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Abstract 

 

Axial flux permanent magnet generators are of particular interest for power generation 

in harsh and confined conditions. Due to their compactness and high power density, 

the ventilation and cooling inside axial flux permanent magnet generators have 

becoming increasingly important for further performance improvement. This thesis 

describes the developments of a lumped parameter, thermal modelling technique for 

axial flux permanent magnet generators. The main aim of this research is to develop a 

fast and accurate thermal modelling tool which can be used for rapid machine design 

and ultimately, to replace complex and time consuming CFD analyses in the machine 

design process. 

 

The thesis illustrates the construction of a generic thermal equivalent circuit, which 

comprises of conductive and convective sub-circuits, to model the conduction and 

convection heat transfers and temperature distributions in the radial and axial 

directions, within these machines. The conduction heat transfer between the solid 

components of these electrical machines is modelled by an annulus conductive 

thermal circuit derived from previous researchers; whereas, for convection heat 

transfer between the working fluid (air) and solids, the author has developed two 

convective thermal circuits, which are demonstrated as the Temperature Passing 

Method (TPM) and Heat Pick-up method in (HPM) in the thesis. Several case studies 

were designed to investigate the validity and accuracy of these thermal sub-circuits 

with both steady and transient boundary conditions. Since all the thermal impedances 

and capacitances used in the thermal circuits are in dimensionless form, the developed 

generic thermal equivalent circuit is capable of performing thermal simulations for 

axial flux generators of different sizes and topologies. Furthermore, special correction 
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factors were introduced into the developed generic thermal equivalent circuit, to take 

into account the heat transfer in the circumferential direction in axial flux machines.  

 

The thesis also demonstrates how the heat transfer in the stator windings is modelled 

in the generic thermal equivalent circuit. Two analytical models, which are the Simple 

Concentric Model (SCM) and Concentric-annulus Layer Model (CLM) were 

developed, for the evaluation of the thermal resistances of the stator windings. The 

results evaluated from these analytical models were validated by several numerical 

models and experimental results of two-phase materials published by previous 

researchers.  

 

Lastly, experimental validation of the lumped parameter thermal equivalent circuit 

model and CFD simulations was conducted. Heat transfer coefficient measurements 

were carried out on two separate test rigs, which were a simplified single-sided axial 

flux machine test rig and a large-scale low speed axial flux machine. The 

experimental results were compared with the numerical results obtained from both the 

lumped parameter and CFD models. Good agreement between the experimental, 

lumped parameter model and CFD results were found. These indicate that the 

developed generic thermal circuit is potentially capable of replacing CFD analyses in 

the axial flux machines design process.  
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Nomenclatures 
 
Symbol Description 

A Cross-sectional/ Surface area, m2 

Ad Conductive surface area, m2 or winding packing ratio 

α Temperature constant, °C-1 

b Width, m 

Bmax Peak magnetic flux density 

c Air clearance, m 

CLM Concentric Annular Layer Model  

Cp Specific heat capacity, J/kgK 

CV Control volume 

θ Angle, ° 

d Diameter, m 

dm Magnet Groove depth, m 

f Rotational frequency, Hz 

g Heat generated per unit volume, W/m3 

Gratio Gap ratio 

[G’] Thermal network admittance matrix 

h Heat transfer coefficient, W/m2K 

hconvection Convection heat transfer coefficient, W/m2K 

hcontact, gas Gas gap contact coefficient, W/m2K 

hcontact, solid Solid spot contact coefficient, W/m2K 

fh  Average heat transfer coefficient of free rotating plate, W/m2K 

ph  Average peripheral edge heat transfer coefficient, W/m2K 

rsh  Average heat transfer coefficient of rotor surface in rotor-stator 

system, W/m2K 

hw-c Winding and stator core contact coefficient, W/m2K 

H Fluid flow pressure, Pa 

HPM Heat Pick-up Method 

Hs Heat storage, J 
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Hse Element heat storage, J 

ka Axial thermal conductivity, W/mK 

kc,  Cable filling thermal conductivity, W/K 

kd Copper conductor thermal conductivity, W/K 

keq Equivalent thermal conductivity, W/K 

keq_sc Equivalent thermal conductivity, W/mK 

kr Radial thermal conductivity, W/mK 

kg Gas thermal conductivity, W/mK 

K Thermal conductivity, W/mK 

Kcalibration Calibration Factor, µV/W/m2 

Kn Heat fraction 

L Length or thickness, m 

Lw Winding length, m  

m Mass, kg 

m&  Mass flow rate, kg/s 

n Power coefficient 

nsc Number of continuous particles at the outer layer of the mixture 

N  Numberth of annular layer 

Nu Nusselt number 

Nuforced Forced convection Nusselt number 

Numixed-assisting Assisting flow mixed convection Nusselt number 

Numixed-opposing Opposing flow mixed convection Nusselt number 

Nunatural Natural convection Nusselt number 

fuN  Average Nusselt number of free rotating plate 

puN  Average peripheral edge Nusselt number 

rsuN  Average Nusselt number of rotor surface in rotor-stator system 

ρ Density, kg/m3 

ρ0 Resistivity, Ωm 

P Contact pressure, Pa 

Ρ25 Resistivity at 25°C, Ωm 

Pd Winding packing ratio 

Peddy Eddy current power loss, W 
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Pr Prandtl number 

Pwrcc Joule loss of centre winding conductor, W 

Pwr1 1st annular layer joule loss, W 

q Heat flux, W/m2 

qconvection Convection heat flux, W/m2  

[Q] Power source matrix 

rc Conductor radius, m 

rc Radius at transition occurs from laminar to turbulent flow, m 

rc Winding slot diameter, m 

rd Discontinuous particle, m 

req Equivalent radius, m  

req_0 Equivalent centre circle radius, m 

req_k Equivalent kth annulus outer radius, m 

r in Inner radius, m 

r in_k kth annulus inner radius, m 

rm Mixture particle, m 

rmid_k kth annulus middle radius, m 

rout Outer radius, m 

rout_k kth annulus outer radius, m 

rsc Winding radius, m 

R, r Radius, m 

Ra Axial conductive thermal resistance, K/W 

Rc, Rconv Convective thermal resistance, K/W 

Rc1_k kth annulus inner cable filling thermal resistance, K/W, Fig. 4-9 

Rc2_k kth annulus outer cable filling thermal resistance, K/W, Fig. 4-9 

Rcc-c Centre winding filling resistance, K/W  

Rcc-d Centre conductor resistance, K/W 

Rd, Rcond Conductive thermal resistance, K/W  

Rd1_k kth annulus inner conductor thermal resistance, K/W, Fig. 4-9 

Rd2_k kth annulus outer conductor thermal resistance, K/W, Fig. 4-9 

Rd3_k kth annulus interconnecting thermal resistances, K/W, Fig. 4-9 

Req_sc Equivalent radial thermal resistance, K/W 
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Rm Mass flow resistance, J-1Ks 

Rr, Rradial Radial conductive thermal resistance, K/W 

Rthermal Thermal resistance, K/W 

Re Reynolds number 

Red Rotor disk Reynolds number 

Reω Rotational Reynolds number 

Sc Schmidt number 

SCM  Simple Concentric Model 

Sh Sherwood number 

t Time, s 

tn Thickness at n node, m 

tan θ Surface profile slope 

T0, Tinitial Initial temperature, K 

T∞ Steady state temperature, K 

∆T Temperature difference/ Temperature increased, K 

Tamb Ambient temperature, K 

Taw Adiabatic wall temperature, K 

Tc Temperature of the cable filling, K 

TCFD Temperature predicted by CFD, K 

Td Temperature of copper conductor, K 

Tin Inlet temperature, K 

Tl Axial temperature profile, K 

TLPM Temperature predicted by lumped parameter model, K 

Tm Mean temperature, K 

Tout Outlet temperature, K 

TPM Temperature Passing Method 

Tr Radial temperature profile, K 

Ts, Tsurf Surface temperature, K 

Ttotal Total temperature, K 

v Fluid kinematic viscosity, m2/s 

vX-axis Velocity profile on X-axis, m/s 

vY-axis Velocity profile on Y-axis, m/s 
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V Volume, m3 

VHFS Voltage output from Heat Flux Sensor, µV 

ω Rotational speed, rad/s 

WMth Convection heat flow, W 

WMcv Heat flow to control volume, W 

[θ] Temperature vector 

δ Surface profile height, m 

δeff Effective mean thickness, m 
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Chapter 1  
 

Introduction 

 

1.1. Axial Flux Permanent Magnet Generator 
 

The axial flux permanent magnet (AFPM) generator is defined as an electrical 

generator in which the magnetic fluxes are parallel to the rotating axes. In general, 

AFPM generators have cylindrical rotors with permanent magnets attached to them, 

and annular stators, which include the generator windings. The history of electrical 

machines shows that the first electrical machine was realised in the form of an axial 

flux machine, in 1831 by Faraday. Shortly afterwards, Davenport patented the design 

of the radial flux permanent magnet machine in 1837, which has been widely 

accepted as the mainstream configuration for electrical machines since then.  

 

Despite the success of radial flux permanent magnet machines, axial flux permanent 

magnet machines continue to be of interest, particularly for power generation 

applications in harsh and confined working environments. Unlike the radial flux 

machines, axial flux generators have high flexibility operating at a variety of 

rotational speeds. By changing the number of magnets on the rotating disks and 

varying its diameter, the AFPM is capable of accommodating different rotational 

speeds applications. The large diameter axial flux machines with a high number of 

poles are ideal for low rotational speed, high torque applications, such as, 

electromechanical traction drives, hoists, and horizontal axis wind turbines. 
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Conversely, small diameter axial flux machines with fewer poles are suitable for high 

speed low torque applications, such as vertical axis wind turbines, and Kaplan 

turbines.  

 

Another advantage of the AFPM generator is the compactness of the machine. Since 

AFPM generators are generally less bulky (it has shorter axial length) than 

convectional radial flux machines, it makes the axial flux machines very attractive for 

power generation applications, where space is confined. The slim and light-weight 

AFPM generators have higher power density compared with the conventional radial 

flux generators. Therefore, AFPM generators are suitable for electrical vehicles (e.g. 

solar cars), wind turbines, robot arms, and other industrial applications, which require 

light weight generators for power generation.  

 

Due to several significant improvements of the properties of the permanent magnets 

themselves and of the power electronic devices in these past few decades, most 

AFPM machines have high electrical efficiency and good starting torque. The use of 

rare earth permanent magnet material, such as Samarium Cobalt (SmCo5) and 

recently introduced Neodymium-Iron-Boron (NdFeb) further improved the power 

generation capability at higher ambient temperature. Several axial flux machine 

configurations have been proposed, regarding the stator(s) position with respect to the 

rotor(s) position and also regarding the winding arrangements, giving freedom to 

select the most suitable machine structure for particular applications. From the 

construction point of view, AFPM machines can be designed as single-sided or double 

sided, with or without armature slots or armature cores, with surface mounted 

permanent magnets or surface embedded permanent magnets, and as single or multi-

stage machines. Fig. 1-1 shows some of the diverse topologies of AFPM machines.  

 

The single-rotor-single-stator structure, shown in Fig. 1-1(a) is the simplest AFPM 

machine configuration. However, this structure suffers from an unbalanced axial force 

between the rotor and the stator as a consequence of which more complex bearing 

arrangements and a thicker rotor disk are needed. The machine demonstrated in Fig. 

1-1(b) is the single-stator-two-rotors design, also known as the TORUS design. The 

TORUS AFPM machines can adapt to either slotted stator (Fig. 1(b)) or coreless 
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stator (Fig. 1-1(c)) configurations. The toroidal wound phase winding is the most 

common and preferable AFPM machine design because it has short end-windings, 

higher machine efficiency and power density. Fig. 1-1(d) shows a more complex 

arrangement of AFPM machine, in which several machines are lined up on the same 

shaft forming a multistage AFPM machine. Such a configuration is designed for high 

torque applications such as ship propulsion. 

 

 
Fig. 1-1. Axial flux permanent magnet generators: (a) single-sided slotted machine, (b) 
double-sided slotless machines with internal stator, (c) double-sided coreless machine, 
(d) Multistage axial flux permanent magnet generators.  
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Recently, extensive research has been conducted on the electromagnetic design to 

obtain the optimum power yield configuration for axial flux machines. Bobbin stator 

design [1], multiple stage air gap configurations etc, have pushed the AFPM design 

towards a bottle neck, where the thermal properties of the generator components start 

to play an important role in the generator design consideration. Recently, commercial 

axial flux generator configurations, which have small air gap size, low rotational 

speed and high power density, have lead to machines operating at the temperatures, 

which are near to the ferromagnetic material limits. For example, the remanence flux 

density of Neodymium-Iron-Boron (Nd-Fe-B) permanent magnet material depends on 

the operating temperature. At high temperature, normally around 120°C, Nd-Fe-B 

permanent magnets start to demagnetise and this affects the amplitude of the induced 

back-EMF in the stator windings.  

 

Furthermore, mechanical hazards are possible if the permanent magnets are glued to 

the rotor surfaces or if the stator windings are wound with epoxy resin. When the 

rotor or stator temperature exceeds the glue or epoxy resin critical limits, the magnets 

and winding start loosening and eventually detach from the rotors and stators. This 

can be catastrophic, especially at high speed applications. 

 
 

1.2. Thermal Modelling  
 

Extensive research has been devoted to thermal studies of conventional radial flux 

electrical machines, but AFPM machines have received very little attention.  

Depending on the sizes of the machine and the types of enclosure, different cooling 

mechanism arrangements have been introduced for AFPM machines. Generally, they 

can be classified into two configuration categories, which are self-ventilated and 

externally ventilated configurations. For self-ventilated configurations, the disk type 

AFPM generators use their inherently advantageous feature of the rotor disks (with 

attached magnets), which act like pump impellers, drawing the ambient air flow 

through the inlet and subsequently into the gaps between the stator and rotor disks, to 

cool the stator core and windings. Most self-ventilated machines are air-cooled. For 

medium to high power rated AFPM generators, the heat loss ratios are high and self 
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ventilated air-cooled mechanisms are not sufficient to bring down the machine 

temperature to the safe operating temperature limits. Therefore, forced cooling with 

the aid of external devices, such as, water pumps or external fans is necessary. Some 

of the available commercial external ventilated machines embed a water-cooling 

system into the stator core, to lower the temperature of the stator core and windings. 

These configurations are known as external ventilation cooling systems. 

 

Quantitative studies of the heat dissipation potential of AFPM machines with vastly 

different topologies are clearly needed. Although there are several general purpose 

advanced computational fluid dynamic (CFD) codes (e.g. FLUENT, Ansys CFX, 

OpenFoam) which are commercially available that can be used for 2D and 3D thermal 

modelling of AFPM machines, these modelling methods usually require high 

performance multiprocessor computers and considerable computing time to obtain 

accurate numerical solutions. Furthermore, CFD numerical results are significantly 

influenced by the mesh/grid qualities. By refining the mesh quality, the CFD 

numerical results improve, but at the same time, it requires higher computer memory 

and longer computational time. This makes it difficult to use advanced CFD 

techniques to perform rapid-design and optimisation analyses for APFM machines. 

 

The feasible alternative to CFD modelling of the thermal state of electrical machines 

is the application of the advanced lumped parameter model (LPM) technique. In such 

an approach, firstly the electrical machines are subdivided into a number of lumped 

components and each lumped component is represented by a collection of thermal 

impedances and capacitances. By knowing the thermal and physical properties of the 

machine components, these thermal impedances and capacitances of each component 

can be evaluated by well-known analogies. Subsequently, by connecting these 

collections of thermal impedances and capacitances, based on the heat flow paths in 

the electrical machine, the thermal equivalent circuit is constructed. Hereby, the 

temperature and surface heat flux can be predicted by solving the thermal equivalent 

circuit. 

 

Fundamentally, the thermal equivalent circuit is analogous to an electrical circuit. The 

heat flowing in each path of the thermal circuit is analogous to the current in the 
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electrical circuit. The heat flow is driven and determined by the temperature 

differences, in which it is analogous to the voltage difference in the electrical circuit 

and the thermal resistances and capacitances in the machine thermal equivalent 

circuits are analogous to the resistances and capacitances in the electrical circuit. 

Thermal predictions from the equivalent thermal circuit obtained from previous 

research demonstrate good agreements with both experimental and CFD results. In 

addition, the LPM demonstrates the advantage of using the corresponding thermal 

resistances and capacitances in the dimensionless form, to perform thermal analysis 

for a wide range of machine dimensions and topologies. 2-D thermal equivalent 

circuits are developed and discussed in this thesis, to model the conduction and 

convection heat transfers, in the radial, axial and circumferential directions, within 

AFPM generators. 

   

 

1.3. CFD validations 
 

Unlike the water-cooled machines, the machine temperatures predicted by the thermal 

equivalent circuit of air-cooled electrical machines have a strong influence on the 

surface convection heat transfer coefficients that are applied, especially for self-

ventilated axial flux machines, where the heat generated in the machine during the 

machine operation is mainly dissipated to the cold air drawn from the surroundings. 

The surface convection heat transfer coefficients have a direct impact on the accuracy 

of the thermal equivalent circuits, yet there are neither analytical nor empirical 

formulae that directly correlate the surface convection heat transfer coefficients with 

the AFPM machines dimensions. Therefore, parametric studies of local surface 

convection heat transfer coefficients of AFPM machines are essential. 

 

The surface convection heat transfer coefficient parametric studies investigate the 

effect of surface convection heat transfer coefficient on different machine sizes, 

topologies and operating conditions. These include stator disk radius, magnet groove 

depth, number of magnets, rotational speed etc. Since it is costly, time consuming and 

complex to design and construct a test rig which allows investigations on different 
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machine parameters, the parametric investigations were conducted numerically using 

the CFD modelling technique. However, the numerical solutions predicted by the 

commercially available CFD solvers are strongly influenced by the mesh quality, the 

solver equations, turbulence models and the boundary conditions applied. 

Furthermore, these influences vary with different modelling applications. Therefore, 

before applying empirical formulae derived from the parametric studies derived from 

CFD, it is paramount to validate the CFD models with the results obtained from the 

experiments, to determine the compatibility of the mesh quality, solvers equations, 

turbulence models and boundary conditions of the CFD models.  

 

A large scale low speed AFPM test rig was designed and constructed to perform 

surface convection heat transfer coefficient measurements for CFD validation. The 

AFPM test rig is scaled up four times from the original Durham 1.5kW Torus AFPM 

generator, to allow higher resolution heat flux and temperature measurements inside 

the air gaps. Additionally, the test rig was made in Perspex, reducing both the weight 

and cost of the test rig. The experimental results obtained from the large scale, low 

speed test rig were compared with the numerical results obtained from both the 

lumped parameter and CFD models. The discrepancies were identified and 

investigated.      

 

1.4. Thesis Overview 
 

The primary motivation of this research is to develop a fast and high accuracy thermal 

modelling tool, specifically for axial flux permanent magnet generators. Ideally, this 

thermal modelling tool would replace CFD analysis, in the product rapid design 

process. The developed thermal modelling tool merges the principles of the lumped 

parameter model and thermal equivalent circuit, to construct a generic thermal model, 

which can be used to perform thermal analysis, for a wide range of AFPM generator 

topologies and sizes. Both CFD modelling and experiments were conducted to 

validate the temperatures and heat fluxes predicted by the new thermal modelling tool.  
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This thesis consists of seven chapters, and a summary of each chapter is shown as 

below: 

  

1.4.1. Chapter 1: Introduction 

 

The thesis begins with an introductory chapter, which provides background 

information for axial flux electrical machines, thermal modelling tools and 

experimental techniques for CFD validation. Firstly, this chapter gives a brief history 

of the developments of axial and radial flux machines and discusses the major 

distinctions and advantages of the axial flux permanent magnet generators over the 

conventional radial flux machines. Several axial flux machines designs are introduced 

and the machine configurations were demonstrated. This chapter also highlights the 

necessity of performing thermal modelling in the electrical machine design process. 

Several numerical modelling methods are discussed and the basic principles of the 

lumped parameter thermal equivalent circuit are illustrated. CFD validation 

experiments are discussed at the end of the first chapter and descriptions of the large 

scale low speed Perspex test rig are provided.      

 

1.4.2. Chapter 2: Literature Review 

 

The second chapter reviews the literature which is relevant to the numerical thermal 

modelling tools, stator winding thermal resistance modelling and the heat transfer 

coefficient measuring techniques. The first section describes previous research 

relevant to using the CFD modelling tool to simulate the physical and thermal 

processes in the systems of interest and the CFD verifications and validations. CFD 

modelling guidelines and recommendations for turbomachinery applications are 

quoted in this section. This section also illustrates the research which has been 

conducted for the development of lumped parameter thermal equivalent circuits for 

electrical machines and highlights the necessity of developing convective thermal 

circuits for modelling of convection heat transfer in axial flux machines.  
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The second section illustrates the development of thermal resistances of two-phase 

mixtures. Both experimental and analytical researches identifying the thermal 

resistance of two-phase mixtures found are discussed in details. Subsequently, these 

works are compared with the empirical equations of stator winding based on 

experimentation and concludes that the development of a new analytical model of 

stator winding thermal resistance modelling is necessary.  

 

Finally, this chapter summarises the commonly used (popular) convection heat 

transfer coefficient measurement techniques, including direct (steady state) measuring 

methods, indirect (transient) measuring methods and the Naphthalene sublimation 

mass transfer measuring method. The basic principle, accuracy, experimental 

uncertainty and calibration method of each measuring method are discussed and 

consequently the most suitable heat transfer measuring method is suggested. 

 

1.4.3. Chapter 3: 2D Lumped Parameter Model 

 

This chapter begins by illustrating the basic theory behind the one-dimensional 

lumped parameter thermal equivalent circuit for electrical machines and stating the 

definitions of the thermal resistances and capacitances used in the thermal equivalent 

circuits. The chapter then describes the construction of a two-dimensional conductive 

thermal circuit of the AFPM machines, which is capable of modelling the conduction 

heat transfer in the radial and axial directions. To further improve the accuracy of the 

lumped parameter model, the implementation of the 2D convective thermal circuit 

into the existing 2D conduction circuit is demonstrated. Two distinctive convective 

thermal circuit algorithms are developed, compared and validated using CFD models. 

 

Two case studies are designed to verify the accuracy and compatibility of the 

proposed 2D lumped parameter thermal circuit. The first case study is conducted on a 

flow in a heated pipe. It is designed to investigate the accuracy of the 2D lumped 

parameter thermal circuit at different flow conditions and to obtain the optimal 

discretisation level for the simple pipe flow system. The second case study describes 

the construction of the 2D lumped parameter thermal circuit of the simplified 
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axisymmetric AFPM machines. The primary motivation of this case study is to 

compare the temperatures predicted from the 2D lumped parameter thermal circuit 

with the CFD models. Finally, the temperature discrepancies between the two 

modelling methods are identified and discussed.  

 

1.4.4. Chapter 4: Stator Winding Thermal Modelling 

 

Two stator winding radial thermal resistance analytical modelling methods are 

discussed in chapter 4, which are the simple concentric model (SCM) and the 

concentric circle layer model (CLM). SCM simplifies the stator winding by lumping 

all the copper conductors into a solid cylinder and the remaining winding filling into 

an annulus surrounding the conductor solid cylinder. By applying the one-

dimensional Fouriers heat conduction differential equation in the radial direction and 

taking the integral of it in the circumferential direction, the stator winding radial 

thermal resistance is deduced.  

 

When current passes through the stator winding, the copper conductors inside the 

stator winding are heated due to joule heating. Subsequently, these copper conductors 

become independent heat sources and dissipate heat to the stator winding. To take into 

account the distributions and positions of these independent heat sources inside the 

stator winding, the CLM is developed. CLM lumps the copper conductors and the 

winding filling of the stator winding and divides them into layers of alternative 

concentric annuli. Each of the concentric annulus is represented by the annulus 

conductive thermal circuit. The total equivalent thermal resistance of the stator 

winding is calculated by summing the total the temperature difference across all the 

annulus conductive thermal circuits in the stator winding, and dividing it with the total 

heat generated from the conductors.  

 

Both of these stator winding radial resistance analytical methods (SCM and CLM) are 

validated by numerical and experimental results published by previous researchers. 

Finally, a 2D CFD model of the stator winding is constructed and simulated using 
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FLUENT, to verify the temperature variations in the radial direction of the stator 

winding predicted from the CLM analytical method.  

 

1.4.5. Chapter 5: The Construction of a 2D Generic Lumped Parameter 

model of Axial Flux Permanent Magnet Generators 

 

This chapter begins by identifying the distinctions between specific lumped parameter 

models and generic lumped parameter models. An introduction to the generic lumped 

parameter model is given and it highlights the importance of developing the generic 

lumped parameter in electrical machine thermal modelling. Subsequently, the 

derivations of the dimensionless thermal resistances, capacitances and heat sources 

used in the generic lumped parameter model are illustrated. The second section of 

chapter 5 demonstrates the construction of a 2D generic lumped parameter model for 

axial flux permanent magnet generators, by using the developed dimensionless 

thermal impedances and capacitances. A sophisticated user interface for the 2D 

generic lumped parameter model is developed by incorporating two independent 

pieces of software, Microsoft Excel and Portunus, to simplify the thermal modelling 

process of the axial flux machines. A Visual Basic macro script is written to control 

the information exchange between the two independent programs. The details and 

definition of the geometric parameters and model variables used in the interface and 

generic model are defined in the third section of chapter 5.  

 

The 2D generic lumped parameter model for AFPM generators is validated in the 

forth section. This case study validates the solid and fluid temperatures predicted by 

the generic lumped parameter model with the numerical results simulated by CFD. 

Furthermore, the transient boundary conditions are specified for both modelling 

methods and the discrepancies are identified and discussed. Finally, the generic 

thermal model of water-cooled totally enclosed axial machines is proposed. Since the 

cooling in water-cooled machines is dominated by the water jacket inside the stator 

core, the air convection heat transfer modelling is neglected. The proposed model is 

examined with transient boundary conditions, such as temperature dependent resistive 
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heat losses, time dependent electrical loading and water pump loading. No validation 

is conducted for the water-cool machines generic lumped parameter model.   

 

1.4.6. Chapter 6: Experimental Validation of the Lumped Parameter 

Thermal Modelling Technique: Single-sided Slotted Axial Flux 

Permanent Magnet Generator. 

 

This chapter illustrates the experimental validation of the developed 2D lumped 

parameter thermal equivalent circuit of a single-side, slotted axial flux permanent 

magnet generator. Firstly, the construction of the thermal circuit of the single-sided 

slotted AFPM generator is demonstrated, followed by the construction of 2D 

axisymmetric CFD models of the corresponding machine. The convection heat 

transfer empirical models of the simple flat rotating disk system developed by past 

researchers are used in the construction of 2D lumped parameter thermal circuit.  

 

To validate the numerical results predicted from both lumped parameter and CFD 

models, a test rig of the simplified single-sided slotted axial flux machine is designed 

and constructed. The details of the test rig design are illustrated in the fourth section 

of Chapter 6. The experimental measuring technique for the apparatus and its 

temperature, heat flux and air mass flow rate measuring techniques are discussed, 

including the equipment uncertainty, calibration techniques, procedures and 

correction factors. The results obtained from the experiments are compared with the 

lumped parameter and CFD numerical solutions.  

 

Finally, additional experimental investigations are conducted to examine the 

compatibility of the 2D LPM thermal circuit for performing thermal modelling on the 

3D models. Six additional Perspex sectors are attached on the rotor disk of the test rig 

and heat transfer experiments are carried out. The experimental results obtained from 

the modified test rig are compared with the numerical results obtained from the 3D 

CFD model and the 2D generic LPM thermal circuits. Modifications are suggested to 

the original 2-D LPM thermal circuit model to simulate 3-D heat flow system.   
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1.4.7. Chapter 7: Experimental Validation of the CFD Modelling Method: 

Large Scale Low Speed Test Rig 

 

The last major chapter of the thesis describes the experimental validation of the 

lumped parameter thermal model of the large scale low speed test rig. Firstly, the 

topology of the large scale low speed test rig for the heat transfer coefficient 

measurement is illustrated, followed by the dimensional analysis of the test rig 

conducted prior to its construction. The rig schematic plan and corresponding 

experimental equipment configurations are also shown. 

 

Before conducting the heat transfer coefficient measurements, all the measuring 

equipment is examined and re-calibrated. The experimental procedures are described 

in section 4 and section 5. Section 6 discloses the convective heat transfer coefficients 

measured from the large scale low speed test rig. The experimental results are 

compared with the numerical results predicted from the 3D CFD model. The 

discrepancies between the experimental and 3D CFD numerical results are identified 

and discussed. Extra experiments are conducted to verify the effect of natural 

convection on the machines cooling.  

 

The final section describes the modification of the totally enclosed axial flux machine, 

by embracing a Perspex cylinder casing around it. The stator surface heat transfer 

coefficients are measured and compared with the measurements taken from the open 

channel axial flux machine. The differences are identified and the results are 

discussed.  
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Chapter 2  
 

Literature Review 

 
This chapter describes the literature relevant to this study. This chapter consists of two 

major sections. The first section discovers and discusses the various thermal 

modelling methods which have been developed and published, including 

computational fluid dynamics techniques, lumped parameter thermal modelling 

techniques and winding bundle thermal resistance modelling. The second part of the 

chapter investigates experimental measuring techniques for surface temperature, heat 

transfer coefficient, surface heat flux and air mass flow rate. Each of the experimental 

measuring techniques is discussed and evaluated, to identify the most suitable 

experimental method, to give the most accurate experimental results, within the 

provided time and research budget.  

  

2.1. Thermal Modelling Methods 
 

During the last three decades, computer simulations of physical and thermal flow 

processes have been used widely in scientific research, analysis, and design of 

engineered systems. There are several general purpose advanced computational fluid 

dynamic (CFD) codes, e.g. ANSYS CFX and FLUENT, that are commercially 

available. These CFD packages use the most up to date solution technology and 

extremely efficient parallelization algorithms to perform 2D and 3D mass transfer and 

thermal modeling of internal and external flow systems.  
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As compared with experimental investigation, CFD based research is more robust, 

economical, less time consuming and safer. Therefore, this new trend towards 

modelling, and simulation-based design methodologies is increasingly driven by 

manufacturing industries, for example: aerospace [2]-[5], automobile [6]-[8], power 

generation systems [9]-[11], and consumer products such as vacuum cleaners [12] and 

baking ovens [13], which require intensive research and high cost testing to improve 

their products competitiveness in the market. Furthermore, CFD is a good option to 

provide preliminary predictions for several high-risk and hazardous systems that 

cannot ever be tested experimentally, such as the catastrophic failure of a nuclear 

power [14]-[15], global weather prediction [16]-[17], and explosions [18]-[19]. CFD 

simulations are also used for environmental predictions e.g. upland urban river 

modeling [20], pollution [21] and nuclear-waste disposal [22] for the development of 

public policies, safety procedures and legal liabilities.  

 

However, the numerical results predicted by CFD are highly dependent on the 

mesh/grid quality, the flow and turbulence models, and the applied boundary 

conditions. Several publications [23]-[25] provide guidelines for CFD modelling of 

turbomachinery applications, for which a rotating machine may be regarded as a 

simple turbomachinery system. It is suggested that hexahedral structure mesh, which 

has superior accuracy, is the most appropriate meshing scheme for stator-rotor 

internal flow systems [23]. Also, the hexahedral meshing scheme has better control 

over the boundary layer mesh at the near-wall region. The model near wall mesh 

quality is justified by two governing quantities: the dimensional wall distance Y+ 

value and the aspect ratio. The Y+ can be defined as: 

v

yu
Y

*=+  
 
(2.1) 

ρ
τ wu =*  

 
(2.2) 

where, u* is the friction velocity at the nearest wall, y is the distance between the wall 

and first grid point, v is the local kinematic viscosity of the fluid and τw is the shear 

stress on the wall. Y+ is also used in the boundary layer theory in defining the law of 

wall. Y+ is particularly crucial in modeling large gradient region. Y+ of 30-200 is 
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suitable for high Reynolds flow with standard wall functions; where as for a low 

Reynolds flow condition, enhanced wall treatment is recommended. For enhanced 

wall treatment, Y+ should not be more than 5 [24]. The aspect ratio is defined as the 

ratio of the length of the mesh element edges. The aspect ratio of the mesh element is 

suggested to keep below 4 by general rules of thumb. 

 

The irregular, randomly fluctuating velocity fields in the fluid flow system are 

governed by time and ensemble average equation sets, which are known as turbulence 

models [25]. Examples are the Spalart-Allmaras model, k-ε models, k-ω models, 

Reynolds stress model (RSM) and Large eddy simulation model (LES).  These 

turbulence models were developed individually to model different kinds of flow 

pattern and physics encompassed in the fluid flow systems. The Spalart-Allmaras 

model is a relatively simple one-equation turbulence model, which was designed 

specifically for aerospace and turbomachinery applications involving wall-bounded 

flows with adverse pressure gradients. However, the Spalart-Allmaras model is still 

relatively new and no claim is made regarding its suitability to all types of complex 

engineering flow. For instance, it failed to predict the decay of homogeneous, 

isotropic turbulence and is unable to rapidly accommodate changes in length scale.  

 

In LES, large eddies in the turbulent flows are resolved directly with filtered Navier-

Stokes equations, while small eddies are modelled by a subgrid-scale turbulence 

model. Eddy modelling is time-dependent and resolving the large eddies requires long 

flow time to obtain stable statistics of the flow. Therefore, the computational cost 

involved with LES is normally orders of magnitudes higher than that for other 

turbulence models, in terms of memory (RAM) and CPU time. High-performance 

computing is a necessity for LES and only suitable for industrial applications.   

 

The RSM resolves the turbulent effects in the flow by solving transport equations for 

the Reynolds stresses, together with an equation for the dissipation rate, which 

requires seven equations for in 2D flows and nine equations are required for 3D flows. 

RSM takes into account most of the effect of different flow types, such as the effects 

of streamline curvature, swirl, rotation and rapid changes in strain rate in the flows. It 

is also useful for flow features of anisotropy in Reynolds stresses. Examples are 
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cyclone flows, highly swirling flows in combustors, rotating flow passages and stress-

induced secondary flows in ducts.  

 

The standard k-ε and k-ω models are the most commonly used turbulence models due 

to their robustness, economy and reasonable accuracy for a wide range of turbulent 

flows. Two equations are solved in these models to allow turbulent velocity and 

length scales to be determined independently. The standard k-ε model is a semi-

empirical model based on model transport equations for turbulence kinetic energy (k) 

and its dissipation rate (ε). The model transport equation for k is derived from the 

exact equation while the model transport equation for ε is obtained using physical 

reasoning and bears little resemblance to its mathematically exact counterpart. The 

standard k-ε model is only valid only for fully turbulent flows.  

 

The standard k-ω model is an empirical model based on model transport equations for 

the turbulence kinetic energy (k) and the specific dissipation rate (ω). The model 

incorporates for low-Reynolds number effects, compressibility and shear flow 

spreading in the flow modelling. As the k-ω model has been modified over the years, 

several production terms have been added to both the existing k and ω equations, 

which have improved the accuracy of the model for predicting free shear turbulent 

flows.   

 

However, no single turbulence model is universally accepted as being the superior for 

all classes of problems. The choice of turbulence model depends on the fluid flow 

physics, established practices for specific classes of fluid flow, the level of accuracy 

and available computational resources and time constraint. In this research, three 

turbulence models, which are k-ε, k-ω and RSM models were used and compared 

with the experimental results. The results show that k-ε turbulence model is the most 

suitable one for 3-D axial flux machines modelling.  

          

The computational simulation results are strongly influenced by the mesh sizes, the 

turbulence flow models and the boundary conditions applied. The primary means to 

assess the accuracy and reliability of the computational simulations is by verification 

and validation against other trusted models or experimentation. The process of 
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assessing the magnitude of the numerical errors, and the uncertainty in those error 

estimations is defined as CFD verification. In CFD verification, the accuracy of a 

computational solution is primarily measured relative to two types of highly accurate 

solutions: analytical solutions and highly accurate numerical solutions. It is assessed 

by conducting iterative and parametric convergence studies by using multiple 

solutions with systematic parameter refinement, to estimate the numerical errors and 

uncertainties [26-28]. On the other hand, the fundamental strategy of CFD validation 

is to assess the accuracy of the computational results by using benchmark 

experimental data, with quantified error and uncertainty estimates for both. A set of 

guidelines was proposed by William et al. [26] for designing and conducting 

validation experiments. New experimental procedures were suggested [26] for 

estimating experimental uncertainty, which have been proven more effective at 

estimating random and correlated bias errors than traditional experimental methods. 

Extensive research on validating self-developed and commercially available CFD 

codes has been conducted, e.g. [26-32] and most researchers claimed that the CFD 

numerical results show good agreement with experimental data, except for Casey [29], 

who claimed that, the most recent advanced turbulence models were not yet 

satisfactory for predicting the detail of unsteady turbulent flows that occur in 

extremely complex turbomachinery flows.    

 

The CFD modelling technique has been used extensively by electrical machine 

manufacturers to perform the thermal analyses of electrical machines [30], cooling 

and air ventilation modelling [31], and the thermal managements of AC electrical 

motors [32]. However, this sophisticated CFD modelling involves complicated and 

time consuming processes, including geometrical meshing and iterative calculation 

processes. Depending on the application, some of the complex models may take up to 

several months, to obtain accurate numerical solutions. This makes it very difficult to 

use the CFD techniques to perform machine rapid optimisation analyses and 

parametric studies.   

 

A feasible alternative to CFD modelling of the thermal state of electrical machines is 

the application of the advanced lumped parameter model (LPM) method. Instead of 

solving the heat conduction (Fourier) and convective heat transfer (Newton) equations 
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analytically to simulate the fluid temperature distribution inside the generators [33], 

the LPM approach described in [34-35], splits the electrical machines into a number 

of lumped components (or control volumes), which are connected to each other in the 

calculation scheme through thermal impedances to form thermal equivalent circuits. 

The temperature distributions inside the generators can be predicted by solving these 

thermal equivalent circuits. Several researchers have constructed and tested the 

thermal equivalent circuits of induction motors [36], radial flux generators [37-38] 

and stationary axial flux generators [39]. They concluded that the results of lumped 

parameter thermal equivalent circuit modelling are in good agreement with 

experimental data. Similar researches were conducted on radial flux electrical 

machines [40-43] but using a commercially available LPM thermal modelling tool, 

namely Motor-CAD [44].   

 

However, one of the shortcomings of the LPM method employed in the previous work 

[34-43] & [45] is that the variation of the fluid temperature was neglected. For axial 

flux permanent magnet (AFPM) machines, which typically have narrow and long 

flow passages and relatively high air mass flow rate, the fluid temperature variation in 

the air gap has a substantial influence on the thermal state of the solid components. 

Lim et al. [46]1 proposed another technique of constructing the generic equivalent 

thermal circuit of AFPM generators, which takes into account the temperature change 

in the air flow. The proposed generic equivalent thermal circuit is able to model the 

heat flow paths in the axial and radial directions in the electrical machines. The heat 

flow path in the circumferential direction is relatively small as compared to the other 

two directions, and hence it was usually neglected [47]. Mellor [47] implemented the 

cylindrical conductive thermal circuit to model the conduction heat transfer in the 

solid components of electrical machines in both radial and axial directions.  

 

For convective heat transfer modelling in electrical machines, convective thermal 

circuits were proposed [46]. Lim et al. [46] also suggested that that the accurate 

determination of the convective heat transfer coefficients at the machine surfaces is 

essential for obtaining reliable simulation results from the 2D lumped parameter 

thermal equivalent circuit. Convection heat transfer in several complex flow regimes 
                                                 

1 Reference [45] is prepared by the thesis author 
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was investigated [48-53], however no suitable correlation was found for the 

application of 2D LPM thermal circuits of AFPM machines. Furthermore, all the 

surface heat transfer correlations examined in [48-53] use the ambient temperature as 

the reference temperature. In order to be applicable in the convective thermal circuit, 

correlations of surface heat transfer coefficient which are based on the local bulk air 

temperature are needed. Parametric studies of the convective heat transfer coefficients 

for AFPM generators were conducted by Airoldi [54]. The author applied a factorial 

design method [55-56], by performing CFD simulations on various sizes and 

geometries of AFPM generator, to develop empirical formulae that relate the local 

convective heat transfer coefficients with the machine geometrical parameters. The 

research presented in this thesis was performed interactively with Airoldi to obtain the 

convective heat transfer empirical formulae, which can be applied to the developed 

LPM thermal equivalent circuit. Experimental rigs were constructed and heat transfer 

coefficient measurements were carried out to validate the developed heat transfer 

coefficient empirical formulae.  

 

 

2.2. Stator winding thermal resistance modelling 
 

Hot spots in electrical machines usually take place in the stator windings, due to the 

resistive joule losses generated in the copper conductors and the low thermal 

conductivity of the winding filling and insulation. Therefore, to construct a complete 

2-D equivalent LPM thermal circuit for AFPM machines, it is paramount to 

understand the thermal properties of the stator winding, and to represent the stator 

windings with appropriate thermal resistances and capacitances. The stator winding, 

which consists of a bundle of copper wire conductors and winding filler, has similar 

thermal properties to a two-phase mixture. A two-phase mixture is defined as two 

different substances, which consist of the continuous phase and discontinuous phase, 

which are mixed together but are not combined chemically, for example. reinforced 

concrete (mixture of cement and steel bars), epoxy fibre glass etc. Maxwell57], who 

pioneered the study of material thermal conductivity, derived an equation to predict 

the thermal conductivity of two-phase mixtures on the basis of potential theory. Since 
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then, a number of studies, for example [58]-[67] were conducted to develop analytical 

and numerical techniques for predicting the thermal conductivity of heterogeneous 

systems for specific materials and products. For example, Nieberlein [68] proposed a 

model based on particle to particle heat transfer to evaluate the thermal conductivity 

for epoxy-aluminum powder mixture. However, no general equation for calculating 

the thermal conductivity of two-phase materials was derived, until Tsao [69]. Tsao 

implemented the mean and standard deviation to model the distributions of the 

discontinuous phase in the continuous phase mixture and hence derived a semi-

empirical equation for thermal conductivity prediction of two-phase mixtures. Cheng 

and Vachon [70] further improved Tsaos equation, by assuming parabolic distribution 

correlations of the discontinuous phase in the continuous phase mixtures, to 

circumvent the necessity of experimentally determining mean and standard deviation 

in the semi empirical equations. 

 

Nevertheless, all of these studies [57-70] assumed that the two-phase mixtures are 

thermally isotropic and the heat only travels in one direction. The equivalent thermal 

conductivity of the stator winding, which has significant different thermal 

conductivities in the axial and radial directions, can not be calculated with those 

derived equations. Bousbane [71] and Mellor [47] separated the heat flow in the stator 

windings into two directions, which are the axial and radial directions, and modelled 

them individually. In the axial direction, since the thermal conductivity of the 

conductor is a lot higher than the thermal conductivity of the winding filler, the 

equivalent thermal conductivity in the axial direction of the stator winding was 

assumed to be equal to the thermal conductivity of the copper conductor, where the 

effect of the winding filler was neglected; In the radial direction, the stator winding 

was assumed as a homogenous solid which has a thermal conductivity of Fkx times 

that of the winding filling alone. Fkx is determined from experimental curves produced 

by Generic Electric [72], by estimating the percentage of conductor by volume in the 

stator excluding any winding filler regions.   

 

This study extends Mellor’s model [47] and circumvents the necessity of 

experimentally determining the stator winding radial thermal resistances. An 

analytical equation, which is a function of the conductor diameter, packing ratio, 
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conductor length and thermal conductivities of the conductor and winding filling, was 

derived to estimate the radial thermal resistance of the stator windings. Furthermore, 

the radial thermal resistance equation was improved, to take into account the resistive 

Joule loss in the stator winding conductors. When electric current passes through the 

conductor, the conductor transforms into an individual heat source distributing heat in 

the stator winding. Since the distribution of heat sources in the stator winding has a 

significant effect on the thermal state of the stator winding, another analytical model 

was developed, incorporating the radial distance of each heat source, to evaluate the 

equivalent radial thermal resistance of the stator windings. The radial thermal 

resistances calculated from the improved algorithm were verified with the results 

obtained from CFD models. 

 

2.3. Reviews of Convection Heat Transfer Measurements 
 

A convection heat transfer measuring experiment is required to obtain the local 

surface heat transfer coefficients in AFPM machines, to validate the numerical 

solutions predicted by CFD models. However, there is no instant device that can be 

used to measure energy and hence heat or heat flux directly. All of the heat flux 

experiments conducted by previous researchers [e.g. 73-128] were measuring the 

effect of heat transferred via a medium, or by spectral emissions. Childs et al. [73] and 

Rohsenow et al. [74] reviewed the available experimental techniques for heat transfer 

measurement, including: direct (or steady state) measuring methods, indirect (or 

transient) measuring methods and heat-mass analogy measuring methods. The authors 

concluded that there is no one method is suitable to all applications because of the 

differing consideration of accuracy, sensitivity, size, cost and robustness. All the 

available heat transfer measuring methods were reviewed, and the feasibility of each 

measuring method was evaluated for the AFPM machine heat transfer measurements.    

 

2.3.1. Direct Heat Transfer Measuring Method: Heat Flux Sensor 
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Direct heat transfer measuring methods involve the measurement of the local surface 

heat transfer in the steady state system. One of the most commonly used devices for 

direct heat transfer measurement is the thin film heat flux sensor. Thin film heat flux 

sensors measure the temperature differences between two or several location within a 

thermal insulation material with known thermal properties, to determine the local heat 

flux via Fourier’s one dimensional law of conduction equation. The temperature 

difference between the top and bottom of the insulation layer can be measured by 

thermopiles formed by a number of thermocouple junctions. This method was first 

reported by Martinelli et al. [75] and more advanced thermopile design was presented 

by Hartwig et al. [76].  

 

The calibration of the heat flux sensor is essential in order to acquire accurate heat 

flux measurements. When the heat flux sensor is affixed to a solid surface, the 

presence of the sensor disrupts the geometric surface profile and the thermal 

conditions due to the mismatch of thermal properties. Flanders [77] suggested that the 

overall error due to surface profile disruption is the order of 10 per cent. The 

modifications of thermal boundary conditions due to the presence of heat flux sensor 

were also described by Dunn et al. [78]. He highlighted the necessity to re-calibrate 

the entire heat flux sensor with the similar boundary conditions. The heat flux sensor 

calibration can be carried out by mounting the sensor on a good thermal insulator 

medium, with a known heat source at the other end. However, the calibration factor is 

strongly influenced by the wind or moving fluid above the sensors. Danielsson [79] 

found out that the influence of wind on the calibration value is greatly reduced when 

the sensor is attached to a surface with lower thermal conductivity. Alternatively, the 

sensors can be calibrated against a well-defined convection correlation, such as for jet 

impingement [80-81].  In this technique, the sensor is mounted on the surface, which 

is exposed to a fluid jet of known geometry and flow conditions. Subsequently, the 

electrical signal generated in the sensor is calibrated by using the jet impingement 

convection correlations developed.  

 

2.3.2. Direct Heat Transfer Measuring Method: Gardon Gauge 
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Another device that can be used to measure the steady state heat transfer is the 

Gardon gauge [82-83]. The Gardon gauge comprises of a thin disk, connecting to a 

heat sink at its periphery edge (Fig. 2-1). As the surface is heated (or cooled) by the 

flow above it, the heat is conducted from disk radially to the heat sink at the edge of 

the disk. The Gardon gauge implements the principle, that the instantaneous heat flux 

is proportional to the electrical voltage between the centre of the plate and the copper 

heat sink, as shown in equation (2.3), to measure the surface heat fluxes.  

2

4

R

TLk
q

∆=  
 

(2.3) 

Where L  = thickness of the thin-foil constantan disk, m, 

 k = Thermal conductivity, W/mK, 

 R = radius of the thin-foil constantan disk 
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Fig. 2-1. Gardon gauge geometry 
 

However, Gardon gauges are only suitable for radiation heat transfer measurements. 

Kuo et al. [84] confirmed that for systems, where convection heat transfer is 

significant, large errors were found, due to the non-uniformities in the foil 

temperature. Hence, correction ratios were introduced by Kuo et al. [84] to off-set 

these experimental errors. Water-cooled Gardon gauges were introduced by the Vatell 

Corporation to provide accurate heat flux readings for conduction and convection heat 
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transfer measurements. However, the cost of these water-cooled Gardon gauges is 

extremely high, and they are complex to use. Also, they are not suitable for rotating 

surface measurements because of the complex water pumping and circulation systems 

that are required for the water-cooled Gardon gauges.  

 

2.3.3. Direct heat transfer measuring method: Energy supply technique 

 

This technique measures surface convective heat transfer coefficients by measuring 

the temperature on one side of the solid surface, while actively providing heat on the 

other side of the solid. Heat transfer coefficient is defined by heat flux per unit 

temperature increase. Hence, by controlling the electric power supply of the heating 

devices, and by measuring the surface temperature, the surface heat transfer can be 

evaluated. Controlled heating of the solid surface can be achieved by means of 

electric heater strips, silicon heater mats or printed circuit boards [87], with the 

integration of the feedback control circuits to the power supply. For most of the 

applications, the front side of the heater device is attached on the solid surface by high 

temperature resistance industrial glue or epoxy resin, whereas the back side of the 

heater is thermally insulated by low thermal conductivity materials, such as clear 

plastic, or fibre glass.  

 

The surface temperature on the other side of the solid can be measured by 

commercially available thin film thermocouples, resistance temperature devices 

(RTD), or thermal liquid crystal. However, due to the low response time of the heater 

and the thermal capacity of the solid subjects, this method is only suitable for steady 

state heat transfer coefficient measurements [73].  High errors may incur for transient 

heat transfer measurements.  

 

The energy supply heat transfer convection measurement technique has been used by 

Rule et al. [85], Radhakrishnan et al. [86] and Howey et al. [87]. Rule constructed a 

microscale heater array comprising of 96 platinum array heater elements having a 

dimension of 2.7mm x 2.7mm, deposited on a quartz substrate to measure time and 

space-resolved heat transfer in a boiling process. The heaters were each controlled by 
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a Wheatstone bridge circuit with op-amp feedback and digital potentiometer, allowing 

heater temperature to be controlled. On the other hand, Howey combined heat flux 

measurement and temperature sensing into one single device, which is a printed 

circuit board (PCB) with 14 concentric spiral shaped copper heater elements. Since 

the copper resistance varies with temperature, the surface temperature was measured 

directly by measuring the copper resistances on the PCB. The PCB copper heater 

elements were affixed to the stator surface of a rotor-stator disk system, to measure 

the stator surface heat transfer coefficients and temperature profiles. 

 

2.3.4. Direct Heat Transfer Measuring Method: Refractive Index Method 

 

The local refractive index of transparent materials, such as Acrylic, varies with the 

temperature gradient across the material. Hence by measuring the refractive index of 

the transparent material with the use of optical techniques, such as schlieren, 

shadowgraph and interferometry, the heat flux across the solid surface can be 

evaluated. This method was reviewed by Goldstein [88] in detail. Owing to the 

complexity of the optical measurement techniques, it is not applicable for measuring 

surface heat transfer in narrow gaps and complex geometries.  

 

2.3.5. Transient (or indirect) heat transfer measurement techniques 

 

Transient heat transfer techniques involve the measurement of the rate of change of 

temperature with time at a location near to or on the surface of interest. The surface 

heat flux is quantified by applying the appropriate forms of heat conduction and heat 

balance equations with accurate knowledge of the material properties. Several 

temperature measuring devices, such as capacitance calorimeters, thin film sensors, 

thermal liquid crystal, and infra red camera, have been used to measure the transient 

heat transfer coefficient based on this principle.  

 

Capacitance calorimeters measure the instantaneous heat transfer rate into a surface, 

by measuring the rate of change in thermal energy of an element embedded inside the 
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solid surface. A typical capacitance calorimeter comprises of a cylindrical slab which 

is thermally insulated from its surroundings (Fig. 2-2). The cylindrical slab in the 

middle of the capacitance calorimeter is usually manufactured from high conductivity, 

chemically stable metal, such as copper, aluminum nitride or titanium insulation. 

Thermocouples are attached to the bottom of the cylindrical slab material and the heat 

flux into the calorimeter is determined by the electric signals obtained from the 

thermocouples. When the capacitance calorimeter is directly exposed to a convective 

flow, the heat transfer coefficient can be determined by equation (2.4), provided the 

thermal properties of the surface are known.  

( )
pmc

hAt

e
TT

TT −

∞

∞ =
−
−

0

 
(2.4) 

Where T∞ = Cylindrical slab temperature at steady state, K 

 T0 = Cylindrical slab temperature at initial state, K 

 t = Time, s 

 A = Surface area, m2 

 m = Mass of the cylindrical slab, kg 

 Cp = Specific heat capacity, J/(kg.K) 

 h = Heat transfer coefficient, W/m2K 

 

Fig. 2-2. Thermal capacitance calorimeter 
 

Capacitance calorimeters are normally used for constant energy input to the surface 

and they are only applicable for short exposure measurements: the duration is limited 

by the time when the temperature of the cylinder slab reaches its steady state. The 

standard method for operating the capacitance calorimeters, their design parameters 

and their limitations are documented at ASTM E457-96 [89]. Owen [90] applied the 

capacitance calorimeter method to determine the heat transfer for a copper sphere 
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experiencing condensation and evaporation. The main disadvantage of this form of 

device, particularly when measuring with large heat fluxes, is the disruption to the 

thermal boundary layer, due to the thermal discontinuities introduced by the sensor 

material boundaries. Also, it is impossible to evaluate the heat losses through the 

insulation layers.  

 

Another transient heat transfer measurement is achieved by measuring the one 

dimensional thermal pulse penetration into the surface of interest. Typically, the 

applications of this form of heat flux measurement are in short duration hypersonic 

facilities [91] and blow down turbomachinery experiments [92]. In this transient state 

experiment, only one parameter is measured, which is the surface temperature history, 

to evaluate the experimental convection heat transfer coefficient, see equation (2.5)  
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where 
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pρ
β =  

 

 

 Ts = Surface temperature, K 

 Taw = Adiabatic wall temperature, K 

 ρ = Density of the solid surface, kg/m3 

 k = Thermal conductivity of the solid surface, W/K 

 

However, it is difficult to determine the wall surface heat transfer coefficient by 

equation (2.5), since the local adiabatic wall temperatures, Taw, in most of the 

experiments are unknown. A new method of temperature data processing was 

introduced by Wang [93] to evaluate both the transient heat transfer coefficient and 

the local adiabatic wall temperatures in the experiments. In equation (2.5), the heat 

transfer coefficient, h, and wall adiabatic temperature, Taw, are related to the surface 

temperature history, Ts(t). Hence,  theoretically if the correct combination surface heat 

transfer coefficient and wall adiabatic temperature are applied into equation (2.5), the 

surface temperature history predicted by equation (2.5) would be the same as the 

surface temperature history recorded from the experiments. Wang applied this 

principle and introduced the minimal root mean square regression method to obtain 
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the combination values of these two parameters accurately, by ultilising the full 

surface temperature measured from the experiments.     

 

Transient heat transfer experiments on a flat plate using a propane air burner were 

conducted by Talib [94], by using the regression analysis method introduced by Wang 

[93]. Furthermore, Talib investigated accuracy of the regression method with multiple 

steps change in gas temperature. The experimental results showed that, by increasing 

the gas temperature step from one to four, the maximum experimental uncertainty has 

reduced from 27% to 9%. This demonstrates that by applying the multiple 

temperature steps technique in the regression analysis method, it has potential to 

reduce in the experimental uncertainties in measurement of surface heat transfer 

coefficient and adiabatic wall temperature.  

 

There are several techniques available to measure the temperature history on the 

surface of interest. One of the most popular ways is by using the thin-film 

thermocouple. The thin-film thermocouple is physically small, of the order of one 

micrometer thick, and it has minimal disruption to the surface thermal boundary and 

flow condition on top of the surface of interest. In addition, the thin-film 

thermocouple has swift response to thermal condition due to its low thermal 

capacitance. Nevertheless, to evaluate the surface heat transfer coefficients accurately 

by the principles outlined in equation (2.5), material properties in terms of the product 

of ρcpk of the solid surface and thin-film thermocouple are required for the sensor 

calibration process. Procedures for obtaining the product of ρcpk values of the thin-

film sensor were demonstrated by Doorly [95]. The possible experimental errors 

associated with the effect of thin film thermocouple in the transient heat transfer 

coefficient measurement and its corresponding correction ratios were documented by 

Schultz et al. [96]. 

 

Alternatively, thermal liquid crystals (TLC) have become increasingly popular for 

surface temperature measuring experiments in the last decade. Liquid crystal 

molecular structure is intermediate between a crystalline solid and an isotropic liquid. 

It possesses some of the mechanical properties of a liquid and the optical properties of 

crystalline solids. The cholesteric (or nematic) structure of liquid crystal is optically 
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active and reacts to changes in temperature. The details of the cholesteric structure of 

liquid crystal can be found in [97]. Davenport [98] and Ireland et al. [99] are those 

pioneers who started using thermal liquid crystal for surface heat transfer 

measurements on turbomachinery and aerodynamic applications. The fundamentals of 

liquid crystal measurements of heat transfer were reviewed by Jones et al. [97] and 

Ireland et al. [100]. 

 

Transient heat transfer tests by using TLC offer full coverage data from a single test 

and can produce high resolution data by using multiple narrow-band TLCs [101]. In 

transient heat transfer experiments, the solid surface coated with TLC is typically 

illuminated from a diffuse source and the reflected light is monitored and recorded by 

a colour CCD camera. It was shown by Camci et al. [102] and Akino et al. [103] that 

hue component of the colour video signal from the TLCs recorded during heat 

transfer experiment can be accurately calibrated to the surface temperature. Most 

importantly, hue-temperature calibration is independent of the strength of illumination 

from the TLC. Wang [93] demonstrated a sophisticated video recoding system to 

enable the complete continuous hue history recording during heat transfer 

experiments for transient surface heat transfer coefficients evaluation. Later, Ling et 

al. [104] claimed that hue-temperature calibration was problematic due the camera 

viewing angle, lighting and internal reflections. Therefore, Ling concluded that the 

temperature calibration by mean of colour intensity is better for transient experiments. 

Due to the robustness of TLC, it also was applied in several steady-state heat transfer 

experiments by numerous researches, for example Ouden et al. [105], Cooper et al. 

[106], Baughn et al.[107], Lucas et al.[108] and Sargison et al. [109]. 

 

Harmand et al. [110] and Mori [111] introduced the use of the infrared camera to 

measure the surface temperature on a matt coated rotating disc, to evaluate the 

convective heat transfer coefficients on the corresponding surface of interest. All 

materials continuously absorb and emit electromagnetic waves by raising and 

lowering their molecular energy levels (by heating or cooling the substance). 

Therefore, the infrared camera which measures the intensity and wavelengths of 

emission from the surface of interest can be applied to determine the surface 

temperatures. The merit of using the infrared camera is its capability to cover the 
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complete surface, allowing global temperature distributions to be found. Yet, the 

optical access is essential. Special anti-reflective coated windows would be required 

for taking infrared images inside the generator. This would be become an issue as the 

maximum diameter of the anti-reflective coated window that can be manufactured is 

limited to 300mm (quoted from Hawk IR International Ltd.). 

 

Baugh et al. [112] conducted convective heat transfer coefficient measuring 

experiments on a pin fin in a duct by using both the steady and transient state methods. 

They concluded that both the measuring methods compared well at stagnation 

regimes. On the other hand, Critoph [113] used the radiant heating method with liquid 

crystal thermography to measure the local heat transfer coefficient on the plate fins 

used in the plate fin tube heat exchangers. He claimed that either steady state or 

transient tests may be used to derive heat transfer coefficients, but they were not 

comparable if the heat transfer coefficients calculated were based on the inlet air 

temperatures as the reference temperatures. Butler [114] investigated the effect of 

thermal boundary conditions on the transient heat transfer measurements on a flat 

plate. He found that the transient method produced heat transfer coefficients that were 

lower in uniform temperature boundary conditions, and higher in the uniform heat 

flux boundary conditions then the steady state measuring methods, in the same flow 

condition. These results indicated the importance of thermal boundary conditions in 

the transient heat transfer coefficient measuring method. 

 

2.3.6. Heat and Mass Transfers Measurements: Naphthalene Sublimation 

Methods (NSM) 

 

In many heat transfer experiments, it is often difficult to measure high resolution local 

heat transfer coefficients, especially when the temperature changes rapidly over small 

regions resulting in large wall conduction errors, and on rotating or moving surfaces, 

where bulky remote sensors are used. On the surface of highly volatile materials, such 

as Naphthalene, the surface heat transfer coefficient can be determined with good 

confidence by measuring the mass transfer, via a well developed heat-mass analogy 

[115-116]. The Naphthalene sublimation method (NSM) works by measuring the 
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naphthalene surface profile coated on the specimens by using a high precision linear 

variation differential transformer (LVDT), before and after conducting the 

experiments, to deduce the local heat transfer coefficients. Also, the NSM has been 

used, by several researchers [117-122] to measure local surface heat transfer 

coefficients on moving parts such as rotating disks, cylinders, cavities and annular 

fins, to circumvent the inherent problems of maintaining electrical connections 

between fixed and rotating parts.  

 

NSM is able to produce good experimental measurements, provided accurate values 

of the Naphthalene properties are available to be applied into the heat and mass 

analogy. The basic properties, such as the density of the solid, saturated vaporized 

pressure, mass diffusion coefficient in air etc, were carefully measured and quantified 

by Kudchadker et al. [123] and Dean [124]. The accuracy of the heat transfer 

coefficient evaluated from NSM is governed by the heat and mass transfer analogy, 

and the corresponding thermal boundary conditions. The basic heat and mass transfer 

analogy is the Colburn (Sc/Pr)n analogy (equation (2.6)) and its fundamental 

principles were described in detail by Eckert [115] and Eckert et al. [116]. However, 

Lewis [125] showed that the mass and heat transfer coefficient can be related more 

accurately using a stricter treatment rather than the simple Colburn (Sc/Pr)n analogy. 

Lewis demonstrated a new analogy expression derived from universal velocity 

profiles in a turbulent boundary layer. For flow over a flat plate, von Karman [126] 

has given the analytical correlation of equation (2.7) and Petukhov [127] has 

presented a theoretically based correlation, equation (2.8), for a smooth tube wall. 

Nevertheless, these analogies were derived for only for isothermal and adiabatic wall 

boundary conditions.  

 

Colburn (Sc/Pr)n heat and mass transfer analogy,  

n

ScSh

Nu







= Pr
 

 

(2.6) 

  

For Flow over a flat plate by von Karman [126],   
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For Flow over a smooth tube wall by Petukhov [127],  
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The heat transfer coefficients obtained from NSM are time-averaged values. The heat 

transfer measured includes the transient effect, for example, before the experiment 

reaches its steady state. Therefore, NSM results in high experimental errors for low-

velocity flow, for which the run times exceed two hours [128]. Also, due to the 

saturated naphthalene vapor pressure, the technique is highly sensitive to fluid 

temperature variations and the aerodynamic and viscous heating effect in high 

velocity flows. Therefore, NSM is not recommended for use for flow velocity higher 

than 30m/s [128]. NSM was reviewed in detail by Goldstein [128]. The author 

claimed that the NSM experimental uncertainty within a 95% confidence interval was 

7% and it was mainly due to the use of inaccurate Naphthalene properties.   

 

2.3.7. Conclusions  

 

Three distinct types of heat transfer coefficient measuring method were reviewed in 

this section, which are the direct steady state method, the indirect transient method 

and the heat-mass transfer analogy method. Due to experimental and financial 

limitations, the heat transfer measurement technique which was implemented for this 

research was the thin-film heat flux sensor direct steady state method. Through-bore 

slip rings were used to obtain temperature and heat flux measurements on rotating 

surfaces. To eliminate the high frequency noise caused by the slip rings, signal 

amplification circuits were implemented (see section 7.3). 
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Chapter 3  
 

2-D lumped parameter model 

 

3.1. Introduction 
 

Extensive computational fluid dynamics (CFD) codes have been developed in the past 

few decades to estimate velocity field, temperature and heat transfer in both external 

and internal flows. However, those CFD codes consume a great deal of computational 

resources and time to obtain reasonably accurate solutions. In this chapter, an 

advanced lumped parameter model is developed for axial flux permanent magnet 

(AFPM) generators, which is capable of reducing the numerical calculation effort 

necessary for CFD in machine design from days into minutes. Ideally, the developed 

lumped parameter model will replace the general CFD code in the AFPM machine 

design process. 

 

The lumped parameter technique models the process of heat transfer in an electrical 

machine by constructing an equivalent thermal circuit. Electrical machines are 

subdivided into basic elements and each basic element is identified by a node in the 

equivalent thermal circuit. By knowing the thermal properties of the materials used in 

the electrical machine, the corresponding thermal impedances, thermal capacitances 

and heat sources of each machine component can be calculated and applied into the 

equivalent thermal circuit, to predict the air and surface temperature rises in the real 



3.1. Introduction  35 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

electrical machine. Additionally, those thermal impedances are derived from entirely 

dimensional information of the electrical machine. Hence, the same thermal 

equivalent thermal network can be easily adapted to a range of machine sizes, 

boundary conditions and configurations. 

 

3.2. Theory 
 

The lumped parameter model works by transforming the heat flow paths in the real 

electrical machine into a thermal equivalent circuit. The thermal equivalent circuit is 

fundamentally an analogy of an electrical circuit, in which Heat, q (W), is analogous 

to Current, I (Amps); Temperature difference, ∆T (K), is analogous to voltage 

difference, ∆V (v); and thermal resistance, Rt (K/W), is analogous to electrical 

resistance, R (Ohm). Those thermal resistances are defined differently for conduction, 

convection and radiation.  

 

For conduction, the thermal resistance depends on the thermal conductivity of the 

material, k, the length, l, and cross-sectional area, Ad, of the heat flow path and may be 

expressed as:  

kA

l
R

d
d =  

 

(3.1) 

 

The thermal conductivity resistance calculated from equation (3.1) is derived from the 

one dimensional heat flow equation. It assumes that the heat flow is uni-directional 

and the thermal conductivity k, is constant all along the length l.  

 

For convection, thermal resistances for forced convection are defined as:  

hA
R

v
c

1=  
 

(3.2) 

 

Where Av is the surface area of convective heat transfer between two regions and h is 

the convective heat transfer coefficient. The convection heat transfer coefficient is a 

function of the flow condition and geometries. Hence, it may change for different 
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flow channels inside the machine. In particular, the heat transfer coefficient for flow 

across a flat plate can be expressed as:  

3/12/1 PrRe332.0 x
f

x
x k

Xh
Nu =≡  

(3.3) 

 

Where X is the distance from the leading edge and X=0 at the leading edge, kf is the 

fluid thermal conductivity, Rex is the flow Reynolds number at position X, and Pr is 

the flow’s Prandtl’s number. 

 

The thermal circuit for the steady state simulation consists of thermal resistances and 

heat sources connected between motor component nodes. For transient analysis, the 

thermal capacitances are used in the thermal circuit, to account for the change of 

internal energy in the various parts of the machine with time. The heat capacitance is 

defined as:  

pp mcVcC == ρ  (3.4) 

 

Where cp is the specific heat capacity of the material, ρ is the density, and V and m are 

the volume and mass of the material respectively.  

 

Radiation heat transfer in the generator is generally small and hence it is neglected in 

this model.  

 

Fig. 3-1(a) and 3-1(b) show a sectional view of an axial flux permanent magnet 

generator (with slot-less stator) and its equivalent 1-D thermal circuit, respectively. In 

Fig. 3-1(a) the machine is subdivided into five lumped components, which consists of 

the stator, the winding, the air gap, the permanent magnet and the rotor disks. These 

five lumped components are interconnected with corresponding thermal conductive 

resistances (Rd1-d4), convective resistances (Rc1-c9) and capacitances (C). The heat 

source terms, Peddy, Pwinding and Pm in Fig. 3-1(b), stand for eddy current losses in the 

stator, winding losses and losses in the magnet, respectively. By applying Kirchoff’s 

first law to the 5-node thermal network shown in Fig. 3-1(b), the steady state results 

can be represented in a matrix equation form as shown below:  
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[ ] [ ] [ ]QG =×′ θ  (3.5) 

 

Where [ ]Q is the power source vector, [ ]θ is the temperature vector and [ ]G′  the 

network admittance matrix which is formed by the thermal resistances and 

capacitances. 

 

Hence, the temperature at each of the node can be obtained by inverting equation (3.5), 

that is, 

[ ] [ ] [ ]QG 1−′=θ  (3.6) 

 

Equation (3.6) is solved automatically by using a commercially available system 

circuit solver, Portunus2 . By constructing the thermal equivalent circuit of the 

electrical machine and specifying the corresponding magnitude of each thermal 

resistance in Portunus, the network admittance matrix, [G’], of the machine is 

constructed automatically and hence the temperature at each node is calculated. All of 

the thermal circuits shown in this thesis were solved by using Portunus.     

  

 

Fig. 3-1: Thermal resistance circuit of an AFPM with slot-less stator. 
 

This chapter describes and discusses the construction of the 2-D conductive thermal 

network for the AFPM generator and how it is coupled with the convective thermal 

circuits. The “2-D” in this study refers to the heat flow in two directions, which are in 

                                                 
2http://www.cedrat.com/en/software-solutions/portunus.html 
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the radial and axial directions. The heat flow in circumferential direction is ignored. 

The effects of different levels of node discretisation are also investigated, to find the 

best compromise between the simplicity of the model and the accuracy required of the 

simulations. Finally, several example cases are tested, to validate the accuracy of 

these lumped parameter models compared with experimental and conventional CFD 

results. 

 

3.3. 2-D Thermal Equivalent Circuit of AFPM Generator 
 

The thermal circuit shown in Fig. 3-1 indicates a 1-D thermal network of the AFPM 

generator [35-37]. In the 1-D thermal circuit, the heat fluxes in the generator are 

assumed to travel in one direction only, i.e. heat fluxes (in both the axial and radial 

directions) generated from the stator are summed and represented by one total heat 

flux. Consequently, one mean temperature is used to represent the whole stator. 

However, problems occur when predicting the highest surface temperature for 

laminated stators, which have different thermal conductivities in the axial and radial 

directions. The mean temperature predicted in the 1-D circuit is far below the highest 

temperature of the stator. Hence, it is necessary to look for a more sophisticated 2-D 

thermal network to replace the existing 1-D thermal network.      

 

To generate a 2-D thermal equivalent circuit, the electrical machine is subdivided into 

a number of annuli, as shown in Fig. 3-2. Both the generator’s windings and magnets 

are simplified into annuli (instead of separated circular arc sections). As a result, the 

AFPM generators are axisymmetric and can be modelled with a 2-D thermal network. 

Several assumptions are made for modelling the AFPM generators with the 2-D 

thermal network. These assumptions are: 

• Slotted stator winding. 

• The inter-magnet and inter-winding grooves are relatively small compared 

with the magnet and stator circumferential widths.     

• The magnet and winding thickness are small relative to size of the air gap. 
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For electrical machines with large inter-magnet and inter-winding grooves, additional 

cooling effects occur in the circumferential direction. Since the 2-D thermal circuit 

neglects the heat flow in circumferential direction, the temperatures predicted on the 

magnet and stator surfaces may have significant errors. However, the model can be 

improved by using the angle-weighted heat transfer coefficients on the magnet and 

stator surfaces in the thermal equivalent circuit. When the generator rotates, the heat 

transfers on the magnet’s and stator’s surfaces fluctuate continuously and periodically, 

like a Sinus wave. Therefore, by using the angle-weighted heat transfer coefficient 

average as a representation of the fluctuating heat transfer coefficient on the magnet 

and stator surfaces, the discrepancy due to the additional cooling effects on the inter-

magnet and inter-winding grooves can be minimised.  

 

In general, the 2-D equivalent thermal circuit of AFPM generators consists of two 

sub-circuits, which are the conductive thermal circuit and the convective thermal 

circuit. Both sub-circuits are interconnected with each other and work iteratively to 

predict the air and solid surface temperatures in the machines.  

 

Fig. 3-2. 3D (a) and 2D (b) views of an axisymmetric axial flux permanent magnet 
generator. 
 
 

3.3.1. 2-D Conductive Thermal Circuit 
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In the 2-D conductive thermal network of an AFPM generator, conductive heat in the 

machine is assumed to travel in the axial and radial directions only. The heat flow in 

the circumferential direction is small and can be neglected. To obtain simple, but 

physically significant expressions of the thermal resistances that describe the heat 

conduction across the generator components, the following assumptions are made. 

• Heat flows in the radial and axial directions are independent. 

• A single mean temperature defines the heat flow both in the radial and axial 

directions in the control volume. 

• The thermal capacities and heat generations in the control volumes are 

uniformly distributed. 

 

The 2-D conductive thermal network of the AFPM generator is built based on the 

general annulus/ring component as shown in Fig. 3-3(a). For an annulus of length L, 

with inner and outer radii, r1 and r2, axial and radial thermal conductivities ka and kr 

respectively and internal heat generation/loss q per unit volume, it can be represented 

by two separated, three terminal networks, which are the axial terminal network (left 

hand side of Fig. 3-3(b)) and the radial terminal network (right hand side of Fig. 3-

3(b)). 
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Fig. 3-3. 2-D Thermal circuit of annulus solid. 
 

In each network, two of the terminals represent the surface temperatures of the 

annulus (for e.g. T1 is the temperature on the annulus front surface; T2 is the annulus 

back surface temperature etc), whereas the third represents the central node (Fig. 3-3). 
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The central node of each network would give the mean temperature of the component 

if there were no internal heat generation or thermal storage. The superposition of the 

two circuits at node Tm, with the internal heat generation and thermal capacitance 

requires the additional thermal resistance Ra3 and Rr3. Details of the derivation of Ra3 

and Rr3 can be referred to Sectopm 5.2.1 or [35]. It can be noticed that both Ra3 and 

Rr3 are negative resistance. Hence is shows that the mean temperature of annulus is 

lower than the temperature at the centre nodes of the separated radial and axial 

thermal circuit alone, see equation (3.9) and (3.12). These values of the thermal 

resistances in each network are derived directly from the independent solutions of the 

heat conduction equation in the axial and radial directions [35, 129]. These are given 

in terms of the dimensions of the annulus and its axial and radial thermal 

conductivities ka, kr, by the following expressions: 
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By applying the annulus thermal circuit as the basic circuit, with the corresponding 

thermal resistances, the conductive circuit of the full generator was constructed, as 
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illustrated in Fig. 3-4. Each generator component is represented with an annulus 

conductive circuit, and is connected in such way that it is physically connected in the 

real machine. Thermal contact resistance, which is defined in equation (3.13), is 

introduced in between the two temperature terminals of each contact component, to 

take into account the temperature drop on each contact interface.    

cc
c hA

R
1=  

 

(3.13) 

  

Where Ac is the surface area of contact between two solid and hc is the thermal contact 

conductance coefficient. 

 

The heat transfer between the air and the generators components is usually dominated 

by the convective heat transfer when the generator is rotating. To complete the 2-D 

thermal circuit of the AFPM generator, a fluid flow circuit is introduced to take into 

account of the convective heat transfer between the air and the solid components of 

the generator. It is further discussed in the following section. 

 

3.3.2. 2-D Convective Thermal Circuit 

 

Convective heat transfer describes the energy transfer between the solid surface and 

the fluid moving over the surface. Normally, for working fluid such as air, the 

convective heat transfer dominates the heat transfer in the electrical machine. Hence it 

is important to develop a 2-D convective thermal circuit that works interactively with 

the conductive circuit, to provide accurate temperature prediction for rotating 

electrical machines.  

 

The 2-D convective thermal circuit works by transforming the energy balance 

equation into the thermal network, to determine how the fluid temperature varies with 

the distance travelled and to relate the total convective heat transfer with the change 

of fluid temperature. Two distinctive convection heat transfer modelling methods are 

discussed, which are the Temperature passing method (TPM) and Heat pick-up 

method (HPM). TPM is developed by the author based on the energy conservation 
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equation whereas HPM is the convection heat transfer modelling method introduced 

by previous researchers [130]. The nature and accuracy of these two modelling 

methods are investigated and tested with case studies.  

 

3.3.2.1. Temperature Passing Method (TPM) 

 

The TPM convective thermal circuit works by splitting the air domain inside the 

AFPM generator into a number of control volumes. By considering the energy 

balance equation, each of the air control volumes can be represented as a separate 

thermal circuit. Fig. 3-4 shows an example of an internal fluid flow in a pipe.  

 

Assume that the air moves at constant flow rate, m& , from the inlet (at left hand side), 

and is heated from Tin to Tout by the inner pipe wall.  

 

 

Fig. 3-4. Control volume of an internal fluid flow in a pipe. 
 

By neglecting the heat transfer by conduction in the axial direction, the heat transfer 

from the inner pipe wall by convection, heats the fluid from Tin to Tout, and can be 

expressed as:   
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(3.14) 

 

Assume that the temperature change across the pipe flow is small, hence equation 

(3.14) can be simplified to: 

( ) ( )inoutpinsurfconvection TTCmTThAq −=−= &  (3.15) 
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Arranging equation (3.15), the fluid temperature at the outlet, Tout, can be written in 

terms of qconvection, with known boundary conditions of Tin, m&  and cp, at the inlet. 

in
p

convection
out T

Cm

q
T +=

&
 

 

(3.16) 

 

From equation (3.16), in order to calculate the outlet temperature, Tout, the exact 

amount of convective heat transferred into the fluid, qconvection is required. Equation 

(3.15) is rearranged as illustrated in equation (3.17), so that the air control volume 

convection heat transfer can be represented as a simple thermal circuit, as shown in 

Fig. 3-5, where 1/hA is the convective thermal resistance. Hence, the qconvection can be 

evaluated from the simple thermal circuit. By substituting the qconvection obtained from 

the thermal circuit into equation (3.16), Tout can be predicted if both inlet temperature, 

Tin and air specific heat capacity, Cp, are known.  

 

( )

hA

TT
q insurf

convection 1

−
=  

(3.17) 

 

 

Fig. 3-5. Air control volume thermal circuit. 
 

Once computed, the predicted Tout of the air control volume is passed to the 

neighbouring air control volume. Similarly, the outlet temperature in the second air 
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control volume is predicted using its corresponding equivalent convective thermal 

circuit and equation (3.16). By using this process, all the air control volume 

temperatures from the system inlet to the outlet are determined. The calculation is run 

iteratively until the solution reaches convergence.  

 

The accuracy of the convective equivalent thermal circuit depends on the assumption 

made to derive equation (3.15), i.e. that the temperature change between the inlet and 

outlet is small. To improve the accuracy of the fluid flow circuit, it is necessary to 

discretise the air domain into finer control volumes to minimise the temperature 

change across each one. Fig. 3-6(a) shows the pipe flow example which is subdivided 

into 3 control volumes and its corresponding equivalent convective circuit. Although 

these control volumes are not physically connected in the equivalent convective 

circuit, as illustrated in Fig. 3-6(b), they are programmed in such way that the outlet 

temperature of one control volume is carried forward to the control volume next to it 

as the inlet temperature for the next time step. The calculation is run for each time 

step until the system reaches steady state.  

 

 

Fig. 3-6. Convection thermal circuit for pipe flow with three control volumes. 
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The equivalent convective circuit calculation steps for multiple control volumes are 

(See Fig. 3-7): 

I. Initially the inlet temperatures of all the control volumes are set to the ambient 

temperature.  

II.  The convection thermal circuit is executed and the qconvection and outlet 

temperature of each control volume is evaluated, by using the initial inlet 

temperatures as the initial condition.  

III.  For the second time step, the inlet temperature of CV2 is set equal to the outlet 

temperature of CV1, and similarly, the inlet temperature of CV3 is set equal to 

the outlet temperature of CV2, from the first time step.   

IV.  The fluid flow circuit is re-run with the new inlet temperatures and new 

qconvection of each control volumes is calculated again.   

V. Steps III and IV are repeated until a steady state solution is obtained. 
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Fig. 3-7. Temperature Passing method algorithm. 
 
 

3.3.2.2. Heat Pick-up Method (HPM) 

 

Similar to the Temperature passing method, the heat pick-up method (HPM) models 

the convection heat transfer by using the circuit analogy. In HPM, the working fluid 

in the machines is discretised into a number of control volumes, and represented as a 

number of nodes in the thermal circuit. Fig. 3-8(b) shows the corresponding 

convection thermal circuit of the fluid control volume in Fig. 3-8(a) by using HPM. 

The HPM convection thermal circuit consists of two sub-circuits, which are the 

convection heat circuit and the flow circuit, as shown in Fig. 3-8(b). The flow circuit, 

which is situated at the top of the circuit, models the energy transfer across the fluid 
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flow, whereas the convection heat circuit, which is located at the bottom part of Fig. 

3-8(b), models the convection heat transfer from the surface to the fluid. Both of the 

circuits are connected at node Tout.   

 

By applying the conservation energy equation into the fluid control volume shown in 

Fig. 3-8(a), the heat transfer by convection, qconvection from the bottom surface with 

constant temperature Tsurf is equal to the energy used to heat up the fluid from the inlet 

temperature, Tin to the outlet temperature Tout.  

( )convection p out inq mC T T= −&  (3.18) 

 

The heat transfer by convection, qconvection, can also be written as: 

( )outsurfconvection TThAq −=  (3.19) 

 

Hence, by rearranging equations (3.18) and (3.19),  

( ) ( )

hA

TT

Cm

TT
q outsurf

p

inout
convection 11

−
=

−
=

&

 
 

(3.20) 

 

Equation (3.20) can be represented as the convection thermal circuit shown in Fig. 3-

8(b), by assuming: 

1 1
;   m conv

p

R R
mC hA

= =
&

 
 

(3.21) 

 

Fig. 3-8(a)&(b). Convection heat transfer modeling with Heat Pick-up method 
 

Equation (3.19) assumes the temperature of the fluid is equal to the outlet temperature, 

Tout. However, this is only valid if the temperature increase across the control volume 
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is small. For cases where the temperature increase is big, a higher level of 

discretisation is required in order to maintain the accuracy of HPM convection heat 

transfer modelling. Fig. 3-9(a) and 3-9(b) show the fluid flow partitioned into three 

control volumes and the corresponding HPM thermal circuit, respectively. 

 

The flow resistance derived from equation (3.21) is not appropriate for a flow 

configuration that consists of more than one control volume. Fig. 3-9(b) shows the 

flow configuration is divided into three control volumes and represented by HPM 

thermal circuit. The heat generated from the heat source Pth1, flows to the ambient, 

Tamb, via three different paths, which are CV1, CV2 and CV3, and the three flow 

resistances, Rm1, Rm2 and Rm3 respectively. From the heat flow path shown in Fig. 3-

9(a), the total heat flows into CV3 is the heat flows from the wall of CV3 (WMth3); 

the total heat flows into CV2 is the sum of the heat flows from the wall of CV2 

(WM th2) and CV3 (WMth3); the heat flow into CV1 is the sum of the heat flows from 

the wall of CV1 (WMth1), CV2 (WMth2) and CV3 (WMth3). This can be represented as 

equations: 

33 thcv WMWM =  (3.22) 

322 ththcv WMWMWM +=  (3.23) 

1321 thththcv WMWMWMWM ++=  (3.24) 

 

Where  WMcv1 is the heat flow into CV1 

WMcv2 is the heat flow into CV2  

WMcv3 is the heat flows into CV3 

WMth1 is the convection heat flow at CV1 

WMth2 is the convection heat flow at CV2 

WMth3 is the convection heat flow at CV3 
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Fig. 3-9 (a)&(b). HPM thermal circuit for multiple control volumes modelling. 
 

The circuit works fine in predicting the temperature of CV3, but it over-predicts the 

temperatures of CV2 and CV1. From the circuit shown in Fig. 3-9(b), the heat flow 

(WMcv2) across the thermal resistance Rm2 is the sum of WMth2 and WMth3; however, 

from the physical model, shown in equation (3.20), the heat flow across the mass flow 

resistance Rm2 is only equal to the heat flow from the wall of CV2 (WMth2). The extra 

heat flow from CV3 (WMth3) flow in the mass flow resistance Rm2 deviates the 

temperature predicted for CV2. It is similar for CV1, where connecting CV2 and CV3 

at the back of CV1 flow circuit increases the heat flow in the mass flow resistance Rm1, 

hence over-predicts the temperature of CV1. These results show that HPM thermal 

circuit is not capable of predicting temperature for more than one control volume. 

 

Correction factors are introduced into HPM thermal circuit so that it is apply to 

multiple control volume flow modeling. In the multiple control volume HPM models, 
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the flow resistances Rm1, Rm2 and Rm3, are divided by fractions, Kn, as shown in 

equation (3.25) to offset the over-predicted temperatures as discussed as above. The 

fraction, Kn, is defined as the ratio between the heat across the convection and flow 

circuits, equation (3.26). 

 

1 2 3
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(3.26) 

 

However, these heat fractions, Kn are unknown and they vary with different flow 

conditions, for example laminar and turbulent flows, curved and parallel flows etc. 

Each of these different flows incurs a different set of heat transfer coefficients and 

hence it changes the heat fractions across each control volume. Therefore, an iterative 

method is used to find the exact heat fractions for different flow conditions. Fig. 3-10 

shows the flow chart of the HPM iterative algorithm that is used to find the heat 

fractions in a multiple control volume flow system.  

 

Initially, all the heat fractions, Kn, are set to 1. The HPM thermal circuit is run in 

Portunus with the corresponding original flow resistances. The temperature and the 

corresponding heat ratio of each control volume are obtained by applying equation 

(3.26). On the second time step, the heat fractions obtained from the first time step are 

used. The thermal circuit is re-run and hence another set of heat fraction and 

temperature are evaluated. The iterative process is repeated until the solutions are 

converged, i.e. the temperature differences in each control volume predict from the 

last two iterations is less than 0.001 °C. 
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Fig. 3-10. Heat pick-up method iterative algorithm. 
 

Two case studies are conducted to validate the accuracy of the TPM and the HPM 

compared with the CFD results. However, the accuracy of the temperature prediction 

of these methods is closely related to the accuracy of the convective heat transfer 

coefficient used in the equivalent convective circuit. Therefore, in order to make a 

valid comparison with the CFD results, the convective heat transfer coefficients 

applied for these two convection heat modelling methods were directly obtained from 

the CFD simulations.  In the future, parametric studies of the convective heat transfer 

coefficient of the AFPM generator will be conducted to develop empirical formulae 

that directly relate the convective heat transfer coefficient with different flow 

conditions, mass flow rates and geometrical parameters. With these parametric data, 

the lumped parameter model is potentially capable of working independently from 

CFD, to provide accurate temperature predictions. 
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3.3.2.3. Comparisons of Temperature Passing Method (TPM) and Heat 

Pick-up method (HPM)  

 

The aim of this section is to investigate the accuracy and practicability of TPM and 

HPM convection heat modeling methods compared with the existing CFD modelling 

technique. Three different test cases were designed to monitor the accuracies of these 

two modelling methods with different boundary conditions, including both steady and 

unsteady boundary conditions. The CFD models of these test cases were built to 

provide benchmarks for these two modelling methods. At the same time, the heat 

transfer coefficients of these three different boundary conditions for these two LPM 

models were extracted from the solutions of the CFD models. A flow system in a 

heated pipe of 250mm length and 50mm radius is demonstrated in Fig. 3-11. Fig. 3-

12(a) & (b) show the five control volume thermal circuits of the temperature passing 

method (TPM) and the heat pick-up method (HPM), respectively. 

  

The CFD model was constructed using the Gambit meshing software. The model was 

meshed with structural Quad mesh and very fine mesh was applied at the area near to 

the wall to capture the velocity boundary layers effect. An asymmetric boundary 

condition was used to reduce the size of model to half: Only half of the pipe was 

modeled. In total, the 2-D CFD model of the flow system in the heated pipe consists 

of 10486 cells. Uniform axial velocity, 1m/s, was specified at the inlet of the pipe, and 

the corresponding pipe flow Reynolds number was 5.76x106. The realisable k-ω 

turbulence model was used to attain the turbulent effect in the model. The 2-D CFD 

model of flow in the heated pipe is simulated in FLUENT 6.3. The calculations took 

an hour on a 1gigabyte RAM, 1.73GHz Core DUO PC, to reach both residual and 

absolute convergences.            

 

The thermal circuits with both convection heat transfer modelling methods (TPM and 

HPM) of the heated pipe flow system consist of five control volumes (CVs) (Fig. 

3.12). TPM used the pipe inlet temperature to predict the outlet temperature of the 

first fluid control volume. Subsequently, the outlet temperature calculated from the 

first CV based on the inlet temperature of the system and the boundary condition of 

the first bottom wall surface was passed to the second CV as the inlet temperature. 
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Similarly, the outlet temperature calculated from the second CV, was based on the 

outlet temperature of the first CV1, and the boundary condition on the second wall 

surface. Similarly, the outlet temperature of CV2 was passed to CV3. The temperature 

information was hence propagated from the inlet to the outlet of the pipe flow system.  

 

For HPM, the convection thermal circuits of each control volume were connected to 

each other with flow resistances. Heat fractions, Kn, were used to amplify the flow 

resistances, which were used to counterbalance the heat accumulated at each 

temperature node in the multiple control volume model, in order to accurately predict 

the temperature rise in each control volume. Initially, the heat fractions were unknown 

for different flow conditions, but they can be found by using the iterative method 

mentioned in section 3.3.2.2. 

 

 

Fig. 3-11. CFD model of the flow through the heated pipe test case. 
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Bottom wall surface 
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Fig. 3-12(a) &(b). Temperature Passing (a) and Heat Pick-up  (b) method thermal 
circuits. 
 

Three different boundary conditions were used to investigate the accuracy of these 

two modelling methods, which were constant temperature, constant heat and 

temperature dependent heat source boundary conditions. Both the constant 

temperature and heat source are steady state boundary conditions. They were used to 

model the constant temperature or heat flux on the wall boundary of the pipe. 

Alternatively, the temperature dependent heat source is an unsteady state boundary 

condition. The heat flux flowing into the system (or the thermal circuit) with this 

boundary condition varies as the temperature on the wall changes, which is similar to 

the resistive heating element boundary condition.  

 

The fluid temperatures of each control volume predicted from HPM and TPM were 

compared with the results obtained from the CFD model. Fig. 3-13, 3-14 and 3-15 

show the fluid temperature and the relative fluid temperature errors of each control 
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volume of HPM and TPM for constant temperature source, constant heat source and 

temperature dependent heat source, respectively. The relative fluid temperature 

discrepancy is defined as in equation (3.27): 

 

Relative fluid temperature discrepancy = 
( ) ( )

( ) %100×
−

−−−

inCFD

inCFDinLPM

TT

TTTT
 

 

(3.27) 

Where, TLPM and TCFD are the temperatures predicted in the lumped parameter model 

and CFD model, respectively. Tin is the inlet temperature. 

 

By specifying the constant temperature boundary condition onto the wall of the pipe 

flow model, TPM predicted higher fluid temperatures than the CFD; whereas HPM 

under-predicted the fluid temperatures. Yet, overall, the results show that both the 

modelling circuits work well in predicting temperatures for flow inside the heated 

pipe, having a constant temperature boundary condition, where the maximum relative 

discrepancy was slightly above 1%, (see Fig. 3-13). 
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Fig. 3-13. Temperature and relative temperature error of the pipe flow model by 
specifying the constant temperature boundary condition. 
 
Subsequently, constant heat flux boundary conditions were applied to these models 

and the results are indicated in Fig. 3-14. The relative discrepancies are generally 

higher when a constant heat flux was specified in the pipe flow model. The maximum 

relative discrepancy of the thermal circuits (by applying both HPM and TPM ) is 

about 5% (Fig. 3-14), as compared with the thermal circuits when constant 
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temperature source is applied, the maximum relative discrepancy is only 3%. The 

decline in accuracy of convective circuits when a constant heat flux boundary 

condition is specified on the thermal circuits is because of the abrupt pipe wall 

temperature changes in the flow direction. As mentioned in the previous section, the 

convective resistances (or heat transfer coefficients) used in both of the convective 

circuit algorithms were obtained from the CFD models. For each control volume, the 

heat transfer across the pipe wall, q, and area-weighted average wall temperature, Tsurf, 

can be evaluated from the CFD solution. Hence, by applying this information into 

equation (3.28), an area-weighted average heat transfer coefficient of each control 

volume can be calculated and is used in the convective thermal circuits. 

 

Average heat transfer coefficient: 

( )insurf
convection TTA

q
h

−
=  

 

(3.28) 

 

Where q represents the total heat transfer in Watt, A represents the wall surface area 

and Tin represents the fluid inlet temperature.  

 

For constant heat flux wall boundary conditions, the pipe wall temperature increased 

steeply in the flow direction and the local heat transfer coefficient of each cell 

changes accordingly. Therefore, it is not sufficient to model the fluid temperature by 

applying only the area-weighted average heat transfer coefficient calculated from 

equation (3.28) of each control volume in the convective thermal circuits. Further 

partition was required, especially in the first control volume where the temperature 

gradient is the steepest, to improve the results obtained from the convective thermal 

circuits. However, it can be observed that HPM algorithm provides a slightly better 

accurate result than TPM algorithm, with the constant heat flux wall boundary pipe 

flow model.   

 



3.3. 2-D Thermal Network of AFPM Generator 58 
 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

-2

-1

0

1

2

3

4

5

6

7

8

Out-CV1 Out-CV2 Out-CV3 Out-CV4 Out-CV5

R
el

at
iv

e 
E

rr
o

rs
 (

%
)

293

293.5

294

294.5

295

295.5

296

296.5

297

297.5

298

T
em

pe
ra

tu
re

 (
K

)

Error-HPM Error-TPM CFD-Temp HPM-Temp TPM-Temp

 

Fig. 3-14. Temperature and the relative temperature errors for constant heat source. 
 

Fig. 3-16 shows the fluid temperature and corresponding relative errors of the pipe 

flow model with the application of temperature dependent heat sources. A reverse 

trend is observed. The temperature predicted by using the TPM algorithm is more 

accurate than the HPM algorithm. This is mainly due to the fact that the TPM 

algorithm iterates the fluid temperature against the time step whereas the HPM 

algorithm iterates in response to the heat fraction. The TPM algorithm is more capable 

of capturing the transient effect for the temperature dependent heat sources and hence 

the fluid temperatures predicted are more accurate. 
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Fig. 3-15. Temperature and relative temperature errors for temperature dependent heat 
source. 
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In conclusion, both convection heat transfer modelling methods were tested with three 

different boundary conditions, which were the constant temperature, constant heat 

flux and temperature dependent heat flux. The investigation indicates that these two 

modelling methods were in good agreement with the CFD model and the relative 

errors were less than 5%. However, due to the fundamental difference in the 

calculation algorithms, the HPM algorithm gives better results for steady state 

boundary conditions; whereas the TPM algorithm is better in modelling the transient 

state boundary conditions. In the next section, two more case studies are presented, to 

validate the accuracy of the lumped parameter thermal circuit compared with the CFD 

results. Because the TPM algorithm has been proved to be the better option for 

transient state modelling, all of the convective circuits in the following sections were 

built based on TPM algorithm. 

 

 

3.4. Case Study I: Flow in the Heated Pipe 
 

This case study investigates the fluid temperature distribution in the heated pipe for 

different flow conditions, e.g. Laminar and turbulent flows. Both CFD and lumped 

parameter techniques were used to model the fluid temperature increase in the heated 

pipe. The objectives of this case study are: 

• To compare the accuracy of the lumped parameter thermal circuit with the 

CFD model.   

• To investigate the optimal discretisation level for the construction of the 

lumped parameter thermal circuit. 

 

3.4.1. Descriptions 

 

In this case study, air, with mass flow rate of m& , flows through a heated steel pipe, 

having an inner radius 10mm, outer radius 20mm, and length 45mm (Fig. 3-16). The 

pipe is subdivided into three annuli where 5W/m3 volumetric heat generation is 

specified at the middle annulus. The air inlet temperature is specified as 
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19.85°C/293K and it is assumed that there is no heat loss in the pipe outer surface. 

Two different flow conditions were investigated in this case study, which are laminar 

flow with Reynolds number less than 700 and turbulent flow with Reynolds number 

greater than 4000. (For pipe flow, Re<2300 is laminar, 2300<Re<4000 is transition, 

Re>4000 is turbulent).  

 

Fig. 3-16. Case study I: Pipe flow. 
 

3.4.2. CFD model of the Pipe Flow 

 

The CFD modelling of the pipe flow was conducted to provide benchmarks for the 

temperatures predicted from the lumped parameter thermal circuit. The pipe flow 

system was modelled with the commercially available CFD code, Fluent. The pipe 

flow model was built in the Fluent’s pre-process software, Gambit with Quad 

meshing schemes. The mesh of the model is shown in Fig. 3-18. Extremely fine mesh 

was applied in the area near to the wall to model the velocity boundary layers. In this 

case study, the model was tested with two different flow conditions. For laminar flow 

modelling (Reynolds number ≈ 700), the laminar viscous model [131] was used; 

while for turbulent flow modeling (Reynolds number ≈ 3500), the realization k-

epsilon viscous model [131] with enhanced wall function was specified.  

 

Fig. 3-17. Grid of the 2D-axisymmetric model of pipe flow case study. 
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3.4.3. Lumped Parameter Thermal Circuit of the Pipe Flow 

 

The pipe flow system lumped parameter thermal equivalent circuit shown in Fig. 3-18 

consists of two major parts, which are solid conductive circuit (above the dash line in 

Fig. 3-18) and convective circuit (below the dash line in Fig. 3-18). The solid pipe and 

the fluid inside the pipe were sub-divided into three annuli and three cylinder disks, 

respectively. Each solid annulus was represented as the annulus conductive circuit, 

whereas each fluid cylinder disk was modeled as separate control volume in the 

equivalent thermal network.  

 

Each annulus conductive circuit consists of four temperature terminals, two in the 

axial direction, (the front and back surfaces temperature terminals) and two in the 

radial direction, (the outer and inner surfaces temperature terminals). Three annulus 

conductive circuits were connected one after another, where the back surface 

temperature terminal of the front annulus was connected to the front temperature 

terminal of the back annulus, shown in Fig. 3-18. The inner surface temperature 

terminals of the solid pipe were connected with the convective circuit for fluid 

temperature prediction in each control volume. Due to the fact that the pipe was 

assumed to be fully insulated, the heat flow paths to the pipe surfaces were neglected.  

 

The convective heat transfer coefficients on the pipe inner surface used in the lumped 

parameter model are extracted from the solution pre-simulated by the CFD model. 

Equation (3.28) shows the pipe inner surface heat transfer coefficient, hconvection, is 

calculated based on the heat flux, q, and area-weighted surface temperature, Tsurf, 

obtained from the CFD model.   
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Fig. 3-18. Thermal network for the pipe flow. 
 

3.4.4. Results and comparisons 

 

Fig. 3-19 shows the solid pipe volumetric average temperature and fluid mass-weight 

average temperature at the exit from each control volume, predicted from both the 

lumped parameter thermal model (LPM) and the CFD model, for laminar flow. The 

results show that the temperatures predicted by LPM are slightly higher than the CFD 

models, whereas the maximum discrepancy of approximately 1.5%, occurs in the 

CV1 fluid temperature. The discrepancy is due to the assumption made in equation 

(3.15), where the fluid average temperature was assumed to be equal to the fluid inlet 

temperature. Consequently, the convective heat flow was over-predicted, causing the 

temperatures predicted to be slightly higher. Hence, it shows that the assumption 

made in equation (3.15) is valid if the change of fluid temperature across the control 
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volume is small. By dividing the air control volume into smaller control volume, the 

errors arisen from LPM thermal equivalent circuit can be minimised. 

 

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

CV1-Fluid CV2-Fluid CV3-Fluid CV1-Solid CV2-Solid CV3-Solid

Control Volume

T
e

m
pe

ra
tu

re
 (d

e
g

C
)

LPM Results CFD Results

 

Fig. 3-19. Temperatures predicted of flow in the heated pipe (Laminar flow, Re = 
700). 
 

The accuracy of the temperature predicted by LPM depends on the fluid regime 

discretisation level. The discretisation dependency study was assessed by further sub-

dividing the pipe into 3, 9 and 18 nodes respectively. Because the absolute errors were 

small and insignificant, in order to identify the cell discretisation effect, the 

discrepancies between the LPM and CFD models were amplified by introducing the 

relative discrepancy, which is defined as:  

Relative discrepancy = 
( ) ( )

( ) %100×
−

−−−

inCFD

inCFDinLPM

TT

TTTT
 

 

(3.29) 

 

Where, TLPM and TCFD are the temperatures predicted in lumped parameter model and 

CFD model respectively, and Tin is the inlet temperature. 

 

The comparison of relative discrepancy of different levels of discretisation for low 

Reynolds flow is shown in Fig. 3-20. The first three sets of bar charts indicate the 
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relative errors for solid pipe temperature predictions and the remaining three sets of 

bar charts indicate the relative errors for the fluid.  

 

The results shown in Fig. 3-20 indicate that as the discretisation level increases, the 

relative error for fluid temperature at the first control volume decreases from 3.2% to 

2.85%. However, the decreases of the fluid relative errors of the second and third 

control volumes are less significant, being 0.08% for the second control volume, and 

insignificant decrease of error for the third control volume. The accuracy of the 

convective circuit used in this case study depends on the magnitude of temperature 

change of the fluid control volume. High temperature change across the inlet and 

outlet temperature of the fluid control volume incurs high discrepancy for fluid 

temperature prediction in LPM. (refer to Temperature Passing Method in section 

3.3.2). Therefore, the steep temperature gradient at the first fluid control volume of 

the laminar pipe flow induces the highest fluid temperature relative error. However, 

when the first fluid control volume was further divided into smaller sub-control 

volumes, the change of temperature across each sub-control volume decreases, and 

hence the accuracy was improved. In contrast, the temperature changes at second and 

third fluid control volume were gradual. Therefore, it shows that further reducing the 

size of the control volume doesn’t play an essential role in improving the accuracy.    

 

The solid pipe temperatures prediction of the thermal circuit shows a reverse trend. 

When the number of cells increases, the relative errors of the solid temperature 

predicted by the thermal circuit increase simultaneously. This is due to the fact that 

the annulus conductive circuit implemented in the lumped parameter circuit presumes 

the axial and radial heat flows are independent from each other. As the pipe is further 

divided into a thinner annulus, the interference of heat flows in the axial and radial 

directions becomes significant. Hence the accuracy degenerated as level of 

discretisation increased. 
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Fig. 3-20. LPM relative discrepancy of different discretisation level for low Reynolds’ 
flow in the heated pipe.  
 

Fig. 3-21 shows the fluid and pipe temperatures predicted from LPM and CFD for 

turbulent flow in the heated pipe. Because the temperature increases in the fluid and 

the pipe wall of each control volume in the turbulent pipe flow case are comparably 

smaller than for laminar flow case, the temperatures predicted from LPM were closer 

to the temperatures predicted from the CFD techniques. Errors between the lumped 

parameter models and CFD models were insignificant for high Reynolds number flow 

as compared with low Reynolds number.   
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Fig. 3-21. LPM relative discrepancy of different discretisation level for High 
Reynolds’ flow in the heated pipe. 
 

3.4.5. Conclusions 

 

In this case study, the lumped parameter thermal equivalent circuit of the pipe flow 

was built and it was compared with the results obtained from the CFD models. The 

results show a good agreement between the lumped parameter thermal network model 

and CFD model for both low and high Reynolds flow. The effect of the accuracy of 

the lumped parameter network with different dicretisation levels was investigated. 

Higher discretisation levels show positive effects on the fluid temperature prediction, 

but exhibit a negative influence on the solid temperature. Fig. 3-22 illustrates the 

maximum discrepancy incurred for 3-, 9- and 18-nodes discretisation level models, 

for low and high Reynolds number flows. In conclusion, a 3-node discretisation level 

is sufficient to obtain reasonably accurate results. Further discretisating the model into 

9- and 18-nodes is not necessary. Discretisation level does not play as significant part 

as heat transfer coefficient in lumped parameter thermal network models. 
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Fig. 3-22. Maximum discrepancy incurred for 3-, 9- and 18-nodes thermal network 
for low and high Reynolds flows.  
 
 

3.5. Case Study II: Simplified Axial Flux Permanent Magnet 
(AFPM) Generator 

 

This case study describes the construction of a 2D axisymmetric lumped parameter 

thermal equivalent circuit of an AFPM generator by using the annulus conductive 

circuit and the convective thermal circuit with the TPM algorithm. Similarly, 

convection heat transfer coefficients and mass flow inlet acquired from the pre-

simulated CFD model are applied into the lumped parameter thermal circuit to predict 

the temperature increase in the generator. Finally, the results calculated from the 

lumped parameter thermal circuit are compared with the result predicted by CFD 

models.   

 

3.5.1. Case Descriptions 
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Fig. 3-23(a) and (b) show the configuration of the 2D axisymmetric AFPM generator 

and its corresponding lumped parameter network. Comparing with the full generator, 

the stator holder and stator boss were omitted and the windings were simplified to 

surface heat generaters. To further simplify the analysis, symmetry about the axial 

plane at the centre of the stator was assumed, hence only half of the generator thermal 

circuit was built. 

 

 

Fig. 3-23. Simplified AFPM generator’s lumped parameter thermal network. 
 

3.5.2. Lumped Parameter Thermal Equivalent Circuit of A Simplified 

Axial Flux Permanent Magnet Generator  

 

The thermal equivalent circuit of a simplified AFPM generator consists of three major 

parts, which are the rotor conductive circuit, the fluid convective circuit and the stator 

heat source circuit, see Fig. 3-23(b). The rotor is divided into seven annuli (M1 M2, 

M3, R1, R2, R3 and R4), as shown in Fig. 3-23(a) where three of the annuli on the 

left hand side represent the magnets and four of the annuli on the right hand side 

represent the rotor disk. Each annulus of the rotor part is represented as the annulus 
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conductive circuit in the thermal circuit and they are inter-connected at the axial and 

radial temperature terminals. For the stator part, the stator winding is simplified into 

four surface heat sources in the thermal network to eliminate the uncertainty of the 

effective thermal resistance of the stator windings. Each of those heat sources is 

connected to the flow circuit next to it through a convective resistance. The working 

fluid inside the generator is sub-divided into four fluid flow control volumes, CV1, 

CV2, CV3 & CV4, and each control volume is represented as a fluid convective 

circuit shown as below: 

 

3.5.2.1. Control Volume 1 (CV1): 

CV1 indicates the first air nodes at the entrance of the simplified AFPM generator 

(Fig. 3.24(a)). Heat is transferred into/out from CV1 from three surfaces, which are 

the stator surface (Tsurf), the magnet bottom surface (Tmagsurf) and the rotor surface 

(Trotorsurf). By summing all the convective heat transfers to the fluid, and substituting 

as q1 into equation (3.30), the temperature at the exit of CV1 can be calculated. Hence, 

the convective circuit of CV1 was constructed in such way that they were linked up to 

individual heat source from the stator, magnet and rotor surfaces to the inlet 

temperature with its corresponding convective heat coefficient, to evaluate the total 

heat transfer, q1, (Fig. 3-24(b)). Since CV2 is connected after CV1, the outlet 

temperature of CV1 was passed CV2, as the inlet temperature of CV2. 

2_
1

_1 CVinin
p

outcv TT
Cm

q
T =+=

&
 

 

(3.30) 

 

Where, Tcv1_out is the temperature at the exit of CV1, q1 is the total heat transfer, and 

Tin_cv2 is the inlet temperature of CV2.  
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Fig. 3-24. Fluid convective circuit for control volume 1 (CV1). 
 

3.5.2.2. Control Volume 2 (CV2): 

CV2 indicates the air control volume directly above the CV1, see Fig. 3-25(a). For 

CV2, convective heat transfer on two surfaces were involved, where one was from the 

stator winding on the left hand side, and the other one was from the rotating magnet 

surface. Like CV1, by summing the heat transfer from these two surfaces by using the 

fluid convective circuit, as shown in Fig. 3-25(b), and substituting the calculated total 

heat transfer as q2 into equation (3.31), the temperature at the exit of CV2 can be 

calculated. Similarly, the CV2 outlet temperature was passed to CV3 as the inlet 

temperature of CV3.   

3_2_
2

_2 CVincvin
p

outcv TT
Cm

q
T =+=

&
 

 

(3.31) 

 

Where, Tcv3_out is the temperature at the exit of CV2, q2 is the total heat transfer in 

CV2, and Tin_cv2 is the inlet temperature of CV2.  

 

Since CV3 and CV4 both shared the same boundary conditions as CV2, the fluid 

convective circuit of CV3 and CV4 were identical to CV2’s, except the inlet 

temperatures of CV3 and CV4 were equal to exit temperature of CV2, and CV3 

respectively.  
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Fig. 3-25. Fluid flow circuit for control volume 2 (CV2). 
 

3.5.3. CFD model of A Simplified Axial Flux Permanent Magnet 

Generator 

 

Similar to case study I, the CFD of a 2D axisymmetric AFPM generator was 

constructed and run in Fluent to provide the convective heat transfer coefficient and 

mass flow rate that, is required for the lumped parameter thermal equivalent circuit. 

The temperatures obtained from the thermal network circuit were then compared with 

the CFD results. 

 

The 2D axisymmetric model of the simplified AFPM generator, as shown in Fig. 3-26, 

was constructed in Gambit and meshed with Quad meshing schemes. Details of the 

model are: 

I. Finer mesh was applied in the area near to the wall so that Y+ value is lower 

than 5.  

II.  Realizable k-epsilon turbulent model with enhanced wall function was used to 

model the turbulence in the machine.  

III.  The rotor disk and magnet annuli were specified to rotate at 1500rpm 

(157rad/s) with rotating reference plane boundary condition.  

IV.  Zero total pressure and zero static pressure were specified at the inlet and 

outlet of the simplified AFPM generator model. 
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Temperatures obtained from both CFD and the thermal network circuit are compared 

and discussed in the following section.   

 

Fig. 3-26. The meshing grid of simplified axial flux permanent magnet generator. 
 

3.5.4. Results and Discussions 

 

The air temperatures predicted at the exit of each control volume of the AFPM 

generator from both the CFD and the thermal network circuit are plotted in Fig. 3-

27(a). The Y- and X- axes of Fig. 3-27(a) represent the radial coordinate of the exit of 

each control volume and its corresponding air temperature, respectively. For example, 

a radial distance of 55mm represents the exit of CV1; a radial distance of 60mm 

represents the exit of CV2 etc. Large discrepancies were evident in the results 

obtained between the CFD and LPM techniques, as shown in Fig. 3-27(a). The 

temperatures predicted from the LPM technique are approximately 1 degree higher 

than the CFD predicted temperatures. The two temperature curves begin to deviate at 

the exit from CV1 (at radial distance 55mm), and remain almost parallel after the first 

control volume. These results reflect that the major error was inherent in CV1 and the 

error developed in CV1 was carried forward to the following control volumes. This is 

further illustrated in Fig. 3-28, where the relative error of each control volume is 

Stator Rotor 
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Outlet 
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plotted. The relative error of the exit of CV1 was about 32% and it was by far the 

highest compared with other control volumes.  

 

Fig. 3-27(b) illustrates the temperature contours (in Kelvin) inside the AFPM 

generator obtained from CFD. Because the temperature at the bottom of the stator was 

a lot higher than the temperature inside the air gap, the temperature contour scale was 

adjusted so that the temperature increase in the radial direction in the air gap is visible. 

Consequently, the black contour located at the bottom of the stator winding represents 

that the air temperature was greater than 350K (77 degC).  

 

The air temperature at the entrance of the air gap (radial distance of 55mm) was lower 

than the rotor disk temperature, (Fig. 3-27(b)). Hence, the heat travelled from the 

rotor disk to the air. As the air was slowly heated by the windings on the left hand 

side, the air temperature increased gradually in the radial direction. Around the middle 

point of the rotor disk, the air reached the same temperature as the rotor disk. After 

the middle point, the air was further heated by the stator, and its temperature was 

higher than the rotor solid temperature. Hence, the heat travelled from the air to the 

rotor disk. Table 3-1 shows the heat transfer calculated for each air control volume in 

the convective circuit. It indicates that the thermal equilibrium circuit is capable of 

taking account of heat flows in both directions, i.e. from air to solid and from solid to 

air, to predict the thermal state of the machine accurately.   

 

Fig. 3-27(b) shows that the highest temperature occurred at the bottom of the stator 

winding, where the air velocity was the lowest. However, these results may change 

significantly if the generator boss is included into the model, where significant air 

flow impinges from the holes of the boss, to cool down the bottom of the stator 

winding.    
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Fig. 3-27. Air temperature inside the simplified AFPM generator predicted from CFD 
models and lumped parameter thermal circuit. 
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Fig. 3-28. Relative errors for components of the AFPM generator. 
 

 Heat transfer (W) 

CV1 -1.210 

CV2 -3.156 

CV3  0.800 

CV4  4.426 

Table 3-1: Convective heat transfer calculated from the thermal network circuit for 
each control volume. 

 

The accuracy of the thermal network technique was further investigated by sub-

dividing CV1 in the simplified AFPM model into three smaller control volumes, 

which were CV1-1, CV1-2 and CV1-3, (Fig. 3-29(a)). Hence, the original equivalent 

thermal circuit shown in Fig. 3-23(b) was modified to Fig. 3-29(b).      
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(a) (b) 

Fig. 3-29. Improved simplified axial flux generator lumped parameter thermal 
network: Higher discretisation level.  
 

The new thermal equivalent circuit was similar to the original circuit except the CV1 

fluid flow circuit was modified into three separate circuits. Each of the separated fluid 

control volume convective circuit is shown as follows: 

 

3.5.4.1. Control Volume 1-1 (CV1-1) 

CV1-1 indicates the air node on the left hand side of original CV1, (Fig. 3-30(a)). In 

CV1-1, the heat generated from the stator is transferred by convection, to the fluid via 

the inner peripheral surface of the stator. With the convective resistance calculated 

from heat transfer coefficient obtained from the CFD model and the fluid mass flow 

rate, the outlet temperature of CV1-1, Tout1-1, can be calculated by equation (3.32). 

The equivalent thermal circuit of CV1-1 is shown in Fig. 3-30(b). 
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(a) (b) 

Fig. 3-30. Fluid flow circuit of control volume 1-1 (CV1-1). 
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(3.32) 

 

Where q1-1 is the total transfer in CV1-1, Tin1-1 is CV1-1 inlet temperature, Tin1-2 is 

CV1-2 inlet temperature and 11−m&  is the fluid mass flow rate.  

 

3.5.4.2. Control Volume 1-2 (CV1-2) 

Control volume 1-2 (CV1-2) and its corresponding thermal circuit are shown in Fig. 

3-31(a) and (b) respectively. When the machine rotates, air is dragged from the 

surroundings by centrifugal force into CV1-2, to cool the magnets and rotor disk. The 

temperature at the outlet of CV1-2 can be estimated by equation (3.33), where q1-2 is 

the total heat transfer to CV1-2 via the two contact surfaces, Tmag surf and Trotor surf, and 

21−m&  is the air mass flow rate of CV1-2.  
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(a) (b) 

Fig. 3-31. Fluid flow circuit of control volume 1-2 (CV1-2) 
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3.5.4.3. Control Volume 1-3 (CV1-3) 

Unlike CV1-1 and CV1-2, CV1-3 is not directly in contact with any solid surface in 

the generator. Therefore, the governing thermal circuit of CV1-3, as shown in Fig. 3-

32, was constructed only based on the energy conservation equation. No convective 

heat transfer/resistance exists in the CV1-3 thermal circuit model. The temperature at 

the outlet of CV1-3 is calculated directly by summing the total enthalpy of CV1-1, 

CV1-2 and inlet of CV1-3, see equations (3.34) and (3.35), 11−m& , 21−m& , 31−m&  are the 

air mass flow rate in CV1-1, CV1-2 and CV1-3 respectively.  

   

 

Fig. 3-32. Fluid flow circuit of control volume 1-3, (CV1-3) 
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(3.34) 

(3.35) 

 

Similarly, by using the mass flow rate and convective heat transfer coefficient 

extracted from the new CFD model into the modified lumped parameter thermal 

network circuit, new temperatures were predicted as illustrated in Fig. 3-33. By 

further discretising CV1 into three smaller control volumes, the accuracy of the 

lumped parameter thermal circuit has improved significantly. The temperatures 

predicted by the lumped parameter thermal circuit matched closely with the 

temperatures obtained for the CFD models. The maximum relative error is as low as 

0.6%. This reflects that by splitting the complex fluid control volume into smaller and 

simpler control volumes has a very significant influence on the discrepancy of the 

lumped parameter technique and should be of great concern.  
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Fig. 3-33. Temperatures of the simplified axial flux generator predicted from lumped 
parameter thermal network model and CFD model.  
 

3.5.5. Conclusions 

 

The thermal network of the simplified AFPM generator was constructed and 

compared with the conventional CFD modeling technique. The results show a 

significant discrepancy at the first air control volume at the generator entrance. The 

error may due to the hydraulic resistance at the entrance of the narrow air gap. 
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However, further partitioning of the complex air control volume significantly 

improved the accuracy of the thermal network circuit.  

 

3.6. Conclusions 
 

A preliminary lumped parameter thermal equivalent circuit of an axial flux permanent 

magnet generator has been developed. The proposed thermal network circuit consists 

of two main circuits, which are the conductive and convective thermal circuits, to 

model both conduction and convection heat transfer inside the generator, respectively. 

The conductive thermal circuit was constructed based on the annulus ring conductive 

circuit; whereas, the Heat Pick-up Method (HPM) and the Temperature Passing 

Method (TPM) were investigated for the construction the convective thermal circuit.  

 

Two case studies were conducted to verify the accuracy and compatibility of the 

proposed lumped parameter thermal equivalent circuit when compared with the 

solutions obtained from CFD models. The results show that by dividing the air inside 

the axial flux machine into simple fluid control volumes, the proposed lumped 

parameter thermal network was capable of predicting accurate solutions for the 2-D 

simplified axial flux permanent magnet generator. In the future, the same technique 

will be applied to construct the thermal equivalent circuit of 3D axial flux machines. 

The results obtained from the thermal equivalent circuit were compared with the 

temperatures measured from the experiments to further verify the modelling method.     
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Chapter 4  
 

Stator Winding Thermal Modelling 
 

4.1. Introduction 
 

Resistive loss in the stator windings is known as the major heat source in most 

electrical machines. During the normal machine daily operation cycle, the temperature 

hot spots normally occur in the machine windings. This is due to Joule losses in the 

winding conductors and low thermal conductivity of the winding filling/insulation. 

Under extremely high temperature conditions, the insulation on the stator winding 

breaks down and the performance of the electrical machine deteriorates. Hence, it is 

paramount to model the thermal properties of the stator winding of electrical 

machines accurately, to identify the temperature distribution and to improve its 

cooling.    

 

 

4.2. Stator Winding Radial Thermal Resistance- Simple 
Concentric Model (SCM) 

 

Fig. 4-1 shows the cross-sectional view of a single stator cable of radius r. The shaded 

circles indicate the copper conductor (discontinuous phase) and the white area 

indicates the winding filling or insulation (continuous phase).  
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Consider an arc sector of angle dθ, at an angle θ from the horizontal centre line in the 

stator cable, where t1, t2, t3, …, tn are the perpendicular distances travelled by heat 

through the arc sector in the radial direction. For a small angle, dθ, it is reasonable to 

assume that the arc sector of angle dθ, as a triangle, where the base width of the 

triangle is equal to the arc length, r dθ, (Fig. 4-2 (a)).  

1
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Fig. 4-1: Cross-section view of a stator winding 
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Fig. 4-2: Stator wiring triangle sector 
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It is impossible to calculate the thermal resistance of the triangle section unless the 

height of the triangle and trapeziums, t1, t2, t3,…, tn-1, tn are known for specific θ. 

These heights vary at different angular position around the stator wire. Hence, to 

obtain a simple but physically significant analytical solution for the radial thermal 

resistance in the stator wire, the triangle section is transformed into a rectangle, where 

the height and width of the rectangle are h and 2/θ∂r  respectively, (Fig. 4-2(b)). In 

this study, only the heat flux in the radial direction is considered. It is also assumed 

that the radial heat flux is independent of the heat fluxes in circumferential and axial 

directions.  

 

Thermal resistance is inversely proportional to the cross sectional area of the medium, 

A, perpendicular to the heat flux direction. This can be noted from equation (4.1).  

kA

L
Rthermal =  

 

(4.1) 

 

For a triangle section, the cross sectional area (or base) increases as radius increases. 

For example, at t1, the cross sectional area is t1 x dθ x L ; at (t1+t2), the cross sectional 

area is (t1+ t2) x dθ x L, etc. But for the rectangle section, the cross section is constant 

in the radial direction, which is equal to r x L x dθ/2. As noted from Fig. 4-2(a) and 

(b), the cross sectional area of the triangle section is smaller than the rectangle section 

at the upper half section; but larger at the bottom half. Therefore, the thermal 

resistances of the rectangle section are lower in the upper half and higher in the lower 

part, than the actual thermal resistances of the triangle section. In consequence, the 

sum of thermal resistances of the upper and bottom half of the triangle calculated 

from the rectangle model is approximately equal to the total thermal resistance 

calculated from the triangle section. However, this approximation is only valid for 

small radius, r.   

 

Also, since the rectangles have uniform width at all radii, it is acceptable to lump all 

the discontinuous (conductor) phase portions (shaded in grey in Fig. 4-2(b)) and the 

remaining continuous (winding filling) phase portions (indicated in white in Fig. 4-
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2(b)) together into two separated rectangles stacking one above another, see Fig. 4-

2(c).  

 

By applying the one dimensional Fourier’s law to the rectangle blocks, the heat flow 

across the rectangle block is: 

For heat across the continuous phase (cable filling) volumes,  
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And for heat across the mixture (both cable filling and copper conductors) 
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(4.2) 

 

 

 

(4.3) 
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And, since cdtotal TTT ∆+∆=∆ , equation (4.3) can be represented as: 
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(4.5) 

 

(4.6) 

 

By arranging equation (4.2), cT∆  can be represented as: 
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Substitute (7) to (6),  
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Substitute dc trt −=  to equation (4.12) 
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By taking integration in equation (4.13), 
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To simplify equation (4.14), it is reasonable to assume that there is no circumferential 

heat flux in the stator cable, hence ∆Ttotal is constant in the circumferential direction.  

 

Hence equation (4.14) can be simplified as: 
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To obtain the total equivalent thermal resistance, Rthermal, of the sector section (shown 

in Fig. 4-2(a)) from equation (4.16), it is necessary to know the wiring conductor 

thickness profile, td, and cable filling thickness profile, tc, in the function of θ of the 

specific cable. But, td and tc vary with the composition of the conductor and winding 

filling along the radial coordinate. In addition, such information is not easily available. 

Fig. 4-3 and Fig. 4-4 show examples of td and tc at different radial coordinates of a 

5mm diameter stator wire in a histogram and polar diagram respectively.  
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Fig. 4-3. Histogram of thickness percentage of conductor and winding filling at 
different angle 



4.2. Stator Winding Radial Thermal Resistance: Simple Concentric Model (SCM) 87  

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

 

Fig. 4-4. Polar diagram of thickness percentage of the discontinuous phase (copper 
conductor) and the continuous phase (winding filling). 
 

It is to be noted that the variation of tc in the stator wire is small and it is acceptable to 

be represented as a constant equivalent radius, req. If the winding packing ratio, Ad is 

known, the equivalent radius can be calculated as: 
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Where,  

req  is the equivalent radius 

r  is the winding radius 

 

Hence equation (4.16) can be written as: 
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And hence, the equivalent thermal conductivity can be obtained by: 
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For high kd , where kd >> kc,  
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(4.25) 

4.3. Improved model: Concentric Annular layer model (CLM) 
 

Unlike the two-phase materials, the conductors inside the stator winding act as the 

independent heat sources when current passes through. The position and composition 

of these heat sources in the stator winding affect the equivalent thermal resistance of 

the stator winding significantly. In order to take into account the distributed heat 

sources inside the stator winding, the stator winding thermal resistance model is 

improved by further dividing the winding into a centre circle and N layers of 

concentric annuli, (Fig. 4-5(a)). Each split control volume’s conductor-to-winding 

area ratio is kept the same as the winding packing ratio. 

 

Thermal resistances of the centre circle and each annular layer are calculated from 

known theories. By adding each individual calculated thermal resistance of the centre 
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circle and the concentric annuli, the equivalent radial thermal resistance of the stator 

winding can be evaluated. Fig. 4-5(a) shows the stator winding is separated into one 

centre circle and two annuli control volumes. In general, the number of annular layers 

can be predicted based on the radii of the copper conductor, rc, and the winding, rsc, 

from equation (4.27), (Fig. 4-5(b)).  









−≈

≈+×

1
2

1

2

c

sc

sccc

r

r
N

rrrN

 

(4.26) 

 

(4.27) 

 

Fig. 4-5(a) and (b). Stator winding divided into 3 concentric circles. 

 

4.3.1. Thermal Resistance of the Centre Circle 

Fig. 4-6 shows the centre circle split from the stator winding model. The centre circle 

consists of two components, which are the conductor (discontinuous phase shaded in 

grey) and the winding filling (continuous phase shaded in white). rc is the radius of 

the single conductor and the radius of the center circle, req_0, is determined by the 

winding packing ratio, Ad, of the winding, see equation (4.29). 
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Fig. 4-6. Thermal circuit of centre circle of the stator cable 
 

Fig. 4-6 illustrates that the thermal circuit of the centre circle corresponds to the two 

thermal resistances, which are the centre conductor (discontinuous phase) resistance, 

Rcc-d, and the winding filling (continuous phase) resistance, Rcc-c, respectively. The 

thermal resistances are derived theoretically from the heat conduction equation in the 

radial direction. These are given in terms of the dimension of the centre circle and 

corresponding thermal conductivities, by the equations (4.30) to (4.32).  

  

The radial thermal resistance of the centre circle control volume, Rcc-d, is calculated by 

the annulus radial thermal resistance equation shown in equation (4.30):  
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(4.30) 

 

Since Rcc_d is the radial thermal resistance of a solid cylinder, equation (4.30) can be 

used to calculate Rcc_d by substituting r in = 0: 
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The winding filling annulus thermal resistance, Rcc-c, is obtained by applying the 

standard hollow cylinder conduction equation [33], as shown in equation (4.32).    
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(4.32) 

 

The joule loss of the winding conductor is taken into account as Pwrcc in the centre 

circle thermal circuit and it is defined as: 
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×= απρ  

 

(4.33) 

Where  α  is the temperature constant of the conductor  

 ρo is the resistivity of the conductor at 293K 

 T  is the temperature of the conductor 

 

4.3.2. Thermal Resistance of the Winding Annulus 

 

To analyse the thermal resistance of the annulus shown in Fig. 4-7(a), the heat flow 

path through the annulus was investigated. Fig. 4-7(a) indicates a winding annulus, 

where the annulus’ inner and outer radii are req_0 and req_1. The heat generated from 

the centre circle control volume, Pwrcc, flows into the annulus through a layer of 

continuous phase material (winding filling), see Fig. 4-7(b). Subsequently, together 

with the heat generated from the annular copper conductor, the heat flows to the outer 

radius of the annulus via another layer of continuous phase material. The 

circumferential heat transfer in the stator winding was assumed to be negligible.  

 

The heat flow paths in the annulus were simplified schematically and shown in Fig. 4-

7(c). It can be noted there are three main heat flow paths in the system, which are the 

qtop, qmiddle and qbottom. In general, the cross sectional areas of the top and bottom heat 

flow paths are relatively smaller than the mid flow path. In addition, the thermal 

conductivities of the windings’ conductor are very high as compared with the winding 

filling. The heat passing through the top and bottom continuous phases is usually 

small and can be neglected. Thus, only the middle heat flow path was considered.  
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The winding annulus was further simplified to four sub-annuli, as shown in Fig. 4-

7(d). The total equivalent thermal resistance of the winding annulus was calculated by 

applying the standard hollow cylinder conduction equation (4.32) into each of the 

annuli with its corresponding dimension (inner and outer radii) and thermal 

conductivities. The following equations show how the radii of the four annuli were 

derived.  
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Fig. 4-7. First stator winding annulus after the center circle. 
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req_0 was obtained by equation (4.29). If the stator winding is separated into N layers 

of annuli, req_1 can be deduced from: 

N
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(4.34) 
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−
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(4.35) 

 

The middle radius, rmid_1, as indicated in Fig. 4-7(a) separates the annulus into two 

equal area annuli. Therefore, rmid_1 is derived as: 
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r in_1 and rout_1 can be calculated from equation (4.42) and equation (4.43) respectively, 

based on the winding packing ratio, Ad, req_0 and req_1. 

 

For the inner half annulus, 

( ) 2
0_

2
1_1_

2
1

2
1_

2
1_

2
1_

1 eqdmiddin

eqmid

inmid
d

rArAr

rr

rr
A

+−=

−

−
=

ππ
ππ

 

For the outer half annulus, 
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By substituting equation (4.37) to equation (4.39) and equation (4.41), 
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To simplify the model shown in Fig. 4.7(c) to the four annuli model the shown in Fig. 

4.7(d), the gaps in between two discontinuous particles (or conductors) are important, 

to evaluate the inner and outer radii of the middle continuous phase annuli, rcont1_1 and 

rcont2_1 respectively.  The gap ratio, which is defined as the ratio of total 

circumferential angle occupied by the winding filling with the total stator winding,  

vary around 10-20%, depending on the configuration and size of the discontinuous 

particles (copper conductor), i.e. closely packed, small discontinuous particles have a 

lower the gap ratio compared with loosely packed, large discontinuous particles. 

However, it is difficult to obtain the exact continuous-discontinuous phase gap ratio 

due to the complexity and unpredictability in the mixture. A simple way to 

approximate the gap ratio using the radii of the discontinuous particle, rd, and the 

mixture, rm is illustrated in Fig. 4-8. Considering the outer layer of discontinuous 

particles in the mixture, the equivalent gap ratio can be estimated by dividing the total 

arc angle occupied by the gap, by 360 degrees, equation (4.44). 
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(4.45) 

nsc = number of continuous particles at the outer layer of the mixture  
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Fig. 4-8. The outer annular layer of the mixture with discontinuous particles. 
 

With the gap ratio approximated by equation (4.45), the middle annuli inner and outer 

radii, rcont_1 and rcont_2 can be evaluated as follow:  
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(4.49) 

 

Fig. 4-9 shows the thermal circuit of the stator winding annulus. Rc1-1 and Rc2-1 

indicate the thermal resistances of the continuous phase (winding filler) layers, which 

can be calculated from the standard hollow cylinder conduction equations as follows: 
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The two discontinuous (copper conductor) phase annuli in between the two 

continuous (winding filler) layers are lumped into one annulus, and the thermal 

resistances, Rd1-1, Rd2-1 and Rd3-1 can be deduced from T-equivalent circuits, seen as 

follows: 
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Fig. 4-9. Thermal circuit of the stator winding annulus 
 

Since the copper conductors are distributed randomly inside the stator winding, the 

heat generated from each of the copper conductors travels to the winding outer 

periphery via different paths and distances. For example the heat generated by the 

conductors near to the outer surface of the winding travels a shorter path as compared 

with heat generated by the conductors at the stator winding centre. As a result, each 

heat source has a different local thermal resistance corresponding to its travelled 

distance and medium. In general, these local thermal resistances reduce as the radius 

increases in the stator winding.  

 

In evaluating the equivalent thermal resistance for the stator winding, it is necessary 

to take into account of the heat generated due to Joule loss in the each individual 

conductor in the stator cable. The conductors in the stator winding annulus shown in 

Fig. 4-7(a) are transformed into an equivalent annulus, shown in Fig. 4-7(d), with 

inner and outer radii r in_1 and rout_1 respectively. Hence, the equivalent heat generated 

due to joule loss, Pwr1, by these conductors can be expressed by equation (55),  
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4.3.3. Equivalent Radial Thermal Resistance of the Stator Winding 

 

Fig. 4-10(a) shows the thermal circuit of the stator winding by using the concentric 

annular layers modelling method. The overall thermal circuit consists of two major 

sub-circuits, which are the centre circle and k layers of stator winding annulus sub-

circuits. The thermal resistances of these two sub-circuits were derived and elucidated 

in equations (4.31-4.32) for the centre circle circuit and equations (4.56-4.60) for the 

winding annulus thermal circuits. A Virtual Basic code was constructed to calculate 

the thermal resistances and the temperature increase of the overall thermal circuit. 

(Appendix A). 
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Fig. 4-10. (a) The overall thermal circuit of the stator winding and (b) its 
corresponding simplified one resistance thermal equivalent circuit. 

 

To alleviate the complexity in calculating the temperature increase across the stator 

wire in the radial direction by using the overall thermal circuit shown in Fig. 4-10(a), 

the overall thermal circuit was simplified and represented by a single resistance model 

shown in Fig. 4-10(b). Furthermore, the simplification of the overall thermal circuit 

also provides a suitable comparison with the experimental results, as well as other 

computational fluid dynamic models.  
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In the single resistance thermal model, the equivalent radial thermal resistance, Req_sc, 

was calculated by considering the total temperature increase across the stator cable 

(∆Tcc+∆T1+∆T2+…+∆Tk) and the total heat generated due to joule loss in the cable 

conductors (Pwrc+Pwr1+Pwr2+…+Pwrk) obtained from the overall thermal circuit, 

equation (4.68).   
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Thus, Req_sc calculated from equation (4.68) can easily be adapted into the thermal 

circuit of any of the machine designs with negligible computational effort. However, 

the drawback of this simplification is that the single resistance model is only capable 

of predicting the temperature at the centre of the stator wind. Information on the 

temperature profile of the stator cable in the radial direction is lost in the 

simplification. Hence, the equivalent radial thermal resistance is only suitable to 

identify the hot spots in the machines.    
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4.4. Comparison of Analytical and Experimental Results 
 

Several analytical equations have been developed to predict the thermal conductivities 

of different types of two-phase solid-to-solid mixtures. The most commonly used 

analytical equations, which are Maxwell [57], Powers [132] and Cheng & Vachon 

[70], were used to compare with the thermal resistance predicted from the simple 

concentric model (SCM). Also, experimental data of the thermal conductivities of 

heterogeneous two-phase mixtures obtained by previous researchers [133-137] were 

used for comparison with this analysis.     

 

To be comparable with the analytical and experimental data obtained from previous 

researchers, the analytical thermal resistance of the two-phase material derived from 

SCM was converted to thermal conductivity form (see equation (4.23)). Similarly, 

thermal resistances calculated from CLM were converted to thermal conductivity 

form by equation (4.72).  
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(4.72) 

 

The equations resulting from Maxwell [57], Powers [132] and Cheng & Vachon [70] 

are shown in equations (4.73), (4.74), (4.75) respectively. These equations were 

examined and used in comparison with the thermal conductivities obtained from SCM, 

as well as from the experiments. Table 4-1 to Table 4-5 show the thermal 

conductivities obtained from the analytical models compared with the experimental 

results. Five experiments of different two phase mixtures were chosen. Table 4-1 and 

4-2 demonstrate the thermal conductivities of silicon rubber with aluminum spheres 

and cylinder particle mixtures, respectively. Thermal conductivities of the mixture, 

where its substances have similar thermal properties (Zinc Sulphate in Lard mixture) 

are examined in Table 4-3. In Table 4-4, thermal conductivities of an emulsion 
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mixture, copper in water solution, are illustrated. Lastly, fibre glass two-phase 

mixtures were investigated and the results are shown in Table 4-5  
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Powers [132]- Thermal conductivity of two-phase mixtures 
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Cheng & Vachon [70]- Thermal conductivity of two-phase mixtures 
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Table 4-1: Test 1- Comparison of predicted thermal conductivities of Aluminum 
spheres in silicone rubber mixture. kc = 0.216 W/m2K; kd = 204.2 W/m2K; Ad =16%  

Source of keq keq (W/m2K) Deviation of experimental data (%) 

Maxwell  0.3406 3.58 

Powers  0.2575 -21.68 

SCM  0.3602 -19.96 

Cheng & Vachon  0.4207 27.95 

Experiment [132-133] 0.3288 n/a 

 

Table 4-2: Test 2- Comparison of predicted thermal conductivities of Aluminum 
cylinders in silicone rubber mixture. kc = 0.216 W/m2K; kd = 204.2 W/m2K; Ad =16%  
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Source of keq keq (W/m2) Deviation of experimental data (%) 

Maxwell  0.3406 -24.31 

Powers  0.2575 -42.77 

SCM  0.3602 9.53 

Cheng & Vachon  0.4207 -6.51 

Experiment [132-133] 0.45 N/A 

 

Table 4-3: Test 3- Comparison of predicted thermal conductivities of Zinc Sulphate 
(sphere) in lard mixture. kc = 0.1973 W/m2K; kd = 0.6127 W/m2K; Ad =55.5%  

Source of keq keq (W/m2) Deviation of experimental data (%) 

Maxwell  0.3730 6.1576 

Powers  0.3055 -13.05 

SCM  0.3986 13.45 

Cheng & Vachon  0.3775 7.44 

Experiment [134] 0.3513 N/A 

 

Table 4-4: Test 4- Comparison of predicted thermal conductivities of Copper (sphere) 
in water liquid. kc = 0.6577 W/m2K; kd =382.5 W/m2K; Ad =29.5%  

Source of keq keq (W/m2) Deviation of experimental data (%) 

Maxwell  1.4773 -18.70 

Powers  0.9322 -48.70 

SCM  1.4364 -20.95 

Cheng & Vachon  1.9280 6.10 

Experiment [135] 1.8172 N/A 

 

Table 4-5: Test 5- Comparison of predicted thermal conductivities of Selenium 
(sphere) in PPG glass fibre. kc = 0.1402 W/m2K; kd =5.1921 W/m2K; Ad =50%  

Source of keq keq (W/m2) Deviation of experimental data (%) 

Maxwell  0.5 2.95 

Powers  0.2729 -43.88 

SCM  0.4494 -7.62 

Cheng & Vachon  0.7 44.06 

Experiment [136] 0.4863 N/A 
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4.5. Discussions 
 

The experimental deviations of four analytical solutions for five different tests are 

summarised in Fig. 4-11. Among all the five analytical models, Maxwell [57] shows 

the most compatible solution for all ranges of two-phase mixtures; In contrast, Powers 

[132] demonstrates the worst among the other three solutions, especially at low 

packing ratio, (Test 5). In comparison with Cheng & Vachon [70], SCM gives slightly 

more acceptable results.  
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Fig. 4-11. Experiment deviations of five analytical solutions for five different two-
phase mixtures. 

 

In most of the test cases, Maxwell [56] predicts more accurate thermal conductivities 

then SCM, except for Test 2, (Table 4-2). In Test 2, a heterogeneous two-phase 

mixture was investigated: Aluminum cylinder-silicon rubber mixture (Fig. 4-12(a)). 

In the derivation of SCM, the higher thermal conductivity material in the two-phrase 

mixture is simplified to cylindrical discontinuous particles (which is similar to 

Aluminum cylinder-silicon mixture), whereas for Maxwell, the thermal resistance was 

derived for homogeneous two-phase mixtures with spherical discontinuous particles 
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(which is shown in Fig. 4-12(b)). Therefore, the equivalent thermal conductivity 

predicted from SCM for Aluminum cylinder-silicon rubber mixture is better than the 

Maxwell method when compared with experimental results. This investigation 

demonstrates that the accuracies of thermal resistance predictions for two-phrase 

mixture are dependent on its structure, i.e. SCM is better for cylindrical discontinuous 

particles, Maxwell predicts better thermal conductivities for spherical discontinuous 

particles etc. Since the stator windings in the axial flux generator have a similar 

particle structure to the Aluminum cylinder-silicon mixture, SCM demonstrates a 

better approximation for thermal resistance prediction of stator winding than the other 

analytical models.   

 

 

 

 

 

(a) (b) 

Fig. 4-12. (a) Aluminum cylinder-silicon rubber mixture and (b) Aluminum sphere-
silicon rubber mixture. 
 

CLM is derived for the two-phase mixture with cylindrical discontinuous particles. 

Nevertheless, CLM predicts higher thermal conductivities for all of the two-phase 

mixtures measured in Test 1 to Test 5 compared with SCM (Fig. 4-13).  Since thermal 

resistance is the reciprocal of thermal conductivity, this implies that the equivalent 

thermal resistances predicted from CLM are lower than the equivalent thermal 

resistances predicted from SCM. These are due to CLM being derived to model the 

thermal resistance the windings of the electrical machines. On the other hand, CLM 

takes into account the resistive heat generated in the copper cylindrical particles when 

the electric current passes through. The heat sources in the CLM are evenly 

distributed inside the winding (Fig. 4-14(a)). Hence, the resistive heat generated at the 

copper conductors near to the edge of the winding travels a shorter distance in 

comparison with the heat generated from the heat sources at the centre of the winding. 

Therefore, the local thermal resistances of the winding at the edge are lower and 
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higher at the centre. On the other hand, SCM assumes that all the heat is generated 

from the concentrated point at the centre of the winding (Fig. 4-14 (b)). As a result, 

the local thermal resistances of the winding are uniform for a concentrated heat source. 

Since the heat generated from the centre of the winding travels a longer distance in 

total than the heat generated from the distributed heat source, the equivalent thermal 

resistance for the SCM is higher.    
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Fig. 4-13. Discrepancies of CLM and SCM analytical solutions as compared with 
experimental results for five different two-phase mixtures. 
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(a) (b) 

Fig. 4-14. (a) Distributed heat sources inside the winding of the electrical machines 
and (b) concentrated heat source winding model 
 

The thermal conductivity predicted by CLM is verified by the 2D-CFD model of the 

stator winding, (Fig. 4-15(a)). The 2D model of a 5cm diameter winding, with 5mm 

epoxy-resin encapsulated copper wires, is built using the Gambit meshing software 

and simulated by FLUENT. The model consists of 5743 cells and only energy 

equations are considered. The thermal conductivities of copper wire and epoxy resin 

are 387W/m2K and 0.22W/m2K respectively, and the packing ratio, %Ac, is 0.61. 

Thermal conductivities predicted by CLM and the other analytical equations are 

summarized in Fig. 4-15(b). 

 

The results indicate that all the analytical models investigated under-predict the 

equivalent thermal conductivity of the stator winding with distributed heat sources in 

these electrical machines. Nevertheless, the thermal conductivity predicted by CLM is 

closest to the result obtained from the CFD model. Maxwell, Power and SCM all 

show a huge deviation from CFD data, and this is due to mainly to these models being 

developed for no distributed heat source two-phase mixtures. Fig. 4-16 plots the 

temperature across the two perpendicular axes of the winding, which are the lines x = 

0 and y = 0, predicted from the CFD model. Since the peripheral edge of the winding 
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is closest to ambient, the temperatures at the two ends of the curve are the lowest. 

Moving radially inward to the centre of the winding, the winding temperature rises 

and reaches a maximum of 52.5 °C at the centre. The winding temperature increases 

in steps in the stator winding and reaches a plateau at the copper phase due to high 

thermal conductivity. The winding temperature increases steeply at the epoxy-resin 

phase due to significantly lower thermal conductivity. These demonstrate that the 

temperature increase in the stator winding is governed by the thermal conductivity of 

the epoxy-resin.  

 

It can be noted that the magnitude of the temperature drop increases when moving 

radially outwards from the centre, for example the temperature drop in the first layer 

winding filler is 1 deg C, but 5 °C occurs at the second layer (Fig. 4-16). This is due 

to the effect of the individual heat generated by the copper joule losses scattered 

around the winding. As the heat travels radially outward from the centre, extra heat is 

accumulated from each of these individual joule loss generated in the conductors. 

Since the temperature drop is directly proportional to the heat flow, it increases 

exponentially when moving from the centre to the periphery along the radial lines.   

 

Fig. 4-15. (a)The temperature contour of the cross section of the stator winding in °C, 
(b) the comparison of thermal conductivities predicted by the analytical equations and 
the 2D-CFD model. 
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Fig. 4-16. Temperature vs radial coordinate of the winding.
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4.6. Conclusions 
 

In conclusion, two techniques of predicting the radial thermal resistance of the 

electrical machine stator winding are presented in this chapter, which are the 

simplified concentric model (SCM) and the concentric annular layers model (CLM).  

These two analytical models are applied into the pre-built electrical machine thermal 

circuits, to provide better temperature predictions.  

  

These two analytical models circumvent the necessity of conducting experiments, to 

obtain the radial thermal conductivity of stator winding based on the several easily 

available winding parameters, such as the thermal conductivities of the conductors 

and winding filler, packing ratio of the conductors, conductor and winding radii etc. 

The thermal conductivities obtained from these two techniques were compared with 

the thermal models published by past researches for two-phase mixtures. These 

thermal conductivities were also verified by experimental results found in several past 

publications. 

 

Overall, SCM exhibits a better prediction of the thermal conductivities of stator 

windings as compared to the other analytical models. SCM was derived from 

cylindrical discontinuous particle heterogeneous two-phase mixtures whereas the 

other analytical models were derived based on spherical discontinuous particle 

homogeneous two-phase mixtures. However, if heat generation due to joule losses in 

the winding is taken into consideration in the thermal model, CLM is more capable of 

predicting accurate thermal resistances of the stator winding.   
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Chapter 5  
 

The Construction of 2-D Generic Lumped 

Parameter model of Axial Flux Permanent Magnet 

Generators 

 

5.1. Introduction 
 

The lumped parameter method has been widely used for thermal modelling, especially 

in electrical machines, including radial machines [e.g. 37-38] and axial flux machines 

[e.g. 33, 39]. This is because LPM is relatively faster and simpler to use in 

comparison with the general purpose, advanced computational fluid dynamic (CFD) 

packages. In chapter 3, the author has shown in his test cases, which by incorporating 

the convective circuit into the thermal circuit, with an appropriate discretisation level, 

the results obtained from lumped parameter circuits were in good agreement with both 

CFD and experimental testing.  

 

However, constructing the lumped parameter thermal equivalent circuit of the 

electrical machines requires a high level of thermodynamic background and 

knowledge. Prior to the construction of the thermal network of the electrical machine, 

it is necessary to identify the (conduction and convection) heat flow paths, heat 

sources and heat sinks in the electrical machines and to evaluate the thermal 

resistances of each corresponding lumped component, depending on the machine 



5.1 Introduction  113 
 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

specification and machine configuration. Subsequently, the thermal circuit is 

constructed based upon all this information, and solved either with a self-developed 

circuit solver or a commercially available thermal circuit solver, for example 

Portunus. The results obtained from the solver are transferred to a dedicated program 

for data post-processing. A sequential diagram of the construction of a specific 

lumped parameter thermal circuit is shown in Fig. 5-1(a).  

 

The specific lumped parameter thermal circuit can be used to perform thermal 

simulation for one specific electrical machine. A slight change on the machine 

geometry specification, for example the size of the air clearance or the rotor disk 

radius, or an alteration of the machine operating condition, such as the generator 

rotational speed and the ambient air temperature requires a new specific lumped 

parameter thermal circuit. Therefore, it is tedious and time consuming to re-construct 

the specific lumped parameter thermal circuits for different machine designs, 

especially when performing a rapid machine design process. Furthermore, some of the 

thermal circuit model users might have very little experience in constructing thermal 

network circuits. Hence, in this chapter, a new improved generic lumped parameter 

thermal modelling framework is introduced.  

 

The new modelling framework, shown in Fig. 5-1(b), has a user friendly interface that 

makes for easy data input and interpretation of results. The thermal model in the new 

improved lumped parameter thermal modelling framework is based upon a generic 

analytical lumped-circuit, making it applicable to a range of different sizes and 

topologies of axial flux machine. This allows the user to perform “what-if” 

calculations for a rapid design process. All the thermal resistances and capacitances in 

the new modelling framework are calculated automatically based on the geometric 

dimensions and material properties of the machines specified by the user. Hence, the 

users are not required to be familiar with complex heat transfer phenomena, such as 

dimensionless analysis of conduction, convection etc. The user interface is fully 

automated; it is programmed to receive the machine geometric dimensions and 

material properties from the user and to feed in the thermal resistances and 

capacitances to a thermal circuit solver to perform the thermal modelling. The results 

obtained from the thermal modelling are exported back to the Excel spreadsheet 
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automatically. Therefore, the new modelling framework is designed for the non heat 

transfer specialist to carry out thermal analysis of electric machines during the design 

process in a quicker and more straightforward way. No specialised thermodynamic 

and heat transfer background knowledge is required.  
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Fig. 5-1. Lumped parameter modelling schemes (a) with specific thermal network and 
(b) with generic thermal network. 
 

5.2. The Construction of a 2-D generic lumped parameter 
thermal circuit  

 

The generic thermal network circuit is a standardised thermal circuit for similar 

architecture of electrical machines. Unlike the specific thermal circuits that have been 

developed by previous researchers, for example [35-43], which are specifically 

constructed for a certain type and size of electrical machine, the generic thermal 

network circuit is able to perform thermal modelling of a range of different sizes and 

topologies of axial flux machines.  

 

Like the specific thermal circuit, the generic thermal circuit consists of conductive 

and convective thermal resistances, thermal capacitance and temperature dependant 

heat sources. However, these thermal resistances and capacitances in the generic 

thermal circuit are non-dimensionalised with the machine’s geometry and material 

properties, so that the thermal circuit is applicable to different sizes and types of 

machines. Fig. 5-2 shows a generic thermal circuit of slotted axial flux machines. The 

red boxes indicate the stator conductive circuits; the grey boxes indicate the rotor 
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conductive circuits and the convective thermal circuits (fluid flow circuits) are 

represented in the blue boxes.  

 

 

Fig. 5-2. 2D generic thermal circuit of axial flux permanent magnet generator. 
 

5.2.1. The Generic Conduction Thermal Circuit 

 

To analyse the process of conductive heat transfer in an electrical machine, the 

standard machine geometry was chosen and divided into basic elements. Each basic 

element was identified, in general, by an annulus. It was assumed that the heat flow in 

the radial and axial directions of the annulus were independent, allowing the use of 

one-dimensional equations to model the conduction heat transfer. Furthermore, the 

mean temperatures in both of these directions were assumed to be the same, allowing 

the networks to be developed by superimposing the two one-dimensional conductive 

heat transfer equations, resulting in the two dimensional model shown in Fig. 5-3.  

 

 

Stator conduction circuits 

Rotor conduction circuits 

Fluid flow thermal circuits 
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Fig. 5-3. Two dimensional thermal circuit of an annulus.  
 
The conduction thermal resistances used in the generic thermal network circuit were 

represented as functions of the geometries of the machines, see equations (3.7-3.12) in 

Chapter 3. These equations were derived directly from the heat storage and Fourier 1-

D heat transfer equations of the annulus.  

 

The heat storage of an annulus, shown in Fig. 5-4, can be expressed as: 

mps TcVH ⋅⋅⋅= ρ  (5.1) 

Where,  ρ  = material density, kg/m3 

  V  = Annulus volume, m3 

  cp  = Specific heat capacity at constant pressuare, J/kgK 

  Tm  = mean temperature of the annulus, K 

 

 

Fig. 5-4. Two-dimensional annulus element 
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Since, 

( ) LrrV ⋅−= 2
1

2
2π  (5.2) 

 

The heat storage equation (5.1) can be re-written as: 

( ) mps TcLrrH ⋅⋅⋅−⋅= 2
1

2
2πρ  (5.3) 

 Where, L = Length of the annulus 

 

Defining a small elemental volume in the annulus co-ordinates, ve, (see Fig. 5-4,) 

small enough to be considered that the volume temperature is uniform, then the 

elemental heat stored, Hse, is given by: 

lrrve ∂⋅∂⋅∂⋅= θ  (5.4) 

rlrTcH pse ∂⋅∂⋅∂⋅⋅⋅⋅= θρ  (5.5) 

 

The volume integral of equation (5.5) can be equated to the total heat stored given by 

equation (5.3) 

( ) ∫ ∫ ∫ ∂⋅∂⋅∂⋅⋅⋅⋅=⋅⋅⋅−⋅
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(5.6) 

 

Therefore, by arranging equation (5.6), the radial mean temperature can be defined by, 

( ) ∫ ∂⋅⋅
−

=
2

1
2

1
2

2

2 r

r

rm rrT
rr

T  
 

(5.7) 

Where,  Tr = radial temperature profile 

 

Similarly, the axial mean temperature is given by, 

∫ ∂⋅=
L

lm lT
L

T
0

1
 

 

(5.8) 

Where,  Tl = axial temperature profile 

 

Radial thermal resistances 

The one dimensional conductive heat transfer equation which describes the radial 

temperature distribution is given by, 
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(5.9) 

Where,  g  = heat generated per unit volume (W/m3) 

  kr = thermal conductivity in the radial direction (W/mK) 

 

The general solution of equation (5.9) is 

b
k
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raTr +⋅+⋅=

4
ln

2

 
 

(5.10) 

Where,  a, b  = arbitrary constants  

 

By substituting in the boundary conditions, Tr = T1 at r = r1 and Tr = T2 at r = r2 into 

equation (5.10) and subtracting from each other, the arbitrary constant a can be 

evaluated as: 
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Substituting equation (5.10) and equation (5.11) into equation (5.7), 
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(5.12) 

 

Presuming the internal heat generation, g, is zero for this case, the radial conductive 

heat transfer can be modelled by a two resistor network as shown in Fig. 5-5(a). The 

mean temperature, Tm, in the two-resistor network can be expressed in terms of the 

boundary temperatures and thermal resistances, as: 
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21

2
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m RR
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R
TT

+
+

+
=  

 

(5.13) 

 

Comparing the coefficients of T1 and T2 in equation (5.12) and equation (5.13), the 

radial thermal resistances, Rradial1 and Rradial2 are given as: 
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(5.15) 

 

For the general case where the internal heat generation, g, is not equal to zero, an 

additional compensation resistance, Rradial3, is added at the central node of the two 

resistor network in Fig. 5-5(a), to give the thermal equivalent circuit of Fig. 5-5(b). In 

the thermal circuit, by assuming both T1 and T2 equal to zero, Tm can be expressed as: 
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(5.16) 
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(a) (b) 

Fig. 5-5. Radial conductive two resistor (a) and three resistor (b) thermal network 
circuits. 
 
Applying the same boundary conditions into equation (5.12), Tm can be represented as:  

( ) ( )

1

2

2
1

2
2

2
2

2
1

ln88
r

r
k

rrg

k

rrg
T

r
r

m

⋅

−⋅
−

+⋅
=  

 

(5.17) 
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Hence, comparing and equating both equation (5.16) and equation (5.17), the 

additional compensation resistance, Rradial3, can be expressed as:  
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(5.18) 

 

As Rradial3 is negative, the new mean temperature Tm is lower than the original central 

temperature in the two resistor network. 

 

Axial thermal resistance 

In the axial direction, the conductive heat flow in the annulus element is described by: 

0
2
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=+
∂
∂

ak

g

l

T
 

 

(5.19) 

Where,  ka  = axial thermal conductivity of the annulus 

 

Equation (5.19) is a parabolic differential equation, which has general solution as 

shown as below: 

BlA
k

lg
T

a
l +⋅+⋅−=

2
 

 

(5.20) 

 

A and B are arbitrary constants and they can be evaluated by substituting known 

boundary conditions: T1 = T3 at l = 0 and Tl = T4 at l = L , into (5.20). Hence,  
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(5.21) 

3TB =  (5.22) 

 

By substituting (5.20) with the known arbitrary constants into (5.8) (which was 

derived from the heat storage equation), the general equation of the axial mean 

temperature is denoted as: 

a
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(5.23) 
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Assume that the annulus is symmetric on the central axial plane. This implies that T3 

and T4 are identical for this particular case. Hence, axial heat flow can be represented 

by uni-resistor model shown in Fig. 5-6(a), and Raxial’ can be described as:  

G

TT
R m

axial

−
= 3

'  
 

(5.24) 

Where, 

G is the total heat flux in axial direction 

( ) LrrgG ⋅−⋅⋅= 1
1

2
2π  

 

 

(5.25) 

 

By substituting equation (5.23) into equation (5.24), Raxial’ can be evaluated. 
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(5.26) 

 

However, the uni-resistor model is only applicable for symmetrical annulus elements. 

For asymmetrical annulus elements, a three-resistor model is required; see Fig. 5-6(b).  

 

 

 

 

R
a
x
ia
l3

 

(a) (b) 

Fig. 5-6. Axial thermal model of symmetrical (a) and asymmetrical (b) annulus 
element. 
 

Since the annulus has a constant cross-sectional area, the axial thermal resistances, 

Raxial1 and Raxial2 are equal and can be deduced simply from the thermal resistance 

equation: 
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The third axial thermal resistance, Raxial3, can be derived by assuming the symmetric 

boundary conditions on the asymmetrical thermal network model shown in Fig. 5-6(b), 

where T3 is assumed to be equal to T4, and hence the symmetric axial resistance can 

be re-written as: 
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(5.27) 

 

(5.28) 

 

If it is assumed that the mean temperatures in the radial and axial direction are the 

same, then these axial resistances, Raxial1, Raxial2, and Raxial3 can be added to the radial 

thermal circuit (shown in Fig. 5-5(b)), to give the two dimensional thermal equivalent 

circuit, shown in Fig. 5-3.  

 

All these axial and radial thermal resistances were derived in the dimensionless form. 

Hence, these can be easily adapted to any size of annulus elements based on the 

electrical machine design.  

 

 

5.2.2. Generic Convection Thermal Circuit 

 

The generic convection thermal circuits are designed to model the fluid-solid heat 

transfers in the system for various types of flow conditions, for example, flow over a 

flat surface, or rotating surface, flow in a bending pipe, flow impingement on a flat 

plate etc. Like the convection thermal circuit which was discussed in the previous 

chapters, the generic convection thermal circuit consists of an inlet temperature source 

and a generic convection thermal resistance. Furthermore, to interact with the 
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conduction circuit, the other end of the generic fluid convection circuit is connected to 

the wall surface of the solid elements adjacent to it, see Fig. 5-7.  

 

The accuracy of the generic convection thermal circuit depends on the convection 

thermal resistance specified in the circuit. The generic convection thermal resistances 

which are derived from the heat transfer coefficient, can be adjusted while the nature 

of the flow changes. On the other hand, it indicates that the physical flow pattern in 

the air control volume can be simply represented by the convectional thermal 

resistance. Therefore, by controlling the thermal resistance, the generic convection 

thermal circuit can be adapted to model different types of flow, with various boundary 

conditions. 

 

Nevertheless, the convection heat transfer coefficients on the wall surfaces in the 

electrical machine are unknown. Furthermore, the heat transfer coefficients may vary 

with the machine geometry and the machine operating conditions, for example, 

rotational speed, different working fluid etc. Parametric studies of convection heat 

transfer coefficient with various electrical machine geometric parameters were 

conducted by Airoldi [54] to establish empirical formulae that can be applied to the 

generic convection thermal circuit. In that study, the author used CFD packages to 

model a range of machines with different feature sizes (for example, radius, size of air 

clearance and depth of the magnet grove) and operating conditions (for example, 

rotational speed) to evaluate the convection heat transfer coefficients on the wall 

surfaces in the machine. Based on all these test cases, empirical formulae of the 

convection heat transfer coefficient were deduced as a function of machine 

geometries and operating conditions, equation (5.29). Further details about the surface 

heat transfer parametric studies can be obtained from [54].  

 

( )ω,,, dmcrfnNu =  (5.29) 

Where,  Nu = Nusselt number 

  r = Radii  

  c = Air clearance 

  dm = Depth of the magnet groove 
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  ω = Rotational speed     

 

 

Fig. 5-7. The generic convection thermal circuit of single air control volume. 
 

All the developed empirical formulae were pre-programmed into the generic 

convection thermal circuit. Therefore, the generic convection thermal circuit directly 

refers to the user inputs for the machine specifications and operating conditions, to 

model the convection heat transfer in the machine. No extra CFD simulation or 

experimentation is required. The generic convection thermal circuit of each air control 

volume in the system is interconnected by the Temperature Passing Algorithm: The 

inlet temperature in the convection thermal circuit is taken from the outlet temperature 

of the air control volume prior to the current one, and the process is updated for every 

time step during the modelling. Further information about the Temperature Passing 

Algorithm can be found in Chapter 3.  

     

5.2.3. Heat Sources: Losses  

 

The heat generated in the windings within the electrical machines transfers to the 

cooling air or the surroundings via several heat flow paths. In the generic thermal 

equivalent circuit model, the heat losses in the machine are determined as functions of 

measurable quantities, such as the generator output current, voltage, rotational speed 

etc. The heat loss in electrical machines is the combination of resistive and inductive 

losses: The resistive loss consists of Joule losses in the winding; the inductive losses 



5.2. The Construction of 2-D Generic Lumped Parameter Thermal Circuit 125 
 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

are the eddy current and hysteresis losses. Most of the stator cores used in the 

commercial electrical machines are laminated, to reduce the both the eddy current and 

hysteresis losses. For example if a block of stainless steel is laminated into N 

laminations, the inductive losses are reduced to 1/N2 times [138]. Therefore, in most 

commercial electrical machines, the heat loss is mainly governed by the Joule losses 

in the stator windings.  

 

Joule loss, also refers to as the “I squared R” loss, increases with the square of the 

current through the windings and it is directly proportional to the electrical resistance. 

The output currents of the generators are easily available or can be easily measured, to 

be specified in the thermal network model. As for the electrical resistances of the 

stator windings, it depends on further geometrical information, such as the winding 

diameter, winding number of turns, conductor resistivity and length per turn. It is 

defined in equation (5.30). Furthermore, the resistivity of the winding conductor also 

differs as the conductor temperature changes; for a given current, the total losses can 

vary up to 50% between cold and hot machines [129]. Hence, to model the machine 

temperatures and heat losses in electrical machines accurately, the heat sources in the 

thermal circuit are updated for every time step based on the winding temperatures, by 

using the equations (5.30) and (5.31).  

2
2 4

d

Ln
IPJouleLoss

⋅

⋅⋅⋅=
π

ρ  (5.30) 

( )[ ]25125 −+= Tαρρ  (5.31) 

 

Where,  I = current, A 

  n = number of turns 

  L = Length of winding per turn, m   

  d = Diameter, m 

  ρ = Resistivity of the conductor, Ωm 

  ρ25 = Resistivity of the conductor at 25°C, Ωm 

  α = Conductor temperature constant, °C -1 

  T = Conductor temperature, °C 
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The continuous movement of the magnetic particles in the ferromagnetic stator core, 

as they align themselves with the change of magnetic field due to the rotating 

permanent magnets on the rotor disk, produces molecular friction. The heat generated 

by the molecular friction is known as the hysteresis loss. Based on the consideration 

of a variety of iron types, and over a considerable range of flux density, Carter [138] 

observed that the hysteresis loss in the stator core is proportional to the peak magnetic 

flux density power of γ, Bmax
γ

  , and hence he suggested that: 

γλ maxBfPhysteresis ⋅⋅=  (5.32) 

 

Where,  f = rotational frequency 

  λ, γ = material constants 

  Bmax = Peak magnetic flux density 

 

In equation (5.32), the constants λ and γ vary according to the material; γ lies near to 

1.6 and λ is about 3000, for cast iron.  

 

The changing of the magnetic field direction in the ferromagnetic materials induces 

circulating flows of electrons, or current within the body of the stator core. This 

circulating current, also referred as the eddy current, generates heat and warms the 

stator core. The loss due to eddy currents in the stator core depends on the geometry 

of the stator cross-section and the amplitude and waveform of the magnetic flux 

density. For a metal block of thickness 2b, width d, length l and resistivity ρ, carrying 

a uniform flux density of peak value Bmax and frequency f, the induced eddy current 

loss is: 

ρ
π

3

2 2
max

3 fBdbl
Peddy

⋅⋅⋅⋅
=  

 

(5.33) 

 

Eddy currents can be minimized by lamination. If the block is divided into N 

laminations, the eddy current loss is reduced to: 

ρ
π
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P neddy  

 

(5.34) 
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Equation (5.34) can be modified to model the eddy currents in the annulus stator core, 

by assuming the annulus as a rectangular block (Fig. 5.8) with thickness (rout-r in), 

width d, and length π(rout+r in)/2. The new eddy current loss in the stator is illustrated 

in equation (5.35). 

( ) ( )
ρ

π
32

2
max

32

, ⋅
⋅⋅+⋅+⋅

=
N

fBdrrrr
P inoutinout

statoreddy  
 

(5.35) 
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( r o u
t
+ r i

n
) π

Transform

Stator Core Rectangular block
 

Fig. 5-8. Annulus to rectangular block transformation for eddy current prediction. 
 
  

5.2.4. Thermal Contact Resistance 

 

When two materials are placed in contact with each other, due to the apparent surface 

irregularities, the contact between two materials is made only at a few discrete points. 

Hence the two materials are separated by large air gaps. As a consequence, the heat 

conduction through the surface joints takes place partly through the actual contact 

points and partly through the gas gap. The imperfect nature of surface contact results 

in additional thermal resistance, which manifests itself as a temperature drop at the 

interface [139].    

 

For conductance in the solid, Mikic [140] suggested that for conforming rough 

surfaces, the solid spot contact coefficient is: 
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(5.36) 

Where,  δ = Surface profile height, m 

  tanθ = The profile slope 

  k1, k2 = thermal conductivity of two contact substances, W/mk 

  P = Contact pressure, Pa 

  H = Fluid flow pressure, Pa 

 

On the other hand, the gas gap contact coefficient is calculated from, Kennard [141]: 

eff

g
gascontact

k
h

δ
=,  

 

(5.37) 

 

Where,  δeff = Effective mean thickness 

  kg = Gas thermal conductivity 

 

Both the derived equations (5.36) and (5.37), are used in the generic thermal circuit to 

model the temperature drop in between the solid contacts in the generator. 

Nevertheless, some of the parameters required in these contact coefficient predictions 

are unknown or not easily available from the material manufacturers. Therefore, to 

simplify the contact coefficient prediction, Table 5-1 and 5-2 lists the common 

contact coefficients that can be applied into the generic thermal circuit.    

 

Table 5-1: Solid spot contact coefficient 
Solids in contact P = 0.1MPa P = 1 MPa 

Contact (P/H) hcontact,solid 

(W/m2K) 

(P/H) hcontact,solid 

(W/m2K) 

Aluminum/Aluminum 7x10-5 3616 7x10-4 31500 

Aluminum/S.Steel 7x10-5 551 7x10-4 4800 

S.Steel/S.Steel  2.6x10-5 117 2.6x10-4 1025 

 

Table 5-2: Gas gap contact coefficient 
Gas hg (W/m2K) 
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 P/H = 7x10-5 P/H = 2.6x10-5 P/H = 7x10-4 P/H = 2.6x10-4 

CO2 6890 6350 7970 7440 

Air 9400 8690 10800 10110 

Helium Gas 31900 30360 34800 33460 

 

The total thermal contact resistance can be viewed as two parallel resistances: that due 

to the solid contact spot and that due to the gas gap, as shown in equation (5.38). The 

contact area is typically small, and especially for rough surfaces, hence the major 

contribution to the resistance is made by the gaps.  
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(5.38) 

 

 

5.3. The User Interface of the Generic Lumped Parameter 
Thermal Circuit  

 

A sophisticated user friendly interface was designed to simplify the manipulation of 

the generic lumped parameter thermal circuit for axial flux machines. The interface 

was constructed in an Excel spreadsheet and it consists of seven macro scripts and 

seven forms. The details of the macro scripts and forms can be obtained from Excel 

spreadsheet attached in Appendix B. The interface provides a platform for the 

machine specifications and boundary conditions allocation. From the inputs obtained 

from the users, the Excel spreadsheet converts the machine specifications into thermal 

resistances and capacitances by the equations developed in Section 5.2. An 

automation macro script was developed and used to activate Portunus and to feed the 

generic thermal network circuit, with the corresponding thermal resistances and 

capacitances. After the solutions have reached converged values, the simulation 

results are extracted and post-processed automatically, with the used of anoather post-

processing macro script.  
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5.3.1. Machine List 

 

The machine specifications of the axial flux machines are allotted in the Excel 

spreadsheet in sets. The machine specification set can be created and saved by users 

from spreadsheets, making the thermal circuit setting-up process easier and more 

effective. Each machine set created can be saved with its corresponding machine 

name and reloaded for simulations with different boundary conditions. Similarly, the 

specifications of the machine can be edited to perform a rapid simulation. Fig. 5-9 (a) 

shows the user interface of the generic LPM thermal circuit and the machine 

specification sets are governed and managed by the macro form shown in Fig. 5-9 (b). 

The machine list form is activated after the “machine” button is pressed on the main 

interface. It allows the user to create, edit and delete machine specification sets. Fig. 

5-10(a) and (b) show the forms for creating and editing machine specification sets 

respectively.  Alternatively, the machine specification sets created can be exported, or 

imported to/from other machine specification formats, used in the machine design and 

manufacture industries.  

 

 

 

 

(a) (b) 

Fig. 5-9. The interface of the 2-D generic LPM thermal circuit (a) and the machine list 
form (b)  
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(a) (b) 

Fig. 5-10. New machine specification form (a) and machine editing form (b) 
 

5.3.2. Part Specifications 

 

The topology of the axial flux machine used in this research follows the design of the 

commercial 4kW VSIG air cooled machine manufactured by Cummins Generator 

Technologies. The model generator consists of five major parts, which are the stator 

holder, stator, rotor disks, magnets and coupling boss. These parts and their 

corresponding parameters are summarized in Fig. 5-11 and Fig. 5-12.  

 

Several adaptations were made to enable the axial flux machine to be modelled with 

the 2-D generic LPM thermal circuit. Firstly, the stator windings are simplified into 

rectangular blocks attached on the peripheral surfaces of the stator core; whereas the 

depth of these rectangular blocks is equal to the average depth of the windings (Fig. 5-

12). The thermal conductivities (in the axial and radial directions) are evaluated by the 

CLM winding modelling method discussed in Chapter 4.  

 

Also, the 2-D generic LPM thermal circuit neglects the heat flow in the 

circumferential direction and the convective heat transfer in the inter-magnet grooves 

is omitted. Therefore, the magnets affixed on the rotor discs are simplified into a 
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single annulus, with inner and outer radii equal to the magnets (Fig. 5-11). However, 

the simplification is only valid if the inter-magnet grooves are small, in comparison 

with the width of the magnets. Otherwise, the air flows in the inter-magnet grooves 

may induce high heat transfer in circumferential direction, causing large discrepancy 

in the simulation results.    
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Fig. 5-11. Axial flux permanent magnet generator cross sectional view. 

 

 

 

(a) (b) 

Fig. 5-12. Windings on the stator (a) and the winding’s cross-sectional view (b).    
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A list of material properties is stored in the spreadsheet to accommodate simulations 

of various machines configurations with different materials. The list of material 

properties is shown as below:  

 

Table 5-3: Material properties 
Material Specific heat capacity 

(J/kgK) 

Density 

(kg/m3) 

Thermal conductivity 

(W/mK) 

Aluminum(Alloy 195) 833 2790 168 

Brass (70%Cu, 30%Zn) 385 8522 111 

Cooper (Pure) 382 8933 401 

Iron (Pure) 447 7870 80 

Iron (Cast) 420 7920 52 

Iron (Silicon 1%) 460 7769 42 

Iron (Silicon 5%) 460 7417 19 

Stainless Steel 302 480 8055 15.1 

Stainless Steel 304 477 7900 14.9 

Stainless Steel 316 468 8238 13.4 

Stainless Steel 347 480 7978 14.2 

Stainless Steel 410 460 7770 25 

Epoxy 1500 1200 0.22 

Nomex 410 1300 1400 0.14 

Nylon 1600 1100 0.24 

Plastic-ABS 1260 1014 0.25 

Polycarbonate (PC) 1250 1200 0.29 

Polyethylene (PE) 2200 940 0.33 

Polyethylene (PP) 1900 905 0.17 

PVC  1200 1600 0.16 

PTFE (Teflon) 1050 2200 0.25 

Polystyrene (PS) 1350 1040 0.10 

Rubber (Hard) 2010 1190 0.16 

Telfon 1040 2200 0.22 
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Table 5-4: Material thermal resistivity [142-144] 
Material Resistivity/x 10-8 

(Ωm) 

Temperature Coefficient 

(K-1) 

Silver 1.59 0.0038 

Copper 1.72 0.0039 

Gold 2.44 0.0034 

Aluminum 2.82 0.0039 

Calcium 3.30 N/A 

Tungsten 5.60 0.0045 

Nickel 6.99 N/A 

Iron 10.0 0.005 

Tin 10.9 0.0045 

Platinum 11.0 0.00392 

Lead 22.0 0.0039 

Manganin 48.2 0.000002 

Constantan 49.0 0.00001 

Mercury 98.0 0.0009 

Nichrome 110 0.0004 

Carbon 3500 -0.0005 

 

5.3.3. Boundary Conditions and Loading Profile 

 

The machine operating conditions are governed separately by the boundary condition 

macro list. (Details of the boundary condition macro script can be found in Appendix 

B.) These operating conditions, including the machine rotational speed, ambient 

temperature, peak magnetic flux (for eddy current and hysteresis losses), and the 

current in the windings, operate separately from the machine specifications set. Hence 

it provides greater flexibility for users to perform a greater range of simulations more 

efficiently, i.e. the same machine configuration can be tested with different boundary 

conditions without re-allotting the machine specifications. Fig. 5-13(a) shows the 

interface of the boundary condition macro script. 
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The current drawn from the generator varies with the load in the network. For 

example, a sudden surge of the demand (or load) induces a drop of current in the 

electrical network and machine or vice-verse. In other words, the change of current in 

the generator due to the varying load in the network alters the heat generation (or 

Joule loss) in the electrical machines. Hence, it is necessary implement the time 

dependent heat sources in the generic thermal circuits.  

 

An electrical loading profile macro script was created to take into account the time 

dependent load in the generic thermal circuit. In conjunction with the temperature 

dependent Joule loss, the heat generated from the winding of the axial flux generator 

can be deduced from: 

( ) ( )[ ]
225

2 4
251

d

Ln
TtIPJouleLoss

⋅

⋅⋅⋅−+⋅=
π

αρ   

(5.39) 

 

Where,  I(t) = current profile varies with time 

  n = number of turns 

  L = Length of winding per turn, m   

  d = Diameter, m 

  ρ = Resistivity of the conductor, Ωm 

  ρ25 = Resistivity of the conductor at 25°C, Ωm 

  α = Conductor temperature constant, °C -1 

  T = Conductor temperature, °C 

 

An interface was designed to model the electrical load profile as shown in Fig. 5-

13(b). The interface consists of two columns, which are separated with commas: The 

first column indicates the time, whereas the second column indicates the 

corresponding current at the specified time. For example, the loading profile specified 

in Fig. 5-13(b) indicates the current is switched on at time 0 and is switch off from 

time 100s to 200s and from 300s to 400s. The automation macro script was pre-

programmed to extract the information from this interface and feed into the generic 

2D LPM thermal circuit.       
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(a) (b) 

Fig. 5-13. Machine boundary conditions (a) and loading profile macro script 
interfaces (b). 
 
 

5.4. Validation of the 2-D Generic Lumped Parameter Model  
 

This case study describes the use of the 2-D generic lumped parameter model to 

perform thermal modelling for Cummins Generator Technologies VSIG axial flux 

machines. Both solid and air temperatures calculated from both the generic lumped 

parameter model thermal circuit and the CFD model were compared. However, due to 

the unavailability of experimental results of VSIG machines, the developed 2-D 

generic lumped parameter model was validated by CFD results. The validations were 

carried out by investigating the solid and air temperature distributions predicted from 

2-D generic LPM and CFD models for different rotational speeds and air gap 

clearances (or the axial distance between the rotor and stator surface). At the end, the 

time dependent boundary conditions, such as temperature dependent Joule losses and 

time dependent heat source, were specified on the developed 2-D generic lumped 

parameter model. The disparities between the results predicted from the 2-D generic 

lumped parameter model and CFD models are examined and discussed. 

 

5.4.1. VSIG Axial Flux Generator Specifications. 

 
Currently, CGT’s VSIG is commercially available and is in mass production for 

industrial applications. Due to the confidential agreement with Cummins Generator 
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Technologies, to protect the competiveness of VSIG in the power generation market, 

the geometry of the axial flux machine used in this research was based on physical 

estimation. Table 5-5 summarises the approximated geometrical information of VSIG 

used for the validation of 2-D generic lumped parameter model thermal circuit. 

 

Table 5-5: Geometry of the axial flux machine used for the generic lumped parameter 
model validation. 
Dimension Stator Stator Holder Rotor Magnet 

Outer Diameter (m) 0.258 0.300 0.238 0.232 

Inner Diameter (m) 0.142 0.284 0.105 0.166 

Width (m) 0.03 0.030 0.030 0.0035 

Axial Thermal Conductivity (W/m2K) 202 202 202 202 

Radial Thermal Conductivity (W/m2K) 202 202 202 202 

     

Windings     

Axial Thermal Conductivity (W/m2K) 120.3   

Radial thermal conductivity (W/m2K) 401   

Winding Thickness (m) 0.0025   

Winding Resistivity (Ωm) 1.68x10-8   

Current (A) 12.5   

Temperature Coefficient 

 (°C-1) 

0.0068   

Number of Winding  48   

Number of winding turns  15   

Air clearance (m) 0.004   

 

 

5.4.2. CFD Model of the Simplified AFPM Generator 

 
A 2D-axisymmetric CFD model of the simplified AFPM generator was constructed 

and simulated in FLUENT. Since there is no direct correlation or empirical equation 

that can be used to evaluate the heat transfer coefficients and mass flow rate for the 

VSIG generator, the simulated results obtained from the CFD model were used. In 
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addition, the comparison between the temperatures predicted from both generic 

lumped parameter and CFD models is more prudent if both are using the same heat 

transfer coefficients and mass flow rate.   

 

The computational mesh of the axial flux machine is shown in Fig. 5-14: Both solids 

and fluid inside the generator were meshed, except for the stator core. In the near wall 

regions, dense meshes were applied to capture the thermal boundary layers in the 

immediate vicinity of the wall boundaries. Realizable k-epsilon with enhanced wall 

treatment model is used to model the turbulence inside the generator. At both the inlet 

and outlet of the generator, pressure boundary conditions were used: Zero total 

pressure was specified at the inlet, and at the outlet, zero static pressure was specified. 

This model solves the flow equations around the rotating parts, including the rotating 

rotor disk and magnets. Hence, the rotating reference frame model was used. The 

additional acceleration terms in the flow equations which occur due to the 

transformation from the stationary to the rotating parts, were solved in the unsteady-

state manner. The temperature dependent heat sources were used in both 2-D LPM 

and CFD models to investigate the effect of temperature dependent Joule losses in the 

generator windings.   
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Fig. 5-14. Simplified AFPM generator meshing grid. 
 

5.4.3. Results and Discussions 

 

The AFPM generator solid surfaces and air temperatures were calculated from both 

the LPM and CFD models. The temperatures predicted from these two models were 

plotted and compared in Fig. 5-15. Generally, as compared with the temperatures 

predicted from the CFD model, LPM predicted slightly higher temperatures except on 

the rotor disk surfaces (RDisks). Additionally, it can be noticed that the temperature 

discrepancies of these two numerical models were high on the solid surface, as 

compared with the fluid. The biggest discrepancy occurred in the surface temperature 

of the stator holder, where the error is around 6%.  

 

The validation was extended by testing the 2-D generic thermal circuit for two 

different rotational speeds, which were 750 rpm and 3000 rpm, and an additional air 

clearance size, which was 4 mm. To adapt these machine operating conditions and 

geometries into the 2-D generic model, a few slight modifications on the machine and 
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boundary condition forms (Section 5.3) were required. Since the heat flow paths in 

the generator do not change as these variables alter, the same thermal circuit was used. 

However, in order to validate the temperatures predicted from the 2-D generic thermal 

circuit, the CFD models with these particular machine operating conditions and 

geometry were reconstructed. Unlike the LPM modelling technique, these CFD 

models were required to be constructed from the begining. New mesh models of the 

axial flux machines were built and simulated until the average solutions were 

converged. All the solutions evaluated from three different boundary conditions by 

the two different modelling techniques are shown in Fig. 5-16, Fig. 5-17 and Fig. 5-18.  

 

The discrepancies between the temperatures predicted from the 2-D generic thermal 

circuit and the CFD models were quantified by the relative errors in percentage ratio, 

shown in Fig. 5-15 – 5-18, on the secondary, Y-axes (on the right hand side of the 

graphs). The relative error is defined as the percentage ratio of the temperature 

discrepancy between the LPM and CFD and the temperature increase from CFD 

models (equation (5.40)). The relative error is a better measure for temperature 

discrepancy, than absolute error because the relative errors, normalise the temperature 

differences (between 2-D generic thermal circuit and CFD model) with its 

corresponding inlet temperature. Therefore, the relative error is independent from the 

inlet temperature specified from the user, i.e. by varying the inlet temperature will not 

change the relative errors obtained.  

 

Relative error = 
( ) ( )

( ) %100×
−

−−−

inCFD

inCFDinLPM

TT

TTTT
 

 

(5.40) 
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Fig. 5-15. The air control volume s and solid surface temperature calculated from 
LPM and CFD model respectively at 1500rpm and 2mm air clearance. 
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Fig. 5-16. The air control volume s and solid surface temperature calculated from 
LPM and CFD model respectively at 750rpm and 2mm air clearance. 
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Fig. 5-17. The air control volume s and solid surface temperature calculated from 
LPM and CFD model respectively at 3000rpm and 2mm air clearance. 
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Fig. 5-18. The air control volume s and solid surface temperature calculated from 
LPM and CFD model respectively at 1500rpm and 4mm air clearance. 
 

From these simulations, it can be noticed that the temperature increase of the rotor 

disk, magnets and the air control volumes were generally smaller when compared 

with the stator and winding control volumes. For example: the temperature increase of 

the rotor disk control volumes varied from 5°C to 10°C, whereas for the stator 

winding, the temperature increase was about 50°C, depending on the operating 

conditions and the generator geometry. Also, it can be noticed that the temperature 

increases of the stator winding and the stator core were about the same, as well as for 

the rotor disk and magnet. This is because the contact resistances between the two 

solid surfaces were neglected in these simulations. Since the aim of this research is to 

verify the accuracy of the 2D generic thermal circuit, it is not necessary to include the 

contact resistances into both the thermal circuit and CFD models.     

 

The stator core and stator winding temperatures predicted by the 2D generic thermal 

circuit were in good agreement, where the relative errors were within 15%. On the 

other hand, the temperatures predicted for the rotor disk and magnet were less 

accurate; the relative errors varying from 2% to 30%, depending on the machine 

operating conditions and machine geometry. The main reason is that the accuracy of 

the rotor disk and magnet temperature is strongly affected by the fluid convective 

circuit used n the generic thermal circuit, whereas for the stator core and windings, the 

accuracy of the fluid convective circuit has a less significant effect, because they are 
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mainly determined by the heat sources and the thermal properties on the windings. 

Temperatures predicted for the stator core and stator windings are more reliable.  

 

Overall, the temperatures predicted from the 2-D generic thermal circuit show a good 

agreement with the CFD model, especially for low rotational speed and small air 

clearance models (Fig. 5-16). When the rotational speed increased, the accuracy of the 

generic thermal circuit deteriorated. For example, the maximum relative error for the 

750 rpm model was 8% (in air control volume 7), whereas at 1500 rpm, the maximum 

relative error was 15% (in the magnet disk control volume 1). However, the accuracy 

of the generic thermal circuit depreciated less rapidly when the rotational speed 

increased above 1500 rpm. At 3000 rpm, the maximum relative error was about 18% 

(in magnet disk control volume 1, see Fig. 5-17). 

 

When the generator air clearance increases from 2 mm to 4 mm, the temperatures of 

the rotor disk and magnet decrease. On the other hand, the winding and stator 

temperatures increase (Fig. 5-18). The temperature drops in the rotor disk and magnet 

were due to the increase of the axial distance between the rotor disk and winding: As 

the rotor disk is moved further away from the windings, the velocity of the local air in 

the vicinity of the stator winding decreases. Therefore, the local heat transfer 

coefficients on the stator wall, which are directly influenced by the local air velocity, 

reduce. Consequently, less heat is transferred from the winding to the moving air, the 

winding temperature increases.  

 

Also, it can be observed that the accuracy of the generic thermal circuit deteriorates at 

higher air clearance. The highest relative discrepancy evaluated from the generic 

thermal circuit was about 30%, on the magnet disk control volume 3. These illustrate 

that for high air clearance electrical machine models, higher discretisation level for 

fluid convective circuits are required.  

 

The 2-D generic thermal circuit validation was continued by examining its transient 

responses to the time dependent boundary conditions. In this investigation, 

temperature dependent heat sources (Joule loss) were specified in both CFD and 

generic thermal circuit models. In addition, the heat sources were switched off after 
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500 s, and switched back on at 1000 s. The aim of the boundary condition 

configuration was to examine the machine’s cooling responses.  

 

Fig. 5-19 plots the air mass-weighted average temperature of seven air control 

volumes with respect to time. The stator winding volume-average temperature 

transient responses are illustrated in Fig. 5-20. Both Fig. 5-19 and Fig. 5-20 show the 

temperature responses predicted from both CFD and the 2-D generic thermal circuit. 

The temperature responses of the same (air and solid) control volumes predicted by 

the CFD and generic thermal circuit models are represented in the same graph with 

similar colour band for comparison purposes. For example: In Fig. 5-19, the 

temperature responses of air control volume 1, AirCV1, predicted by the CFD and 

generic thermal circuit were coloured in dark blue and royal blue, respectively; For 

the solid winding control volume 2, W2, the temperature responses were coloured in 

bright and dull pinks respectively (Fig. 5-20). Both the CFD and thermal circuit 

models were simulated for 10 hours operating time. Since the temperature responses 

reach steady states after 1 hour operating time, the temperature responses after 1.6 

hours (which is roughly equal to 5000 s) were neglected and omitted from the graphs 

(Fig. 5-19 and Fig. 5-20).     

      

The steady state results predicted from both CFD and generic thermal circuit models 

did not perfectly match with each other. The maximum relative error is 14% (Fig. 5-

15) and these errors resurface in the transient temperature responses in Fig. 5-19 and 

Fig. 5-20, in both the heating and cooling curves. As a result, the transient 

temperature response predicted by the generic thermal circuit model was generally 

colder while the machine was heating up, and warmer when the machine was cooling 

down. However, the steady state temperature differences were small: 2 °C for the 

stator winding, and 0.8°C for the air control volumes, respectively.   
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Fig. 5-19. Transient temperature responses of air control volume predicted by both CFD and 2-D generic thermal circuit models. 
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Fig. 5-20. Transient temperature responses of solid winding predicted by both CFD and 2-D generic thermal circuit models. 
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Except for the slight steady state errors, the transient temperature responses predicted 

by the 2-D generic thermal circuit shows a good agreement with the CFD models. 

Further investigations in the accuracy of the transient responses of both the numerical 

models were conducted, to determine the accuracy of the time constant (the time 

required to reach 66.6% of the steady state response) of each control volume. The 

results are shown in Fig. 5-21. The results indicate that the temperature responses 

predicted by the 2-D generic thermal circuit lagged behind the CFD model, by 20-75 

sec, which is about 5% as compared with the CFD time constant. The reason is 

because the stator core was not modeled in the CFD model. Therefore, an additional 

mass of the stator core in the generic thermal circuit model was contributing to the 5% 

time lag for both heating and cooling curves of the machine when compared with the 

CFD model.    
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Fig. 5-21. Time constant for each solid and air control volume. 
 

In conclusion, the temperatures predicted by LPM were in good agreement with the 

temperatures simulated from the commercial CFD package, where the highest relative 

discrepancy is 30%, or 4 °C maximum absolute temperature difference. The accuracy 

of the 2D generic thermal circuit was improved at low rotational speeds, and at low 

air clearance. For transient simulation, the errors inherited from the steady state 
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simulation persisted. However, the time constant of each control volume was well 

predicted by the 2D generic model. 

 

5.5. The Construction of the Generic Lumped Parameter Model 
of Water-cooled, Totally Enclosed Axial Flux Machines 

 

5.5.1. Introduction 

 

Totally enclosed axial flux machines are designed for machine operation in harsh 

working environments, such as in underwater, and environments with corroding 

working fluids, gases, pollutants etc. Unlike the open channel axial flux machines, 

which use the surrounding air to cool the components inside the generator, the totally 

enclosed machines have metal casings to insolate windings and magnets from 

dangerous working fluids. For cooling, totally enclosed axial flux machines embrace 

water cooling systems. External water pumps are commonly used to drive and 

circulate coolant inside the water jacket, to remove heat generated from the stator 

winding and stator core. Since water is a thousand times denser than air, most of the 

heat loss is dissipated via the coolant in the water jacket, instead of via air convection 

or radiation. 

 

The stator of the totally enclosed machine consists of three major parts, which are the 

iron core, the aluminum water jacket and the centre water column, see Fig. 5-22. The 

stator windings that go around the top and bottom of the water jacket, are slotted 

inside the iron core grooves. The heat losses due to resistive heating in the windings 

and eddy current and hysteresis losses in the core are conducted by the high thermal 

conductivity water jacket. While the coolant (water) passes through the water column 

inside the water jacket, heat is discarded via the coolant by convection to an external 

heat exchanger or radiator. The convection heat transfer coefficients on the water 

column walls are high, e.g. 2000-2500 W/m2K. Due to the high density of water and 

the high fluid flow speed, the increase of the water temperature is only a fraction of 

degree, during normal machine operating conditions.   
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(a) (b) 

Fig. 5-22. The water-cooled stator of the totally enclosed axial flux generator (a) and 
cross-sectional view.  
 

5.5.2. The Generic Lumped Parameter Thermal Circuit of Water-cooled 

Totally Enclosed Axial Flux Machines 

 

The heat losses in the totally enclosed machines are dissipated by means of two main 

heat flow paths: One is via the coolant in the water jacket in the stator, and the other is 

via the circulating air in the totally enclosed machine. Based on experiments 

conducted by Cummins Generator Technologies, 95% of the total heat losses are 

transmitted through the coolant in the water jacket, whereas the circulated air only 

accounts for 5% of the total heat dissipation. Therefore, to simplify the thermal 

equivalent circuit, the local air convection from the stator to the generator casing is 

represented as a one-off convection thermal resistance. 

 

The stator is divided into thirteen annuli, which are the stator core, top, bottom and 

middle water jacket, and top, bottom and side windings, see Fig. 5-23. The stator core, 

middle water jacket and side winding annuli are further discretised into three smaller 
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control volumes to improve the accuracy of temperature prediction. Each of the annuli 

of the stator model is represented by the two dimensional thermal circuit described in 

section 5.2, and inter-connected to match their physical attachment. Between two 

material contacts, e.g. side windings to side core, water bracket to core etc, thermal 

contact resistances are introduced to model the temperature drops due to surface 

asperity. Also, given that the coolant in the water column has high density and the 

increase of temperature of the coolant is a fraction of a degree, the water column is 

simplified as one thermal resistance with the coolant inlet temperature as the 

temperature source. Some totally enclosed axial flux generators are attached to, or 

adjacent to other electrical or mechanical machines. Hence, additional temperature 

sources are added to the thermal circuit around the casing, to model the interaction 

thermal effect between the totally enclosed axial flux generators and the other 

machines. 

 

In the previous thermal circuit models, the axial flux machines were assumed to be 

axis-symmetric. Therefore, the windings were simplified as annulus disks and 

modelled directly by the two dimensional annulus thermal equivalent circuit. 

However, the stator windings of the totally enclosed axial flux machines are different: 

Stator windings are packed in bundles and slotted inside the stator core. Since the 

stator winding bundles are discrete in the circumferential direction, the thermal 

equivalent circuit of the totally enclosed machine is governed by two separated type 

of thermal circuits, which are the winding circuit, and the stator core circuit, see Fig. 

5-23. The two circuits work interactively in each time step to model the thermal state 

of the totally enclosed permanent magnet generators.  
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Fig. 5-23. Generic lumped parameter thermal circuit of totally enclose water-cooled 
axial flux machines. 
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The winding circuit models the thermal system of one winding bundle. It consists of a 

contact resistance, a Watt (or Amp) meter, a temperature source and a two-

dimensional cylinder thermal circuit. The contact resistance models the gas gap 

conductance between the two materials in contact, which in this case, it is between the 

winding bundle and the stator core. Equation (5.41) evaluates the contact resistance of 

the winding bundle-stator core interface, where the contact area, Ac can be found by 

equation (5.42), Fig. 5-24. 

 

 The temperature sources of the winding circuit are linked to the temperature obtained 

from the core surface of the stator-core circuit. At each time step, the winding circuit 

is run based on the core surface temperature obtained from the stator core circuit from 

the previous time step. The resistive heat passing through the each control volume is 

recorded and passed to the stator-core circuit in the next time step.  

 

ccw
c Ah

R
×

=
−

1  (5.41) 

wcc LrA ×−×=
360

360
2

θπ  
(5.42) 

 

Where 

 hw-c = Winding bundle and stator core contact coefficient, W/m2K  

 rc = Winding slot diameter, m 

 Lw = Winding Length, m 

 θ = Contact Angle, ° 

 

 

Fig. 5-24. Schematic sketch of the totally enclosed water-cooled slotted core section. 
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The stator core and water jacket are modeled by the stator core circuit, see Fig. 5-23. 

In this circuit, the stator core is discretised in to three smaller annuli, whereas the 

water jacket is split into top, bottom and three middle annuli. All the annuli are 

modeled by the two-dimensional cylinder thermal circuit. The existence of winding 

bundles in the stator core circuit is represented by the winding power sources in the 

stator-core circuit. As the winding circuit only models the thermal path of one 

winding bundle, the heat power recorded in the Wattmeters of the winding circuit 

represent the heat losses of one winding bundle. Therefore, the total power used in the 

winding power sources in the stator-core circuit is evaluated by the multiplication of 

the total heat recorded in the Wattmeters in the winding circuit and the total number 

of winding bundles, in the totally enclosed axial flux generator. For example, if the 

total heat measured in the Wattmeters of the winding circuit is Pw, and the total 

number of winding bundles is Nw, the winding power sources used in the core circuit 

are equal to Pw x Nw.  

 

The winding and stator core circuit works interactively during the thermal simulation 

process: the winding circuit acquires the core surface temperature from the stator core 

circuit to predict the winding temperature and heat losses due to resistive loss. At the 

same time, it passes the corresponding total heat measured by the Wattmeters to the 

stator core circuit, to evaluate the core temperature. The simulation is re-iterated until 

it reaches a steady state, for each time step.   

 

 

5.5.3. Transient Boundary Conditions 

 

The generic lumped parameter thermal circuit of the water-cooled totally enclosed 

axial flux machine adopts the transient solver; hence this implies that the transient 

temperature solutions can be obtained. Also, based on the generator application, the 

thermal circuit can be fed by time dependent boundary conditions, such as 

temperature dependent heat losses, time dependent electrical loading etc. 
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The winding resistance is temperature dependent: when the winding temperature 

increases, the electrical resistances and the Joule loss increase. Therefore, in order to 

acquire better accuracy for the temperature prediction of totally enclosed axial flux 

machines, the consideration of temperature dependent heat losses in the winding is 

necessary. In the generic thermal circuit of water-cooled totally enclosed axial flux 

machines, the resistive heat losses in the winding are represented as power sources. 

These power sources are pre-programmed accordingly, to evaluate the heat losses in 

the windings by using the winding temperature predicted from the previous time step. 

The equations that govern the temperature dependent heat losses are shown in 

equation (5.30) and equation (5.31). Thus, the generic thermal circuit automatically 

updates the newly calculated heat resistive power losses in the windings, at every time 

step, until the system reaches the steady state. 

 

Also, the Joule loss in the axial flux generator depends on the magnitude of the 

electrical current passing through the stator windings (equation (5.30)). For different 

machine applications, the Joule loss varies with different electrical loading profiles or 

patterns. For instance, generators which are directly connected to the grid, the 

corresponding Joule loss in the winding is proportional to the electrical loading curve. 

Thus, in order to take account the change of current in the electrical machines in the 

generic thermal circuit, the heat sources (in the generic thermal circuit) are pre-

programmed to acquire the current magnitude, at the different time, from a look-up 

table specified by the users. The look-up table composes of two columns: The first 

column states the time interval and second column corresponds to the electrical 

loading.   

 

Several water-cooled totally enclosed axial flux generators are installed on portable 

vehicles, where the water pumps of the generators are connected directly to the 

vehicle engines. When the engine of a vehicle is switched off, the sudden halt of 

flowing water in the stator water jacket causes the temperature of the generator to soar, 

due to sudden drop of cooling in the water jacket and the latent heat stored in the 

engine and the generator. In extreme situations, the temperature of the generator 

skyrockets above the temperature limits of the generator insulation materials and 

causes the generator to breakdown or drop in efficiency. Thus, the generic thermal 
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circuit of the water cooled axial flux generator is modified to take into consideration 

the sudden stop of the water pump power. In this approach, another look-up table is 

used in the generic thermal circuit to model the power alteration of the water pump of 

the generator. Users are allowed to prescribe or amend the power of the water pump 

in the look-up table, by specifying “1” for water pump power on and “0” for power 

off at the corresponding time.  

 

5.5.4. Case Study: Generic Thermal Circuit of Water Cooled Totally 

Enclosed Axial Flux Generators with Transient Conditions 

 

The generic thermal circuit constructed for the totally enclosed, water-cooled axial 

flux machines was tested with two transient boundary conditions. Two loading curves, 

which were the square wave and sinus wave loading curves (Fig. 5-25), were used. 

For the square wave loading curve, the current in the windings varies in steps, from 0 

amp to 15 amp, with frequency of 2.77x10-4Hz; whereas for the sinus wave loading 

curve, the loading frequency is 5.56x10-4 Hz, and the amplitude of 7.5 amp at 7.5 amp 

offset. For both cases, the inlet water temperature was set to 80°C, and the 

temperature on the casing wall next to the engine was fixed at 100 °C. The ambient 

temperature specified in the model was 20 °C. 
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Fig. 5-25. Square and sinus loading curves 
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Fig. 5-26(a) and (b) show the temperature responses predicted from two different 

loadings, which are the square and sinus load curves, respectively. The simulated 

results show that the aluminum water jacket reached the steady state a lot faster than 

the stator core and windings. This indicates that during the first two hours, the 

generator was heated by water inside the water jacket (where the water temperature 

was 80°C). The winding temperature increased when the current passed through the 

conductors. After two hours, the winding temperature rose above the water jacket 

inlet temperature and heated up the stator core. The generator system reached a steady 

state after three hours. It can be noticed that the change in the loading curve caused 

large temperature fluctuations in the winding temperature. However, the mean final 

steady state temperatures were not affected by the loading curve profiles.         

 

The rapid temperature change of the aluminum water jacket at the beginning of the 

operation was due to the temperature source specified in the generic thermal circuit. 

To simplify the thermal circuit, the water cooling system was represented by a 

combination of one thermal resistance and temperature source. Therefore, the 

temperature of the water jacket immediately responded to the temperature of the 

temperature source after the simulation was started. Nevertheless, the simplification 

has minimal effect on the final steady state temperatures predicted by the generic 

thermal circuit. 
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(a) 

 

(b) 

Fig. 5-26. Temperature responses predicted from the water-cooled totally enclosed 
axial flux machine with square wave (a) and sinus wave (b) loading curves.  
 

 

Fig. 5-27(a) and (b) show the generator temperature responses after the generator and 

water pump were switched off at the fifth hour of the operation, for both loading 

curves. Once the water pump was switched off, both the stator core and water jacket 

were heated by the latent heat stored in the windings and by the engine next to the 
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generator. In these simulations, the generator was set adjacent to an engine of wall 

temperature equivalent to 100°C. Thus, when both the generator and water pump 

were switched off, the whole generator reached an equivalent temperature of 90°C. 

 

(a) 

 

(b) 

Fig. 5-27. Temperature responses predicted from the water-cooled totally enclose 
axial flux machine after the generator and water pump were switched off at the fifth 
hour of operation, for square wave (a) and sinus wave (b) loading curves.  
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5.6. Conclusions 
 
Lumped parameter thermal circuits are capable of predicting the thermal state of 

electrical machines effectively, but the construction of the thermal circuit can be 

tedious and requires high level of understanding of thermodynamics and heat transfer. 

Therefore, the idea of the generic lumped parameter thermal circuit has been proposed. 

The generic thermal circuit consists of the basic conductive and convective sub-

circuits. With the thermal resistances and capacitances derived in dimensionless form, 

the generic thermal circuit can be used to model the thermal states of a collection of 

electrical machines with wide range of machine sizes, which have broadly similar 

topology. With small modifications, the generic thermal circuit can be adapted to 

other types of electrical machines, such as air-cooled axial flux generators, single-

sided core-less generators and totally enclosed water-cooled electrical machines.  

 

A sophisticated spreadsheet was designed to further simplify the use of the thermal 

circuit for the simulation of electrical machines. A user friendly interface was created, 

in Excel, to input the machine geometries by the user. Also, a set of macro scripts 

were written to convert the machine specification automatically into its corresponding 

thermal resistances and capacitances. This information is fed into the generic thermal 

circuit to perform the thermal analysis. On completion, the results obtained from the 

generic thermal circuit are transferred back to the Excel spreadsheet for post-

processing.  

 

The generic thermal circuit of water-cooled totally enclosed axial flux machines has 

been proposed. Since the water has higher density than the air, 95% of the heat losses 

are dissipated via the water jacket to the flowing coolant in these water-cooled 

machines. Thus, the heat convection to the air was neglected in the thermal circuit of 

the water-cooled generators. Also, due to the slotted winding design, the generic 

thermal circuit is split into two sub-circuits, which are the winding circuit and core 

stator circuit. The two thermal circuits work interactively to predict the temperature 

responses for transient boundary conditions, such as temperature dependent heat 

losses, time dependent electrical loading and water pump loading.  
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In conclusion, both the generic thermal circuit and the sophisticated user interface 

spreadsheet circumvent the complexity of manually constructing the thermal circuits 

of the electrical machines. Consequently, the user, who may have little experience of 

thermal network models, is able to perform rapid engine thermal simulations 

effectively with the support of these two thermal modelling tools.  
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Chapter 6  
 

Experimental Validation of the Lumped Parameter 

thermal modelling technique: Single-sided Slotted 

Axial Flux Permanent Magnet Generator 

 

6.1. Introduction 
 

The advanced lumped parameter modelling technique has been introduced and 

discussed. Several case studies have been conducted to verify the results predicted by 

the lumped parameter thermal network circuit against CFD models.  Strong evidence 

shows that the advance lumped parameter modelling technique is capable of 

producing good results for temperature and heat flux predictions for simple heat 

transfer models with sufficient levels of discretisation.  

 

The single-sided slotted axial flux generator has a unique pancake profile and it is 

widely used for electric vehicle regenerative braking and renewable energy power 

generation. Fig. 6-1(a) shows the sectional sketch of a 3-kW single-sided slotted axial 

flux generator. Experimental verifications were carried out on this type of machine to 

further examine the feasibility and accuracy of the advance lumped parameter 

modelling technique. The lumped parameter thermal network and the CFD model of 

the single-sided slotted axial flux permanent magnet generator were constructed. The 

single-sided slotted axial flux generator rig, which is shown in Fig. 6-1(b) was built to 
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perform experimental testing, to verify the results simulated from both of the 

numerical models.   

  

(a) (b) 

Fig. 6-1. Single-sided slotted axial flux permanent magnet generator. 
 

6.2. The Construction of the Single-sided Slotted Generator 2-
D Lumped Parameter Thermal Circuit 

 

The 2-D lumped parameter thermal circuit of the simplified single-sided slotted 

generator was constructed, as shown in Fig. 6-2. It consisted of a rotor disk (on the 

left hand side) and a stator disk (on the right hand side); each of them split into four 

and three annular control volumes, respectively. These annular control volumes were 

represented by the annular conductive circuit and they were connected in the same 

way that they are physically connected in the real machine. The thermal resistances of 

the conduction thermal circuit were calculated based on the geometry and material 

properties of each annular control volume.  
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(a) (b) 

Fig. 6-2. (a) Simplified single-sided slotted axial flux generator and (b) the 
corresponding 2-D lumped parameter thermal circuit 
 

The single-sided slotted axial flux machine has thin magnets protruding from the rotor 

disk surface. Typically, the magnet grooves range between 2 to 4mm. In this analysis, 

the magnets were assumed to be flush with the rotor disk. The air domain inside the 

generator was split into four control volumes and each control volume was 

represented with the fluid convective circuits. The fluid convective circuit was 

connected to the annular conduction circuits, to allow heat transfer from the air to the 

solid or vice versa. The temperature dependent Joule loss in the stator windings was 

modelled by transient heat sources in the 2-D LPM thermal circuit.     

 

 

 

6.2.1. Convection Heat Transfer Coefficient 

 

The accuracy of the temperature prediction of the LPM thermal circuit is closely 

related to the convective heat transfer coefficients used in the model. Nevertheless, 

accurately determining the convection heat transfer coefficients is difficult due to the 

complexity of the flow regimes and it involves extensive theoretical and experimental 

explorations. In this LPM model, the convective heat transfers were evaluated by a 
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number of existing empirical models [145] based on the flow characteristic in the 

axial flux machine. 

 

Free rotating dics:  

The average heat transfer coefficient on the left hand side of the rotor surface was 

developed using the formula developed for a combination of laminar and turbulent 

flow of free rotating plate [146], which is shown as bellow: 

 

ff uN
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h .=  (6.1) 
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Where,  

rc is the radius at the transition occurs from laminar flow to turbulent flow, m 

v is the fluid kinematic viscosity, m2/s 

ω is the rotational speed, rad/s 

r is the disk outer radius, m 

Reω is the rotational Reynolds number, which is defined as 
v

r 2

Re
ω

ω =  

k is the air thermal conductivity, W/mK 

 

By considering the single slotted axial flux generator described in Fig. 6-2(a), which 

has outer radius, rc, of 0.15 m, and rotational speed, ω, of 1495 rpm (or 156.5 rad/s), 

air kinematic viscosity and thermal conductivity of 16.97 x 10-6 m2/s and 0.0271 

W/mK respectively, the convection heat transfer coefficient on the rotor side 

surface, fh , calculated from equations (6.1)-(6.3) is 26.83 W/m2K.  

 

Rotor peripheral edge: 
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The heat transfer coefficients for the radial peripheral edge of the rotor disk are 

similar to the rotating cylinder in air. Hence, the average heat transfer coefficient is 

given as [145]: 

 

pp uN
D

k
h .=  (6.4) 

3/13/2 PrRe133.0 ⋅⋅= DpuN  (6.5) 
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D

2
Re

⋅= ω  
(6.6) 

 

Where,  

D is the rotor disk diameter, m 

Pr is the air Prandtl Number 

 

By applying D = 0.30 m, Pr = 0.711, and a rotational speed of 156.5 rad/s into 

equations (6.4)-(6.6) the average convection heat transfer coefficient at the peripheral 

edge of the rotor disc, ph , can be determined, which is 94.7W/m2K. 

 

Flow passage between the rotor-stator: 

Owen [147] provided an approximate solution for the flow between a rotating and a 

stationary disks, which relates the stator-side average Nusselt number to the 

volumetric flow rate by the following equation:  

 

rsrs uN
r

k
h .=  (6.8) 

r

Q
uN rs ⋅⋅

⋅=
υπ

333.0  (6.9) 

 

Currently no mass flow correlation has been developed for the single slotted axial flux 

generator. Hence, the mass flow measured from the experiments, 3.61 g/s, was used to 

calculate the average stator side heat transfer coefficient, rsh .  22.63 W/m2K was 

obtained from equations (6.8) and (6.9). Wang [145] suggests that the convection heat 
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transfer coefficient on the rotating disc can be assumed to be the same as on the 

stator-side. 

 

6.2.2. Mass Flow Rate Measurement 

 

There is neither a theoretical nor empirical mass flow correlation that has been 

developed for the single slotted axial flux generator. Hence, the mass flow used in the 

LPM model was obtained from the experiments. In future work, more sophisticated 

parametric variation studies of convective heat transfer coefficient and mass flow rate 

will be performed to develop empirical formulae that relate the heat transfer 

coefficient and mass flow rate to different flow conditions and geometrical 

parameters. Therefore, the LPM will be able to provide accurate temperature values 

inside the AFPM generators independently from either the experiments or CFD 

models.  

 

6.3. The Single-sided Slotted Generator CFD Model 
 

A 2-D axisymmetric CFD model of the simplified single-sided slotted generator was 

constructed and simulated in the FLUENT 6.3.26 package. Fig. 6-3 illustrates the 

mesh grid of the simplified single-sided slotted generator CFD model which consists 

of 40,000 nodes. The extra air volumes at the inlet and outlet were modeled to 

eliminate the boundary interference. On a modestly powered desktop computer 

(1.773GHz Core Duo Intel processor, 1 GB RAM machine), the meshing process and 

iterative calculation of the CFD model took up to nine hours of computational time. 

The input data and the boundary conditions that applied in the CFD model are as 

follows: 

• 0.3m outer diameter and 0.01m thick rotor disk. 

• 0.3m outer diameter, 0.07m inner diameter and 0.008m thick stator disk. 

• 3mm Rotor-stator clearance. 

• 15 °C ambient temperature.    

• Fine meshes are used in the near wall region to maintain Y+ below 5. 
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• Realisable k-epsilon turbulent model with Enhanced Wall Treatment (EWT) is 

used to model the turbulence in the flow. EWT is a near-wall modelling method 

used in the turbulent models, to evaluate the fluid velocity field adjacent to the 

wall boundaries. The details of EWT can be found in [131]. 

• Zero total pressure and zero static pressure conditions are specified at the inlet 

and outlet of the simplified AFPM generator respectively. 

• The rotor parts are identified to have a rotational speed of 1495 rpm with the use 

of a rotating reference plane. 

• 553W/m2 heat flux input is specified at the back of the stator to model the 

winding joule losses. The heat flux specified here is obtained from the 

experimental results.  

 

 

 

 

(a) (b) 

Fig. 6-3. (a) The schematic plan of the simplified single-sided slotted axial flux 
generator and (b) corresponding CFD mesh model.  
 
 

6.4. Experimental Set Up 
 

6.4.1. Test Rig 

 

The single-sided axial flux generator test apparatus is shown in Fig. 6-4(a). The 

experimental rig was designed to allow thermal and mass flow measurements to be 

taken with minimal experimental errors. The test apparatus consists of two major 

parts, which are the rotor and stator disks. The outer diameter of the rotor disk is 
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150mm and it is made of high thermal inertia 10mm thick Perspex sheet. It is 

transparent and hence it allows flow visualization experiments to be conducted. The 

rotor disk is powered by a 3kW 2-pole-50Hz induction motor (Fig. 6-4(b)). The speed 

of the induction motor is controlled by a 4kW AC vector drive speed ABB inverter.   

 

The stator disk of outer diameter 150mm, inner diameter 70mm, is made of high 

thermal conductivity 8mm thick Aluminum sheet. An Aluminum tube of inner 

diameter 30mm and length 150mm is welded to the back of the stator disk. The 

Aluminum tube serves two main purposes. Firstly, it is used to support the stator disk 

so that the Aluminum stator disk can be aligned to the rotor. Secondly, it acts as a 

crude converging nozzle, compressing the air at the inlet to allow accurate mass flow 

measurements. The stator disk structure is supported by two adjustable stands 

mounted on the floor. The adjustable stands are designed to allow the stator structure, 

to shift in both axial and radial directions to attain the desired air gap and height for 

the different test cases. The details of the test rig geometrical information are 

illustrated in Fig. 6-4(c).  

 

Six 8 W, 12 Vdc silicon heaters were affixed at the back of the stator disk; see Fig. 6-

4(b). These heaters were connected in parallel electrically and were powered by an 18 

Vdc 360 W rated adjustable DC power supply, to replicate the heat generation due to 

Joule loss in the single-sided axial flux generator. The DC power supply was adjusted 

below 360W so that it did not exceed the power rating of the silicon heaters. 

 

The experimental errors can be minimised by increasing the temperature on the stator 

surface. Since the power input from the DC power supply is limited by the silicon 

heaters, in order to increase the stator front surface temperature, the back of the stator 

was insulated with several fibre glass insulation blankets (Fig. 6-1(b)), to minimise 

the heat dissipated from the back of stator and heater pads. 
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(a) (b) 

 
(c) 

Fig. 6-4.  The schematic (a), snapshot (b) and geometrical information (c) of the 
simplified experimental rig. 
 

 

6.4.2. Experiment Apparatus 

 

Surface temperature measurements 

The temperature of the surface inside the generator was measured using the T-type 

surface thermocouple. Thermocouples are the most commonly used devices for 

temperature measurement. However, when measuring the temperature of a substance 
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using the thermocouple, it can only indicate its own temperature and does not always 

reflect the actual temperature of the substance. In general, the temperature of the 

thermocouple is not equal to the temperature of the substance, unless special 

precautions are taken. It is also vital to identify the sources of spurious EMF in the 

thermocouple before conducting experiment testing. 

 

One common thermocouple measurement problem is caused by unintentional 

thermocouple junctions, such as, using other wire types for extending the leads of the 

thermocouples, or directly connecting the thermocouple to an existing microvolt 

meter. The former error can be easily corrected by simply using the same type of 

extension leads, but for the error that occurs in the latter configuration, cold junction 

compensators (CJC) are required. Fig. 6-5 illustrates the configuration used in this 

work in which the thermocouples were CJC compensated. This configuration 

introduces an intermediate metal (usually copper), into the loop and hence two 

additional thermal junctions are created. Although the law of intermediate metals 

states that a third metal, inserted between the two dissimilar metals of a thermocouple 

junction will have no effect provided that the two junctions are at the same 

temperature, since the thermocouple measures temperature differentially, the 

temperature at the two thermal joints must be known in order to determine the actual 

temperature measured at the hot junction. The CJC algorithm compensates the output 

voltage measured at the two copper ends to determine the exact temperature at the hot 

junction.   

 
Reference (cold) 

Junction

CopperMetal A

Metal B

Hot 

Junction

Copper

Vout

 

 

 

 

(a) (b) 

Fig. 6-5. Thermocouple cold junction compensator (a) and twisted and screened 
thermocouple (b). 
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On the other hand, in order to minimize the thermal shunting effect during the 

temperature measurements, thermocouples with small diameter wires, 32 AWG 

(0.20mm diameter) were used in the experiments. However, this caused the 

thermocouples to have very high resistance which made them very sensitive to noise 

and errors due to the input impedance of the measuring instrument. For a 32 AWG 

wire, at 80 °C, the electrical resistance is about 15 Ohms/m. However, when it was 

coupled with the PICO-TC08 data acquisition unit, which has an input resistance of 2 

MOhms, the error was only 0.01%, for a 12m length of the 32 AWG wire.  

 

Thermocouples generate a relatively small voltage (in µV) and hence noise is always 

an issue. The common noises are magnetic field, unearthed surface, static electricity, 

and utility AC power line (50 or 60Hz) noise. However, the PICO-TC08 data logger, 

which was used in the experiments, rejects any common mode noise. The noise in the 

low voltage signal can be minimised by twisting the wires together to help ensure 

both wires pick up the same noise signal. Additionally, the PICO TC-08 data logger 

uses an integrating analogue to digital converter which helps average out any 

remaining noise. In extremely noisy environments, such as near the induction motor, 

screened extension cables were used (Fig. 6-5(b)).  

 

The surface temperature was measured by OMEGA® SA1-T type surface 

thermocouples. On the top side of the thermocouple, a fibreglass reinforced polymer 

insulation layer was affixed to minimise the effect of the fluid temperature on the 

thermocouples; on the bottom side, high temperature resistance acrylic double-sided 

tape is used to attach the thermocouples on top of the measured surface (Fig. 6-6). As 

a result, the temperature reading obtained directly from the thermocouple was the 

temperature of the top surface of the acrylic double-sided tape. In addition, acrylic has 

very low thermal conductivity hence the temperature drop across the double-sided 

tape is significant. To obtain the temperature of the solid surface, a correction factor 

was introduced, which was derived from the heat conduction equation, as shown in 

equations (6.10) & (6.11):   

k

Lq
TT measuredsurface

×=−  
 

(6.10) 
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k

Lq
T +×=  

 

(6.11) 

  

Where Tsurface is the temperature on the solid surface 

 Tmeasured is the temperature obtained from the thermocouple 

 q is the heat flux 

 L is the thickness of Acrylic 

 k is the thermal conductivity of Acrylic 

 

 

Fig. 6-6. OMEGA®SA1-T type thin film surface thermocouple attached to the solid 
substance with Acrylic double-sided tape.   
 

Thermocouples have wide temperature ranges, for example, K-type thermocouples 

have range from -200 °C to 1350 °C; T-type thermocouple measures temperature 

from -270 °C to 400 °C. However, it is crucial to make sure that the surface 

temperature is not only within the thermocouple temperature limits, but also that it 

does not exceed the wire insulation temperature limits. When the substance exceeds 

the insulation temperature limits, the wire insulation material diffuses into the 

thermocouple and cause decalibration. Since the operating surface temperature for the 

experiment testing was 80 °C, the OMEGA®SA1-T type thin film surface 

thermocouple with the insulation temperature limits of -60 °C to 175 °C was chosen 

for this application.   

 

Heat Flux Measurement 

The stator surface heat flux was measured by using the OMEGA® HFS3 heat flux 

sensors (Fig. 6-7(a)). The heat flux sensors have very low thermal profile and are 

designed for precise measurement of heat transfer through any material, on flat or 
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curved surfaces. The OMEGA® HFS3 is a differential thermocouple sensor; it 

measures the heat transfer rate by measuring the temperature difference across a 

thermal barrier. In the centre of the sensor, there is a thin Kapton barrier, for which 

the thermal characteristic is known. On either side of the Kapton barrier, 50 

copper/constantan junction thermopiles are bounded. These copper/constantan 

junctions are wired in series on the alternate side of the Kapton barrier, where the 

copper output leads are attached, one to the first junction on the upper surface and one 

from the last junction lower surface (Fig. 6-7(b)). As a result, the sensor can be 

directly interfaced to a microvolt meter with no cold-junction compensator required.  

Table 6-1 lists the thermal properties of the OMEGA® HFS3 heat flux sensor:  

 

 

 

 

 

(a) (b) 

Fig. 6-7. OMEGA® HFS3 heat flux sensors 
 

Table 6-1: Thermal properties of OMEGA® HFS3 heat flux sensor:  
Properties Quantity Unit 

Thermal Resistance 0.002  ºC/W/m2 

Thermal Capacitance 600  Ws/ ºC m2 

Response Time 0.6  S 

Sensitivity 0.8-1.3 (Vary with sensors) µV/W/m2 

Temperature Limit 150 ºC 

Heat Flux Limit 100 kW/m2 

 

K-type 
Thermocouple 
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The OMEGA® HFS3 heat flux sensors are self-generating devices requiring no 

external voltage or current stimulation. Before the heat flux sensors were used, they 

were calibrated by a simple experimental rig as shown in Fig. 6-8. The simple rig 

comprises of a 100mm diameter heater mat, an aluminum disk, and glass fiber 

insulation surrounding it. The heater mat was used to heat the Aluminum disk until it 

reached its thermal steady state. Firstly, the heat flux sensor was attached on the top 

surface of the Aluminum disk, the measured EMF on the heat flux sensor was 

recorded. Subsequently, the same heat flux sensor was attached at the bottom surface 

of the heat mat. Again, the measured EMF on the bottom surface was recorded. The 

sum of the two incurred EMFs from the top and bottom surfaces obtained from the 

heat flux sensor was calibrated to the total power input from the heater power supply. 

Each calibration process was repeated five times, and the calibration factor varied 

from 3.5% to 8.7%, depending on the heat flux sensors. The uncertainty of each 

calibrated heat flux sensor was recorded and was taken into account when they were 

used to measure the heat transfer coefficients in experiments.  

 

 

(a) (b) 

Fig. 6-8. Schematic (a) and top view (b) of the simple experimental apparatus for heat 
flux sensor calibration.  
 
The heat flux can be calculated from the sensor self-generated voltage output with the 

calibration factor as follows: 

ncalibratio

HF

K

V 3flux heat  Measured =  
(6.12) 

Where  VHFS is the voltage output generated from the sensor, in µV 

 Kcalibration is the calibration factor, in µV/W/m2 
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The OMEGA® HFS3 sensor has an additional K-type thermocouple affixed at the 

bottom of thermal barrier (Fig. 6-7(a)) to provide additional local surface temperature 

measurements. Therefore, in total there are four output leads from the OMEGA® 

HFS3 sensor. Two of the sensor leads are for the heat flux measurement, which are 

indicated in red (+ve) and white (-ve) respectively. Since both the heat flux sensor 

leads are copper, OMEGA® U type connectors were used to eliminate the extra 

thermocouple joints. The two ends of the U-type connector were slotted into the PICO 

TC-08 USB data logger micro-volt channels. The other two end leads, which are 

colour-coded in yellow and brown, were connected to the K-type thermocouple on the 

heat flux sensor. K-type connectors were used to attach the thermocouple into the 

PICO TC-08 USB data logger K-type thermocouple channels. In total, three heat flux 

sensors and four thin film surface thermocouples were used in the experiments. The 

position of each thermocouple and heat flux sensor is shown in Fig. 6-9 (a) and (b). 

The thin film surface thermocouple is represented as TC1 to TC4 in Fig. 6-9(a), and 

HF1 and HF2 indicate the positions of the heat flux sensors on the front stator 

surface. An additional heat flux sensor, HF3, was attached at the back of the stator, to 

evaluate the heat that escapes at the back of the stator disk (Fig. 6-9(b)).  

   

  

(a) (b) 

Fig. 6-9. Thermocouples and heat flux sensors positioning on the stator front (a) and 
back (b) surface. 
 

 

 

TC1 
TC2 

TC3 
TC4 

HF1 

HF2 

HF3 
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Mass flow measurements 

 

A one-dimensional constant temperature hot wire anemometer was used to measure 

the air mass flow rate at the inlet duct of the simplified single-sided slotted generator. 

All the flow readings were taken by placing the hot wire perpendicular to the 

rotational axis, to avoid the reading measured from being affected by the extra swirl 

velocity component. The hot wire anemometer velocity measurement response time is 

200ms. However, in order to obtain accurate velocity measurements, each velocity 

reading is recorded 5 seconds after the anemometer probe has moved into a new 

position, to eliminate the experimental errors that may occur in the measuring 

processes. For a single test, the anemometer was traversed to measure the air velocity 

at 17 different positions at the inlet end of the aluminum cylinder, as shown in Fig. 6-

10 (a). Fig. 6-10(b) shows an example of the velocities measured on X-axis and Y-

axis.  
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(a) (b) 

Fig. 6-10. Velocity measurement positions at the inlet of the aluminum cylinder (a) 
and corresponding velocity profiles on X- and Y-axes. 
 

Theoretically, the inlet air mass flow rate of the system can be evaluated as equation 

(6.13), if the X- and Y-axes velocity profiles are known. 
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Where r   = radius of the aluminum cylinder, m. 

 vX-axis(r)= Velocity profile on X-axis 

 vY-axis(r)= Velocity profile on Y-axis 

 ρ = air density, kg/m3  

 

Since the velocity profiles were unknown, the mass flow rate was evaluated 

numerically by the trapezium rule, as shown as equation (6.14): 
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(6.14) 

Where Vx(rk) and Vy(rk) is the velocity measured at n position on X- and Y-axes 

respectively. 

 

6.5. Experimental Procedure 
 

Prior to the start of the experimentation, the aluminum stator disk was preheated, with 

the back of the disk insulated by the glass-fiber insulation blankets. The DC power 

supply to the heater pads at the back of the stator was switched on and the variac was 

adjusted so that the stator temperature was maintained at 80°C. Simultaneously, the 

thermocouples and heat flux sensors on the stator front surface were recalibrated to 

ensure their satisfactory performance during the test. The thermocouples and heat flux 

sensor calibration table is shown in Table 6-2: 

 

Table 6-2:  Thermocouple and heat flux sensor calibration table. 
Data Logger Channel number Device Calibration Factor 

HAT 33/417 Channel 1 TC1 T-type thermocouple 

HAT 33/417 Channel 2 TC2 T-type thermocouple 

HAT 33/417 Channel 3 TC3 T-type thermocouple 

HAT 33/417 Channel 4 TC4 T-type thermocouple 

HAT 33/417 Channel 5 HF1 0.942 µV/Wm-2 
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HAT 33/417 Channel 6 HF2 0.901 µV/Wm-2 

HAT 33/417 Channel 7 HF3 0.969 µV/Wm-2 

 

From the CFD simulation results presented by Airoldi [54], it can be noticed that big 

separation between the stator and rotor disks induces complex flows into the system, 

i.e. reverse and circulative flows. These possibilities may result in noisy and unsteady 

signals obtained from the heat flux sensors and thermocouples, which complicates the 

experimental procedures. Hence, the air clearance between the stator and rotor disks 

was fixed to 3 mm in these experiments, to ensure that reliable readings are obtained 

for CFD validation. The rotational speed of the induction motor was regulated to 1495 

rpm by the drive inverter and the rotor disk was spun for 3 hours, to ensure the system 

had reached thermal equilibrium. The thermocouple and heat flux sensors were 

connected to a high precision 20 bit 8 channels PICO TC-08 USB thermocouple data 

logger. The stator surface temperature and heat fluxes were monitored and recorded 

continuously at 1 reading per second using the PicoLog commercial software. The 

data collection was stopped after both the surface temperature and heat flux had 

reached the asymptotic steady state. Each test was repeated 3 times to ensure the 

repeatability of the data.  

 

The air mass flow rate in to the single-sided axial flux generator test rig was evaluated 

by measuring the average air flow velocity at the inlet of the stator duct. The hot wire 

anemometer was supported at the inlet of the stator duct, see Fig. 6-4(a) to measure 

the air average inlet velocity. The anemometer was articulated to measure air velocity 

at 20 different positions at the inlet after the system had reached the asymptotic steady 

state. The measured air velocities were converted to air mass flow by equation (6.14). 

 

Although the rear of the stator was thermally insulated by fibre glass matting, there is 

still a fraction of the heat produced by the heater mat that escapes by the back of the 

stator. Therefore, the total heat input to the front of the stator disk, Pfront, is reduced by 

the heat flow from the back of the heater pad, Pback, as described by in equation (6.15).   

Pfront = Pelectrical input – Pback (6.15) 
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The uniform heat fluxes specified in the two models were calculated by dividing the 

total heat input to the front of stator, Pfront, obtained from equation (6.15), by the total 

area of the stator front surface. The uniform heat flux boundary condition assumption 

was verified by measuring the heat fluxes at two different positions on the stator front 

surface. Heat flux sensors, HF1 and HF2 were used and the position of these sensors 

is shown in Fig. 6-9(a). The measured surface heat fluxes from these two heat flux 

sensors are shown and compared in the following section. 

 

6.6. Results and Discussions 
 

Both CFD simulation and experimental measurements were conducted to verify the 

temperatures predicted from the 2-D lumped parameter model of the single-sided 

slotted axial flux machine. Figs. 6-11 and 6-12 show the temperature and velocity 

contours, respectively, of the simplified single-sided slotted axial flux machine 

obtained from the 2-D CFD model at 1495 rpm.  

 

 

(a) 
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(b) 

Fig. 6-11. Temperature contours (a) and stator and rotor surface temperature plots (b) 
inside the of the single-sided slotted axial machine test rig predicted by the CFD 
model.  
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(b) 

Fig. 6-12. Velocity contours (a) and the Radial velocity plots in the air and rotor gaps 
(b) of the single-sided slotted axial machine test rig predicted by the CFD model. 
 

 

6.6.1. Computational Fluid Dynamic Results and Discussions 

 

As expected, the air temperature had increased as it passed through the single rotor-

stator system (see Fig. 6-11 (a)). In this CFD model, the inlet air temperature was 

specified as 15.0 °C. When the rotor was rotating, it drew the air from the 

surroundings by the centrifugal force. The air was heated as it passed over the warm 

stator surface on the right hand side. At the outlet, the air temperature has increased 

by 8.2 °C, from 15 °C to 23.2 °C.  

 

Fig. 6-11(b) plots the surface temperatures of the stator and rotor disks which are 

directly adjacent to the air clearance. It can be noticed that the stator surface 

temperature did not increase but remained unchanged along the radial direction. 

Therefore, it demonstrates that the heat generated from the stator heater mats was 

slowly taken away by the moving air adjacent to them. Also, since Aluminum has 

high thermal conductivity, the temperature of the stator disk is uniform. On the other 

hand, the rotor surface temperature increased rapidly with distance from the rotational 

axis. This is because the moving air heated the rotor disk as it travelled along the air 
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gap clearance. But since the rotor disk was made of low thermal conductivity Perspex 

material, a high temperature gradient was generated on the rotor surface. 

 

To understand the fluid flow inside the generator, the radial velocity contours of the 

generator rig are shown in Fig. 6-12(a). As illustrated in Fig. 6-12(a), there are two 

gaps in the rig, which are rotor gap and air gap. Rotor gap is defined as the gap in 

between the rotor disk and machine; Air gap is defined as the gap in between stator 

and rotor disk. In the air gap, it can be seen from the simulated results that the radial 

velocity was highest at the entrance of the stator. Before entering the air gap, the air 

was drawn through the inlet duct before turning through 90°. The abrupt shrinking of 

the cross-sectional at the gap entrance caused the high air radial velocity shown in 

Fig. 6-12(a). However, as the air flow path cross-sectional area in the air gap 

increased with radius, the radial velocity reduced correspondingly (Fig. 6-12(b)). 

 

The air flow in the rotor gap demonstrates the reverse trend. Here, the air radial 

velocity in the rotor gap is the smallest at the innermost radial coordinate and is the 

highest at the outer periphery. It can be notice in the graph shown Fig. 6-12(b). At 

high radius, the centrifugal force is high due to the high air tangential velocity 

developed on the rotor disk. The centrifugal force hence pushes the air flows faster in 

radial direction. The simulation results show that in the air gap, the centrifugal force 

has lesser effect on the air radial velocity than in the rotor gap. One of the main 

reasons is that the stator plate is proximate to rotor plate in the air gap. Hence the 

centrifugal force in the air gap is less than in the rotor gap and has less effect on the 

air radial flow velocity. 

  

 

6.6.2. Experimental Results and Discussions 

  

The measured temperatures at four different radii along the stator surface were 

recorded after the rotor-stator system had reached the steady state. The measured 

temperatures are plotted in Fig. 6-13 and are compared with the temperatures 

predicted from CFD and two 2-D lumped parameter models. The two 2-D lumped 
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parameter models, shown in Fig. 6-13, applied the same 2-D thermal circuit described 

in section 6.2, but one of the thermal circuits employed the convection heat transfer 

coefficients evaluated from the empirical equations developed by [145, 147], whilst 

the other thermal circuit used the convection heat transfer coefficients obtained 

directly from the CFD model.  

 

Table 6-3 shows the heat fluxes measured from the heat flux sensors attached on the 

front and back sides of the stator disk. The results show that the local heat fluxes 

measured on the stator surface were reasonably close. Therefore, the uniform heat 

flux boundary conditions were applied confidently on the stator front surface in the 

CFD and lumped parameter models, for the thermal modelling of the test rig.   

 

 

Table 6-3: Local heat fluxes measured on the stator front and back surfaces 
 HF1 (Front) HF2 (Front) HF3 (Back) 

Heat flux (W/m2) 554.56 553.23 364.04 

 

The temperatures measured (from the experiments) and predicted (from the CFD & 

LPM models) were lower as compared with the winding temperatures in commercial 

electrical machines. Typically, commercial electrical machines usually operate at 

stator surface temperatures of 80-120 ºC, but the surface temperatures measured or 

predicted from the experiments and CFD & LPM models respectively were in the 

range from 30 ºC to 35 ºC. This is due to the low rated power of heater mat used in 

the experiment. The rated power of each of the heat mats was 8 Watt and six heater 

mats were used in total. The total heat input was 48 Watt. In comparison the winding 

losses of the commercial electrical machines, range in between 90-200 watt, and 

consequently the temperatures measured from the experiments and predicted from the 

CFD were low.   

 

Fig. 6-13 shows a large disparity between the temperatures predicted from the 2D 

thermal circuit which used the empirical convection heat transfer coefficients and 

temperatures measured from the experiments. The maximum relative error was 

45.8%, which was equivalent to 5.5°C in absolute temperature rise. The high 
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discrepancy is mainly due to the empirical equations suggested by [145-147] which 

failed to predict the corresponding heat transfer coefficients on the rotor and stator 

surfaces.  

 

To further improve the 2D LPM, instead of using the convection heat transfer 

coefficient predicted by the empirical equations, the local convection heat transfer 

coefficients extracted from the CFD model were used. These local convection heat 

transfer coefficients were calculated based on the local working fluid (or air) bulk 

temperature, the surface temperature and surface heat flux. The local air bulk 

temperature was calculated by taking the volumetric average air temperature of the 

fluid control volumes. With the local heat transfer coefficients obtained from the CFD 

model, the temperatures predicted from the 2D thermal circuit show a relatively good 

agreement with the temperatures measured from the experiments. The maximum 

relative error has improved to 25%, which corresponds to 3°C in absolute temperature 

rise. The temperatures matched with the temperatures predicted from the CFD model.  

 

It may be concluded that the 2D lumped parameter circuit is sensitive to the 

convective resistances, as opposed to the conductive resistances. For most of the air 

cooled axial machine, the magnitude of the convective resistance is about two orders 

of magnitude greater than the conductive resistance. For example the convective 

resistance at T4 is 3.35 K/W but the radial conductive resistance on the rotor disk is 

only 0.022 K/W. This highlights the necessity of developing a more sophisticated 

parametric variation study of convective heat transfer coefficients and mass flow rates 

for axial flux machines to complete the LPM model.    

 

Unlike the CFD modelling technique, to obtain the local heat transfer coefficients 

experimentally is very difficult, because it is impossible to determine the local air 

bulk temperature accurately by using the thermocouples in the narrow stator-rotor 

gaps. Therefore, the global heat transfer coefficients were measured from the 

experiments, by using the inlet air temperature (instead of using the local air bulk 

temperatures) as the reference temperature. The measured heat transfer coefficients 

are shown in Fig. 6-14. On the other hand, a new set of heat transfer coefficients was 

obtained from the CFD model, by changing the reference temperature from the air 
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bulk temperature to the inlet air temperature. These CFD results were compared with 

the experimental global heat transfer coefficients, as well as with the empirical heat 

transfer coefficients evaluated from [145-147], in Fig. 6-14. It is shown that the CFD 

is better in predicting the global convective heat transfer coefficient than the empirical 

heat transfer coefficients derived by [145-147].  

 

Overall, the temperatures predicted from the 2-D thermal circuit and CFD model 

deviates slightly to the experimental ones. This is because both the CFD model and 2-

D thermal circuits did not take into account the extra heat transfer from the stator inlet 

pipe. All the heat generated from the heat mats only travelled through the stator 

surface. No heat is travelled through the stator inlet pipe. However, it is not the case 

for the test rig. After the experiments, the temperature of the stator pipe has increased 

4-5 °C. These indicate that in the experiment, a fraction of heat generated from the 

heat mats has flowed to the stator and pre-heated the inlet air. Therefore, the 

temperature measured on the stator surface is less than the computation ones. 
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Fig. 6-13. The temperatures measured and predicted from experimental rig and 
numerical models (CFD and 2-D LPM) respectively.  
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Fig. 6-14. The global heat transfer coefficients measured and predicted from 
experimental rig and numerical models (CFD and 2-D LPM) respectively.  
 

 

The surface heat transfer coefficient discrepancy of the between the CFD model and 

the experiments was due to the inaccurate air mass flow rate predicted in the CFD 

model. Table 6-4 summarises the air mass flow rate measured from the experiments 

and evaluated from the CFD model. The surface heat transfer coefficient is higher 

when the air mass flow rate is higher. Hence, it can be noticed that the mass flow rate 

predicted by the CFD model was about 11% lower than the mass flow rate measured 

from the experiments. These results in the heat transfer coefficient predicted by the 

CFD model being 10.5% lower than the experimental ones. 

 

Table 6-4: Mass flow rates comparison. 
 Experiments CFD model 

Mass flow rate (g/s) 4.03 3.61 

 

The local temperatures and heat transfer coefficients predicted from the 2-D LPM 

thermal circuit show good agreements with the CFD models (Fig. 6-12 and Fig. 6-13). 

They demonstrate that both the annular conductive circuit and fluid convective circuit 
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used in the 2-D LPM work well in predicting the conduction and convection heat 

transfers in the stator-rotor system.     

 

6.7. Experimentation on the Rotor Disk with Magnets.  
 

Experiments were conducted to investigate the compatibility of the 2D LPM thermal 

circuit on the 3D heat flow modelling. Six Perspex arc sectors were affixed to the 

existing rotor disk to model the existence of magnets on the single-sided axial flux 

generator. The existence of the Perspex arc sectors transforms the existing test rig to 

the 3D heat flow model, where the heat travels in the axial, radial and circumferential 

directions. The results obtained from the experiments were compared with the 

temperatures predicted from the 2-D LPM thermal circuit. Based on the simulated and 

experimental results, several modifications were suggested to adopt the 2-D LPM 

thermal circuit into the 3-D heat flow modelling.  

 

6.7.1. Experimental Procedures 

 

The original Perspex rotor disk was modified and fitted with six 45° Perspex arc 

sectors (magnet) of 12mm thick, with 15° inter-sector gap (Fig 6-15(a)). The same 

stator disk configuration from the previous test was used (Fig 6-9 (a) and (b)). The air 

clearance, which is defined as distance between the stator and the Perspex arc sector 

front surfaces, was set to 2mm in the experiments. Fig. 6-15(b) shows the new test rig 

configuration. 
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(a) (b) 
Fig. 6-15. Rotor with six Perspex arc sectors (a) and the modified single-sided axial 
flux generator test rig (b).  
 

Prior the commencement of the experiments, the power supply of the heat mats was 

switched on for 2 hours to warm the stator disk. The heat flux sensors and 

thermocouples were attached on the stator surfaces and their calibration factors were 

checked to ensure the satisfactory performance of the heat flux and temperature 

measurements.  

 

The induction motor was switched on after the preheated stator disk had reached the 

steady state. The rotational speed was controlled at 1495 rpm by the drive inverter. 

Both data loggers and computer were switched on simultaneously with the induction 

motor, recording the signals generated from the heat flux sensors and the 

thermocouple. The recording process was continued for 2 hours until the system had 

reached its asymptotic steady state again. The air mass flow rate and ambient air 

temperature were measured at the end of the experiment by using the TSI ® 

anemometer. Table 6-5 shows the experimental record sheet used for the testing. The 

first column shows the temperature of the stator surface before the rotor disk was spun, 

and the second column records the stator surface temperature after the system had 

reached the asymptotic steady state. The final state stator surface heat transfer 

coefficients are recorded in the third column of Table 6-5. The experiment was 

repeated three times for 2 mm air clearance, to minimise the experimental errors.  
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Table 6-5: Experiment record sheet 
Test 1 Temperature Reading (°C) Heat transfer coefficient 

Date: 17/03/09 Initial  Final (W/m2K) 

T4 (°C) 71.26 30.92 - 

T3 (°C) 72.29 31.71 - 

T2 (°C) 73.00 31.16 99.87 

T1 (°C) 71.43 29.78 - 

Tambient (°C) 24.39 23.77 - 

Heat Flux (W/m2) 413.33 768.22 - 

Mass flow rate 0.0235 - 

 

6.7.2. CFD Simulations 

 

The 3-D CFD model of the single-sided axial flux machine with magnets was 

constructed using pre-processing software, Gambit, (Fig 6-16 (a)). To reduce the size 

of the model, only one-sixth of the machine was modeled: a 60° periodic boundary 

condition was applied at both of the edges, to simulate flow and heat transfer inside 

the full machine. In total, the one-sixth of the generator model consists of 2 million 

cells. Fine boundary meshes, (Fig 6-16(b)), were applied on the fluid cells near to the 

solid surfaces to capture the near wall effects. The Y+ was kept below 5 in the model 

to ensure good simulation results.  

 
 

(a) (b) 

Fig. 6-16. The 3-D CFD model of the single sided axial flux machine with magnets (a) 
and the boundary layers mesh on the fluid near the solid surfaces (b). 
 

Rotor disk Magnet 

Stator disk 

Air clearance 
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Fluent modelling which involves in both stationary and moving zones requires the use 

of a moving cell zone boundary condition, which for this case, is the Multiple 

Reference Frames (MRF) [148] model. MRF is a steady state approximation for 

rotating and moving systems: it is capable of providing reasonably accurate time-

averaged solutions for flows where the interactions of stationary and moving zones 

are weak, which is the case for single-sided axial flux machines. The boundary 

conditions specified in the CFD model are: 

• 2mm Rotor-stator clearance. 

• 15 °C ambient temperature.    

• Realisable k-epsilon turbulent model with EWT was used to model the 

turbulence in the flow. 

• Zero total pressure and zero static pressure conditions were specified at the inlet 

and outlet of the simplified AFPM generator respectively. 

• The rotor parts were specified to 1495 rpm, with the use of multiple rotating 

reference frames (MRF) model. 

• 768 W/m2 heat flux input was specified at the back of the stator to model the 

winding Joule loss. The heat flux used was obtained from the experimental 

results.  

 

6.7.3. Lumped Parameter Model of the Rotor-Stator System with Magnets 

 

In the new rotor-stator system, with additional Perspex arc sectors attached on the 

rotor disk, the heat flows in three directions, which are the radial, axial and 

circumferential directions. Therefore, a 3D lumped parameter thermal circuit (which 

takes into account the three-direction heat flow paths) is required to model the system. 

Nevertheless, the construction of the 3D lumped parameter thermal circuit is complex 

and tedious. In this investigation, instead of developing a new 3D lumped parameter 

thermal circuit for the rotor-stator system, the same 2D lumped parameter thermal 

circuit described in section 6.2 was used. For the 2D lumped parameter thermal circuit, 

the six magnets on the rotor disk (Fig. 6-17(a)) were simplified into a single annulus 

(Fig. 6-17(b)).  
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Consequently, the stator surface temperatures predicted from the 2-D thermal circuit 

were compared with the temperatures predicted from the 3D CFD model and the 

temperatures measured from the experiments, to investigate the compatibility of the 

2D thermal circuit in three dimensional heat flow modelling.   

 

  

(a) (b) 

Fig. 6-17. 3-D rotor-stator with magnets system (a) and its 2-D simplification (b). 
     

The convective thermal resistances and air mass flow rate used in the 2D thermal 

circuit were evaluated from the 3D CFD model. However, the heat transfer 

coefficients on the stator and rotor walls vary in the circumferential direction. This is 

due to the effect of the magnets on the stator-rotor system. In the 2D thermal 

equivalent circuits, the convective thermal resistances used were circumferentially 

averaged. Similarly, the temperatures evaluated from the 3D CFD model were also 

circumferentially averaged.   

 

6.7.4. Results and Discussions 

 

The stator surface temperatures predicted from the 3D CFD model and the 2D lumped 

parameter models were compared with the surface temperature measured from the 

experiments (Fig. 6-18). The stator surface temperatures at different radial coordinates, 

varying from 0.035m to 0.15m are plotted. The experimental results, shown in Fig. 6-

18, have an experimental error of ±0.1°C, which is a limitation imposed by the 

selected thermocouples.  

Stator Disk 

Magnet Magnet 
annulus 
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Firstly, the temperatures predicted from the 3D CFD model and the experiments were 

compared. Fig. 6-18 shows that the temperatures predicted by the 3D CFD model 

match well with the temperatures measured from the experiments. The maximum 

absolute discrepancy, at the innermost radial coordinate, is 0.6±0.2°C, which 

corresponds to 10.3% in the relative scale, at the inlet temperature of 24°C.  

 

24

25

26

27

28

29

30

31

32

33

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Radial Coordinate (m)

T
em

p
er

at
u

re
 (

d
eg

)

3-D CFD

Experiment

2-D LPM

2-D LPM-improved

 

Fig.6-18. Temperature distributions on the stator of the single-sided axial flux 
machine obtained from both the CFD and experiments. 
 

The air flow path-lines are illustrated in Fig. 6-19. In Fig. 6-19, the stator disk of the 

test rig is omitted to demonstrate the complex air flow between the stator and rotor 

disks. The color contour illustrates the magnitude of the air radial flow velocity. The 

air radial velocity increases gradually from the center of the disk until the inner 

peripheral edge of the magnets. The present of the magnets reduces the cross-

sectional area of the air gap, hence, the air radial velocity surges in the inter-magnet 

grooves. More over, the present of the magnets also direct the most of the air to via 

the inter-magnets grooves; a small fraction of air flows in the gap between the magnet 

and stator surfaces, see Fig. 6-19. On the other hand, reverse flows are also observed 

at the outer peripheral edge of the rotor disk. 
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Fig.6-19. Air flow path-line in the air gap. The stator disk is hidden to illustrate the 

complex flow path in the air gap. 

 

Similarly, the convection heat transfer coefficient on the stator surface predicted by 

CFD is shown in Fig. 6-20(a). The surface convection heat transfer predicted 

corresponds to the air velocity shown in Fig. 6-19. High surface heat transfer 

coefficient is located at proximity of the magnet inner peripheral edges and inter-

magnets grooves; low surface heat transfer is observed on the magnet surface. Also, 

the reverse flow induces high convection heat transfer coefficient at the rotor disk 

outer peripheral.  

 

Fig. 6.20(b) plots the convection heat transfer coefficients at the centre line of the 

stator disk predicted by the CFD model and the experimental convection heat transfer 

Radial Velocity (m/s) 

Reverse flows 
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coefficient measured from the test rig. Due to the size of the heat flux sensors and the 

limitation of the data logger, heat transfer coefficient at only one radial coordinate 

was measured. Both the heat transfer coefficients were evaluated by setting the air 

inlet temperature as the reference temperature to allow for direct comparison. The 

heat transfer experiments were repeated five times, and the experimental error of the 

measured heat transfer coefficient was 3.34%. The results shown in Fig. 6-20(b) 

suggest that the 3D CFD model under-predicts the stator surface convection heat 

transfer coefficients, by 10.04%. But, it is believed that the slight difference of the 3D 

CFD model in predicting the convective heat transfer coefficients accounts for the 

stator surface temperature discrepancies shown in Fig. 6-18. 

 

 

(a) 

Heat transfer Coefficient 
(W/m2K) 

Centre 
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(b) 

Fig.6-20. Stator surface heat transfer coefficient predicted by CFD (a) and 
temperature distributions on the stator of the single-sided axial flux machine obtained 
from both the CFD and experiments (b). 
 

The 2D lumped parameter thermal circuit over-predicted the stator surface 

temperature by 2°C, which is equivalent to a relative error of 42.2%, when compared 

with the experimental data. Likewise, when comparing the 2D lumped parameter 

thermal circuit results with the temperature predicted by the 3D CFD model, the 

maximum discrepancy is 1.5°C, for which the equivalent relative error is 25.5%. 

Since the 2D lumped parameter thermal circuit applied the air mass flow rate and 

convection heat transfer coefficients extracted from the 3D CFD model, low 

discrepancy was expected. However, high temperature discrepancies were found. This 

is mainly due to the exclusion of heat flow path in the circumferential direction in the 

2D lumped parameter thermal model.  

 

As discussed in the previous section, the 2D lumped parameter thermal circuit only 

accounts for the heat flow in the radial and axial directions in the rotor-stator system. 

When the magnets were added into the rotor-stator system, the air flow in the inter-

magnet grooves absorbed extra heat from the magnet circumferentially. The exclusion 
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of the extra heat flow in circumferential direction therefore results the higher 

temperature prediction on the stator surface.    

 

Furthermore, simplifying the magnets on the rotor disk into a single annulus (Fig. 6-

17), reduces the total solid-to-fluid contact area, by neglecting the side area of the 

magnets. By simplifying the six Perspex section arcs of 12mm thick into a single 

annulus, the reduction of the solid-to-fluid contact area on the rotor disk from 

2.83x10-2 m2 to 2.26x10-2 m2, which corresponds to 25.4% contact area reduction. The 

reduction of the solid-to-fluid contact surface area contributed to the significant 

discrepancy of temperature prediction in the 2D lumped parameter thermal circuit. 

Nevertheless, the 2-D lumped thermal circuit can be improved by adjusting the solid-

to-fluid contact area in the convective thermal resistances, to take into account the 

extra (circumferential) heat flow from the side of the magnets to the inter-magnet 

grooves. By adding the extra six pairs of magnet side areas into the existing annulus 

area (Fig. 6-21), the new convective resistances were evaluated. In Fig. 6-18, the 

stator surface temperatures predicted by the improved (area-corrected) 2D lumped 

parameter thermal circuit is plotted. It can be seen that, by adjusting the 

corresponding solid-to-fluid surface area, the accuracy of the 2D lumped parameter 

thermal circuit has improved. The maximum absolute temperature discrepancy when 

compared with the 3D CFD model was 0.5°C, which corresponds to 6.9% relative 

error.       

 

Fig. 6-21. Magnet side sections are unfolded in the 2-D lumped parameter thermal 
circuit to improve the accuracy of temperature prediction. 
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Although, by adjusting the corresponding solid-to-fluid surface area has significantly 

improved the accuracy of the 2D lumped parameter thermal circuit, the discrepancy 

when compared with the experimental data was still high. For example, the relative 

error at the innermost stator surface was 17.2%. As shown in Fig. 6-19, the 

convection heat transfer predicted from the 3D CFD model was 14.3% higher. 

Therefore, it is concluded that the low accuracy of the 2D lumped parameter thermal 

circuit (when compared with experimental data) was due to the convection heat 

transfer coefficients used in the circuit, which were extracted from the 3D CFD model.   

 

6.8. Conclusions 
 

These results have led to the conclusion that the accuracy of the 2D lumped parameter 

thermal circuit is heavily dependent on the convection heat transfer coefficients that 

are used in the circuit. In the 2D test case (stator-rotor system), the stator temperatures 

predicted by the 2D lumped parameter match the temperatures predicted by the CFD 

model. Likewise, for the 3D model, in which extra magnets were affixed on to the 

rotor disk, the prediction of the 2D lumped thermal circuit was improved, when taking 

into account of the extra solid-to-fluid surface area on the sides of the magnets for 

new convective thermal resistance evaluation. It was clearly shown that the improved 

2D lumped parameter model is capable of modelling three-dimensional heat flow 

systems with the two-dimensional thermal circuits.  
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Chapter 7  
 

Experimental Validation of CFD Modelling 

Method: Large Scale Low Speed Test Rig 

 

 

7.1. Introduction 
 

In the development of lumped parameter thermal circuit for axial flux machines, it is 

important to obtain reliable local heat transfer coefficients (HTC) for each component 

inside the machine. This is because the accuracies of the thermal equivalent circuits 

are heavily dependent on these HTCs. In the case studies discussed in the previous 

chapters, all the local HTCs in the lumped parameter models were extracted from the 

CFD solutions. Thus, in order to develop a lumped parameter thermal equivalent 

circuit that is capable of working independently from the CFD models, it is necessary 

to develop a set of empirical relationships between the local HTC and the size and 

topology of different AFPM machines through parametric studies.  

 

HTC parametric studies can be achieved either by conducting experiments, or by CFD 

modelling. However, the construction of a flexible test rig that is capable of 

evaluating a range of different sizes and topologies of the axial flux machine is 

uneconomical and time consuming. Thus, the CFD modeling technique was used, as 

an alternative. Several commercial available CFD solvers and models are available. 

Each of these CFD solvers is designed to model different kinds of flow condition and 
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has certain computational limitations. Additionally, these CFD modelling techniques 

are mostly mesh dependent. Therefore, it is necessary to carry out experimental 

studies to validate the CFD models before they are used to perform the HTC 

parametric studies.  

 

The design of the large scale test rig for measurement of the heat transfer coefficient 

measurement is discussed in this chapter. Dimensional analysis was performed to 

ensure that the flow characteristic inside the large scale test rig would be similar to the 

Durham 1.5kW 1500rpm AFPM generator. Experiments were designed and 

conducted on both open channel and totally enclosed machine designs. The heat 

transfer coefficients and temperatures obtained from these experiments were 

compared with CFD models and discussed.  

 

7.2. Test rig Topology and Dimensional Analysis 
 

The basic configuration of the Durham 1.5kW, 1500rpm, AFPM generator is shown 

schematically in Fig. 7-1(a). The axial flux generator consists of a pair rotating disks, 

a centre boss, six permanent magnet pairs, an annulus stator core, a stator holder and 

an optional casing. The two rotor disks have neodymium-iron-boron (NdFeB) 

permanent magnets positioned circumferentially around in an N-S-N-S-N-S 

arrangement and, when assembled, the magnets on each rotor disk are aligned with N 

facing S, creating a strong magnetic field in the axial direction.  When the generator 

rotates, the magnetic fluxes cut through the conductor on the stator windings, and 

generates electricity.  

 

The two rotor disks are held together by the centre boss (Fig. 7-1(b)). When the rotor 

disks rotate, the centre boss acts like the impeller in a centrifugal pump, converting 

the power from the shaft to kinetic energy in the fluid. Subsequently, the fluid is 

accelerated radially outward from the centre boss, creating a low pressure at the centre 

of the boss that continuously draws more cooling fluid axially from the surroundings 

into the generator. The design of the centre boss is critical for the cooling in the 

machines.  
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(a) (b) 

Fig. 7-1. Schematic representation of the axial flux permanent magnet generator. 
 

Increasing the running clearance between the stator and rotor disks raises the amount 

of air drawn into the generator, and hence improves the machine cooling. However, at 

the same time, when the running clearance is increased, the electromagnetic 

efficiency of the generator deteriorates. Therefore, to maximize the electrical yield 

and efficiency of the generator, the running clearance is kept to the minimum for most 

commercial axial flux machines. Depending on the manufacturing tolerance and the 

machine size, the running clearance of commercial machines varies from 2mm-8mm. 

Several high power, low running clearance machine designs adopt water jacket 

cooling system stator design to dissipate excessive heat generated in the core and 

windings.  

 

When conducting experiments, direct heat transfer coefficient measurements on the 

stator and rotor discs surfaces of these commercial axial flux generators are difficult, 

as the internal surfaces and flow paths are narrow and inaccessible. Furthermore, the 

presence of the thin film thermocouples and heat flux sensors (where the sensors 

thickness are around 1-2mm) inside these narrow internal gaps generate significant air 

flow disturbances, affecting the flow patterns and the local heat transfer coefficients. 

Therefore, to minimise disturbances due to the measuring equipment, it was decided 

to construct a test model four times larger than the original Durham 1.5kW 1500rpm 

axial flux permanent magnet generator. The rotational speed was scaled down by the 

factor of sixteen, to maintain the same Reynold’s number. The large scale test rig also 
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allows higher resolution measurements to be made and it is safer to conduct the 

experiments, as the generator rotational speed was reduced.   

  

Dimensional analysis was performed to determine the appropriate geometrical 

parameter groups and to ensure that appropriate scaling between the model and the 

original Durham 1.5kW 1500rpm axial flux permanent magnet generator. The 

dimensions of the Durham AFPM generator are summarized in Table 7-1. These 

parameters are converted into dimensionless parameters (Table 7-2) by adopting the 

axial distance between the stator and magnet, Hairgap, (which is also known as the air 

gap clearance,) as the reference (or characteristic) length. For example, the outer 

radius, magnet inner radius, coil thickness dimensionless forms are defined as 

equation (7.1), equation (7.2) and equation (7.3) respectively.        

airgapH

R
R =*  

 

(7.1) 

airgap

maginner
maginner H

R
R =*  

 

(7.2) 

airgap

coil
coil H

d
d =*  

 

(7.3) 

 

Some of the geometric parameters have subtle effects on the flow characteristics 

inside the generator. Computational analyses were conducted, using the commercial 

CFD package, Fluent, to investigate these flow independent geometrical parameters. 

By identifying these independent parameters beforehand, it is possible to simplify the 

rig’s design and hence reduce the manufacturing cost. For example, the rotor disk 

thickness was found to have no significant effect on the air flow inside the generator. 

Hence it is appropriate to use a rotor disk that is thinner than the dimensionally 

correct thickness. Thus, it reduces the material cost and manufacturing and handling 

cost. At the same time, it also improves the rig’s safety. Table 7-2 shows the 

dimensionless parameters which are critical for the flow characteristic in the 

generators and Table 7.3 shows the exact dimension of the large scale test rig.  
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Table 7-1: Original Dimensions  Table 7-2: Dimensionless Variables Table 7-3: Test Rig Dimensions 

Hair gap = 0.0020 (m)       Hair gap = 0.0081 (m) 
R = 0.1230 (m) R* = 61.50   R = 0.5000 (m) 

Rmag inner = 0.0530 (m) R*mag inner = 26.50   Rmag inner = 0.2154 (m) 

Rmag outer = 0.1130 (m) R*mag outer = 56.50   Rmag outer = 0.4593 (m) 

Rin = 0.0375 (m) Rin* = 18.75   Rin = 0.1524 (m) 

Rout = 0.0200 (m) Rout* = 10.00   Rout = 0.0813 (m) 

Rcasing = 0.1330 (m) Rcasing* = 66.50   Rcasing = 0.5406 (m) 

Rshinner = 0.1150 (m) Rshinner* = 57.50   Rshinner = 0.4675 (m) 

Rshout = 0.1420 (m) Rshout* = 71.00   Rshout = 0.5772 (m) 

Rcore inner = 0.0600 (m) Rcore inner* = 30.00   Rcore inner = 0.2439 (m) 

Rcore outer = 0.1050 (m) Rcore outer* = 52.50   Rcore outer = 0.4268 (m) 

Rbh = 0.0115 (m) Rbh* = 5.75   Rbh = 0.0467 (m) 

Lout = 0.0452 (m) Lout* = 22.60   Lout = 0.1837 (m) 

Hcoil = 0.0370 (m) Hcoil* = 18.50   Hcoil = 0.1504 (m) 

Hboss = 0.0576 (m) Hboss* = 28.80   Hboss = 0.2341 (m) 

Hsh = 0.0310 (m) Hsh* = 15.50   Hsh = 0.1260 (m) 

Hcasing = 0.1176 (m) Hcasing* = 58.80   Hcasing = 0.4780 (m) 

dboss = 0.0250 (m) dboss* = 12.50   dboss = 0.1016 (m) 

dmag = 0.0080 (m) dmag* = 4.00   dmag = 0.0325 (m) 

dcoil = 0.0030 (m) dcoil* = 1.50   dcoil = 0.0122 (m) 
                 

θmag = 60 (deg) Reω = 1263.00   θmag = 60 (deg) 

Noutlet = 8        Noutlet = 8   

Nmp = 6        Nmp = 6   
Rcm = 3        Rcm = 3   
ω = 1500 (rpm)         n = 93 (rpm) 
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Other than the geometric parameters mentioned in Table 7-1, the rotational Renolds 

number also has strong effect on the flow. According to equation (7.4), by multiplying 

the axial distance between the stator and magnet, Hairgap, by the factor of four, the 

rotational speed has to scale down to the factor of sixteen, from 1500rpm to 93 rpm.  

µ
ρω

ω
airgapRH

=Re  
 

(7.4) 

 

Fig. 7-2(a) shows the configuration of the large scale test rig. The outer diameter of 

the generator is 1136mm and the maximum axial dimension is 336mm. The 

configuration of the scaled-up test rig is similar to the Durham AFPM generator, apart 

from the design of the boss and the number of the magnets. In most commercial axial 

flux generator designs, the connecting boss adopts an eight-prism supporting structure 

design (see, Fig. 7-2(b)), to increase the radial velocity in the air gap clearance, and to 

enhance the cooling of the generators. Also, some commercial axial generators 

operate at rotational speeds from 500 rpm to 900 rpm, which are much lower than the 

Durham 1500 rpm rig.  For low speed axial flux machines, in order to generate 3-

phase electricity at 50 Hz, the number of magnet pairs (and stator windings) on the 

rotor disk (and stator core respectively) has to be increased. As the result, to match 

with the commercial axial flux generator designs, the scaled-up test rig employs an 

eight-prism supporting structure connecting boss and sixteen magnet pairs 

configuration (Fig. 7-2(b)). Details of the dimensions of each of the generator 

component are shown in drawings attached in Appendix C.  

 

The large scale test rig was manufactured in Perspex, including the stator, stator 

holder, magnets and rotor discs. The total weight of the test rig is about 150 kg, 

excluding the weight of the supporting units and the power and drive equipments. 

Since Perspex is seven times lighter than Steel and three times lighter than Aluminum, 

the use of Perspex for the scaled-up test rig leads to a lighter design. Consequently, 

smaller and lighter supporting units are required, such as smaller diameter shafts for 

the rotor disks and stator holder and a smaller bearing unit etc. It also reduces the cost 

of some of the power drive and measuring equipment. For example, smaller slip rig 

size and lower rated power induction motor can be used. Overall, the use of Perspex 



7.2. Test Rig Topology and Dimensional Analysis 204 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

for the scaled-up test rig has reduced the overall construction cost by a factor of four, 

as compared with aluminum, and a factor of ten as compared with steel.     

 

  

(a) (b) 

Fig. 7-2. The scaled-up test rig (a) and the new boss and magnet pairs design (b).  
 

Perspex has low thermal conductivity and high specific heat capacity. Unlike the high 

thermal conductivity and low specific heat capacity alternative materials, such as 

Steel and Aluminum, Perspex has less boundary effect on the measuring sensors and 

it is less sensitive to subtle changes of the ambient boundary conditions [79]. It is 

thermally more stable as compared with Steel and Aluminum. Consequently, the 

temperature and heat flux measurements taken on the Perspex surfaces have less noise 

and are independent of the ambient condition [149]. Furthermore, Perspex is an 

optically accessible material. This offers the potential for flow visualization 

experiments to be carried out.  

 

The limited selection of Perspex block sizes and manufacturing processes make the 

fabrication of Perspex parts which are thicker than 30mm extremely costly. Therefore, 

some of the large test rig parts, such as the stator core and the stator holder, which 

have thickness larger than 30 mm, were split into a number of thinner annuli (Fig. 7-

3(a) and (b)). In addition, the stator core and stator holder assemblies were designed 
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to be hollow, to further reduce their weight and hence the cost of the material and the 

test rig supporting units.   

 

Stator side disk

Stator outer 

peripheral annuli

Stator inner 

peripheral annuli

 
Stator holder side 

disk

Stator holder outer 

peripheral annuli

Stator holder inner 

peripheral annuli

 

(a) (b) 

Fig. 7-3. Stator (a) and stator holder (b) exploded views.  
 

7.3. Experiment Setup 
 

Experiments were designed to measure the surface temperatures and convection heat 

transfer coefficients of the stator and rotor disks of the large scale test rig. A 

schematic plan of the experimental setup is shown in Fig. 7-4. The stator assembly is 

supported on a metal workbench, by two 1.5 inch diameter steel shafts (Fig. 7-5(a)). 

One end of the shafts is secured on the metal workbench; and the opposite ends are 

welded to a crescent-shaped steel plate which pinches on the stator holder. The rotor 

disks are held in together by the eight-prism structural boss, as shown in Fig. 7-2(b). 

The front rotor disk is hollow-centred, allowing air to flow from the surroundings for 

machine cooling. The back rotor disk is attached to a 1.5 inch diameter steel shaft, via 

an aluminum flange (Fig. 7-5(a)). The rotor shaft is held by two, 1.5 inch inner 

diameter NSK pillow-block bearing units on the metal workbench. The rotor shaft is 

coupled to the ABB 5.5kW induction motor directly by a spider shaft coupling (Fig. 

7-5(b)).  
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Fig. 7-4. Schematic plan of the test rig. 
 
For testing the totally enclosed machine design, a detachable, cylindrical Perspex 

casing was manufactured (Fig. 7-5(c)). The Perspex casing can be attached on the 

stator supports and transforms the existing large scale test rig in to a totally enclosed 

system. Totally enclosed axial flux generators are fully concealed and the working 

fluid inside the generator is isolated from the external working environment. 

Experiments were designed to investigate the heat flow path and the change of 

convection heat transfer coefficient in this configuration as compared with open-

channel axial flux generators. 

 

The rotor disks were driven by an ABB 5. 5 kW 50 Hz 380-420 V 11.5 A star-

configuration induction motor (model number of 3G AA132001ADA) (Fig. 7-5(d)). 

The drive was modulated by an ABB 5.5kW 380-480V, 11.9A 3-phrase inverter, 

(model number of ACS550-01-012A-4) (Fig. 7-5(e)). The inverter was regulated to 

150 rpm to prevent the test rig from over speeding, which could overstress the rotor 

shaft. The stator core was heated by three pairs of silicone heater mats. These heater 

mats were specially tailored to fit on to the stator core inner, outer and side faces (Fig. 

7-5(f) & 7-5(g)). The rectangular strip inner and outer peripheral heater mat pairs 

were rated at 500 W and 900 W 240 Vdc respectively, and the annular side heater mat 

pairs were rated at 2000 W 240 Vdc. The heat output of these heater mats was 

controlled by two 10 Amp and one 20 Amp enclosed variac autotransformers (Fig. 7-

5(e)). The power input and output of the heater mats was monitored by two power 

analysers via a 42-terminal patch box. A schematic plan of the power circuit and the 

patch box configurations is shown in Fig. 7-6 and Fig. 7-7 respectively. Safety 

barriers were installed, 3m from the test rig to protect the experimenters.   

Variacs 

Barrier 

Drive 

Computer 

Bearings Slip ring 

Data loggers 

Perspex 

Rig 

Data loggers 
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(a) Stator and rotor supporting units (b) Bearings and HRC shaft coupling 

  

(c) Casing and its supporting units (d) ABB 5.5kW Induction motor 

  

(e) Control and measuring equipments (f) Heater mats on peripheral faces 

  

(g) Heater mats on side faces (h) Slip ring and data logger 

Fig. 7-5. The scaled-up Perspex rig and the measuring and control equipments. 

Casing 



7.3. Experimental Setup  208 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

 

 

Fig. 7-6. Schematic plan of the power circuits for the heater mats and induction motor. 
 

 

 
Fig. 7-7: The 42-terminal patch box configuration  
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The convection heat transfer coefficients on the stator and rotor surfaces were 

measured by using both the OMEGA® HFS3 heat flux sensor and OMEGA®SA1 T-

type thin film surface thermocouples. The technical details of the heat flux sensor and 

the T-type thin film surface thermocouple can be found in section 6.4.2. On the stator 

core, six heat flux sensors and eight thermocouples were used, whereas on the rotor 

disks, two heat flux sensors and five thermocouples were attached. These sensors 

were affixed directly on the silicone heat mats and rotor disk surface by TESA 

tackified acrylic double-sided adhesive tape. The TESA double-sided tape has high 

adhesive strength at high temperature (The adhesive strength is 12.8 N/cm at 80 °C on 

PVC surfaces). Additionally, it is extremely thin (205 µm), re-useable and peelable. 

Therefore, it is ideal for high temperature heat transfer experimentation, especially 

attaching the heat flux sensors in between the narrow gaps in the test rig. The position 

of each heat flux sensor and thermocouple on the stator core and rotor surfaces is 

illustrated in Fig. 7-8.  

 

 
Fig. 7-8. Heat flux sensors and thermocouple positions on the stator core and rotor 
disk. 

Rotor disk 

Thermocouple 

Heat Flux sensors 
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The direct connection between the heat flux sensors and thermocouples and the data 

logger is impossible on the rotor surfaces. Hence, a 1.5 inch through bore rotary slip 

ring was assembled on the rotor shaft, to transmit the signals generated from the 

sensors on the rotating surfaces to the personal computer (Fig. 7-5(h)). Nevertheless, 

the signal produced from the thermocouples and heat flux sensors are relatively weak, 

having a magnitude of just a few µVs, as compared with the noise signal caused by the 

mechanical rotary contacts of the slip ring, which is about 0.1mV. As a result, the high 

noise level of the slip ring masks the signals produced from the rotating sensors if 

direct connections are used. Also, connecting the thermocouples and heat flux sensors 

directly on the slip rings creates extra redundant thermal joints (the junctions of two 

different metals meet) which further compromise the acquired data quality. 

 

 Therefore, to eliminate these potential experimental errors on the rotating surfaces by 

using the slip ring, two PICO data loggers were attached at the back of the rotor disk, 

amplifying the generated signals, before they were transmitted to the personal 

computer for data logging (Fig. 7-5(h)). So, instead of transmitting the µVs signals 

across the slip ring, the signals were amplified to range between ±5 V. This new 

configuration also circumvents the extra thermal joints in the signal circuits, which 

significantly improves the accuracy of the measurements, obtained from the data 

loggers.         

 

 

7.4. Pre-experiment Equipment Investigation I: Silicone Heater 
Mats 

 

The silicone heater mats used in the experimentation to heat the stator core are made 

of rapid heating etched resistance foil tracks. These foil tracks are laminated and 

protected between thin sheets of silicone (Fig. 7-9). Additional fibre glass insulation 

layers are laminated at the back of the heater mats, to reduce the heat dissipation from 

the back surface. In the experiments, the silicone heater mats were appended to the 

stator outer surfaces, where the back surfaces were affixed on the stator core surfaces 

by Hi-Bond VST acrylic foam double sided tape. This double sided tape has high 
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temperature resistance and it can resist temperature up to 120 °C for long term 

applications. The front surfaces of the silicone mats were exposed to the air, 

mimicking the stator windings of the real axial flux generators.    

 

It is computationally costly to model the heater mat inner structure exactly in the CFD 

models. Hence, they were represented as constant heat flux boundaries conditions in 

the CFD models. Although the heater mats were designed for precise even heating, 

the etched resistance foil tracks, the silicone layers on the front surface, and the 

double-sided tape (which is used on the heater mat back surface)  have significant 

effect on boundary conditions on the front surface. Therefore, a FLIR A20 infrared 

camera was used to visualise the temperature distribution on the front surface of the 

stator-side silicone heater mat.   

 

Since the infrared camera is not capable of penetrating through the Perspex rotor disk, 

to measure the temperature of the heater mat on the stator core, these experiments 

were conducted without the front rotor disk (Fig. 7-10). Initially, the side heater mat 

was powered for 2 hours. When the heater mat front surface temperature reached a 

steady state, the induction motor was switched on. The 8-prism structure connecting 

boss was spun and cooled the heater mats on the stator. After 3 hours, both the heater 

mats and induction motor were switched off. The infrared camera was set to take 

thermal images of the side heater mat just before the induction motor was switched on 

and just after the induction motor was switched off. The temperature profiles and 

thermal images are shown in Fig. 7-11 (a) and Fig. 7-12(a) respectively.  

 
 

Fig. 7-9. Silicone heater mats: Etched 
resistance foil tracks 

Fig. 7-10. Test rig without front rotor 
disk. 
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(b) 

Fig. 7-11. Infrared thermal image (a) and temperature profiles (b) of the heater mats 
before the induction motor was switched on. 
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(b) 

Fig. 7-12. Infrared thermal image (a) and temperature profiles (b) of the heater mats 3 
hours after the induction motor was switched on. 
 

From Fig. 7-11(a), the shadow of the silicone rubber mesh (vertical and horizontal 

fine lines) can be observed on the heater mat surface in the thermal image. These fine 

lines faded away 3 hours after the induction motor was switched on, but the high 

temperature area caused by the presence of the double-side tape at the back of the 

heater mats appeared. This can be observed in the thermal image shown in Fig. 7-

12(a). 
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Fig. 7-11(b) and Fig. 7-12(b) show the temperature radial profiles on the lines LI01 

and LI02 of the heater mat surface before the induction motor was switched on and 

after the induction motor was switched off, respectively. The results show that surface 

temperature on the front heater mat varies from 10-20 °C. Discrepancies between 

temperature radial profiles at different positions (at LI01 and LI02 for instance) are 

also found on the heater mat surface, where the maximum discrepancy is 5 °C. This 

may be due to the effect of natural convection or the uneven heating surface. Also, it 

can be seen that the temperature of the heater mat is lowered when the induction 

motor was switched on. The temperature dropped approximately by 10 °C, by forced 

convection caused by the spinning 8-prism boss. 

 

In conclusion, the silicone heater mats which have lower thermal conductivities, result 

in uneven surface temperature. The results show that both the silicone rubber 

lamination (on the front surface) and the double-sided tape at the back of the rubber 

mat have significant effects on the thermal boundary of the heater mat. Consequently, 

discrepancies between the temperatures measured from the experiments and obtained 

from the CFD model are expected, due to the inconsistency of the thermal boundary 

conditions applied in the CFD model. However, since heat transfer coefficient is 

independent of the surface thermal boundary conditions, the experimental rig is still 

applicable to validate the heat transfer coefficients predicted from the CFD models.   

 
 

7.5. Pre-experiment Equipment Investigation II: Slip Rings 
 

1.5 inch through bore slip rings were used to transmit the signals generated from the 

heat flux sensors and thermocouples on the spinning rotor disks, to the stationary data 

logging system. To eliminate experimental errors which may occur from the noise of 

the slip rings, the signals generated from the sensors were amplified by the PICO data 

loggers, before transmitting through the slip ring. These data loggers were positioned 

at the back of the rotor, rotating together with rotor disks during the experiments.  

 

A simple experiment was conducted to identify signal distortion by using the slip ring 

for transmitting the amplified thermocouple signals from the PICO data logger. Two 
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identical thermocouples were attached on to Aluminum plate front surface (Fig. 7-

13(a)). The first thermocouple was connected to the computer directly via a PICO 

data logger. For the second thermocouple, the signal was amplified by a PICO data 

logger, and transmitted to the computer via a 1.5 inch through bore slip ring. The slip 

ring was mounted on a shaft, powered by a 12 Vdc oscillating motor (Fig. 7-13(a)).  

 

At the bottom surface of the aluminum plate, an 8 W 12 Vdc silicone heater mat was 

attached (Fig. 7-13(a)), powered by an adjustable 18 V 20 Amp rated DC power 

supply. The DC power supply was adjusted to 12 V and 1.25 Amp and connected to 

power the silicone heater mat. Prior to switching on the DC power supply to energise 

the heater mat, the data loggers were activated and the motor was set to oscillate the 

shaft through ±180° at 0.83 Hz. The surface temperature of the Aluminum test plate 

was recorded while it was heated for a period of four minutes. Fig. 7-13(b) shows the 

temperatures measured from two different thermocouples on the Aluminum test plate.        

 

The result shows that the temperatures measured by the two connection 

configurations (with and without slip ring) coincide exactly with each other. It 

confirms that the connecting configuration, where the data logger is connected to the 

thermocouples prior to the slip rings, is not adversely affected by the slip rings 

themselves. Hence, this configuration can be embraced for the large scale test rig, to 

measure temperature and heat flux on the rotor surfaces.  
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(b) 

Fig. 7-13. Slip ring test aluminum test plate configuration (a) and its corresponding 
surface temperature results (b).   
 
 

7.6. Convection Heat Transfer Coefficient Measurements 
 

Several experiments were designed and carried out to measure the surface convection 

heat transfer coefficients in the large scale Perspex test rig. The results obtained were 

then compared with the numerical surface heat transfer coefficients calculated from 

the CFD models. Additional experiments were conducted with different heat inputs 

and rotational speeds, to investigate the dependency of the convection heat transfer 
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coefficients at different heat flux levels and the effect of natural convection. Finally, 

the test rig was converted into a totally enclosed system, to determine the effect of the 

enclosure on the surface heat transfer coefficients.  

 

7.6.1. Experiment Validation of CFD Modelling Technique 

 

The stator core was initially heated by the silicone heater mats for three hours, until it 

had reached its thermal steady state. The power outputs of the heater mat were 

controlled by three separate variacs, which are Variac 1 (10 Amp rated), Variac 2 (10 

Amp rated), and Variac 3 (20 Amp rated). The mechanical dials of the three variacs 

were pre-set to a nominal 80 Volts and remained unchanged during the experiments. 

Additional voltmeters and ammeters were used to monitor the precise output voltage 

of the variacs.  

 

Table 7-4 shows an example of the power input and output measure from the variacs. 

The inconsistencies between the input and output powers, for example: Variac 1 input 

power and output are 113.77W and 107.76 W respectively, were due to the 

mechanical and heat losses in the variacs. Furthermore, since the electrical resistances 

of the heater mats change as the temperature rises or drops, these voltage and current 

measurements were recorded only at the end of the experiments.  

 

Table 7-4: Variac power inputs and outputs 

 Variac 1 Variac 2 Variac 3 

Measurement Input Output Input Output Input Output 

Voltage (V) 239.5 78.97 239.5 53.64 239.3 67.31 

Current (Amp) 0.478 1.366 0.415 1.686 1.364 4.466 

Power (W) 113.77 107.76 98.78 90.28 324.7 300.62 

 

After the stator core was pre-heated for three hours, the drive inverter and induction 

motor were switched on. From the dimensional analysis conducted in section 7.2, the 

required rotational speed for the large scale Perspex test rig was 93 rpm (or 9.74rad/s), 

in order to maintain the same (rotational) Reynolds’s number as the small scale, high 
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speed Durham 1.5 kW axial flux generator.  The inverter was set to 3.1 Hz (see 

equation 7.5), to maintain 93 rpm on the 4-pole induction motor.  

Hz
rpm

f

n

f

1.3
60

932

60

=×=

×=ω
 

 

(7.5) 

Where ω = rotational speed in RPM 

 f  = inverter frequency in Hz 

 n = Number of pole-pair 

 

The data loggers and computer were run simultaneously when the induction motor 

was switched on. The signals generated and received from the thermocouples and heat 

flux sensors were logged into the computer at one second intervals, for four hours, 

until the rig had reached the thermal steady state again.  

 

The CFD model of the large scale test rig was constructed and tested by Airoldi [54]. 

The corresponding stator local surface heat transfer coefficients obtained from the 

CFD models, by considering the air inlet temperature as the reference temperature, are 

plotted in Fig. 7-14 and 7-15. For the stator back and front surfaces, the local surface 

heat transfer coefficients are plotted at the radial distances from generator centre axis, 

from 250 mm to 410 mm (Fig. 7-14). This corresponds to the radial coordinates from 

the inner to the outer radii of the annulus heater mats. In Fig. 7-15, the coordinates 

represent the axial distance from the stator back surface of the stator inner and outer 

peripheral surfaces respectively. The local surface heat transfer coefficients were 

plotted from axial coordinate 137 mm to 237 mm, which corresponds to the positions 

in between the front to back sides of the stator core.  

 

Similarly, the stator local surface heat transfer coefficients measured from the 

experiments are demonstrated in Fig. 7-14 and 7-15, compared with the results 

obtained from the CFD models. Overall, the results show that the CFD models under-

predict the local heat transfer coefficients on the stator, by 2-8 W/m2K, corresponding 

to relative discrepancies of 7%-61%, on the stator surfaces. The highest relative 
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discrepancy occurs on the stator outer peripheral surface. This is because the main air 

flow in the machine does not flow through the stator outer peripheral gap, where the 

heat transfer is mainly dominated by natural convection. Since the CFD model used in 

this study neglected the air buoyancy modelling, it might account for the high relative 

discrepancy on the stator outer peripheral surface.  

 

The experimental uncertainties of the heat flux sensor measurement were discussed in 

section 6.4.2. The same analysis was used in this experiment since the similar heat 

flux sensors were used. The evaluated heat transfer coefficient uncertainty for each of 

the heat flux sensor is shown in Table 7-5, and illustrated in Fig. 7-14 and Fig. 7-15. 

 

Table 7-5: Heat transfer coefficient uncertainty of each heat flux sensor 

 Back 1 Back 2 Front 1 Front 2 Inner 

Peripheral 

Outer 

Peripheral 

Uncertainty  ±3.753% ±8.738% ±7.891% ±7.751% ±5.053% ±4.278% 

    

 

Fig. 7-14. Surface heat transfer coefficients measured (from the experiments) and 
evaluated (from CFD models) on stator core back and front surfaces.  
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Fig. 7-15. Surface heat transfer coefficients measured (from the experiments) and 
evaluated (from CFD models) on stator core outer and inner peripheral surfaces.  
 

7.6.2. Heat Transfer Coefficient Versus Rotational Speed: Investigation of 

Natural Convection  

 
Similar experiments were conducted at different rotational speeds, which were at 0 

rpm, 45 rpm and 120 rpm. The local surface heat transfer coefficients measured on 

different stator surfaces are illustrated in Fig. 7-16, for those rotor speeds. The 

corresponding linear regression lines of each set of heat transfer coefficient are 

included in the Fig. 7-16, as well as the equivalent linear regression value, R2. It can 

be seen that all the linearly approximated regression lines have high R2 values (close 

to 1.0). Therefore, it is clear that all the local heat transfer coefficients on the stator 

surfaces are linearly dependent on the rotor rotational speed.  

 

Also, the inlet air mass flow rates at different rotational speeds were measured, using 

the TSI hot-wire anemometer. Fig. 7-17 shows the air inlet mass flow rate at different 

rotor rotational speeds. Again, the air inlet mass flow rate shows a strong linear 
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dependency on the rotor rotational speed, with the linear R2 value of 0.9999 (Fig. 7-

17).  

 

It is well documented that the surface convection heat transfer coefficient is 

dependent on the fluid velocity boundary layer adjacent to it [150]. Since the air mass 

flow rate increases linearly with the rotor rotational speed, the local heat transfer 

coefficients follow the same trend. The stator outer periphery heat transfer 

coefficients show the weakest dependency with respect to rotor rotational speed. The 

gradient of the graph for stator outer peripheral edge is 0.037 W/m2K/rpm. The stator 

outer periphery lies in the gap between the stator core and stator holder (Fig. 7-8). 

Since the fluid velocity here has only a weak connection with the main air flow rate, 

the surface heat transfer coefficient remains almost unchanged when the rotor 

rotational speed increases.  

 

At 0 rpm, the rotor disk is stationary and the local heat transfer coefficient on the 

stator surfaces varies in the range from 8-12 W/m2K. This may be compared to the 

heat transfer coefficients measured on the stator surface at 93 rpm, which range from 

14 W/m2K to 45 W/m2K at 93rpm. These highlight the importance of considering 

natural (or free) convection cooling in the large scale test rig CFD modelling.   
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Fig. 7-16. Local heat transfer coefficients measured from the experiments, on 
different stator surface at various rotational speeds.  
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Fig. 7-17. Inlet air mass flow rate measured from experiments, at various rotational 
speed. 
 

The fluid motion on the surface due to natural convection is caused by the buoyancy 

force within the fluid. The buoyancy force is due to the combined presence of the 

fluid density gradient and the gravitational force: Hot air rises and cold air sinks. 

However, in the CFD models produced by Airoldi [54], the air density gradient was 

neglected and the extra natural convection cooling effect in the large scale test rig was 

not taken into consideration. Hence, the CFD surface heat transfer coefficients shown 

in Fig. 7-14 and 7-15 only account for the forced convection heat transfer, and they 

did not agree with the experimental results, which comprise of both forced and natural 

convection effects.   

 

In mixed convection flows, where the natural and forced convection effects co-exist, 

it is inappropriate to neglect either process. Churchill [151] suggested that the effect 

of buoyancy on heat transfer in a forced flow is influenced by the direction of the 

buoyancy force relative to that of the flow. For assisting flow, where the buoyancy 

force and air flow are in the same direction, the mixed convection heat transfer 

coefficient results for internal flows can be superimposed from the heat transfer 
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coefficients from both forced and natural convections, with the exponent n, as shown 

in equation (7.6).   

n
natural

n
forced

n
assistingmixed NuNuNu +≡−  (7.6) 

 

For opposing flows, the mixed convection heat transfer coefficient is expressed as 

equation (7.7). 

n
natural

n
forced

n
goppomixed NuNuNu −≡− sin  (7.7) 

 

Where Numixed-assisting   = Mixed Nusselt number for buoyancy-induced and forced 

motions having the same direction.  

Numixe-opposinge  = Mixed Nusselt number for buoyancy-induced and forced 

motions having the opposite directions. 

Nuforced  = Forced convection Nusselt number 

 Nunatural = Natural convection Nusselt number 

  n  = Correlation parameter based on different flow patterns  

 

The exponent n has been rationalised for flows around immersed bodies [152] and in 

channels [153] by Churchill. Churchill examined the various sets of experimental and 

theoretical values for isothermal and uniformly heated, vertical plates and concluded 

that n = 3 is a good approximation. Theoretical support for n = 3 was also provided by 

Ruckenstein[154].  Nevertheless, the exponent numbers depend on the flow patterns, 

the thermal boundary conditions and the definition of the heat transfer coefficients for 

Nusselt’s number. Most of the available literature relates to the case of a uniform flat 

plate (for both vertical and horizontal plate), with isothermal or uniform heat flux 

boundary conditions and the heat transfer coefficients were defined by taking the free 

stream temperature as the reference temperature. Hence it is not suitable to use the 

derived n exponent for the application of the large scale test rig. 

 

Consequently, experiments were conducted to investigate the effect of natural 

convection in the large scale test rig. Extra heat flux sensors were attached on the both 

sides of the stator front surface: three heat flux sensors on both the right and left sides 

of the stator core (Fig. 7-18). Since the rotor disks were rotated in a clock-wise 



7.6. Convection Heat Transfer Coefficient Measurements 224 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

direction, on the left hand side of the stator core, the buoyancy force acts to enhance 

the rate of heat transfer associated with the forced convection; on the right hand side, 

the air buoyancy force acts to decrease the rate. Therefore, by evaluating the 

corresponding local heat transfer coefficients on both sides of the stator surface, the 

effect of the natural convection on the surface of the stator can be realized. The 

exponent n can be evaluated, by subtracting equation (7.6) to equation (7.7), which 

leads to equation (7.8). Equation (7.8) can be solved by Newton-Raphson method.    

n
natural

n
goppomixed

n
assistingmixed NuNuNu ×=− −− 2sin  (7.8) 
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Fig. 7-18. New heat flux sensor positions for natural convection investigation.  
 

Since natural convection on a heated surface is temperature dependent, i.e. the natural 

convection heat transfer coefficients on the high temperature surfaces are higher and 

lower on the low temperature surfaces. Hence, the power inputs of the silicon heater 

mats were carefully controlled and monitored to maintain the surface temperature at 

80 °C, which was the same temperature when the rotor disks were rotating at 93 rpm. 

 

The measured heat transfer coefficients on the left and right hand sides of the stator 

are illustrated in Table 7-6. The first two rows of Table 7-6 show the mixed 

convection heat transfer coefficients measured on the left and right hand sides of the 

front stator, respectively. The natural (or free) convection heat transfer coefficients 



7.6. Convection Heat Transfer Coefficient Measurements 225 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

measured when the rotor disks were stationary are summarised in the third row of 

Table 7-6. By substituting the measured heat transfer coefficients from the assisting 

flow, opposing flow and natural convection into equation (7.8), the n exponents can 

be calculated. The fourth row of Table 7-6 illustrated the n exponents calculated at 

different radial coordinates. Finally, by applying the calculated n exponent into 

equation (7.7), with the corresponding mixed and natural convection heat transfer 

coefficients, the heat transfer coefficients due to forced convection only were 

evaluated and shown in the last row of Table 7-6.  

 

Table 7-6: Heat transfer coefficients due to mixed convection, natural convection and 
forced convection. 
 Radial Coordinate (mm) 

 290 330 370 

HTC- Right  (W/m2K): Opposing flow  19.1641 16.1314 18.0431 

HTC- Left (W/m2K): Assisting flow 24.5049 17.7960 21.9919 

HTC- Natural Convection (W/m2K) 6.4731 8.6178 13.5264 

n exponent* 1.4335 2.8856 3.0531 

HTC-Forced convection only 21.9084 17.0021 20.2153 

* n exponents are calculated by Newton-Raphson’s method with equation (7.8) 

 

As mentioned previously, the heat transfer coefficients predicted from the CFD model 

did not take into account the effect of natural convection since the air density was 

assumed to be constant. Therefore, to compare the experimental results with the CFD 

model, the experimental heat transfer coefficients were adjusted by subtracting the 

natural convection effect (equation (7.9)).  

 

n
natural

n
assistingmixed

n
forced NuNuNu −= −  (7.9) 

 

However, the n exponent in equation (7.9) varies for different flow conditions. For the 

stator front and back surfaces, the n exponents shown in Table 7-6 were used but for 

the inner and outer peripheral surface of the stator, since they have the same 

configuration as the flat plate model, the n exponent suggested by Churchill [152] and 

Ruckenstein [154] was adopted. The experimental heat transfer coefficients due to 
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forced convection only are plotted and compared with the CFD results in Fig. 7-19 

and Fig. 7-20. The uncertainty of the measured heat transfer coefficient due to forced 

convection at each position on the stator surfaces is summerised in Table 7-7. As 

compared with the uncertainty estimated in previous experiments (Table 7-5), the 

uncertainty of these experimental results is higher. This is because the heat transfer 

coefficients due to forced convection only were evaluated from equation 7.9, which 

consists of two parameters: Numixed-assisting and Nunatural. These parameters were 

obtained experimentally, with a corresponding measurement uncertainty. Therefore, 

the uncertainty of the heat transfer coefficient due to forced convection only is the 

sum of the measurement uncertainties of both Numixed-assisting and Nunatural. 

 

Table 7-7: Experimental uncertainty of the heat transfer coefficient due to forced 
convection only at different positions.  
 Back1 Back2 Front1 Front2 Front3 Inner Peri. Outer Peri. 

Uncertainty  ±7.5 ±17.5 ±15.8 ±15.5 ±12.4 ±10.2 ±8.6 

 

 
Fig. 7-19. Surface heat transfer coefficients (forced convection only) deduced (from 
the experiments) and evaluated (from CFD models) on the stator core front and back 
surfaces. 
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Fig. 7-20. Surface heat transfer coefficients (forced convection only) measured (from 
the experiments) and deduced (from CFD models) on the stator core outer and inner 
peripheral surfaces. 
 

These results illustrate that the surface heat transfer coefficients due to forced 

convection only which were predicted by the CFD model, show a good agreement 

with the experimental results. The absolute discrepancies are reduced from 2.1-8.0 

W/m2K, to 1.1-4.5 W/m2K, which correspond to the relative discrepancies have 

improved from 6.8%-65.8% to 5.4%-41.5%. The highest relative discrepancy occurs 

on the stator outer peripheral surface. Since the stator outer surface has relatively low 

heat transfer coefficient, a small difference in the absolute heat transfer coefficient, 

may incur high relative discrepancy.  

 

7.6.3. Convection Heat Transfer Coefficient-Heat Flux Dependency Study 

 

Theoretically, the convection heat transfer coefficient on a solid surface depends on 

the fluid properties (such as density, viscosity, thermal conductivity, and specific 

heat), the geometry of the surfaces and the flow Reynolds number. The functional 

dependence of the average Nusselt number can be defined as [150, 155]:  
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( )PrRe,f
k

Lh
Nu

f
==  (7.10) 

Where, 

 h  = average convection heat transfer coefficient, (W/m2K) 

 kf = fluid thermal conductivity, (W/mK) 

 Pr = Prandtl number 

 

No evidence was shown in equation (7.10), that the surface convection heat transfer 

coefficients are dependent of the surface heat flux. Also, the CFD models constructed 

by Airoldi [54] assumed that the surface convection heat transfer coefficients are 

independent of the surface heat flux. To validate the equation (7.10) and the 

assumption made in the CFD validation experiments, a series of experiments were 

conducted to investigate the heat flux dependency of convection heat transfer 

coefficients. 

  

The same experimental setup as described in section 7.3 was used to conduct the heat 

flux dependency study. In this case study, three additional heat inputs were tested, by 

altering the variac transformers from the original 80 Volts to 40 Volts, 60 Volts and 

100 Volts, respectively. The rotor disks were kept rotating at 93rpm throughout the 

investigation. The effect of heater mat power input on the surface heat transfer 

coefficients is shown in Fig. 7-21.  
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Fig. 7-21. Surface heat transfer coefficients on the stator surface at different power 
input to the heater mats.  
 

The experimental results support the hypothesis that the surface convection heat 

transfer is independent of the magnitude of heat flux. When the heater mat power 

input was increased from 40 Volt to 100 Volt, the change of the convection heat 

transfer coefficient on the stator core surfaces was negligible (Fig. 7-21). The 

experimental results show that at higher level of heat inputs on the heater mats at 

similar flow condition, the solid surface temperatures increase but they are 

compensated by the high heat generated from the heater mats, to maintain the same 

surface convection heat transfer coefficient. Similar trends were found on CFD 

models when higher magnitudes of heat flux were used.        

 

7.6.4. The Totally Enclosed Permanent Magnet Generator 

 

In this study, the large scale test rig was enclosed by a Perspex casing (Fig. 7-5(c)), to 

evaluate the surface heat transfer coefficients of an equivalent totally enclosed 

machine design, and to compare them with heat transfer coefficients obtained from 

the open channel machine. In totally enclosed axial flux generators, the air inside the 

casing circulates inside the machines, transferring the heat generated from the heater 
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mats on the stator core to the external casing, and then across the casing to the 

ambient external conditions. 

 

The heat flux sensors and thermocouple were attached to the test rig with the same 

layout shown in Fig. 7-8. Additional thermocouples were used to monitor the air 

temperature inside the casing and the heat transfer coefficients on the test rig were 

evaluated by using the measured air temperature as the reference temperature. The 

experimental rig was pre-heated by three pairs of the silicon heater mats for five hours, 

until it had reached its thermal steady state. Prior to switching on the inverter unit and 

the induction motor, the surface temperatures and local heat fluxes were recorded by 

the PICO data loggers, into a personal computer. The rotor disks were spun for six 

hours, until the test rig had reached a new thermal steady state. The power inputs into 

the heater mats were kept unchanged throughout the experiment.  

 

The stator surface heat transfer coefficients of the totally enclosed generator design 

are illustrated in Fig. 7-22. The local surface heat transfer coefficients are lower when 

the test rig is totally enclosed by the Perspex casing. In this configuration, the air 

passes through the heated stator, and re-circulates back to the stator-rotor gaps from 

the front rotor disk. Due to the constraint of the external casing and the air flow path, 

the air velocity in the air gap is lower than the open-channel axial flux machines. As 

the results, the surface heat transfer coefficients measured were generally lower for 

the totally enclosed generators. 

 

However, the heat transfer coefficient on the outer peripheral surface remains the 

same for both totally enclosed and open channel generators. From the air flow paths 

in the generator predicted by the CFD model, the major air flow in the stator-rotor gap 

does not flow through the outer peripheral surfaces. As the result, the surface heat 

transfer on the stator outer peripheral is mainly due to natural convection, which is 

independent on the air flow pattern in the generator.  
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Fig. 7-22. Comparisons of the stator surfaces heat transfer coefficients of totally 
enclosed and open channel generator design.  
  

7.7. Conclusions 
 

An axial flux permanent magnet generator experimental rig and instrumentation were 

designed and built to validate the surface heat transfer coefficients predicted by CFD 

models. However, without taking into consideration of the extra cooling effect from 

natural convection, the CFD model under-predicts the surface heat transfer 

coefficients on the machine stator, compared with the experimental results. Further 

experiments were conducted, to acquire the heat transfer coefficient relationship 

between mixed convection, forced convection and natural convection. By modifying 

the experimental data to remove the effect of natural convection, the surface heat 

transfer coefficients due to forced convection only are in good agreement with surface 

heat transfer coefficients predicted by the CFD model, within the margins of 

experimental measurement error.  

 

To investigate the surface convection heat transfer coefficient-heat flux dependency, 

the test rig was tested with different levels of heat input from the heater mats. The 

experimental results show that the surface convection heat transfer coefficients have 
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no relation to the heat flux output from the stator surface. For higher levels of heat 

input from the heater mats at the same flow condition, the increase of solid surface 

temperature compensates for the extra heat generated from the heater mats, to 

maintain the same surface convection heat transfer coefficients. The same results were 

obtained from the CFD simulations. Therefore, the results consolidate the assumption 

that the surface heat transfer coefficient is only dependent on the fluid properties and 

fluid flow conditions and it is independent on the magnitude of the surface heat fluxes.  

 

Finally, the existing test rig was modified into a totally enclosed axial flux machine 

configuration, by attaching a Perspex cylinder casing around it. The stator surface 

heat transfer coefficients were measured and compared with measurements taken 

from the open channel axial flux machine. The results show that the surface heat 

transfer coefficients surge when the axial flux machine was encased in the Perspex 

casing. In the future, these experimental results can be used, to validate other thermal 

modelling methods including CFD and lumped parameter modelling for totally 

enclosed axial flux machines. 
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Chapter 8  
 

Conclusions and Recommendations 

 
A new thermal modelling tool for axial flux permanent magnet (AFPM) generators 

has been developed. The new modelling technique integrates both the lumped 

parameter method and the generic thermal equivalent circuit, to model the conduction 

and convection heat transfer in the radial and axial directions, in both open and totally 

enclosed axial flux permanent magnet generators. This chapter summarises all the 

findings and conclusions obtained from developing and validating the new thermal 

modelling method, which have been described in the previous seven chapters. 

Recommendations for future work and experimental practices are also included.  

 

The feasible alternative to CFD modelling of the thermal state of electrical machines 

is the application of the advanced lumped parameter modelling technique. This 

technique divides the electrical machine into lumped components and represents them 

into thermal equivalent circuits by collections of thermal impedances and 

capacitances. The solid components of the electrical machines were discretised into 

annular control volumes, and the heat conduction between the solid components was 

modeled by the annulus conductive circuit. The moving fluid inside the machines was 

discretised into air control volumes and the convective thermal circuits were used to 

model the convection heat transfer between the moving fluid and the solid surface of 

the electrical machines.     

 

Two convective thermal circuit algorithms were investigated, which were the 

Temperature Passing Method (TPM), and the Heat Pick-up Method (HPM). TPM was 



8.0 Conclusions and Recomendations  234 

 
Chin Hong LIM  
PhD Thesis 2010 
School of Engineering and Computer Science  

 

developed by the author, based on the energy conservation equations, whereas HPM 

was the convection heat transfer modelling method introduced by previous 

researchers by imposing the heat fractions in the thermal circuit. Several case studies 

were carried out to examine the accuracies of these two convective thermal circuit 

algorithms with steady and transient boundary conditions, by comparing the results 

obtained from CFD models. The investigations show that the HPM algorithm gives 

better results for steady state boundary conditions, whereas the TPM algorithm is 

better in performing transient state thermal modelling.  

 

During the electric machine daily operation cycle, resistive loss in the stator winding 

is the major heat source and temperature hot spots normally occur in the machine 

windings due to the low thermal conductivity of the winding filling/insulation. Hence, 

it is paramount to model the thermal properties of the stator winding of the machines 

accurately, to prevent their degradation or breakdown. The thesis describes two 

techniques for predicting the radial thermal resistances of the stator windings, which 

correspond to the Simple Concentric Model (SCM) and the Concentric-annular Layer 

Model (CLM). Both techniques circumvent the necessity of conducting experiments, 

and evaluate the radial thermal resistance based on winding parameters, such as the 

thermal conductivities of the conductor and winding filling, packing ratio, conductor 

and winding radii.        

 

SCM lumps the conductors and winding filling in the stator winding separately, and 

calculates the equivalent thermal resistance by imposing simple cylinder and annulus 

conductive circuits. The thermal resistances predicted by SCM were validated by 

several numerical models and by the experimental results published by previous 

researchers and experimenters on five different two-phase materials. Good agreement 

was obtained between SCM and the other numerical models and experimental data.  

 

During machine operation, the conductors inside the stator winding act as independent 

heat sources when a current passes through the stator winding. It is important to take 

into account the position and composition of these heat sources in the stator winding, 

while evaluating the equivalent radial thermal resistances, because the position and 

magnitude of the conductors (or heat sources) affect the heat flow paths and 
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temperature distributions in the winding. CLM was proposed to model the distributed 

heat sources inside the stator winding. CLM divides the stator windings into 

alternative annular layers of conductor and winding filling, and each of the conductor 

and winding filling annular layers is represented by an individual annulus conductive 

thermal circuit. The equivalent radial thermal resistance of the stator winding is 

calculated by summing all the annular conductive thermal circuits of the conductor 

and winding filling. The radial thermal resistances of the stator winding predicted by 

CLM were validated by pre-constructed CFD models. The results conclude that CLM 

is more capable of predicting accurate thermal resistances, when the electrical 

machines are running, or when the current is passing through the stator winding, as 

compared with SCM and the other numerical models developed by previous 

researchers. The discrepancy between thermal resistances evaluated from CLM and 

CFD models was less than 10%.  

 

A 2D generic lumped parameter thermal equivalent circuit of AFPM generators with a 

fully automated user interface was constructed. CLM was implemented into the 

thermal equivalent circuit to model the stator windings of the electrical machines. 

Since the thermal resistances and capacitances used in the generic thermal circuit 

were programmed in their dimensionless form, the generic thermal circuit can be used 

to perform thermal modelling for a range of axial flux machines which share similar 

topologies. A 2D-axisymmetric, single-sided, AFPM generator CFD model was 

constructed and simulated with both steady and transient boundary conditions in 

FLUENT, to validate the results simulated from the developed 2D generic lumped 

parameter thermal equivalent circuit. The research shows that the temperatures 

predicted from the 2D generic thermal circuit were in good agreement with the CFD 

models, especially at low rotational speeds and low air gap clearances. At 1500rpm, 

with a 2 mm air gap clearance, the maximum relative discrepancy was 15%. When the 

rotational speed was reduced to 750rpm, the relative discrepancy fell to 8%. The 

relative discrepancy increased to 30% when the air gap clearance was doubled (4 

mm). It was suspected that the accuracy of the 2D generic thermal circuit is strongly 

influenced by the convection heat transfer coefficients used in the circuit. Further 

discretisation of the generic thermal circuit was recommended to improve the 

temperature prediction of the AFPM machine when using the 2D generic thermal 
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circuit. In transient thermal modelling, the errors inherited from the steady state 

simulations persisted. By specifying the solid thermal and mass properties accurately 

to evaluate the thermal capacitances in the 2D generic thermal circuit, the time 

constant of each solid component was well predicted, in response to several different 

transient boundary conditions. 

 

Subsequently, the 2D generic thermal circuit was used to perform thermal modelling 

of a single-sided axial flux generator with magnets affixed on the rotor surfaces. 

Unlike the previous 2D-axisymmetric AFPM generator, when the magnets were 

included, the heat flow in the circumferential direction was substantial, relative to the 

heat flows in the radial and axial directions. Experimental work was carried out to 

investigate the reliability of the 2D generic thermal circuit for 3D heat flow thermal 

systems. The investigation illustrated that, by taking into account the extra solid-fluid 

surface area on the sides of the magnets to re-evaluate the convective thermal 

resistances, the temperatures predicted by the 2D generic thermal circuit matched well 

the temperatures obtained from the experiments. Therefore, it is concluded that, by 

introducing suitable correction factors on the convective thermal resistances, the 2D 

generic thermal circuits are capable of carrying out thermal modelling for three-

dimensional heat flow systems.  

 

In general, the convection heat transfer mechanism plays an important role in the 

overall heat transfer of electrical machines, especially for air-cooled axial flux 

machines. Previous research showed that the accuracy of the temperature predicted by 

the 2D generic thermal circuit strongly influences the convection heat transfer 

coefficients between the generator solid surfaces and the moving fluid. Therefore, it is 

paramount to conduct sophisticated parametric variation studies, to develop empirical 

formulae that relate the convective heat transfer coefficient and mass flow rate to the 

electrical machine’s geometrical parameters.  

 

The parametric studies can be achieved either by carrying out a series of experiments, 

or by using the CFD modelling technique. Since the construction of a flexible test rig 

that is capable of performing experiments on a range of different sizes and topologies 

of the axial flux machine is very costly and time consuming, the CFD modelling 
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technique was used by Airoldi [53], to carry out parametric studies of convection heat 

transfer coefficient on the axial flux generator stator surfaces. A large scale low speed 

test rig was designed to validate the CFD modelling technique used by Airoldi and to 

perform convection heat transfer parametric studies for axial flux generators. The 

experimental results show that natural convection plays an important role, especially 

for large scale low speed axial flux generators. The CFD model, which did not take 

into account the fluid buoyancy in its calculations, under-predicted the surface heat 

transfer coefficients on the machine stator. Further experiments were performed, to 

determine the relationship between mixed convection, forced convection and natural 

convection. By subtracting the measured natural convection from experimental 

results, the experimental surface heat transfer was in good agreement with results 

predicted by CFD model, within the experimental measurement error margins.  

 

The modelling in CFD of the non-uniform heating surface on the silicon heater mats 

used in the experiments is complex and difficult. To simplify CFD models, uniform 

surface heat flux boundary conditions were used. Since the silicon heat mats have a 

non-uniform heating surface, the experimental validation of the CFD is only valid if 

the convection heat transfer coefficients are independent of the magnitudes of surface 

heat flux. Experiments were designed and conducted to investigate the dependency of 

heat transfer coefficients upon the heat flux on the stator wall. The results confirm 

that the surface heat transfer coefficient has a weak influence on the heat flux.  

 

In conclusion, a new thermal modelling tool for AFPM generators was developed and 

validated with both CFD and experimental results. Thermal modelling of typical 

AFPM generators is reduced from days into seconds, by introducing the 2D generic 

thermal circuit. However, the new thermal modelling method is limited by the 

availability of accurate convection heat transfer coefficients on the solid surfaces of 

the AFPM generators. Several recommendations are suggested for future development 

of the 2D generic thermal circuit for AFPM generators as follows: 

• Convection heat transfer coefficient parametric studies on all the solid surfaces 

in AFPM generators are required. However, the CFD modelling method may 

be applied with confidence to perform the parametric studies, to circumvent 

costly and time consuming experimental methods. 
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• It is useful to carry out the experiments on the large scale test rig with better 

calibrated heat flux sensors on the stator and rotor surfaces, especially on the 

stator side and peripheral surfaces, to support validations conducted in this 

research. 

• Experiments on a real AFPM generator such as the Durham 1500rpm axial 

flux machine, are required to further validate the reliability of the 2D generic 

thermal circuit, especially with regard to the eddy and hysteresis losses, 

surface contact resistances and stator winding thermal resistances. 

• CFD modelling and experimental studies are required to validate the generic 

thermal circuit of water-cooled totally enclosed axial flux machines. 

• The 2D generic thermal circuit can be improved by considering radiation heat 

transfer thermal circuits. It is also worth exploring the possibility of 

transforming the 2D generic thermal circuit to a fully 3D generic thermal 

circuit, which can be used to model three-dimensional heat flow systems more 

accurately, without the need for correction factors.    
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Appendix A 
Private Sub CLM_Click() 
    Set interface = Worksheets("Interface") 
    Set res = Worksheets("Resistances") 
    rc = interface.Cells(21, 2) / 2 
    rsc = interface.Cells(31, 2) / 2 
    rw = interface.Cells(11, 2) / 2 
    kc = interface.Cells(23, 2) 
    kcf = interface.Cells(27, 2) 
    kwf = interface.Cells(34, 2) 
    ac = interface.Cells(37, 2) 
    assc = interface.Cells(39, 2) 
    n = 5000 
    k = 1 
    l = 1 
    p1 = 1 
    it = p1 * 3.14 * rc ^ 2 
     
    r1 = rc / (ac ^ 0.5) 
    
    dt1 = it * Log(r1 / rc) / (3.14 * 2 * kcf * l) 
    
************Centre Circle Thermal Equivalent conductivity calculation********** 
   Do While k <= n 
          
        rin = r1 + (k - 1) * (rsc - r1) / n 
        rout = rin + (rsc - r1) / n 
        req = (rin ^ 2 + ac * (rout ^ 2 - rin ^ 2)) ^ 0.5 
         
        rr1 = (2 * req ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2) - 1) / (4 * 3.14 * kc * l) 
        rr2 = (1 - 2 * rin ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2)) / (4 * 3.14 * kc * l) 
        rr3 = (req ^ 2 + rin ^ 2 - 4 * req ^ 2 * rin ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2)) / 

(8 * 3.14 * kc * l * (req ^ 2 - rin ^ 2)) 
        rf = Log(rout / req) / (2 * 3.13 * kcf * l) 
         
        i1 = it 
        i2 = 3.14 * (req ^ 2 - rin ^ 2) * p1 
         
        deltat = i1 * (rr1 + rr2 + rf) + i2 * (rr2 + rf) 
         
        it = i1 + i2 
         
        ttotal = ttotal + deltat 
                           
         
        k = k + 1 
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    Loop 
    keqsc = 1 / (4 * 3.14 * kcf * l * (ttotal + dt1) / (3.14 * rsc ^ 2 * ac * p1)) 
     
    interface.Cells(42, 2).Value = keqsc 
 
'##################Annular layer thermal conductivity calculation############# 
     
     
    r1 = rsc / (assc ^ 0.5) 
     
    it = p1 * 3.14 * ac * rsc ^ 2 
     
    dt1 = it * Log(r1 / rc) / (3.14 * 2 * kwf * l) 
     
    k = 1 
     
    Do While k <= n 
          
        rin = r1 + (k - 1) * (rw - r1) / n 
        rout = rin + (rw - r1) / n 
        req = (rin ^ 2 + assc * (rout ^ 2 - rin ^ 2)) ^ 0.5 
         
        rr1 = (2 * req ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2) - 1) / (4 * 3.14 * keqsc * l) 
        rr2 = (1 - 2 * rin ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2)) / (4 * 3.14 * keqsc * l) 

rr3 = (req ^ 2 + rin ^ 2 - 4 * req ^ 2 * rin ^ 2 * Log(req / rin) / (req ^ 2 - rin ^ 2)) 
/ (8 * 3.14 * keqsc * l * (req ^ 2 - rin ^ 2)) 

        rf = Log(rout / req) / (2 * 3.13 * kwf * l) 
         
        i1 = it 
        i2 = 3.14 * (req ^ 2 - rin ^ 2) * p1 * ac 
         
        deltat = i1 * (rr1 + rr2 + rf) + i2 * (rr2 + rf) 
         
        it = i1 + i2 
         
        ttotal = ttotal + deltat 
                           
        k = k + 1 
         
    Loop 
             
    interface.Cells(42, 2).Value = 1 / (4 * 3.14 * kwf * l * (ttotal + dt1) / (3.14 * rw ^ 2 
* ac * assc * p1)) 
 
    
     
End Sub 
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