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Research into the performance enhancement of polymer light-emitting diodes, through 

techniques of doping and improved charge injection, is reported. Initial electroluminescent 

(EL) characterisation of all host polymers used; in particular poly(2-methoxy-5-(2'-ethyl­

hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and a,co-Bis[N,N-di(4-

methylphenyl)aminophenyl]-poly(9,9-bis(2-ethylhexyl)fluoren-2, 7 -diyl) (PF2/6am4) m 

both mono- and bi-layer configuration is presented. For all studies indium tin oxide was 

used as the primary anode, with either aluminium or calcium as the cathode. The polymers 

are all soluble and were processed from spin coating to produce films of order 1 00 

namometres in thickness. 

A range of protonated polyaniline thin films are characterised for use as hole­

transporting layers (HTLs) with MEH-PPV. The HTL fermi level is found to be crucial to 

its effectiveness in facilitating hole injection. 

Following this the published studies of PF2/6am4 doping with highly efficient 

dopants (Rubrene and three metal-porphyrin derivatives) are presented. Techniques 

summarised in chapter 3 are used in order to convert the measured light output into optical 

units of candela per metre squared and lumens per watt. The external quantum efficiency 

for each configuration fabricated is also calculated. Previously reported studies of the 

dopants are used in order to aid discussion as to the key properties that make a dopant 

suitable for use in donor:acceptor systems. It is noted that the dopants' excited state 

lifetime is directly related to the current density at which peak performance is observed, 

and it is recommended that in order to avoid dopant saturation the dopants' excited state 

lifetime should be as small as possible without sacrificing emission efficiency. 

Having established the considerable challenges to be overcome for energy transfer 

systems to be commercially viable, an alternative doping technique is presented: host 

perturbation. First the effect of doping both MEH-PPV and PF2/6am4 with a range of rare 

earth lanthanide metal: organic complexes is investigated. The effect on the intersystem 

crossing is observed to be highly host dependent, with improvements in efficiency only for 

MEH-PPV. These results are compared with theoretical predictions. 

In all studies we draw comparison from similar studies carried out by other groups where 
possible. 
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Chapter 1 Introduction 

Chapter 1 Introduction 

When we think of light emitting diodes, thoughts turn to the commonly used inorganic 

devices based on silicon (amongst others), with its convenient energy gap in the visible 

spectrum. Light emission from organic materials is less well known, yet there are 

examples in nature that carry a fascinating elegance. Living creatures, most familiarly 

fireflies, emit light with amazingly high efficiencies, especially compared to our 

common-place inorganic materials. This is because of the high quantum efficiency of 

luminescence shown by a wide range of organic materials when compared to inorganic 

materials. Over the past 20 yearsl2l, the potential for organic light emitting devices has 

been accelerated into our awareness through a combination of intensive academic 

interest and commercial expectation. 

The versatility of polymers is already familiar to us, from car bumpers to bullet­

proof vests; there are examples of how we can benefit from their flexibility, durability 

and simple fabrication processes. Another interesting property of some polymers is 

their ability to conduct electricity and emit light. Initially semiconducting polymers 

were not considered realistic candidates for electroluminescence due to the high 

voltages ( 1 OOOV or greaterl31) required. With the development of thin-film devices in 

the late 1980s this barrier was removed. Then in 1990 came the first report of 

electroluminescence in thin films of poly(phenylene vinylene) (PPV)[IJ. Nearly 10 

years on and the technology is invading the market place. 55 companies are involved in 

the development and production of polymer light-emitting diode (PLED) applications 

and TDK and Sony have exhibited prototype full colour displays. 

The attraction of semiconducting polymers (and indeed small molecules) as an 

alternative to current technology (silicon LEDs, liquid crystal displays) is multifaceted. 

With the global electronic display market worth an estimated $50bn a year, companies 

are on a constant search for ways to increase their share of the market. Currently 

displays are relatively complicated to manufacture. Inorganic semiconducting surfaces 

have to be structured regularly at the atomic level. Any irregularities can lead to device 

failure via the creation of "non-bonding" orbitals. Devices are fabricated under high 

pressure, require epitaxial growth and the range of bandgaps attainable is limited even 

when extending to quaternary compounds. Trying to fabricate new bandgaps can be 

complicated by insolubility of compound constituents and the need to match the lattice 

of the layers to the underlying substrate to prevent debilitating defect density levels. 
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Organic semiconductors are far less sensitive to interface preparation 

techniques. Unlike inorganic materials, polymer semiconductors are largely covalently 

bonded, which allows the use of multiple polymer-polymer interfaces in a multilayer 

system. A Polymer's chain structure does not suffer from lattice defect problems. There 

are no dangling bonds (unpaired electrons) and so fabrication can be performed under 

normal atmospheric conditions9
• Chain length, side groups and constituent elements 

can all be varied leading to a wide range of attainable band gaps (and hence emission 

wavelengths). 

Liquid crystal display technology is of a high quality, offering large display 

sizes, but the active viewing angle is poor, and more fundamentally limiting is the fact 

that the liquid crystals are themselves non-emissive. Instead they function as 

modulators of light from a primary source; berefringent liquid crystal molecules whose 

orientation is manipulated by an applied electric field. Organic semiconducting devices 

have no restriction on viewing angle and are capable of colour tuning and 

electroluminescence in one. 

Already mentioned above was the flexibility of polymers in general. The 

current 'prime candidates' for active layers (poly(phenylene vinylene) (PPV) for 

example) are extremely durable once prepared from their precursor (see method of 

production) and remain stable at temperatures up to 1 OOOK. This compares to current 

devices favourably. With the usual method of preparation involving soluble materials, 

there may come a time in the near future when devices are created by printing the 

layers into a substrate. Indeed this technique is currently being developed 1• Such a 

simple fabrication technique would make organic devices appealing. Semiconducting 

polymers are also competitive in an area that, until the late 1980s, no one could have 

possibly imagined - operating voltages. Whereas before thin film technology 

semiconducting polymers were overlooked due to very high drive voltages, in the past 

few years devices have been constructed to operate at ~5V thanks to film thickness the 

order of nanometres. 

The aim of this work is to investigate two common ways of improving the 

efficiency of polymer light-emitting diodes: doping the active layer with molecular 

species and improving electron-hole capture through the use of heterojunctions. It 

begins with a brief review of the main theoretical considerations, and a discussion of 

the experimental techniques and assumptions employed. Chapter 4 discusses the effects 

of architecture modification on poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylene 

vinylene] (MEH-PPV) PLEDs, and goes on to establish the electroluminescent 
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characteristics of all the active layer polymers used in this study. Chapter 5 deals with 

undoped active layers of MEH-PPV where the injection of hole-polarons is varied by 

modifying the composition of the heterolayer sandwiched between the indium tin oxide 

(ITO) anode and MEH-PPV. These heterolayers are also used with other active layers 

in order to further aid understanding of the key requirements for a good heterojunction. 

Chapters 6 and 7 describe the experimental results of doping derivatives of the blue­

emitting polymer polyfluorene (PFO) with a range of highly luminescent acceptor 

molecules, and offers analysis and suggestions for the observed performance. Chapter 8 

investigates the doping of MEH-PPV and PFO with dopants that, rather than receive 

host singlet energy via Forster transfer, perturb the system via heavy atom effects and 

paramagnetic triplet quenching effects. Finally Chapter 9 draws general inferences 

from the results for future studies into PLED performance enhancement. 
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Chapter 2 First Principles of Conjugated Polymers 

2.1 DEFINITION OF CONJUGATED POLYMER 

Polymers are long chains of atoms built up from sub-units or monomers. There 

are few elements that can bond to form long chain structures; those occupying groups 

IV and VI of the periodic table, of which Carbon (group IV) is most familiar as the 

building block of organic life on the planet. 

Carbon appears in a vast multitude of compounds due to its bonding with the 

other elements. A member of Group 4 in the periodic table it has four valence electrons 

in the configuration 2s22p2 which can be hybridised to form two, three or four bonding 

lobes in the sp3
, sp2 or sp configuration respectively, as shown in Figure 2-1 

sp3 

2s 2pz 

~o / 
~0 

/ 

HYBRIDISATION 

sp3 rY sp2 U ~sp 

~+ 
sp2 Pz 

+ 

sp PyPz 

Figure 2-1 (Adapted from the literature[741
) Hybridisation states of the carbon atom. 

The different phases of orbitals are indicated by shading. 

In conjugated polymers the carbon atoms along the backbone of the polymer are sp2 

hybridised, allowing them to form three sigma bonds with neighbouring atoms. The 

remaining 2py orbital uninvolved in the hybridisation process contains a lone unpaired 

electron. The separation of two sp2 hybridised Carbon atoms bonded by a cr-bond is 

such that their 2py lobes can overlap, resulting in a delocalised electron density normal 

to the sp2 hybridisation plane. This delocalisation is thermodynamically favourable and 

hence a weak bond (relative to a cr-bond) is formed, known as a 1t-bond. Then-bond 
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has bonding (n) and antibonding (n*) phases with a corresponding energy difference. 

Whilst these unsaturated double bonds are also found in molecules such as ethene 

(Figure 2-2), multiple n-bonds in the same structure can lead on to conjugation. 

H H 

""' / C=C 

/ ""' H H 

Figure 2-2 Chemical structure of ethene 

For a polymer with alternating single and double Carbon-Carbon bonds along 

its backbone the overlap of neighbouring n-electron densities is such that further 

delocalisation is observed along several monomer units. These delocalised electrons are 

only loosely bonded to their parent atoms and can be easily polarised, giving rise to 

electrical and optical properties. The simplest conjugated polymer, polyacetylene, 

shown below, bears a resemblance to its molecular counterpart. 

Figure 2-3 Chemical structure of polyacetylene 

The length of delocalisation is often referred to as the conjugation length. The 

conjugation length is limited by twists in the chain and impurities present in the 

polymer[65
·
38l: accidental doping being unavoidable when synthesising polymers. 

In the idealised case with no defects or twists breaking the conjugation the 

overlapping orbitals give rise to a half filled band of allowed states. This band is a 

superposition of valence (full 1t bonding) and conduction (empty n* antibonding) 

bands. With no band gap the polymer behaves as a metal, essentially in one dimension 

due to its highly anisotropic nature. 

This delocalised structure in polymers turns out to be susceptible to a distortion; 

the polymer dimerising into a pattern of alternating single and double bonds. This is 

known as the Peierls' distortion[611
• A dimersied polymer yields a bandgap. The 

dimerised structure has two phases, notionally the two directions in which the double 
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bonds can point. If the two phases are equivalent in energy then the polymer has 

ground state degeneracy. Alternatively, asymmetry in the backbone can mean that one 

phase has a higher associated energy than the other. In both cases a band gap is formed 

between the occupied n-bonding valence band and the empty n-bonding conduction 

band. The polymer now behaves as a semiconductor, with an optically excitable 

bandgap that is the origin of photoexcitation features of the conjugated polymers 

commonly used in light-emitting diodes (PLEDs). 

The next section provides an overview of the two main theories of excitations in 

conjugated polymers: the band model presented by Su, Schrieffer and Heeger (SSH 

theory) [391 and the exciton model supported by Bassler[ 121 amongst others. The former 

models conduction in a doped system using a modified Hubbard potential[!] and 

describes conjugated polymers analogously to inorganic semiconductors with free 

charge carriers dominating conduction whilst the latter describes tighter bound charge 

pairs in a system with similarities to the Exciton model of small molecules and organic 

crystals. 

The fact neither has comprehensively explained all the experimental results 

published illustrates the complex task of describing a large disordered system that 

demonstrates characteristics from both related fields. 
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2.2 THEORIES OF EXCITATIONS IN CONJUGATED POLYMERS 

2.21 The Semiconductor Model- SSH Theory 

Polymers exhibit periodicity over a long range in similarity to the metal lattice structure 

of inorganic semiconductors, the difference being that whilst in metallic bonding this 

periodicity extends to three dimensions, in polymers it is highly anisotropic due to the 

large difference in strength of intra- and inter- chain interactions. SSH theoryL39l uses 

the inherit periodicity of conjugated polymers to describe conduction/excitations 

therein in terms of transitions across a semiconductor band gap, allowing for the 1-D 

anisotropy. 

SSH theory examines the behaviour of poly(acetylene) (CH)n and was born 

from the need to explain spin resonance observed from neutral pseudo particles, named 

solitons in the polymer. 

Poly(acetylene) occurs in two isomeric arrangements, cis-(CH)n and trans­

(CH)n, shown below in Figure 2-4. 

H H H H H H H 
I I I I I I I c c c 

c/ "'--c/ '----c/ "'--c C=C C=C 
'----c=c/ "-

I I I I C=C 
I I I I H H H H H H H H 

n 

Figure 2-4 Chemical Structure ofpoly(acetylene). cis-(CH)n (left) and trans-(CH)n 

(right) 

Due to the Peierls' distortion the delocalised backbone is more stable with a pattern of 

alternating single and double bonds and hence there are two phases for each isomer. 

For trans-(CH)n the energy of phases A and B (illustrated in Figure 2-5) are the same 

and hence trans-(CH)n has a degenerate ground state. Peierls showed[601 that in a state 

of equilibrium the double bonds are shorter than the single bonds, which increases the 

elastic energy of the lattice (distortion energy) but lowers the electronic energy by a 

greater amount. This change splits the half full 1t band into an effective fully occupied 

valence band, the upper edge being defined by the highest occupied molecular orbital 

(HOMO) and an empty conducion band, which has a lower edge defined by the lowest 

unoccupied molecular orbital (LUMO). This gives the polymer a band gap or HOMO­

LUMO gap. 
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(a) 

(b) 

(c) 

Figure 2-5 Phases oftrans-(CH3)n (a)Undimerised (b)Phase A (c)Phase B 

The resulting energy curve is displayed in Figure 2-6 
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Figure 2-6 Energy as a function of wavelength (E-k) for a perfectly dimersied trans­

(CH3)n chain (taken from the literature)[241 

In order to describe the electronic structure SSH theory makes two assumptions; that 

only nearest neighbour interactions contribute and that electron-electron interactions 

are negligible. Starting from a treatment where the a-bonds are considered to be 

constrained oscillators described using a first order Hooke's Law summation over all 

atoms, and 1t electrons are treated in a tight-binding Huckel framework separately from 

the a-electrons, the SSH Hamiltonian can be constructed by summation of both these 
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contributions and the displacement energy of the chain atoms over the length of the 

chain: 

lEquation 2-1 

where K is the a-bond force constant, Un a configuration coordinate for 

displacment of the nth C atom, tn+ 1 ,n is the hopping integral, c' ns creates and Cns destroys 

rc electrons of spin s on the nth atom and M is the mass of a CH group. From this 

potential one can mathematically demonstrate the energy gap induced by the Peierls' 

distortion, as well as explaining the existence of soli tons (Section 2.51 ). 

SSH theory can also be used to describe non-degenerate ground state polymers 

such as poly(p-phenylene vinylene) (PPV) coomonly used in this study. 

Original SSH theory can now be labelled an oversimplification for the very 

assumptions that allowed the authors to produce results that explained many of the 

observed properties of conjugated polymers. Neglecting the electron-electron 

interaction, in particular, has lead to many discrepancies between observed and 

predicted results[541
. There have been proposed modifications involving additional 

terms in the SSH Hamiltonian[55
'
751

, but discrepancies still arise. SSH theory explains 

the existence of conducting species of conjugated polymers and is used in section 2.3, 

but for optical phenomena the exciton model currently predicts results closer to the 

experimental values. 

2.22 The Correlated or lExciton Model 

The basis of SSH theory is the periodicity of the polymer chain and the assumed lack 

of correlation between charge pairs. The Exciton model allows for impurities and 

breaks in periodicity. These impurities limit the conjugation length to the order of 10 

repeat units. This means that the conduction path of charge pairs is far from uniform 

along a chain, and it also raises the significance of interchain interactions and the 

multidimensionally of conduction routes in a number of closely associated chains. 

With the delocalisation in small segments of each chain an optical excitation 

results in a correlated electron-hole pair or exciton, not two free or loosely bound 

charge pairs in a valence and conduction band. This system is closer to that 

successfully used to describe molecular crystals and from this field nomenclature has 

been adopted to describe the different degrees of exciton correlation. 
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Figure 2-7 (From Pope and Swenberg[621
) (a)Frenkel (b)Mott-Wannier and (c)Charge 

transfer excitons in a periodic lattice 

A Frenkel exciton m molecular crystals has both electron and hole on the same 

molecular unit, with a radius <SA. Electron and hole are closely correlated and move 

together through the sample as a unit. The separation is small enough that the Freknel 

exciton has no permanent dipole moment. In polymers this exciton would be expected 

to have hole and electron in the same conjugation region. The recombination of the 

Frenkel exciton is believed to be the source of prompt fluorescence observed in 

photoexcited conjugated polymers. 

A molecular crystal charge transfer (CT) exciton IS formed when the 

excitation is sufficient to transfer either hole or electron to a neighbouring molecule; in 

polymers a neighbouring chain. The electron and hole components of the excitation are 

on separate chainsr621 and they can be mobile or trapped, carrying with them a 

permanent dipole moment. Intermediates between Frenkel and Mott-Warnier excitons, 

CT excitons remain strongly correlated. Recently they have been proposed as the 

source of delayed fluorescence in photoexcitation experimentsf64
•
4 'l, due to the applied 

electric field dependence of this fluorescence. This issue is still under consideration, 

however, with the possibility that the delayed fluorescence is the result of radiative 

triplet-triplet annihilation. 

A Mott-Warnier (MW) exciton is weakly correlated, with a radius of ~40-100 

A in molecular crystals. This is the closest analogy to the free carrier band model, with 

the coulombic attraction very weak. Like the Frenkel exciton there is no permanent 

dipole moment. MW excitons may be stable due to the coulombic attraction being 

shielded by the polymer medium at large separation. In PLEDs, where the injection 

initially results in MW excitons, the large electric field applied introduces an extra 

exciton-influencing factor. 
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Key to determining which model is a more accurate description of excitations in 

conjugated polymers is the magnitude of the exciton binding energy Ee, obtained by 

integrating the coulombic attraction of hole and electron from separation radius to 

infinity, as it tells us which of the three classes of excitons described above are 

prevalent. Loosely bound electron hole pairs would favour the band model approach 

whilst higher exciton would mean that correlation effects are significant as for 

molecular crystals. 

Proponents of both models have developed several methods in order to measure 

Ee and thus validate themselves. Originally used commonly for this, PPV produced a 

wide variation in results and left the issue unclear[4
,
9

,7
3

,
40

'
51

'
53

'
231

. More recently, several 

results with other polymers including ladder type poly(para-phenylene) (MeL-PPP) 

have produced results that favour the exciton model, with Ee~0.3-0.4eV. A summary of 

these results and comparison of theoretical predictions with experimental results can be 

found in the literature[77
'
71

'
70

'
11

'
9

'
101

. 
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2.3 ABSORPTION AND LUMINESCENCE SPECTROSCOPY 

Light incident on a material will induce atomic excitations and as a result the intensity 

of light will fall due to absorption of photons to form excited states. Observing the 

variation in absorption with incident energy is thus an excellent way in which to probe 

the various energy levels within the material (for allowed transitions, see below). 

Similarly fluorescence of a material is useful as it contains information about the 

migration of excited species within the material[ 161
• Both are essential to determining 

whether a candidate is suitable for use in PLEDs. 

2.31 Allowed Transitions 

The strength of absorption of light of frequency v in a material depends on the 

overlap of excited and ground state wavefunctions at that frequency. The Beer Lambert 

Law describes the drop in intensity at a thickness x within the sample 

J(x) = /(O)exp(-a\-) Equation 2-2 

where l(x) and 1(0) are the intensities at thickness x and zero respectively and a is the 

absorption coefficent, which is frequency dependant. The absorption can vary greatly 

with frequency because the electronic transitions corresponding to the absorption bands 

have different probabilities of occurrence[811
• A strong band is associated with an 

allowed transition whilst a weak band is associated with a forbidden transition. A way 

of measuring the absorption strength of a band is to integrate the absorption coefficient 

across the frequency range of the band 

E 

f = 6.25xl020 J a(E)dE Equation 2-3 
£1 

where E2 and E1 delimit the band and f is known as the oscillator strength, which is 

dimensionless. For allowed transitions f is close to unity whilst forbidden transitions 

have much smaller values. Generally allowed transitions are strong due to good overlap 

of excited and ground state wavefunctions, but also due to obeying the selection rules 

for optical transitions. These can be summarised by redefining f as a product of 

probabilities 

Equation 2-4 
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where P 5, P 0 , PP' Pm are probabilities for changes in electron spin, orbital symmetry, 

parity and momentum respectively and fa is the oscillator strength of a fully allowed 

rr---?rr* transition (i.e. ::::::1). 

• A change in spin is not allowed and hence transitions from singlet to triplet 

states (and vice versa) have P5-l0-S[Sil. This selection rule breaks down in the 

presence of heavy atoms and paramagnets, as they perturb the system's 

wavefunction and enhance S--7 T and T ---?S intersystem crossing. 

• Without spatial overlap of initial and final wavefunctions the probability of 

transition will be space or orbital forbidden, with a correspondingly low P 0 • 

• Most conjugated polymers exhibit some molecular symmetry and so do their 

orbitals. A wavefunction that changes its sign on reflection through a point of 

symmetry is said to have odd parity, else it has even parity. Allowed transitions 

in conjugated polymers involve a change in parity. Even parity transitions tend 

to have a lower PP of -1 o-1
• An example of even and odd parity orbitals are the 

rr* and rr orbitals of ethylene . 

• Transitions resulting in large changes m linear or angular momentum are 

forbidden, with Pm-1 o-3
. 

For a semiconducor-type material one expects an onset in absorption at a photon 

energy corresponding the energy gap. Disorder due to defects or dopants in conjugated 

polymers leads to breaks in the conjugation as previously mentioned. This results in a 

distribution of conjugation lengths and hence the absorption spectra of these materials 

are typically very broad due to a range of effective absorbing species (higher and lower 

energy segments on the chains). An example absorption spectrum is shown in Figure 

2-8, made on a sample of poly[2-methoxy-5- (2-ethylhexyloxy)-1 ,4-phenylene 

vinylene] (MEH-PPV). 
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Figure 2-8 Absorption Spectrum ofMEH-PPV, courtesy ofMr.C.Sitch 

2.32 The Franck Condon Principle 

Absorption takes place obeying the Franck-Condon principle, which states that 

transitions are vertical(see for example Figure 2-9). No nuclear conformation 

readjustment takes place until after the event. Electrons are transferred from the v=O 

vibrational sub-level of the electronic ground state for the various vibrational sub-levels 

of the excited state. These can then undergo radiationless internal conversion, and then 

the polymer can radiatively emit to repopulate the vibrational sub-levels of the ground 

state. This scheme is depicted below in Figure 2-9. For a system with symmetric 

vibrational levels a mirror image relationship can be seen. The observed Stoke's Shift 

between the v=O and v'=O position is due to the relaxation of excited states to chain 

segments of lower energy. 

Thus, detail in absorption spectra gives information about the structure of the 

excited state levels and luminescence spectra give information about the structure of 

the ground state. More information can also be found from photoconductivity 

measurements: the current measured from an illuminated sample under applied bias. 

This method is commonly used to measure the value of the exciton binding energy, 

which as mentioned above is crucial to our understanding of conjugated polymer 

excitation mechanisms. 
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Figure 2-9 Schematic of the contribution in the luminescence and absorption spectra 

due to vibrational sub-levels 

Phosphorescence is observed when the overlap between triplet and singlet excited 

states is such that on relaxation from higher vibrational excited states the excitation 

crossing over into the triplet manifold. As already mentioned these transitions are 

forbidden, or weak, and require spin perturbation. Examples of such perturbations are 

phonon scattering and spin-orbit coupling. 

Figure 2-10 Schematic of fluorescence (left) and phosphorescence (right). Illustration 

taken from the literature[SJ 
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2.33 Inte.rmolecular Interactions 

The discussion so far has ignored the possibility of interactions between conjugation 

lengths in close physical proximity. When in solution this maybe an appropriate 

approximation, but on spin casting thin films of conjugated polymers one introduces 

combinational effects that contribute significantly to light output following excitation. 

This is due to the overlap of neighbouring conjugation segments' wavefunctions, either 

between excited and relaxed chains (aggregates) or between excited chains (excimers). 

Aggregates, such as those observed in polyfluorene, appear as broad featureless 

features red-shifted from normal singlet emission in luminescence spectra. They also 

appear in absorption spectra due to overlap of their ground state wavefunctions. 

Aggregation is concentration dependant for both solution and film. 

Excimers only appear in luminescence spectra, as they have repulsive ground 

states that do not overlap. There has been considerable work invested towards 

understanding excimer emission as it is believed to be less efficient than singlet 

emission as well as being a potential quenching source for singlet excitons[76
•
20

•
83

•
21 l. 

Results presented in this work, however, show a dependence of excimer emission on 

triplet concentration, suggesting triplets have a role to play in the formation of the 

excimer attributed features[ 421. 
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Figure 2-11 Absorption and emission in an aggregated system (top) and emission into 

the repulsive ground excimer state (bottom)[69l 
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2.4 DEVICE PHYSICS FOR A POLYMER LIGHT-EMITTING DIODE 

2.41 Electroluminescence 

Electroluminescence is the phenomena of radiative recombination of externally 

introduced charge carriers. Electrons and holes are injected into the material by an 

applied electric field, under which they then migrate in opposite directions and hence 

have a chance to meet. 

I have already touched on the matter of charge injection above. In a basic model 

electrons and holes are injected into the LUMO and HOMO of the polymer 

respectively. A more realistic approach is to say injection occurs into the polaron 

levels[28
•
22l. Once inside the polymer the charges migrate across the sample as polarons 

(bipolarons being less mobile), and if negative and positive polarons pass within a 

capture radius there is a probability of exciton formation. The spin of the polarons is 

randomly distributed between ±1/2 and hence there will be formation of both singlets 

and triplets on recombination. Triplet excitons are statistically more likely to form as 

there are three triplet exciton states and only one singlet excited state. 

singlet= ~ [(i -1- )- (-1-i )] 

triplet = (ii) 

= ~[(i-1-)+(-1-i)] 

= (-1--1-) 
Equation 2-5 

This lead groups to propose that only 25% of recombinations would result in 

singlets[ 17
•
33

-
35l. More recently this assumption of spin independent recombination has 

been theoretically45
•
25

•
321 and experimentally821 questioned. The argument is that 

overlap between singlet exciton and loosely correlated electron-hole pmr 

wavefunctions is greater than for triplet exciton and electron-hole pair wavefunctions. 

The singlet is higher in energy than the triplet: pictorially this can be envisaged as the 

singlet exciton has a greater radius and hence more ionic character similar to the ionic 

loosely bound pair. Transitions from the first capture state to the tightly bound singlet 

and triplet excitons may also involve intersystem crossing during the relaxation, with 

one or both the polarons gaining the energy required to change spin from phonons. 
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Figure 2-12 Transitions between excited states following initial loose capture, where~ 

and ~2 are the exchange energies (i.e. difference between singlet and triplet(s) states), S 

is first excited singlet level, T 1 and T 2 the first two excited triplet levels and 'tmn is the 

lifetime of a transition from state m to n. 

Figure 2-12 is reproduced from work by T.M.Hong and H.F,Meng[451 
. They propose 

that initial loose capture (i.e. long distance correlation between the electron- and hole­

polarons following injection) is spin independent due to the exchange energy only 

being important when the two charges in the pair are on the same unit cell[56l. 

Whatever the nature of the recombination it is known that a considerable 

fraction of products will be triplets. With transitions between the triplet manifold and 

the singlet ground state being forbidden, this means that these triplet excitons are long­

lived, and their presence is detrimental to performance due to non-radiative singlet­

triplet (S-T) quenching. This has lead several groups to dope PLEDs active layers with 

phosphorescent triplet harvesting molecules, which may utilise triplet energy in light 

emission or at least remove them from the system and hence reduce S-T annihilation 
[3, 79,8,7,6,57,2) 

The electroluminescence and photoluminescence bear a striking reslemblence 

to each other, and the excited species are believed to be the same for both, with levels 

populated by charge injection and photon induced transition respectively (Figure 2-13). 
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Figure 2-13 The electroluminescence (EL), photoluminescence (PL) and absorption 

(Abs) spectra of a PPV EL device with Ca and ITO electrodes. 

2.42 Device Operation 

The efficiency of emission from a PLED is dependent on five key factors[ 351 

NP-N - <l> Capture <l> Spin <l> Rad<l> Escape 

eh 

Equation 2-6 

where Nr is the number of photons escaping the device, Nch is the number of injected 

charge pairs and their ratio is defined as the External Quantum Efficiency. The injected 

polarons will not all meet up with oppositely charged counterparts. Some will merely 

migrate to the opposite electrode and contribute to the dark current (i.e.current that 

does not contribute to light emission). The efficiency of capture is given as <!>capture· A 

hole-electron pair will only radiatively decay from a singlet exciton intermediate, hence 

<I> spin is the ratio of singlet to triplet excitons formed by capture. Of the singlets formed 

some may encounter non-radiative quenching centres before radiatively decaying; the 

efficiency of decay is given as <l>Rad· Finally any photons fomed within the active layer 

must escape the device. Possible quenching effects are absorption at the cathode or 

self-absorption. This is measured by probability <l>Escape· 

In addition to this the power efficiency will be enhanced if the barriers to 

charge injection are minimised. This is a key factor for electron injection; electrons 

being the minority carriers in most conjugated polymers. 
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Figure 2-14 Flow chart of the steps to light output in PLEDs, taken from the 

literature[241 . 
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2.42 Charge Injection 

Barriers to injection are formed due to the energy offset between the injecting 

materials' workfunction and the HOMO (LUM0) 1 of the polymer for hole (electron) 

injection. For hole injection a low workfunction is required. Due to the need for one of 

the two electrodes to be transparent in order to let light out Indium Tin Oxide (ITO) has 

been used for this purpose. Frequently a conducting polymer layer such poly(3,4-

ethplenedioxythiophene) doped with poly(4-styrene sulfonate) (PEDT:PSS) is spin-cast 

inbetween the ITO and the active layer. This aids injection by further band alignment 

but also helps to balance electron and hole injection by introducing an offset to hole 

injection referred to as a heterojunction which impedes the hole current. Electrons 

being the mimority carriers this insertion helps to balance charge flow, which is 

believed to aid performance by raising <!>capture· Other options for ITO treatment include 

plasma etching the ITO to leave a pristine layer[49
•
50

·
461

• ITO has a high surface 

roughness and both this technique and the use of a hole-transporting layer (HTL) helps 

to minimise short circuits in the device. 

Electron injection is complicated by the fact that most low workfunction metals 

are highly reactive. In this study Aluminium (AI) and Calcium (Ca) are used as 

cathodes. Both form interfacial regions with the active layer. AI deposition results in 

the region of reduced conjugation 20-30A thick. This reduces mobility and adds to 

injection blocking[ 141
. Ca:polymer interfaces vary greatly with the evaporation pressure 

used. 'Pristine' Ca (<10-7mbar) results in large Ca2
+ diffusion into the polymer, 

forming an altered region ~20-30A thick. On applying an electric field the ions move 

further and device breakdown is observed. 'Dirty' Ca (> 1 o-6mbar) results in formation 

of an oxide at the interface, which protects the polymer from ion diffusion. 

Coincidently this is the pressure region in which most commercial diffusion pumps 

operate. For a fuller discussion of these effects, as well as improved systems using 

hybrid interfaces, the author recommends the following articles.[ 14
•
67

•
29

•
36l. 

2.~ 

1 Or polaron levels, as stated above. 
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2.43 Charge Transport and Mobility 

Blom and Vissenberg[ISJ have produced a good theoretical-experimental comparison 

for charge transport PPV PLEDs based on time of flight measurements. 

In common with earlier work they found that the mobilities of electron and hole 

polarons are highly field dependent. The current is bulk limited rather than injection 

limited. Hole polarons move through the bulk by hopping from site to site whilst 

electrons move through field assisted detrapping from defect states. This is the reason 

that electron mobility is much lower than hole mobility for most conjugated polymers. 

Mobilities are also highly dependent on temperature, in particular for electrons, where 

thermal de-trapping is a key factor in mobility. 

2.44 Polaron Recombination 

Due to the difference in hole and electron mobilities recombination takes place closer 

to the cathode than the anode. This yields a further benefit from using heterojunctions, 

as one can manipulate the position of the recombination zone and hence reduce cathode 

quenching of excitons. 

In a 1998 correspondence Dyakonov[251 describes how recombination leads to 

prompt and delayed fluorescence components in the photoluminescence of PPV. He 

ascribes the delayed fluorescence to the radiative annihilation of triplet-triplet (T-T) 

pairs, and provides experimental evidence. An alternative explanation is given by 

Bassler[41
•
701

, who suggests that delayed fluorescence is due to the recombination of 

germinate CT pairs formed on excitation, and shows that a high applied electric field 

reduces the delayed signel, suggesting dissociation of charged pairs. 

In EL experiments the possible contribution ofT-T pairs to the optical output 

by delayed fluorescence is not a major consideration. Statistically only one in nine 

annihilations will lead to excited singlet formation. The majority contribute to heating 

effects, whilst a large number of triplets annihilate singlet excitons before they can 

decay radiatively. This is the difficulty in applying the finding of photoexcitation 

experiments to EL theory: there are so many differences between the two scenarios. 

Triplets in photoexcited polymers are the minority excited states whilst in EL studies 

they dominate. They can be seen as a loss that needs to be minimised, either by 

introducing a route for them to contribute to optical output (Section 2.55), or removing 

from the system (Section 2.57). 
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2.45 Magnetic Field Effects 

The introduction of a magnetic field can influence the ratio of singlets to triplets 

formed by perturbing the intersystem crossing. This effect takes place when the 

lifetime of the pairs is shorter than spin-lattice relaxation time (a measure of the rate of 

spin flipping)[251
. Spin evolution takes place due to hyperfine interactions of a polaron 

spin with magnetic nuclei, which causes mixing, or periodic transitions, between 

singlet and triplet states. An applied magnetic field lifts the triplet manifold degeneracy 

(Zeeman effect) leaving only mixing of the singlet and T0-substate. 

Whether this effect enhances or reduces singlet yield is highly dependent on the 

backbone twist angle and the exchange energy. Modelling by other groups has 

proposed conditions for singlet enhancement, illustrated in Figure 2-16 and 

summarised in Chapter 8. It should be noted that the scientific community has yet to 

respond to this study in a critical way at the time of publication. 

0.8 

11 0.6' 
s ·' 

0.05 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

g (eV) 

Figure 2-16 Singlet Yield lls as a function of impurity spin-flip coupling (a measure of 

the magnetic field strength). Modelling was for two twist angles 8= 1° (dashed lines) 

and 8=7° (solid lines), each of which were allowed three different exchange energies, 

.1=0.3eV (grey lines), 0.5eV (thin lines) and 0.9eV (thick lines). Figure is taken from 

Hong and Meng[451 
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2.45 Exciton Migration 

Having formed within the polymer, singlet excitons are susceptible to quenching by 

numerous routes, many of which are compounded by the migration of singlets and 

triplets once formed. 

Frenkel singlet excitons decay on a timescale of ~300ps has been reported for a 

PPV derivative[481
. In this time they may migrate along chains, as evidenced by the 

variation in PLED efficiency with heterolayer thickness[ 131
. The diffusion range for 

these singlet excitons is of the order of a few nanometers. In this distance they may 

move to longer conjugation lengths (i.e.lower energy sites), hence the broad emission 

spectra. They are believed to migrate via hopping akin to their electron and hole 

constituents; equations for the jump rates proposed by Richert among others[631
. 

Vu = A(ru) • exp[- (e j - e; )K;r] 
Vu =A(ru) 

Equation 2-7 

where Vij is the hopping rate from state i to state j, rij is the spatial separation of 

the two sites, ej and ei the energy of the two states, T is the temperature in Kelvin and 

K8 is the Boltzmann Constant. 

Triplet excitons are long-lived, with 'tT>300ms[661 . This means that there mean 

free path through the polymer is much longer than for singlets, allowing them to be 

involved in several reactions with either other triplets or singlets. The fact that singlet­

triplet annihilation generates more triplets means that triplet population as a percentage 

of excitons increases with current density (see Equation 2-11 ). 

2.46 Energy Transfer to Dopants 

The negative effect of singlet-triplet annihilation as well as the low fluorescence 

efficiency of some conjugated polymers ( ~0.3 for PPV) has lead many groups to dope 

polymers with molecular compounds[44
•
43

•
58

•
19

•
521

. The majority of studies involved 

transfer of excited energy to a luminescent dopant with high emission efficiency. This 

generally has to involve a red-shift in emission relative to host emission in order to 

obtain overlap between host emission and dopant absorption, which is necessary for 

resonant energy transfer. This results in a downhill step in energy on transfer from host 

to dopant. There are two advantages to transferring energy to the dopant: potential 

reduction in singlet-triplet annihilation and an enhanced efficiency of radiative decay. 
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If the dopant is phosphorescent then there is the possibility of utilising the triplet yield 

11T, "side stepping the selection rules"[68l. 

2.461 Forster (Resonant) Transfer 

There are two types of transfer in addition to reabsorption of host emission, one a sub­

definition of the other. Resonant or Forster transfer requires an overlap between 

absorption spectrum of the dopant and the fluorescence spectrum of the host. 

x _r 
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] ~ ,' ~ 
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Figure 2-17 Overlap of host emission and dopant absorption that is essential for 

Forster-type transfer[62 l. 

Forster built on work by the Perrins, who proposed a mechanism of transfer that 

required coherence and was mediated by the dipole-dipole interaction. This predicted 

transfer rates that seemed too great compared to results. Forster realised that the 

assumption of coherence was wrong due to the relaxation of the excitation transfer to 

vibrational sub-levels of the dopant introducing irreversibility to the process. 

Coherence is impossible if the vibronic width of the acceptor, ~E, is much greater than 

the interaction strength ofhost and dopant, J. 

In the limit where J is much greater than the width of a single vibronic 

transition, Perrin and Perrin's result holds. For the majority of cases, however, ~E>J 

and the transfer rate has a 1 /R 6 dependence. 
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Equation 2-8 

where Fo(ffi) is the normalised fluorescence emission spectrum, crA(co) the normalised 

dopant absorption cross section, 11o is the refraction index, c is the speed of light, to is 

the dopant excited state lifetime and the integration is over all frequencies. Note that 

the rate Ko-?A is zero for no overlap of host emission and dopant absorption. A critical 

radius, Ro (the Forster radius), can be defined at which the energy transfer from host to 

dopant equals the hosts' radiative decay rate: 

K =-1 (Ro J
6 

D->A R 
TD 

Equation 2-9 

where Ro is typically of the order of 10Al62l In his classic talk[3 tl submitted to the 1 01
h 

Spiers memorial Lecture Forster defines the characteristics of this type of transfer that 

allow us to distinguish it from other transfer mechanisms: 

F orster transfer reabsorption complexing encounter 

Dependence on volume none m crease none none 

Dependence on viscosity none none none decrease 

Host Lifetime decreased unchanged unchanged decreased 

Host fluorescence spectrum unchanged changed unchanged unchanged 

Absorption apectra unchanged unchanged changed unchanged 

Table 2-1 Forster defined characteristics of transfer mechanisms 

The key characteristic of Forster transfer is the observed reduction in the host's 

excited singlet state lifetime. In the systems discussed later in this thesis there are 

usually two possible transfer processes: Forster and Radiative transfer. Radiative 

transfer does not affect the hosts' excited singlet state lifetime hence measuring it will 

allow us to distinguigh between the two cases. 

Due to Forster transfer being a dipole-dipole interaction it is also valid between states 

of single multiplicity. Thus one can only have a dopant singlet exciton from a host 

singlet exciton. 
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2.462 Dexter Transfer 

Dexter extended the theory of resonant transfer to deal with dipole-forbidden 

transitions involving higher multiplicity states. He expressed the transfer rate for 

triplet-triplet transfer as 

Equation 2-10 

where ~D~A is the exchange energy interaction between molecules, F0 (E) is the alised 

phosphorescence spectrum of the host and F A(E) the normalised absorption of the 

dopant, with the integration dE over all energies. Note again that the transfer is 

dependent on the overlap of host emission and dopant absorption. However, Dexter 

transfer requires a much smaller separation of D and A and is harder to achieve in 

polymer systems. It has been shown to be a slow process between polymers and 

dopants and expected to lead to biexpoential decay27
•
37l. 

2.463 Charge Trapping on Dopant Sites 

Several groups have found that on doping polymers with luminescent molecules, 

efficient energy transfer has been observed, but that the power efficiency has been poor 

due to the increase in the required drive voltagel58
'
18

'
78

'
79

,4
4

,4
3J. This has been ascribed to 

charge trapping at the dopant sitesl58
'
44

'
431

. It occurs when either (or both) the electron 

affinity of the host is less than that of the dopant or the ionisation potential is greater. 

This means that on injection the charged polarons are likely to become trapped on the 

dopant sites. This build up in space-charge within the device results in a redistribution 

of the electric field, resulting in a higher drive voltage for a given current density over 

an undoped device. An example of a charge-trapping system is shown below in Figure 

2-18. 

28 



Chapter 2 First Principles of Conjugated Polymers 

ITO 4.7eV 

Rubrene 5·4eV 

Figure 2-18 The energy bands for a MEH-PPV monolayer PLED doped with Rubrene. 

In this case Rubrene acts as a trap for positive polarons due to its lower ionisation 

energy 

This charge harvesting is expected to result in excitons formed directly on the 

dopants as well as those formed by resonant transfer. Thus the depth of these charge 

traps must be considered when evaluating the performance of a dopant. 

This loss in power efficiency has so far been overlooked in the race for high 

internal quantum efficiencies. It is something this thesis attempts to address by using 

heavy metal dopants that do not harvest polymer charges. 

29 



Chapter 2 First Principles of Conjugated Polymers 

2.47 Loss or Quenching Mechanisms 

We have already discussed the effects of several loss mechanisms in PLEDs above. 

The losses are significant to such a system: photoluminescence quantum yield (PLQY) 

measurements give very high values for some polymers (~0.6 for polyfluorene), yet the 

highest external quantum efficiency for an undoped polymer in this study (for example) 

is only 1.2%. Understanding this difference is the first step to addressing possible 

improvements. Only the mechanisms understood to have the main influence on 

performance are discussed here. 

2.471 Singlet-triplet Annihilation 

Many authors proposed the quenching of singlet intra-chain excitons by triplet intra­

chain or trapped excitons. The high density of triplets due to their favoured formation 

from recombination, coupled with the increase in triplet numbers on singlet 

annihilation, makes this route significant to non-radiative quenching. The reaction can 

be described by Equation 2-11 : 

Equation 2-11 Reaction mechanism for triplet-singlet annihilation 

where in order to conserve spin one of the products is necessarily of high multiplicity. 

This high energy triplet T n can then thermalise down to the T 1 level, thus increasing 

triplet density. 

2.472 Singlet-Polaron Annihilation 

"With the number of charged polarons moving through the bulk at high velocity I find 

it amazing that electroluminescence was ever observed in polymer light-emitting 

diodes" A.P.Monkman 2001. 

There is experimental verification of polarons encountering/annihilating singlet intra­

chain excitons, be they free polarons predicted by SSH theory or coupled in 

pairs[26
•
25

•
32l. Taken from these works are equations describing the rate of annihilation 

via collision: 

Equation 2-12 
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where D is the density of intra-chain ex citations 1 D*, polarons p, gN0 the generation 

rate of 1 D*, 11 is a polaron generation quantum yield, Kq is the quenching rate constant, 

and polaron density p can be changed by decreased by some other mechanism 

represented by rate constant kr. 

It should be noted with caution that Dyakanov is able to draw two conclusions 

from this experiment. The alternative to singlet annihilation is that polarons merely 

occupy sites otherwise available for singlet excitons. 

2.473 Singlet-singlet Annihilation 

Unlike singlet-triplet annihilation there is no need for a triplet product in order to 

conserve spin. Instead for non-radiative processes the excess energy can be absorbed 

by the surroundings in terms of a phonon. 

S1 +S1 ~ S0 +Q(E = 2(S1 -S0 )) Equation 2-13 

2.474 Cathode Quenching 

In additional to collisional quenching by other mobile species, the mismatch in hole­

and electron-polaron mobility means that excitons can easily migrate to the metallic 

cathode within their lifetime. Once there they are efficiently quenched. Friend and eo­

workers report a diffusion length of -60nm for intra-chain singlet excitons in ppy[ 13
•
80l. 

PLED active layers in this study are typically 1 OOnrn thick. Transfer of excited energy 

to the modified metal:polymer region formed via metallic ion diffusion are discounted 

as no change in the emission profile is observed. 

2.475 Cathode Mirror Effects 

In the same papers consideration is given to interference effects where the cathode acts 

as a metallic mirror. Photons may be reflected back into the active layer, increasing the 

chance of reabsorption and thus lowering the efficiency. Standing waves can also be set 

up, as shown by the variation in PL efficiency when a spacer layer of silicon dioxide 

(Si02) is sandwiched between the polymer and cathode (Figure 2-19). 

31 



Chapter 2 First Principles of Conjugated Polymers 

0.30 .----------~---------. 
MEY-CN-PPV/510/Znm Au 

0.25 

:>. 0.20 
u 
c 

AI -~ 

~ 0.15 

"' 
_J 
c. 0.10 

0.05 

0.00'~----.......... --------"--~---'------' 
0 20 40 60 80 

Si 0
1 

layer thickness (nm) 

Figure 2-19 Variation in PL quantum efficiency of a 15nm thick MEH-CN-PPV 

(cyano derivative ofPPV) film on a Si02 spacer layer on 2nm of gold or 3nm of 

aluminium as a function of Si02 thickness (from the literature[ 131
). 

32 

-----------------



Chapter 2 First Principles of Conjugated Polymers 

2.5 CURRENT MODELS OF POLYMER LIGHT-EMITTING DIODE 

OPERATION 

There are many models emerging that can describe individual polymer systems[ 15
•
77

•
47 l 

but fail to provide an accurate model for the entire PLED family. This thesis does not 

utilise any modelling of electronic properties in its analysis, hence only a brief 

overview of some classic models is presented. 

2.51 Conduction Mediators in Conjugated Polymers 

One of the advantages of SSH theory is that it explains the presence of conduction 

mediators or pseudo particles in conjugated polymers. For a degenerate ground state 

polymer the energy equivalence of dimerised phases (see for example trans-(CH)n in 

Figure 2-5) means that a defect or boundary between opposite phases is stable, and 

mobile with virtually no cost in energy. 

oil( ..... • 

Phase A Phase B 

Figure 2-20 The neutral boundary particle S0 

A neutral soliton, S0
, is such a boundary state in the absence of any excess charge. If 

the soliton was formed due to removal or addition of charge (with a resulting lattice 

distortion) then one has a negative (electron addition) soli ton (S-) or positive (electron 

removal) soliton (S+). These charged solitons are understood to be responsible for 

conduction in degenerate ground state polymers. 

For non-degenerate ground state polymers such as cis-(CH3)n and PPV the 

difference energy between dimerised phases means that soli tons are thermodynamically 

unstable. Instead they exist as spatially confined pairs, and depending on the soliton 

combination are known as polarons or bipolarons. A positive(negative) soliton 

combined with neutral anti-soliton (or vice versa) is known as a positive(negative) 

polaron, whilst a positive(negative) soliton combined with a positive/negative anti­

soliton is known as a positive(negative) bipolaron. 
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p+ 

p-

BP++ 

BP--

Figure 2-21 Postive and negative polarons(P+,P-) and bipolarons (8P++,BP-) in poly(p­

phenylene) (PPP) 

This gives rise to two sets of energy levels, the polaron energy levels close to 

the valence and conduction band and the bipolaron levels, which lie closer to the 

midgap soliton states. As any disruption to the chain by a soliton is now cancelled out 

by its accompanying anti-soliton, polarons and bipolarons are mobile and contribute to 

conduction. Polarons are believed to be the main conducting pseudo particles in non­

degenerate ground state polymers[28
'
221

, and it is the recombination of oppositely 

charged polarons formed by charge injection (as opposed to the HUMO and LUMO) 

that leads to electroluminescence in polymer light-emitting diodes[30l. Bipolaron 

formation tends to occur at higher current densities and is the reason for lower 

operating efficiencies under said conditions[ 151
, the recombination of bipolarons not 

contributing towards the electroluminescence due to the difference in energy of the 

species involved. 

The Exciton model also allows for polarons and bipolarons, formed either due 

to injection or optical excitation. The excess charge forms a lattice distortion around it. 

The electron/hole has an effective mass different to that of a free electron due to this 

distortion. For optical excitation the excitation produces both electrons and holes, 

which may remain correlated after absorption, resulting product is referred to as a 

germinate pair. 
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2.52 §chottky lBanier Diodes 

When a metal and a semiconductor are brought into physical contact a Schottky barrier 

is formedl 721
. The imbalance in electron affinities results in migration of charges across 

the interface and hence a large electric field in induced which depletes the junction of 

charge; hence the term 'depletion zone'. The Fermi levels of the metal and 

semiconductor are 'bent' into alignment, as illustrated in Figure 2-22 below. 

-----------Vacuum _________ _ 
A 

n-type 
semiconductor Metal 

Level " 
!X 

p-type 
semiconductor Metal 

Figure 2-22 Schottky barriers in n- and p-type semiconductors[72
J 

Where Ec is the conduction band, Ev the valence band, Eg is the band gap, Eo and EA 

are the donor and acceptor levels, $b is the Schottky barrier height, G>e the barrier to 

electron injection, w the width of the depletion zone, V so is the built-in voltage and 

electron affinity of the semiconductor is X· 

This model allows one to derive equations for the current density in the 

semiconductor, the width of the depletion zone and the capacitance of the interface. 

However for large applied fields and high barriers to injection as present in PLEDs 

Fowler-Nordheim (F-N) tunnelling may be a better description. 
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2.53 Fowler-Nordineim Tunelling 

F-N theory describes injection as tunnelling through triangular barriers. Instead of band 

bending the applied field 'tilts' the polymer bands, thus reducing the barrier thickness 

as illustrated in 

Polymer 

Figure 2-23 F-N tunnelling for an ITO:polymer:Ca device[24l 

Again this produces an equation for the current-field dependence. F-N theory predicts 

that a plot of Ln( current/Field2
) verses 1/F will produce a straight line: a way of 

comparing results to this theoryl59l. 
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Chapter 3 Experimental Techniques 

3.1 DEVICE FABRICATION 

3.11 Polymer Structure and Synthesis 

The main polymers used in this study as active layers are poly(2-methoxy, 5-(2'ethyl­

hexyloxy)-p-phenylene vinylene) (MEH-PPV), poly(9 ,9-bis(2-ethylhexyl)fluorene-2, 7-

diyl) (PFO), PFO's amino-endcapped variant a,(l)-Bis[N,N-di(4-

methylphenyl)aminophenyl ]-poly(9 ,9-bis(2-ethylhexyl)fluoren-2, 7 -diyl) (PF2/6am4 ), 

ladder-type methyl-poly(p-phenylene) (Mel-PPP) and CSW-78. Their chemical 

structures are depicted below in Figure 3-1. 

MEH-PPV PFO 

n 

Mel-PPP 

0 \-o N ~ /; 

0 
p 

N 

b 
PF2/6arn4 

CSW/8 

Figure 3-1 Active layer polymers used in this study: MEH-PPV, PFO, PF2/6am4, 

MEH-PPV was obtained from Covion Chemicals in solid form. PFO, PF2/6am4 and 

MeL-PPP were supplied by the Max Plank Institute for polymer research; their 

synthesis routes are described in the literature[5
,61 . CSW78 was synthesised by 

Dr.C.S.Wang (of Durham University Chemistry Department). 

This study also uses a variety of polymers for charge -transporting layers 

sandwiched between either cathode or anode for electron-transporting layers (ETL) or 

hole-transporting layers (HTL) respectively. These include poly(3,4-

ethylenedioxythiophene) (PEDT) doped with polystyrene sulphonated acid (PSSA), 

emeraldine base polyaniline (PANI) protonated with camphor sulfonic acid (CSA), 2-

acrylamido-2-methyl-1-propanesulphonic acid (AMPSA) or polystyrene sulphonated 
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acid (PSS), and poly(2,5-pyridinediyl) (PPY). These polymers are depicted alongside 

their protonating ions in Figure 3-1. 

Emeraldine Base PANI 

PEDT ppy CSA AMPSA 

PSS 

Figure 3-2 Charge transporting layers used in this study: emeraldine base P ANI, PEDT 

and PPY together with relevant counter-ions CSA, AMPSA and PSS 

PANI:counter-ion solutions were synthesised by Dr.N.A.Zaidi as previously 

reported[ll, PEDT was obtained commercially from Bayer-AG Chemicals of Germany 

(Baytron-P Batch K0014 Trial No: Al4083); its synthesis is expected to follow the 

route previously reported by research groups elsewherel71 . PPY was prepared by Or 

L.E. Horsburgh by dehalogenation polycondensation of 2,5-dibromopyridine with a 

tetrakakis(triphenylphosphine) nickel(O) catalyst following a modified Yamamoto 

route. 

3.12 Substrate Preparation 

3.121 Overview 

Polymer light-emitting diodes (PLEDs) were fabricated on lndium Tin Oxide (ITO) 

coated glass measuring I Ox 15mm in area. The ITO was patterned using a combination 

of photoresist and acid etching to create the anodic region. On top of this patterned ITO 

was spin-cast polymer layer(s) directly from solution. For multiple layer PLEDs 

subsequent layers were spin-coated directly on top of the previous layer, generally after 
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the primary layer had undergone thermal treatment (see below). The devices were 

completed by the evaporation of eight individual metal cathodes, resulting in a device 

that could be tested eight times in order to obtain a realistic result. 

3.122 ][TO Etching 

PLEDs must have one semi-transparent electrode in order for the light generated by 

radiative recombination within the active layer to escape and reach the observer. 

Evaporation of semi-transparent metal cathodes is difficult to perform, especially if one 

wishes to protect a reactive cathode such as calcium from atmospheric bleaching by 

subsequent capping layers of less reactive metals. Hence the anode is usually chosen as 

the semi-transparent electrode, and ITO is a popular choice due to its good 

conductivity, an effective workfunction of ~4.8eV close to the HOMO of most 

electroluminescent conjugated polymers and high optical tranmission over the range of 

the visible spectrum (Figure 3-3). 
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Figure 3-3 Transmission-Wavelength plot for Balzers ITO coated glass (taken from the 

Balzers Product Catalogue) 

The ITO coated glass used in this study was obtained commercially from Balzers. The 

ITO layer measured 125nm, and had a sheat resistance of 13Q/ . The large area 

600x600mm ITO coated sheets as received from Balzers were cut into tiles measuring 

15x 1 Omm using a water-cooled diamond saw. Any rough edges were sanded off, and 

then a central, vertical stripe of width 7mm was marked out on each tile using a 

positive photoresist pen. The tiles were left to dry overnight and then the application 
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was repeated. Dry tiles were then placed in an ultrasonic bath at room temperature in 

concentrated hydrochloric acid, which removes all non-protected ITO. Following 4 

minutes of etching any remaining acid on the tiles and the photoresist stripe were 

neutralised by a series of 5 minute ultrasonic baths in detergent, acetone and finally 

propan-2-ol (lP A). This process is summarised in the schematic below: 

ITO 

Apply Photoresist .. 
Cleanse Tile .. 
Detergent, 

acetone. IPA 

-)> 
.,..,(') 

3 ii -· =' m J:n n=r --
Figure 3-4 Schematic of the ITO etching process 

3.123 Hole-transporting Layer Preparation 

Hole-transporting layers (HTLs) PEDT:PSS, PANI:CSA, PANI:AMPSA or PANI:PSS 

were spin coated from solution at 2500rpm for 1 minute onto etched and cleansed tiles, 

with the exception of P ANI:PSS which required 2 minutes and a temperature of 80°C 

provided by a (heat lamp) in order to drive off the NMP solvent used. These processes 

were considered insufficient to drive off all residual solvent and so following this HTL 

coated tiles were left overnight in a vacuum oven at 50°C and a pressure of 10-1 mbar, 

as recommended by past publications[71 . 

PEDT:PSS was spun from water suspension at the concentration received from 

Bayer-AG. The PANI:CSA, :AMPSA and :PSS were diluted down from the 

concentration received from Dr.N.A.Zaidi in order to produce HTL spin-cast films as 

close to the PEDT:PSS HTL thickness as possible. This was done in order to 

legitimately compare the performance of P ANI and PEDT as a HTL in PLEDs. 

Immediately prior to subsequent polymer layers being spun-cast on top of the 

HTL-coated tile it was heated at 180°C for 3 minutes in a final attempt to drive out 

species detrimental to active layer performance. 
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3.124 Polymer Spin Coating 

Each of the active layer polymers used (see Figure 3-1) were preliminarily dissolved at 

a range of concentrations in an appropriate solvent and spun-cast onto ITO/HTL layers. 

In order to minimise the amount of impurities only HPLC grade solvents were used. In 

addition these solvents were filtered by Dr.S.Monkman through a 5J..Lm filter. The 

thickness of polymer films were then measured in order to determine the appropriate 

concentrations ofpolymer:solvent solutions for films of order lOOnm. Unless otherwise 

stated, the standard solvent used were toluene (Tol) for PFO, PF2/6am4 and MeL-PPP, 

chlorobenzene (CB) for MEH-PPV and formic acid for PPY. 

Typically polymers did not dissolve instantly in the solvent, and if so 

inhomogeneously, resulting in striations in cast films from these solutions. In order to 

fully mix polymer with solvent magnetic fleas were placed in the sample vial, and the 

solution was left to mix overnight. Of the resulting solutions PPY occasionally required 

filtration with glass wool and a pipette in order to remove particulate. Having fully 

dissolved the polymer in solution, films were then spun-cast at 2500rpm for 1 minute 

as above. 

3.125 Cathode Evaporation 

Metal electrodes were evaporated onto the polymer coated tiles, usually to a 

thickness of approximately 1 OOnm, fonning the cathode in forward bias. Evaporation 

was carried out in a nitrogen glove box background environment at a pressure of 

approximately lxl0-6 mbar. The deposition rate was held at roughly lAJs to minimise 

any detrimental effect the evaporation would have on the polymer layer. Calcium 

electrodes were partially protected from the effects of oxidation by subsequent 

evaporation of an aluminium capping layer. The arrangement of the metal electrodes is 

governed by the action of a shadow mask, of the authors' design, which dictates where 

the metal contacts are formed. The action of the mask defines an active device area of 

-2 mm2
, formed where the cathode overlaps with the central ITO stripe. This means 

that electrical connections could be easily made with both ITO anode and metal 

cathode without the PLED short circuiting, as shown in 

Figure 3-5. No encapsulation of the PLED was added, hence PLED characterisation 

immediately followed completion of the device in order to obtain optimum results. 
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Metal Contact 

Polymer 
Layer(s) 

Glass Substrate 

Patterned ITO 
Figure 3-5 PLED device structure 

3.126 Thickness Measurements 

A Tencor Alpha-Step thickness profiler was used to measure the thickness of polymer 

and metal films. A small section of polymer/metal film was removed using a sharp 

scalpel and the stylus of the profiler was run over the scratch. When studying bilayer 

device a sample of the underlying layer was spun in addition to the full device and its 

thickness subtracted from that of the bilayer in order to determine the thickness of the 

individual layers. It was observed during the course of investigations that film 

thickness when spin coating was dependent on both solvent and underlying layer, 

hence the Alpha-Step apparatus was always used to check device dimensions. A 

typical trace resulting from an Alpha-Step measurement is shown below. 

2000 . 2 1 

-~~~- ~ so :1 2~ 
SCAN t• 9 s 

DIR . -> 
STYLUS 7119 

0 400LHII LE...::l ............. 
Figure 3-6 A typical measurement taken with the Alpha Step Profiler 

The trace shows a flat area from around Of.lill to 250f.lill on the x-axis. There is then a 

large peak of about + 170nm before the trace shows a wide depression with a depth of 

171.5nm (as measured). The depression is caused by the action of a scalpel scratch 

down the surface and the peak is a result of material from this scratch piling up on the 

side of the scratch. 
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3.2 ELECTROL UMINESCENCE CH ARA CTERISA TION 

3.21 Experimental Set-up 

The PLED was mounted in a sample holder, which formed electrical connection 

addressing the 8 pixels. Gold sprung pins pierce the device up to the solid ITO layer. 8 

of the pins encounter the cathode but no ITO due to its absence on either lengthways 

edge of the device. 4 central pins connect to the ITO stripe-anode. 

I 

+ve -_/ 

-ve 
) 

Figure 3-7 Electrical Connections to the PLED 

The sample holder was then pumped down to a pressure of 1 o·2mbar for testing. The 

electrical connections to the PLED were controlled by a Keithley 2400, in turn 

automated by NI lab View PC software to allow the device to be tested under a range of 

current-voltage values. Simultaneously the intensity of light from the PLED was 

measured by a photodiode mounted in the lid of the sample holder, controlled by a 

Keithley 2000 again automated via PC software. Measured current, voltage and 

photodiode voltage is then exported as a delimited ASCII file. 

LED 

Vacuum 
Chamber 

Electrical 
Connections 

Spectral Measurement . I 
7 

L 
1 -12345678 1 

0 0 

I -12345678 : I 

D-D r; 0: 

Intensity 
Measurement 

Source Measure Unit 

Figure 3-8 Experimental set-up for PLED characterisation 
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Electroluminescence spectra were taken with an Ocean Optics UBS2000 Spectrometer 

with the PLED in the sample holder but the photodiode lid removed. Spectra could 

easily be sampled using a fibre optic to collect the light emitted, and the GUI provided 

by Ocean Optics allowed one to adjust integration time, smoothing, averaging and 

other standard features. The electroluminescene spectrum is particularly significant in 

calculating device characteristics as for polymers spectra tend to be broad (relative to 

inorganic and small molecules). Hence when converting from our measured 

photovoltage to other units e.g. candelas, the spectrum must be allowed for. 

3.22 Normalisation of the Electroluminescence Spectra 

We use a photodiode to measure the intensity of the light from the PLED in a known 

collection angle, and then combine this quantitative information with the qualitative 

information collected by the CCD (which tells us the relative number of photons 

incident on the CCD for the given wavelength interval across the range of the CCD) in 

order to obtain a spectrum normalised by photon intensity per unit wavelength. We 

have already mentioned that the experimental system used results in a measured 

voltage from the photodiode. This photovoltage is proportional to the actual 

photocurrent in the device, the constant of proportionality being the gain (i.e. feedback 

resistance) used in amplifying the signal from the photodiode. We use a standard RS 

large area (1 00rnrn2
) photodiode that has a transimpedance amplifier built in the diode 

casing. The circuit layout is shown in Figure 3-9 

-5V 

Figure 3-9 Transimpedance amplifier circuit built into the photodiode casing 

In addition to this amplification an operational amplifier with a range of gains (to allow 

for a large variation in device performance) was built around the transimpedance 

amplifier. An operational amplifier merely increases the measured photovoltage rather 
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than convert between current and voltage like the transimpedance amplifier. Hence the 

total gain is given by the product of the two individual gains/feedback resistances and 

we can easily work back to the photocurrent using Ohm's Law, as shown in Equation 

3-1. 

The photodiode/feedback circuit was calibrated using an Ar+ laser and a NIST 

calibrated power meter. Details of the technique employed can be found in Appendix 

C, and is based on techniques found in the literature[2
•
9

•
8l. 

VD 
fD=---

RrXRo 
Equation 3-1 

We combine this quantatative measurement of intensity with the EL spectrum (which is 

proportional to the total number of photons emitted at each wavelength) in order to find 

the absolute total number of photons at each wavelength. On integrating this value, 

referred to here as S(A), we obtain the total number of photons emitted and hence 

provide a route for calculating the quantum efficiency of the device. We must allow for 

the nature of the detector used: we correct for the responsivity variation of Silicon with 

photon energy. 

3.221 Silicon Photodiode Responsibility 

Conveniently this information is supplied to us by the manufacturer, can be found in 

RS Data Sheet F 232-3894 and is reproduced below: 

0.5 

f 0.4 

._ 
0.3 Q) 
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c: 0.1 
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Figure 3-10 RS Photodiode Responsivity 

This data can be approximated by one of two polynomials depending on which 

wavelength range we are interested in. A second order polynomial is accurate for the 
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visible range whilst the seventh order polynomial accurately fits the entire curve. In 

this study we always use the second order polynomial; both are shown below: 

y 2 =-9.17965e10x 2 +7.80834e5x-0.119066 

y 7 = 5.0861le43x 7 -9.81884e37x 6 -1.38876e32x 5 + 5.51266e26x 4 

- 6.17115e20x 3 + 3.27231e14x 2 
- 8.27777e7x + 7.99188 

Equation 3-2 2nd and 71
h Order polynomials describing the Si photdiode responsivity 

3.222 Calculating the EL Spectra in terms of photons per unit wavelength 

First we convert the EL spectra in terms of photovoltage, T(A), into a spectra in terms 

of amps, A(A), using the energy of the photon at a given wavelength E(A) and 

correcting for the response of the photodiode Si(A) 

A(-1) = T(A.)xSi(A.)xE(A) Equation 3-3 

We substitute for E(A) using Planck's law. Next we normalise the spectrum with 

respect to the measured current by introducing a numerical factor B, where B is found 

by equating 10 with A(A) and rearranging to produce Equation 3-4 

ID 
B=-~--=--- Equation 3-4 

I A(A.)dA 
0 

Next we convert from intensity in amps to intensity in terms of photon number 

S(-1) _ BxA(-1) 
Si(A.)xE(-1) 

Equation 3-5 

and substituting Equations 3-3and 3-4 into Equation 3-5 we obtain Equation 3-6 

-I 

Equation 3-6 

We can then calculate the total number of photons by integrating S(A.) 

~ 

L =I S(A.)dA Equation 3-7 
0 
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3.23 Calculating the External Quantum Efficiency 

The photodiode only collects light from the small cone of volume defined by joining 

the perimeter of the active Silicon area with the perimeter of the luminescent pixel. In 

order to calculate the external quantum efficiency from this we must extrapolate to the 

total light emitted in all directions. This involves assuming the emission to be 

Lambertian in distribution. Experimental evidence for this assumption is well 

established, and assuming a Lambertian emission profile is currently the excepted norm 

when calculating PLED performance values[4l. For a Lambertian source the ±lux as a 

function of angle 9 is defined in Equation 3-8 and depicted in 

F(8) = F0 cos((}) Equation 3-8 

90 0 90 
Angle (degrees) 

Figure 3-11 Flux as a function of angle 9 for a Lambertian Source 

We use the correction for the Lambertian nature of the source defined in Greenham et 

a1.[4
J The full argument can be found in either that paper or in the thesis of 

Dr.S.Daily[3l. Here we reproduce the end product, Equation 3-9, which allows us to 

calculate the total flux knowing the angle of collection which we observe with the 

photodiode 

TCLr 2 TCL n ~ 
:=:}FT=--=-=-I S(A)dA 

AD Q Qo 
Equation 3-9 

here FT is the total Flux from the PLED, L is the number of photons per second 

incident on the photodiode area A0 , r is the separation the detector and source and 

Q = A~ is the solid angle of collection. It is important to note that this derivation 
r 

assumes that the separation r is such that it is accurate to approximate the pixel as a 

point source. 
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The External Quantum Efficiency is defined as the ratio of the number of 

photons emitted in the forward direction to the number of injected charge pairs. 

E = Photons emiited 
ex/ p . 

azrsinjected 

Equation 3-10 

We find the number of injected charges from the current: 

lp 
N=­

e e Equation 3-11 

where e is the electronic charge and Ip is the current in the PLED pixel. Substituting for 

FT and Ne in Equation 3-10 we obtain Equation 3-12 

Fr enr 2 J S(A)dA 
E --- ----='----

ext- N - I A Equation 3-12 
e P D 

Finally substituting for S(A) with Equation 3-6 

-I 

Equation 3-13 

The factor of V 0 /Ir tells us that the External quantum Efficiency (EQE) will be 

proportional to the gradient of Intensity-Current Plots for PLEDs. 

The calculation of external quantum efficiency is carried out using an Origin 

Worksheet scripted with LabTalk (script shown in Appendix A). 

3.24 Calculating Power Efficiency 

Power efficiency is commonly quoted in terms of either Candelas per Amp or Lumens 

per Watt. In this study we use the Lumens per Watt notation 

E = Int(lumens) 
power J V 

p p 

Equation 3-14 

This involves converting from the photocurrent in Amps to the Radiometric Lumen 

unit, described below. 

53 



Chapter 3 Experimental Techniques 

3.25 Converting to and between Radiometric Units 

3.251 Photovoltage to Watts 

The Power in Watts as a function of Wavelength is the product of the EL spectrum 

normalised to photon number, S(A), and the energy of the photon at each of those 

wavelengths, E(A) 

P(A) = S(A) x E(A) Equation 3-15 

To obtain the total power we integrate this function over all wavelengths. We can also 

substitute for S(A) using Equation 3-6 and E(A) using Planck's law 

Equation 3-16 

3.252 Watts to Candela 

The definition of the Candela is taken from the literature[S.Daily, 1997 # 165] 

~ 

Int =Km f C(A)L(A)dA Equation 3-17 
0 

where Km is the Commission Internationale de L'Eclairage (CIE) defined "maximum 

spectral luminous efficacy of radiation for photopic vision" and has a value of 683.002 

lumens per watt. L(A) is the emission spectrum of the source with intensity measured 

in Watts per (metre cubed steradian) (W m-3 sr- 1
). 

C(A) is the photopic relative luminous efficiency function and it gives the ratio 

of the radiant flux at wavelength Am to that at wavelength A, so that the two fluxes 

produce the same photopic luminous sensations under specified photometric 

conditions. Data for C(A) is taken from Wyszecki and Stiles' 'Color Science'[IOJ and 

can be modelled by Equation 3-18 

Equation 3-18 

Parameters a, b and c are shown in Table 3-1 (overleaf). 
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Parameters A.::; 555 nm A.> 555 nm 
a 1.00 1.00 
b 5.5163xlo-7 5.5880xl0-7 

c 3.576lxlo-s 4.3678xl0-8 

Table 3-1 Parameters for the photopic relative luminous efficiency function 

To convert from Watts to Candelas per metre squared we use Equation 3-19, where Ap 

is the area of the PLED pixel 

K ~ 

Int = ____.!__Q" J P(A)C(A)dA 
Ap o 

Substituting for P(A) with Equation 3-16 

Equation 3-19 

Equation 3-20 

Again an Origin Spreadsheet embedded with LabTalk script is used for this calculation 

(Appendix A). 

3.253 Candelas to Lumens 

The conversion between Candelas per metre squared and Lumens per Watt is given in 

the Photonics Design and Application Handbook[SJ and is reproduced in Equation 3-21 

lnt(lm) = lnt(cd I m 2
) x Ap x 7r Equation 3-21 
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3.26 Caftca!iating Clln~romaticicy Coordinates 

Any interpretation of an EL spectrum using a chromatic description requires us to 

introduce a standard element representing the eye's filtration of light. To this end a set 

of colour matching functions representing a 'standard observer' are commonly used to 

assign a spectrum chromaticity coordinates. 

3.261 X, Y, Z Coordinates 

The 1931 CIE -(X,Y,Z) system is commonly used to assign spectra colour coordinates. 

The procedure uses three colour matching functions .X" ,y" and :Z" which are shown in 

Figure 3-12 
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:::J 
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--o- Y Matching Function 
---b- Z Matching Function 
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o.o~~~~:!bp:~~~~~~~rn;r'D~ 
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Figure 3-12 1931 CIE Colour Matching Functions 

The data for these functions, along with the following method for calculating a 

spectrum's coordinates are taken from the literature[IOJ. 

First we calculate the values equated in Equations 3-22, known as the X,Y,Z 

primaries. 

x = k L T'(A)xAM = k f T'(A-)xAd-1 
..t A 

y = k LT'(A)yAM = k f T'(A)yAdA Equation 3-22 
A A 

z = k LT'(A)zA~A = k f T'(A)zAd-1 
A A 

T'(A) is the measured spectrum divided by wavelength to produce intensity 

proportional to energy rather than number of photons. k is a constant and can be any 
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value, although it is commonly chosen so that the Y value will equal 100. If the 

measurement of T'(A)L1A is absolute in watts then k can be set equal to Km, and the 

value ofY gives the luminous flux of the source, measured in lumens. 

The x,y,z coordinates are normalised primaries such that x+y+z=1, hence z is 

often omitted in reports and references. 

X Y Z 
x = (X + Y + Z) 'y = (X + Y + Z) 'z = (X + Y + Z) Equation 3-23 

Again this calculation is performed in a Labtalk scripted Origin File, code listed in 

Appendix B. 

3.262 R,G,B Coordinates 

Another commonly used coordinate set is the 1931 CIE-(R,G,B) system. This is 

sometimes used as the r,g,b system more intuitively expresses a spectrum in terms of 

the amount of red, blue and green contribution. Once again the relationship r+g+b= 1 

means that the final coordinates is often omitted. The coordinates can be justified as 

above using different colour matching functions but here we only present equations for 

converting between systems. 

2.36461x- 0.89654y- 0.46807z 
r= 

1.85464x + 0.51546y + 0.62989z' 

- 0.51517x + 1.42641y + 0.08876z 
g= 

1.85464x + 0.51546y + 0.62989z ' 

b = 0.00520x- 0.01441y + 1.00920z 

1.85464x + 0.51546y + 0.62989z 

0.49000r + 0.31 OOOg + 0.20000b 
x= 

0.66697 r + 1.13240g + 1.20063b ' 

0.17697r + 0.81240g+ 0.01063b 

y = 0.66697r + 1.13240g + 1.20063b' 

O.OOOOOr + O.OlOOOg + 0.99000b 
z= 

0.66697r + 1.13240g + 1.20063b 

57 

Equation 3-24 

Equation 3-25 



Chapter 3 Experimental Techniques 

References 

[1] Adams, P. N.; Laughlin, P. J.; Monkman, A. P.; Kenwright, A. M. Polymer 

1996, 37, 3411-3417. 

[2] Bruce, S. NIST Photodetector Measurements; NIST:, 2000. 

[3] Dailey, S. A Study of conjugated Polymers and their Applications in Light-

Emitting Diodes. Doctorate, University of Durham, 1998. 

[4] Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y.; 

Moratti, S. C.; Holmes, A. B.; Friend, R. H. Chemical Physics Letters 1995, 241, 89-

96. 

[5] Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H. 

G.; Scherf, U.; Yasuda, A. Advanced Materials 1999, 11, 671-+. 

[6] Gross, M.; Muller, D. C.; Nothofer, H. G.; Scherf, U.; Neher, D.; Brauchle, C.; 

Meerholz, K. Nature 2000,405,661-665. 

[7] Kiebooms, R.; Aleshin, A.; Hutchison, K.; Wudl, F.; Heeger, A. Synthetic 

Metals 1999, 101,436-437. 

[8] Robert, D. A. The Photonics Design and Applications Handbook, 1993; pp 

p.H68-H71. 

[9] Ryer, A. Light Measurement Handbook; International Light, Inc.:, 1997; Vol. 

1997. 

[10] Wyszecki, G.; Stiles, W. S. Calor Science, 1st ed.; John Wiley & Sone Inc.:, 

1967. 

58 



Chapter 41 Performance variatiol!D. with arcllllitectmre lfor various co1rnjungated 

polymers 

None of the work presented in this chapter has been published. It is submitted here in order to provide 

an introduction to PLED properties and to illustrate the wide variation in performance observable by 

vmying charge injection layers. 
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4.1 SINGLE LAYER MEH-PPV LIGHT-EMITTING DIODES 

poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene] (MEH-PPV) was used 

as an active layer in PLEDs in to order to determine the effect on PLED performance 

characteristics of different types of architecture: those being cathode type, number of 

charge injection layers and so forth. Unless stated otherwise the polymer was dissolved 

in HPLC grade chlorobenzene (CB) solvent. The author found a lack of documented 

reports on spin casting thickness variation with solute concentration; hence the first 

results presented are some basic thickness measurements. 

MEH-PPV concentration 

6mg:lml 
7mg:lml 
8mg:lml 
9mg:lml 

Thickness on ITO after 1500rpm spin 

55nm 
75nm 
115nm 
170nm 

Table 4-1 Variation of spin cast film thickness with solution concentration for 

MEH-PPV (CB) spun on ITO 

Polymers in solution are highly non-Newtonian as the tabulated data shows. The 

thickness produced from spin coating is also highly dependent on the underlying layer, 

as will be seen when discussing bilayer systems. The thickness is expected to be 

dependent on the molecular weight of the polymer: for MEH-PPV 1.6x106
. 

4.11 Current-Field Characteristics for Single layer MEH-PPV PLEDs 

Figure 4-1 shows the current-field characteristics for three different active layer 

thickness (55nm, 75nm and 155nm) sandwiched between an ITO anode and an Al 

cathode. The evaporation conditions are also varied using a polymer thickness of 

75nm: with the venting gas either N2 or air. As one would intuitively expect thicker 

films require higher field in order to drive a given current. The two thinner devices do 

not show the standard exponential dependence of current on voltage associated with 

barrier-limited injection. This is ascribed to the instability of these devices: thinner 

films inevitably result in inhomogenialities in field strengths due to thickness 

variations. This leads to pin hole formation and device breakdown. 

60 



Chapter 4 Performance variation with architecture for various conjugated polymers 

The effect of bleeding the evaporator vacuum with N2 appears to be a reduction 

in the conductivity of the film. This would suggest that the presence of 02 is an 

important factor for interface formation at the metal:polymer boundary. 
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Figure 4-1 Current-Field Characteristics for a range of active layer thickness. PLED 

configuration was ITO/MEH-PPV/Al 

4.12 Output Intensity Characteristics for Single layer 

MEH-PPV PLEDs 

Figure 4-2 shows the optical output intensity converted into Candelas per metre 

squared. The three PLEDs fabricated in an 0 2 (air) evaporator follow the trend 

observed in the field-current plots, with output intensity inversely related to thickness 

of the active layer. This is expected for monolayer devices when one considers the 

relative mobility of electron- and hole-polarons. For thinner devices the difference has 

less distance over which to display itself, hence the recombination zone is closer to the 

middle of the device, away from any quenching interfaces. At the same time we have 

mentioned above that thinner devices are less stable due to thickness inhomogenialities. 
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Figure 4-2 Light Output Characteristics for a range of active layer thickness. Devices 

tested were the same as for data shown in Figure 4-1 

4.12 Electroluminescence Spectra for Single layer 

MEH-PPV PLEDs 

Figure 4-3 shows that the electroluminescence profiles are all near identical for the 

monolayer systems under consideration. All show a broad, featureless peak at -600nm 

(2.07eV). This is unique to monolayer devices: it shall be shown below that bilayer 

devices with MEH-PPV active layers typically exhibit double-peaked 

electroluminescence. 
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Figure 4-3 EL Spectra for all monolayer devices discussed in this section 

4.12 Summary 

Monolayer MEH-PPV PLEDs are generally unstable, and the high barrier for electron 

injection formed at the polymer:Al interface results in low device efficiencies, with 

measured EQEs of 0.00263%, 0.00193% and 0.00115% for 55nm, 75nm and 115nm 

thick active layers respectively. Evaporation with a N2 venting gas results in a more 

stable device, but with a higher turn-on voltage. The EQE measured for a 75nm active 

layer capped in this way was 0.00497%, approximately triple the value for the 75nm 

thick device capped in the air-vented evaporator. This suggests that the presence of 0 2 

immediately after Al evaporation has an effect on the polymer:metal interface. The 

absence of any difference in the EL spectra suggests that the difference is not due to 

oxidation of the active layer. 
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4.2 BILAYER MEH-PPV LIGHT-EMITTING DIODES WITH ALUMINIUM 

In order to compare the performance of MEH-PPV with and without hole-injecting 

polymer (HTL), poly( ethylenedioxythiophene) (PEDT) doped with 

polystyrenesulphonic acid (PSS) two PLEDs were constructed. The first was a 

monolayer with a thickness of 115nm (8mglml) sandwiched inbetween ITO and Al. 

The second had in addition a 30nm thick PEDT:PSS layer inbetween the ITO and 

MEH-PPV. Due to the difference between spin-coating MEH-PPV on PEDT:PSS 

compared to on ITO, a concentration of 7mg: lml MEH-PPV:CB was used, which gave 

a thickness of 1 OOnm for the active layer. 
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Figure 4-4 Current-Field comparison for 115nm thick monolayer and 1 OOnm thick 

bilayer MEH-PPV 

Figure 4-4 shows that the addition of the bilayer reduces the turn-on voltage and 

general drive requirements of the bilayer over the monolayer PLED, even allowing for 

the bilayer's thinner active layer. This shows how effective PEDT:PSS is as a 

heterolayer with MEH-PPV: improving electron injection by impeding holes from 
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entering the active layer and hence inducing electric field redistribution. This IS 

consistent with results published elsewhere[?,IJ_ 

- 150 
NE -o- 155nm monolayer - --o-- 1 OOnm bilayer 
"'C 
(.) 
.......... 
"0 
~ 
ro 100 :::J 
0" en 
~ 
Q) 
E 
I.... 
Q) 50 a. 
en 
ro 
Q) 

"'C c::: 
ro 
(.) 

0 
0 200 400 600 

Current Density (mA/cm
2

) 

Figure 4-5 Output Intensity comparison for 115nm thick monolayer and 1 OOnm thick 

bilayer MEH-PPV 

Figure 4-5 shows that the output intensity has also been enhanced by the addition of a 

HTL, although only for current densities greater than -150mA/cm2
. Whereas the 

monolayers' emission was too weak for the human eye to see, a peak emission of 

300Cd/m2 meant that the bilayer was nearly bright enough for applications. 

There are important differences in the EL profiles of the two devices, shown in 

Figure 4-6. The bilayer has an extra peak at 630nm (1.97eV) not observed in the 

monolayer emission. Elsewhere this peak has been ascribed to excimer emission due to 

its absence in absorption spectral' 01 . Whatever the excited species responsible for this 

peak, it is clear that PEDT:PSS is effective at injecting into its energy band(s) or 

level(s). In later sections of this report the manipulation of this peak through doping is 

investigated. 
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Figure 4-6 EL spectra for the monolayer and bilayer ITO/MEH-PPV/Al PLEDs 

The EQE measured for the bilayer was 0.00244% (monolayer gave 0.0011 %), nearly a 

twofold improvement over the monolayer. More significantly the reduction in voltage 

requirements resulted in a power efficiency peak of 0.0133 Lumens per Watt (L/W) 

compared to 0.00239 L/W for the monolayer. EQE and power plots are not included 

here as they were so erratic for the monolayer devices that a comparison would not be 

insightful. 

In summary the addition of a HTL PEDT:PSS has been investigated. Use of the 

HTL reduces drive voltage requirements, complicates the emission profile through 

enhanced injection into excimer (or other) bands/levels, enhances EQE by a factor of 2 

and PE by an order of magnitude. 
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4.3 BILAYER LAYER MEH-PPV LIGHT-EMITTING DIODES WITH 

CALCIUM 

Calcium (Ca) is expected to improve electron injection and hence charge balancing by 

reducing the electron injection barrier. Ca has low workfunction of 3.0eV compared 

with 4.2eV for Al. Due to its reactivity Ca is usually capped with a protective Allayer 

to prolong device lifetime. 

A range of MEH-PPV solution concentrations was studied in order to determine 

if the same trends were present as observed for monolayer MEH-PPV PLEDs: 

5mg:1ml (which gave 50nm films when spun on PEDT:PSS), 6mg:1ml(90nm), 

7mg:1ml(150nm), 8mg:1ml(200nm) and 9mg:lml(240nm). 

Below, Figure 4-7 depicts the current-field characteristics of the PLEDs 

fabricated. 

0~~~~~~~~~--~~~~ 
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Figure 4-7 Current-Field Characteristics for the ITO/PEDT/MEH-PPV/Ca:Al bilayer 

PLEDs studied 

Due to the large range in thickness studied there is no general trend to be observed. All 

devices have a current density that depends exponentially on applied field. These 
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PLEDs are stable to much higher current densities than either the AI monolayer or 

bilayer PLEDs. 
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Figure 41-8 Output Intensity as a function of current density for the Ca bilayer PLEDs 

studied 

Above, Figure 4-8 shows that the output intensity, the gradient of which is proportional 

to External Quantum Efficiency (EQE), increases for a given current density with 

active layer thickness. This is the opposite of the trend observed for monolayer PLEDs 

withAl cathodes, an effect of balancing hole and electron injection on the PLED. 

The performance measurements of the PLEDs, EQE and PE, are shown in 

Figure 4-9 and Figure 4-10. They display remarkable similarity to theoretical 

predictions, as well as further enforcing the trend of improved performance with 

increased MEH-PPV thickness. They are included here to illustrate the typical 

performance expected of undoped active layer systems, which will become significant 

in later chapters when considering doped systems with markedly different performance 

trends. 
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Figure 4-9 EQE as a function of current density for bilayer (ea) PLEDs 
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Figure 4-10 PE (in lumens per Watt) as a function of current density for the bilayer 

(Ca) PLEDs 
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4.4 MEH-PPV PLEDS UNDER REVERSE BIAS 

The problem with using a low workfunction metal like Calcium is that the metal tends 

to be highly reactive, as well as a good quencher of light. One idea of avoiding this is 

to run the PLED under effective reverse bias. Gold is known to produce an ohmic 

contact with MEH-PPV[ 13l, and hence is highly suitable as a metal anode. Poly(p­

pyridine) (PPY) has previously been used as an electron transporting layer (ETL) with 
ppy[9,3,2J_ 

PPY was diluted in formic acid in various concentrations and spin coated on 

ITO to give layers 1 Onm(from 4mg: lml), 20nm(5mg: lml), 25nm(6mg: lml), 

30nm(7mg:lml), 35nm(8mg:lml) and 60nm(9mg:lml) thick. A standard 6mg:lml 

MEH-PPV solution was then spin cast on top of these yielding a 60nm thick active 

layer. The devices were completed by a 50nm thick Au anode evaporation. 

All PLEDs showed a high turn-on voltage, which is ascribed to a high barrier 

for electron injection at the ITO:PPY interface. Below Table 4-2 summarises their 

performance. 

PPY thickness MEH-PPV PeakEQE Peak PE Thickness Ratio 
Turn-on Voltage 

(run) thickness (run) (%) (LIW) PPY:MEH-PPY 

10 60 0.00724 0.01879 19 1/6 

20 60 0.00720 0.01707 21 2/6 

25 60 0.00391 0.01162 20 5/12 

30 60 0.01097 0.02748 22 112 

35 60 0.00800 0.02000 21 7112 

60 60 0.01587 0.04119 24 

Table 4-2 Summary of Performance for the MEH-PPV PLEDs in upside-down 

configuration 

There are no general trends to be observed. This device configuration was not pursued, 

as there was no alternative ETL available. Nevertheless these results suggest that the 

approach is viable if such a more suitable ETL can be found. The EQE values exceed 

those for monolayer and bilayer AI PLEDs under forward bias. 
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4.5 BILAYER PLEDS WITH OTHER ACTIVE LAYERS 

4.51 Poly(9,9-bis(2-ethylhexyl)fluoren-2, 7 -diyl) 

Poly(9,9-bis(2-ethylhexyl)fluoren-2,7-diyl) (PFO) was synthesised by Scherf and eo­

workers at the Max-Planck Institute[4
•
5l. When used in bilayer PLEDs with PEDT:PSS 

and Al it gives very weak emission corresponding to an EQE of -1 04 %. However, the 

introduction of Ca gives an even more dramatic improvement than for MEH-PPV. 

In similarity to MEH-PPV Ca bilayers performance is greater for thicker active 

layers. PFO is a blue emitter, its EL spectra has two dominant peaks (at 2.95eV and 

2.76eV) as well as a broad, excimer hump (centred at 2.38eV). 

>-
:!::: 
t/) 
c 
Q) -c 
_J 

w 
'0 
Q) 
t/) 

ro 
E 
"-
0 
z 

1.0 

0.8 

0.6 

0.4 

0.2 

400 450 500 550 600 650 700 750 

Wavelength (nm) 

Figure 4-11 EL profile for PFO in a Ca Bilayer configuration 

The spectrum was not observed to alter with active layer thickness. The EQEs were 

0.398%, 0.391%, 0.318%, 0.1425 and 0.0375% for active layers 290nm(22.5mg:1ml), 

190nm(20mg: 1ml), 100nm(17.5mg:lml), 60nm(15mg:lml) and 75nm(12.5mg:lml) 

respectively. EQE, PE and Output intensity dependence on current density followed 

trends similar to those observed for MEH-PPV in the same sandwich configuration. 

PFO was dissolved in CB for these measurements. 
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Unlike MEH-PPV, a significant variation in CIE color coordinates with 

operating voltage was observed which depended on the solvent used. For CB the 

spectrum was measured at 1 V intervals. For simplicity Figure 4-12 only takes SV 

intervals, but the trend of increasingly red-shifted emission was observed for all 

measurements. 
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Figure 4-12 EL variation with operating voltage for PFO in ea bilayer configuration 

From lOV to 25v a ROB shift of 0.077, 0.398 to 0.084, 0.432 was observed. The 

increased red component appears to be the excimer emission from Figure 4-12, 

suggesting that excimer formation is promoted under high fields. 

Scherf and eo-workers have also observed this behaviour. In the next section we 

look at their method for improving color stability. 
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4.511 Improving tine color stability of lP'lFO 

In order to improve the color stability of PFO Scherf and eo-workers have endcapped 

the PFO chains with amine groups. They claim that this stabilises emission by better 

balancing electron and hole mobilit)4
•
5l. 
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Figure 4-13 EL variation with operating voltage for PF2/6am4 in ea bilayer 

configuration using a CB solvent 

Comparing Figure 4-13 with Figure 4-12 it is clear that endcapping has resulted in 

improved color stability over the PFO. a,(J}-Bis[N,N-di(4-methylphenyl)aminophenyl]­

poly(9,9-bis(2-ethylhexyl)fluoren-2,7-diyl) (PF2/6am4) shows a RGB variation of 

0.000, 0.474 to 0.00, 0.518 from 7V to 13V. Significantly, the excimer peak at 2.38eV 

is now the dominant EL peak and the reason for the redOshift in emission relative to 

PFO. The measurements are taken at lower operating voltages than for PFO as 

PF2/6am4 has a lower turn-on voltage. 

This shift can be reduced still further by using the less polar solvent toluene 

(Tol), as shown below in Figure 4-14. The excimer peak at 515nm is considerably 

suppressed relative to EL spectra for PLEDs fabricated via a CB solvent. This is 

attributed to different chain alignment in the solid state: the less polar Tol dissolves the 

chains completely and results in less aggregation. The emission is hence more blue 
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shifted than when using a CB solvent, with RGB coordinates varying between 0.1 00, 

0.349 (7V) and 0.007, 0.297 (10V). In the region 7V-10V emission blue-shifts with 

increasing voltage. At higher operating voltages the emission will start to red-shift, 

with the re-emergence of the excimer peak. At 12V the RGB coordinates are 0.000, 

0.373. However one would never need to drive the PLEDs beyond ~8V 

(=:30,000Cd/m2
) commercially so this high voltage color instability is unimportant. 

The addition of endcappers improves performance as well as color stability. For 

the two solvents used Tol gives the more efficient active layers, with EQEs of 1.19%, 

0.98%, 0.87%, 0.22% and 0.54% for 150nm(22.5mg/ml), 1 00nm(20mg/ml), 

80nm(17.5mg/ml), 35nm(15mg/ml) and 70nm(12.5mg/ml) thick active layers. 
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Figure 4-14 EL variation with operating voltage for PF2/6am4 in ea bilayer 

configuration using a Tol solvent 

Power efficiencies are also higher with the 150nm thick active layers peaking at 

1 0.63L/W. This is due to the reduction of turn-on voltages on balancing the electron 

and hole mobilities by endcapping. 
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4.52 Ladder-Type metbyl-poly(p-pbenylene) 

Ladder-Type methyl-poly(p-phenylene) (MeL-PPP) has previously been used in triplet 

exciton studies due to its rigid backbone, resulting in no ring torsionl6
•
8
•
11

•
12

•
14l. It is 

used here for introductory purposes due to its green emission falling inbetween blue­

emitting PFO and red-emitting MEH-PPV. 

Mel-PPP was dissolved in Toluene. Having already seen a trend of increased 

performance with active layer thickness for two different polymers only a standard film 

thickness of 140nm(from 20mg/ml) was used. Shows the electroluminescence profile 

for Mel-PPP in the now standard ITO/PEDT:PSS/polymer/Ca:Al configuration. 
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Figure 4-15 EL Spectrum ofMel-PPP in bilayer Ca configuration 

The two singlet peaks at 465nm(2.67eV) and 490nm(2.53eV) are engulfed in the 

excimer hump peaked at 550nm(2.25eV). NMR analysis of the polymer at the Max 

Planck Institute for Polymer Research indicates that the synthesis route introduces 

carbonyl groups on the chain. These defects in the chain are significant to our 

understanding of excimer emission, as their presence appears to be related to the 

intensity of the 2.38eV EL peak. 

The EQE of the device peaked at 0.149% for a current density of 23 .4mA/cm2
. 

The PLED exhibited good color stability with CIE RGB coordinates of typically 0.33, 
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0.53. The EQE dependence on current density was once again similar to that seen in 

Figure 4-9, rising to a maximum at low current density and then gently falling away as 

current density is further increased. 

4.53 csw-78 

CSW-78 is named after its creator Dr.C.S.Wang and effectively a copolymer of 

phenylene- and pyridine-based monomers. Its emission spectrum is therefore expected 

to lie in between those of polyphenylene and polypyridine, on a wavelength scale. 
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It proved very unstable as an active layer and difficult to collect data for. 
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Figure 4-16 EL Spectrum for csw-78 in bilayer Ca configuration 

The emission has one feature peaked at 510nm(2.43eV). This either means that 

excimer emission from the csw-78 is negligible, or that singlet emission and excimer 

emission overlap significantly leading the observer to only see one, broad feature. 

The EQE value measured for a 70nm(30mg/ml in CB) thick active layer was 

0.0022%, but the EQE dependence on current density was highly irregular due to 

instability. 

76 



Chapter 4 Performance variation with architecture for various conjugated polymers 

Csw-78's pyridine groups can be protonated, which is expected to change its 

emission profile. Csw-78 was protonated with CSA in the ratio of one CSA molecule to 

every csw-78 chain. Protonated solution (consisting of 30mg csw-78, 30mg CSA to 

lml CB) was spun to produce active layers measuring 130nm thick. The protonated 

solution was notably more viscous than the pure solution. The emission of protonated 

csw-78 was red-shifted from that of pure csw-78 as shown in Figure 4-17. 
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Figure 4-17 Shift in EL emission profile on protonating csw-78 with CSA 

Protonation did not significantly improve the stability of the csw-78 in PLED 

configuration. The protonated PLED had a peak EQE of0.0015%. However, as a 

method for EL tuning, protonation seems very applicable. Had we started with an 

efficient pure polymer we could vary the amount ofprotonation and hence shift in the 

EL spectra, leading to a range in emission. In this case one would not expect the red­

shift to go significantly beyond the 70nm shift observed in Figure 4-17, as the doping 

ratio was calculated so as to have one CSA molecule for every available pyridine site. 
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4.6SUMMARY 

A range of polymers from red-emitting MEH-PPV to blue-emitting PF2/6am4 has been 

studied. Comparison on improving the architecture of MEH-PPV devices suggests that 

electron injection is the crucial factor on which device performance depends. This is 

further enforced by the improved performance on endcapping PFO with amide groups 

ofhigh electron mobility. 

The initial work with MeL-PPP brings into consideration an area of contention 

in conjugated polymer theory: whether the broad red-shifted (with respect to singlet 

emission) emission peaks in the EL spectra of all polymers studied above are due to 

excimers or not. The relationship of this emission to the presence of carbonyl groups on 

the polymer chains is contrary to understanding of excimer emission. The possibility of 

this emission being carbonyl linked is also supported by a relative increase in EL 

contribution from this peak as drive voltage is increased for PFO. The triplet exciton 

density is expected to increase with drive voltage/current density, and triplets have 

previously been shown to reduce oxygen to singlet oxygen. These free radicals could 

react with the polymer and form more carbonyl groups. This idea is embellished in 

Chapter 8. 

Bilayer PLEDs are more efficient for thicker active layers due to a reduction in 

singlet intra-chain migration to the quenching cathode. It may also be that a 

recombination zone well insulated from atmospheric degradation by a thick active layer 

either side is less susceptible to oxygen diffusion. For practical reasons active layer 

thickness of~ 1 OOnm will be used in later chapters. There is generally no need for high 

undoped results as the rest of this report is interested in relative improvements due to 

doping and injection. 
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ChapteJr 5 Polyaniline as an alteJrnative to poly(3,4-ethylenedioxythioplnene) as a 

hole-transporting layer in polymeR" light-emitting diode 

This work later submitted to Advance Materials under the title' A study of emeraldine base polyaniline 
(PAN!) with various counter ions as an alternative to poly(3,4-ethylenedioxythiophene) (PEDT) as a 
hole-transporting layer in polymer light-emitting diodes'. Currently under consideration. 
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5.1 INTRODUCTION 

PEDT:PSS is commonly used as a hole-transporting layer (HTL) in PLEDs. It has a 

reasonable conductivity and can be spun very thin, (30nm) which minimizes the 

increased requirements on the applied bias that an extra layer introduces. It also 

increases the workfunction to ~5.2eV41 when used to treat ITO. When used in devices 

improved efficiency and reduced turn-on voltage relative to a monolayer device is 

observed. 

In this work alternative HTLs to commercial PEDT:PSS are investigated: 

namely P ANI:CSA, P ANI:AMPSA and P ANI:PSS in bilayer devices with poly(2-

methoxy, 5-(2'ethyl-hexyloxy)-p-phenylene vinylene) MEH-PPV and later ladder-type 

methyl-poly(p-phenylene) Me-LPPP as active layers for all devices. By doing this we 

hope to gain more insight into what makes PEDT-PSS such a good HTL, by varying 

the mobility of the P ANI counter ion used, the conductivity and the effective 

workfunction of the HTL (by varying the doping ratio) and the thickness of the HTL 

(by varying the percentage wt. of the PANI-counter ion in solvent). Previously other 

groups fabricated HTLs with PANI:CSAf10
·
91 , and compared them with ITO hole 

injection suitability. Since then PEDT:PSS has been developed commercially whilst 

P ANI in general has been commonly used for its conducting properties. We have 

already established PANI's excellent stability and applicability to conducting 

fibresr 11
'
7

'
8

.11; if this long-term stability can be transferred to PLEDs then it is of obvious 

benefit to their development into commercial products. 

A standard thickness of 150nm for MEH-PPV or 140nm for Me-LPPP was used 

for all PLEDs. The cathodes were of standard thickness as described in the 

experimental technique section. 
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5.H Transparel!lcy of untreated and treated KTO 

Figure 5-l shows the transmission spectra of untreated ITO, ITO coated in PEDT:PSS 

(measuring 70nm thick) and ITO coated in PANI-CSA (measuring 70nm thick). All 

show high transmission over the visible range of the spectrum. There is a small drop in 

transmission for P ANI-CSA over the high-energy end of the spectrum, making PANI 

more suitable as a HTL when used with green or red emitters, although P ANI is still 

suitable for blue-green emitters given the typical film thickness of ~30nm used for 

HTLs. P ANI:AMPSA and PANI:PSS transmission spectra were similar to PANI:CSA 

and hence only one is shown in Figure 5-1. 
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Figure 5-1 Transmission Spectra ofuntreated ITO, ITO:PEDT and ITO:PANI 
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5.12 Performance of Bilayer PLEDs with JPANI:C§A(45%) compared to 

PEDT:PSS as a HTL 

The performance of HTLs in MEH-PPV bilayer PLEDs for P ANI doped 45% wt. with 

CSA were measured. Figure 5-2 and Figure 5-3 show the Field-Current and Current­

EQE curves for 0.2%, 0.3%, 0.5% and 1% wt. PANI:CSA( 45%) dissolved in m­

cresol/1,1,1,3,3,3,-hexafluoro-2-ol (F6IPA) HTLs. The performance is also summarised 

in Table 5-1, and compared with the standard PEDT:PSS HTL device. Repeat IV runs 

for a sample device are also taken, in this case the 1% wt. device, as a measure of the 

stability of the devices. This repeat measurement is shown in Figure 5-4 (and the 

PEDT:PSS standard in Figure 5-5). 
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Figure 5-2Field-Current Characteristics for the PANI-CSA (45% doped) HTL PLEDs 

tested 

An increase in drive voltage with increasing percentage by weight P ANI:CSA 

in solution was observed. This is attributed to the increase in HTL thickness, measured 

on a Tencor Alpha Step Stylus {Table 5-1). The Peak EQE values of all PANI­

CSA(45%) devices are well below that of the PEDT:PSS device, although they do 

exhibit good 'initial run' stability. On repeating the I-V measurements a fall of the 
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gradient of the each curve was observed for repeat measurements, representing a drop 

in performance. 
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Figure 5-3Current-EQE Curves for the PANI-CSA (45% doped) HTL PLEDs tested 
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PANI-CSA (45% doped) HTL PLED 
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Sharp turn-on 'spikes' in the Field-Current curves were observed, especially for the 

thicker HTLs. Below it is suggested that the fact that these peaks are more significant 

in the PANI:CSA(60%) HTL devices suggest that the CSA molecules are mobile 

enough to migrate in the active layer and once there damage its emission performance. 
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Figure 5-5 Variation of Field-Current characteristics with repeat runs for the 1 %wt. 

PEDT-PSS HTL PLED 

5.13 Performance of Bilayer PLEDs with PANI:CSA(60%) compared to 

PEDT:PSS as a HTL 

Figure 5-6 and Figure 5-7 show the Field-Current and Current-EQE curves for 0.2%, 

0.3%, 0.5% and 1% wt. PANI:CSA(60%) dissolved in m-cresol/F6IPA HTLs. The 

performance is also summarised in Table 5-l, and compared with the standard PEDT­

PSS HTL device. Again repeat IV runs for a sample device were taken, in this case the 

1% wt. device, as a measure of the stability of the devices. This repeat measurement is 

shown in Figure 5-8 (compare with Figure 5-5). 

Again an increase in drive voltage with increasing percentage by weight 

PANI:CSA in solution was observed. Peak EQE decreases with increasing HTL 
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thickness, again suggesting expected due to the increase in field requirements for a 

thicker PLED. 
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Figure 5-6Field-Current Characteristics for the PANI-CSA (60% doped) HTL PLEDs 

tested 
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Figure 5-7Current-EQE Characteristics for the PANI-CSA (60% doped) HTL PLEDs 

tested 
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lFJigure 5-8 Variation of Field-Current characteristics with repeat runs for the 1 %wt. 

PANI-CSA (60% doped) HTL PLED 

Peak EQEs are generally better than the equivalent thickness PANI:CSA(45%) HTL 

device, although, but the stability is less good. For these devices the Field-Current 

curves are highly irregular, and on repeating the I-V measurements the gradient of 

curve falls for repeat measurements (Figure 5-8 contrasted with Figure 5-4). This 

increase in poor repeat performance and curve irregularities relative to the 

PANI:CSA( 45%) HTL devices, coincident with the increase in HTL CSA content, is 

noted. 
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5.141Performance ofBilaye.r JPLJEDs with PANK:AMJPSA(60%) compared to 

JPEDT:PS§ as a HTL 

Figure 5-9 and Figure 5-l 0 show the Field-Current and Current-EQE curves for 0.2%, 

0.3%, 0.5% and 1% wt. PANI:AMPSA(60%) dissolved in dichloroacetic acid (DCA) 

HTLs. Cross referencing with Table 5-l one observes a repetition of the general 

characteristics of PANI:CSA HTL devices: an increase in operating voltages with film 

thickness, and higher peak EQE values for devices with thinner HTL layers, suggesting 

that thinner layer offer better current balancing. 

The repeat 1-V runs for these devices are not displayed as there are hardly any 

changes in gradient, indicating the better stability of the larger counter-ion AMPSA 

relative to CSA. This is more evidence for the theory that in P ANI:CSA devices the 

mobility of the relatively small CSA molecules is a problem for device stability. 

Unfortunately the peak EQE values of the PANI:AMPSA(60%) devices are lower than 

for either ofthe two PANI:CSA ratios used. 
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Figure 5-9 Field-Current characteristics for the PANI-AMPSA (60% doped) HTL 

PLEDs tested 
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Figure 5-10Current-EQE characteristics for the PANI-AMPSA (60% doped) HTL 

PLEDs tested 

5.15 Performance of Bilayer PLEDs with PANI:PSS(1: 1, 1:2, 1:5 and 1:10 by 

weight) compared to PEDT-PSS as a HTL 

From the experiments using PANI:CSA and PANI:AMPSA it is clear that one should 

employ a thin HTL film in order to minimise its detrimental effect on a PLED electric 

field requirements. For this reason we vary only the ratio of PANI to counter-ion PSS 

when investigating the HTL properties of such films. Figure 5-11 and Figure 5-12 

show the Field-Current and Current-EQE curves for 1:1, 1:2, 1:5 and 1:10 by weight 

PSS doped PANI, all dissolved in N-methyl-2-pyrolidinone (NMP) to concentrations of 

5%wt in order to produce 25nm films when spin cast. Conductivity is expected to fall 

with increasing counter-ion concentration, given similar effects already measured 

elsewhere for PANI:CSA and PANI:AMPSA films[' 1• 

A general trend of increasing drive voltage with increasing counter-ion 

concentration is observed, with the 1 :5 and 1:10 doped HTL effectively acting as 
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highly offset barriers (Figure 5-II ). The performance variation with current 1s 

summarised in Table 5-I and Figure 5-12. 
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Markedly different behaviour for the PANI:PSS relative to the other P ANI: counter-ion 

combinations is observed. All P ANI devices outperfom1 the PEDT:PSS device in 

various current density regions. The 1:1 doped HTL appears most suitable for current 

densities below ~400mA/cm2 (=22,000Candelas per metre output intensity) and the 1:2 

doped HTL for higher current densities. Again the 1 :5 and 1:10 doped HTLs appear to 

act as high offset barriers and are unstable for realistic operating requirements. 

Having found a combination of PANI:counter-ion that outperforms PEDT:PSS 

with MEH-PPV active layers, it is appropriate to investigate its performance with 

another polymer with a different conjugated backbone. Here Me-LPPP is used, and the 

results displayed in Table 5-1. Unfortunately all PANI:PSS HTL types performed 

poorly with Me-LPPP, resulting in unstable devices. 
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HTL HTL Thickness (nm) Abs EOE(%) 
Relative to PEDT:PSS 

Standard 

PEDT:PSS with MEH-PPV 30 0.4231 
with MEL-PPP 0.1492 

PANI:CSA (45%) 0.2% wt. 35 0.2573 0.6081 
0.3% wt. 35 0.2377 0.5618 
0.5% wt. 70 0.2623 0.6200 
1% wt. 140 0.2500 0.5909 

PANI:CSA (60%) 0.2% wt. 35 0.2717 0.6422 
0.3% wt. 35 0.2813 0.6649 
0.5% wt. 70 0.1190 0.2812 
1% wt. 140 0.0800 0.1890 

PANI:AMPSA (60%) 0.2% wt. 30 0.1709 0.4039 
0.3% wt. 30 0.2118 0.5005 
0.5% wt. 60 0.1522 0.3598 
1% wt. 180 0.1051 0.2483 

PANI:PSS (1 :1) 5.0% wt. 25 0.5468 1.2925 
with Me-LPPP Active Layer 0.0190 0.1271 
PANI:PSS (1 :2) 5.0% wt. 25 0.4457 1.0534 
with Me-LPPP Active Layer 0.0124 0.0833 
PANI:PSS (1 :5) 5.0% wt. 25 0.6362 1.5037 
with Me-LPPP Active Layer 0.0168 0.1129 
PANI:PSS (1 :1 0) 5.0% wt. 25 0.4657 1.1007 
with Me-LPPP Active Layer 0.0516 0.3459 

Table 5-1 Performance Summary of all PLEDs studied in this work. Unless stated 

otherwise MEH-PPV was used as the active layer. 
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5.16 Discussion 

P ANI:PSS appears to be the best combination of P ANI and counter-ion for use as a 

HTL with MEH-PPV active layers. Other more mobile counter-ions result in poorer 

stability and lower performance. Repeated use of devices indicates that in order of 

stability P ANI:PSS and P ANI:AMPSA are approximately the same, with PANI:CSA 

markedly worse. Although HTLs are in general required to provide an offset to hole 

injection, the results appear to suggest that there are limits to how low one can make 

the HTL conductivity before the performance starts to suffer. 

The performance of the PANI:PSS films with MEH-PPV and MeL-PPP suggests that 

the workfunction of the PANI is higher than that of PEDT:PSS, and is above the level 

of the MeL-PPP HOMO: MeL-PPP having a larger bandgap than MEH-PPV (MEH­

PPV peak electroluminescence (EL) at 590nm, MeL-PPP at 495nm). Me-LPPP shares 

its phenylene backbone with the family of polyfluorenes (PFOs) that have proved 

highly suitable to PLEDs recentlyf2
•
3

•
5
•
61

, and so one expects the PANI:PSS HTLs to be 

unsuitable for PFOs. 

PEDT:PSS has been developed from being inferior to highly superior over 

P ANI:CSA as a HTL material in the past 7 years[91 • It has been shown that a P ANI:CSA 

HTL results in poor stability, and this is attributed to the relatively high mobility 

counter-ion CSA. Even ignoring the poor stability the peak performance of P ANI:CSA 

PLEDs is significantly below that of the PEDT:PSS PLED. These films will have 

reasonable conductivity and it is conceivable that the PANI:CSA films fail to balance 

electron and hole injection into the active layer. 

P ANI:AMPSA HTLs show improved stability but again the performance is 

below that of the PEDT:PSS. P ANI:PSS HTLs however outperform PEDT:PSS HTLs. 

The large polymeric counter-ion may provide improved P ANI chain alignment and 

device stability. Performance of P ANI:PSS HTLs varies markedly with counter-ion 

concentration, with the more conductive films producing performance more suitable to 

PLED applications. 

The P ANI:PSS films are not suitable for use with higher bandgap active layers, 

as illustrated by the poor performance of Me-LPPP active layer PLEDs fabricated here. 

This is expected to be due to a higher workfunction for P ANI:PSS relative to 

PEDT:PSS which for high bandgap active layers with lower HOMOs is detrimental to 

PLED performance. 
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In addition to use with low band gap active layer polymers in PLEDs P ANI:PSS 

be suitable to other applications. The expected thermal stability of P ANI films due to 

the polymeric counter-ion may make it suitable for use in electric circuits that require 

heat treatment during their preparation. In order to determine this futher studies will 

measure the conductivity of P ANI:PSS films before and after heat treatment. 
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Chapter 6 Singlet and triplet energy transfer to molecular dopants in PLEDs 

6.1 EFFECTS OF SINGLET AND TRIPLET ENERGY TRANSFER TO 

MOLECULAR DOPANTS IN POLYMER LIGHT-EMITTING DIODES AND 

THEIR USEFULNESS IN CHROMATICITY TUNING 

Rubrene has previously been used in molecular blending experiments with poly [2-

methoxy-5-(2-ethylhexyloxy)-1 ,4-phenylene-vinylene] (MEH-PPV)[2
J and m a 

polystyrene based dispersion with 8-hydroxyquinoline aluminium (Alq3)[3l; its 

fluorescence efficiency being 100%, although the phosphorescence yield is poor . 

Rubrene's singlet and triplet energies have been measured at 2.23eV and 1.14eV 

respectively[7], below that of the PF2/6am4 singlet energy at 2.79eV. The non­

endcapped PFO triplet energy has been measured at 2.3eV[51). 

Figure 6-1 Molecular Structure ofRubrene (Rb) 

Here rubrene was added to standard PF2/6am4 solutions (20mg/ml Tol) to produce 

doped active layers when spin-cast. The standard bilayer configuration was used. A 

range of dopant concentrations was used: 1 %wt, 2%wt, 3%wt and 4%wt. Each PLED 

was then characterised. 

6.1 Results 

Figure 6-2 and Figure 6-3 respectively show the Field-Current and brightness 

output curves of the devices tested. In similarity with other polyfluorene/dopant 

systems[9
•
101 an increase in turn-on voltage with dopant concentration was observed, 

with the voltage required for a current of 1 x 1 o-s A in the device at 4, 5, 7.1, 10.1 and 

1 0.2V for the undoped, 1%, 2%, 3% and 4% doped devices respectively. Note that the 

IV characteristics of the 3% and 4% doped devices are similar, yet the output from the 

4% device was poor, indeed too unstable to measure. 
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Figure 6-2 Field-Current Cruves for the PF2/6am4:Rb devices tested 
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Figure 6-3 Power Output Curves for the PF2/6am4:Rb devices tested 

The EL spectra are increasingly red-shifted with increasing dopant concentration, as 

shown in Figure 6-4. 
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Figure 6-4 Representative EL Spectra for each device (Undoped at 6V, 1% doped at 

8V, 2% at 12V, 3% at 19V) 

From this plot is appears that the peaks associated with the PF2/6am4 in its undoped 

state become increasingly suppressed as dopant concentration is increased until at 3% 

there are only trace peaks. Table 1 presents a summary of the CIE coordinates for each 

device under a range of operating voltages. A small variation in CIE coordinates with 

operating voltage for the undoped PF2/6am4 was observed, in agreement with previous 

studiesr 11 . This has been ascribed to voltage dependant aggregate states, which the 

endcapper units suppress considerably relative to the original polymer. These small 

variations can be seen in the doped samples although they are increasingly negligible at 

higher dopant concentrations. 

The efficiencies of the doped devices are lower than the undoped device, as 

shown in table 1. However with X, Y coordinates of 0.33, 0.42 the 1% wt. rubrene 

doped device offers good white emission at a high efficiency of 1.04742% at 9.0V. 

This efficiency compares well to other white-emitting polymeric devices and is a result 

98 



Chapter 6 Singlet and triplet energy transfer to molecular dopants in PLEDs 

Peak EQE Spectral Output (in CIE Coordinates) 
Device 

(Voltage at peak) Voltage R G B X y 

Undoped PF2/6am4 1.30141% (6.0V) 6 0.1 0.349 0.552 0.238 0.273 

7 0.049 0.31 0.642 0.215 0.232 

8 0.027 0.296 0.677 0.206 0.217 

9 0.019 0.305 0.676 0.204 0.221 

10 0.007 0.297 0.696 0.199 0.213 

1% Rubrene Doped PF216am4 1.04742% (9.0V) 7 0.34006 0.46627 0.19367 0.35439 0.44669 

8 0.32143 0.45657 0.222 0.34414 0.43105 

9 0.30807 0.44938 0.24255 0.3369 0.41984 

1 0 0.30496 0.44236 0.25268 0.33452 0.41285 

2% Rubrene Doped PF216am4 0.5059% (15.0V) 10 0.4598 0.48145 0.05874 0.4188 0.51293 

11 0.44548 0.48573 0.06879 0.41153 0.51 

12 0.43658 0.47986 0.08356 0.40581 0.50057 

13 0.43569 0.4816 0.08271 0.40558 0.50172 

14 0.4347 0.47962 0.08568 0.40475 0.49949 

15 0.43073 0.47195 0.09732 0.40149 0.49083 

3% Rubrene Doped PF216am4 0.29572% (22.4V) 17 0.4708 0.45388 0.07531 0.42079 0.49308 

18 0.4815 0.47228 0.04622 0.42963 0.51498 

19 0.4815 0.47228 0.04622 0.42963 0.51498 

20 0.48291 0.47176 0.04533 0.43035 0.51519 

21 0.48351 0.47364 0.04285 0.43099 0.51721 

Table 6-1 External Quantum Efficiency & Variation in Color Coordinates with 

Operating Voltage for each device 

of emiSSIOn from both host and dopant sites, and by fine tuning the 

concentration of dopant the color coordinates could be refined further. EQE values do 

not take into account the operating voltage and so these results would appear to suggest 
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either that the transfer process is intrinsically inefficient or singlet annihilation 

increases upon transfer to the dopant. Were there Dexter transfer of PF2/6am4 triplet 

excitons one would expect the EQE of the doped devices to be significantly enhanced 

relative to the undoped device, but this is not observed. Instead the process is radiative 

or Forster transfer of singlet excitons, which conserves the spin of the excited species. 

Rubrene molecules do not act as charge traps in the beneficial way observed by other 

groups where there was a reduction the amount of triplet-singlet-annihilation[8l. It is 

however possible that triplet energy transfer occurs from the polymer to the rubrene 

which has a long triplet lifetime~ 120J..LS[7l. Forster and/or radiative transfer is efficient 

as seen by the complete quenching of the PF2/6am4 elextroluminescnce at >3% wt. 

doping levels. However as can be seen by the measured EQE values rubrene singlet 

quenching must occur. Previous studies have shown that triplet energy transfer from 

small molecules to polymers readily occurs in solution[6
J and polymer triplets are 

quenched by triplet energy transfer to molecular oxygen[6J, thus it must be assumed that 

a proportion of polymer triplets are transferred to the rubrene which has a lower triplet 

energy than the PF2/6am4. The rubrene triplets are long lived 'tr~120~s thus singlet­

triplet-annihilation can occur on the dopant, i.e. S1 + T 1 ---7 Tn + S0. This will reduce 

considerably the overall EQE of the doped devices. If effective charge trapping occurs 

at the rubrene sites leading to excited singlet state formation on the rubrene[3J then one 

might well expect an increased device EQE as observed in Rubrene doped Alq3 

devices[31 . Since this does not obviously occur in PF2/6am4 doped devices (using very 

similar concentrations to those used in the Alq3 devices) it must be concluded that such 

a mechanism in the polymer case is not effective. Thus the decrease in overall EQE of 

the APO doped PLEDs is ascribed to singlet-triplet annihilation at the rubrene sites 

mediated by the long lived trapped triplets on the dopant arising from triplet energy 

transfer from the PF2/6am4. As the singlet-triplet-annihilation processes regenerate the 

triplet state, one trapped triplet may quench many singlet states. Further singlet-triplet 

annihilation is effectively a Forster transfer from the singlet to the triplet it will be 

efficient in the confines of the singlets and triplets localized on the dopant rubrene 

molecules. This difference between polymeric systems and small molecule systems 

may well be caused by higher interchain triplet mobility41 . Thus triplets in the polymer 

device can more readily migrate to the dopant sites. 
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6.2 Discussion 

Rubrene does not produce an increase in External Quantum Efficiency when used as a 

dopant in PF2/6am4 PLEDs. The long-lived rubrene Triplet, 'tT~120~s, results in 

singlet-triplet annihilation on the dopant rubrene sites that exceeds the singlet-triplet­

annihilation present in devices of undoped PF2/6am4. However, due to the highly 

efficient nature of the undoped PF2/6am4 (with a device EQE of 1.30141% at 6V), an 

efficient white emitting device with CIE coordinates 0.33, 0.42 was fabricated whose 

peak EQE measured 1.04742% at 9V. This performance level is most competitive 

when compared to other white emitters based on conjugated polymers, and is a result of 

EL emission from both the host and acceptor. Upon increasing the dopant 

concentration further, saturation is observed at circa 4% wt. rubrene. The 'failure' of 

rubrene to enhance the efficiency of PF2/6am4 PLEDs is significant given rubrene's 

high fluorescence efficiency. The result illustrates that the choice of molecular dopant 

for use in PLEDs may be complicated by properties other than dopant energy levels 

and fluorescence efficiency. Performance enhancement is dependant on not only the 

efficient transfer of energy to the dopant centers, but just as importantly on fast decay 

of the dopant excitons, avoiding singlet-triplet annihilation quenching resultant from 

the high triplet density around dopant sites. 
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This work later submitted to Journal of Applied Physics under the title 'A study of the energytransfer to 
porphyrin derivatives when used as do pants in polymer light-emitting diodes'. Currently under 

consideration. 
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Chapter 7 Electrophosphorescence and chromaticity tuning in PLEDS 

7.1 INVESTIGATING TRANSFER MECHANICS BY VARYING DOPANT 

PROPERTIES WITHIN THE PORPHJ!IN FAMILY 

The study of rubrene in a highly efficient host polymer suggests that efficient dopant 

emission is not enough to ensure device enhancement. Unless the singlet excitons are 

offered a fast route to decay they are vulnerable to singlet-triplet annihilation at the 

dopant site. In order to further investigate this effect three porphyin derivatives were 

used as dopants in PF2/6am4: 2,3,7,8,12, 13,17, 18-octaethyl-21H,23H- porphyrin 

zinc(II) (ZnOEP), 2,3,7,8,12,13,17,18-octaethyl-21H,23H- porphyrin palladium(II) 

(PdOEP) and 2,3,7,8,12,13,17,18-octaethyl-21H,23H- porphyrin platinum(II) (PtOEP). 

Their chemical structure is shown in 

Figure 7-1 The common structure ofZnOEP, PdOEP and PtOEP, where M is either 

Zn, Pd or Pt respectively 

Varying the central metal atom of the porphyrin can change the amount of spin-orbit 

coupling exerted on the host by the dopant, as well as the fluorescence efficiency and 

excited state lifetimes of the dopant molecule itself (as summarized in table 1, values 

taken from the literature[ 14
'
11

'
17l). Thus by comparing the performance of 

electroluminescent devices incorporating each of these molecules we may be able to 

determine which if any of the dopant properties are crucial for an efficient device. 
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Dopant Molecule 
PtOEP 
PdOEP 
ZnOEP 

Triplet Lifetime 

9lJ.tS 
990J.tS 
57ms 

Luminescence Quantum Yield 
0.5 
0.2 

0.065 

Table 7-1 Summary of the Fluorescence efficiency and Luminescence Quantum Yield 

ofthe porphryin derivatives PtOEP, PdOEP and ZnOEP 

7.11 ZnOEP doped PF2/6am4 PLEDs 

Figure 7-3 and Figure 7-4 show the Field-Current and brightness output curves of the 

devices tested. In similarity with other polyfluorene/dopant systems[ 161 (and in poly(N­

vinylcarbazole) doped with 2,4,7-trinitrofluorenone[ 101
) an increase in turn on voltage 

with dopant concentration was observed, with the voltage required for a current of 

lx10-5A in the device at 4.05, 5.20, 5.35, 5.45, 7.75 & 7.80V for the undoped, 0.5% 

1%, 2%, 3% and 4% wt. doped devices respectively. Previously other authors have 

ascribed this increase in drive voltage to charge trapping at the dopant centers[ 16l. This 

is possible when either the electron affinity of the dopant is lower than that of the 

polymer host, or the ionization potential is higher. It is likely that a similar process 

occurs in these ZnOEP doped devices, with the trapped charge resulting in a 

redistribution of the electric field across the active layer. This is supported by the data 

in Figure 7-2, which suggests that all three of the porphyrin dopants will act as hole 

traps in PF2/6am4. 
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Figure 7-2 HOMO and LUMO levels for the polymer and porphyrin dopants used. 

Data was taken for PtOEP and PFO from reference[21 , and for ZnOEP and PdOEP from 

reference[6J 
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The peak External Quantum Efficiencies (EQEs) of all the ZnOEP doped 

PLEDs are substantially lower than the undoped PLED and decline with increasing 

dopant concentration, as summarized in Table 7-2, and illustrated in the trend seen in 

Figure 7-4: the gradient of the power curve being proportional to the efficiency of the 

device. Figure 7-5 shows that for dopant concentrations greater than 2% wt. the ZnOEP 

Electroluminescence (EL) emission (peaked at 628.5nm) dominates over the PF2/6am4 

EL emission. The ZnOEP emission in PF2/6am4 is peaked at the same wavelength as 

that observed when the dopant was spin coated in a film of poly(methyl methacrylate) 

PMMA, hence we conclude that the ZnOEP molecules are behaving as secondary 

emitters in their own right, and not as complexes formed with the host chains. This is 

important as it allows the use of the values contained in Table 7-1 when assessing the 

relative performance ofZnOEP, PdOEP and PtOEP doped devices. 

It is interesting to note the current densities at which all ZnOEP doped devices 

achieved peak EQE are similar to that for the undoped device. This important 

observation becomes increasingly relevant when we later contrast this result with the 

other porphyrin dopants. 
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Figure 7-3 Current-field Profiles for ZnOEP Devices tested 
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Figure 7-4 Power Output curves for the ZnOEP PLEDs tested 
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Figure 7-5 Electroluminescence Spectra for ZnOEP Devices tested 
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Device Dopant Peak EQE Operating CIE Coordinates 

%wt. [at mNcm2
] Voltage (V) X y 

Undoped 1.19 5 0.23683 0.2678 

[70.67] 6 0.20727 0.22705 

7 0.198 0.21056 

PF2/6am4 0.5 0.22 6 0.2900 0.3090 

Doped with ZnOEP [173.33] 7 0.2760 0.2870 

8 0.2750 0.2870 

0.04 6 0.4100 0.3760 

[242.67] 7 0.4840 0.4250 

8 0.4160 0.3810 

2 0.04 7 0.49355 0.43604 

[236.89] 8 0.41817 0.38690 

9 0.4183 0.38878 

3 0.04 7 0.41869 0.39292 

[141.78] 8 0.41644 0.39362 

9 0.40955 0.38890 

4 0.04 10 0.40101 0.39268 

[54.22] 11 0.39034 0.3820 

12 0.41319 0.40126 

PF2/6am4 0.5 1.06 8 0.22466 0.24599 

Doped with PdOEP [0.21] 10 0.21267 0.25376 

12 0.2149 0.29029 

1.08 8 0.36141 0.28039 

[0.56] 10 0.26229 0.24139 

12 0.23185 0.23936 

2 0.82 8 0.45453 0.28224 

[0.69] 10 0.44344 0.30407 

12 0.35026 0.2647 

3 0.62 9 0.42616 0.28743 

[1.36) 11 0.35732 0.24786 

13 0.29316 0.24267 

4 0.91 10 0.43086 0.29257 

[0.88) 12 0.40141 0.25607 

14 0.34995 0.26402 

PF2/6am4 0.5 2.36 5 0.47415 0.2621 

Doped with PtOEP [15.6] 6 0.37664 0.23279 

7 0.29889 0.21543 

2.75 7 0.62007 0.29379 

[9.16) 9 0.62324 0.27526 

11 0.56166 0.25607 

2 1.99 9 0.60512 0.29352 

[1.92) 11 0.64774 0.27721 

13 0.63147 0.27137 

3 1.29 12 0.64189 0.28112 

[2.13] 14 0.64467 0.27134 

16 0.61804 0.26976 

4 1.28 10 0.64189 0.28112 

[7.78) 12 0.64468 0.27134 

14 0.61805 0.26976 

Table 7-2 External Quantum Efficiency & Variation in Calor Coordinates with 

Operating Voltage for each device. 
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7.12 PdOEP doped PF2/6am4 PLEDs 

Figure 7-6 and Figure 7-7 show the Field-Current and brightness output curves of the 

devices tested. A general trend of increase in turn on voltage with dopant concentration 

was observed, with the voltage required for a current of 1 x 1 o-5 A in the device at 4.05, 

5.90, 5.80, 6.20, 6.25 & 7.1 V for the undoped, 0.5% 1%, 2%, 3% and 4% wt. doped 

devices respectively. The increase is by no means as severe as for the ZnOEP devices, 

and suggests less charge trapping at the PdOEP centers. 

Again a decrease in peak EQE of doped devices with increasing dopant 

concentration was observed (Table 7-2 & Figure 7-7). The magnitude of EQE 

reduction is less than that for ZnOEP, even for higher dopant concentrations. The 

dopant EL emission dominates for higher dopant concentrations, and again this EL 

peak corresponds to the fluorescence of the dopant at 662.5nrn, see Figure 7-9. 

PdOEP doped devices this current densities at which peak EQEs were observed 

were several orders of magnitude lower than for the undoped device (Table 7-2). Of 

equal significance, whereas the high performance of the undoped device is maintained 

up to high current densities (circa 400Cd/m2
), the EQE of all PdOEP devices falls off 

sharply with increasing current density beyond the bracketed values contained in Table 

7-2. 
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Figure 7-6 Current-field Profiles for PdOEP PLEDs tested 
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Figure 7-7 Power Output curves for the PdOEP PLEDs tested 
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Figure 7-8 Electroluminescence Spectra for PdOEP Devices tested 
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Figure 7-9 Fluorescence Spectra of the dopant studied in an inert PMMA host. Films 

of PMMA:Dopant blends were drop cast into quartz disks and then analysed in a 

FluoroMax 4 Fluorometer 
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7.13 lPtOEJP doped JPF2/6am4 lPILEDs 

Figure 7-10 and 

Figure 7-11 show the Field-Current and brightness output curves of the devices tested. 

Ageneral trend of increase in turn on voltage with dopant concentration was observed 

again, with the voltage required for a current of 1x10-5 A in the device at 4.05, 3.40, 

4.65, 6.25, 7.6 & 5.85V for the undoped, 0.5% 1%, 2%, 3% and 4% wt. doped devices 

respectively. Again this increase in drive voltage is predicted by the offset in HOMO 

levels between host and dopant. 

Unlike the other dopants, an increased peak EQE for all of the doped devices 

relative to the undoped device was observed, with the 2% wt. PtOEP doped device 

showing a factor of improvement in peak EQE of 2.29 (for all devices' EQE see Table 

7-2). The dopant EL emission dominates for higher dopant concentrations, and 

corresponds to the dopant fluorescence spectrum (Peak at 643.5nm, see Figure 7-9). 

These values should be treated with great care as the improvement is only for 

low current densities (and correspondly low EL emission intensity). For all PtOEP 

doped devices the peak in EQE was observed at current densities several orders of 

magnitude lower than for the undoped device (Table 7-2), and at high current densities 

the EQE of the doped devices fall off to low values of the order of 0.3%, well below 

that of the undoped device at equivalent current densities. There is an observed 

increase from the PF2/6am4 in the blends at high current density, suggesting that past 

the peak perfonnance conditions there is a small increase in the probability of 

recombination and subsequent emission from the host (Figure 7 -15). 
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Figure 7-11 Power Output curves for the PtOEP PLEDs tested 
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7.14 Discussion 

Of the three dopants used in this study, PtOEP has previously received the most 

attention[16
•
151

• High values of EQE combined with the ability to finely tune the color of 

emission between the blue ofPF2/6am4 to the red ofPtOEP by varying the blend ratio. 

What has been neglected is that this EQE enhancement is only for low current densities 

and output intensities. The majority of practical applications would require 

significantly more intensity (i.e. circa 1 00Cd/m2 average in actively addressed matrix 

displays[81 , which for pulsed operation would mean 64 times this average for 1/64 of 

the time), at which correspondingly high current densities our PtOEP devices have 

fallen significantly in efficiency. Figure 7-14 compares the shape of EQE vs. Current 

Density curves for undoped PF2/6am4 and 2% wt. PtOEP, ZnOEP and PdOEP doped 

PF2/6am4. The EQE have been normalized in order to clearly see differences in 

behaviour over operational current densities (for absolute values refer to Table 7-2). 

The shape of the PtOEP curve is markedly different to that of the undoped device. The 

undoped device EQE rises to a maximum value and then remains there until the device 

is pushes into breakdown at very high current densities. In the PtOEP device, 

conversely, EQE peaks at lower current density and then EQE falls away, until at 

1 OOmA/cm2 the EQE is approximately half the peak value. The EQE curve levels out at 

higher current densities to a value of ~0.3%. 

Including the PdOEP and ZnOEP curves of Figure 7-14 in the analysis helps to 

explain this behaviour. Referring to Table 7-1 is can be seen that as dopant 

phosphorescence efficiency increases so do the peak EQE values, with PtOEP the most 

suitable dopant, then PdOEP and finally ZnOEP. This is intuitive and is the reason 

PtOEP is a popular dopant: it is selected for its high efficiency of emission. 

What are more interesting are the current densities at which the doped devices 

peak in EQE. From Table 7-2 it can be seen that the longer the phosphorescence 

lifetime of the dopant, the lower the current density for peak EQE is. This is also 

shown in the normalised EQE curves in Figure 7-14. This would appear to suggest that 

the reason for the poor performance of the doped devices at high current densities 

relative the undoped device is the capacity of the dopant centres to radiately dissipate 

excitons efficiently. As current density increases the amount of trapped charge centred 

on dopant sites will increase, as well as any Forster and/or radiative transfer to the 

dopant. The overlap between porphyin absorption and PF2/6am4 fluorescence is small, 

which correspondingly means any Forster transfer would be small. This information, 
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combined with the observed domination of EL spectra by porphyrin emission for 

ZnOEP, PdOEP and PtOEP, indicates that we have observed recombination directly on 

the dopant sites initiated by trapped hole polarons. If the dopant molecules cannot emit 

fast enough they will become saturated in excitons, exposing those excited species 

'queuing' at the dopant sites to the possibility of non-radiative quenching by singlet[ IS] 

or triplet[ 121 annihilation or triplet-ion[4
J quenching of the form T 1+2D---7S0+2D*, where 

T1 is the first triplet excited state, So is the ground state and 2D and 2D* are the ground 

and excited charge states respectively. Hence the efficiency of the device falls off as 

current density increases. The current density at which EQE is a maximum is directly 

related to the dopants' phosphorescence lifetime. 
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Figure 7-14 Normalized EQE-Current Plots for representative Devices: Undoped 

PF2/6am4 with 2% wt. ZnOEP, PdOEP and PtOEP doped PF2/6am4 doped PF2/6am4. 

For absolute EQE values refer to Table 7-2. The purpose of normalizing the curves is 

to compare the curve shapes and the positions of the peaks for different dopant species 

Further evidence for this saturation effect can be seen looking closely at the 

doped PLED electroluminescence spectra in the wavelength range of PF2/6am4 

fluorescence. For larger drive voltages we observe an increase in the amount of 
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PF2/6am4 emission contributing to the electroluminescence. This can be seen in Table 

7-2, with the CIE-b coordinate increasing, and is also depicted in Figure 7-15 for the 

1% wt. PtOEP doped PF2/6am4 PLED. This suggests that at higher drive voltages 

saturation of the dopant enables positive charge to reside on the polymer long enough 

for recombination to occur without transferring to the dopant, giving rise to emission 

from the polymer. 

0.05 --PLED at8V 
-o-- PLED at 9V 

~ ----8--- PLED at 1 OV 
·en 

0.04 -----'iT"-- PLED at 11 V c::: 
Q) ~PLEDat12V c 
_J 

w 0.03 
"C 

.~ 
m 
E 0.02 
b 
0 
z 

0.01 

400 450 500 550 600 

Wavelength (nm) 

Figure 7-15 Variation in Electroluminescence (EL) contribution from the host polymer 

as drive voltage is increased for the 1 %wt. PtOEP doped PLED 

Thus, ideally one would employ a dopant molecule with a short phosphorescence 

lifetime and a high phosphorescence efficiency in order to achieve a high peak EQE 

and maintained performance over operational current densities. Recent results from 

Baldo et al. usmg bis(2-(2'-benzo[ 4,5- a]thienyl)pyridinato-N,C-3') 

iridium(acetylacetonate) (Btp(2)1r(acac)) confirm these findings[l 1• 

A final remark should also be made concerning the outcome of triplet-triplet 

annihilation, which should be a rather favoured process on the localised dopant sites. 

The intermediate triplet pair formed during the annihilation process will have some 

charge separated characterl191
• Given the very high electric field across the device, 
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decay of the triplet pair to a cationic species would be enhanced at higher current 

densities by this process. Therefore at high current densities, the long lived excited 

state lifetimes of the dopants directly leads to massive quenching of the excitons by 

excited state annihilation and further quenching by the products of annihilation. 
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7.2 SUMMARY! 

The results obtained allow us to highlight key design considerations when choosing 

dopants for use in PLEDs. In addition to high phosphorescence efficiency the dopant 

needs to have a short emission lifetime in order to avoid dopant saturation over the 

operational current densities and required output intensity of the PLED. The dopant 

should also be chosen so as to minimise any loses in power efficiency, i.e. charge 

trapping at the dopant sites results in increases in turn-on voltage. Ideally we would 

have no charge trapping at all, with the electron affinity and ionisation potential 

respectively below and above those of the host polymer. In this regime we would rely 

solely on efficient excitation energy transfer from the polymer to the dopant. In the 

case of poly(N-vinylcarbazole) (PVK) doped with tris(2-phenylpyridine) iridium 

(Ir(ppy)d91 where this is very nearly the case, EQE still falls of at high cmTent 

densities as once again the relatively long lifetime of the dopant excited state degrades 

efficiency through effective quenching mechanisms. In that case the EQE drop was not 

as severe as observed in this study, suggesting that enhanced triplet-ion quenching may 

have been avoided, but that singlet or triplet annihilation concentrated on the sites does 

occur. 

Indeed the results presented here bring into question the whole issue of doping 

PLEDs with small molecules in order to enhance device performance. Specifically: 

there are few known dopants with high efficiencies that also have short excited state 

lifetimes. Those dopants with lifetimes usually incorporate heavy metals that introduce 

significant spin-orbit coupling: an additional complication to dopant selection. More 

fundamentally the idea of energy transfer to more efficient chomaphores than present 

in the pure host requires that the dopant energy levels lie below those of the host. Thus 

red light-emitting devices are possible by blending a blue host with a red emitter: but 

this methodology cannot work for devices that emit in the blue end of the spectrum. 

Triplet transfer would be worse as ET of such blue-emitting polymers is of order 1eV 

below Es[l 3l. We would need to start with a polymer that efficiently emitted in the UV 

in order to obtain the correct energy level positioning. In addition the difference in 

energy between the host exciton and the dopant exciton must be translated to a 

phonon(s), and this will heat the PLED and change its properties. 

With recent experimental and theoretical results[7
•
3

•
5

•
201 questioning the validity 

of the spin-independent recombination, and hence the maximum theoretical Internal 
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Quantum Efficiency of 25% predicted by simplistic quantum statistics, these results 

would suggest that efforts would be better served investigating how we can enhance the 

singlet yield of conjugated polymers, without changing their emission profiles. The 

long lived excited state lifetimes of the dopants studied here directly leads to massive 

quenching of the excitons by excited state annihilation and further quenching by the 

products of annihilation. We need a full range of colours emitted at high efficiency for 

PLEDs to fulfil their commercial potential, and energy transfer to dopant molecules 

seems to not only limit our colour range but also the range of operation at high 

efficiency. From our results in the cases with or without charge trapping, the most 

important criterion for an effective dopant will be a short excited state lifetime, which 

decays radiatively with high yield. 
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light-emitting diodes 

This work later submitted to Physical Review B under the same title. Currently under consideration 
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8.1 MANIPULATING THE SINGLET YIELD IN POLYMER LIGHT­

EMITTING DIODES WITH HEAVY METAL DOPANTS 

Heavy atoms have been known for their perturbing effect on the neighbouring 

atomic/molecular orbitals for many years[71 . Here samples of both MEH-PPV and 

PF2/6am4 are doped with a variety of rare-earth lanthanide metal-organic complexes. 

This is due with the intention of perturbing the inter-system crossing (ISC). This 

ideology is discussed in more detail above. 

Active layers with emissive host polymer MEH-PPV were doped to a variety of 

concentrations between 0.5 and 4% wt. with tris(2,2,6,6-tetramwthyl-3,5-

hepanedionato )gadolinium(III)] 

hepanedionato )lanthanum(III)] 

(Gd-thd3), 

(La-thd3), 

tris(2,2,6,6-tetramwthyl-3,5-

tris(2,2,6,6-tetramwthyl-3,5-

hepanedionato )dysprosium(III)] (Dy-thd3) and cerium(III) 2-ethylhexanoate (Ce-eh3). 

The emissive host PF2/6am4 was doped with Gd-thd3 in order to determine the effect 

of doping a blue emitting polymer with a heavy metal-ligand complex. 

(b) n-Bu Et 

""eH/ 

A 
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\ :' 

0··--Ce-o 
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~CH CH/ 
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Figure 8-1 Chemical stuctures of(a)M-thd3, where M=Gd, La or Dy (b)Ce-EH3 
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8.11 MEH-PPV doped with Gd-thd3, La-thd3, Dy-thd3 and Ce-eh3 

Figure 8-2, Figure 8-3, Figure 8-4 and Figure 8-5 show the field-current, candela 

output, EL spectra and current density-EQE characteristics respectively for all Gd-thd3 

doped MEH-PPV PLEDs studied. There was no significant change in turn-on voltage 

with dopant concentration observed relative to other dopant systems[6l, with 2.35, 2.30, 

2.40, 2.50, 2.80 and 3 .60V required for a current of 1 x 1 o-s A in the undoped, 0.5%, 1%, 

2%, 3% and 4% wt. Gd-thd3 doped MEH-PPV PLEDs. This would suggest that there is 

no charge trapping at the dopant sites. 

There are no significant shifts in CIE coordinates for any of the doped devices 

relative to the undoped device for all operating voltages (Table 8-2/Figure 8-4), but the 

relative heights of peaks in the EL spectra vary. An increase in the height of the peak at 

590nm (2.10eV) relative to the 635nm (1.95eV) peak was observed, which is usually 

highest for undoped MEH-PPV PLEDs. At higher dopant concentrations the height of 

the higher energy peak usually associated with pure singlet fluorescence in MEH-PPV 

exceeds that of the lower energy peak. The EQE values of all doped PLEDs (see Table 

8-2) are significantly greater than that of the undoped device. The order of magnitude 

of current densities at which peak EQEs for the doped PLEDs were measured were 

comparible with that of the undoped PLED. The enhancement in EQE is maintained for 

all operating current-voltage values, and EQE curves are similar to those typically 

observed in undoped systems (Figure 8-5). 

An exhaustive a display of results for the La-thd3, Dy-thd3 and Ce-eh3 PLEDs is 

not presented here as the other doped samples behave similarly to the Gd-thd3 

experiment; displaying a reduction in the 1.95eV EL peak which appears proportional 

to the enhancement observed in the EQE of the PLED (referring to Figure 8-6 and 

Table 8-1 ). This peak has been previously been ascribed to excimer emission[4
J Again 

we observe the enhancement in EQE to be prolonged over all operating voltages with 

relatively small drive voltage increases with dopant concentration. 
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devices tested 

125 



Chapter 8 Heavy atom and Paramagnetic Quenching effects in PLEDs 

1.0 

l=' 0.8 
UJ 
c 

~ 
_J 0.6 
w 
"0 

.~ 0.4 
CO 

E 
0 z 0.2 

-o- undoped MEH 
-o- 0.5% Gd-thd

3 

-v- 1% Gd-thd
3 

---o--- 2% Gd-thd
3 

------- 3% Gd-thd3 

-t:r- 4% Gd-thd
3 

0.0+---~--~----~--~--~--~--~~ 

550 600 650 700 750 

Wavelength (nm) 

Figure 8-4 EL Spectra for the Gd-thd3 doped MEH-PPV devices tested 

0.7 

0.6 

0.5 

-~ 0.4 -w 
a 0.3 
w 

0.2 

0.1 

-o- undoped MEH 
-o- 0.5% Gd-thd

3 

-v- 1% Gd-thd
3 

---o--- 2% Gd-thd
3 

--- 3% Gd-thd3 
-t:r- 4% Gd-thd., 

0.0~----~----~------~----~----~ 
0 100 200 

Current Density (mA/cm
2

) 

Figure 8-5 EQE Curves for the Gd-thd3 doped MEH-PPV devices tested 

126 



Chapter 8 Heavy atom and Paramagnetic Quenching effects in PLEDs 

>. 
~ 
Ul 
c: 
Q) ..... 
c: 

.....J w 
"C 

1.0 

0.8 

0.6 

Q) 
.N 0.4 
m 
E 
~ 

~ 0.2 

-o-- Undoped MEH-PPV 
--o- 3% wt. Gd-thd

3 
----b- 2% wt. La-thd

3 

-o- 3% wt. Dy-thd
3 

-v- 2% wt. Ce-EH
3 

0.0+---~~~~--~--~--~--~--~~ 

550 600 650 700 750 

Wavelength (nm) 

Figure 8-6 EL Spectra for each 'best ofbatch' MEH-PPV-dopant combination 

Dopant Peak EQE (%) Factor M3
+ Electronic Measured Magnetic 

[%wt.] lm~rovement Configuration Moment at 300K {Bohr magnetons~ 

undoped 0.4263 

Gd-thd3 0.7013 1.645 [Xe]4f7 8 
La-thd3 0.5657 1.327 [Xe] 0 

Dy-thd3 0.4702 1.103 [Xe]4fg 10.5 

Ce-eh3 0.4992 1.171 [xe]4ft 2.6 

Table 8-1 Summary of the highest performance dopant:MEH-PPV combinations of 

each dopant (spin configurations and magnetic moments taken from the literature[ 11) 
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Device Dopant Peak EOE Operating CIE Coordinates 

%wt. [at mA/cm2
] Voltage (V) X y 

Undoped 1.19 5 0.237 0.268 
PF2/6am4 [70.67] 6 0.207 0.227 

7 0.198 0.211 

PF2/6am4 0.5 0.15 5 0.182 0.203 
Doped with Gd-thd3 [56.44] 6 0.179 0.196 

7 0.182 0.204 
0.14 5 0.185 0.206 

[1 09.33] 6 0.176 0.196 

7 0.178 0.219 

2 0.18 5 0.192 0.213 

[96.89] 6 0.175 0.192 

7 0.180 0.215 
3 0.11 5 0.195 0.270 

[202.22] 6 0.177 0.248 
7 0.176 0.245 

4 0.18 6 0.213 0.258 
[42.18] 7 0.198 0.244 

8 0.194 0.244 

Undoped 0.43 5 0.601 0.383 
MEH-PPV [150.67] 7 0.619 0.378 

9 0.606 0.391 

MEH-PPV 0.5 0.69 5 0.592 0.389 

Doped with Gd-thd3 [149.33] 7 0.633 0.412 

9 0.581 0.410 
0.7 5 0.574 0.398 

[60.44] 7 0.591 0.406 
9 0.586 0.409 

2 0.56 5 0.588 0.384 
[108.44] 7 0.592 0.390 

9 0.596 0.400 

3 0.63 6 0.558 0.389 

[155.56] 8 0.592 0.401 

10 0.591 0.403 

4 0.59 7 0.571 0.401 

[201.78] 9 0.585 0.410 

11 0.584 0.412 

'falble 8-2 Peak EQE values and sample EL CIE coordinates for all Gd-thd3 PLEDs 

tested 
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8. 12 Gd-dnd3 doped Jl>lF2/6am4 

Figures Figure 8-7, Figure 8-8, Figure 8-9and Figure 8-10 show the field-current, 

candela output, EL spectra and current density-EQE curves respectively for all 

PF2/6am4 PLEDs studied. A slight decrease in turn-on voltage with dopant 

concentration was observed( compare with other host:Dopant systems reported 

elsewherel61), with 4.05, 4.00, 3.70, 3.75, 3.25 and 3.30V required for a current of lxlo-

5 A in the undoped, 0.5%, 1%, 2%, 3% and 4% wt. Gd-thd3 doped PF2/6am4 PLEDs. 

This would suggest that there is no charge trapping at the do pant sites, which was 

expected given the electron affinity and ionisation potential of Gd-thd3 and the energy 

levels of PF2/6am4. The decrease in turn on voltage may represent an altered film 

morphology in PF2/6am4 doped with Gd-thd3 relative to that ofundoped films. 

The doped devices drew higher current densities for a given field strength 

relative to the undoped device, yet their output intensity was significantly lower, as 

illustrated in Figure 8-8. Referring to Figure 8-9 and Table 8-2, no significant shift in 

CIE coordinates for any of the doped devices relative to the undoped device was 

observed over all operating voltages. An increase in the height of the peak at 495nm 

(2.51eV) relative to the 420nm (2.95eV) peak was observed, which is usually highest 

for undoped PF2/6am4 PLEDs. At higher dopant concentrations the height of the lower 

energy peak (the excimer peak) exceeds that of the higher energy peak usually 

associated with pure singlet fluorescence in PF2/6am4. The EQE values of all doped 

PLEDs (see Table 8-2) are significantly smaller than that of the undoped device. The 

detrimental effect appears to have saturated by dopant concentrations of 0.5% wt., with 

the variation of EQE for other doped PLEDs comparable given the experimental error 

of the measurement system. The order of magnitude of current densities at which peak 

EQEs for the doped PLEDs were measured were comparable with that of the undoped 

PLED, unlike those for previous studies involving porphyrin doped PLEDsl2l, where 

saturation of the dopant sites (due to the dopant phosphorescence lifetime) resulted in 

the EQE peaking at low current density and then falling away to low values at realistic 

operating current-voltage levels. 
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8.13 DiscUlssion 

There appear to be two possible explanations for the observed enhancement in 

performance for MEH-PPV PLEDs doped with lanthanide metal complexes. The first 

is discussed in the classic work by Porter and Wright[71: Triplet quenching by 

paramagnetic species. Porter and Wright measured the quenching ability of several 

metal ions on triplet naphthalene in both water and ethylene glycol. They observed 

quenching rates that did not relate to the magnetic susceptibility, but which crucially 

depended the metal ions having a degree of paramagnetism. They ascribed the variation 

in metal ion performance in triplet quenching effectiveness to be dependant on the 

overlap of wavefunctions between triplet host species and metal ion dopant. 

The observed enhancment of PLED performance is likely to correlate to the 

triplet population within the devices. Triplets are known to be of major importance to 

PLED operation, with singlet-triplet annihilation within the active layer being one of 

the main reasons that the internal quantum efficiency of a PLED is typically well below 

the singlet yield measured for a given polymer in photoluminescence studies. The 

lanthanide complexes used are known for their parmagnetism, indeed they are used as 

shift reagents in Nuclear Magetic Resonance (NMR) studies. Has triplet quenching 

resulting in devices of higher efficiency due reduced triplet-singlet annihilation been 

observed? There are many reasons to discount this proposal. Firstly, looking at Table 

8-1 one see that La-thd3 has a negligible magnetic moment, yet it still enhances 

efficiency and alters EL spectra (Figure 8-6) when used as a PLED dopant. This goes 

against Porters' observations. Secondly, the variation in enhancement with dopant 

species is small compared to Porters' results. Furthermore, why would quenching the 

triplet concentration in MEH-PPV benefit the PLED performance whilst being 

detrimental to PF2/6am4? 

An alternative explanation can be found in a more recent theoretical 

publication[31 which discusses recombination as a spin-dependant process which can be 

influenced by heavy atom or impurity scattering. The presence of heavy atoms results 

in greater mixing of triplet and singlet states i.e. higher inter-system crossing. The 

modeling in the literature predicts appreciable changes only for a 'spin-flip coupling 

constant' greater than 10-2eV, which is unachievable with magnetic impurities but 

achievable with heavy atoms. This would explain the observed independence of 

performance enhancement from dopant magnetic field strength, and also the small 
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variation in enhancement observed with dopant species: the heavy atom effect being 

dominant over the paramagnetic effect. This explanation may also explain the 

detrimental effect of lanthanide-complex doping on PF2/6am4 PLEDs: the enhancment 

in the singlet yield due to intersystem crossing introduced by the presence of heavy 

atoms is dependant on both the twist angle of the backbone and the exchange energy 

(i.e. the difference in energy between the lower triplet state and the first singlet excited 

state; the ground state being singlet in spin). PF2/6am4 has a singlet energy of 

Es=2.79eV and a lower triplet energy of ET=2.20eV[sJ giving an exchange energy of 

~=0.59eV. The literature predicts that for twist angle 8=0° singlet yield will only be 

enhanced for 0.3eV<~>0.7eV, and otherwise reduced due to an enhancement of the 

non-radiative S1 lifetime 'tsti route for non-radiative de-excitation. MEH-PPV has 

E~l.27eV and Es=2.07eV[5J, giving ~=0.79eV. MEH-PPV is also known to have a 

non-zero twist angle and this gives a chance of phonon bottleneck, where loosely 

bound triplets relax by emitting multiple phonons and in the process flip spin, with 

singlet yield enhanced by increased rate of crossing from the second triplet level to 

singlet excited state, 'tt2s· This scheme is illustrated in 

Figure 8-11, again modified from the literature[3
•
5J. 

Free Carrier Continuum 

E51 _50=0 .93eV 

Ground State 

Figure 8-llEnergy level scheme proposed in the literature for MEH-PPV and used to 

illustrate an explanation of the results obtained in this paper 
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Back inter-system crossing from T1 to S1 is energetically highly unlikely therefore one 

must ascribe such back transfer to occur from an upper triplet state, T N, to S 1. In MEH­

PPV, TN is found to be far closer to S1 in energy (~Es,TN=0.57eV) than PF2/6am4 

(~Es,TN=0.73eV) consistent with enhanced back upper excited state transfer inter­

system crossing in MEH-PPV. 

With either of these explanations, Porters' paramagnetic triplet quenching or 

intersystem crossing enhanced by the heavy atom effect, the triplet population is 

expected to be lower than for an undoped device in MEH-PPV active layers. The 

reduction of the 'excimer' peak with triplet population is worthy of note as it suggests 

that the formation of the lower energy excited species is facilitated by the presence of 

triplet excitons. Polymer triplet states readily energy transfer to oxygen to form singlet 

oxygen which reacts with conjugated species to form keto-type defects. This goes 

against current understanding of excimers, formation of which is understood to be fixed 

on spin casting from solution. The fact that the presence of triplets appears to be crucial 

to the emergence of the lower peak suggest that this peak may be due to radiative decay 

from an active layer species with properties distinct from those of excimers. The 

increase of 'excimer' or lower energy peak with Gd-thd3 concentration in PF2/6am4 

PLEDs is taken as further evidence in favour of the heavy atom effect; with intersystem 

crossing favouring triplets over singlets and casually lower energy emission. 

We have demonstrated PLED performance enhancement through doping PLED 

active layers with lanthanide-organic complexes. The maximum factor of improvement 

was 1.645 for a 3% wt. Gd-thd3 doped MEH-PPV PLED. The results favour the heavy 

atom effect as the dominant phenomena responsible for this enhancement, which is 

maintained over all operating voltages used and is gained without a large increase in 

turn-on voltage due to a lack of charge trapping, in contrast with polymer-dopant 

systems where energy transfer takes place. The back inter-system crossing has been 

shown to be dependant on the host polymer used, with the dopants proving detrimental 

to devices utilizing PF2/6am4 as an active layer. We have used energy level values 

taken from the literature in combination with another groups' theoretical findings[3l to 

explain the differing results for MEH-PPV and PF2/6am4. 

This method of doping without energy being transferred to the dopant differs 

from the majority of PLED doping studies to date, and was pursued due to the lack of 

efficient blue-emitting dopants with which to enhance the performance of polyfluorene 

derivatives in PLEDs. The fact that this method has failed for PF2/6am4 emphasizes 
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that relative to other polymers the high singlet yield of polyfluorene and its derivatives 

makes it a near-optimized system which very difficult to modify without detrimentally 

affecting performance in PLED structures. 
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Chapter 9 Summary and Conclusions 

9.1 Active Layer Doping 

Work contained in this thesis has shown that there are several approaches to doping the 

emissive conjugated polymer. By far the most common is doping with an efficient 

phosphorescent emitter that harvests the excited states of the host. Other groups have 

reported favourable EQE values but by and large the problem of site saturation has 

been overlooked. Failure of the dopant to release excited energy via photon emission 

can lead to an enhancement in singlet-triplet annihilation over that observed for the 

pure undoped host. It has been shown here that the triplet excitons are the limiting 

factor in this process, thus a phosphorescent dopant should have a short triplet lifetime. 

Other groups have begun to pursue this solution, which may extend the enhancemnt 

factor over all operating parameters required for commercial use. Such an approach 

does not address the need for enhancement of blue-emitting diodes due to the need for 

the do pant singlet energy to be below that of the host singlet energy. 

In an attempt to identify a generic enhancement for all host polymers the device 

physics of PLEDs with rare earth lanthanide doped active layers were investigated. The 

heavy atoms incorporated were expected to enhance the ISC between singlet and triplet 

excited states and thus provide a way of enhancing the intrinsic singlet yield over that 

of an undoped film. In MEH-PPV this improvement was observed for a wide range of 

dopants. Enhancements in EQE and power efficiency were valid over all current 

densities and no charge trapping at the dopant sites was observed. The presence of the 

dopants altered the EL spectrum of MEH-PPV, with the peak previously accounted for 

by excimer emission reduced proportionally with enhancement factor. The author 

questions the validity of ascribing this peak to excimer emission in light of these 

results. In combination with work by other members of this group in collaboration with 

the Paterson Institute for Cancer Research, which highlighted polymer triplets' ability 

to react with oxygen to form singlet oxygen, it favours a scenario in which during 

operation oxygen penetrating the active layer from the atmosphere is converted into 

free radicals which react with the conjugated segments to form keto-type defects. 

These findings point naturally to options for further study. Firstly, the quest for 

an efficient phosphorescent emitter good for all current densities. Secondly, time­

dependent measurements of lower energy EL peaks with time in both oxygen- and 

nitrogen-rich atmospheres in order to confirm that the presence of oxygen has an effect 

on the formation of lower energy features. In addition to providing an inert atmosphere 
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it is also essential to de-gas polymer solutions prior to spin coating as the mixing 

during dissolving is expected to diffuse considerable oxygen into the solution. 

9.2 Alternative Charge Injection Layers 

P ANi solutions containing mobile counter-ions were shown to be bad when used as the 

basis for HTL layers. The mobile counter-ions appear to migrate into the active layer 

from 1-V evidence. PANi in combination with a polymeric counter-ion was shown to 

produce stable PLEDs whose performance surpassed that of PEDT:PSS when used in 

combination with MEH-PPV. Unfortunately PANi:PSS failed to work well with MeL­

PPP, presumably due to a mis-match of the formers' Fermi Level with the latters' 

HOMO. 

Researchers in this group are now experts in P ANi synthesis. Dr.Zaidi has been 

able to produce P ANi in solution with a vast variety of counter-ions, and it is possible 

that one of these combinations will produce a polymer with the right energy levels for 

use as a HTL with polyfluorene-type backboned active layers. Thus the proposed 

continuation for this area of research is more combinations of active layers with novel 

P ANi HTLs. Unfortunately this may be a process of trial and error due to the difficulty 

of cyclic voltametry measurements used to measure the energy levels under 

consideration. 

Finally the author takes this opportunity to encourage more time investment on the 

digestion of results in this field. Whilst the pace of experimental trumpeting appear to 

be slowing there is still a huge gap between experimental and theoretical understanding 

that must be addressed in order for this area of physics to prosper long-term. 
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APPENDIX A EFFICIENCY CALCULATIONS 

1. External Quantum Efficiency 

define qe_finder { 
o/ovolt=%1; 
o/ocurr=%2; 
o/oindex=%3; 

planck=6.626076e-34; #define constants 
cee=299792458; 
solidang=1.374; 
elec=1.60217733e-19; 
pi=3.141592654; 

grog=-9 .17965e 1 0; #fit response with 2nd order polynomial 
hrog=7.80834e5; 
irog=-0.119066; 
rf=5e5; #gain of 1 (rf=5e5 when gain is unity) 
resp=grog*( col(Wavelength)"'2)+hrog*col(Wavelength)+irog; 
cal=1.303264214; 
col(3 )=cal *resp; 

col(4)=(col(3)*col(2))/col(l); #Calculate integrall 
col(xdif)=diff( col(1 )); 
col(ydif)=diff( col( 4)); 
cutoff=list(O,col(xdif)); 
col(xdif)[ cutoff-1 ]=0; 
temp=( col( 4 )*col(xdif) )+(0.5*col(ydif)*col(xdif) ); 
sum( temp); 
integrand=$(sum.total); 

col(Integral1 )[ 1 ]=integrand; #Place results in W orksheet 
col(Normlnt1 )=(o/ovolt/(rf*planck*cee*integrand))*col(Normlnt); 

xdif2=diff(col(1)); #Calculate integral2 
ydif2=diff( col(Normlnt1 )); 
intgrl2=col(N ormlnt 1 )*xdif2+0.5 *ydif2 *xdif2; 
sum(intgrl2); 
int2=$(sum.total); 
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col(Integra12)[1 ]=int2; #Place results in Worksheet 
Eext=( elec*pi *int2)/(%curr* solidang); 
type "intl = $(integrand)"; 
type "int2= $(int2)"; 
type "Eext= $(Eext)"; 
col(QE)[%index ]=Eext* 100 
}; 
andy=list(O,col(VoltP)); 
for (roger= I; roger<andy; roger+= I) 
{ 
qe_finder col(VoltP)[roger] col(Current)[roger] roger; 
}; 
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2. Power Efficiency and Photometric Intensity 

define pe_finder { 
o/ovolt=%1; 
o/ovoltd=%2; 
o/ocurr=%3; 
o/oindex=%4; 

planck=6.626076e-34; #define constants 
cee=299792458; 
solidang=1.374; 
areadi=2.25e-6; 
krn=683.002; 
elec=l.60217733e-19; 
pi=3.141592654; 

fit1_dat1 =1.00; #fit1 data for< 555nrn (CIE Curve Data) 
fitl_dat2=5.5163e-7; 
fitl_dat3=3.5761 e-8; 
fit2_datl =1.00; # fit2 data for> 555nrn 
fit2_dat2=5.5880e-7; 
fit2_dat3=4.3678e-8; 

grog=-9.17965e 1 0; #fit response with 2nd order polynomial 
hrog=7.80834e5; 
irog=-0.119066; 
rf=5e5; 
resp=grog*( col(Wavelength)"'2)+hrog*col(Wavelength)+irog; 
cal= 1.303264214; 
col(3 )=resp*cal; 

col( 4)=( col(3)*col(2))/col(1 ); #Calculate integrall 
col(xdif)=diff( col(l )); 
col(ydif)=diff( col( 4)); 
cutoff=list(O,col(xdif)); 
col(xdif)[ cutoff-1 ]=0; 
temp=col(4)*col(xdif)+0.5*col(ydif)*col(xdif); 
sum( temp); 
integrand=$(sum.total); 
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col(Integral1 )[ 1 ]=integrand; #Place results in Worksheet 
col(Normlnt1 )=(%volt/(rf*planck*cee*integrand))*col(Normlnt); 

andy=list(7.8E-7,col(Wavelength)); 
for (roger=1; roger<andy; roger+=1) 
{ 
test=col(Wavelength)[ roger]; 
if (test<555e-9) 
{ 
xcie=test; 
col(CIEdata)[ roger ]=fit 1_dat 1 *exp( -0.5)*( ((xcie-fit1_dat2)/fit 1_dat3 Y2); 
} 
else 
{ 
xcie=test; 
col(CIEdata)[roger]=fit2_dat1 *exp(-0.5)*(((xcie-fit2_dat2)/fit2_dat3Y2); 
}; 
} ; 

col(SEC)=col(N ormlnt 1 )*col( CIEdata)*planck*cee/ col(W avelength); 

xdif2=diff( col( 1) ); 
ydif2=diff( col(SEC)); 
temp=col(SEC)*xdif2+0.5 *ydif2 *xdif2; 
sum(temp); 
integrand=$(sum.total); 
col(Integral2)[ 1 ]=integrand; #Place results in Worksheet 
col(Cdm2)[%index]=integrand*krn/(areadi*solidang); 
col(Lp W)[%index ]=( col(Cdm2)[%index] *pi *areadi)/(%voltd *%curr); 
}; 

dave=list(O,col(VoltP)); 
for (tim=l; tim<dave; tim+=l) 
{ 
pe_finder col(VoltP)[tim] col(VoltD)[tim] col(Current)[tim] tim; 
}; 
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APPENDIX B CHROMATICITY CALCULATIONS 

planck=6.626076e-34; #define constants 
cee=299792458; 
col(8)=col(8)*planck*cee/col( 1 ); 
col(9)=col(2)*col(8); 
col( 1 O)=col(3)*col(8); 
col(11 )=col( 4 )*col(8); 

xdif=diff( col(l )); #Calculate x_el integral 
ydif=diff( col(9)); 
temp=col(9)*xdif+0.5*ydif*xdif; 
sum( temp); 
int=$( sum. total); 
col(12)[2]=int; #Place results in Worksheet 

xdif2=diff(col(l)); #Calculate y_el integral 
ydif2=diff( col(l 0)); 
temp2=col(1 O)*xdif2+0.5*ydif2 *xdif2; 
sum(temp2); 
int2=$(sum.total); 
col(13)[2]=int2; #Place results in Worksheet 

xdif3=diff(col(l)); #Calculate z_el integral 
ydif3=diff( col(11 )); 
temp3=col(11 )*xdif3+0.5*ydif3 *xdif3; 
sum(temp3); 
int3=$( sum. total); 
col(14)[2]=int3; #Place results in Worksheet 

sumo=col(12)[2]+col(13 )[2]+col( 14)[2]; 
col( 12)[2]=col(12)[2]/sumo; 
col(13)[2]=col(13 )[2]/sumo; 
col( 14)[2]=col(14)[2]/sumo; 

x=col( 12)[2]; 
y=col(13)[2]; 
z=col( 14)[2]; 

col(12)[ 4]=(2.36461 *x-0.89654*y-0.46807*z)/(1.85464*x+0.51546*y+0.62989*z); 
col(13)[ 4]=(-0.51517*x+ 1.42641 *y+0.08876*z)/(1.85464*x+0.51546*y+0.62989*z); 
col(14)[ 4 ]=(0.00520*x-O.O 1441 *y+ 1.00920*z)/( 1.85464*x+0.51546*y+0.62989*z); 
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APPENDIX C PHOTODIODE CALIBRATION TECHNIQUE 

The RS 1 00mm2 large area photodiode was calibrated by contrasting its measurements 

of intensity at two wavelengths from an Ar + laser and comparing with the intensity 

measured by a NIST (National Institute of Science and Technology) calibrated power 

meter. 

Of the lines available, two at 488nm (blue) and 514nm (green) were used. In 

order to vary the intensity of laser light falling on the detector at a series of neutral 

density filters were used. For each intensity dual measurements were taken with the 

photodiode circuit (connected to a Keithley 2000) and the calibrated power meter. The 

measured photovoltage was then converted into Watts, the internal gain of the system 

being known and using P(Watts) = V
2 

where RT and R0 are the transimpedance 
RrxR0 

and operational feedback resistances respectively, and the power measured by the 

photodiode was plotted against that measured by the calibrated power meter. The 

gradient of this graph gives us a correction factor, which corrects the height of the 

Silicon responsivity curve. 

488nm linearity 
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Linearity of the Photodiode Response at 488nm Excitation 
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The following is the calculation of the correction factor using the data from the 488nrn 

excitation wavelength. From the data plotted above: 

Using RrxRo=5MQ 

PowerDensity(W I m2
) = 2. 7172 x Voltage 

Power(W) 
~ = 2.7172XAP!wtodiode 

Voltage 

= 2.7172xlx10-4 

Power(W) 

Current(A) Voltage 
~ = _,__ __ .=._---.J-

Power(W) Rr X R0 

~ = 0.31294 
w 
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Comparing with Si(A=488nrn) calculated using Equations 3-2 we calculate the 

correction factor 

A 

r = _,__w--'-'-"-"""'"'-""-
correction Si (A) 

0.31294 
=---

0.24012 

= 1.303264 

The correction factor can also be calculated at other wavelengths in order to check 

against this value. 
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