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Abstract 

This thesis splits into two parts. In the first part we introduce a bosonic con­

struction of the ten-dimensional fermionic theories. This construction relies on a 

consistent truncation procedure which can produce fermions out of bosons. We il­

lustrate this truncation procedure in the case of type 11 superstring theories, which 

emerge as the truncation of the 26-dimensional closed bosonic string theory com­

pactified on the weight lattice of E8 x E8 . The same truncation procedure can be 

applied to the unoriented bosonic string theory compactified on the above lattice 

and produces the type I superstring theory with the Chan-Paton gauge group re­

duced from 80(2 13
) to 80(32). We also demonstrate that the BPS D-branes in 

Type I theory can be obtained from the bosonic D-branes wrapping on the above 

lattice by using the technique of Boundary Conformal Field Theory. 

In the second part, we construct new four-dimensional configurations of oppo­

sitely charged static black hole pairs (diholes) which are solutions of the low-energy 

effective action of string theories. The black holes are extremal and carry four differ­

ent charges. We also generalize the dihole solution to a theory which has an arbitrary 

number of abelian gauge fields and scalars where the diholes are composite objects. 

We uplift the dihole solutions to higher dimensions in order to describe intersecting 

brane-anti-brane configurations in string theory. The properties of the strings and 

membranes stretched between the brane and anti-brane are discussed. 
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Chapter 1 

Introduction 

In an attempt to explain the quantum theory of gravity, superstring theory seems 

to be the most promising candidate. Moreover, it was proposed as a theory that 

could unify all interactions present in nature. 

Over the last few years string theorists have made a lot of major advances in 

the subject [1, 2]. One example is the string dualities conjecture which identifies 

the distinct superstring theories as different corners on the moduli space of a unique 

theory, so-called M-theory. However, the bosonic string theory is not included in the 

web of dualities. One could argue it is because the bosonic string has tachyons and no 

space-time fermions in its perturbative spectrum. However, these feature are shared 

by the type OA string theory which has recently found its place in the M-theory 

family [3]. It therefore seems a good idea to investigate a potential connection of 

bosonic string with M-theory. In the "old" string theory, there has been a suggestion 

that superstrings are in fact hidden in the Hilbert space of the bosonic string theory. 

This conjecture is the main discussion of this thesis. 

1.1 Non=BPS states and brane-anti-brane system 

String duality is an equivalence map between two different string theories. In general, 

this equivalence map relates the weakly coupled region of one theory to the strongly 

coupled region of another theory or vice versa. The strong/weak duality is rather 

difficult to test clue to the lack of knowledge of the strong coupling regime of string 
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theory. Thus, supersymmetry is called to our rescue. If the two theories are dual 

to each other, we expect the low-energy limit of the two theories to be equivalence. 

The low-energy actions involve the massless spectrum which is completely fixed 

by supersymmetry and not affected by string loop corrections. Other evidence for 

duality relies on a special class of states called BPS-states. Since the BPS-states are 

stable as they are protected by supersymmetry, we expect them to survive in the 

strong coupling limit. 

However, most states in the spectrum of superstring they are non-BPS. With­

out taking into account these non-extremal states, the proof of dualities cannot be 

complete. Following this idea, Sen proposed a test of dualities beyond BPS-level by 

studying the strong/weak duality between the 50(32) heterotic string and Type I 

string theory. His argument is based on the fact that the 50(32) spinor particles in 

the heterotic string spectrum are non-BPS and stable. Sen identified these spinor 

particles with the non-BPS DO-branes in Type I theory [4]. 

A DO-brane is a soliton of the D-string-anti-D-string pair. This system exhibits 

an open string tachyon as the string stretching between brane and anti-brane has 

the "wrong" GSO-projection. This tachyon has an effective potential which contains 

a "false vacuum" which signals that the system is unstable. Sen demonstrated that 

tachyons can condensate in a non-trivial way where the tachyon configuration can 

be interpreted as a localized particle which he called a non-BPS DO-brane. Sen then 

identified this particle with the 50(32) spinor particles of the heterotic string. Thus 

a non-BPS proof of string dualities does exist. 

Inspired by Sen's conjecture, we might expect the tachyon in bosonic string to 

condensate to its true vacuum ( if any such vacuum exists ). There was a conjecture 

in [5], that such condensation might produce the superstring theory. However, this 

still remains pure speculation. 

1.2 Fermions from bosons 

Before we go further, let us discuss the relation between bosons and fermions. In 

two-dimensional Quantum Field Theory, fermions and bosons are closely related. ~1e 
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can construct fermions from purely bosonic degrees of freedom by the "bosonizaton" 

method. More precisely, fermions are coherent states of bosons and there seems to 

be two different descriptions of the same thing. Then such an equivalence should 

be possible a priori depends on the fact that spin is not defined in two dimensions. 

The equivalence of bosonic and fermionic two-dimensional systems has been well­

known for a long time. To our knowledge, it was Schwinger who first noticed it 

in the context of Quantum Electrodynamics (QED) [6]. He found that massless 

QED is equivalent to a massive free scalar field theory in two-dimensional space­

time. The bosonization idea became increasingly popular a decade later, when 

Coleman made the remarkable discovery that the quantum solitons in the Sine­

Cordon model are in fact fermions of the Thirring model [7]. Coleman's conjecture 

has been further developed by Dashen, et al., Mandelstam and others. Since then 

bosonization has become an important technique in Conformal Field Theory and 

Statistical Mechanics. 

In string theory, we can apply the bosonization on world-sheet coordinates. An 

important example is the fermionic construction of the heterotic string. \Ne replace 

the internal bosonic degrees of freedom compactified on a 16-dimensional torus by 

32 world-sheet (bosonized) fermionic degrees of freedom 1 . However, this procedure 

cannot produce space-time fermions. We need to find another mechanism which can 

provide space-time fermions from bosonic degrees of freedom. 

Jackiw and Rebbi, Hasenfratz and 't Hooft, and Goldhaber [8] showed that 

fermionic degrees of freedom can emerge from the bosonic configuration of a 3+ 1 

dimensional SU(2) gauge theory. More precisely, the bound state of an SU(2) 't 

Hooft-Polyakov monopole with a scalar particle that transforms in the fundamental 

of SU(2) is a fermionic state. As 't Hooft and Hasenfratz demonstrated that the 

spin quantum number of such bound state depends on the isospin of the fundamen­

tal particle, a particle in a half integer representation will have spin half integer. 

Therefore, it is a space-time fermion. 

Nearly twenty years ago, Casher, Englert, Nicolai and Taormina [9], generalized 

1 This process is sometimes referred to as "fermionization" in the literature as it is the reverse 

procedure of bosonization. 
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the 't Hooft-Hasenfratz mechanism to the bosonic string theory. They suggested 

that the ten-dimensional superstring theories (Type IIA/B and the two heterotic 

strings) are indeed hidden in the closed bosonic string spectrum. The emergence 

of space-time fermions and of supersymmetry from the bosonic string, anticipated 

by Freund [10], is a remarkable phenomenon. The authors in [9] demonstrated 

that by toroidally compactifying the closed bosonic string theory on the E8 x E8 

group lattice one can produce the spectrum of Type IIA/B superstring. The bosonic 

spectrum must be truncated in an appropriated way which guarantees the modular 

invariance of the resulting theory. The truncated theory has a new Lorentz group 

whose transverse part is diag(S0(8)trans 0 S0(8)int)· We refer to S0(8)trans as 

the subgroup of the transverse bosonic Lorentz group S0(24)trans and S0(8)int 

as a regular subgroup of S0(16) C E8 . The adjoint representations of E 8 x E8 

(E8 x S0(16)) will give the spinor representation of the new Lorentz group. We will 

discuss more about this subject in Chapter 3. 

1.3 Layout of this thesis 

This thesis has five chapters in total. After the introduction and historical review 

in this chapter, we briefly survey the essential background material in Chapter 2. 

Then, we present our results in Chapters 3 and 4. Finally, we discuss our results in 

the last chapter. 

The aim of Chapter 2 is to give an introduction to the theory of string and 

D-branes. Accordingly, this chapter contains a brief review of the light-cone quan­

tization of the bosonic string in Section 2.1, and Section 2.3 contains a very brief 

review of the Neveu-Schwarz-Ramond superstring theory and its low energy effective 

action. (In Chapter 3, we will focus more on its bosonic construction.) In Section 

2.2, we go on to discuss the four vacuum amplitudes of unoriented bosonic theory, 

namely, the torus, the Klein-bottle, the annulus and the Mobius amplitude. vVe 

will use this information to construct the open descendants of the bosonic closed 

states in Chapter 3. In the last section of this chapter, we review how to calculate a 

p-brane solution from the supergravity action and introduce the harmonic function 



1.3. Layout of this thesis 5 

rule. 

In Chapter 3 we review the toroidal compactification of bosonic string on a 

particular class of Lie group lattices called Englert-Neveu lattices. In Section 3.3 

we construct the consistent open string theory compactified on such lattice by using 

the boundary conformal technique of Sagnotti in [11]. The results in this section 

have appeared before in Englert, Houart and Taormina [12]. Although, we used a 

different approach, we have no claim of originality in presenting them. In Section 3.4 

we summarise the rules for the truncation procedure and introduce the corresponding 

(bosonized) fermionic operators. The result in Section 3.5 is new. Motivated by the 

results in [12] namely that the type I superstring can be obtained by the truncation of 

open and closed bosonic string theory, we show the evidence that the BPS D-branes 

of Type I can emerge from the truncation of wrapped bosonic D-brane. 

The results in Chapter 4 are published in [13] with Emparan and Taormina. In 

Section 4.2 we review the solution for single charge diholes discovered by Emparan 

[14]. The dihole is a pair of oppositely charge extremal black hole in four dimensions. 

Then in Section 4.3, we construct a new exact solution of four-dimensional General 

Relativity describing oppositely charged, static black hole pairs, where the black 

holes are extremal and have an arbitrary number of different charges. We conclude 

that our solution describes composite of diholes. In Section 4.4, we uplift the solution 

in 4.3 to ten and eleven dimensions and interpret them as systems of intersecting 

brane and intersecting anti-brane configurations. Motivated by the works of Sen 

in [15], in Section 4.4.2, we attempt to test the connections between supergravity 

solutions and non BPS states described by brane-anti-brane type of configurations. 



Chapter 2 

Background in Strings and 

n .... branes 

The aim of this chapter is to provide the necessary background for Chapters 3 and 

4. We will briefly review the theory of bosonic strings, superstrings and D-branes. 

Therefore the material in this chapter is by no means original. The main references 

we have used are [1, 2] (for Sections 2.1 and 2.3), [11] (for Section 2.2) and [16, 17] 

(for Section 2.4). 

2.1 Bosonic String 

Let us start with the bosonic string theory in a D-dimensional Minkowski space­

time. We can write the corresponding Polyakov action as [18] 

where 'rltw is the space-time metric with mostly negative signature, (1, -1, ... , -1), 

and the world-sheet surface, I:, is described by the coordinates ( e' e) = (a, T). The 

second term in (2.1) is proportional to the Euler characteristic, XEuler, of the world­

sheet surface. It is a topological invariant and does not affect the dynamics of the 

string. The perturbative expansion of the theory is suppressed by the factor g;xEuler, 

where the string coupling constant Ys is determined by the vacuum expectation value 

of the dilaton field c/J, namely, Ys = e(<P). In this thesis, in particular in Chapter 3, we 

6 
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will consider the unoriented closed string theory which also contains an unoriented 

open string sector in its spectrum. In this case the world-sheet is a Riemann surface 

with Euler characteristic 

X = ~ J d2
0" r=-;;; R = 2- 2h- b- c Euler 47r V -· r ' (2.2) 

where h, b and c respectively represent the number of handles, boundaries and 

crosscaps of the Riemann surface I:. The spectrum of the unoriented string the­

ory is encoded in the four vacuum amplitudes with vanishing Euler characteristic: 

torus, Klein bottle, annulus and Mobius strip. After quantizing the theory, we will 

determine these four vacuum amplitudes in Section (2.2). 

2.1.1 Covariant gauge and equations of motion 

The action (2.1) has local world-sheet reparametrization invariance and global D­

dimensional space-time Poincare invariance. Moreover, at least in the classical the­

ory, the action has a local vVeyl scaling invariance. Note that the latter is not 

included in the world-sheet reparametrization invariance. Conformal symmetry is 

purely accidental and does not manifest itself in higher dimensional extended ob­

jects such as membranes. As in gauge theory, the physical degrees of freedom are 

fewer than those appearing in the action. We can reduce the degrees of freedom due 

to the world-sheet reparametrization invariance and conformal symmetry by fixing 

a gauge. The first symmetry can be used to reduce the world-sheet metric "Yaf3 of 

signature ( +,-) from three independent components to one degree of freedom i.e. 

the metric becomes "Yaf3 = A(0TJaf3 where TJ = diag(1, -1). This choice of gauge is 

called conformal gauge. An unknown conformal factor A(~) can be dropped from the 

classical action (2.1). We can simplify the metric further by exploiting the conformal 

symmetry. This choice of gauge is the covariant gauge and the metric is simply 

"Y a{3 = Tfa{3 · (2.3) 

By using the Euler-Lagrange equations, we can derive the equations of motion as 

(2.4) 
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that reduces to the one-dimensional wave equation in the covariant gauge. In addi­

tion to the equations of motion, we also get the constraint equations 

(2.5) 

where To:/3 can be interpreted as the energy-momentum tensor for a two-dimensional 

field theory of D free scalar fields X J-L. 

Before moving on to quantize the theory, we consider the general solution of 

(2.4) for closed and open strings. For the closed string, the world-sheet coordinate 

a is identified with a + 1r. The solution to the string equations of motion can be 

separated into right movers X~ and left movers Xf, in a way consistent with the 

periodic boundary conditions, namely, 

(2.6) 

where 

xt (2.7) 

The dynamics of the closed string is described by qJ-L and pJ-L = J'F, a 0 = J'F, a0 

where qJ-L is equally distributed between Xf(T +a) and X~(T- a) while the oscil­

lations of the string are described by the oscillators a~ and a~. 

For open strings, we take 0 :::; a :::; 1r. The requirement of the action ( 2.1) to be 

stationary still gives us the equations of motion (2.4) but in addition it implies the 

fields must satisfy appropriate boundary conditions. More precisely, oS = 0 implies 

that the boundary term vanishes i.e. 

(2.8) 

To satisfy (2.8), we can choose either Neumann boundary cow.litions a(JXJ-L = 0 at 

a = 0, 1r which preserve the Poincare symmetry or Dirichlet boundary conditions 

oXJ-L = 0 at a = 0, 1r which imply the endpoints of the open string are fixed in 

the {~-direction. These boundary conditions can be chosen independently for each 
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component of XJ.L. For example, we can choose an open string with one of its 

end points constrained to a (p + 1 )-dimensional hyperplane i.e. X>.. la=o= x>.., for 

). = p + 1, ... , D and another endpoint confined on a (D - p + 1)-dimensional 

hyperplane xv la=7r= yv for v = 1, ... , p. 

A remark is in order here. When the Dirichlet boundary conditions are in­

troduced, the Poincare symmetry is broken. The hyperplanes which confine the 

endpoints of an open string are called Dirichlet-branes or "D-branes". These ob­

jects play an important role in string theory and in this thesis, as we will discuss in 

detail in the following section. Here we consider only the open string with Neumann 

boundary condition at both endpoints, and we call it a (NN)-string. 

In the case of open strings, the left- and right-mover oscillator terms are related 

by the boundary conditions (2.8), thus a separation into left- and right-movers is 

not useful. The solution for the equations of motion for the (NN)-string is given by 

v'2(j . 
XJ.L = qJ.L + 2a' pJ.LT + i L----a~ e-mT cos(na) . 

n 
n,tO 

2.1.2 Light-cone quantization 

(2.9) 

Although we have chosen the covariant gauge (2.3), not all the gauge freedom has 

been removed and we can impose a further gauge condition that reduces the number 

of components of XJ.L and leaves only the physical dynamical degrees of freedom. The 

procedure is analogous to the light-cone formulation of Electrodynamics. Vve start 

by defining the light-cone coordinates 

(2.10) 

The residual gauge invariance can be used to identify the target-space coordinate 

x+ and world-sheet time T, and to remove all oscillators in x+, so that 

(2.11) 

where q+ and p+ are constant. The coordinate x- can now be written in terms 

of transverse coordinates X 1 , ... , xD-2 . By substituting (2.11) into the constraint 

equation (2.5), we obtain 

(2.12) 
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and their zero-modes can be written in more useful form as 

+ - 2 ( - ) 2p p = a' Lo + L0 - 2a , (2.13) 

where 

(2.14) 

is the zero-mode of the transverse Virasoro operators Lm = ~ L : a~_na~ :, which 
nEZ 

satisfy the Virasoro algebra with central charge c = D - 2, 

(2.15) 

A similar expression holds for L0 . The factor a in (2.13), arising from the normal 

ordering ": · · · :" in L 0 and L0 , can be determined by using (-function regularization 

with ((s) = L~=l n-s, analytically continued to s = -1. We then obtain, 

D-2 
a= ---((-1) 

2 

The mass-shell condition is defined by 

D-2 

24 
(2.16) 

(2.17) 

where Nnc = L a~na;t and Nnc = L 0:~.,/:t:t are the number operators for left and 
n#O n#O 

right movers respectively. The subscript ne refer to "non-compact" dimensions, in 

anticipation of considerations to come on torus compactification. Equation (2.17) 

together with the level-matching condition L 0 = L0 define physical states for the 

closed string spectrum. The full spectrum of closed string theory can be constructed 

by acting with products of oscillators a~n and ii~n on ground states IO) L and ID) R 

for left and right movers respectively, and form the product of the right and left 

mover states. 

Only for the critical dimension D = 26, a = 1, are the first excited states 

massless. They describe a metric fluctuation htw, an antisymmetric tensor Btw' and 

the dilaton cjJ whose vacuum expectation value (cfJ) determines the string coupling 

constant .9s· The critical dimension also ensures the theory does not have any 

quantum anomalies spoiling the Lorentz invariance [1 J. 
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For the open string sector, a similar procedure can be considered. The mass-shell 

condition for open string is 

(2.18) 

where this time Nnc = 2.::: a~na:1 is referred to as an open string oscillator number 
nfoO 

operator. 

The biggest disadvantage of the bosonic string is the presence of tachyons in both 

open and closed sectors. This suggests that we are at risk to define the perturbation 

theory in a wrong vacuum. An interesting idea is that the tachyons could condense 

to the true vacuum and lead to a supersymmetric theory. Vve will discuss this 

possibility in Chapter 3. Unfortunately, although there has been a lot of progress in 

understanding tachyon condensation in open string theory recently [19], the closed 

string tachyon is still not manageable. 

2.2 Vacuum amplitude 

According to the formula (2.2), there are four surfaces with vanishing Euler charac­

teristic. The torus (h = 1, b = 0, c = 0), the Klein bottle (h = 0, b = 0, c = 2), the 

annulus (h = 0, b = 2, c = 0) and the Mobius strip (h = 0, b = 1, c = 1). 

1) Torus : ( h = 1, b = 0, c = 0) 

In general all of these surfaces can be mapped into the plane. Let us start with 

the torus which can be mapped into the parallelogram with opposite side identified 

by the arrow as shown in Figure 2.1. We can rescale the horizontal side to be of unit 

length, and thus the shape of the complex surface is controlled by the Teichmiiller 

parameter, T = T1 + iT2 . However, not all values ofT correspond to inequivalent 

tori. In fact, all values of T related by a transformation of the modular group 

SL(2, 7L)/7L2 describe equivalent tori. The modular group is generated by the two 

modular transformations: 

T: T -t T + 1, 
1 

S: T -t --, 
T 

(2.19) 
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Figure 2.1: A Torus surface (a) can be described as a periodic lattice (b) with the 

fundamental domain in (c). 

which satisfy the relation 5 2 = (ST) 3 in SL(2, Z). Consequently, the values ofT 

giving inequivalent tori lie in a fundamental region 

(2.20) 

as shown in Figure 2.l(c). 

2) Klein bottle : (h = 0, b = 0, c = 2) 

Let us consider the Klein bottle surface. This surface has two choices for the 

corresponding polygons shown in Figure 2.2 (b). The first polygon has horizontal 

sides of unit length with opposite orientations, while has vertical sides of length 

iT2 . The fundamental domain can be obtained from the doubly-covering torus of 

imaginary Teichmi.iller parameter 2iT2 , with the lattice transformation supplemented 

by the anti-conformal involution z ----+ 1 - z + iT2 . We refer to the world-sheet time 

r 2 as the ver-tical time. 

The second choice of polygon is obtained by doubling the vertical sides while 

halving the horizontal sides, thus leaving the area unchanged (the area with dark 
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(a) i 1;2 - .• 

',I 
I 

~~ 

(c) (b) 
1 

Figure 2.2: A Klein bottle surface. 

colour in Figure 2.2 (b)). The two vertical lines are identified as the two cross­

caps. The horizontal lines now have the same orientations and are identified as the 

horizontal time which describes closed strings propagating between two crosscaps 

(Figure 2.2 (c)). 

3) Annulus : (h = 0, b = 2, c = 0) 

The fundamental region of the annulus is obtained by horizontal doubly-covering 

torus as shown in Figure 2.3 (b). The original polygon has vertices at 1 and iT2 with 

the horizontal sides identified. The two vertical sides represent the two boundaries 

of the surface which are the fixed points of the lattice transformations and the 

involutions z ---+ -z and z ---+ 2- z. Thus we obtain the annulus from the doubly­

covering torus. The Teichmiiller parameter is again imaginary. The vertical time T2 

describes an open string propagating along the annulus. We can also consider the 

horizontal time which describes the exchange of closed string modes between two 

boundaries as shown in Figure 2.3 (c). 

4) Mobius strip : (h = 0, b = 1, c = 1) 

The .tvlobius strip has two choices of polygons as in Figure 2.4 (b). The first 

polygon has vertices at 1 and iT2 with the horizontal sides having opposite orien­

tations. We identify the parameter T2 as the vertical time which describes an open 
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- -- -

(a) 

- ... 
(c) 

- -1 
(b) 

Figure 2.3: An annulus surface. 

string propagating on the Mobius surface. The second choice of polygon is obtained 

by doubling the vertical sides and halving the horizontal sides. As a result, one of 

the two vertical side is a boundary, while the other is identified as a crosscap where 

points are identified by the involution z ----t 1 - z + iT2 . The horizontal time describes 

a closed string propagating between the boundary and the crosscap. 

(a) 

(c) (b) 

Figure 2.4: A Mobius strip. 

The fundamental region of the Mobius strip is obtained from the doubly-covering 

torus of Teichmiiller parameter T = iT2/2 + 1/2. The fact that T is not purely 

imaginary has some crucial effects. First, on the Klein bottle and annulus surfaces, 

the vertical and horizontal times are related by the modular S-transformation. On 

the other hand, on the Mobius strip, the two choices of times are related by the 
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P-transformation defined by 

1 . T2 1 . 1 
P: - + z- -t - + z-. 

2 2 2 2T2 
(2.21) 

The P-transformation can be written in terms of the S and T transformations as 

(2.22) 

and satisfies P 2 = S2 = (ST) 3
. Second, it leads to technical subtleties when calcu­

lating string amplitudes as will be investigated in the next section. 

2.2.1 Torus partition function 

Let us consider the one-loop vacuum amplitude for the oriented closed bosonic string 

theory. (We follow the discussion in [11].) Like in Quantum Field Theory, the 

vacuum amplitude in string theory can be determined from the path integral formula 

as 

VD loo dt ( -t !vf2) 
f =- 2(4x)D/2 t tD/2+1 tr e ' (2.23) 

where t is a Schwinger parameter and E is an ultraviolet cutoff. We define VD as 

the volume of space-time. For a closed bosonic string in 26-dimensional space-time, 

the mass square is given in (2.17). Moreover, we have to impose the level matching 

condition L 0 = L0 to eliminate the unphysical states. This can be done by adding 

ab-function to the above equation. The total amplitude reads 

1 ood 
f = _ V26 12 

ds J _!_ tr (e-ifr(Lo+Lo-2)te21J'i(Lo-Lo)s). 
2(4x)l3 -~ f tl4 

(2.24) 

Since £ 0 - L0 E Z has integer eigenvalues, the integral on s vanishes except at 

L 0 = L0 . The above amplitude could be modified into the more powerful form 

V 1! 1= dr- ( - ) _ 26 2 Lo-1-Lo-1 
r-- 2(4x2a')13 _! drl f ri4 tr q q ' 

2 

where we define the complex Schwinger parameter 

and the q-variables 

. . t 
T = Tt + ZT2 = S + Z-, 

a'x 

q _ e21J'iT 
-' ' 

- -2'1f'if q = e . 

(2.25) 

(2.26) 

(2.27) 
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At one-loop, the dynamics of closed strings is described by the torus amplitude, 

which the complex Schwinger parameter r being identified with the Teichmiiller 

parameter. The integration domain in (2.25) is restricted to a fundamental region 

of the modular group, :F = { - ~ < r1 ~ ~' lrl 2: 1 }, defined in Equation (2.20). 

This choice of domain introduces an effective ultraviolet cutoff of the order of the 

string scale for all string modes. Thus, after rescaling, the torus amplitude for the 

non-compactified 26-dimensional bosonic string reads 

where 
1 1 

Tnc(r,f) = rJ-2 ITJ(r)l48' 

Note that the Dedekind function, 1], is defined by 

00 

TJ(r) = q-f:r IT (1- qn). 
n=l 

(2.28) 

(2.29) 

(2.30) 

In order to guarantee the amplitude (2.28) is meaningful, Tnc( r, f) must not depend 

on the region we choose i.e. Tnc must be modular invariant. This property can easily 

be observed using the fact that the Dedekind function transforms under modular 

transformation as, 

(2.31) 

Consequently, the combination JTITJI2 is invariant independently of the dimension 

of space-time i.e. does not depend on the total central charge c, as a result, implies 

the modular invariant of Tnc· 

Equation (2.29) can be reexpressed as the intergal over the transverse momenta 

(2.32) 

where Xp(r) = qc/p
2

/
4/7J(r) 24 is a Virasoro character. Equation (2.32) exhibits a 

continuum of distinct ground states with corresponding towers of excited states. 

Each tower is a Verma module in conformal field theory. The squared masses of the 
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ground states are determined by the conformal weight hi of the primary fields. The 

information of Verma modules is encodes in characters Xi( T) which are generally 

defined as 

Xi(T) = tr(qLo-c/24)i = qh;-c/24 Ldk qk, 

k 

(2.33) 

where dk is simply the positive integer counting the excitation states of weight 

(hi + k). Thus, in terms of these characters, a general expression for T is 

Tnc(T, 'f)= L Xi(T) Xij Xj(T), (2.34) 
i,j 

where Xij are integers. This is the case for both compactified and uncompactified 

strings. We will investigate this point further in Section 3.3.1. 

2.2.2 Klein-bottle amplitude 

Let us consider the unoriented closed string theory obtained by world-sheet parity 

D. The action of S1 simply reverses the left and right moving oscillators: 

D: (2.35) 

Under the world-sheet parity operator, the closed string spectrum splits into two 

subsets of states corresponding to its eigenvalue ±1. We only keep states that are 

even under the world-sheet parity. The tachyon contains no oscillators, it is even 

and survives the projection. In the first excited state, only the symmetric part, 

dilaton and graviton, are even. The massless antisymmetric field is projected out. 

In order to take such projection into account in the partition function, we project 

out states in the torus amplitude by identifying left and right modes. By doing just 

that, we obtain a Klein bottle amplitude which describes the vacuum diagram of 

a closed string undergoing a reversal of its orientation. More explicitly, the full 

amplitude can be written as 

K rnc = 

(2.36) 
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and the function Knc can be determined as follow. By using OIL, R) = IR, L), the 

trace in (2.36) can be written 

1 ~ -2 ~ (L, RlqLo-1qLo-11R, L), 
L,R 

~ L(L, Ll(qq)Lo-1IL, L), (2.37) 
L 

where the restriction to the diagonal subset IL, L) leads to the identification of L 0 

and L0 . After performing the trace, we obtain 

(2.38) 

Since the Klein-bottle has the modulus of a doubly-covering torus, the amplitude 

(2.38) depends naturally on 2ir2 . The integration domain is necessarily the whole 

positive imaginary axis of the complex plane. 

The amplitude ~ T + JC is the partition function of the closed unoriented string 

theory. This can be easily shown by comparing the q expansions of 'Tnc and lCnc which 

correspond to on-shell physical states. Neglecting the powers of r 2 , the expansions 

of (2.29) and (2.38) are 

1 
2 '"fnc ---+ ~ ( (qq)- 1 + (24) 2 (qq) 0 + ... ), 

---+ ~((qq)- 1 + (24)(qq) 0 + ... ). (2.39) 

Vve can see that the massless states are reduced from (24) 2 states (in the oriented 

theory) to 24(24 + 1) /2 states (the graviton and the dilaton). 

As stressed before, we have two choices of time. The vertical time r 2 defines the 

dir·ect channel amplitude as expressed in (2.38), while the horizontal time l = 1/2r2 

defines the amplitude of a closed string propagating between two crosscaps. As in 

[11], we refer to the amplitude in this channel as the transverse channel amplitude. In 

the transverse channel, the corresponding Klein bottle amplitude, which we denote 

by Knc, take the form 

- /( 13 1/26 100 2 - . 
rnc = 2 ( 47r2o:') 13 0 d l lCnc( ~l)' (2.40) 

·where 
- 1 1 

lCnc(il) = 2 7724 (il). (2.41) 
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The transverse amplitude (2.40) can be obtained from the 8-transformation of Equa­

tions (2.36). 

2.2.3 Annulus amplitude 

In order to add the open string sector to the full spectrum of the theory, we have to 

generalize its spectrum further. In an oriented open string, the two endpoints are 

distinct from each other. We can generalize this by assuming the open string carries 

a "Chan-Paton charge" at its endpoints. Consequently, one of the endpoints will 

transform as a fundamental N-dimensional representation of the Lie group U(N) 

while the other endpoint transforms as the conjugate representation N. Since the 

whole open string transforms as N x N which is the adjoint representation of U(N), 

we can decompose an open string wave function into a basis of N x N matrices, 

A, i.e. the generators of U(N). As the Chan-Paton degrees of freedom are non­

dynamical, the M-point scattering will have the factor of the trace of the product 

of Chan-Paton factors, Tr()11 )...2 ... )...M). In the presence of Chan-Paton factors, the 

space-time theory has U(N) gauge symmetry rather than the U(l) symmetry in 

the original open string. Note that without Chan-Paton factors, the gauge fields 

are projected out by world-sheet parity. However, )... do transform under ·world­

sheet parity. We can choose )... --7 )...T which reflects the fact that world-sheet parity 

interchanges the endpoints. Consequently, the gauge fields with antisymmetric )... 

survive the projection and the gauge symmetry is reduced to O(N). As we will show 

later, the appropriate Chan-Paton group for the open and closed bosonic string is 

50(2 13 ), its spectrum contains the closed string states mentioned above and the 

open string state i.e. gauge fields in the adjoint representation of 50(213 ). 

Let us start from the direct channel, where an annulus amplitude can be obtained 

by tracing over the open string spectrum. In the unoriented theory, we take into 

account the Chan-Paton gauge symmetry by adding a factor N 2 related to the N 

degrees of freedom at each end of an open string. After some rescaling, the total 
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annulus amplitude is 

(2.42) 

and, by calculating the trace above, Anc is given by 

A ( . T2) = N
2 

__!____ -24 (. T2) 
ne z 2 2 r:}2 TJ z 2 . (2.43) 

Note that the amplitude in (2.43) is expressed in terms of the modulus ir2/2 of 

the doubly-covering torus. In the transverse channel, the horizontal time l = 2r2 

describes an amplitude of closed strings propagating between two boundaries. We 

define the COrreSpOnding expreSSiOn, r~Cl by 

(2.44) 

where we define 
- . N2 -24 . 

Anc(zl) = 2 T} (zl). (2.45) 

The amplitude in (2.44) can be obtained from (2.42) by the S-transformation in 

(2.19). The Chan-Paton charge, N in (2.45), determines the reflection coefficients 

for the closed string spectrum at the boundaries. 

2.2.4 Mobius amplitude 

Let us consider an unoriented open string theory. The world sheet parity operator 

defining the Mobius amplitude will be 

(2.46) 

where Nnc is the open string oscillator number operator defined in (2.18) and E = ±1. 

The modulus of the l'dobius strip is that of the doubly-covering torus, but it is 

not purely imaginary i.e. it has a fixed real part equal to ~- To ensure that the 

amplitude has real value, we follow the work of Sagnotti et al in [11], by defining 

the "hattecl" characters, 

Xi(ir2 + 1/2) = qh;-c/24 :L:)-1)kdkqk, (2.47) 
k 
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where q = e-2
7rT

2 • The expression in (2.47) differs from Xi(iT2 + 1/2) by the overall 

phase e-i7r(h;-c/24 ) which ensures that Xi(i/T2 + 1/2) is real. In this "hatted" defi­

nition, the transformation that relates the direct and transverse Mobius amplitudes 

IS 

(2.48) 

where we define the operators ~~12 = r5ijei7r(h;-c/24). Let us define the matrix C = S2 

and by using the constraint S2 = (ST) 3
, we can show that 

(2.49) 

In Section 3.3 we will demonstrate the role of the operators P, C and the identity 

(2.49) in boundary conformal field theory. 

For the unoriented non-compactified bosonic string theory in 26-dimensional 

space-time, the full direct channel Mobius amplitude can be written as 

(2.50) 

where 

(2.51) 

The parameter E in (2.51) takes the values E = ±1 and encodes the action of n on 

the vacuum. The factor ! in the argument of the Dedekind function in (2.51) is the 

result from the twist operator ( -1 )N. 

In the transverse channel, the Mobius amplitude describes a closed string prop­

agating between a boundary and a crosscap with the horizontal time l = 1/2T2 . By 

applying the P-transformation on the direct amplitude in (2.50), we obtain 

(2.52) 

where 
- EN 

Mnc(il + 1/2) = 2 r,- 24 (il + 1/2). (2.53) 

Note that under the P-tranformation, the "batted" Declekind function transforms 

as 

ft(i__!__ + ~) = Vtft(it/2 + ~). 
2t 2 2 

(2.54) 
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The amplitude Ane +M ne is the partition function of the open unoriented string 

theory. The q-expansions of Ane and Mne read 

N
2

(( )-1 0 ) Ane ~ 2 Jq + (24)q +... , 

EN (( )-1 o ) Mne ~ 2 Jq - (24)q + . . . . (2.55) 

For the case of E = + 1, the amplitude Ane +M ne gives N(N -1)/2 massless vectors 

in one to one correspondence with the generators of the orthogonal gauge group 

SO(N), while in the case of E = -1, the corresponding group is the symplectic gauge 

group Sp(N) (for N even). The value of N is fixed by the ultraviolet behaviour of 

the theory. 

The modular invariance protects the torus amplitude from short-distance sin­

gularities as the ultraviolet region is not included in the fundamental domain :F. 

On the other hand, the Klein bottle, the annulus and the Mobius amplitudes suffer 

from ultraviolet divergences. In order to investigate this further, it is convenient 

to consider the transverse amplitudes, where the divergences appear in the infrared 

region in the l ~ oo limit. In this limit, by dropping the integrand, the transverse 

amplitudes (2.40), (2.44) and (2.52) can be written as 

-K 
r ne ~ 

213 
2((..;q)-1 + (24)qo), 

2-13 N2 
-A 

2 ( ( ..;q)-1 + (24)qo)' r ne ~ 

-M r ne ~ 2 E; ((..;q)-1- (24)qo). (2.56) 

This means only the tachyon and massless fields can propagate. In general, a field 

with mass !vi gives a contribution J
0
= dle-M 21 = ~2 , which shows that the divergence 

comes from the dilaton field, as the propagator for the scalar field, 1/ (p2 + M2), is 

singular for the massless states of zero momentum. However, this dilaton tadpole 

divergence can be eliminated by choosing an appropriate value of the Chan-Paton 

charge N. Using (2.56), we can impose the constraint 

( ['K +['A + f'K) rv ~(213 + 2-13N2- 2E N) = 213(213- E N)2 = 0 
ne ne ne 2 2 ' (2.57) 

which implies E = + 1 and N = 213 . Therefore, the uncompactified open string theory 

in 26-dimensional space-time with S0(213 ) Chan-Paton gauge group is divergence-
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free. By satisfying the dilaton tadpole condition (2.57), we also eliminate the gauge 

and gravitational anomalies as shown in [41]. 

2.3 Brief review of Superstring theory 

2.3.1 Superstring in the NSR formulation 

Let us start by considering the superstring theory in the Neveu-Schwarz-Ramond 

(NSR) formalism. We generalize the action in (2.1) by adding to it the world-sheet 

spinors \lfi-L, the supersymmetric partners of the bosonic coordinates XI-L. The NSR 

superstring is described by the action 

(2.58) 

where the two-dimensional ')'-matrices are defined by p0 = a 2 and p1 = ia1 such 

that they satisfy the usual anticommutation relations {p0
, p.B} = "7°.8 I ( a 1 and a 2 

are Pauli matrices). 

The action (2.58) has the same symmetry as its bosonic counterpart but in 

addition, it is invariant under an on-shell global world-sheet supersymmetry trans­

formation: 

(2.59) 

For the fermionic sector, it is more convenient to write the world-sheet spinor in 

components as 

(2.60) 

We can choose the covariant gauge explained in Section 2.1.1. Consequently, the 

variation of (2.58) gives the equations of motion for the fermionic coordinates which 

can be written as a pair of equations, 

(2.61) 

Consequently, w~ is a function of T - a which describes right-moving degrees of 

freedom and Wi is a function of T + a which describes the left-moving degrees of 
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freedom. Equation (2.61) together with the wave equation in (2.4), yield the full 

equations of motion of the theory. 

In addition to the equations of motion, we also get the constraint equations 

Taf3 = oaXJL{)fJXM + ~~""(PaOfJ + Pf38a)'I1"" 

- 7Jaf3 (o'X""o x + !_~""p'o w ) = o 2 /M 2 /M' 

J~usy = 
1 
2,P(3 paW""ofJXM = 0 ' 

(2.62) 

(2.63) 

where Jr;-usy is the world-sheet supersymmetric current, and Ta(J now represents the 

energy-momentum tensor the scalar fields X"" and the Majorana spinor fields 'IfJL in 

the two-dimensional supergravity. 

In the case of closed superstrings, the mode expansion for the left and right 

moving fermions depends on the boundary conditions, which are 

(2.64) 

The periodic boundary condition is referred to as the Ramond boundary condition 

(R) and the anti-periodic boundary condition as the Neveu-Schwarz boundary con­

dition (NS). The choice of boundary conditions can be made independently for the 

right and left movers. Thus, we can write the mode expansion for the right and left 

moving fermions as : 

w~ = L '1/J~ e-2id(T-a)' wj, = L ;[;~ e-2id(T+a)' (2.65) 
dEZ+v dEZ+v 

where v = 0 for the R-sector and v = ~ for the NS-sector. Canonical quantization 

gives rise to the (anti) commutation relations, 

(2.66) 

In the next chapter, we will show that the fermionic oscillators '1/J~ could be written 

in terms of the bosonic operators. 

In the open sector, variation of the action (2.58) implies the boundary term 

vanishes if and only if the fermion fields satisfy the condition : 

(2.67) 
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This implies two possibilities of boundary conditions, wi,(T, n) = ±w~(T, 1r) where 

the ± signs denote R and NS sector respectively. As in the case of bosonic coor­

dinates, the right- and left-mover are not independent of each other. Their mode 

expansion could be written as 

\]I~= _
1_ L '1/J~ e-id(T-a), 

12 dEZ+v 

(2.68) 

where v = 0 for R sector and v = ~for NS sector. The factors of~ are conventional. 

As for the bosonic string, we will use the light-cone gauge with the coordinates 

x± = _1_(xo ± xn-1) V2 , (2.69) 

The combination of world-sheet reparametrization and local Weyl scaling removes 

some residual degrees of freedom and selects a gauge such that 

w+ = o , (2.70) 

where the second equation is obtained from world-sheet supersymmetry. The coor­

dinates x- and w- can now be written in terms of the transverse components Xi 

and wi, leaving only physical degrees of freedom. The super-Virasoro generators 

read 
1 1 

Lm = 2 L: Q'~-nalln: +2 L r: '1/J~-r'l/JJ.Lr: +aOm,O' (2.71) 
nEZ rEZ+v 

where r E Z + v with v = 0 in R-sector and v = ~ in NS-sector. The normal-order 

factor a = an = 0 in the R-sector and a = aNs = (D1~2 ) in the NS-sector. The 

normal-order constant an vanishes in the R-sector because of the exact cancellation 

between bosonic and fermionic contributions. By using the (-function regularization, 

each Ramond fermionic degree of freedom contributes - 2
1
4 

to an while each Neveu­

Schwarz fermionic degree of freedom contributes 4
1
8 to aNs, and each bosonic degree 

of freedom contributes 2~ to both sectors. We will consider superstrings in the 

critical dimension, D = 10 and a = 0 ( ~) for R (NS) sector. Note that only for 

D = 10 are the first excited states massless and the Lorentz algebra is closed. 

2.3.2 GSO-projection 

In order to discuss the spectrum of superstring theory, we introduce the operator 

(2.72) 
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where F is the world-sheet fermionic operator. The operator in (2.72) anticommutes 

with the world-sheet fermion fields 'lj;ll-. It gives the eigenvalue -1 when acting on 

the NS ground state and acts as r u on the R-ground state. 

In the light-cone gauge, the superstring spectrum can be constructed by acting 

with the products of oscillators a~n and 1/J~r on the ground state. Let us consider the 

open string case. In the NS-sector, a = ~, the lowest state I 0, k) N s is tachyonic with 

mass square m2 = - 2;, and has the eigenvalue ( -1 V = -1. At the first excited 

level, we have the massless vector which could be obtained by acting with ei'l/Ji 1 
-2 

on the tachyonic vacuum (ei is a polarization vector). Note that the unphysical 

polarizations were already removed by the light-cone gauge quantization. These 

massless vectors transform in the Bv representation of the S0(8) group. 

In the R-sector, a = 0, the lowest states are uAIA; k)R where A is the spinor 

index and uA is a spinor. The fact that these states are massless is consistent with 

the constraint equation which implies the massless Dirac's equation. These states 

have positive or negative chirality. The positive chirality states have the eigenvalue 

(-1)F = +1 and transform under a spinor representation of S0(8). On the other 

hand, the states with negative chirality have ( -1)F = -1 and transform under the 

conjugate spinor representation of S0(8). 

For the closed superstring, the spectrum can be constructed by acting with 

the products of the left (right) handed oscillators on the left (right) handed ground 

state and forming the product of the resulting left and right moving states. In 

the NS-NS sector, we have the closed string tachyon with m2 = - ;, . Since the 

tachyon has eigen value (( -1)F, ( -1l') = ( -1, -1), we shall denote the sector which 

contains tachyonic states by ( N S-, N S-). Note that the sectors ( N S +, N S-) and 

(NS-,NS+) have no states, since they were projected out for not satisfying the 

matching condition. In the ( N S +, N S +)-sector, the physical states lie in the Bv x Bv 

representation of SO( B) and are identified as the graviton (35), antisymmetric tensor 

(28) and dilaton (1). 

In the R-R sector, the closed string spectrum contains the antisymmetric fields, 

R-R fields, which are presented in table (2.1). 

For the NS-R sector, the spectrum contains spinors and gravitini. For example, 
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Sector Representation 

(R+, R+) 88 X 88 = 1 + 28 + 35+ 

(R+, R-) and (R-, R+) 88 X 8c = 8v +56 

(R-,R-) 8c X 8c = 1 + 28 + 35_ 

Table 2.1: Closed string R-R spectrum in terms of S0(8) representations. 

states in (N S +, R+) transform in 8v x 88 = 8c +56. 

2.3.3 Consistent string models 

To obtain a consistent string theory, we need to project out some states in the 

spectrum because the full spectrum is not modular invariant i.e. the scattering am­

plitudes are not well defined. The choice of projection is not unique. We can choose 

to project out some states in such a way that the resulting theory is supersymmetric 

and tachyonic-free. Note that, as in [2], we can obtain a consistent string theory 

which contains tachyonic states and is non-supersymmetric, but we will limit our 

considerations to the supersymmetric case in this thesis. 

In order to obtain the supersymmetric string model, we perform the Gliozzi­

Scherk-Olive projection (GSO) in the full closed string spectrum. In the NS-NS 

sector, we project out tachyons in the (NS-, NS-) sector. While in the R-R sector, 

we can either choose the GSO-projection Peso= (1 + ( -1)F)/2 which projects out 

all states in R- or, on the other hand, choose the projection Peso= (1- ( -1)F)/2 

which projects out all states in R+. Both choices of GSO projection can be applied 

independently on the left and the right sector and give rise to the so-called Type II 

superstring theory. Type II superstring then can be divided into two inequivalent 

model, namely, 

Type IIA: (NS+,NS+) EB (NS+,R-) EB (R+,NS+) EB (R+,R-) 

Type IlB: (NS+,NS+) EB (NS+,R+) EB (R+,NS+) EB (R+,R+) 

(2. 73) 

(2.74) 

Both type IIA and Type liB are space-time supersymmetric. Type IlB has chiral­

supersymmetry as the gravitini have the same chirality while Type IIA is a non-chiral 

theory. 
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From Type liB superstring theory, we can obtain another superstring model by 

projecting out states which are not invariant under the world-sheet parity symmetry 

n. When this symmetry is gauged, the theory becomes unoriented. In NS-NS sector, 

the antisymmetric tensor is projected out and only graviton and dilaton are left in 

the spectrum. In the fermionic sector, only the combination of NS-R and R-NS 

sectors survives i.e. only one gravitino is left. On the other hand, in the R-R sector, 

only the antisymmetric two-form potential survives the projection. It turns out that 

unoriented closed string theories are not consistent because they develop space-time 

gravitational anomalies. To solve this problem, the theory needs to be modified by 

adding in the open string sector. 

In order to add the open string sector, we assume the open string carries "Chan­

Patan charge" as in the bosonic string case. It turns out that the appropriate 

Chan-Patan group for the unoriented open and closed superstring, the so-called 

Type I theory is 50(32). The open string GSO-projection eliminates the open 

string tachyon and keeps only states with even world-sheet fermionic number. The 

spectrum of Type I theory contains the closed string states mentioned above and the 

open string states which are the gauge fields and spinors in the adjoint representation 

of 50(32). 

2.3.4 Low energy supergravity 

As we have seen in the previous sections, the spectrum of superstring theories con­

tains massless states together with towers of infinite massive oscillations. However, 

as the massive modes might be of the order of 1018 GeV, we are mainly interested 

in the massless states. Although in Quantum Field Theory we can integrate out 

the massive fields leaving only the effective theory of massless fields, the same ap­

proach cannot be applied here. The problem is simply because we do not have 

the second quantization of string fields. We have to use an indirect approach by 

computing scattering amplitudes of on-shell physical states in perturbation theory. 

Then, we construct the classical action for these massless fields that produce the 

same interacting amplitudes. 

In this chapter, we will consider the type II superstring in ten-dimensional space-
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time and the eleven-dimensional supergravity. The low-energy effective actions of 

Type II superstring are Type IIA and Type liB supergravity. Let us start our 

review by the eleven-dimensional supergravity as it is related both to Type IIA and 

M-theory. We will restrict ourselves to the bosonic part of the action. 

Eleven-dimensional supergravity 

The bosonic part of the eleven-dimension supergravity action is very simple as 

the theory contains two massless bosonic fields. The physical degrees of freedom 

can be written in terms of the representations of the S0(9) transverse group. The 

first massless field is the metric 9!1-v which gives a traceless symmetric tensor of 44 

states. The second bosonic field is the 3-form potential A3 , a rank 3 antisymmetric 

tensor of 84 independent states, with field strength F4 = dA3 
1

. Together with the 

128 fermion states from the gravitino, an S0(9) vector spinor, these states form a 

short multiplet of the supersymmetry algebra with 32 supercharges. The bosonic 

part of the action is given by [20] 

(2.75) 

where the last term in (2. 75) is the Chern-Simons term which is required by su­

persymmetric properties of the theory. Note that for the Newton constant in D­

dimensional space-time G D, we have 

(2. 76) 

Type IIA supergravity 

The ten-dimensional Type IIA supergravity action written in the so-called string 

frame is given by [21] 

I vVe use conventions for the n-forms such that Fn = ~ Fl"l···l"n dx''' (\ ... (\ dxl'n. 



~· .· 

' 
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Here we define H3 = dB2 , F2 = dC1 , F4 = dC3 and F~ = F4 + C1 1\ H3 . The 

terms that have a factor e-2c/J in front describe the NS-NS fields in the closed string 

spectrum i.e. a graviton (g), a dilaton (<P) and a NS-NS two-form (B2 ). The other 

terms describe R-R potentials Cp with field strengths Fp+l = dCP. 

In general, it is more convenient to keep a unique coupling constant in front of 

the whole action. In order to do this we can write the action in the Einstein frame 

by rescaling the metric in (2. 77) by 

gs = ec/JI2gE 
J.IV f.lV l 

(2.78) 

gffv is the metric in Einstein frame. Note that both frames coincide with each other 

at infinity. Using (2.78), we can write the action in Einstein frame in the following 

way, 

(2.79) 

Type liB supergravity 

The low-energy effective action of ten-dimensional Type liB superstring theory, 

in string frame, is given as 

InB = 

(2.80) 

The first term describes the NS-NS field exactly in the same way as it is described 

in the case of Type IIA. In the R-R sector, we have F3 = dC2 , F~ = F3 - xfi3 

and F~ = dC4 + C2 1\ H3 . Note that the fields x, A2 and A4 are in the (R+, R+ )­

sector as sho\vn in Table 2.1. In order to obtain the equations of motion for Type 

IIB [22], we have to impose a self-duality condition on the five-form field strength 

i.e. F~ = * F~ together with the action (2.80). However, for our convenience, in the 

following section we will impose the self-duality condition on the final solutions. 
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We can write the action of Type liB supergravity in the Einstein frame as 

2.4 A little note on branes and their solutions 

Consider the field strength Fp+2 ofrank p+ 2 which can be obtained from a potential 

Ap+l of rank p + 1. For our convenience, we define an integer 

n = p+ 2, p E Z, (2.82) 

thus we get Fn = Fp+2 . The An-I potential couples electrically to the world-volume 

of a p-dimensional extended object, a p-brane, by the term 

(2.83) 

where ~p+l is the world-volume of the p-brane and Jlp can be interpreted as the 

electric charge of the potential Ap+l· However, we can define the Hodge dual of 

Fp+2 which is the (D- p- 2)-form field strength Fo-(p+2 ) = * Fp+2 . Consequently, 

there is a magnetic potential which satisfies F D-(p+2) = dAo-(p+2)-l· The magnetic 

potential can couple to a p' -brane where p' = D - p - 4 by the following term 

(2.84) 

where 9p' is the magnetic charge. Note that the existence of both p-branes and 

p'-branes imposes a Dirac-like quantization of their charges. 

2.4.1 The p-brane ansatz 

Let us go on to finding p-brane solutions for classical supergravities. The eleven­

dimensional supergravity and ten-dimensional Type II supergravity actions (Ein­

stein frame) described in Section 2.3.4, can be written in general as 

Io = (2.85) 
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where a 1 is the dilaton coupling. We can reduce the action (2.85) to the eleven 

dimensional supergravity by having D = 11 and only the 4-form field strength. We 

set a 4 = 0 as the dilaton field is not relevant. For Type II su pergravi ties ( D = 11), 

we take a 3 = -1 for the NS-NS three form while setting an= (5- n)/2 for the R-R 

n-form. 

The equations of motion can be obtained by varying the above action. We get 

(2.88) 

The Bianchi identity for Fn
1 

can be written as 

(2.89) 

Let us introduce the p-brane solution to the equations of motion (2.88). We 

assume a p-brane lives in a flat D-dimensional space-time. For a single brane so­

lution, there are p space-like directions taken to be longitudinal to the brane and 

d D - p- 1 space-like directions identified as transverse to the brane. We intro­

duce the coordinates x 11 = (t, yi, xa) where M = 0, ... , D - 1. The coordinates yi 

( i = 1' 2' ... ' p) are identified as the longitudinal directions while xa (a = 1' 2' ... ' d) 

represent the transverse coordinates. We define t as the time-like direction. As we 

consider a static uniform brane, the solution is invariant under space-time transla­

tions in the world-volume directions (t and xi) and has an SO(p) rotational sym­

metry in the longitudinal directions. In the transverse directions, the translation 

symmetry is broken as the brane localizes at a point. However, the SO(d) rotation 

symmetry is preserved as the brane has no angular momentum. The general solution 

that has all the symmetries above can be written as 

(2.90) 

d 

where r 2 = l..::(xa)2 and df23_ 1 =dei +sin2 01 d0~ + · · · + (sin201 ... sin20ct-2)d0J_ 1 . 

a=l 

The coefficients B, C, F, and G are functions of the transverse coordinates. 
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A remark is in order here. We already mentioned that p-branes can couple either 

electrically to the the field strength or magnetically to the dual field strength. To 

be more precise, we generalize the Hodge dual of the field strength Fn by taking into 

account a dilaton factor. The definition of the generalized dual field strength is 

r---;;earf> FJ.L1 .. ·J.Ln = 1 EJ.L1 .. ·J.LnV1 ... VD-n P, El...(D-n) = 1 
V -y (D- n)! V1 .. ·VD-nl • (2.91) 

By this definition, we can rewrite the equations of motion in exactly the same form as 

( 2. 88) by replacing Fn by F D-n, n replaced D- n and a ~ -a (or equivalently <P ~ 

-<P). This duality is analogous to the electric-magnetic duality in Electrodynamics. 

As a result, we have two ansiitze for the n-form field strength namely the electric 

ansatz and the magnetic ansatz. 

In the first ansatz, the n-form potential has the following form 

F, . - E· . a E(r) tt1 ... ZpT - tJ ... Zp a l (2.92) 

which satisfies the Bianchi identity. By substituting (2.92) into the equation of 

motion for the field strength in (2.88), we can write 

F,t. · = E· · BCP Fe-arf> Q 
z1 ... zpr z1 ... zp ( Gr )d-l, (2.93) 

where the integration constant Q is proportional to the electric charge of the brane. 

By using (2.91), the dual field strength can be written as 

(2.94) 

where~ is the metric of sd- 1 
( ..;=g = BCP F(Gr)d- 1 ~). Recall the indices 

01 ... ()d_ 1 represent the coordinates on the unit sphere sd-1 in transverse space and 

Frh ... Bd_ 1 is the only non-vanishing component. By using this information, we can 

calculate the total charge of the brane as following 

1 ~ - Vnd-1 
f.Lp = Fd-1 = Q, 

v167rGD sd-1 v167rGD 
(2.95) 

where V11d_
1 

is the volume of sd-l i.e. V11d = 27r(d+1l/2 /f(d!1 ). 

For the magnetic ansatz, the p-brane couples magnetically to the field strength 

Fn where in this case n = D- (p + 2) = d- 1. By using (2.94), we obtain the 

non-zero components of Fd-l as 

(2.96) 
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In this case, Q is proportional to the magnetic charge, 

1 1 Vnd-1 gP = Fd-1 = Q. 
16nG n sd-1 16nG D 

(2.97) 

2.4.2 The extremal dilatonic p-brane solutions 

In this section we consider the special class of p-brane solutions called extremal 

solutions. We are interested in such solutions because their equations of motion are 

easily solved and because of their relation to the supersymmetric branes in string 

and M-theory. From the supersymmetric point of view, the extremal branes are 

Bogomol'nyi-Prasad-Sommerfield (BPS) states which in general preserve a portion 

of supersymmetry. The force between any extremal branes does vanish. 

The equations of motion in (2.88) can be simplified by choosing coordinates (the 

so called the isotropic gauge) such that F = G. With this choice of coordinates, the 

metric depends only on the variable r of the transverse directions. 

As the solution saturates a BPS bound, the p-brane has the lowest possible 

energy. From the point of view of the world-volume theory, the brane carries no 

energy at all which, this can be achieved by taking B = C. As a result, the world­

sheet of the p-brane is a flat p + 1-dimensional space-time with an S0(1, p) Lorentz 

invariant. Note that any mass excitation in the world-volume directions will break 

the Lorentz symmetry i.e. B #- C and the configuration ceases to be extremal. For 

the extremal dilatonic solution with single charge, we get 

(2.98) 

where 

1 ~ IQI _ (h)d-2 
H ( r) = 1 + d - 2 V 2(iJ=2) rd- 2 = 1 + -:;: ' (2.99) 

1 
il = (p + 1)(d- 2) + 2a 2 (D- 2). (2.100) 

In the electric ansatz, the dilaton and field strength can be written as 

e<P = Hn(D-2)f6.(r), 

F - 8 A - ( ) J2(D- 2) 8 (H- 1( )) 
fYt···YpT- r fYt···Ypr - ± Ll r T ' 

J2(D- 2) _1 Aty1 ... ypr = · il (H - 1). (2.101) 



2.4. A little note on branes and their solutions 35 

While in the magnetic ansatz, by using electro-magnetic duality and equation (2.96), 

we obtain 

e<P=H-a(D-2 )/t:J..(r), F ~Q wJ ... od-1 = y/d-1 · (2.102) 

The metric for an extremal p-brane is given by 

2.4.3 Branes in string and M-theory 

Let us start by considering the branes in M-theory, so-called M-branes. In the low 

energy limit, the theory is described by the eleven-dimensional supergravity which 

has only a four-form field strength and no dilaton (a4 = 0). There are two types of 

branes, namely M2-brane and M5-brane. The M2-brane can couple electrically to 

the four-form field strength while the M5-brane couples magnetically. In this case 

the value of~ defined in (2.100) is~= 3.6 = 18. By using (2.103), the solution for 

the M2-brane is 

H-2
;

3 (-de+ dyi + dyn + H 1
;

3 (dxi + ... + dx~), 

Br(H-1
). 

For the magnetic anflatz, we obtain the solution for M5-brane as 

~Q. 

(2.104) 

(2.105) 

(2.106) 

Let us now considering Type II theory in ten-dimensional space-time. In this 

case, there are two classes of p-brane solutions. The first class is charged under the 

field from the NS-NS sector while the second class contains the R-R charge. 

For the NS-NS sector, we have a NS-NS 3-form field strength with a = -1. This 

field strength couples electrically to a fundamental string which we shall refer to as 

an F-string. We have ~ = 2.6 + 1.8/2 = 16 and the solution for an F-string in the 

Einstein frame can be written as 

ds~ = H- 314 (-de + dyi) + H 1
;

4 
( dxi + · · · + dx~), 

e<P = H-1/ 2 F 8 (H- 1 ) ' typ· = r · (2.107) 
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And the solution for a NS5-brane is 

The F -string and NS5-brane metrics can be written in the string frame as 

H- 1 (-df + dyD + dxi + · .. + dx~, 

ds'itss -dt2 + dy~ + · · · + dyg + H ( dxi + · · · + dxD. 
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(2.108) 

(2.109) 

(2.110) 

The string frame metrics represented in the above equations are solutions for Type 

II supergravity actions in (2.77) and (2.80). 

We are now considering the R-R sector of Type II superstring. In this sector 

we have the R-R n-form field strengths with the dilaton coupling constant an = 

(5- n)/2. By using the p-brane ansatz and recalling that n = p + 2, we obtain the 

following results. The p-branes couple electrically to the p + 2-form field strengths 

with a= (3- p)/2 in the electrical ansatz, and couple to the magnetic 8- p-form 

field strengths with a= -(3- p)/2 in the magnetic ansatz. As these p-branes are 

charged under the R-R fields, we will refer to them as Dp-branes. 

We can easily show that ~ = (p + 1)(7- p) + (3- p) 2 = 16. The metric for a 

Dp-brane is 

ds 2 = H-(?-p)/ 8 (-dt 2 + dy 2 + · · · + dy 2
) + H(P+ 1

)/
8 (dx2 + · · · + dx2 ) Dp 1 p 1 9-p ' 

(2.111) 

The p + 2 -form, Fp+ 2 , can be easily calculated from equations (2.101) and (2.102) 

for the electric and magnetic ansatz respectively. In the string frame the solution 

for Dp-brane becomes 

ds 2 = H- 112 (-dt 2 + dy 2 + · · · + dy 2
) + H 112 (dx 2 + · · · + dx 2 

). Dp 1 p 1 9-p (2.112) 

Note that, this string frame solution satisfies the Type IIA supergravity action in 

(2. 77) for even value of p and satisfies the Type IIA supergravity action in (2.80) 

for odd value of p. 
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Together with the branes described above, we can construct another class of 

solutions by the dimensional reduction procedure. Vve refer to them as the Kaluza­

Klein (KK) charged objects which are the branes living in compactified space-time. 

The KK charged objects couple electrically (or magnetically) to the two-form field 

strength which is generated from the Kaluza-Klein dimensional reduction from D+ 1 

dimensions to D dimension. In the D-dimensional space these KK charged objects 

correspond to an electric 0-brane and a magnetic (D - 4)-brane. The first object 

corresponds to a KK-wave in D + 1 dimensional space-time and the second is the di­

mensional reduction of the KK-monopole. The KK-wave and KK-monopole solution 

are purely geometry as the metric is the only non-trivial field in the configurations. 

We will construct the metric of KK-wave and KK-monopole by simply reversing 

the KK procedure to construct a D + 1 dimensional metric from a D-dimensional 

configuration. This reversed KK procedure is so called "oxidation". 

Let us start by reviewing the Kaluza-Klein procedure. We write the D + 1 

dimensional metric in the following form, 

(2.113) 

After transforming the D-dimensional metric g11v = e-2a/(D-2) f111v, the action in 

(D + 1 )-dimensions is reduced to the D-dimensional action as (for convenience, we 

will drop the tildes), 

(2.114) 

The Newton constant in D-dimensional space-time can be written as G D = ~~~~ 

where R is the radius of the compact space y. We can simplify the action (2.114) 

further by redefining the scalar field a by 1; = J 2<g~21 ) a. 'vVe obtain 

I= 1 j dDx v=!i{R- ~a 1;8111;- ~eV2(D-1)/(D-2) <P p2}· 
167rGD 2 1' 4 ~ 

The action in (2.115) is equivalent to the action in (2.85), if we identify 

2(D- 1) 
(D- 2) . 

(2.115) 

(2.116) 
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We are now in a position to write down the KK-wave solution. We will first introduce 

the D-dimensional 0-brane metric, and then uplift it to D + 1 dimensions. By 

substituting the value of a 2 in (2.116) into (2.100), we have ,6. = 2(D- 2). We have 

(from (2.103)), 

ds2 = _ H-(D-3)/(D-2)dt2 + H1/(D-2) (dx2 + ... + dx2 ) 
D 1 D-1 ' (2.117) 

At = H-1 - 1, H 1 + 1 
Q 

= D- 3 rD- 3 · 
(2.118) 

Before uplifting the metric to D + 1 dimensions, we reverse the KK-process by 

rescaling the metric in (2.117) by fJJ-Lv = e2<Pfa2 (D- 2)9J-Lv = H- 1/(D- 2)gJ-Lv· As a result, 

the D + 1 dimensional metric is expressed in the Einstein frame, 

(2.119) 

where y is the compactified direction. If we introduce the new harmonic function K 

such that H = 1 + K, we obtain the metric of KK-wave, 

(2.120) 

We are now turning to consider the KK-monopole. Since the D-dimensional metric 

is identified as a magnetic (D - 4)-brane, it is more convenient for us to start 

from a four-dimensional configuration and obtain the five dimensional KK-monopole 

metric. After oxidation, we generalise the metric to D + 1-dimensions by adding to 

the five-dimensional metric D - 5 flat compactified directions. In four-dimensional 

space-time, a 2 = J3 and ,6. = 4, and we have the magnetic solution 

ds~ = - H 112dt2 + H 1
/

2 
( dr2 + r2dD~), 

e<P = H-v'3/2 , H = 1 + Q. 
r 

The magnetic field strength and potential can be written as 

Fo<p = Q sin fJ, A<p = Q(1 - cos fJ). 

(2.121) 

(2.122) 

(2.123) 

Before going to 5 dimensions, we rescale the metric in (2.122) by fJJ-Lv = H-1. The 

five-dimensional metric is 

(2.124) 
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By adding to the above metric the D - 5 fiat compactified directions, we obtain the 

D + 1 dimensional KK-monopole 

ds~K = -dt2 + dxi + · · · + dx1_ 5 + H-1 
( dy + Q(1- cos ())drp) 

2 

+ H(dr 2 + r2 dD~), 
(2.125) 

where the last two terms describe the Euclidean Taub-NUT space [23]. The direction 

y is called the NUT-direction. In order to avoid the conical singularity at r = 0 we 

identify y rv y + 47rQ. 

Note that forD= 10, the Type IIA DO-brane (D6-brane) can be obtained from 

the KK-wave metric (KK-monopole) of M-theory by compactifying on a circle. 

2.4.4 The harmonic functions rule 

In this section we will consider a systematic rule to obtain the intersecting brane 

configurations in string and M-theory. Our starting point is the eleven-dimensional 

supergravity. Following closely the discussion in [24], we rewrite the metric for 

Mp-brane, p = 2, 5, as 

We can observe the structure of the metric is such that each squares of the coor­

dinates belong to the world-volume directions of the p-brane is multiplied by the 

inverse power of the corresponding harmonic function. The general rule which ap­

plies to any supersymmetric combination of orthogonally intersecting p-branes was 

proposed by Tseytlin in [24] is: 

"If the coordinate y belongs to several constituent p-branes (p1 , ... ,pn) then its 

contribution to the metric is multiplied by the product of inverse powers of the har­

monic functions corresponding to each of the p-branes it belongs to, i.e. H; 1 
... H;n1

. 

The harmonic function factors thus play the role of labels of the constituent p-

branes." 

This rule is a consequence of the fact that intersecting configurations are required 

to be supersymmetric. \V'e can superimpose BPS states and parametrize them by 

the harmonic function. Note that the harmonic function rule can also be derived 

directly from the supergravity equations of motion, see for an example in [25]. 
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By using the harmonic function rule, the metric of two M2-branes intersecting 

over a point is 

dsi1 = Hi 13 (x)Hi 13 (x){ -H11 (x)H2 1(x)dt2 + H1 1(x)(dyi + dy~) 

+H:;1(x)(dyj + dyl) + dxi + · · · + dx~ }, (2.127) 

where the factors H1 1 and H:;1 label the first and the second M2-brane. The 

directions y1 and y2 are longitudinal directions of the first brane while y3 and y4 

belong to the second brane. 

Let us consider another example in Type II theory where the Dp-brane metric 

in Einstein frame can be written as 

By using the harmonic function rule, we can determine the metric of two intersecting 

D3-branes in Type liB. We get 

dsi0 = Hi 12 (x)Hi 12 (x){ H11 (x)H:; 1(x)(-dt2 + dyi) + H1 1 (x)(dy~ + dyn 

+H:; 1 (x)(dy~ + dy~) + dxi + · · · + dx~} .(2.129) 

Here, the factors H1 1 and H:; 1 label the first and the second D3-brane. The direc­

tions y2 and y3 are longitudinal directions of the first brane while y4 and y5 belong 

to the second bran e. Both D3-branes have the same longitudinal direction y1 . 



Chapter 3 

Superstring from bosonic string 

3.1 Introduction 

Already in the very early days of string theory, the presence of tachyonic modes 

in the bosonic string spectrum overshadowed the excitement of having constructed 

a theory which included gravity and was finite. Supersymmetry was then called 

to the rescue, and one of its many phenomenal successes in the context of string 

theory was to project the tachyon out and with it, all the inconsistencies it leads 

to. And eventhough experiments have failed so far to confirm supersymmetry is a 

symmetry of nature, its virtues are so magical that the "theory of everything" (M­

theory) conjecture does not include the bosonic string. However, many years ago, 

a number of works [10], [9], [5] and [29] suggested that all ten-dimensional closed 

fermionic string theories could emerge from a consistent "truncation" of the Hilbert 

space of the 26-dimensional closed bosonic string theory compactified on specific 

group lattices. The mechanism whereby bosons give rise to space-time fermions is 

argued to be similar to the one described in [8] in the context of 3+ 1 dimensional 

SU(2) gauge theory in the presence of monopoles, and has been recently used to 

study the duality conjecture between non-supersymmetric strings [30]. 

In particular, toroidal compactification of the closed bosonic string on an E8 x 

E8 group lattice produces the states of Type IIA/B theory, while compactification 

on an E 8 x 50(16) torus yields the non-supersymmetric Type OA/B spectrum. 

However, it was realized in [5] that all closed fermionic string could be obtained from 

41 
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compactification on E 8 x 50(16). The bosonic theory must be truncated in a very 

specific but universal way, which ensures the modular invariance of the resulting 

theory. All states in the truncated theory transform under a new Lorentz group 

whose transverse part is diag(50(S)trans ® 50(S)int) with 50(S)trans the subgroup 

of the transverse bosonic Lorentz group and 50(S)int a regular subgroup of 50(16). 

The adj oint representation of the group E 8 x E 8 (or E 8 x 50 ( 16)) will give the 

spinor representations S8 and Se of the new Lorentz group. 

Recently [12] the truncation procedure has been extended to the theory of open 

bosonic strings and yields the supersymmetric Type I or the non-supersymmetric 

Type 0 string. Although the uncompactified open and closed bosonic theory has 

an enormous 50(213 ) Chan-Paton gauge group, the rank of the group can be re­

duced dramatically by compactifying on a torus with background torsion [11]. For 

compactification on a group lattice [12], the tadpole condition of the compactified 

theory gives the correct symmetry group which can gives rise to the anomaly free 

Type I and Type 0 theories after the truncation. This truncation mechanism may 

provide new relationships for non-supersymmetric string theory [26] and may prove 

the existence of a bosonic M-theory [32]. 

However, as commented in [33], although the emergence of all fermionic strings 

from the truncation of the bosonic theory is very impressive, it is still unclear that the 

truncation will give us all the properties of the fermionic string. One of the important 

features of superstring theory is the presence of BPS D-branes in its spectrum. 

The BPS D-branes are sources for the Ramond-Ramond gauge fields [34]. Their 

existence is required by T-duality and they play an important role in establishing 

dualities between all consistent superstring theories [35]. By contrast, the bosonic 

string theory does not contain Ramond-Ramond gauge fields. Although the authors 

in [12] argue that the bosonic D25-brane directly truncates to the D9-brane in Type 

I (or Type 0) theory and gives the correct Chan-Paton gauge groups, the emergence 

of other lower-dimensional D-branes in Type I and Type II by truncation was not 

discussed. In this chapter, we study wrapped bosonic D-branes and prove that we 

can truncate them to Type I D-branes. vVe also construct BPS boundary states in 

the truncated closed bosonic theory which can be interpreted as Type II D-branes. 
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Our result ensures the existence of D-branes after truncation. 

The outline of the chapter is as follows: in Section 3.2, we review the toroidal 

compactification of the bosonic string on a particular class of Lie group lattices called 

Englert-Neveu (E-N) lattices [36]. In Section 3.3, by using the boundary conformal 

field theory techniques, we derive the consistent open string theory compactified 

on such lattice and also write down the boundary state of D25-branes wrapped on 

the lattice. In Section 3.4, we summarise the rules for the truncation process and 

introduce the fermionic operators corresponding to the fermionic string in both the 

Neveu-Schwarz-Ramond and the Green-Schwarz formalism. Then, in Section 3.5, we 

show the evidence that the BPS D-branes in Type I superstring theory can emerge 

from the truncation of the wrapped bosonic D-branes. Finally, we discuss our results 

in the last section. 

3.2 Compactification of the bosonic theory 

In this section, we consider the bosonic string theory in 26 dimensional space-time. 

We compactify the bosonic string on a non-Cartesian cl-dimensional torus. The 

dynamics of this system can be described by the action, 

where 9ab and bab are the constant background metric and antisymmetric tensor in 

the compact directions. We define 'TJJ.Lv as the flat metric describing the non-compact 

directions and note that the world-sheet metric is '"'ia.fJ = 'T/a.fJ = diag( -1, + 1). Also, 

t:01 = ETCT = 1 = -E10 and 0 s:; (} s:; 1r. 

We assume that the open strings in non-compact directions (J-L = 0, ... ,25-d) satisfy 

the Neumann boundary condition, 

(3.2) 

Note that we will consider more general boundary conditions in Section 3.5. 
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3.2.1 Review of the Englert-Neveu compactification 

Let us consider the lattice directions a = 26 - d, ... , 25 in more detail. In order 

for the action ( 3.1) to be extremal, one must satisfy the following condition in the 

lattice directions: 

(3.3) 

1.e. the open string coordinates must satisfy either Dirichlet or (generalized) Neu­

mann boundary conditions. For the Dirichlet conditions oxa = 0, the solution for 

the open string coordinates is, 

(3.4) 

with the commutation relations [a~, a~]D = mom+n,o9ab. The winding operator za 

commutes with the operators qa and a~, and has integer eigenvalue wa. The mass 

formula for the Dirichlet open string is given by 

a' lvfb = 

(3.5) 

where Ntn.c) is the number operator for the open string oscillators in the non-compact 

directions. We define the vector L as, 

(3.6) 

The basis vectors ea span the periodic lattice t = 21rwaea and the metric can be 

written as 

(3.7) 

If /2RL belongs to an even lattice, there is a degeneracy of the mass spectrum 

between oscillator and winding states. We will consider the case where the lattice 

coincides with the root lattice of a simply laced group Q. In this case the symmetry 

of the open string is enlarged to Q and 

(3.8) 
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where ra are basis vectors of the root lattice ARoot which we choose to be the simple 

roots. The dual vectors ea = gabeb span the momentum lattice with vectors p = 

maea where ma is the integer eigenvalue of the momentum operator Pa conjugate to 

a [ a J _ ·£a q , q , Pb D - wb · 

Let us now consider the generalized Neumann condition. vVe can write the open 

string coordinates as, 

X~(cr,T) = qa + 2o:'BabPbCT + 2o:'GabPbT + iJ2ci~ .!_o:a cosncre-inT 
~n n 
n#O 

-J2ci2: ~Bac(G-1 )cbo:~sinncre-inT, (3.9) 
n#O 

with the commutation relations, 

(3.10) 

where the eigenvalues of the momentum operators Pa are integers ma. 

We introduce the tensor Eab = 9ab + bab and its inverse (E- 1 )ab = cab+ Bab_ 

The tensors cab and Bab are the E-dual metric and antisymmetric tensors, 

(3.11) 

and can be re-expressed in the following more useful form, 

(3.12) 

The mass spectrum of the open string with generalized Neumann conditions is, 

n>O 

0:1 p.p + L(G- 1 )ab0:~n0:~ + N(n.c)- 1 
n>O 

We define the lattice momentum such that 

- -a 
p = mae' 

with the E-dual basis ea taken such that 

Gab_ -a-b - e .e . 

(3.13) 

(3.14) 

(3.15) 
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If we choose bab as in [28], namely, 

0 a= b , (3.16) 

-gab a< b 

the matrix Eab is triangular as well as its inverse (E-1 )ab. So we can write, 

cab a> b 

0 a=b (3.17) 

-cab a< b 

This implies that the norms of the diagonal elements of 9ab are the inverse of the 

norms of the diagonal elements of cab. Given the definition (3.8) and r.r = 2, we 

have 9aa = o/ and thus caa = 1/a'. Therefore, 

(3.18) 

Since 9ab = (a' /2)Aab where Aab is the Cartan matrix of the simply laced group Q, 

we get the conditions, 
2 2 
!9ab E Z -bab E Z . (3.19) 
a a' 

So all the elements of Eab are either ±a' or 0. This implies ea/ V2f2 is a vector on 

the weight lattice (Aw) and y'2a/ea is on the root lattice (AR)· 

The mass spectra (3.5) and (3.13) are equivalent when, 

L 
,_ 

=ap. (3.20) 

This follows from the duality between the Dirichlet and Neumann conditions for 

open string which can be viewed as a duality between the bases of AR and Aw. 

Let us now consider the theory in the closed string sector. The closed string 

mode expansion in the compact coordinates can be written as, 

xa = qa+2waa+(2a'gabmb+2gabbbcwc)T+~ L ~(a~ e-2in(T-a)+a~ e-2in(T+a)). 

nT'oO 

(3.21) 

vVe can split (3.21) into left and right moving modes, 

(3.22) 
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where we can define the left and right momenta in terms of the lattice basis, 

PR = 
m wb wa m wb 

[( ___!!:_ + b b-)ea- -e ] =[__I!:_- (g b- b b)-]ea 
2 a 2a' 2a' a 2 a a 2a' ' 

b 

( ma -Et .!!___)ea 
2 ab2a' ' (3.23) 

and 

(3.24) 

We see that v'2CiPL and v'2CiPR span the weight lattice of ~h and YR respectively. 

The special case where YL = YR = Q is called the Englert-Neveu compactification. 

Note that modular invariance requires v'2Ci(PR - PL) is on the root lattice ARoot, 

i.e. v'2CiPR and v'2CiPL are in the same conjugacy class. The tensors 9ab and bab 

are defined to characterise a toroidal compactification on an Englert-Neveu (E-N) 

lattice. 

3.2.2 :Lattice characters and their modular transformations 

Let us consider the toroidal compactification of a closed string on a YL x YR self-dual 

Lorentzian lattice. Recalling the definitions in [31], the Lorentzian lattice, A, is the 

set of points in a vector space with Lorentzian inner product. If, for any pair of 

vectors v and w E A, v.w E Z, the lattice is integral. And if the integral lattice has 

v2 = 0 mod 2, Vv E A, it is even. The lattice is called self-dual if the corresponding 

vector space is self-dual. 

This self-dual Lorentzian lattice admits a coset decomposition A (h x9n /A 9( L x)Qn. 
o,o 

'vVe define A9Lx 9 n as the full weight lattice of YL x YR and A9( Lx)Qn represents an even o,o 

Lorentzian lattice characterised by a vector y'2Cip (o,o) = ( y'2Cip L(o), y'2Cip R(a)) 

where v'2CiP L(o) and y'2Cip R(o) span the root lattice of Q L and Q R respectively. 

This decomposition follows from the fact that any even lattice is integral and that 

any integral lattice is a sublattice of its dual. Then we can decompose such lattice 

into an integer number N of its cosets: 

(3.25) 
i=l i=l 
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where NL and NR are integer number of cosets of the total weight lattice A1h and 

N1R respectively, and also equal to the order of the centres of the covering group 

of QL and QR· Note that AfJ;:fJ~l are N = NL x NR sublattices isomorphic to the 

lattice A(o,o) and characterised by the indices f3i i.e. for the case i = 0, the index 

j30 = o represents the root (sub)lattice (Ao = ARoot)· 

The partition function of closed strings compactified on the sublattice A(f3;,f3j) 

can be written as 

( -) YR( )-YL(-) 
T({3;,{3j) T, T = X{3; T X{3j T ' 

where x~; ( T), the "lattice character", is defined as: 

Xf3;(r) = L exp{2i7rr[o/(po + Pf3J 2 + N~)-
2
d
4

]} , 

v'2dpoEA~R 

exp (2i7ra'r(p + Pf3;f) 
ry(r)d 

(3.26) 

(3.27) 

with q = ei2n and ~Pf3; represents an arbitrarily chosen vector of a sublattice 

Af£) in the coset decomposition A9R/Afa)· The Dedekind function in (3.27) is the 

contribution from the oscillators and cosmological constant in the compact direc­

tions. A similar expression holds for x~~ (f} Note that if Q R is a direct product of 

simply laced groups, the character x~; ( T) can be further factorised accordingly. 

Let us continue by studying the modular transformations of the lattice charac­

ters. Under the transformation : 

T: T-tT+1, s 1 
T -t -- ' 

T 

lattice characters transform as : 

1 
xg(--) 

t T 

It is straightforward to show that 

N 

Lrrjx](r), 
j=l 

N 

LS~jXJ(T). 
j=l 

yY. = eind/12 exp{-i1r( f2cip )2} 0 . t,J V L:c:t' {3; tJ. 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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The matrix S9 can be determined by using the Poisson re-summation formula 

(3.32) 

where A and B are any N x N matrices. Moreover, since the volume of the root 

lattice is equal to the square root of the number of conjugacy classes of the lattice 

group V(A(a,a)) = y'det(g) = VJ\1, we obtain 

y 1 ( . I ) S iJ = VJ\1 exp -4ma P,e; .p,ej . (3.33) 

In order to calculate the Mobius amplitude, it is convenient to define "hatted" lattice 

characters by 

(3.34) 

In the case where Q = S0(2n) (n > 1) and Q = E8 , equation (3.34) can be shown as 

the result in Table 3.1. Note that S0(2n) has four conjugacy classes. The indices o, 

v, s and c represent the root, vector, spinor and conjugate spinor respectively. The 

E 8 group contain only the root conjugacy class, o. 

Group Hatted characters 

~S0(2n) (" + 1) _ inrr/24 S0(2n) (" + 1) Xo n2 2 - e . Xo ZT2 2 
'"( "'f;u;- '/<:) 

S0(2n) ~ S0(2n) (" + l) _ (~24--1-/-'&) S0(2n) ('" + l) Xv ZT2 2 - e Xv ZT2 2 

n>1 ~S0(2n) (" + 1) _ i!nrr /24 S0(2n) (" + l) Xs 'lT2 2 - e Xs 'lT2 2 

~so(2n)C + 1) _ i!nrr/24 so(2n)C + 1) Xc 'lT2 2 - e Xc 'lT2 2 

Es X~B(iT2 + ~) = ei8rr/24X~B(iT2 + ~) 

Table 3.1: Shows the relations between hatted and un-hatted characters. 

As we emphasized in Section 2.2.4, the direct and transverse Mobius amplitudes 

are related by the P modular transformation (2.21). Under this transformation, the 

"hatted" characters transform as X~; ( iT2 + ~) = 2..::~ 1 PTJX,ej ( i ;
2 
+ ~) where [11] 

(3.35) 



3.2. Compactification of the bosonic theory 50 

Note that T 9 is unitary and diagonal and S 9 is unitary and symmetric, and 

satisfy 

Cij (S9 );j = (S9T9 )rj = (P9 );j 

1 N 
N L exp( -4nia'p.Bk·P.aJ exp( -4nia'p.ak ·P.Bj) 

k=l 

b"(P,si+P,sj+Pa) ' (3.36) 

where V'2dPo is an arbitrary vector of the root lattice. 

In most of this chapter, we are interested in S0(2n) sublattices where n is an 

even positive integer. In this case, we have (N = 4) 

1 1 1 1 

SS0(2n) = ~ 1 1 -1 -1 

2 1 -1 e-inn:/2 -e-inn:/2 

1 -1 -e-inn:/2 e-inn: /2 

and for the T-transformation of S0(2n) lattice character, we have 

Consequently, the ?-matrix can be written as 

pS0(2n) = 

c s 0 

s -c 0 

0 

0 

0 0 (c i(s 

0 0 i(s (c 

with c = cos(nn/4), s = sin(nn/4) and ( = e-inn:/4 . Also the C becomes 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

where a 1 denotes the usual Pauli matrix. Note that the matrices (3.37), (3.38), 

(3.39) and (3.40) derived from the lattice partition function are the same as the 

corresponding matrices for S0(2n) characters published in [11]. 
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3.3 Open string descendants on lattice torus 

In order to explain how the open superstring theories can be obtained by truncation 

from the compactified 26-dimensional bosonic string, we have to understand the 

construction of open string descendants from closed string compactified on the E-N 

lattice of a semi-simple Lie group Q of rank d. 

3.3.1 Partition function and Klein bottle amplitude 

In general, the torus partition function of an oriented closed string theory with gauge 

symmetry YL x YR, compactified on the YL x YR lattice, is 

T v26-d r d2T I 1 148-2d 
f = (47r2o/)(26-d)/2 j:F T;4-d/2 'TJ(T) J9LxgR(T,T), (3.41) 

where we define 
NR NL 

/~hx9R (T, 7) = L L Xij/(,Bi,,Bj)(T, 7). (3.42) 
i=:l j=l 

This partition function encodes all spectrum of a bulk conformal field theory. The 

conformal field theory contains infinitely many conformal fields, which can be unified 

into conformal families. Each family is identified by the corresponding primary field 

</Ji,-z(s, t) with conformal weight (hi, h-:;). In this chapter, we shall consider the case 

of "rational" conformal field theory where we have a finite number of conformal 

families. In this case, Xij is a finite-dimensional matrix of non-negative integers and 

modular invariance of (3.42) requires 

(3.43) 

However, ""e consider an E-N lattice, where both left and right sectors of the closed 

string spectrum are in the same conjugacy class i.e. we choose Xij = r5ij. In this case, 

each holomorphic character is coupled to a single anti-holomorphic character. The 

field </Ja associated to each conformal family can be characterised by its holomorphic 

label and we label each family by [<Pi]· We recall here for future reference that the 

information about an operator product expansion of any pair of fields is encoded in 

the fusion algebra 

[<Pi] X [</Yj] = L Fij[<Pk] . (3.44) 
k 
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The fusion-rule coefficients, :Fij, are non-negative integers that describe how any 

pair of conformal fields interact with each other. They can be related to the S­

transformation matrix by the Verlinde formula [37] 

:FiJ = t SftSJz~S9 )ik ' 
l=l Su 

(3.45) 

1 N 
N L exp{ -4nia' p,a1 • (p,ai + P,aj + P,ak)} . 

l=l 

(3.46) 

As in noncompactified case, the compactified unoriented closed strings are ob­

tained by acting on the closed string theory with the world-sheet parity projection 

operator ~(1 +ne) where DelL, R) = IR, L). The Klein bottle amplitude rK can be 

obtained from the Torus partition function in (3.42) by inserting in it the operator 

De/2. As the world-sheet parity operator De interchanges all states of left and right 

sectors, not all generic values of gab and Bab are allowed. The world-sheet parity 

requires PL =PR in the compact directions which, from (3.23) and (3.24), gives 

wb wb 

ma +(gab+ bab)----,- = ma- (gab- bab)-,. 
a a 

(3.47) 

The above constraint is satisfied by Equation (3.19) and implies wa = 0. We can see 

that the direct channel amplitude is not affected by Bab and the full Klein bottle 

amplitude can be written as 

[{ v26-d 100 

dT2 1 . 
f = (4n2a')(26-d)/2 0 Ti4-d/2 TJ24-d(2iT2)JC(2zT2) ' (3.48) 

where V26_d is the volume of the non-compact space-time. /C(2iT2) encodes the 

content in the d compactified dimensions and is a sum over lattice characters. The 

choice of /C(2iT2) is not unique in general, however, \Ve will only consider here the 

canonical choice: 
1 N 

JC(2iT2) = 2 L x~j (2iT2) . (3.49) 
i=l 

The transverse Klein bottle amplitude f'K, obtained by the S-transformation of 

(3.48), is 
- K 13-!£ V26-d 100 

1 - . 
r =2 2(4n2a')(26-d)/2 0 dlTJ24-d(il)JC(zl), (3.50) 

where the S-transformation of JC in (3.49) reads 

- 1v7J JC(il) = 2 N09(il) , (3.51) 
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where Og ( il) represents a character for the "root" lattice of Q. The choice of K in 

(3.49) is crucial to eliminate the dilaton tadpole as its S-transform fC contains only 

root characters, 0 9 (il). It is required by the consistency conditions in Section 3.3.4. 

3.3.2 Cardy's condition and annulus amplitude 

In the open string sector, we are interested in the annulus amplitude. In the direct 

channel, the annulus amplitude for an open string toroidally compactified on the 

lattice of a group Q can be written as 

A V26-d 100 
dT2 1 . 

r25,25 = (47r2a')(26-d)/2 o ri4-d/2ry24-d(ir2/2) A2s,25('n2/2) , (3.52) 

where A 25,25 (ir2/2),is a sum of lattice characters. We label the amplitude by anum-

ber "25" due to the fact that it describes the dynamics of open string fields which 

satisfy Neumann boundary conditions in all coordinates i.e. an open string stretch­

ing between two (wrapped)D25-branes. The corresponding transverse amplitude, 

representing the exchange of closed string modes between two boundaries, can be 

obtained by the S-transformation of equation (3.52) as 

-A _ -(13-~) V26-d 100 

1 - . 
r 25,25 - 2 ( 47r2a') (26-d)/2 o dlry24-d ( il) A25,25 ( 'll) ' (3.53) 

where A25,25 ( il) is a sum of lattice characters in the transverse channel. We shall 

show how to determine A25,25 (ir2/2) and A25,25 (il) by using well-known facts in 

boundary conformal field theory. 

Let us consider the E-N compactification where Xij = 6i,j· Observe that the 

matrices C and X defined in (3.36) and (3.42) will satisfy "Cardy's condition", 

(3.54) 

if and only if, P.Bi + P.aj = Po for any /3i and f3j· This implies that the centre of the 

covering group of Q contains elements of order less than or equal to two. \iVe shall 

consider the E-N compactification on such groups or direct product of them. The 

simple simply laced Lie group obeying Cardy's condition are listed in Table (3.2). 

Note that in the last two columns of Table (3.2), we relate the factor VJl /2d/2 to 

the rank of the antisymmetric tensor bab which will be used when we consider the 
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tadpole condition. Note that, in general, Cardy's condition can be Xij = Cij = 6iu(j) 

where a(j) denotes a permutation of the label i.e. the partition function (3.42) is 

permutation invariant. 

Group Rank (d) Centre J}lj2d/2 Rank of bab 

SU(2) 1 z2 20 0 

S0(4m) m> 1 2m Z2 x z2 21-m 2m-2 

E7 7 z2 2-3 6 

Es 8 1 2-4 8 

Table 3.2: Shows the simply laced Lie group that satisfy Cardy's condition. 

04m V4m S4m C4m 

04m 04m V4m S4m C4m 

V4m V4m 04m C4m S4m 

S4m S4m C4m 04m V4m 

C4m C4m S4m V4m 04m 

Table 3.3: Shows the fusion rule for S0(4m) lattice characters (m> 1). 

Using Cardy's method, the direct channel amplitude is related to the fusion-rule 

coefficients by 

In the transverse channel, the Verlinde formula guarantees that 

where we define 1 

1 N N Sg 2 

.425,25( il) = 2 ~ x~i ( il) (~ fig nf3j) 
l-1 J-1 v S1j 

- 1 1 ~( )2 g . - 2 JJJ L a(3; X(3;(zl) , 
l=l 

N 

a(3; = L exp( -4Jria' P(3;·Pf3J nj . 
j=l 

1 This is equivalent to the ansatz used in [12]. 

(3.55) 

(3.56) 

(3.57) 
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Let us consider, for example, a bosonic string compactified on the lattice group of 

9 = S0(2d = 4m). By using the S0(4m) fusion rules in Table 3.3, the direct chan­

nel amplitude (3.55) is expressed in terms of lattice characters of S0(4m) lattice. 

There are four such lattice characters, Od, Vd, Sd, and Cd, corresponding to the four 

sublattice of the S0(4m) weight lattice. Vve obtain 

1 
2{(n; + n~ + n; + n~)Od(iT2/2) + 2(n0 nv + n5 nc)11d(iT2/2) 

+2(nons + nvnc)Sd(iT2/2) + 2(nonc + nvns)Cd(iT2/2)} . 

(3.58) 

The amplitude (3.58) has two important features: first, the coefficient of the root 

character is a sum of squares; second, the coefficients in all other conjugacy class­

character terms are sum of products nf3;nf3i where i =/::- j. This indicates that n 0 , nv, 

n 5 and ne label distinct Chan-Paton multiplicities. 

3.3.3 Mobius amplitude 

Let us consider the unoriented open string sector. In order to determine the explicit 

form of a Mobius amplitude, we use the group invariant operator defined by Englert 

and Neveu in [36] 

(3.59) 

where eigenvalues of Po span the root lattice of Q and E = ±1. Since, a'(p0 )
2 is an 

integer, the operator D9 shifts both the argument of the Dedekind function and the 

lattice character by a half unit. In the direct channel, the Mobius amplitude can be 

written in the form 

M 1126-d { 00 
cfT2 1 . 

r25 = (4n2a')(26-d)/2 lo Ti4-d/2 ij24-d(iT2/2 + 1/2) M2s(zT2/2 + 1/2)' (3.60) 

where M 25 is a summation of "hatted" lattice characters defined in (3.34). We can 

obtain the transverse channel by performing the P-transformation and changing 

variable to l = 1/2T2 which in the transverse channel describes closed strings prop­

agating between boundary states and crosscaps. The transverse Mobius amplitude 

can be written as 

- l\I v26-d { 00 1 _ . 
r2s = 2 (4n2a')(26-d)/2 Jo dl1]24-d(il + 1/2) M2s(zl + 1/2). (3.61) 
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By following Cardy's ansatz, the canonical choice for M 25 (il + ~) is 

N p9 59 
- _ E """ ~ 9 ( li ij n/3i ) 

M2s - 2 L...-t X/3; so . 
i,j=l 1z 

(3.62) 

For Q = S0(4m) and E 8 , the above ansatz gives 

- E Jg ~ ~ . 1 
M25 = -

2
-(L.....tnfJJOg(zl + 2), 

i=l 

(3.63) 

where 69 is the phase factor depending on the group Q; 69 = +1 for E8 and 69 = 

(-1)m for SO(Sm). For SU(2), S0(8m+4), and E7 , M is not proportional to the 

root character Og. The direct channel M 25 is 

(3.64) 

3.3.4 Consistency condition 

In order to have a consistent open string theory, we must meet two requirements. 

First, rt5,25 + r~§ must describe the partition function of unoriented open strings 

with product of Chan-Paton group SO(n) or USp(n) and second, each term in 

the e-27[1 power series expansion of the integrand of the total transverse channel 

f'K + f't5,25 + f~g must be a perfect square. 

The first condition is always satisfied for compactification on E-N lattices of the 

groups of Table 3.2. The Chan-Paton groups are determined by the massless vector 

contributions to rt5 ,25 +r~§, which appear as q-independent terms (q = e-7[72 ) in the 

expansion of the integrand of equations (3.52) and (3.60). Note that the expansions 

for TJ, iJ, Og, and Og can be written as 

-(24-d) c /2) TJ ZT2 rv e(24-d)7r72 /24 ( 1 + ~e -7[72 + ... ) , (3.65) 

TJ-(24 -d) ( iT2/2 + 1/2) rv e(24-d)7r72/3 ( 1 _ t!e-7r72 + ... ) , (3.66) 

Og(iT2/2) rv ed1r72 /24 ( 1 +(number of IJ~ts).e-7[72 + ... ), (3.67) 

Og(iT2/2 + 1/2) rv ed1r72 /24 (1- (number of rc:oJs).e-7[72 + ... ). (3.68) 

These q-independent terms are of two types: 

i) Q -scalars terms - terms arising from level zero of TJ and iJ and level one in 0 9 and 

Og are group-scalars. 
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ii) Vectors terms- terms arising from the level one in TJ and f] and level zero in 0 9 

and Og are vectors. 

The number of massless vectors is 2..::~ 1 nf3;(nf3i - E)/2. Thus, we get N direct 

products of orthogonal Chan-Paton groups for E = + 1 and symplectic Chan-Paton 

group for E = -1 respectively. The total multiplicity 2..::~ 1 nf3; verifies the second 

condition. 

These consistent theories also have two types of massless particles in the closed 

string channel: particles created by oscillators in non-compact dimensions and the 

Q-scalars. Massless exchanges generate divergences in the e-2
1r

1 independent terms 

in the expansion of the integrand off' K + f'~5 ,25 + f'~. These mass less state exchanges 

are encoded in the terms proportional to 0 9 (and Og) in equation (3.53) (and (3.61)). 

The dilaton and the graviton are exchanged at level one in Og and level zero in TJ· 

These divergences are all eliminated by imposing the dilaton tadpole condition: 

(3.69) 

Choosing E such that 6gE = +1, we obtain the total Chan-Paton multiplicity: 

~ 13v'N 
6 nf3i = 2 2d/2 . (3.70) 
i=l 

3.3.5 Boundary state of a wrapped D-brane on an E-N lat-

tice 

Using the boundary conformal field theory approach emphasized in the previous 

sections, it is quite straightforward to construct the boundary states corresponding 

to D-branes wrapped on the lattice. Let us now construct the boundary state for a 

D25-brane with "d" of its longitudinal directions wrapped on the lattice of a rank 

d Lie group g. In other words, we choose the open string coordinates in the lattice 

directions to satisfy the generalized Neumann condition, 

(3.71) 

In order to avoid confusion, in this section, we redefine the closed string world-sheet 

variables as s and t where 0 ::; s ::; 1r (instead of a and T). Let us perform a 
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conformal transformation [38] 

a --·tt 

T ---+ S (3.72) 

which maps the open string sector to the closed string sector, (a, T) ---+ (t, s) with 

0 :S s :S 1r, 0 :S t :S 1' and 1' = 1r2 jT. The boundary conditions now become 

0. (3. 73) 

We would like to construct the boundary states which describe the D-brane at t = 0 

and t = 1'. Note that we will work in light-cone gauge where x± = (X0 ± X 9 )j2. 

Thus, in this Section, the index fl = 1, ... , 8, 10, ... , 25- d. 

The construction of the boundary state in the non-compact directions, IE11), is 

quite well-known2
. It is defined as the coherent state: 

IEI,) rv 69---P(q- y) exp { L -~o:':n6J1Va~n} IO)L 010) R . 
n>O 

(3.74) 

For the compact directions, we apply the formalism in [40] to the Englert-Neveu 

compactification. Assume that the compact part of the boundary state, lEa), satis­

fies: 

(3.75) 

The following constraints for the zero-mode and oscillator parts of the boundary 

state lEa) are obtained by substituting the closed string mode expansion (3.21) into 

condition ( 3. 75) : 

(3. 76) 

and, 

(3. 77) 

Note that lEa) = IEa)zero-mode 0 IEa)osc· The constraint (3.76) implies ma = 0. 

2 For recent reviews see ref. [38] and [39]. 
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This means that lEa) zero-mode only contains winding modes. Vve get 

b 

P E t W a 
R =- ab- e , 

2a' 
wb 

PL = Eab2a' ea' 

59 

(3.78) 

where the basis vectors ea = 2(2a')- 112wa are expressed in terms of the fundamental 

weights wa. As can be seen by using (3.19), the vectors J2(ipL and J2(ipR do 

actually span the weight lattice, Aw. Thus the general solution for (3.76) may be 

written as, 
N 

IBa)zero-rnode = L af3i lW, f3f) ' (3.79) 
{3;=1 

where af3; is a constant parameter defined in (3.57), and 

lvV, f3f) = L lw, f3f) , (3.80) 
wEAw 

is a state obtained by summing over all weights in the conjugacy class labelled by 

f3f. On the other hand, the solution IBa)osc for the constraint (3.77) is, 

IBa)osc r-v exp { L -~a~n(G- 1 )abii~n }10)£ ® IO)R · 
n>O 

(3.81) 

Adding together (3.79), (3.81), and the non-compact contribution, we get the full 

boundary state for a wrapped D25-brane as 

N 

ID2s) = L af3; IB2s, f3f) , (3.82) 
!3i=l 

where 

(3.83) 

vVe define the vacuum, 

(3.84) 

The normalisation factor N 25 is related to the tension of the wrapped D-brane. In 

order to determine its value, we now calculate the interaction between two parallel 
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D25-branes both in the open and in the closed string channel and compare the two 

results. Let us start by calculating the interaction in the closed string tree channel, 

the cylinder amplitude, which is given by [38], 

-A J d[ rrlH r25 = o/7r 2(D2sle-T closediD2s) 

N 

o/7r J ~l L(a)3J2 (B2s,,Bfle-¥Hc~asediB25,,Bf) · 
i=l 

(3.85) 

The Hamiltonian for the closed string on an E-N lattice is 

n 

(3.86) 

The first term in (3.86) is the contribution from the non-compact dimensions while 

the last term comes from the compactified dimensions. The operator p is the mo­

mentum operator in the non-compact Neumann directions. We define the left and 

right moving number operators as 

(3.87) 
n n 

For the non-compact dimensions, the contribution to the amplitude (3.85) is 

r- A ll ( ·z)-(24-d) 
non-compact ""' 26-d'TJ 't · (3.88) 

In the compact part of the amplitude (3.85), the contribution from each conjugacy 

class can be written in terms of the lattice character: 

(3.89) 

where the winding mode L = w0 e0 . The matrix G;;b1 = eaeb where ea = Eabeb. 

Since, ea/ J2(2 is a basis of Aw' the vector L/ J2(2 belongs to the weight lattice. 
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So, the sum in (3.89) is exactly the lattice character Q defined in (3.27). Then, the 

total contribution from compact directions is 

(3.90) 

Combining (3.88) and (3.90) together with the overall factors, the full amplitude in 

(3.85) can be written as, 

(3.91) 

Comparing equation (3.91) with the transverse annulus amplitude in (3.53), we can 

obtain the value of the normalisation constant 

(3.92) 

3.4 Truncation of the bosonic string theory 

In this Section, we briefly review the emergence of Type II superstrings from the 

26-dimensional bosonic string via the truncation mechanism as advocated in [9] 

and [5]. 

3.4.1 Truncation in closed string sector 

The starting point is a toroidal compactification of the 26-dimensional bosonic the­

ory on the lattice of the Lie group E8 x E8 both in left and right sectors. Note that 

the E8 lattice is a sublattice of the S0(16) lattice which is needed to obtain Type 

0 non-supersymmetric strings. 

A crucial ingredient for the consistency of the truncation is that the group E8 x E8 

contains a subgroup S0(8)int in a regular embedding. The subgroup is vital in con­

structing the Lorentz algebra of the truncated theory. Indeed, the original SO (25, 1) 

Lorentz group breaks into S0(9, 1) x E8 x E8 in both sectors, but the transverse sub­

group S0(8)trans C S0(9, 1) does not possess spinorial representations to describe 

fermionic states. In order to circumvent this problem, the authors in [9] proposed a 
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stringy generalization of the )t Hooft-Hazenfratz mechanism [8] in non-abelian gauge 

theory) whereby the transverse Lorentz algebra of the truncated theory is) 

so(8)diag = diag[so(8)trans X so(8)int] ) (3.93) 

where so(8)int exhibits spinorial representations. The corresponding Lorentz gener­

ators are given by) 

Jf.W = Lf-LV + K/t ; 1-L) V = 1 ... 8) (3.94) 

where the Lf-Lv generate the transverse group 50(8)trans and the Kf:V are the zero­

modes of the Kac-Moody algebra generated in the compact dimensions from the 

bosonic vertex generators. It was proven in [5, 9] that the generators { Jf-Lv, Jf.L±, 

J+-} close on an so(9, 1) algebra which becomes the Lorentz algebra of the fermionic 

theory emerging from the bosonic string theory via a truncation procedure we now 

describe. 

Let us first try to remove "by hand" all states (oscillators and zero-modes) per­

taining to E 8 and 50(8)' when considering the branching E8 x E8 ::J E 8 x 50(8)' x 

50(8)int. so that the truncation only keeps states whose internal degrees of freedom 

are oscillators and zero-modes of 50(8)int· Then, the mass-shell formula for the 

truncated theory reads) 

a'Jrf'2 
__ L:__,R - I p2 [50(8). l + N(12) -4 - a L,R mt L,R C ) (3.95) 

where N(12
) is the oscillator number in (8+4) dimensions and c is the intercept. L,R 

The closure of the Lorentz algebra requires c = 1/2, and comparison with the mass 

spectrum of the compactified bosonic theory before truncation, namely, 

a'f1;[2 
__ L---',_R = 'p2 [E X El+ N(24) -1 

4 a L,R 8 8 L,R ' (3.96) 

leads to the conclusion that the truncation procedure described above must be re­

visited. Indeed, compatibility of (3.95) and (3.96) requires 

(3.97) 

where the term 1/2 can be shown to correspond to the contribution of a fixed weight 

vector of norm 1 in the 50(8)' lattice. There are two choices for such "ghost" 
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vectors in S0(8)' ; either ( V2Q!p~, .;2"dp~) or ( V2Q!p~, V2Q!p~) where p~,p~ and 

p~ are vectors characterizing the three conjugacy classes of S0(8)' other than the 

root lattice. The term 1/2 in (3.97) is exactly the energy required to remove the 

zero-point energy (- ~~) in the compact directions. 

It is now straightforward to study the effect of truncation on the spectrum of 

a compactified bosonic theory by observing how it affects the representations of 

S0(16). Let us decompose the conjugacy classes of the S0(16) in terms of S0(8)' x 

S0(8)int conjugacy classes: 

(o)I6 [(o)~ E9 (o)s] + [(v)~ E9 (v) 8] 

(v)16 [(o)~ E9 (v)s] + [(v)~ E9 (o)s] 

(s)I6 [(s)~ E9 (s)s] +[(c)~ E9 (c)s] 

( c)l6 [(s)~ E9 (c)s] +[(c)~ E9 (s)s] , (3.98) 

where (o), (v), (s), (c) represent the root, vector, spinor and conjugate spinor con­

jugacy class of S0(16) and S0(8). If the truncation process keeps the directions 

( V2Q!p~, V2Q!p~) in S0(8)' (we shall refer to it as choice A), the conjugacy classes 

are truncated as follows: 

A: (o)l6 ~ (v)s, (v)I6 ~ (o)s, (s)I6 ~ (s)s, (c)16 ~ (c)s . (3.99) 

On the other hand, if the truncation keeps the directions ( V2Q!p~, V2Q!p~) (we shall 

refer to it as choice B), we get: 

B: (o)l6 ~ (v)s, (v)I6 ~ (o)s, (s)I6 ~ (c)s, (c)I6 ~ (s)s . (3.100) 

In order for the truncated theory to be modular invariant, the truncation proce­

dure described above must be accompanied by sign flips of some of the truncated 

lattice characters. Using the definition (3.42), to implement (3.99) and (3.100), the 

prescription for truncation-flip is as follows: 

A: { 016 ~Vs, S16 ~-Ss 

Vl6 ~Os, C16 ~ -Cs 
(3.101) 

or 

B: { 016 ~Vs, S 16 ~ -Cs 

V16 ~Os, C16 ~-Ss 
(3.102) 
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By applying these choices A and B for truncation of closed bosonic string com­

pactified on the lattice group mentioned above, we can obtain all ten-dimensional 

closed fermionic string models. For example, we can obtain Type liB superstring by 

compactifying the closed bosonic string on E8 x E8 lattice and applying truncation 

A in both left and right sectors. The partition function for closed string on such 

lattice can be derived from (3.42). Since E8 x E8 has only one conjugacy class i.e. 

N = 1, we get 

(3.103) 

Truncation A in (3.101), implies that 

(3.104) 

after applying in both left and right-sectors, we obtain 

(3.105) 

which is exactly the partition function of Type liB. 

It turns out that any modular invariant compactification of the 26-dimensional 

bosonic string on f:h x QR, where QL and QR are simply laced group of rank 16, 

remains modular invariant after truncation in one or both sectors. Some of the 

results from truncation of the bosonic string are present in Table 3.4. Note that in 

the case of Heterotic string, the compactification is not E-N type. 

3.4.2 Fermionic representations and their operators 

In order to explain the truncation in more detail, we will discuss the bosonisation of 

world-sheet coordinates and characterise further the three fermionic representations 

of our new Lorentz algebra. Let us start by consider the sublattice S0(8)int of the 

Es X Es lattice. vVe define the set of operators 

(J . J dz (32/2 . r qr' = --. zr z i : exp (2,Bi.X (z)) : , 
27r2Z 

(3.106) 

where we take z = ete-is and Pi represents a weight vector of S0(8)int· The contour 

of the integral is a unit circle. The operator q~i can be obtained by fermionization of 
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10-D Models (h choice QR choice 

IIA EB X EB B EB X EB A 

JIB EB X EB A EB X EB A 

OA EB X 50(16) B EB X 50(16) A 

OB EB X 50(16) A EB X 50(16) A 

Heterotic{ 
EB X EB EB X EB 

None EB X 50(16) A 
EB X 50(16) EB X 50(16) 

Table 3.4: All ten dimensional closed string models can be truncated from 26-D 

bosonic string. 

the lattice bosonic coordinates as explained in [5, 9]. The integrand in (3.106) is not 

single-valued as the function z!3li2 has a cut in the z-plane for {3?:/2 E Z + 1/2. To 

solve this problem, we have to either fix r to half-integer value, or allow only half­

integer values of f3i-(.J2Q/p). The second choice constrains the 50(8)int conjugacy 

classes on which the q-operator can act and leads to the following three sectors of 

the fermionic string: 

(i) Ramond sector for rE Z + ~ and qfv acting on 88 (or Se)· 

( ii) N eveu-Schwarz sector for r E Z and qfv acting on 8v. 

(iii) Green-Schwarz superstring for r E Z and qf• (or qfc) acting on both 8v and 

8c(or 8v and 88 ). 

In the next step, we introduce the massless vacuum states on which the q­

operators can act in a sensible way. Let us consider the possible candidates for such 

states. As the original compactified bosonic strings have a symmetry 50(8)trans x 

(E8 x E 8 ), the massless states must belong to the following irreducible representa­

tions: 

(8v ® 1) + (1 ® adj(EB X EB)) . (3.107) 

The states in 8v®1 are obtained by applying the oscillators in the lattice directions to 

the tachyonic ground state. They are not a good choice as it seems unnatural to keep 

such states while projecting out the tachyon. We are thus led to consider the states 

belonging to the acljoint of E 8 x E 8 . It turns out that the adjoint representation of 



3.4. Truncation of the bosonic string theory 66 

S0(8)int x S0(8)' x E8 C E8 x E8 contains 8v, 88 , and Se which can represent the 

correct vacua for the fermionic string theories. However, the S0(8)int states in those 

representations are eight-fold degenerate, which makes the theories inconsistent. 

This can be solved by fixing some weight vectors in S0(8)', the ghost vectors, 

as explained in the previous section. The truncation will project out all states in 

S0(8)' which do not correspond to the ghost vectors. We now arrive at the following 

vacuum states: 

l8v)o lf3v, 1Jv) 

l8s)o lf3s, 1Js) 

(3.108) 

The vectors f3i (i = v, s and c) are the weight vectors of S0(8)int while the vectors 

1Ji represent the ghost vectors. Note that the vectors (/3i, 1Jj) belong to the E8 root 

lattice. 

The action of the q-operators on a state with arbitrary lattice momentum f3 with 

no Cartan subalgebra excitation are [5]: 

614 )-~£i6.Q<(z)l 14 r5) qT fJ l 1J - (! dz( e z=O fJ + , 1} , (3.109) 

where ( = -(r + ~ + /3.6) and the operator Q<(z) is defined as 

(3.110) 

The derivative produces a sum over the creation operators at level e. The mass of 

the states in (3.109) are calculated by using (3.96), giving: 

1 2 1 2 - (/3 + b) + -1] + ( - 1 
2 2 
1 2 1 2 - f3 + -1] - 1 - T . 
2 2 

(3.111) 

Thus, an operator q~ decreases the mass of a state by r. \iVe can apply this q-operator 

with 1' > 0 on the vacuum states to generate all fermionic string spectra. 

For NS-operators, the mass of the excited states can take half-integer value. This 

can cause problems, since the bosonic spectrum contains only integer-value as it is 

compactified on the even lattice. This is because the NS-operator maps even-weights 
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to odd-weights which do not belong to the root lattice of E 8 . The problem is solved 

by keeping only those states with even-number of NS-operators i.e. the states that 

belong to the root lattice of E 8 . This is equivalent to applying the GSO-projection 

on the NS-sector. 

In the R-sector, an odd number of q-operators changes the chirality of S0(8)int 

spinors and produces states which do not belong to the E8 root lattice. To avoid 

this problem we introduce the 50(8)' Dirac gamma matrices pv which can map the 

ghost vector 7Js to 7Jc and vice versa. The same problem arises for the GS-operators, 

and it can be solved in a similar way i.e. by introducing gamma matrices pc. The 

matrices pv and pc have the following properties: 

I7Jc)' Pv I7Jc) = I7Js)' 

I7Js), Pci7Js) = I7Jv) · (3.112) 

The Ramond spectrum is obtained by applying the R-operators on the ground states 

l8s)o and l8c) 0 . The GSO projection only keeps the states which contain the ghost 

vector 7Js (or 7Jc). Let us redefine the NS, R and GS-operators as N, R and G which 

are defined by the following: 

NfJv 
T qfvtfJv ) 

RfJv 
d 

q.Bv/ pv 
d f3v ' 

oBs f3s C 
n qn tf3sP ' 

cfJc f3c C 
n qn tfJcP ' (3.113) 

where T E Z + ~ and d, n E Z. The matrices /(Ji satisfy the Clifford algebra in four 

dimensions. We will explain their important role shortly. In order to make contact 

with fermionic oscillators, we rewrite the fermionic operators N, Rand Gin the real 

basis: 

c±sj 
n 

(3.114) 
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where Vj, s j and Cj are the weight vectors belonging to the conjugacy classes Sv, 

S8 , and Se· The indices p,, A, A run from 1 to S. Consequently, the vacua are now 

repara.metrized as: 

(3.115) 

The gamma matrices, rf3i, in (3.113) ensure the fermion operators satisfy the anti­

commutation relations: 

{ 1/J~, 1/J~} = f51-LV t5r+s,O ' { 1/J~, 1/Jf} = f51-LV f5d+ j,O ' 

{S~\ S~} = t5ABt5n+m,O ' {s:, s!} = t5A
13

t5n+m,O ' (3.116) 

where r, s E Z + ~ and d, f, m, n E Z. Note that the operators N and R do not 

change the space-time statistics while G does. We can identify the operators 1/J~ as 

world-sheet fermions and the operators s:; as space-time fermions. 

We now want to discuss how the spectrum of Type liA and liB string theories 

emerge after truncation. To show this, we work in the GS-formalism where no 

GSO-projection is needed. By applying the truncation (3.100) in both left and right 

sectors, we obtain the vacuum state 

(3.117) 

and generate the complete spectrum by acting with the operators c;=si (n < 0 and 

i = 1, ... , 4) on the vacuum state in all possible permutations. In the left sector, for 

instance, we can show that the action of G-operators on the vacuum yields states 

corresponding to weight vectors in one of the following form: 

(3.11S) 

where oi are the root vectors and ni E Z. All vectors in the SO(S) sublattices Av 

and Ac are of the form Pv and Pc respectively. We can identify the states described 

by Pv with the bosonic states belonging to the (NS+) sector, and identify the 

states described by Pc with the fermionic states belonging to the (R+) sector. The 

full spectrum is the direct sum ( N S +) EB ( R +). Thus, the spectrum of Type liB 

superstring can be represented in terms of: 

Type liB: (NS+,NS+) EB (NS+,R+) EB (R+,NS+) EB (R+,R+). (3.119) 
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To arrive at Type IIA, we apply the truncation (3.99) in the right sector while, on 

the left, we again apply the truncation (3.100). This will flip the right sector of the 

vacuum state into: 

(3.120) 

The full spectrum can be obtained by acting with the operator c;s; on the left and 

the operator G:f:c; on the right sector. By the same analysis as above, the Type IIA 

spectrum can be represented as: 

Type IIA: (NS+,NS+) EB (NS+,R-) EB (R+,NS+) EB (R+,R-), (3.121) 

where the states in (R-) are identified with the states belonging to the lattice A~o(s). 

In order to make contact with the fermionic string in NSR-formalism, we take the 

Ramond ground state to be the 16-dimensional representation of the Clifford algebra 

of the zero-modes of the R-operators, '1/Jtf i.e. (188 , A), !Se, A)). They can be obtained 

by applying the operator '1/Jtf on the highest weight state of 88 • The even number 

of R-operators gives the states belonging to the spinor representation while the odd 

number gives the states in the conjugate spinor representation. One can see that the 

truncation (3.100) is equivalent to taking the GSO projection acting on the Ramond 

ground state as: 

(3.122) 

where pd is the world-sheet R-fermion number operator. On the other hand, the 

truncation (3.99) gives the opposite projection. In the NS sector, the lowest mass 

state after truncation is the massless vacuum state IBv, fL)o, which is GSO invariant 

and belongs to the E8 root lattice. In order to implement the boundary state 

formalism we need to define the NS tachyonic state INS) 0 via the following relation: 

(3.123) 

Thus, the full spectrum of the NS sector can also be built by acting with the NS­

oscillators on this tachyon state. vVe can define the GSO-projection in this sector 

as: 
A 2F•-t Pc;so = ( -1) , (3.124) 

where pr is the NS fennion number operator. 
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3.4.3 Truncation in open string sector 

We now follow the discussion in [12] to study the truncation in open string sector of 

the unoriented string theory which was described in Section 3.3. We are interested 

in the truncation of open strings wrapped on the E8 x E8 lattice and show that the 

theory can be truncated to the ten-dimensional supersymmetric Type I string theory. 

Note that the discussion about Type 0 model described in [12] is not discussed here. 

In the case of strings compactified on E 8 x E8 there is only one conjugacy class 

(N = 1). The direct channel amplitudes can be read from equation (3.48), (3.52) 

and (3.60). We get 

(3.125) 

(3.126) 

(3.127) 

with Og = OE8 xE8 = 1, we obtain 

(3.128) 

-A r 25,25 (3.129) 

(3.130) 

We can determine the Chan-Paton group by counting the massless states in f~5 ,25 + 
r~~. Recalling the mass formula for open string states a' !vi = a' p2 + N - 1, and the 

expansions, 

TJ-8 (iT2/2) "" e7fT2/3 ( 1 + 8e-1f72 + ... ) , (3.131) 

i}-8 (iT2/2 + 1/2) "" e1Trz/3 ( 1 _ 8e-1rrz + ... ) , (3.132) 

[ OEB ('iT2/2)] 
2 

"" e2rrrz/3 ( 1 + 2(248)e-7r72 + ... ), (3.133) 

[aE8(iT2/2 + 1/2)r "" e2rrr2/3 ( 1 - 2(248)e-7rT2 + ... ), (3.134) 

the number of massless vectors is obtained via the formula 

1 2 1 
-(n -m) = -n(n- E). 
2 2 

(3.135) 
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By imposing the dilaton tadpole to vanish in (3.69), the constraint in equation (3.70) 

implies that 

n = 213-(16/2) = 25, E = + 1_ (3.136) 

Then, it turns out from equations (3.135) and (3.136) that the Chan-Paton group of 

the theory is reduced from S0(213) to S0(32) by compactifying on an E-N lattice 

in the presence of a B-field bab· 

Let us apply the truncation of choice A in (3.101) in the open string sector. 

Recall that the truncation of the E 8 x E 8 lattice character is 

(3.137) 

After truncation, the transverse amplitude (3.128), (3.129) and (3.130) become 

f'I<;trunc 

f'M;trunc 
25 

- A;trunc _ 2
5 

V1o 100 
_1_ ( /, _ ) (. ) 

r25,25 - 2 (47r2a')5 0 dl TJB(il) la Sa zl ' 

5 V10 100 
1 ~ ~ . 1 

-2 (47r2a')5 o dlfJB(il + 1/2) (Vs- Ss)(zl + 2) . 

(3.138) 

(3.139) 

We can truncate in the direct channel amplitude (3.126) and (3.126) which gives 

A;trunc- 210 vlO 100 dT2 1 ( /, - )(. I ) 
r25,25 - 2 (47r2a')5 0 T~ 1]8(iT2/2) la Ss ZT2 2 ' (3.140) 

M;trunc 2
5 

V10 100 

dT2 1 ( ~. ~ ) ( .T2 1) 
r 25 = -2 (47r2a')5 0 T~ 7]a(iT2/2 + 1/2) lis- Ss ~2 + 2 . (3.141) 

The amplitude (3.138) (3.139) (3.140) and (3.141) are in the same form as the 

corresponding amplitudes in Type I theory. Some massless modes in both open 

and closed string channels, created by oscillators in non-compact directions, become 

massive after truncation, and a subset of massless 9-scalar from compact directions 

plays the role of massless modes. In the closed string channel, these 9-scalars 

become massless spinors i.e. R-R and NS-NS fields. The NS-NS and R-R tadpoles 

are eliminated by the condition (3.136). We can also check that the amplitudes 

(3.140) and (3.141) give the S0(32) Chan-Paton gauge group. 

The fact that the Chan-Paton group is preserved under truncation has an inter-

esting consequence. From a geometrical point of view, unoriented string theory can 

be described in terms of D-branes and orientifold planes. The authors in [12] claim 

that, in order to preserve the Chan-Paton symmetry, a bosonic D25-brane wrapped 
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on the E8 x E8 lattice transmute to a BPS D9-brane of Type I theory. In the next 

section, we will prove that BPS Type I D-branes can be obtained by truncation of 

bosonic D-branes. 

3.5 Type I BPS D~branes from bosonic D-branes 

We start with the unoriented open/closed bosonic string theory compactified on 

the lattice group G = E8 x E8 , and truncated a la Casher, Englert, Nicolai and 

Taormina [12]. In this scenario, the bosonic D25-branes are truncated to BPS Type 

I D9-branes. Let us consider the system of a D25-brane and a DO-brane wrapped 

on the lattice group G where we define 

(3.142) 

where the parameter p takes positive integral values 0 :::; p :::; 9. We will show that, 

by applying the truncation in the bulk theory, a bosonic DO-brane wrapped on some 

directions of the E8 x E 8 lattice will truncate to a Dp-brane in Type I theory. The 

interaction amplitudes of the DO-branes and the background are calculated. We will 

prove that, after applying the truncation, the interaction of a DO-brane are exactly 

the same as the interactions of a Dp-brane in Type I theory. 

3.5.1 Setting up the configuration 

Let us consider the open and closed bosonic string theory compactified on the torus 

of the lattice group G = E 8 x E8 . We are interested in the dynamics of a probe DO­

brane moving in a background of wrapped D25-branes and an orientifold plane, 025. 

We define the coordinates by taking the directions Xl-l where Jh = 0, ... , 9 to be the 

non-compact directions and compactifying the coordinates xa where a= 10, ... , 25 

on a E8 x E 8 torus. 

In order to perform the truncation, we may consider the group E8 x 50(16) ::::> 

E8 xE8 . It will be useful for us to split the 50(16) direction in the E8 x50(16) lattice 

in to 50(8)' X 50(8)int· We will take the coordinates X 10
' ... 'X13 to represent the 

50(8)int sublattice. 
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Let us consider for example, as shown in Table (3.5) 3 , the case of() = 19 (or 

p = 5). We set the bosonic De-brane to occupy the torus in the 14 directions, 

leaving the lOth and 11 st direction unwrapped. We expect this wrapped D19-brane 

to become a D5-brane in Type I theory after performing the truncation in the bulk 

theory. In this case, the internal subgroup 50(8)int is broken to 50(4) x 50(4). 

The four bosonized world-sheet fermions from the X 10 and X 11 bosonic coordinates 

get Dirichlet boundary conditions. 

bra ne 1 2 3 4 5 6 7 8 10 11 12 13 14 15 0 0 0 25 

D25 + + + + + + + + + + + + + + 0 0 0 + 

D19 + + + + - - - - - - + + + + 0 0 0 + 

025 + + + + + + + + + + + + + + 0 0 0 + 

Table 3.5: Shows the system of a D19-brane and background D25-branes and an 

orientifold plane. 

In general, the bosonization conditions require p to be odd. The presence of 

Dirichlet conditions breaks the group G to cnew 

G---+ cnew = E8 X 50(8' + p- 1) X 50(9- p), (3.143) 

or, specifically, the subgroup 50(8)int C 50(16) is broken to 50(p-1) x 50(9 -p). 

The characters of 50(16) can be decomposed in terms of 50(8'+p-1) and 50(9-p) 

characters as, 

1116 118' +p-l 09-p + 08' +p-l 119-p ' 

516 58'+p-l59-p + c8'+p-l c9-p , 

(3.144) 

3 The "+ (- )" signs in Table (3.5) represent Neumann (Dirichlet) boundary conditions of the 

corresponding open-strings. Note that we take X 0 and X 9 to be light-cone directions. 
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3.5.2 Interaction Amplitudes 

In moving the stack of wrapped bosonic DO-branes for the bosonic string theory, 

we should consider not only the interaction of DO-branes with themselves, encoded 

in the annulus amplitude r:,0 , but also their interaction with the background D25-

branes and with the 025-plane. Then we need to calculate the annulus amplitude, 

r:25 , and Mi::ibius amplitude, rr. For DO-branes compactified E8 x E8 lattice, , 

with p + 1 longitudinal dimensions and 9- p transverse dimensions in non-compact 

directions, we can write the complete direct channel string amplitude as 

(3.145) 

(3.146) 

rr = (3.147) 

In the transverse channel, we get 

v;+l I dl 1 _ . 
(Sn2a')(P+1)/2 [(9-p)/2 7J(il) 8 Ao,o(d), (3.148) 

Vp+1 dl 0,25 Z 7} -2-
17 I A- ( "l) 2 (9-p} 

(8n2a')(P+1)/2 7J(il)P-1 C.9J ' (3.149) 

r- J\.f -
0 -

V p+ 1 l (} Z + 2 7} -2-
T 7 I M- ( ·z 1) 2 (9-p) 

(8n2a')(P+1)/2 d fJ(il + ~)s CaJ (3.150) 

The interaction between two DO-branes is quite trivial. In the direct channel, 

the annulus amplitude for a stack of DO-branes is, 

(3.151) 

where the multiplicity d represents the corresponding Chan-Paton group. Note that 

because we work on the E8 x E8 lattice, only four conjugacy classes of S0(8' + p-

1) x S0(9- p) contribute to the amplitude (-we ignore the contributions from the 

E8 factor and from the non-compactified directions). 

We can move from direct to transverse channels by applying the S-transformation 

defined in (3.37) to (3.151). So, the transverse channel amplitude is given by 
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and determines the tension of the DB-branes. The decomposition of the 50(8' + 
p- 1) x 50(9- p) characters does not play an important role in this case but will 

be very crucial in the case of the D25-DB amplitude. The latter is more easy to 

calculate in the transverse channel. The resulting closed string amplitude is 

The parameters d and n represent the multiplicities of the DB and D25-branes respec­

tively. The "-" signs between the different contributions break the 50(16) group 

and reflect the presence of the Dirichlet boundaries of the DB-branes. This sign dif­

ference is consistent with the direct channel where the annulus amplitude represents 

an open-string with one of its ends confined on a 08-brane while the other lives on 

the D25-brane. The open string coordinates in the 50(9- p) directions get mixed 

Neumann-Dirichlet conditions. As a result, the bosonized world-sheet fermions are 

twisted i.e. the open-string modes in the Ramond sector become half-integer-moded 

while the Neveu-Schwarz sector modes become integer-moded. In the lattice lan­

guage, the twist is equivalent to a shift by a spinor (or conjugated spinor) on the 

sublattice 50(9- p) of 50(8 + p- 1) x 50(9- p) weight lattice. This implies the 

resulting direct amplitude must be written in terms of the products of a bosonic 

character of 50 ( 8' + p - 1) and a fermionic character of 50 ( 9 - p) (or vice versa). 

So, the direct amplitude corresponding to (3.153) is 

nxd 
Ao,2s = -

2
-[(0s'+p-1 + Vs'+p-1)(59-p + Cg_p) 

+(5B'+p-1 + CB'+p-d(Og_p + Vg_p) 

-e-i(9
-P)7r/

4 (08'+p-l- Vs'+p-1)(59-p- Cg_p) 

-e-i(B'+p-l)1f/4 (5s'+p-1- Cs'+p-d(Og_P- Vg_p)]. (3.154) 

The amplitude (3.154) is inconsistent unless we require p = 1, 5, 9. This means only 

D13, 019 and 025-branes are allowed in this construction. 

The interactions of 08-branes and a 025-plane can be determined by the Mobius 

amplitude. In the transverse channel, we can automatically write down the Mobius 

amplitude as: 

(3.155) 
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The direct channel Mobius amplitude can be written as: 

Mo = 
d ~ ~ ~ ~ 

-2{ (Os'+p-109-p- Vs'+p-1 V9-p) 

(p - 5 )1f ~ ~ ~ ~ 
+cos 

4 
(5s'+p-159-p- Cs'+p-1C9-p) 

. . (p - 5) 1f ~ ~ ~ ~ 
+1, sm 

4 
(5s'+p-1 C9-p- Cs'+p-159-p)}. (3.156) 

The Mobius amplitude (3.156) is inconsistent with the direct channel amplitude 

(3.151), unless sin (p~5)1r vanishes. This also implies that only D13 and D19-branes 

are allowed. 

3.5.3 Truncation of the bosonic D-brane 

In order to calculate the effect of truncation on the DO-branes, it is more convenient 

for us to write down the interaction amplitudes in terms of the 50(8') x 50(p-

1) x 50(9- p) characters. We can rewrite the transverse channel amplitudes as 

(3.157) 

Ao,25 2-5n x d{OB'(Op-109-p -1~-1V9-p) + Vs,(Vp-109-p- Op-1V9-p) 

-5s,(5p-159-p- Cp-1C9-p)- Cs,(Cp-159-p- 5p-1C9-p)}, (3.158) 

JVIo -d{ Os' ( Op-169-p - '~-1 v9-p) + 1fs, (1~-169-p - Op-1 v9-p) 

-ss,(Sp-159-p- 6p-169-p)- 6s,(6p-1s9-p- sp-169-p)}, (3.159) 

and also the direct channel amplitudes: 

Ao,o = ~
2 

{ Os,(Op-109-p + Vp_dl9-p) + V8'(0p-1V9-p + Op-1V9-p) 

+5s,(5p-159-p + Cp-1C9-p) + Cs,(Cp-159-p + 5p-1C9-p) }, (3.160) 

n x d{ Ae,25 -
2

- (08' + vg,)(Op-1 + VP_I)(59-p + C9-p) 

+(Ss'+ Cs' )(Sp-1 + Cp-1)(09-p + V9-p) 

-e-i(9-p)1r/4 (0s' -Vs' )(Op-1 - Vp-t)(59-p- C9-p) 

-e-i(s'+p-t)?T/4(5s'- CB')(Sp-1- Cp_J)(09-p- V9-p)} , (3.161) 
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Ado - ~ {Os' ( Op-109-p - ~-1 v9-p) + 1fg, (~-169-p - Op-1 v9-p) 

(p - 5 )1r A A A A A 

+cos 
4 

[SB'(Sp-159-p- Cp_1C9-p) 

+6s,(6p-1s9-p- sp-169-p)] 
, , (p - 5 )1r A A A A A 

+2sm 
4 

[S8'(Sp-1C9_P- Cp-159-p) 

+6s,(6p-169-p- sp-159-p)] }· (3.162) 

Let us now perform the truncation in the bulk theory i.e. project out all states 

belonging to the Es and 50(8') lattice directions and keep only the zero-modes 

belonging to the vector and spinor weight lattice of 50(8'). At the boundary, 

although the presence of the Dirichlet boundary conditions breaks the 50(8) internal 

symmetry, the truncation can be applied by taking, 

08' --+ 0, Vs' --+ 1, 

Ss' --+ -1, Cs' --+ 0, (3.163) 

which is equivalent to the truncation of choice A in (3.101). We can perform the 

truncation in (3.163) on the amplitudes (3.157),(3.158) and (3.159), we obtain the 

following results in the transverse channel, 

2-(p+l)/2 

2 
d2 {'~-109-p + Op-1 V9-p- Sp-159-p- Cp-1C9-p} (3.164) 

2-5 n X d{Vp-109-p- Op-1 v9-p + Sp-159-p- Cp-1C9-p} (3.165) 

(3.166) 

By applying the truncation (3.163) on the amplitudes (3.160), (3.161) and (3.162), 

we obtain the resulting direct channel amplitudes as: 

d2 

2 {Vp-1 09-p + Op-1 V9-p- Sp-159-p- Cp-1 C9-p} (3.167) 

nxd 
-

2
-[(0p-1 + VP_I)(S9-p + C9-p)- (Sp-1 + CP_I)(09_P + V9_p) 

+e-i(9-p)1r/4 
( Op-1 - Vp-1)(59-p- C9-p) 

+e-i(p-1)1ri4 (Sp-1- Cp-1)(09-p- V9-p)]. (3.168) 
d A A A A (p- 5)7r A A A A 

1Mp - 2{op-1 '19-p- Vp_109-p- cos 
4 

(Sp-159-p- Cp-1C9-p) 

' 
0 

(p - 5) 7f A A A A
0 -2 sm 

4 
(Sp-1 C9_P- Cp_1S9-p)}. (3.169) 
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In the case where p = 1, 5 the amplitudes in (3.164)-(3.169) agree with the interac­

tion of the D1 and D5-brane in Type I theory as expressed in Dudas, Mourad and 

Sagnotti in [11]. Moreover, we can test our assumption by matching the tension 

of the wrapped 08-brane to Type I Op-brane. The tension of a wrapped bosonic 

DO-brane is given by 

Tbos - fbos X ve De - De sd' (3.170) 

where the unwrapped bosonic DO-brane tension, T}J00, is 

(3.171) 

and V8~ is the self-dual lattice volume that the DO-brane is wrapped on. We have 

(3.172) 

Recall that the Newton constant in 26 and 10 dimensions are related by the square 

root of the volume of the E 8 x E8 lattice 

where the volume of compact space is, 

By substituting (3.171)-(3.174) into (3.170), we get 

Tbos = f!i(47ra')(3-p)/2 De 2 ' 
/'1,10 

which is exactly the tension of a Type I Dp-brane. 

(3.173) 

(3.174) 

(3.175) 

3.5.4 Boundary state construction for the truncated branes 

In this section, we present more evidence that the BPS 0-branes can emerge from 

the bosonic string theory. Similar to the way we describe bosonic 0-branes by 

their boundary state in section 3.3.5, we can construct the boundary states for 

the truncated theory which describe BPS D-branes. Although the construction of 

boundary states for Type II 0-branes is well known, the fact that such boundary 

states can be written in terms of purely bosonic variables is a non-trivial result. 
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Let us start by considering the conformal field theory on the closed string world­

sheet. We introduce the left and right-handed currents Jl'(z) and }IL(z) associated to 

the sAo(8) algebra, with the oscillator modes J~ and J~ respectively. The boundary 

condition for lzl = lzl = 1 can be written as: 

(3.176) 

where v is an inner or outer automorphisum of {o(8). For the Neumann boundary 

condition, v is taken to be 1 and for the Dirichlet boundary condition v = -1. In 

this subsection, for our convenience, we need to modify the convention of the indices 

as: 

{~,~}· (3.177) 

N eumann {I} Dirichlet { i} 

The Neumann directions are now in I = 1, ... , p + 1 and the world-volume of the 

D-brane is Euclidean. Note that we use light-cone gauge, the time direction X 0 is 

transverse to the brane, and one can perform a double Wick's rotation after doing 

any calculation with this D-brane. 

The solutions that satisfy the boundary condition (3.176) are called the Ishibashi 

states [44]. By following the current algebraic approach demonstrated in [45], we 

can derive the Ishibashi states corresponding to the BPS Dp-branes in Type liB. In 

the NSR-formalism, the R-R part of a Type liB D-brane boundary state is given 

by: 

(3.178) 

We define 

IFp, ±) = exp [±i L 'ljl~d.l\1JLv-0~dJIFP, ±)~R , (3.179) 
d>O 

and the basis, 

IFp, ±)~R .l\![AB(I8c, A)o)L ® (l8c, B)o)R 

±iJ11AB(I8s, A)o)L ® (l8s, B)o)R . (3.180) 
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The matrices M 11v, MAB and l\1 AB are defined as: 

M·· AB (3.181) 

The matrices /'~B and )'~8 are the 50(8) gamma matrices in the real-Weyl basis. 

One can show that the boundary state (3.178) is actually invariant under the GSO­

projection defined in (3.122). 

The NS-NS part of the boundary state can be defined as: 

(3.182) 

where 

(3.183) 
r>O 

Note that the tachyon state, INS) 0 , is defined as in (3.123). One can use the 

definition (3.124) to show that the state in (3.182) is GSO-invariant. Then the full 

boundary state of a BPS D-brane can be written as: 

(3.184) 

the "+" sign represent the D-branes, Dp, and the "-" sign implies the anti-branes, 

Dp. Note that the bosonic part of the boundary state, IB11), is defined as in (3.74) 

with b11v replaced by the matrix Jvf1w as we are now including Dirichlet boundary 

conditions. 

If necessary one can define the boundary state in the GS-formalism [46] as well. 

The boundary state can be written as: 

IFp)cs = exp [-(±i) L s~n!v!ABS~nliFp, ±)~8 
' (3.185) 

n>O 

where 

vVe use the notation where the "-" sign implies the anti-brane. 
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3.6 Discussions and outlook 

Although the truncation mechanism we study in this chapter is very promising, there 

are still some aspects which need to be improved. We must ensure the truncation 

gives us the properties of the fermionic string. This aspect was our main motivation 

for this work. 'vVe showed that the BPS D-branes of Type I superstring theory can 

be obtained by truncating the bosonic D-branes. These bosonic D-branes wrap on 

the E8 x E8 lattice in such a way that the bosonized fermions satisfy the appropriate 

boundary conditions. As the truncation preserves the mass of solitons, we can show 

that the tension of the wrapped bosonic D-brane is exactly the same as the tension 

of a Type I D-brane. Moreover, we can construct the boundary state of BPS D­

branes from purely bosonic operators. Our results imply that the truncation can 

produce theories with BPS solitons which is one of the most important properties 

of superstring theory. 

Another interesting perspective concerns the dynamics of the truncation process. 

As we have to truncate a very large number of bosonic particles, it is not clear where 

these particles go. Moreover, we have to ensure that these particles will not reappear 

again in higher order of the perturbation series. Clearly, an understanding of the 

dynamics of the truncation is necessary. There is a conjecture in [5] that the string 

field expectation value in the string field theory may provide a mechanism that could 

move the vacua of bosonic string theory into the superstring vacua. Although this is 

only speculation, we hope that studying the truncation of non-perturbative objects 

such as D-branes might point us towards the dynamical origin of the truncation. 

This aspect is very challenging and under investigation at the moment. 



Chapter 4 

Black diholes and intersecting 

brane-anti= brane configurations 

In this chapter we study the physics of D-brane from the supergravity point of views. 

Most of the results presented here were published in [13] 

4.1 Introduction 

The physics of D-branes is perhap one of the most exciting outcome of the so­

called "second string revolution". On the one hand, D-branes are best described by 

boundary conformal field theory, on the other hand as supergravity solitons. Both 

definitions of D-branes play a major role in understanding the microscopic descrip­

tion of black hole entropy [49] and the AdS/CFT correspondence [48]. However, 

the progress in the construction of exact solutions for self-gravitating brane config­

urations lags far behind our understanding of those same configurations in string 

perturbation theory. To mention one outstanding example, we are still far from 

a satisfactory description of self-gravitating localized brane intersections, despite 

much effort and some progress in certain cases [50]. 

In this chapter we are interested in a particular configuration of D-branes, the 

brane-anti-brane system. This configuration was originally studied in the context 

of string duality beyond BPS level. Supersymmetric D-branes of type II theories 
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are examples of BPS states, which form a very special class of states in the Hilbert 

space of string and field theories. Most non-perturbative tests of the string duality 

conjecture are based on such BPS states, mainly because they are stable, protected 

from quantum corrections, and hence, easier to handle. However, these states do 

not account for the full spectrum of any string theory - most of the states in string 

theories are non-BPS. Therefore, the study of non-BPS D-branes is needed. The 

works pioneered by Sen [4] show that stable non-BPS states are related to the 

brane-anti-brane configuration. Indeed, such configurations of D-branes are not 

only useful in the subject of string duality, but also play a role in modern cosmology 

(see for examples [52] and [53]). Moreover, their connection to K-theory provides 

spectacular results in understanding the physics of D-branes [54]. 

Following the interpretation that BPS D-branes are classical solutions to type 

II supergravities, there have been some efforts to construct supergravity solutions 

describing a particular class of non-BPS branes corresponding to the 0-brane­

anti-D-brane configurations. For instance, the four-dimensional Kaluza-Klein dipole 

constructed in [55] can be embedded in eleven-dimensional supergravity in order to 

provide a static D6-D6 brane configuration of type IIA string theory suspended 

in an external magnetic field [15, 56]. More recently, exact solutions to Einstein­

Maxwell theory, with and without dilaton, describing static (but unstable) pairs of 

extremal black holes with opposite charges (hereafter, diholes) were constructed in a 

background magnetic field, and were argued to admit an interpretation in terms of a 

system of intersecting branes and intersecting antibranes in higher dimensions, after 

a suitable uplifting of the four-dimensional solutions when the dilaton coupling takes 

one of four special values [14]. The explicit task of uplifting the solutions in this 

way has been undertaken since then in [57]. Other recent studies of configurations 

of this type in the context of string theory include [58]. 

The main subject of this chapter is to generalize these configurations to the 

case where the charges of the branes are not equal. In Section 4.2 we follow the 

known case of single charge diholes. Then in Section 4.3, we construct a new exact 

solution of four-dimensional General Relativity describing oppositely charged, static 

black hole pairs, where the black holes are extremal and have an arbitrary number 
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n of different charges. Black holes of this sort can be regarded as composites of n 

extremal, singly charged black holes. Therefore, our solutions describe composites 

of n diholes. However, we mostly concentrate on the n = 4 case with two electric 

and two magnetic charges, because of the well-known consistent truncation of a wide 

class of low energy superstring theory compactifications to a four-dimensional action 

with bosonic sector [59, 60] and [61], 

This is the starting point of our analysis when considering four abelian gauge fields. 

Our construction is inspired by two known results. First of all, when the branes carry 

different charges, the corresponding four-dimensional black holes appear as solutions 

to theories with four U(1) gauge fields and three scalars of type (4.1) [59]. Second of 

all, four-charge pairs of black holes accelerating apart were found in [62, 63], which, 

when adequately written, are very suggestive of the form their static counterparts 

might take. (Composites with two charges, which can be obtained as a particular 

case of the four-charge case, are also of interest, see [64, 65]). 

As with other diholes, the composite dihole solutions in an asymptotically flat 

space suffer from conical singularities along the axis of symmetry. These singularities 

can be removed by suspending the diholes in external magnetic fields, a procedure 

we will examine in some detail. It should be noted that, for reasons similar to those 

discussed in [14], composite diholes are unstable equilibrium configurations. 

Although these new composite diholes solution are four-dimensional solutions of 

General Relativity, they can be embedded in ten or eleven-dimensional supergravi­

ties, and interpreted as systems of intersecting branes and intersecting anti-branes. 

This is discussed in Section 4.4, in an attempt to test any relevant connections 

between supergravity solitons and non BPS states described by brane-anti-brane 

type of configurations. 
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4. 2 Single= charge diholes 

Let us start by reviewing the single-charge dihole solutions studied by Emparan 

in [14]. However, for our convenience, we will present the solution in coordinates 

that differ from the ones used in previous litrature. 

We consider the Einstein-Maxwell-Dilaton theory in four dimensional space-time 

which can be described by the action 

(4.2) 

where R is the Ricci scalar, cp represents the dilaton field and F is the electromagnetic 

tensor. This theory appears in many areas of physics with different fixed values of 

the dilatonic coupling constant a. For the special case, a = 0 we obtain Einstein­

Maxwell theory, for a = 1 the action ( 4.2) describes the low energy dynamics of 

superstring theory and for a= V3 we have the Kaluza-Klein theory. 

It was shown in Bonnor [66], Davidson and Gedalin [67] that the field equations 

of ( 4.2) admit axisymmetric solutions with metric 

+ (4.3) 

where the dilaton field is defined by the following expression 

- ( ~ + a2 sin2 (}) I:a2 
e cp = 

~ ' 
( 4.4) 

and magnetic one-form gauge potential, 

A = 2 J11(r + .M)a sin2 (} dcp . 
)1 + a 2 ~ + a2 sin2 (} 

(4.5) 

Note that, we define 

(4.6) 

and, for later convenience, we introduce the parameter 

(4.7) 
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Actually, at fixed value of the dilaton coupling a, the two parameters defining the 

solution can be taken to be 1 and a. 

In order to compare these solutions to those in [14, 66, 67] and to the literature 

on similar solutions, we need to perform a shift of the radial coordinate r: 

r--'tr-M. (4.8) 

Recently, the authors in [72] reviewed the method used in [67] in more detail 

and also found the other type of dihole solution describing a pair of extremal dila­

tonic black holes carrying unbalanced charges, i.e. each of the black holes carries a 

magnetic charge that is of different sign as well as magnitude. In contrast with our 

solution, diholes in [72] have a non-zero net magnetic charge which is not a good 

candinate to describe the brane-anti-branes configuration. 

A solution with electric field, dual to the magnetic solution above, can be readily 

constructed. In this case, the dilaton changes from tjJ to -tjJ, and the electric gauge 

potential becomes 
A = _ 2 .NI a cos () d v1 + a 2 I; t. (4.9) 

We now follow the analysis in [14]. The solution is clearly asymptotically flat as 

r ----'; oo, and in this asymptotic region the gauge field is that of a dipole. Although 

the solution contains apparent singularities at r = 1 (where ~ = 0), the actual 

situation is somewhat subtle. Notice first that the axis of symmetry of the solution 

(the fixed-point set of the Killing vector ocp) consists of the semi-infinite lines() = 0, 1r 

(running from r = 1 to oo), and the segment r = 1 that stretches in between them 

(running from () = 0 to 1r). The crucial feature of these solutions is that at each 

of the poles (r = 1, () = 0) and (r = 1, () = 1r), lies a (distorted) extremal charged 

dilatonic black hole. In order to see this, change coordinates r, () to p, B, 

r 
p -

1 + 2(1 +cos 0) , 
p -
-(1- cosO) , 
I 

(4.10) 

and examine the solution for small values of p. On doing so, the metric in this region 
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takes the form 

2 -

(
q) l+o2 p2 sin2 e 2 

+ - 2 - drp ' 
p gt+o2 (0) 

(4.11) 

with 

(4.12) 

and 
_ M('y +M) 

q= . 

' 
( 4.13) 

For the case of Einstein-Maxwell theory without a dilaton, a = 0, this geometry is 

that of a Bertotti-Robinson universe (AdS2 x S 2
), albeit distorted by the factor g(1J). 

That is, we find a geometry just like that of the region close to the horizon (p = 0) 

of an extremal Reisnner-Nordstrom black hole, but, instead of being spherically 

symmetric, it is elongated along the axis in a prolate shape. For other values of 

a the solution at p = 0 has a curvature singularity which is just like the one at 

the core of extremal charged dilaton black holes, although, again, the geometry is 

not spherically symmetric due to the distorting factor g(1J). Hence we see that the 

dipolar field of the full solution is created by two oppositely charged extremal black 

holes which we shall refer to as a dihole1 . 

That the dipolar field is originated by a pair of extremal black holes, and not by, 

say, a pointlike or linear singularity or a pair of charges of a different kind, is obvi­

ously a non trivial issue. Apparently, Bonnor's dipole (i.e., the a = 0, non-dilatonic 

solution found in [66]) was originally thought to describe a singular pointlike (or 

segment-like) dipole. The first identification of a self-gravitating pole-antipole con­

figuration was made for the case of Kaluza-Klein theory (a = v3) in [55], and 

then refined in [56]. However, in those papers the interpretation was made on the 

basis of topological arguments that depend on the higher-dimensional structure of 

1 In [67] it was argued that for the case a = 1, and only for this case, the solution contains regular 

non-extremal horizons, and describes a black hole-white hole configuration. This interpretation is 

not consistent with what we have just described: two extremal horizons, regular for a = 0 and 

singular for a > 0. 
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Kaluza-Klein theory, and which cannot be applied to solutions with other values of 

the dilaton. The Kaluza-Klein dipole was later analyzed in [15] by means of essen­

tially the same transformation as ( 4.10). That the solutions ( 4.3) of [67] actually 

describe a dihole for arbitrary values of a, including the case a = 0 which has regular 

horizons, was first proven by Emparan in [14]. 

Given the two-black hole interpretation, it would be natural to expect the clihole 

solutions to contain the single black hole solutions as the limiting case where one of 

the holes is pulled infinitely away from the other. This is indeed the case. Working 

in coordinates p, (}, if the parameter a is taken to infinity while keeping all other 

quantities finite, then the solution reduces precisely to that of a single extremal 

clilatonic black hole. The parameter a plays then the role of a measure of the 

separation between the holes. However, this is just a qualitative statement, since 

the proper spatial distance between the extremal horizons (for a = 0) is actually 

infinite. A more accurate statement is to say that increasing a, while keeping the 

holes' charge fixed, increases the value of the dipole moment (the relation, however, 

becomes approximately linear only for large a). 

We are primarily interested, however, in the situation where both black holes are 

present in the solution, and therefore we consider finite values of a. The attraction, 

gravitational and electromagnetic, that they exert on one another is not balanced 

by any external field, so the geometry reacts, as is usual in these situations, by pro­

ducing conical singularities along the symmetry axis [14, 67]. On physical grounds, 

it is clear that an external magnetic field aligned with the clihole could provide the 

force to balance the configuration. An exact solution containing such a field can be 

constructed by applying a Harrison transformation to ( 4.3). This was clone in [14], 

and results in the metric 

~sin2()d 2 
+ 2 I.{J ' ( 4.14) 

J\J+a2 

the clilaton, e-r/J = Al+on 2 , and the gauge potential, 

-
2 -J\ia(r +!VI)+ lB[((r + Jv/) 2 - a2)2 + ~a2 sin2 ()] 

A -~ 2 . 2() d 
- AI: Sll1 I.{J ' (4.15) 
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with 

A 

(4.16) 

and 6. and L.: still given by ( 4.6). At distances much larger than the size of the 

dipole (r ~ a, .M) the solution asymptotes to the dilatonic Melvin universe, which 

describes a self-gravitating, cylindrically symmetric magnetic field. It is of interest 

now to examine what effect the external field has on the black hole horizons. To 

see this, change coordinates again as in (4.10), and then focus on small values of p. 

One finds a geometry just like ( 4.11), but now the deformation function is 

( 4.17) 

q being the parameter defined in (4.13). Notice that ifwe tune the external magnetic 

field to the value 

B = 1 ( 1 _ ~) = 1 'Y - a 
qJ1 + a 2 'Y v1 + a 2 lvf('Y +M) ' 

( 4.18) 

then g(O) = 1, and the distortion of the holes disappears2
. It was shown in [14] 

that this very same value of the magnetic field produces a cancellation of the conical 

defects along the symmetry axis, with the choice l:::.cp = 2n. It is quite peculiar 

that the horizons recover their spherical symmetry precisely when the forces in the 

system are balanced and the two black holes are suspended in (unstable) equilibrium 

in the external field. In a sense, the latter exactly compensates for the distortions 

of the horizon induced by the presence of the other hole. 

In the dual electric case the background Melvin field cannot be introduced by 

means of a solution-generating transformation as in the magnetic case. Neverthe­

less, the electric solution can be constructed by straightforward dualization of the 

magnetic one. The dilaton reverses sign as usual, and we find the electric potential 

2 There is a second value of B that yields g(iJ) = 1, but here we have chosen the one for which 

B -+ 0 as a -+ oo. 
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to be 

A 
[ ( 

aBMv1+a2 
. ) B cos() 7" - 21\II + 2 (2 + sm2 

()) 

- dt. 
2M a cos ()(l - ~aBJ1 + a 2 sin2 

())
2

] 

v1 + a2~ 
(4.19) 

This form of the potential manifestly shows how the potential tends to a "uniform" 

field At ---+ Er cos() as r ---+ oo. In this case B is the asymptotic electric field along 

the axis. 

The physical charge of the holes can be easily read by examining the gauge 

potentials in the region near the horizons. If we keep the field B arbitrary, instead 

of fixing it to the equilibrium value (4.18), then, asp---+ 0, the dilaton goes to 

(4.20) 

so when the balance condition ( 4.18) is achieved the angular dependence disappears. 

The potential, in its turn, becomes 

A ---+ q (!!:. + BqJ1 + a2) 1 - cos 8 d 
v1 + a 2 I g(()) cp ' 

(4.21) 

or, in the electric case, 

( 4.22) 

(here we have gauged away a constant) with, of course, a reversal in the sign of the 

dilaton. From here we infer that the charge is, 

Q = 1 q 6cp 
J1 + a 2 g_ + BqJ1 + a 2 2n 

I 

in either the electric or magnetic solutions. 

4.3 Multi-charged diholes 

( 4.23) 

Vle address now the construction of new dihole solutions in theories with richer field 

content than the single-gauge field theories of ( 4.2). 
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4.3.1 String/M-theory diholes with four charges 

In this subsection we consider a theory containing four abelian gauge fields and three 

scalars, with action ( 4.1), which appears as a consistent truncation of a large vari­

ety of compactifications of low energy string theory, such as toroidally compactified 

heterotic, IIA and liB string theories, and also D = 11 supergravity [57,61,68]. Cor­

respondingly, there is a large number of possible higher dimensional interpretations 

of the different gauge fields and their charge sources. A few of all these possible 

oxidations will be discussed in Sec. 4.4. 

Black hole solutions to this theory were constructed in [59]. The black holes 

carry charges Qi, i = 1 ... , 4 under each of the gauge fields, the charges Q1 , Q3 

being of magnetic type, and Q2 , Q 4 electric (or viceversa, if we consider a cl ual con­

figuration). When only s out of the four possible charges are equal and non-zero, 

and the rest are zero, then the theory, and its solutions, reduce to those of the 

Einstein-Maxwell-dilaton theory with coupling a= y'(4- s)js. This is, solutions 

with 1, 2, 3 or 4 equal charges correspond to dilaton coupling a= J3, 1, 1/J3 and 

0, respectively. The extremal black hole solutions can be constructed following the 

"harmonic function rule" (see e.g., [24]). Each gauge field enters in the solution 

through products of harmonic functions, in a manner that does essentially not de­

pend on the other gauge fields. In [62, 63] it was shown that solutions with two such 

black holes accelerating apart could also be found for these theories (see [65] for the 

solutions in a U(1) 2 theory). We are interested here in configurations where the two 

black holes with opposite charges are static. 

\Ve have managed to construct exact solutions to the field equations for these 

theories with U(1) 4 dipole fields. Their metric is 

+ ( 4.24) 
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Here 

~i (r + Mi) 2 
- ai cos2 

() , 

~-
~ 

i = 1, ... ,4. 
~ + a2 sin2 

() 
~ 

The magnetic gauge potentials A(l), A(3), are given by 

A . _ 2ailvfi(r + Mi) sin
2 

() d i = 1, 3 c~J - ~ + a2 sin2 () <p ' 
~ 

whereas the electric potentials Ac2J, Ac4J, are 

A 
. __ 2aiMi cos() d 

4 (~) - ~- t ' i = 2, . 
~ 

The scalar fields, in turn, take the form 
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( 4.25) 

( 4.26) 

( 4.27) 

(4.28) 

(4.29) 

( 4.30) 

The solutions are parameterized in terms of five independent parameters. Physi­

cally, the parameters can be regarded as fixing the four charges of the holes and the 

"separation" between the pair. In practice, we will choose the independent param­

eters to be"! (which we take to be positive) and all the ai (satisfying iail :-:;"f). The 

other parameters lvfi are not independent, but rather given by 

( 4.31) 

When a; = 1 2 for all i, then all the ]\!Ji's vanish and the metric is that of flat space. 

In general we can have some lvfi = 0 for some values of i, and nonzero for others, 

and get a non-trivial solution. 

There are several non-obvious aspects in going from the solutions of the single­

gauge field theory to the solutions of the U(1) 4 theory. One of them is that the 

combination a; + 111l should take the same value for all i, so with our choice of 

radial coordinate, the function ~ is the same for all values of i. Another point is 

related to the characteristic way in which the metric functions in ( 4.24) factorize 

into contributions from each separate gauge field (a similar factorization had been 

observed also for Melvin fields and accelerating black holes in [63]). The way the 
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factorization happens in these solutions relies crucially on our choice of the radial co­

ordinate, explained in the previous section. To see this, realize that when more than 

one parameter Nfi is involved, the radial shift ( 4.8) cannot be properly undone3 . The 

factorization suggests that the U(1 )4 dihole can then be thought of as a composite of 

four diholes. For an isolated U(1) 4 black hole it is possible to separate, at zero cost 

in energy, each of the constituents from the other three, i.e., the black hole can be 

regarded as a composite of four marginally bound components [61]. However, it is 

not clear whether we can separate, at zero energy cost, the single-charge component 

diholes of a composite dihole. It may well be that what was in isolation a state 

bound at threshold (the four- charge extremal black hole) becomes non-marginally 

bound in the presence of its anti-state. 

It is also a straightforward matter to check that the dilatonic dihole solutions 

(4.3) for a= .;3,1,1/.;3 and 0 are recovered by taking 1,2,3 or 4 non-zero and 

equal values of Mi. 

The analysis of these solutions can be done in exactly the same manner as we 

have done for Bonnor's dipole and its dilatonic counterparts. Coordinate singular­

ities occur when r = 1, and these turn out to be, away from the poles, conical 

singularities. Again, a straightforward analysis of the conical deficits along the var­

ious portions of the symmetry axis reveals that it is not possible to eliminate the 

deficit along the segment r = 1 with the natural choice of period L.<p = 2n which 

cancels the deficit along the lines () = 0, 1r. However, these singularities can be re­

solved by introducing magnetic background fields in our axisymmetric solutions by 

means of the generalized Harrison transformation constructed in [63] for the U(1) 4 

theory, and by subsequently tuning them to a value which eliminates the conical 

deficit. The latter point, we will see, becomes somewhat subtle when more than one 

gauge field is present. 

After applying the generalized Harrison transformation, the metric of the U(1) 4 

3 Notice that this implies that the "modified harmonic function" rule conjectured in [57] on 

the basis of the solutions with a single gauge field is of little use in trying to get to the new 

solutions with different charges, since that rule was based on a choice of radial coordinate that is 

inappropriate for this purpose. 
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dipole solution becomes 

the magnetic and electric potentials are given by: 

A(i) = All.:· {2aiMi(r+lvfi)sin2 e 
z z 

+ ~B,sin2 8 [((r + M,) 2
- a1)

2 
+afLl.sin2 8]} d<p, i = 1,3 

or 

i = 2,4. 

We define the scalar fields by, 

where 

__!__ {~ + a7 sin2 e + 2Biailvfi(r + Mi) sin2 e 
l.:i 

+ ~Bf sin2 8 [ ((r + M;) 2
- ai) 2 

+a} Ll.sin2 o]} 
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( 4.32) 

( 4.33) 

( 4.34) 

( 4.35) 

( 4.36) 

This solution obviously reduces to the previous one if we set Bi = 0. We have 

denoted the external fields collectively as Bi, even if for i = 2, 4 they are electric 

fields. Observe that the metric and scalars can be obtained from ( 4.24) and ( 4.30) 

by simply substituting Ai forTi. 

Along the outer semi-axes e = 0, 1f the conical deficit is given by O(IJ=O,n) = 

2n - h.rp, no matter what the value of the external fields Bi is. We thus choose 

h.rp = 2n in order to remove the conical deficit on that portion of the symmetry 
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axis. On the other hand, the deficit along the inner segment of the axis, r = /, is 

calculated to be, 

( 4.37) 

where we have defined 

(4.38) 

We can see that, for the choice of period in the variable <p we made earlier, z. e.) 

6.rp = 21r, the conical singularity along r = 1 disappears when 

( 4.39) 

A very particular solution of this equation is obtained by requiring each of the factors 

on the l.h.s. to be equal to 1, i.e.) set the strength of the external fields to the values 

i=1 ... ,4 (4.40) 

which can be interpreted as a separate force-balance condition for each of the gauge 

fields. Nevertheless, it should be kept in mind that ( 4.40) is by no means a typical 

solution. On the contrary, the balance of forces will typically be achieved with 

different contributions from each factor in (4.39). As a matter of fact, it is even 

possible to satisfy ( 4.39) for diholes with four different charges by turning on only 

one external field, say B1 . 

Although the metric still appears to be singular at the endpoints of the U(1)4 

dipole, one can actually reveal its true structure by studying the solution near the 

throat as we did in the previous section. As before, we may explore this region by 

changing coordinates from (r, B) to (p, 0) as in (4.10) and by keeping p much smaller 

than any other scale in the problem. Near r = /, (} = 0, the metric becomes4 , 

ds2 = l(O) --dt2 + -dp2 + q2d02 + drp2 
, [ 

P2 q2 ] q2 sin 2 e 
q2 p2 g2(8) ( 4.41) 

where q = (q1q2q3q4)1l 4, and where g(O) = [g1 (0)g2(0)g3 (0)g4 (0)] 114 with 

9i(O) = cos2(0/2) + ( ~ + Biqi) 
2 

sin2(0/2) ( 4.42) 

4 vVe are assuming here that all four charges are non-zero. The modifications for the case where 

some of them vanish can be inferred easily. 
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a function such that .9i(1J) = 1 when the field Bi is tuned to the value (4.40). 

However, for more generic cases the deformation function g(1J) will be different from 

1 even if the conical singularities are cancelled through ( 4.39), and the horizons will 

in general be deformed. This feature is particular to theories with more than one 

gauge field. In any event, we see that near the poles the solution exhibits, apart 

from the distortion, the same structure as a four-charge black hole near its horizon. 

The gauge fields are also distorted near the throat, where they are given by 

and the corresponding physical charges are 

Q . = 6.cp Qi 
t 2 a· B 7f .....!. + ·q· I t t 

Finally, the scalar fields in this limiting region are 

e-211 = Q2Q4 .9I(1J)g3(1J) 
q1q3 .92(B)g4(B) ' 

i = 1, 3 

( 4.43) 

( 4.44) 

e-2p = Q3Q4 9I(1J)g2(1J) 
Q1Q2 .93(B)g4(e) ' 

( 4.45) 

which present the unusual feature that, in general, they will vary as we move along 

the horizon. 

The deformation of the black hole horizons allows us to check a non-trivial aspect 

of the entropy-area law for black holes. Notice that when all four charges are turned 

on, the black holes have a non-singular, deformed horizon with non-vanishing area. 

Now, for an isolated extremal black hole the area is entirely determined by its phys­

ical charges Qi as Ah = 47r)Q1Q2Q3Q4 . This area can be associated, through the 

Bekenstein-Hawking law, with an entropy. On physical grounds we would expect 

the entropy of the system to remain unchanged if its physical charges, which fix the 

state, remain fixed, no matter what the distortion of the horizon may be. It is by no 

means clear that the solutions given above should satisfy this property. Nonetheless, 

the area of each of the horizons in the dihole configuration is 

( 4.46) 
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where the last equality is obtained when the singularities are cancelled by requiring 

( 4.39) (but not necessarily ( 4.40)) and l::.r.p = 27f. Hence, the area as a function of 

the physical charges remains unaltered, despite the deformation of the black hole 

horizon. A similar test of the invariance of the entropy under deformations of the 

horizon was performed in [63]. 

Finally, it is a straightforward exercise to show that when one of the holes is 

pulled away by making "! large, while keeping r- "f, "! sin2 e and Mi finite, we get 

I:i c:::: 2"f(P + Mi), qi c:::: A1i c:::: Qi and Ai c:::: (1 + Q; )-1, so that the metric becomes p 

that of an isolated extremal U(1) 4 black hole. 

4.3.2 U(ly~ composite diholes 

The results we have just described can be generalized to the following theories 

containing n gauge fields and n - 1 independent scalars with action 

(4.47) 

and with the scalars satisfying 
n 

(4.48) 

Such theories were considered in [63] as a generalization of the theories with four 

abelian gauge fields we have just considered. In general, these U(I)n theories do 

not seem to be related to low energy string/M-theory, nor to any other supergravity 

theory in four dimensions. Nevertheless they exhibit the same peculiarities as the 

U(l )4 theories, which are merely a particular case of the above type of theory, as 

described in [63]. All these theories admit black hole solutions which follow the 

"harmonic function rule", as well as solutions with two black holes accelerating 

apart [63]. It is therefore natural to expect that dihole solutions can be constructed 

as well. Indeed, their metric is 
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where~' I:i and Ti take the same form as in (4.25),(4.26),(4.27). The potentials (in 

magnetic form) are 

A . _ 2aiA1i(r + Mi) sin2 
0 d 

(z) - ~ + a2 sin2 0 cp ' 
z 

i = 1, ... ,n (4.50) 

and the scalars 
n 

-lr; _ T2 rr y-2/n e - i j . ( 4.51) 
j=l 

The qualitative features of these solutions are precisely the same as for the U(1 )4 

case of the previous subsection, so our discussion will be rather cursory. These 

solutions have n + 1 independent parameters, { J', ai, i = 1, ... , n }, while Mi are 

fixed by Ml = 1 2 
- af. By setting n = 1 and shifting the coordinate r to r - lvh, 

one recovers Bonnor's magnetic dipole solution of non-dilatonic Einstein-Maxwell 

theory [66]. The dilatonic solutions of [67] can also be recovered in a simple manner 

for rational values of a 2 [63]. To this effect, take s out of then possible parameters 

Mi (say, i = 1, ... , s) to be equal and non-zero, and the remaining Mi, i = s+1, ... , n 

to be vanishing. In this way, the solutions ( 4.3) are recovered, with dilaton coupling 

a= Jn/ s- 1, and with the fields identified as 

... =as= 2a</;' 
2 

as+l = ... =an=--</; ' 
a 

J a 2 + 1 F , i = 1, ... , s . ( 4.52) 

The conical singularities that the solutions possess can be removed by means of 

the generalized Harrison transformation for the U (1 )11 theory constructed in [63], 

and by subsequently tuning them to a value which eliminates the conical deficit. 

After applying the generalized Harrison transformation, the U(1) 11 dipole solution 

becomes, 

( d~' +do')] ( 4.53) 

n 

-lr; _ i\.2 IT i\.-2/n 
e - i j ' ( 4.54) 

j=l 

where the magnetic gauge potentials and i\.i are given in (4.33) and (4.36). 

All the features of the U(1) 4 solutions we described in the previous subsection 

carry over to the generic U(1) 11 case modulo some obvious adjustments. 



4.4. Intersecting brane-anti-brane configurations 99 

4.4 Jrnte:rsecting b:rane-anti~ b:rane configu:rations 

We already pointed out that the solutions to the U(1) 4 theory admit embeddings 

into higher dimensional supergravity theories arising from string/M-theory at low 

energies. When uplifted to D 2 5 dimensions, each individual charge ( 4.44) will 

typically be interpreted as the charge (density) of a p-brane, with all its spatial di­

rections wrapped around a p-torus, and delocalized in D-p- 4 transverse directions. 

We are referring to branes in a manner loose enough to allow for pp-waves and KK 

monopoles to be introduced in a straightforward way in the discussion. More pre­

cisely, any charge that would naturally enter a solution through a harmonic function 

can be paired up with its anticharge to provide a characterization of brane-antibrane 

systems. 

Solutions with just one out of four non-vanishing charges correspond to single 

brane solutions, whereas solutions with more than one charge describe brane inter­

sections or marginal bound states of branes. A U(l )4 dihole solution, when vie·wed 

in this way, can be oxidized to describe an intersection of up to four branes and an 

'anti-intersection' of the corresponding anti-branes. We have tried to sketch such a 

configuration in Fig. 4.1. The direction labelled p denotes directions along the p­

brane which are transverse to the p'-brane, and viceversa. The same applies for the 

anti-intersection p-p'. The p- and p-branes are parallel. In the solutions described 

in the text the branes are delocalized in their relative transverse directions, and also 

in all but three overall transverse dimensions (r, e, 'P)· Of the latter directions, only 

the symmetry axis is shown in the figure. vVhen infinitely separated from the other 

intersection ( r ---+ oo), the p- and p'-branes we consider are marginally bound to each 

other. Each brane is parallel to its anti-brane, and the whole system is delocalized 

in such a way that the branes are localized in the overall transverse directions only. 

The construction of brane-antibrane solutions based on the U(1) 4 dihole solu­

tions described in Sec. 4.3 does not significantly differ in its concept from the way a 

one-black hole solution with four or less charges is uplifted to a brane configuration. 

Indeed, it was pointed out in [14] (see also [57]) that the diholes solution of Einstein­

Maxwell-dilaton theory could be uplifted in a straightforward way to intersecting 

brane-anti-brane configurations of the sort just described, with the severe restriction 
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p' p' 

r=Y 

p p 

Figure 4.1: Geometry of the p-p' brane and j5- p' brane intersections. 

that the charges of the intersecting branes should all be equal. This restriction can 

be relaxed when using our new U(l )4 solutions, which allow for a richer catalog of 

configurations. The factorized form of the solutions, particularly that of the scalar 

fields involved, greatly helps in deducing the form of the higher dimensional (inter­

nal) metric components from those of ordinary brane configurations: the harmonic 

functions Hi of the latter get replaced by the functions ~-l or Ai\ whose inverses 

were introduced in (4.27) and (4.36). We stress that this rule, however, applies only 

to the internal dimensions and not to the four-dimensional part of the solution. 

Note that we are unable to consider non-extremal branes, since a solution de­

scribing a pair of non-extremal charged black holes is not available. Let us also 

emphasize that solutions without an external field contain conical singularities along 

the symmetry axis, and a physical interpretation in string/M-theory in terms of, 

e.g., local cosmic strings, is not clear. Nevertheless, it is possible to remove these 

singularities by introducing an external magnetic field, using a similar procedure to 

the one described in the previous sections. 

4.4.1 Some explicit examples 

We now illustrate the uplifting of our U(1) 4 dihole solutions to three different brane­

antibrane configurations. 
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(1) The 3 j_ 3 j_ 3 j_ 3 and 3 j_ 3 j_ 3 j_ 3 system in D = 10 type liB theory. 

Let us consider the ten-dimensional metric, 

dsio = 

( 4.55) 

with the functions ~i and ~ defined in ( 4.26), ( 4.27). The ten-dimensional dilaton 

is constant, and the five-form field strength is given by, 

F[5] = dA1 1\ dx4 1\ dx5 1\ dx6 + dAz 1\ dx1 1\ dx4 1\ dx5 

+dA3 1\ dx1 1\ dx3 1\ dx5 + dA4 1\ dx3 1\ dx5 1\ dx6. ( 4.56) 

with the magnetic potentials A1; 3 given in (4.28) and the electric potentials A2; 4 

given in (4.29). We also use r 2 = x~ + x~ + x§. The compactification of the above 

type liB solution on a six-dimensional torus yields the U(1) 4 dipole solution (4.24). 

To check that the system indeed contains brane-antibrane pairs, one may change 

coordinates from (r, 0) to (p, iJ) as in (4.10). In the limit where the parameter ai 

is large, and where e ---+ 0, the function Ti becomes the inverse of the harmonic 

function of a delocalized D3-brane Ti ---+ 't = ( 1 + ~i) -l, and the metric becomes 

This is exactly the solution for the four D3-branes intersection described in Table 

(4.1) which is constructed in [69, 70]. 

The solution for four anti-D3-branes intersection (i.e. for four D3-branes with 

opposite charge) is obtained when taking the () ---+ 1r limit instead of the () ---+ 0 

limit. However, in order to show that the system consists of the intersection of four 

D3-branes together with the intersection of four D3-branes in ten dimensions, one 

:!!.~~:;-_" --~ .•· I ~~ "'Ill 

~ .. , ,_ 

.. ' 
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potential bra ne 0 1 2 3 4 5 6 7 8 9 

Magnetic A1 D3 + + + + - - - - - -

Electric A2 D3 + + - - + + - - - -

Magnetic A3 D3 + - + - + - + - - -

Electric A4 D3 + - - + - + + - - -

Table 4.1: The four D3-brane intersection at the limit() -----t 0 of (4.55) 

must consider finite values of ai and take the near horizon limit of (4.55) in complete 

analogy with the four-dimensional case. As already mentioned earlier, this solution 

has a conical deficit along the symmetry axis, which pulls the branes apart from 

each other. However, as can be anticipated from the discussion of U(1)n diholes 

suspended in external magnetic fields, such a branejanti-brane configuration can be 

cured of any conical deficit along the symmetry axis by tuning the magnetic field 

B to an appropriate value. The relevant ten-dimensional metric is then given by 

(4.55), where the four functions 1i are replaced by the functions Ai given in (4.36). 

The five-form field-strength is again formally written as in ( 4.56), with the magnetic 

potentials A 1; 3 and electric potentials A 2; 4 given by ( 4.33) and ( 4.34) respectively. 

In the near horizon limit, and with ai large (r » lvfi), the functions Ai, for () -----t 0, 

become the harmonic functions Ti involved in the description of the four D3-brane 

intersections, and the limiting metric is ( 4.57). If () -----t 1r instead, one obtains the 

four D3-brane intersections. One concludes that the metric 

dsio = 

+ 

+ ( 4.58) 

is that of a system made of the intersection of four D3-branes and of the intersection 

of four D3-branes. 

(2) The 2 _j_ 2 _j_ 5 _j_ 5 and 2 _j_ 2 _l_ 5 _l_ 5 system in D = 11 supergravity. 
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This system may be described by the D = 11 metric, 

with four-form field strength, 

F[4] = 3dAt 1\ dx2 1\ dx4 - 3dA2 1\ dx 1 1\ dx2 

+3dA3 1\ dx1 1\ dx3 - 3dA4 1\ dx3 1\ dx4. 
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( 4.59) 

(4.60) 

The magnetic potentials A1; 3 are again defined by ( 4.28) and the electric potentials 

A2; 4 by ( 4.29). Here, r 2 = x~ + x§ + xi0 . In the (p, B) coordinate system, and in the 

limit of ai large and() --t 0, r2;! and rl;j become the harmonic functions required for 

the description of electric M2 branes and magnetic M5 branes as describe in Table 

( 4.2). The solution describes the system of intersecting branes (two M2 and two M5) 

and intersecting anti-branes ( two M2 branes and two M5-branes), and becomes the 

dipole solution in U(1) 4 theory when compactified on a seven-torus. Once again, 

potential bra ne 0 1 2 3 4 5 6 7 8 9 10 

Magnetic A1 M5 + + - + - + + + - - -

Electric A2 M2 + + + - - - - - - - -

Magnetic A 3 M5 + - + - + + + + - - -

Electric A4 M2 + - - + + - - - - - -

Table 4.2: The two l\15 and two l\12-branes intersection at the limit () --t 0 

of ( 4.59) 

we may construct an analog solution in the presence of an external magnetic field 

in order to remove any conical singularity arising in the above solution. Replacing 

Ti by Ai everywhere in (4.59), and taking the potentials to be (4.33) and (4.34), 

one obtains a solution to D = 11 supergravity which again describes a system of 
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intersecting branes (two M2 and two M5) and intersecting anti-branes ( two M2 

branes and two M5-branes), but this time with non-zero magnetic field B. 

(3) The 2 _l 2 _l 2 _l 6 and 2 _l 2 _l 2 _l 6 system in D = 10 type IIA theory. 

We end this subsection with a configuration we can relate to the D6-D6 system 

studied by Sen, and which we will employ later in order to characterize the string 

stretching between the branes and anti-branes using arguments similar to those 

in [15]. 

The configuration is described by a solution to type IIA supergravity with metric 

dsio = 

+ ( 4.61) 

and dilaton 

(4.62) 

with the functions I:i and Ti defined in (4.26),(4.27). Here, T1 is associated with 

the D6 brane while Ti, i = 2, 3, 4 are associated with the three D2 branes. \Ne first 

discuss in which context this metric corresponds to a D6-D6 system. Setting to 

zero the charges q2 , q3 , q4 of the three D2 branes, one indeed obtains the following 

D6-D6 configuration, 

2 _ 1/8 2 2 I/8 r 2 u sm 2 

( 

6 ) (d 2 ) " · 2 e 
ds 10 - T1 -dt + ~ dxi + T1 I:1 ~ +dO + T{/8 d<p , (4.63) 

which coincides with the metric constructed following [15,56] once the radial variable 

is shifted from r -+ r -lvf and the string frame is used (see e.g., [57] for the explicit 

expression). Note that compactification on a T 6 torus yields the metric, 

(4.64) 

describing the Einstein-Maxwell dilatonic single charge dihole ( 4.3) when the cou­

pling to the dilaton is a = J3. Also, (4.63) may be uplifted to eleven dimensions 
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to obtain 

2 2 ~ 2 ( dT
2 

2) 2 .6. sin
2 

() 2 ds 11 =-dt +{;;:dxi+I;1 .6. +dO +T1 (dx 11 -2A~d<p) + T
1 

d<p, (4.65) 

where the magnetic potential is given by, 

A~ = a1lvh (T + 1111) sin2 
() 

.6. + ai sin2 
() 

(4.66) 

After shifting T -+ T - 111 in the above metric, one exactly recovers the Gross-Perry 

Kaluza-Klein dipole [55] embedded in eleven dimensions, which is the starting point 

of Sen's analysis of the D6-D6 system. 

We would like to stress at this point that, instead of performing a straightfor­

ward Kaluza-Klein compactification along the x11 direction in ( 4.65) to recover the 

configuration ( 4.63) (which possesses conical singularities along the axis), one may 

reduce along a twisted direction [15, 56]. In this way one obtains a configuration of 

D6-D6 branes suspended in a magnetic field. Precisely the same result is obtained 

if a Harrison transformation with the appropriate value of the dilaton coupling is 

performed directly on the reduced solution. As a matter of fact, the equivalence 

between twisted KK reductions and Harrison transformations in the reduced KK 

theory was proven in [71]. In the case at hand, we know that the effect of perform­

ing a Harrison transformation on the metric ( 4.63) is just to replace T1 by A1 in 

(4.63). 

4.4.2 The strings and membranes stretched between branes 

and anti-branes 

The proper length of a string stretched between the poles where branes intersect 

depends in an essential way on the number of branes that intersect. These strings 

stretch along the line T = /, parametrized by 0, 0 < () < 1T. If there are less than 

four branes at the intersection then the proper spatial distance between poles is 

finite, but if all four braues are present then this distance is infinite. A situation 

where things can be studied further is that where a IIA configuration can be uplifted 

to D = 11 supergravity. The line T = 1 is fibered with the extra dimensions and 

becomes a surface. As a consequence, the string stretching between branes becomes 
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a membrane. For the case of the D6-D6 the study of such a membrane was carried 

out in [15]. The configuration in (3) in the previous subsection is also suitable for 

such an analysis, and will allow us to recover as a particular case the results of [15]. 

When we uplift ( 4.61) to eleven dimensions we obtain a Kaluza-Klein dipole 

superposed to a system of three intersecting delocalized M2 branes and three inter­

secting delocalized Jv/2 anti-branes, that is, 

dsil = 

+ 

+ 

In M-theory, the open string state should be described by a membrane wrapped 

on the surface r = r· In order to distinguish it from the other, self-gravitating 

M2-branes in the configuration, we will denote this one as an m2-brane. As we just 

said, it wraps the surface r = r. This surface is a bolt of the Killing vector 

a al a 
q = -- + ------;----;-

axu 2Mt(Ivfl +r) acp· 
( 4.68) 

It is convenient for us to define the new "adapted" coordinate 

al 
cp = cp- 21Vh (MI +I) Xu 

( 4.69) 

such that 

qcp = 0 . (4.70) 

In this new coordinates the metric on the bolt is given by 

( 4. 71) 

Now, when all four charges are turned on, this surface is topologically a cylinder. 

Its shape, and therefore that of the m2-brane that wraps it, is like a sphere with 

two infinite funnels at its poles. This is most easily understood by looking at the 
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geometry near the poles in D = 11, after changing to the coordinates (4.10). We 

know that near the poles the geometry is, up to some angular distortion, the same 

as that of the core of an intersection between a KK monopole and three M2-branes. 

But the latter is 

(4.72) 

and we explicitly see that p = 0 is down an infinite funnel of constant curvature 

fibered with x 11 (there will be some angular distortion in the situation at hand, 

though). 

The proper area of the bolt 

A = I dOdc/JJgoo9,p,p 

I 
4 

(2aiqi a
3 

sin
2 e) 113 

1 
2M1(1 + M1) dOdc/J IT - 2- + l 3 . e' 

i=2 I I sm 
( 4. 73) 

is infinite due to the divergence of the integration at e = 0, 1r. Since the energy 

of the m2-brane is E = Tm2 A, where Tm2 is the membrane tension, we reach the 

conclusion that the energy of the m2-brane stretched inbetween the poles is infinite! 

Notice that it remains infinite even if we set a1 = 0 (so that 1 = lv/1). If the latter is 

to be considered as the limit of coincidence of the branes and antibranes, then the 

conclusion is even more striking than that reached in [15]. 

The situation, however, is different if one sets one, two or three M2 charges to 

zero in ( 4. 71). Say that n of these charges are different from zero. Then, neglecting 

the angular distortion, the geometry near the poles is 

6 -1/3 
-dt2 + Ldx~ + Lp1-n/3 (dx 11 + q1 cos1Jdrp)

2 

i=1 ql 

+q1f3q1p-l-n/3 (dp2 + p2(d1J2 + sin21Jdrp2)). ( 4.74) 

where q is the product of the non-zero M2 charges. It is straightforward to see that if 

n #- 0, 3, the geometry is singular. When n = 0 the geometry is just JR10
,
1, since this 

is the core of a KK monopole. The singularity for n = 1, 2 is nevertheless a finite 
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spatial distance away, so the m2-brane is topologically a sphere, with curvature 

singularities at the poles. Its proper area A, and the energy of the m2-brane, is 

finite. 

Let us now consider the limit where the branes and antibranes are coincident. It 

is not obvious what choice of parameters in the solution should correspond to this 

limit. One would certainly require any external fields to be absent, since their effect 

is to pull apart the poles. For the D6-D6 system it was argued in [15] that one 

should also require a = 0, since this minimizes the distance between poles. In the 

present case, if we set all the ai to zero then we would have all Mi equal to each other, 

and as a consequence all charges would be equal, which seems too restrictive. In 

order to motivate other alternatives, notice first that all the branes at an intersection 

move together, since they all intersect at the same pole. Then, it might be enough 

to set just one of the ai to zero. This would leave us with four parameters, which 

can be regarded as the four charges of the branes, as desired. Since a1 is singled out 

as characterizing the twist in the eleventh direction, then, at least in the context of 

M-theory, it probably makes more sense to define the coincidence limit by setting 

only a 1 = 0 (so that 'Y = MI), while leaving a2 , a3 , a4 arbitrary. 

With this choice, the conclusions we had above for the m2-brane stretched be­

tween branes and antibranes still hold in the coincidence limit: when any of the 

charges of the M2-branes is zero the proper area of the m2-brane is finite, whereas 

it is infinite when all charges are turned on. This conclusion, which may be taken as 

a 'prediction' about the strong coupling limit of this brane-antibrane configuration, 

is even more striking than that reached in [15] for D6-D6 branes. 

4.5 Discussion and Outlook 

In this chapter, we constructed supergravity solutions describing the systems of 

intersecting brane-anti-brane. l'vlotivated by an earlier work of Sen [15] on a D6-

D6 configuration of type IIA string theory, which he relates to the Kaluza-Klein 

dipole solution of Gross and Perry [55] (Euclidean 4d Kerr metric) embedded in 

eleven dimensions, and also by the recent work of Emparan [14] on black cliholes, we 
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have identified new classical exact solutions to four dimensional General Relativity 

containing n abelian gauge fields and n - 1 independent scalar fields, whose generic 

lagrangians are given by ( 4.4 7). As we already noted in the introduction of this 

chapter, the case of two electric and two magnetic charges (n = 4) is particularly 

interesting since the corresponding lagrangian ( 4.1) arises as a consistent truncation 

of a wide class of low energy superstring compactifications, and therefore, the new 

four dimensional solutions can be uplifted to higher dimensional space-time and 

interpreted as rather sophisticated brane-anti-brane systems. 

For general values of n, our four dimensional solutions depend on n+ 1 parameters 

{ ')', ai, i = 1, ... n }. They are static, axisymmetric solutions and describe composite 

diholes. Indeed, the near horizon analysis of these solutions reveals they contain 

two throats which one can identify, for arbitrary values of the parameters (which 

label the n charges and the separation between the holes), with the throats of two 

oppositely charged extremal composite black holes. Although the composite dihole 

configurations suffer from conical singularities, it is possible to suspend them in 

external magnetic fields via generalised Harrison transformations, and tune these 

fields to values which eliminate the conical deficit and keep the configurations in 

equilibrium. This equilibrium however is unstable i.e. a slight deviation along 

the symmetry axis from the equilibrium configuration is enough [56] to make the 

composite black holes collapse onto each other or accelerate apart. This instability, 

however, is of a completely different nature from the tachyonic instability appearing 

in perturbative string theory [4]. One might even wonder if the latter is a feature 

that survives when the string coupling is increased and the effects of self-gravity 

become important. An attempt to describe the tachyon instability in supergravity 

solutions is explained in [51], but is beyond the scope of this chapter. 

The total charge of the U(1) 4 composite diholes is zero while their ADM mass, 

whether or not they are suspended in external fields, is given by E = ~ I:i=l 1\;fi = 

~ Li ( ')'2 - aT) 112 and is generically strictly positive. 5 These configurations are there­

fore non extremal, and when analysed in a context of supersymmetry, break all 

5We are not considering the possibility of diholes made out of 'massless' black holes. 
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supersymmetries, an observation which is particularly obvious in the presence of ex­

ternal fields, which are asymptotically Melvin and therefore have no Killing spinors 

associated to them. The absence of Killing spinors implies our solutions, as we ex­

pect, break all supersymmetries although they consist of a pair of extremal D-brane 

and anti-D-brane. Note that it might be possible to construct supergravity solu­

tions representing brane-anti-brane configurations where branes and anti-branes 

are non-extremal (for example, by uplifting non-extremal dihole solutions in [73]) 

Another interesting observation is that the mass of the two composite extremal 

black holes, which is equal to 21vfbh = ~ I:i=l M;(~;+'Y), exceeds the ADM mass E of 

the composite dihole: the latter is therefore non-marginally bound. When uplifted 

to ten or eleven dimensions, it becomes a supergravity soliton and can be interpreted 

as a system of four intersecting branes and four intersecting anti-branes as sketched 

in Figure 1, with the (anti)branes localized in the overall transverse directions only. 

Each brane is charged under a different U ( 1) and has its corresponding anti-brane 

parallel to it. The existence of such configurations of branes and antibranes at 

arbitrary (large) separation 21 when ai ~ Mi is another indication that the static 

force vanishes between the branes and antibranes. 

We thus succeeded in providing classical solutions to supergravity theories which 

describe static, zero charge configurations which appear as a cluster of intersecting 

charged branes and a cluster of intersecting charged anti-branes. They are non­

trivial generalisations of the D6-D6 systems analysed by Sen, who recognised that 

systems with coincident branes and anti-branes could in particular be used to con­

struct stable non-BPS states of a new type, via orientifolding and orbifolding. Since, 

Sen's analysis relies on the perturbative description of D-branes, it would be very 

instructive to study whether one can deform the supergravity solitons associated to 

brane-anti-brane systems in such a way that the resulting solutions (if any) de­

scribe these new stable non-BPS states. A first step in this direction should involve 

the study of the coincidence limit of the branes and antibranes in configurations of 

the sort we have been discussing. However, it appears that in the presence of gravity 

these systems exhibit features markedly different to those seen at the perturbative 

level, in particular, the size of membranes (and strings) stretched between the branes 



4.5. Discussion and Outlook 111 

and antibranes remains non-zero (even infinite) in the limit of coincidence branes. 

This may underline the difficulties of comparisons between calculations performed 

at the weakly (CFT) and strongly coupled (supergravity) regimes. 



Chapter 5 

Conclusion 

All consistent ten-dimensional supersymmetric string theories have been conjectured 

to occupy different corners of the moduli space of a single theory in eleven dimensions 

called M-theory. More recently, the type OA theory, which is tachyonic and has no 

space-time fermions in its perturbative spectrum, has also found a place in the web 

of dualities which inter-connects the string theories mentioned above. This state 

of affairs raises several important issues one must address if string theory is to be 

considered a serious candidate to describe all interactions of Nature at the most 

fundamental level. 

In this thesis, we asked two simple questions and provided clues for their res­

olutions. The first one was whether one could somehow relate the 26-dimensional 

bosonic string theory to its fermionic ten-dimensional cousins. At a very deep level, 

we were really asking whether the fermionic degrees of freedom are really fundamen­

tal in the description of our world. Unfortunately, we are unable to conclude at this 

stage, as the work presented here only gives compelling evidence at a kinematical 

level and all results could be viewed as an unavoidable consequence of how tightly 

group theory and conformal invariance constrain the whole theory. Although there 

are hints of an underlying dynamics in the truncation procedure - for instance the 

prediction of the tension of fermion Dirichlet nine-branes from purely bosonic con­

siderations- we are still looking for a dynamical mechanism where non-perturbative 

effects most probably will play an important role. 

Our contribution to this exciting programme is described in Chapter 3, where we 

112 
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first highlight some important aspects of preexisting literature on the subject [9, 12]. 

All ten-dimensional fermionic strings (supersymmetric or not, tachyonic or not) 

can emerge from the truncation of the bosonic string compactified on the E8 x 

S0(16) group lattice. The fermionic oscillators may be obtained via a bosonization 

procedure of the world sheet coordinates in the compactified directions. This allows 

us to compare the bosonic formalism with the Neveu-Schwarz-Ramond and Green­

Schwarz formalism of superstring theory as in Section 3.4.2. 

Here we almost always used the E8 x E8 root lattice which is a sublattice of 

the E8 x S0(16) weight lattice (AE8 = A(o)t 6 + A(s)t6 ) because we chose to develop 

our arguments in the context of type li or type I theories. We also used a different 

truncation in the left and right sector of the 26-dimensional bosonic string theory to 

obtain the type liA theory ( as opposed to the same truncation in left and right sec­

tors for type liB). This leads to an unsatisfactory outcome as the bosonic fusion rules 

do not lead to a unique set of fermionic fusion rules after truncation, as first point 

out by L. Houart. The resolution of this problem is fortunately simple and provides 

more insight in the structure of the whole construction. It amounts to compactify 

------------ ----------the bosonic string on the lattice of (E8 x )S0(16)/Zt or (E8 x )S0(16)/Z2 to obtain 

-----------type liB, and of (Esx)S0(16)/(Zt X z;-) to obtain type liA, where zt X z;- is the 

centre of the covering group S0(16). The latter is not an Englert-Neveu compacti­

fication, but the corresponding lattice being even self-dual Lorentzian, it leads to a 

consistent, modular invariant truncated theory. The implications of this very recent 

discovery are the object of a forthcoming publication [74]. In particular, it allows to 

obtain not only the space filling fermionic D-branes but also all lower dimensional 

D-branes in the various ten-dimensional theories. The fate of the latter was actu-

ally our main concern when the paper by Englert, Houart and Taormina [12] was 

explained to us. Vve thought the truncation should capture all properties of super­

strings, especially the non-perturbative effects. This was our motivation in Section 

3.5, where we showed that the BPS D-branes in type I theory can be obtained from 

wrapped D-branes in the bosonic theory. The latter wrap the E8 x E8 lattice in such 

a way that the bosonized fermions satisfy the appropriate boundary conditions. This 

suggests the truncation should be valid in the non-perturbative regime. Note that 
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the generalization to the D-branes in Type II theory should be straightforward. 

The second question we asked was whether one could extend the checks of duality 

to non-BPS states in string theory, as there was concern the sought for dualities 

were intimately related to supersymmetry and the fact BPS states saturate the 

energy bound. We therefore thought constructing explicit non-BPS states might 

help understand their nature better and give us clues on their behaviour under 

duality. 

In Chapter 4, we succeeded in constructing new exact solutions which describe 

composite dihole configurations. The conical singularities in our solutions can be 

resolved by applying external magnetic fields via a (generalized) Harrison transfor­

mation and by tuning these fields to the values which eliminate the conical deficit. 

The external magnetic fields keep the solution in equilibrium. Motivated by the 

works of Sen [15] on a D6-D6 configuration of type IIA string theory, we uplifted 

the composite dihole solutions to ten and eleven dimensions in order to describe a 

configuration which contains a cluster of intersecting branes and a cluster of inter­

secting anti-branes in string and M-theory. 

We also studied the properties of an open string stretching between branes and 

anti-branes. According to perturbative string theory, we expect the classical mass 

of the open string to vanish when the separation between the two clusters of branes 

and anti-branes becomes zero (the coincident limit of branes and anti-branes). In 

contrast, our calculations in Section 4.4.2 showed the mass of an open string stretch­

ing between the clusters of branes and anti-branes is infinity! (And it becomes finite 

but not zero if we turn off the M2 charges to recover Sen's solution.) 

Moreover, although our brane-anti-brane configurations are balanced in a mag­

netic field, a slight relative displacement of the pair of intersecting branes without an 

accompanying change in the magnetic field, will make the configuration off balance. 

This phenomenon and the absence of tachyon instability do not correspond to the 

feature of brane-anti-brane systems in perturbative string theory. To understand 

this problem, we might require the knowledge of superstring in Ramond-Ramond 

background which is not fully developed at this stage. 
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