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ABSTRACT 

In this work three different approaches to the study of intermolecular interactions are 

shown. The aim is to further the understanding of specific intermolecular interactions 

with a view to eventually allowing the prediction and design of crystal structures from 

the initial molecular building blocks: crystal engineering. All three approaches make 

use of crystal structural information derived from X-ray and/or neutron diffraction 

studies. 

The three approaches are: 

• Data base approach. Specifically, the study of occurrence of bi- and tri-furcated 

hydrogen bonds in the Crystallographic Structural Database, and the analysis of the 

frequency with which they occur and the geometric resttictions of such interactions. 

• Analysis of a series of compounds, where there are small changes in the molecular 

structure as the series progresses. The influence of these changes in the molecular 

structure on the crystal structure is considered. The series studied was the 4-amino-

4'-hydroxydiphenylalkanes as well as some of the corresponding 4-amino-4'­

hydroxydiphenylsulphides and -alkylsulphides. 

• Detailed analysis of individual structures to identify the intermolecular interactions 

that are influencing the structure. The compounds analysed in this part were 2,4,6-

tris-( 4-chlorophenox y )-1 ,3 ,5-triazene eo-crystallised with tri bromo benzene, 

triphenylisocyanurate eo-crystallised with trinitrobenzene, 4,4' -dinitrotetraphenyl 

methane, 2,3-dichloro-1 ,4-diethynyl-1 ,4-dihydroxy-napthalene and, 4,4-diphenyl-

2,5-cyclohexadienone. 
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Standards, Abbreviations, and Points of Note: 

All hydrogen atom for structures from X-ray data are given at positions derived from X­

ray data, i.e. the hydrogen atoms positions have not been 'neutron normalised'. The 

only exception is in the CSD searches in Part 1 Bi-furcated hydrogen bonds, where the 

hydrogen atoms have been 'neutron normalised' to prevent inconsistencies between 

structures from X-ray and from neutron data, and inconsistencies arising from the 

treatment of the hydrogen atom in the structure models. 

Unless otherwise stated, all atomic scale distances have been measured in angstroms 

(A) all laboratory scale distances (crystal dimensions etc.) measured in millimetres 

(mm) and all angles measured in degrees (0
). 

In diagrams showing thermal ellipsoid plots all thermal ellipsoid have been plotted at 

50% probabilities. 

CSD = Cambridge Structural Database. 

Throughout this work molecules have been referred to as being held together to give the 

crystal lattice by only very specific directional interactions, this of-course is an over 

simplification that ignores the very important influences of van der Waals forces, non­

bonded interactions, close packing and other effects. 
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Introduction 

Chapter 1 : Introductio,n 

1.1 Crystal Engineering 

The study of the structure of molecules is of vital importance to chemistry. It helps with 

every aspect, from the analysis of reactions and reactions pathways, to the 

understanding of the physical properties of the compound. After all, of all the various 

pieces of information available on a particular compound, the molecular structure has to 

be one of the most fundamental. 

In much the same way, in the study of crystalline solids, the crystal structure; the way 

the molecules pack into a regular periodic lattice, is of fundamental impmtance if there 

is to be any hope of understanding fully the physical prope1ties of the crystal. It is with 

the aim of both understanding and eventually directing and controlling these physical 

properties that the field of crystal engineering 1
•
2 and supramolecular chemistry has 

developed. 

One aspect of crystal engmeenng is the use of crystal structures to study, analyse, 

characterise and categorise the various forces and interactions that direct, and control, 

the way the molecules pack3
. The hope is that a full understanding of these forces and 

interactions will give the ability to design crystals with specific structures and therefore 

specific physical properties. Unfortunately, other than in a few specific cases, there is 

still a long way to go before this aim is achieved. 

There are many types of inter-molecular forces that are important in directing the 

formation of a crystal structure. Some interactions can be considered as non-directional 

forces involving the whole molecule such as shape fitting to achieve a close-packed 

arrangement of the molecules, electrostatic interactions, and Van der Waals forces. 

Other interactions such as hydrogen bonds, halogen-halogen interactions and n-n 

stacking are much more directional interactions and can be considered as non-covalent 

intermolecular bonds. It is an optimisation of all the various influences that leads to the 

preferential formation of one crystal structure over another. It is in fact amazing that the 

optimisation of such a wide range of forces, often acting in opposition to each other, can 

lead, so consistently, to a single, reproducible, structure. And that each crystal in itself 
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has a nearly perfectly consistent structure across the whole crystal, no errors, or random 

defects, just one molecule stacked in a precise orientation to the next. Of course there 

are exceptions to this, such as are seen in the cases of polymorphs, disordered and 

twinned crystals, but it is these exceptions that fully emphasise this point. 

In this work I have been studying the influences on crystal structure of some of the 

more directional interactions, mainly of hydrogen bonds of various types, but also n-n 

stacking and halogen - halogen interactions. 

1.2 Methods of Studying Molecular Interactions 

Leaving aside any purely theoretical calculation techniques, there are three main 

methods of studying interactions, the first, and perhaps the most obvious, is to carefully 

study one structure looking at all the close atom-atom contacts. This is a good way to 

identify new and novel interactions. Where a detailed structure has been obtained from 

accurate X-ray, or better, neutron data the structure can be used to 'benchmark' a 

particular interaction. 

Another method is to study a series of compounds where just one aspect of the molecule 

is changing through the series, thus reducing the variables in the system. For instance a 

series of compounds with increasing chain length, substituent group size or nature. This 

method is especially useful from a crystal engineering point of view, indicating stable 

motifs and areas where the structure prediction might be possible. It can highlight areas 

where the understanding of intermolecular interactions is not great enough to allow 

prediction, or where an interaction, or a major effect of the interactions, is not being 

accounted for in the structure prediction considerations, and more research is needed. 

This method is also useful in the understanding of the relative degree of influences of 

the interactions. For instance where there are two possible but mutually (or even just 

partially) exclusive interactions, which one will be found in the resulting structure? 

Such as in the case where there could be a close packed structure, or a structure based 

on a hydrogen bond network, but with a less dense structure containing voids, which 

structure will be found, or will neither? 

The final way is to use a statistical analysis of a large number of crystal structures to 

discover trends and pattems4
•
5

. This can be very useful in establishing the standard 

geometry and the geometric limits of an interaction. The Cambridge Structural 

Database6 is a useful source for such a search and provides comprehensive search and 
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analysis software. 

Perhaps slightly paradoxically the last method of statistical analysis is the method used 

in Part 1, Part 2 covers the analysis of a series of amino-phenols and the first method of 

detailed analysis of interesting structures is covered in Part 3. 

The experimental techniques behind these methods are discussed in detail in Chapter 2. 

1.3 Hydrogen Bonds 

Classically, hydrogen is considered to have a valence of one, i.e. it can only form one 

bond. This is logical since a hydrogen atom only has a single electron with which it can 

form only one normal covalent bond. However, sometimes a hydrogen atom is 

obviously involved in two bonds (or more), the longer and weaker of which are refetTed 

to as a hydrogen bond(s). 

D-H ... A 

A hydrogen bond is an interaction that occurs between an electropositive hydrogen e.g. 

a hydrogen bound to an electron withdrawing atom or group (oxygen, nitrogen, etc), 

and an electronegative atom such as oxygen, nitrogen or a halogen. In the example 

above, there is a covalent bond between atom D (known as the hydrogen donor) and the 

hydrogen atom, and the electron pair is located between the hydrogen and atom D. If 

atom D is more electronegative than hydrogen then the electron pair is pulled closer to 

the atom D leaving the hydrogen nucleus 'exposed'. Any area of electron density 

occurring nearby, e.g. another electronegative atom (in the case above this is atom A, 

known as the hydrogen acceptor) which can contribute electron density, for instance 

from a lone pair of electrons, which will interact with the electropositive hydrogen 

nucleus7
'
8

. 

8- 8+ 8-

D-H ... A 

This is a very simplified explanation of hydrogen bonding, a more detailed explanation 

can be found in most standard textbooks on the subject, such as those by G. A. Jeffery, 

J.C.Speakman etc. See ref 9,8. 
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The first types of hydrogen bond that were identified and accepted as genuine attractive 

interactions were the types where both the hydrogen donor and acceptor were strongly 

electronegative atoms such as oxygen or nitrogen, i.e. N-H ... 0. In terms of hydrogen 

bond strength these types of hydrogen bonds are strong, usually of the order of -20 to 

-100 kJ/mol 10
• In this work these types of hydrogen bond are referred to as either 

strong or a conventional types of hydrogen bond. 

Subsequently, other types of hydrogen bonds have been identified and accepted11,1°, 

where the acceptor is some other electronegative atom such as a halogen, or where the 

acceptor is a more diffuse area of electron density in a group of atoms, for instance, the 

7t bond of alkene group or of a phenyl ting. Alternatively, where the hydrogen donor is 

not oxygen or nitrogen but some other atom (not even necessarily a very electron 

withdrawing one) such as carbon. 

Various Types of Hydrogen Bond 

N/0-H---- -----N/0 C-H-------- -N/0 

N/0-H-- ------ -Hal C-H-------- -Hal 

N/0-H---- ----- C-H---------

NI O-H--------0 C-H--------0 
Figure 1.1: Types of hydrogen bond. 

Hydrogen bonds are usually identified by analysing the various inter-atomic distances, 

obtained from diffraction data. The best identification is an H..A distance that is shorter 

than expected i.e. less than the sum of the Van der Waals radii 12
. Unfortunately, unless 

the X-ray diffraction data are very good, the positions of the hydrogen atoms are only 

poorly defined, or not found at all, but generated in the calculated positions. Even when 

the hydrogen atom positions can be identified from X-ray data, the position is not the 

true position of hydrogen nucleus. X-rays are diffracted by electrons, not the atom 

nucleus, thus hydrogen, having only one electron and that electron involved in a bond to 
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the donor atom, will be modelled in a position closer to the donor atom than is the true 

position of the nucleus. 

There are 3 solutions to this problem: 

0 Ideally, a neutron diffraction experiment can be undertaken. Neutrons are diffracted 

by the atom nucleus and therefore give the true hydrogen position. Also, since the 

degree of scattering is not dependent on atomic weight, hydrogen atoms scatter 

well and therefore their positions tend to be well defined in a model based on 

neutron data. However, neutron experiments can only be run at certain large 

dedicated facilities, are expensive, and require large crystals with volumes in the 

order of mm3
, which can be difficult to grow. 

~ The D ... A distance can be considered instead of the H..A distance. D and A are 

usually well defined since they have more electrons than hydrogen. In a hydrogen 

bond the D ... A distance is less than the sum of the Van der Waals radii of the two 

atoms. 

® The hydrogen position can be corrected by moving it along the D-H bond vector to 

a given standard D-H bond distance, measured from previous neutron experiments 

of other systems. This, however, will hide any influence that there has been on the 

hydrogen position by the interaction. 

The length of the hydrogen bond gives an indication of the strength of the hydrogen 

bond; the stronger the interaction, the shorter it is. Hydrogen bonds tend to be linear, 

and stronger hydrogen bonds tend to more linear than weak ones. Although the sum of 

the Van der Waals radii can be a useful boundary when defining an H ... A distance as a 

hydrogen bond it can hardly be taken as the definitive limit. As a hydrogen bond gets 

weaker it gets longer, but there is no sudden cut off point beyond which there is no 

interaction, the interaction just becomes weaker until its effect becomes negligible. In a 

practical sense, the limit to which an H ... A distance is considered to be an interaction 

depends on the question that is being asked. 
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:t4 n=n Interactions 

A phenyl ring can be considered as a more electropositive a-bonded carbon atom 

framework sandwiched between two electronegative regions of electron density arising 

from then electron density 13
'
14

. 

a bonded framework 

Figure 1.2: Schematic of the electron density around a phenyl ring. 

Electrostatic considerations and structural studies suggest that there are 3 ways such 

groups could pack14
: 

• Face to Edge: where an electropositive ring 

substituent e.g. H will interact favourably 

with the electronegative n density - this is 

the same as the C-H .. . n hydrogen bond 

mentioned previously. 

• Face to Face Stacking: Eclipsed nngs. 

• 

There is direct overlap between the tings. 

At very short distances this will tend to be 

an unfavourable interaction. 

Face to Face Offset Stacking: The offset 

mtntmtses the n: .. . n repulsion and 

maximises the cr ... n interaction. 

H 

~ 

«:f)> C<D 
Figure 1.3: Types of7r-7r interaction. 
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1.5 Halogen - Halogen Interactions 

The nature of halogen ... halogen interactions, pmticularly Cl...Cl interactions, has been 

the subject of considerable debate over the past decade. Studies by Desiraju & 

Patthasarathy15 and Pedireddi et al. 16 using the Cambridge Structural Database6 

indicated the occurrence of two types of interactions, type I and type ll. If we denote 

the larger of the two C-Cl....CI angles as 8 1, and the smaller as 82, then Type I 

interactions have 8 1=82 and Type ll have 8 1 = 180° and 82 = 90°. 

Type I Type 11 

c 
~ Cl-------- -Cl 

~" c 

~ 
C--CI--------Cl 

~I 
81 = 180° c 
82 = 90° 

Figure 1.4: Types of halogen halogen interaction 

The vast majority of Type I examples arise from interactions across a crystallographic 

centre of symmetry, however situations having a linear C-Cl...Cl-C system, 8 1=82=180°, 

are seldom observed. Type II interactions were deemed to arise due to the polarisability 

of the halogen, which increases from Cl through Br to I. Calculations of interaction 

energies using intetmolecular perturbation theory17 have been carried out for Cl...Cl by 

Price et al. 18 and for C-Cl...O interactions by Lommerse et al. 19 In broad terms, all of 

these authors agree that carbon-bound halogens in a sufficiently electron-withdrawing 

environment, will present an anisotropic charge distribution, 8+ forward of the halogen 

along the C-halogen bond vector (8 1 = 180°), and 8- perpendicular to the bond vector 

(82 = 90°). In these cases, stabilising interaction energies of up to about 10kJmor1 can 

be attained for linear C-Cl. .. O interactions, about one-half to one-third of the 

interaction energy for a strong hydrogen bond 19
. These authors also found evidence that 

the interactions become stronger for the more readily polarisable halogens, Brand I. 
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Chapter 2 : Techniques 

2.1 Crystallography and Diffraction 

Crystallography is a technique for the study of molecular structure, at an atomic scale, 

of phases of matter that exhibit long range order, i.e. crystalline solids. Within a crystal 

the atoms, and the molecules that they constitute, have a regular repetitive arrangement 

in the crystal lattice. When an X-ray or neutron beam is directed onto a crystal, it is 

diffracted by the atoms giving rise to a diffraction pattern that can be analysed to allow 

the identification of the structure that created it. 

Incident radiation 

Crystal 

Diffracted radiation 

Diffraction pattern 

Figure 2.1: A schematic of a diffraction experiment. 

The definition of diffraction is 'the interaction of electromagnetic radiation with an 

object in space'. When a beam of radiation is passed through a grating where the size of 

the holes is of the same order of magnitude as the wavelength, the beam is split. The 

difference in path length of the parts of the beam from the different holes in the grating 

to a point further on in space lead to constructive and destructive interference, which in 

turn leads to a pattern of intensities- the diffraction pattern. 

From an observed diffraction pattern it is possible to calculate information on the 

grating that caused it. The regular arrangement of atoms in a crystal is, in effect, a 3-D 

diffraction grating. The atomic spacing, i.e. the size of the holes in the grating is of the 
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same order of magnitude as the wavelength of X-rays and neutron radiation. This is 

why these forms of radiation are used to study the diffraction patterns of crystals. 

2.2 From the Diffraction Pattern to the Model 

The information contained in a diffraction pattern can be considered as consisting of 

two parts; the arrangement of the diffraction peaks in space, and the intensities of these 

peaks. While neither part is independent of the other, when analysed they give 

information on different aspects of the crystal structure; the arrangement of the peaks 

gives information on the unit cell of the crystal, while the intensity of the peaks can give 

information on the atomic positions within the unit cell. 

The Unit Cell 

A simple description of diffraction can be reached by considering the crystal in terms of 

the crystal lattice. The crystal lattice is a theoretical construction that consists of a 

framework of identical repeat units, each repeat unit contains an identical arrangement 

of atoms and molecules. The smallest repeat unit of the lattice, the building block from 

which the rest of the lattice is made up, is referred to as the unit cell. 

'=molecule 

Figure 2.2: 2-D representation of molecules in a lattice. 

In 1913 W. L. Bragg derived a law for diffraction by considering the X-ray or neutron 

beam to be reflecting off the lattice planes20
: 
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Diffracted beam 

Lattice planes 
-L------------~--------------

Lattice planes 

Figure 2.3: Schematic ofBragg 's law. 

Constructive interference, which gives rise to the diffraction peaks, will be seen only 

when the path length difference (shown in red) is equal to a whole number of 

wavelengths (A.), at which point it can be shown that: 

nA. = 2d sine (Bragg's Law) 

Where d is the spacing between the lattice planes. From the d-spacings the size and 

shape of the unit cell can be found. 

The Atomic Positions 

Diffraction peaks arise from the constructive interference of the electromagnetic waves. 

The position of the atoms in the unit cell can cause the wave to undergo a phase shift, 

which in turn effects the degree of interference between the waves, and therefore the 

peak intensity. 

Atoms causing the 
diffraction of the 

Diffracted electromagnetic 
wave (black), with the phase 
shift induced by the red atom 

(red) 

Figure 2.4: Phase shift caused by an atom (coloured red). 
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The intensity of each peak is proportional to the sum of the waves diffracted from 

different parts of the crystal. The information on the atomic positions is contained in 

the phases of each of these waves. The de-convolution of the peak intensity into the 

individual waves, and the phases of these component waves, is a major difficulty known 

as the 'phase problem'. 

The data obtained from a diffraction experiment (after indexing and integration) is in 

the form of a list of peaks described in terms of the hkl values of the lattice plane that 

has diffracted the radiation, and the intensity of that peak (l(hkl)). The measured 

intensity I(hkl) can be convetted to JF(hkl)J2 (the relative structure factor). F(hkl) can be 

converted by Fourier transform21 to the p(xyz) (electron density - real space). But, 

although F(hkl) can be converted to JF(hkl)J2
, JF(hkl)J2 cannot be converted to F(hkl) 

since --J(F(hkl)2
) =+For -F. This is another way of describing the phase problem. 

I(hkl) ~ JF(hkl)J2 ... F(hkl) 

I Ifl 
P(uvw) ... p(xyz) 

Figure 2.5: Schematic of the mathematical conversions used on diffraction data. 

Because of these problems it is not possible to work directly back from the data, to the 

structure that it was generated from. Instead a very approximate solution- the initial or 

trial solution - is obtained, then the structure is solved by an iterative refinement 

process. The procedure is to take the initial estimate of the electron density distribution 

(the initial or trial model), convert p(xyz) to F(hkl) by Fourier transform procedures, 

convert F(hkl) to JF(hkl)J2 (the 'calculated' structure factors JFcalcJ2 or JFcJ 2
) and 

compare with the experimentally derived JF(hkl)J2 's (the 'observed' structure factors 

JFobsJ 2 or JFoJ 2
). A small adaptation is then made to the model and the JFcalcJ2 re­

compare JFobsJ2 to see if the fit is improved. If the model has improved, the new model 

is taken as a stmting point, adapted and re-compared. If the model has not improved 

then the new model is discarded and a different adaptation of the original model is tried, 

this process continues until the model can no longer be improved - the refinement has 

converged. 
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The initial trial structure is usually found from one of two methods, either Patterson 

methods, or from direct methods. The Patterson method uses the Patterson function 

P(uvw) to calculate the vector relationship between all the atoms, since these inter­

atomic vectors can be calculated from IF(hkl)l2 the phase problem is not encountered. In 

a many atom system this leads to a very complicated solution that is difficult to 

interpret. But, if there are just a very small number of heavy elements in the system, the 

vector relationships of these can be pulled out from the sea of vectors arising from the 

lighter elements. The positions of these heavy elements can be identified, and, since 

most of the diffraction is due to these heavy elements this provides a good model to 

start the iterative refinement process. This method is not much use for structures 

containing only light elements or many elements of similar mass, and for that reason it 

has not been used to solve the mainly organic structures studied here. 

Direct methods is a much more computationally intensive method. A vast quantity of 

possible phase combinations are calculated and used to generate electron density maps. 

Given certain assumptions, such as the peaks of electron density must be discrete and 

the electron density cannot be negative, etc., most of the phase combinations can be 

discarded. The best resulting solution is then used as a starting point for the refinement 

of the structure. This method works very well provided there are not too many atoms in 

the structure. For structures containing more than 100 non-hydrogen atoms direct 

methods may not work, although, with increasing computational power larger and larger 

structures are being solved. 

For reasons of clarity and conciseness, many of the more detailed aspects of structural 

determination have been omitted from the above discussion. There are many books on 

the subject, see ref. 22-25 for further information. 

2.3 Neutron Diffraction 

Much of the above discussion has been based on X-ray diffraction techniques. Apart 

from the obvious difference in radiation type, neutron diffraction is very similar, but 

there are a few important differences between the two techniques, these are mainly due 

to differences in scattering properties between the types of radiation. X-rays are 

scattered by electrons, this means that the scattering power of an element is directly 

proportional to its atomic number. Neutrons are scattered by the atomic nucleus, and, 

although there is a very slight overall increase in scatteting power with atomic number, 
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it is in not as dramatic as in the case of X-rays and is hidden by the large fluctuations 

from element to element and even isotope to isotope. 

.Cl 

.s::. -­{71 

15 

10 

c 
.!! 5 
{71 

c 
·r:: 
Q) 

--...., 
0 
0 

(/) 

0 

b( 1H) = -3.74 
b(2H) = 6.67 

b(58Ni) = 14.4 
j!1 b(OONi) = 2.8 

/ b(62Ni) =- -8.7 

100 

Atomic number (Z) 

Figure 2. 6: Scattering length for neutron radiation (reproduced from: 'Single Crystal Neutron 
D!ffraction From Molecular Materials', C. C. Wilson 26

). Red line indicates corresponding 
scattering length for X-ray radiation. 

The fact that the X-ray scattering power of an element is directly proportional to its 

atomic weight is an important factor in the solving of structures using Patterson 

methods, and this means that, except in very simple cases, Patterson methods cannot be 

used to solve neutron data. Direct methods also cannot be used to solve neutron data, 

since, one of the basic criteria for the selecting or discarding of a phase combination is 

that the scattering (in X-ray data directly related to the electron density) is always going 

to be positive. As can be seen from the graph above (Figure 2.6) in neutron diffraction 

not only is there the possibility for negative scattering, but one of the more common and 

important elements, hydrogen, scatters negatively. Having said this it is still sometimes 

possible to solve neutron data directly using direct methods, however the normal 

procedure is to use a model obtained from X-ray data as the initial model and then 

refine this structure against the neutron data. 

As was mentioned in section 1.3 (hydrogen bonds), a consequence of the fact that, in X­

ray diffraction, the scattering power of an element is proportional to the number of 

electrons, is that hydrogen atoms are very hard to identify since they have only one 

electron from which to scatter the X-rays. Because of this, it is standard practice, except 
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for very good data sets, to constrain the hydrogen atoms to standard geometrically 

calculated positions rather than to allow free refinement. Even where the position of the 

hydrogen can be identified from the X-ray data, the electron density is shifted into the 

H-X bond away from the hydrogen nucleus. Thus, hydrogen atoms identified from X­

ray data, appear displaced along the H-X bond vector, closer to the X atom than is the 

true position of the hydrogen nucleus, and this gives very inaccurate bond length. One 

of the prime advantages of neutron diffraction is that hydrogen scatters to nearly the 

same magnitude as, for instance, carbon. However, the hydrogen scattering factor is 

negative so the hydrogen atoms appear as a hole, rather than a peak, in the electron 

density map. This makes the hydrogen atoms easy to identify in the scattering density 

map. Also the neutrons 'see' the atomic nucleus, not the electrons, this means that the 

hydrogen positions found from neutron data are the 'true' hydrogen nuclear positions. 

There are other advantages of neutron diffraction experiment, see ref. 26,24. 

2.4 Diffractometers and Other Equipment 

The diffraction pattern is recorded using a diffractometer. A standard X-ray 

diffractometer consists of: 

• An X-ray generator with a beam collimator and monochromator. 

• A goniometer head on which the crystal is mounted and which allows the crystal to 

be positioned accurately. 

• 2 to 4 circles (depending on the individual diffractometer set up and geometry) 

these allow the crystal to be rotated bringing different parts of the diffraction 

pattern onto the detector. 

• A beam stop to absorb the direct beam. 

• A detector to measure the diffraction peaks, there are two main types of detector -

point detector and area detectors. 

X-ray 
source 

Crystal 

bmm;b ~[Bmmstop~::;;;S, 

G · d · 1 Computer oruometer an c1rc es, Detector 
(Goniometer may move out of 
the plane as well.) 

Figure 2. 7: The basic diffractometer set up. 
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Detectors 

There are 2 main types of detector in common use in the laboratory, the point detector 

and the area detector: 

Point detectors simply record the diffracted radiation at a single point. They measure 

each reflection individually. They can give very accurate data but they are relatively 

slow, this can give problems if the crystal is sensitive to X-rays and begins to decay 

during the experiment. Also, each reflections position in laboratory space must be 

known so it can be found and recorded, so, before the data collection can begin, the 

position of each expected reflection must be calculated, this requires accurate cell 

measurement at the start of the experiment. If the cell is not identified correctly, for 

instance in the case of pseudo symmetry, then not all the data needed to solve the 

structure will be collected. 

An area detector is, effectively, a sophisticated electronic substitute for the photographic 

paper used in the original diffraction experiments. The positions and intensities of a 

large number of peaks can be measured simultaneously, greatly reducing the data 

collection time. The whole of diffraction space can be covered and data collected 

regardless of whether a diffraction peak is expected at that point or not, so if the cell 

was identified wrongly, the data are available to correct the error, and other effects such 

as diffuse scattering can be spotted easily. The area detector reduces the amount of 

movement of the crystal needed to bring every spot onto the detector. In effect the X -

circle is not required. 

For the experiments discussed in this work three very different types of diffractometer 

have been used: 

The RIGAKU AFC6S 

The RIGAKU 4 circle diffractometer27 has a point detector. The crystal can be rotated 

to almost any given orientation by movement of three different angles: 

<p - rotates the crystal on the goniometer head, 

x- rotates the goniometer head about a vertical circle, 

ffi -rotates the x circle with respect to the X-ray beam, 

which together with 28, the circle that carries the detector and allows the detector to 

move relative to the incident X-ray beam, give the four circles of the machine's name. 
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The use of the four circle geometry means that any diffraction peak can be brought to lie 

on the point detector and hence recorded. At the start of the experiment the detector 

scans through a zig-zag pattern and records the first ten peaks found randomly. The 

recorded angles of these peaks are used to determine the unit cell, this is then checked 

against the next ten peaks found. This information is enough to allow the orientation 

matrix to be determined and therefore the positions of the rest of the peaks calculated, 

the crystal and detector can then be driven to the correct orientation to allow individual 

measurement of each peak in the main data collection. 

The Rigaku diffractometer used in the experiments discussed here has an X-ray tube 

with a copper target providing X-rays with a mean wavelength of 1.54178A. Copper 

radiation has the advantage of being relatively intense, but also has disadvantages such 

as strong absorption by the heaver elements. 

mounted and q> circle. 

Figure 2.8: The Riga!.:u AFC6S diffractometer. 

The SMART 

The SMART-1000 (Siemens SMART Version 4.050 (Siemens Analytical X-ray 

Instruments, 1995)i8 is a newer machine than the Rigaku and has an 'area detector'. 
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The Smart diffractometer used in the experiments discussed here has an X-ray tube with 

a molybdenum target providing X-rays with a mean wavelength of 0.71073A. 

Molybdenum radiation is better for the heaver elements since it does not have the 

absorption problems of Cu radiation, and the shorter wavelength can give rise to higher 

resolution data. 

Crystal 
mounted on 
goniometer 
head 

Figure 2.9: The SMART diffractometer. 

SXD- Single Crystal Neutron Diffractometer 

Cooling system. In 
this picture the 
system in use is the 
HELIX32 extra low 
temperature helium 
gas cooler. 

Incident 
X-raybeam 

For the neutron diffraction experiments the diffractometer used was SXD at ISIS29
. 

SXD has a geometry that is similar to that of the SMART-CCD and has 3 large area 

detectors (currently being upgraded to 11 slightly smaller detectors to give full coverage 

of reciprocal space) around the crystal allowing many data to be collected 

simultaneously. Unlike all the other machines described above that rely on a beam of 

monochromatic radiation, SXD is a time of flight machine. The crystal is subjected to a 

pulse of white radiation (i.e. a wide range of wave lengths) the arrival time of each 
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neutron at the detector IS directly related to its wavelength. This adds an extra 

dimension to the data, each peak is defined in terms of position, intensity and 

wavelength as usual, except the wavelength is now a variable giving access to more of 

reciprocal space in each frame of data recorded. All SXD experiments were carried out 

in collaboration with Dr C.C.Wilson and Dr D. Keen. 

§et-up of the experiments 

The crystals for X-ray experiments were either mounted on a glass fibre or a hair using 

either 'Araldite' epoxy resin, or a drop of oil (standard motor oil) frozen solid in the 

cold gas stream, to hold the crystal firmly in place. 

A suitable crystal was chosen: a suitable crystal is a single crystal, one that is not 

twinned, cracked or split. This can be checked by rotating the crystal while viewing, 

using a microscope, under two, crossed, polmising filters; the crystal should undergo 

sharp uniform extinction. In many cases it is possible to solve data from a twinned 

crystal, but the results are rarely as good as would be obtained from a single crystal. 

The X-ray beam used was collimated to approximately 0.8mm in diameter on both 

machines. The crystal had to be in the very centre of the beam where the X-ray 

intensity was expected to be uniform, therefore a crystal of less than 0.5 mm in any 

dimension was used. If the crystal was too big, it was cut to size using a very sharp 

razor blade. 

For a neutron experiment the crystal needs to be much larger, in the order of several 

mm3
. Obtaining crystals of this size is often the limiting factor in a neutron experiment. 

The crystals were mounted by attaching them using a small strip of aluminium tape onto 

the tip of an aluminium pin. 

If possible the crystal should be approximately equal size in all directions, pmticulm·ly 

since the incident X-ray beam undergoes absorption by the crystal, which depends on 

the path length in the crystal. This absorption reduces the intensities recorded such 
that:22-25 
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where: I =intensity of the X-rays recorded 

I0 =intensity of incident beam 

Jl = linear absorption coefficient dependent 

on the crystal 

t = path length of beam through crystal 

The error due to absorption can be modelled and the data adjusted to correct for the 

effects of X-ray or neutron absorption. 

The Cooling systems 

Cooling the crystal often leads to improved results since when the atoms are vibrating 

less, the atomic positions can be better defined and give rise to higher intensity data. 

The cooling system on both X-ray diffractometers was the Oxford Cryosystem Cold N2 

gas cooler30. This uses a stream of cold nitrogen gas flowing over the crystal to cool it. 

Using a nitrogen cryostream the crystal can be cooled down to temperatures as low as 

90K, however good temperature stability is rarely achieved below lOOK. 

The cooling system on the neutron diffactometer was a Displex system31 . This uses a 

closed cycle refrigerating system to cool, by conduction, the metal pin on which the 

crystal is mounted, which means that the crystal is also cooled down to the same 

temperature. The pin and crystal are enclosed inside a metal can, under a vacuum. This 

can means that centering the crystal can be a problem, and flash cooling is not possible, 

however the Displex can cool crystals down to temperatures as low as 9K. 

The HELIX cryosystem32 is an attempt to combine the ease of use of the cryostream 

with the greater temperature range of the Displex. The HELIX uses a Displex like 

refrigerating system to cool a stream of helium gas which then, like the cryostream 

system flows over the crystal to cool it. The HELIX can reach temperatures as low as 

25K. 

In all the experiments described here the data were integrated using the SAINT+ NT 

program33, the data prepared using the XPREP program34 the initial trial structure was 

determined using the SHELXS-97 (Sheldrik, 1990)34 and the refinement carried out 

using the SHELXL-97 (Sheldrick, 1997)34, the molecular graphics were generated using 

SHELXTL (Sheldrick, 1998)34. 
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2.5 Interpretation of the Results 

It is very impmtant to remember that the final stmctural solution is still only a model. 

The accuracy of the model is given by the Rl and wR2 values, which give an indication 

of how similar the stmcture factors calculated from the model (Fe) are to the 

experimentally derived stmcture factors (Fo), more precisely: 

Rl = L IIFoi-IFcll I L IFol 

and wR2 = {L[w(Fo2
- Fc2

)
2

] I L [w(Fo2
)

2
]} 

112 

It is always important to think about how these values are obtained. For a compound 

where most of the X-ray diffraction is arising from a heavy metal atom, which is well 

defined in the model, good Rl and wR2 values may be obtained despite the fact the 

lighter atoms are only poorly defined. The use of restraints and constraints can help to 

force the model to take a more chemically and physically logical form, usually with 

very little effect on the accuracy of fit to the experimental data. However, care must 

always be taken not to force the model to take some preconceived form that is not 

accounted for in the data. 

2.6 The Cambridge Structural Database 

Of all the various databases of stmctural information available, the Cambridge 

Stmctural Database6 is the most suitable for wide ranging searches of intra and 

intermolecular geometry. 

The database aims to contain information from of every published stmcture, the 

information is usually obtained from the CIF35 file. The current release has well over 

245,000 entties. For each entry vatious levels of information are available, from 

publication data, text such as chemical name and formula, cell size, experimental 

information, to 2-D stmctural diagrams and, wherever available, the 3-D 

crystallographic model. 

A search can be carried out using the 'Quest' search program which allows a search or 

combination of searches to be carried out on any or all of these levels. For searches 

involving numerical output such as intra and inter-atomic distances and angles etc. the 

statistical program 'Vista' can be used to analyse the data and generate graphics. Very 

complicated analyses may require the data to be exported to other packages such as the 

SPSS program Sigmaploe6
. 
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Chapter 3 : Furcation in Hydrogen 

Bonds 

3.1 Introduction 

An n-furcated hydrogen bond is one where the hydrogen donor or acceptor is 

simultaneously involved in more than one hydrogen bond. Such systems are sometimes 

referred to as 'multi-centred hydrogen bonds' or even 'chelated hydrogen bonds'. Bi­

furcated hydrogen bond motifs are found in both small molecule crystal structures, and 

in protein structures1,2, and can be seen to play an important role in both. It has been 

suggested that in certain types of structure such as carbohydrates, nucleosides and 

nucleotides, where the number of hydrogen bond acceptors exceeds the number of 

hydrogen bond donors, up to a quarter of all the hydrogen bonds are bi-furcated 1. 

Although there are well documented examples of individual cases of crystal structures 

in which such systems appear3
.4'

5
, and even some detailed analysis of specific types of 

bi-furcated hydrogen bond motifs6
·
7

·
8

, there is very little systematic knowledge about 

these systems. 

Bi-furcation of the donor: 

R'----H: 
, , 

... ... 

, R" 

... 
R' is the H-donor (D) 'R"' 
R", R'" are the acceptors (A) 

Bi-furcation of the acceptor: 

... H--R" 
... 

R' .. .. .. 
.. ... H--R'" 

R' is the H-bond Acceptor (A) 
R", R'" are the H-Donors(D) 

Figure 3.1: The bi-furcation motif 
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3.2 Bi=Furcated Hydrogen Bonds 

Here a survey of n-furcated donor systems found in the Cambridge Structural Database9 

has been carried out and a detailed study made of bi-furcation of hydrogen donor 

systems where the donor is oxygen or nitrogen. The aim being to try and establish some 

of the parameters of the system, from simple frequency of occurrence information, to 

detailed geometric parameters. 

.. .. A2 D,AI,A2=Nor0 
D is the H-donor 
A I and A2 are the acceptors 

Figure 3.2: Schematic of a bi-furcated hydrogen bond. 

There are many interesting questions that could be asked when trying to establish 

patterns and parameters within the data. The main questions that are considered here 

are; what are the effects of the different H-donor atoms (i.e. oxygen and nitrogen) on the 

frequency of occurrence and the system geometry, and does whether the hydrogen 

bonds are intra or inter molecular have an effect on the frequency of occunence and on 

the system geometry. 

For the first question the data can be considered in 3 different groups: 

a) All the data, i.e. where the H-donor atom is either nitrogen or oxygen. 

b) Where the H-donor atom is nitrogen. 

c) Where the H-donor atom oxygen. 

To answer the second question the data must be classified into the following systems 

depending on whether the various relationship between the hydrogen donor, D, and the 

acceptor molecules, A1 and A2, are intra molecular or inter molecular: 
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Case I) D-A 1=Inter, D-Az=Inter and A1-A2=Inter ~ 

~~A, 
~ 

~ 

(hydrogen bonds occur between 3 molecules). D H: 
' ' ' ' ' 'A2 

Case II) D-A 1=Inter, D-A2=Inter and A1-A2=Intra ------) (hydrogen bonds occur within and between 2 D H,',,, 

molecules) ',A2 

Case IH) D-A 1=Intra, D-A2=Inter (hydrogen bonds occur ~A, 
within and between 2 molecules) 

D H, 
' ' ' ' ' 'A2 

Case IV) D-A 1=Intra, D-A2=Intra (both hydrogen bonds ~A) occur within 1 molecule) 
D H, 

~-A, 

Case I, where the donor and both acceptors are all from different molecules, can be 

considered as the most general case, since, as far as is possible, there are no pre­

imposed geometric restraints. Case IV is the most restrained case, and it might be 

expected that the occurrences and geometry of this case will be very dependent on the 

particular molecule type. 

3.3 Experimental 

Hydrogen bonded systems with a bi-furcated donor were studied. To simplify the 

analysis, all systems where the n-furcation is greater than two, i.e. tri-furcated, tetra­

furcated, etc. have been removed from the data sets. 

In all cases, the October 1999 release of the Cambridge Structural Database9 (207506 

entries) was searched. 

The search routine was carried out using the program Quest3D, using non-bonded 

contact criteria of H ... A distance limit of 2.6A, this is the same limit used in a study on 

bi-furcated hydrogen bonds of the type where one bond is intramolecular, that was 

carried out as part of a wider study of intramolecular hydrogen bonded motifs by Bilton 

et al. 10
. This limit was chosen after careful examination of histograms of intra and inter 

N/0-H ... N/0 hydrogen bond distances 10
'
11

'
9

. When this limit was extended the results 
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obtained did not alter. Graphs were produced using the CSD program Vista and the 

SPSS program SigmaPiot12
. 

Only organic structures with an R factor :::; 7.5%, that exhibit no disorder, are not 

polymers, that are error free at 0.05A level, have 3-D coordinates, and have chem/cryst 

connectivities which match, were accepted. All hydrogen atom positions were 

recalculated to give neutron-normalized positions. 

For the analysis, the two hydrogen bonds were distinguished from each other by length 

and separated into a shmter (S) and a longer (L) bond. Thus the bonds lengths are 

tabulated as dL and dS and the corresponding angles as aL and aS. The distance and the 

angle between the two acceptor molecules, A 1 and A2, are designated d3 and A3 

respectively. DP is the perpendicular distance of the hydrogen atom out of the 

donor/acceptor plane. In the cases where the hydrogen bonds are intramolecular or the 

A1 and A2 are part of the same molecule, the number of covalent bonds between the 

intramolecular link is given by the path length: 

Pathl is the number of covalent bonds between the hydrogen and A1 the 

acceptor of the longer hydrogen bond. 

Path2 is the number of covalent bonds between the hydrogen and A2 the 

acceptor of the shorter hydrogen bond. 

Path3 is the number of covalent bonds between A 1 and A2 the two acceptor 

atoms. 

dL' , 

aS 

Path 2 

, , 
A 

Path 3 

Figure 3.3: A scheme to define the angles, distances analysed in the bi-furcated systems. 
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3.4 Clusters and Unavoidable Bias Within the CSD 

In the following cases (especially in case IV) peaks and clusters in the data are often 

seen superimposed on the distribution seen for the general case. Closer analysis often 

revealed these clusters to be groups of chemically similar molecules. Certainly, the 

parts of the molecules related to the bi-furcated moiety were often identical within a 

data cluster. This is an example of the kind of bias that can occur even within as large a 

data set as is found in the CSD; where a family of molecules is of particular interest, or 

is especially easy to crystallise, and therefore extensively studied, many occurrences 

may be found within the database. Alternatively, a family of compounds that is very 

hard to make or crystallise may have relatively few entries in the database. It is worth 

remembering that the CSD is not a database of all possible compounds but only those 

deemed worthy of study or where study has been possible. Thus bias will occur within 

the data and needs to be allowed for. 
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Chapter 4 : Bi= Furcated Hydrogen 

Bonds 

4.1 Frequency of Occurrence 

A simple way to establish an idea of how important an interaction is, as well as to get a 

general feel for the factors that influence the interaction, is to look at the simple statistics 

of how often the interaction occurred i.e. the frequency of occurrence. For instance: 

Is the donor atom more likely to be oxygen or nitrogen and in what type of situations is 

one type of donor found more commonly than the other? 

Given that one intra molecular hydrogen bond is found, what is the frequency with 

which a second intra molecular hydrogen bond is found from the same hydrogen donor? 

The frequencies of occurrence for the different types of bi-furcated hydrogen bonds are 

given in the tables below. The data is given as the number of occurrences of each type 

(in terms of donor atom and intra- and intermolecular hydrogen bonds) of bi-furcated 

hydrogen bonds, and what percentage this is of the total number of hydrogen bonds of 

this type found in the database (i.e. the total number of mono and bi-furcated hydrogen 

bonds. Tri-furcated systems and above have been excluded). This percentage gives a 

better indication of what is the likelihood of a bi-furcated bond forming, given that one 

hydrogen bond at least is found. 

In the tables below there is one slightly strange artefact of the analysis method used, this 

is that the percentage of hydrogen bonds which fit the case m motif (i.e. one intra- and 

one intermolecular hydrogen bond) varies depending on whether they are considered in 

relation to the total number of intra- or the total number of intermolecular hydrogen 

bonds. That is to say, the probability of an intramolecular hydrogen bond being found 

given that an intetmolecular hydrogen bond has been found is different to the probability 

of an intermolecular hydrogen bond being found given that an intramolecular hydrogen 

bond has been found. 

The results for these questions are given in the following tables: 
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ii 

Donor atom :;;;: Nitrogen or Oxygen 

.Accepter atoms= Nitrogen or Oxygen 

· ~ . Total no of mono-, and above, furcated hydrogen bonds 74505 
-

Total no of bi-, and above, furcated hydrogen bonds 12857 

Total no of tri-, ~nd above, furcated hydrogen bonds 1097 

Table 4.1: Overall statistics ofthe furcation of hydrogen bonds in CSD. 

DOf1Qr atow = Nitrogen or Oxygen 
,,, _, .-.<·:,_ -<:-,,);..~ d ; 

Acce,~ioi:latoms =Nitrogen m Oxygen 

Total no of hydrogen bonds 
Intra= 12190 Inter = 48258 

(mono- or bi-furcated) 

~ Intra Inter 
H 

Intra 1260 10.3% 4503 9.3% 

Inter (acceptors on same molecule) - 2218 4.6% 

Inter (acceptors on different molecule) 4503 36.9% 958 2.0% 

Table 4.2: Hydrogen bond frequencies for case 1 (inter: inter), case If (inter: inter A-A intra), case Ill 

(inter: intra) and case IV (intra: intra) for all the data . 

Donor: atom = Nitrogen 

Acceptor atoms = Nitrogen or Oxygen 

Total no of hydrogen bonds 
Intra= 6652 Inter = 22087 

(mono- or bi-furcated) 

~A Intra Inter 
H 

Intra 972 14.6% 2274 10.3% 

Inter (acceptors on same molecule) - 1147 5.2% 
-

Inter (acceptors on different molecule) 2274 34.2% 590 2.7% 

Table 4.3:Hydrogen bond frequencies for case I (inter: inter), case 11 (inter: inter A-A intra), case Ill 

(inter: intra) and case IV (intra: intra) for nitrogen as donor atom. 
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Donor atom = Oxygen 

Acceptor atoms= Nitrogen or Oxygen 

Total no of hydrogen bonds 
Intra= 5538 Inter = 26171 

(mono- or bi-furcated) 

~ Intra Inter 
H 

Intra 288 5.2% 2229 8.5% 

Inter (acceptors on same molecule) - 1071 4.1 % 

Inter (acceptors on different molecule) 2229 40.2% 368 1.4% 

Table 4.4: Hydrogen bond frequencies for case 1 ( illler: inter), case Jl (inter: inter A -A intra), case 1 Jl 

(inter: intra) and case IV (intra: intra) for oxygen as donor atom. 

The first impmtant fact to note is that, overall, n-furcation is more common than might 

be expected given the rarity with which such interactions are identified and discussed in 

the literature. As can be seen from Table 4.1 around 20% of all hydrogen bonds are 

furcated*. 

It can be seen that nearl y the same trends are followed by both the nitrogen and the 

oxygen donors. In all cases where there is at least one inter hydrogen bond case Ill (the 

inter:intra case) is the most common, then case IT (inter:inter, acceptor on the same 

molecule) , then case I (inter: inter, acceptors on different molecules). 

The notable difference between the nitrogen and oxygen cases occurs in the frequency 

of occunence of case IV (the intra:intra case) , there ar·e many more examples of 

intra:intra bi -furcated hydrogen bonds when nitrogen is the hydrogen donor than when 

oxygen is the hydrogen donor. As will be seen later in Chapter 8, a large proportion of 

the intra :i ntra bi -furcated hydrogen bonded systems occur within peptide chains where 

the donor atom is nitrogen. This accounts for the greater proportion of donor N than 

donor 0 in the [intra: intra] case. 

So in answer to the first question asked at the beginning of the chapter (namely is the 

donor atom more likely to be oxygen or nitrogen and in what type of si tuations is one 

• Note: In the genera l stati stics a simple count of bonds has been carried out, i.e. all bi-furcated systems 
contribute two hydrogen bonds each to the count of 'Total number of mono-, and above, furcated H­
bonds'. Similarly all trifurcated systems contribute three bonds to the count of 'Tota l number of mono­
and above, furcated H-bonds' , and two bi -furcated motif counts to the 'Tota l number o f bi - and above, 
furcated H-bonds'. 
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type of donor found more commonly than the other.) it can be seen that the identity of 

the hydrogen donor atom (within the bounds of this data set) has very little influence on 

the frequency of occurrence. Bi-furcated hydrogen bonds are almost equally likely for 

systems with an oxygen donor as for those with a nitrogen donor atom. 
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Chapter 5 ~ Case l 9 the Generai Ca§e 

Case I, where the donor (D) and both acceptors (A 1, A2) are from different molecules, 

can be taken to be the most general case, since, as far as is possible, there are no pre­

imposed geometric restraints such as would be found in an intramolecular case where 

two or more of the H-donor/acceptors are constrained by their positions within the same 

molecule. 

aL,' 

dL' 
' ' 

D HA3 

aS 
\ 

\ 

' 

Figure 5.1: Scheme to define angles and distances for the case /motif 

Interestingly, there are very few symmetrically bi-furcated hydrogen bonds. Instead, the 

system tends to consist of one shorter and more linear bond (S) and another longer bond 

with an angle tending to 120° (L). In Graph 5.1 and later in Graph 5.6 symmetric bonds 

would lie on the diagonal line described by the equation x=y. By definition dS ts 

shorter than dL so all the data points in Graph 5.1 must lie on or above the x=y line. 
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dS 

Graph 5.1: dS (A) versus dL (A) for case I all data. 

In most cases the bonds can be considered as a primary interaction (S) that exhibits all 

the usual patterns associated with a hydrogen bond, with the shorter/stronger bonds 

tending towards linearity, and the longer bonds being less linear. The familiar patterns 

can be seen in Graph 5.5. The secondary interaction (L) is still a hydrogen bond in its 

own right but loses out to the primary interaction in terms of geometry, the usual pattern 

is no longer seen in the distance versus angle plot, the length/angle correlations is much 

less evident and it can be seen that the limit of 2.6A is an arbitrary cut off point of this 

interaction. See Graph 5.4 for geometry of L and Graph 5.1 and Graph 5.6 for 

relationship between S and L. 
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Graph 5.2: dL (A) for all data. 
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Graph 5.4: dL (A) versus aL (0
) for case I all data. 
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Graph 5.3: dS (A) for all data. 
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Graph 5.5: dS (A) versus aS (0
) for case I all data. 
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Graph 5.6: aL (0
) versus aS (0

) for case I all data. 

In Graph 5.6 it can be seen that there is a correlation between the angles aS and aL, with 

a large angle aS generally corresponding to a small angle aL and vice versa. This can 

be attributed to acceptor-acceptor repulsion , i.e. there is a minimum distance (and 

therefore angle) between the acceptors . It is worth noting from construction in Figure 

5.1 that for a planar system: 

so 

aS + aL + A3 = 360 

aS + aL = 360 - A3 

where A3 is the angle between the acceptors. 

This point is further confirmed by the fact that there are no data points where aS + aL > 

295° ie A3 < 65° (in fact the majority of the data lie below the aS + aL = 275°) this 

corresponds to an acceptor-acceptor distance in a planar system of about 2.47 A. Most 

systems are clustered around an optimum acceptor-acceptor angle (A3) of about 100° 

however some systems show much larger acceptor-acceptor angles. 

All these hydrogen bond systems tend to be fairly planar though not necessarily 

completely flat , a plot of DP - the distance of the hydrogen from the donor acceptor 

plane (defined by D, A 1, A2) is shown in Graph 5.7 and the sum of all the angles 

(assumed to sum to 360° in analysis above) in Graph 5.8. 
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Graph 5.7: Distance (A) of hydrogen atom out of 
donor acceptor plane. 
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Graph 5. 8: Sum of aS, aL and A3 angles (0
) . 

5.1 Differences Between Oxygen and Nitrogen as the 

Hydrogen Donor in the General Case (Case I) 

There are some differences between the picture seen where oxygen is the hydrogen 

donor atom (D) and where nitrogen is the donor atom (D). As well as there being 

overall fewer occurrences of the case where D=O there also tends to be a greater 

divergence within this data, indicating weaker correlations between dS and aS and aL 

and elL hydrogen bonds. 

There are also slight differences in the data for the longer hydrogen bond elL (See Graph 

5.9 and Graph 5.10 for the histograms of elL for D=N and D=O respectively). In the 

case where D=O the graph shows a steady increase of frequency with length until the 

data cut off point (2.6A). In the case where D=N the increase starts more sharply then 

appears to be steadying off. The apparent peak at 2.43A is a function of the bin size 

used rather than any real feature of the data. 
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Graph 5.9: dL (A)for case I where the hydrogen 
donor is nitrogen. 
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Graph 5.11: dL (A) versus aL (0
) for case I where 

the hydrogen donor is nitrogen. 

N 
so,---,---.---.---.---~--~-----. 

40 

30 

20 

10 

190 200 210 220 2.30 240 2 50 2.60 
dl 

Graph 5.10: dL (A) for case I where the hydrogen 
donor is oxygen. 
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Graph 5.12: dL (A) versus aL ( 0
) for case I where 

the hydrogen donor is oxygen. 
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Graph 5.13: dS (A) versus aS ( 0
) f or case 1 where 

the hydrogen donor is nitrogen. 
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Graph 5. 14: dS (A) versus aS ( 0 )for case I where 

the hydrogen donor is oxygen. 

Once we start considering cases which diverge from the very general case I, i.e. cases 

where only one or two molecules are involved in the system and there are either intra 

hydrogen bonds or both acceptors come from the same molecule, then we immediately 

have another parameter to consider; that of path length between the donor and acceptor 

moieties (D . .. A) or acceptor-acceptor moieties (A 1-A2). All , or nearly all of the 

variations from the distribution pattems seen for the general case I (above) are directly 

related to path length , since this provides an intramolecular constraint on the hydrogen 

bond geometry. 
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Chapter 6 : Case 11, Where Both the 

Acceptors are Part of the Same Molecule 

When considering the case where both acceptors are part of the same molecule (case II) 

there is an extra parameter that needs to be considered; the acceptor-acceptor path 

length, path 3. Thi s parameter wi ll be seen to have a very important impact on the 

system geometry. 

dL' 
' ' 
A 

Path 3 

Figure 6. 1: Sch eme to defin e th e angles and distances fo r the case llmotif 

A---A Path Length (Path 3) Frequency 

as no. of Covalent Bonds 

1 208 

2 783 

3 904 

4 254 

5 55 

6 8 

7 2 

8 2 

9 0 

10 2 

Table 6. 1: Number of occurrences of different numbers of bonds in Path 3. 
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There are very few examples with a long acceptor-acceptor path length, only 3% of all 

occurrences of case II have a path length greater than 4 bonds. 

Can an acceptor-acceptor path length of 1 bond really count as a bi-furcated system? 

Probably not, the second acceptor position is far more constrained by the molecular 

geometry than it is ever going to be effected by the potential hydrogen bond. For 

instance, a short hydrogen bond to a nitrogen of a N=N group could easily bring the 

second nitrogen into close enough contact to the hydrogen donor to be categorized as a 

hydrogen bond by the criteria used in this study. However, for consistency, the data for 

path lengths of 1 has been included in this analysis. 

N4* 

~ 

Nl* 

fl"'o 

N2 NJ -
A 

N4 " 

Figure 6.2: Two examples of case 1/ bi-furcated hydrogen bond structures where the A ... A path length is 
1, examples have been taken from the CSD, ref codes AMAP1Z13 and VIDYOV14 (*indicates 

atom that is part of a symmetry generated molecule). 

59 



Part I: Bi-furcated Hydrogen Bonds ___ _ 
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Graph 6.1: aL (0
) versus aS roJ for case I and If, all data. Data coloured by acceptor-acceptor path 

lengths. 

As in case I there is still a distinct preference for a non-symmetric geometry, this result 

has been studied in detail by All en et al. 6 and Gorbitz and Etter8
, for the 'path length of 

2' systems where the A-A moiety is the N02 group and the carboxylate group 

respectively. 

In Graph 6.1 it can be seen that there is a strong correlation between the aL vs aS 

distribution and the acceptor-acceptor path length, as the path length decreases, the 

angles (both dS and dL) tend more towards 180°. This is logical; in case I it was seen 

that there is a preferred AHA angle (A3) corresponding to a preferred acceptor-acceptor 

distance. In this case (II) the acceptor-acceptor distance is restrained by the 

intramolecular path length between the acceptors. As the path length increases the 

distance between the acceptors increases, the hydrogen moves into the gap between the 

acceptors and the sum of aS and aL decreases (see Figure 6.3). Once the acceptor­

acceptor path length becomes greater than 4, the angular distribution occupies the same 

region of the graph as the examples of case I (blue-grey in Graph 6.1) where the 

acceptor-acceptor path length could be considered as infinite. 

For each A---A path length data set there is a cut off line at aS+aL = 360- x, where xis 

a set constant value for each different path length and equal to the minimum possible 
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value of A3 (i.e. the closest possible approach of the A1 to A2) given the path length 

restraints of the system. 

,A 

• A .. A path length of 1 o-w',, I 
••• ••• A 

,A 

0 A .. A path length of 2 D-<·,) 
'A 

A 

0 A .. A path length of 3 D-<:') 
'A 

A 

0 A .. A path length of 4 D-<::) 
J\ 

A , , , , 
0 A .. A path length infinite 

, D-H \ 
\ 

\ 
\ 

\ 

A 

Figure 6.3: Increasing AHA and decreasing DHA angles with increasing acceptor-acceptor path length. 

Only path lengths of 1 don't fit this analysis, some lie in the expected position where the 

sum of aS and aL equals 180-A3 (where A3 is the AHA angle). Others lie on a line 

with a gradient in the opposite direction cutting through the rest of the data. These data 

points have a sum of aS + aL that gives an range of A3 values all much larger than 

should be possible for acceptors constrained to be one bond length apart. One basic 

assumption of the acceptor repulsion analysis is that the acceptors lie on either side of 

the hydrogen, so if aS is measured clockwise from the D-H bond, aL is measured anti­

clockwise (or vice versa), see Figure 6.4:a). However for an A---A path length of one, 

the two acceptors are bound so close together that it is possible for them both to attack 

the hydrogen from the same side (see Figure 6.4:b)) this means that for the acceptor 

repulsion analysis equations to work, one of the angles, a must be taken to be 360-a' 

(where a and a' is either aS oraL). 
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Figure 6.4: a) geometric layout assumed for acceptor repulsion analysis, b) geometry of some of the 
acceptor-acceptor path length, path 3 = 1 systems. 

This correlation with the path length is only seen for angular distribution not for the 

length distribution. 
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. . :, "· ' . . .., . . , .. 

I 
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dS 

Graph 6. 2: dL (A) versus dS (A) for case II all data. Data coloured by path lengths. 

The general shape of the histograms of dL and dS (Graph 6.3 and Graph 6.4) remains 

unchanged from case I (Graph 5.2 and Graph 5.3). For dL the frequency increases as 

dL tends to 2.6A, however, the increase is less steep than for case I resulting in a shorter 

mean dL. In dS as well, the mean is shifted giving shorter average bond lengths for 

case II. This inclination towards shorter bond lengths for case 11 is probably simply a 

result of a reduction in the steric hindrance effects when trying to fit 2 molecules 
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together instead of 3, allowing more favourable dL and dS angles and stronger 

hydrogen bonds. 
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Graph 6.3: dL (A) for all data. 
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Graph 6.5: dL (A) versus aL (0 )for all data. 
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Graph 6.4: dS (A) for all data. 
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Graph 6.6: dS (A) versus aS (0 )/or all data. 

The separation of the data for case li into D=N and D=O does not reveal any major 

changes resulting from the identity of the H-donor. 
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Chapter 7 : Case Ill, Where Q,ne of the 

Hydrogen Bonds is an Intramolecular 

Hydrogen Bond and the Other is 

Intermolecular 

There are two ways to analyse this data, either by defining the hydrogen bonds in terms 

of length, i.e. dL and dS as has been done for the previous cases, or in terms of intra and 

intermolecular hydrogen bonds. The latter method gives the clearest analysis and is 

used here. In fact, in over three quarters of the hits the intra hydrogen bond is the longer 

one, i.e. dL. 
A 

' 
dlntev' 

' ' 

Path I 

Figure 7.1: Scheme to define the angles and distances for the case Ill motif 

The number of bonds in path 1 and the corresponding frequency of hits is given in 

Table 7.1. An intramolecular bond path length of 4 is by far the most common motif for 

this case, perhaps because the geometry of this motif puts the hydrogen and acceptor in 

close contact resulting in a stable 5 membered ring. A path length of 5 gives a 6 

membered ring. There are very few cases with a intra bond path length of greater than 5 

(less that 2% of all examples of this type of system) presumably the steric bulk of 

systems with a path length greater than 5 tends to restrict the approach of a second 

acceptor. 
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Path length No. where No. where Total cases per 
dL=Intra dS=Intra path length 

4 3142 514 3656 

5 271 517 788 

6 23 20 43 

7 2 9 11 

8 2 1 3 

9-12 0 0 0 

13 1 0 1 

14 0 1 1 

Table 7.1: Number of occurrences of different numbers of bonds in the intramolecular path, Path 1. 

A path length of 4 gives a system where the possible hydrogen bond length and angles 

for the intra hydrogen bond are restricted to a natTow range (intramolecular hydrogen 

bond angles of between 80° and 120°). It must be pointed out, however, that a system 

such as this is sensitive to the D-H vector direction, that is to say that the practise of 

generating the hydrogen in a geometrically sensible, but possibly not physically 

accurate, position may have a strong influence on both the angle and distance. What is 

interesting to note is that the hydrogen bond length and angles for the intermolecular 

hydrogen bond are also restricted to an only slightly broader range. 

As has been seen previously, there is a limit to the size of the AHA angle (A3). In this 

case A3 is always greater than 70°, in fact there are so few data points with A3 between 

70° and 80° that this limit could be taken as 80°, i.e. the sum of aS and aL or alntra and 

alnter must be less than 290° (for A3> 70°) or 280° (for A3>80°), no data is seen above 

this line (see Graph 7.1). This is a closer A---A distance i.e. smaller AHA angle than is 

seen for case I and fits the data limits for path lengths of 3 or 4 for case II. Once again 

this can be attributed to the fact that two molecules can fit together more easily than 

three. 
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Graph 7. 1: alntra (0
) versus a/nter (0

) for case 111 all data. Data colour coded by intra path length. 

There is a strong correlation between the intramolecular bond length and the 

intramolecular bond angle for an intramolecular path length of 4, as the angle increases 

the bond length decreases (Graph 7.2). This trend continues for the examples with an 

intramolecular path length of greater than 4, with the increased path length allowing the 

acceptor to reach greater angles and correspondingly shorter distances. In general the 

intramolecular hydrogen bond is the longer bond when the path length is equal to 4 and 

the shorter bond for path length greater than 4 (see Table 7.1 ). 
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Graph 7.2: dlntra (0
) versus alntra (0

) for case Ill all data, colour coded by intra path length. 
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Graph 7. 4: dlntra (A) for all data. 
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Chapter 8 : Case IV, Where Both of the 

Hydrogen Bonds are Intramolecular 

Hydrogen Bonds 

' elL,' 
' 

Path 3 

Path 2 

Figure 8. 1: Scheme to define the angles and distances for the case IV motif 

Of the 1260 occunences of this type of bond nearly two thirds can be attlibuted to just 

five path length combinations: 

H---A path lengths of 4 bonds and 4 bonds and an A---A path of 6 bonds (103 

occunences ), 

H---A paths of 4 and 5 bonds and an A---A path of 1 bond (147 occunences), 

H---A paths of 4 and 5 bonds and an A---A path of 7 bonds (135 occunences), 

H---A paths of 5 and 5 bonds and an A---A path of 8 bonds (131 occmTences), 

H---A paths of 4 and 9 bonds and an A---A path of 5 bonds(302 occutTences). 

These are outlined in red in the followin g table of all the path length combinations 

found for case rv data. 

68 



___ Part 1: Bi-furcated Hydrogen Bonds __ _ 

Path Path Path 
No. 

1 2 3 
Path Path Path 

No. 
1 2 3 

Path Path Path 
No. 

1 2 3 
4 4 2 3 5 6 9 5 4 12 8 19 

4 4 3 1 6 5 9 4 12 4 8 1 

4 4 4 9 5 6 1 21 12 4 14 2 

4 4 5 1 6 5 1 1 8 6 2 2 

4 4 6 103 5 6 5 2 6 8 2 1 

4 5 1 147 6 5 5 1 7 7 2 1 

4 5 2 2 6 5 2 1 7 7 10 1 

4 5 3 6 6 5 8 1 5 10 5 2 

5 4 3 1 4 8 4 37 4 13 9 1 

4 5 4 1 8 4 4 2 4 13 10 1 

5 4 4 1 4 8 5 2 4 13 11 1 

4 5 5 5 8 4 5 2 13 4 9 1 

5 4 5 3 4 8 8 1 6 9 3 5 

5 4 6 1 8 4 8 1 9 6 3 10 

4 5 7 121 4 8 10 2 5 11 6 2 

5 4 7 14 5 7 2 3 4 14 12 1 

4 6 2 44 7 5 2 4 4 14 14 2 

6 4 2 3 5 7 3 1 6 10 4 1 

4 6 3 2 7 5 3 1 12 5 13 1 

4 6 5 1 7 5 10 1 9 7 3 1 

4 6 6 1 6 6 1 1 4 16 14 1 

4 6 7 1 6 6 2 2 4 16 16 1 

6 4 7 2 4 9 5 277 4 16 18 2 

4 6 8 17 9 4 5 25 10 7 3 1 

6 4 8 2 4 9 11 1 7 10 3 2 

5 5 2 10 4 10 6 5 14 5 9 1 

5 5 3 2 10 4 6 1 5 14 11 1 

5 5 4 3 10 4 10 1 4 18 6 1 

5 5 6 3 5 8 3 21 7 11 6 1 

5 5 7 2 8 5 3 17 11 7 6 1 

5 5 8 131 6 7 7 2 4 21 23 1 

4 7 3 52 7 6 7 1 8 11 3 1 

7 4 3 10 4 11 7 7 13 14 1 1 

4 7 7 4 11 4 13 1 19 20 2 1 

4 7 8 1 5 9 4 3 

4 7 9 4 9 5 4 14 

Table 8.1: Combinations of path lengths found for case IV data. 
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Looking at the geometries of these 5 groups of hits, it is clear that the hydrogen bond 

angle, Graph 8.1 (and to a lesser extent length, Graph 8.2) are closely dependent on the 

path length, i.e. the hits are tightly clustered by path length combination. 

200 
...J • All other path lengths Ill 

Path lengths of 4,4,6 

• Path lengths of 4,5, 7 
180 

Path lengths of 5,5,8 

• I • Path lengths of 4,9 ,5 .. , 
• Where path 3 = I 

160 I .. ~ .. • - .. .. .. • . . .. , . • •• • • • • • . . . • 140 • . . • . ... 
• 

120 . . 
• • • 

""' • • . ~ .... 
• • it 
··~:· , 100 • (. , ., 
' ·· .r• , ,. ·"" ... . , ., ·. · .. • 
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aS 

Graph 8.1: aL f) versus aS(0
) for case IV, all data. Colour coded by path length. 
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dS 

Graph 8.2: dL versus dS for case IV, all data. Colour coded by path length. 

Once again there is the problem of whether an A---A path length of 1 really counts as a 

bi-furcated hydrogen bond or just a feature arising from the molecular geometry. There 

are a couple of points to note about these systems; firstly the path length combination 

when path3 = 1 is nearly always 4,5, 1, and secondly, there is a strong correlation 

between the various angles and distances, this is because in such a system there is very 

little freedom of movement. 

Some of the frequently occurring path length combinations can be seen to arise from a 

specific class of compounds, for instance, most of the occurrences of the path length 

combination of 4,9,5, are for peptide chains. Equally, most of the occurrences of the 

path length combination of 4,4,6, are either also peptide chains or aza-crown ethers, and 

most of the occurrences of the path length combination of 5,5,8, occur in porphyrin 

derivatives. 
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Aza-crown ether showing the 4,4,6 path length combination 

N .. 
'' ' ' ' ' ,' \ 

N-H H-N 
' ' ' ' ' ' '' 

" N 

Porphyrin showing the 5,5,8 path length combination 

Figure 8.2: The main contributors to the 4,4,6 and 5,5,8 path length combinations. 

The fact that so many of these cases can be attributed to so few, and to such specific, 

molecular types, is a drastic example of the cluster and bias within the CSD discussed in 

section 3.4. 

In systems such as the aza-crown ether and the porphytin shown above it is clear that 

the molecular geometry is controlling the bi-furcated hydrogen bond formation not the 

hydrogen bonds influencing the molecular geometry. 

There is a tendency for the shorter hydrogen bond to have a longer path length than the 

longer hydrogen bond i.e. pathl<path2. In 847 cases the path length of the shorter 

hydrogen bond is greater than the path length of the longer hydrogen bond, in 275 the 

path lengths are equal and in only 138 cases does the longer path length correspond to 

the longer bond. In systems where the path lengths are equal, the two hydrogen bonds 

tend towards a more symmetrical system, in terms of both length and angles. 

Given these clusters dependence on molecular geometry influences rather than on 

hydrogen bond geometry influences, it is reasonable to expect that the plots of hydrogen 

bond distances and angles for each bond show the same cluster effects and to be more 
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informative about the geometric restraints of the specific molecular types that generate 

the clusters than any overall information about the expected geometry of a case IV 

system. 

N 

1.BO 

1.60 

160 1.BO 2 00 2.20 2.40 

Graph 8.3: dL (A) for all data. 
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dL 
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Graph 8.5: dL (A) versus aL (0 )for all data. 
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Graph 8.4: dS (A) for all data. 
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Graph 8.6: dS (A) versus aS (0
) for all data. 
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Chapter 9 : Conclusions 

In the introduction two mam questions were posed: 1) what are the effects of the 

different hydrogen donor atoms (i.e . oxygen and nitrogen) on the frequency of 

occurrence and the system geometry, and 2) what sort of effect does whether the 

hydrogen bonds are intra or inter molecular have on the frequency of occutTence and the 

system geometry. 

In answer to the first question, there is very little difference in the influence of the two 

hydrogen bond donors (N and 0) in such systems. Oxygen is found as the donor atom 

slightly less frequently than nitrogen, though this could be a feature of the relative 

occurrence of oxygen and nitrogen as possible donors in the database. 

In answer to the second question , when two or more of the system components (D-H, 

A1 and A2) are intramolecular, the effect of intramolecular geomettic constraints comes 

into play, affecting the range of possible acceptor-acceptor distances or restticting the 

hydrogen bond angles. The motif geometry can be traced back to the geometric 

resttictions placed on the system by the specific intramolecular hydrogen bond path 

length or the acceptor-acceptor path length. It is interesting to note that most of the 

interactions involve short path lengths of 4 or 5 bonds for intramolecular hydrogen 

bonds and 1 to 4 bonds for acceptor-acceptor path lengths , this is probably due to the 

difficulty of bending a molecule round to get longer path lengths and then fitting the 

steric bulk of the molecule around the hydrogen bond motif. There are very few 

examples of either intramolecular or acceptor-acceptor path lengths of greater than 10. 

The largest influence on the bi-furcated H-donor hydrogen bond system seems to be 

acceptor-acceptor repulsion . The preferred geometry of the system, given no other 

constraints, is to have one short fairly linear bond and the second acceptor coming in as 

close as possible to the first, allowing for acceptor-acceptor repulsions keeping the 

acceptors at an optimum distance and giving an AHA angle, A3, of about 100° in a 

planar system. Because of the constraints imposed by the position of first short and 

linear hydrogen bond, the second hydrogen bond is both non-linear (often about 120°) 

and longer. 
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Perhaps the most interesting fact to come out of this study is the degree of bias that can 

sometimes be seen in the database. This bias is most impmtant in situations like that 

seen in case IV where the constraints of a highly specific and limiting search fragment 

fits one or some of the most well studied system in chemistry (peptide chains, porphyrin 

and aza-crown ether fragments among others). Add to this the fact that by the very 

nature of the system a specific motif is likely to be restricted to only a limited range of 

possible angles and distances, the result is the very dramatic clustering of certain 

structure types seen in case IV. 
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Chapter 10: Tri-Furcated Hydrogen 

Bonded Systems 

10.1 Introduction 

I 
I 

I 

R" 
I 

R'--H--- - -R"' 
' 

\ 
\ 

R"" 

Figure 10.1: The tri-furcated motif 

Tri -furcated hydrogen bonds are a much rarer occurrence than bi -furcated hydrogen 

bonds, and are rarely identified or commented on during crystal structure analysis or 

other studies, however some studies have been canied out 1
•
15

•
16 including some novel 

'non-conventional ' tri-furcated hydrogen bonds 17•18 . 

Tti-furcated hydrogen bonded systems are much more complicated to analyse. Not only 

are there more parameters to consider but the relationships between the vmious 

distances, angles and intramolecular path lengths of the three hydrogen bonds are hard 

to illustrate using only the two dimensions of a standard graph , and the spread of the 

data points is such that '3D graphs' are hard to interpret. 

The data were obtained in the same way and with the same restraints as for the bi­

furcated system, see Section 3.3 Experimental. 
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Figure 10.2: Scheme to define the angles, distances, and intramolecular path lengths for the tri-furcated 
motif. 

In a similar manner to the bi-furcated system, the three hydrogen bonds of the tri­

furcated system have been distinguished from each other in terms of length, with the 

longer bond designated L, the mid-length bond M, and the shortest bond S. The 

corresponding intramolecular hydrogen bond path lengths are labelled Path L, Path M, 

and Path S, and the acceptor-acceptor path lengths defined as Path 1 between the 

longest and middle length bonds, Path 2 between the middle length and shortest bonds, 

and Path 3 between the longest and shortest hydrogen bonds, see Figure 1 0.2. 

10.2 Frequency of Occurrence 

Instead of the four cases seen in the bi-furcated system there are now seven cases: case 

I, two forms of case 11, three forms of case Ill, and case IV. A full description of these 

cases is given in the table below along with the number of hits for each case. 
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Donor Atom: NorO N 0 

Inter Inter Inter 307 227 80 
.A 

Inter, Inter, Inter. (acceptors from .· 
Case I D- I-( ······ A 34 24 10 

different molecules), 4 molecules 
A 

Case li a 
Inter, Inter, Inter. (2 acceptors from 

,./_..A) 
D-It ........ A 69 58 11 

same molecu le), 3 molecules 
.A 

Case lib 
Inter, Inter, Inter. (all acceptors o-•<]) 204 145 59 

from same molecule), 2 molecules 

Inter Inter Intra 225 152 73 

Case m a 
Inter, Inter, Intra. (acceptors from C..~ .. A 99 80 19 
different molecules), 3 molecules .. 

. A 

Inter, Inter, Intra (one bond intra qAJ Case m b other two acceptors from same 126 72 54 

molecule), 2 molecules A 

Inter Intra Intra 225 192 63 

Inter, Intra, Intra. (two bond intra 0 Case m c other acceptor from different 225 192 63 

molecule), 2 molecules .A 

Intra Intra Intra 86 80 6 

Case IV Intra, Intra, Intra. 1 molecule @ 86 80 6 

Total: 873 651 222 

Table 10.1: Frequency of occurre11ce for the tri-furcated system. 

It can be seen from Table 10.1 that there are far fewer examples of this type of motif 

than the bi-furcated motif. This makes the case-by-case type of analysis cmTied out in 

the previous chapters difficult, as, at least in some of the cases, there are too few data to 

achieve statistically meaningful results. For example, the very general case, case I, 

where there are no intramolecular links to influence and constrain the geometry, has 

only 34 occurrences. Th is is not unexpected, given the di fficulty of squeezing four 
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molecules together to form the motif, however it does make it impossible to draw any 

reliable conclusions about the system geometry. With the number of entries in the 

Cambridge Structural Database9 increasing at a very fast rate it makes sense to only 

carry out a very preliminary study here with a view to running a more detailed analysis 

when the size of the dataset has increased. 

Nitrogen is almost twice as likely as oxygen to be the hydrogen donor atom. This is 

different from the bi -furcated situation, where nitrogen was only slightly more likely 

than oxygen to be the donor atom. As in the bi -furcated system, case III is the form 

most commonly found , then case II, then either case IV or I. The exact order of cases 

IV and I depending on the donor atom; case IV is the more common of the two if 

nitrogen is the donor atom and it appears that case I is more common than case IV if 

oxygen is the donor (though the lack of data makes this last observation very 

unreliable). 

10.3 Tri-Furcated Hydrogen Bonds 

N 
1~.---~-------------------, 

120 

2Q • 

o~--.---~--4---~~~~~ 
1~ 1~ 1~ 200 2~ 2~ 2ro 

dl 

Graph 10.1: dL (A) for all tri-furcated systems. 
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Graph 10.2: dL (A) versus aL ( 0 )for all tri-furcated 

systems. 
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Graph 10.3: dM (A) for all tri-furcated systems. 
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Graph 10.5: dS (A) for all tri-furcated systems. 
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Graph 10.4: dM (A) versus aM ( 0 )for all tri ­
furcated systems. 
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Graph 10.6: dS (A) versus aS (0 )for all tri-furcated 

systems. 

As in the bi-furcated system the graphs coiTesponding to the longest bond show none of 

the characteristics expected for a set of normal hydrogen bonds. In the histogram of dL 

there is a steady increase till the cut off point of 2.6A and the scattergram of dL versus 

aL shows a tendency towards an angle of 100° regardless of the bond length. The plots 

for the mid and shortest bonds are much closer to those expected for hydrogen bonds 

with the bond length frequency (N) foiTning a peak with a maximum at about 2.4A for 

dM and 1.9A for dS. Similarly the scattergrams in both cases show a tendency for the 
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bonds to become more linear as the bond length decreased. In going from the longest 

hydrogen bond to the middle hydrogen bond to the shortest hydrogen bond the graphs 

become closer to what would be expected for a hydrogen bond plot. 

These graphs, especially Graph 10.6, dS versus aS show a lot of structure, in the same 

way that the graph of case IV for bi-furcated systems showed structure arising from 

clusters of similar molecules (see Graph 8.1). In the table below (Table 10.2) the data 

are separated into cases distinguished by the number of bonds that are intramolecular 

rather than intermolecular. The first row shows the plots generated by all the data 

together i.e. the same plots as Graph 10.2, Graph 10.4, and Graph 10.6 above. The 

following rows show plots generated from just one combination of inter- and 

intramolecular hydrogen bonds. In other words the plots on the first row are the sum, or 

superposition of all the other plots in that column. As with the bi-furcated system, the 

situation where all the hydrogen bonds are intermolecular is the most general case. 

However, in the all inter-graphs below it must be remembered that the data includes 

some case II type systems where the acceptors are from the same molecule. 

dL versus aL 

. ! ;11~(~~ 
J. 

" I 
' I 

1.11 ! .- ; 

··.!:--. -o:.,-:.r.-, -c..,:-::,."-, = .. ,,..-,~"-· """~·:-::!, •• . 

·. 1~:·::,t; 
I, .... r. . ~· 

J ·- - . -

Ill i _....,_ .J 
.. ~, 000 •• ~. 00110 101110 1000 ••• • •• 

dM versus aM 

_ ........ _. -~ ·. 

10.1 •• 1011 .......... 1101 
~ 

For All Data (873 hits) 

dS versus aS 

toO IODO 1100 11DO UOO 1'01 tiOO 1&0 1,.0 \CO . 
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3 Intramolecular Hydrogen Bonds (86 hits) 

Table 10.2: Distance (A) versus angle (0
) plots for all three hydrogen bonds, for each 

inter/intramolecular hydrogen bond combinations of tri-furcated cases. 

As might be expected from the bi-furcated system analysis, the degree to which the data 

points fall into clusters rather than a single distribution increases as the number of 

intramolecular bonds increases, and therefore, as the geometric constraints due to path 

length increases. 

Closer analysis shows that the data clusters can be attributed to acceptor-acceptor path 

length, and especially to path lengths of 1. Out of the four inter/intramolecular 

combinations shown in Table 10.2 the clusters can be seen to be arising mainly from the 

system where there are two intramolecular hydrogen bonds (case illc) . A plot of dS vs 
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aS for this case is shown in Graph 10.7 below with data points corresponding to systems 

where the acceptor-acceptor path length is one (data points coloured red) and where the 

acceptor-acceptor path length is greater than one (coloured blue). 
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Graph 10. 7: dS (A) vs aS roJ for the cases where there are two intramolecular hydrogen bonds. Data 
points where the acceptor-acceptor path length is one are coloured red and where the acceptor­

acceptor path length is greater than one are coloured blue. 

10.4 Conclusions 

From this very brief analysis it can be seen that the tri-furcated system shows much of 

the same patterns and influences as the bi-furcated system. The constraints imposed on 

the system by the internal molecular geometry i.e. by the intramolecular and acceptor­

acceptor path lengths, throws greater constraints on the system than the influence of the 

hydrogen bonds. 

There are far fewer examples of tri-furcated systems than bi-furcated systems in the 

database, as it is a much less common system. 

Tri-furcated systems are much more likely for cases where the hydrogen donor 1s 

nitrogen than where the hydrogen donor is oxygen. 
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Chapter 11: Amino-phenols 

11.1 Hydroxy and Amino Group Complementarily 

Two of the most important groups in hydrogen bond studies are the alcohol and amino 

groups. These two groups make an interesting pair to study since, in terms of hydrogen 

bond donors and acceptors, they are perfectly complimentary; the hydroxy group has 

two lone pairs of electrons to act as hydrogen bond acceptors and one hydrogen atom, 

so one possibility for a hydrogen bond donor. In contrast the amino has only one lone 

pair, but two hydrogen atoms. 

\ 
\ 

\ 
\ 

H 

' Rliltii•-N<J)------

, , ' H 
Amino Group 

2 x Hydrogen donor site 
1 x Hydrogen acceptor site 

' ' ' ' ' 
~ 

Rtli'"'" O~H------

{) , , , , 
,' Hydroxy Group 

1 x Hydrogen donor site 
2 x Hydrogen acceptor site 

Figure 11.1: Hydrogen bond acceptor and donor sites of the amino and hydroxy groups. 

While neither of these groups can fulfil their full hydrogen bond valence alone, the 

complimentary nature of these two groups means that a 1:1 mixture of hydroxy and 

amino groups in a crystal system gives the potential for the use of all the donor and 

acceptor sites, resulting in a fully saturated system. A comprehensive study of this 

complimentary nature for molecular recognition has been made by Ermer and Eling1
• 

When a fully saturated system occurs both groups are involved in three hydrogen bonds 

(as both donors and acceptors) as well as one covalent bond to the rest of the molecule. 

In ideal cases this can lead to an infinite net of hydrogen bonds, a hexagonal based sheet 

such as shown in Figure 11.2 below. This motif, when considered in three dimensions 

with the tetragonal geometry of the hydroxy and amino groups taken into account, is 
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analogous to the ~-sheet structure of 'grey' arsenic and is referred to as a ~-As sheet or 

'super arsenic' sheets 1
• 

a) 
H H 

. I . I 
/0-H----N\ /0-H----N\ 

H H H H 
I \ I \ 

-----N 0-H----N O-H 

\ H/ \ / 
H H H 
\ I \ I 
0-H----N 0-H----N 
' \ : \ 

H H, H H, 

____ _j 'o-H----1 ,O-H 

\ :' \ 
H H H H 
\ I \ I 
0-H----N 0-H----N 

:' \ :' \ 
' ~ H H 

, I 
Q-H----N 

/ \ 
H 

Figure 11.2: Hydrogen bonding motif possible with a 1:1 mixture of hydroxy and amino groups, a) a 

schematic view, b) in a real crystal, showing the puckering of the sheet. 

In systems where the hydroxy and amino groups occur on the same molecule linked by 

a linear linker, for instance a benzene ring in p-aminophenol, the whole structure can be 

considered analogous to structures such as diamond and wurtzite: instead of a structure 

built up of tetrahedral units joined by covalent bonds, the hydroxy and amino groups act 

as the tetrahedral units, three of the covalent bonds are replaced by three hydrogen 

bonds, and the last covalent bond is replaced by the rest of the molecule - the linear 

linker described above. 

Diamond Wurtzite 

10 

Figure 11.3: The diamond and wurtzite based structures1
, built up from layers of [J-As sheets. R=Linear 

linking unit between hydroxy and amino groups (represented by black and white circles). 
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It has long been known that 0-H . . . 0 bonds are shmter and stronger than 0 -H .. . N 

bonds and N-H ... 0 bonds, which in turn are shorter and stronger than N-H .. . N bonds2
. 

Ermer and Eling 1 noted that in all the P-As sheet structures they studied O(H)N bonds 

formed in preference to a combination of strong 0-H ... 0 and weak N-H ... N hydrogen 

bonds. This can be understood as a tendency to avoid weak N-H ... N bonds and a 

preference for hydrogen bonds of at least approximately similar lengths and strengths, 

within a structure. 

Th is is not the only motif seen for crystals containing a 1:1 combination of hydroxy and 

ami no groups: eo-crystals of simple chiral compounds such as 1,2-diaminohexane and 

hexane-1 ,2-diol have been found to form heli cal structures3
·
4 known as 'suparmjnols ' 5

. 

These structures do not utili se the full hydrogen bond potential of the groups, but still 

utilise self recognition to fmm very stable and beautiful single and triple heli cal 

structures. 

One of the simplest group of compounds to fulfil the criteria of a 1:1 ratio of hydroxy 

and amino groups are the aminophenols. A studl ·7 of the structures of ortho- meta­

and para-aminophenol showed that while the linear p-aminophenol exhibits a P-As 

sheet structure analogous to the wurtzite type lattice, the o- and m-aminophenol each 

have a distinctly di fferent structure involving N-H .. . n hydrogen bonds rather than N­

H ... 0 and the oxygen acts as a strong hydrogen bond acceptor only once rather than 

twice per atom . 

Figure 11.4: The structure of m-aminophenol. Note: the /3-As sheet structure is not formed. 

These structural differences can been attiibuted to an optimisation of a heningbone 

interaction of the aromati c rings6
·
7

. An alternative explanati on is that the angle between 
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the ammo and phenol groups prevents the formation of parallel ~-As sheets (more 

details of this explanation are presented on pages 92-93.). 

11.2 The Aminophenol Series 

With the aim of further improving the understanding of when and why the ~-As sheet 

structures are formed, the following series of compounds were synthesised* and the 

structures analysed. The series consists of 4-amino-4' -hydroxydiphenylalkane where 

alkane chains of up to five CH2 groups were studied, see scheme below, the structural 

details are given in chapter 2. In addition, for the compounds with chain lengths of one, 

two, and three atoms, the corresponding sulphide derivatives were also synthesised and 

analysed, (also see scheme below, structural details are given in chapter 3). Attempts to 

obtain good structural data for 4-amino-4' -hydroxydiphenylsulphide failed due to 

unsolvable twinning of the crystal, however a eo-crystal of methylenedianiline and 

thiodiphenol did give suitable data for a structural analysis and this had been included in 

the analysis instead. 

• All the synthetic work was carried out by Mr. Venugopal Vangala, University of Hyderabad, India. 
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H 

One sulphur atom 
in chain 

Two sulphur atoms 
in chain 

H~Sft: H~'\/C"' 
'=f- JL 'Cl\\ "'/) NH, 

lb 

2b 2c 

H, 

3 

. I 
Oa) 4-amino-4'-hydroxydiphenyl (Ermer and Eling1

) 

1 a) 4-amino-4' -hydroxydiphenylmethane 

1 b) Methylenedianiline and thiodiphenol 

2a) 4-amino-4' -hydroxydiphenylethane 

2b) 4-amino-4' -hydroxydiphenylmethylsulphide 

2c) 4-amino-4' -hydroxydiphenyldisulphide 
NH1 3a) 4-amino-4' -hydroxydiphenylpropane 

3b) 4-amino-4' -hydroxydiphenylethylsulphide 

4a) 4-amino-4' -hydroxydiphenylbutane 

Sa) 4-amino-4' -hydroxydiphenylpentane 

Figure 11.5: The aminophenol series studied .. Box colour indicates structure type: Red = fl-As 
sheets, Blue =Square motif chains, Yellow =Stacked Vees. See following chapter for 

description of these structures types. 
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Chapter 12 : 4-Amino-4' -hydroxy­

diphenylalkanes 

12.1 Crystal Data and the P-As Structures 

All the X-ray experiments were carried out on a Bruker Smart 10008
, using Mo 

radiation (A. = 0.71073A). The neutron study was petfmmed at the ISIS faci lity, 

Rutherford laboratories, Oxford, on the time of flight instrument, SXD9
•
10

. Since the 

crystals were smaller than is usually required for a neutron single crystal experiment, 

the new technique of a multi-crystal experiment11 was used. An array of four small 

crystals was mounted in the neutron beam and diffraction carried out on the four 

crystals simultaneously. In the data processing stage, the intensities recorded for all 

four crystals were extracted and used. 

Crystal Data 

Code la-(Neutron) 2a 3a 4a Sa 

Link (CH2) 2(CH2) 3(CH2) 4(CHz) 5(CI-h) 

Square motif Stacked Stacked 
Structure type P-As sheet P-As sheet 

chains Vees Vees 

SXD at ISIS Smrut- Smatt- SmaJt- Smart-
Instrument 

(Neutron)9
'
10 CCD8 CCD8 CCD8 CCD8 

Formula 
199.00 213.27 227.30 241.32 255.35 weight 

Temp/K 12(2) 100(2) 100(2) 105(2) 100(2) 

Crystal system Monoclinic Monoclinic Orthorhombic Monoclinic Monocl inic 

Space group P21/n Pc Pca21 Pc Pc 

Colour Brown Colourless Colourless Brown Colourless 

Habit Block Plate Plate Cone Block 

Size/mm 
1.5x 1.5x 1.3 

Multi-crystal 11 .50x .35x.10 .52x.25x.07 .40x.20x.20 .60x.55x.30 

a/A 5.9180(3) 13 .682(3) 23.9370(7) 15 .788(2) 14.9554(9) 

b/A 19.213(1) 5.262(1) 6.2160(2) 5.2088(6) 11.2370(8) 
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c/A 9.6510(4) 8.192(2) 8.3970(3) 8.3399(8) 8.6841(6) 

(l (=y)/0 90 90 90 90 90 

~ ;o 101.250(4) 107.28(3) 90 100.912(5) 90.893(3) 

z 4 2 4 2 4 

Jl/mm-1 1.870 (at lA) 0.079 0.075 0.074 0.071 

Abs. corr. type empirical None None None Psi-scan 

R(int) 0.064 0.0322 0.0374 0.0546 0.0215 
Data/restraints/ 

2365/0/189 2509/2/205 3440/1/223 2816/2/176 5476/2/367 parameters 

GooF 4.966 1.034 1.016 1.026 1.033 
Flack 

-0. 7(13) 0.4(15) 0.1(19) -0.2(11) parameter -

Rl 0.0881 0.0405 0.0421 0.0429 0.0355 

wR2 0.1761 0.1087 0.0935 0.0960 0.0885 
Angle between 129.4 
C-N and C-0 117.1 175.5 119.05 174.2 
vectors./0 125. 1 
Angle between 81.37 
phenyl phenol 91.53 2.25 55.94 1.95 
plane. ;o 69.99 

Table 12. 1: Crystal data for the 4-amino-4 '-phenol alkane series. 

The first thing to notice from the table above is that it is the compounds with an even 

number of carbon atoms in the alkane chain that form structures with ~-As sheets . One 

of the main differences between alkane chains with even and alkane chains with odd 

numbers of carbon atoms is that 'even' chains can form a linear link between the end 

groups where as the 'odd' chains can not. One of the geomet1ic requisites for a 

structure of the wurtzite or diamond type is that the ~-As sheets must be parallel. To 

achieve thi s the link between the hydroxy and amino group must be approximately 

linear. The angle between the C-NH2 and the C-OH vectors has been measured (see 

Table 12.1 above), in the ~-As sheet structures 2a and 4a this angle is approximately 

180°, in the other structures (la, 3a, and Sa) the angle is closer to 120° (see Figure 

12.1). 

This dependence of the ~-As sheets structures on a linear link between the hydroxy and 

amino group could also account for the structural differences between the a- m- and p­

aminophenols di scussed in the previous chapter. 
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I 

R 

~H, 
H2y~~ 
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I 
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numbers of carbon atoms 

Can give a linear link 
between R groups 

, , , 
, R 

Alkane chain with an ODD 
numbers of carbon atoms 

Can't give a linear link 
between R groups 

Figure 12.1: The difference in geometry between odd and even alkanes. 

The next point of interest from the table is that compounds 3a and Sa have similar 

structure motifs, while la has a completely different structure. As will be seen in 

Section 12.2, all three structures rely on N-H .. . n hydrogen bonds to supplement theN­

H ... O and 0-H ... N hydrogen bonds. 

The two ~-As sheet structures 2a and 4a exhibit a structure analogous to the diamond 

type lattice. Both have the same space group Pc. However, this is a different space 

group to either p-aminophenol or 4-amino-4' -hydroxydiphenyl, compound Oa, 

(Orthorhombic Pna2 1 8.184(1) 5.262(1) 12.951(2), and Orthorhombic Pna2 1 8.096(1) 

5.396(1) 21.217(2) respectively, both data sets recorded at room temperature 1
). This 

difference might arise from the different molecular shapes, as both p-aminophenol and 

Oa have a straight link unit and 2a and 4a have a slanted link unit, as shown in Figure 

12.2. 
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OH OH 

p-aminophenol 

Oa 

2a 

4a 

Figure 12.2: The molecular shapes ofp-aminophenol and compounds Oa, 2a and 3a. The boxes are to 
emphasize the changes in molecular shape and are NOT related to the unit cell. 

All four of these compounds have similar b and c axes dimensions, this is logical as the 

P-As sheet runs in the b-e plane. The length of the a axis increases from p-aminophenol 

through to 4a as the length of the link unit increases. 

An interesting point is that all the compounds apart from la exhibit a similar length c 

axis ranging from 8.1 to 8.6A. In each of these compounds the molecular spacing (and 

therefore the cell dimensions) is governed by a O(H)N hydrogen bonded chain, see 

Figure 12.3. 
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Figure 12.3: The structures of2a, 3a, 4a and Sa, viewed down the b-axis. Note the similar hydrogen 

bond chain in each case leading to similar molecular spacing, and similar c-axis length 's. 

95 



Part 2 - Aminophenols 

12.2 The 6Square Motif' Structure of la and The 6Stacked 

Vees 9 Structure of 3a and Sa 

The P-As sheet structure of compounds 2a and 4a has been discussed in 11.1, but the 

structure of compounds la, 3a and Sa, needs some description: 

The 'Square Motif' Structure of la 

In this structure only two of the three possible strong N(H)O hydrogen bonds are 

formed. The motif fmmed by these strong hydrogen bonds is a square, linking the 

molecules into chains. 

Figure 12.4: The square motif of hydrogen bonds forming chains of la. 

The N-H hydrogen donor not used in the above square motif is involved in a hydrogen 

bond to the n-electrons of the phenyl ring A (the phenyl ring of the hydroxyphenyl 

group). A C-H from an adjacent phenyl ring B (the phenyl ring of the aminophenyl 

group) is also involved in a hydrogen bond to these same n-electrons, but to the 

opposite face of the phenyl ring A, making a 'double faced' hydrogen bond. The 

phenyl ring B also acts as a hydrogen bond acceptor for a single C-H hydrogen. 
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Figure 12.5: The 'double faced' hydrogen bond about the phenyl ring A, and the single C-H ... n hydrogen 

bond to the phenyl ring B. 

The 'double faced' hydrogen bonds around the phenyl ring A are important in holding 

adjacent chains together to fotm sheets. 

Figure 12.6: Hydrogen bonding between adjacent chains. 

Adjacent sheets are then bound together by the single C-H .. . n bond to the phenyl ring 

B. 
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Figure 12.7: Packing of the sheets of la molecules in the crystal, hydrogen bonds to the aromatic rings 
are not shown in this diagram. 

This structure was determined by neutron diffraction on SXD at TSTS, so accurate 

hydrogen positions have been obtained and the geometry of the hydrogen bonds to the 

n-electrons in the aromatic rings can be studied in more detail. 

Figure 12.8: la model from neutron data, showing thermal ellipsoids plotted at 50%, including hydrogen 
atoms. 

Distance D ... A I A 0Ist~mce H ... A~l_ AngleDHA/0 

N1-HJa ... OI 2.723(6) 1.77(1) 167.9(9) 

01-H1 ... N1 2.908(4) 1.989(9) 150.1(9) 

N1-H1b···n 3.33 2.40 156 

C9-H9 ... n 3.73 2.66 173 

Cs-Hs ... n 3.54 2.58 148 

Table 12.2: Hydrogen bond distances in compound la. 
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Hib···Cs 

H1b ... C6 
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0 

Dist. H ... A lA Ang.DHAJD Dist. H ... A /A 

2.40 156 H9 ... 1t 2.66 

2.56(1) 137(1) H9 ... C1 3.042(9) 

2.8 1(1 ) 127(1) Hg ... C2 2.95(1) 

2.98(1) 131.8(8) Hg ... C3 2.922(9) 

2.97(1) 147.1(7) Hg ... C4 2.983(9) 

2.74(1) 169(1) Hg ... Cs 3.04(1) 

2.53(1) 159.9(9) Hg ... C6 3.069(9) 

Dist. H ... A /A Ang. DHA/0 

Hs ... 1t 2.58 148 

Hs ... Cs 2.94(1 ) 127.1(7) 

Hs ... C9 2.83(1) 148.8(8) 

Hs ... CJO 2.82(1) 176.6(8) 

Hs ... C11 2.92(1) 151.6(9) 

Hs ... C12 3.01(1) 129.7(8) 

Hs ... C13 3.02(1) 120.7(7) 

Table 12.3: The geometry of the H. .. n hydrogen bonds . 

. ·· I : 
. } .. 

.. :, : ·.· 

~c5 ... :,~4 ·,_: -~3 

C6"·~ 2r;k) . : I ... . 

1.· 

J 
·. J .... 

... \ . 

\ . 

Figure 12.9: The geometry of the H .. n hydrogen bonds. 

Ang. DHA/0 

173 

148. 1(7) 

154(1) 

158.8(7) 

155.2(9) 

150(1) 

146.3(7) 
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It can be seen from the tables and diagrams above, that in each case the hydrogen is 

closer to the aromatic ring centroid (n) than to any of the ring atoms or bonds. However 

while the C9-H9 vector points directly towards the ring centre, the N,-H,b vector points 

towards the C5-C6 bond and the C5-H5 vector points towards the C 10 atom. In addition 

the hydrogen of the N 1-H 1b • . • 11: interaction is definitely not located over the centre of the 

ring: 

Figure 12.10: Th e Nr H1b ... rr: interaction viewed in th e aromatic ring plane. 

The 'Stacked Vees' Structure of 3a and Sa 

Despite having different crystal symmetry (Orthorhombic Pca2 1, for 3a, and Monoclinic 

Pc for Sa) the packing of these structures appears remarkably similar at first glance. 

However, along with this similarity there are notable differences between the structures 

in terms of molecular geometry, molecular interactions, and overall packing. 

Both compounds have four molecules in the unit cel l (z=4) but the differences in crysta l 

symmetry means that while 3a has only one molecule in the asymmetric unit, Sa has 

two independent molecules. 

The two independent molecu les of Sa have quite different geometries (see Figure 

12.11). The geometry of molecule 2 (C21 -C37) is similar to that of 3a however the 

geometry of molecule 1 (C 1-C 17) is quite different - the pentane chain is twisted at C7. 

The interesting point is that one might expect that compound Sa could easily have taken 

the same crystal structure as 3a, if molecule 1 was the same as molecule 2 the symmetry 

would increase. Even as it is the p angle of Sa's monoclinic cell is very nearly 90°, why 

include the twisted pentane chain geometry, when the more elegant higher symmetry 

structure is (at least apparently) so easily within reach? If such questions could be fully 

answered and understood the field of crystal engineering would be far more advanced 

that it is now. 
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3a Sa 

Figure 12.11: The asymmetric unit of crystals of 3a and 5a. 

In compound 3a the mam intermolecular interaction is a simple chain of O(H)N 

hydrogen bonds. The chain is formed at both ends of the molecule, thus forming sheets 

of molecules: 

Figure 12.12: O(H)N chain in crystal 3a, and 5a. In the structure 5a molecule I is coloured blue and 

molecule 2 is coloured purple for clarity. 
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In compound Sa the picture is more complicated, an O(H)N chain can also be seen (see 

Figure 12.12) but the molecules don't have the simple alignment seen for 3a. Looking 

at the row of molecules going across the page, in 3a the molecular orientation alternates , 

in Sa one row is molecule 1, all in the same orientation, the next row is molecule 2, all 

in opposite orientation. 

Viewing the chain in Sa from above, it can been seen that the structural pattern is much 

more complicated, there are various O(H)N hydrogen bonds running in approximately 

perpendicular directions, to form sheets. 

N~ > ~ 
r:J' _JI o--J· ... ' \1 ~\ ~ 

"~ -----~21 ~-----~ .~P------~~. 
:N1 • : 

N1 : \N1 ( ' \ 

o-r·----~21 er-·----~ er·--- .ti ~.,.. 
I I I 1 

~ ~ ~~ ~ 

Direction of an 

Nz,-0,-N,-Oz,­

N,-O,-Nz, 

N2l'd___ N~\J, . _,..- N~i:d"___ .-· ',if_ .-~-,.. ·:~ . . :.0:: .r~ l]~ rf' "> .).~,)( if' .. /~ V 4-----.--------
. cv,/ ~ "'~ \·v Direction of N21 -0 1-

·~1 \ \ N21 -0 1 Chain, 

cir.----~~1 ~---J~. ~----~~. 
,' ' / \ ,' \ 

N1 ' \N1 ~ \ . ' 

cr ·----~21 r·----·~ .~.,.----~ ~~ 
~1 ~1 ~ ~ •• 

~ ~~ '•:y ·y 

... 

Direction of N1-0z1-

N,-Oz, Chain 

Figure 12.13: O(H)N chains in crystal Sa viewed approximately down the molecular axis (i.e. at 90° 
rotation to previous diagram, the aromatic rings and pentane chain have been removed from the 
diagram for clarity). Note the hydrogen bond shown by dots is fairly long (01 .. . H2/b = 2. 70(3)A, 

0 1 ... N21 = 3.461(2)A). 

As well as the O(H)N interactions shown above, compound Sa also exhibits N-H .. . n 

bonds and also a bi-furcated hydrogen bond (at the acceptor) (C-H)z ... 0 interaction . In 

compound 3a the N-H not involved in the O(H)N chain is also involved in aN-H ... Tr 

interaction with a phenyl ring. These interactions are shown in Figure 12.14, the N-

H ... Tr interaction in 3a acts to reinforce the O(H)N chain. As well as this, there is a C-

H ... Tr interaction with a phenyl ring, of a neighbouring sheets (see Figure 12.15). Table 

12.4 and Table 12.5 give a full list of hydrogen bonds in compound 3a and Sa 

respectively. 
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Figure 12. 14: N-H. .. n interactions in Clystals 3a and Sa. 

Distance D ... A lA Distance H ... A lA AngleDHA/0 

01 -H1 ... N1 2.776(2) 1.87(2) 173(2) 

N1-H1b ... 01 3.205(2) 2.37(2) 115(2) 

N1-H1 a··· n 3.355 2.54 162 

C7-H7a· . . n 3.732 2.97 136 

Table 12.4: Hydrogen bond distances in compound 3a. 

Distance D ... A lA Distance H ... A I A AngleDHA/0 

0 21-H21···N1 2.758 (2) 1.89 (3) 164 (3) 

N1-H1a···021 3.181(2) 2.38 (3) 148 (2) 

N1-H1b ... 01 3.067 (2) 2.17 (3) 163 (2) 

N21-H21b ... 01 3.461 (2) 2.70 (3) 149 (2) 

01 -H1 ... N21 2.788 (2) 1.95 (3) 170 (3) 

N21-H21a ... n 3.54 2.7 155 

0 21· .. H33-C33 3.312 (2) 2.70 123 

0 21· .. H34-C34 3.298 (2) 2.68 123 

Table 12.5: Hydrogen bond distances in compound Sa. 
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From the distances and angles listed above it can be seen that, overall, the compound Sa 

has shorter and more linear interactions than compound 3a. So while the structure of 3a 

appears to be the simpler and more logical structure (and certainly in terms of analysis 

is the easier structure to understand!) it is the structure of Sa that is the more stable 

structure. Perhaps compound 3a would take a structure closer to that of Sa if it could, 

but it has less flexibility due to having a shmter alkane chain. 

Figure 12.15: The packing of the sheets in compounds 3a, and Sa. 

It can be seen from this in depth structural analysis that although at first sight the 

structural packing of these 2 compounds is remarkably similar and utilise very similar 

types of hydrogen bond interactions, they are in fact quite different in the way the 

interactions are used. 
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Chapter 13 : The Effect of Sulphur, the 

4-Amino-4' -hydroxydip,henyl Sulphides 

and Alkanesulphides 

Compounds lb, 2b, 2c, and 3b are all sulphur derivatives of the 4-amino-4'­

hydroxydiphenylalkanes, discussed in the previous chapter. 

The exchange of a CH2 group for a sulphur atom might be expected to have very little 

effect on the structure. The sulphur atom is slightly smaller than a CH2 group and the 

angle at the sulphur is roughly 103o* compared to 109° for the -CH2- group there is also 

a difference between the C-C and C-S bond lengths 12
, but these differences in geometry 

are not great. In none of the alkane structures studied above do any of the CH2 linker 

groups appear to be directly involved in structural determining interactions. But, as will 

be seen, the effect of sulphur is not straightforward. 

13.1 Compounds With One Atom Links, la and lb 

Because of difficulties in obtaining diffraction quality crystals of 4-amino-4'­

hydroxydiphenylsulphide (crystals appeared to be twined but the twin relationship could 

not be resolved). A eo-crystal of methylenedianiline and thiodiphenol (lb) was grown 

and studied instead. 

• Average C-S-C angle taken from CSD search 13
, April 2001 release (233,218 entries), search of only 

organics molecules, no disorder, no polymers, and Rfactor :S 10%. 
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Crystal Data 

Code la-(Neutron) lb 
Link (CH2) (CH2):S 1:1 

Stmctm;e type Square motif Square motif 

chains chains 

Instrument SXD at ISIS Smart-CCD8 

(Neutron)9
'
10 

Formula weight 199.00 416.52 

Temp/K 12(2) 100(2) 

Crystal system Monoclinic Monoclinic 

Space group P21/n P21/n 

Colour Brown Colourless 

Habit Block Block 
Size/mm 1.5x 1.5x 1.3 .50x .15x.05 

Multi-crystal
11 

a/A 5.9180(3) 11.255(1) 

b!A 19.213(1 ) 10.1129(9) 

c/A 9.6510(4) 19.998(2) 

a. ( = y)/ 0 90 90 

~ ;o 101.250(4) 103.654(5) 

z 4 4 

f!/mm-1 1.870 (at l A) 0.17 
Abs. corr. type empirical Psi-scan 

R(int) 0.064 0.1065 

Data/restraints/ 
2365/0/189 5052/0/295 

parameters 

Go oF 4.966 0.987 

R1 0.0881 0.0571 

wR2 0.1761 0.1162 

Angle between C-N 107.9 
117.1 

and C-0 vectors. / 0 115.2 

Angle between phenyl 90.38 
91.53 

phenol plane. /0 107.36 

Table 13. 1: Crystal data for the compounds with one atom in the link. 
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Compound la had been seen to have a 'square motif' chain structure, compound lb has 

a structure based on a nearly identical motif. The main differences arise from having 

two different molecules involved in the chain (methylenedianiline and thiodiphenol) so 

there are two independent square motifs. One of these motifs shows an additional C­

H ... 0 interaction. 

Figure 13.1: The square motif of hydrogen bonds forming chains of la, and lb. 

In compound la the chains were bound into sheets by 'double faced' hydrogen bonds 

about the phenyl ting A (see Figure 12.5). In compound lb 'double faced' N­

H .. . 7t ... H-C hydrogen bonds and single N-H ... 7t hydrogen bonds are also seen. Al l of 

these 7t hydrogen bonds are involved in binding the chains into sheets. 

Figure 13.2: The 'double faced' hydrogen bond about the phenyl ring A and the single N-1-f. .. re hydrogen 

bond to the phenyl ring C. 
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la lb 

Figure 13.3: Hydrogen bonding between adjacent chains in compound la and lb. 

As can be seen from the diagram above, despite the fact that the binding between 

adjacent chains involves very similar interactions in both structures, visually the 

packing looks quite different. However, it is in the way that the sheets stack that gives 

the most major difference between the two structures. In compound la the chains in 

adjacent sheets run in parallel directions, in compound lb the chains in one sheet run at 

an angle of approximately 55° to the chains in the adjacent sheets. 

la lb 

Figure 13.4: Diagram indicating the relationship between adjacent chains in compound la, and lb. 
Each arrow represents a chain, chains in one sheet are coloured blue, chains in the adjacent 

sheet are coloured red. 
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lb 

Figure 13.5: The packing of the heels in compound la, and lb. 

Distance D ... A lA Distance H ... A /A AngleDHAJC 

N ,-H,a . . . O, 2.723(6) 1.77(1) 167.9(9) 

0 1-H1 ... N1 2.908(4) 1.989(9) 150.1(9) 

N1-H1b ·· ·n 3.33 2.40 156 

C9-H9 ... n 3.73 2.66 173 

Cs-Hs ... n 3.54 2.58 148 

Table 13.2: Hydrogen bond distances in compound la. 

Distance D ... A lA Distance H ... A I A Angl.eDHA/0 

N21-H21b· .. 0 2 3.167(4) 2.26(3) 159(2) 

Nn Hnb· . . 0, 3.167(4) 2.36(3) 152(3) 

01 -Hi a· ··N22 2.798(3) 1.99(3) 162(3) 

0 2-H2a· ··N21 2.760(3) 1.88(4) 175(4) 

C29-H29 · .. 01 3.372(3) 2.56 143 

N21-H21a· .. 1ta 3.340 2.65 137 

C2o-H2oa ... 1ta 3.745 2.82 156 

N 22-Hna ... 7rb 3.739 3.08 136 

Table 13.3: Hydrogen bond distan ces in compound lb. 
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13.2 Compounds With Two Atoms in the Link, 2a, 2b and 2c 

Crystal Data 

Code 2a 2b 2c 

Link 2(CHz) CHzS Sz 

Structure type P-As sheet P-As sheet Combination 

structure 

Instrument Smart-CCD8 Rigaku Smart-CCD8 

AFC6S 14 

Formula weight 213.27 231.30 249.34 

Temp/K 100(2) 100(2) 100(2) 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group Pc Pc P2]/C 

Colour Colourless Pale Brown Yellow 

Habit Plate Ptism Block 

Size /mm .50x.35x.l0 .45x.15x.05 .55x.50x.10 

a/A 13.682(3) 13.844(3) 10.432(1) 

btA 5.262(1) 5.163(1) 8.118(1) 

c/A 8.192(2) 8.249(2) 14.791(2) 

a. (= y)/ 0 90 90 90 

pr 107.28(3) 107.22(3) 109.633(6) 

z 2 2 4 

J..L/mm-1 0.079 0.235 0.428 

Abs. corr. type None None Psi-scan 

R(int) 0.0322 0.0449 0.0278 

Data/restraints/ 
2509/2/205 1935/21158 2926/01157 

parameters 

Go oF 1.034 1.095 1.078 

Flack parameter -0.7(13) 0.02(3) -

R1 0.0405 0.0435 0.0348 

wR2 0.1 087 0.1170 0.0836 

Angle between C-N and 
175.5 174.0 88 .25 

C-0 vectors. /0 

Angle between phenyl 
2.25 4.69 94.14 

phenol plane. / 0 

Table 13.4: Crystal data for the compounds with two atoms in the link. 
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The exchange of one of the CH2 groups for a sulphur atom results in very little change 

in crystal structure, the only major change is the presence of a C-H ... S interaction that 

wi ll increase the overall stability of the ~-As sheet structure. 

Figure 13.6: The structure of2a, and 2b, showing the fJ-As sheet structure in both cases and the 

additional C -H ... S chains in compound 2b. 

Distance D ... A lA Di stance H . . . A I A Angle DHA /0 

N1-H1a ... 0 1 3.312(2) 2.34(3) 177(3) 

N1-Hib· ·· o 1 3.130(2) 2.23(3) 170(2) 

01-H1 ... N 1 2. 815(2) 2.02(3) 173(3) 

Table 13.5: Hydrogen bond distances in compound 2a. 

Distance D ... A lA Distance H ... A I A Angle DHA /0 

N1-H1a ... 01 3.299(5) 2.45(6) 170(4) 

N1-Hib···o1 3.148(5) 2.24(5) 172(4) 

01 -H1 .. . N1 2.785(4) 1.81 (7) 178(6) 

C1-H1a· . . S1 3.849(4) 2.94 153.2 

Table 13.6: Hydrogen bond distances in compound 2b. 
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The exchange of both CH2 groups for su lphur atoms, however, results in a completely 

different structure type. Even the molecular geometry of compound 2c is completely 

different to that of 2a and 2b: the Ph-CH2-CH2-Ph torsion angle in 2a is 176.5(2)0
, the 

Ph-CH2-S-Ph torsion angle in 2b is 179.5(3)0
, whereas the Ph-S-S-Ph torsion angle in 

2c is 83.3(1)0
• 

2c 

Figure 13.7: The molecular geometly of 2a, 2b, and 2c. 

This sudden change in molecular geometry may seem unexpected but a quick survey of 

the CSD 13* reveals that torsion angles of approximately 90° are average for -C-S-S-C­

systems, where as torsion angles of around 180° (or 0°) are extremely rare. 

Histogram of T ora ion Angle at C.S.S·C 

N 

50 

40 

30 

20 

400 600 800 1000 1200 140.0 1600 1600 

Torsion angle 

Graph 13.1 : C-S-S-C torsion angles (0
) occurring in CSD13

. 

• C-S-S-C tors ion angle search using April 2001 release (233,218 entri es) of the CSD 13
, search of only 

organics molecules, no disorder, no polymers, and Rfactor :S 10%. 
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The structure of 2c is complicated and does not really fall into any of the structure types 

seen so far, however the structure does exhibit the inevitable 0-H .. N-H chains, forming 

into sheets and these sheets bear a passing resemblance to a twisted version of those 

seen in compound 3a (see Figure 12.12). 

Figu re 13.8: N( H)O chains in compound 2c forming sheets. 

A side view down a stack of these sheets shows a structure with a possible simil ari ty to 

the square motif of la (see Figure 12.7), but the motifs and interactions behind this 

structure are quite di ffe rent. 

Figure 13.9: The packing of the sheets oj2c. 
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This struc ture is unusual for this series in the lack of hydrogen interactions. Aside from 

the N(H)O hydrogen bond chain there is only a single C-H ... S hydrogen bond. Other 

than these interactions, any possible contacts are both long and far from linear. 

Distance D ... A lA Distance H ... A /A Angle DHA fO 

N,-H,b ... O, 3.031(2) 2.25(2) 163(2) 

0 1-H1 ••. N1 2.763(2) 1.92(2) 177(2) 

CwHI6a ... s, 3.685(2) 2.97 133 

Table 13.7: Hydrogen bond distances in compound 2c. 
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13.3 Compounds With Three Atoms in the Link, 3a and 3b 

Crystal Data 

Code 3a 3b Sa 

Link 3(CH2) 2(CH2)S 5(CH2) 

Structure type Stacked Vees Stacked Vees Stacked Vees 

Instrument Smart-CCD8 Smart-CCD8 Smart-CCD8 

Formula weight 227.30 245.33 255.35 

Temp/K 100(2) 100(2) 100(2) 

Crystal system Orthorhombic Monoclinic Monoclinic 

Space group Pca2 1 Pc Pc 

Colour Colourless Colourless Colourless 

Habit Plate Block Block 

Size/mm .52x.25x.07 .35x.25x.20 .60x.55x.30 

a/A 23.9370(7) 12.6341(9) 14.9554(9) 

btA 6.2160(2) 5.8636(4) 11.2370(8) 

c/A 8.3970(3) 8.5671(5) 8.6841(6) 

a (= y)/ o 90 90 90 

~ fO 90 90.351(3) 90.893(3) 

z 4 2 4 

J.L/mm-1 0.075 0.238 0.071 

Abs. corr. type None Psi-scan Psi-scan 

R(int) 0.0374 0.0256 0.0215 

Data/restraints/ 
3440/1/223 3138/2/166 5476/2/367 

parameters 

Go oF 1.016 1.055 1.033 

Flack parameter 0.4(15) 0.04(6) -0.2(11) 

R1 0.0421 0.0322 0.0355 

wR2 0.0935 0.0822 0.0885 

Angle between C-N 
119.5 112.6 

129.4 

and C-0 vectors. /0 125.1 

Angle between phenyl 
55.94 76.09 

81.37 

phenol plane. /0 69.99 

Table 13.8: Crystal data for compounds with three atoms in the link, and also compound Sa for 
comparison. 
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Structurally compound 3b seems to share characteristics with both variations on the 

'stacked vees' structure, structures 3a and Sa. Just like compound 3b there is just one 

molecule in the asymmetric unit. The same simple O(H)N chains are seen in all three 

cases. However, in 3a horizontally adjacent molecules have alternating orientations, 

whereas in 3b, and Sa the molecular orientation is the same in adjacent molecules . 

J~, 
\ }· ~~ ... 

\ 

Figure 13.10: The 0( H)N chain in compound 3a, 3b and 5a. 

As well as the O(H)N chains , all three compounds utilise other interactions to increase 

the structural stability (Figure 13.11). Compound 3a has only N-H .. . n hydrogen bonds 

whereas 3b, and Sa exhibit both N-H .. . n and bi-furcated (C-Hh ... 0 hydrogen bonds, 

The geometry of these interactions in 3b, and Sa is remarkably similar. 
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3a 3b Sa 

OC1l 

~ 

'l _____ f_.r·. 
~ 

\ 
Figure 13.11: The interactions in compounds 3a,3b and Sa that form in addition to the 0( H)N chain. 
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a lb 

Figure 13.12: The interactions in compound 3b a) 0( H)N chains with additional N-H. .. n: interactions, b) 

chains of N-H ... O and bi-furcated (C-Hh ... O hydrogen bonds, c) both of the previous chains 
forming sheets of hydrogen bonds, viewed from above with part of each molecule removed for 

clarity. 

This all begs the question of why, if the similarities are so great, are there three forms 

of this structure? If 3b and Sa form structures that are so similar and based on nearly 
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identical interactions why does 3b need only one molecule in the asymmetric unit but 

Sa two independent molecules? Is it all due to which molecular geometries are possible; 

how much the linker chain can twist? 

Figure 13. 13: The overall crystal packing of compound 3a, 3b and Sa. 

Distance D ... A lA 0 

Distance H ... A I A Angle DHA /0 

N1-Hia ... OI 3.114(2) 2.29(3) 174(2) 

OI-HJ . . . N1 2.754(2) 1.98(3) 152(3) 

01 ... HJO-CIO 3.199(2) 2.58 123 

OJ ... HJICII 3.912(2) 2.58 123 

C16-H16a ... n 3.382 2.61 175 

Table 13.9: Th e hydrogen bond distances in compound Jb. 
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Chapter 14 : Conclusions 

14.1 Molecular Geometry 

The close correlation between the number of atoms in the alkane or sulphur-alkane 

chain and the structure is clearly illustrated by the graph below: The red data points 

correspond to ~-As sheet structures, blue data points to 'square motif structures, yellow 

to 'stacked vees' structures and grey to the structure of 2c that does not fall into any of 

the other structure categories. 

Other than compound 2c, all the compounds with an even number of atoms in the link 

have a ~-As sheet structure whereas compounds with one atom in the link form 'square 

motif structures, and compounds with three or five atoms in the link form 'stacked 

vees' structures. The exchange of a CH2 group for a sulphur atom (data points marked 

by a cross) has no effect on the structure type. 
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.... 2a- 11-As sreet st:ru:ture 
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m 3b- stacked vees structure 

+ 4a - 11-As sreet structure 
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Graph 14.1: Ph-N vector, Ph-0 vector angle in relation to the number of atoms in the link. Note: 
compounds 1 b, and 5a have two molecules in the asymmetric unit, and therefore two data points. 
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It is the Ph-N vector, Ph-0 vector angle that truly distinguishes the ~-As sheet structures 

from the other types. When the angle between the phenyl plane and the phenol plane is 

considered as well, the compounds separate into 3 distinct clusters based on structural 

type. Among this small data set these two parameters are sufficient to distinguish the 

structure types. 

Vector Angle versus Plane Angle 

120 • Oa- j>As sheet structure ... 1 a- Square motir strucb.Jre 

100 
0 

Oil 

... ... 10- Square mll:ft structure ... 1b- Square mll:ft stru:ture 

~ 
~ 2a- ~As sheet structure ... ... ~ 2b - j>As sheet structure 

c 
< 80 0 
tij 

a:: 
01) 

~ 60 

~ 2c- Comblnction strucb.Jre 

0 D 3a - Stacked -,ees structtre 
[±] 

1±1 3tJ - Stacked -,ees structll"e 
0 • 4a- ~As sheet structure 

0 5a- Stacked -,ees structtre 

D 0 5a- Stacked -,ees structll"e 

0 
tij 

15:: 40 

~ 
~ 

20 

0 
.. 
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Vector- Vector Angle 

Graph 14.2: Ph-N vector, Ph-0 vector angle versus the angle between the phenyl plane and the phenol 
plane. 

14.2 Melting Point Comparisons 

The graph of the crystal melting points for the compounds is very interesting. Firstly 

the ~-As sheet structures melt at a higher temperature than the other structural types, 

indicating that the sheet structure, that instinctively seems so stable, is more stable than 

the other structures. As the number of atoms in the link increases, the melting point 

decreases. This is unexpected as melting points generally increase with increasing 

molecular weight, but in this case there are a constant number of hydrogen bonds 

regardless of molecular weight, so as the molecule gets bigger the relative effect of the 

hydrogen bonds decreases, and as the link gets longer it has more freedom of 

movement, which could help destabilise the structure. 
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Crystal Melting Points 
300 • oa- 13-As sheet structure 

• 1 a - Square motif structure 

• 1 b- Square motif structure 
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Graph 14.3: Melting points of the crystals. 

14.3 Conclusions 

This series highlights some of the difficulties of structure prediction: the subtle 

complexities of a crystal structure, seen clearly in the various stacked vees structure, the 

large changes in overall structure, despite the same initial motif seen in the square motif 

structures: the way that exchanging a CH2 group for an sulphur atom can have no 

structural effect, but repeating the procedure on a second CH2 group results in a 

complete structural change, as seen in the 2 atom linker mini-series 2a-c. 

It will be interesting to study the structures of more compounds in this series. At this 

point in the series trends are starting to appear and predictions are perhaps possible and 

further questions raised: 

-Do the 6 and 8 atom linker molecules form the ~-As sheet structure as predicted from 

the results above, or is the alkane chain too long and the resulting molecule too flexible 

to be stabilised by the ~-As sheet? 
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- At what point is the alkane chain too long to form a stable ~-As sheet structure, and 

can the structure be stabilised by the addition of sulphur atoms into the alkane chain 

allowing the fom1ation of C-H ... S cross links? 

- Will the addition of further sulphur atoms into the 3 atom linker series cause a change 

from the 'stacked vees' structure? And is the order of the atoms in the linker important 

i.e does -S-CH2-S- linker molecule have an analogous structure to the 'stacked vees' 

structure of the -S-CH2-CH2- linker (3a and 3b ), whereas the -S-S-CH2- linker 

molecule contain a 90° torsion angle about the S-S group preventing the 'stacked vees' 

structure forming, or is the effect of the -S-CH2-S- and the -S-S-CH2- linker the same? 
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In this final section the structures of a number of compounds (6-W in Figure 15.1 

overleaf) have been analysed in detail. The aim is to identify and understand which 

interactions and molecular features are influencing the structure, and especially to look 

for any unusual or novel interactions that may often be overlooked in wider studies. 

Compounds 6 and 7 produced crystals of a suitable quality and size for neutron 

diffraction experiments to be carried out, so accurate hydrogen positions can be 

obtained, and the various hydrogen bond interactions benchmarked. 

Compound 10 is especially interesting since it can be crystallised m at least five 

different polymorphs. Ongoing work is being undertaken to obtain, identify and 

characterise further polymorphs. 

All of these compounds have been made as part of wider series for studies into different 

aspects of crystal engineering, nanotubes and host-guest matching (6 and 7)1,2, 

polymorphism (10)3
, second harmonic generation (64 and 8), and interplay of a weak 

and a strong hydrogen bonding group (9i, however each one is interesting in its own 

right and wmthy of individual study such as has been carried out here. 

Often the structures of these compounds are better understood when taken in a wider 

context, so while the crystal structure of only one compound is considered in detail in 

each case, comparisons are drawn to other related compounds taken from literature and 

the CSD6
. This helps the understanding of which features of the structural motif are 

robust enough to be structure determining, the relative influence of various substituents 

in determining the motif, and the effect of different solvents, guest molecules and co­

crystallents on the structure. 
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Chapter 16: 
6) 2,4,6-tris-( 4-chlorophenoxy)-

1,3,5-triazene and 

tribromobenzene. 

Chapter 17: 
7) Triphenylisocyanurate eo­

crystallised with trinitrobenzene. 

Chapter 18: 
8) 4,4' -dinitrotetraphenyl 

methane. 

Chapter 19: 
9) 2,3-dichloro-1 ,4-diethynyl-

1 ,4-dihydroxy-napthalene. 

Chapter 20: 
10) 4,4-diphenyl-2,5-

cyclohexadienone. 

H 

0 

~ 
Ph Ph 

Figure 15.1: Compounds studied in part 3. 
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Chapter 16 : Co-Crystal (6), 2,4-,6-tris-(4= 

chlorop,henoxy )-1,3,5-triazine and 

Tribromobenzene 

16.1 Introduction 

A selection of sym-triaryloxytriazines have been investigated as part of a study to 

develop crystal engineering strategies, especially strategies to obtain non-linear optical 

materials4
'
17

. It can be seen that sym-triaryloxytriazines can form at least three* different 

motifs depending on the nature of the subsistents R 1 R2 and R3 (see Figure 16.1). 

Motif 1 and 2 depend on the triazine dimers known as Piedfort units8
. When these units 

form stacks, with each unit in the stack in a parallel orientation, and the stacks aligning 

to give a close packed aiTangement, the resulting motif (motif 1) can exhibit non-linear 

optical properties. However, when substituents are added in a meta position of the 

phenoxy rings the steric bulk of the groups discourages the parallel stacking in favour of 

anti-parallel stacking giving motif 2. 

Motif 3 is rather different to motifs 1 and 2, the Piedfort unit no longer forms the basis 

of the motif, and the crystal structure has a much more open network that is stabilised 

by the incorporation of 'guest' molecules of the solvent from which the crystal was 

grown. It would appear that the important factor in the generation of this motif is the 

presence of a halogen atom in the ortho position (R 1) allowing the formation of a three­

fold halogen-halogen interaction, and also the lack of any bulky groups in the meta 

positions, i.e. R2 and R3 are both hydrogen. This would suggest that halogen-halogen 

interactions play an important role in this motif. 

The trigonal symmetry of triazine molecule is carried over into the crystal structure 

motif in all three cases (1-3) resulting in the structures based on trigonal or hexagonal 

crystal systems. 

• Three motifs are found for small subsistent groups (R) such as H, CH3, Cl, Br. More motifs are found 
with bulkier and more flexible groups, see structures in the CSD6 for details. 
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R, 
R2AR3 y 

R3~01( NyO represented by the 
R,Af NyN following pictogram 

R2 OYR2 
1.0 

sym-triaryloxytriazines R
3 

R, 

Motif 1 Motif2 

Can exhibit NLO properties. Can not exhibit NLO properties. 
Found when: Found when: 

R], Rz, R3 = H R1 =Hand 
R 1 = CH3, R2, R3 = H R2 or R3 = Br, Cl, or CH3 

Can form three* different 
motifs depending on the 

nature of the groups R1 R2 

and R3. 

Can not exhibit NLO properties. 
Centra-symmetric hexagonal lattice 

Found when: 
R2, R3 =Hand 
R1 =Cl or Br 

Figure 16.1: Motifs generated by sym-triaryloxytriazine/· 1
. *see footnote on previous page. 
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16.2 Crystal Data 

Code 6x 6N 

Radiation type X-ray Neutron 

Instrument Smart-CCD9 SXD at ISIS 10'11 

Instrument type Area detector Time of flight 

Wavelength I A 0.71073 0.5-5.0 

Formula C21H1 zChN30 3 I Cz1Ht zCl3N30 3 I 

C6H3Br3 C6H3Br3 

Formula weight 775 .50 775.50 

Temp/K 150(2) 100(5) 

Crystal system Hexagonal Hexagonal 

Space group P63 P63 

Colour Colourless Colourless 

Habit Block Block 

Size/ mm 0.35x0.27x0.27 6.0x 1.5x 1.0 

a(=b) I A 15.250(2) 15.166(6) 

c/A 6.814(1) 6.743(2) 

a(=~) ;o 90 90 

'Y ;o 120 120 

z 2 2 

Mu I mm-1 4.737 10.80 (at LX.) 

Absorbtion. conection. type multiscan empirical 

R(int) 0.0523 0.071 

Data/restraints/parameters 17004 I 1 I 122 30681 I 11 163 

Go oF 1.037 1.230 

R1 0.0276 0.0834 

wR2 0.0623 0.2121 

Table 16.1: Crystal data for eo-crystal 6, 2,4,6-tri s-( 4-chlorophenm:y )-1,3,5-triazine and 
tribromobenzene. 
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16.3 Crystal Structure and Results 

The overall structure of compound 6 is aesthetically very pleasing; the triazine 

molecules form a two dimensional hexagonal based network with open channels or 

nanotubes running in the third dimension. These channels are filled with the solvent 

tri bromobenzene. 

Figure 16.2: Theftt!l structure of compound 6. 

The crystal takes a hexagonal system with one third of the triazine and one third of the 

tribromobenzene molecule in the independent unit. The molecular structure and atom 

naming system are given below: 

Figure /6.3: 2,4,6-tris-(4-chloro-phenoxy)-1,3,5-triazine and tribromobenzene, model from neutron data 

with thermal ellipsoids (including hydrogen atoms) plotted at 50% probability. 
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The structure is built up of a simple trigonal based net with adjacent layers of the 

structure inverted with relation to each other to give the overall hexagonal structure seen 

above. 

Figure 16.4: the trigonal based net oftriazines containing tribromobenzenes. 

This trigonal net is built up of three-fold Cl-Cl interactions, with a shm1 Cl. .. Cl distance 

of 3.441(3)A and C-C!. .. Cl angles of 165.0(1)0 and 105.0(1)0
• As discussed in the 

introduction, the occurrence of close Cl-Cl contacts has been widely studied. 

Studies 12
·
13 using the CSD6

, indicate that there are two types of C-Cl. .. Cl-C 

interactions, type I where the two C-Cl. .. Cl angles are equal and the more common 

type, type II, where one of the C-Cl. .. Cl angles approximately equals 90° and the other 

180°. The interaction seen here is of the type II kind. It has been proposed that Type II 

interactions are due to the polarisability of the halogen. Carbon-bound halogens in a 

sufficiently electron-withdrawing environment will present an anisotropic charge 

distribution, 8+ forward of the halogen along the C-halogen bond vector, giving rise to 

the C-Cl.. .Cl bond angle of 180°, and 8- perpendicular to the bond vector, giving rise to 

the C-Cl ... Cl bond angle of 90°. 

The motif 3 structure is dependent on the presence of these Cl-Cl interactions, or rather 

of halogen-halogen interactions; exchange of the Cl group for a nearly identically sized 

methyl group (isomorphous replacement) results in a completely different structure, 

namely that of motif 1. However, exchange of the chlorine atoms for bromine atoms, 

which can also exhibit halogen-halogen interactions, results in no change of structure4
. 
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Figure 16.5: The orientation of the tribromobenzene molecule in the triazine net. 

It can be seen that the tribromobenzene fits very precisely into the holes created by the 

triazine net. Each hydrogen is directed towards a phenyl ring, and each bromine fits 

into a hollow in the ring circumference. A side view (Figure 16.6) shows that the 

tribromobenzene molecules do not lie in the same plane as the triazine net but about lA 
below this plane, thus, none of the hydrogen or bromine atoms of the tribromobenzene 

point directly at the phenyl ring centroids, but instead at a C-C aromatic bond of the ring 

instead. 

Figure 16.6: Side view of2 layers oftribromobenzene molecules in the triazine nets. 

In addition to the Cl ... Cl interactions linking molecules within a net there are C-H ... N 

hydrogen bonds linking adjacent nets, these can be seen in Figure 16.6 above. 
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Model from: 
0 

C-HI A H . .. N/A c ... NI A CHN/0 

X-ray data 
0.981 (hydrogen atom positions 

2.84 2.974(3) 86 
generated) 

Neutron data 
1.083(8) (hydrogen atom positions 

2.83(1) 2.959(3) 86.3(6) 
calcul ated from data) 

Table 16.2: Geometry of the C- H. .. N hydrogen bond linking adjacent layers. 

The side view (Figure 16.6) also shows clearly the degree of tilt in the triazines phenyl 

nngs. This tilts the phenyl 1ings towards the hydrogen atoms and away from the 

bromine atoms. This tilting of the phenyl rings that breaks the mj1Tor symmetry that 

can be seen when 2,4,6-tris-(4-chloro-phenoxy)-1,3,5-triazine is eo-crystalli sed with 

some other solvents. A search of the CSD6 produces five hits for 2,4,6-tris-(4-chloro­

phenoxy)-1 ,3,5-triazine with various solvents, these are listed in Table 16.3 below. It 

can be seen that the crystals form in one of two possible space groups, P63/m or, as in 

compound 6, P63. T he influence of the minor plane parallel to the view plane can be 

seen clearly in the til t of the phenyl rings . 

Figure 16.7: The structure of2,4,6-tris-(4-ch/oro-phenoxy)- 1,3,5-triazine, in P6:/m and P63 space 

groups. The space group depends on the identity of the guest solvent molecule. 
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Temperature 

Solvent 
Space of data 

Disorder CDS refcode 
group collection 

IK 
Chloroform, dichloromethane, 

P63/m 295 
Solvent 

VALQEE01 1 
Ethylacetate, benzene, toluene disordered 
Hexachlorobenzene 

P63/m 295 
Solvent 

VEWDIK14 
disordered 

Hexameth yl benzene Solvent and 
P63/m 295 Phenyl rings VEWFUYJ 4 

disordered 
1 ,3,5-tri nitrobenzene P63/m 295 No disorder VEWJIQJ4 

Hexamethylphosphoramide Solvent and 
P63/m 295 Phenyl rings VEWNEQ 14 

disordered 
1,3 ,5-tri bromo benzene 

P63 150 I 100 No disorder 
XEHMAY 15 

XEHMAY01 15 

Table 16.3: Occurrences of 2,4,6-tris-(4-chloro-phenoxy )-1,3,5-triazine with various solvents in the 
csd. 

It might seem that only the very precise fit of the TBB molecule is enough to break the 

mirror symmetry16. However the presence of disorder in the same phenyl rings where 

the presence or absence of the mirror symmetry makes itself felt, might suggest that 

space group has been incorrectly identified in these cases . Data collection at a lower 

temperature might resolve the disorder and/or help establish if the true space group has 

been identified. 

16.4 Conclusions: 

This is a wonderful example of crystal engineering, with the overall structural motif 

being determined by the substituent identity (R 1_3), and within motif 3 the degree of 

order and stability being controlled by the fit between the triazene channels and guest 

solvent molecule. It is also worth noting that in all three motifs the intemal trigonal 

symmetry of the triazine molecule is carried over into the crystal structure, resulting in a 

trigonal or hexagonal habit. 
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It is also a clear example of the strong structural determining influence that can be 

played by halogen-halogen interactions, especially by the strong three-fold Cl-Cl 

interactions. It is whether or not there is the possibility for these halogen-halogen 

contacts to occur, that controls whether motif 3 can form. 

Motif 3 is seen to be a very robust motif, occurring regardless of halogen identity, or 

guest solvent identity. Unfortunately the motif is not robust enough to allow the solvent 

to be removed from the channels without structural degradation 1
• And finally, from a 

purely aesthetic point of view, motif 3 is a very visually pleasing motif. 
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Chapter 17 : Triphenylisocyanurate eo­

Crystallised with Trinitrobenzene 

17.1 Introduction 

Continuing on from the work on triazines in the previous chapter, the related triazine 

compound triphenyli socyanurate has been studi ed. In this case the tri gonal symmetry of 

the molecules is not canied over into the crystal structure, nor is it part of an easily 

understood pattern of structural motifs. However the structure does exh ibit a number of 

interesting n-n and C-H . . . n interactions , which have been studied here using neutron 

diffraction. 

The triphenyli socyanurate has been eo-crystallised with trinitrobenzene and benzene -

the solvent from which the crystals were grown2
. The molecules crysta lli se in the ratio 

of 2:2: 1, i .e. there is half a benzene molecule to each triphenylisocyanurate and 

trinitrobenzene molecule. 

Figure I 7. I: Triph enylisocyanurate with trinitrobenzene and benzene. Model jro111 neutron data , th er111al 

ellipso ids (including hydrogen ato111s) plotted at 50 % probability. 
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17.2 Crystal Data 

Code 7x 7N 

Radiation type X-ray Neutron 

Instrument Smart-CCD9 SXD at ISIS 10
'
11 

Instrument type Area detector Time of flight 
0 

Wavelength I A 0.71073 0.5-5.0 

Fmmula 
C21HtsN30 3 I C2tH1sN303 I 

C6H3N303 I C3H3 C6H3N306 I C3H3 

Formula weight 609.53 609.53 

Temp/K 100(2) 25(1) 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

Colour Colourless Colourless 

Habit Block Irregular p1ism 

Size/ mm 1.2x0.6x0.25 2.0x2.0.x 1.0 

a/ A 11 .3825(3) 11.320(4) 

b/ A 11.5495(3) 11 .558(5) 

c/A 12.55 13(3) 12.455(5) 

a /0 69.866(1) 70.48(2) 

~ fO 63.497(1) 63.43(3) 

y jO 86.397(1) 86.93(3) 

z 2 2 

Mu/mm-1 0.111 1.230 (at 1Arnm·1) 

Absorption conection type none empiiical 

R(int) 0.0327 0.066 

Data/restraints/ 
parameters 

7227 I 0 I 406 6069 I 0 I 595 

Go oF 1.034 1.057 

Rl 0.0392 0.0799 

WR2 0.1001 0.2013 

Table 17. 1: Crystal data for eo-crystal 7, triphenylisocyanurate with trinitrobenzene and benzene. 
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17.3 Crystal Structure and Results 

Two triphenylisocyanurate molecules form discrete hydrogen bonded units with two 

tlini trobenzene molecules about a centre of inversion. Each unit involves three C-H ... 0 

interactions, details given in Table 17.2. A single molecule of the solvate benzene fits 

into the centre of the unit in such a way that it is sandwiched between the phenyl rings 

of the two trinitrobenzene molecules in a double 7t-1t interaction. 

I rl 
I 

' ' ' ' 

Figure 17.2: Triphenylisocyanurate trinitrobenzene and benzene hydrogen bonded unit, thermal 
ellipsoids (including hydrogen atoms) plotted at 50% probability. 

Hydrogen bond C-HI A o ... HI A O ... C/ A OHC/0 

Os ... H13-C1 3 1.082(10) 2.519(9) 3.520(5) 153.5(9) 

0 2o . .. H2-C2 1.076(9) 2.303(9) 3.372(4) 172.2(7) 

Ot ... H22-C22 1.081 (8) 2.520(10) 3.349(6) 132.7(7) 

Table 17.2: Hydrogen bond distances within the triphenylisocyanurate trinitrobenzene and benzene unit. 
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The distance between the two adjacent ring centroids of the n-n interaction is 3.538A, 

the benzene molecule sits on the inversion centre hence the two n-n interactions are 

identi cal and the angle between the interactions is 180°. 

The planes of the phenyl rings are not normal to the n-n interaction, but tilted by 

approximately 17°. Looking straight down the interaction it can be seen that the 

inversion centre relates the two trinitrobenzene molecules so that one nitro group on one 

molecule eclipses the hydrogen on another. The benzene is staggered in relation to the 

trinitrobenzene molecules. 

a) b) 

\ 

Figure 17.3: The 1r:-1r: interaction a) side view b) top view. 

These hydrogen bonded units (shown in Figure 17.2) arrange to form ribbons in such a 

way that each of the double n-n interactions, shown above, interacts wi th two fUI1her 

phenyl ring from both adjacent units thus giving a quadruple n-n interaction. 

Figure 17.4: Ladder of quadruple 7r:-7r: interactions. 
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These ribbons li e side by si de in such a way that a C-H .. . n hydrogen bond (c in Figure 

17.5) can form to each of the end phenyl 1i ngs in the quadr uple n-n interactions stack. 

These interactions hold the 1ibbons together to form sheets. 

Figure 17. 5: Two chains oftriphenylisocyanurate with trinitrobenzene and benzene. 

The n-n interaction between triphenylisocyanurate and trinitrobenzene, (b in Figure 

17.5) is longer than the interaction between trinitrobenzene and benzene (interaction a) . 

Overall the quadruple n-n interaction is fairly linear. All of the phenyl ring planes are 

tilted with respect to the normal of the n-n interaction, and with respect to each other, 

i.e. the ring planes are not parallel. The distances and ang les are given in the Table 17.3 

below: 
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rr-rr interactions: 
Ring centroid - ring centroid distance between benzene and 

3.538A 
trinitrobenzene - distance a 
Ring centroid - ring centroid distance between trinitro-

3.875A 
benzene and triphenyJisocyanurate- distance b 
Angle between 7t-7t interaction a, and 7t-7t interaction a 180° 

Angle between 7t-7t interaction a, and 7t-7t interaction b 177° 

Angle between trini trobenzene phenyl nng plane and 
Benzene ring plane 

5.1(2)0 

Angle between triphenylisocyanurate phenyl ring plane and 
21.1(1)0 

trinitrobenzene phenyl ring plane 
Angle between triphenylisocyanurate phenyl ring plane and 

16.1(1)0 

Benzene ring plane 

C-H ... rr interaction- c : 

Hydrogen bond 
0 

C-HI A H .. . 1t I A c ... nl A CHnl0 

C2s-Hzs .. . n 1.075(10) 2.54 3.54 155 

Table 17.3: n:-n: and C-H. .. n: interactions in compound 7. 

There are further C-H . . . 0 interactions between adjacent sheets, these are shown in the 

Figure 17.6. 

Figure 17. 6: Interaction betrveen two sheets viewed down the n:-n: interactions. Thermal ellipsoids 
(including hydrogen atoms) plotted at 50% probability. 
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C-H ... 0 interactions: 

Hydrogen bond C-HI A H ... n I A C ... n I A CHnfO 

CwHI6··· 0 3 1.087(8) 2.471(9) 3.381(5) 141.5(7) 

C3s-H3s .. . 01o 1.077(8) 2.444(9) 3.319(5) 136.6(6) 

Table 17. 4: C-H. .. O interactions between two adjacent sheets in compound 7. 

These inter-sheet C-H . . . 0 interactions lie within the same range in terms of length and 

directionality as those C-H ... 0 interactions found within the triphenylisocyanurate, 

trinitrobenzene and benzene hydrogen bonded unit. 

17.4 Conclusions 

Compound 7 exhibits a number of interesting interactions. The triphenylisocyanurate, 

ttinitrobenzene and benzene molecules lack any conventional N-H or 0-H donors while 

having nitro and carbonyl hydrogen bond acceptor groups. As a result the phenyl 

hydrogen atoms are utilised as hydrogen bond donors and the structure relies on a large 

number of C-H ... 0 hydrogen bonds to form the three dimensional structure. 

The benzene solvate is required as an integral part of the structure. It has been shown 

that if thiophene is used instead of benzene as the solvent then the crystals f01med are 

isostructural2
. It would be interesting to investigate if crystals could be grown from any 

other solvents and what structural changes result. 
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Chapter 18 : 4,4' -dinitrotetraphenyl 

methane 

Compound 8, 4,4 ' -dinitrotetraphenyl methane, has been found to exhibit non-linear 

optical properties*. It is well accepted that non-linear optical crystals must have a non­

centra symmetric symmetry, however 4,4' -dinitrotetraphenyl methane appears to 

crystallise in the centra-symmetric space group R-3. Closer analysis of the structure 

reveals that there are molecules of water sitting on, and disordered across, the three-fold 

axis. This water breaks the R-3 symmetry, presumably generating a supercell that will 

fit the requirements for nonlinear optical properties. It is not unprecedented, in 1997 

Konig et al 17 described the structure of a nonlinear optical host-guest material where the 

host molecules have a structure best described by the centra-symmetric space group 

Cmcm, it is only the relative orientation of the chains of guest molecules that breaks this 

symmetry resulting in the polar space group Cma2 1• Since the molecule of interest fits 

the R-3 symmetry, and it is only the solvent water that breaks the symmetry, the 

structure has been so lved and modelled in the R-3 space group with the water molecules 

described as disordered. Analysing the structure in terms of a space group in which the 

water disorder is resolved should not alter the relative positions of the 4,4'­

dinitrotetraphenyl methane molecules . 

In an attempt to freeze out any kinetic component of the disorder and obtain the best 

data possible, the crystal was slow cooled and the data were collected at very low 

temperature (30°K) using the HELIX cryostream. The HELIX is a cryostream that uses 

a stream of cooled helium gas rather than nitrogen gas to cool the crystal, thus it is able 

to obtain far lower temperatures than a standard nitrogen based cryostream. 

From this data a reasonable model of the R-3 disordered structure was obtained. 

However, to identify the supercell and fully solve the disorder better data are required, 

either from a more intense X-ray source or a neutron source where the hydrogen atoms 

will scatter better and thus the solvent will have a greater influence on the data. 

• Non-linear optical measurements carried out at the University of Hyderabad, India 
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4,4' -dinitrotetraphenyl methane has an excess of hydrogen bond donors in the form of 

the two nitro groups, whi le the only possible hydrogen bond donors are the phenyl 

hydrogen atoms. In the analysis of the hydrogen bonding interactions and motifs any 

interactions with the disordered solvent have been ignored. 

012 

Figure 18.1: 4,4'-dinitrotetraphenylmethene, with two water molecules in partially occupied positions. 

Thermal ellipsoids plotted at 50% probability. 
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18.1 Crystal Data 

Code 8 

Radiat:i on type X-ray 

Instrument Smart-CCD9 

Instrument type Area detector 

Wavelength I A 0.71073 

Formula CzsHt sNz04 + 0.54 HzO 

Formula weight 420.18 

Temp/K 30(2) 

Crystal system Rhombohedral 

Space group R-3 

Colour Yellow 

Habit Block 

Size/ mm 0.30x0.26x0.20 

a=b/ A 20.759(3) 

c/A 7.5606(5) 

U = p JO 90 

y jO 120 

z 18 

Mu/mm-1 0.093 

Absorption conection type None 

R(int) 0.0604 

Data/restraints/parameters 4654 I 6 I 300 

Go oF 1.044 

R1 0.0618 

wR2 0.1397 

Table 18.1: Crystal data for compound 8, 4,4 '-dinitrotetraphenylmethane. 
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18.2 Crystal Structure and Results 

The disorder of the water is very interesting, the fact the disorder lies on the three-fold 

rotational axis makes the identification of the separate molecules from the peaks of 

electron density in the Fourier map more difficult than usual. The program 

SQUEEZE 18 (part of the PLATON19 suit of programs) was run on a refined model 

without the water being include in the structure, and used to calculate that in each cell 

there were six large voids of roughly 112 A?, and with 14 electrons of un-modelled 

electron density per void. Given that the value of Z is 18 there is one third of a void per 

asymmetric unit. With part of the water molecule lying directly on the rotational axis, 

each orientation of the water molecule can only have a maximum occupancy of one 

third and in fact has an occupancy of slightly less that that. Given this, it is amazing 

that the hydrogen atoms appeared at all in the Fourier map, and their positions should be 

viewed as unce1tain. The model below is the best that could be achieved with the data 

avai lable . 

H1Ba 

H1Bb 

H2Ba 

02b 

~ 
:111111 3-fold rotational axis 
I 
I 
I 
I 
I 

~ H1A,H1Aa,H1Ab 

~1a,01b 
I 

: H1B 
I 
I 
I 
I 
I 
I 
I 
I 
I 

H2Bb 
I 

Figure 18.2: The disordered water molecules. 
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For the rest of the structure analysis the disordered water has been ignored and is not 

included in any of the following diagrams. 

Each molecule is involved in many different motifs, the structure consists of two 

different types of dimeric interaction, two different types of helices, and two di fferent 

types of six membered rin gs, making six different motifs altogether. As there is on ly 

one molecule in the asymmetric unit, each molecule is simultaneously involved in al l 

six motifs. 

The dimers: 

a) 

1 

I 

b) 

I 

Figure 18.3: Di111ers of 4,4'-dinitroph enyllllethane a) dimer J, b) dimer 2. 

There is an interaction between 0 12 and H32 which resul ts in a dimer, and another 

interaction of 0 21 and 0 22 wi th H 12 which results in a second dimer. Each molecule is 

involved in both dimers resulting in chains of alternating dimers running through the 

structure. For clarity the dimers have been drawn separately in Figure 18.3 . 

The helices: 

The two helices both run para llel to the c axis. Both helices are propagated by C-H ... 0 

interactions. In the f irst he lix these interactions are between C34-H34 . .. 0 12, and in the 

second heli x these interac tions are between C4s-~5 ... O i l · 
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Helix 1: 

a) 

b) 

Figure 18.4: Helix of 4,4'-dinitrophenyl methane molecules (helix 1 ), a) viewed pe1pendicular to helix 
axis, b) viewed down axis of helix. 

Helix 2: 

a) 

b) 

Figure 18.5: Helix of 4,4 '-dinitrophenylmethane molecules (helix 2), a) viewed pe1pendicular to helix 
axis, b) viewed down axis of helix. 
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The 6-membered rings: 

Both the six-membered rings lie in the ab plane, i.e. perpendicular to the c axis. The 

first ring is made of C-H ... 0 interactions (C35-H35 ... 0 22). The second ring is generated 

by two different C-H .. . n interactions where n is the two phenyl rings without nitro 

groups attached. The 1ing is formed from an inner ring of C33-H33 ... n:<c31 _c36J and an 

outer ring of C23-H23 ... 1r(C41-C46)· 

a) 

b) 

Figure 18.6: Six-membered rings of4,4'-dinitrophenyl methane molecules a) ring propagated by C-H. .. O 
hydrogen bonds b) ring propagated by C-H. .. 7r hydrogen bonds. 
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Overall these interaction motifs fit together to give the packing shown below. With so 

many motifs occurring simultaneously it is hard to pick each motif out from the final 

packing diagram. The voids or channels that are filled by the solvent water are clearly 

seen running parallel to the c axis, a channel at each corner of the cell face, and two 

channels in the middle of the cell. 

Figure 18.7: The packing of 4,4 '-dinitrotetraphenyl methane in the three dimensional structure. 

Motif C-H .. :A Distance H ... A Distance C ... A Angle CHA/0 

.,,:[,t'";· ~~c'.· ~-. tA , lA .. : .;! 

Dimer 1 012···II32-C32 2.65 3.392(3) 135 

Dimer 2 OzJ ... liJz-CI2 2.62 3.564(3) 175 

Helix 1 OJz ... li34-C34 2.71 3.371(4) 127 

Helix 2 OII···~s-C4s 2.68 3.339(3) 127 

R.ing 1 022···II3s-C3s 2.58 3.318(4) 134 

Ring2 X1a ... li33-C33 2.87 3.661 141 

Ring2 X1b ... II23-C23 2.90 3.748 149 

Table 18.2: Hydrogen bonding interactions in compound 8. 
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18.3 Conclusions 

Looking at the interactions described above it can been seen that each possible 

hydrogen bond acceptor is utilised in the structure. 

As was discussed in the introduction the crystals of compound 8, 4,4' -dinitrotetraphenyl 

methane, have been found to exhibit non-linear optical properties and therefore must 

have a non-centra symmetric symmetry. However, as has been seen, the 4,4'­

dinitrotetraphenyl methane molecule fits the centro-symetric R-3 structure, and it is 

only the water molecules that break the centra-symmetric symmetry. It is interesting 

that such a small break in the symmetry, that would routinely be described as disorder 

in a crystal structure determination, can lead to such an important physical property as 

second harmonic generation. This result is especially interesting in view of the 

possibilities of crystal engineering such materials; structure prediction is hard enough 

without the added complications of solvent inclusion and disorder completely altering 

the structure's physical properties. 

It would be interesting to try to grow crystals from a solvent that could fit the three-fold 

symmetry of the solvent channels, or alternatively to try and remove the water from 

these channels without causing the destruction of the crystal. Would the removal of the 

part of the structure that breaks the symmetry, result in the disappearance of the 

nonlinear optical properties? 

It can be seen that the interaction motifs mirror the symmetry elements in the crystal, 

with the dimers forming around the inversion centres, the helices about the three-fold 

screw axis, and the rings about the three-fold axis with the solvent channels running 

down the centre of the rings. 
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Chapter 19 : 2,3 ... dichloro= 1,4CO)diethynyl= 

1,4-dihydroxy-napthalene 

19.1 Introduction 

Compound 9, 2,3-dichloro-1 ,4-diethynyl-1 ,4-dihydroxy-napthalene, is a gem-alkynol: 

it contains a hydroxyl group and an ethyne group bound to the same carbon. Gem­

alkynols have been proposed for use as crystal engineering building blocks, and used to 

study hydrogen bonding5
'
20

'
21

, since they contain two very different hydrogen bonding 

groups, the hydroxyl and the ethyne groups. The interplay of these hydroxyl and ethyne 

groups, in terms of hydrogen bonding potential and structure motif determining 

f. . f . 22 eatures, IS o great mterest . There are four possible hydrogen bond interactions 

between two gem-alkynols: 

(i) o-H----o 

(ii) --c==c-H----o 

c 
(iii) O-H---- -Ill 

c 
c 

(iv) -c==c-H---- -Ill 
c 

hydroxyl - hydroxyl 

ethyne -hydroxyl 

hydroxyl - ethyne 

ethyne - ethyne 

Figure 19.1: Possible hydrogen bond interactions between two gem-alkynol groups. 

These four interactions are interesting since they are built up of the combination of a 

strong and a weaker hydrogen bond donor, and a strong and a weaker hydrogen bond 

acceptor. Within a gem-alkynol crystal structure there is the possibility for any one of 

these interactions to occur, or for a combination of the interactions, or for the gem­

alkynol to interact with other parts of the molecule rather than another gem-alkynol. A 
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study* of the frequency with which each of these interactions occur within the gem­

alkynol structures in the Cambridge Structural Database6 shows that while, as might be 

expected, the 'strong - strong' 0-H ... 0 interaction occurs most frequently, all of the 

interactions do occur in some cases, and the differences between the frequencies with 

which they are found are not great. 

No. of structures 
'·" 1' <:;» ~'<0 

Interaction: No~: of occurrences of 
$. ",:;; - . 

(refcqdes) ;;!:-, · h. '·~ 
' ~ac mt~rac}Ion*\ .. 

I 0-H ... O 30 46 

11 C-H ... O 29 35 
... 

0-H .. . n 10 15 111 

IV C-H .. . n 16 21 

None of the above 41 

interactions 

Table 19.1: Frequencies of occurrence of the four gem-alkynol - gem-alkynol interactions. 

It is interesting to note that the 'strong' donor- 'weak' acceptor interaction, 0-H ... 7t, 

occurs less frequently than the 'weak' donor- 'weak' acceptor interaction, C-H .. . n. A 

more detailed analysis of the situation is given in Table 19.2 below. 

* The CSD6 search was carried out on the October 2001 release (245392 entries), using the Conquest 1.3 

software package. Hydrogen bond limits of the sum of the van der Waals radii were taken: 2.72A for 

H ... 0 and 3.05 for H ... rr (C=C centroid)23
, hydrogen atom positions were normalised to neutron 

distances, and only structures with R factors < 0.1, no errors, and not polymeric were accepted. Data 

includes cases with more than one gem-alkynol group per molecule and/or more than one molecule per 

asymmetric unit. 
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One type 

Two types 

Three types 

All four types 

Table 19.2: Frequencies of occurrence of the possible combinations of the four gem-alkynol - gem­
alkynol interactions. 

Although the data sample is not really big enough to draw any definite conclusions, a 

few patterns can be inferred. Firstly, that interaction (i) is often found in combination 

with other interactions, especially with interaction (iv). Interaction (iii) is rarely found. 

The preferred combinations are interactions (i) & (iv), interactions (i) & (ii) & (iii), and 

all four interactions, however, just interaction (i) or interaction (ii) without any further 

gem-alkynol - gem-alkynol interactions is much more likely than any combination of 

interactions. 
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Figure 19.2: 2,3-dichloro-1,4-diethynyl-1,4-dihydroxy-napthalene, thermal ellipsoids plotted at 50% 
probability. 

In 2,3-dichloro-1 ,4-diethynyl-1 ,4-dihydroxy-napthalene there are many possible and 

competing interactions. Not only are there the four possible gem-alkynol - gem-alkynol 

interactions discussed above, there is also the possibility for chlorine - chlorine type 

interactions (such as have been discussed in Chapter 16 and which have been shown to 

have a strong influence on structure given the right conditions), and the potential for 

chlorine atoms and the phenyl ring to act as hydrogen bond acceptors and C-H as 

hydrogen bond donors. With such a wealth of interactions to choose from, the 

combination of interactions utilised in the crystal structure will be very informative. 
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19.2 Crystal Data 

Code 9 

Radiation type X-ray 

Instmment Smart-CCD9 

Instrument type Area detector 

Wavelength I A 0.71073 

Formula C14HsCh02 

Formula weight 279.10 

Temp/K 120(2) 

Crystal system Monoclinic 

Space group P21/c 

Colour Colourless 

Habit Block 

Size/ mm 0.45x0.35.x0.20 

a/ A 7.4454(5) 

bl A 23.3125(17) 

c/A 7.5606(5) 

a =y ;o 90 

~ ;o 110.578(3) 

z 4 

Mu/mm-1 0.517 

Absorption correction type None 

R(int) 0.0318 

Data/restraints/parameters 2815/0/179 

Go oF 1.062 

R1 0.0301 

wR2 0.0739 

Table 19.3: Crystal data for compound 9, 2,3-dichloro-1,4-diethynyl-1,4-dihydroxy-napthalene. 
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19.3 Crystal Structure and Results 

Of the four possible gem-alkynol - gem-alkynol interactions, three (types (i), (ii), and 

(iii)) are seen in the crystal structure of compound 9. Only the 'weak-weak' interaction, 

(iv) (C=C-H . . . n) is not seen. Interactions (i) and (ii) link the molecules into chains and 

dimers respectively, overall this results in the formation of ladders. 

Figure 19.3: Ladder built up from gem-alkynol- gem-alkynol interactions (i) and (ii). 

These chains are joined into zig-zag sheets by the gem-alkynol - gem-alkynol 

interaction type (iii), and by ch lorine- ch lorine interactions. These ch lmine - chlmine 

interactions are type II halogen - halogen interactions (i .e. one C-Cl. .. Cl angle of 

approximately 90° and the other of approximately 180°) such as occur within the eo­

crystal of 2,4,6-tris-( 4-ch lorophenoxy)-1 ,3,5-triazine and tri bromo benzene (eo-crystal 

6) discussed in Chapter 16. 
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a) 

b) 

Figure 19.4: Zig-zag sheets of compound 9 showing the various gem-alkynol interactions and the 

chlorine- chlorine interaction, a) viewed from above with interactions (i), (ii), and (iii) labelled 
in grey, b) side view. 

If the two gem-alkynol groups per molecule are considered as consisting of four donor 

hydrogen atoms (two hydroxyl and two ethyne hydrogen atoms) and four acceptor 

groups (two oxygen atoms and two ethyne bonds), then the three gem-alkynol -gem­

alkynol interactions leave one ethyne donor hydrogen atom, and one ethyne acceptor 

group unused. This donor and acceptor do form interactions, but with other groups in 

the molecule; a chlorine atom and a phenyl hydrogen respectively. 

It is of note that it is the weaker type of donor and the weaker type of acceptor that are 

not involved in the gem-alkynol - gem-alkynol interactions that form the sheets. The 

gem-alkynol - gem-alkynol interactions are involved in the formation of the sheets only, 

and it is the interactions between the gem-alkynol groups and other parts of the 

molecule that hold the sheets together, building the three dimensional lattice. 
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a) 

b) 

Figure 19.5: Zig-zag sheets of compound 9 showing all the various interactions, a) side view, b) looking 
down on a sheet with interactions within and between sheets shown. 

Gem-alkynol - gem-alkynol interactions 

type Hydrogen bond D-H ... A H ... A I A D ... A/ A 
165(2) 

11 2.35(2) 3.282(2) 166(2) 

Interactions between the gem-alkynol groups and other parts of the molecule 

Hydrogen bond D-H ... A H ... A I A D .. . AI A DHA 1° 

<=t 2-HI 2···(:)2 2.98(2) 3.703(2) 135(2) 

<=4-lk. ,7[2 3.04 3.744 131 

Halogen- halogen interaction 

Halogen bond C:l ... C:I <=I. .. <=11 A C:-C:l. .. Cl lo (:1. .. C:l-C: lo 

<=9-<=1, ... <=12-<=8 3.2987(6) 91.39(5) 144.25(5) 

Table 19.4: Interactions within the 2,3 -dichloro-1 ,4-diethynyl-1 ,4-dihydroxy-Hapthalen e crystal structure. 
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19.4 Conclusions 

This structure is very interesting due to the shear diversity of the intermolecular 

interactions. Of the possible hydrogen bond, and halogen - halogen bond, donor and 

acceptor groups discussed at the beginning of the chapter, most are utilised in the 

structure. 

The gem-alkynol - gem-alkynol interactions show a close correlation between the 

lengthening of the hydrogen bond and the weakening of the donor and acceptor groups. 

There are three interactions running in different directions within the plane of the sheet. 

The longest and, therefore, probably the weakest of these interactions is reinforced by 

the chlorine - chlorine interactions. In comparison to the interactions within the sheet, 

the interactions between two sheets are fewer, longer and less linear. 

The combination of gem-alkynol - gem-alkynol interactions found in compound 9 

(interactions (i) & (ii) & (iii)) appears to be one of the more common interaction 

combinations. 
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Chapter 20 ~ 4,4odiphe:nylo2,5o 

cyclohexadienone 

20.Ji Introduction 

Compound 10, 4,4-diphenyl-2,5-cyclohexadienone is interesting because it exists in 

many different structural forms or polymorphs. In fact it appears to form different 

polymorphs exceptionally easily. 

Polymorphism is a very intriguing phenomenon. It has been suggested by McCrone 

(1965) that 'the number of forms known for a given compound is proportional to the 

time spent in research on that compound' 24
, that said, the discovery of a new 

polymorphic system is still of great interest. From a crystal engineering aspect, 

polymorphism can be both a help and a hindrance. When trying to understand the 

various influences of several inter- and intra-molecular interactions, the existence of a 

compound in more than one crystal packing arrangement gives a set of systems where 

the only variable is the crystal structure. However, the ultimate aim of crystal 

engineering is to predict the crystal structure of a given compound and here the 

occurrence of polymorphism makes accurate prediction even harder than it already is. 

The polymorphic forms of 4,4-diphenyl-2,5-cyclohexadienone are especially interesting 

because at least three polymorphs form concomitantly3
·
25

, that is to say, they form under 

completely identical conditions - to the extent of being found in the same re­

crystallisation flask. The first two forms (1 and 2) were identified during routine 

analysis, form 3 was obtained when larger crystals were grown under similar, but not 

identical, conditions for a neutron experiment (pending). Re-examination of the sample 

that was known to contain forms 1 and 2 identified another form (4). Since then 

systematic attempts to obtain further polymorphs have been carried out at the University 

of Hyderabad, India*, and here in Durhamt, these studies have resulted in the 

• Study being carried out by Dr A. Nangia's laboratory, University of Hyderabad, India. 
t Study being carried out by Mr. R. Mondal, University of Durham, U.K. 
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identification of a fifth and probably sixth form (Durham)t, these last two forms are 

currently in the process of being characterised fully. 

Space Solvent of re- ~· 
system Reference 

1 Monoclinic P2I Hexane/EtOAc 1, 3 

2 Triclinic P-1 Hexane/EtOAc 1, 3 

3 Orthorhombic Pbca Hexane/EtO AciD MC Current work 

4 Triclinic P-1 Hexane/EtOAc 3 

5 See footnote t 

Table 20.1: The different polymorphs of compound 10. 

The structure of the third form will be discussed in detail here, and compared to the first 

two (characterised) forms. 

Figure 20.1: 4,4-diphenyl-2,5-cyclohexadienone, form 3, thermal ellipsoids plotted at 50% probability. 

4,4-diphenyl-2,5-cyclohexadienone is a deceptively simple molecule consisting of a 

quinoid ring with two phenyl groups attached. There is one good hydrogen bond 

acceptor in the form of the quinoidal oxygen as well as the less good aromatic phenyl 

and quinoid double bond hydrogen bond acceptors. The only hydrogen bond donors are 

C-H donor; the phenyl hydrogens, and the slightly more acidic quinoid hydrogens. 

t Study being carried out by Mr. R. Mondal, University of Durham, U.K. 
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20.2 Crystal Data 

~ 
,, 

w ,= 10 (fcirm3): · Code .. 

Radiation type X-ray 

Instrument Smart-CCD9 

Instrument type Area detector 

Wavelength I A 0.71073 

Formula C1sHI401 

Formula weight 246.29 

Temp/K 100(2) 

Crystal system Orthorhombic 

Space group Pbca 

Colour Colourless 

Habit } Block 

Melting Point /°C ~; 124-126 

Size/mm .:: 0.55x0.40x0.30 

a/ A· 10.7921(6) 
0 

b/A 17.475(1) 

>r-iA .t~ 0 
27.934(2) 

~ 

a(=~= Y )/o . .···' 90 

z .··~ 

c/'· c.~ ·. · 16 

.. Z' · :,r~ .;t~ 2 

~Mulmm-1 ~ ~1i 0.075 

?Absorption correction type??' Psi-scan 

¥R(int) ~ 0.0742 

1:)a'talrestraintslparameters 5 ' 6538 I 0 I 371 

i,GooF~, 1.061 

~~RLt 
"~ 0.0589 

~ 

'WR2 0.1243 

:berisity (calculated) Mg/m3 1.242 

S~olvent·of re-crystallisation Hexane/EtOAc/DMC 

Tab! e 20.2: Clystal data for compound I 0, 4, 4-diphen yl-2, 5 -cyclohexadienone, form 3. 
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Code 10 (form 1)1
'
3 10 (form 2) 1

'
3 10 (form 3) 

Fmmula CtsHt40t C,sHt40t C,sHt40t 

Formula weight 246.29 246.29 246.29 

Temp/K 160 150 100(2) 

Crystal system Monoclinic Triclinic Orthorhombic 

Space group P2 1 P-1 Pbca 

Colour Colourless Colourless Colourless 

Habit Triangular Sphere Block 

Melting point /°C 120-122 120-122 124-126 

a/ A 7.9170(6) 10.0939(2) 10.7921(6) 

bt A 8.4455(6) 16.2592(3) 17.475(1) 

c/A 10.3086(9) 16.2921(3) 27.934(2) 

o.fO 90 88.257(1) 90 

~ ;o 105.758(8) 85.338(1) 90 

'Y ;o 90 83.645(1) 90 

z 2 8 16 

Z' 1 4 2 

Mu/mm-1 0.075 0.075 0.075 

Rl 0.050 0.0684 0.0589 

wR2 0.1149 0.1567 0.1243 
Density 
(calculated) 1.233 1.236 1.242 
Mg/m3 

Solvent of re-
crystallisation 

Hexane/EtOAc Hexane/EtOAc 
Hexane/EtOAc 

ID MC 

Table 20.3: Comparison of forms I , 2, and 3 of compound 10. 

20.3 Crystal Structure and Results 

Both the overall molecular packing and the hydrogen bond motifs that give rise to this 

packing are very different between the three polymorphs: 

165 



Part3 - Interesting Structures 

Polymorph 1 

(Data taken from CSD6
- Code HEYHOU1

) 

The structure of polymorph 1 is based on helical chains of 0 .. .. H-C hydrogen bonds 

that are bi -furcated at the oxygen acceptor atom, and where the C-H hydrogen bond 

donor is part of the phenyl groups rather than the more acidic quinoid group. The angle 

between the bi -furcated hydrogen bonds is 125°. 

Figure 20.2: Helical chains mediated by O ... H-C hydrogen bonds. 

These chains are linked to each other by C-H .. . n bonds between a hydrogen atom of the 

quinoid and a phenyl ring centroid thereby creating sheets. 

a) b) 

Figure 20.3: Sheets of C-H ... rr linked chains, a) top view of sheet, b) side view of sheet. 
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Adjacent sheets are also linked by C-H .. . n hydrogen bonds, but this time between the 

hydrogen of a phenyl ring and one of the double bonds of the quinoid group, to give a 

three-dimensional network of hydrogen bonds. 

Figure 20.4: Hydrogen bonding within and between two sheets ofpolymotph 1, viewed edge on to the 
sheets. 

C-H ... A .• Distance H ... A lA 
~=:; ~ 0'" 

Distance C ... A I A AngleCHA/0 

CwHw ... 0 1 2.692 3.401 132 

Cis-HJI ... OJ 2.682 3.605 164 

C r Hs ... n(phenyl) 2.821 3.712 157 

Cs-H6 ... 1t(quinoid) 3.000 3.875 154 

Table 20.4: Hydrogen bonds occurring in polymorph 1. 
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Polymorph 2 

(Data taken from CSD6
- Code HEYHOU01 1

) 

Polymorph 2 is a much more complicated structure to follow since it contains four 

independent molecules of 4,4-diphenyl-2,5-cyclohexadienone in the asymmetric unit. 

To aid clarity in the following diagrams the molecule containing the atom 0 1 has been 

coloured green, that containing 02 has been coloured blue, that containing 03 coloured 

red, and that containing 0 4 coloured yellow. These colours are constant in all the 

following diagrams and the molecules are distinguished by the colour they are drawn 

with in the text as well. 

Overall the crystal structure is very different to that seen for polymorph 1. Within the 

structure the hydrogen bonding pattern around one molecule in the asymmetric unit is 

very different to that around the next. 

The molecules coloured red and those molecules coloured blue both form dimers with 

themselves, i.e. red-red and blue-blue. These dimers are formed in a manner analogous 

to carboxylic acid dimers: by two 0 ... H-C hydrogen bonds where the hydrogen is a 

quinodial hydrogen from a position adjacent to the ketone oxygen. 

Figure 20.5: Red-red dimer in polymorph 2 structure, the blue-blue dimer is similar. 

The red and blue coloured molecule dimers combine to form ladders with adjacent 

dimers, linked by C-H ... 0 hydrogen bonds where the hydrogen atom is part of the 

phenyl ring on the red molecule, and by C-H ... 7t bonds where the hydrogen atom is 

from a phenyl ring on the blue molecule and the 1t group is a quinodial double bond on 

the red coloured molecule. 
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Figure 20.6: Ladder of red-red and blue-blue dimers. 

The yellow coloured molecules also form dimers, but these dimers are different from 

the red-red and the blue-blue dimers with the C-H ... 0 hydrogen bonds being between a 

hydrogen atom in the para position in the phenyl group and the oxygen atom. 

Figure 20.7: Yellow-yellow dimers in the polymorph 2 structure. 

The ladders consisting of the red-red and the blue-blue dimers lie parallel to each other, 

with a strip of alternating yellow-yellow dimers and two green coloured molecules in 

the gap between adjacent ladders. 
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Figure 20.8: All the interactions within one sheet of the polymorph 2 structure. Each type of interaction 
has been given a different number. 

Adjacent sheets are connected to each other by C-H .. . n interactions to the phenyl rings 

of the red and blue coloured molecules. The interaction at the phenyl ring of the blue 

coloured molecule is a 'double faced' C-H .. . n interaction with an angle of 174.2° 

between the two hydrogen bonds. 

Figure 20.9: The C-H. .. n interactions that occur between sheets, note the double faced C-H. .. n hydrogen 
bond across the phenyl ring of the blue coloured molecule. 
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Label D-H ... A H ... A/A D ... A/A DHA/0 

1 C32-H24 ···0, 2.58 3.295 132 

11 Czs-Hzt .. . Oz 2.57 3.224 126 
... 

C4rH3s ... 03 2.47 3.405 170 111 

lV ( 61>-11~ ... ) 2.74 3.525 140 

V Cso-HJg ... Oz 2.50 3.426 164 

VI C33-Hzs ... X( quinoid> 3.03 3.976 171 

vu C24-H 17 . · . 1trqlo~ru rd r 3.10 3.976 155 
... 

2.69 3.557 152 vm <; • • . Jt, phc·11· I I 

IX C 11- H · · .1t(phenyl) 2.80 3.646 149 

X C39-H29 · .. 1t(phenylJ 2.66 3.569 161 

XI Czs-H 18 ••• 1t(pho:nyl) 2.64 3.547 161 

Table 20.5: Hydrogen bonds occurring in po/ymorphs 2. 

From the table above it can be seen that the hydrogen bonds to a quinoid 1t group 

(interactions (vi) and (vii)) tend to be notably longer than those to the phenyln groups. 
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Polymorph 3 

There are two independent molecules in the asymmetric unit of polymorph 3, as in 

polymorph 2 the independent molecules have been coloured to distinguish them from 

each other. The first molecule containing the atom 0 1 is coloured purple, and that 

containing the atom 0 2 is coloured cyan. 

The structure of polymorph 3 exhibits features of both the prevtous polymorph 

structures; as in polymorph 1 it has C-H ... 0 hydrogen bonds that are bi-furcated at the 

donor oxygen atom, as in polymorph 2 there are C-H ... 0 dimers and double faced C­

H . . . 7t bonds. 

The first type of molecule, coloured purple, forms C-H ... 0 hydrogen bonds that are bi­

furcated at the donor oxygen atom like those seen in polymorph 1, however unlike 

polymorph 1 these hydrogen bonds form sheets rather than chains. The angle between 

the bi-furcated hydrogen bonds is 96°. This is further from the idealised angle between 

the two oxygen lone pairs (the hydrogen bond acceptor points) than is seen for the 

polymorph 1 bi-furcated bond. 

a) b) 

Figure 20.10: The packing of the first type of molecule into sheets in polymorph 3, a) viewed from above 
and b) viewed from the side. 

Each sheet is very puckered, but in the 3-dimentional crystal structure two sheets are 

interlaced to give a thicker, flatter, double sheet. 
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a) b) 

Figure 20.11: The interweaving of two of the sheets shown in Figure 20.10, a) viewed from above and b) 
viewed from the side. 

The second type of molecule, coloured cyan, forms dimers similar to the yellow-yellow 

dimer seen in polymorph 2, although in polymorph 3 the hydrogen bond is from the 

hydrogen atoms in the meta position on the phenyl ring, not the para position. A second 

C-H ... 0 hydrogen bond from the same oxygen (i.e. again bi-furcated at the oxygen 

atom) forms to a purple coloured molecule. The angle between the bi-furcated 

hydrogen bonds is 143°. 

Figure 20.12: Dimers of the cyan coloured molecule. 
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The structure of polymorph 3 also exhibits the same type of 'double-faced' C-H .. . n 

hydrogen bonds seen in polymorph 2. The angle between the two hydrogen bonds is 

153°. 

Figure 20.13: The 'double faced' hydrogen bond in polymorph 3. 

When all these elements of the structure of polymorph 3 are put together, the structure is 

seen to consist of alternate layers of purple and cyan coloured molecules. The double 

sheets of the purple coloured molecules are separated by layers made of the cyan 

coloured dimers. 
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Figure 20.14: The overall structure of polymorph 3. 

H ... A/A 
0 

D-H ... A D ... AIA DHA/0 

C Jo-1-1111· .. 01 2.68 3.613(3) 168 

c IIJ-H J(, ••• OJ 2.46 3.247(2) 140 

~ .. 11 " .. ; .i 1.58 2.219(2) 121 

Cq-1-k .. (I 2.60 3.531(2) 166 

Cc,- Hr, ... ltr phcnyl1 2.95 3.482 116 

' ' 11 · '· • • 7rr phenyl i 2.81 3.646 148 

Table 20.6: Hydrogen bonds occurring in polymorph 3. 
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20.4 Conclusions 

Polymorphism is perhaps encouraged (or at least not hindered) by the fact that there are 

ten essentially identical hydrogen atom donors giving the possibility to form hydrogen 

bonds in very different directions, as well as four slightly more acidic H-donors also all 

pointing in different directions. Add to this the fact that the overall molecular shape is 

not designed to fit together in one greatly preferred orientation, and could even be 

considered as pseudo-spherical, it is not surprising that there are many simnar energy 

packing motifs, i.e. many polymorphs. 

The hydrogen bond motifs of dimers, C-H ... 0 bonds bi-furcated at the oxygen, and C­

H .. . n bond are seen in various combinations in all the polymorphs, though not all the 

motifs are seen in each polymorph. However, it is the effect of having chemically 

identical, but crystallographically different molecules, that allows the variation of 

structure polymorphs to be found. The crystallgraphically independent molecules differ 

slightly in their molecular geometry, but the main difference is in the crystallographic 

environment. 

Why does this compound choose to form structures that rely on having molecules on 

crystallographically independent sites? Or perhaps that question should be; how do 

most crystal structures form with only one crystallographically independent molecule? 
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Chapter 21 : Conclusions 

A study of a wide range of compounds, as has been seen in Parts 2 and 3, really 

emphasised the variety seen in crystal structures, with each structure containing 

different patterns arising from both the different shapes of the molecule that the 

structure is built from and the different interaction motifs. 

It can be seen just how difficult it will be to fully predict the crystal structure of a given 

molecule. So many factors influence the structure, from the molecular shape through to 

the interplay of the various intermolecular interactions. Despite the fact that the only 

types of interactions that have been considered here are the types that are described as 

'directional' interactions, a quick glance at any of the tables listing the interaction 

lengths and angles will show that there is a large amount of leeway in this 

'directionality'. However, I hope that this thesis shows that we can, on the whole, 

understand in retrospect the factors that influence a crystal structure, and that from the 

study of groups of similar compounds (such as has been carried out in Part 2 and in 

some cases in Part 3) it is possible to predict the structures to a degree. 

The more I look at crystal structures, the more I wonder at the way such tiny building 

blocks as molecules can pack together with such precision and constancy to give such 

beautiful patterns and structures - both on a molecular scale of lattices, sheets and 

chains, helices and stacks and voids, ever repeating, and on a macromolecular scale of 

the crystals themselves. 
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Figure 21.1: Crystals of 4,4'-Dinitrotetraphenylmethane (8) and 4-amino-4'-hydroxybeyzylphenyl­
sulphide {2b) (left and right of previous page respectively). A 'hedgehog' of needle crystals of 
thiodianiline and thiodiphenol (on going work), and thin plates of 4-amino-4 '-hydroxy­
diphenylpropane (3a) (left and right of current page respectively). 
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Appendix A: Melting Points of Meta and 

Para Disubstituted Benzenes 

Report of work canied out during visit to Prof. Desiraju ' s laboratory, University of 

Hyderabad, India. January 2001. 

Ongoing Project. 

This report is a record of thi s prelimjnary I feasibility study. It was meant, plimarily, as 

a detailed account of the experimental work that has been carried out, for whichever 

student is to continue the project. 

21.1 Introduction 

It is a well known observation that, in the majority of cases, the melt ing point of para 

disubstituted benzenes is significantly higher than that of meta disubstituted benzenes. 

This observation has been attributed to shape considerations', a 'rule of thumb'2 states 

that 'symmetrical molecules pack in a 3-D petiodic lattice more easily than less 

symmet1i c ones, hence forrrung more stable, higher melting and less soluble crystals". 

Given that para-disubstituted benzenes are more 'symmetri c' (even if only 'symmetric' in 

general terms of bulk and shape not in actual true molecular symmetry) thi s can be said 

to go some of the way towards explaining the melting point variation , but is not a full 

explanation . 

Here pairs of meta and para disubstituted benzenes have been studied with the aim of 

increasing the understanding, in terms of both structural and thermodynamical 

considerations, why the para isomer (nearly) always melts at a higher temperature than 

the meta. 

In going from meta to para disubstituted benzenes, we have a system where there is no 

change in functional groups, onl y a vmiation in the shape of the molecule and the 

relative orientation of the functional groups. Within a metalpara pai r the possible 

structural synthons are (usually) the same, but the changes in shape and ori entati on alter 
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the way m which these synthons can be used, and therefore must result in different 

crystal structures. 

21.2 Experimental 

Structures of 107* pairs of meta!para disubstituted benzenes were obtained from the 

Cambridge Structural Database3 (April 2000 release- version 5.19 215403 entries). 

Melting points were obtained for both isomers of 43 pairs, and for 19 single isomers 

(where the melting point of other isomer is not yet obtained)t. Melting points were 

obtained from a variety of sources: 

• Cambridge Structural Database data files 

• Acros catalog (1997 edition) 

• Original papers referenced in Cambridge Structural Database hit 

• Other literature on the compound 

Of the 43 pairs for which both melting points are known, there are only 2 examples of 

cases where the para isomer melts at a lower temperature than the meta isomer. In one 

the difference in temperatures ~T = -2 (where ~T = melting point of the para isomer -

melting point of the meta isomer) with the meta compound undergoing decomposition 

rather than melting. The second has a ~T = -37, if calculated using the value for 

melting point given in the Cambridge Structural Database data files. However the 

original paper4 lists the melting point of the meta and para compounds the other way 

round resulting in a ~T = +37. The crystallographic parameters in the paper are also 

inverted with the meta isomer cell listed as the para and vice versa. The correct order of 

the melting points for this compound is uncertain without further work. 

10 pairs of compounds were chosen for further study with the selection made on the 

basis of greatest ~T. The pair of compounds with ~T = -37 (or +37) was also included. 

Where there are multiple determinations of the same compound in the Cambridge 

Structural Database one structure was chosen, based firstly on which structure the 

melting point refers to (in cases where the melting point was obtained from the 

• originally 109, 2 structure pairs were rejected, due to not being true meta/para pairs; in one the para 
isomer is a salt of the meta isomer (No. 102), in the other the 'meta isomer' is the Me derivative while the 
'para isomer' is the Et derivative (No. 3). 
t More recent work carried out with Miss Ashley Smith using the Beilstein Database5 has increased the 
numbers of pairs for which both melting points are known to 58 and the total number of known melting 
ponts to 141 isomers out of a possible total of214 isomers. 

183 



Appendix A 

Cambridge Structural Database) and secondly by the best data and structural refinement. 

In the case of 1,4-dihydroxybenzene (3 polymorphs) the 2 polymorphs with well 

determined structures were chosen. 

The 10 pairs are: 

No. Meta refcode Para refcode ~T I o 

49 MCBZAC CLBZAP03 99 

46 MNBZACOl NBZOAC03 97 

20 DNBENZ10 DNITBZ02 85 

43 LAVBOZ LAVBUF 74 

60 NOGKAV HIBCOK 73 

37 JICVIA10 JICVEWlO 72 

45 MAMPOL AMPHOLOl 64 

69 RESORA13 HYQUIN, 63 

HYQUIN05 

85 TEWXOI TEWWUN 62 

106 ZONKAO ZONJOB -37 (+37) 

A detailed analysis of the crystal structure was carried out for each of these compounds. 

The structures were defined in terms of chains, sheets and 3-D nets constructed from 

hydrogen bonds, weak hydrogen bonds and other intermolecular interactions such as 

Cl...Cl and n-n interactions. The analysis was carried out using the Cambridge 

Structural Database program 'PLUTO' with all hydrogen positions normalized to 

standard neutron positions. 

From the 10 pairs for which a structural analysis was carried out 2 pairs were chosen for 

a more detailed analysis in terms of energy and the thermodynamics of the systems. 

One pair with similar packing in the 3-D structure for both the meta and para structures, 

and one pair with very different packing were chosen: 

similar packing MCBZAC I CLBZAP 

different packing MAMPOL I AMPHOLO 1 

Initially the energy calculations were attempted on the 'different structure' pair 

DNBENZIO I DNITBZ02, however sensible, or even consistent, results for this pair 

were not obtained, so the MAMPOL I AMPHOLO 1 pair was chosen instead. 
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The concept behind the study is that, for the pair with similar packing, ~Hr for each 

structure would be similar and the difference in melting point dependent on ~Sr 

(entropic considerations). However if the structures are very different then the 

difference in melting point is dependent on ~Hr (as well as ~Sr) 

Given that Tr =~Hr I ~Sr 

the melting point will increase with increasing ~Hr 

or with decreasing ~Sr 

where Tr =Temperature of fusion 

~Hr= Enthalpy of fusion 

~Sr = Entropy of fusion 

~Sr decreases with increasing freedom of motion in the crystal pre-melting, i.e. if the 

entropy increase can be incorporated into the crystal structure, and not result in a 

change of state, then ~Sr decreases. 

Energy calculations were carried out on all 4 molecules (2 pairs) to determine the 

packing energy per molecule and the relative contributions from Van de Waals, 

electrostatics, and H -bond interactions. 

The calculations were performed using the Cerius2 program6 using the following 

procedure: 

1. The structure was read from Cambridge Structural Database DAT file. 

2. The crystal was 'un-built' to give a single molecule. 

3. The bonds were identified on the diagram as single, double or resonance bonds, 

and the structure 'cleaned'. 

4. The molecular structure was optimised by a quantum mechanical simulation 

using the semi-empirical procedure AM1 in the MOPAC program. 

5. The crystal was rebuilt, and any H-bond interactions calculated (H-bond defined 

as <2.5A and angles >90°). 

6. Open Force Field (OFF) was set up using Dreiding 2.21 force field and the Evald 

setting for Van der Waals and Colombic interactions. 

7. OFF expression set up. 

8. Minimization run using OFF methods. 

9. Output recorded and all values divided by the number of molecules per unit cell, 

to obtain energies per molecule. 

NIPMAT7
-
9 crystal packing diagrams were also calculated for the similar and different 

packing pairs MCBZAC I CLBZAP and MAMPOL I AMPHOLOl. NIPMAT7 
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diagrams are a graphical representation of the nearest neighbour distances between all 

atoms in a crystallographical asymmetric unit. The atom atom contacts are plotted on a 

square grid, with the atom atom distance indicated by the degree of shading. NIPMA T7 

plots are useful for a rapid visual comparison of structures. 

21.3 Results 

Vol 
melting ~T volume density T (exp) 

rnlp refcode 
IA3 /g cm-3 (mol) S.G. 

point /°C jO 
IA3 IK 

m eta MCBZAC 155-7a 99 688 1.510 172.085 295 P21/c 

para CLBZAP03 240-2a 99 327 1.591 163.345 110 P-1 

m eta MNBZAC01 142a 97 1485 1.494 185.637 295 P21/n 

para NBZOAC03 237-9c 97 1378 1.611 172.229 295 A2/a 

m eta DNBENZlO 88-90a 85 709 1.569 177.202 295 Pbn21 

para DNITBZ02 173-53 85 345 1.617 172.513 295 P21/n 

m eta LAVBOZ 99-101c 74 1855 1.211 463.686 295 P21/c 

para LAVBUF 173-5c 74 916 1.227 457.937 295 P-1 

m eta NOGKAV 185-190c 73 552 1.577 276.150 295 P-1 

para HIBCOK 258-9c 73 1135 1.535 283.645 295 Ama2 

m eta ITCVIA10 198-200c 72 1222 1.333 611.021 295 P-1 

para ITCVEW10 270-7c 72 2553 1.276 638 .161 263 P21/n 

m eta MAMPOL 124-6a 64 567 1.277 141.808 295 Pca21 

para AMPHOL01 188-190a 64 558 1.299 139.431 295 Pna21 

m eta RESORA13 109-1103 63 562 1.301 140.491 295 Pna21 

HYQUIN, 
172-53 

530, 1.380, 132.430 295, P21/c, 
para 63 HYQUIN05 1309 1.258 145 .391 295 R-3 

m eta TEWXOI 109-111c 62 978 1.478 489.183 295 P21 

para TEWWUN 171-3c 62 485 1.490 485.216 123 P1 
153-5c -37 

m eta ZONKAO (116-7b) (+37) 
1490 1.348 372.456 295 P21/a 

116-7c -37 
para ZONJOB (153-5b) (+37) 

1537 1.306 384.269 295 P21/c 

Source for melting points: 

a) Acros catalogue (1997) 

b) Original paper descti bing structure 

c) Cambridge Structural Database data files 
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Analysis of crystal packing of 'similar' compounds MCBZAC and CLBZAP03 

MACZAC: 

The structure consists of sheets, with interactions running in one plane only - there are 

no strong interactions between the planes 

.., ,,...,,....y 
~1~'io·· Jy,~-J'f.o D ... H D ... A DHA 

D ... H-A .. ) .. ) I ;A ;A ;o 
,P--.. )..._5~:··· .~y(_: ... 

I ' J....l ' I ' ' OJ ... Hs-02 1.76 2.663 171 Y),:.: / ( \. \ ... y .: ./''/'\ ... 1~--
if''),..-· ,..,;... a---y):~· b""'"Y'('··· l.. .. Cl! •. •. 

01 ... f4-C6 2.57 3.432 151 ·-.. ..,.....y,,A, 02 ···:),,...',A, ··), ... "f::r,,.,.....o 
I ', I / .l ', l / I 

"")-'.._ ·-...""""' .:··'\,... ... .., '"'("( .: Y' Cl 1 . . . H2-C4 2.92 3.778 143 '. )~"0· '. r--.~"0· .. ··} .. ··}I 
(Angle C1-Cl 1 ... H2 = 97°) ~'( .. "-..'( •' 

~ /"<~.:·· .»-y ,-o.....r-·· ' ' l '. J : . J... ............ . ,.. .. ,t'· 
'. ) ... : .. b'"Yy: 

CLBZAP03: 

The structure consists of sheets, with interactions running in one plane only- there are 

no strong interactions between the planes 

D ... H D ... A DHA 
D ... H-A ;A ;A ;o 

' '"-<{ r \ \.-.( J> OJ ... Hs-02 1.72 2.612 173 --t,/"""-· J-r·-.. )-1 ... 1...... ·· ... .r) ··.. }-
\ ···-~ ·- \ ·. ) .. ·- \ -. - -. .__ \ ..... ' ~ rt--< ·.. \ · .. )-< ·.. ?-- ·. rl- \ ·.. 1""'1 OJ .. . HJ-Cs 2.56 3.430 146 Jo-./ ·. . ..,..... \ ·. . ,...._ \ ·.. .· ~ ' ·. .. ' ·. ... \. 
'\.,/ ··... ·:· \ ~/ ··... ·:· \ )..,/ ·· .. 0 2 ... f4-C6 2.498 3.396 152 /":) ··.. J-( ·· .. /-. ··.. )- .? ··.. 1- ··.. (-,? ) ... ~ . ... ).. - L . ._ ' ClJ .. . H2-C3 3.02 3.887 151 \ -·... t-r· .. )--.r·-.. \_ -.. )-1 ··.. . -{ 
. ..,.__ \ ·, \ ..,.__( \ ··o \. -,..._1 
• •• / 'CI1 •• ' ' '• ·' ~ (Angle Cl-ClJ ... H2 = 101°) i .. : '•( . : · .. · / ·.. ' / ·.. . ' / · .. 

""" \ d.. ' ---.( ·. ~ \ '-./. ·. . 

~ . ,/"( ,.!--( .J-t:;."< . _)--!' Cl1 ... Cl1 Cl. .. Cl C-CL.Cl C-CL.Cl 

·· . ..,.__(-( ··· .. )-f ····-,..._(-r- ··... -r·---~---(- tA fO /0 

Cl 1 .. . Cl1 
(Type I 3.396 167 167 

interaction) 
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Analysis of crystal packing of 'different' compounds MAMPOL and AMPHOLOl 

MAMPOL: 

The structure sheets constructed from chains of 0-H .. . N-H . . . O-H interactions, there are 

also N-H ... 7t interactions. 

D ... H D ... A DHA 
D ... H-A ;A ;A ;o 

0 1 .• • Hs-NJ 1.94 3.011 153 

01-H7···NI 1.88 2.753 161 

N1-H9 .. . n 2.41 3.341 161 

AMPHOL01: 

The structure consists of P-As sheets (see part 2), creating a 3-D network, there are also 

n-n face to edge interactions. 

D ... H D ... A DHA 
D ... H-A ;A ;A ;o 

OJ . .. Hz-N I 2.22 3.142 161 

Oj .. . H3-N 1 2.38 3.258 164 

01-HI-NI 1.91 2.776 175 
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,.-
_J,.-C\Jl()-.:;:t"('t')N,.-f'..<.Ol()-.:;:t"('t')C\J,.-
OOOIIIIIOOOOOOO 

,.-
_J,.-C\Jl()-.:;:t"('t')C\J,.-f'..<.OL()-.:;:t('t')C\J,.-
OOOIIIIIOOOOOOO 

~18 

~0 
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Figure A. J: NIPMA r diagrams of MCBZAC and CLBZAP03 
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Figure A.2: NIPMAf diagram of MAMPOL and AMPHOLOJ 
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Even at first glance it can be seen that the NIPMAT#319 diagrams for the 'similar' pair 

are indeed simi lar and the intermolecular interactions are comparable, however the 

'different' pair shows distinct differences in inteJmolecular contacts. 

For the similar structural pair, MCBZAC I CLBZAP03, the strongest interaction is the 

carboxylic acid dimer especially the 0-H ... O hydrogen bond (indicated by the dark 

square for 0 1 H5 in both cases), there are also some close contacts between adjacent 

benzene rings (indicated by the shading in the bottom left corner of the diagram) which 

appears to be more dominant in the para isomer. 

For the different structural pair, MAMPOL I AMPHOLOl, the same 0-H ... N interaction 

is seen (top right corner), however while there are 2 strong N-H ... O interactions in the 

AMPHOL01 structure, in MAMPOL there is only one, with the second N-H (H9) 

interacting strongly with the carbons of the benzene ring. 

This NIPMAT analysis confirms the patterns seen in the standard structure analysis 

carried out using PLUTO. 

Energy Minimization Calculations: 

Similar Structures Different Structures 

Energy contribution per MCBZAC CLPZAP03 MAMPOL DNITBZ02 

molecule I kcal mor1 

m eta para m eta para 

Van der Waals -1.57817 -1.67257 4.14893 1.87976 

Electrostatic -18.05950 -20.28475 -58.51525 -22.93280 

H-Bond -3.21920 -3.45982 -5.32103 -5.37178 

Bonds 1.55076 1.51862 0.79591 0.90954 

Angles 0.94784 0.85749 0.03540 0.06532 

Torsion 0.13720 0.06502 0.15144 0.41539 

Inversion 0.01779 0.21614 0.05930 0.17715 

Total E (related to ~Hf) -20.4033 -22.9739 -58.6453 -24.8574 

It can be seen that in the case where the structures are very similar (MCBZAC I 

CLPZIP03) the total energy of each compound is also very similar. This agrees with 
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the assumption that in this case the ~Hr for each structure would be similar, and the 

change in melting point dependent on ~Sr. 

For the case where the structures are quite different (MAMPOL I AMPHOL01) the total 

energies are also quite different (as would be expected for such different structures). 

Also the higher melting point corresponds to the higher total energy value, i.e. the 

higher ~Hr value. While the contribution from ~Sr is unknown, the change in melting 

point can be accounted for (in part) by the change in ~Hr. 
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K.Chowdhury, R.Mukhopadhyay, M.Mukherjee, C.K.Broder, N.G.Kundu. Acta Cryst. 
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S.Sarkhel , Shefali, V.T.Mathad, K.Raj, A.P.Bhadllli , P.R.Maulik, C.K.Broder, 
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Synthesis, structure and reactivity of 1-( a-C,a' -halo-o-xylyl)-2-trialkylsilyl-1,2-

dicarboranes. 

A.S.Batsanov, C.K.Broder, A.E.Goeta, J.A.K.Howard, A.K.Hughes, J.M.Malget. J. 

Chem. Soc., Dalton Trans. 2002, 14-18. 

In Preparation: 

On the reliability of C-H ... O interactions in crystal engineering: synthesis and 

structures of two hydrogen bonded phosphoniun bis(aryloxide) salts. 

C.K.Broder, M.G.Davidson, V.T.Forsyth, J.A.K.Howard, S.Lamb, S.A.Mason. Crystal 

Growth and Design. (Accepted Feb 2002). 

Conformational polymorphism, conformational isomorphism and concomitant 

polymorphism in 4,4-diphenyl-2,5-cyclohexadieone. 

V.S.S.Kumar, A.Addlagatta, A.Nangia, XXXX, W.T.Robinson, C.K.Broder, R.Mondal, 

I.R.Evans, J.A.K.Howard, F.H.Allen. Angew. Chem. Int. Ed. Engl. 
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Appendix C: Cif Files 

la) 4-amino-4 '-hydroxydiphenylmethane 

Synthesis : Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for la. 
Identification code la 

Empirical formula C13 Hl3 N 0 

Formu la weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

199.25 

12(2) K 

0.5-5 .0 A 

Monoclinic 

P2(1)1n 

a= 5.9180(12) A 

b = 19.213(4) A 

c = 9.6510(19) A 

1076.3(4) A3 

~ = 101.25(3t. 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data co llection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 24.72° 

Absorption correction 

Max. and min . transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

4 

1.230 Mg!m3 

1.870, at 1 Angstrom mm-1 

21.27 

1.5 x 1.5 x 1.3 mm3 

1.56 to 24.72°. 

0<=h<=17, 0<=k<=51 , -29<=1<=24 

6172 

2403 [R(int) = 0.064] 

5.7% 

Empirical 

0.82 and 0.62 

Full-matrix least-squares on F2 

2403 I 0 I 253 

1.081 

R1 = 0.0791, wR2 = 0.2230 

R1 = 0.0793 , wR2 = 0.223 1 

0.044 

3.387 and -2.930 e.A -3 
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(A2x 103) for la. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 12754(8) 518(3) 633(4) 10(1) 

C(l) 11360(5) 830(2) 1393(3) 7(1) 

C(2) 10112(6) 463(2) 2240(3) 7(1) 

C(3) 8633(6) 821(2) 2950(3) 7(1) 

C(4) 8409(6) 1544(2) 2864(3) 7(1) 

C(5) 9693(6) 1901(2) 2039(3) 7(1) 

C(6) 11166(6) 1550(2) 1310(3) 7(1) 

C(7) 6759(6) 1922(2) 3592(3) 8(1) 

C(8) 6615(5) 1650(2) 5028(3) 5(1) 

C(9) 4641(5) 1328(2) 5286(3) 6(1) 

C(lO) 4514(5) 1080(2) 6620(3) 6(1) 

C(11) 6393(5) 1149(2) 7737(3) 6(1) 

C(12) 8386(5) 1469(2) 7476(3) 6(1) 

C(l3) 8488(5) 1712(2) 6148(3) 6(1) 

N(l) 6331(4) 869(2) 9071(2) 9(1) 
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Table 3. Bond lengths [A] and angles C(2)-C(3)-H(3) 118.4(8) 

[
0

] for la. C(4)-C(3)-H(3) 120.0(7) 

C(5)-C(4)-C(3) 118.0(3) 

0(1)-C(1) 1.347(5) C(5)-C(4)-C(7) 120.8(4) 

O(l)-H(1) 0.969(15) C(3 )-C( 4 )-C(7) 121.2(3) 

C(l)-C(6) 1.388(6) C(4)-C(5)-C(6) 121.2(4) 

C(l)-C(2) 1.395(5) C(4)-C(5)-H(5) 120.6(6) 

C(2)-C(3) 1.394(5) C(6)-C(5)-H(5) 118.2(6) 

C(2)-H(2) 1.060(12) C(l)-C(6)-C(5) 120.3(3) 

C(3)-C(4) 1.396(6) C(l)-C(6)-H(6) 119.5(7) 

C(3)-H(3) 1.078(9) C(5)-C(6)-H(6) 120.3(7) 

C(4)-C(5) 1.385(5) C( 4 )-C(7)-C(8) 115.2(3) 

C(4)-C(7) 1.497(5) C(4)-C(7)-H(7 A) 107.5(5) 

C(5)-C(6) 1.396(5) C(8)-C(7)-H(7 A) 109.4(6) 

C(5)-H(5) 1.081(14) C(4)-C(7)-H(7B) 110.4(6) 

C(6)-H(6) 1.080(9) C(8)-C(7)-H(7B) 108.8(5) 

C(7)-C(8) 1.499(4) H(7 A)-C(7)-H(7B) 105.2(10) 

C(7)-H(7 A) 1.115(13) C(9)-C(8)-C(l3) 117.9(3) 

C(7)-H(7B) 1.087(9) C(9)-C(8)-C(7) 121.6(3) 

C(8)-C(9) 1.387(5) C( 13 )-C(8)-C(7) 120.5(3) 

C(8)-C(l3) 1.394(4) C(8)-C(9)-C(10) 121.3(3) 

C(9)-C(l0) 1.388(4) C(8)-C(9)-H(9) 119.3(6) 

C(9)-H(9) 1.075(9) C(l0)-C(9)-H(9) 119.4(6) 

C(l 0)-C( 11) 1.396(5) C(9)-C(10)-C(ll) 120.3(3) 

C(lO)-H(lO) 1.079(10) C(9)-C(l0)-H(l0) 120.5(6) 

C(l1)-C(l2) 1.396(5) C(11)-C(l0)-H(10) 119.2(6) 

C(ll)-N(l) 1.403(4) C(l0)-C(l1)-C(l2) 118.4(3) 

C(l2)-C(l3) 1.376(4) C(IO)-C(ll)-N(l) 120.9(3) 

C(l2)-H(12) 1.073(8) C(l2)-C(11)-N(l) 120.6(3) 

C(l3)-H(13) 1.070(9) C(13)-C(12)-C(11) 120.6(3) 

N(l )-H(lA) 1.009(8) C(13)-C(l2)-H(12) 121.0(6) 

N(l)-H(1B) 1.001(10) C(ll)-C(l2)-H(l2) 118.3(6) 

C(12)-C(l3)-C(8) 121.4(3) 

C(1)-0(1)-H(1) 113.0(7) C(l2)-C(l3)-H(l3) 119.6(6) 

0( 1 )-C(l )-C( 6) 117.7(4) C(8)-C(l3)-H(13) 119.0(6) 

O(l)-C(l)-C(2) 122.9(4) C(ll)-N(1)-H(lA) 116.1(6) 

C(6)-C(l)-C(2) 119.4(3) C(11)-N(l)-H(1B) 113.0(6) 

C(3)-C(2)-C(l) 119.6(4) H( 1 A)-N( 1 )-H( 1B) 109.1(9) 

C(3)-C(2)-H(2) 120.4(6) 

C(l)-C(2)-H(2) 120.0(6) Symmetry transformations used to 

C(2)-C(3 )-C( 4) 121.6(3) generate equivalent atoms: 
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Table 4. Anisotropic displacement parameters cA2x 103) for la. The anisotropic 

displacement factor exponent takes the form: -2rr2[ h2 a*2U 11 + ... + 2 h k a* b* U 12] 

u11 u22 u33 u23 u13 u12 

0(1) 12(2) 8(2) 12(1) 1(2) 8(1) 0(2) 

H(l) 20(4) 24(5) 26(4) -2(4) 9(3) -2(4) 

C(1) 6(1) 8(2) 6(1) 0(1) 2(1) 0(1) 

C(2) 11(1) 5(1) 7(1) 0(1) 4(1) 0(1) 

C(3) 8(1) 7(2) 8(1) 1(1) 4(1) 0(1) 

C(4) 7(1) 9(2) 5(1) 0(1) 2(1) 1(1) 

C(5) 10(1) 4(1) 6(1) 2(1) 3(1) 0(1) 

C(6) 9(1) 7(2) 6(1) -1(1) 3(1) -1(1) 

H(2) 34(5) 11(4) 31(4) -3(4) 17(4) 7(4) 

H(3) 27(4) 19(5) 27(4) 0(4) 16(3) -10(4) 

H(5) 31(5) 16(5) 33(4) -2(4) 13(4) 6(4) 

H(6) 28(4) 20(5) 20(3) 2(4) 13(3) -8(4) 

C(7) 7(1) 10(2) 6(1) -1(1) 2(1) 2(1) 

H(7A) 29(4) 15(4) 25(3) 1(4) 14(3) 0(4) 

H(7B) 16(3) 30(6) 15(2) 4(4) 1(2) 4(4) 

C(8) 5(1) 6(1) 4(1) -1(1) 0(1) -1(1) 

C(9) 5(1) 7(2) 5(1) 1(1) 0(1) -1(1) 

C(lO) 4(1) 8(2) 7(1) 0(1) 1(1) -1(1) 

C(l1) 6(1) 8(2) 6(1) -3(1) 2(1) -3(1) 

C(12) 5(1) 8(2) 6(1) 2(1) 1(1) 0(1) 

C(13) 6(1) 5(1) 5(1) 2(1) 1(1) 0(1) 

H(9) 15(3) 39(8) 15(2) 3(4) -2(2) -8(4) 

H(lO) 14(3) 37(6) 21(3) 7(4) 4(2) -7(4) 

H(12) 18(3) 36(6) 13(2) 5(4) -7(2) -11(4) 

H(13) 9(3) 35(7) 32(4) 16(5) 6(3) -4(3) 

N(l) 7(1) 12(1) 7(1) 2(1) 3(1) 2(1) 

H(lA) 16(3) 24(5) 24(3) 9(4) 9(2) 3(4) 

H(1B) 26(4) 36(7) 14(2) 3(4) 0(2) -17(5) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters cA2x 

10 3) for la. 

X y z U(eq) 

H(l) 12905(17) 22(7) 806(11) 23(2) 

H(2) 10260(20) -86(6) 2316(12) 24(2) 

H(3) 7683(17) 528(6) 3598(10) 23(2) 

H(5) 9590(20) 2461(7) 1954(12) 26(2) 

H(6) 12169(18) 1836(6) 679(9) 21(2) 

H(7A) 7290(18) 2479(6) 3677(10) 22(2) 

H(7B) 5043(15) 1921(7) 2937(8) 21(2) 

H(9) 3185(15) 1266(7) 4435(9) 24(2) 

H(lO) 2981(15) 820(7) 6801(9) 24(2) 

H(l2) 9839(15) 1514(7) 8332(8) 24(2) 

H(13) 10031(14) 1955(7) 5967(11) 25(2) 

H(lA) 4764(15) 839(7) 9332(10) 21(2) 

H(1B) 7425(17) 1104(7) 9854(9) 26(2) 
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lb) Methylenedianiline and thiodiphenyl 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for lb. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

lb 

C25 H24 N2 02 S 

416.52 

100(2) K 

0.71073 A 

Monoclinic 

P2(1)1n 

a= 11.2547(11) A 

b = 10.1129(9) A 

c = 19.9982(17) A 

2211.8(3) A3 

~ = 103.654(5)0
• 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 27.48° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

4 

1.251 Mglm3 

0.170 mm-1 

880 

0.50 x 0.15 x 0.05 mm3 

1.91 to 27.48°. 

-14<=h<=14, -13<=k<=13, -25<=1<=25 

15070 

5052 [R(int) = 0.1 065] 

99.7% 

Psi-scan 

0.98259 and 0.83120 

Full-matrix least-squares on F2 

5052 I 0 I 295 

0.987 

R1 = 0.0571, wR2 = 0.1162 

R1 = 0.1215, wR2 = 0.1397 

not refined 

0.261 and -0.440 e.A-3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

cA2x 103) for lb. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 6751(2) 189(2) 411(1) 29(1) 

C(l) 7280(2) 1265(2) 786(1) 20(1) 

C(2) 7656(2) 1113(3) 1496(1) 20(1) 

C(3) 8195(2) 2157(3) 1905(1) 20(1) 

C(4) 8351(2) 3380(2) 1612(1) 19(1) 

C(5) 7977(2) 3525(2) 898(1) 19(1) 

C(6) 7443(2) 2476(2) 486(1) 19(1) 

S(l) 8926(1) 4685(1) 2191(1) 32(1) 

C(7) 9471(2) 5856(2) 1682(1) 21(1) 

C(8) 10433(2) 5553(3) 1368(1) 26(1) 

C(9) 10910(2) 6514(3) 1017(1) 25(1) 

C(lO) 10475(2) 7809(3) 989(1) 21(1) 

C(11) 9510(2) 8115(3) 1283(1) 21(1) 

C(12) 9003(2) 7136(2) 1620(1) 22(1) 

0(2) 11009(2) 8723(2) 648(1) 29(1) 

N(21) 10446(2) 11321(2) 863(2) 25(1) 

C(21) 11593(2) 11992(2) 1049(1) 20(1) 

C(22) 12195(3) 12114(3) 1729(1) 29(1) 

C(23) 13340(3) 12731(3) 1919(1) 29(1) 

C(24) 13905(2) 13231(3) 1429(1) 21(1) 

C(25) 13295(3) 13077(3) 741(1) 32(1) 

C(26) 12160(3) 12471(3) 548(1) 30(1) 

C(20) 15106(2) 13973(3) 1618(1) 24(1) 

C(27) 14963(2) 15446(3) 1466(1) 20(1) 

C(28) 15691(2) 16109(3) 1105(1) 27(1) 

C(29) 15542(2) 17465(3) 964(1) 26(1) 

C(30) 14649(2) 18175(3) 1179(1) 21(1) 

C(31) 13920(2) 17523(3) 1548(1) 25(1) 

C(32) 14074(2) 16182(3) 1686(1) 24(1) 

N(22) 14421(2) 19521(2) 979(1) 26(1) 
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Table 3. Bond lengths [A] and angles C(23)-H(23) 0.9500 

[
0

] for lb. C(24 )-C(25) 1.394(4) 

C(24 )-C(20) 1.514(4) 

0(1)-C(1) 1.375(3) C(25)-C(26) 1.387(4) 

0(1)-H(lA) 0.84(3) C(25)-H(25) 0.9500 

C(l)-C(2) 1.390(3) C(26)-H(26) 0.9500 

C(1)-C(6) 1.395(3) C(20)-C(27) 1.521(3) 

C(2)-C(3) 1.385(3) C(20)-H(20A) 0.9900 

C(2)-H(2) 0.9500 C(20)-H(20B) 0.9900 

C(3)-C(4) 1.397(3) C(27)-C(28) 1.387(4) 

C(3)-H(3) 0.9500 C(27)-C(32) 1.398(4) 

C(4)-C(5) 1.397(3) C(28)-C(29) 1.402(4) 

C(4)-S(l) 1.774(3) C(28)-H(28) 0.9500 

C(5)-C(6) 1.391(3) C(29)-C(30) 1.384(4) 

C(5)-H(5) 0.9500 C(29)-H(29) 0.9500 

C(6)-H(6) 0.9500 C(30)-C(31) 1.392(4) 

S(l)-C(7) 1.763(3) C(30)-N(22) 1.424(3) 

C(7)-C(12) 1.392(4) C(31)-C(32) 1.386(4) 

C(7)-C(8) 1.407(4) C(31)-H(31) 0.9500 

C(8)-C(9) 1.380(4) C(32)-H(32) 0.9500 

C(8)-H(8) 0.9500 N(22)-H(22A) 0.85(3) 

C(9)-C(10) 1.395(4) N(22)-H(22B) 0.88(3) 

C(9)-H(9) 0.9500 

C(10)-0(2) 1.368(3) C(1)-0(1)-H(1A) 114(2) 

C(10)-C(11) 1.387(4) 0(1 )-C(l )-C(2) 117.2(2) 

C(ll)-C(12) 1.394(4) 0(1)-C(l)-C(6) 122.9(2) 

C(11)-H(11) 0.9500 C(2)-C(l)-C(6) 119.9(2) 

C(12)-H(12) 0.9500 C(3 )-C(2)-C( 1) 120.2(2) 

0(2)-H(2A) 0.88(4) C(3)-C(2)-H(2) 119.9 

N(21)-C(21) 1.428(3) C(l)-C(2)-H(2) 119.9 

N(21)-H(21A) 0.87(3) C(2)-C(3)-C(4) 120.6(2) 

N(21)-H(21B) 0.86(3) C(2)-C(3)-H(3) 119.7 

C(21)-C(22) 1.374(4) C(4)-C(3)-H(3) 119.7 

C(21 )-C(26) 1.395(4) C(5)-C(4)-C(3) 118.9(2) 

C(22)-C(23) 1.401(4) C(5)-C( 4 )-S(l) 124.4(2) 

C(22)-H(22) 0.9500 C(3)-C(4 )-S(1) 116.58(19) 

C(23 )-C(24) 1.384(4) C( 6)-C( 5)-C( 4) 120.7(2) 
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C(6)-C(5)-H(5) 119.7 C(23 )-C(24 )-C(20) 122.5(2) 

C(4)-C(5)-H(5) 119.7 C(25)-C(24 )-C(20) 120.3(2) 

C(5)-C(6)-C(1) 119.7(2) C(26)-C(25)-C(24) 122.1(3) 

C(5)-C(6)-H(6) 120.1 C(26)-C(25)-H(25) 119.0 

C(1)-C(6)-H(6) 120.1 C(24 )-C(25)-H(25) 119.0 

C(7)-S( 1 )-C( 4) 104.20(12) C(25)-C(26)-C(21) 120.0(2) 

C( 12)-C(7)-C(8) 118.5(2) C(25)-C(26)-H(26) 120.0 

C(12)-C(7)-S(l) 120.0(2) C(21 )-C(26)-H(26) 120.0 

C(8)-C(7)-S(l) 121.4(2) C(24 )-C(20)-C(27) 112.9(2) 

C(9)-C(8)-C(7) 120.4(2) C(24 )-C(20)-H(20A) 109.0 

C(9)-C(8)-H(8) 119.8 C(27)-C(20)-H(20A) 109.0 

C(7)-C(8)-H(8) 119.8 C(24 )-C(20)-H(20B) 109.0 

C(8)-C(9)-C(10) 120.5(3) C(27)-C(20)-H(20B) 109.0 

C(8)-C(9)-H(9) 119.8 H(20A)-C(20)-H(20B) 107.8 

C(10)-C(9)-H(9) 119.8 C(28)-C(27)-C(32) 117.4(2) 

0(2)-C(10)-C(11) 122.7(2) C(28)-C(27)-C(20) 122.0(2) 

0(2)-C( 1 O)-C(9) 117.6(2) C(32)-C(27)-C(20) 120.6(2) 

C(11)-C(10)-C(9) 119.7(2) C(27)-C(28)-C(29) 121.4(3) 

C(10)-C(l1)-C(12) 119.9(2) C(27)-C(28)-H(28) 119.3 

C(10)-C(l1)-H(11) 120.1 C(29)-C(28)-H(28) 119.3 

C(12)-C(11)-H(ll) 120.1 C(30)-C(29)-C(28) 120.4(3) 

C(7)-C(12)-C(11) 120.9(2) C(30)-C(29)-H(29) 119.8 

C(7)-C(12)-H(12) 119.5 C(28)-C(29)-H(29) 119.8 

C(11)-C(12)-H(12) 119.5 C(29)-C(30)-C(31) 118.7(2) 

C( 1 0)-0(2)-H(2A) 113(3) C(29)-C(30)-N(22) 120.3(2) 

C(21)-N(21)-H(21A) 111 (2) C(31 )-C(30)-N (22) 120.8(3) 

C(21)-N(21)-H(21B) 110.7(18) C(32)-C(31)-C(30) 120.5(3) 

H(21A)-N(21)-H(21B) 114(3) C(32)-C(31)-H(31) 119.7 

C(22)-C(21)-C(26) 118.5(2) C(30)-C(31)-H(31) 119.7 

C(22)-C(21)-N(21) 120.3(3) C(31 )-C(32)-C(27) 121.6(3) 

C(26)-C(21)-N(21) 121.1(2) C(31)-C(32)-H(32) 119.2 

C(21 )-C(22)-C(23) 121.0(3) C(27)-C(32)-H(32) 119.2 

C(21)-C(22)-H(22) 119.5 C(30)-N (22)-H(22A) 112(2) 

C(23)-C(22)-H(22) 119.5 C(30)-N(22)-H(22B) 116.1(19) 

C(24 )-C(23 )-C(22) 121.2(2) H(22A)-N(22)-H(22B) 111 (3) 

C(24 )-C(23 )-H(23) 119.4 

C(22)-C(23 )-H(23) 119.4 Symmetry transformations used to 

C(23)-C(24 )-C(25) 117.2(2) generate equivalent atoms: 
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Table 4. Anisotropic displacement parameters cA2x 103) for lb. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2ull + ... + 2 h k a* b* u12] 

ull u22 u33 u23 ul3 u12 

0(1) 34(1) 22(1) 28(1) 1(1) 3(1) -9(1) 

C(l) 16(1) 16(1) 29(2) 0(1) 7(1) -1(1) 

C(2) 18(1) 17(1) 27(1) 5(1) 7(1) -1(1) 

C(3) 15(1) 24(1) 22(1) 5(1) 5(1) 2(1) 

C(4) 15(1) 22(1) 22(1) -1(1) 6(1) 0(1) 

C(5) 18(1) 16(1) 24(1) 3(1) 8(1) -1(1) 

C(6) 16(1) 21(1) 21(1) 1(1) 7(1) 1(1) 

S(l) 47(1) 25(1) 24(1) -2(1) 10(1) -8(1) 

C(7) 22(1) 19(1) 19(1) -2(1) 2(1) -4(1) 

C(8) 23(1) 18(1) 34(2) -1(1) 2(1) 1(1) 

C(9) 20(1) 22(1) 33(2) -5(1) 9(1) -1(1) 

C(lO) 20(1) 20(1) 24(1) -3(1) 3(1) -2(1) 

C(ll) 21(1) 14(1) 26(1) 0(1) 2(1) 1(1) 

C(12) 19(1) 25(1) 21(1) -7(1) 5(1) -1(1) 

0(2) 32(1) 19(1) 39(1) 2(1) 15(1) -1(1) 

N(21) 18(1) 24(1) 32(2) -1(1) 6(1) -3(1) 

C(21) 18(1) 12(1) 31(2) -3(1) 5(1) -1(1) 

C(22) 29(2) 33(2) 26(2) 6(1) 10(1) -8(1) 

C(23) 31(2) 34(2) 20(1) 8(1) 0(1) -7(1) 

C(24) 21(1) 16(1) 26(1) 2(1) 5(1) 1(1) 

C(25) 34(2) 39(2) 24(2) -2(1) 12(1) -12(1) 

C(26) 31(2) 39(2) 19(1) -5(1) 3(1) -12(1) 

C(20) 22(1) 20(1) 30(2) 5(1) 4(1) -2(1) 

C(27) 15(1) 23(1) 20(1) 1(1) -1(1) -6(1) 

C(28) 22(1) 27(2) 32(2) -1(1) 8(1) 1(1) 

C(29) 25(2) 25(1) 29(2) 3(1) 12(1) -6(1) 

C(30) 21(1) 20(1) 18(1) -2(1) -1(1) -4(1) 

C(31) 24(1) 24(1) 28(2) -3(1) 9(1) -2(1) 

C(32) 23(1) 27(2) 24(1) 1(1) 10(1) -6(1) 

N(22) 25(1) 20(1) 33(1) -2(1) 7(1) -5(1) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 10 

3) for lb. 

X y z U(eq) 

H(lA) 6550(30) 330(30) -13(18) 53(11) 

H(2) 7543 289 1701 24 

H(3) 8461 2041 2388 24 

H(5) 8089 4348 693 22 

H(6) 7190 2583 1 23 

H(8) 10755 4681 1398 31 

H(9) 11540 6292 794 29 

H(11) 9195 8990 1254 25 

H(12) 8329 7346 1811 26 

H(2A) 10780(30) 9540(40) 706(19) 72(13) 

H(21A) 10030(30) 11450(30) 1169(16) 48(10) 

H(21B) 10060(20) 11530(30) 450(14) 21(8) 

H(22) 11829 11775 2075 35 

H(23) 13736 12807 2393 35 

H(25) 13668 13398 393 38 

H(26) 11768 12382 74 36 

H(20A) 15673 13594 1358 29 

H(20B) 15476 13847 2114 29 

H(28) 16304 15635 951 32 

H(29) 16057 17899 719 31 

H(31) 13313 18000 1707 30 

H(32) 13564 15754 1935 29 

H(22A) 14070(30) 19940(30) 1251(16) 45(10) 

H(22B) 15050(30) 19970(30) 905(15) 34(9) 
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2a) 4-amino-4'-hydroxydiphenylethane 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 2a. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

2a 

C14 H15 N 0 

213.27 

100(2) K 

0.71073 A 

Monoclinic 

Pc 

a= 13.682(3) A 

b = 5.2619(11) A 

c = 8.1916(16) A 

563.1(2) A3 

~ = 107.28(3t. 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 30.32° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

2 

1.258 Mgtm3 

0.079 mm-1 

228 

0.50 x 0.35 x 0.10 mm3 

1.56 to 30.32°. 

-18<=h<=15, -7<=k<=7, -10<=1<=11 

6709 

2509 [R(int) = 0.0322] 

92.1% 

None 

Full-matrix least-squares on F2 

2509 I 2 I 205 

1.034 

R1 = 0.0405, wR2 = 0.1087 

R1 = 0.0448, wR2 = 0.1137 

-0.7(13) 

not refined 

0.370 and -0.186 e.A-3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2x 103) for 2a. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 8204(1) 1649(2) 14343(2) 22(1) 

C(l) 7180(1) 2022(3) 13471(2) 17(1) 

C(2) 6686(1) 4128(3) 13910(2) 19(1) 

C(3) 5653(1) 4556(3) 13057(2) 19(1) 

C(4) 5096(1) 2910(3) 11762(2) 17(1) 

C(5) 5610(1) 825(3) 11345(2) 19(1) 

C(6) 6637(1) 382(3) 12179(2) 18(1) 

C(7) 3971(1) 3340(3) 10895(2) 19(1) 

C(8) 3288(1) 1866(3) 11771(2) 20(1) 

C(9) 2156(1) 2150(3) 10851(2) 17(1) 

C(lO) 1580(1) 4136(3) 11234(2) 19(1) 

C(ll) 537(1) 4398(3) 10362(2) 18(1) 

C(12) 52(1) 2658(3) 9084(2) 17(1) 

C(13) 622(1) 674(3) 8690(2) 19(1) 

C(l4) 1658(1) 441(3) 9564(2) 19(1) 

N(l) -1025(1) 2801(3) 8266(2) 20(1) 
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0 

0( 1 )-C( 1 )-C(2) 118.14(15) Table 3. Bond lengths [A] and angles 

[
0

] for 2a. C(6)-C(l)-C(2) 119.68(15) 

C(3 )-C(2)-C( 1) 119.56(15) 

0(1)-C(l) 1.385(2) C(3 )-C(2)-H(2) 120.7(13) 

0(1)-H(l) 0.80(3) C(l)-C(2)-H(2) 119.7(13) 

C(l)-C(6) 1.396(2) C(2)-C(3)-C(4) 121.32(16) 

C(l)-C(2) 1.399(2) C(2)-C(3)-H(3) 120.0(16) 

C(2)-C(3) 1.396(3) C( 4 )-C(3 )-H(3) 118.7(16) 

C(2)-H(2) 1.00(2) C(5)-C(4)-C(3) 117.90(15) 

C(3)-C(4) 1.405(2) C( 5)-C( 4 )-C(7) 121.27(15) 

C(3)-H(3) 0.96(2) C(3 )-C( 4 )-C(7) 120.80(16) 

C(4)-C(5) 1.400(2) C( 6)-C( 5)-C( 4) 121.37(16) 

C(4)-C(7) 1.508(2) C( 6)-C( 5)-H( 5) 121.7(15) 

C(5)-C(6) 1.387(2) C(4)-C(5)-H(5) 116.9(15) 

C(5)-H(5) 1.01(3) C(5)-C(6)-C(1) 120.17(15) 

C(6)-H(6) 0.97(2) C(5)-C(6)-H(6) 120.9(16) 

C(7)-C(8) 1.5452(19) C(l)-C(6)-H(6) 118.9(16) 

C(7)-H(8A) 0.99(3) C( 4 )-C(7)-C(8) 112.31(12) 

C(7)-H(8B) 1.01(2) C(4)-C(7)-H(8A) 111.4(15) 

C(8)-C(9) 1.516(2) C(8)-C(7)-H(8A) 109.4(14) 

C(8)-H(7A) 1.00(2) C( 4 )-C(7)-H(8B) 108.7(14) 

C(8)-H(7B) 0.97(3) C(8)-C(7)-H(8B) 105.5(13) 

C(9)-C(10) 1.399(2) H(8A )-C(7)-H(8B) 109(2) 

C(9)-C(l4) 1.399(2) C(9)-C(8)-C(7) 112.93(12) 

C(10)-C(ll) 1.400(2) C(9)-C(8)-H(7 A) 111.6(12) 

C(10)-H(10) 0.97(2) C(7)-C(8)-H(7 A) 106.2(12) 

C(ll)-C(12) 1.401(2) C(9)-C(8)-H(7B) 110.8(15) 

C(ll)-H(ll) 0.99(2) C(7)-C(8)-H(7B) 110.2(15) 

C(l2)-C(l3) 1.397(2) H(7 A)-C(8)-H(7B) 105(2) 

C(l2)-N(l) 1.428(2) C( 1 O)-C(9)-C( 14) 117.92(15) 

C(13)-C(l4) 1.390(3) C( 1 O)-C(9)-C(8) 121.52(15) 

C(l3)-H(l3) 0.98(3) C( 14 )-C(9)-C(8) 120.56(15) 

C(l4)-H(l4) 0.99(3) C(9)-C(10)-C(ll) 121.05(15) 

N(l)-H(IA) 0.97(3) C(9)-C(l0)-H(l0) 122.1(15) 

N(l)-H(IB) 0.91(2) C(l1)-C(l0)-H(10) 116.9(15) 

C(l0)-C(ll)-C(l2) 120.13(15) 

C(l)-0(1)-H(1) Ill (2) C(10)-C(ll)-H(ll) 120.7(14) 

O(l)-C(l)-C(6) 122.17(15) C(l2)-C(ll)-H(l1) 119.1(14) 
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C(13)-C(l2)-C(l1) 119.19(15) C(9)-C(l4)-H(14) 119.3(15) 

C( 13)-C( 12)-N( 1) 120.01(15) C(l2)-N(l)-H(lA) 108.2(19) 

C(11)-C(12)-N(1) 120.68(15) C(12)-N(1)-H(1B) 111.6(17) 

C(14)-C(l3)-C(12) 120.06(15) H(1A)-N(l)-H(1B) 114(3) 

C(l4)-C(l3)-H(l3) 119.4(16) 

C(l2)-C(l3)-H(13) 120.5(16) Symmetry transformations used to 

C( 13)-C( 14 )-C(9) 121.66(16) generate equivalent atom: 

C(l3 )-C(l4 )-H(14) 119.0(15) 

Table 4. Anisotropic displacement parameters cA2x 103) for 2a. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12] 

ull u22 u33 u23 u13 u12 

0(1) 15(1) 24(1) 23(1) -5(1) 1(1) 0(1) 

C(1) 16(1) 19(1) 15(1) 3(1) 5(1) 0(1) 

C(2) 18(1) 20(1) 16(1) -2(1) 3(1) -2(1) 

C(3) 19(1) 17(1) 21(1) 0(1) 8(1) 2(1) 

C(4) 15(1) 20(1) 17(1) 2(1) 4(1) -1(1) 

C(5) 18(1) 20(1) 17(1) 0(1) 4(1) 0(1) 

C(6) 19(1) 18(1) 17(1) -1(1) 5(1) 0(1) 

C(7) 15(1) 23(1) 19(1) 6(1) 4(1) 3(1) 

C(8) 16(1) 24(1) 20(1) 3(1) 4(1) 0(1) 

C(9) 16(1) 19(1) 17(1) 3(1) 6(1) 0(1) 

C(lO) 18(1) 18(1) 19(1) -2(1) 2(1) -2(1) 

C(ll) 16(1) 19(1) 21(1) 0(1) 5(1) 2(1) 

C(l2) 15(1) 19(1) 15(1) 1(1) 3(1) -2(1) 

C(13) 19(1) 20(1) 19(1) -3(1) 6(1) -1(1) 

C(14) 18(1) 20(1) 19(1) -2(1) 6(1) 2(1) 

N(l) 14(1) 25(1) 21(1) 0(1) 3(1) 1(1) 
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 

10 3) for 2a. 

X y z U(eq) 

H(l) 8410(20) 320(50) 14090(40) 31(7) 

H(2) 7083(18) 5350(40) 14800(30) 22(6) 

H(3) 5317(19) 6040(40) 13320(30) 23(6) 

H(5) 5200(20) -330(50) 10400(30) 31(6) 

H(6) 6980(20) -1100(50) 11920(30) 30(6) 

H(7A) 3465(16) 2520(40) 12970(30) 20(5) 

H(7B) 3482(19) 90(50) 11890(30) 30(6) 

H(8A) 3781(19) 2870(40) 9670(30) 27(6) 

H(8B) 3811(19) 5190(50) 11000(30) 26(6) 

H(lO) 1878(19) 5390(40) 12110(30) 26(6) 

H(11) 137(19) 5850(40) 10610(30) 34(7) 

H(13) 300(20) -530(40) 7770(30) 32(6) 

H(14) 2050(20) -1010(50) 9290(40) 35(7) 

H(1A) -1270(20) 4400(50) 8590(40) 46(8) 

H(lB) -1180(20) 2570(50) 7120(30) 39(6) 
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2b) 4-amino-4' -hydroxydiphenylmethylsulphide 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 2b. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 74.96° 

Absorption conection 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(l)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

2b 

C13 Hl3 N 0 S 

231.30 

100(2) K 

1.54178 A 

Monoclinic 

Pc 

a= 13.844(3) A 

b = 5.1626(10) A 

c = 8.2485(16) A 

563.07(19) A3 

2 

1.364 Mg!m3 

0.235 mm-1 

244 

0.45 x 0.15 x 0.05 mm3 

3.34 to 74.96°. 

-17<=h<=17, -6<=k<=6, -6<=1<=10 

3842 

1935 [R(int) = 0.0449] 

89.4% 

None 

Full-matrix least-squares on F2 

1935121158 

1.095 

R1 = 0.0435, wR2 = 0.1170 

R1 = 0.0497, wR2 = 0.1259 

-0.02(3) 

0.0069(11) 

0.312 and -0.318 e.A-3 
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Table 2. Atomic coordinates (x 1Q4) and equivalent isotropic displacement parameters 

cA2x 1Q3) for 2b. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

S(l) 5064(1) 1351(2) 4410(1) 29(1) 

N(1) 9998(2) 2184(7) 6593(5) 28(1) 

0(1) 784(2) 3402(5) 505(3) 28(1) 

C(l) 1773(3) 2984(7) 1412(5) 22(1) 

C(2) 2273(3) 867(7) 1014(5) 24(1) 

C(3) 3274(3) 392(7) 1913(5) 25(1) 

C(4) 3800(3) 2018(7) 3225(5) 23(1) 

C(5) 3288(3) 4130(7) 3632(5) 24(1) 

C(6) 2287(3) 4636(7) 2737(5) 24(1) 

C(7) 5749(3) 3265(7) 3247(5) 26(1) 

C(8) 6862(3) 2931(7) 4119(4) 22(1) 

C(9) 7419(3) 916(7) 3719(5) 25(1) 

C(11) 8932(3) 2362(7) 5807(5) 22(1) 

C(12) 8387(3) 4365(7) 6239(5) 26(1) 

C(lO) 8434(3) 623(7) 4541(5) 23(1) 

C(l3) 7371(3) 4648(7) 5402(5) 24(1) 
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Table 3. Bond lengths [A] and angles C:(1)-()(1)-II(1) 112(4) 

n for 2b. 0(1 )-<=( 1 )-<=(2) 118.9(3) 

()( 1 )-<=( 1 )-<=( 6) 121.6(3) 

S(1)-C:(4) 1.768(4) <=(2)-<=(1 )-<=(6) 119.4(3) 

S(1)-C:(7) 1.827(4) <=(1)-<=(2)-<=(3) 120.2(3) 

N(1)-C:(11) 1.429(4) <=( 1 )-C:(2)-II(2A) 119.9 

N(1)-II(1B) 0.92(5) <=(3 )-C:(2)-II(2A) 119.9 

N(1)-II(lA) 0.85(5) <=(2)-<=(3 )-<=( 4) 121.2(3) 

()(1 )-<=(1) 1.370(4) <=(2 )-<=(3 )-II(3 A) 119.4 

0(1)-II(l) 0.98(7) C:(4)-C:(3)-II(3A) 119.4 

<=(1 )-<=(2) 1.384(5) <=(3 )-<=( 4 )-<=( 5) 118.2(3) 

<=(1)-<=(6) 1.402(5) <=(3)-C:( 4 )-S(l) 121.1(3) 

<=(2)-<=(3) 1.386(5) <=(5)-C:( 4 )-S(l) 120.6(3) 

<=(2)-II(2A) 0.9500 <=( 6)-<=( 5)-<=( 4) 121.2(3) 

<=(3)-<=(4) 1.392(5) C:(6)-C:(5)-II(5A) 119.4 

C:(3)-II(3A) 0.9500 <=( 4 )-C:(5)-II(5A) 119.4 

<=(4)-<=(5) 1.394(5) <=( 5)-<=( 6)-<=(1) 119.7(4) 

<=( 5)-<=( 6) 1.388(5) C:(5)-C:(6)-II(6A) 120.1 

C:(5)-II(5A) 0.9500 C:(l)-C:(6)-II(6A) 120.1 

C:(6)-II(6A) 0.9500 <=(8)-<=(7)-S(l) 107.7(3) 

<=(7)-<=(8) 1.504(5) C:(8)-C:(7)-II(7 A) 110.2 

C:(7)-II(7 A) 0.9900 S(1)-C:(7)-II(7 A) 110.2 

<=(7)-II(7B) 0.9900 C:(8)-C:(7)-II(7B) 110.2 

<=(8)-<=(9) 1.391(5) S(1)-C:(7)-II(7B) 110.2 

<=(8)-<=( 13) 1.400(5) II(7 A)-C:(7)-II(7B) 108.5 

<=(9)-<=( 10) 1.376(5) <=(9)-<=(8)-<=( 13) 117.5(3) 

C:(9)-II(9A) 0.9500 <=(9)-<=(8)-<=(7) 122.2(3) 

<=(11 )-<=(12) 1.387(5) <=( 13 )-<=(8)-<=(7) 120.3(3) 

<=(11)-<=(10) 1.395(5) <=( 1 0)-<=(9)-<=(8) 121.5(3) 

<=(12)-<=(13) 1.379(5) <=( 10)-C:(9)-II(9A) 119.2 

C:(12)-II(12A) 0.9500 <=(8)-<=(9)-II(9 A) 119.2 

C:(lO)-II(lOA) 0.9500 <=(12)-<=(11)-<=(10) 119.1(3) 

C:(13)-II(13A) 0.9500 <=(12)-<=(11)-N(l) 119.9(3) 

<=(10)-<=(11)-N(l) 120.9(3) 

<=( 4 )-S( 1 )-<=(7) 100.80(17) C:(13)-C(12)-C:(ll) 120.2(3) 

C:(ll)-N(1)-II(1B) 112(3) <=(13)-<=(12)-II( 12A) 119.9 

<=(11)-N(l)-II(lA) 110(3) C:(ll)-C:(12)-II(12A) 119.9 

II(1B)-N(1)-II(1A) 108(4) C(9)-<=( 1 0)-C:( 11) 120.3(3) 
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C(9)-C(l 0)-H( lOA) 

C(11)-C(10)-H(lOA) 

C( 12)-C( 13 )-C(8) 

C(12)-C(13)-H(13A) 

___ Appendix C __ _ 

119.9 

119.9 

121.5(4) 

119.3 

C(8)-C(13)-H(13A) 119.3 

Symmetry transformations used to 

generate equivalent atoms: 

Table 4. Anisotropic displacement parameters (ft.2x 103) for 2b. The anisotropic 

displacement factor exponent takes the form: -2n:2[ h2 a*2ull + ... + 2 h k a* b* u12] 

ull u22 u33 u23 u13 u12 

S(l) 24(1) 32(1) 28(1) 9(1) 5(1) 3(1) 

N(1) 28(2) 27(2) 26(2) 0(1) 3(1) 1(1) 

0(1) 24(1) 30(1) 26(2) -4(1) 3(1) 2(1) 

C(1) 19(2) 24(2) 21(2) 1(1) 5(1) 0(1) 

C(2) 21(2) 26(2) 25(2) -2(2) 7(2) -2(2) 

C(3) 34(2) 24(2) 21(2) 3(2) 16(2) 6(2) 

C(4) 24(2) 28(2) 20(2) 8(2) 7(2) -1(2) 

C(5) 24(2) 24(2) 20(2) 0(2) 2(2) 2(2) 

C(6) 28(2) 23(2) 20(2) 0(2) 3(2) -1(2) 

C(7) 29(2) 28(2) 20(2) 4(2) 7(2) -3(2) 

C(8) 23(2) 23(2) 20(2) 2(1) 5(2) -4(1) 

C(9) 27(2) 22(2) 24(2) -2(1) 4(2) -4(1) 

C(ll) 18(2) 23(2) 22(2) 2(1) 2(1) -3(1) 

C(12) 29(2) 23(2) 23(2) -4(2) 0(2) -1(2) 

C(lO) 26(2) 20(2) 24(2) -2(1) 8(2) 1(1) 

C(13) 24(2) 23(2) 23(2) -2(2) 5(2) -1(2) 
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Table 5. Hydrogen coordinates ( X 1Q4) and isotropic displacement parameters cA2x 

10 3) for 2b. 

X y z U(eq) 

H(1B) 10170(30) 2480(90) 7740(60) 34(12) 

H(lA) 10210(40) 680(100) 6440(60) 42(14) 

H(1) 520(50) 4970(140) 880(80) 73(18) 

H(2A) 1929 -264 122 28 

H(3A) 3608 -1070 1629 30 

H(5A) 3631 5242 4537 29 

H(6A) 1952 6095 3021 29 

H(7A) 5581 2661 2057 31 

H(7B) 5560 5115 3244 31 

H(9A) 7091 -284 2860 30 

H(12A) 8714 5544 7113 32 

H(lOA) 8797 -770 4244 28 

H(l3A) 7009 6039 5702 28 
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2c) 4~amino~4' ~hydroxydiphenyldisulphide 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 2c. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

2c 

C12 H11 N 0 S2 

249.34 

100(2) K 

0.71073 A 

Monoclinic 

P2(1)1c 

a= 10.4321(12) A 

b = 8.1179(11) A 

c = 14.791(2) A 

1179.8(3) A3 

B = 109.633(6)0
• 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.32° 

Absorption coiTection 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

4 

1.404 Mg!m3 

0.428 mm-1 

520 

0.55 x 0.50 x 0.10 mm3 

2.07 to 28.32°. 

-12<=h<=13, -7<=k<=10, -19<=1<=19 

8343 

2926 [R(int) = 0.0278] 

99.6% 

Psi-scan 

0.90251 and 0.76269 

Full-matrix least-squares on F2 

2926 I 0 I 157 

1.078 

R1 = 0.0348, wR2 = 0.0836 

R1 = 0.0417, wR2 = 0.0871 

not refined 

0.381 and -0.221 e.A-3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2x 103) for 2c. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 681(1) -5936(1) -1851(1) 27(1) 

C(1) 1004(2) -4928(2) -1068(1) 21(1) 

C(2) 2213(2) -5240(2) -304(1) 25(1) 

C(3) 2566(2) -4276(2) 520(1) 25(1) 

C(4) 1724(2) -2978(2) 596(1) 22(1) 

C(5) 507(2) -2685(2) -162(1) 21(1) 

C(6) 149(1) -3641(2) -991(1) 21(1) 

S(l) 2155(1) -1739(1) 1653(1) 28(1) 

S(2) 2842(1) 410(1) 1242(1) 27(1) 

N(l) 8715(1) -411(2) 1572(1) 23(1) 

C(ll) 7318(2) -264(2) 1485(1) 21(1) 

C(12) 6577(2) 1139(2) 1068(1) 23(1) 

C(13) 5220(2) 1294(2) 1003(1) 24(1) 

C(14) 4592(2) 69(2) 1375(1) 21(1) 

C(15) 5337(2) -1320(2) 1808(1) 23(1) 

C(16) 6691(2) -1488(2) 1854(1) 23(1) 
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Table 3. Bond lengths [A] and angles C(3)-C(2)-H(2) 119.8 

[
0

] for 2c. C(l)-C(2)-H(2) 119.8 

C(2)-C(3)-C(4) 120.35(14) 

0(1)-C(1) 1.3651 (19) C(2)-C(3)-H(3) 119.8 

0(1)-H(l) 0.85(2) C(4)-C(3)-H(3) 119.8 

C(l)-C(6) 1.403(2) C(3 )-C( 4 )-C( 5) 119.08(14) 

C(l)-C(2) 1.405(2) C(3 )-C( 4 )-S( 1) 120.95(12) 

C(2)-C(3) 1.390(2) C(5)-C(4)-S(l) 119.94(12) 

C(2)-H(2) 0.9500 C(6)-C(5)-C(4) 120.88(14) 

C(3)-C(4) 1.401(2) C(6)-C(5)-H(5) 119.6 

C(3)-H(3) 0.9500 C(4)-C(5)-H(5) 119.6 

C(4)-C(5) 1.403(2) C(5)-C(6)-C(l) 119.80(13) 

C(4)-S(l) 1.7845(16) C(5)-C(6)-H(6) 120.1 

C(5)-C(6) 1.391 (2) C(l )-C( 6)-H( 6) 120.1 

C(5)-H(5) 0.9500 C(4)-S(l)-S(2) 103.30(5) 

C(6)-H(6) 0.9500 C(14)-S(2)-S(l) 106.28(5) 

S(l)-S(2) 2.0540(6) C(ll)-N(l)-H(1A) 109.7(17) 

S(2)-C(l4) 1.7910(15) C(11)-N(l)-H(lB) 111.5(15) 

N(l)-C(l1) 1.4242(19) H(1A)-N( 1 )-H( 1B) 112(2) 

N(l)-H(lA) 0.82(2) C(16)-C(ll)-C(12) 119.28(14) 

N(1)-H(1B) 0.80(2) C(l6)-C(11)-N(l) 120.31(14) 

C(l1)-C(l6) 1.398(2) C(12)-C(ll)-N(l) 120.34(14) 

C(l1)-C(l2) 1.398(2) C(l3)-C(l2)-C(11) 120.21(14) 

C(12)-C(l3) 1.392(2) C(l3)-C(l2)-H(12) 119.9 

C(l2)-H(l2) 0.9500 C(11)-C(l2)-H(12) 119.9 

C( 13 )-C( 14) 1.401(2) C(12)-C(l3)-C(14) 120.48(14) 

C(13)-H(l3) 0.9500 C(l2)-C(13)-H(l3) 119.8 

C( 14 )-C( 15) 1.397(2) C(l4)-C(l3)-H(l3) 119.8 

C(15)-C(16) 1.398(2) C( 15)-C( 14 )-C( 13) 119.48(14) 

C(l5)-H(l5) 0.9500 C( 15)-C( 14 )-S(2) 124.34(12) 

C(l6)-H(l6A) 0.9500 C(l3)-C(l4)-S(2) 116.17(12) 

C( 14 )-C( 15)-C( 16) 119.86(14) 

C( 1 )-0( 1 )-H( 1) 110.8(14) C(14)-C(l5)-H(l5) 120.1 

O(l)-C(l)-C(6) 122.24(13) C(l6)-C(l5)-H(l5) 120.1 

0(1 )-C(l )-C(2) 118.26(14) C(l5)-C(16)-C(11) 120.66(14) 

C(6)-C(l)-C(2) 119.46(14) C(15)-C(16)-H(16A) 119.7 

C(3 )-C(2)-C( 1) 120.41 (14) C(11)-C(16)-H(l6A) 119.7 
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Table 4. Anisotropic displacement parameters (A2x 103) for 2c. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12] 

ull u22 u33 u23 u13 u12 

0(1) 26(1) 21(1) 29(1) -1(1) 3(1) 5(1) 

C(l) 21(1) 17(1) 26(1) 3(1) 8(1) -2(1) 

C(2) 21(1) 2 L(1) 33(1) 4(1) 7(1) 4(1) 

C(3) 18(1) 27(1) 27(1) 7(1) 4(1) 0(1) 

C(4) 18(1) 26(1) 23(1) 1(1) 8(1) -4(1) 

C(5) 18(1) 22(1) 26(1) 3(1) 9(1) 1(1) 

C(6) 17(1) 21(1) 25(1) 4(1) 5(1) 0(1) 

S(l) 21(1) 43(1) 22(1) -4(1) 9(1) -4(1) 

S(2) 19(1) 28(1) 32(1) -8(1) 6(1) 2(1) 

N(l) 19(1) 25(1) 25(1) 4(1) 8(1) -1(1) 

C(11) 19(1) 23(1) 18(1) -2(1) 5(1) -3(1) 

C(12) 26(1) 19(1) 23(1) 1(1) 7(1) -4(1) 

C(l3) 26(1) 20(1) 24(1) 0(1) 4(1) 2(1) 

C(14) 18(1) 24(1) 19(1) -4(1) 4(1) 0(1) 

C(l5) 21(1) 25(1) 23(1) 3(1) 7(1) -3(1) 

C(16) 20(1) 22(1) 24(1) 5(1) 5(1) 1(1) 

Table 5. Hydrogen coordinates ( X 104) and isotropic displacement parameters cA2x 

10 3) for 2c. 

X y z U(eq) 

H(l) 60(20) -5510(30) -2322(16) 36(6) 

H(2) 2792 -6114 -351 30 

H(3) 3383 -4499 1034 30 

H(5) -80 -1824 -109 26 

H(6) -672 -3422 -1503 25 

H(lA) 8850(20) 80(30) 1130(17) 48(7) 

H(1B) 8940(20) -1350(30) 1591(14) 28(5) 

H(12) 7000 1989 829 28 

H(13) 4716 2238 704 29 

H(l5) 4924 -2150 2071 28 

H(l6A) 7190 -2443 2140 27 
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3a) 4aaminoa4 'ahydroxydiphenylpropane 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 3a. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 28.27° 

Absorption cotTection 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

3a 

C15 Hl7 N 0 

227.30 

100(2) K 

0.71073 A 

Orthorhombic 

Pca2(1) 

a= 23.9370(7) A 

b = 6.2160(2) A 

c = 8.3970(3) A 

1249.41(7) A3 

4 

1.208 Mglm3 

0.075 mm-1 

488 

0.52 x 0.25 x 0.07 mm3 

1.70 to 28.27°. 

-31<=h<=31, -5<=k<=8, -11<=1<=10 

8492 

3069 [R(int) = 0.0365] 

100.0% 

None 

Full-matrix least-squares on F2 

3069 I 1 I 223 

1.016 

R1 = 0.0389, wR2 = 0.0856 

R1 = 0.0510, wR2 = 0.0918 

0.3(15) 

not refined 

0.205 and -0.159 e.A-3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

cA2x 103) for 3a. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 3091(1) 6252(2) 8976(2) 30(1) 

C(1) 3602(1) 5501(3) 8474(2) 25(1) 

C(2) 3776(1) 3403(3) 8759(2) 26(1) 

C(3) 4287(1) 2707(3) 8160(2) 25(1) 

C(4) 4634(1) 4049(3) 7282(2) 23(1) 

C(5) 4457(1) 6161(3) 7039(2) 25(1) 

C(6) 3942(1) 6890(3) 7620(2) 26(1) 

C(7) 5171(1) 3205(3) 6551(2) 27(1) 

C(8) 5562(1) 2066(3) 7723(2) 24(1) 

C(9) 6078(1) 1120(3) 6910(2) 32(1) 

C(10) 6451(1) -143(3) 8018(2) 26(1) 

C(11) 6298(1) -2195(3) 8552(2) 27(1) 

C(l2) 6636(1) -3346(3) 9589(2) 26(1) 

C(13) 7136(1) -2478(3) 10137(2) 24(1) 

C(14) 7295(1) -434(3) 9621(2) 26(1) 

C(l5) 6952(1) 704(3) 8573(2) 28(1) 

N(l) 7502(1) -3713(3) 11117(2) 27(1) 
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Table 3. Bond lengths [A] and angles N(l)-H(lB) 0.90(2) 

[
0

] for 3a. 

C:(1)-()(1)-H(1) 112.4(14) 

()( 1 )-C:(l) 1.3756(19) 0( 1 )-C:(l )-C:(6) 118.05(15) 

()(1)-H(l) 0.91(2) 0(1 )-C:( 1)-C:(2) 122.21(15) 

C:(l)-C:(6) 1.387(2) C:( 6)-C:(l )-C:(2) 119.72(15) 

C:(l )-C:(2) 1.390(2) C:(3)-C:(2)-C:( 1) 119.59(16) 

C:(2)-C:(3) 1.390(2) C:(3)-C:(2)-H(2) 119.6(11) 

C:(2)-H(2) 0.943(19) C:( 1 )-C:(2)-H(2) 120.8(11) 

C:(3)-C:(4) 1.390(2) C:( 4 )-C:(3)-C:(2) 122.12(16) 

C:(3)-H(3) 0.93(2) C:( 4 )-C:(3)-H(3) 120.4(13) 

C:(4)-C:(5) 1.396(2) C:(2)-C:(3)-H(3) 117.4(13) 

C:( 4 )-C:(7) 1.516(2) C:(3)-C:( 4 )-C:(5) 117.34(15) 

C:( 5)-C:( 6) 1.399(2) C:(3 )-C:( 4 )-C:(7) 120.95(15) 

C:(5)-H(5) 0.95(2) C:( 5)-C:( 4 )-C:(7) 121.64(15) 

C:(6)-H(6) 0.960(18) C:( 4 )-C:(5)-C:(6) 121.47(15) 

C:(7)-C:(8) 1.532(2) C:( 4 )-C:(5)-H(5) 118.0(12) 

C:(7)-H(7 A) 0.97(2) C:(6)-C:(5)-H(5) 120.5(12) 

C:(7)-H(7B) 0.98(2) C:( 1 )-C:(6)-C:(5) 119.73(15) 

C:(8)-C:(9) 1.529(2) C:( 1 )-C:( 6)-H( 6) 120.2(11) 

C:(8)-H(8A) 0.95(2) C:(5)-C:(6)-H(6) 120.0(11) 

C:(8)-H(8B) 0.99(2) C:( 4 )-C:(7)-C:(8) 114.63(14) 

C:(9)-C:(l 0) 1.510(2) C:( 4)-C:(7)-H(7 A) 109.0(13) 

C:(9)-H(9A) 0.98(2) C:(8)-C:(7)-H(7 A) 109.5(13) 

C:(9)-H(9B) 0.99(3) C:( 4 )-C:(7)-H(7B) 108.2(13) 

C:( 10)-C:( 15) 1.391 (2) C:(8)-C:(7)-H(7B) 109.3(12) 

C:(l0)-C:(l1) 1.400(2) H(7 A)-C:(7)-H(7B) 105.9(18) 

C:( 11 )-C:(l2) 1.387(2) C:(9)-C:(8)-C:(7) 112.60(14) 

C:(l1)-H(ll) 0.942(19) C:(9)-C:(8)-H(8A) 110.3(11) 

C:(l2)-C:(13) 1.393(2) C:(7)-C:(8)-H(8A) 110.0(12) 

C:(12)-H(l2) 0.96(2) C:(9)-C:(8)-H(8B) 112.0(12) 

C:(l3)-C:(l4) 1.395(2) C:(7)-C:(8)-H(8B) 108.4(12) 

C:(13)-N(l) 1.425(2) H(8A)-C:(8)-H(8B) 103.2(16) 

C:(l4 )-C:(15) 1.395(3) C:( 1 O)-C:(9)-C:(8) 113.74(14) 

C:(14)-H(l4) 0.96(2) C:(10)-C:(9)-H(9A) 110.1(13) 

C:(15)-H(l5) 0.95(2) C:(8)-C:(9)-H(9A) 109.2(13) 

N(1)-H(lA) 0.85(2) C:(l O)-C:(9)-H(9B) 111.4(14) 
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C(8)-C(9)-H(9B) 107.0(14) C(14)-C(13)-N(l) 120.21(15) 

H(9A)-C(9)-H(9B) 105(2) C( 13 )-C(14 )-C(15) 119.92(16) 

C(15)-C(10)-C(11) 117.58(15) C(13 )-C(14 )-H(14) 120.1(13) 

C(15)-C(10)-C(9) 121.31(16) C(15)-C(14)-H(14) 120.0(13) 

C(11)-C(10)-C(9) 121.10(16) C( 1 0)-C( 15)-C( 14) 121.72(16) 

C(12)-C(11)-C(10) 121.27(15) C(10)-C(15)-H(l5) 119.6(11) 

C(12)-C(11)-H(11) 120.2(12) C(14 )-C(15)-H(15) 118.7(11) 

C(10)-C(11)-H(11) 118.4(12) C(l3)-N(l)-H(lA) 111.8(16) 

C(11)-C(12)-C(13) 120.61(16) C( 13)-N( 1 )-H( 1 B) 111.3(12) 

C(ll)-C(12)-H(l2) 119.8(11) H(lA)-N(l)-H(lB) 113(2) 

C(13)-C(12)-H(l2) 119.4(11) 

C(l2)-C(13)-C(14) 118.91(15) Symmetry transformations used to 

C(l2)-C(l3)-N(l) 120.72(16) generate equivalent atoms: 

Table 4. Anisotropic displacement parameters (A2x 103) for 3a. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2u 11 + ... + 2 h k a* b* U 12] 

u11 u22 u33 u23 uB u12 

0(1) 23(1) 31 (1) 38(1) -2(1) 2(1) 4(1) 

C(1) 21(1) 28(1) 24(1) -5(1) -4(1) 0(1) 

C(2) 23(1) 27(1) 29(1) -1(1) 0(1) -2(1) 

C(3) 24(1) 21(1) 30(1) 0(1) 1(1) 0(1) 

C(4) 21(1) 27(1) 21(1) -1(1) -2(1) 1(1) 

C(5) 26(1) 28(1) 22(1) 0(1) -5(1) -3(1) 

C(6) 29(1) 21(1) 28(1) -2(1) -8(1) 3(1) 

C(7) 24(1) 33(1) 23(1) 3(1) 3(1) 4(1) 

C(8) 23(1) 29(1) 21(1) 0(1) 1(1) 1(1) 

C(9) 29(1) 43(1) 23(1) 4(1) 4(1) 8(1) 

C(lO) 24(1) 34(1) 21(1) 1(1) 5(1) 5(1) 

C(11) 19(1) 37(1) 25(1) -2(1) 2(1) -4(1) 

C(l2) 24(1) 27(1) 25(1) 3(1) 4(1) -4(1) 

C(l3) 22(1) 30(1) 21(1) -1(1) 4(1) 2(1) 

C(14) 21(1) 29(1) 29(1) 0(1) 0(1) -4(1) 

C(15) 28(1) 25(1) 30(1) 2(1) 6(1) -1(1) 

N(1) 23(1) 33(1) 25(1) 6(1) -1(1) -2(1) 
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Table 5. Hydrogen coordinates ( X 1Q4) and isotropic displacement parameters cA2x 

10 3) for 3a. 

X y z U(eq) 

H(l) 2923(9) 5350(40) 9670(30) 40(6) 

H(2) 3551(8) 2440(30) 9340(20) 26(5) 

H(3) 4383(8) 1270(30) 8330(30) 35(5) 

H(5) 4698(8) 7110(30) 6480(20) 27(5) 

H(6) 3824(8) 8340(30) 7420(20) 27(5) 

H(7A) 5367(9) 4390(40) 6050(30) 41(6) 

H(7B) 5072(9) 2210(30) 5690(30) 35(5) 

H(8A) 5670(8) 3030(30) 8550(20) 29(5) 

H(8B) 5345(8) 960(30) 8300(20) 37(6) 

H(9A) 6290(9) 2280(40) 6400(30) 47(6) 

H(9B) 5943(10) 220(40) 6020(30) 54(7) 

H(11) 5949(8) -2750(30) 8240(20) 32(5) 

H(l2) 6513(8) -4720(30) 9990(20) 28(5) 

H(l4) 7643(9) 170(30) 9960(30) 36(6) 

H(15) 7066(7) 2090(30) 8240(20) 28(5) 

H(1A) 7706(9) -2920(40) 11690(30) 46(7) 

H(1B) 7314(8) -4710(30) 11670(20) 29(5) 
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3b) 4-amino-4 '-hydroxyphenylethylsulphide 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 3b. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

3b 

C14 H15 N 0 S 

245.33 

100(2) K 

0.71073 A 

Monoclinic 

Pc 

a= 12.6341(9) A 

b = 5.8636(4) A 

c = 8.5671(5) A 

634.65(7) A3 

p = 90.351(3)0
• 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 30.08° 

Absorption conection 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

2 

1.284 Mgtm3 

0.238 mm-1 

260 

0.35 x 0.25 x 0.20 mm3 

1.61 to 30.08°. 

-17<=h<=17, -6<=k<=7, -11<=1<=11 

4751 

3138 [R(int) = 0.0256] 

92.6% 

Psi-scan 

0.93286 and 0.88891 

Full-matrix least-squares on F2 

3138 I 2 I 166 

1.055 

R1 = 0.0322, wR2 = 0.0822 

R1 = 0.0337, wR2 = 0.0835 

0.04(6) 

not refined 

0.304 and -0.177 e.A -3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

cA2x 103) for 3b. U(eq) is defined as one third of the trace of the Olthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 8085(1) 7481(2) 1880(2) 24(1) 

C(1) 7044(1) 7568(3) 2291(2) 19(1) 

C(2) 6345(1) 9240(3) 1732(2) 20(1) 

C(3) 5301(1) 9265(3) 2265(2) 21(1) 

C(4) 4946(1) 7645(3) 3339(2) 18(1) 

C(5) 5650(1) 5968(3) 3871(2) 22(1) 

C(6) 6691(1) 5930(3) 3354(2) 23(1) 

S(1) 3635(1) 7765(1) 4081(1) 19(1) 

C(7) 2959(1) 5733(4) 2813(2) 28(1) 

C(8) 1893(1) 5115(3) 3513(2) 22(1) 

C(9) 1192(1) 3671(3) 2470(2) 16(1) 

C(lO) 200(1) 4484(3) 1989(2) 17(1) 

C(11) -465(1) 3211(3) 1018(2) 17(1) 

C(l2) -142(1) 1062(3) 489(2) 16(1) 

C(13) 839(1) 201(3) 974(2) 16(1) 

C(14) 1496(1) 1493(3) 1954(2) 17(1) 

N(l) -844(1) -267(3) -449(2) 19(1) 

226 



Appendix C 

Table 3. Bond lengths [A] and angles O(l)-C(1)-C(6) 117.01(15) 

[
0

] for 3b. 0(1 )-C( 1 )-C(2) 122.96(15) 

C(6)-C(l)-C(2) 120.01(16) 

0(1)-C(1) 1.365(2) C(3 )-C(2)-C( 1) 119.28(15) 

0(1)-H(l) 0.85(3) C(3)-C(2)-H(2A) 120.4 

C(l)-C(6) 1.399(2) C(l)-C(2)-H(2A) 120.4 

C(l)-C(2) 1.402(2) C(2)-C(3)-C(4) 121.02(15) 

C(2)-C(3) 1.398(2) C(2)-C(3)-H(3A) 119.5 

C(2)-H(2A) 0.9500 C( 4 )-C(3)-H(3A) 119.5 

C(3)-C(4) 1.398(2) C(3)-C(4)-C(5) 118.98(16) 

C(3)-H(3A) 0.9500 C(3)-C(4)-S(l) 120.79(13) 

C(4)-C(5) 1.401(2) C(5)-C(4)-S(l) 120.18(13) 

C(4)-S(1) 1.7787(17) C(6)-C(5)-C(4) 120.56(15) 

C(5)-C(6) 1.390(2) C(6)-C(5)-H(5A) 119.7 

C(5)-H(5A) 0.9500 C(4)-C(5)-H(5A) 119.7 

C(6)-H(6A) 0.9500 C(5)-C(6)-C(1) 120.14(16) 

S(l)-C(7) 1.8218(18) C(5)-C(6)-H(6A) 119.9 

C(7)-C(8) 1.521(2) C(l)-C(6)-H(6A) 119.9 

C(7)-H(7 A) 0.9900 C( 4 )-S(l )-C(7) 101.26(8) 

C(7)-H(7B) 0.9900 C(8)-C(7)-S(l) 109.47(12) 

C(8)-C(9) 1.514(2) C(8)-C(7)-H(7 A) 109.8 

C(8)-H(8A) 0.9900 S(l)-C(7)-H(7 A) 109.8 

C(8)-H(8B) 0.9900 C(8)-C(7)-H(7B) 109.8 

C(9)-C(10) 1.400(2) S(1)-C(7)-H(7B) 109.8 

C(9)-C(14) 1.405(2) H(7 A)-C(7)-H(7B) 108.2 

C(10)-C(11) 1.395(2) C(9)-C(8)-C(7) 114.62(13) 

C(10)-H(10A) 0.9500 C(9)-C(8)-H(8A) 108.6 

C(11)-C(12) 1.401 (2) C(7)-C(8)-H(8A) 108.6 

C(11)-H(l1A) 0.9500 C(9)-C(8)-H(8B) 108.6 

C(12)-C(l3) 1.400(2) C(7)-C(8)-H(8B) 108.6 

C(l2)-N(l) 1.425(2) H(8A)-C(8)-H(8B) 107.6 

C(13)-C(14) 1.400(2) C( 1 O)-C(9)-C( 14) 117.58(14) 

C(13)-H(13A) 0.9500 C(l0)-C(9)-C(8) 120.17(14) 

C(14)-H(14A) 0.9500 C(l4)-C(9)-C(8) 122.25(15) 

N(l)-H(1A) 0.82(3) C(11)-C(l0)-C(9) 121.82(14) 

N(l)-H(lB) 0.90(3) C(l1)-C(lO)-H(lOA) 119.1 

C(9)-C( 10)-H(l OA) 119.1 

C(1)-0(1)-H(1) 111 (2) C(l 0)-C( 11 )-C(12) 119.96(15) 
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C(l0)-C(11)-H(l1A) 120.0 C(l3)-C(14)-H(14A) 119.4 

C(12)-C(11)-H(11A) 120.0 C(9)-C(14)-H(14A) 119.4 

C(13)-C(l2)-C(11) 119.15(14) C(12)-N(1)-H(lA) 111.0(16) 

C(l3)-C(12)-N(l) 121.16(14) C(12)-N(1)-H(1B) 114.7(16) 

C(11)-C(12)-N(l) 119.56(14) H(1A)-N(1)-H(1B) 105(2) 

C(l4)-C(l3)-C(12) 120.23(14) 

C(14)-C(l3)-H( 13A) 119.9 Symmetry transformations used to 

C(l2)-C(l3)-H(l3A) 119.9 generate equivalent atoms: 

C(13)-C(14 )-C(9) 121.23(14) 

Table 4. Anisotropic displacement parameters cA2x 103) for 3b. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2u11 + ... + 2 h k a* b* u12] 

ull u22 u33 u23 u13 u12 

0(1) 15(1) 26(1) 30(1) 4(1) 4(1) 2(1) 

C(l) 16(1) 19(1) 21(1) -2(1) 1(1) -1(1) 

C(2) 16(1) 21(1) 24(1) 5(1) 2(1) 1(1) 

C(3) 16(1) 25(1) 22(1) 4(1) 0(1) 3(1) 

C(4) 13(1) 23(1) 19(1) -1(1) -1(1) -3(1) 

C(5) 21(1) 23(1) 23(1) 6(1) 1(1) -3(1) 

C(6) 17(1) 21(1) 32(1) 5(1) 0(1) 2(1) 

S(l) 13(1) 25(1) 18(1) -4(1) 1(1) -4(1) 

C(7) 15(1) 42(1) 26(1) -16(1) 6(1) -11(1) 

C(8) 20(1) 29(1) 16(1) -5(1) 2(1) -8(1) 

C(9) 16(1) 19(1) 12(1) -1(1) 2(1) -5(1) 

C(lO) 19(1) 15(1) 18(1) -1(1) 4(1) -1(1) 

C(11) 16(1) 19(1) 17(1) 2(1) 2(1) 1(1) 

C(l2) 17(1) 17(1) 13(1) 0(1) 2(1) -2(1) 

C(13) 18(1) 15(1) 16(1) -1(1) 3(1) 0(1) 

C(l4) 14(1) 20(1) 16(1) 3(1) 2(1) 2(1) 

N(l) 18(1) 24(1) 17(1) -5(1) -1(1) -1(1) 
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Table 5. Hydrogen coordinates ( X 1Q4) and isotropic displacement parameters cA2x 

10 3) for 3b. 

X y z U(eq) 

H(l) 8200(30) 8350(60) 1110(40) 53(8) 

H(2A) 6578 10343 998 24 

H(3A) 4827 10401 1893 25 

H(5A) 5415 4848 4591 26 

H(6A) 7164 4788 3724 28 

H(7A) 2852 6411 1765 33 

H(7B) 3395 4342 2697 33 

H(8A) 2018 4282 4503 26 

H(8B) 1512 6540 3769 26 

H(lOA) -26 5944 2334 21 

H(11A) -1135 3801 716 20 

H(13A) 1061 -1266 637 19 

H(14A) 2159 887 2277 20 

H(lA) -1145(18) 530(40) -1110(30) 24(6) 

H(lB) -531(19) -1380(40) -1000(30) 31(6) 
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4a) 4-amino-4' -hydroxydiphenylbutane 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 4a. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

4a 

C16 H19 N 0 

241.32 

105(2) K 

0.71073 A 

Monoclinic 

Pc 

a= 15.7888(16) A 

b = 5.2088(6) A ~ = 100.912(5)0
• 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 27.54° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

c = 8.3399(8) A 

673.48(12) A3 

2 

1.190 Mg/m3 

0.074 mm-1 

260 

0.40 x 0.20 x 0.20 mm3 

2.63 to 27.54°. 

-20<=h<=19, -6<=k<=5, -10<=1<=10 

4048 

2816 [R(int) = 0.0546] 

99.7% 

None 

Full-matrix least-squares on F2 

2816121176 

1.026 

R1 = 0.0429, wR2 = 0.0960 

R1 = 0.0626, wR2 = 0.1081 

0.1(19) 

not refined 

0.200 and -0.174 e.A -3 
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

cA2x 103) for 4a. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

N(l) 2503(1) 2901(4) 3233(3) 26(1) 

0(1) 11862(1) 1551(4) 6492(2) 27(1) 

C(l) 10995(2) 1973(4) 6491(3) 21(1) 

C(2) 10517(2) 375(5) 7323(3) 22(1) 

C(3) 9651(2) 872(5) 7282(3) 23(1) 

C(4) 9237(2) 2981(5) 6438(3) 22(1) 

C(5) 9729(2) 4571(5) 5609(3) 25(1) 

C(6) 10598(2) 4083(5) 5633(3) 23(1) 

C(7) 8283(2) 3513(5) 6368(3) 26(1) 

C(8) 7692(2) 2196(5) 4925(4) 24(1) 

C(9) 6740(2) 2944(5) 4784(4) 25(1) 

C(lO) 6150(2) 1658(5) 3316(4) 26(1) 

C(11) 3419(2) 2711(5) 3312(3) 20(1) 

C(l2) 3883(2) 704(5) 4189(3) 24(1) 

C(l3) 4753(2) 415(5) 4168(3) 23(1) 

C(l4) 5193(2) 2069(4) 3296(3) 22(1) 

C(l5) 4727(2) 4080(5) 2429(3) 23(1) 

C(l6) 3844(2) 4408(4) 2439(3) 23(1) 
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Table 3. Bond lengths [A] and angles C(l3)-H(13) 0.9500 

[
0

] for 4a. C(14)-C(15) 1.400(4) 

C(l5)-C(16) 1.407(4) 

C(15)-H(15) 0.9500 

N(l)-C(11) 1.439(3) C(16)-H(16) 0.9500 

N(l)-H(1A) 0.98(3) 

N(l)-H(lB) 0.91(2) C(11)-N(l)-H(1A) 110.8(17) 

0(1)-C(1) 1.385(3) C(11)-N(l)-H(1B) 111.7(16) 

0(1)-H(l) 0.85(5) H(1A)-N(1)-H(1B) 114(2) 

C(l)-C(6) 1.394(3) C(1)-0(1)-H(1) 105(3) 

C(l)-C(2) 1.395(4) 0(1 )-C( 1 )-C( 6) 118.3(2) 

C(2)-C(3) 1.386(4) 0(1 )-C(l )-C(2) 122.2(2) 

C(2)-H(2) 0.9500 C(6)-C(l)-C(2) 119.5(2) 

C(3)-C(4) 1.398(3) C(3)-C(2)-C(l) 120.1(2) 

C(3)-H(3) 0.9500 C(3)-C(2)-H(2) 120.0 

C(4)-C(5) 1.405(4) C(1)-C(2)-H(2) 120.0 

C(4)-C(7) 1.521(4) C(2)-C(3)-C(4) 121.6(2) 

C(5)-C(6) 1.391 ( 4) C(2)-C(3)-H(3) 119.2 

C(5)-H(5) 0.9500 C(4)-C(3)-H(3) 119.2 

C(6)-H(6) 0.9500 C(3 )-C( 4 )-C( 5) 117.5(2) 

C(7)-C(8) 1.538(4) C(3)-C( 4 )-C(7) 121.8(2) 

C(7)-H(7 A) 0.9900 C(5)-C(4)-C(7) 120.7(2) 

C(7)-H(7B) 0.9900 C(6)-C(5)-C(4) 121.4(3) 

C(8)-C(9) 1.535(2) C(6)-C(5)-H(5) 119.3 

C(8)-H(8A) 0.9900 C(4)-C(5)-H(5) 119.3 

C(8)-H(8B) 0.9900 C(5)-C(6)-C(1) 119.9(3) 

C(9)-C(10) 1.544(4) C( 5)-C( 6)-H( 6) 120.0 

C(9)-H(9A) 0.9900 C(l)-C(6)-H(6) 120.0 

C(9)-H(9B) 0.9900 C( 4 )-C(7)-C(8) 113.5(2) 

C(10)-C(14) 1.523(4) C(4)-C(7)-H(7A) 108.9 

C(10)-H(10A) 0.9900 C(8)-C(7)-H(7 A) 108.9 

C(lO)-H(lOB) 0.9900 C(4)-C(7)-H(7B) 108.9 

C( 11 )-C( 16) 1.395(4) C(8)-C(7)-H(7B) 108.9 

C(11)-C(12) 1.400(3) H(7 A)-C(7)-H(7B) 107.7 

C(12)-C(l3) 1.385(4) C(9)-C(8)-C(7) 112.80(18) 

C(12)-H(12) 0.9500 C(9)-C(8)-H(8A) 109.0 

C(13)-C(14) 1.396(4) C(7)-C(8)-H(8A) 109.0 
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C(9)-C(8)-H(8B) 109.0 C(l3)-C(12)-H(12) 120.1 

C(7)-C(8)-H(8B) 109.0 C(11)-C(12)-H(12) 120.1 

H(8A)-C(8)-H(8B) 107.8 C(12)-C(13)-C(14) 122.2(2) 

C(8)-C(9)-C( 1 0) 112.70(18) C(12)-C(l3)-H(13) 118.9 

C(8)-C(9)-H(9A) 109.1 C(14)-C(13)-H(13) 118.9 

C(10)-C(9)-H(9A) 109.1 C(13)-C(14)-C(15) 117.8(2) 

C(8)-C(9)-H(9B) 109.1 C(13)-C(14)-C(10) 119.9(2) 

C(10)-C(9)-H(9B) 109.1 C(15)-C(14)-C(10) 122.3(3) 

H(9A)-C(9)-H(9B) 107.8 C(14)-C(15)-C(16) 120.9(2) 

C(14)-C(10)-C(9) 113.4(2) C(14 )-C(15)-H(15) 119.6 

C( 14 )-C( 1 0)-H( 1 OA) 108.9 C(16)-C(15)-H(15) 119.6 

C(9)-C(10)-H(10A) 108.9 C(11)-C(16)-C(15) 120.1(2) 

C(14)-C(10)-H(10B) 108.9 C(11)-C(16)-H(16) 120.0 

C(9)-C(10)-H(10B) 108.9 C(15)-C(16)-H(16) 120.0 

H(10A)-C(10)-H(10B) 107.7 

C( 16)-C( 11 )-C( 12) 119.4(2) Symmetry transformations used to 

C(16)-C(11)-N(l) 120.7(2) generate equivalent atoms: 

C(12)-C(l1)-N(l) 119.8(2) 

C(13)-C(12)-C(l1) 119.8(2) 
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Table 4. Anisotropic displacement parameters (A2x 103) for 4a. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12] 

ull u22 u33 u23 un u12 

N(l) 15(1) 33(1) 29(1) 1(1) 4(1) 1(1) 

0(1) 18(1) 32(1) 32(1) 4(1) 5(1) -1(1) 

C(l) 17(1) 26(1) 19(1) -3(1) 0(1) 1(1) 

C(2) 22(1) 23(1) 19(1) 4(1) 2(1) -1(1) 

C(3) 20(1) 26(1) 25(2) 1(1) 6(1) -2(1) 

C(4) 17(1) 27(1) 20(2) -5(1) 1(1) 0(1) 

C(5) 25(2) 25(1) 22(1) -2(1) 1(1) 3(1) 

C(6) 23(1) 25(1) 20(1) 0(1) 5(1) -3(1) 

C(7) 21(1) 31(1) 25(2) -6(1) 4(1) 4(1) 

C(8) 20(1) 26(1) 25(2) -1(1) 4(1) 2(1) 

C(9) 17(1) 31(1) 25(2) 0(1) 4(1) 1(1) 

C(lO) 17(1) 34(1) 27(2) -4(1) 3(1) 1(1) 

C(11) 16(1) 25(1) 19(1) -5(1) 4(1) -4(1) 

C(12) 23(1) 24(1) 23(1) 2(1) 4(1) -1(1) 

C(13) 21(1) 26(1) 19(1) 2(1) -1(1) 3(1) 

C(14) 18(1) 26(1) 22(2) -6(1) 2(1) 0(1) 

C(15) 24(1) 24(1) 22(1) -1(1) 4(1) -4(1) 

C(16) 18(1) 25(1) 25(1) -2(1) 1(1) 3(1) 
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Table 5. Hydrogen coordinates ( X 104) and isotropic displacement parameters cA2x 

10 3) for 4a. 

X y z U(eq) 

H(lA) 2283(18) 4540(60) 2760(30) 28(7) 

H(lB) 2358(16) 2570(50) 4210(30) 34(7) 

H(l) 11980(30) 110(90) 6970(60) 99(16) 

H(2) 10785 -1056 7919 26 

H(3) 9330 -248 7841 28 

H(5) 9464 6011 5019 30 

H(6) 10919 5186 5066 27 

H(7A) 8185 5389 6287 31 

H(7B) 8123 2920 7399 31 

H(8A) 7883 2665 3900 28 

H(8B) 7748 312 5059 28 

H(9A) 6685 4831 4672 29 

H(9B) 6545 2445 5801 29 

H(lOA) 6291 2353 2294 32 

H(10B) 6270 -208 3342 32 

H(l2) 3602 -455 4796 28 

H(l3) 5060 -956 4768 27 

H(15) 5011 5238 1827 28 

H(16) 3536 5786 1851 27 
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§a) 4aaminoa4 'hydlroxydiphernyHpentane 

Synthesis: Venugopal Vangala, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for Sa. 

Identification code 

Empitical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Sa 

C17 H21 N 0 

255.35 

100(2) K 

0.71073 A 

Monoclinic 

Pc 

a= 14.9554(9) A 

b = 11.2370(8) A 

c = 8.6841(6) A 

1459.22(17) A3 

4 

p = 90.893(3t. 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 27.55° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

1.162 Mg/m3 

0.071 mm-I 

552 

0.60 x 0.55 x 0.30 mm3 

2.27 to 27.55°. 

-I9<=h<=I9, -II<=k<=I4, -11<=1<=11 

999I 

5476 [R(int) = 0.02I5] 

99.6% 

Psi-scan 

0.99477 and 0.89622 

Full-matrix least-squares on F2 

5476 I 2 I 367 

1.033 

RI= 0.0355, wR2 = 0.0885 

RI = 0.0418, wR2 = 0.0938 

-0.2(11) 

not refined 

0.252 and -O.I60 e.A -3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2x 103) for Sa. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

0(1) 18714(1) 6720(1) 636(2) 38(1) 

C(l) 17914(1) 6397(2) -47(2) 30(1) 

C(2) 17506(1) 5312(2) 257(2) 29(1) 

C(3) 16713(1) 5019(2) -500(2) 30(1) 

C(4) 16299(1) 5791(2) -1547(2) 30(1) 

C(5) 16721(1) 6871(2) -1837(2) 37(1) 

C(6) 17522(1) 7174(2) -1107(2) 36(1) 

C(7) 15441(1) 5428(2) -2362(2) 35(1) 

C(8) 14582(1) 5618(2) -1442(2) 31(1) 

C(9) 14380(1) 6928(2) -1123(2) 28(1) 

C(lO) 13428(1) 7113(2) -545(2) 27(1) 

C(11) 13162(1) 8426(2) -443(2) 26(1) 

C(12) 12212(1) 8621(1) 90(2) 24(1) 

C(l3) 11499(1) 7944(2) -504(2) 28(1) 

C(l4) 10630(1) 8094(2) 28(2) 29(1) 

C(l5) 10452(1) 8917(1) 1171(2) 26(1) 

C(16) 11146(1) 9633(2) 1735(2) 29(1) 

C(17) 12011(1) 9476(1) 1189(2) 28(1) 

N(l) 9560(1) 9069(1) 1715(2) 32(1) 

0(21) 28910(1) 1044(1) 181(2) 37(1) 

C(21) 28013(1) 1060(2) -189(2) 29(1) 

C(22) 27414(1) 219(2) 371(2) 31(1) 

C(23) 26524(1) 257(2) -101(2) 33(1) 

C(24) 26206(1) 1121(2) -1127(2) 29(1) 

C(25) 26814(1) 1964(2) -1646(2) 33(1) 

C(26) 27703(1) 1945(2) -1177(2) 33(1) 

C(27) 25235(1) 1162(2) -1624(2) 35(1) 

C(28) 24639(1) 1813(2) -486(2) 30(1) 

C(29) 23683(1) 1956(2) -1076(2) 33(1) 

C(30) 23051(1) 2622(2) -14(2) 28(1) 

C(31) 22137(1) 2800(2) -777(2) 44(1) 

C(32) 21444(1) 3419(2) 188(2) 30(1) 
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C(33) 20646(1) 2855(2) 556(2) 31(1) 

C(34) 20000(1) 3415(2) 1428(2) 29(1) 

C(35) 20143(1) 4564(2) 1972(2) 26(1) 

C(36) 20930(1) 5153(2) 1584(2) 29(1) 

C(37) 21568(1) 4583(2) 715(2) 31(1) 

N(21) 19474(1) 5186(2) 2814(2) 34(1) 

Table 3. Bond lengths [A] and angles C(11)-C(l2) 1.517(2) 

[
0

] for Sa. C(l1)-H(l1A) 0.9900 

C(l1)-H(l1B) 0.9900 

0(1)-C(l) 1.375(2) C(l2)-C(17) 1.390(2) 

0(1)-H(l) 0.85(3) C(l2)-C(l3) 1.402(2) 

C(1)-C(2) 1.391(2) C(13)-C(14) 1.395(2) 

C(l)-C(6) 1.392(3) C(l3)-H(l3) 0.9500 

C(2)-C(3) 1.386(3) C( 14 )-C( 15) 1.386(2) 

C(2)-H(2) 0.9500 C(l4)-H(l4) 0.9500 

C(3)-C(4) 1.396(3) C(l5)-C(16) 1.395(2) 

C(3)-H(3) 0.9500 C(15)-N(l) 1.432(2) 

C(4)-C(5) 1.392(3) C(l6)-C(l7) 1.397(2) 

C(4)-C(7) 1.512(3) C(l6)-H(l6) 0.9500 

C(5)-C(6) 1.388(3) C(l7)-H(l7) 0.9500 

C(5)-H(5) 0.9500 N(l)-H(1B) 0.92(3) 

C(6)-H(6) 0.9500 N(l)-H(1A) 0.90(3) 

C(7)-C(8) 1.539(3) 0(21 )-C(21) 1.374(2) 

C(7)-H(7A) 0.9900 0(21)-H(21) 0.89(3) 

C(7)-H(7B) 0.9900 C(21)-C(26) 1.389(3) 

C(8)-C(9) 1.529(2) C(21)-C(22) 1.395(2) 

C(8)-H(8A) 0.9900 C(22)-C(23) 1.388(3) 

C(8)-H(8B) 0.9900 C(22)-H(22) 0.9500 

C(9)-C(l0) 1.530(2) C(23)-C(24) 1.396(3) 

C(9)-H(9A) 0.9900 C(23)-H(23) 0.9500 

C(9)-H(9B) 0.9900 C(24 )-C(25) 1.393(3) 

C(l0)-C(11) 1.532(2) C(24 )-C(27) 1.509(2) 

C(lO)-H(lOA) 0.9900 C(25)-C(26) 1.385(3) 

C(lO)-H(lOB) 0.9900 C(25)-H(25) 0.9500 

238 



Appendix C __ _ 

C(26)-H(26) 0.9500 C(2 )-C(3 )-H(3) 119.0 

C(27)-C(28) 1.527(2) C(4)-C(3)-H(3) 119.0 

C(27)-H(27 A) 0.9900 C(5)-C(4)-C(3) 117.50(17) 

C(27)-H(27B) 0.9900 C(5)-C(4 )-C(7) 122.36(17) 

C(28)-C(29) 1.520(2) C(3)-C(4)-C(7) 120.11(17) 

C(28)-H(28A) 0.9900 C(6)-C(5)-C(4) 121.47(17) 

C(28)-H(28B) 0.9900 C(6)-C(5)-H(5) 119.3 

C(29)-C(30) 1.527(2) C(4)-C(5)-H(5) 119.3 

C(29)-H(29A) 0.9900 C( 5)-C( 6)-C(l) 119.96(17) 

C(29)-H(29B) 0.9900 C(5)-C(6)-H(6) 120.0 

C(30)-C(31) 1.523(3) C(l)-C(6)-H(6) 120.0 

C(30)-H(30A) 0.9900 C( 4 )-C(7)-C(8) 115.39(15) 

C(30)-H(30B) 0.9900 C(4)-C(7)-H(7 A) 108.4 

C(31)-C(32) 1.512(3) C(8)-C(7)-H(7 A) 108.4 

C(31)-H(31A) 0.9900 C( 4 )-C(7)-H(7B) 108.4 

C(31)-H(31B) 0.9900 C(8)-C(7)-H(7B) 108.4 

C(32)-C(33) 1.392(3) H(7 A)-C(7)-H(7B) 107.5 

C(32)-C(37) 1.397(3) C(9)-C(8)-C(7) 113.38(15) 

C(33 )-C(34) 1.388(3) C(9)-C(8)-H(8A) 108.9 

C(33)-H(33) 0.9500 C(7)-C(8)-H(8A) 108.9 

C(34 )-C(35) 1.390(2) C(9)-C(8)-H(8B) 108.9 

C(34 )-H(34) 0.9500 C(7)-C(8)-H(8B) 108.9 

C(35)-C(36) 1.397(2) H(8A)-C(8)-H(8B) 107.7 

C(35)-N(21) 1.430(2) C(8)-C(9)-C( 1 0) 112.19(14) 

C(36)-C(37) 1.383(3) C(8)-C(9)-H(9A) 109.2 

C(36)-H(36) 0.9500 C(10)-C(9)-H(9A) 109.2 

C(37)-H(37) 0.9500 C(8)-C(9)-H(9B) 109.2 

N(21)-H(21A) 0.90(3) C( 1 O)-C(9)-H(9B) 109.2 

N(21)-H(21B) 0.86(3) H(9A)-C(9)-H(9B) 107.9 

C(9)-C(l0)-C(11) 113.20(14) 

C(1)-()(1)-H(1) 111.9(19) C(9)-C(l0)-H(IOA) 108.9 

0(1)-C(l)-C(2) 122.08(16) C(11)-C(l0)-H(10A) 108.9 

O(l)-C(l)-C(6) 118.31(17) C(9)-C(10)-H(IOB) 108.9 

C(2)-C(l)-C(6) 119.58(17) C(l1)-C(l0)-H(IOB) 108.9 

C(3 )-C(2)-C( 1) 119.57(16) H(lOA)-C(lO)-H(lOB) 107.8 

C(3)-C(2)-H(2) 120.2 C(12)-C(ll)-C(l0) 113.73(13) 

C(l)-C(2)-H(2) 120.2 C(l2)-C(11)-H(l1A) 108.8 

C(2)-C(3)-C( 4) 121.91(17) C(l0)-C(l1)-H(l1A) 108.8 
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C(12)-C(11)-H(11B) 108.8 C(26)-C(25)-H(25) 119.2 

C(10)-C(11)-H(11B) 108.8 C(24 )-C(25)-H(25) 119.2 

H(11A)-C(11)-H(l1B) 107.7 C(25)-C(26)-C(21) 120.14(17) 

C(17)-C(12)-C(13) 117.18(16) C (25 )-C (26 )-H (26) 119.9 

C(17)-C( 12)-C(ll) 121.48(15) C(21 )-C(26)-H(26) 119.9 

C(13)-C(12)-C(ll) 121.34(15) C(24 )-C(27)-C(28) 113.48(15) 

C( 14 )-C( 13)-C( 12) 121.29(16) C(24)-C(27)-H(27 A) 108.9 

C(14 )-C(l3 )-H(l3) 119.4 C(28)-C(27)-H(27 A) 108.9 

C(12)-C(13)-H(13) 119.4 C(24 )-C(27)-H(27B) 108.9 

C(15)-C(l4 )-C(13) 120.51(15) C(28)-C(27)-H(27B) 108.9 

C(l5)-C(14)-H(14) 119.7 H(27 A)-C(27)-H(27B) 107.7 

C(13 )-C(l4 )-H(14) 119.7 C(29)-C(28)-C(27) 112.82(14) 

C(14)-C(15)-C(16) 119.11(16) C(29)-C(28)-H(28A) 109.0 

C(14)-C(l5)-N(l) 120.41(15) C(27)-C(28)-H(28A) 109.0 

C(16)-C(15)-N(l) 120.41(16) C(29)-C(28)-H(28B) 109.0 

C( 15)-C(l6)-C(l7) 119.70(15) C(27)-C(28)-H(28B) 109.0 

C(15)-C(l6)-H(l6) 120.1 H(28A)-C(28)-H(28B) 107.8 

C(17)-C(16)-H(16) 120.1 C(28)-C(29)-C(30) 115.87(14) 

C(12)-C(17)-C(16) 122.09(15) C(28)-C(29)-H(29A) 108.3 

C(l2)-C(17)-H(17) 119.0 C(30)-C(29)-H(29 A) 108.3 

C(16)-C(17)-H(l7) 119.0 C(28)-C(29)-H(29B) 108.3 

C(15)-N(1)-H(1B) 111.5(16) C(30)-C(29)-H(29B) 108.3 

C(15)-N(l)-H(lA) 113.1(17) H(29A)-C(29)-H(29B) 107.4 

H(1B)-N(l)-H(1A) 110(2) C(31 )-C(30)-C(29) 111.20(15) 

C(21)-0(21)-H(21) 109.6(19) C(31)-C(30)-H(30A) 109.4 

0(21 )-C(21 )-C(26) 117.94(16) C(29)-C(30)-H(30A) 109.4 

0(21 )-C(21 )-C(22) 122.66(16) C(31)-C(30)-H(30B) 109.4 

C(26)-C(21 )-C(22) 119.40(17) C(29)-C(30)-H(30B) 109.4 

C(23 )-C(22)-C(21) 119.65(16) H(30A)-C(30)-H(30B) 108.0 

C(23)-C(22)-H(22) 120.2 C(32)-C(31 )-C(30) 115.96(16) 

C(21)-C(22)-H(22) 120.2 C(32)-C(31)-H(31A) 108.3 

C(22)-C(23)-C(24) 121.68(17) C(30)-C(31)-H(31A) 108.3 

C(22)-C(23 )-H(23) 119.2 C(32)-C(31)-H(31B) 108.3 

C(24 )-C(23 )-H(23) 119.2 C(30)-C(31)-H(31B) 108.3 

C(25)-C(24 )-C(23) 117.51(17) H(31A)-C(31)-H(31B) 107.4 

C(25)-C(24 )-C(27) 121.14(17) C(33)-C(32)-C(37) 117.40(17) 

C(23)-C(24 )-C(27) 121.33(17) C(33 )-C(32)-C(31) 121.04(18) 

C(26)-C(25)-C(24) 121.57(17) C(37)-C(32)-C(31) 121.55(19) 
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C(34)-C(33)-C(32) 121.72(17) C(35)-C(36)-H(36) 119.9 

C(34 )-C(3 3 )-H(3 3) 119.1 C(36)-C(37)-C(32) 121.57(17) 

C(32)-C(33)-H(33) 119.1 C(36)-C(37)-H(37) 119.2 

C(33)-C(34)-C(35) 120.14(17) C(32)-C(37)-H(37) 119.2 

C(33 )-C(34 )-H(34) 119.9 C(35)-N(21)-H(21A) 111.1(16) 

C(35)-C(34 )-H(34) 119.9 C(35)-N(21)-H(21B) 105.0(18) 

C(34 )-C(35)-C(36) 118.89(16) H(21A)-N(21)-H(21B) 110(2) 

C(34 )-C(35)-N (21) 121.56(16) 

C(36)-C(35)-N(21) 119.37(16) Symmetry transfmmations used to 

C(37)-C(36)-C(35) 120.24(16) generate equivalent atoms: 

C(3 7)-C(36)-H(36) 119.9 
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Table 4. Anisotropic displacement parameters (A2x 103) for Sa. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12 ] 

ull u22 u33 u23 uB u12 

0(1) 24(1) 36(1) 52(1) -1(1) -1(1) -3(1) 

C(l) 22(1) 31(1) 36(1) -6(1) 6(1) 4(1) 

C(2) 24(1) 32(1) 32(1) 3(1) 4(1) 4(1) 

C(3) 25(1) 32(1) 33(1) -1(1) 6(1) 0(1) 

C(4) 26(1) 37(1) 27(1) -6(1) 3(1) 5(1) 

C(5) 41(1) 32(1) 36(1) 0(1) 0(1) 9(1) 

C(6) 35(1) 28(1) 44(1) 1(1) 5(1) 0(1) 

C(7) 31(1) 41(1) 33(1) -8(1) -3(1) 7(1) 

C(8) 27(1) 36(1) 31(1) -1(1) -4(1) 3(1) 

C(9) 24(1) 33(1) 27(1) 3(1) 0(1) 3(1) 

C(lO) 23(1) 31(1) 26(1) 2(1) 0(1) 1(1) 

C(11) 23(1) 30(1) 26(1) 2(1) -1(1) -1(1) 

C(12) 23(1) 25(1) 24(1) 3(1) -3(1) 0(1) 

C(13) 27(1) 28(1) 28(1) -4(1) -2(1) -1(1) 

C(14) 23(1) 30(1) 34(1) -3(1) -4(1) -4(1) 

C(15) 22(1) 26(1) 30(1) 5(1) -1(1) 2(1) 

C(16) 28(1) 25(1) 33(1) -6(1) -5(1) 4(1) 

C(17) 23(1) 25(1) 34(1) -1(1) -7(1) -1(1) 

N(l) 23(1) 34(1) 40(1) -3(1) 1(1) 2(1) 

0(21) 22(1) 33(1) 56(1) 6(1) 0(1) -3(1) 

C(21) 22(1) 27(1) 38(1) -3(1) 4(1) 2(1) 

C(22) 24(1) 29(1) 40(1) 6(1) 0(1) 2(1) 

C(23) 24(1) 35(1) 40(1) 4(1) 3(1) -2(1) 

C(24) 24(1) 34(1) 30(1) -6(1) 2(1) 8(1) 

C(25) 35(1) 30(1) 34(1) 3(1) 5(1) 9(1) 

C(26) 32(1) 25(1) 44(1) 4(1) 9(1) 1(1) 

C(27) 28(1) 47(1) 31(1) -8(1) -2(1) 9(1) 

C(28) 23(1) 38(1) 29(1) -4(1) -2(1) 7(1) 

C(29) 27(1) 42(1) 29(1) -5(1) -5(1) 10(1) 

C(30) 23(1) 34(1) 29(1) -1(1) -3(1) 5(1) 

C(31) 31(1) 64(1) 36(1) -14(1) -10(1) 19(1) 

C(32) 25(1) 40(1) 26(1) -5(1) -6(1) 8(1) 

C(33) 31(1) 26(1) 35(1) -2(1) -11(1) 3(1) 
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C(34) 25(1) 32(1) 29(1) 5(1) -3(1) -5(1) 

C(35) 22(1) 34(1) 21(1) 2(1) -1(1) -1(1) 

C(36) 27(1) 29(1) 30(1) -3(1) -2(1) -4(1) 

C(37) 21(1) 39(1) 34(1) 0(1) 1(1) -5(1) 

N(21) 27(1) 47(1) 28(1) -6(1) 5(1) -3(1) 

Table 5. Hydrogen coordinates ( x 1Q4) and isotropic displacement parameters cA2x 

10 3) for Sa. 

X y z U(eq) 

H(1) 18880(19) 6220(20) 1320(30) 59(8) 

H(2) 17769 4775 978 35 

H(3) 16444 4270 -299 36 

H(5) 16456 7411 -2551 44 

H(6) 17801 7912 -1330 43 

H(7A) 15484 4574 -2634 42 

H(7B) 15388 5882 -3336 42 

H(8A) 14072 5265 -2022 37 

H(8B) 14639 5190 -449 37 

H(9A) 14459 7392 -2080 34 

H(9B) 14811 7232 -343 34 

H(lOA) 13378 6746 486 32 

H(lOB) 13004 6698 -1248 32 

H(11A) 13578 8835 280 31 

H(11B) 13229 8797 -1469 31 

H(13) 11609 7371 -1283 33 

H(14) 10157 7628 -398 35 

H(l6) 11029 10224 2487 35 

H(17) 12478 9970 1581 33 

H(lB) 9215(18) 8400(20) 1530(30) 51(7) 

H(1A) 9542(17) 9270(20) 2720(30) 44(6) 

H(21) 29030(19) 430(20) 790(30) 56(8) 

H(22) 27615 -377 1072 37 

H(23) 26120 -320 284 39 
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H(25) 26614 2565 -2339 40 

H(26) 28102 2540 -1531 40 

H(27A) 25012 338 -1753 42 

H(27B) 25187 1562 -2638 42 

H(28A) 24635 1366 496 36 

H(28B) 24895 2610 -274 36 

H(29A) 23432 1154 -1274 39 

H(29B) 23697 2380 -2074 39 

H(30A) 22982 2166 952 34 

H(30B) 23312 3406 252 34 

H(31A) 22218 3268 -1731 53 

H(31B) 21900 2011 -1082 53 

H(33) 20542 2067 201 37 

H(34) 19459 3012 1653 35 

H(36) 21027 5948 1917 35 

H(37) 22103 4992 471 38 

H(21A) 19722(17) 5620(20) 3580(30) 45(6) 

H(21B) 19140(20) 4640(20) 3190(30) 55(8) 
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6x) 2,4,6-tris-(4-chlorophenoxy)-1,3,5-triazene and tribromobenzene 

Synthesis: J. Ramakoteswara Rao, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 6x. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 30.45° 

Absorption conection 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 

6x 

C27 H15 Br3 Cl3 N3 03 

775.50 

150(2) K 

0.71073 A 

Hexagonal 

P6(3) 

a= 15.250(2) A 

b = 15.250(2) A 

c = 6.8149(14) A 

1372.6(4) A3 

2 

1.876 Mg/m3 

4.737 mm-1 

756 

0.35 x 0.27 x 0.27 mm3 

1.54 to 30.45°. 

-20<=h<=20, -21<=k<=21, -9<=1<=9 

17004 

2568 [R(int) = 0.0301] 

94.1% 

Multi scan 

0.379004 and 0.298932 

Full-matrix least-squares on F2 

2568 I 1 I 122 

1.037 

R1 = 0.0267, wR2 = 0.0623 

R1 = 0.0328, wR2 = 0.0642 

0.015(8) 

not refined 

0.400 and -0.899 e. A -3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

cA2x 103) for 6x. U(eq) is defined as one third of the trace of the orthogonalized uij 
tensor. 

X y z U(eq) 

Cl (I) 2825(1) 5176(1) 6511(1) 26(1) 

C(l) 3389(1) 4420(1) 6510(4) 20(1) 

C(2) 3961(2) 4458(2) 8120(3) 22(1) 

C(3) 4430(2) 3869(2) 8123(3) 22(1) 

C(4) 4299(1) 3262(1) 6503(4) 18(1) 

C(5) 3720(1) 3215(1) 4900(4) 22(1) 

C(6) 3256(1) 3808(1) 4893(4) 23(1) 

0(1) 4704(1) 2604(1) 6491(2) 19(1) 

C(7) 5716(1) 3010(1) 6516(3) 17(1) 

N(l) 5996(1) 2304(1) 6523(3) 18(1) 

Br(l) 7809(1) 9894(1) 10068(1) 47(1) 

C(8) 9085(2) 9957(2) 10167(5) 29(1) 

C(9) 9956(2) 10900(2) 10164(5) 29(1) 
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Table 3. Bond lengths [A] and angles C(4)-C(5)-C(6) 119.0(2) 

[
0

] for 6x. C(4)-C(5)-H(5) 120.5 

C(6)-C(5)-H(5) 120.5 

Cl(l)-C(l) 1.7501(18) C(l)-C(6)-C(5) 118.7(2) 

C(1)-C(2) 1.385(3) C(1)-C(6)-H(6) 120.7 

C(1)-C(6) 1.392(3) C(5)-C(6)-H(6) 120.7 

C(2)-C(3) 1.399(3) C(7)-0( 1 )-C( 4) 118.67(13) 

C(2)-H(2) 0.9300 N(1 )# 1-C(7)-N(1) 127.70(16) 

C(3)-C(4) 1.390(3) N(1)#1-C(7)-0(1) 119.79(15) 

C(3)-H(3) 0.9300 N(1)-C(7)-0(1) 112.50(14) 

C(4)-C(5) 1.384(3) C(7)#2-N ( 1 )-C(7) 112.29(16) 

C(4)-0(l) 1.416(2) C(9)#3-C(8)-C(9) 123.1(2) 

C(5)-C(6) 1.399(3) C(9)#3-C(8)-Br(l) 118.31(16) 

C(5)-H(5) 0.9300 C(9)-C(8)-Br(l) 118.55(16) 

C(6)-H(6) 0.9300 C(8)#4-C(9)-C(8) 116.9(2) 

0(1)-C(7) 1.346(2) C(8)#4-C(9)-H(9) 121.5 

C(7)-N(1)#1 1.320(2) C(8)-C(9)-H(9) 121.5 

C(7)-N(l) 1.343(2) 

N(l)-C(7)#2 1.320(2) Symmetry transformations used to 

Br(1)-C(8) 1.901(2) generate equivalent atoms: 

C(8)-C(9)#3 1.386(3) #1 -x+y+1,-x+1,z 

C(8)-C(9) 1.387(3) #2 -y+ 1 ,x-y,z 

C(9)-C(8)#4 1.386(3) #3 -y+2,x-y+1,z 

C(9)-H(9) 0.9300 #4 -x+y+1,-x+2,z 

C(2)-C(l)-C(6) 122.22(17) 

C(2)-C( 1 )-Cl(l) 118.61(17) 

C(6)-C(l)-Cl(l) 119.17(16) 

C(l )-C(2)-C(3) 119.16(19) 

C(l)-C(2)-H(2) 120.4 

C(3)-C(2)-H(2) 120.4 

C(4)-C(3)-C(2) 118.50(19) 

C(4)-C(3)-H(3) 120.8 

C(2)-C(3)-H(3) 120.8 

C(5)-C(4)-C(3) 122.45(17) 

C(5)-C(4)-0(1) 116.85(18) 

C(3 )-C( 4 )-0( 1) 120.56(19) 
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Table 4. Anisotropic displacement parameters (A2x 1Q3) for 6x. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12] 

u11 u22 u33 u23 uB u12 

Cl(1) 28(1) 26(1) 31(1) 0(1) 0(1) 19(1) 

C(1) 17(1) 18(1) 27(1) 2(1) 2(1) 10(1) 

C(2) 22(1) 21(1) 24(1) -3(1) -1(1) 10(1) 

C(3) 19(1) 23(1) 24(1) 0(1) -3(1) 11(1) 

C(4) 13(1) 15(1) 25(1) 1(1) 3(1) 6(1) 

C(5) 22(1) 20(1) 24(1) -3(1) -2(1) 12(1) 

C(6) 22(1) 26(1) 26(1) 0(1) -3(1) 15(1) 

0(1) 14(1) 16(1) 29(1) -1(1) -2(1) 8(1) 

C(7) 15(1) 18(1) 16(1) 0(1) -1(1) 7(1) 

N(l) 16(1) 16(1) 21(1) 0(1) 1(1) 8(1) 

Br(1) 37(1) 72(1) 42(1) -1(1) 0(1) 35(1) 

C(8) 29(1) 40(1) 20(1) 0(1) 1(1) 19(1) 

C(9) 40(1) 32(1) 18(1) 0(1) 1(1) 19(1) 

Table 5. Hydrogen coordinates ( X 1Q4) and isotropic displacement parameters cA2x 

10 3) for 6x. 

X y z U(eq) 

H(2) 4033 4869 9186 30(7) 

H(3) 4820 3884 9185 24(6) 

H(5) 3641 2796 3842 26 

H(6) 2866 3793 3830 23(6) 

H(9) 9927 11495 10160 47(8) 
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6N) 2,4,6-tris-(4-chlorophenoxy)-1,3,5-triazene and tribromobenzene 

Synthesis: J. Ramakoteswara Rao, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 6N. 

Identification code 

Empirical formula 

Fotmula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 16.92° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

6N 

C27 H15 Br3 Cl3 N3 03 

771.00 

100(5) K 

o.5-5.o A 
Hexagonal 

P6(3) 

a= 15.I66(6) A 

b = 15.166(6) A 

c = 6.743(2) A 

1343(1) A3 

2 

1.906 Mg!m3 

1.080, at 1 Angstrom mm-1 

43.57 

6.0 x 1.5 x 1.0 mm3 

1.42 to 16.92°. 

0<=h<=30,0<=k<=30,0<=l<=I5 

30681 

3102 [R(int) = 0.071] 

49.9% 

Empirical 

0.91 and 0.30 

Full-matrix least-squares on F2 

310211 I I63 

I.230 

RI= 0.0834, wR2 = 0.212I 

RI = 0.0834, wR2 = 0.2I2I 

0.560 

3.229 and -3.980 e.A-3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2x 103) for 6N. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

Cl (I) 7182(1) 4823(1) 3485(4) 13(1) 

C(l) 6620(2) 5579(2) 3485(6) 11(1) 

C(2) 6032(2) 5536(2) 1864(4) 12(1) 

C(3) 5574(2) 6132(2) 1865(4) 12(1) 

C(4) 5703(1) 6746(2) 3491(5) 9(1) 

C(5) 6292(2) 6793(2) 5107(4) 11(1) 

C(6) 6756(2) 6198(2) 5114(4) 12(1) 

0(1) 5298(2) 7398(2) 3508(7) 10(1) 

C(7) 4289(1) 6995(2) 3479(5) 8(1) 

N(1) 4004(1) 7698(1) 3469(4) 9(1) 

Br(l) 2209(3) 124(4) -57(7) 25(1) 

C(8) 928(3) 49(3) -148(4) 16(1) 

C(9) 52(3) -898(3) -150(5) 17(1) 
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Table 3. Bond lengths [A] and angles C(4)-C(5)-C(6) 119.3(2) 

[
0

] for 6N. C(4)-C(5)-H(5) 119.4(5) 

C( 6)-C( 5)-H( 5) 121.3(5) 

Cl(l)-C(l) 1.737(2) C(l)-C(6)-C(5) 118.8(2) 

C(1)-C(2) 1.392(4) C(1)-C(6)-H(6) 119.6(5) 

C(l)-C(6) 1.392( 4) C(5)-C(6)-H(6) 121.6(6) 

C(2)-C(3) 1.388(3) C(7)-0( 1 )-C( 4) 119.0(2) 

C(2)-H(2) 1.080(8) N(1)#1-C(7)-0(1) 119.64(19) 

C(3)-C(4) 1.388(4) N(l)#1-C(7)-N(l) 127.38(17) 

C(3)-H(3) 1.083(8) O(l)-C(7)-N(l) 112.98(18) 

C(4)-C(5) 1.388(4) C(7)#2-N(1)-C(7) 112.61(17) 

C(4)-0(1) 1.400(3) C(9)-C(8)-C(9)#3 122.3(3) 

C(5)-C(6) 1.395(3) C(9)-C(8)-Br(l) 119.1(3) 

C(5)-H(5) 1.089(8) C(9)#3-C(8)-Br( 1) 118.6(3) 

C(6)-H(6) 1.085(9) C(8)-C(9)-C(8)#4 117.7(3) 

0(1)-C(7) 1.334(3) C(8)-C(9)-H(9) 121.1(7) 

C(7)-N(1)#1 1.320(2) C(8)#4-C(9)-H(9) 121.2(7) 

C(7)-N(l) 1.335(2) 

N(1)-C(7)#2 1.320(2) Symmetry transformations used to 

Br(l)-C(8) 1.890(5) generate equivalent atoms: 

C(8)-C(9) 1.386(5) #1 -x+y,-x+ 1,z 

C(8)-C(9)#3 1.389(5) #2 -y+1,x-y+1,z 

C(9)-C(8)#4 1.389(5) #3 -y,x-y,z 

C(9)-H(9) 1.083(9) #4 -x+y,-x,z 

C(2)-C(l)-C(6) 121.8(2) 

C(2)-C(l )-CI(l) 118.9(2) 

C(6)-C(l)-CI(l) 119.3(2) 

C(3)-C(2)-C(1) 119.1(2) 

C(3)-C(2)-H(2) 121.0(6) 

C(l)-C(2)-H(2) 119.8(6) 

C( 4 )-C(3 )-C(2) 119.3(3) 

C(4)-C(3)-H(3) 120.0(5) 

C(2)-C(3)-H(3) 120.7(6) 

C(3)-C(4)-C(5) 121.7(2) 

C(3)-C(4)-0(1) 121.1(3) 

C(5)-C(4)-0(1) 117.1(3) 
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Table 4. Anisotropic displacement parameters (A2x 103) for 6N. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* U 12 ] 

ull u22 u33 u23 ul3 u12 

Cl(l) 15(1) 13(1) 15(1) 0(1) 0(1) 10(1) 

C(1) 10(1) 12(1) 12(1) -1(1) 0(1) 7(1) 

C(2) 12(1) 12(1) 13(1) -4(1) -2(1) 7(1) 

C(3) 11(1) 12(1) 13(1) -2(1) -3(1) 7(1) 

C(4) 7(1) 8(1) 12(1) 0(1) 1(1) 4(1) 

C(5) 12(1) 13(1) 11(1) -3(1) -3(1) 8(1) 

C(6) 15(1) 15(1) 11(1) -3(1) -4(1) 11(1) 

0(1) 6(1) 9(1) 16(1) -1(1) -1(1) 3(1) 

C(7) 7(1) 8(1) 10(1) 0(1) 0(1) 4(1) 

N(l) 8(1) 8(1) 13(1) -1(1) 0(1) 4(1) 

Br(1) 21(1) 40(2) 22(1) -1(2) -1(1) 21(1) 

C(8) 19(1) 23(1) 9(1) 1(1) 0(1) 13(1) 

C(9) 21(1) 19(1) 11(1) 0(1) 0(1) 11(1) 

H(2) 34(3) 33(3) 26(3) -15(3) -7(3) 21(3) 

H(3) 37(4) 43(4) 23(3) -8(3) -13(3) 27(4) 

H(6) 34(4) 41(4) 25(3) -6(3) -11(3) 26(3) 

H(5) 40(4) 35(4) 23(3) -12(3) -11(3) 26(3) 

H(9) 41(4) 32(4) 44(5) -2(4) -1(4) 25(4) 

Table 5. Hydrogen coordinates ( X 104) and isotropic displacement parameters cA2x 

10 3) for 6N. 

H(2) 

H(3) 

H(6) 

H(5) 

H(9) 

X 

5946(7) 

5116(8) 

7213(8) 

6375(8) 

92(9) 

y 

5050(7) 

6117(8) 

6203(8) 

7286(8) 

-1591 (8) 

z U(eq) 

621(14) 29(2) 

620(14) 31(2) 

6358(14) 30(2) 

6353(14) 30(2) 

-160(20) 36(2) 
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7x) TriphenyRisocyarmrate, trinitrobenzene and benzene 

Synthesis: Praveen K. Thallapally, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 7x. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 30.33° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

7x 

C30 H21 N6 09 

609.53 

100(2) K 

0.71073 A 

Triclinic 

P-1 

a= 11.3825(3) A 

b = 11.5495(3) A 

c = 12.5513(3) A 

1378.27(6) A3 

a= 69.866(1)0
• 

~ = 63.497(1)0
• 

y = 86.397(1)0
• 

2 

1.469 Mg!m3 

0.111 mm-1 

630 

1.2 X 0.6 X 0.25 mm3 

1.89 to 30.33°. 

-15<=h<=16, -16<=k<=13, -17<=1<=17 

11166 

7227 [R(int) = 0.0327] 

87.1% 

None 

Full-matrix least-squares on F2 

7227 I 0 I 406 

1.034 

Rl = 0.0392, wR2 = 0.1001 

R1 = 0.0460, wR2 = 0.1066 

not refined 

0.355 and -0.258 e.A-3 
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Table 2. Atomic coordinates (x 1Q4) and equivalent isotropic displacement parameters 

cA2x 1Q3) for 7x. U(eq) is defined as one third of the trace of the otthogonalized uij 

tensor. 

X y z U(eq) 

0(10) 6615(1) 2112(1) 4176(1) 23(1) 

C(lO) 6872(1) 2036(1) 5036(1) 18(1) 

N(lO) 8160(1) 2109(1) 4869(1) 18(1) 

C(11) 9194(1) 2261(1) 3598(1) 19(1) 

C(12) 9528(1) 3431(1) 2664(1) 25(1) 

C(13) 10424(1) 3563(1) 1413(1) 30(1) 

C(14) 10974(1) 2536(1) 1127(1) 31(1) 

C(15) 10656(1) 1377(1) 2088(1) 29(1) 

C(16) 9758(1) 1228(1) 3338(1) 23(1) 

0(20) 9638(1) 1874(1) 5679(1) 23(1) 

C(20) 8509(1) 1947(1) 5837(1) 18(1) 

N(20) 7460(1) 1902(1) 6998(1) 19(1) 

C(21) 7766(1) 1817(1) 8029(1) 19(1) 

C(22) 8569(1) 2780(1) 7880(1) 22(1) 

C(23) 8861(1) 2688(1) 8871(1) 26(1) 

C(24) 8364(1) 1653(1) 9982(1) 28(1) 

C(25) 7549(1) 702(1) 10122(1) 27(1) 

C(26) 7240(1) 783(1) 9142(1) 23(1) 

0(30) 5253(1) 1820(1) 8286(1) 27(1) 

C(30) 6130(1) 1857(1) 7268(1) 20(1) 

N(30) 5888(1) 1855(1) 6267(1) 18(1) 

C(31) 4527(1) 1668(1) 6520(1) 18(1) 

C(32) 3637(1) 2476(1) 6956(1) 24(1) 

C(33) 2320(1) 2263(1) 7236(1) 26(1) 

C(34) 1901(1) 1259(1) 7070(1) 25(1) 

C(35) 2803(1) 458(1) 6629(1) 23(1) 

C(36) 4118(1) 658(1) 6357(1) 20(1) 

N(l) 2425(1) 4552(1) 4782(1) 35(1) 

0(1) 1253(1) 4302(1) 5155(1) 52(1) 

0(2) 2892(1) 5321(1) 5009(1) 48(1) 

C(l) 3366(1) 3891(1) 3993(1) 25(1) 

C(2) 2888(1) 2873(1) 3896(1) 24(1) 
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N(2) 3391(1) 1238(1) 2960(1) 23(1) 

0(3) 2318(1) 663(1) 3784(1) 32(1) 

0(4) 4134(1) 958(1) 2038(1) 31(1) 

C(3) 3828(1) 2328(1) 3100(1) 20(1) 

C(4) 5162(1) 2754(1) 2413(1) 19(1) 

N(3) 6966(1) 4257(1) 1868(1) 21(1) 

0(5) 7720(1) 3745(1) 1159(1) 26(1) 

0(6) 7292(1) 5164(1) 2013(1) 30(1) 

C(5) 5558(1) 3764(1) 2578(1) 20(1) 

C(6) 4689(1) 4344(1) 3366(1) 25(1) 

C(lX) 6363(1) 5075(1) -713(1) 27(1) 

C(2X) 5553(1) 4108(1) -543(1) 28(1) 

C(3X) 4188(1) 4034(1) 169(1) 27(1) 
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Table 3. Bond lengths [A] and angles C(1)-C(2) 1.3894(17) 

[
0

] for ix. C(2)-C(3) 1.3902(16) 

N(2)-0(3) 1.2263(13) 

0(10)-C(10) 1.2132(14) N(2)-0(4) 1.2286(14) 

C(10)-N(10) 1.3886(14) N(2)-C(3) 1.4741(15) 

C(10)-N(30) 1.3953(13) C(3)-C(4) 1.3877(15) 

N(10)-C(20) 1.3904(14) C(4)-C(5) 1.3853(16) 

N(10)-C(11) 1.4552(13) N(3)-0(5) 1.2227(13) 

C(11)-C(12) 1.3861(16) N(3)-0(6) 1.2291(13) 

C(11)-C(16) 1.3873(16) N(3)-C(5) 1.4759(14) 

C(12)-C(13) 1.3973(17) C(5)-C(6) 1.3807(16) 

C(13)-C(14) 1.388(2) C(1X)-C(2X) 1.3893(19) 

C(14)-C(l5) 1.392(2) C(1X)-C(3X)#1 1.3938(19) 

C(15)-C(16) 1.3931(16) C(2X)-C(3X) 1.3939(18) 

0(20)-C(20) 1.2123(13) C(3X)-C(1X)#1 1.3938(19) 

C(20)-N(20) 1.3986(13) 

N(20)-C(30) 1.3960(14) 0(10)-C(lO)-N(lO) 122.46(10) 

N(20)-C(21) 1.4548(14) 0(10)-C(l0)-N(30) 122.02(10) 

C(21)-C(26) 1.3894(16) N(10)-C(l0)-N(30) 115.51(9) 

C(21)-C(22) 1.3920(16) C(10)-N(10)-C(20) 124.79(9) 

C(22)-C(23) 1.3942(16) C(10)-N(10)-C(11) 115.98(9) 

C(23 )-C(24) 1.3877(19) C(20)-N(10)-C(11) 119.01(9) 

C(24 )-C(25) 1.3963(19) C(12)-C(11)-C(16) 122.03(10) 

C(25)-C(26) 1.3942(17) C(12)-C(ll)-N(10) 118.41(10) 

0(30)-C(30) 1.2075(14) C(16)-C(l1)-N(l0) 119.45(10) 

C(30)-N(30) 1.4025(14) C(11)-C(l2)-C(l3) 118.82(12) 

N (30 )-C(31) 1.4508(13) C(l4)-C(13)-C(12) 120.01(12) 

C(31)-C(32) 1.3908(15) C(13)-C(14)-C(l5) 120.17(11) 

C(31)-C(36) 1.3915(15) C( 14 )-C( 15)-C( 16) 120.47(12) 

C(32)-C(33) 1.3951(16) C(ll)-C(16)-C(l5) 118.45(11) 

C(33)-C(34) 1.3927(18) 0(20)-C(20)-N(10) 122.58(10) 

C(34)-C(35) 1.3933(17) 0(20)-C(20)-N(20) 122.64(10) 

C(35)-C(36) 1.3940(15) N(10)-C(20)-N(20) 114.77(9) 

N(l)-0(1) 1.2172(17) C(30)-N(20)-C(20) 124.85(9) 

N(l)-0(2) 1.2332(17) C(30)-N(20)-C(21) 117.27(9) 

N(l)-C(l) 1.4773(15) C(20)-N(20)-C(21) 117.75(9) 

C(l)-C(6) 1.3853(17) C(26)-C(21 )-C(22) 121.64(10) 
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C(26)-C(21)-N(20) 119.24(10) C(6)-C(5)-C(4) 122.94(11) 

C(22)-C(21)-N(20) 119.12(10) C(6)-C(5)-N(3) 118.21(10) 

C(21 )-C(22)-C(23) 118.73(11) C(4)-C(5)-N(3) 118.84(10) 

C(24 )-C(23)-C(22) 120.50(11) C(5)-C(6)-C(l) 117.26(11) 

C(23)-C(24 )-C(25) 120.05(11) C(2X)-C( 1 X)-C(3X)# 1 120.02(11) 

C(26)-C(25)-C(24) 120.15(12) C( 1 X)-C(2X)-C(3X) 119.99(12) 

C(21 )-C(26)-C(25) 118.93(11) C( 1 X)# 1-C(3X)-C(2X) 119.99(12) 

0(30)-C(30)-N(20) 122.75(10) 

0(30)-C(30)-N(30) 122.44(10) Symmetry transformations used to 

N(20)-C(30)-N(30) 114.81(9) generate equivalent atoms: 

C(10)-N(30)-C(30) 124.23(9) #1 -x+1,-y+1,-z 

C(10)-N(30)-C(31) 117.75(9) 

C(30)-N(30)-C(31) 118.02(9) 

C(32)-C(31 )-C(36) 120.70(10) 

C(32)-C(31)-N(30) 119.84(10) 

C(36)-C(31 )-N (30) 119.43(10) 

C(31 )-C(32)-C(33) 119.31(11) 

C(34)-C(33)-C(32) 120.50(11) 

C(33)-C(34 )-C(35) 119.65(11) 

C(34 )-C(35)-C(36) 120.24(11) 

C(31 )-C(36)-C(35) 119.59(10) 

0(1)-N(l)-0(2) 124.93(12) 

0(1)-N(l)-C(l) 117.84(12) 

0(2)-N(l)-C(l) 117.23(12) 

C(6)-C(l)-C(2) 123.54(11) 

C(6)-C(l)-N(l) 117.38(11) 

C(2)-C(1)-N(l) 119.07(11) 

C( 1 )-C(2)-C(3) 115.64(10) 

0(3)-N(2)-0(4) 124.59(11) 

0(3)-N(2)-C(3) 117.58(10) 

0(4)-N(2)-C(3) 117.82(10) 

C(4)-C(3)-C(2) 124.00(11) 

C(4)-C(3)-N(2) 117.47(10) 

C(2)-C(3)-N(2) 118.53(10) 

C(5)-C(4)-C(3) 116.58(10) 

0(5)-N(3)-0(6) 124.71(10) 

0(5)-N(3)-C(5) 117.48(9) 

0(6)-N(3)-C(5) 117.80(10) 
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Table 4. Anisotropic displacement parameters (A2x 103) for 7x. The anisotropic 

displacement factor exponent takes the fmm: -2n2[ h2 a*2u11 + ... + 2 h k a* b* u12] 

ull u22 u33 u23 u13 u12 

0(10) 20(1) 30(1) 19(1) -8(1) -9(1) 3(1) 

C(lO) 16(1) 18(1) 18(1) -6(1) -6(1) 2(1) 

N(10) 14(1) 20(1) 16(1) -7(1) -5(1) 2(1) 

C(11) 14(1) 25(1) 17(1) -9(1) -6(1) 0(1) 

C(12) 21(1) 26(1) 23(1) -6(1) -7(1) 0(1) 

C(13) 23(1) 37(1) 21(1) -2(1) -7(1) -6(1) 

C(14) 19(1) 50(1) 20(1) -14(1) -3(1) -5(1) 

C(15) 20(1) 39(1) 29(1) -20(1) -6(1) 3(1) 

C(l6) 19(1) 25(1) 24(1) -11(1) -7(1) 2(1) 

0(20) 16(1) 32(1) 23(1) -13(1) -8(1) 3(1) 

C(20) 17(1) 18(1) 19(1) -8(1) -7(1) 1(1) 

N(20) 16(1) 24(1) 18(1) -10(1) -7(1) 2(1) 

C(21) 16(1) 25(1) 19(1) -13(1) -7(1) 4(1) 

C(22) 18(1) 26(1) 23(1) -13(1) -7(1) 3(1) 

C(23) 20(1) 34(1) 30(1) -20(1) -11(1) 4(1) 

C(24) 28(1) 39(1) 26(1) -20(1) -15(1) 9(1) 

C(25) 29(1) 31(1) 20(1) -10(1) -10(1) 5(1) 

C(26) 22(1) 25(1) 22(1) -12(1) -8(1) 2(1) 

0(30) 18(1) 41(1) 24(1) -19(1) -7(1) 4(1) 

C(30) 17(1) 23(1) 21(1) -10(1) -7(1) 1(1) 

N(30) 13(1) 23(1) 19(1) -9(1) -6(1) 1(1) 

C(31) 14(1) 21(1) 18(1) -6(1) -6(1) 1(1) 

C(32) 18(1) 22(1) 30(1) -11(1) -8(1) 2(1) 

C(33) 17(1) 28(1) 31(1) -12( 1) -9(1) 5(1) 

C(34) 17(1) 32(1) 25(1) -8(1) -10(1) 0(1) 

C(35) 23(1) 27(1) 23(1) -9(1) -11(1) -2(1) 

C(36) 20(1) 23(1) 19(1) -9(1) -9(1) 3(1) 

N(l) 32(1) 21(1) 31(1) -8(1) 2(1) 2(1) 

0(1) 28(1) 42(1) 62(1) -24(1) 4(1) 5(1) 

0(2) 49(1) 30(1) 48(1) -24(1) 1(1) 0(1) 

C(l) 25(1) 20(1) 22(1) -7(1) -3(1) 3(1) 

C(2) 21(1) 20(1) 21(1) -2(1) -6(1) 1(1) 

N(2) 24(1) 20(1) 24(1) -5(1) -13(1) 0(1) 
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0(3) 27(1) 29(1) 34(1) -7(1) -9(1) -8(1) 

0(4) 33(1) 30(1) 32(1) -16(1) -11(1) 0(1) 

C(3) 22(1) 17(1) 19(1) -3(1) -10(1) 0(1) 

C(4) 21(1) 18(1) 17(1) -5(1) -9(1) 3(1) 

N(3) 21(1) 21(1) 21(1) -6(1) -9(1) 0(1) 

0(5) 22(1) 31(1) 23(1) -12(1) -7(1) 2(1) 

0(6) 28(1) 25(1) 38(1) -14(1) -13(1) -2(1) 

C(5) 20(1) 19(1) 17(1) -3(1) -7(1) 0(1) 

C(6) 27(1) 18(1) 23(1) -7(1) -6(1) -1(1) 

C(lX) 21(1) 36(1) 22(1) -6(1) -10(1) 6(1) 

C(2X) 31(1) 32(1) 25(1) -12(1) -17(1) 11(1) 

C(3X) 28(1) 29(1) 26(1) -5(1) -16(1) 1(1) 

Table 5. Hydrogen coordinates ( X 104) and isotropic displacement parameters cA2x 

10 3) for 7x. 

X y z U(eq) 

H(12) 9154 4130 2869 30 

H(13) 10657 4356 759 36 

H(14) 11569 2624 274 37 

H(15) 11055 682 1891 35 

H(16) 9536 439 3996 27 

H(22) 8911 3486 7118 26 

H(23) 9406 3338 8785 31 

H(24) 8577 1592 10648 33 

H(25) 7204 -3 10885 33 

H(26) 6680 142 9235 28 

H(32) 3922 3165 7062 28 

H(33) 1706 2806 7542 32 

H(34) 1004 1121 7257 30 

H(35) 2520 -226 6513 28 

H(36) 4730 108 6062 24 

H(2) 1978 2570 4343 28 

H(4) 5774 2373 1859 22 

H(6) 4986 5026 3475 30 

H(1X) 7292 5127 -1201 41 

H(2X) 5929 3499 -912 33 

H(3X) 3634 3375 282 41 
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7N) Triphenylisocyanurate, trinitrobenzene and benzene 

Synthesis: Praveen K. Thallapally, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 7N. 

Identification code 

Empirical fmmula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta/lambda range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 12.02° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

7N 

C30 H21 N6 09 

609.00 

25(1) K 

0.5-5.0 A 

Triclinic 

P-1 

a= 11.320(4) A 

b = 11.558(5) A 

c = 12.455(5) A 

1364.8(9) A3 

2 

1.482 Mglm3 

0. = 70.48(2)0
• 

~ = 63.43(3)0
• 

y = 86.93(3)0
• 

1.230, at 1 Angstrom mm-1 

45.80 

2.0 x 2.0 x 1.0 mm3 

0.088 to 0.90°IA. 

0<=h<=18, -19<=k<=19, -17<=1<=20 

20712 

6069 [R(int) = 0.066] 

45.9% 

Empirical 

0.90 and 0.65 

Full-matrix least-squares on F2 

6069 I 0 I 595 

1.057 

R1 = 0.0799, wR2 = 0.2013 

R1 = 0.0799, wR2 = 0.2013 

0.160 

1.900 and -1.993 e.A -3 
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(A2x 103) for 7N. U(eq) is defined as one third of the trace of the orthogonalized lJij 
tensor. 

X y z U(eq) 

0(10) 6612(3) 2110(3) 4180(3) 14(1) 

C(lO) 6864(3) 2036(2) 5037(2) 8(1) 

N(10) 8156(2) 2103(2) 4867(2) 8(1) 

C(ll) 9185(3) 2260(2) 3603(2) 8(1) 

C(12) 9521(3) 3422(3) 2667(3) 15(1) 

C(13) 10412(4) 3556(4) 1416(3) 22(1) 

C(14) 10976(4) 2532(4) 1123(3) 24(1) 

C(15) 10661(3) 1377(4) 2084(3) 21(1) 

C(16) 9761(3) 1229(3) 3340(3) 13(1) 

0(20) 9617(3) 1871(3) 5681(3) 13(1) 

C(20) 8501(3) 1942(2) 5838(2) 8(1) 

N(20) 7453(2) 1897(2) 7000(2) 9(1) 

C(21) 7760(3) 1815(2) 8025(2) 10(1) 

C(22) 8563(3) 2777(3) 7878(3) 12(1) 

C(23) 8858(3) 2689(3) 8873(3) 16(1) 

C(24) 8363(4) 1650(4) 9987(3) 21(1) 

C(25) 7540(4) 698(3) 10124(3) 18(1) 

C(26) 7236(3) 790(3) 9137(3) 13(1) 

0(30) 5266(3) 1817(4) 8278(3) 17(1) 

C(30) 6130(3) 1856(3) 7264(2) 9(1) 

N(30) 5889(2) 1852(2) 6268(2) 9(1) 

C(31) 4529(3) 1670(2) 6520(2) 8(1) 

C(32) 3651(3) 2480(3) 6951(3) 14(1) 

C(33) 2333(3) 2264(3) 7240(3) 17(1) 

C(34) 1905(3) 1256(3) 7070(3) 15(1) 

C(35) 2799(3) 453(3) 6632(3) 13(1) 

C(36) 4115(3) 658(3) 6359(3) 10(1) 

N(l) 2423(3) 4554(2) 4775(3) 29(1) 

0(1) 1261(6) 4297(6) 5162(7) 50(2) 

0(2) 2886(7) 5321(5) 5004(6) 43(2) 

C(l) 3364(3) 3898(2) 3988(3) 16(1) 

C(2) 2888(3) 2875(3) 3898(3) 15(1) 
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N(2) 3399(2) 1240(2) 2962(2) 14(1) 

0(3) 2341(5) 667(4) 3776(4) 24(1) 

0(4) 4138(5) 957(4) 2046(4) 25(1) 

C(3) 3832(3) 2325(2) 3102(2) 10(1) 

C(4) 5164(3) 2755(2) 2412(2) 9(1) 

N(3) 6959(2) 4256(2) 1872(2) 13(1) 

0(5) 7709(4) 3759(4) 1157(3) 18(1) 

0(6) 7288(4) 5162(4) 2013(4) 23(1) 

C(5) 5562(3) 3765(2) 2576(2) 9(1) 

C(6) 4690(3) 4345(3) 3365(3) 17(1) 

C(1X) 6369(3) 5080(4) -718(3) 20(1) 

C(2X) 5555(4) 4109(3) -547(3) 21(1) 

C(3X) 4190(4) 4033(3) 175(3) 20(1) 
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Table 3. Bond lengths [A] and angles C(31)-C(32) 1.383( 4) 

[
0

] for 7N. C(31 )-C(36) 1.390(4) 

C(32)-C(33) 1.384(4) 

0(10)-C(lO) 1.199(4) C(32)-H(32) 1.085(8) 

C(10)-N(30) 1.382(3) C(33 )-C(34) 1.399(5) 

C(10)-N(10) 1.383(3) C(33)-H(33) 1.087(9) 

N(10)-C(20) 1.383(3) C(34 )-C(35) 1.388(5) 

N(10)-C(11) 1.435(3) C(34 )-H(34) 1.083(8) 

C(11)-C(12) 1.386(4) C(35)-C(36) 1.386(4) 

C(11)-C(16) 1.392(4) C(35)-H(35) 1.077(8) 

C(12)-C(13) 1.384(4) C(36)-H(36) 1.071(7) 

C(12)-H(12) 1.077(9) N(l)-0(1) 1.196(8) 

C(13)-C(14) 1.393(6) N(l)-0(2) 1.222(7) 

C(13)-H(13) 1.082(10) N(1)-C(1) 1.464(4) 

C(14)-C(15) 1.394(6) C(1)-C(6) 1.377(5) 

C(14)-H(14) 1.075(8) C(l)-C(2) 1.383(4) 

C( 15)-C( 16) 1.389(4) C(2)-C(3) 1.389(4) 

C(15)-H(l5) 1.089(10) C(2)-H(2) 1.076(9) 

C( 16)-H( 16) 1.087(8) N(2)-0(3) 1.204(4) 

0(20)-C(20) 1.192(4) N(2)-0(4) 1.215(5) 

C(20)-N(20) 1.387(3) N(2)-C(3) 1.460(3) 

N(20)-C(30) 1.382(3) C(3)-C(4) 1.377(4) 

N(20)-C(21) 1.440(3) C(4)-C(5) 1.380(4) 

C(21)-C(26) 1.385(4) C(4)-H(4) 1.086(7) 

C(21)-C(22) 1.385(4) N(3)-0(5) 1.207(4) 

C(22)-C(23) 1.393(4) N(3)-0(6) 1.220(4) 

C(22)-H(22) 1.081(8) N(3)-C(5) 1.454(3) 

C(23 )-C(24) 1.394(5) C(5)-C(6) 1.376(4) 

C(23)-H(23) 1.081(9) C(6)-H(6) 1.072(8) 

C(24 )-C(25) 1.396(5) C( 1X)-C(3X)# 1 1.384(5) 

C(24)-H(24) 1.082(8) C(1X)-C(2X) 1.389(6) 

C(25)-C(26) 1.388(4) C(lX)-H(lX) 1.066(10) 

C(25)-H(25) 1.075(10) C(2X)-C(3X) 1.386(6) 

C(26)-H(26) 1.089(8) C(2X)-H(2X) 1.084(9) 

0(30)-C(30) 1.189(4) C(3X)-C( 1 X)# 1 1.384(5) 

C(30)-N(30) 1.386(3) C(3X)-H(3X) 1.067(10) 

N(30)-C(31) 1.439(3) 

263 



Appendix C 

0(10)-C(10)-N(30) 122.5(3) C(24 )-C(23 )-H(23) 120.7(6) 

0(10)-C(10)-N(10) 122.2(3) C(23 )-C(24 )-C(25) 120.0(3) 

N(30)-C(l0)-N(10) 115.2(2) C(23 )-C(24 )-H(24) 120.5(7) 

C(20)-N(10)-C(l0) 124.55(19) C(25)-C(24 )-H(24) 119.5(7) 

C(20)-N(10)-C(11) 119.1(2) C(26)-C(25)-C(24) 119.5(3) 

C(l0)-N(l0)-C(11) 116.2(2) C(26)-C(25)-H(25) 119.2(7) 

C(l2)-C(11)-C(16) 122.2(2) C(24 )-C(25)-H(25) 121.3(6) 

C(12)-C(ll)-N(l0) 118.8(2) C(21 )-C(26)-C(25) 119.8(3) 

C(16)-C(11)-N(10) 119.0(2) C(21 )-C(26)-H(26) 120.9(5) 

C(l3)-C(12)-C(11) 119.1(3) C(25)-C(26)-H(26) 119.3(5) 

C(13)-C(12)-H(12) 120.6(5) 0(30)-C(30)-N(20) 122.2(3) 

C(11)-C(l2)-H(12) 120.3(5) 0(30)-C(30)-N(30) 122.8(3) 

C(12)-C(13 )-C(14) 119.8(3) N(20)-C(30)-N(30) 115.1(2) 

C(12)-C(13)-H(13) 120.0(7) C( 10)-N (30)-C(30) 124.5(2) 

C(l4)-C(13)-H(l3) 120.2(7) C(10)-N(30)-C(31) 117.4(2) 

C(13)-C(14 )-C(15) 120.4(3) C(30)-N(30)-C(31) 118.05(19) 

C(13)-C(14)-H(14) 120.2(8) C(32)-C(31 )-C(36) 121.1(2) 

C(15)-C(14)-H(14) 119.4(8) C(32)-C(31)-N(30) 119.8(2) 

C(16)-C(15)-C(14) 120.3(3) C(36)-C(31)-N(30) 119.1(2) 

C(16)-C(15)-H(15) 119.5(7) C(31)-C(32)-C(33) 119.1(3) 

C(14)-C(15)-H(15) 120.1(7) C(31 )-C(32)-H(32) 120.7(6) 

C( 15)-C( 16)-C( 11) 118.2(3) C(33)-C(32)-H(32) 120.0(6) 

C(l5)-C(16)-H(16) 120.8(5) C(32)-C(33)-C(34) 120.3(3) 

C(11)-C(16)-H(16) 121.0(5) C(32)-C(33)-H(33) 118.8(6) 

0(20)-C(20)-N(l0) 122.5(3) C(34)-C(33)-H(33) 120.9(6) 

0(20)-C(20)-N(20) 122.6(3) C(35)-C(34 )-C(33) 119.9(3) 

N(10)-C(20)-N(20) 114.9(2) C(35)-C(34 )-H(34) 120.5(6) 

C(30)-N(20)-C(20) 124.7(2) C(33)-C(34)-H(34) 119.5(6) 

C(30)-N (20)-C(21) 117.65(19) C(36)-C(35)-C(34) 119.8(3) 

C(20)-N(20)-C(21) 117.6(2) C(36)-C(35)-H(35) 118.4(6) 

C(26)-C(21 )-C(22) 121.6(3) C(34 )-C(35)-H(35) 121.7(6) 

C(26)-C(21)-N(20) 119.6(2) C(35)-C(36)-C(31) 119.7(3) 

C(22)-C(21)-N(20) 118.9(2) C(35)-C(36)-H(36) 119.2(5) 

C(21 )-C(22)-C(23) 118.5(3) C(31)-C(36)-H(36) 121.1(5) 

C(21 )-C(22)-H(22) 120.3(5) 0(1)-N(1)-0(2) 124.5(4) 

C(23)-C(22)-H(22) 121.2(5) 0(1)-N(1)-C(1) 118.2(4) 

C(22)-C(23 )-C(24) 120.6(3) 0(2)-N(l)-C(1) 117.3(4) 

C(22)-C(23)-H(23) 118.7(6) C(6)-C(l)-C(2) 123.2(3) 
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C(6)-C(l)-N(l) 117.6(3) 

C(2)-C(l)-N(l) 119.1 (3) 

C(l)-C(2)-C(3) 115.9(3) 

C(l)-C(2)-H(2) 122.7(5) 

C(3)-C(2)-H(2) 121.4(5) 

0(3)-N(2)-0(4) 124.0(3) 

0(3)-N(2)-C(3) 117.9(3) 

0(4)-N(2)-C(3) 118.1(3) 

C( 4 )-C(3 )-C(2) 123.8(3) 

C(4)-C(3)-N(2) 117.4(2) 

C(2)-C(3)-N(2) 118.8(3) 

C(3)-C(4)-C(5) 116.7(2) 

C(3)-C(4)-H(4) 122.5(4) 

C(5)-C(4)-H(4) 120.8(5) 

0(5)-N(3)-0(6) 124.4(3) 

0(5)-N(3)-C(5) 117.5(2) 

0(6)-N(3)-C(5) 118.0(3) 

C(6)-C(5)-C( 4) 122.8(3) 

C(6)-C(5)-N(3) 118.2(2) 

C(4)-C(5)-N(3) 119.0(2) 

C( 5)-C( 6)-C( 1) 117.5(3) 

C(5)-C(6)-H(6) 121.6(6) 

C(l)-C(6)-H(6) 120.9(6) 

C(3X)# 1-C(l X)-C(2X) 119.8(3) 

C(3X)# 1-C(lX)-H(lX) 121.1(8) 

C(2X)-C(1X)-H(1X) 119.1(7) 

C(3X)-C(2X)-C( 1X) 119.5(3) 

C(3X)-C(2X)-H(2X) 119.5(8) 

C( 1 X)-C(2X)-H(2X) 121.0(8) 

C( 1 X)# 1-C(3X)-C(2X) 120.7(3) 

C(lX)#1-C(3X)-H(3X) 120.6(8) 

C(2X)-C(3X)-H(3X) 118.7(8) 

Symmetry transformations used to 

generate equivalent atoms: 

#1 -x+1,-y+1,-z 
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Table 4. Anisotropic displacement parameters (A2x 103) for /N. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2ull + ... + 2 h k a* b* u12] 

u11 u22 u33 u23 u13 u12 

0(10) 12(1) 21(2) 7(1) -3(1) -5(1) 4(1) 

C(lO) 8(1) 9(1) 7(1) -2(1) -4(1) 1(1) 

N(lO) 6(1) 9(1) 7(1) -3(1) -2(1) 1(1) 

C(11) 7(1) 9(1) 7(1) -3(1) -2(1) 2(1) 

C(12) 14(1) 13(1) 10(1) 1(1) -2(1) -1(1) 

C(13) 19(1) 27(2) 9(1) 2(1) -2(1) -5(1) 

C(14) 19(1) 38(2) 7(1) -8(1) 2(1) -7(1) 

C(15) 17(1) 30(2) 15(1) -16(1) -1(1) 2(1) 

C(l6) 13(1) 12(1) 13(1) -7(1) -3(1) 3(1) 

0(20) 4(1) 24(2) 12(1) -8(1) -3(1) 3(1) 

C(20) 7(1) 11 (1) 8(1) -4(1) -3(1) 1(1) 

N(20) 7(1) 14(1) 8(1) -6(1) -3(1) 1(1) 

C(21) 9(1) 12(1) 8(1) -4(1) -3(1) 1(1) 

C(22) 10(1) 14(1) 15(1) -8(1) -5(1) 1(1) 

C(23) 17(1) 21(1) 18(1) -13(1) -9(1) 3(1) 

C(24) 28(2) 27(2) 17(1) -14(1) -14(1) 7(1) 

C(25) 28(2) 18(1) 10(1) -6(1) -8(1) 4(1) 

C(26) 17(1) 13(1) 10(1) -5(1) -6(1) 4(1) 

0(30) 9(1) 32(2) 14(1) -16(1) -3(1) 4(1) 

C(30) 7(1) 14(1) 8(1) -8(1) -3(1) 2(1) 

N(30) 8(1) 11(1) 9(1) -5(1) -3(1) 1(1) 

C(31) 7(1) 7(1) 9(1) -3(1) -3(1) 1(1) 

C(32) 8(1) 12(1) 23(1) -9(1) -6(1) 3(1) 

C(33) 9(1) 17(1) 26(1) -11(1) -6(1) 6(1) 

C(34) 10(1) 17(1) 19(1) -5(1) -8(1) 2(1) 

C(35) 13(1) 16(1) 14(1) -6(1) -9(1) -1(1) 

C(36) 10(1) 12(1) 12(1) -6(1) -7(1) 2(1) 

N(1) 35(1) 8(1) 22(1) -5(1) 6(1) 5(1) 

0(1) 32(3) 30(2) 57(4) -25(3) 11(2) 6(2) 

0(2) 49(3) 23(2) 38(3) -21(2) 5(2) 1(2) 

C(l) 18(1) 4(1) 13(1) -2(1) 1(1) 1(1) 

C(2) 14(1) 9(1) 13(1) -1(1) -2(1) 2(1) 

N(2) 19(1) 8(1) 15(1) -2(1) -9(1) 0(1) 
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0(3) 25(2) 17(2) 24(2) -4(1) -6(2) -9(1) 

0(4) 33(2) 17(2) 23(2) -11(1) -8(2) -4(2) 

C(3) 14(1) 5(1) 9(1) 1(1) -5(1) 1(1) 

C(4) 12(1) 6(1) 7(1) -1(1) -4(1) 2(1) 

N(3) 16(1) 9(1) 11(1) -2(1) -5(1) -2(1) 

0(5) 15(1) 21(2) 14(1) -7(1) -2(1) -2(1) 

0(6) 24(2) 15(1) 28(2) -10(1) -9(2) -3(1) 

C(5) 12(1) 5(1) 8(1) -1(1) -4(1) 0(1) 

C(6) 21(1) 8(1) 13(1) -4(1) -1(1) -2(1) 

C(lX) 18(1) 25(2) 16(1) -6(1) -9(1) 8(1) 

C(2X) 31(2) 19(1) 17(1) -8(1) -14(1) 12(1) 

C(3X) 25(2) 18(1) 19(1) -3(1) -13(1) 1(1) 

H(4) 28(3) 17(2) 26(3) -13(2) -7(2) 5(2) 

H(36) 28(3) 28(3) 41(4) -26(3) -18(3) 16(3) 

H(6) 53(5) 20(3) 35(4) -14(3) -8(3) -7(3) 

H(2) 25(3) 32(4) 32(3) -9(3) -3(3) -1(3) 

H(16) 43(4) 14(2) 29(3) -2(2) -5(3) 6(3) 

H(35) 37(4) 34(4) 47(4) -25(3) -24(4) 2(3) 

H(26) 37(4) 23(3) 27(3) -3(2) -15(3) -8(3) 

H(22) 38(4) 23(3) 27(3) 0(2) -16(3) -8(3) 

H(33) 31(4) 38(4) 66(6) -32(4) -17(4) 19(3) 

H(13) 48(5) 42(5) 23(3) 10(3) -4(3) -3(4) 

H(23) 42(4) 36(4) 40(4) -19(3) -23(4) -1(3) 

H(34) 22(3) 42(4) 51(5) -20(4) -22(3) 5(3) 

H(24) 65(6) 53(5) 31(4) -19(4) -34(4) 6(5) 

H(25) 68(7) 40(4) 22(3) -6(3) -22(4) 4(4) 

H(32) 32(4) 29(4) 67(6) -33(4) -18(4) 5(3) 

H(12) 46(5) 17(3) 35(4) -3(3) -7(3) 14(3) 

H(15) 40(5) 52(6) 45(5) -37(5) -4(4) 11(4) 

H(2X) 78(8) 40(5) 54(6) -36(5) -37(6) 33(5) 

H(14) 46(5) 62(6) 17(3) -18(3) 0(3) -3(4) 

H(3X) 60(6) 34(4) 56(6) -9(4) -38(5) -7(4) 

H(1X) 25(4) 56(6) 41(4) -15(4) -9(3) 14(4) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2x 10 

3) for 7N. 

X y z U(eq) 

H(4) 5884(7) 2313(6) 1791(7) 24(1) 

H(36) 4797(8) 35(7) 6018(8) 28(1) 

H(6) 5019(10) 5133(7) 3473(8) 38(2) 

H(2) 1851(8) 2525(8) 4398(8) 34(2) 

H(16) 9496(9) 328(6) 4092(8) 35(2) 

H(35) 2496(9) -343(8) 6510(9) 34(2) 

H(26) 6591(9) 47(7) 9248(7) 30(2) 

H(22) 8960(9) 3569(7) 7002(7) 30(2) 

H(33) 1640(9) 2886(10) 7610(12) 43(2) 

H(13) 10670(11) 4453(10) 671(8) 48(3) 

H(23) 9482(10) 3440(8) 8761(9) 36(2) 

H(34) 873(8) 1103(9) 7292(10) 35(2) 

H(24) 8595(12) 1583(10) 10759(9) 43(2) 

H(25) 7119(13) -96(10) 10986(8) 44(2) 

H(32) 3966(9) 3232(8) 7137(11) 40(2) 

H(12) 9053(10) 4200(7) 2901(9) 39(2) 

H(15) 11101(10) 579(11) 1849(10) 47(2) 

H(2X) 5973(14) 3399(10) -954(11) 50(3) 

H(14) 11665(11) 2629(11) 153(8) 46(2) 

H(3X) 3578(13) 3280(9) 302(11) 47(2) 

H(lX) 7418(9) 5127(11) -1265(10) 44(2) 
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8) 4!,4' -dinitrotetraphenylmethane 

Synthesis: Basavoju Srinivas, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 8. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.50° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

8 

C25 Hl9.08 N2 04.54 

420.18 

30(2) K 

0.71073 A 

Rhombohedral 

R-3 

a= 20.759(3) A 

b = 20.759(3) A 

c = 25.142(5) A 

9383(3) A3 

18 

1.338 Mgtm3 

0.093 mm-1 

3950 

0.30 x 0.26 x 0.20 mm3 

2.41 to 27.50°. 

-26<=h<=24, -26<=k<=26, -20<=1<=31 

19194 

4654 [R(int) = 0.0604] 

97.2% 

None 

Full-matrix least-squares on F2 

4654 I 6 I 300 

1.044 

R1 = 0.0618, wR2 = 0.1397 

Rl = 0.1018, wR2 = 0.1636 

not refined 

0.945 and -0.828 e.A-3 
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Table 2. Atomic coordinates (x 1Q4) and equivalent isotropic displacement parameters 

(A2x 103) for 8. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

C(l) 5182(1) 5613(1) -1934(1) 21(1) 

N(l) 3799(1) 4661(1) 138(1) 32(1) 

0(12) 3650(1) 5078(1) 390(1) 41(1) 

0(11) 3663(1) 4044(1) 299(1) 39(1) 

C(11) 4850(1) 5382(1) -1368(1) 22(1) 

C(l2) 4755(2) 5869(2) -1037(1) 37(1) 

C(13) 4405(2) 5636(2) -545(1) 42(1) 

C(14) 4158(2) 4907(2) -387(1) 28(1) 

C(15) 4230(1) 4405(1) -709(1) 23(1) 

C(16) 4565(1) 4647(1) -1201(1) 22(1) 

N(2) 7561(1) 8635(1) -2261(1) 32(1) 

0(22) 7600(1) 8931(1) -2696(1) 46(1) 

0(21) 8019(1) 8941(1) -1902(1) 40(1) 

C(21) 5762(1) 6449(1) -1994(1) 21(1) 

C(22) 6290(2) 6833(1) -1596(1) 27(1) 

C(23) 6875(2) 7551(1) -1681(1) 27(1) 

C(24) 6934(2) 7884(1) -2171(1) 24(1) 

C(25) 6424(2) 7522(1) -2575(1) 25(1) 

C(26) 5841(1) 6806(1) -2482(1) 23(1) 

C(31) 5653(1) 5247(1) -2084(1) 22(1) 

C(32) 6074(1) 5148(1) -1690(1) 25(1) 

C(33) 6549(1) 4885(2) -1814(1) 30(1) 

C(34) 6617(2) 4710(2) -2336(1) 33(1) 

C(35) 6212(2) 4813(2) -2733(1) 31(1) 

C(36) 5742(1) 5092(1) -2609(1) 25(1) 

C(41) 4487(1) 5370(1) -2285(1) 21(1) 

C(42) 4163(2) 5822(2) -2317(1) 27(1) 

C(43) 3509(2) 5593(2) -2601(1) 30(1) 

C(44) 3154(1) 4910(2) -2853(1) 28(1) 

C(45) 3457(1) 4446(2) -2812(1) 25(1) 

C(46) 4115(1) 4674(1) -2529(1) 22(1) 

0(1) 3333 6667 -171(2) 32(2) 
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0(2) 9632(3) 9767(3) -2054(2) 11(2) 

Table 3. Bond lengths [A] and angles C(41)-C(42) 1.404(4) 

[
0

] for 8. C(42)-C(43) 1.391(4) 

C(43)-C(44) 1.381(4) 

C(l)-C(41) 1.544(3) C(44)-C(45) 1.394(4) 

C(1)-C(21) 1.548(3) C(45)-C(46) 1.397(3) 

C(1)-C(11) 1.549(3) 0(2)-0(2)#1 1.160(9) 

C(1)-C(31) 1.555(3) 0(2)-0(2)#2 1.160(9) 

N(l)-0(12) 1.232(3) 

N(l)-0(11) 1.235(3) C( 41 )-C( 1 )-C(21) 112.7(2) 

N(1)-C(14) 1.474(3) C( 41 )-C( 1 )-C( 11) 102.99(19) 

C( 11 )-C( 16) 1.397(3) C(21)-C(1)-C(11) 114.3(2) 

C(ll)-C(12) 1.398( 4) C(41)-C(1)-C(31) 114.5(2) 

C(l2)-C(l3) 1.392(4) C(21 )-C( 1 )-C(31) 101.45(19) 

C(l3)-C(l4) 1.389(4) C(l1)-C(l)-C(31) 111.3(2) 

C( 14 )-C( 15) 1.386(4) 0(12)-N(l)-0(11) 123.5(2) 

C(l5)-C(16) 1.384(4) 0(12)-N(l)-C(l4) 118.6(2) 

N(2)-0(21) 1.231(3) 0(11)-N(l)-C(14) 117.9(2) 

N(2)-0(22) 1.237(3) C(16)-C(l1)-C(l2) 118.4(2) 

N(2)-C(24) 1.465(3) C(16)-C(11)-C(1) 119.6(2) 

C(21)-C(26) 1.400(3) C(l2)-C(11)-C(l) 121.7(2) 

C(21)-C(22) 1.401(4) C(l3)-C(l2)-C(11) 120.9(3) 

C(22)-C(23) 1.390(4) C(14)-C(13)-C(12) 118.6(3) 

C(23 )-C(24) 1.389(4) C(l5)-C(14)-C(13) 122.0(2) 

C(24 )-C(25) 1.384(4) C(l5)-C(14)-N(l) 119.2(2) 

C(25)-C(26) 1.389(4) C(l3)-C(14)-N(l) 118.8(3) 

C(31 )-C(36) 1.393(4) C(l6)-C(15)-C(14) 118.3(2) 

C(31)-C(32) 1.401(4) C(l5)-C(l6)-C( 11) 121.7(2) 

C(32)-C(33) 1.381(4) 0(21)-N(2)-0(22) 123.3(2) 

C(33)-C(34) 1.388(4) 0(21)-N(2)-C(24) 118.8(2) 

C(34 )-C(35) 1.390(4) 0(22)-N(2)-C(24) 117.9(2) 

C(35)-C(36) 1.398(4) C(26)-C(21 )-C(22) 118.2(2) 

C(41)-C(46) 1.394(4) C(26)-C(21 )-C( 1) 119.9(2) 
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C(22)-C(21 )-C( 1) 121.1(2) 

C(23)-C(22)-C(21) 121.0(2) 

C(24 )-C(23 )-C(22) 118.8(2) 

C(25)-C(24 )-C(23) 121.9(2) 

C(25)-C(24 )-N (2) 119.7(2) 

C(23)-C(24)-N(2) 118.4(2) 

C(24 )-C(25)-C(26) 118.5(2) 

C(25)-C(26)-C(21) 121.5(2) 

C(36)-C(31 )-C(32) 118.2(2) 

C(36)-C(31 )-C( 1) 122.0(2) 

C(32)-C(31 )-C( 1) 119.4(2) 

C(33)-C(32)-C(31) 121.4(3) 

C(32)-C(33 )-C(34) 120.2(3) 

C(33)-C(34 )-C(35) 119.4(3) 

C(34 )-C(3 5)-C(36) 120.4(3) 

C(31 )-C(36)-C(35) 120.5(2) 

C( 46)-C( 41 )-C( 42) 117.7(2) 

C( 46)-C( 41 )-C( 1) 122.2(2) 

C( 42)-C( 41 )-C( 1) 119.8(2) 

C( 43)-C( 42)-C( 41) 120.9(2) 

C( 44 )-C( 43)-C( 42) 121.0(2) 

C( 43 )-C( 44 )-C( 45) 118.9(2) 

C( 44 )-C( 45)-C( 46) 120.3(2) 

C( 41 )-C( 46 )-C( 45) 121.2(2) 

0(2)#1-0(2)-0(2)#2 60.000(2) 

Symmetry transformations used to 

generate equivalent atoms: 

#1 -x+y+1,-x+2,z #2 -y+2,x-y+1,z 
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Table 4. Anisotropic displacement parameters (A2x 103) for 8. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2ull + ... + 2 h k a* b* u12] 

u11 u22 u33 u23 uB u12 

C(1) 26(1) 19(1) 17(1) 0(1) -1(1) 10(1) 

N(1) 30(1) 30(1) 21(1) 2(1) -2(1) 2(1) 

0(12) 50(1) 38(1) 22(1) -5(1) 7(1) 13(1) 

0(11) 43(1) 32(1) 28(1) 10(1) 4(1) 9(1) 

C(11) 27(1) 20(1) 17(1) 0(1) -3(1) 10(1) 

C(12) 58(2) 17(1) 25(2) 2(1) 10(1) 10(1) 

C(13) 60(2) 24(1) 26(2) -3(1) 11(1) 10(1) 

C(l4) 29(1) 25(1) 18(1) 1(1) -1(1) 5(1) 

C(l5) 21(1) 21(1) 25(1) 4(1) -4(1) 8(1) 

C(16) 22(1) 20(1) 23(1) -1(1) -3(1) 10(1) 

N(2) 39(1) 21(1) 29(1) 1(1) -2(1) 9(1) 

0(22) 65(2) 26(1) 26(1) 7(1) -2(1) 6(1) 

0(21) 45(1) 23(1) 37(1) 1(1) -13(1) 5(1) 

C(21) 26(1) 19(1) 20(1) 1(1) 1(1) 11(1) 

C(22) 37(2) 21(1) 20(1) 2(1) -4(1) 12(1) 

C(23) 36(2) 18(1) 24(1) -3(1) -8(1) 11(1) 

C(24) 29(1) 17(1) 25(1) 0(1) 2(1) 10(1) 

C(25) 32(1) 23(1) 20(1) 2(1) 1(1) 15(1) 

C(26) 26(1) 24(1) 20(1) 0(1) -2(1) 12(1) 

C(31) 20(1) 15(1) 25(1) 1(1) 1(1) 4(1) 

C(32) 21(1) 22(1) 26(1) 4(1) 0(1) 5(1) 

C(33) 19(1) 29(1) 38(2) 12(1) 1(1) 9(1) 

C(34) 24(1) 30(2) 45(2) 7(1) 8(1) 15(1) 

C(35) 25(1) 30(2) 32(2) -2(1) 5(1) 11(1) 

C(36) 21(1) 23(1) 27(1) 0(1) -1(1) 9(1) 

C(41) 22(1) 25(1) 14(1) 4(1) 2(1) 11 (1) 

C(42) 29(1) 23(1) 27(1) 3(1) 3(1) 12(1) 

C(43) 29(1) 34(2) 33(2) 9(1) 5(1) 20(1) 

C(44) 22(1) 35(2) 26(1) 8(1) 3(1) 13(1) 

C(45) 25(1) 30(1) 16(1) 2(1) 4(1) 12(1) 

C(46) 25(1) 26(1) 17(1) 2(1) 1(1) 14(1) 
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Table 5. Hydrogen coordinates ( x 1Q4) and isotropic displacement parameters (.A2x 

10 3) for 8. 

X y z U(eq) 

H(l2) 4931 6367 -1149 45 

H(13) 4338 5967 -323 50 

H(15) 4053 3908 -596 28 

H(16) 4602 4304 -1431 26 

H(22) 6248 6598 -1263 32 

H(23) 7229 7810 -1408 33 

H(25) 6473 7758 -2908 29 

H(26) 5488 6553 -2755 28 

H(32) 6031 5265 -1331 31 

H(33) 6830 4824 -1541 36 

H(34) 6938 4522 -2421 39 

H(35) 6256 4693 -3091 37 

H(36) 5480 5177 -2885 30 

H(42) 4393 6290 -2142 32 

H(43) 3303 5910 -2622 36 

H(44) 2711 4760 -3051 33 

H(45) 3215 3971 -2978 30 

H(46) 4313 4350 -2502 26 

H(lA) 3333 6667 238(8) 0(11) 

H(1B) 3300(40) 6210(20) -290(20) 0(19) 

H(2A) 9820(30) 9630(30) -2392(15) 0(18) 

H(2B) 10000 10000 -1793(10) 12(12) 
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9) 2,3-dichloro-1,4-diethynyl-1,4-dihydroxy-napthalene 

Synthesis: Rahul Banerjee, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 9. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

9 

C14 H8 Cl2 02 

279.10 

120(2) K 

0.71073 A 

Monoclinic 

P2(l)lc 

a= 7.4454(5) A 

b = 23.3125(17) A 

c = 7.5606(5) A 

1228.57(15) A3 

~ = 110.578C3r. 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 27.48° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

4 

1.509 Mgtm3 

0.517 mm-1 

568 

0.45 x 0.35 x 0.20 mm3 

1.75 to 27.48°. 

-9<=h<=9, -29<=k<=30, -9<=1<=9 

8666 

2815 [R(int) = 0.0318] 

99.9% 

None 

Full-matrix least-squares on F2 

2815 I 0 I 179 

1.062 

R1 = 0.0301, wR2 = 0.0739 

R1 = 0.0335, wR2 = 0.0759 

not refined 

0.358 and -0.257 e.A-3 
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

cA2x 103) for 9. U(eq) is defined as one third of the trace of the orthogonalized uij 

tensor. 

X y z U(eq) 

C(l) 7996(2) 3938(1) 10060(2) 14(1) 

C(2) 9258(2) 4204(1) 9306(2) 18(1) 

C(3) 11078(2) 4368(1) 10475(2) 20(1) 

C(4) 11655(2) 4275(1) 12416(2) 21(1) 

C(5) 10427(2) 4008(1) 13170(2) 19(1) 

C(6) 8591(2) 3833(1) 11994(2) 15(1) 

C(7) 7338(2) 3528(1) 12916(2) 14(1) 

0(1) 7075(2) 3921(1) 14260(2) 18(1) 

C(11) 8345(2) 2999(1) 13878(2) 17(1) 

C(12) 9187(2) 2584(1) 14651(2) 22(1) 

C(8) 5393(2) 3359(1) 11492(2) 14(1) 

Cl(l) 2504(1) 3303(1) 8156(1) 17(1) 

C(9) 4778(2) 3486(1) 9660(2) 14(1) 

Cl(2) 3979(1) 2986(1) 12486(1) 20(1) 

C(lO) 5987(2) 3791(1) 8693(2) 15(1) 

0(2) 6099(2) 3432(1) 7174(2) 18(1) 

C(13) 4999(2) 4326(1) 7799(2) 17(1) 

C(14) 4233(2) 4765(1) 7175(2) 23(1) 
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Table 3. Bond lengths [A] and angles C(2 )-C(3 )-C( 4) 119.95(14) 

[
0

] for 9. C(2)-C(3)-H(3A) 120.0 

C(4)-C(3)-H(3A) 120.0 

C(1)-C(6) 1.393(2) C(5)-C(4)-C(3) 119.98(14) 

C(1)-C(2) 1.403(2) C(5)-C(4)-H(4A) 120.0 

C(1)-C(10) 1.528(2) C(3)-C(4)-H(4A) 120.0 

C(2)-C(3) 1.386(2) C(4)-C(5)-C(6) 120.50(14) 

C(2)-H(2A) 0.9500 C(4)-C(5)-H(5A) 119.7 

C(3)-C(4) 1.393(2) C(6)-C(5)-H(5A) 119.7 

C(3)-H(3A) 0.9500 C(l)-C(6)-C(5) 119.54(13) 

C(4)-C(5) 1.383(2) C(1)-C(6)-C(7) 122.88(13) 

C(4)-H(4A) 0.9500 C(5)-C(6)-C(7) 117.58(13) 

C(5)-C(6) 1.404(2) 0(1 )-C(7)-C(11) 110.70(12) 

C(5)-H(5A) 0.9500 0( 1 )-C(7)-C(8) 109.50(12) 

C(6)-C(7) 1.5229(19) C(11)-C(7)-C(8) 108.77(12) 

C(7)-0(1) 1.4321(17) 0( 1 )-C(7)-C( 6) 106.54(12) 

C(7)-C(11) 1.492(2) C(11)-C(7)-C(6) 108.96(12) 

C(7)-C(8) 1.522(2) C(8)-C(7)-C(6) 112.37(12) 

0(1)-H(l) 0.75(2) C(7)-0(1 )-H(l) 108.3(17) 

C(11)-C(12) 1.189(2) C(12)-C(11)-C(7) 178.48(16) 

C(12)-H(12) 0.93(2) C(11)-C(12)-H(12) 178.6(14) 

C(8)-C(9) 1.330(2) C(9)-C(8)-C(7) 124.93(13) 

C(8)-Cl(2) 1.7276(14) C(9)-C(8)-Cl(2) 121.75(12) 

Cl(l)-C(9) 1.7292(15) C(7)-C(8)-Cl(2) 113.31(10) 

C(9)-C(10) 1.521(2) C(8)-C(9)-C(10) 124.04(13) 

C(l0)-0(2) 1.4474(17) C(8)-C(9)-Cl(l) 121.90(11) 

C(10)-C(13) 1.485(2) C( 1 O)-C(9)-Cl( 1) 114.05(10) 

0(2)-H(2) 0.80(2) 0(2)-C(10)-C(13) 106.39(12) 

C(13)-C(14) 1.185(2) 0(2)-C(l O)-C(9) 108.68(12) 

C(14)-H(14) 0.95(2) C(13)-C(l0)-C(9) 109.24(12) 

0(2)-C(10)-C(l) 110.50(12) 

C(6)-C(l)-C(2) 119.53(14) C(13)-C(l0)-C(l) 109.28(12) 

C(6)-C(1)-C(10) 123.02(13) C(9)-C(10)-C(l) 112.56(12) 

C(2)-C( 1 )-C( 1 0) 117.43(13) C(10)-0(2)-H(2) 108.3(15) 

C(3)-C(2)-C(l) 120.47(14) C(l4)-C(l3)-C(10) 176.64(16) 

C(3)-C(2)-H(2A) 119.8 C(13 )-C(14 )-H(14) 178.6(14) 

C(l)-C(2)-H(2A) 119.8 
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Table 4. Anisotropic displacement parameters (A2x 103) for 9. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2u11 + ... + 2 h k a* b* u12] 

ull u22 u33 u23 u13 u12 

C(l) 15(1) 12(1) 15(1) -1(1) 6(1) 1(1) 

C(2) 22(1) 16(1) 18(1) 0(1) 10(1) 1(1) 

C(3) 19(1) 17(1) 26(1) 1(1) 12(1) -1(1) 

C(4) 16(1) 20(1) 25(1) -1(1) 5(1) -3(1) 

C(5) 18(1) 21(1) 17(1) 1(1) 3(1) -1(1) 

C(6) 16(1) 13(1) 16(1) 0(1) 6(1) 0(1) 

C(7) 16(1) 14(1) 12(1) 0(1) 4(1) 0(1) 

0(1) 26(1) 16(1) 15(1) -1(1) 10(1) -2(1) 

C(11) 16(1) 19(1) 15(1) -2(1) 5(1) -4(1) 

C(l2) 20(1) 18(1) 23(1) 2(1) 2(1) 0(1) 

C(8) 15(1) 13(1) 17(1) 1(1) 8(1) -1(1) 

Cl(l) 15(1) 18(1) 17(1) -1(1) 2(1) -1(1) 

C(9) 14(1) 13(1) 16(1) -2(1) 4(1) 0(1) 

Cl(2) 18(1) 23(1) 20(1) 6(1) 7(1) -4(1) 

C(lO) 18(1) 14(1) 12(1) 0(1) 5(1) 0(1) 

0(2) 25(1) 15(1) 13(1) -2(1) 8(1) 1(1) 

C(13) 18(1) 18(1) 14(1) -1(1) 4(1) -2(1) 

C(14) 24(1) 19(1) 23(1) 3(1) 6(1) 0(1) 

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 

10 3) for 9. 

X y z U(eq) 

H(2A) 8863 4272 7985 21 

H(3A) 11932 4543 9954 24 

H(4A) 12891 4395 13222 25 

H(5A) 10829 3943 14493 23 

H(1) 6680(30) 3757(10) 14900(30) 32(6) 

H(12) 9870(30) 2260(10) 15240(30) 37(6) 

H(2) 6600(30) 3137(10) 7620(30) 25(5) 

H(14) 3650(30) 5120(10) 6680(30) 39(6) 
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10) 4,4-diphenyla2,5acyclohexadienone 

Synthesis: V.S.Senthil Kumar, University of Hyderabad, India. 

Table 1. Crystal data and structure refinement for 10. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 28.28° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

10 

C18 H14 0 

246.29 

100(2) K 

0.71073 A 

Orthorhombic 

Pbca 

a= 10.7921(6) A 

b = 17.4749(12) A 

c = 27.9344(19) A 

5268.2(6) A3 

16 

1.242 Mg/m3 

0.075 mm-1 

2080 

0.55 X 0.40 X 0.30 mrn3 

1.46 to 28.28°. 

-13<=h<=14, -16<=k<=23, -37<=1<=37 

37963 

6538 [R(int) = 0.0742] 

100.0% 

Psi-scan 

0.98281 and 0.89816 

Full-matrix least-squares on F2 

6538101371 

1.061 

R1 = 0.0589, wR2 = 0.1243 

R1 = 0.0855, wR2 = 0.1360 

0.349 and -0.259 e.A -3 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2x 103) for 10. U(eq) is defined as one third of the trace of the orthogonalized uij 
tensor. 

X y z U(eq) 

0(1) 6715(1) 2963(1) 1660(1) 31(1) 

C(l) 5688(2) 2676(1) 1734(1) 22(1) 

C(2) 5089(2) 2166(1) 1383(1) 21(1) 

C(3) 4015(2) 1815(1) 1477(1) 19(1) 

C(4) 3289(2) 1923(1) 1936(1) 17(1) 

C(5) 3903(2) 2496(1) 2267(1) 19(1) 

C(6) 4998(2) 2822(1) 2180(1) 22(1) 

C(7) 3240(2) 1168(1) 2228(1) 19(1) 

C(8) 2405(2) 1086(1) 2608(1) 24(1) 

C(9) 2407(2) 422(1) 2888(1) 27(1) 

C(lO) 3253(2) -161(1) 2797(1) 28(1) 

C(11) 4092(2) -76(1) 2424(1) 29(1) 

C(12) 4084(2) 581(1) 2140(1) 23(1) 

C(13) 1989(2) 2218(1) 1786(1) 18(1) 

C(14) 999(2) 1715(1) 1704(1) 22(1) 

C(15) -150(2) 1998(1) 1557(1) 25(1) 

C(16) -325(2) 2780(1) 1488(1) 26(1) 

C(17) 664(2) 3279(1) 1557(1) 24(1) 

C(18) 1812(2) 2998(1) 1705(1) 21(1) 

0(2) 5694(1) 51(1) 1060(1) 29(1) 

C(21) 6166(2) 463(1) 753(1) 20(1) 

C(22) 5427(2) 809(1) 364(1) 20(1) 

C(23) 5945(2) 1225(1) 17(1) 19(1) 

C(24) 7313(2) 1422(1) -7(1) 17(1) 

C(25) 8016(2) 1085(1) 414(1) 20(1) 

C(26) 7506(2) 644(1) 751(1) 21(1) 

C(27) 7929(2) 1089(1) -464(1) 18(1) 

C(28) 7303(2) 583(1) -764(1) 20(1) 

C(29) 7900(2) 266(1) -1161(1) 24(1) 

C(30) 9128(2) 446(1) -1258(1) 26(1) 

C(31) 9760(2) 953(1) -960(1) 25(1) 

C(32) 9166(2) 1277(1) -568(1) 23(1) 
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C(33) 7364(2) 2310(1) -6(1) 18(1) 

C(34) 6956(2) 2711(1) -409(1) 21(1) 

C(35) 6884(2) 3507(1) -402(1) 23(1) 

C(36) 7231(2) 3910(1) 8(1) 24(1) 

C(37) 7655(2) 3516(1) 407(1) 24(1) 

C(38) 7710(2) 2716(1) 402(1) 22(1) 

Table 3. Bond lengths [A] and angles C(l3)-C(l4) 1.402(3) 

[
0

] for 10. C(l4)-C(l5) 1.396(3) 

C(14)-H(14) 0.9500 

0(1)-C(1) 1.234(2) C( 15)-C( 16) 1.393(3) 

C(1)-C(6) 1.474(3) C(15)-H(15) 0.9500 

C(l)-C(2) 1.474(3) C( 16)-C( 17) 1.392(3) 

C(2)-C(3) 1.337(3) C(16)-H(16) 0.9500 

C(2)-H(2) 0.9500 C(17)-C(l8) 1.395(3) 

C(3)-C(4) 1.516(2) C(l7)-H(l7) 0.9500 

C(3)-H(3) 0.9500 C(18)-H(l8) 0.9500 

C(4)-C(5) 1.515(2) 0(2)-C(21) 1.231 (2) 

C(4)-C(7) 1.551(2) C(21)-C(22) 1.477(3) 

C(4)-C(l3) 1.552(2) C(21 )-C(26) 1.480(3) 

C(5)-C(6) 1.335(3) C(22)-C(23) 1.335(3) 

C(5)-H(5) 0.9500 C(22)-H(22) 0.9500 

C(6)-H(6) 0.9500 C(23)-C(24) 1.517(2) 

C(7)-C(12) 1.394(3) C(23)-H(23) 0.9500 

C(7)-C(8) 1.401(3) C(24 )-C(25) 1.519(2) 

C(8)-C(9) 1.399(3) C(24 )-C(27) 1.551(2) 

C(8)-H(8) 0.9500 C(24)-C(33) 1.552(2) 

C(9)-C(10) 1.392(3) C(25)-C(26) 1.335(3) 

C(9)-H(9) 0.9500 C(25)-H(25) 0.9500 

C(10)-C(11) 1.387(3) C(26)-H(26) 0.9500 

C(10)-H(10) 0.9500 C(27)-C(28) 1.395(2) 

C(11)-C(12) 1.395(3) C(27)-C(32) 1.405(3) 

C(11)-H(l1) 0.9500 C(28)-C(29) 1.397(3) 

C(l2)-H(l2) 0.9500 C(28)-H(28) 0.9500 

C(l3)-C(l8) 1.396(3) C(29)-C(30) 1.390(3) 
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C(29)-H(29) 0.9500 C(l)-C(6)-H(6) 119.1 

C(30)-C(31) 1.394(3) C(12)-C(7)-C(8) 118.56(17) 

C(30)-H(30) 0.9500 C(12)-C(7)-C(4) 120.83(16) 

C(31)-C(32) 1.389(3) C(8)-C(7)-C( 4) 120.44(16) 

C(31)-H(31) 0.9500 C(9)-C(8)-C(7) 120.50(18) 

C(32)-H(32) 0.9500 C(9)-C(8)-H(8) 119.7 

C(33)-C(38) 1.395(3) C(7)-C(8)-H(8) 119.7 

C(33)-C(34) 1.397(3) C(10)-C(9)-C(8) 120.38(18) 

C(34 )-C(35) 1.394(3) C(10)-C(9)-H(9) 119.8 

C(34)-H(34) 0.9500 C(8)-C(9)-H(9) 119.8 

C(35)-C(36) 1.395(3) C(l1)-C(10)-C(9) 119.18(18) 

C(35)-H(35) 0.9500 C(11)-C(10)-H(10) 120.4 

C(36)-C(37) 1.388(3) C(9)-C(l0)-H(10) 120.4 

C(36)-H(36) 0.9500 C(10)-C(l1)-C(l2) 120.65(18) 

C(37)-C(38) 1.399(3) C(l0)-C(ll)-H(11) 119.7 

C(37)-H(37) 0.9500 C(12)-C(l1)-H(l1) 119.7 

C(38)-H(38) 0.9500 C(7)-C( 12)-C( 11) 120.70(18) 

C(7)-C(l2)-H(12) 119.6 

0(1)-C(l)-C(6) 121.65(18) C(l1)-C(l2)-H(l2) 119.6 

0( 1 )-C( 1 )-C(2) 121.86(18) C(18)-C(13)-C(l4) 118.71(17) 

C( 6)-C( 1 )-C(2) 116.49(16) C(18)-C(l3)-C(4) 119.49(16) 

C(3)-C(2)-C( 1) 121.76(17) C(l4 )-C(l3 )-C( 4) 121.71(16) 

C(3)-C(2)-H(2) 119.1 C(l5)-C(l4)-C(l3) 120.24(18) 

C(1)-C(2)-H(2) 119.1 C(15)-C(l4)-H(l4) 119.9 

C(2)-C(3)-C(4) 123.90(16) C(13)-C(l4)-H(14) 119.9 

C(2)-C(3)-H(3) 118.0 C(16)-C(l5)-C(14) 120.54(18) 

C(4)-C(3)-H(3) 118.0 C(16)-C(l5)-H(l5) 119.7 

C(5)-C(4)-C(3) 111.82(15) C(l4)-C(l5)-H(15) 119.7 

C( 5)-C( 4 )-C(7) 104.93(14) C(l7)-C(16)-C(l5) 119.44(18) 

C(3 )-C( 4 )-C(7) 110.85(14) C(17)-C(16)-H(16) 120.3 

C(5)-C(4)-C(l3) 109.92(14) C(l5)-C(l6)-H(l6) 120.3 

C(3)-C(4)-C(l3) 106.25(14) C( 16)-C( 17)-C(l8) 120.11(18) 

C(7)-C( 4 )-C( 13) 113.19(14) C(l6)-C(l7)-H(l7) 119.9 

C(6)-C(5)-C(4) 124.00(17) C( 18)-C( 17)-H( 17) 119.9 

C(6)-C(5)-H(5) 118.0 C(17)-C(l8)-C(l3) 120.93(18) 

C( 4 )-C( 5)-H( 5) 118.0 C(l7)-C(18)-H(l8) 119.5 

C( 5)-C( 6)-C( 1) 121.80(17) C(13)-C(l8)-H(18) 119.5 

C( 5)-C( 6)-H( 6) 119.1 0(2)-C(21)-C(22) 121.98(17) 
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0(2)-C(21 )-C(26) 122.09(18) C(29)-C(30)-H(30) 120.2 

C(22)-C(21 )-C(26) 115.94(16) C(31)-C(30)-H(30) 120.2 

C(23 )-C(22)-C(21) 122.06(17) C(32)-C(31 )-C(30) 120.33(18) 

C(23)-C(22)-H(22) 119.0 C(32)-C(31)-H(31) 119.8 

C(21 )-C(22)-H(22) 119.0 C(30)-C(31 )-H(31) 119.8 

C(22)-C(23)-C(24) 124.35(17) C(31 )-C(32)-C(27) 120.44(17) 

C(22)-C(23 )-H(23) 117.8 C(31)-C(32)-H(32) 119.8 

C(24 )-C(23 )-H(23) 117.8 C(27)-C(32)-H(32) 119.8 

C(23 )-C(24 )-C(25) 111.31(15) C(38)-C(33)-C(34) 119.16(16) 

C(23 )-C(24 )-C(27) 111.66(14) C(38)-C(33)-C(24) 121.34(16) 

C(25)-C(24 )-C(27) 106.00(14) C(34 )-C(33 )-C(24) 119.28(16) 

C(23 )-C(24 )-C(33) 105.17(14) C(35)-C(34 )-C(3 3) 120.46(17) 

C(25)-C(24 )-C(33) 111.65(14) C(35)-C(34 )-H(34) 119.8 

C(27)-C(24 )-C(33) 111.18(14) C(33)-C(34)-H(34) 119.8 

C(26)-C(25)-C(24) 124.30(17) C(34 )-C(35)-C(36) 120.07(18) 

C(26)-C(25)-H(25) 117.9 C(34 )-C(3 5)-H(3 5) 120.0 

C(24 )-C(25)-H(25) 117.9 C(36)-C(3 5)-H(3 5) 120.0 

C(25)-C(26)-C(21) 121.93(17) C(3 7)-C(36)-C(3 5) 119.81(17) 

C(25)-C(26)-H(26) 119.0 C(37)-C(36)-H(36) 120.1 

C(21)-C(26)-H(26) 119.0 C(35)-C(36)-H(36) 120.1 

C(28)-C(27)-C(32) 118.91(17) C(36)-C(37)-C(38) 120.08(18) 

C(28)-C(27)-C(24) 121.65(16) C(36)-C(37)-H(37) 120.0 

C(32)-C(27)-C(24) 119.40(16) C(38)-C(37)-H(37) 120.0 

C(27)-C(28)-C(29) 120.40(17) C(33)-C(38)-C(37) 120.39(17) 

C(27)-C(28)-H(28) 119.8 C(33)-C(38)-H(38) 119.8 

C(29)-C(28)-H(28) 119.8 C(3 7)-C(3 8)-H(38) 119.8 

C(30)-C(29)-C(28) 120.33(18) 

C(30)-C(29)-H(29) 119.8 Symmetry transformations used to 

C(28)-C(29)-H(29) 119.8 generate equivalent atoms: 

C(29)-C(30)-C(31) 119.58(18) 
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Table 4. Anisotropic displacement parameters (A2x 103) for 10. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2ull + ... + 2 h k a* b* u12] 

u11 u22 u33 u23 ul3 u12 

0(1) 21(1) 34(1) 39(1) 1(1) 1(1) -6(1) 

C(l) 16(1) 19(1) 29(1) 3(1) -3(1) 3(1) 

C(2) 21(1) 23(1) 18(1) 1(1) 3(1) 4(1) 

C(3) 22(1) 16(1) 18(1) -2(1) -3(1) 2(1) 

C(4) 18(1) 16(1) 17(1) -1(1) 0(1) 1(1) 

C(5) 22(1) 18(1) 17(1) -1(1) -2(1) 4(1) 

C(6) 23(1) 19(1) 23(1) -2(1) -7(1) 1(1) 

C(7) 20(1) 18(1) 18(1) 0(1) -4(1) -1(1) 

C(8) 22(1) 27(1) 22(1) 2(1) 2(1) 4(1) 

C(9) 24(1) 34(1) 22(1) 6(1) 0(1) -3(1) 

C(lO) 30(1) 26(1) 28(1) 7(1) -4(1) -2(1) 

C(11) 32(1) 24(1) 30(1) 2(1) -1(1) 8(1) 

C(12) 23(1) 24(1) 24(1) 1(1) 1(1) 2(1) 

C(13) 17(1) 23(1) 15(1) -1(1) 2(1) 1(1) 

C(14) 23(1) 23(1) 20(1) -3(1) 1(1) -1(1) 

C(15) 19(1) 35(1) 21(1) -4(1) -1(1) -5(1) 

C(16) 19(1) 40(1) 17(1) 0(1) 0(1) 7(1) 

C(17) 26(1) 26(1) 19(1) 3(1) 1(1) 5(1) 

C(18) 23(1) 21(1) 20(1) 0(1) 1(1) -1(1) 

0(2) 34(1) 27(1) 25(1) 4(1) 3(1) -8(1) 

C(21) 26(1) 15(1) 19(1) -5(1) 3(1) -3(1) 

C(22) 18(1) 18(1) 23(1) -4(1) 1(1) -2(1) 

C(23) 19(1) 17(1) 21(1) -3(1) -3(1) 1(1) 

C(24) 19(1) 15(1) 18(1) 0(1) -1(1) -1(1) 

C(25) 17(1) 18(1) 23(1) -4(1) -2(1) 0(1) 

C(26) 23(1) 18(1) 21(1) -1(1) -4(1) 2(1) 

C(27) 21(1) 15(1) 19(1) 2(1) -2(1) 2(1) 

C(28) 22(1) 16(1) 23(1) 2(1) -1(1) -3(1) 

C(29) 33(1) 17(1) 22(1) -1(1) -2(1) -2(1) 

C(30) 34(1) 21(1) 22(1) -1(1) 4(1) 5(1) 

C(31) 22(1) 24(1) 28(1) 3(1) 3(1) 1(1) 

C(32) 22(1) 23(1) 23(1) -2(1) -4(1) -3(1) 

C(33) 16(1) 16(1) 22(1) -2(1) 2(1) -1(1) 
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C(34) 24(1) 19(1) 19(1) -3(1) 1(1) 0(1) 

C(35) 25(1) 20(1) 22(1) 4(1) 4(1) 1(1) 

C(36) 26(1) 16(1) 28(1) 0(1) 7(1) -2(1) 

C(37) 27(1) 22(1) 24(1) -6(1) 2(1) -4(1) 

C(38) 22(1) 24(1) 20(1) 2(1) -1(1) -3(1) 

Table 5. Hydrogen coordinates ( X 104) and isotropic displacement parameters cA2x 

10 3) for 10. 

X y z U(eq) 

H(2) 5476 2085 1082 29(6) 

H(3) 3688 1478 1242 25(5) 

H(5) 3482 2632 2553 21(5) 

H(6) 5343 3158 2412 31(6) 

H(8) 1833 1485 2677 29(6) 

H(9) 1827 369 3142 31(6) 

H(10) 3257 -611 2987 40(7) 

H(11) 4678 -470 2362 39(7) 

H(12) 4659 628 1885 24(5) 

H(14) 1110 1181 1748 30(6) 

H(15) -819 1654 1505 27(6) 

H(l6) -1112 2971 1393 32(6) 

H(17) 557 3812 1505 37(6) 

H(18) 2482 3343 1751 26(6) 

H(22) 4555 734 361 15(5) 

H(23) 5423 1410 -231 19(5) 

H(25) 8876 1195 439 19(5) 

H(26) 8018 440 996 25(5) 

H(28) 6464 454 -699 22(5) 

H(29) 7464 -75 -1366 23(5) 

H(30) 9535 226 -1526 32(6) 

H(31) 10600 1077 -1025 21(5) 

H(32) 9600 1627 -369 24(5) 

H(34) 6725 2439 -690 23(5) 

H(35) 6598 3776 -676 30(6) 

H(36) 7177 4453 14 29(6) 

H(37) 7908 3790 684 20(5) 

H(38) 7986 2449 678 25(6) 
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Ap}P~IDlcrllliX{ JD~ C®1·Inllt~Ir®IDlEC®§ ~niDI C@.tl.iJr§~§ 

Attenderll 

Meeting, Conferences and Courses: 

Date Title 

12th November 1997 

15th November 1997 

sth- gth April 1998 

BCA Autumn Meeting, University of Bristol. 

'Disorder, Twinning and Incommensurate Structures.' 

Scottish Protein Structure Group, University of Edinburgh. 

BCA Spring Meeting, University of St Andrews. 

Presented Poster - A Study of the Crystal Structure and 

Hydrogen Bonding Patterns of Nhmpa and Dicarba-Closo­

Dodecarborane. 

9th April 1998 (last day only) RSC Meeting, Durham 

13th May 1998 MSI (Life Sciences), MSI Cambridge 

181h Nov.l998 BCA Autumn Meeting, ISIS, Didcot. 

'Neutrons for Structural Chemistry.' 

BCA School, University of Durham. 

'Seventh Intensive Course in X-Ray Structural Analysis.' 

Crystal Engineering school, Erice, Sicily. 

'Crystal Engineering: From Molecules and Crystals to 

Materials.' 

Presented Poster - C-H ... 7t Mediated Host-Guest Interactions 

in Organic Adducts. 
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4th- 131h August 1999 

1 ih November 1999 
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IUCr Congress, Glasgow. 

Presented Poster- Unusual C-H .. . n Hydrogen Bonding. 

BCA Autumn Meeting, University of Manchester. 

'Molecular Geometry using Methods Complementary to 

Crystallography' 

27th Febuary- 6th April 2000 Hercules Course, Grenoble, France. 

6th- 9th April 2000 

11th -1 ih May 2000 

15th November 2000 

28th March 2001 

ih- l01h April 2001 

23rct May- 3rct June 2001 

141h November 2001 

Higher European Research Course for Users of Large 

Experimental Systems, lOth session, Neutron and Synchrotron 

Radiation for Physics and Chemistry of Condensed Matter.' 

Presented Poster - A neutron diffraction study of the 1:1 

complex of 2,4,6-ttis-( 4-chlorophenoxy)-1 ,3,5-triazine with 

tribromobenzene. 

10 years of Hercules meeting, Grenoble, France. 

Metallo-Organic Workshop, CCDC, Cambridge. 

BCA Autumn Meeting, Glaxo Smith-Kiine, Harlow. 

'Computational Methods' 

CCDC Student Day, CCDC, Cambridge. 

Presented Talk - Bifurcation of Hydrogen Bonds in Organic 

Molecules. 

BCA Spring Meeting, Reading 

Presented Poster - Bifurcation of Hydrogen Bonds in Organic 

Molecules. 

Crystal Engineering School, Erice, Sicily. 

'Strength from Weakness.' 

Presented Poster - Bifurcation of Hydrogen Bonds in Organic 

Molecules. 

BCA Autumn Meeting, University of Aston, Birmingham. 

'Mesomolecular Crystallography' 
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Departmental Seminars: 

Date Title 
gth October 1997 Advances in Control Of Architecture for 

Polyamides 

15th October 1997 

22rct October 1997 

Studying Catalysts in Action 

Organoplatinum Chemistry and Catalysis 

Speaker 

Prof. E. Atkins 

Dr. R.M.Ormerod 

Prof. R.J. 
Puddephatt 

23rd October 1997 New Tetrathiafulvalene Derivatives in Molecular, Prof. M.R.Bryce 
Supramolecular and Macromolecular Chemistry 

27th October 1997 Silyl Complexes of Rutheium and Osminum 

20th November 1997 Polynuclear Metal Complexes 

26th November 1997 A Random Walk in Polymer Science 

3rct December 1997 Steroid-based frameworks for Supramolecular 
Chemistry 

Prof. W.Roper 

Dr. L Spiccia 

Prof. R.W.Richards 

Prof. A.P.Davis 

gth January 1998 Control of Structure and Dimensionality in mixed Ian Williams 
organic-inorganic solids 

21st January 1998 

4th February 1998 

24th February 1998 

18th March 1998 

20th March 1998 

20th March 1998 

15th May 1998 

Aspects of Metal and Carbon Based Chemistry Prof. D.Cardin 

Classical and Non-Classical Fullerenes Prof. P.Fowler 

Synthesis and folding of Proteins Prof. R.Ramage 

Negative thermal expansion Dr. J.Evans 

Chemical Information Hidden in Charge Density Dr. Paul Popelier 

Buster Program Dr. Pietro Roversi 

Recrystallisation using gel methods Dr. M. Leech 

9th October 1998 Carboranes exploitation of their unusual geometry Prof. M.F. 
and reactivities 

9th October 1998 Carboranes, exploitation of there unusual 
geometry and reactivities. 

21st October 1998 Dynamic Electrochemistry: Small is beautiful. 

26th October 1998 Reactions of the Highly electrophilic Boranes 
HB(CGFs)z and B(C6F5h with Zirconium and 
Tantalum based metallocenes. 

4th November 1998 Computational adventures in d and f element 
chemistry. 

1ih November 1998 From Macrocycles to Metallo-Supramolecular 
Chemistry. 

20th January 1999 Luminescence of Large Molecules: From 
Conducting Polymers to Coral Reefs 

Hawthorn 

Prof. M.F. 
Hawthorne 

Prof. P.Unwin 

Dr. W. Peirs 

Dr. N. 
Kaltscoyannis 

Prof. S.Loeb 

Dr. A.Jones 
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27th January 1999 NMR Characterisation of multi-phase fluid Prof. K.J.Packer 
transport in porous solids 

lOth March 1999 Designing model magnetic materials Dr. A. Harrison 

1th October 1999 Chocolate for the Next Millennium Dr. S. Beckett 

20th October 1999 Aspects of Complexation and Supramolecular Prof. S. Lincoln 
Chemistry 

3rd November 1999 The Strengths of C-C and C-H bonds in Organic Prof. D. W. Smith 
and Organometallic Molecules: Empirical, Semi-
empirical and Ab Initio Calculations 

24th November 1999 Atomic and Molecular Control of Inorganic and Prof. T. Jones 
Organic Semiconductor Thin Films 

26th November 1999 Fast Screening ofPolymorphs Dr. C. Lehmann 

1th January 2000 Atom Transfer Polymerisation- What is the Prof. D. Haddleton 
Hype All About? 

2nd February 2000 Protons in Motion? Neutron Diffraction Studies Dr. C. C. Wilson 
of Hydrogen Atoms in Organic Crystal Structures 

16th February 2000 Asymmetric Synthesis Using Planar Chiral TT- Prof. Kocienski 
Allyl Cationic Complexes 

11th October 2000 Recent Developments on Organic LED Dr. V. Christou 
Technology: Organolanthanide Phosphors 

gth November 2000 Cosmic: an unusual, DNA-Based Language for Dr. J.P.L. Cox 
communicating with aliens and other intelligent 
lifeforms 

22nd November 2000 Synthesis of Novel Dendrimers and Hyper 
Branched Polymers 

2nd May 2001 

21st February 2001 

Escapades with Arenes and Transition Metals: 
From Lasers Spectroscopy to Synthetic 
Applications 

Liquid Crystals of all Shapes and Sizes 

Dr. W. Hayes 

Prof. R. Perutz 

Prof. R. Richardson 

28th February 2001 Modelling Meso and Molecular Scale Interactions Prof. A. Balazs 
in Polymer Systems 

14th March 2001 Probing Structural Disorder with Diffuse Neutron Dr. D. Keen 
Scattering 

6th June 2001 The Melting Point Temperature Alternation of n- Prof. R. Boese 
Alkenes and Derivatives 
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