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Abstract 

Slope instability along the north-west coast in Malta 

Mass movement processes operating along the coastal zone, north of the Great Fault 

are examined. Slides fall under three main categories. Rotational slides and 

translational slides occur in the Upper Coralline Limestone whereas mudslides are 

found where Blue Clay outcrops. Two other processes are present: rockfall and soil 

creep. Rockfall can be considered as the most important mass movement process, 

whereas soil creep is the least significant identified at one locality. In this study 

particular attention is given to Blue Clay slopes. 

A coastal geomorphological survey was undertaken for the northern region. Two 

geomorphological maps were produced to determine the spatial distribution of coastal 

features, identify the main mass movement processes and establish a relationship 

between the geology and geomorphology. Three representative sites were selected 

based on the mapping exercise to conduct further research. 

Detailed geotechnical testing was performed on soil material collected from selected 

slopes at the three field sites. The physical and mechanical properties of Blue Clay 

were determined to assess the current state of stability of the slopes and the strength 

of the material. 

A series of stability analyses were performed on the selected clay slopes at each field 

site. The Simplified Bishop method was used to calculate Factor of Safety values and 

to establish the transition between stability and instability. Geomorphological and 

geotechnical investigations performed at previous stages of the research provided the 

necessary input data to be used iri the stability analyses. Variation in the pore pressure 

ratio allowed the identification of the critical phreatic conditions at which the slopes 

fail. 
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Chapter 1 

Introduction 



1. 1 Research aims 

This research has been undertaken because there is little knowledge regarding mass 

movement processes and slope instability along the northern coastline in Malta. Clay 

slopes are given particular attention since they dominate the coastal cliffs and are 

significant in influencing the geomorphology. 

The study adopts a multidisciplinary approach, including within its framework 

geological, geomorphological and geotechnical investigations. Each element is 

combined to produce a comprehensive study, contributing to existing information and 

providing original knowledge. 

The research upon which this thesis is based includes the following. 

i. Field investigations have been undertaken to highlight the spatial distribution of 

coastal features, especially landslides. 

ii. The mass movement processes occurring at the northern coast of Malta have been 

reviewed to identify the triggering mechanisms and establish the relationship 

between the geology and geomorphology. 

111. Three key sites, representative of the northern coastal region, have been subject to 

detailed field investigation. 

1v. Geotechnical investigation have been completed for slope materials, to determine 

the physical and mechanical properties and associated behaviour. 

v. Slope stability analysis has been performed for the three study sites, simulating 

different scenarios to determine the critical conditions that will influence the 

stability of slopes. 

Previous geomorphological studies in Malta lack information on material behaviour 

and do not include studies on soil or rock mechanics. In this regard this dissertation 

makes an original contribution linking geomorphological processes, landform 

development and material behaviour. 

11 



1.2 The Maltese Islands 

The Maltese Islands, located in the central Mediterranean region, consist of three 

main islands, Malta, Gozo and Comino, several uninhabited islets and few other 

minor rocks. The islands have a total land area of 316 km2 and a coastline about 190 

km long (Schembri, 1990). 

The geological strata belong to the Oligo-Miocene epoch. Limestone is the 

predominant geological strata. Blue Clay outcrops mainly on the south-west, north­

west, north and north-east coasts. The main geomorphological features are karstic 

limestone plateaux, clay slopes, rdum or undercliff areas, flat-floored basins and 

Globigerina Limestone hills and plains. The coast has been significantly influenced 

by tectonics (Paskoff and Sanlaville, 1978) and despite the small size of the islands, 

there is a large variety of coastal features. The south-west coast features cliffs of a 

rectilinear aspect, whereas the north-east coast is rocky and shallow, gradually 

descending under the sea. 

The geological structure is heavily faulted. Two main faults prevail. First, NE-SW 

faults which form part of the Great Fault of the Victoria Lines. These feature a horsts 

and graben landscape giving north-west Malta a characteristic topography of ridges 

and valleys. Second, NW-SE faults which form the Maghlaq Fault. The latter 

determines the south-west littoral of Malta and is responsible for the tilting of the 

islands towards the north-east. 

This study is focussed on the region north of the Great Fault, because the combination 

of the structural setting and geological formations display a very interesting and 

varied topography, especially evident at the coastal zone. Other areas on mainland 

Malta display a more uniform topography and less variation in landforms due to a 

simpler structural and geological setting. The study area provides an excellent 

environment to conduct research in terms of geology, geomorphology and soil 

mechanics in an attempt to elucidate mechanisms of slope processes and mass 

movements. 

12 



1.3 Background to the present study 

There have been numerous studies on the geology of the Maltese Islands and the 

subject is well documented. Contributions have been mostly in the form of papers on 

the geology and paleontology of the Tertiary and Quaternary deposits. The first 

description of the geology goes back one and a half centuries and was given by Spratt 

(1843, 1852). Other key studies were those of Adams (1864, 1870, 1879), Murray 

(1890), Cooke (1893, 1896), Rizzo (1914, 1932), Trechmrum (1938), Reed (1949), 

Hyde (1955), House et al. (1961), Wigglesworth (1964), Felix (1973), Pedley (1975, 

1976, 1978), Pedley et al. (1976, 1978) and Zammit-Maempel (1977). 

There seems to have been less interest regarding the geomorphology of the islands. 

The most significant studies include those of House et al. (1961), Vossmerbaumer 

(1972) and Alexander (1988). The coastal geomorphology has been dealt in the 

studies of Guilcher and Paskoff (1975), Paskoff and Sanlaville (1978), Ellenberg 

(1983) and Paskoff (1985). There is a significant lack of more recent information in 

this regard. Detailed work on mass movement processes is largely absent. This thesis 

will therefore serve two purposes: provide an update on existing literature sources 

where information is already available and present original work where the 

information is inadequate. It may be significant to note that the region north of the 

Great Fault of the Victoria Lines has never been dealt with as a separate study but 

always included in research related to mainland Malta. 

Information regarding the physical and mechanical properties of the geological strata 

in the Maltese Islands is insufficient. Some information can be found in Civil 

Engineering and Architecture undergraduate dissertations (see for example Bonello, 

1988; Saliba, 1990; Farrugia, 1993 and Psaila, 1995). Howevc;r the dissertations focus 

mainly on limestone and exclude completely clay material. Some data on clay 

material is found in Bonello (1988) but this is very limited and not applied to 

geomorphological studies. The information derived from the dissertations reflects an 

engineering perspective and is of little relevance to this study. 

13 



1.4 Approach and organisation of the thesis 

The following outlines the structure and organisation of this thesis. 

Chapter 2 gives a review of the existing literature on the tectonic and structural setting 

of the Maltese Islands, putting into context the research presented in the proceeding 

chapters. The chapter starts with a history of the evolution of fault tectonics in the 

Maltese Islands. The structural geology and the Oligo-Miocene succession are then 

discussed in detail as important controls on the general topography and 

hydrogeological structure. 

Chapter 3 deals with the geomorphology of the Maltese Islands with . particular 

reference to the coastal geomorphology. A geomorphological mapping programme 

was undertaken to determine links between geology and geomorphology and highlight 

the spatial distribution of coastal landforms. The triggering factors leading to mass 

movement are examined. The mapping exercise has been used to identify three key 

sites to perform a more detailed investigation on selected slopes. 

The physical and geotechnical properties of Blue Clay are examined in chapter 4 in an 

attempt to determine the behaviour of the material. Data is interpreted and analysed to 

explain geomorphological processes and landform development as observed in the 

field. Chapter 5 attempts to provide a quantitative assessment of slope stability for 

the north-west coast of Malta. Different results were obtained for the three sites 

where instability was reached at different stages. The data links other elements of the 

research presenting additional information and complementing the whole study. 

Chapter 6 includes a synopsis of the main conclusions and original contributions 

derived from this study. The issues of mass movement processes and slope instability 

set as the main investigating problems of this research present a new and challenging 

r~search area in the Maltese Islands. Suggestions are made for further research. 

14 



Chapter 2 

The tectonic, structural and 
geological setting of the Maltese Islands 



2. 1 Introduction 

The Maltese Islands are located in the central Mediterranean region between Italy and 

North Africa, at a latitude o'f 35°48'28" to 36°05'00" North and a longitude of 

14°11'04" to 14°34'37" East (Schembri, 1993). The archipelago consists ofthree main 

islands: Malta, Gozo and Comino and a number of small uninhabited islets which 

include: Cominotto (Maltese: Kemmunett), Filfola (better known by its Maltese name 

Filjla), St.Paul's Islands (Maltese: Il-GzeJjer ta' San Pawl, or Selmunett Islands), 

Fungus Rock (Maltese: Il-Hagra I Il-Gebla tal-General or General's Rock) and a few 

other minor rocks (Figure 2.1 ). 

N 

Figure 2.1: Location of the Maltese Islands 
Source: Alexander, 1988 

o· too KM ·- N· 

4-

The islands have a total land area of 316 km2 (Malta: 245.7 km2
, Gozo: 67.1 km2

, 

Comino: 2.8 km2
) and a coastline about 190 km long, with a submerged area (up to 

100 m) of 1,940 km2 (Schembri, 1990). The length of the whole archipelago is 45 

km; Malta being 27 km long, Gozo 14.5 km long and Comino 2.5 km. The North 

Comino Channel, which separates Gozo from Comino, is 1 km wide. The South 

Comino Channel, separating Comino from Malta, is 2 km wide (Figure 2.2). 
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SOUTH COMINO CHANNEL 

Figure 2.2: The North and South Comino Channels 
Source: Vossmerbiiumer, 1972 
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The islands lie approximately 96 km from Sicily to the north, 290 km from North 

Africa to the south, 1,836 km from Gibraltar to the west and 1,519 · km from 

Alexandria, Egypt to the east. They are situated on a shallow shelf, the Malta-Ragusa 

Rise, part of the submarine ridge which extends from the Ragusa peninsula of Sicily 

southwards to the North African coasts of Tripoli and Libya. Geophysically the 

Maltese Islands and the Ragusa peninsula of Sicily are regarded as forming part of the 

African continental plate. The archipelago is linked to the Ragusa peninsula in the 

Sicilian Channel by a submarine ridge, which reaches a maximum depth of 200 m 

below present sea-level and is mostly less than 90 m deep. The sea depth between the 

islands and North Africa is much deeper, sometimes reaching more than 1000 m 

(Morelli et al., 1975 in Schembri, 1993). According to Spratt (1867) the submarine 

ridge was an epicontinental land bridge during the Pleistocene and facilitated the 

migration both northwards and southwards of exotic fauna. 

16 



The first description of the geology of Malta was given by Spratt (1843, 1852) and 

later by Adams (1864, 1870, 1879). An account given by John Murray (1890) has 

stimulated others, especially Cooke (1893, 1896), to examine the rocks in more detail. 

During this century Rizzo (1914, 1932), Trechmann (1938), Reed (1949), Hyde 

(1955), House et al. (1961), Wigglesworth (1964), Felix (1973), Pedley (1975, 1976, 

1978), Pedley et al. (1976, 1978) and Zammit-Maempel (1977) have all made 

significant contributions. The stratigraphy of the Maltese Islands is summarised in 

Table 2.1 

Table 2.1: Stratigraphy of the Maltese Islands 

,Epoch : .. ~::]I 9 Stage :: '< Formation 0 Maximum thickness 
<~ I <'<?Years BP, ,~ ,, " " ·'· '• 

.:& .. , \i, ; ,,,~ .... " "" •' ' 

U. Miocene Tortonian Upper Coralline Limestone 
(12-7.5 Ma) 

Greensand 

M.Miocene Serravallian Blue Clay 
(13-12 Ma) 

M.Miocene Langhian Upper Globigerina Limestone 
(15-13 Ma) 

Upper Main Conglomerate (C2) 

L.Miocene Burdigalian Middle Globigerina Limestone 
(20-15 Ma) 

Lower Main Conglomerate (Cl) 

L.Miocene Aquitanian Lower Globigerina Limestone 

U.Oligocene Chattian Lower Coralline Limestone 

Lithostratigraphy mainly after Murray (1890); chronostratigraphy after Felix (1973) 

Sources: Pedley et al., 1978; Alexander, 1988 

(m) 

104-175 

0-16 

0-75 

5-20 

0-110 

5-110 

140 
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The islands were settled continuously from the middle Neolithic onwards. Important 

stone temples were constructed in the period 2600-1700 BC (Evans, 1971 in 

Alexander, 1988). Since then the islands have been occupied by Phoenicians, Greeks, 

Carthaginians, Romans, Arabs, N ormans, Angevins, Aragonese, the Knights of 

St.John, French, and finally the British. Malta became an independent country in 

1964. The islands presently have a population of around 378,132 (Census, 1995). 

This figure results in a population density of 1,200 persons per km2
, one of the highest 

in the world. 

This chapter will review existing literature on tectonics, stratigraphy, structural 

geology and hydrogeology of the Maltese archipelago, in order to assess their 

influence on the evolution of the present geomorphological features with special 

reference to coastal landslides. 

2.2 Evolution of Maltese fault tectonics 

The structural setting of the Maltese Islands is dominated by two rift systems of 

different ages and trends (Figure 2.3). Accompanying faults are exposed at many 

places along cliffs and are associated with rift faulting (lllies, 1981 ). The older rift 

generation traversing the islands strikes about 50° to 70° to create a basin-and-range 

or horst and graben structure on western Malta, Comino and eastern Gozo. The 

second-generation rift, associated with the Pantelleria Rift, strikes Malta at about 120° 

and Gozo between 80° and 90° (Figure 2.4). Rifling mainly originated during the 

Late Miocene I Early Pliocene, to continue in parts up to the present (Illies, 1981 ). A 

set of transform faults runs through the straits on both sides of Comino to form a 

complicated en echelon or Riedel shear structure on eastern Gozo and western Malta. 

Shoulder up-warping related to the Pantelleria rift has considerably tilted the block of 

Malta towards the NNE and caused the inundated river valleys of the natural harbour 

of Valletta. The superimposition of the two rift structures of different trends has been 

caused principally by a rotation of the controlling stress regime about 10 Ma years 

ago. As the trends of both rift systems are different, the related structural patterns are 

crossing each other to form a biaxial system. 
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Figure 2.4: The system of the Pantelleria Rift traverses the shelf between Sicily and Northern 
Africa. Parallel grabens are observed in Tunisia. The general trend of foreland rifting is about 
normal to the northward adjacent segment of the Alpine collision front. 

Source: Illies, 1981 
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The Maltese Islands form an elevation on a submarine ridge that extends southwards 

from Sicily. On Malta and Gozo, the bedding is generally sub-horizontal, with a 

maximum dip of about 5°. The fracture pattern is dominated by two intersecting fault 

systems which alternate in tectonic activity. A NE-SW to ENE-WSW trending fault, 

the Grand Fault, traverses the islands and is crossed by a NW-SE trending fault, the 

Maghlaq Fault (Figure 2.3), parallel to the Malta trough, which is the easternmost 

graben of the Pantelleria Rift System. In general the faults, all vertical or subvertical, 

are part of a horst and graben system of relatively small vertical displacement. 

Folding is restricted to slump, drag folding and one larger anticlinal structure. 

Reuther (1984) has summarised the structural evolution of the Maltese Islands as 

follows. 

1. Lower Miocene: synsedimentary NE-SW (50° to 70°) trending extension 

fractures developed. 

2. Upper Tortonian: synsedimentary normal faults, trending 150°, reflect the first 

tectonic impulse in the formation of the Pantelleria Rift (south-west Malta) which 

interrupts, in a NW -SE direction, the shelf bridge that connects northern Africa 

with southern Sicily. 

3. Post Tortonian - Lower Messinian and pre-Quaternary: NE-SW to ENE­

WSW ( 60° to 80°) trending horsts and grabens were formed. At the same time the 

Pantelleria Rift evolved with its climax in the Pliocene. The contemporaneousness 

of both events might be due to a mantle updoming which hit pre-existent crossing 

weakness zones in the overlying crust. 

4. Quaternary - Recent: normal faulting orientated 120° and associated with the 

Pantelleria Rift. Continuous rifting leads to ongoing shoulder unwarping, with the 

Maltese Islands tilting towards the north-east. 

2.2.1 An extinct basin-and-range structure 

Western Malta, Comino, and easternmost Gozo are characterized by a basin-and­

range physiography. Subsided basins, often filled with Quaternary gravel fans, are 

between cuesta-like asymmetric ridges of Miocene hard rocks. The coastlines 
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accentuate the 50° to 70° striking features by bay-to-bay and point-to-point 

configurations, respectively (Figure 2.5). A series of tilt blocks is observed along the 

cliffs (House et al., 1961). They are separated by normal faults dipping mostly 

between 55° and 75°. The fault planes are often split into two or more separate 

sheets, formed by down-dragged lenses of Blue Clay. Due to antithetic tilt block 

rotations, the individual blocks exhibit inclinations between 2° and 30°. 

Figure 2.5: Basin-and-range features, physiographically as well as tectonically, characterize the 
segment between central Malta and southern Gozo. A crustal spreading of intra- to end-Miocene 
age has brought about an approximately 15 per cent extension normal to the rift belt (arrows). 

Source: Illies, 1981 

The vertical throw of the internal faults ranges from some decimeters to about 120 m. 

As a whole, the basin-and-range pattern is framed by two parallel master faults, 

forming a 13 km to 14 km wide wedge-block of a graben-like configuration. The 

maximum throw of the master faults is about 200 m. 

The basin-and-range feature is framed on both flanks by upwarped shoulders, 

stratigraphically, and in part physiographically, forming the hills of the Victoria Lines 
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in Malta and ofNadur in Gozo. Independent tectonic movements and events, parallel 

to the future basin-and-range structure, were first indicated during the deposition of 

the Globigerina Limestone. 

The main basin-and-range faults separate the whole Oligo-Miocene succession. 

Consequently, physiographic rifling has evolved after the deposition of the Upper 

Coralline Limestone. No post-Tertiary vertical displacements are known from this 

fault generation. The deformational cycle forming the basin-and-range physiography 

became extinct before an extensive denudation set in during Early Pleistocene or 

perhaps Pliocene times. 

The extinct basin-and-range structure constitutes the oldest tectonic movements 

observable on the Maltese Islands. The movements have produced synsedimentary 

NE-SW trending extension features, which were formed during the deposition of the 

Globigerina Limestone Formation. The structures were first interpreted by Illies 

(1980) who described growth faulting with a trend of 55° south of Xlendi Bay on 

Gozo. The synsedimentary movements took place before the deposition of the first 

main phosphorite layer, which marks the top of the Lower Globigerina Limestone 

Formation and corresponds to the Aquitanian I Burdigalian boundary (Felix, 1973). 

The main dip-slip events forming the NE-SW trending horsts and grabens, which are 

also topographically very well pronounced, took place after the deposition of the 

Upper Coralline Limestone Formation. The throw along the northward dipping 

Victoria Lines Fault reaches 183 m on the west coast of Malta and decreases towards 

the east coast to about 90 m (House et al., 1961 ). The vertical displacement of the 

South Gozo Fault, dipping southwards, is about 100 m. This graben generation, 

traceable to the Aquitanian, became extinct before the Quaternary (Illies, 1980, 1981 ). 

No vertical displacements of Quaternary deposits at this fault generation are known 

on the islands; rather the fault scarps are unconformably capped by Pleistocene 

sediments. 
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2.2.2 Pantelleria rift system 

The Maltese Islands rise up to 253 m above sea-level, from an emerged part on the 

southern upwarped north-east shoulder of the Pantelleria Rift (Figure 2.4). The latter 

is a graben system active in Late Miocene to Recent time, which interrupts the 

shallow shelf platform connecting Europe and Africa (lllies, 1981 ). The fracture 

pattern of the islands has been created by tectonic processes governed by the relative 

motions between the European and African plates. The plate boundary runs about 

200 km to 400 km to the north of Malta from Tunisia to Sicily. 

Faults on the Maltese Islands associated with the Pantelleria Rift are represented by 

the NW -SE trend. The NW -SE trending normal faulting occurred before the 

Tortonian sedimentation of the Upper Coralline Limestone. This is interpreted to be 

connected with the initial movements of the Pantelleria Rift System. The main 

subsidence lasted through the Pliocene (Finetti and Morelli, 1973 in Reuther, 1984). 

Some faults of the Pantelleria Rift are considered to be active up to present times. 

The most prominent young tectonic feature is the system of the Maghlaq Fault 

(Pedley and Waugh, 1976 in Reuther, 1984) (Figure 2.6) south-east of Ix-Xaqqa, 

along the southern coast of Malta, with a vertical displacement of at least 240 m to the 

SW (House et al., 1961). The 120° trending fault shows neotectonic activity. An 

interstratification of red soil, breccia and caliche at Ras il-Bajjada 3 km south-east of 

Ix-Xaqqa is cut by the fault and slickensided. At Ix-Xaqqa young sediments of 

probably Quaternary age are smeared in the fault plane. Quaternary and post­

Quaternary tectonics along the Maghlaq fault have also be~n mentioned by 

Trechmann (1938) and Illies (1980, 1981). The NW-SE trending faults cross-cut and 

displace the previous structures (lllies, 1980, 1981; Reuther, 1983b in Reuther, 1984). 

This is to be observed in central Malta and along the southern and northern coast of 

south-east Malta. A very expressive exposure showing the displacement of a 70° 

striking normal fault along two 135° trending normal faults, is to be seen in the 

Globigerina Limestone at 11-Gzira on the eastern coast of Malta. 

23 



~Mqabba 

la' San N•klaw 

~ 

0'=======-====='2 km 

Figure 2.6: The main features of the Maghlaq fault system strike parallel to the southern 
coastline of Malta. This fault pattern represents the outer master fault of the PanteUeria rift. D 
refers to 11-Maqluba doline. 

Source: Illies, 1981 

Besides normal faulting, the Maltese Islands have been affected by horizontal 

movements. This is indicated at many sites by the formation of second order tension­

and-shear fractures. The features specify the relative sense of strike-slip movements. 

The second order shear structures visible in the Globigerina Limestone at the northern 

coast of Malta in the Sliema region are related to sinistral strike-slip movements 

trending between 140° and 160°. Small scale shear structures are very well developed 

in the Lower Globigerina Limestone on the northern coast of Gozo. In general the 

NE-SW shear direction is of dextral polarity while the NW-SE direction is of sinistral 

polarity. 

On Malta, fault systems belonging to the two generations of rifting are cross-cutting 

each other in many places. This may be observed particularly well in the Valletta area 

(Illies, 1980), where 120° striking minor dip-slip faults dislocate to about 50° trending 

faults of the first generation (Figure 2. 7). The magnificent natural harbour system of 

Valletta with cross-cutting basins and ridges of both directions has been formed by 

inundated river valleys that erosionally followed the traces of the two rupture systems. 
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Figure 2.7: The Valletta area is characterized by the cross-cutting of minor faults associated 
with the two stages of rifting. The basins and ridges of the natural harbour are conditioned by 
an inundated drainage pattern which followed the traces of the two rift generations. T refers to 
well exposed cross-cutting of faults. 

Source: Illies, 1981 

2.2.3 Age of the tectonic features 

The major faults all incise the entire Oligo-Miocene succession and there is 

considerable evidence that movement has been continuous since Miocene times. 

Many of the faults exhibit fresh fault-scarp faces, with mullion-style slickensiding and 

negligible scarp recession, suggesting that the faulting must partly be quite recent. 

Trechmann (1938) believed that the Maghlaq Fault had moved during the Quaternary. 

Pedley (1974 in Pedley et al., 1976) has demonstrated that the solution subsidence 

structures of the islands have been activated at a number of periods since their 

initiation during the Miocene. More general regional movements in post-Quaternary 

times have resulted in the development of localised raised beaches, the submergence 

of Neolithic cart-tracks at St.George's Bay and St.Paul's Bay (Hyde, 1955), and the 
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presence of stalagmites below the breakwater foundations of the Grand Harbour 

(Rizzo, 1932). There is evidence that the structural movements are still in progress. 

Earthquakes were recorded in 1659, 1693, 1740, 1811, 1856, and 1972. Minor 

tremors have been recorded during recent years. 

2.3 Geology of the Maltese Islands 

2.3.1 Stratigraphy 

The Maltese Islands are entirely composed of Tertiary limestones with subsidiary 

marls and clays. Quaternary deposits, mostly Pleistocene in age, are limited to few 

localities and take the form of cliffbreccias, cave and valley loams, sands and gravels. 

Deposition occurred in the following simple succession. 

1. Upper Coralline Limestone: youngest formation and last deposited 

n. Greensand 

m. Blue Clay 

IV. Globigerina Limestone 

v. Lower Coralline Limestone: oldest formation and first deposited. 

Table 2.1 presents in detail the litho- and chronostratigraphy ofthe Maltese Islands. 

This succession represents a varied cross-section of Oligo-Miocene lithologies and 

facies, but consist almost entirely of carbonates. The geological formations of the 

islands are very distinctive lithologically and this is reflected in characteristic 

topography and vegetation (House et al., 1961 ). The Lower Coralline Limestone is 

reponsible for forming spectacular cliffs, some reaching 140 m in height, which 

bound the islands especially in the west. Inland the Lower Coralline Limestone forms 

·barren grey limestone-pavement topography. The succeeding Globigerina Limestone, 

which is the most extensive formation on the islands, forms a broad, rolling 

landscape. The soil is thin but intensively cultivated and hillslopes on it are densely 

terraced. The Blue Clay produces slopes that tend to slide over the underlying 

Globigerina Limestone Formation. It forms the most fertile bedrock on the islands, 
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especially where springs seep from the overlying Upper Coralline Limestone. The 

latter, which also includes Greensand, forms massive cliffs and limestone pavements 

with karstic topography similar to Lower Coralline Limestone. It caps tabular hills 

and mesas reaching a maximum height of 253 m at Ta' Zuta, near Dingli in south­

west Malta (Pedley et al., 1978). Figure 2.8 illustrates the spatial distribution of the 

different geological formations of the Maltese Islands. 

The lithostratigraphy of the Maltese Islands has been well known since the time of 

Spratt (1843) due to its simple structure and the gentle regional dips. The current 

terminology applied to the individual formations originated from the detailed work of 

Murray (1890). Although Murray's lithostratigraphy is still generally accurate, work 

by Pedley (1975) has substantially improved the detailed understanding of both 

lithostratigraphy and palaeoecology, especially within the two Coralline Limestone 

formations. Spratt (1867) was the earliest worker to publish on the Quaternary 

geology. A more detailed study was carried out by Trechmann (1938). 

The biostratigraphy and chronostratigraphy have remained subject to debate since the 

earliest times, despite the acceptance of the lithostratigraphic subdivision of the 

sequence. This is primarily due to the isolated position of the archipelago. Fuchs 

(1874 in Pedley et al., 1976) first appreciated the mid-Tertiary age of the Maltese 

strata. However this was followed by other comparisons put forward by Gregory 

(1891 in Pedley et al., 1976) using echinoids. Bather (date not available) (in 

Trechmann, 1938) established the occurrence ofboth Oligocene and Miocene strata. 

House et al. (1961) following Eames and Cox (1956 in Pedley et al., 1976), assigned 

the Lower Coralline Limestone and Lower Globigerina Limestone to the Aquitanian, 

the remaining Globigerina Limestone and Blue Clay to the Burdigaliari, and the 

Greensand and Upper Coralline Limestone to the Helvetian and Tortonian. A more 

restricted range was envisaged by Eames et al. (1962 in Pedley et al., 1978) on the 

evidence of foraminiferal studies. They considered all the strata to be of Lower 

Miocene age, the Lower Coralline Limestone being Aquitanian and overlying 

formations Burdigalian. A later correlation, also based on foraminifera, is that of 

Felix (1973) (Table 2.1). 
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Figure 2.8: The geology of the Maltese archipelago 
Source: House et al., 1961 
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2.3.2 The Oligo-Miocene succession 

The sequence of rock units of limestones and associated marls represents a succession 

of sediments deposited within a variety of shallow water marine environments 

(Pedley et al., 1978). In many respects these resemble the mid-Tertiary limestones 

occurring in the Ragusa region of Sicily and North Africa. Paleomagnetic and 

volcanological evidence from Sicily (Barberi et al., 1974 in Pedley et al., 1978) 

demonstrates that the Africa-Europe plate boundary passes through northern Sicily. 

Consequently, it would appear that Malta was part of a mid-Tertiary Tethyan 

carbonate platform, extending from southern Sicily to North Africa, with Malta 

situated toward the leading edge of the African plate. Geophysical data from Cooper, 

Harrison and Willmore (1952 in Pedley et al., 1976) further indicate that the islands 

are' situated above a region of high gravity anomaly values, which are coincidental 

with the Ragusa-Malta Rise. 

A deep borehole dug by the British Petroleum Co.Ltd. at Naxxar indicates that Malta 

has been a region of continued carbonate sedimentation for a considerable period 

prior to the Miocene (Pedley et al., 1978). Commencing at the top of the Lower 

Coralline Limestone, the hole terminated at a depth of 3000 m in dolomites which 

carry spores of Lower Cretaceous association. Higher Cretaceous and Eocene rocks 

were also dolomitized limestones. The uppermost 650 m of shelly limestones and 

subordinate shales was referred to the Oligocene by Felix (1973) (Table 2.1). 

The succession gives the impression that the depositional area first subsided and then 

there was a gradual shallowing (Felix, 1973). The sequence starts with the Lower 

Coralline Limestone, deposited in a shallow gulf-type area followed by a sea with 

shoals. The Globigerina Limestone and Blue Clay show a deepening in an open 

marine environment, to a maximum depth of 150 m to 200 m, as suggested by the 

foraminiferal faunas. The upper two formations, the Greensand and the Upper 

Coralline Limestone and · their foraminiferal associations, indicate a gradual 

shallowing to an area with shoals but still in an open marine environment. 
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2.3.2.1 Lower Coralline Limestone 

The Lower Coralline Limestone is the oldest formation visible on the islands. 

Outcrops are mainly restricted to coastal sections along the western sides of Malta and 

Gozo (Pedley et al., 1976). Vertical cliffs show up to 140 m in south-west Gozo and 

about 100 m in the sections between Fomm ir-Rih and Benghisa Point in western and 

southern Malta. Inland exposures are mostly associated either with valley-gorge 

sections, as in southern Malta, or with faulted inliers such as at Naxxar. The upper 

part of the Lower Coralline Limestone Formation is exploited in quarries (Pedley et 

al., 1978). The lowest horizons of the formation are exposed in cliff-sections around 

Maghlaq, south-west Malta (Pedley et al., 1976). Local terminology for this formation 

is Zonqor. 

Pedley (1978) has subdivided the Lower Coralline Limestone Formation into four 

members: the Maghlaq Member (oldest); the Attard Member; the Xlendi Member; 

and the 11-Mara Member (youngest). The name attributed to each member indicates 

the site where the member is best exposed. 

With the exception of the highly variable Scutella Bed, the Lower Coralline 

Limestone Formation lacks macrofossils that might be useful for correlation except at 

a local scale (Pedley, 1978). Deposition of the Lower Coralline Limestone appears to 

have initially been in a shallow gulf-type area (Felix, 1973). Succeeding beds provide 

evidence of increasingly open . marine conditions during which algal rhodolites 

developed. Finally a shallow marine shoal environment succeeded as the dominant 

environment in all areas except south-eastern Malta. In this area calmer conditions 

prevailed in a protected deeper water environment (Pedley et al., 1976). 

2.3.2.2 Globigerina Limestone 

The Globigerina Limestone Formation is given this name due to the high percentage 

of planktonic foraminifera present in the rock (Pedley et al., 1976, 1978). The 

formation covers large areas of central and southern Malta and Gozo. The outcrops 

are frequently obscured by housing and agricultural development. The most 

accessible sections in Malta are along the Qammieh coastline, northern Malta. In 
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Gozo the formation is well exposed in the wied gorges around San Lawrenz. The 

formation shows marked thickness variations ranging from 23 m near Fort Chambrey, 

southern Gozo, to about 207 m around Marsaxlokk, southern Malta. A thick 

succession is also developed in the Valletta Basin, where only the Lower Globigerina 

Limestone is now preserved. The usual colour of the formation is pale-yellow. A 

pale-grey subdivision, bounded both above and below by phosphorite conglomerate 

horizons, occurs in the middle of the sequence. The Globigerina Limestone provides 

most of the building stone in Malta and in local terminology is referred to as Franka 

(Pedley et al., 1976). This formation is further subdivided into Lower, Middle and 

Upper Globigerina Limestone separated by two phosphorite conglomerate horizons. 

2.3.2.3 Blue Clay 

The Blue Clay Formation comprises a sequence of alternating pale grey and dark grey 

banded marls, with lighter bands containing the highest proportion of carbonate 

(Pedley et al., 1978). The formation never contains more than 30 per cent carbonate 

material (Murray, 1890). This lithology is found throughout the islands and possibly 

also at the base of the cliffs on the island of Filfla, off the western coast of Malta 

(Pedley et al., 1976). Towards the Comino Straits the upper part of the succession 

contains clays which are uniformly dark grey in colour, lacking banding, and yielding 

abundant limonite and goethite concretions (Pedley et al., 1978). 

The maximum thickness of the Blue Clay Formation is approximately 75 m recorded 

at Xaghra, northern Gozo, and on the western coast of Malta north of Fomm ir-Rih 

Bay (Pedley et al., 1976, 1978). Marked thinning occurs towards the south and east, 

where the formation has been mostly removed by erosion, and at San Leonardo in 

Malta where the Blue Clay is absent as a result of pre-Upper Coralline Limestone 

erosion. In Gozo the formation increases in thickness from 10 m along the southern 

coast to over 60 m in the north. A depositional high in the region of the Comino 

Straits is again apparent. 

Although common, most fossils are restricted to microfauna or crushed specimens of 

macro fauna, except in the upper horizons of the Blue Clay around northern Malta and 

southern Gozo (Pedley et al., 1976). In this region goethite impregnated specimens of 
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the corals Balanophyllia, Flabellum and Stephanophyllia are common, as are the 

molluscs Aturia aturi, Sepia, Flabellipecten, Chlamys and indeterminate gastropods. 

The echinoid Schizaster and the pteropod Vaginella also occur. Foraminifera are 

abundant throughout, with species of Globigerina and Orbulina being the most 

common (Pedley et al., 1978). Marine vertebrate remains are invariably disarticulated 

and consist of fragments and centrae of Phoca, Cetacea, many fish and dugongs. 

An open muddy marine environment is envisaged with water depths up to 150 m for 

the lowest part of the formation. Shallowing probably occurred in the upper parts of 

the unit to depths less than 100 m (Pedley et al., 1978). 

2.3.2.4 Greensand 

The Greensand Formation is composed of thickly bedded, coarse, glauconitic, 

bioclastic limestones (Pedley et al., 1978). In unweathered sections the green and 

black glauconite grains are readily discernible. Usually due to the release of limonite 

upon weathering and oxidation of the glauconite, the rock possesses a characteristic 

orange-brown colour. The transitional change upwards from the Blue Clay is 

frequently sharp, particularly in the western areas of the islands. In eastern parts 

assimilation of the top of the Greensand into the base of the overlying Upper 

Coralline Limestone, as a result of bioturbation, has produced the effect of a gradual 

change in sedimentation (Pedley et al., 1976). 

The maximum development of the Greensand Formation is at Il-Gelmus in Gozo, 

where 16 m can be measured. In a second structure to the north of Il-Gelmus a 7 m 

thickness is recorded (Pedley et al., 1976). Throughout the rest of Malta and Gozo 

the formation, if restricted to the main glauconitic beds, is usually less than 1 m thick 

and shows extensive reworking and assimilation into the overlying strata (Pedley et 

al., 1978). 

The formation largely consists of transported material which also includes most of the 

glauconite grains and derived fossil casts such as Conus. Other areas of Greensand 

outcrop yield vertebrate fragments of sharks, Cetacea and smaller marine mammals. 

The foraminifer Heterostegina is common in western areas. The intense bioturbation 
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suggests deposition under shallow water marine conditions. Much of the sediment 

was transported into the region from areas of erosion outside the present confines of 

the islands (Pedley et al., 1976). 

2.3.2.5 Upper Coralline Limestone 

The Upper Coralline Limestone is the youngest Tertiary formation of the Maltese 

Islands and is similar in many aspects to the Lower Coralline Limestone Formation, 

especially in colour and coralline algal content (Pedley et-al., 1976). It is a durable 

sequence, frequently weathering into steep cliffs and featuring a well-developed karst 

topography. Outcrops occur on all islands of the Maltese archipelago and the 

formation is extensively developed especially in western Malta, Comino and east­

central Gozo, where it displays a wide range of lateral and vertical facies variations. 

A maximum thickness of approximately 100 m of strata is present in a litho logical 

sequence, which can be divided into three divisions (Pedley et al., 1978). The 

Maltese terminology used for this formation is Tal-Qawwi. 

Pedley (1978) divides the Upper Coralline Limestone Formation into four members, 

each member consisting.of several beds: Ghajn Melel Member; Mtarfa Member; Tal­

Pitkal Member; and the Gebel Imbark Member. 

The Ghajn Melel Member overlies the basal Upper Coralline Limestone erosion 

surface and is included within the formation. This member includes the Ghajn Znuber 

Beds in the east and the Zebbug Beds in the west (Pedley, 1978). 

The Mtarfa Member has been subdivided into three units: Coralline Algal Bioherm 

(oldest), Gebel Mtarfa Beds, and Rdum il-Hmar Beds (youngest). A brachiopod bed 

(Terebratula-Aphelesia Bed) occurs in the Coralline Algal Bioherm and basal 

sections of Gebel Mtarfa Beds. The Rdum il-Hmar Beds developed as a result of a 

later reduction in the volume of iron oxides entering the eastern area, together with a 

slight regional subsidence of the sea floor (Pedley, 1978). 

Tal-Pitkal Member consists of the following beds: Rabat Plateau Beds (oldest), 

Depiru Beds, Ghadira Beds and Ghar Lapsi Beds. Increasing turbulence within the 
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Maltese area and probable shall owing of the region to the west of the area gave rise to 

the coarse, bioclastic, Rabat Plateau Beds. Along the shallowest western margins of 

the area, patch reefs developed the Depiru Beds. The Ghadira Beds formed as a result 

of the eastwards influence of the reefs. The thin-bedded Ghar Lapsi Beds were 

deposited in a sheltered intertidal embayment adjacent to a low coastline (Pedley, 

1978). 

Outcrops of the Gebel lmbark Member are restricted to outliers preserved on hilltops, 

as at Gebel Imbark, or in the cores of synclines, as at Bingemma, both on Malta. A 

local erosion surface is developed at the base of the succession in western localities. 

This member is further subdivided into Tat-Tomna Beds, Qammieh Beds and San 

Leonardo Beds (Pedley, 1978). 

2.3.2.6 Quaternary deposits 

Trechmann (1938) carried out a detailed study of the quaternary deposits of the 

Maltese Islands and has classified them into valley loams and breccias; coastal 

conglomerates and breccias; and ossiferous deposits in caves and fissures. The earliest 

of the deposits are the Pleistocene ossiferous deposits of various cave systems in 

Malta, which have yielded numerous interesting animal remains (Pedley et al., 1978). 

The Ghar Dalam cave is the most well-known. Others are found at Qrendi, Zebbug, 

and Mellieha. The oldest faunas include Pleistocene dwarf hippopotami, pygmy 

elephants, dormice and swans. A later deposit features horse and deer (House et al., 

1961 ). The presence of so many land quadrupedal animals is taken as evidence that 

there was land communication between Sicily and Malta at this period (Pedley et al., 

1978). 

Later deposits, which invariably possess a distinct red colour, include alluvial fans, 

caliche soil profiles and calcreted breccias and conglomerates. All are stained red by 

iron oxidation. The first two developments are well seen at Wied Maghlaq, Malta, at 

the foot of the Maghlaq fault-scarp. Over 8 m of fanglomerate and caliche soil 

horizons, sometimes containing root casts, occur here. Similar fan deposits occur in 

Pwales Valley and near St.Paul's Bay (Pedley et al., 1976). Conglomerates and 

coastal breccias, often with Pleistocene mollusca, occur in small patches around the 
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Marfa Ridge, St.Paul's Bay, Mellieha Bay, Ghar Lapsi, Benghisa Point and 

St. Thomas Bay. They usually form a moderately cemented rock composed of local 

material (Trechmann, 1938). A caliche soil profile, capped by a red carbonate 

horizon at Marfa Point, northern Malta, yields terrestrial gastropods (Cooke, 1896c in 

Pedley et al., 1978). 

2.4 Structural geology 

The geological structure of the Maltese Islands is usually divided into three main 

regions (House et al., 1961; Pedley et al., 1976, 1978). 

1. Malta, north of the Victoria Lines Fault. 

u. Malta, south of the Victoria Lines Fault. 

iii. Gozo. 

2.4.1 Malta, north of the Victoria Lines Fault 

The Victoria Lines Fault crosses the island from Fomm ir-Rih on the western coast to 

the proximity ofMadliena Tower on the eastern coast (Figures 2.3, 2.9 and 3.3). The 

fault forms a fault scarp, which is the most significant topographic feature of the 

island. The maximum effect of the fault can be seen in central areas where the Upper 

Coralline Limestone on the northern, downthrown side of the fault, is brought into 

juxtaposition with the Lower Coralline Limestone. Throws along the fault vary from 

about 200 m near the Bingemma Syncline (Morris, 1952) in the west, to about 100 m 

in the east near Madliena Tower. 

North of the Victoria Lines Fault the structure is dominated by the development of 

horst and graben blocks, bounded by ENE trending normal faults (Figure 3.3). Such 

structures are indicated by prominent ridges and valleys, the main units from north to 

south being Marfa Ridge, Mellieha Valley, Mellieha Ridge, Mizieb Valley, Bajda 

Ridge, Pwales Valley, Wardija Ridge and Bingemma Valley (Figures 2.3 and 3.3). 

Comino probably represents the exposed part of an otherwise submerged graben to 

the north of the Marfa ridge. 
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Figure 2.9: The Victoria Lines Fault cutting through the eastern coast in Malta 
Source: Vossmerbiiumer, 1972 

The structures are not simple. The fault fractures are often compound, and sharp 

stratal flexures in both valleys and ridges occur. Approximate figures varying from 

10 m to over 100 m with values diminishing eastwards were given by House et al. 

(1961). These have also been discussed by Vossmerbaumer (1972). The fault of 

greatest throw would appear to be that forming the southern margin of the Marfa 

Ridge where the Upper Coralline Limestone has a displacement of over 100 m. The 

throws serve to depress the top of the Lower Coralline Limestone below sea-level for 

much of this region. In the Ghallis area, to the east of the major dislocations, the 

Lower Coralline Limestone lies up to 50 m above sea-level and is associated with a 

broad culmination, the Ghallis Dome (Figure 2.9). Minor north-south faults are also 

associated with this structure. 

The largest syncline structure occurring on the down thrown side of the Victoria Lines 

Fault is the Bingemma Syncline, associated with the former fault, in which the top of 

the Lower Coralline Limestone is depressed to an estimated 120 m below sea-level. 
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2.4.2 Malta, south of the Victoria Lines Fault 

South of the Victoria Lines Fault a different structural pattern is apparent. The horst 

and graben structures are absent. Although normal faults are numerous, the dominant 

fault trend is north-easterly with throws invariably less than 20 m, rapidly diminishing 

eastwards (Figure 2.3). 

In the north-western area of the Rabat Plateau, the faulting is closely associated with 

the Victoria Lines Fault and all fractures ultimately merge in an easterly direction. 

Further south at Rdum Dikkiena a second group of normal faults extends north­

eastwards into central Malta, whilst faults associated with the Zurrieq-Marsascala 

system (Figure 2.3) cross the entire width of southern Malta. 

Although it is usually considered that the fault pattern of the Maltese Islands 

constitutes a conjugate system, it is only in southern Malta where the second, north­

westerly trending set is evident. This is provided by the Maghlaq Fault (Figure 2.6), 

which with its smooth, slickensided, seaward facing fault-plane ~nning parallel to the 

coast, downthrows the Upper Coralline Limestone to the south by at least 230 m. The 

downfaulted strata are inclined at a high angle. The Maghlaq Fault is not a single 

fracture but consists, in part, of two closely spaced parallel faults. This results in 

slivers of Globigerina Limestone and Blue Clay caught up between the two fault 

walls, at several localities along the fault complex, particularly where the Lower and 

Upper Coralline Limestone Formations are in juxtaposition. A similar situation is 

evident at Fomm ir-Rih, at the western end of the Victoria Lines Fault, and in the 

Qammieh Fault of northern Malta. To the east of the spectacular cliffs formed by the 

Maghlaq Fault, a series of parallel subsidiary fractures occur which increase in effect 

towards the south-east. The only other north-westerly trending fault is the minor 

development along the San Leonardo coastline of eastern Malta. It is possible that the 

north-west trending coastlines of Malta are bounded by faults of this set. 

Apart from faulting, large-scale gentle folding is an important structural feature of 

central and southern Malta. House et al. (1961) confirmed that a major structural high 

passes southwards from the Victoria Lines Fault to Ghar Lapsi. There are several 

culminations, the largest of which is the N axxar Dome in eastern Malta. Here the top 
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of the Lower Coralline Limestone is 120 m above sea-level. Smaller culminations 

bring the Lower Coralline Limestone to 80 m and 120 m above sea-level near Zebbug 

and east of Ghar Lapsi respectively. In other regions folding is very gentle and is 

usually affected by faulting. This is the case north of Zabbar, where a culmination, 

abruptly truncated by the Cospicua Fault, brings the top of the Lower Coralline 

Limestone up to 50 m above sea-level. 

At Marsa Creek, around the Grand Harbour, a major basinal depression results in the 

Lower Coralline Limestone being 40 m below sea-level. In a second depression, 

centred on Delimara Peninsula, the limestone shelves 130 m below sea-level to the 

south-east, and extends seawards to unknown depths. 

2.4.3 Gozo 

Gozo is characterised by a gentle regional dip to the north-east. As a result, the 

Lower Coralline Limestone, which forms vertical cliffs over 120 m high along the 

south-western coast between Dwejra and Sannat, is depressed to over 20 m below sea­

level on the northern coast between Marsalforn and San Bias Bay. The northern parts 

of Gozo are characterised by this rather simple structural pattern. The structure 

complicates itself south from San Lawrenz to Qala Point. To the west, at Qawra, 

Dwejra and Xlendi, three solution subsidence structures with their characteristic 

circular faults (Murray, 1890; Trechmann, 1938; Hyde, 1955 and Pedley, 1976, 1978) 

are associated with east-west trending normal faults, extending eastwards as far as the 

Victoria-Xewkija region in central Gozo. The two largest faults in Gozo, the Sannat 

and Qala Faults are centred on Mgarr ix-Xini in southern Gozo. The Sannat Fault 

extending WNW from Mgarr ix-Xini, brings the Lower Coralline Limestone into 

juxtaposition with the Globigerina Limestone on the northern downthrown side of the 

fault. The Ix-Xini-Qala Fault has a north-easterly trend with a maximum throw to the 

south of approximately 120 m just to the south of Nadur. It tectonically separates 

south-eastern Gozo from the rest of the island. South of the Sannat-Qala Fault system 

numerous small faults cut the southern coast, and local flexuring depresses the top of 

the Lower Coralline Limestone below sea-level at Mgarr and Qala Point. 
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2.5 Hydrogeology 

The workcarried out by Chadwick (1884), Zammit (1931), Morris (1952), Newbery 

(1963, 1968) and Zezza (1971) includes the main studies on the hydrology and water 

resources of the Maltese Islands. 

The natural water resources depend entirely on rainwater percolating through the 

porous limestone rock and accumulating in aquifers, from where it either seeps out or 

is pumped. It has been estimated that between 16 per cent and 25 per cent of the 

annual rainfall infiltrates to recharge the aquifers (Morris, 1952; Newbery, 1968; 

Chetcuti, 1988 and Chetcuti et al., 1992). The largest aquifer is the Main Aquifer, 

also known as the Mean Sea-Level Aquifer, which consists of a lens of freshwater 

floating on denser saline water in limestone at sea-level (Figure 2.10). The other 

aquifers of importance are the Perched Aquifers, which consist of rainwater trapped in 

the permeable Upper Coralline Limestone due to the underlying layer of impermeable 

Blue Clay (Figure 2.10). Water seepage from the Perched Aquifers, wherever the 

Upper Coralline Limestone I Blue Clay interface is exposed, gives rise to so-called 

High Level springs which drain into watercourses. Many of the springs used to flow 

all year round. Most of them are now tapped by farmers for irrigation. Over the years 

there have been a number of programmes of small dam construction across the 

drainage channel watercourses. Construction is aimed at reducing flow and retaining 

water in the drainage channels for longer periods, to allow increased infiltration and to 

supply water for irrigation. 

In the Lower Coralline Limestone aquifer, where the water-table is controlled by sea­

level, the downward percolating fresh water from rainfall rests on a layer of denser 

sea water, the Ghyben-Herzberg fresh water lens (Figure 2.10). The difference in 

salinity (D = 0.028 at 20°C) is sufficient to keep the fresh water uncontaminated if left 

undisturbed. The aquifer is replenished by seepage from a perched aquifer in the 

Upper Coralline Limestone and by rainfall, which averages 500 mm per year. The 

parts of the Upper Coralline Limestone that are downfaulted to sea-level also 

contribute to the lower aquifer. There are few fresh water bodies on the islands and 

most streams are ephemeral or dry, as the flow of water tends to be karstic. In the 

Upper Coralline Limestone aquifer the percolating water settles on the underlying 
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impermeable Blue Clay Formation aquiclude, forming a perched water-table which 

gives rise to springs around the periphery of the limestone. 

Newbery (1968) points out that the rich history ofMalta can be attributed largely to 

the favourable hydrogeological conditions that have supported an underground supply 

of water. This fact can be contrasted to the relative historical insignificance of the 

neighbouring volcanic islands of Malta. In the Lower Coralline Limestone the water­

table is controlled by sea-level. In the Upper Coralline Limestone the aquifer is 

perched. Over-pumping of the sea-level water-table took place as demand increased, 

resulting in an increase in salinity of the water supply. Attention then turned to the 

upper aquifer. Hydrogeological investigations and the construction of new 

development schemes started in 1956 and were completed in 1963. Presently 55.06% 

of the water produced in the Maltese Islands is supplied from five Reverse Osmosis 

Plants, the rest (44.94%) is groundwater (Water Services Corporation, 1997/98). 

2.6 Conclusion 

In Malta there are very clear relations between tectonics and landforms. The 

morphological response to superimposed phases of strike-slip faulting and rifling, 

with associated up-arching and down-warping can be observed. Stream channel 

formation and incision, coastal morphology, erosion surface formation and scarp 

morphology have all responded sensitively to the tectonic events of the last 15 Ma 

(Alexander, 1988). 

The structural setting of the Maltese Islands is dominated by two rift systems of 

different ages and trends (Illies, 1981 ). The older rift generation, the Great Fault, 

trends in a NE-SW to ENE-WSW direction. This creates a horst and graben structure 

on western Malta, Comino and eastern Gozo. The second rift generation - the 

Maghlaq Fault, is associated with the Pantelleria Rift and trends in a NW-SE 

direction. This fault determines the south-west littoral of Malta and is responsible for 

the north-east tilt of the islands. 
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The geological succession represents a varied cross-section of Oligo-Miocene 

lithologies and facies but consists almost entirely of carbonates. The geological 

formations of the islands are very distinctive litho logically, reflected in characteristic 

topography and vegetation (House et al., 1961). The NE-SW trending horsts and 

graben cut through the entire Tertiary rock succession. 

The background information presented in this chapter can be used as the basis for 

reviewing the geomorphology of the Maltese Islands with particular attention to 

coastal landslide sequences. The geomorphology of the Maltese Islands with 

particular reference to coastal landforms is dealt with in chapter 3. Paskoff and 

Sanlaville (1978) claim that the general outline of the Maltese littoral zone has been 

determined by tectonics. Bays in northern Malta correspond to down-thrown blocks 

that were partially submerged. High cliffs on the south-west coast are associated with 

a major fault. Some cliffs are associated with wave-cut platforms. Others plunge 

directly into the sea or are skirted by landslides. Landslides and slope instability are 

especially evident on the western coast north of the Victoria Lines. Landslides occur 

both in Upper Coralline Limestone and Blue Clay Formations. The former feature 

translational and rotational slides whereas the latter displays mudslides. 

This research focusses on slope instability in Blue Clay. Three sites on the north-west 

coast have been chosen: Gnejna Bay, Ghajn Tuffieha Bay and Rdum id-Delli. These 

sites were chosen as they are representative sites of the northern coastal region, where 

outcrops of the Blue Clay Formation are significant. Detailed investigation on the 

mechanisms which trigger instability was carried out on selected slopes at each field 

site. The surveyed slopes have defined lateral shears and extend from the base of the 

Upper Coralline Limestone plateau to sea-level. The research is presented in the 

proceeding chapters. 
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Chapter 3 

The coastal geomorphology of 
the Maltese Islands, north of the Great Fault 



3. 1 Introduction 

Landforms on the Earth surface are influenced by the geology, an important determinant 

of the shape, size and type of the feature. The relationship between geology and 

geomorphology has to be considered when carrying out this research, so as to understand 

better the processes and mechanisms involved. In the case of Malta, different geological 

units have produced different landforms. This is especially evident along the coast, 

where the landscape is varied, due to outcrops of all the geological strata which compose 

the Maltese Islands. Upper Coralline Limestone and Lower Coralline Limestone feature 

sheer cliffs of a rectilinear aspect. Upper Coralline Limestone is also responsible for the 

presence of plateaus, rockfall, rotational and translational slides. Lower Coralline 

Limestone displays itself as a low rocky shoreline on the north-east coast. Blue Clay is 

exposed as clay slopes in several parts along the north, north-west and north-east coasts, 

whereas the occurrence of Globigerina Limestone at the littoral zone is marked by the 

presence of shore platforms and cliffs, especially evident in eastern and southern Malta. 

A number of exercises were undertaken to identify the relationship between the geology 

and geomorphology for the northern coast of Malta. Aerial photographs were reviewed 

to get a first impression of the coastal features present and to map those areas which 

presented problems of accessibility. Queries were then spot checked during a boat 

survey. Detailed geomorphological mapping was carried out to provide the basis for 

more detailed work at three specific coastal sites. At each of the sites, further mapping at 

a larger scale, surveying and the collection of samples for laboratory testing were 

performed, to assess slope instability within a local context. 

3.2 Geomorphology of the Maltese Islands 

The geomorphology of the Maltese Islands has been discussed by House et al. (1961), 

Vossmerbaumer (1972) and Alexander (1988). Coastal geomorphology is dealt with in 

, the studies of Guilcher and Paskoff (1975), Paskoff and Sanlaville (1978), Ellenberg 

(1983) and Paskoff(1985). There is a significant lack of more recent sources. 
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The predominant control on landforms in Malta is undoubtedly that of tectonic activity 

including faulting, up-arching and subsidence (Alexander, 1988). The highest land, 

around south-west Malta and western Gozo, occurs at the intersection of the rift system 

shoulders (Illies, 1980). Isopachyte maps published by Pedley et al. (1976) indicate that 

the extinct NE-SW trending rift system left eminences of the Lower and Middle 

Globigerina Limestone at the south-east and north-west ends of the archipelago. The 

latter was removed by erosion on south-east Malta. The present relief of the islands 

corresponds most closely with the isopachytes of the Lower Coralline Limestone, which 

reflects all stages of subsidence and upwarping that the various land areas have gone 

through. Both main islands are tilted towards the north-east. The highest point in Malta 

is 253 m above sea-level located at Ta'Zuta on Dingli Cliffs, south-west Malta, whereas 

in Gozo the highest point is 191 m found at Dbiegi. Figure 3.1 features the general 

topography ofthe Maltese Islands whereas Figure 3.2 shows the location of all the places 

referred to in this chapter. 

House et al. (1961) classify the physical landscape of the Maltese Islands into five 

categories. 

1. Coralline Limestone plateaus, which form the highest areas and are bounded by well­

marked escarpments. These uplands range in size from the massive triangular plateau of 

western Malta to the small mesas of north-west Gozo. In western Malta, the Coralline 

Limestone plateaus range in heights from 180 m to 245 m. Eastwards the plateaus 

change into undulating areas developed on Globigerina Limestone, mostly having a 

height of 120 m. The western plateaus are flanked by deeply incised valleys which have 

cut back into the upland. The south-west edge has been least affected by such action and 

the regular line of cliffs are broken only in one place, where the valley complex of 

Imtahleb forms a deep embayment. 

2. 'Blue Clay slopes, which occur at coastal areas, in valleys and which separate the 

plateau uplands from the surrounding areas. Blue Clay slopes in Malta occur _mostly at 

the coast at the foot of the Upper Coralline Limestone. On the north-west coast, clay 
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Key to Figure 3.2 

Ahrax Point 36 - 11-Hofra z-Zghira 

2 Arrnier Bay 37 - 11-Hotba 1-Bajda 

3 Attard 38 - 11-Marbat 

4 Bahar ic-Caghaq 39 - 11-Prajjet 

5 Birzebbuga 40 - 11-Qarraba 

6 B1ata 1-Bajda (near Bahar ic-Caghaq) 41 - Imtah1eb 

7 Blata 1-Bajda (near St.Paul's Islands) 42 - Iz-Zewwieqa (Gozo) 

8 Blue Grotto 43 - Kalafrana 

9 Bugibba 44 - Lija 

10 - Cirkewwa 45 - Luqa 

11 - Dahlet ix-Xilep 46 - Luqa Airfield 

12 - Dbiegi (Gozo) 47 - Madliena 

13 - Delimara 48 - Madliena Tower 

14 - Ding1i 49 - Marfa Point 

15 - Dwejra (Gozo) 50 - Marsa Creek 

16 - Fomm ir-Rih Bay 51 - Marsarnxett Harbour 

17 - GnejnaBay 52 - Marsascala Bay 

18 - Gnien lngraw 53 - Marsaxlokk 

19 - Grand Harbour 54 - Marsaxlokk Bay 

20 - Ghajn Tuffieha Bay 55 - Mdina 

21 - Ghajn Zejtuna 56 - Mellieha. 

22 - Gharghur 57 - Mgarr ix-Xini (Gozo) 

23 - Ghar Baqrat 58 - Mgiebah 

24 - GharDalam 59 - Mistra Bay 

25 - GharHasan 60 - Mqabba 

26 - Hal-Far 61 - Msida 

27 - Harnrun 62 - Nadur (Gozo) 

28 - Ic-Curnnija 63 - Naxxar 

29 - 11-Bajda (Gozo) 64 - Paola 

30 - 11-Bidni 65 - Paradise Bay 

31 - 11-Bidnija 66 - Qala tal-Mistra 

32 - 11-Fiddien 67 - QaletMarku 

33 - 11-Gzira 68 - Qawra (Malta) 

34 - 11-G~adira 69 - Qawra (Gozo) 

35 - 11-Hofra 70 - Qrendi 
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71 - Rabat 105 - Ta' Qassisu 

72 - Ramla tal-Bir 106 - Ta' Zuta 

73 - Ramla tal-Mixquqa 107 - Valletta 

74 - Ramla tal-Qortin 108 - Victoria (Gozo) 

75 - Ramla tat-Torri 109 - White Tower 

76 - Ras il-Mignuna 110 - WiedDalam 

77 - Ras il-Pellegrin 111 - Wied Ghajn Zejtuna 

78 - Ras il-Qala (Gozo) 112 - Wied Ghemieri 

79 - Ras il-Qammieh 113 - Wied Has-Sabtan 

80 - Ras il-Wahx 114 - Wied il-Baqqija 

81 - Ras in-Niexfa 115 - Wied il-Ghajn 

82 - Ras ir-Raheb 116- Wied il-Ghasel 

83 - Rdum Dikkiena 117 - Wied il-Hesri 

84 - Rdumlrxaw 118 - Wied ir-Ramla (Gozo) 

85 - Rdum id-Delli 119 - Wied is-Sewda 

86 - Rdum il-Bies 120 - Wied iz-Zurrieq 

87 - Rdum il-Hmar 121 - Wied Mellieha 

88 Rdum il-Qammieh 122 - Wied ta' Dahlet Qorrot (Gozo) 

89 - Rdum il-Qawwi 123 - Wied ta' Ghajn Rihana 

90 - Rdum it-Tafal (Gozo) 124 - Wied ta' 1-Imgarr (Gozo) 

91 - Rdum 1-Abjad 125 - Wied ta' Marsalforn (Gozo) 

92 - Rdum 1-Ahmar 126 - Wied ta' Mazza 

93 - Rdum 1-Imdawwar 127 - Wied ta' San Blas (Gozo) 

94 - RdumMajesa 128 - Wied tal-Gnejna 

95 - Rdum tal-Madonna 129 - Wied tal-Mistra 

96 - Ricasoli 130 - Wied tal-Pergla (Gozo) 

97 - SalinaBay 131 - Wied tal-Pwales 

98 - Santa Maria Estate 132 - Xaghra (Gozo) 

99 - Selmun 133 - Xemxija 

100 - Siggiewi 134 - Xlendi Bay (Gozo) 

101 - St.Paul's Bay 135 - Zabbar 

102 - St. Thomas Bay 136- Zebbug 

103 - Ta' 1-Imgharrqa 137 - Zejtun 

104 - Ta' Qali 138 - Zonqor 
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slopes are found at Fomm ir-Rih Bay, Ras il-Pellegrin, Gnejna Bay, Ghajn Tuffieha Bay, 

Rdum id-Delli, Rdum il-Qammieh and Rdum il-Qawwi. On the north-east coast, clay 

slopes are found at Mgiebah. Inla~d, Blue Clay corresponds with the location of dry 

valleys which have watercourses during the wet season only, although . some have 

perennial springs which flow throughout the year (Schembri, 1993). This is due to the 

impermeability of Blue Clay. Examples of the valleys include Wied tal-Mistra, Wied tal­

Gnejna and Wied Ghemieri. Other places where Blue Clay outcrops such as 11-Bidnija 

and 11-Fiddien are used for agriculture. 

In the northern half of the island of Gozo, erosion has broken the Coralline plateaus into a 

series of disconnected blocks which diminish in size but increase from east to west. The 

largest of these, the N adur and Xaghra uplands, each cover an area of little more than 5 

km2 and are between 120 m to 137 m high, occupying most of the north-east part of the 

island. The uplands are penetrated by numerous sharply-incised valleys whose slopes 

and floors are developed on the Blue Clay. They include the valleys ofDahlet Qorrot and 

San Blas and the eastern tributaries of Wied ir-Ramla in the case of the Nadur plateau, 

while the Xaghra plateau is cut into by the Wied tal-Pergla and the eastern tributaries of 

Wied ta' Marsalforn. 

The north-west part of Gozo is essentially an undulating plain of Globigerina Limestone 

into which the valleys are for the most part not sharply cut and above which clay slopes 

lead to numerous mesas. East ofMgarr ix-Xini, inland faulting has preserved a large area 

of Upper Coralline Limestone, beneath which Blue Clay outcrops to form the seaward 

slopes. Rdum it-Tafal, Wied ta' 1-lmgarr and Iz-Zewwieqa are similar in character to the 

north-east coastline. 

Victoria, in Gozo, is situated on a low elevation of Upper Coralline Limestone, flanked 

on its eastern side by a minor escarpment beneath which unusually gentle clay slopes 

occur. This is also the case of Mdina, Rabat and Mellieha on mainland Malta. These 

localities are situated on Upper Coralline Limestone plateaus and flanked by clay slopes. 
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3. Rdum or undercliff areas, occurring where the Upper Coralline Limestone plateaus 

meet the sea. In Malta these features are located mainly on the western coast between 

Rdum Dikkiena up to Paradise Bay at Cirkewwa, broken intermittently at Ras ir-Raheb, 

Ras in-Niexfa, Gnejna Bay, Ghajn Tuffieha Bay and Fomm ir-Rih Bay. Some rdum 

areas are also found at the north-east coast of Malta between Xemxija and Mistra Bay, 

extending up to Mgiebah. 

In Gozo rdum areas occur where the Nadur and Xaghra uplands reach the coast. Blue 

Clay slopes descend steeply to the sea from beneath the cliffs, which mark the edge of the 

limestone outcrop. In the north-east, between Dahlet Qorrot and Ras il-Qala, the slope 

gradient is less steep and a rocky platform occurs where the Lower Coralline Limestone 

appears in a narrow strip along . the· coast. West of Wied ta' Marsalforn, the Upper 

Coralline Limestone plateau has been eroded into small and scattered fragments. 

4. Flat-floored basins, which in most cases are the result of faulting, such as Wied tal­

Pwales, or down-warping, such as Bingemma Basin. Sometimes flat-floored basins occur 

due to erosion and subsequent alluvial deposition, such as Wied il-Ghasel, limits of 

Mosta, central Malta. The region of Wied il-Ghasel and its tributary, Wied ta' Ghajn 

Rihami., stretches for slightly more than 3 km inland from Salina Bay and lies for the most 

part at heights below 15 m, being abruptly terminated at its southern end by the 

escarpment of the Victoria Lines Fault. 

The remainder of northern Malta consists of a series of ridges and valleys. From north to 

south, the major divisions are: Marfa Ridge, Mellieha Valley, Mellieha Ridge, Mizieb 

Depression, Bajda Ridge, Pwales Valley, Wardija Ridge and Bingemma Basin (Figure 

3.3). 

Marfa Peninsula (Figure 3.3) reaches a maximum height of 122 m in the west. It is 

steepest on the southern side where it overlooks the Mellieha Isthmus and Mellieha Bay 

in an abrupt fault-line scarp. The slope on the northern side is gentle and diversified with 

several small valleys. Mellieha Ridge (Figure 3.3) is an Upper Coralline Limestone 
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Figure 3.3: Ridge and valley topography north of the Great Fault 
Source: Ransley and Azzopardi, 1988 
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plateau (122 m to 137 m) declining to the east (around 90 m) near Selmun. It has been 

tilted from north to south. Its major escarpment, where Blue Clay outcrops, faces north 

over the isthmus and is interrupted by a series of narrow steep-sided valleys, such as 

Gnien lngraw, Wied Mellieha, and Wied Ghajn Zejtuna which form deep embayments in 

the scarp face. The northern and southern alluvial depressions of the Mellieha Isthmus 

(Figure 3.3) - 11-Ghadira and 11-Hofra respectively - are separated by a low slope of 

Coralline Limestone which reaches a summit of about 61 m near Ras in-Niexfa. The 

Mizieb Depression (Figure 3.3) is a narrow plain about 550 m across and 3.6 km long 

with its lowest point about 30.5 m above sea-level. To the east it leads to Wied tal­

Mistra, where erosion from Qala tal-Mistra has exposed the Globigerina Limestone and 

Blue Clay and produced a valley whose floor lies less than 15 m above sea-level over a 

distance of about 2.4 km. The Mizieb Depression is synclinal in structure. Its southern 

side forms the gentler northern side of Bajda Ridge (Figure 3.3). A minor escarpment 

about 15 m to 30 m high separates Bajda Ridge from Pwales Valley (Figure3.3), a flat-
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floored depression about 0.8 km wide which runs right across the island from Ghajn 

Tuffieha Bay to St.Paul's Bay. The highest point in this area is about 23 m above sea­

level and most ofthe region is below 15 m. The dip slope of the Wardija Uplands leads 

south to the Bingemma Basin (Figure 3.3), a flat-floored depression at heights of about 

75 m to 85 m. This region leads to the Wied ta' Ghajn Rihana which is incised into the 

basin floor. The southern side of the basin is made up of slopes, developed on 

Globigerina Limestone and Blue Clay, which lead up, through a vertical distance of about 

150 m, to the Victoria Lines Fault. 

5. Globigerina hills and plains - large areas of gently sloping land which, in Malta, take 

the form of a series of low ridges and shallow valleys and iri Gozo, have a more varied 

topography. The central, southern and eastern regions are mostly areas of gentle relief, 

although steep slopes occur in a number of places. West of the Paola-Luqa-Mqabba­

Qrendi area, a series of ridges and valleys converge towards Marsamxett and Grand 

Harbour. The Naxxar-Gharghur Hills are succeeded southwards by the Lija-Msida 

Valley which is followed by the Attard-Hamrun Ridge. An open valley, Wied is-Sewda, 

follows, bounded on the south by Zebbug Ridge. Beyond the Zebbug Ridge, there are the 

valleys of11-Baqqija and 11-Hesri, followed by Siggiewi Ridge. The southern edge ofthis 

region is made up of sea cliffs. The cliffs are backed by steep slopes rising to a crest line 

which runs parallel to the coast for about 1.5 km. The height of this crest line declines 

eastwards from a maximum of about 13 8 m to about 45 m south of Kalafrana. 

East of the Paola-Qrendi area, the general relieftrend is from east to west. Ridges running 

from Ricasoli to Zonqor, from Zab~ar to 11-Bidni and from Zejtun to 11-Gzira are 

separated by Wied il-Ghajn and Wied ta' Mazza. These features all converge towards 

Marsascala Bay. Further south, the convergence of ridges and valleys is towards 

Marsaxlokk. This setting gives an undulating character to the area, and steep slopes are 

confined to the coasts of Zonqor and Delimara and the valleys of Has-Sabtan and Dalam, 

both the latter being incised in the Lower Coralline Limestone. The landscape of 

Globigerina Limestone areas features low ridges and valleys. Flat land is very limited, 

occurring around the head ofMarsa Creek, Ta' Qali and Luqa airfield. 
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3.3 Coastal geomorphology of the Maltese Islands 

Two studies by Paskoff and Sanlaville (1978) and Ellenberg (1983) have made a 

significant contribution to understanding the coastal geomorphology of the Maltese 

Islands. 

Paskoff and Sanlaville (1978) claim that the general outline of the Maltese littoral zone 

has been determined by tectonics. Lithology and advanced karstification have to be 

considered when studying the coast in detail. In spite of the small size, the Maltese 

Islands display a large variety of coastal features. Bays in northern Malta correspond to 

downthrown blocks that were partially submerged. High cliffs which characterize the 

south-west coast are associated with a major fault (Plate 3.1). Beaches .are rare and 

constitute only 2.4 % of the coastline (Schembri, 1990) (Plates 3.2 and 3.3). Low 

limestone coasts display interesting examples of both mechanical and chemical processes 

such as hydraulic pressure and corrosion (Plate 3.4). Most of the coasts have a high relief 

and show different types of cliffs. Some are associated with wave-cut platforms (Plate 

3.5). Others plunge directly into the sea (Plates 3.1 and 3.6) or are skirted by landslides 

(Plate 3. 7). 

Since its definitive emersion after the Tortonian, the Maltese archipelago has been 

affected by karstification, now found at an advanced stage of development, which is 

evident at the south of Malta, Comino and western Gozo. In Malta, for example, one 

finds important circular depressions such as the doline structure of 11-Maqluba, near 

Qrendi, which is 60 m wide and 40 m deep. Long caves, such as Ghar Hasan (Plate 3.8), 

south ofHal-Far and especially Ghar Dalam, close to Birzebbuga, explored to about 100 

m and famous for its palaeontological richness in bone fossils, are also found (Paskoff 

and Sanlaville, 1978). The karstification, remarkable in underground structures, is 

principally cut in Coralline Limestone, which is very sensible to actions of solution 

because of its purity in calcium carbonate and its dense fractures and thickness (Paskoff 

and Sanlaville, 1978). In subterranean cavernous areas of karstic origin, revealed by cliff 

retreat, wave action during storms may provoke roof collapse, which forms roughly semi-
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circular coves. Blue Grotto (Figure 3.4), in southern Malta, is an example of such a 

landform (Paskoff, 1985). 

There is evidence of past processes involved in the subsidence of Malta during the 

Quaternary period accompanied by a tilting movement. The following support this idea: 

1. general topography and stratigraphic sequence inclined towards the north-east; 

n. sinking of the bays on the north-east coast; 

iii. traces ofNeolithic cart ruts passing below sea-level in Marsaxlokk Bay; 

iv. stalactites hanging at the ceiling of caves which today are found below sea-level at 

the entrance of Grand Harbour in Valletta (Hyde, 1955); 

v. the presence of immersed levels about 9-11 m, 17-21 m, 25-30 m and 33 - 40 m at 

the foot of high cliffs on the south-west coast (Martineau, 1965 in Paskoff and 

Sanlaville, 1978). 

Faults resulting from tectonic activity determine the outline of the Maltese coasts. Some 

faults are perpendicular to the littoral zone. Horsts at the north of the island (Wardija, 

Bajda, Mellieha and Marfa Ridges and the island of Comino) are separated by sunk 

blocks which the sea has partially (at St.Paul's and Mellieha Bays) or totally overrun 

(North Comino and South Comino Channels) (Figures 2.2 and 3.3). Ras ir-Raheb at the 

end of the projection in Fomm ir-Rih Bay, western Malta coincides with the western 

extremity of the Great Fault of the Victoria Lines (Figure 3.3 and Plate 3.9). 

The south-west littoral zone of Malta is determined by the Maghlaq Fault (Figure 2.6 and 

Plate 3.10), oriented WNW-ESE, and starting from where the island has been tilted 

towards the north-east (Paskoff and Sanlaville, 1978). The result is a striking contrast 

between a south-west coast featuring sheer cliffs of a rectilinear aspect (Plate 3.1), more 

than 200 m high near Dingli, and a rocky but shallow north-east coast (Plate 3.4), 

gradually descending under the sea (Figure 3.4). Other evidence of the tilting is the water 

drainage division which runs near the south-west coast and the location of the highest 

point of the island, at 253 m on the south-west coast at Ta' Zuta, near Dingli (Figure 3.2). 

54 



Lll 
Lll 

,. 

Key 

N 
A 

GOZO 

IRHSULA B 

MALTA 

0 , l . 1 ""' 

lt-li\Q~\ 
~· 

,,\'\':..~''~ ,,'\ 

Figure 3.4: Predominant coastallandforms in the Maltese archipelago 
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The role of tectonics is not as important in Gozo. However numerous faults are 

located on the southern coast of the island and very likely determine its outline 

(Paskoff and Sanlaville, 1978). 

Semi-circular coves, such as Qawra, near Dwejra Point and Dwejra Bay in western 

Gozo (Figure 3.4), the two creeks on the western coast of Comino, Blue Grotto on the 

southern coast of Malta, Paradise Bay on the north-western coast, Rdum il-Hmar 

(Plate 3.11), Ghar Baqrat and Ta' 1-Imgharrqa on the north shore ofMellieha Bay, 11-

Qala tal-Mistra on the north shore of St.Paul's Bay and 11-Hofra z-Zghira (Plate 3.12) 

on the south-east coast of Malta, represent a conspicuous feature of the Maltese 

coastline. They originate from widely distributed typical karstic landforms inundated 

by the sea (Paskoff, 1985). Post-Miocene solution of carbonates has reached an 

advanced stage, producing well-developed sinkholes and extensive subterranean 

cavern and gallery systems in all formations, especially in the Coralline Limestones. 

In Qawra, western Gozo (Figure 3.4), there is a large (400 m in diameter and 70 m 

deep) elliptical sinkhole structure of complex origin (Pedley, 1974 in Paskoff, 1985), 

bounded by vertical walls and developed in the Lower Coralline Limestone. Its 

bottom has been partially inundated because a karstic gallery connects the depression 

with the open sea and allows small boats to pass. Dwejra Bay (Figure 3.4), close to 

Qawra is another former closed depression, measuring approximately 340 m in . 

diameter. It has largely been invaded by the sea and only its eastern half has been 

preserved. An islet, Fungus Rock, is the last remnant of its western wall, destroyed 

by marine erosion. 

Malta and Gozo display inlets that are partially drowned valleys of subaerial erosion. 

Typical calanques are found: Wied iz-Zurrieq in southern Malta and 11-Bajda in 

south-west Gozo are narrow, shore inundated valleys with steep sides cut in Lower 

Coralline Limestone. Wider and more developed inlets, such as Salina Bay and 

Marsascala Bay in Malta, correspond to finger-shaped, broad and more open valleys, 

subaerially eroded in the soft Globigerina Limestone and subsequently submerged 

(Figure 3.4). Changes in sea-level have also submerged the mouth of some drainage 

channels on the coast, giving rise to headlands, creeks and bays, especially evident on 

the north-east coasts, since the seaward tilt of the island is in that direction. 
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Especially important is the system of drowned valleys which form the creeks of the 

two main harbours of Malta, Marsamxett Harbour and Grand Harbour, separated by 

the Valletta headland (Figure 2. 7). Important examples of inundated river valleys in 

Gozo include Mgarr ix-Xini and Xlendi Bays. 

Steep cliffs, more than 50 m high and in some places more than 200 m (Plate 3.1), 

represent half the length of the Maltese coastline (Guilcher and Paskoff, 1975; 

Paskoff and Sanlaville, 1978). They characterize southern and south-west Malta, 

eastern Comino, and most of the coast of Gozo (Ellenberg, 1983). Vertical plunging 

cliffs are generally cut in the Lower Coralline Limestone and lack shore platforms at 

their feet, such as at Ghar Hasan, southern Malta. These cliffs are vertical, rectilinear 

and probably of tectonic origin (Paskoff and Sanlaville, 1978). Marine erosion 

appears to be biochemical and inefficient. At sea-level, an undercut notch is formed 

(Plate 3.13). It is quite regular and measures between 0.80 m to 1.50 m in·depth and 

width (average 0.60 m). The immersed lower part features an irregular sloping 

pavement with a cavity formed by waves. 

Where cliffs are cut in the Globigerina Limestone they are fronted, in most cases, by 

shore platforms produced by mechanical action of waves, mainly through hydraulic 

pressure that dislodge and remove blocks from stratified and jointed rocks (Plate 3.5). 

Between Marsaxlokk Bay and St.Thomas Bay, the Globigerina Limestone features a 

perfectly vertical cliff which reaches a height of more than 50 m (Plate 3.6). At sea­

level a structural platform, above which there is a notch (Plate 3.14), is the result of 

mechanical erosion. The rock here is quite uniform which helps to maintain the 

steepness of the cliff, and rather soft allowing marine erosion to work efficiently 

(Paskoff and Sanlaville, 1978). 

The rdum areas constitute a very original and spectacular element of the Maltese 

coasts and correspond to a type of marine cliff related to a specific geological 

structure that is prone to mass movements. The rdum areas occur where Blue Clay 

crops out at sea-level and is overlaid with the massive strata of Upper Coralline 

Limestone (Plates 3.7, 3.11 and 3.15). The clay is easily eroded by wave action. In 

addition, rain water percolates through fissures of the limestone into the underlying 

clay. This causes the Blue Clay to become plastic and unstable. Jointing and faulting 
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in the Upper Coralline Limestone causes the latter to dislodge and eventually break 

up, falling on the clay. The landforms are characterised by a boulder scree at sea­

level and larger landslides at the foot of the scarp face. As a result cliff retreat is 

probably slow, since a certain time is necessary for the removal of the boulders. The 

huge limestone blocks are too large to be displaced by the sea and form a strong 

protective buttressing to the clayey part of the cliff. This type of cliff probably 

retreats much less quickly than Globigerina Limestone cliffs (Paskoff and Sanlaville, 

1978). Rdum areas are especially found north of the Victoria Lines Fault (Figure 3.4) 

and in eastern Gozo. 

In north-east Malta and northern Gozo, cliffs are largely absent. Long tracts of low, 

rocky coastlines of corrosion (Paskoff, 1985) are found (Plate 3.4). Pools and lapies 

give an extremely irregular topography to shore platforms, particularly when they are 

cut in Coralline Limestone (Plate 3.4). Chemical and biological weathering are the 

prevailing processes of evolution. Evidence of abrasion is absent. Structural controls 

account for the simultaneous development of several platforms at different levels up 

to more than 10 m above the sea. This is evident in northern Gozo, where the 

Globigerina Limestone crops out. On exposed coasts large boulders dislodged by 

storm waves lie scattered on the shore platform, and corrosion microforms are less 

developed. 

No trace of former shorelines higher than the present one has been found in spite of 

careful investigations (Paskoff and Sanlaville, 1978). Emerged wave-cut terraces or 

notches as well as marine deposits seem to be entirely lacking. Formerly reported 

raised beaches (Hyde, 1955) are in fact pediment features. The situation suggests 

evidence of recent crustal subsidence, which is probably still,in progress. At St.Paul's 

Bay, cart tracks ofNeolithic age enter the sea at one side and emerge on the opposite 

side of the inlet (Hyde, 1955). Moreover, as far as Malta is concerned, there has been 

tilting of its lengthwise axis towards the north-east in addition to the general 

subsidence of the archipelago. 

In order to provide more detail on the coastallandforms of Malta, a geomorphological 

mapping exercise was performed, to supply infonnation about geology, landfonns and 

mass movement processes operating on the coast in the northern region. 
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Plate 3.1: Plunging cliffs developed in Lower Coralline Limestone characterize the south and south­
west coasts from Benghisa to Fomm ir-Rih. These cliffs are associated with the Maghlaq Fault and 
reach a height of 200 m in some parts. 

Plate 3.2: Sandy beach backed by clay slopes at Ghajn Tuffieha Bay. This Bay which is popular and 
frequented both by locals and tourists has been designated by the Planning Authority as an area of 
ecological importance and is a protected site. 
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Plate 3.3: Sandy beach at Gnejna Bay. Gnejna Bay is surrounded by scree and clay slopes. The 
beach is backed by Gnejna Valley. In the background Rdum 1-lmdawwar features terraced fields. 

Plate 3.4: Low rocky shore cut in Lower Coralline Limestone on the north-east coast. Pools and 
la pies which produce a very irregular surface are the result of corrosion. 
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Plate 3.5: Low cliff and shore platform formed in Globigerina Limestone, characteristic of the 
southern coast. Globigerina Limestone being a softer material than Coralline Limestone displays a 
smoother surface. This is mainly the result of the mechanical action of waves, especially hydraulic 
pressure. 

Plate 3.6: Globigerina Limestone cliff, about 45 m high. Featured here is a spur extending into the 
inlet adjacent to Xrobb ii-Ghagin peninsula on the southern coast. Only the upper part of the cliff is 
vertical. The lower part is sloping probably as a result of different rates of erosion and cliff retreat. 
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Plate 3.7: 11-Qarraba is a peninsula separating Gnejna Bay from Ghajn Tuffieha Bay on the north­
west coast. lt features an rdum landform and its shape is unique in the Maltese Islands. 11-Qarraba 
is linked to the mainland by clay slopes and has been assigned the highest level of conservation and 
protection by the Planning Authority. 

Plate 3.8: Ghar Hasan, found on the southern coast. This cave has formed as a result of 
karstification. The latter prevails in Coralline Limestone where water charged with carbon dioxide 
dissolves the calcium carbonate in the porous limestone. 

62 



Plate 3.9: The western extremity of the Great Fault featuring Lower Coralline Limestone plunging 
cliffs. The Great Fault runs along the whole width of the island from Fomm ir-Rih on the west coast 
to Madliena on the east coast. The terraced fields are the result of human activity. 

Plate 3.10: Slickenside at lx-Xaqqa on the south-west coast. This is a result of the Maghlaq Fault 
which has produced here a vertical displacement of at least 240 m to the south-west. Lower 
Coralline Limestone (right side) and Upper Coralline Limestone (left side) are found in 
juxtaposition. 
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Plate 3.11: Rdum ii-Hmar is an example of a semi-circular cove found on the northern shore of 
Mellieha Bay. Semi-circular coves represent a distinct feature of the Maltese coastline and originate 
from karstic Iandforms inundated by the sea. 

Plate 3.12: 11-Hofra z-Zghira features a semi-circular cove on the south-east coast of Malta. In this 
case the cove has developed in Globigerina Limestone and is surrounded by cliffs. 
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Plate 3.13: Undercut notch formed by the action of waves at the lower part of plunging cliffs on the 
south-west coast. The notch measures around 0.80 m deep and 1.50 m wide. 

Plate 3.14: Globigerina Limestone cliff fronted with a structural platform at Delimara on the 
southern coast. A notch is formed above the shore platform as a result of mechanical erosion. 
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Plate 3.15: Fomm ir-Rih Bay located on the western coast, adjacent to the western extremity of the 
Great Fault. It featues an rdum area, a characteristic land form of the Maltese coasts. This type of 
marine cliff is prone to mass movements both in clay and limestone. 

Plate 3.16: An example of a translational slide found at Rdum Majesa on the north-west coast. In 
the Maltese Islands this type of landslide occurs in the Upper Coralline Limestone. Usually these 
slides involve a displacement from the in situ material to several metres downslope and in some cases 
extending to the shoreline. 
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Plate 3.17: An example of a rotational slide found at Ras ii-Pellegrin on the north-west coast. 
Rotational slides, similar to translational slides, develop in the Upper Coralline Limestone. These 
slides are usually found below the in situ material from where they have been detached and involve a 
rotational movement on the slip surface resulting in a tilted upper surface. 

Plate 3.18: Complex of rotational slides at Ras ii-Wahx on the north-west coast. Ras ii-Wahx offers 
the best example of multiple rotational slides most commonly found at headlands along the Maltese 
coasts. Here rotational slides occur in multiple succession covering an area of about 400 m2

• 
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Plate 3.19: Where Blue Clay is exposed it features slopes. At the coast these slopes usually extend 
from the Upper Coralline Limestone plateau to sea-level. The clay slopes featured here are situated 
at the southern end of Gbajn Tuffieba Bay, overlooking Gnejna Bay and connecting 11-Qarraba with 
the mainland. 
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Plate 3.20: A closer view of the clay slopes overlooking Gnejna Bay. The slopes are quite steep and 
stable allowing some steppic vegetation to grow on them. In the background Globigerina Limestone 
shore platforms are evident. These are situated at sea-level and are backed by the clay slopes. 

Plate 3.21: Rockfall at 11-Prajjet situated on the north-west coast. Rockfall is the most important 
mass movement process along the Maltese coasts. This process occurs in the Upper Coralline 
Limestone where blocks are detached from the plateau and fall on the underlying strata. 
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3.4 Geomorphological mapping 

The aim of geomorphological mapping is to record information on landforms by 

mapping surface form, surface materials and surface processes. It provides a basis for 

terrain assessment which is useful in the context of many environmental problems 

(Cooke and Doornkamp, 1990). In geomorphological mapping, landform genesis is 

considered (Gardiner and Dackombe, 1983). Landform genesis usually involves 

attributing a form to a process, past or continuing (Goudie et al. , 1990). Mapping of 

present-day processes is mostly limited to hazards such as landslides, avalanches and 

gullying. Slower processes such as wash, creep and solution are usually deduced 

from form because measurements of their rates are too localised to allow mapping 

(Goudie et al., 1990). The relevance of mapping surface materials depends on the 

purpose of the map (Cooke and Doornkamp, 1990) such as recording information on 

bedrock lithology or assessing slope instability which requires a knowledge of shear 

strength. 

When only surface form is taken into consideration, the technique used is known as 

morphological mapping (Savigear, 1965; Cooke and Doornkamp, 1990). The latter 

includes information on the slope gradient, direction and form of slope (convex or 

concave), the break of slope and change of slope. Slope gradient is the most 

important morphometric variable for many processes and applications (Goudie et al. , 

1990). A map of slope steepness, for example, can be of value to both planners and 

engmeers. When a morphological map includes a genetic interpretation it is 

considered to be a geomorphological map (Tricart, 1965, 1970 in Goudie et al. , 1990). 

Geomorphological mapping has vanous applications which include the following 

(adapted from Demek, 1972 in Cooke and Doornkamp, 1990). 

1. Land-use: regional area planning; conservation of the natural and cultural 

landscape. 

n. Agriculture and forestry: soil erosion control; drainage and irrigation; reclamation 

of destroyed or new areas. 

111. Underground and civil engineering: construction of communication lines; design 

of dams, reservoirs, canals, and harbours; shore protection. 
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IV. Prospecting and exploitation of mineral resources: geological survey; mining and 

exploitation; areas of landsliding and subsidence. 

At the reconnaissance stage, geomorphological mapping provides a rapid and cheap 

source of information which can save enormous resources. A considerable amount of 

land information can be obtained rapidly by air photo interpretation, preferably before 

and after fieldwork. Presently the trend is to produce simpler maps for both scientific 

and applied purposes. Nowadays the use ofGIS permits flexibility of map content and 

the production of more maps which last over a shorter period of time (Goudie et 

a/.,1990). 

3.5 The geomorphology of the northern coast of Malta 

3.5.1 Geomorphological mapping of the northern coast of Malta 

Geomorphological mapping IS an essential tool when studying landforms as it 

provides a basic knowledge of the features present in an area, together with their 

spatial distribution and relationship. This technique is ideal to determine the 

relationship between geological formations and landform types and processes 

(Enriquez-Reyes et al., 1990) and provides additional information to published 

topographic maps. 

A geomorphological survey was carried out for the northern shoreline of Malta, north 

of the Victoria Lines Fault from Fomm ir-Rih Bay on the western coast to Madliena 

on the eastern coast, covering a distance of about 56.5 km. The aims of this survey 

are several: 

1. to determine the association between geology and geomorphology; 

11. to highlight the spatial distribution of coastal features, especially landslides; 

111. to assess coastal slope instability and mass movement processes for the northern 

coast of Malta. 
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The Victoria Lines Fault crosses the island from Fomm ir-Rih Bay to Madliena and 

forms a fault scarp which is the most significant topographic feature of the island. 

North of this fault, the geological structure is dominated by the development of horst 

and graben blocks, bounded by ENE trending normal faults. Such structures are 

indicated by prominent ridges and valleys, the main units being from north to south: 

Marfa Ridge, Mellieha Valley, Mellieha Ridge, Mizieb Valley, Bajda Ridge, Pwales 

Valley, Wardija Ridge and Bingemma Valley (Figure 3.3). The survey was performed 

in this region because the structural setting and geological formations combined 

together present a very interesting and varied topography which is especially evident 

at the coastal zone. Elsewhere on mainland Malta, the topography and coastal 

features are presented in a less complex structural and geological setting and 

geomorphologically is not as interesting as the northern region. 

The initial part of the survey was a desk study using air photographs. This was 

mainly carried out because some of the terrain was difficult to access and imposed 

limitations on the geomorphological mapping. Besides such an exercise provided a 

more clear idea of the landforms present along the coast. The features were marked on 

topographic maps at a scale of 1: 1 0000. The exercise proved to be useful to get a 

first impression of the landscape for further research but left several queries which 

had to be spot checked during a boat survey. The latter followed the route from 

Qawra in Salina Bay (north-east coast) along the northern coast and finally the north­

west coast to Fomm ir-Rih Bay. Queries were checked and these were marked on the 

1: 10000 topographic sheets. A final geomorphological survey was undertaken, using 

standard geomorphological mapping symbols (Gardiner and Dackombe, 1983; Cooke 

and Doornkamp, 1990) for different landforms along the coast. A large part of the 

mapping was done from the top of the Upper Coralline Limestone plateau to get a 

general view of the landforms and because most of the coastal zone below the plateau 

is inaccessible due to the presence of landslides and rockfall. The Upper Coralline 

Limestone plateau was also used to demarcate the inland distance up to where the 

coastal features were mapped. Where this was absent on the north-east coast, the 

coastal road or buildings were utilised as the inland boundaries to geomorphological 

mappmg. 
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Two maps, scale 1: 10000 (Figures 3.5 and 3.6) were produced featuring the coastal 

landforms in Malta, north of the Victoria Lines Fault. Figure 3.5 covers a coastal 

stretch from Fomm ir-Rih Bay (marking the start of the Great Fault) to the northern 

littoral of Mellieha Bay. Figure 3.6 features the coast from the sandy beach of 

Mellieha Bay (the isthmus) to Madliena Tower where the Great Fault cuts on the 

north-east coast. Figure 3. 7 shows the location of the coastal stretch covered in 

Figures 3.5 and 3.6. Eleven different types of landforms were identified along the 

northern coast and mapped in Figures 3.5 and 3.6. These include: 

Cliff face ''''''' 

Translational slide 

Rotational slide 

Mudslide I Clay slope 

Rockfall 

Soil creep 

Rocky shoreline 

Rock shore platform 

Sand I Shingle 

Agriculture in use A 

Abandoned agriculture 
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Figure 3.7 Location of the coastal stretch covered in Figures 3.5 and 3.6 

All the formations of the geological succession of the Maltese Islands are present 

along the northern coast (Figure 3.8). Upper Coralline Limestone typically features 

plateaus, scarp faces, cliffs and rotational and translational landslides. These 

landforms are especially evident all along the north-west coast from Fomm ir-Rih Bay 

to Rdum il-Qawwi and Ta' Qassisu near Paradise Bay (Figure 3.5). Globigerina 

Limestone, being a softer formation, is easily eroded and produces characteristic 

smooth shore platforms with a gentle gradient (Figure 3.5). In some instances, such 

as at Blata 1-Bajda near St.Paul's Islands, in the proximity of Rdum 1-Abjad and close 

to Bahar ic-Caghaq, salt pans have been incised in the shore platforms for salt 

extraction (Figure 3.6). Lower Coralline Limestone features mainly a low rocky 

karstic shoreline (Figure 3.6). However at Qammieh where all the geological 

formations are present, and at Fomm ir-Rih Bay, Lower Coralline Limestone displays 

cliffs which plunge directly into the sea (Figure 3.5). Blue Clay differs from the other 

formations in that it is an unconsolidated material and exhibits itself as slopes, such as 

at Il-Pellegrin, Gnejna Bay, Ghajn Tuffieha Bay, Rdum id-Delli, Rdum il-Qammieh, 

Rdum il-Qawwi and Ta' Qassisu near Paradise Bay (Figure 3.5). Mass movements 
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characterising the coasts of northern Malta include landslides and rockfall. The 

former occurs in Upper Coralline Limestone and Blue Clay formations. whereas the 

latter takes place in the Upper Coralline Limestone Formation only. 

Figure 3.8 shows the relationship between geology and geomorphology at the coast, 

north of the Great Fault. Areas of mass movement or slope instability are evident 

where there are outcrops of Upper Coralline Limestone and Blue Clay. Faulting in 

the Upper Coralline Limestone plateau and basal undermining by Blue Clay cause 

blocks of rock to dislodge and fall producing rockfall and landslides. When heavy 

rainfall occurs, Blue Clay slopes can become unstable and mudslides develop. 

Instability is more widespread on the north-west coast where outcrops of Upper 

Coralline Limestone and Blue Clay are extensive. The north-east coast is more stable 

as the geological structure is mainly composed of Globigerina Limestone and Lower 

Coralline Limestone. The colours used in Figure 3.8 for the different geological 

layers are the same as those featured in the geological map of the Maltese Islands. 

Key 
N 

l 
D Upper Conlline Limestone 

Blue Clilly 

D Globi&erib.a Limestone 

0 

D Lower Cor-altirae Limestone 

Km 

~ Area_s of man movemP.at I 
slope instability 

Figure 3.8: Relationship between geology and geomorphology north of the Great Fault 
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Agriculture, both in use and abandoned is evident in some areas along the coast where 

large blocks have been dislodged from the scarp face on the underlying Blue Clay. 

This is characterised by small patches of soil surrounded by rubble walls and is 

sometimes terraced. Such a practice is typical of a semi-arid climate and characteristic 

of Mediterranean countries. Abandoned agriculture can be identified where rubble 

walls are not well maintained. Rubble walls help prevent soil erosion and delimit 

field boundaries. Large limestone blocks dislodged from the scarp face provide 

shelter from wind and an ideal location for agriculture. The clay being impermeable 

provides water for the crops. Abandoned agriculture can be identified at Mgiebah 

(north-east coast) (Figure 3.6) and at Fomrn ir-Rih Bay, Rdum 1-Imdawwar, Rdum il­

Qawwi and at the foot of plateau at Rdum il-Qammieh (north-west coast) (Figure 

3.5). Agriculture still in use is found in small patches at Rdum 1-Imdawwar 

(overlooking Gnejna Bay), Ras il-Wahx where trees (probably citrus fruits) are 

cultivated in patches of soil among landslides, at Rdum il-Qammieh close to shore 

platform, Rdum il-Qawwi, Ta' Qassisu and at Paradise Bay (Figure 3.5). Agricultural 

practice is very intensive in these areas and most of the work is performed manually 

due to the inaccessibility and complex conditions presented by the geomorphological 

setting. 

The resulting geomorphological maps (Figures 3.5 and 3.6) were used as the 

framework for additional fieldwork. Three coastal locations - Gnejna Bay, Ghajn 

Tuffieha Bay and Rdum id-Delli, were identified and selected on the basis of 

information presented on the maps. At these sites further geomorphological mapping 

at a larger scale (1:1000) (Figures 3.16, 3.18, 3.20), surveying and sample collection 

provided the necessary information for a more detailed investigation programme to be 

performed in terms of material testing and slope stability analysis. 

3.5.2 Coastal landforms north of the Victoria Lines Fault 

A range of coastal landforms, situated north of the Victoria Lines Fault, were 

identified and their spatial distribution determined during the geomorphological 

survey. Features evident along the northern coast include cliffs, rocky shoreline, rock 

shore platform and beaches. Other features, namely rotational and translational slides, 
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mudslides, rockfall, and soil creep were also identified. These landforms which have 

been formed as a result of mass movement processes are discussed in section 3.5.3. 

The north-west coast is bordered almost uninterrupted by an Upper Coralline 

Limestone plateau scarp face. This extends from Fomm ir-Rih Bay to Paradise Bay 

and is only broken at Gnejna Bay, Ghajn Tuffieha Bay and Ir-Ramla tal-Mixquqa 

(Figure 3.5). The height of cliffs ranges from 23 m at Il-Prajjet and reaches a 

maximum height of 129 m at Il-Qarnmieh. The plateau appears again at Rdum 1-

Ahmar on the eastern part of the northern coast, Rdum tal-Madonna and Rdum il­

Hmar facing the north-east coast. On the eastern coast the plateau is present only in 

three localities; Mgiebah, Rdum il-Bies and Rdum Irxaw (Figure 3.6). The Upper 

Coralline Limestone plateau is skirted by rotational and translational landslides, 

mudslides and rockfall all along the coast. In some places, such as Ras il-Pellegrin, 

Rdum Majesa, Ras in-Niexfa, Ras il-Qarnmieh and Ta' Qassisu (north-west coast), 

Rdum tal-Madonna, Dahlet ix-Xilep, Il-Marbat and Rdum il-Hmar (northern coast) 

and Mgiebah (north-east coast) the plateau is heavily faulted. Widening of the faults 

results in blocks being dislodged from the scarp face and the plateau retreating inland, 

although this is a slow process. 

Cliffs which plunge directly into the sea, where mass movement processes are all but 

absent, occur both in Lower Coralline Limestone and Upper Coralline Limestone 

formations. These include Fomm ir-Rih Bay (1.2 km), Il-Prajjet (1.1 km), Ic-Cumnija 

and Rdum il-Qarnmieh (1.3 km), Rdum 1-Ahmar (1.15 km) (Figure 3.5), Rdum il-Bies 

(0.33 km) and St.Paul's Islands (1.38 km) (Figure 3.6). The figures indicate the length 

of the coastal stretch covered by cliffs. Height of cliffs ranges from 15 m at Ic­

Cumnija to 61 m at Fomm ir-Rih Bay. 

A low rocky shoreline characterises the northern and north-east coasts and occurs in 

both types of Coralline Limestone formations. The Upper Coralline Limestone 

stretches from Marfa Point near Cirkewwa to Ahrax Point (6.5 km) (Figure 3.5), part 

of the northern and the southern littoral of Mellieha Bay (3.25 km), Ras il-Mignuna 

(close to Rdum il-Bies - 0.63 km) and Xernxija (0.70 km) (Figure 3.6). The Lower 

Coralline Limestone stretches from Bugibba to Il-Blata 1-Bajda (near Bahar ic-Caghaq 

Bay) and resumes at Madliena Tower (11.45 km) at the junction of the Great Fault of 
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the Victoria Lines on the north-east coast. Figures indicate the length of the rocky 

shoreline. The gradient of this type of shoreline varies from 4° (near White Tower in 

the north) to 18° near Ghajn Zejtuna at Mellieha Bay. Paskoff (1985) attributes 

chemical (corrosion) and biological weathering as the main processes operating on 

such coasts. Solution of the limestone by water has led to the formation of pools and 

lapies which result in a very irregular topography. This type of coast can also be 

considered as shore platform. However for the purposes of this study a distinction 

was made on the basis of the geological formation and the term shore platform was 

utilised in the case of Globigerina Limestone. 

Where Globigerina Limestone outcrops on the coast it displays itself as a smooth 

shore platform with a gentle gradient (2° to 3°). This is due to the fact that 

Globigerina Limestone is soft and erodes at a quicker rate than the Coralline 

Limestone. This type of shore platform is found at Gnejna Bay (0.55 km), Rdum il­

Qammieh (1.1 km), Qammieh Point (0.35 km) (Figure 3.5), Mgiebah (1.18 km), 

where part of the shore platform is submerged below sea-level and at the foot of the 

cliff on St.Paul's Islands (0.14 km) (Figure 3.6). The figures indicate the length ofthe 

Globigerina Limestone shore platform in different locations. Mechanical action of 

waves, mainly through hydraulic pressure, results in the formation of the shore 

platforms (Paskoff and Sanlaville, 1978). 

Beaches are uncommon in the Maltese Islands. They constitute only 2.4% of the 

coastline (Schembri, 1990) and consist of small sandy pockets. The longest stretch is 

found at Mellieha Bay on the north-east coast, which covers a distance of 0.8 km 

(Figure 3.6). Most of the sandy beaches are found in northern Malta. They include 

Paradise Bay, Cirkewwa, Ramla tal-Bir, Ramla tal-Qortin, Armier Bay, and Ramla 

tat-Torri (Figure 3.5). The coast is characterised by headlands which protrude 

adjacent to each other. Consequently the geomorphological setting might imply that 

the formation of sandy pockets is the result of erosional processes at headlands and 

transport and deposition of sediment by longshore drift at the bays. This assertion 

might be further strengthened by the fact that there exists no other source of sediment 

such as the location of valleys behind the bays. Sandy beaches found on the north­

west coast include Gnejna Bay, Ghajn Tuffieha Bay and Ramla tal-Mixquqa. Shingle 

pockets on the north-west coast are found at Fomm ir-Rih Bay and 11-Prajjet (Figure 
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3.5). On the north-east coasts, beaches and sandy pockets are present at Mellieha 

Bay, Mgiebah, Mistra Bay, Xemxija, Salina Bay, Bahar ic-Caghaq and Qalet Marku. 

Shingle pockets on the north-east coast are found at Irdum Irxaw, Mistra Bay and 

Bahar ic-Caghaq (Figure 3.6). 

The contrast of a high north-west coast and a shallow north-east coast can be 

explained by the presence of the Maghlaq Fault, oriented WNW-ESE on the south­

west littoral. This became active during the Upper Tortonian, and was responsible for 

the tilting of the island towards the north-east during the Quaternary to Recent period. 

3.5.3 Mass movement processes along the northern coast of Malta 

Mass movement is the downslope movement of soil or rock material under the 

influence of gravity without the assistance of moving water, ice or air (Selby, 1993). 

Over the years several classifications have been proposed to try and classify mass 

movement processes and landforms (for example Sharpe, 1938; Vames, 1958, 1978; 

Carson and Kirkby, 1972 and Hutchinson, 1988) on the basis of different criteria such 

as velocity and mechanism of movement, type of material and water content available 

in the material. Given the great diversity in terms of form, origin, movement and 

magnitude, no single classification is universally satisfactory, although one has to 

appreciate these attempts as they provide a valuable contribution to hillslope 

geomorphology. 

Mass movement processes along the coast of Malta, north of the Victoria Lines Fault, 

occur mostly on the north-west shoreline (Figure 3.8) and fall under three main 

categories: slides, falls and creep (Figures 3.5 and 3.6). Creep is the least significant 

process as it can be located only at one site. Slides and falls predominate the north­

west coast and occur at specific localities on the northern and north-east coasts. Three 

types of slides can be identified: translational slides, rotational slides and mudslides. 

The first two types occur in the Upper Coralline Limestone Formation, whereas 

mudslides develop in Blue Clay. Rockfall is also generated in the Upper Coralline 

Limestone Formation and varies in magnitude from debris to boulder scree and large 

blocks. 
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Landslides occur mainly as a result of shear failure at the boundaries of the moving 

mass (Brunsden, 1971 in Gardiner and Dackombe, 1983) and include both sliding and 

flowing motions. Landslides are characterised by movement above a sharply defined 

shear plane, which follows a structural plane such as a plane of foliation or bedding 

(Selby, 1993). Both translational and rotational slides are triggered by a temporary 

excess of shear stress over shear strength within the slope. There are many factors 

which cause such events. These include alternate wetting and drying, clay mineral 

swelling, deep weathering, after snowmelt or prolonged and intense rainfall 

(Trenhaile, 1997). Deep-seated events such as rotational slides can be triggered by 

groundwater build-up and basal undercutting. 

3.5.3.1 Translational slides 

Translational slides move downslope along a more or less planar surface on shallow 

shear planes which are roughly parallel to the ground surface (Cooke and Doornkamp, 

1990) (Figure 3.9). Translational slides include rock slides, block slides and debris 

slides and can be used as a universal term to cover lateral spreads as well 

(Hutchinson, 1968 in Cooke and Doornkamp, 1990). The upper surface of a 

translational slide does not tilt during displacement. This type of landslide can 

develop in both lithified rock such as limestones, as is the case in Malta, and more 

clayey materials (Allison, 1992). In limestone, jointing is the main cause which 

dislodges blocks of material, causing them to slide on discontinuity surfaces such as 

bedding planes. In poorly lithified material, translational slides are usually associated 

with weathering. Trenhaile (1997) mentions several factors which can cause 

translational sliding. They include seaward-dipping rocks, alterations of permeable 

and impermeable strata, massive rocks overlying incompetent materials, or 

argillaceous and other easily sheared rocks with low bearing strength. Translational 

landslides can move across low gradients when the slide is joint bounded at the sides 

and displacements involve linear motion. 

Along the Maltese littoral translational slides have developed in several localities 

(Plate 3 .16). The landslides are usually shallow and in most cases there is a 

displacement from the in situ material to several metres downslope and even 

extending to the shoreline. The landslides vary in length from 4 m (Ta' Qassisu and 
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Figure 3.9: Characteristics of translational slides 
Source: Allison, 1992 

Ras il-Wahx) to 40 m (11-Marbat), with an average length between 10 m to 15 m, and 

are located in close proximity to rotational slides or else surrounded by rockfall. 

Translational slides can be found at Fomm ir-Rih Bay, Ras il-Pellegrin, Ras il-Wahx, 

Rdum Majesa (Plate 3.16), Rdum id-Delli, Ras in-Niexfa, Rdum il-Qawwi, Ta' 

Qassisu (north-west coast), Il-Marbat (northern coast) and Mgiebah (north-east coast) 

(Figures 3.5 and 3.6). Sometimes during movement the translational slide can break 

up and become incorporated in other types of slides such as mudslides and mudflows 

or rockfall. This is evident along the coast in Malta where the slide is fragmented and 

is incorporated within the rockfall at Rdum il-Qawwi and Il-Marbat. 

3.5.3.2 Rotational slides 

Rotational slides involve a rotational movement on the slip surface parallel to the 

slope that often leaves an upper surface, on the failed mass, tilted back into the 

hillside (Cooke and Doornkamp, 1990) (Figure 3.1 0). They occur with a concave­

upwards curved shear plane - the rupture surface - and are common where slopes 

consist of thick homogeneous materials such as clay or shale, although they also 

develop in more competent rock such as limestone. Rotational slides are more deep­

seated than translational slides. Very often the shape of the slip surface is influenced 

by faults, joints and bedding. When a rotational slide is detached it supports the 

ground behind it. As movement increases, the ground will become unsupported and a 

81 



new failure might occur (Richards and Lorriman, 1987 in Allison, 1992). This results 

in rotational slides developing in multiple succession one behind the other. Rotational 

slides are often found in active eroding cliffs. 

Figure 3.10: Characteristics of rotational slides 
Source: Selby, 1993 

In Malta, rotational slides occur in the Upper Coralline Limestone Formation and are 

situated just below the in situ material from where they have been detached (Plate 

3.17). Only in the case of multiple en echelon failures, do the slides extend from the 

base of the Upper Coralline Limestone plateau to sea-level. Rotational slides (like 

translational slides) are more common on the north-west coast, where they are found 

at Fomm ir-Rih Bay, Ras il-Pellegrin, 11-Qarraba, Ras il-Wahx, Rdum id-Delli, Ras 

in-Niexfa, Rdum il-Qawwi and Ta' Qassisu (Figure 3.5). On the north-east coast, this 

type of landslide occurs only at Mgiebah (Figure 3.6). The size of rotational slides 

varies in length from 4 m to 6 m at Ras il-Wahx and Rdum id-Delli to 25 m at Ta' 

Qassisu and Rdum il-Qawwi. Multiple rotational slides invariably occur at headlands 

namely 11-Qarraba, Ras il-Wahx, Ras in-Niexfa and Ta' Qassisu. Ras il-Wahx (Plate 

3.18) provides definitely the best example of this type of event, as it features a 

complex structure of rotational slides occurring in multiple succession covering an 

area of about 400m2
• 
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3.5.3.3 Mudslides 

The other type of sliding movement present along the northern coast in Malta is 

mudslides, evident where clay slopes are located. Mudslides can be defined as a form 

of mass movement in which softened clay, silt or very fine sand debris advances 

chiefly by sliding on discrete boundary shear surfaces in relatively slow moving, 

lobate or elongate forms (Hutchinson and Bhandari, 1971 in Allison, 1992). A 

mudslide consists of three morphological zones: the head ward feeder, main track and 

toe lobe (Allison and Brunsden, 1990) (Figure 3.11). 

The headward feeder or bowl (Figure 3.11) forms the main area of supply and is 

found at the rear of the slope. It marks the interface between stable and unstable 

ground and is usually backed by a cliff. In the case of Malta this is the Upper 

Coralline Limestone plateau. Material is supplied by a combination of falls, 

weathering and erosional processes. Instability causes the debris to spread from the 

headward feeder to the lower parts of the system. Soil moisture and pore water 

pressure are very irregularly distributed (Allison, 1992). 

The main track is generally steep and straight and forms the central part of the 

mudslide (Figure 3.11). It functions as a zone of transport for material moving from 

the crest to the toe of the slope. The slip surface at the base of the track is parallel to 

the ground surface. In the track the debris is fragmented and soft. Short tracks result 

in lobate mudslides (less than 20 m wide and 1 m to 5 m deep). These are a common 

feature along coastal cliffs in Malta. Longer tracks produce more sinuous forms and 

are less common in coastal areas. The main track is defined by lateral shears. 

Pressure ridges, tension cracks and curved Riedel shears frequently develop at the 

edges of the moving mass (Allison, 1992). 

The toe lobe or accumulation zone (Figure 3.11) consists of two components: the 

upper flatter area with a slope gradient between 1 o and 5° and a convex downslope 

end with angles between 15° and 25°. This zone is characterised by a sharp basal 

shear surface (Brunsden, 1984 in Allison, 1992). At the coast the toe lobe can be cut 

by the sea. The leading edge is often surrounded by boulder arcs, which mark 
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previous extents of the mudslide. The accumulation zone usually supports the debris 

in the track. 

Clays being more cohesive tend to move in less distorted units than cohesionless 

material. The trigger mechanism for movement in unconsolidated materials is usually 

rainfall creating high pore water pressures. When distortion takes place, movement 

may include flow as well as sliding. Distinction between slide and flow is not always 

clear and many slope failures involve both movements. Generally mudslides move in 

the form of plug flow (Johnson, 1970 in Allison, 1992). In this type of movement an 

edge or bottom layer of variable thickness is deformed by internal changes. A central 

plug is enclosed and acts as a rigid sliding body. Movement can also be parabolic and 

is associated with flow caused by continuous internal deformation. In very wet 

conditions, when the Liquid Limit is exceeded, debris and unconsolidated material 

will move as flow. Mudflows are rapid failures common in arid and semi-arid regions 

where infrequent rainfall events trigger the high runoff typical of these dry, poorly 

vegetated regions and the material becomes saturated. Increased moisture results in 

decreased shear strength and the wet mass flows rapidly down the channel (West, 

1995). 

Mudslides in Malta occur where Blue Clay outcrops. At the coastal zone this 

geological formation features slopes which usually extend from the base of the Upper 

Coralline Limestone plateau to sea-level. The best examples of clay slopes are found 

at Gnejna Bay (Plates 3.19 and 3.20) and Il-Qarraba. Blue Clay is exposed in most of 

the localities on the north-west coast, such as Fomm ir-Rih Bay, Ras il-Pellegrin, 

Ghajn Tuffieha Bay, Ras il-Wahx, Rdum Majesa, Rdum id-Delli, Ras in-Niexfa, 

Rdum il-Qammieh, Rdum il-Qawwi and Paradise Bay (Figure 3.5). On the northern 

and north-east coasts Blue Clay is found in only four localities: Rdum il-Hmar and 

Ta' 1-Imgharrqa (northern coast) (Figure 3.5), Mgiebah and Rdum Irxaw (north-east 

coast) (Figure 3.6). 

Mudslides become active when clay contains a high water content. This type of mass 

movement is triggered after heavy and prolonged rainfall events, which frequently 

occur during the period October/November until February/March in Malta. After the 

summer drought, which lasts from May up till October, Blue Clay loses most of its 
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moisture and will become very dry. The first rains saturate the clay and fill tension 

and desiccation cracks with water. The latter develop during the summer months as a 

result of drying and the associated reduction in volume of the clay. At this stage the 

Blue Clay would be in a position to absorb water quickly. After prolonged rainfall, 

the clay becomes fully saturated and starts moving as mudslides or mudflows if the 

water content is very high. Since most of the mudslides on mainland Malta are found 

at the coast, damage is limited to the destruction of some boathouses which are used 

to provide shelter for boats especially during the winter months. 

3.5.3.4 Rockfall 

Rockfall is the downward motion of rock through air due to gravity. This process 

occurs where a steeply sloping rock-face consists of well-jointed rock (Figure 3.12). 

Material is detached along lines of structural weakness such as bedding planes and 

joints. This type of mass movement tends to be generated in three stages (Cooke and 

Doornkamp, 1990). 

1. Creation of cracks. 

11. Enlargement of cracks as a result of pressures related to water freezing, growth of 

plant roots or as a result of gravity. 

111. Fall takes place because support has been removed from the base of the rock by 

several agents such as erosion by glaciers, the sea or rivers, as a consequence of 

differential weathering or human interference. 

Figure 3.12: The process of rockfall 
Source: Selby, 1993 
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Rock detachment can also be caused from a change in the stress distribution within 

the rock mass, which results from weathering or changes in the pore water pressure 

within the fissures (Allison, 1992). At first the falling debris moves by sliding but 

afterwards it becomes detached from the in situ material. Usually blocks break up 

upon impact with the ground and sometimes during movement. Rockfall includes 

blocks of different sizes which come to rest below the place where they were 

detached, usually as scree at the base of the cliff. They can later move downslope 

especially along coastal areas. Sometimes debris becomes incorporated within a 

moving mass such as a mudslide or mudflow. 

In Malta, rockfall can be considered as the most important mass movement process 

along the northern coast. The process is found extensively on the north-west coast 

and at specific localities on the north and north-east coasts (Figures 3.5 and 3.6). 

Rockfall bounds all the north-west littoral and is interrupted only where beaches, 

shore platforms, plunging cliffs and rocky shores are located. Blocks of rock are 

detached from the Upper Coralline Limestone plateau and either rest below or move 

away from the in situ material (Plate 3.21). The process can be attributed to several 

factors. 

i. A response to gravity stresses. 

ii. Basal undermining caused by Blue Clay. 

iii. Widening of joints or other lines of weakness as a result of erosional and 

weathering processes. 

iv. Tectonic activity. 

Whalley (1984 in Allison, 1992) has proposed a classification based on the volume of 

material, rather than the type of process involved. Three categories were put forward: 

debris falls where movement is less than 10 m3
, boulder falls involve a displacement 

between 10 m3 to 100 m3 and blockfalls where the process covers more than 100 m3 of 

material. Applying this classification within a local context, rockfall in Malta can be 

classified under two categories: debris falls and boulder falls. Boulder falls involve 

blocks varying in size between 10 m to 30 m in length. These are characteristic 

features of several localities such as Rdum Majesa, Rdum il-Qawwi, Ta' Qassisu and 

Rdum Irxaw (Figures 3.5 and 3.6). Debris falls can result from the fragmentation of 
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boulders as a result of weathering and are very often found close to the larger blocks 

(for example at Ras in-Niexfa, Rdum tal-Madonna, Rdum il-Hmar and Mgiebah) or 

else incorporated in mudslides (Ras il-Pellegrin and Rdum id-Delli). 

Slab failures occur at the top of cliffs where tension joints may be seen extending 

parallel to the cliff face (Figure 3.13). With time the cracks will extend vertically and 

sideways extending the slab and widening it, until the tensile strength of the 'rock is 

exceeded and a fall occurs. Extension of the cracks occurs with the aid of water 

seepage, debris falling into the crack and ice. This type of failure frequently leaves 

overhanging 'roofs' of rock above the scar from which they have fallen and further 

slab failure may develop. Along the Maltese littoral, at several places, the Upper 

Coralline Limestone plateau exhibits faults or cracks which are parallel to the scarp 

face resulting in slab failure. The failure can be identified by a large block which has 

been detached from the plateau and rests parallel to the scarp face. The latter can be 

identified at Ras il-Pellegrin, Rdum Majesa, Ta' Qassisu, Rdum tal-Madonna, Dahlet 

ix-Xilep and Rdum il-Hmar (Figure 3.5). Wedge and toppling failures are absent 

along the northern littoral in Malta, as failure tends to occur along a set of 

discontinuities trending in the same direction. Besides there is no indication of a 

forward rotational movement as the rock falls. This causes overturning of columns 

and occurs where joints are vertically extensive in relation to their width. 

Figure 3.13: Slab failure 
Source: Selby, 1993 
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3.5.3.5 Soil creep 

Soil creep is the least significant mass movement process observed in northern Malta. 

The process can be defined as the slow downslope movement of superficial soil or 

rock debris which is usually imperceptible except to observations of long duration 

(Selby, 1993) (Figure 3.14). Four main mechanisms are responsible for generating 

this movement: pure shear, viscous laminar flow, expansion and contraction and 

particulate diffusion (Donohue, 1986 in Selby, 1993). Movement is by quasi-viscous 

flow, occurring under shear stresses sufficient to produce permanent deformation, but 

too small to result in a discrete failure surface such as landslide (Rahn, 1996). Creep 

occurs at very slow rates - 1 mm to 1 0 m per year (Summerfield, 1991) and is 

especially active where weakly competent materials (such as clay) are overlain by 

more competent beds. Movement is irregular in both direction and rate and this 

process is often a precursor of landslides. However other causes can be observed 

which include cambering, downslope curvature of strata near the surface, bending of 

the lower parts of tree trunks, cracks in the soil and tilting of structures (Summerfield, 

1991; Selby, 1993). Terracettes are perhaps the main surface features attributed to 

soil creep. 

Figure 3.14: Characteristics of soil creep 
Source: West, 1995 
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Along the northern coast of Malta, soil creep can only be identified at Rdum id-Delli 

(Figure 3.5) where it is the main process operating within a Quaternary solution 

subsidence structure. The latter features a karstic landform of a concave aspect, 

characterised by bare patches of soil and some steppic vegetation. Soil creep can 

develop in response to stress generated by the weight of Upper Coralline Limestone 

overlying the soil underneath. Elsewhere this mass movement can be present 

occurring in very localised areas and at very slow rates. 

3.6 Field investigation of three coastal sites 

The geomotphological maps (Figures 3.5 and 3.6) provided a good basis to locate 

three 'type sites' where detailed field investigation could be undertaken. This was 

possible as the maps featured the spatial distribution of different coastallandforms in 

northern Malta. In addition to the above, the geomorphological maps formed the 

basis of three supplementary elements of this study. 

1. Detailed site specific geomorphological mapping of the 'type sites' at a scale 1: 

2000. 

n. Field sample collection for laboratory testing to determine the physical and 

geotechnical properties of Blue Clay. 

iii. Selecting slope profiles for detailed survey as the basis for slope stability 

modelling. 

The three selected sites are Gnejna Bay, Ghajn Tuffieha Bay and Rdum id-Delli, all 

located on the north-west coast (Figure 3.15 and Plates 3.22, 3.23, 3.24 and 3.25). 

These coastal sites were chosen as they provide the best examples of Blue Clay 

outcrop at the coast which displays itself as slopes extending from the Upper 

Coralline Limestone plateau to sea-level. The sites were also chosen on the basis of 

their accessibility where fieldwork could be carried out without particular difficulties; 

The first task was to map the landforms and processes present at each locality. The 

exercise for each site extended on several days as the geomorphological mapping was 
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carried out at a large scale 1: 1000. The scale was chosen as it allows the production 

of a <;tetailed map. The geomorphological map produced for each site (Figures 3.16, 

3.18 and 3 .20) are presented at a smaller scale 1: 2000 for practical reasons. 

I - Gnejna Bay 

2 - Ghajn Tuffieha Bay 

3 - Rdum id-Delli 

N 

~ ) 

0 2.5 5 

Km if 
Figure 3.15: Location of the three field sites 

The following is a list of the symbols utilised for geomorphological mapping, based 

on standard typology (see for example Gardiner and Dackombe, 1983; Cooke and 

Doornkamp, 1990). 
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Active gully <,<,<,<,C,<,<, 

Seepage line 

Rubble wall 
RW 

Vegetation 

Quaternary solution subsidence structure Q 

Surveyed slope transect 

Following large scale geomorphological mapping, a slope profile was identified at 

each site to conduct a more detailed study first by surveying and then by collecting 

samples for laboratory analysis. Each transect was chosen on the basis that it 

extended over a long distance from the base of the Upper Coralline Limestone plateau 

to sea-level. Another criterion taken into consideration when choosing the slope was 

that the lateral shears could be identified, thus the feature could be clearly defmed and 

its boundaries distinguished. At each of the three sites the selected transect was 

surveyed using a Leica TC600 total station laser level and a cross-section plan (scale 

1: 750 for Gnejna Bay, scale 1: 1000 for Ghajn Tuffieha Bay and scale 1: 500 for 

Rdum id-Delli) was drawn. The chosen transects are marked on the geomorphological 

maps (Figures 3.16, 3.18 and 3.20) and in the insets of the cross-section plans 

(Figures 3.17, 3.19 and 3.21). Measurements were recorded where there was a 

change in the topography along the transect. Data collected included height above 

sea-level and horizontal distance from sea-level. Slope gradients were calculated from 

the readings using the tangent computation. During the recording of data on the field 

a datum level was given for each site (30 m for Gnejna Bay, 110 m for Ghajn 

Tuffieha Bay and 160 m for Rdum id-Delli). The data regarding the height above sea­

level was then reduced from the datum to obtain the actual field measurements. This 

exercise was undertaken so that the data of the three transects can be used to run a 

computer modelling software (XSTABL) to assess slope stability at each of the three 

sites. 
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3.6.1 Gnejna Bay 

Gnejna Bay is situated on the north-west coast of Malta between Rdum 1-Imdawwar 

and 11-Qarraba (Figure 3.15 and Plates 3.22 and 3.23). Three geological formations 

are present in the area under study. 

i. Upper Coralline Limestone: this constitutes the plateau and is made up of two 

members. The top layer belongs to Tal-Pitkal Member, whereas the basal layer 

consists of the Mtarfa Member. 

ii. Blue Clay: this formation is found extensively and is featured as slopes which 

extend from the base of the Upper Coralline Limestone plateau to sea-level. 

iii. Globigerina Limestone: Upper Globigerina Limestone outcrops at the shoreline 

below the clay slopes as a shore platform and cliff. 

Gnejna Bay is characterised by scree slopes on both sides of the Bay. Scree slopes 

occur when Upper Coralline Limestone boulders which have been dislodged from the 

plateau, fall on the underlying Blue Clay slopes. The feature results either from 

erosion by wind and water acting along lines of structural weakness or by tectonic 

movements (Schembri, 1993). The steepest slopes, close to 11-Qarraba, are 

completely bare or have little vegetation cover eo· to 10 per cent). The rest of the 

slopes are covered by steppic vegetation such as Esparto Grass (Lygeum spartum). A 

distinct patch of the Great Reed (Arundo donax) covering an area of about 217.5 m2 is 

found below the landslides. This species reaches a height of over 4 m and grows 

along watercourses and in areas where there is underground water (Lanfranco, 1996). 

The area under study (Figure 3.16) is situated close to 11-Qarraba and stretches over a 

coastal length of 0.56 km. It is delimited by 11-Qarraba on the northern side and a 

distinct patch of reeds on the southern side. The area is characterised by. an Upper 

Coralline Limestone plateau, beneath which clay slopes are found extending from the 

base of the plateau to sea-level. The plateau ranges in height from about 3 m close to 

11-Qarraba, to 11 m close to the patch of reeds. Globigerina Limestone is exposed at 

sea-level below the slopes featuring a shore platform and a small cliff. The width of 

the area from the base of the plateau to sea-level varies from about 125 m to 200 m, 

widening at the area close to the reeds. 
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Plate 3.22: Clay slopes examined at Gnejna Bay, close to 11-Qarraba. In this section the clay slopes are almost completely bare of vegetation cover due to a steep 
gradient. Above the clay slopes the Upper Coralline Limestone plateau is evident. The vegetated clay slopes featured in the background on the left, are found at 
Ghajn Tuffieha Bay, whereas in the foreground part of 11-Qarraba is visible. A small sandy pocket and Globigerina Limestone shore platform are seen at the foot 
of the clay slopes. The shore platform closest to the sandy pocket marks the northern limit of the area under study. 
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Plate 3.23: Clay slopes examined at Gnejna Bay, close to the reeds. Slopes in this section are vegetated since the gradient is not so steep. The Upper Coralline 
Limestone plateau and scarp face are visible in the background, whereas the Globigerina Limestone cliff and shore platform are seen in the foreground. The reeds 
at the lower right side mark the southern limit of the area under study. 
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-.) Figure 3.16: Geomorphological map ofGnejna Bay 
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The area can be divided into two parts. The first part close to 11-Qarraba is 

characterised by well-defined clay slopes extending from the foot of the plateau to the 

Globigerina Limestone shore platform or cliff below (Plate 3.22), covering a distance 

between 60 m to 95 m. These have a convex aspect and a steep slope gradient 

varying from 23° to 33°. The latter are separated by other slopes of a concave aspect 

ranging from 17° to 32° in gradient (Figure 3.16). A Globigerina Limestone shore 

platform, 0.34 km long and a cliff, 0.11 km long are found at the base of the clay 

slopes. The platform is very irregular in shape. At its narrowest point it measures 10 

m in width, whereas its maximum width is about 4 7 m. Overall the platform has a 

gentle gradient ranging between 2° to 13° but this steepens in one part to 23°. The 

Globigerina Limestone cliff (5 m to 10 m high) extends from one end of the shore 

platforin along the shore beneath the clay slopes (Figure 3.16). 

The second part, closer to the patch of reeds, is characterised by a series of smaller 

slopes extending from the base of the plateau to about 80 m downslope (Plate 3.23). 

A second set of slopes extend from this point towards sea-level, stretching over a 

distance between 60 m to 80 m. Generally the slopes have a convex aspect with a 

gradient ranging from 11 o to 30° (Figure 3.16). The latter are separated by concave 

slopes at the base of the plateau, having a gradient which ranges from 17° to 24°. 

Another concave slope is also found at one point extending from about 79 m from the 

base of the Upper Coralline Limestone plateau to sea-level with a gradient varying 

between 19° and 20° (Figure 3.16). In some cases the change in topography of the 

slopes is angular and abrupt getting steeper towards the lower end whereas in the 

other cases the change is smoother and gentler. The convex slope situated near to the 

rotational landslides changes its gradient from 12° to 18° at the top part and 22° to 29° 

at the lower part. The change in slope is generally smooth, although at one side close 

to the landslides the change is angular above which a flat area of 2° is found. Close to 

the patch of reeds three levels of slopes are found separated by gentle slopes ( 6° to 7°) 

of a rectilinear aspect. Globigerina Limestone is exposed at sea-level featuring a cliff 

about 17 m long and a small shore platform covered by boulders. 

The main geomorphological processes present in the area under study include 

mudslides, rotational and translational slides and rockfall (Figure 3.16). During 

mapping there was no indication of mudslides taking place but heavy rainfall can 
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trigger the clay to become plastic when wet, initiating a sliding process. Mudslides in 

the area can be common during the winter months when heavy rainfall occurs and the 

clay becomes softer, causing instability of the Blue Clay slopes. 

Landslides are found at the foot of the plateau above the reeds (Figure 3.16). They 

are of two types: rotational and translational. Rotational slides are more common and 

seem to have occurred in multiple succession. The blocks are about 4 m to 5 m high 

and between 1 7.5 m to 40 m wide. They have been cut off from the scarp face and 

slided down, rotating and tilting inwards during the process. The translational 

landslide at Gnejna Bay measures about 12.5 m wide and 4 m high and is found 

below the rotational slides. 

Rockfall is another process which is present at Gnejna Bay. This is mainly found at 

the foot of the Upper Coralline Limestone scarp face, close to 11-Qarraba around the 

landslides where the concave gradient is 19° and along the coast (Figure 3.16). The 

boulders are smaller in size than the landslides. Their dimensions are about 2 m to 3 

m in width and height. Rockfall involves detachment of the rock from the scarp face 

but the movement involves falling under gravity rather than sliding. Some boulders 

move for a long distance and are found along the shoreline, protecting the coast from 

erosion. 

Desiccation cracks are present in several locations on the edges and sides of clay 

slopes at Gnejna Bay. They develop as a result of clay losing moisture and changing 

in volume. Their dimensions vary both in width and depth. Close to 11-Qarraba they 

are about 10 cm wide and vary from 27 cm to 40 cm in depth. Above the shore 

platform they are about 10 cm wide and 30 cm deep. At the central part the 

dimensions vary from 7 cm to 20 cm in width and 26 cm to 46 cm in depth. Near the 

reeds, desiccation cracks are about 12 cm wide and 23 cm deep. 

The hydrological pattern at Gnejna Bay is indicated by a system of gullies, generally 

situated at the lateral limits ofthe clay slopes (Figure 3.16). The area is well drained 

and gullies are distributed extensively. Two types of gullies have been distinguished: 

active and stable. Active gullies refer to gullies which have started to form and are 

still being eroded by the action of water. This type of gullies have shallow water 
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channels which change their direction according to the movement of water. Stable 

gullies are well developed gullies with permanently established water channels. They 

are deeper than the active gullies due to erosion caused by water running along the 

same channel over a long period of time. Gullies are mainly of the stable type and 

extend all along the lateral limit of the clay slopes from the base of the plateau 

towards the shore at sea-level. A complex pattern of active gullies is present on one 

particular clay slope at the base of the plateau, extending to about 80 m downslope. 

At Gnejna Bay, gullies range in size. Close to Il-Qarraba, the dimensions. are about 

55 cm in width and 30 cm in depth. On the clay slopes, above the shore platform, 

gullies range between 90 cm to 94 cm in width and 30 cm to 50 cm in depth. 

Towards the reeds, gullies are between 55 cm to 60 cm wide and 30 cm to 45 cm 

deep. Along the area covered by the reeds, water is present all year round. This is 

indicated by a water seepage line on Figure 3 .16. Reeds in fact are a good indicator 

of the presence ofwater, made available by the impermeable property ofBlue Clay. 

A slope transect was selected for surveying after the geomorphological mapping was 

performed. The selected slope at Gnejna Bay is situated above the Globigerina 

Limestone cliff, as marked in Figure 3.16. This was chosen as it extends over a long 

distance and it can be easily recognised from the mapping as an individual landform. 

Data collected for the slope transect at Gnejna Bay is given in Table 3.1. Figure 3.17 

is a cross-section plan (scale 1: 750) of the surveyed slope. The overall horizontal 

distance from sea-level to the scarp base extends to 132.77 m and the,vertical height 

above sea-level at the highest point is 71.68 m. The slope gradients for different 

segments varied from 12.15° close to sea-level to 38.35° at the top part of the slope. 
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Table 3.1: Surveying data for the selected slope transect at Gnejna Bay 

B 7.87 12.14 30.42 

c 15.21 16.45 12.15 

D 29.33 19.49 22.82 

E 37.91 23.10 17.43 

F 47.91 26.24 25.76 

G 56.80 30.53 17.75 

H 71.23 35.15 35.98 

I 79.73 41.32 22.12 

J 92.72 46.60 32.21 

K 100.88 51.74 25.27 

L 112.91 57.42 37.04 

M 119.47 62.37 38.35 

N 126.32 67.79 31 .09 

0 132.77 71.68 

l' 
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3.6.2 Ghajn Tuffieha Bay 

Ghajn Tuffieha Bay is located on the north-west coast of Malta between Gnejna Bay 

and Ir-Ramla tal-Mixquqa (Figure 3.15 and Plate 3.24). The geology is made up of 

the following formations. 

i. Upper Coralline Limestone: two members of the Upper Coralline Limestone 

Formation constitute a small ridge - 11-Hotba 1-Bajda. These include the Mtarfa 

Member and Ghajn Melel Member. Another Upper Coralline Limestone plateau 

extending into Gnejna Bay is made up of Mtarfa Member (basal layer) and Tal­

Pitkal Member (top layer). 

ii. Blue Clay: 11-Hotba 1-Bajda is completely surrounded by Blue Clay, which is 

widely exposed as slopes. 

Ghajn Tuffieha Bay is delimited by scree slopes on both sides of the Bay: 11-Qarraba 

on the southern side which features clay slopes, rockfall and landslides and the 

northern side which is composed of rockfall backed by an Upper Coralline Limestone 

plateau. 

The Bay is a popular locality both with tourists and locals. In February 1995, the 

Planning Authority designated Ghajn Tuffieha Bay as an area of ecological 

importance and a protected site in terms of Section 46 of the Development Planning 

Act, 1992. It was proposed to turn Ghajn Tuffieha Bay and its surroundings into an 

"environmental park" managed by a Non-Governmental Organisation. The whole 

Bay including the clay slopes, the two peninsulas at either side and the beach, were 

designated as "Areas of Ecological Importance" by the Planning Authority in line 

with the policies of the Structure Plan on rural conservation. 

Four levels of protection and conservation priorities have been assigned to the Bay: 

Level 1 being the highest level of conservation and protection. 11-Qarraba is given the 

highest level of protection. No physical development is allowed and human influences 

are to be kept to the barest minimum. The Blue Clay slopes backing the beach and 

part of the scree slopes at the northern part of the Bay were assigned Level 2. Human 

influence is here strictly controlled. . The beach and the cliff face of the Upper 
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Plate 3.24: An aerial view of Ghajn Tuffieha Bay. The clay slopes extend from the back of the sandy beach to the base of the Upper Coralline Limestone plateau. 
The sandy beach stretches along the whole length of the Bay. Ghajn Tuffieha Bay has been designated as an area of ecological importance by the Planning 
Authority in 1995 and is a protected site by law. The Bay is at present managed by the GAlA Foundation, a Non-Governmental Organisation which was 
responsible for a recent afforestation project. 



Coralline Limestone plateau have been marked Level 3 of protection hindering any 

residential, industrial, commercial and touristic development. Level 4 has been 

assigned to the area below a demolished hotel which consists of rubble, boulder scree 

and clay slopes. Today this Bay is managed by the Gaia Foundation which is an Non­

Governmental Organisation dedicated to the protection and understanding of the 

environment. 

Vegetation covers the whole bay and includes various species of maquis and steppe 

communities. About 40 per cent of Ghajn Tuffieha Bay is covered by maquis 

vegetation, mainly tamarisk (Tamarix africana) and acacia trees (Acacia 

cyanophylla). Steppic vegetation is dominated by Esparto Grass (Lygeum spartum). 

A small patch of the Great Reed (Arundo donax) is present at the foot of the plateau at 

the southern end of the Bay overlooking Gnejna Bay. The area covered by vegetation 

has increased due to a recent afforestation project undertaken by the Gaia Foundation. 

The area under study, excluding the two headlands on either side of the Bay (Figure 

3.18) is about 0.52 km long, along the central footpath and varies from 170 m to 220 

m in width. The Bay is widest at its central part and narrows towards both ends. 

Ghajn Tuffieha Bay is mainly composed of Blue Clay slopes both of a convex and 

concave aspect with a gradient which varies widely. The slopes are backed by two 

Upper Coralline Limestone plateaux: 11-Hotba 1-Bajda which is a small ridge (3 m to 

5 m high) and the other plateau extending to Gnejna Bay which is also 3 m to 5 m 

high. A sandy beach runs along the whole length of the Bay for about 0.32 km having 

a slight gradient (3°) which steepens towards the centre of the Bay and 11-Qarraba (6° 

to 8°) where the beach also becomes narrower. The width of the beach varies 

between 25 m at the northern side to 6 m close to 11-Qarraba. A central footpath 

stretches the whole length of the Bay, separating the upper clay slopes which extend 

up to the scarp face from the lower slopes at the back of the beach. · 

It is convenient to divide the Bay into two distinct parts, so that the landforrns can be 

described in a more logical manner. The southern part of the Bay extends from the 

slopes joining 11-Qarraba to the mainland up to approximately the central part of the 

Bay characterised by maquis vegetation. The northern part extends from the maquis 

vegetation to the clay slopes under the demolished hotel close to the stairway leading 

to the beach (Figure 3.18). 
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Figure 3.18: Geomorphological map of Ghajn Tuffieha Bay 
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The southern part of Ghajn Tuffieha Bay presents several features. Most of it, 

especially the central part and the slopes close to the central footpath are covered with 

maquis vegetation. The upper slopes above the footpath are mainly of a convex 

aspect with a gradient varying between 14 o to 26°. The convex slopes have a smooth 

gradient change and are separated by concave slopes between 20° to 27° steep. 

Beneath the boulder scree, an area having a slight gradient of 3 ° to 4 ° is found in two 

levels. Close to the central footpath where the area is not covered by vegetation two 

slopes of a convex aspect (16° to 23°) are exposed. The slopes are characterised by a 

flat upper part (5° to 6°) and a smooth change of gradient. Towards the edge of the 

clay slopes overlooking Gnejna Bay and linking Il-Qarraba to the mainland, the 

topography is dominated by convex slopes (23 o to 24 °) and a concave slope (21 °) at 

the foot of which is a flat area with a gentle gradient of 4° (Figure 3.18). 

At the southern part of Ghajn Tuffieha Bay, the beach is backed by clay slopes which 

extend to the central footpath. Two levels of slopes can be distinguished. Those 

stretching from the central footpath to the lower footpath and those extending from 

the lower footpath to the beach. The former are mainly convex in morphology (9° to 

10°) wh~ch steepen towards Il-Qarraba (12° to 24°). Two concave slopes (20° to 22°) 

are situated at the southemmost edge of the Bay, overlooking Gnejna Bay. A large 

area is covered by maquis vegetation. This is bordered at its southern side by an area 

having a gentle gradient of 7° with a rectilinear aspect. The second level of slopes is 

characterised by steep concave slopes (27° to 31 °) which descend directly on to the 

sandy beach. The change in slope gradient ,between the two levels is angular (Figure 

3.18). 

The northern part of Ghajn Tuffieha Bay is also covered to a significant extent by 

vegetation. Slopes are mainly convex with a gradient ranging from 14° to 34° below 

Il-Hotba 1-Bajda. Concave slopes are found adjacent to convex slopes and close to 

the central footpath. Their gradient varies from 24 o to 32 o. A concave slope (31 °) 

below Il-Hotba 1-Bajda extends to the maquis vegetation in the central part of the Bay. 

The two adjacent slopes are covered with maquis vegetation which extends along 

their whole length to the footpath (Figure 3.18). 

Below the footpath, a large area is covered with maquis vegetation. The rest is 

mainly made up of convex slopes (5° to 25°). Concave slopes are found in different 
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parts close to the vegetated areas. Their gradient varies from 6° to 24 o. A flat area 

with a gentle gradient of 7° separates two concave slopes close to a vegetated area 

where the footpath bends towards the beach. The lower slopes at the back of the 

beach are convex (as opposed to those on the southern side) with a gradient varying 

between 24° to 28°. Below the demolished hotel clay slopes extend along the stairway 

leading to the beach. They have a convex aspect with a gradient between 19° to 27°. 

The steepest gradient is found below the demolished hotel (Figure 3.18). 

In terms of mass movement processes, Ghajn Tuffieha Bay is influenced by 

mudslides and rockfall. As in the case of Gnejna Bay no mudslides were observed 

during the mapping exercise, although heavy rainfall may trigger this type of 

movement. Mudslides do occur in the Bay during the wet season, especially where 

the clay slopes are poorly vegetated. Where present, the maquis and steppe vegetation 

aid in stabilising the slopes, holding and binding the clay by the roots and preventing 

erosion or sliding. Mudflows can also take place especially after heavy rainfall 

events, characteristic of a semi-arid climate. 

The other mass movement process present at Ghajn Tuffieha Bay is rockfall. It 

occurs at the base of the Upper Coralline Limestone plateau which extends into 

Gnejna Bay, covering a distance of0.23 km (Figure 3.18). Boulders skirt the base of 

the plateau, extending to the top part of the clay slopes for a width ranging between 

10 m (concave gradient of 21 °) at the narrowest part close to the slopes facing Gnejna 

Bay to about 50 m (concave gradient of 25°) at its widest stretch where the rockfall 

extends to the limit of the maquis vegetation. Some boulders are also found at the 

extreme southern end of the Bay overlooking Gnejna Bay (Figure 3 .18). On average 

the larger boulders are around 3 m to 4 m wide and 1.5 m to 3 m high. Smaller rock 

in the form of debris is also found as a result of the larger boulders being further 

broken down. There are several processes involved in the detachment of boulders 

from the Upper Coralline Limestone plateau. One of them is rainfall which penetrates 

lines of weakness such as joints or faults, widening the gaps, and breaking the rock 

which falls under its own weight due to gravity. 

Desiccation cracks are evident on the slopes close to Gnejna Bay and close to the 

beach in the central part of Ghajn Tuffieha Bay. In the former case, the dimensions 

vary from 17 cm to 56 cm in depth and 8 cm to 9 cm in width. In the latter case they 
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are about 35 cm deep and 5 cm wide. Opening of desiccation cracks occurs during 

dry periods as a result of volume change in clay soils. During wet periods deep 

cracks become filled with water. Besides developing high water pressures, water acts 

as an additional force to soil movement downslope, triggering landslides (Selby, 

1993). 

A system of active and stable gullies controls the hydrological system of Ghajn 

Tuffieha Bay (Figure 3.18). Gullies are mainly found at the lateral sides of the clay 

slopes and are especially concentrated on the lower slopes backing the beach. 

Through the established gullies water is channelled and drains onto the sandy beach. 

The central part of the Bay and the area close to 11-Qarraba seem to be the sections 

where most of the drainage system flows as there is a concentration of active and 

stable gullies. In several instances the water channels change in their morphology. 

Usually at their upper part they are stable but change to active channels lower down 

the slope. The inverse situation can also be the case and is present at Ghajn Tuffieha 

Bay. The whole area, especially the central part of the Bay, seems to be well drained 

to support all the vegetation. Close to the patch of reeds, water is present and is 

indicated by a seepage line on Figure 3.18. 

The size and dimensions ofthe gullies vary across the Bay. On the slopes overlooking 

Gnejna Bay the width of the gullies varies between 45 cm to 65 cm, whereas the 

depth is around 30 cm. Close to the central footpath the dimensions range from 20 

cm to 40 cm in width and 20 cm to 55 cm in depth. The gullies at the back of the 

beach are of various sizes: 25 cm to 80 cm wide and 15 cm to 40 cm deep. At the 

northern side, above the central footpath, gullies are between 55 cm to 110 cm wide 

and 40 cm to 76 cm deep. 

A transect was selected for further study after the mapping exercise was carried out. 

The transect extends from the base ofll-Hotba 1-Bajda to the sandy beach at sea-level. 

The chosen slope is situated in the central part of Ghajn Tuffieha Bay below 11-Hotba 

1-Bajda above the central footpath (Figure 3.18). The particular slope was selected as 

it is located in the central part of the Bay and is a very distinct landform bounded on 

· both sides by maquis vegetation. The horizontal distance from sea-level.to 11-Hotba 1-

Bajda is 226.77 m and the vertical height above sea-level at the highest point (close to 

11-Hotba 1-Bajda) is 74.31 m. The data is given in Table 3.2 and Figure 3.19 is a 
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cross-section plan (scale 1: 1000) of the slope transect which was surveyed. Slope 

gradients varied from 3.90° for the sandy beach to 31.20° for the clay slopes at the 

back of the beach. 

Table 3.2: Surveying data for the selected slope transect at Ghajn Tuffieha Bay 

"HP !~ . .,, .. ""'-~~!~!, .;r Slope .s·· --·~· 'of 
. "?:(;,~tre1 above ·' segment between points 

,.···<: ·/z ., liT·~··~.;) (0) 

A 0.00 1.51 3.90 

B 8.94 2.12 5.29 

c 16.28 2.80 31.20 

D 2176 7.33 6.33 

E 33.32 8.39 15.48 

F 45.85 11.86 10.85 

G 56.28 13.86 6.34 

H 74.82 15.92 13.01 

I 81.70 17.51 15.84 

J 90.69 20.06 16.64 

K 102.23 23.51 24.24 

L 111.38 27.63 26.51 

M 119.62 31.74 20.41 

N 130.69 35.86 18.53 

0 141.97 39.64 16.10 

p 152.19 . 42.59 23.27 

Q 164.14 47.73 28.85 

R 172.89 52.55 22.74 

s 182.22 56.46 18.91 

T 192.73 60.06 23.37 

u 204.44 65.12 16.53 

V 217.01 68.85 29.22 

w 226.77 74.31 . 
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Figure 3.19: Cross-section of slope prome at Ghajn Tuffieha Bay 



3.6.3 Rdum id-Delli 

Rdum id-Delli is located on the north-west coast between Rdum Majesa and 11-Prajjet 

(Figure 3.15 and Plate 3.25). The geological formations present at Rdum id-Delli 

include the following. 

i. Upper Coralline Limestone: this constitutes the plateau and is found in three 

members. Tal-Pitkal Member and Mtarfa Member compose the top layer and 

Ghajn Melel Member the basal layer. Greensand which is incorporated within 

the Ghajn Melel Member on the geological map of the Maltese Islands (scale 1: 

25000) is exposed below the plateau and is mainly featured as boulders. 

ii. Blue Clay: found extensively all over the area and displays slopes. 

iii. Globigerina Limestone: Upper Globigerina Limestone skirts the littoral below the 

Blue Clay slopes and consists of a low cliff along the shore. 

The area under study is delimited by a Quaternary solution subsidence structure on 

the southern side and an Upper Coralline Limestone plunging cliff (consisting of Tal­

Pitkal Member) on the northern side. The etymology of Rdum id-Delli is probably 

derived from the term dell which in the Maltese language means shade. This is due to 

the fact that the area is sheltered and shaded. Steppic vegetation covers about 90 per 

cent of Rdum id-Delli. Esparto Grass (Lygeum spartum) is the dominant species on 

the clay slopes, whereas Golden Samphire (Inula crithmoides) and Mediterranean 

Thyme (Coridothymus capitatus) are found closer to sea-level. A small area (marked 

on Figure 3.20) is covered with tamarisk trees (Tamarix africana). Only the steep 

slopes close to the plunging cliff on the northern side are bare of vegetation. 

The area under study (Figure 3.20) is about 0.54 km long and between 100 m to 200 

m wide, reaching a maximum width of 220 m towards the central part. An Upper 

Coralline Limestone plateau stretches over a distance of 0. 71 km at the top of Rdum 

id-Delli and is around 5 m high (close to the northern side) to about 10 m near the 

Quaternary solution subsidence structure. A small cliff below the Upper Coralline 

Limestone plateau at the northern side extends for 110 m and is about 2 m to 3 m 

high. Its top is flat with a slight angle of 2°. At the northern side the plateau changes 

into a plunging cliff which continues for a distance of about 1 km until it reaches 11-
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.... ) 

Plate 3.25: A side view of Rdum id-Delli. The steepest clay slopes are located close to the Upper Coralline Limestone plunging cliff on the left side. Mudslides are 
active in this section. Rockfall is found extensively throughout the entire area. The Upper Coralline Limestone plateau forms part of Mellieha Ridge. In the 
background Mellieha Bay is visible . 
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Prajjet. The height of this cliff line ranges from 23 m (11-Prajjet) to 46 m (Rdum id­

Delli). The plateau located above the steep clay slopes at the northern side of Rdum 

id-Delli has a notch between 2.2 m to 3.5 m high and 0.5 m to 1.7 m deep. A second 

cliff line skirted by boulder scree is found along the littoral and consists of the Upper 

Globigerina Limestone Member. This extends for 0.5 km and is about 5 m high at the 

northern side beneath the clay slopes and 2 m to 3 m high for the rest of the area. A 

small patch of shingle is found at the base of the Globigerina Limestone cliff, close to 

the plunging cliff. At the southern side, a Quaternary solution subsidence structure is 

found. This is marked by the letter Q on Figure 3.20. This is a very distinct feature 

and at its widest area it is about 950 m. The structure has a concave aspect with a 

gradient varying between 27° to 29°. It is flanked on two sides by boulder scree and 

at the base a flat area with a slight gradient of 0° to 1 ° is found. The other features 

which characterise Rdum id-Delli include Blue Clay slopes and boulder scree. 

Rdum id-Delli can be divided into two distinct parts. The southern part extends from 

the Quaternary solution subsidence structure to the central part of the area. This is 

characterised by boulder scree and rockfall. . The northern part extends from the 

plunging cliff to the central part ofRdum id-Delli and is characterised by clay slopes, 

although some scree is present (Figure 3.20). 

At the northern side clay slopes are mainly of a convex aspect extending over a 

distance between 90 m to 120 m from the foot of the small cliff below the main 

plateau to the Globigerina Limestone cliff. The steepest slopes are situated close to 

the plunging cliff. Three main slopes can be identified, all having a convex aspect 

with a gradient varying between 22° to 23° at the top part changing smoothly (29° to 

31 °) at the lower part (Figure 3.20). The slopes are bare or have little vegetation 

cover (5 to 10 per cent). An area having a concave gradient of20° separates the three 

slopes from a series of other slopes ( 60 m to 90 m long), all having a convex aspect 

and with a gentler gradient varying from 18° to 27°. The slopes are bare of vegetation 

cover at the sides and their lower part. Only one of the slopes has a concave aspect 

and a gradient of 25°. Small pieces of rock are found within the clay matrix. Above 

these slopes, a convex bulge below the cliff line has a gradient of 32° at the top part, 

which changes smoothly to 12° to 15° lower down. At its southern side a concave 

area is found. This has a gradient of 22° which changes smoothly to 12° (Figure 3.20). 
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The rest of the clay slopes are located in the central part of Rdum id-Delli and extend 

over a distance between 95 m to 120 m. These extend from the base of the cliff line 

or scree below the Upper Coralline Limestone plateau and do not reach the edge of 

the Globigerina Limestone cliff (Figure 3.20). At one particular slope both convex 

and concave aspects can be identified. The top part is convex with an angle between 

20° to 24 o. The lateral limits of the bottom part have a convex gradient between 18° 

and 20°, whereas the middle part is concave (19° to 22°). The slope extends from the 

cliff face to about 100 m downs lope. A concave area with a gradient of 18° changes 

smoothly to 23°. At the top part ofthis concave area a convex slope of22° is found. 

Three other slopes and an area of about 54 m2 covered with maquis vegetation 

(mainly Tamarix africana) follow. Two slopes are convex (15° to 19°) separated by a 

concave slope with a gradient of 20°. The slopes at the central part of Rdum id-Delli 

are bordered by boulder scree, which extends to the Globigerina Limestone cliff. The 

topography in this area is concave and the gradient is gentle (5° to 10°) which 

steepens (12° to 16°) towards the clay slopes (Figure 3.20). 

The southern part of Rdum id-Delli does not feature any clay slopes. An extensive 

area of a concave aspect is situated next to the central clay slopes (Figure 3.20). Its 

gradient is irregular and varies between 12° close to the rubble walls to 22° at its top 

part beneath the scree. The area is made up of Blue Clay but boulder scree is also 

present. A series of abandoned rubble walls are found at different levels. They 

usually indicate that agriculture used to be practised at Rdum id-Delli as their function 

is to delimit land and minimise erosion and sliding of clay or soil. 

Below the concave area, the topography is generally flat with a gradient varying 

between 1 o to 7° (Figure 3.20). The area is covered by large boulders between 3 m to 

6 m high and 10 m to 15 m wide. Three very large blocks, 23 m to 30 m wide and 3 

m to 6 m high, are located close to the abandoned rubble walls. A second flat area is 

found in two levels next to the former flat area. At the top level the gradient varies 

between 2° to 4° whereas the lower part has a slight gradient between 0° to 1° (Figure 

3.20). The two levels are separated by a concave slope with a smooth change 

between 14 ° to 16°. Boulders and scree are not present in this part. The rest of the 

southern part is mainly composed of rockfall in the form of individual boulders or 

scree. This is especially evident at the foot of the plateau, stretching to the northern 
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side of the subsidence structure (concave gradient of 21 °) and below the rubble walls 

between the two flat areas (concave gradient of 15°). 

The main geomorphological processes present at Rdum id-Delli include mudslides, 

rockfall and soil creep (Figure 3.20). Mudslides are active during the winter season 

when clay becomes wet and the pore water pressure increases causing the clay to fail. 

At Rdum id-Delli sliding is evident at the northern part, where it has caused clay to 

move downslope at one particular area. The clay has moved down. onto the 

Globigerina Limestone cliff beneath, extending to the shoreline below (Figure 3.20). 

The mudslide has resulted in an upper concave slope where the sliding occurred, 

having a gradient of 25°. The slope which has moved is inaccessible and its gradient 

could not be recorded. Sliding is active in other areas as well, incorporating rockfall 

and other debris. Where steppic vegetation is present, the slopes appear to be more 

stable and sliding is less evident. 

The other process which is widespread all over Rdum id-Delli is rockfall. Apart from 

rainfall penetrating lines of weakness, rockfall can result from instability caused by 

basal undermining of Blue Clay and from tectonic activity. Boulder scree is present 

along the base of the Upper Coralline Limestone plateau, the Globigerina Limestone 

cliff at the shoreline and at the central part ofRdum id-Delli (Figure 3.20). 

At the northern side of Rdum id-Delli, Greensand is exposed below the Upper 

Coralline Limestone at the base of the plateau. Blocks of Greensand have been 

detached and form a scree leading towards the clay slopes below. The gradient of the 

concave slope formed by the scree is 23° (Figure 3.20). It is important to note that the 

Greensand scree, which consists of boulders less than 1 m to 2 m wide and high, are 

incorporated within the clay matrix. The base of the plateau is skirted by boulders, 

mainly belonging to Upper Coralline Limestone (Tal-Pitkal Member) which vary in 

dimensions between 1 m to 2 m in width and height. The gradient varies between 18° 

and 29° and the aspect is concave. 

The southern part is also characterised by rockfall and scree. The concave area 

comprises scree integrated within the clay matrix. At the base and sides of this area, 

large blocks have been detached from the plateau. They vary in dimensions - 10 m to 
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15 m wide and 3 m to 6 m high. Three very large blocks, 23 m to 30 m wide and 3 m 

to 6 m high, are found above the abandoned rubble walls close to the scarp face 

(Figure 3.20). Boulder scree stretches up to the Quaternary solution subsidence 

structure and at the area below the rubble walls where the gradient is 15° and 21° 

respectively and the aspect is concave in both parts. The dimensions of the scree 

blocks situated below the plateau are about 2 m in width and height. The debris-found 

at the foot of the subsidence structure is of 1 m or less both in width and height. Part 

of the boulder scree is made up of Greensand and extends from the northern side of 

the subsidence structure to sea-level. 

Boulders border the shoreline covering in some parts the Globigerina Limestone cliff 

(Figure 3.20). This is especially evident at the southern part. Blocks do not vary 

much in size and are about 2 m to 5 m wide and high. Some larger blocks 10 m to 18 

m wide and 3 m to 5 m high are found at the southern part. The gradient all along the 

coast is concave and varies from 13° (central part) to 15° (southern part) and 24° 

(northern part) close to where the Globigerina Limestone cliff is exposed as a vertical 

wall. All along the shore boulders are composed of Upper Coralline Limestone, 

except close to the cliff, where they consist of Globigerina Limestone. 

Soil creep is the third process observed at Rdum id-Delli. It occurs at very slow rates 

and is especially active where weakly competent materials such as clays are overlain 

by more compet~nt beds such as limestone. This is the case in the Maltese Islands 

where Blue Clay is overlain by Upper Coralline Limestone. Soil creep is especially 

evident within the Quaternary solution subsidence structure. The structure features a 

karstic hollow d(;!pression characterised by bare patches of soil and steppic vegetation. 

At its northern side it is bounded by a small Upper Coralline Limestone cliff (about 2 

m to 3 m high) which is a continuation of the plateau. The process is. also evident 

among the scree bordering the shoreline at the southern side ofRdum id-Delli (Figure 

3.20). 

Desiccation cracks being the result of volume change in the clay are present at various 

parts at Rdum id-Delli. At the lateral sides of the clay slopes close to the plunging 

cliff the dimensions vary from 3 cm to 6 cm in width and 11 cm to 25 cm in depth. 

Close to the Greensand scree at the northern side, desiccation cracks vary from 5 cm 
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to 11 cm in width and 9 cm to 45 cm in depth. On the slopes located near to the 

tamarisk trees, desiccation cracks range from 6 cm to 7 cm wide and 20 cm to 36 cm 

deep. At the central part of Rdum id-Delli, the sizes vary from 6 cm to 12 cm in 

width and 18 cm to 58 cm in depth. On the flat area, where the large blocks are 

situated, desiccation cracks are about 4 cm wide and 22 cm to 28 cm deep. 

The hydrological system at Rdum id-Delli does not seem to be well established. 

Gullies are largely absent and only one active gully extending from the Greensand 

scree downslope to the Globigerina Limestone cliff can be identified (Figure 3.20). 

This gully is about 41 cm wide and 20 cm deep. One reason for the absence of gullies 

can be related to the physical properties of Blue Clay. From laboratory testing (refer 

to chapter 4) it resulted that Blue Clay at Rdum id-Delli has a high percentage of clay 

content (61%). Clay being an impermeable material can absorb a significant amount 

of water allowing for small quantities to flow as surface water and preventing 

channels or gullies from developing. 

Surveying of a slope transect was performed at Rdum id-Delli. The selected transect 

is situated at the northern side, extending from the cliff line below the main plateau to 

the edge of the Globigerina Limestone cliff (Figure 3.20). The transect was chosen as 

it is easily identifiable. The overall horizontal distance from the base of the Upper 

Coralline Limestone cliff to the edge of the Globigerina Limestone cliff is 118.35 m 

and the highest point above sea-level at the foot of the Upper Coralline Limestone 

cliff is 44.81 m. Data is presented in Table 3.3 and Figure 3.21 features a cross­

section plan (scale 1: 500) of the selected transect. Slope gradients vary from 13.79° 

above the Globigerina Limestone cliff to 33.57° further up the slope close to the 

Upper Coralline Limestone cliff. 
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Table 3.3: Surveying data for the selected slope transect at Rdum id-Delli 

~~~~~Ho~ntal<{js/ane< •• 
Vertical height Slope gradient of 

''· , ·> . (metres) ,,.A;:·,4!0 1,1'· · ·• .. above sea~level segment between points . '"''; .. ' . '~<1~'· ·., '' ';~·; .···· (metres) (0) 

A 0.00 0.53 13.79 

B 17.27 4.77 14.40 

c 34.13 9.10 20.94 

D 49.81 15.10 26.70 

E 61.92 21.19 22.57 

F 66.01 22.89 16.93 

G 77.77 26.47 25.98 

H 86.08 30.52 23.61 

I 96.17 34.93 18.13 

J 102.86 37.12 33.57 

K 107.26 40.04 21.29 

L 115.42 43.22 28.48 

M 118.35 44.81 -
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3.7 Conclusion 

This chapter discussed the geomorphology of the Maltese Islands with special 

reference to the coastal geomorphology. The geomorphological mapping carried out 

at different scales for the coast of Malta, north of the Great Fault, provides the 

necessary background information in relation to coastal landforms and mass 

movement processes occurring within this region. This is essential in order to proceed 

with the other two main objectives of the study, that is examine the behaviour of Blue 

Clay, in terms of its physical and geotechnical properties, and determine the factors 

which lead to coastal cliff instability within a local context. These two elements are 

addressed in chapters 4 and 5 which deal with laboratory testing of clay samples and 

computer modelling of slope instability respectively. An attempt is thus made to 

assess mass movement processes and the associated triggering factors within the Blue 

Clay Formation for the coastal zone, which ultimately can be applied to other areas 

where the formation is present. 
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Chapter4 

Investigation of the physical 
and geotechnical properties of Blue Clay 



4. 1 Introduction 

During the last three decades (for example Yatsu, 1966; Whalley, 1976; Selby, 1982 

in Hart, 1986) a new approach was introduced in the study of geomorphology. A 

need was felt to understand the mechanics and behaviour of soils and rocks in order to 

explain geomorphological processes and landform development. The study of 

materials and their properties was incorporated within the scope of geomorphology as 

it links together process and form. This is also confirmed by Goudie et al. (1990: 

Ill) who claim that: 

"Geomorphological explanations are incomplete unless they involve some 
understanding of the way in which the materials that cover the face of the 
Earth behave and have behaved. " 

A description of the basic properties of geomorphological materials is frequently the 

most important starting point for an explanation of a geomorphological process. 

Knowledge of the properties can suggest productive lines of experimentation in field 

or laboratory and may be required in computer simulations or more intensive 

enquiries, such as in soil mechanical testing (Goudie et al., 1990). 

The physical properties of soils are strongly influenced by their mineralogy, texture, 

and fabric (Selby, 1993). The properties are not constant over time, with water­

content and void space capable of changing very quickly and other properties 

changing more slowly. Nor are properties constant in space with major variations in 

structure, fabric, and mineralogy being identifiable over distances of a few metres 

(Beckett and Webster, 1971; Culling, 1986 in Selby, 1993). A knowledge of soil 

physical properties is an important foundation for the classification of soils 8?-d a 

major component of any capacity to predict the behaviour of soils in response to 

applied stresses and variations in water content. Soil mechanical properties are an 

expression of the materials which make up the soil and of the water and air 

temperature changes within them (Pitty, 1979). 

Soils, in the geotechnical sense, can be regarded as engineering materials (Head, 

1980). Their physical characteristics can be determined either in the field or in the 
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laboratory and the application of methods of analysis enables the properties to be used 

to predict likely material behaviour. Many of the procedures used for determining 

soil characteristics consist of empirical methods derived from practical experience. 

The physical properties of soils are usually determined by carrying out tests on 

samples in a laboratory. The tests can be divided into two main categories (Head, 

1980). 

1. Classification tests, which indicate the general type of soil and the engineering 

category to which it belongs. 

n. Tests for the assessment of engineering properties, such as shear strength, 

compressibility and permeability. 

Most present-day laboratory tests employed in soil mechanics are highly developed 

and perfected. It is necessary to recognise the relation between samples and 

subsequent testing. Much skill, experience and time may have been used by the site 

investigation team in obtaining the samples from the site under construction. It is 

therefore important that the method of sampling, exact location with respect to plan 

and elevation, date of sampling and all other relevant information are correctly 

recorded. As far as the samples are concerned, the main requirement is that they are 

representative of the mass of the strata from which they have been taken. This 

involves decisions about the size of sample, the method of sampling and the location 

of sampling (Vickers, 1978). 

Undisturbed samples can be obtained either by employing some type of sampler, 

usually incorporating the use of a sample tube, or by taking the sample from the face 

of an excavation such as a trial pit and immediately covering it with a protective, 

impervious layer of wax (Vickers, 1978). Ideally, samples should be tested within a 

short time of arrival at the laboratory. This is because it has become evident that 

satisfactory storage of soil samples, maintaining natural moisture content and other 

properties, is difficult (Vickers, 1978). In addition, early results obtained from testing 

the initial samples received from a site may well indicate that more samples or larger 

samples need to be taken, so that a revised programme and procedure for the sampling 

becomes necessary. Inevitably some storage is needed and may even be essential if 
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further studies are to be undertaken. Consequently facilities for storage should be 

adequate in terms of space and of temperature and humidity control (Vickers, 1978). 

4.2 Research design 

4.2.1 Choice of sites 

Geomorphological mapping (scale 1: 1 0000) for the northern coast of Malta (Figures 

3.5 and 3.6) was used to identify three sites to be representative of the whole region 

where Blue Clay samples· could be collected to conduct detailed laboratory 

investigations. The three selected sites are Gnejna Bay, Ghajn Tuffieha Bay and 

Rdum id-Delli, all situated on the north-west coast of Malta (Figure 3.15). At each of 

the three sites, the geology consists of Blue Clay slopes backed by an Upper Coralline 

Limestone plateau. The sites were chosen as Blue Clay is widely exposed displaying 

itself as coastal slopes marked with numerous landslides, that have the dominant 

control on cliff development at these locations. 

Further geomorphological mapping at a larger scale (1: 2000) was performed at each 

of the selected coastal site, to identify a specific clay slope for surveying and sample 

collection. Each slope was chosen as it extends over a long distance at each locality. 

Another criterion taken into consideration when choosing the slope was that the 

lateral shears could be identified, this clearly defining the feature. Cross-section plans 

of the three transects are represented in Figures 3.17, 3.19 and 3.21. The surveyed 

slope transects are marked on Figures 3 .16, 3.18 and 3.20 and in the insets of Figures 

3.17, 3.19 and 3.21. 

The selected clay slopes at each of the three sites were surveyed using a Leica TC600 

total station laser level. Data collected includes height above sea-level and horizontal 

distance. Slope gradients were calculated using the tangent computation. The data is 

used to perform a stability analysis described in chapter 5. Sections 3.5 and 3.6 in 

chapter 3 explain in more detail the geomorphological mapping carried out for the 

northern coast and investigation of the three coastal field sites including the mapping 

and surveying exercises. 

125 



4.2.2 Collection of samples 

Undisturbed samples were collected about two-thirds of the way up the slope from 

sea-level at Gnejna Bay and Rdum id-Delli and about 30 metres downslope from the 

plateau base at Ghajn Tuffieha Bay. The locations were chosen on the basis of little 

vegetation cover and minimum disturbance. An attempt was made to ensure that at 

each site the samples collected were representative of the Blue Clay material. Since 

Blue Clay is largely a uniform material, problems were minimised and the material 

which was collected and tested possessed characteristic physical and geotechnical 

properties. 

Samples were collected by digging into the clay slope to a depth of about 50 cm. 

Blocks of clay were cut and care was taken to keep the blocks intact. The samples 

were covered with plastic film and aluminium foil to avoid loss of moisture during 

transportation, storage and preparation. The samples were then put in plastic boxes 

(20.5 cm long, 11.0 cm wide and 15.0 cm high) and taken to the laboratory for 

physical and geotechnical testing. The use of paraffin wax was not necessary as tests 

were carried out immediately after the samples were collected, to eliminate the 

problem of loss of moisture. 

The trial pit method was first utilised to collect samples. A rectangular block of 

material (approximately 1 m3
) was left in the middle of the pit and five samples (25 

cm x 25 cm) were cut with a saw in a vertical profile from the block. The samples 

were covered with plastic film, put in tin boxes and taken to the laboratory where tests 

were conducted afterwards. Some of the results proved to be unsatisfactory and clay 

samples had to be collected and tested for the second time. The reason for this is that 

the properties of Blue Clay change with depth - the upper horizons are drier as 

moisture is lost more easily than at the lower horizons. Using the trial pit technique 

samples were collected in a vertical profile at different depths and tests were 

undertaken on clay with properties which were not homogeneous. Thus a 

comparative analysis of the results could not be performed. 
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4.2.3 Laboratory testing and analysis 

An important aspect of this study is the testing and analysis of the physical and 

geotechnical behaviour of Blue Clay utilising samples collected at Gnejna Bay, Ghajn 

Tuffieha Bay and Rdum id-Delli. To date no recorded information on the physical 

and geotechnical properties of Blue Clay in Malta exists. The tests conducted in the 

laboratory examine both the physical and geotechnical aspects of Blue Clay at each of 

the three investigation sites. The field moisture content, bulk density and bulk unit 

weight, particle size distribution and Atterberg Limits were calculated to determine 

the physical properties of Blue Clay. Direct shear tests on undrained samples were 

carried out to examine the geotechnical properties of stress, strain and shear so that 

ultimately material strength could be determined. During laboratory testing 

established techniques and procedures (BS 1377, 1990; Head, 1980) were followed. 

The tests were chosen as they are appropriate for soft rocks or soils. Clays are 

classified as soils and the above include the standard tests carried out on such 

material. Tests for each of the three sites were performed more than once and the 

average calculated to obtain accurate results. At each locality physical tests and 

geotechnical tests were performed from samples collected at the same depth, time and 

date so that both sets of tests could be correlated. The results provide an indication of 

coastal slope stability for north-west Malta. The physical properties tests are first 

considered in section 4.3, followed by an analysis of the geotechnical tests in section 

4.4. 

4.3 Physical properties tests of Blue Clay 

The moisture content, soil density, particle size distribution and Atterberg Limits were 

performed from samples collected at Gnejna Bay, Ghajn Tuffieha Bay and Rdum id­

Delli. Each of the tests will be dealt separately and the laboratory data incorporated 

and analysed within the relevant technique. Analysis of data is related to the issue of 

coastal slope instability for northern Malta, using the sample collection sites as key 

investigation sites representative of the northern region. 
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4.3.1 Moisture Content 

Apart from soils in dry desert areas, the voids within all natural soils contain water 

(Bames, 1995). Some soils may be fully saturated with the voids full of water, some 

only partially saturated with a proportion of the voids containing air as well as water. 

Moisture content or water content is simply the ratio of the mass of water to the mass 

of solid particles and is an invaluable indicator of the state of the soil and its 

behaviour. 

The moisture content of a soil applies to all types of soil and is the most frequently 

determined characteristic (Head, 1980). In clay soils an increase in the water content 

is accompanied by swelling resulting in a change in volume (Rosenak, 1963). The 
I 

parameter has a fundamental influence on the geotechnical characteristics of the 

material. Measurement of the moisture content can provide an extremely useful 

method of classifying cohesive soils and of assessing their engineering properties 

(Head, 1980) such as strength and the state of the material varying from liquid, 

plastic, semi-solid or solid states (Vickers, 1978). An inverse relationship exists 

between the strength of a soil and its water content. An increase in the water content 

will reduce the shear strength and hence its bearing capacity (Rosenak, 1963). This 

also applies in the opposite way. A decrease in water content contributes to an 

increase in shear strength. Even a small change in the water content can affect soil 

strength (Rahn, 1996). This is indicated by mechanical tests performed on Blue Clay 

samples. Ghajn Tuffieha Bay, which has the highest moisture content, has the lowest 

cohesion value, indicating a low shear strength. Gnejna Bay and Rdum id-Delli have 

a lower moisture content and higher cohesion values, implying an increase in the 

material strength at these two sites. 

The moisture content was determined for Blue· Clay samples and the results are 

presented in Table 4.1. Three tests were performed for each of the sample collection 

sites and the average result calculated. The weight of the samples was determined 

before and after the samples were put in the oven. The difference in weight was 

calculated as the percentage of the moisture content present within the whole sample. 

The results for Gnejna Bay and Rdum id-Delli are very similar. Samples from Gnejna 

Bay have an average moisture content value of 24.17% whereas for Rdum id-Delli 
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this is 26.80%. The moisture content at Ghajn Tuffieha Bay is higher, reaching an 

average value of 41.45% indicating a factor increase of 1. 7 for Gnejna Bay and 1.5 for 

Rdum id-Delli. 

Table 4.1: Results for Moisture Content tests 

I>' 'Jy1,Gnej~aBay . " .. \ .. . ~hajn TuffielJa Bay . Rdum id-Delli 
.. ' i>" : ·~;.._-

Test 1 24.14% 42.00% 26.35% 

Test 2 23.47% 40.65% 27.45% 

Test 3 24.91% 41.69% 26.61% 

Average 24.17% 41.45% 26.80% 

The moisture content is often compared with the Liquid Limit and Plastic Limit test 

results (Bames, 1995). Changes in the moisture content influence the index properties 

and give an indication of how the clay will behave in the field. This is due to the fact 

that the Atterberg Limits can also be considered as moisture content tests. 

Comparison of the results derived from moisture content and Atterberg Limits tests on 

Blue Clay is presented in section 4.3.4. 

4.3.2 Bulk Density 

Soil has three phases: solid, water, and air and is used to relate mass to volume (West, 

1995). The total volume of the soil material is expressed as the sum of the volume of 

these components. The total mass is the sum of the mass of solid particles and mass 

ofwater (Selby, 1993). 

Density is the mass of a material (mass of solid particles and water) in a unit volume. 

In situ density of soil at depth depends to a large degree on the weight of the 

overlying soil (Rahn, 1996). Bulk density is the total mass of soil (solid particles, 

water and air) in a given volume. Dry density is the mass of just the solid particles in 

a given volume (Bames, 1995) after the soil is dried at 1 05°C. The bulk unit weight is 
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the weight of the soil in a unit volume. Unit weight of a soil and its natural moisture 

content are the simplest and most commonly used indicators of the state of the 

material and of its characteristic strength and other properties. 

Bulk density is one of the main characteristics which describe the relative proportions 

of solid and void in a soil. Its expression in any one soil is related to texture. There is 

a tendency for bulk density to increase as texture becomes coarser (Pitty, 1979). This 

is indicated in Table 4.2, which presents typical values for bulk density and bulk unit 

weight for different soil types. Sand and gravel which have a coarse texture, obtain 

higher bulk densities than silt and clay which contain fmer particles. Bulk density 

increases with compaction occurring primarily at the expense of the largest pores 

when the soil is compressed by an external load, as this is the zone in which the soil 

has the least mechanical stability (Pitty, 1979). This is the case of stiff clay and hard 

rock which have higher bulk densities than soft clay and weak rock due to a more 

compact structure (Table 4.2). 

Table 4.2: Typical bulk densities for different soil types 

Soil type Bulk density Unit weight 
glcm 1 KN/m 1 

Peat 1.0 - 1.4 10- 14 

Sand and gravel 1.6-2.2 16-22 

Silt 1.6- 2.0 16-20 

Soft clay 1.7- 2.0 17-20 

Stiff clay 1.9 - 2.3 19-23 

Weak rock 2.0-2.3 20-23 
(mudstone, shale) 
Hard rock 2.4-2.7 24-27 
(Granite, Limestone) 

Source: Modified from Bames, 1995 

To determine the density of soil it is necessary to measure the volume and mass of the 

sample being tested. The simplest procedure is to use volumes of regular shapes. This 

approach is only suitable for soils of a cohesive nature and which are little affected by 

sample collection and preparation. Where it is difficult to trim a sample to a regular 

shape, determination of the volume by simple linear measurement is not practicable. 
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In this case two methods can be employed: water displacement and weighing in water. 

The latter technique makes use of the principle of Archimedes for the measurement of 

volume and is more accurate than the water displacement method. The weighing in 

water method was utilised to determine the volume of Blue Clay samples since it was 

difficult to cut the samples in regular shapes. The bulk density was then calculated 

for each sample tested. 

The bulk density and bulk unit weight were determined for Gnejna Bay, Ghajn 

Tuffieha Bay and Rdum id-Delli. Three tests were performed for each site and the 

average value calculated for both the bulk density and bulk unit weight. Results are 

presented in Table 4.3. As in the case of the moisture content results, Gnejna Bay arid 

Rdum id-Delli have very similar values. The average bulk density is 1.79 g/cm3 for 

both sites and the average bulk unit weight is 17.59 KN/m3 for Gnejna Bay and 17.53 

KN/m3 for Rdum id-Delli. Ghajn Tuffieha Bay has lower values for the average bulk 

density (1.70 g/cm3
) and the average bulk unit weight (16.71 KN/m3

) due to a high 

proportion of silt found within the Blue Clay material (Table 4.4). These slight 

differences are sufficient to change the performance of the material. By referring to 

the data presented in Table 4.2, Blue Clay can be classified as a soft clay with typical 

bulk density values between 1.7 g/cm3 and 2.0 g/cm3 and bulk unit weight between 17 

KN/m3 and 20 KN/m3
• 

Bulk density declines at increased moisture contents. This results from the expansion 

of mineral particles when colloids swell and from the vertical movement of the soil if 

the moisture freezes (Pitty, 1979). As a soil dries out, the bulk density increases and 

even the loss of small amount of water may increase significantly the strength or 

cohesion of soils (Pitty, 1979). This is relevant for Ghajn Tuffieha Bay where a lower 

bulk density exhibits a higher moisture content, indicating that there is greater 

percolation and higher water retention capacities. At this site there is the chance of an 

increased mudslide activity when compared with the other two sites. Development of 

desiccation cracks especially at Gnejna Bay and Rdum id-Delli indicate drier 

conditions, slower rates of movement and higher bulk densities. 
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Table 4.3: Results for Bulk Density and Bulk Unit Weight 

G1~ejnaBay 
~~~ . . Glmjn t:uJfielt"il Bay 

Bulk Density Bulk Unit Weight Bulk Density Bulk Unit Weight 
l!fcm3 KN/m3 f!/cm~ KN/m3 

1.77 17.36 1.72 16.87 

1.80 17.66 1.68 16.48 

1.81 17.76 1.71 16.78 

1.79 17.59 1.70 16.71 
-- -
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Bulk Density Bulk Unit Weight 
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1.80 17.66 

1.76 17.27 

1.80 17.66 

1.79 17.53 
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Bulk density also gives an indication of the load bearing capacity of the material 

which is relevant to slope stability. A decrease in bulk density may be associated with 

an increase in movement which might be the case at Ghajn Tuffieha Bay. However 

mudslides are evident at Rdum id-Delli, although the bulk density is higher than that 

of Ghajn Tuffieha Bay. From field investigation both Gnejna Bay and Ghajn Tuffieha 

Bay seem to be quite stable, with no apparent sliding taking place. 

4.3.3 Particle Size Distribution 

Particle sizes vary considerably, from those measured in microns (clays) to those 

measured in metres (boulders). Most natural soils are composite soils, mixtures of 

particles of different sizes which together with minerals influence properties of soil 

such as strength, behaviour under stress, void space, permeability, capacity to retain 

water, and chemical reactivity. The relative proportions of gravel, sand, silt, and clay 

define the texture of the soil, whereas the fabric or structure of the soil is determined 

by the patterns in which the particles are arranged (Selby, 1993). The distribution of 

the particle sizes gives very useful information about the engineering behaviour of the 

soil and is determined by separating the particles using two processes - sieving and 

sedimentation (Barnes, 1995). Sedimentation is based on Stokes' Law, which states 

that a smooth spherical particle suspended in a fluid (water and dispersant solution) 

will settle under gravity at a velocity. 

Particle size distribution, together with Atterberg Limits can be considered as 

classification tests. The aim of soil classification is to divide soils into groups with 

similar characteristics by which they can be identified and which exhibit similar 

behaviour in engineering situations (Craig, 1978). Several classifications of particle 

size are in use (Figure 4.1 ); most use the same boundary between clay and silt (2 J.lm 

= 0.002 mm) and between sand and gravel (2000 J.lm = 2 mm). The chosen 

boundaries between silt and sand, and within silt and sand, are varied. It is therefore 

necessary to specify the system being used (Selby, 1993). 
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2 5 10 20 50 100 200 500 1000 2000 (Jlm) 

IS SS !-Clay Silt I Fine sand I Coarse sand ~ravel 
USDA !-Clay Si I t I Jria I F.sand I sa~d I ~& I~~ Gravel 

MIT I I Co.silt f F.sand I M.sand I Co.sand Gravel and -Clay F. silt M.silt 
BSI 

0.002 0.02 0.06 0.2 2.0 (mm) 

Effective diameter 

Figure 4.1 The most commonly used classifications of soil particle sizes 
ISSS - International Society of Soil Science 
USDA - United States Department of Agriculture 
MIT -Massachusetts Institute of Technology 
BSI - British Standards Institute 
F. - fine, M. - medium, Co. - coarse, V. -very 

Source: Selby, 1993 

Particle size distribution analysis is an important index test for soils as it presents the 

relative proportions of different sizes of particles and the amount of clay present 

(Head, 1980). This test helps to identify the type of soil and to a limited extent which 

particle size ranges are likely to control the engineering properties. The clay fraction, 

which refers to the proportion of material consisting of particles sm~lller than 0.002 

mm, is often used as an index for correlating with other engineering properties, such 

as activity. Particle size distribution has a considerable influence on the mechanical 

and engineering properties of soils (Rosenak, 1963; Vickers, 1978), such as 

permeability and material strength, hence overall slope instability. A high sand 

content indicates an increase in friction, whereas a large clay proportion leads to 

greater cohesion within the soil. 

The particle size distribution of soil particles is expressed by a plot of percentage 

passing, that is the percentage of mass smaller than the equivalent diameter, against 

particle size. The flatter the distribution curve the larger the range of particle sizes in 

the soil. The steeper the curve the smaller the range of particle sizes within the 

sample being tested (Craig, 1978). A well-graded soil is represented by a smooth, 

concave distribution curve. It is characterised by similar proportions of particles in 

any size range. A poorly-graded soil is characterised with a high proportion of 

particles having sizes within narrow limits. Also particles of both large and small 

sizes are present but with a relatively low proportion of intermediate size particles. 
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Particle size distribution was determined for Blue Clay samples collected at Gnejna 

Bay, Ghajn Tuffieha Bay and Rdum id:-Delli. Both sieving and sedimentation 

techniques were used. Blue Clay samples were oven dried and broken to leave a 

disaggregated sample which passes the 2 mm sieve. Sieving was performed for 

particles larger than 63 J.lm, that is sand particles. Particles smaller than 63 J.lm were 

classified by sedimentation using the Hydrometer Analysis technique following the 

guidelines proposed by BS 1377 (1990) and Head (1980). Results are presented as 

semi-logarithmic particle size distribution curves for each of the three sites (Figures 

4.2, 4.3 and 4.4). Table 4.4 presents the results as a percentage for each particle size 

category. These are reported to the nearest 1%. 
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Figure 4.2: Particle size distribution curve for Gnejna Bay 
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Figure 4.3: Particle size distribution curve for Ghajn Tuffieha Bay 
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Figure 4.4: Particle size distribution curve for Rdum id-Delli 
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Table 4.4: Results for Particle Size Distribution 

8 Particle;siie;· 1'' . ~~: Gnej"'ti .8ay; ' ·Giiajn Tuffzeha Bay Rdum id-Delli 
7 y : ' -~' :. ' ,,, .: ~ ; 

' '' 'i '[ 

Clay (< 2 JliD) 44% 35% 61% 

Silt (2 JliD - 63 Jlm) 44% 46% 29% 

Sand (63 !liD- 2 mm) 12% 19% 10% 

The particle size distribution curves indicate clearly that Blue Clay is a cohesive soil 

due to the high clay content found within the material. The sand proportion is low 

and does not characterise the soil, whereas silt is found in significant proportions, 

especially at Ghajn Tuffieha Bay where it predominates. This fact needs further 

consideration as silt exhibits di,latancy (Head, 1980), which is an increase in volume 

during deformation leading to unstable conditions. Besides silt has little plasticity 

indicating that even a small change in moisture content will change the soil from a 

semi-solid to liquid condition. This is also confirmed by a low Plasticity Index for 

Ghajn Tuffieha Bay. Clay dries at a slower rate than silt. On drying clay shrinks and 

exhibits cracks which are more pronounced the higher the plasticity of the clay (Head, 

1980). Desiccation cracks are more widespread at Gnejna Bay and Rdum id-Delli 

where Blue Clay has a higher clay content and higher Plasticity Index than at Ghajn 

Tuffieha Bay. 

Particle size distribution tests also give an indication of the permeability of the soil 

and its material strength. Silt is more permeable than clay, whereas clay retains most 

of the water. However when the particle size distribution proportions are compared 

with the moisture content results, it is observed that the Blue Clay at Ghajn Tuffieha 

Bay has the highest moisture content although the soil is predominantly composed of 

silt particles. This can provide an indication that the clay minerals have a high swell 

capacity and are able to retain a significant amount of water content. Rdum id-Delli 

which has the highest clay content has also the highest values for the Liquid Limit and 

Plasticity Index but the lowest values for the Plastic Limit and Activity Index. These 

results imply a stable situation at Rdum id-Delli. The silt and clay proportions are of 

equal value for Blue Clay at Gnejna Bay. The values for the Plastic Limit, Plasticity 

Index and Activity Index lie between those of the other two sites. Moisture content is 
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lowest for this site indicating that conditions are stable but trending towards 

instability. From the index property results and particle size distribution curves it can 

be concluded that a higher silt content in the soil leads to higher moisture content and 

more unstable conditions. From geotechnical testing it has been observed that a low 

clay content contributes to a decrease in material strength. Ghajn Tuffieha Bay 

exhibits the lowest cohesion since the silt fraction predominates, increasing the rate of 

instability. Rdum id-Delli has the highest cohesion value and a high clay content, 

resulting in a more competent material and stable conditions. 

4.3.4 Atterberg Limits 

The Atterberg Limits and related indices have become very useful to determine 

different characteristics of soil material. The limits are based on the concept that a 

fine-grained soil can exist in any of four states depending on its water content. Thus a 

soil is solid when dry, and upon the addition of water proceeds through the semi-solid, 

plastic, and finally liquid states (Figure 4.5). The water contents at the boundaries 

between adjacent states are termed the Shrinkage Limit (SL), Plastic Limit (PL), and 

Liquid Limit (LL) (Lambe and Whitman, 1979). 
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Figure 4.5: Atterberg Limits 
Source: Barnes, 1995 
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The Liquid Limit is determined by measuring the water content and the number of 

blows required to close a specific width groove for a specified length in a standard 

Liquid Limit device - the Casagrande apparatus (Lambe and Whitman, 1979). The 

Casagrande method is dependent upon the skill of the operator (Sherwood and Ryley, 

1970 in Selby, 1993). A drop-cone penetrometer has since been adopted as a standard 

instrument in many laboratories. The Plastic Limit is determined by measuring the 

water content when threads of the soil 3 mm in diameter begin to crumble (Lambe 

and Whitman, 1979). Threads of high-plasticity clay are quite tough whereas those of 

low-plasticity clay are softer and more crumbly (Head, 1980). The Shrinkage Limit is 

determined as the water content after just enough water is added to fill all the voids of 

a dry pat of soil (Lambe and Whitman, 1979). 

Atterberg Limits or index property tests have been determined for the Blue Clay. The 

Casagrande method was used to determine the Liquid Limit for Gnejna Bay, Ghajn 

Tuffieha Bay and Rdum id-Delli. The Liquid Limit was determined when the groove 

in the clay closed along 25 mm of its length after 25 blows. For the Plastic Limit two 

tests were carried out for each site and the average calculated. The results do not 

differ by more than ±0.5% moisture content, thus there was no need to repeat the 

tests. The Liquid Limit and the Plastic Limit provide the most useful way of 

identifying and classifying fine-grained cohesive soils. Both limits are controlled by 

the clay minerals of the soil and water content. Table 4.5 presents the results of the 

property index tests. The Liquid Limit values for Gnejna Bay and Ghajn Tuffieha Bay 

are very similar, 76 and 76.42 respectively. For Rdum id-Delli this value is 79.78. 

The average values for the Plastic Limit are 37.79 for Gnejna Bay, 41.66 for Ghajn 

Tuffieha Bay and 36.75 for Rdum id-Delli. 

A very useful comparison can be made between Atterberg Limits and moisture 

content which may provide some indication of the degree of landslip activity (Lambe 

and Whitman, 1979). When the moisture content is below the Plastic Limit, the clay 

behaves as a solid material. When the moisture content lies between the Plastic Limit 

and Liquid Limit, the clay is a plastic material. When the moisture content is above 

the Liquid Limit, clay behaves like a liquid (Enriquez-Reyes et al., 1990). In the case 

of Blue Clay, the soil behaves as a solid material as samples tested for the three sites 
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Table 4.5: Results for Atterberg Limits and related parameters 

Liquid Limit Plastic Limit Plasticity Liquidity 
(%) (%) Index · Index 

76.00 37.79 38.21 -0.36 

76.42 41.66 34.76 -0.006 

79.78 36.75 43.03 -0.23 

Consistency Activity 
Index Index 
1.36 0.74 

1.006 0.82 

1.23 0.60 



have a lower moisture content than the Plastic Limit indicating that mudslide activity 

is absent. If the moisture content is near the Liquid Limit soil will be more 

compressible and probably less permeable. This is an indication that the soil is of 

fairly low strength and subject to significant strength reduction on remoulding. If the 

moisture content is near the Plastic Limit, as in the case of Blue Clay, soil is stronger, 

will be relatively firm and less compressible (West, 1995) leading to more stable 

conditions. 

The index property tests have been devised to determine the material behaviour from 

the moisture content and provide information on the physical behaviour of a clay soil. 

Atterberg Limits are related to the combined effects of two essential properties of 

clay, namely particle size and mineral composition (Head, 1980). However the most 

significant properties of clay are its cohesion and plasticity (Head, 1980; West, 1995). 

Cohesion refers to the ability of particles to stick together without dependence on 

interparticle friction (Allaby and Allaby, 1990). Plasticity is the ability of soil to 

undergo unrecoverable deformation at constant volume without cracking or crumbling 

(Craig, 1978). Unlike silt, clay does not exhibit dilatancy (Head, 1980). On drying 

clay shrinks considerably and displays cracks which are more pronounced the higher 

the plasticity of clay. At Rdum id-Delli, where Blue Clay shows the highest Plasticity 

Index when compared to Gnejna Bay and Ghajn Tuffieha Bay desiccation cracks are 

widespread and· a common feature throughout the whole site. 

Atterberg Limits indicate the water-holding capacity of different types of soils. Soils 

having high Plastic Limit contain silt and clay and the moisture content of these soils 

has a direct bearing on their load-carrying capacity (Rahn, 1996). Soils with high 

Liquid Limit such as the Blue Clay indicate a high clay content and a low load­

carrying capacity because soil changes from a solid to a plastic when moisture content 

is increased. The particle size distribution curves (Figures 4.2, 4.3 and 4.4) confirm 

the high percentage of clay content found within the Blue Clay Formation at each of 

the three selected sites. This results in a rapid decrease in the load-carrying capacity 

above the Plastic Limit. The inverse situation takes place when the moisture content 

is decreased below the Plastic Limit and the load-carrying capacity increases very 

rapidly. 
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Other parameters which include the Plasticity Index, Liquidity Index, Consistency 

Index and Activity Index, derived from the Atterberg Limits have been determined for 

Blue Clay (Table 4.5). 

The Plasticity Index gives the range in moisture content at which a soil is in a plastic 

condition (Rahn, 1996). A small Plasticity Index such as 5 per cent indicates that a 

small change in moisture content will change the soil from a semi-solid to liquid 

condition. This type of soil is thus very sensitive to moisture. A higher Plasticity 

Index such as 20 per cent shows that a considerable amount of water can be added 

before soil becomes liquid. Soils with very high Plasticity Index (more than 35 per 

cent) such as the Blue Clay may have a high swell capacity (Rahn, 1996), lower 

permeability, be more compressible and consolidate over a longer period of time 

under load than clays of low plasticity (Head, 1980). Blue Clay therefore experiences 

an increase in density under pressure and a decrease in specific volume. 

The Plasticity Index has been calculated for the three sample collection sites (Table 

4.5). Ghajn Tuffieha Bay has the lowest Plasticity Index (34.76) of the three sites 

indicating that when compared with the other two sites less water is needed for clay to 

change into a liquid state. It can be proposed that this site is more prone to landslide 

activity than Gnejna Bay and Rdum id-Delli. This is also confirmed by the moisture 

content and bulk density values. Gnejna Bay has a Plasticity Index of 38.21, a little 

higher than Ghajn Tuffieha Bay but lower than the Plasticity Index of Rdum id-Delli 

(43.03). The latter value indicates that Blue Clay at Rdum id-Delli has the capacity to 

retain a high amount of moisture content and is less permeable than at the other two 

sites. One can conclude that Rdum id-Delli is less prone to sliding movements 

although mudslides were observed and are evident. The high Plasticity Index value is 

also attributed to a high clay content in Blue Clay at Rdum id-Delli (61 %) which 

makes the soil less permeable and able to hold a high amount of water. Ghajn 

Tuffieha Bay has a much lower percentage of clay content (35%) followed by Gnejna 

Bay (44%) contributing to a type of soil which is more permeable and capable of 

retaining a lower amount of water. 

The Atterberg Limits enable clay soils to be classified physically, and are useful in 

identifying the type of clay mineral present. Classification is usually achieved by 
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means of the plasticity chart, known as Casagrande's plasticity chart. This is a 

graphical plot of the Liquid Limit against the Plasticity Index and provides 

information about strength, compressibility, plasticity and type of soil· (Vickers, 

1978). The plasticity chart distinguishes fine-grained soils on the basis of 

predominantly clays (C) or silts (M) lying above or below the A-line. The chart 

presents varying degrees of plasticity from low (Liquid Limit < 35%) to extremely 

high (Liquid Limit> 90%) with symbols for each type of soil. Organic soils usually 

lie below the A-line and are given the symbol 0 or Pt for peat. Most soils are found 

below the B-line (Barnes, 1995). 

Using this chart to classify the Blue Clay samples collected at Gnejna Bay, Ghajn 

Tuffieha Bay and Rdum id-Delli, values of the Liquid Limit were plotted against 

values of the Plasticity Index on the plasticity chart (Figure 4.6). Clay samples from 

Gnejna Bay and Ghajn Tuffieha Bay lie below but close to the A-line, whereas for 

Rdum id-Delli the sample lies on the A-line. The chart indicates that all three samples 

have a very high degree of plasticity and contain significant amounts Of organic 

matter since they are found below the A-line. Soils with a high Plastic Limit and 

Plasticity Index are said to be highly plastic or 'fat' clays, whereas those with low 

values are considered as slightly plastic or 'lean' (Rahn, 1996). According to the 

location of clay minerals on the plasticity chart (Figure 4. 7), the position of Blue Clay 

samples plotted on Figure 4.6 correspond best to kaolinite. 

Another important index is the Liquidity Index which is a measure of the natural soil 

moisture as related to the Plasticity Index (Blythe and De Freitas, 1984 in Rahn, 1996) 

and provides a good indication of soil sensitivity (West, 1995). If the Liquidity Index 

is 1, the soil is at the Liquid Limit, has little strength and is highly sensitive. Values 

greater than 1 indicate ultrasensitive or quick clays. When soils have a Liquidity 

Index which is larger than 1, these can flow like a viscous liquid if disturbed in any 

way. If Liquidity Index is 0, soil is at Plastic Limit and is probably not sensitive. 

When Liquidity Index is less than 0 with negative values, the water content is less 

than the Plastic Limit, the soil acts like a solid (Rahn, 1996) and will fail as brittle 

material when sheared (West, 1995). Moving landslides usually have a Liquidity 

Index smaller than 1 whereas more fluid-like debris flows have a Liquidity Index 

larger than 1 (Costa and Baker, 1981 in Rahn, 1996). The Liquidity Index for Blue 
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Clay at Gnejna Bay, Ghajn Tuffieha Bay and Rdum id-Delli has negative values 

ranging from -0.36 at Gnejna Bay, -0.006 at Ghajn Tuffieha Bay and -0.23 at Rdum 

id-Delli (Table 4.5). This indicates that at all three sites the water content is less than 

the Plastic Limit and that the soil is in a solid state. The soil is dry and there is no 

indication of mudslide activity. The largest value close to 0 corresponds to Ghajn 

Tuffieha Bay which has the largest value for moisture content and where the soil is 

very close to its Plastic Limit. 

Consistency is the relative ease with which a soil can be deformed. This is described 

as soft, firm or hard (West, 1995) and is measured by a Consistency Index which is 

used less often than the Liquidity Index. Consistency depends on the nature of soil 

minerals present and the water content and is especially significant for fme-grained 

soils. The latter are soils whose deformability is most subject to change without 

changing water content (West, 1995). A change in consistency will alter engineering 

properties such as shear strength, compressibility and bearing capacity. When the 

Consistency Index is 1, the Liquidity Index is 0 and the soil is at its Plastic Limit in a 

firm state. When the Consistency Index is 0, the Liquidity Index is 1 and the soil is at 

its Liquid Limit in a very soft state. The Consistency Index was calculated for Blue 

Clay samples collected at Gnejna Bay, Ghajn Tuffieha Bay and Rdum id-Delli (Table 

4.5). The values increased with a factor of 1 on the Liquidity Index values. This 

indicates that Blue Clay is a dry soil, resulting in stable conditions and absence of 

landsli<;ling. This corresponds to the same interpretation provided by the Liquidity 

Index results. 

The moisture content of a clay soil is affected not only by its particle size and mineral 

composition but also by the amount of clay present. Silt and sand particles although 

present in a clay soil will influence the moisture content value but will have little 

effect on the plasticity properties of the soil since the clay particles dominate (Barnes, 

1995). An Activity Index exists which is the ratio of the Plasticity Index to the 

percentage of clay-size particles within a sample. This index is controlled by the 

dominant clay mineral species in the soil and is a useful indicator of the presence of 

those species (Skempton, 1953a in Selby, 1993). The higher the activity the more 

clay-like the soil must be. A correlation exists between activity and clay mineral 

types. Montmorillonite generally has the highest Activity Index and a high Plasticity 
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Index since this expansive clay is able to disperse into very fme particles with large 

water-absorbing volume (Rahn, 1996). Non-expansive clay minerals such as kaolinite 

and illite have lower Plasticity Index and Activity Index values. Halloysite also has a 

low Activity Index (West, 1995). 

Activity represents the Plasticity Index of the clay minerals alone. Four ·groups of 

activity have been defined by Skempton (1953 in Bames, 1995) (Table 4.6). 

Table 4.6: Categories of Activity Index (after Skempton, 1953) 

''Description 
,<. f'""" ~ ~ ; > 

· ~ ~ctivity Index. 

Inactive < 0.75 

Normal 0.75- 1.25 

Active 1.25-2.0 

Highly Active > 2.0 

Source: Modified from Barnes, 1995 

The Activity Index is determined for Blue Clay samples (Table 4.5). It was found 

that utilising the categories devised by Skempton (1953 in Barnes, 1995) in Table 4.6, 

Blue Clay at Gnejna Bay and Rdum id-Delli can be classified as inactive since the 

Activity Index is 0.74 and 0.60 respectively. These values reflect other parameters 

such as low moisture content, high bulk densities and higher plasticity. The Activity 

Index for Gnejna Bay is very close to the normal category probably because Blue 

Clay at this site has a lower Plasticity Index than at Rdum id-Delli. At Ghajn 

Tuffieha Bay the Activity Index is 0.82 and falls under the normal category. It is 

interesting to note that Blue Clay at Ghajn Tuffieha Bay has the lowest percentage of 

clay content. This is compensated by a high moisture content, low bulk density and 

low Plasticity Index for the same site. This indicates that the range between the 

Liquid Limit and Plastic Limit is lowest for Ghajn Tuffieha Bay, thus less water 

content is needed to change the soil from a plastic state to a liquid state contributing to 

an increased rate of mass movement processes when compared with the ·other two 

sites. 
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4.3.5 Summary of results 

Three proposals can be made when interpreting and comparing the results derived 

from the physical properties tests. Rdum id-Delli is the most stable site. Gnejna Bay 

shows stability with a trend towards instability. Ghajn Tuffieha Bay is the site most 

prone to instability. Field observations at all three sites give no indication of active 

mass movement processes taking place and clay slopes seem to be in a stable 

condition. However the most reliable indication of slope instability will only be 

provided by a synthesis of results obtained from both the physical and geotechnical 

properties tests. 

4.4 Geotechnical properties tests of Blue Clay 

There are four main tests which study the stress-strain behaviour of soil (Lambe and 

Whitman, 1979): isotropic compression, confined compression, triaxial compression 

and direct shear. The mechanical properties of a material are the response of the 

material subject to change in stress. Shear strength is one of the most important 

mechanical properties responsible to maintain the stability of a slope (Pitty, 1979). It 

is dependent on physical properties such as particle size distribution, particle 

arrangement, mineralogy and degree of saturation (Ebuk et al., 1990; El-Sohby et al., 

1990 in Fan et al., 1994). The purpose of shear strength testing of soils is twofold 

(Vickers, 1978). 

1. To allow displacement under working loads to be predicted. 

n. To evaluate the external forces required to cause shear failure of a soil. 

In the case of Blue Clay, shear tests using the shear box technique were performed on 

· the samples to study the mechanical behaviour of the material. Shear tests determine 

the shear strength parameters of soils in terms of total stresses. Therefore 

measurement of pore water pressure is not required. The shear box test is a simple 

test to measure the strength of soil where the peak and residual shear strength 

parameters of cohesive soils are determined. This technique was chosen as both 

147 



cohesion and angle of internal friction can be determined. The parameters provide an 

indication of material strength and stability conditions. The shear box test is often 

referred to as direct shear test because an attempt is made to relate shear stress at 

failure directly to normal stress, thus directly defining . the Mohr-Coulomb failure 

envelope (Vickers, 1978). 

The shear box consists of a square box split horizontally in two halves (Figure 4.8). 

The sample is held between metal grilles and porous stones. A horizontal shearing 

force is applied to the lower part of the box at a constant rate until the sample fails. 

Shear strength is determined by measuring the shearing force causing failure. To 

determine the shearing resistance under a normal stress a vertical load is applied to the 

sample by means of a dead weight (Selby, 1993). Rates of horizontal displacement 

and vertical deformation are shown on two different dial gauges which measure strain 

and shear stress. Failure of the sample is indicated by a sudden drop or levelling off, 

of the proving-ring dial reading which records the reaction to shear stress. When the 

sample shears, its resistance to shear stress may drop rapidly. Strain is plotted against 

shear stress for tests with different vertical loads. Values for the normal stress are 

then plotted against the maximum values from the stress-strain plots which 

correspond to peak strength. The value of the angle of internal friction is determined 

from the slope of the line through the plotted points, and the value of cohesion is the 

displacement of the line above the zero point (Selby, 1993). 

Inner box 
Water filing the box 
for saturated tests 

screw 

Dial QC!uge to monitor 
vertical deformation 
during shear 

Weights 

Figure 4.8: The Shear Box apparatus 
Source: Selby, 1993 
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The technique explained in section 4.2.2 was used to collect Blue Clay samples for 

geotechnical tests. To maintain homogeneous properties, samples were collected from 

the same depth, at the same date and time as the samples which were used to 

determine the physical properties tests. This allows for a correlation of results 

between the physical properties and geotechnical properties of Blue Clay. Care was 

taken to cut the samples in blocks and keep them intact. This facilitates the 

preparation of samples iii the laboratory when the shear box tests are carried out. 

Undrained shear box tests were performed for Gnejna Bay, Ghajn Tuffieha Bay and 

Rdum id-Delli. There are two reasons for adopting this procedure. During undrained 

tests l}O drainage is permitted at any stage during shear, therefore the volume and 

moisture content of the samples remain constant. Blue. Clay is an impermeable 

material, making undrained tests an acceptable procedure. Five tests with different 

vertical loads ranging from 5 kg to 25 kg were carried out for each site. The 

horizontal shear force applied on the box was at a constant rate of strain of 1.27 

mm/minute. Samples were cut carefully to fit the shear box - 60 mm wide, 60 mm 

long and 25 mm high, in the form of an intact square block. Readings for. both the 

horizontal displacement, that is the strain and vertical deformation were recorded 

every 15 seconds. Each test was terminated when the specimen failed. Examination 

of the samples after testing showed that in most cases a shear plane had developed. 

Table 4. 7 displays data for the geotechnical properties of Blue Clay at Gnejna Bay, 

Ghajn Tuffieha Bay and Rdum id-Delli. The angle of internal friction and values for 

cohesion were calculated using the procedure described previously. Figures 4.9, 4.11 

and 4.13 are stress-strain plots whereas Figures 4.10, 4.12 and 4.14 are shear stress­

normal stress plots for the three investigation sites. 

Table 4.7: Results for geotechnical tests 

.: Strength param~ters ~ " \ .;:,,, .; Gnejna(,]Jay '' Ghajn ·Tuffieha Bay Rdum id-Delli 
. . . f ,; .· '· . ···t •.· • '~· ,· d .; ··t. ·. ' ... '·•'!'>< ~ ·, . . . . . 

Cohesion (KPa) 0.239 0.024 0.658 

Angle of internal friction CO) 30 25 22.5 
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Examination of the data presented in Table 4. 7 and the graphical plots derived from 

geotechnical tests provide an indication of the strength of Blue Clay. It should be 

noted that the response of soil to stress is determined by its mechanical strength, 

defined as the ability of soil to resist deformation and fracture without significant 

failure (Summerfield, 1991 ). Strength is closely controlled by water content which 

influences the behaviour of fine-grained soils significantly. This is expressed by the 

Atterberg Limits. Positive pore water pressures decrease soil strength, thus saturated 

soil on a slope is weaker than a dry mass. As a result landslides usually take place 

during and after rainfall events which increase the moisture content of the soil (Selby, 

1985). 

The strength or load-supporting capacity of soils vanes considerably. Different 

conditions of moisture and density lead to variations in the strength of any specific 

soil (Rahn, 1996). Low bulk densities usually exhibit high moisture contents, low 

strengths and high permeability (Allison, 1986). This is the case of Ghajn Tuffieha 

Bay where Blue Clay has a low bulk density, high moisture content and a low 

cohesion value, indicating low strength. The opposite situation applies for Gnejna 

Bay and Rdum id-Delli where a higher bulk density and lower moisture content 

contribute to a higher cohesion value, thus an increase in material strength. 

The strength of soil is related to cohesion and the angle of internal friction, known as 

the strength parameters (Rahn, 1996). This relationship is described by the Coulomb 

equation. 

Cohesion is the shearing strength of an unstressed soil which is very high in clay, but 

less significant in silt and sand. It is influenced by attraction of particles due to 

molecular forces and the p~esence of moisture. Thus the cohesive force in a particular 

soil varies with its moisture content. Dry clay has low cohesion which increases as 

moisture content increases until clay reaches the Plastic Limit. All of the three 

investigation sites exhibit low values of cohesion. This is due to the fact that soil is 

dry at each site since the moisture content is lower than the Plastic Limit values. 

However it should be noted that although Ghajn Tuffieha Bay has moisture content 

and Plastic Limit values which are very similar it exhibits the lowest cohesion value. 

A further increase in moisture beyond this limit reduces cohesion (Rahn, 1996), 
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especially when soil reaches the Liquid Limit. At this point cohesion would be 

largely overcome due to a high moisture content. Skempton and Northey (1953) and 

Wood and Wroth (1978) (in Head, 1980) indicate that at the Plastic Limit, shear 

strength may be more than one hundred times greater than at the Liquid Limit. This is 

also confirmed by Selby (1985) who maintains that for most soils shear strength at the 

Plastic Limit is about 110 KN/m2 and at the Liquid Limit this is about 1.6 KN/m2
• 

In cohesive, non-granular materials the shear strength is equal to cohesion (Pitty, 

1979). Thus values of cohesion give an indication of the strength of the soil. Ghajn 

Tuffleha Bay has the lowest cohesion value of the three sites. Consideration should 

be given to the fact that Blue Clay at this site is mainly composed of silt which is less 

cohesive than clay, contributing to a decrease in material strength. Where Blue Clay 

has a high clay content, such as at Rdum id-Delli, cohesion is more significant and the 

material stronger. At Gnejna Bay, Blue Clay has equal fractions of silt and clay and 

the value for cohesion lies between that for the other two sites. The silt fraction 

contributes to a lower cohesion than at Rdum id-Delli but the clay content increases 

the cohesion above that of Ghajn Tuffleh~ Bay. 

The basic control on the strength of soil and of most rocks is the frictional resistance 

to sliding between mineral particles in contact. Frictional strength is directly 

proportional to the normal stress (Selby, 1993) and increases with sand and gravel 

content. Clay has low internal friction that varies with the moisture content. In dry 

clay internal friction is much higher than in saturated clay, since grains can slide more 

easily once lubricated with water (Rahn, 1996). The internal friction of a material is 

expressed by the angle of internal friction or angle of shearing resistance. The value 

of the friction angle decreases with increasing plasticity and water content (Selby, 

1993). Rdum id-Delli which has the highest Plasticity Index exhibits the lowest angle 

of internal friction and highest cohesion value, indicating a high percentage of clay 

content within the soil. Gnejna Bay and Ghajn Tuffieha Bay have higher friction 

angles and lower cohesion values due to a larger proportion of silt and sand found 

within the material. Ghajn Tuffieha Bay has a lower friction angle than Gnejna Bay. 

An inverse relationship exists between the Liquid Limit and angle of internal friction 

(Watry and Ellis, 1995 in Rahn, 1996). Nelson (1992 in Rahn, 1996) found that an 
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angle of internal friction of 30° compares with Liquid Limit values around 40, 

whereas an angle of 6° compares with Liquid Limit values around 80. It can be 

assumed that an increased clay content lowers the angle of internal friction, and 

therefore the strength of the soil, and increases the Liquid Limit. This can apply for 

Rdum id-Delli, where Blue Clay has the highest clay content, lowest friction angle 

and highest Liquid Limit value. At all three sites both the Liquid Limit and friction 

angle values are high, implying that besides moisture content, other factors such as 

particle size distribution should be considered. High values for friction angles are 

explained by the fact that Blue Clay is a dry soil. 

Shear strength of a material can also be determined by studying the relationship 

between stress and strain which help in predicting the behaviour of soils. In general 

soil is treated as an elastoplastic material (Selby, 1993). A perfectly elastoplastic 

material, also known as St.Venant material, is perfectly elastic for stresses less than 

the yield stress and perfectly plastic for stresses equal to the yield stress (Selby, 1993). 

Vyalov (1986 in Selby, 1993) claims that most soils are viscoelastic-plastic materials 

with non-linear behaviour, that is soils exhibit all forms of behaviour - elasticity, 

plasticity and viscosity. Soils composed of clay and silt will change their behaviour 

with changing water content. Soil behaves as an elastic solid and fails by brittle 

fracture at very low water contents. At the Plastic Limit it will deform plastically and 

at the Liquid Limit it will behave as a viscous fluid (Selby, 1985) due to a high water 

content. 

Blue Clay is a normally-consolidated material which has low cohesion values and can 

be classified as soft clay (Table 4.2). Normally-consolidated material has undergone 

deposition only and has never been overloaded by additional burden. The stress­

strain plots (Figures 4.9, 4.1 i and 4.13) do not exhibit pronounced peak strength 

curves as in the case of over-consolidated material. The stress-strain curves for Blue 

Clay samples correspond best to rheological models applicable to elastoplastic 

materials. When stress is applied the material initially undergoes a phase of elastic 

behaviour. During this phase the entire strain is recoverable once the load is removed. 

As the load becomes sufficiently large, irreversible sliding of particles against each 

other occurs (Selby, 1993). When the stress is removed deformation will be 

permanent and the material experiences plastic behaviour. This is characterised by a 
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steady decrease in the gradient of the stress-strain curve. When the stress becomes 

great, bonds in the material will break and a shear surface will develop as a result of 

strain weakening resulting in a decrease in strength (Petley and Allison, 1997). The 

loss of strength with increasing strain is mainly due to particle reorientation and a 

breakdown of the soil fabric. Once the peak strength has been overcome and a shear 

surface is fully developed, the strength will settle to a residual value. The residual 

strength can only be achieved when a shear surface has been developed and has the 

nature of pure friction (Taylor and Cripps, 1987). The residual value is· important 

when assessing shear surfaces produced by landslides. The shear strength along such 

surfaces is less than the strength of the surrounding undisturbed soils. This strength 

needs to be determined when assessing the stability of existing landslides (Coduto, 

1999). 

Most normally-consolidated clays are slightly ductile, and have residual strengths that 

are slightly less than the peak strength. This is noted in the case of Blue Clay. At low 

stresses, the stress-strain curves for Gnejna Bay and Ghajn Tuffieha Bay indicate a 

ductile behaviour (Figure 4.15a). At peak strength samples do not undergo weakening 

but retain a constant strength for a considerable further accumulation of strain (Petley 

and Allison, 1997). At higher stresses, the strain-stress curves display a brittle 

behaviour (Figure 4.15b) where a peak and a residual strength can be identified 

(Coduto, 1999). Only in the case of Rdum id-Delli do the curves exhibit brittle 

behaviour for all stresses applied, indicating a competent material. 
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Figure 4.15: Stress - strain curves for ductile and brittle behaviour in soils 
Source: Coduto, 1999 
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Examination of Blue Clay samples after mechanical testing provides additional 

information on the behaviour of soil. Ductile behaviour is indicated by samples 

which were permanently deformed but do not show any fracturing. Alternatively 

brittle behaviour is clearly indicated by samples which developed a single shear plane. 

The latter results in a decrease in material strength at the base of the landslide. This 

explains the sudden failure in deep-seated landslides (Petley and Allison, 1997). 

4.5 Conclusion 

Knowledge of material properties provides useful information regarding the processes 

involved in the formation of geomorphological features. In the case of Blue Clay 

analysis of results derived from laboratory testing provides links between the physical 

properties and geotechnical properties which give an indication of the way soil 

behaves. Various similarities and differences can be distinguished between the three 

field investigation sites. 

Ghajn Tuffieha Bay exhibits a low bulk density, low cohesion value, high moisture 

content, greater percolation and high water retention capacities. This leads to an 

increased mudslide activity. Gnejna Bay and Rdum id-Delli exhibit similar properties. 

Both sites have lower moisture contents, higher bulk densities and higher cohesion 

values, resulting in an increase in material strength. Three main conclusions 

regarding the stability of the three field sites can be drawn from physical and 

geotechnicallaboratory data. 

i. Rdum id-Delli is the most stable site. 

n. Gnejna Bay shows stability with a trend towards instability. 

iii. Ghajn Tuffieha Bay is the site most prone to instability. 

The above information derived from laboratory testing can be used to explain 

geomorphological processes and landforms. Field observations at all three sites 

highlight the presence of mass movement processes, although these were not 

operating at the time of geomorphological mapping and sample collection. There is an 
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indication of instability especially at Rdum id-Delli, where mudslides are inactive. 

Reactivation may initiate when rainfall starts increasing water content and pore water 

pressure and leading to unstable conditions. Geomorphological mapping has showed 

that mudslides develop where Blue Clay outcrops at the base of an Upper Coralline 

Limestone plateau. They are distinct individual features some having a vegetation 

cover, whereas others have bare surfaces. Curved back scars and slip surfaces at 

Rdum id-Delli indicate the presence of deep-seated rotational slides, typical of 

argillaceous material (Enriquez-Reyes et al., 1990). 

Outcrops of Blue Clay are prone to erosion by water during high intensity storms 

when moisture content increases and the material starts losing strength. Long duration 

rainfall events saturate bare ground surfaces, resulting in overland flow and runoff. 

Water running on exposed clay erodes the ground surface, leading to the formation of 

gullies. The presence of desiccation cracks especially at Gnejna Bay and Rdum id­

Delli indicates dry conditions, slower rates of movement and more stable conditions. 

Blue Clay is a normally-consolidated clay which has low cohesion values and can be 

classified as a soft clay. From geotechnical testing it has been observed that a low 

clay content contributes to a decrease in material strength. Ghajn Tuffieha Bay has the 

lowest clay content and lowest cohesion value, whereas Rdum id-Delli has the highest 

percentage of clay and the highest cohesion value. Gnejna Bay and Ghajn Tuffieha 

Bay have higher friction angles due to a larger proportion of silt and sand. 

Stress and strain curves for Blue Clay correspond best to rheological models which 

display an elastoplastic behaviour. At low stresses, the stress-strain curves for Gnejna 

Bay and Ghajn Tuffieha Bay display a ductile behaviour. At higher stresses the 

behaviour becomes brittle and a shear plane develops. At Rdum id-Delli the stress­

strain curves exhibit brittle behaviour for all stresses indicating a competent material. 

Development of the shear surface· leads to a decrease in material strength at the base 

of the landslide resulting in a sudden failure. 

An understanding of shear strength is fundamental to the behaviour of a soil mass and 

is of major importance for slope stability (Barnes, 1995). Strength determines the 

ultimate force required to cause failure and is closely controlled by water content. 
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Landslides usually take place during and after rainfall events when there is an 

increase in moisture content. Values of shear strength and shear stress permit the 

determination of the Factor of Safety, expressed as the ratio between the two variables 

(Summerfield, 1991 ). 

Slope stability analysis is performed in the following chapter (chapter 5), which deals 

with the modelling of coastal slope instability for north-west Malta. Quantitative data 

derived from laboratory testing and data available from the surveyed slopes at each 

field site, are used to perform a modelling exercise utilising XST ABL software. From 

the input data, Factor of Safety values corresponding to· the most critical surfaces 

along which failure can occur, are calculated using the Bishop Method of analysis. 
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Chapter 5 

Stability analysis 
of coastal Blue Clay slopes 



5. 1 Introduction 

Issues of slope stability, instability ahd related mass movements. represent research 

interests where there is often interaction between geotechnical engineers and 

geomorphologists. Engineers are usually concerned with site specific projects. 

Geomorphologists are interested in longer term slope stability and slope ·evolution. 

The main distinction between geomorphologists and engineers lies in the objectives 

not the methodology of analysis of slope stability. Collaboration between the two 

professions should be encouraged as this yield benefits (Anderson and Richards, 

1987). 

In recent years there has been an increasing effort to quantify the stability of natural 

slopes (Sidle et al., 1985). This is clearly important when a judgement is needed 

about whether the slope is stable or not and decisions are to be made as a consequence 

(Nash, 1987). Consequently principles and techniques developed in engineering rock 

mechanics and soil mechanics (for example Terzaghi and Peck, 1967; Lambe and 

Whitman, 1979) have played a major role (Sidle et al., 1985). The techniques have 

been adopted by geomorphologists as a quantitative technique, allowing the detailed 

assessment of landforms (Allison, 1986). 

The stability analysis of landslides forms a major branch of soil mechanics (Goudie et 

al., 1990) and is a long established method of providing a quantitative statement on 

the stability of a slope by considering its geometry and mechanical properties 

(Graham, 1984 in Allison, 1986). Most of the work regarding models of slope 

processes concentrates on soft sediments and soils (Allison and Kimber, 1998). The 

focus on soft earth materials which have experienced little or no lithification, partly 

reflects the availability of modelling techniques developed in parallel disciplines 

(Michalowski, 1995a, 1995b; Duncan, 1996 in Allison and Kimber, 1998) which can 

be applied to geomorphological problems. Modelling techniques which allow for 

modifications such as differences in pore water pressure are often the best analysis 

procedure (Michalowski, 1995b in Allison, 1996). 
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The accuracy of the analysis of a particular slope depends on precise calculations of 

the slope geometry, the groundwater conditions and soil properties. It is also 

important that the analysis models the slope conditions precisely and that the method 

of analysis is reliable (Nash, 1987). A key element in the interpretation of slope 

stability is the rigorous incorporation of the hydrological element (Anderson and 

Richards, 1987). Having collected data on slope geometry, weight, pore water 

pressure and soil strength, an appropriate model of analysis can then be chosen 

(Goudie et al., 1990). 

There are several methods of stability analysis but the procedures are similar in 

concept. Nash (1987) gives a comprehensive review of Limit Equilibrium Methods 

of analysis which are presently used. The slope is modelled theoretically (Nash, 

1987) utilising field and laboratory data from geomorphological and geotechnical 

investigations (Allison, 1986) and the stability of the slope is determined by means of 

a Factor of Safety. This is known as a deterministic analysis. Other analyses express 

stability as a probability of failure, referred to as a probabilistic analysis (Coduto, 

1999). 

For the purpose of stability analysis, slip surfaces in homogeneous cohesive soils are 

assumed to have a circular failure surface which is a simplification of reality (Zaruba 

and Mencl, 1969) (Figure 5.1a). Rotational failures are treated as a series of vertical 

slices (Selby, 1993) and are analysed by various circular arc methods, such as Bishop 

Method of Slices (1955) (Goudie et al., 1990). Where non-homogeneous soil profiles 

exist, such as with layered strata, a non-circular slip surface may be appropriate 

(Barnes, 1995) (Figure 5.1b). The shape of non-circular curved failure planes is 

considered in several analytical methods such as Simplified Janbu Method and 

Spencer's Method (Selby, 1993). 

(a) Circular (b) Non-circular 

Figure 5.1: Circular and non-circular rotational failures 
Source: Craig, 1978 
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The results of a stability analysis are usually expressed by a Factor of Safety, which is 

applied to the shear strength of the soil and can be used to predict instability. 

Alternatively, the analysis can be adapted to give the slope angle at which failure will 

occur, the highest groundwater level or the ultimate surface loading that generates 

instability. In general different failure surfaces are examined and the one yielding the 

smallest Factor of Safety determined (Nash, 1987). 

Slope stability analysis has wide application. It may be used for the analysis of slopes 

with complicated geometry, non-homogeneous soil cqnditions, seepage and for 

circular or non-circular failure surfaces. With the advent of computers the use of 

stability analysis has become routine (Nash, 1987) and more complex analysis can be 

performed (Selby, 1993). Microcomputer availability has increased the use of models 

s:uch as the Finite Element Method and an improved representation of soil stress-strain 

states (Duncan, 1996 in Allison, 1996). However despite their wide use, all stability 

analysis have limitations (Allison, 1986) since they are dependent on theoretical 

models adopted for the slope and the soil. Measured values may not be entirely 

representative of overall mean site conditions (Allison, 1986). 

5.2 Factor of Safety 

The stability of a slope is usually expressed in terms of a Factor of Safety (Fs) (Selby, 

1993), defined by the relationship between forces tending to resist driving stresses and 

forces tending to disturb the slope material causing it to move (Cooke and 

Doornkamp, 1990). In simpler terms it is the ratio between shear strength and shear 

stress. When the Factor of Safety is equal to unity, forces promoting stability are. 

exactly equal to the forces promoting instability. When the Factor of Safety is smaller 

than unity, the slope is in a condition of failure. When the Factor of Safety is larger 

than unity, the slope is likely to be stable (Selby, 1993). Most natural slopes on which 

landslides occur have Factor of Safety values between 1 and 1.3. Earthquakes, 

undercutting and high pore water pressures reduce this value and trigger landsliding 

(Selby, 1985). 

162 



The calculation of the Factor of Safety depends upon measurement of the 

geotechnical properties of the slope materials (Petley, 1984 in Cooke and Doornkamp, 

1990). The Factor of Safety can only be calculated when there is an appropriate 

method of analysis. In an analysis, the Factor of Safety is evaluated for the most 

critical surface or circle which yields the lowest Factor of Safety value (Terzaghi and 

Peck, 1967; Lambe and Whitman, 1979; Barnes, 1995 and Coduto, 1999). The Factor 

of Safety of a slope decreases as the pore pressure increases, and the most critical 

condition will occur when pore pressures are greatest (Barnes, 1995). 

Although the Factor of Safety approach provides a good understanding of the 

parameters which promote movement, it has limited applicability to some situations. 

This is because both cohesion and pore water pressure are highly variable on most 

natural slopes, even over short distances and brief periods of time (Summerfield, 

1991). Another reason is that the Factor of Safety is determined using geotechnical 

data which may fail to consider external factors that are likely to influence slope 

stability. Geomorphological studies consider these external influences and help to 

identify sites that are likely to fail. 

5.3 Slope stability models 

The analysis of slopes has its origin in the work of Coulomb in 1776, when he 

introduced the concept that shear resistance of a soil is the sum of cohesive and 

frictional components (Heyman, 1972 in Nash, 1987). During the first half of the 

nineteenth century, field observations were made of slides in cuttings and 

embankments, mainly associated with construction of the railways and canals. 

Gregory and Colthurst (1840s) reported failures in Britain and Collin (1846) studied a 

number of failures in clays in France and concluded that slip surfaces are generally 

curved (Nash, 1987). 

In the early part of the last century the more modern methods of stability analysis 

were developed in Sweden (Petterson, 1955; Bjerrum and Flodin, 1960 in Nash, 

1987). During the construction of Gothenberg harbour there were several failures of 
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quay walls and in 1910 Fellenius developed the wedge analysis. This analysis 

assumed frictional behaviour of the soil and it was followed by the friction circle 

method presented by Hultin and Peterson in 1916. The discovery of the principle of 

effective stress by Terzaghi in the early 1920s led to its incorporation into stability 

analysis with pore pressure specified as an independent variable (Nash, 1987). In 

1955 Bishop presented his Method of Slices for circular arc analysis, a method which 

is still widely used today. Similar methods were developed for the analysis of slips on 

non-circular slip surfaces (for example Janbu et al., 1956). The above methods are 

considered as Limit Equilibrium Methods of ap.alysis (Nash, 1987). 

Limit Equilibrium Methods form a major framework for analysis of slope stability 

(Craig, 1978; Atkinson, 1981; Sidle et al., 1985; Anderson and Richards, 1987 and 

Coduto, 1999). Atkinson (1981) lists several advantages that make the Limit 

Equilibrium Method the most widely used method for examining the stability of soil 

structures. Limit Equilibrium analyses first define a potential failure surface, which is 

where shearing would occur if the slope were to fail (Coduto, 1999). The analyses 

aim to compute an average Factor of Safety that defines the ratio of the stresses 

resisting failure to the stresses required to bring a slope into a state of limiting 

equilibrium along a given failure surface (Sidle et al., 1985). Most Limit Equilibrium 

analyses are two-dimensional (Craig, 1978; Coduto, 1999) and are applicable to the 

analysis of slopes in static equilibrium. They are not well suited to the analysis of 

dynamic stability of slopes, such as debris flows, avalanches and slopes under 

earthquake loading (Nash, 1987). 

Limit Equilibrium analysis make use of the Method of Slices. In this method, a 

circular arc slip surface is presumed and the soil segment is divided into a number of 

approximately equal vertical slices for convenience of analysis (Figure 5.2). The 

forces acting on each slice are computed and summed for the whole mass (Atkinson, 

1981; Goudie et al., 1990). The basis of the Method of Slices lies in the fact that the 

normal stress acting at a point of the failure arc should be influenced maiilly by the 

weight of soil lying above that point (Lambe and Whitman, 1979). 
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(a) (b) 

_:_t 
E; 

Figure 5.2: (a) Division offailure mass into vertical slices 

(b) Summary offorces acting on each slice 

Source: Coduto, 1999 

The method of analysis by slices was first proposed by Fellenius (1936 in Selby, 

1993). Despite errors in determining the Factor of Safety, Fellenius Method (also 

known as the Ordinary or Swedish Method of Slices) is widely used because of its 

simplicity and because it is possible to do hand calculations. The method has now 

been programmed for computers (Lambe and Whitman, 1979). The Fellenius Method 

treats each slice as though it were nearly rectangular and assumes that the forces 

acting upon the sides of any slice have zero resultant in the direction normal to the 

failure arc for that slice (Lambe and Whitman, 1979; Coduto, 1999). For a slice with a 

curved base and an upper surface which is not parallel to the failure plane corrections 

have to be made. An alternative method was proposed by Bishop (1955) to take slip 

surface curvature into account. It was simplified by Janbu et al. (1956). 

Bishop (1955) originally presented his method for analysis of circular slip surfaces 

but it can be applied to non-circular slip surfaces by adopting a fictional centre of 

rotation. In this method it is assumed that the interslice shear forces may be 

neglected. The total normal force is assumed to act at the centre of the base of each 

slice, and is determined by resolving the forces on each slice vertically. By taking 

moments about the centre of the circle the overall stability is examined and a value of 

the Factor of Safety is obtained (Nash, 1987). The Simplified Bishop Method over­

determines the problem and values of the Factor of Safety are not exact. However it 

was shown by several examples that the method gives values for the Factor of Safety 
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which fall within the range of more rigorous methods and is recommended for general 

practice. Hand calculations are possible and computer programs are available (Lambe 

and Whitman, 1979). The Bishop Method is the recommended method for circular 

failure surfaces (Coduto, 1999). 

Janbu et al. (1956), following Bishop's work, published one of the first routine 

methods for the analysis of non-circular slip surfaces. In this method the assumption 

is made that the interstice shear forces are zero and thus the expression obtained for 

the total normal force on the base of each slice is the same as that obtained by Bishop. 

By examining overall horizontal force equilibrium a value of the Factor of Safety is 

obtained. This method of analysis over-specifies the problem. In general, overall 

moment equilibrium is not satisfied. Like the Bishop Method it is amenable to hand 

calculation and so is useful in practice (Nash, 1987). 

5.4 Slope stability analysis of the three field sites 

Slope stability analysis is important to this research as it enables a quantitative 

assessment of the stability of Blue Clay slopes for the north-west coast of Malta and 

instability can be predicted. This was not possible during geomorphological and 

geotechnical analysis. Stability analysis thus provides a link with the other main 

aspects of this study, namely geology, geomorphology and geotechnical 

investigations. The analysis should be regarded as complementary to this st_udy rather 

than be considered as the main_objective of the research. 

Techniques used in this thesis involve a two-dimensional analysis of three­

dimensional problems, using the Limit Equilibrium Method of analysis. 

Geomorphological mapping proves to be useful since critical parameters not included 

in geotechnical investigation can be identified. Although there are several slope 

stability models, it is very rare to find more than one model relevant to any specific 

study. Consequently it is very important to identify the most suitable model (Allison, 

1986). 
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Since effective stress is a better indicator of soil strength, an effective stress analysis 

was performed for the purpose of this research. In this type of analysis the effective 

strength parameters are evaluated using appropriate laboratory tests, computing the 

effective normal stress along the failure surface and computing the shear strength 

using Mohr-Coulomb equation (Coduto, 1999). The pore pressure is specified as an 

independent variable (Nash, 1987). In practice this is achieved if the failure mass of 

soil is divided into a number of slices, such as with the Bishop Method of Slices. 

5.4.1 Choice of model 

Initially slope stability analysis for this research was performed using both the Bishop 

and Janbu methods. However Bishop's Method (1955) was chosen to perform slope 

stability analysis on Blue Clay slopes as the Factor of Safety for circular failure 

surfaces calculated by Bishop's Method is greater than the value from Janbu's 

formulation. The Bishop's Factor of Safety value is generally within 5% ofthe Factor 

of Safety values that are calculated by more rigorous methods such as the General 

Limit Equilibrium. method. For this reason, the Simplified Bishop Method is 

generally used for the analysis of circular failure surfaces. Janbu's Method is more 

flexible as the formulation can be applied to calculate the Factor of Safety for circular 

and non-circular surfaces. The Simplified Bishop Method has been formulated for 

circular surfaces only and cannot be used for non-circular surfaces. 

Another reason for selecting Bishop's Method (1955) for the analysis of Blue Clay 

slopes is because all the required parameters can be measured in the field and in the 

laboratory at each field site. Slope geometry and material geotechnical properties 

have been determined in previous investigations and used for the stability analysis. In 

this method all input variables can be kept constant. Alternatively an individual 

parameter can be changed to examine how this influences overall stability. In this 

case the pore pressure ratio (ru) was changed to study its effect on the stability of Blue 

Clay slopes by identifying the critical phreatic conditions at which the slopes fail. 

A computer program was utilised to perform the analysis of slopes for the three 

coastal sites where previous geomorphological and geotechnical investigations have 
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been undertaken. The computer program utilised for slope stability analysis is 

XST ABL. This is a fully integrated slope stability analysis program which permits the 

development of slope geometry. XSTABL consists of two interactive but separate 

parts: a data preparation interface and a slope stability analysis. The program uses the 

Method of Slices to perform a two-dimensional Limit Equilibrium analysis to 

compute the Factor of Safety for a slope according to General Limit Equilibrium 

(GLE) Method, Janbu's Generalized Procedure of Slices (GPS), Simplified Bishop 

and Simplified Janbu. 

The Simplified Bishop and Janbu Methods of analysis are used by the program for all 

search analyses which are used to identify the most critical surface with the lowest 

Factor of Safety. The use of the computer program in performing the stability 

analysis offers a number of advantages. 

i. Once the basic input data have been entered, the program allows for other data to 

be varied. 

ii. The most critical slip surface along which failure is .likely to occur can be 

determined. 

m. Current state of stability of the monitored slopes can be assessed by utilising 

measured parameters and predicted data. 

iv. Calculations are computed quickly enabling a large number of analyses to be 

carried out over a short period of time. 

Despite the advantages it should be noted that stability models are simplifications of 

reality and can exclude important data. A model simulates the effect of an actual or 

hypothetical set of processes, and forecasts one or more possible outcomes. Models 

can never fully represent the real world, but can only be analogies or analogues which 

have some features and behaviours in common with it (Kirkby et al., 1993). Selby 

(1982 in Allison, 1986) suggests that an error factor of ± 1()0/o in modelling can be 

supplemented by mapping which can improve the knowledge of local conditions. The 

geomorphological mapping exercise discussed in chapter 3 provides additional 

information, such as the presence and location of mass movement processes and 

landforms, on the north-west coast of Malta with special reference to the three study 

sites. 
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5.4.2 Input data 

At the start of a stability analysis, it is necessary to know the geometry of the slide 

mass which is bounded by the shear plane and ground surface. The other parameters 

necessary to complete stability analysis can be understood from Coulomb's failure law 

(Nash, 1987; Goudie et al., 1990). Coulomb's law indicates that the weight of the 

slide mass (unit weight), pore water pressure and strength parameters need to be 

known in order to calculate all the relevant forces in a stability analysis. Stability is 

also dependent upon overall slope height and angle (Goudie et al., 1990). A good 

appreciation of the geology and hydrogeology is essential, and often it is useful to 

classify the instability mechanism. In general a two-dimensional analysis will be 

made, and the geometry must be simplified so that representative cross-sections may 

be drawn (Nash, 1987). 

The greatest uncertainties in stability problems arise in the selection of the pore 

pressure and strength parameters (Lambe and Whitman, 1979). The distribution of 

pore pressures within the slope is required if an effective stress analysis is being 

carried out. Where possible this is obtained from instrumentation in the field. 

However often a model of groundwater is needed as a basis to interpret observations 

and for interpolation (Nash, 1987). 

The data required for the stability analysis has been collected during 

geomorphological and geotechnical investigations and discussed in chapters 3 and 4. 

It includes data on the slope geometry and material strength which includes cohesion, 

angle of inte,mal friction, and bulk unit weight. Data for the slope profile was entered 

in terms of x and y coordinates corresponding to horizontal distance and vertical 

height above sea-level respectively. Data for the slope geometry was collected during 

surveying whereas the strength parameters were measured during laboratory testing. 

The user is also required to specify the number of soil units, that is if the slope is 

composed of soil materials with different properties. In this case there was only one 

soil unit, since the investigated slopes are all composed of Blue Clay. The default is 

set for isotropic conventional strength, using the Mohr-Coulomb equation. 
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Since the strength parameters were determined and an effective stress analysis was 

performed, the pore pressure is specified as an independent variable. Pore pressure 

ratio (ru) value was used in this analysis since pore water pressure was not measured 

in the field due to lack of instrumentation and because the precise distribution of pore 

pressures is unknown. The pore pressure ratio value is the ratio between the pore 

pressure and the total vertical stress at the same depth and can be used to represent 

overall or local pore pressure conditions in a slope (Bames, 1995). Typically pore 

pressure ratio values are usually less than or equal to about 0.5. Larger values are 

likely to give numerical problems when using XSTABL. In this program the pore 

pressure ratio permits a search for the most critical surface. However it is usually 

reserved for estimating the Factor of Safety value from slope stability charts or for 

assessing the stability of a single surface. 

The pore pressure ratio represents overall pore pressure conditions in Blue Clay 

slopes and is the only variable parameter for the whole analysis. For the frrst analysis 

at each site the pore pressure ratio is set at 0.0. This ratio increases by a factor of 0.05 

each time a new analysis is performed until the ratio generates a calculated Factor of 

Safety which is less than unity, indicating a state of instability. At this point other 

analyses were not performed, since the transition between stability and instability is 

established. Differences can be observed between the three sites where instability is 

reached at different pore pressure ratio values. 

The computer program generates an input file which contains all the required data to 

perform the analysis. XSTABL offers a selection of five different analyses. For the 

purpose of this study the Circular Surface Search is chosen. The user is required to 

select either the Bishop Method or the Janbu Method for calculating the Factor of 

Safety. In this type of analysis the user is required to establish the number of failure 

surfaces to be generated (in this case this is set at ten), the number of surfaces to be 

generated from each failure surface (this is set as 1) and the initiation and termination 

points in terms of the x-coordinates where the surfaces should be generated along the 

slope profile. 
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XSTABL changes the input file into an output file, which permits the actual slope 

stability analysis to be performed on the basis of the input data. A plot of the 

geometry of the slope profile is generated first. This is followed by another plot 

which generates all the failure surfaces previously requested. The final plot displays 

the ten most critical surfaces. The surface with the lowest Factor of Safety is 

considered as the most critical surface along which failure is likely to occur. This 

surface is clearly distinguished on the plot. The plots are displayed for each of the 

three sites in Figures 5.3, 5.4 and 5.5. In the output file the stability analysis 

generates the x and y coordinate points for the most critical circular failure surface 

analysed by the Simplified Bishop Method and a summary of the ten most critical 

surfaces for the whole analysis. For each surface the Factor of Safety, circle centre x 

and y coordinates, radius of the circles used during the analysis as failure surfaces, 

initial and terminal x coordinates and . resisting moment are given. Results of the 

output files for all the three investigated sites are presented in the Appendix. 

5.4.3 Stability analysis 

Slope stability analysis was conducted on coastal slopes previously identified for 

geomorphological and geotechnical investigations at Gnejna Bay, Ghajn Tuffieha Bay 

and Rdum id-Delli. The geometry of slope profiles and Factor of Safety results for 

each of the three sites are presented in sections 5.4.3.1 and 5.4.3.2 respectively. A 

discussion on the interpretation of results as related to the key issue of slope stability 

follows in section 5.4.3.3. 

5.4.3.1 Slope geometry 

The slope profile at Gnejna Bay (Figure 3.17, Table 3.1) shows a remarkably steep 

gradient at the rear of the slope (mean gradient 35.49°); whereas the main part (mean 

slope angle is 23.50°) and the toe slope area (mean slope angle is 25.20°) are gentler. 

The mean gradient for the entire slope is 26.31° (Table 5.1). The profile extends along 

the entire slope from the toe lobe to the rear part at the base of the Upper Coralline 

Limestone plateau. It covers a horizontal distance of 132.77 m and reaches a 

maximum height of 71.68 m above sea-level. The toe is situated at an elevated 

height of 9.28 m resting above a Globigerina Limestone cliff. The profile is divided 

into 14 segments. 
171 



-..1 
N 

Gnejna Bay 

Slope sections 

Toe area 

Main section 

Rear part 

Entire slope 

Angle of internal friction 

Table 5.1: Mean gradient characteristics of surveyed slopes 

Ghajn Tuffieha Bay Rdum id-Delll 
I 

Mean gradient Slope sectio~s Mean gradient Slope sections Mean gradient 
(•) _(") (D) 

25.20 Toe area Bulge- 31.20 Toe area 16.38 
Flat top- I 0.89 

23.50 Main section 19.34 Main section 22.32 

35.49 Rear part 23.04 Rear part 27.78 

26.31 Entire slope 19.22 Entire slope 22.20 

30.00 Angle of internal friction 25.00 Angle of internal friction 22.50 



At Ghajn Tuffieha Bay, the slope profile (Figure 3.19 and Table 3.2) extends from the 

base of the Upper Coralline Limestone plateau to sea-level. The toe of the slope is 

marked by a steep gradient (31.20°) which bulges on the beach. The main part of the 

slope stretches over a horizontal distance of 125.94 m and has a mean slope angle of 

19.34°. The rear part of the slope steepens again and reaches a mean gradient of 

23.04°. The mean gradientfor the entire slope excluding the beach is 19.22° (Table 

5.1 ). The slope is divided into 22 segments. It stretches over a horizontal distance of 

226.77 m and reaches a maximum height above sea-level of74.31 m. 

The slope profile at Rdum id-Delli (Figure 3.21 and Table 3.3) is characterised by a 

flattened area at the lower part of the slope (mean slope gradient is 16.38°), a gentle 

main slope section (mean slope gradient is 22.32°) and a steeper rear slope (mean 

slope gradient 27.78°). The mean gradient for the entire slope is 22.20° (Table 5.1). 

The slope stretches over a horizontal distance of 118.35 m and reaches a maximum 

height of 44.81 m above sea-level. This profile is shorter than the profiles at Gnejna 

Bay and Ghajn Tuffieha Bay. The surveyed slope stretches from the base of the small 

cliff below the Upper Coralline Limestone plateau towards the Globigerina Limestone 

cliff where this is interrupted by boulder scree at sea-level. The slope geometry 

consists of 12 segments. 

The data presented in this section and in chapter 3, together with field observations 

indicate that the steepest slope profile is that at Gnejna Bay, whereas Ghajn Tuffieha 

Bay has the lowest mean slope angle. The gradient at Rdum id-Delli lies between 

those of the other two sites. In all three cases the rear part of the slope tends to be 

steeper when compared with the rest of the slope (Table 5.1). The main slope section 

has usually the most gentle gradient which is similar to the mean gradient for the 

entire slope. The toe area is steeper than the main section. At Ghajn Tuffieha Bay, the 

toe area is characterised by two distinct parts: a top flat area and a steep slope bulging 

onto the sandy beach below. The bulge is the steepest part of the entire slope. At 

Rdum id-Delli the toe of the slope is identified by a flat area. In this case the gradient 

is gentler than that of the main section (Table 5.1). 
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5.4.3.2 Factor of Safety values 

XSTABL accepted all input data for the three sites. Thus it is assumed that the 

measured slope geometries and strength parameters are indicative of site conditions. 

The measured parameters used as initial input data were used in the analysis to 

calculate Factors of Safety, which determine quantitatively the stability conditions of 

the investigated slopes at each of the three coastal sites. Computations of the Factor 

of Safety and a summary of the ten most critical failure surfaces generated by the 

Simplified Bishop Method for each analysis for the three sites are presented in the 

Appendix. 

Various values for the Factor of Safety are presented for each investigated slope 

(Table 5.2) since several analyses were performed for each site to determine the 

critical conditions under which failure occurs. A range of results is more relevant 

especially when considering the geotechnical aspect of this study. The latter involves 

measurement of parameters which can vary through time and space, influencing the 

overall stability conditions. Ultimately when interpreting results Factor of Safety 

values can be linked with laboratory data to assess slope stability. 

At Gnejna Bay, eight stability analyses were performed using the Simplified Bishop 

Method, generating eight Factor of Safety values (Table 5.2). Plots generated by the 

stability analyses are shown in Figure 5.3. All parameters were kept constant except 

for the pore pressure ratio. This was changed each time an analysis was carried out 

until an unstable condition was reached. Assuming the pore pressure ratio to be zero, 

the calculated Factor of Safety is very high (1.554) indicating stable conditions. As 

the pore pressure ratio starts to increase, the Factor of Safety value decreases leading 

to instability. It is noted that as the pore pressure ratio increases by a factor of 0.05 

each time a new analysis is performed, the Factor of Safety decreases by a factor of 

around 0.089. The slope remains stable until the pore pressure ratio is 0.30 and the 

corresponding Factor of Safety is close to unity (1.020). The transition between 

stability and instability is reached when the pore pressure ratio is increased to 0.35. 

The value of the Factor of Safety in this case is below unity (0.932) indicating 

instability (Table 5.2). 
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Table 5.2: Calculated Factor of Safety values using the Simplified Bishop Method 

GnejnaBay Ghajn~ Tuffieha Bay Rdum id-Delli 

Pore pressure ratio Factor of Safety Pore pressure ratio Factor of Safety Pore pressure ratio Factor of Safety 

0.00 1.554 0.00 1.391 0.00 1.181 

0.05 1.465 0.05 1.314 0.05 1.115 

0.10 1.376 0.10 1.236 0.10 1.049 

0.15 1.286 0.15 1.158 0.15 0.984 

0.20 1.197 0.20 1.080 

0.25 1.109 0.25 1.003 

0.30 1.020 0.30 0.925 

0.35 0.932 



Figure 5.3: Slope stability plots for Gnejna Bay generated by the Simplified Bishop Method 

GNtJNA.-1 10-0SI-u 18:211 

100 

80 

~ 

f! 
" 60 ;; 
_s 
VI 
X -40 
<( 

1 
>-

20 

GNEJNA BAY: FOS - BISHOP 

20 40 60 80 100 
X-AXIS {meters) 

(a) Slope profile 

CHtJNA...I 10-M-n 16:21 

GNEJNA BAY: FOS - BISHOP 

120 

100 1 0 surfaces have been generated for this analysis 

~ .. 
~ 

80 

~ 60 

" _s 
VI 
x40 
<( 

I 
>-

20 

20 40 60 80 100 120 

X-AXIS (meters) 

(b) Generated failure surfaces 

GHE:JNA-1 10-osl-.. 16:29 

GNEJNA BAY: FOS - BISHOP 

140 

140 

100 10 most critical surfaces, IAINIIAUIA BISHOP FOS = 1.554 

80 

~ e 
.. 60 
;; 
_s 
VI 
x40 
<( 

I 
>-

20 

20 40 60 80 100 120 140 
X-AXIS {meters) 

(c) Critical failure surfaces 

160 

160 

160 

176 



At Ghajn Tuffieha Bay, seven stability analyses were carried out using the Simplified 

Bishop Method. Seven Factor of Safety values are produced (Table 5.2). Plots 

generated by the stability analyses are shown in Figure 5.4. The pore pressure ratio is 

the only variable that kept changing during the different analyses to identify the 

critical phreatic conditions when the slope fails. When it was assumed that the pore 

pressure ratio was zero, the slope was at its maximum stable condition, yielding a 

Factor of Safety of 1.391. The subsequent analyses show a decrease in the Factor of 

Safety by a factor of around 0.078 as the pore pressure ratio increased by a factor of 

0.05. The slope remains in a stable state until the pore pressure ratio is 0.25 producing 

a Factor of Safety of 1.003. Instability is reached when the pore pressure ratio is 

increased to 0.30, yielding a Factor of Safety below unity (0.925) (Table 5.2). 

At Rdum id-Delli only four stability analyses were carried out using the Simplified 

Bishop Method. Thus four Factor of Safety values were calculated (Table 5.2). Plots 

generated by the stability analyses are shown in Figure 5.5. The pore pressure ratio 

was varied for each analysis to determine the critical phreatic conditions at which the 

investigated slope fails. When the pore pressure ratio is assumed to be zero, the 

Factor of Safety is 1.181. The Factor of Safety decreased by a factor of around 0.066 

as the pore pressure ratio increased by a factor of 0.05 (Table 5.2). The slope remains 

stable until the pore pressure ratio is 0.10 yielding a Factor of Safety which is slightly 

higher than unity (1.049). The transition between stability and instability is reached 

when the pore pressure ratio is 0.15 yielding a Factor of Safety of0.984 (Table 5.2). 
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Figure 5.4: Slope stability plots for Ghajn Tuffieha Bay generated 
by the Simplified Bishop Method 
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Figure 5.5: Slope stability plots for Rdum id-Delli generated by the Simplified Bishop Method 
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5.4.3.3 Discussion and interpretation of results 

The maximum slope at which the material is stable is referred to as the angle of 

repose. The angle of repose is fundamentally related to the peak friction angle 

(Lambe and Whitman, 1979). If the angle of internal friction is equal to the slope 

angle, the Factor of Safety is equal to unity. If the angle of internal friction is larger 

than the slope angle, the Factor of Safety is greater than unity yielding a stable slope. 

Instability and sliding will occur when the angle of internal friction is less than the 

slope angle (West, 1995). Gradient characteristics of the selected slopes can therefore 

provide a significant assessment of slope stability when compared with the angles of 

internal friction measured in the laboratory. The difference between slope angle and 

friction angle is that slope angle refers to the gradient of the slope measured in the 

field whereas friction angle refers to the angle of internal friction determined from 

geotechnical tests on the material carried out in the laboratory. 

In the case of Gnejna Bay, the mean gradient for the entire slope is smaller than the 

angle of internal friction, indicating stable conditions (Table 5.1). This is also 

confirmed through geomorphological and geotechnical investigations. The average 

gradient is greater than the angle of internal friction only at the rear part of the slope. 

This indicates that this is the most unstable part of the slope where perhaps the highest 

pore water pressures are found. The main section and toe area seem to be in a stable 

condition as their gradients are lower than the angle of internal friction. 

At Ghajn Tuffieha Bay the mean slope gradient for the entire slope is less than the 

angle of internal friction. The rear part, main section and upper toe area seem to be 

stable and have a mean gradient smaller than the angle of internal friction. There is 

an indication of instability at the .lower bulge of the toe area which extends on the 

beach. The gradient in this part is steep (31.20°) and greater than the angle of internal 

friction (Table 5.1 ). It should also be noted that Ghajn Tuffieha Bay which is the site 

most prone to instability has the lowest mean slope angle of all three sites. This 

indicates that other factors besides the gradient influence slope stability. 

Interpretations regarding the comparison of the mean gradient characteristics with the 

angle of internal friction at Rdum id-Delli are similar to Gnejna Bay. The mean 
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gradient for the entire slope is lower than but almost equal to the angle of internal 

friction (Table 5.1 ). As in the case of Gnejna Bay, the rear part seems to be unstable 

and its gradient is greater than the angle of internal friction. It can be assumed that 

pore water pressures are high on this part of the slope. This assumption can only be 

confirmed if the pore water pressure distribution for this slope is measured on site by 

means of appropriate instrumentation, such as piezometers. 

Additional to and more important than the relationship between the slope gradient and 

angle of internal friction, stability for Blue Clay slopes has been determined by 

modelling the slopes under study. The information used as input data to run the slope 

stability modelling was collected and measured in late winter and throughout spring. 

Consequently the stability analyses for this study simulate spring conditions 

characterised by a lower amount of rainfall and lack of moisture when compared with 

the rainy season. For this reason slopes were in a stable condition when 

measurements were recorded. This is also indicated by geotechnical testing, which 

has revealed that at the time of data collection, clay was dry and acting as a solid 

material. This factor explains the high Factor of Safety values calculated when 

performing the stability analyses. Collection of data during the winter months would 

have presented a different situation. A high amount of rainfall results in an increase in 

moisture content and pore water pressure leading to unstable conditions. During the 

winter months Factor of Safety values would be lower than the values presented in 

section 5.4.3.2, due to an increase in moisture content and a decrease in material 

strength. 

The Factor of Safety values for Gnejna Bay are the highest for the three sites. The 

results presented in the previous section indicate stable conditions. Instability will 

take place when the pore water pressure is high, perhaps during an exceptional rainy 

season. This has also been confirmed during field observations and geomorphological 

mapping which indicate slope stability conditions with no apparent sliding taking 

place. Geomorphological mapping has established that Gnejna Bay is well drained by 

a system of stable gullies generally situated at the lateral sides of the clay slopes. 

Consequentiy water exhibits itself as overland flow, preventing the accumulation of 

high pore water pressures in the material. This fact can be explained by the texture of 
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Blue Clay at this site which has a clay content of 44%, resulting in a more permeable 

type of soil, with a low water retention capacity. 

Stability of a slope is effected to a large extent by internal friction and cohesion 

(Rahn, 1996). The angle of internal friction for Gnejna Bay is the highest for all three 

sites and the cohesion value is lower than that at Rdum id-Delli but higher than that at 

Ghajn Tuffieha Bay. This reflects the soil texture which is composed of equal 

proportions of clay and silt and a lower amount of sand. Laboratory testing for 

Gnejna Bay indicates that Blue Clay has a low moisture content, a high bulk density 

and bulk unit weight. The load bearing capacity of the material which is relevant to 

slope stability is indicated by the bulk density. The Activity Index at Gnejna Bay falls 

under the inactive category. Laboratory testing and field observation confirm the 

accuracy of the modelling exercise suggesting that the studied slope at Gnejna Bay is 

stable. 

Stability analyses for Ghajn Tuffieha Bay generate lower Factor of Safety values than 

at Gnejna Bay for a given pore. pressure ratio (Table 5.2). Instability at this site will 

also take place when the pore pressure ratio is high but this will be reached before 

Gnejna Bay. During geomorphological investigation no landslides were observed and 

slopes seemed to be in a stable condition. This observation corresponds to the Factor 

of Safety values indicating that the studied slope was stable when data were collected 

and confirms the accuracy of the slope stability analyses. Geomorphological mapping 

has revealed a concentration of active and stable gullies ·especially found at the lateral 

sides of bulges which back the entire stretch of the sandy beach. This indicates that 

there is an established drainage pattern and that the phreatic surface is high at the 

lowermost parts of the slopes. 

Laboratory tests have showed that Blue Clay at this site has a low bulk density and 

bulk unit weight, low Plasticity Index, high moisture content and high water retention 

capacities leading to unstable conditions. Cohesion is lowest for all three sites, leading 

to a decrease in material strength. This is related to the soil texture which is composed 

of a high silt content contributing to a dilatant material and a lower clay percentage. 

High water retention and percolation rates suggest that the material can absorb a high 

amount of water, whilst remaining in a stable state. This is supported by high Factor 
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of Safety values which predict that instability will only occur at an exceptional high 

pore water pressure which the material will no longer be able to sustain. The high silt 

content at Ghajn Tuffieha Bay results in a more permeable soil, whereas the clay 

minerals may have a high swell capacity accounting for the high moisture content. 

Factor of Safety values at Rdum id-Delli are the lowest for the three sites {Table 5.2). 

These show a significant decrease on the Factor of Safety values calculated for the 

other two sites at the same pore pressure ratios. Thus it can be assumed that 

instability at Rdum id-Delli is reached when the pore water pressures are low, 

compared with the other two sites. This is also confirmed from field observations and 

geomorphological mapping. It is evident that sliding events have occurred at this site, 

although at the time of data collection these landforms were stable. Mudslides will 

reactivate once the pore water pressure is increased as a result of rainfall, most 

significant during the winter months. 

Rdum id-Delli exhibits similar physical and mechanical properties as at Gnejna Bay: 

low moisture content, high bulk density and unit weight and higher cohesion values, 

resulting in an increase in material strength. The high Plasticity Index indicates that 

the material has a high water retention capacity and is less permeable than the 

material found at the other two sites. This can cause an accumulation of high pore 

water pressure within the soil. Blue Clay at this site exhibits the highest cohesion 

value and lowest angle of internal friction for all the three sites. This is related to the 

texture of Blue Clay at Rdum id-Delli which has the highest clay content ~nd lowest 

sand proportion for the three sites. Due to the high clay content, the soil is capable of 

absorbing and retaining a significant amount of water. Geotechnical investigations 

have concluded that Rdum id-Delli is the most stable site. 

Slope stability analyses and low Factor of Safety values predict that at Rdum id-Delli 

instability is reached before the other two sites. This hypothesis may be related to the 

fact that once the clay is fully saturated and the swell capacity of the clay minerals is 

at its maximum, additional water creates excessive pore water pressures which are too 

large to be sustained resulting in sliding and instability. In this case the slope stability 

analyses also seem to reflect the prevalent situation, indicating that such an exercise 

can assess the current situation and predict instability with a high degree of accuracy. 
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Differences between the stability results derived from the laboratory and discussed in 

chapter 4 and modelling analyses, discussed in this section, are evident, especially 

with regards to Ghajn Tuffieha Bay and Rdum id-Delli. Laboratory results have 

determined that Rdum id-Delli is the most stable site, Gnejna Bay shows stability with 

a trend towards instability and Ghajn Tuffieha Bay is the site most prone to 

instability. The slope stability analyses have generated different Factor of Safety 

values for each site and the transition between stability and instability is reached at 

different pore pressure ratios. This transition is first reached at Rdum id-Delli 

followed by Ghajn Tuffieha Bay and Gnejna Bay respectively. Thus the stability 

analyses give the indication that Rdum id-Delli reaches instability before the other 

two sites. Gnejna Bay is the most stable site yielding the highest Factor of Safety 

values. Instability at Ghajn Tuffieha Bay is reached almost at the same stage as at 

Gnejna Bay when the pore pressure ratio is quite high, indicating that this is also a 

stable site. 

Disparity in the stability results may anse from the fact that the results were 

determined using different techniques and data collected during geotechnical and 

geomorphological investigations. Stability results derived from the laboratory are 

based on analysis of samples tested in the laboratory. Results derived from the 

modelling analyses are based on a combination of lab data and other information 

related to slope surveying which could have influenced the overall stability 

assessment for Blue Clay slopes. 

5.5 Conclusion 

Stability analysis is important to this research as it provides additional details and 

information on issues relating to coastal slope stability for the north-west coast of 

Malta. By linking the results obtained from the stability analysis with laboratory tests 

and geomorphological mapping, significant interpretations and conclusions can be 

made. Both geomorphological mapping and geotechnical investigation suggest that 

the slopes at Gnejna Bay, Ghajn Tuffieha Bay and Rdum id-Delli are stable for most 

of the year. For example, from laboratory tests it was found that at all three sites, 
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Blue Clay behaves as a solid material since the moisture content is lower than the 

Plastic Limit. Also the presence of desiccation cracks especially at Gnejna Bay and 

Rdum id-Delli indicate loss of moisture as a result of dry conditions. Only during the 

winter months Blue Clay slopes are likely to experience instability as a result of high 

pore water pressures from rainfall. 

Due to a high Plasticity Index, Blue Clay has a high swell capacity, lower 

pe'rmeability, is more compressible and consolidates over a longer period of time 

under load. This indicates that Blue Clay can absorb a significant amount of water 

before soil reaches a liquid state and instability occurs at high pore water pressure. 

This is also confirmed by Factor of Safety values calculated from the stability 

analyses. At Gnejna Bay and Ghajn Tuffieha Bay instability is reached ·when the pore 

pressure ratio is high, resulting from a fully saturated soil. Rdum id-Delli produces 

the lowest Factor of Safety values and the transition between stability and instability 

is reached before the other two sites. Gnejna Bay generates the highest Factor of 

Safety values for all three sites. Ghajn Tuffieha Bay also produces high· Factor of 

Safety values, although they are significantly less than those at Gnejna Bay (Table 

5.2). 

The low cohesion values typical of the three sites result from Blue Clay being a dry 

soil with moisture contents below the Plastic Limit. It is interesting to note that Rdum 

id-Delli which has the highest cohesion value, indicating an increase in material 

strength, produces the lowest Factor of Safety values. It can be concluded that 

although the material is competent it becomes unstable more quickly than expected. 

In fact landslide activity was observed only at this site, indicating that mass 

movement processes are present although inactive during dry periods. Factor of 

Safety values and geotechnical data suggest an inverse situation for Ghajn Tuffieha 

Bay. Although the material at this site shows a decrease in strength, it remains stable 

even under saturated conditions. Instability is reached when the pore water pressure 

is exceptionally high to be sustained by the material. 

Stability depends on a variety of parameters, such as cohesion, angle of internal 

friction, gradient, bulk unit weight and pore water pressure. It can be concluded from 

stability analyses that the investigated slopes are very sensitive to changes in the 
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phreatic surface and groundwater conditions simulated by changes in the pore 

pressure ratio. In all cases as the pore pressure ratio increases the Factor of Safety 

decreases leading to instability. High pore water pressures can be produced from 

rainfall, resulting in a decrease in shear resistance and consequently slope failure 

(Cooke and Doornkamp, 1990). 

Various results of the Factor of Safety are presented for each site in Table 5.2 since 

several analyses were performed. This is more significant when analysing and 

interpreting slope conditions and relating results to other elements of the study. 

Additional detail is provided and previously measured parameters can be used and 

applied with more knowledge. Factor of Safety values show significant differences 

between the three sites. The transition between stability and instability is reached at 

different pore pressure ratios. The slope at Gnejna Bay remains the most stable slope 

at a high pore pressure ratio. This is followed by Ghajn Tuffieha Bay and Rdum id­

Delli. Factor of Safety values decrease in this order. The modelling exercise proved 

to be useful as it determines the prevalent conditions at each of the three sites and 

predicts instability rigorously. 

While recognizing the limitations, slope stability analyses have become a common 

analytical tool to assess the Factor of Safety for natural and man-made slopes 

(Fredlund, 1987) and overall failure conditions can be established with reasonable 

accuracy providing reliable results. The methods can offer solutions to stability 

problems and predict instability by identifying critical parameters which influence 

slope stability. This fact emphasizes the importance of undertaking slope stability 

analysis in major projects and research work of this type. The aim of a stability 

analysis is to provide a quantitative assessment of slope stability, supporting 

information and conclusions derived from other investigations. Consequently in the 

context of this research, this exercise should be regarded as providing a link to other 

elements of the study and should not be considered as a separate task independent 

from other investigations. 
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Chapter 6 

Conclusions 



6. 1 Conclusions 

This thesis presents an integrated study on mass movement processes along the 

northern coast of Malta. Particular attention is given to clay slopes. The aims of this 

study, listed in section 1.1, were to highlight the spatial distribution of coastal 

features, especially landslides; determine the mass movement processes; examine the 

relationship between geology and geomorphology; identify three key sites for detailed 

investigation; perform a geotechnical investigation to examine soil material; assess 

the current stability ofBlue Clay slopes and determine the critical conditions resulting 

in slope failure. 

The following work presented in the study makes an original contribution to 

knowledge. 

A detailed geomorphological survey of coastallandforms north of the Great Fault was 

undertaken. (chapter 3). This region was selected as it provides a challenging 

environment to conduct research. The structural setting (section 2.4.1) associated 

with the geological units exhibit a variety of landforms particularly at the coast. The 

region under study has always been included as part of integrated studies on· the 

Maltese Islands and never dealt with separately. 

Links between geology and geomorphology have been examined in section 3.5.1 and 

the spatial distribution of coastallandforms north of the Victoria Lines Fault has been 

described in section 3.5.2. Two geomorphological maps have been produced (Figures 

3.5 and 3.6). Mass movement processes occurring along the northern coast are dealt 

in section 3.5.3. These fall under three main categories: slides, falls and creep. Slides 

and falls predominate the north-west coast and specific localities on the northern and 

north-east coasts. In Malta, rockfall can be considered as the most important mass 

movement process along the northern coast. This develops in the Upper Coralline 

Limestone Formation and varies in magnitude from debris to boulder scree and large 

blocks. Soil creep (section 3.5.3.5) is the least significant process identified at one 

locality - Rdum id-Delli, operating on soil within a Quaternary solution subsidence 

structure. 
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Slides are of three types: translational slides and rotational slides occurring in Upper 

Coralline Limestone and mudslides which develop in Blue Clay. The geological 

formations are described in chapter 2 (sections 2.3.2.3 and 2.3.2.5). 

Translational slides (section 3.5.3.1) are found in several localities, but are more 

common on the north-west coast. Sometimes during movement slides can break up 

and become incorporated in mudslides or rockfall. Rotational slides (section 3.5.3.2) 

are usually situated below the in situ material from where they have been detached. 

Where multiple en-echelon failures occur, slides extend from the base of the Upper 

Coralline Limestone plateau to sea-level. Rotational slides are also common on the 

north-west coast. Both rotational and translational slides vary in magnitude. 

Rotational slides !ire usually smaller in length than translational slides. The latter can 

reach a length of 40 m, with an average range between 10 m to 15 m. 

Mudslides (section 3.5.3.3) are evident where Blue Clay outcrops. Blue Clay is 

exposed in most of the localities on the north-west coast but it is also found in few 

localities on the northern and north-east coasts. Mudslides become active during the 

rainy season occurring in the autumn and winter months when moisture content and 

pore water pressure in the clay increases as a result of heavy and prolonged rainfall 

events. 

Rockfall (section 3.5.3.4) is found extensively on the north-west coast and at specific 

localities on the north and north-east coasts. This process is related to different 

factors and occurs when blocks of rock are detached from the Upper Coralline 

Limestone plateau and either rest below or move away from in situ material. Rockfall 

can be classified under two categories: debris falls and boulder falls. Boulder falls 

extend from I 0 m to 30 m in length. Debris falls result from the fragmentation of 

boulders and are very often found close to the larger blocks. Slab failure can be 

identified at several points where the Upper Coralline Limestone plateau exhibits 

faults or cracks parallel to the scarp face. Wedge and toppling failures are absent 

since failure of limestone blocks tends to occur along a set of discontinuities trending 

-in the same direction and there is no indication of a forward rotational movement as 

the rock falls. 
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From the geomorphological survey three key sites have been identified for detailed 

investigation. The three sites, representative of the northern region, are Gnejna Bay, 

Ghajn Tuffieha Bay and Rdum id-Delli (section 3.6). A thorough description of the 

geology, geomorphological features and processes and hydrological pattern for each 

site can be found in sections 3.6.1, 3.6.2 and 3.6.3. 

A slope transect was selected at each site to perform subsequent studies on material 

properties and stability analysis. A description of the selected slope transects can be 

found at the end of sections 3.6.1, 3.6.2 and 3.6.3 and in section 5.4.3.1. The steepest 

slope profile is that found at Gnejna Bay, whereas Ghajn Tuffieha Ba:y has the 

gentlest gradient. The rear part of the investigated slopes tends to be steeper when 

compared with the rest of the slope, whereas the main slope section has usually the 

most gentle gradient similar to the mean gradient for the entire slope. The toe area is 

steeper than the main section at Gnejna Bay and Ghajn Tuffieha Bay whereas it is 

gentler at Rdum id-Delli. 

A detailed geotechnical investigation of Blue Clay has been conducted (chapter 4). 

This is the first time that this material has been subjected to detailed investigation. 

Previous geomorphological studies in Malta do not include information on material 

properties and behaviour which ultimately influences geomorphological processes and 

landform development. This new approach was introduced into geomorphological 

research fairly recently (for example Yatsu, 1966; Whalley, 1976 and Selby, 1982 in 

Hart, 1986) and it is now considered that geomorphological studies which lack 

information on material properties are incomplete (Goudie et al., 1990). 

Two types of tests were carried out on Blue Clay: physical properties tests (section 

4.3) and geotechnical properties tests (section 4.4). The results are very important in 

assessing slope stability and understanding the mechanisms of mass movement 

processes operating on coasts. Physical and geotechnical properties tests indicate that 

Blue Clay shows variations. at the three sites, although similarities are evident 

especially at Gnejna Bay and Rdum id-Delli. Ghajn Tuffieha Bay displays a low bulk 

density and high moisture content when compared with the other two sites (sections 

4.3.1 and 4.3.2). This results in greater percolation and higher water retention 

capacities, increasing the chance for mudslide activity to take place. Gnejna Bay and 
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Rdum id-Delli have lower moisture content and higher bulk density (sections 4.3.1 

and 4.3.2) indicating drier conditions and slower rates of movements especially 

evident with the widespread presence of desiccation cracks. 

Particle size distribution tests (section 4.3.3) indicate that Blue Clay is composed of a 

high clay content, contributing to a cohesive material, a low sand proportion and silt 

content found in significant percentages especially at Ghajn Tuffieha Bay. These 

proportions of clay, silt and sand are found in different percentages for the three sites. 

However Gnejna Bay and Ghajn Tuffieha Bay exhibit a similar texture. Rdum id­

Delli differs as the material is composed of a high percentage of clay which makes the 

soil less permeable. When the silt proportion is high, such as at Ghajn Tuffieha Bay, 

the soil is more permeable. 

Atterberg Limits tests (section 4.3.4) and the related indices (especially the Liquidity 

Index and Consistency Index) have shown that Blue Clay at all three sites behaves as 

a solid material since the moisture content is lower than the Plastic Limit. This results 

in a stronger and competent material and more stable conditions. Due to a high 

Plasticity Index, Blue Clay experiences an increase in density under pressure and a 

decrease in specific volume. The Activity Index places Blue Clay within the inactive 

category for Gnejna Bay and Rdum id-Delli and within the normal category for Ghajn 

Tuffieha Bay. This is due to the variations in physical properties namely moisture 

content, bulk density and Plasticity Index. 

Geotechnical tests (section 4.4) provide an indication of the strength of Blue Clay as 

controlled by cohesion and the angle of internal friction. Blue Clay at all three sites 

exhibits low cohesion values. Rdum id-Delli has the highest cohesion whereas Ghajn 

Tuffieha Bay has the lowest cohesion value. The angle of internal friction is high for 

all three sites. Rdum id-Delli has the lowest angle of internal friction, whereas the 

other two sites have higher friction angles. 

Blue Clay can be classified as a soft clay: Stress-strain curves for Blue Clay (section 

4.4) correspond best to rheological models applicable to elastoplastic materials, where 

initially the stress causes a recoverable strain but additional load causes permanent 

deformation. In the case of Gnejna Bay and Ghajn Tuffieha Bay, Blue Clay displays 
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a ductile behaviour at low stresses, whereas at higher stresses a brittle behaviour is 

noted. Rdum id-Delli displays brittle behaviour at all stresses, resulting in a more 

competent material than at the other two sites. 

Interpretation of results derived from both the physical tests and geotechnical tests 

have reached three main conclusions. Rdum id-Delli is the most stable site; Gnejna 

Bay shows stability with a trend towards instability; Ghajn Tuffieha Bay is the site 

most prone to instability. 

Slope stability analysis has been conducted (chapter 5) on previously surveyed Blue 

Clay slopes at each of the three sites to determine the current stability situation and 

the critical phreatic conditions which ultimately cause failure. The input data utilised 

in the stability analysis remained constant except for the pore pressure ratio which 

was the only variable parameter. Results have shown that the investigated slopes are 

very sensitive to changes in the phreatic surface and groundwater conditions 

simulated by changes in pore pressure ratio. In all cases as the pore pressure ratio 

increases the Factor of Safety decreases leading to instability. 

The Simplified Bishop Method was utilised to perform the slope stability analyses and 

calculate Factor of Safety values for each of the three sites. Various Factor of Safety 

values are presented for each investigated slope since several analyses were. 

performed at each site. Factor of Safety values indicate that the transition between 

stability and instability is reached at different pore pressure ratios for the three sites 

(section 5.4.3.2). Stability analyses for this study simulate spring conditions because 

input data used in the modelling exercise was collected and measured in late winter 

and throughout spring. Spring is characterised by a lower amount of rainfall and lack 

of moisture when compared with the rainy season. This factor explains the stable 

condition of slopes when measurements were recorded and the high Factor of Safety 

values calculated from the stability analyses (section 5.4.3.2). 

A detailed discussion on the interpretation of Factor of Safety results as related to the 

issue of slope stability is found in section 5.4.3.3. Factor of Safety values are highest 

for Gnejna Bay, indicating stable conditions confirmed from geomorphological 

mapping and laboratory testing. Instability will occur when the pore water pressure is 
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very high. Ghajn Tuffieha Bay has generated lower Factor of Safety values than 

Gnejna Bay. Therefore instability is reached before Gnejna Bay but will still take 

place when the pore water pressure is high. During geomorphological mapping no 

active landslides were observed and slopes appeared to be in a stable condition. 

Rdum id-Delli exhibits the lowest Factor of Safety values for the three sites with a 

significant decrease on the other two sites. It can be assumed that instability is 

reached before the other two sites at low pore water pressures. Sliding events were 

observed during geomorphological mapping although at the time of the survey these 

were inactive. The results can be related to soil texture composed of a high clay 

content resulting in a less permeable soil with a high water retention capacity. High 

pore water pressure is accumulated and this will be too large to be sustained by the 

soil resulting in sliding. Slope stability analyses provide a very useful exercise in 

assessmg the current situation and predicting instability with a high degree of 

accuracy. In all three cases the analyses reflect the prevalent situation as confirmed 

from geomorphological mapping and geotechnical investigation. 

An indication of slope stability is also given when comparing gradient characteristics 

of the selected slopes with angles of internal friction measured in the laboratory 

(section 5.4.3.3). Such a compaiison indicates stable conditions when the mean 

gradient of the entire slope is considered at all three sites. In the case of Gnejna Bay 

and Rdum id-Delli only the rear part appears to be unstable. Ghajn Tuffieha Bay 

shows instability at the lower bulge of the toe area which extends on the beach. 

6.2 Update on previous studies 

The research presented in this thesis updates existing studies in a number of ways. 

The· research has contributed to new knowledge in terms of coastal mass movement 

processes in Malta, which lack or are very limited in other significant studies dealing 

with coastal geomorphology (for example Guilcher and Paskoff, 1975; Paskoff and 

Sanlaville, 1978; Ellenberg, 1983 and Paskoff, 1985). Previous studies are limited to 

the description of coastal landforms and related processes but do not deal with mass 
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movement processes and slope instability as main issues. Alexander (1988) includes 

some information on mass movements but this is very general and extremely limited 

offering only a sparse picture. 

As already noted in chapter 1 (section 1.3) the interest in the geology of the Maltese 

Islands is supported by a significant amount of publications presented by various 

contributors dating back from the mid-19th century. For some reason, interest in the 

geomorphology of the islands has been less with few key studies (for example House 

et al., 1961; Vossmerbaumer, 1972 and Alexander, 1988). Information on the physical 

and geotechnical properties of limestone and Blue Clay is inadequate and limited to 

some Civil Engineering and Architecture undergraduate dissertations. However the 

majority.focus on limestone and lack information on clay material. 

6.3 Recommendations for further research 

Recommendations can be made for further research. 

1. Further studies on Blue Clay slopes will provide additional knowledge on 

mechanisms of mass movement processes operating on slopes. This study was 

limited to three sites. A larger number of sites would give a more realistic picture. 

ii. Monitoring of mudslides usmg appropriate instrumentation to record the 

movement of specific mudslides over a period of time would be an advantage. 

The use of piezometers to measure pore water pressures and records of climatic 

data can give more accurate results regarding the triggering factors of slope failure 

but a number of years is required to collect a satisfactory set of data. 

iii. A more extensive geotechnical investigation covering several sites will yield a 

greater amount of information. The physical and mechanical properties of Blue 

Clay could be determined in greater ·detail and spatial similarities and contrasts 

could be detected between sites. 
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iv. Clay mineralogy may have an influence on landslides, controlling properties such 

as moisture content, Atterberg Limits and other related indices especially 

Plasticity Index and Activity Index. X-Ray diffraction analysis would be useful in 

this context. 

v. The coastal zone was examined in this study. Similar work can be applied to 

inland slopes where Blue Clay outcrops. 

This thesis makes an important contribution in understanding mass movement 

processes on Blue Clay slopes for the northern coast in Malta. The multidisciplinary 

approach adopted for this study presents information on the study area and provides 

additional knowledge to geomorphological studies in general. The conclusions 

derived from this work should serve as a basis for further research, extending issues 

already dealt with in previous studies and contributing new information on coastal 

slope instability in Malta. 
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Appendix 



Factor of Safety values calculated 
for Gnejna Bay 



Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.00. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.554 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.554 43.46 83.99 65.25 30.56 99.71 3.49E+05 
2 1.580 61.01 63.98 38.38 50.00 96.26 1.22E+05 
3 1.642 38.53 72.17 54.08 27.78 84.08 1.81 E+05 
4 1.655 50.14 60.64 38.89 38.89 84.97 1.08E+05 
5 1.668 57.95 61.45 ' 38.75 44.44 94.07 1.55E+05 
6 1.687 58.56 65.49 44.54 41.67 100.87 2.63E+05 
7 1.760 58.36 52.29 28.56 47.22 85.55 7.52E+04 
8 1.772 49.70 57.43 37.62 36.11 84.49 1.33E+05 
9 1.884 44.87 60.18 46.10 25.00 88.28 3.13E+05 
10 2.191 52.57 48.06 33.05 33.33 85.31 2.14E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.05. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24· 
22 99.71 50.96 

Simplified BISHOP FOS = 1.465 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.465 43.46 83.99 65.25 30.56 99.71 3.29E+05 
2 1.489 61.01 63.98 38.38 50.00 96.26 1.15E+05 

3 1.549 38.53 72.17 54.08 27.78 84.08 1.71 E+05 

4 1.561 50.14 60.64 38.89 38.89 84.97 1.02E+05 

5 1.573 57.95 61.45 38.75 44.44 94.07 1.46E+05 

6 1.591 58.56 65.49 44.54 41.67 .100.87 2.48E+05 
7 1.660 58.36 52.29 28.56 47.22 85.55 7.10E+04 

8 1.672 49.70 57.43 37.62 36.11 84.49 1.26E+05 

9 1.779 44.87 60.18 46.10 25.00 88.28 2.95E+05 
10 2.071 52.57 48.06 33.05 33.33 85.31 2.02E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.10. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.376 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.376 43.46 83.99 65.25 30.56 99.71 3.09E+05 
2 1.399 61.01 63.98 38.38 50.00 96.26 1.08E+05 
3 1.456 38.53 72.17 54.08 27.78 84.08 1.60E+05 
4 1.467 50.14 60.64 38.89 38.89 84.97 9.54E+04 
5 1.478 57.95 61.45 38.75 44.44 94.07 1.37E+05 
6 1.495 58.56 65.49 44.54 41.67 100.87 2.33E+05 
7 1.561 58.36 52.29 28.56 47.22 85.55 6.67E+04 
8 1.573 49.70 57.43 37.62 36.11 84.49 1.18E+05 
9 1.674 44.87 60.18 46.10 25.00 88.28 2.78E+05 
10 1.951 52.57 48.06 33.05 33.33 85.31 1.90E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.15. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 . 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.286 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.286 43.46 83.99 65.25 30.56 99.71 2.89E+05 
2 1.308 61.01 63.98 38.38 50.00 96.26 1.01 E+05 
3 1.363 38.53 72.17 54.08 27.78 84.08 1.50E+05 
4 1.373 50.14 60.64 38.89 38.89 84.97 8.93E+04 
5 1.383 57.95 61.45 38.75 44.44 94.07 1.29E+05 
6 1.399 58.56 65.49 44.54 41.67 100.87 2.18E+05 
7 1.462 58.36 52.29 28.56 47.22 85.55 6.25E+04 
8 1.474 49.70 57.43 37.62 36.11 84.49 1.11 E+05 

9 1.569 44.87 60.18 46.10 25.00 88.28 2.60E+05 
10 1.831 52.57 48.06 33.05 33.33 85.31 1.79E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.20. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.197 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.197 43.46 83.99 65.25 30.56 99.71 2.69E+05 
2 1.218 61.01 63.98 38.38 50.00 96.26 9.43E+04 
3 1.271 38.53 72.17 54.08 27.78 84.08 1.40E+05 
4 1.480 50.14 60.64 38.89 38.89 84.97 8.32E+04 

5 1.289 57.95 61.45 38.75 44.44 94.07 1.20E+05 

6 1.304 58.56 65.49 44.54 41.67 100.87 2.03E+05 
7 1.363 58.36 52.29 28.56 47.22 85.55 5.83E+04 

8 1.375 49.70 57.43 37.62 36.11 84.49 1.04E+05 

9 1.465 44.87 60.18 46.10 25.00 88.28 2.43E+05 
10 1.712 52.57 48.06 33.05 33.33 85.31 1.67E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.25. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 

8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.109 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.109 43.46 83.99 65.25 30.56 99.71 2.49E+05 
2 1.128 61.01 63.98 38.38 50.00 96.26 8.73E+04 
3 1.178 38.53 72.17 54.08 27.78 84.08 1.30E+05 
4 1.186 50.14 60.64 38.89 38.89 84.97 7.72E+04 
5 1.195 57.95 61.45 38.75 44.44 94.07 1.11 E+05 
6 1.209 58.56 65.49 44.54 41.67 100.87 1.88E+05 
7 1.265 58.36 52.29 28.56 47.22 85.55 5.41 E+04 
8 1.276 49.70 57.43 37.62 36.11 84.49 9.61 E+04 
9 1.361 44.87 60.18 46.10 25.00 88.28 2.26E+05 
10 1.593 52.57 48.06 33.05 33.33 85.31 1.55E+05 
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Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.30. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 1.020 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.020 43.46 83.99 65.25 30.56 99.71 2.29E+05 
2 1.038 61.01 63.98 38.38 50.00 96.26 8.03E+04 

3 1.086 38.53 72.17 54.08 27.78 84.08 1.20E+05 
4 1.093 50.14 60.64 38.89 38.89 84.97 7.11 E+04 

5 1.101 57.95 61.45 38.75 44.44 94.07 1.02E+05 
6 1.114 58.56 65.49 44.54 41.67 100.87 1.74E+05 
7 1.167 58.36 52.29 28.56 47.22 85.55 4.99E+04 
8 1.178 49.70 57.43 37.62 36.11 84.49 8.87E+04 
9 1.258 44.87 60.18 46.10 25.00 88.28 2.09E+05 
10 1.475 52.57 48.06 33.05 33.33 85.31 1.44E+05 

201 



Factors of Safety for Gnejna Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.35. 

The most critical circular failure surface is specified by 22 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 30.56 20.03 
2 34.50 19.36 
3 38.48 18.93 
4 42.47 18.74 
5 46.47 18.81 
6 50.46 19.11 
7 54.42 19.66 
8 58.34 20.46 
9 62.21 21.49 
10 66.00 22.75 
11 69.71 24.25 
12 73.32 25.97 
13 76.82 27.91 
14 80.19 30.06 
15 83.43 32.41 
16 86.51 34.96 
17 89.44 37.69 
18 92.19 40.59 
19 94.76 43.66 
20 97.13 46.88 
21 99.30 50.24 
22 99.71 50.96 

Simplified BISHOP FOS = 0.932 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 0.932 43.46 83.99 65.25 30.56 99.71 2.09E+05 
2 0.949 61.01 63.98 38.38 50.00 96.26 7.34E+04 

3 0.994 38.53 72.17 54.08 27.78 84.08 1.10E+05 
4 1.001 50.14 60.64 38.89 38.89 84.97 6.51 E+04 

5 1.008 57.95 61.45 38.75 44.44 94.07 9.37E+04 

6 1.020 58.56 65.49 44.54 41.67 100.87 1.59E+05 
7 1.069 58.36 52.29 28.56 47.22 85.55 4.S7E+04 

8 1.080 49.70 57.43 37.62 36.11 84.49 8.13E+04 
9 1.155 44.87 60.18 46.10 25.00 88.28 1.92E+05 
10 1.358 52.57 48.06 33.05 33.33 85.31 1.32E+05 
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Factor of Safety values calculated 
for Ghajn Tuffieha Bay 



Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.00. · 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

1 61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34. 

15 130.61 20.06 

Simplified BISHOP FOS = 1.391 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.391 85.99 142.61 130.42 61.67 184.64 1.16E+06 
2 1.472 76.36 108.26 95.85 58.33 143.72 3.49E+05 
3 1.512 95.61 74.56 62.13 75.00 148.10 3.27E+05 
4 1.538 90.70 75.48 64.29 68.33 144.49 3.35E+05 
5 1.637 105.63 57.49 44.15 85.00 146.50 2.31 E+05 
6 1.728 87.86 82.79 76.55 55.00 153.23 7.13E+05 
7 1.893 114.29 62.88 55.90 81.67 168.74 7.24E+05 

8 2.131 106.35 45.40 40.09 78.33 146.15 3.87E+05 

9 2.193 97.61 47.38 46.07 65.00 143.02 5.27E+05 
10 2.241 102.03 43.80 41.46 71.67 143.30 4.52E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.05. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

1 61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65. 

11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 1.314 

The following is a summary of the TEN most critical surfaces 

FOS Circle, Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.314 85.99 142.61 130.42 61.67 184.64 1.10E+06 
2 1.391 76.36 108.26 95.85 58.33 143.72 3.30E+05 
3 1.428 95.61 74.56 62.13 75.00 148.10 3.09E+05 
4 1.454 90.70 75.48 64.29 68.33 144.49 3.17E+05 
5 1.547 105.63 57.49 44.15 85.00 146.50 2.19E+05 

6 1.634 87.86 82.79 76.55 55.00 153.23 6.74E+05 
7 1.790 114.29 62.88 55.90 81.67 168.74 6.85E+05 

8 2.017 106.35 45.40 40.09 78.33 146.15 3.67E+05 

9 2.077 97.61 47.38 46.07 65.00 143.02 4.99E+05 
10 2.122 102.03 43.80 41.46 71.67 143.30 4.28E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.10. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47. 

7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 1.236 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.236 85.99 142.61 130.42 61.67 184.64 1.03E+06 
2 1.309 76.36 . 108.26 95.85 58.33 143.72 3.10E+05 
3 1.345 95.61 74.56 62.13 75.00 148.10 2.91 E+05 
4 1.369 90.70. 75.48 64.29 68.33 144.49 2.98E+05 
5 1.457 105.63 57.49 44.15 85.00 146.50 2.06E+05 
6 1.541 87.86 82.79 76.55 55.00 153.23 6.35E+05 
7 1.688 114.29 62.88 55.90 81.67 168.74 6.46E+05 
8 1.903 106.35 45.40 40.09 78.33 146.15 3.46E+05 
9 1.960 97.61 47.38 46.07 65.00 143.02 4.71 E+05 
10 2.002 102.03 43.80 41.46 71.67 143.30 4.04E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.15. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf . y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

61.67 14.48 16 135.27 21.86. 

2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 .12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 1.158 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.158 85.99 142.61 130.42 61.67 184.64 9.66E+05 
2 1.228 76.36 108.26 95.85 58.33 143.72 2.91 E+05 
3 1.261 95.61 74.56 62.13 75.00 148.10 2.73E+05 
4 1.284 90.70 75.48 64.29 68.33 144.49 2.80E+05 
5 1.368 105.63 57.49 44.15 85.00 146.50 1.93E+05 

6 1.447 87.86 82.79 76.55 55.00 153.23 5.97E+05 
7 1.586 114.29 62.88 55.90 81.67 168.74 6.07E+05 
8 1.789 106.35 45.40 40.09 78.33 146.15 3.25E+05 

9 1.844 97.61 47.38 46.07 65.00 143.02 4.43E+05 

10 1.883 102.03 43.80 41.46 71.67 143.30 3.80E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.20. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 1.080 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resistin.g 

BISHOP x-coord y-coord x-coord x-coord Moment 
(m) (m) (m) (m) (m) (kN-m) 

1.080 85.99 142.61 130.42 61.67 184.64 9.01 E+05 
2 1.147 76.36 108.26 95.85 58.33 143.72 2.72E+05 
3 1.178 95.61 74.56 62.13 75.00 148.10 2.55E+05 
4 1.200 90.70 75.48 64.29 68.33 144.49 2.61 E+05 
5 1.278 105.63 57.49 44.15 85.00 146.50 1.81 E+05 
6 1.354 87.86 82.79 76.55 55.00 153.23 5.59E+05 
7 1.485 114.29 62.88 55.90 81.67 168.74 5.68E+05 
8 1.676 106.35 45.40 40.09 78.33 146.15 3.05E+05 
9 1.727 97.61 47.38 46.07 65.00 143.02 4.15E+05 
10 1.765 102.03 43.80 41.46 71.67 143.30 3.56E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.25. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

1 61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62. 

13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 1.003 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1.003 85.99 142.61 130.42 61.67 184.64 8.36E+05 
2 1.066 76.36 108.26 95.85 58.33 143.72 2.53E+05 
3 1.095 95.61 74.56 62.13 75.00 148.10 2.37E+05 
4 1.116 90.70 75.48 64.29 68.33 144.49 2.43E+05 
5 1.189 105.63 57.49 44.15 85.00 146.50 1.68E+05 
6 1.261 87.86 82.79 76.55 55.00 153.23 5.20E+05 
7 1.383 114.29 62.88 55.90 81.67 168.74 5.29E+05 
8 1.563 106.35 45.40 40.09 78.33 146.15 2.84E+05 
9 1.612 97.61 47.38 46.07 65.00 143.02 3.87E+05 
10 1.646 102.03 43.80 41.46 71.67 143.30 3.32E+05 
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Factors of Safety for Ghajn Tuffieha Bay have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.30. 

The most critical circular failure surface is specified by 29 coordinate points 

Point x-surf y-surf Point x-surf y-surf 
No. (m) (m) No. (m) (m) 

61.67 14.48 16 135.27 21.86 
2 66.60 13.64 17 139.86 23.84 
3 71.55 12.99 18 144.38 25.99 
4 76.53 12.54 19 148.80 28.32 
5 81.53 12.27 20 153.14 30.81 
6 86.52 12.19 21 157.38 33.47 
7 91.52 12.31 22 161.51 36.28 
8 96.51 12.62 23 165.53 39.25 
9 101.49 13.12 24 169.43 42.38" 
10 106.44 13.81 25 173.21 45.65 
11 111.36 14.68 26 176.86 49.07 
12 116.25 15.75 27 180.38 52.62 
13 121.09 17.00 28 183.76 56.30 
14 125.88 18.44 29 184.64 57.34 
15 130.61 20.06 

Simplified BISHOP FOS = 0.925 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 0.925 85.99 142.61 130.42 61.67 184.64 7.72E+05 
2 0.985 76.36 108.26 95.85 58.33 143.72 2.34E+05 
3 1.012 95.61 74.56 62.13 75.00 148.10 2.19E+05 
4 1.031 90.70 75.48 64.29 68.33 144.49 2.25E+05 
5 1.100 105.63 57.49 44.15 85.00 146.50 1.56E+05 
6 1.168 87.86 82.79 76.55 55.00 153.23 4.82E+05 
7 1.282 114.29 62.88 55.90 81.67 168.74 4.90E+05 
8 1.451 106.35 45.40 40.09 78.33 146.15 2.64E+05 

9 1.497 97.61 47.38 46.07 65.00 143.02 3.59E+05 
10 1.529 102.03 43.80 41.46 71.67 143.30 3.09E+05 
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. Factor of Safety values calculated 
for Rdum id-Delli 



Factors of Safety for Rdum id-Delli have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.00. 

The most critical circular failure surface is specified by 20 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

27.78 7.48 
2 30.74 6.99 
3 33.72 6.68 
4 36.72 6.54 
5 39.72 6.58 
6 42.71 6.80 
7 45.69 7.19 
8 48.63 7.75 
9 51.54 8.49 
10 54.40 9.39 
11 57.20 10.46 
12 59.94 11.69 
13 62.60 13.08 
14 65.17 14.63 
15 67.64 16.32 
16 70.02 18.16 
17 72.28 20.13 
18 74.42 22.23 
19 76.44 24.45 
20 78.27 26.72 

Simplified BISHOP FOS = 1.181 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.181 37.56 57.67 51.14 27.78 78.27 1.01 E+05 
2 1.187 42.03 66.75 59.67 30.56 90.98 1.74E+05 

3 1.245 48.73 44.53 35.01 38.89 79.06 6.00E+04 
4 1.301 48.09 41.64 33.95 36.11 78.66 7.34E+04 
5 1.331 55.99 44.81 33.79 44.44 86.70 7.19E+04 
6 1.346 56.11 47.86 38.67 41.67 91.79 1.20E+05 
7 1.382 42.97 45.18 42.41 25.00 81.93 1.64E+05 

8 1.395 61.42 43.96 30.95 50.00 90.04 6.40E+04 

9 1.583 50.33 33.15 29.61 33.33 79.31 1.09E+05 
10 1.726 60.48 31.49 21.86 47.22 82.11 5.25E+04 
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Factors of Safety for Rdum id-Delli have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.05. 

The most critical circular failure surface is specified by 20 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 27.78 7.48 
2 30.74 6.99 
3 33.72 6.68 
4 36.72 6.54 
5 39.72 6.58 
6. 42.71 6.80 
7 45.69 7.19 
8 48.63 7.75 
9 51.54 8.49 
10 54.40 9.39 
11 57.20 10.46 
12 59.94 11.69 
13 62.60 13.08 
14 65.17 14.63 
15 67.64 16.32 
16 70.02 18.16 
17 72.28 20.13 
18 74.42 22 .. 23 

19 76.44 24.45 
20 78.27 26.72 

Simplified BISHOP FOS = 1.115 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.115 37.56 57.67 51.14 27.78 78.27 9.52E+04 
2 1.121 42.03 66.75 59.67 30.56 90.98 1.64E+05 

3 1.176 48.73 44.53 35.01 38.89 79.06 5.67E+04 
4 1.230 48.09 41.64 33.95 36.11 78.66 6.94E+04 

5 1.257 55.99 44.81 33.79 44.44 86.70 6.80E+04 

6 1.272 56.11 47.86 38.67 41.67 91.79 1.14E+05 
7 1.307 42.97 45.18 42.41 25.00 81.93 1.55E+05 

8 1.319 61.42 43.96 30.95 50.00 90.04 6.05E+04 

9 1.497 50.33 33.15 29.61 33.33 79.31 1.03E+05 
10 1.634 60.48 31.49 21.86 47.22 82.11 4.97E+04 
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Factors of Safety for Rdum id-Delli have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.10. 

The most critical circular failure surface is specified by 20 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

1 27.78 7.48 
2 30.74 6.99 
3 33.72 6.68 
4 36.72 6.54 
5 39.72 6.58 
6 42.71 6.80 
7 45.69 7.19 
8 48.63 7.75 
9 51.54 8.49 
10 54.40 9.39 
11 57.20 10.46 
12 59.94 11.69 
13 62.60 13.08 
14 65.17 14.63 
15 67.64 16.32 
16 70.02 18.16 
17 72.28 20.13 
18 74.42 22.23 
19 76.44 24.45 
20 78.27 26.72 

Simplified BISHOP FOS = 1.049 

The following is a summary of the TEN most critical surfaces 

FOS Circle Centre Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 1.049 37.56 57.67 51.14 27.78 78.27 8.96E+04 
2 1.055 42.03 66.75 59.67 30.56 90.98 1.55E+05 
3 1.107 48.73 44.53 35.01 38.89 79.06 5.34E+04 
4 1.158 48.09 41.64 33.95 36.11 78.66 6.53E+04 
5 1.185 55.99 44.81 33.79 44.44 86.70 6.40E+04 
6 1.198 56.11 47.86 38.67 41.67 91.79 1.07E+05 
7 1.231 42.97 45.18 42.41 25.00 81.93 1.46E+05 

8 1.243 61.42 43.96 30.95 50.00 90.04 5.70E+04 

9 1.412 50.33 33.15 29.61 33.33 79.31 9.74E+04 
10 1.542 60.48 31.49 21.86 47.22 82.11 4.69E+04 
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Factors of Safety for Rdum id-Delli have been calculated by the SIMPLIFIED BISHOP 
METHOD, when pore pressure ratio is 0.15. 

The most critical circular failure surface is specified by 20 coordinate points 

Point x-surf y-surf 
No. (m) (m) 

27.78 7.48 
2 30.74 6.99 
3 33.72 6.68 
4 36.72 6.54 
5 39.72 6.58 
6 42.71 6.80 
7 45.69 7.19 
8 48.63 7.75 
9 51.54 8.49 
10 54.40 9.39 
11 57.20 10.46 
12 59.94 11.69 
13 62.60 13.08 
14 65.17 14.63 
15 67.64 16.32 
16 70.02 18.16 
17 72.28 20.13 
18 74.42 22.23 
19 76.44 24.45 
20 78.27 26;72 

Simplified BISHOP FOS = 0.984 

The following is a summary of the TEN most critical surfaces 

FOS Circle Center Radius Initial Terminal Resisting 
BISHOP x-coord y-coord x-coord x-coord Moment 

(m) (m) (m) (m) (m) (kN-m) 

1 0.984 37.56 57.67 51.14 27.78 78.27 8.40E+04 
2 0.988 42.03 66.75 59.67 30.56 90.98 1.45E+05 
3 1.038 48.73 44.53 35.01 38.89 79.06 5.00E+04 
4 1.086 48.09 41.64 33.95 36.11 78.66 6.13E+04 
5 1.112 55.99 44.81 33.79 44.44 86.70 6.01 E+04 

6 1.124 56.11 47.86 38.67 41.67 91.79 1.01 E+05 
7 1.156 42.97 45.18 42.41 25.00 81.93 1.37E+05 
8 1.167 61.42 43.96 30.95 50.00 90.04 5.36E+04 

9 1.326 50.33 33.15 29.61 33.33 79.31 9.15E+04 
10 1.450 60.48 31.49 21.86 47.22 82.11 4.41 E+04 
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