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Abstract 

 

Cardiovascular diseases form one of the most dangerous events that affect human 

life. They are usually the result of high blood pressure. Thus controlling blood 

pressure within patient specific healthy limits is a goal that we must target. There are 

two control loops for blood haemostasis inside the body either long term or short 

term. Baroreceptors control the short term blood pressure regulation. They are 

nerve ending that exist in certain locations within the blood vessels walls and they 

report blood pressure into the brain and the central nervous system. However the 

basics of their function are not yet known. We propose here that the baroreceptors 

work by converting circumferential and axial pressure into a stress into their 

respective direction and they start to send nerve signals based on a threshold of 

strain energy of the location they are embedded in. Thus baroreceptors A fibre is 

highly likely to exist in the stiffer adventitia, while the media will contain C fibres. 

This explains the reason behind having identical fibres with different threshold. We 

were able to arrive to this solution by getting a relationship between stress–strain 

relationship for the whole wall and for the arterial vessels. These findings are quiet 

significant as they allow a method to identify different stress in the arterial wall 

layers using whole wall experimental data and also as they were able to differentiate 

between different fibres based on their locations inside the arterial wall. A complete 

modelling of the baroreceptors function might lead to the formation of biosynthetic 

material that could interact with the body on the cellular level, so as to give humans 

the mean to the control of short term blood regulation thus preventing hypertension 

and its accompanying diseases such as atherosclerosis. 
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CHAPTER 1 

INTRODUCTION 

________________________________________________________________________________ 

1.1 Introduction   

 
The purpose of this study is to model the relationship between applied blood pressure and the 

resulting stress and strain in arterial walls, such that the function of baroreceptors (biological 

pressure sensors located in the arterial tissue) can be studied. The first novelty of this research is 

the use of the thin wall theory method to find a relationship between the layer responses of the 

arterial wall and the whole wall response. Specifically, this study investigates whether it is 

possible to determine the model parameters used to estimate the elastin and collagen response 

of each arterial layer using whole wall experimental data. Secondly, the model was extended to 

calculate strain-energy of each layer constituting the arterial wall. This model was then used to 

investigate the relationship between baroreceptors location and its firing rate. 

Baroreceptors play an important role in controlling blood pressure. It is well known that blood 

pressure problems are one of the main causes of cardiovascular diseases. According to the world 

health organization[1],cardiovascular diseases have the highest contribution to death rates 

worldwide. 18 million people died because of cardiovascular diseases in 2005, which is about 30% 

of the total deaths which happened in the same year. This is shown in figure 1.1. 
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Figure 1.1:  Death ratio divided according to cause [1]. 

Strokes and heart attacks usually happen because of arthrosclerosis (thickening of blood vessels). 

One of the risk factors of arthrosclerosis is high blood pressure, which is also known as 

hypertension. According to national UK statistics more than 20 % of the population in England is 

affected by hypertension at a stage of their life [2]. Thus, using better methods of controlling 

blood pressure will result eventually in decreasing death rates, both worldwide and on the 

national level. 

In the next section, the process of controlling blood pressure inside humans or animal bodies will 

be covered. There are two types of regulation of normal blood pressure. The first is called short 

term regulation and is done through cardiovascular receptors and their reflexes; the other is 

called long term regulation and is achieved through the kidney. Only short term regulation will be 

covered in this research [3]. 

1.2 Short term regulation  

The heart actions (blood pressure and filling) are controlled through the activity of sympathetic 

and parasympathetic nerves. These nerve activities are controlled by the brain which makes its 

decision based on the sensory information gained from peripheral receptors (in and outside the 

circulatory system). The main control loop is shown in figure 1.2. 
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Figure 1.2: Schematic of the control loop between the brain and the heart. 

There are 2 main types of sensory nerves both of which act as pressure receptors: The first is 

known as an arterial baroreceptor and is found in the walls of systematic arteries. The second 

type is called a cardiopulmonary receptor and is located in the wall of the heart. These two types 

transmit a signal to the brain indicating certain information such as the arterial pressure and the 

cardiac filling rate. It is worth noting that their principle of operation is the same. They are 

accompanied by two other types of receptors that carry relevant information to the brain known 

as arterial chemoreceptors and muscle receptors. The above mechanisms are summarised in 

figure 1.3. Only baroreceptors will be the focus of this research. 

 

 

 

 

 

 

 

Figure 1.3: Schematic of the detailed control mechanism. 
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As an intelligent control system, the body has different responses to every interruption to the 

system. Generally there are three main types of responses which aim to stabilise the system.  

(i)The negative feedback reflex is defined as any positive change blood pressure that leads to the 

generation of a depressor reflex to return blood pressure to its set point.   

(ii) The positive feedback reflex is defined as any negative change in blood pressure that leads to a 

generation of a pressor reflex to return blood pressure to its set point.   

(iii) The feed forward process initiates a non reflex cardiovascular order through sending a signal 

from the cerebral cortex which helps to increase the heart rate instantly. This usually occurs 

during exercise.  

It might be clear from the above three situations, that baroreceptors play a major role in 

decreasing blood pressure. In the next section, the baroreceptors function and process of 

operation will be discussed in more detail. 

1.3 Arterial baroreceptors  

Baroreceptors are literally pressure receptors as the word "baro" means "pressure". They are 

sprayed nerve endings packed with mitochondria and connected to an axon. They can be found in 

two main locations, the carotid sinus and the aortic arch as shown in figure 1. 4.  

 

 

 

 

 

 

 

Figure 1.4: Schematic diagram of locations of the arterial baroreceptors [4]. 
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The baroreceptors of the carotid sinus are located at the start of the internal carotid artery. The 

afferent fibres from these baroreceptors form the sinus carotid nerve. The sinus carotid nerve 

meets the glossopharyngeal nerve (the nerve responsible for the tongue and pharynx) at the 

petrous ganglion which is the parent neuron. The petrous ganglion is extended to the brain stem 

where it terminates at the nucleus tractus solitarius. The baroreceptors of the aorta are located 

around the transverse arch of the aorta. Its fibres form the aortic depressor nerve then they are 

connected to the vagus. Their neuron lies in the nodose ganglion. Their central axon terminates in 

the nucleus tractus solitarius. 

1.3.1 Characteristics of baroreceptors 

 They are mechanoreceptors which mean that they respond to stretch such that a rise in pressure 

causes a stretch in the arterial wall; for example the diameter of the carotid sinus oscillates by 15 

% with each arterial pulse but it does not respond to change if a plaster is applied around the 

sinus to prevent it from stretching [3].  

The baroreceptors have both static and dynamic sensitivity. The static sensitivity is the firing rate 

of the baroreceptors due to the magnitude of the pressure stimulus. The dynamic sensitivity is the 

firing rate due to the rate of increase of the pressure stimulus; for example if the carotid sinus 

faces a rapid rise in the blood pressure the baroreceptors respond by firing an initial burst of 

action potentials. Then the fibre activity declines and settles down so as to adapt to the new level 

of blood pressure. When the pressure drops the fibres fall silent and then adapt with the slower 

rate as shown in figure 1. 5. 

 

 

 

 

 

Figure 1.5:  a) A pressure rise results in initial burst of action potential followed by decline in the 

activity known as adaptation. B) A pressure drop results in full silent phase followed by adaptation 

with a slower rate [3]. 
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In vivo the baroreceptors usually act in the same way as above where the baroreceptors fire a 

burst of action potential in systole and fall silent in diastole. There are two types of baroreceptor 

fibres which are classified according to their threshold range (the lowest pressure that triggers an 

action potential), A - fibre and C-fibre. Both types will be examined fully in chapter 8. 

1.3.2 Fibre recruitment 

Recruitment means that when blood pressure rises, the discharge frequency of active fibre 

increases and fibres of higher threshold begin to fire[3]. Fibre recruitment extends the signalling 

range of multi- fibre nerve such that the nerve would be able to signal a wider operating range to 

the brain.  

1.3.3 Pulsatile versus steady signals 

The carotid baroreceptors signal the pulse size (the pulse pressure and the mean pressure) to the 

brain. The pulsed signal has greater oscillation than the steady signal[3]. The greater the pressure 

oscillation, the greater the aggregate activity in the nerve (as shown in  figure 1.6 ) which leads to 

a greater depressor reflex than the steady state pressure (As shown in figure 1.7).  

 

 

 

 

 

 

Figure 1.6: Pulsatile signal produce more nerve activity than the steady signal at the same carotid 

pressure[3]. 
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Figure  1.7: Reflex falls in systemic pressure, the pulsatile strengthens the depressor reflex [3]. 

1.3.4 Baroreceptor reflex (Baroreflex) 

The carotid and the aortic baroreceptors have been found to have similar reflex properties 

[3].Hence, the term baroreflex could be used to describe the reflex caused by any of them. 

Baroreflex is defined  as a pressure reflex that cause changes in the heart and circulation to 

stabilise arterial pressure[3]. One of the main functions of the baroreflex is to provide protection 

against acute rises in pressure. This is shown in figure 1.8. This shows that stimulating the nerve 

initiates a reflex that results in a drop in blood pressure. 

 

 

 

 

 

 

 

Figure 1.8: Stimulating the nerve causes a drop in the pressure (Adapted from [3]).    
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The steps in reducing blood pressure are summarised. The input activates the polysynaptic central 

pathway which enhances the vagus parasympathetic output to inhibit the sympathetic output to 

the heart. This causes vasodilatation, a decrease in the total peripheral resistance, bradycardia 

and reduced myocardial contractility. This results in the arterial blood pressure returning to its 

normal range[3]. Other features of the baroreflex includes a variable gain, given by the slope of 

the response curve as shown in figure 1.9 and the ability of the gain to reset when the gain is a 

maximum.  

 

 

 

 

 

 

 

Figure 1.9: Resetting of human baroreflex during exercise [3]. 

If  all baroreflexes were denervated (removed), the mean pressure would increase with increasing 

fluctuations about the mean[3]. For example when a dog walks on an inclined surface of 21◦, the 

blood pressure fluctuates in the range of 10 mm of Hg. When this dog is deprived from the carotid 

sinus and walks on the same inclined surface the blood pressure fluctuates by about 50 mm of Hg.  

The effect of denervation of the baroreflex is shown in the figure 1.10. 
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Figure 1.10: Denervating   baroreflex result in an increase in the mean pressure accompanied by 

pressure instability [3].  

Thus the baroreflex is considered to buffer acute changes in the arterial pressure over short term. 

However, the baroreflex do not provide the brain with reliable information about absolute blood 

pressure over long periods of time. This is because if the blood pressure is raised for a long period 

of time the baroreceptors threshold is reset to a new higher pressure. 

Baroreceptors belong to the short term group regulators as mentioned in the previous section. 

This is based on the experiments done by Guyton et al [5],where they showed that after 

denervation of the arterial baroreceptors , the average 24-hours mean was increased for few 

weeks, but returned to its normal level later, nevertheless the variability in the pressure values 

remained high. 

 This section reviewed baroreceptor position, type and reflex. In the next section its stages of 

operation will be introduced, and then the main aims of this research will be restated. 

 

  

Denervated 

baroreflex  

Control  

Arterial blood pressure (mmHg)  

Relative 

occurrence    



CHAPTER 1. INTRODUCTION 

1-10 
 

1.3.5 Stages of operation  

The control loop of the baroreceptor is shown in figure 1.11. 

 

 

 

 

 

Figure 1.11: Different stages of the receptors function. 

There are two main stages covering the function of pressure sensors: the first stage is where the 

pressure is applied on the blood vessel wall and the wall is stretched along with the receptors 

embedded in it. The second stage covers the conversion between the stretch of receptors and the 

generation of the action potential inside the nerve[6]. Both of these two stages will be covered in 

the following section from the anatomical and physiological point of view. 

1.3.6  Blood pressure conversion to stress 

From an engineering point of view, the heart may be considered as a pump that pushes fluids into 

vascular vessels i.e. the arteries, the arterioles and the capillaries then to the veins and back to 

the heart again. Human blood vessels can be classified according to their function to elastic 

arteries, muscular arteries, resistance arteries and exchange arteries. These types will explained 

more in chapters 2 and 3.  However, in this study only elastic arteries, such as the aorta will be 

considered. Blood passes through the aorta in two phases, systolic and diastolic as shown in figure 

1.12. During the systolic phase blood and its pulse exerts a pressure on the arterial wall that 

causes stress and strain in the arterial walls. This will be explained in more detail in chapters 2, 3 

and 4. 

 

 

 

Figure 1.12: Pressure curve for the aorta during 2 cardiac cycles [3]. 

Thus the question arises, how do the baroreceptors convert blood pressure to nerve signal?  
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It is generally accepted that the arterial baroreceptors convert stress/strain in the radial direction 

into a nerve signal, as shown in figure 1.13. Complete analysis of this phenomenon will be 

discussed in details chapters 6-8. At the end of this stage pressure has been converted to stress, 

the next section covers the stress conversion to action potential. 

 

 

 

 

 

 

 

 

 

Figure 1.13: Schematic diagram with a cut made through the arterial wall, showing nerve endings 

subjected to axial, radial and circumferential stress.  

 

1.3.7 Stress to spike frequency relationship 

The central nervous system is an unresting assembly of cells that continually receives analyses 

and perceives information. This is done through neurons (nerve cells) which are the building block 

for the central nervous system, CNS and the brain. The neurons do the required task by 

generating or conducting a form of an electric signal in the form of an electric spike of amplitude 

0.1 v and 1ms duration which is identical in all the nerve cells of the body. When a baroreceptors 

nerve ending is stimulated, the cell membrane depolarises rapidly and then the membrane 

returns to its resting state. This is the action potential. It occurs when the nerve cell is depolarized 

to a certain critical level called threshold[7]. The action potential is shown in figure 1. 14. 
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Figure 1.14: The action potential generated by injecting a depolarizing current into an axon [7]. 

When the baroreceptors nerve ending is stimulated, the membrane potential is reversed in what 

is called over shoot. Afterwards the action potential reverses its polarization action and ends with 

hyperpolarization (undershoot). The refractory period is the period between two subsequent 

action potentials at which the nerve cannot be further stimulated to produce an action potential. 

The action potential propagates along the axon and arrives at the distant end unaltered in size 

and in form. 

In the last section two phases of the function of the baroreceptors were covered. This thesis will 

only concentrate on the first phase i.e the effect of arterial pressure on the arterial wall in which 

the baroreceptors are embedded. A model (chapter 4 and 5) was constructed to establish a 

relationship between pressure applied and stress and strain induced both in the whole wall, and 

in the layers. This allowed us to suggest a relationship between the location of a receptor inside 

the wall and its frequency response as will be discussed more in chapter 8. That enabled us in 

achieving the research aims. The research aims are summarised as follows: 

1.4 Research aims  

a) Understand various types of experimental data applied to arterial wall 

b) Calculate whole wall stress response using nonlinear solid mechanics 

c) Calculate layer arterial wall stress response using nonlinear solid mechanics 

d) Propose a simple model that connects the whole wall and the layer response using thin 

wall theory 
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e) Using gained knowledge to try to differentiate various baroreceptors types based on their 

location 

It is worth noting that the finite element method is well known for its applications and 

advantages.  It is not be used here, basically because this is a probing research that aims to 

put principles of neurophysiology with continuum mechanics and electronics. This research is 

concerned with understanding the base functions in this interdisciplinary field.  Finite element 

analysis studies in this field are underway by other groups[8-9]. 

Experimental investigations reported in the literature will be reviewed in chapter 2 and 

related to the current understanding of the anatomy and physiology of arterial and venous 

tissue. Specifically, the histology and the mechanical properties of the tissue will be discussed. 

Chapter 3 will cover existing mathematical models. Chapter 4 will cover the nonlinear 

continuum mechanics basis for the proposed model. Chapter 5 will discuss the optimisation 

techniques suitable for this type of research. It will consider the rationale behind the novel 

method proposed in this thesis. It will also cover the principles of Monte Carlo simulation. 

Chapter 6 is concerned with analysis of the model estimation. Chapter 7 will show the 

application of the model to other types of vascular vessels. Chapter 8 will investigate the 

relationship between strain-energy and receptor response together with its implication on 

the location of the nerve endings within each layer. Chapter 9 will summarise the conclusion 

of the research and finally chapter 10 will show basic ideas for future research. 
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CHAPTER 2 

 

REVIEW OF EXPERIMENTAL 

INVESTIGATIONS 

 

________________________________________________________________________________ 

2 Overview  

Arterial baroreceptors and cardiopulmonary receptors are concerned with short term blood 

regulation. They have been shown to have a high degree of similarity [1]. One of the main 

similarities is that they both convert a pressure signal into a nervous signal. A major factor in the 

conversion process is the role of the vascular wall itself whether it is an artery or a vein. Thus this 

section reviews the experimental evidence that underpins the descriptions of the anatomy and 

physiology of these vascular structures. However in order to be able to appreciate different 

mechanical concepts here , various  mechanical concepts will be simplified then they will covered 

in detailed in chapter 4. Stress and strain here are defined according to a continuum mechanics 

basis. The basic idea behind the strain concept is the deformation gradient and it is defined as the 

ratio of length of a certain curve on a certain body before and after deformation. Stretch here 

would be used to mean a product of deformation gradient and a unit vector. Based on this Right 

Cauchy strain tensor (Green deformation tensor) is defined as the product of the transpose of the 

deformation gradient by itself. While the Green strain tensor is the right Cauchy strain tensor 

minus unity divided by half. Stress is based on traction force acting on a certain area of a body. 

Traction force is defined as the product of Cauchy stress and the norm to the surface, where as 
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second Piola Kirchoff stress tensor does not admit a physical interpretation in terms of surface 

traction. Nevertheless it is a symmetrical matrix and parameterised by material coordinates. Thus 

it is often used to represent stress measure in computational mechanics. Having defined the main 

mechanical concepts that will be used in this chapter, the following section will describe different 

characteristics of arteries and veins. 

 

2.1 Arteries and veins 

Human body vessels whether they are arteries or veins can be classified according to their 

function as shown in table 2.1. 

Table 2.1 

Classification of vessels according to their function[1] 

Vessel type Function 

Elastic arteries Transfer of blood  to muscular arteries 

Muscular arteries Deliver blood to organs 

Resistance veins High resistance veins that decrease the pressure and the flow of 

blood 

Exchange vessels  Transfer of oxygen carbon dioxide from and to cells  

Capacitance vessels Veins are considered as capacitance vessels that store blood 

 

The aorta receives blood from the left ventricle and it branches down reducing its size (smaller 

size arteries are called arterioles). Arterioles carry blood to thin capillaries where the exchange of 

nutrients and oxygen takes place (table 2.2). After that, capillaries carry deoxygenated blood to 

veins that end finally with the vena cava. The vena cava carries deoxygenated blood to the right 

atrium of the heart. 

Thus, in general, arteries are the vessels that carry blood from the heart to the body organs, while 

veins are the vessels that carry blood from body organs to the heart. As a result, blood pressure in 

the arteries is high and the walls are thick, while the pressure in veins is smaller and the walls are 

thin as shown in [1]. Veins are more distensible than arteries and they are more compliant[2-3]. 

Arteries distend during systole and retreat during diastole; veins are more in rhythm with the 
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cardiac cycle[1] [4]. When arteries or veins are pressurised they extend into all directions, i.e. 

circumferentially and longitudinally, but almost no twisting happens, this implies that negligible 

shear forces exit[5-6]. 

In this chapter, a description of the main building blocks of vascular tissue is given, followed by 

the general histology of the wall tissue structure. This is followed by a review of a series of 

experiments used to characterise the mechanical properties of the vascular walls in terms of their 

constituents. 

 
Table 2.2 

Comparison of the various sizes of arteries [6] 
 

Vessel Internal diameter Wall thickness Thickness/diameter ratio 

Aorta 1-3 cm 2-3 mm 0.125 

Main branches 0.5-2.25 cm 2 mm 0.182 

Large arteries 4-5 mm 1 mm 0.222 

Medium arteries 2.5-4 mm 0.75 mm 0.231 

Small arteries 1-2.5 mm 0.5 mm 0.286 

Tributaries 0.5-1mm 0.25 mm 0.333 

Small rami 250-500 μm 125 μm 0.333 

Terminal arteries 100-250 μm 60 μm 0.342 

Arterioles 25-100 μm 20-30 μm 0.400 

Metaarterioles 1-25μm 5-15μm 0.571 

 

2.2 Arterial wall main components 

In this section the basic components of vascular wall tissue are firstly introduced. Histological 

studies are then presented detailing evidence about the types and proportions and distributions 

of these biological structures such that the concept of vascular wall layers is derived.  The three 

main components elastin, collagen and smooth muscle cells are firstly covered. 

2.2.1 Elastin 

Elastin is a linearly elastic protein with a low elastic modulus. It can endure large amounts of 

stress or strain [7]. It is an extracellular matrix protein which is responsible for the resilience 

(ability to recover to its original shape) of tissues found in the skin, arteries and lungs. It is 

insoluble and hydrophobic. Its fibres consist of extensively cross-linked proteins such as glycine, 

valine, alanine, and proline, which are present in variable amounts depending on the tissue [7-8]. 

The arrangement of elastin inside the different arterial wall layers will be discussed later in this 

chapter. Figure 2.1 shows intimal and medial bovine aorta stained with Vierhoeff-van Gieson for 

elastin [8]. It can be seen that the elastin fibrils formed by elastin and a protein called fibrillin are 

regular and oriented [8]. 
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Figure 2.1: A cross section in the arterial wall stained only for elastin showing elastin fibres 

organised and oriented [8]. The photomicrograph was taken from the ascending aorta just above the aortic 

valve. It is worth noting that elastin fibres (in black) are regular in size and oriented. 

Elastin is reported to have a linear relationship between stress and strain [9]. It is found in 

complex structures along with other proteins in the form of connective tissues. To study it, the 

elastin needs to be extracted. The method of extraction involves the following: Purification of 

elastin; this is done it using cycles of autoclaving and treatment in guanidine hydrochloride.  This 

technique is used to get rid of collagen and proteoglycans without causing damage to  the peptide 

bonds in elastin [9]. Mechanical tests indicate that elastin is extensible over a long range as shown 

in figure 2.2. 
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Figure 2.2: Measured stress-strain characteristics for arterial walls with only elastin present.  

Linear relationships were observed for 5 different samples, where sample one to five colours are 

black, red navy blue and dark blue respectively [8]. 

 

2.2.2 Collagen 

Collagen is a protein, but it exhibits a much higher elastic modulus than elastin resulting in low 

elasticity [10]. Collagen accounts for about 20–30% of total body proteins of many vertebrates. 

Thus  it could be  considered as  one of the  proteins used most extensively by mammals [10]. It 

exists mainly in tissues that have a mechanical function. About one half of the total body collagen 

is in the skin. If skin was  analysed further it could be shown that it posses  70% collagen, when 

water is excluded [10]. The molecular structure of collagen is based on evidences from other 

studies. These studies used different investigations techniques; such as amino acid composition 

analysis, X-ray diffraction analysis, electron microscopy and physicochemical examination of 

solutions[10]. 

The collagen molecule looks like a twisted thread as it consists of three polypeptide chains twined 

around each other. This triple helix shape is formed due to  a high content of glycine and amino 

acid residues [10]. The strands are held together primarily by hydrogen bonds and covalent 

bonds. There are 19 different types of collagen. They differ in location and chemical structure and 

also in function. They could be divided into 6 subgroups [11] as summarised in table 2.3. 
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Table 2.3 

 Collagen types[11] 

Collagen type group 

fibril forming collagens types I, II, III, V 

network forming collagens types IV,VIII, and X 

fibril-associated collagens types IX,XI, XII, XIV,XVI, and XIX 

beaded filaments forming collagens type VI 

anchoring fibrils forming collagens type VII 

transmembrane collagens types XIII and XVII 

 

Collagen different types and their characteristics could also be classified as follows: Collagen types 

I, II, III, V and XI are built up of three chains in a formation called continuous triple-helical 

structure. In the other hand, Fibril forming collagens: Collagen types I, II, III, and V; have large 

sections of homologous sequences. While In type IV collagen (basement membrane), the regions 

with the triple-helical conformation are interrupted with large non-helical domains as well as with 

the short non-helical peptide interruption. Also collagens Types IX, XII and XIV; they have small 

chains, which contain some non-helical domains, form a type called Fibril associated. This is in 

addition to Microfibrillar collagen which is mainly formed of Type VI.   Type VII is known as 

anchoring fibril collagen as it wraps around type III  that forms the reticular connective tissue , 

which exist around lymphoid organs[10].  

It is also worth mentioning that, they differ in location for example type II exist mainly in 

cartilaginous tissues while type III generally exists in arteries walls and intestines. Collagen is far 

stiffer than elastic as shown by [12]. The stress-strain curve produced by [12] for collagen is 

shown in figure 2.3. 
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Figure 2.3: Stress-strain curve of collagen molecule for tendon specimen 1 (red) , tendon 

specimen 2 (green) , tendon specimen 3 (blue) and tendon specimen 4 (black )[12]. 

2.2.3 Smooth muscle 

Smooth muscle cells are widely distributed in the body and their function varies with location. 

They are mainly located in hollow organs. These cells take the form of broad thin sheets, in arrays 

of bundles. They also exist in the ovaries, bladder and the iris[13]. It is thought that smooth 

muscle cells contribute up to 2% of the total human weight. Smooth muscle cells are made of 

small elongated, uninucleated cells, embedded in the extracellular matrix. A smooth muscle cell 

contains actin and myosin filament which gives the cell its contractile ability, although this 

contraction is much slower than other contracting muscular cells[13]. The smooth muscle cells 

also exist in arteries as shown in figure 2.4. 
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Figure 2.4: A. Longitudinal section of the pulmonary artery of a rat B. Longitudinal section of a rat 

mesenteric artery[13]. 

In figure 2.4A, bands of muscle cells alternating with elastic lamellae can be seen. To the right are 

the lumen, the endothelium and the inner elastic lamina. Between the muscle cells, there is 

collagen. In figure 2.4B, the full thickness of the wall is clear. To the right are the lumen, the 

endothelium and the inner elastic lamina. To the left the adventitia (with a visible nerve bundle) 

and the outer elastic lamina could be seen. The muscle cell profiles of the media are separated 

from each other by elastin fibres and collagen fibrils. It is worth noting that after the specimen 

was stained, it was magnified 600 times for the different components of the arterial wall to be 

clear[13]. The arterial wall extends passively, but the smooth muscle controls the active tension of 

the vessel [14] [15-16]. Evidence shows that smooth muscle cells do not have a role in the passive 

expansion of the arterial wall. i.e. it was found that digesting the smooth muscle cells of a wall 

had negligible impact on stress-strain relationship [1, 15-16]. The active tension is affected by 

intrinsic factors (bayliss myogenic response, endothelial secretion, vasoactive metabolites that 

causes acidosis) and extrinsic factors such as vasomotor function and hormones[1]. Smooth 

muscles cells, elastin and collagen are shown in the medial layer of the arterial wall in figure 2.5. 
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Figure 2.5: Electron microscope view of the transversal cross section of the media of 8-year-old 

rabbit descending thoracic aorta. C marks the SMCs, white arrows mark the fibres of elastin and 

black arrows mark the bundles of collagen fibres, redrawn from [6]. 

2.2.4 Comparison of tissues 

This section explores the question, how do collagen, elastin and smooth muscle cells work 

together in the expansion and contraction of vascular walls? 

This was investigated by Holzapfel in[17]. An interesting experiment was done to show the effect 

of elastin and collagen on the total response of the arterial wall. Uniaxial tension was measured in 

relation to the extension ratio of an arterial wall segment. This relationship was used as a form of 

control in comparison with collagen digestion ad then elastin digestion. Collagen was digested 

(removed) by applying a certain enzyme to the arterial segment. Thus the new response was 

named collagen digested and it shows the typical stress response of elastin. Elastin was digested 

and the relationship now was dominated by the collagen response [17]. It could be said that in the 

case of digested elastin the curve is collagen dominated and in the case of collagen digested it is 

the case of elastin domination [17]. This is shown in figure 2.6. 
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Figure 2.6: Collagen digested curve is elastin dominated, and vice versa, both compared with the 

control (elastin and collagen are not digested) [17]. 

These results can be used to explain vessel radius regulation, by considering the elastin and 

collagen as resistances, with the collagen having higher magnitude. The smooth muscle cells can 

be thought of as a motor that actively contracts the whole body of the wall. 

When the central nervous system acts to constrict a vessel, it actively sends a signal to contract 

the smooth muscle cells. The dilation of vessels is passive. Thus, at low radii the elastin is 

dominant allowing easy expansion. At higher radii the effect of collagen response dominates to 

prevent over-expansion. 

2.3 Vascular tissue 

2.3.1 Whole wall investigations 

2.3.1.1 Histological studies 

On the macro scale the vascular walls are considered as three distinct histological layers as shown 

in figure 2.7.  The image suggests that an abrupt interlayer connection is a reasonable assumption 

for producing a model, and any effects of the internal elastic lamina and external elastic lamina 

that separate the media from the intima and adventitia can be considered negligible [14, 18]. A 

more realistic assumption would be to assume a contribution from  inter layer lamina effects [19]. 

The method used to produce the image in figure 2.7 is as follows. Specimens were fixed in 10% 

formalin. Samples were taken and were placed in cassettes. Then samples were dehydrated in 
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alcohol baths of concentration of 90% alcohol. The samples were then clarified in xylene and at 

the end they were embedded in paraffin. After being mounted on slides, Sections were stained 

using hematein-phloxin-saffron (HPS), Masson’s trichrome stain and orcein [20]. 

 

 

 

 

 

 

 

 

Figure 2.7: A cross section in the arterial wall, showing the three distinct layers; intima, media and 

adventitia, [20]. 

2.3.1.2 Mechanical studies 

It is well documented that the composition of arterial walls varies along the arterial tree [14]. 

Thus, a systematic relationship between the shapes of the stress–strain curve for a blood vessel 

and its anatomical location has been suggested [14]. But it is also worth noting that although the 

mechanical properties of arterial walls vary along the arterial tree, the general mechanical 

characteristics exhibited by arterial walls are the same. 

In this section, experiments that were performed on the whole vessel wall to calculate its stress-

strain response will be discussed. Whether it is an artery or vein, an in vitro or in vivo test or a 

uniaxial or biaxial test, calculating the stress-strain response starts with measuring the 

relationship between luminal pressure and axial tension with vessel radius. Using cylindrical 

coordinates, there are 3 main axes, namely; longitudinal direction, radial direction and the 

circumferential direction as shown in figure 2.8. 
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Figure 2.8: Schematic diagram of the arterial wall showing the three main reference coordinates 

[21]. 

There are two types of tests, in vivo and in vitro. One of the main advantages of using in vivo 

experiments is that the vessel is observed under real life conditions. However, in vivo tests have 

certain limitations because, in that case, the wall is subjected to other factors other than its 

material characteristics such as: hormones and nervous system reaction. Thus, in vitro 

experiments could give two main advantages, firstly it allows the partial characteristics of the 

arterial wall to be investigated in isolation of other external factors that may exist inside the body, 

and also it allows the pre-conditioning of the arterial wall through cyclic inflation before applying 

the required experiments. Pre-conditioning helps in showing repeatable stress-strain curves[22-

23]. Also in vitro allows the application of more complex mechanical concepts like twists and 

bending. Thus, this research will only concentrate on in vitro experiments. 

There are two types of in vitro experiments. The first type involves the application of a uniaxial 

luminal pressure in the radial direction. The second type involves the application of a biaxial 

luminal pressure in the radial direction and tension in the axial direction. As early as the sixties, 

uniaxial experimental investigations of vascular walls were produced. In [4] vascular segments 

were mounted at their in situ length in a plastic box. Typically, a syringe is connected at one end 

of the arterial segment while a strain gauge at the other. Blood is injected from the syringe and 

the radius calculated as from the measured pressure. 

It is important to note that uniaxial extension tests on arterial walls provide basic information 

about the material[14], but are  not sufficient to quantify completely the anisotropic behaviour of 

arterial walls.  In general, a segment of vessel shortens on removal from the body [14]. The in vivo 

Circumferential direction 

Longitudinal direction 

Radial direction 
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pre-stretch in the longitudinal direction must therefore be reproduced within in vitro tests[24] 

[14]. 

 

Although other uniaxial extension tests performed on small arterial rings (so-called ring tests)  can 

account for the in vivo length by longitudinal stretching, this technique also  proved to be  

insufficient [14]. 

 

The most common biaxial tests use straight arterial tubes. Since arteries do not change their 

volume within the physiological range of deformation [14], they can be regarded as 

incompressible materials. Hence, using the incompressibility constraint the mechanical properties 

of three-dimensional specimens can be extracted from biaxial tests[14]. This will be further 

investigated in chapters 4 and 5. 

Biaxial tests have been performed on different types of arteries thoracic, abdominal aorta, 

femoral and carotid arteries [15, 25]. A typical procedure for biaxial testing is as follows. After the 

specimen is prepared, the specimen is then stretched vertically to its in vivo length [14]or a bigger 

extension ratio[14-15]. Pressure is then applied circumferentially. A static pressure relationship is 

developed. Static means that the radius at each step of 20 mm Hg between 0 and 240 mm Hg was 

measured, with a pause of 2 min after each change. A schematic diagram of the procedure is 

shown in figure 2.9. 
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Figure 2.9: Biaxial test formation, the sample is stabilised from one side, pulled from the other 

and pressure applied from inside [26]. 

Because biaxial loading is symmetric, shear is absent [27]. The mechanical behaviour of arteries 

depends on physical and chemical environmental factors, such as temperature, osmotic pressure, 

pH, partial pressure of carbon dioxide and oxygen, ionic concentrations and monosaccharide 

concentration. In ex vivo conditions the mechanical properties are altered due to biological 

degradation. Therefore, arteries should be tested in appropriate oxygenated, temperature 

controlled salt solutions as fresh as possible[28]. 
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Typically the results of the above biaxial experiments, whether it is on an artery or on a vein is in 

the form of  pressure radius relationship and pressure axial force relationship as shown in figure 

2.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Relationship between transmural pressure and external diameter and with the axial 

force is shown the dark symbols are for porcine coronary artery tissue, while the light symbols are 

for humans[29]. 

 

In the last section the differences between in vivo and in vitro experiments were shown. Types of 

in vitro experiments were discussed together with the typical relationships resulting from biaxial 

experiments in figure 2.10. In the next section, mechanical results resulting from different 

experimental procedures for the whole wall will be covered, namely, Bergel static experiments 

[25], and experiments by Fung [23], and Holzapfel [30]. Also, Attinger’s  experiments on the vein 

will be covered[4]. Afterwards, the focus of the next section will be the layer oriented 

experiments performed by Demiray [31], von Maltzahn [32] and Holzapfel [22]. Using biaxial 

testing, with arterial extension within the in vivo range, Berge [25]calculated the static 

incremental elastic modulus versus the luminal pressure (figure 2.11). The incremental elastic 
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modulus gives a picture on the elastic response but it does not relate to the intrinsic properties of 

the wall. It is impractical to mimic the material elastic performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Mean values for the static incremental modulus (Einc) of three types of artery. A blue 

line represents thoracic aorta; red is used for the abdominal aorta; x, femoral artery is drawn in 

green. 

 

 This was also repeated to cover different types of arteries by Cox [15]. Pressure–diameter was 

calculated as shown in figure 2.12. 
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Figure 2.12: External diameter versus transmural pressure for different artery [15], Coronary 

(green), Renal (red), Carotid (navy blue), Mesenteric (blue) and Iliac (dark blue). 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Normalised external diameter extension ratio was drawn versus the tangential 

stress[15], Mesenteric (green), renal (red), lilac (navy blue), carotid (blue) and coronary artery 

(dark blue). 
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In figure 2.13, Cox converted all the pressure–diameter relationships to diameter- tangential 

stress relationships. He then used a polynomial strain-energy function that was later proved to be 

inefficient in representing the collagen and elastin response by Fung [23]. 

Investigating the elastic properties continued through the work of Fung et al[23]. A pressure–

radius relationship was produced as a result of a biaxial test (figure 2.14). This was further 

transferred (using thin wall theory) to a relation between stress and strain, figure 2.15, but no 

investigation has been done on the layers properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Pressure versus diameter in figure (a), axial force versus pressure in the figure (b) 

[23]. 
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Figure 2.15: Fung relationship for the whole wall, in the circumferential and axial direction[23]. 

In [30], after performing experiments on the arterial wall , Holzapfel et al introduced a new strain 

energy function to represent the stress strain relationship for the arterial wall (figure 2.16) , but 

still no layer representation ( experimental or analytical) was shown. 
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Figure 2.16: Holzapfel green strain relationship with the circumferential stress and axial stress 

[30]. 

In the last section, different experimental investigations of the arterial wall were described. The 

next section will describe investigations on veins. Finally, layers experimental investigations will 

be presented.  
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There are fewer studies of the mechanical properties of veins compared to arteries. This seems 

oblivious to the importance of veins as vessels that return blood to the heart, having passive and 

active features that affect returning blood to the heart and cardiac filling[2, 4, 33]. Typically most 

veins studies are focused on using veins as arterial grafts, but few papers have investigated the 

vein wall stress-strain relationship or layer characteristics [33]. More studies are needed to 

investigate vein mechanical characteristics, as veins have a high incidence of pathological 

conditions such as varicose veins, venous insufficiency, and blood occlusion to clot formation.  

One of the first studies of veins was done by Attinger [4], where pressure-diameter relationships 

(figure 2.17) were presented, but no layer comparison was described.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Comparison of the diameter radius relationship for different arteries, veins [4]. 

 

Recently, [2] calculations of stress as the force over area and the strain as the change in length 

over the original length were used to produce stress-strain curves for bovine vena cava as shown 

in figure 2.18. No layer features were investigated [2]. 
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Figure 2.18: Pressure-radius relationship is transferred to stress-strain curves using simple 

assumptions [2]. 

2.3.2 Summary 

In the past section, experimental techniques were introduced focusing on biaxial in vitro methods. 

Whole wall experiments were shown for both different types of arteries and veins. In the 

following sections, experimental data describing the histological and mechanical properties of 

these layers are presented. The three layers are referred to the intima, media and adventitia and 

exist as concentric cylindrical-like layers.  

2.4 Layer investigations 

Recent interest in studying vascular wall layer characteristics has gained a huge momentum. The 

goal behind that is a better understanding of pathological conditions such as arteriosclerosis and 

atherosclerosis. It is also a better way to understand the nature of any grafts that could be used 

e.g. vein grafts. Even more, it is a way of investigating (as the case in here) the function of 

elements embedded in the arterial wall such as baroreceptors and other cells. One may think that 

as the baroreceptors are embedded mainly in the media and adventitia[34-35], studying the 

intimal stress strain structure would be irrelevant. The answer for this debate would be that the 

pressure generated by the blood is converted to stress on the whole wall. Thus it is impossible to 
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understand the stress strain relationships acting on the actual baroreceptors without considering 

both the whole wall and the layers stress strain relationship. 

Normally, as the scope of science is ever changing as explained above, scientists have used two 

main techniques in investigating the layers characteristics. 

I. Technique 1: (No separate role for the intima) used by Demiray, Vito[31, 36] , von 

Maltzahn [32, 37-38] and others 

Although in the above technique, the intima role was acknowledged, it has been annexed 

to the media and both of them were treated as one layer. The reason behind that is that 

the intima was thought to be the thinner especially because all the sources of their 

experiments were young animal models)[14]. 

II. Technique 2: (separate Intima role) This has been proven not to be a general feature as 

Holzapfel et al have found that in older human subjects, the intimal thickness is 

universally 27% of the whole thickness and it is the stiffest layer from the mechanical 

point of view. 

 

Thus in the following section each layer will be presented from two points of view, histological 

and mechanical using the experimental results discussed above. 

2.4.1 Intima 

2.4.1.1 Histological studies 

The intima functions as an interface between thrombogenic media and the blood. It has been 

suggested to be the mechanically dominant layer [21-22]. The intima is the inner most layer and is 

composed of a layer of endothelium cells and  a subendothelial layer which is formed of dispersed 

collagen fibres (Type I), dispersed smooth muscle cells [14, 21] and elastin. Unlike collagen and 

smooth muscle cells, elastin is arranged in a three-dimensional network of elastic fibres. This may 

be due to the existence of a high content of collagen (Type I)[21].  The histological features of the 

intima is summarised in table 2.4. 
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Table 2.4 

 Intima histological features 

 

2.4.1.2 Mechanical studies 

As mentioned above Holzapfel et al carried out the first experiments on the intima. The arteries 

were separated from the adipose and connective tissues, after that, a cut was made 

longitudinally, the results were in the form of rectangular pieces.  Then Strips from adjacent parts 

were cut in the axial and circumferential orientations of the arterial wall, as shown in figure 2.19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Representative axial and circumferential strips excised from a dissected adventitial 

layer[39]. 

intima Histological feature 

Collagen distribution Dispersed 

Collagen content Highest 

Elastin distribution Three-dimensional network of elastic fibres. 
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A video extensometer was used to measure sample dimensions (length, width, and thickness). 

The layers were separated by disconnecting the interconnective tissue using a scalpel. After that 

uniaxial tests with biaxial measurements were done. The associated experimental Cauchy 

stresses, σθ and σz, were calculated directly from the original data as σtens= fλtens/A, where σtens 

represents the Cauchy stress in the circumferential or axial direction and λtens =l/L for the 

associated stretch ratio, with gauge lengths l and L measured in the loaded and unloaded 

configurations, respectively. The experimental results are shown in figure 2.20. 
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Figure 2.20: Circumferential(a) and longitudinal (b) experimental responses for the intima data 

take from [22],showing loading and unloading conditions for each curve. 

It can be seen from these tests, that the intimal reaction was stiffer in the axial direction than the 

circumferential direction. The stress curve consists of two phases. The first one governed by the 
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elastin and it is almost a linear relationship between stretch and stress. After that the collagen 

effect starts. The mechanical properties of the intima is summarised in table 2.5. 

Table 2.5 

Mechanical properties of the intima 

 

2.4.2 Media 

2.4.2.1 Histological studies 

The media layer sits between the intima and adventitia. As a whole, the media is thought to be 

the softest layer [14, 22, 40]. It consists of a three-dimensional network of bundles of collagen 

fibrils, elastin and smooth muscle cells [14, 41].  Collagen (Type III), and smooth muscle cells, are 

located in the circumferential direction. This structured arrangement gives the media the ability 

to resist high loads in the circumferential direction[41]. When under stress, these fibres are 

reoriented to the circumferential direction. This is one of the reasons why the media is stiffer in 

the circumferential direction more than in the longitudinal direction [22]. The histological features 

of the intima is summarised in table 2.6. 

Mechanical feature Description 

Stiffer direction Longitudinal 

Stiffness Stiffest 

Effect at the start of the curve  Linear relationship at the start of response 
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Table 2.6 

 Media histological features 

 

2.4.2.2 Mechanical studies 

von Maltzahn et al [32, 37-38] offered  one of the most important contributions to the field. In 

[32], experimental measurements of the elastic properties of media and adventitia were 

presented but no measurements were done on the intima. In doing this, they first tested the 

whole arterial segment to obtain the inner pressure-radius relations, and then they removed the 

adventitial layer from the original segment and repeated the experiment for the remaining medial 

segment. The results are shown in figure 2.21. 

 

Media Histological feature 

Collagen distribution Circumferentially 

Collagen content Lowest 

Elastin distribution Three-dimensional network of elastic fibres 
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Figure 2.21: Media pressure [KPa] versus diameter in [mm] is shown in figure a, while the same is 

shown in figure b for the whole wall [32].
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This was also the case with the research done by Demiray and Vito [31, 36]. Here experiments 

were carried out on the media and the adventitia only, approximating the media and the intima 

to be one layer. It was thought that the intimal thickness was not sufficient for it to contribute to 

the mechanical properties of the arterial wall as a whole. The properties of the media and, 

adventitia are shown in table 2.7. Circumferential strain is given by λ1, axial strain is given by λ2, 

11, and 22 are the Cauchy stresses in the circumferential and axial direction respectively. 

Table 2.7 

Strain is calculated against stress [31] 

λ1 λ2 t11(exp.)(dyne/cm2) t12(exp.)(dyne/cm2) 

1.91 1.112 123,200 179,100 

1.127 1.144 217,100 302,300 

1.158 1.175 310,700 448,800 

1.200 1.219 449,000 627,800 

1.230 1.237 586,600 807,100 

 

Using Holzapfel layer data for the media mentioned in section 4.23, the results are shown in 

figure 2.22. 
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Figure 2.22: Circumferential(a) Longitudinal (b) experimental responses for the media [22]. 
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These data suggest that the media is the softest layer. It is stiffer circumferentially than axially. Its 

mechanical feature are summarised in table3.8. 

Table 2.8 

 Mechanical properties of the media 

 

2.4.3 Adventitia 

2.4.3.1 Histological studies 

The adventitia or outermost layer consists mainly of fibroblasts, fibrocytes, and collagen fibres 

organised in thick bundles. The collagen fibres (Type I) [42]are arranged within the ground-matrix 

and form a fibrous tissue. In the adventitial layer the orientation of the collagen fibres is 

dispersed[42]. The relationship between histological structure and the mechanical load bearing 

system is summarised in table 2.9. 

Table 2.9 

 Histological properties of the adventitia 

 

Mechanical feature Description 

Stiffer direction Circumferential 

Stiffness Softest 

Dominates at lower stresses  Linear relationship at lower stresses 

Adventitia Histological feature 

Collagen distribution Dispersed 

Collagen content Medium stiffness 

Elastin distribution Three-dimensional network of elastic fibres. 
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2.4.3.2 Mechanical studies 

In the same work by Demiray and Vito[36] , the stress and strain were calculated  for the 

adventitia as shown in table 2.10. 

Table 2.10 

Stress and strain relationship for the adventitia [31] 

λ1 λ2 t11(exp.)(dyne/cm2) t12(exp.)(dyne/cm2) 

1.094 1.120 201,990 232,170 

1.129 1.156 284,570 318,450 

1.59 1.186 378,760 426,190 

1.206 1.222 502,620 543,590 

1.235 1.258 626,580 680,070 

1.271 1.287 811,430 843,330 

 

The results calculated by Holzapfel for the adventitia are shown in figure 2.23. 
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Figure 2.33: Stretch-stress relationship for the adventitia. 
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Table 2.11 

 Mechanical features of the adventitia  

 

2.5 Layers constraints and inter-relations 

These experiments revealed interesting results concerning the stress response of each layer. The 

typical non linear elasticity was shown by all layers, where a starting linear increase with strain 

followed by exponential increase at higher stretches.  

Investigating the resulting curves revealed the following relationships 

k circumferential intima > k circumferential adventitia > k circumferential media 

k axial intima   >  k circumferential intima 

k axial adventitia  >  k circumferential adventitia 

k circumferential media >  k axial media 

k axial intima > k axial adventitia > k axial media 

 where k is the  stiffness of each layer. It is clear that the media although it is known as the biggest 

layer it is also found to be the softest layer. The relationship between the layers stiffness are 

shown in figure 2.24. 

Mechanical feature Description 

Stiffer direction Longitudinal 

Stiffness Medium stiffness 

Dominant at low stresses  Linear relationship at low stresses 
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Figure 2.24: Stretch versus stress for different layers of the arterial wall[22]. 

However through all these experiments, there no clear relationship between the stress 

contribution of each layer and the whole wall stress response. These might be due to the difficulty 

of the experiments mentioned in [22] concerning separation of the layers from the whole wall. It 

also arises from the difficulty of getting hold of human specimens to perform the required 

experiments.  

Thus the need arises for a numerical method to connect the relationship of the three layers with 

the total whole wall relationship. A numerical or analytical method could eliminate the need for 

such experiments and could open the door for further investigation of the mechanical properties 

of the layers without doing the actual experiments on them separately. In other words; having the 

data of the whole wall through basic bidirectional experiments and using a method to give insight 

into the properties of the layers. That is the purpose of the model proposed in this thesis. 

The applications of such a model or method are huge it varies through investigating pathological 

conditions ,arterial connectors or even investigating the stress or strain which is a certain type of 

sensors already embedded inside the wall might be subjected to. This could help in designing 

biosensors that could work on molecular scale. 

2.6 Conclusions 

In the previous section experimental evidences for arteries and veins, First vascular vessels were 

classified according to their functions, into elastic, muscular, resistance, exchange and 
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capacitance vessels. After that arterial wall main components were identified to be elastin, 

collagen and smooth muscle cells. Elastin is an extracellular matrix protein which is responsible 

for the resilience (ability to recover to its original shape) of tissues found in the skin, arteries and 

lungs.  Collagen accounts for about 20–30% of total body proteins of many vertebrates. Thus it 

could be considered as one of the proteins used most extensively by mammals. Stress strain 

relationship is linear in case of elastin and nonlinear in case of collagen. An interesting test was 

presented through which control, elastin digested and collagen digitised curves were shown. It 

was also shown that the collagen is far stiffer than elastin. Smooth muscle cells were shown not 

take part in the passive filling of vascular walls. After that, whole wall investigations were 

presented on two levels; histological and mechanical. Mechanical tests types were discussed 

including uniaxial and biaxial tests. After that histological and mechanical studies were introduced 

for separate layers, intima, media, and adventitia. Intima was shown to be the stiffest layer in 

both the axial and circumferential directions, followed by the adventitia then finally the media. 

The intima is stiffer axially that circumferentially, same as the adventitia. In contrast the media is 

stiffer circumferentially than axially. As a whole, arterial walls are stiffer axially than 

circumferentially. Also comparisons between arteries and veins responses showed that arteries 

are stiffer and thicker while veins are thinner and wider. What is yet to be explained through our 

modelling approach is how the stress strain profile for the whole wall is related to that of the 

three distinct mechanical layers.  
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CHAPTER 3 

REVIEW OF MATHEMATICAL MODELS 

 

________________________________________________________________________________ 

3 Overview 

This section describes the various types of models and assumptions used to predict the 

mechanical properties of arterial walls. Firstly, a comparison of one dimensional partial 

differential equation is given, together with, two reported model structures. Secondly, the 

assumptions used to simplify the models are discussed. The next sections in the chapter 

concentrate on non linear models with particular emphasis on phenomenologically derived strain-

energy functions. These form the basis of the research presented in this thesis. For comparison, 

finite element non-linear models are discussed. The chapter concludes with a comparison of the 

models presented. 

3.1 Analytical models 

Modelling the elasticity of arteries has been an interesting topic for scientists over the last few 

centuries. Hales[1]  was the first person to realise the effect of arterial elasticity on blood flow. 

Later, Otto Frank [1] presented the simple ‘air kettle theory’. This theory assumes that energy is 

stored inside the arterial wall during systole and is transferred to blood during diastole. 

Nowadays, investigating the elasticity of the arterial wall is done through PDE (partial differential 

equations). PDE models range from simple 1-D (1-dimensional) models to more complicated 3-D 

ones. Fewer factors are considered in the 1-D models than the 3-D models. However, 1-D models 

serve as a simplistic approach for explaining the basics of nonlinear elastic phenomena of arterial 

walls.  
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For example complex 3-D models are sensitive to parameters such as geometry of the domain, 

initial and boundary conditions, physical parameters of the equations including those that are not 

directly measureable[2].  Furthermore, the development of models is bounded by complexity of 

underlying physiology[2]. New physiological phenomena are constantly being discovered, 

including sophisticated control and self regulation mechanisms, presence of stresses and strains in 

unloaded arteries (residual stresses) and structure and function of various components of the wall 

which determines its heterogeneous and anisotropic behaviour[2]. One example of simple models 

is given by equation 1. The systole is represented by a charging the capacitor, while the diastole is 

represented by the capacitance discharge.  

     
     

    
        

(1) 

Current Icur (current) represents the flow rate of blood; Uvolt is the voltage (pressure) current, 

    is the resistance and      is the compliance (extendibility). 

3.1.1 One-dimensional models 

One-dimensional models take into the consideration the shape of the wall. The wall is either 

assumed to be an independent ring or a cylindrical membrane.  Equations used in this framework 

can be derived from general 2-D membrane or shell equations if we assume the cylindrical 

symmetry of the geometry, load and boundary conditions [2].  In the next section the two basic 

families will be described. 

3.1.2 Independent rings model 

In this model, it is assumed that the radial displacement at a certain point only depends on the 

load at this point[3]; the equation governing this relation is given by equation 2. 

     

   
 

   

           
       

(2) 

 

In the above equation     and   represent the Young’s modulus and Poisson’s ratio, Ror is the 

original vessel radius and  w   is the density of the wall material.       stands for the radial load on 

the wall,    is the radius deformation. Sometimes another term is added to the equation to 

represent the viscoelasticity of the arterial wall. 
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3.1.3 Cylindrical Membrane Models 

The same equation is used for the cylindrical membrane model, but with an added term to 

represent the effect of radial stress on deforming the wall [4].  In this case the equation is given 

by equation 3. 

     

   
 

   

          
 

        

     
       

(3) 

Constants K and Gm are called the Timoshenko shear correction factor and shear modulus. 

In the previous section, 0-D and 1- D models were considered. In the following section the main 

points controlling 3-D models of the arterial wall will be presented and state-of-the-art models 

will be introduced. 

3.2 Review of model assumptions 

The framework utilised aims to solve elastic nonlinear deformation using the theory of nonlinear 

elasticity. The aim of this theory is to find a relationship between stress and strain in 3-D for a 

nonlinear elastic material.  Its main tools are:  the deformation gradient tensor, right Cauchy 

Green deformation tensor, Green Lagrange strain tensor, principal stretches, first Piola Kirchhoff 

stress tensor and second Piola Kirchhoff stress tensor.  Stress and strain are usually correlated 

using the strain-energy density function given by equation 4. 

  
  ̅

  
 

(4) 

Where S= second Piola Kirchhoff stress tensor, E= Green Lagrange strain tensor,  ̅= strain-energy 

density function. Table 3.1 summarises the key parameters considered in the models and the 

factors they affect.  
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Table 3.1 

Summary of the properties 

 

 

 

 

 

 

 

Parameter Affecting factor 

Reference state Number of dimensions, geometrical shape. 

Load Axial loading, radial loading caused by: blood 

pressure, shear stress, torsion. 

Control phenomena Short term regulation, long term regulation. 

Heterogeneity Position along the arterial wall, Multilayer responses, 

multi-responses within each layer, wall structure 

changes with time. 

Anisotropy Layer mechanical response, fibre dispersion. 

Incompressibility % of Water content inside the wall. 

Viscoelasticity Viscous, elastic properties of the arterial wall 

material. 

Pulse Pressure , flow velocity , arterial displacement , shear 

stress 

Residual stress and 

strains 

Effect of stress that intrinsically exists inside the 

arterial wall after dissecting it. 

Poroelasticity  and 

random elasticity 

Biphasic nature of the arterial wall (solid and fluid) 

Polyconvexity  allows   existence of solution for stationary boundary value 
problem  
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3.2.1 Reference state 

The artery wall is composed of three main layers which are the intima, media and adventitia. Each 

layer has its own thickness and fibre orientation. Often the arterial wall is modelled using a 

cylindrical domain, which is not very accurate especially in pathological conditions as the cross 

section of the artery shown in figure 3.1 indicates. Simplifying the geometrical shape often 

simplifies the equations and simplifies the analytical assumptions. However, it may be insufficient 

for full meaningful physiological modelling. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : Stenotic human external iliac artery [5]. 

3.2.2 Load  

In normal physiological conditions arteries are constantly subjected to loading conditions in two 

main directions. Firstly, axial loading appears because of the forces caused by the surrounding 

tissues and the wave pulse of blood. It may change depending on the location of the artery. 

Usually the affect of axial displacement is overlooked during modelling the artery wall. Secondly, 

radial loading, caused by blood pressure and shear stress. Shear stress occurring at the wall is 

several orders of magnitude smaller than the pressure; its mechanical influence is usually 

neglected.  
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3.2.3 Control phenomena 

Smooth muscles are constantly contracting and extending as a part of the short term control 

process and also as a result of spontaneous activities of these muscles. This type of activity is 

known as vasomotion.  Measuring the affect of the vasomotion on the artery wall is difficult. 

Also, there is another type of regulation (long term regulation) usually done through the effect of 

certain hormones which have a nonlocal control system. For example the kidney regulates the 

‘renin- angiotensin reflex’. This makes modelling the control loop very difficult. Furthermore the 

wall is affected by the shear stress; this effect is mediated by the reaction of the endothelium. 

However the mechanism is not yet completely understood [6]. 

3.2.4  Heterogeneity 

Arteries walls are nonhomogenous [heterogeneous]. This statement can be validated in several 

ways: The proportion of elastin, collagen, and smooth muscles depends on the location of the 

artery with respect to the artery tree. In addition to that, the artery wall is layer structured, with 

each layer having different mechanical features. Also within each layer, the structure is 

nonhomogenous. Furthermore, the wall structure changes with time. The concept of 

heterogeneity was covered in different models, such as Maltzahn [7] , Holzapfel [8]  and Demiray 

[9]. 

3.2.5 Anisotropy 

Experimental evidence shows that the stress-strain response of the arterial wall depends on the 

material direction [8, 10-11]. Hence it is anisotropic. This is due to the presence of fibres in the 

wall. Since these fibres can have different orientations their stress-strain characteristics differ 

depending on the direction along which a stress is applied. 

The classical method of solving this problem is by using the orthotropy assumption in which three 

mutual orthogonal directions are chosen such that the material response is the same for the 

planes perpendicular to these directions. 

For example Maltzahn [7, 12-13],Fung[14], Holzapfel [8] assumed that the model is orthotropic 

with the three axes coinciding with the axial, circumferential and  radial directions, while Ogden 

[15] and Holzapfel et al[11, 16] [17] assumed the wall is built of transversely isotropic materials. 

Furthermore, the concept of anisotropy was dealt with in the following models. 

Holzapfel [18] assumed that the wall consists of three layers with the inner and the outer being 

isotropic while the middle is orthotropic reinforced with two families of fibres. In another 
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publication [19] Holzapfel assumed that the artery wall is a composite of six layers in which the 

inner and the outer ones are isotropic while the middle four layers are transversely isotropic 

materials in which fibres are arranged helically. In [16] Holzapfel assumed that the artery wall is 

composed of two orthotropic layers which are the media and adventitia, thus neglecting the 

intima. Each of the two layers is built of orthotropic material reinforced by two families of fibres. 

Holzapfel [17] added the concept of fibres dispersion having a factor k which takes a value 

between 0 (completely isotropic) and k= 1/3, (For completely dispersed). 

Zulliger [20] assumed that the wall consists of one family of circumferentially directed collagen 

fibres. The strain is determined by the mean response of these fibres. Bischoff [21] [22]as well as 

Zhang [23] assumed that the constitutive laws are based on the statistical mechanical properties 

of the chain molecules (elastin–collagen), where the strain-energy depends on the stretch in the 

directions of orthotropy and on the change in length of the molecular chain. 

 

3.2.6 Incompressibility  

The tissue forming the arterial wall has a water content of 70 % which means that it   is almost 

incompressible. Most researchers assume it is incompressible, thus having a constant volume. 

This means that, a stretch in one direction is accompanied by shrinking in the two other 

directions. This idea was further developed by Fung in[24] and Usyk in [25] using a nearly 

incompressible model with the Total strain-energy  used as the  sum of  isochoric strain-energy 

(due to constant volume)  and  volumetric strain-energy (due to the change in volume). 

The same idea was adopted by Holzapfel assuming that the volumetric term is a convex function 

with zero as its minimum value.  This was further developed by Simo-Taylor-Pister in [26]. 
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3.2.7 Viscoelasticity 

Normally the stress-strain relationship for a viscoelastic material shows a hysteresis loop as shown 

in Figure 3.2. 

 

 

 

 

 

 

Figure 3.2: Stress- strain relationship for a viscoelastic material [27]. 

This also applies to the stress-strain relationship for the arterial wall. It is thought [28] that the 

hysteresis is due to the arterial wall material being viscoelastic.  This can be confirmed validated 

by considering the following: Stress relaxation appears in the case of constant strain which is the 

case for viscoelastic materials. Furthermore a phase shift occurs between the displacement and 

load when the load oscillates around a fixed deformation state. There are various models for the 

wall viscoelasticity, Maxwell’s equation for viscoelastic liquids is given by equation 5. 

       

  
 

   

  
 

   

  
 

(5) 

Where єtotal = the total strain, є1 is the elastic strain, and є2 is the viscoelastic strain. The stress is 

assumed to be the same in both cases. It is given by equation 6. 

              
   

  
     

(6) 

where  viscoelastic is the stress,   is the dynamic viscosity and G is the elasticity. However under 

constant load, the Maxwell model goes to infinity. The Kelvin Voigt equation for viscoelastic solids 

is given by equation 7. 

                  
  

  
 

(7) 

 

 

 

Є 

σviscoelastic  



CHAPTER 3. REVIEW OF MATHEMATICAL MODELS 

3-9 
 

 

No stress relaxation appears through this model. Holzapfel in [19] used the second Piola Kirchhoff 

stress tensor with the Kelvin Voigt equations. There were other models that used a combination 

of Maxwell elements or Kelvin Voigt elements or both, such as the standard linear solid model, 3-

D standard nonlinear solid model, generalised Maxwell model and quasi linear viscoelastic model. 

3.2.8 Pulse  

The artery wall displacement changes with time within the pulse cycle. The wave causing   the 

artery wall displacement is accompanied by a wave of increased pressure and flow of the blood. 

Thus the displacement of the artery wall depends on the pressure and the shear stress. The 

pressure and velocity of the blood depend on the boundary velocities which change as the wall 

moves. There are various approaches to reflect the pulse effect on the artery wall.  2-D or 3-D 

models exist. They assume the pulse wave is governed by a prescribed formula to define the 

changing domain [29]. Models of fluid structure interaction, use the  Navier Stokes equations to 

describe the blood while the wall equation is governed by the strain-energy density function 

[SEDF] equation [30-31]. 
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3.2.9 Residual stress and strains  

After dissecting a certain artery segment from the body it is relieved from its physiological loads.  

This appears in the form of vessel retraction (draw back) which can reach up to 70 %.  Stress still 

exists in these unloaded vessels [32]. Evidence of this could be seen when a fully retracted section 

of the vessel is cut longitudinally; it springs open to form a sector releasing bending stress.  The 

quantity that describes this phenomenon is called the opening angle. This is shown in figure 3.3. 

 

 

 

 

 

 

Figure 3.3: a) Loaded artery segment. b) Unloaded artery segment but residually stressed. c) 

Sector formed after a longitudinal cut of unloaded segment; ψ is the opening angle [2]. 

There are three main types of models that cover the residuals stress concept. Fung[24] assumes 

that the artery is a uniformly inflated cylindrical tube. The incompressibility condition is used to 

relate the radii of the stress free, unloaded configuration with the opening angle. Holzapfel and 

Gasser in [16] assumed that the open ring configuration is not stress free. Thus was due to the 

evidence that the opening angle is different for media and adventitia [16]. Holzapfel assumed the 

artery was a two layer fibre reinforced structure. In [33] Olsson assumes an initial distribution of 

the stress along with an unknown initial configuration. The unknown unstressed configuration is 

found using a nonlinear minimisation procedure. Residual stresses are claimed to be associated 

with the process of remodelling (which is permanent alteration of the geometry of the wall aimed 

to minimize the circumferential stress gradient in the radial direction) [34]. 

3.2.10 Poroelasticity and random elasticity  

Poroelasticity models take into account that there are both solid and fluid components in the 

wall.  It can be represented as a biphasic fluid saturated solid structure. The equations of the 

incompressible liquid are coupled with a nonlinear elastic solid as in [35].  

B A C 
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3.2.11 Polyconvexity 

This property means that strain-energy function as a function of its deformation gradient should 

be convex. Itskov et al [36] have found that Fung strain-energy function is not polyconvex and give 

its polyconvex alternative. 

3.2.12 Summary 

The key parameters for modelling the stress- strain relationship for the arterial wall have been 

presented and summarised in Table 3.1. However it could be noted that it is very difficult for a 

certain model to cover all the key parameters. Many modelling specialists normally choose certain 

parameters to concentrate on according to the degree of complexity and the relevance to their 

specific point of application or research. In the following section, different models for arterial wall 

elasticity will be covered.  

3.3 Non linear 3D models 

Experimental evidence suggests [8, 11]that the stress-strain relationships for both a whole arterial 

wall and its layers are nonlinear. The curve can be considered in two distinct regions [15]. At 

lower strains the relationship is approximately linear due to elastin dominating the behaviour 

whilst the collagen dominance at higher strains gives a more rapidly increasing nonlinear 

response. Several advances have been made in modelling this curve. The first one is the concept 

of an incremental modulus as will be discussed in section 3.4.1. After that the concept of 

hyperelasticity will be introduced 

3.3.1 Incremental modulus 

Many attempts to model the elasticity of the arterial wall were unsuccessful due to the 

nonlinearity of the stress-strain relationship. To address this problem, Bergel in [37] developed 

the incremental modulus method. Here, the elastic modulus could be derived from equation 8 

given by 

       
     

       

       

   
    

  
   

     
(8) 

The results can be seen in figure 3.4. The subscripts (1, 2, 3) represent successive measurements 

of pressure and radius. If no volume change occurs in the wall, then Ro2-Ri2 is constant. p is the 

pressure, R radius, ν is known as Poisson's ratio and Ro and Ri are the outer and inner radius 

respectively,      is the incremental elasticity modulus.
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Figure 3.4: Calculated incremental elastic modulus versus pressure [37]for four arteries. A square 

for thoracic aorta; triangle abdominal aorta; x femoral artery; Circle for carotid artery.  

One of the advantages of this model is its suitability for finite element analysis method; on the 

other hand, its disadvantages include lacking a relationship with the components forming the 

arterial wall. In addition to that, this mode was not successful in estimating the stress as function 

of strain.  

3.3.2 Hyperelastic model 

In this section, a continuum mechanics approach for creating constitutive models for arterial 

tissue is presented. Firstly, the concept of a constitutive equation will be discussed, before 

focusing on one particular one, based on a strain-energy function for hyperelastic materials. 

Finally, some forms for the strain-energy function, presented in the literature, will be presented 

and discussed. 
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A constitutive equation (or equation of state) is one which inter-relates the state variables for a 

system. For a thermo-elastic solid, there are seven states, six of which correspond to the strains 

and one to temperature [38]. Arterial walls are considered to consist of three layers of 

homogeneous hyperelastic materials. A hyperelastic material is one in which a Helmholtz free-

energy function, W, exists. This free energy is defined per reference volume. If it is purely a 

function of deformation gradient, F, then it is referred to as the strain-energy function. Often the 

term strain-energy is commonly used [38]. Homogeneous materials are those in which the 

distributions of the state variables are uniform on a continuum scale. The strain-energy function, 

W, can be used to find the relationship between the second Piola- Kirchhoff stress tensor, S, and 

Green-Lagrange strain tensor, E, as was shown in equation (4). However, the second Piola-

Kirchhoff stress tensor does not represent a physical interpretation, but can be used to calculate 

the Cauchy stress tensor  , which does, using the inverse Piola transformation, shown in equation 

9. 

          (9) 

 

where J is the volume ratio (determinant of Jacobian). To find the strain-energy functions for 

homogeneous hyperelastic materials such as arterial tissue, a phenomenological approach is 

often used. To aid with the form of the equation to which the experimental data is fitted, the 

general characteristics of the strain-energy function need to be considered.  

The strain-energy function, W, 

 has a single minimum value of zero at the reference state, due to a deformation gradient 

of unity, 

 has no residual stress in the reference state; it is the stress free state, 

 requires an  infinite amount of strain-energy to expand a continuum body to an infinite 

range or compress it until its volume vanishes, 

 is independent of any translation or rotation, 

 is polyconvex. This is an important property that guarantees the existence of a solution 

for a stationary boundary value problem of nonlinear elasticity. It means that the strain- 

energy function [SEF] must be convex.   
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In the following section, various forms of the strain-energy function presented in the literature 

will be reviewed. 

3.4 Phenomenological strain-energy functions 

The three main forms of phenomenological models used for the strain-energy function in the 

literature for arterial tissue are the  

i) exponential model, 

ii) polynomial model,  

iii) logarithmic model.  

This section reviews these models, together with the main developments and findings. 

3.4.1 Exponential model 

Fung [14] introduced an exponential model as shown in equation 10 for experimental data 

consisting of positive strains. The exponent q is given by 

  
  

 
       (10) 

       
       

            (11) 

 

where                                  

c 1  is a material parameter in Nm-2 

b1, b2, b3 are material constants, 

Eθθ, Ezz are the main Green-Lagrange strains in the circumferential and axial directions 

respectively. 

Equation 10 was based on the assumptions that the arterial wall is a hyperelastic, incompressible, 

anisotropic and homogeneous material. The model did not take into account the residual stress, 

viscoelasticity or the active behaviour of the artery. From this, a relationship was introduced 

between the circumferential second Piola- Kirchhoff stress and the circumferential Green-

Lagrange strain. This relation is shown in figure 3.5 for four different arteries; the carotid artery, 

left iliac, lower aorta and upper aorta. 
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Figure 3.5: Circumferential second Piola -Kirchhoff stress against circumferential Green-Lagrange 

strain for four different arteries [14]. 

This form of strain-energy model has several advantages, for example, the model has a low 

number of material parameters, which means that the model has a high degree of repeatability. 

In addition, the model also obeys the convexity constraint that ensures the existence of a solution 

for the strain-energy function problem. On the other hand, one of the disadvantages of the model 

is the low accuracy of fitting, especially at low stresses. Delfino in [39] presented another model 

that also used an exponential form. In this case, the strain-energy function is as shown 

  
 

 
  

       

     
(12) 

               (13) 

I1 is the first strain invariant and it is given by equation 13, a is a material parameter in Nm-2,  b is a 

dimensionless material parameter and  Err, Eθθ, Ezz are the main Green-Lagrange strains in the 

radial, circumferential and axial directions respectively. In addition to assuming the arteries are 

homogeneous hyperelastic materials, this model also assumes the arteries are incompressible, 

isotropic, and residual stresses can exist. Viscoelasticity, the active behaviour of the artery, and 
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anisotropy are not considered. There is also no verification of the simulated data using 

experimental data. Holzapfel [8]  assumed the main building blocks of the arterial wall, that affect 

the stress-strain response, are collagen and elastin. Thus, it was also assumed that the total 

strain-energy of the arterial wall is the summation of the strain-energy of both the elastin and 

collagen. The collagen component was based on  an anisotropic material model of the 

exponential type presented by Fung [14],as represented by equations 10,11 and The elastin 

component was based on an isotropic neo-Hookean as shown in equation 14. 

                  (14) 

where c1 is a material parameter in Nm-2.  

This combination resulted in an improvement in the accuracy of fit. However, no quantitative 

comparison of “goodness of fit” is given in the literature. A visual comparison between the 

Holzapfel and the Fung models is shown in figure 3.6. 
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Figure 3.6:  Circumferential second Piola-Kirchhoff stress against circumferential Green-Lagrange 

strain for Fung and Holzapfel models (reproduced from[8]). 

However, the above model did not include any terms that indicate the variation of the collagen 

fibre orientation inside the arterial wall. The model was further developed in [10]. The equation 

used for elastin remained the same, but the collagen was assumed to be distributed in the form of 

two separate families with two different directions. Equation 15 shows only one direction as a 

simplification. 

         
  

  
       

(15) 

            (16) 

      
          

       (17) 

 

The exponent q is given by equation 16 and the fourth invariant by equation 17  where λθθ and λzz 

are the main stretches in the circumferential and axial directions respectively,   is the angle 

between collagen fibres and the circumferential direction, k1 is a material parameter in Nm-2,  and 

k2 is a dimensionless material parameter. 
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3.4.2 Polynomial model  

There are two main models using the polynomial form. The first was presented by Vaishnav in 

[40]. It took the form of equation 18. 

       
                

       
          

       
          

  (18) 

 

where a1 to a7 are material parameters in Nm-2. However, this model had several major 

drawbacks. Firstly, the model uses seven material constants; these material constants differ 

between experimental subjects and they even differ on repeating the experiment. Thus, the 

overall repeatability of the model was very low. In addition, the model had very low accuracy of 

fit at low stresses. The results are shown in figure 3.7 for four different arteries; carotid, left iliac, 

lower aorta and upper aorta. 
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Figure 3.7: Green-Lagrange strain in the circumferential direction was plotted against 

circumferential second Piola Kirchhoff stress for four different arteries [14]. 

The second model, presented by Ogden[15], assumed the arterial walls behaved similar to 

rubber-like materials which share the strain stiffening effect within the material. It was assumed 

that the strain-energy function used is given as 

  ∑
  

  
   

     
     

    (19) 

 

where μi is a parameter in Nm-2, α i is a dimensionless material parameter and λ1, λ2 and  λ3 

denote the three principal stretches. It can be seen by considering figure 3.8, that the mechanism 

behind the strain stiffening effect in the arterial wall is different from that of the rubber-like 

material; this might be due to the existence of collagen fibres that do not act as rubber-like 

materials.  
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Figure 3.8: Typical simple tension response of (a) rubber and (b) soft tissue. Nominal stress (σ) 

was plotted against strain (λ)[15]. 

 

This section has considered two polynomial forms of the strain-energy function presented in the 

literature. The results indicate that they do not represent the experimental data as well as the 

exponential forms and will not be considered further. 

3.4.3 Logarithmic model 

The strain-energy function presented by Hayashi [27] assumed the arterial walls to be 

homogeneous, incompressible, hyperelastic materials. However, it used a logarithmic function, as 

shown in equation 20, to represent the relation between strain-energy and strain.  

          
      

 

 
 

      
 

 
            

(20) 

 

Here c1 is a material parameter in Nm-2
,aθθ , azz, aθz  are material constants. Typical results from 

this model are shown in figure 3.9. It was found that this model was not robust, in that it gave 

infinite stress values for finite strain values.  
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Figure 3.9: First Piola-Kirchhoff stresses are plotted against change in radius [27].  

3.4.4 Comparison 

In reviewing the different forms of the strain-energy function and their fit to experimental data, it 

was found that comparisons were mainly based on visual interpretations. Using this method it 

was found that the model presented by Holzapfel produced the closest fit as he considered more 

factors, such as directionality of the collagen fibres in addition to the difference in properties of 

the three layers within the arterial wall. 

3.4.5 Summary 

This section has presented the concept of the strain-energy function for hyperelastic materials 

and has reviewed three forms of the function. It was found that the exponential form developed 

by Holzapfel [8, 10-11] gave the best fit and will be used as a basis for the model developed in this 

thesis. In the next section the basis of a numerical method to calculate the stress-strain 

relationship for the arterial wall is presented. 

3.5 Finite element non-linear models 

Sometimes the addressed mechanical problem is too complicated to be solved analytically. The 

finite element method is a numerical approach by which general differential equations could be 

solved in an approximate manner. 
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One of the attempts to solve the stress-strain relationship for the arterial wall was done by 

Holzapfel et al [41]. The authors used the principle of virtual work which states that at equilibrium 

internal work done by a rigid body is equal to external work done on it [41] .Thus  equation 21 

could be derived. 

∫             ∫                             
(21) 

 

Where P= load pressure, n = outward unit vector, EAB= Green Lagrange strain tensor, SAB= 

second Piola Kirchhoff stress tensor, H= thickness, u = displacement, Ssa=area in the 

undeformed state, ssa= area in the deformed state, α (u,η)=function of displacement  and 

(η) virtual displacement’  , α                  , α    =external work        

To solve equation (21), α is linearised according to equation 22 which is given by 

Lα(μ,η,Δα)=α’+Δα (22) 

Where α’= constant term, α= linear term 

The elastic modulus is then calculated according to equation 23. 

      
    

    
 

(23) 

 

Then the material matrix (components of the elastic modulus) could be derived to be as 

shown in equation 24. 
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(24) 

 

Where D= material matrix containing elasticity tensor components, λ1,2= eigenvalues 

which correspond to principal directions of strain.   

 After certain calculations 

   ∫                       
(25) 



CHAPTER 3. REVIEW OF MATHEMATICAL MODELS 

3-23 
 

 

After that the authors applied the spatial discretisation method before using a specific 

software program to compute the final finite element formulation. The results from the 

finite element (FE) method are then compared with the analytical method and are 

presented in figure 3.10 
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Figure 3.10: The relation between circumferential 2nd Piola Kirchhoff and circumferential green 

Lagrange strain [8, 41]. 
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Both the finite element and the analytical techniques differ from the experimental results in 

certain areas of the graph with errors up to 20% at higher strains.  This could be due to only using 

the elastin (rubber like material component) in the nonlinear displacement equation (equation 

14). Thus neglecting the effect of other main components especially collagen that begin to show 

response at higher strain rates. This was solved in the subsequent models, where a term 

representing collagen energy response to stress was later added. This will be shown in more detail 

in section 3.7.It is worth noting that forming the proper constitutive equation will be the aim of 

this research and not forming an FE solution for it. 

3.6 Model variations 

3.6.1 Layered vessel 

The research performed by Von Maltzahn et al [7, 12-13] offers one of the most important 

contributions to the field. In [7] experimental measurements of the elastic properties of the 

media and adventitia were presented. The arterial wall was considered to be orthotropic, but it 

did not include the role of the intima. The intima has been proven to be of significant importance, 

especially in older patients [11]. The strain-energy presented by Maltzahn et al in [12] lacked a 

coherent relationship with the materials constituting the arterial wall (e.g: elastin and collagen).  

Demiray et al introduced another strain-energy function in [9]. Their model lacked any 

comparison with experimental data and it also assumed the vascular wall to be completely 

isotropic, which did not take into the consideration the transverse isotropy. In [42] Demiray and 

Vito used a two layer model, neglecting the role of the intima. The media was considered 

orthotropic, while the adventitia was considered isotropic. No axial force–pressure relation was 

presented. Similarly the relation between the two layers and the whole structural stress was not 

presented. Results for the Von Maltzahn model are presented in figure 3.11. The results for 

Demiray and Vito models are summarized in table 3.2. 
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Figure 3.11 :a) the media model is compared with its data ,in figure (b) the data of the whole wall 

is compared with its model [13]. 
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Table 3.2 

Stress results are compared with the theoretical model for the media and then the 

whole wall [42] 

 

 

 

 

 

 

 

 

 

 

In [11] Holzapfel et al presented layer specific strain-energy equations assuming arterial 

layers, but no mean (or total ) relationship for the stress-strain response of the whole wall 

was given. The results from the literature indicate that the combined elastin and 

anisotropic collagen models developed by Holzapfel using three layers [11] gives the best 

fit to experimental data as shown in figure 3.12 . 
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Figure 3.12 : A comparison between the layers responses in the circumferential and longitudinal 

direction, for A) Adventitia, B) Media C) Intima [11]. 

3.6.2 Fibre orientation   

The arterial wall has been shown to be composed of a network of elastin and collagen fibres. At 

lower stresses elastin is easily strained because of its low elastic modulus. On the other hand 

collagen does not begin to be affected by stress until higher values. At these higher values, the 

collagen fibres are redirected circumferentially, to allow the arterial wall to withstand higher 

pressure. This is explained in figure 3.13. 
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Figure 3.13: Collagen fibres are re-oriented at higher stress giving the chance for the 

artery to withstand higher pressure[43]. 

Thus, it is apparent that the fibre orientation controls the stress value. This was further 

investigated in [16]. Holzapfel assumed that the collagen fibres are grouped in two main groups 

with two preferred fibre orientations. These directions are represented by a second order tensor 

which is the dyadic product of two vectors. Each vector is given by three components covering the 

angular relation with the three main directions. Thus the direction of one family (A) would be 

given as by equation 26. 
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3.6.3 Thin wall approximation 

Fung et al in [14, 24, 44] noted that the arterial wall is not very thin, but it was considered to be 

thin enough to justify the use of thin wall theory. In [44] Fung et al observe that neglecting the 

variation of stress through the wall thickness will have an effect on the quality of a model 

prediction. However, no quantitative error estimation was given.  

Holzapfel et al in [8] used thin wall theory to represent the circumferential and axial responses. In 

[11, 16, 38] when modelling the layer response, they discussed the use of different strain-energy 

forms for each layer. In order to formulate the analytical model, Holzapfel et al made certain 

assumptions. As all collagen fibres are embedded in the tangential surface of the tissue, it was 

assumed that there are no components in the radial direction [11]. This supported the use of the 

thin wall approximation [11]. In this case only circumferential and axial stresses become relevant.  

Thin wall theory [45] offers a simple approximation for the relationship between mean 

circumferential and axial Cauchy stresses, σθ and σz respectively. A deformed thickness, h, 

deformed radius, r, luminal pressure, p, and axial force, fa are assumed. These are shown in 

equations 27 and 28. 

σθ    
 

 
 

 

 
 λθ 

(27) 

σ  
σθ
 

 
  

   
 

(28) 

3.6.4 Comparison of models 

In the last section, it was seen that there are many models that tackled the stress-strain 

relationship. These models vary in their complexity, covering 1-D and 3-D models. 3-D strain-

energy based models were compared. Three main types were presented, exponential, logarithmic 

and polynomial. It was seen that the exponential form representing the roles of elastin and 

collagen gave better estimates of the stress-strain relationship in the circumferential and 

longitudinal directions. In the exponential modelling method, it was seen that model complexity 

increases side by side with its accuracy. It was found that the models that take the building blocks 

of the arterial wall into account perform better. Nevertheless, there is no reported relationship 

between the layered and whole wall models. That is the research gap which this thesis explores. 

3.6.5 Conclusions 
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This chapter covered the model assumptions, including: cylindrical reference state, radial and 

axial loading.  Two types of control loops were introduced (Long and short term regulation). Only 

short term loop was considered. The arterial wall was considered to be homogenous transversally 

isotropic incompressible. Viscoelasticity, residual stress, Poroelasticity were not considered by this 

model. Two nonlinear 3D models were discussed, namely incremental model and hyperelastic 

model. Incremental model was discarded based on the fact that no relation between the model 

parameters and the materials forming the arterial wall. Strain-energy function was defined as the 

potential energy stored in the arterial wall. Three forms of strain-energy function were 

investigated (i.e: Exponential, polynomial, logarithmic). Polynomial strain-energy functions suffer 

from very low accuracy as well as model parameters were patient specific. Logarithmic strain-

energy functions gave infinite results for finite values of strain. Different model variations were 

considered including layered vessels, fibre orientation and thin wall approximations. This review 

has highlighted a research gap to find the relationship between layered models and the whole 

arterial wall. This relationship could provide opportunities to explore the function of 

baroreceptors and the study of arthrosclerosis. 
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Chapter 4 

 

HYPER ELASTIC MODEL OF ARTERIAL 

TISSUE 

________________________________________________________________________________ 

4  Overview 
It is well known that all physical objects are composed of smaller units called molecules, which in 

turn are formed of atomic and subatomic particles. A microscopic system is concerned with 

molecules, particles, subparticles. On the other hand, a macroscopic system approximates a large 

number of particles into a few quantities, hence the term continuum mechanics. This type of 

mechanics is not concerned with the internal microstructures of materials, for example water 

from the continuum mechanics point of view is treated as a continuous medium, with certain 

quantities which are associated with internal structures, for example density, temperature and 

velocity. 

Continuum mechanics could be divided into 3 main branches: 

a) The configuration and motion of continuum bodies known as kinematics 

b) The study of stress in a continuum ( the concept of stress) 

c) The mathematical descriptions of the laws that govern the motion of a continuum 

 (Balance principles) 

In the following chapter these three concepts will be covered. This will include the configuration 

concept, the continuum theory, the deformation gradient, and the strain tensors. After that, the 

concept of hyperelastic material is introduced and then the novelty in this research is introduced 

mainly using thin wall theory to derive a relationship between layer stresses and whole wall stress 

response. 
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It is worth noting that the convention of used characters is as follows: 

 Lower case Greek letter for scalars 

 Lowercase  bold face Latin letters for vectors 

 Uppercase bold face  Latin letters for second order tensors 

 Upper blackboard Latin letters for fourth order tensors 

 To differentiate between reference and current configuration in denoting scalar, vector 

and tensor quantities, we use uppercase letters, in reference configuration, and 

lowercase letters for current configuration. 

4.1 Configuration and motion of continuum bodies 

The science of kinematics is based mainly on the continuum theory, which will be covered in this 

section. A body β may be viewed as having a continuous distribution of matter in space and time. 

The body is imagined to be composed of continuum particles as shown in figure 4.1. It is also 

assumed that the mass and the volume of such a body is a continuous function. 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: A certain motion transfers the deformable body from the reference 
configuration into the current configuration [1]. 
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4.2 Configuration concept 

 

The body β is embedded in 3-D Euclidean space at a given time t. The reference frame is related 

to rectangular coordinates with bases of 3 orthonormal vectors e1, e2, e3, with the following 

relationship between them 

                    (1) 

                    (2) 

As the continuum body β moves from one state to the other, it occupies a sequence of 

geometrical regions denoted by Ωo to Ω. The region occupied by the body at a certain time t is 

called the configuration. Thus for example at time to , the body β occupies the region Ωo. This is 

referred to the undeformed configuration. If there exists a point X on the body β at the 

undeformed configuration Ωo, then this point could be defined by the position vector relative to 

the point of origin 0. The deformed state is assumed to exist at time t, with a deformed 

configuration Ω. Now the point x is the mapping of the point X by a certain motion x. This motion 

could be summarised as 

         (3) 

In that case the displacement field in the material description form (with respect to the 

undeformed state) is given by  

                (4) 

 In that case the displacement field in the spatial description form (with respect to the deformed 

state) is  

                (5) 

It is worth noting that the two displacements U or u have the same values, the difference 

between them is the reference to the coordinates, i.e U is referred to the material (undeformed 

coordinate while, u is referred to the spatial, deformed coordinates. 

In that case the velocity and acceleration are given by the first and second derivative as shown in 

equations 6 and 7 

        
       

  
 

(6) 
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(7) 

  

4.3  Deformation gradient 

 

If an assumed curve,  Γ, exists on the body β , the curve is not function in time, and this body is 

subjected to a certain motion, then this curve is deformed with the respect to the deformed state. 

Thus 

            (8) 

 

Where F(X,t) is the deformation gradient, F is nonsingular , i.e (det(F)≠0) and it is invertible. 

Applying the same concept from the volume respect, equation 9 could be derived 

            (9) 

                   (10) 

Where J(X,t) is known as the Jacobian determinant (Jacobian)  If J=1, then the motion is called 

isochoric or volume preserving. In the previous section, the concepts of configuration, 

undeformed state, deformed state, deformation gradient and the Jacobian were introduced. In 

the following section strain tensors will be covered. 
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4.4 Strain concept 

 

Strain tensors are concerned with determining the changes of material elements during motion. 

Unlike displacements which are measurable quantities, strains are based on a concept that was 

introduced to simplify analysis. Thus many definitions have been introduced. Only common 

definitions to nonlinear continuum mechanics will be covered. If point X and Y exist on a body β in 

the reference (undeformed) configuration, during a motion then according to figure 4.2, equation 

8 applies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Strain concept[1]. 
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            |   |
   

|   |
      

(11) 

Let                                                            ε  |   | (12) 

   
   

|   |
 

Where, the value  𝑎0 is defined as the unit vector 

(13) 

substitute in11 to get                            ε    (14) 

       ε    ε    ε  (15) 

 

Regarding the state of the spatial configuration, the points x and y could be defined through 

Taylor expansion to the following equations 

     ε                (16) 

 λ known as the stretch  is taken to be the product of the deformation gradient and the  unit 

vector according to equation 17. 

           (17) 

 Substituting in equation 17 gives 

|   |  |           |
 
  |  ε            ε         |

 
  λ ε 

(18) 

 

In summary, the distance between X and Y in the undeformed state was dε, after a certain motion 

for the body, these two points become x and y and the distance between them becomes λdε. It 

could be said that these distance is compressed, extended or unstretched depending on the value 

of λ , whether it is bigger, equal or smaller than 1. 

Using the matrix identity given in equation 19 

                (19) 

For all vectors v and u  And applying to equation 17 gives 

λ                 
            (20) 

       or            (21) 

 

C is known as the right Cauchy-Green tensor or the Green deformation tensor. It is worth noting 

that C is symmetric and positive definite.  
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An n × n real symmetric matrix Cis positive definite if zTCz> 0 for all non-zero vectors z with real 
entries  

                (22) 

                  (23) 

  
 

 
        

(24) 

E is known as Green-Lagrange strain tensor. 
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4.5  Stress concept 

 

Strain types that are linked to spatial deformation are not the scope of this research. In the last 

section material (undeformed/reference) strain concepts were covered along with deformation 

gradient and displacement. These concepts cover the interaction between the material and its 

neighbours in the interior part of a certain body. One consequence of these interactions is stress, 

which has a physical dimension of force per unit area. For example, if there is a deformable body 

and it is subjected to finite motion, several stress tensor types and vectors could be defined. Also, 

in this section only stresses referred to the undeformed configuration will be discussed as they 

are more relevant to the scope of the research more than those of the spatial deformation. 

 

  

 

 

 

 

 

 

 

 

 

 

If a certain body β (figure 4.3) is cut, by a plane surface which passes through a point X in the 

reference state with spatial coordinates xo, then the infinitesimal resulting force is denoted df. It 

can also be concluded that for every surface element ds, equations 25 and 26 apply: 

               (25) 

Figure 4.3: A cross section in a body β shows an area Ssa with a normal vector N and traction 
vector T[1]. 
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           and            (26) 

 

t represents the Cauchy or true traction vector and T represents the first Piola-Kirchhoff       

(nominal) traction vector.  The two vectors t and T are known as the surface tractions.  They are 

surface or friction forces, while t is the time. 

Having introduced the surface traction vectors, the Piola-Kirchhoff  P and Cauchy stress σ tensors 

can be derived to be in the form given by equation 27. 

                 (27) 

                 (28) 

Where, n and N are the normals to the surface. This could be written in matrix notation according 

to equation 29 and shown in figure 4.4. 

[ ]  [ ][ ] 

[ ]  [

  
  
  

]  [

   
   
   

   
   
   

   
   
   

] [

  

  

  

] 

(29) 

 

 

 

 

 

 

 

 

 

The Piola-Kirchhoff transformation could be applied as shown in equation 30. 

        (30) 

Figure 4.4: Stress components and their respective traction vector [1]. 
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Second Piola Kirchoff stress tensor 

This tensor does not admit a physical interpretation in terms of surface traction. Nevertheless it is 

a symmetrical matrix and parameterised by material coordinates. Thus it is often used to 

represent stress measure in computational mechanics. It is given by equation 31. 

           (31) 

The transfer from second Piola Kirchhoff to Cauchy stress is given by equation 32 

          (32) 

4.6  Balance principles 

In the last section deformation gradient, strain and stress tensor types and concepts were 

introduced. In the following section gives a brief discussion of the mechanical laws governing the 

branches of continuum mechanics and its fundamental principles. For example, conservation of 

mass, momentum balance principles and balance of energy must be satisfied in all times. 

4.6.1 Conservation of mass 

Every continuum body β possesses mass, denoted by m, it is assumed that mass is continuously 

distributed on the arbitrary region Ω and bounded by a surface  Ω at a time t. The mass is a scalar 

positive number, which is invariant during motion.  

Closed and open systems 

A closed system consists of a fixed amount of mass, no mass can cross its boundary, but energy 

can. The volume in a closed system does not have to be fixed. On the other hand in an open 

system mass and energy can cross the boundary as shown in figure 4.5. 
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Figure 4.5: Closed and opened systems[1]. 

In non-relativistic physics, mass cannot be produced or destroyed. It is assumed that during a 

motion there are not any mass sources or mass sinks, so that a body mass is conserved. 

Considering a closed system this holds for the total mass thus 

 

  Ω     Ω    (33) 

                (34) 

  ∫         ∫                  
(35) 

 

Where   is the density deformed state, while, V is the volume in the undeformed state and v is 

the volume in the deformed state. From the mass continuity equation it can be deduced that 

       (       )       (36) 
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4.6.2 Balance of linear momentum  

 

Linear momentum equation is given by equation 37: 

     ∫                 ∫                
(37) 

Where vi is the velocity, From equation 37, linear balance of momentum is given by equation 38 

 

  
∫                 

 

  
∫                        

(38) 

But the resultant force Fres(t) could be defined by equation 39. 

        ∫     ∫    
(39) 

Where bf is body force, ssa is the area, v is the volume 

 Hence equation 39 becomes 

∫      ∫     
 

  
∫                 

(40) 

But knowing that  

∫      ∫         
(41) 

By substituting in equation 40 to get 

∫                     
(42) 

If there is n acceleration then Cauchy equation of equilibrium is achieved 

∫                
(43) 

If there is no external force 

∫             
(44) 

This is known as self equilibrated stress field. 

From that and applying thin wall theory it could be proved that Cauchy stresses can be related 

back to luminal blood pressure and axial stress using thin wall theory [2-3]. Assuming a deformed 

thickness, h, deformed radius, r, a luminal pressure, p, and an axial force, fa, we have  
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     (
 

 
 

 

 
) 

 

 

(45) 

    
  

 
 

  
     

 

 

(46) 

4.6.3 Constitutive equation 

 

The fundamental equations in the last section are essential to understand kinematics, stress and 

balance principles, and hold any continuum body for all times. However they do not distinguish 

between materials, and they remain valid for all branches of continuum mechanics. For the case 

of deformable bodes like the arterial wall, the equations mentioned are not sufficient on their 

own to determine the material response. Hence the need rise for appropriate constitutive 

equations that are furnished to specify the nature of the materials building the arterial wall.  

Generally, constitutive equations aim is to specify the stress components in terms of other field 

functions such as strain. The constitutive equation role is to determine the state of stress at any 

point x of a continuum body at time t and it is unique for different types of continuous bodies. 

Also, it is worth noting that in general continuum mechanics deals with different media like liquids 

hence the name fluid mechanics and also solid hence solid mechanics. 

The main goal of the next section is to describe the constitutive equations for the arterial layers 

from that the whole wall will be derived. These constitutive equations are still applicable for use 

of approximation methods like finite element analysis. The path flowed in this research is the 

phenomenological approach describing the nature of the material as continua. The 

phenomenological approach is mainly concerned with fitting mathematical equations to 

experimental data. 

The aim of constitutive theories is to develop mathematical models for representing the real 

behaviour of the matter. The focus of this research is the finite hyperelastic models. These cover 

the materials with large strain (finite) response like the arterial walls. Such constitutive theory 

postulates the existence of a Helmholtz free energy function (W), which is defined per unit 

volume. In that case equation 47applies 

       (47) 
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This means that this free energy function is only a function of deformation gradient. In this case 

this Helmholtz free-energy function is referred to as the strain energy function. Strain energy 

function is defined as the stored energy inside a unit volume of a material; it is a scalar value 

continuous function. 

The scope of this research is to concentrate on homogenous materials, in which the distribution 

of the internal constituents is assumed to be uniform. For this material the strain energy function 

only depends on the deformation gradient. Of course for the so called heterogeneous materials, 

the strain energy function will also depend on the position of a certain point inside the material or 

the medium which is subject of interest. 

A hyperelastic material is defined as a subclass of an elastic material; it has a physical expression 

in the form of the equation 48. 

  
     

  
 

(48) 

After some transformation, the relation between second Piola Kirchoff and strain energy function 

could be given by equation 49. 

  
     

  
 

(49) 

These types of equation, is knows as purely mechanical constitutive equation or equations of 

state. They form an empirical model as the basis of approximating the behaviour of real material, 

hence the name material model or constitutive model.  Such material could also be known as 

perfectly elastic material which means it does not produce any entropy i.e the internal dissipation 

is zero. It is worth noting that the strain energy function vanishes in the reference configuration, 

thus the normalisation condition given by equation 50 holds. 

at      

Then 

         

(50) 

Also, it is known from physical observation that the strain energy increases with increasing the 

deformation, therefore equation 51 applies: 

         (51) 

The strain energy function has a global minimum at F=I and its equal to zero. It is assumed that 

the strain energy does not have any stationary points in the strain space. It is also assumed that 
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that residual stress in the reference configuration is zero; in this case the reference configuration 

is stress free. 

For the behaviour of finite strains, the strain energy function satisfies the growth conditions, 

which means that equation 52 applies 

        as          

                   

(52) 

Physically, this means that, an infinite amount of energy would be required to expand a 

continuum body to an infinite range or to compress it to a point with vanishing volume. 

4.6.4 Incompressible hyperelastic materials 

Using the Lagrangian multiplier, a relationship is derived between the total strain-energy and the 

volumetric, Wic (E, A1). Assuming the arterial walls to be incompressible, and that the total strain-

energy is a function of the Green-Lagrange strain tensor representing one family of collagen 

fibres, we have 

                                                                                  (53) 

  

where                                                                     

   𝑎  𝑎  

 

(54) 

and                                    

𝑎  (
 

     
    

) 

 

 

 

(55) 

given that, φ, is the angle between collagen fibre orientation and the circumferential direction, 

using cylindrical coordinates. 

Assuming no change in volume, and using equation 49 and applying Lagrangian multiplier P 

  
    

  
  

  

  
 

 

(56) 

where P has the units of hydrostatic pressure. The isochoric Green-Lagrange strain-stretch 

relationship is given by 

   
 

 
 λ 

     
(57) 

where λi is the isochoric principal stretch. 
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 The circumferential and axial second Piola Kirchhoff stress components, s , and, sz , respectively, 

are given by 

   
 

  

    

   
 

 

  
  

 

  

    

   
 

(58) 

 where  λ  , λz, λr are the principal  stretches in the circumferential, axial and radial directions 

respectively. 

4.6.5 Collagen and elastin strain-energy functions 

 

For each layer, the strain-energy, Wic, is considered to be the linear combination of elastin and 

collagen contributions. 

                                                                                                          

 

(60) 

The form of the elastin strain-energy component Wiciso(   ), is approximated to be  

 

             
  
 
        

 

(61) 

The first invariant of stretch , I1, is defined as 

 

   λ 
  λ 

  λ 
  

 

(62) 

and c1, is a material constant related to the elastin stress response. 

The form of the collagen contribution can be described by 

 

                   
  

  

       

 

                                        

 

 

(63) 

   
 

λ 

    

 λ 
 

 

λ 
  

 

λ 

    

 λ 
  

                                                                            

(59) 
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where k1, and k2 are material constants related to the collagen stress response and q is calculated 

to be 

                                  (64) 

 

where       is the dispersion factor. I4 is the fourth stretch invariant given by  

   λ 
          λ 

          

 

(65) 

The dispersion factor value represents the amount of dispersion from the ideal alignment of the 

fibres [4]. A value of unity assumes that all the fibres are oriented in the   direction. For a value of 

zero the fibres are assumed to be randomly isotropically oriented, as presented by Demiray et al 

[5]. 

4.7 Thin wall approximation 

 

To estimate the mean stress-strain relationships in each layer and the whole arterial wall, it is 

assumed that thin wall theory can be applied. Fung et al [6] noted that the arterial wall is not so 

thin, but it was considered to be thin enough to justify the use of thin wall theory. Fung et al 

observed that neglecting the variation of stress through the wall thickness will have an effect on 

the quality of a model prediction [7]. However, no quantitative error estimation was given. 

Holzapfel et al used thin wall theory to represent the circumferential and axial responses [2]. 

When modelling the layer response, he discussed the usage of different strain-energy forms for 

each layer. In order to formulate the analytical model, Holzapfel et al made certain assumptions. 

As all collagen fibres are embedded in the tangential surface of the tissue, it was assumed that 

there are no components in the radial direction [2, 8-9]. This supported the use of the thin wall 

approximation [10]. On comparing circumferential and radial stresses, circumferential stresses 

appear to be far bigger. Thus this justifies only considering circumferential and axial stresses  in 

this investigation [2]. Although bending and residual stresses are important in some arterial 

regions, it is not taken into consideration in this study due to lack of experimental data that fits 

within the scope of this research. 
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4.8 Layer stress response 

 

Equations (32), (58) and (59) can now be used to describe each of the three arterial layers, l to 

calculate the Cauchy stress components,  θl and  zl, in the circumferential and axial directions 

respectively. Thus for the intima ( l = n),and applying in equations 60-65 gives 

   

    [   (  
 

λ 
 λ 

 )

     
   (         )        (  

 

λ 
 )       

          (  )
 
 ] λ 

  

 

(66) 

                                                             

             

    

[   (  
 

λ 
 λ 

 )      
   (         )        (  

 

λ 
 )        (               

  ]λ 
   

 

 

(67) 

Similar expressions can be obtained the media layer ( l=m) and the adventitia ( l=a). 

                                        

4.9 Whole-wall stress response 

 

This research presented here proposes using stress equilibrium [11-12]  in the wall to calculate 

the mean wall Cauchy stress components,  t  and  tz in the circumferential and axial directions as 

shown in equations (68) and (69) where h is the wall thickness after deformation. 

 

    
                   

 
 

 

 

(68)      

 

    
                   

 
 

 

(69) 
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4.10 Conclusion 

 

In this chapter, the concept of continuum mechanics was introduced. Three main branches were 

discussed: configuration of continuum bodies, study of stress and study of motion. Deformation 

gradient were also studied, conservation of mass was also presented. Then the stress energy of 

each of the materials building the arterial wall were also introduced, such that the total stress 

energy of the arterial wall is equal to the summation of the stress energies of elastin and collagen, 

as they are the materials that take part in the passive filling of the arterial wall.  Through the use 

of thin wall theory as well as stress equilibrium; a new method was proposed that show a 

relationship between phenomenological derived layer response and the total stress response. 

This method still needs parameters estimation which will be presented in the next chapter. In 

chapters 6 and 7 Experimental examples will be shown to prove the efficiency of the proposed 

model.
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CHAPTER 5 

  

OPTIMISATION AND PARAMETER 

ESTIMATION  

________________________________________________________________________________ 

5 Overview 

 

In this thesis an analytical model is produced to relate the material constants of arterial layers to 

both individual layer and whole wall experimentally derived stress-strain characteristics. To 

achieve this, the set of resulting equations require optimizing to find an optimum solution within 

the physiological range. This section looks at the process of selecting data and two optimization 

methods, steepest descent and nonlinear least square.  To address the question of uniqueness of 

solution parameters sensitivity analysis will be also discussed. It is worth noting that bold letters 

are used to represent vectors in this chapter. 

 

5.1 Selection of data 

Experimental data was taken from [1].  This data consists of whole wall relationship for change in 

diameter and axial force as a function of transmural pressure as shown in figure 5.1. The 

experimental setup reported was as follows [1]. Cadvers with arteriosclerosis were selected, and 

then arteries were dissected from them. After that arteries were preconditioned to make sure 

that the mechanical response is stable. Then a pre pre-stretch was applied using a static 

experimental technique. i.e the generated relationship is not a function in time. Finally, the 

external diameter and corresponding axial force were measured and graphically presented in [1].   
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5.2 Optimisation method 

Optimisation is generally defined as choosing the most suitable set of parameters from a set of 

alternatives [2]. Optimisation could be classified into linear programming, nonlinear programming 

and multi-objective optimisation. All these three groups share the basic idea which is described 

below: 

If there exists a certain experimental curve, given by a set of points represented by (yi, ti), and if 

there exists an analytical model equation, which results in values M(x,t),then the least square 

value method optimisation could be used to minimize the residual value i.e. the difference 

between  the values of yi and M(x,t) given by fiop(x) according to equation 1: 

   ( )  
 

 
∑(    ( ))

 

 

   

 
(1) 

Figure  5.1: Transmural pressure versus external diameter and axial force [1]. The square, 

triangle and circle represent axial stretch of 1.1, 1.2 and 1.25 respectively. 
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An example (yi,ti), as well as M(x,t) is given in figure 5.2. 

 

 

 

 

 

 

 

 

 

F(x) in that case is known as the objective function, or cost function. It could be subjected to linear 

or nonlinear set of constraints. If the objective function and the constraints are linear then linear 

programming optimisation is used. If the objective function or any constraint is nonlinear then 

nonlinear programming is applied[2]. Multi-objective optimization is concerned with the 

minimization of multiple objective functions. The main method for solving linear programming 

problems is known as the simplex method, which is applied after replacing constrained 

inequalities with equalities. Also the interior point and the active set algorithms could be used to 

solve linear programming problems. However, nonlinear problems are the main concern of this 

section. These types of problems aim at finding the local minima, this will be explained in details 

in the following section, and also different methods will be shown. 

An extremum point can be either local or global, the term ‘local’ means that the (maximum or 

minimum point) is the extrermum over a certain region, where ‘global’ means that this extremum 

point is the one and truly max/min point over the whole real numbers range. Finding the global 

point is done in two ways; the first is achieved through finding the local maxima/minima by using 

widely varying values and then choosing the most extreme point among them, the second 

method uses a different starting point and then checks if the routine used would give the same 

solution over time. Solving global minimiser value problems is not the focus of this research. The 

main aim of this investigation is to examine different local minimiser routines and compare 

between them. The goal of the local minimiser is to find the parameters values that would 

Figure 5.2 : Data points (yi, ti) marked by a star and M (x,t) marked by a full line, in this case  M(x,t) 

was be given by        [2]. 
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minimize the value of x* (defined as the minimum value of (x) [2]. To find the local minimiser 

values, a certain value δ is chosen to represent the size of the region. The relation between x* and 

δ is given by equation 2. 

   (  )     ( )  for ‖    ‖    (2) 

This is shown in figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: While the value of x-x*<δ, fop(x*) < fop(x), this ensures the convergence to a minimum*. 

There are three types of local stationary point, namely known as local maximiser, local minimiser 

and a saddle point. These types are shown in figure 5.4. 

x* x 

δ 

F(x*) 

) 

F(x) 

) 
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Figure 5. 4: a) Saddle point b) Local maximum c) Local minimum.  
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 It is assumed that the function F (also known as the cost function) is smooth such that the 

following Taylor expansion applies  

   (     )     ( )     
   

 

 
   

     ‖   ‖
 
 

(3) 

Here hop, is known as the hop is a descent direction as will be explained later. 

Where g is the gradient and it is given by 

     
 ( ) (4) 

Hop is the Hessian and it is given by 

Hop=      (x) (5) 

There are two known conditions to make sure the computed value is  the local minimum, the first 

is that the gradient is equal to zero, this insures that the value of x is a stationary point and the 

second condition is that the  Hessian  is a positive definite value  this insures that this point is a 

local minima.  

It is worth noting that the matrices could be categorized as follows: 

 A matrix M is positive Definite if the determinants of all of its principal submatrices are all 

positive. Another test for positive definiteness is that the eigen values of M are all positive 

real numbers. 

 Negative Definite , is the case if the determinants of all the matrix principal submatrices  

are nonzero and alternate in sign with the first being negative.  Another test for negative 

definiteness is that the eigen values of M are all negative real numbers. 

 If we happen to have a few zero determinants (which will imply a zero eigen value) then 

M is: Positive Semi-definite, the same applies if the determinants of all of its principal sub 

matrices are all non-negative, or if all of its eigenvalues are non-negative real numbers.  

Note that any positive definite matrix also satisfies the definition of positive semi-definite. 

 Negative Semi-definite if the determinants of all of its principal submatrices alternate in 

sign, starting with a negative (with the allowance here of 0 determinants replacing one or 

more of the positive or negative values).  A better test is to check if all of its eigenvalues 

are non-positive real numbers.  Note that any negative definite matrix also satisfies the 

definition of negative semi-definite. 
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There are different methods that could be used to solve the local minimiser least square problem. 

Most of these methods are iterative, from a starting point x0, producing a series of vectors x1,x2 till 

they converge at a certain local minimum value x*. The method covered in this section is called 

the descent method which depends on ensuring that each given iteration function value is less 

than the value of the function value before it. This is normally done through an algorithm. The 

objective of the algorithm is to find the minimum value of a certain function. Starting with the 

first iteration at x= x0 and with number of iteration k= 0, two steps are performed[2]: 

a) Finding a decreasing (descent ) direction (hdop) 

b) Finding the step length (αop) 

After finding them, the new iterated value of x is calculated and the process is repeated until 

convergence. The details of the algorithm [2] are as follows: 

 

 

 

 

 

 

 

 

 

 

 

In the next section, these two major steps are covered, for two different descent methods; 

namely; steepest descent and Newton method, after that another method that use these steps 

simultaneously will be covered, the method is known as the trust region. After that, specialised 

nonlinear method known as Levenberg-Marquardt method will be covered. 

Algorithm 5.1 

Begin 

Start with k=0  and x= xo and found = False 

While (found = false) and (k< kmax) 

Calculate the search direction (hop) 

If the search direction does not exist then 

Found = True 

Else 

Calculate  

Step length αop 

Update x  = x+ αophop 
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5.3 Finding a decreasing (descent) direction (hd) 

 

The decreasing direction is governed by Taylor expansion (equation 3). It can be seen that the 

following condition needs to be satisfied for a value of hd to exit: 

    
    

 ( )    (6) 

There are two main methods that calculate the value of hd namely the steepest descent method 

and Newton method.  

5.3.1 Steepest descent method 

 

In the steepest descent method, taking the limit to the difference between the value of the 

current value of f(x) and a future value gives the following equation 

   
α   

   ( )     (  α   )

α     
  

 

   
   

    
 ( )      ‖    ( )‖      

(7) 

 

This means that steepest descent would be 180O between the steepest direction and the current 

gradient. This could be interpreted by the following set of equations 

       ‖    ( )‖  (8) 

    ( )    (9) 

  [

  

 
  

] 
(10) 

‖    ( )‖  
 

√  
     

 
[

  

 
  

] 
(11) 

After calculating the normalised gradient‖  ( )‖,  its value in the following equation 

            ‖    ( )‖  (12) 

After that f’(α)=0 is imposed to calculate the value of α and the process is repeated till 

convergence, where the Stopping criteria is given by equation 13. 

    ‖    ( )‖    (13) 

Where the value of ε is arbitrary.  
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5.3.2 Newton method 

Newton method uses the Taylor expansion for the first derivative as given below. Thus the basic 

idea, that if x* is a stationary idea, this would imply that the first derivative of the function at this 

value would be zero. From Taylor expansion: 

 (  )     
 (     )     

 ( )     
  ( )     ‖   ‖ 

But 

 (  )    

And If    is sufficiently small then,  

   
 (     )     

 ( )     
  ( )    (14) 

Then it could be possible to calculate hnop according to the following equation: 

            
 ( ) (15) 

         
     

 
( ) (16) 

               (17) 

             
     

 
( ) (18) 

  

If x is in a position inside the region around x* where     ’(x) is positive definite, then we get 

quadratic convergence. On the other hand, if x is in a region where     ’(x) is negative definite 

everywhere, and where there is a stationary point, the Newton method would converge towards 

this stationary point. This is avoided by requiring that all steps are in the descent direction.  

To decide the step size, steepest descent and Newton method use line search techniques. The line 

search is basically a one-dimensional minimisation problem (minimize a function of one variable). 

The value of α is calculated by setting fop’(α)=0. 
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5.4 Trust region and damped methods 

 

Equation 20 can be derived from Taylor expansion to be 

   (     )     (   )     ( )     
   

 

 
   

        
(20) 

It is worth noting that this model is only true, if the value of h is sufficiently small[2]. The main 

idea behind the trust region is the assumption that the model estimation is sufficiently accurate 

inside a sphere of radius Δ. Now h is determined according to the following equation 

For the trust region method 

                ‖ ‖ Δ    (   )  (21) 

And for the damped method 

                    (   )  
 

 
     

     
(22) 

where the damping parameter  ≥0. The term 
 

 
     is used to penalise large steps. Returning to 

[2] algorithm 5.1, the update for both methods would be as shown in algorithm 5.2,adopted from 

[2]. 

 

 

 

 

 

The quality of the model with the computed step is evaluated with the gain ratio equation: 

  
   ( )     (     )

 ( )   ( )
 

(23) 

 

This represents the ratio between the actual and predicted decrease in function value. The 

denominator (lower part) is positive, thus the numerator (upper part) would be negative, if the 

step was not downhill, and the solution in that case would to reduce to the value of h. Now, the 

Algorithm 5.2 

If    (     )     ( ) 

               

Update Δ for trust region or   for damped method 



CHAPTER 5. OPTIMISATION AND PARAMETER ESTIMATION 

5-11 
 

trust region differs again from the damping method in the update technique used by each, the 

trust method uses the following technique [2]: 

 

 

 

 

 

 

 

 

 

Thus, if ρ < 0.25, a smaller step is used by the contracting the field the optimiser is working on. On 

the other hand, if ρ > 0.75, then it might be possible to expand the field the optimiser is working 

on.  A trust region algorithm is not sensitive to minor changes in the thresholds 0.25 and 0.75. 

In a damped method a small value of ρ indicates that the damping factor should be increased, but 

in that case the penalty on large steps given by  
 

 
     also increases.  A large value of ρ indicates 

that L (h) is a good approximation to F (x+h) for the computed h, and the damping may be 

reduced[2]. The update technique [2] is shown in algorithm 5.3. 

 

 

 

 

 

 

 

 

 

 

     
    

 
 

                      

Algorithm 5.2 continued 

If ρ<0.25 

Else if ρ >0.75 

 

     
    

 
 

     
    

 
 

Algorithm 5.3  

If ρ<0.25 

Else if ρ >0.75 
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Again, the method is not sensitive to minor changes in the thresholds 0.25 and 0.75. One of the 

draw backs of the above two techniques is that they can give rise to a flutter. This slows down 

convergence as shown in the figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

This is also could be solved by using the Marquardt update given in [2] algorithm 5.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The optimiser is stuck with the flutter part of the curve; this slows up conversion 

to the local minimiser point [2]. 

  

    

 
 

              

      

Algorithm 5.4 

 

If ρ>0 

              
 

 
   (    )   and     

Else  
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Computation of the step 

In a damped method the step is computed as a stationary point for the function 

 (   )   (   )      
     (24) 

 

This means that hdmop is a solution to 

 (   )    (   )         (25) 

 

from the definition of L(hop) in (20)  

(      )         (26) 

 

where I is the identity matrix. , the symmetric matrix Bop+ I represent the Hessian, thus  the 

symmetric matrix B+ I is positive definite , ad If   is sufficiently large,  and then hdm is a minimiser 

for L. 

5.5 Non-linear least square problems 

 

There are other methods that could be used to solve nonlinear least square problems; in the 

following section two of these methods will be discussed, namely: Newton-Raphson, and 

Levenberg- Marquardt. The main aim of these methods is to find the value of x that minimises the 

least square function of the difference between the experimental values and the model one. In 

that sense, F(x) could be defined by equation27. 

   ( )  
 

 
∑   ( )

 

 

 

 
 

 
   ( )

    ( ) 
(27) 

 

Advantages of the above equation include that they achieve quadratic convergence without the 

need to implement the second derivatives. Using the Taylor expansion in equation 28, the 

gradient and the second derivative could be calculated as shown in equations 29 to 31. 

   (     )     ( )   ( )     ‖   
 ‖ (28) 

 J is the Jacobian given by equation 29. 
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( ( ))  =
     

   
( ) (29) 

It follows from the first formulation in (27) 

    

   

( )  ∑    

 

   

( )
     

   
( ) 

(30) 

Thus, the gradient can be given by equation 31. 

   
 ( )   ( )    ( ) (31) 

The Hessian can be calculated from (30)  

     

     

( )  ∑(
     

   

( )
     

   

( )    ( )
      

     
( )

 

   

 
(32) 

Showing that 

   
  ( )   ( )  ( )  ∑     

 

     

( )    
  ( ) 

(33) 

Having covered the basic principles for nonlinear least square problems, the next section will 

cover the following method, Newton Raphson, and Levenberg-Marquardt techniques. 

5.5.1 Newton Raphson  

 

From an initial guess x0 we compute x1, x2 by the following algorithm, which is based on finding 

the solution of nonlinear systems of equations. 

   ( 
 )    (34) 

This algorithm is based on ensuring that  

   (   )    (35) 

Ignoring the term  ‖   
 ‖ in equation 28, gives equation 36. 

 ( )          ( )  (36) 

The new x is updated according to equation 37. 

             (37) 

It can be noticed that the Newton-Raphson converges in few steps than descent methods. This 

method is the basis of a very efficient method we will describe in the next sections. It is based on 

implemented first derivatives of the components of the vector function.  



CHAPTER 5. OPTIMISATION AND PARAMETER ESTIMATION 

5-15 
 

 

5.5.2 The Levenberg–Marquardt Method 

 

The Levenberg–Marquardt method is based on a linear approximation to the components 

of F. For small ‖     ‖we see from the Taylor expansion (28) that 

 (       )   (     )    ( )   ( )      

 

(38) 

And inserting in equation 27 
 

 

 (       )   (     )  
 

 
 (     

 
) (     ) 

(39) 

 

 
 (     

 
) (     )  

 

 
   

          
 
    

 

 
     

 
          

(40) 

  (     )               (41) 

Where L’(0)=F(x) 

 

(42) 

In Levenberg -Marquardt, step hlm is defined by the following equation: 

(    )           (43) 

          (44) 

 

It could be proven that, for or all  lm>0, where  lm is the damping parameter, hlm is a descent 

direction. For large values of  lm we get 

    
  

   
    

 

   
  

  ( ) 
(45) 

ie a short step in the steepest descent direction. This is good if the current iterate is far from the 

solution. It could be seen that Levenberg-Marquardt damping parameter influences both the 

direction and the size of the step. This is te reason this particular method is used without a search 

line method for the steepest direction. 

It is worth noting that during iteration, the size of  lm can be updated as shown before in the trust 

region method. The updating is controlled by the gain ratio ρlm. 

ρ   
   ( )     (       )

 ( )   (     )
 

(46) 

The denominator is given by the following equation 
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 ( )   (     )=
 

 
     

 (          ) (47) 

For example, a large value of ρlm indicates that L(hlm) is a good approximation to F(x+hlmop). On the 

other hand ,If  ρlm  is small then L(hlmop) is a poor approximation [2].  In that case an increase  lm is 

required to get closer to the steepest descent direction and to reduce the step length.  

The stopping criteria for the algorithm should reflect that at a global minimiser we have  

Fop’ (x*)=g(x*)=0 

‖ ‖     

where ε1 is a small, positive number, chosen by the user. Another relevant criterion is to stop if 

the change in x is small. 

In the last section, non linear least square problems were covered. Newton Raphson and 

Levenberg-Marquardt method were discussed. In the next section, the concept of sensitivity 

analysis will be covered. Different methods that measure, rank or produce intervals of parameters 

will also be discussed. 

5.6 Sensitivity analysis 

Any model has a set of variables called state variables. And if this particular model is deterministic 

then, these variable states could be determined by model parameters and previous states of 

these state variables 

In that case a set of input parameters are applied in a certain number of equations to give outputs 

(or response variables)[3].  This also means that on each time of applying the input parameters, 

the results will be the same. However, in other cases, the problem would not be as simple as 

there might be some parameters values that could not be told with high accuracy, thus no unique 

values, as in the case of having complex, nonlinear equations. There is a highly developing 

mathematical branch which is concerned with finding this kind of techniques that ensure having a 

satisfying solution. These techniques will be addressed in the next section. 

Sensitivity analysis is a broad concept that has been used across various disciplines. It can be used 

to identify a risk assessment of a certain procedure (model). Here risk assessment is defined in a 

general sense to mean the probability of a certain output of an equation. From a broad point of 

view, risk assessment can be used to determine which parameters are essential to control, to 

reduce, or to eliminate from the original model. Therefore, risk assessment can help in developing 

more effective control plans [3]. 

The objective of the sensitivity analysis is to answer the following question [3]: 
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 What happened? 

 How did it happen? 

Risk assessment of a certain process or a model based could be briefed in the following four steps: 

Firstly, Parameter Identification: if we apply that to the proposed model, then this will mean 

identifying the parameters that control the stress strain relationship for the whole wall and as 

well as the layers relationship. Secondly; Parameter Characterization and this could be defined as 

the evaluation of the nature of the effects caused by changing these identified parameters. 

Thirdly; Exposure Assessment and It is the evaluation of the likely existence of such biological 

parameter and lastly, Risk Characterization and this involves estimation, of the probability of 

occurrence and severity of a certain output.  

Sensitivity analysis methods can be classified as: 

(1) mathematical  sensitivity analysis methods 

They assess sensitivity of a model output to the range of variation of an input. These methods 

typically involve calculating the output for a few values of an input that represent the possible 

range of the input. These methods also can be used for verification and validation.  

(2) statistical methods 

They are done through running simulations in which inputs are assigned probability distributions 

and assessing the effect of variance in inputs on the output distribution where one or more inputs 

are varied at a time. Statistical methods identify the effect of interactions among multiple inputs. 

The range and relative likelihood of inputs can be propagated using a number of methods such as 

Monte Carlo simulation, Latin hypercube sampling, variance, response surface methods, Fourier 

amplitude sensitivity test, and mutual information index. 

(3) Graphical methods 

It is concerned with representation of sensitivity in the form of graphs, charts, or surfaces. 

Generally, graphical methods are used to give visual indication of how an output is affected by 

variation in inputs. Graphical methods can be used as a screening method before further analysis 

of a model or to represent complex. 

In the following section different mathematical and statistical methods will be discussed. 

 

5.6.1 Nominal Range Sensitivity 

 

This method is applicable to deterministic models. One use of nominal sensitivity analysis is as a 

screening analysis to identify the most important inputs to propagate through a model in a 
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probabilistic framework. It is carried out through evaluating the effect on model outputs by 

varying only one of the model inputs across its entire range of plausible values, while holding all 

other inputs at their nominal or base-case values [4]. 

The difference in the model output due to the change in the input variable is referred to as the 

sensitivity or swing weight of the model to that particular input variable. 

In such cases, it would be possible to rank order the relative importance of each input based upon 

the magnitude of the calculated sensitivity measure as long as the ranges assigned to each 

sensitive input are accurate.  However Nominal sensitivity analysis addresses only a potentially 

small portion of the possible space of input values, because interactions among inputs are difficult 

to capture. Conditional sensitivity analysis may be used to account for correlation between inputs 

or nonlinear interactions in model response, but it has limitations because of the combinational 

explosion of possible cases. Potentially important combined effects on the output due to small 

changes in a few or all inputs together are not shown by nominal sensitivity analysis. 

5.6.2 Difference in Log-Odds Ratio (DLOR) 

 

This is a specific application of nominal range sensitivity methodology. The DLOR is used when the 

output is a probability[5]. It is used to examine the change in the output as: 

 

 

 

If DLOR is positive, changes in one or more inputs enhance the probability of the specified event. 

If DLOR is negative, then the changes in the inputs cause a reduction in the probability of the 

event occurring or increase the probability of the event not occurring. The greater the magnitude 

of DLOR, the greater is the influence of the input. However it has the drawbacks of the nominal 

range sensitivity. 

5.6.3 Break-Even Analysis 

 

Its purpose of break-even analysis is to evaluate the robustness of a decision to changes in inputs. 

It involves finding values of inputs that provide a model output for which a decision maker would 

be indifferent among the two or more risk management options. The combinations of values of 

inputs for which a decision maker is indifferent to the decision options are known as switchover 

or break-even values[6]. Then, in order to assess the robustness of a choice between the options, 

one can evaluate whether the possible range of values of the model inputs corresponds with only 
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one of the two choices.  Indifference of a decision maker to the two choices is often represented 

by a break-even line or indifference curve such as an iso-risk curve. Ambiguity regarding selecting 

a particular choice exists if the uncertainty range associated with an output may correspond to 

either of the two or more possible choices. Different options that result in equivalent levels of risk 

reduction also can be identified so that a decision maker can evaluate these options. If there are 

more than two decision options, the analysis can get complex. (Edwards 1986). This method could 

be used to guide further modelling and elicitation. If the range of uncertainty regarding an input 

encloses the break-even point, then that input will be important in making a decision; that is, 

there will be uncertainty regarding which decision to take. In such a situation, further research 

can be directed so as to help the decision maker to narrow the range of uncertainty and make a 

decision with more confidence. On the other hand, if the uncertainty regarding an input does not 

enclose the break-even point then there will be high confidence regarding the decision. However 

one of the drawback of this method, that There also is not a clear ranking method to distinguish 

the relative importance of the sensitive inputs. 

 

5.6.4 Automatic Differentiation Technique 

 

This is an automated procedure for calculating local sensitivities for large models. In AD, a 

computer code automatically evaluates first-order partial derivatives of outputs with respect to 

small changes in the input[7]. The values of partial derivatives are a measure of local sensitivity. In 

AD the local sensitivity is calculated at one or more points in the parameter space of the model. 

At each point, the partial derivatives of the model output with respect to a selected number of 

inputs are evaluated. However, for nonlinear models, the significance of differences in sensitivity 

between inputs is difficult to determine, making the rank ordering of key inputs potentially 

difficult. This method cannot be used if partial derivatives cannot be evaluated locally. 

5.6.5 Monte Carlo simulation 

 

Monte Carlo simulation is categorised as a sampling method because the inputs are randomly 

generated from probability distributions to simulate the process of sampling from an actual 

population[8]. So, we try to choose a distribution for the inputs that most closely matches data 

we already have, or best represents our current state of knowledge. The data generated from the 

simulation can be represented as probability distributions (or histograms) or converted to error 

bars, reliability predictions, tolerance zones, and confidence intervals. 
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5.6.6 Latin hypercube sampling 

 

This is a development of Monte Carlo method.  The reasoning behind it is to ensure that all 

portions of the parameter space were sampled [9]. 

This is done by dividing the range of each parameter xk into n strata of equal marginal probability 

1/n, and sample once from each stratum. let this sample be xkj where j = 1, ..., n. These form the xk 

component, k = 1,...k, in xi, i = 1,..., n. the components of the various xk  are matched at random.  

One advantage of the Latin hypercube sample appears when the output y(t) is dominated by only 

a few of the components of x. this method ensures that each of those components is represented 

in a fully stratified manner, no matter which components might turn out to be important. It is 

worth mentioning here that the n intervals on the range of each component of x combine to form 

nk cells which cover the sample space of x. these cells, which are labelled by coordinates 

corresponding to the inter values, are used when finding the properties of the sampling plan. 

5.6.7 Mutual Information Index 

 

 The objective of the Mutual Information Index (MII) sensitivity analysis method is to produce a 

measure of the information about the output that is provided by a particular input. The 

magnitude of the measure can be compared for different inputs to determine which inputs 

provide useful information about the output. MII is a computationally intensive method that takes 

into account the joint effects of variation in all inputs with respect to the output.  

The MII method typically involves three general steps: 

 generating an overall confidence measure of the output value; 

 obtaining a conditional confidence measure for a given value of an input;  

 calculating sensitivity indices  

The overall confidence in the output is estimated from the CDF of the output. Confidence is the 

probability for the outcome of interest. For example, if the dichotomous output is whether risk is 

acceptable, the confidence is the probability that the risk is less than or equal to an acceptable 

level. Conditional confidence is estimated by holding an input constant at some value and varying 

all other inputs. The resulting CDF of the output indicates the confidence in the output 

conditioned on a particular value of the input. The mutual information between two random 

variables is the amount of information about a variable that is provided by the other variable. The 

MII for each input is calculated based on the distribution of the input and on both the overall and 

conditional confidence in the output. The average mutual information index for an input is given 

by: 
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     ∑ ∑           (        ) 

 

Where 

      Conditional confidence  

    Overall confidence  

   Probability distribution for the input 

n=2, to indicate binary output 

 

The amount of information about a variable that is provided by the variable itself is measured in 

terms of the "average self information" (IYY) of that variable, also known as the entropy of that 

variable [10]. The calculation of MII may requires simplifying approximations regarding the use of 

a limited number of input values to represent the variation in an input and estimation of 

probabilities of the input values.  

No analytical statistical measure is available to determine the significance of the sensitivity 

indices. However the robustness of rank ordering of key inputs can be difficult to evaluate. MII 

includes the joint effects of all the inputs when evaluating sensitivities of an input. The mutual 

information is a more direct measure of the probabilistic relatedness of two random variables 

than other measures such as correlation coefficients. For example, the correlation coefficient of 

two random variables examines the degree of linear relatedness of the variables. Although two 

uncorrelated variables may not be independent, two variables with zero mutual information are 

statistically independent. Therefore, the MII is a more informative method. Calculation of the MII 

by Monte Carlo techniques suffers from computational complexity, making practical application 

difficult.  

5.6.8 Response Surface Method (RSM) 

 

The Response Surface Method (RSM) can be used to represent the relation between a response 

variable (output) and one or more explanatory inputs[10]. The RSM is generally complex and 

therefore, used in later stages of an investigation when a limited number of factors are under 

investigation after using model reduction techniques. 

 

The model must be exercised for various desired combinations of the selected input values in 

order to generate a data set that can be used to fit or calibrate a response surface. Monte Carlo 
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simulation methods are typically used to generate multiple values of each model input and to 

calculate corresponding values of the model output. 

To develop a response surface, the sensitivity of the model output to one or more of the selected 

inputs can be determined by:  

 inspection of the functional form of the response surface 

 statistical analysis  

 Application of other sensitivity analysis methods to the response surface. 

 The response surface can be thought of as a "model of a model" with the advantage of being 

simpler and faster to execute than the original model. Therefore computationally intensive 

sensitivity analysis methods, such as Mutual Information Index or others may be more readily 

applicable to the response surface than to the original model. 

5.6.9 Fourier Amplitude Sensitivity Test 

 

The FAST method is used to estimate the expected value and variance of the output, and the 

contribution of individual inputs to the variance of the output. The FAST method is independent 

of any assumptions about the model structure. It allows the study of the impact of more than one 

parameter [11]. 

The main feature of the FAST method is a pattern search method that selects points in the input 

parameter space.  A transformation function is used to convert values of each model input to 

values along a search curve. As part of the transformation, a frequency must be specified for each 

input. By using Fourier coefficients, the variance of the output is evaluated. The contribution of 

parameter to the total variance is calculated based on the Fourier coefficients, fundamental 

frequency and higher harmonics of the frequency. The ratio of the contribution of each input to 

the output variance and the total variance of the output is referred to as the first order sensitivity 

index and can be used to rank the inputs. The first order indices correspond to the contribution of 

individual inputs.  

The model needs to be evaluated at sufficient number of points in the input parameter space 

such that numerical integration can be used to determine the Fourier coefficients. The minimum 

sample size required to implement FAST is approximately eight to ten times the maximum 

frequency used. In the case of discrete inputs, if a sufficiently large sample size is not available, 

then the output can have frequent discontinuities. In such a case, the Fourier coefficients may not 

be estimated properly and hence, the reliability of the results can be adversely affected. Sobol's 

method is capable of handling discrete inputs. The FAST method suffers from computational 

complexity for a large number of inputs. In past section the concept of parameter sensitivity was 



CHAPTER 5. OPTIMISATION AND PARAMETER ESTIMATION 

5-23 
 

introduced, its main steps, were discussed. After that, 3 main types of sensitivity analysis were 

shown and finally, different relevant methods were summarised. The next section will cover the 

application of two of the above methods through the model parameter sensitivity process. 

5.6.10 Application to the model  

 

As discussed in the previous section, the solution here would be to use probability distribution to 

try and define such parameters. Thus the need for a certain scientific branch emerges. It is called 

sensitivity analysis and it has the following functions[12]. First to determine the importance of 

each parameter, so which parameter is more effective than the others? Also if one parameter 

value is changed how would it affect the result? 

The process of sensitivity analysis for the proposed model  in chapter 4 ,  was  done in the 

following manner[12]: 

(a) The models, its variables (dependent, independent) are defined. 

(b) Each input parameter is assigned a probability density function. 

(c) process called propagation of error :An input matrix is generated through a random 

sampling  method 

(d) The output is calculated  

(e) The influence of each parameter is investigated  

Using the process known as Propagation of error (uncertainty) is helpful in studying the effect of 

uncertainty on variables. In this research a well known sampling method is used. This sampling 

method is called the Monte Carlo. Through this iterative method a deterministic model can be 

evaluated using sets of random numbers as inputs. A simulation can typically involve over 10,000 

evaluations of the model. In this way by using random inputs, the deterministic model is 

converted to a stochastic one.  

 The data generated from the simulation can be represented as probability distributions (or 

histograms) or converted to error bars, reliability predictions, tolerance zones, and confidence 

intervals as shown in figure 5.6. 
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Uncertainty Propagation  

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Schematic showing the principle of stochastic uncertainty propagation [3]. 

The steps in Monte Carlo simulation corresponding to the uncertainty propagation are listed 

below: 

Step 1: Create a parametric model, ymodel = f(x1model, x2model, ..., xnmodel), in our case  

Step 2: Generate a set of random inputs parameters, xi1model, xi2model, ..., ximodelq. 

Step 3: Evaluate the model and store the results as yimodel 

Step 4: Repeat steps 2 and 3 for i = 1 to n. 

Step 5: Analyse the results using histograms, summary statistics, confidence intervals, etc. 

Step 6: Use single sided sensitivity analysis to tell which parameter is more important than the 

other by changing one parameter at a time. 

After getting the mean and the stranded deviation for each parameter of the proposed model, 

using Monte Carlo Simulation, Nominal range sensitivity method was used to assess the 

Result 1 
Result 2 Result n 

Optimisation using trust region 

Parameter 1 Parameter 2 
Parameter n 
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importance of each of these parameters. The significance of each parameter was scaled by the 

margin of error it would result in if the average values for other parameters were used. Each time 

one parameter was used. The most important parameter resulted in the biggest error and vice 

versa.  

 

5.7 Conclusion  

This section has given the background theory to optimisation techniques from linear to non-linear 

problems. Finding a decreasing direction was covered. This included discussing steepest descent 

method and Newton method. After that trust region and damped method were also investigated.  

The second section of the chapter covered nonlinear square problems. Two methods were 

introduced, namely Newton-Raphson and Levenberg-Marquardt. In our model analysis we used 

trust region method, the next section covered different methods of parameter sensitivity analysis, 

Mont Carlo was used for propagation of uncertainty and parameter estimation while nominal 

range sensitivity method was used for parameter ranking.   
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CHAPTER 6 

MODEL ANALYSIS  

 

_____________________________________________________________________________ 

6 Overview  

 In chapter 4 the model used in this thesis to relate material parameters in arterial walls using both 

layer and whole wall data was presented. In chapter 5 methods to optimise the parameters and 

assess their sensitivity were discussed. This chapter presents the results from implementing these 

techniques. The model assumptions are then revisited with particular emphasis on the roles played 

by the elastin and collagen. 

6.1 How the model was built up 

The system was built in the following manner: step (1), the experimental data for the whole wall 

(pressure versus diameter and pressure versus axial force) was converted into stress using thin wall 

theory as shown in figure 6.1.  

 

 

 

Figure 6.1: The experimental model was generated using thin wall theory. 

 

Pressure 

Pressure-axial force 

Circumferential Stress 

Axial stress 

Thin wall theory 
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The equations for step (1) are given by: 

Assuming a deformed thickness, h, deformed radius, r, a luminal pressure, p, and an axial force, fa, we 

have  

     (
 

 
 

 

 
) 

 

 

(1) 

    
  

 
 

  
     

 

 

(2) 

 t  is the circumferential stress ,  t  is the axial stress. 

Step (2):  stretch was calculated using the formula 

  
 

 
 (3) 

 

r is the deformed radius to half the arterial segment , R is the original the radius of the arterial 

segment to half its thickness . λ is the ratio of the new radius to the old radius. This is shown in figure 

6.2 and figure 6.3. 

 

 

 

Figure 6.2: Stretch is calculated from radius ratio. 

 

 

 

Figure 6.3: Stretch is the ratio of change in radius after and before deformation. 

 Original radius to half the arterial wall =R 

 Stretch = λ 

Deformed radius to half the arterial wall =r 

R 

r 
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An important model assumption was made, regarding layer thickness, in the work by Hozapfel et al 

[1]. The thicknesses  for the three layers were given by: 27±0.02, 0.36±0.03 and 0.40±0.03, but it 

could be noticed that these values when added exceeds unity as each thickness was measured 

separately after separating the three layers. It is also worth noting that the thickness of the artery 

increases after being taken out of the body. Thus the value of unity was assumed and the values of 

the intact thickness were calculated according to the above ratio to be for nominal layer thicknesses 

of 26.2%, 34.9% and 38.8% for the intima, media and adventitia respectively. Another important 

assumption, is that all layers will be compressed by the same ratio as no data is available on layer 

thickness after deformation 

Step (3): The actual model was calculated in the following manner. Stretch calculated from step (2), 

was applied into different layer equations to get circumferential stress, axial stress for each layer, as 

shown in figure 6.4. 

 

 

 

 

 

 

 

 

 

Figure 6.4: Layers circumferential and axial stresses are calculated. 

Layers equations are represented by equation 4 and equation 5, to describe each of the three arterial 

layers, l to calculate the Cauchy stress components,  θl and  zl, in the circumferential and axial 

directions respectively. Thus for the intima ( l = n) 
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Similar expressions can be obtained the media layer ( l=m) and the adventitia ( l=a). Equations are 

explained in detail in chapter 4, sections 4.6.4 and 4.6.5. 

Step (4): The layers were combined using the thin wall theory, such that the total circumferential 

stress was calculated from circumferential stress of the intima, media and adventitia. This was 

repeated with the axial direction as shown in figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Total circumferential and axial stresses were calculated from layer stresses. 

This was done through the use of stress equilibrium as described by equations 6 and 7. 
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Step (5): Error equation defined in chapter 4, was used. 

The error range was calculated according to the following equation 

  
√

  

   

    
 

(8) 

where n is the number of data points and q is the number of parameters of the strain-energy 

function, which in our case is five; The value  ref is the sum of all Cauchy stresses for each data point 

divided by the number of all data points. The value of x2 is given by the following equation: 

   ∑            )
 

 

   

             )  
(9) 

Where,       and       are Cauchy stresses in the circumferential and axial directions respectively 

of the model and       and       are those of the experimental technique. 

 And then the optimisation function was called using Matlab optimisation tool box. If the error value 

was less than 0.005 the values of the optimised parameters were accepted. The optimisation 

technique used is called trust region and it is shown in chapter 5.  This operation was repeated 50,000 

times. Mean and standard deviation were calculated. This is called Monte Carlo simulation process 

and it is explained in details in chapter 5. 

Step (6) step 5 was repeated 10 using different starting points. Mean and standard deviation were 

calculated.  In the last section different segments of the system of the models was presented. In the 

next section whole wall estimation will be discussed then layer stresses will be investigated, 

parameters estimation and sensitivity will also be presented. To summarise the previous section a 

flow chart of the process is presented in figure 6.6. 
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Figure 6.6: Flow chart of the modelling process, see text for description, where m is the number of 

new trials with new starting points and n is the number of trials within each run.  
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It is worth noting that to validate the code; it was divided into smaller units which were then tested 

for repeatability, accuracy and reliability. The whole code is presented in the appendix.  

6.2 Whole wall estimations 

Experimental data was imported from[2] as shown in section 5.1. Static pressure versus extension of 

diameter and axial force were used as a source to calculate stress–strain relationship for the whole 

wall (circumferential and axial). In that case, the whole wall was considered to be of one layer nature 

of single strain energy function.  

Figure 6.7 shows a graph of the estimated axial and circumferential Cauchy stresses versus luminal 

pressure for the coronary artery data extracted from [2] as discussed in the previous section.  The 

root mean square error (rms) values were found to be 0.060 and 0.096 respectively indicating a good 

fit in both cases. This results in a total rms error of 0.050, which compares favourably to the averaged 

layer rms error of 0.080 in [1]. 

It is also worth noting that the model results are consistent with the experimental data in that it 

estimates that the static axial stress response is higher than the circumferential static stress response. 

However, a possible method to decrease the error at low pressure is to take into consideration the 

assumption that at lower pressures only the elastin is under tension and stretches, whilst at higher 

pressures both the elastin and collagen are under tension and thus both fibre types stretch. Based on 

this it is suggested that improving the form of the elastin strain-energy function could increase the 

quality of the overall fit [3] . Further work would be needed to investigate this assumption. 
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It could be seen from the figure that the arterial wall is stiffer in the axial direction as for example if, 

we take the pressure value of 100 mmHg, it could be found that the axial stress is about 40 KPa, 

where the circumferential stress is about 20 KPa. This can suggest that baroreceptors may be more 

subjected to axial stress. The relation between the directions of stimulation of the baroreceptors has 

not been fully investigated, and this is a possible future development as will be discussed more in 

chapter 10. The role of collagen and elastin in forming both curves is evident, as at lower pressure 

values, elastin is the controlling element, so the relation is almost linear. At higher values of pressure 

however, collagen starts to be stiffer so the shape of the curves tends to be more exponential.  

 

Figure 6.7: Estimated axial (square) and circumferential stresses (circle) using the 

hyperelastic layer model proposed in this paper for the coronary artery data extracted 

from [1] and the corresponding experimental axial (dashed line) and circumferential 

(continuous line) stresses. 
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6.3 Wall layer estimations 

Forces equilibrium principles, together with optimisation using trust region and Levenberg Marquardt 

algorithm, along with Monte Carlo simulation were used to calculate stress and strain for each layer 

as was shown in section 6.1. Each layer was assumed to have a different strain energy function. 

Figure 6.8 shows estimated stress-strain data for the three layers, (intima, media and adventitia) in 

the same coronary artery. For comparison a shaded region, showing the range of the experimental 

data from [1], has been added. A set of experimental curves with similar material constants for a 

single coronary artery from [1] is also shown for comparison purposes. Figure 6.9 shows the effect of 

increasing axial pre-stretch on the maximum strain achieved by the artery. Figure 6.10 discusses the 

observed results that of interrelation between layers. 

Figure 6.11 shows the whole-wall experimental, estimated results and the estimated layer stress- 

strain profiles for the same artery. The inferred layer stress-strain profiles produced in the process of 

estimating the whole-wall stress-strain profile, as shown in figure 6.8 and figure 6.11, are consistent 

with the experimental layer data in [1] and [4-7], as will be shown later in details. 

Figure 6.8 is a very interesting graph as every plot holds three different curves. The shaded area is the 

area found to be physiologically correct by Holzapfel et al[1]. This was based on experimental uniaxial 

physiological tests, with biaxial measurement were performed. This shaded area consists of different 

lines; the nearest line (of them) to our produced results is shown in each plot, adjacent to our 

obtained curve which is plot in squares. The aim of these graphs is to show that our produced curves 

belong to the physiological area indicated by these experimental results. 

The layer material parameters optimised to produce the stress-strain profiles have also been 

compared to those estimated by Holzapfel et al using layer experimental data [1] (Tables 6.1 and 6.2). 

It can be seen that the values estimated by the layer model in this research for the single coronary 

artery in [1] are within the range of values for the range of coronary arteries studied by Holzapfel et al 

[1].  
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Table 6.1 

Optimised material parameters for the combined layer model and Holzapfel et al’s individual layer 

experiments [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Estimated  
parameter 

Model  
parameter 
Mean±std  
(to 2 d.p.) 

Holzapfel’s  
parameters 
Mean±std  

(to 2 d.p) [1] 

k2n 45.41 ± 0.00 170.88 ± 125.4  
 

k2m 9.14 ± 0.08 8.21 ± 3.27 

k2a 35.95 ± 0.09 85.03 ±58.94 

c1n , [kPa] 8.96 ± 0.47   13.95 ± 5.30 

c1m  [kPa] 0.33 ± 0.04     0.63 ± 0.36 

c1a  [kPa] 1.58 ± 0.27     3.78 ± 2.33 

k1n  [kPa] 7.03 ± 0.52  65.91 ± 122.73 

k1m  [kPa] 6.28  ± 0.24    5.40 ± 1.78 

k1a  [kPa] 5.68 ± 0.36    9.64 ± 8.13 

 n 0.64 ± 0.00 0.51 ± 0.14 

 m 0.14 ± 0.01 0.25 ± 0.09 

 a 0.72 ± 0.00 0.55 ± 0.18 
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Table 6.2 

Estimated collagen fibre angles (from the circumferential direction) for each layer for two vessels 

Layer Model angle  
Mean ± std  
(to 2 d.p.) 

Holzapfel Model [1] 
Mean ± std  
(to 2 d.p.) 

Intima 72.49±0.41 60.30 ± 18.20  
 

Media 16.37±1.15 20.61 ± 5.50 

Adventitia 62.87±0.42 67.00 ±8.50 

 

From these it was estimated that the stress-strain profiles are similar to those in [1] for all layers and 

the adventitia and media in the axial direction. However it is important to note that there is a 

difference in the experimental techniques in producing the experimental data set for our results 

(biaxial test, with biaxial measurement) and the technique used to produce the shaded physiological 

area.  

A possible explanation for this is due to the differences in applying the stresses. In the whole wall 

artery experiments, biaxial stresses were applied using an axial pre-stretch, whereas in the layered 

wall experiments, uniaxial stresses were applied. The effect of axial pre-stretch on maximum 

circumferential stress of a whole arterial wall was further investigated using the three layer model. 

The results are presented in Figure 6.9. It can be seen that increasing the axial pre-stretch increases 

the range of the circumferential strain. This could possibly explain why the intimal response falls 

outside the experimental range in [1]. 
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Figure 6.8: Layer stress (continuous line) for circumferential direction for a) adventitia, b) intima 

and c) media then in axial direction in d) adventitia e) intima f) media, compared with the 

experimental range (shaded area) presented in [1] with one data set  (square) from the same 

reference. 
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It is worth noting that relationship between stiffness of the layers is in line with the constraint 

proposed in chapter 2.  So for example adventitia stiffness given by figure 6.8a and 6.8d shows that 

adventitia is stiffer axially more than circumferentially. The same applies to the intima; shown in 

figure 6.8b and 6.8e. However the contrary is true for the media, which is stiffer circumferentially 

than axially as shown in figure 6.8c and 6.8f. On comparison between layers stiffness, it could be seen 

that the intima in general is stiffer than the adventitia which in turn is stiffer than the media. The role 

of the intima in older subjects is still under investigation as the reason behind the increasing of 

thickness of the intima is not yet known. Studying the increase in the intimal thickness in healthy 

older subjects would be of huge importance, especially to link it with pathological conditions like 

atherosclerosis. On another note, the significance of such structure of the arterial wall is still an open 

Figure 6.9: Axial pre-stretch ratio versus maximum stretch. 
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question. It seems that the arterial wall is composed of three layers with different stiffness in 

different directions as shown in figure 6.10. 

 

 

 

 

 

 

 

Figure 6.10: The internal structure of the whole arterial wall resists axially stress more than 

circumferential stress. The intima and the adventitia agree with this assumption in contrast to the 

media. 

The reason for such structure might be as follows: Adventitia and intima in healthy older patients 

protect the media from excessive stress, and hence control the medial baroreceptors response. This 

might also have other implications in lowering the risk of damage to the arterial wall in general and 

the media in particular through preventing extensive stretching in the axial direction. In the same 

time the media is circumferentially stiffer than its axial direction and this might protect the media 

from over extension in that direction. In addition the media is stiffer in the circumferential direction; 

this might control the probability of medial baroreceptors being stimulated by any increase in blood 

pressure. This is further emphasised in figure 6.11, where the whole wall is nearer to the adventitial 

response in both direction. Thus it could be assumed that the whole wall as well as the intima and 

adventitia main role would be to protect the media from excessive extension or possible rupture. The 

role of the media on the other side would be to control extensive circumferential stimulation of 

medial baroreceptors, in the same time read any very high axial stimulation. This also suggests that 

baroreceptors might be more stimulated axially than circumferentially. Interestingly enough, the 

intima does not seem to play a crucial role in stimulating the baroreceptors, as most of the 

baroreceptors nerve ending either exist in the media and the adventitia[8]. Thus the role of the 

Axial direction 

Circumferential direction  
Intima Media  

Adventitia  
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intima is sharing to equilibrate the applied stress. Hence acting as a sort of stress constrain for medial 

and adventitia baroreceptors 
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Figure 6.11: The layer response is compared with the total response in two directions. a) 

Circumferential b) axial, triangle is used for intima, circle for adventitia. The model results are 

shown in a dashed line and the experimental results are shown in continuous line. 
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Figure 6.11 shows that the arterial wall as a whole is nearest to the adventitia in its behaviour. Thus it 

is stiffer axially than circumferentially. This might be explained by the fact  that the arterial wall axial 

extension should be as lower as possible. In the same time, it allows a bigger range of extension in the 

circumferential direction, which is the normal extension direction because of blood flow.  

 

6.4 Uniqueness of solution 

The optimisation procedure was repeated ten times from random starting points [9] within the 

physiological range defined by experimental data in [1]. For each optimisation run, 500 solutions with 

a mean square error less than 0.050 were accepted from 50000 simulations. From the total data set 

the probability density functions of all parameter were examined. They were all found to be 

unimodal, implying a unique set of parameters. Thus, the mean and standard deviation of each 

parameter were calculated according to the standard Monte Carlo procedure, results are shown in 

table 6.1. It is worth mentioning that, there was an agreement between the model results and that of 

Holzapfel. However it is important to note that at a certain values of Holzapfel model, the range with 

big for example k1n.  The collagen fibre angles from the circumferential direction are assumed to be 

different for each of the three layers in the hyperelastic model  [1] as shown in table 6.2..  

Parameter sensitivity analysis was used to assess whether variations of the parameter values have a 

noticeable impact on the quality of simulation. Parameter sensitivity was carried out according to the 

following procedure [10-12] . Each parameter was varied ± 50 % across its mean, while the other 

parameters were kept constant at their optimised values. The error was plotted across the range of 

normalised parameter values. The parameters intersected at their lowest error point. This procedure 

is known as one way parameter sensitivity analysis[12] , it is also known as nominal range sensitivity 

analysis. To ensure the validity of the results a Kolmogorov–Smirnov test was used to compare the 

statistical distribution of the accepted and the unaccepted ranges. If the statistical distributions were 

identical, the parameter was deemed to be insensitive. 

 

6.5 Parameter sensitivity estimation 
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Figure 6.12 shows graphs of the parameter sensitivity for the coronary artery data. Figure 6.13 

concentrates on comparing the effect of the collagen fibre angle for each layer.  To investigate the 

validity of the layer model parameters further, a sensitivity analysis was carried out. The Kolmogorov–

Smirnov test indicated that the model was sensitive to all the material parameters within the 

physiological range.  

Figure 6.12 shows that the minimum error occurs when all the parameters are at the optimised 

values and there are no other error minima observed within the physiological range. It also suggests 

that the solution is most sensitive to the predominant angle   of the dispersed collagen fibres. It is 

also worth noting that the error range was included for 50% above and below the optimised value. 

This can be seen in more detail in Figure 6.13 which shows that the solution is most sensitive to   in 

the layers with the highest collagen content and hence the greatest stiffness. This suggests that 

collagen fibre direction is a major factor in determining the arterial wall stiffness and thus dominates 

the response in the intima and adventitia, and a less significant effect in the media. 
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Figure 6.12: Parameter sensitivity for the fifteen parameters in the model of the coronary 

artery. A small full symbol is used for φ, k2 is represented by a small empty symbol, k1 is 

represented by a large closed symbol and finally the dispersion is represented by large empty 

symbol. The intimal layer is represented by a triangle, the adventitial layer by a circle and 

medial layer by a square. Elastin constants, c1 are the least significant and are not shown. 
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Figure 6.13: Parameter sensitivity for collagen fibre angles of the coronary artery. The intimal 

layer is represented by a triangle, the adventitial layer by a circle and medial layer by a square. 

Each respective physiological range is marked with its symbol and the common physiological 

range is shaded. The shading part is the intersection of the three physiological ranges presented 

by Holzapfel in [1]. 

6.6 Effects of assumptions 

In this section the major assumptions used in producing the model are discussed. Factors 

considered include a thin wall cylinder approximation, abrupt junctions between the layers, a 

constant strain profile, and a constant ratio of layer thicknesses. 

The aim of this study is to produce an analytically derived model such that the effect of material 

parameters can be studied. In chapter 3 a review of studies using cylindrical thin wall models 
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suggested that analytical solutions for thick wall vessels is far from a trivial task and finite element 

analysis is a more suitable method [13]. However, the results in this  research based on [14]  (as 

covered in chapters 3 and 4 ) suggest that a thin wall model does produce results that are 

consistent with experimental findings. The model is also based on assuming the layers have 

abrupt junctions. The results of the histological study show that the thickness of the junction 

regions is relatively small compared with the layer thicknesses and hence this is a reasonable 

assumption. However, this ignores any effects of the internal elastic lamina and external elastic 

lamina that separate the media from the intima and adventitia respectively [15] [16].  A model 

that takes into account inter layer lamina effects may act to improve the goodness of fit of the 

whole model [17]. The assumption of a constant strain across the three layers is used as this is 

one of the constraints required for the application of thin wall theory. Finally, the assumption of 

using fixed layer ratios is addressed [1], initially the separate thickness are given by [1]as follows: 

27±0.02, 0.36±0.03 and 0.40±0.03, but it could be noticed that these values when added exceeds 

unity as each thickness was measured separately after separating the three layers. It is also worth 

noting that the thickness of the artery increases after being taken out of the body. Thus the value 

of unity was assumed and the values of the intact thickness were calculated according to the 

above ratio to be for nominal layer thicknesses of 26.2%, 34.9% and 38.8% for the intima, media 

and adventitia respectively [1].  

6.7 Conclusions 

This research has presented a mathematical model based on a hyperelastic formulation using the 

condition of stress equilibrium to estimate the stress-strain profiles in both whole and layered 

arterial walls. The material parameters in the model have been optimised using whole-wall 

experimental data from studies carried by Holzapfel [1] and van Andel [2]. For the whole-wall 

estimations of a single coronary artery, the total root mean square error was found to be 0.050 

which compares well with previous studies. This suggests the proposed method provides a simple 

approach to estimating the layer material parameters. A comparison with experimental data from 

a study on layered data [1] suggested the solutions to the model were physiologically feasible; 

however, differences in experimental setup prevent this judgement from being completely 

conclusive. 

In optimising the material parameters, it was revealing to find that the errors in the estimated 

stresses were particularly sensitive to the dominant collagen angle in the stiffest layer, the intima. 

This suggests the role of collagen content and possibly fibre orientation should be investigated 

further for conditions such as arteriosclerosis.  
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CHAPTER 7 

OTHER VASCULAR VESSELS  

__________________________________________________________________________ 

7 Overview 

This chapter describes investigations on different vessels using the techniques used for coronary 

arteries. The experimental data used is shown in figure 7.1 and is taken from [1] [2]. It is used to 

produce a model of the whole wall and wall layer responses for a mammary artery and a vena 

cava. Briefly, the method comprises (i) digitising the experimental data using Matlab® (ii) 

optimising the parameters in the strain energy functions using the methods described in chapters 

4 and 5 and (iii) analysing and comparing the results for the mammary artery and vena cava. This 

will be shown in more details in the next section and then a comparison of different vascular 

vessels responses will be shown. 

7.1 Mammary artery 

Parameters for whole wall and layer wall models were optimized using the mammary artery data 

in figure 7.1 and table 7.1 (using the same principles discussed in chapters 4 and 5 and as shown 

in details in chapter 6). The steps of generating these relationships are as follows: 

Step 1: transfer pressure to circumferential stress 

Step 2: transfer pressure and axial force into axial stress 

Step 3: calculate stretch as the ratio of the radius of the mammary artery after and before 

deformation 

Step 4: apply stretch in the layers stress equations 4-5 equations in chapter 6 

Step 5: apply thin wall theory to calculate total stress circumferentially and axially 

Step 6: use the error equation given by equation 8 in chapter 6 to accept or reject solutions 
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Step 7: use Matlab generated code to generate the previous steps 3-6, 50000 times (presented in 

the appendix) to evaluate generate other set of accepted values 

Step 8: calculate the mean for step 7 

Step 9: choose another starting point and repeat step 8 

Step 10:  repeat step 9, 10 times and calculate the mean and plot curves 

The layers response is shown in figure 7.2. The results show  a response similar to that predicted 

by Holzapfel et al [2]. For example on comparison of curves in figure 7.2a, it could be clear that 

intima is constrained to be stiffer than adventitia which is constrained to be stiffer than the media 

in the circumferential direction. This is also true for the axial direction in figure 7.2b. Constraints 

for each layer could also be seen, for instance, the axial direction of the intima is constrained to 

be stiffer than the circumferential direction, for example at 1.25 stretch ratio, the axial intimal 

response is 150 KPa, where the circumferential stress for the intima is only 80 KPA. This is also 

true for the adventitia. On the contrary the media is constrained to stiffer axially than 

circumferentially than axially. This agrees with what has been discussed in chapter 2 and is in line 

with histological data presented in [2]. 

The two stress profiles shown in figure 7.3 demonstrate that collagen is the main load bearing 

component for the complete pressure range. As already mentioned in chapter 2 and shown in 

figure 2.6. Elastin is a highly elastic protein with a linear stress strain relationship. On the other 

hand Collagen is stiffer showing an exponential increase of stiffness at higher pressure[3-4]. Thus 

it could be evident that collagen controls the curve at higher pressure, while elastin only controls 

lower pressure regions as shown in figure 7.3. The whole wall results shown in figure 7.3 indicate 

a higher stress response and stiffness axially than circumferentially at this particular axial stretch, 

which is equal to 1.12, as indicated in the experimental technique for this artery [1].  
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Figure 7.1: Pressure relationship with external diameter and axial force for coronary artery 

(blue), mammary artery (red) and vena cava (green) [1] [2]. 
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Table 7.1 

Experimental data for the mammary artery and vena cava  

 

 

 

 

 

 

Characteristic Mammary artery  [1] Vena cava [5] 

External diameter 3.32 mm 2.28 mm 

Thickness 0.69 mm 0.20 mm 

Axial pre-stretch 20 % 91% 
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Figure 7.2: Hyperelastic model estimations of a) circumferential stress-stretch b) axial stress-

circumferential stretch for a mammary artery for the intima (green), adventitia (red) and media (blue).  

a) 

b) 
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Figure 7.3: Comparison of the mean stress strain relationships of the mammary for the axial (blue) 

experimental model [1] (dotted) and hyperelastic model (blue squares), the circumferential (red) 

experimental model [1], (dotted) and circumferential hyperelastic model (red squares). 
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7.2 Vena Cava 

The venous wall is also believed to be composed of three different layers, as the arterial wall, 

although vein walls are thinner and more distensible[6]. Vein experimental data was digitised and 

optimised to calculate layer (figure 7.4a & 7.4b) and whole wall response (figure 7.5). Our 

presented vena cava hyperelastic model has a good fit with the experimental model, at higher 

pressures, but at lower pressure there could be difference between the calculated and the 

experimental models. The reason behind that might returns to the elastin equation that controls 

the curve at lower pressure, future work may include enhancing the fit at lower ranges by 

modifying the elastin part in the strain energy function.  Also it could be observed that the vena 

cava is stiffer axially (figure 7.5) as discussed in details in chapter 6.The main histological reason 

for that would be the same as the arterial wall, as the vein also consists of an inner intima which is 

the stiffest layer in both directions, followed by the adventitia and then the media,. Intima and 

adventitia are stiffer axially while the media is stiffer circumferentially. Thus it seems that the 

intima and the adventitia play a more protective role, where the media main role would be 

extending circumferentially to compensate for increase of blood pressure in this direction, in the 

same time t is able to simulate low threshold baroreceptors. Interestingly the adventitia would 

stimulate higher threshold baroreceptors as will be shown in detail in chapter 8.Also , the 

observation that the adventitia is axially stiffer, indicates that the baroreceptors that exist in this 

layer may be axially stimulated.  
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 Figure 7.4: Hyperelastic model estimations of a) circumferential stress-stretch b) axial stress-

circumferential stretch for vena cava for the intima (green), adventitia (red) and media (blue).  

a) 

b) 
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In the last two sections results for both the mammary artery and the vena cava were shown for 

both the layer response and the whole wall response. In the following section a comparison of the 

responses of the three vessels represented in this research will be discussed here. 

Figure 7.5: Comparison of the mean stress strain relationships of the vena cava for the axial 

experimental model (red) and hyperelastic model (blue), the circumferential (big sized symbol black) 

experimental model and circumferential hyperelastic model (line) for the vena cava (small sized 

symbol black). 
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7.3 Comparison of vessels 

Although the vein plays an important role in the cardiovascular system, there have not been many 

studies that have estimated the stresses within the vein [6]. Both the experimental and 

hyperelastic models indicate that the maximum extension ratio for the vena cava is much bigger 

than that of the arteries as shown in figure 7.6. 

 

 

 

 

 

 

 

 

 

 

 

 

The venous parameters are lower than the arterial ones table 7.2 and table 7.3, this could be 

expected as the pressure range for the vein is about one quarter of the artery and the axial force 

is about one tenth (figure 7.1). It is worth noting that the arterial and the venous values were 

generated through the standard biaxial test, hence our ability to compare results. 

Figure 7.6: Comparison of mean stresses for the mammary (red), coronary (blue) vena cava 

(green), in both axial (continuous line) and circumferential (dashed line) directions. 
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Table 7.2 

Parameters of mammary artery and vena cava 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.3 

Collagen fibre angles (from the circumferential direction) for each layer for two vessels 

Layer Mammary artery Vena cava 

Intima 57.2◦ 44.1◦ 

Media 19.4◦ 20.1◦ 

Adventitia 57.2.◦ 47.8 ◦ 

 

 
Parameter Mammary 

artery 

Vena Cava 
El

as
ti

n
 

c1n , [kPa] 7.07 1.6 

c1m  [kPa] 1 0.4 

c1a  [kPa] 3 0.48 

C
o

lla
ge

n
 

k1n  [kPa] 10 0.124 

k1m  [kPa] 1 0.03 

k1a  [kPa] 8 0.07 

k2n 15.1 1.16 

k2m 9.7 1.7 

k2a 14.8 1.12 
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7.4 Elastin and collagen contribution in all investigated vessels  

Figure 7.7 represents a quantitative comparison of elastin and collagen contribution for the 

coronary artery. Each value was calculated through the equations presented earlier in chapter 4. 

The figure shows that the collagen contribution to the mean stress is far greater than the elastin 

for all the three layers. This indicates that in terms of load-carrying capacity, vascular vessels are 

collagen dominated. Our study supports the theory which assumes that elastin is responsible for 

the linear start of the stress-strain curve, while collagen contributes more to the load bearing 

process at higher stresses. 

 

  

Media 

Intima 

Adventitia 

Stress magnitude in the circumferential 

Direction 

Stress magnitude in the axial direction 

Elastin stress 

Collagen stress 

Figure 7. 7: Comparison of axial and circumferential stress profiles within the mammary artery at a stretch of 

1.2. The length of stress blocks indicates the stress magnitudes. Collagen and elastin stress contributions are 

shown for each layer. The optimised collagen fibres angles are also shown. This is a” to scale “representation of 

the components forming the coronary artery represented in chapter 6. 
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The contribution of elastin and collagen for the stress components is shown in table 7.4 for the 

circumferential response and table 7.5 for the axial response. 

Table 7.4 

Comparison of circumferential stress values for elastin and collagen in Pascal 

Si1e 

[103] 

Si1c 

[105] 

Sm1e 

[103] 

Sm1c 

[104] 

Sa1e 

[103] 

Sa1c 

[104] 

St1e 

[103] 

St1c 

[104] 

0.4423 
    
0.4942 
    
0.5452 
    
0.7039 
    
0.8566 
    
0.9126 
    
0.9864 
    
1.0412 
    
1.0774 
    
1.1135 
    
1.1314 
    
1.1672 
    
1.1851 
    
1.2029 
    
1.2206 
    
1.2383 
    
1.2560 

0.0385 
    
0.0457 
    
0.0543 
    
0.0961 
    
0.1760 
    
0.2230 
    
0.3084 
    
0.3960 
    
0.4694 
    
0.5580 
    
0.6091 
    
0.7272 
    
0.7954 
    
0.8707 
    
0.9539 
    
1.0458 
    
1.1474 

0.3685 
    
0.4118 
    
0.4544 
    
0.5866 
    
0.7138 
    
0.7605 
    
0.8220 
    
0.8677 
    
0.8979 
    
0.9279 
    
0.9429 
    
0.9727 
    
0.9876 
    
1.0024 
    
1.0172 
    
1.0320 
    
1.0467 

 0.1127 
    
0.1395 
    
0.1693 
    
0.2919 
    
0.4781 
    
0.5729 
    
0.7289 
    
0.8743 
    
0.9880 
    
1.1176 
    
1.1892 
    
1.3478 
    
1.4356 
    
1.5297 
    
1.6306 
    
1.7389 
    
1.8552 

0.4054 
    
0.4530 
    
0.4998 
    
0.6452 
    
0.7852 
    
0.8366 
    
0.9042 
    
0.9544 
    
0.9876 
    
1.0207 
    
1.0372 
    
1.0700 
    
1.0863 
    
1.1026 
    
1.1189 
    
1.1351 
    
1.1514 

0.2785 
    
0.3144 
    
0.3552 
    
0.5285 
    
0.7967 
    
0.9328 
    
1.1554 
    
1.3604 
    
1.5190 
    
1.6981 
    
1.7963 
    
2.0117 
    
2.1299 
    
2.2558 
    
2.3899 
    
2.5327 
    
2.6850 

0.3995 
    
0.4464 
    
0.4925 
    
0.6359 
    
0.7738 
    
0.8244 
    
0.8911 
    
0.9405 
    
0.9733 
    
1.0058 
    
1.0221 
    
1.0544 
    
1.0705 
    
1.0866 
    
1.1026 
    
1.1186 
    
1.1346 

0.2361 
    
0.2776 
    
0.3259 
    
0.5436 
    
0.9198 
    
1.1282 
    
1.4927 
    
1.8532 
    
2.1480 
    
2.4967 
    
2.6948 
    
3.1465 
    
3.4040 
    
3.6855 
    
3.9936 
    
4.3311 
    
4.7012 
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Table 7.5 

Comparison of collagen and elastin stress contribution in the axial direction in Pascal  

  

Si2e 

 

Si2c 

[105] 

Sm2e 

[103] 

Sm2c 

[103] 

Sa2e 

 

Sa2c 

[104] 

St2e 

 

St2c 

[104] 

560.0333 
  
580.5420 
  
600.1643 
  
657.6730 
  
708.3264 
  
725.8134 
  
747.9917 
  
763.8331 
  
774.0407 
  
783.9791 
  
788.8508 
  
798.4059 
  
803.0917 
  
807.7180 
  
812.2859 
  
816.7965 
  
821.2511 

0.1017 
    
0.1178 
    
0.1368 
    
0.2259 
    
0.3874 
    
0.4792 
    
0.6425 
    
0.8064 
    
0.9418 
    
1.1032 
    
1.1953 
    
1.4065 
    
1.5275 
    
1.6602 
    
1.8058 
    
1.9658 
    
2.1417 

0.3685 
    
0.4118 
    
0.4544 
    
0.5866 
    
0.7138 
    
0.7605 
    
0.8220 
    
0.8677 
    
0.8979 
    
0.9279 
    
0.9429 
    
0.9727 
    
0.9876 
    
1.0024 
    
1.0172 
    
1.0320 
    
1.0467 

0.1965 
    
0.2376 
    
0.2819 
    
0.4533 
    
0.6952 
    
0.8133 
    
1.0033 
    
1.1763 
    
1.3095 
    
1.4596 
    
1.5418 
    
1.7221 
    
1.8212 
    
1.9267 
    
2.0393 
    
2.1594 
    
2.2877 

424.2676 
  
439.8045 
  
454.6699 
  
498.2371 
  
536.6109 
  
549.8587 
  
566.6604 
  
578.6615 
  
586.3945 
  
593.9236 
  
597.6143 
  
604.8529 
  
608.4028 
  
611.9075 
  
615.3681 
  
618.7852 
  
622.1599 

1.1701 
    
1.2903 
    
1.4249 
    
1.9771 
    
2.7903 
    
3.1904 
    
3.8310 
    
4.4092 
    
4.8503 
    
5.3428 
    
5.6103 
    
6.1927 
    
6.5096 
    
6.8451 
    
7.2005 
    
7.5771 
    
7.9763 

479.1679 
  
496.7152 
  
513.5042 
  
562.7090 
  
606.0484 
  
621.0104 
  
639.9862 
  
653.5403 
  
662.2739 
  
670.7773 
  
674.9456 
  
683.1209 
  
687.1301 
  
691.0884 
  
694.9967 
  
698.8561 
  
702.6674 

 0.6341 
    
0.7154 
    
0.8091 
    
1.2226 
    
1.9128 
    
2.2859 
    
2.9271 
    
3.5507 
    
4.0543 
    
4.6442 
    
4.9768 
    
5.7295 
    
6.1555 
    
6.6189 
    
7.1236 
    
7.6737 
    
8.2738 
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7.5 Validation of the optimisation Matlab code 

 

This was done by repeating other published data. This was done in the following manner: First 

data  [7] was chosen to agree with experiential technique used in the previous chapter, in 

particular in the form of biaxial testing of human coronary artery. This resulted in circumferential 

Cauchy stress relation with circumferential strain as well as axial Cauchy stress versus 

circumferential strain [7]. After that using a digitizing code by Matlab, the graphs with axial 

extension of 1.1 were imported into Matlab this was named the experimental data. Then the 

same code was applied to the experiential technique resulting in total error range of 0.08. This 

will be discuss in detail in the next section 

7.5.1 Experimental technique 

Human arteries were harvested from cadavers [7].  Segments of 2 cm length were harvested from 

the left anterior descending and circumflex coronary arteries. Arteries were tested in a medium 

containing Hank buffered saline. Then biaxial testing was applied by applying axial extension 

increments, then rapid inflation followed by preconditioning and then this was repeated for 

different extension ratios. Pressure versus diameter and pressure versus axial force were 

transferred to circumferential stress relationship with circumferential strain as well as axial stress 

versus circumferential strain using thin wall theory as presented earlier in chapter 5 and in[2, 8-

11]]. The resulting curves are shown in figure 7.8. 
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Figure 7.8: Experimental relationship for human coronary artery.  

7.5.2 Optimisation  

After that, optimisation was done in the same manner as presented in the previous chapter. The 

results are presented in figure 7.9. Error ranges were computed according to equations 6-8 and 6-

9. This resulted in a total error range of 0.07 and the computed parameters are shown in table 7.6 

and 7.7. The optimisation code is presented at the appendix. 
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Figure 7.9 a) Circumferential stress is drawn versus circumferential strain b) Axial stress is shown. 

In both figures blue is used to represent the experimental technique while red id the model 

results 
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Table 7.6 

                                      Parameters of the coronary artery 

Parameter  value 

K2i 55.22 

K2m 11.08 

K2a 30.01 

C1i [KPa] 4000 

C1m [KPa] 400 

C1a [KPa] 5500 

K1i [KPa] 11817 

K1m [KPa] 3700 

K1a [KPa] 4305 

rowi 0.58 

rowm 0.15 

rowa 0.55 

 

Table 7.7 

Collagen fibre angles (from the circumferential direction) for each layer for two vessels 

Layer           coronary artery  

Intima   52.62° 

Media 16.81° 

Adventitia                        62.87° 

 

 

 

 

7.6 Conclusions 

In this chapter, models estimating the mammary artery and the vena cava responses were 

produced. It can be concluded that the model estimations of the whole wall and layer responses 

were consistent with both experimental data and current theories based on coronary artery 
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studies. Thus this provides some evidence that the model framework can be extended to estimate 

the layer response of vascular tissues with the similar material component responses i.e. elastin 

and collagen. Also, it could be applied to other organs such as the ventricle, but in that case 

different strain energy equations could be produced for each layer. It was also found that veins as 

arteries are stiffer axially than circumferentially. This might have an impact on the baroreceptors 

embedded in the walls of these vessels, as they could be more stimulated axially themselves. 
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CHAPTER 8 

A AND C TYPE RECEPTORS 

_____________________________________________________________________________ 

8 Overview 

The aim of this chapter is to investigate the relationship between the position of each nerve 

receptor and its stress response based on the baroreceptor type.  

8.1 Stretch receptors 

Research shows that there are two types of arterial baroreceptors, namely type A and type C. It 

was found that these two types have the same anatomical structure. These two types of 

baroreceptors fibres can be classified according to their threshold range ( the lowest pressure that 

triggers an action potential ) [1], a comparison between them is shown in table 8.1. 



CHAPTER8.INVESTIGATION INTO TYPE A AND C 

8-2 
 

 

Table 8.1 

A comparison between A-fibre and C –fibre [1] 

Description A-fibre  C- fibre 

Diameter Large Narrow 

Myelination Myelinated  Non- myelinated  

Threshold Low 30 mmHg High 70 mmHg  

Number Low High 

Conduction Fast Low 

Activity at normal 

blood pressure 

All fibres are active 1/4 of the fibres are active 

Sensitivity * High Low 

Saturation** Low  High 

Sensitivity*: the mean discharge frequency of a baroreceptors increase with the mean blood 

pressure.  Steepness ( biggest slope of this response is called Sensitivity) 

Saturation ** : response to pressure  

Importance High at low pressure High at high pressure  
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A comparison between the curves of two fibres is shown in figure 8.1. 

 

 

 

 

 

  

 

 

  

The question addressed in this chapter is: how can two fibres with the same anatomical structure 

have different firing pressure thresholds and thus operate in different pressure ranges? 

The answer was hypothesised to be based on the location. The hypothesis was that there is a link 

between the position of the nerve receptor and its firing threshold and pressure range. This 

hypothesis was based on observations that baroreceptors location was layer specific, as this is 

stated in experimental observation shown in [2] [3]. 

To investigate this assumption, the strain-energy was calculated according to the following set of 

equations.  

For each layer, the strain-energy, Wic, is considered to be the linear combination of elastin and 

collagen contributions. 

                                 (     )        (    )           (      )                                   

 

(1) 

The form of the elastin strain-energy component Wiciso(   ), is approximated to be  

 

      (   )   
  
 
 (    ) 

 

(2) 

The first invariant of stretch , I1, is defined as 

Mean arterial pressure   

Firing rate   
Saturation  

A - Fibre 
C- Fibre  

Figure 8.1: Response of single A- fibre and C-fibre to increasing pressure [1]. 
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(3) 

and c1, is a material constant related to the elastin stress response. 

The form of the collagen contribution can be described by 

 

        (       )   
  
  
(    ) 

 

                                        

 

 

(4) 

where k1, and k2 are material constants related to the collagen stress response and q is calculated 

to be 

         (    )
  (       )(    )

  (5) 

 

where       is the dispersion factor. I4 is the fourth stretch invariant given by  

     
     ( )    

     ( )  

 

(6) 

The dispersion factor value represents the amount of dispersion from the ideal alignment of the 

fibres 

Thus using, the above equations, the strain energy relation to circumferential stretch was 

calculated for each layer and compared with the energy needed for each type to operate. The 

result is shown in figure 8.2. 
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Figure 8.2 suggests that at a given blood pressure, for example 100 mmHg, the strain-energy in 

the intima is highest (not shown) followed by adventitia and media [4-5] .To investigate the effect 

of firing rate from mechanoreceptors in each layer, all the receptors were considered to have the 

same arbitrary threshold strain-energy of around 1 kJ, with saturation occurring around 4.5 kJ. 

With these limits, the data suggests that mechanoreceptors in the adventitia would have a 

threshold blood pressure of around 30 mmHg and would saturate at around 140 mmHg. For the 

media, this scenario suggests receptors here would start firing at around 70 mmHg and do not 

saturate. Only the media and the adventitia are considered because histological studies  [6] [7] 

suggest that mechanoreceptors do not exist in the intima. This data is an estimate with root mean 

square error for the three layers being shown to be as great as 0.05 for the media and the 

adventitia. However, this study does present some evidence that suggests C-fibres could be 

predominantly located in the more elastic regions such as the media with A-fibres predominantly 

in the stiffer regions such as the adventitia [4]. Further experimental studies would be needed to 

investigate this further. 

Figure 8.2: Estimated strain-energy for the adventitia (squares) and media (triangle) as a 

function of luminal blood pressure for the coronary artery. 
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8.2 Conclusions 

A relationship between the location of each nerve receptor fibre and its nerve ending was 

suggested , such that, type A fibres were suggested to be located in the stiffer layer the 

adventitia, also type C fibres were suggested to operate  in the medial layer. Further histological 

investigations are required. However this is a significant finding, as it solves the dilemma, of 

having two types of basically identically fibres but with different thresholds. The finding here 

suggest that the threshold is location controlled.  
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9 Overview  

This chapter will focus on the conclusions of the research presented in the thesis. The main aims 

of this research were to understand various types of experimental data applied to the arterial 

wall, also to calculate the whole wall stress response using nonlinear solid mechanics as well as 

calculating layer arterial wall stress response. This was done using a simple model that connects 

the whole wall and the layer response using thin wall theory. The knowledge that has been gained 

through the previous process was used to differentiate various baroreceptors types based on 

their location. The finding of this research will be presented in the following section. 

9.1 Main conclusions 

Through this research it became clear that the structure, where the baroreceptors are embedded 

in have a high degree of effectiveness on its function. Thus, the role of elastin and collagen was 

investigated and it became evident that collagen dominates the stress response especially at high 

pressures. This was true for both the layers (intima, media and adventitia) as well as the whole 

wall response. In order to mathematically evaluate the role played by each constituent of the wall 

a hyperplastic exponential model was chosen. This model was in particular chosen because of the 

low error range it provides, in addition to the intrinsic relationship between the model 

components  strain energy and the model parameters. The model was built up of layers equations 

this enabled taking into consideration the different mechanical properties forming the wall in 

order to get the best results. These layers equations were connected together using thin wall 
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theory that was proven to be sufficiently accurate to represent the stress strain relationship. The 

model was also shown to be valid based on mechanical concepts as conservation of mass, balance 

of linear momentum, the assumption of incompressibility of hyperelastic materials. To solve the 

problem of uncertainty of parameters Levenberg-Marquardt method was used in conjunction 

with Mont Carlo method. A one way sensitivity analysis (nominal range sensitivity method) was 

also performed.  Analysis of the model results estimations were made, an error of 0.05 was 

achieved between the calculated analytical model using the constitutive equation and the 

experimental results. The sensitivity analysis confirmed that the highest effecting parameter is the 

collagen fibre angle and the least effecting parameter is the elastin. It was evident that collagen 

controls stresses at higher pressure and is the material responsible for the exponential shape of 

the stress strain relationship both for the layer and the whole wall curves. The same concept was 

applied with the mammary artery and the vena cava. It can be concluded that the model 

estimations of the whole wall and layer responses were consistent with both experimental data 

and current theories based on coronary artery studies. Thus this provides some evidence that the 

model framework can be extended to estimate the layer response of vascular tissues with the 

similar material component responses i.e. elastin and collagen. Also, it could be applied to other 

organs such as the ventricle, but in that case different strain energy equations could be produced 

for each layer. It was also evident that the structure of the blood vessel wall has an important 

functional role, as the intima is the stiffest layer axially and circumferentially, followed by the 

adventitia then the media. Both the intima and adventitia are stiffer axially than circumferentially, 

this protects the elastic media from rupture. Based on these findings a relationship between the 

location of each nerve receptor fibre and its nerve ending was suggested. Type A fibres were 

suggested to be located in the stiffer layer the adventitia, also type C fibres were suggested to 

operate in the medial layer. Further histological investigations are required. However the finding 

here is rather significant, as it solves an old research question about the reason the threshold and 

the saturation ranges of the A and C fibres differ although they are identical from a histological 

point of view. It was also found that the adventitial baroreceptors may be more axially stimulated 

than circumferentially as this is the direction of maximum stress. 
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10 Overview 

This section will focus on future work that could be done to extend the work done presented by 

this research, through using other modelling techniques as well as on finding experimental links 

between the location of the baroreceptors, its strain energy and the rate of fibre firing.  

10.1 Improvements in the modelling techniques 

Levenberg Marquardt, optimisation was used in this research in conjunction with Monte Carlo 

technique. However, in order to account for uncertainty that exists in the model structure. Other 

techniques could be used such as Latin hypercube method. This will be discussed in the following 

section.  

10.2 Latin hypercube sampling (LHS) 

 

Latin hypercube sampling (LHS) is a form of stratified sampling that can be applied to multiple 

variables. Stratified sampling is a method of sampling from a population[1]. The idea 

behind stratified sampling is dividing a population into subgroups and then samples them 

independently. It is done in a way that every element is assigned to only one stratum. A 

stratum is a homogenous group. The advantage of using such a method is reducing 

sampling error and increasing representativeness. This happens in a way such that 

weighted mean has less variability than the arithmetic mean of a simple random sample. 

The concept behind Latin hypercube is that variables are sampled using an even sampling method 

and the random set of variables are combined then they are used in one calculation for the target 

function. The sampling algorithm ensures that the distribution function is sampled evenly, but still 
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with the same probability trend. Figure 10 shows the difference between a pure random sampling 

method ( Monte Carlo ) and a stratified sampling of a log-normal distribution.  

  

 

 

 

 

 

 

 

Figure 10.1: Mont Carlo method compared with the Latin hypercube method 

It could be observed that When Monte Carlo method suffers from missing outliers which exist on 

the tails of the distribution; the Latin hypercube covers this range. The process of performing 

Latin hyper cube is involves 2 stages, sampling and then grouping. The next section will cover 

these two steps in detail. 

10.2.1 Sampling 

For each iteration, the cumulative probability is divided into segments, and then a 

probability is randomly chosen within each segment using a uniform distribution[2]. Thus 

for example, a simulation with 500 iterations will be divided to 500 segments each 

representing 0.2% of the total distribution. Then for the first segment a number would be 

chosen between 0 % and 0.2% and the second segment will be between 0.2 and 0.4%. 

This number will be used to calculate the parameter. 

10.2.2 Grouping 

Once each variable has been sampled using this method, a random grouping of variables is selected for 

each iteration [3]. Independent uniform selection is done on each of the variable’s generated values. Each 

value must only be used once. 
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Figure 10.2: Grouping when n =5 , it could be noted that one element is chosen from each segment and 

from each iteration ( column and row respectively) 

10.2.3 Syntax 

Latin hypercube could be generated in Matlab using: 

lhsdesign - Latin hypercube sample 

X = lhsdesign(n,p) 

X = lhsdesign(n,p) generates a latin hypercube sample X containing n values on each of p 

variables. For each column, the n values are randomly distributed with one from each interval 

(0,1/n), (1/n,2/n), ..., (1-1/n,1), and they are randomly permuted. 

 

10.3 Link between firing rate and location in the arterial wall 

It was suggested in chapter 8, that there is a link between the position of the baroreceptors and 

its strain energy. However it is not yet clear, if there is a relation between the location of the 

baroreceptors and its firing rate. Thus a need for an experimental protocol to determine the 

degree of confidence in this hypothesis is needed.  This experimental protocol could be as follows: 

10.4 Components of the Experimental Protocol 

In the following section the main constituents of the experimental protocol will be shown, 

namely; the purpose, the materials used the methods and the data interpretation methods. 
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10.4.1 Purpose 

The purpose of this experimental protocol is to determine if the hypothesis that there is a link 

between strain energy and firing rate in different arterial walls layers is true or false. 

10.4.2 Materials 

 Sections of carotid arteries, stress applying apparatus, nerve signal measuring apparatus are to 

be used as shown in figure 10.1 and figure 10.2.  

10.4.3 Methods 

In vitro stress-strain relationship will be generated.  Sections of carotid arteries containing 

baroreceptors could be dissected from swine. After removing connective tissue; intima, media 

and adventitia should be separated. Then these separate segments could be mounted in the 

biaxial apparatus shown in figure 10.1. This apparatus is a biaxial loading (radial pressure and axial 

force), biaxial measuring (diameter, axial extension) device [4]. It is also connected to means of 

measuring and recording the nerve signal. This could be another apparatus that has on chip 

electrodes as shown in the schematic figure 10.2 [5]. The experiment is set in the following way: 

pressure and axial force will be applied to the arterial segment in a manner that enables 

controlling the strain energy gradient. Nerve signal generated from these separate arterial wall 

segments wall would be recorded through the electrode on chip apparatus. 

10.4.4  Data Interpretation 

 After that data will be plotted, fitted and related to the strain energy. In this way, the hypothesis 

that there is a relation between location and firing rate could be proven. Statistic analyses could 

also be made to compare experimental results. In this  way complete assessment of the two 

phases of the baroreceptors function could be made [6].  

 

In the last section an experimental protocol for linking strain energy and action potential was 

presented. In the following section, the functions of the two main devices will be summarised.  
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Figure 10.1: Biaxial loading, biaxial measuring apparatus[4]. 

 

 

 

 

 

 

 

 

Figure 10.2: Microprobe array based neural interface device[5, 7].
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10.5 Devices used 

The device shown in figure 10.1 was used by Weizasacker and colleagues [4]. As could be seen 

from the figure, the artery is mounted in a tank full of saline. After that, it is closed from one end 

and then stretched to its in vivo length. Pressure is then applied radially and pressure, radius and 

axial force are recorded in a steady state manner.  

The device shown in figure 10.2 could be that is used as an interface between neurons and 

microelectrodes. It consists mainly of a silicon probe arrays with diameters of 2–3.5 μm and 

lengths of 60–120 μm. These probes are manufactured by a technique called elective vapour–

liquid–solid (VLS) growth and they allow identifying the nerve signal and measure accurately its 

magnitude.  
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Abstract 

  Determining the stiffness (or compliance) of biological 
vascular vessels is of importance  when investigating 
pathological conditions, the design of stents, vascular 
grafts, distal anastomotic connectors in coronary artery 
bypass surgery, and understanding of biological pressure 
sensors. This communication is concerned with 
determining appropriate values of the material constants 
associated with a layered anisotropic hyperelastic 
constitutive model to estimate the mean stress for arterial 
and venous walls. Results show that the values of the 
material constants, determined from a constrained 
optimization approach, satisfying equilibrium, give rise 
to mean stress-strain states which are consistent with 
responses obtained from the standard averaged model. 
 
1. Introduction 

Understanding the stress-strain relationship for 
cardiovascular vessels could have a major impact on 
studying diseases such as arteriosclerosis and 
atherosclerosis. It could also help in designing vascular 
grafts. The authors are particularly interested in applying 
such information to investigate baroreceptors. These are 
pressure sensors that report blood pressure to the CNS. 
The process of their operation is divided into two main 
phases[1]. Firstly, blood pressure applied to the vascular 
wall is transferred into a strain which then controls the 
opening probability of many mechanosensitive ion 
channels. These are embedded into the vascular wall[1]. 
Their exact positions are disputed. Studying stiffness 
contributions from different layers of the arterial and 
venous walls, as well as the mean stress for the wall, 
would help in understanding the function and the process 
of operation of this type of biosensor. For the arterial 
wall, there have been various attempts to model the 
stress-strain profile using different assumptions. 

 

 

 

For example, one may use thin-walled cylinder theory to 
determine the average axial and circumferential stresses 
given the axial force and internal pressure .In this model, 
it is assumed that the strain (axial stretch and 
circumferential stretch) across the wall is constant. Using 
this simplified approach, the average stress-strain 
behaviour can be determined. We refer to this approach 
as the standard averaged model. Alternatively, one could 
begin with the assumption of a uniform strain field across 
the wall of the vessel, but now employ a constitutive 
model (appropriate for the wall material) to determine the 
stresses. The material constants satisfy structural 
equilibrium (that is, the sum of the stress-area products 
equals the applied forces). This is the approach presented 
here. 

2. Modelling Approaches 
 

The arterial and venous wall consists of three concentric 
cylindrical layers; innermost layer; intima, middle layer; 
media and outermost layer; adventitia.  The layers behave 
as transversely isotropic homogeneous nearly 
incompressible hyperelastic materials in which a strain-
energy function, W, is assumed to exist [2]. The arterial 
wall extends passively, but the smooth muscle controls 
the active tension of the vessel. Forming a model for thin 
wall arterial response, Holzapfel et al [3] presented a two 
term strain-energy function that used experimentally 
obtained elastin and collagen responses to model passive 
extension. The effect of smooth muscle cells was 
neglected as it was thought that these do not contribute to 
the passive stiffness. Only elastin and collagen were 
considered as the constituents which act during the 
extension of the arterial wall. However, that model did 
not consider the specific responses for the individual 
layers constituting the arterial wall. Von Maltzahn et al 
[4] measured experimentally the elastic properties of the 
media and adventitia.  
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it did not include the role of the intima, which  has been 
proven to be of significant importance [2]. In [5] Demiray 
and Vito used a two layer model, neglecting the role of 
the intima. The media was considered orthotropic, while 
the adventitia was considered isotropic. The relationship 
between the two layers and the whole structural stress 
was not presented.  In [2] Holzapfel et al presented layer 
specific strain-energy equations assuming arterial layers. 
No mean relationship for the stress-strain response of the 
whole wall was given. The question addressed in this 
paper is, ‘given the axial and circumferential stretches in 
arteries and veins, how can we develop a model to predict 
the overall stiffness?’ To answer this, a layered approach 
in conjunction with a hyperelastic anisotropic material 
model and thin wall theory were used here. This model 
gives a basis for comparison between different arteries of 
different species and of different materials. It is assumed 
that the strain-energy function of the venous wall is of a 
similar form to that of the arterial wall [6]. The 
percentage thickness of each layer with respect to the 
total wall thickness is assumed to be the same for each 
vessel. Experimental findings by others have revealed the 
percentage thicknesses to be approximately 27%, 40 % 
and 33 % for the intima, media and adventitia 
respectively [2]. 

3. Experimental Data 

There are few papers reporting on the deformation of the 
arterial wall [2]. Literature containing experiments which 
compare the response of the whole wall and the single 
layer response are not available. Some of the data which 
exists is not in a form useful for the stress–strain analysis. 
For example, [7] investigates the static pressure-diameter 
relationship but does not show the axial force relationship 
with pressure. The arterial experimental data used here 
were extracted from an investigation carried out by Van 
Andel et al [8]. That work presented graphs representing 
the external diameter relationship versus luminal pressure 
together with the axial force relationship versus the 
luminal pressure for different arteries. Data for a coronary 
artery and a mammary artery have been chosen here. A 
summary of their experimental setup is given. Different 
arteries were dissected from arteriosclerotic cadavers. 
Static pressure tests were then carried out after the 
application of an axial pre-stretch to pre-conditioned 
arteries. The external diameter and corresponding axial 
force were then measured. 

 

 

 

 Experimental data for the vena cava was sourced from 
Desch et al [6]. We digitised the data sets from those 
papers using 17 points across the pressure range and 
imported them into the models for this investigation.  

4. Thin Wall Theory  

Thin wall theory can be applied when the thickness/ 
radius ratio is less than a tenth. However, Holzapfel et al 
in [3] used thin wall theory to represent the 
circumferential and axial responses. The rationale for this 
was that as all collagen fibres are embedded in the 
tangential surface of the tissue, it can be assumed that 
there are no components in the radial direction [2]. In this 
case only circumferential and axial stresses become 
relevant.  Thin wall theory offers a simple approximation 
for the relationship between mean circumferential and 
axial Cauchy stresses. Its named here the standard model. 

5. Hyperelastic Model 

Here we describe the form of the hyperelastic constitutive 
equations. These are based on the theory presented by 
Holzapfel et al [2]. The equations are used to calculate 
the specific stress responses for each layer as functions of 
circumferential and axial stretch. Thin wall theory was 
applied to calculate the mean wall stress both 
circumferentially and axially. To find the relationship 
between the second Piola-Kirchhoff stress tensor, S, and 
Green-Lagrange strain tensor, E the concept of a strain-
energy function, W is used 

� � ����  
 
(1)                                                

The Cauchy stress tensor, σ, can be calculated from the 
second Piola-Kirchhoff stress tensor, S, using the inverse 
Piola transformation. Using the Lagrangian multiplier, a 
relationship is derived between the total strain-energy and 
the volumetric, U(J) and isochoric components, Wic (E, 
A1). Assuming the vascular walls to be incompressible, 
and that the total strain-energy is a function of the Green-
Lagrange strain tensor representing one family of 
collagen fibres, thus: 
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φ is the angle between collagen fibre orientation and the 
circumferential direction. Assuming no change in 
volume,  

� � �� �  � (5) 
where P has the units of hydrostatic pressure. Thus the 
Green-Lagrange strain-stretch relationship is given by 

!� �  " �λ�# �  � (6) 

where λi is the principal stretch. For each layer, the strain-
energy, Wic, is further divided to two parts representing 
the response of elastin and collagen. The elastin strain-
energy component Wiciso(E), is approximated to be  

����$%��� � � &
" ��'
 � (� 
 

(7) 

where , I1 is the first invariant of stretch  and c1, is a 
material constant related to the elastin stress response. 
The collagen component can be described by 

)��*+�$%���� 	
� � � ,-,. �/0 �  �                     (8) 
 

where k1, and k2 are material constants related to the 
collagen stress response. q is a function of the dispersion 
factor, taken here to be equal one, and  I4 is the fourth 
stretch invariant. The dispersion factor value represents 
the amount of dispersion from the ideal alignment of the 
fibres [2]. A value of unity assumes that there are not any 
fibres oriented in the φ direction. For a value of zero the 
fibers are assumed to be isotropically oriented as 
presented by Demiray et al [5]. Thus for the intima (n)  

1+ � 2#+�'3+ �  �# 
                                                                                       

(9) 
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(10) 

Similar expressions can be obtained the media and 
adventitia. This paper proposes using stress equilibrium 
in the wall to calculate the mean wall Cauchy stress 
components, σtθ and σtz in the circumferential and axial 
directions. h is the wall thickness after deformation. 
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6. Results and Discussion 

Optimisation of the hyperelastic model data was achieved 
using the Levenberg–Marquardt method with a root mean 
square error function provided by Matlab®. Parameter 
sensitivity analysis was investigated for the material 
parameters of the coronary artery. Figure1 presents the 
inferred layer circumferential Cauchy stress-stretch 
profiles for circumferential Cauchy stresses.  

 

 

 

 

 

 

 

 

These stress-strain profiles confirm the layers have the 
same order of stiffness as Holzapfel et al [2] Von 
Maltzahn et al [4] and Demiray et al [5] .The model was 
constrained by relationships which can be explained by  
experimental evidence; these constraints are as follows: 

Circumferentially 
and Axially: 

kintima > kadventitia > kmedia 

For the intima: kaxial >  kcircumferential 

For the media: kcircumferential  >  kaxial 

For the adventitia: kaxial  > kcircumferential 

Fibre orientation: φintima > φadventitia> φmedia 

 k represents the stiffness. Material parameters presented 
by Holzapfel et al [2], were used as a guide to obtaining 
the material parameters used here (figure 2).The collagen 
material parameters are the most sensitive.  In terms of 
layer response, the media possesses the lowest parameters 
value. The intima, being the stiffest layer has the 
parameters with highest sensitivity. 
 
 
 
 
 
 

Figure 1: Hyperelastic model estimations of circumferential 
stress-stretch for coronary artery, for intima (large open 
symbol), adventitia (middle open symbol) and media (small 
symbol). An example of a Holzapfel et al coronary model 
response is indicated by the filled symbols [6]. 
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The hyperelastic model (figure 3) has been shown to 
estimate the stress-strain profiles with root mean squared 
errors of 0.05.  
 
 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

This compares well with Holzapfel et al’s [2] prediction 
of 0.07. At low pressure, the model fit was not so good. It 
is assumed that elastin is first stretched, while collagen 
attracts load at higher stretches. Improving the model of 
the elastin behaviour could increase the quality of the 
overall fit [9]. collagen contribution to the mean stress is 
far greater than the elastin for all the three layers [2].This 
indicates that, in terms of load-carrying capacity, vascular 
vessels are collagen dominated. Figure 4 shows that the 
vein is softer than the all arteries investigated both axially 
and circumferentially. Both the standard and hyperelastic 
models indicate that the maximum extension ratio for the 
vena cava is much bigger than that of the arteries (Figure 
4). Venous parameters are lower than the arterial ones. 
These models could be used to design parameters of 
synthetic stretch receptors and vascular grafts  [6] and 
studying vascular diseases.   

 

 

 

 

 

 

 

 

 

 

 

 

7. Acknowledgements 

The author would like to thank the Engineering and 
Physical Sciences Research Council (ESPRC) for funding 
this research (EP/F01189X/1) and also thank Dr Susan 
Pyner , Dr Ritu Kataky for their help and advice . 

10. References 

[1] Srinivasan R and N. HB., "Modeling the Carotid 
Sinus Baroreceptor,". Biophys J. , vol. 12, pp. 1171-
1182, Sep 1972. 

[2] Holzapfel GA, et al., " Determination of layer-
specific mechanical properties of human coronary 
arteries with nonatherosclerotic intimal thickening 
and related constitutive modelling" Am J Physiol 
Heart Circ Physiol, vol. 289, pp. H2048–H205, 2005. 

[3] Holzapfel GA , et al., " New axisymmetrical 
membrane element for Anisotropic Finite Strain.," 
Analysis of Arteries.Comm. num methods in eng. , pp. 
507-517, 1996. 

[4] Von Maltzahn WW and Besdo D. Wiemer W, 
"Elastic properties of arteries: a nonlinear two-layer 
cylindrical model," J Biomech, vol. 14, pp. 389-397, 
1981. 

[5] Demiray H and Vito RP, "A layered cylindrical shell 
model for An aorta " J Biomech, vol. 5, pp. 309–311, 
1991. 

[6] Desch GW and Weizsäcker HW, "A model for 
passive elastic properties of rat vena cava," J 
Biomech, vol. 2007, pp. 3130–3145. 

[7] Gow BS and Hadfield CD, "Changes in the elasticity 
of canine and human coronary arteries with reference 
to postmortem," Circ. Res, vol. 45, pp. 588-594, 1979. 

[8] Van Andel C, et al., "Mechanical properties of 
porcine and human arteries: Implications for coronary 
anastomotic connectors," Ann. Thoracic Surg, vol. 76, 
pp. 58-64, 2003. 

[9] Watton PN, et al., "Modelling the mechanical 
response of elastin for arterial tissue," J Biomech., 
vol. 42, pp. 1320-1325, 2009. 

Address School of Engineering , Durham Univesisty DH1 3LE  
 

Figure 2: Parameter sensitivity of the coronary artery. A 
thick continuous line is used for the angle; a thick 
dashed line for k2, a thin dashed line for k1 and c1 is 
drawn using a thin continuous line. The intimal layer is 
represented by a circle, the adventitial layer by a square 
and medial layer by a triangle. 

Figure 3: Comparison of the mean stress strain relationships 
for the axial (small symbol) standard model (dotted) and 
hyperelastic model (line). 

Figure 4: Comparison of mean stresses for abdominal aorta 
(star) [8], mammary (diamond), coronary (circle), and rat tail 
artery (triangle) [6] vena cava (square), in both axial (dashed 
line) and circumferential (continuous line) directions. Axial 
stretches are 1.66, 1.2, 1.1, 1.29, and 1.91 respectively. 
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Mechanical properties of arterial walls: Do they play a role in 

determining stretch receptor firing rates? 

 
M Mickael, A Heydari, S Pyner, R S Crouch, and S Johnstone 

 

 
Abstract-This paper presents a hyperelastic model which 

estimates the stress-strain profile in the three layers of the 

coronary artery: the intima, media and adventitia. The model, 

based on averaged experimental data confirms that the most 
elastic layer is the media followed by the adventitia and then 

the intima. This data was used to investigate the possibility 

that a contributing factor to the difference in the threshold 

blood pressures of mechanoreceptors associated with A- and 

C-fibres in arterial walls is due to their location within the 
wall. The results suggest that receptors associated with C-

fibres could be predominantly located in the more elastic tissue 

such as the media whilst those associated with A-fibres are in 

the stiffer layers such as adventitia.  

Key words 

Stress, strain, energy, arterial wall, fibres, saturation, 

sensitivity, coronary artery, baroreceptor, 

mechanoreceptors, lower threshold 

 
1 INTRODUCTION 

This paper presents a mathemat ical model to aid in the 

understanding of how blood pressure is measured in arteries 

and transferred to the central nervous system, CNS, for 

regulation of the cardiovascular system. The model is then 

used to investigate whether the location of the receptors 

which transmit signals to the CNS about blood volume and 

pressure affects their thresholds.  

It has been histologically shown [1] [2] that 

mechanoreceptors are embedded with in arterial and venous 

walls. These transmit afferent signals to the CNS about 

blood pressure and volume. Pressure receptors that exist in  

the arterial system are known as baroreceptors and have 

been classified into two types: A- and C-fibres. A-fibres are 

myelinated resulting in higher spike conduction speeds, 

whereas C-fibres are unmyelinated and slower. However, 

myelination does not explain the difference in the threshold 

value of the blood pressure required to activate the many 

receptor endings nor their sensitivities.  It has been shown 

[3] that A-fibres have a conduction range in the region of 

30-90 mmHg whilst type C have a range of 70-140 mmHg. 

This investigation explores the relationship between blood 

pressure and strain energy in each of the three layers of a 

coronary arterial wall. This is used to test the assumption 

that the threshold and sensitivity of the firing rate of 

mechanoreceptors is affected by the material p roperties of 

the tissue in which they are embedded.  

 

 

 

 
2 STRUCTURE OF ARTERIAL WALL 

 

Histological data [4] suggests the coronary arterial wall is 

composed of three layers as shown in Figure 1; the intima( 

inner layer); media ( middle layer) and  adventitia (outer  

 

layer). For the model, they are assumed to be concentric 

cylinders which are transversely isotropic, homogeneous, 

nearly incompressible, hyperelastic materials in which a 

strain-energy function, W, is assumed to exist [5-7].  

The histological evidence to support these assumptions is 

outlined in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.1  INTIMA 

The intima is composed of a layer of endothelium cells, a 

sub-endothelial layer which is formed of dispersed collagen 

fibers (Type I and III), dispersed smooth muscle cells [8] 

and elastin. Unlike collagen and smooth muscle cells, 

elastin is arranged in a three-dimensional network of elastic 

fibers. It is suggested that it is the mechanically dominant 

layer [5]. This may be due to the existence of a high content 

of collagen. It has a typical thickness of 27% with respect to 

the total wall thickness [5]. 

 
2.2  MEDIA 

The media consists of a three-dimensional network of 

bundles of collagen fibrils, elastin and smooth muscle cells 

[9].  Collagen (Type I and  III), and smooth muscle cells, 

are located in a direction perpendicular to the 

circumferential d irection. This structured arrangement gives 

the media the ability to resist high loads in the 

circumferential d irection [5]. When under stress, these 

Figure 1:  The layered structure of the coronary 

arterial wall [4] 
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fibres are reoriented to the circumferential direction. This is 

one of the reasons why the media is stiffer in the 

circumferential direction more than in the axial direct ion 

[5]. As a whole, the media is thought to be the most elastic 

layer [5]. 

 
2.3  ADVENTITIA 

The adventitia consists mainly of fibroblasts, fibrocytes, and 

collagen fibers organised in thick bundles. The collagen 

fibers (Type I)[10] , are arranged within the ground-matrix 

and form a fibrous tissue. In the adventitial layer the 

orientation of the collagen fibers is dispersed.  

 
3 EXPERIMENTAL DATA 

The arterial experimental data used to validate the model 

were extracted from an investigation carried out by Van 

Andel [11]. Graphs representing the external d iameter 

versus luminal pressure together with the axial force versus 

luminal pressure for d ifferent arteries  were presented. 

Firstly, arteries were dissected from d ifferent 

arteriosclerotic cadavers. A constant mechanical response 

was achieved by preconditioning each artery. An axial pre-

stretch was then applied, and static pressure tests performed. 

Finally, the external diameter and corresponding axial force 

were measured. A 17 points digitization of the data across 

the pressure range was carried out such that they could be 

imported into the models presented in this paper. 

 
4 MATHEMATICAL MODEL 

The coronary artery is considered for simplicity as a three 

layered cylindrical structure [5] with abrupt interfaces. It is 

assumed that the main stimulus of the mechanoreceptor is 

the strain-energy which varies through the layered structure 

in value. Thus, empirical strain-energy formulations based 

on work by Holzapfel et al [5,6] for each layer are used. 

Using the assumptions of a uniform strain field across the 

wall of the vessel, and considering each layer to be a thin 

wall, a model has been created which can be used to derive 

the parameters describing the strain-energy in each layer 

using experimental data for complete three layer arterial 

walls. Thus, the model can be used to estimate the strain-

energy in each layer for a given luminal pressure, such that 

the effect of firing rate of the stretch receptors can be 

studied. 

 
4.1 THIN WALL MODEL 

Thin wall theory[6,[12] offers a simple approximat ion for 

the relationship between mean circumferential and axial 

Cauchy stresses, σθ and σz and circumferential stretch, 

 using 
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assuming a deformed thickness, h, deformed radius, 

r, a luminal p ressure, p, and an axial force, f.  

 

 

4.2  HYPERELASTIC MODEL 

Hyperelastic constitutive equations based on the theory 

presented by Holzapfel et al [5[13] are used to calculate the 

specific stress responses for each layer as functions of 

circumferential and axial stretch. These are related via thin 

wall theory to calculate the mean wall stress both 

circumferentially and axially.  

 
4.2.1 RELATIONSHIP BETWEEN STRESS AND STRAIN ENERGY 

FUNCTION 

Equation (3) shows the second Piola-Kirchhoff stress 

tensor, S, as a function of strain-energy function, W, and 

Green-Lagrange strain tensor, E. 

 

  
  

  
 

 

 
(3)                                                 

The second Piola-Kirchhoff stress tensor, S, is related to the 

Cauchy stress tensor, σ, using the inverse Piola 

transformation. 

 
          

 

 

(4) 

where J is the Jacobian; equal to the determinant of the 

deformation gradient   . 

Using the Lagrangian multip lier, a relationship is derived 

between the total strain-energy and the volumetric, U(J) and 

isochoric components, Wic (E, A1). If the arterial wall  is 

assumed to be incompressible, and the total strain-energy is 

a function of the Green-Lagrange strain tensor representing 

a particular family of co llagen fibres, we have 
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and                                    

    
 

     
    

  

 

(7) 

φ is the angle between collagen fibre and circumferential 

directions. Assuming no change in volume,  

         (8) 

P has the units of hydrostatic pressure. The Green-Lagrange 

strain-stretch relationship is given by 

 

   
 

 
   

     
(9) 

 

where  i is the principal stretch. The circumferential and 

axial second Piola Kirchhoff stress components, s θ, and, sz , 

respectively, are given by 
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(11) 

where   θ ,  z,  r are the principal  stretches in the 

circumferential, axial and rad ial directions respectively.  

 
4.2.2 ELASTIN AND COLLAGEN STRAIN-ENERGY FUNCTIONS 

For each layer, the strain-energy, Wic, is split into an elastin, 

Wiciso(E), and collagen, Wicaniso(E, A1), response as shown in 

Equation (12). 
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where 
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with  
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(14) 

and c1, is a material constant related to the elastin stress 

response. 

 

The collagen component is assumed to be of the form 
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Where k1, and k2 are material constants related to the 

collagen stress response and  

 

                          (16) 

 

Where I4 is the fourth stretch invariant given by 

 

    θ
            

          (17) 

To estimate the parameters in (13) and (15), the stress -

stretch relationships must be derived such that they can be 

optimised using experimental data.  

The dispersion factor,  , represents the amount of dispersion 

from the ideal alignment of the fibers [22]. A value of unity 

assumes that there are not any fibers oriented in the 

isotropic direction. For a value of zero the fibers are 

assumed to be isotropically oriented as presented by 

Demiray et al [18]. In this model, it is assumed to be unity.  

 
4.2.3 CAUCHY STRESS FOR EACH ARTERIAL LAYER 

Equations (4), (10) and (11) can now be used to describe 

each of the three arterial layers, (l ) to calcu late the Cauchy 

stress components, σθl and σzl in the circumferential and 

axial d irections respectively. Thus for the intima ( l = n), 
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Similar expressions can be obtained the media layer ( l=m) 

and the adventitia ( l=a). 

                                        

Stress equilibrium in the wall is assumed such that the mean 

wall Cauchy stress components, σtθ and σtz in the 

circumferential and axial directions  can be calculated. These 

are shown in equations (22) and (23) where h is the wall 

thickness after deformat ion. 
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(23) 

It is these stresses that are compared to the complete arterial 

wall data to estimate the parameters in the elastin and 

collagen strain-energy functions [14]. 

 
4.3  OPTIMISATION 

The parameters used to calculate the stresses in equations 

(20) to (23) were optimised using the Levenberg–

Marquardt method Constraints based on the physiological 

response presented in [5] were used.The root mean square 

error was calculated according to the following equation 

  

 
  

   

σ   
 

(24) 

 

  

Where N is the number o f data points and Q is the number 

of parameters of the strain energy function, σref is the sum of 

all Cauchy stresses for each point divided by the number of 

all data points. 
2
 is the summation of the d ifference between 

the model and the thin wall estimation. 
Parameter sensitivity analysis was investigated for the 

material parameters of the coronary artery. The aim of 

parameter sensitivity is to decide if variations of the 

parameter values have a noticeable impact on the results 

and error estimation and to make sure these values represent 

the least achievable error. 
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5 RESULTS AND DISCUSSION 

The stretch in a coronary artery as a function of pressure is 

given in Figure 2. The parameter sensitivity analysis is 

shown in figure 3. This shows in general that collagen 

material parameters are significantly more effective than the 

elastin ones.The estimated circumferential Cauchy and axial 

stresses are shown in Figures 4a  and 4b respectively. 

Experimental curves obtained from [5] are shown for 

comparison. These show that the material parameters used 

in the strain-energy function give results which are in a 

similar range to experimentally obtained curves. Using 

these material parameters, the s train-energy as a function of 

luminal pressure was derived as shown in Figure 5. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Experimental relationship between 

circumferential stretch and luminal blood pressure for a 

coronary artery  

 

Figure 4. Estimated data calculated from experimental 

data in [10] and selected experimental data from [5] fo r 

coronary artery adventitia (square), media (triangle) and 

intima (circle) layers. Filled symbols are used for 

experimental data while empty ones are for model results   

for a) circumferential and b) axial direction. 
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Figure 3: Parameter sensitivity for the twelve parameters of 

the coronary artery. A thick continuous line is used for the 

angle; a thick dashed line for k2, a thin dashed line for k1 and 

c1 is drawn using a thin continuous line. The intimal layer is 

represented by a circle, the adventitial layer by a square and 

medial layer by a triangle.  
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This figure suggests that at a given blood pressure, for 

example 100 mmHg, the strain-energy in the intima is 

highest (not shown) followed by adventitia and media. To  

investigate the effect of firing rate from mechanoreceptors 

in each layer, all the receptors were considered to have the 

same arbitrary threshold strain-energy of around 1 kJ, with 

saturation occurring around 4.5 kJ. With these limits, the 

data suggests that mechanoreceptors in the adventitia would 

have a threshold blood pressure of around 30 mmHg and 

would saturate at around 140 mmHg. For the media, this 

scenario suggests receptors here would start firing at around 

70 mmHg and do not saturate. Only the media and the 

adventitia are considered because histological studies  [15] 

[16] suggest that mechanoreceptors do not exist in the 

intima. 

 

This data is an estimate with root mean square error for the 

three layers being shown to be as great as 0.05 for the media 

and the adventitia. However, this study does present some 

evidence that suggests C-fib res could be predominantly 

located in the more elastic regions such as the media with 

A-fibres predominantly in the stiffer reg ions such as the 

adventitia. Further experimental studies would be needed to 

investigate this further. 
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Figure 5: Estimated strain-energy for the adventitia 

(squares) and media (t riangle) as a function of luminal 

blood pressure for the coronary artery 
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SUMMARY 

This paper presents a method of estimating the stress-strain behaviour of the three distinct layers 
of the coronary artery, the intima, media and adventitia. The study involves assuming a constant 
strain field across three thin layers, in order to estimate the layer anisotropic hyperelastic 
material parameters using a constrained optimisation method employing whole-wall 
experimental data. Parameter sensitivity analysis and comparison with experimental data from 
individual layers suggest that the estimated stress profiles using this simple three layer 
cylindrical model are consistent with physiological findings. 

1 INTRODUCTION 1 

The study of the mechanical properties of cardiovascular blood vessels allows both engineers 2 

and clinicians to understand how changes due to disease, lifestyle and ageing can impact on 3 

cardiovascular homeostasis. However, there exist several practical barriers to obtaining good 4 

quality, detailed, experimental data to assist these investigations [1]. Thus the primary aim of this 5 

paper is to propose a simple engineering method to estimate the stress profiles in the intima, 6 

media and adventitia layers within vascular walls using experimental data collected from intact 7 

arteries. The second aim is to compare the model output against experimental data from layers of 8 

arterial tissue [1-2].  9 

All the experimental data used in this investigation were taken from surgically removed arteries 10 

and tissue. Although the experimental data were  from surgically extracted arteries, the method 11 

presented here  has the potential to estimate the properties in each layer of tissue from non-12 

surgical clinically derived experimental data, such as that obtained from ultrasonic Doppler 13 

techniques[3].  14 

The extra information obtained from the study of arterial layer data (as opposed to whole-wall 15 

data) allows the study of certain phenomena; for example , the effect of stiffening of the intima 16 

in arteriosclerosis [4] and the effect of material stiffness on mechanoreceptor signalling of 17 

changes in blood pressure and volume.  18 
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In the first application, if the change in stiffness in the intima can be estimated, then it may be 19 

possible to diagnose and hence treat this condition. For the second application, it has been well 20 

documented that at least two types of mechanoreceptors exist with different stress-strain 21 

thresholds[5]. By studying the stress-strain profile in the layer of tissue in which these receptors 22 

are embedded, a better understanding of the signalling mechanism can be obtained. This can 23 

assist in studying hypertension. 24 

The first part of this paper (i) defines the biological problem with a review of histological studies 25 

of the coronary artery and (ii) discusses the classification of the wall into three layers. Previous 26 

experimental and mathematical studies upon which this work is based are then reviewed. 27 

Following this, the specific model based on the Holzapfel et al  hyperelastic formulation is  28 

presented. The authors’ approach of assuming a constant strain field across three thin walled 29 

layers to formulate the link between the whole-wall stress-strain profile with the individual 30 

layers is then described. 31 

The second part of the paper describes the data selected from a series of experimental 32 

investigations from two independent research teams [1-2]. The whole-wall data for the coronary 33 

artery from [1] was used in the estimation of the material parameters in the proposed model, 34 

while the coronary artery layer data from [2] was used to assess the validity of the predictions.    35 

2 ARTERIAL WALLS 36 

Histological studies have shown that arterial walls can be considered as three layers as shown in 37 

figure 1 [6]. It can be seen that interface regions separate these three layers: intima, media and 38 

adventitia. This section reviews the findings of a number of histological and experimental studies 39 

to give an estimation of the physical structure and composition of these layers. Particular 40 

attention has been given to coronary arteries as these are the focus of this study. The specific 41 

findings from these studies are given in table 1.  42 

In particular, it is suggested that the intima is the mechanically dominant layer in coronary  43 

arteries with nonatherosclerotic intimal thickening [1]. This is due to the existence of a high 44 

content of collagen. It has been shown that the intima has a typical thickness of 27% with respect 45 

to the total wall thickness [1] and comprises a layer of endothelium cells coating a sub-46 

endothelial layer, composed of dispersed collagen fibres (Type I), dispersed smooth muscle cells 47 

and elastin [7]. Unlike collagen and smooth muscle cells, elastin is arranged in a three-48 

dimensional network of elastic fibres.  49 

On the basis of the experimental data the media in general  is the softest layer over the whole 50 

deformation domain  [1]. It consists of a three-dimensional network of bundles of collagen 51 

fibrils, elastin and smooth muscle cells [8] Collagen (Type III), and smooth muscle cells, are 52 

located in the circumferential direction. This structured arrangement gives the media the ability 53 

to resist high loads in the circumferential direction [1]. When under tensile stress, these fibres are 54 
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reoriented towards the circumferential direction. This is why the media has been shown to be 55 

stiffer in the circumferential direction in comparison to the longitudinal direction [9].   56 

The adventitia consists mainly of fibroblasts, fibrocytes, and collagen fibres organized in thick 57 

bundles. The collagen fibres (Type I), are arranged within the ground-matrix and form a fibrous 58 

tissue [10]. In this layer, the orientation of the collagen fibres is dispersed.  59 

 60 

It is worth noting that the intimal thickness as well the other layer thicknesses may differ 61 

significantly based on subject, age, disease and location [11]. The intimal thickness as well the 62 

other layer thicknesses presented in this study was based on this specific experimental data. 63 

3 REVIEW OF MATHEMATICAL MODELS 64 

The model presented in this paper is based on the assumptions that (i) the arterial wall tissue can 65 

be considered as a hyperelastic material, i.e. a strain-energy function exists and (ii) any artery or 66 

layer within the artery can be modelled as a thin walled cylindrical vessel. The previous work 67 

reviewed here has focussed on deriving phemonologically derived forms of the strain-energy 68 

function for thin walled arteries. 69 

Fung et al produced an exponential form of the strain-energy function for a thin-wall whole 70 

artery[12]. This model did not fit the experimental data at low pressures. Also, the material 71 

parameters in that model did not relate physically to the constituent materials in the arterial 72 

tissue. This issue was addressed by Holzapfel et al [13]. Forming a model for thin wall arterial 73 

response, Holzapfel et al presented a two term strain-energy function that used experimentally 74 

obtained elastin and collagen responses to model passive extension. The effect of smooth muscle 75 

cells was neglected , as it was assumed that these do not contribute to the passive stiffness[14-76 

15]. Thus, only elastin and collagen were considered as the constituents which act during the 77 

extension of the arterial wall, in response to luminal arterial pressure. However, that model did 78 

not consider the specific responses for the individual layers constituting the arterial wall (intima, 79 

media and adventitia). The research performed by von Maltzahn et al offers one of the most 80 

important contributions to the field [16-18]. In [16] experimental measurements of the elastic 81 

properties of media and adventitia were presented. The arterial wall was considered to be 82 

orthotropic, but it did not include the role of the intima. In older patients, the intima has been 83 

shown to be of significant importance [1]. The strain-energy presented by  von Maltzahn et al 84 

lacked a coherent relationship with the materials constituting the arterial wall (e.g: elastin and 85 

collagen) [18]. Demiray et al introduced another strain-energy function [19]. However, this 86 

model lacked any comparison with experimental data and it also assumed the vascular wall to be 87 

completely isotropic, i.e. it did not take into consideration collagen fibre anisotropy. Demiray 88 

and Vito used a two layer model, neglecting the role of the intima [20]. The media was 89 

considered orthotropic, while the adventitia was considered isotropic. No axial force–pressure 90 

relationship was presented. Similarly, the relationship between the two layers and the whole 91 

structural stress was not presented. Based on work by AJM Spencer [21], Holzapfel et al 92 
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presented layer specific strain-energy equations assuming arterial layers, but no relationship for 93 

the stress-strain response of the whole-wall was given[1]. Recently [22] Holzapfel et al  94 

discussed the role the intima plays in load bearing and the significance of its thickness for 95 

nonatherosclerotic intimal thickening cases. Holzapfel et al also covered a complete 3D analysis 96 

of residual stress including bending [15]. The study presented in this paper also concentrates on 97 

producing a model for subjects with intimal thickening for nonatherosclerotic cases and does not 98 

include bending or residual stress. 99 

4 PROPOSED MODEL 100 

The aim of the model proposed in this paper is to be able to estimate the stress-strain relationship 101 

in each of the arterial layers, using experimental data from the complete arteries. To achieve this, 102 

the arterial wall is modelled as three concentric cylindrical layers (figure 2). The layers are 103 

assumed to behave as transversely isotropic homogeneous nearly incompressible hyperelastic 104 

materials in which strain-energy functions, W, are assumed to exist. These consist of a linear 105 

combination of phenomenologically derived collagen and elastin components [1, 12-13, 15, 23-106 

26]. The average stiffness in each layer is estimated using a thin wall approximation. Finally, 107 

individual layer stresses are combined to give whole-wall stresses. This is achieved by assuming 108 

a constant strain across the entire wall and nominal layer thicknesses of 26.2%, 34.9% and 109 

38.8% for the  intima, media and adventitia respectively [1, 27].  110 

In this section we describe the form of the hyperelastic constitutive equations. These are based 111 

on the theory presented by Holzapfel et al [1].  Firstly, the strain-energy function is formulated in 112 

terms of the principal stretches and the second Piola-Kirchhoff stress tensor. These are then 113 

related to material parameters using the collagen and elastin phemonological formulations 114 

developed by  Holzapfel et al [1]. The assumption of thin wall theory is employed such that the 115 

specific stress responses for each thin layer (as functions of circumferential and axial stretch) can 116 

be derived.  Thin wall theory is finally used again to calculate the whole-wall stress, both 117 

circumferentially and axially.  118 

4.1 Formulation of strain-energy function 119 

The strain-energy function, W,defined as the strain energy per unit volume in the unloaded 120 

reference configuration can be used to find the relationship between the second Piola-Kirchhoff 121 

stress tensor, S, and Green-Lagrange strain tensor, E, as shown in equation (1). 122 

 

� = ∂�∂�  

 

 
(1)                                                

The second Piola-Kirchhoff stress tensor, S, does not offer a simple physical interpretation, but it 123 

can be used to calculate the (physically more meaningful) Cauchy stress tensor, σ, using the 124 

following inverse Piola transformation. 125 
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 � = J�	
�
� 
 

 
(2) 

where , J, is the Jacobian; equal to the determinant of the deformation gradient , 
. 126 

Using the Lagrangian multiplier, a relationship is derived between the total strain-energy and the 127 

volumetric, U(J) and isochoric components, Wic (E, A1). Assuming the arterial walls to be 128 

incompressible, and that the total strain-energy is a function of the Green-Lagrange strain tensor 129 

representing one family of collagen fibres, we have 130 

                                                  � ��, �	 � = ���  ���� , �	�         (3) 

                                   131 

where                                                                    

�	 = �	⨂�	 

 

(4) 

and                                    

�	 = � 0 cos �sin � � 

 

 

 

(5) 

given that, φ, is the angle between collagen fibre orientation and the circumferential direction, 132 

using cylindrical coordinates. 133 

Applying Lagrange multiplier 134 

 135 

� = ∂���∂� + P ∂"∂� 
(6) 

where P has the units of hydrostatic pressure. The isochoric Green-Lagrange strain-stretch 136 

relationship is given by 137 

E� = 12 �λ�& − 1� 
(7) 

where λi is the isochoric principal stretch. The circumferential and axial second Piola Kirchhoff 138 

stress components, sθ, and, sz , respectively, are given, For thin wall  cylinders, we usually 139 

assume a plane stress state with zero stresses in the thickness direction , i.e sr=0 140 

sθ = 1
λθ

∂���∂λθ − 1
λθ

(  1
λ)

∂���∂λ*  
(8) 
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 where  λθ , λz, λr are the principal  stretches in the circumferential, axial and radial directions 141 

respectively. 142 

4.2 Collagen and elastin strain-energy functions 143 

For each layer, the strain-energy, Wic, is considered to be the linear combination of elastin and 144 

collagen contributions. 145 

                              �+,�� , �	� = �+,+-.���� � + �+,/0+-. ���� , �	�                                  
 

(10) 

The form of the elastin strain-energy component Wiciso(���), is approximated to be  146 

 

�+,+-.����� =  c	2  �I	 − 3� 

 

(11) 

The first invariant of stretch , I1, is defined as 147 

 I	 = λθ
& + λ)& + λ*& 

 
(12) 

and c1, is a material constant related to the elastin stress response. 148 

The form of the collagen contribution can be described by 149 

 

W+,/0+-.���� , A	� =  k	k& �e7 − 1� 
 

                                        

 
 
(13) 

where k1, and k2 are material constants related to the collagen stress response and q is calculated 150 

to be 151 

q = ρk&�I: − 1�& + �1 − ρ��I	 − 3�& (14) 
 152 

where ρ is the dispersion factor. I4 is the fourth stretch invariant given by  153 

I: = λθ
&cos �φ�& + λ)&sin �φ�& 

 
(15) 

s) = 1λ)
∂���∂λ) − 1λ)(  1λ<

∂���∂λ*   
                                                                           

(9) 
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The dispersion factor value represents the amount of dispersion from the ideal alignment of the 154 

fibres [25]. A value of unity assumes that all the fibres are oriented in the φ direction. For a value 155 

of zero the fibres are assumed to be randomly isotropically oriented, as presented by Demiray et 156 

al [19]. 157 

4.3 Thin wall approximation 158 

To estimate the mean stress-strain relationships in each layer and the whole arterial wall, it is 159 

assumed that thin wall theory can be applied. Fung et al [12] noted that the arterial wall is not so 160 

thin, but it was considered to be thin enough to justify the use of thin wall theory. Fung et al 161 

observed that neglecting the variation of stress through the wall thickness will have an effect on 162 

the quality of a model prediction [23]. However, no quantitative error estimation was given. 163 

Holzapfel et al used thin wall theory to represent the circumferential and axial responses 164 

[13].When modelling the layer response, he discussed the usage of different strain-energy forms 165 

for each layer . In order to formulate the analytical model, Holzapfel et al made certain 166 

assumptions. As all collagen fibres are embedded in the tangential surface of the tissue, it was 167 

assumed that there are no components in the radial direction [1, 13, 26]. This supported the use 168 

of the thin wall approximation [28]. On comparing circumferential and radial stresses, 169 

circumferential stresses appear to be far bigger. Thus this justifies only considering 170 

circumferential and axial stresses  in this investigation [13]. Although bending and residual 171 

stresses  are important in some arterial regions, it is not taken into consideration in this study due 172 

to lack of experimental data that fits within the scope of this research. 173 

4.3 Layer stress response 174 

Equations (2), (8) and (9) can now be used to describe each of the three arterial layers, l to 175 

calculate the Cauchy stress components, σθl and σzl, in the circumferential and axial directions 176 

respectively. Thus for the intima ( l = n), 177 

   178 

σθ0 = [c	0 >1 − 1
λθ

:
λ)&? + k	0e70��1 − ρ0 ��I	0 − 3� >1 − 1

λθ
&? ρ0�I:0 − 1� cos@φ0A&�] λθ& 

 

(16) 

                                                             179 

             

σ)0 = [c	0 C1 − 	
λθ

D
λEFG + k	0e70��1 − ρ0 � �I	0 − 3� C1 − 	

λHDG + ρ0@I:0−1�sin  �φ0�&�Iλ)D  

 

 
(17) 

Similar expressions can be obtained the media layer ( l=m) and the adventitia ( l=a) 180 

                                        181 

4.4 Whole-wall stress response 182 

This paper proposes using stress equilibrium in the wall to calculate the mean wall Cauchy stress 183 

components, σtθ and σtz in the circumferential and axial directions as shown in equations (18) and 184 

(19) where h is the wall thickness after deformation. 185 
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σJθ = �σθ0h0 + σθLhL + σθ/h/�h  

 

 
(18)     

 

σJ) = �σ)0h0 + σ)LhL + σ)/h/�h  

 

(19) 

These Cauchy stresses can be related back to luminal blood pressure and axial stress using thin 186 

wall theory [12-13]  . Assuming a deformed thickness, h, deformed radius, r, a luminal pressure, 187 

p, and an axial force, f, we have  188 

σJθ = p Nrh − 12P 

 
 

(20) 

σJ) = σθ2 + f2π rh 

 

(21) 

5 EXPERIMENTAL  189 

5.1 Method 190 

To investigate the validity of the assumptions used in the model to relate whole-wall data to layer 191 

stress-strain response, experimental data are required. It was found that extensive investigations 192 

have already been reported in the literature and repeating these is not the primary purpose of this 193 

study. Thus data from peer reviewed journal papers were used. The two particular studies used 194 

were both from older nonatherosclerotic patients such that they are directly comparable. 195 

The first part of the experimental investigation was sourcing and extracting the data from 196 

research papers in a suitable digital form. Data from whole-wall coronary arteries were used to 197 

optimise the layer model parameters using a Levenburg-Marquardt optimiser available in 198 

Matlab® and applying the Monte Carlo method. The optimisation was constrained based on 199 

experimental and histological findings and a parameter sensitivity analysis was carried out. 200 

These techniques were applied to increase the probability of finding the global optimum solution. 201 

The resulting estimates of the stress-strain relationships were then compared with the outputs 202 

from a range of experiments on layered coronary arterial tissue from an independent study. It 203 

should be noted that data from the whole-wall and layered wall stress-strain responses for the 204 

same artery would be a suitable next step. 205 
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5.2 Data collection 206 

This section describes the data sets used in this investigation. To optimise the model, whole-wall 207 

coronary artery data were used.  To independently verify the quality of the model estimates, 208 

coronary arterial wall layer data were selected.    209 

To optimise the parameters in the layer model proposed in this paper, whole arterial wall data 210 

from an investigation carried out by van Andel et al  [2] were used. This group published data 211 

showing the relationships of external arterial diameter and axial force against luminal blood 212 

pressure for a variety of arteries from older noatherosclerotic subjects. Data for a whole-wall 213 

coronary artery has been selected for this analysis (figure 3).  214 

The experimental setup reported was as follows [2]. Firstly, the arteries were dissected from 215 

cadavers. To establish a constant mechanical response, the arteries were preconditioned before 216 

the experiment. An axial pre-stretch was then applied, and pressure applied statically.  Finally, 217 

the external diameter and corresponding axial force were measured and graphically presented in 218 

[2]. To import the data into the algorithm used to optimise the model in this paper, the authors 219 

extracted the data from using a 17-point digitisation method across the pressure range. 220 

To assess the validity of the estimated material parameters and resulting stress-strain 221 

relationships, selected data were extracted from an extensive investigation on coronary artery 222 

layer data from older nonatherosclerotic subjects carried out by Holzapfel et al [1] using the 17-223 

point digitisation technique in Matlab®. Due to the large number of samples in this study, the 224 

model outputs are examined in the context of the errors presented in the Holzapfel et al study. A 225 

summary of the experimental data used is given in table 2. 226 

5.3 Optimisation 227 

A constrained optimisation of the model parameters was achieved using the Levenberg–228 

Marquardt method with a root mean square error function provided by Matlab®. The constraints 229 

were based on the physiological response presented in [1]. The intima stress responses, both 230 

axially and circumferentially, were constrained to be stiffer than the adventitia responses. 231 

(Stiffness is defined as the ratio of Cauchy stress to the associated extension ratio (stretch)). In 232 

the same manner, the adventitia was constrained to be stiffer than the media both 233 

circumferentially and axially. Also, the specific layer responses of the intima and adventitia were 234 

constrained to be stiffer axially than circumferentially. Whereas, the media was constrained to be 235 

stiffer circumferentially than axially. Following the layer dominance for arteries presented in [1] 236 

, the media was constrained as the dominant layer circumferentially. The root mean square error 237 

was calculated according to the following equation 238 

 239 

ε = R χ&n	 − n&
σ*ST  

 

 
(22) 
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 240 

where n1 is the number of data points and n2 is the number of parameters of the strain-energy 241 

function, σref is the sum of all Cauchy stresses for each point divided by the number of all data 242 

points. χ2 is the summation of the stress difference between the model and the thin wall 243 

estimation. 244 

The optimisation procedure was repeated ten times from random starting points [29] within the 245 

physiological range defined by experimental data in [1]. Each time 50000 solutions with a mean 246 

square error less than 0.050 were recorded. From the total data set the probability density 247 

functions of all parameter were examined. They were all found to be unimodal, implying a 248 

unique set of parameters. Thus, the mean and standard deviation of each parameter were 249 

calculated according to the standard Monte Carlo procedure. The optimised parameters used to 250 

calculate the stresses in equations (16) to (21) are shown in tables 3 and 4. The collagen fibre 251 

angles from the circumferential direction are assumed to be different for each of the three layers 252 

in the hyperelastic model  [1] as shown in table 4.  253 

Parameter sensitivity analysis was used to assess whether variations of the parameter values have 254 

a noticeable impact on the quality of simulation. Parameter sensitivity was carried out according 255 

to the following procedure [30-32] . Each parameter was varied ± 50 % across its mean, while 256 

the other parameters were kept constant at their optimised values. The error was plotted across 257 

the range of normalised parameter values. The parameters intersected at their lowest error point. 258 

This procedure is known as one way parameter sensitivity analysis[32] . To ensure the validity of 259 

the results a Kolmogorov–Smirnov test was used to compare the statistical distribution of the 260 

accepted and the unaccepted ranges. If the statistical distributions were identical, the parameter 261 

was deemed to be insensitive.  262 

5.4 Results 263 

Figure 4  shows a graph of the estimated axial and circumferential Cauchy stresses versus 264 

luminal pressure for the coronary artery data extracted from [2] . The root mean square error 265 

(rms) values were found to be 0.060 and 0.092 respectively indicating a “good” fit in both cases. 266 

This results in a total rms error of 0.050, which compares favourably to the averaged layer rms 267 

error of 0.080 in [1]. Figure 5 shows estimated stress-strain data for the three layers,( intima, 268 

media and adventitia) in the same coronary artery. For comparison a shaded region, showing the 269 

range of the experimental data from [1], has been added. A set of experimental curves with 270 

similar material constants for a single coronary artery from [1] is also shown for comparison 271 

purposes. Figure 6 shows the effect of increasing axial pre-stretch on the maximum strain 272 

achieved by the artery. Figure 7 shows graphs of the parameter sensitivity for the coronary artery 273 

data. Figure 8 concentrates on comparing the effect of the collagen fibre angle for each layer. 274 

Figure 9 shows the whole-wall experimental, estimated results and the estimated layer stress- 275 

strain profiles for the same artery.  276 

  277 
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6 DISCUSSION 278 

This section firstly explores the proposal of using the mathematical model based on layer strain- 279 

energy functions for the whole-wall stress-strain estimation. Secondly, the resulting individual 280 

layer stress-strain estimations and layer material parameter sensitivity are discussed. Finally the 281 

model sensitivity to physiological assumptions is discussed. 282 

6.1 Whole-wall stress-strain estimation  283 

Figure 4 shows the estimated whole-wall stress estimations using the layered model approach. 284 

The low mean standard error value of 0.050 indicates the model is a reasonably “good” fit. It is 285 

also consistent with the experimental data in that it estimates that the static axial stress response 286 

is higher than the circumferential static stress response. However, at low luminal pressures the 287 

model fit is not so good.  A possible explanation is that at lower pressures only the elastin is 288 

under tension and stretches, whilst at higher pressures both the elastin and collagen are under 289 

tension and thus both fibre types stretch. Based on this it is suggested that improving the form of 290 

the elastin strain-energy function could increase the quality of the overall fit [27] . Further work 291 

would be needed to investigate this assumption. 292 

6.2 Layer stress-strain estimation 293 

The inferred layer stress-strain profiles produced in the process of estimating the whole-wall 294 

stress-strain profile, as shown in figure 5 and figure 9, are consistent with the experimental layer 295 

data in [1] and [16-18, 20]. For example, in figure 9a, it can be seen that in all cases the order of 296 

decreasing stiffness is the intima, adventitia and finally the media. This is due to the constrained 297 

optimisation process described in Section 5.3. 298 

The layer material parameters optimised to produce the stress-strain profiles have also been 299 

compared to those estimated by Holzapfel et al using layer experimental data [1], (Tables 3 and 300 

4). It can be seen that the values estimated by the layer model in this paper for the single 301 

coronary artery in [1] are within the range of values for the range of coronary arteries studied by 302 

Holzapfel et al [1]. From these it was estimated that the stress-strain profiles are similar to those 303 

in [1] for all layers and the adventitia and media in the axial direction. A possible explanation for 304 

this is due to the differences in applying the stresses. In the whole-wall artery experiments, 305 

biaxial stresses were applied using an axial pre-stretch, whereas in the layered wall experiments, 306 

uniaxial stresses were applied. The effect of axial pre-stretch on maximum circumferential stress 307 

of a whole arterial wall was further investigated using the three layer model. The results are 308 

presented in Figure 6. It can be seen that increasing the axial pre-stretch increases the range of 309 

the circumferential strain. This could possibly explain why the intimal response falls outside the 310 

experimental range in [1]. 311 
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6.3 Layer material parameter sensitivity 312 

To investigate the validity of the layer model parameters further, a sensitivity analysis was 313 

carried out. The Kolmogorov–Smirnov test indicated that the model was sensitive to all the 314 

material parameters within the physiological range.  315 

Figure 7 shows that the minimum error occurs when all the parameters are at the optimised 316 

values and there are no other error minima observed within the physiological range. It also 317 

suggests that the solution is most sensitive to the predominant angle φ of the dispersed collagen 318 

fibres. It is also worth noting that the error range was included for 50% above and below the 319 

optimised value. This can be seen in more detail in Figure 8 which shows that the solution is 320 

most sensitive to φ in the layers with the highest collagen content and hence the greatest 321 

stiffness. This suggests that collagen fibre direction is a major factor in determining the arterial 322 

wall stiffness and thus dominates the response in the intima and adventitia, and a less significant 323 

effect in the media. 324 

6.4 Model assumptions 325 

In this section the major assumptions used in producing the model are discussed. Factors 326 

considered include a thin wall cylinder approximation, abrupt junctions between the layers, a 327 

constant strain profile, and a constant ratio of layer thicknesses. 328 

The aim of this study is to produce an analytically derived model such that the effect of material 329 

parameters can be studied. In section 4.3 a review of studies using cylindrical thin wall models 330 

suggested that analytical solutions for thick wall vessels is far from a trivial task and finite 331 

element analysis is a more suitable method [28] . However, the results in this paper based on [13]  332 

suggest that a thin wall model does produce results that are consistent with experimental 333 

findings. The model is also based on assuming the layers have abrupt junctions. The results of 334 

the histological study shown in Figure 1 show that the thickness of the junction regions are 335 

relatively small compared with the layer thicknesses and hence this is a reasonable assumption. 336 

However, this ignores any effects of the internal elastic lamina and external elastic lamina that 337 

separate the media from the intima and adventitia respectively [15] [33].  A model that takes into 338 

account inter layer lamina effects may act to improve the goodness of fit of the whole model 339 

[34]. The assumption of a constant strain across the three layers is used as this is one of the 340 

constraints required for the application of thin wall theory. Finally, the assumption of using fixed 341 

layer ratios is addressed. The intimal thickness [1] has been reported to be about 27% of the total 342 

thickness for the data used in this study, whilst the adventitial and medial thicknesses are more 343 

variable and there is no universal ratio for them. However, the studies show that the media is the 344 

largest layer. This suggests that the media varies between 36.5% and 63.0% and the adventitia 345 

between 10.0% and 36.5%. Using these extreme values, the model error was found to be 0.050 ± 346 

0.005, which compares favourably with the error presented by Holzapfel et al [1] of 347 

0.067±0.033. 348 
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9 CONCLUSIONS 

This paper has presented a mathematical model based on a hyperelastic formulation using the 349 

condition of stress equilibrium to estimate the stress-strain profiles in both whole and layered 350 

arterial walls. The material parameters in the model have been optimised using whole-wall 351 

experimental data from studies carried by Holzapfel [1] and van Andel [2]. For the whole-wall 352 

estimations of a single coronary artery, the total root mean square error was found to be 0.050 353 

which compares well with previous studies. This suggests the proposed method provides a 354 

simple approach to estimating the layer material parameters. A comparison with experimental 355 

data from a study on layered data suggested the solutions to the model were physiologically 356 

feasible; however, differences in experimental setup prevent this judgement from being 357 

completely conclusive. 358 

In optimising the material parameters, it was revealing to find that the errors in the estimated 359 

stresses were particularly sensitive to the dominant collagen angle in the stiffest layer, the intima. 360 

This suggests the role of collagen content and possibly fibre orientation should be investigated 361 

further for conditions such as arteriosclerosis.  362 
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Figure 1: A radial cross section through a coronary arterial wall, showing three 
layers: intima, media, and adventitia. (Adapted from [6]) 
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Figure 2: A cross section through the arterial wall showing the intimal, medial and adventitial 
layers with the optimised collagen fibre angle for each layer. 
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Figure 3:  Experimental data for (a) external diameter and (b) axial force for a 
coronary artery as a function of luminal pressure. Extracted from [2] using 17 point 
digitisation method. 
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Figure 4: Estimated axial (square) and circumferential stresses (circle) using the 
hyperelastic layer model proposed in this paper for the coronary artery data 
extracted from [2] and the corresponding experimental axial (dashed line) and 
circumferential  (continuous line) stresses. 
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Figure 5: Layer stress (continuous line) for circumferential direction for a) adventitia, 
b) intima and c) media then in axial direction in d) adventitia e) intima f) media, 
compared with the experimental range (shaded area) presented in [1] with one data 
set  (square) from the same reference. 
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Figure 6: Axial pre-stretch ratio versus maximum stretch ratio. 
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Figure 7: Parameter sensitivity for the fifteen parameters in the model of the coronary 
artery. A small full symbol is used for φ, k2 is represented by a small empty symbol, k1 is 
represented by a large closed symbol and finally the dispersion is represented by large 
empty symbol. The intimal layer is represented by a triangle, the adventitial layer by a 
circle and medial layer by a square. Elastin constants, c1 are the least significant and are 
not shown. 
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Figure 8: Parameter sensitivity for collagen fibre angles of the coronary artery. The intimal layer 
is represented by a triangle, the adventitial layer by a circle and medial layer by a square. Each 
respective physiological range is marked with its symbol and the common physiological range is 
shaded.  
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Figure 9: The layer response is compared with the total response in two directions. 
a) circumferential b) axial, triangle is used for intima, circle for adventitia. The 
model results are shown in a dashed line and the experimental results are shown in 
continuous line. 
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Table 1 

 

Coronary artery characteristics 

 

 

  

feature Intima Media Adventitia 
Collagen content Highest Lowest Medium 
Collagen distribution Dispersed Circumferential 

 

Dispersed 

Stiffer direction Longitudinal Circumferential Longitudinal 

Stiffness Stiffest Softest Medium 

Elastin distribution 3-D network of elastic fibres 

Effect of elastin at the 
curve start 

Linear relationship 

Percentage of 
thickness 

27% 40% 33% 
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Table 2 

Coronary artery characteristics 

 

Characteristic Coronary artery  
Anatomy Cylindrical 
External diameter 3.96 mm 
Thickness 1.06 mm 
Axial pre-stretch 10% 
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Table 3  

Optimised material parameters for the combined layer model and Holzapfel et al’s individual 
layer experiments [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 
Estimated  
parameter 

Model  
parameter 
Mean±std  
(to 2 d.p.) 

Holzapfel’s  
parameters 
Mean±std  

(to 2 d.p) [1] 
k2n 45.41 ± 0.00 170.88 ± 125.47  

 
k2m 9.14 ± 0.08 8.21 ± 3.27 

k2a 35.95 ± 0.09 85.03 ±58.94 

c1n , [kPa] 8.96 ± 0.47   13.95 ± 5.30 

c1m  [kPa] 0.33 ± 0.04     0.63 ± 0.36 

c1a  [kPa] 1.58 ± 0.27     3.78 ± 2.33 

k1n  [kPa] 7.03 ± 0.52  65.91 ± 122.73 

k1m  [kPa] 6.28  ± 0.24    5.40 ± 1.78 

k1a  [kPa] 5.68 ± 0.36    9.64 ± 8.13 

ρn 0.64 ± 0.00 0.51 ± 0.14 

ρm 0.14 ± 0.01 0.25 ± 0.09 

ρa 0.72 ± 0.00 0.55 ± 0.18 
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Table 4 

Estimated collagen fibre angles (from the circumferential direction) for each layer for two 
vessels 

Layer Model angle  
Mean ± std  
(to 2 d.p.) 

Holzapfel Model [1] 
Mean ± std  
(to 2 d.p.) 

Intima 72.49±0.41 60.30 ± 18.20  
 

Media 16.37±1.15 20.61 ± 5.50 

Adventitia 62.87±0.42 67.00 ±8.50 
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Dear Sir,  

We would like to thank you for your comments. These comments have proved very valuable 

and enriching to our research. As advised, we have only concentrated on the collagen types 

that appear in the coronary artery. We have changed the thickness ratio to agree with what 

have been suggested. We removed the volumetric portion of the strain energy function. 

Please find below every point raised and its reply. We are hopeful that after the changes 

done to our paper, it is raised to the level of acceptance of publication. 

Regards 

Michel E Mickael 

 

 

Response to Referee’s Comments 

1 The summary of the results obtained in [7] (line 46-
48) is misleading.  According to that paper, 
collagen is largely of type I in the intima and there 
is very little SMC in the intima. 
 

Collagen in intima changed to 
type I as in [1] 

2 Reference [8] cited on line 51 is for the aorta so is 
not appropriate here. As clearly stated in the 
references including [1] (and now stated in this 
manuscript) the properties of the coronary arteries 
differ from elsewhere in the body and with age. 
Therefore, the authors should focus solely on 
coronary arteries in this section. 
 

Reference changed to [2] 

3 According to reference [7] cited by the authors, the 
media collagen is largely of type III.   In the text 
line 51, they state types I and III are found in that 
layer. 
 

Collagen in media changed to 
type I only[1] 

4 The definition of the term softest should be 
clarified.   If the authors mean slope of the 
stress/strain curve, then the stiffness of the medial 
layer in the circumferential direction is nearly equal 
to the of the adventitia up to a stretch of 1.25 (Fig. 
7, reference [1]). 
 

Below this table we have shown 
the analysis we have done to 
verify the statement used in this 
paper and by Holzapfel. The 
graph in Fig. 7 is calculated data. 
We have performed our analysis 
on the experimental data. The 
results do suggest that in general 
the media is the softest layer. 

5 It appears there is a typo in line 52. I think the 
authors really mean the SMC are aligned in the 
circumferential direction (not perpendicular to the 

Changed 
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circumferential direction as they state).  
 

6 There appears to be a serious error in the selected 
layer thicknesses on line 109.    The authors set the 
thickness of the individual layers relative to the 
entire wall thickness of the intima, media, 
adventitia as [27,40,33] percent respectively (citing 
[1]) whereas [1] gives the values [27, 36, 40], 
respectively (page H2051).      It appears that the 
last two are switched.  This is an underlying 
approximation in all the calculations in this paper, 
so may alter the results. 
 

Changed and updated, initially 
the separate thickness are given 
by[3] as follows: 
27±0.02, 0.36±0.03 and 
0.40±0.03, but it could be noticed 
that these values when added 
exceeds unity as each thickness 
was measured separately after 
separating the three layers. It is 
also worth noting that the 
thickness of the artery increases 
after being taken out of the body.  
Thus the value of unity was 
assumed and the values of the 
intact thickness were calculated 
according to the above ratio to be  
For nominal layer thicknesses of 
26.2%, 34.9% and 38.8% for the 
intima, media and adventitia 
respectively. The simulations 
have been repeated with the new 
values. This has improved the 
curve fit as can be seen in 
Figures 2,3 and 4 and has not 
altered the main findings of this 
work. 

7 There is no need to introduce a volumetric portion 
of the strain energy function on line 129-130 since 
the authors are later using the incompressibility 
assumption. There seems to be some confusion on 
page 5 about this issue. It would be better if they 
used the incompressible model from the start. 
 

Changed as advised 

8 In (8), the authors have eliminated the Lagrange 
multiplier (P) without explanation of what the 
loading is (boundary conditions).  Since boundary 
conditions are needed to eliminate P, great care 
must be taken. Of possible great significance is that 
it appears that the Lagrange multiplier was 
eliminated in equation (8) by setting Sr equal to 
zero. Namely, there are equations for Sr, Sθ, Sz 
which all involve the Lagrange multiplier (P). This 
Lagrange multiplier has been eliminated from (8).    
Equation (8) will be obtained if Sr is set to zero. 
However, this cannot be correct, since the authors 
are considering pressure inflation. 
 

Sr=0 because of the use of the 
thin wall assumption see (3,4,5) 
Equations are summarised below 
this table. 
  

9 From an initial assessment of the results I noted That is a good observation, the 
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that the predicted curves in Fig 5 do not go to zero 
when stretch reduces to one.  This is very strange. It 
may be related to the errors above. 

reason is that the arterial segment 
is pre-stretched in the axial 
direction, so when the stretch in 
the circumferential direction is 
applied the stress does not come 
to zero, see equations 16, 17. 
 

10 It should be noted that the results presented in [1] 
are for uniaxial loading while the authors discuss 
pressure inflation on pages 8 and 9.   It is not clear 
that this was accounted for in Fig. 5. 

Yes, we are aware that the intact 
arterial experiments are biaxial 
and the layer experiments are 
uniaxial, due to difficulties stated 
by the author (3). We discuss this 
in lines 303-310. 

11 On line 120, it should be stated that W is the strain 
energy per unit volume in the unloaded reference 
configuration. 
 

Corrected as advised. 

 
 
 
 

 
point 4 

Evidence supporting the assumption of “the media in general is the softest layer” 
 

The experimental stiffness of the media and adventitia were compared using experimental 
data given in [2] (figures 2, 3 and 4). 
The curves were digitised and the stiffness (gradients of curves in figures 2,3 and 4 were 
calculated for each artery of the media and adventitia. The stiffness was calculated before and 
after the knee point on each curve given by (1.15 stretch). The results are shown in figure 1 
and table 1. The box plots show the median and the first and third quartiles. 
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Table showing stiffness estimations in KPa 

Artery  

before 

kneepoint 

media 

before 

kneepoint 

adventitia 

after 

kneepoint 

media 

after 

kneepoint 

adventitia 

8 141.0187 180.36 268.6541 420.83 

4 148.15 48.1489 201.9438 405.5046 

6 137.3442 67.0154 251.9001 130.6419 

5 100.566 137.7069 219.0854 877.0304 

2 109.3664 123.9843 151.1208 172.88 

10 50.9369 182.4311 201.5652 978.5079 

7 13.8107 137.7069 87.9107 877.0304 

 

The table shows that the media is less stiff than the adventitia for 71% of the samples before and 

86% of the samples after the knee point. The knee point was chosen as a border between the two 

phases of operation, where phase one, is elastin dominated, and the second phase after 1.15 stretch 

is dominated by collagen with some elastin contribution. 

It is also worth noting that figure 7 of reference [2] is based on the values of the mean of the model 

of the 13 arteries and not experimental data. 

Point 8 Why Sr=0  

This is an extract from [5]. Our Sr =S33 is this paper’s notation. 
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%coronary artery pogram%
clc;
clear;
% Module 1:data input
D=4.94*1e-03;           %D=wall external diameter
H=(D*0.30) ;            %H= wall thickness
%dnew=[4.81 4.83 4.88 4.95 5 5.05 5.06 5.18 5.26 5.3 5.5 6.7 7.75 7.8]*1e-03;
dnew=[4.81 4.83 4.88 4.95 5 5.05 5.1 5.13 5.15 5.18 5.25 5.28 5.3]*1e-03;

l2=1.1;
%Module 2:Thin wall theory
d=(H*(D-H))/l2;
b=((dnew.^2./4)-d).^(0.5);
h=(dnew./2)-b;
r=(dnew-h)/2;
R=(D-H)/2;

sigma=[   0.0350    0.038    0.04   0.05    0.070    0.08510    0.110  0.155 0.23 0.28    0.37 0.46   0.600183  ]*1e05;

s2=[0.029    0.035881    0.045151    0.07    0.0988    0.125   0.17  0.23  0.33  0.4   0.505 0.6  0.75839   ]*1e05;
%sigma=[   0.0570    0.06    0.067   0.0866    0.09    0.1110    0.130    0.195    0.2961    0.600183  0.805   1.2621   
1.6741    2.8]*1e05;

%s2=[0.0194    0.03081    0.041151    0.07    0.0988    0.15    0.20    0.35    0.505   0.75839    0.85    1.1    1.2   
1.4]*1e05;

%s2=[0.0194    0.03081    0.041151    0.07    0.0988    0.15    0.20    0.35    0.505   0.75839    0.85    1.1    1.2   
1.4]*1e05;

%strain=[0.03 0.05 0.06 0.07 0.09 0.1 0.11 0.13 0.14 0.15 0.16 0.17 0.18 0.182];
strain=[0.03 0.05 0.06 0.07 0.09 0.1 0.11 0.12 0.13 0.135  0.14 0.145 0.15 ];

lamda=1./(1-2*strain).^(0.5);
q=((r./h)-(0.5));

p=sigma./q;

%Module 3, assumptions intima=i media=m adventitia=a
hi=0.262*h;
hm=0.349*h;
ha=0.388*h;
%lb=[0.73 0.26 1.09 45.41 4.94 26.09    8650 320 1450 3.9e03 3.625e03 3.7e03 0.37 0.14 0.37];
%ub=[1.37 0.45 1.31 130   13.1 120     19000 900 6000 100e03 7.2e03 17.5e03 0.65 0.34 0.73];
%a=[0.918419836396082,0.41583025021729,1.092130680919774,53.3933731535554,10.8705861753712,48.4858815
885614,13799.3852585224,5196.84278107774,17500;]

%a=[0.88934452774139,0.306473744245994,1.09152905299021,48.6763804123347,9.16139299976272,47.54344770
23866,15246.7183041945,4732.33021735782,17500;]
%a=[0.923998924200236,0.295168469396933,1.12290975783508,56.3301427371482,11.6128999579224,31.1578064
319077,11128.3487039323,4661.25749407590,17500;]
%a=[0.968559245444828,0.305394898232727,1.25146338797463,58.3736813748610,10.5948874271261,33.4574593
590495,13613.2580946418,4779.23430019145,17500;]
%a=[0.968559245444828,0.305394898232727,1.25146338797463,58.3736813748610,10.5948874271261,33.4574593
590495,13613.2580946418,4779.23430019145,17500;]
a=[0.918405361868358,0.293391770833512,1.09731791690408,55.2264463401203,11.8045714022707,30.010101494
4855,11817.1303875404,4305.55328177654,17500;]

thetai=a(1);
thetam=a(2);
thetaa=a(3);
k2i=a(4);



k2m=a(5);
k2a=a(6);
c1i=4000;
c1m=400;
c1a=5500;
k1i=a(7);
k1m=3700;
k1a=a(8);
rowi=0.58;
rowm=0.15;
rowa=0.55;

%Module 4: HYPERELASTIC MODEL%
I4m=(lamda.^2).*(cos(thetam)).^2+(l2.^2).*(sin(thetam )).^2;      
qm=k2m*((I4m-1).^2);
sm1=[c1m.*(1-(1./((l2.^2).*(lamda).^4)))+k1m* exp(qm).*(I4m-1).*(cos(thetam )).^2].*(lamda.^2);   %circumferential 
stress in the media %
sm2=[c1m.*(1-(1./((lamda.^2).*(l2).^4)))+k1m* exp(qm).*(I4m-1).*(sin(thetam  )).^2].*(l2.^2);      %Axial  stress in 
the media  %
%module 4b : for adeventitia %
I4a=(lamda.^2).*(cos(thetaa)).^2+(l2.^2).*(sin(thetaa)).^2;  
qa=k2a*((I4a-1).^2);
sa1=[c1a.*(1-(1./((l2.^2).*(lamda).^4)))+k1a* exp(qa).*(I4a-1).*(cos(thetaa  )).^2].*(lamda.^2) ;     %circumferential 
stress in the adventitia %
sa2=[c1a.*(1-(1./((lamda.^2).*(l2).^4)))+k1a* exp(qa).*(I4a-1).*(sin(thetaa)).^2].*(l2.^2) ;        %Axial stress in the 
adventitia %
%module 4 c: for intima%
I4i=(lamda.^2).*(cos(thetai )).^2+(l2.^2).*(sin(thetai)).^2;      
qi=k2i*((I4i-1).^2);
si1=[c1i.*(1-(1./((l2.^2).*(lamda).^4)))+k1i* exp(qi).*(I4i-1).*(cos(thetai )).^2].*(lamda.^2);  %circumferential stress 
in the intima  %
si2=[c1i.*(1-(1./((lamda.^2).*(l2).^4)))+k1i* exp(qi).*(I4i-1).*(sin(thetai )).^2].*(l2.^2);%Axial  stress in the intima %
%module 5: total stress  calculation%
st1=((si1.*hi+sm1.*hm+sa1.*ha)./(h))             %total circumferentioal stress%
st2=(si2.*hi+sm2.*hm+sa2.*ha)./(h);            %total axial stress
%MODEL 6: Results plotting%
figure(3)
plot(lamda,si1/1000,'g',lamda,sm1/1000,'r',lamda,sa1/1000,'b','LineWidth',2,'Marker','o')
xlabel('Circumferential stretch')
ylabel('Circumferential Cauchy stress [kPa]')
figure(4)
plot(lamda,si2/1000,'g',lamda,sm2/1000,'r',lamda,sa2/1000,'b','LineWidth',2,'Marker','o')
xlabel('Circumferential stretch')
ylabel('Axial Cauchy stress [kPa]')

figure(8) 
plot(lamda,(st1/1000),'-ro',lamda,sigma/1000,'--','LineWidth',2)
 
figure(9)
plot(lamda,st2/1000,'-ro',lamda,s2/1000,'--','LineWidth',2)
xlabel('Circumferential stretch')
ylabel(' Cauchy stress [kPa]')

%figure(9)
%plot(p/133.32,h,'r')
kai=sum((sigma-st1).^2+(s2-st2).^2);
kai1=(kai/22).^0.5;
sigmaref=sum(st1+st2)/34;
eplson1=kai1/sigmaref
%
bai=sum((sigma-st1).^2);
bai1=(bai/5).^0.5;
bigmaref=sum(st1)/17;



eplsonb=bai1/bigmaref
%kesh kesha mat3rdha 2%
cai=sum((s2-st2).^2);
cai1=(cai/5).^0.5;
cigmaref=sum(st2)/17;
eplsonc=cai1/cigmaref
 



%coronary artery program%
clc;
clear;
% Module 1:data input
D=3.96*1e-03;           %D=wall external diameter
H=(D*0.27) ;            %H= wall thickness
p=[0:12.5:200].*133.32   %transumural pressure
dnew=[3.97 3.995 4.02 4.1 4.18 4.21 4.25 4.28 4.3 4.32 4.33 4.35 4.36 4.37 4.38 4.39 4.4]*1e-03;
l2=1.1;
%Module 2:Thin wall theory
d=(H*(D-H))l2;
b=((dnew.^2./4)-d).^(0.5);
h=(dnew./2)-b;
r=(dnew-h)/2;
R=(D-H)/2;
lamda=r./R;
q=((r./h)-(0.5));
sigma=p.q;
sigma21=sigma./2;
f=[ 0.07 0.072 0.073 0.09 0.13 0.15 0.19 0.23 0.265 0.3 0.32 0.37 0.39 0.41 0.43 0.47 0.54];
B=f./(2.*pi.*r.*h);
s2=((sigma21)+B) ;
%Module 3, assumptions intima=i media=m adventitia=a
hi=0.262*h;
hm=0.349*h;
ha=0.388*h;

thetai=a(1);
thetam=a(2);
thetaa=a(3)
k2i=a(4);
k2m=a(5);
k2a=a(6);
c1i=a(7);
c1m=a(8);
c1a=a(9);
k1i=a(10);
k1m=a(11);
k1a=a(12);
rowi=a(13);
rowm=a(14);
rowa=a(15);

%Module 4: HYPERELASTIC MODEL%
I4m=(lamda.^2).*(cos(thetam)).^2+(l2.^2).*(sin(thetam )).^2;      
qm=k2m*((I4m-1).^2);
sm1=[c1m.*(1-(1./((l2.^2).*(lamda).^4)))+k1m* exp(qm).*(I4m-1).*(cos(thetam )).^2].*(lamda.^2);   %circumferential 
stress in the media %
sm2=[c1m.*(1-(1./((lamda.^2).*(l2).^4)))+k1m* exp(qm).*(I4m-1).*(sin(thetam  )).^2].*(l2.^2);      %Axial  stress in 
the media  %
%module 4b : for adeventitia %
I4a=(lamda.^2).*(cos(thetaa)).^2+(l2.^2).*(sin(thetaa)).^2;  
qa=k2a*((I4a-1).^2);
sa1=[c1a.*(1-(1./((l2.^2).*(lamda).^4)))+k1a* exp(qa).*(I4a-1).*(cos(thetaa  )).^2].*(lamda.^2) ;     %circumferential 
stress in the adventitia %
sa2=[c1a.*(1-(1./((lamda.^2).*(l2).^4)))+k1a* exp(qa).*(I4a-1).*(sin(thetaa)).^2].*(l2.^2) ;        %Axial stress in the 
adventitia %
%module 4 c: for intima%
I4i=(lamda.^2).*(cos(thetai )).^2+(l2.^2).*(sin(thetai)).^2;      
qi=k2i*((I4i-1).^2);
si1=[c1i.*(1-(1./((l2.^2).*(lamda).^4)))+k1i* exp(qi).*(I4i-1).*(cos(thetai )).^2].*(lamda.^2);  %circumferential stress 
in the intima  %



si2=[c1i.*(1-(1./((lamda.^2).*(l2).^4)))+k1i* exp(qi).*(I4i-1).*(sin(thetai )).^2].*(l2.^2);%Axial  stress in the intima %
%module 5: total stress  calculation%
st1=(si1.*hi+sm1.*hm+sa1.*ha)./(h)             %total circumferentioal stress%
st2=(si2.*hi+sm2.*hm+sa2.*ha)./(h);            %total axial stress



%coronary artery program%
clc;
clear;
% Module 1:data input
D=3.96*1e-03;           %D=wall external diameter
H=(D*0.27) ;            %H= wall thickness
p=[0:12.5:200].*133.32   %transumural pressure
dnew=[3.97 3.995 4.02 4.1 4.18 4.21 4.25 4.28 4.3 4.32 4.33 4.35 4.36 4.37 4.38 4.39 4.4]*1e-03;
l2=1.1;
%Module 2:Thin wall theory
d=(H*(D-H))l2;
b=((dnew.^2./4)-d).^(0.5);
h=(dnew./2)-b;
r=(dnew-h)/2;
R=(D-H)/2;
lamda=r./R;
q=((r./h)-(0.5));
sigma=p.q;
sigma21=sigma./2;
f=[ 0.07 0.072 0.073 0.09 0.13 0.15 0.19 0.23 0.265 0.3 0.32 0.37 0.39 0.41 0.43 0.47 0.54];
B=f./(2.*pi.*r.*h);
s2=((sigma21)+B) ;
%Module 3, assumptions intima=i media=m adventitia=a
hi=0.262*h;
hm=0.349*h;
ha=0.388*h;
a=[1.265,0.2858,1.097,45.4323,8.988,36.082,8795.973,1514.11,7070.2211,6064.528,5713.593,0.6499,0.168,0.7272]

thetai=a(1);
thetam=a(2);
thetaa=a(3)
k2i=a(4);
k2m=a(5);
k2a=a(6);
c1i=a(7);
c1m=a(8);
c1a=a(9);
k1i=a(10);
k1m=a(11);
k1a=a(12);
rowi=a(13);
rowm=a(14);
rowa=a(15);

%Module 4: HYPERELASTIC MODEL%
I4m=(lamda.^2).*(cos(thetam)).^2+(l2.^2).*(sin(thetam )).^2;      
qm=k2m*((I4m-1).^2);
sm1=[c1m.*(1-(1./((l2.^2).*(lamda).^4)))+k1m* exp(qm).*(I4m-1).*(cos(thetam )).^2].*(lamda.^2);   %circumferential 
stress in the media %
sm2=[c1m.*(1-(1./((lamda.^2).*(l2).^4)))+k1m* exp(qm).*(I4m-1).*(sin(thetam  )).^2].*(l2.^2);      %Axial  stress in 
the media  %
%module 4b : for adeventitia %
I4a=(lamda.^2).*(cos(thetaa)).^2+(l2.^2).*(sin(thetaa)).^2;  
qa=k2a*((I4a-1).^2);
sa1=[c1a.*(1-(1./((l2.^2).*(lamda).^4)))+k1a* exp(qa).*(I4a-1).*(cos(thetaa  )).^2].*(lamda.^2) ;     %circumferential 
stress in the adventitia %
sa2=[c1a.*(1-(1./((lamda.^2).*(l2).^4)))+k1a* exp(qa).*(I4a-1).*(sin(thetaa)).^2].*(l2.^2) ;        %Axial stress in the 
adventitia %
%module 4 c: for intima%
I4i=(lamda.^2).*(cos(thetai )).^2+(l2.^2).*(sin(thetai)).^2;      
qi=k2i*((I4i-1).^2);
si1=[c1i.*(1-(1./((l2.^2).*(lamda).^4)))+k1i* exp(qi).*(I4i-1).*(cos(thetai )).^2].*(lamda.^2);  %circumferential stress 
in the intima  %



si2=[c1i.*(1-(1./((lamda.^2).*(l2).^4)))+k1i* exp(qi).*(I4i-1).*(sin(thetai )).^2].*(l2.^2);%Axial  stress in the intima %
%module 5: total stress  calculation%
st1=(si1.*hi+sm1.*hm+sa1.*ha)./(h)             %total circumferentioal stress%
st2=(si2.*hi+sm2.*hm+sa2.*ha)./(h);            %total axial stress
%MODEL 6: Results plotting%
figure(3)
plot(lamda,si1/1000,'y',lamda,sm1/1000,'r',lamda,sa1/1000,'b','LineWidth',2,'Marker','o')
xlabel('Circumferential stretch')
ylabel('Circumferential Cauchy stress [kPa]')
figure(4)
plot(lamda,si2/1000,'y',lamda,sm2/1000,'r',lamda,sa2/1000,'b','LineWidth',2,'Marker','o')
xlabel('Circumferential stretch')
ylabel('Axial Cauchy stress [kPa]')
grid
figure(8) 
plot(lamda,st1/1000,'r',lamda,sigma/1000,'b',lamda,st2/1000,'g',lamda,s2/1000,'m','LineWidth',2,'Marker','o')
xlabel('Circumferential stretch')
ylabel(' Cauchy stress [kPa]')
grid
%figure(9)
%plot(p/133.32,h,'r')
kai=sum((sigma-st1).^2+(s2-st2).^2);
kai1=(kai/22).^0.5;
sigmaref=sum(st1+st2)/34;
eplson1=kai1/sigmaref
%
bai=sum((sigma-st1).^2);
bai1=(bai/5).^0.5;
bigmaref=sum(st1)/17;
eplsonb=bai1/bigmaref
%kesh kesha mat3rdha 2%
cai=sum((s2-st2).^2);
cai1=(cai/5).^0.5;
cigmaref=sum(st2)/17;
eplsonc=cai1/cigmaref


