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Infinite-Centre Gibbons-Hawking Metrics,
Applied to Gravitational Instantons and

Monopoles.

Katie Rutlidge

Abstract

We investigate the convergence of infinite-centre Gibbons-Hawking metrics, in the contexts

of: four-dimensional gravitational instantons and their applications, Kaluza-Klein monopoles

and vortices, gravitational calorons, analytical extensions of Majumdar-Papapetrou metrics

to form extreme Reissner-Nordström black holes, and Kaluza-Klein black holes. We find

that, in most cases, periodic arrangements of the sources give rise to divergent potentials.

We investigate the consequences of various methods of ensuring convergence, particularly

in terms of the appearance of naked singularities, and construct several new solutions of

Einstein’s equations.
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Chapter 1

Introduction

Albert Einstein finished formulating his general theory of relativity in 1915, ten years after

completing the special theory. He was not initially involved in the movement seeking to unite

his theories with electromagnetism in a classical field theory, but in 1920 during his inaugural

lecture in Leyden he remarked,

“It would be a great step forward to unify in a single picture the gravitational and electro-

magnetic fields. Then there would be a worthy completion of the epoch of theoretical physics

begun by Faraday and Maxwell...”

In 1921, he presented a paper by Theodor Kaluza [41] which united gravity with electro-

magnetism by postulating the existence of a fifth dimension of spacetime. According to [10],

“Maxwell’s theory of electromagnetism is an inevitable consequence of Einstein’s general the-

ory of relativity, given that one is willing to buy the idea of an extra dimension.”

There are several problems with Kaluza’s ideas. Firstly, for no obvious reason the fifth di-

mension is suppressed [61]. Secondly, “Einstein and Grommer found that Kaluza’s vacuum

field equations cannot produce non-singular rotation symmetric particle solutions” such as

a singularity-free electron [10]. Thirdly and perhaps most obviously: if there is an extra

dimension, why don’t we see it?

In 1926, Oskar Klein revisited Kaluza’s ideas, which had been temporarily ignored by Ein-

stein because of the above problems, and wrote two influential papers [44], [45]. He assumed

that the fifth dimension had circular topology and hence the coordinate is periodic; the extra

dimension is taken to be compact. He proceeded by “taking as a fact the quantized nature
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of the electric charge” [61] and found that if the fundamental unit of charge is identified with

the charge on the electron then the radius of the extra dimension is r ≈ 10−35 metres, the

Planck size, which explains why we don’t experience it in everyday life [10].

Einstein studied this five-dimensional Kaluza-Klein theory extensively between 1938-43. He

hoped to undercut quantum theory which he had objected to from the beginning, famously

remarking, “God does not play dice!” However, it became clear to him that it was going

nowhere: “In 1943 he argued, together with Pauli, that in Kaluza’s theory it would princi-

pally be impossible to find a non-singular particle. Einstein never worked in five dimensions

again” [61]. That wasn’t the end of the story, however, as the quest to unite general relativ-

ity with quantum mechanics gave rise to various attempts to construct a ’quantum theory of

gravity’ with extra compact dimensions.

In 1978, Gary Gibbons and Stephen Hawking introduced a particular self-dual gravitational

instanton and showed that its metric could be written in a very specific form, the Gibbons-

Hawking form [16]. It was later proven that any hyperkähler four-metric with a triholomor-

phic Killing vector can be written in this way for some choice of coordinate system [13], [22].

Consequently, metrics in this form, of which the principle examples are Eguchi-Hanson [12]

and Taub-NUT solutions [32], [21], can be found in a variety of settings, such as gravitational

instantons, Kaluza-Klein monopoles (such as the Dirac monopole) and vortices and black

holes.

The examples given by Gibbons and Hawking involved four-dimensional gravitational instan-

tons with a finite number of centres. Hawking defines a gravitational instanton as “a solution

of the classical field equations which is non-singular on some section of complexified spacetime

and in which the curvature tensor dies away at large distances” [61]. The potential V is of

the form

V = ε +
N∑

j=−N

mj |~r − ~rj |−1, (1.1)

where the instantons were positioned at the points ~rj with mass mj . For the Eguchi-Hanson

case, ε is zero and for the Taub-NUT case, ε is one. It was noted, as we shall see, that the

singularities that arise at the points were ~r = ~rj can be removed by taking all of the mj to

be equal and imposing periodicity on one of the coordinates, the fourth dimension x4.
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Infinite centre Gibbons-Hawking metrics arise in various contexts such as periodic monopoles.

The problem with the potential given above is that when we let N go to infinity, it is no

longer convergent. We will study four methods of trying to ensure the potential does converge

through the course of this work, noting their respective advantages and disadvantages in the

contexts in which they occur. The structure of this thesis is as follows:

Chapter Two - Setting the Scene: We outline the key definitions and concepts that will

be employed throughout this work. We introduce some of the maths involved in Kaluza-Klein

theory and the basic general relativistic ideas we will need. Four types of gravitational in-

stantons, Taub-NUT, multi-Taub-NUT, Eguchi-Hanson and Euclidian Schwarzschild [16], are

then introduced and some of their properties discussed. We see, having defined the necessary

concepts along the way, that any hyperkähler four-metric with a triholomorphic Killing vec-

tor can be written in Gibbons-Hawking form for some coordinates. Solitons are introduced

which incorporate our instantons into five-dimensional Kaluza-Klein theory, and finally we

introduce some useful ideas concerning black holes.

Chapters three and four explore attempts to ensure the convergence of the infinite centre

periodic potential V by subtracting an infinite constant. The difficulty with this approach

is that V is then zero at some points and it turns out that such points are in fact curvature

singularities. Moreover, if we incorporate the infinite multi-Taub-NUT and Eguchi-Hanson

metrics into a five-dimensional gravitational context as such Kaluza-Klein monopoles, these

singularities turn out to be naked singularities. We will outline the theory behind this in

chapter three and explore examples of its occurrence in different contexts in chapter four.

The work in these chapters (apart from the outlining of the solutions) is entirely original.

Chapter Three - Solutions with Periodic Sources: We begin by proving that sub-

tracting an infinite constant does result in a convergent potential, and moreover, one that

can be sufficiently well approximated by a finite sum and whose behaviour can be explored

by graphical methods. We see both graphically and analytically that V does become zero

at given points. The gauge field ~ω is shown to be convergent when we have infinitely many

sources, and we develop a logarithmic approximation to V near to where it becomes zero. In-

corporating this instanton potential into a five-dimensional setting, we show that such points

are naked singularities. Finally, we show that higher-dimensional versions of this potential

converge without the need to subtract an infinite constant.
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Chapter Four - Examples of Periodic Solutions: We investigate examples of the above

theory for Kaluza-Klein vortices [53], Dirichlet instantons [55] and gravitational calorons [58].

In each of the three cases, we use graphical methods to see that V does become zero in some

regions and our logarithmic approximation to show that these regions are singular. Addi-

tionally, we study Kaluza-Klein monopoles in AdS spacetime [54], which also have naked

singularities, the problem with Ketov et al’s attempt [42] to generalise the work in [55] to a

solution with multiple hypermultiplets, and the difficulties with the Euclidean Schwarzschild

solution given by Sanchez in [58].

The next chapter seeks to set this work in context:

Chapter Five - Surveying the Landscape: We survey the literature to see awareness of

the problem of the incompleteness of the infinite constant solutions, looking at the deviations

of the Atiyah-Hitchen metric [2] and ALG metrics [7] from their asymptotic forms. These

metrics parallel the Taub-NUT solutions. We then consider three papers in which Gibbons-

Hawking metrics with infinite centre potentials have been incorporated into different contexts

[9], [26], [28], and the problems resulting from the previously unnoted presence of naked sin-

gularities. Finally, we note the parallel between the infinite constant convergence problem

and Olbers’ and Seeliger’s paradoxes.

In chapter six, we explore three other possible methods of ensuring the convergence of the

infinite centre potential. Again, apart from outlining the ideas in the papers of others, the

work in this chapter is entirely original.

Chapter Six - Alternative Approaches to Convergence: We study the work of An-

derson et al [1] in which the instantons are positioned non-periodically along one of the axes,

and explore the problems that arise in the periodic limit. Next, we look at a lattice solution

[52] and see that these quasi-periodic instantons also have points at which V is zero and the

metric is singular. Finally, we explore what happens if we take the infinite constant to be

a quotient rather than subtracting it. The resulting potential behaves like a series of delta

functions along one of the axes and is otherwise constant, and the metric is everywhere flat.

In the final two chapters, we explore black hole solutions in which issues arise due to the need

to ensure the potential(s) converge. In chapter seven, we study Majumdar-Papapetrou met-

rics and their analytical extensions to multiple Extreme Reissner-Nordström metrics, which
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are essentially modifications of the Euclidean metrics. In chapter eight, we study Kaluza-

Klein black holes, which are essentially modifications of the Gibbons-Hawking metrics.

Chapter Seven - Extreme Reissner-Nordström Black Holes: An ERN black hole is

one with both charge and mass, which are equal to each other in this extreme case. We first

outline the constructions of Hartle and Hawking [30] and Myers [50] for finitely many ERN

black holes in (D + 1)-dimensions for D ≥ 3, noting that the metrics are regular at the event

horizons, whose positions correspond to the positions of the monopole sources.

We then turn to the situation with infinitely many black holes. If they are arranged periodi-

cally along one of the axes, we show that if D = 3 then naked singularities arise. If D ≥ 4, the

potentials are known to be convergent and we show that the curvature is then well-behaved

and no unwanted singularities arise. We follow Myers’ construction of a lattice solution,

demonstrating that the potential he suggests does converge. We show that the construction

of Anderson et al [1] for a non-periodic distribution can be modified to work for black holes

(which as far as one is aware has not been previously done), calculate the curvature (which

is well-behaved) and construct some examples.

We explore the work of Candlish and Reall [4] on the smoothness of the event horizons to our

three constructions. Finally, we look at dilaton solutions [60], [59], outlining the work done

for finitely many black holes and then moving to infinitely many black holes (which as far

as one is aware has not been explored before). We show that for D = 3, periodic solutions

give rise to naked singularities, whilst for D ≥ 4, the curvature is well-behaved. We see that

London’s work on ERN black holes with a cosmological constant [48] can be extended to

explore infinitely many black holes with a dilaton term. Finally, we see that we can bring

our lattice and non-periodic solutions into this context and have well-behaved curvature.

Chapter Eight - Kaluza-Klein Black Holes: In this chapter we study the behaviour

of five dimensional Kaluza-Klein black holes, with and without a cosmological constant and

rotating or static. We begin by looking at some special cases of these black holes that link

back to earlier work and act as checks for calculations. We then introduce the Eguchi-Hanson

[39], Klemm-Sabra [46] and Reissner-Nordström de-Sitter metrics and show that these are

stationary, before exploring the behaviour at the event horizons and asymptotic behaviour of

our black holes. This work is a mixture of a summary of other authors’ work and application

of their ideas to new situations.
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We then explore the behaviour of periodic solutions with infinitely many black holes, which

as far as one is aware has not been considered before, demonstrating the presence of naked

singularities when one of the potentials U and V becomes zero. We give some useful ex-

amples and explore the appearance of closed timelike curves in our solutions. We construct

non-periodic solutions, seeing that the curvature is well-behaved and looking for the presence

of closed timelike curves. We show that little is gained from trying to construct a lattice so-

lution. Finally, we explore the behaviour of the curvature and the presence of closed timelike

curves for three special cases, and in the case of rotating black holes we study the ergoregions.

Conclusion: Finally, we summarise our results, set our research in the wider context and

outline some open questions for further work. The bibliography follows at the end.

Notation

Throughout this work, we use the following conventions:

The metric is taken to be mostly positive, (−, +, . . . , +).

For the Gibbons-Hawking metrics in (D + 1)-dimensions, we take

t := x0 and ~r = (x1, . . . , xD−1), where τ := x4. (1.2)

We will often use

ρn :=
√

x2
1 + · · ·+ x2

n, (1.3)

and denote the Riemann curvature scalar by

[R]2 := RµνρσRµνρσ. (1.4)

The coordinate systems we use, in three dimensions and extended in the obvious way for

other cases, are

- Euclidian coordinates: d~r2 = dx2
1 + dx2

2 + dx2
3,

- Cylindrical coordinates: d~r2 = dρ2
2 + ρ2

2dθ2 + dx2
3,

- Spherical coordinates: d~r2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

We have used Maple 10 and 12 to produce graphs and for curvature calculations in this thesis.
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Chapter 2

Setting the Scene

2.1 Introduction

In this chapter we introduce useful definitions and ideas that will be employed throughout

the rest of this thesis. The structure of this chapter is therefore as follows:

General relativity: We introduce the fundamental ideas from general relativity that we

need throughout this thesis: geodesics, connection coefficients, affine parameters, the Rie-

mann curvature tensor, Killing vectors and static and stationary metrics.

Gravitational instantons: We introduce the main varieties of gravitational instantons

that we will be studying. These metrics admit certain symmetries and so to begin with, we

define nuts and bolts and (anti)self-dual metrics. We then introduce the Euclidean Taub-

NUT, the multi-Taub-NUT and Eguchi-Hanson metrics as examples of nut solutions and the

Schwarzschild solution as an example of a bolt solution. There are two topologically invariant

quantities associated with these solutions, the signature and the Euler number. We define

these and show how they relate to the number of nuts and bolts that a particular solution

admits. Finally, we discuss the asymptotic behaviour of the Taub-NUT metrics.

Hyperkähler metrics and the Gibbons-Hawking form: We work towards the main

result to note in this chapter: that any hyperkähler four-metric with a triholomorphic Killing

vector can be written in Gibbons-Hawking form. To accomplish this, we introduce complex

structures, Kähler and hyperkähler manifolds and potentials, and triholomorphic Killing vec-

tors. We then discuss the form the potential must take in order to yield a complete solution.

Solitons in Kaluza-Klein theory: We introduce the magnetic monopole as an example of
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2.2 General Relativity

how gravitational instantons can be incorporated into Kaluza-Klein theory by the addition

of a time component to the metric. We discuss the gravitational properties of the resulting

soliton and note that the curvature scalar in the instanton and soliton cases will be the same.

Finally, in calculating the curvature, we see what goes wrong with the asymptotic approxi-

mation to the Atiyah-Hitchin metric, which will be discussed in a later chapter.

Black holes: We introduce the basic ideas behind the theory of black holes, which we will

make use of in the final two chapters. We define an event horizon rigorously by looking at

hypersurfaces. We present the Riemann curvature scalar as a method for checking for the

presence of singularities. Finally, we introduce the useful ideas of Killing horizons, surface

gravity and stationary limit surfaces.

2.2 General Relativity

In this section we introduce some basic ideas from general relativity that will be of use

throughout this thesis. We follow the treatment in [5].

A geodesic is a generalisation of the definition of a straight line from Euclidean geometry;

that is, it is the path of shortest distance between two points. Alternatively, it is the path

that parallel-transports its own tangent vector. Given a path xµ(λ), where λ is an affine

parameter, the condition that its tangent vector dxµ

dλ be parallel-transported is given by the

geodesic equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0, (2.1)

where the connection coefficients (sometimes called the Christoffel symbols) are defined

by

Γσ
µν =

1
2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.2)

An affine parameter is such that the transformation of the proper time τ given by

τ → λ = aτ + b, (2.3)

where a and b are constants, leaves the geodesic equation unchanged. The curvature of the

metric is embodied in the Riemann curvature tensor, which is given by

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (2.4)
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2.3 Gravitational Instantons

which can be written as

Rρσµν = gρλRλ
σµν . (2.5)

In order to have workable metrics, we require that they possess a certain amount of symmetry.

If xσ is a coordinate that the components of the metric, gµν , are independent of then the

vector

Kµ = (∂σ)µ = δµ
σ (2.6)

generates an isometry, meaning that the transformation under which the geometry is invariant

is expressed infinitesimally as a motion in the direction of Kµ. Such a vector is called a

Killing vector, and a given vector is a Killing vector if and only if it satisfies the Killing

equation,

∇µKν +∇νKµ = 0. (2.7)

A metric is said to be stationary if it has a Killing vector that is timelike near infinity, and is

static if it possesses a timelike Killing vector that is orthogonal to a family of hypersurfaces,

given by t = const. In practice, this means there will be no ’cross terms’ in the metric.

2.3 Gravitational Instantons

There has been much work done over the years on instantons in four-dimensional Euclidean

gravity. Many of these have been described by Hawking and Gibbons [32], [16], [17]. We

outline, following their descriptions, the structure of some types of gravitational instantons

that will be of use later.

We first give some of the background theory, introducing the notions of nuts and bolts and

(anti) self-dual metrics. Next, we discuss some nut solutions: the Taub-NUT solution, multi-

Taub-NUT solutions and the Eguchi-Hanson metric. We also discuss a bolt solution, the

Schwarzschild metric. Finally, we look at topological invariants for our different solutions

and at the asymptotic behaviour of the Taub-NUT metric.
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2.3 Gravitational Instantons

2.3.1 Nuts and Bolts

Let M be an oriented four-dimensional manifold with a positive definite metric gµν . Suppose

it admits at least a one-parameter isometry group G with action

φτ : M → M,

where τ is the parameter and K = Kα ∂
∂xα = ∂

∂τ is the Killing vector. At a fixed point p

(which is a point where K = 0) the action of φτ on M gives rise to an isometry

φ∗τ : Tp(M) → Tp(M),

where Tp(M) is the tangent space at p. This isometry is generated by an antisymmetric

matrix Kµ;ν which can have rank 0, 2 or 4.

Rank zero is uninteresting because φ∗τ will be the identity matrix, K = 0, and the action of

G is trivial.

If Kµ;ν has rank two, φ∗τ will have the canonical form

φ∗τ =




1 0 0 0

0 1 0 0

0 0 cosκτ sinκτ

0 0 − sinκτ cosκτ




, (2.8)

and thus leave a two-dimensional subspace T1 of Tp(M) unchanged and rotate its orthogonal

complement T2 about itself. Here, κ is the surface gravity (defined in (2.46)).

A bolt is a two-dimensional totally geodesic sub-manifold of fixed points. As “the image of

T1 under the exponential map will not be moved” by φτ , it is a two-dimensional fixed point

set and therefore a bolt.

If Kµ;ν has rank four, φ∗τ will have the canonical form

φ∗τ =




cosκ1τ sinκ1τ 0 0

− sinκ1τ cosκ1τ 0 0

0 0 cosκ2τ sinκ2τ

0 0 − sinκ2τ cosκ2τ




, (2.9)
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2.3 Gravitational Instantons

where κ1 and κ2 are the skew eigenvalues of Kµ;ν . This means there are no directions which

φ∗τ will leave invariant at p, meaning that it is an isolated fixed point, a nut.

We can have nuts (where κ1κ2 > 0) and antinuts (where κ1κ2 < 0). A further distinction

we can make is to say that if p and q are relatively prime integers and κ1κ
−1
2 = pq−1 then the

action of φτ will be periodic with period β = 2πpκ−1
1 = 2πqκ−1

2 . We call this a nut of type

(p, q). A nut is self-dual if its antisymmetric part is 0, giving p = q = ±1. If the curvature

is self dual,

Rabcd =
1
2
εabefRef

cd , (2.10)

then the nut will be self-dual everywhere if it is self-dual at one point. The corresponding

result applies for anti-self-dual nuts, for which p = −q = ±1.

2.3.2 Euclidean Taub-NUT Metric

We follow the treatment in ref. [61]. The four-dimensional Euclidean Taub-NUT metric

can be written in the form

ds2 = V −1(dτ + ~ω · d~r)2 + V d~r2,

V = 1 +
4m

r
, (2.11)

where m is the mass. The potential V and the one-form ω, the gauge field, are related by

~∇V = ±~∇× ~ω. (2.12)

Note that in this case (and in the multi-Taub-NUT case), the metric is

- self-dual if ~∇V = ~∇× ~ω;

- anti-self-dual if ~∇V = −~∇× ~ω.

In spherical coordinates, ωr = 0 = ωθ and ωφ = 4m(1− cos θ)(r sin θ)−1, giving

~ω · d~r = 4m(1− cos θ)dφ. (2.13)

This metric is singular when θ = π, as then gτφ = V −1ωφ. This singularity can be removed

using a coordinate patch. We take τN = τS − 8mφ, giving
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2.3 Gravitational Instantons

ωN
φ = V gφτN

and ωS
φ = −4m(1 + cos θ)

r sin θ
. (2.14)

This is singular at θ = 0. Both of these singularities are coordinate singularities and we can

employ

• (τN , ωN
φ ) in the northern hemisphere i.e. except when θ = π;

• (τS , ωS
φ ) in the southern hemisphere i.e. except when θ = 0.

This gives us a non-singular description of the (Euclidean) Taub-NUT spacetime. This con-

struction explains the periodicity of τ : φ has a period of 2π and hence τ has a period of 16πm.

We can see from examining the potential V that there is an apparent singularity at r is zero.

This can be removed using the coordinate transformation r = (16m)−1ρ2, which results from

τ being periodic. This fixed point of ∂τ defines a nut with surface gravity κ1 = κ2 = (8m)−1.

2.3.3 Multi Taub-NUT Metric

We have the following self-dual metric [53]:

ds2 = V −1(dτ + ~ω · d~r)2 + V d~r2,

~∇V = ~∇× ~ω, (2.15)

with the potential being given by

V = 1 +
N∑

j=1

4mj |~r − ~rj |−1. (2.16)

This is sometimes known as the N-instanton Taub-NUT metric with nuts positioned at

~rj with mass mj . If all the mj are equal then we can remove the apparent singularities by

taking τ to have a period of 16πm.

2.3.4 Eguchi-Hanson Metric

Another useful gravitational instanton is given by the same metric (2.15) but without the

constant term in the potential [16]. This metric has the same isometry group as the above but

is asymptotically locally Euclidean (ALE), meaning that it is “asymptotic to Euclidean

space identified under a discrete sub group of SO(4)”.
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2.3 Gravitational Instantons

In this case, we still need the mj to be equal in order for the metric to be regular but we can

achieve this by rescaling the coordinates. If N = 1 we have flat space and N = 2 gives the

Eguchi-Hanson metric:

ds2 =
(

1− a4

r4

)−1

dr2 +
(

1− a4

r4

)
r2

4
(dτ + cos θdφ)2 +

r2

4
(
dθ2 + sin2 θdφ2

)
. (2.17)

In order to remove the apparent singularity, we take τ to have period 2π. For large values of

r, the metric tends towards Euclidean flat space. For surfaces of constant r > a, the topology

is that of RP 3. The surface at r = a is a 2-sphere.

2.3.5 Schwarzschild Metric

The Euclidean Schwarzschild metric takes the following form [17]:

ds2 = V dτ2 + V −1dr2 + r2
(
dθ2 + sin2 θdφ2

)
,

V = 1− 2m

r
. (2.18)

There is an apparent singularity at r = 2m which can be removed by taking τ to have a

period of 8πm. We see that the radial coordinate r has a range of 2m ≤ r < ∞ and the

topology is R2 × S2.

2.3.6 Topological Invariants

According to Hawking and Gibbons [17], “There are two topological invariants which can

be expressed as integrals of the curvature of a 4-dimensional metric.” These are the Euler

number

χ := (128π2)−1

∫

M
εef
abRefghεgh

cd Rabcd√gd4x, (2.19)

and the signature

τ := (96π2)−1

∫

M
Rabcdε

cdefRab
ef

√
gd4x. (2.20)

On a compact manifold, we have

χ[M ] = N+ + N− +
∑

j

χj (2.21)

and
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

τ = −
∑

nuts
cotan pθ cotan qθ +

∑

bolts
Y cosec2θ, (2.22)

where N+ is the number of nuts, N− is the number of antinuts, χj is the Euler number of

the j-th bolt, Y is the self intersection number of a bolt and 2θ is the group parameter.

We therefore have

Schwarzschild χ = 2 τ = 0

Taub-NUT χ = 1 τ = 0

Multi Taub-NUT χ = n τ = n− 1

Eguchi-Hanson χ = 2 τ = 1

2.3.7 Topology and Asymptotic Behaviour

An asymptotically Euclidean metric is one that approaches the normal Euclidean metric

on R4 outside of a compact region with potentially different topology than that of R4. Any

such metric will, according to Gibbons and Hawking [16], have zero action.

The Positive Action Conjecture states that the action of any asymptotically Euclidean

metric with Rµ
µ = 0 everywhere is zero if and only if it is flat. Thus, if this conjecture holds,

there are no (anti)self-dual asymptotically Euclidean instantons.

The topology of the multi Taub-NUT solutions (of which the standard Taub-NUT solution

is a particular case) is such that [17] the surface surrounding the nuts is a 3-sphere with n

points identified, where n is the number of nuts as above. It is therefore not, in the usual

sense, asymptotically flat.

The Eguchi-Hanson metric is, as already mentioned, asymptotically locally Euclidean and as

such is asymptotic to Euclidean space modulo Zn. This identification comes from the use of

coordinate patches required to remove the Dirac string type singularities in the function ~ω.

This possibly is not excluded by the positive action conjecture [16].

2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

In this section, we will see that any hyperkähler four-metric with a triholomorphic Killing

vector can be written in Gibbons-Hawking form
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

ds2 = V −1 (dτ + ~ω · d~r)2 + V d~r2,

~∇V = ~∇× ~ω. (2.23)

We first give the necessary definitions following the treatment in [40] and then follow [22] and

[13] to obtain our result. As such, we will introduce the notions of holonomy and symplectic

groups, define a complex structure and thus be in a position to define a Kähler manifold.

Next, we define a generalisation of this, the hyperkähler manifold, and what it means to

have a triholomorphic Killing vector. Next, we discuss Kähler and hyperkähler potentials.

Having laid these foundations, we give our main result and consider some of the implications.

Along the way, we will introduce Calabi-Yau manifolds and the Atiyah-Hitchin metric for

later study.

2.4.1 Some Useful Definitions

Holonomy

Let G be a Lie group and P a principal G-bundle over a smooth, paracompact manifold

M . Let ω be a connection on P . For a piecewise smooth loop γ : [0, 1] → M based at the

point x ∈ M and a point p in the fibre over x, the connection defines a unique horizontal lift

γ̃ : [0, 1] → P such that γ̃(0) = p.

The end-point of this lift will frequently not be p, but instead will be a point p · g in the fibre

over x. We define an equivalence relation on P by requiring that p ∼ q if and only if they

can be joined by a piecewise smooth horizontal path in P .

The holonomy group of ω based at p is

Holp(ω) = {g ∈ G|p ∼ p · g}. (2.24)

Let (M, g) be a Riemannian manifold with Levi-Civita connection Γ. The holonomy group

Hol(g) of g is Hol(Γ) on the tangent bundle to M . Thus, Hol(g) is a subgroup of O(n),

defined up to conjugation in O(n).

Symplectic Groups

The quaternions are the associative, non-abelian real algebra
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

H := {x0 + x1i + x2j + x3k|xi, xj , xk ∈ R}, (2.25)

where ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

The m-th dimensional symplectic group is the group of m×m matrices given by

Sp(m) := {A ∈ Mm(H)|AĀT = I}. (2.26)

Now, dim Sp(m) = 2m2 + m and dim SU(2m) = 4m2 − 1. Thus, for m > 1, Sp(m) is a

proper subgroup of SU(2m) and they are equivalent if m = 1.

2.4.2 Complex Structures on Manifolds

Let M be a real manifold of dimension 2m.

An almost complex structure J on M is a smooth tensor Jb
a on M which satisfies the

relation

Jb
aJ

c
b = −δc

a. (2.27)

Suppose that v is a smooth vector field on M . We can define a new vector field Jv by

(Jv)b = Jb
av

a, (2.28)

showing that J acts linearly on vector fields. Combining these two observations shows us

that

J(Jv) = −v =⇒ J2 = −1. (2.29)

From this, we can see that J will give each tangent space Tp(M) the structure of a complex

vector space. Now, let v, w be smooth vector fields on M . We can define a new vector field

NJ(v, w) by

NJ(v, w) = [v, w] + J ([Jv, w] + [v, Jw])− [Jv, Jw], (2.30)

where [·, ·] denotes the Lie bracket. It turns out that NJ is a tensor (the Nijenhuis tensor)

and so NJ(v, w) is pointwise bilinear in v and w.
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

Let M be a real manifold of dimension 2m and J an almost complex structure on M . We call

J a complex structure if NJ ≡ 0 on M . A complex manifold is a manifold M equipped

with a complex structure J and denoted (M,J).

2.4.3 Kähler Manifolds

Let (M,J) be a complex manifold and g be a Riemannian metric on M . g is a Hermitian

metric if the following (equivalent) conditions hold:

i) ∀ vector fields v, w on M , g(v, w) = g(Jv, Jw);

ii) gab ≡ Jc
aJd

b gcd.

For a Hermitian metric g, we can define a 2-form ω on g called the Hermitian form in the

the following (equivalent) ways:

i) ∀ vector fields v, w on M , ω(v, w) = g(Jv, w);

ii) ωac = Jb
agbc.

Let M be a complex manifold and g a Hermitian metric on M with Hermitian form ω. We

say that g is a Kähler metric if dω = 0. We then call ω a Kähler form and (M,J, g) a

Kähler manifold. The following is a useful result:

Let M be a manifold of dimension 2m, J an almost-complex structure on M and g a Hermitian

metric with Hermitian form ω. Let Γ denote the Levi-Civita connection of g. Then the

following are equivalent:

i) J is a complex structure and g is Kähler;

ii) ΓJ = 0;

iii) Γω = 0;

iv) Hol(g) ⊂ U(m) and J is associated to the corresponding U(m) structure.

Note that if g is a Hermitian matrix on a complex manifold then dω = 0 implies that

ΓJ = Γω = 0.
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

2.4.4 Hyperkähler Manifolds

Let (M, g) be a Riemannian 4m-manifold with Hol(g) ⊆ Sp(m). Each Sp(m)-invariant tensor

on R4m corresponds to a tensor on M which is constant under the Levi-Civita connection Γ

of g. From this, it follows that there exist almost complex structures J1, J2, J3 and 2-forms

ω1, ω2, ω3 on M , each constant under Γ.

As ΓJj = 0, each Jj is an integrable complex structure. g is Kähler with respect to Jj , with

Kähler form ωj . If a1, a2, a3 ∈ R with a2
1 + a2

2 + a2
3 = 1 then a1J1 + a2J2 + a3J3 is also a

complex structure on M . g is Kähler with respect to it, with Kähler form a1ω1 +a2ω2 +a3ω3.

Therefore, we can see that g is Kähler with respect to a whole 2-sphere of complex structures.

We then call g hyperkähler.

Let M be a 4m-manifold. An almost hyperkähler structure on M consists of the

quadruple (J1, J2, J3, g). The Jj are almost-complex structures on M satisfying the rela-

tions J1J2 = J3 and cyclic permutations thereof. g is a Riemannian metric on M which is

Hermitian with respect to J1, J2, J3.

We call (J1, J2, J3, g) a hyperkähler structure on M if in addition to the above, we have

ΓJj = 0 ∀j where Γ is the Levi-Civita connection of g. Thus, (M, J1, J2, J3, g) is a hy-

perkähler manifold and g a hyperkähler metric.

Each of the Jj is integrable and g is Kähler with respect to them. The Kähler forms ω1, ω2, ω3

are called the hyperkähler 2-forms of M . The following is a useful result:

Let M be a manifold of dimension 4m, (J1, J2, J3, g) an almost-hyperkähler structure on M .

Let ω1, ω2, ω3 be the Hermitian forms of J1, J2, J3. Then the following are equivalent:

i) (J1, J2, J3, g) a hyperkähler structure;

ii) dω1 = dω2 = dω3 = 0;

iii) Γω1 = Γω2 = Γω3 = 0;

iv) Hol(g) ⊂ Sp(m) and J1, J2, J3 are the induced complex structures.

All hyperkähler metrics are Ricci-flat.
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

If our hyperkähler metric possesses a Killing vector K which is holomorphic with respect to

each of the complex structures, so that

LKJ1 = LKJ2 = LKJ3 = 0, (2.31)

then the Killing vector is called triholomorphic.

Calabi-Yau Manifolds

We can generalise the notion of a hyperkähler manifold:

A Calabi-Yau manifold is a compact Kähler manifold (M, J, g) of dimension m ≥ 2 with

Hol(g) = SU(m). Such manifolds are Ricci-flat. These objects crop up in string theory and

will be of interest later on.

2.4.5 Holonomy Groups of Different Manifolds

Berger [3] classified the different holonomy groups as follows:

Hol(g) dim(M) Manifold Type Properties

SO(n) n oriented -

U(n) 2n Kähler manifold Kähler

SU(n) 2n Calabi-Yau manifold Ricci-flat, Kähler

Sp(n) 4n hyperkähler manifold Ricci-flat, Kähler

Note that Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n), so every hyperkähler manifold is a Calabi-

Yau manifold, every Calabi-Yau manifold is a Kähler manifold, and every Kähler manifold

is orientable.

2.4.6 Kähler and Hyperkähler Potentials

Let M be a hyperkähler manifold with complex structures J1, J2, J3 and corresponding Her-

mitian forms ω1, ω2, ω3. A function V : M → R is called a Kähler potential for the complex

structure Ji if

ωi = −i∂J1 ∂̄J̄1
V = −1

2
dJ1dV. (2.32)

The function V is a hyperkähler potential if it is simultaneously a Kähler potential for

each of J1, J2 and J3.
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2.4 Hyperkähler Metrics and the Gibbons-Hawking Form

2.4.7 Gibbons-Hawking Form

In 1987, Hitchin et al [34] proved the following result, which is further discussed and clarified

in [13]:

Theorem 2.1 Any hyperkähler 4-metric with triholomorphic Killing vector must be of

Gibbons-Hawking form (2.23).

There is another useful theorem from Gibbons and Ruback [22]:

Theorem 2.2 Let gαβ be hyperkähler with 2 commuting Killing vectors. Then there

exists a linear combination which is triholomorphic and hence the metric can be written in

Gibbons-Hawking form.

The hyperkähler structures are given by

J1 = (dτ + ~ω · d~r) ∧ dx1 − V dx2 ∧ dx3,

J2 = (dτ + ~ω · d~r) ∧ dx2 − V dx3 ∧ dx1, (2.33)

J3 = (dτ + ~ω · d~r) ∧ dx3 − V dx1 ∧ dx2.

To obtain complete metrics, we must take V to be of the form

V = V0 +
N∑

j=1

4m|~r − ~rj |−1, (2.34)

where m > 0 and as before, τ ∈ [0, 16πm).

If V0 = 0 then the metrics are asymptotically locally Euclidean (ALE) and if V0 = 1 the

metrics are asymptotically locally flat (ALF).

Finally, we note that the only SO(3) complete non-singular invariant half-flat 4-metrics with

3-dimensional orbits are

i) the Atiyah-Hitchin metric (V0 = 1 = N , m < 0);

ii) the Taub-NUT metric (V0 = 1 = N , m > 0);

iii) the Eguchi-Hanson metric (V0 = 0, N = 2, m > 0).
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Note that the Atiyah-Hitchin metric (whose asymptotic form is the Taub-NUT metric with

a negative mass) does not have a tri-holomorphic Killing vector and so cannot be written in

Gibbons-Hawking form.

2.5 Solitons in Kaluza-Klein Theory

We can construct solitons in Kaluza-Klein theory from existing gravitational instanton solu-

tions. We will discuss their gravitational properties and note a useful result concerning the

curvature.

A soliton is a “non-singular solution of the classical field equations which represents spatially

localized lumps that are topologically stable” [27]. We are aiming for solutions of our five-

dimensional field equations that approach the vacuum solution gAB ≈ ηAB at spatial infinity,

meaning that V = 1, Aµ = 0 and g4
µν = η4

µν (note that µ, ν = 0, 1, 2, 3 and A,B = 0, 1, 2, 3, 5).

In order to obtain such soliton solutions, we assume the following:

• The metric is static, with ∂τ as a Killing vector and ∂τgAB = 0;

• In analogy with Yang-Mills theory, g0A = δ0A.

These conditions mean that the “four-dimensional, wholly spacelike, manifold at each fixed

t has vanishing Ricci tensor” [27]. This means that, “This reduces the field equations to

the equations of Euclidean gravity on surfaces of constant time, and the fifth dimension now

plays the same role as the Euclidean time in the four dimensional theory” [61]. Thus, we

can incorporate gravitational instantons into Kaluza-Klein theory by simply adding a time

coordinate to the metric in a “topologically trivial” way.

2.5.1 Magnetic Monopole

A Kaluza-Klein monopole is a spacetime of the form

ds2 = −dt2 + V −1(dτ + ~ω · d~r)2 + V d~r2,

~∇× ~ω = ~∇V,

V = 1 +
4m

r
. (2.35)
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2.5 Solitons in Kaluza-Klein Theory

Here, the Taub-NUT gravitational instanton has been generalised to give the magnetic

monopole. The apparent singularity at r = 0 can be removed by taking τ to have a pe-

riod of 16πm, using the same argument as for the instanton case. The magnetic field is given

by

~B = ~∇× ~ω =
4m~r

r3
. (2.36)

The magnetic charge is given by (2e)−1 which is one unit of Dirac charge. The mass of the

monopole is given by
√

m2
P

α where α = e2(4π~c)−1 and mP is the Planck mass.

Multimonopole solutions can also be constructed with the same metric and potential

V = 1 +
N∑

j=1

4mj |~r − ~rj |−1. (2.37)

The singularities at each of the ~rj can be removed by making all the mj the same and taking

τ to be periodic with period 16πm as usual. As Gross and Perry note, “a remarkable prop-

erty of Kaluza-Klein monopoles that they do not interact” which allows us to construct such

solutions. They state that

“One might have thought that the reason that they were non-interacting was their gravita-

tional attraction was cancelled by their electromagnetic repulsion. However the situation is

quite different, since the gravitational attraction is cancelled by the interaction with the scalar

field. The electromagnetic interaction of the monopoles in fact vanishes”.

We can perform a similar exercise for the Schwarzschild metric ([61], [27]) and by the regu-

larity condition see that it also must have a periodic fifth dimension.

2.5.2 Gravitational Properties

One of the peculiar features of the solitons we have studied thus far is that they have inertial

mass but no gravitational mass, so an observer at a fixed point in space cannot tell if the

soliton is there or not! As we have incorporated the instantons into Kaluza-Klein theory

by adding a topologically trivial time dimension, the resulting solitons are ‘flat’ in the time

dimension. In these spaces, there exist time-like geodesics that correspond to a particle sitting

at rest relative to the soliton [61]. The Newtonian force that a test particle experiences is

proportional to 1
2∇g00 and this vanishes. Thus, the solitons have zero gravitational mass.

This might be thought to violate the five-dimensional principle of equivalence but actually
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2.6 Black Holes

violates the four-dimensional version of Birkhoff’s theorem, as the Schwarzschild solution

isn’t the only possible choice for the g
(4)
µν part of a rotation symmetric 5× 5 metric at large

distances. These unusual properties mean that classical Kaluza-Klein theory is unlikely to

be physically realistic!

2.5.3 Curvature Tensor

We note the following for later use. Consider the magnetic monopole in spherical coordinates

(r, θ, φ):

ds2 = −dt2 + V −1 (dτ + 4m(1− cos θ)dφ)2 + V
(
dr2 + r2(dθ2 + sin θdφ2)

)
,

V = 1 +
4m

r
. (2.38)

Looking at the metric, we can see that if V is zero, so in this case if r = −4m, then we will

run into problems. If we calculate the Riemann curvature, we see that we obtain the same

result as if we ignored the −dt2 term and just considered the Euclidean Taub-NUT metric,

as Rµνρσ = 0 if any of µ, ν, ρ, σ are t. We have

[R]2 =
384m2

r6V 6
=

384m2

(r + 4m)6
. (2.39)

If r = −4m then V is zero and the curvature scalar goes to infinity. Consequently, we have

a singularity (see the section below for an explanation of this). Moreover, using Cartan’s

formula for a general Gibbons-Hawking metric (2.23) yields the formula [28]

[R]2 =
V −144(V −1)

2
, (2.40)

which means that whenever V is zero there will be a singularity.

As has been briefly mentioned, the Atiyah-Hitchin metric has for its asymptotic form the

Taub-NUT metric with negative mass. It is clear from the above that, as the Atiyah-Hitchin

metric is complete, it must deviate from its asymptotic form for small values of r. We will

utilise this fact later. Finally, we note that adding the −dt2 term does not alter the curvature.

This is something we can see will be generally true and thus a result we can use for different

choices of V in subsequent chapters.

2.6 Black Holes

A black hole is the result of the gravitational collapse of a massive star, and is essentially

a singularity hidden behind an event horizon. We will define event horizons, discuss the
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singularity theorems of Hawking and Penrose and introduce the Riemann curvature scalar

that we will use to check for the presence of curvature (as opposed to simply coordinate)

singularities in our later work. Finally, we introduce the further concepts of Killing horizons,

surface gravity and stationary limit surfaces. In this we follow the treatment in [5].

2.6.1 Event Horizons and Singularities

We outline the formal definition of an event horizon and of a singularity, explaining how

we will look for the latter objects in our later calculations. When a star collapses a con-

siderable amount of information, such the chemical composition of the star, is lost and so a

black hole can be completely defined by relatively few parameters, such as the mass, elec-

tric and magnetic charge, and angular momentum. This is an example of a ’no hair theorem’.

Black holes are characterised by the fact that one can enter but never exit. Thus, their most

important future is not the singularity so much as the event horizon. We denote the future

null infinity by I + and the causal past by J−. The event horizon is then the boundary

of the closure of J− (I +), and is a null hypersurface.

A hypersurface is an (n− 1)-dimensional submanifold Σ of an n-dimensional manifold M .

It can be defined by f(x) = const for some function f . The vector field

ζµ = gµν∇νf (2.41)

will be normal to the surface, which is a null hypersurface if ζµ is null. It turns out

that ζµ is tangent to Σ as well, as null vectors are orthogonal to themselves. Therefore the

integral curves xµ(λ) (which turn out to be necessarily geodesics, so λ is an affine parameter)

satisfying

ζµ =
dxµ

dλ
(2.42)

are null curves contained in the hypersurface. Thus, the union of the geodesics xµ(λ) is the

hypersurface Σ and they are called the generators of Σ. If we write the metric in Gaussian

normal coordinates, then the event horizon rH will be located at the points where

grr(rH) = 0. (2.43)

Inside the event horizon, we would expect to find a singularity as, by the singularity the-

orems of Hawking and Penrose, once the gravitational collapse of a star has progressed
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beyond a certain point, their formation is inevitable. We know this point has been reached

when we observe the formation of a trapped surface. which is a compact, spacelike, two

dimensional submanifold with the property that outgoing future-directed light rays converge

in both directions everywhere on the submanifold.

One way to test if a singularity is merely a coordinate singularity (and thus can be removed

by a coordinate transformation) or actually a curvature singularity is to compute scalar

quantities such as the Riemann curvature scalar

[R]2 = RµνρσRµνρσ, (2.44)

and see if they are infinite. If they are, this indicates that something has gone wrong with

the metric that cannot be remedied by changing the coordinates. The cosmic censorship

conjecture tells us that we should not expect to see naked singularities, ones from which

I + can reached in a finite time and for a finite value of the affine parameter, in any physically

realistic theory.

2.6.2 Some Further Definitions

In this section, we will define the following useful notions for our later work: Killing horizons,

surface gravity and stationary limit surfaces.

Killing Horizons

If a Killing vector field Kµ is null along some null hypersurface Σ, we say that Σ is a Killing

horizon of Kµ. Killing horizons are closely related to event horizons:

- Every event horizon Σ in a stationary, asymptotically flat spacetime is a Killing horizon

for some Killing vector field Kµ;

- If the spacetime is static, Kµ will be the Killing vector field Kµ = (∂t)
µ representing

time translations at infinity;

- If the spacetime is stationary but not static, it will be axisymmetric with a rotational

Killing vector field Rµ = (∂φ)µ.

Surface Gravity

Consider a Killing vector Kµ with Killing horizon Σ; as Kµ is normal to Σ, along the Killing

horizon it obeys the geodesic equation given by
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Kν∇νK
µ = −κKµ, (2.45)

where the constant κ is called the surface gravity. It can be found from the formula

κ2 = −1
2

(∇µKν) (∇µKν) . (2.46)

In a static, asymptotically flat spacetime, the surface gravity is the acceleration of a static

observer near the horizon, as measured by a static observer at infinity.

Stationary Limit Surfaces

In the above, suppose that the metric is stationary but not static. The Killing vector Kµ

will not become null at a Killing horizon but generally at some timelike surface outside the

horizon. The place where

KµKµ = gtt = g00 = 0 (2.47)

is called the stationary limit surface or ergosurface. Inside this surface, Kµ is spacelike

and so no observer can remain stationary, even if they still outside the event horizon, but

has to move with respect to the Killing field. In the region between the event horizon and

the stationary limit surface, known as the ergoregion, timelike paths are inevitably dragged

along with the rotation of the black hole.

Having laid these foundations, we now investigate infinite-centre gravitational instantons with

periodic potentials.
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Chapter 3

Solutions with Periodic Sources

3.1 Introduction

Throughout the course of this work we will need to consider metrics with potentials that have

sources periodically distributed along one of the axes. In this chapter we will look at some

of the theory about them that we will utilise in later chapters. As an example of when these

occur, consider self-dual metrics in the Gibbons-Hawking form:

ds2
GH = V −1(dτ + ~ω · d~r)2 + V d~r2, (3.1)

~∇V = ~∇× ~ω. (3.2)

Suppose we have a (2N + 1)-instanton solution for the potential V on R3:

V = V0 + Vc

N∑

j=−N

|~r − ~rj |−1, (3.3)

where V0 and Vc are constants. We have assumed that each instanton has the same mass m

and thus we can remove the singularities at the ~rj by taking τ to have period 4πVc. In order

to obtain a finite chain of instantons on R2 × S1, we can take the instantons to be evenly

distributed along the x3-axis, with period P , yielding:

V = V0 + Vc

N∑

j=−N

(
x2

1 + x2
2 + (x3 − Pj)2

)− 1
2 . (3.4)

At this point, one may ask what happens if we allow N to tend to infinity and thus obtain a

chain of infinitely many instantons. Well, we cannot simply do this because it is well-known

that the sum does not converge (see, for example, papers by Ward [62], Dunne and Khemani

[11] or Cherkis and Kapustin [6]).
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One possible remedy for this is to subtract an infinite constant in order to ensure convergence.

We would then have the periodic potential

V (ρ2, x3) = V0 + Vc




∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 . (3.5)

This choice of potential is to some extent arbitrary, but this is allowed for by the flexibility we

have in the choice of V0 and Vc. The difficultly with using this approach to ensure convergence

is that V will become zero for some values of ρ2 and x3. This behaviour will give rise to

naked singularities. Later, we consider a higher-dimensional variation on this potential,

V = V0 + Vc

∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)(1−D
2 ) (3.6)

for D ≥ 4 which converges (here, ρ2 :=
√

x2
1 + x2

2). The structure of this chapter is as follows:

Considering Convergence: We study the work of Gross and Wilson [28] and their demon-

stration of the convergence of the potential formed by subtracting an infinite constant using

the Harnack Convergence Theorem. Next, we consider the rate of convergence of V in order

to verify that an approximation using a finite sum is sufficiently accurate to be of use. We

develop such an approximation which then allows us use graphical methods to investigate

the behaviour of V .

Zero regions: We use graphical methods to see that the potential is indeed zero at some

points and use the Intermediate Value Theorem to confirm that this has to be the case.

Convergence of ~ω: We will see that the components of the vector ~ω are convergent for

infinitely many sources.

Approximating V : We consider a useful approximation for V that will allow us to calcu-

late the curvature easily, and show that if V is zero then there is indeed a curvature singularity.

Exterior and interior spacetimes: We show that for a Kaluza-Klein monopole constructed

from a gravitational instanton in Gibbons-Hawking form, such a singularity can be reached

in finite time, indicating that the singularity is naked.

Higher-dimensional case: We demonstrate that the higher-dimensional version of our

periodic potential does converge.
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3.2 Considering Convergence

We will show that the infinite constant solution does converge and that we can approximate

V using finitely many terms. We first show that each additional term in the series becomes

small very quickly. This will indicate that a finite approximation is sensible. We then note

that the convergence is quadratic and use this to form an approximation to V , which we will

see from estimating the error gives sufficiently accurate results as to be useful later on.

3.2.1 Convergence of the Infinite Constant Solution

In this section we will outline the argument of Gross and Wilson [28] that demonstrates the

convergence of a potential of the form of (3.5). First we state a useful theorem [25]:

Harnack Convergence Theorem If a monotone sequence of harmonic functions in a

bounded region G converges at some point in G then it converges at all points of G to a

harmonic function, and this convergence is uniform on any closed subdomain of G.

Now, let D ⊂ R3 be an open disk centred at the origin. Define the potential V to be given

by

V :=
∞∑

j=−∞

(
(x3 + jε)2 + ρ2

2

)− 1
2 −

∞∑

j=−∞
a|j|, (3.7)

with

aj :=
{ (jε)−1 if j 6= 0,

2(−γ+log(2ε))
ε if j = 0,

(3.8)

where γ is Euler’s constant and ε is the period of the instantons that are distributed along

the x3-axis. V is a harmonic function, as it satisfies Laplace’s equation 4V = ∇2V = 0.

Theorem 3.1 Consider the sequence

TN :=
N∑

j=−N

(
(x3 + jε)2 + ρ2

2

)− 1
2 −

N∑

j=−N

a|j|, (3.9)

where aj is defined as above. Then {TN} converges uniformly on D × R − ({0} × εZ) to a

harmonic function V .

Proof Let p be the smallest integer greater than ε−1
√

1 + ε2. Then for any x3 ∈ [0, ε],

ρ2 ≤ 1, we have
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(
(x3 + jε)2 + ρ2

2

)− 1
2 > a|j|+p ∀ j. (3.10)

Define

RN :=
N∑

j=−N

(
(x3 + jε)2 + ρ2

2

)− 1
2 −

N∑

j=−N

a|j|+p. (3.11)

Then, we can see that for N > 2p,

TN −RN = −ap − a0 − 2
p−1∑

j=1

aj + 2
N∑

j=N−p+1

aj+p. (3.12)

Define

C(ε) := −ap − a0 − 2
p−1∑

j=1

aj , (3.13)

and note that

N∑

j=N−p+1

aj+p → 0 as N →∞. (3.14)

Thus, if RN converges uniformly to R, say, then TN converges to R + C(ε), which is also

harmonic. Now for any x3 ∈ (0, ε), ρ2 < 1, RN is a monotonically increasing sequence of

harmonic functions, since each term is positive. The sequence is also bounded at x3 = ε
2 ,

x1 = x2 = 0 and therefore by the Harnack Convergence Theorem, the RN converge to a

harmonic function R and V = R + C(ε).

¤

3.2.2 Rate of Convergence

In what follows, we need to study the behaviour of the periodic potential for x3 ∈ [0, P )

because if we know how it behaves in that region we know how it will behave throughout by

virtue of the periodicity in x3. We consider the infinite sum

φ(ρ2, x3) :=
∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1. (3.15)

This can be written as

φ =
(
ρ2
2 + x2

3

)− 1
2 + α(ρ2, x3) + β(ρ2, x3), (3.16)

where
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3.2 Considering Convergence

α(ρ2, x3) :=
∞∑

j=1

((
ρ2
2 + (x3 − Pj)2

)− 1
2 − (Pj)−1

)
(3.17)

and

β(ρ2, x3) :=
∞∑

j=1

((
ρ2
2 + (x3 + Pj)2

)− 1
2 − (Pj)−1

)
. (3.18)

Both α and β converge and therefore the sequences of partial sums {αm}m∈N and {βn}n∈N,

where

αm :=
m∑

j=1

((
ρ2
2 + (x3 − Pj)2

)− 1
2 − (Pj)−1

)
(3.19)

and

βn :=
n∑

j=1

((
ρ2
2 + (x3 + Pj)2

)− 1
2 − (Pj)−1

)
(3.20)

are Cauchy sequences. In particular, for a fixed ε > 0 there exist Nα, Nβ ∈ N such that

∀ m ≥ Nα and ∀ n ≥ Nβ,

|αm − αm−1| < ε, |βn − βn−1| < ε. (3.21)

For a real function f , define Qf (ε) to be the smallest N ∈ N such that |fN − fN−1| < ε. The

smaller Qf (ε) is, the faster the series converges. For the above series, we have

Qα(ε) is the smallest N ∈ N such that
∥∥∥

(
ρ2
2 + (x3 − PN)2

)− 1
2 − (PN)−1

∥∥∥ < ε (3.22)

and

Qβ(ε) is the smallest N ∈ N such that
∥∥∥

(
ρ2
2 + (x3 + PN)2

)− 1
2 − (PN)−1

∥∥∥ < ε. (3.23)

For example, for P = 1, ρ2 = 1 and x3 = 0.5 we have the following results:

- Qα(10−5) = 224 = Qβ(10−5), Qα+β(10−5) = 37;

- Qα(10−8) = 7071, Qβ(10−8) = 7072, Qα+β(10−8) = 369;

- Qα+β(10−10) = 1710.

If P = 2π, ρ2 = 1 and x3 = π we have:
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3.2 Considering Convergence

- Qα(10−5) = 90; Qβ(10−5) = 89, Qα+β(10−5) = 20;

- Qα(10−8) = 2822, Qβ(10−8) = 2821, Qα+β(10−8) = 197;

- Qα+β(10−10) = 912.

This data does suggest that approximating the infinite series by a finite one is feasible. In

order to explore this further one can look at how the series converges.

3.2.3 Approximating the Infinite Series

We now study an approximation for the infinite series that will provide us with a sound

approximation using a finite number of terms. We will discover that the rate of convergence

is quadratic and will use this fact to obtain our approximation. Define

αj :=
(
ρ2
2 + (x3 − Pj)2

)− 1
2 − (Pj)−1 (3.24)

and

βj :=
(
ρ2
2 + (x3 + Pj)2

)− 1
2 − (Pj)−1. (3.25)

Note that

αj =
(
ρ2
2 + (x̃3 + Pj)2

)− 1
2 − (Pj)−1 (3.26)

for some x̃3 ∈ R (if x3 ∈ [0, P ) then x̃3 = −x3) and, for small ρ2,

(
ρ2
2 + (x3 + Pj)2

)− 1
2 − (Pj)−1 ≤ (x3 + Pj)−1 − (Pj)−1

= −x3(Pj)−1(x3 + Pj)−1

≈ cj−2, (3.27)

where c is a constant. Thus, we should expect quadratic convergence. If we plot the first few

values of αj and βj , say from j = 1 to j = 10, we see that for sufficiently large N and M ,

both αj and βj quickly settle down and do indeed appear to behave like j−2. We therefore

consider the following approximations:

αj ≈ αappx := N2αNj−2 and βj ≈ βappx := M2βMj−2, (3.28)

where we would take N and M to be reasonably large (at least 1000, as in the diagram

below).
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Figure 3.1: Quadratic convergence of the periodic instanton potential minus an infinite con-

stant, using (3.24), (3.25), (3.28) with ρ2 = 1 = x3

If we look at the error

∣∣∣αj −N2αN j−2
∣∣∣ (3.29)

over a range of values of ρ2 and x3, we see that it is very small.

P = 1

ρ2/x3 0 0.5 1

0.5 1.15× 10−12 1.15× 10−12 7.86× 10−12

1 4.5× 10−12 2.21× 10−12 4.5× 10−12

3 4.0499× 10−11 3.827× 10−11 3.162× 10−11

5 1.12497× 10−10 1.1038× 10−10 1.0387× 10−10

P = 2π

ρ2/x3 0 0.5 1

0.5 1.4× 10−14 3.48× 10−13 1.428× 10−12

1 2× 10−14 3.33× 10−13 1.413× 10−12

3 1.71× 10−13 1.92× 10−13 1.271× 10−12

5 4.54× 10−13 1.01× 10−13 9.78× 10−13

We have taken N = 1000 and j = 10000 here and we note that the error decreases as we

increase j and/or N . Similar results are obtained for
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∣∣∣βj −M2βMj−2
∣∣∣, (3.30)

for M = 1000. Consequently, we can use these approximations for α and β, yielding

α =
∞∑

j=1

αj =
N∑

j=1

αj +
∞∑

j=N+1

αj

≈
N∑

j=1

αj + (N + 1)2αN+1

∞∑

j=N+1

j−2

=
N∑

j=1

αj + (N + 1)2αN+1


π2

6
−

N∑

j=1

j−2


 , (3.31)

and similarly

β ≈
M∑

j=1

βj + (M + 1)2βM+1


π2

6
−

M∑

j=1

j−2


 . (3.32)

If we take N = M and look what happens to φ(ρ2, x3), we see that

φ(ρ2, x3) =
(
ρ2
2 + x2

3

)− 1
2 +

∞∑

j=1

αj +
∞∑

j=1

βj

≈ (
ρ2
2 + x2

3

)− 1
2 +

N∑

j=1

(αj + βj) + (N + 1)2


π2

6
−

N∑

j=1

j−2


 (αN+1 + βN+1)

=
(
ρ2
2 + x2

3

)− 1
2 +

N∑

j=1

(αj + βj) + κN (αN+1 + βN+1),

(3.33)

where

κN := (N + 1)2


π2

6
−

N∑

j=1

j−2


 . (3.34)

In our examples with N = 1000, we have κ1000 = 1001.500167.

Conclusion

From both of the above perspectives, we see that φ(ρ2, x3) will converge fairly rapidly and

that the errors involved in taking a finite approximation of the infinite series are very small.

Therefore, in the examples that follow we can use graphical methods to see if the poten-

tial V has a zero. Furthermore, as V is periodic in x3, it was sufficient to obtain a good

approximation for V in the region x3 ∈ [0, P ), which we have done.

45



3.3 Zero Regions

3.3 Zero Regions

We will see that the periodic potential (3.5) is zero for various values of ρ2 and x3. There

are two types of ‘zero-region’ that can occur. We will use graphical methods to illustrate

these and will use the Intermediate Value Theorem to prove that such regions always exist

as specified. We will assume that Vc > 0 but similar arguments apply if Vc < 0. Note that V

is continuous for (ρ2, x3) 6= (0, P j) for j ∈ Z. We have two cases to consider:

3.3.1 Case 1: Zero Strips

In this case, V (ρ2, x3) has the shape shown in the diagram below.

Figure 3.2: Periodic potential (3.5) with a zero strip

Lemma 3.2 Let V be a periodic potential of the form (3.5) with Vc > 0 and

V (0, x3) > 0 for all x3 ∈ [0, P ). Then for any x3 ∈ [0, P ) there exists a ρ2 > 0 such

that V (ρ2, x3) = 0.

Proof Fix x3 ∈ [0, P ). The choice of Vc is such that V (0, x3) > 0. As V → −c ln ρ2

as ρ2 → ∞ [62] where c is a constant, we know that for a sufficiently large choice of ρ2, say

46



3.3 Zero Regions

ρ̃, we will have V (ρ̃, x3) < 0. Consequently, by the Intermediate Value Theorem for each x3

there exists a ρ0 ∈ (0, ρ̃) such that V (ρ0, x3) = 0.

¤

3.3.2 Case 2: Zero Curves

In this case, V (ρ2, x3) has the following shape, where V is the red surface and the blue surface

is the (ρ2, x3, 0)-plane. The choice of Vc is such that there are zero regions around each of

the points (0, Px3) for x3 ∈ Z, as we can see in the diagram below. We restrict our attention

to x3 ∈ [0, P ).

Figure 3.3: Periodic potential (3.5) with zero curves around each singularity

Lemma 3.3 Let V be a periodic potential of the form (3.5) with Vc > 0 and

V
(
0, P

2

)
< 0. Define ρ0 to be the value of ρ2 such that V (ρ0, 0) = 0. Then for any ρ2 ∈ [0, ρ0]

there exists a x3 ∈
(
0, P

2

)
such that V (ρ2, x3) = 0.

Proof We have the following derivative:
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3.4 Convergence of ~ω · d~r


 ∂

∂x3

n∑

j=−n

(ρ2
2 + (x3 − Pj)2)−

1
2




∣∣∣∣∣
x3=0

=




n∑

j=−n

(Pj − x3)(ρ2
2 + (x3 − Pj)2)−

3
2




∣∣∣∣∣
x3=0

=
n∑

j=−n

(Pj)(ρ2
2 + P 2j2)−

3
2 = 0.

(3.35)

for ρ2 6= 0. Thus, for a given value of ρ2 > 0, V (ρ2, x3) has a maximum point at x3 = 0.

Now, note that for a fixed x3, V is clearly monotonically decreasing in ρ2. If 0 < ρ2 ≤ ρ0, we

can see that

- V (ρ2, 0) ≥ 0, as V is monotonically decreasing from V (0, 0) →∞ yet by assumption is

not negative;

- V
(
ρ2,

P
2

)
< 0, as V is monotonically decreasing and we assumed that V

(
0, P

2

)
< 0.

Consequently, for ρ2 ∈ [0, ρ0] there exists an x3 ∈
(
0, P

2

)
such that V (ρ2, x3) = 0, by the

Intermediate Value Theorem.

Conversely, if ρ2 > ρ0 then V (ρ2, 0) < 0. As this is the maximum point, V (ρ2, x3) < 0 for

x3 ∈ [0, P ).

¤

As V is periodic in x3, we would expect to see identical zero-regions centred at (0, Px3) for

all x3 ∈ Z.

3.4 Convergence of ~ω · d~r

In this section, we will demonstrate that ~ω · d~r converges as we let the number of identical

sources N go to infinity. If we have

V = V0 + Vc

N∑

j=−N

|~r − ~rj |−1, (3.36)

then, as we require that

~∇V = ~∇× ~ω, (3.37)

we have
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~ω · d~r = Vc

N∑

j=−N

x3 − x3j

|~r − ~rj |
(x1 − x1j)dx2 − (x2 − x2j)dx1

(x1 − x1j)2 + (x2 − x2j)2
, (3.38)

where ~rj = (x1j , x2j , x3j) denotes the position of the j-th instanton [63]. If the instantons are

identical and periodically distributed along the x3-axis with period P , then ~rj = (0, 0, P j)

for j ∈ Z and so, in cylindrical coordinates

x1 = ρ2 cos θ, x2 = ρ2 sin θ, x3 = x3, (3.39)

we have

~ω · d~r = Vc

∞∑

j=−∞

x3 − Pj
(
ρ2
2 + (x3 − Pj)2

) 1
2

dθ, (3.40)

which for small ρ2 becomes

~ω · d~r ≈ Vc

∞∑

j=−∞

x3 − Pj

|x3 − Pj|dθ ≈ Vc

(⌊
x3

P

⌋
+

⌈
x3

P

⌉)
dθ. (3.41)

This is illustrated in the diagram below. Similar results can be found for non-periodic distri-

butions as we shall see in chapter six.

Figure 3.4: Variation in behaviour of ~ω · d~r for small ρ2, using (3.41) with Vc = 1
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3.5 Approximating V

An approximation for V is formulated that will allow us to compute the Riemann scalar with

relative ease, which is necessary as even with the above result, the computation is still rather

complex. The metric is taken to be that of the Kaluza-Klein monopole solution (2.35) which,

as before, is formed by taking the Gibbons-Hawking metric (3.1) and adding a −dt2 term.

Note that, as mentioned earlier, the curvature in the two cases will be the same. In order to

study the spacetime at V = 0, we can approximate V for a given value of x3 by

Vappx = c− 2k ln ρ2. (3.42)

Take V0 := V0(ρ2) and for a given x3 define ρx3 to be the value of ρ2 such that V (ρx3 , x3) = 0.

We have

∂V

∂ρ2
=

∂V0

∂ρ
− Vc

∞∑

j=−∞
ρ2

(
ρ2
2 + (x3 − Pj)2

)− 3
2 , (3.43)

which must equal

∂Vappx

∂ρ2
= −2k

ρ2
(3.44)

for ρ2 = ρx3 . Thus, we have

k = −ρx3

2
∂V

∂ρ2

∣∣∣∣∣
ρx3

; c = −ρx3 ln(ρx3)
∂V

∂ρ2

∣∣∣∣∣
ρx3

. (3.45)

This yields

~ω = (0, 0,−2kθ), (3.46)

where θ = arg(x1 + ix2). The metric then becomes

ds2 = −dt2 + V dx2
1 + V dx2

2 +
(
V + 4k2θ2V −1

)
dx2

3 − 4kθV −1dx3dτ + V −1dτ2. (3.47)

If we compute the scalar RµνρσRµνρσ we get

[R]2 =
32k2(V 2 + 6k(2k − V ))

V 6ρ4
2

. (3.48)

When V = 0, we see the above tends to infinity, indicating the presence of a singularity at

V = 0. We therefore need to ensure two conditions are satisfied to have a singularity:

- The potential V must have a point at which it equals zero;

- V must be able to be reasonably approximated by Vappx = c− 2k ln ρ2 at that point.
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3.6 Exterior and Interior Spacetimes

Many of the spacetimes we will encounter will have singularities that occur when the potential

is zero and can be approximated in the above manner. The following argument demonstrates

that such singularities are naked and is the simplest such argument in this work. We will

adapt the method developed here in other contexts later on.

3.6.1 The Exterior Spacetime

Here, the metric is the Kaluza-Klein metric (2.35). The following results will therefore apply

to the Kaluza-Klein vortex case and the Gibbons-Hawking gravitational instanton of Sanchez

(as we can simply add a −dt2 term). Consider radial geodesics, taking

x1 = x(s), t = t(s), x2 = x3 = τ = 0. (3.49)

The metric becomes

ds2 = −dt2 + V −1(x)(ωxdx)2 + V (x)dx2, (3.50)

as V is positive and the metric is therefore Lorentzian. The corresponding Lagrangian is

L = −ṫ2 + V −1(x)(ωxẋ)2 + V (x)ẋ2 (3.51)

and the geodesics are given by the Euler-Lagrange equations

d
ds

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0, (3.52)

yielding

d
ds

(−2ṫ) = 0;
d
ds

(
2ẋ(V −1ω2

x + V )
)− ω2

xẋ2 d
dx

(
V −1

)− ẋ2 d
dx

(V ) = 0. (3.53)

We then have t = αs where α is some positive constant. If we again use our approximation

Vappx = c− 2k ln x for V , ωx = 0 and thus we have

{−1, 0, 1} = L = −α2 + V (x)ẋ2 (3.54)

for spacelike, null and timelike geodesics respectively. If we look at the null case, we have

ẋ2 =
α2

V
⇒ x = ±

∫
α√
V

ds (3.55)

and
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t = αs = ±
∫ x1

x0

√
V dx, (3.56)

where x0 = e
c
2k is the point where Vappx is zero and hence where the singularity lies, and x1

is far away from x0. We take the positive values of x and t for outgoing geodesics and the

negative values for incoming geodesics. If, in both cases, t is finite, it means that a photon

can reach a large distance away from the singularity in a finite time for a finite value of the

parameter s and hence the singularity is naked. For the approximation used above, we have

t = ±
∫ x1

x0

√
c− 2k ln x dx, (3.57)

which is finite for large values of x1.

3.6.2 The Interior Spacetime

If we think about the interior spacetime, the metric becomes

ds2 = dt2 + V −1(x)(ωxdx)2 + V (x)dx2, (3.58)

as we require that the metric is Lorentzian and V < 0. The corresponding Lagrangian is

L = ṫ2 + V −1(x)(ωxẋ)2 + V (x)ẋ2, (3.59)

and the geodesics are given by

d
ds

(2ṫ) = 0;
d
ds

(
2ẋ(V −1ω2

x + V )
)− ω2

xẋ2 d
dx

(
V −1

)
+ ẋ2 d

dx
(V ) = 0. (3.60)

As before, we have t = βs where β is some positive constant. Approximating V by Vappx

gives ωx = 0 and thus we have

{−1, 0, 1} = L = β2 + V (x)ẋ2 (3.61)

for spacelike, null and timelike geodesics respectively. If we look at the null case once again

and use Vappx = c− 2k ln x < 0, we have

ẋ2 =
−β2

V
⇒ x = ±

∫
β√−V

ds, (3.62)

and

t = ±
∫ x0

x1

√
−(c− 2k ln x) dx, (3.63)
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which is finite for large values of x1. These results mean that photons can move towards or

out from the singularity.

3.7 Higher-Dimensional Case

Consider the D-dimensional potential

V = 1 +
∞∑

j=−∞

mj

|~r − ~rj |D−2
, (3.64)

where ~r = (x1, . . . , xD). Suppose that the point sources in this case are identical and period-

ically distributed along the xD-axis with period P , yielding

V = 1 +
∞∑

j=−∞
m

(
ρ2

D−1 + (xD − Pj)2
)(1−D

2 )
. (3.65)

We will demonstrate that this sum also is convergent for all D ≥ 4.

Theorem 3.4 The potential (3.65) converges for D ≥ 4.

Proof We first note that as V is periodic in xD with period P , we can assume in what

follows that xD ∈ [0, P ). If xD = 0, we have

V = 1 + mρ
(2−D)
D−1 + 2m

∞∑

j=1

(
ρ2

D−1 + P 2j2
)(1−D

2 )
. (3.66)

If xD ∈ (0, P ), the situation is slightly more complicated and we have

V = 1 + m
(
ρ2

D−1 + x2
D

)(1−D
2 ) + m

(
ρ2

D−1 + (P − xD)2
)(1−D

2 )

+ m
∞∑

j=1

(
ρ2

D−1 + (xD + Pj)2
)(1−D

2 )

+ m
∞∑

j=1

(
ρ2

D−1 + ((P − xD) + Pj)2
)(1−D

2 )
. (3.67)

Having written the potential in this form, we now note that

c1 + (c2 + Pj)2 ≥ (Pj)2 ∀ j ∈ N, (3.68)

where c1, c2 ≥ 0 are constants. We therefore have
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∞∑

j=1

(
c1 + (c2 + Pj)2

)(1−D
2 ) ≤ P (2−D)

∞∑

j=1

(
j2

)(1−D
2 )

≤ P (2−D)
∞∑

j=1

j−2

=
π2

6
P (2−D), (3.69)

for D ≥ 4. Therefore, V converges for D ≥ 4 by the comparison test.

¤
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Chapter 4

Examples of Periodic Solutions

4.1 Introduction

In this chapter, we will investigate various scenarios where instanton or monopole solutions

in different contexts can be written in Gibbons-Hawking form and have an infinite centre

periodic potential. When V becomes zero, curvature singularities arise that can be reached

in finite time. The structure of the chapter is as follows:

Kaluza-Klein vortices: We study the work of Onemli and Tekin [53] on Kaluza-Klein

vortices. We use the machinery developed previously to demonstrate the presence of naked

singular regions where V is zero. We then consider a subsequent paper of theirs [54] which

looks at Kaluza-Klein monopoles in AdS spacetime and show that these solutions are also

singular when V is zero.

Dirichlet instantons: We next study the work of Ooguri and Vafa [55] as they apply

D-instanton corrections to a Calabi-Yau manifold. The modified potential they use is of

Gibbons-Hawking form and has singular regions when V is zero. We demonstrate this but

note that it does not make sense to talk about the singularity being naked as we are not

working in the gravitational context. We then examine the paper of Ketov, Santillan and

Zorin [42] as they try to develop this work to consider multiple hypermultiplets as opposed

to the single hypermultiplet solution of Ooguri and Vafa. We show that, as V is zero at some

points, their analysis is incorrect.

Gravitational calorons: Finally in this chapter we examine the work of Sanchez [58]. She

constructs several gravitational instanton solutions, including one in Gibbons-Hawking form

and a Euclidean Schwarzschild solution, each of which contains errors.
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4.2 Kaluza-Klein Vortices and AdS Spacetime

We study the work of Onemli and Tekin, firstly on Kaluza-Klein vortices [53] and secondly

on Kaluza-Klein monopoles in AdS spacetime [54]. We show that in all these cases, when the

hyperkähler potential is zero, there is a curvature singularity.

4.2.1 Kaluza-Klein Vortices

A Kaluza-Klein monopole in M-theory is a spacetime of the form

ds2 = −dt2 +
10∑

j=5

dxjdxj + V −1(dτ + ~ω · d~r)2 + V d~r2. (4.1)

Here, we have a D6 brane where (τ, ~r = {x1, x2, x3}) are the spatial transverse coordinates

and {x5, . . . , x10} are the longitudinal coordinates. We look for vortex type soliton solutions

to pure gravity.

If we suppress the longitudinal coordinates, we are left with 4 + 1 dimensional gravity and

hence the metric is the usual Kaluza-Klein metric (2.35), with the relationship between V

and ~ω given by (3.2), and τ is taken to have a period of 16πm.

Searching for smooth solutions of the above for periodic monopoles located at the points

(x3 = x3a, ρ2 = ρ2a) in R2 × S1 and x3 ∈ S1 yields

V (ρ2, x3) = V0 + Vc

∑
a

ma




∞∑

j=−∞

(
(ρ2 − ρ2a)

2 + (x3 − x3a − 2πj)2
)− 1

2 − 2
∞∑

j=1

(2πj)−1


 ,

(4.2)

where the period P is 2π. We concentrate on a single periodic monopole with position

(x3a = 0, ρ2a = 0) and m = 1. We then have the periodic potential (3.5) with

V0 = 1 +
ln 4π − C

2π
, Vc = −1

2
, (4.3)

where C is Catalan’s constant. The diagram below illustrates the behaviour of V , using our

earlier numerical approximation.

If we restrict our attention to x3 ∈ [0, 2π), we have a zero region around the origin and can

see that for all ρ2 ≤ ρ0 there exists x3 ∈ (0, π) such that V (ρ2, x3) = 0. Here, ρ0 = 0.3976375.
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We can therefore (by thinking about the symmetry of the potential) expect to see these zero

regions along the x3-axis, centred around (0, 2πn) for n ∈ Z. Calculating the values of ρ2

and x3 such that V is zero gives

ρ2 x3 ρ2 x3

0 0.3976 0.25 0.3095

0.05 0.3948 0.3 0.2612

0.1 0.3852 0.35 0.1888

0.15 0.3686 0.375 0.1324

0.2 0.3439 0.3976 0

Figure 4.1: The potential V for a Kaluza-Klein vortex using (4.2) with ρ2 ∈ [0, 1], x3 ∈ [0, 2π]

which taking account of the symmetry of the potential yields the zero-region shown in the

diagram below, which can be approximated by a semi-circle of radius ρ0 centred at the origin.

In order to see that these zero-regions are singular regions, we need to show that we can obtain

a logarithmic approximation to V as before at the required points. Following the approach

we developed earlier, we have

∂V

∂ρ2
=

1
2

∞∑

j=−∞
ρ2

(
ρ2
2 + (x3 − 2πj)2

)− 3
2
, (4.4)

57



4.2 Kaluza-Klein Vortices and AdS Spacetime

Figure 4.2: The zero region around the origin for a Kaluza-Klein vortex, using values from

table in section 4.2.1

and so for x3 ∈ [−ρ0, ρ0], we have

Vappx = c− 2k ln ρ2, (4.5)

where

k =
x2

3 − ρ2
0

4

∞∑

j=−∞

(
ρ2
0 − 2πjx3 + 4π2j2

)− 3
2 (4.6)

and

c =
x2

3 − ρ2
0

4
ln

(
ρ2
0 − x2

3

) ∞∑

j=−∞

(
ρ2
0 − 2πjx3 + 4π2j2

)− 3
2 . (4.7)

One therefore finds that, for instance,

Vappx = 1.161 + 1.258 ln ρ2 (4.8)

is a good approximation to V near the zero when x3 = 0, as we can see in the diagram below.

Thus, there is a singular region when V is zero.
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Figure 4.3: Comparison of V (from (4.2)) and Vappx (from (4.8)) near the zero for the Kaluza-

Klein vortex solution for ρ := ρ2 ∈ [0, 1]

4.2.2 Kaluza-Klein Monopoles in AdS Spacetime

In a subsequent paper, [54], Onemli and Tekin consider analogues of the flat space Kaluza-

Klein monopoles considered above, in locally anti-de Sitter (AdS) spaces for (D ≥ 5) + 1

dimensions. They prove that there is no five-dimensional static Kaluza-Klein monopole in

AdS spacetime that smoothly reduces to the flat space solution as the cosmological constant

goes to zero and thus construct a 6D AdS monopole. In the latter part of the paper they relax

the requirement of having a negative cosmological constant and consider other monopoles.

6D Braneworld

They construct a 6D braneworld with the following metric:

ds2 = exp(−2L|x5|)
(−dt2 + ds2

GH

)
+ dx2

5, (4.9)

where L ∈ R is defined in relation to the Ricci curvature by

Rαβ = 5L2gαβ. (4.10)

In order for the solution to be smooth, the x4 direction must be compact. However, the x5

direction has an infinite extent, with x5 = −∞ as the boundary of the space and x5 = +∞
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as the Killing horizon. One can construct Kaluza-Klein monopole solutions as before, taking

V to be the periodic potential given by (3.5) where V0 and Vc are constants. We take

Vappx = c− 2k ln ρ2 (4.11)

and so ωx1 = ωx2 = 0, ωx3 = −2kθ. Calculating the Riemann curvature scalar gives, as

V → 0,

[R]2 → 4
(
96k4 exp(4L|x5|) + κ1L

4
)
ρ−4
2 V −6, (4.12)

where κ1 is a constant. This tends to infinity as V → 0, indicating the presence of a singu-

larity when V is zero.

One could generalise this to D dimensions by adding more flat directions, ensuring they are

multiplied by exp(−2L|x5|). We could also have multiple Kaluza-Klein vortices as in [53] by

modifying the potential as before (see (4.2)).

Time-Dependent 5D Euclidian Solution

Another spacetime that is proposed in the paper [54] gives a 5D Euclidean solution which is

not static. The metric is

ds2 = dt2 + exp(−2Lt)ds2
GH . (4.13)

Calculating the Riemann curvature gives, as V → 0,

[R]2 → 8
(
48k4 exp(4Lt) + κ2V L4

)
ρ−4
2 V −6 →∞, (4.14)

where κ2 is a constant. We have a singularity when V is zero once again.

4.3 Dirichlet Instantons

We consider the papers of Ooguri and Vafa [55] and Ketov, Santillan and Zorin [42]. Ooguri

and Vafa studied D-instanton quantum corrections to the quantum moduli space metric of a

matter hypermultiplet for the Calabi-Yau-compactified type IIA superstrings near a conifold

singularity. The solution is the hyperkähler metric in the limit of flat four-dimensional space-

time, i.e. when N = 2 supergravity decouples and the universal hypermultiplet is switched

off, while five-brane instantons are suppressed. Ketov et al studied D-instanton quantum

corrections to the moduli space metric of several identical hypermultiplets.
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4.3.1 A Single Hypermultiplet

We examine the construction of a single hypermultiplet by Ooguri and Vafa. Here, the

spacetime is given by the Gibbons-Hawking metric (3.1) with τ and x3 being periodic with

period 1. The potential V must satisfy the following conditions:

~∇× ~ω = ~∇V, (4.15)

~∇2V =
(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
V = 0, almost everywhere, (4.16)

V → Vclassical = − 1
2π

ln ρ2 + const as ρ2 →∞, (4.17)

and there are no two charges at the same point. The unique potential satisfying these

conditions is given by

V (ρ2, x3) =
1
4π




∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 − 2

∞∑

j=1

j−1


 + const. (4.18)

This function has a zero region, as we can see in the diagram below. We can then make use

of the approximation

Vappx = c− 2k ln ρ2. (4.19)

We therefore have

∂V

∂ρ2
= − (4π)−1

∞∑

j=−∞
ρ2

(
ρ2
2 + (x3 − j)2

)− 3
2 , (4.20)

and consequently find that

k =
1.261129

8π

∞∑

j=−∞

(
1.261129 + (x3 − j)2

)− 3
2 (4.21)

and

c =
1.261129 ln 1.123

4π

∞∑

j=−∞

(
1.261129 + (x3 − j)2

)− 3
2
, (4.22)

as this region is practically a straight line given approximately by ρ2 = 1.123 and thus V can

be approximated by, for instance when x3 = 0,

Vappx = 0.0196− 0.1601 ln ρ2. (4.23)

By the same argument as before, there is a singular region when V is zero.
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Figure 4.4: The potential V for a single matter hypermultiplet using (4.18) with ρ2 ∈ [0, 2],

x3 ∈ [0, 1]

4.3.2 Multiple Hypermultiplets

Here, we consider the case of n > 1 hypermultiplets, and the argument of Ketov et al [42].

Each hypermultiplet has its own set of coordinates (xi
1, x

i
2, x

i
3, ti) and there are n sets of

these. Thus, the total 4n-dimensional hyper-Kähler space has coordinates (xi
1, x

i
2, x

i
3, ti),

i = 1, . . . , n. The hyper-Kähler metric (also known as the Pedersen-Poon (PP) metric) takes

the following form:

ds2 = Uijdxi · dxj + U ij(dti + Ai)(dtj + Aj). (4.24)

This is a generalisation of the Gibbons-Hawking metric and contains n commuting tri-

holomorphic isometries. In order to reflect the n isometries, all of the metric components are

supposed to be independent from all the ti. We have U ij = U−1
ij , so we require that U be

everywhere invertible. The Ai terms relate to the gauge fields A. The PP metric is completely

specified by its (real) PP potential F (x,w, w̄), which in turn depends on 3n variables:

xj = xj
3, wj =

xj
1 + ixj

2

2
, w̄j =

xj
1 − ixj

2

2
, (4.25)

where

Uij = Fxixj , Fxixj + Fwiw̄j = 0. (4.26)
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Figure 4.5: Comparison of V (from (4.18)) and Vappx (from (4.23)) near the zero for the

Ooguri-Vafa solution with ρ := ρ2 ∈ [0, 1]

We now make the following assumptions:

- All the xi are periodic with period 1;

- The classical potential F near a CY conifold singularity should have a logarithmic

behaviour and be independent from all xi (when all wi →∞);

- The classical singularity of the metric should be removable;

- The metric is symmetric under the permutation group of n sets of hypermultiplet

coordinates (xj , wj , w̄j), where j = 1, 2, . . . , n.

For the case of n = 2, where we are considering two identical hypermultiplets, we can define

a new function F (x,w) in terms of the Ooguri-Vafa solution by

Fxx = −Fww̄ = VOV (x,w). (4.27)

The first multiplet has coordinates (x1
1, x

1
2, x

1
3, t1) and the second has coordinates (x2

1, x
2
2, x

2
3, t2).

There exists a trivial solution given by the PP potential
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F0 = c0(F (x1, w1) + F (x2, w2)) (4.28)

where c0 is a real constant. Here,

x1 = x1
3, w1 =

x1
1 + ix1

2

2
and x2 = x2

3, w2 =
x2

1 + ix2
2

2
. (4.29)

We have a particular non-trivial solution given by

FPS = c+F (x1 + x2, w1 + w2) + c−F (x1 − x2, w1 − w2) (4.30)

with c+ and c− constants, yielding the general solution

F = F0 + FPS . (4.31)

Using the second partial derivatives of the above, we obtain the following components for the

matrix U :

U11 =
1
4π

(A+ + A− + A1
0), U22 =

1
4π

(A+ + A− + A2
0), U12 = U21 =

1
4π

(A+ + A−), (4.32)

where

A+ = c+




∞∑

j=−∞

(
(x1 + x2 − j)2 + |w1 + w2|2

)− 1
2 − 2

∞∑

j=1

j−1


 , (4.33)

A− = c−




∞∑

j=−∞

(
(x1 − x2 − j)2 + |w1 − w2|2

)− 1
2 − 2

∞∑

j=1

j−1


 , (4.34)

A1
0 = c0




∞∑

j=−∞

(
(x1 − j)2 + |w1|2

)− 1
2 − 2

∞∑

j=1

j−1


 , (4.35)

and

A2
0 = c0




∞∑

j=−∞

(
(x2 − j)2 + |w2|2

)− 1
2 − 2

∞∑

j=1

j−1


 , (4.36)

with the modulus parameter λ set to 1. A short calculation shows that the determinant of

U is given by

det U =
1

16π2
(A+ + A−)(A1

0 + A2
0) + A1

0A
2
0. (4.37)

Now we know that for every (x1, x2) there exist (w1, w2) such that A1
0 = 0 and A2

0 = 0 respec-

tively. Consequently, there exist points where detU = 0, which contradicts our assumption

that U is everywhere invertible.
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4.4 Gravitational Calorons

We now consider the paper of Sanchez [58]. There are two solutions we will investigate here:

the Gibbons-Hawking caloron solution and the Euclidean Schwarzschild solution.

4.4.1 The Gibbons-Hawking Caloron Solution

A caloron is a finite temperature instanton. Caloron solutions satisfy

V (~r, τ) = V (~r, τ + β), β = (kBT )−1 (4.38)

where T is the temperature of the theory. We consider caloron solutions obtained from the

known multi-centre metrics of Taub-NUT type [17]. After eliminating horizon and string

type singularities, the spacetime is given by the Gibbons-Hawking metric (3.1). Here, the

potential is given by

V (ρ2, x3) = 1 +
8m

β

∞∑

j=1

K0

(
2πjρ2

β

)
cos

(
2πjx3

β

)
. (4.39)

Here, β is the period of V , so V (ρ2, x3) = V (ρ2, x3 + β), and K0 is the modified Bessel

function of the second kind. When we take m = 1 = β, this is equivalent to

V (ρ2, x3) = 1 + 4γ + 4 ln
(ρ2

2

)
+ 2




∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 − 2

∞∑

j=1

j−1


 . (4.40)

The function has a zero, as we can see from the diagram below. Now, for which values of

x3 ∈ [0, 1] does there exist a ρ2 > 0 such that V is zero?

Lemma 4.1 The potential V given in (4.40) does not have a zero for x3 = 0 (and thus

for all x3 ∈ Z).

Proof If x3 = 0, we have

V (ρ2, x3) = 1 + 4γ + 4 ln
(ρ2

2

)
+ 2φ(ρ2, 0), (4.41)

where

φ(ρ2, x3) :=
∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 − 2

∞∑

j=1

j−1. (4.42)

We can see that
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Figure 4.6: Potential for the Gibbons-Hawking caloron solution, using (4.40) with ρ2 ∈ [0, 1]

and x3 ∈ [0, 1]

φ(ρ, 0) = ρ−1
2 + 2

∞∑

j=1

(
ρ2
2 + j2

)− 1
2 − 2

∞∑

j=1

j−1. (4.43)

Differentiating V gives us

dV

dρ2
= 4


ρ−1

2 − 2ρ−2
2 −

∞∑

j=1

ρ2

(
ρ2
2 + j2

)− 3
2


 < 0 (4.44)

for all ρ2 > 0, meaning that V decreases as ρ2 increases. We show that when ρ2 is zero, V

goes to infinity and when ρ2 goes to infinity, V takes a finite and positive value, meaning

that it can never be zero.

Now, φ(ρ2, 0) → ρ−1
2 as ρ2 → 0, which means that

V (ρ2, 0) → 1 + 4γ + 4 ln
(ρ2

2

)
+ 2ρ−1

2 . (4.45)

As ln ρ2 shrinks more slowly than ρ−1
2 grows,

dV

dρ2
=

2
ρ2
2

(2ρ2 − 1) < 0 for ρ2 <
1
2
, (4.46)
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we have V →∞ as ρ2 → 0. For large values of ρ2, we have dV
dρ2

→ 0 as ρ2 →∞, as

∞∑

j=1

ρ2

(
ρ2
2 + j2

)− 3
2 ≈ ρ−1

2 . (4.47)

Thus, V → 1 + 4γ, and V does not have a zero if x3 ∈ Z.

¤

Lemma 4.2 The potential V given in (4.40) has a zero for x3 ∈ (0, 1) (and thus for

all x3 ∈ R/Z).

Proof Let ε > 0 and fix a x3 ∈ (0, 1). As

lim
ρ2→0

(
ρ2
2 + (x3 − j)2

)− 1
2 = |x3 − j|−1, (4.48)

there exists ρa > 0 such that, for ρ2 < ρa,

∣∣∣∣∣
∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 −

∞∑

j=−∞
|x3 − j|−1

∣∣∣∣∣ < ε. (4.49)

We have

0 = 1 + 4γ + 4 ln
(ρ2

2

)
+ 2φ(0, x3)− 2ε < 0 (4.50)

for ρ2 < ρb, where

ρb = 2 exp
(− (1 + 4γ + 2φ(0, x3)− 2ε)

4

)
> 0. (4.51)

Let ρ0 := min{ρa, ρb}. Then for ρ2 ∈ (0, ρ0), we have V < 0. By a similar argument to that

in Lemma 4.1, we have V → 1 + 4γ as ρ2 → ∞ for a fixed x3 ∈ (0, 1). Thus, for a large

value of ρ2, say ρc, we have V > 0. Fixing αx3 ∈ (0, ρ0) we can apply the Intermediate Value

Theorem and thus conclude that for each x3 ∈ (0, 1) there exists some ρx3 ∈ (αx3 , ρc) such

that V is zero.

¤

If use the approximation near ρ2 = 0, φ(ρ2, x3) ≈ φ(0, x3) , we obtain

ρ2 ≈ 2 exp
(

κ− φ(0, x3)
2

)
, (4.52)

where κ := −1
4 − γ. We have, remembering that V is symmetrical about x3 = 0.5, the

following data about the zero region:
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x3 ρ2 x3 ρ2 x3 ρ2

0.1 0.005822 0.225 0.1143 0.35 0.2470

0.125 0.01625 0.25 0.1462 0.375 0.2600

0.15 0.03280 0.275 0.1764 0.4 0.2721

0.175 0.05537 0.3 0.2031 0.45 0.2875

0.2 0.08313 0.325 0.2258 0.5 0.2924

Figure 4.7: Approximation of the zero region for the gravitational caloron solution (4.40)

using (4.53) and table in section 4.4.1

It turns out that a good approximation to this curve is

ρ2 =
0.2924

exp
(
κ− φ(0,0.5)

2

) exp
(

κ− φ(0, x3)
2

)
≈ 1.3374 exp

(
κ− φ(0, x3)

2

)
. (4.53)

Thus, for each x3 ∈ (0, 1) (and in every other interval (n, n + 1) where n ∈ Z) there exists a

ρ2 > 0 such that V is zero.

Finally, we need to find a logarithmic approximation to V . As usual,

Vappx = c− 2k ln ρ2. (4.54)

We have
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∂V

∂ρ2
=

4
ρ2
− 2

∞∑

j=−∞

ρ2

4π
(
ρ2
2 + (x3 − j)2

) 3
2

. (4.55)

Using the approximation above we get, for instance at x3 = 0.5,

Vappx = 2.588 + 2.104 ln ρ2, (4.56)

which is shown in the graph. Therefore, for all x3 ∈ (0, 1) (and thus in R/Z), we can see that

there is a curvature singularity.

Figure 4.8: Comparison of V (from (4.40)) and Vappx (from (4.56)) near the zero for the

Sanchez solution for x3 = 0.5 and ρ := ρ2

4.4.2 Euclidean Schwarzschild Solution

Sanchez produces another solution in addition to the caloron solution discussed earlier, with

the same self-dual potential V as in (4.40), satisfying V (ρ2, x4) = V (ρ2, x4 + β), where

ρ2 :=
√

x2
2 + x2

3. Here, we take β = 1. This solution is obtained from the superposition of n

Schwarzschild sources with equal masses m in the Euclidean regime. The metric in this case

is

ds2 = V dx2
1 + (V −1 − 1)dr2 + d~r2, (4.57)

where ~r = (x2, x3, x4) and r =
√

x2
2 + x2

3 + x2
4. Obviously, r is one of the spherical coordinates

(r, θ, φ). If we apply this coordinate transformation throughout, setting
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x2 = r sin θ cosφ,

x3 = r sin θ sinφ, (4.58)

x4 = r cos θ,

we see that ρ2 = r sin θ and x4 = r cos θ, so

V → V (r, θ) = 1 + 4γ + 4 ln
(

r sin θ

2

)
+ 2




∞∑

j=−∞

(
r2 + j2 − 2jr cos θ

)− 1
2 − 2

∞∑

j=1

j−1


 ,

(4.59)

and the metric becomes

ds2 = V dx2
1 + V −1dr2 + r2dθ2 + r2 sin2 θdφ2. (4.60)

Calculating the Riemann curvature scalar gives

[R]2 =
D(r, θ) + 8V 2(∂θV )2 cot2 θ

4V 4r4
, (4.61)

where

D(r, θ) := 11(∂θV )4 − 16V ∂θθV (∂θV )2

+ 4V 2
(
2r∂rV (∂θV )2 + 2(∂θθV )2 − r2∂rrV (∂θV )2

)

+ 4V 3
(−4r∂θV ∂rθV + 4(∂θV )2 + 2r2(∂θrV )2

)

+ 4V 4
(
4r2(∂rV )2 + r4(∂rrV )2 + 4

)− 32V 5 + 16V 6.

(4.62)

Now, there remains the question of whether D cancels out the factor of V 4 in the denominator.

We therefore need to look at the following expression, of terms where V 4 is not automatically

cancelled out:

K(r, θ) := 2.75(∂θV )4V −4 − 4V −3∂θθV (∂θV )2

+ V −2
(
2r∂rV (∂θV )2 + 2(∂θθV )2 − r2∂rrV (∂θV )2

)

+ V −1
(−4r∂θV ∂rθV + 4(∂θV )2 + 2r2(∂θrV )2

)
.

(4.63)
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Outlining the Theory

As V is periodic in x4 with period 1, we will consider values of x4 in [0, 1), and begin by

fixing x4 ∈ (0, 1), taking φ to be as in (4.42). Near ρ2 = 0, we have the following Taylor

expansion:

φ (ρ2, x4) =
∞∑

n=0

φ(ρ2, x4)(n)
∣∣∣
ρ2=0

n!
ρn. (4.64)

Firstly, for ρ2 = 0, we have

φ (0, x4) =
∞∑

j=−∞
|x4 − j|−1 − 2

∞∑

j=1

j−1

= x−1
4 +

∞∑

j=1

|x4 − j|−1 +
∞∑

j=1

(x4 + j)−1 − 2
∞∑

j=1

j−1

= x−1
4 (1− x4)−1 +

∞∑

j=1

(x4 + j)−1 +
∞∑

j=1

((1− x4) + j)−1 − 2
∞∑

j=1

j−1

= x−1
4 (1− x4)−1 −

∞∑

j=1

x4j
−1 (x4 + j)−1 −

∞∑

j=1

(1− x4)j−1 ((1− x4) + j)−1 .

(4.65)

Next, we calculate the nth derivative of φ (ρ2, x4) with respect to ρ2. By inspection we can

see that, for n ∈ N,

φ (ρ2, x4)
(n) =

∞∑

j=−∞

bn/2c+1∑

k=1

(−1)b
n
2
c+k−rck

nσn+2k−rρ2k−1−r
2 , (4.66)

where σ := (ρ2
2 + (x4 − j)2)−

1
2 and r = 0 if n is odd, r = 1 if n is even. The ck

n are real

constants.

Thus, when n is odd, φ(n) (ρ2, x4)
∣∣∣
ρ2=0

= 0. For n is even,

φ (0, x4)
(n) =

∞∑

j=−∞
(−1)

n
2 cnσn+1

∣∣∣∣
ρ2=0

= (−1)
n
2 cn

∞∑

j=−∞
|x4 − j|−(n+1), (4.67)

where the cn := c1
n are given by

cn =

n
2∏

l=1

(2l − 1)2. (4.68)

Thus, for n even,
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φ (0, x4)
(n) = (−1)

n
2 cn


x

−(n+1)
4 (1− x4)−(n+1) +

∞∑

j=1

(x4 + j)−(n+1) +
∞∑

j=1

((1− x4) + j)−(n+1)


 .

(4.69)

Finally we can use the change of coordinates ρ2 = r sin θ to calculate K. We calculate the

relevant derivatives, taking V to be

V (r, θ) = 1 + 4γ + 4 ln
(

r sin θ

2

)
+ 2

∞∑

j=0

C2jr
2j sin2j θ, (4.70)

where the Cj are the constants in the Taylor series. We have

∂θV = 4 cot θ + 4
∞∑

j=1

jC2jr
2j sin2j−1 θ cos θ, (4.71)

∂θθV = −4 sin−2 θ + 4
∞∑

j=1

jC2jr
2j

(
(2j − 1) sin2j−2 θ cos2 θ − sin2j θ

)
, (4.72)

∂rV = 4r−1 + 4
∞∑

j=1

jC2jr
2j−1 sin2j θ, (4.73)

∂rrV = −4r−2 + 4
∞∑

j=1

j(2j − 1)C2jr
2j−2 sin2j θ, (4.74)

∂rθV = 8
∞∑

j=1

j2C2jr
2j−1 sin2j−1 θ cos θ. (4.75)

We can see from these results that the factors of V in K do not get cancelled out, so whenever

V has a zero, there is a singularity. As the potential V is the same as the first of the Sanchez

solutions, we know that there are bell-shaped zero-regions all along the x4-axis. Therefore

there are singular regions in this Euclidean Schwarzschild space.

A Specific Example: x4 = 0.5

We examine a specific case, that of x4 = 0.5. Firstly, we construct a Taylor series following

the method above. We have

φ

(
0,

1
2

)
= 4−

∞∑

j=1

j−1

(
1
2

+ j

)−1

= ln 16 ≈ 2.773, (4.76)

and

φ

(
0,

1
2

)(n)

= (−1)
n
2




n
2∏

l=1

(2l − 1)2





2n+2 + 2

∞∑

j=1

(
1
2

+ j

)−(n+1)

 . (4.77)
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Therefore near ρ2 = 0 we have

φ

(
ρ2,

1
2

)
≈ 2.773− 8.414ρ2

2 + 24.109ρ4
2 − 80.038ρ6

2

+ 280.014ρ8
2 − 1008.006ρ10

2 + 3696.00ρ12
2 − 13728.001ρ14

2

+ 51480ρ16
2 − 194480ρ18

2 + 739024ρ20 − 2822172.8ρ22
2

+ 10816624ρ24
2 − 41602399.98ρ26

2 .

(4.78)

Figure 4.9: Comparison of the exact sum (from (4.42)) with the Taylor series approximation

(from (4.78)) for an example of the Euclidean Schwarzschild metric with x4 = 0.5

Next, we calculate the factor K(r, θ). For x4 = 0.5 and ρ2 = 0.292481, we have r = 0.579262

and θ = 0.529288, giving

K(r, θ) = 460.0965289V −4 + 795.0545068V −3 + 585.3928936V −2 + 146.2501545V −1. (4.79)

Thus, there is a curvature singularity, in contrast to the normal Schwarzschild configuration,

for x4 = 0.5.
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More Generally: x4 ∈ (0, 1)

We can apply the same method for other vales of x4. The following diagram illustrates a

range of values of x4 such that V has a zero for some ρ2. We have produced graphs of V for

x4 = {0.1, 0.2, 0.3, 0.4, 0.5}.

The red curve corresponds to x4 = 0.1, the green to x4 = 0.2, the yellow to x4 = 0.3, the

blue to x4 = 0.4 and the purple to x4 = 0.5.

Figure 4.10: Snapshots of potential V for the Euclidean Schwarzschild metric, using (4.40)

for various choices of x4

We calculate the factor K(r, θ) and the results are illustrated in the table below:

x4 ρ2 K(r, θ)

0.5 0.29248 460.0965V −4 + 795.0545V −3 + 585.3929V −2 + 146.2502V −1

0.4 0.27207 228.6159V −4 + 424.7961V −3 + 349.2504V −2 + 103.3927V −1

0.3 0.20307 201.2258V −4 + 391.2047V −3 + 332.3595V −2 + 99.0038V −1

0.2 0.083133 4205.0407V −4 + 4750.6242V −3 + 2235.8263V −2 + 344.7403V −1

0.1 0.00587192 55248730.4V −4 + 21224023.57V −3 + 2856170.417V −2 + 18563.934V −1

Thus, we can see that for a range of different values of x4, there is a curvature singularity.
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Finally, we allow x4 to vary. Using the Taylor expansion again, we have, near (ρ2, x4) =

(0, 0.5),

φ(ρ2, x4) =
∞∑

t=0

t∑

n=0

(
φ(n,t−n)(ρ2, x4)

n!(t− n)!

)
ρn
2 (x4 − 0.5)t−n, (4.80)

where

φ(p,q)(ρ2, x4) :=
(

∂p

∂ρp
2

∂q

∂xq
4

φ(ρ2, x4)
) ∣∣∣∣∣

ρ2=0,x4=0.5

. (4.81)

Approximating this to the eighteenth order gives Vappx, which we compare with V in the

diagram below. To check that the factors of V in K do not cancel out, we compute the

derivatives of V , in spherical coordinates:

Figure 4.11: Comparison of two-variable Taylor series approximation around (ρ2, x4) =

(0, 0, 5) (from (4.80)) with exact potential (from (4.40)) for the Euclidean Schwarzschild

metric

∂rV = 4r−1 + 2
∞∑

t=1

t∑

n=0

(rt cos θ − 0.5n) rn sinn θ (r cos θ − 0.5)t−n

(r cos θ − 0.5) r
, (4.82)

∂θV = 4 cot θ + 2
∞∑

t=1

t∑

n=0

(
rt sin2 θ + 0.5n cos θ − nr

)
rn sinn θ (r cos θ − 0.5)t−n

(r cos θ − 0.5) sin θ
. (4.83)

It is clear from these (and the even messier second derivatives!) that the factors do not vanish

and thus there are curvature singularities where V is zero.
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Chapter 5

Surveying the Landscape

5.1 Introduction

In the previous chapter, we studied periodic instantons in Gibbons-Hawking form. We there-

fore had the following metric:

ds2
GH = V −1(dτ + ~ω · d~r)2 + V d~r2,

~∇V = ~∇× ~ω. (5.1)

In cylindrical coordinates, the potential is given by

V = V0 + Vc

∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 . (5.2)

As already noted, this series does not converge. Various methods have been adopted in order

to ensure the convergence of the series by different authors. In chapters three and four, the

method employed was the subtracting of an infinite constant, yielding a potential given by

V = V0 + Vc




∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 . (5.3)

However, as has been demonstrated, when V is zero, curvature singularities arise. In this

chapter, we will consider the implications of this in a range of contexts. As such, the structure

of the chapter is as follows:

Incompleteness of infinite constant solution: We demonstrate an awareness of the in-

completeness of the infinite constant solution in the literature. We firstly investigate the

construction of the Atiyah-Hitchin [2] metric and note how it deviates from its asymptotic

form, the Taub-NUT metric. We then explore the work of Cherkis and Kapustin [7] and the
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5.2 Incompleteness of the Infinite Constant Solution

ALG metrics they formulate, which behave in an analogous manner to the Atiyah-Hitchin

metric. We see the parallels between this work on the two-monopole moduli space on R2×S1

and the Ooguri-Vafa metric [55] and briefly look at the discussion of this incompleteness in

the literature.

Extensions and applications: We consider three papers where the authors have tried to

extend the infinite constant solution in different contexts. Firstly we study the paper of Gross

and Wilson [28], who construct a new metric by stitching together twenty-four Ooguri-Vafa

metrics, and note that they have failed to address the incompleteness of the said metric,

which is carried into their new solution. Secondly, we investigate the work of Giribet and

Santillan [26], who attempt to take four-dimensional hyperkähler metrics and extend them to

seven-dimensional metrics with G2 holonomy using the Apostolov-Salamon Theorem, again

resulting in incomplete solutions. Finally, we look at the work of Gibbons and Warnick [24]

on extending solutions in flat space to solutions in hyperbolic spaces. Their solutions are

parallel to the Atiyah-Hitchin solution, in the sense of deviating from their asymptotic forms.

Olbers’ and Seeliger’s paradoxes: The problem of the potential given by an infinite

periodic array of instantons is a similar problem in its context to Olbers’ and Seeliger’s

paradoxes. We therefore outline the nature of these two paradoxes, both being concerned

with the consequences of postulating an infinite, eternal universe with an even distribution

of matter (in particular of stars) within. We then note the parallel with our situation.

5.2 Incompleteness of the Infinite Constant Solution

In this section we consider the nature of the external and internal spaces of the Ooguri-Vafa

(OV) [55] metric. We look at the Atiyah-Hitchin (AH) metric and how its asymptotic form

deviates from the Taub-NUT metric. Next, we look at the construction of periodic strings

of BPS monopoles in R2 × S1, the reduced moduli space of which forms an ALG instanton.

This deviates from its asymptotic form in the interior as well and has the same logarithmic

behaviour as the external Ooguri-Vafa solution. We note how this has been alluded to in the

literature.

5.2.1 The Two-Monopole Moduli Space on R3

The two-monopole moduli space takes the form
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5.2 Incompleteness of the Infinite Constant Solution

M = R3 × S
1 ×M0

Z2
, (5.4)

where M0 is a four-dimensional manifold on which SO(3) acts (the AH metric) and the Z2

is present as the monopoles cannot be distinguished. We will outline the construction of the

Atiyah-Hitchin (AH) metric on this space, following references [2], [64], [20]. The metric on

R3 × S1 is flat, being given by

ds2 = 4(d~r · d~r + dχ2), (5.5)

where χ ∈ S1 with 0 ≤ χ ≤ 2π and ~r = (x1, x2, x3) ∈ R3.

The metric on M0 is independent of (~r, χ), is SO(3) symmetric, and is thus given by

ds2 = f(r)2dr2 + a(r)2σ2
1 + b(r)2σ2

2 + c(r)2σ2
3, (5.6)

where the metric functions obey

2bc

f

da

dr
= b2 + c2 − a2 − 2bc (5.7)

(and cyclic permutations thereof), with the one-forms (θ, φ ∈ [0, π], ψ ∈ [0, 2π]),

σ1 = − sinψdθ + cos ψ sin θdφ,

σ2 = cosψdθ + sinψ sin θdφ, (5.8)

σ3 = dψ + cos θdφ,

satisfying

dσi =
1
2
εijkσj ∧ σk. (5.9)

Here, r is a radial coordinate, θ and φ are spherical coordinates and ψ is a U(1) angle. We

then have two forms for the asymptotic metric:

ds2 =
(

1 +
2m

r

)
d~r2 + 4m2

(
1 +

2m

r

)−1

(dψ + ~ω(r) · d~r)2. (5.10)

If m > 0 this is the asymptotic form for the Taub-NUT manifold, which happens to be exact

for the Taub-NUT geometry. On the other hand, if m < 0 we have the asymptotic form for

the AH manifold. Clearly when r = 2m there is a singularity, so the AH metric must deviate

from the asymptotic form as r approaches 2m.
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5.2 Incompleteness of the Infinite Constant Solution

To find the general form of the AH metric, one could follow Atiyah and Hitchin’s original

choice [2] and take f = abc but it is easier to follow [64], [20] and choose f = − b
r . We

parameterise r by β so that

r = 2K (sinβ/2) , (5.11)

where

K(x) =
∫ π/2

0

(
1− x2 sin2(t)

)−1/2 dt (5.12)

is the elliptic integral. Here, β ∈ [0, π], so r ∈ [π,∞). The AH solution is given by

ab = −r(sinβ)
dr

dβ
+

1
2
(1− cosβ)r2,

bc = −r(sinβ)
dr

dβ
− 1

2
(1 + cosβ)r2, (5.13)

ca = −r(sinβ)
dr

dβ
.

To understand how this metric deviates from the asymptotic form of the metric, following

references [20] and [64], we need to look at what happens when r draws near to π.

Using the series expansion for the elliptical integral K, we see that there is a bolt where

r = π. Near the bolt, the metric becomes

ds2 = dr2 + 4 (r − π)2
(
dψ̄ + cos θ̄dφ̄

)2 + π2
(
dθ̄2 + sin2 θ̄dφ̄2

)
, (5.14)

where we use the new Euler angles

σ1 = dψ̄ + cos θ̄dφ̄,

σ2 = − sin ψ̄dθ̄ + cos ψ̄ sin, θ̄dφ̄ (5.15)

σ3 = cos ψ̄dθ̄ + sin ψ̄ sin, θ̄dφ̄

and impose the identification

I : ψ̄ → ψ̄ + π

which is, in terms of the original Euler angles,

I : θ → π − θ, φ → φ + π, ψ → −ψ. (5.16)

This means that ψ ∈ [0, π] and so the metric gives a smooth manifold near r = π, which is

known as the double-cover of the AH manifold [2]. From [64] we see that this must be M0.
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5.2.2 The Two-Monopole Moduli Space on R2 × S1

We look at the paper by Cherkis and Kapustin [7] and consider the construction of the

reduced moduli space of SU(2) BPS monopoles in this context. The solution will be known

for future reference as the Cherkis-Kapustin (CK) solution.

Background

Asymptotically, the moduli space of k SU(2) monopoles on R3 looks like a T k fibration over

(R3)k/Sk, where we divide by the symmetry group Sk to reflect the indistinguishability of

the monopoles. Since the electric charges are conserved, the fiberwise action of T k is a tri-

holomorphic isometry.

The relative moduli space, that found by fixing both the centre of mass coordinates of the

monopoles and the sum of their internal degrees of freedom, turns out to be a 4(k − 1)-

dimensional hyperkähler manifold. In the case of k = 2, the relative moduli space is the

Atiyah-Hitchen metric, for which the asymptotic metric has the Taub-NUT form.

Cherkis and Kapustin study the relative moduli space for two BPS monopoles on R2 × S1

with the product metric. As is argued in Cvetic et al, [9], the circle has radius L. When

L →∞, it approaches the Atiyah-Hitchin metric.

ALG Instantons

An ALG instanton is defined by Cherkis and Kapustin to be an ALF gravitational instanton

which asymptotically has a triholomorphic T 2 action. There is as of yet no exact expression

for this metric but asymptotically it takes the form

ds2 = τ2dzdz̄ + τ−1
2 |dt + τdχ|2, (5.17)

where τ(z) = τ1(z) + iτ2(z) is a (anti)holomorphic function, and t and χ are periodic. This

asymptotic form is not valid in the interior. We now review their construction of ALF hyper-

Kähler manifolds of dimension 4(k − 1) which asymptotically have a triholomorphic T 2(k−1)

isometry.

To begin to get down to mathematical details, consider k SU(2) monopoles on R2 × S1 with

a flat metric. We can identify R2× S1 with C× S1. Let z ∈ C and χ ∈ S1 where χ ∼ χ + 2π.
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We suppose that the monopoles are located at points aj = (zj , χj) for j = 1, . . . , k.

The field configuration at a distant point x = (z, χ) is given, in a suitable gauge, by

φ(x) = v +
k∑

j=1

φj(z − zj). (5.18)

where

Aχ = b +
k∑

j=1

Aj
χ(z − zj), Az = 0. (5.19)

When the monopoles are well-separated, we can think of them as being like particles on

R2 × S1. The moduli space coordinates parameterise the positions of the monopoles and the

sum of their internal degrees of freedom in S1.

In order to avoid ending up with the kinetic energy on the moduli space being infinite (thus

rendering the metric on the moduli space to be ill-defined), in terms of the universal covering

space of R2 × S1, we consider each periodic monopole to be an array of infinitely many ’t

Hooft-Polyakov monopoles. In order to ensure that all the masses and fields are finite, we

further replace each infinite array by a finite array of 2N + 1 monopoles and send N →∞.

The Higgs field produced by one periodic monopole located at z = 0, at distances large

compared to the size of the monopole, is

φj(x) =
N∑

l=−N

−g√
|z|2 + (χ− 2πl)2

, (5.20)

where g is the charge of the monopole. As we will consider what happens when N →∞, we

can assume that |z| << N and so we have

φj(x) =
g

π
ln |z| − gCN + O

(
1
|z|

)
, (5.21)

where CN is a constant with CN → ∞ logarithmically as N → ∞, reflecting the divergence

of (5.20). In this case, in a suitable gauge, we have

Aj
χ =

g

π
arg(z), Aj

z = 0. (5.22)

For large z, the total field φ(x) is given by

φ(x) = v − kgCN +
kg

π
ln |z|. (5.23)
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We define vren := v − kgCN and adjust v so that vren remains fixed when N →∞, meaning

that v → ∞ as N → ∞, which gives us convergence in the manner of the infinite constant

method.

Introducing an electric charge for each monopole and calculating the Lagrangian of the re-

sulting dyons yields the following asymptotic metric on the moduli space:

1
4π

ds2 = τCK
2 (z)|dz|2 + τCK

2 (z)−1|dt + τCK(z)dχ|2, (5.24)

where

τCK
1 (z) =

b

2
+

1
π

arg(z), τCK
2 (z) =

vren

2
+

ln |z|
π

(5.25)

and

τCK(z) := τCK
1 (z) + iτCK

2 (z) =
i

2
(vren − ib) +

i

π
ln z̄. (5.26)

Here, t has period 1. Since ∂χτCK
2 = 0, there is a triholomorphic T 2 isometry as was required.

This metric is valid for large |z|, but when |z| is small, there is a singularity at the hypersurface

τ2(z) = 0, so the metric is geodesically incomplete. This behaviour is in complete analogy

with the case of the Atiyah-Hitchin metric which deviates from its asymptotic form, which

we recall looks like the Taub-NUT metric but with the opposite sign in the potential, as |z|
becomes small.

Relation to the Ooguri-Vafa Solution

Finally, adopting the above notation, the OV metric for large |z| looks like the following:

ds2 = τOV
2 (z)|dz|2 + τOV

2 (z)−1|dt + τOV (z)dχ|2, (5.27)

where

τOV (z) := τOV
1 (z) + iτOV

2 (z) = − i

2π
ln z̄ (5.28)

with

τOV
1 (z) =

i

4π
(ln z − ln z̄) , τOV

2 (z) = − 1
2π

ln |z|. (5.29)

Note that this metric is also of Gibbons-Hawking form. Thus, the OV solution, having the

same logarithmic form as the CK metric, deviates from its asymptotic form for small |z|.
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Cherkis and Kapustin [7] comment that, “we expect that the exact metric on the relative

moduli space of two periodic monopoles is smooth and complete, just like the Atiyah-Hitchin

metric”. In a later paper [8] they state that, “No examples of complete hyperkähler metrics

on elliptic fibrations which are locally flat at infinity were known prior to this work (a non-

complete example is provided by the so-called Ooguri-Vafa metric [55])”. So they acknowledge

that the exact ALG metric should be complete, and record the incompleteness of the Ooguri-

Vafa solution.

5.3 Extensions and Applications

In this section, we consider three situations in which attempts are made to apply the Gibbons-

Hawking metric with infinite potential defined in equations (5.1) and (5.3) to different con-

texts. We outline and comment on the work of Gross and Wilson [28] stitching together

Ooguri-Vafa metrics, Giribet and Santillan [26] constructing seven-dimensional metrics with

G2 holonomy and Gibbons and Warnick [24], who extend solutions in flat space to solutions

in hyperbolic spaces.

5.3.1 Stitching Together Ooguri-Vafa Metrics

Gross and Wilson [28] aim to extend the infinite-centre Gibbons-Hawking solution by gluing

several Ooguri-Vafa metrics together to form a new metric. We outline their construction

and discuss its validity in the light of the singular regions present when the potential V is

zero. Firstly, a couple of definitions:

Let X be a Calabi-Yau manifold. A large complex structure limit point is “a point in a

compactified moduli space of complex structures MX on X which, in some sense, represents

the ’worst possible degeneration’ of the complex structure”.

A metric is said to be semi-flat if it restricts to a flat metric on each elliptic fibre. In order

to define this rigorously, one needs to consider two holomorphic functions τ1 and τ2, the

properties of which are given in their example 2.2.

In order to study Ricci-flat metrics, Gross and Wilson look at metrics on K3 surfaces which

approach large complex structure limit points. Approaching such a limit can be demonstrated

to be roughly the same as “fixing the complex structure on a K3 elliptic fibration f : X → P 1,

and letting the Kähler form ω on X vary in such a way that the area of the fibres approaches
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zero”. They take f to have twenty-four singular fibres, each of Kodaira type I1 (a pinched

torus), and semi-flat metrics constitute a family of explicit Ricci-flat metrics.

The Ooguri-Vafa metric is an explicit Ricci-flat metric defined in the neighbourhood of each

singular fibre; it decays exponentially to a semi-flat metric. Their plan is to glue twenty-four

copies of the Ooguri-Vafa metric into the semi-flat metric, obtaining a metric such that it is

bound in absolute value by O
(

e−C

ε

)
, and so as ε → 0 the Ricci curvature approaches zero

very rapidly.

Let B ⊆ C be open. We have two 1-forms on B, τ1dy and τ2dy. Then we can locally replace

y with a holomorphic function g on an open set U such that dg = τ1dy, and thus can assume

τ1 = 1. Then in these coordinates, the semi-flat metric coincides with the Gibbons-Hawking

metric obtained by taking V = =τ2
ε on UR/εZ”.

Using the formula

[R]2 =
V −144(V −1)

2
, (5.30)

the Riemann curvature is then given by

[R]2 =
ε2(=τ2)−144(=τ2)−1

2
→ 0 as ε → 0. (5.31)

However, this calculation does not allow for the possibility that V can be zero, thus giving

rise to infinite curvature and singularities.

5.3.2 Seven-Dimensional Holonomy Spaces

The exceptional Lie group G2 can be thought of as Aut(O). We explore the construction of

Giribet and Santillan [26], who construct toric G2 holonomy spaces from four-dimensional

hyperkähler manifolds. We demonstrate that the metrics they construct are incomplete as

they do not take account of the possibility of the potential V being zero and giving rise to

singular regions.

Let M be a complex four-dimensional manifold with metric

g4(µ) = δabe
a ⊗ eb, (5.32)

and J1 be a complex structure on M . We can then define
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J̃1 := g4(J1, ·)(µ) J̄1 := g4(J1, ·). (5.33)

Suppose g4 also admits a complex symplectic form Ω := J̄2 + iJ̄3. We can then introduce a

function f which depends on µ and the coordinates of M and satisfies

2µJ̃1(µ) ∧ J̃1(µ) = fΩ ∧ Ω. (5.34)

We can then define a seven-dimensional metric g7 by

g7 :=
(dα + H2)2

µ2
+ µ

(
fdµ2 +

(dβ + H1)2

f
+ g4(µ)

)
, (5.35)

where α and β are new coordinates of g7 such that ∂α and ∂β are Killing vectors and the

one-forms H1 and H2 are defined on M × Rµ and M respectively.

Suppose now that we have an hyperkähler four-metric g with a tri-holomorphic Killing vector

∂t. There exists a coordinate system in which g can be written in Gibbons-Hawking form:

g = V −1 (dt + ~ω)2 + V dxi · dxjδ
ij ,

~∇V = ~∇× ~ω (5.36)

which is hyperkähler with respect to the hyperkähler triplet

J̄1 = (dt + ~ω) ∧ dx1 − V dx2 ∧ dx3,

J̄2 = (dt + ~ω) ∧ dx2 − V dx3 ∧ dx1, (5.37)

J̄3 = (dt + ~ω) ∧ dx3 − V dx1 ∧ dx2.

and thus the isometry group of the G2 space is T 3.

At this stage, it is worth noting that if a hyperkähler metric possesses a non-triholomorphic

isometry then there exists a coordinate system such that the metric can be written as

gh = fz

(
ef

(
dx2

1 + dx2
2

)
+ dx2

3

)
+ f−1

x3
(dt + (fx1dx2 − fx2dx1))

2 , (5.38)

with f satisfying the SU(∞) Toda equation

(
ef

)
x3x3

+ fyy + fx1x1 = 0, (5.39)
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where we use the notation fp + ∂pf . We can see that ∂t is a Killing vector and that it is

hyperkähler with respect to the hyperkähler triplet

J̄1 = effx3dx1 ∧ dx2 + dx3 ∧ (dt + (fx1dx2 − fx2dx1)) ,

J̄2 = ef/2 cos(t/2)˜̄J2 + ef/2 sin(t/2)˜̄J3, (5.40)

J̄3 = ef/2 sin(t/2)˜̄J2 − ef/2 cos(t/2)˜̄J3,

with

˜̄J2 := −fx3dx3 ∧ dx2 + (dt + fydx1) ∧ dx2, (5.41)

˜̄J3 := fx3dx3 ∧ dx1 + (dt + fx1dx2) ∧ dx1, (5.42)

From this, we can see that ∂t will preserve J̄1 but J̄2 and J̄3 are dependent on t. This

means that one cannot preserve two of three J̄i without preserving the third and thus a four-

dimensional U(1) isometry that preserves two of the three Kähler forms of a hyperkähler

metric is triholomorphic.

Giribet and Santillan investigate various structures that satisfy these properties, including

ALG and Ward metrics and extend them to seven-dimensional metrics with G2 holonomy.

In their study of the ALG metrics, they say “a particular case of such a class of metrics

was shown to describe the single matter hypermultiplet target space for type IIA super-

strings compactified on a Calabi-Yau threefold when supergravity and D-instanton effects

are switched off” when referring to the connection between ALG and the Ooguri-Vafa met-

ric. We also note that the ALG metrics deviate from their asymptotic form (which is due to

the singularities present as already noted) and thus that their seven-dimensional extensions

of this will also include unwanted singular regions. Their extensions of Ward metrics follows

similar lines and the incompleteness affects their seven-dimensional metric.

5.3.3 Hyperbolic Monopoles

We examine the paper of Gibbons and Warnick [24], which looks at the extent to which results

concerning well-separated monopoles in flat space can be applied to monopoles in hyperbolic

spaces. We show that we end up in a similar situation to the Atiyah-Hitchin metric, with
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the solution deviating from its asymptotic form.

We begin by introducing SU(2) monopoles on hyperbolic space. Let H3 denote the hyper-

bolic three-space of constant curvature -1 and with metric h. For a principle SU(2) bundle

P → H3, let A be a connection on P and Φ denote the Higgs field. The pair (A,Φ) represents

a magnetic monopole of mass M > 0 and charge k ∈ N ∪ {0} if it satisfies the following two

criteria:

the Bogomol’nyi equation:

dAΦ = − ?h FA, (5.43)

and the Prasad-Sommerfeld boundary conditions:

M = lim
r→∞

∣∣∣∣Φ(r)
∣∣∣∣, k = lim

r→∞
1
4π

∫

S2
r

tr(ΦFA), (5.44)

where S2
r denotes a sphere of radius r centred around some fixed point in H3 and FA is the

curvature of the connection A.

The moduli space of hyperbolic monopoles of charge k is the space of solutions satisfying

these conditions modulo gauge transformations. This is a manifold of dimension 4k − 1, for

k ≥ 1, but can be enlarged by a circle factor to yield a moduli space with dimension 4k. For

well-separated BPS monopoles in flat space, treating them as point particles carrying scalar,

electric and magnetic charges makes it possible to find a metric on the moduli space. We

denote by Mk the moduli space of k-monopoles in flat space and by M̃k the k-fold covering

of Mk, which can be written as

M̃k = M̃0
k × S1 × E3, (5.45)

where E3 represents the centre of motion of the system, M̃0
k the relative motions and S1 the

total conserved electrical charge. (For k = 2, M̃0
2 is the Euclidean Taub-NUT metric with

negative parameter) For monopoles in H3, there is no equivalent splitting of the covering

space. As such, in order to simplify the problem we are then facing, we consider a simplified

(and unphysical) situation where one or more of the monopoles has a fixed position, and it

is to this construction that we turn next.
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Motion of a Test Monopole

We consider the motion of a monopole moving in hyperbolic space H3 with k monopoles at

fixed points Pj , j = 1, . . . , N in H3. We treat these fixed monopoles as point particles with

electric charge (denoted by q), magnetic charge (denoted by g) and resulting scalar charge

(g2 + q2)
1
2 . The metric in this case is

ds2 = −dt2 + h, (5.46)

where, as above, h is a metric on H3 and ?h is the resulting Hodge operator on h. The Higgs

field Φ at the point P ∈ H3 is given by

Φ =
(g2 + q2)

4π
V (5.47)

with

V =
N∑

j=1

cothD(P, Pj)−N, dV = ?hdω, (5.48)

where V satisfies the Laplace equation on H3, d?h
dV = 0 and D(P, Pj) denotes the hyperbolic

distance between P and Pj .

Gibbons and Warnick go on to demonstrate that the slow motion of a monopole in this

environment is equivalent to a geodesic motion on a space with metric at P given by

ds2 = V h + V −1 (dτ + ω)2 (5.49)

with

V = 1 + p


N −

N∑

j=1

cothD(P, Pj)


 , dV = ?hdω, (5.50)

where g = 4πp. Thus, monopole motion in H3 in the presence of N fixed monopoles can

be described by geodesic motion on a hyperbolic multi-centre metric given by the above

construction.

Singularities

The choice of parameter p is important in determining whether we have a singular or non-

singular metric. Le Brun [47] considered the above metric with p = −1
2 . In that case, we

have
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V = 1− 1
2


N −

N∑

j=1

cothD(P, Pj)




=
(

1− N

2

)
+

1
2

N∑

j=1

cothD(P, Pj)

≥
(

1− N

2

)
+

N

2
= 1,

(5.51)

due to the behaviour of coth. Thus, the solution is everywhere regular and the apparent

singularities are nuts as with the Taub-NUT metrics.

y = coth(x) y = 1
x

0 1 2 3 4 5

y

0

2

4

6

8

10

Figure 5.1: Plot of coth(x) for x > 0

In the case of p > 0 which Gibbons and Warnick pursue, the situation is somewhat different.

We have

V = 1 + p


N −

N∑

j=1

cothD(P, Pj)
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= 1 + pN − p
N∑

j=1

cothD(P, Pj)

≤ 1 + pN − pN

= 1.

(5.52)

There exists the possibility that V is zero and, as the authors acknowledge, this gives rise to

singularities as in the Gibbons-Hawking case. However, they go on to say they will ignore

them and that they get smoothed out in the moduli space - “This is precisely what happens

in the case of monopoles in flat space, where the full Atiyah-Hitchin metric is regular, while

the negative mass Taub-NUT is not.”

5.4 Olbers’ and Seeliger’s Paradoxes

As a historical note, we will briefly discuss both Olbers’ and Seeliger’s paradoxes and how

convergence of the potential given by an infinite array of periodic instantons is the equivalent

problem in our context.

5.4.1 Seeliger’s Paradox

In 1895, Hugo von Seeliger demonstrated that an infinite universe with a roughly uniform

mass distribution is incompatible with Newton’s theory of gravitation.

Consider a Cartesian coordinate system with a sphere of radius R, constant density ρ and

volume V centred at the origin. The Newtonian potential Φ(x0, y0, z0) at the point

P (x0, y0, z0) inside the sphere is given by:

Φ (x0, y0, z0) = Gρ

∫

V

dV

|~r − ~r0|
1
2

= 2πGρ

(
R2 − r2

0

3

)
, (5.53)

where ~r = (x, y, z) and ~r0 = (x0, y0, z0). If we now let R → ∞, we see that Φ → ∞, corre-

sponding to infinite matter in the sphere.

If we now calculate the gravitational force, ~F = ∇Φ, it only has a radial component and

we obtain

Fr0 = −GM0

r2
0

, (5.54)
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which does not depend on R. If we choose P (r0) to be the origin, we have Fr0 = 0, even

though Φ = ∞. Thus, the gravitational force is indeterminate, depending as it does on the

choice of origin. This stems from the lack of a gravitating centre in an infinite universe with

evenly distributed stars throughout.

Seeliger attempted to resolve the situation by modifying Newton’s theory, but this and other

approaches are still left facing a puzzle: why is the sky so dark?

5.4.2 Olbers’ Paradox

In 1823, Wilhelm Olbers described one of the difficulties with assuming the universe is homo-

geneous, isotropic and infinite in time and space. These assumptions mean that our location

in the universe is not special in any way; the same laws of physics apply everywhere and we

would expect to find the same substances anywhere. Consequently, when averaged over a

sufficiently large region of space, we will see roughly the same number of stars in whatever

direction we look. As the universe is infinite, we would expect to see stars wherever we look

and all the night sky would be bright. Moreover, an infinite amount of energy will have

reached us, making the universe impossibly bright and hot.

Let us explore this mathematically. The flux we receive from a single star is given by

f =
L

4πr2
, (5.55)

where L is the luminosity of the star and r is the distance away from us. The total flux we

would receive from all stars, ftotal is the flux from one star multiplied by the number density

of N stars integrated over all space. In spherical polar coordinates {r, θ, φ}, we have

ftotal =
∫ 2π

0

∫ π

0

∫ ∞

0

NL

4πr2
r2 sin θdrdθdφ

=
∫ 2π

0

∫ π

0

NL sin θ

4π

(∫ ∞

0
dr

)
dθdφ

=
∫ 2π

0

NL

2π

(∫ ∞

0
dr

)
dφ

= NL

∫ ∞

0
dr

= ∞.

(5.56)

Why does this not occur in real life? Well, various factors are thought to come into play:
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- The age of the universe is finite and, combined with the speed of light being finite,

this means that light from the most distant stars is yet to reach us;

- There is fractal distribution of galaxies, meaning that there is a lot of empty space

between stars and galaxies and thus the energy coming from each direction would not

add up to infinity. This explanation is due to Mandelbrot;

- The universe is expanding and thus by the time the light reaches us from distant

stars it will have been red-shifted.

5.4.3 Relation to Periodic Instantons

Recall that the Gibbons-Hawking metric is given by

ds2 = V −1 (dτ + ~ω · d~r)2 + V d~r2, (5.57)

where the infinite centre solution for V with periodic instantons along the x3 axis is given by

V =
∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 . (5.58)

Clearly this does not converge (see Gross and Wilson [28]) and represents the same problem

we see in Olbers’ and Seeliger’s Paradoxes. To quote Cvetic et al, “one is likely to run into the

problem that if all the terms are taken to be positive, then the associated expression for the

potential is that of a periodic array of charges all of the same sign and the same magnitude,

and this sum will not converge”.
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Chapter 6

Alternative Approaches to

Convergence

6.1 Introduction

In the previous chapters, we have tried to ensure the convergence of the potential for a

distribution of infinitely many instantons with identical sources. We have

ds2 = V −1 (dτ + ~ω · d~r)2 + V d~r2,

V = V0 + Vc

∞∑

j=−∞
|~r − ~rj |−1, ~∇V = ~∇× ~ω. (6.1)

The solution to the convergence problem we have employed thus far is to subtract an infinite

constant, giving

V = V0 + Vc




∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 − 2

∞∑

j=1

j−1


 , (6.2)

but with a singularity occurring when V is zero. From now on, ρ2 :=
√

x2
1 + x2

2. In this

chapter we will investigate three alternative approaches:

Non-periodic instantons: We study the work of Anderson et al [1] who solve the problem

of convergence by supposing that instead of having a periodic array of instantons, we position

them at increasing distances from each other. We outline their construction and discuss what

happens if we try to force the distribution to be periodic.

Quasi-periodic instantons: We explore the construction of Nergiz and Saçilog̃lu [52] who

use a subtraction term to ensure convergence, but this time within the construction of three-
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dimensional lattices of instantons. This approach gives rise to zero-regions which are singular.

Reciprocal infinite constant: Finally, we construct a solution with our potential divided

by the infinite constant and show that it corresponds to a potential that is constant apart

from along the x3-axis, where it behaves like a row of delta functions, and that the resulting

spacetime is flat but with delta singularities occurring.

6.2 Non-Periodic Instantons

We consider the work of Anderson, Kronheimer and LeBrun [1], who solve the problem of

the divergence of the potential V in a different way to the method of subtracting an infinite

constant, by using a hierarchical distribution of instantons. We will show that if we try to

force the distribution to be periodic then this results in either singularities or flat metrics,

even after modifying the metric.

The basis of their idea is as follows. Let {~rj}∞j=1 ⊂ R3 be a divergent sequence such that for

some point ~r0 ∈ R3,

U :=
∞∑

j=1

|~r0 − ~rj |−1 < ∞. (6.3)

We can then define a smooth function V : R3/{~rj} → R by

V (~r) :=
1
2

∞∑

j=1

|~r − ~rj |−1. (6.4)

The metric is the standard Gibbons-Hawking metric (6.1). This construction yields a com-

plete Ricci-flat Kähler manifold, and relies on the uneven distribution of the instantons. If

we fix the value of x3, which simplifies the form of ~ω (as it becomes a function of ρ := ρ2

only) and thus the metric, we can calculate the Riemann curvature scalar:

[R]2 =
27ρ2 (∂ρV )4 + 12V 2

(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+ 8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV )

4ρ2V 6
. (6.5)

6.2.1 Example

Let ε > 0 and take ~rj =
(
0, 0, j1+ε

)
and r0 = (0, 0, 0). Then

U =
∞∑

j=1

j−(1+ε) < ∞, (6.6)
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and V is smooth on its domain. Clearly V satisfies the Laplace equation. Taking ε = 0 means

U would diverge and V would no longer be smooth. We would have

V =
∞∑

j=−∞

(
ρ2
2 + (x3 − j)2

)− 1
2 . (6.7)

It is then clear that this sum diverges. We pause to consider the convergence of ~ω. If we take

ε = 1, then we have

~ω · d~r = n




∞∑

j=−∞

x3 − j2

(
ρ2
2 + (x3 − j2)2

) 1
2


dθ ≈ lim

N→∞
n

(
2

(⌊
x

1
2
3

⌋
+

⌈
x

1
2
3

⌉)
+ 2N − 1

)
dθ

(6.8)

for small values of ρ, which clearly diverges. On the other hand, if we take ε = 2, then we

have

~ω · d~r = n




∞∑

j=−∞

x3 − j3

(
ρ2
2 + (x3 − j3)2

) 1
2


dθ ≈ n

(⌊
x

1
3
3

⌋
+

⌈
x

1
3
3

⌉)
dθ (6.9)

for small ρ2, which converges. For careful choices of ε, then, this example works and gives a

finite value for the Riemann curvature scalar (6.5), even at the positions of the instantons.

6.2.2 The Periodic Limit

What happens if we try to have periodically distributed instantons in this setup? Near a

pole, say ~r1, we have

V ≈ 1
2
|~r − ~r1|−1 + c, (6.10)

where c → ∞ in the periodic limit. We can examine what is going on here by taking the

simplest case: let

V = c +
m

|~r − ~r0| , (6.11)

near ~r0 = 0, so one point in R3. This yields

~∇V =
(−mx1,−mx2,−mx3)

r3
= −m

~r

r3
, ~ω =

(mx2,−mx3, 0)
r (x3 + r)

. (6.12)

It is easier to think of this in spherical polar coordinates. Note that

~∇V = −m
~r

r3
=⇒ ~ω · d~r = m cos θdφ. (6.13)
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The metric is, spherical coordinates, given by

ds2 = V
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
+ V −1 (dτ + m cos θdφ)2 . (6.14)

We can therefore calculate the curvature, obtaining

Q := [R]2 =
24m2c2

(cr + m)6
. (6.15)

r
1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 6.1: The Riemann curvature scalar (6.15) for the simplest non-periodic instanton

distribution

Note that the curvature is always positive as m and c are positive. In order to investigate

what happens to the curvature for different choices of the constants, we calculate some useful

quantities. We have

dQ

dr
= − 144m2c3

(cr + m)7
, (6.16)

and so

M := max
r∈[0,∞)

Q = Q
∣∣∣
r=0

=
24c2

m4
(6.17)

gives us the maximum curvature. The area under the curve is given by
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A :=
∫ ∞

0

24m2c2

(cr + m)6
dr =

24
5

c

m3
, (6.18)

and the width, which is defined to be rw, the value of r such that Q(rw) = M
2 , is given by

rw :=
m

c

(
2

1
6 − 1

)
. (6.19)

Now, if m is fixed, we have

- M →∞ as c →∞,

- A →∞ as c →∞,

- rw → 0 as c →∞,

and we have a singularity at r = 0. On the other hand, we could suggest that m should also

tend to infinity, and so could take m = c
1
2 , giving

- M = 24,

- A = 24
5 c−

1
2 → 0 as c →∞,

- rw =
(
2

1
6 − 1

)
c−

1
2 → 0 as c →∞.

We either therefore have a singularity at the origin (which we would expect from looking

at the definition of V ) or an almost flat space with the exception of the origin. We might

attempt to rescue the situation, aiming to have a finite maximum curvature and to prevent

the width and the area under the curve from tending to zero.

6.2.3 Multiplying the Metric by a Constant

We could multiply the whole of the metric by a constant, say α, to obtain

ds2 = α
(
V dr2 + r2dθ2 + r2 sin2 θdφ2

)
+ αV −1 (dτ + m cos θdφ)2 . (6.20)

Calculating the curvature scalar gives us

Q := [R]2 =
24m2c2

(rc + m)6 α2
. (6.21)

This is equivalent to multiplying the potential V by α, giving us the original metric but with

V (r) = α
(
c +

m

r

)
. (6.22)
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Consequently we have

M =
24c2

m4α2
,

A =
24c

5m3α2
,

rw =
m

c

(
2

1
6 − 1

)
. (6.23)

In this case, if m is fixed, then we could take α = c, giving

- M = 24m−4,

- A = 24
5 m−3c−1 → 0 as c →∞,

- rw → 0 as c →∞.

On the other hand, taking m = c gives us

- M = 24c−2α−2 → 0 as c →∞,

- A = 24
5 c−2α−2 → 0 as c →∞,

- rw = 2
1
6 − 1.

Clearly, taking α = c−1 gives us a potential

V (r) = 1 +
1
r
, (6.24)

yielding a normal self-dual Taub-NUT metric. (Note that M,A and rw would all be finite).

However, using an infinite constant to eliminate another infinite constant rather defeats the

point of the exercise!

6.2.4 Rescaling r

We could try rescaling r, so r 7→ αr. We obtain the following metric:

ds2 = α2V dr2 + α2r2dθ2 + α2r2 sin2 θdφ2 + αV −1
(
dτ +

m

α
cos θdφ

)2
,

V (r) = c +
m

αr
. (6.25)

Calculating the curvature in this case gives

Q := [R]2 =
m2

4

(
11m2

(
α2 − 1

)2 + 48α4c2r2
(
α2 + 1

)
+ 32α3crm

(
α2 − 1

))

(crα + m)6 α6r2
. (6.26)
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As Q is singular when r = 0, it does not make sense to talk about the maximum curvature

or the width as defined above. We can however discuss the area, A. We have

I =
∫ ∞

0
Q(r)dr

= 12m2α−2c2
(
α2 + 1

)
I1 + 8α−3cm3

(
α2 − 1

)
I2 +

11
4

α−6m4
(
α2 − 1

)2
I3,

(6.27)

where

I1 =
∫ ∞

0
(rαc + m)−6 dr =

(
5cm5α

)−1
,

I2 =
∫ ∞

0
r−1 (rαc + m)−6 dr = − 137

60m6
−m−6

[
ln

(
rcα + m

r

)]∞

0

,

I3 =
∫ ∞

0
r−2 (rαc + m)−6 dr =

87cα

10m7
−m−6

[
r−1

]∞

0

+
6cα

m7

[
ln

(
rcα + m

r

)]∞

0

. (6.28)

Thus,

I = cm−3α−5

(
967
120

α4 − 1631
60

α2 +
957
40

+
(
α2 − 1

) (
17
2

α2 − 33
2

)
T

)

− 11
4

m−2α−6
(
α2 − 1

)2
[
r−1

]∞

0

,

(6.29)

where

T :=
[
ln

(
rcα + m

r

)]∞

0

. (6.30)

We can see that the only way to salvage the situation is if α = ±1, which takes us back to

where we started! We therefore have a singularity at r = 0 and flat space elsewhere.

6.3 Quasi-Periodic Instantons

In an essay in the book ‘General Relativity: An Einstein Centenary Survey’ [33], Hawking

discussed spacetime structures that have one gravitational instanton per characteristic vol-

ume, whose size is defined by a normalisation constant.

In discussing the best method of looking for a quantum theory of gravity, Hawking favours

the path-integral approach suggested by Feynman. This leads to the idea that “there can

be quantum fluctuations of the metric not only within each topology but from one topology
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6.3 Quasi-Periodic Instantons

to another,” an idea first suggested by Wheeler in 1963. He thought that such spacetimes

might have a ‘foam-like’ structure on the scale of the Planck length.

In order to make this rigorous, Hawking considers the “path integral over all compact metrics

which have a given spacetime volume V ”. In calculating N(V )dV , the number of gravita-

tional fields with 4-volumes between V and V +dV , he shows that the dominant contributions

to N(V ) come from “metrics with one gravitational instanton per volume h−1”.

The paper by Nergiz and Saçilog̃lu [52] claims to give an explicit example of this spacetime

foam using an infinite centre generalisation of the Gibbons-Hawking metric (see (6.1)). Hawk-

ing’s description of spacetime foam suggested that the metric should involve quasi-periodic

functions of the coordinates. Through the work of Rossi [57] and Gursey and Tze [29] it is

possible to envisage a solution consisting of BPS monopoles arranged on a three-dimensional

lattice. We now review Nergiz and Saçilog̃lu’s solution (from now on referred to as the quasi-

periodic solution).

We take the ~rj to be the points ~q on a three-dimensional lattice with

~q := n1~q1 + n2~q2 + n3~q3, (6.31)

where n1, n2, n3 ∈ Z and {~q1, ~q2, ~q3} are the basis vectors of the lattice. In order to ensure

convergence, we cannot simply take

V =
∑
n1

∑
n2

∑
n3

|~r − ~q|−1, (6.32)

as an integral version of this has a quadratic divergence of the form

∫ ∞

|~q|min

d|~q||~q|2
|~q| . (6.33)

Instead, it turns out that the following potential V , which contains subtraction terms, does

converge:

V (~r) = r−1 +
∑ ∑

{~q}6=0

∑
ψ(~r, ~q), (6.34)

where

ψ (~r, ~q) := |~r − ~q|−1 − |~q|−1

(
1 +

~q · ~r
q2

+ (2q4)−1
(
3 (~q · ~r)2 − q2r2

))
. (6.35)
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6.3 Quasi-Periodic Instantons

We have to calculate the whole of ψ before performing the summation otherwise the sum is

meaningless. The question is: does this potential ever equal zero, and if so, does this result

in a singularity?

To investigate this, let us choose the standard Euclidean basis {e1, e2, e3} and consider the

infinite lattice given by

V (x1, x2, x3) =
(
x2

1 + x2
2 + x2

3

)− 1
2 +

∞∑

k=1

∞∑

j=1

∞∑

i=1

ψijk(x1, x2, x3), (6.36)

where

ψijk (x1, x2, x3) :=
(
(x1 − i)2 + (x2 − j)2 + (x3 − k)2

)− 1
2 − (

i2 + j2 + k2
)− 1

2

− ix1 + jx2 + kx3

(i2 + j2 + k2)
3
2

− 3
2

(ix1 + jx2 + kx3)
2

(i2 + j2 + k2)
5
2

+
1
2

x2
1 + x2

2 + x2
3

(i2 + j2 + k2)
3
2

,

(6.37)

with i, j, k ∈ N. We have the following picture:

Figure 6.2: A section of the Euclidean lattice for the quasi-periodic instanton solution

The i-sum is a row of instantons, the j-sum a grid and the k-sum a cube. This is a good
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6.3 Quasi-Periodic Instantons

choice of lattice as it is an infinite-centre lattice in a basis that is easy to work with. It also

avoids the singularity at r = 0. If we calculate the value of ψ at the position of one of the

instantons, so (x1, x2, x3) = (i, j, k), we have

ψijk(i, j, k) =
(
(i− i)2 + (j − j)2 + (k − k)2

)− 1
2 − 3

(
i2 + j2 + k2

)− 1
2 →∞, (6.38)

and so around each instanton there is a region such that V > 0. In order to investigate the

behaviour of V between the instantons, we consider first a one-dimensional version of the

problem.

6.3.1 Rows of Instantons

The potential V for a row of instantons is given by

V (x1, x2, x3) =
(
x2

1 + x2
2 + x2

3

)− 1
2 +

∞∑

i=1

ψi(x1, x2, x3), (6.39)

where

ψi := ψi11 =
(
(x1 − i)2 + (x2 − 1)2 + (x3 − 1)2

)− 1
2 − (

i2 + 2
)− 1

2

− ix1 + x2 + x3

(i2 + 2)
3
2

− 3
2

(ix1 + x2 + x3)
2

(i2 + 2)
5
2

+
1
2

x2
1 + x2

2 + x2
3

(i2 + 2)
3
2

.

(6.40)

We can narrow our attention down just to the space between the instantons by choosing that

x2 = 1 = x3, yielding the following potential:

V =
(
x2

1 + 2
)− 1

2 +
∞∑

i=1

ψi(x1, 1, 1), (6.41)

where

ψi(x1, 1, 1) = |x1 − i|−1 − (
i2 + 2

)− 1
2 +

(
x2

1(1− i2)− (8 + i2)(1 + ix1)
)
(i2 + 2)−

5
2

≈ |x1 − i|−1 − (
i2 + 2

)− 1
2 − x1i

−2. (6.42)

We can see from the figures below that V is negative between instantons for a range of values

of x1. As V is clearly continuous away from the inatantons, there will, by the Intermediate

Value Theorem, be points where V is zero. In the second diagram, we take x3 = 1 and

vary x2; we could have done the opposite and the result would be the same because of the

symmetry.
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x
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9

V

K20

K10

0

10

20

30

40

50

60

70

Figure 6.3: 2D representation of V (using (6.41) and (6.42)) between two members of a row

of quasi-periodic instantons, with x := x1 ∈ [11, 12]

x1 V x1 V

1.5 1.54797 9.5 -14.46200

2.5 0.45678 10.5 -17.36534

3.5 -1.01964 11.5 -20.44930

4.5 -2.75225 12.5 -23.71252

5.5 -4.70359 13.5 -27.15395

6.5 -6.85744 14.5 -30.77275

7.5 -9.20505 15.5 -34.56827

8.5 -11.74107 16.5 -38.53995

6.3.2 Grids of Instantons

We now consider a grid of instantons with potential given by

V =
(
x2

1 + x2
2 + x2

3

)− 1
2 +

∞∑

j=1

∞∑

i=1

ψij(x1, x2, x3), (6.43)

where
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2.0

1.5
y

-30

1.0

0.5

0.0

-511.0

11.25

20

11.5

x

45

11.75

12.0

70

Figure 6.4: 3D representation of V (using (6.41) and (6.42)) between two members of a row

of quasi-periodic instantons, with x := x1 ∈ [11, 12] and y := x2 ∈ [0, 2]

ψij := ψij1 =
(
(x1 − i)2 + (x2 − j)2 + (x3 − 1)2

)− 1
2 − (

i2 + j2 + 1
)− 1

2

− ix1 + jx2 + x3

(i2 + j2 + 1)
3
2

− 3
2

(ix1 + jx2 + x3)
2

(i2 + j2 + 1)
5
2

+
1
2

x2
1 + x2

2 + x2
3

(i2 + j2 + 1)
3
2

.

(6.44)

Again, suppose we consider just the region between the instantons, taking x3 = 1 to simplify

the potential. We have

V =
(
x2

1 + x2
2 + 1

)− 1
2 +

∞∑

j=1

∞∑

i=1

ψij(x1, x2, 1), (6.45)

where

ψij(x1, x2, 1) ≈ (
(x1 − i)2 + (x2 − j)2

)− 1
2 − (

i2 + j2 + 1
)− 1

2 − x1x2i
−2j−2. (6.46)

We have the following figures for different parts of the grid. It is clear from this that the

behaviour of the system is the same as in the case of just considering a single row and there

are zero regions around the instantons.
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−75

−50

−25

0
5.05.0

5.255.25
5.55.5

x y

5.75 5.75
6.0 6.0

Figure 6.5: Behaviour of V (using (6.45) and (6.45)) between members of a grid of quasi-

periodic instantons, with x := x1 ∈ [5, 6] and y := x2 ∈ [5, 6]

x1 x2 = 1 x2 = 3 x2 = 5

-2.5 2.25919 -0.84682 -8.63947

-1.5 0.31359 -4.13109 -14.09088

-0.5 -0.00515 -5.07719 -16.93109

0.5 2.062382 -2.61493 -16.18125

1.5 3.41630 -0.72778 -16.00242

2.5 1.18274 -3.38381 -20.55435

3.5 -3.64472 -9.48574 -28.85445

4.5 -10.86078 -18.62906 -40.53357

5.5 -20.36554 -30.57563 -55.34708

6.5 -32.09447 -45.16796 -73.11535

6.3.3 Cubes of Instantons

We can now consider the full metric. Following the pattern from earlier, we can see that

V =
(
x2

1 + x2
2 + x2

3

)− 1
2 +

∞∑

k=1

∞∑

j=1

∞∑

i=1

ψijk(x1, x2, x3), (6.47)
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where

ψijk(x1, x2, x3) ≈
(
(x1 − i)2 + (x2 − j)2 + (x3 − k)2

)− 1
2 −(

i2 + j2 + k2
)− 1

2 −x1x2x3i
−2j−2k2.

(6.48)

The table below has data for x2 = 1 and x3 = 10:

x1 V

-2.5 -54.45775

-1.5 -68.34261

-0.5 -79.42547

0.5 -86.82682

1.5 -94.82779

2.5 -107.70995

3.5 -124.59506

4.5 -145.19040

5.5 -169.29930

6.5 -196.76745

It is then clear that there are zero regions around each of the instantons in our lattice, and

that at these points, the metric is singular as, following Gross and Wilson [28], we see that

the Riemann curvature for a Gibbons-Hawking metric is given by

[R]2 =
V −144(V −1)

2
, (6.49)

and so when V is zero, it blows up to infinity and we have a singularity.

6.4 Reciprocal Infinite Constant

In this section we will construct a gravitational instanton solution in which the convergence

of the potential given by a series of periodic instantons is achieved by dividing it by an infinite

constant. Consider the Gibbons-Hawking metric with

V = φ(ρ2, x3) = lim
n→∞φn(ρ2, x3), (6.50)

where

φn(ρ2, x3) = (2Hn)−1
n∑

j=−n

(
ρ2
2 + (x3 − j)2

)− 1
2 (6.51)
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and

Hn =
n∑

j=1

j−1. (6.52)

is the nth harmonic number. This is a perfectly good instanton solution, but instead of

subtracting an infinite constant, we use the fact that Hn → ∞ as n → ∞ to counter the

divergence of the potential. In this section, we will demonstrate that our potential can be

written as

φ(ρ2, x3) =
{∞ if ρ2 = 0, x3 ∈ Z,

1 if otherwise.
(6.53)

In other words, φ behaves like a series of delta functions spread along the x3-axis, and is

otherwise a constant function. In order to demonstrate this, we consider the cases where

ρ2 = 0 and ρ2 > 0 separately, and then will study the resulting metric.

6.4.1 The Case ρ2 = 0

Consider the case where ρ2 = 0. We have

φn(0, x3) = H−1
n

n∑

j=−n

|x3 − j|−1. (6.54)

A theorem of Euler shows that

∞∑

j=−∞
(a + dj)−1 =

π

d
cot

(aπ

d

)
, (6.55)

and so we have

∞∑

j=−∞
(x3 − j)−1 = π cot (x3π) (6.56)

as cot is an odd function. As this is clearly singular when x3 ∈ Z, we would expect that, as

n →∞, φn would tend to a series of delta functions. We make the following conjecture:

φ(0, x3) = lim
n→∞φn(0, x3) =

{∞ if x3 ∈ Z,

1 if x3 /∈ Z.
(6.57)

Firstly, we note that φn(0, x3) = φn(0,−x3) ∀ x3 ∈ R and φn is non-singular in the regions

between integer values of x3. As we can see by inspection, φn(0, x3) diverges for integer values

of x3 and within each region has a minimum half-way between integer values. We will now

prove the following results:
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- Lemma 6.1: φ
(
0, 1

2

)
= φ

(
0, r + 1

2

) ∀ r ∈ Z,

- Lemma 6.2: φ
(
0, 1

2

)
= 1 ∀ r ∈ Z,

- Lemma 6.3: φ(0, x3) ≥ φ
(
0, 1

2

) ∀ x3 ∈ R/Z,

- Lemma 6.4: φ(0, x3) ≤ 1 ∀ x3 6= Z.

We use (6.1), (6.2) and (6.3) to show that φ(0, x3) ≥ 1 ∀ x3 6= Z. Combining this with (6.4)

and applying the Sandwich Theorem gives the result.

Proof of Lemma 6.1

We can construct a suitable function T which tends to zero and thus arrive at the result. We

have

Tn :=
n∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1
−

n∑

j=−n

∣∣∣∣∣j −
(

r +
1
2

) ∣∣∣∣∣
−1

where r ∈ Z

=
n∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1
−

n∑

j=−n

∣∣∣(j − r)− 1
2

∣∣∣
−1

=
n∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1
−

n−r∑

j=−n−r

∣∣∣j − 1
2

∣∣∣
−1

.

(6.58)

Taking the limit as n →∞ gives us

T = lim
n→∞Tn =

∞∑

j=−∞

∣∣∣j − 1
2

∣∣∣
−1
−

∞∑

j=−∞

∣∣∣∣∣j −
(

r +
1
2

) ∣∣∣∣∣
−1

= 0. (6.59)

Thus,

φ

(
0,

1
2

)
= φ

(
0,

1
2

+ r

)
∀ r ∈ Z. (6.60)

¤

Proof of Lemma 6.2

Notice that we can write

φ

(
0,

1
2

)
= lim

n→∞




(
n +

1
2

)−1

+ 2
n∑

j=1

(
j − 1

2

)−1

2
n∑

j=1

j−1




, (6.61)
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because

n∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1

= 2 +
n∑

j=1

∣∣∣j − 1
2

∣∣∣
−1

+
−1∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1

(6.62)

and

−1∑

j=−n

∣∣∣j − 1
2

∣∣∣
−1

=
n+1∑

j=2

∣∣∣j − 1
2

∣∣∣
−1

=
n∑

j=1

∣∣∣j − 1
2

∣∣∣
−1

+
(

n +
1
2

)−1

− 2. (6.63)

We have

n∑

j=1

(
j − 1

2

)−1

=
1
2

n∑

j=1

(
j2 − j

2

)−1

+
n∑

j=1

j−1. (6.64)

Using the above gives us

φ

(
0,

1
2

)
= 1 + lim

n→∞




(
n +

1
2

)−1

+
n∑

j=1

(
j2 − j

2

)−1

2
n∑

j=1

j−1




. (6.65)

Now,

n∑

j=1

(
j2 − j

2

)−1

≤ 2
n∑

j=1

j−2 ≤ π2

3
∀ n ∈ N. (6.66)

Thus, we have

φ

(
0,

1
2

)
= φ

(
0, r +

1
2

)
= 1 ∀ r ∈ Z (6.67)

as required.

¤

Proof of Lemma 6.3

The next step in the process is to construct a lower bound for φn(0, x3). We have, as each

region between the integers has a minimum at its halfway point,

φn

(
0, n− 1

2

)
≤ φn(0, x3) (6.68)

for any x3 ∈ (−n,−n− 1) ∪ (−n− 1,−n− 2) ∪ · · · ∪ (n− 1, n), ∀ n ∈ N. In the limit,

φ(0, x3) ≥ φ

(
0,

1
2

)
= 1 ∀x3 ∈ R/Z (6.69)

¤
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Proof of Lemma 6.4

Finally, we construct an upper bound for φn(0, x3). We have

φn(0, x3) =

n∑

j=−n

|x3 − j|−1

2
n∑

j=1

j−1

≤ π| cot(πx3)|
2(ln(n) + γ)

+ φn

(
0,

1
2

)
=: Sn, (6.70)

where we use

Hn =
n∑

j=1

j−1 ≥ ln(n) + γ ∀ n ∈ N. (6.71)

The diagram (for n = 1) shows that this is a sensible choice of bound. For x3 /∈ Z,

φ(0, x3) = lim
n→∞φn(0, x3) ≤ 0 + φ

(
0,

1
2

)
= 1 (6.72)

Figure 6.6: Plot illustrating the choice of upper bound for φ in (6.70) for n = 1 and x3 ∈ [0, 1]

Thus, we have proven that

φ(0, x3) = lim
n→∞φn(0, x3) =

{∞ if x3 ∈ Z,

1 if x3 /∈ Z.
(6.73)

¤
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6.4.2 The Case ρ2 > 0

For ρ2 > 0, φn is clearly non-singular everywhere as both terms in the denominator are always

positive. Since φ(ρ2, x3) = φ(ρ2,−x3) ∀ x3 ∈ R, we can study φ for x3 ≥ 0 without loss of

generality.

Theorem 6.5 φ(ρ2, x3) = 1 ∀ ρ2 > 0, x3 > 0.

Proof Analytically, we see that


 ∂

∂x3

n∑

j=−n

(ρ2
2 + (x3 − j)2)−

1
2




∣∣∣∣∣
x3=0

=




n∑

j=−n

(j − x3)(ρ2
2 + (x3 − j)2)−

3
2




∣∣∣∣∣
x3=0

=
n∑

j=−n

j(ρ2
2 + j2)−

3
2

= 0. (6.74)

Thus, we have φn(ρ2, x3) ≤ φn(ρ2, 0). Now,

φn(ρ2, 0) =

n∑

j=−n

(ρ2
2 + j2)−

1
2

2
n∑

j=1

j−1

=

ρ−1
2 + 2

n∑

j=1

(ρ2
2 + j2)−

1
2

2
n∑

j=1

j−1

≤
ρ−1
2 + 2

n∑

j=1

j−1

2
n∑

j=1

j−1

. (6.75)

Taking the limit as n → ∞ gives φ(ρ2, 0) ≤ 1 and thus φ(ρ2, x3) ≤ 1 ∀ x3 ≥ 0. Finally, we

show the reverse inequality. Using the fact that

1√
a2 + b2

≥ 1
a + b

∀ a, b > 0, (6.76)

we have

2Hnφn(ρ2, x3) =
1√

ρ2
2 + x2

3

+
n∑

j=1

(ρ2
2 + (x3 − j)2)−

1
2 +

n∑

j=1

(ρ2
2 + (x3 + j)2)−

1
2

≥ 1√
ρ2
2 + x2

3

+
n∑

j=1

(ρ2 + |x3 − j|)−1 +
n∑

j=1

(ρ2 + |x3 + j|)−1.

(6.77)

Now,

n∑

j=1

(ρ2 + |x3 − j|)−1 ≥
n∑

j=1

(ρ2 + |x3 + j|)−1 (6.78)

111



6.4 Reciprocal Infinite Constant

and, as x3 > 0,

n∑

j=1

j−1 −
n∑

j=1

(ρ2 + |x3 + j|)−1 = (ρ2 + x3)
n∑

j=1

(j(ρ2 + x3) + j2)−1

≤ (ρ2 + x3)
n∑

j=1

j−2

≤ (ρ2 + x3)
π2

6
.

(6.79)

Therefore,

n∑

j=1

(ρ2 + |x3 − j|)−1 +
n∑

j=1

(ρ2 + |x3 + j|)−1 ≥ 2
(

Hn − π2

6
(ρ2 + x3)

)
, (6.80)

resulting in

φn(ρ2, x3) ≥ 1 +
1

2Hn

√
ρ2
2 + x2

3

− π2

12Hn
(ρ2 + x3). (6.81)

Consequently,

φ(ρ2, x3) = lim
n→∞φn(ρ2, x3) ≥ 1, (6.82)

yielding the result.

¤

6.4.3 Investigating the Spacetime

Recall that the metric is given by

ds2 = V −1 (dτ + ~ω · d~r)2 + V d~r2,

~∇V = ~∇× ~ω. (6.83)

In order to investigate the behaviour of the metric for V given by

V (ρ2, x3) =
{∞ if ρ2 = 0, x3 ∈ Z,

1 if otherwise,
(6.84)

we take V := c ∈ R, a constant, so that ~ω = ~0. We then have

ds2 = V −1dτ2 + V dx2
1 + V dx2

2 + V dx2
3 (6.85)

and the Riemann curvature [R]2 = 0. Thus, in this case, the space is flat except at the

location of the instantons, where delta singularities arise.
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Chapter 7

Extreme Reissner-Nordström Black

Holes

7.1 Introduction

In this chapter we shall apply the results obtained in previous chapters in a new context, that

of Extreme Reissner-Nordström (ERN) black holes, generating new solutions with infinitely

many of these black holes. As such, the structure of the chapter is as follows:

Finitely many black holes: We will outline the constructions of Hartle and Hawking [30]

and Myers [50] in order to show how solutions with finitely many extreme black holes work

in (D + 1)-dimensions for D ≥ 3. We shall see that these metrics are regular at the event

horizons. Solutions without naked singularities require point monopole sources and we shall

see that using any other sources generates such singularities.

Infinitely many black holes: We will consider solutions in (D + 1)-dimensions for D ≥ 3

that have infinitely many identical ERN black holes. We demonstrated in chapter three the

convergence of a periodic distribution of such black holes for D ≥ 4. We examine the be-

haviour of a periodic distribution for D = 3, using an infinite constant to ensure convergence

and exploring the resulting singularity structure. We then examine the cases of D = 4 and

D ≥ 4 and see that the Riemann curvature tensor is well-behaved. We can therefore infer

that there are no unwanted singularities.

Lattice solutions will be constructed for D ≥ 4 and we shall see that these are also well-

behaved. Finally, we shall modify the method of Anderson et al [1] to create solutions with
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7.2 Finitely Many Black Holes

unevenly distributed black holes in several axes, which as we shall see in the section on dilaton

theory, have well-behaved Riemann curvature scalars.

Smoothness of event horizons: We outline the work of Candlish and Reall [4] and see

that if we have infinitely many identical black holes distributed along one (periodic) or many

(lattice) of the axes in D = 4 dimensions, then all the horizons are smooth. This is not the

case if the black holes are unevenly distributed, where the horizon is C2 but not C3. In higher

dimensions, the horizon is C0 but not C1.

Einstein-Maxwell-Dilaton theory: Finally in this chapter, we look at a modification of

this ERN structure, allowing us to construct dilaton solutions. We will see that the metric

is regular at the event horizon in some special cases, and construct periodic, lattice and non-

periodic solutions in (D + 1)-dimensions. We also look briefly at how adding a cosmological

constant affects the behaviour of the solution.

7.2 Finitely Many Black Holes

In this section we will first look at defining an Extreme Reissner-Nordström black hole and see

that solutions with many black holes that balance the mass and charge can be constructed.

We will then consider the behaviour of such multiple black hole solutions in (3+1) dimensions

and their analytic extensions, as outlined in a 1977 paper by Hartle and Hawking [30]. Next,

we consider the situation in (D + 1)-dimensions, where D > 3. The construction of such

solutions is given by extending the method employed in the (3 + 1)-dimensional case into

higher dimensions. In doing this we will follow the treatment given by Myers [50] (and note

that similar results were found by Gibbons et al [19]). Finally, we will show that using sources

other than point monopoles in these solutions results in the presence of naked singularities.

These are singularities that are not hidden behind an event horizon, and so can be reached

in a finite time by an observer at infinity. All these solutions are generalisations of the

(D + 1)-dimensional Majumdar-Papapetrou metrics:

ds2 = −V −2dt2 + V ( 2
D−2)d~r · d~r, (7.1)

where V (xi) is a harmonic function of the D spatial coordinates (x1, . . . , xD) and the elec-

trostatic potential is A0 = V −1. The action is given by

∫
dD+1x

√−g

(
R− D − 1

4(D − 2)
FµνF

µν

)
. (7.2)
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7.2 Finitely Many Black Holes

7.2.1 What is an Extreme Reissner-Nordsröm Black Hole?

The Reissner-Nordström metric in (3 + 1) dimensions is given, in spherical coordinates, by

[5]

ds2 = −V dt2 + V −1dr2 + r2dΩ2, (7.3)

where we have

V := 1− 2Gm

r
+

GQ2

r2
, (7.4)

with m being the mass of the black hole, Q its electric charge, r its radius and G being the

gravitational constant. It is a solution of the Einstein-Maxwell equations:

Rµν − 1
2
gµνR = 2Tµν ,

∇[µFνρ] = 0, (7.5)

where

Tµν = FµλF λ
ν −

1
4
gµνFλρF

λρ, Fµν = ∂µAν − ∂νAµ. (7.6)

The metric has a curvature singularity at r = 0, which is obvious if we calculate the Riemann

curvature scalar

[R]2 =
8G2

(
6m2r2 − 12mQ2r + 7Q4

)

r8
. (7.7)

It has event horizons when V (r) = 0 and consequently at the radii

r± = Gm±
√

G2m2 −GQ2, (7.8)

leading to a number of possibilities. Of interest to us is the case where

Gm2 = Q2, (7.9)

sometimes known as the Extreme Reissner-Nordström (ERN) solution. The potential

in this case is given by

V =
(

1− Gm

r

)2

. (7.10)

115



7.2 Finitely Many Black Holes

A curious property of such a solution is that the mass is, in some sense, balanced by the

charge. Two or more ERN black holes with the same sign charge will attract each other

gravitationally and repel each other electromagnetically such that the two effects cancel out.

We can find solutions of the Einstein-Maxwell equations corresponding to any number of

black holes in a stationary configuration. The metric in the ERN case is given by

ds2 = −
(

1− Gm

r

)2

dt2 +
(

1− Gm

r

)−2

dr2 + r2dΩ2. (7.11)

A change of radial coordinate

ρ = r −Gm (7.12)

yields the metric

ds2 = −U−2(ρ)dt2 + U2(ρ)
(
dρ2 + ρ2dΩ2

)
, (7.13)

where

U(ρ) := 1 +
Gm

ρ
. (7.14)

In the original coordinate r, the electric field of the extremal solution can be written in terms

of a vector potential Aµ as

Er = ∂rA0 =
Q

r2
, (7.15)

where the timelike component of the vector potential is given by

A0 = −Q

r
= −

√
Gm

ρ + Gm
, (7.16)

yielding

√
GA0 = U−1 − 1. (7.17)

It can then be shown [5] that the Einstein-Maxwell equations (7.5) with (7.13), (7.17) can be

satisfied by any time-independent solution of Laplace’s equation

∇2U = 0, (7.18)

and solutions that behave well at infinity will take the form
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7.2 Finitely Many Black Holes

U = 1 +
N∑

j=1

Gmj

|~r − ~rj | , (7.19)

where the points ~rj are the locations of the black holes. We have therefore shown that it is

possible to construct solutions in which many ERN black holes are in equilibrium. We now

explore the resulting space-time in more detail.

7.2.2 Multiple Black Holes in (3 + 1) Dimensions

Hartle and Hawking [30] examine multiple ERN black hole solutions in detail as they explore

analytic extensions of the (3 + 1)-dimensional Majumdar-Papapetrou metric

ds2 = −V −2dt2 + V 2d~r · d~r, (7.20)

where ~r = (x1, x2, x3). We will outline their construction and discuss the resulting space-

time. From now on, we require that the units are such that c = G = 1. If we extend the

solution so that V has N singularities, where the sources are point monopoles at ~rj , we have

V = 1 +
N∑

j=1

mj

|~r − ~rj | , (7.21)

where mj > 0 and mj = ej where mj is the mass and ej is the charge, for j = 1, . . . , N . If we

allow V to run over a complete background space, then V is regular except when ~r = 0. As

we know from above, this solution corresponds to N stationary ERN black holes, but Hartle

and Hawking demonstrate that the resulting spacetime is quite complicated.

Consider the case N = 2. We have the following potential:

V = 1 +
m1

|~r − ~r1| +
m2

|~r − ~r2| (7.22)

A region of spacetime with this metric and coordinates ranging over a complete flat back-

ground space is a Type I region. It turns out that the metric is regular at ~r = ~r1, and passing

through it takes us into a region described by the same metric (7.20) but with potential

V ′(~r′) = 1− m′
1

|~r′ − ~r′1|
+

m′
2

|~r′ − ~r′2|
(7.23)

with transformed coordinates

|~r′ − ~r′1| = −|~r − ~r1| and |~r′ − ~r′2| =
√
|~r′ − ~r′1|2 + a2 + 2a|~r′ − ~r′1| cos θ, (7.24)
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7.2 Finitely Many Black Holes

where a is the separation of the sources in the background coordinates. Such a region is

called a Type IIa region. The metric is singular at the point where V ′ = 0, which we can

see if we calculate the Maxwell field invariant

J = FµνF
µν = −2

(∇V ′

V ′2

)2

→∞ as V ′ → 0. (7.25)

We can construct a region with similar properties by going through ~r = ~r2, which we call a

Type IIb region. We can pass between these regions, that is, from a Type I region into

a Type II region and vice versa as we can extend the metric through ~r = ~r1 (or ~r = ~r2) in

two different ways. However, the two null surfaces ~r = ~r1 and ~r = ~r2 represent two separate

components of the event horizon. As the singularities are all contained between these surfaces,

we must have two distinct black holes. This construction can be extended for more black

holes (that is, for other values of N).

Figure 7.1: The most general extension of the two black hole Majumdar-Papapetrou metric

A Type IIa region is the interior region inside the event horizon at ~r = ~r1 and a Type IIb

region is the interior region inside the event horizon at ~r = ~r2.

7.2.3 Multiple Black Holes in (D + 1) Dimensions

Myers [50] extends this multiple black hole construction to the case of D > 3. In this

situation, we have the metric (7.1) with the potential
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V = 1 +
N∑

j=1

mj

|~r − ~rj |D−2
, (7.26)

where ~r = (x1, . . . , xD). The Maxwell form in this case is given by

AD = ±
√

D − 1
2(D − 2)

V −1(~r), (7.27)

and the mass to charge ratio is given by

|Q|
m

=

√
D − 2
D − 1

. (7.28)

In the case of N = 1, the result is an ERN black hole in (D + 1)-dimensions. When N = 2,

the potential takes the form

V = 1 +
m1

|~r − ~r1|D−2
+

m2

|~r − ~r2|D−2
. (7.29)

As before, we will call this region a Type I region. It can be shown by a change of

coordinates (we can introduce a new radial coordinate R := |~r − ~r1|D−2) that the metric is

regular at ~r = ~r1 and we can pass through into a new region. Performing the coordinate

transformation

|~r′ − ~r′1| := |R|(D−2)−1

and |~r′ − ~r′2| :=
√
|~r′ − ~r′1|2 + a2 + 2a|~r′ − ~r′1| cos θ, (7.30)

where a is defined as above, gives a metric of the form of (7.1) but with potential

V ′(~r′) = 1− m1

|~r′ − ~r′1|D−2
+

m2

|~r′ − ~r′2|D−2
. (7.31)

The resulting region will be called a Type IIa region. The metric is singular when V ′ = 0,

which we can see by computing the Maxwell field invariant

J = FµνF
µν = −

(
D − 1
D − 2

)( ∇V ′

V ′(D−1
D−2)

)2

→∞ as V ′ → 0. (7.32)

Therefore, the surface ~r = ~r1 is the event horizon surrounding that point. Consequently, we

have a black hole. Passing through the surface ~r = ~r2 yields a second, separate black hole,

and we can define a Type IIb region by similar logic to the above. We thus have differ-

ent regions which we can pass between, yielding a configuration like that in the above diagram.

In the five-dimensional case, Gibbons et al [19] also produced multiple black hole solutions by

looking at solitonic matter solutions that saturate the Bogomol’myi bound and considering
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7.3 Infinitely Many Black Holes

the special case of no matter. They demonstrated that such solutions are supersymmetric,

in the sense of admitting a Killing spinor.

7.2.4 Sources Other Than Monopoles?

We can formulate Majumdar-Papapetrou metrics with sources other than discrete point

sources. Suppose outside of a large sphere in the background space we have a solution

V of Laplace’s equation which approaches unity. This solution generates an asymptotically

flat Majumdar-Papapetrou metric which we can analytically extend until it either vanishes

or becomes infinite.

If V vanishes, then along some curve which approaches the point of vanishing, the field

invariant J , which takes the same form as above, goes to infinity and indicates the presence

of a naked singularity, which means that there is no event horizon around the singularity. If

V approaches infinity at a point, then avoiding naked singularities requires |V | to be bounded

below at the singularity and theorem from potential theory (See page 459 of [50]) necessitates

V having the form

V (~r) = w(~r) +
c

~r(D−1)
, (7.33)

where c is a constant, ~r is the distance from the singularity and w is regular there, but

this is the same situation we’ve explored previously with point sources. To prevent naked

singularities occurring in the case of having a singular curve, V must diverge no faster than

logarithmically in order to prevent the equipotentials touching the singularity, but this still

gives rise to a divergent J .

Therefore, the only way to avoid having naked singularities is to have V being generated

by discrete point sources. We will now explore what happens when we try to construct

Majumdar-Papapetrou metrics with infinitely many ERN black holes.

7.3 Infinitely Many Black Holes

In this section we will investigate Majumdar-Papapetrou metrics in different dimensions

that have infinitely many black holes. In chapters three and six, we studied various ways

of constructing gravitational instanton solutions with the Gibbons-Hawking metric whose

potentials included infinitely many instantons, and here we will be looking at their parallel

structures in this context. Thus, we will consider the following:
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- Periodic distributions of black holes in the cases of both D = 3 and D > 3. As in

our earlier work, we will suppose the black hole sources to be periodically distributed

along one of the axes and will discover that the validity of these constructions depends

upon the convergence of V . For D > 3, the resulting constructions can be interpreted

as behaving like black holes in a Kaluza-Klein background.

- Lattices of black holes will be constructed following the work of Myers [50]. These

are extensions of his construction in the case D = 4 into higher dimensions with more

than one compact dimension.

- Non-periodic distributions of black holes following an analogous version in the

Majumdar-Papapetrou context of the method of Anderson et al [1] for constructing a

solution with infinitely many instantons unevenly distributed along one of the axes. We

extend this to solutions with black holes unevenly distributed through several dimen-

sions.

7.3.1 Periodic Distribution of Black Holes

Here, we will take the constructions of multiple black hole solutions given in the papers by

Hartle and Hawking [30] for (3 + 1)-dimensions and by Myers [50] for (D + 1)-dimensions

where D > 3, and will explore what happens when we allow the number identical of black

holes to go to infinity and arrange them periodically along one of the axes. We will consider

three cases: D = 3, D = 4 and D > 4.

In the first of these instances, we will see that the potential does not converge. This is not

the case in higher dimensions and we can therefore write down solutions, which we can in-

terpret in different ways. We can regard such solutions as representing an infinite string of

black holes with a harmonic potential V such that in these particular coordinates, the event

horizons of the black holes are “shrunk down to a point” (Rocek [56]). Alternatively, we

can view such solutions as being charged black holes in a Kaluza-Klein background. We can

therefore consider ourselves to have one periodic black hole, in analogy with a periodic Dirac

monopole [62] or a Kaluza-Klein vortex [53].

Consider the (D+1)-dimensional Majumdar-Papapetrou metric given by (7.1) with potential

V = 1 +
∞∑

j=−∞

mj

|~r − ~rj |D−2
, (7.34)
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where ~r = (x1, . . . , xD). Suppose that the point sources in this case are identical and period-

ically distributed along the xD-axis with period P , yielding

V = 1 +
∞∑

j=−∞
m

(
ρ2

D−1 + (xD − Pj)2
)(1−D

2 )
. (7.35)

In the case of D = 4, we can simplify the potential to

V = 1 +
πm

Pρ3

(
sinh(2πρ3P

−1)
cosh(2πρ3P−1)− cos(2πx4P−1)

)
(7.36)

using contour integration (see Myers [50] and Rocek [56]). We have demonstrated in chapter

two that this sum is convergent for all D > 4.

The Case D = 3

In the case of D = 3, we hit a problem almost instantly. We have

V = 1 +
∞∑

j=−∞
m

(
ρ2
2 + (x3 − Pj)2

)− 1
2 , (7.37)

and we know that such a sum does not converge. Therefore, we cannot construct a compact-

ified solution with infinitely many black holes in four dimensions simply by starting with the

construction of Hartle and Hawking [30] for finitely many black holes and letting this number

go to infinity.

We might be tempted to try to remedy the situation by subtracting an infinite constant from

the potential in order to ensure convergence, yielding a potential

V = 1 + m




∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 . (7.38)

We know that we can use a finite sum to obtain a good approximation of the above and

thus can employ graphical methods to look at its shape. We can see from the diagram below

the general shape of such a V , for m > 0 as required in [30]. V therefore has a zero strip

and we know from our analysis earlier that for any given choice of x3 its behaviour can be

successfully approximated near the zero by

Vappx = c− 2k ln ρ2, (7.39)

where k and c are given by
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Figure 7.2: The periodic potential with an infinite constant (7.38) for ERN black holes in

D = 3 with ρ := ρ2 ∈ [0, 1] and x3 ∈ [0, 1]

k = −ρx3

2
∂V

∂ρ2

∣∣∣∣∣
ρx3

, c = −ρx3 ln(ρx3)
∂V

∂ρ2

∣∣∣∣∣
ρx3

, (7.40)

in which we have defined ρx3 to be the value of ρ2 such that V (ρ2, x3) = 0. We can then

calculate the Riemann curvature scalar which gives us

RµνρσRµνρσ =
64k2(V 2 − 6kV + 14k2)

V 8ρ4
2

, (7.41)

and so when V is zero, we have a singularity which is not hidden from an observer by any of

the black hole horizons and is thus a naked singularity. To demonstrate this, we follow the

method outlined in [35] in the section on dilaton solutions, of which this ia a special case.

The Case D = 4

In the case of D = 4, we follow the work of Myers [50] and therefore have potential

V = 1 +
∞∑

j=−∞
m

(
ρ2
3 + (x4 − Pj)2

)−1
. (7.42)

The Maxwell vector potential is given by
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A =
√

3
2

V −1. (7.43)

We may regard this solution as a charged five-dimensional black hole in a Kaluza-Klein

backgroundM4×S1. To examine this solution further, we consider its short-range behaviour.

If we take ρ3, x4 << P . we can simplify V to obtain an expression for a single monopole

solution in five-dimensional asymptotically flat Minkowski space plus a constant:

V = 1 +
m

ρ2
3 + x2

4

+
π2m

3P 2︸ ︷︷ ︸
potential at r0 = 0

due to all the image sources

+ O

(
ρ2
3

P 2
,

x2
4

P 2

)

︸ ︷︷ ︸
terms that vanish as r0→0

. (7.44)

where

r0 :=
√

x2
1 + x2

2 + x2
3 + x2

4. (7.45)

The topology of the region r0 < P is similar to that of an ERN black hole and the topology,

the area of the event horizon and the surface gravity (the acceleration needed to keep an

object at the event horizon) are unaffected by the behaviour of the asymptotic exterior

region (r0 > P ), the topology of which differs as x4 is periodic. The potential in this case is

given by

V → 1 +
πm

Pρ3
+

2πm

Pρ3
exp(−2πρ3P

−1) cos(2πx4P
−1) + · · · as ρ3 →∞. (7.46)

We can think of the resulting solution as being a kind of electric Kaluza-Klein monopole

solution, as opposed to the original Kaluza-Klein monopole which is purely magnetic. This

interpretation arises from the fact that we have the magnetic field generated by the Kaluza-

Klein field and also the electric (Maxwell) field. As the action contains this Maxwell field,

the gauge field here is completely unrelated to that of the Kaluza-Klein case. The Einstein-

Maxwell action compactified on M4 × S1 and restricted to massless fields as appropriate for

the asymptotic region is given by

∫
exp(φ)

(
P

4
R(4) − F (4)µνF (4)

µν

)(
−g(4)

) 1
2 d4x, (7.47)

where the gauge field is given by A(4) =
√

PA and R(4) is the Ricci scalar calculated over

µ, ν = 0, 1, 2, 3. Note that ∂x4 is only an asymptotic Killing vector and the dilaton φ plays a

non-trivial role as exp(2φ) = gx4x4 = V .
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The Case D > 4

In this final case, the potential is given by,

V = 1 +
∞∑

j=−∞
m

(
ρ2

D−1 + (xD − Pj)2
)(1−D

2 )
. (7.48)

We may regard this solution as a charged (D + 1)-dimensional black hole in a Kaluza-Klein

background MD×S1. If we take ρD−1, xD << P . we can simplify V to obtain an expression

for a single monopole solution in (D + 1)-dimensional asymptotically flat Minkowski space

plus a constant:

V = 1+m
(
ρ2

D−1 + x2
D

)(1−D
2 )+

2m

P 2

∞∑

j=1

j(2−D)

︸ ︷︷ ︸
potential at r0 = 0

due to all the image sources

+O

((ρD−1

P

)(2−D)
,

(xD

P

)(2−D)
)

︸ ︷︷ ︸
terms that vanish as r0→0

.

(7.49)

Again, as xD is periodic, the topology of the asymptotic exterior region (r0 > P ) will differ.

Singularities for D ≥ 4?

We begin with the metric from the (D + 1)-dimensional Majumdar-Papapetrou case:

ds2 = −V −2dt2 + V ( 2
D−2)d~r2,

V = 1 + m
∞∑

j=−∞

(
ρ2

D + (xD + Pj)2
)(1−D

2 )
, (7.50)

which we know converges. For D ≥ 4, V → 1 as ρD → ∞ and that, as we are dealing

with an infinite sum of positive terms, V is never zero and so we do not have to watch out

for unwanted singularities as in the D = 3 case. The Riemann curvature scalar, found as a

special case of that for dilaton solutions in section 7.5, is well-behaved. Of course, examining

the Riemann curvature tensor is not enough in of itself to show that there are no naked

singularities present, but there is good reason to suspect from our analysis that there are

indeed no such objects arising in this metric.

7.3.2 Black Hole Lattices

Myers [50] constructs a black hole lattice solution as a way of extending his solution with

infinitely many black holes in (4 + 1)-dimensions into higher dimensions. We begin in a

background space RD and insert identical monopole sources at points in a (D−3)-dimensional
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lattice. If we take the basis vectors for this lattice to be the standard basis vectors in R(D−3),

{~e1, . . . , ~eD−3} and ~ω = (ω1, . . . , ωD−3) to be the position vector in the (D − 3)-dimensional

background subspace, the potential becomes

V = 1 +
∞∑

ji=−∞

m

|~r − ~rji |(D−2)
, (7.51)

where

|~r − ~rji | =
(
x2

1 + x2
2 + x2

3 + |~ω − ji~ei|2
) 1

2
. (7.52)

If we sum over the lattice vertices, we obtain

V = 1 +
∞∑

jD−3=−∞
· · ·

∞∑

j1=−∞
m

(
ρ2
3 + (ω1 + j1)

2 + · · ·+ (ωD−3 + jD−3)
2
)(1−D

2 )
. (7.53)

Theorem 7.1 The potential (7.53) converges for D ≥ 4.

Proof If D = 4, we have

V = 1 +
∞∑

j1=−∞
m

(
ρ2
3 + (ω1 + j1)

2
)−1

, (7.54)

which we know converges. In the case of D = 5, we have

V = 1 + m

∞∑

j2=−∞

∞∑

j1=−∞

(
ρ2
3 + (ω1 + j1)

2 + (ω2 + j2)
2
)− 3

2

= 1 + m lim
N→∞




N∑

j2=−N

∞∑

j1=−∞

(
ρ2
3 + (ω1 + j1)

2 + (ω2 + j2)
2
)− 3

2




≤ 1 + m lim
N→∞




N∑

j2=−N

c5(ρ3)
(
ρ2
3 + (ω2 + j2)2

)−1




= 1 + mc5(ρ3)
∞∑

j2=−∞

(
ρ2
3 + (ω2 + j2)2

)−1
, (7.55)

where we have defined

c5(ρ3) := ρ2
3

∞∑

j1=−∞

(
ρ2
3 + (ω1 + j1)2

)− 3
2 . (7.56)

Thus, V converges by the comparison test.

¤
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We can see the sensibleness of the step between the second and third lines by considering the

two functions

f(ρ3, j2) =
∞∑

j1=−∞

(
ρ2
3 + (ω1 + j1)

2 + (ω2 + j2)
2
)− 3

2
, (7.57)

g(ρ3, j2) = ρ2
3

(
ρ2
3 + (ω2 + j2)2

)−1
∞∑

j1=−∞

(
ρ2
3 + (ω1 + j1)2

)− 3
2 , (7.58)

and seeing that g is maximised when j2 = −ω2, its location is determined by the choice of

ω2 and that the shape of the curves is dependent on ρ. When we compare the two functions,

we see that f ≤ g ∀ρ3, as in the diagram below, in which plot g − f for different choices of

ρ3 (We take ω1 = ω2 = 0).

r = 1 r = 0.9 r = 1.1

j
2

K10 K5 0 5 10

0.005

0.010

0.015

0.020

0.025

Figure 7.3: Plot of (7.58) - (7.57) for various ρ := ρ3, with j2 ∈ [−10, 10]

In the case of D ≥ 5, we can use the fact that

S :=
∞∑

k1=−∞

(
ρ2
3 + (ω1 + k1)

2 + · · ·+ (ωn + kn)2
)(1− i

2)

≤ ci

(
ρ2
3 + (ω2 + k2)

2 + · · ·+ (ωn + kn)2
)( 3

2
− i

2) (7.59)

for i ≥ 5, n ≥ 2, where
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ci(ρ3) := ρ
(i−3)
3

∞∑

k1=−∞

(
ρ2
3 + (ω1 + k1)2

)(1− i
2) , (7.60)

to see that

V ≤ 1 + m

(
D∏

i=5

ci

) ∞∑

jD−3=−∞

(
ρ2
3 + (ωD−3 + jD−3)2

)−1

= 1 +
(

πm

ρ3

) (
D∏

i=5

ci

)(
sinh(2πρ3)

cosh(2πρ3)− cos(2πωD−3)

)
. (7.61)

Thus, V converges by the comparison test.

¤

This yields a solution in a compactified background M4 × TD−3 and we could straight-

forwardly modify the construction to give other solutions in a compactified background

MN+1 × TD−N for D − 1 ≥ N ≥ 3.

In the region surrounding each of the lattice vertices, the black hole solution will look very

similar to that of a single black hole in (D +1)-dimensions and quantities such as the surface

gravity and the area of the event horizon are unchanged in the uncompactified space. How-

ever, the asymptotic region is more complicated because some of the dimensions are compact.

We can get some idea of the long-range behaviour of the potential by replacing the discrete

sums by an integral

V ≈ 1 +
m

κ

∫
d~ω

(
ρ2
3 + |~ω|2

)(D
2
−1)

= 1 +
m

κ

π(D
2
−1)

Γ
(

D
2 − 1

)ρ−1, (7.62)

where κ is the asymptotic volume of the compactified torus TD−3. The ratio of mass and

charge in this situation is given by

|Q|
m

=

((
N − 2
N − 1

)2 D − 1
D − 2

) 1
2

, (7.63)

where the above is for the case when we reduce the (D + 1)-dimensional theory to the

background with (N + 1) uncompactified dimensions.

7.3.3 Non-Periodic Distributions of Black Holes

Here we will construct a solution with infinitely many black holes distributed unevenly along

one of the axes in a (D + 1)-dimensional Majumdar-Papapetrou metric (7.1). In order to do
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7.3 Infinitely Many Black Holes

this, we will modify the construction of Anderson et al [1] which we looked at in the previous

chapter, in which infinitely many instantons are unevenly distributed along one of the axes.

This can be extended to generate solutions with black holes unevenly distributed through

several dimensions.

Uneven Distributions of Black Holes

We now generate a solution with infinitely many black holes distributed unevenly along one of

the axes in a (D+1)-dimensional Majumdar-Papapetrou metric (7.1). Each of our monopole

sources will be identical, and have mass (charge) m > 0. Let {~rj}∞j=0 ⊂ RD be a divergent

sequence of points such that for some point ~r0 ∈ RD,

1 +
∞∑

j=1

m

|~r0 − ~rj |D−2
< ∞. (7.64)

We can then define a smooth function V : RD/{~rj} → R by

V (r) := 1 +
∞∑

j=1

m

|~r − ~rj |D−2
. (7.65)

Clearly, V satisfies the Laplace equation on RD:

∇2V =
∂2V

∂(x1)2
+ · · ·+ ∂2V

∂(xD)2
= 0. (7.66)

In Anderson et al’s work, much attention needs to be given to the issue of smoothness at

the points ~rj . However, in this context, we know that the metric (7.1) is regular at ~r = ~rj

and that these are the event horizons for the black holes, which enough to ensure that this

construction makes sense.

As an example, suppose that the black holes are distributed along the xD axis, so that the

identical monopole sources are positioned at the points

{~rj = (0, . . . , 0, j1+ε)}∞j=1 (7.67)

0

−1

100 20

Figure 7.4: Non-periodic distribution (7.67) of black holes along xD-axis
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for some ε > 0. Then we can define a function as above, such that at the point ~r0 := 0, we

have

1 +
∞∑

j=1

m

‖~r0 − ~rj‖D−2
= 1 +

∞∑

j=1

m

(j1+ε)D−2
< ∞ (7.68)

for D ≥ 3. We can then define a function V by (using the definition of ρn given in (1.3)),

V (r) := 1 +
∞∑

j=1

m

|~r − ~rj |D−2
= 1 +

∞∑

j=1

m(
ρ2

D−1 + (xD − j1+ε)2
)(D

2
−1)

, (7.69)

which again converges for D ≥ 3. If we were to take ε = 0, then we would find ourselves back

in the situation of having periodically distributed black holes, and thus no solution for D = 3

due to the lack of convergence of V . We can extend this to construct a two-dimensional

solution:

{
~rj =

(
0, . . . , 0, j1+ε cos

(
2πk

n

)
, j1+ε sin

(
2πk

n

)) }∞

j=1

(7.70)

for some ε > 0 and with k ∈ {0, . . . , n− 1} and n ∈ N. We then have, for ~r0 := 0,

1 +
∞∑

j=1

m

‖~r0 − ~rj‖D−2
= 1 +

∞∑

j=1

m
(
j2+2ε

(
cos2

(
2πk1

n

)
+ sin2

(
2πk2

n

)))(D
2
−1)

=
∞∑

j=1

m

(j1+ε)D−2
,

(7.71)

which converges for D ≥ 3 as we fix n and always have k1 = k2. This is illustrated in the

diagram below. We can then define a function V by

V = 1 +
∞∑

j=1

m

‖~r − ~rj‖D−2

= 1 +
∞∑

j=1

m
(
ρ2

D−2 +
(
xD−1 − j1+ε cos

(
2πk
n

))2
+

(
xD − j1+ε sin

(
2πk
n

))2
)(D

2
−1)

,

(7.72)

which converges for D ≥ 3. This could be further extended into higher dimensions, by having

the black holes positioned on Sn spheres with radii increasing in an r = j1+ε way. Note that

the results in our section on dilaton theory for the Riemann curvature scalar for D ≥ 4

hold for these examples. We can see from these that the curvature is well-behaved and no

singularities arise as V cannot become zero.

130



7.4 Smoothness of Event Horizons

Figure 7.5: Non-periodic distribution (7.70) of black holes in two-dimensions

7.4 Smoothness of Event Horizons

In this section, we outline the work of Candlish and Reall [4], which looks at the smoothness

of event horizons in multiple black hole solutions. We will see that in five dimensions, the

horizons are smooth for all black holes in our infinite periodic solution, and otherwise are

C2 but not C3. In higher dimensions, the horizon is C0 but not C1. To begin, we write the

Majumdar-Papapetrou metric in spherical coordinates:

ds2 = −V −2dt2 + V ( 2
2−D ) (

dr2 + r2dθ2 + r2 sin2 θdΩ2
D−2

)
, (7.73)

where dΩ2
D−2 is the metric on the (D−2)-sphere. In these coordinates, the potential is given

by

V = 1 +
µ1

rD−2
+

N∑

j=2

µj
(
r2 + a2

j − 2ajr cos θ
)(D

2
−1)

=
µ1

rD−2
+

∞∑

n=0

hnrnYn(cos θ), (7.74)

where the Yn(cos θ) are the Gegenbauer polynomials, aj gives the position along the axis of

the jth black hole and the coefficients hn are given by
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hn = δn,0 +
N∑

j=2

µj

|aj |D−2an
j

. (7.75)

In order to look at the degree of smoothness of the event horizon, one must write both

the exterior and interior metrics in Gaussian null coordinates and look at the order of

magnitude up to which the two expressions agree.

7.4.1 Gaussian Null Coordinates

In order to construct Gaussian null coordinates, we employ the following procedure. The

intersection H0 of a hypersurface with a single component of the event horizon H+
0 is topo-

logically a sphere SD−1, onto which we introduce coordinates xi. Define a coordinate v on

H+
0 to be the parameter distance from H0 along integral curves of U , which denotes the

generator of time translations and is tangent to the null geodesic generators of H+
0 . Now let

W be the unique null vector satisfying

W · U = 1 and W · ∂

∂xi
= 0 (7.76)

on H+
0 . γ(v, xi) is defined to be the null geodesic that starts at (v, xi) in H+

0 and has

tangent W there. We define Gaussian null coordinates in a neighbourhood of H0 by ascribing

coordinates (v, λ, xi) to the point which is a distance λ from H+
0 along γ(v, xi). We can take

xi = (Θ, Ω̂D−2), which are the limiting values of (θ, ΩD−2) along γ as it approaches H+
0 .

The SO(D − 1) symmetry implies that ΩD−2 ≡ Ω̂D−2 but Θ and θ will not agree. In these

coordinates, the metric has form

ds2 = −V −2dv2 + 2dvdλ + λf1(λ,Θ)dvdΘ + f2(λ,Θ)dΘ2 + V ( 2
D−2)r2 sin2 θdΩD−2, (7.77)

where r = r(λ,Θ) and θ = θ(λ,Θ) are determined once we know γ. The problem then

reduces to solving

0 = −V 2 + V ( 2
D−2)

(
ṙ2 + r2θ̇2

)
, (7.78)

r̈ − V (D−4
D−2)∂rV +

V −1

D − 2

(
ṙ2∂rV − r2θ̇2∂rV + 2ṙθ̇∂θV

)
− rθ̇2 = 0 (7.79)

with initial conditions

r(0, Θ) = 0, θ(0, Θ) = Θ,

(
dθ

dλ

) ∣∣∣∣
λ=0

= 0, (7.80)

which yields
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t = v − T (λ,Θ), T (λ,Θ) ≡
∫

V (λ,Θ)2dλ. (7.81)

In the case of D = 4, this means the horizon is C2 but can be shown not to be C3; in the

case of D > 4, this means the horizon is C0 but can be shown not to be C1. Let us explore

the first of these cases, that of D = 4.

7.4.2 Smoothness of Horizons for D = 4

We first note that solving the geodesic equations as described above and imposing the same

initial conditions, we have the following expansions for r(λ,Θ) and θ(λ,Θ):

r =
√

2µ
1
4
1 λ

1
2 +

h0

2
√

2µ
1
4
1

λ
3
2 +O(λ2),

θ = Θ− 2
√

2h1 sin Θ

µ
1
4
1

λ
3
2 +O(λ2). (7.82)

We consider the area of the 2-sphere orbits of the SO(3) symmetry present in the geometry,

which is given by

A2 = V r2 sin2 θ. (7.83)

We can see how A2 varies along γ as it approaches the horizon using our expressions for r

and θ. We have

A2 = µ1 sin2 Θ + 2h0
√

µ1 sin2 Θλ + (h2
0 − 4h2µ1 sin2 Θ) sin2 Θλ2

− 128
√

2
5

h3µ
5
4
1 sin2 Θcos Θλ

5
2 +O(λ3). (7.84)

The presence of O(λ
5
2 ) terms indicates that A2 is not C3 at λ = 0 as that would require

h3 = 0 which (7.75) demonstrates is not the case for a multi-centre solution except in very rare

circumstances. Hence the generic solution is not C3. To show that it is C2 in a neighbourhood

of the horizon, we compare the metric in the exterior and interior regions. In both cases, the

metric will have the form of (7.73) but in the exterior region the potential will be V and in

the interior region V̂ :

V =
µ1

r2
+

∞∑

n=0

hnrnYn(cos θ), V̂ =
µ1

r2
+

∞∑

n=0

ĥnrnYn(cos θ). (7.85)

In the exterior region, λ > 0 is the affine parameter along a past-directed geodesic γ. In the

interior region, λ̂ is the affine parameter along a future-directed geodesic γ̂ with otherwise
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the same properties as γ. We can then define Gaussian null coordinates as above, with v

defined by

t = v + T̂ (λ̂,Θ), T̂ (λ̂,Θ) ≡
∫

V̂ (λ̂,Θ)2dλ̂. (7.86)

If we make the identification λ = −λ̂, then comparing the interior and exterior metrics shows

us that they match up in a C2 manner, which means up to O(|λ| 52 ), provided that

ĥ0 = −h0, ĥ2 = h2, (7.87)

with the other coefficients unconstrained.

7.4.3 Reflection-Symmetric Solutions

In the case of D = 4, we can increase the differentiability in certain circumstances. Suppose

the sources the reflection-symmetric, so we have N = 2M +1 black holes with parameters

(µ1, 0), (µj ,±aj), j = 2, . . . ,M + 1. Then h2n+1 = 0 for all n and we can write V as

V = V0 + V1, V0 =
µ1

r2
+ h0, V1 =

∞∑

n=1

h2nr2nY2n(cos θ), (7.88)

so we just concentrate on the even terms. We now construct an analytic extension through

r = 0. Define λ > 0 by

dr

dλ
=

√
V0, (7.89)

yielding

r =
(
2
√

µ1λ + h0λ
2
) 1

2 . (7.90)

We can then define the coordinate v by

dt = dv − V0(λ)2dλ. (7.91)

The solution in Gaussian null coordinates (v, λ, θ) is analytic at λ = 0 and thus can be

extended into the region with λ < 0. We can define new coordinates in the interior of the

black hole:

r =
(−2

√
µ1λ− h0λ

2
) 1

2 (7.92)

and t as in the above equation. This puts the solution into a form like (7.73) with a new

harmonic function
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Ṽ (r, θ) = −V (ir, θ). (7.93)

The analyticity of the solution determines not just h̃0 but the higher coefficients h̃2n too. The

solution is analytic at the horizon of the black hole at r = 0. To ensure this is the case for

the rest of the black holes, we need an infinite string (N →∞) of evenly spaced black holes.

7.4.4 Consequences

Candlish and Reall argue in a later section of the paper that there is no higher dimensional

analogue of the smoothness enhancement of the D = 4 case. We therefore concentrate our

attention on the D = 4 case and look at our three solutions with infinitely many black holes

thus far:

- In the periodic case, we have a solution with infinitely many black holes evenly dis-

tributed along one of the axes. This is the situation described in the smoothness

enhancement case and so each of the black holes will have a smooth event horizon.

- In the lattice case, we are adapting the smoothness theory as Candlish and Reall’s work

assumes the black holes will lie on an axis. We can think of our lattice as containing

a series of grids of black holes, with each grid containing rows of infinitely many black

holes. In other words, we have a collection of reflection-symmetric structures and the

overall structure will be reflection-symmetric. We should therefore expect all the black

holes to have smooth horizons.

- In the non-periodic case, the central black hole will have a smooth horizon but because

of the uneven spacing, this will not be the case for any of the other black holes.

7.5 Einstein-Maxwell-Dilaton Theory

In this section, we examine a generalisation of the Extreme Reissner-Nordström black holes

by looking at Einstein-Maxwell-dilaton theory. The action in this case is given by, for

(D + 1)-dimensions [59],

S =
∫

dD+1x

√−g

16π

(
R− 4(∇φ)2

D − 1
− exp

(−4aφ

D − 1

)
F 2

)
, (7.94)

where φ denotes the dilaton field, Fµν the Maxwell field strength and a the dilaton coupling

constant, which we can assume without loss of generality to be positive. The solutions we

will consider will be extreme black holes, and the extremity condition here is that the ratio

of mass to charge needs to be
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κ :=
|Q|
m

=
4πΓ

(
D
2

)

π
D
2

(
D − 2 + a2

2(D − 1)

) 1
2

. (7.95)

7.5.1 Finitely Many Black Holes

We begin by looking in detail at the case of D = 3 and have, for a single extreme black hole

[18],

ds2 = −
(
1− µ

r

)(
2

1+a2

)

dt2 +
(
1− µ

r

)(
−2

1+a2

)

dr2 +
(
1− µ

r

)(
2a2

1+a2

)

r2dΩ2,

~A = ± (
1 + a2

)− 1
2

(
1− µ

r

)−1
dt,

exp(−2aφ) =
(
1− µ

r

)(
2a2

1+a2

)

, (7.96)

where the constant µ is related to the mass and charge by

µ = (1 + a2)m = (1 + a2)
1
2 |Q|. (7.97)

The electric repulsion is balanced out by the gravitational attraction and the attractive dilaton

force, so we can regard this solution as an extension of the Majumdar-Papapetrou solutions.

If we calculate the Riemann curvature scalar

[R]2 =
4µ2

(
12r2

(
a2 + 1

)2 + 2µ
(
µ− 16ra2

) (
a2 + 1

)
+ 7a4µ2

)

(a2 + 1)4 r4(r − µ)4
(
1− µ

r

)(
4

1+a2

) , (7.98)

then we see that the metric is singular when r = 0 and appears to be so when r = µ if a 6= 0.

However, we can resolve the dilaton singularity in some cases by reinterpreting the solution

as representing an extremal object in a higher-dimensional spacetime, following the method

of Gibbons et al [18], meaning we can view (7.96) as the double-dimensional reduction of

ds2 =
(
1− µ

r

)(
2

1+p

)
(−dt2 + d~r′2

)
+

(
1− µ

r

)−2
dr2 + r2dΩ2, (7.99)

where p ∈ Z and ~r′ = (x5, . . . , y4+p) are the additional coordinates. We begin with the

(4 + p)-dimensional Einstein-Maxwell action

S4+p =
∫

d4+px
√−g{R− F 2

2 }, (7.100)

where we have

ds2
4+p = exp(2αφ)d~r′2 + exp(2βφ)gµνdxµdxν ,

F 4+p
2 =

1
2
Fµν(x)dxµ ∧ dxν , (7.101)
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with µ, ν = 0,1,2,3. This action reduces to the four-dimensional action

S = (16π)
∫

d4x
√−g{R− 1

2
p(p + 2)α2 (∇φ)2 − exp(paφ)F 2

2 }, (7.102)

where we have 2β + pα = 0 so that the metric has a canonical Einstein-Hilbert action. By

choosing

α =
−2√

p(p + 2)
, (7.103)

we recover the action (7.94) for D = 3 with dilaton coupling constant

a = β =
√

p

p + 2
. (7.104)

Thus, for these values of a, any solution of the Euler-Lagrange equations of (7.94) can be

interpreted as a solution of the Euler-Lagrange equations of the (4 + p)-dimensional action

(7.100) with metric

ds2 = exp(2(a− a−1)φ)d~r′2 + exp(2aφ)gµνdxµdxν . (7.105)

If p is even, r = µ is an event horizon and we have a black hole. If p is odd, we have a

non-singular space. In order to construct a multiple black hole solution, we follow a similar

argument to that used for ERN black holes, using the coordinate transformation

r = ρ− κm, (7.106)

yielding

ds2 = −V
−

(
2

1+a2

)
dt2 + V

(
2

1+a2

)
d~r2,

~A = − (
1 + a2

)− 1
2 V −1dt,

exp(−2aφ) = V

(
2a2

1+a2

)
, (7.107)

where the potential V is given by [60]

V = 1 +
N∑

j=1

(1 + a2)mj |~r − ~rj |−1, (7.108)

so the j-th static extreme black hole is located at ~rj and has mass mj .
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Higher-Dimensional Solutions

Shiraishi [59] generalises this solution to (D + 1)-dimensions for D ≥ 4. In this case, the

metric is given by

ds2 = −U−2dt2 + U( 2
D−2)d~r2,

U = V

(
D−2

D−2+a2

)
with V = 1 + (D − 2)−1

N∑

j=1

µj |~r − ~rj |2−D,

A = ±
(

D − 1
2(D − 2 + a2)

) 1
2

V −1dt and exp
(−4aφ

D − 1

)
= V

(
2a2

D−2+a2

)
, (7.109)

where µj is related to the mass and charge by

mj =
π

D
2 (D − 1)

4πΓ
(

D
2

)
(D − 2 + a2)

µj , |Q| =
(

D − 1
2(D − 2 + a2)

) 1
2

µj . (7.110)

The above argument concerning the re-interpretation of the dilaton singularities can be ex-

tended to higher dimensions [18].

Special Cases

As we have noted, there are certain values of a for which the dilaton singularity is resolved,

namely those for which a takes the form (7.104) for p ∈ Z. We note some interesting cases:

- if a = 0 then we obtain the (D + 1)-dimensional Majumdar-Papapetrou solutions of

Hartle and Hawking [30] for D = 3 and of Myers [50] for D ≥ 4;

- if a = 1 we get a string theory solution in which the singularities and event horizons

disappear in the extremal case [14];

- if a = 1√
3
, it corresponds to the reduction of five-dimensional Einstein-Maxwell or

supergravity theory to four dimensions [60];

- if a =
√

3, we obtain five-dimensional Kaluza-Klein theory [18].

7.5.2 Infinitely Many Black Holes

We now move to consider what happens when we have infinitely many identical black holes.

The potential becomes

, V = 1 +
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=−∞
|~r − ~rj |2−D. (7.111)
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We will investigate three cases. Firstly, a periodic distribution. This converges for D ≥ 4

and we have a well-behaved spacetime but does not converge for D = 3 and using an infinite

constant to ensure convergence gives rise to naked singularities. Secondly, a non-periodic

distribution, adapting the method of Anderson et al [1] as before. Thirdly, we will construct

a lattice of black holes. The latter two are trivial adaptations of the ERN case. Note that the

event horizons will be smooth in the periodic and lattice cases and not in the non-periodic

case.

Periodic Distribution : D = 3

Suppose that the sources are periodically distributed along the x3-axis

V = 1 + m

∞∑

j=−∞
(1 + a2)

(
ρ2
2 + (x3 − Pj)2

)− 1
2 , (7.112)

This obviously does not converge and in order to make it converge, we subtract an infinite

constant from the potential, yielding

V = 1 + m(1 + a2)




∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 . (7.113)

As m > 0 and a ≥ 0, V has a zero strip and we know from our analysis in chapter three that

for any given choice of x3 its behaviour can be successfully approximated near the zero by

Vappx = c− 2k ln ρ2, (7.114)

where k and c are given by

k = −ρx3

2
∂V

∂ρ2

∣∣∣∣
ρx3

, c = −ρx3 ln(ρx3)
∂V

∂ρ2

∣∣∣∣
ρx3

, (7.115)

in which we have defined ρx3 to be the value of ρ2 such that V (ρ2, x3) = 0. We can then

calculate the Riemann curvature scalar which gives us

[R]2 =
64k2

(
V 2(a2 + 1)2 − 2kV (a2 + 1)(a2 + 3) + k2(3a4 + 10a2 + 14)

)

(1 + a2)4 ρ4
2V

(
4(2+a2)

1+a2

) (7.116)

which, when a = 0 reduces to the result for the ERN solution in (3 + 1)-dimensions,

[R]2 =
64k2(V 2 − 6kV + 14k2)

V 8ρ4
2

. (7.117)

Thus, when V is zero, we have a naked singularity. To demonstrate this, we begin by

considering the external metric with V > 0:
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ds2 = −V
−

(
2

1+a2

)
dt2 + V

(
2

1+a2

)
d~r2. (7.118)

We work with null radial geodesics, and thus have

t = t(s), x := x1(s), x2 = x3 = x4 = 0. (7.119)

The metric then becomes

ds2 = −V
−

(
2

1+a2

)
(x)dt2 + V

(
2

1+a2

)
(x)dx2, (7.120)

and therefore the Lagrangian is

L = −V
−

(
2

1+a2

)
(x)ṫ2 + V

(
2

1+a2

)
(x)ẋ2 = 0. (7.121)

The geodesic equations, given by the Euler-Lagrange equations, are

d
ds

(
−2V

−
(

2
1+a2

)
(x)ṫ

)
= 0,

d
ds

(
2V (x)

(
2

1+a2

)
ẋ

)
+ ṫ2

d
dx

(
V
−

(
2

1+a2

)
(x)

)
− ẋ2 d

dx

(
V

(
2

1+a2

)
(x)

)
= 0. (7.122)

If we define

E := V
−

(
2

1+a2

)
ṫ, (7.123)

then we have

Ė = 0 and ẋ2 = E2 ⇒ dt

dx
=

ṫ

ẋ
= ±V

(
2

1+a2

)
. (7.124)

This gives us, if we employ our approximation to V , Vappx,

x = xc ± Es, (7.125)

and

t = ±
∫

V

(
2

1+a2

)
dx

= ±
∫

(c− 2k ln x)
(

2
1+a2

)
dx. (7.126)

We consider outgoing geodesics when we consider the positive case and for incoming geodesics

the negative case. As x approaches x0, which is the value of x such that V is zero, we see

that this happens for a finite value of the parameter s and that t is finite. This means that
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a photon can reach a large distance away from the singularity in a finite time and hence the

singularity is naked. The same analysis applies to the interior metric as V < 0 still yields a

Lorentzian metric.

Periodic Distribution : D ≥ 4

We have the metric

ds2 = −V

(
4−2D

D−2+a2

)
dt2 + V

(
2

D−2+a2

)
d~r2,

V = 1 +
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=−∞

(
ρ2

D−1 + (xD − Pj)2
)(1−D

2 )
, (7.127)

which we know from earlier converges. As the coefficient before the sum is always positive as

we assume m > 0, then as in the ERN case, we do not need to worry about singularities arising

from V becoming zero. To understand the singularity structure, we proceed to calculate

the Riemann curvature scalar by writing the metric in a generalised form of cylindrical

coordinates:

ds2 = −V

(
4−2D

D−2+a2

)
dt2 + V

(
2

D−2+a2

) (
ds2

D−1 + dx2
D

)
, (7.128)

where φ ∈ [0, 2π], θi ∈ [0, π] and

x1 = ρn cosφ sin θ1 sin θ2 · · · sin θn−2,

x2 = ρn sinφ sin θ1 sin θ2 · · · sin θn−2,

x3 = ρn cos θ1 sin θ2 · · · sin θn−2,

...

xi = ρn cos θi−2 sin θi−1 · · · sin θn−2,

...

xn = ρn cos θn−2, (7.129)

yielding the part of the metric in n-dimensional polar coordinates

ds2
n = dρ2

n + ρ2
ndθ2

n−2 + ρ2
n sin2 θn−2dθ2

n−3 + · · ·+ ρ2
n sin2 θn−2 · · · sin2 θ1dφ2. (7.130)

We fix the value of xD so that we can assume V = V (ρ), which gives us

[R]2 =
4

(
ãρ2

D−1 + b̃ρD−1 + c̃
)

(D − 2 + a2)4 ρ2
D−1V

(
4(D−1+a2)

D−2+a2

) , (7.131)
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where

ã = a1(∂ρD−1V )4 + a2V ∂ρD−1ρD−1V (∂ρD−1V )2 + a3V
2(∂ρD−1ρD−1V )2,

b̃ = 2(D − 2)(D − 2 + a2)2V ∂ρD−1V
(
(D − 2− a2)(∂ρD−1V )2 + V ∂ρD−1ρD−1V

)
,

c̃ = D(D − 2)2(D − 2 + a2)2V 2(∂ρD−1V )2, (7.132)

with

a1 =
(
D2 − 3D + 3

)
a4 + 2 (D − 2)

(
2D2 − 6D + 5

)
a2 +

124D3 − 1305D2 + 4965D − 6662
2

,

a2 = −2
((

D2 − 3D + 3
)
a4 +

(
3D3 − 15D2 + 26D − 16

)
a2 + (D − 2)2

(
2D2 − 6D + 5

))
,

a3 =
(
D2 − 3D + 3

) (
D − 2 + a2

)2
. (7.133)

We look at the first few cases. For D = 4 we have

[R]2 =
4

(
ãρ2

3 + b̃ρ3 + c̃
)

(2 + a2)4 ρ2
3V

(
4(3+a2)

2+a2

) , (7.134)

where

ã =
(
7a4 + 52a2 + 127

)
(∂ρ3V )4−2

(
7a4 + 40a2 + 52

)
V ∂ρ3ρ3V (∂ρ3V )2+7(a2+2)2V 2(∂ρ3ρ3V )2,

b̃ = 4(a2 + 2)2V ∂ρ3V
(
(2− a2)(∂ρ3V )2 + V ∂ρ3ρ3V

)
,

c̃ = 16(a2 + 2)2V 2(∂ρ3V )2. (7.135)

For D = 5, we have

[R]2 =
4

(
ãρ2 + b̃ρ + c̃

)

(3 + a2)4 ρ2V

(
4(4+a2)

3+a2

) , (7.136)

where

ã =
(
13a4 + 150a2 + 519

)
(∂ρ4V )4 − 2

(
13a4 + 114a2 + 225

)
V ∂ρ4ρ4V (∂ρ4V )2

+13(a2 + 3)2V 2(∂ρ4ρ4V )2,

b̃ = 6(a2 + 3)2V ∂ρ4V
(
(3− a2)(∂ρ4V )2 + V ∂ρ4ρ4V

)
,

c̃ = 45(a2 + 3)2V 2(∂ρ4V )2. (7.137)

For D = 6, we have

[R]2 =
4

(
ãρ2

5 + b̃ρ5 + c̃
)

(4 + a2)4 ρ2
5V

(
4(5+a2)

4+a2

) , (7.138)
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where

ã =
(
21a4 + 328a2 + 1466

)
(∂ρ5V )4 − 2

(
21a4 + 248a2 + 656

)
V ∂ρ5ρ5V (∂ρ5V )2

+21(a2 + 4)2V 2(∂ρ5ρ5V )2,

b̃ = 8(a2 + 4)2V ∂ρ5V
(
(4− a2)(∂ρ5V )2 + V ∂ρ5ρ5V

)
,

c̃ = 96(a2 + 4)2V 2(∂ρ5V )2. (7.139)

For D = 7, we have

[R]2 =
4

(
ãρ2

6 + b̃ρ6 + c̃
)

(5 + a2)4 ρ2
6V

(
4(6+a2)

5+a2

) , (7.140)

where

ã =
(
31a4 + 610a2 + 3340

)
(∂ρ6V )4 − 2

(
31a4 + 460a2 + 1525

)
V ∂ρ6ρ6V (∂ρ6V )2

+31(a2 + 5)2V 2(∂ρ6ρ6V )2,

b̃ = 10(a2 + 5)2V ∂ρ6V
(
(5− a2)(∂ρ6V )2 + V ∂ρ6ρ6V

)
,

c̃ = 175(a2 + 5)2V 2(∂ρ6V )2. (7.141)

In terms of the special cases highlighted earlier, we can see that the metric is well-behaved

everywhere, even at the event horizons (where they exist). Whilst again this is not definitive

proof that these spacetimes do not contain any unwanted naked singularities, we can conclude

that this is probably the reality.

7.5.3 Cosmological Black Holes

London [48] constructs a similar metric with a non-zero cosmological constant Λ 6= 0 present,

which we modify here by adding in the dilaton. We have infinitely many identical black holes

with mass m and charge Q. The metric, potential and relevant relationships are given by,

for D ≥ 3,

ds2 = −U−2dt2 + U( 2
D−2)d~r2,

U = V

(
D−2

D−2+a2

)
with V = λt +

4mπΓ
(

D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=−∞
|~r − ~rj |2−D,

λ2 =
4(D − 2 + a2)2

D(D − 1)
Λ, ~A = ±

(
D − 1

2(D − 2 + a2)

) 1
2

V −1dt, m =
(

D − 1
2(D − 2 + a2)

) 1
2

|Q|.
(7.142)
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The Case D = 3

If D = 3 and the black holes are periodically distributed along the x3-axis then we have a

non-convergent potential as before. If we subtract an infinite constant to make this converge,

we have

V = λt + m(1 + a2)




∞∑

j=−∞

(
ρ2
2 + (x3 − Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 , (7.143)

which for a fixed value of x3 can be approximated by

Vappx = λt + c− 2k ln ρ2, (7.144)

where the constants k and c are as in (7.115). In this case, the Riemann curvature scalar is

given by

[R]2 =
4f

ρ2
2(1 + a2)4V 4

, (7.145)

where

f = 16k2ρ−2
2 V

−
(

4
1+a2

) (
V 2(a2 + 1)2 − 2kV (a2 + 1)(a2 + 3) + k2(3a4 + 10a2 + 14)

)

+ 3λ4ρ2
2V

(
4

1+a2

) (
a4 − a2 − 2

)− 8k2a2λ2
(
2− a2

)
.

(7.146)

This reduces to (7.116) when λ is zero, and when V is zero we have a curvature singularity.

If we try to show that this is a naked singularity, taking as before

t = t(s), x := x1(s), x2 = x3 = x4 = 0, (7.147)

then the Lagrangian is given by

L = −V
−

(
2

1+a2

)
(t, x)ṫ2 + V

(
2

1+a2

)
(x, t)ẋ2 = 0. (7.148)

Following the method above yields

dt

dx
= ±V

(
2

1+a2

)
=⇒ t = ±

∫
(λt + c− 2k ln x)

(
2

1+a2

)
(t, x)dx, (7.149)

and it is unclear how to resolve this integral, which we leave for further work.
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The Case D ≥ 4

We have

ds2 = −V

(
4−2D

D−2+a2

)
dt2 + V

(
2

D−2+a2

) (
ds2

D−1 + dx2
D

)
,

V = λt +
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=−∞

(
ρ2

D−1 + (xD − Pj)2
)(1−D

2 )
, (7.150)

where ds2
D−1 is defined as in (7.130). Again, we do not have to worry about singularities

being present as V converges and is always positive for D ≥ 4. Calculating the Riemann

curvature scalar for D = 4 as an example gives

[R]2 =
4

(
ãρ2

3 + b̃ρ3 + c̃
)

ρ3 (2 + a2)4 V
4
(

1+a2

2+a2

) , (7.151)

where

c̃ = 16V 2V
−

(
8

2+a2

) (
a2 + 2

)2 (∂ρ3V )2 ,

b̃ = 4
(
2 + a2

)
V
−

(
4

2+a2

)
V ∂ρ3V

( (
2 + a2

)
V
−

(
4

2+a2

) ((
4− a2

)
(∂ρ3V )2 + V ∂ρ3ρ3V

)

−λ2
(
1 + 2a2

)
V

(
2

2+a2

))
,

ã = ã0 + ã2a
2 + ã4a

4, (7.152)

with

ã0 = V
−

(
8

2+a2

) (
28V 2 (∂ρ3ρ3V )2 − 104V (∂ρ3V )2 ∂ρ3ρ3V + 127 (∂ρ3V )4

)

−2λ2V
−

(
2

2+a2

) (
(∂ρ3V )2 + 2V ∂ρ3ρ3V

)
+ 10λ4V

(
4

2+a2

)
,

ã2 = V
−

(
8

2+a2

) (
7V 2 (∂ρ3ρ3V )2 − 14V (∂ρ3V )2 ∂ρ3ρ3V + 7 (∂ρ3V )4

)

−2λ2V
−

(
2

2+a2

) (
(∂ρ3V )2 + 2V ∂ρ3ρ3V

)
+ 4λ4V

(
4

2+a2

)
,

ã4 = V
−

(
8

2+a2

) (
28V 2 (∂ρ3ρ3V )2 − 80V (∂ρ3V )2 ∂ρ3ρ3V + 52 (∂ρ3V )4

)

+10λ2V
−

(
2

2+a2

) (
(∂ρ3V )2 − V ∂ρ3ρ3V

)
− 8λ4V

(
4

2+a2

)
. (7.153)

This reduces to (7.134), (7.135) when we set λ to be zero, which provides a check of our

calculation.
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7.5.4 Lattice Solution

We modify our work in the ERN case to construct a lattice solution, beginning in a background

space RD and inserting identical sources in a (D − 3)-dimensional lattice. Taking the basis

vectors for this lattice to be the standard basis vectors in R(D−3) and ~ω = (ω1, . . . , ωD−3) to

be the position vector in the (D − 3)-dimensional background subspace gives us, summing

over the lattice vertices,

V = 1 +
∞∑

jD−3=−∞
· · ·

∞∑

j1=−∞
λ

(
ρ2
3 + (ω1 + j1)2 + · · ·+ (ωD−3 + jD−3)2

)(1−D
2 )

≤ 1 +
πλ

ρ3

(
D∏

i=5

ci

)(
sinh(2πρ3)

cosh(2πρ3)− cos(2πωD−3)

)
,

(7.154)

λ :=
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)
, (7.155)

ci(ρ3) = ρ
(i−3)
3

∞∑

k1=−∞

(
ρ2
3 + (ω1 + k1)2

)(1− i
2) . (7.156)

V converges by the comparison test and we have a solution in a compactified background

M4 × TD−3. To eliminate dilaton singularities, a takes values (7.104) for p ∈ Z.

7.5.5 Non-Periodic Distribution

We can modify the method for the ERN case to construct solutions here with black holes

unevenly distributed through several dimensions. Let {~rj}∞0 ⊂ RD be a divergent sequence

of points such that for some point ~r0 ∈ RD,

1 +
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=1

|~r0 − ~rj |2−D < ∞. (7.157)

We define a smooth function V : RD/{~rj} → R by

V = 1 +
4mπΓ

(
D
2

) (
D − 2 + a2

)

(D − 1)(D − 2)

∞∑

j=1

|~r − ~rj |2−D, (7.158)

which satisfies the Laplace equation on RD. We know that the metric is regular at the points

~rj for our special cases, when a takes the form (7.104) for p ∈ Z. Thus, at these points,

our construction makes sense and we have similar examples to the ERN case. The Riemann

curvature scalar is given by (7.131), (7.132), (7.133), but this now holds for D ≥ 3.
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Chapter 8

Kaluza-Klein Black Holes

8.1 Introduction

In the previous chapter, we have considered solutions with metrics of the form

ds2 = −V −2dt2 + V ( 2
D−2)ds2

ED , (8.1)

where ED is the standard D-dimensional Euclidean space. This describes an arbitrary num-

ber of extreme Reissner-Nordström black holes in static equilibrium. We can also construct

black hole solutions using the Gibbons-Hawking space instead of the Euclidean space. In five

dimensions, these solutions have asymptotic structure given by a four-dimensional locally flat

spacetime with a twisted S1. Their association with a compact dimension earns them the

name Kaluza-Klein black holes.

In this chapter, we shall explore a variety of Kaluza-Klein black holes with different properties.

We can write down the most general five-dimensional system we will work with, and consider

various cases:

ds2 = −U−2
(
dt̃ + αV β (dτ + ~ω · d~r)

)2
+ U exp(λt̃)ds2

GH ,

~A =
√

3
2

exp
(−λt̃

) (
dt̃ + αV β (dτ + ~ω · d~r)

)
,

ds2
GH = V −1 (dτ + ~ω · d~r)2 + V d~r2,

U = 1 +
N∑

j=1

mj exp(−λt̃)|~r−~rj |−1, V = ε +
N∑

j=1

nj |~r−~rj |−1, ~∇V = ~∇× ~ω. (8.2)

We introduce the coordinate transformation

t := λ−1 exp(λt̃) > 0, (8.3)
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yielding

ds2 = −U2
(
dt + αV β (dτ + ~ω · d~r)

)2
+ U

(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
,

~A =
√

3
2

U−1
(
dt + αV β (dτ + ~ω · d~r)

)
,

U = λt +
N∑

j=1

mj |~r − ~rj |−1, V = ε +
N∑

j=1

nj |~r − ~rj |−1, ~∇V = ~∇× ~ω. (8.4)

In order to avoid naked singularities being present, we require that mj , nj > 0 ∀j, β = ±1

and α2 ∈ [0, 1). λ is related to a positive cosmological constant Λ by

λ = ±
√

4Λ
3

. (8.5)

If ε is zero then the base space is the Eguchi-Hanson space and if ε is one then it is the Taub-

NUT space. The coordinates in which we express the Gibbons-Hawking metric, (r, θ, φ, τ)

have ranges

−∞ < r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ τ ≤ 2πL (8.6)

where the regularity of the metric requires that

nj =
hjL

2
, (8.7)

where hj ∈ N ∀j. Such solutions are regular at the event horizons, as we will see later, and

have the topology of the lens space L(hj ; 1) = S3/Zhj . The asymptotic behaviour of the

solution is such that an observer at spatial infinity would observe a single Kaluza-Klein black

hole with point source parameter m and nut charge n given by

m :=
N∑

j=1

mj , n :=
N∑

j=1

nj . (8.8)

There are four obvious categories of black holes which emerge:

- static, non-cosmological black holes (α = 0, λ = 0) explored in [37], denoted by SN;

- rotating, non-cosmological black holes (λ = 0, α 6= 0) explored in [51], denoted by RN;

- static, cosmological black holes (α = 0, λ 6= 0) explored in [36], [38], denoted by SC;

- rotating, cosmological black holes (α 6= 0, λ 6= 0) explored in [46], [49], denoted by RC.
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We will investigate the situation where we have infinitely many black holes. As such, the

structure of this chapter is as follows:

Special cases: We investigate the curvature of two special cases of the SN black holes, in

order to act as checks for later calculations.

Useful metrics: We introduce the Klemm-Sabra and Reissner-Nordström (anti) de-Sitter

metrics which will be useful in our work on SC and RC black holes. We show that these

metrics are stationary.

Regularity at the event horizons We demonstrate that the RC black holes (of which the

SC, RN and SN black holes will be treated as special cases) are regular at the event horizons.

Asymptotic behaviour: We look at the behaviour of the solutions at infinity to find their

asymptotic structure, seeing that in the case of infinitely many black holes we have Kaluza-

Klein type solutions. We consider the solutions with the Eguchi-Hanson and Taub-NUT base

spaces separately. Further, we note that the result in [51] for the asymptotic form of the RN

(and SN) metrics is incorrect.

Periodic distributions: We consider the behaviour of infinitely many black holes periodi-

cally distributed along one of the axes. We adapt the logarithmic approximation to U and V

employed in chapter three to calculate the Riemann curvature scalar for both choices of β and

show that the static black holes have naked singularities when either of the potentials is zero.

The cosmological black holes also have singularities but, due to the difficulty of solving the

Euler-Lagrange equations, it is not clear that they are naked. We give some useful examples

in both cases and investigate the values of α that give rise to closed timelike curves.

Non-periodic and lattice distributions: We follow the method of Anderson et al [1] to

obtain solutions with the black holes unevenly distributed along one of the axes. We calcu-

late the Riemann curvature scalar for both choices of β, give an example of a valid solution

(one for which ~ω converges) and investigate the values of α that give rise to closed timelike

curves. We briefly discuss lattice solutions and see that they unfortunately do not offer any

new possibilities.

Examples: Finally in this chapter, we consider the specific cases of SN, RN and SC black

149



8.2 Special Cases

holes, looking at the curvature for both periodic and non-periodic solutions, and in the case

of RN black holes we also look at the ergoregions.

8.2 Special Cases

In this section we will introduce some special cases of SN black holes, the first of which we

will use for checking some of our calculations later on and the second of which demonstrates

a link with our earlier work in chapters two and three on Kaluza-Klein-type solutions.

Gauntlett et al [15] construct a class of Kaluza-Klein black holes by taking the four-dimensional

Gibbons-Hawking space (3.2) and demonstrating that the triholomorphic Killing vector ∂τ of

that metric is also a Killing vector of a class of five-dimensional spaces. They subsequently

show that all timelike solutions of N = 2, D = 3+1 supergravity can be given by a reduction

of this class of solutions to the Gibbons-Hawking space. The five-dimensional metric in this

case is given by

ds2 = −V −2dt2 + V 2d~r2 + (dτ + ~ω · d~r)2 (8.9)

with potential

V = 1 +
N∑

j=1

nj |~r − ~rj |−1, (8.10)

giving the multi Taub-NUT solution for the four-dimensional part of the metric. This solution

corresponds to the special case of SN black holes when V ≡ U . We take ρ := ρ2. The Riemann

curvature scalar is given by

[R]2 =
4d2

(
20V 2 − 132dV + 307d2

)

ρ4V 8
, (8.11)

for a periodic solution, where we calculated the above by taking V to be approximated by

Vappx = c− 2d ln ρ; (8.12)

for a non-periodic solution it is given by

[R]2 =
f(V )
4ρ2V 8

with f(V ) =
4∑

j=0

vj , (8.13)

where the coefficients vj are given by

v0 = 127ρ2 (∂ρV )4 ,
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v1 = 4ρ (∂ρV )2
[
15ρ (∂ρV )2 − 26ρV ∂ρρV + 4V ∂ρV

]
,

v2 = 2
[
2V 2

(
7 (∂ρV )2 + 2ρ∂ρV ∂ρρV + 7ρ2 (∂ρρV )2

)

+ρ (∂ρV )2
(
11ρ (∂ρV )2 + 8V (∂ρV − 2ρ∂ρρV )

)]
,

v3 = 4
[
2V 2 (∂ρV + ρ∂ρρV )2 + ρ2 (∂ρV )2

(
2V ∂ρρV − 3 (∂ρV )2

)]
,

v4 = 27ρ2 (∂ρV )4 + 12V 2
(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+ 8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV ) . (8.14)

If we take U ≡ 1, then we have the Kaluza-Klein multiple monopole solution with metric

ds2 = −dt2 + V d~r2 + V −1 (dτ + ~ω · d~r)2 . (8.15)

The Riemann curvature scalar will be the same in the periodic case as it is in chapter three,

and in the non-periodic case it is given by

[R]2 =
27ρ2 (∂ρV )4 + 12V 2

(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+ 8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV )

4ρ2V 6
, (8.16)

which the same result we obtained independently in chapter five for a non-periodic distribu-

tion of instantons (see (6.5).

8.3 Useful Metrics

In this section we introduce three metrics that will be useful throughout this chapter when

looking at cosmological black holes. We will look at the Eguchi-Hanson metric in different

coordinates so as to make a link with the definition in chapter one, and at the Klemm-Sabra

and Reissner-Nordström metrics, which will be horizon and asymptotic limits for cosmological

black holes.

8.3.1 Eguchi-Hanson Metric

Ishihara et al [39] study the behaviour of black holes on the Eguchi-Hanson space in five-

dimensional Einstein-Maxwell theory. The metric is given by

ds2 = −U−2dt2 + U
(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
,

U = 1 +
N∑

j=1

mj |~r − ~rj |−1, V =
N∑

j=1

nj |~r − ~rj |−1,

~∇V = ~∇× ~ω. (8.17)
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The potential U converts NUT singularities (found when ~r = ~rj) into hyperspaces in the

overall spacetime, each of these being a Killing horizon with respect to ∂t and each cross-

section of them with a t = const surface having a finite area, making them event horizons. In

order to see the connection with the original form of the metric we gave in (2.17), we consider

the case of two black holes and apply the coordinate transformation

r = a

(
r̃4

a4
− sin2 θ

) 1
2

, tan θ =
(

1− a4

r4

) 1
2

tan θ̃, φ = τ̃ , τ = 2φ̃,

m̃1 =
m1

a
, m̃2 =

m2

a
, ñ1 = ñ2 =

a

8
, (8.18)

giving us the metric

ds2 = −U−2dt2+U

((
1− a4

r̃4

)−1

dr̃2 +
r̃2

4

(
1− a4

r̃4

) (
dτ̃ + cos θ̃dφ̃

)2
+

r̃2

4

(
dθ̃2 + sin2 θ̃dφ̃2

))
.

(8.19)

8.3.2 The Klemm-Sabra Metric

Klemm and Sabra [46] construct a rotating, cosmological black hole solution by generalising

the extreme Reissner-Nordström metric to give

ds2 = −
(
λt +

m

r2

)−2 (
dt +

σ

2r2
(dτ + cos θdφ)

)2

+
(
λt +

m

r2

)(
dr2 +

r2

4

(
dΩ2 + (dτ + cos θdφ)2

))
,

(8.20)

where m is the mass and σ the angular momentum of the black hole and is proportional to

α. From hereon in we refer to this as the Klemm-Sabra (KS) metric.

8.3.3 The Reissner-Nordström de-Sitter Metric

We can generalise the Reissner-Nordström (anti) de-Sitter metric for rotating black holes,

obtaining

ds2 = −
(
λt +

m

r2

)−2
(

dt +
σr2

4
(dτ + cos θdφ)

)2

+
(
λt +

m

r2

)(
dr2 +

r2

4

(
dΩ2 + (dτ + cos θdφ)2

))
.

(8.21)
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From hereon in we refer to this as the Reissner-Nordström (anti) de-Sitter (RNdS)

metric. Note that if α (and hence σ) is zero then we have

ds2 = −
(
λt +

m

r2

)−2
dt2 +

(
λt +

m

r2

)(
dr2 +

r2

4

(
dΩ2 + (dτ + cos θdφ)2

))
. (8.22)

8.3.4 Stationary Solutions

In order to see that these metrics yield stationary solutions, by which we mean there they

have a timelike Killing vector, we apply Eddington-Finkelstein coordinates, letting

r̃2 = λtr2 + m, dt̃ = (λt)−1 dt− f (r̃) dr̃, dτ̃ = dτ − g (r̃) dr̃, (8.23)

with

fKS (r̃) :=
2λr̃

(
r̃6 − σ2

) (
r̃2 −m

)−1

λ2 (r̃6 − σ2)− 4 (r̃2 −m)2
, gKS (r̃) :=

4λσr̃

λ2 (r̃6 − σ2)− 4 (r̃2 −m)2
, (8.24)

for the KS metric and

fRNdS (r̃) :=
λr̃3

2 (r̃2 −m)
, gRNdS (r̃) :=

λσr̃3

2 (r̃2 −m)
, (8.25)

for the RNdS metric. The resulting metrics are given by

ds2
KS =

λ2r̃

4
dt̃2−W 2

1

(
dt̃ +

σ

2r̃2
W−1

1 (dτ̃ + cos θdφ)
)2

+W−1
2 dr̃2+

r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

)
,

(8.26)

and

ds2
RNdS =

λ2r̃

4
dt̃2−W 2

1

(
dt̃ +

σr̃2

4
W−1

1 (dτ̃ + cos θdφ)
)2

+W−1
2 dr̃2+

r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

)
,

(8.27)

where

W1 := 1− m

r̃2
, W2 :=

(
1− m

r̃2

)2
− λ2r̃2

4
+

λ2σ2

4r̃4
. (8.28)

Horizons occur at values of r̃ such that W2 (r̃) = 0. If we define x := λtr̃2, then

λ2
(
(x + m̃)3 − σ2

)
− 4x2 = 0, (8.29)

so we have three horizons: an inner horizon (x−), an outer horizon (x+) and a cosmological

horizon (xc) which are related by
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x− ≤ 0 ≤ x+ ≤ xc. (8.30)

In these coordinates, we can see that the metrics are stationary. If σ is zero, then we have

ds2 =
(

λ2r̃

4
−W 2

1

)
dt̃2 + W−1

2 dr̃2 +
r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

)
, (8.31)

where

W1 := 1− m

r̃2
, W2 :=

(
1− m

r̃2

)2
− λ2r̃2

4
, (8.32)

and so this metric is also stationary.

8.4 Regularity at the Event Horizons

In this section we will demonstrate that our black holes are regular at the event horizons.

The argument is different for cosmological and non-cosmological black holes, so we discuss

the two cases separately.

8.4.1 Non-Cosmological Black Holes

We study the behaviour of RN black holes (of which the SN black holes will be treated as a

special case) near the event horizon. We have

ds2 = −U−2
(
dt + αV β (dτ + ~ω · d~r)

)2
+ U

(
V −1 (dτ + ~ω · d~r)2 + V

(
dr2 + r2dΩ2

))
,

(8.33)

where

U = 1 +
N∑

j=1

mj |~r − ~rj |−1, V = ε +
N∑

j=1

nj |~r − ~rj |−1, (8.34)

ε = 0, 1, α2 ∈ [0, 1) and β = ±1. (8.35)

Without loss of generality, we consider the case of two black holes positioned at

~r1 = (0, 0, 0) , ~r2 = (0, 0,−a) , (8.36)

where a is the separation of the black holes. The potentials become

U = 1 + m1r
−1 + m2

(
r2 + a2 + 2ar cos θ

)− 1
2 ,
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V = ε + n1r
−1 + n2

(
r2 + a2 + 2ar cos θ

)− 1
2 ,

~ω · d~r =
(
n1 cos θ + n2 (a + r cos θ)

(
r2 + a2 + 2ar cos θ

)− 1
2

)
dφ. (8.37)

Note that, as r → 0,

U−2 → r2

m2
1
, U−2V → 0,

U−2V −2 → 0, U−2V 2 → n2
1

m2
1
,

U−2V −1 → 0, UV −1 → m1
n1

,

UV → m1n1
r2 , r2UV dΩ2 → m1n1dΩ2,

(8.38)

for both ε = 0 and ε = 1. Then, under the coordinate transformation

dτ̃ = dτ + n2dφ,

dv = dt−

Fm

1
2
1

n
1
2
1 r

+
m

3
2
1 n

1
2
1

r2


dr, (8.39)

where F is a constant, as r → 0 we see that

−U−2dt2 + UV dr2 ' −2
(

n1

m1

) 1
2

dvdr +
F 2

m1n1
dr2 +O(r), (8.40)

and the metric becomes

ds2
β=1 ' −2

(
n1

m1

) 1
2

dvdr+m1n1

(
dΩ2 +

(
1− α2n3

1

m3
1

)(
dτ̃

n1
+ cos θdφ

)2
)

+
F 2

m1n1
dr2+O(r)

(8.41)

when β = 1 and

ds2
β=−1 ' −2

(
n1

m1

) 1
2

dvdr + m1n1

(
dΩ2 +

(
dτ̃

n1
+ cos θdφ

)2
)

+
F 2

m1n1
dr2 +O(r) (8.42)

when β = −1. We note the following:

- In the SN case, α = 0 and so F = 0. The result does not depend on the choice of β;

- In the RN case, α 6= 0 and so F 6= 0. The metric does depend on the choice of β.

Thus, in the SN case, the metric is given by

ds2 ' −2
(

n1

m1

)
dvdr + m1n1

(
dΩ2 +

(
dτ̃

n1
+ cos θdφ

)2
)

+O(r) (8.43)

as r → 0. We can see in both these cases that the metrics are regular at the event horizon.

A similar argument shows that the event horizon of the second black hole is regular, and
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this method can be generalised to any number of black holes. Now, from reference [51],

the Killing vector field K := ∂v becomes null at r = 0 and is hypersurface orthogonal from

Kµdxµ = gvrdr at that place. Thus, r = 0 is a Killing horizon. Each component of the metric

is analytic in the region r = 0 and therefore the spacetime has no curvature singularity on

or outside the horizon. If we look at the intersection of the j-th event horizon with a static

time-slice, the metric becomes

ds2
β=1

∣∣∣∣
r=0,v=const

=
Lmjhj

2

(
dΩ2 +

(
1− α2n3

1

m3
1

)(
dψ

n1
+ cos θdφ

)2
)

(8.44)

when β = 1 and

ds2
β=−1

∣∣∣∣
r=0,v=const

=
Lmjhj

2


dΩ2 +

(
dψ̃

n1
+ cos θdφ

)2

 (8.45)

when β = −1, where 0 ≤ ψ = 2τ̃L−1 ≤ 4π. The horizon topology is consequently that of the

lens space L(hj ; 1) = S3/Zhj . Note that the value of ε makes no difference to the result here.

8.4.2 Cosmological Black Holes

We now explore the behaviour of both RC and SC black holes near the event horizon, in the

former situation looking at both choices of β separately. The metric is given in (8.4). If the

two black holes are positioned as in (8.36) and the potentials are given by

U = λt + m1r
−1 + m2

(
r2 + a2 + 2ar cos θ

)− 1
2 ,

V = ε + n1r
−1 + n2

(
r2 + a2 + 2ar cos θ

)− 1
2 ,

~ω · d~r =
(
n1 cos θ + n2 (a + r cos θ)

(
r2 + a2 + 2ar cos θ

)− 1
2

)
dφ, (8.46)

then near r → 0, we have

U → λt + m1r
−1, V → n1r

−1, ~ω · d~r → (n1 cos θ + n2) dφ. (8.47)

8.4.3 The Case β = −1

Ida et al [36] construct an SC solution which we adapt for the RC case. We employ the

following coordinate transformations

r̃2 = 4n1r, n1dτ̃ = dτ + n2dφ, m̃1 = 4m1n1, σ = αn−1
1 , (8.48)

and thus
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U → λt + m̃1r̃
−2, αV −1 (dτ + ~ω · d~r) → σr̃2

4
(dτ̃ + cos θdφ) ,

V −1 (dτ + ~ω · d~r)2 + V d~r2 → dr̃2 +
r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

)
, (8.49)

which yields

ds2 ' −
(

λt +
m̃1

r̃2

)−2 (
dt +

σr̃2

4
(dτ̃ + cos θdφ)

)2

+
(

λt +
m̃1

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

))
,

(8.50)

which is the same form as the RNdS metric (8.21).

8.4.4 The Case β = 1

Matsuno et al [49] construct a solution with β = 1 and we follow their method. We employ

the following coordinate transformations

r̃2 = 4n1r, n1dτ̃ = dτ + n2dφ, m̃1 = 4m1n1, σ = 8αn3
1, (8.51)

then we have

U → λt + m̃1r̃
−2, αV (dτ + ~ω · d~r) → σ

2r̃2
(dτ̃ + cos θdφ) ,

V −1 (dτ + ~ω · d~r)2 + V d~r2 → dr̃2 +
r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

)
, (8.52)

which yields

ds2 ' −
(

λt +
m̃1

r̃2

)−2 (
dt +

σ

2r̃2
(dτ̃ + cos θdφ)

)2

+
(

λt +
m̃1

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

))
,

(8.53)

which is the same form as the KS metric (8.20).
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8.4.5 The SC Case

If we set α (and hence σ) to be zero, then with the black holes positioned as in (8.36) (see

[38]), as r → 0,

ds2 = −
(
λt +

m1

r

)−2
dt2 +

(
λt +

m1

r

)(
r

n1
(dτ + ~ω · d~r)2 +

n1

r
d~r2

)
,

~A =
√

3
2

U−1dt. (8.54)

Applying the coordinate transformations

r̃2 = 4n1r, n1dτ̃ = dτ + n2dφ, m̃1 = 4m1n1, (8.55)

gives us

ds2 ' −
(

λt +
m̃1

r̃2

)−2

dt2 +
(

λt +
m̃1

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 + (dτ̃ + cos θdφ)2

))
, (8.56)

which is the same form as (8.22). In all three cases, therefore, our metrics behave like

stationary solutions at the event horizons as we can apply Eddington-Finkelstein coordinates

as before.

8.5 Asymptotic Behaviour

In this section we will investigate the asymptotic behaviour of our black holes. We shall see

that for both possible choices of ε, many black holes will coalesce into a single black hole. We

proceed by studying RC black holes, treating the other examples as special cases. We begin

with a note on the paper of Nakagawa et al [51].

In this paper, the authors use the coordinate transformation given by (8.145) to obtain a

formula for the asymptotic form of the metric. They take, in the single black hole case,

U → 1, V → 1, ~ω · d~r → n cos θdφ, τ → Lτ

2
, (8.57)

and apply the coordinate transformation to give

ds2 ' −dt̃2 + 2α2
(
1− h−1

)
dt̃2 + n2

(
1− α2

) (
τ̃

h
+ cos θdφ

)2

+ dr2 + r2dΩ2. (8.58)

Here, they appear to set h to be 1 in order to obtain the metric given in the paper:
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ds2 ' −dt̃2
L2

4
(
1− α2

)(
τ̃

h
+ cos θdφ

)2

+ dr2 + r2dΩ2. (8.59)

This is not a problem in of itself, but in the case of multiple black holes, as each hj ∈ N, then

we cannot do this and so their extension to many black holes is incorrect.

8.5.1 Asymptotic Behaviour for ε = 0

If we again assume that we have two black holes positioned as in (8.36) so that the potentials

are as in (8.46), then as r →∞, we have, if we let n := n1 = n2,

U → λt +
m1 + m2

r
, V → n1 + n2

r
=

2n

r
, ~ω·d~r → (n1 + n2) cos θdφ = 2n cos θdφ.

(8.60)

The Case β = −1

Employing the following coordinate transformations

r̃2 = 8nr, ndτ̃ = dτ, m̃j = 4mjn, σ = αn−1, (8.61)

gives us

λt +
m1 + m2

r
→ λt +

2 (m̃1 + m̃2)
r̃2

, αV −1 (dτ + ~ω · d~r) → σr̃2

4

(
dτ̃

2
+ cos θdφ

)
,

V −1 (dτ + ~ω · d~r)2 + V d~r2 → dr̃2 +
r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
)

, (8.62)

and so the metric becomes

ds2 ' −
(

λt +
2 (m̃1 + m̃2)

r̃2

)−2 (
dt +

σr̃2

4

(
dτ̃

2
+ cos θdφ

))2

+
(

λt +
2 (m̃1 + m̃2)

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.63)

The Case β = 1

Employing the following coordinate transformations

r̃2 = 8nr, ndτ̃ = dτ, m̃j = 4mjn, σ = 8αn3, (8.64)

gives us
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λt +
m1 + m2

r
→ λt +

2 (m̃1 + m̃2)
r̃2

, αV (dτ + ~ω · d~r) → 4σ

r̃2

(
dτ̃

2
+ cos θdφ

)
,

V −1 (dτ + ~ω · d~r)2 + V d~r2 → dr̃2 +
r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
)

, (8.65)

and so the metric becomes

ds2 ' −
(

λt +
2 (m̃1 + m̃2)

r̃2

)−2 (
dt +

4σ

r̃2

(
dτ̃

2
+ cos θdφ

))2

+
(

λt +
2 (m̃1 + m̃2)

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.66)

Conclusion

These metrics are similar to the KS and RNdS metrics respectively with mass term 2 (m̃1 + m̃2)

and angular momentum 8σ for KS, σ for RNdS, but the topology of a r̃ = const surface here

has topology L(2; 1) = S3/Z2 compared with S3 in the aforementioned metrics, due to the

presence of a dτ̃
2 term instead of a dτ̃ term. This means the black holes coalesce:

Two black holes (m̃1, σ) , (m̃2, σ) −→ One black hole (2 (m̃1 + m̃2) , (8)σ) . (8.67)

For SC black holes (with α and therefore σ being zero), we have

ds2 ' −
(

λt +
2 (m̃1 + m̃2)

r̃2

)−2

dt2

+
(

λt +
2 (m̃1 + m̃2)

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.68)

For RN black holes (with λt being replaced by 1), we have

ds2 ' −
(

1 +
2 (m̃1 + m̃2)

r̃2

)−2 (
dt +

4σ

r̃2

(
dτ̃

2
+ cos θdφ

))2

+
(

1 +
2 (m̃1 + m̃2)

r̃2

) (
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.69)

For SN black holes (with λt being replaced by 1 and α being zero), we have
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ds2 ' −
(

1 +
2 (m̃1 + m̃2)

r̃2

)−2

dt2

+
(

1 +
2 (m̃1 + m̃2)

r̃2

) (
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.70)

8.5.2 Asymptotic behaviour for ε = 1

The situation is more straightforward here. We temporarily revert to the form of the metric

in (8.2). The asymptotic form of this metric is given by (see [36]):

ds2 '
(
dt + αV β (dτ + ~ω · d~r)

)2
+ exp(λt)

(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
,

V = 1 +
N∑

j=1

nj |~r − ~rj |−1, ~∇V = ~∇× ~ω, (8.71)

which is the same metric as the Gross-Perry-Sorkin monopole we introduced in (2.35) but

with a cosmological constant. If we have two black holes positioned once again as in (8.36)

with V and ~ω as in (8.46), this metric becomes

ds2 '
(

dt + σ

(
1 +

2n

r

)β (
dτ̃

2
+ cos θdφ

))2

+ exp(λt)

(
n2

(
1 +

2n

r

)−1 (
dτ̃

2
+ cos θdφ

)2

+
(

1 +
2n

r

)
d~r2

)
,

(8.72)

if n := n1 = n2, σ := n2α and we use the coordinate transformation τ = nτ̃ . As before, the

black holes coalesce into one black hole with horizon topology L(2; 1) = S3/Z2.

For SC black holes we have

ds2 ' −
(

λt +
2 (m̃1 + m̃2)

r̃2

)−2

dt2

+
(

λt +
2 (m̃1 + m̃2)

r̃2

)(
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.73)

For RN black holes we have
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ds2 ' −
(

1 +
2 (m̃1 + m̃2)

r̃2

)−2 (
dt +

r̃2

4

(
dτ̃

2
+ cos θdφ

))2

+
(

1 +
2 (m̃1 + m̃2)

r̃2

) (
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.74)

For SN black holes we have

ds2 ' −
(

1 +
2 (m̃1 + m̃2)

r̃2

)−2

dt2

+
(

1 +
2 (m̃1 + m̃2)

r̃2

) (
dr̃2 +

r̃2

4

(
dΩ2 +

(
dτ̃

2
+ cos θdφ

)2
))

.

(8.75)

8.5.3 Conclusion

As we have seen, each of our RC metrics is asymptotic to a stationary metric that describes

extreme rotating black holes with a cosmological constant, and similar results apply to our

special cases. We could generalise these results for N black holes, as then we would have

U ' λt + mr−1, V ' ε + nr−1, ~ω · d~r ' n cos θdφ, (8.76)

where m and n are defined as in (8.8). Thus, the N black holes would coalesce into one

black hole with horizon topology given by L(n; 1) = S3/Zn. This leaves us in an interesting

situation in the case of having infinitely many identical black holes. We could interpret this as

saying that, viewed from a distance, our five-dimensional space looks like a four-dimensional

space, which is what one might expect in a Kaluza-Klein-type situation. Having looked at

the asymptotic behaviour of our solutions and checked that the black holes are regular at the

event horizons, we now move to looking at the specific situations that arise when we have

infinitely many black holes, distributed in various ways.

8.6 Periodic Distributions

In this section, we let the number N of identical black holes go to infinity and distribute the

black holes periodically along the x3-axis. We will consider the most general (RC) case with

the metric as in (8.4) and potentials given by

U = λt + m




∞∑

j=−∞

(
ρ2
2 + (x3 + Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 ,
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V = 1 + n




∞∑

j=−∞

(
ρ2
2 + (x3 + Pj)2

)− 1
2 − 2

∞∑

j=1

(Pj)−1


 , (8.77)

where we have subtracted an infinite constant in order to ensure convergence. Since we re-

quire that m > 0 and n > 0 in order to avoid singularities, both U and V will have zero

strips (see figure 7.2 to get an idea of the general shape).

For a given choice of x3, let ρU denote the value of ρ2 such that U(ρ2, x3) = 0 when t is

zero, and let ρV denote the value of ρ2 such that V (ρ2, x3) = 0. In order to investigate

the singularity structure of the space, we need to approximate U and V near to where they

become zero. We accomplish this by using logarithmic approximations

Uappx = λt + a− 2b ln ρ2, Vappx = c− 2d ln ρ2, (8.78)

where

a = −ρU ln(ρU )
(

∂

∂ρ2
(U − λt)

) ∣∣∣∣
ρU

, b = −ρU

2

(
∂

∂ρ2
(U − λt)

) ∣∣∣∣
ρU

,

c = −ρV ln(ρV )
∂V

∂ρ2

∣∣∣∣
ρV

, d = −ρV

2
∂V

∂ρ2

∣∣∣∣
ρV

. (8.79)

We know from our work in previous chapters that this will provide a good approximation to U

and V near to where they become zero. Uappx does satisfy the Laplace equation ∇2Uappx = 0

and for this choice of Vappx, we must have

~ω = (0, 0,−2dθ) , where θ = arctan
(

x1

x2

)
. (8.80)

The metric then becomes, with cylindrical coordinates ~r = (ρ, θ, x3),

ds2 = −U−2dt2 + UV d~r2 − 2αV βU−2 (dτ − 2dθdx3) dt + W (dτ − 2dθdx3)
2 , (8.81)

where

W := UV −1 − α2U−2V 2β. (8.82)

We can then calculate the Riemann curvature tensor. We take ρ := ρ2. There are two cases

to consider.

8.6.1 The Case of β = −1

We have
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[R]2 =
f

4ρ4V 8U8
with f =

8∑

j=0

ujU
j , (8.83)

where the coefficients uj are given by

u0 = 544α4d4, u1 = −904V 3d2α2
(
4b2 + (αλρ)2

)
,

u2 = 1152bα2d2V 2(V − 4d) + 127V 6
(
16b4 + 8 (αbλρ)2 + (αλρ)4

)
,

u3 = 240bV 5
(
4b2(d− V ) + d (αλρ)2

)
− 128V α2d2

(
V 2 − 9V d + 24d2

)
,

u4 = 16V 4
(
12b2

(
V 2 − 2dV + 2d2

)
+ (αdλρ)2

)
,

u5 = −2V 7ρ2λ2
(
4b2 + (αλρ)2

)
,

u6 = 128d2V 2
(
V 2 − 6dV + 12d2

)
, u7 = 0,

u8 = 10V 8ρ4λ4. (8.84)

We can see that f → 544α4d4 when either U or V tends to zero, and thus such points are

singular.

8.6.2 The Case of β = 1

We have

[R]2 =
f

4ρ4V 6U8
with f =

8∑

j=0

ujU
j , (8.85)

where the coefficients uj are given by

u0 = 544α4d4V 6, u1 = −904V 5d2α2
(
4b2 + (αλρ)2 V 4

)
,

u2 = 1152bα2d2V 5 + 127V 4
(
16b4 + 8 (αbλρ)2 V 4 + (αλρ)4 V 8

)
,

u3 = 240bV 3
(
4b2(d− V )− 3d (αλρ)2 V 4

)
− 128V 5α2d2,

u4 = 192V 2b2
(
V 2 − 2dV + 2d2

)
+ 208 (αdλρ)2 V 6,

u5 = −2V 5ρ2λ2
(
4b2 + (αλρ)2 V 4

)
,

u6 = 128d2
(
V 2 − 6dV + 12d2

)
, u7 = 0,

u8 = 10V 6ρ4λ4. (8.86)

We can see that f → 544α4d4V 6 when U → 0 and f → 1536d4U6 when V → 0, and thus

such points are singular.
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8.6.3 Values of the Parameter α

We now investigate how the fact that U and V can become negative in the periodic black

hole solution affects the values that α can take. Earlier, we insisted that α ∈ [0, 1) in order

to avoid the presence of Closed Timelike Curves (CTCs) in our solutions. Looking at the

two-dimensional (φ, τ)-part of the metric, we see that

ds2

∣∣∣∣
(φ,τ)

=
(
UV 1 − α2U−2V 2β

)
(dτ + ~ω · d~r) + UV r2 sin2 θdφ2. (8.87)

The metric is positive definite, and thus CTCs are avoided if and only if

M =


 UV −1 − α2U−2V 2β 0

0 UV r2 sin2 θ


 (8.88)

is positive definite. We thus require that detM > 0 and W := UV −1−α2U−2V 2β > 0. This

means that

- if U > 0, V > 0 or U < 0, V < 0, then UV > 0; need W > 0;

- if U > 0, V < 0 or U < 0, V > 0, then UV < 0 and so it is not possible to avoid having

CTCs.

If β = −1, then W > 0 if and only if U3V > α2. We can plot U3V for various examples (see

(8.90), (8.91) and (8.92)) and find that

- if U 6≡ V , then U3V ≤ 0 between ρU and ρV , and is otherwise positive;

- if U ≡ V then U4 = 0 at the point where U = 0 (which is a turning point) and is

otherwise positive.

If β = 1, then W > 0 if and only if U3V −3 > α2. We see that

- if U ≡ V , then if α2 ∈ [0, 1) there will be no CTCs - they occur for α ≥ 1;

- if U 6≡ V then U3V −3 ≤ 0 between ρU and ρV , is zero when U is zero, is undefined

when V is zero, and is otherwise positive.

From this, we can see that CTCs are inevitable in almost all circumstances, and always if

we have two singularities. This is the case because we can always choose α to be such that

W ≤ 0 and so the matrix M is not positive definite. In particular, they will always arise in

the region between the singularities, even in the simplest (SN) case.
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Figure 8.1: Presence of CTCs for non-cosmological black hole examples ((8.90), (8.91) and

(8.92) are examples one, two and three respectively) and β = −1, with ρ := ρ2 ∈ [1.3, 2.3]

8.6.4 Useful Examples

When we investigate periodic solutions, we will use standard examples. Let

φ :=




∞∑

j=−∞

(
ρ2
2 + (x3 + j)2

)− 1
2 − 2

∞∑

j=1

j−1


 , (8.89)

then for RN and SN black holes, we have

U1 = 1 + φ, V1 = 1 + 2φ, (8.90)

U2 = 1 + 2φ, V2 = 1 + φ, (8.91)

U3 = 1 + φ = V3; (8.92)

for RC and SC black holes, we have

U4 = λt + φ, V4 = 1 + 2φ, (8.93)

U5 = λt + 2φ, V5 = 1 + φ, (8.94)

U6 = λt + φ, V6 = 1 + φ. (8.95)

Note here we have taken ε to be one, but similar results follow when ε is zero.
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8.7 Periodic Solutions - Singularity Properties

In this section, we look to see if the singularities at points where either U or V are zero,

which arise with periodic distributions as above, are naked singularities. The situation is

complicated by the fact that we have to look at two exterior and interior regions. Here, we

can assume without loss of generality that ρV < ρU as the same argument applies in the

other case. We can see from the diagram below that:

- for the exterior of V , U > 0 and V > 0;

- for the interior of V , U > 0 and V < 0 for ρ ∈ (ρV , ρU ) and U < 0 and V < 0 for

ρ > ρU ;

- for the exterior of U , U > 0 and V < 0 for ρ ∈ (ρV , ρU ) and U > 0 and V > 0 for

ρ < ρV ;

- for the interior of U , U < 0 and V < 0.

Figure 8.2: The interior and exterior regions for a Kaluza-Klein black hole

In order to ensure that the metric is Lorentzian throughout the spacetime, we see that

ds2 = −U−2
(
dt + αV β (dτ + ~ω · d~r)

)2
+ U

(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
(8.96)
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in the regions where U > 0 and V > 0 or U < 0 and V < 0, and

ds2 = +U−2
(
dt + αV β (dτ + ~ω · d~r)

)2
+ U

(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
(8.97)

in the region where U > 0 and V < 0. Let us begin our analysis by considering radial null

geodesics, giving us

t = t(s), x := x1(s), x2 = x3 = τ = 0, (8.98)

yielding the metric

ds2 = ±U−2(x, t)
(
dt + αV β(x)ωxdx

)2
+ U(x, t)

(
V −1(x)ω2

x + V (x)
)
dx2, (8.99)

and thus the Lagrangian

L = ±U−2(x, t)
(
ṫ + αV β(x)ωxẋ

)2
+ U(x, t)

(
V −1(x)ω2

x + V (x)
)
ẋ2. (8.100)

If we use our approximations for U and V ,

Uappx = λt + a− 2b ln x, Vappx = c− 2d ln x, (8.101)

then ωx = 0 and the Lagrangian becomes

L = ±U(x, t)−2ṫ2 + U(x, t)V (x)ẋ2 = 0. (8.102)

The geodesics are given by the Euler-Lagrange equations:

d
ds

(±2U−2ṫ
)− ∂U

∂t

(∓2U(x, t)−3ṫ2 + V ẋ2
)

= 0,

d
ds

(2UV ẋ)∓ ṫ2
∂

∂x

(
U−2

)−
(

U
dV

dx
+ V

∂U

∂x

)
ẋ2 = 0. (8.103)

At this point, we note that α is not present and rotation does not play a part in these

calculations; we now therefore consider two cases: non-cosmological and cosmological black

holes.

8.7.1 Non-Cosmological Black Holes

We no longer have to consider U to be dependent on t, and so we have

Uappx = a− 2b lnx, Vappx = c− 2d lnx,

L = ±U(x)−2ṫ2 + U(x)V (x)ẋ2 = 0,
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d
ds

(±2U−2ṫ
)

= 0,

d
ds

(2UV ẋ)∓ ṫ2
d
dx

(
U−2

)−
(

U
dV

dx
+ V

dU

dx

)
ẋ2 = 0. (8.104)

U and V have the Same Sign

In this case of (8.96), if we have

L = −U−2ṫ2 + UV ẋ2 = 0, (8.105)

then we can see that if we define

E := U−2ṫ, (8.106)

we have

Ė = 0 and ẋ2 = U−3V −1ṫ2 ⇒ dt

dx
=

ṫ

ẋ
= ±U

3
2 V

1
2 . (8.107)

We can therefore take

t = ±
∫ x1

x0

U
3
2 V

1
2 dx

= ±
∫ x1

x0

(a− 2b lnx)
3
2 (c− 2d ln x)

1
2 dx, (8.108)

where x0 is the position of either singularity and x1 is a finite but large distance from the

singularity.

U and V have Opposite Signs

The analysis in the case of (8.97) is similar. If we have

L = U−2ṫ2 + UV ẋ2 = 0, (8.109)

then we see that if we define

E := U−2ṫ, (8.110)

we have

Ė = 0 and ẋ2 = −UV −1E2 ⇒ dt

dx
=

ṫ

ẋ
= ±U2

(−UV −1
)− 1

2 . (8.111)
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We can therefore take

t = ±
∫ x1

x0

U2

∣∣∣∣UV −1

∣∣∣∣
− 1

2

dx

= ±
∫ x1

x0

(a− 2b ln x)2
∣∣∣∣ (a− 2b lnx) (c− 2d ln x)−1

∣∣∣∣
− 1

2

dx (8.112)

throughout the whole spacetime. We can see that t is finite as we move away from either of

the singularities in either direction and can therefore conclude that the singularities can be

reached by an observer a significant distance away in a finite period of time and hence are

naked singularities.

8.7.2 Cosmological Black Holes

The situation is more complicated here as the point where U is zero is not stationary; for a

given t, the value of x such that U is zero is given by

x = exp
(

a + λt

2b

)
, (8.113)

so the singularity drifts through the spacetime! Rearranging the Lagrangian gives us

dt

dx
= ±U(x, t)2

∣∣∣∣U(x, t)V (x)−1

∣∣∣∣
− 1

2

. (8.114)

It is not clear how one might proceed in this situation and so we leave the question open for

further work.

8.8 Non-Periodic and Lattice Distributions

As in previous chapters, we consider alternative methods of ensuring the convergence of

the functions U and V , firstly by arranging the infinitely many identical black holes in a

non-periodic pattern and secondly by using a three-dimensional lattice arrangement.

8.8.1 Non-Periodic Distributions of Black Holes

Firstly, we consider having a non-periodic distribution of black holes, modifying the method

of Anderson et al [1]. Let {~rj}∞j=0 ⊂ R3 be a divergent sequence of points such that for some

point ~r0 ∈ R3,

∞∑

j=1

m

|~r0 − ~rj | < ∞. (8.115)
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We can then define smooth functions U : R3/{~rj} → R and V : R3/{~rj} → R by

U(r, t) := λt +
∞∑

j=1

m

|~r − ~rj | , V (r) := ε +
∞∑

j=1

n

|~r − ~rj | . (8.116)

Clearly, U and V satisfy the Laplace equation on R3:

∇2U =
∂2U

∂t2
+

∂2U

∂(x1)2
+

∂2U

∂(x2)2
+

∂2U

∂(x3)2
= 0 =

∂2V

∂(x1)2
+

∂2V

∂(x2)2
+

∂2V

∂(x3)2
= ∇2V. (8.117)

We know that the metric is regular at ~r = ~rj and that these are the event horizons for the

black holes, which is enough to ensure that this construction makes sense.

Recall from chapter six that if we use the example of having the black holes positioned at

~rj =
(
0, 0, j1+κ

)
for some κ > 0, then we have

~ω · d~r =


n

∞∑
−∞

x3 − j1+κ

(
ρ2 + (x3 − j1+κ)2

)− 1
2


dθ, (8.118)

and fixing the value of x3 gives us a much simplified metric to work with. This converges if

we take κ = 2, for instance.

8.8.2 The Case β = −1

We can calculate the Riemann curvature scalar, taking ρ := ρ2, and see that

[R]2 =
f(U, V )
4ρ2V 8U8

with f(U, V ) =
8∑

j=0

ujU
j , (8.119)

where the coefficients uj are given by

u0 = 11ρ2α4 (∂ρV )4 , u1 = −104ρ2α2V 3 (∂ρV )2
(
α2λ2 + (∂ρU)2

)
,

u2 = ρV 2

[
127ρV 4

(
α2λ2 + (∂ρU)2

)2
− 20ρα2V (∂ρV )2 ∂ρρU

+ 4α2∂ρU∂ρV
(
16ρV ∂ρρV − 2V ∂ρV − 29ρ (∂ρV )2

)]
,

u3 = −4V

[(
26ρ2 (∂ρU)2 ∂ρρU − 4ρ∂ρU

(
α2λ2 + (∂ρU)2

)
− 4λ2α2ρ2∂ρρU

)
V 5

− 15ρ2V 4∂ρU∂ρV
(
α2λ2 + (∂ρU)2

)
+ 2α2V 2

(
ρ2 (∂ρρV )2 + (∂ρV )2

)

+ α2ρV (∂ρV )2 (2∂ρV − 11ρ∂ρρV ) + 15α2ρ2 (∂ρV )4
]
,
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u4 = 2V 4

[
11ρ2 (∂ρU)2 (∂ρV )2 + 14V 2

(
ρ2 (∂ρρU)2 + (∂ρU)2

)

− 6ρ2

(
α2λ2 (∂ρV )2 + 2V ∂ρU∂ρV ∂ρρU

)

+ 4ρV

(
V ∂ρU∂ρρU + 2∂ρV

(
α2λ2 + (∂ρU)2

)
+ ρ∂ρρV

(
2α2λ2 − (∂ρU)2

))]
,

u5 = −2V 3

[
ρ2λ2V 4

(
α2λ2 + (∂ρU)2

)
− 4ρ2V ∂ρU∂ρV ∂ρρV

− 4V 2 (∂ρV + ρ∂ρρV ) (∂ρU + ρ∂ρρU) + 6ρ2∂ρU (∂ρV )3
]
,

u6 = −V 2

[
4ρλ2V 5 (∂ρU + ρ∂ρρU) + ρ2 (∂ρV )2

(
32V ∂ρρV − 27 (∂ρV )2

)

− 4V 2

(
3ρ2 (∂ρρV )2 + 2ρ∂ρV ∂ρρV + 3 (∂ρV )2

)]
,

u7 = −2ρV 5

[
2λ2V (∂ρV + ρ∂ρρV )− ρλ2 (∂ρV )2

]
, u8 = 10ρ2λ4V 8. (8.120)

8.8.3 The Case β = 1

We can calculate the Riemann curvature scalar to give

[R]2 =
f(U, V )
4ρ2V 6U8

with f(U, V ) =
8∑

j=0

ujU
j , (8.121)

where the coefficients uj are given by

u0 = 11ρ2α4V 6 (∂ρV )4 ,

u1 = −104ρ2α2V 5 (∂ρV )2
(
α2λ2V 4 + (∂ρU)2

)
,

u2 = −ρV 4

[
− 127ρ

(
α2λ2V 4 + (∂ρU)2

)2
+ 20ρα2V (∂ρV )2 ∂ρρU

+ 4α2∂ρU∂ρV
(
−16ρV ∂ρρV + 2V ∂ρV − 3ρ (∂ρV )2

)]
,

u3 = −4V 3

[
ρ2∂ρV

(
7α2 (∂ρV )3 − 15 (∂ρU)3

)
− 4ρα2λ2V 5 (∂ρU + ρ∂ρρU)

+ 45α2ρ2λ2V 4∂ρU∂ρV + 2α2V 2
(
ρ2 (∂ρρV )2 + (∂ρV )2

)

+
(

2ρ (∂ρU)2 (13ρ∂ρρU − 2∂ρU) + α2ρ (∂ρV )2 (2∂ρV − 3ρ∂ρρV )
)

V

]
,

u4 = 2V 2

[
11ρ2 (∂ρU)2 (∂ρV )2 − 4ρ∂ρU

(
3ρ∂ρV ∂ρρU − 2∂ρU∂ρV + ρ∂ρU∂ρρV

)
V

+ 8ρα2λ2 (ρ∂ρρV + ∂ρV ) V 5 + 18ρ2α2λ2V 4 (∂ρV )2

+ 2
(

7ρ2 (∂ρρU)2 + 2ρ∂ρU∂ρρU + 7 (∂ρU)2
)

V 2

]
,
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u5 = −2V

[
ρ2α2λ4V 8 + ρ2λ2V 4 (∂ρU)2 + 2ρ2∂ρU∂ρV

(
3 (∂ρV )2 − 2V ∂ρρV

)

− 4V 2 (∂ρU + ρ∂ρρU) (∂ρV + ρ∂ρρV )
]
,

u6 = −4ρV 5

(
λ2 (ρ∂ρρU + ∂ρU)

)
− ρ2 (∂ρV )2

(
32V ∂ρρV − 27 (∂ρV )2

)

+ 4V 2

(
3ρ2 (∂ρρV )2 + 2ρ∂ρV ∂ρρV + 3 (∂ρV )2

)
,

u7 = −2ρλ2V 3

[
2V (∂ρV + ρ∂ρρV )− ρ (∂ρV )2

]
, u8 = 10ρ2λ4V 6. (8.122)

8.8.4 Values of the Parameter α

As in the periodic case, we need to investigate how having infinitely many black holes affects

the values of α we need in order to prevent CTCs arising. We know that we need the matrix

M in (8.88) to be positive definite, and, as U and V will both be positive here to due to the

absence of an infinite constant, this condition is equivalent to demanding that

W := UV −1 − α2U−2V 2β > 0 ⇐⇒
{

U3V > α2 if β = −1,

U3V −3 > α2 if β = 1.
(8.123)

If we define

φ :=
∞∑

j=1

m

|~r − ~rj | and ψ :=
∞∑

j=1

n

|~r − ~rj | , (8.124)

so that U = λt + φ and V = ε + ψ, then

U3V =
{

ψ(λt + φ)3 if ε = 0,

(1 + ψ)(λt + φ)3 if ε = 1,
and U3V −3 =

{
ψ−3 (λt + φ)3 if ε = 0,

(1 + ψ)−3 (λt + φ)3 if ε = 1.

(8.125)

For non-cosmological black holes, replace λt in U with 1. As φ and ψ will be positive functions

everywhere, there will be values of α for given examples such that CTCs can be avoided, but

for some choices of α they will still be present.

8.8.5 Useful Example

We can use in later calculations (replacing λt by 1 as necessary), the example we studied in

chapter six, namely

U := λt + m
∞∑

j=−∞

(
ρ2
2 +

(
x3 − j3

)2
)− 1

2
, V := ε + n

∞∑

j=−∞

(
ρ2
2 +

(
x3 − j3

)2
)− 1

2
.

(8.126)
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8.8.6 Lattices of Black Holes

We can attempt to construct a lattice solution in the coordinates {x1, x2, x3} by using the

potential from the quasi-periodic instanton solution of chapter five, namely

V (~r) = r−1 +
∑ ∑

{~q}6=0

∑
ψ(~r, ~q), (8.127)

where

ψ (~r, ~q) := |~r − ~q|−1 − |~q|−1

(
1 +

~q · ~r
q2

+ (2q4)−1
(
3 (~q · ~r)2 − q2r2

))
. (8.128)

However, as we saw earlier, if we use the standard Euclidean basis then V will be zero in

the regions around the black holes and at such points the Riemann curvature tensor goes to

infinity, indicating the presence of singularities.

8.9 Static and Non-Cosmological Black Holes

Ishihara et al [37] construct static, non-cosmological (SN) black hole solutions on the Gibbons-

Hawking multi-instanton space. They use the equations in (8.4) with α = 0 = λ. In this

setting, the action is given by

S = (16Gπ)−1

∫
d5x

√−g (R− FµνF
µν) , (8.129)

and the metric is given by

ds2 = −U−2dt2 + U
(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
. (8.130)

It is easy to verify that we do indeed have a solution of the Einstein-Maxwell equations (7.5).

8.9.1 Periodic Solutions - Curvature

Using the logarithmic approximation given in (8.79) with λ = 0, we can calculate the Riemann

curvature scalar and find that

[R]2 =
4f(U, V )
ρ4
2V

6U6
with f(U, V ) =

4∑

j=0

ujU
j , (8.131)

where

u0 = 127b4V 4, u1 = −60b3V 3(V − d),

u2 = 12b2V 2
(
V 2 − 2dV + 2d2

)
, u3 = 0, u4 = 8d2

(
V 2 − 6dV + 12d2

)
. (8.132)
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Note that this is the result we get if we set α = λ = 0 for both the case of β = −1 (see

(8.83), (8.84)) and of β = 1 (see (8.85), (8.86)), which provides a check of our earlier results.

Moreover, if we set U ≡ V , so b ≡ d, then the result corresponds to that of (8.11) as required.

It remains to establish how the curvature behaves as U and V get close to zero, which we

begin to do by looking at f :

f(0, V ) = 127b4V 4,

f(U, 0) = 96d4U4. (8.133)

In both cases, we then have

[R]2
{

< ∞ at the points where both U 6= 0, V 6= 0,

∞ at the points where either U = 0 or V = 0.
(8.134)

As we have seen, the resulting curvature singularities are naked.

8.9.2 Non-Periodic Solutions

The Riemann curvature scalar is given by considering both (8.119), (8.120) and (8.121),

(8.122) with α set to zero. We have (with ρ := ρ2)

[R]2 =
f

4ρ2V 6U6
with f =

4∑

j=0

ujU
j , (8.135)

where the coefficients uj are given by

u0 = 127ρ2V 4 (∂ρU)4 ,

u1 = −4ρV 3 (∂ρU)2 (26ρV ∂ρρU − 15ρ∂ρU∂ρV − 4V ∂ρU) ,

u2 = 2V 2

(
4ρV ∂ρU (2∂ρU∂ρV − ρ∂ρU∂ρρV + V ∂ρρU) + 14V 2

(
ρ2 (∂ρρU)2 + (∂ρU)2

)

+ρ2∂ρU∂ρV (11∂ρU∂ρV − 12V ∂ρρU)
)

,

u3 = 4V

(
2V 2 (∂ρU + ρ∂ρρU) (∂ρV + ρ∂ρρV ) + ρ2∂ρU∂ρV

(
2V ∂ρρV − 3 (∂ρV )2

))
,

u4 = 27ρ2 (∂ρV )4 + 12V 2
(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+ 8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV ) . (8.136)

We can plot the curvature for the example given in (8.126) for m = n = 1 and see that it is

well-behaved.
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1
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rho
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0.1

Figure 8.3: The Riemann curvature scalar (8.136) for non-periodic SN black holes using

(8.126) with m = n = 1 and ρ := ρ2 ∈ [0, 10]

8.10 Rotating, Non-Cosmological Black Holes

Nakagawa et al [51] construct rotating, non-cosmological (RN) black hole solutions, using

(8.4) with λ = 0. In this setting, the action is given by

S = (16Gπ)−1

∫
d5x

√−g

(
R− FµνF

µν − 2
3
√

3

(√−g
)−1

εµνρσλAµFνρFσλ

)
, (8.137)

where ~A is the gauge potential one-form and ~F = d ~A, and the metric is given by

ds2 = −U−2
(
dt2 + αV β (dτ + ~ω · d~r)

)2
+ U

(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
. (8.138)

8.10.1 Periodic Solutions - Curvature

Using the logarithmic approximation, we can calculate the Riemann curvature scalar and we

find, for β = −1,

[R]2 =
f(U, V )
ρ4V 8U8

with f(U, V ) =
6∑

j=0

ujU
j , (8.139)

where the coefficients uj are given by
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u0 = 136α4d4, u1 = −904b2d2α2V 3,

u2 = 288bα2d2V 2(V − 4d) + 508b4V 6,

u3 = 240b3V 5(d− V )− 32α2d2V
(
V 2 − 9V d + 24d2

)
,

u4 = 48b2V 4
(
V 2 − 2dV + 2d2

)
, u5 = 0,

u6 = 32d2V 2
(
V 2 − 6dV + 12d2

)
. (8.140)

For β = 1, we find that

[R]2 =
f(U, V )
ρ4V 6U8

with f(U, V ) =
6∑

j=0

ujU
j , (8.141)

where the coefficients uj are given by

u0 = 136α4d4V 6, u1 = −904b2d2α2V 5,

u2 = 288bα2d2V 5 + 508b4V 4,

u3 = 240b3V 3(d− V )− 32α2d2V 5,

u4 = 48b2V 2
(
V 2 − 2dV + 2d2

)
, u5 = 0,

u6 = 32d2
(
V 2 − 6dV + 12d2

)
. (8.142)

When U and V get close to zero, we have

f(U, 0) = f(0, V ) = 136α4d4 for β = −1;

f(U, 0) = 384d2U6, f(0, V ) = 136α4d4V 6 for β = 1. (8.143)

Thus, at these points we have curvature singularities, which as we have seen are naked.

8.10.2 Periodic Solutions - Ergoregions

The ergoregion of a rotating black hole is an area around the event horizon inside of which

an object will be dragged around in the direction of the black hole’s rotation and so it is

impossible to be stationary. The outer shell of the ergosphere is called the stationary limit

and is given by

KµKµ = δµ
0 gµνδ

ν
0 = g00 = gtt = 0. (8.144)

Using the coordinate transformation
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t = t′
√

1− α2, τ = τ ′ +
αt

n (1− α2)
= τ ′ +

αt′

n
√

1− α2
, (8.145)

where n is defined as in (8.8), we expand the relevant parts of the metric to see that

gt′t′ = −U−2
(
1− α2

)− 2α2V βU−2

n
+

α2

n2 (1− α2)

(
UV −1 − α2V 2βU−2

)

= −U−2

(√
1− α2 +

α2

n
√

1− α2
V β

)2

+
α2

n2 (1− α2)
UV −1

= 0.

(8.146)

Now, as we assume without loss of generality that all the black holes are identical with horizon

topology S3 (so hj = 1 ∀j), we find that

gt′t′ = −U−2

(√
1− α2 +

2α2

NL
√

1− α2
V β

)2

+
4α2

N2L2 (1− α2)
UV −1

→ α2 − 1
U2

as N →∞,

(8.147)

and so the only way this can become zero is if α = 1, which violates the condition we earlier

placed on α that α ∈ [0, 1). This would be an unusual spacetime in that remaining stationary

would be impossible except at infinity. An observer would always be dragged along with the

rotation of the black holes.

8.10.3 Periodic Solutions - Closed Timelike Curves

We now investigate if closed timelike curves (CTCs) do arise in this situation.

Following the method we discussed earlier, in order to avoid having CTCs, we require that

- if β = −1 then U3V > 1;

- if β = 1 then U3V −3 > 1 ⇐⇒ U > V .

In the first case, we need to investigate whether W := U3V − 1 > 0 for all ρ2 and x3 such

that U and V have the same sign.

We consider three examples:
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For example one with U = U1, V = V1, U = 0 when ρ2 = 1.8514, V = 0 when ρ2 = 1.442

and W = 0 when ρ2 = 1.1233 and ρ2 = 2.6789 for all x3 ∈ [0, 1] and hence for all x3 ∈ R.

Thus, in this spacetime, there are CTCs in the region ρ2 ∈ [1.1233, 2.6789].

For example two with U = U2, V = V2, U = 0 when ρ2 = 1.442, V = 0 when ρ2 = 1.8514

and W = 0 when ρ2 = 1.1238 and ρ2 = 2.1209 for all x3 ∈ [0, 1] and hence for all x3 ∈ R.

Thus, in this spacetime, there are CTCs in the region ρ2 ∈ [1.1238, 2.1209].

For example three with U = U3, V = V3, U = V = 0 when ρ2 = 1.8514 and W = 0

when ρ2 = 1.1238 and ρ2 = 3.0524 for all x3 ∈ [0, 1] and hence for all x3 ∈ R. Thus, in this

spacetime, there are CTCs in the region ρ2 ∈ [1.1238, 3.0524].

Figure 8.4: The regions of CTCs for three examples ((8.90), (8.91) and (8.92) are examples

one, two and three respectively) of RN black holes with ρ := ρ2 ∈ [1, 3]

8.10.4 Non-Periodic Solutions

The Riemann curvature scalar is given by (8.119), (8.120) for β = −1 and (8.121), (8.122)

for β = 1, where we assume that λ is zero and take ρ := ρ2.
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The Case β = −1

When β = −1, we have

[R]2 =
f

4ρ2V 8U8
with f =

6∑

j=0

ujU
j , (8.148)

where the coefficients uj are given by

u0 = 11ρ2α4 (∂ρV )4 , u1 = −104ρ2α2V 3 (∂ρU)2 (∂ρV )2 ,

u2 = −ρV 2

[
− 127ρV 4 (∂ρU)4 + 4α2∂ρU (∂ρV )2 (29ρ∂ρV + 2V )

+ 4ρα2V ∂ρV (5∂ρV ∂ρρU − 16∂ρU∂ρρV )
]
,

u3 = −4V

[
α2

(
2V

(
V (∂ρV )2 + ρ (∂ρV )3 + ρ2V (∂ρρV )2

)
+ρ2 (∂ρV )2

(
15 (∂ρV )2 − 11V ∂ρρV

) )

+ ρV 4 (∂ρU)2 (26ρV ∂ρρU − 15ρ∂ρU∂ρV − 4V ∂ρU)
]
,

u4 = 2V 4

[
4ρV ∂ρU (2∂ρU∂ρV − ρ∂ρU∂ρρV + V ∂ρρU) + 14V 2

(
ρ2 (∂ρρU)2 + (∂ρU)2

)

+ ρ2∂ρU∂ρV (11∂ρU∂ρV − 12V ∂ρρU)
]
,

u5 = 4V 3

[
2V 2 (∂ρU + ρ∂ρρU) (∂ρV + ρ∂ρρV ) + ρ2∂ρU∂ρV

(
2V ∂ρρV − 3 (∂ρV )2

)]
,

u6 = V 2

[
27ρ2 (∂ρV )4 +12V 2

(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV )

]
. (8.149)

The Case β = 1

When β = 1, we have

[R]2 =
f

4ρ2V 6U8
with f =

6∑

j=0

ujU
j , (8.150)

where the coefficients uj are given by

u0 = 11ρ2α4V 6 (∂ρV )4 , u1 = −104ρ2α2V 5 (∂ρU)2 (∂ρV )2 ,

u2 = −ρV 4

[
− 127ρ (∂ρU)4 + 4α2∂ρU (∂ρV )2 (2V − 3ρ∂ρV )

+ 4ρα2V ∂ρV (5∂ρV ∂ρρU − 16∂ρU∂ρρV )
]
,

u3 = −4V 3

[
α2

(
2V

(
V (∂ρV )2 + ρ (∂ρV )3 + ρ2V (∂ρρV )2

)
+ρ2 (∂ρV )2

(
7 (∂ρV )2 − 3V ∂ρρV

))

+ ρ (∂ρU)2 (26ρV ∂ρρU − 15ρ∂ρU∂ρV − 4V ∂ρU)
]
,
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u4 = 2V 2

[
4ρV ∂ρU (2∂ρU∂ρV − ρ∂ρU∂ρρV + V ∂ρρU) + 14V 2

(
ρ2 (∂ρρU)2 + (∂ρU)2

)

+ ρ2∂ρU∂ρV (11∂ρU∂ρV − 12V ∂ρρU)
]
,

u5 = 4V

[
2V 2 (∂ρU + ρ∂ρρU) (∂ρV + ρ∂ρρV ) + ρ2∂ρU∂ρV

(
2V ∂ρρV − 3 (∂ρV )2

)]
,

u6 = 27ρ2 (∂ρV )4 + 12V 2
(
ρ2 (∂ρρV )2 + (∂ρV )2

)
+ 8ρV ∂ρV ∂ρρV (V − 4ρ∂ρV ) . (8.151)

We can plot the curvature for the example given in (8.126) for m = n = 1 and see that, for

different choices of α, it is well-behaved.

Figure 8.5: The Riemann curvature scalar (8.149) and (8.151) for non-periodic RN black

holes using example (8.126) for m = n = 1, with ρ := ρ2 ∈ [0, 3] and various α, β

8.11 Static, Cosmological Black Holes

Ishihara et al [38] construct static, cosmological black hole solutions using (8.4) with α = 0.

The action is given by

S =
1

16πG5

∫
dx5√−g (R + Λ− FµνF

µν) , (8.152)

and the metric is
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ds2 = −U−2dt2 + U
(
V −1 (dτ + ~ω · d~r)2 + V d~r2

)
. (8.153)

8.11.1 Periodic Solutions - Curvature

Using the logarithmic approximation given in (8.79), we can calculate the Riemann curvature

scalar and we find that

[R]2 =
f

4ρ4
2V

6U6
with f =

6∑

j=0

ujU
j , (8.154)

where the coefficients uj are given by

u0 = 2032b4V 4, u1 = 960b3V 3 (d− V ) , u2 = 192V 2b2
(
V 2 − 2dV + 2d2

)
,

u3 = −8V 5b2ρ2
2λ

2, u4 = 128d2
(
V 2 − 6dV + 12d2

)
, u5 = 0, u6 = 10V 6ρ4

2λ
4. (8.155)

When U and V get close to zero, we have f(U, 0) = 1536d4U4 and f(0, V ) = 2032b4V 4. Thus,

at these points we do indeed have curvature singularities.

8.11.2 Periodic Solutions - Closed Timelike Curves

We now investigate if closed timelike curves do arise in this situation. In order to avoid

having CTCs, we require that

- if β = −1 then W := U3V > 1;

- if β = 1 then U3V −3 > 1 ⇐⇒ U > V .

In the first case, we need to investigate whether W > 0 over a period in time, in this case

t ∈ [0, 1].

We consider three examples:

For example four with U = U4, V = V4:

- When t = 0, W = 0 for ρ2 = 0.7824 and ρ2 = 1.8514, for all x3 ∈ [0, 1];

- When t = 0.5, W = 0 for ρ2 = 0.9494 and ρ2 = 2.1954, for all x3 ∈ [0, 1];

- When t = 1, W = 0 for ρ2 = 1.1238 and ρ2 = 2.6790, for all x3 ∈ [0, 1].
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For example five with U = U5, V = V5:

- When t = 0, W = 0 for ρ2 = 0.9032 and ρ2 = 1.9416, for all x3 ∈ [0, 1];

- When t = 0.5, W = 0 for ρ2 = 1.0086 and ρ2 = 2.0094, for all x3 ∈ [0, 1];

- When t = 1, W = 0 for ρ2 = 1.1238 and ρ2 = 2.1209, for all x3 ∈ [0, 1].

For example six with U = U6, V = V6:

- When t = 0, W = 0 for ρ2 = 0.6916 and ρ2 = 1.8514, for all x3 ∈ [0, 1];

- When t = 0.5, W = 0 for ρ2 = 0.8782 and ρ2 = 2.3772, for all x3 ∈ [0, 1];

- When t = 1, W = 0 for ρ2 = 1.1238 and ρ2 = 3.0524, for all x3 ∈ [0, 1].

For all these examples, CTCs are present.

8.11.3 Non-Periodic Solutions

Calculating the Riemann curvature scalar, taking ρ := ρ2, we find

[R]2 =
f(U, V )
4ρ2V 6U6

with f(U, V ) =
8∑

j=0

ujU
j , (8.156)

where the coefficients uj are given by

u0 = 127ρ2V 4 (∂ρU)4 ,

u1 = 4ρV 3 (∂ρU)2
[
15ρ∂ρU∂ρV − 26ρV ∂ρρU + 4V ∂ρU

]
,

u2 = 2V 2

[
11ρ2 (∂ρU)2 (∂ρV )2 + 2

(
7ρ2 (∂ρρU)2 + 2ρ∂ρU∂ρρU + 7 (∂ρU)2

)
V 2

− 4ρ∂ρU

(
3ρ∂ρV ∂ρρU − 2∂ρU∂ρV + ρ∂ρU∂ρρV

)
V

]
,

u3 = −2V

[
ρ2V 4λ2 (∂ρU)2 + 2ρ2∂ρU∂ρV

(
3 (∂ρV )2 − 2V ∂ρρV

)

− 4V 2 (∂ρU + ρ∂ρρU) (∂ρV + ρ∂ρρV )
]
,

u4 = −4ρλ2V 5 (ρ∂ρρU + ∂ρU)− ρ2 (∂ρV )2
(
32V ∂ρρV − 27 (∂ρV )2

)

+ 4V 2

(
3ρ2 (∂ρρV )2 + 2ρ∂ρV ∂ρρV + 3 (∂ρV )2

)
,
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u5 = −2ρλ2V

[
2V (∂ρV + ρ∂ρρV )− ρ (∂ρV )2

]
,

u6 = 10ρ2λ4V 6. (8.157)

We can plot this for the example given in (8.126) with λ = 1 and see that it is well-behaved.
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Figure 8.6: The Riemann curvature scalar (8.157) for non-periodic SC black holes using

example (8.126) with λ = 1, ρ := ρ2 ∈ [0, 1], t ∈ [0, 1]
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Chapter 9

Conclusion and Bibliography

As a result of the fact that any hyperkähler four-metric with a triholomorphic Killing vec-

tor can be written in Gibbons-Hawking form for some choice of coordinates, infinite centre

Gibbons-Hawking metrics appear in many contexts in mathematical physics, from gravita-

tional instantons at the quantum end to black holes at the general relativistic end of the

scale. Key to the behaviour of these Gibbons-Hawking metrics is the hyperkähler potential,

V , which is related to the one-form ~ω by virtue of the metric being self-dual.

The problem that arises is that such a potential does not usually converge (only in contexts

with D ≥ 4 spatial dimensions did we have a convergent potential). In this thesis, we have

investigated four methods of ensuring convergence and studied the implications of the use of

these methods in different contexts.

The standard method is to subtract an infinite constant from the potential, and this is found

in much of the literature on gravitational instantons, monopoles, and constructions that in-

corporate hyperkähler four-metrics with a triholomorphic Killing vector.

We looked at Kaluza-Klein vortices (both with and without a cosmological constant), Dirich-

let instantons (with single and multiple hypermultiplets) and gravitational calorons (and Eu-

clidian Schwarzschild solutions with the same potential) in chapter four, extensions of these

ideas to ALG instantons, seven-dimensional holonomy spaces and hyperbolic monopoles in

chapter five, and ERN and Kaluza-Klein black holes in chapters seven and eight respectively.

As outlined in chapter three, subtracting an infinite constant results in points where the po-

tential becomes zero, and the Riemann curvature scalar blows up to infinity. This means that
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there are singularities, points of infinite density and spacetime curvature at which the laws

of physics break down, that cannot be removed by a change of coordinates. In the contexts

where it is appropriate to consider such a question (such as with monopoles and black holes),

these points were actually naked singularities, something which is problematic because of the

Cosmic Censorship principle; it renders the theory unphysical.

In chapter six, we explored different methods of ensuring the convergence of the potential.

One alternative approach is to have a non-periodic distribution of sources, and we drew on

the work of Anderson et al [1], creating new solutions for ERN, dilaton and Kaluza-Klein

black holes. This approach worked well in its original instanton context, and we explored

how it broke down in the periodic limit, yet in the black hole context, we encountered a new

problem. Candlish and Reall showed [4] that only the central black hole in an infinite array

arranged non-periodically along one or more axes would have a smooth event horizon, as such

solutions are not reflection-symmetric.

We showed that lattices of instantons and Kaluza-Klein black holes had regions in which the

potential became zero and so singularities were present, so this was not a helpful approach.

We also tried using an infinite constant as a quotient to ensure convergence, but as we demon-

strated, this gave rise to a flat spacetime with delta singularities arising at the positions of

the instantons.

Overall, there is no one approach to the problem of ensuring the convergence of the periodic

potential of an infinite-centre Gibbons-Hawking metric that is without problems across the

range of contexts studied. We found that across the literature, the problem of the incom-

pleteness of such metrics was acknowledged but the implications not fully appreciated. One

would hope that this research would contribute to a greater awareness of the difficulties of

working with such metrics in the range of varied contexts in which they occur, and stimulate

a search for a universally applicable method of ensuring a convergent potential.

As this work is largely theoretical, one would be reluctant to talk too much about wider

implications, except to say that the interconnectedness seen, with the range of contexts in

which infinite-centre Gibbons-Hawking metrics may arise, is intriguing and worthy of further

consideration.

In summary, we have looked at applications of infinite-centre Gibbons-Hawking metrics in
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the contexts of

- Kaluza-Klein vortices, both without a cosmological constant and in AdS spacetime;

- Dirichlet instantons, with a single and multiple hypermultiplets;

- Gravitational calorons;

- ALG instantons, seven-dimensional holonomy spaces and hyperbolic monopoles;

- Majumdar-Papapetrou metrics, analytic extensions to ERN black holes and dilaton

solutions;

- Kaluza-Klein black holes.

In terms of possible extensions of this work, we could explore the cosmological Kaluza-Klein

black holes from chapter eight in more depth, looking at how we might show that the singu-

larities that arise when either of the potentials becomes zero are naked, which we might do by

numerical integration. The process of black hole coalescence for infinitely many Kaluza-Klein

black holes would be interesting to study, particularly in the case of cosmological black holes

with a Taub-NUT metric as while some work has been done in the Eguchi-Hanson case (see

[43] and references therein), little seems to have been done to investigate the behaviour of

these solutions.

Another possible context for investigation would be that of general relativity coupled with

a Yang-Mills(-Higgs) field and a dilaton field, for which one might see [31], [19], [23]. It

appears that similar issues may present themselves in that the potential is non-convergent

and the use of the method of subtracting an infinite constant to ensure convergence gives rise

to singularities. It would be worth exploring both if this is the case and if our alternative

approach of having a non-periodic potential would be useful, hopefully leading to the finding

of new solutions.

This would be a possible undertaking for the future.
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