection limits through the base o f the core to 

207 cm, wi th the exception o f small peaks at 263 cm and 251 cm. Concentrations begin 

to significantly increase at 199 cm, peaking at 154 cm as concenfrations reach 

maximum values through the core o f 977 ppb. Concenfrations decline rapidly to below 

detection limits at 147 cm and remain at this level imt i l 2.6 cm as the concenfration 

increases slightly to 66 ppb. 

4.4.4.2 Molybdenum 

Concenfrations o f molybdenum remain below detection limits through the base o f the 

core to 183 cm. From 183 cm, concentrations begin to increase to a maximum o f 40,000 

ppb at 154cm. Following this peak, concenfrations rapidly decline to 1,300 ppb at 151 

cm and from here remain relatively constant until 84.7 cm. From 84.7 cm, a 6-point 

increase is observed to 71.5 cm as concenfrations peak at 31,800 ppb. Following this 

peak, concenfrations decline to 0 ppb at 58.2 cm and then increase to plateau between 

10,000 and 15,000 ppb to the top o f the core. 
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4.4.4.3 Antimony 

Concentrations at the base of the core, in contrast to the other elements are relatively 

high and fluctuating, peaking at 251 cm as concentrations reach 2,800 ppb however, the 

general trend is decline to a minimum of 0 ppb at 187 cm. From 167 cm the 

concentration increases and peaks at 2,700 ppb at 159 cm. Following a decline at 155 

cm to 401 ppb, concentrations increase again to a maximum at 154 cm of 3,300 ppb. 

From this peak, concentrations rapidly decline to below detection limits at 151 cm and 

remain low to 87.4 cm, concentrations increase again from below detection limits at 

87.4cm to 1,400 ppb at 74.1 cm. Following this peak, concentrations decline to a 

minimum of 15 ppb at 44 cm and then plateau at approximately 250 ppb to the top of 

the core, where a small increase is observed at 0 cm as concentrations increase to 680 

ppb. 

4.4.4.4 Thallium 

At the base of the core thallium concentrations remain below detection limits to 219 cm, 

with the exception of a small peak at 263 cm and 227 cm. From 219 cm, concentrations 

increase to a double peak at 203 cm (985 ppb) and 187 cm (1,100 ppb). After this 

double peak, concentrations decline to 182 ppb at 179 cm. Following this brief fall, 

concentrations increase again from 167 cm and reach a maximum of 2,700 ppb at 154 

cm. From here concentrations decline to 0 ppb at 151 cm and 143 cm, peaking briefly at 

147 cm at 1,500 ppb. Concentrations then peak slightly at 139 cm before declining to 60 

ppb, remaining relatively constant to 84.7 cm. Concentrations increase to a peak at 71.5 

cm as concentrations reach 1,000 ppb. Following the peak concentrations decline to 

approximately 130 ppb where they remain constant to the top of the core. A slight 

increase is observed at 58.2 cm to 329 ppb and at 0 cm as concentrations reach 425 ppb. 
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4.4.4.5 Boron 

Concentrations remain below detection limits through the base of the core to 223 cm. 

From 223 cm, a 5-point increase occurs to a peak at 203 cm as concentrations reach 

222,700 ppb, a maximum concentration for the whole core. From this peak, 

concentrations decline to 9,750 ppb at 195 cm and remain at this level until 167 cm as a 

second increase begins, peaking at 154 cm (207,000 ppb). Following this second peak, 

concentrations decline to 0 ppb at 147 cm and 139 cm, before increasing to 20,000 ppb 

and remaining at this level to 100 cm. From 88.7 cm, a 5-point increase is observed to a 

peak at 74.1 cm as concentrations reach 114,000 ppb. Following the peak, 

concentrations decline to below detection limits at 66.2 cm and remain at this level until 

21.2 cm. From 21.2 cm, concentrations increase slightly to the top of the core, reaching 

a maximum 143,000 ppb at 5.3 cm. 

4.4.4.6 Beryllium 

The record is not continuous however, concentrations fluctuate significantly through the 

base of the core. The general trend is an increase to a maximum peak of 4,261 ppb at 

154 cm. Following the peak, concentrations decline rapidly to approximately 1,000 ppb 

and remain constant to the gap in the record. Following this gap, concentrations peak at 

74.1 cm and 68.8 cm. The only concentrations recorded after this peak are at 39.7 cm 

and 23.8 cm as concentrations reach 2,800 ppb. 

4.4.4.7 Summary of group D 

All the elements in this series show relatively low concentrations at the base of the core, 

with the exception of Antimony, which declines fi-om the base of the core to a minimum 

at 179 cm. Thallium and Boron show a peak at 203 cm. All the elements show a large 

increase commencing at 179 cm and peak at maximum concentrations at 154 cm, 

followed by a rapid decline. With the exception of Bismuth, an additional peak is 

observed at 74.1 cm, followed by a gradual increase to the top of the core. Beryllium 

shows the rapid increase at 154 cm however, the decrease fi-om this peak is not as rapid 

as the other elements and the top of the core does not show the gradual increase as 

observed in the other elements. 
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4.4.5 Group E : Selenium (Se), Vanadiiim (V), Calcium (Ca), Chromium (Cr), 
Manganese (Mn), Cobalt (Co), Iron 54 (̂ ^̂ Fe) (See figure 4.7) 

4.4.5.1 Selenivim 

At the base of the core, selenium concentrations are relatively high and decline from 

193,100 ppb at 289 cm to 14,300 ppb at 179 cm. A double peak at 283 cm and 275.5 cm 

interrupts this general decline briefly as concenfrations increase to 536,300 ppb and 

597,700 ppb respectively. Maximum concentrations are reached at 251 cm as 

concenfrations increase to 848,100 ppb. Following this peak, concenfrations decline to 

previous levels before increasing to 399,000 ppb at 227 cm. This peak is followed by a 

small decline before an additional peak at 203 cm to 560,000 ppb. From this peak, 

concenfrations decline to 13,000 ppb at 179 cm and remain at low levels imtil a peak is 

observed at 147 cm as concenfrations increase to 387,000 ppb. A smaller peak at 139 

cm follows this before concenfrations decline to almost below detection limits at 135 

cm. The concenfration then remains at this level with the exception of a small 

interruption at 107 cm. Following the gap in the record, concenfrations remain low until 

76.8 cm, when a 3-point increase occurs as concenfrations peak at 68.8 cm at 325,000 

ppb. From this peak there is a rapid decline to a minimum at 58.2 cm of 11,000 ppb. 

Following this decline, concenfrations increase to 214,800 ppb at 53 cm before 

gradually declining to 103,000 ppb at 2 cm. Concenfrations at 0 cm increase slightiy 

from this level to 132,000 ppb. 

4.4.5.2 Vanadium 

Concenfrations of vanadium are very similar to those of selenium, showing a decline in 

concenfration from the base of the core, with a double peak occurring at 283 cm and 

275.5 cm, increasing to 1.8 ppm and 1.7 ppm respectively. A significant peak also 

occurs at 251 cm as concenfrations increase to 3 ppm from 629,000 ppb at 255 cm. 

Following this noteworthy increase, concenfrations decline to a 605,000 ppb at 247 cm 

and continue to gradually decline, friterrupting the gradual decline, as observed in 

selenium concenfrations, are smaller peaks at 117 cm and 203 cm. ĝ ojlipvinĝ ^̂ ^̂ ^ 

decline, concenfrations remain constant from 179 cm to 151 cm. A peak occurs at 147 

cm as concenfrations increase to 1 ppm. A smaller peak at 139 cm follows this as 

concenfrations reach 626,000 ppb. Following this point, concentrations remain at below 
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detection limits from 135 cm to 79.4 cm. At 71.5 cm maximum concentrations are 

reached as the concentration increases from 0 ppb to 3 ppm. Concentrations then decline 

rapidly to 0 ppb at 68.8 cm and remain at this level to 26.5 cm, when a gradual increase 

is observed to the top of the core as concentrations reach 862,000 ppb. 

4.4.5.3 Calcium 

Calciiim shows a similar fluctuation to vanadium and selenium at the base of the core as 

concentrations decline from 1,300 ppm at 289 cm to 7.2 ppm at 179 cm. The double 

peak as observed in the concentration of vanadium and selenium is also evident in the 

Calcium record at 283 cm and 275.5 cm. A peak at 251 cm interrupts the gradual 

decline from the base of the core as concentrations increase from 1,200 ppm at 255 cm 

to 6,000 ppm. Following this rapid increase, concentrations return to levels before the 

increase occurred. A smaller increase is observed at 227 cm, which is followed by slight 

fluctuations before a larger peak at 203 cm. From this peak, concentrations decline to 

7.2 ppm at 179 cm, where concenfrations remain to 100 cm, with the exception of two 

small peaks at 147 cm and 139 cm as concentrations increase to 1,300 ppm and 662 

ppm respectively. From 90 cm, to the top of the core concentrations remain constant at 

approximately 5 ppm. 

4.4.5.4 Chromium 

Chromium concentrations remain relatively constant at the base of the core at 11,000 

ppb. As seen in the rest of the elements within this group, peaks are observed at 283 cm 

and 275.5 cm and again at 251 cm however, this peak at 251 cm does not reach 

maximum values for the whole core as shown in the rest of the elements in this group. 

Following this peak at 251 cm, smaller peaks are observed at 227 cm and 203 cm. A 

significant peak is also observed at 187 cm, as concenfrations increase to 50,733 ppb. 

From this peak, concentrations decrease to 10,000 ppb and remain constant from 179 

cm to 155 cm. At 155 cm concenfrations begin a 4-point increase to a maximum of 

100,500 ppb at 147 cm. A smaller peak of 46,000 ppb at 139 cm follows this maximum 

peak. At 135 cm, concenfrations decline to 14,000 ppb, which is maintained until 100 

cm. From 90 cm, concenfrations decline gradually to a minimum of 150 ppb at 58.2 cm, 

before then increasing to 5,500 ppb, at 55.6 cm and remaining at this level to the top of 

the core. 

133 



4: Results 

g) 

f ) 

e) 

d) 

c) 

b) 

a) 

l.2e+5 -

1.0e*5 -

S.Oe+4 -

B-0»*4 -
4.00*4 -

2.0»+4 -

• 0 

1.2e*S -

1.0»*5 -

8.Cte*4 -

6.0^4 -

4.(te+4 -

2.De»4 -

0-0 

1.2e*5 

1.0ft*5 

e.0e*4 

6.0e*4 

4.0e*4 

2.0e+4 

0.0 

6et9 

4**9 

30*9 

26+9 

1e*9 

1et6 

g 6e*S 
CL 

2e*S 

at 
4000 

MOO 
o O) 

150 

Deptti 

Figure 4.7: Element concentrations of group E compared to fiir seal hair abundance, a) 

Selenium; b) Vanadiimi; c) Calcium; d) Chromium; e) Manganese; f) Cobalt; g) 54-

Iron. The smooth line is the smoothed average calculated in Sigma Plot using the 

running average function, with sampling proportion set at 0.1. 

134 



4: Results 

4.4.5.5 Manganese 

Concentrations at the base of the core are at relatively high levels and decline fi-om this 

point. A double peak at 283 cm and 275.5 cm interrupts this general decline as 

concentrations increase to approximately 45,000 ppb before maximum concentrations of 

759,000 ppb are reached at 251 cm. Following the peak, concentrations decline rapidly 

to concentrations similar to before the peak. From 231 cm, the concentration of 

manganese fluctuates significantly. Significant peaks are observed at 227 cm and 203 

cm, similar to the other elements in this group. An additional peak is also observed at 

147 cm as concentrations increase to 448,000 ppb, yet from here the general trend is 

decline. From 88.8 cm, concentrations remain at approximately 100,000 ppb. 

Fluctuations in this section of the core appear insignificant in comparison to the 

magnitude of changes deeper in the core. However, a small peak occurs at 68.8 cm as 

concentrations increase to 158,000 ppb and a decline to below detection limits at 58.2 

cm. Finally concentrations increase slightiy at 0 cm to 160,000 ppb. 

4.4.5.6 Cobalt 

Concentrations of cobalt at the top of the core are relatively high and although they 

fluctuate significantly the general trend is one of decline. Peaks observed in the other 

elements at 283 cm and 275.5 cm occur in the cobalt record however, these peaks are 

not as significant as others recorded. Maximum concentrations are reached at 267.5 cm 

as concentrations reach at 108,000 ppb. Following a slight decline, an additional peak 

occurs at 251 cm (95,700 ppb). Slightly smaller peaks are also observed at 227 cm and 

203 cm. Following this peak, concentrations rapidly decline to 1,800 ppb at 179 cm. 

Concentrations remain at this level to 100 cm, interrupted slightly by a peak at 147 cm 

and 139 cm. From 90 cm concentrations remain below detection limits to 76.8 cm as 

concentrations increase slightly to peak at 10,000 ppb at 68.8 cm. Following this small 

peak, concentrations remain relatively constant to the top of the core with the exception 

of a small increase at 18.5 cm to 10,700 ppb. 
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4.4.5.7 54-fron 

Concenfrations gradually increase from the base of the core to a maximum of 146.2 

ppm at 205 cm. Smaller peaks are also recorded at 283 cm, 275.5 cm and 251 cm as 

observed in the other elements. From the peak at 205 cm, concentrations decline to 15.8 

ppm at 179 cm and remain relatively constant until 100 cm, with a small interruption 

with peaks at 147 cm and 139 cm. From 88.7 cm to the top of the core concenfrations 

remain constant at approximately 14 ppm, with the exception of 58.2 cm, when 

concenfrations decline to 8,000 ppb (0.008ppm). 

4.4.5.8 Summary of group E 

This group show a gradual decrease in concentration from the base of the core. This 

decrease is interrupted in all element concenfrations with peaks at 283 cm and 275.5 cm, 

followed by a larger peak at 251 cm, where maximum concenfrations are met or almost 

met. Following this peak, the correlation between the elements is not as significant 

however, in all the elements a peak is recorded at 147 cm and 139 cm. Following these 

peaks, concenfrations fall to very low levels and remain constant to 79.4 cm. From this 

point, all the elements, with the exception of Ca, Cr and "̂̂ Fe peak briefly at 71.5 cm. 

Following this peak, a rapid decline is observed in all the elements (with the exception 

of Ca and V ) to almost below detection limits at 58.2 cm. Following this rapid decline 

concentrations increase and remain relatively constant for the remainder of the core. 

4.4.6 Group F: Arsenic (As), Sulphur (S), Nickel (Ni) (See figure 4.8) 

These elements do not display a similar pattern to any of the element groups therefore, 

they have been grouped together. 

4.4.6.1 Arsenic 

Maximum concentrations are reached at 283 cm as concentrations reach 16,700 ppb. 

Following this peak, concenfrations decrease to 726 ppb at 279 cm and then gradually 

decrease to below detection limits at 227 cm. Concenfrations remain at Oppb until 183 

cm, when a rapid increase begins which peaks at 154 cm as concenfrations reach 12,600 

ppb. Following this increase there is a rapid decline in concenfrations to below detection 

limits at 147 cm. From this low point, concentrations increase to almost maximum 
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concentrations at 115 cm, which is followed by a smaller peak at 107 cm. After the gap 

in the record, a 4-point increase is observed to a peak at 82.1 cm at 12,500 ppb. 

Concentrations then decline to approximately 7,000 ppb, as concentrations plateau to 

the top of the core, with the exception of a significant decline at 58.2 cm to below 

detection limits. 

4.4.6.2 Sulphur 

At the base of the core the sulphur content increases from 0.39% at 289 cm to 2.1% at 

279 cm. Following this peak, the concentration of sulphur drops dramatically at 263 cm 

to 0.48%. The sulphur concenfration then gradually increases, peaking at 259 cm and 

247 cm before reaching a maximum peak of 3.075% at 227 cm. Following the peak, the 

content of sulphur gradually declines to a minimum of 0.554% at 175 cm, before 

increasing again and remaining relatively constant before a decline at 131 cm to 0.78%. 

From this point, the percentage of sulphur increases again and peaks at 115 cm at 

similar levels to the peak observed at 227 cm. Following this peak, a smaller peak is 

observed at 103 cm. After the gap in the record, concentrations reach 2.41% at 90 cm 

before declining to 0.82% at 82.1 cm. Concentrations gradually increase to a smaller 

peak of 1.23% at 34.4 cm before a gradual decline to the top of the core. 

4.3.6.1 Nickel 

Nickel concentrations remain at very low levels from the base of the core to 239 cm, 

when an increase in concenfration begins. The increase is gradual until a peak at 179 cm 

as concentrations reach 31,700 ppb. The peak is followed by a dramatic decline to 

below detection limits at 175 cm, followed by a smaller peak at 167 cm (25,300 ppb). 

Concenfrations drop back to below detection limits before increasing and peaking at 

maximum concenfrations of 54,900 ppb at 151 cm. Following maximum concentrations 

the nickel level fluctuates, peaking at 143, 135 and 127 cm as concenfrations reach 

approximately 17,000 ppb. A 4-point increase, peaking at 107 cm, follows this 

fluctuation. From 88.6 to 76.8 cm the concenfrations fluctuate slighfly but remain 

around the 10,000 ppb before a dramatic decline to 0 ppb at 71.5 cm. Peaks at 66.2 cm 

and 55.6 cm follow this before declining back to 0 ppb from 53 cm. The concentration 

of nickel remains at this level until 2.6 cm is reached and concentrations increase to 

23,000 ppb. 
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Figure 4.8: Element concentrations of group F compared to fur seal hair abundance, a) 

Sulphur; b) Arsenic; c) Nickel. The smooth line is the smoothed average calculated in 

Sigma Plot using the running average function, with sampling proportion set at 0.1. 

138 



4: Results 

4.4.7 Summary of geochemical results 

The most significant change through the whole core in all the element concentrations 

occurs near the base of the core. Elements in groups A (Sr, Al) , B (K, Ti , Ba, ^^Fe, Na), 

C (Zn, Cd, Li) and D (Bi, Mo, Sb, T l , B, Be) all show a dramatic increase in 

concentrations at 183 cm. Carbon and Nitrogen are the exception to this, as the increase 

in these elements begins earlier at 263 cm. The elements of group E (Se, V , Ca, Cr, Co 

"̂̂ Fe) decline rapidly fi-om the base of the core to very low levels at 179 cm. 

The concentrations of elements in groups A and B peak at 175 cm, before declining. In 

groups C and D, the increase is prolonged and concentrations do not peak until 150 cm. 

The double trough observed at 147 cm and 139 cm is present in all of the element 

concentrations in groups A, B, C and D (with the exception of Bi), suggesting a brief 

but notable change at this point. This change also correlates with the elements 

negatively correlated with depth (group E ) , as element concentrations increase to peaks 

at 147 cm and 139 cm. From this point, the correlation between the element 

concentrations is not as strong, suggesting smaller changes to the catchment are 

occurring. 

Following the decline at 147 and 139 cm and gradual increase, concentrations decline 

slightly in most element groups before increasing slightly to a smaller peak. This peak 

occurs in most element concentrations at 107 cm however, it does range from 111 cm 

(Ti) to 103 cm (Cr). The elements in group E , negatively correlated with depth, also 

peak at this point. As all element concentrations increase at this point, it suggests a brief 

but significant change in the system. 

After the gap in the record, a large peak is observed in all the element records. Groups 

A (Sr, Al) , B (K, Ba, Na), C (Cu, Zn), E (Mn, Se) peak at 68.8 cm. Elements in group D 

peak slightly earlier at 74.1 cm. Although the timing of the peak varies slightiy (fi-om 

74.1 cm-63.5 cm) all elements display a significant peak at this point, with the most 

dramatic peaks observed in the Zn and Cu records. Following this peak, all the elements 

in groups A, B and C display a dramatic decline at 58.2 cm, as concentrations fall to 

below detection limits. This decline is also observed in some elements in the other 

groups (Se, Cr, Mn, Mo, Sb, As and ^''Fe) however, the magnitude is not as significant 
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as in the other element groups. This dramatic 1-point decline in all the records suggests 

a significant but very brief change has occurred in the catchment at this point. From this 

point in the core there are no significant frends common across all elements. However, it 

can be noted that very few significant changes in comparison to the rest of the core take 

place in any elements. This implies the catchment has reached stabilisation from 58.2 

cm hence, very few changes in element concentration occur. 

4.5 Dating 

4.5.1 Radiocarbon dating 

The base of the core has been radiocarbon dated at 3439 +/- 25 yrs BP (SUERC-2303) 

using Accelerator Mass Specfrometry (AMS) (Moreton et al. unpublished data). From 

the results of the fur seal hair abundance record and geochemical analysis, samples were 

chosen to obtain further radiocarbon dates to assist in analysis and help to correlate the 

change in the fur seal hair abundance and geochemistry to climatic changes occurring 

within the catchment. Samples HUM3 82-83 cm and M A I V K 50 cm were selected for 

dating for reasons outlined below. 

4.5.1.1 HUM3 82-83 cm 

From the results of the hair abundance and geochemical analysis (See figures 4.1, 4.3, 

4.4, 4.5, 4.6, 4.7 and 4.8), it is clear that a distinct change occurs at 187 cm (HUM3 87 

cm) in the geochemical record and to some extent in the fur seal hair abundance record. 

Using a constant sedimentation rate model derived the radiocarbon date at the base of 

the core, this gives a date of approximately 2000''*C yrs BP which corresponds to a 

distinct climate change at South Georgia (see figure 2.11). This point in the core appears 

to be the largest change in the geochemical and fur seal hair abundance record, 

therefore, it is important to get a radiocarbon date for this point to determine when it 

occurred and allow correlation with other records which climate changes have been 

inferred. As this is a distinct change, it is likely that sedimentation rates at this point in 

the core have altered and therefore, calculating a constant sedimentation rates across 

this point is likely to incur error. A date from this point will provide a pinning point 

upon which a constant sedimentation rate can be used for the rest of the core. Although 

a distinct change occurs at H U M 3 87 cm, after other analysis there was no sample left 
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at this point therefore, the nearest sample was 82 cm and so this sample was submitted 

to Beta Analytic for AMS dating. 

4.5.1.2 M A I V / K 50-51 cm 

The results of the geochemical analysis and the hair abundance record highlight a 

distinct change at 66.2 cm (MAIV/K 50cm). At this point the fur seal hair abundance 

begins to increase sharply to a maximum at 47 cm. The geochemical analysis also 

shows a change at this point as concenfrations peak ~ 68 cm before declining to a 

minimum at 58 cm (see figures 4.3 - 4.8). These rapid changes suggest that a large 

catchment change is occurring at this point therefore, obtaining a date from this point 

will help to establish the timing of this change and hence, allowing factors affecting fur 

seal population fluctuations at this point to be inferred. 

The gap between the two cores is problematic, as the amount of shrinkage between the 

cores is difficult to calculate. As this sample is near the base of the M A I V / K core, this 

will provide a clearer indication of the timescale missing in the combined cores and 

reduce the error in calculating constant sedimentation rates. Considering the 2 cores as a 

whole core, this sample is also nearer the top of the core, and therefore, it is likely that 

sedimentation rates have changed from the other radiocarbon dated samples. A date at 

this point in the core is useful to determine sedimentation rates and reduce the error of 

calculating a constant sedimentation rate from a different core. 

These radiocarbon dates will be used to date the rest of the core using a constant 

sedimentation rate model. However, as figure 3.1 illustrates some of the core has shrunk 

after exfraction. This coupled with the compression of sediments after deposition in the 

lake means that a sedimentation rate is imlikely to be constant. Although the 3 

radiocarbon dates will reduce the error, it must be noted that the fixed spatial resolution 

used to sample the cores (i.e. 2 cm) will not reflect a fixed temporal resolution used for 

analysis. For example the core has been sampled every 2 cm; calculating a constant 

sedimentation rate, 2 cm may appear to represent 10 years however, in some sections of 

the core a period of increased sedimentation rate may result in 2 cm being deposited in 5 

years. During a period of l-educed sedimentation rate, 2 cm may be deposited in 20 

years. Although the sampling has been done at regular intervals, there may be time 

periods within the core when sedimentation rates were lower, thus, the 10 year gap 
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expected may actually reflect a 20 year gap and hence, the detail of every 10 years may 

not be seen within the record. 

4.5.2 Radiocarbon dating results 

The results of the Radiocarbon dating are presented in table 4.3. This presents the 

sample sent for analysis, which are referenced relative to the samples within the core. 

The actual depth of the sample within the cores refers to the depth of the sample when 

viewed as one core, which is calculated using the equation outlined in section 3.1.1. The 

radiocarbon date, as quoted from the laboratories and the conventional radiocarbon date 

that is the radiocarbon date following corrections after the 13C/12C analysis to ensure 

any isotopic fractionation in the sample is corrected. Finally the calibrated date is 

presented. 

Sample Actual depth in the 
core (see section 

3.1.1) 

Radiocarbon date 13C/12C Ratio Conventional 
radiocarbon date 

Calibrated ages 
(2 Sigma calibrated 

result) 
HUM3 200 cm. 
(SUERC-2303). 

300 cm Not stated -29.7 o/oo 3439 +/- 25 BP 3486-3500 BP 
3506-3524 BP 
3555-3704 BP 

HUM 3 82 cm 
(Beta-207757) 

182 cm 3910 +/- 40 BP -26 o/oo 3890 +/- 40 BP 4420-4220 BP 
4210-4170 BP 

MAIVK 50 cm 
(Beta-208029) 

66.18 cm 2750 +/- 40 BP -24.7 o/oo 2750 +/- 40 BP 2940-2770 BP 

Table 4.3: Results from radiocarbon dating. 

As table 4.3 indicates, the results of the radiocarbon dating show a reversal at the base 

of the core. This has implications for analysis and the construction of an age model. The 

possible causes for this switch and the implications for the study will be discussed in 

fiarther detail in section 5.2. 

4.5.3 2'°Pb and " ' C s dating 

Subsamples were taken at every centimefre in the top 20 cm of the M A I V K core to 

prepare for ^'°Pb and '^^Cs dating. This was based upon a radiocarbon date of 3439 '"̂ C 

yrs BP at 300cm (the base of HUM3 core). Assuming a constant sedimentation rate 

from this point to the top of M A I V K core, provides a sedimentation rate of 11.8 years 

per cm. Although the sedimentation rate is unlikely to have remained constant 

throughout both cores, this provides a broad estimate of the sedimentation rate and 
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allows the number of samples required for ^"'Pb to be estimated. The upper limit for 

^'°Pb dating is 200 years therefore, testing samples estimated to be older than this is not 

productive. Using this constant sedimentation rate model, 200 ''*C yrs BP is reached 

after 17 cm. It is likely that sedimentation rates have increased in the past 200 years and 

to take into account any compression within the core, the top 20 cm of the MAFVK core 

(=26.5 cm of the total core) was tested for ^"'Pb activity. The '^^Cs peak in 1963 would 

be expected at approximately 40 yrs BP which is also well within the top 20 cm of the 

core. 

4.5.3.1 '̂''Pb and'"Cs results 

The ^'°Pb and '"Cs results show no activity in any of the samples in the top 20 cm (see 

figure 4.9, 4.10 and appendix 3) therefore, the top of the core was dated using constant 

sedimentation rates calculated fi-om the 3 radiocarbon dates. The possible reasons for 

the lack of activity are discussed in section 5.1.1. 
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Figure 4.9: ^'°Pb and '^^Cs results, a) M A I V K 6-7 cm; b) M A I V K 1-2 cm. The label on 

both the graphs indicates the position where "̂̂ Pb is detected. If ^"'Pb had been present 
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in the sample, a peak would be present at this point and the amount of '̂"Pb in the 

sample is calculated from the net area. 

Figure 4.9a ( M A I V K 6-7cm), the ^"^b count is 52+/-112. As the error on this is greater 

than the actual count, the activity in the sample is below background levels. 

Figure 4.9b ( M A I V K l-2cm) displays similar characteristics. The ^"^b count is -186+/-

117. As this is the top sample, this should display the greatest amount of ^'°Pb as it is 

the most recent sediment however, this is not the case and hence, the sediment cannot 

be dated using these results. The red band on both graphs nearest to the ^'°Pb peak 

indicates where the '^'Cs peak would be if there was any activity in the sample (see 

figure 4.10). 
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Figure 4.10: '^^Cs results ( M A I V K 3-4 cm). The label on the graph indicates the 

position of a peak if there was any '^^Cs in the sample. The label indicates that in this 

sample, the amount of '^'Cs is 69+/-93; therefore there is no '^^Cs in the sample beyond 

background levels. Each sample tested displayed similar characteristics and therefore 

this method cannot be used to date these samples. 
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4.6 Summary 

This chapter only describes the results; results will be analysed further in the following 

chapters. Chapter 5 will carefully examine the results and discuss the implications these 

results have for each objective as outlined in chapter 1. 
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Chapter 5 

Discussion 

Plate 5: Fur seals at South Georgia 
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5: Discussion 

Before discussing the interpretation of the fur seal hair and geochemical results, a robust 

age model will be established from the Radiocarbon dates and the ^'°Pb and '"Cs 

results and used as a basis for analysis. 

5.1 Age Model 

From the results of the radiocarbon dates, it is essential to establish an age model on 

which to compare the fur seal hair abundance changes and hence, fluctuations can be 

correlated to climate change. As the •̂ '*'Pb and '̂ 'Cs results were inaccurate, these 

caimot be used. 

As table 5.1 shows, the radiocarbon dates show an apparent reversal at the base of the 

core. As this is not possible, it is likely that one of the dates is inaccurate and cannot be 

used. The following section discusses the implications for using each of the radiocarbon 

dates and the likelihood of its accuracy. Table 5.1 presents the different age models and 

the implications these models have for analysis. 

HUM 3 200cm 
(SUERC - 2303) 

HUM 3 83cm 
(Beta -207757) 

MAIVK 50cm 
(Beta 208029) Basal date (14C 

years BP) 

Sedimentation Rate 
(cm/yr) 

3439 3910 2750 

Basal date (14C 
years BP) Lower 

section 
Upper 

section 
Model 1 • 3439 0.087 
Model 2 * 6412 0.048 
Model 3 • 12466 0.024 
Model 4 • * 5051 0.10 0.024 
Model 5 * • 3439 0.34 0.024 

Table 5.1 - Different age models and the implications this has for sedimentation rate 

and basal date in the core. 

5.1.1 Model 1 (3439 '̂ C yrs BP only) 

As table 5.1 shows, i f only the basal date was used to date the core, this would give a 

constant sedimentation rate of 0.087cm/yr throughout the core. This is unlikely to be the 

case due to the climatic changes documented in the catchment through the past 3439 ''*C 
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yrs BP (see figure 2.11). Although this is possible, as there are other dates available, 

using an additional date to enhance the accuracy is more favourable. 

5.1.2 Model 2-(3910 "̂C yrs BP only) 

Assuming the radiocarbon date from 187cm is correct; this would imply that the basal 

date is inaccurate. Using this date as table 5.1 indicates, the basal date would be 6412 

''*C yrs BP and the sedimentation rate would be 0.048 cm/ yr throughout the core. Using 

an additional date is favourable as this provides an enhanced accuracy and prevents the 

sedimentation rate been assumed from one constraining point. As a consequence of 

these factors, this model will not be used. 

5.1.3 Model 3 - (2750 •''C yrs BP) 

Using the radiocarbon date fi-om the MAIVK core at 50 cm gives a very low 

sedimentation rate for the entire core and would imply that the core provided a record 

for the past 12466 '''C yrs BP. Given past climate reconstructions for this period, it is 

thought that the catchment was still glaciated in 12466 ''̂ C yrs BP. From analysis of the 

core stratigraphy (see section 4.1) and climate reconstructions from similar lakes in the 

Maiviken area, it can be inferred that the lake catchment formed following deglaciation 

(Clapperton et al 1989). Using this theory, it is thought that this model is inaccurate and 

will not be used. 

5.1.4 Model 4 - 3910'̂ C yrs BP and 2750 ''̂ C yrs BP 

This model uses two radiocarbon dates to enhance the accuracy of the model. Using the 

dates from HUM3 82 and MAJVK 50cm implies the core provides a record for the past 

5051 '''C yrs BP. 

The basal date HUM3 (200cm) (SUERC -2303) is thought to be reliable as it has been 

radiocarbon dated in two separate laboratories (SUERC and Prozan), each giving a very 

similar date (Moreton et al. unpublished data). I f this date is correct, the HUM 3 (82Gm) 

date is thought to be accurate and therefore, this model will not be used. 
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5.1.5 Model 5 - 3439 "'C yrs BP and 2750 '"'C yrs BP 

As the basal date HUM3 (200cm) has been dated twice by different laboratories, both 

giving a similar date, it is thought that this date is accurate and hence, it can be inferred 

that the date obtained at HUM 3 (83cm) is inaccurate and will not be considered in 

analysis. The use of two radiocarbon dates aids in reducing error in the age model 

hence, the date obtained from MATVIK (50cm) will also be used in the model. 

5.1.6 Calculating the age model 

The sedimentation rate was calculated using the basal date from HUM3 200 cm and the 

date obtained from MAIVK 50 cm using equation 5.1. Before calculating any dates, the 

samples were converted into depths as described in section 3.1.1 (equation 3.1). 

(no. of years the sediment section covers) / (no. of cm covered x depth of the sample) 

Equation 5.1: date for each sample in the core 

Lower section of the core (66.18-300 cm) 

= (3439-2750)7(300-66.18) 

= 2.946 years represented by each cm of sediment 

= sedimentation rate 0.34 cm/year 

Upper section of the core (0-66.18 cm) 

= 2750/66.18 

= 41.56 years represented by each cm of sediment 

= sedimentation rate 0.024 cm/ year 

The top of the core cannot be accurately dated due to the problem in '̂̂ Pb and '̂ ^Cs 

dating. Although samples for radiocarbon dates were selected from relatively equal 

depths down the core, due to the age of the youngest date at the top of the core the 

sampling resolution is not time sfratigraphic. However, this problem cannot be 

alleviated without dating an additional sample nearer the top of the core. Although it is 

unlikely that the sedimentation rate has been constant in the catchment since 2750 '''C 
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yrs BP, as the ^'°Pb and '̂ ^Cs results were unsuccessful, this is the only estimate 

available. 

5.2 Dating inaccuracies 

The possible reasons for the inaccuracies in the dating techniques are outlined in the 

following sections. 

5.2.1 ^''^b problems 

The results of the ^'°Pb and *̂ Ĉs show no activity above background levels, therefore, 

this method cannot be used as a means to date the top of the core (see figures 4.9; 4.10). 

The date for the top of the core has therefore, been estimated to be zero. A constant 

sedimentation rate assumed to the '''C date at 66.18 cm depth (MAIVK 50 cm) has been 

used to date the top section of the core. 

Although the sub Antarctic region is not an area commonly recognised as having ^"^b 

and Cs dating problems, there have been no published studies on South Georgia that 

have successfiilly dated lake sediments using ^^°Pb. The apparent lack of ^''^b and '̂ ^Cs 

is difficult to explain, however, possible reasons for this are outlined below and include 

the loss of the sediment-water interface, catchment characteristics, detection limits and 

location of the study site. 

5.2.1.1 Loss of the sediment water interface 

It is possible that the sediment analysed for "̂'Pb and '̂ ^Cs is not the true core top (i.e. 

sediment-water interface at the time of exfraction). If this is the case, the sediment that 

appears to be at the top of the core will be older than 200 years BP and hence, all of the 

^'°Pb in the sample is likely to have already decayed. Although this is feasible, it would 

require a minimum of 4 cm from the top of the core to be lost (calculated on constant 

sedimentation rate discussed in section 5.1.6). The use of a Kullenberg corer for the top 

section of the core was designed to prevent the loss of the core top, it is possible that the 

top 4cm of the sediment in the lake was lost during coring as sludge at the top of the 

core. 

Despite these complications, the dating model suggests the sedimentation rate in the 

core has been constant for the past 2750 '''C yrs BP. Although this is the best estimate 
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available with the data, it is unlikely that this is the case. As figure 2.11 indicates, the 

climate has changed significantly during this period and today the climate is warmer 

than at 2750 ''̂ C yrs BP hence, the sedimentation rates would be expected to be higher. 

Coupling this with the compaction of deeper sediment, causes the ^'°Pb to be present in 

samples deeper than 4 cm. As a consequence, all the ^'°Pb would not be lost in the 

sediment water interface and all the ̂ '*^b in the core would not have decayed. The peak 

of '"Cs in the sediment, used as a reference point for the ^'°Pb dating occurs in 1963 

hence, i f all the ^'°Pb is depleted, it is not surprising that the peak in '̂ ''Cs has also been 

lost. 

5.2.1.2 Catchment Characteristics 

The catchment of the lake may not be conducive to the accumulation of ^'°Pb fallout. It 

is widely recognised in the Antarctic region, the strongest "̂'Pb or '̂ ^Cs signals are 

found in large catchments which experience a focussing effect (Hodgson et al. 2004). 

As section 2.2.3 and 2.2.5 discuss, the catchment is small and very localised hence, 

decreasing the likelihood of any ̂ "^b or '̂ ^Cs accumulation. 

As Appleby et al. (1995) suggest, the ^"^b flux from the atmosphere varies globally 

and the fallout to Antarctica is sparse. Hardy et al. (1973) further establish that the '̂ ^Cs 

fallout in Antarctica is a magnitude lower than fallout rates in mid latitudes of the 

Northern Hemisphere. Doran et al's. (1999) study in a lake in the McMurdo Dry 

Valleys, Antarctica, indicates that levels of ̂ '°Pb were high in some samples however, 

counts were not sufficient in all samples to allow an age chronology to be formulated. It 

was concluded that the perermial ice cover of the lake retarded the deposition of ̂ "^b 

and Cs in lake sediments (Doran et al. 1999). This coupled with low fall out rates of 

^'°Pb and '"Cs in Antarctica prevented the accumulation of ̂ '°Pb and '"Cs in the lake 

reaching levels above backgroimd. 

Humic lake is ice covered for 4-5 months of the year and as discussed in section 2.2.5 

ice cover limits lake inputs hence, the pathways for ^'°Pb reaching the water column are 

restricted (Doran etal. 1999). The accumulation of "̂'Pb and '̂ ^Cs in the sediment may 

therefore, Se limited to only some months of tfie year and result in the accumulation of 

very low levels of ^'°Pb and '̂ ^Cs that are not significantly above background levels and 

therefore cannot be detected. 
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Although there have been numerous studies of ^'°Pb and '"Cs in Antarctica which 

suggest that the fallout is lower than other regions, many studies have yielded sufficient 

concenfrations to allow an accurate chronology to be calculated (Jones and Juggins 

1995; Roberts et al. 2004). Catchments on Signy Island which experience a similar 

climate to South Georgia, have yielded ̂ '°Pb results and allowed a ^'°Pb chronology to 

be determined (Jones and Juggins 1995; Noon et al. 2001; Jones et al. 2000). These 

catchments experience ice cover for 8-11 months of the year and are influenced by a 

large population of fur seals (Noon et al. 2001) indicating that it is not the seasonal ice 

cover or the influx of fur seals that is limiting the ^"¥b and '̂ ^Cs in the catchment. 

5.2.1.3 Detection Limits 

The sample size used in detection was only 0.30g, compared to the recommended Ig. 

This was due to the limited sample available. As the fallout rates of ̂ '°Pb and '̂ ^Cs in 

Antarctica are limited, this coupled with a small sample size may have resulted in any 

"̂'Pb and '̂ ^Cs in the sample being below background levels and detection limits. 

Analysing more sample in the detectors may reduce this problem, however, the scope of 

this study did not allow this. 

5.2.1.4 Location of the study site 

Previous attempts to obtain a ^'°Pb chronology at South Georgia have proved 

problematic and there are no published accounts of a successful ^'°Pb chronology at 

South Georgia (Rosqvist, G. pers. comm.). This suggests that the lack of ^"^b and '̂ ^Cs 

in lake sediments is a characteristic of the island rather than a result of unfavourable 

specific catchment characteristics or the loss of sediment during exfraction. 

Ku and Lin (1976) establish from studies across the Antarctic Convergence that 

concenfrations of ̂ '^b south of the Antarctic Convergence increased to 18 dpm/lOOkg 

(disintegrations per minute/ 100 kg) from 8dpm/100kg in waters to the north of the 

Antarctic Convergence. The Weddell Sea region of the Southern Ocean is particularly 

high in ^'°Pb waters, especially on the northern and western flanks of the gyre (Farley 

and Turekain 1990). As South Georgia is located on the north west flmik of this gyre 

(see figure 2.2), the large oceanic flux of ̂ *"Pb will influence the accumulafion of ̂ "̂ Pb 

in the fur seals and hence, the terrestrial accumulation of ^'°Pb on South Georgia. 

However, as Shimmield et al. (1995) establish, in the Bellingshausen Sea, Antarctica 
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although recorded ^'°Pb activity is similar to other areas (e.g. the north east Atlantic), 

there is virtually no atmospheric input of ^'^b. While the Weddell Sea surrounding 

South Georgia is abundant in ^'°Pb it is possible that the source of the ^'°Pb is 

atmospheric and as a consequence, terrestrial pathways for the ^'°Pb are limited. If this 

is the case, sediment records will be depleted in ^'°Pb. 

5.2.1.5 Summary of ^'°Pb problems 

Without further research into the accuracy of the ^'°Pb detector, the potential limitations 

of the small sample size and the low atmospheric ^'°Pb flux at South Georgia, it is 

difficult to determine the cause of the low ̂ '''Pb concentration in the sediment. 

From the evidence available, the most plausible explanation is a combination of the 

small sample size, the accuracy of the detector and the location of South Georgia 

relative to the atmospheric flux of ̂ '°Pb. While it is possible that the top section of the 

core has been lost, the catchment characteristics are not conducive to ^*°Pb or '̂ ^Cs 

accumulation and the sample size was inadequate. As there are no studies on South 

Georgia that have found sufficient ^'°Pb to provide an age chronology, this would 

suggest that the factor(s) affecting this lack of ^'°Pb are regional and not localised to the 

catchment or the core used in this study. 

In this study, the ^'°Pb and '̂ ^Cs do not provide a core top chronology and so the top of 

the core is assumed to be 0 years, with a constant sedimentation rate from 0 cm to the 

'"C date at 66.18 cm (MAIVK 50cm). 

5.2.2 Radiocarbon problems 

The three radiocarbon dates are not in age stratigraphic order (see table 4.3). 

Specifically, the radiocarbon dates suggest a reversal at the base of the core of 451 years 

(see figure 5.1); therefore, the middle date obtained from sample HUM3 82-83cm was 

not used in the age model. Possible reasons for this reversal are outlined below. 

5.2.2.1 Seafihfluence 

Radiocarbon dating of the surface sediment in the lake has shown that the sediment at 

the sediment-water interface has an apparent age of 426+/-37 '''C years BP (Moreton et 
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al. unpublished data). Surface sediments with an apparent age are generally only found 

in marine systems and this ageing of the surface sediment is known as the marine 

reservoir effect. It is not commonly foimd in freshwater systems such as Humic lake, 

however, it is possible that the apparent age of the sediments in Humic Lake may be a 

consequence of the abundance of seals in the catchment and the influence of marine 

derived faecal material on the sediments. Such an effect has been found previously in 

freshwater lakes in catchments abundant in penguins (Bjorck et al. 1991a; Zale and 

Karlen 1989). 

It is widely recognised that sea water has a non-zero radiocarbon age: surface water 

sinks to intermediate and depths without any further replenishment of ''̂ C (Walker 

2005). Fur seals and (penguins) feed predominantly off krill, which live in oceanic areas 

depleted in '"̂ C. Krill in the Weddell Sea have an apparent ''*C age of 810 +/- 120 '''C 

years, therefore, the absorption of the old ''*C by the fiar seal consequently gives the fiir 

seal an apparent age (Gordon and Harkness 1992). Fur seal excrement and hair washed 

into the lake contain this similar level of ''*C, which dilute the level of ''*C in the lake 

sediment, therefore, when sediment is radiocarbon dated it has an apparent age. In a 

previous study Moreton et al. (unpubliushed data) found this ageing effect to be 426 

years. 

As the ageing effect is caused by fur seal influence, the magnitude will vary depending 

upon the size of the fur seal population (and penguins i f present). As the fur seal 

population has varied throughout the Holocene, the apparent age at the core top is 

unlikely to have been constant through the Holocene. As a consequence, the age of 

deeper sediment carmot be corrected by the same factor as the sediment surface. 

The two dates experiencing the age reversal are located at 183 cm (3910 +/- 40 BP) and 

300 cm (3439 +/- 25 BP). Assuming the radiocarbon date at 183 cm has been affected 

by this marine reservoir effect and the basal date (300 cm) has not, due to the difference 

in fur seal hair abundance, (fur seal hair abundance is significantly higher at 183 cm 

compared to 300 cm) correcting the date obtained from 183 cm yields a date of 3464 ''̂ C 

yrs BP, which is almost identical to the basal date. However, there is 117em of sediment 

separating these two dates hence, this sedimentation rate is unrealistic. Furthermore, the 

correction factor of 426 years is derived from the top of the core; as figure 4.1 shows, 

fur seal hair abundance is 3.5 times greater at the top of the core than at 183cm. It can 
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be inferred that the fur seal population at 183 cm was only 33% that at the top of the 

core and so the correction factor is likely to be significantiy less at 183cm than at the 

core top. Taking this into account and a correction for the basal date, the date at 183cm 

is still older than the basal date. Hence, although the seal influence is a possible factor 

ageing the date, it cannot be used to fully explain the ageing of the sample. 

5.2.2.2 Contamination 

Radiocarbon dating depends upon the decay of the '"̂ C in the sediment, however, it 

assumes that all the material incorporated in the sediment is 'new' carbon (Walker 

2005). Yet, it is possible that older material such as soil sediment or weathered carbon 

bearing rocks could be washed into the lake and incorporated into the sediment (Lowe 

and Walker 1997; Hodgson et al. 2004). This contaminates the ''*C in the sediment with 

older '"̂ C therefore, the date of the sediment appears older than it actually is. 

Alternatively, reworking of the sediment once deposited may result in older sediment 

lying above younger sediment causing in a reversal. 

As Bjorck et al. (1991c) indicate, snow and ice contain old CO2 therefore, i f this melts 

in the catchment it can result in the input of older carbon into the lake. As vegetation 

grows in the lake it incorporates the older carbon. When such vegetation dies, this 

carbon is incorporated into the sediment, producing a '"̂ C content significantly lower 

than the modem day '"̂ C concentrations hence, the date of the sample appears older. As 

contamination alters the age of the sediment, it is difficult to correlate this section of the 

core with climate changes which would help determine a potential climate change in the 

catchment at this time that may have caused an influx of sediment. From the age model 

ouflined in section 5.1, 183 cm is dated at approximately 3000 ''*C yrs BP. Assuming 

the date is correct, correlating this with climate changes on South Georgia (see figure 

2.14), at 3000 ''*€ yrs BP, the climate was thought to be dry and warm, with no 

evidence of any glacial activity therefore, it is iinlikely that snow and ice cover caused 

an influx of old '''C which consequently aged the sediment. 

5.2.2.3 Ice cover 

It is widely documented that i f the ice cOver on a lake reaches the basal sediments, this 

can cause sediment disturbance. Although this process is only common in lakes up to 2 

mefres deep, as the lake in the study is 3.5 mefres deep, this is not affecting the basal 

sediments today. During the Late Holocene, the climate has been colder than today and 
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ice cover has been more extensive (see figure 2.11). Although proxy climate records 

suggest that the catchment has not been influenced by glacial activity, it is possible that 

the climate cooled sufficiently to cause the lake to freeze to a greater depth. If this was 

the case, it is possible that during the past 3439 '''C yrs the base of the lake has been 

frozen causing the reworking of the sediments. 

As discussed in section 4.1, as the core sfratigraphy shows homogenous sediment 

through the majority of the core, there is no indication of sediment reworking following 

deposition. 

5.2.2.4 Summary 

As the bulk sediment sample was dated, the most plausible explanation for the reversal 

of ages at the base of the core is the incorporation of older carbon as a result of sediment 

reworking or the influx of older carbon from the catchment. Using the age model to 

determine the climate at the time this layer of sediment was deposited, the climate 

appears relatively warm and dry, hence, sedimentation is unlikely to have been 

disrupted. However, the reason for using this sample was due to the dramatic change in 

the geochemical record at this point. This dramatic change would suggest that a 

significant shift took place in the catchment at this point, therefore, may have disrupted 

the sediment or caused an inwashing of older sediment, and caused a change in the '"̂ C 

ratio. Coupled with the marine reservoir effect caused by the increase in fiir seals (as 

discussed in section 5.2.2.1), may give the sediment an apparent age, hence, the 

sediment appears older than the actual age it was deposited. If the samples were to be 

dated again, to alleviate this issue wood and plant fragments could be exfracted and 

dated separately to determine the aging effect this 'old' carbon may have upon the 

sample. 

5.2.3 Implications for the study 

The age model as outiined in section 5.1 uses 2 radiocarbon dates to infer constant 

sedimentation rate through the core. This has resulted in a significant change in 

sampling resolution between the lower section of the core (6 yrs) and the upper section 

of the core (110 yrs) (see figure 5.1). At the base of the core, as the sedimentation rate is 

0.34cm/year, the resolution is high at ~ 6 years. The sedimentation rate in the top 

section of the core is 0.024cm/ year and therefore, the sampling resolution is 
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significantly lower at ~ 110 years. Although the core top is unlikely to experience such 

a low sedimentation rate, as the ^'°Pb and '̂ ^Cs dating was unsuccessful, this is the best 

estimate available. This however has implications for analysis; i f the reason for the lack 

of ^'°Pb and '̂ 'Cs in the top samples of the core is a result of loss in the sediment water 

interface, recent 20'*' and 21'' century changes in the fur seal population are not 

represented in this core. Assuming the core top (0 cm) is the present day, (as the 

KuUenberg corer was used to ensure the sediment-water interface remained in tact) the 

poor resolution at the top of the core prevents 20"' century changes being fully evaluated 

as the sampling resolution (110 years) covers the entire 20'̂  century change in the 

population. 
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Figure 5.1: Sedimentation rates in the core relative to core position, radiocarbon dates 

and sampling resolution. 
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Figure 5.2 highlights the effect the change in sedimentation rate has on the results and 

the observed frend in fur seal hair abimdance fluctuations. Plotting the fur seal hair 

abundance against the age scale skews the data and causes the step changes at the base 

of the core to be more pronounced. At the top of the core, due to the reduced sampling 

resolution relative to age, the increase in fur seal hairs observed in the depth record is 

not as distinct. 
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Figure 5.2: a) Fur seal hair abundance relative to depth in the core, b) Fur seal hair 

abundance relative to time (as calculated using the age model outlined in section 5.1.6). 

As the time - sfratigraphic resolution in the upper core is significantly lower than the 

lower core, in this section, the averaging function has averaged a range of points 

covering a larger time scale than m the lower core. As shown in figure 5.1, the sampling 

resolution is 110 years therefore, a running average of 0.1 is equal to an average of -800 

years, thus, when considering the top section of the core, I will refer to the raw data 

rather than the running average. Even referring to the raw data, the sampling resolution 

is too low to fully assess the changes in fur seal populations in the past 200 yrs BP. For 

this reason, the changes in fur seal hair abundance relative to specific climate events 

cannot be evaluated. 
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5.3 Assumptions 

Before analysing the results, due to the issues relating to dating the core, a number of 

assumptions must be made. As outlined by Hodgson et al. (1998), fur seal hair 

abundance has been used as a proxy for fur seal populations. This is based upon the 

assumption that the rate of hair deposition relative to the fur seal population has been 

constant through the entire core. As outlined in section 2.3.2, the climate of the Humic 

lake catchment has changed throughout the core and as discussed affect the inputs into 

the lake. As a consequence, this will impact upon the rate at which fur seal hairs are 

enfrained in the sediment and deposited in the lake. For example, during periods of 

increased ice cover, inputs into the lake are reduced; following the melt of ice, the 

inputs would increase hence, increasing the flux of hairs into the lake. As a consequence 

of this, the number of fur seal hairs relative to the number of fiir seal in the catchment 

may not have been consistent throughout the core. Furthermore, lake circulation may 

have altered, reducing the retention of the hairs within the lake sediments. For example, 

in section 3.3 the hairs are described as being incorporated in organic material and 

hence, making exfraction difficult. During periods of reduced organic lake content it is 

possible that the sediment does not retain the hairs in the same manner as during 

increased organic content, thus, the deposition of hairs relative to the fur seal population 

is not constant through the core. The extent to which this has occurred is difficult to 

quantify, therefore, for the purpose of this study it is assumed that the fur seal hair 

abundance relative to the fur seal population is constant through the core. 

5.4 Late Holocene changes in fur seal populations 

As outiined in the objectives, the fur seal population can be reconstructed using fur seal 

hair abundance and geochemistry. I will firstly evaluate the results of the fur seal hair 

abundance method followed by the geochemical analysis. For the purpose of this study, 

following Hodgson et al. (1998) and Sun et al. (2004), it is assumed that fur seal hair 

abundance is directly proportional to the size of the fur seal population and hence, 

provides a proxy record of the fur seal population. 

5.4.1 Fur seal hair abundance 

Figure 5.3 shows the fur seal hair abundance plotted using the age model described in 

section 5.1. As the sedimentation rate has changed from 0.34cm/year in the lower 
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section of the core to 0.024cm/ year in the upper section of the core, the resolution of 

the hairs is lower at the top of the core 

As shown in figure 5.3, fur seal hair abundance in Humic lake has gradually increased 

through the late Holocene from at least 3439 '''C yr BP. The most dramatic increases in 

the hair abundance occurs from 3300-3200 "*C yr BP and 3000-2800 ''̂ C yr BP as the 

number of hairs per Ig of dry weight of sediment increases by a factor of 2.8. A third 

significant increase is observed from 2600 '''C yrs BP as the hair abundance increases 

by a factor of 1.3 in 220 years. From 2400 ''*C BP, hair abundance increases gradually 

to the top of the core. Figure 5.3b indicates that the fur seal hair abundance has been 

constant for the past 500 years however, from the census data (see figure 2.17), it is 

clear that this is not the case. This inaccuracy is primarily due to the low sampling 

resolution at the top of the core. 
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Figure 5.3a: Fur seal hair abundance fluctuations at South Georgia for the past 3439 ''*C 

years BP. 
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Figure 5.3b: Average fur seal hair abundance for the past 3439 ''*C years BP. The 

average was calculated on Sigma Plot using running average function, sampling 

proportion set at 0.1. 

The most significant increase in fur seal hair abundance occurs at the base of the core as 

hair abundance increase almost 10 fold, from 268 hairs per Ig of dry weight to 2575 

hairs per Ig of dry weight in a period of 150 years (3294-3141 '''C yrs BP). Further 

peaks in the hair abundance occur at 2000 ''̂ C yrs BP and 1100 '"̂ C yrs BP. The fur seal 

population increases by a factor of 2.8 in 300 '"̂ C years to peak at 2000 ''̂ C yrs BP and 

declines by a similar factor in only 200 ''*C years. This rapid increase and decrease, 

prior to human intervention suggests that the fur seal population has the capacity to 

fluctuate significantly (potentially doubling/halving) as a result of natural causes. An 

increase in hair abundance of a similar magnitude is observed at 1100 ''*C years, 

suggesting that the population increased by more than 100% in 100 years and 

subsequently declined in a similar period of time. More recently from 700 '"̂ C yrs BP, 

hair abundance increased by a factor of 1.8, to a peak at 400 '''C yrs BP. From this peak, 

hair abundance declined by a similar magnitude to a minimum at 200 ''*C yrs BP. 

Although hair abundance fluctuates through the core, significant increases in the hair 

are not sustained once a threshold of 3000 hairs per 1 g of dry weight is attained. At the 

base of the core (3439-2900 '''C yrs BP) hair abundance is below 3000 hairs therefore, 

the increases are sustained and the record does not indicate any declines. Although the 

161 



5: Discussion 

abundance does increase beyond 3000 hairs per 1 g of dry weight, to a maximum of 

almost 7000 hairs per 1 g of dry weight, this higher abundance in fur seal hair cannot be 

sustained for periods longer than c. 200 ''̂ C yrs BP before hair abundance dramatically 

declines. This suggests that once the fiir seal population reaches a certain level it cannot 

be sustained and results in a (dramatic) decline, implying that the population has been 

highly variable. 

During the past 2600 ''*C yrs BP there does not appear to be any factor that has caused 

fur seal hair abundance to decline below 2000 hairs per Ig of dry weight. This suggests 

that within the last 2600 years the population has not changed by more than a factor of 

3.5 despite the population increasing from a minimum at the base of the core (3439 '''C 

yrs BP). 

5.4.2 Geochemical record 

As discussed in section 3.4, geochemistry has been used previously to reconstruct fur 

seal populations and it is expected that concentrations of similar elements will correlate 

with fur seal and penguin populations as krill is their primary prey. However, the 

chemical processes in each animal may differ, hence, it is possible that alternative 

mechanisms may influence the concentrations of elements to a greater extent than fur 

seals, hi addition to this, it must be noted that fur seals are not the sole species 

influencing the geochemical signature on South Georgia. For example, although 

penguin populations at the study site are not dominant today, it is possible that penguin 

populations were more extensive during the late Holocene and therefore, influenced the 

geochemistry of the catchment (Zale 1994). Other possible influences on the 

geochemistry are the climate signature and the pressure of weathering on the catchment. 

As the climate has fluctuated through the core, the climate influence on the 

geochemistry is unlikely to be constant through the core and therefore, it is possible that 

the fur seal signature may be obscured by this climate influence. 

For the purpose of this study, as the exact signature of these other influences is 

unknown, it is assumed that any correlation in geochemistry and fiir seal hair abundance 

could be an indirect link to the fur seal population. A difference in results between this 

study and Sun et a/'s (2004a) study may be explained by the difference in catchment 

characteristics and lake composition. Taking these factors into account, I will assess 
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whether the geochemical record is an indicator for fur seal presence and hence, used as 

proxy for fur seal populations at South Georgia. 

5.4.2.1 Group A (Carbon, Nitrogen, Strontium, Aluminixmi) 

The elements in group A do not fluctuate significantly with the fur seal population (see 

figure 5.4). Although previous studies have highlighted that carbon and nitrogen 

fluctuate with fur seal and penguin activity (Sun et al. 2004a), this does not appear to be 

the case at South Georgia. As these studies were done on different islands, the differing 

catchment characteristics may influence the initial concentration of elements and 

therefore, the point of saturation will alter. 

The correlation in previous studies does not necessarily imply causation. Sun et al. 

(2004a) correlate the fur seal population changes with climate changes and so the 

catchment characteristics will also change hence, influencing element concentrations. 

Although in Sun et al.'s (2004a) study, the fiir seal population is changing in response to 

climate changes, it is possible that the element concentrations are changing in response 

to climate changes, rather than changes in the fur seal population. On South Georgia, 

although the fur seal population may influence the element concentrations, alternative 

mechanisms such as an ecosystem change may be altering the element concentrations. 
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Figure 5.4: Element concentrations of group A compared to for seal hair abundance 

relative to age. a) Nitrogen; b) Carbon; c) Strontium d) Aluminium. The smooth line is 

the smoothed average calculated in Sigma Plot using the running average fonction, with 

sampling proportion set at 0.1. 
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5.4.2.2 Group B (Potassium, Titanium, Barium, 57-Iron, Sodium) 

These elements do not reflect the fur seal hair abundance and therefore, cannot be used 

as bio indicators for fur seal populations (see figure 5.5). None of the elements have 

been used successfully as bio indicators previously, a point reinforced by this study. The 

only element thought to be a possible indictor of fur seal abundance was sodium due to 

its high concentration in seawater therefore, likely to show high in concentrations in 

krill and fur seals. However, as sodium also increases with weathering, the association 

of sodium with the other element concentrations in this group suggests that in this 

catchment, concentrations of sodium are more closely associated with weathering than 

with fur seals. 

5.4.2.3 Group C (Copper, Zinc, Cadmium, Lithium) 

Significant increases in the concentration of these elements correlates with the rapid 

increase in fur seal hair abundance at 3100 '"̂ C yrs BP and 2800 '''C yrs BP, with a lag 

of approximately 100 years (see figure 5.6). Copper concentrations only increase for a 

period of 100 years before declining back to the initial concentration. This is not 

observed in the fur seal hair abundance record however, after the increase at 3000 '''C 

yrs BP, the fur seal hair abundance declines slightly and remains at this lower level for 

100 years. It is possible that copper is a bio indicator of fur seal presence but only once 

a threshold of 1500 hairs per Ig of dry weight is exceeded. Below this level, the fiir seal 

population is not significant enough to influence the concentration of copper in the 

catchment. From 3000 ''*C yrs BP, the number of fur seal hairs in the catchment does 

not decline below 1500 hairs, correlating with the increase in copper concentiations 

which increase firom 2900 '"̂ C yrs BP, this being consistent with the 100 year lag as 

observed earlier in the record. Zinc behaves in a similar way, however, fluctuations 

below the threshold of 1500 hairs are observed. 

Zinc and copper are possible indicators of fur seal activity however, this is dependant 

upon the size of the fur seal population as the fur seal hair abundance is relatively low 

and therefore, a significant fur seal population is required before the concentration of 

these elements is affected. 
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Figure 5.5: Element concentrations of group B compared to for seal hair abundance, 

relative to age a) Potassium; b)Thallium; c) Barium; d) 57- Iron; e) Sodium. The smooth 

line is the smoothed average calculated in Sigma Plot using the rurming average 

fonction, with sampling proportion set at 0.1. 
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Figure 5.6: Element concentrations of group C compared to fur seal hair abundance, 

relative to age. a) Copper; b) Zinc: c) Cadmium; d) Lithium. The smooth line is the 

smoothed average calculated in Sigma Plot using the running average function, with 

sampling proportion set at 0.1. 
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5.4.2.4 Group D (Bismuth, Molybdenum, Antimony, Thallium, Boron, Beryllium) 

None of the elements in this group have previously been found to correlate with fur seal 

or penguin activity and as figure 5.7 shows, it does not appear that this record fi-om 

Humic Lake shows a significant correlation. As the other elements in the group are 

considered non-essential to biology, it is not surprising that these element 

concentrations do not correlate with an increase in fur seals (Reimann and de Caritat 

1998). 

5.4.2.5 Group E (Selenium, Vanadium, Calcium, Chromium, Manganese, Cobalt, 
54-h:on) 

The elements of group E are negatively correlated with fur seal hair abundance below 

3000 hairs per Ig of dry weight. Above this threshold, these elements show no 

correlation with fur seal hair abundance, suggesting additional processes are operating 

in the catchment at this time, diluting the affect of fur seals on these element 

concentrations (see figure 5.8). The exception to this is vanadium and to some extent 

selenium, as the increase at 1100 '''C yrs BP indicates that there are other factors 

influencing the concentiations of these elements in addition to fur seals. This will be 

considered later in this chapter (see section 5.6). 

In previous studies, selenium and calcium have been found to correlate with biological 

activity, however, this does not appear to be the case in this catchment. This is likely to 

be the result of catchment characteristics dominating the fluctuations of these elements 

at South Georgia. Although it is possible that the size of the population in this study is 

not significant enough to influence the elements, in previous studies where seal hair 

abimdance was a magnitude lower, selenium concentrations were closely correlated 

with fur seal hair abundance (Sun et al. 2004a). A disparity here is likely to be due to a 

more dominant force than fiir seals influencing the selenium concentrations at South 

Georgia and hence, the fur seal signature is obscured. 
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Figure 5.7: Element concentrations of group D compared to for seal hair abundance, a) 

Bismuth; b) Molybdenum; c) Antimony; d) Thallium; e) Boron; f ) Beryllium. The 

smooth line is the smoothed average calculated in Sigma Plot using the miming average 

fonction, with sampling proportion set at 0.1. 
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Figure 5.8: Element concentrations of group E compared to fur seal hair abundance, 

relative to age. a) Selenium; b) Vanadium; c) Calcium; d) Chromium; e) Manganese; f) 

Cobalt; g) 54-Iron. The smooth line is the smoothed average calculated in Sigma Plot 

using the running average function, with sampling proportion set at 0.1. 
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5.4.2.6 Group F (Sulphur, Nickel, Arsenic) 

As the elements in group F do not correlate significantiy with each other, the elements 

are considered separately. 

5.4.2.6.1 Sulphur 

Sun et al. (2004a) establish sulphur as a bio element for fur seals however, as figure 

5.9a shows, there is very little correlation between the concentration of sulphur and fur 

seal hair abundance. It is possible that the sulphur concentrations at South Georgia do 

not correlate with fur seal hair abundance as concentrations do on King George Island 

due to the magnitude of eutrophication. As Holmer and Storkholm (2001) indicate, 

sulphur concentrations increase in eutrophic lakes. It is widely recognised that one of 

the impacts of fur seal population growth is the eutrophication of lakes, as fiir seal 

populations increase, eutrophication in nearby lakes also increases. At Humic Lake, this 

does not appear to be the case, which is possibly a result of variable catchment 

characteristics and lake processes. 

5.4.2.6.2 Nickel 

The nickel record is not complete therefore, any correlation with fur seal hair abundance 

is difficult (see figure 5.9b). Previously nickel has not been found to be a bio indicator 

and results suggest in this catchment, this is also the case, thus, it can be concluded that 

nickel cannot be used as a bio indicator for fur seals. 

5.4.2.6.3 Arsenic 

The fluctuations in arsenic correlate significantly with fur seal hair abundance with the 

exception of a peak at the base of the core. From this evidence. As concentrations 

increase with fur seal hair abundance, with the exception of a peak at 3388 ''*C yrs BP. 

Previously arsenic has not been found as a bio marker as arsenic is not an element 

essential for biology therefore, in this case, it is unlikely that the fur seals are 

influencing the concentration of arsenic. The correlation is likely to be a result of a 
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change in the catchment to conditions more conducive to for seal population growth and 

causing a change in the concentration in arsenic. 
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Figure 5.9: Element concentrations of group F compared to for seal hair abundance 

relative to age. a) Sulphur; b) Arsenic; c) Nickel. The smooth line is the smoothed 

average calculated in Sigma Plot using the running average fonction, with sampling 

proportion set at 0.1. 
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5.4.3 Geochemical Summary 

From the results of the geochemical analysis, none of the elements correlate 

significantly with the fur seal population changes and cannot be used solely as an 

indicator of fur seal population variation. This conflicts with evidence from Sun et al. 

(2004a) which highlighted selenium, sulphur, carbon (TOC), nitrogen (TN) and flourine 

concentrations to fluctuate significantly with fur seal hair abundance (see figure 3.6). 

This difference can be related to the differing catchment conditions, such as catchment 

size, geology, vegetation cover and the differing magnitude of the fur seal population 

between the study sites. Although some elements correlate with the fur seal population 

at some points in the core, there appears to be additional factor(s) significantly 

influencing the element concentrations rather than fur seals. It is possible that the fur 

seal signature has been diluted at South Georgia due to more influential factors, for 

example a change in weathering regimes in the catchment or an alternative biological 

population (e.g. penguins). As the exact timing of these changes at the top of the core is 

unknown it is difficult to determine the possible effect these additional factors may 

have. 

The elements most significanfly correlated with fur seal hair abundance in this study are 

zinc and copper however, the concentration of these elements only increases once the 

fur seal population increases beyond 1500 hairs per Ig of dry weight. Below this level, 

the fur seal population may not be large enough to cause a considerable change in 

concentration. Although carbon and nitrogen correlate with fur seal abundance from 

3439-2700 ''̂ C yrs BP, fi-om 2700 '''C yrs BP, carbon and nitrogen reach satiiration in 

the catchment hence, very few of the fur seal hair abundance fluctuations after 2700 ''*C 

yrs BP are observed in the record. Comparing these findings with previous studies of fur 

seal geochemistry, it is clear that the influence of fur seals on the geochemistry of the 

catchment differs significantly between catchments and therefore, the elements fi-om 

one study cannot be transferred to another. As a result of this it is difficult to use the 

geochemistiy to validate the Hodgson et al. (1998) method of using fur seal hair 

abundance as a proxy for fur seal populations. 
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5.5 2 0 ' - 2 1 ^ ' Century changes in fur seal populations 

Although the fur seal population is known during the 20* century from census data, 

reconstructing the population in terms of fur seal hair abundance allows a comparison to 

be made between 20''' century changes and the changes in the late Holocene. 

Due to the unexpectedly low resolution of the fur seal hair abundance data at the top of 

the core, it is difficult to evaluate the recent changes in the fur seal hair abundance and 

hence, determine whether population growth in the 20'*' and 21^' century is greater than 

any time in the past 3439 ''*C yrs BP (see figure 5.1). In this discussion I will assume the 

top sample (0 cm) is indicative of seal populations during the 20* century (see section 

5.2.3). As figure 5.3 indicates, fur seal hair abundance has been increasing since at least 

3439 '''C yrs BP, therefore, it can be argued that this recent increase is part of a longer-

term frend through the late Holocene. From figure 5.3 it is clear that a large increase in 

the fiir seal hair abundance occurred at 1100 '"̂ C yrs BP to levels greater than the 

population at the top of the core, suggesting that South Georgia has the capacity to 

support a larger fur seal population than recent times. The increase from 3439 ''*C yrs 

BP to 2800 ''*C yrs BP is the largest increase in hair abundance in the past 3439 '"̂ C yrs 

BP and appears more significant than changes taking place towards the top of the core. 

This increase follows a very low fur seal hair abundance at 3439 '"̂ C yrs BP, from this it 

can be deduced that the greatest rate of increase in fur seals occurs when the population 

is near extinction. Using this theory, as the 20* century increase follows almost 

extinction of the fur seal population, it can be concluded that the rapid increase 

documented in the 20* and 21^' centuries is part of the natural variability of the fur seal 

population, recovering from near extinction. 

5.6 Environmental changes 

As outlined in objective 4 (see section 1.3), this study has investigated the possible link 

between the fur seal population and the changes in climate on South Georgia as outlined 

in section 2.3. A second sfrand of the geochemical Jinalysis was to evaluate the impact 

climate changes had on the geochemistry of the sediment. As summarised in section 

5.4.3, geochemical fluctuations in the catchment do not correlate with the fur seal hair 

abundance. Although geochemistry caimot be used as a proxy for fur seal populations at 

Humic lake, fluctuations in the geochemistry may be occurring in response to 

environmental change. The rate elements are deposited represents important 
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palaeoenviroiraiental signals (Engstiom and Wright 1978), therefore, the geochemical 

record can be used to provide further evidence for late Holocene environmental 

changes. This data and data outiined in section 2.3 (summarized in figure 2.11, 2.13) 

will be used as a basis on which to evaluate the impact of climate change on the fiir seal 

population. 

5.6.1 Geochemical signature 

5.6.1.1 Group A (Carbon, Nitrogen, Strontium, Aluminium) 

As all the carbon in the sample is organic carbon, it can be inferred that this record 

provides an indication of past lake productivity (Last and Smol 2001). Assuming the 

dating model is correct, the plateau of carbon and nitrogen fi-om 2700 ''̂ C yrs BP 

suggests that organic productivity in the catchment has not changed significantly from 

2700 ''*C yrs BP to present. Previous studies of environmental change on South Georgia 

suggest a decrease in productivity, associated with climate deterioration at 2600 ''*C yrs 

BP (see figure 2.11). This disagreement in the record can be attributed the error in 

dating the sediments. 

Strontium and Aluminium are not commonly used as indicators of environmental 

change and fluctuations in the catchment do not correlate with previous proxies used to 

reconstruct climate as shown in figure 2.11. 

5.6.1.2 Group B (Potassium, Titanium, Barium, 57-Iron, Sodium) 

As Engstrom and Wright (1978) indicate, sodium and potassium concentrations increase 

in late glacial sediments in comparison to post glacial sediments. The high 

concentration of these elements fi-om 3100- 2700 ''*C yrs BP, implies sediments are 

postglacial. This is in accordance with the climate shifts of South Georgia as this period 

was warm and dry. Associated with this warmer period, as figure 2.11 indicates, 

glaciers were retreating. Glacial retreat releases precipitation and inorganic sediment 

into the catchment hence, increasing the concentration of sodium and potassium in the 

catchment. Lowe and Walker (1998) also indicate sodium and potassium concentrations 

increase with soil erosion. Although this period is thought to be stable, as glaciers 

retreat, this releases precipitation in the catchment and hence, sediment transport 
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increases, forther supporting the hypothesis that the period up to 2700 '''C yrs BP was 

relatively warm. 

At 2400 '''C yrs BP, the concentration of sodium declines to Oppb, suggesting an 

increased stability. This closely correlates with the cooling event at 2600 *'*C yrs BP, 

which may cause increased ice cover in the catchment hence, reducing and stabilising 

the inputs into the lake. From this point, potassium and sodium concentrations remain 

relatively constant, suggesting very few changes in the catchment stability from 2600 

'"̂ C yrs BP. As figure 2.11 indicates, although glacial flucfoations occurred post 2600 

'''C yrs BP, the climate remained relatively cool and glacial flucfoations were not as 

great as 2600 '''C yrs BP. The concentration of sodium and potassium is likely to have 

been maintained from a constant supply of glacial t i l l from within the catchment. 

5.6.1.3 Group C (Copper, Zinc, Cadmium, Lithium) 

As stated in section 5.4.2.3, copper and zinc correlate with the for seal population 

flucfoations hence, these elements cannot be used as indicators of climate change. 

Cadmium and lithium however, do not correlate with for seal hair abundance and it is 

possible that flucfoations in these elements reflect a climate signafore. The coupling of 

cadmium, lithixrai, copper and zinc prior to 2700 '"̂ C yrs BP suggests the climate was 

relatively stable and the for seal population was not significant enough to alter these 

element concenfrations. At 2700 '"̂ C yrs BP a significant change in the catchment 

occurred, correlating with other element groups to suggest deterioration in climate. The 

lithium and cadmium concenfrations decline rapidly following this increase to suggest a 

brief change as conditions returned to similar levels prior to this increase. Although the 

climate records (see figure 2.11) suggest this is not the case, it is possible that following 

the change at 2700 '"̂ C yrs BP, the change in catchment conditions resulted in other 

element concenfrations to increase and hence, the relative concenfration of lithium and 

cadmiiim in the catchment declined. Previous sfodies suggest that cadmium and lithium 

are not used extensively as indicators of climate change and hence, very little of the 

climate signafore can be deduced from this record. 
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5.6.1.4 Group D (Bismuth, Molybdenum, Antimony, Thallium, Boron, Beryllium) 

Although these elements are not conmionly used as indicators of environmental change, 

they may be used to provide an indication of catchment change. Element concentrations 

peak slightly at 3000 ''̂ C yrs BP, although this is not significant in all records, the peak 

in boron is the largest in the whole record. The climate at this point (see figure 2.11) 

does not appear to change dramatically, remaining warm and stable. Concentrations 

remain relatively low following this peak, with the exception of a peak at 2773 '''C yrs 

BP, however, this does not significantly correlate with other element groups. All the 

peaks in concentrations occur pre 2773 '''C yrs BP, prior to the dramatic climate cooling 

(see figure 2.11) hence, suggesting that these elements are abundant during warm 

phases, as concentrations are very low or at Oppb after this time. It is possible that these 

fluctuations are showing changes in the warm period, which is not widely documented 

in the literature. However, very few of these elements are commonly used as 

environmental indicators therefore, this cannot be substantiated without fiirther analysis. 

It can be concluded that the elements in group D do not clearly reflect fiir seal 

population changes or climate changes during the past 2700 ''*C yrs BP. 

5.6.1.5 Group E (Selenium, Vanadium, Calcium, Chromium, Manganese, Cobalt, 
54-Iron) 

As Matsumoto (1993) indicates, cobalt, iron, manganese, copper and nickel are a major 

source of chemical weathering. Although copper and nickel are not correlated in this 

group, as I outlined in section 5.4.2.3, copper is influenced by fur seal activity therefore, 

chemical weathering does not solely influence concentrations. The nickel record is 

incomplete, making correlation difficult. From cobalt, iron, manganese record and the 

hypothesis that these elements are a major source of chemical weathering, it can be 

deduced that chemical weathering was greatest at 3439 '''C yrs BP, declining to a 

minimum at 2750 ''*C yrs BP. From this point levels remain relatively constant with the 

exception of a dramatic decline at 2400 '''C yrs BP. 

This compares with the climate changes inferred firom other studies (see figure 2.11). At 

the base of the core although the climate is warm and stable glaciers are retreating, 

suggesting an increase in sediment input into the catchment. These sediments are likely 

to be glacial origin and primarily minerogenic matter. The concentration of these 
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elements decline to a minimum at 2750 ''*C yrs BP. This decline can be correlated to 

glacial expansion documented in other proxy records (see figure 2.11) occurring at 

approximately 2600 ''*C yrs BP hence, restricting the inputs into the lake and the 

catchment. Although the catchment has not remained glaciated for the period since 2750 

'"̂ C yrs BP, the climate has remained relatively cool and there has not been a significant 

glacial retreat to release a large amount of sediment into the catchment. 

5.6.2 Climate change inferred from geochemistry 

Due to the resolution of the record and the dating error, it is difficult to identify climate 

small climate changes within the sediment record. From the sediment record, 6 distinct 

climate changes can be identified which can be correlated to the climate record (shown 

in italics) as observed in figure 2.11 and 2.13. 

• 3400-3100 ''*C yrs BP {Pre 2600 '"Cyrs BP) 

Element concentrations are minimal, suggesting very few inputs into the lake during 

this period. This correlates with the late Holocene Climate Optimum as documented in 

the literature to suggest a warm, dry and stable period (Rosqvist and Schuber 2003). 

Although glaciers are retreating, glacial extents are more restrained than today and 

therefore, not affecting the catchment at Maiviken (Clapperton et al. 1989). 

• 3100-2700 "'C yrs BP 

Concentrations in elements increase, signifying an increase in weathering and sediment 

flux into the lake, similar to conditions documented from palaeolimnological studies in 

other lakes in the Maiviken area (see figure 2.13) (Bimie 1990; Clapperton et al. 1989). 

This increase in instability can be correlated to climate deterioration, causing an 

increase in weathering and instability in the catchment. This releases a large amount of 

sediment into the catchment, causing element concentrations to increase. 

• 2700-2300 •''C yrs BP {Climate deterioration 2600 '''Cyrs BP) 

Element concentrations plateau as the catchment stabilises following a climatic cooling 

and associated increase in annual ice cover in the catchment (see figure 2.11). Although 
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the entire catchment is not glaciated, the cooler climate increases the ice cover on the 

lake and small cirque glaciers within the catchment expand, reducing the sediment 

availability in the catchment. The radiocarbon date obtained at 183cm point suggests the 

sedimentation rate had decreased from 3400 '̂'C BP by 2750 yrs BP. 

« 2310-1320 yrs BP 

The slight increase in element concentrations at this stage and correlation with other 

proxy climate records suggests that climate begins to ameliorate, however remains 

relatively stable. Clapperton et al. (1989) suggests that glaciers are advanced, therefore, 

restricting the sediment input into the catchment. 

1320-770 ' X yrs BP {Cooling 1000 "'Cyrs BP) 

Element concentrations in group B increase at 1320 '"̂ C yrs BP, suggesting an increase 

in weathering and sediment input into the catchment. This can be correlated to the cool 

climate as documented by Rosqvist and Schuber (2003) which caused glacier 

fluctuations and an increase in instability in the catchment. This instability releases 

sediment (primarily glacial till) into the catchment, however this release is not as 

notable as the change at 2700 ''*C yrs BP. 

• 770 •''C yrs BP- Present 

Element concentrations are stable at this point in the core, suggesting that the climate 

has remained stable and relatively cool from 770 '''C yrs BP to present. Although 

Clapperton et al. (1989) and Hayward (1983) document glacial fluctuations in the past 

200 years, these fluctuations have not affected the lake catchment in this study due to its 

low attitude and small catchment size. 

5.6.2.1 Summary 

From the results of the geochemistry and other proxy records, figure 5.10 summarises 

the climate changes in the catchment. 
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Figure 5.10- Summary of the climate changes occurring within the catchment from 

proxy records and geochemical analysis from Humic Lake. 
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5.7 Fur seal population fluctuations relative to climate change. 

The climate changes as outlined in figure 5.10 are correlated with the fur seal hair 

abundance record to evaluate the effect of climate change on the fur seal population. 

8000 

4000 

1500.00 2000.00 

Years 14C BP 

2500.00 3000.00 3500.00 

Figure 5.11a: Fur seal hair abundance fluctuations and climate changes at South 

Georgia. The yellow section represents a warm period, blue sections represent a cooling 

and darker blue marks an enhanced cooling. 
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Figure 5.11b: Fur seal hair abundance fluctuations correlated with copper and zinc 

fluctuations and climate changes at South Georgia. 

5.7.1 Late Holocene Climate Optimum (Pre 2600 "*C yrs BP) 

The low concentration and minimal fluctuations of elements in group A, B, C and D 

suggest that the catchment was warm and stable from 3400-3100 '"̂ C BP. This is in 

agreement with other records from South Georgia that suggest a warm dry period (see 

figure 2.11 and 5.10). As figure 5.11 indicates, at this time, the fiir seal population was 

at a minimum for the past 3439 ''*C yrs BP, suggesting that wanner conditions are not 

favourable for fiir seal population growth. 
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The most significant change in the geochemical record occurred at 3100 ''*C yrs BP, as 

weathering and instability increased in the catchment, increasing the inputs into the lake 

and hence, the rapid increase in element concenti-ations. This change at 3100 ''̂ C yrs BP 

correlates with a plateau in the far seal record, suggesting that although the population 

were not negatively affected by climate change, it caused a stagnation of the population, 

before then increasing again at 2900 ''*C yrs BP. 

5.7.2 Climate Deterioration (2600-1600 '̂'C yrs BP) 

It is widely documented that the warmer period ceased at 2600 '''C yrs BP, when a 

significant cooling occurred (see figure 5.10). During the cooler period, an increase in 

ice cover reduced the inputs into the lake causing a decline in the element 

concentrations. 

The fiir seal record peaks slightly at this point, as part of a longer-term tiend of increase, 

suggesting that this brief glacial period was favourable for fiir seal population growth, 

however, did not dramatically affect the fur seal population. 

A larger increase in the fiir seal population is observed at 1980 '''C yrs BP, yet at this 

point in the geochemical record there are no significant changes in any of the element 

concentrations. In the climate record however, there does not appear to be a significant 

climate change at this point. As figure 2.11 indicates, most climate records indicate this 

was a period of cooling, sustained fi-om the widely documented climate deterioration at 

2600 '"̂ C yrs BP. 

5.7.3 1100-200'^C yrs BP 

The largest peak in the fiir seal population in the past 3439 ''*C years occurred at 1100 

'''C yrs BP. Although this peak was brief, it is significant as the fur seal hair abundance 

increases by a factor of 2 at this point. The geochemical record and other proxy records 

suggest that the climate cooled and instability in the catchment increased from 1100 '"̂ C 

yrs BP and was sustained until 500 '''C yrs BP. 

Although the fiir seal population increase was not sustained during this cooling period 

(see figure 5.11), as I stated in section 5.4, the fur seal population cannot be sustained 

above 4000 hairs per 1 g of dry weight at Humic Lake, therefore, although external 
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factors such as climate allow the population to increase, internal factors such as 

competition for breeding ground between seals appears to limit the population. 

The fur seal hair abundance remains relatively constant from 660 ''*C yrs BP, with the 

general increase ceasing. There is however a notable peak at 440 '"̂ C yrs BP. Due to the 

change in sedimentation rate, and low resolution it is possible that this peak is in 

response to the cooling at 600 ''*C yrs BP described by Bimie (1990). 

5.7.4 200 ''*C yrs BP- present 

The most recent climate record is derived primarily from historical records, rather than 

proxy data. As the resolution of the core at this point is not known exactly (as outlined 

in section 5.2.3), the core record caimot be used to accurately infer the fur seal hair 

abundance and climate changes. 

As highlighted in section 2.5 the fiir seal population during the past 200 '''C yrs BP 

declined significantly and consequently increased dramatically from 1930 AD. Relating 

this to climate changes (see figure 2.16) fur seal population increases broadly correlate 

with climate wanning. 

5.7.5 Summary 

Figure 5.11 shows a summary of the fiir seal abundance record in relation to the climate 

changes through the late Holocene. From 3439 '''C yrs BP, when the record began to 

2700 '"̂ C yrs BP the climate was warm, possibly warmer than today in a period known 

as the late Holocene optimum. Through this period the fiir seal hair abundance in the 

core gradually increases. 

Although the geochemical record suggests climate deterioration conmienced earlier than 

the climate record, the peak of cooling occurred from 2700 - 2400 '''C yrs BP (see 

figure 5.10). The climate remained cool post 2400 '''C yrs BP however, at this point, 

there is not a significant change in the fiir seal hair abundance. As figure 5.10 suggests, 

this was a period of increased ice cover hence, inputs into the lake at this time were 

minimal restricting inputs into the lake. The peak in fur seal hair abundance at 2000 '''C 

yrs BP, suggests cooler conditions are favourable for fur seal population growth. 
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As figure 5.11 shows, the climate cooled from 1100 '"̂ C yrs BP (Bimie 1990), again 

correlating with an increase in the fiir seal hair abundance however, this increase is not 

sustained through the cooling period as the population rapidly declines beck to previous 

levels and continues to gradually increase to the top of the core. 

5.8 Factors controlling fiir seal population changes in the late Holocene 

During the late Holocene, although fiir seal populations have continually increased from 

3439 '''C yrs BP, perhaps reflecting the recovery of the population following the 

Holocene Climatic Optimum, larger peaks in the population generally correlate with 

colder periods (see figure 5.11). Although the core does not extend back to the 

Holocene Climatic Optimum, at 3439 ''*C yrs BP, the population was very low 

suggesting that the climate conditions were not conducive to fiir seal population growth. 

As the climate cooled, fiir seal population growth increases dramatically. 

As discussed in chapter 2, the prime factors influencing fiir seal population growth are 

prey availability and predator competition therefore, it can be inferred that at South 

Georgia, as the climate cools, prey availability and predator competition become more 

favourable for fiir seal population growth. 

5.8.1 Prey availability 

Assuming krill has been the primary prey for the fiir seal through the late Holocene, it 

appears that krill availability is more favourable for fiir seals during cooler climates. 

Although there is no single environmental variable found to show a reliable and 

predictable relationship for distribution of krill relative to climate, broad scale 

relationships have been found relating to temperature and oceanic fronts (Trathan et al. 

2002). 

The krill population at South Georgia is not self-sustaining, with the majority of krill 

fransported to the region from the Antarctic Peninsula, South Orkney and the Weddell 

Sea via the ACC (Antarctic Circumpolar Current) (Reid et at. 1999; Meredith et al. 

2005; Hofinann and Murphy 2004). Variability in the krill population is thought to be a 

consequence of the amount of krill that becomes enfrained within the ACC at sites 

upstream of South Georgia or as a result of the spatial and temporal variability in the 

transport mechanism itself (Hofinatm and Murphy 2004). The magnitude of this change 
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is dependant upon how much the front moves, how quickly it returns to its former 

position and the time of year the movement occurs (Trathan et al. 2003). As the 

atmosphere and ocean are a highly coupled system, changes in oceanography are 

simultaneous with changes in terrestrial temperature hence, correlating with climate 

changes. The precise movement of these oceanographic fronts through the late 

Holocene is debatable and therefore, the exact movement of these fronts cannot be 

accurately correlated with fur seal population changes to determine whether this 

influenced the growth of the fur seal population. At present, areas of high krill 

abundance are located in the area between the SACCF and the SACCB, close to the sea 

ice boundary (see figure 5.12). The location of these fronts is highly variable. During 

colder, glacial periods, the polar frontal zone is located further north and therefore, 

increases the proximity of the SACCF in relation to South Georgia hence, the krill 

fransported into the ocean waters surrounding South Georgia reduces (Thorpe et al. 

2002). During warmer periods, the SACCF is located fiirther south of South Georgia, 

again reducing the krill transported to South Georgia. Optimum conditions for krill 

transport are debatable, however, are thought to occur in a climate between these warm 

and cold exfremes. 
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Figure 5.12b: Mean sea ice boundary relative to South Georgia, South Shetland and 

South Orkney Islands. The section in the red box is enlarged in figure 5.12b. Adapted 

from Hansom and Gordon (1998). 
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Figure 5.12b: Scotia Sea region showing South Georgia relative to key oceanographic 

features which influence the distribution of krill. Sub-Antarctic front (SAF), Polar Front 

(PF) (dashed line indicates the position of the Polar Frontal Zone), and the Southern 

Antarctic Circumpolar Current Front and Boundary (SACCF; SACCB). (Source: 

Murphy and Reid 2001) 

As Murphy and Reid (2001) indicate, today krill at South Georgia are on the northern 

edge of their distribution and stock relies on immigration associated with regional 

current systems. As the climate changes, the krill frack shifting climate and hence, the 

distribution of krill alters in relation to climate change (Walther et al. 2002). During 

periods relatively cooler than today krill were more abundant and thus, the prey 

availability for fiir seals increased. Alternatively, during warmer periods, the northern 

extent of krill was located further south than today, thereby decreasing the prey 

availability for fiir seal populations at South Georgia. 

Despite this, it must be noted that, krill populations declined in 1998/99 and 2000/01, 

both of these years being linked to cold anomalies the in Southern Ocean. In 2000/03 

these changes are thought be the result of changes in the path of the SACCF bringing 

colder water closer to South Georgia than in other years (Meredith et al. 2005). The 

cold anomaly in 1998/99 is linked to the 1997/98 El Nino event and is not directiy 

linked to the changes in the path of SACCF and hence, the krill distribution at South 
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Georgia. Although it is widely recognised that El Nino events do affect krill 

distribution, the affect of this at South Georgia has not been fully quantified and will not 

be considered in detail here. These different factors affecting krill distribution illustrates 

how complex the system is and krill distribution cannot be solely defined as dependant 

upon the SACCF. Although this has implications for analysis and must be considered, 

these cold anomalies were annual events and therefore, the changes experienced during 

a cooling of the magnitude at 2600 '"̂ C yrs BP is likely to be greater than this annual 

variability. 

Alternative evidence suggests that patterns in sea ice distribution and abundance affect 

krill productivity and recruitment (Reid et al. 1999; Murphy et al. 1998). A reduced 

krill biomass is thought to be associated with periods of low ice extent. From this it can 

be inferred that in a colder period, ice extent is greater and hence, is more favourable to 

greater regional immigration of krill into the South Georgia area. In warmer periods, sea 

ice declines and krill abundance falls hence, agreeing with the correlation found in 

figure 5.11. 

Smith et al. (1999) outiine a model for adelie penguin growth in relation to sea ice 

distribution. Here population growth increases during conditions of moderate sea ice 

cover, between extremes of excessive and insufficient ice cover. Although fiir seal 

populations at South Georgia grow during colder periods, an exfreme cold situation 

does not appear to have been reached during the late Holocene as the population does 

not show any indication of decline during cold periods. However, this is only a 

hypothesis and it is not clear how oceanography and sea ice variability are linked and 

how this may affect krill distribution. Conversely, evidence presented by Hofinann and 

Murphy (2004) suggests that the distribution of krill does not show any relationship 

with winter sea ice distribution or fronts. 

5.8.2 Predator competition 

Although prey availability is a fiindamental factor affecting fiir seal population growth, 

predator competition also plays an important role (see section 2.7.3.2). Sea ice extent 

increases in response to oceanographic and climatic changes. Changes in sea ice as 

Boveng et al. (1998) highlight, increase the abundance of leopard seals, a fiir seal 

predator. During cooler periods, although prey availability increases, it is also possible 
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that the predator competition increases. As Boveng et al. (1998) argue, the predator 

competition on the South Shetland Islands is greater than at South Georgia due to the 

location of South Shetland Islands relative to the position of sea ice (see figure 5.12). 

The point of optimum fur seal population growth is likely to occur when sea ice 

increases and hence, increases the abundance of krill but not to such an extent to 

increase leopard seals, thus, fur seals perhaps survive when sea ice extent is not at its 

maximum extent but to a greater extent than today. This would explain why the fur seal 

population did not notably increase during the coldest periods, as the sea ice may have 

been too extensive, thereby increasing the predator competition. As the climate warmed 

slightly from the maximum cold period, sea ice declined thus, decreasing the predator 

competition whilst krill availability was still enhanced sufficientiy to allow population 

growth. 

Increased sea ice extent is also likely to bring other changes such as a variation in 

species, and perhaps increasing the competition for krill. For example, as I stated in 

section 2.7.3.1.1, emperor penguins are positively correlated with sea ice extent and 

therefore, the increase in these species may affect the availability of krill due to the 

increased competition. Alternatively, increased sea ice extent is likely to cause a decline 

in some species (e.g. adelie penguins), therefore, reducing the competition for prey. 

Although these factors must be considered, this change in species is unlikely to have 

greatly affected the fur seal population due to the dynamic nature of ecosystems, as 

although some species may be unable to survive, different species are likely to increase 

with the change in conditions. 

5.8.3 Summary 

Fur seal populations at South Georgia appear to increase during cooler periods. 

However, due to the complex interactions between the ocean and atmosphere, it is 

difficult to ascertain the reasons for this increase in fur seal populations during cold 

periods. Evidence from past studies suggests that the primary influence on fur seal 

population growth is prey availability (krill) (see section 2.7.4). This increase in prey 

availability is either a consequence of ocean currents moving northward or an increase 

in sea ice or possibly (due to the highly coupled oceanographic system) a combination 

of both factors. A change in oceanography alters the sea ice extent, which increases the 

availability of krill and therefore, increases the prey availability for fur seals. During 
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warmer periods, sea ice extent decreases and the availability of krill declines. Although 

to fiilly understand the reasons for the increase in fiir seal populations, krill dynamics in 

relation to oceanographic changes must be understood fiirther. As I have outiined in 

section 5.8.2, predator competition is a potential influential factor on the fiir seal 

population growth, however, the knowledge of predator competition on South Georgia 

is limited. To accurately correlate fluctuations in predator competition with fiir seal 

population changes, the interactions of the predators at South Georgia must be 

understood. 

5.9 Recent changes 

Although it is difficult to determine changes in recent fiir seal populations through the 

20* century from this study, it can be stated that fiir seal populations have increased 

dramatically through the late Holocene and therefore, increases noted today are not 

unprecedented. Although the magnitude of change is unprecedented, the trigger for this 

change does not correlate with the factors affecting population growth during the late 

Holocene. As discussed in section 5.8, prior to human intervention fur seal populations 

increased during cooler periods as a consequence of abundance in krill. This increase in 

krill is closely correlated to an increase in sea ice extent. As the climate during the 20* 

century is warming, it is expected that the fiar seal population would decline. However, 

it is widely recognised that the population has increased (see figure 2.17) due to a rise in 

prey availability caused by the sealing and whaling industries in the 19* Century (see 

section 2.7.2). As these activities are human induced, it can be concluded that fiar seal 

population changes in the 20* century are a result of human induced change, creating a 

population growth of fiir seals to a greater magnitude than natural environmental 

changes during the Holocene. 

5.10 Past studies 

Comparing these results to the study by Sun et al. (2004a) and Hodgson et al. (1998), 

this conclusion does not appear to be valid at Signy Island or King George Island. 

5.10.1 Hodgson et al's. (1998) study - Signy Island. 

Evaluating the fiir seal population reconstruction at Signy Island with South Georgia, 

there does not appear to be any significant correlation (see figure 3.2). The fiir seal 
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population at Signy Island does not show any significant peaks through the past 6570 

'"̂ C yrs BP, with the exception of a rapid increase from the 1970's to the present day. 

Fur seal hair abundance is also a magnitude lower here than the records at South 

Georgia. 

5.10.2 Sun et al's. (2004a) study - King George Island 

Sun et al. (2004a) reconstruct the fiir seal population on King George Island for the past 

2367 '''C yrs BP. The record of the fiir seal population (see figure 3.6) suggests that the 

population increased from 1400-1100 ''*C yrs BP and 750-500 '''C yrs BP, hence, 

presenting a similar picture to that of the South Georgia record (see figure 5.2). 

The first peak from 1400-1100 '''C yrs BP correlates with a peak at 1100 ''̂ C yrs BP in 

the record from South Georgia (see figure 5.2). The increase at South Georgia 

commences at approximately 1320 ''*C yrs BP however, due to the low resolution this is 

difficult to evaluate exactly. This peak in the South Georgia record suggests that the fur 

seal population increase lags the King George Island population increase by 

approximately 100 years. The second peak in the record by Sun et al. (2004a), from 

750-500 '''C yrs BP correlates with the peak at 440 '"C yrs BP at South Georgia. Further 

suggesting population increase lags the King George Island population by 

approximately 100 years. Although the record at King George Island extends back to 

2300 '"C yrs BP, the evidence suggests that the fiir seal population has been present on 

the island from only 1400 ''*C yrs BP (see figure 3.6), significantiy shorter than the 

population at South Georgia. 

The sfrong correlation between the record at King George Island and South Georgia 

suggests that a regional forcing factor such as a climate change was causing a fiir seal 

population increase at approximately 1100 '''C yrs BP and 500 '"̂ C yrs BP. Although 

fluctuations in both studies are similar, the reasoning for the change is conflicting. Sun 

et al. (2004a) conclude that the change in fiir seal hair abundance correlates with 

warmer periods whereas fluctuations at South Georgia correlate with cooler periods (see 

section 5.8.3). This conflict can be explained using a model of optimum sea ice 

conditions as outiined by Smith et al. (1999). 
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5.11 Optimum sea ice conditions hypothesis 

Smith et al. (1999) suggest krill populations are closely correlated to sea ice 

distribution, therefore, are affected by climate change. From a study of adelie penguins, 

the optimum level of krill availability is thought to be between two extremes of sea ice 

cover; excessive and insufficient ice cover. Depending upon the location of the breeding 

sites, the penguin population can increase and decrease at two different locations during 

the same period of time (see figure 5.13). 

'X, 

mm 

Figure 5.13: Conceptual model indicating the direction of Adelie penguin population 

changes in relation to sea ice extent (source Smith et al. 1999). This model highlights 

that in years of lower sea ice cover, populations of Adelie penguins in the Ross sea 

increase, whereas they decrease in the Palmer region. 

Relating this model to fiir seal populations, the population at South Georgia is near the 

limit of present day sea ice extent (see figure 5.12) therefore, any decrease in 

temperature increases the sea ice extent and hence, increases prey availability (Hansom 

and Gordon 1998; Smith et al. 1999). Using this hypothesis, it can be inferred that due 

to the positive correlation of fiir seal population and prey availability, (as discussed in 

section 2.7.4) the fur seal population will increase at South Georgia during cooler 

periods. 
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BCing George Island is an island in the South Shetland Islands, located at 62°S and 

59°W, 12° further south than South Georgia and therefore experiences a cooler climate 

(see figure 5.12). Recent temperature data suggests that the annual average temperature 

is approximately 2°C cooler than South Georgia and the extent of sea ice is within 

200km of the islands, in comparison to 800km fi-om South Georgia (see figure 5.12) 

(Boveng et al. 1998; www.antarctica.ac.uk/met/READER). A warming in the region 

would reduce sea ice extent hence, decreasing the proximity of sea ice to South Georgia 

and increasing it relative to the South Shetland Islands. A cooling in the region would 

increase the proximity of sea ice boundary relative to South Georgia. As discussed in 

chapter 2, sea ice extent is a key factor in the survival of the fur seal. As climate 

changes are described in relative terms, rather than actual terms, a cooling in South 

Georgia and a warming in the South Shetiand Islands may result in similar 

temperatures, and therefore explain the difference in results from South Georgia and the 

South Shetland Islands. 
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Figure 5.14: The location of Signy Island and King George Island in relation to South 

Georgia. 
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Figure 5.15 shows an adaptation of figure 5.13 to suit fur seal populations in the Sub 

Antarctic Islands. Line A illustrates the situation during a warmer period (relative to 

today), therefore, the number of fur seals on South Georgia decreases as the sea ice 

extent reduces and prey availability declines. On King George Island, as sea ice 

declines, the boundary of the sea ice extent moves closer to King George Island and 

therefore, prey availability rises hence, increasing fur seal populations. During a cooler 

period (relative to today) the situation is shown in line B. As sea ice extent increases at 

South Georgia prey availability increases, therefore, the fur seal population at South 

Georgia grows. However, the sea ice extent is too great at King George Island for 

optimum levels of prey availability hence, the fur seal population decreases. 

Lower 

King George Island South Georgia 

Sea Ice extent Higher 

Figure 5.15: Conceptual model illustrating fur seal population changes in relation to sea 

ice extent (adapted from Smith et al. 1999). The black line is an approximation of the 

situation today, although the exact magnitude and position of the islands cannot be 

determined with the available data. Line A (blue line) indicates a climate relatively 

cooler than today. Line B (yellow line) indicates a climate relatively warmer than today. 

Although this model may not explain all the variation in the record, it does clarify the 

general trend and agrees with the conclusion that fur seal population fluctuations are 

intimately related to sea ice distribution. Details in the fur seal hair abundance record 

however, are not accounted for in this figure and it does not explain the greater 

fluctuations in the fur seal population at King George Island compared to South 

Georgia. On King George Island, fiir seal populations decline rapidly between peaks, 

194 



5: Discussion 

whereas at South Georgia the population is continually increasing from a minimum at 

the base of the core. However, larger peaks occur at South Georgia at a similar time to 

those on King George Island therefore, it is possible that a larger population at South 

Georgia can be sustained as a consequence of more favourable environmental 

conditions and predator relationships. As a larger population can be sustained, the 

climate variability does not affect the fiir seals as significantly as at King George Island 

and hence, population decline is not as evident in the record. 

5.11.1 20*̂  Century changes 

Although the model outlined in figure 5.15 correlates with changes in the fur seal 

population during the late Holocene, it caimot be applied to 20'*̂  century changes in the 

fiir seal population as the population is increasing during a period of warming, opposite 

to the trend modelled in figure 5.15. Figure 5.16 shows an adapted model of figure 5.15 

to incorporate 20* century changes. The blue line shows the potential fiir seal 

population during the 20* century vinder krill surplus conditions, when the potential fiir 

seal population is greater. The magnitude of this is unknown and cannot be evaluated 

until the fiir seal population begins to decline at South Georgia, as indicated at point A 

in figure 5.16. Once this threshold has been reached and the krill availability is no 

longer sufficient to sustain the fiir seal population, the fiir seal population wil l decline at 

South Georgia. On King George Island however, the population may continue to 

increase due to the warmer climate conditions. 

The situation today is not known exactly but is located on the line between points A and 

C as it is known that a krill surplus effect exists (Croxall et al. 2002). The results of the 

fiir seal hair abundance suggest that the fiir seal population today is not greater than the 

population during the late Holocene; therefore, it is likely that the population is located 

between points B and C. Due to the resolution of the core, this is not known exactly (see 

section 5.2.3) therefore, it is possible that the population today has exceeded the 

optimum fiir seal capacity of the Southern Ocean prior to the krill surplus hence, the 

population may be at a point between point A and B. Once point A is reached, i.e. the 

krill surplus effect is no longer effective at South Georgia and it is likely that the fiir 

seal population will begin to decline. 
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King GeoTse Island Optimum SoulhOcoisia 

Lower Sea Ice extent Higher 

Figure 5.16: Conceptual model of fur seal population changes in relation to sea ice 

extent and prey availability as a result of the Icrill surplus effect during the 20"' century. 

The black line indicates the fur seal population in relation to sea ice conditions prior to a 

krill surplus; the blue line indicates the fur seal population in relation to sea ice 

conditions during a period of krill surplus. 

5.11 Summary 

The above discussion suggests that the fur seal populations on South Georgia, and in the 

sub-Antarctic region as a whole are influenced primarily by krill availability, both 

during the late Holocene and during the 20* century. However, the mechanisms causing 

the change in krill availability has varied, from natural environmental change pre 200 

yrs BP to human induced changes post 200 BP. The implications of this in terms of 

predicting future changes and implementing management measures wil l be addressed in 

the following chapter. 
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Chapter 6 

Conclusions 

Plate 6: Fur seals and penguins on the beach at Maiviken, South Georgia. 
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6 Conclusions 

This chapter outiines the main conclusions of this thesis and is structured using the 

objectives discussed in chapter 1. 

6.1 Objective 1: To reconstruct fur seal populations through the late Holocene by 

counting seal hairs from a lake on South Georgia. 

Using fiar seal hair abundance as a proxy for fur seal populations, allows an indication 

of the fluctuations and magnitude of the population through the core. From this record, 

it can be inferred that the fiir seal population on South Georgia has been present for at 

least the past 3439 '"C yrs BP. At the beginning of the record (3439 '"̂ C yrs BP) the fiir 

seal population at South Georgia was the lowest it has been for the past 3439 ''*C years. 

From this minimum, the fiir seal hair abundance record suggests the population 

increased and plateaued at a level approximately 4000 hairs per 1 g of dry weight (see 

figure 5.2). Although the population increased beyond this level, peaks were brief and 

only lasted c. 300 years before declining back to previous levels. 

6.2 Objective 2: To reconstruct fiir seal populations indirectly using geochemical 

analysis, following the method outlined by Sun et al. (2004a). 

At South Georgia, none of the elements tested for can be used to reliably reconstruct the 

fiir seal population during the past 3439 ''̂ C yrs BP. Zinc and copper are the most 

closely correlated to fiir seal hair abundance however, the fiir seal signature is only seen 

when the population reaches a threshold of 1500 hairs per 1 g of dry weight. Other 

elements such as carbon and nitrogen correlate with the fiir seal population when the 

catchment is stable. However, a large catchment change occurs at approximately 3000 

''*C yrs BP, increasing the concenfration of carbon and nitrogen, obscuring the fiir seal 

signature in this record. 

On South Georgia, the fur seal signature is not as evident in the geochemistry as in 

previous studies, this can be attributed to factors such as catchment stability, vegetation 

cover and seal populations. Evidence presented in this study suggests that the elements 

highlighted by Sun et al. (2004a) as bio indicators for fiir seal population are not 
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transferable from one catchment to another as each catchment displays different 

characteristics such as biological composition, climate conditions and lake circulation. 

For example, at South Georgia, tussock grass is abundant in the catchment, and affects 

the chemical composition of the lake sediments, in areas where this is not as abundant, 

such as King George Island, the fur seal signature is likely to be more pronounced. 

6.3 Objective 3: To determine whether the recent (20* -21^' century) increases in fur 

seals have exceeded the range of natural variability of past populations. 

Due to the unexpectedly low resolution in the top part of the core and the ^^^Pb/'̂ Cs 

dating problems, evaluating the 20* and 21^* century changes in the population is 

difficult. In this thesis I assume that the core top is equivalent to 0 yrs BP (reasons for 

this are outlined in section 5.2.3). I f this is correct then the fiir seal population during 

the 20* and 21^* century does not appear to be significantly higher than at any time 

during the past 3439 ''̂ C yrs BP. 

In addition to the actual size of the population, the rate of the fur seal population 

increase at South Georgia during the 20* century is a cause for concern (see section 

2.5). During the 20* century, the population has increased c. 10 -̂10^ times in 100 years 

(see figure 2.17). As section 5.4 outlines, increases of a similar magnitude are observed 

through the late Holocene. Figure 5.2 highlights that the fur seal population growth has 

been greater than growth today at two separate points through the core. Firstly, when the 

population was at a minimum, as observed at the base of the core, the population 

increased 10 fold. Secondly; once the population reached a threshold (4000 hairs per Ig 

of dry weight), i f it increased beyond this level, increases were dramatic but brief before 

the population declined back to similar levels. Using these two hypotheses, 20* Century 

increases in the fur seal population are not unprecedented through the Late Holocene 

and are expected as the population is recovering from almost extinction at the begirming 

of the 20* Century. 

6.4 Objective 4: To review and assess the impact the environmental changes on South 

Georgia have had upon seal populations over the same time period of the Holocene. 

The largest peaks in fur seal population occur during periods of climate deterioration at 

South Georgia (see figure 5.11). However, studies on other sub-Antarctic islands (e.g. 
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King George Island) correlate increases in fiar seal populations with warming (Sun et al. 

2004a). This apparent paradox can be explained by analogy using a model correlating 

penguin populations and sea ice extent as outiined by Smith et al. (1999) (see figure 

5.13). From past research (see section 2.7.4), the primary controls upon the fiir seal 

population are prey availability and predator competition. Prey availability is sfrongly 

controlled by the distribution of sea ice. The zone of optimum sea ice conditions for 

krill availability and hence, fiir seal population growth today is located between King 

George Island and South Georgia. Although the oceanography of the Southern Ocean is 

complex and not fially understood, the general principle is that during a cooling these 

optimum conditions migrate closer to South Georgia, whereas during a warmer period, 

they migrate closer to King George Island. As krill populations closely follow the sea 

ice distribution, this movement of sea ice, alters the krill availability and hence, the prey 

availability for fiir seals (see figure 5.15). 

It is widely documented that relative to the late Holocene climate, the 20* Century was 

a period of warming. Census data shows the fiar seal population has increased during 

this period in contrast to the palaeo record where populations augment during cooling 

periods. Using this theory, it can be inferred that the increase in 20* century fur seal 

populations are not a result of natural environmental changes. As 20* century changes 

in the fiar seal population are not related to natural environmental changes, the changes 

must be a consequence of human-induced factors. The most likely human induced cause 

is the whaling industry that resulted in a krill surplus in the Southern Ocean. This 

surplus increased the krill availability for fur seals, providing the same effect as 

increasing sea ice extent, leading to population growth. The effects of this on seal 

populations were particularly spectacular due to the preceding exploitation of seals to 

near extinction. 

6.5 Objective 5: To determine the factors controlling fur seal population changes at 

South Georgia through the late Holocene. 

From this evidence, the primary control on the fiir seal population through the late 

Holocene is prey availability. Prior to human intervention, prey availability was 

controlled by sea ice distribution and hence, climatic fluctuations. During the 20* 

century, although the climate conditions do not suggest an increase in prey availability 

at South Georgia, human intervention caused an artificial increase. In this way this 
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study confirms the assertions by Croxall (1992) that the krill surplus has been the 

primary driver for 20* century fiir seal population increases on South Georgia. 

6.6 Overall aim 

My aim was to reconstruct the fiir seal population of South Georgia by counting seal 

hairs from a South Georgia lake sequence as a proxy for fur seal abundance combined 

with geochemical analysis using techniques outiined by Hodgson et al. (1998) and Sun 

et al. (2004a). Comparing the population fluctuations in 20* century and late Holocene 

fiir seal populations allowed the controlling factors underlying fur seal population 

fluctuations to be better understood and hence, aid management and conservation 

decisions. 

As figure 5.2 shows, the fiir seal population has been reconstructed from fur seal hair 

abundance. The use of geochemical analysis for reconstructing the fur seal population in 

this study has not proved successful and has highlighted the problems in tiansferring 

geochemical signatures between catchments. Although the 20* century population 

cannot be precisely compared with late Holocene population fluctuations due to the 

resolution of the core, assuming that 0 cm is 0 yrs BP, the 20* century changes are not 

unprecedented. The factor confrolling these fiir seal population changes through the past 

3439 '''C yrs BP has been primarily prey availability, influenced by sea ice and hence, 

climate changes before human intervention. As krill populations during the Late 

Holocene are only estimates, the magnitude of the krill increase during the 20* century 

cannot be accurately quantified, however, it is widely recognised that the krill 

population has increased during the early 20* century due to the krill surplus effect. 

This artificial increase in prey availability as a result of human intervention has caused a 

consequent increase in the fur seal population. 

In term of addressing the management issues associated with the fiir seal population at 

South Georgia (see section 2.8.1), evidence from this study suggests that management 

may not be necessary. The fiir seal population at South Georgia through the Holocene 

was at levels as high i f not higher than the fur seal population today. Following a large 

increase, the fur seal population returned back to previous levels as part of the natural 

cycle. Although the actual trigger for 20*-21^' century increases in population was not 
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part of the natural cycle, there is strong evidence to suggest the mechanism by which it 

occurred (prey availability) as the same. 

6.7 Future change in the fur seal population at South Georgia 

As the factor controlling the fur seal population (prey availability) is the same through 

the late Holocene, it is clear that this increase cannot be maintained once prey 

availability reaches a threshold. Once the krill surplus period ceases, the prey 

availability wil l reduce and it is likely that the fur seal population wil l decline (see 

figure 5.16). I predict that the fur seal population will cease to increase and the 

population will plateau at a level equivalent to the deposition of ~ 4000 hairs per 1 g of 

dry weight. This estimate however, is based upon evidence from past natural 

environmental change and the impact of human induced changes may be more extensive 

than initially thought. For example the effect of climate phenomena such as El Nino on 

the fur seal population has not been assessed in this study. As Croxall et al. (2002) 

highlight. El Niiio affects sea ice processes in the Southern Ocean. The effect on the 

krill population is not fully understood and therefore, to comprehend factors affecting 

fur seal populations, the mechanisms affecting sea ice distribution and krill distribution 

must first be fully comprehended. In addition to this, human impacts on the krill 

population such as the growth of krill fisheries or a change in location of the krill 

fisheries wil l cause fluctuations in krill populations independent of natural long-term 

climate changes (Croxall and Nicol 2004). 

6.8 Summary 

The fur seal population at Maiviken, South Georgia has been present for at least 3439 

'''C years BP. Increases in the population are the most rapid when the population is very 

low or during colder periods however, fur seal hair abundance plateaus at approximately 

4000 hairs per 1 g of dry weight. Although increases are documented above 4000 hairs 

per Ig of dry weight, these increases cannot be maintained for a sustained period of 

time. 

The primary factor influencing the fur seal population at South Georgia is prey 

availability; hence, indirectly the mechanisms causing changes in prey availability 

affect fur seal populations. Through the past 3439 '̂'C years BP there has not been a 
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time when the krill population at South Georgia has declined significantly enough to 

cause extinction of the fur seal population. Prior to human intervention, prey availability 

was primarily confroUed by sea ice distribution and hence, climate changes. During the 

20* and 21^' century the primary factors affecting prey availability have been human 

induced changes which have resulted in a krill surplus. Despite this, once such a surplus 

ceases or the population reaches a threshold, the population wil l stop growing and it is 

likely that the population wil l stabilise or decline. 

Highlighting prey availability as the cause of fur seal population growth has improved 

understanding of fur seal population fluctuations and the impact that human-induced 

changes has upon these populations. Such findings can then be used to aid management 

and conservation decisions. Correlating fur seal populations with sea ice distribution has 

improved the understanding of the factors controlling fur seal populations; hence, past 

fur seal populations could potentially now be used as an important indicator of 

environmental change in the sub Antarctic region (Jouventin and Weimerskirch 1990). 
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Chapter 7 

Limitations and Further Research 

Plate 7: Fur seals in tussock grass 
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7 Limitations and Further Research 

In light of the findings of this study as outlined in the previous chapter, it is important to 

note that there are a number of limitations inherent in a study of this nature, not least 

clear restiaints of time and logistics. For this reason I shall examine these limitations 

below and the avenues that such shortcomings may open for fiiture research before 

finally looking towards their relation to the projects overall outcomes. 

7.1 Dating 

7.1.1 ^'°Pb dating 

As the ^'''Pb dating technique was unsuccessfiil, the top section of the core was dated 

using a constant sedimentation rate calculated from radiocarbon dates deeper in the 

core. This technique incurs a larger potential error in the dates at the top of the core and 

therefore, the fluctuations noted in fur seal hair abundance during the 20* century 

cannot be accurately determined and compared relative to the timing of the sealing and 

whaling activity. As a consequence of this, the impact of human induced changes 

cannot be as accurately evaluated as other studies have done (Hodgson et al. 1998). 

Inaccurate dating in the top section of the core has also prevented the census data and 

fiir seal hair abundance being compared and hence, the development of a transfer 

fiinction which would allow the size of the fiir seal population prior to exploitation to be 

quantified. 

7.1.2 Radiocarbon dating 

The radiocarbon dates obtained from the core show a reversal at the base of the core 

(see section 5.1), as a result only two radiocarbon dates were used to date the whole 

core. In addition to this, the top radiocarbon date was unexpectedly old resulting in the 

resolution of the hairs in the top section of the core to be very low. Obtaining the 

radiocarbon dates before calculating seal hair abundance would have allowed a greater 

sampling resolution to be taken in the top section of the core and therefore, allowing the 

time- stiatigraphic sampling resolution to be continuous through the core. Alternatively, 

i f time had allowed, organic fragments in the sediment could have been extracted and 

dated separately to determine the potential ageing effect of old carbon in the sediment. 
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Although this is dependant on fragments being present in the sediment, using this aging 

factor, the dates radiocarbon obtained could have been corrected. Furthermore, as the 

sedimentation rate at the top of this core was so low, an alternative core with a higher 

sedimentation rate could have been used to reconstruct the fur seal population, hence, 

providing a more accurate record of change during the 20* century which could be 

compared to census data. 

7.2 Fur seal hair abimdance 

Although calculating fur seal hair abimdance provides a useful indicator of fur seal 

presence, it does have its limitations that must be considered when analysing the data. 

7.2.1 Human error 

The method used to count fur seal hairs as this study demonstrates can incur a large 

amount of error (see section 3.6) even using the same method of preparation and with 

the same person counting. This presents problems in comparing the data from one site 

to another and hence, developing a fransfer function which could be used to quantify the 

fur seal population. 

7.2.2 Population dynamics 

Although using fur seal hair abundance as a proxy for fiir seal populations provides an 

indication of the size of the fur seal population, the population dynamics and 

interactions with the ecosystem caimot be deduced from this method thus, causing 

difficulties in determining factors affecting past populations. A decline in fur seal hair 

abundance implies a decline in the population however; it is possible that a decline in 

fur seal hairs was a result of population migration due to a change in the localised 

conditions rather than a system change such as a regional decline in krill or a climatic 

change. Although this is reflected in the geochemical data, further cores from other 

catchments would help to distinguish these localised changes from a large system shift 

on South Georgia. 

Furthermore, factors affecting the fur seal population historically may not affect the 

population today due to evolution and the ability of the fur seal to adapt to differing 

conditions. An example of this is a change in the prey availability; from recent research, 
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the primary prey of the fur seal at South Georgia is krill and research indicates that the 

foraging behaviour of the fur seal changes to accommodate changes in prey distribution 

and abundance (Green et al. 1989; Reid and Amould 1996; Boyd et al. 1994). Although 

this is the case today, it is possible that past populations of fur seals were not as well 

adapted, therefore, smaller more localised changes in prey abundance would have a 

greater impact upon the population. Natural changes in prey availability in the past may 

appear as a larger natural change than actually occurred due to the ability of the fur seal 

to adapt to system changes, hence, comparing the magnitude of historical fur seal 

population changes with changes today and inferring possible mechanisms for this 

change has limitations. 

7.3 Areas of further research 

This was a time-limifed study and there are obviously a number of potential avenues 

remaining for future research 

7.3.1 Radiocarbon dates 

Two of the radiocarbon dates were obtained after the fur seal hair abundance had been 

assessed. Collecting these dates earlier in the study would have allowed the core top to 

be sampled at a higher resolution based upon the age- stratigraphy rather than depth-

stratigraphy. Alternatively a core with a higher sedimentation rate at the core top could 

have been analysed. A higher sampling resolution at the top of the core would have 

allowed the 20* century changes in the fur seal population to be assessed to a greater 

extent, therefore, allowing a more exact assessment of whether 20* century increases in 

the population had occurred previously during the late Holocene. 

7.3.2 Dating 'old' carbon 

To determine the potential ageing effect of the carbon on the sediment, visible organic 

fragments could be exfracted from the sediment and radiocarbon dated separately. This 

would provide an indication whether there has been significant sediment reworking. 

Using this date, it may be possible to determine the dating error and provide a better 

indication as to which radiocarbon dates are more accurate. 
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7.3.3 Palaecological analysis 

To provide a baseline for the radiocarbon dates and hence, provide a greater indication 

of the accuracy of the dates, palaeocological analysis could be implemented at key 

sediment transisitions. Although Troels - Smith analysis (see section 4.1) indicates 

uniform sediment for the majority of the core, the basal section of the core could be 

analysed to determine when this sediment change took place and related to other proxy 

records to determine the age of this key sediment change. Determining the cause of the 

sediment change would also help to evaluate the accuracy of the radiocarbon dates 

obtained and hence, provide a more robust age model. 

7.3.4 Additional cores 

As two separate cores were used (MAIVK and HUM3), there is a gap in the record. 

Although this c.lO cm gap is relatively small, the exact size is unknown. During 

exfraction, the position of the cores in relation to each other was calculated however, in 

the field it is difficult to measure this difference accurately. At the time of coring an 

additional core was extracted from the same point, covering this gap between M A I V K 

and HUM3. Using magnetic susceptibility the cores could be aligned and allow the size 

of the gap to be calculated accurately. This would allow the section of the sediment to 

be analysed for fiir seal hair abundance and geochemistry, hence, providing a fully 

continuous record of fiir seal hair abundance for the past 3500 years. 

In addition to improving the core at the single study site, additional cores could be 

analysed from other sites on South Georgia. The study of additional cores would 

broaden the project and allow a fiirther insight into fiir seal population dynamics 

through the Holocene. Potential sites for additional cores include those that could aid an 

understanding of the expansion of the seal population both altitudinally and along the 

coast of South Georgia as illustrated below. 

Proposed sites for additional cores: 

a. Altitude 
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Lewis-Smith (1988) highUghts slopes of 200 metres altitude are now being threatened 

by fur seals at South Georgia. This is a higher altitude than any time previously during 

the 20* century however, it is unknown whether fur seals have reached this altitude 

previously during the Holocene (pre 1900), when census data is not available. Taking 

further cores fi-om higher altitudes would provide an insight as to whether this situation 

occurred previously and whether the environment can recover from such an event. It 

would also provide an indication of the maximum fur seal population the area can 

accommodate. For example, i f the population has previously reached similar levels to 

today but not gone beyond this level, it may indicate that the carrying capacity of this 

location has been reached, hi order to assess the maximum level that fur seals have 

reached additional study sites are needed at the altitudinal limits of the fur seal breeding 

range. 

b. Bird Island 

Bird Island is the main breeding ground for the fur seal at South Georgia; therefore, the 

impact is the most pronounced. The first pup observed on South Georgia following the 

sealing and whaling industries was on Bird Island (Payne 1977). As this was the first 

site, the exact timing of the recovery of the fiir seal population can be calculated. 

Census data indicates that the population growth migrated fi-om Bird Island, therefore, 

population growth at Maiviken was delayed and the exact timing and causal mechanism 

for this growth cannot be assessed accurately. Comparing the timing of changes in fur 

seal abundance at Bird Island with changes on the mainland allows the rate of the 

expansion to the mainland of South Georgia to be determined hence, the optimum 

carrying capacity of Bird Island can be measured to aid in management decisions. 

Due to the high population of fur seals on Bird Island, the fur seal census data of Bird 

Island is the most accurate and extensive for the whole of South Georgia. This detailed 

census data for the 20* century allows the number of fur seals to be accurately 

correlated with the fur seal hair abundance, therefore, the number of fur seals during the 

Holocene can be quantatively assessed through a transfer function. 

c. Latitudinal transect 
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The fur seal population has migrated from a small colony on Bird Island to the main 

island. Taking cores along a transect from Bird Island to the south of the main island 

and reconstructing the ftir seal population would allow the rate of migration and the 

impact this has had upon the environment to be assessed. A visual assessment of the 

environmental conditions at each site compared relative to the fiir seal population allows 

a greater understanding of the management measures required. 

7.4 Continuing previous research 

7.4.1 Sediment fraps 

Hodgson et al. (1998) used sediment traps in the lake to calculate the number of hairs 

frapped within the lake and the amount of mixing that occurred in the lake itself In the 

traps, the number of hairs collected were calculated and used to indicate the trapped hair 

that would be incorporated into the sediment at different times of the year. 

Although I assumed the results of this study could be applied to the lake at South 

Georgia, as the results from the geochemical analysis highlight (see section 4.4.7), 

different catchments display different characteristics and therefore, it is likely that the 

situation as observed in the Hodgson et al. (1998) study is not representative of the lake 

at South Georgia. This affects the results of the fiir seal hair abundance; firstly sediment 

traps allow the mixing of the lake to be calculated, therefore, allowing the best position 

for the cores to be taken and facilitating the most accurate measure of fiir seal hair 

abundance. For example, the coring site in this study may be a site that is particularly 

abimdant in ftir seal hairs at the time of coring due to the flow within the lake. Taking 

sediment traps allows an assessment of the flow within the lake, thereby preventing a 

core being taken from a site not typical of the lake or i f the core is taken in a section of 

the lake that is not representative of the lake as a whole, it allows for a correction in the 

results. 

7.4.2 Geochemical analysis 

Following Sun et al. (2004a), I used geochemical analysis to evaluate elements that 

could be used as potential bio indicators of fiir seal presence. Unfortunately, due to the 

shortage of sample and the restrictions on instruments, fluorine and phosphorous, 

(found by Sun et al. (2004a, b) to be indicators of fur seal and penguin populations) 
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could not be tested for. Analysing the similar elements as Sun et al. (2004a), allowed 

the transferability of the bio element indicators at one site to be assessed. Although this 

can be done to some extent, as a number of the elements Sun et al. (2004a) tested for 

were also tested for in this study, it is still possible that the elements not tested for were 

the most indicative of fur seal presence. With additional time and sample size these 

additional analyses could be implemented. 

7.4.3 Wider research issues 

The above issues are possible study areas to explore i f the time were available however, 

the issues outlined below are larger and wider ranging issues beyond the scope of an 

individual study but should be noted as important issues that would enhance the results 

of this study. 

7.4.3.1 ^'°Pb and'^^Cs problems 

To date there are few palaeolimnological studies at South Georgia that have 

successfully used ^"'Pb and '̂ ^Cs dating (see section 5.2). Unpublished data suggests 

previous studies have experienced problems in detecting low concentrations of ̂ "'Pb in 

lake sediments (Rosqvist, G. pers. comm.). This apparent lack of ^'°Pb may be isolated 

to this particular core due to loss of sediment or the lack of sediment used for detection 

(see section 5.2.1 for further explanation), but as there have been no other studies that 

have dated South Georgian lake sediments using ^'°Pb and '^'Cs successfully, it appears 

to be an island wide problem. To fully assess this issue, further lake cores are needed 

from a variety of locations across the island. The use of a variety of detectors and sizes 

of sediment samples will also help to evaluate the cause of the lack of ^'°Pb and '̂ ^Cs in 

the core. 

7.4.3.2 Isotopes in hair 

It is widely recognised that carbon and nitrogen isotope signatures can be used to frace 

food webs and understand palaeodiets in terrestrial and marine ecosystems (Lajtha and 

Michener 1994). The isotopic composition of food and fluids ingested by animals has a 

sfrong influence on*the isotopic composition of their tissues: As carbon and nitrogen 

isotopes fractionate in a predictable way between each trophic level the isotopic 

composition reflects the trophic position of the animal (Koch et al. 1994; Hobson et al. 

1996). In this way, measuring the isotopic composition of animal tissue provides an 
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indication of their position in the food web and hence, their diet. Using this theory, it is 

possible that isotopes in fiir seal hair can be used to trace palaeodiet through the Late 

Holocene 

Carbon is fractionated by 3 primary processes; firstly preferential loss of '^C02 during 

respiration, secondly preferential uptake of '^C compounds during digestion and thirdly 

metabolic fractionation during synthesis of different tissue types. This fractionation 

results in an enrichment of '^C by 1.1 %o at each trophic level (Michiener and Schell 

1994; Rau et al. 1983). This carbon isotopic signature can be used to determine the 

marine domain in which an animal is obtaining its prey, for example, values are 

higher in nearshore food webs than in offshore food webs (Kurle and Worthy 2001). 

Nitrogen isotopes are also fractionated during biological processes and therefore, can be 

used as a fracer for dietary analysis and to determine the frophic level of given animals 

(Minagawa and Wada 1984). Faure (1986) suggests that animal tissue is enriched in '^N 

relative to dietary inputs and therefore, an average enrichment of 3.0%o of '^N is 

observed at each trophic step (Faure 1986; Zhao et al. 2004). This enrichment of '^N 

with each trophic step allows the position of the animal in the food chain to be assessed 

(Kelly 2000). 

Isotopic fractionation and the assessment of frophic positions in food webs has been 

used in previous studies to provide an insight into whether modem pinniped populations 

change in relation to human influences on the marine ecosystem or in response to longer 

oceanographic or climatic changes (Burton and Koch 1999). Previous studies of 

Antarctic Seals have indicated that Weddell Seals occupy a higher trophic position than 

Ross seals and are considered the top predator in the Antarctic phocid ecosystem (Zhao 

et al. 2004). Calculating the isotopic composition of fiir seals and comparing the carbon 

and nitrogen isotopic ratios with other seals in the region, wi l l allow the ftir seal 

competition for prey to be evaluated. 

As Burton et al. (1999) highlight this method of determining the trophic position of 

seals can also be used to determine the cause of historic population changes. As Hobson 

et al. (1996) indicate, analysis of metabolically inactive tissues such as hair, skin, 

whiskers, nails and feathers reflect the diet of individuals during the period of growth. 

Using this theory, the isotopic ratios in hairs through the core could be used to assess 

210 



7: Limitations and Further Research 

the changes in the trophic relationships of the Antarctic fur seal through the Holocene. 

This would provide an indication of the influence prey availability has upon the fur seal 

population, which can be used to assess the impact human induced changes and natural 

environmental change have had upon the 20* and 21^' century increases in populations. 

7.4.3.3 Sea ice conditions 

De la Mare (1997) highlights the possibility of reconstructing the sea ice boundary of 

the Southern Ocean during the 20* century from whaling records. As fur seal 

populations correlate with krill distribution and therefore sea ice extent, a similar 

principle can be used to reconstruct sea ice extent during the late Holocene using fur 

seal hair abundance records. As I have highlighted in section 5.11, with the record from 

only two islands (South Georgia and King George Island), an indication of the sea ice 

extent can be inferred. Reconstructing the fur seal population on a range of islands in 

the sub Antarctic region would allow this to be more fully understood and therefore, 

enhance understanding of the factors this affects such as productivity and oceanic 

circulation. Such a move will also help to comprehend climate changes and the possible 

impacts this has upon other species. For example, as Croxall et al. (2002) highlight, 

adelie penguins and emperor penguins are closely related to sea ice distribution, 

therefore, reconstructing sea ice distribution through the late Holocene would provide 

an indication of their distribution in the Southern Ocean through the late Holocene. 

7.5 Summary 

Despite the limitations outlined in this chapter there are a number of important 

outcomes to emerge from this study that can be taken forward in future research. As I 

have discussed, dating the core restrained the scope of this study as the 20* century 

changes in fur seal hair abundance could not be accurately compared to Late Holocene 

population fluctuations, therefore, it cannot be accurately assessed whether 20* century 

population growth is unprecedented during the late Holocene. Despite this, an important 

outcome of the study is the correlation between fur seal population growth, sea ice 

extent and the reliance of the fur seal population upon krill availability. From this 

correlation, as fur seal populations during the 20* century are increasing during a 

warming period, it can be deduced that population changes at this time are not a result 

of natural environmental changes. As a result, it can be concluded that 20* century 

population increases are a consequence of human induced changes, primarily a result of 
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the krill surplus. This linkage can be used to predict fiature population shifts thereby 

aiding important decisions for fixture management and conservation of the Antarctic fiir 

seal population both at South Georgia and the Southern Ocean. 
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Appendix 

Appendix 1 

Fur seal hair counts 

These are the counts of fur seal hair abundance expressed as number per 1 g of dry 

weight. Each sample was counted 3 times however as the first count (count a) was 

significantly higher, only the second and third counts (count b and count c) are used in 

analysis. Sample depth is the actual sample niimber without correction for core 

shrinkage, actual depth is the depth in the core after correction for shrinkage using 

equation 3.1 outlined in section 3.1.1. SD is the standard deviation of the counts for 

each sample. Average SD is the average of the standard deviations for each individual 

sample, which is used as the error in the data. 
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1 4 C y r s & P Sample Actual Count a Count b Count c Average Average Average SD Average SD 
Depth depth (all counts) (2nd+3rd count) (all counts) (2nd + 3rd count 

0.00 0 0 6172.7 3045:5 2390.9 3869.70 2718.18 1650.27 327.27 
110.00 2 2.6 7108.3 6666.7 4416:7 6063:89 5541.67 1178.64 1125.00 
220:00 4 5.3 3670.0 3090:0 2240.0 3000.00 2665.00 587.25 425.00 
330.00 6 7.9 9190.0 3800.0 4120.0 5703.33 3960.00 2468.90 160.00 
440:00 8 10.6 9570.0 5820.0 4270.0 6553.33 5045.00 2224:98 775.00 
550i00 10 13:2 11463.6 5500:0 4390.9 7118.18 4945.45 3105.88 554.55 
660:00 12 15.9 15120.0 5530:0 3530.0 8060:00 4530.00 5058.50 1000.00 
770.00 14 18.5 5790.9 2554.5 2972.7 3772.73 2763.64 1437.25 209.09 
880:00 16 21.2 11644.4 5500:0 2900.0 6681.48 4200.00 3666.36 1300.00 
990.00 18 23.8 3310.0 2820:0 2410.0 2846.67 2615.00 367.91 205.00 

1100.00 20 26.5 20600.0 906o:o 4630;0 11430.00 6845.00 6731.66 2215.00 
1210i00 22 29.1 7345.5 4663.6 2590.9 4866.67 3627.27 1946.34 1036,36 
1320:00 24 31.8 7381.8 3027.3 3390,9 4600.00 3209.09 1972.64 181,82 
1430:00 26 34.4 6741.7 3350.0 3533.3 4541.67 3441.67 1557.43 91.67 
1540:00 28 37.1 6207.1 3300.0 2507.1 4004.76 2903:57 1590.60 396.43 
1650.00 30 39.7 4810.0 3560.0 2980.0 3783.33 3270.00 763.60 290.00 
1760.00 32 42.4 3260.0 1380.0 22300 2290.00 1805.00 768.68 425:00 
1870:00 34 45 7327.3 3227.3 3390:9 4648.48 3309.09 1895.37 81.82 
1980:00 36 47.6 21355.6 7066.7 3422.2 10614.81 5244.44 7739:21 1822.22 
2090:00 38 50.3 5440.0 1830:0 6210.0 4493.33 4020.00 1909.32 2190.00 
2200:00 40 52.9 6772.7 3245.5 3581.8 4533.33 3413.64 1589.43 168.18 
2310:00 42 55.6 4233.3 1475.0 2333.3 2680.56 1904.17 1152.54 429.17 
2420:00 44 58.2 7535.7 4100.0 2207.1 4614.29 3153.57 2205:57 946.43 
2530:00 46 60.9 7708.3 2525.0 2316:7 4183.33 2420.83 2494.00 104.17 
2640:00 48 63.5 5981.0 2136.4 2663.6 3593.67 2400.00 1701.77 263.64 
2750:00 50 66.2 4160.0 2000.0 1410.0 2523.33 1705.00 1182.10 295.00 
2757.80 52 68.8 6261.5 2015.4 1900.0 3392.31 1957.69 2029.40 57.69 
2765:60 54 71.5 5618.2 3927.3 1900.0 3815.15 2913.64 1520.01 1013.64 
2773.40 56 74.1 11730.0 2410:0 2350.0 5496.67 2380.00 4407.70 30.00 
2781.20 58 76.8 6566.7 4166.7 1911.1 4214.81 3038.89 1900.93 1127.78 
2789:00 60 79.4 7580.0 4340.0 2320:0 4746.67 3330.00 2166.55 1010.00 
2796.80 62 82.1 3927.3 3554.5 2509.1 3330.29 3031.80 600.28 522.70 
2804.60 64 84.7 5030.0 2670.0 2450.0 3383.33 2560.00 1167.83 110.00 
2812.40 66 87.4 3818.2 1727.3 1481.8 2342.43 1604.55 1048.32 122.75 
2816:30 67 88.7 5844.4 2355.6 1766.7 3322.25 2061.15 1799.59 294.45 
2820.20 68 90 
2849:67 0 100 7314.7 1679.4 1167.6 3387.24 1423.51 2784.99 255.91 
2858.51 3 103 7270.0 3540.0 4050.0 4953.33 3795.00 1651.31 255.00 
2870:29 7 107 6565.2 2530.4 2182:6 3759.42 2356.52 1989.08 173.92 
2882.08 11 111 8980.0 3680.0 3520:0 5393.33 3600.00 2537.00 80.00 
2893.87 15 115 4481.5 1511.1 1655.6 2549.38 1583.33 1367.47 72.22 
2905.65 19 119 6681.8 2536.4 3090.9 4103.03 2813.64 1837.48 277.27 
2917.44 23 123 5473.3 1223.3 1470:0 2722.22 1346.67 1947.93 123.33 
2929.23 27 127 7923.1 2438.5 1546.2 3969.23 1992.31 2819.42 446.15 
2941.01 31 131 1439.7 521.9 524.7 828.77 523.29 432.01 1.37 
2952.80 35 135 4709.1 2845.5 2281.8 3278.79 2563.64 1037.22 281.82 
2964.59 39 139 3245.0 640.0 721.7 1535.56 680:83 1209.22 40,83 
2976.37 43 143 7508.3 1083.3 1275.0 3288.89 1179.17 2984.62 95.83 
2988.16 47 147 4500.0 1042.3 1323.1 2288.46 1182.69 1567.99 140.38 
2999.95 51 151 6744.4 2288.9 3044.4 4025.93 2666:67 1946.87 377.78 
3008.79 54 154 6046.2 1965.4 1430:8 3147.44 1698:08 2061.29 267.31 
3023.52 59 159 6088:9 666.7 1455.6 2737.04 1061.11 2391.90 394.44 
3035.31 63 163 3203.1 1387.5 1412.5 2001.04 1400.00 850.06 12.50 
3047.09 ' 67 167 3833.3 1058.3 1191.7 2027.78 1125.00 1277,88 66.67 
3058.88 71 171 3650.0 588.9 786.1 1675.00 687.50 1398,85 98.61 
3070.67 75 175 4709.1 1172.7 1181.8 2354.55 1177.27 1664,92 4.55 
3082745 /9 179 9109:5 985.7 981.0 3692.06 983.33 3830.72 2:38 
3094.24 83 183 2712.5 775.0 750.0 1412.50 762.50 919.30 12:50 
3106.03 87 187 4043.5 1230.4 1187.0 2153.62 1208.70 1336.45 21.74 
3117.81 91 191 3814.3 2700.0 2228.6 2914.29 2464.29 664:86 235.71 
3129.60 95 195 2621.7 952.2 973:9 1515.94 963:04 781.97 10.87 
3141.39 99 199 6275.0 1325 2575.0 3391.67 1950.00 2101.72 625:00 
3153.17 103 203 4827:6 1520.7 1382.8 2577.01 1451.72 1592:39 68:97 
3164.96 107 207 4312:5 1225.0 737.5 2091.67 981.25 1582:93 243.75 
3176.75 111 211 2508.3 1233.3 1488.9 1743.52 1361.11 550.78 127.78 
3188.53 115 215 4583.3 1316.7 1583.3 2494.44 1450:00 1481.07 133.33 
3200.32 119 219 4577:5 1172.5 1107.5 2285.83 1140,00 1620.67 32.50 
3212.11 123 223 5312:5 1187.5 1525.0 2675.00 1356.25 1870:08 168.75 
3223.89 127 227 3155.0 595.0 760.0 1503.33 677.50 1169:85 82:50 
3235.68 131 231 8422.2 988.9 1055.6 4705.56 1022.22 3716.67 33.33 
3247.47 135 235 2272.6 461.6 380.8 1367.12 421.23 905.48 40:41 
3259.25 139 239 2331.3 1650:0 656.3 1545.83 1153.13 687.77 496:88 
3271.04 143 243 657.5 90.0 352.5 366.67 221.25 231.90 131,25 
3282.83 147 247 1638.5 938.5 515.4 1030.77 726.92 463.12 211,54 
3294.61 151 251 1349.1 241.5 296.2 628.93 268.87 509.70 27.36 
3306.40 155 255 861.1 500.0 533.3 631.48 516.67 162:94 16.67 
3318.19 159 259 786.7 201.7 285.0 424.44 243.33 258.38 41.67 
3329.97 163 263 2000:0 686.7 766.7 1151. I t 72667 601.14 40:00 
3343.23 167.5 267.5 1413.1 203.3 360.7 659.02 281.97 537.08 78.69 
3353.55 171 271i 775.0 741.7 516:7 677.78 629.17 114.73 112.50 
3366.81 175.5 275.5 1012.5 233.3 412.5 552.78 322.92 333:20 89.58 
3377.12 179 279 1500.0 440.0 570.0 836.67 505.00 472,04 65.00 
3388.91 183 283 1418.5 470.4 629.6 839.51 550.00 414:55 79.63 
3400.69 187 287 718.2 545.5 381.8 548.48 463.64 137,34 81.82 
3406.59 189 289 506.7 200.0 653.3 453.33 426.67 188:88 226.67 

Average SD 
Total core 1673,60 337.04 
Malvik 2159:62 483:92 
HUM3 1326.43 142.95 
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Appendix 2 

Geochemical data 

These are the results from the ICP-MS and Elemental combustion system. Al l counts 

are expressed as ppb, with the exception of Carbon, Nifrogen and Sulphur which are 

expressed as percentages. Samples with 0 ppb, were below the detection limit of the 

ICP-MS of 5ppb. Sample depth is the actual sample number without correction for core 

shrinkage, actual depth is the depth in the core after correction for shrinkage using 

equation 3.1 outlined in section 3.1.1. 
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RUN1 RUN 2 RUNS Average 
MAIVK Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur 
0-1 2.6715 38.3343 0.6935 . 2.65075 38.09985 0.71885 

2.63 37.8654 0.7442 
2-3i 3.0827 39.3411 3.14 44.14 0 2.8684 38.4216 0.9162 3.03 38.79 0.91 

3.06 39.39 3.13 41.24 0.84 2.92 38.02 0.91 
4-51 3.14 44.13 0.9268 3.14 44.41 0.91105 

3.13 44.68 0.8953 
6 7ii 3.1777 41.1869 3.24 42.57 0 3.18 41.92 0 

3.17 41.20 3.16 42.71 1.00 
8-91 3.2463 42.2222 3.02 t> lb 3.083 39.6762 1.0573 3.12 40.986625 1.0316 

3.2894 42.7746 3.10 37 44 0.8014 3.0045 39.2735 1.0059 
10-11i 3.1537 40.9214 3.19 38.05 3.19 39.61 0 

3.1308 40.7776 3.27 38.70 
12-131 3.0195 41 8/07 1.1105 2.92 38.63 1.2796 2.7425 38.1617 1.0695 2.93 38.26 1.16 

3.1273 4'. 07^0 1.1611 2.75 38.74 1.2299 3.0106 37.5098 1.1344 
14-15 3.1296 39.8813 3.03 36.39 2.9971 37.7844 1.1443 3.05 38.68 1.15 

3.0886 39.4007 3.05 35.56 3.0077 37.6341 1.1527 
16-17 3.2068 44.0397 1.1252 3.17075 43.77175 1.12775 

3.1347 43.5038 1.1303 
18-19il 3.1489 40.8985 3.16885 41.20165 

3.1888 41.5048 
20-21 i 3.1209 44.635 1.2393 3.1233 44.5742 1.20695 

3.1257 44.5134 1.1746 
22-2311 3.0099 38.0817 3.00715 38.03995 

3.0044 37.9982 
24-251 3.2074 44.0849 1.0658 3.2205 44.10795 1.02915 

3.2336 44.131 0.9925 
26-271 3.1771 43.9341 1.1789 3.1611 43.61025 1.23435 

3.1451 43.2864 1.2898 
28-291 3.1262 41 5876 2.75 40.7798 1.3302 2.8914 40.9855 0.9364 2.98 40.49845 1.143225 

3.0495 40.282 3.0632 39.5667 1.2068 3.0092 39.9465 1.0995 
30-31li 3.0729 43 1548 1.0103 2.6058 38.4332 1.0258 2.85895 38.3049 1.081425 

3.0166 421316 1.1365 2.7405 38.1766 1.1531 
32-331 3.1483 40.0146 3.1888 40.48745 

3.2293 40.9603 
34-35ii 3.2314 44.7247 1.0207 3.2291 45.19645 1.0623 

3.2268 45.6682 1.1039 
36-37i 3.1509 40.5492 3.1509 40.7653 

3.1509 40.9814 
38-39ii 3.0396 39.8451 3.04655 39.9029 

3.0535 39.9607 
40-4111 2.6376 33.8501 2.6535 34.0888 

2.6694 34.3275 
42-4311 3.1859 42.6644 0.9024 3.1699 42.83235 0.87895 

3.1539 43.0003 0.8555 
44-4511 3.1212 43.2675 1.1749 3.11655 43.09155 1.1585 

3.1119 42.9156 1.1421 
46-4711 3.2294 44.4446 0.9366 3.2206 44.04355 0.9092 

3.2118 43.6425 0.8818 
48-49ii 3.2125 43.2304 0.9582 3.2032 43.3516 0.99125 

3.1939 43.4728 1.0243 
50-51 3.1058 43.8372 0.9337 3.10075 43.9528 0.978 

3.0957 44.0684 1.0223 
52-5311 2.7744 41 61 Id 0.75 2.52 37.2601 0.9643 2.5976 «) ;-f)&j 0.7347 2.64 37.33285 0.83 

2.7674 40.3605 0.8647 2.4798 37.4056 0.9114 2.6796 35.7397 0.7447 
54-55 3.2511 43.6067 0.9304 3.24575 43.9295 0.9223 

3.2404 44.2523 0.9142 
56-571 3.1815 43.7787 0.8769 3.15845 43.2526 0.9101 

3.1354 42.7265 0.9433 
58 59 3.2182 46.7848 0.8027 3.2216 46.52125 0.79175 

3.225 46.2577 0.7808 
60 61 3.2835 46.1074 0.9703 3.2616 46.03605 0.9666 

3.2397 45.9647 0.9629 
62 63 2.7382 41.52-17 0.8483 3 2i' 40.3551 1.4658 2.5906 38.6528 0.877 2.65 39.2856 0.828225 

2.6806 43.3459 0.766 39.6516 ri.'4952 2.5958 38.4829 0.8216 
64-651 3.292 40.3551 1.4658 3.20765 40.00335 1.4805 

3.1233 39.6516 1.4952 
66-67 3.314 38.95 1.4579 3.2713 39.0061 1.44695 

3.2286 39.0622 1.436 
67-68 3.2542 37.0716 3.3153 3.18755 37.2862 2.4135 



RUN 1 RUN 2 RUNS Average 
MAIVK Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur 

3.1209 37.5008 1.5117 
HUM3 
0-1 3.0848 37.7234 1.3102 3.07285 37.77735 1.26945 

3.0609 37.8313 1.2287 
3 4 3.0862 37.3964 1.6621 3.0997 37.17505 1.64045 

3.1132 36.9537 1.6188 
7 8 3.1056 38.7687 1.5613 3.2155 39.0413 1.2284 3.3801 38.87203333 1.434775 

3.7167 4-1 in<n 1.7562 3.4826 38.8061 1.1932 
11 12 2.6079 32.6762 1.3182 2.69555 32.6847 1.3078 

2.7832 32.6932 1.2974 
15 16 3.0176 36.4453 1.9011 3.06295 36.42445 1.95225 

3.1083 36.4036 2.0034 
19 20 3.1458 36.0681 1.6979 3.2061 35.9895 1.72565 

3.2664 35.9109 1.7534 
23 24 2.4504 35 1877 1.4574 2.6388 36.8312 0.9577 2.6093 36.715 1.237375 

2.7388 36.6179 1.5124 2.6092 36.6959 1.022 
27 28 2.2219 34.5551 1.552 2.23605 34.11865 1.3632 

2.2502 33.6822 1.1744 
31 32i 1.70 20.86 0.79 1.6914 20.9163 0.7786 

1.68 20.98 0.77 
35 36 2.43 30.69 0.83 2.4382 30.4138 0.8642 

2.44 30.14 0.90 
39 40i 2.81 37.08 1.02 2.79815 37.1863 1.02815 

2.79 37.29 1.04 
43 44 2.56 35.21 0.94 2.51065 35.15065 0.9284 

2.47 35.09 0.92 
47 48i 3.48 38.60 0.98 3.4647 38.70855 0.98495 

3.45 38.81 0.99 
51 52 2 95 41.16 2.69 40.5346 1.2545 2.76 40.60 1.28 

2 78 M 2.6253 40.6684 1.3123 
54 55i 3.61 45 77 1.56 2.9705 37.2564 0.7843 2.64 36.8904 0.7613 2.844475 37.0703 0.836125 

3.12 If) 1.4 1.59 2.9032 37.448 0.9718 2.8642 36.6864 0.8271 
59 60 2.52 28.94 1.2443 2.55 28.76065 1.2377 

2.58 28.58 1.2311 
63 64i 3.5247 39.3722 1.2967 2.941 38.9147 1.2999 3.24595 38.4885 1.292025 

3.3943 37.526 1.2365 3.1238 38.1411 1.335 
67 68 3.7173 40.1915 1.4148 2.54 34.0437 1.0828 3.3745 40.034 1.1267 3.54604 39.77458 1.33346 

3.698 39.3829 3.3735 39.636 1.6896 3.5669 39.6285 1.3534 
71 72i 3.2324 lb GGii-1 3.0692 37.3165 1.2803 3.110275 37.35375 1.3085 

3.0863 31 28/7 3.0532 37.391 1.3367 
75 76 1.9222 19.4386 0.5623 1.91755 19.3407 0.55435 

1.9129 19.2428 0.5464 
79 80i 3.7202 36 63 3.5587 39.6132 1.3317 3.7218 39.56955 1.363 

3.9383 •̂M 17111 3.67 39.5259 1.3943 
83 84 3.24 35.22 1.58 2.9163 35.7635 1.6073 3.0486 35.4387 1.552425 

3.12 3-171 1.53 2.9181 35.3326 1.4924 
87 88i 3.63 36.93 1.24 3.68 37.105 1.235 

3.73 37.28 1.23 
95 96i 3.0377 34.1517 1.2775 2.562 33.9272 1.2694 

2.0863 33.7027 1.2613 
99 100 3.6886 34.0282 1.3394 3.64745 34.13 1.29145 

3.6063 34.2318 1.2435 
103 104i 3.53 36.66 1.33 3.53 36.93 1.35 

3.53 37.2 1.37 
107 108 3.172 34.4975 1.3317 3.1309 34.4249 1.3445 

3.0898 34.3523 1.3573 
111 112i 2.9669 41.1335 1.1796 3.1671 40.72235 1.1568 

3.3673 40.3112 1.134 
115 116 3.365 41.1998 1.4339 3.36435 40.9198 1.3464 

3.3637 40.6398 1.2589 
119 120i 2.98 32.09 1.45 3.01 32.82 1.495 

3.04 33.55 1.54 
123 124 2.89 33.17 1.75 2.5887 33.2644 1.534 2.744525 33.24706667 1.58715 

2.84 1.58 2.6594 33.3068 1.4846 
127 128i 2.19 25.53 2.96 2.175 25.545 3.075 

2.16 25.56 3.19 
131 132 2.4 29.5 1.7 2.445 29.44 1.61 

2.49 29.38 1.52 
135 1361 1.39 17.69 1.23 1.38 17.59 1.205 



RUN 1 RUN 2 RUN 3 Average 
MAIVK Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur 

1.37 17.49 1.18 
139 140 1.39 15.59 0.74 1.39535 15.5755 0.727 

1.40 15.56 0.72 
143 144i 1.63 18.42 0.82 1.6453 18.5987 0.81395 

1.66 18.77 0.81 
147 148 2.18 24.83 1.11 2.20555 25.0876 1.1222 

2.23 25.35 1.13 
151 152i 1.35 14.23 0.68 1.3585 14.24355 0.6479 

1.36 14.26 0.62 
155 156 1.37 14.86 0.79 1.3679 14.80875 0.83295 

1.36 14.76 0.87 
159 160i 1.46 15.81 1.02 1.46325 15.89025 1.03335 

1.47 15.97 1.05 
163 163.5 0.93 11.91 O.HB 0.8622 9.6299 0.4746 0.89 9.6045 0.4821 

000 10 40 ono 0.8806 9.5791 0.4896 
167.5 168 0.96 12.16 1.27 0.9625 12.16705 1.291 

0.96 12.18 1.31 
171 171.5 1.14 13.83 0.92 1.13305 13.77085 0.9424 

1.13 13.71 0.96 
175.5 176 1.64 22.16 1.30 1.6908 22.4363 1.31215 

1.74 22.71 1.32 
179 179.5 1.70 21.22 2.08 1.68215 21.24495 2.1034 

1.66 21.27 2.13 
183 183.5 1.87 21.26 1.93 1.82865 21.09195 1.91575 

1.78 20.93 1.90 
187 187.5 1.28 16.80 2.47 0.64125 17.0535 1.73855 

0.00 17.30 1.01 
189-189.5 0.53 6.03 0.20 0.53 6.00425 0.3873 

0.53 5.98 0.57 



Appendix 

Appendix 3 

210t^i J 137 Pband '"'Cs results 

As the ^'°Pb and '̂ ''Cs analysis was unsuccessful, a full set of results is not possible. 

This appendix shows the actual counts of a number of different samples through the 

core. I f "̂̂ Pb and '̂ ^Cs had been present within these samples, peaks would have been 

observed. Although small peaks are observed in some of the samples, these peaks are 

consistent in every sample and are part of the background level. The line and the label 

indicate the position where the peak in the ^'°Pb and '̂ ^Cs concentration would be. A l l 

sample numbers are depths in the MATV/K core before taking into account shrinkage of 

the core. 
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Fie Acgu^ abitx Cdaiate Analyze Ubray Services ROI Disnby WMon 

B«|B| m\»H\ j f l ^ l [ M ] R a I 
l)uffer|4| 1 7cm.Spc Slait mUM 

01/06/2005 
Htet 189339.00 
Live: 169^4.00 

Dead 019 X 

Peak: 352-00 . 35 29 keV 
FWHM O10 FW11/5)M:0I6 
Ltiaiy:Pll-2101lead)aHS 54: 2 
Gross Area: 3753 
Net Aie» 1341179 
Qross/Nel CouH Rate: 0.02 / OOO cps 

t | _ ! n f c j _ ^ 

SOHIEC 
1015633 

Mon 05/03/2005 

Peak: 389.00 - 39.00keV 
FWHM aiO fW|t/51M 016 
Lii»aiy:Pb-2101leadl«l4e54: 0 
Gross Aiea 4080 
NetA/ei «U191 
Gross/Net Couil Rare: 002 / « 00 co 

Marker 352 35.29 keV 

Samples l-2cm and 3-4cm. 

' GiUTimdVision 1? 13cm.Sp 

Me Acquire Caferate Caladate Anflyze Uxaty Services ROI Display WMow 

i * |B | •Isiuiil i w ] f::;_Aj nm fi>\^\Miii\ 
Pi i seHlAiM^ 
Slate 16:20-02 

16/08/2005 
Red 156.01452 
Live: 155J3920 

Dead 0 05 X 

Peak: 371 00 . 3719k(!V 
FWHM 010 FW11/5IM 016 
Lil«ary:Pb-210|Lea(i) at 46.54: 1 
BrossAtea 3624 
NelAtea: 74t177 
Bros»/Net Coinl Rate: 0 02 / aOO cos 

SORTEC 
10:59:49 

Hon 05/09/2005 

-̂eak. 355.19-J4.3^ka 
FWHM: 1.50 FW11/5|M;1.57 
Lfaar/ Pli.210 (Lead) at 46 54 : 0 00 
Gross Area 1971 
Nel Area 931108 
Gross/Net CoM Rate 001 / 0.00 cps 

Marker 352 • 34.60 k ^ 

start ' • '3anr ,maVi i ion-1M3 ^ FulShot 8.0 5 tand*d. . . fc? F U H ^ 8 User's Guide 

Samples 19-20cmand 12-13cm. 
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• GdmmdVisian 14 IScm.Spc 

Ffc taqiie Cdbrate Calculate Analyze Ubfaiy Services ROI Display Whdow 

c N I [ M ] R _ a J 0 ^ 
PJse Ht An^wi 
ilat 18:50:02 

?2A)8/'2005 
Real H S ^ . X 
Live: 149.495M 

Dead O04 % 

Huf(er|10) M Ibctn.Spr. 

Peal. '4^;;4 'jJ= IJbUuiev 
R A W M : 0 1 0 F W ( 1 / 5 ) M 0 1 6 
SiossAie* 1 1 9 6 
NelA/ea 1 2 2 3 1 1 4 1 
5ios»>TJei Couri Rate: 0 O W -0 01 cpi 

!>DRIEC 
11:0J.08 

Mon 05/09/2005 

Peak: 5 1 5 6 , 3 0 - 511 17keV 
F W H M : 1 . 6 7 F W | 1 / 5 | M : 2 - 3 7 
Gro«Ajea 5 1 8 0 
NelAiea: 1 8 5 6 1 1 6 3 
Srcss/Net Cotjnt Rate O 0 2 / 0 01 cw 

Matker 14.570 - 1,460,60 keV 

5«o -14 -15 ^ F J 5 h o t 8 . 0 S t a n d a t d . , . ' |i> FuKtot 8 Usei's Gude EN *JtSv . 6 C 11:03 

Sample 14-15cm and 10-11cm. This indicates the count at peaks, however these peaks 

do not occur at the correct position for '̂'̂ Pb and '̂ ^Cs and are fluctuations in the 

background level. 
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