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Abstract 

A minimum-norm method has been developed for solving the coupled integro­

differential equations describing the scattering of positrons by one-electron targets 

in which the rearrangement channels for positronium foqnation have been explic­

itly included. The minimum-norm method, applied to this application for the first 

time in this thesis, is an enhancement of a previously reported least-squares method 

which has enabled the extension to a significantly larger basis consisting of up to 

26 states on the direct centre, including pseudostates, and 3 states on the positro­

nium. The method has been applied here to e+ -H and e+ -He+ scattering; cross 

sections have been produced for the latter over a range of energies up to 250 eV. 

The basis was found to be large enough to produce smooth cross sections and 

little evidence of pseudoresonance structure was found. The results are the first 

converged cross sections to be calculated for e+ -He+ scattering using the coupled 

channel approximation. Results for e+ -H scattering compare well with the work 

of other authors. A highly efficient parallel code was developed for solving the 

largest coupling cases. The results prove the minimum-norm approach to be an 

accurate and reliable method for large-scale coupled channel calculations involving 

rearrangement collisions. 

Also in this thesis, the capture of slow antiprotons by atomic hydrogen and 

positronium has been simulated by the Classical Trajectory Monte Carlo (CTMC) 

method. Statistically accurate cross sections for protonium and antihydrogen for­

mation have been obtained and the energy dependence of the process established. 

Antihydrogen formation from antiproton collisions with positronium in the pres­

ence of a laser has also been simulated with the CTMC method and the effects 

of laser polarisation, frequency and intensity studied. Enhancements of the an­

tihydrogen formation cross section were observed and it is suggested that more 

sophisticated calculations should be undertaken 
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Preface 

In recent years the study of the formation of exotic systems, bound states com­

prising of particles such as positrons and antiprotons, has received more and more 

attention. In the case of the interaction of positrons with matter this is largely due 

to relatively recent developments in experimental positron sources and techniques 

and the subsequent accumulation of experimental data to compare with theory. 

On the theory side the study of the interaction of positrons with matter requires 

quite a large amount of computational effort that, until maybe the last ten years, 

has not been so widely available. The combination of abundant suitable comput­

ing resources and new experimental data has fuelled theoretical investigations and 

many studies of positron and positronium collisions with many types of atoms and 

molecules have been made over the last ten years or so. The interaction of antipro­

tons with matter has also received a great deal of attention due to the prospect of 

the fundamental tests of physics that could be performed if significant quantities 

of exotic compounds can be produced and trapped and the high funding that this 

has attracted. 

In this thesis the interaction of exotic particles with matter has been studied 

using two very different approaches. 

In part I, chapters 1-4, a minimum-norm method is developed for solving the 

coupled integro-differential equations arising from the scattering of positrons by 

one-electron targets where the rearrangement channels for positronium formation 

have been explicitly included. The minimum-norm method, applied to this appli­

cation for the first time in this thesis, is an enhancement of a previously reported 

least-squares method (Merts and Collins [1], Bransden and Noble [2]) which has 

enabled the extension of the close coupling basis us~d in the least-squares approach 

V 



Preface Vl 

to be carried out using a significantly larger basis. This extension allows the use 

of a much more complete basis including pseudostates [3] and thus the evaluation 

of cross sections such as ionisation, excitation and electron loss. It is also expected 

that the use of a large pseudostate basis will give more accurate estimates of the 

other major cross sections than is possible with the use of eigenstates alone [4]. 

A brief introduction to positron collisions is given in chapter 1. The close 

coupling approximation and the close coupling equations in the least-squares and 

minimum-norm formalisms are discussed in chapter 2; the pseudostate approxima­

tion, boundary conditions and alternative approaches are also discussed. Numerical 

methods are discussed in chapter 3. 

The minimum-norm method has been applied here toe+ -Hand e+ -He+ scatter­

ing; cross sections for the latter have been produced over a wide range of energies, 

0-40.8 eV, 40.8-47 eV and 50-250 eV, using sets of basis states up to a 29-state 

approximation which incorporates eigenstates and pseudostates up to 8s, 8p, 8d 

and 8f on the He+ and ls, 2s and 2p eigenstates on the positronium. Partial cross 

sections have been produced up to a total angular momentum of J = 20 and ex­

trapolated to higher J using a geometric rule to give cross sections summed over all 

partial waves. These results are presented and discussed in chapter 4. The 29-state 

basis was found to be large enough to produce very smooth cross sections for elastic 

scattering, various excitation processes, ionisation, ground state capture, total cap­

ture and electron loss. Little evidence was found in the major cross sections of the 

pseudoresonance structure reported previously by various other authors; there was, 

however, evidence of pseudoresonances in the much smaller excited state capture 

cross sections. The minimum-norm method is also found to give highly accurate 

phase shifts for pure elastic scattering when compared to variational results. The 

existence of some previously reported resonances in e+ -H have also been verified, 

further demonstrating the ability of the minimum-norm method. 

Since the evaluation of cross sections using large coupled channel basis sets, 

such as the 29-state basis, involves a considerable computational effort, a parallel 

algorithm for the minimum-norm method was developed. This was implemented 

with the message passing (MPI) library and was found to be highly efficient. The 
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parallel algorithm is such that it could be straightforwardly ported to a massively 

parallel computer and thus larger computations could be undertaken. 

The results presented in this thesis prove the least-squares/minimum-norm ap­

proach to rearrangement collisions to be an accurate and reliable method for large­

scale coupled channel calculations involving rearrangement collisions; the results 

are the first complete cross sections to be calculated for e+ -He+ scattering using 

the coupled channel approximation. 

In part 2 a purely classical approach, the Classical Trajectory Monte Carlo 

(CTMC) method, is applied to collisions between heavy exotic particles (e.g. muons, 

pions and anti protons) and hydrogen and positronium targets. 

The CTMC method has been widely used and, due to the relatively small 

amount of computing resources required, has been used for many years. Statisti­

cally accurate cross sections for protonium and antihydrogen formation have been 

obtained using an importance sampled initial distribution and the energy depen­

dence of the process established. The results are of greater statistical accuracy 

and over a wider energy range (in the case of antiproton-positronium collisions) 

than those reported previously by other authors and are found to agree very well 

with experimental data for the charge conjugate reaction of proton capture by 

positronium. The extension of the CTMC method made in this thesis, however, 

has been the introduction of a laser field to the collision. This has been applied 

to antihydrogen formation in antiproton-positronium collisions where the effects of 

laser polarisation, frequency and intensity have been studied. Enhancements of the 

antihydrogen formation cross section were observed and, in the light of the findings 

of this preliminary work, it is suggested that it would be worthwhile undertaking 

further studies of laser enhancement using more sophisticated calculations. The 

results are an encouraging step in the quest to produce larger quantities of exotic 

systems. 
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visit whilst some of this work was undertaken, in particular to Dr. Isao Shimamura 

for his help in organising the visit, and to the staff at the British Council and 

JISTEC for making my stay in Japan, 1998, such a memorable experience. I would 
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Chapter 1 

Introduction 

The study of positrons began with their prediction, by Dirac in 1928 [5], and sub­

sequent experimental verification, by Anderson in 1932 [6]. Probably the first theo­

retical studies of the interaction of positrons with matter were done by Ore in 1949 

[7] andMassey and Mohr in 1954 [8]. Ore postulated that positronium formation, 

a bound state between a positron and an electron, would be at a maximum when 

the positron energy lies within an energy band in which no other electronic energy 

transfer is possible. Of course the positron energy, in the case of an endothermic 

reaction, must be sufficient for positronium formation to be energetically possible, 1 

around 6.8 eV in positron-hydrogen scattering, although this may depend on the 

surrounding medium. This hypothesis is known as the Ore gap model. In positron­

hydrogen collisions the so-called Ore gap lies between the positronium formation 

threshold and the first excitation threshold, at 10.2 eV. 2 Since then much work 

has been done and many advances have been made. For a review of the early 

theoretical work, up to around the end of the 60s, see for example Bransden [9]. 

Although theoretical work on positron scattering got off to quite a good start 

early experimental work on positron scattering was somewhat frustrated by the 

lack of high intensity, low energy, monoenergetic positron beams. Early work relied 

on the unmoderated positrons produced from nuclear beta decay which have an 

energy distribution that is peaked rather high with respect to the typical energies 

required for atomic scattering work, around the typical binding energies of electrons 

in atoms. More on this later. 

2 
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Table 1.1: A few of the properties of positronium. Data taken from Ghosh et al 

[10]. 

Reduced mass 

Ionisation potential ( e V) 

Fraction of formation 

Lifetime (sec) 

Mode of annihilation 

Parapositronium 

25% 

1.25 X 10-lO 

2 )'-rays 

1/2 

6.8 

Orthopositronium 

75% 

1.47 X 10-7 

3 )'-rays 

We now discuss some of the fundamental properties of positrons. As is well 

known, for every particle there exists an antiparticle of equal mass3 and equal and 

opposite charge, the antiparticle of the electron of course being the positron. Al­

though there is a distinct preference for matter over antimatter in the universe, at 

least in our vicinity, positrons do occur naturally. There is evidence for the exis­

tence of positrons both in solar flares and the centre of the galaxy. This evidence 

is inferred from the detection of photons of energy 511 keV arising from the anni­

hilation of electrons and positrons into photon pairs, a relativistic process which 

can only be explained fully by quantum electrodynamics. Although the predomi­

nant annihilation channel, annihilation into other numbers of photons also occurs, 

mostly three photon; the fraction of these other processes is however in comparison 

small. 

Of particular interest in studies of positron interactions with matter are the 

bound states which can be formed. The most notable of these, and the one which 

occurs most frequently in collision studies, is positronium. Some of the properties 

of positronium are given in table 1.1. Theoretical evidence is also emerging for the 

existence of other bound states; for instance, bound states with alkali metals and 

transition metals [11-13]. 

On the experimental side a great deal of effort is being put into the production 

of antihydrogen, H, the bound state of a positron with an antiproton [14-16]. 
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Antihydrogen, produced in sufficient quantities and trapped for long enough, could 

provide a very useful test of some of the very fundamental principles of modern 

physics, notably the CPT theorem [17-19]. 

It seems appropriate at this point to clarify the reactions considered in this the­

sis. The possible reaction channels for scattering of positrons by atomic hydrogen 

and singly ionised helium are 

e+ +H elastic scattering 

e+ + H ---1-
e+ +H* inelastic scattering 

(1.1) 
e+ + e- + p ionisation 

Ps+p capture/charge exchange 

and 

e+ +He+ elastic scattering 

e+ + He+ ---1-
e+ +He+* inelastic scattering 

(1.2) 
e+ + e- +a ionisation 

Ps+a capture/ charge exchange 

respectively, where Ps denotes positronium. Annihilation has been deliberately 

omitted here since, at the energies considered here, it is only a small contribution 

to the reaction channels and is often omitted in theoretical calculations, being 

treated as a perturbation if required once the solution for the other channels has 

been computed; see, for example, Armour and Humberston [20]. 

So why study positrons? The interaction of positrons with matter has become 

an important part of a number of areas of physics. High energy positron collisions 

with electrons have been a huge part of elementary particle physics for many years, 

for example at the Large Electron Positron (LEP) collider at CERN which possibly 

saw the first signs of the existence of the Higgs particle, although this is far beyond 

the context of this thesis. A quantitative knowledge of positron interactions is nec­

essary for a greater understanding of areas of astrophysics in which the presence 

of positrons is a significant factor, such as the aforementioned solar flares and the 

probable existence of positrons near the centre of the galaxy. The application to 
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positron scattering of methods previously applied to electron scattering provides 

a useful test of existing methods; also there are new phenomena, very different to 

what is found in electron scattering, such as the possibility of positronium produc­

tion, annihilation and the existence of resonances which may differ in character to 

those found in electron scattering. The simplest kind of rearrangement collision 

involving positrons is scattering by hydrogenic targets, which is what we consider 

in this thesis. This also has relevance to the experimental production of antihydro­

gen in a trap in the form of the charge conjugate reaction e--H which can result 

in the breakup of the antihydrogen. Furthermore, methods developed for dealing 

with one electron targets can then be extended to treat more complex two electron 

targets; for a recent example see Campbell et al [21 ). The e+ -He+ reaction studied 

in this thesis is also the first complete study to be performed of positron scatter­

ing by an ion and represents a first step towards the study of other positron-ion 

reactions. 

More recently much theoretical work has been done on positron scattering by 

atoms, ions and molecules. Perhaps not surprisingly the vast majority of these 

studies have been with the most simple collision system: positron-hydrogen scat­

tering. A range of theoretical methods have been used. Probably the most accurate 

at low energies has been the variational method, used by Humberston et al [22-25) 

and Kuang and Gien [26, 27). Close coupling methods in configuration space have 

been employed by many authors: Kernoghan et al [28-30] and Higgins et al [31-

33] using the R-matrix method; lgarashi and Toshima [34), Zhou and Lin [35, 36] 

and lgarashi and Shimamura [37] using the hyperspherical close coupling method; 

Bransden and Noble [2] using the least-squares method; as well as others. Alterna­

tive momentum space methods have been used by Bray et al [38-41], Mitroy et al 

[42-50], Basu et al [51, 52] and Hewitt et al [53, 54]. The above list is by no means 

complete; the reader is instead referred to the following reviews [10, 20, 21, 55, 56]. 

Studies of positron collisions have not been limited to hydrogen, however; more 

complex targets have also been investigated.4 

In experiments positrons are generally taken from either /)-decay or from pair 
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production generated by EM showers from high energy electron beam collisions: 

e- + ( Z, N) --+ e- + 1' 

"(--+ e+ +e-. 
(1.3) 

The most popular, it seems, is that of ,8-decay, since radioactive sources are widely 

available and require much less apparatus than an electron accelerator. A popular 

source for this is 22N a from which the reaction 

(1.4) 

which has a half-life of 2.6 yr, produces positrons distributed over a range of energies 

up to 540 keY. 

Both methods of producing positrons do so mostly at relatively high energies 

with very few produced in the required energy range, generally epithermal ( rv e V) 

up to a few keY. What is required then is a method to decelerate them to the 

required energy, usually by thermalizing them and then reaccelerating them to 

the required energy if it is above epithermal (as done by, say, [57, 58]). This can 

be accomplished in a manner similar to that used to decelerate antiprotons in 

accelerator facilities, however it is sufficient, not to mention easier, to do so by use 

of a moderating material. Moderating materials used are usually metallic (rather 

than insulating) since the moderating time ( rv ps) is much less than the typical 

lifetime against annihilation (rv 100 ps); tungsten (W) can be used with a good 

efficiency. An alternative method involves depositing (freezing) a noble gas onto the 

sodium source; this is found to give a marked improvement in efficiency (roughly 

an order of magnitude) over metallic moderators. 

If large quantities of positrons over a short period of time are required, as in 

the case of antihydrogen production and spectroscopy [59], techniques are available 

for trapping and cooling the positrons. The most developed of these methods 

appears to be that of [60] in which positrons are trapped and then cooled by gas 

collisions. This way up to 1010 positrons may be trapped over a period of about 

1 hour and stored for up to several hours, sufficient for the production of enough 

antihydrogen for spectroscopic measurements. Suffice to say, the technology for 
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producing positron beams is now, compared to 5-10 years ago, quite well developed. 

The production of positronium involves the interaction of the positron beam 

(or cloud, as in the case of positrons accumulated in a trap) with a material such 

as silver foil. 

Reviews and discussions on positron and positronium production and trapping 

have been given by a number of authors; see for example [17, 19, 59-62]. A partic­

ular experiment is described in some detail in [57, 58]. A recent review of positron 

trapping techniques and generation of cold, bright positron beams using positron 

accumulation techniques has been written by Surko et al [63]. 

Measurements of positron interactions in collisions of positrons with hydrogen 

atoms have been made by Sperber et al [64], Jones et al [65] and by Zhou et al 

[66]. As far as I am aware no experiments have been done involving the impact 

of positrons on He+, however, measurements of electron impact on He+ have been 

performed by Defrance et al [67] using a crossed beam technique. 

To conclude then, much work has been done so far both theoretically and ex­

perimentally on positron collisions, although there is a great deal more work yet to 

be done. It is hoped that the many methods that have been applied so far and the 

advent of more experimental results will enable a fruitful interplay between theory 

and experiment in the near future. Most computations have so far been limited to 

relatively simple targets and theoretical methods for treating complex targets are 

still, by comparison, in their infancy. It is the purpose of this thesis to develop the 

least-squares method [2] for use with large basis sets including pseudostates. 

In the next chapter the close coupling equations are derived for the specific 

cases considered and the least-squares method is extended to the minimum-norm 

method which was found to be necessary in order to obtain consistently accurate 

results. In chapter 3 the program and numerical methods are discussed in more 

detail and in chapter 4 results are presented and discussed. 



CHAPTER 1 NOTES 8 

Notes 

1 In some cases, notably the alkali metals, the reaction is exothermic and, in 

the absence of annihilation, the cross section for positronium formation diverges to 

infinity at zero energy. 

2Note that in positron scattering from singly charged helium ions considered in 

this thesis the Ore gap does not exist since the n = 2 excitation channels open up 

at a lower energy than the positronium channels. 

3So far there is no evidence to suggest any symmetry breaking here, although 

this is an important question in itself. For our purposes we may view particle­

antiparticle pairs as possessing the same mass. 

4We give here a list of some references, although by no means complete. Positron 

scattering by complex (multielectron) atomic targets has been studied by McAlin­

den et al [68-70), Van Reeth and Humberston [71-75], Ryzhikh and Mitroy [76], 

Watts and Humberston [77], Hewitt et al [78-80] and Gianturco and Melissa [81-

83]. Scattering of positronium has been studied recently by Blackwood et al [84] 

and Bransden et al [85] as well as a number of other authors; for references, see for 

example the citations contained within [84]. 



Chapter 2 

The Close Coupling and 

Pseudostate Approximations 

2.1 Introduction 

In this chapter we derive the close coupling equations for positron-atom scatter­

ing by one electron targets and introduce the least-squares and minimum-norm 

methods of solution applied in this thesis and show how scattering matrices and 

cross sections may be computed. We use the method of partial waves in order to 

reduce the close coupling equations to radial form. We also look at the theory of 

pseudostates and show how these are applied to extend the basic close coupling 

method utilising only eigenstates. 

The close coupling method, originally introduced by Massey and Mohr [86], has 

enjoyed much success in both electron-atom and positron-atom scattering. Before 

talking about the scattering of any particular type of particle by a specific target, 

however, we derive the radial scattering equations for general scattering. In all 

that follows, unless explicitly stated otherwise, we work in atomic units (a.u.), in 

which e = m = !i = 1. 

The Schrodinger equation is 

H 'T'( ) _ .8'lf(X, 1', t). 
'.!' x,r,t -z at , (2.1) 

x represents the target internal co-ordinates and r represents the scattering eo-

9 
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ordinate. If we view the system as a beam of particles of equal and well defined 

energies incident on a target, the system as a whole will be an eigenfunction of the 

total energy E. The wavefunction may thus be written 

W(x, r, t) = '1/J(x, r)e-iEt (2.2) 

and the Schrodinger equation becomes the time independent equation 

(H- E)'ljJ(x, r) = 0. (2.3) 

If we now expand the wavefunction '1/J(x, r) as a product of a complete set of 

eigenfunctions <Pm ( x) of the target internal Hamiltonian Ho and scattering functions 

Fm(r) representing the relative motion of projectile and target, i.e. 

'1/J (X, r) = L <Pm (X) F m ( r), (2.4) 
m 

and write the total Hamiltonian Has 

1 2 
H =Ho- 2f.L \7r + Va, (2.5) 

where Va = Va(x, r) is the interaction potential between the projectile and the 

target and p is the reduced mass, projecting with the target wavefunctions we 

arrive at the coupled equations 

(- 2~ \7;- E +Em) Fm(r) =- L Vmn(r)Fn(r). 
n 

(2.6) 

Here, [Ho - cm]<P( x) = 0 and the potential Vmn ( r) is defined by the matrix element 

(2.7) 

which in the case of neutral collisions, due to the finite extent of the target electron 

cloud, we may assume vanishes faster than 1/r for larger. We note here that the 

functions <Pm(x) in (2.4) span both the bound states and the continuum. 

The scattering wavefunctions F m ( r) may be expanded in terms of eigenfunctions 

of the total scattering orbital angular momentum l. If we take the case of the 

spherically symmetric potential Vmn(r) = Vmn(r), r _ lrl, then the expansion is1 

00 

Fm(r) = L r-1 fm(l, r)Pz(cos 0), (2.8) 
l=O 
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where At is a constant and P1 (cos 0) is a Legendre polynomial. This expansion of 

the wavefunction is termed the method of partial waves. Defining 

(2.9) 

where k?n > 0 for open (energetically available) channels and k?n < 0 for closed 

channels, and noting that 

t"72 1 a ( 2 a ) L
2 

v =-- r- --
r2 or or r 2 ' 

we arrive at the coupled radial equations 

Ldi(r) = L Uijfj(r), 
j 

where the differential operator 

(2.10) 

(2.11) 

(2.12) 

and the reduced potential Ui1 ( r) = 2f.L Vi1 ( r). Expressions for the matrix elements 

have been given by Percival and Seaton [87]. 

The scattering of electrons by atoms in the absence of exchange may be de­

scribed fully by the set of coupled second order differential equations (2.11). The 

solution of these equations may be found relatively simply by direct numerical in­

tegration, e.g. by the Runge-Kutta method [88]. The addition of exchange, for 

example due to the inclusion of Pauli symmetry in electron scattering or by the 

replacement of the electron by a positron, complicates the solution of the equations 

immensely since this introduces an additional, non-local, potential. The potential, 

"\tij, then becomes replaced by an integral 

(2.13) 

The resulting integro-differential equations can no longer be reduced to a set of sec­

ond order differential equations and hence direct integration is no longer possible. 2 
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2.2 The Close Coupling Approximation and 

Pseudostates 

Above the first inelastic threshold, where more than one channel is open, in order for 

the individual excitation cross sections to be calculated the trial wave function must 

contain components referring to all open channels and possibly some closed ones 

too.3 From this point on a one-electron target is assumed, for which the internal 

wavefunction is known exactly. In electron-atom scattering, with no exchange and 

neglecting spin, the wavefunction is simply 
N 

wa = L </>i(rl)Ft(r2)· (2.14) 
i=l 

Here, </>i(ri) denotes the target's internal wavefunction, Ft(r2) represents the pro­

jectile scattering wavefunction and a identifies the solution. 

We note that this expansion is truncated: there are N channels, of which 

1 ~ nop ~ N are open. This is an important point. The reason for this trun­

cation is a practical one since from this trial function inserted into the Schrodinger 

equation a set of N differential equations of the form in equation (2.11) are ob­

tained. Clearly in any calculation there will be a maximum number of channels, 

· N, which may be retained depending on factors such as the computing resources 

available and the method of solution employed. The equations are coupled to one­

another by the potentials Vi1. In practice, many channels are found to be only very 

weakly coupled to the important channels and can therefore be neglected. The 

inclusion of electron exchange, in which the electrons are allowed to interchange, 

is accomplished straightforwardly by the addition of terms as in 
N 

wa = [1 + (- )5 g2] L <Pi(rl)Ft(r2) (2.15) 
i=l 

where S is the total spin and P12 is an operator that exchanges the coordinates of 

the two electrons. The addition of the exchange terms, as discussed above, gives 

rise to an additional integral term in the scattering equations. 

Up until now we have discussed mainly the scattering of electrons. What hap­

pens if we now replace the electron with a positron? From this point on we will 

restrict ourselves to positron scattering only, unless explicitly stated otherwise. 
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The difference between an electron and a positron is its charge. What we 

now have is a positively charged projectile rather than a negatively charged one. 

At first sight it may appear that all that is involved is a change in sign of the 

interaction potential; the situation is, however, much more complicated than this. 

One should first note that, even with this difference in sign, in both positron-atom 

and electron-atom scattering the long-range polarisation force felt by the projectile 

due to distortion of the target electron cloud is attractive. 

The first difference arises in the static interaction4 which in the case of elec-

trons is attractive but for positrons is repulsive, although they are both equal in 

magnitude. Thus, whilst the static interaction in electron-atom scattering tends to 

add to the long-range polarisation, for positrons it tends to cancel. 

The second difference between electrons and positrons is the absence of any 

Pauli exchange between the projectile and target. In the case of electron scat­

tering the presence of this exchange introduces extra terms to the close coupling 

expansion, as in equation (2.15).5 At first sight this may also seem to considerably 

simplify the problem, however, unfortunately this is not the case. The difficulty 

with positrons is that, due to their opposite sign, the possibility exists of the 

positron picking up an electron from the target to form positronium. This rear­

rangement needs be taken into account in the trial wavefunction and the expansion 

now becomes 

N M 

<I>a = L c/Ji(r)Ft(x) + L ~j(R)Gj(p). (2.16) 
i=l j=l 

Here, r and x represent the electron and positron respectively in the direct par­

tition and R and p represent the positronium internal coordinate and scattering 

coordinate respectively in the exchange partition. By partition, we are referring 

to the asymptotic form of the solution, where the direct partition is defined as 

being the same arrangement as the incident channel (e.g. e+-H) and the exchange 

partition refers to the rearranged channels (e.g. p-Ps). Ft(x) = x-1 ji0 (x) and 

Gj(p) = p-1gj(p) define reduced scattering wavefunctions f?(x) and gj(p) direct 

and exchange partitions respectively, introduced for convenience later on. From 

this expansion coupled integro-differential equations result which will be derived 
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and discussed in detail later on. From now on, in general, only the reduced scat­

tering wavefunctions will be referred to and for simplicity will be called scattering 

wavefunctions. 

There are two complications here. The first is the presence of non-local exchange 

terms in the equations similar to those present in electron scattering. The second 

is that, while the total wavefunction in electron scattering is completely defined by 

the Pauli principle, it is more difficult to describe in positron scattering due to the 

possibility of linear dependencies in the expansion (2.16). The positron-scattering 

wavefunction is thus more difficult to describe near the origin. In actual fact though 

linear dependencies have so far not been observed in practice.6 

We might now question about the expansions (2.15) and (2.16) how the target 

states c/Ji and '1/Ji are chosen since, in general, they will come from an infinite set 

and hence the expansion would contain an infinite number of terms. It turns out 

that in fact many terms give rise to equations that are only weakly coupled to the 

rest of the set and hence have little or no effect on the scattering. These terms 

may then be dropped from the expansion leaving behind a set of N +M equations 

that, within a certain accuracy, completely describe the scattering. 

Simple though this may seem, a problem does arise with considering only target 

eigenstates. The problem is most apparent when the effect of long range polari­

sation forces is significant since the interaction potential, in the case of a neutral 

target, is proportional to the dipole polarisability of the target. As is well known, 

the discrete atomic states of hydrogen contribute to only around 82% of the polaris­

ability (with much of this coming from the 2p level) while the remaining 18% comes 

from the continuum. Furthermore, if the collision energy is high enough, ionisation 

of the target (promotion of a previously bound electron to the continuum) may 

have a significant effect. Clearly, in the above expansion this has not in any way 

been accounted for7 and, since the energy on the target takes on a continuous index 

above the ionisation threshold, this is not a trivial problem. A common way to 

overcome this problem, and the way which we employ in the present calculations, 

is given by the introduction of pseudostates. 

Pseudostates were first introduced by Damburg and Karule [3] for use in electron-
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hydrogen scattering. One or more pseudostates of this kind are added to the 

eigenfunction expansion and are designed such that they reproduce the dipole po­

larisability exactly. Pseudostates of the kind introduced by Damburg and Karule 

have since been used in positron-hydrogen scattering by Higgins and Burke [32] 

who employed 2s and 2p states on both the hydrogen and positronium centres. 

These states were of the form (ar + br2
) exp ( -ar) and (cr2 + dr3 ) exp ( -ar) for 

the sand p states respectively, where the range a was chosen to match that of the 

respective ground states. 

A problem that was found in the use of small basis sets such as these was 

the existence of spurious resonances above threshold which varied in character 

with changes in the basis. The first of these to be discovered was a broad s-wave 

resonance at 2.62 Ryd in the coupled-static approximation for positron-hydrogen 

scattering discovered by Higgins and Burke [31]. The existence of this resonance 

has since been confirmed by other authors. The fact that this resonance occurs 

was at first puzzling since, as pointed out by Waiters et al [89], resonances cannot 

occur above the ionisation threshold in positron-hydrogen scattering [90, 91]. It 

has since been shown by many authors, however, that these resonances are purely 

a product of the incomplete model and do not occur in the exact theory. 

An alternative method for generating pseudostates, and the one which we adopt 

in this thesis, is one involving an expansion in terms of L 2 states introduced by 

Burke et al [92-94]. Pseudostates, Yi(r), are formed by a linear superposition of 

N basis functions, 

N 

- ""' (i) Yi(r) - ~ ci vi(r), i = 1, 2, ... , N, (2.17) 
j=l 

where the parameters, c)il, are chosen in order to diagonalise the target Hamilto­

nian, Hr; i.e. 

(2.18) 

In the work of Burke et al the pseudostates were expanded using a basis of Slater 

functions to diagonalise the Hamiltonian. In the work of this thesis we use a similar 

expansion except that we use a basis composed of Laguerre functions. An expansion 
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of this kind was used by Bray and Stelbovics [4] who pointed out that the Laguerre 

basis is more suitable, numerically, for large basis sets; the lower energy states are 

also found to converge rapidly to the exact eigenstates. 

By producing a set of pseudostates from a significant number of basis functions 

with carefully chosen parameters one produces a set of target states consisting 

of, essentially, a few of the lowest energy eigenstates and a range of pseudostates 

with effective energies reaching into the continuum. By increasing the number of 

pseudostates in the expansion one obtains an increasingly accurate representation 

of the full wavefunction. Pseudostates are thus an attractive approach to solving 

the problems of eigenstate only expansions. As well as offering a more complete 

expansion of the wavefunction they also retain desirable features of the close cou­

pling method such as important minimum principles. One downside of pseudostate 

expansions, however, is that they introduce spurious pseudothresholds to the S­

matrix from which so-called pseudoresonance structure may arise. These are false 

resonances originating solely from the presence of these pseudothresholds. 

The use of pseudostates has been studied in some detail by Bray et al using 

their so-called Convergent Close Coupling (CCC) method [4]. Although the CCC 

method was first applied to the case of electron-hydrogen scattering, these results 

are still of great interest due to the issue of convergence of the target basis. Sets 

of N pseudostates were used to represent the hydrogen target. The pseudostates 

were constructed from a Laguerre basis similar to that used in this thesis and 

convergence was analysed fors-wave scattering as a function of increasing N. Up 

to N = 30 were used and the results tested against the accurate results of the Poet­

Temkin model [95, 96] (described in, for example, [97, 98]). They found that the 

characteristic pseudoresonance structure found by previous authors and mentioned 

above was evident in the smaller basis set results but then disappeared for the 30-

state runs. They also found that a very narrow genuine resonance in the 2s cross 

section around 2 e V was reproduced well by the model. Convergence was found 

not to be a function of the target scaling parameter, (, in the Laguerre set (3.4), 

however it was suggested that the rate of convergence may depend on(. The rate 

of convergence, however, did depend critically on the collision energy. 
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With minor modifications to the CCC code of [4] the CCC method was ex­

tended to treat positron-hydrogen collisions in the absence of exchange [38, 39]. 

The major changes involve omission of the electron exchange po~entials and rever­

sal of the signs of the potentials in the Hamiltonian. Although the CCC case for 

electron-hydrogen scattering had already been studied carefully, with the omission 

of the exchange potentials it was not immediately clear how the convergence might 

proceed. From a formal point of view an infinite expansion of states on the target 

centre (hydrogen) will be complete; however, in practice, a truncated expansion 

cannot account fully for the states on the exchange centre. The reason for this is 

that the wavefunction extends to infinite distances in both scattering variables, in 

contrast to the electron scattering case which is infinite in only one variable. They 

found that convergence of the pure elastic scattering [38] was indeed much differ­

ent for positrons with convergence to within 1% for the first partial wave requiring 

targets of angular momentum up to l = 15 with N1 ~ 6 targets with angular 

momentum l. Comparison with converged close coupling results containing only 

eigenstates demonstrated the importance of allowing for virtual excitation. Above 

around 100 eV where positronium formation is insignificant they also were able to 

produce well converged results [39], believed to be accurate to within a few percent 

and in good agreement with variational calculations and experimental results (see 

references cited therein). 

More recently the CCC method has been extended by Kadyrov and Bray [40, 41] 

to introduce the positronium formation channels as well. Instead of expanding the 

targets on the hydrogen centre using both eigenstates and pseudostates and using 

only eigenstates on the exchange centre, as is more usually the case, they expanded 

with up to 17 pseudostates on each centre. Although nonorthogonal, and hence ill­

conditioned, with a careful choice of numerical precision they did not encounter any 

significant numerical problems and were able to show that the pseudoresonances 

encountered using other models only disappeared when using larger two-centred 

expansions with at least 11 states on each centre. It seems then that for very 

well converged results two-centred expansions of this kind are necessary. However, 

computations of this kind are very large compared to expansions with only a few 
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states on the positronium centre and for many cases are simply impractical. 

2.3 Derivation of the Close Coupling Equations 

Having discussed the close coupling approximation in a general context, in this sec­

tion and appendix C we derive the radial scattering equations and matrix elements 

in detail for the cases considered in this thesis. 

The system may be described by the time independent Schrodinger equation 

[H- E]wJM = 0 (2.19) 

for a fixed centre of mass energy, E, where the scattering wavefunction, W, is indexed 

by the quantum numbers for total angular momentum, J, and its projection, M. 

As discussed above, the wavefunction may be partitioned into terms representing 

separately the direct and exchange partition channels as 

where 

JM '\:'-JM ( A) 1 J ( 
W D = ~ </Jo.Lo.lo. r; X ;;fa,Lo. x) 

JM- '\:'-JM ( . A)1 J ( w X - ~ '1/J"(L-yl-y R, p -g"(,L-y p) 
'Y p 

(2.20) 

Direct (2.21a) 

Exchange. (2.21b) 

Note that spin has been neglected since spin interactions are negligible. Here, 

1)~~~J r; X) = Rnala ( r) Ylo:ma (f) X 

(Lala; m~ mall M) YLam~ (x) 

= <Pala(r) (Lala; m~ma.JlM) YL.,mdx) 
-JM A 

'1/J'YL-yl-y(R;p) = Sn-yl-y(R)Y/-ym-y(R) X 

(L-yi-y; m~m'YJJ M) YL-ym; (p) 

= '1/J-yl-y (R) (L-yl-y; m~m'YIJ M) YL-ym; (.o); 

(2.22a) 

(2.22b) 

<Pa1Jr) and '1/J-yl-y(R) are the target internal wavefunctions; f~,L)x) and g~,L)P) 

represent the scattering wavefunctions; the subscripts D and X represent the di­

rect and exchange components respectively; Ylam.,(f) and Yl-ymJR) etc. are spheri­

cal harmonics; and (Lala;m~ma.JlM) and (L-yl-y;m~m'YJJM) are Clebsch-Gordan 
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Figure 2.1: Jacobi coordinates. 
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coefficients. The angular factors coupling the target to the scattered particle have 

been included in the channel functions (fi~Z_la (r; x) and '1/J~~~-r (R; p) for convenience 

later; the summations over the magnetic quantum numbers are implicit. We note 

that the li and Li obey the relation 

(2.23a) 

equivalently written as 

(2.23b) 

according to the parity condition 

(2.24) 

Working in Jacobi coordinates (figure 2.1), such that the internal and centre of 

mass coordinates of the positronium (R, p) are related to the electron and positron 

coordinates relative to the nucleus (r, x) by 

R=r-x 

P = x+ lR 
2 ' 

(2.25a) 

(2.25b) 
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the Hamiltonian may be written either in terms of (x, r) or (R, p): 

12121 z z 
H=--\1 --\1 --+---

2x 2r R X r 

1 2 2 1 z z 
=--\1 -\1 --+---

4 P R R x r' 
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(2.26a) 

(2.26b) 

where Z denotes the nuclear charge. The Schrodinger equation (2.19) may be 

partial wave analysed by substituting in (2.20) and projecting onto (/>~;:,la (r; x) 

and 7/J ~~l-r ( R; p), i.e. 

j dx j dr(/>:~13113 (r; x) [H-E l w1
M = o 

J dp J dR'IjJ::616 (R; p) [ H- El W1
M = 0, 

(2.27a) 

(2.27b) 

where * denotes complex conjugation. These equations comprise four matrix ele-

ments: 

or, equivalently, 

Using the fact that 

and 

M1- j dx j dr4}:~13113 (r; x) [ H- El wbM 

M2 = J dp J dR'IjJ::616 (R; p) [H-E l wfM 

M3 = j dx j dr4}:~13113 (r; x) [H-E J wfM 

M4 = J dp J dR'IjJ::616 (R; p) [H- El wf:JW 

M1- (4JIH- El wb) 

M2 = ( 7/J IH - El wf) 

M3 = (4J IH- El wf) 

M4 = (7/J IH- El wb). 

(2.28a) 

(2.28b) 

(2.28c) 

(2.28d) 

(2.29a) 

(2.29b) 
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and defining 

(2.30) 

M1 and M 2 can be evaluated to 

(2.31) 

(2.32) 

where the direct potentials Va.a(x) and W78 (p) are given by the matrix elements 

(2.33) 

(2.34) 

Note that in (2.31) the overall Coulomb interaction in the direct partition is shown 

explicitly. The direct potentials Vii and Wij therefore vanish faster than 1/x and 

1/ p respectively. These matrix elements are evaluated further in appendix C where 

they are shown to give rise to local, energy independent potentials. 

M 3 and M 4 are more complicated and give rise to non-local potentials that de­

pend upon energy and which couple together the scattering wavefunctions f~LJx) 

and g~L, (p) thereby allowing for rearrangement of the particles to occur in the 

central collision complex. The forms of these matrix elements are (appendix C) 

M3 = L 100 

pdpKa7 (x,p)g~L,(P) 
'YL, 0 

(2.35) 

M4 = L 100 

X dxK7a(P, x)f~L" (x), 
aLa 0 

(2.36) 

where the exchange kernels, Ka7 (x, p) and K7a(P, x), are given by8 

-"" [ (1) ( 1) (2) { d2 
L'Y(L'Y + 1) I 2}] Ka7 (x, p) - ~ Aac>. K>.,a7 (x, p) + -4 K>.,a7 (x, p) dp2 - p2 + k7 

(2.37a) 
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and 

K,,(p, x) =~A", [ Ki~;,(p, x) + ( -~) Ki~;,(p, x)L~' -L,(L;,+ I) +k~}] 
(2.37b) 

c (1) ( ) (2) ( ) -(1) ( ) -(2) ( ) The 10ur kernels K >..,a"f x, p , K >..,a"f x, p , K >..,"fa p, x and K >..,"fa p, x are energy 

independent and all angular factors, also energy independent, are contained in the 

terms Aac>.. and Aac>... We thus arrive at coupled equations 

(~ _ La(La + 1) _ 2(z -1) + k2 ) fJ (x) = 
dx2 x2 X a a,La 

L Vaf3(x)fi,L13 (x) + 2 L 100 

dp(xp)Ka'Y(x, p)g~L-r (p) (2.38a) 
/3,Lf3 "f,L-y 0 

( 
~ _ L'Y ( L'Y + 1) k' 2) 1 ( ) = 
dp2 p2 + 'Y 9"f,L-r p 

L w'Y6(p)gf.Lo (p) + 2 L 100 

dx(xp)K "(a(x, p)ft,La (x), (2.38b) 
6,£0 a,La 0 

where all of the energy dependence has been factored out into simple derivatives of 

the scattering wavefunctions, with as much of the rest of the equations evaluated 

in energy independent factors. These factors thus only need be evaluated once 

for each coupling case, i.e. for each choice of expansion (2.21) and for each total 

angular momentum J. 

We now begin to compactify the notation by defining the operator 

1oo { ( ') [ d
2 

2 Li(Li + 1) Z- 1 l £. · = dr o r- r - + k- - - --n O· · lJ - d 2 t 2 • Jl ZJ 
0 r r r 

- o(r- r')Vij(r)- Kij(r, r') }, (2.39) 

where 'T/i = 2 for channel i in the direct partition and 'f/i = 0 for the Ps channels. The 

reader should note that factors of 2xp have been absorbed here into the exchange 

kernels Kij(r, r'). We now have the set of coupled equations 

i = 1, ... ,I (2.40) 
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where a labels linearly independent solutions. We also impose the boundary con­

ditions 

jia ( r) rv rLi+l 

fia(rB) = df 

as r ---+ 0 

df constant. 

(2.41a) 

(2.41b) 

The first of these conditions, (2.41a), is mandatory. 9 The second condition, (2.41b), 

is imposed for convenience as part of the solution method and defines the linearly 

independent solutions identified by the vectors da; this set of solutions may then be 

used later by matching to the appropriate boundary conditions to define the actual 

scattering wavefunction for the problem. In the present case it was considered 

convenient to define da by10 

(2.42) 

In principle the set of solutions should also be independent of the choice of r 8 , but 

in practice, working with finite precision arithmetic, the result may depend on the 

choice of r 8 . This will be discussed in more detail in chapter 3. 

2.4 Least-Squares and Minimum-Norm Methods 

of Solution 

The least-squares method is not new to scattering theory; it has been employed 

previously in electron scattering calculations by Merts and Collins [1 J who used it 

to solve the linear differential equations arising from electron scattering by atoms, 

molecules and ions in an intermediate radial region beyond the charge cloud of 

the target. It was compared to methods such as R-matrix propagation techniques 

and accelerated asymptotic expansions [99-101 J to which it was found to compare 

favourably. Although the equations arising from electron scattering in the inter­

mediate radial region involve only local potentials, Merts and Collins also noted 

that it could be used to treat non-local potentials. 

In this section it is shown how the least-squares technique may be extended 

to treat the integro-differential equations derived in the previous section arising 
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from the full close coupling treatment of scattering of positrons from hydrogenic 

targets [2]. Although found to be adequate for calculations involving a moderate 

number of target states, such as eigenfunction-only expansions, when applied to 

calculations involving a large number of pseudostates the extended least-squares 

method was found to be difficult to apply successfully. In light of this an en­

hancement of the least-squares method, called the minimum-norm method, was 

developed for this thesis which will be described later on in this section. General 

methods for solving integral equations are discussed in, for example, the books by 

Delves and Mohamed [102] and Delves and Walsh [103], whilst more general issues 

involved in linear equation solving are discussed by Golub and Van Loan [104]. 

We begin by noting that there exists a region of space given by x < Xa, p < Pa 

outside which the exchange potentials may be considered negligible. In this exter­

nal region the exchange11 terms may therefore be neglected and a decoupling oc­

curs between the equations representing each partition. This situation corresponds 

physically to a well defined arrangement of the particles where only the local po­

tentials remain, acting upon channels within a particular arrangement only. We 

thus are left with two independent sets of differential equations which may now 

be solved by direct integration, e.g. Runge-Kutta [88], or by R-matrix propaga­

tion techniques. We shall discuss these propagation techniques and solution of the 

scattering equations in the asymptotic region in later sections. 

In the least-squares and minimum-norm methods of solution we make use of 

the above decoupling by defining a so-called inner region12 of space, depicted in 

figure 2.2, by x < Xa, p < Pa, outside which the exchange potentials are negligible. 

We expand the scattering wavefunction over this region in terms of a set of basis 

functions, <Pi ( r): 
A 

Jt'(r) = L CI).<P~(r). (2.43) 
.X=l 

Furthermore we demand that 

asr-+0 (2.44) 

so that the boundary condition (2.41a) is automatically satisfied. We remark here 

that there is a notable difference between this expansion and that of Merts and 
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Figure 2.2: Schematic representation of the partitioning of space m the least­

squares approach. 

a. 

Rearranged channels 
(positronium formation) 

Jl 

External 
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(positron+target/ 

ionisation) 

X a 
positron-nucleus coordinate, x 

Collins. In our case the expansion of the wavefunction is over a finite region, in 

contrast to Merts and Collins who expand over a region that extends out to infinity. 

The advantage of expanding over a finite region is that an effectively complete set 

of orthogonal basis functions may be used. 13 It turns out, as we shall find out 

later, that for large scattering calculations with many channels, up to 60 or more, 

this completeness, with no linear dependencies, 14 is critical for the reliability of 

the method and for obtaining accurate cross sections. The exact choice of basis 

functions c/Y\(r) will be discussed in chapter 3. 

The least-squares problem now amounts to a minimisation of the functional 

(2.45) 

where the mesh points rq, q = 1, ... , Q cover the range 0:::;; r:::;; ri, with Q sufficient 

to determine the coefficients Ci). uniquely, and the nonlocal potentials are evaluated 

using a numerical quadrature, i.e. 

(2.46) 
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Using the expansion (2.43) we have 

(2.47) 

where 

Q' 

- Vi1 (r q)</J{ (r q) - L Kij (r q, r q' )<Pi, (r q' )wq'· (2.48) 
q'=l 

rq', Wq' are quadrature nodes and weights; Mij>.(rq) is called the M-matrix. Now, 

minimising J<:t with respect to the coefficients Cf>., i.e. 

[)J<:< 
-=0 
aCJ>. 

we arrive at the matrix equation 

where the F-, G- and H-matrices are 

I Q 

{ i: 1, ... ,I 

.\ -1, ... ,A 

Fj>.,j'N = L L Mij>.(rq)Mij'N (rq) 
i=l q=l 

Gj>.,j'N = 5jj'<P{(rB)<P{,(rB) 

Hj;., = dj </J{ ( r B). 

The above method is called the method of least-squares. 

(2.49) 

(2.50) 

(2.51a) 

(2.51b) 

(2.51c) 

We note at this point that the placement of the nodes (mesh points) rq in the 

functional (2.45) is completely arbitrary. Theoretically, the choice should not be 

critical providing that there are enough points to avoid linear dependences in the 

final matrix equation (2.50). In practice this is not always so easy; a poor choice 

of points quickly leads to ill-conditioning in (2.50) as the number of channels, I, 

increases. This ill-conditioning can become so extreme, even for a modest num­

ber of channels, that, even with double precision arithmetic, the method becomes 

unreliable. What we need, therefore, is some prescription with which to reliably 

determine a suitable placement of the nodes. 
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Introducing weights Wq to the functional so that it now reads15 

(2.52) 

we note the similarity of the contents of the brackets in the first term to a numerical 

integral. 16 Now, defining a norm 

I ri [ I ] 2 
Na = ~ Jo dr f; Lijfj(r) , (2.53) 

which we note is equivalent to f dr I ( H- E)'l/11 2
, and introducing this into the defi­

nition of the functional (2.52) we may impose restrictions on the choice of nodes rq 

and weights Wq by demanding that they are given by a quadrature rule. A particular 

choice of rule might be, say, a Gaussian rule [105); however, due to the sometimes 

large number of basis functions c/J~ necessary in the wavefunction expansion (2.43) 

it is convenient to instead split the integral into subranges: symbolically 

1Ti 1X1 1X2 1Ti 
----+ + +···+ ' 

0 0 Xl Xn-1 
(2.54) 

what is known as a compound Gaussian rule. We may now choose lower order 

rules for each interval. This method, a generalisation of the least-squares method, 

is called the minimum-norm method. 

A further generalisation is found by introducing more weights Wq into the 

quadrature. These weights are chosen to be equal within each subrange in order to 

maintain the quadrature rules but may be chosen arbitrarily between subranges. 

It is found that this additional degree of freedom, although not really necessary 

for good results with the sizes of calculation performed in this thesis, noticeably 

improves the performance of the algorithm further in some cases when the weights 

Wq are chosen suitably. For now, the issues of choices of compound rules, total 

number of nodes, application of additional weighting factors and division into sub­

ranges and how the performance of the algorithm is affected will be skipped and 

instead discussed in chapter 3. 
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2.5 Solution in the Asymptotic Region; the T­

Matrix and Cross Sections 

Having discussed the solution of the scattering equations in the inner region we 

now move on to discuss the solution in the asymptotic region. This is defined 

as the region in which physical scattering observables, such as the cross sections, 

are defined, and in which, in an experimental apparatus, the detectors would be 

situated. We show in this section how the asymptotic forms of the solutions to 

the scattering equations enable the the reaction (K-) matrix, the scattering (S-) 

matrix and the transition (T-) matrix to be determined, from which the cross 

sections may be computed. We also only give a brief overview, collecting together 

the more important results; for a more comprehensive discussion the reader is 

referred to, for example, [97, 98, 106, 107]. 

In the asymptotic region we assume that the couplings between channels are 

negligible and hence we may consider solutions to the radial (partial wave) equation 

[Lz- U]fz = 0. (2.55) 

Here, L1 is the operator (2.12) for a single channel only and acting on an angular 

momentum of l, U = U(r) is the reduced potential and f 1 is the radial wavefunction 

with orbital angular momentum l. It may be shown [106] that cases in which the 

potential, U(r), vanishes faster than r- 1
, it is sufficient, in the asymptotic region, 

to consider the solutions to the free-particle equation 

Ldz =0. (2.56) 

However, in the case of a residual Coulomb force, such as in e+ -He+ scattering 

considered in this thesis, this residual force must be retained since it remains strong 

enough to result in a distortion of the asymptotic wave manifested by the addition 

of an extra, logarithmic, phase factor. 

Consider firstly a potential of pure Coulomb form, i.e. 

U(r) = _ 2"(k = _ 2"(k
2

, 

r p 
(2.57) 
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where p = kr. The solution to (2.55) regular at the origin is the spherical Coulomb 

function 

(2.58) 

where C1 is a constant, which has the asymptotic form 

(2.59) 

a1 is the Coulomb phase shift 

az = arg f(l + 1 + i--y), (2.60) 

which, for"(= 0, becomes az = 0. 

In order to completely specify the solution we must also introduce a second 

independent solution, the irregular Coulomb function, G1, given by 

G1 = iC1 eiP(p)1+1 [W1(l + 1 + i'y, 2l + 2, -2ip) 

- W2 (l + 1 + i'y, 21 + 2, -2ip)] (2.61) 

""' cos(p- ~l1r- "( ln 2p + az). 
p~oo 

It is also convenient to define two additional irregular functions 

Hi±) = exp(±iaz) ( Fl ± iGz) 
(2.62) 

rv =fi exp{ ±i(p- ~l1r - "( ln 2p)} 
p~oo 

so that the full scattering solution can be written 

(2.63) 

Here, S[ is termed the S-matrix which is related to the Coulomb phase shift by 

c . . f(l + 1 +h) 
S1 = exp{2zaz(k)} = f(l . ) . + 1 - 2"( 

(2.64) 

In a more realistic collision problem the Coulomb force will be modified by some 

short range potential, U(r), which vanishes faster than r-I, i.e. 

- 2"(k 
U(r) = U(r)- -. 

r 
(2.65) 
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The short range component of this potential is such that beyond a certain point 

it may be dropped from the radial equation leaving the Coulomb equation. In 

analogy with neutral scattering we write the general solution in the asymptotic 

region as 

(2.66) 

where K 1 is termed the reaction matrix or K-matrix. On putting K 1 = tan t51 (2.66) 

is found to have the asymptotic form 

!1 "'"' sin(p- ~l1r- '"'( ln 2p + a1 + 61). 
p-+oo 

(2.67) 

Comparison with (2.59) shows that the effect of a short range potential superim­

posed on the Coulomb potential is to replace the Coulomb phase shift, a1, with a 

phase shift £11 = a 1 + t51, where the phase shift t51 contains all the information on 

the non-Coulombic part of the potential. The solution may also be written as 

(2.68) 

Now, extending this to the multichannel case, we write instead the matrix 

equation 

(2.69) 

where now j, k-112 , F, and G1 are diagonal matrices. We define the transition 

matrix, or T-matrix, by 

K1 
T, = 1 "K' -'/, l 

(2.70) 

which is related to the S-matrix by 

(2.71) 

from which we may compute the cross sections17 

00 

47r"'""' I l 12 a!= k? L.)2l + 1) T1i . 

t l=O 

(2.72) 
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For computational convenience, as we shall see in the next section, we also 

define the R-matrix or inverse log-derivative matrix, R~, at the points ri = ai by 

(2.73) 

Here, p,-1
/

2 is a diagonal matrix with elements p,;1
/

2
, where J-li is the reduced 

mass in the ith channel and, similarly, the matrices a±1/ 2 are diagonal matrices 

with elements a'f112
. Incidentally, the factor of a in (2. 73) is not necessary but 

it is customary to include it. The notation lr=a denotes evaluation at the points 

ri = ai and the prime denotes the derivative with respect to the corresponding 

radial variable, ri. 

2.6 Solution . 
Ill the Intermediate Region: R-

Matrix Propagation 

Having solved the scattering equations in the internal and asymptotic regions, what 

remains is to solve the scattering equations in the intermediate region inbetween. 

In this region the potentials are local and hence the scattering equations are purely 

differential in form, i.e. they contain no integral terms. Such coupled second-order 

linear differential equations may be solved by direct integration, for example using a 

Runge-Kutta method [88]; however, it is far more convenient to use one of a number 

of well established dedicated packages which are available [108-110], upholding the 

principle of software re-use. 

In the previous section the R-matrix was defined; from equation (2. 73) it is clear 

that knowledge of the R-matrix is sufficient in order to determine the scattering K­

matrix and hence also the cross sections. The above mentioned packages are termed 

R-matrix propagators since they work by propagating the R-matrix from one point, 

which in our case will be at the edge of the internal region, to another, usually in 

the asymptotic region. Use of an R-matrix propagator is clearly advantageous 

since, by defining an intermediate region, the size of the inner region over which 

the least-squares expansion is made may be reduced with a considerable reduction 

in the amount of computation. 
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In this section we discuss how this propagation is performed. R-matrix prop­

agation techniques have also been discussed by a number of authors, including 

[100, 101, 107, 109-112]. 

In the intermediate region, the two components of the wavefunction wbM and 

w:{.-M can be solved for separately. The Schrodinger equation thus separates into 

two equations 

(2.74a) 

and 

[H- E]\li~M = 0. (2.74b) 

Similarly to before, projecting these two equations onto the channel functions 

(j)~~ 1Jr, x) and '1/J~~~--/R, p), we obtain the two sets of differential equations 

and 

- 2 L L a~px-A-1 f/,£13 (x) (2. 75a) 
A p 

( 
d
2 

Ly(L'Y + 1) 1 2) J ( "'"'-A -A-1 J ( ) d 2 - 2 + k, 9,,£'1 p) = -4 L.....t L.....t a,aP g6,La P · 
p p A 6 

(2.75b) 

Here, the potential on the right-hand side has been given in multipole form where 

the multipole coefficients, a~p and a~6 , are given by 

(2.76a) 

and 

(2.76b) 

8 is the angle between r and x; 8 is the angle between Rand p. 18 The multipole 

expansion of the potential is advantageous since it reduces the amount of compu­

tation involved in computing the potentials; at this range only a few terms need 

be retained in the expansion. Equations (2.75) may be written in matrix form 

(:K- e)f = o (2.77) 
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where f is a vector comprised of elements f~,LJx) and g~,L, (p); J{ is block diagonal, 

with upper and lower blocks 

(2. 78) 

respectively and all other elements zero; c is the diagonal matrix 

(2.79) 

We note that the choice of k2 is arbitrary and may be chosen to be whatever is 

most convenient. /ki is the reduced mass in the ith channel where i runs through 

a and"!· 

In order to proceed with the R-matrix propagation we divide the intermediate 

region up into sectors; the aim is to propagate the R-matrix in steps, one sector at 

a time. In order to do this we first define the modified Bloch operator matrix 

b>a (2.80) 

where the Bloch operator [113, 114], Ln, is defined by 

~ Lo(x- xa)l4}i(r,x)) [d~ + ~] (4}i(r,±)l direct channels 
t 

~ ~ O(p- Pali.P,(R, PJ) [ d: + ~] (,P,(R, Pll exchange channels. 

(2.81) 

The purpose of the Bloch operator is that it ensures the Hermiticity of the operator 

JC + J:.,B over the region [a, b]. 19 

Now, rewriting (2.77) as 

(2.82) 

which has the formal solution 

(2.83) 
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this depends on the number of nodes of the wavefunction within the sector and is 

thus related to the channel momentum. Following Baluja et al [110], ten shifted­

Legendre basis functions were employed in this work and the sector width was 

chosen by the criterion 

kmax lb - al = 6; (2.89) 

here kmax = max{lkil; \ii} is the maximum absolute wavenumber of all channels. 

This criterion was chosen empirically by Baluja et al . 

The above propagation technique is called a solution following method. The 

method is considered computationally efficient for the problems considered in this 

thesis; a great deal of the calculation, namely the construction of the basis within 

each sector, need only be done once for all energies; for each energy only the ~­

matrices need to be constructed and the propagation equation (2.88a) evaluated. 

An alternative method due to Light and Walker [101, 111, 112] instead works by 

diagonalising the interaction potential in the centre of each sector. The sector size 

is thus governed by the rate with which the potential varies, since it is assumed to 

be constant across each sector. The advantage of this method is clear when the 

potential is slowly varying and can often be more computationally efficient than 

the solution following method. The best choice is thus the one which is most suited 

to a particular problem; alternatively a combination of the two may be used [109]. 

2. 7 Other Methods of Solution 

The R-Matrix Method 

The R-matrix was first introduced by Wigner and Eisenbud [115-117] in the context 

of nuclear reaction theory and has since been discussed by a number of other authors 

[32, 33,107, 118-120]. It has been used extensively in atomic collision theory, both 

for electron-atom [120, 121] and, more recently, positron-atom collisions [21, 28-

33, 68-70]. 

Like the least-squares and minimum-norm methods, the R-matrix method works 

in a partitioned configuration space consisting of an inner region, in which the po-
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tentials must all be treate.d fully, and an external region in which the exchange 

potentials are negligible and the local potentials may be approximated by multi­

pole expansions and propagated by standard methods [101, 108-111]. Accordingly, 

the total wavefunction is also divided into two parts which are matched at the 

R-matrix boundary on the division between the internal and external regions. 

For brevity, limiting our discussion to an expansion over the direct partition 

only, in the internal region the total wavefunction is expanded in terms of a com­

plete basis, wk, given by 

(2.90) 

Here, the co-ordinates are the same as for the least-squares method and ?Ji ( r, x) are 

channel functions, defined in the same way as before. The functions ui(x), termed 

continuum orbitals, may be chosen somewhat arbitrarily, although they must come 

from a complete set and there must be enough of them to ensure completeness in 

the expansion of W k· Given the appropriate normalisation the coefficients, aijk, 

may be determined by diagonalising the Hamiltonian, 

(2.91) 

where H is the total Hamiltonian such that the wavefunction over all space, W, 

obeys the equation 

(H- E)w = 0 (2.92) 

and the integration in (2.91) is to be performed over the inner region only. The 

operator LB is the Bloch operator (2.81), again introduced to ensure Hermiticity in 

the internal region. The complete solution over the internal region, wavefunction 

wint' may be written as 

(2.93) 

Expanding this in terms of the complete set of basis states W k we have 

Jwint) = :LJwk) Ek ~ E(wkJLBJwint). 
k 

(2.94) 
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Projecting onto the channel functions, ~i(r, x), and evaluating on the R-matrix 

boundary, x = a, yields 

(2.95) 

Here, fi(x) are the reduced channel wavefunctions and ~i we recognise as being 

the R-matrix, given here by 

(2.96) 

The functions Wik are termed surface amplitudes and are given by 

(2.97) 

and the radial functions fi are given by 

(2.98) 

It is straightforward to develop the R-matrix method to also include the positron­

ium formation channels; see, for example, Higgins and Burke [32]. 

We see that with the R-matrix method the majority of the computation lies in 

the diagonalisation (2.91); once this diagonalisation has been performed the surface 

amplitudes and the radial functions are readily constructed and all that remains is 

for the R-matrix (2.96) to be evaluated. 

Variational Methods 

Although variational methods were developed for bound state problems in the early 

days of quantum mechanics, it took until about 1944 for the variational method to 

be developed for scattering problems. The development has since had a significant 

impact on scattering calculations and has been used widely on many problems. 20 

Variational methods in scattering theory hold certain similarities with the Rayleigh­

Ritz21 theory for bound state problems (they both provide stationary functionals) 

except for two notable exceptions: whilst the Rayleigh-Ritz principle provides an 

upper bound to an exact energy and also provides parameters which determine 
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the wavefunction, the variational methods of scattering theory do not, in general, 

provide variational bounds, except in special cases; the energy is also specified 

in advance and the variational principle is used to determine other properties, 

such as scattering lengths, phase shifts, etc. In this section we discuss only a 

few of the more important aspects of variational theory; for a more comprehensive 

account of variational methods in scattering theory plus references see, for example, 

Bransden [97], Joachain [106], Burke and Joachain [107], or the monograph by 

Nesbet [122]. 

Variational methods of the Hulthen-Kohn type [123-125] are often based on 

variational principles of the form 

6[!{ + k1]i] = 0, (2.99) 

where 11f is a trial phase shift, 

(2.100) 

Jl is a trial wavefunction with flexible parameters and obeying the boundary con­

dition 

fHr) rv sin(kr- ~l1r) + tan(77{- r) cos(kr- ~l1r) 
r--too 

(2.101) 

and r is a flexible parameter, The variationally correct phase shift, [771], is then 

given by 

(2.102) 

Values of the parameter r = 0 and 1r /2 produce the so-called Kohn and inverse 

Kohn methods respectively. Variational methods based on a normalisation of the 

form 

jt(r) rv exp(-i01)- Sf(k) exp(i81) 
r--too 

(2.103) 

give rise to the variational principle 

6[!{ - 2ikS:J = 0 (2.104) 
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from which the variationally correct S-matrix, [51], is found to be 

[ Sz] = Sf + 2~k It[ftJ. (2.105) 

This method, which is often termed the complex Kohn method, has been employed 

in positron scattering by Van Reeth and Humberston [74, 75]. 

A notable problem of the Kohn and inverse Kohn variational methods is that 

they suffer from so-called Schwartz singularities [126, 127]; i.e. no matter how flex­

ible the trial function is made if you are on, or close to, a singularity the method 

is hopeless. The problem has been addressed in two ways: (1) use a combination 

of variational principles, such as the Kohn and inverse Kohn [20], since the sin­

gularities occur in different places; and (2) a method developed by Harris [128] 

overcomes the problem by enabling the evaluation directly on the singularities. 

The former method has been used in positron-hydrogen collisions by Humberston 

et al [22-25, 75] whilst the Harris method has been employed by Shimamura [129]. 

Unfortunately the Harris method is restricted to points on the singularities only, 

although the singularities can be moved by alterations of the trial wavefunction. 

A variational principle for the R-matrix has been given by Jackson [130] and 

generalised by Bransden and Noble [2] to give a variationally correct R-matrix 

for the least-squares method. The correction was found, however, to be negligible. 

Also, variational principles of integral form have been introduced by Schwinger [131] 

and used in positron-hydrogen collisions by Kar and Mandal [132]. 

Hyperspherical Close Coupling 

The Hyperspherical Close Coupling (HSCC) method has been used by several au­

thors in the study of positron-atomj-ion collisions [34-37] and has been reviewed 

by Lin [133]. The method has been discussed in some detail for the case of positron­

hydrogen scattering by lgarashi and Toshima [34]. 

The problem is formulated in hyperspherical coordinates: the hyperradius, p = 

J r 2 + x2 , and the hyperangle, cp = tan -l ( r / x), replace the radial coordinates of the 

electron and positron, r and x, and n denotes the five angular variables ( cp, x,f). 
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The total Hamiltonian, H, is written as 

1([)2 5[}) 
H = -- - + -- + had(p;!l) 

2 f)p2 p f}p (2.106) 

which defines the adiabatic Hamiltonian, hact(P; !1), obtained by fixing the value 

of the hyperradius, p, and contains the interparticle potentials. Adiabatic channel 

functions, '1/JJL(p; !1), are obtained by diagonalising hact(P; !1) using a suitable basis 

which, asymptotically, represent the correct physical channels. The total wave­

function of the system, W, is then expanded as 

w(p, n) = L p-512 FJL(p)'I/JJL(p; n). (2.107) 
JL 

Substitution of (2.107) into the Schrodinger equation then leads to coupled radial 

equations for FJL (p) of the form 

(2.108) 

where the potentials, VJLv, are purely local. These equations are referred to as the 

hyperspherical close coupling equations and can be solved by standard methods for 

differential equations. 

There are a number of advantages of the hyperspherical approach: (1) the 

scattering equations are purely differential in form once the adiabatic trial functions 

have been calculated, without the complication of a nonlocal potential term as is 

the case in close coupling studies; (2) the hyperspherical adiabatic basis takes into 

account fully the distortion of the target due to polarisation effects and thus smears 

out all traces of pseudoresonance effects found with close coupling calculations [34]; 

and (3) analysis of the adiabatic hyperspherical potentials can give insight into 

the existence of resonances and help in classifying them into Feshbach and shape 

resonances. 

There are also, however, some problems that have been identified: (1) the nona­

diabatic couplings are sharply peaked in the vicinity of avoided crossings in the adia­

batic potentials and the presence of many avoided crossings leads to ill-conditioning 

in the coupled equations; (2) the error in closed channel components in some solu­

tions can sometimes overwhelm the calculation making it difficult to obtain linearly 
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independent solutions, which is necessary for matching to the asymptotic bound­

ary conditions to calculate the scattering K-matrix (a problem particularly when 

the centrifugal barrier is high); and (3) as the total angular momentum, J, is 

increased, so more and more basis functions need to be used in order to obtain 

accurate adiabatic states, which leads to linear dependency problems with certain 

basis sets [ 34]. 

The first of these problems is treated by the diabatic-by-sector method in which 

the region of p is divided up into small sectors and in sectors where an avoided 

crossing occurs the adiabatic channel function is instead replaced by one evaluated 

at the midpoint of the sector. These functions are referred to as piecewise diabatic 

functions since they are independent of p over that sector. In actual calculations 

the sectors are made small enough so as to maintain unitarity between sectors to 

a certain accuracy. 

In spite of the above problems the HSCC method has so far performed favourably 

when compared to accurate variational and close coupling methods and, due to the 

often more complete expansion of the channel functions, offers a useful comparison. 

By inspection of the adiabatic channel functions it is also possible to classify reso­

nances or, if a resonance reported by another calculation cannot be found, provide 

persuasive arguments as to why it should not exist and may simply be a product 

of the other model. This has been the case with disputed resonances in e+ -He+ 

scattering [37]. 

Momentum Space Methods 

Up until now we have discussed the solution of the scattering equations in configu­

ration space only. This is often a choice of convenience; however, it is equally valid 

to instead formulate the problem in momentum space. 

Beginning with the Lippmann-Schwinger equation for the T-matrix 

T= V +GoT, (2.109) 

where Go is the free-particle Green's function, and writing this in momentum space, 
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we have the coupled equations 

(k'a' ITI ka) = (k'a' lVI ka) 

+ J dk" (k' a' lVI k" a") (k" a" ITI ka) L E+iE-E 11 
cl' a (2.110a) 

+ J dk" (k' a' lVI k" {3") (k" {3" ITI ka) 
L E +iE- E/3" 

/3" 

(k'{3' ITI ka) = (k'f3' lVI ka) 

+ J dk" (k' {3' lVI k" a") (k" a" ITI ka) L E+iE-E 11 
a" a (2.110b) 

+ J dk" (k' {3' lVI k" {3") (k" {3" ITI ka) 
L E +iE- E/3" 
/3" 

Here, the interaction elements, generically labelled V, are Born matrix elements of 

the form 

(k'a' lVI ka) = ( k'a' ~~- lr ~ xll ka) (2.111) 

(k' {3' lVI k{3) =I k' {3' 
1 

1 -
1 

1 k{3) \ JR- 2PJ JR+ 2PJ 
(2.112) 

(k'f3' lVI ka) = (k'f3' IH- El ka) (2.113) 

where equations (2.111) and (2.112) are direct matrix elements and (2.113) are 

rearrangement matrix elements. 

By making substitutions of the form 

and similarly for the T-matrix elements, the Lippmann-Schwinger equations (2.110) 

may be partial-wave analysed, reducing to single variable equations which may then 

be solved by discretising using a suitable numerical quadrature to produce a set of 

linear equations [44]. 

The advantages of the momentum space formalism are (1) the boundary con­

ditions are already incorporated into the Lipmann-Schwinger equations and so 
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need not be included separately; (2) the scattering information is obtained di­

rectly from the equations; and (3) the matrix elements are better behaved than the 

corresponding ones in configuration space (as we'll be finding out in chapter 3). 

The Lippmann-Schwinger equations may equally well be formulated in configura­

tion space too, retaining advantages (1) and (2); however, the Green's functions 

are found to be oscillatory in character resulting sometimes in a large number of 

quadrature points being required when discretising the equations. The momentum 

space formalism has been used in atomic physics by Hewitt et al [53] and Mitroy 

and Stelbovics [49]. 

Methods for Complex Targets 

In the case of positron_scattering, of all the methods discussed so far, most of 

them have only been applied to simple one-electron systems or to multielectron 

systems employing effective potentials. Of particular note, however, is the R­

matrix method which has recently been extended successfully to the two electron 

problem by Campbell et al [21]. Treatment of two electron problems with the above 

methods is very difficult though. Two reasons for the increased complexity are: 

(1) the presence of electron-electron exchange kernels between the positronium and 

the remaining target electron(s); and (2) possible states of the residual ion which 

may have to be included in the wavefunction expansion as well as the positronium 

states. It is thus useful to develop various approximation methods for dealing 

with these complex targets. Two approximation methods for dealing with complex 

targets particularly worth mentioning have been developed. These are the optical 

potential and polarised orbital methods. We discuss each of these in turn. 

Firstly the optical potential method. Following the projection operator formal­

ism of Feshbach [134, 135] we define two operators, P and Q, which project one or 

more of the open channels and the remainder of the channels (including all closed 

channels) out of the wavefunction respectively and have the properties 

P+Q = 1; p2 =P; PQ=QP=O. (2.115) 

We may now write the wavefunction as 'ljJ = (P + Q)'lj;. Inserting this into the 
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Schrodinger equation (H- E)'ljJ = 0, operating on the left separately with P and 

Q and rearranging we obtain the equivalent equation 

where HPQ = P HQ etc. and the optical potential is given by 

Vopt = HPQ[Q(E- H)Qr
1
HQP· 

(2.116) 

(2.117) 

It should be noted that equation (2.116) is equivalent to the Schrodinger equation 

and no approximation has yet been made. The problem is in how the Green's 

function [Q(E-H)Q]-1 is computed. The method may be developed for computing 

the elastic scattering cross section only or the ground state positronium formation 

channel may also be included; it has been employed by Gianturco and Melissa 

(81-83] for computing positronium formation cross sections for a variety of targets. 

Determination of the Green's function is, however, highly nontrivial for most targets 

and is far beyond the scope of this thesis; the reader is instead referred to, for 

example, Gianturco and Melissa. 

Construction of optical potentials has also been discussed by Bransden et al 

(136] with particular application to the interpretation of the broad s-wave reso­

nance found in the coupled-static model of positron-hydrogen scattering. In their 

paper, Bransden et al solved the coupled equations and used the solution to con­

struct optical potentials, Wn(r, r'), for the two channels; these potentials were then 

localised. It should be noted that these local optical potentials, which may be com­

plex, are approximate potentials only and cannot reproduce the exact scattering 

parameters and radial wavefunctions; it was in fact found, however, that they could 

reproduce almost idential asymptotic radial wavefunctions and very similar phase 

shifts. Using the optical potentials they were able to demonstrate the existence of a 

deep potential well on resonance centred at around r ~ 3 a.u. with a corresponding 

rise in the amplitude of the radial wavefunction between the origin and the first 

node. These observations are strongly suggestive of the formation of a compound 

state, the product of a shape resonance. 

The second method that has been developed for dealing with complex targets 

represents the closed channel part of the wavefunction, Q'ljJ, by introducing a po-
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larisation potential, Wp(x), as in 

( v; + k2
- U(x) - Wp(x)) F(x) = 0, (2.118) 

where U(x) is the static potential. Various forms of Wp(x) have been derived 

by various authors. Methods which neglect the kinetic energy of the incident 

positron and exclude exchange are termed adiabatic polarisation methods. Better 

approximations include exchange effects (so-called exchange-adiabatic methods) 

and better results are achieved if short-range diabatic effects are also accounted for 

in some way. These have been discussed in some detail by Bransden [9] and are 

not discussed here. 

The above methods are members of a group of approximations called the Po­

larised Orbital (PO) method. The PO method has been employed for the case of 

positron-hydrogen scattering by, for example, Khan and Ghosh [137]. In their case 

exchange arising from positronium formation was neglected which they concluded 

should in fact be included. 

Notes 

1 In the spherically symmetric case it is convenient to work in spherical polar co­

ordinates r, (), </J. Since we have azimuthal symmetry the scattering wavefunction 

will be a function of r and () only. The Legendre polynomials Pt (cos 0) form a 

complete set over the interval cos() E [-1, 1] and hence the expansion (2.8) follows. 

2 A simple example is that of electron-hydrogen scattering in which excitation 

of the hydrogen target is not taken into account (only one term in the target 

expansion): the so-called static exchange approximation. In this case the resulting 

radial equation takes on the form 

Here, U(r1) is the local component ofthe potential and K(r1 , r 2), sometimes termed 

the exchange kernel, describes the non-local part; r 1 and r2 are the co-ordinates 
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of the two electrons relative to the proton; l is the scattering angular momentum 

(equal in this case to the total angular momentum); and S denotes the total spin: 

S = 0 or 1 triplet or singlet respectively. 

3In fact, even closed channels can have quite a profound effect on the results, 

since closed channels may contribute significantly to polarisation forces acting upon 

the projectile. This is also true below the first threshold in which only elastic 

scattering is possible, however it can be shown that the phase shift obtained in this 

way satisfies a lower bound principle (see, for example, [97] and references cited 

therein). 

4The static interaction is the potential if only one term is retained in the close 

coupling expansion and exchange is neglected, i.e. U00 (r2 ). 

5This complication, however, reappears in an even nastier form when multi­

electron targets are considered, since now electron exchange between the formed 

positronium and residual target may have to be taken into account. Positron scat­

tering by alkali targets has been studied by a number of authors, including [68-70]. 

61f positive energy states are included on both centres, i.e. in both terms on 

the right-hand side of equation (2.16), the question does arise, however, of the 

possibility of double-counting when calculating cross sections. See, for example, 

Kerhoghan et al [29] or Kadyrov and Bray [40]. 

7In the case of positron-atom scattering, in which the possible rearrangement of 

the particles has been explicitly taken into account, this is not strictly true, due to 

the non-orthogonality of the expansions representing each centre. In fact in regions 

where the positronium formation cross section is small scattering of positrons by 

hydrogen can still be described quite accurately by a single-centre expansion (no 

positronium channels included), however, convergence is found to be slow requiring 

targets of angular momentum as high as l = 15 [39]; the higher angular momentum 

targets are required in order to describe important virtual positronium formation. 

We will return to this point later. 

8It should be noted that the exchange kernels Ka.7 (x, p) and K 7 a.(P, x) are Her­

mitian conjugates of each other. In practice, in the least-squares method which we 

shall meet later, they are calculated separately; the reason for this is due to the 
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different discretisations used when converting to numerical form. 

9 As will be shown in §2.4 the first of these boundary conditions is strictly im­

posed on the scattering wavefunction by a particular choice of the basis functions 

in which the wavefunction is expanded. 

10Consider the set of relations 

Since we have det 6ia = 1, the only set of solutions is the trivial solution kf = 0 

Vi, a, thus our solution is linearly independent [138]. 

11 We make clear at this point the meaning of the word 'exchange', which can 

cause confusion. In the case of positron scattering the meaning of the term differs 

from electron scattering in which exchange refers to the symmetry imposed by the 

Pauli principle. Hereinafter, exchange is used to refer to the effects surrounding 

the rearrangement of the particles and the formation of positronium. 

12Terminology adopted from the R-matrix method in which a similar expansion 

of the wavefunction is made in some region outside which the exchange potentials 

are negligible. 

13The reader may question this statement and ask why, for example, a set of 

orthogonalised associated Laguerre polynomials of the form 

cannot be employed (.X is a scaling parameter to be chosen). There are possibly 

three reasons: (1) a set of these functions {4>il(r);i = 1, ... ,I} will not well rep­

resent the asymptotic form of the wavefunction; (2) it would be silly to expand 

the wavefunction over a large region of space and not make use of well established 

R-matrix propagation techniques, since this will give rise to a considerably large 

calculation; and (3) experience of functions of this type before [2] has shown them 

to be difficult to use since the results depend sensitively on the choice of the scaling 

parameter, .\, which hence needs to be chosen carefully. 

14 For very large scale numerical calculations a linearly dependent basis was found 

to give rise to severe ill-conditioning of the resulting linear equations, as shown by 

an analysis of the effect on the condition number (see chapter 3). 
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15Incidentally, it is found that this very simple generalisation alone can give quite 

a marked improvement in the performance of the algorithm where the weights are 

chosen by consideration of the strength of the potential. 

16 A separate weight applied to the boundary condition (last term in equa­

tion 2.52) was also experimented with for a while; it was, however, found that with 

a good choice of program parameters not to be necessary and was subsequently set 

to one. 

17It should be noted that the elastic cross section for scattering by an overall 

Coulomb force as defined here is not the actual cross section which is infinite. 

18The factor [1- (-)A] arises because of the charge/mass symmetry of the positro­

nium, discussed in appendix C. 

19Hermiticity may be shown by consideration of the equation 

where the integration is over the inner region, and application of Green's theorem. 

2°For an in-depth account of the use of variational methods in electron scattering 

theory see, for example, Bransden [97]. For positron scattering, see the work of 

Humberston et al [22-25, 71-75], Kuang and Gien [26, 27] or Shimamura [129] or 

the review by Armour and Humberston [20]. 

21 See, for example, Bransden and Joachain [139, 140]. 



Chapter 3 

The Close Coupling Program 

Having discussed the basic methods of scattering theory and derived the close 

coupling equations in the least-squares and minimum-norm formalisms we now turn 

to the implementation. We discuss in this section the evaluation of the potentials 

and the other most important numerical considerations. 

More details of the code, including sample input and output and some of the 

more technical details, are given in appendix A. The parallelisation is discussed in 

appendix B. 

3.1 Basis Functions and Construction of the 

Targets 

The radial scattering wavefunctions were expanded using functions based on shifted 

Legendre functions. These were of the form 

where the scale factor 

2r 
X=- -1, 

ro 

f-L is a constant and r 0 is the outer radius for the solution; the factor 
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(3.1) 

(3.2) 

(3.3) 
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is to ensure the boundary condition at the origin (2.41a) is satisfied. For most 

values of Li the choice of the constant fJ was found to not be critical and the basis 

functions performed well over a range 0.2 ;S fl ;S 2, proof that the factor (3.3) 

had negligible impact on the completeness of the set. However, for larger values of 

the channel angular momentum Li, typically Li 2: 7, it was found that this term 

extended too far along r having a detrimental impact on completeness evident in 

the solution error. It was found, for values of the total angular momentum J up 

to 20, that fJ = 2.0 was sufficient; 1 a further increase in fJ might be necessary for 

even higher J. 

A number of other basis functions were also investigated: ones based on La­

guerre functions and others based on Slater functions were tried; the addition of 

a few oscillatory functions was also tried. Although the Laguerre and Slater basis 

sets multiplied by the appropriate weight functions in theory also form complete 

sets (with the correct choice of parameters), they were found to be less convenient 

to use; the arbitrary parameters depended sensitively on energy whereas this was 

found not to be the case with the shifted Legendre functions. The addition of 

a small number of (maybe 4) oscillatory functions to each channel was investi­

gated with the view that they may help represent the wavefunction at larger dis­

tances. These were based on Ricatti-Bessel functions when there was no long range 

Coulomb interaction and Coulomb functions when both particles were charged. For 

smaller calculations of only 10 or so channels this was found to significantly im­

prove accuracy, however, for larger calculations the effects were disastrous, the 

linear dependence of the sets resulting in intractable condition numbers in the ma­

trix equation (2.50). In fact, the overall recurring theme when choosing parameters 

was usually seeking a relatively low condition number; a poor choice of parameters 

was generally evident by a very rapid increase in the conditioning by many orders 

of magnitude. 

The target wavefunctions were constructed from sets of Laguerre functions by 

diagonalising the targets' internal Hamiltonians. These were of the form 

(3.4) 
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Table 3.1: Most common target basis sets used. Other basis sets may be derived 

from these. 

2-state He+(ls) Ps(ls) 

6-state He+(ls,2s,2p) Ps(ls,2s,2p) 

9-state He+ (ls,2s,2p,3s,3p,3d) Ps(ls,2s,2p) 

20-state He+(ls-3s,2p-8p, 3d-8d, 4f- 6f) Ps(ls) 

29-state He+ (ls-8s, 2p-8p, 3d-8d, 4f- 8f) Ps(ls,2s,2p) 

where the c~nala). are expansion coefficients determined by the diagonalisation. The 

scaling parameter, (, was chosen such that the diagonalisation would exactly re­

produce the ground state. Thus for He+, ( = 4.0; for Ps, ( = 1.0. The number of 

functions used, K 1, varied with angular momentum. Typically, for the direct par­

tition targets, e.g. He+, 7-10 were used for each l. This, relatively large, number 

of functions in fact reproduced the first three states (ls, 2s, 2p) to a very good 

accuracy and also reproduced the 3s, 3p, 3d states quite well. They were, for all 

intents and purposes, essentially eigenstates. For the exchange partition (Ps) the 

wavefunctions were constructed in the same manner from large numbers of func­

tions. Once again, the number of functions was sufficient to produce what were 

essentially eigenstates for the ls, 2s and 2p levels. 

Slater functions were also used to construct targets. In these cases the parame­

ters were chosen in order to exactly reproduce the wavefunctions. Sets of this kind 

were used in some smaller calculations where only a few low-energy eigenstates 

were required, e.g. He+(ls,2s,2p,3s,3p,3d). The Slater set Ps(ls,2s,2p) was also 

used in place of the set constructed by use of diagonalised sets of Laguerre func­

tions; however, no detectable difference was observed, justifying the interpretation 

of the lower levels as eigenstates and thus also the interpretation of cross sections 

for the strictly 2s and 2p channels as pure 2s and 2p cross sections (a bar over the 

top of a channel indicates that it corresponds to a pseudostate rather than eigen­

state.) Some of the most frequently used sets are given in table 3.1 (discussed in 

chapter 4). The energies for a typical set of Laguerre targets are shown in table 3.2. 
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Table 3.2: Target energies for a pseudostate basis constructed from sets of 10, 9, 

8 and 7 Laguerre functions (following the work of Kernoghan et al [30]) for the s, 

p, d and f states respectively and scaling parameters of ( = 4.0. The nucleus is 

that of He, i.e. Z = 2. The n = 9 and n = 10 states were not employed since the 

energies were considered too high to have a significant effect (see also the discussion 

in chapter 4). For convenience, the energies have been tabulated in both a.u. and 

eV. 

a.u. eV 

s p d f s p d f 

1 -2.000000 -54.42 

2 -0.499996 -0.499998 -13.61 -13.61 

3 -0.211297 -0.214566 -0.219142 -5.75 -5.84 -5.96 

4 0.025408 -0.002484 -0.045821 -0.090835 0.69 -0.07 -1.25 -2.47 

5 0.457980 0.374436 0.257022 0.136763 12.46 10.19 6.99 3.72 

6 1.246540 1.041224 0.792274 0.557416 33.92 28.33 21.56 15.17 

7 2.777892 2.272870 1.754082 1.307755 75.59 61.85 47.73 35.59 

8 6.221826 4.826050 3.642805 2.729471 169.31 131.32 99.13 74.27 

9 16.484876 11.402345 8.066285 5.844799 448.58 310.28 219.50 159.05 

10 75.496769 38.400123 23.085828 15.181295 2054.39 1044.93 628.20 413.11 

3.2 Evaluation of the Direct Potentials and 

Asymptotic Potential Coefficients 

Beginning with the direct potential for the direct partition, i.e. Va,a(x). Referring 

to equation (C.71) and noting that C0 = 1, the A = 0 term of the summation 

(shortening the RnatJr) notation to Ra) 

(3.5) 
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where r> refers to the greater of x and r. Now, for a= f3 this becomes 

-~c5af3 + 2c5af31
00 

[Ra] 2 
( ~ - r) dr; 

the c5af3(2/x) cancels with that of equation (C.71) giving 

Vaf3(x) = 2c5af31
00 

[Ra] 2 
[:

2 

- r] dr 
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(3.6) 

- 2 ( (1 - c5af3) + t) C>.. { {x RaR/3 r::: dr + 100 

RaR/3 ~~ 1 dr}. (3. 7) 
1= 1 Jo x x r 

In practice the integrals were evaluated from the upper to lower limits for ad­

ditional numerical stability and those involving an infinite limit were truncated. 

The quadrature was performed by interpolating the least-squares/minimum-norm 

mesh with 6 point Gauss rules. Comparisons of the 6 point rules performed with 

8 point interpolation found the potentials to be calculated with sufficient accuracy. 

Sufficient accuracy of the 6 point rules was verified by comparison with 8 point 

rules. 

The direct potentials in the exchange partition (C.75) were evaluated in a sim­

ilar way by interpolating 6 point Gauss rules between the mesh points. The upper 

limit was truncated and the quadrature split into two components evaluated sepa­

rately with the final nodes closest to the cusp point at p = R/2. Comparisons with 

8 point rules differed by less than 4 x 10-5 . 

The asymptotic potential coefficients were evaluated in a similar manner using 

compound Gauss rules. The accuracy was verified by comparing results generated 

with coefficients calculated using higher order rules. 

3.3 Structure and Evaluation of the Exchange 

Kernels and Potentials 

The kernels K~~(x, p), ... were decomposed by the following relations 

A 

Ki~(x, p) = L Aac>..ki~~'Y(x, p) 
>..=0 

A 

Ki~(x, p) = L Aac>..ki~~'Y(x, p) 
>..=0 

(3.8a) 

(3.8b) 
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where the angular factors AacA. and AacA. and the ki~~.y(x, p), ... are derived in 

appendix C. The integrable singularity at p, = -1 in the angular quadrature was 

handled by a change of variable and the integration was performed by a Gauss­

Legendre rule. For most situations a 32 point rule was found to be sufficient, 

although near a resonance where the exchange coupling was large a 36 point rule 

was sometimes found to be necessary. A = 20 was found to give adequate conver-

gence. 

Once the scattering solutions have been solved for the exchange potentials may 

be constructed by straightforward radial integration. In the construction of the 

least-squares equations a similar integration is performed, this time with the wave­

function replaced by the individual basis functions used in the expansion. 

In practice quite a lot of care had to be employed in the radial quadrature. 

To see why, we take a short diversion to investigate some of the properties of the 

kernels. 

Consider first real (eigen) states only. With i = 1 equations (C.16) and (C.47) 

reduce to 

(3.9a) 

and 

-(1) 1+1 
P.x.(p,) [z 1] 

k.x.,'"'fa = -1 dp, rlo.Rl"~ S'"'f(R) x - R Ra(r) (3.9b) 

where p, is the cosine of the angle between x and p. Since real states are of the 

form 

(3.10) 

(1) -(1) 
(and similarly for S1 (R) states) we see that the kernels k.x.,a

1 
and k.x.,1a possess 

singular integrands along the lines x = 2p and x = p respectively. Considering now 

any state in general, i.e. pseudostates too, we have since 

d
2 

( )] la(la + 1) ( ) . dr2 [r Rno.lo. r = r 2 Rno.lo. r + h1gher order terms (3.11) 

singularities arising from the matrix elements 

1+
1 

P.x.(p,) [z 1] 
f_x.(x, p) = _

1 
dp, rla.Rl'Y Ra(r) -;: + R S1 (R) (3.12) 
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which, once again, are along the lines x = 2p and x = p. 

Take the integral 

Defining 

l ( ) = -al:z:-pl -.BI:z:-2pl 
n x, p - e e ' 

along the line x = p we have 

l ( _ ) _ -axv'2(1-JL) 1/ 2 -,Bx(5-4JL)lf2 nX-p -e e 

and so 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

which is true even if Pn (p,) changes sign since the contribution from 0 ::::; p, ::::; 1 is 

greater than that from -1 ::::; p, < 0. Using the fact that 

1
+1 2-3/2 

(1- x)-112 Pn(x)dx = -­
_1 2n + 1 

([141] equation 7.225(3) p.822) 

2 e-.Bx 
In(x=p) < --

2n+ 1 x 

Similarly, along the line x = 2p we find 

2 e-ap 
In(X = 2p) < --

2n+ 1 p 

(3.18) 

(3.19) 

(3.20) 

Replacing the term lx- Pl-1 with lx- 2pl-1 we find similar behaviour in the range. 

Close to the line x = p the behaviour of the kernels will be dictated largely by the 

exponent a, i.e. the range of the S1 (R) wavefunctions. Similarly, close to the line 

x = 2p it will be controlled by the Ra(r) wavefunctions. 

To summarise, we see that the extent of the kernels k(1) and k(1
) is governed by 

the range of the targets: along the line x = 2p it is dictated by the range of the 

S1 (R) targets (positronium) with extent either side of the line controlled by the 
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Figure 3.1: The exchange kernels Ki~(x, p) i = 1, 2 upper and lower plots respec­

tively; a is a He+(6p) state and 'Y is a Ps(2p) state; the total angular momentum 

is J = 0. The sharply peaked structure along the line x = 2p is clearly evident. 

All units are in a.u. 
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Ro.(r) (direct partition) targets; and conversely the extent along the line x =pis 

that of the Ro. ( r) with the width of the S-y ( R). The behaviour of the kernels k(2) 

and k(2
) is somewhat simpler: there is no singular behaviour in the integrands and 

the range from the origin is simply that of the target wavefunctions; we also expect 

them to be relatively smooth. 

Due to the singularities in the integrand, although integrable, we expect quite 

sharp peaks in the kernels along the lines x = p and x = 2p with relatively little 

contributions elsewhere, except close to the origin. Typical kernels have been 

plotted in figure 3.1. We can now see why some care is necessary employing a 

numerical quadrature for the exchange potentials. If the singular behaviour were 

along lines x = constant or p = constant we may have been able to factor some 

of it out with a carefully chosen Gaussian quadrature. However, in our case a 

separate quadrature would have to be calculated for each value of x or p as well 

as basis functions. An analysis of the computational effort alone (not to mention 

reprogramming) showed this approach to be very inefficient. Instead, we might 

expect that a division of the range up into many subranges with low order Gaussian 

rules or Simpson's rule with variable step size across the range would work well (it 

should be pointed out that high order rules are not suitable to apply to integrands of 

this nature since polynomial expansions are not suitable for fitting sharply peaked 

functions.) In practice both were found to perform equally well. 

Since the kernels altogether dominate the storage requirements of most calcula­

tions and errors in the quadrature often dominate the calculation overall (especially 

close to a resonance) a great deal of effort is required to choose the appropriate 

combination of quadratures. The only easy way is by trial and error, although a 

simple prescription is easy to employ. It was found that performing a relatively 

small calculation employing a small number of states on each centre (a few lower 

eigenstates and some high-lying pseudostates) and calculating the solution error at 

each point on the wavefunction by back-substitution any inadequacy of the radial 

quadrature was easy to spot. By noting that the integrand is sharply peaked along 

the lines x = p and x = 2p one could readily correct the problem. After only a few 

iterations a suitable set of points was generated which was found to perform well 
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Figure 3.2: Kernel memory saving scheme illustrated for the exchange (Ps) parti­

tion kernels. 

x=2p_ .... / 
.· 

p 

across the entire energy range studied. Using this method it was relatively easy to 

determine whether or not a high solution error was due to the exchange quadra­

ture or something else and the program parameters could be readily systematically 

improved. 

Furthermore, it was found empirically that when performing the radial quadra­

ture with the basis functions there was sometimes a drastic loss of significant figures 

due to subtractions. A study in which the positive and negative contributions were 

summed separately and compared just before the final summation found that as 

many as 6 significant figures were sometimes lost. Although the code for this was 

significantly slower due to the frequent comparison-branch instructions this was 

found to have a very noticable effect on the results. For this reason the separate 

summation was retained permanently. 

Since much of the time spent evaluating the exchange kernels is involved in 

construction of the target wavefunctions at many values of r and p, it was found 

that a Chebyshev interpolation procedure was more efficient than direct evaluation 

of the targets every time; 48 point rules were used. The last coefficients, which are 

a measure of the accuracy of the interpolation, were less than around 10-9 in the 

direct partition and w-lJ in the exchange. 

A further small reduction in the storage requirements was obtained by noting 

that many of the elements of the kernels, if we take a square area x < Xmax 

p < Pmax, are negligible; these need not be calculated or stored. Since when the 

Ps(n = 2) states are included it is the positronium that is of longest range, the 
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range to be covered by x and pis governed by the extent along the line x = 2p. 

In the direct partition grid points outside the range (x- 6.p)/2 < p < (x + 6.p)/2 

were discarded and similarly in the exchange partition those outside the range 

2p- 6.x/2 < x < 2p + 6.x/2 (illustrated in figure 3.2). Based on the discovery 

that up to about 6 significant figures were sometimes lost 6.x and 6.p were chosen 

so that only regions of the kernels that had dropped to below about 10-6 were 

excluded. The results were found to be insensitive to the choice of 6.x and 6.p and 

a significant saving in storage was made. 

Kernel elements were automatically zeroed if either of the target internal co­

ordinates, r or R, exceeded a cut-off point at which the target wavefunction had 

dropped to a small fraction of the maximum. This fraction was chosen to be 10-7
. 

3.4 Choice of the Inner Region and Propagation 

The choice of the inner region in calculations involving the Ps(n = 2) states was 

governed by the extent of the exchange kernels. For most calculations the inner 

region in the direct partition was chosen to be 0 < x < 40 and that of the exchange 

partition 0 < p < 30; the R-matrix was then calculated at points x ~ 38 and p ~ 

28.5 from which it was then propagated to x = p = 200 and the solution matched 

to Coulomb functions [142]. The scattering K-matrices were then determined by 

matching the propagated solutions to Coulomb (or Riccati-Bessel) functions at a 

radius of 200 a.u. Propagation to larger distances was found to be unnecessary. 

3.5 Choice of Fitting Meshs 

We now turn our attention to the choice of points rq in the functional (2.45). Since 

the minimum-norm formalism was found to be superior to the least-squares in all 

but the smallest of calculations we limit our discussion to the former only. 

Clearly the total number of points will depend on the number of basis functions 

which will in turn depend on energy, the number of functions increasing as the 
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Table 3.3: Example grids used in least-squares calculations. These ones are suitable 

for up to 250 eV. 

direct partition 0.005 7.0 16.0 28.0 40.0 

order of rule 56 56 56 56 

exchange partition 0.005 6.0 12.0 21.0 30.0 

order of rule 56 56 56 56 

square root of the collision energy. A compound rule composed of rules of order 

between about 50 and 70 were found to work best. Due to the fact that the order 

of the error term increases with the order of the rule and hence the smoothness of 

the integrand, rules of order much higher than 70 were avoided. Rules composed 

of a larger number of lower order rules were found to give poor results. The reason 

for this is unclear, however it is conjectured that these rules suffer from a lack of 

continuity of the solution derivatives across the boundaries. 

Examples of grids used are displayed in table 3.3. 

3.6 Run-Time Checks 

A number of run-time checks were performed during the calculations in order to 

verify the stability and accuracy. These included: 

1. construction of the scattering wave functions for all channels and solutions 

and verification that they did indeed satisfy the scattering equations; 

2. checks for the accuracy with which the boundary conditions were obeyed; 

3. checks for convergence of the solution expansion coefficients; 

4. checks of the symmetry of the initial and final R-matrices and the K-matrix; 

and 

5. calculation of the exchange potentials at the matching point. 
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The normalised solution errors (the absolute error divided by the maximum value of 

the solution) were mostly found to be below about 5 x 10-4 for the most significant 

solutions, though usually much better, and below an absolute value of around 

10-4 otherwise. The boundary conditions were obeyed to typically much better 

than 5 x 10-5 and convergence of the solution expansion coefficients was generally 

to within 10-5 of the largest coefficient, but often better. For the largest ( rv 60 

channel) calculations the accuracy of the linear solver was around 10-9 , obtained 

by back-substitution of the solution vectors, and the symmetry of the R- and 

K-matrices was always satisfactory. The exchange potentials at the edge of the 

inner region were generally found to be less than 10-4 of their peak value in the 

most significant solutions and always less than around 10-4 in absolute magnitude, 

although again almost always much better than this, justification of the choice of 

the inner region. 

More details of the code, including sample output, are given in appendix A. 

3. 7 Conditioning 

The linear equations arising from the least-squares and minimum-norm methods 

are known to be inherently poorly conditioned. Since for a converged calculation 

the number of channels can be as high as 60 and the number of simultaneous 

equations as high as 5000, the factors leading to this are a major concern. In 

order to investigate this a Singular Value Decomposition (SVD) method was used 

to obtain the solution, from which an estimate of the condition number could be 

made. Once the conditions leading to ill-conditioning had been identified, however, 

it was found that a robust LU-decomposition method [104] gave better results with 

a drastic reduction in computing resources. 

The most significant factors leading to ill-conditioning were: (a) the position 

of the boundary condition; and (b) the number of scattering basis functions used. 

We discuss these in turn. 

For problems where all channels were open, the positioning of the boundary 

condition was not a concern. For calculations involving closed channels high in 
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the continuum (pseudostates), however, it was found that the boundary condition 

should be placed close (less than ""' 1 a. u.) from the outer edge of the solution 

region. Closed channel solutions were found to have excessively large coefficients 

if the boundary condition was far in due to the rapid exponential increase in the 

asymptotic region; this resulted in overly large condition numbers. 

The basis functions employed in the expansion of the scattering wavefunction 

contributed significantly to ill-conditioning if the set contained linear dependence 

with a rapid increase in the condition number as redundant basis functions were 

added. Although a small number of oscillatory basis functions are beneficial in the 

smaller (9-state) calculations, the use of these was found to increase the degree of 

ill-conditioning in the larger cases and did not improve the convergence. For this 

reason they were not used in these cases. The number of channels was found to have 

a negligible affect on the conditioning of the problem, with the issues mentioned 

above being a much stronger constraint on the size of target basis which could be 

tackled using this method. 

There would thus be no fundamental problem, as far as I am aware, with 

increasing the number of channels further using this method. 

Notes 

1For targets up to f-states a total angular momentum of J = 20 leads to a 

maximum scattering angular momentum of Li ~ 23. 



Chapter 4 

Close Coupling Results 

In this chapter we present the results of this work [143]. The reactions e+ -H and 

e+ -He+ were considered, though, due to the extensive amount of studies that have 

been made on the former collision system, the emphasis was mainly on the latter. 

Collisions on the helium ion were considered over a wide range of energies, from 

low-energy elastic scattering below the first threshold up to around 250 eV, well 

above the ionisation threshold. 

Much of the work of previous authors has been referenced in previous chapters 

and discussed where appropriate and so only work of relevance to the discussion is 

mentioned here. 

4.1 Hydrogen 

Positron-hydrogen scattering has been investigated by a great many other authors 

and so was largely just used here as a test of the accuracy of the minimum-norm 

method. The results of Bransden and Noble [2] using the least-squares method 

were verified, which in turn were found to agree well with the results of Mitroy and 

Stelbovics (see Bransden and Noble). The minimum-norm results were found to 

be identical, indicating the quality of the choice of parameters in both works. 

A number of resonances have been found in the e+ -H system. The first was 

found by Higgins and Burke [31] who discovered a resonance in the coupled-static 

approximation fors-wave scattering at an energy of 2.62 Ryd and width 0.31 Ryd. 1 
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Table 4.1: Threshold energies for positrons scattered by He+(1s). Units in eV. 

Excitation Positronium Formation 

He+(n=2) 40.772 

Ps(1s) 47.612 

He+(n=3) 48.373 

He+(n=4) 51.019 

He+(n=5) 52.246 

Ps(n=2) 52.719 

He+(n=6) 52.911 

Ps(n=3) 53.667 

Ionisation 54.423 54.423 

The existence of this resonance has since been confirmed and numerous other res­

onances discovered; see [28] and references cited therein. A number of resonances 

have been tabulated by Mitroy and Stelbovics [48]. A few of these resonances have 

been studied using the minimum-norm method as part of this work in order to test 

the ability of the method to resolve narrow resonance structure. Shown in figure 4.1 

is a particular narrow resonance, of width rv 10-4 Ryd, which clearly demonstrates 

the ability of the minimum-norm method to resolve such fine structure. A number 

of other resonances were also verified. 

Large 33-state close coupling calculations with pseudostates [30] have been 

shown to agree very well with experiment up to 100 eV [21] endorsing the use 

of the method. 

4.2 He+ 

Although a significant amount of work has been done on positron collisions with 

neutral targets, work on positron collisions with ionic targets so far has been some­

what limited. In the case of ionic targets the Born series is of less value than for 
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Figure 4.1: e+ -H resonance produced using the minimum-norm method. The cal­

culations shown are for J = 2. Calculations using two basis sets are shown: (1) the 

right-hand resonance (solid curves) is that of a CC(3,3) calculation using a Slater 

target set; (2) the left-hand resonance (dashed curves) was produced using the same 

model but with a Laguerre target set. The discrepancy between the two is due to 

the non-exactness of the Laguerre targets, although on the energy scale shown, 

this is obviously a very small difference. The down-arrow indicates the position of 

the resonance as predicted by Mitroy and Stelbovics [48] of width 1.73 x 10-4 Ryd 

(tlk rv 10-4 a.u.); the right arrow indicates that the Ps(1s) cross section is to be 

read from the right-hand axis, all other cross sections to be read from the left-hand 

axis. 
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neutral targets, except at very high energies, due to a divergent term that appears 

in the second-order expansion; first order Born calculations for e+ -He+ scattering 

have, however, been reported by Fojon et al [144-146] for energies from 250 eV up­

wards. Also, results for positronium formation in the ground state using an optical 

potential model have been reported by Gianturco and Melissa [83]. Other work on 

e+ -He+ scattering has been restricted to smaller basis sets (Khan, Mazumder and 

Ghosh [137], Abdel-Raouf [147]) or lower partial waves (Shimamura [129], Igarashi 

and Shimamura [37]. 

Numerous calculations have been performed in this work using the minimum­

norm and least-squares methods with a variety of basis sets and over a wide range 

of energies. The most common basis sets employed are defined in table 3.1 (p. 51). 

Also, for convenience, the threshold energies are displayed in table 4.1. It was 

decided to only include pseudostates on the ionic centre since experience of con­

verged calculations for positron-hydrogen scattering by Kernoghan et al [30] using 

a 33-state model consisting of 30 states on the hydrogen showed the extra states 

on the positronium to be unnecessary when compared to an 18-state model with 

pseudostates equally distributed on both centres. Moreover, the 33-state results 

were found to suffer much less from pseudoresonance structure than the 18-state 

results omitting the need for artificially smoothing. 

Here, we discuss firstly results obtained using real (eigen) state targets alone. 

We then make the extension to larger calculations employing both real states and 

pseudostates discussing, in turn, scattering in two major energy intervals: low 

energy, below about 47.6 eV, in which only a limited number of channels are open; 

and high energy, above 60 eV, in which both positronium production and ionisation 

are energetically feasible. 

2-, 6- and 9-State 

Previous studies of thee+ -He+ system have been limited. Bransden and Noble [2] 

were first to apply the least-squares method using 2-, 6- and 9-state models. The 

optical potential approach has been used by Gianturco and Melissa for a variety of 

systems [81-83] including Hand He+; the agreement between the optical potential 
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and least-squares methods, however, was poor. It has been a subject of the work in 

this part of this thesis to extend the least-squares method of Bransden and Noble to 

include pseudostates in the hope of resolving this discrepancy. Also of interest was 

the problem of trying to resolve the disagreement in other calculations over whether 

resonances existed at certain collision energies in the e+ -He+ system. Resonances 

have been reported by Ho [148], Bhatia and Drachman [149] and Igarashi and 

Shimamura [37]; these will be discussed further later on. As a test of the minimum­

norm-with-pseudostates method all results obtained by Bransden and Noble were 

reproduced and found to be identical. 

Low Energy (Below 4 7.6 e V) 

We consider now the energy region below the positronium formation threshold in 

which only a limited number of processes are energetically possible. Within this 

region there is just one threshold: that of n = 2 excitation. These regions have 

previously been studied by several authors [37, 129, 137, 147-149]. Those results are 

compared with those obtained using the minimum-norm approach and the question 

is addressed as to whether resonances occur in the region immediately below the 

positronium formation threshold. 

Each of the two regions are addressed in turn. 

0-40 eV 

We begin by discussing the lower region in which only elastic scattering is possible. 

This region is particularly interesting because of the bounds which exist on the 

phase shift. The region has previously been studied a number of other workers [129, 

137, 147], but, as far as I know, only for s, p and cl-wave scattering. 

Harris model variational calculations have been carried out for s-wave e+ -He+ 

collisions by Shimamura [129] at scattering energies between 6.62 eV and 37.53 eV 

using 56 trial functions. The calculated phase shift is found to increase to a maxi­

mum at around 12-14 eV, becoming increasingly repulsive as the energy approaches 

the n = 2 threshold. These results are displayed in figure 4.2a as the dot-dash line, 

as are results by Khan et al [137] (dashed line) obtained using the Callaway variant 
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Figure 4.2: Elastic scattering phase shifts for e+ scattering by He+ below the 

inelastic threshold (40.772 eV): 0 27-state minimum-norm; D Khan et al [137]; 

0 Shimamura [129]. (a) J = 0; (b)- J = 1;--- J = 2. 
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of the polarised orbital model. Minimum-norm results are shown by the solid line; 

these were calculated using a 27-state model which corresponds to the 29-state 

model less the Ps(n = 2) states. There is good overall agreement between the 

three calculations. The phase shift obtained with the minimum-norm approach is, 

however, 23% higher than the Harris model results at 12.65 eV and 11% higher 

at 37.53 eV. The minimum-norm results are found to lie above the variational 

and polarised orbital results at all energies. Given that the results reflect a lower 

bound on the phase shift we expect the minimum-norm calculation to be a better 

approximation. 

In figure 4.2b minimum-norm eigenphases are compared with polarised orbital 

results for p- and d-wave elastic scattering. At higher energies the polarised or­

bital phases begin to drop significantly below the minimum-norm results while the 

minimum-norm results continue to rise as the threshold is approached, evidence 

for the greater completeness of the 27-state close coupling. In fact it is known that 

the omission of the Ps formation channels, as in the Callaway polarised orbital 

method, can sometimes lead to a potential which is more repulsive than it should 

be. Shown in figures 4.3 and 4.4 are cross sections for J = 0 and phase shifts for 

J = 1 respectively using different models. In figure 4.3 convergence of the elastic 

scattering cross section for a scattering energy of E = 34.8 eV with and without 

the inclusion of the Ps(1s) state is depicted whilst in figure 4.4 phase shifts for a 

number of models have been computed across the energy range. It can be seen that 

the single Ps state is indeed necessary and cannot be accounted for by inclusion of 

the n=9 states on the direct centre. A complete set of numerical values for these 

phase shifts is provided in table 4.2 (p. 71). 

To summarise then. In the low energy region there is substantial agreement 

between the minimum-norm 27-state model and the Harris variational results and 

polarised orbital results. This serves as a good test of both the minimum-norm 

code and of the close coupling model. At the lowest energies the agreement is very 

close indeed; however, at the higher energies there is indication that the 27 -state 

model is in fact more complete and that the inclusion of states on the positronium 

centre contributes significantly to the overall completeness of the close coupling 
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Figure 4.3: Convergence of the J = 0 elastic scattering cross section fore+ -He+ at 

an energy of E = 34.8 eV. The results of the solid curve have allowed for exchange 

by including the Ps(1s) channel while the dashed results exclude the coupling. The 

eigenstates and pseudostates used were the same as those generated for the 27-state 

basis (table 3.2). 
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Table 4.2: Elastic scattering phase shifts fore+ scattering by He+ below the inelas­

tic threshold ( 40.772 e V). Phase shifts are shown for total angular m omenta ( J) of 

0, 1 and 2. 

Phase Shift (rad) 

Energy 

(eV) J=O J=1 J=2 

present Khana Shim.b present Khana present Khana 

6.62 0.356(-2) 0.34( -2) 0.15(-2) 0.192(-2) 0.19(-2) 0.893( -3) 0.90(-3) 

7.41 0.446(-2) 0.42( -2) 0.24(-2) 0.239(-2) 0.23(-2) 0.108(-2) 0.10(-2) 

8.43 0.560(-2) 0.52(-2) 0.40(-2) 0.304( -2) 0.29(-2) 0.134(-2) 0.13(-2) 

9.65 0.695(-2) 0.64(-2) 0.56( -2) 0.387(-2) 0.37( -2) 0.167(-2) 0.16(-2) 

11.07 0.829( -2) 0.74(-2) 0.70(-2) 0.487(-2) 0.46( -2) 0.207(-2) 0.20( -2) 

12.65 1.008( -2) 0.80(-2) 0.78(-2) 0.598( -2) 0.55( -2) 0.254( -2) 0.25(-2) 

15.70 1.022(-2) 0.79(-2) 0.66(-2) 0.804(-2) 0.71(-2) 0.349(-2) 0.33(-2) 

18.45 0.942(-2) 0.63( -2) 0.63( -2) 0.970(-2) 0.83(-2) 0.437( -2) 0.41(-2) 

21.71 0.680(-2) 0.27( -2) 0.44(-2) 1.135(-2) 0.93( -2) 0.543(-2) 0.49(-2) 

25.47 0.201(-2) 0.06( -2) 1.281(-2) 0.664(-2) 

29.73 -0.532(-2) -1.07(-2) -0.54(-2) 1.392(-2) 1.00(-2) 0.796(-2) 0.66(-2) 

30.94 -0.710(-2) -1.31(-2) -1.03(-2) 1.428(-2) 0.99(-2) 0.833(-2) 0.68( -2) 

37.53 -1.965(-2) -2.68(-2) -2.18(-2) 1.480(-2) 0.88( -2) 1.030( -2) 0.77(-2) 

a Kahn, Muzumder and Ghosh (137] 
b Shimamura (129] 

expansion even at these relatively low energies. 

40-47.6 eV 

The region between the n = 2 excitation threshold at 40.8 e V and the capture 

threshold at 47.6 eV is of special interest because of reported s- and p-wave reso­

nances [37, 148, 149]. Although low-lying resonances are well established in the case 

of e+ -H collisions the dominance of the Coulomb repulsion between the positron 

and the helium ion suggests that similar resonances in the e+ -He+ system should 

not be expected. Nonetheless, stabilisation calculations carried out by Bhatia and 

Drachman [149] indicated the possibility of a resonance at an energy of 44.5 e V 

and of a second s-wave resonance above the capture threshold. These results were 
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Figure 4.5: e+ -He+ scattering below the capture threshold. Upper graph: cross sec­

tions (--elastic scattering; --- 2s excitation; --- 2p excitation). Lower 

graph: eigenphase shifts versus collision energy ( eigenphase sum given by the solid 

line). 
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subsequently confirmed by Ho [148) using a complex-coordinate rotation method. 

The lower energy resonance was located at 44.491 eV and found to have a width 

of 3.52 eV. No conclusive evidence was discovered for the mechanism causing the 

formation of the resonance but it was suggested that it might arise as a result of at­

tractive polarisation forces. More recent hyperspherical close-coupling calculations 

by Igarashi and Shimamura [37) discount the existence of any very broad resonances 

but detect very narrow Feshbach resonances just below the capture threshold. 

Cross sections and eigenphases calculated with the minimum-norm method us­

ing the 29-state model are displayed in figure 4.5. Two of the eigenphases are repul­

sive and vary slowly with the scattering energy; the third eigenphase is attractive 

and increases monotonically between the two thresholds. The eigenphase sum is 

indicated by the solid line. Although there is some indication of an increased slope 

around 44 eV the results show no sign of a broad resonance at 44.5 eV. The cross 

sections are also seen to be smooth over the entire energy range. A 9-state calcula­

tion over the same energy region also showed no sign of any resonance and a similar 

calculation for p-wave scattering concluded the same thing. In the minimum-norm 

approach it is not feasible to search for the very narrow (width 2.1 x 10-4 eV) res­

onance found by Igarashi and Shimamura [37) since it is difficult to obtain accurate 

results very close to thresholds. 2 

The elastic scattering results at 47.25 eV are found to be approximately a factor 

of 2 lower than the corresponding results of Igarashi and Shimamura at 47.62 eV. 

Similarly, the n = 2 excitation cross section, which is very small, is about a factor 

of 5 smaller than the hyperspherical value. Convergence as a function of basis set 

excluding the Ps(1s) state was studied for a scattering momentum of k = 1.82, 

corresponding to E = 45.1 eV. The results indicated that the 29-state calculation 

is well converged. 

Intermediate Energy {60-250 eV) 

We now discuss the energy region above the ionisation threshold. As discussed 

above this has been studied previously by Gianturco and Melissa [81-83) using 

an optical potential approach and Bransden and Noble [2) using the least-squares 
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approach with eigenstate expansions on each centre only. The two approachs were 

found to disagree considerably and it is our primary interest here to investigate the 

effect of the addition of pseudostates to the smaller close coupling models with a 

view to re-evaluating the discrepancy. 

The largest basis set employed was the 29-state. It was found empirically, 

however, that the n = 2 states on the Ps centre could in fact be dropped for values 

of the total angular momentum between J = 7 and J = 12 since, in these cases, 

coupling to these channels is negligible. Furthermore it was found that for J > 12 

the coupling between the partitions could be entirely omitted with no effect on the 

results. The pseudostate set used in the calculation includes a representation of 

the He+(n=3) states sufficiently accurate for them to be interpreted as eigenstates. 

Numerical values of the 29-state model cross sections are provided in table 4.3. 

A comparison was made between the 29-state basis and a number of other bases 

for J = 1 up to around 300 eV. J = 1 was chosen since (1) the number of channels 

is relatively small and so it was possible to make comparisons with larger basis sets 

using the available computing resources (not possible with higher J); and (2) all of 

the major cross sections are significant, unlike J = 0 where only elastic scattering 

is large enough to reliably deduce differences between the bases. It was found that 

with the 29-state basis it was necessary to include then= 2 positronium states up 

to at least 200 eV for two reasons: (1) to minimise the pseudoresonance structure 

in the region rv 100-150 eV; and (2) for convergence in the elastic cross section. 

The elastic cross section was found to be around 7% higher in the 27 -state model 

(29-state less the Ps(n = 2) states) at 175 eV. Other bases were generated by 

diagonalising different numbers of Laguerre functions to generate up ton= 8 and 

n = 9 states. Including all of the generated states we denote these bases n8 and n9 

respectively. Interestingly it was found that the elastic and 2s and 2p excitation 

cross sections were not sensitive to the inclusion of the Ps(n = 2) states with the 

n8 model; the n8 basis discussed here thus only includes the ground state on the 

positronium centre. Below around 250 e V the three bases were found to differ 

very little; however, above 250 eV the elastic cross sections were found to diverge 

between the bases. At 250 eV the elastic cross section was around 3-4% lower in the 



Energy [eV] 

60 75 100 125 150 175 200 225 250 
Elastic 6.55(-3) 8.38(-3) 1.04(-2) 1.16(-2) 1.26(-2) 1.31(-2) 1.35(-2) 1.35(-2) 1.35(-2) 

2s 5.93(-3) 8.88(-3) 9.79(-3) 9.43(-3) 8.76(-3) 7.85(-3) 7.03(-3) 6.36(-3) 5.78(-3) 
2p 2.58( -2) 5.27( -2) 7.08( -2) 7.23( -2) 7.19( -2) 6.95( -2) 6.65( -2) 6.36( -2) 6.07( -2) 

3s 8.60(-4) 2.46(-3) 2.89(-3) 2.50(-3) 2.31(-3) 2.08(-3) 1.86(-3) 1.68(-3) 1.52(-3) 
3p 1.42(-3) 7.55(-3) 1.34(-2) 1.47(-2) 1.49(-2) 1.44(-2) 1.38(-2) 1.32(-2) 1.26(-2) 
3d 3.73(-4) 1.26(-3) 1.74(-3) 1.66(-3) 1.58(-3) 1.45(-3) 1.31(-3) 1.17(-3) 1.06(-3) 

n=2 excitation 3.18(-2) 6.16(-2) 8.05(-2) 8.17(-2) 8.07(-2) 7.73(-2) 7.35(-2) 6.99(-2) 6.65(-2) 
n=3 excitation 2.66(-3) 1.13(-2) 1.80(-2) 1.89(-2) 1.88(-2) 1.79(-2) 1.70(-2) 1.61(-2) 1.52(-2) 
Total excitation 3.48(-2) 7.88(-2) 1.15(-1) 1.20(-1) 1.18(-1) 1.13(-1) 1.07(-1) 1.02(-1) 9.69(-2) 

Ps(1s) 5.51( -3) 1.14( -2) 1.44( -2) 1.26( -2) 1.01( -2) 7.24( -3) 4.58( -3) 3.23( -3) 2.30( -3) 
Ps(2s) 2.40(-4) 9.19(-4) 1.04(-3) 2.55(-3) 1.33(-3) 1.07(-3) 1.19(-3) 6.40(-4) 3.83(-4) 
Ps(2p) 3.02(-4) 8.43(-4) 1.87(-3) 1.43(-3) 5.94(-4) 2.51(-4) 2.82(-4) 1.71(-4) 5.12(-5) 

Ps(n~2) 6.05( -3) 1.32( -2) 1. 74( -2) 1.66( -2) 1.20( -2) 8.55( -3) 6.06( -3) 4.05( -3) 2.7 4(-3) 
Ps(n;?!3) 3.34(-4) 1.09(-3) 1.79(-3) 2.46(-3) 1.18(-3) 8.13(-4) 9.08(-4) 5.00(-4) 2.68(-4) 
Ps total 6.39(-3) 1.43(-2) 1.91(-2) 1.91(-2) 1.32(-2) 9.37(-3) 6.96(-3) 4.55(-3) 3.00(-3) 

Ionisation 2.37(-5) 2.46( -3) 2.17( -2) 3.54( -2) 4.89( -2) 5.54( -2) 5. 76( -2) 5.83( -2) 5. 71(-2) 
Electron loss 6.41(-3) 1.67(-2) 4.09(-2) 5.45(-2) 6.21(-2) 6.48(-2) 6.45(-2) 6.29(-2) 6.01(-2) 

Total 4.77(-2) 1.04(-1) 1.66(-1) 1.86(-1) 1.93(-1) 1.91(-1) 1.85(-1) 1.78(-1) 1.70(-1) 

-/>.... 

~ 

~ 
~ 
+ 

c:r -('[) .... 
w 

Q 
"'1 
0 
Ul 
Ul 

Ul 
('[) 
~ .,...._ ..... 
0 
1::1 
Ul ..... 
1::1 
~ 
1::1 ..... .,...._ 
Ul 

0 ......., 
:::'1 
~ 0..., 

Q> 
"'1 
.,...._ 
::r 
('[) 

~ 

"' I 
Ul .,...._ 
>P .,...._ 
('[) 

~ 
>P -~ 
~ ->P .,...._ 

s· 
1::1 

-.:r 
CJl 



76 

n8 basis than the 29-state basis; the n9 basis was inbetween. It seems, then, that 

above around 250 e V it is necessary to include the higher energy states and that 

states should not be omitted from the diagonalised sets. Below 250 eV, however, 

the 29-state basis was found to be superior to the other bases since it supressed 

the pseudoresonance structure better than the other models. 

The term ionisation is used here to mean the promotion of the electron into 

the continuum, to be contrasted with electron loss which is removal of the electron 

from the target nucleus, i.e. the sum of ionisation and capture. The ionisation cross 

section has been estimated by simply adding the contribution of each of the contin­

uum pseudostates rather than by using the more elaborate ansatz of Kernoghan et 

al [29]. Total excitation has been estimated by summing over the negative energy 

states, eigenstates and pseudostates, in the direct partition excluding the ground 

state. The total cross section has been defined as the sum of the elastic, total 

excitation and electron loss cross sections. 

Results were calculated for the first 21 partial waves up to a maximum of J = 20, 

with corrections for the omitted higher J being estimated by the use of a Geometric 

Progression (GP) [150]. The use of a GP for estimating the contribution of higher 

J up to infinity is standard practice, although some authors [29, 30] choose to use 

the first Born approximation for excitation cross sections. Results are calculated 

up to a maximum value of J, Ji; it is then assumed that the partial cross sections 

for J;;::: Ji-l may be estimated by the series 

(4.1) 

where a = O"J;_ 1 and r = a J;/ a J;_ 1 ; the correction due to the omitted J is then 

given by 

(4.2) 

The basis for this assumption is that the partial cross sections decrease exponen­

tially with J which can be justified by a semiclassical treatment of the collision 

process for large values of the impact parameter [150]. Clearly the partial cross 

sections must be falling smoothly as a function of J, having passed the peak value, 
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for the GP to be accurate; the correction should also be small to give reliable re­

sults. A simple test of how reliable the correction is may be made by extrapolating 

the partial cross sections from two different values of Ji and comparing; this was 

done in generating the results of this section. 

The corrections applied to the 29-state model were typically very small: less 

than 0.02% at all energies for the elastic cross section; less than 0.06% for 2s 

excitation; no more than 0.2% for ionisation; and less than 1% for ground-state 

capture. The corrections were found to increase with the collision energy for most 

cross sections, 2p capture being the notable exception peaking at around 14% at 

175 eV. Of the excitation cross sections, corrections to the 2p excitation were the 
' 

largest, ranging from less than 0.01% at the lowest energy to a little over 4% at 

the highest, 250 eV. The largest percentage corrections to all cross sections were to 

the 2s capture. These were up to 40% at the highest energy; however, in terms of 

absolute magnitude this equates to less than 5% of the ground-state capture cross 

section and less than 4%. of the total capture. The largest corrections in terms 

of absolute magnitude were, by a large margin, those of the 2p excitation. The 

corrections to the total cross section may thus be deduced to be less than 2%. 

Selected minimum-norm cross sections obtained using the 29-state model are 

displayed in figure 4.6 as a function of collision energy. The total He+ excitation 

cross section, indicated by the diamond points, is seen to reach a broad maximum of 

around 0.12 na5 at a collision energy of around 110-140 eV. The major contribution 

to the excitation cross section arises from excitation to the n = 2 states, the latter 

reaching a broad maximum of just over 0.08 na5 in the energy region 100-150 eV 

before decreasing smoothly to a value of 0.066 na5 at the highest energy, 250 eV. 

Also shown are ionisation (stars) and electron loss (crosses). The ionisation cross 

section rises gradually to a maximum value of 0.058 na6 at 225 eV; similarly, the 

electron loss cross section rises to a broad maximum, centred at around 180 eV, 

before falling slowly and converging with ionisation. 

Finally in figure 4.6 the total positronium formation cross section is shown by 

the triangular points. A break-down of the individual contributions is shown in 

figure 4.7. The maximum is around 0.02 na6 and occurs at about 115 eV. The 
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Figure 4.6: Converged cross sections for e+ -He+ scattering above the capture 

threshold: + total excitation; • n = 2 excitation; A total Ps formation; * ioni­

sation; x electron loss. 
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dominant contribution to the cross section is ground-state capture. The maximum 

contribution of the n = 2 capture to the total is 0.004 na6 at 120 eV; the contri­

bution from Ps(n ~ 3) is much smaller still, peaking at around 0.0025 na6. The 

contribution from target states Ps(n ~ 3) was estimated from the n = 2 capture 

using a 1/n3 extrapolation: 

00 1 
O"p8 (n ~ 3) = 80"p8 (n = 2) L 3· 

n=3 n 
(4.3) 

Shown in figure 4.8 are the partial contributions to the total ground-state cap­

ture as a function of J. Below around 100 eV the dominant contributions are from 

the lower J, with relatively little contribution from the higher J. Above 100 eV 

the convergence becomes slower, with significant contributions to the total cross 

section coming from the higher J. Evidence for pseudostructure can be seen in the 

J = 1, 2 and 3 cross sections above 100 eV; however, since there is a significant 

contribution from the higher J there is no obvious sign of structure in the total 

ground-state capture as shown in figure 4. 7; for this reason it was not considered 

necessary to artificially smooth the partial cross sections as is occasionally done by 

other authors. 

Shown in figure 4.7 and in more detail in figure 4.9 are the. contributions to 

capture from the n = 2 states. Capture into the 2s state is seen to be marginally 

larger than 2p capture at most energies; both of these cross sections have a low 

energy peak, with maxima at around 125 eV and 100 eV respectively, and a smaller 

peak at around 200 eV. The pseudostructure here is more substantial, showing 

clearly in the total n = 2 capture cross section. This, however, was to be expected, 

since the same behaviour was found by Kernoghan et al [29, 30] in the case of e+ -H 

collisions. The result is a Ps(n = 2) cross section which is, on average, around 

0.002 na6 in magnitude, peaking strongly between 100 and 150 eV, and decaying 

rapidly at 250 eV. Since then= 2 contribution to the total capture cross section 

is very small and since, as can be seen from figure 4.7, it has no clear observable 

effect on the smoothness of the total Ps(n::;;2) cross section, smoothing of the cross 

sections was again considered unnecessary. Also, due to the pseudostructure in 

the n = 2 capture, pseudostructure is also observed in the corrective factor for 
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Figure 4.8: Partial cross sections for capture into the ground state of positronium 

for total angular momentum J = 1, 2, ... 9 (the J = 0 partial cross section has 

been omitted since it is negligible). 
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the higher positronium states. Once again, however, this structure is too small 

compared to the total positronium capture cross section to require smoothing. 

The extent with which the cross sections vary with the basis may be examined 

with reference to table 4.4. Tabulated are selected results from the 29-, 20-, 6- and 

2-state bases. Also displayed in figure 4.10 (p. 83) for graphical comparison are 

elastic, 2s, 2p and n = 3 excitation, ground-state capture, ionisation and electron 

loss. Total cross sections from the 29- and 20-state bases are displayed in figure 4.11 

(p. 84) along with total excitation and electron loss for the 29-state basis. All results 

were obtained using the minimum-norm approach. The 2- and 6-state results were 

found to be identical to those obtained previously by Bransden and Noble [2] using 

the least-squares approach. 

It can be seen that there is good agreement between the 29- and 20-state results 

in most cross sections. The 2s, 2p and n = 3 excitation cross sections differ by 

less than 5% at most energies; the 2s cross section in the 20-state approximation, 

however, dips to almost 10% lower at 150 eV. This dip correlates with anomalous 

bumps in the ground-state capture, ionisation, electron loss and total cross sections 

within the same model that also all occur at 150 e V. Since this dip is not evident 

in any of the 29-state results it can be concluded then that this is merely due to 

pseudostructure. The 6-state approximation is seen to be quite a good approxima­

tion to the 2s and 2p cross sections at the higher energies, approaching to within 

5% of the 29-state results in the 2p and 11% in the 2s. The elastic cross section 

at the lower energies also appears to be well converged, differing in the 29- and 

20-state calculations by less than 3% below 125 eV, although above 125 eV the 

20-state calculation can be seen to deviate significantly from the smooth curve of 

the 29-state calculation. 

Ground-state capture is also in reasonably good agreement between the 29-

and 20-state calculations, differing by less than 21% at· all energies. The 29-state 

calculation is seen to be very smooth whereas the 20-state shows a little sign of 

structure around 100-150 eV. It should be remembered, however, when comparing 

capture cross sections that the 20-state model does not account for capture into 

excited levels of the positronium whereas the 29-state model does. Although the 
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Table 4.4: Cross sections (in units of 1ra5) for positron collisions with He+(ls). 

Comparison of results using different target basis sets. 

Elastic 

2s 

2p 

Energy [eVJ 

60 75 100 125 150 175 200 225 

a 6.55( -3) 8.38( -3) 1.04( -2) 1.16( -2) 1.26(-2) 1.31 ( -2) 1.35( -2) 1.35( -2) 

b 6.62(-3) 8.54( -3) 1.07( -2) 1.20( -2) 1.35( -2) 1.46( -2) 1.49( -2) 1.45( -2) 

c 8.52(-3) 1.13(-2) 1.39(-2) 1.71(-2) 1.74(-2) 1.74(-2) 1.71(-2) 1.67(-2) 

d 1.05( -2) 1.29( -2) 1.80( -2) 1.91 ( -2) 1.94( -2) 1.91 ( -2) 1.86( -2) 1. 79( -2) 

a 5.93(-3) 8.88( -3) 9. 79( -3) 9.43( -3) 8. 76( -3) 7.85( -3) 7.03( -3) 6.36( -3) 

b 5. 70( -3) 8.50( -3) 9. 77( -3) 9.12( -3) 7.90(-3) 7.23( -3) 6.56( -3) 6.02( -3) 

c 2.31(-3) 4.47(-3) 7.07(-3) 6.76(-3) 6.63(-3) 6.33(-3) 6.00(-3) 5.65(-3) 

a 2.58( -2) 5.27( -2) 7.08( -2) 7.23( -2) 7.19( -2) 6. 95(-2) 6.65( -2) 6.36( -2) 

b 2.60( -2) 5.08( -2) 6.82( -2) 7.24( -2) 7.13( -2) 6.86(-2) 6.57( -2) 6.27( -2) 

c 1.23( -2) 3.28( -2) 5.15( -2) 5. 76( -2) 6.10( -2) 6.20(-2) 6.16( -2) 6.03( -2) 

n=3 excitation a 2.66( -3) 1.13( -2) 1.80( -2) 1.89( -2) 1.88( -2) 1. 79(-2) 1. 70( -2) 1.61 ( -2) 

b 2.69( -3) 1.08( -2) 1. 76( -2) 1.88( -2) 1.85( -2) 1. 76(-2) 1.67( -2) 1.58( -2) 

Total excitation a 3.48(-2) 7.88(-2) 1.15(-1) 1.20(-1) 1.18(-1) 1.13(-1) 1.07(-1) 1.02(-1) 

b 3.49(-2) 7.81(-2) 1.29(-1) 1.54(-1) 1.65(-1) 1.60(-1) 1.58(-1) 1.52(-1) 

Ps(1s) a 5.51 ( -3) 1.14( -2) 1.44( -2) 1.26( -2) 1.01 ( -2) 7.24(-3) 4.58( -3) 3.23( -3) 

b 5.54( -3) 1.21 ( -2) 1.66( -2) 1.43( -2) 1.22( -2) 8.21( -3) 5.51( -3) 3.83( -3) 

c 2.15( -3) 8.56( -3) 1. 75( -2) 2.07( -2) 1.56( -2) 1.11( -2) 7. 77(-3) 5.50( -3) 

d 7.14( -3) 2. 75(-2) 4.22( -2) 3.49( -2) 2.47(-2) 1.69(-2) 1.15( -2) 8.01 ( -3) 

Ps(n:::;;2) a 6.05( -3) 1.32( -2) 1. 7 4( -2) 1.66( -2) 1.20( -2) 8.55( -3) 6.06(-3) 4.05( -3) 

Ionisation a 2.37( -5) 2.46( -3) 2.17( -2) 3.54( -2) 4.89( -2) 5.54( -2) 5. 76( -2) 5.83( -2) 

b 3.43( -7) 1.44( -3) 1.61 ( -2) 3.30( -2) 4. 70( -2) 4. 79( -2) 5.13( -2) 5.09( -2) 

Electron loss a 6.41 ( -3) 1.67( -2) 4.09( -2) 5.45( -2) 6.21 ( -2) 6.48( -2) 6.45( -2) 6.29( -2) 

b 5.56( -3) 1.35( -2) 3.27( -2) 4. 73( -2) 5.91 ( -2) 5.61( -2) 5.68( -2) 5.4 7( -2) 

Total a 4.77(-2) 1.04(-1) 1.66(-1) 1.86(-1) 1.93(-1) 1.91(-1) 1.85(-1) 1.78(-1) 

b 4.71(-2) 1.00(-1) 1.73(-1) 2.13(-1) 2.37(-1) 2.31(-1) 2.29(-1) 2.21(-1) 

a 29-state calculation 

b 20-state calculation 

c 6-state calculation: He+(1s,2s,2p)+Ps(1s,2s,2p) 

d 2-state calculation: He+(1s)+Ps(1s) 
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Figure 4.10: Comparison of the 29-, 20-, 6- and 2-states bases. In figures (a)-( e): 

O 29-state; 0 20-state; 0 6-state; 6. 2-state. In figure (f): * ionisation; x electron 

loss; -- 29-state; - - - 20-state. 
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Figure 4.11: Total cross sections. o 29-state; D 20-state. Total excitation + and 

electron loss x cross sections from the 29-state basis have also been plotted for 

comparison. 
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contribution of the n = 2 capture is quite small when compared to capture into the 

ground-state, there is still enough flux going into the n = 2 states to significantly 

widen the discrepancy between the two models. It is thus more instructive to 

instead compare the ground-state capture of the 20-state model with the Ps( n ~ 2) 

capture cross section of the 29-state model. This is shown in figure 4.12; numbers 

are also given in table 4.4 (p. 82). It can be seen that the agreement is very 

good, although there is a little discrepancy in the region 100-150 e V in which, 

as has already been pointed out, the 20-state calculation is not entirely smooth. 

Agreement is to within 8% at all energies excluding 125 eV. 

From this data we may also assess the contribution to the cross sections of 

the Ps(n = 2) states. The total n = 2 capture is small compared to ground-state 

capture at the lowest energy, 60 e V, climbing to between 20 and 30% in the central 

region before falling to 32%, 25% and 19% at energies of 200, 225 and 250 eV 

respectively. Above around 250-300 eV we may expect then that inclusion of the 

Ps(n = 2) states is unnecessary. 

It is interesting to note that the 6-state model offers a surprisingly good ap­

proximation for the ground-state capture cross section. This result is in contrast 

to the case of positron scattering by hydrogen atoms where a 6-state model pro­

vides a very poor estimate of the values obtained with large pseudostate sets [28]. 

The 2-state results are approximately a factor of 2 higher than those of the other 

calculations. 

Ionisation and electron loss are not so well represented by the 20-state calcu­

lation. Referring to figure 4.10f we see that although both the 29- and 20-state 

results are smooth (excluding the points at 150 eV for the 20-state) the 20-state 

results are significantly below those of the larger basis. Recalling, however, that 

the 20-state basis includes only three s-states on the He+ and the 29-state basis 

includes eight, this is not surprising. One might also expect that, for this reason, 

the total excitation is not well represented. Referring to table 4.4 we see that 

this is indeed the case; the two models agree very well at the lowest energies but 

differ greatly as the collision energy increases, by up to around 50% or 0.05 rra~ 

between 125 and 225 eV. The total cross section is also not given well by the 20-
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Table 4.5: Comparison of the Ps(1s) formation cross section of the 29-state model 

with the CBA and CDW-FS results of Fojon et al [144-146] and the optical po­

tential results of Gianturco and Melissa [83]. All cross sections are in 7!"a6. 

E (eV) 

250 

300 

500 

CBA 

4.8(-3) 

9.8( -4) 

CDW-FS 

1.8(-3) 

5.4(-4) 

Optical potential 

6.9(-2) 

2.7(-2) 

Minimum-norm 

2.30(-3) 

state model (figure 4.11) above around 125 eV, being significantly larger than the 

29-state model. The discrepancy, which is around 0.04-0.05 7!"a6, is due largely to 

the discrepancy in the total excitation rather than that of ionisation and electron 

loss which is much smaller. Despite the large disagreement above 100 eV the 20-

and 29-state results agree well, to less than 4%, at the lower energies for the total 

cross section and total excitation cross section. 

From the discussions above we conclude that the introduction of pseudostates 

on both the Ps and He+ centres, as done for example by Kernoghan et al [28, 

29] in the case of positron-hydrogen scattering, is unnecessary in the cases of the 

transitions considered here although the effect of the introduction of a 3p state on 

the positronium might be interesting to investigate. 

Results of Coulomb Born (CBA) and Continuum Distorted Wave Final State 

(CDW-FS) calculations by Fojon et al [144-146] and the optical potential results 

of Gianturco and Melissa [83] are compared with the present results in table 4.5. 

It can be seen from the table that the 29-state result agrees well with the CDW­

FS, which, due to the inclusion of higher order distortion terms, one would expect 

to be better than the CBA at this energy; none, however, agree at all with the 

optical potential result. The optical potential result at 300 e V also appears to 

be significantly larger than the CBA and CDW-FS results at 250 and 500 e V. It 

appears likely then that the optical potential calculation is in error in some way and 

we conclude that the 29-state model agrees well with the distorted wave calculation. 
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4.3 Summary and Conclusions 

Results have been presented for positron scattering by He+ ions at energies be­

tween 6 eV and 250 eV. A complete set of converged cross sections has been given, 

including ionisation and positronium formation, excluding only annihilation. It has 

been demonstrated that the minimum-norm extension of the least-squares method 

has enabled the computation of results using larger basis sets with the inclusion of 

pseudostates. It was also demonstrated that the minimum-norm method is suitable 

for computing the resonant cross sections found in positron-hydrogen scattering by 

previous authors. It was seen that a 29-state basis, which includes states up to 8s, 

8p, 8d and 8f on the He+ centre and 1s, 2s and 2p on the positronium centre, gave 

smooth cross sections which were almost free of pseudostructure. Pseudostructure 

was only really evident in the excited state capture cross sections which was, com­

pared to the ground state capture cross section, too small to be noticed in the 

total capture cross section. The ground state capture cross section was found to be 

consistent with CDW-FS results of F6jon et al [144-146]. Low energy elastic scat­

tering eigenphases were also obtained which were found to be in good agreement 

with previous work. The eigenphases obtained above then= 2 excitation thresh­

old show no evidence for the formation of the broads-wave resonance reported by 

other authors. 

Notes 

1 Resonance widths may be computed using the program of Tennyson and No­

ble [151]. 

2The problem of approaching thresholds stems from the evaluation of the Coulomb 

functions for cases where rJ = Z / k ( Z is the residual nuclear charge and k is the 

channel momentum) is large, i.e. k is small. In regions where 7] is large the Coulomb 

functions can become inaccurate. This is beyond the scope of this thesis and so is 

not discussed here; instead see, for example, Noble [152]. The Coulomb functions 

here are thought to be accurate to within lkl = 0.01 of threshold. 
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Chapter 5 

Heavy Particle Capture by 

Hydrogen and Positronium 

5.1 Introduction 

The interaction of heavy particles, such as antiprotons, with simple atoms has be­

come a subject of great importance since the development of low-energy anti proton 

beams [19]. The interaction of pions with liquid helium was discussed long ago by 

Condo [153] who postulated the mechanism by which these pions may be absorbed 

by the helium in states which are very long-lived compared to what one might 

expect. 

Two isssues of current interest relate to the capture of antiprotons by atoms, 

namely, the spectroscopy of cold antihydrogen [17, 18, 154, 155] and the dynamics 

of highly excited antiprotonic atoms [156-159]. An essential aspect of these studies 

is the knowledge of the rate of formation of these systems and the nature of the 

states that are formed. Although the structure of these systems is becoming well 

understood [160, 161], the dynamics of formation is less well understood. 

The predominant inelastic process arising from fast antiproton collisions is ion­

isation of the target. This process is relatively well understood at present and 

has been comprehensively discussed by Knudsen and Reading [162]. According to 

theory, below the ionisation threshold the importance of capture increases rapidly. 

Overviews of theoretical approaches to antiproton capture by small atoms and 

89 
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molecules have been given by Cohen [163, 164] in which the role of classical mod­

elling has been highlighted. 

The Classical Trajectory Monte Carlo (CTMC) method was introduced by 

Abrines and Percival [165] to calculate capture and ionisation cross sections for 

proton-hydrogen collisions [166]. It has been applied extensively in ion-atom colli­

sion studies to predict excitation and rearrangement processes in three-body pro­

cesses [167, 168]. It has been particularly successful in quantitative estimates of 

electron capture cross sections over a broad region of energies around the colli­

sional ionisation threshold. 

The main advantage of the CTMC method is that it is relatively simple and 

inexpensive to execute for three-body systems without approximation. Conversely, 

converged fully quantum mechanical or semi-classical simulations often require very 

large scale computations. For this reason there has always been an interest in con­

structing classical models for capture processes. Its success owes much to the 

characteristic nature of these processes, whereby the formation of the exotic atom 

involves capture of a heavy particle, such as an antiproton, into a high angular 

momentum Rydberg state. By the correspondence principle one expects that clas­

sical mechanics should be a good approximation in this situation, since circular or 

near circular hydrogenic orbits of high principle quantum number are particularly 

well described. Moreover, due to the high mass of the proton and antiproton, it is 

resonable to assume also that the nuclear motion might also be well described by a 

classical path. It is thus ideally suited to collisions involving matter such as muons, 

pions and antiprotons as it offers a fully consistent treatment of the collision pro­

cess, treating all possible reactions on an equal footing. In the case of ionisation 

processes involving exotic particles the CTMC approach has an added advantage 

over quantum mechanical calculations in that continuum processes, which are vi­

tally important in this context, are well modelled, something that is sometimes 

difficult in a fully quantum simulation. Indeed it has been shown in the case of 

J.L- -H collisions that the method performs remarkably well for muon capture be­

low the ionisation threshold when compared with methods which treat the electron 

quantally [169, 170]. The CTMC method can be used over a wide range of energies; 
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the precise range of validity, however, is sometimes difficult to determine, but will 

exclude regions in which quantal effects such as tunnelling and interferences are 

important. 

Several extensions to the basic method have been made in order to extend 

its flexibility. An extension to cover multielectron targets, given by Kirschbaum 

and Wilets [171], has been applied with some success [163, 172]. Extra constraints 

were introduced to the classical motion, suggested by an analysis of the Heisenberg 

uncertainty principle, without which the multielectron targets would have been 

unstable to autoionisation. Further developments to this theory made by Cohen 

et al [172] have turned the CTMC method into what is termed Fermi Molecular 

Dynamics (FMD); recent reviews include [163, 169, 173]. These have successfully 

treated molecular targets, such as H2 [172], as well as atoms and ions, such as he­

lium and neon [163, 164]. An alternative approach to many electron targets based 

on a frozen atomic core has been given by Peach et al [17 4] and applied to the 

case of collisions between atoms and ions of hydrogen and helium [175]. A method 

due to Olson [167] allows the state of the captured particle to be analysed in a 

quasi-classical way. This method is of particular interest in the study of exotic 

atom formation where the details of the capture orbital determine the subsequent 

evolution of the complex. An alternative phase-space distribution for the hydro­

gen target, which cannot be modelled exactly by classical mechanics, has been 

investigated by Cohen [176]. 

The capture of exotic particles by atomic hydrogen has received attention from a 

number of other approaches besides CTMC. The first was the Adiabatic Ionisation 

(AI) approach used by Wightman [177]. Since then, nonadiabatic effects have been 

included by more sophisticated methods: Diabatic States (DS) [178, 179]; Time­

Dependent Hartree Fock (TDHF) [180]; Classical-Quantal Coupling (CQC) [170]; 

and the Perturbed Stationary States (PSS) model [181]. These calculations, when 

compared on their relative merits and restrictions, have further endorsed the use 

of the classical approach. Since these methods have been well discussed in a review 

by Cohen [182] we do not discuss them any further here. 

In this chapter results of classical simulations for processes leading to the for-
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Table 5.1: Examples of relatively heavy negatively charged particles suitable for 

the CTMC program. 1 a.u. of mass is defined as the mass of the electron, 

0.511003 Me V /c2
. Data taken from [183]. 

Mass 

Particle Symbol Classification Mean lifetime 

(a.u.) (Me V jc2) (seconds) 

Anti proton p Baryon 1836.15 938.28 

Negative muon J-l Lepton 206.77 105.66 2.20 X 10-6 

Negative pion 7r Meson 273.12 139.57 2.60 X 10-8 

Negative kaon K- Meson 966.08 493.67 1.24 X 10-8 

mation of such systems are presented. In particular cross sections for antiproton 

capture by atomic hydrogen to form protonium, and by positronium to form an­

tihydrogen are given. The effect of the presence of a laser on the antihydrogen 

formation rate is also investigated. 

5.2 Theory 

In what follows atomic units are used throughout unless stated otherwise. 

Reactions 

In the present work the Classical Trajectory Monte Carlo (CTMC) method has been 

used to study reactions involving antiprotons (p), negative pions (1r-) and negative 

muons (J-l-) impacting on atomic hydrogen and also antiprotons on positronium 

(Ps). For example, the reactions for antiproton-atom collisions dealt with here are 

p + (T, e-)n,t elastic/inelastic scattering 

(T, P)n,t + e- anti proton capture 

ionisation 

(5.1) 
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Figure 5.1: CTMC coordinates. 

(Origin) 

in which the target 'nucleus', T, can be either a proton or positron and the reaction 

can take place in the presence of external fields. The subscripts n, l represent the 

principle and angular momentum quantum numbers respectively. Note that, in the 

programming of the simulation, the code was kept general enough for the masses 

of all three particles to be changed, and so isotopes D and T of hydrogen could 

also be modelled. The antiproton may also be replaced by any other negatively 

charged particle. Examples of a few particles and their basic properties are given 

in table 5.1. 

In all that follows the target atom is prepared in its ground state. 

Co-ordinates and Hamiltonian 

Consider the three-body problem in which the ith particle mass and coordinate 

are labelled as mi and ri respectively, the two-body combined mass is denoted 

by mii mi + mj, and the interparticle distance by rij = rj - ri. The Jacobi 

coordinates, shown in figure 5.1, can then be written as 

It follows then that the Hamiltonian is given by 

P2 p2 k p2 

H=~+~+L~+-
2f.-l12 2f.-l12,3 .< . rij 2M 

~ J 

(5.2) 

(5.3) 
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where the masses and reduced masses are given by 

M is the total mass. The momenta are defined as 

and 

Pij,k = J-lij,k~j,k· 
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(5.4a) 

(5.4b) 

(5.4c) 

(5.5a) 

(5.5b) 

Since we are using atomic units kii = zizi, where Zi is the charge on the ith 

particle. The charges are chosen so that 

(5.6) 

the projectile, particle 3, may then bind with particle 2. In the centre of mass 

frame the term P 2 /2M = 0. The center of mass collision energy, E, is related to 

the laboratory collision energy, Elab, by 

2 

E _ m12E _ P12,3 
--lab---

M 2f-t12,3 
(5.7) 

and to the relative collision velocity by 

(5.8) 

Monte-Carlo Procedure 

The CTMC procedure is well documented [164, 165, 184] but briefly it consists of 

the following steps 

1. Monte Carlo sampling of initial conditions (t = 0); 

2. integration of the equations of motion; and 

3. identification of the exit channel in the asymptotic region t-+ +oo. 
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Many trajectories are performed for each collision energy until satisfactory statistics 

are obtained. The number of trajectories performed depends on the collision energy, 

the cross section required and the accuracy desired. 

For a given collision energy, E, the initial conditions are specified by seven 

parameters: six for the target and one for the projectile. The projectile is launched 

towards the target from a prescribed fixed distance, d, with a variable impact 

parameter, b. 

The initial conditions for the target are specified by six parameters. Of the six 

parameters, three are angles, two describing the orientation of the orbital plane, the 

third placing the axis of the orbit within the plane. The remaining three parameters 

specify the angular momentum of the orbit, which determines the shape of the paths 

of the particles, the initial position of the particles on these paths, and the target 

energy. Implicitly we assume that the perturbing ion, and/or the laser pulse, has 

not yet arrived so that the two-body motion is purely Keplerian. 

The initial state of the target was modelled by the microcanonical distribu-

tion [185]. This prescribes the sampling of position and momentum phase space, 

p = p( r, p), by the constraint 

( 
p2 k) K b (Eo - E) = K b Eo - - - -

2J-t12 r 
(5.9) 

where Eo = - J-t12 /2 and K is a constant. It has been shown by Pitaevski [186] that 

this produces a distribution in momentum space 

(5.10) 

The constant P6 = -2f-J,12E0. It is interesting to note that this is exactly the 

same as the quantum mechanical distribution. It can also be shown [165] that the 

probability distribution is uniform in squared angular momentum, l2 , and so we 

may thus define an angular momentum parameter f3 by 

z2 
f3 = r' o ~ f3 ~ 1 

max 
(5.11) 

which has a uniform distribution over the given range; the maximum angular mo­

mentum, lmax, is given by 

(5.12) 
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The remaining four parameters required for the atom consist of three Euler 

angles cp, (), x [187-190) and a time translation parameter A. The equation for a 

Keplerian orbit may be shown [191] to be 

A=~- esin~, 
27ft 

A= T E (0, 27r) (5.13) 

where T is the time period and A is uniformly distributed in the given range. e is 

termed the eccentricity and along with ~is related to the Cartesian representation 

of the orbit by 

where 

x = a (cos ~ - e) 

y = av'1- e2 sin~ 

lkl 
a= 2IEol 

(5.14) 

(5.15) 

is the semi-major axis. The Euler angles are given by uniform distributions in the 

ranges 

0 ~ cp < 27r 

-1 <cos()~ 1 (5.16) 

0 ~X< 27r 

It is shown in [165] that this results in a distribution which is microcanonical; i.e. 

the distribution in (5.9) is constant over the five parameters /3, A, cp, cos() and~­

Employing the co-ordinate system defined in figure 5.1 we have, for the target, 

cos~- e 

r12 =a (1- e2) sin~ 

0 

r12 cos() - r12iJ sin () 

r12 = r12 sin() + r12iJ cos() 

0 

(5.17a) 

(5.17b) 



5.2. Theory 

where 

r = a(1- ecos~) 

_ ( (1 - e2
)

112 sin~) ()=tan 1 

(cos~- e) 

. 12 ( k) 2"21
1
/
2 

{+1, r = J;, Eo - -:;: - r () . _
1
' 

. l 
() = -2, 

f-tr 

and for the projectile 

d 

b 
m1 

r23 = --r12 
m12 

0 

1 

if 0 ~ () < 7f 

if 7f ~ () < 27f 

. (2EcoM) 2 
A m1 . r23 = x- -r12, 

f-£12,3 m12 

where a Cartesian basis has been used. 

Equations of Motion 
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(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 

(5.19a) 

(5.19b) 

The dynamics can be solved by integration of the equations of motion in either the 

Hamiltonian or Lagrangian form. The Hamiltonian formalism has been favoured 

in the past as it is more efficient in the use of symmetry arguments which reduce 

the computation. In practice it is much simpler and highly effective to work with 

the physically equivalent six (independent) second-order differential equations of 

motion following directly from Newton's second law. These were solved by resolv­

ing the equations into their Cartesian coordinates, resulting in the 12 first-order 

coupled ordinary differential equations. The equations of motion are given by [165] 

T12 = V12 (5.20a) 

r23 = v23 (5.20b) 

. -1 r12 r31 r23 
(5.20c) V12 = m12 -~ -~3-

m1lr31l3 m2lr23l3 r12 
. -1 r23 r12 r31 

(5.20d) v23 = m23 -~ -13-
m2lr12l3 m3lr31l3' r23 
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which were then solved numerically using an 8th order Runge-Kutta method of the 

Numerical Algorithms (NAg) library [192]. Several other integrators were also tried 

using a simple two-body Kepler system before finally settling on the Runge-Kutta 

routine. The random number generator from the NAg library [193] was also used. 

The accumulation of errors in the integration was monitored by regular checks 

of the conservation laws, for example, in laser-free collisions trajectories exceeding 

a relative error of 1 part in 104 were discarded from the sample. The reason for 

failures such as these and also those which did not converge within the integration 

routines was a close approach between two or more particles resulting in excessively 

stiff equations. This accounted for almost all failures. Trajectories which failed to 

enter a prescribed exit channel within a time limit of 106 were also rejected. A 

detailed analysis of some of the individual trajectories which were terminated at 

t = 106 were found to enter an exit channel given a little more integration time. 

The total number of failures did not exceed 0.1% and were thus much less than 

the statistical fluctuations. On the basis of computing time then it was chosen to 

ignore them. For all of the calculations the relative numerical precision was 10-10 . 

It was found that this gave the best balance, using double precision arithmetic, 

between integrator accuracy and accumulation of round-off errors. 

Exit Tests 

At intervals, a series of tests were performed in order to determine if the collision 

was over, and if so, the exit channel was identified. These tests, which are similar 

to those of [184], are displayed in table 5.2. 

Defining the classical (continuous) principle quantum number ne of the capture 

state by 

[ ) 

1/2 
/-L23 

ne= 2JE231 
(5.21) 

and the angular momentum number le by 

(5.22) 

we may associate with these semi-quantal numbers n and l by the relations [167, 
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Table 5.2: Exit tests for scattering, capture and ionisation. A plus sign indicates 

that the test must be passed, a minus sign indicates that it must be failed and a 

zero indicates that the test is not made. Eij and Vij = kijri/ denote the centre of 

mass energy and the interparticle potential respectively of particles i and j, where 

rij = lri- rjl· The particles are numbered such that 1 and 2 compose the atom in 

the initial state, i.e. Z1Z2 < 0, and Z1Z3 > 0. Tth was chosen to be 10 and"(= 0.4. 

test 

1. r13.r13 > 0 

2. r13 > Tth 

3. r12 > Tth or r23 > rth 

4. E12 > 0 

5. E23 > 0 

6. 'YIE121 > IVd + IVd 

7. 'YIE231 > IVd + IVd 

8. r 12 > Tth and r23 > rth 

9. r12-r12 > 0 and r23.r23 > 0 

10. r12 < r23 

11. r12 > r23 

12. E12 < 0 

13. E23 < 0 

14. R23 1-R231 > 0 
' ' 

15. R12 3.R12 3 > 0 
' ' 

scattering 

+ 
+ 

+ 

+ 
+ 
0 

0 

0 

+ 

+ 

0 

+ 

capture 

+ 
+ 

+ 

+ 

0 

+ 
0 

0 

+ 

+ 
+ 
0 

ionisation 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
0 

0 

0 

0 
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184) 

(5.23a) 

and 

n 
l <-le~ l + 1 

ne 
(5.23b) 

The weighting n/ne is to ensure that the inequality l < n is satisfied at all times. 

From the theory of Keplerian orbits, the relative separation r of two particles is in 

the range given by 

0 2 -I k 1- 2lkln~ <r~ a-----
E f.-£ 

(5.24) 

and so the density of orbits is proportional to n~. Integrating between the limits 

of the inequality in equation (5.23a) we obtain 

(5.25) 

which agrees with the total quantum degeneracy 

n-1 ( ) nn-1 
2:)2l+1)=2 

2 
+n=n2

. 

l=O 

(5.26) 

Statistics and Cross Sections 

After sufficient sampling of phase-space involving N trajectories in total, the cross 

sections for capture (ae) and ionisation (ai) are calculated 

In practice this was calculated by the quadrature 

ae,i = 27r LPe,i(j,bj)bj Wk b..bk 
j,k 

(5.27) 

(5.28) 

where pe,i(j, bj) is the probability of a capture/ionisation event happening at an 

impact parameter bk ~ bj ~ bk + b..bk for a collision, labelled j (1 ~ j ~ N). The 



5.2. Theory 101 

weights Wk were taken according to Simpson's rule and the range of integration 

covered all values of the impact parameter for which pc,i(j, bj) =/:. 0. 

If we were to take a distribution of trajectories in which the distribution of 

impact parameters is proportional to bdb in a range (0, bmax) we may write 

ni(b) db= 2nNpi(b)bdb = 2Npi(b)bdb 
nb~ax b~ax 

(5.29) 

where N is the total number of trajectories, then (5.27) becomes 

(5.30) 

where ni is the total number of events i. The standard statistical error in O"i is then 

(5.31) 

This is the method used in previous CTMC simulations [164, 166, 184]. 

In the present work an importance sampling function was used in randomizing 

the impact parameter, b. The dominant contribution to most cross sections comes 

from a region centred on a specific impact parameter, the peak, which we call 

b = b0 , and there is little contribution from b close to zero and b large. It makes 

sense then to choose a set of impact parameters concentrated around b0 . The 

distribution used is given by 

b = bovx 
(5.32) 

b = bo- bm lnx 

where x is uniform in the range given and values of b were chosen so that they fell 

in the ranges b < b0 and b ~ b0 in the ratio approximately 1:4. The values of b0 and 

bm were chosen by experimentation. It was found that for antiproton capture b0 

could be chosen accurately using ·a formula suggested by the small-angle scattering 

formula (see e.g. [139]), where b0 = AE-114 for a potential V= kr-4
, and bm was 

chosen to be 1.0. For ionisation it was found that b0 :::::~ 1.0 and bm :::::~ 2.0 for all 

energies. 

'o-, 
' ' 

-+-
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Presence of a Laser Field 

The presence of a laser introduces a perturbation which, in the dipole approxima­

tion and with the choice of the length gauge, has the form 

H' = -F(t) cos(wt + cp) L Ziri · e (5.33) 

where e is the direction of polarization of the laser, w is the angular frequency, and 

F(t) is the electric field amplitude. The phase of the laser, cp, is significant whenever 

the optical cycle time is longer than the time taken for the collision interaction. 

At higher velocities it is necessary to choose a random selection of phases to allow 

for this variability. The peak field, Fmax, is related to the light intensity, I, by 

Fmax = y'2J /c0c. In this work the field strength is measured in atomic units. The 

field was ramped smoothly on and off over a timescale r such that 

sin2
( 1rtj2r), 

F(t) = Fmax X 1, T < t < b.T- T (5.34) 

sin2 (1r(b.T- t)/2r), b.T- T ~ t ~ b.T. 

A large number of collisions are simulated which sample the full range of particle 

phase space and take into account the random laser pulse. For the case of per­

pendicular polarisation the angle of the impact parameter in the yz plane was also 

randomised. 

5.3 Field-Free Capture 

In this section results for antiproton capture in the absence of fields are pre­

sented [194]. Results for antiproton capture and collisional ionisation were used 

to establish the accuracy of the code, within the validity of a classical model, and 

to extend the range of the data. The statistical error due to the random sampling 

of the Monte Carlo procedure, denoted by the standard deviations, was sufficiently 

small that the error bars, ±s, are smaller than the point sizes in the figures. Sample 

results for the hydrogen target are given in table 5.3 which are found to agree well 

with previous simulations [172]. 
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Table 5.3: Capture cross section, <Jc = l:nl <J;1, for antiproton collisions with atomic 

hydrogen. 

E (a.u.) ac (7ra5) E (a.u.) ac ( 1l"a5) 

0.100 5.03 0.430 2.73 

0.125 4.44 0.460 2.68 

0.150 4.10 0.480 2.62 

0.175 3.83 0.500 2.58 

0.200 3.62 0.510 2.49 

0.225 3.48 0.520 2.20 

0.250 3.36 0.530 1.85 

0.275 3.25 0.540 1.40 

0.300 3.14 0.550 1.02 

0.325 3.03 0.560 0.64 

0.350 2.96 0.580 0.31 

0.375 2.88 0.600 0.16 

0.400 2.81 0.620 0.09 

Table 5.4: Total capture cross sections ( <Jc) for pion ('1r-) collisions with atomic 

hydrogen. 

E (a.u.) ac ( 1l"a5) E (a.u.) ac ( 1l"a5) 

0.100 5.13 0.500 2.65 

0.120 4.67 0.520 2.42 

0.150 4.20 0.540 2.08 

0.200 3.73 0.560 1.64 

0.250 3.47 0.580 1.16 

0.300 3.22 0.600 0.76 

0.350 3.03 0.620 0.44 

0.400 2.90 0.640 0.31 

0.425 2.82 0.660 0.19 

0.450 2.74 0.680 0.14 

0.480 2.71 0.700 0.11 
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Figure 5.2: Comparison of capture cross sections for antiprotons O and negative 

pions D incident on atomic hydrogen. Also shown for comparison are Perturbed 

Stationary State results () of Ohtsuki et al [181]. 

I 
I 
I 

' ' ' 

0.2 

~ 
"'*- .... 

.... "()...-<>-

0.4 

---~ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
~, 

Collision energy, E [a.u.] 
0.6 0.8 

The present data is more extensive and statistically accurate than previous 

CTMC simulations [164, 172, 184, 195]. As an example of the sampling error the 

cross section for capture for E = 0.2, given by ac = 3.62 1ra6, was obtained from 

N = 5 x 104 trajectories which equates to a standard deviation of s = 0.02 1ra6, 

that is, less than 1%. Similarly the cross section for collisional ionisation, ai, of 

positronium for E1ab = 10 keY, given by ai = 0.32 1ra6, was obtained from N = 105 

trajectories with s = 0.01 1ra6, around 3%. 

It has been noted [164] that cross sections for capture of Jl>- (mJ.L ~ 207 me) [164, 

170, 178, 184] and p by hydrogen are very similar. This reflects the fact that 

the electron ejection process at low energies involves a centrifugal energy barrier 

against the incident particle approaching the critical distance of ionisation [196] 

rather than a condition dependent on the collision velocity, and is termed adia­

batic ionisation [163]. Results from the present CTMC work for negative pion 1r-
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Figure 5.3: Partial cross sections, a~ = 2:1 a~1 , for protonium formation in a 

quasi-quantum level n, following antiproton-hydrogen collisions. Collision energy 

in atomic units: 0 E = 0.05; DE= 0.1; 0 E = 0.2; 6 E = 0.3; V E = 0.4. 

4 

,........, 
~0 
J:.,3 

30 40 50 60 70 
Anti proton capture quantum number, n 

Figure 5.4: Partial cross sections af = l:n a~1 for protonium formation in a quasi­

quantal state l following antiproton-hydrogen collisions. Collision energy in atomic 

units: O E = 0.1 and D E = 0.3. 
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(m1T ~ 273 me) capture by hydrogen are given in table 5.4 and plotted with the an­

tiproton results for comparison in figure 5.2. It can be seen that the data presented 

here follows this trend very well. 

The distribution of antiprotons in subshells, a~1 , has been considered by Co­

hen [164, 197]. If the electron is liberated with an energy, E > 0, (in the center 

of mass frame) then the protonium energy, En = -f..l23 /(2n2
), is determined by 

En = E - f..L 12/2 - E. Slow electron escape, E ~ 0, means that capture can occur 

near the level nmax ~ y' f..L23 /(1- 2E). As can be seen from figure 5.3 the dominant 

capture indeed occurs near this limit. The sharpness of the a~ distributions indi­

cates a thin capture shell around the atom corresponding to n » 1 and partially 

explains why classical theory works rather well in this case. At higher energies the 

ejected electron energy spectrum is broader, corresponding to antiproton-electron 

collisions in which momentum and energy transfer is required to effect capture. 

This leads to a broadening in the a~ distribution and the maximum of the curve 

then favours lower n. Since the target atom has spherical symmetry, the sum­

mation over all n- and m-levels yields cross sections which reflect the statistical 

weight a[ ex: (2l + 1) [163]. In figure 5.4 the distributions, a[, are seen to follow this 

trend until the cut-off at lrv nmax corresponding to then distribution (figure 5.3). 

Using the semiclassical correspondence lrv f..L12,3vb, figure 5.4 can also be viewed as 

the weighted capture probability bpc(b) which has a sharp cut-off for orbits which 

pass the atom outside the capture radius, Re· The antiprotons are captured into a 

wide distribution of states including a small proportion in the nearly circular orbits 

lrv n associated with long-lived states of antiprotonic helium [158]. 

At energies above the ionisation threshold the capture cross section falls away 

rapidly as a result of the requirement for momentum matching [198] and quantal or 

classical perturbation theory can be applied. For example, the distorted-wave Born 

approximation for antiproton capture to the ground state, H(1s), at Elab = 61 keV 

is ac = 0.56 1ra6 [198]; the less reliable plane-wave Born approximation predicts 

l.601ra5. The classical estimate is much smaller at a = 0.18 1ra6. At energies below 

100 keV the plane-wave Born approximation leads to gross over-estimates of the 

cross section [163]. 
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Figure 5.5: Capture • and ionisation • cross sections for antiproton impact on 

positronium, and their dependence on the antiproton kinetic energy, E1at· Com­

parison with CTMC results of Ermolaev [195) for capture,O and ionisation, 6. The 

laboratory and centre of mass energies are related by (5.7). 

,........, 
N 

0 
~ 
~ 

L......J 

~ 
0 ...... ...... 
(.) 
Q) 
tZl 

tZl 
tZl 
0 
1-< 

u 

10' 

100 

10-l 
0.1 10 

Antiproton energy, E1ab [keV] 

100 
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Table 5.5: Capture (ac) and ionisation (ai) cross sections for antiproton (p) colli-

sions with positronium (Ps). The laboratory and centre of mass energies are related 

by (5. 7). 

El ab (Jc El ab (Jc (Ji 

(keV) ( 7ra6) (keV) (1ra6) 

0.10 119.0 5.00 16.4 0.00 

0.12 100.0 6.25 17.6 0.00 

0.15 83.7 7.50 17.4 0.02 

0.20 67.2 8.75 16.2 0.13 

0.25 54.4 10.0 15.2 0.32 

0.30 48.0 12.5 14.5 1.0 

0.40 38.9 17.5 9.8 4.3 

0.50 33.9 20.0 7.3 6.2 

0.60 29.5 25.0 3.7 7.8 

0.70 27.4 30.0 2.2 8.2 

0.80 25.6 32.5 1.6 8.3 

1.00 22.7 40.0 0.79 8.0 

1.20 21.0 50.0 0.35 7.3 

1.50 19.8 65.0 0.10 6.5 

1.80 18.6 75.5 0.05 5.8 

2.50 17.6 90.0 0.00 5.1 

3.00 17.0 100 0.00 4.6 

3.75 17.8 

Antiproton collisions with positronium has been proposed as an efficient means 

of producing cold antihydrogen [17]. Indeed this scheme has been proved feasible by 

the capture of protons by positronium [57, 58]. CTMC results from the current work 

for this process are shown in figure 5.5 along with previous results for Etab > 2 keY 

by Ermolaev [195]. The results agree very well with experimental results [57, 58] 

for the charge conjugate reactionp+Ps--+ H+e+. In [57,58] the cross section for 

hydrogen formation at 13.3 keY is determined to be ac = 9±3 1ra6, compared with 

the current results of 10 1ra6, and at Etab = 11.3 keY, ac = 30 ± 10 1ra6, compared 

with the CTMC results, 15 1ra5. 
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It can be seen in figure 5.5 that the capture cross section for positronium has 

a prominent plateau feature over the energy range 2-10 keY. This is suggestive 

of a geometric target corresponding to a critical capture radius. Employing the 

principles of conservation of energy and angular momentum and assuming that 

capture occurs at an antiproton-positron radius, Re, where the electronic energy 

becomes positive, we arrive at the adiabatic formula [163] for the cross section in 

terms of the critical distance 

(5.35) 

where K ~ 1 is an empirical factor representing the efficiency of capture and ci = 

-~{112 is the target energy. If we assume that Re corresponds to the limit of the 

classical electron distribution this simple model seems to explain the general trends 

in tables 5.3, 5.4 and 5.5. In fact the data is very well represented by the following 

fits for the parameters: for p + Ps, Re = 3.5, K = 0.96. For p + H, the fit is not 

quite as good; we find Re= 1.60, K = 0.87, gives a reasonable approximation to the 

data. Given that the Ps radius is twice as large as that of H one might expect that 

Re(P + Ps) ~ 2Re(P +H). It can be seen from the fitted values that this is indeed 

the case to a good approximation (3.5/1.6 = 2.2). Shown in figure 5.6 are p(b) 

capture probabilities as a function of impact parameter for antiprotons on atomic 

hydrogen. The saturation of capture for smaller impact parameters suggested by 

the adiabatic model is clearly visible. 

The capture radius model suggests that an increase in the antihydrogen pro­

duction cross section might be obtained if the positronium could be either excited 

or polarised by an external field. This would improve the efficiency of experimental 

designs to produce cold antimatter. In simple terms the positronium atom would 

have a larger orbit and charge volume and hence Re would be increased. 

5.4 Laser-Assisted Capture 

The enhancement of capture due to laser assistance has been studied in the Born 

approximation [199], however it has been established [163] that for laser-free col­

lisions this model is inadequate at energies below the ionisation threshold [198] 
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Table 5.6: Capture (af) and ionisation (ai) cross sections for antiproton impact 

on positronium in the presence of a laser field. The laser polarisation is linear 

and oriented either parallel (11) or perpendicular (-l) to the antiproton beam. The 

laboratory and centre of mass energies are related by (5.7). 

El ab Field strength .A laser a£ (ji 
L 

(keV) Fmax (a.u.) (nm) polarisation ( 7ra5) ( 7ra5) 

1 ••••• 0 ••• 0. 0 •• without laser • 0. 0 ••••••••• 0 23.0. 0.00 

0.01 1064 j_ 24.3 0.04 

11 25.5 0.05 

248 j_ 24.0 0.34 

11 24.0 0.30 

0.02 1064 j_ 25.2 2.2 

11 27.8 2.4 

248 j_ 39.0 t 

11 40.0 t 
15 • • 0. 0 ••• 0. 0 ••• without laser 0 0 •••• 0 0 •••••• 12.1 2.6 

0.01 1064 j_ 9.8 6.7 

11 11.0 4.4 

,248 j_ 12.0 2.8 

11 13.1 1.5 

0.02 1064 j_ 7.0 12.0 

11 10.4 8.5 

248 j_ 11.0 7:j: 

11 13.0 6:j: 

t Too much ionisation was present at high impact parameters (photoionisation) 

for the ionisation cross section to be determined here. 

:j: A small amount of photoionisation was present in the results here and an 

estimate of the ionisation cross section was made. 
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Figure 5. 7: Photoionisation probability of positronium by a 248 nm laser. o T = 

40; D T = 60. Dashed and dot-dashed lines are linear regression fits. The different 

intercepts are a result of the different pulse rise times resulting in more/less time 

at peak intensity. 
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in that it grossly overestimates the capture process. Nonetheless, calculations at 

high energies using this approximation predicted an enhancement of capture in 

some cases by a factor of ten or more [199, 200]. However, a closer analysis re­

vealed that, at the laser intensities considered, rapid photoionisation [201] would 

dominate the process resulting in the depletion of capture. Here the process is con­

sidered over the energy range of interest to experiment. In particular laser-assisted 

formation of antihydrogen is considered at two collision energies, Elab = 1 ke V and 

15 keY, for laser wavelengths of A = 248 nm and A = 1064 nm linearly polarised 

with alignment parallel to and perpendicular to the collision axis (direction of the 

antiproton beam) [194]. 

We assume that the population of atoms P from an initial ensemble of P0 as a 

function of pulse length f:j.T follows the formula 

p 
log Po = -f(f:j.T). (5.36) 

Shown in figure 5. 7 is a fit for the photoionisation rate of positronium subjected 



5.4. Laser-Assisted Capture 112 

to a 248 nm laser of peak field strength Fmax = 0.02. The results of two ramping 

times are shown, T = 40 and T = 60. 

Classical models of photoionisation have previously been used successfully in the 

qualitative understanding of the response of atoms to intense light [202]. In order to 

test the current classical model of laser-positronium interaction quantitatively the 

photoionisation rate of isolated positronium was calculated. Two field strengths, 

Fmax = 0.01 a.u. and0.02 a.u., correspondingtointensitiesofi = 3.5x1012 Wcm-2 

and I = 1.4 x 1013 W cm-2 respectively, were investigated. The ionisation yield was 

calculated for a variety of pulse lengths to establish a photoionisation rate r. At 

I = 3.5 x 1012 W cm-2 the classical model predicts that very little ionisation will 

occur: r < 2 X 10-7. For the stronger field, r = 1.2 X 10-4 for A = 248 nm and 

r = 1.1 x 10-4 for A= 1064 nm. These results were compared to accurate quantal 

calculations using the Floquet method [203]. For A = 248 nm the Floquet method 

predicts a decay rate of r = 1.80 X 10-4 for Fmax = 0.01 and r = 1.26 X 10-3 for 

Fmax = 0.02. For A= 1064 nm the quantal rates are estimated at r ~ 1.5 x 10-5 for 

Fmax = 0.01 and r = 4 x 10-3 for Fmax = 0.02. These results confirm that classical 

models can underestimate multiphoton ionisation rates by large factors. Note that 

for long-wavelength high-intensity light the dominant mechanism of photoionisation 

is through tunneling transitions, a process which is classically forbidden. 

For E1ab = 1 keY the laser was ramped on over a time period of T ~ 80, 

beginning at an initial internuclear separation of d = 40, so that the laser had 

always reached full intensity during the collision. Tests of the pulse rise time taken 

over the range T = 40-120 found that the cross sections were not sensitive to the 

precise value of T. Moreover, with the laser field intensities used, there was not 

a significant loss due to photoionisation over the typical collision times and so 

these losses could be neglected. Given that the optical cycle times are 147 a.u. for 

A= 1064 nm and 34 a.u. for A= 248 nm the random laser phase, <p, must be taken 

into account by statistical averaging. Displayed in table 5.6 are results for laser 

assisted antihydrogen formation. It was found that the combination of laser and 

antiproton was effective in producing ionisation of the positronium while neither 

were effective alone. At 1 ke V the enhancement due to the laser was large, with a 4-
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background laser in collisions with positronium has been modelled. Within the 

limitations of the classical model, for both the laser interaction and the collisional 

interaction, statistically accurate cross sections for protonium and antihydrogen 

formation were obtained over a wide range of energies and the energy dependence 

of the process was established. The results agree very well with experimental data 

for proton capture by positronium [57, 58]. The present calculations found that 

the addition of the laser field led to enhancement of the formation of antihydrogen 

of the order of 4-70% for an anti proton collision energy of 1 ke V. It appears that 

the addition of a laser field could act as a useful accelerant for such schemes. 

While the classical model has shortcomings these preliminary results are promising. 

A more authoritative statement on the viability of such schemes would require 

quantal modelling of low-energy laser-assisted antiproton capture by positronium, 

or equivalently laser-assisted positron-atom scattering leading to the formation of 

positronium. Such a study seems warranted and worthwhile. 



Concluding Remarks 

The results of this thesis have added extra understanding to the area of exotic 

particle collisions using two very different computational approaches which reflect 

the different collisions systems studied. 

In part I positrons were scattered off ionic targets using the close coupling 

approximation including pseudostates, the first complete study to be done for 

positron-ion scattering. For this, a new computational method, the minimum-norm 

method, was developed which is an extension of a previously reported least-squares 

method [2]. The minimum-norm method allowed the use of a larger basis, including 

a large number of pseudostates on one centre, and hence the determination of con­

verged cross sections for all processes, including excitation, ionisation and electron 

capture. The development of the minimum-norm method and demonstration of 

its ability to compute converged positron-ion cross sections is a first step towards 

tackling more complex charged systems, such as Li+. 

In part 11 the production of protonium, pp, and antihydrogen, H, from anti pro­

ton collisions with hydrogen and positronium was investigated using the classical 

trajectory Monte Carlo (CTMC) method. Both of these processes are of great inter­

est to experimentalists currently working on projects (ATRAP [14], ATHENA [15] 

and ASACUSA [16]) at CERN to produce significant quantities of these antipro­

tonic compounds for spectroscopic purposes. It is known that the production of pp 

and H will be limited to small quantities using current techniques and the devel­

opment of ways to enhance the yield is crucial for the projects' success. Following 

this observation it was decided to investigate the effect of the application of a back­

ground laser field to the reaction p.-Ps. It was found, with the CTMC method, that 

the presence of the laser enhanced the yield of antihydrogen significantly. Following 

this observation it is suggested that a thorough investigation of the effects of laser 

enhancement using quantal modelling would be of great interest. 
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Appendix A 

Close Coupling Code 

In this appendix some of the more technical details related to the design, layout 

and operation of the code used to solve the close coupling equations are outlined. 

The discussion here is limited to details of the serial algorithm only; issues specific 

to the parallelisation of the code are instead addressed in appendix B. 

Shown in figure A.l is a flow diagram depicting the main order of calculation in 

the code. The code was written in modular form (table A.l, p. 118) making good 

use of the object-oriented capabilities of FORTRAN 90. Data belonging to each 

individual partition was confined almost exclusively to separate modules greatly 

reducing the simplicity and robustness of the code; most of the modular structure 

within the program though has not been depicted. The code used to construct 

major parts of the calculation, such as the basis functions, angular coefficients, R­

matrix propagation, etc. was also confined to plug-in modules; this way it was much 

easier to enforce the principle of least privilege1 among variables and to thoroughly 

test components of the code individually. Programming in this way is nowadays 

seen as good practice, particularly when writing large complex codes. Especially 

useful in this approach is the ability, if the modules are written well enough, to use 

modules in others codes: what is known as software recycling. 

We begin by discussing the Dynamic Memory Manager (DMM), a central part of 

the robustness of the code, followed by a discussion, with examples, of the program 

output. 
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Figure A.l: Main program block diagram depicting main order of calculation. 
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Of utmost importance in a numerical code is robustness and the ability to readily 

identify and eradicate bugs. Many of the bugs that are the most subtle and difficult 

to find are those that do not always cause an immediately obvious disturbance 

within the code. Especially in a numerical code such as this one a great number 

of these bugs are those which involve over-writing of data due to out-of-range 

subscripts used with array structures. These can, in many cases, be found by 

compiling the code with array-subscript-checking turned on (an option on many 

compilers). This, however, results in a large and slow code and so cannot be used 

for large-scale runs, during which a significant number of these bugs will not become 

apparent. 
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Table A.l: Modules within the close coupling code. 

Module name Brief description 

am _algebra 

basis_fns 

bLprop 

bLptrs 

cheb 

coulomb 

direct 

dyn_memry 

exac 

exchange 

gailitis 

grids 

io_units 

least ...squares 

max_vals 

precisn 

pseudo 

radial 

tgts 

rkt_mats 

timing 

tlsl 

Angular momentum algebra such as 3-j, 6-j and 9-j 

symbols, Clebsch- Gordan coefficients, Racah coefficients, 

Laguerre, Slater, Galloway oscillatory and shifted Legendre 

functions 

Performs R-matrix propagation 

Defines pointers to basis functions and channel data 

Chebyshev interpolation 

Generates Coulomb wave functions and Whittaker 

functions 

Direct partition code 

Dynamic memory management 

Angular coefficients for exchange kernels 

Exchange partition code 

Gailitis asymptotic matching package 

Returns least-squares/minimum-norm and quadrature 

meshes 

Control of program input and output 

Least-squares code 

Controls hard-wired program limits (no. channels etc.) 

Precision parameters and machine dependent data 

Generates pseudostate targets using Laguerre functions 

Radial functions and grids for Slater targets 

Defines target data 

Calculates R-, K- and T-matrices 

CPU timing information 

Main program 

118 
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Figure A.2: Hash table within the dynamic memory manager. The actual mem­

ory allocations are depicted as the dashed-line boxes which are pointed to by the 

allocation nodes of the hash table. These allocation nodes contain information re-

garding the size, contents type (integer, real, complex, scalar, n-dimensional array 

. . . ) and name. Shown is a close up of one of the allocation nodes. 
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In the code, a memory manager was used (written in FORTRAN 90) to handle 

dynamic memory allocations. 2 Built into the manager were regular checks of the 

integrity of the memory that do not significantly slow down the code and at the 

same time are very good at warning the user of these kinds of bugs. The manager 

had a hash table structure depicted in in figure A.2. Memory allocations were 

made by calls to the manager; the manager then allocated the necessary space 

with additional 'padding' either side. In these padded areas set values were inserted 

in memory. Overwriting the end of the memory allocation would almost certainly 

involve corruption of these specific values which would then be quickly detected and 

flagged by an error. The manager also stores information regarding the allocation 

which is used to detect multiple allocations of the same name and, at the end of 

the program, whether or not all allocations have been removed, a sign of a possible 

program logic error somewhere. These memory allocations are organised by a hash 
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table structure: a number between 0 and N- 1 is generated by each variable name, 

called a hash value, which then indexes the location of the variable attributes data 

in a table. Multiple allocations with the same number are simply strung together in 

a linked list structure. The hash table approach makes it quick and easy to locate 

a variable amongst a large number of allocations. Shown in table A.2 is selected 

output from the memory manager for a 29-state run, J = 6, showing memory usage 

information and statistics. 

A further advantage of the DMM is that controlled access to memory allocations 

may be made with the DMM from anywhere within the program. A computer 

scientist may be horrified by this programming practice saying that it violates 

the principle of least privilege, which technically speaking it does; however, in 

a numerical code such as this one I believe that when used carefully it can be 

justified. Consider important allocations such as the direct potentials and exchange 

potentials. It is clear that there is only ever one of each in existence during the 

execution of the program and that they exist for the same duration every time. I 

can thus see no justification as to why, so long as the program logic is carefully 

constructed, these allocations should not be globaP Given the large amount of data 

generated by a program such as this one, making such allocations global drastically 

reduces the number of arguments that need to be passed between procedures and 

thus greatly enhances the readability of the program. This, in turn, leads to a 

lower likelihood of a programming error in data passing. There are, of course, a 

great number of other memory allocations for which the principle of least privilege 

should be enforced, but the distinction is generally quite clear. 

Table A.2: Typical memory usage of the close coupling code. The data shown is 

from a 29-state calculation for J = 6. 

HASH NAME d1 d2 d3 TYPE SIZE 

2 cfd 60 60 2 real 56.25kB 

3 psi 225 440 0 real 773.44kB 

3 cfe 4 4 2 real 0.25kB 

continued on next page ... 
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continued from previous page 

4 phip 225 6300 0 real 10.81MB 

5 phiq 800 6300 0 real 38.45MB 

7 sphid 6300 0 0 real 49.22kB 

8 vi 13440 2560 0 real 262.50MB 

9 v2 13440 2560 0 real 262.50MB 

10 kmat 61 61 0 real 29.07kB 

13 mydp 22720540 0 0 real 173.34MB 

14 hx1 800 0 0 real 6.25kB 

17 xchLopn 4 0 0 integer 0.02kB 

20 sphiq 800 6300 0 real 38.45MB 

24 rx1 800 0 0 real 6.25kB 

25 kk 60 0 0 real 0.47kB 

26 xi 32 0 0 real 0.25kB 

27 sphi 225 6300 0 real 10.81MB 

28 dquadr 224 2 0 integer 1.75kB 

34 hm 6740 64 0 real 3.29MB 

34 v1t 896 48000 0 real 328.13MB 

37 mmats 14336 6740 0 real 737.19MB 

37 phiqp 800 6300 0 real 38.45MB 

37 hp 224 0 0 real 1.75kB 

38 psiqp 640 440 0 real 2.15MB 

45 hx 224 0 0 real 1.75kB 

47 rp 225 0 0 real 1.76kB 

49 equadr 224 2 0 integer 1.75kB 

55 rx 225 0 0 real 1.76kB 

57 kkp 4 0 0 real 0.03kB 

59 vd 224 60 60 real 6.15MB 

60 ve 224 4 4 real 28.00kB 

62 phi 225 6300 0 real 10.81MB 

63 psid 440 0 0 real 3.44kB 

65 tmm 61 61 0 complex 58 .14kB 

65 v2t 896 48000 0 real 328.13MB 

66 lsqw 14336 0 0 real 112. OOkB 

continued on next page ... 
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continued from previous page 

66 hp1 640 0 0 real 5.00kB 

68 spsi 225 440 0 real 773.44kB 

72 fm 6740 6740 0 real 346.59MB 

75 psip 225 440 0 real 773.44kB 

76 psiq 640 440 0 real 2.15MB 

76 rp1 640 0 0 real 5.00kB 

78 spsid 440 0 0 real 3.44kB 

88 chLopn 64 0 0 integer 0.25kB 

90 plm 32 21 0 real 5.25kB 

91 spsiq 640 440 0 real 2.15MB 

92 ph id 6300 0 0 real 49.22kB 

95 wi 32 0 0 real 0.25kB 

97 dchLopn 60 0 0 integer 0.23kB 

100 dpbuf 22720540 0 0 real 173.34MB 

Number of allocations: current = 50 

maximum = 61 

to date = 1753 

TOTAL MEMORY ALLOCATED: current = 2.71GB 

maximum = 2.72GB 

Current memory allocations comprised of 

integer: 7.52kB 

real: 2.71GB 

complex: 60.05kB 

Mem limit set to 3.00GB 

The integrity of the memory allocations was checked at regular intervals within 

the program, including at the very end and every time a deallocation was made. 

Due to the hash table structure the DMM is efficient and there is no observable 

degradation of performance through its use. 

Sample Output 

Shown in figure A.3 is sample output of some of the error diagnostics. The columns 

are, in order, 
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Figure A.3: Sample output from the nummum-norm code showing some of the 

error diagnostic output. The output has been truncated; only selected solutions 

have been shown. The 2p channel is one of the 2p excitation channels; the 1s 

channel corresponds to ground-state capture. Total angular momentum is J = 2; 

the collision energy is E = 175 eV; the collision system is e+-He+. The meanings 

of the columns and abbreviations are discussed in the text. 

Channel sol----- Max. Error ----- Wfn. Max. B.C.s Exch. pot. Chan. #bfn ---- Coeff. conv -----
#rune o # rx nx Abs. Norm. Abs. at Abs. Norm. AM. k e-2 e-3 e-4 e-5 e-6 e-7 
10 2p 1 1 1.9 20 1.E-06 3.E-06 4.4E-01 1.6 7.5E-08 3.5E-06 8.0E-06 3 3.14 105 71 75 79 83 87 94 

2 4.9 36 2.E-06 8.E-06 2.5E-01 1.6 3.8E-07 3.2E-06 1.3E-05 73 77 79 83 86 97 
3 4.9 36 4.E-07 6.E-06 6.3E-02 2.6 1.6E-07 1.2E-06 1.8E-05 73 77 79 83 87 97 
4 5.1 37 1.E-06 7.E-06 1.4E-01 1.6 7.2E-07 2.0E-06 1.5E-05 71 75 79 83 87 99 
5 4.6 34 5.E-06 4.E-05 1.3E-01 4. 4 2. 4E-06 2. 2E-06 1. 7E-05 71 75 79 83 86 101 
6 1.6 18 5.E-06 3.E-05 1.8E-01 1.7 1.1E-06 8.4E-06 4.6E-05 69 73 77 81 98 104 
7 1.4 17 4.E-06 2.E-05 2.0E-01 1.7 2.6E-06 9.7E-06 4.9E-05 69 73 77 80 99 
8 11.1 83 7.E-09 3.E-04 2.7E-05 4.6 9.0E-09 4.3E-06 1.6E-01 69 73 79 89 • 
9 4.6 34 i.E-05 3.E-06 3.9E+OO 1.6 2.2E-06 3.4E-05 8.6E-06 71 75 79 81 85 92 

10 4.9 36 5.E-06 2.E-06 2.3E+OO 1.7 2.2E-06 8.3E-07 3.7E-07 73 77 81 83 85 89 
11 4.6 34 2.E-06 3.E-06 6.8E-01 1.6 3.0E-07 6.4E-06 9.5E-06 71 75 79 83 85 92 
12 5.3 38 i.E-06 3.E-06 4.5E-01 1.7 1.5E-06 i.OE-06 2.2E-06 73 77 79 83 85 90 
13 4.2 32 2.E-06 4.E-06 4.8E-01 1.6 1.1E-06 5.8E-06 1.2E-05 69 73 78 82 86 93 

51 4.2 32 3.E-05 4.E-05 6.3E-01 4.6 7.1E-06 6.3E-06 i.OE-05 71 75 79 83 97 103 
52 4.9 36 8.E-06 5.E-05 1.5E-01 4.4 2.5E-06 1.6E-06 1.1E-05 69 73 77 81 92 104 
53 4.6 34 5. E-06 4. E-05 1. 3E-01 4.4 1.7E-06 7.6E-07 5.9E-06 71 75 79 83 91 103 
54 1.9 20 4.E-06 2.E-05 1.9E-01 2.3 4.4E-07 4.4E-06 2.3E-05 69 73 77 81 95 104 
55 4.9 36 i.E-05 4.E-05 3.1E-01 5.4 4.1E-06 1.3E-06 4.3E-06 71 75 79 81 96 104 
56 1.9 20 1.E-05 4.E-05 2.2E-01 2.3 2.4E-06 6.2E-06 2.8E-05 71 75 79 81 99 105 
57 15.7 106 5.E-06 5.E-05 1.0E-01 1.9 3.3E-08 2.2E-04 2.1E-03 71 75 77 92 • 
58 10.9 82 6.E-06 7.E-05 8.1E-02 1.9 1.0E-06 1.9E-04 2.4E-03 69 73 77 82 105 105 
59 10.9 82 4.E-06 5.E-05 9.0E-02 1.7 5.5E-07 2.1E-04 2.3E-03 71 75 79 85 102 

Channel sol----- Max. Error ----- Wfn. Max. B.C.s Exch. pot. Chan. #bfn ---- Coeff. conv -----

#rune o # rx nx Abs. Norm. Abs. at Abs. Norm. AM. k e-2 e-3 e-4 e-5 e-6 e-7 
56 1s 1 1 1.4 18 2.E-04 3.E-04 4.7E-01 3.1 5.4E-06 7.5E-09 1.6E-08 2 4.33 110 72 74 82 102 

2 2.3 24 1.E-04 2.E-04 7.8E-01 2.4 1.0E-06 3.7E-09 4.8E-09 74 78 82 99 • 
3 8.4 81 5.E-05 2.E-04 2.7E-01 2.6 5.4E-07 9.3E-10 3.5E-09 74 78 86 95 • 
4 2.4 25 1. E-04 4. E-04 3. 5E-01 1.8 2.9E-06 1.6E-09 4.5E-09 74 78 87 105 
5 2.6 26 2.E-04 1.E-04 1.3E+OO 1.9 6.7E-06 9.6E-10 7.3E-10 72 76 81 90 109 
6 4.2 36 4.E-04 2.E-04 1.7E+OO 1.0 2.4E-05 2.2E-09 1.3E-09 72 76 80 91 • 
7 4.2 36 7.E-04 3.E-04 2.5E+OO 2. 4 1. OE-05 6. 9E-09 2. 7E-09 72 76 80 86 • 
8 1.5 19 5.E-08 2.E-04 2.0E-04 1.6 1.1E-08 5.1E-08 2.6E-04 74 78 82 103 • 
9 2.3 24 i.E-03 2.E-04 5.4E+OO 2.4 2.3E-05 5.6E-08 i.OE-08 74 80 88 106 

10 7.9 78 1.E-04 1.E-04 1.1E+OO 2.1 2.3E-06 1.4E-09 1.3E-09 72 76 82 95 108 • 

53 4.5 38 7.E-05 6.E-05 1.1E+OO 1.9 2.6E-06 4.3E-09 3.9E-09 74 78 82 88 • 
54 3.1 29 9.E-05 5.E-05 2.0E+OO 3.3 1.2E-05 4.7E-09 2.4E-09 70 74 78 82 100 
55 4.4 37 4.E-04 8.E-05 4.8E+OO 2.6 3.2E-05 1.2E-08 2.6E-09 68 74 78 82 
56 2.3 24 3.E-04 9.E-05 3.0E+OO 1.8 3.7E-05 6.8E-09 2.2E-09 73 77 81 85 110 
57 1.4 18 9.E-05 7.E-05 1.3E+OO 1.0 1.2E-05 3.8E-09 3.0E-09 72 76 80 84 107 
58 4.9 41 5.E-05 9.E-05 5.6E-01 1.6 2.2E-06 1.3E-09 2.3E-09 74 78 82 84 110 
59 7.9 78 5.E-05 3.E-05 1.6E+OO 1.0 1.0E-05 3.3E-09 2.0E-09 70 76 80 82 96 108 
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Channel sol 

# rune o # 

Max. Error 

rx nx Abs. Norm. 

Wfn. Max . 

Abs. at 

B.C.s 

Exch. pot . 

Abs. Norm. 

Chan . 

AM. k 

#bfn 

Coeff. conv 

e-2 e-3 e-4 e-5 e-6 e-7 

channel number, target name, open/closed 

status (0 =:;.closed, 1 =:;.open) and solution 

number (from 1 to the total number of 

channels); 

solution-channel maximum error, located at 

the point x, p = rx, grid number nx, absolute 

magnitude Abs., normalised magnitude 

(absolute value ...;- solution maximum value) 

Norm.; 

solution wavefunction maximum value, of 

magnitude Abs. and located at x, p =at; 

boundary condition absolute error, the 

difference between the solution at the 

boundary condition point and the boundary 

condition itself; 

exchange potential evaluated on the matching 

point (where the R-matrix is calculated), 

absolute value and normalised ( ...;- solution 

max.); 

channel angular momentum and k-value 

(scattering momentum); 

number of basis functions in channel; 

coefficient numbers, beyond which the 

coefficients are all less than 10-2 , 10-3 , 10-4 , 

10-5 , 10-6 and 10-7 of the maximum value 

respectively. 

The figure shows only selected lines from the output for a total angular momentum 

of J = 2 and a collision energy of 175 eV. Lines are for individual solutions for each 

channel separately; shown are a few of the lines from the solutions for channel 10 

(one of the 2p excitation channels) and channel 56 (ground-state capture). 
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It can be seen that the solution errors are good in both channels, both in terms 

of absolute magnitude and relative to the wavefunction maximums; the boundary 

conditions are being obeyed (to be compared with the maximum solution value); 

and the exchange potentials are also very small on the boundary. There is one 

notable exception however: that of solution 8 in channel10. The exchange potential 

here is quite significant with respect to the solution maximum, although small in 

magnitude. Channel 8, however, corresponds the Ss channel which, at 175 eV, 

is closed. The boundary condition in solution 8, when placed close to the outer 

boundary as in this case, forces an exponentially increasing solution in channel 8; 

channel 8 (not shown) is indeed found to reach its maximum value at the outer 

boundary. Since this is evidently unphysical and will be discarded when matching 

to the boundary conditions this solution may be neglected. It is important still, 

however, that the boundary condition is being obeyed in order to maintain linear 

independence between the solutions. 

The coefficients are also seen to be well converged: to within 10-5 in all cases. 

Note the high momentum of 4.33 in the ground..:state capture making it necessary 

for more basis functions in this channel. A few (5-10) more basis functions was 

sometimes found to be beneficial in the higher momentum channels in the direct 

partition also. 

Shown in figure A.4 (p. 127) is a graphical depiction of some of the coefficients 

belonging to a 29-state calculation for J = 1, 175 eV. It can be seen from the plot 

that the coefficients are well behaved and well converged. In contrast, shown in 

figure A.5 (p. 128) are some of the coefficients for a 2-state calculation in which 

there is an inadequate total number of fitting mesh points. The same behaviour 

can also be observed if instead the distribution of points is inadequate. Care must 

be taken to avoid this situation, although with a little care and examination of the 

diagnostic output of the calculation it can be easily avoided. 

Notes 

1The principle of least privilege entails hiding certain data allocations from 
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certain parts of the program, only making them available to explicitly controlled 

areas of the code. 

2Dynamic memory allocations are blocks of memory that are allocated explicitly 

within the code during run-time, as opposed to allocations that are made by the 

compiler. Memory allocated dynamically can vary in size from one execution to 

another and can be a function of input parameters or parameters determined by 

the program. Almost all of the memory allocated by a program such as this one is 

dynamic and it is of great importance to maintain the integrity of these allocations. 

3Global memory allocations are those which are accessible from all parts of the 

program. 



APPENDIX A. CLOSE COUPLING CODE 127 

Figure A.4: Sample converged scattering wavefunction coefficients calculated using 

the minimum-norm method. The absolute values of the coefficients are plotted for 

the 1s-6s channels belonging to solution 1 of a 29-state calculation. The selected 

calculation is J = 1, 175 eV. 

ls 2s 3s 4s 5s 6s 

Coefficient number (channel) 
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Figure A.5: Sample scattering wavefunction coefficients calculated using the 

minimum-norm method. The coefficients are evidently not well converged and 

there is something wrong. In fact in this case it is due to a lack of fitting mesh 

points, although similar behaviour would also be observed if there was an inade­

quate distribution of points. The absolute values of the coefficients are plotted for 

the 1s and Ps(1s) channels belonging to solution 1 of a 2-state calculation. The 

selected calculation is J = 3, 175 eV. 

ls Ps(ls) 
Coefficient number (channel) 



Appendix B 

Development of a Parallel Version 

of the Close Coupling Code 

Introduction 

During the course of working with the least-squares/minimum-norm code it was 

decided that it would be beneficial to develop a parallel version of the code. In this 

appendix we discuss in some detail why this was felt to be necessary, how it was 

achieved and what effect it had on performance. 

The motivation for extending the serial code to also be able to work in a parallel 

configuration arose from a number of issues: 

1. the serial code was very computationally intensive and slow to generate re­

sults; 

2. the least-squares code had been originally noted to be particularly suitable 

for parallelisation [2]; 

3. it was already running on a machine with parallel capabilities (in fact, a Sili­

con Graphics Origin 2000) and scope was spotted for being able to capitalise 

on the remaining 7 CPUs that were often available; 1 

4. for the largest close coupling sets the program was close to the memory limit 

of the current machine and so it was no longer possible to run separate copies 

129 
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of the program concurrently (trivial parallelisation); 

5. due to being so computationally intensive, larger basis set calculations would 

only be realistically tractable if it were able to utilise multiple processors, 

such as on a distributed memory massively parallel supercomputer;2 and 

6. in its serial form, due to the large memory consumption, it was limited to 

running mostly on shared memory machines only which typically can make 

much larger quantities of memory readily available for just one processor than 

can other machines.3 

The plan was, originally, to eventually port the code to a distributed memory mas­

sively parallel machine, although subsequently this was found not to be necessary. 

The possibility of being able to run the program on a network cluster was also 

considered, if it was possible to design the parallelisation to be flexible enough, 

although this was certainly not a priority. 

An algorithm was developed that would both satisfy the above requirements 

and be relatively quick to implement. The language that was chosen (the original 

code was written in FORTRAN 90) was the Message Passing Interface (MPI), in 

fact MPI-2, details of which may be found on the World Wide Web and in the 

standards document [204]. The reasons for this choice were its 

• availability on a wide range of platforms with a good range of software (de­

bugging and profiling) support; 

• suitability to a wide range of different types of architecture, in particular the 

distributed and shared memory machines that were to be used; 

• availability for C, C++ and FORTRAN (77 and 90) bindings; and 

• explicit control over message passing and process control (the latter is only 

available in MPI-2 however). 

The first two points are important for satisfying portability, although the algorithm 

must of course still be designed in such a way as to suit the various architectures. 
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Figure B.l: Diagram depicting the basic architecture of the Origin 2000 machine. 

CPUs 

·~..;:_:_:_:_:..:..:.:..:..:.:...-;..-+--- Secondary level 

cache 

Memory 

--- Internode 
communication bus 

Node 

Other possibilities included: Parallel Virtual Machine (PVM), which is now ob­

solete; and SHared MEMory (shmem), which does not offer explicit control over 

message passing and is not portable. 

Having discussed the reasons for undertaking a conversion of the code into 

parallel form we now discuss in more detail how this was achieved and what effect 

it had. 

Implementation 

Before discussing the algorithm it is appropriate to discuss the architecture of the 

target platform: the SGI Origin 2000. 

The Origin 2000 is an 8 processor machine with, in this case, a total of 4GB 

of memory. Although to the user the machine is a shared memory machine these 

processors and memory are in fact arranged as 4 nodes each comprising of 2 pro­

cessors, 1GB of memory and 8MB of secondary level cache4 (figure B.l). The 

nodes are interconnected by a fast data bus; data allocation and transfer between 
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Figure B.2: Depiction of the partitioning of the M-matrix, Mij>..(rq); each segment 

is labelled by the channel index i. 

Basis functions and 
channel couplings 

scattering equations 
and least-squares 
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task 
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Direct partition 
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Direct 
Partition 

Exchange 
Partition 

Exchange partition 
couplings 

nodes is handled by the operating system, hence the system is a shared memory 

one, although memory accesses across this bus are significantly slower than those 

confined to a single node. 

After consideration of the criteria discussed above and, in particular, the ar­

chitecture of the Origin machine a master-slave configuration was adopted for the 

parallelisation since this was easy to code. The whole code was not parallelised 

since this was not deemed necessary; instead, only construction of the M- and 

F-matrices (equations 2.48 and 2.5la) was parallelised. 

The parallelisation was achieved by a partitioning of the M-matrix into seg­

ments each corresponding to a particular channel i (equation 2.48); this is depicted 

in figure B.2. The M-matrix is indexed by j, A and i, q where, remember, q indexes 

the quadrature and A indexes the basis functions c/J{ ( r q) for couplings to a particu­

lar channel j. Since each task corresponds to a particular scattering equation there 

are typically up to around 60 tasks in the task pool. 
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It is in fact more convenient to divide the tasks into two task pools containing 

tasks of type 1 and type 2 respectively. The reason for this is that there is certain 

data common to tasks for which channel i belongs to the direct partition and 

those which belong to the exchange partition; these are what are labelled types 

1 and 2. Slaves are initialised to either type 1 or type 2 at the beginning of 

execution, saving a certain amount of time in the initialisation for each task. 5 

During type initialisation the slaves thus receive the basis functions and with each 

task initialisation they need only receive the relevant potential couplings. 

The slaves also construct a segment of the F-matrix, Fj>,,JI>..' (equation 2.51a), 

during each task which is returned to the master processes for collation upon com­

pletion of the task. This corresponds to sequence of dot products, one for each pair 

j,). and j', >.'. The job of the master is to sum the contributions to the F-matrix 

from each task which, for speed purposes, is done by buffering the data returned 

from each task, thus allowing the data to be transferred each time in a single burst. 

Now to the actual algorithm. Shown in figure B.3 on page 138 is a flow diagram 

depicting the modification to the serial code (figure A.1) required to construct the 

master process; the complete slave process is depicted in figure B.4, page 139. 

All processes begin by initialising their respective MPI environments and mem­

ory managers; the master process then proceeds with the first part of the program, 

reading in program parameters and any precomputed data stored on disk followed 

by any preliminary calculations, such as angular couplings and generating the grids 

for discretisation of the equations. When the M- and F-matrix calculation is 

reached the task pools are initialised and the slaves are partitioned and initialised 

into type 1 's and type 2's; their identities and status are also logged by the master 

and buffer memory is allocated. Communication channels were then opened by 

the master, one for each slave. These are non-blocking receive6 calls which provide 

a mechanism by which the slaves can contact the master for data. The tasks are 

then distributed to the slaves and executed one-by-one. When both task pools 

are exhausted and all results have been received the master then proceeds with 

the rest of the program. In practice the master process also executes some tasks; 7 

these tasks were chosen as the ones which involved the most data (type 2s) so as 
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to minimise duplication in memory.8 Finally, all memory allocations were checked 

for integrity (see appendix A) and temporary ones discarded. 

Observed Performance and Discussion 

The impact on performance when run on the Origin machine was startling: there 

was not only a considerable increase in performance when run on anything from 

2 to 8 processors but the performance increase was found to be superscalar!9 The 

increase in execution speed when operating on 6 CPUs was found to be around 8-

fold: a superscalar factor of around 50%.10 At first sight this is indeed a surprising 

result; how can this be possible? 

Although as yet unverified11 it is strongly suspected that the reason lies in the 

physical organisation of the memory within the Origin machine (figure B.l). As 

explained previously, memory is distributed physically between the nodes; memory 

access between nodes is much slower than when confined to within a single node and 

involves a large latency period. It is postulated that the increase in performance 

arises from the essentially explicit partitioning of data between processors within 

the program logic which assists the operating system in deciding upon the physical 

location of data during execution. The serial code, for the largest coupling cases 

considered, occupied considerably more memory than was available on one node 

alone and so would be spread across multiple nodes. This could clearly slow down 

execution in some cases. 

In addition to the above there could possibly also be an increase in performance 

from the redesign of the algorithm when performing the dot products for the F­

matrix elements. Instead of acting on data segments spanning all channels the dot 

products only acted on segments which were each only one channel in length and 

hence of dimension around 150 to 200. There is a possibility that the processors 

were able to make better use of cache memory with the smaller data segments and 

hence there were fewer cache misses than with the serial algorithm. The logic of 

cache operations is a complex subject and is clearly processor dependent; however, 

it is unlikely that the superscalar increase could all be attributed to a higher cache 
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hit rate. 

One lesson is clear from the above findings: careful design of a program algo­

rithm, taking into account the architecture of the machine to be used, is highly 

beneficial; use of all 8 processors with the above parallel code gave around an or­

der of magnitude increase in program performance from only a modest amount of 

reprogramming. The subject of machine architecture and parallel programming al­

gorithms is, however, a vast and complex one and will not be discussed any further 

here. 

Notes 

1The number of CPUs that were available of course depended on the usage of 

the machine by other users. A dynamic load-balancing scheme was planned which 

could be incorporated into the designed algorithm at a later stage. The modified 

code would have made use of the process-spawning capabilities of MPI, only made 

available in MPI-2, and could have controlled the number of threads (processes) 

running in order to utilise all available processors; it would have been dynamic in 

that the number of processes could have varied during program execution. In fact, 

with the particular machine being used, this was never found to be necessary and 

so was never carried out. 

2 A distributed memory machine is one in which each processor has its own 

memory which is physically separate to the rest of the machine apart from network­

style communication pathways between processors; a processor with its memory 

and associated circuitry is often referred to as a node. A massively parallel machine 

is one composed of a great many nodes interconnected by a very fast communication 

backbone; the exact architecture can vary. 

3 A shared memory machine is a machine with multiple processors which all 

share the same memory resources. In fact what is often the case is that individual 

processors, or small numbers of processors (2 or 4), share the same memory on an 

equal footing (called nodes) but are given access to the memory belonging to other 

processors. This access is handled by the operating system and is transparent to 
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the user who views the total system memory as being available to each processor 

on an equal footing, analogous to virtual memory. The SGI Origin is an example 

of such a machine which will be discussed in more detail later. 

4Cache is memory that resides between the processor and main memory (or 

other device, such as a hard disk) and stores (buffers) frequently accessed data 

from memory; it is much faster than main memory, operating at a speed closer 

to that of the processor, and helps to remove processor-memory bottlenecks. The 

processors have a small quantity (32kB) of primary level cache incorporated within 

them (faster than secondary level cache, but generally smaller). 

5The type of a slave may change however during program execution if one of 

the task pools becomes exhausted before the other. 

6Send and receive data operations in MPI can be classified into blocking and 

non-blocking types. Blocking operations are ones in which the library routine does 

not return control of execution to the calling code until the operation is complete; 

non-blocking calls return control immediately after the operation has been set up. 

The advantage of non-blocking operations is generally that program execution is 

not held up by slow communications; the programmer does, however, have to be 

aware that the operation may not, and probably will not, be completed for some 

time and so the data involved will not be immediately available. In this instance 

in the program non-blocking receives are used as a means by which the slaves can 

contact the master at any time, rather like a telecommunications pager. 

7It should be noted that the fork of execution depicted in figure B.3 was achieved 

by program logic, with control over granularity chosen carefully, and not by the 

spawning of a concurrent process. 

8The observant reader may question as to why data is being duplicated on a 

shared memory machine. The answer is that the program was originally destined 

for a distributed memory machine eventually. Also, as we shall see in the next 

section, this actually had quite a beneficial impact on speed on the shared memory 

machine. 

9When the number of processors which a program is run on is increased from 1 

to N one would expect an increase in execution speed of P < N times. A program 
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which acheives an increase of P > N is said to be superscalar. 

10The increase in performance was a little difficult to ascertain with any great 

degree of precision since it varied depending on machine load from other users. 

11The performance of a parallel code can be monitored using a piece of software 

called a profiler. The reasons for the superscalar increase were, unfortunately, never 

investigated this way due to time constraints. 
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Figure B.3: Block diagram depicting the order of execution of the master process. 
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Figure B.4: Block diagram depicting the order of execution of the slave processes. 
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Appendix C 

Evaluation of Close Coupling 

Matrix Elements 

In this appendix we evaluate some of the matrix elements of the close coupling 

equations: the exchange potentials M3 and M4 and the direct potentials Va/3 and 

W-ya· 

Matrix element M3 

Beginning from 

M3 = (<fi IH- El wfM! 

= L 100 

pdpKa-y(x,p)g;L-r(p). 
'YL-r 0 

(C.l) 

Writing this out in full 

L, J dx J drRn,t,(r) (Lala;m~maiJM) YLm~(x)Y!:mJx) x 
mama 

[
- ~ \72 - \72 - _!_ + z - z - El X 

4 P R R x r 

L ~g;L-r (p)Sn-rl-r (R) (L-yl-y; m~m'YIJ M} YL-rm; (p)Yl-rm-r(R), (C.2) 
-yL-y p 

m-y m~ 
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where the Hamiltonian has been written out in full. Using the relation dr = 8dp, 

where x has been held constant, we can write 

Kcry(x, p) = 8 L (Lala; m~mallM) (L1 l1 ; m~m,IJM} I dx I dp 

Rn.,t,Jr)YLm~ (x)Yz:m., (x) x 

[- ~ \72 - \7~ - _.!._ + z - z - El x 
4 P R x r 

Sn-,t-, (R)YL-,m~ (p)Yl-,m-, (R). (C.3) 

We firstly use the relations 

(C.4a) 

(C.4b) 

and substitute 

_ (1)( ) (2)( ) ( 1) [d2 
L1 (L,+1) ,2] Ka,(x,p) = Ka, x,p + Ka, x,p. -4 dp2- p2 + k, . (C.5) 

We now have a product of four spherical harmonics to be evaluated, two of which 

require a change of variable. This may be accomplished by use of [205] 

) 
[ 

AA ]1~ .A l - .A 41fl.l! 

J.L m- J.L [2(l- .A)+ 1]!~! 
(C.6) 

where R = r A - r B, 

i = 2l + 1, (C.7) 

( 
l .A l-.A) 

-m J.L m- J.L 

(C.8) 

is a Wigner 3j symbol related to a Clebsch-Gordan coefficient by the relation 

(
a b c) = (-)a-b-,c-1/2 (ab; a,Bic- 'Y). 
a ,B 'Y 

(C.9) 



APPENDIX C EVALUATION OF CLOSE COUPLING MATRIX ELEM ... 142 

and 

(C.lO) 

is termed a solid spherical harmonic. This leads to the relations 

y;* (f) = (-)la+ma """' 6 [47r~a!] (2p)axb X lama ~ la,a+b A lbl 
a,b a. · 

and 

The products of spherical harmonics may now be evaluated using 

(C.l2) 

so that 

Ir - J dfY!1m1 (f)Y!2m2 (r)Yl3m3 (r)Y!4m4 (f) 

A A A A 1 

= L (hl2ls~4 ) 2 
(hl2; m1m2llm) (Zsl4; m3m4llm) 

lm 47rl 
(C.l3) 

Now, defining 

00 

= L ki~~-r(x, p)P,~.(xp) (C.14a) 

= 47r L ,\ -lki~~'Y(x, p)Y;mJx)Y>.mJP) 
>.,m>. 
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and 

Oi~- r-ta Rn"'tJr)Sn-rt-r(R)R-t-r 
00 

= L ki~~1 (x, p)P>.(xp) 
A=O 

= 47r L ~ - 1 ki~~1 (x, p)Y>.*mJx)Y>.mJ.O), 
A,m;~. 

where 

V(x, p) = V(p, x) = -R-1 + zx-1
- zr-1, 

we have 

(i) - /\ -- -- (i) \ 1+1 
k>.,a-y- 2 _

1 
d(xp)P>.(xp)Oa-y· 

We note that for real targets (C.l4a) is much simplified since 

Now, collecting together all the above results, we arrive at 

pa+cxb+d L kii,~'Y(x, p) X 

A 

(C.l4b) 

(C.l5) 

(C.l6) 

(C.l7) 

d j) (La A j) L (a c k) (L1 A k
0

) M (C.lB) 
00 0 00 k 000 0 0 

where 

M= L(- )ma+mk (Lala; m~ mall M) (L1 l1 ; m~m1 Jl M) 

(ab; mamblla- ma) (cd; mcmdJl1 m1 ) (LaA; m~m>-Jjmj) 

(bd; mbmdJjmj) (L1 A; m~m>.Jk- mk) (ac; mamcJkmk). (C.l9) 

Note that some Clebsch-Gordan coefficients have been converted to 3j symbols by 

use of the relation (C.9). 
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What remains to be evaluated is now the summation of Clebsch-Gordan coeffi­

cients M. This is convenient to evaluate by the use of graphical methods, described 

in for example Brink and Satchler [188] and Zare [187]. In what follows we adopt 

the definitions of Zare which, the reader should note, differ slightly from those of 

Brink and Satchler in places. References to the original work are given in [187, 188]. 

In what follows, a plus sign denotes a counterclockwise node and a minus sign de­

notes a clockwise node. 

Using the definition 

and the fact that 

b 

we may write immediately 

+ 

+ la, -m a 
>-----

(C.20) 

(C.21) 

(C.22) 
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(C.23) 

where the phase cjJ1 = la+ k. Rearranging the nodes and adding/cancelling arrows 

j 

k 

r-------------------~ 
I 
I 

(C.24) 

We note at this point that the diagram has been put in normal form: every internal 

line, a line that is connected at both ends, has exactly one arrow on it. The 

importance of this form is that any diagrams arising from coupling of angular 

momenta can be put into this form. The explicit demonstration that the diagram 

can be put into normal form thus serves as a useful check of the manipulation so 

far. Using the theorem 

jl 

h 

A 
h B 

j4 
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A B 

(C.25) 

where A is a closed block (it has no external lines) and can be put into normal 

form, this may be written instead as the product of two diagrams 

M= (- )rf>' J(icJ'Y) 112]k LY X 

y 

y 

c 

(C.26) 

where the new quantum number y, with corresponding magnetic quantum number 

my, has been introduced. The first of these terms is 

(C.27) 

Notice that this closed diagram (no external lines) is in normal form. Because of 

this it can be immediately interpreted as a 3nj symbol. In this case it can be shown 
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to be equal to the 9j symbol 

la l'Y Y 

b d J 

a c k 

(C.28) 

multiplyed by an additional phase factor (- )<1>2 arising from the rearrangement of 

arrows and node orientations, where 

(C.29) 

(note that all quantum numbers are integers and hence (- )2P = 1 for any quantum 

number p). The second term in (C.26) transforms to 
r--------------------

Ly 

y 

(C.30) 

By application of the theorem 

jl 

A h B 

h 

A B 

(C.31) 
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where once again A is a closed diagram in normal form, this transforms to the 

product 

+ + (C.32) 

Once again these two diagrams, which can easily be shown to be put equivalent to 

diagrams in normal form, may be identified with 3nj symbols: in this case the 6j 

symbols 

{~ La Lo} 
Ly la 

{: 
k L} La 

respectively, multiplied by phase factors (- )4>3 and (- )4>4 , where 

Collecting together phases: 

we have the final result for M: 

cjJ3 = Y + J + La + l1 

c/J4 = y + k + L, 

= J +La +L1 +-X 

M= (-)J+La+L-r+>-]k(Zaf,)l/2 L y 
y 

X 

a c k 

(C.33a) 

(C.33b) 

(C.34a) 

(C.34b) 

(C.35) 

(C.36) 
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Notice that in this expression the summations have been reduced to only one and 

all magnetic quantum number dependence has disappeared. 

To the reader who has used the graphical method before, or who verifies the 

derivation given here for M, its power and usefulness quickly becomes apparent. 

Of course, to every graphical manipulation there exists a corresponding set of 

algebraic manipulations, but the graphical method has a number of advantages. 

Firstly, the notation is more compact: redundant magnetic quantum numbers are 

suppressed and certain phase factors and other factors are separated from the real 

subjects of the manipulation, improving clarity. Secondly, the manipulations are 

made by recognising geometric patterns. Furthermore, these manipulations may be 

practiced or tried out without inclusion of all of the calculational details before the 

full calculation is carried through; phase factors and other factors can be dropped 

whilst quick sketches are drawn in order to try out various manipulations. The 

calculation may then be carried out more carefully including all components of the 

graphs before finally evaluating all additional factors that are not accounted for in 

the graphs, as was done above when collecting together phase factors. For further 

reading the reader is referred to the literature previously cited and the references 

cited therein. 

We thus have, finally, 

where 

[ 
(2Za)! l [ (2fy)! ] 

(2a)!(2la- 2a)! (2c)!(2l1 - 2c)! x 

l:J (b d j) (La A j) Lk (a c k) (L-y A 
0
k) x 

j 000 0 00 k 000 0 0 
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la l1 Y 

b d J 

a c k 

From equation (C.5) we also have 

K(i) (x p) - """'A k(i) (x p) 
a{ ' - L ac>. >.,a{ ' 

ac>. 

(C.39) 

We note that in this form the kernels kt~1 (x, p) are energy independent and depend 

only on the target expansion (2.21) and the total angular momentum J; all angular 

factors, also energy independent, are contained in the factor Aac>.· For each energy 

all that needs to be evaluated is the derivative given by the last few terms in (C.37). 

Matrix element M4 

The matrix element 

M4 = ('1/J IH- El wbM) 

= L 100 

xdxK 1a(P, x)ft.Lcz (x) 
IL'Y 0 

(C.40) 

is evaluated in much the same way as M3 • Holding p constant and using the relation 

dR = 8dx we have 

K 1a(p,x) = 8 L, (L1 l1;m~m1 IJM) (Lala;m~maiJM) J dp J dx 
m'Ym'Y 

Sn~l~(R)Yz*m (R)YZ m' (p) X 
' ' 'Y 'Y 'Y 'Y 

[-! yr2 - ! yr2 - 2_ + z - z - El X 
2x 2r R X r 

Rnczlcx (r) Ylcxmcx (f) YLcxm~ (x). (C.41) 

We now use the relations 

(C.42a) 

(C.42b) 
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and substitute 

- _ -(1) -(2)( ) ( 1) [ d
2 

La(La + 1) 2] K ,a (p, x) = K ,a (p, x) + K ,a p, x . - 2 dx2 - x2 + k, . (C.43) 

Now, similar to before, putting 

and 

and evaluating the products of integrals 

x (La>..; OOijO) (ac; OOijO) (- )mi (C.45) 

Ip = (-)m~+m>- J dpYL-y-m-y(p)Ybmb(p)Y>.-m~(p)Ydmd(p) 
~ ~~ ~ 1 

"""" ( bd>..L,) 2 ( I I \ ( I k ) = L.....,; ~ L1 >..; m1 m>. kmk; bd; mbmd mk 
k,mk 41fk 

x (£1 )..; OOikO) (bd; OOikO), (C.46) 

we also define 

~ +1 
-(i) ( ) - )..1 d(...-....)P (-)Q(i) k>.,,a p, x - 2 -1 px >. px ,a, (C.47) 
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h · ·1 o(i) w ere, s1m1 ar to a'Y, 

(C.48a) 

= 47!" L ~ -lk~~~a(P, x)Y,{m>- (p)Y_xm>- (x) 
A,m>, 

and 

Q(2) - R-l-y S (R) D ( ) -lo 'YO< = n-yl-y .LLnolo r r 
00 

= L k~~~a(P, x)P_x(px) (C.48b) 
-X=O 

= 47!" L ~ -lk~~~a(P, x)Y,x*m>. (p)Y_xm>. (i); 
A,m>, 

V(p, x) is defined by (C.l5). Bringing together all of these results we obtain 

xa+c pb+d L k~:'Ya (p, X) X 

A 

L (a c j) (La ..\ i) L (b d k) (L'Y ..\
0 0

k) M (C.4g) 
j 000 0 00 k 000 0 

where 

M= L(- )m-r+mi (L'Yl'Y; m~m'YIJ M) (Lala; m~ mall M) 

(ab; mambll'Y- m'Y) (cd; mcmdllama) (LaAi m~m,xlj- mj) 

(ac; mamcljmj) (L'YA; m~m_xlkmk) (bd; mbmdlkmk). (C.50) 
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In order to evaluate M we compare (C.50) with (C.19). Making the substitutions 

La--+ Ly Lr--+ La 

m' -+m' a 'Y m' -+m' 'Y a 

la --+ l7 l7 --+ la 

ma--+ m'Y m'Y--+ ma 

j-+k k-+j 

mj--+ mk mk--+ mj 

we see that M --+ M. It follows immediately then that 

M= (- )J+La+L-r+>-]k(lal"()l/2 LY 

X 

y 

l7 la Y { Y 
b d k 

J 
a c J 

(C.51) 

(C. 52) 

:J (C.53) 

Notice that in this expression the summations have been reduced to only one and 

all magnetic quantum number dependence has disappeared. 

We thus have, finally, 

- ""- [-(1) -(2) K 7a(P, x) = L.....t Aac>. k>..,7a(P, x) + k>..,7a(P, x) X 

a c).. 

(-~) { ~- L'Y(La + 1) + k2 }] (C. 54) 
2 dx2 x2 a 

where 

"L:J (a 
. 0 

J 

,.\ ~) X 0 

l7 la Y 

LY b d k 
y 

a c J 

{ 
y L7 La} {y 
J la l7 A 

J 
k } . (C.55) 

L'Y La 
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From equation (C.43) we also have 

-(i) ( """"'- -(i) ( K"Ya p, x) = L....J Aac>-k>.,"'fa p, x) (C. 56) 
ac>. 

Similarly to the matrix element M 3 the kernels K~,~a (p, x) are energy independent 

and depend only on the target expansion (2.21) and the total angular momentum 

J; all angular factors, also energy independent, are contained in the factor Aac>.. 

For each energy all that needs to be evaluated is the derivative given by the last 

few terms in (C.54). 

Direct potentials V af3 and W ,8 

The two direct potentials are given by the matrix elements (2.33) 

(C. 57) 

(C.58) 

Writing (C.57) out in full we have 

Va,e(x) = 2 L (Lala; m~ mall M) (L,el,e; m~m,eiJ M) J dx J dr 

Rnala (r)Rn 13 !13 (r)Y/:mJf)Yi 13m11 (f)YL*am~ (x)YL13m~ (x) [~- ~] · (C.59) 

Noting that R = lr- xl and introducing the notation 

(C.60) 

this may be rewritten 

(C.61) 

where, as usual, * denotes complex conjugation. The first term is straight-forward 

to evaluate, giving b'a,e(~). For the second term we use the result [87] 

I= I dx I df YftM* lr ~ xl Yf,f,1 

= L J';.(r, x)C;.(Ll; L'l'; J) 
,\ 

(C.62) 



APPENDIX C EVALUATION OF CLOSE COUPLING MATRIX ELEM ... 155 

where 

C>.(Ll; L'l'; J) = (- )>. [(2L + 1)(2l + 1)] 1
/
2 

X 

(L' A; OOILO) (l' .\; OOilO) W(L' .\Jl; Ll') (C.63) 

is a Percival-Seaton coefficient, W(L' .\Jl; Ll') is a Racah W-coefficient [206], and 

{ 

r>-
:::>:+1 , x > r 

!>.(r, x) = x 
x>-

r>-+1' r >X. 
(C.64) 

This is proved as follows. 

Expanding 

(C.65) 

we have two integrals over products of three spherical harmonics. These may be 

evaluated by use of 

(C.66) 

the fact that 

(C.67) 

and the orthogonality of the spherical harmonics. From this we obtain 

~ ~ ~ ~ /2 

C>.(Ll; L'l'; J) = L)- )mL+m!+tt (LlL:l')
1 

(Ll; mLmdJ M) (L'l'; mvmt'IJ M) 
_\2 

(LL'; -mLmv l.\p,) (ll'; -mtmt'l.\- p,) (LL'; OOI.\0) (ll'; OOI.\0). (C.68) 

Using the symmetry relations of the Clebsch-Gordan coefficients we make the re­

placement 

(LL'; OOI.\0) (ll'; OOI.\0) 

(L~l/2 (- )L+l (L' A; OOILO) (l' .\; OOilO). (C.69) 
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This can now be manipulated in graphical form giving 

C>.(Ll; L'l'; J) = (-)>.(£'[') 112 (L' .A; OOjLO) (l' .A; OOjlO) 

J 

= (-)>-(£'[') 112 (L' .A; OOjLO) (l' .A; OOjlO) 

+ 

+=------E---~ + 
I 

= (-)>.(£[) 112 (L' .A; OOjLO) (l' .A; OOjlO) 

( _ )J+L+L'+>. {L' A L} 
l J l' 

L' 

= (- )>.(£[) 112 (L' A; OOjLO) (l' A; OOjlO) W(L' .All; Ll'). (C. 70) 

We thus have the final result 

Here the integral may be evaluated analytically in the case of real (eigenstate) 

targets or numerically in the case of pseudostates. 

We now proceed to the other direct potential, W78(p). Writing it out in full we 
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have 

(C.72) 

where the sum is over the magnetic quantum numbers. The rest of the derivation 

proceeds much the same as for Va.e ( x), noting that 

(C.73a) 

(C.73b) 

where the factor (- )>. arises due to the parity of the Legendre polynomial (!-L --+ 

- f-L). Defining 

(C.74) 

we thus have 

It is worth noting that the contribution to the potential is zero for values of>. that 

are even. This is a consequence of the charge-mass symmetry of positronium which 

does not occur for, say, hydrogen. 
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Chebyshev interpolation, 58 close coupling 

classical trajectory Monte Carlo method, equations, 11, 22 

90-92 general scattering, 9-11 

addition of laser field, see laser field partitions, see partitions 

advantage of, 90 wavefunction expansion 

c.f. Born approximation, see Born electron, 12 

approximation error in, 60, 124, 125 

conservation laws general, 10 

checks of, 98 positron, 13, 18 

coordinates, see coordinates condition number, see conditioning 

cross sections conditioning, 26, 50, 61-62 

defined, 100 Condo hypothesis, 89 

equations of motion, 97 configuration space 

exit tests, 94, 98-100 c.f. momentum space, see momen-

Hamiltonian, 93 turn space 
\ 

laser perturbation, see laser field continuum orbitals, 36 

impact parameter convergent close coupling, 16-18 

angle randomised for laser, 102 coordinates 

capture as a function of, 101, CTMC, 93 

109 Jacobi, 19 

importance sampling, 101 correspondence principle, 90 

initial distribution, 95-97 Coulomb Born approximation, 86 

microcanonical distribution, 95 Coulomb function, 59, 87 

alternative, 91 irregular, 29 

multielectron targets, see Fermion regular, 29 

molecular dynamics Coulomb phase shift, 29 

semi-classical quantum numbers, coupled equations, see close coupling 

98 CQC, see classical-quantal coupling 

statistics, 95, 98, 101, 102, 104 cross section 

theory, 92-102 in terms of T-matrix, 30 

classical-quantal coupling, 91 CTMC, see classical trajectory Monte 
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Carlo method 

diabatic states, 91 

direct potentials, see also matrix ele­

ments 

evaluation of, 52-53 

DS, see diabatic states 

dynamic memory manager, 117-122 

eigenphases, 69, 73, 87 

electron loss 

close coupling, defined, 76 

Euler angles, 96 

exchange 

electron, 12, 43 

electron/positron distinction made 

clear, 47 

kernels, see exchange kernels, 53 

exchange kernels, see also exchange 

potentials, 21 

depiction of, 56 

reduction in storage, 58 

singularity in, 54 

structure of, 54-57 

zero elements, 58-59 

exchange potentials, see also exchange 

kernels, 54 

checks of, 60, 124, 125 

radial quadrature, 54, 57-58 

loss of significant figures, 58 

excitation 

close coupling 
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defined, 76 

F-matrix, see least-squares method 

Fermion molecular dynamics, 91 

Feshbach operator, 43 

Feshbach resonances, see resonances 

Floquet, see photoionisation 

FMD, see Fermion molecular dynam­

ics 

G-matrix, see least-squares method 

Gaussian integration, 27, 53, 54, 57 

compound rule, 27 

exchange radial quadrature, see ex­

change potentials 

high-order vs. low-order, 57, 60 

Gaussian quadrature, see Gaussian in­

tegration 

geometric capture model, 109 

geometric progression 

correction for higher J, 76-77 

GP, see geometric progression 

graphical method, 144-149, 156 

closed block, 146 

normal form, 145, 148 

power of, 149 

Green's function 

free particle, 41 

optical potential, 44 

sector, 34 

solution following form, 34 

H-matrix, see least-squares method 
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Hamiltonian 

CTMC, see classical trajectory Monte 

Carlo method 

positron scattering, 20 

Harris method, see variational method 

H, see antihydrogen 

Hermiticity, 33, 48 

HSCC, see hyperspherical close cou­

pling 

Hulthen-Kohn, see variational method 

hydrogen 

experimental production of, 108 

hyperspherical close coupling, 39-41, 

73 

diabatic-by-sector method, 41 

ill-conditioning, see conditioning 
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Jacobi coordinates, see coordinates 

K-matrix, 30, 59 

symmetry of, 60 

Kepler orbit, 95, 96, 98, 100 

kernels, see exchange kernels 

laboratory collision energy 

related to centre of mass energy, 

94 

laser field 

Born approximation, see Born ap-

proximation 

field strength, 102 

perturbation to Hamiltonian, 102 

phase, 102 

polarisation 

effect of, 113 

impact parameter, see classical trajec- effect of in H, 113 

tory Monte Carlo method ramping, 102, 112 

importance sampling function, see clas- related to field strength, 102 

sical trajectory Monte Carlo method least-squares method, see also minimum-

inner region, see partitioning of space norm method, 23-26, 63, 66 

intermediate region, see partitioning 

of space 

propagation of solution in, see prop­

agation 

interpolation, see Chebyshev interpo­

lation 

ionisation 

by antiprotons, 89 

close coupling, defined, 76 

boundary conditions, see bound-

ary conditions 

choice of fitting grid/mesh, 59 

electron scattering, 23 

F-matrix, 26, 132, 133 

G-matrix, 26 

H-matrix, 26 

M-matrix, 26, 132 

solution coefficients, see solution 
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coefficients 

linear-dependence, see conditioning 

Lippmann-Schwinger equation, 41 

log-derivative matrix, see R-matrix 

LU-decomposition, 61 

M-matrix, see least-squares method 

matrix elements, 20 

Born, 42 

direct, 21 

evaluation of, 154-157 

evaluation of, 140-157 

exchange, 21 

evaluation of, 140-154 

structure of, see exchange ker­

nels 
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properties of, 93 

NAg, see numerical algorithms library 

numerical algorithms library, 98 

optical potential method, 43-44, 66, 

73, 86 

Ore gap, 2 

partial wave expansion, 11, 20 

partitioning of space, 24 

asymptotic region 

choice of, 59 

defined, 28 

inner region 

choice of, 59 

defined, 24 

method of partial waves, see partial partitions 

wave expansion direct/exchange defined, 13 

microcanonical distribution, see clas- Percival-Seaton coefficient, 155 

sical trajectory Monte Carlo method perturbed stationary states, see also 

minimum-norm method, see also least- polarised orbital method, 91 

squares method, 26-27 phase shift, see also Coulomb phase 

resonance, 64 shift, 30 

results, 63-87 photoionisation, 111-113 

momentum space, 41-43 Floquet, 112 

c.f. configuration space, 42 

equations, 42 

multipole expansion, 32 

muons 

capture of, 90, 104 

similarity with p capture, see an­

ti proton 

pions 

capture of, 90, 104 

properties of, 93 

polarisation potential, see polarised or­

bital method 

polarised orbital method, 44-45, 69 

positron 
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annihilation, 3, 4 

bound states incorporating, 3 

history of, 2 

naturally occuring, 3 

production of, 2, 5-7 

properties of, 2 

reactions with H and He+, 4 

scattering 

c.f. electron, 4, 12-14 

potential 

multi pole expansion, see multi pole 

expansion 

non-local, 11 

propagation, 24, 31-35, 47, 59 

equations, 34 

Light-Walker, 35 

packages, 31 

solution following, 35 

pseudoresonances, 16, 79, 81 

pseudostates, 14-16 

pseudothresholds, see pseudoresonances 

PSS, see perturbed stationary states 

quadrature, see Gaussian integration 

R-matrix, see also R-matrix method, 

24, 31, 37, 59 

propagation, see propagation 

symmetry of, 60 

R-matrix method, 35-37 

Racah coefficient, 155 

reaction matrix, see K-matrix 

resonances, 40, 41, 63, 67, 71 

S-matrix, 30 

poles in, 16 
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scattering matrix, see S-matrix 

Schwartz singularities, see variational 

method 

Schwinger method, see variational method 

shape resonances, see resonances 

singular value decomposition, 61 

singularity 

in exchange kernels, see exchange 

kernels 

Schwartz, see variational method 

small-angle scattering, 101 

solution coefficients 

checks of, 60, 124-125 

static exchange approximation, 45, 63 

static interaction, see static potential 

static potential, 13, 45, 46 

surface amplitudes, 37 

SVD, see singular value decomposi­

tion 

T-matrix, 30 

target 

basis sets, see basis sets 

energies, 51, 52 

scaling parameter, 51 

wavefunction, see wavefunction 

TDHF, see time-dependent Hartree Fock 

threshold energies 



INDEX 

for He+, 66 

time-dependent Hartree Fock, 91 

transition matrix, see T-matrix 

Tschebycheff interpolation, see Cheby-

shev interpolation 

variational method, 37 

complex Kohn, 39 

Harris, 39, 67 

Hulthen-Kohn, 38 

Schwartz singularities, 39 

inverse Kohn, 38 

R-matrix, 39 

Schwinger, 39 

wavefunction 

close coupling, see close coupling 

target, see also target, 18, 50 
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