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Solitons on Lattices and Curved Space-time 

Vinay Kotecha 

Abstract 

This thesis is concerned with solitons (solutions of certain nonlinear partial dif­

ferential equations) in certain cases when the underlying space is either a lattice or 

curved. Chapter 2 of the thesis is concerned with the outcome of collisions between a 

kink (a 1-dimensional soliton) and an antikink for certain topological discrete (TD) 

systems. The systems considered are the TD sine-Gordon and the TD cjy4 . For the 

TD sine-Gordon system it is found that the kink can support an internal shape 

mode which plays an important role during the collisions. In particular, this mode 

can be excited during collisions and this leads to spectacu lar resonance effects. The 

outcome of any particular collision has sensitive dependence on the initial conditions 

and could be either a trapped kink-antikink state, a" reflection" or a " transmission". 

Such resonance effects are already known to exist for the conventional discrete cjy4 

system, and the TD cjy4 system is no different, though the results for the two are not 

entirely similar. 

Chapter 3 considers the question of the existence of explicit travelling kink so­

lutions for lattice systems. In particular, an expression for such a solution for the 

integrable lattice sine-Gordon system is derived . 

In Chapter 4, by reducing the Yang-Mills equat ions on the (2 + 2)-dimensional 

ultrahyperbolic space-time, an integrable Yang-Mills-Higgs system on (2 + 1) dimen­

sional de Sitter space-time is derived. It represents the curved space-time version of 

the Bogomolny equations for monopoles on JR3 . Using twistor methods, various ex­

plicit solutions with gauge groups U(1) and SU(2) are constructed. A multi-soliton 

SU(2) solu tion is also presented. 
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Chapter 1 

Introduction 

Solitary waves were first discovered in the context of hydrodynamics, by John Scott 

Russell in 1834, who whilst supervising a project in an Edinburgh canal discovered 

what he later described as a "great wave of translation" [3]. What Russell saw was 

essentially this: an elevated mass of water with the property that it travelled without 

any change in its shape or speed, and with only a slight decrease in amplitude. He 

realised that what he saw was a genuinely new phenomenon, and after subsequent 

experiments in a smaller version of the canal in his back-garden, he concluded that 

the decrease in amplitude is due to friction. This observation led to the definition of a 

solitary wave: a lump-like coherent structure which travels without any change in its 

shape, speed or amplitude. Such an object is sometimes also incorrectly referred to 

as a soliton. But a soliton, strictly speaking, satisfies an additional condition that 

it is unaffected by interactions: two interacting solitons pass through each other 

with their size, shape and speed unchanged by the interaction. The only interaction 

memory is a phase-shift (or a time-delay): each soli ton would have been centered 

at a different location had it travelled without any interaction at all. Moreover, 

solitons (unlike solitary waves) are stable under perturbations [4]. 

Soli tons (or solitary waves) tend to occur as solutions of certain nonlinear equa­

tions. The nonlinearity plays an important role in their existence. Indeed, we are 

familiar with coherent lump-like objects (wave-packets) which occur as solutions of 

linear field equations (such as the linear time-dependent Schrodinger equation). But 

such packets disperse in a time scale proportional to k2 , where k is the wavenumber. 

1 
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The presence of a nonlinear term counteracts the action of the dispersive (linear) 

term, and a soliton structure emerges if the action of these two terms are perfectly 

balanced. 

There are in fact different kinds of solitons. They can be topological or inte­

grable. Topological solitons owe their existence to the role played by the global 

topology of the field. They are not solitons in the sense described above but rather 

solitary waves; it is nonetheless common practice to refer to them as solitons. Inte­

grable solitons on the other hand occur because the nonlinear system in question is 

completely integrable. One consequence of this feature is that soliton solutions of 

such systems have infinitely many conserved quantities, and this in turn is what is 

responsible for the soliton's stability [4]. 

Since this thesis is concerned with both integrable and topological solitons, we 

will now consider them in detail. 

1.1 Topological Solitons 

Topological solitons are generally a consequence of a non-trivial mapping between 

the internal field space and the manifold of real space. The soliton itself can be 

regarded as a heteroclinic connection between two any vacuum states of the theory. 

The stability of the soli ton (the fact that it does not decay into a lower energy 

solution) can be attributed to a conserved nonzero charge. This charge may be the 

Noether charge which is associated with a continuous symmetry of the theory, or it 

may be the so-called topological charge, Q. The topological charge is nonzero if the 

field configuration is a member of a non-trivial homotopy class; it is essentially a 

consequence of the boundary condition, that the total energy is finite, so it does not 

generate a symmetry of the Lagrangian. Note that when we say a 'field' we mean 

a map from the space-time manifold NIx IR to some target space manifold, 1>, i.e. 

cp : JI;J x IR ----+ <P, whilst a configuration is a particular leaf in the time foliation of cp, 

i.e. cpc : 1\;f ----+ <P. So, topological soli tons exist if some homotopy class of <P is non­

trivial. <P and Jiif can be any smooth manifolds: In chapters 2 and 3 of this thesis, 

we will consider NI to be be a !-dimensional lattice, i.e. M = {nh E IRin E Z}, 
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where nE Z and his the distance between any bvo points, h = :rn+l - xn; whereas 

in chapter 4, J\1[ will be a curved manifold. 

Many of the features of topological solitons are more transparent in lower di­

mensional systems such as the cp4 model [44], sine-Gordon system [5], etc. The 

sine-Gordon system plays a central role in chapter 2 of this thesis. We will therefore 

describe this system here, and at the same time use it to illustrate some of the major 

features of topological solitons. 

The fundamental object in the sine-Gordon system is a field cp(x, t), (i.e. a map 

cp : lR x lR ~ 5 1) and the model itself is given by the Lagrangian density1 , 

(1.1) 

with the potential 11 ( cp) = 1 - cos cp. We use the following conventions here and in 

chapter 2: xll = (x, t), oil = ofox1'; indices are raised or lowered using the metric 

tensor 9J.tv = diag ( -1, 1), and repeated indices are summed over. The alternating 

tensor EJ.tv is defined so that Eo1 = 1. 

The action for the Lagrangian density may be calculated using the equation 

S = J .C[x, t]dx dt, (1.2) 

and the field equation then follows from Hamilton's principle of least action 65 = 0, 

(1.3) 

Note that the Lagrangian is symmetric under cp ~ cp+2mr and cp ~ -cp. Equation 

(1.3) has the trivial solutions cp(n) = 2mr. These are the degenerate minima of 

11 ( cp). These minima play an important role in the classification of soli ton solutions: 

Suppose we have a smooth non-singular finite energy solution to (1.3), cp(x, t). For 

cp(x, t) to have finite energy we require cp( -oo, t) and cp(oo, t) to be one of the vacuum 

1The name sine-Gordon is intended to be a pun on Klein-Gordon and is attributed to Martin 

Kruskal. The equation first arose in the study of differential geometry: it describes the properties 

of pseudo-spherical surfaces (6]. 
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states, qy(n). If qy(x, t) is smooth, then these values of f/Y(±oo, t) are stationery under 

the evolution equation (1.3). That is, any one particular value of the vacuum taken 

by qy( oo, t) or f/Y( -oo, t) cannot be continuously deformed into any other. So we have 

that f/Y(x, t) must belong to a (topological) sector given by (2m1r, 2n1r), m, n E Z. 

Since the target manifold <I> ::= S 1
, we have n - m = 1, 0 i.e. we consider fields 

modulo 21r. The trivial solutions qy = 2n1r belong to the sectors for which n = m 

and are not topological. The remaining sectors contain solutions that interpolate 

between two vacuum states, (2m1r, 2n1r). A solution that belongs to this sector is a 

topological soliton and is classified by a topological charge, Q. For instance, for the 

first sector ( 0, 21r), 

1 
Q = -[f/Y(oo, t)- qy( -oo, t)] = ±1. 

21r 
(1.4) 

The solitons with Q = 1 and -1 are known as kinks and anti-kinks respectively. 

The charge Q has the associated conserved current, 

Q = j l dt = 1 EN dx. 
ill!. ox 

(1.5) 

(1.6) 

An explicit expression for the kink (or the anti-kink) can be obtained using a 

remarkable argument due to Bogomolny [7]. The argument involves (essentially) 

completing the square in the expression of the total energy of a topological solution 

qy(x, t). For convenience let us set 1/J(x, t) = qy(x, t)/2. The total energy of the static 

configuration 1/J(x) is given by 

(1.7) 

so completing the square gives 
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(1.8) 

(1.9) 

= E-1, (1.10) 

where the last equality is obtained by imposing the kink boundary conditions 'lj;( -oo) = 

0 and '1/J ( oo) = 1r. This argument shows that the energy of a static configuration 

'1/J(x) is bounded below by 1. The bound is saturated by functions which satisfy the 

equation 

d'lj; . 
-d =Sill 1/J. 

X 
(1.11) 

This is a first order equation and can be easily solved. Equation ( 1.11) is known 

as the Bogomolny equation and shows the power of the Bogomolny argument: a 

solution of a second order nonlinear equation is being obtained by solving a first 

order equation. Equation (1.11) has the general solution 

(1.12) 

where x 0 is a constant of integration [4]. Equation (1.12) is the expression of the 

static kink referred to above. An expression for the anti-kink can be obtained by 

using the appropriate anti-kink boundary conditions in the Bogomolny argument. 

Figure 1.1 shows a plot of the kink '1/J ( x) together with its energy density function 

E['lj;(x)]. Note that we have taken x 0 = 0. For other values of x 0 ·we find that the 

center of the kink (defined to be the point at which '1/J = 1r /2) is located at x 0 . So 

x 0 can be interpreted as the position of the kink. 

This is a convenient place to conclude the introduction to the sine-Cordon sys­

tem. vVe will return to it again in chapter 2. We have seen some of the features of 

topological solitons, namely that the solutions are classified by an integer called the 

topological charge, and the existence of a Bogomolny bound which is saturated by 

the solitons. Both of these facts can be regarded as being relevant to the stability 
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Figure 1.1: A plot showing the profile of the kink 1j;(x) and its potential energy 

density function E['l,b(x)]. 

of the soliton; and they can be linked to the following space of configurations which 

minimize the potential, 

M= {cpc: V(cpc) =minimum}. (1.13) 

M is known as the vacuum manifold. Field theories that have topological soliton 

solutions fall into two classes, (1) theories for which the boundary conditions of cpc 

is non-trivial, and (2) theories for which cpc is restricted to a non-trivial manifold 

(so the boundary conditions of cpc tends to be trivial). Let us consider the space 

manifold to be JRd. So for case (1) we have maps cpc : sd-1 ----+ M. Here sd-1 is 

the unit sphere in JRd, representing the directions in JRd where the field approaches 

a vacuum. For the second case, we have maps cpc : Sd ----+ M, where Sd is the 

natural compactification of JRd, and M is non-trivial. An important fact is that the 

vacuum manifold M can be divided into disjoint path components, so points within 

a given component can be joined together by some map cpc E M, but points in 

distinct components cannot. This is what is responsible for the solitons's stability: 

for a topological soliton to be stable we need the map c/Jc : sn ----+ M to be stable 

under deformations. A smooth deformation of cpc is a 1-parameter family of (finite 
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energy) configurations c/J(; c/J( depends smoothly on ( and for ( = 0, c/J( = q;c. 

Such deformations could be the deformations used in Hamilton's principle of least 

action, or the deformations created by the time evolution of the system (through 

the equation of motion), or even a continuous gauge transformation. A map q;c 

would be stable under these deformations if it cannot be continuously deformed into 

a constant map. For type (1) field theories such maps would belong to a non-trivial 

component of M given by the homotopy group 7rd-l (Sn); for type (2) theories we 

would require that 1rd(Sn) is non-trivial. Topological solitons which belong to the 

former homotopy group are known as monopoles and ones belonging to the latter 

are called textures. The sine-Gordon soliton we considered earlier is therefore an 

example of a texture. 

Finally, before we end this section, >ve discuss the physical motivation behind 

studying topological solitons. Topological solitons have seen major applications in 

two areas of physics: condensed matter theory and particle physics. The applications 

in condensed matter physics provided the first verification of the ideas on solitons 

and topology. Solitons in this area are used to model a vast range of phenomena, 

including crystal dislocations, charge density waves, magnetic domain walls, Joseph­

son junctions, wave pulses in fibre optics, etc [8]. Many of these phenomena require 

the underlying space to be discrete. It is not always possible to find exact static 

soliton solutions in this case. It is even more difficult to find solutions which are 

explicitly time-dependent (i.e. where velocity occurs as a parameter rather than 

being fixed from the outset.) 2
. Sometimes the solution of the analogous continuum 

system (if there is one) is used in the simulations. But this approximation is less 

effective in higher dimensions. Application of higher dimensional solitons in con­

densed matter physics are therefore more difficult to find. In 2 space dimensions, 

topological solitons usually exist because the field is restricted to a non-trivial man­

ifold. In certain cases the addition of a gauge field to the theory also yields solitons. 

An example of a theory where this occurs is the abelian line vortex [9], which has 

applications in superconductivity. Models which require the former are known as 

a-models. A famous example of this, in 3 dimensions, is the Skyrme model [10] 

2 This issue forms the subject of chapter 3 
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where one considers the map c/Jc: 5 3 ------7 SU(N). The Skyrme model may be derived 

as the low energy limit of QCD in the limit where the number of quark colours is 

large [11]. It is a field theory where the carriers of the strong nuclear force are pions 

(1r0 , 1r±), and protons and neutrons occur as solitons. The role of the baryon number 

B is played by the topological charge B E 1r3 (SU (N)) ::= Z. Numerical solutions for 

multi-solitons have been found for baryons with 1 :S: B :S: 9. Plots of the constant 

baryon-density surfaces show the baryons to have the shape and symmetries of reg­

ular polehedra, with the B = 2 baryon having the symmetry of a torus, B = 3 of 

a tetrahedron, etc [12]. The properties of the quantized multi-skyrmions agree well 

with empirical observation [13], [14]. 

As already mentioned, sometimes the inclusion of a gauge field to a theory yields 

solitons. Gauge theories feature prominently in particle theory. The standard model 

is a gauge theory with gauge group SU(3) xSU(2) xU(1). A key ingredient in this 

theory is the Higgs boson. The Higgs potential has a continuous degenerate vacuum 

which is a non-trivial gauge orbit [15]. At low energies, the Higgs boson has to choose 

a particular vacuum, leaving the theory invariant only under the U(1) subgroup 

of electromagnetism. This process is known as spontaneous symmetry breaking 

and is necessary for mass-generation for the electroweak bosons (W±, Z 0 ). Recent 

experimental evidence suggests that we may have seen such a particle in nature 

(though at present the evidence is believable only to 2.6 standard deviations, i.e. 

there is a 0.6% chance that it is background effects rather than the Higgs [16]). 

Spontaneous symmetry breaking may have occurred at earlier times in the Universe 

as well, and in particular earlier there may have been a Grand Unified Theory gauge 

group which was subsequently broken to the standard model gauge group. If this 

was the case, then spontaneous symmetry breaking would have occurred via the 

Kibble mechanism [17], and this would have created cosmological objects such as 

cosmic strings, defects and monopoles. These are all examples of topological soli tons 

but have at present not been seen in nature. However, in chapter 4 we will look at 

the monopole in different setting, namely on a (2 + 1)-dimensional de Sitter space­

time. This may have little physical ramifications, but is nonetheless an interesting 

mathematical problem. 
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1.2 Integrable Solitons 

An integrable soli ton is a solution of a nonlinear partial differential (or difference) 

equation which is completely integrable; the global topology of the field now plays 

a secondary role. The meaning of complete integrability for a partial differential 

equation is not altogether clear3 . The reason for this is that any such definition 

needs to encompass the vast range of mathematical phenomena exhibited by inte­

grable systems. Roughly speaking though, an integrable system is a system "whose 

solutions can in principle be constructed explicitly" [19]. There are a number of 

ways of constructing solutions of an integrable equation. The particular method 

one employs depends more on the problem at hand than the taste of the user. In­

deed, this is one of the problems in the study of integrable systems that needs to be 

overcome: finding a way of knowing a priori which method to employ for a given 

integrable equation, or finding a method that will yield a solution for any integrable 

equation. In the absence of this we will mention some of the features of integrable 

systems. They can be regarded as forming 'tests' for an integrable system: 

e An equation is regarded to be integrable if many exact solutions can be ob­

tained by a solution generating method such as the inverse scattering trans-

form (IST) [20], the Hirota bilinear-operator method [21], the Zakharov-Shabat 

method [26] or certain twistor methods [22]. 

• An equation is said to be integrable if it can be written as the compatibility 

condition of two linear operators [23], L(x, t, (),and !vf(x, t, () say, where 

&cjy 
&x = L(x, t, ()c/Y, (1.14) 

&cfy 
&t = lvf(x, t, ()cjy. (1.15) 

3 Compare this with the situation for ordinary differential equations where Liouville's definition 

of integrability applies: a Hamiltonian system with n degrees of freedom is said to be integrable 

if there exists (n - 1) independent and globally-defined functions, which are all in involution with 

each other and with the Hamiltonian. 
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The original nonlinear equation then amounts to the compatibility condition 

of Land 1\11, obtained by taking the space derivative of (1.15) and subtracting 

that from the time derivative of (1.14), 

EJL EJl\11 
---+[L A1]=0 EJt ox , , (1.16) 

and this equation should hold for each (. Equation (1.16) is known as the 

zero curvature condition because L(x, t, () and l\11(x, t, () can be considered to 

be the connection coefficients for a trivial vector bundle JR1+ 1 x <C2
; here JR1+1 

is the space-time and <C2 is the space of c/J. Equations (1.14) and (1.15) then 

show that cjJ is covariantly constant, and equation (1.16) says that the (L, 1\11) 

connection has zero curvature. 

• An ordinary differential equation is said to be integrable if it passes the 

Painleve test i.e. it can be reduced to one of the Painleve equations [24]. 

But this usually requires a change of coordinates and it is not always apparent 

what to use. 

In order to provide a certain amount of foundation for chapter 3, we will illustrate 

the basic idea behind the IST [20]: 

cj;(x, 0) ----+ S(x, 0) ----+ S(x, t) ----+ cj>(x, t). (1.17) 

vVe start with an initial condition of a nonlinear partial differential equation cj;(x, 0) 

and transform it to the initial scattering data S(x, 0) using a transform that is 

analogous to the Fourier transform. The scattering data is then evolved using a 

simple relation. Finally, to obtain a solution of the nonlinear equation we apply the 

inverse transform to S(x, t). This method uses the observation that the evolution 

of the scattering data is simpler than the evolution of the field. The method has 

been successfully used to construct soliton solutions for many integrable systems, 

including the sine-Cordon system [25]. 

Integrable systems tend to occur mostly in (1 + 1) dimensions, of which the sine­

Cordon system is an example. Some other examples are the nonlinear Schrodinger 
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equation [26], the Bousinessq equation [27], and the Korteweg de Vries equation [28] 

(which describes approximately the "great wave of translation" seen by Russell). 

There are also some examples in (2 + I )-dimensions, namely, the Davey-Stewartson 

equation [29], the Kadomtsev-Patviashvili equation [30], etc [24]. For all of these 

systems one can find exact expressions for single and multi-soliton solutions. A char­

acteristic feature of these solutions is that they have an infinite number of conserved 

symmetries and so the soli tons have an infinite number of conserved quantities4. 

In some sense this is what is responsible for the soliton's stability during interac­

tions, though as noted already, these interactions are usually trivial compared to 

the dynamics of topological solitons. 

Some integrable systems in (I+ I)-dimensions are Lorentz invariant so for such 

systems one can obtain time dependent solitons by simply Lorentz boosting the 

static solitons. In higher dimensions, integrability seems not to be compatible with 

Lorentz invariance. There is however a semi-Lorentz invariant system in (2 + I)­

dimensions [32], and the Yang-Mills system in 4-dimensions is also Lorentz invariant. 

But, in particular, there is no known integrable system in (3 +I)-dimensions which 

is Lorentz invariant [24]. This coupled with the fact that integrable systems tend to 

have trivial dynamics means that they have limited scope for use in particle theory. 

The motivation behind studying integrable systems is therefore largely mathe­

matical. One area of mathematical interest at present is the idea that integrable 

systems are unified in some sense. The idea is known as Ward's conjecture and says 

that all the known integrable systems occur as (algebraic or dimensional) reductions 

of the self-dual Yang-Mills equations [33]. By dimensional reduction we mean that 

we would look for solutions of the sdYM equations which are invariant under some 

group of conformal transformations. The self-dual Yang-Mills equations then lead 

to (integrable) equations in a lower dimensional space. 

1.2.1 The Unifying Integrable Equation 

The self-dual Yang-Mills equation is an integrable equation in 4-space [22]. The 

fundamental object is the Yang-Mills field which is defined as 

4 This can be established using the Miura map [31]. 
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(1.18) 

where ~t = 0, 1, 2, 3 are the coordinates on the 4-space, AJ.L is the gauge potential 

taking values in the Lie algebra of a gauge group G. The self-dual Yang-Mills 

equations are given by 

(1.19) 

where * is the Hodge star defined on the 4-space. In terms of components they can 

be written as 

(1.20) 

where g = det gJ.Lv and g1w is the metric on 4-space. 

We will consider equation (1.20) in terms of null coordinates (w, w, z, z): If 

(x, y, s, t) are the coordinates on 4-space M = JR4 , then the null coordinates are 

given by 

w = x + iy, w = x- iy, z = t +is, z = t- is. 

The self-dual Yang-Mills equations in these coordinates become 

Fwz 0, 

Fwz 0, 

0. (1.21) 

Note that the self-dual Yang-Mills equations are invariant under the gauge transfor-

mation, 

(1.22) 
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for any g(xll) E G. 

Equations (1.21) can be regarded as the compatibility condition of the Lax pair 

(ow + (oz)w 

(oz- (ow)w 

(Aw + (Az)w, 

(Az- (Aw)'ll, (1.23) 

where ( is the spectral parameter and w is a vector in some representation of the 

Lie algebra of G. The compatibility condition is expressed as a polynomial in (, 

and equations (1.21) are retrieved by comparing coefficients of the powers of (. 

Equations (1.23) show that the self-dual Yang-Mills equations form an integrable 

system. To see how other integrable systems arise as reductions of (1.23), consider, 

as an example, the euclidean sine-Gordon system, 4Yxx + 4Ytt = sin qy. Take w = w = x 

and z = z = t. Then the gauge potentials, All E sl(2, C) given by 

Aw- ' 
_ ~ ( -1Jx -2sin(4J/2)) 

4 2sin(4J/2) 4Yx 

_ ~ ( 4Yt -2 cos(qy/2) ) 
Az- 4 ' 

-2cos(4J/2) -4Yt 

A- - ~ ( -1Jx 
w- 4 -2 sin(qy/2) 

A--~ ( 4Yt 
z - 4 2 cos ( 1Y 1 2) 

2 sin( 4J/2) ) ' 

1Jx 

2cos(4J/2) ) . 

-4Yt 

satisfy ( 1. 21) provided 1Yxx + 4Ytt - sin 1J = 0. This is an example of dimensional 

reduction where the Yang-Mills equation is reduced by a time-like and null Killing 

vectors. Alternatively, one could obtain the sine-Gordon equation by a mixture of 

algebraic and dimensional reduction as follows: 

Let the gauge potentials All be a function only of w and w, and be su(2)-valued. 

By using certain gauge freedom we can set Aw = 0. The remaining gauge potentials 

form a Lax pair 

(1.25) 
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If we choose the gauge potentials to be given by 

where the ai are the Pauli matrices and a, b and c are functions of w and 'I.V only, 

then the Lax pair (1.25) is given by 

Owe= 2ib. (1.26) 

The solution of (1.26) is a2 + b2 = k, where k is a constant. Choosing k = 1, 

a = cos cjJ and b = sin cjJ gives c = ~iOwcP· Substituting this into (1.26) then gives the 

sine-Gordon equation. 

At present, it is generally believed that the self-dual Yang-Mills equations play a 

useful unifying role in the theory of integrable systems, and that Ward's conjecture 

may be true. 

This concludes our introduction on solitons. Although we have considered soli­

tons on fiat spaces only, this introduction forms a good basis for the rest of the thesis 

where we will consider solitons on lattices and curved space backgrounds. In chapter 

2 we will consider kink dynamics on a 1-dimensionallattice. In particular, we will 

look at the outcome of the kink-anti-kink interactions in the topological discrete 

sine-Gm·don system. In chapter 3 we will consider the question of the existence of 

travelling kink solutions on lattice. By using the inverse scattering transform we de­

rive an expression for such a solution for the integrable lattice sine-Gordon system. 

In chapter 4 we have obtained, via a reduction of the self-dual Yang-Mills system, a 

(2 + 1 )-dimensional integrable system on a curved space background. Several explicit 

solutions are constructed, and some of them are found to be topological in nature. 

Each chapter is self-contained and ends with concluding remarks. 



KJink=antikJink JinteracctJions in 

TopoliogJicaR Discrete §y§tem§ 

2.1 ][ntroduction 

As we mentioned in the introduction, solitons have seen many applications in con­

densed matter physics [8]. In many cases it is necessary to consider the solitons on 

a !-dimensional spatial lattice (time is still continuous). Moreover, it is necessary 

to model interactions of the soliton with other objects such as impurities, defects, 

phonons, antisolitons, or other soli tons. In (1 + 1 )-dimensional field theories, these 

interactions have sometimes been quite spectacular, particularly if the !-dimensional 

soliton, or the kink, supports extra modes of vibration. This mode can be excited 

during an interaction and this leads to a "resonance effect" [34]. This effect has been 

seen in both continuous and lattice systems [34], [35], [36], [37], [38], [39], [40], [41]. 

These resonance effects give rise to "windows" in the space of impact velocity, i.e. 

there are certain intervals of velocities in this space for which the kinks form a bound 

state, known as a bion, and others for which the kinks scatter off each other. This 

phenomenon was first observed by Ablowitz et al [37] for various Klein-Gordon-type 

systems. 

In this chapter we will consider interactions of a kink with an antikink in a partic­

ular type of lattice systems, namely topological discrete systems. Such systems were 

introduced in 1994 [42] and are particularly interesting because the lattice system 

15 
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retains many of the features of the corresponding continuum system. In particu­

lar, the lattice system maintains the Bogomolny bound. The resulting Bogomolny 

equation is typically a first-order difference equation which can be easily solved. 

For the case of the topological discrete sine-Cordon system (TDSC), the solution is 

analogous to the well-known continuum sine-Cm·don static kink solution (1.12). 

The chapter is divided into six sections of which the first three are background 

material. In section 2 we will review kink-antikink interactions in the (continuum) 

c/J4 and the continuum sine-Cordon systems. We will introduce Camp bell et al 's 

"resonance energy exchange mechanism" in section 2.1.3. This is essentially an 

explanation of the resonance effects of kink-antikink interactions seen in many non­

integrable systems. In section 3 we present details of the TDSC system. In section 

4 we present the results of kink-antikink interactions in the TDSC. Section 5 will 

contain the corresponding results for the topological discrete c/J4 system [42], and 

section 6 contains some concluding remarks. 

2.1.1 The Continuum cp4 Model 

We begin by mentioning some details for the c/J4 model1. The model is defined by 

the Lagrangian density 

(2.1) 

and the equation of motion is 

(2.2) 

Equation (2.2) has three trivial solutions, cjJ = 0 and cjJ = ±1. The solutions cjJ = ±1 

correspond to the classical vacua of the theory. In addition, there are the static kink 

solutions, 

(
X ±b) 

cjJ K ( K) = ± tanh y'2 , (2.3) 

where b is a constant. A time-dependent solution can be obtained by Lorentz boost­

ing this static solution. This kink solution is essentially an interpolation between 

1 The conventions have been outlined in chapter 1. 
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the two vacua so that asymptotically, as x ----+ ±oo, 1> ----+ ±1. The negative solution 

is the antikink, with the reverse boundary condition, 1> ----+ =F1 as x ----+ ±oo. These 

boundary conditions give the kink finite total energy. 

The 4>4 kink is qualitatively very similar to the sine-Gorclon kink. But unlike the 

sine-Gordon kink which is a true soliton, the cp4 kink is not. The interaction of the 

kink and anti-kink, for instance, does not result in the kink and anti-kink passing 

through each other unscathed, as the "soliton condition" demands. But rather, 

they reflect off each other after undergoing a complicated sequence of bouncing. 

This process is not elastic and the kinks emit radiation. In some cases they form a 

trapped breather-like state. We will review next the results of such kink-anti-kink 

interactions in the cp4 model. 

2.1.2 Kink-antikink Interactions in cjJ4 Model 

Since the 4>4 model is not integrable one has little hope of finding exact solutions 

that describe kink-antikink interactions. One therefore has to resort to numerical 

simulations of the interactions. This can be done by cliscretizing the equation of 

motion and using appropriate initial conditions. Such simulations have been clone 

in the past [34], [35], [36], [37]. We consider the results of Anninos et al [36]. Anninos 

et al solve a cliscretizecl version of (2.2), 

.. 1 2 
c/>n = 

12
(flx)2 ( -c/Jn-2 + 16c/Jn-1- 30c/Jn + 16c/Jn+l- c/Jn+2)- c/Jn(c/Jn- 1). (2.4) 

This is solved on a discrete spatial grid with periodic boundary conditions. Here 

Llx is the grid spacing so the nth point on the grid is given by Xn = nilx. The 

second-order spatial derivative is computed using a fourth-order centre difference 

scheme. The initial condition corresponds to a widely separated kink and antikink 

moving towards each other with velocity v at t = 0, i. e 

cp(x, 0) = tanh(x + b)j../2- tanh(x- b)/V2- 1, 

~(x, 0) = -v((sech2 (x + b)j../2 + sech2 (x- b)j.../2)). 

(2.5) 

Equation (2.4) describes a set of coupled second-order ordinary differential equations 

for c/Jn which can be solved numerically, for instance using a 4th-order Runge-Kutta 
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scheme [43]. The results show that the outcome of an interaction depends sensitively 

on the impact velocity of the kinks. The end result however is always either a 

"reflection", or a bion. The bion is a breather-like state and oscillates for a long 

time, but eventually decays into radiation. 

One can summarise the results of the interaction by considering the space of 

impact velocity. It is found that for some intervals of velocities in this space, the 

interaction is a scattering whose net result is a reflection. For other intervals the 

net result is a bion. These intervals are known as "windows". The windows for the 

reflection and bion cases alternate along this space of impact velocity. Moreover, 

the edges of the windows show a similar pattern of alternating windows. In fact, 

the edge of the window forms a self-similar fractal [36]. 

Although the global outcome of the scattering is a reflection, the actual inter­

action of the kinks is a bit more complicated. It involves the kinks "bouncing" off 

each other more than once. In general, after the first collision the kinks move back a 

finite distance and then come back for a second collision. After the second collision 

the kinks either escape to infinity or come back for more collisions. Each of these 

collisions is known as a bounce, so that an interaction involving 2 collisions is known 

as a 2-bounce event. The simulations have shown up to 30-bounce events. 

2.1.3 Resonant Energy Exchange Mechanism 

The results of the simulations can be explained using Campbell et al's "resonant 

energy exchange mechanism" [34]. Their idea is to treat solitary waves as deformable 

particles which have extra modes of vibration. These modes are known as shape 

oscillations. When two particles collide some of the energy in the translational 

mode is transferred to the lowest-energy vibration mode. The bound state is formed 

only if sufficient energy is transferred from the particle's translational mode to this 

vibration mode. 

One can understand the two-bounce behaviour using this idea in the following 

way. The first collision transfers sufficient energy from the translational mode to the 

internal shape mode so that the kinks are now weakly bound. Since they are only 

weakly bound they retain their usual shape as they start to separate. But since they 
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are bound they only separate to a short distance and they come back for a second 

collision. The second collision transfers energy back from the internal mode to the 

translational mode and the kinks are then free to escape. 

One can show that the <P4 kink has an internal mode by linearising the equation 

of motion about the kink solution [44]. Consider a small perturbation ry(x, t) such 

that 

<P ~ <PK(x) + ry(x, t). (2.6) 

Substituting (2.6) into the field equation (2.2) and linearizing gives the equation for 

the fluctuations around the kink, 

EPry fJ2ry 2 X ot2 - ox2 + (3 tanh V2 - l)ry = 0. (2.7) 

We can then solve for the normal modes by setting 

ry(x, t) = eiwtx(x). (2.8) 

Substituting this into (2.7) gives the eigenvalue equation, 

( 
d

2 
2 x ) 2 - dx2 - 3 sech V2 + 2 x(x) = w x(x). (2.9) 

This is the Schrodinger equation with a reflectionless potential. Its solution can 

be found in [45]. Equation (2.9) has two discrete eigenvalues and a continuum of 

eigenvalues. The discrete eigenvalues and their corresponding eigenvectors are given 

by, 

2 2 X 
w0 = 0; xo(x) = sech V'i' 

and 

The continuous spectrum of eigenvalues is given by Wk = 2 + k2
, for k2 > 0. The cor­

responding eigenvectors are Xk ·"' eikx multiplied by a Jacobi polynomial in tanh x. 

The first discrete eigenvalue w0 = 0 is the translational mode, clue to the transla­

tional symmetry of (2.2). The second discrete eigenvalue, w1, is the frequency of the 

shape mode. 



2.1. Introduction 20 

For the kink-antikink 2-bounce event, the shape modes annihilate at a certain 

phase angle of the internal vibrations, given hy, 

(2.10) 

where T is the time between the two collisions, m is an integer (the window number) 

and () is a phase shift. This means that transfer of energy from the shape mode to the 

translational mode happens whenever (2.10) holds. This result is not analytically 

derived by Campbell et al but their numerical results confirm the relation. 

2.1.4 The Continuum sine-Gordon System 

The salient features of this system have already been described in the preceding 

chapter. Since the sine-Gordon kink is an exact soliton, an interacting kink and 

antikink simply "pass through" each other. Furthermore, the sine-Gordon kink 

has no localised vibration mode. It does however support a short-lived quasimode 

which is exicted by the perturbations arising from the process of discretization of 

the system [47], [48], [49]. 

In addition to the kink solutions (1.12), the sine-Gordon equation admits a dou­

blet solution (a breather), which is spatially localised and time periodic, 

"" ( ) _ 1 [ vsin(t/(1 + v
2
)!) l 

'+' 8 x, t = 4 tan 1 • 

cosh(vx/(1 +v2)2) 
(2.11) 

Here w = p is the angular frequency. Furthermore, equation (1.3) admits a 

solution that explicitly describes the interaction of a kink and antikink, 

_ 1 [ sinh('"'fut)] 
<i>Kk(x, t) = 4 tan h( ) , 

U COS '"'fX 
(2.12) 

where '"'/ = (1 - u2t 112
. 

Fort<< -u-1, (2.12) reduces to 

<i>Kk ~ 4 tan- 1 exp '"'!(x + u(t + l::,./2)) - 4 tan- 1 exp '"'!(x- u(t + l::,./2)), (2.13) 

representing a Lorentz boosted kink and antikink approaching each other with speed 

u; and fort > > u- 1 we get 

<i>Kk ~ 4 tan- 1 exp('"Y(x + 1t(t- l::,./2))- 4 tan- 1 exp('"Y(:r- u(t- l::,./2)), (2.14) 
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representing a kink and antikink moving away from each other with speed u. The 

quantity 6 is the phase shift or time delay and is the sole effect of the interaction. 

By writing (2.13) in terms of u rather than 6, we see that 

6 = (2/ury) ln u. (2.15) 

This quantity 6 is negative, suggesting that there is an attractive potential between 

the kinks. The magnitude of this potential can be calculated using equation (2.12) 

[50]. We define the kinks to be located where cjJ = 1r, then 

sinh('yut) = ucosh('yx). (2.16) 

For u < < 1, 1 ~ 1, and 

sinh ut= u cosh x. (2.17) 

For x > > 0, this equation has an iterative solution of the form 

x =ut- ln u- exp( -2ut). (2.18) 

Equation (2.18) can be used to calculate the force between the kinks, 

F = lv!x = -4u2 exp( -2x), (2.19) 

where we have used the fact that M = 1, and to leading order, x = ut. The potential 

between the kinks is then given by 

U(s) = -2u2 exp( -s), (2.20) 

where s = 2x is the separation between the kink and antikink. 

2.1.5 Kink Vibrational Mode 

There are reports suggesting that sine-Gordon kink can support a long-lived localised 

vibrational mode [47], [48]. This mode was first found by Rice using a collective 

coordinate method that treats the length of the kink and the centre of mass position 

of the kink as collective coordinates [4 7]. The quasimode frequency for the sine­

Cordon kink was found to be 21fWR = (12/7r2
)

112 (la/7r), where la is the length of 
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the kink. Boesch and Willis then extended this work by using a different collective 

coordinates method. Their method is known as the projection operator method [48]. 

The advantage of this method is that one is able to take into the account the effects 

of radiation and dressing on a moving kink. The numerical value of the quasimocle 

frequency was found by changing the slope of the kink slightly and then following 

the subsequent clamped oscillations. A Fourier analysis of these oscillations showed 

that the frequency is just above (but close to) the lower phonon band edge. Recent 

numerical studies, however, claim that such a mode does not exist but that there 

is in fact another quasimode (i.e. other than the one predicted by Rice) which is 

excited when the kink is placed on the lattice [49]. 

The sine-Gordon quasimode plays no part in kink-antikink interactions. The 

slope of the kink during such an interaction changes in a way that does not excite 

the mode and no radiation is emitted during the process. However, one expects the 

quasimode to be excited during kink-phonon and kink-impurity interactions, and 

also when the kink is placed on a lattice. In the latter case the mode is excited 

because it is able to resonate with the Peierls-Nabarro potential. 

2.2 Lattice systems 

Lattice systems are important for two reasons. Firstly, we may want to solve a non­

linear partial differential equation system which cannot be solved analytically. This 

would involve cliscretising the system and then solving the equations numerically. 

Secondly, we may want to model a physical process explicitly on a lattice rather 

than continuous space. These two cases are different in the sense that the first case 

requires the corresponding lattice system to be as close to the continuum case as 

possible. That is, we would like to minimise the effects of discretization on the lattice 

system. For the second case, these effects may be important to the physical model. 

An important example of such a discretization effect is the Peierls-Nabarro (PN) 

potential barrier. In general the PN barrier is numerically equal to the difference 

in energy of a static kink located exactly on a lattice site and one located halfway 

between two sites. It arises essentially because in a given lattice system, the static 
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kink cannot take any arbitrary position on the lattice: it can be located either ex­

actly on a lattice site, or half-way between two sites. The kink energy is maximum 

if the kink is located exactly on a lattice site and minimum if it is half-way between 

sites. This means that a kink travelling along a lattice will experience an oscillating 

potential well and will radiate. It may eventually get pinned between sites, when 

the PN barrier is insurmountable. 

There are other features of continuum systems which one can also have in dis­

cretized systems, such as integrability, the topological stability of the soliton, etc. 

One can usually maintain these by a careful choice of discretization [42], [52]. In 

the next section we will describe a lattice sine-Gordon system which maintains the 

Bogomolny bound of the continuum system. One consequence of this is that the 

discrete model is a much better approximation to the continuum sine-Gordon sys­

tem. For example, one gets an exact static kink solution on the lattice, and also 

there is no PN barrier [42]. 

2.2.1 Topological Discrete Sine-Gordon System 

Topological discrete models were introduced in [42], [53], [54], [55], [56]. They are 

basically lattice systems which maintain the Bogomolny bounds of their continuum 

counterparts. The upshot of this is that there is usually an exact expression of the 

soliton available and the lattice system is a better approximation to the continuum 

system. The topologically discrete sine-Gordon (TDSG) system [42] is defined by 

the Lagrangian 

(2.21) 

where the kinetic energy is EK = %2:::: ;p;,_ and the potential energy is Ep = ~ l::(D?;_+ 

F;). 

The quantities Dn and Fn are given by 

(2.22) 

giVmg 

(2.23) 
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't/Jn = 'lj;(x) at the nth lattice site and 't/Jn+t = 'lj;(x+h), where his the lattice spacing. 

The first term in equation (2.23) represents an attractive force analogous to the 

Hooke force. The second term is a substrate potential, found by taking an average 

of the potential of the two nearest neighbours. 

In the continuum limit, as h -t 0, Dn -t 'lj;x, and Fn -t sin 'lj;, and one recovers 

the standard expression of the continuum potential 

(2.24) 

The main feature of this model is the choice of the derivative on the lattice. This 

choice is motivated by the Bogomolny argument of the continuum system, presented 

in the preceding chapter. In particular, equation ( 1.10) is replaced with the discrete 

analogue, 

-~ 'lj; __ cos'lj;n+l- cos'lj;n _ D F 
COS n- h - n n, (2.25) 

with the kink boundary conditions 

lim 'lj;n = 0 and lim 'lj;n = 1T. 
n~-oo n~oo 

(2.26) 

This leads to the following discrete Bogomolny argument 

(2.27) 

1 
= Ep + 2 l:)cos 'lj;n+l- cos 'lj;n) (2.28) 

nEZ 

= Ep -1, (2.29) 

so Ep 2: 1, with equality given by the Bogomolny equation, Dn = Fn, i.e. provided 

1 
sin 2 ( 'lj;n+l + 'lj;n) 

or, 'lj;11 2 tan- 1 exp a(nh- b). (2.30) 

The constant a= h- 1 In[~~~] is the kink's slope and bE lR is the position. Equation 

(2.30) is the static kink solution. So the moduli space of static solutions for the 

TDSG is isomorphic to lR rather than Z, which is what one usually expects for a 

lattice system. Moreover, Ep is independent of b suggesting that the model has no 
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PN barrier. This means that the kink can move along the lattice arbitrarily slowly 

without getting pinned. 

The Euler-Lagrange equation gives the following equation of motion, 

.. 4 - h2 
. . 4 + h2 

. 
'l/Jn = 

4
h2 cos'l/Jn(sm'l/Jn+l +sm'l/Jn-d-

4
h2 sm'l/Jn(cos'l/Jn+l +cos'l/Jn-l)· 

(2.31) 

Equation (2.31) can then be used to study the behaviour of a moving kink, 

'l/Jn(t) = 2 tan- 1 exp[a(nh- b)- vt]. (2.32) 

Note that (2.32) is not a solution of the equation of motion (2.31); nevertheless it 

can be used as an initial condition in the simulations. The results show that for 

small initial velocities the kink wobbles with a period hlv as it moves along the 

lattice [ 42]. This is a purely dynamical effect since there is no PN barrier. 

For fast moving kinks it is found that the kink radiates as it moves along the 

lattice. This is observed through a gradual decrease in the kink velocity. But it is 

found that there is certain velocity threshold below which the radiation from the 

kink is significantly reduced. 

The existence of such a velocity threshold can be understood by considering the 

linearised equation of motion, 

(2.33) 

Equation (2.33) can be used to derive a dispersion relation for small amplitude 

travelling waves, given by 

4- h2 

2h2 cos kh, (2.34) 

where k is the wavenumber. Since 0 < h < 2, we have 1 < w < 2lh. The case 

w = 1 corresponds to the threshold velocity. The frequency at which the kink hits 

the lattice sites is vI h per unit time. So provided v 2:: hl27r, the kink will radiate 

(at w = 21rv I h). But if v < hi2Jr then w < 1 and the kink radiates very slowly. 

Hence there is a "preferred" velocity for the kink. Since this velocity depends only 

on h, it can be regarded as a feature of the lattice. 
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The choice of the functions Dn and Fn is not unique. For instance, Dn could be 

multiplied by a function f(x, h) and Fn by f(.T, h)- 1 and the product is independent 

off so one would still have a topologically stable kink solution. The only condition 

on f ( x, h) is that limh-to f = 1. Similarly there is freedom in the choice of the 

kinetic energy term in the Lagrangian. Zakrzewski [53] has investigated the effects 

on the kink motion when this choice is exploited. 

2.3 Kink-antikink Interactions in the TDSG Sys­

tem 

2.3.1 Preliminaries 

In this section we present results of kink-antikink interactions in the Speight-·ward 

model. The results are obtained by solving (2.31) with the initial condition corre­

sponding to Galilean boosted static kink and antikink solutions at each end of the 

lattice grid, i.e. 

'lj;(x, 0) = 2 tan- 1 exp a(x +b)- 2 tan- 1 exp a(x- b), 

-J;(x, 0) = -av(sech a(x +b)+ sech a(x- b)). 

(2.35) 

(2.36) 

The boundary condition is taken to be 'lj;(xmin) = 'lj;(xmax) = 0, i.e. the ends of the 

kink and anti-kink are held fixed at all times. 

The kink and antikink move towards each other with relative velocity 2v. Equa­

tion (2.31) is solved using a 4th-order Runge-Kutta algorithm. The programme is 

run with various lattice spacings h. The time step is chosen to be 0.05. This con­

serves the energy to within 0.05% in a simulation which runs for 1000 units. We use 

the same time step for all values of 0.1 :::; h :::; 1.5. 

Our choice of the boundary condition means that any radiation emitted by the 

kink will reflect off the edges and eventually interact with the kinks. This is easily 

avoided by making the grid sufficiently large. 

As mentioned already, the amount of radiation emitted by the kink depends on 

the kink velocity and also on the lattice spacing. For large velocities and coarser 
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lattices the amount of radiation is significantly greater. In these cases we have 

damped the first few lattice sites at each end of the grid. That is, the value of~ at 

these sites is decreased by a constant amount (10%) for the entire duration of the 

simulation. The total energy of the system is of course no longer conserved. The 

energy loss depends on the initial velocity of the kink and on the lattice spacing, 

but it is usually within 10% of the initial energy, for a simulation running for 1000 

units. 

2.3.2 Simulation Results 

The simulations showed that the outcome of an interaction depends on the impact 

velocity of the kinks. The velocity of the kink (or the antikink) is defined to be 

the rate of change of X(t), where X(t) is the "average" position of the kink (or the 

antikink). X(t) for the kink is given by 

0 

L xiei 

X(t) = i=-; (2.37) 

L ei 

i=-N 

Here ei is the total energy of the field and the radiation at the ith lattice site, where 

Xi = Xmin +ih. The quantity ~~N ei is the total energy of the field and the radiation 

for the single kink. We found that for cases when the phonon radiation from the 

kinks is not significant, X ( t) makes a good approximation to the kink position. We 

define the velocity of the kink to be X(t), which is computed using the forward 

difference, _,Y(t) = L (X(t + 6t)- X(t)). 

Since the kink wobbles as it moves along the lattice, ./Y(t) is an oscillating func­

tion. The period of oscillation is the wobble period, h/v, where v is the velocity 

used in the initial condition (2.36). This wobble can be understood by considering 

the geodesic motion on the kink moduli space. This moduli space has a periodic 

metric [42]. 

Figure 2.1 shows various plots of how the kink velocity changes with time for a 

single kink starting at different positions on the grid. The kink is on a lattice with 
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h = 1.4 and the initial velocity of the kink is v = 0.197. In all cases the average 

velocity of the kink is significantly decreased. This is due to phonon radiation from 

the kinks. The plots show that the kink velocity depends on the initial position of 

the kink, modulo h. 

The outcome of an interaction has sensitive dependence on the velocity of the 

kink. In particular, there are three different outcomes: 

(a) If the kink impact velocity is above a certain critical velocity, Vc, then 

the kinks simply pass through each other, i.e. there is a smallest number Vc such 

that the outcome of the interaction for all v 2': Vc is always a passing through 

behaviour. The value of Vc depends on the lattice spacing and also on b. Figure 2.2 

shows the dependence of Vc against h. The dotted curve represents the quadratic 

0.073h2 + 0.036h. This curve is an empirical fit to the data points and is not derived 

from the theory. 

The dependence of Vc on the position of the kinks is due to dynamical dressing 

and the kink wobble. For small initial velocities (figure 2.1), the kink velocity oscil­

lates with a period (h/v). The amplitude of oscillation is of the order of 10-2
. For 

large velocities, the phonon radiation make the oscillations erratic and also signif­

icantly decrease the overall velocity of the kink. The initial velocity also changes 

due to the readjustment of the kink field to suit the lattice distribution (dynamical 

dressing). The initial propagating velocity of the kink is not always v, the velocity 

used in expression (2.36). In some cases it is larger than v and in others it is less 

than v. This change depends on the magnitude of v and on the lattice spacing. The 

effect can be seen in figure 2.1. 

For initial kink velocities which give impact velocities below Vc, we found that 

the outcome is either (b) a bounce or (c) a trapped breather-like state (a bion). 

The bounce is essentially a kink-antikink scattering, where the kinks after the first 

collision pass through each other but fail to escape to infinity. Instead, they travel a 

small distance and then turn around for another collision. After the second collision 

the kinks either escape to infinity or turn around again for more collisions. For a 

2-bounce event (meaning the kinks pass each other twice) the ultimate outcome of 

this scattering would be a reflection, and for a 3-bounce a transmission. 
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Figure 2.1: A plot of the kink velocity against time. The three curves represent 

velocities of a kink on a lattice with h = 1.4 and with an initial velocity of 0.197 but 

starting at different points on the lattice. The solid curve represents a kink with 

b = 30, the dashed curve a kink with b = 25 and the clotted curve is for b = 15. 
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Figure 2.2: A plot of critical velocity against lattice spacing. The crosses rep-

resent data points found numerically. The curve represents a theoretical fit of 

Vc = 0.073h2 + 0.036h. 
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The velocities for the bounces occur in small intervals. For velocities outside of 

these intervals the outcome is always a bound state. This is similar to the result 

of the r/J4 model presented in section 2 .1. 2 except in this case the outcome does not 

depend fractally on the impact velocity. We have only seen 2, 3 and 4-bounce events. 

But the velocities at which the bounces occur are not easy to find and the intervals 

are small (lo-7 for a 4-bounce), so it may be that higher bounce events occur but 

we have not seen them. 

Figure 2.3 shows an example of the 2-bounce event. In this figure we have plotted 

the field 7/J(O, t) against t. 7/J(O, t) is the field at the centre of mass of the kink-antikink 

system.The kinks are on a lattice of unit spacing with an initial separation of 10 

units. Vc for this combination is found to be 0.100. The kinks bounce for all initial 

velocities in the range 0.0969 ~ v ~ 0.0972 (2-bounce window). 

Figures 2.4 and 2.5 show examples of three and four bounce events. In figure 2.4 

the kinks transmit whereas in 2.5 they reflect off each other. As can be seen from 

the figure for the 2-bounce case, the kink and antikink collide, pass through each 

other and travel a small distance before stopping, turning around and travelling in 

the other direction. The kinks then collide again, pass through each other and this 

time escape to infinity. Figure 2.6 is a graph of 7/J(O, t) against t representing 

the oscillations at the centre of mass of a bion. This is essentially an n-bounce 

event for n very large. The erratic oscillations suggest that the system might be 

chaotic. The period of oscillations become constant after about 10 cycles and the 

bion then oscillates for a long time (i.e for hundreds of cycles). We have calculated 

the maximum Lyapunov exponent of the time series 7/J(O, t), using the algorithm of 

Wolf et al [57]. Its value is approximately 0.18, suggesting that the oscillations are 

mildly chaotic. In general, a positive maximum Lyapunov exponent is taken as a 

formal definition of chaos. 

The results of the simulation can be understood using the resonance energy 

exchange mechanism. This requires the TDSG kink to support shape modes. vVe 

show next that the TDSG kink does support such a mode. The frequency of this 

mode is calculated in two ways, by using a collective coordinate approximation and 

also numerically, by Fourier analysing the deformations of a perturbed static kink. 
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Figure 2.3: A figure representing the 2-bounce event. The kinks collide and essen­

tially reflect off each other. 
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Figure 2.4: A 3-bounce event where the scattering of the kinks results in a trans-

ffilSSlOn. 
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Figure 2.6: A plot of 'lf';(O, t) against time, representing the oscillations at the centre 

of mass of the bion. 
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Note that we could also have used a matrix-based approach similar to the one used 

by Speight in [58], where it was used to calculate the Casimir energy of the TDSG 

kink. 

2.3.3 Kink Internal Shape Mode 

Collective Coordinate Approximation 

We can obtain a collective coordinate approximation of the TDSG system by treating 

the scale factor a in the kink as a dynamical variable. This reduces the number of 

degrees of freedom from infinity to one. The Lagrangian of the reduced system is 

given by 

£ = f(a, b)a?- g(a, b), (2.38) 

where f(a, b) and g(a, b) are functions given by 

(2.39) 
X 

(2.40) 

The corresponding equation of motion is 

2fa + f'a?- g' = o. (2.41) 

where the prime denotes differentiation with respect to a. g(a, b) has a minimum 

(stable equilibrium) at a = s := * tanh- 1 ~- Small amplitude oscillations a(t) = 

s + E(t) satisfy the linearised equation, 

2 j ( S, b) E = g" ( S, b) E. 

Hence the waves oscillate with frequency 

1 
V=-

27f 
g"(s) 

2f(s, b)· 

(2.42) 

(2.43) 

g" ( s) = ( 1- ~ h2
) 

2
, so the frequency of the shape mode depends on the lattice spacing. 

For h = 1, the shape mode frequency is 0.152. Table 2.1 shows the dependence of 

frequency on the lattice spacing h. 
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h I frequency I 
0.1 0.175 

0.2 0.175 

0.5 0.170 

0.8 0.161 

0.9 0.157 

1.0 0.152 

1.2 0.143 

Table 2.1: The collective coordinate predictions for the shape mode frequency for 

various values of h 

As a check on the accuracy of the collective coordinate approach, we have used 

it to calculate the frequency of the shape mode of the c/J4 kink. The value found is 

J(1.55), which is fairly close to the actual value y'(l.5). 

Numerical method 

Numerically, the shape mode frequency is obtained by Fourier analysing the defor­

mations of the perturbed static kink. We set the initial condition for equation (2.31) 

to be 

'1/J(x, 0) = '1/JK(x, 0) + E 

;p(x, 0) = 0, 

(2.44) 

where '1/J(x) is the static kink solution and E is the pertubation. The value of E is 

chosen to be -0.03. The field '1/J(x, t) is sampled at various values of x. From this 

we obtain the variations in the field, 8'1/J(x, t) = '1/J(x, t) - '1/J(x, 0), for each of the 

sampled values of x. 8'1/J(x, t) were then Fourier analysed using the MATLAB FFT 

routine. 

In figure 2. 7 we have plotted the power spectrum for the data sampled at x = 0 

for a kink on an h = 1 lattice. The power spectrum of the data for other values of 

x give identical power spectra. Moreover, we get identical power spectra for cases 
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Figure 2. 7: Power spectrum of the fluctuations around a perturbed static kink 

when the kink is located exactly on a lattice point or somewhere in between points, 

i.e. there is no dependence on b. 

Figure 2.7 was constructed using N = 214 = 16384 data points. Aliasing of the 

power does not occur since the amplitude at the Nyquist frequency is essentially 

zero. There is a peak at v = 0 corresponding to the Goldstone mode, and a peak at 

I/= 0.161 corresponding to the shape mode. 

This procedure is repeated for other values of h. In contrast to the results 

suggested by the collective coordinate approach, we find that the frequency of the 

shape mode is more or less independent of h. For 0.5 ~ h::; 1.2, we found 0.158 < 

v < 0.161. The value of the frequency (for h = 1) however is within the range of 

frequencies found using the collective coordinate method. 

In the continuum limit the TDSG shape mode frequency is precisely the quasi­

mode frequency of the continuum sG system found by Rice [47], WR = 0.175, which 

corresponds to an angular frequency of 1.0996. This finding seems to be in con­

tradiction with the very recent work of Quintero, Sanchez and Mertens [49], whose 

numerical simulations show that the quasimode reported by Rice does not exist. 
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However, it can be argued that the simulations done by Quintero et al are not accu­

rate since they allow phonons to be reflected off the boundaries and interfere with 

subsequently emitted phonons from the kink [59]. 

It is interesting to compare the situation with other discrete sine-Cordon systems. 

The well-known Frenkel-Kontorrova model does not support a kink with an internal 

shape mode for all values of the discreteness parameters. The sine-Lattice model 

however does support one, as long as the system is only weakly discrete [39]. The 

shape mode for the sine-Lattice system lies just below the lower phonon band sug­

gesting that it is a genuine kink shape mode rather than just a phonon resonance. 

Moreover, in the continuum limit this shape mode converges to the sine-Cordon 

quasimode frequency. 

2.4 Kink-antikink Interactions in Topological Dis­

crete cjJ4 System 

In this section we present the results of kink-antikink interactions for the topological 

discrete rp4 system. The model is defined by the Lagrangian 

L = h ~ ~ri.2 (t)- (~D2 + ~F2 ) 
~ 2 '+'n 2 n 8 n ' 

(2.45) 
nEZ 

with, 

(2.46) 

say. With this choice of Dn and Fn, the equation of motion is given by 

The model admits genuine lattice static kink solutions provided h < 2, and the 

moduli space of these solutions is isomorphic to IR, suggesting that the kink can be 

positioned anywhere on the lattice and that there is no Pierels-Nabarro barrier [54). 

However, we use the Calilean boosted continuum static kink and anitikink solutions 

as our initial conditions in the simulation, as has been done for the conventional 
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discrete cp4 system. This will enable us to compare the results we obtain here with 

the results presented in section 2.1.3. 

2.4.1 The Setup 

The results of this section were obtained by solving (2.47) using a 4th-order Runge­

Kutta algorithm. The initial condition was set as 

cp(x,O) 

~(x, 0) 

1 1 
tanh -(x + 15)- tanh -(x- 15)- 1, 

2 2 
V 1 1 

-- [ sech 2 - ( x + 15) + sech 2
- ( x - 15)], 

2 2 2 
(2.48) 

so the kink is located at x = -15 and the antikink at x = + 15. The simulations 

were performed with a time step of 6t = 0.05 and the grid was chosen to have 900 

points. The results of the simulations are very sensitive to any interference from 

the radiation from the kinks. The best way to avoid this is to make the grid large 

so that the radiation does not have enough time to reflect off the boundaries and 

interfere with the kinks. This is of course at the expense of computational time; the 

chosen grid size and time spacing were found to be the best compromise. With this 

time step the energy is conserved to about 2%. 

The boundary condition was chosen so that at the first and last points of the 

grid the field was fixed at cp = -1 for all time. The results were then obtained by a 

programme that solved (2.47) with (2.48) (using a 4th-order Runge-Kutta algorithm) 

for particular value of v. The programme began with some Vinitial and ran in steps 

of 6v = 0.001 until V final· For each v the outcome of the interactions was recorded, 

in particular the number of bounces were recorded. The total energy of the kink­

antikink system, E = I:~!~ ei, is a minimum whenever the kinks bounce, so the 

number of bounces can be recorded by finding the number of minima2 of E. 

It is important to choose the correct duration length T of the simulation. This 

is because for some cases the time gap between the first and the second collision is 

rather large, so it is easy to mistake these as a single collision event if T is nut large 

2 The "minimum" is recorded only if the energy goes sufficiently below some average value. This 

is because E is an oscillating function in time and therefore has many minima. 
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Figure 2.8: A plot showing a "reflection" event (n = 1): the kink and antikink 

simply bouncing off each other. 

enough. vVe have chosen T = 400 for most part of the programme except at the 

beginning (when v is small) where T = 1500 was chosen. 

2.4.2 Simulation Results 

The above setup was run for various values of the lattice spacing h. In general, 

we found that as the lattice spacing is increased the effect of the kink shape mode 

on the outcome of the interaction is decreased. That is, for coarser lattices the 

outcome is more likely to be a "reflection" (i.e. where the kinks collide once only, 

as depicted in figure 2.8). Figure 2.10 is the plot of Vr against the lattice spacing 

h. Vr is the velocity at which the kinks first reflect off each other, and such that 

for all subsequent v, v 2: Vn the outcome is always a reflection. For v ::; Vr there 

are reflection events but they occur in between "trapped" states (where the kinks 

collide more than once, as shown in figure 2.9). 

In fact, the general pattern of the outcome of an interaction for all v and h is 

similar to that of the conventional discrete cjJ4 system. That is, there are "trapped" 

states (where the kinks collide more than once) in between reflection states. Fig-
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Figure 2.9: A plot showing a "trapped" event. In this case n = 9, but a trapped 

event is one for which n > 2. 
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Figure 2.10: A plot showing the relationship between Vr and the lattice spacing. 
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••• I 
V: 

Figure 2.11: A plot showing the general pattern of the outcome of an interaction 

(regardless of the lattice spacing). The dark bands represent a trapped state and 

the light ones a reflection. 

ure 2.11 depicts this general pattern, 

For instance, for h = 1.5, the velocities for which this happens are g1ven m 

table 2.2. 

We have also seen the "windows" behaviour that was reported for the conven­

tional discrete cjy4 system. In each of the "trapped" velocity intervals there are 

"windows" for a given n-bounce event. For instance, the first four 2-bounce win­

dows for the "trapped" interval 0.1031-0.1080 (as shown in table 2) are represented 

in figures 2.12- 2.15. 

A similar structure exists for a 3-bounce, 4-bounce etc, events. One feature that 
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Velocity range J Outcome J 

< 0.0850 trapped 

0.0851 - 0.0856 reflection 

0.0857- 0.0895 trapped 

0.0896 - 0.0910 reflection 

0.0911 - 0.0948 trapped 

0.0949 - 0.0966 reflection 

0.0967- 0.1008 trapped 

0.1009- 0.1030 reflection 

0.1031 - 0.1080 trapped 

0.1080- 0.1112 reflection 

0.1113- 0.1161 trapped 

0.1161 - 0.1204 reflection 

0.1205- 0.1250 trapped 

0.1251 - 0.1303 reflection 

0.1304- 0.1349 trapped 

0.1350- 0.1422 reflection 

0.1423- 0.1460 trapped 

> 0.1461 reflection 

Table 2.2: The results of kinks-antikink collisions for h = 1.5. The reflection state is 

one for which the kinks collide once only ( n = 1), whereas a trapped state is when 

n 2 2. Here Vr = 0.1461. 
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Figure 2.12: The first 2-bounce window at v = 0.1066. 
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Figure 2.13: The second 2-bounce window at v = 0.10673. 
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Figure 2.14: The third 2-bounce windows at v = 0.1072. 
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Figure 2.15: The fourth 2-bounce windows at v = 0.1076. 
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is absent in the TD</>4 system is the fractal structure. For the conventional discrete 

</>4 system, the boundary between any two reflection and trapped intervals can be 

blown up and one sees a similar pattern (figure 2.11) for the velocities that form the 

boundary [36]. This feature has not been seen for the TD<j>4 system. 

2.5 Conclusion 

In this chapter we have discussed the behaviour of kink-antikink interactions in the 

continuum sine-Cordon and 4>4 systems. We have also seen the outcome of kink­

antikink interactions in the TDSC and the TD<j>4 systems. 

We found that the kink-antikink interactions in the TDSC system exhibit res­

onance phenomena similar to those in the continuum 4>4 system. In particular, we 

found that for certain initial kink and anti-kink velocities, the kinks either pass 

through each other, reflect off each other or form a long-lived bound state. The 

initial velocities for which the kinks first reflect off each other are found to increase 

as the lattice spacing is increased. These resonance phenomena may be due to the 

excitation of an internal mode of the TDSC kink. A collective coordinate analy­

sis shows that the frequency of this mode depends on the lattice spacing, and in 

the continuum limit (h -----+ 0) the frequency seems to approach the quasimocle fre­

quency predicted by Rice. The analysis clone in [49] however says that there cannot 

be a quasimode for the continuum sine-Cordon kink, but they do predict the exis­

tence of a quasimode for a lattice sine-Cordon kink. This is not the quasimocle we 

have found, so this is something genuinely new. Further numerical simulations are 

required to determine what is happening in the limit h -----+ 0. 

Also, as we have mentioned already, there is a modified TDSC system [53] which 

admits an exact travelling-kink solution (with a fixed velocity). It would be inter­

esting to perform kink-antikink interactions for this system. Since the expressions 

we have used to perform the interactions are only an approximation to the equation 

of motion, it would be interesting to see the difference. 

The simulation results for the TD</>4 system are similar to the conventional dis­

crete 4>4 system, though the fractal structure that was reported for the latter has 
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not been seen here. This conclusion was drawn by explicitly checking the behaviour 

at the boundary between the trapped and reflection intervals. 



Chapter 3 

Travelling Kink Solutions in 

Lattice Systems 

3.1 Introduction 

The subject of the existence of exact travelling kink solutions for lattice systems is 

clearly an important one. The immediate application is in condensed matter physics 

where one is interested in the dynamics of the lattice kink. In general one does not 

expect lattice systems to admit an exact travelling kink solution: the presence of 

the Peierls-Nabarro barrier means that the kink loses energy through emission of 

radiation and slows clown. Moreover, lattice systems in general are not invariant 

under Galilean and Lorentz transformations. Besides, travelling kinks obtained 

this way require fixing the kink velocity from the outset so the velocity cannot be 

considered as a parameter. 

Nevertheless, there are lattice systems which admit travelling-kink solutions. The 

first example of such a system was from Schmidt [60], who derived a travelling-kink 

expression essentially by" reverse engineering": by writing down a travelling-kink so­

lution first and then deriving the potential for which this was a solution. He derived 

a tanh-shapecl kink for a nonlinear lattice system which had a double-minimum on­

site potential. This procedure was then extended to other (reaction-diffusion-type) 

systems by Bressloff [61]. Recently, a systematic procedure for obtaining various 

travelling-wave solutions (pulses, kinks, breathers) has been put forward by Flach, 
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Kaldko, and Zolotaryuk [62]. Their "Inverse Method" is fairly general and applies 

to higher dimensional systems as well. 

Interestingly, one can find exact travelling-pulse solutions for many nonintegrable 

lattice systems. A recent existence theorem by Friesecke and Wattis suggests that 

this is clue to the inherent nonlinearity of the system rather than its integrability [63]. 

This theorem however has not been extended to include topological solitons (kinks, 

breathers etc). Note that the TDSG system is an example of a nonlinear system 

where the particular choice of inter and on-site potentials has resulted in an exact 

static kink solution. But the TDSG system together with other nonintegrable lattice 

sine-Gordon systems do not admit exact travelling-kink solutions. In this chapter we 

will show that an integrable lattice sine-Gordon system does admit such a solution. 

Other integrable lattice systems which also support travelling-kink solutions are the 

Toda system [64] and the Ablowitz-Ladik system [65]. 

The aim of this chapter is therefore two-fold: to briefly survey the situation 

regarding exact travelling-kink solution for various lattice sine-Gordon systems and 

to show that an integrable lattice sine-Gordon system does support the travelling­

kink solution. 

3.2 Lattice sine-Gordon systems 

In this section we will summarise the situation regarding travelling-kink solutions 

in various lattice sine-Gorclon systems. Let us begin with the Hamiltonian for the 

continuum sine-Gordon system, 

H[q\, 1r] = J [ ~1r2 + H :: )' + (1- cosq\)l dx. (3.1) 

Here cp(x, t) and n(x, t) are the canonical coordinates which satisfy the Poisson 

bracket relation { n(x), cp(y)} = 8(x- y). There are many lattice versions of (3.1). 

The most natural one seems to be the following, 

(3.2) 
n 

where ~ is the difference-operator on the lattice and h is a constant (the discreteness 

parameter). The potential V(c/Jn) is usually taken to be V(cfJn) = 1- cos c/Jn, but it 
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is not restricted to this; it could, for instance, be a two-point function V(q)n, cPn+d· 

The difference-operator 6. can be a number of things, with the most common choice 

being the forward-difference operator, 6.] = (J(x +h)- f(x))jh. Taking 6. to 

be this gives a lattice sine-Gorclon system known as the Frenkel-Kontorova system 

[66]. Other choices of 6. give other systems such as the TDSG system (and its 

modifications) [42], [53]. One could also have a lattice sine-Gordon system where 

the Pn are replaced by its two-point equivalent. 

Let us now consider some of these systems in detail. 

The Frenkel-Kontorova system 

The Frenkel-Kontorova is the most studied lattice sine-Gordon system and is given 

by the differential-difference equation 

d2q)n 2 · 
dt2 = cPn+1 + cPn-1 - 2q)n- h sm cPn, (3.3) 

where n E Z is the position on the lattice and h is the discreteness parameter. 

Equation (3.3) is successfully used to model a number of phenomena including a 

network of Josephson junctions, certain molecular crystals and the behaviour of 

DNA [67]. A kink solution of the static system, 

(3.4) 

can be obtained numerically using shooting methods. For a time-dependent solution 

one would need to solve 

v2 r.p" (z) = r.p(z + 1) + r.p(z- 1)- 2r.p(z)- h2 sin r.p(z), (3.5) 

where z = (n- vt) so that cPn(t) = r.p(z). A moving kink solution of (3.3) would 

require the usual continuum sine-Gordon kink boundary conditions (as discussed in 

chapter 1). Equation (3.5) has no mathematically exact solutions that represent a 

moving kink [68]. Of course in the continuum limit h ----+ 0, there is such a solution 

given by 

q) = 4 tan- 1 exp['y(x- vt)], (3.6) 
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where 1 is the Lorentz factor. But for all other h the closest one gets to a moving 

kink is a solution that has the basic shape of the kink but where the tails are replaced 

by a small amplitude wave (corresponding to the phonon radiation); the amplitude 

of the tail-wave increases as the lattice spacing is increased [68]. 

The "reverse engineering" argument shows that to obtain a moving kink solution 

cp = 4 tan- 1 exp(kn- vt- b) for a system with the Hamiltonian (3.2) and where ~ 

is the forward-difference operator, we need potential V ( c/Yn) to be 

V(c/Yn) = ~2 J [ 4 tan-1
(ek tan lcp)- 2cp + 4 tan-1

(e-k tan lcp)- v 2h2 sin cp] dcp. 

(3.7) 

The potential depends on k and u and therefore on the speed uh/ k of the kink. 

The sine-Lattice system 

The sine-Lattice system is a modification of the Frenkel-Kontorova system [69], [70]. 

The modification is the replacement of the difference factor ~cp = c/Yn-l + 4Yn+l - 2c/Yn 

with sinusoidal functions. This means that the on-site and inter-site potentials in 

the sine-Lattice Hamiltonian are now both sinusoidal functions, 

H = L (~;/2) + [1- cos(c/Yn+l- c/Yn)] + [g(l- cosc/Yn)J, (3.8) 
n 

where c/Yn = cp11 (t) and g = g(x, t). The equation of motion can be found from 

Hamilton's equations, 

g1vmg 

dc/Yn 
dt 

and 

sin(c/Yn+l- c/Yn)- sin(c/Yn- c/Yn-1)- ~n = gsin(c/Yn)· 

(3.9) 

(3.10) 

According to Hirota theory [21], to find soli ton solutions of a given nonlinear 

equation, it is sufficient to cast it into a suitable bilinear operator equation. The 

bilinear form for the sine-Lattice equation is very similar to the one for the continuum 

sine-Gm·clon equation [70]. Consequently the soliton properties of the sine-Lattice 

system are very close to the sine-Gordon system. But clue to the nonintegrability 
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of the sine-Lattice equation, the solitons are well-defined but not mathematically 

exact, i.e. they are restricted to certain ranges of the kink width and velocity. 

The system supports a well-defined moving kink of relatively short wavelength, and 

it also has approximate solutions for kink-antikink and breather-like states. The 

analogous SLO system [71], obtained by setting the right hand side of (3.10) to 

zero, 

sin(1>n+1 -1>n)- sin(1>n -1>n-d- ~n = 0 (3.11) 

gives the explicit solutions 

(3.12) 

where A is the (arbitrary) amplitude, and an and f3n are functions of n and t. 

The TDSG system 

As we have already seen in chapter 2, by exploiting the choice in ~ one can obtain a 

lattice sine-G01·don system that maintains the Bogomolny bound of the continuum 

system. The static kink of the system is obtained by solving the discrete Bogomolny 

equation. A moving kink configuration is obtained by Lorentz boosting the static 

kink. But this configuration is only an approximation; it does not satisfy the equa­

tion of motion (2.31). Since there is freedom in the choice of the expressions forD, 

F, and in the way the kinetic energy of the kink is defined, one can hope to find 

suitable expressions for these leading to a (modified) TDSG system that yields ex­

plicit moving solutions. This is indeed the case [53]. One can find these expressions 

by "reverse engineering". The Hamiltonian for the modified TDSG system is given 

by 

1 ( /3 Pn ) 8 . 2 1 ( ) - (32 logcos h + h2 sm 4 1>n -1>n-1 + 

. 2 1 ( ) 2 sm 4 1>n+ 1 + 1>n , (3.13) 

and the equation of motion follows from Hamilton's equations [53]. A moving kink 

solution of the equation of motion is given by 

1>n(t) = 4 tan-1 exp[1(kn- vt- b)], (3.14) 
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where k, v and bare constants. Substituting this into Hamilton's equations (3.9) we 

find that they are satisfied provided 

(3.15) 

and for v i= 0, 

2(3v = sinh k. (3.16) 

Note that for v = 0, condition (3.15) reduces to k = ~ tanh-1 * [42], the expression 

for a in chapter 1. So we find that the modified TDSG system does support a 

travelling kink but its velocity is fixed, determined by (3 and h. A kink with this 

velocity is found to propagate on the lattice with no emission of radiation [53]. 

3.3 Integrable Lattice Systems 

We expect integrable lattice systems to support explicit travelling kink solutions; 

examples of such systems which have long been known are the discrete Toda [64] 

equation and the Ablowitz-Ladik [65] system. The Ablowitz-Ladik system also sup­

ports moving discrete breathers. The subject of integrable lattice systems has been 

tackled using a number of approaches; these include the AKNS method [25], Hirota's 

bilinear operator formalism [21], etc. Here we will consider the point of view that a 

lattice system is integrable if it can be expressed as the consistency condition of a 

Lax pair. The Lax pair is a linear system defined by two (2 x 2) matrices L(n, t, () 

and V(n, t, () [72], 

(3.17) 

where the dependence on t and ( is taken to be understood; \ll(n, t, () is a column 

2-vector and ( E C is the spectral parameter. From (3.17) we see that Ln and Vn 

provide the spatial and time evolution of the system respectively. The consistency 

condition for ( 3.17) is 

(3.18) 
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Notice that (3.18) gives an evolution equation for Ln only; in particular, there is 

none for 11,1 • The system however is well-defined because the matrix Vn can be found 

from Ln. The details of how this is done can be found in [72]. 

This is, of course, analogous to the r-matrix description of integrable systems, 

where one finds the r-matrix from the £-operator [73]. In this case, one has the 

Hamiltonian H written in terms of the basic fields 1Yn(t) and TJn(t), which satisfy 

the Poisson relation { 1Jn, TJm} = c5nm· Associated with the £-operator (or the ma­

trix Ln(()) are two matrices, an r-matrix and a matrix M((). The r-matrix is 

constructed in such a way that the fundamental lattice Poisson bracket relation is 

satisfied. For instance, for the lattice sine-Gordon system, this relation is given by1 

(3.19) 

The matrix M((), known as the monodromy matrix, is given by 

00 

!vi(() = IT Ln((). (3.20) 
n=-oo 

If we have ( 1 , ( 2 , ... , (N such that detLa = 0 for all o:, then the trace of the mon­

odromy matrix, 7((), can be related to the Hamiltonian, 

N 

H = L CaT((a), (3.21) 
a=l 

where ea is a constant. If a(r~~a)) = 0 then the Hamiltonian admits an infinite 

number of conserved quantities. This condition will be met provided V is local [72]. 

3.3.1 Integrable Lattice sine-Gordon system 

The integrable lattice sine-Gordon system is given by the £-operator [73], 

(j(1Jn)eiTJ,. 

~h((2 exp-it/>,./2 -ei<l>/2) 

1 At present a generalised form of the fundamental Poisson relation exists only for continuum 

systems [74]. Equation (3.19), however, is the relation for the lattice Landau-Lifshitz model, of 

which the lattice sine-Gordon system is a limiting case [73]. 
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where c/Yn(t) and rtn(t) are the canonical coordinates; f(c/Yn) = J1 + ~h2 cos c/Yn, and h 

is the lattice spacing. The corresponding r-matrix is similar to that of the continuum 

sine-Gordon system [73], 

1 
r(() = 16 sinh(() 

0 0 

0 cosh(() 

0 -1 

0 0 

0 0 

-1 0 

cosh(() 0 

0 0 

and the £-operator together with this r-matrix satisfy the fundamental lattice Pois­

son relation (3.19). The Hamiltonian for this system is given by 

H[c/Yn(t), Tfn(t)] = -~ L log ( 
2 
:n

82
) , 

n 

(3.22) 

where, 

1 1 2 1 1 
Hn = J(c/Yn)J(c/Yn+l) COS 4("7n+l + Tfn) + 28 COS 2(c/Yn+l + c/Yn) +COS 2(c/Yn+l- c/Yn)· 

(3.23) 

Here s E (0, J2) is a parameter related to the lattice spacing h; namely, h = 2s. 

Note that as h ---+ 0 we retrieve the continuum expressions; the £-operator (3.3.1) 

becomes the infinitesimal £-operator on the infinitesimal lattice 

Ln(() = ( ((1 + irtn) . ~h(e-i<Pn/2 -. (2ei<Pn/2) ) ' 

~h((2 exp-z<Pn/2 -ez<P/2) ((1- Z'rfn) 

where 

11Xn 
c/Yn = h cp(x)dx, 

Xn-l 

and Tfn = 1:~ 1 rr(x) dx, (3.24) 

such that {'1r(x), cp(y)} = b(x- y). The lattice Hamiltonian (3.3.1) reduces to the 

continuum Hamiltonian (3.1). 

3.3.2 Derivation of the Travelling Kink Solution 

The vacuum solutions of the integrable lattice sine-Gordon system may be con­

structed by taking 1/Jn (the 2 x 2 augmented matrix) to have the form 

1/Jn = UD((t, (3.25) 
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with 

1 ( 1 i ) U--- Vi i 1 ' ( 
fo- iko 0 ) . and D= 

0 fo + iko 

Here fo = J1 + kh2 and k0 = ~s((- (- 1
). Substituting (3.25) into Ln'I/Jn = 1/Jn+t 

and equating the powers of ( leads to the vacuum solutions rPn = 2mr. 

A travelling kink solution of the integrable lattice sine-Gordon system may be 

constructed by analogy with the continuum case [73]. In particular, let 1/Jn be of the 

form 

(3.26) 

where An is a 2 x 2-matrix independent of(, and Bn(() is the Blaschke-Potapov 

factor, 

B = J + (o - (o P, . 
n ( - (o n 

(3.27) 

Here Pn is a projection operator given by, 

so that P; = Pn. For a travelling-kink solution, ( 0 may be taken to be purely 

imaginary, i.e., ( 0 = ip, where J.L is a real number (related to the speed of the kink). 

The expressions for rPn and Tln can now be found by considering Ln = 1/Jn+l'l/J;; 1 and 

calculating the residue at ( = ip. This gives 

2 tan- 1 8 71 + 2 tan- 1 8n+l (3.28) 

Tln 4 
. _1 h sinh p871 - tan 1 , 

(fo- 2 cosh J.L)(1 + 8n8n+r) 
(3.29) 

where g = (2f0 + hcoshp)/(2f0 - hcoshp), u = 4f0 sinhp/(4fJ- h2 cosh2 J.L) and 

8n = e-utgn. Equation (3.28) is a kink solution provided cosh(2~t) < 8/h2 , but such 

a p always exists since 0 < h < Vi. By taking p = 0 we have 'l.t = 0 and rJ71 = 0, so 

this gives the static kink solution 

(3.30) 
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where c is a constant. Equation (3.30) is the solution of the following equation 

where 

fo + s r 

X(<J>n+l) = -J, -X (</>n), 
0- s 

X(</>n) = J(</>n) -. fo
1
COS ~</>n 

fo sm 2</>n 

Equations (3.31) are the Bogomolny equations. 

3.4 Conclusions 

(3.31) 

(3.32) 

In this chapter we have briefly reviewed the situation regarding travelling kink so­

lutions in various lattice sine-Gordon systems. Vve have seen that a number of 

non-integrable lattice sine-Gordon systems are unable to support explicit travelling 

kink solutions. However, certain integrable lattice systems are known to support 

such solutions. We have therefore sought to find travelling kink solutions for the 

integrable lattice sine-Gordon system. Explicit forms of such solutions are not be­

lieved to have previously existed in the literature. We have found these expressions 

(3.28) by analogy with the continuous sine-Gordon case [73]. It can be verified (using 

MAPLE for instance) that the given expressions indeed satisfy Hamilton's equations. 

It is conceivable that a double soliton solution or a breather can also be con-

structed using a similar procedure, again by analogy with the continuum case. 



Chapter 4 

Yang=Mills=Higgs Solitons on De 

Sitter Space=Tlirne 

4.1 Introduction 

As was mentioned in chapter 1, it is a conjecture by Richard vVard that all the 

known integrable systems in ( 1 + 1) and ( 2 + 1 )-dimensional flat space-times arise 

as reductions of the self-dual Yang-Mills equations [33]. In this chapter we will 

show that an appropriate reduction of the self-dual Yang-Mills equations generates 

an integrable system which is covariantly coupled to a curved space-time. Such a 

reduction procedure can be carried out only for space-times which have constant 

curvature. So there are three possibilities, namely, the positive definite hyperbolic 

space-time and its Lorentzian versions, the de Sitter and anti-de Sitter (AdS) space­

times. The positive definite case has been dealt with by Atiyah, and gives rise to 

the so-called hyperbolic monopoles [75], [76]. The AdS case has been considered 

also, by vVard [77], and both the positive definite case and the AdS case are being 

investigated further by Hickin [78]. Here we will consider the remaining possibility, 

namely we will construct an integrable system on de Sitter space-time. The method 

used to generate solutions for the other two cases, namely the 'Riemann problem 

with zeros' method [73] does not work so well here. Instead, we will use twistor 

methods to generate the solutions [22]. 

The chapter is divided into 6 sections. In section 4.2 we will consider some 
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details of the twistor correspondence and the Atiyah-Ward ansatz. In section 4.3 we 

consider the (2+ 1 )-dimensional de Sitter space-time itself. In section 4.4 we consider 

various integrable equations on the de Sitter space-time. Section 4.5 contains various 

explicit solutions of the Yang-Mills-Higgs equations with gauge groups U(l) and 

SU(2), and section 4.6 ends with some concluding remarks. 

4.2 The Twistor Construction 

It is a conjecture that one can in principle construct solutions of any integrable 

equation on a space-time Jvf using the twistor construction and via the Penrose 

transform. Here we will use twistor methods to construct solutions of the reduced 

Yang-Mills system on the (2 +I)-dimensional de Sitter space-time. 

Twistor space itself was introduced by Roger Penrose as an attempt to unify 

quantum theory with general relativity [79]. The basic idea is that twistor space 

acts as an auxiliary manifold to the space-time manifold. The various equations and 

physical quantities on the 4-dimensional (complex) space-time manifold correspond 

to various geometrical structures on the 3-dimensional (complex) twistor space. For 

example, solutions of linear field equations such as the wave equation, the mass­

less Klein-Gordon equation, Maxwell's source-free equation, Dirac-Weyl neutrino 

equation all correspond to cohomologies (or integral representations) of functions 

on the twistor space [80]. Solutions of gauge theories correspond to holomorphic 

vector bundles over the twistor space [81]. 

The Penrose transform can be used to move back and forth between the twistor 

space and space-time pictures. It can be expressed using the following construction: 

Consider a 5-dimensional complex space IF with the following double fibration, 

IF 

/"'< 
'IT' M 

where '[' is the 3-dimensional twistor space for the 4-dimensional space-time 

manifold M. The space IF is a fibre bundle over both '[' and M and is known as 

the correspondence space. The Penrose transform is given by the composite map 
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f-LOV-
1

. The concrete form of the transform is typically a Cauchy-type integral along 

the fibres of v. 

An important application of the Penrose transform arises in the context of gauge 

fields and is known as the Penrose-\iVard transform. The Penrose-Ward transform is 

derived from the observation that the anti-self-dual Yang-Mills equations are equiv­

alent to the vanishing of the curvature on a-planes. This idea is incorporated into 

Ward's theorem which relates solutions of the self-dual Yang-Mills equations on 

a region of complex space-time U to holomorphic vector bundles over the twistor 

space of U. This is what we use to find solutions of the Bogomolny equations on de 

Sitter space-time. In order to do this we consider first some basic facts about the 

geometry of twistor space. We will consider the twistor correspondence primarily 

for the ultrahyperbolic space-time [22]. Details for the Euclidean case can be found 

in [80], [22]. 

4.2.1 The Geometry of Twistor space 

Consider the complexified Minkowski space-time CM, with double null coordinates 

(w, z, z, w). The metric on CM is given by 

ds 2 = 2(dz dz- dw dw), ( 4.1) 

and the volume element is 

v = dw 1\ dw 1\ dz 1\ dz. (4.2) 

The ultrahyperbolic space-time JR2+2 is a real slice of CM given by the correspon­

dence 

:) 1 

v'2 

where the coordinates (x 0 , x 1 , x2 , x3 ) are real. The reality conditions on the double 

null coordinates are z = z and 'tu= w. 
A point on JR2+2 has a spinor representation given by 

( 

OO' 01' 
AA' X X 

x1t = x = 
101 11 1 

X X ) 
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A null 2-plane Z c CM is either an a-plane or a ,8-plane depending on whether its 

tangent bivector is self-dual or anti-self-dual. The tangent bivector is defined to be 

1rab = v[awbl, where va and wa are independent tangent vectors. So Z is an a-plane 

if 'Trab = + * 'Trab and a ,8-plane if 'Trab = - * 'Trab 0 

An a-plane is the set of (w, z, z, w) E CM satisfying 

(4.3) 

( 4.4) 

where ( Z 0
) Z 1

) Z 2
) Z 3

) are complex constants. Let ). = Z 0 I Z 2
' f-L = Z 1 I Z 2 and 

( = Z 3 I Z 2 for Z 2 =1- 0. Then equations ( 4.3) and ( 4.4) are equivalent to 

(w+z 

(z+w 

>., 

f-L· 

(4.5) 

(4.6) 

The a-planes for which Z 2 #- 0 have a tangent space spanned by the vector fields 

(4.7) 

(4.8) 

and those with Z 2 = 0 are spanned by c)z and ow. From this we see that the a-plane 

are parametrized by three complex numbers >., f-L, and ( (provided ( is finite), and 

the set of all a-planes through a point in space-time has the structure of a Riemann 

sphere with affine coordinate (. 

The space of all a-planes in CM is a complex 3-manifold 1[' known as the twistor 

space of CM, given by 1[' = ClP 3\ClP 1
. 1[' has inhomogeneous coordinates (>., f-L, () if 

( #- oo and (5. = Z 0 IZ3 ,ji = Z 1IZ3
,( = Z 2 IZ3

) if ( #- 0. The CJP 1 is the set of all 

points in CJP3 which lie on Z 2 = Z 3 = 0. 

The twistor space of U C CM is defined to be the subset 

P = { z E 1L : z nu =1- 0} ( 4.9) 

of CJP 3
. The space-time patch U and its twistor space P are both quotients of lF. 

The space lF is a set of pairs (x, Z), where x is a space-time point and Z is an a­

plane through x. The projections f-L and v as defined by the diagram in the previous 
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section are then given by 

or using coordinates, 

jJ, : (X' Z) ~ X 

v: (x, Z) ~ Z, 

f1: (w,z,z,w,() ~ (w,z,z,w) 

v:(w,z,z,w,() ~ ((w+z,(z+w,(). 
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( 4.10) 

(4.11) 

( 4.12) 

( 4.13) 

From this we infer that an a-plane in CM is represented by a point in 1I', and a 

point of CM is represented by a line in 1I'. This is the famous Klein correspondence. 

To find the twistor space for JR2+2
, we have to impose a reality structure on CM. 

As mentioned already, JR2+ 2 can be obtained from CM by setting w = w and z = z. 
So if er is an anti-holomorphic involution on CM, then the required reality structure 

on CM may be given by 

er: (w, z, w, z) ~ (w, z, 1v, z). ( 4.14) 

This induces a map er : 1I' ~ 1I', 

( 4.15) 

There are fixed points of the action of er on <CIP' 3 . This set of fixed points is the set 

of real a-planes in JR2+2 . The space of all real a-planes through a point in JR2+2 is 

5 1 , and the space of all a-planes in compactified JR2+2 is 1RIP'3 . It should be noted 

that each a-plane in JR2+ 2 compactifies to 1RIP'2 which is not simply connected and 

has fundamental group Z2 . The upshot of this is that the Penrose transform applied 

to the compactification of JR2+2 , M = 5 2 x 5 2 /Z2 , does not yield globally smooth 

solutions of linear field equations [22]. However, the double cover of M, NI= 5 2 x 5 2
, 

has corresponding a-planes homeomorphic to 5 2 which is simply connected. So to 

find globally smooth solutions of equations in a split (2, 2) signature space-time, we 

need to consider the space-time 111. 

4.2.2 Solutions of Massless Field Equations 

As an illustration of the use of the Penrose transform, we consider its use in gener­

ating solutions of massless field equations [80]. 
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The idea behind the use of the Penrose transform to solve massless field equations 

is the following: Consider a function f ( Z) defined on the twist or space 'lr. Let 

zer = (w'\ 1fA'), and let j denote the function j restricted to a-planes (i.e. the 

pullback off to IF), given by 

( 4.16) 

Taking the integral of j along the fibres of v (i.e. integrating out the dependence 

on 1r A') then gives a function on lvf. The function j satisfies various differential 

equations which are inherent in the double fibration. For instance, consider the 

contour integral of f given by 

( 4.17) 

where the contour is chosen so that all singularities of J lie outside of it. Let Px 

denote the restriction of all subsequent twistors to an a-plane, then 

( 4.18) 

and, 

( 4.19) 

so it follows that 04> = 0. 

Other massless field equations are solved in a similar way by choosing an appro­

priate contour integral and the function f. See Ward and Wells for a full descrip­

tion [80]. 

4.2.3 The Ward Correspondence 

In this section we will give details of the twistor correspondence for gauge fields for 

the Euclidean and ultrahyperbolic space-times. The difference between the two is 

essentially due to the treatment of the boundary condition at infinity. S4 is a natural 

one-point compactification of JE4. So solutions of all integrable equations on E4 can 

be extended smoothly across infinity to solutions in S4 . The points at infinity in M 
form a null hypersurface and it is not always possible to extend solutions on JR2+2 



4.2. The Twistor Construction 62 

smoothly across this surface. For example, the solutions of Maxwell's equations do 

not have this property. 

The central idea behind the twistor correspondence for gauge fields is vVard 's 

theorem which relates solutions of the anti-self-dual Yang-Mills equations (section 

1.2.1) to holomorphic vector bundles over <CIP' 3 [82]. 

Theorem (Ward 1977) 1 There is a one-to-one correspondence between: 

{a) anti-self-dual SU(2)-gauge fields on 5 4 up to gauge equivalence and 

{b) inequivalent 2-dimensional algebraic vector bundles E over <CIP' 3 such that 

{i) E has a symplectic structure7 and 

{ii) E)x is trivial. 

The proof for this theorem can be found in [80]. 

Remarks 

e The bundle E does not have a connection. The information about the Yang­

Mills connection is coded into its complex structure. 

e The anti-holomorphic involution a : <CIP' 3 ---+ <CIP' 3 given by ( 4.15) induces a sym­

plectic structure on E as a 2 = -1. 

• Here :i; is the fibre over the compactified space 5 4 and we require E):r is trivial 

for all x E 5 4
. Since the space 5 4 is compact one can use Serre's theorem to 

construct bundles with these properties. 

It turns out that one can consider the Penrose-Ward transform for the (2, 2) 

split-signature space-times by considering a non-Hausdorff doubling of <CIP'3 over the 

open sets of the two copies of 1RJP'3 [83]. This is effectively the second requirement 

in Mason's theorem in [83]. We will denote a holomorphic bundle over this space 

by E. 

We now give the procedure used to extract the Yang-Mills potentials from the 

holomorphic vector bundle E. Following Corrigan et al [84], let U and U be an 

open cover for <CIP' 3 , which has homogeneous coordinates zo: = (Z0
, Z 1

, Z 2
, Z 3

) and 

inhomogeneous coordinate (. The sets U and U are defined as 
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u := { ( : I( I < 2}, 

0 := { ( : 1(1 > 1 }, 
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(4.20) 

~nd U n 0 is the annular region 1 < 1(1 < 2. We see from ( 4.15) that a is a one-to­

one map of U to 0. Now let 'TJ and i] be column vectors on U and 0. They can be 

considered to be the components qf the fibres over U and 0 respectively. On U n 0 
they are patched by 'TJ = F(Z0 )i], where F(Z0

) is a (2 x 2)-matrix defined on U n 0 
and satisfying 

F(Z), ( 4.21) 

det F(Z) 1. 

One class of matrices F(Z0
) which satisfy the above condition are the upper­

triangular matrices, 

where k is a positive integer, r(x, () = rt(x, (- 1), and f(Z 0
) is real. This class of 

matrices is known as the Atiyah-Ward ansatze and is particularly useful for con­

structing soliton solutions. Thematrix F(Z0
) does not satisfy (4.21) for any rand 

f but it is always equivalent to a matrix which does. That is, there is a (2 x 2)-matrix 

R which is holomorphic on 0 such that F = F R satisfies ( 4.21). The existence of 

R is not guaranteed. However, if we take f to be real and r = (ef + e-f)jQ, where 

Q = P/(Z2 Z 3 ) and P(Z0
) is a real homogeneous polynomial of degree 2k, then the 

matrix R given by 

does yield a F(Z0
) with properties (4.21). Note that ( = (- 1

. 

Given the patching matrix F on the holomorphic vector bundle E, one can now 

extract the information about the anti-self-dual gauge field that is coded into E. 
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The crucial step in this procedure is the splitting of F restricted to a-planes, into 

two matrices H and fi, 

F( . AA' ) HAH-l zx 1fA') 1fA' = ) ( 4.22) 

where H(x, ()is a (2 x 2)-matrix holomorphic on JR2+2 x U and fi is holomorphk on 

JR2+2 x U. If such a splitting exists (which it must if the triviality condition on E is 
satisfied) then the gauge potentials may be calculated using the following argument: 

Let D A = ( 8 AO' - ( 8 Al') be a differential operator such that D A ( xAA' 1r A') = 0, where 

8 AA' = 8/8xAA' . Then we have 

(4.23) 

Now, since the left hand side of equation (4.23) is holomorphic on JR2+2 x U and 

the right hand side on JR2+2 x U, then by using a generalised form of Liouville's 

theorem we have that both sides are holomorphic on JR2+2 x ClP' 1 and linear in (. 

By appropriately defining the functions ABB' we have 

(4.24) 

where A88, are the su(2) gauge potentials. The first step in the splitting of F 

multiplicatively is to split f additively, 

. f = h- h, t4.25) 

where h and h are holomorphic on JR2+2 x U anclJR2+2 x U respectively. The functions 

h and h can be found using complex analysis to be given by the contour integrals 

( 4.26) 

( 4.27) 

where the contour in the first equation is taken over 1(1 < 2 and in the second over 

1(1 > 1. The explicit expressions for the gauge potential A88, can now be calculated 

in a particular gauge known as Yang's R-gaugc. The following theorem gives the 

procedure [80]. 
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Theorem 2 Let Ea be a potential for a GL(n, C) gauge field and let {6.r }~:i-k be 

a set of fields satisfying 

0, ( 4.28) 

if k > 1: 

where 1 - k ~ T ~ k- 2. 

wheTe 6.r and Ea are holomorphic on a region U C CM. Let !VI be the k x k matrix 

6.1-k 6.o 

Also let E = (M- 1 ) 11 , F = (Jv!- 1 ) 1k and G = (AJ- 1 )k1 , then the SU(2} valued gauge 

potentials are given by 

<I>Ao' =-
1 ( 0Ao'F 

2F -2oAo'G 

where Oa = V' a- 2Ea. 

The Maxwell potential Ea is determined by the relationship 

A' A' ~ 
1rA'EAA' = 7r \7 AA'h = 7r \7 AA' h. 

Note that if f = 0 then Ea = 0. The fields 6.r are given by [84] 

6.r = _21. J p(()(1-r d(, 
Jr~ 11(1=1 

( 4.29) 

(4.30) 

where p = re-h-i!. 6.r are the components of a free massless field of helicity k - 1 

coupled to the Maxwell field. So for instance fork= 2, 6._1, 6.0, 6.1, are components 

of the rjJ AA', i.e. 6.o = r/Joo', 6.1 = r/Jo1', 6._1 = r/Jw', and r/J AA' satisfies 

( 4.31) 
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4.3 (2 +I)-Dimensional De Sitter Space-Time 

(2 + 1 )-dimensional de Sitter space-time !vi is the manifold lR x 5 2 which has the 

metric [85] 

ds2 = cosh2 T(dB2 + sin2 Bdvi) - dT2
, ( 4.32) 

where T is a time coordinate and (B, cp) are polar coordinates on the spatial sphere. 

It is a space of constant curvature, and scalar curvature R = 6. 

In view of Mason's theorem in [83], it is useful to regard M as being a reduction 

of a (2 + 2)-dimensional space, namely one conformal to M= 5 2 x 5 2
. The space 

!vi has the metric 

( 4.33) 

where dsti and dSl~ are the metrics on the two spheres. If we use polar coordinates 

(B, cp) on the first sphere and (0, cp) on the second, then the metric is given by 

( 4.34) 

To recover the ultrahyperbolic space-time from IV! we use the complex quantities 

u and v defined by, 

(sin B)e-i'P 
u = -' 

(cos B + cos B) 
( 4.35) 

and in the region where cos B +cos 0 is positive, so 

2ds2-
du du - dv dv = lvt _ , 

(cos B + cos B) 
( 4.36) 

which is the metric for JR2+2 . We get the reduced de Sitter space-time from .Aif by 

factoring out by the Killing vector a I ac;s, i.e. by a rotation of the second sphere. 
- -

First we remove B = 0 and B = 1r, which are the fixed points of the rotation. On the 

complement of these fixed points, we can write 

( 4.37) 

So JVI- { 0 = 0 U 0 = 1r} is conformal to the product of 5 1 and a space with topology 

lR x 5 2 and metric 

( 4.38) 
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This is the (2 + 1 )-dimensional de Sitter space-time and the metric is essentially 

equation ( 4.3) once we have identified cos 0 = tanh T. 

Let us now consider the reduced (2 + 1 )-dimensional space obtained directly from 

JR2+2 . This space is obtained from the conformal equivalence 

where the space H 3 = { (x, y, t) : t > 0} is a (2 +I)-dimensional space-time known 

as the Poincare space-time (or the (2 +I)-dimensional steady state universe [85]). 

The JR2 that is being factored out is the plane t = 0. The space-time H 3 has the 

metric 

( 4.39) 

and it has constant curvature and scalar curvature R = 6. It is incomplete and 

extends to the de Sitter space-time. It is in fact "half" of the de Sitter space-time. 

Figure 4.1 shows the Penrose diagram for the two cases. 

The completion of H 3 is obtained by setting 

C 1 cosh Tcos e + sinh T, 

xC1 cosh Tsin e cos rp, 

cosh T sine sin rp, ( 4.40) 

where (T, e, <p) are the coordinates on lR x S 2
. In the new coordinates H 3 is given 

by H 3 = { (T, e, rp) : cos e > - tanh T}. The intersection of a space-like surface 

e = 0 (a two sphere) in lR X S 2 with H 3 is the southern hemisphere 0 ::; e ::; 7f /2. 

This hemisphere corresponds to a hyperboloid in Poincare space-time given by t = 

+Jl + x 2 + y 2 , and the circle at infinity on this hyperboloid corresponds to the 

equator e = 7f /2. 

To keep things simple, we will denote the coordinates on the submanifold H 3 

by u and v as well, and in this case they are given by u = (x + iy) and v = teio:; 

(t, x, y, a) are the coordinates on JR2+ 2
. 
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x = constant surface 

Surfaces of­
const nt e 

i-~~~~~~~~~~~~~i0 

- r 
(8 = 0) 

8=1f 

(Past 
timelike infinit 

(Coordinate Singularity) 

Time Line t = constant surface 

( e = constant) 

(a) (b) 

r 
(t = 0) 

(Spacelike 
Infinity) 

Figure 4.1: Penrose diagram for (a) de Sitter space-time and (b) Poincare space-

time. 

For both the de Sitter space-time and H 3 , the twistor correspondence that relates 

the space-time to the twistor manifold is given by 

w(() = v((- u + v), 
(-u 

where w and ( are the coordinates on the twistor space <(]P3 x CIP3
. 

( 4.41) 

In the following sections we will consider conformally-invariant integrable equa­

tions on the de Sitter space-time. We will find that there are certain solutions 

which are smooth only on the submanifold H 3 , i.e., they are nonsingular provided 

cos e > - tanh T. 

4.4 Integrable Equations on De Sitter Space-Time 

4.4.1 Conformally-lnvariant Wave-Equation 

In this section we will consider certain integrable equation on the de Sitter space­

time lvf. The equations we will consider are all conformally invariant and completely 
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integrable. The idea is to study the solutions which are smooth and independent of 

r.jJ. The simplest conformally-invariant equation on NI is the conformally-invariant 

wave equation. In view of the product form of the metric and the absence of scalar 

curvature, this has the form 

.6x- .6x = o, ( 4.42) 

where .6 and .6 are the Laplacians on the two spheres. The r.jJ-independent solutions 

of ( 4.42) correspond to solutions of the conformally-invariant wave equation on lvf, 

namely 

( 4.43) 

where x and \}1 are related by \}1 = (sech T)x. Using coordinates we get 

( 4.44) 

Solutions of equation ( 4.44) can be obtained by separating variables or using 

twistor methods [86]. To use the latter method we need to solve the following 

contour integral, 

( 4.45) 

where f is homogeneous of degree 2 in zo: and is independent of r.jJ. One can then 

use, for instance, the procedure described in Penrose and Rindler [87] to calculate 

the standard spherical harmonics. 

The simplest solution is given by x = 1 and this leads to W = sech T, i.e. 

a solution that is spatially constant. The l = 1 spherical harmonics give the so­

lutions \}1 = sech T tanh T cos() and \}1 = sech T tanh T sin() cos (j). The l. = 2 

spherical harmonics give the solutions w = sech T tanh T(2 cos2 
() - sin2 0), \}1 

sech T tanh T cos() sin() cos (j), and w = sech T tanh T sin2 ()cos 2ijJ, and so forth. 
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4.4.2 Self-Dual Yang-Mills Equations 

The self-dual Yang-Mills equations on the manifold S 2 x S 2 are given by 

Fo<t> (sine I sin iJ)Fo~' 

Fq,o (sine I sin iJ)Fo~' 

Foo (I I sin 0 sin iJ)F<t>;p· ( 4.46) 

\iVhen we reduce to the (2 +I)-dimensional space-time M, the self-dual Yang-Mills 

field becomes a Yang-Mills-Higgs system (<I>, A1.J. The reduction is carried out by the 

requirement that the self-dual potential be invariant under a conformal symmetry, 

in this case under the rotation of the second sphere, a I ocp. The reduced system 

satisfies the Bogomolny-type equations 

D <I>- I p!3'Y 
a - 27laf3'Y . (4.47) 

The Higgs field <I> takes values in the Lie algebra of the gauge group G. It can 

be identified with the cj;-component of the gauge field A.p. The remaining three 

components of All become a gauge potential on the (2 +I)-dimensional space M. 

As usual, Do: denotes the covariant derivative Do:<I> = oa<I> + [Ao:, <I>], and 7laf3'Y = 

-[det(g1w)]- 112
Eaf3'Y is the volume 3-form on J\!I. In terms of the polar coordinates 

(e,iJ,<p), eqn (4.47) is given by 

D0<I> (sin iJ I sin O)Fo"'' 

Do<I> (sin iJ I sin O)F0"', 

(sin iJ sin O)F00 . (4.48) 

On the space-time H 3 ( 4.4 7) is 

Dx<I> C 1 Fyt 

Dy<I> C 1Ftx 

(4.49) 

Equation (4.47) is integrable with the Lax pair (in terms of (x, y, t)) given by 

M ( 4.50) 
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where u = x + iy. 

In the remaining sections of this chapter we will construct solutions of ( 4.48) and 

( 4.49). 

4.5 Solutions of SDYM Equations 

4.5.1 U(l) Examples 

We start with the abelian (linear) case G=U(1). The equations of (4.47) reduce to 

(4.51) 

where F11-v = 811-Av - 8vAw This case is related to, but different from, that of the 

wave equation (4.43) discussed in the section (4.4.1). Indeed, from (4.43) it follows 

immediately that g1w\1 11-\1 v<I> = 0. Another feature is that there can be non-trivial 

topology: the space in this case is a sphere S2
, and U (1) gauge fields over S2 are 

classified topologically by an integer 

( 4.52) 

where 2:: is a space section (space-like surface with topology S 2
). 

We shall construct various U(1) examples of solutions to the Yang-Mills-Higgs 

system using the twistor construction outlined earlier. In this case the twistor matrix 

is a (1 x 1)-matrix, i.e. just a smooth real function (patching function) f(Z) on the 

twistor space. To get solutions which are independent of (jJ, f needs to be invariant 

under the action of 

3 8 2 a 1 a o a 
I< = z 8Z3 - z 8Z2 + Z azl - Z 8zo. ( 4.53) 

For instance, the conditions of smoothness, I< -invariance and homogeneity of 

degree zero in zo arc met by the function Q = ( zo Z 1 + Z 2 Z 3
) 1 ( Z 2 Z3

). using the 

correspondence (4.3 and 4.4) and with z = u and w = v (u and v are given by either 

( 4.35) or in Cartesian coordinates u = x+iy and v = tei0
), we have Q =a( +b+c(-1 
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where 

a uv, 

c iiv. ( 4.54) 

Example 1 Let us take f = Qk, where k E Z. Consider first the case k E z+. 
The splitting of f = h - h ( 4.25) gives 

h ( 4.55) 

where G1 and G2 are functions which are holomorphic on (; and U respectively. H 

is a function of the space-time coordinates only and is given by 

H = ~ L (k ~ l) (~)alclbk-21, 
{IEZ+:k-2120} 

where G) is the binomial coefficient. The gauge potentials can now be readily 

calculated using the procedure given in section ( 4.2.3). For instance, the Higgs field 

is given by 

<I>= i(v Ovh(oo)- iJ Ovh(O)). ( 4.56) 

Substituting (4.55) gives 

<I>= i L [ (k ~ l) (~) (lalclbk-21 + (k- 2l)alclbk-21-llvl2)] . 

{IEZ+:k-2120} 

This gives a smooth Maxwell-Higgs field on the Poincare space-time. Clearly it 

is singular on NI due to the denominator in u and v of (4.35). Note that the k = 1 

case is spatially homogeneous. 

Consider now the case when k E Z-. Before looking at the general case let us 

consider the k = -1 case; f can be split into 

h 

h 

(I/p 
(- (1' 

(2/p 
(- (2' 

( 4.57) 
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where ( 1 = (b-p) /2a, ( 2 = - ( b + p) /2 and p = Jb2 - 4ac. This yields the following 

gauge potentials on the de Sitter space-time, 

So for f = Q-k we have, 

Ae 

A­e 

1 -
4i(cos2 e- 1) cos e, 

1 -
-4i(cos2 e- 1) cos e, 

1 .. e --zsm 
4 ' 
1 -

--i sin e. 
4 

(4.58) 

For k even we take h to be the sum of the first and the third terms and h to be 

negative of the second term. For k odd we take h to be the sum of the first and 

one-half of the second term and h to be the sum of the third and one-half of the 

second term. This yields the following gauge potentials on the de Sitter space-time, 

where d is given by 

<I> -id( cos e + cos e)k-l sin2 e cos e, 

A'P id( cos e +cos O)k-l sin2 e cos e, 

Ae -id( cos e +cos O)k-l sine, 

A-e -id( cos e +cos e)k-l sine, 

{ 

k/2k for k even 
d-

kj2k+l for k odd 

Figure 4.2 shows the plots of <I>2 against e and 0 for k = -1, -5 and -10. 

( 4.59) 

Some features worthy of mention are: At I+ and r-, the Maxwell-Higgs field is 

zero. Its maximum value increases as k is increased. The maximum value occurs 

later in "time" ask is increased. The plots of (D0<I>) 2 against e,e (figure 4.3)) show 

the variation of the Maxwell-Higgs field with "time" for various k cases. 
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Figure 4.2: A plot of <1> 2 against e and (} for f = Q- 1
, Q-5 and Q- 10 respectively. 
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Figure 4.3: A plot of (D0<I> ) 2 against iJ and() for f = Q- 1, Q-5 and Q-10 respectively. 
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0.01 

0008 

0.006 

0.004 

0.002 

Figure 4.4: A plot of <I>2 against r fort = 20. This is for a solution which is generated 

by f = Q- 1
. 

It is interesting to note that the Maxwell-Higgs field generated by f = Q-k gives 

an imploding-exploding wave solution on the submanifold H 3 . For instance, the 

k = -1 case gives the following gauge fields on the Poincare space-time, 

Ax (1 + x2 + y2
- t2)D-1 (x- iy), ( 4.60) 

Ay iAx 

At -t(x2 + y2
- t2

- 1)D-1
, 

<I> -it2(x2 + y2
- t2 

- 1)D-1
. 

where D = (1 + x2 + y2 + t2
)

2
- 4t2 (x2 + y2 ))~. In figure 4.4 we have plotted <I>2 

against T, where r = (x2 + y 2
)

112 for t = 20. The plots for other values oft are 

similar to 4.4, with the minimum between the two peaks occuring at r = Vf+t2. 
Example 2 Consider next the case f = log Qk. This example gives a topologically 



4.5. Solutions of SDYM Equations 77 

non-trivial solution on the de Sitter space-time. The gauge fields are given by 

1 -
<I>= -ik(cosO- 1), 

2 

1. 
A'P = 2zk(cos ()- 1), A0 = 0 = A0. (4.61) 

For smoothness, we require A'P = 0 at () = 0, Jr. So the above gauge potential has a 

singularity at ()=Jr. But the gauge transformed potential 

1 
A'P + exp( -ikcp)8'P exp(ikcp) = 2ik(cos () + 1) ( 4.62) 

is smooth near()= Jr. In other words, this Maxwell-Higgs system is smooth through­

out the de Sitter space-time. The apparent (Dirac-string) singularities are a con­

sequence of the fact that the gauge field is topologically non-trivial: its magnetic 

charge equals k. Furthermore, it is spatially-homogeneous: note in particular that 

<I> depends only on 'time' B, and that the gauge 2-form (the integrand of (4.52)) is 

a (time-dependent) multiple of the area element sin() d() 1\ dcp. 

4.5.2 U(l) Embedding in SU(2) 

The case f = 0 gives rise to a family of U(1) solutions which are embedded in SU(2) 

matrices, i.e. (2 x 2) diagonal matrices. The patching matrix F(Z) for the SU(2) 

case is 

- A 

where r = (ef + e-f)jQ. Take f = 0 and multiply F on the left by a matrix K 

which is holomorphic on(; and on the right by a matrix K holomorphic on U, where 

This gives, 

showing that the solutions generated by f = 0 are indeed abelian. The gauge 

potentials for these cases can be calculated using the formulas in theorem 2. For 

instance, for the k = 1 case, the Higgs field is given by 
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) log 1'.0 , 

where 6.0 is found from ( 4.30) to be 6.0 = 2p- 1 . As it stands, <I> has a superficial 

dependence on <p (or 0) and it is not abelian. But after a gauge transformation 

(1.22) using 

g= 

<I>, and the other three gauge potentials, are independent of cp. This gauge applies 

to solutions with any k. <I> is not abelian since we have calculated it using Yang's 

R-gauge. There is, of course, a gauge which makes it abelian. The question of 

regularity of the gauge potentials can be dealt with by considering the determinant 

of the banded (k x k) matrix N:s [80], 

For the gauge potentials to be nonsingular det N should be nowhere vanishing on 

the space-time M [80]. In our case this determinant takes the simple form (up to a 

sign) 

(4.63) 

which written in de Sitter space-time coordinates is given by 

( 4.64) 

So the matrix N is singular whenever (} + (} = 1r. Geometrically, this means that the 

line bundle Lk defined by the patching matrix F, will become nontrivial whenever 
- -(} + (} = 1r, i.e. we have a jumping line at (} + (} = 1r. 

On the submanifold H 3
, 

(4.65) 

which is zero only at infinity. So we expect nonsingular solutions on H 3
. Some 

explicit examples are as follows: 
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so, 

k = 1 : We have .6.0 = 2/p. The gauge potentials are given by 

tr <1>2 = -~ g(x, y, t) - 2t2 
2 g (X, y, t) -\- 2t2 ' 

where g = 1 + 2x2 + 2y2 + x 4 + 2x2y2 - 2x2t2 + y4 
- 2y2t2 + t 4

. 

79 

(4.66) 

k = 2 : Now the polynomial Q(Z0
) is homogeneous of degree 4. We take Q = 

(Z0 Z 1 + Z2 Z3 ) 2 /(Z2 Z3 )
2, so r = 2/[(1 - (I/()(a(- (2)]2. This leads to 

Although explicit expressions for the gauge potentials are available, there seems 

little point in reproducing them here as they are fairly complicated. We will therefore 

give just the expression of the length of the Higgs field. 

tr <!>2 = -1/2 (1 + 12 t2x4 + 4 t 4x 2 + 12 x 4 y 2 + 12 y4x 2 + 24 t2y2 + 6 y4 
( 4.67) 

+4 y6 + x8 + 4 x 6 + 4 y6 x 2 + 4 x2 + 4 y2 + 24 t2x2 + 4 x6 y2 + 6 y4x 4 

+y8 + 12t2 + 46t4 + 60t6 + 6x4 + 25t8
- 42t4x4 + 16t6x 2 

+12x2y2 + 16t6y2 + 4t4y2 + 12t2y4 + 24t2y2x2 - 42t4y4
- 84t4x2y2)/ 

(1 + x2 + y2 + t2)2(1 + 2x2 + 2y2 + 2t2 + x4 + 2x2y2 

-2 t2x2 + y4- 2 t2y2 + t4) 
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4.5.3 Spatially Homogeneous SU(2) Solution 

An SU(2) example may be constructed as follows. Temporarily, think of the spatial 

sphere as the unit sphere in IR3 , with coordinates x1 = (x1 , x 2 , x3 ). Take the Higgs 

field and gauge potential to have the form 

(4.68) 

A0 0, (a gauge choice) 

- l k if(B)EjkiX CJ • 

where a1 denotes the Pauli matrices, and f and g are two scalar functions of() only. 

(The components A0 and A'P are obtained from A1 in the usual way.) Substituting 

(4.69) into (4.48) gives the pair of ordinary differential equations 

g' 2/(1 -f) sine, (4.69) 

!' g(2f- 1)/ sinO. 

Eliminating g leaves an equation for f which, after the transformation 

f(O) = ~(e2T + 1)P(T) + ~' tanh T =cos e, (4.70) 

is 

( 4.71) 

This is the third Painleve equation Pu1 . In terms of the variable t =eT E (0, oo), 

it has the more usual form 

( 4. 72) 

Solutions of ( 4. 72) therefore determine spatially-homogeneous SU (2) solutions of 

the Yang-Mills-Higgs-Bogomolny equations (4.48). Note that the gauge invariant 

quantities are given by 

-tr <P 2 (4.73) 

(4.74) 

We have solved the simultaneous ODE system (4.70) using MATHEMATICA and 

plotted the two gauge-invariant quantities (4.73) and (4.74) for various boundary 

conditions f(7r/2) and g(7r/2). Some results are plotted in figures 4.5- 4.10. 
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Figure 4.5: A plot of -tr<I>2 against 'time' [J for j(1r /2) = 0, g(1r /2) = 1/2 

0 0.5 

Figure 4.6: A plot of -tr(D0<I>) 2 against e for j(7r/2) = O,g(1rj2) = 1/2 
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Figure 4.7: A plot of -tr<.P2 against (j for f(rr/2) = rr/2,g(rr/2) = 0 
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Figure 4.8: A plot of -tr(D0<.P) 2 against (j for f(rr/2) = rr/2,g(rr/2) = 0 
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Figure 4.9: A plot of -tr<I>2 against B for f( 1r /2) = 1/2, g( 1r /2) = 1/2 
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Figure 4.10: A plot of -tr(D0<I>) 2 against B for j(1rj2) = 1/2,g(7r/2) = 1/2 
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4.5.4 SU(2) Examples 

The k = 1 Case 

To get a SU(2) solution, we may take P(za) = (Z0 Z 1 + Z2 Z 3 ). This gives Q(za) = 

(Z0 Z 1 + Z 2 Z 3 )j(Z2 Z 3
). The simplest choice for j, namely f = 0 gives an abelian 

solution as shown in section ( 4. 5.1). To get something genuinely non-abelian, we 

may take f = log Qn, where n E .Z. This leads to 

The Birchoff factorization gives the following expressions for h and h, 

h 

log(1- (I/(t( -(2tl
2, 

-log[(a(- (2t /( -(2)n12], 

(4.75) 

where ( 1 = (q- p)j2vfi and (2 = -(q + p)/2. The quantities p and q are given by 

p 1 + I'UI 2 + lvl2, ( 4. 76) 

q [(1 + I'UI 2 + lvl2f- 4I'UI2Ivl2]112 . 

Using these, we can find an expression for p((), 

p(() = 

(4. 77) 

Now using the expression for .6.r (4.30), we can calculate .6.0 . Calculating the residue 

at ( = ( 1 gives 

2nq2n-1 (p + q)n 
.6.o = + . (p + q)n 2nq2n+I 

(4.78) 

Let us consider the n = 1 case (or n = -1 which gives the same .6.0 ). The proce-

dure described in section (4.2.3) then yields explicit (although rather complicated) 

expressions for <I> and Al-l, as rational functions of cos (}, cos iJ and exp ( i<p). The 

dependence on <p can be compensated by a gauge transformation, so in effect the 

solution depends only on (} and iJ. It is effectively an 80(2)-invariant solution of the 

Yang-Mills-Higgs equations on !vi. 
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The functions are somewhat simpler when expressed in terms of X and Y, where 

X = cos2 (0/2) and Y = cos2 (0/2). X and Y can be thought of as the 'spatial 

latitude' and the 'time' respectively. Then, for instance the length of the Higgs field 

is given by 

where 

H(X,Y) 1 + 16X4Y6 
- 24X 4Y5 + 9X4Y 4 + 16X2Y4 

-8X2 Y3
- 6X 2Y 2

- 16XY4 + 16XY3
. 

Figures 4.11- 4.14 show plots of the following gauge-invariant quantities 

K ·- -tr <I> 2 

' 
L ·- -sin2 0tr (D0<I>) 2

, 

~M ·- - sin2 Otr [(Do<I>)2 + (D'P<I>) 2 
/ sin2 0], 

N ·- L- M= gflvtr [(DJl<I>)(Dv<I>)]. 

(4.79) 

(4.80) 

(4.81) 

( 4.82) 

(4.83) 

(4.84) 

A couple of things to note are: As Y --+ 0, 1, that is in the distant past 

and future, the Higgs field approaches a 'vacuum value' where -tr <I> 2 = ~ and 

-tr (DJl<I>) 2 = 0. At the point X = 0 on the spatial sphere, we have -tr <I> 2 = ~' 

-tr (Dtime<I>) 2 = 0 and -tr(Dspace<I>) 2 = 16Y4 (Y- 1)2
. 

A topologically nontrivial solution is given by the n = 2 case. As the plot for K 

against X and Y in figure 4.16 shows, the Higgs field in this case is a heteroclinic 

connection between r- (Y -+ 0) and r+ (Y -+ 1). It takes the value of 4.5 at 

r+ and a value of 0.5 at r-. The plots show that the variation of the field in the 

(spatial) X -direction is not that much. In fact, for fields generated by subsequent 

n ( n = 3, 4 ... ) , this dependence decreases with increasing n so that for a large 

enough n we have the Higgs field depending only on Y, i.e. on 'time' only. So we 

have (essentially) a spatially homogeneous solution. That this is indeed the case can 
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Figure 4.11: A plot of K against 'spatial latitude' X and 'time' Y. 
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Figure 4.12: A plot of L against X and Y. 
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Figure 4.13: A plot of 1\1 against X and Y. 
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Figure 4.14: A plot of N against X and Y. 
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be seen by the following argument. For n 2- 2, ]( is given by 

]( = (2n -1)2 - 4(2n -1)(n -1)Y + (2n- 2) 2Y2 - (4.85) 

(4 n- 2)(2 n + 1)X2 nY211 + 

(16 n2 x2n-l _ BX2n)y2n+1 + 

(8(n2 + 1)X2n- 16 n2 x2n-l )Y2n+2 + 

(2 n + 1)2 x4ny4n + 2 n + 2)2 x4ny4n+2 -

4(2 n + 1)(n + 1)Y4n+l x4n I 2(X2ny2n + 1f. 

Note that as Y --+ 0 and 1, ]( --+ !(2n- 1)2 and ~ respectively. Now consider 

what happens to]( when 0 ::; X ::; 1, 0 < Y < 1 and n is very large. ]( is effectively 

given by 

1 
]( = '2((2n- 1)2 - 4(2n- 1)(n- 1)Y + (2n- 2)2Y2, (4.86) 

where the contribution from the other terms is negligible. Figures 4.15- 4.16 shows 

plots of]( against (X, Y) for n = 2 10. 

The expression of]( is analogous to Prasad's formula for monopoles in JR.3 . This 

formula relates the length of the Higgs field to the t'Hooft superpotential [88], 

( 4.87) 

where p is the t'Hooft superpotential and D is the wave-operator on the Euclidean 

space-time. In our case the field .6.0 plays the role of the t'Hooft superpotential. 

There is a similar formula (equivalent to the expression of K) for the de Sitter 

soli tons, 

2 1 -
II<J?II = --[D'log.6.0 - r(O)], 

2 

where D' is the Laplacian on JR. x S2 , 

( 4.88) 

o' = sin2 (B)[BJ- aJ- (cosejsine)89 - (cosB/sinB)80], (4.89) 
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.6.0 is given by (4.78), and r(e) = n2 cos2 (e)- 2n2 cos( e)+ (n2 + 1). This formula is 

not as general as ( 4.87) since it is only valid for the class of solutions generated by 

f = log Qn. There are of course analogous expressions for r (B) for other choices of 

f. 

The k = 2 Case 

To obtain a k = 2 solution, we need to find a homogeneous polynomial of degree 4, 

P(Z) which satisfies the reality condition pt(z) = -P(Z). The polynomial Q(Z) 

involved in the patching matrix is then Q(Z) = P(Z)/(Z2Z 3 )
2

. Note that r(x,() 

is now given by r = (ef- e-1)/Q(Z), so the patching matrix is 

gives 

(4.90) 

which written in terms of ( is 

( 4.91) 

Here ( 1 and ( 2 are as before, ( 1 = (q- p)j2vu and ( 2 = -(q + p)/2. The previous 

choice of f namely f = log Q does not lead to a non-singular solution on the de 

Sitter space-time; but f = log( Q- 1) does. The splitting of this f is analogous to the 

k = 1 case, 

h (4.92) 

and this leads to 

( 4.93) 
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Figure 4.17: A plot showing -tr<P2 against X and Y for a k = 2 solution. 

To obtain the fields 6_1 , 6 0 and 6_1 , we need to calculate the residues for ( = ( 1 

and ( = 0, 

6_1 

6o 

61 = 

(p- q)3(3p + q) 
2a3(p + q)2q7 ' 

3(p- q)2p 4(p- q)2 

a2q7(p + q)2 a2(p + q)4' 

2(p- q)(p- 3q) 32(p- q)q 
aq7(p + q)2 a(p + q)5 . 

(4.94) 

It is then straight forward to calculate the gauge fields using the formulas given 

in section 4.2. The expressions for the gauge fields are rather long and complicated 

and have therefore not been reproduced here. However the plot of the trace-invariant 

quantity -tr<P2 is given in figure 4.17. This figure is similar to (but of course different 

from) the n = 2 case of the k = 1 solution. 
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4.6 Conclusions 

In this chapter we have seen that the Yang-Mills system on a 4-dimensional space­

time can be reduced on a curved space-time to give an integrable system on curved 

space-time. We have constructed various U(1) and SU(2) examples on both Poincare 

and de Sitter space-time. For the U(1) case when the patching function is f = Q-k, 

we get an imploding-exploding wave-type solution on de Sitter space-time lR x 5 2
, 

where the wave travels between the two antipodal points on the sphere. The U(1) 

case for f = log Qk generates a solution that is homogeneous on 5 2
. The Maxwell­

Higgs field then depends on time only, and the maximum value of the field occurs 

in the distant past, as iJ -t n, with magnitude k. The U(1) case with f = 0 gives 

a solution that is singular on de Sitter space-time, but nonsingular on Poincare 

space-time. 

The (one-soliton) SU(2) case can be constructed by taking the function fin the 

patching matrix to be f = logQn, where Q is given by Q = (Z0Z 1 +Z2Z 3 )/(Z2Z 3
). 

This soliton is depicted in figure 4.11. The plot shows that in the distant past 

or future (as iJ -t n or iJ -t 0), the Higgs field approaches the vacuum value of 

-tr 1>2 = !· The two-soliton solution has also been constructed. For this we have 

taken f = -logQ where Q = i[1 + (Z0 Z1/Z2Z 3 ) 2]. This soliton is depicted in 

figure 4.17. 

One feature that is absent here for the solitons has been seen in the anti-de Sitter 

case: the solitons are localised and travel on time-like geodesics. It seems likely that 

a similar thing happens in the de Sitter case. To investigate this one needs to write 

the equations in the Q-matrix form [90]. For instance, there is a gauge in which 

Au = H- 1auH and Av = H- 1BvH, where H E SL(2,C). The hermitian matrix 

Q = H H* then satisfies 

(4.95) 

Equation (4.95) is identical to the Bogomolny equations (4.47). It is possible that 

this form may also give rise to a conserved quantity on the de Sitter space-time, 

analogous to the one found by Ward for the flat space-time case. Such a quantity 

has been found for the anti-de Sitter case as well [78]. 
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