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Abstract 

In this thesis we present a novel scheme for calculating the bosonic string parti­

tion function on certain curved backgrounds related to Anti-de Sitter (AdS) space. 

'vVe take the concept of a large N expansion from nonlinear sigma models in particle 

physics and apply it to the bosonic string theory sigma model, ·where the analogous 

large dimensionless parameter is the dimension of the target space, D. We then 

perform a perturbative expansion in negative powers of D, rather than in positive 

powers of a'/ l 2 (the conventional expansion parameter). 

As a specific example of a curved geometry of interest, we focus on an example 

of the metric proposed by Polyakov [1] to describe the dynamics of the 'vVilson loop 

of pure SU(N) Yang-Mills theory, namely AdS space. Using heat kernel methods, 

we find that within the large-D scheme one can obtain different conditions for \iVeyl 

invariance than those found in [2]. This is because our scheme is valid for back­

grounds where a' /l 2 is no longer small. In particular, we find that it is possible to 

have a dilaton that depends on the holographic coordinate only, provided one allows 

mixing of the ghost and matter sectors of the worldsheet theory. This field preserves 

Poincare invariance in the gauge theory, unlike the conventional dilaton. 'vVe also 

compute a simple string amplitude by constructing certain vertex operators for a 

scalar field in AdS, and discuss the consequences for the string spectrum. 
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Chapter 1 

Introduction 

This thesis is concerned with the Weyl anomaly of bosonic strings on certain curved 

backgrounds related to AdS space. Weyl invariance is a crucial property of string 

theory, required for consistency. We study the path integral approach to bosonic 

strings, and use an expansion in negative powers of the target space dimension D 

to obtain conditions sufficient for Weyl invariance up to 0(1) in 1/ D 1
. The thesis 

is organized as follows: 

In Chapter 2 we present an overv1ew of the path integral approach to string 

theory, and in particular the way in which the Weyl anomaly is introduced by 

insisting that all integrals are kept explicitly reparametrization invariant. We outline 

the method of heat kernel regularization as a way of explicitly calculating the Weyl 

anomaly. We then move on to discuss the Weyl anomaly of bosonic strings on curved 

backgrounds, and derive the famous beta function equations [2] using heat kernels 

rather than the usual dimensional regularization. These calculations do not appear 

elsewhere in the literature, and reveal a disagreement with the literature concerning 

the overall normalization. 

We then move on in Chapter 3 to present a review of the string description of 

gauge theory, including a discussion of the AdS /CFT correspondence [3] and the 

formulation of gauge theory in terms of loop space and the loop equation [4]. vVe 

1 Often I will refer to results being correct up to 0(1 ) in D rather than 1/ D; this is just a choice 

of language and implies no difference in meaning. 

1 



Chapter 1. Introduction 2 

then outline Polyakov's conjecture [1] for solving the loop equation v1a a string 

theory on a particular background geometry. This chapter is essentially a literature 

review, included in order to justify our interest in the geometry that is studied in 

detail in the rest of the thesis. 

The standard beta function equations dictate that bosonic strings propagating 

on the metric proposed by Polyakov require a dilaton field that breaks Poincare 

invariance at the location where the vVilson loop is situated. Since these beta func­

tions are derived using a small a' expansion, we attempt to use a different expansion 

parameter to circumvent this problem. In Chapter 4 we show how the analogy with 

the O(N) sigma model from particle physics suggests the use of the target space 

dimension D as an expansion parameter, taking D to be large (of the order of 26, 

suitable for bosonic strings). We concentrate on the case of closed bosonic strings 

in Euclidean AdS space (which is a particularly interesting example of the Polyakov 

geometry) and we treat the metric exactly in the sense that we define the partition 

function by using the explicit form of G1w(X) in Poincare coordinates, rather than 

by expanding it in normal coordinates as is usually the case. Using heat kernel 

regularization once again, we derive the Weyl anomaly associated with integrating 

out the "flat" directions. We also identify the correct vacuum configuration of the 

worldsheet in the "holographic" coordinate about which we perform the expansion 

in 1/ D. 

Chapter 5 is concerned with deriving certain conditions under which the theory 

is Weyl invariant within the 1/ D expansion. By representing the Faddeev-Popov 

determinant associated with gauge-fixing the string by a single bosonic field we 

find that it is possible to cancel the anomalous term found in Chapter 4 exactly 

by coupling this "bosonic ghost" to the target space metric. This coupling can be 

interpreted (by integration by parts) as a dilaton field which is independent of the 

flat directions, and so does not break Poincare invariance on the AdS boundary, 

unlike the conventional clilaton field required by [2]. vVe are left with a term which 

explicitly couples the ghost sector to the target space metric. By performing the 

path integral over the remaining target space field the critical dimension is found 

to be 26, in agreement with [2]. In addition, we shmv how the zero mode associ-
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ated with our bosonic representation of the ghosts softens divergences present in 

higher-order correlation functions, preventing the generation of additional anoma­

lous terms. Hence, our results appear to hold beyond 0(1) in D. We then go on 

to discuss the construction of a simple string amplitude by introducing vertex oper­

ators constructed from the wave equation for the background metric on which the 

string propagates. 

Finally, in Chapter 6 we discuss various issues associated with the calculations 

presented here, including an alternative derivation of the \1\Teyl anomaly using zeta 

function regularization and the generalization of these results to other examples of 

the Polyakov geometry. 'vVe also make some speculative observations concerning the 

interpretation of our dilaton field as the effective string coupling constant. The chap­

ter ends \vith some concluding remarks about the results presented here, and their 

possible extension to more complicated systems (strings with boundaries, fermionic 

strings). 

There are two Appendices. Appendix A gives a derivation of the Green's function 

at coincident points, a result that is used at various points in the main body of 

the text. Appendix B describes the Faddeev-Popov procedure for gauge-fixing the 

string, and also includes a derivation of the Weyl anomaly of the ghost sector using 

conformal field theory techniques. The material presented in the Appendices is 

standard and is included for completeness. 



Chapter 2 

The Weyl Anomaly in 

Perturbative String Theory 

In this chapter we review some of the key features of standard perturbative string 

theory, both on trivial and nontrivial background spacetimes. Vve focus in particu­

lar on the Weyl anomaly - the breakdown of the independence of the theory on the 

worlclsheet metric at the quantum level. vVe introduce the idea of heat kernel regu­

larization, and show how one can use this to compute the Weyl anomaly for a flat 

background. We then go on to use heat kernel techniques to derive the famous beta 

function equations arising from string theory on nontrivial backgrounds, and find a 

different overall normalization from that found in the literature [2]. A discussion of 

the significance of these beta function equations is also included. 

2.1 Strings in flat spacetimes 

String theory can be tackled either from an operator approach [5] [6], or from a path 

integral approach [7] [8]. These approaches are believed to be equivalent, although 

no formal proof of this fact exists to elate. In this thesis, we study strings from the 

path integral viewpoint. Therefore, we begin by presenting a brief overview of the 

basic concepts of the Polyakov path integral. 
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2.1.1 The path integral approach 

String theory is the theory of worldsheets, in the same sense that field theory is 

the theory of worlcllines. As such, the quantum theory of strings can be thought 

of as the quantum theory of surfaces, or quantum geometry. This idea was first 

investigated by Gervais and Sakita [9], where they attempted to formulate a theory 

of strings as a path integral over surfaces using the Nambu-Goto action: 

(2.1) 

Unfortunately this approach proved to be fairly intractable clue to the presence of 

the square root in the action. A more elegant and powerful approach was later put 

forward by Polyakov [7], in which it was shown how to set up a string functional 

integral via the introduction of a worldsheet metric. The initial postulate is that the 

scattering amplitude for a system of n strings is given by the following expression [8]: 

An= L I VXVgNVl· .. Vn e-S[g,X]->-x 

topologies 

(2.2) 

The Polyakov action is, for strings propagating on flat spacetime (we work every-

where in Euclidean signature in this thesis), 

(2.3) 

where ~ 1 ' e are coordinates on the 2-dimensional worldsheet, g = det(gab) where 9ab 

is a 2-climensional metric tensor, and Oa = a/ o~a. The constant o/ has the dimen­

sions of area, and is interpreted as the inverse string tension. We can think of Vd 
as setting the string length or the string scale (the scale at which the "stringiness" 

of the string becomes significant); in this sense, o/ is analogous to n in conventional 

quantum field theory. This action is completely equivalent to the Nambu-Goto ac­

tion; one sees this by computing the equation of motion for 9ab and substituting it 

back in to the action. 

The amplitude as defined in (2.2) is a sum of path integrals over the target space 

coordinates X and the worlclsheet metrics 9ab· The \lis are insertions (known as 

ve'rtex opemtoTs) which encode the quantum numbers of the external string states 

that are being scattered in the process described by An- The factor e->-x counts 
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+ + 

Figure 2.1: A topological worldsheet expansion. Handles on the worldsheet corre­

spond to string loops; hence, the Euler characteristic of the worldsheet is closely 

related to the string coupling constant. 

the number of loops that the given process involves; x is the Euler characteristic of 

the worldsheet, which depends on the topology of the surface. If the surface has h 

handles and b boundaries, then 

X= 2- 2h- b (2.4) 

Hence, a closed string tree level diagram (i.e., a worldsheet with no boundaries and 

no handles, better known as a sphere) is weighted in the expression for An by the 

factor e-2.>-. Therefore, every time we add a handle to a closed string worldsheet we 

add a factor of e2
->- to the string amplitude. Adding a handle corresponds to emitting 

and re-absorbing a closed string, so the amplitude for emitting a closed string is 

proportional to e->-. Hence we can think of the e-->-x term in (2.2) as controlling the 

string coupling constant, 

We will come back to discuss the parameter ,\ later on. The sum over topologies 

in (2.2) can then be thought of as a sum over all possible loop diagrams in a string 

worldsheet expansion (see Figure 2.1), in analogy with the sum of Feynman diagrams 

familiar from conventional field theory. 

The factor N in (2.2) is a normalization constant, accounting for the fact that 

the action S[g, X] has a large number of symmetries which need to be properly 

factored out in order for the amplitudes to make physical sense and not diverge. 

These issues are considered in Appendix B. 

The action (2.3) has two local worldsheet symmetries. The first of these is 

reparametrization invariance (also known as diffeomorphism invariance). This is 
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simply invariance under a change of coordinate basis, 

so that S[g', X'] = S[g, X]. This symmetry is obviously a very physical attribute; 

the physics of the string should be invariant under changes of coordinate. There is 

a second local symmetry of the action (2.3); this is invariance under local rescalings 

of the metric 9ab: 

This is known as Weyl invariance or conformal invariance. Notice that under a Weyl 

scaling, XJ.L(~) is invariant. Since the action (2.3) is Weyl invariant, we have 

o'PS[g, X]= J d2~ylg(o'Pgab) ~ 1551~::] = J d2~ylg <p gabTab = 0 

which implies that gabTab = T;: = 0. Hence, the stress-energy tensor Tab is traceless 

as a consequence of Weyl invariance. VIe will see later on that this property of 

the stress-energy tensor is not necessarily preserved when one studies the quantum 

theory of the action (2.3); this is the famous Weyl anomaly (also sometimes called 

the trace anomaly). 

In order to analyze the expression for string amplitudes given in (2.2), it is useful 

to isolate the following expression, known as the string partition function: 

Z = J VXVg e-S[g,X] (2.5) 

Z is the basic object that appears in all computations of string scattering ampli­

tudes. In particular, we will show in the next section how this object possesses a 

Weyl anomaly (unless certain conditions are imposed by hand in order to cancel it). 

If the Weyl anomaly is present, amplitudes calculated with (2.2) will suffer from 

pathologies such as loss of unitarity (in other approaches to string quantization [5] 

one can keep Weyl invariance explicit by fixing a spacetime gauge, such as the light­

cone gauge. However, one then finds that Lorentz invariance is lost unless certain 

conditions hold; these conditions are the same as those required for the restoration 

of \iVeyl invariance in the Polyakov path integral approach). In addition, once the 

conditions for the Weyl invariance of Z have been found, it is necessary to ensure 



2.1. Strings in flat spacetimes 8 

that the insertions \li in (2.2) are also Weyl invariant. This then gives the spectrum 

of physical string states. Hence, the cancellation of the vVeyl anomaly in the parti­

tion function (2.5) and the scattering amplitudes (2.2) is of central importance to 

the consistency of string theory as a theory of spacetime interactions. 

vVe now go on to see in more detail how the Weyl anomaly arises in the functional 

integral formalism, and how one can calculate it explicitly. 

2.1.2 The Weyl anomaly 

It is a well-known statement that bosonic string theory is only consistent in 26 di­

mensions [7]. From the canonical (operator) point of view, it is only in 26 dimensions 

that we obtain a consistent ghost-free spectrum of string states1 (D = 26 is called 

the critical dimension). However, the picture from the functional point of view is 

perhaps more revealing, and suggests how one may be able to move beyond this 

restriction. To see how a critical dimension arises in this formalism, let us consider 

the following string partition function: 

(2.6) 

This string lives in D-dimensional flat spacetime. Looking at the string action in 

the exponent, we have seen that classically if we work in a gauge 9ab = e'PWfiab 

where flab is independent of the worldsheet metric scale factor 4?(0, the action is 

also independent of 4?(~). We have a Gaussian integral over the X-fields to perform. 

However, we will now see that the functional measure associated with the X-fields 

depends on the worldsheet metric 9ab, and hence 4?(~). This is the origin of the 

conformal or Weyl anomaly; the classical independence of the theory on the scale 

4?(0 is broken when we perform the functional integral (i.e., when we quantize the 

theory). 

The organizing principle behind the path integral approach to string quantization 

is that all integrals should be explicitly reparametrization invariant. In general, any 

1 The term "ghosts" here refers to states with negative norm. These are not to be confused with 

the Faclcleev-Popov ghosts that we will encounter later on. 
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object of the form 

will be reparametrization invariant as long as F(~) transforms as a scalar under 

changes of coordinate ~ ----+ ( ( ~). We refer to such functions as worldsheet scalars. 

In order to define the integration measure we need to define the reparametrization 

invariant inner product on variations of the X~' fields [8] (we define VX in anal­

ogy with the usual volume element for finite dimensional volume integrals). Now, 

integrating the string action by parts puts S[X, g] in the form 

S[X,g] = f d2~JgX~'~X~' (2.7) 

where 

(2.8) 

is the covariant worldsheet Laplacian. This suggests that the correct norm associated 

with the V X measure is 

(oX~', oX~')= lloXII 9 = f d2~Jg(oXf (2.9) 

since X~'~XIl is a worldsheet scalar. This inner product depends explicitly on tt?(O. 

Let us now fix the gauge on the worldsheet such that 9ab = e"'Woab (known as the 

conformal gauge). In order to do this gauge fixing consistently, one needs to use the 

Faddeev-Popov procedure; this is explained in some detail in Appendix B. For now, 

we notice that the action S[X, g] is now a well-defined Gaussian with respect to the 

measure VX, and so the result of performing the X-integration will be 

(2.10) 

where Detpp is the Faddeev-Popov determinant arising from fixing the conformal 

gauge, as explained in Appendix B (note that we now have a functional integral over 
D 

tp- we will discuss the measure Vtp below). The Det-:z ~ piece depends explicitly 

on tp( 0 in this gauge: 

and we therefore have a vVeyl anomaly. The next stage in determining the critical 

dimension is to compute the dependence of these determinants on the scale tp( ~), 

and to do this we now introduce the technology of heat kernel regularization. 
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2.1.3 Heat kernel regularization 

The determinants which we obtained above have an obvious interpretation as the 

infinite product of eigenvalues of the corresponding operator. The basic idea behind 

heat kernel regularization is that we can generalize the following identity for finite­

dimensional matrices NI, 

(2.11) 

to the infinite-dimensional case by introducing a short-time cutoff E, e.g., 

(2.12) 

(throughout, "Det" indicates an infinite-dimensional determinant as opposed to the 

finite-dimensional "det"). Notice that if we did not include the cutoff E this ex­

pression would not be well defined, since it would involve the 2-dimensional delta 

function on the worldsheet at~ = 0. Let us concentrate for the moment on the deter­

minant of the worldsheet Laplacian, ~- Since we are interested in the cp-dependence 

of this determinant, we need to compute how~ behaves under an infinitesimal Weyl 

scaling cp ---+ cp + fJcp. One readily finds that 

and so 

fJ'P ln Det~ = - Tr ( fJcp(~)e-E~) (2.13) 

where we have performed the t-integral. vVe can represent e-E~ in terms of an 

integral kernel which we denote by K(~, (;E): 

(2.14) 

We can see from this equation that K(~, (; t) satisfies the following differential equa-

tion, 

(2.15) 

with the initial condition that 

I 1 2 I 

limK(~,Ct)= V9(I)r5 (~-~) 
t-to g(0 

(2.16) 
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The equation (2.15) is the well-known diffusion equation or heat equation; hence, 

K. ( ~, (; t) is known as the heat kernel. 

We see, therefore, that if we can evaluate the trace of the heat kernel at short 

times, K.(~, ~; t), we can evaluate the cp-dependence of our regulated determinant 

via equation (2.13). The evaluation of the heat kernel involves making an expansion 

about the heat kernel for the flat worldsheet Laplacian 6 0 = -8~, including all those 

terms which do not vanish when we send the regulator E -+ 0. We do not reproduce 

the details here, as our calculation of the Weyl anomaly for bosonic strings on an 

AdS background in Chapter 4 demonstrates the use of this expansion in full detail. 

Here, we quote the result that 

(2.17) 

The divergent piece can be removed by adding a local counterterm to the original 

string action; combining this result with the contribution from the Faddeev-Popov 

determinant derived in Appendix B finally gives the following expression for the 

partition function: 

(2.18) 

The cosmological constant term )..e'P is the counterterm mentioned above. This 

theory, known as Liouville theory, looks on first inspection something like a Gaussian 

in cp - but there is a complication. Again, the functional measure associated with 

cp depends on the worldsheet metric, and hence on cp itself in a highly complicated 

way: 

(2.19) 

This means that the functional measure for cp is not that of a canonical quantum 

field, and hence we do not know how to properly quantize it. The point is that it 

is only in 26 dimensions that the coefficient multiplying the Liouville action is zero, 

and hence the dependence on cp drops out of the partition function as an irrelevant 

volume factor. This is the origin of the critical dimension in the functional approach. 

It must be noted that the integral (2.18) is not inconsistent in any way. If we 

were able to do it, we would in principle have consistent string theories in any 
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dimension we liked. So the statement that bosonic string theory is only consistent 

in 26 dimensions ought to be changed to the statement that we can't perform this 

functional integral as it stands. However, some progress has been made towards this 

end [10] [11]. The idea is to redefine the functional measure such that it does not 

depend on ec/J, but on a new reference or fiducial metric flab: 

One must then compensate for this "change of variables" by including some Jacobian 

factor. The resulting theory can then be made Weyl invariant with respect to 

the fiducial metric, and things look to be well-defined. Unfortunately, in order to 

stabilize the vacuum of the theory one needs to add some kind of cosmological 

constant term, and when the effect of changing to the fiducial metric on this term is 

included, one finds that the resulting theory is only solvable for D :S 1 or D 2:: 25. 

Progress on writing a well-defined, tractable path integral in physically realistic 

dimensions has not, as yet, been made. For the remainder of this thesis we will 

therefore take the view that quantum Liouville theory has not been solved, and so 

a critical dimension is required for consistency. 

2.2 Strings in curved spacetimes 

We have seen that Weyl invariance is a key property of string theory on fiat space­

times. It is no surprise that this is also the case when one considers the generaliza­

tion of the action (2.3) to curved backgrounds. In this section we consider the Weyl 

anomaly on nontrivial backgrounds in some detail, using the heat kernel method 

outlined above to regulate the various objects on the worldsheet that arise. The 

natural generalization of (2.3) to curved backgrounds is, fairly obviously, 

(2.20) 

where GJ.Lv(X) is the background metric (target space metric) on which the string 

propagates. The coupling of the target space metric to the string action in this way 

can be thought of as treating the background as some coherent ensemble of string 
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states, the effects of which on a "test" string are described by S[g, X]. To see this, 

one considers a metric of the form 

where h1w(X) is a perturbation about the fiat metric. It can then be shown that 

including GJ.Lv(X) in the action as above corresponds to inserting the exponential 

of the graviton vertex operator into the path integral [5] [6] (hence the notion of a 

coherent state of gravitons). 

The graviton is one of the massless states found in the bosonic string spectrum 

by considering the construction of the vertex operators Vi appearing in ( 2. 2). Ver­

tex operators are constructed such that they are worldsheet scalars (and are hence 

reparametrization invariant), and the masses and spins of the states that they repre­

sent are then determined by demanding that they also be Weyl invariant. One finds 

that the physical massless states for the closed string are then a graviton GJ.Lv(X) 

(a symmetric tensor field), an antisymmetric tensor field BJ.Lv(X), and a scalar field 

known as the dilaton, <I>(X). We do not consider the antisymmetric tensor field in 

this thesis, but we do wish to include the dilaton as this has far-reaching implications 

for Weyl invariance and the consistency of string backgrounds, as we shall see. 

It is therefore natural to ask how one might include the dilaton in the string 

action. Since we found that exponentiating the graviton vertex operator led to the 

natural generalization of the string action to curved backgrounds, it is natural to do 

the same to the dilaton vertex operator. This leads to [12] 

S = 
4
:a' J d2~vf9 [gab8aX~-'8bXvG1w(X) +a' R(2l<I>(X) J (2.21) 

where R(2
) is the scalar curvature of the worldsheet metric 9ab(~). Notice that the 

dilaton term is not Weyl invariant at the classical level. However, this should not 

worry us unduly as we are ultimately interested in the quantum theory; as long as 

the dilaton coupling is reparametrization invariant (which it is), \1\Teyl invariance 

can be enforced once we have performed the necessary path integrals. Another 

way of looking at this is that the dilaton coupling term is of higher order in a' for 

dimensional reasons, and as such can be viewed as a quantum correction to the 

action. Therefore, it is not so surprising that Weyl invariance is not explicit. 
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2.2.1 The dilaton beta function 

In this section we present a calculation of the conditions for \;\Teyl invariance of 

the bosonic string on a curved background in the presence of a dilaton field. This 

calculation was first clone in [2] using the background field method and dimensional 

regularization. Here, we will use heat kernel techniques to derive the same results; 

this way of computing the beta functions does not appear elsewhere in the literature. 

Interestingly, we find a disagreement between the overall normalization of the dilaton 

beta function in our calculation and the literature. 

Our starting point is the Polyakov action, 

S = 4:a' J d2~Vg [gaboaXILobXvGJLv(X) + c/ R(2l<P(X) J (2.22) 

The functions GJLv(X) and <P(X) represent the graviton and dilaton respectively. 

However, we can also think of the action (2.22) as defining a nonlinear sigma model 

with spacetime dependent couplings GJLv(X) and <P(X). If the action is interpreted 
. . 

in this way, then we can ask whether these couplings remain scale invariant at the 

quantum level, or whether they become anomalous and "run" in the sense of the 

renormalization group. In other words, vve can compute the beta functions of the 

couplings GJLv(X) and <P(X), which we denote as f3ii.v and /31> respectively. This 

interpretation of the scale invariance of the theory (2.22) is then related to the 

question of \1\Teyl invariance on the string worldsheet by writing the trace of the 

stress-energy tensor as 

(2.23) 

Hence, vanishing of the sigma model beta functions implies vanishing ofT:, which 

indicates \;\Teyl invariance as we saw above. 

In order to proceed, we work in the conformal gauge 9ab(~) = e'P(06ab· In this 

gauge, we have the relation 

Our strategy is to expand the X -fields about a point, X1'(~) = C1' + x1'(0, and to 

use Gaussian normal coordinates such that the target-space metric becomes 
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Hence, the action becomes 

s = 

Here, 81/I> is shorthand for f.JJ.L<I>(X(~))Ixw=c, and hence such terms are constant on 

the worldsheet. Expanding the exponential in the partition function up to 0(1) in 
I • 

a g1ves 

z 

X 

+ 

However, there is an extra piece that we must consider. The inner product on 

variations of the X -fields is 

and hence we have 

VX Vx x Det112 (6J.Lv -}RJ.LAI>Kx>.xK) 

Vx x (1- ~TrRJ.L>.vK:x>.x,..) 

This involves taking the trace over a matrix, and writing the trace out in full we see 

that this object is divergent: 

(2.24) 

The delta function evaluated at coincident points must be regulated, and we can 

do this by again introducing the heat kernel for the worldsheet Laplacian ~ at 

coincident points, denoted by KE(~, ~). As we have seen, the finite term introduced 

by this procedure is <p-dependent, and we find 

2 >. ;;; ( 2 >. ,.. e ua<p J f. ( 1 -<p !=12 ) 
= d ~R>.Kx x KE ~,0 = d ~R>.K:x :r -- --

4m:: 24n 
(2.25) 
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Combining this term with the rest of the partition function gives 

(2.26) 

where the 0 brackets indicate that we have contracted indices and are taking the 

average of the relevant quantity with respect to the Gaussian weight 

We have also used the definition 

I I 1 I 

(x(~)x(~ )) = 21ra _02 6(~- ~) 
a 

Vve assume that we are working in the critical dimension D = 26, so the contribution 

from the determinant of ll in (2.26) cancels against the ghost conformal anomaly as 

we saw in Section 2.1.3. We now need to evaluate the various 2-point functions, all 

of which are to be taken at coincident points on the worldsheet. Note that we must 

be careful to keep all terms up to 0 (E), since in some places these 2-point functions 

appear multiplied together. Terms which may naively seem to disappear as E --+ 0 

may in fact contribute when multiplied by other terms of 0(1/t:). 

Vve will again use the heat kernel to obtain the required <p-dependence of the 

2-point functions. Vve begin by considering (xx), which is given by 

(x(~) x(~)) = 21ra' 9(~, 0 

where 9(~, .;) is the Green's function at coincident points considered in Appendix 

A. Expanding this 2-point function in terms of the heat kernel K((~, ~) we find 

(2.27) 

We know that the 0(1) piece of this expression is a' O<p/2 - see Appendix A. The 

O(t:) piece has to be a scalar under reparametrizations, and so in general it can only 

contain terms like 

(2.28) 
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where a and fJ are coefficients that we must determine. Now, consider the following 

expression: 

(2.29) 

This can be written as (see Appendix A) 

(2.30) 

and we know that 

Hence, 

(2.31) 

Comparing this with expression (2.28) we see that this must equal 

(2.32) 

The term involving a is a total derivative which vanishes under tht integration: 

hence, we can see that the coefficient fJ must be 1 /247r. 

We also need to determine the coefficient a. To do this, notice that in the 

conformal gauge we have 

Expanding the exponentials to quadratic order in tp gives 

For the RHS of this expression to make sense as the variation of a quantity with 

respect to <p, we see that we require a = -/3. Hence, combining all these results 

together we arrive at the conclusion that 

I I 

0: O:E 
(xx) = -<p +- (82 <p- <pri<p) 

2 12 
(2.33) 

Having obtained this result, is a simple matter to carry out the necessary differen­

tiation to obtain the following expression: 

(2.34) 
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We also need to determine (oxox). To do this, vve will use the following identity: 
I 

o(OX;T) = (o2xx) + (oxo1;) = (_!_O~cp 
4 

(2.35) 

Again, we will use the heat kernel method to determine (82xx) and hence (oxox) 

from the above formula. We have 

smce 

at coincident points. Therefore, we see that 

(2.36) 

Vve can now substitute these expressions back into (2.26), and pick out all the terms 

which multiply ( oacp )2
. To see why, consider the following expression: 

(2.37) 

The stress tensor is 

(2.38) 

in conformal gauge. Therefore, 

and so 

(2.39) 

which is just 

written in conformal gauge. Therefore, comparison with (2.23) allows us to identify 

(- · ·) with the clilaton beta function we seek. vVe therefore obtain 

Z - ex (-J d2 (o )2 (a' (-1 1 1 ) R 
- p ~ acp 1447r + 121r · 16 + 127r · 24 
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+ 

This expression must vanish for conformal invariance, and this leads us to the desired 

form for the dilaton beta function: 

(2.40) 

with (3<P = 0. 

2.2.2 The graviton beta function 

To obtain the graviton beta function we need to consider the conformal invariance 

of the 2-point functions defined by the action (2.22). As we have seen in our deriva­

tion of the dilaton beta function, the following terms will contribute to the Weyl 

dependence of the 2-point function: 

1 
R a ~Ma xux~xK --, MAUK a"' a· · 127fet 

-~RtwxMxuJC(~, 0 
1 

-
8 

82cp8J.L8UcfJXMXU 
1f 

(2.41) 

(2.42) 

(2.43) 

The first of these terms represents a 4-point vertex that gives an effective 2-point 

interaction when 2 of the legs are contracted in the path integral. There are three 

ways in which this can happen; these are 

Now we can use the previous results for these correlation functions. vVe can ignore 

terms which are 0(1/t:) as they can be removed by counterterms, and terms like 

82 x only contribute to a wavefunction Tenormalization and can also be dropped. 

This is because the 2-point function is precisely the propagator associated with the 

operator 82
, and so the term 
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amounts simply to a renormalization of the source term for x, or equivalently a 

multiplicative renormalization of x itself.2 Hence, this expression along with the 

other two combine to give 

(2.44) 

where we have also integrated by parts. Therefore vVeyl invariance requires f3~v = 0, 

where 

(2.45) 

2.2.3 Discussion 

The results presented above for the beta functions of the couplings G1w(X) and 

<I>(X) are truly remarkable. Consider the case of a fiat background metric for the 

moment, and let the target space dimension be 26. Then, the beta functions become 

B'P = 0 
' l 

We see that the dilaton beta function is identically zero, so Weyl invariance (and 

therefore consistency of the string theory) requires 

which is just Einstein's equation in vacuum. Demanding the Weyl invariance of a 

2-dimensional field theory has led us to the equation of motion for 26-dimensional 

gravity! This is surely one of the strongest hints that string theory really does have 

something to say about the nature of quantum gravity. In fact, this statement gen­

eralizes to backgrounds with curvature; the spacetime equations of motion defined 

by 13<1> = f3~v = 0 can be derived from the 26-dimensional spacetime action 

(2.46) 

Hence, we have derived a spacetime action principle from the requirement of con­

formal invariance of a two dimensional field theory. 

2 This is in contrast to the situation we will encounter in Chapter 5. 
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There is another aspect of string physics that we should mention briefly. As we 

saw, the dilaton field couples to the string action via 

In fact, the integral over the worldsheet of the scalar curvature is equal to the Euler 

characteristic x, given in equation (2.4). Therefore, the expectation value of the 

dilaton field can be thought of as the parameter >. that we saw in Section 2.1.1 

above, and so 

(2.47) 

This is another beautiful feature of string theory; there is no notion of a string 

coupling constant as a free parameter. The string coupling depends on the string 

background in a completely self-consistent way. We will return to discuss this inter­

pretation of the dilaton field in Chapter 6. 

Finally, a note on the overall normalization of the dilaton beta function (2.40) 

derived above. We assumed above that we were working in the critical dimension, 

D = 26, so that the 0(1/ a') term involving D was set to zero. If we keep it in, we 

find that 

(2.48) 

The coefficient here (2/3o:') differs from that found in [2] (and reproduced in [5]), 

where it is found to be 1/3o:'. \"le are unable to account for this overall factor of 2; 

it may be merely a difference in conventions somewhere (there is insufficient detail 

given in [2] to be able to check this). One possible explanation for this discrepancy 

is that the two results are related by a field redefinition of the XJ.Ls. To check this, 

we can consider adding an extra term to the action of the form 

(2.49) 

since if one expands this term as we have clone above it is easy to see that this 

amounts to the redefinition 

(2.50) 

Such a redefinition obviously will not change the physical content of the equation 

of motion (2.40), but it might change its form and hence maybe account for the 
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difference in numerical factors that we have uncovered. However, when one includes 

this extra piece in the above analysis one finds that the extra terms introduced are 

of the form 

(2.51) 

which vanishes since it is a total derivative (remember that ( 811 <I> ) 2 is constant on 

the worldsheet). Hence, such a field redefinition does not account for the difference. 

As a related matter, we ·would like to point out that there appears to be some 

disagreement in the various factors involved in this expression elsewhere in the lit­

erature. For instance, in [6] the dilaton beta function is given as 

(2.52) 

Note that the scalar curvature R does not appear here at all, and the relative 

normalization of the terms involving <I> disagrees both with our result and that 

presented in [2] and [5]. 



Chapter 3 

Gauge Fields - Strings Duality 

In this chapter we first present a brief overview of the search for a string theory 

description of strongly coupled gauge theories. vVe then describe in broad terms the 

AdS /CFT correspondence and some of its salient features. Finally, we discuss in 

rather more detail the conjecture proposed by Polyakov [1] and justify our interest 

in the background metric that we then go on to consider in detail in subsequent 

chapters. 

3.1 A brief history of duality 

String theory and strongly coupled gauge theories have always been closely linked. 

It is interesting to note that string theory, now widely regarded as a theory of 

quantum gravity, first appeared as a theory of the strong interactions in particle 

physics. Having been originally abandoned in this context in favour of QCD, it was 

only later that a theory of strings was proposed as a quantum "theory of everything" 

containing gravity. Meanwhile, those trying to solve the mysteries of the strongly 

coupled regime of QCD began to realize that, in certain limits, QCD itself resembled 

a theory of strings. Today, the description of strongly coupled gauge theories via 

supergravity and superstring theory has found its first concrete example in the 

Maldacena conjecture, or AdS /CFT correspondence, which we discuss belo·w. Before 

describing some of the modern approaches to the string description of gauge theory, 

we briefly highlight some of the earlier evidence that QCD and string theory, rather 

23 
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than being two distinct theories of the strong interactions, may in fact be one and 

the same thing. 

A theory of strings first emerged as a phenomenological model of the hadrons 

in the late Sixties. It had been observed that hadrons existed in families, whose 

(masses) 2 and spins were linearly dependent. The scattering amplitudes were also 

known to be approximately dual; that is, contributions to the amplitudes from 

s-channel processes were approximately equal to contributions from t-channel pro­

cesses. Veneziano [13] proposed a form for the 4-particle scattering amplitude which 

reproduced both of these features (this model was later generalized to describe pro­

cesses involving arbitrary number of particles and was known as the dual resonance 

model). Several years later, it was shown in [14] that the Veneziano amplitude could 

be interpreted as arising from the quantum theory of a relativistic string. The dual­

ity property of the amplitude could be seen as a consequence of the fact that both 

s-channel and t-channel Feynman diagrams corresponded to the same worldsheet 

diagram for the string, as illustrated in Figure 3.1. However, this model was soon 

discarded as a realistic description of hadronic physics for several reasons, not least 

because it appeared to require 26 spacetime dimensions and predicted the existence 

of a massless spin 2 particle that was not observed in nature. The emergence of 

QCD as a theory of the strong interactions which explained all the above duality 

properties soon after then led to a decline in interest in the dual models and string 

theory. However, the fact that string theory predicted a massless spin 2 particle was 

soon to lead people to consider it as a fundamental theory of all the interactions, 

rather than as a phenomenological model of hadronic physics. This rogue particle 

played the role of the graviton. 

While string theory was originally discounted as a theory of the strong interac­

tions, it continued to appear in various forms as people tried to understand how to 

solve QCD in the strongly coupled regime. For instance, the attempts by Wilson [15] 

to put QCD on the lattice suggested that the phenomenon of confinement could be 

understood by the formation of SU(3)-charged "flux tubes" between quarks. These 

flux tubes could then be interpreted as relativistic strings, unifying the QCD pic­

ture with the dual resonance model. Unfortunately, this result was only valid within 
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Figure 3.1: An s-channel and a t-channel Feynman diagram (left), and their world­

sheet equivalents (right). The conformal invariance of string theory ensures that 

both contributions are equal. 

the so-called "strong coupling expansion", and it was not possible to take the cor­

rect limit that would extrapolate the physics on the lattice to continuum spacetime 

physics. Further evidence for a string description of gauge theory came in 't Hooft's 

studies of the large-N limit of QCD [16]. He found that the Feynman diagram 

expansion of QCD in the limit of large N (N being the number of colours) was 

dominated by so-called planar diagrams. The expansion organizes itself by topol­

ogy; a diagram of genus (number of handles) h is of a certain order in N given by 

the formula [4] 

diagram of genus h rv ( j~2) h 
Hence, this theory looks very similar to string theory - a topological expansion of 

surfaces as depicted in Figure 2.1 in Chapter 2. Notice also that if N ----t oo, the 

only diagrams that contribute are those with genus zero; i.e., those without handles. 

From a string theory point of view, this corresponds to taking the string coupling 

constant to zero so that no strings are emitted or absorbed (see Chapter 2). Hence, 

large-N theories seem to be described by free string theories. 'vVe will touch on this 

again in Chapter 6. Finally, it is interesting to note that although the topological 
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expansion for QCD is strictly only valid for "multicolour" QCD, where N -+ oo 

and we keep the combination 9bcDN fixed (known as the 't H oojt limit), there is 

certain phenomenological evidence that taking N = 3 is sufficiently large to make 

this analysis of QCD physically realistic. 

The evidence over the years has clearly suggested that strongly coupled QCD 

may have a description in terms of a string theory. vVe now move on to describe 

some modern attempts at realizing this, beginning with Maldacena's AdS jCFT 

correspondence. 

3.2 The AdS/CFT correspondence 

Undoubtedly the most successful attempt thus far to describe a gauge theory in 

terms of a string/ gravity theory has been the famous AdS/ CFT correspondence of 

Maldacena [17] [18] [19] [3]. This correspondence relies on the realization that there 

are certain non-perturbative objects within string theory called D-branes [6] [20]. 

From a perturbative point of view, Dp-branes are p-dimensional spacelike hypersur­

faces in spacetime on which open strings end; in this sense, they can be thought 

of as a set of consistent boundary conditions for open strings (the "D" stands for 

Dirichlet boundary conditions). In addition, one finds that adding extra internal 

degrees of freedom on to the ends of open strings (known as Chan-Paton factors) 

incorporates gauge symmetries into the spacetime physics. The Chan-Paton factors 

live in representations of the gauge group1
. The low energy effective theory that 

lives on the D-brane is then given by the massless excitations of the open strings, 

and this theory will have a gauge symmetry corresponding to the Chan-Paton fac­

tors. The particular value of the Chan-Paton factor simply labels the D-brane that 

the open string ends on. For instance, a single D-brane may possess a U(1) gauge 

symmetry. A system of N such branes would then have a U(1)N gauge symmetry. 

If these N D-branes are all placed at the same location, the gauge symmetry be­

comes enhanced from U(l)N to U(N). Hence, a large number of coincident D-branes 

1 Chan-Paton factors were originally introduced to make contact with the idea from gauge theory, 

referred to above, of quark-antiquark pairs connected by a flux tube. 
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describes a gauge theory with a large number of colours N. 

In order to get a feel for how the AdS jCFT correspondence works, we consider 

a system of N parallel coincident D3-branes in a fiat 10-dimensional spacetime 

within Type liB superstring theory. As we saw above, the string theory on this 

background will consist of an open string sector describing excitations of the branes, 

and a closed string sector describing excitations in the bulk. At low energies (that is, 

neglecting all the massive string modes so that we only consider the massless states 

in the theory) the open string sector describes an SU(N) super-Yang Mills theory 

with N = 4 supersymmetry in 4 dimensions (which is known to be conformal). In 

addition, the closed string sector describes free Type liB supergravity in the bulk. 

These two sectors are decoupled at low energies. 

Now, we can also describe this same system from the point of view of a solu­

tion to supergravity itself (the D-branes can be thought of as classical solutions 

to supergravity). This supergravity solution will be described by some nontrivial 

10-dimensional geometry. When one considers this geometry, one finds that there 

exists a horizon. Therefore, the energy of objects close to this horizon will get red­

shifted so that there are now two different notions of a low energy limit. One can 

either consider only free massless supergravity in the 10-dimensional bulk, or one 

can consider all excitations in the theory in the neighbourhood of the horizon (since 

all their energies will appear to be low clue to the redshift). Again, these two sectors 

of the theory are decoupled. 

Now, the near-horizon geometry defined by the D3-branes described above is 

found to be AdSs x ss. So, we have two alternative descriptions of the same physical 

system; one in which we have decoupled bulk supergravity and a 4-dimensional gauge 

theory, and another in which we have decoupled bulk supergravity and the complete 

spectrum of liB string excitations on AdSs x ss. The conjecture, then, is that since 

the decoupled bulk supergravity is the same in both these cases, then so are liB 

string theory on AdSs x ss and 4-dimensional N = 4 super-Yang Mills. Hence, we 

arrive at a conjectured string-theoretic description of a 4-climensional gauge theory. 

There are several initial clues that this is a reasonable conjecture. If these two 

theories really are one and the same, one would expect that the various symmetries 
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on both sides of the correspondence should match up, and in fact they do. For 

example, Ad5.5 has the group of isometries SO( 4, 2) which is also the conformal 

group in 4 dimensions; this matches with the fact that the gauge theory here is 

conformally invariant. The 5-sphere has the obvious rotational symmetry S0(6), 

and this is found to match with the SU ( 4) R-symmetry group of the field theory 2 

(the algebra of S0(6) is isomorphic to that of SU(4)). 

How else might one go about proving this conjecture? To answer this, we need 

to consider under what conditions we are able to do concrete calculations on both 

sides of the correspondence, since this is what is required in order to check explicitly 

the equivalence of the two theories. On the field theory side, we only know how to 

calculate within perturbation theory where the effective coupling constant g~ MN is 

small. The details of the correspondence show that this relates to the string theory 

side such that 

with l being the radius of curvature of the AdS space. In order to compare calcu­

lations in the field theory, we need to be able to compute related quantities in the 

string theory. While the full string theory on AdSs x ss is poorly understood, it is 

possible to take a further low-energy limit such that the string length becomes very 

small compared to the curvature of the background. In this limit, the string theory 

reduces to the more tractable theory of IIB supergravity on AdSs x ss, and we have 

Hence, we see that the perturbative regime of the field theory and the low energy 

regime of the string theory represent completely different regimes of the same theory. 

This is why they look so different, and why we do not have any contradiction between 

the two sides of the correspondence; strong coupling in one picture corresponds to 

weak coupling in the other, and vice versa. This has two obvious consequences, one 

very positive and the other less so. The positive consequence is that this duality 

allows one to access information about the extreme non-perturbative regime of the 

2 R-symmetry is a symmetry which allows one to rotate the supersymmetry generators into each 

other, and as such is a global symmetry of the gauge theory. 
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gauge theory via perturbative supergravity. The down side is that since we are 

only able to do computations in the weak coupling regimes on both sides of the 

correspondence, we are as yet unable to prove that the conjecture is true. 

There are now many examples in the literature of computations which confirm 

the AdS /CFT correspondence. A few notable examples are [18] [19], ·where the so­

called bulk-boundary correspondence is used to compute certain correlation functions 

in the gauge theory via supergravity. The precise identification is 

(ef d4x<Po(xi)O(xi)) - Z . ["'(xi z) I = A. (xi)] . CFT - strmg '+' , z=O '+'0 , 

that is, the generating functional of correlation functions in the field theory is set 

equal to the bulk string partition function, where the boundary values of the fields in 

the string theory act as sources for corresponding operators in the field theory. A cer­

tain subset of these correlation functions are also protected by non-renormalization 

theorems (i.e., they do not depend on the strength of the coupling constant), and 

so one is able to compute within perturbation theory on both sides of the corre­

spondence and show that the above equality holds. Another interesting approach 

was shown in [21] [22], where the AdS /CFT correspondence is used to compute the 

expectation value of the gauge theory Wilson loop by computing minimal areas of 

string worldsheets in AdS. The ends of the string are interpreted as ending on the 

boundary of the AdS space, where the Wilson loop lives. 

We will now move on to discuss an alternative form of gauge field - strings 

duality which is closely related to the approach of [21] [22], although different in 

several significant ways. The most obvious difference is that supersymmetry is not 

included. It is this approach that will inform the calculations that are presented in 

the remainder of this thesis. 

3.3 Loop space and Polyakov's conjecture 

An alternative approach to the description of gauge theory in terms of a string theory 

has been proposed by Polyakov [1] [23] [24]. This approach relies on reformulating 

the gauge theory in terms of loop functionals (an example of which is the \iVilson 

loop). In this section, we present a fairly heuristic explanation of how gauge theory 
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can be re-written in terms of loop space. The line of argument given here follows 

closely the derivation given in [4], and no claim of originality is made for the material 

presented in this section. The issues discussed here are extremely involved, and 

many technical subtleties have been quite deliberately swept under the carpet. The 

purpose of the present discussion is merely to give a broad picture of how it is 

possible to rewrite gauge theory in terms of these loop functionals, and to introduce 

the main concepts underlying the resulting loop equations. Once we have done this 

we move on to describe the main features of the proposed duality, and show how 

one arrives at a certain form for the background metric on which the string theory 

propagates. The remainder of this thesis is then devoted to studying the Weyl 

anomaly of bosonic string theory on this background within a novel calculational 

scheme. 

We begin by considering a pure SU(N) gauge theory without supersymmetry. 

The Wilson loop is defined as 

(3.1) 

where the averaging is performed with the pure Yang-Mills action 

(3.2) 

and FJ.Lv is the field strength associated to the gauge field AJ.L, which itself is a matrix 

in the adjoint of SU(N) defined in terms of the generators ta: 

(3.3) 
a 

The P symbol in the definition of the Wilson loop denotes path-ordering; note also 

that vve suppress the group indices in the definition of the Wilson loop since we 

are taking the trace. The VVilson loop is an interesting gauge invariant object to 

consider, since it acts as an order parameter for confinement. 

In what follows, we will consider the \Vilson loop as a functional of the contour 

C. C is an arbitrary, continuous closed loop. One begins by deriving the quantum 

equations of motion for the averaged Wilson loop. The procedure is simple; one 

shifts the gauge field in the path integral via AJ.L ( x) --+ AJ.L ( :r) + t: ( x), and considers 
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this shift as a change of variables in the path integral. Since the measure and the 

value of the integral remain unchanged under this shift, one can expand the resulting 

expression up to 0( E) and demand that the integrand vanish. This looks a little like 

the usual Hamilton variational principle. The resulting equations for the averaged 

vVilson loop are known as Schwinger-Dyson equations, and are found to be 

Here, V Jl is the covariant derivative in the adjoint of SU(N): 

(3.5) 

Our aim now is stated as follows: We wish to rewrite equation (3.4) entirely in 

terms of objects and operations which are defined on loop space. The Wilson loop 

itself is defined on a loop C, so it meets our requirements. However, the variational 

derivative on the RHS, and the field strength and covariant derivative on the LHS 

need to be rewritten. 

We need a more formal definition of what we mean by "loop space". As has 

already been mentioned, loop space consists of arbitrary continuous closed loops. 

We can describe these loops in terms of functions xJl(cr) E 1-l, where 1{ is the Hilbert 

space of functions obeying the condition 

1~
1 

x~(a)dcr < oo (3.6) 

and er is a parameter along the loop. These functions have the following proper-

ties [4]: 

2. The functions xf.l(cr) and AJlvxv(cr) +all represent the same element of loop 

space. This is just rotational and translational invariance. 

3. The functions xf.l(cr) and xf.l(f(cr)) with J'(a) 2: 0 represent the same loop. 

This is reparametrization invariance. 

When we refer to elements of loop space, we are referring to contours C that can 

be parametrized in terms of functions xJl(cr) that obey these restrictions. 



I 
i 3.3. Loop space and Polyakov's conjecture 32 

The gauge fields AJ.L are defined in terms of the generators of SU ( N). These 

generators obey a completeness relation: 

(3.7) 

'vVe can use this relation to derive the following formula: 

6AU(y) = 6 6(4)(x- y) (6il6kj- 2_6ijc5kl) 
6A~1 (x) J.LV N (3.8) 

Since the RHS of equation (3.4) involves the action of the variational derivative with 

respect to AJ.L on an exponential of AJ.L, we see that the result will involve the same 

exponential factor multiplied by the delta functions in (3.8). Hence, we can write 

the RHS entirely in terms of products of Wilson loops - which is what we require, 

since the Wilson loop is defined on loop space. The result we obtain is 

The contours Cxy and Cyx are the two "halves" of the contour C- the piece running 

from a spacetime point x to another point y, and the other piece running back from 

y to x. An important point to note here is that x and y are necessarily the same 

point in spacetime (due to the delta function 5( 4) ( x- y)), but they may be associated 

with different values of the contour parameter a. Hence, the RHS of our equations 

of motion have a "pinched disk" form. 

3.3.1 Loop space calculus and the loop equation 

Having re-written the RHS of our gauge theory equations of motion (3.4) in terms 

of loop space, we now turn to the LHS. This is much more complicated. We see 

that the LHS involves a covariant derivative; hence, we require some notion of 

differential calculus on loop space. \,Yhat is the effect of deforming a contour C on 

a loop functional such as W[C]? 

It turns out that we require two differential operations defined in loop space. 

These are the area derivative and the path der·ivative. 

1. Area derivative. The area derivative of a loop functional F[C] at a point x 

is defined to be the following: Let C be an element of loop space, and C' be 
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infin ites imal loop at x 

( 

c 

Figure 3.2: Contour deformation associated with the area derivative. 

infi nitesimal wire at x 

( 

Figure 3.3: Contour deformation associated with the path derivative. 

another element of loop space obtained from C by attaching an infinitesimal 

loop at a point x . The area enclosed by the infinitesimal loop is lba11vl · The 

area derivative is t hen 

(3.10) 

The contour deformation described here is shown in Figure 3.2. 

2. Path derivative . The path derivative of a loop functional F[C] at a point x 

is defined to be the following: Let C be an element of loop space, and let C" be 

another element of loop space obtained from C by attaching an infinitesimal 

path or "wire" 6x11 to the loop at a point x. The length of the infinitesimal 

path is lbx11 1. The path derivative is then 

(3. 11 ) 

This deformation is shown in Figure 3.3. 

It fact , these two operations are enough to rewrite the LHS of (3.4) in loop space. 

To see this, we consider first the action of the area derivative on the Wilson loop. 
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This is given by the Mandelstam formula: 

b ( 1 1: A d· 1• ) 'l 1: A d I' -TrPe1 :rc 1' x = -TrPF
11
v(x)et:rc "x 

6a11v(x) N N 
(3.12) 

This equation can be derived by adding an infinitesimal rectangular loop to the 

Wilson loop contour C and applying Stokes' theorem. The Mandelstam formula is 

really a geometrical statement: the field strength Fllv ( x) is a curvature associated 

to the connection All(x). For our purposes, it is significant that the action of the 

area derivative on the Wilson loop brings down a factor of the field strength, as this 

is what we need to reproduce the LHS of ( 3.4). 

It is important to note that the path derivative of the Wilson loop is zero. This 

can be easily seen by considering the properties of the phase factor. If All were 

Abelian, then it is clear that the path derivative must be zero since we can apply 

Stokes' theorem to write the loop as 

(3.13) 

where l: is the area enclosed by C and dsJlv is the measure associated with integrating 

over l:. Since the path derivative does not change the area of the loop, it must give 

zero when acting on W[CJ. In the non-Abelian case, the path-ordering operation 

ensures that this property is preserved. The fact that a~vV[C] = 0, along with 

reparametrization invariance, is an important property of the Wilson loop functional. 

It is known as zigzag symmetry, and more will be said about this later. 

Although the path derivative of the Wilson loop functional is zero, the RHS of 

the Mandelstam formula (3.12) does not yield zero under this operation due to the 

presence of the field strength at the point x. In fact it can be shown that 

(3.14) 

This is precisely what we need in order to write the LHS of (3.4) in loop space. We 

have 

(3.15) 

and hence we combine this with equation (3.9) to obtain the Schwinger-Dyson equa-



3.3. Loop space and Polyakov's conjecture 35 

tions (3.4) in the form 

This equation as it stands is not closed, since it gives the one-loop Wilson loop 

average (TV[C]) in terms of a two-loop average (W[Cyx]vV[CxyD· However, in the 

large-N limit there is a remarkable factorization: 

(3.17) 

This factorization property is a general property of the large-N limit which holds 

for correlation functions of products of singlet operators (that is, operators which 

transform as singlets under the gauge group). In this case, if we keep the combination 

9~~N fixed as we take the large-N limit (this is the 't Hooft limit mentioned above 

in Section 3.1), we obtain a closed equation for the Wilson loop: 

(3.18) 

This is almost completely defined in loop space. However, notice that both sides 

at the moment still depend explicitly on the spacetime point x, which does not live 

in loop space. To remove this unwanted dependence, we integrate both sides over x 

along the contour C, giving 

This equation, first derived in [25], is referred to as the loop equation, and rep­

resents the Schwinger-Dyson equations for the gauge field AJ.L in loop space in the 

large-N limit. It has been shown to reproduce perturbation theory, as expected. 

The operator on the LHS, 

~ i c5 L = dxvfJZ ( ) c c5a1tv X 
(3.20) 

is often referred to as the loop operator or the loop Laplacian. Notice that the action 

of the loop operator on a Wilson loop whose contour has no self-intersections yields 

zero, due to the presence of cS( 4>(x- y) on the RHS. 
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3.3.2 A loop space dictionary 

In order to keep a clearer picture of what we mean when we talk about objects and 

operations in loop space, it is useful to pause and compare objects in ordinary space 

with their counterparts in loop space. The following list, reproduced from [4], gives 

some of the more important and illustrative relationships: 

1. In ordinary space we talk about the phase factor appearing in the Wilson 

loop as a functional of the gauge fields, <P[A11 ]. In loop space, we are concerned 

with loop functionals - that is, functionals of the contour C. 

2. We have seen that the field strength F11v(x) in ordinary space is related to 

the area derivative ~( )in loop space (equation (3.12). 
ual'v x 

3. The covariant derivative V 11 is associated with the path derivative [)~ in 

loop space, as we see by taking the path derivative of the RHS of equation 

(3.12). 

4. It can be shown that the relation &~W[C] = 0 corresponds to the Bianchi 

identity V 1\ F = 0 in ordinary space. 

5. Finally, we have seen that the Schwinger-Dyson equations (3.4) in ordinary 

space are translated into the loop equation (3.19) in loop space. 

3.3.3 The conjecture 

Now that we have seen how one can reformulate the gauge theory in loop space, 

we need to ask how one might go about solving the loop equation. The conjecture, 

made by Polyakov [1] [23] [24], is the following. In analogy with the solution of 

the wave equations by Feynman integrals over trajectories, we should solve the loop 

equation by integrals over surfaces whose boundaries trace out the contour C of 

the Wilson loop functional vV[C]. This sum over surfaces is precisely the kind of 

thing we encounter in string theory [7], and this is how we arrive at a conjectured 

continuum string theory description of a gauge theory. We can state the ansatz for 
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the Wilson loop in the following way: 

(W[C]) = J VXVgexp-S[X,g] (3.21) 

where we take the string action to be the Polyakov action 

(3.22) 

with a' = 1. We will ignore other possible background fields ( antisymmetric tensor 

field, fermionic terms, etc.) for the moment. To complete the ansatz, we need to 

include a boundary condition: 

XlaM = C (3.23) 

where EJM is the boundary of the worldsheet M. This condition ensures that the 

boundaries of the surfaces we sum over trace out the contour C. 

The next question we need to ask is: what is the string theory sigma-model action 

S[X, g] that correctly reproduces the loop equation for (lV[C])? In other words, how 

do we choose the string background metric G,_w(X)? We have seen in a previous 

chapter that quantum effects lead to the worldsheet scale factor becoming dynamical 

(note the kinetic term for cp in (2.18)). If we work in a gauge 9ab = e'PWgab, where 

9ab is independent of cp, the effective action for cp looks like 

(3.24) 

as we saw in Chapter 2. This looks just like a string propagating in a background 

metric with cp playing precisely the same role as XJ.L! In other words, we are now 

considering a string propagating on a background 

D 

GMN(X, cp) = dcp2 + L dX[ (3.25) 
i=l 

In fact, we can be more general than this. There is no a priori reason for our (D+ 1)­

dimensional metric to be fiat. However, if we wish our D-dimensional metric to be 

fiat, the most general form of the metric we can use is 

D 

ds1+ 1 = dcp2 + z2 (cp) L dX[ (3.26) 
i=l 
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At any given value of rp, the metric describing the transverse D-dimensional space 

is then fiat. 

So, given this construction we make the following observations. From the point 

of view of gauge fields - strings duality, we are attempting to describe a Wilson 

loop functional in 4 flat dimensions with a string functional integral. If we place the 

string itself in 4 flat dimensions, it will "grow" an extra spacetime dimension due 

to the quantum effects described above. Hence, it is claimed that a 4-dimensional 

gauge theory has a natural stringy description in 5 dimensions, with a metric given 

by (3.26) [1]. The question of which string background metric GJ.Lv(X) we should 

choose to reproduce the loop equation has now been refined to the following: What 

function z2 
( rp) should we use in the metric (3.26) in order to reproduce the loop 

equation for vV[C]? It is clear that in order to answer this question we need some 

more information about the Wilson loop functional itself. In fact, there is an impor­

tant symmetry present in the Wilson loop which lets us restrict the allowed string 

backgrounds. This symmetry is the zigzag symmetry referred to above, and is to 

this that we now turn our attention. 

3.3.4 Zigzag symmetry and AdS space 

The zigzag symmetry property of the Wilson loop functional turns out to have 

important consequences for constructing a string action, in accordance with the 

ansatz (3.21). We will see that the growth of an extra dimension under quantization 

is essential; without it, we would be unable to define a suitable string action with 

the correct symmetries. 

As was explained previously, the properties of the non-Abelian phase factor 

present in the Wilson loop functional mean that the path derivative of W[C] yields 

zero. In addition, the functions we use to parametrize the elements of loop space 

C are reparametrization invariant as was mentioned above. We can combine these 

two features in the following way: reparametrization invariance means that 

(3.27) 

with da~~a) > 0. Now, since o~W[C] = 0, we can add any piece of "wire" to the 
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contour C without changing the value of the Wilson loop, as long as the extra path 

introduced does not enclose any area. In particular, we can add a piece of wire 

which backtracks along C and then reverses on itself. This is just equivalent to the 

reparametrization (3.27), except we now lose the condition that a' (a) be monotonic. 

In other words, the vanishing of the path derivative of the Wilson loop functional 

implies that it is invariant under all reparametrizations (3.27), not just those for 

which da~~a) 2:: 0. This extended reparametrization invariance is what is known as 

zigzag symmetry. 

Standard string theory actions are, of course, reparametrization invariant. For 

example, the action (3.22) is invariant under the transformation 

(3.28) 

for any t(~) with d~~~~) 2:: 0. Crucially, (3.22) is not invariant if d~~~O changes sign, 

unlike the Wilson loop functional. This is because the factor of ..j9 in the action 

is positive definite. If we consider a more general string sigma-model action with 

antisymmetric tensor fields, etc ... 

(3.29) 

then it seems that the first term involving ..j9 is forbidden by the requirement of 

zigzag symmetry [1]. This then implies that 

(3.30) 

which is a very strange condition, and does not appear to make much sense. How­

ever, we have already seen that if we wish to describe a 4-dimensional Wilson loop 

functional by a string theory, that string theory ought to live in 5 dimensions with 

background metric 
4 

ds; = d<i + z2
(<p) L dXl (3.31) 

i=l 

The key point is that we only require the zigzag symmetry in the four fiat dimensions 

where the Wilson loop lives. In other words, we simply require a particular location 

<p = <p* in the 5-dimensional space where the 4-dimensional flat part of the metric 

vanishes: 

(3.32) 



3.3. Loop space and Polyakov's conjecture 40 

This is the extra condition we need in order to choose a suitable z2 
( <p). 

A simple choice for z2 
( <p) that obeys the zigzag symmetry requirement is 

(3.33) 

The zigzag-symmetric point is therefore <p* = -oo. Substituting this function into 

(3.31) and making a change of coordinates 

Y2 = z2 exp (- 2T) (3.34) 

gives a string background metric 

(3.35) 

where we have rescalecl the X's to absorb the factor of l2 - this is 5-climensional anti-

de Sitter spacetime (AdS5 ) with radius of curvature l. We take the zigzag-symmetric 

point in the y-coorclinate to be y* --+ 0; there is another zigzag-symmetric point at 

y --+ oo, but we do not concern ourselves with that here (this case is studied in [1]). 

We simply note that we are trying to describe a Wilson loop in 4 flat dimensions, 

and the point y* --+ 0 corresponds to the boundary of AdS5 , which is indeed a flat 

4-climensional spacetime. 

So, let us summarize what we have clone. In attempting to describe a 4-

climensional Wilson loop with a string functional integral in 4 dimensions, we see 

that the string theory "grows" an extra dimension via quantum effects. In addition 

to this, the Wilson loop possesses zigzag symmetry and this clearly needs to be 

present in the string theory if the two are truly equivalent. Therefore, the back­

ground metric on which the string is allowed to propagate is restricted - it must 

have a zigzag-symmetric point somewhere where we can place the boundary of the 

worlclsheet and trace out the contour of W[C]. An example of such a background 

metric is AdS5 , which has a zigzag symmetric point at the boundary. This situation 

is represented pictorially in Figure 3.4. With this in mind, the original conjecture 

implies that 

String theory on AdS5 <====? Gauge theory in 4 dimensions 
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worldsheet in bulk space 

end of string 
tracing out Wilson 
loop contour C / 

boundary 

Figure 3.4: A string worldsheet ending at the zigzag symmetric location in AdS 

This is beginning to resemble the AdS /CFT correspondence! But there are sev­

eral important differences. For instance, everything in our construction up to now 

has been bosonic; we have not introduced supersymmetry at any stage, whereas 

SUSY is an integral part of the D-brane construction of the AdS /CFT correspon­

dence. The important point is that we have been able to arrive at a conjectured 

duality which resembles AdS /CFT, just by worldsheet / sigma-model considera­

tions. Note, however, that AdS space is just one example of a choice of the function 

z2 ( <p) that is consistent with the various symmetry requirements. This suggests a 

whole class of dualities based on the form of the metric (3.31). Clearly, the study of 

string theory on this more general background is of interest; in Chapter 6 we discuss 

how the calculations presented for the AdS metric can be generalized. 

Going back to the AdS case, our ansatz (3.21) for the Wilson loop functional 

now reads 

(W[C]) =I VXVyVgexp(-S[X,y,g]) 

with the Polyakov action in AdS space 

and boundary conditions 

XlaM C 

0 

(3.36) 

(3.37) 

(3.38) 
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There is one extra hint that this conjecture may be true. It has been shown [24] 

that the action (3.37) does indeed satisfy the loop equation (3.19) classically; that 

IS, 

(3.39) 

In other words, the minimal area in AdS space satisfies the loop equation. This is 

encouraging, and suggests that a dual gauge theory description of this particular 

string theory really does exist. Therefore, we will take seriously the idea that string 

theory propagating on the metric (3.31) really does have something to say about 

the dynamics of gauge theories and now move on to consider the physics of this 

system. In particular, we will show that the requirement of Weyl invariance is of 

central importance (as it always is in string theory) and we demonstrate that within 

a calculational scheme where the dimension of the target space is taken to be large 

it is possible to investigate the physics of strings on such geometries where we do 

not require that the background be only slowly varying at the string scale. 



Chapter 4 

The (1/ D) Expansion and the 

Weyl Anomaly 

4.1 Moving beyond "almost flat" spacetimes 

So far, we have seen how perturbative bosonic string theory can be formulated 

on a curved background via the nonlinear sigma model with spacetime-dependent 

couplings. These couplings represent the target space metric G11v(X) and the dilaton 

field <P(X) (one can also include the antisymmetric tensor field B11v(X), but we do 

not consider this here). Remarkably, one finds that demanding conformal invariance 

of this sigma model (that is, requiring that the beta functions associated with each 

of these couplings vanish) gives the spacetime equations of motion for the metric and 

the dilaton. If we wish to study bosonic string theory in nontrivial backgrounds, we 

must ensure that the spacetime beta function equations are satisfied or the theory 

will not be vVeyl invariant. A string theory with a vVeyl anomaly yields unphysical 

scattering amplitudes, and is therefore not consistent. For example, the graviton 

beta function ( 2.45) 

shows that if the target space metric is not Ricci-fiat (as is the case for Anti-de 

Sitter space), we must include a dilaton field in the string action for consistency. 

However, there are several points to be made here. Firstly, we must consider 

the nature of the calculation that led us to these spacetime equations of motion for 

43 
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the metric and the dilaton. vVe used a perturbative expansion in the dimensionless 

number a'/ l 2
, where l is the characteristic radius of curvature of the target space 

metric. Therefore, these equations of motion must be viewed as being valid only 

when we take the string length to be much smaller than the radius of curvature of 

the metric. This then begs the question: what happens if the curvature of the metric 

is not negligible on scales comparable to the string length? This is a fairly sensible 

situation to consider since string theory is supposed to provide a consistent theory 

of quantum gravity, and it is precisely when gravitational effects become significant 

at very small scales that quantum gravity should come into play. It would be nice, 

therefore, if one could find a way to analyze the Weyl anomaly of the string on 

a curved background without making the approximation that the string length is 

small compared to the scale of the metric curvature. 

How might one go about this? The fact that we would require a' jz2 rv 1 suggests 

that this is not a problem that one could analyze in perturbation theory. The non­

perturbative structure of string theory has been (and is) one of the great problems 

in the field at present, and the study of D-branes (non-perturbative states in the 

superstring spectrum) has led to many remarkable discoveries including the famous 

AdS /CFT correspondence discussed in Chapter 3, and the equivalence of the five 

known perturbative superstring theories as limits of M-theory. Powerful as these 

results are, almost everything that we have learned from this approach in terms 

of hard calculations has relied on taking the low-energy limit of the string theory 

(supergravity) - in this sense, these calculations are not very "stringy". We would 

like to develop a calculational scheme in which we can really treat the string as a 

string. In order to see how this might be achieved, we will take our cue from the 

study of nonlinear sigma models in particle physics. 

4.1.1 The O(N) nonlinear sigma model 

As a brief aside, consider the following quantum field theory for an N-component 

scalar field cjJ(x), where x is a spacetime coordinate: 

( 4.1) 
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with 

(4.2) 

This theory, known as the O(N) nonlinear sigma model, was first considered as 

a description of a system that displays spontaneous symmetry breaking in 4 cli-

mensions, as well as asymptotic freedom. Here, vve consider the theory of an N­

component field cjJ(x) in 2 dimensions, with the constraint that the "length" of the 

field cjJ2 = c/Jic/Ji = 1/ g2
. vVe will see that this theory describes dynamical mass gen­

eration. In order to proceed, introduce a Lagrange multiplier field A(x) to represent 

the delta function in Z: 

IT 6(4J(x)
2

- : 2 ) = J VA(x)exp (~ J d2
xA(x)(cjJ(x)

2
- : 2 )) (4.3) 

X 

Substituting this into Z, we see that the integration over cjJ(x) is a simple Gaussian 

and can be clone exactly. This gives 

Z = j VA(x) exp ( 2~2 j d2xA(x) - ~·In Det (-a~ + A(x))) ( 4.4) 

Now, one can approximate this integral by a saddle point if one assumes that the 

number N is large. In this case, the integral will be dominated by the configuration 

of A(x) that minimizes the exponent. The Euler-Lagrange equation for A(x) will 

give us this configuration (i.e., the classical configuration). We find that 

N 1 
-G(x, x; A) = -

2 2 2g 
( 4.5) 

where we have introduced the Green's function 

I 1 I 

G ( x, x ; A) = ( x 1_32 + A I x ) 
J1. 

(4.6) 

If we assume that the configuration of A we are looking for is translationally invari­

ant, we can represent this equation in momentum space by 

(4.7) 

where we have cut off the divergent integral at some momeutum scale A, and so the 

quantity 

A= A2 
exp (-~) Ng2 
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represents a dynamically generated mass scale in the theory. This is the configura­

tion of ,\(x) which minimizes the action, and therefore has the least energy of all 

possible translationally invariant configurations. Any perturbative calculations that 

we wish to perform within this scheme therefore need to consist of perturbations 

about this configuration. We will see later on that the string model we study looks 

very similar to this O(N) sigma model; however, in that case the Euler-Lagrange 

equations are more complicated and there is in fact another solution, corresponding 

to ,\ = 0 here, that has a lower energy than ,\ = constant. The correct vacuum in 

that case does not correspond to dynamical mass generation. We will see this in 

some detail later on in this chapter. 

The moral of this story is that m the study of nonlinear sigma models, the 

approximation that the number of components of a field N is large can be used 

to get physical results. In fact, the "large-N expansion" is a very powerful tool in 

quantum field theory as we have already seen in our discussion of the loop equation 

in gauge theory. We will now see that a similar kind of approximation may be 

what we need to set up a perturbative calculation for strings on strongly curved 

backgrounds. 

4.1.2 Target space dimension as a perturbative parameter 

Let's go back to thinking about string theory. As we have seen, the Polyakov bosonic 

string in flat space can be represented by 

(4.8) 

(we will assume that we are in the critical dimension here, and hence discard the 

worldsheet metric for the moment). The X- integral is clearly Gaussian, and yields 

Z = Det-D/2 (~0 ) = exp (- ~ ln Det(~o)) (4.9) 

This looks very much like the determinant that we encountered in our discussion 

of the O(N) model, except the parameter N has here been replaced by the target 

space dimension D (since Xi(~) is a D-component scalar field on the worldsheet). 

This leads us to consider the following: is it possible to construct a perturbative 
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expansion for string theory in which we take D to be large, rather than o/ I l2 to 

be small? This seems like a reasonable possibility, particularly for bosonic strings. 

'vVe know that bosonic string theory only makes sense in 26 dimensions - and 26 is 

a (reasonably!) large number. Therefore, one might try to construct a calculation 

in which everything is arranged in inverse powers of D rather than in powers of o/. 

We will see that this expansion scheme is very different from the usual one, with 

terms of the same order in D being of different orders in a' I l2 . Hence, there is no 

contradiction between the standard beta functions derived in Chapter 2 and the 

results presented in the remainder of this thesis since the two expansion schemes 

correspond to different physical regimes. 

One may wonder whether we should expect that the critical dimension changes if 

the background becomes strongly curved. We expect that it won't for the following 

reason. The critical dimension is required to allow consistent string propagation; it 

is only when the target space metric satisfies this condition that the Weyl anomaly 

(a local quantity) vanishes. Since we require D = 26 for metrics that are slowly 

varying over the string scale we should expect that the same will be true even if 

the curvature is strong, since the Weyl anomaly is sensitive only to local physics on 

the worldsheet and we can always "zoom in" such that the metric appears flat over 

some small area1
. Indeed, we will show that when one does the calculation using 

the 11 D expansion the critical value of 26 is again found, up to 0(1) in D. This 

justifies the use of 11 D as a good expansion parameter, being of order 1126. Notice 

that the same arguments do not hold for the rest of the terms in the beta functions, 

since the string spectrum will be sensitive to changes in the spacetime curvature. 

This is related to the fact that the vertex operators for the massless string modes 

are constructed as perturbations around flat space. 

1Some authors [26] have suggested that the critical dimension of bosonic strings in AdS is 25 

by treating the metric exactly. However, they use the standard expansion parameter and therefore 

their result is in direct conflict with the standard beta function calculations. We believe, therefore, 

that their conclusion is incorrect. 



--------------------------

4.2. The Polyakov metric and Weyl invariance 48 

4.2 The Polyakov metric and Weyl invariance 

One of the goals of studying string theory is to gain an understanding of strongly 

coupled gauge theories, as was explained in some detail in Chapter 4. The work of 

Polyakov has suggested that a string theory propagating on a ( D + 1 )-dimensional 

metric of the form 

(4.10) 

describes the dynamics of Wilson loops on the D-dimensional space where z(cp*)=O 

(from now on, we work with general D, and the index i runs from 1 to D. The 

Einstein summation convention is assumed). For this to really hold water, we must 

ensure that the string theory genuinely makes sense as a string theory, and as such 

does not possess a Weyl anomaly. The conditions for Weyl invariance in the standard 

picture are the vanishing of the beta functions of the sigma model describing the 

string, as derived previously. However, we now encounter a problem. The graviton 

beta function requires that 

For AdS space, for example, this means that [}f.l[}vi!J(X) rv Gf.Lv(X). In other words, 

Weyl invariance requires that we have a dilaton field in our higher-dimensional 

theory that depends on the Xis, as well as the "holographic" coordinate cp. This 

is a problem, since this means that the dilaton field at cp = cp* will break Poincare 

invariance in the D-dimensional space. This is inconsistent with a Poincare invariant 

gauge theory operator such as the Wilson loop, since we saw in Chapter 3 that 

elements of loop space are defined to be Poincare invariant. In fact, the above 

equation does not even permit rotationally invariant solutions for AdS space. To 

see why, consider the AdS metric in the Poincare coordinates used in equation (3.35) 

with !2 set to 1. Suppose the dilaton is a function of u = X ·X and y (and hence 

explicitly rotationally invariant in the Xs). Then, 

[}2cp 8 (2:YJ8<I>) = 2oiJ8i!J + 4XiXJ()2<J> 
[}Xi()XJ = ()Xi j 8tt ou 8u2 

Now, since the beta function requires 81,8vi!J(X) rv Gf.lv(X), this means that 

2r5ij oi!J + 4XiXJ 
02

cp = ~oiJ 
ou 8u2 y2 
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This then implies that 
o<I> 1 

ou 2y2 

(we can see this by considering the casei# j). However, we also have that 

and we have a contradiction. Therefore, there is no rotationally invariant form for 

<I> that satisfies the graviton beta function equation. 

This appears to be disastrous. However, we have shown above that it may 

be possible to derive new conditions for Weyl invariance in a completely different 

way, namely by expanding in negative powers of the target space dimension. This 

potentially releases us from the restriction that we need an Xi-dependent dilaton 

field. In fact, we will show that it is indeed possible to construct a Weyl invariant 

string theory in the higher-dimensional space using this new expansion where the 

dilaton field depends only on the holographic coordinate and not the _./Yis. The pay­

off for this success is that we need to add a new term to the metric which couples z to 

the Faddeev-Popov ghost sector of the worldsheet. This is a very strange conclusion; 

but if we view our goal as the construction of a worldsheet theory that describes 

the Wilson loop there is no philosophical objection. The physical meaning of this 

coupling remains unclear. However, it is striking that a calculational scheme in which 

the string background is strongly curved allows one to circumvent the problem of 

a dilaton that breaks Poincare invariance in the gauge theory whilst maintaining 

Weyl invariance at the quantum level. 

A word about the interpretation of our calculation. Remember that the holo­

graphic coordinate rp is the Liouville mode associated with the noncritical string 

propagating on the flat D-dimensional background, and as such is a dynamical 

worldsheet variable. In order for string theory propagating on any background to 

be consistent, it must be vVeyl invariant. That is to say, the theory must be in­

dependent of the worldsheet metric 9a&, and so in particular if we split this metric 

into 

with flab independent of c/J(O then the theory must be independent of 1(0. Note 
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the important distinction between the Liouville mode so(~) which is dynamical and 

plays the role of a spacetime coordinate, and the variable c/J( ~) which represents 

an arbitrary split of the worldsheet metric in the (D + I)-dimensional background 

formed by the _Xis and cp. 'vVe are going to investigate the conditions under which 

the theory in the higher-dimensional target space composed of the _Xis and cp is 

independent of the split shown above. We are not calculating the independence of the 

theory on the Liouville mode cp. Despite this, the calculation of the c/J-dependence of 

the string theory in the ( D + 1 )-dimensional target space is mathematically identical 

to the usual Weyl anomaly calculation, as we shall see. To avoid confusion, we refer 

to the field c/J(O as the scale of the worldsheet metric in conformal gauge. When we 

refer to the Liouville action for c/J(O we mean an action for cjJ(~) of the form given 

in equation (2.18). 

We now begin our analysis of bosonic string theory propagating on the Polyakov 

warped geometry by first choosing a convenient target space coordinate system, and 

specializing to the case of AdS space. We will then define the string partition func­

tion, and begin to compute the path integral using the 1/ D expansion. (Note that 

while this approach is not suitable for a reliable description of 4 dimensional physics, 

it hopefully allows one to study qualitative aspects of bosonic string physics in "non­

perturbative" regimes. The hope is that this will eventually shed some light on how 

one might begin to improve our understanding of the physics of superstrings (rather 

than supergravity) on lower-dimensional curved geometries such as AdS5 x 5 5
, and 

hence strongly coupled gauge theories.) The generalization to other geometries of 

the form given below in equation ( 4.11) will be discussed in Chapter 6. 

4.3 Definition of the partition function for AdS 

The ( D + 1 )-dimensional metric we are interested in is 

ds2 = dcp2 + z 2 
( cp) dXi dXi ( 4.11) 

where i runs from 1 to D. It is useful to treat the function z as a coordinate itself; 

hence, we write 

(4.12) 
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Now, we absorb the "warp factor" z into the X coordinate by defining a new coor­

dinate vVi such that 

This puts the metric into the form 

2 1 2 . . 2 . . w2 2 
ds = --dz + dl,V 2dl1V 2 

- -dz(VV2dVV2
) + -dz 

(z' )2 z z2 
( 4.13) 

where z' = dzjdrp. The zigzag symmetric point at which the D-dimensional flat 

metric vanishes is still z* = 0; depending on the function z', this will correspond 

to a certain value of the holographic coordinate rp. Now, the Polyakov action for a 

string on a curved background is 

S = -
1
-, I d2~y/ggaboaX 11 obXvG11v(X) 4na 

(4.14) 

Notice that we have not included a dilaton coupling here yet; the precise nature 

of this coupling will be determined by the vVeyl anomaly that we encounter when 

we begin to look at the quantum theory of this action. For the moment we will 

concentrate on the case of AdS space, so that 

I Z 
z =-

l 

as we saw in Chapter 3. Substituting the target space metric into the Polyakov 

action then yields, after some integration by parts (we are working to tree level and 

with closed strings, so the worldsheet is topologically a sphere), 

s = ___!__,I d2~..;g [gabz2 OaZObZ + wi (~- ~~z) vvi] 
4na z2 z 

where ~ is the usual covariant worldsheet Laplacian, 

~ = --
1 

Oa ( y/ggabab) 
V§ 

vVe therefore define the partition function of this string theory as 

Z =I VgVzVlVi exp ( -S) 

(4.15) 

( 4.16) 

The aim of the perturbative calculation in 1/ D that we are about to do is to de-

termine under which conditions this object is Weyl invariant, and whether these 

conditions are compatible with a dilaton that depends only on z, and hence the 

holographic coordinate rp (since this would correspond to a dilaton field that does 

not break Poincare invariance in the putative lower-dimensional gauge theory). 
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4.4 The effective action for z 

The action ( 4.15) is Gaussian in the Wis, and so these fields can be integrated out 

exactly. The resultant effective action is 

' 1 J 2 2( 1 ) D ( 1 ) S = 
4

1T d ~vgl -;6z + 2 Trln 6- ;6z ( 4.17) 

Here, we have chosen to work in units in which o/ = 1, and we have integrated the 

first term by parts. We will restore the factors of a' a little later on to demonstrate 

the difference between the 1/ D expansion and the standard one. We have also not 

explicitly included the possible effect of zero modes of the operator 

This is because such zero modes do not contribute when we work on the sphere [27], 

or indeed any worldsheet without a boundary. Essentially, the integration over 

the lVis yields the determinant above in equation ( 4..1 7), plus an integration over 

the zero mode coordinates. One then trades this integration for an integration 

over some collective coordinate, representing the centre of mass of the worldsheet 

in the vV-directions. The Jacobian associated with this change then cancels the 

zero mode contribution in the determinant leaving an (infinite) integral over the 

collective coordinate, equal to the volume of target space. This, however, is merely 

an irrelevant overall constant. 

The situation is far more complicated for open strings where the worldsheet is 

a manifold with a boundary; this is something that would have to be considered 

carefully if the calculations presented here were to be extended to the case of open 

strings. However, these questions have been considered extensively in [27] and there­

fore progress in this direction should be possible. In this thesis, however, we restrict 

ourselves to the simpler case of closed strings. We expect that, as for strings in fiat 

spacetimes, the main features of the Weyl anomaly will be the same in both cases. 

It will be convenient for our purposes to define the quantity f to be 

1 f = --6z 
z 

( 4.18) 

Our task is to now analyze the determinant in the effective action. We need to know 

how it depends on z(O, and how it depends on the scale of the worldsheet metric <P(O 
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when we fix the conformal gauge 9ab = etPoab, as we know we can when working to 

tree level on the sphere. As we saw when we considered the O(N) sigma model (4.4), 

it is possible to approximate the theory by computing the dominant configuration of 

z(O. Our approach here will be to identify the minimal energy configuration of z(~), 

and then construct a perturbation expansion about this configuration in powers of 

1/ D. In the 0 ( N) si gm a model we saw that the saddle point approximation led to a 

configuration of .A ( x) that was a constant, signalling dynamical mass generation. We 

will now show that the situation here is different, essentially because the analogous 

quantity to .A(x) is J(~), which depends both on z(O and derivatives of z(O. 

The Euler-Lagrange equation for z(O is 

By the Leibnitz rule, 

_os----'/ (----'-z) = 
0 oz 

J 2 oS/ oj(() 
d ~of(()- bz(~) = 

0 

and so we have two possibilities for extrema of the action SI. The condition 

bf = 0 
bz 

implies that z(~) is a constant, which we denote by z0 . The alternative, 

(4.19) 

is the same as the Euler-Lagrange equation for .A(x) that we saw when we considered 

the O(N) model (4.4), and therefore implies that 

1 
-- flz = .A0 = constant 

z 
( 4.20) 

The question therefore is: which of these configurations minimizes the action ( 4.17)? 

Firstly, we notice that solutions to equation ( 4.20) will be of the form 

where ~a is one of the worldsheet coordinates. This solution blows up and is therefore 

not normalizable. However, since z(O is an embedding of the worldsheet into the 

target space, this non-normalizability just means that some of the worldsheet is 
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located at the infinity in the z-direction in target space. This is a perfectly legitimate 

embedding, and as such we cannot discount such non-normalizable solutions on 

physical grounds. 'vVe need to consider the energetics of the system to identify the 

true vacuum about which we will perform our perturbative calculations. 

Clearly if z(O = z0 , the z-dependent part of the action is zero. We need to ask 

whether the action evaluated at z(O = z*(~), where z*(~) solves equation (4.20), 

is greater or less than the action evaluated at z(~) = z0 . To do this, we use the 

momentum representation of the determinant in the action ( 4.17): 

(4.21) 

In order to evaluate this integral, cut it off by introducing some large momentum 

scale A 2 > > 1: 

1\2 1 d(p2
) ln (p2 + .\o) = (A2 + .\o) ln(A2 + .\o)- A2

- .\o ln .\o ( 4.22) 

Therefore the z-dependent part of the action evaluated at z(~) = z*(~) is (ignoring i 

the worldsheet metric for the moment) 

1 1 J 2 [ 2 D ( 2 2 2 )] S = 
411 

d ~ l .\o + 2 (A + .\o) ln(A + .\0) - A - .\0 ln .\0 (4.23) 

Notice that the Lagrangian that appears here is a monotonically increasing function 

of .\0 (for positive F) whose minimum value is at .\0 = 0 where 

I D J 2 [ 2( 2 ] S >-o=O = 
811 

d ~ A ln A - 1) 

A 2 is necessarily a very large number, so that the above expression for the action 

is a good approximation to the determinant Tr ln(6. + .\0 ). Hence, the action is 

everywhere greater than zero and does not exhibit a turning point. If l 2 is negative2 

then there exists a maximum, but the action evaluated at this saddle-point is again 

greater than zero for A 2 > > 1. Hence, the z-dependent part of the action takes its 

minimum value when .\0 = 0, at which point it is everywhere zero. For non-zero 

values of .\ the action evaluated at any turning point is greater than zero. The 

z-independent piece is the same for all values of/\. So, the configuration z(O = z0 is 

2 In fact, we will see later on that l2 gets renormalized such that it is indeed large and negative. 
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the true vacuum and we will therefore expand the field z in 0(11 VD) fluctuations 

about this classical configuration: 

z(~) = zo + z(O (4.24) 

There is no dynamical mass generation here; z(~) = z0 corresponds to a worldsheet 

configuration that has shrunk to a point such that f(O = 0. This is analogous to 

-A(x) = 0 in the O(N) model (4.4). 

vVhen keeping terms up to a certain order in D, we must remember that the 

fluctuations in z are of higher order. We will see that if we work only to 0(1) in 

1 ID, we will find an effective action for z that is quadratic. We can see that our 

"field" f can be expanded about the constant piece of z, 

1 1 1 
f = --6z = --6z+ 2 z6z+ · · ·, 

z zo z0 

(4.25) 

with the last term here being of order 11 D. Hence, we can use the expansion of the ,, 

logarithm 
oo ( 1)n+l 

ln(1 + x) = ~ - xn 
L n 
n=l 

(4.26) 

to expand our determinant: 

D D D oo ( -1) n+1 
-Trln(6 +f)= -Trln6 +-L Tr [6 -l 1r 
2 2 2 n 

n=l 

( 4.27) 

The first term in this expansion is again the same determinant that we encountered 

when we considered the bosonic string in flat spacetime, and hence we know it 

contributes a central charge of c = D to the Weyl anomaly. The new terms arise 

in the summation over n. We will now put back in the factors of a' for a moment. 

By counting dimensions (we know that the expression (4.27) must be dimensionless 

since it appears exponentiated in the effective action for z), the first of these terms 

is of order 1 I a': 

( 4.28) 

This term contains pieces that are of O(VD) and terms of 0(1) in D, by the ex­

pansion off given in equation (4.25). The second term is 

(4.29) 
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and this term is of 0(1) in D but also of 0(1/a' 2
). Hence, terms of the same order 

in D are of different order in a'. In fact, we can see that the high-n terms in the 

expansion (4.27) will be negligible in the large-D limit, but will dominate in the 

small-a' limit. The 1/ D expansion therefore corresponds to a completely different 

regime from the standard a' expansion used to derive the usual beta functions; the 

two expansion parameters are small at opposite ends of the expansion (4.27). In 

this sense, the 1/ D expansion is valid for backgrounds that are strongly curved at 

the string scale. There is therefore no contradiction between the results presented 

here and the standard conditions for vVeyl invariance [2]. 

Let us go back and consider the expression (4.28), with a'= 1. We see that this 

term contains the Green's function at coincident points, ~ -l(~, ~), and is therefore 

divergent. This divergence, when regulated, will generate a finite ~/>-dependence 

which contributes to the Weyl anomaly. There will also be a divergent (constant) 

piece, which we now calculate. Setting aside the ~/>-dependence for the moment, the 

divergent part of this term will be 

DJ 2 
[ 1 J 2 1 ] 2 d ~ygf(~) (27r)2 d p p2 + m2 ( 4.30) 

where we have introduced a small mass m to regulate theIR divergence. We will see 

later on that this mass cancels with other terms in the expansion, as we would hope. 

However, we still need to deal with the short-distance (high momentum) divergence 

in this integral. To do this, we cut off the momentum integral at some scale A0 : 

1 2 1 
d p 2 2 

p<Ao P +m 

and so the divergent piece of this first term in the expansion is 

(4.31) 

Writing this in terms of z, we see that up to 0 ( 1) in D this term becomes 

(4.32) 

since the term linear in z vanishes under integration over the worlclsheet. 
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vVe now turn to the question of the tP-dependence of this term. In fact, a mo­

ment's thought reveals that we will have to do much more than this, since there 

are an infinite number of terms in this expansion which may introduce terms into 

the Weyl anomaly. Now, we do not need to worry about those terms which are, for 

instance, of order 1/VD and higher (just as in the standard calculations we do not 

worry about terms of order o:' 2 and so on). But it turns out that one can actually 

compute the total Weyl dependence of the infinite series of terms; this will make 

our life considerably easier in the long run. The strategy is as follows: there is a 

standard result for the tP-dependence of the Green's function at coincident points 

(see Appendix A). We will show, by doing a rather lengthy heat kernel calculation 

(with a few neat tricks at the beginning), that the contribution from this divergent 

Green's function is precisely the same as that obtained by analyzing the entire de­

terminant. The conclusion is, therefore, that all the tP-dependence of the infinite 

sum of terms above is contained in the first term. None of the higher-order terms 

can introduce any further terms into the Weyl anomaly. This turns out to be a 

powerful result, and allows us to make significant progress in constructing a Weyl 

invariant theory with all the properties that we are looking for. We will now move 

our attention away from the problem as it has been formulated above, and show 

how one can compute the Weyl anomaly of this determinant exactly. 

4.5 Exact computation of the Weyl anomaly 

4.5.1 Setting the problem up 

The operator that we are interested in is 

( 4.33) 

One can see that this is quite general and will appear when we consider any metric 

of the form ( 4.10). Let us pick a specific example of such a metric, namely AdS 

space. This corresponds to taking z = exp (rp/l), where lis the radius of curvature. 

vVe can write AdS space in so-called Poincare coordinates, as shown in Chapter 3: 

( 4.34) 
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The Polyakov action on this background metric becomes 

This expression is Gaussian in the Xis, and as usual we can integrate them out 

exactly to obtain the following determinant: 

(4.35) 

The form of the metric dictates that the inner product on variations of the Xis is 

( 4.36) 

and it is this that we have used to obtain the operator 0. Working in the conformal 

gauge, this operator becomes 

where we have set y 

K(~, ~~; t), satisfying 

( 4.37) 

ex. We will denote the heat kernel for this operator as 

OK=- 8K 
at ( 4.38) 

along with an initial condition that we will obtain in a moment. Now, notice that 

(4.39) 

and so 

(4.40) 

where K(~,(;t) is the heat kernel for (~+e-c/J((8ax) 2 -8~x)). The next step 

is to relate these expressions to our general operator r, (4.33). As we have seen, 

AdS space corresponds to setting z = exp ( cp / l). Looking at the metric in Poincare 

coordinates, is is clear that the coordinate x is related to z via 

x(~) = -ln z(~) 

Therefore, we can write r in terms of this function x, and we find immediately that 

(4.41) 
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which is precisely the operator we encountered in equation ( 4.40). Hence, we know 

that the heat kernel for the operator r is j( ( () (; t). 

'Ne are concerned with the (,l)-dependence of r. To see how we can access in­

formation about this, consider first the operator S1 obtained above. vVe have, from 

equation (2.12) 

6q, In DetD = loo dt Tr ( c5r/>ne-m) ( 4.42) 

where E is again a short-time cutoff. Performing the t-integral, and noting that 

c5q,O = -c5(,l)O, we obtain 

( 4.43) 

We can represent e-H! in terms of the heat kernel for 0, I<(~, (; t): 

( 4.44) 

and hence the heat equation ( 4.38) follows with I< satisfying the initial condition 

Note that the exponential factors multiplying the delta function here are determined 

by the inner product (4.36) that we are using. Now, we can derive the initial 

condition that the heat kernel of r must satisfy. Remember that the inner product 

on variations of the V{fis is given by 

as determined by the form of the string action for the Wis. Therefore, we can see 

that the initial condition on k in ( 4.40) must be 

Now, we see from equation (4.39), along with the initial conditions on J( and k, 

that the two heat kernels J( and J( are related in the following way: 

(4.45) 
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because the operator D only acts on x(~) and does not pick up terms from x((). 

In particular, k(~, ~; t) = e- 2XK(~, ~; t). Therefore, by equations (4.43) and (4.44) 

and the fact that 

we have 

61, In DetD J d2~erf;- 2x K(~, ~; E)6rj; 

J d2 ~erf; k(~, ~; E)6rj; 

6rf; lnDet ( ,0.- 16z) 
This last expression tells us that we can use equation ( 2.12) and the heat kernel 

for D to determine the r/J-dependence of Det (f), using the definition of the inner 

product (4. 36). What we will see in the next section is that the r/J-dependence of 

D can be computed without making any approximations in X· This in turn means 

that we are able to derive the full Weyl anomaly associated with r, rather than just 

the contributions from the first few terms in the expansion of the determinant given 

in equation ( 4.27). As was mentioned above, this is a powerful result. 

4.5.2 The heat kernel computation 

vVe now present in some detail the rather lengthy calculation of 6rf; In DetD. The 

vVeyl anomaly is a local quantity on the worldsheet, as can be seen by the fact 

that we have introduced a short-time cutoff E in the expression (2.12). Since we 

are looking at short-time effects, the diffusion process described by the heat kernel 

exp ( -ED) can only occur over a short time, and hence is localized on the string 

worldsheet. Therefore, we can suppose that the worldsheet metric we are considering 

is a perturbation about a fiat metric, and we should be able to evaluate the heat 

kernel for D by expanding around the heat kernel for the fiat-space worldsheet 

Laplacian ,0.0 = -a~. The "unperturbed" heat kernel satisfying the heat equation 

for 6 0 is just 

( 4.46) 
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\,Ye know that 

J 
1 1 1 1 1 1 1 e2X(0-</>(E) 

d2~ e<P(E )-
2
x(E) Ko(~, ~; t- t )K0 (~ , ~; t) = Ko(~, ~; t) = 

4
1rt 

from looking at the expansion of the heat kernel in eigenfunctions of its operator. 

Remember that the \rVeyl scaling behaviour of D is given in terms of the trace of its 

heat kernel, so we can use the following heat kernel expansion to evaluate K(~, ~; t), 

which we denote by the shorthand Kt ( ~, 0: 

Kt(~,~) = _1_ + t dt'j d2( e2x-<P Kt-,tlv(()Kt; 
41ft ) 0 EE U 

t t1 

+ 1 dt'1 dt"j d2( e2x-<P j d2( e2x-<P K:~t~v(()K;:~tv(()K~;;E 
+ (4.47) 

where we have expanded the operator D around the flat-space Laplacian 

D = 6 0 +V(() 

and used the heat kernel (4.46). We need to calculate all the terms in (4.47) which 

are of 0(1) in the time variable t. Terms of order t will not contribute when we 

send the cutoff E to zero. The heat equation for K 0 implies that the heat kernel for 

the operator e-4>(() 6 0 where e-4>(() is a constant must be 

( 4.48) 

and so we can write D as 

where 

V(() ( ((- ~)aaa1J- ~(( -~)a(( - ~)b (aa1Jabqy- aaabqy)) e-4>(() 6~ 

2 ( 1 - ({ - ~)aaa4Y + ~({ -~)a({- ~) 0 (aa1Jab4;- aaabqy)) 

x ( aax + (( - ~)bauaax) e-<P((la;, 

(primes on operators indicate that they act on functions of (). We are now faced 

with the task of substituting this expression for V into the heat kernel expansion 
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(4.47) and evaluating all the relevant terms, using the heat kernel (4.48). This calcu­

lation, although now conceptually straightforward, is rather lengthy and technical. 

Essentially, it involves calculating a series of 2-dimensional Gaussian integrals; this 

is most easily clone by constructing a "generating function" and taking derivatives 

in order to generate the required terms. 

We begin by writing clown the two contributions of the correct order from the 

second term of (4.47) (for notational simplicity we omit the e2x(.;)-<t>(.;) factor from 

these integrals here and reinstate them at the end, since they carry through as an 

overall factor): 

1t dt' j d2
( K~z,t' e-<t>W (-~((-~)a((- ~)b (Bac/J(OBbcfJ(~)- BaBbcfJ(0)) 6.' Kt.; 

(4.49) 

and 

where we have chosen the constant ( = ~- These Gaussian integrals can be evaluated 

using ( 4.48) and are found to equal 

(4.51) 

and 

(4.52) 

respectively. 

We now turn to the third term of (4.47). There are four terms which contribute; 

the relevant pieces of V ( t) and V ( ~") respectively appearing in the integral are 

(a) 

(b) 

(c) 

(d) 

-2Bax(~)e-<~>Wa~ x -2Bbx(~)e-<P(Oa~ 

-2Bax(Oe-<~>Wa~ x (('- ~)babcp(~)e-<P(.;) 6.~ 

((- ~tBac/J(Oe-<P(O 6.~ x -2obx(~)e-<P(.;)a~ 

((- O"Bac/J(Oe-<P(i;) 6.~ X (('- obabcp(Oe-<1>(.;) 6.~ ( 4.53) 

These integrals, while being Gaussian, are in practice rather complicated to evaluate. 

Let us begin with the first of these terms, (a), which involves two single derivatives 
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on thP- heat kernels. 

(4.54) 

all multiplied by the factor 4( oax)( obx)e-2<P(~). The simplest way to tackle these 

integrals is to write them in the form of a matrix equation and use a 'generating 

function' approach. Begin by making a change of coordinates 

so the ~ part Qf the integral becomes 
; 

We can write the exponent now as vector x matrix x vector, 

where the matrix is 

1 1 0 1 0 t-t' + t'-t" t-t' 

e<P 0 1 1 0 1 

A=- t-t' + t' -t" t-t' 

2 1 0 1 1 0 t-t' t-t' + ?' 

0 1 
t-t 0 I I 

t-t' + ?' 

Let us now define a "generating function" Z(K): 

where K is a vector ( kf, k?, kJ, k~). This generating function is readily evaluated to 

be 

(4.55) 



~u-
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vVe see that we can now write our integral as 

(oax)(chx)e3 <~> ( 8 )a(o )b Z(K) 
641T3(t- i 1 )(t1 

- i 11 )2i112 1 2 

evaluated at K=O. Here, of = e%a. Computing these derivatives and substituting 
1 

in for t then gives 

1
t 1tl -oab(oax)(obx) 

(a) = dtl dt" ----,====='===--'-'-----'---
o 2 t

2 
(t t 1 )(t1 i 11 )ii11 

0 IT tll2(tl-tll)2(t-tl)2 - - ' 

( DaX) 2 

41T 

We now consider term (b) of ( 4.53). In terms of the generating function, this is 
I 

1
t I 1f 11 (oac/J)(obx)e 3

<1> Q b ( 1 oiecp) 
(b) = o dt o dt 641T3(t- tl)(tl - tll)2tll (81) (82) ?'- 4tll2 Z(I<) 

It is implicitly understood that this expression is evaluated at I< = 0. This is found 

to be 

(b) 
1

t I 1fl 11 oab(oac/J)(obx) (t -- 2t") 
0 dt 0 dt 2 ~ t2 (t I) (t' ill) 2 11 

IT V tll2(tl -tll)2(t-tl)2 - t - t t 
1 

12
1T ( oac/J) ( oax) 

Next, we consider part (c) of (4.53). This is 
I 

1
t I 1t 11 (oac/J)(obx)e3

<1> Q b ( 1 o~ecp ) 
0 

dt 
0 

dt 641T3(t- i 1 )(i1 
- i 11 )i112 (o1 + 82 ) (o2) (t1 

- i 11 ) - 4(t1 
- i 11 )2 Z(I<) 

again setting ]{ = 0. This gives 

1
t 1t' 2oab(oac/J)(obx) 

(c) = dtl dill ---,==============--'-'-----
2 t

2 t2 (tl i 11 )i11 
0 0 IT tll2(tl -t~~)2(t-tl)2 -

1 

6
1T ( oa c/J) ( oax) 

The last term in (4.53), (d), is 

(oac/J)(obc/J)e3
<P (o 0 )a(o )b ( 1 e<Poi ) ( 1 e<Poi) Z(K 

641T3 (t- i 1 )(i1 
- i 11 )t11 1 + 2 2 i 1 

- i 11 - 4(t1 
- i 11 )2 7' - 4t112 ), 

integrated over i
1 

and t". This gives 

(d) = 
1

t I 1tl 11 oab ( Oa cjJ) ( obc/J) ( t2 - 2ttl + 6t
1 

i
1

.

1 

- 6t"2
) 

- dt dt ----,===::::=====-----------'---

0 0 21T tll2(tl_/)2(t-t')2fl(t-t
1

)(t'-t
11

)t
11 

(oac/J) 2 

241T 
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And so finally, combining results (a), (b), (c) and (d) with (4.51) and (4.52) we 

find the heat kernel for the operator D to be 

( 4.56) 

where we have restored the e2x(O-<t>(0 factor. We can now use this result to evaluate 

Oq, ln DetD by taking E -+ 0: 

oq,lnDetD = jd2~or/J [-1-o~r/J- ~ (o~x- (8ax) 2
)] 

241T 41T 
( 4.57) 

We have removed the divergent term by adding a counterterm to the original string 

action of the form 

N/ 2 
- 41TE cl ~ ylg. 

As a brief aside, notice that if we set x to zero in the above, we will obtain the 

following result for the heat kernel of the usual covariant Laplacian, 6: 

( 4.58) 

This is the standard result quoted in equation (2.17). Written covariantly, we have 

1 R(2l 
JC(~, ~;E)= -4 + -24 + O(t:) 

1TE 1T· 
( 4.59) 

where R( 2) is the worlclsheet Ricci scalar curvature. 

Now, we can integrate the expression ( 4.57) to obtain the vVeyl anomaly that we 

seek, remembering that x = - In z: 

( 4.60) 

with 6 0 = -fJ~. We recognize the first term here as the usual Weyl anomaly 

associated with the bosonic string on flat space. Comparing with our expansion of 

the determinant ( 4.27), this is the contribution from the first term. Therefore, the 

whole infinite series of terms that remain in ( 4.27) yields the second term in ( 4.60). 

Thinking back to the first of these terms (4.28), we can calculate it's cp-dependence 

by analyzing the Green's function at coincident points. As is shown in Appendix A, 

the Weyl anomaly of this term is found to be precisely 
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in the conformal gauge, which means that this is the only term in the expansion 

( 4. 27) that contributes any q)-dependence, as was advertised previously. 

So far, then, we have succeeded in calculating the first term in the expansion of 

the determinant. This is, up to 0 ( 1) in D, 

(4.61) 

In the next chapter we move on to consider the next term in the expansion (which we 

call T2 ), and show how this gives rise to a novel propagator for the z field, as well as 

providing the necessary terms to cancel the arbitrary I R regulator m 2 that is present 

in T1 . The worldsheet theory is also shown to be UV finite by a renormalization of 

the radius of curvature l2
. 



Chapter 5 

The Conditions for Weyl 

Invariance 

Now that we have computed the \i\Teyl anomaly, we need to derive the rest of the 

terms that are present in the effective action for z. Once we have done this, we will 

need to consider how we can ensure that this theory is Weyl invariant, and we will 

see that this requires us to add new pieces to our original action (i.e., counterterms). 

Before we begin to discuss these interesting issues, we need to consider the next term 

in the expansion ( 4. 27). 

5.1 The effective action for z 

The term we analyze next is 

Now, since we know from the previous chapter that this term does not depend on 

the scale of the metric cp, we can make a projection and work on the plane. Hence, 

(5.2) 

It is convenient to work in momentum space for what follows, so we compute the 

Fourier transform of this expression. 'vVe find 

(5.3) 
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where m is again an arbitrary I R regulator. In order to proceed, we need to be able 

to integrate over the internal momentum k, which we now isolate from the above 

expression: 

(5.4) 

where we have shifted k -+ k - p, which we are free to do. Let us represent this 

integral by introducing two new variables t 1 and t 2 , which we integrate over: 

1 100 100 J I= (
2

·n-)2 
0 

dt1 
0 

dt2 d2kexp(-t 1 (k2 +m2)-t2((k-p)2 +m2)) (5.5) 

If we expand the ( k - p )2 bracket we obtain an integral over k which is Gaussian 

with a source term, 

I= ( 2~) 2 1
00 

dt1 100 
dt2 J d2kexp ( -(t1 + t2)k2 + 2t2k · p- t2p

2
- (t1 + t2)m2) 

(5.6) 

This is readily integrated over k to obtain 

(5.7) 

Now, we make a simple change of variables t 1 = p:r, t 2 = p( 1 - x) where 0 < p < oo 

and 0 < x < 1. The Jacobian for this change of variables is -p. Hence, our integral 

becomes 

I= - ( 2~)21
1 

dx 100 
dp 7f exp ( -p

2
x(1- x)p- m 2 

p) 

The p-integral is simple, and gives 

(5.8) 

I = _1_11 dx 7f = _1_11 dx 7f ( ) 

(27r)2 0 p2x(l- x) + m2 (21r) 2 
0 m2 + p2- p2(x- 1/2)2 

5
·
9 

If we now define a new quantity 

a= 

then we have 

1 11 
7f 1 1 7f ;·

1
1
2 

( 1 1 ) 
I= (21r)2 

0 
dxp2 a 2 - (x- 1/2)2 = (27r)2. 2ap2 _112 dx a+ x +a- x 

This is now a trivial integral, and we find that 

I= 1 ln (a+ 1/2) 
47rap2 a- 1/2 

(5.10) 

(5.11) 



5.2. Analysis of the effective action 69 

VVe are interested in the regime where p2 > > m 2 (since we should be able to send 

m2 arbitrarily close to zero). In this limit, we find that 

(5.12) 

VVe can now use this result in our expression for T2 , (5.3) to obtain 

(5.13) 

Writing this in terms of the variable z, we find that up to 0(1) in D this expression 

becomes 

- D I d2 p 1 - - 2 ( p2 ) T2 = -- ---z(p)z( -p)p ln -
81r (27r )2 z5 m2 

(5.14) 

We can now combine this result with the <jl-independent piece of T1 given in equation 

(4.61). Taking the Fourier transform of this term, we find that together we have 

D I d
2
p [ 1 _ _ 2 ( p

2 
) 1 _ _ 2 ( A6 + m

2
)] - --,-. --z(p)z(-p)p In - + --z(p)z(-p)p In . 

81r . (27r)2 z5 m2 z5 . m7 
(5.15) 

We see that the In m 2 terms now cancel between these two pieces, as previously 

advertised. VVe are now in a position to combine all the results we have obtained so 

far into an expression for the effective theory of the z fluctuations, up to 0(1) in D: 

Z =I Dz exp( -s') (5.16) 

s' 

where we have included the contribution from the ghost sector in the last line (see 

Appendix B). 

5.2 Analysis of the effective action 

\iVe must now discuss the properties of the action (5.17), bearing in mind that we 

are searching for a finite, \iVeyl invariant theory. The first thing we notice is that 
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the second term in the action is divergent, since it contains the momentum cutoff 

i\0 (the 1n
2 piece is irrelevant, since we can always absorb this into the definition of 

A0 ). It is clear that we need to have some kind of dimensionful cutoff in the theory 

that we can use to absorb this divergence - in other words, the theory requires a 

"bare" parameter that we can renormalize to make everything UV finite. Clearly, it 

is in the definition of the first term in the action that we have this. In momentum 

space this term becomes 

J d2~ z2 (oaz)
2 
=-J d2

p z2 [z(p)z( -p) p2] 
z2 (21f )2 z5 (5.18) 

Now, if we redefine our "scale" l2 such that 

- --ln l 2 _ D ( A5 + m 2
) 

2 A2 
(5.19) 

with A 2 finite then our effective action becomes 

s' 

(5.20) 

where A2 is some overall scale, analogous to AQCD· This expression 1s now UV 

finite, as we require. In fact, we see that dimensional transmutation occurs on the 

worldsheet; what initially appeared as a coupling constant in the string action (o:' jl 2
) 

gets turned into a scale (A) in the quantum theory. This is in fact a well-known 

phenomenon in nonlinear sigma models, and as such is a consequence of the fact 

that we are treating the "flat" directions (the Wi fields) in the spacetime metric 

exactly. The integration over these directions is what makes the model reminiscent 

of the O(N) nonlinear sigma model. (Remember, of course, that the dimensional 

transmutation here is occurring on the worldsheet, not in target space). Notice also 

that we require the renormalized l 2 to be negative. This appears to be a strange 

conclusion; however, a similar phenomenon occurs in QED and is a consequence of 

the fact that QED is not asymptotically free. If one were able to consider all the 

terms of higher order in D in our model, one would expect to find that more pieces 

would get added to l 2 such that at the end of the clay it is positive. The minus sign 
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here is therefore believed to be a consequence of the fact that we are making an 

approximation. 

Vve have seen that for AdS space the z field is of the form exp ( <p / l). From the 

point of view of this theory as a noncritical string in D dimensions the field <p is the 

Liouville mode of the worldsheet metric, so we can write 

( ) 

1/l 
z"' yg 

We require that the theory be independent of how we split this metric. If 

( ) 
1/l ( ) ljl yg ---+ er/JUJ yg = z er/J(Ofl 

then we must require that Green's functions of the combination z er/J(fJ/l be inde­

pendent of 1>(~). Conversely, viewed as a critical string theory propagating in the 

(D+l)-dimensional background, we expect Green's functions of z to be independent 

of 1>(0. However, we have seen that lis necessarily divergent. Therefore, zec/J(Ofl "' z 

and we see that these two different interpretations of the theory lead to the same 

mathematical treatment of the Weyl anomaly. 

5.3 Cancelling the </>-dependence 

We now consider the 1>-dependent term in (5.20). In the standard beta function 

calculations, such a term appears in the following way. Expanding the target space 

metric in Gaussian normal coordinates leads one to consider terms of the form 

This 4-point vertex contributes to the 2-point function when we make contractions 

of any two of the xs, and hence contributes to the graviton beta function as we 

saw in Chapter 2. In particular, if we contract the x.x and the xK, we generate a 

diagram with two external legs representing the OaX terms and a loop representing 

the x terms. This loop is divergent, and introduces some 1>-dependence. Integration 

by parts then gives two terms, one of the form 8~1>(x x) and another of the form 

(o~T T) 4>. This last term is what we have calculated in equation (5.20); effectively 

it has arisen from the contraction of the Hli fields. In the standard calculation, this 
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term does not contribute since the a~x term just constitutes a local wavefunction 

renormalization of x and does not affect the 2-point propagator, as was discussed 

in Chapter 2. This is because the 2-point function we are considering is precisely 

the propagator associated with the operator 8~. Now, in our calculation the z 

propagator is not the usual one (whose Fourier representation is 1/p2
) but some 

more complicated one whose Fourier representation is given in the first term of 

equation (5.20). VIe therefore cannot discard the <;&-dependent term here. This 

again illustrates the fundamental difference between the standard beta function 

calculations and our 1/ D expansion; the novel z propagator in equation (5.20) has 

arisen because we are considering a completely different set of terms in the expansion 

of the determinant ( 4.27) than if we had expanded in powers of a'. 

How are we to treat this new <;&-dependent term? One possible option would be 

to just leave it in at this stage, since we still have the path integral over z to consider. 

The theory as it stands in (5.20) does not necessarily have to be Weyl invariant, 

· as long as the final expression for the partition function Z is. The approach to 

performing the z integral would be to realize that since the Weyl anomaly is a local 

quantity, one can attempt to integrate out the z field by expanding the exponential 

and considering only those terms that are quadratic in <;&. This is because the 

scale of the metric <;& necessarily becomes dynamical, as we have seen in Chapter 

2. In particular, the action for <;& will be of the same form as the Liouville action 

appearing in (2.18), which in the conformal gauge only contains terms ,....., (8acfJ) 2 

(plus cosmological constant-type terms which are not important to this discussion). 

This is the unique local theory for cjJ that does not contain dimensionful couplings. 

Hence, we can be sure that only terms that are quadratic in cjJ (and proportional to 

p2 in momentum space) can contribute to the remaining Weyl anomaly once all the 

target space fields have been integrated out. At the end of the day, we will be left 

with some coefficient multiplying the Liouville action for c/J, and we will be able to 

tune the parameter D to cancel this term and make the theory Weyl invariant. 

This approach is fine up to a point. The problem occurs when we begin to 

consider then-point correlation functions defined by the theory (5.20). These corre­

lation functions are crucial, since if this is really a bona fide string theory we should 
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be able to compute scattering amplitudes of string states by inserting suitable ver­

tex operators (we shall consider this in some detail later on). This amounts to 

computing correlation functions on the worldsheet for the vVi and z fields (also, if 

we wish to extend our analysis to open strings the inclusion of boundary terms will 

have a similar effect, notwithstanding the extra complications introduced by zero 

modes). Now, if the leading order q)z term is present here, we have a pathology in 

these n-point functions. Any Feynman diagram I consider can have insertions of 

0( vD) that are linear in q), and these will obviously spoil Weyl invariance. The 

calculation of the "critical dimension" as outlined in the previous paragraph does 

not ensure that these correlation functions are also \iVeyl invariant, since each of 

these diagrams will introduce extra 0( vD) terms that will alter the result of that 

calculation. Hence, one would be left with a situation where the critical dimension 

of the theory would depend on the specific correlation function under consideration, 

and this is clearly undesirable. We are led to the conclusion that the q)z term in 

(5.20) must be cancelled by the addition of some counterterm in order for the the­

ory to make proper sense. This is perhaps not surprising, since we know from the 

usual beta function calculation that AdS spacetime requires a dilaton field for Weyl 

invariance in that approximation. Maybe this condition also holds here? We will 

see that we can indeed cancel this term (in part) with a dilaton that depends only 

on the holographic coordinate. This is precisely what we were hoping for - such a 

field will not break the Poincare invariance that we require on the boundary in order 

to describe the gauge theory vVilson loop there. However this is not sufficient to 

completely kill the offending term, and an extra piece mixing the ghost and matter 

sectors of the theory is also needed in this approach, as we will see. 

5.3.1 The dilaton field as a counterterm 

\i\Te have seen that we need to cancel the term 

If we are to use a z-dependent dilaton field to achieve this, we need to couple it to 

the string action in the correct way, which is via the worldsheet scalar curvature, 
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In the conformal gauge this counterterm becomes 

Since we are working within an expansion in (negative) powers of D, we need to 

Taylor expand the dilaton field in terms of the fluctuations z (which are 0(1/vfi5)) 

about the constant value z0 : 

I 1 11 

<I>(z) = <I>(zo) + z<I> (zo) + -zz<I> (zo) + ... 
2 

Our counterterm is therefore (up to 0(1)), 

(5.21) 

(5.22) 

. Now, "~'e need to consider each of these terms separately, and see if wP can arrange 

for them all to cancel the troublesome q)z term in (5.20) order by order. The first 

piece, proportional to z, can be made to cancel simply by integrating the dilaton 

term by parts and choosing 
I D 

<I> (zo) =-
81rzo 

This implies that the dilaton field is 

and hence 

D 
<I>(z) = -In z 

87f 

11 D 
<I> (zo) = - 87fz2 

0 

Substituting this into the counterterm, we find a problem. Integrating by parts to 

isolate the q) field we obtain the term we want, namely 

plus an extra piece that we don't want, 
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This term arises because we no>v have two powers of z present, and therefore inte­

grating by parts generates an extra piece. Whilst the first of these terms cancels 

against the Weyl anomaly as required, the second one does not and is left over as an 

0(1) contribution to the final result. vVe are therefore faced with the same problem 

as we described above, namely the critical dimension being dependent on the par­

ticular correlation function under consideration. Although we have now "softened" 

the problem from 0( VD) to 0(1), we are not really any better off. After all, a dif­

ference of 1 between the critical dimension as calculated for a 2-point and a 3-point 

function is as much a pathology as a difference of 5! It seems clear, then, that a 

dilaton field alone does not do the job. 

In order to proceed, we need to find some \vay of removing the offending term 

exactly. This will ensure that it vanishes to all orders, avoiding the difficulties we 

have just seen. The question is: do we have any freedom left to add counterterms 

consistently to this theory? After all, they must depend on the metric scale 1;, 

and typically the only way that a field can couple explicitly to 4> is via the dilaton 

coupling that we have just considered. Since this has failed, things look bleak. 

However, there is one other part of this theory that we have not really considered 

yet. This is the ghost sector, and we will see in the next section how this can be 

used to achieve the cancellation we seek. 

5.3.2 "Bosonization" of the ghost sector 

The ghost sector of the bosonic string is considered in some detail in Appendix B. 

The bottom line is that the Faddeev-Popov determinant that we need to properly 

gauge fix the string path integral leads to a factor of 

(5.23) 

in the partition function (the ghost zero modes having been treated separately). vVe 

shall nmv represent this factor itself as a path integral over some bosonic field ·~; in 

the following way: 

(5.24) 
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which in the conformal gauge is 

To see how this works, we evaluate this integral by performing a shift in the inte­

gration variable '!j; ---+ '!j; - (34>, where 4> is the scale of the metric in conformal gauge 

(the value of the integral is unchanged under such a shift). Hence, 

and 

where we have integrated by parts in the first term. We can see that the cross terms 

in '!j; and 4> cancel and we are left with 

(5.26) 

Now, the ?/'-integral is just the integral over a single free boson, and hence yields 

in the usual way. Therefore, we have 

(5.27) 

and this must equal 

exp (- 9~~ J d2~ [(8a4>) 2
]). 

Therefore, we require that (32 = -25, or f3 = 5i. It will turn out to be important 

later on that (32 is an O(D) quantity (remember that we expect D = 25 for a 

(D +I)-dimensional spacetime). In any case, we have found that we can represent 

the contribution of the Faddeev-Popov ghosts in the conformal gauge by the path 

integral (5.25), provided (32 = -25. 

5.3.3 Ghost-matter mixing and the dilaton 

We now return to the problem in hand, namely how to cancel the term 

D/ 2 4> -- d ~-~oz 
8Jr z 

(5.28) 
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in the effective action (5.20). Here, we have written this term exactly in terms of 

z, and .0.0 = -8~ as before. Can we modify the ghost action (5.25) to cancel this 

piece? The answer is yes - all we need to do is add 

DJ 2 1/J Set = -(3 cl ~-6oz 
81f z 

(5.29) 

since when we perform the integration variable shift 1j; -t 1j;- (3cjJ we generate exactly 

the right piece to cancel the c/J-depenclent term above. This is clearly what we need 

- but what is the physical significance of this counterterm? Can we relate it to 

anything that we see in the standard string calculations? 

vVe saw above that the conventional way to couple a dilaton to the string action 

is via the scalar curvature, 

J d2~JgR(2l<J> 
In fact, there is another way to do this. If one bosonizes the ghost sector of the 

theory (as we have done), the dilaton can be included by coupling it to the bosonic 

ghost in the following way [28]: 

(5.30) 

Again, when one shifts the 1j; variable to do the integration, this generates the 

coupling to the scalar curvature that is required. The remaining term is then treated 

as a higher-order correction to the target space metric that depends on <I>, and is 

discarded in the usual small-a' calculations. Now, consider our counterterm (5.29) 

written for a general worldsheet metric, 

Integrating by parts gives 

vVe see that the first term here is of the same form as (5.30), with 

D 
<I>(z) = -ln z 

81f (3 

(5.31) 

(5.32) 

In other words, this looks like we have coupled a dilaton field with logarithmic 

dependence on the spacetime coordinate z to the string worldsheet. In a sense, 
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this is not dissimilar to our earlier attempt to cancel the <j>-dependence using the 

conventional dilaton coupling, where we found that the leading-order piece could 

be removed by a logarithmic dilaton field. However, we clearly have some new 

ingredients here; \Ve also have an extra term 

This piece mixes the coordinate z and the ghost field 1/J in a way not compatible 

with the interpretation of a dilaton field - in fact, this looks like we have added an 

extra piece to the target space metric of the form 

(5.33) 

This mixing of the "matter" field z and the ghost field is the extra ingredient we 

need to completely cancel the explicit 4>-dependence in the z effective action (5.20). 

We will postpone a discussion of the possible physical interpretation of this term 

until later on; for now, we return to the discussion of the vVeyl anomaly of the 

partition function Z by first calculating the new effective action for z obtained by 

cancelling the <j>-dependence with the counterterm ( 5. 29). 

5.4 The ghost zero mode 

Including the ghost-matter mixing counterterm (5.29) and performing the usual 

shift in integration variable in the '1/J-integral cancels the <j>-dependence in (5.20) and 

leaves us with the following integral over 1/J left to do: 

(5.34) 

The last term clearly acts as a source for 1/J, and hence we can perform this integral 

by completing the square in the usual way (we now disregard the (3 2 term, since 

we know it just combines with the result of the '1/J-integration to give the correct 

coefficient for the Liouville action for <j>). The result of the 1/J integral is found to be 

(5.35) 
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where we have kept terms up to 0(1) in D, as usual (remember that /32 is O(D)). 

The determinant here is just the piece that combines with the /32 term ignored 

above to give the correct ghost contribution, and we have found an extra quadratic 

piece in z that we must include in (5.20). In fact, this piece just contributes a 

renormalization of A, and we now have an effective action of the form 

s' = - D J d2p 2_z(p)z( -p)p2ln ( p2) + 26- D SL 
81r (21r) 2 z5 A2 961f 

(5.36) 

In fact, there is a subtlety involved in our treatment of the ghost sector that we 

have overlooked so far, and must now discuss. When we represented the Faddeev­

Popov ghost determinant by the path integral over 7/J, we did not take account of 

the possibility of zero modes in 7/J. Note that this is not the same thing as the zero 

modes considered at the end of Appendix B. The factor that we are representing 

by the integral over 7/J, (5.23), is obtained by omitting the b, c zero modes, which 

themselves are dealt with by making insertions in the path integral as explained in 

the Appendix. The zero mode in 1j; is a consequence of the way in which we are 

representing ( 5. 23), and therefore needs to be considered separately. On the sphere, 

the only permissible normalizable zero modes are the constants; therefore the action 

for such zero modes, which we denote by 7/Jo, is 

(5.37) 

The first term here is actually topological; the expression 

is equal to the Euler characteristic of the worldsheet. For the sphere this is just 2, 

so we know that 

(5.38) 

where C is some (positive) constant. The second term written m terms of the 

fluctuations z in the conformal gauge is 

D I 2 7/Jo- 2---
13 

d ~2z8az, 
81r . z0 

(5.39) 

and we must integrate the whole partition function over the zero mode 'lj;0 . (Notice, 

however, that this term is 0(1/V75)). In standard string theory calculations, the 
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b, c ghost field zero mode integration makes the entire expression vanish unless one 

makes insertions that kill this off [29]. In our case, however, this integration does 

not yield zero because the zero mode 1/Jo is coupled to z. As we shall see later 

on when we discuss possible higher-order effects, this zero mode actually changes 

the z propagator in such a way that the n-point correlation functions of the vVi 

fields which contain internal z loops remain Weyl invariant. This is an unexpected 

bonus; normally one would expect divergent loop momenta to introduce extra cf>­

dependence, but here these divergences are "softened" by the coupling of '1/Jo to z. For 

the moment, however, we continue with our analysis of the effective action (5.36), 

and discard the zero mode piece for the moment since for our present purposes it 

can be simply thought of as a higher order renormalization of A. The z dependent 

part up to 0(1) is therefore just 

I D J d2
p 1 - - 2 ( p

2 
) S = -- -.--z(p)z(-p)p ln -

81r (21r) 2 z2 · A2 
. 0 

(5.40) 

We see that this effective action is quadratic in z, and as such integrating over z will 

yield a functional determinant that may depend on the scale cf>. As we will see in the 

next section, the result of the z integration is to contribute just the right amount to 

the overall Weyl anomaly to ensure that the critical dimension is 26, as we hoped. 

Since the explicit cf>-dependence present in (5.20) is no longer present, this result can 

be trusted up to 0(1) in D for all then-point functions of the theory. 

5.5 The critical dimension 

The effective action (5.40) indicates that the result of integrating out z to this order 

will be the determinant of an operator. What can we say about this operator? Well, 

we can read off its Fourier transform from the expression given above, so that 

(5.41) 

is the Fourier transform of the cf>- independent piece of some differential operator Y, 

and it is this operator's functional determinant that we seek. Now, we go back and 

consider the term (5.1) from which Y is derived. By looking at the definition of the 
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Green's function for .6. 

"r.( )=6(x-y) 
L.l. '::1 X' y Vii(Y5 ' 

we can see that Q(x, y) is independent of cp(~) for x =f- y. In fact, the solution to the 

above equation is found to be 

1 
Q(x, y) = -ln lx- Yl 2 

41f 
(5.42) 

We will use this result later. Since Q(x,y) = _6.- 1(x,y) (this is what we mean 

by .6.-1 (x,y)) we see that equation (5.1) is actually independent of cp, since the c/J­

dependence of the factors of .6. which appear in the factors of J(~) is cancelled by 

that of the vffj terms. This is in complete analogy with the case of the worldsheet 

Laplacian for strings in flat space, where 

is independent of cp. However, we know that it is the inner product on the Xis 

that determines the cp-dependence of the quantized theory, and the same will be 

true of the zs in our calculation. The reparametrization invariant inner product on 

variations of z is the same as that for the Xi fields here, 

(5.43) 

Therefore, if we vary the operator 1 with respect to cp, it will transform in the same 

way as .6., namely 

(5.44) 

This simple behaviour under variations with respect to cp allows us to compute the c/J­

dependence that we need. Using expression (2.12) for the variation of the logarithm 

of the determinant of 1 with respect to cp, we obtain the formula 

(5.45) 

Our strategy is now to expand the heat kernel e-EY in powers of cp up to linear order. 

For the reasons given previously in section 5.3, we know that the final result can 

only be of the form of the Liouville action and hence we need only consider terms 
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quadratic in cjJ (the other power of cjJ coming from the factor of bcjJ which we shall 

integrate up at the end). Using the fact that 

we find the piece quadratic in cjJ to be 

(5.46) 

Now, since we know the Fourier transform of T 0 , it makes sense to go over into 

momentum space. Hence, this expression becomes 

where we have expressed the trace as an integral over the variable T and T 0 is given 

in equation (5.41). We now isolate the q-integral and analyze it separately: 

(5.48) 

vVe can see that to obtain a non-zero result as we send the regulator E ---+ 0, we need 

a factor of 1 I Ec (where c is some number) to be generated from the integral over q. 

Therefore, we need to study the large-q regime of this integral. YVe thus proceed by 

making an expansion for p < < q, and examining the terms proportional to p2
. We 

make a change of variables such that Q = q2
, and then put x = Q In( Q I A 2 ). Our 

integral is now 

- -
integrated over p. The functions !I and h are the Taylor coefficients arising from 

the expansion in powers of p. Integrating out T then leaves us with an integral over 

x of the form 

100 

dxe-Ex (E
2F1 (x) +E

3F2 (x)) 

F1 (x) and F2 (x) are functions which contain the Taylor coefficients re-expressed in 

terms of :c, and the factor dQ / dx. The function Q is found to be 

X 

Q(x) = W(xl A2 ) 
(5.49) 
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Figure 5.1: Function to be integrated in the calculation of Det (Y) 

where W(x) is the Lambert W-function. Now, if we replace the lower limit in our 

integral with some number a, we know that the result should be independent of 

a as we send E ---7 0. Thus, the integral can be computed numerically using a 

standard quadrature formula such as Simpson's Rule. In fact, by computing the 

functions F1 ( x) and F2 ( x) on a. corn pu ter algebra. package one can plot the function 

to be integrated as a function of x, as in Figure (5.1). When one does this numerical 

integration, one finds that the result is approximately 1/6. Importantly, this result is 

independent of A- Figure (5.1) is the same for any value of this constant. In fact, we 

can go further than this by performing the same calculation to find the determinant 

of the standard covariant worldsheet Laplacian ,6., the result of which we know from 

the heat kernel calculation. One finds that the function to be integrated over in 

this case is precisely the same as the one found above. The somewhat surprising 

conclusion, then, is that both these determinants have the same Weyl dependence, 

and 

(5.50) 

The result of integrating out the fluctuations z in the effective action (5.40) is 

therefore to contribute the same vVeyl anomaly as a single free boson. Combining 

this result with the previous factor of (26- D)SL that we obtained above, we find 

that the remaining dependence on </> drops out of the functional integral when 

26- (D + 1) = 0 (5.51) 
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showing that the critical dimension for AdS D+l spacetime is 26, as was previously 

advertised. 

5.6 Summary 

In this and the previous chapter we have presented a detailed calculation of the 

string partition function defined on the AdSD+l metric, using a large D expansion. 

By integrating out the VJ!i fields exactly, we have been able to derive an effective 

action for the z field in terms of its fluctuations z. The radius of curvature l 2 

is dimensionally transmuted into a scale A on the worldsheet, yielding a UV finite 

theory. We have also found a leading order <P-dependent term that has to be cancelled 

if we require the n-point functions in this theory to be Weyl invariant (which is 

central to the requirement that string scattering amplitudes be Weyl invariant). 

A conventional dilaton field cannot be coupled to the string metric via the scalar 

curvature in such a way as to cancel this term to all orders, and we can generate the 

necessary counterterm by adding a novel matter-ghost mixing term to the bosonized 

ghost sector. We have found that this corresponds to having a dilaton field that 

depends logarithmically on z, as well as an extra piece in the background metric 

that is coupled to the ghost. Finally, the remaining integration over the fluctuations 

to 0(1) has shown that the critical dimension for this system is 26, as we expected. 

Notice that while the conditions we have derived here are sufficient to ensure 

Weyl invariance at this order, they may not be necessary. It is possible that there 

are other alternative ways of cancelling the anomaly, other than using the ghost 

sector as we have here. 

In the next section we move on to discuss some aspects of the higher order 

corrections to these results. In particular we must discuss the effect of the ghost zero 

mode 'lj;0 , and see how this effects the \iVeyl dependence of the correlation functions 

of this theory. We will then demonstrate how a vVeyl invariant string amplitude can 

be constructed. 
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Figure 5.2: The self-energy diagram for T;Vi 

5. 7 The correlation functions 

We have found a set of conditions which make our model Weyl invariant within 

our calculational scheme up to 0(1) in D. vVe now discuss what happens when 

possible higher order effects are included. In particular, we will discuss the n-point 

correlation functions associated with the Wi fields, since it is here that potential 

problems arise. We will see that the ghost zero mode '1/Jo plays a role here, and 

acts to prevent any extra rf>-dependence being generated by z-loops. Consider again 

the original string action (4.15). Since this action is quadratic in the Wis, the 

z-dependence of the operator 

indicates that the 2-point function for Wi can be expanded in powers of the fluctu­

ations in z, as shown in Figure ( 5. 2). The wavy line indicates the z-propagator, and 

the solid line represents the usual Feynman propagator associated with 6.. Notice 

that the self-energy diagram is of higher order in D, and hence does not affect the 

results obtained previously. However, we now consider the effect of the ghost zero 

mode piece given in equation (5.39) on this self-energy diagram. The term (5.39) 

represents an 0(1/-./l5) correction to the z propagator defined by equation (5.40). 

Remembering that f3 is imaginary, we see that diagrams like that given in Figure 

(5.2) will involve an integral over the zero mode of the form 

I = J d'ljJ 1 eiC1/Jo 0 

p2 [In ( ~~ ) + i{1/Jo J 
(5.52) 

where 1 is some positive constant. (In fact, we have rescaled '1/Jo ----+ -lf31t'l/Jo. Hence, 

1 is an 0(1/ VJ5) quantity. Vve have then redefined C----+ C /1/31!. Since C is positive 

from equation (5.38), 1 is also positive.) We can now perform this integral over '1/Jo 

using contour integration in the usual way. The contour to be integrated over is 
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Figure 5.3: Contour integral over the zero mode '1/Jo 

given in Figure (5.3), with the pole indicated at 

i (p2) '1/Jo = -ln -I A2 

The value of the integral it> then given by the residue, which is 

(5.53) 

Now, remembering that 1 is some small number (it is O(lj.,fi5)), we see that this 

factor acts as a kind of "clamping term" in the loop integral in Figure (5.2): 

The factor of k2h prevents the k-integral from diverging in the UV, and therefore we 

do not have to regulate it. Consequently, diagrams like that in Figure (5.2) do not 

introduce any extra Weyl dependence arising from divergent momentum integrals. 

Also, since the H'i fields are not self-interacting, we see that all then-point functions 

behave in the same way. The n-point functions for the z fields are also explicitly 

\1\Teyl invariant for the same reason; the z propagator does not diverge. 
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This now completes our analysis of the bosonic string partition function on the 

Euclidean AdS geometry in the large-D expansion. 'vVe have found that this model 

is Weyl invariant up to 0(1) in D if the (D + 1 )-dimensional metric is given by 

where i = 1, ... , D, and we include a dilaton-like field of the form 

D 
w(z) = -(3 ln z 

87r 

(5.55) 

(5.56) 

with (3 = 5i. The dimension of the target space metric (i.e., D + 1) must equal 26. 

5.8 A Weyl invariant amplitude 

We now move on to consider the construction of a simple string amplitude, using the 

results of the previous chapters. As was pointed out in Chapter 2, Weyl invariance 

of vertex operators representing the scattering of string states leads to equations for 

the masses of particles in the spectrum. We shall see this happening explicitly in 

what follows. Our aim is to see whether one can construct a Weyl invariant string 

amplitude within the calculational scheme that we have employed in this thesis. 

Let us begin by considering flat spacetime. The expression for the n-point 

tachyon scattering amplitude is 

(5.57) 

where S[g, X] is the usual flat space Polyakov action. 'vVe wish to consider a theory 

not on flat space, but on AdS space. How should we alter the vertex operators to 

reflect this? One possibility is to "dress" the vertex operator with extra dependence 

on the spacetime fields, as in [30]. The AdS metric in Poincare coordinates is 

(5.58) 

\i\Te can write clown a wave equation for this metric, 

(5.59) 
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and then construct the dressed vertex operator in the form 

(5.60) 

This operator should then correspond to a scalar particle in AdS with mass m. Since 

the metric is fiat in the Xi directions, we make the ansatz 

rj;(y, X)= f(k, y) exp(ik ·X) 

so that the vertex operator is 

and the function f(k, y) satisfies 

This can be solved using a computer package, yielding the general solution 

with 

h(k,y) 

h(k, y) 

f(k, y) = Ah (.k, y) + Bf2(k, y) 

yD/2 fv(lky) 

yD/2 IC(lky) 

(5.61) 

(5.62) 

(c. .63) 

(5.64) 

where Iv(x) and Kv(x) are the modified Bessel functions of the first and second kind 

of order v, and A and B are constants. vVe will demand that the solution be well 

behaved over the whole range of y. This requires us to set A= 0 since the solution 

involving Iv(x) is divergent as y -too, whilst the other solution is everywhere finite 

as can be seen by plotting both 1,/(x) and Kv(x) as in Figure (5.4). However, we 

wish to perform our calculation of the amplitude within a large D expansion, and 

so it is useful to consider a different way of solving the wave equation. We will make 

use of a series expansion in powers of the wavenumber k [30]: 

00 

f(k, y) = L an(y)k2
n (5.65) 

n=O 
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Figure 5A: Schematic plots of JI(x) (left) and h(x) (right) for fixed k,l and m 

Substituting this into the above equation and equating coefficients of k leads to 

CXl CXl 

I: [y2a~(y)- (D -l)ya~(y) + m 2 l2 an(Y)] = l2 y2 2..:an-l(Y) (5,66) 
n=O n=l 

where primes denote derivatives with respect toy. This is an iterative equation and 

can be solved for n = 0, 1, 2, ... and so on. We find, of course, that there are two 

independent solutions: 

(5.67) 

(5.68) 

where 

(5.69) 

Now, we make the approximation that 

appropriate for large D (note that this is also consistent with the large curvature 

regime where the radius of curvature l2 is small). In this case, 

CL rv 0 (5.70) 
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and we have 

(5.71) 

(5.72) 

\Ne see that h (k, y) consists of at least D factors of y, which will correspond to at 

least D insertions into the path integral, or the D-point functions of the y-sector of 

the worldsheet theory. The second independent solution h(k, y) looks much easier 

to deal with since it does not involve raising y to the power of D, which we know to 

be large. In fact, we know that one of these solutions corresponds to the unphysical 

divergent Bessel function solution that we discarded above. Comparing plots of 

these solutions for large D clearly shows that h ( k, y) is the unphysical solution, and 

we therefore discard it and concentrate on h(k, y). 1 

Writing y = 1/ z and making our usual expansion about z = z0 , we see that 

(5.73) 

which consists of a constant piece plus 0(1/ D 312 ) corrections involving the zs. Fur­

thermore, plugging the expression for h(k, y) back into the iterative differential 

equation shows that terms of higher order in k come in at still higher order in D. 

Hence, to leading order in D it is legitimate to treat h(k, y) as a constant in z. Let 

us see what happens in this case. 

5.8.1 Weyl invariance and divergences 

vVe will work in our usual coordinate system z, vV. We are going to compute the 

n-point scattering amplitude defined by 

A,. ~ J VgVzVW ( g J d2~n ffn e'''',~,;\"') exp ( -S[g, z, Wj) (5.74) 

where we have omitted the constant factor arising from h(k, y) since up to 0(1) 

in D it is just 1. The action here contains all the necessary ingredients (i.e., the 

1 Indeed, this is the solution considered in [30]. 
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ghost-matter mixing terms, etc.) to make the partition function without insertions 

vVeyl invariant, as has been shown in preceding chapters. Let us consider the sector 

of this theory which is coupled to TV: 

vVe can write this whole expression under the integral sign by introducing a 2-

dimensional delta function, 

with normalization 

(5.77) 

This is now of the form 

where 

Ji = 2_ 2:::: b2 (~- ~n) k~ 
27r n -J9 Z 

(5. 79) 

We can now perform the integral over the Vlfi fields in the usual way. If we denote 

then the result of the W-integration is to produce a factor 

Det-Df2 (f) exp( -S') 

where 

vVe now make an expansion in negative powers of D, as usual: 

In particular, 

z(O 
z(O = zo + .Ji5 

(5.80) 

(5.82) 
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and so up to 0(1) in D we have 

Absorbing the delta functions gives 

(5.84) 

Now, the 2-dimensional Green's function 6 -l(~P' ~q) is given by [8] 

(5.85) 

when p ::j: q, as was mentioned previously. When p and q are equal, we have to 

evaluate the Green's function at coincident points, as in Appendix A. This introduces 

dependence on the scale of the metric. In the conformal gauge, we obtain 

I 1 2 (1 cjJ ) 1 L 2 S = -- k - +- + O(E) -- k · k ln I~ -~I 2z2 E 4n 8Jr z2 · P q P q 
0 0 p>q 

(5.86) 

where k2 = k~ k~. Let us now substitute this back into the expression for the n­

point amplitude. We know that the z-dependent part of this theory is, up to this 

order, completely determined by its Weyl anomaly which we have shown cancels 

away when D + 1 = 26. What we are left with is, in conformal gauge, 

(5.87) 

We now see that there is a problem. Firstly, note that the divergence arising from 

the Green's function is multiplied by z0 . In the usual fiat space calculation the 

divergence can be absorbed by a redefinition of some normalization constant. The 

same cannot be done in our case; z0 is to be integrated out eventually and one 

cannot just absorb it into a constant. The only way to remove this divergence, then, 

is to demand that k2 = 0. However, this leaves us with a factor of e<P which spoils 

vVeyl invariance. Again, in the usual flat space case one can tune k2 to be some 

c-number that cancels the c/J-clependence arising from the .j9 in the vertex operator; 

this cannot be done here since this would require that k2 be a function of z0 . This 

is inconsistent. 
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vVe clearly have a problem. The vertex operator that we have constructed does 

not lead to a Weyl invariant amplitude and therefore must be changed in some way. 

However since we are asking that it represent a solution to the target space wave 

equation we are not free to add any new pieces that depend on the target space 

coordinates. Since we have seen before that the ghost sector can be utilized to 

achieve vVeyl invariance in the partition function, it seems logical to suppose that 

by dressing the vertex operator with ghost dependence we may be able to solve this 

problem. Hence, let us further dress the vertex via 

(5.88) 

where a is some c-number. This new ghost insertion will act as a source term in 

the integral over '1/J, generating new terms which may allow us to construct a Weyl 

invariant amplitude by tuning a. 

5.8.2 The ghost-dependent vertex operator 

We now repeat the above calculation but with the extra '1/J-dependent insertion. The 

integration over W proceeds in exactly the same way, producing the action (5.81) 

as well as the usual z-dependent determinant. The ghost sector is 

As before, we perform this integration by shifting the integration variable 'ljJ ----t 

'ljJ - {3</J. Remember that this shift produces a term multiplying <P and z which 

cancels the anomaly arising from the vV -integration, as well as generating the correct 

Faddeev-Popov determinant coming from the gauge fixing. In the calculation of the 

partition function we saw that an extra z-dependent term is also generated since 

the '1/; - z term in the ghost action acts as a source. We now have basically the same 

situation except this source term is now 

(5.90) 

and we have a factor of 

(5.91) 
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coming from the .Vfj and the a'lj; coupling in the vertex operator. Performing the 

exact 1j; integral in the conformal gauge therefore generates a factor of 

I = 

X (5.92) 

where z1 means z(6). We now expand this out up to 0(1) in D as usual, using the 

basic property of the Green's function 

(5.93) 

and remembering that {3 is necessarily an 0( vD) quantity. We will assume for now 

that a is at most an 0(1) quantity; this will be confirmed when we determine the 

tuning conditions for a. We therefore find 

I = 

(5.94) 

The first term here we recognize from the partition function calculation. However, 

we can see that now there are several extra pieces, one of which is independent 

of the z and includes the Green's function at coincident points once again. This 

will introduce a divergent piece as well as <P-dependence. Now, remember that the 

amplitude includes the factor (5.81) which, up to 0(1), generates the troublesome 

<P-dependence and the divergence multiplying z0 . The inclusion of the ghost piece 

in the vertex operator now allows us to demand that k2 = 0, removing the offending 

divergences and <P-dependent terms. Where before we were left with a factor of e<P 

that could not be removed, we now have a factor of 

(5.95) 

with the a 2 term coming from the Green's function referred to above. Hence, we 

can remove this factor by tuning a such that 

(5.96) 
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'vVe will choose the minus sign here to make a an 0(1/ VD) imaginary quantity. The 

factor a/ f3 is then a real 0(1/ D) quantity. In fact, in this case we see that a = 1/6i 

so that a/(3 = -1/30. 

The divergence which also arises from the Green's function can be removed by 

including some normalization constant ( in the definition of the vertex operator, 

and defining it such that 

(
- ( 24rra

2 

= e ' 

is finite. 

Having tuned the value of a we can now write down the expresswn for the 

amplitude up to 0(1): 

An '"'"' IT J d2~n exp (s:z2 L kp · kq ln I~P- ~ql 2) 
n 0 p>q 

(5.97) 

where we have performed the integration over z and enforced Weyl invariance by 

demanding that D + 1 = 26 and k2 = 0. In the second line we have gone over to 

complex coordinates z, z (not to be confused with the AdS coordinate z(O - that 

has now been integrated out!) However, before proceeding with this calculation it is 

worthwhile asking what happens at higher order. The fact that we have tuned a to 

be a. small number means that we are effectively throwing away all of the interactions 

in this model. Perhaps the richer structure of the theory at higher order may allow 

us to relax the rather stringent condition that k2 must be zero. It would seem rather 

cavalier to just ignore all of this structure, and so to look into this possibility we now 

go back and expand the theory out to the next order and examine the z interaction 

terms. 

5.8.3 Higher order interactions 

We begin by writing out the term (5.81) up to 0(1/VD). This is 
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Similarly, the factor arising from the ghost integration is 

( 3 J 2 2 (4av!f5 _ -1 ? !2 = exp Sn d x1d X2 fJzo 6.z(x1)6. (x1, x2)6-(x2- Xs) 

;~z(xl)6.z(x 1 )6.- 1 (xl,x2 )c52 (x 1 - Xr) + (r B s,x1 B x2))) 

where we have treated the z-independent term and the piece which arose in the par­

tition function calculation, namely equation (5.35), separately. The z-independent 

term is just the term which produces the factor of 6a2cjy that we saw above. 

When we expand these two exponentials out and multiply them together we will 

end up with various terms involving products of two z fields. To integrate over 

the z, we must contract these fields together, using the z propagator that we have 

derived previously. It is in fact easier to work in position space for what follows. 

The propagator derives from the expression (5.1), and its Fourier representation is 

given in (5.40). From these two expressions, we see that the z propagator in position 

space is 

(5.99) 

We will also use the normalization of the delta function given by (5.77) and the 

definition (5.93). The presence of the constant zero mode 1/;0 is left implicit here; 

it does not alter the conclusion of what follows since it can be absorbed into the 

renormalization of A in (5.40). 

Our task is now to multiply everything together and evaluate all the contractions 

that arise. This is a somewhat opaque exercise, so rather than writing everything 

out in detail we will just discuss the general structure of the terms that one finds. 

Remember that our basic problem is the existence of the term 

It is conceivable that the interaction terms will generate extra pieces such that this 

term becomes 
1 

- 2 6.- 1 (0) (e + f(a,fJ) + k2g(a,f3)) 
2z0 

One could then tune k2 to be a certain function of a and f3 to remove this. The 

separate condition on a, namely that 6a2 - afJ + 1 = 0 (required to cancel the y'g 



5.8. A Weyl invariant amplitude 97 

in the vertex operator), would then fix the value of k2 . Is this actually the case, or 

are we still forced to set k2 = 0? 

The first type of interaction term we encounter is of the form 

h rv ~ J d2x1 (z(.TI) 6(:z:1)z(xl)) 6 -l (x1, X 8 ) 

rv ~ J d2
.T1 J d2y ( 6- 1 (xl, X 8 )6(x!)6(x!)6 - 1 

(Xt, y)) 

rv ~ J d2
y 0

2
(y- X 8 ) 

a 
rv #X{j (5.100) 

and we see that no divergences are introduced here2 . To get this result we have used 

the fact that 

J 2 1 1 
d Y 6 _1 ( ) 6 _1 ( ) = -6(x)6(z) 

x,y y,z 2n 
(5.101) 

This identity can be confirmed by inverting the left hand side and acting on it 

with the right hand side. One obtains just the delta function o2 (x -· z), confirming 

that the right hand side of the above expression really is the inverse operator of 

6 - 1(x, y)6 - 1 (y, z). (Compare, for example, with the definition (5.93)). 

Next are terms of the form 

(5.102) 

and we see that for p = q we will get a contribution that goes like 

One also finds terms like 

h rv kp ;6~q0: [ 6 -l (~p' ~q)] 2 6(~p) ( z(~p) (! d2x1 6(xt)z(xt)) 6-1 (xl, X 8 )) 

(5.103) 

and this is also found to be proportional to the Green's function at coincident points. 

Finally, we have 

(5.104) 

2 For notational simplicity we have used b. = -8~; the factors of y0 all cancel out. 
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and this too is proportional to the divergence. 

Collecting all these terms together and being careful to get all the numerical fac­

tors correct, one obtains the following divergent contribution from the interactions: 

(5.105) 

vVe can now see that the k2 dependence factors out, and therefore if k2 i= 0 then 

this expression can only be tuned to zero by requiring 

!3 a=--
487r 

Unfortunately, we also require that 6a2 
- a/3 + 1 = 0 and these two requirements 

are incompatible. The conclusion is, then, that even when we include the higher 

order interactions of the theory we still require k2 = 0 in order to get a finite, 

Weyl invariant theory. Note that if we do demand that a = /3/ 487r, the residual cjJ 

dependence is 

rv exp (1.15c/J) 

and it is hard to see how one might add any ingredients to the original vertex 

operator to cancel this. 

So, given that we seem to have no choice but to demand k2 = 0, how should we 

interpret this? We have asked that our vertex operator be a solution to the wave 

equation in AdS. Within the 1/ D approximation that we are using, we have found 

that h(k, y) =constant is such a solution. The wave equation (5.62) in this case 

reads 

(5.106) 

This is the (approximate) on-shell condition. Combining this with the Weyl invari­

ance conditions then tells us that we have a massless scalar particle in the spectrum 

of this string model. Note that this equation relates the mass of the particle in the 

full AdS background to the wavenumber k associated with the flat directions only. 

This is an encouraging result, since we found in our partition function calculation 

that vve needed to add counterterms which corresponded (in part) to a dilaton field, 

which is itself a massless scalar. The fact that we have now found a massless scalar 

particle in the string spectrum suggests that this is a consistent theory at the level 
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of approximation we are working to. vVe also note that the requirement that k2 

should be zero in order to remove the divergences multiplying z0 seems to exclude 

the possibility of a. ta.chyon - an intriguing and unexpected result. However, it must 

be borne in mind that this result is heavily dependent on the form of the vertex 

operator that we have chosen to work with, and as we will see this apparent removal 

of the ta.chyon from the spectrum does not persist if we drop the requirement that 

the vertex operator be a. solution to the AdS wave equation. Therefore we do not 

claim to have found a rigorous set of principles which lead to a. ta.chyon-free bosonic 

spectrum. 

5.8.4 Evaluating the amplitude 

Let us now return to the evaluation of the amplitude up to 0(1 ), given by equation 

(5.97). This expression as it stands is divergent for reasons familiar from flat-space 

string theory [8]. Although we derived this amplitude by working in the conformal 

gauge ds2 = e4>dzdz, the result at this order is manifestly independent of cfy. There­

fore, changes of coordinate which change the value of cfy will leave An invariant. As 

is discussed at the end of Appendix B, the group of such transformations is the non­

compact group S£(2, C) so the integral in An produces an infinite overcounting, 

leading to a. divergent result. 

To overcome this problem, we will factor out the infinity (i.e., the volume of the 

infinite group S£(2, C)). The infinitesimal form of the transformations is given by 

(5.107) 

with a 1, a2, a3 being arbitrary complex numbers. So, we can write three of the 

complex coordinates Zi in terms of three fixed points Yi which are acted on by the 

transformation U, 

i = 1,2,3 

Hence, 

(5.108) 
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Computing the determinant readily gives 

(5.109) 
i=1,2,3 n=1,2,3 

Since the integrand is independent of the an, the integral just produces the infinite 

volume factor of SL(2, C). The b, c ghost zero modes also generate an infinite factor 

in the partition function, again equal to the volume of S L(2, C) (again, see Appendix 

B). However, since they are fermionic ghosts the factor appears in the denominator 

and cancels against the integral over the ans, leaving a finite result. So, we have the 

result that 

An= !z1- z2! 2lz2- z3j 2jz3- z1! 2 IT J d2 zn IJ izv- zql ::·:g 
n>3 p>q 

(5.110) 

with z1,2,3 = y1,2 ,3 . This can be made even simpler by picking values for the yis such 

that Y1 = 0, Y2 = 1, y3 = oo. Then one obtains 

An= j (IT d2znlznl~l1- znl~r) IT 
n>3 p>q>3 

(5.111) 

If we consider the first nontrivial case where n = 4, this is 

(5.112) 

5.8.5 An alternative approach 

Finally, we mention a different way of approaching the construction of the vertex 

operator that does in fact allow one to leave k2 unrestricted. We asked that the 

vertex operator be constructed out of a solution to the wave equation in AdS. While 

this seems a very natural way to proceed (indeed, this approach has been used in [30] 

with some success), there is actually no a priori reason to impose this condition. 

Our only real guiding principle is that the vertex operators that we construct should 

be local functions of the worldsheet coordinates ~a which preserve Weyl invariance 

when inserted into the string path integral. In fiat space this reduces to the on-shell 

condition (by which we mean the condition that the wave equation be solved), but 

this does not necessarily hold in curved backgrounds [31] [32]. Can we construct a 
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suitable operator without restricting to such fields? To answer this question, let us 

consider what happens when we work with an operator of the form 

V= J d2~..;g eo:'1f;(E,) ef(k,z) eikzW (5.113) 

where the function J(k, z) is now to be determined solely by the condition that the 

amplitude obtained by using such a vertex operator be Weyl invariant. We keep the 

same vV -dependence, as this ensures that this operator transforms correctly under 

translations in the vV -directions. 

In fact, we have already done most of the work. To see the effect of this additional 

z-dependence, we note that 

exp (f(k, z)) = exp (f(k, z0 )) x exp ( }nl (k, z0 ) + · · ·) (5.114) 

where the prime denotes derivative with respect to z. The first exponential factor 

here is just an overall constant. We now have the possibility of extra interaction 

terms arising from the multiplication of the z-dependent piece with those terms that 

we have already considered in the previous section. Up to the order that we have 

been considering, there is only one extra piece. This is 

kp · kqa / I ( ) 
1 ) (! 2 ) 1 ) z

3
,8 \ z(~n)f k, zo ~- (~P' ~q d x1 ~(xi)z(xi) ~- (x1, x 8 ) (5.115) 

which has the effect of changing the divergent piece (5.105) such that it now reads 

1 k
2 

1 ( a ( 1 )) 

2 z5 
~- (0) 1 - 48n/3 1 - zof (k, zo) (5.116) 

(remember that we also have the factor (5.95) coming from the ghost integration). 

Now, we have the freedom to pick J' (k, z0 ) such that the k2 dependence of this 

divergence is removed. In particular, we can ask that 

a ( 1 ) 2z5 1 - 48n/3 1 - zof (k, zo) = ± k 2 
(5.117) 

so that expression (5.116) just reduces to ±~- 1 (0). This requires 

1 1 ,8 ( 2z5) f ( k, zo) = - - 1 ± -
zo 48naz0 k2 

(5.118) 

which implies that 

J(k,z) = (1- _,8_) ln(z) ± ,8 k
2
z2 

48na 48na · 
(5.119) 
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Having fixed f(k, z) in this way, \Ve are left with the factor (5.95) as well as the 

±6 - 1 (0) coming from (5.116). Hence, a is then determined by demanding that 

qy ( 6o:
2 

- ap + ( 1 ± 4~)) = 0 (5.120) 

(the 1/ E piece can be removed by a simple redefinition of some irrelevant normaliza­

tion constant in the operator). So, the conclusion is that the amplitude constructed 

from vertex operators of the form 

·k-W 2-e z (5.121) 

is Weyl invariant for all values of k2 , provided a satisfies (5.120). Note that the 

function 

qy(k, z, W) = z 4811"" e 4811"ak2 ( 
( 1--{3 ) ± f3 z 2 ) ·k·W 2-e z (5.122) 

is not a solution to the wave_ equation in AdS, (D + m2 )4J = 0. It is therefore 

possible, as expected, to construct vertex operators which are not solutions to the 

wave equation, but which do preserve Weyl invariance in curved backgrounds. 

It is interesting to note that in the standard picture, where one calculates by per­

turbing about fiat space, the vertex operators for the massless fields can be obtained 

by computing the variational derivative of the beta functions [31]. Hence, the Weyl 

invariance conditions and the vertex operators are intimately linked. Perhaps one 

could uncover some similar (or maybe quite dissimilar!) relationship between the 

vertex operators derived above and the conditions for Weyl invariance found within 

our 1/ D expansion? The precise way in which to tackle this problem is, at present, 

rather unclear. However, it would certainly be something that one would like to try 

and understand, since such a relationship would surely be of value in interpreting 

further the results that we have found using this novel calculational scheme. 



Chapter 6 

Discussion and Conclusions 

We now discuss some further issues relating to the calculations presented in the 

previous two chapters, and also make some speculative observations regarding the 

physical significance of the counterterms we have derived above. We conclude by 

drawing attention to various questions that are raised by the present work, and 

several potentially interesting avenues of research based on the work presented here. 

6.1 Alternative derivation of the anomaly 

As we saw in Section 4.1.1, the large N approximation for the O(N) nonlinear sigma 

model leads one to consider a saddle point approximation in which the Lagrange 

multiplier field A(x) is a non-zero constant. While this approximation is not suitable 

for the string action ( 4.17), it is interesting to note that the same form for the Weyl 

anomaly can obtained by the following calculation. If we write the action in terms 

of 
1 f = --.6z 
z 

then we have 1/ D S = 
4

1T cP~yf9l2 j + 2 Tr ln (.6 +f) ( 6.1) 

and we might attempt to analyze this action na'ively by approximating f as a con­

stant, in analogy with the O(N) sigma model (which, as we know from studying the 

Euler-Lagrange equations, is actually incorrect since the vacuum configuration for 

the z field corresponds to j(~) = 0). Let us see how this calculation proceeds. 
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In assuming that we can take f ( 0 to be a constant, we are essentially saying 

that this is the dominant configuration of J(~) and this looks like a saddle-point 

approximation (although at no point in what follows do we need to determine what 

this saddle-point value actually is). However, we do need to be a little careful over 

defining what exactly we mean when we refer to the saddle point. In the standard 

nonlinear si gm a model field theory ( 4. 4), the field A ( x) was a scalar field. Now, in 

the string theory the field f is a worldsheet scalar which depends on the metric 9ab 

and hence the scale of the metric cP(~). It therefore makes sense to consider a new 

quantity, the scalar density of f, which is independent of the scale of the metric. 

This scalar density is given by 

p(~) = y'g !(0 (6.2) 

The key point is that the saddle point (a physical configuration of f) must be 

reparametrization invariant; therefore, we postulate that the correct way to write 

the saddle point for f is 

p' = constant 

so that f* = (1/v1j)p*. Note that f* itself is therefore not a constant, although 

the saddle point value of the scalar density, p, is. In this way, the string sigma 

model (6.1) reduces correctly to the field theory model (4.4) when we eliminate the 

worldsheet metric (i.e., we set 9ab = 6ab, so that J(O = p(O). 

We can now naively expand the determinant in (6.1) about the "saddle point" 

value off: 

D Tr ln ( ~ + f) = D Tr ln ( ~ + j*) + · · · 
2 2 

(6.3) 

Since we are working within the saddle point approximation, this first term in the 

expansion of the determinant will dominate. A neat way of regulating a determinant 

of the form ( -8~ + const) is to use the zeta function ((s), defined by 

((s)=LA-s 
,\ 

where the AS are the eigenvalues of the operator that we wish to regulate. If we 

work in the conformal gauge once again, we have 

D D (-82 + p*) 
2 Trln (~ + j*) = 2 1n Det ae<P (6.4) 
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so that e<P plays the role of a scale, making the determinant under consideration 

dimensionless. Hence, from the definition of the zeta function we see that 

ln Det ( -a~e: p*) = -( (0) 

where the prime on ((0) indicates that we differentiate it with respect to the variable 

s. 

We now write the zeta function in terms of the heat kernel of the operator we 

are considering: 

((s) = rts) loo dt ts-1 K(~, ~; t) 
Since p* is a constant, it acts like a mass term in the heat kernel and we can write 

it down explicitly, 

(6.5) 

Substituting this heat kernel into the expression for the zeta function then gives 

which then implies that 

(6.6) 

Hence, the cp dependent part of this determinant is 

which is in agreement with the anomaly we found in equation (4.60). It is interesting 

to see that we obtain the correct form of the anomaly even in this naive treatment 

of the action ( 4.17). In addition, let us look again at the expression ( 4.22) which 

represents the determinant appearing in ( 6.1) approximated by some cutoff A 2 > > 1. 

For A 2 > > ).0 , this expression can be approximated by 

2 ) 2 ( 2 Ao 2 (A + Ao ln(A + A + Ao) A
2 

-A - /\o ln Ao (6.8) 

which is itself approximated by 

A
2 

(ln(A
2
)- 1) + ).0 ( 1 -ln (~~)) (6.9) 
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The first term is just a constant, while the second term is the same as the expression 

for the determinant we have found using the zeta function above if we identify ).0 

with p* and the scale ecJ; with A 2 . This is a nice cross-check, showing that we have 

been treating the regularization of the determinant consistently. 

\i\Thy do we obtain the correct anomaly, despite expanding the determinant about 

the wrong value? The answer is that we are computing the anomaly associated with 

the functional integration over the Wi fields. All the information about this anomaly 

is contained in the action (6.1). The choice of the saddle point for f(~) is an issue 

which relates to the evaluation of the functional integral over the z field; one needs 

to choose the correct vacuum about which to expand. However, the vacuum state of 

the z-sector of the theory is independent of the Weyl anomaly associated with the 

l1V -sector; hence, we can derive the Weyl anomaly term above by choosing f (~) to 

be a constant (rather than zero) and still obtain the correct answer. Of course, the 

anomaly associated with the z sector of the theory can only be computed correctly 

if we expand about the correct point, and this is what we have calculated in Section 

5.5. 

6.2 Generalization to other geometries 

In the calculations presented above we concentrated on AdS space as a specific 

example of the metric (4.11). However, we could have treated the metric in a more 

general way by writing it as 

(6.10) 

Obviously, the same determinant ( 4.33) will appear when we integrate out the l;Vi 

fields, and the analysis proceeds as before. Once again we will find that there is 

a divergence coming from the Green's function at coincident points, as in equation 

(5.17). In the AdS case, we removed this divergence by renormalizing f2. Clearly in 

the more general case, we have to choose the function z' such that the divergence is 

removed. This requires 
1 l 

1 =- + f(z) 
z z 

(6.11) 
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where l is some dimensionful cutoff that absorbs the divergence, and f(z) is some 

arbitrary finite function of z(~). Notice that if f(z) = 0 the solution to the above 

equation is AdS space, and corresponds to the case that we have been considering in 

previous chapters. After cancelling the 4>-dependent term by including extra terms 

in the ghost sector as above, this leaves us with an action of the form 

I D J d2
p 1 - - 2 ( p

2 
) 1 J 2 2 26 - D S = -

8
7f ( 2n)2z

5
z(p)z(-p)p ln A2 + 

4
7f d ~f(z)(8az) + 

96
7f SL 

(6.12) 

Now, we notice that 

which is an 0(1/ D) contribution to the action. Hence, up to the order at which we 

have been working, the arbitrary function f(z) is irrelevant to the question of 't\Teyl 

invariance. Any solution to the equation ( 6.11) will correspond to a background that 

is Weyl invariant (and UV finite) under the conditions derived above up to 0(1). 

However, the zigzag symmetry conditions must also be satisfied if the background 

is to be consistent with Polyakov's ansatz for the Wilson loop. Also, the question of 

Weyl invariance of higher order corrections to the correlation functions of the theory 

will depend on f(z). 

6.3 Physical significance of the counterterms 

Let us make a few observations about the nature of the dilaton field we have found. 

Written in terms of the original coordinates (4.10), <I>(z) becomes 

(6.13) 

We can now see how this bulk field behaves as we approach the zigzag symmetric 

point in AdS, lP* = -oo. The dilaton clearly diverges. As we saw in Chapter 2, the 

dilaton is of great importance in perturbative string theory, since its expectation 

value gives the effective string coupling constant, 
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Remarkably, we find that at the zigzag symmetric point where the vVilson loop is 

supposed to be defined, this quantity goes to zero. This suggests that at the point 

where the string action coincides with that of the lower dimensional gauge theory, 

the string theory becomes free (that is to say, there is no joining or splitting of 

strings in the sense of the topological expansion depicted in Figure 2.1). This is 

entirely consistent with the idea that the large-JV limit of gauge theories ought to be 

described by a theory of free strings, as we mentioned in Chapter 3. Since the loop 

equation is only valid for a large N field theory, and it is this that ultimately we 

wish to solve by using the string background (4.10), the string theory defined on this 

background should describe a large N field theory. The behaviour of the dilaton that 

we have found perhaps provides some evidence for this. Another interesting point 

is that within the context of Polyakov's conjecture, the string theory only appears 

to be free at the zigzag symmetric point; in the bulk spacetime far from cp* = -oo 

the effective string coupling runs in analogy with the renormalization group picture 

of Wilson. So the full string theory is not free in this picture; it just appears to be 

free when viewed from the lower dimensional space where the Wilson loop lives. 

It must be borne in mind, of course, that we have only calculated the no-string­

loop contributions to the partition function and the amplitudes in this thesis, since 

we have restricted our attention to worldsheets which have the topology of a sphere. 

String loop corrections to these results must also be considered if the above dicus­

sions are to be put on a really rigorous footing. 

One other very obvious question arising from our results is: What does it mean 

to have ghost-matter mixing terms? One possible (though not at all definite) link 

is to that of the construction of "brane-like" vertex operators [33]. Here, one also 

finds ghost-matter mixing terms, and therefore this phenomenon in our calculation 

could indicate that we are indeed detecting non-perturbative effects. This clearly 

needs more detailed analysis before being taken seriously. However, it would be 

very interesting if it could be shown that such terms were generic when constructing 

string theories on strongly curved backgrounds. Note that this situation is not 

physically objectionable; it has been remarked [34] that the decoupling of ghosts 

and matter cannot be a valid fundamental principle. This observation is based on 
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the fact that classically Weyl invariant string theories necessarily possess a BRST 

operator Q which is nilpotent, Q2 = 0. This nilpotency condition is anomalous, and 

the removal of the BRST anomaly leads to the usual conditions for cancellation of 

the vVeyl anomaly in standard quantization procedures. The BRST operator can 

be interpreted as a generator of gauge transformations that mix matter and ghost 

degrees of freedom [35]. Hence, the decoupling of matter and ghost fields is really 

just a gauge condition rather than a deep physical principle. 

6.4 Conclusions and outlook 

The main conclusion of the work presented in this thesis is that is it possible, 

within the large-D calculational scheme presented here, to construct a Weyl in­

variant bosonic string theory on the background geometry proposed by Polyakov, 

by allowing a dilaton field of the form 

and by adding a term that mixes the ghost sector (represented by the bosonic field 

1/J) and the matter sector according to 

This result holds up to 0(1) in D for closed strings in a 26-dimensional target space. 

Higher order corrections to this result are precluded by the effect of the zero mode 

of 1/J, which softens divergences that would otherwise be present in the correlation 

functions of the theory. It is also possible to construct a Weyl invariant amplitude 

by making insertions of vertex operators which contain both matter and ghost fields. 

The amplitude corresponding to a scalar particle which satisfies the wave equation 

in AdS is Weyl invariant to this order only if the particle is massless. Hence, the 

addition of the counterterms given above is self-consistent. Interestingly, the tachyon 

appears to be absent from the spectrum. One can also construct vertex operators 
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which preserve Weyl invariance without restricting the value of k2 by dropping the 

requirement that they be constructed from solutions to the wave equation. 

Note that the results given here are sufficient for \iVeyl invariance; they may not 

be necessary. It would be interesting to investigate what other mechanisms could 

be used to achieve Weyl invariance within this scheme. 

vVe will conclude by mentioning some issues which could be addressed by further 

investigations. An obvious and immediate question is to ask how one could prop­

erly extend the analysis described in this thesis to open strings. One area which 

would require particular care would be the correct treatment of zero modes when 

integrating out the Hfi fields; if the string worldsheet has a boundary, there are 

many delicate issues involving the correct treatment of zero modes [27]. Clearly the 

extension to open strings is of the utmost importance if we wish to study this string 

theory in the context of gauge fields -strings duality. Imposing the correct bound­

ary conditions will also be very important. Some recent work in this direction [36] 

is certain to be of relevance. 

It is also very natural to ask whether the calculational scheme presented in this 

thesis can be extended to the case of fermionic strings, and ultimately superstrings. 

Of course, one might expect this approach to be less suited to the case of fermionic 

strings since in that case we expect the target space dimension to be considerably 

smaller (of the order of 10, rather than 26) and so the expansion in 1/ D may be 

considerably less reliable. However, the principle of treating the target space metric 

exactly and expanding in 1/ D seems to be readily applicable to the fermionic string 

sigma model, which is given by [12] 

with 

S = j d2~Jg [~gabaaX118bXvGJ.Lv(X) + ~i?fiJ.LraDa'l/fGJ.Lv(X) 

+ 
1
1
2

R11vd?fi11 '1/J"'?fiv'l/J>. + 2(8aX 11 + Xa'l/J 11 )?fiv!blaXbGJ.Lv(X)] (6.14) 

(6.15) 

Fixing to the superconformal gauge 9ab = e<Pbab, Xa = laX eliminates the "gravitino" 
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Xa, since "'b/a'Yb = 0 identically [37]. We are left with 

and we can now simply substitute in the Polyakov geometry for G1w(X) and then 

analyze the resultant action in analogy with the case presented in this thesis. One 

would first need to compute the Christoffel symbols r~.\ and the Riemann tensor 

RJ.LvK.\ for the geometry under consideration. As an example, for AdS D+l space in 

Poincare coordinates as given in equation (3.35) we have 

1 r /L - r/L - -­o - 0-
JL JL y 

0 1 r. =­
u y (6.17) 

where the index J-L runs from zero to D, the index i runs from 1 to D and all other 

symbols are zero. J-L = 0 corresponds to the y-direction. The Riemann tensor is 

1 
Roioi = Rjij = -­y4 

with all others zero. Substituting these into the action gives 

s = 

+ 

(6.18) 

(6.19) 

and we see that again we will have to analyze the various determinants arising from 

integrating out the Xis and the fermionic fields '1/J. This seems like a problem that 

could well be tackled within the calculational scheme presented in this work. 

* * * 

I would like to conclude this thesis with a personal observation. There have 

undoubtedly been significant advances over the last ten years or so in our under­

standing of what string theory really is, and what it can tell us about Nature. The 

success of the AdS /CFT correspondence, for example, is now undisputed. There 

are literally thousands of recent papers confirming various aspects of the correspon­

dence. This is clearly a good thing. However, it is worth bearing in mind that the 
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purpose of theoretical physics research is not only to calculate things which you 

have good reason to believe will work out nicely! There must always be a place for 

research projects which do not necessarily follow contemporary trends, but which 

try out novel ideas to see if they lead to any new understanding. I would like to 

think that the work presented in this thesis falls into this category. By approaching 

an old problem in a new way, we have obtained some interesting and unexpected re­

sults. The questions raised in this thesis, and the ideas and methods used to answer 

them, are in a sense rather unconventional. I hope that the reader will agree that 

this is no bad thing, and that in fact asking unconventional questions will always be 

a valuable part of scientific research - whatever the outcome. 



-- -- ----·------
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Appendix A 

The Green5s function at coincident 

points 

The Green's function associated with the covariant worldsheet Laplacian ~ is given 

by 

Q(x,y) = ~- 1 (x,y) (A.O.l) 

At coincident points this propagator is divergent, and we must regularize it. This 

procedure will introduce explicit dependence on the Liouville mode, <fy(x). Here, we 

calculate this finite <fy-dependence by writing 

Q(x,x) = 100 

dse-st,. ~~y=x 
i g(x) 

(A.0.2) 

where we have introduced a proper-time cutoff E. Since we know that 6q,~ = -6</Y~, 

we find 

where the second term comes from varying the square root of the determinant of 

the worlclsheet metric, vg. This expression can now in turn can be written as 
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We now write this in terms of a total derivative with respect to s, 

OcpQ(x, x) = - ds ds- e-st>ocjJ(x)e-(s-s)t>. ly=x 1
00 1s () ( _ _ 1 ) 

E 0 0 S .J9(X) 

1
00 

ds e-st>.ocjJ(x) ~ly=x 
E g(x) 

VVe can move the derivative \Vith respect to s outside the s integral by integrating 

by parts; this gives 

ds -- ds e-st>ocjJ(x)e-(s-s)t>. ly=x 1oo ( () ) 1s _ _ 1 
E 0 S 0 .J9(X) 

1
00 

ds e-st>ocjJ(x) ~ly=x 
( g(x) 

+ 100 

ds e-st>ocjJ(x) ~ly=x' 
E g(x) 

and we see that the last two terms cancel. Performing the s-integral in the first 

term thus gives 

c5 "(x x) = 1( ds e-st>or~-.(x)e-(E-s)t>. - 1 -I _ cp'::l l '+' Q( ) Y-X 
o V9\X 

(A.0.3) 

VVe now use the result presented in the main body of the thesis for the heat 

kernel at coincident points. We have 

(A.0.4) 

where 

(A.0.5) 

as found in equation ( 4.59). Substituting this into our expression for the variation 

of Q(x, x) gives 

OcpQ(x, x) = ds e-st>ocjJ -- a est> 1( - ( 1 e-<P()2 cjJ) -
0 4KE 24K 

(A.0.6) 

where we have used ,f9 = e<P. Therefore, 

1( ( 1 e-<PfPcjJ) o<PQ(x,x) = dsocjJ -- a 
0 4KE 24K 

(A.0.7) 

and performing the now trivial s integral, along with integrating the c/J-variation, 

gives the result that 

Q(x, x) =divergent piece+ j_ + O(E) 
4K 

Hence, when we take the cutoff E to zero we obtain the standard result. 

(A.0.8) 



Appendix B 

Gauge fixing and the conformal 

anomaly of the ghost sector 

Many of the calculations presented in this thesis have been performed in the con-

formal gauge. This gauge fixing introduces a. conforma.l anomaly, which we here \ 

calculate using techniques from conforma.l field theory ( CFT). Since this calcula-

tion relies only on the local properties of the worldsheet, the result is valid for all 

target-space metrics. All the calculations described here are entirely standard, and 

no claim is made of originality. They are included in this thesis for completeness. 

Good references are [38] [6] [20] [5] [39]. 

B.l The Faddeev=Popov procedure 

Let us consider the string partition function in its most general form: 

Z = J VXVg e-s[X,g] (B.l.l) 

where the X 's are target-space coordinates, and g is the worldsheet metric. This 

expression is rather ill-defined, since the action is invariant under reparametrizations 

( diffeomorphisms) and Weyl transformations. What we really need to do is divide 

this expression by the volume of the diffxvVeyl gauge group [6]: 

Z = J VXVg e-S[X,g] 

Vdiffx vVeyl 

119 

(B.1.2) 
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To do this, we will use the famous Faddeev-Popov procedure. If we fix our worldsheet 

metric to some reference metric g (often referred to as a fiducial metric), then we 

have the identity 

(B.l.3) 

where 'Dr represents a gauge-invariant measure on the diffxWeyl group. The delta 

functional picks out those metrics g that are obtained by taking the fiducial metric 

and performing a diffxWeyl transformation on it (denoted by §1 ). The determinant 

L:lpp(g) ensures that the right hand side really equals 1. The trick is to then insert 

this into the partition function to obtain 

(B.1.4) 

We can now do the integral over g, leaving us with 

(B.1.5) 

We have re-labelled the variable X---+ X 1 . Now, we know that the measure DX', the 

Faddeev-Popov determinant L:lpp and the action are all invariant under diffxWeyl 

transformations (i.e., [-transformations), so we can write 

Z _ J DX'Df -S[X gj A (A) - e , u.pp g 
Vdiffx Weyl 

(B.l.6) 

Finally, we see that nothing in the integrand depends on 1, so the integral over 'Dr 

just produces the volume of the gauge group which cancels the factor of Vdiffx Weyl· 

Hence, the gauge-fixed partition function is 

(B.l. 7) 

The next stage is to compute the Faddeev-Popov determinant. 

B.2 The Faddeev~Popov ghosts 

Let us consider a general infinitesimal transformation of the worldsheet metric. This 

is a combination of a diffeomorphism and a Weyl scaling, 

(B.2.8) 
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where V' a is the covariant derivative built out of g. vVe would like to use this 

in the expression (B.1.3) in order to compute 6.Fp(g). However, there are some 

diffeomorphisms that can themselves be obtained by Weyl scalings, and hence this 

expression for r5gab does not split into orthogonal components as is stands. Therefore, 

we don't as yet know how to write down the measure over the gauge group, v,. 
The way round this problem is to introduce an operator P, defined by 

(B.2.9) 

This operator P thus acts on vectors to make them into symmetric 2-tensors. In 

terms of P, we have 

(B.2.10) 

This sorts the variation of the metric into two orthogonal components, and we can 

therefore write 

Let us now introduce a Lagrange multiplier symmetric tensor field Aab, and represent 

this functional delta function as a functional integral over >..: 

6.j;~(g) J V(r5cjJ)V(r5V)V>.. 

x exp [27ri J d2~Jg;._ab ( -(r5cjJ- Y'cr5Vc)g + 2 (Pr5v)) ab] 

(hats on an operator mean that it involves the fiducial metric). We now notice that 

we can perform the integral over r5cjJ. This will produce a delta functional which 

forces the constraint that Aab be traceless: 

(B.2.11) 

Hence, we now have 

(B.2.12) 

where the prime on >.. indicates that it is now a traceless symmetric 2-tensor. Of 

course, what we really want is to invert this expression to obtain 6.Fp(g). To do 
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this, we need to replace the bosonic fields in this expression with anticommuting 

Grassman fields, 

Hence, 

llFp(g) = J VcVb exp [- J d2~ ygbab(Fc)ab] (B.2.13) 

up to normalization. We refer to the fields b, cas Faddeev-Popov ghosts. Finally, we 

can set our fiducial metric to 9ab = e<f>c5ab and obtain the ghost action 

(B.2.14) 

where we have gone to complex coordinates z = 6 + i6, z 6 - i6. Notice 

that this action is independent of cp, and hence Weyl invariant. This is because the 

covariant tensor \7 2 acting on a tensor with z indices reduces to the usual partial 

derivative; one can see this by computing the connection tensor in this case. 

B.3 Conformal field theory of the b, c ghost sys-

tern 

Let us first recall some basic facts about conformal transformations [40]. In D di­

mensions we define those coordinate transformations that leave the metric invariant 

up to a scale change as global conformal transformations, 

(B.3.15) 

In two dimensions, the conformal transformations coincide with analytic coordinate 

transformations, of which there are infinitely many. Hence, the group of two dimen­

sional conformal transformations is infinite, with the global conformal transforma­

tions described above forming a subgroup of this infinite group. If a field <P(z, z) 

in a two dimensional conformal field theory transforms under analytic coordinate 

changes z -t Z
1 

(z), z -t z' (z) as 

UZ UZ I I 

( 

;::) ) h ( ;::)-) h 
<P(z, z) -t ozl oz' <P(z 'z) (B.3.16) 
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then this field is referred to as primary. The numbers h, h are the conformal weights 

of the field. Fields which transform in this way under global conformal transforma­

tions only are referred to as quasi-primary. Clearly, primary fields are automatically 

quasi-primary. 

The action (B.2.14) actually defines a conformal field theory. If we work out the 

Euler-Lagrange equations for the fields b and c, we see that 

(B.3.17) 

which means that these fields are holomorphic functions of z. Hence, they transform 

as tensors under analytic coordinate transformations (i.e., the conformal transfor­

mations) and are primary fields. Since a general conformal transformation is a 

combination of a Weyl transformation and a coordinate transformation, we see that 

the conformal weights will coincide with the tensor indices (the ghost action is in­

variant under Weyl transformations). Thus, the field bzz will have conformal weight 

h = 2 and the field cz will have conformal weight h = -1. Now, the line element 

d2 z transforms like 

d2 d2 I oz' az' d2 
z~ z =-- z oz oz 

under conformal transformations. Hence, we see that the transformations of the 

b, c fields exactly compensates for the transformation of the line element, and the 

theory is classically conformally invariant. (One should bear in mind that there is 

an antiholomorphic sector of this theory with h = 2, -1 respectively coming from 

the complex conjugate part of the action; we need not concern ourselves with this, 

as all the results are the same in both sectors). 

We now use some of the machinery of conformal field theory to analyze this ghost 

system. 'vVe need to ask whether the algebra generated by infinitesimal analytic co­

ordinate transformations (the Virasoro algebra) is preserved in the quantum theory, 

or whether we pick up a central charge term (i.e., an extra constant term c in the 

algebra). This central charge represents a conformal anomaly, in the same way that 

our calculations in the main body of this thesis revealed a conformal (Weyl) anomaly 

in the "matter" sector of the string theory (that is, in the quantum theory of the 

target-space coordinates). Since we require Weyl invariance of the full quantum 
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theory, we need to take into account the anomalies introduced by both the matter 

and ghost sectors of the theory and demand that the total central charge Cm + c9h 

be zero. As we will see, this is what leads to the value of the critical dimension1
. 

Crucial to the whole story is the idea of an operator product expansion (OPE) [40]. 

In a general quantum field theory, singularities occur when two operators (fields) 

approach one another. The OPE tells us that we can encode these singularities as 

a product of a complete set of local operators in the theory, 

(B.3.18) 

where the coefficients Ci ( x- y) are singular and depend only on the distance between 

the points x and y. The operators on the left hand side are understood to be time 

ordered. In conformal field theory, one finds that the OPE of the stress-energy tensor 

T(z) with a primary field in the theory <P(y, y) is of the form 

h 1 
T(z)<P(y, y) = ( )2 <P(y, y) + ( ) 8y<P(y, y) + · · · z-y · z-y 

(B.3.19) 

where the ellipsis represents nonsingular terms. We see that by calculating this 

OPE with a given field, we can determine its conformal weight h (we calculate h 

by taking the OPE of the field with the antiholomorphic part of the stress tensor, 

T(z)). Hence, for our ghost field bzz we would find 

2 1 
T(z)bzz(y,y) = ( )2bzz(y,y) + ( )EJybzz(y,y) + · · ·, z-y z-y 

(B.3.20) 

reflecting the fact that bzz is a primary field of weight h = 2. Another equally useful 

identity arises when we compute the OPE of the stress tensor with itself: 

c 1 h 1 
T(z)T(y) = -

2 
( )4 + ( )2 T(y) + ( )8yT(y) + · · · z-y z-y z-y 

(B.3.21) 

where the number c is the central charge that we seek. 2 Hence, to evaluate the 

conformal anomaly of the ghost system, we need to obtain the stress-energy tensor 

of the theory and compute its OPE with itself. 

1 It should be noted that the calculation of the ghost anomaly can be performed using heat 

kernel methods that are essentially the same as those used in the main body of the text; we will 

use CFT here as a demonstration of a technique that is widely used in string theory. 
2The antiholomorphic counterpart c is computed using f'(z). It can be shown that we need 

c = c for a fully Lorentz invariant theory; this is the case for the ghost system here. 
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The stress tensor for the ghost system is readily obtained by Noether's theorem 

to be [38] 

(B.3.22) 

where the colons indicate normal ordering. In order to compute the TT OPE, we 

will use ·wick's theorem that time ordered expressions can be written as the sum of 

the normal ordered expression plus all possible contractions, e.g., 

cp(x)cp(y) =: cp(x)cp(y) : +(c/J(x)cp(y)) (B.3.23) 

Since the ghost fields are essentially free fermions of the wrong spin, we can write 

down their propagators straight away using their anticommuting properties, 

Now, we are interested only in the most singular part of the TT OPE, as this will 

gives us the central charge c. We have 

T9h(z)T9h (y) (: czazbzz : +: 2(8zcz)bzz :) (: cY8ybyy : +: 2(8ycY)byy :) 

: czazbzz :: cY8ybyy : +2 : czazbzz :: (8ycY)byy : 

+ 2: (8zcz)bzz :: cY8ybyy : +4: (8zcz)bzz :: (8ycY)byy : 

Using Wick's theorem and the propagators above, we see that the terms where we 

make 2 contractions with one b and one c field in each will produce the most singular 

terms and hence the piece of the TT OPE that we require. Hence, 

Tgh (z )Tgh (y) (azbzzcY)(cz aybyy) + 2 (cz byy) (azbzzaycY) 

+ 2(8zcz8ybyy)(bzzcY) + 4(8zczbyy)(bzz8ycY) + · · · 

- 1 + 4 ( -2 ) - 4 1 + ... 
(z-y)4 (z-y)4 (z-y)4 
-13 -,-------,--,- + . . . 

(z- y)4 

Comparing this expression with (B.3.21) shows that the conformal anomaly of the 

b, c system is c = -26. In terms of the path integral, this means that the gauge­

fixing procedure introduces extra dependence on the Liouville mode in the following 

way: 

(B.3.24) 
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B.4 The ghost zero modes 

Finally, we briefly mention a slight complication which we have overlooked in the 

above treatment of the Faddeev-Popov determinant. vVhen we fix our worldsheet 

metric to the con formal gauge, we do not in fact corn pletely fix the gauge freedom [5]. 

This is because a metric of the form 

ds2 = eifl dzdz 

in complex coordinates z = 6 + i6, z = 6 - i6 can be written in terms of some 

new coordinate F(z), where F(z) is an analytic function of z, as 

ds
2 

= eifl I:; I dzdz 

This is clearly still in the conformal gauge! In effect, we have just changed the value 

of cp. There are clearly still some coordinate transformations (diffeomorphisms) that 

we can make and still remain in the conformal gauge; hence, they represent a residual 

gauge symmetry that we haven't yet fixed. 

The question then is: what is the group of transformations that correspond to 

these changes of coordinate? One finds for reasons of nonsingularity that on the 

sphere, these transformations are infinitesimally given by 

{J z = a + bz + cz2 

where a, b, c are arbitrary complex numbers. These transformations are the genera­

tors of the group S£(2, C), and this is therefore the group of transformations whose 

volume we must factor out of the path integral, in the same way that we factored 

out the diffxWeyl group with the Faddeev-Popov determinant. 

In order to see schematically how this works, consider again the ghost action 

(B.2.14). One needs to consider whether the ghost fields have any normalizable zero 

modes on the worldsheet. The results obtained in the previous sections ignored this 

possibility, and hence we really only calculated 

where the prime indicates omission of zero modes. These zero modes will obey the 

equations 
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plus complex conjugates. Vve see that these equations require that the zero modes 

be (anti )holomorphic functions on the worldsheet. In fact, one finds that these zero 

modes correspond precisely to the generators of the SL(2, C) group discussed above. 

Now, the expression 

(B.4.25) 

is formally zero clue to the presence of these zero modes; hence, one has to make 

insertions in this path integral to absorb the effect and get a sensible, non-zero 

result [29]. These insertions, when integrated over, then generate the volume of 

the SL(2, C) transformations which factors out the residual gauge symmetry, as 

required. String amplitudes calculated in this way are then finite, and have all the 

correct diffeomorphism symmetries required by the original form of the string action. 

Note that these ghost zero modes are distinct from the zero mode '1/Jo considered 

in the main body of the text; this zero mode is introduced when we represent D,.~,P 

itself as a path integral over '1/J. 


