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Abstract

A mathematical analysis has been carried out for a coupled pair of Cahn-Hilliard
equations, which appear in modelling a phase separation on a thin film of binary
liquid mixture coating substrate, which is wet by one component. Existence and
uniqueness are proved for a weak formulation of the problem, which possesses a
Lyapunov functional. Regularity results are presented for the weak formulation.

A fully practical piecewise linear finite element approximation is proposed where
existence and uniqueness of the numerical solution, and its convergence to the so-
lution of the continuous problem are proven. An error bound between the discrete
and continuous solutions is given in three space dimensions. A practical algorithm
for solving the resulting algebraic problem at each time step is suggested and its
convergence is proven. Finally, linear stability analysis for one space dimension is
presented, and some numerical simulations in one and two spaces dimension are

exhibited.
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Chapter 1

Introduction

Let Q be bounded domain in R¢(d < 3) with Lipschitz boundary Q. We consider a
coupled pair of Cahn-Hilliard Equations modelling a phase separation on a thin film
of binary liquid mixture coating substrate, which is wet by one component denoted
by A and the other by B (see [25]):

Find {u(z,1), ua(z,t)} € R x R such that

(9’1,1,1

i Aw; in Q,f >0, (1.0.1a)
%UTQ = Aw, in Q,t>0, (1.0.1b)
where
wy = 6—“{;2;—“2), (1.0.1¢)
vy = 5_1*%2“_2) (1.0.1d)

F(ul,u2) = bl’l,Lll1 — G,l’ll,% + C]IVU1|2

+ bzug — CLQU% + CQIVU2|2
a 2 a 2
D == 2 .
; (u1+,/2bl) (u2+,/2b2)

Here 6 F'(uy, ug)/du;, for i = 1,2, indicates the functional derivative. The variable u,

—~

1.0.1e)

denotes a local concentration of A or B and u, indicates the presence of a liquid or a

vapour phase. The constant ¢; denotes the surface tension of ;. The coefficient a; is




Chapter 1. Introduction 2

proportional to T, — T, where T,, corresponds to the critical temperature of the A-B
phase separation, and 7,, represents the critical temperature of the liquid-vapour
phase separation.

If a; > 0, ay > 0, there are two equilibrium phases for each field corresponding

touy = £,/5 and up = £ denoted u;, uy, us, and u,, respectively. The

3
coupling D energetically inhibits the existence of the phase denoted by the (uj, us).
Thus we have a three-phase system: liquid A corresponds to (ug, u; ) regions, liquid
B to (uj, u; ) regions and the vapour phase to (uj, uj) regions.

To simplify the presentation, as in [25], we choose the values in (1.0.1e) as follows:

1 1
blszZZ; a1:a2:§, C1:CQZ%7
namely
Fui,uz) = ¥(uy) + %|V1L1|2+ W(uy) + %[VUQ}Q + 2DV (uy, uy), (1.0.2a)
where
1, ., R
P(r) = Z(r — 1), (1.0.2b)
1 .
U(r,s) = 5(7‘ +1)%(s 4+ 1)?, (1.0.2¢)

although all of the results may be modified to the general case. Here D > 0 and
v > 0 are prescribed constants. Together with this problem we include the following

boundary conditions

c')ul . 8?,62 N Bwl N ng _
% - o = B =0 on 09, (1.0.3a)

wy(z,0) = ud(z), uy(z,0) =ud(z) on Q, (1.0.3b)

where v is the unit normal pointing out of 2.
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Thus the problem now is to find {u,(z,t),us(z,t)} € R x R such that

% =Aw in Q,t>0, (1.0.4a)
% =Aw, in Q,t>0, (1.0.4b)
where
o — 5F(;2,u2) = $(u1) — YAu1 + 2DU, (uy, up), (1.0.4c)
1
Wy = QF——((;;I’*UQ) = ¢(UQ) — ’)’AUQ + 2D‘I’2(U1,u2)v (1O4d)
2
Ou;  Ouy  Owy  Owy
ov oOv v v 0 on 9, (1.0.4¢)
uy(z,0) = ul(z), uy(z,0) = ud(z), (1.0.4f)
é(r) = P'(r), (1.0.4g)
Uy (r,s) = %, (1.0.4h)
Uy(r, s) = ‘9‘1’;’ 5). (1.0.41)

If D =0, the problem reduces to two decoupled Cahn-Hilliard equations, which
has been discussed at length in the mathematical literature; for reviews see [18,20,
31]. For this type of problem, we do not have liquid-vapour interfaces.

To obtain a weak formulation of the problem above, let V' be the trial space,

V= {v : /Q(NUP’ +v?)dz < oo} .

Multiply (1.0.4a) and (1.0.4c) by any test function v € V, integrate over Q and

that is,

rearrange the terms to get

(%,v) _ (Awy,v), (1.0.5a)

(w1,v) = (P(w1),v) — ¥(Auy, v) + 2D(¥ (uy, uy), v); (1.0.5b)
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similarly from (1.0.4b) and (1.0.4d) we obtain

ou
(8_152’U) = (Awy,v), (1.0.5¢)
(wg,v) = (d(uz),v) — v(Aug, v) + 2D(Vo(uy, uz), v). (1.0.5d)
Applying Green’s formula
ou LA
Awvde = [ v—dz — | VuVuvdz Vv e C' (), (1.0.6)
0 r ov 0

to the terms containing the Laplacian in (1.0.5a—d) and using boundary conditions
(1.0.4e), we obtain the weak formulation

(P) Find {uy,ug, w1, we} € HY(Q) x HY(2) x HY{(Q) x HY(Q), t € [0,T] such that
Vn € H'(Q)

(%,n) = —(Vwy, V), (1.0.7a)
(w1,m) = (d(u1),n) + ¥(Vur, Vn) + 2D(V, (uy, u2), 1), (1.0.7b)
uy(z,0) = u(x), (1.0.7¢c)
and
(%l%,n) = —(Vw,y, V), (1.0.7d)
(wa,m) = (¢(uz),n) + ¥(Vua, V) + 2D(V5(u1, u2), 1), (1.0.7¢)
uy(z,0) = ud(z). (1.0.7f)

We now give a brief description of the content of this thesis. In Chapter 2 a global
existence and uniqueness theorem for a weak formulation possessing a Lyapunov
function is proven. Regularity results are presented for the weak formulation.

In Chapter 3 we prove interpolation error estimates in the finite element space
as tools for analysis in Chapter 3 and 4. Then a semidiscrete finite element approx-

imation is proposed where the existence and uniqueness are proven. Also an error
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bound between the semidiscrete and continuous solutions is given.

In Chapter 4 two fully discrete finite element approximation are proposed where
the existence and uniqueness are proven. The convergence of the discrete to the
continuous solutions is shown for Scheme 1. An error bound between the discrete
and continuous solutions is also proven for Scheme 1.

In Chapter 5 two practical algorithms (implicit and explicit methods) for solving
the finite element approximation at each time step are suggested. We discuss the
convergence theory for the implicit scheme, which is used to solve the system arising
from Scheme 1. We also discuss in this chapter some computational results for one
- and two space dimensions. We use the implicit scheme for all simulations. Before
showing some computational results, we discuss linear stability solutions in one space

dimension.



Chapter 2

Evolutionary Problem

In this chapter a global existence and uniqueness theorem for a weak formulation
possessing a Lyapunov function is proven. Regularity results are presented for the

weak solution.

2.1 Notation

Let 2 be a bounded domain in R¢, d < 3 with boundary 092. For d = 2, 3 we assume
that 02 is a Lipschitz boundary. Throughout this thesis we adopt the standard
notation for Sobolev spaces, denoting the norm of W™?(Q) (m € N,p € [1,00]) by
Il - ||m,p and semi-norm by |- |,,,. For p = 2, W™P(Q) will be denoted by H™(f)
with the associated norm and semi-norm written as || - ||, and | - |,,, respectively.
In addition we denote the L2(2) inner product over 2 by (-,-) and define the mean

integral by
1
frm g vieri@.
€2
We also use the following notation, for 1 < g < oo,
T

L9(0, T; W™ (Q)) := {n(x,w 0 t) € W), / (-, )% dt < oo},

L0, T, W™P(Q)) := {n(x,t) (-, t) € W™P(Q), esssup||n(-, t)|lmp < oo} ,
te(0,T)
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T 1/q
( / ||x<-,t)ufn,pdt) for 1< ¢< oo

ess supllx(-, Dl for ¢ = co.
te(0,T)

Il ago,7swmmiey) =
We introduce the Green’s operator G : F — V approximating the inverse Lapla-
cian with zero Neumann boundary data defined by
(VGv,Vn) = (v,n) Vne HY(Q), (2.1.1)
where

Fi={ne (H' () : (n,1) =0},
Vi={ne HYQ) : (n,1) =0},

and (-, -) denotes the duality pairing between (H'(Q2)) and H'(Q) such that
(v,m) = (v,m) VneL¥Q)

The existence and uniqueness of Guv follows from the Lax-Milgram theorem (see

Appendix) and the Poincaré inequality
€lop < Cr(iglp + (6] V6 € W(Q), pe[1,00]. (2.1.2)
We define a norm on F as
[v]l-1 := |Gv|..
Note that for v € F N L?(Q)), we have

v]|2; = (VGv, VGv) = (v, Gv) = (v,Gv) = (Gv,v), (2.1.3)
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and noting the Young inequality, for e > 0, a,b > 0and 1 <p < o0

P b4 1 1
ab < e + e P—  where -+ - =1, (2.1.4)
p q P q

we obtain for all @ > 0 with ¢ = ¢, and p = ¢ = 2,

1
(v,v) = (VGv,Vv) = (Vu, VGu) < |v|i|lv]|-1 < %h}ﬁ 4 %|Qv|f (2.1.5)

Using the Poincaré inequality (2.1.2), the Cauchy-Schwarz inequality and (2.1.3) we

obtain
lv]1>, = (VGv, VGv) = (G, v) < |Gulolv]o < CplGuhvlo. (2.1.6)

For later purposes, we recall the Holder inequality for v € LP, v € L? and

1 <p<oo,

1 1
P a 1 1
/|uv|d:z: < (/u”da:) (/v"da;) ,  where -+ - =1, (2.1.7)
Q Q Q P g

and the following well-known Sobolev interpolation results, e.g. see Theorem 3

in [1]: Let p € [1,00], m > 1 and v € W™P(Q). Then there are constants C' and

p=4 (;—) - }) such that the inequality
)
- d
[p, o0] ifm—¢2>0,
lvlo,r < C|v|é;,”||v||‘,;’p, holds for r € ¢ [p, 00) it m — g =0, (2.1.8)

We also state the following lemma, which will prove useful in our subsequent analysis.

Lemma 2.1.1 Let u,v,n € H(Q), f = u—v, g = v™"™™, m,n = 0,1,2, and
n—m > 0. Then for d =1, 2, 3,

/Q fgndz

< Clu = wlo [fl? [[olIF™™ [lnlls- (2.1.9)
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Proof: Note that using the Cauchy-Schwarz inequality we have

) (n—m)
m n—ml lulg’l?mp |U|0,2(n—m)p for n —m 7£ 0, and m 7é 0,
u v 0p >
|[ulgmp OF | én(;T,)n)p for n—m =0, or m =0 respectively.

From the generalised Holder inequality and the result above we have for n = 2,

/ fogndx
Q

<lu—vlo [u™" ™o s [Mlos,

)
|ul 6 for m =2,

< |u - le InlO,G S IUIO,G |U|0’6 for m = 1,

vl 6 for m =0,
\

< Clu =l [lull* ol linll,

where we have noted (2.1.8) to obtain the last inequality. Similarly we can show for

n = 0, 1. This ends the proof. a

2.2 The Existence and Uniqueness of the Contin-
uous Problem

Given v > 0 and u) € H'(Q), for i = 1,2, such that ||uf||, + ||u3||: < C, we consider
the problem:

(P) Find {u;,w;} such that u; € HY(0,T;(H*(Q))") N L=(0,T; H(Q)) for a.e.
t e (0,T), w; € L*(0,T; H' ()

<%ﬂ7> = - (vwla Vn)$ (2218')

(w1,m) = ((w1), M)+ ¥(Vur, V) + 2D (W1 (uy, usg), 1), (2.2.1b)
uy(z,0) = ud(z), (2.2.1¢)
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and
<%1%,77> = — (Vwy, Vn), (2.2.1d)
(w2,m) = (¢(uz),n)+ v(Vuz, V) + 2D (Vs (u1, uz), ), (2.2.1e)
ug(z,0) = ud(x), (2.2.1f)

for all n € HY () for a.e. t € (0,T), where ¢(-), ¥,(-,-), and ¥y(-,-) are given by
(1.0.4g), (1.0.4h) and (1.0.4i) respectively.
Using (2.1.3), we can write (2.2.1a) and (2.2.1d) as

5 Uy

v

+w;),Vn) =0 Vne H(Q). (2.2.2)

Taking n = g% + w; in (2.2.2), we have for a.e. t € (0,T)

2
=0,
1

8uz—
ot

’g + wy

which implies
aui
at

Wy

s

aui
l-‘g§+wi_][wi

Thus by the Poincaré inequality (2.1.2) we have

ou; ~ Ou;
- ? - 1 >0zt t . :
0 ’gat + w; ][wll_CP gat + w; fwzo
Hence we obtain
Bui
w; = —Q ot +f’U)i, (223)
where
1
][ w; = ,ﬁ'((¢(ui)a 1) + 2D(¥;(u1, up), 1)). (2.2.4)

Noting (2.2.3), (2.2.4) and

(p(r),7) — |—§2—|(<so<r>, 1),1) = (o(r), (T —f ),
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1
|T2—](n’ 1), we can restate the problem (P) as:

Find {uj,us} such that for ¢ = 1,2, u; € HY(0,T;(H'())) N L>(0,T; H(£)),
u;(+,0) = w?(-) and for a.e. t € (0,7T)

where (I — )p:=n—

(gaaﬁ’n)-!-W(Vm,Vn) + ($(ur) +2DW (uy, ug), (I —f )n) =0,  (2.2.5a)
(93;2,n)+7(wz,vn) + ((ua) + 2DTs(us, ug), (I —F )m) =0, (2.2.5h)

for all n € HY(Q).

Theorem 2.2.1 Given v € HY(Q), i = 1,2, such that ||ud||, + ||Jud]]y < C then
there exists a unique solution {u;, w;} to (P) such that the following stability bounds

hold

|ws]| Loo (0,111 02y < C, (2.2.6a)

il i o.rerr () < € (2.2.6b)
1

lwill L20/rsm1 )y < C(L+T2), (2.2.6¢)

where C is independent of 7.

Proof. To prove the existence we use the Faedo-Galerkin method of Lions [27]. Let

{2;}52, be the orthonormal basis for H'(£2) consisting of the eigenfunctions for

—Az+z=Xz in Q, (2.2.7a)
0z
™ =0 on 09. (2.2.7b)

Let V¥ denote the finite dimensional subspace of H'(f2), spanned by {z;}4_,. Note

that z; = 1/|Q|2. The Galerkin approximation for the problem (P) is the following:
Find {u¥, uf, wk, wk} € V¥ x Vb x V¥ x VE,

k
WMz, wE=>"di(t)z, for i=1,2 (2.2.8a)

j=1

|1'Ma~
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such that
dut k ok ko vk
(ﬁ,n ) = — (Vb Vnt) Vit e v, (2.2.8b)
(w§,n") = (B(u),n") +4(Vul, Vn*) + 2D (T (uf, u3), 1) Wn* € V¥, (2.2.8¢)
u¥(z,0) = PF(u?), (2.2.8d)
and
duk ;
(L2,) = — (Vb V) vibeVE,  (220)

(wé",n"') = (qﬁ(ug),nk) + ’y(Vu’Q“, Vnk) + 2D(\II2('1L'1‘,7.1,'§),77") vt e V*, (2.2.8f)

uk(z,0) = P*(ub), (2.2.8g)

where P* is a projection from H'(€)) into V* defined by

Pfy = Z?:l(vvzj)zj V‘f]k & Vk,
(Pto— v, ) = (V(Pfv—0v),Vif)=0 Vot e Vk (2.2.9)
1 PHll e pmy = 1P*ll ez ey = 1.

Straightforward calculation shows that this projection operator satisfies the following

properties, for 2 = 0,1,

|P*y — o], < |&% —v|; VEr e VE, (2.2.10)

|P*u]; < |v|; Vv € HY(Q). (2.2.11)

Since V¥ is dense in H'(f2) and the injection of H'(Q) into L*() is compact

(see Dautray and Lions [17] page 140) it follows that,
P*y — v strongly in L?(Q). (2.2.12)

Using (2.2.7a-b) and taking 7* = z; we can rewrite (2.2.8a-g) as a coupled system
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of first order differential equations, for j = 1,2,...,k,
dc® .(t)
:th = — () - 1)df (1), (2.2.13a)

df() = (FHef(0), = eb5(0) + 70y = el (1)

+2D(gy (e} (1), 5 (1)) ;5 (2.2.13b)
and
dc’g,j(t) B
— = - (A; — 1)ds (2.2.13c)
dIQC,j(t) = (fk(clzc(t)))j - C]2C,j(t) + (A — 1)C§,j(t)
+2D(g5(cf (t), cg(t)))j, (2.2.13d)
where

(95(ei(®), c2(1))), = ((u3 + D(uy +1)%, 7).

The functions f*(ck(t)), ¢¥(ck(t),c(t)) and g5(ck(t),ck(t)) are locally Lipschitz
continuous functions of ¢f.

Letting ¢* = [c*, ck]” we can rewrite (2.2.13a-d) as 9 = #(c*), which is
locally Lipschitz continuous. Hence from the theory existence and uniqueness for

systems of ordinary differential equations (see [8] for example) we deduce the local
k

existence for u¥, w¥, i = 1,2. To get existence of a global solution, we only need to
obtain a priori estimates of uf, w¥ independent of k.

Now consider the free energy

E(ul,uz) = /Q (7,/1(’&1) + %IVWIQ + ’(/)(Uz) + %lVUng + 2D\I!(u1,u2))dz, (2214)

where 1(-) and ¥(-,-) are given by (1.0.2b) and (1.0.2c) respectively.
Since duf(t)/dt € V* for i = 1,2, differentiating £ (u¥, uX) with respect to ¢ and
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rearranging the terms, we obtain

%E(ulf(t)’ulg(t)) = (wl( 1(2)) + 2DV (U1,u2)a uy (t )>
""Y(Vul d“l )
+ (wf(ulpf(t)) + QD\I;Q(ullc’ ub), du;t(t)>
uk
+7(Vu’2“(t),v(d ;t(t)))’ (2.2.15)

where WU, (-,-) and W,(-,-) are given by (1.0.4h) and (1.0.4i) respectively. Noting
(2.2.1b) and (2.2.1e), together with (2.2.1a) and (2.2.1d), and rearranging the terms

we can express (2.2.15) as

d

—E@i(®),u3(8) + [wi O + w3 (1)} = 0. (2.2.16)

In particular
d
ZEi®),u3(1) <0, (2.2.17)

i.e. £ is a Lyapunov functional.

Integrating (2.2.16) over (0,t) and rearranging the terms we have

£ (uy (1), /le I"’ds+/ lwk(s))2ds < E(P*ul, P*uY), (2.2.18)

where we have noted (2.2.17), (2.2.8d) and (2.2.8g).
Note that 9 (r) = 3(r? — 1)?, so that

rt +

L
| =

0<9(r) <

Hence recalling (2.1.8) we have for ¢ =1, 2,

/w )dz <= /Q(uf(t))“dqui/de

1 1
= SRl + 1190 < ClutOE + Fi0l (2:2.19)

Noting the Cauchy-Schwarz inequality and the Young inequality (2.1.4) with e = 1
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and p = ¢ = 2 we have

1
/ U(r,s)dz = —/(r + 1)?(s + 1)%dz
Q 2 Ja
< 2/ (7‘282 +r2 482+ 1)d:c
Q
< 2(|rlga Isl5a +Irl5 + Islg +1921)
< |rloq + Isloq + 2Ir[s + 2]s[5 + 2|0

< CIrllf + Cllsllt + 2irl5 + 2]s[3 + 2], (2.2.20)

where we have noted (2.1.8) to obtain the last inequality.
By the strong convergence of P*u? to «?, i = 1,2, in L2(Q), (2.2.19), (2.2.20),

2.2.11) and the assumption of the theorem, {|u°||, + ||ud]]; < C, we have
1 2

£(P*u, PRal) < CILPRAIIE+ PRI + (4D + ) 0]
+4D|PFulf} + 4DIPHusE + JIPRuSfs + T PRl
< Il + Clldll + (4D + )1
+4D|u’2 + 4AD|ul2 + %mg’ﬁ + g|u3 2<c, (2.2.21)

where C' is independent of T" and k. It follows from (2.2.18), and (2.2.21) that

t t
gl g
SO + [ fwi(s)ids + Slus()F + [ wi(s)[ids < C, (2.2.22)
2 0 2 0

where C' is independent of T and k.
Now taking n* =1 in (2.2.8b) and (2.2.8e), we have for i = 1,2, that

(duf(t), 1) ~ 0. (2.2.23)

Integrating both side of (2.2.23) over (0,t), we obtain

0:/0 /nd:?dzds:/n/ot dig—is—)dsdx:/ﬂ(uf(t)—ufw))dx

(uf (1), 1) = (uf(0), 1).
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Hence

(u (8), 1) = (uf(0), 1) = (P¥uf, 1) = (uf, 1), (2.2.24)

which implies for any ¢ that

|(uf(8),1)] < C. (2.2.25)

Using the Poincaré inequality (2.1.2), (2.2.22) and (2.2.25) we obtain
[uf(®)o < Cr(luf ()1 + I(uf(2), 1)]) < C. (2.2.26)

The equations (2.2.25) and (2.2.26) imply that u¥(¢) € H'(Q2), and it follows from
(2.2.22) that
||Uf||L°°(0,T;Hl(Q)) <C. (2.2.27)

Recalling (2.1.3) and (2.2.3) we have for i = 1,2,

duf () || | k@) P
— ) = d = |wk ()] 2.2.28
e I i A (2228
So setting ¢ = T we can rewrite (2.2.22) as
v ’ v g
D+ [ @+ Jd@R+ [t se,  @2)
0 0
in particular
T k 2 T k 2
duf(t duk(t
/ ult) dt+/ de®)|" < (2.2.30)
which implies for i = 1, 2, that
duk(t
dus () <c, (2.2.31)
At | ez )

where C' is independent of 7" and k.
To show that uf(t) is bounded in L2(0,T;(H'(?))'), we show that uf(t) —
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+ uk(t) € L*(0,T; (H())') since the mass is conserved. Noting (2.2.24) we have

)~ f uke) = ub(0) — b (0,1) = ) = 150t 0),1)

"
= uf(t) — uf(0) + uF(0) — |Q—|(Uz (0),1)

:‘/¢ fds+zﬁun-——(uﬂoxll

Hence noting (2.1.6) and the Young inequality (2.1.4), setting ¢ = T in the integra-

tion on the right hand side, and using (2.2.31) we obtain

2 T duf
< / ds +
1 o ds 1

Lok

Tduk ~ k 2
(/Ods + Opful(0) — £, 1)
Tduf ~ 1.k k :
< ds|| + Cplu; (0)|o + Cl(u; (0),1)o
o ds -1
Td“f 2 k 2 k 2
<C ds + Clug (0)|5 + C|(u7(0),1)]5
o ds -1
T k|2
gc/ i\ src<c (2.2.32)
0 ds ||,

Integrating (2.2.32) over (0,7") we obtain
|us(t) — ][ Uf(t)||L2(o,T;(H1(Q))I) <C(T)<C, (2.2.33)

where we have noted to obtain the last inequality that by (2.2.17) for T — oo,
duf/ds — 0.
Hence (2.2.31) and (2.2.33) imply that

|l e o781 )y < C- (2.2.34)

Now we show |[wF||; is bounded. Setting £ = w¥ in the Poincaré inequality

(2.1.2) and noting the Young inequality (2.1.4) with p = ¢ = 2, we have

hwfls < Cllwih +1(wf, D)? < C(lwkl} +[(wf, 1)), (2.2.35)
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Recalling
lwi It = [whff + [wk], (2.2.36)

and substituting (2.2.35) into (2.2.36), we have
[wfll} < C(wEE + [(wf, 1)). (2.2.37)

Thus by (2.2.22), it is enough to bound |(w¥, 1)| to conclude [Jw¥], is bounded.
Taking n* = 1 in (2.2.8¢) and (2.2.8f) we have for i = 1, 2,

(wi(t),1) = ($(uf (1)), 1) + 2D(Ws(uf (1), uf (1)), 1),
which implies that
|(w (), D] < [((ui (), )] + 2D|(Ls(ul (1), uf (1)), 1)]. (2.2.38)

Noting the Young inequality (2.1.4), (2.1.8) and (2.2.27) we can bound the terms
on the right hand side (2.2.38) as follows:

(p(uf (1)), 1)] =

| (k) — ut@)as

< 5/Q((uf(t))4+1)cm-
1 g 1
§|“i (t)oa + §'Q|

1 1
< 5”“?@)“? +3l =0, (2.2.39)
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and

(1 (uy (1), u5(t)), DI =

| (ko + Do + 1)

< [ (ko + 02+ (b0 + 1))
<2 [ (W) + ((0)* +2)ds

= 2lub (1) 2 + 2k (1)1, + 4192

< 2O + Cllus Ot + 419

<C. (2.2.40)
Similarly we can show that
(T2 (ui(t), u5(t)),1)| < C. (2.2.41)
Noting (2.2.39), (2.2.40) and (2.2.41), we conclude that
[(wi (), 1) < C. (2.2.42)

Substituting (2.2.42) into (2.2.37), integrating the resulting equation over (0, T’)
and noting (2.2.29) we conclude that

1
||wf(t)l|L2(o,T;Hl(n)) <C(1+7T?),

where C' is independent of T and k.
Furthermore, since L*(0,T; H*(Q2)) C L?(0,T; H'(R)) we have

“u:'C“L2(0,T;H1(Q)) <C. (2.2.43)

Thus uf € H'(0,T; (H'(Q2))') N L*(0, T; H*(Q)). Now since H(0,T; (H*($2))") and

L*(0,T; H'()) are reflexive Banach spaces then by compactness arguments (see

Dautray and Lions [17] page 289) we deduce the existence of subsequences {u¥, w¥}
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such that

uf — w; in HY0,T; (HY(Q)) )N L2(0,T; H(Q)) weakly, (2.2.44)
wf — w; in L0, T; HY(Q)) weakly. (2.2.45)

K2

Since L*(0,T; H'(2)) is the dual of L' (0, T; (H'(£2))’) (see Renardy and Rogers [33]
page 378), which is separable, we can extract a subsequence in L*(0,7; H!(Q2)) such

that
uf —w; in L®(0,T; H()) weak-star. (2.2.46)

Note that H'(Q2) and (H'(Q2)) are reflexive, and the injection of H'(Q) into L%(Q)
is compact. Hence as a consequence of the compactness theorem of Lions (see
Theorem 5.1 in Lions [27] page 56) we can extract a subsequence in L2(0,7T, L?(Q))
such that

uf — w; strongly in L2*(0,T,L*(Q)). (2.2.47)

Moreover if u; € L?(0,T; H'(Q)) and du;/dt € L*(0,T; (H'(2))’) then
u; € C(0,T;L*)) ae. (see Lemma 1.2 in Temam [34] page 261). This result
together with (2.2.44) and the strong convergence of P*(u?) to u{ in L?(Q) implies
that u;(0) = u?.

Now we will show that these limits satisfy the problem (P). For any n € H'(f2)
set n¥ = P*n in (2.2.8b-c) and (2.2.8e-f), we have

k
(%’Pk”) = = (Vuy, VP*n) vne H'(Q), (2.2.48a)

(wf, P*n) = (8(ur), PEn)+ v(Vuf, VP*n) + 2D (¥, (uf, uf), P*n),  (2.2.48b)
and

d k
(%’Pk”) = — (Vuwg, VP™) Vne H'(Q), (2.2.48¢)

(wh, P*n) = ($(u), Pon)- (Vb VPoy) + 2D(Walul, uf), Poy). (2248
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Passing to the limit a.e. in (2.2.48a) and (2.2.48c) we have (2.2.1a) and (2.2.1d). To

yield the results it remains to show that for i =1, 2,

(p(u¥), PPn) = (o(us),n) as k — oo, (2.2.49)
(W5 (uk, ub), PPn) — (Wi(uy, ug),n) as k — oo. (2.2.50)

Recalling the Young inequality (2.1.4), (2.1.9), (2.2.12), and (2.2.44) we are able
to show (2.2.49), that is

|(gf)(uf),P"c
<
uf)? = Vuf, Py —n)| + | ((w)® = (w)®,n)| + | (us — uf,n)|

+ [ ((f = ) ((wf)? + wguf + (w)?), )|
< C((EI -+ 1uklo) 1P — lo + luflo sk — il

+ [ = wilo Il (g1 + fleflly [lull + l|uz‘l|f)) —0 as k—oo.
Now we write (2.2.50) for ¢ = 1 as

(@1 (uy, us), PRn) = (U1 (w1, u2), 1)
< (P (uf, ug) — Ca(uf, ug), Pon)| + (U1 (uf, uz), PEn — )]
+ [ (W1 (uf, up) — U1 (uy, uz), )]
=L+ L+ 1,

where I;, 7 = 1,2,3 are the corresponding terms in the right hand side. We show

in turn that each of these terms will tend to zero as k& — oo.
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Noting the Young inequality (2.1.4), (2.1.9), (2.2.12), and (2.2.44) we obtain

Il

( ut +1) ( ub +1)% — (up + 1)2),Pkn)|

Il

uf + 1) (uf + up + 2)(uh — uy), P*p)|

I

(¢
( 1u2+u1u2+2u1+u2+uz+2)( 2),Pk77)|

IA

C(qu = talo [P nlly (Iluylly lluglhy + luslly luall + lutlly + lug ]l + [fuall)

+ |u'2C — Uslo |Pkn|0) —0 as k — oo,

I = | ((uf + 1) (uy +1)2, PPy — 1)
2| (Iuf + 1) ((u2)? + 1), |P*n — n])|
|

< C1P* = nlo(lluflly luzll} + lluall? + [[ufll +121) =0 as &k — oo,

IN

(ut(u2)® + (u2)? + uf + 1), |[P*n — )|

and

Iy = | ((uf — wr)(u2 + 1)%, )]
< 2(|uf — w|((u2)? + 1), n|)

< Cluf — wlo(Jluzll lInll: + Inlo) = 0 as &k — oo

Now we show that the limit is unique. Let {u},w], u}, wi} and {u?, w? u2, w?}

be two solutions of (P). Define
2 = ul —ul, 28 = uj — us. (2.2.51)

Substitute these solution into (2.2.5a-b) we have for i = 1, 2,

(@2 1)+ +(Tul, V) + (6(ud), 1) + 2Dl b)) =0, (22,52
(g—aé,mm(w?,vmw( D,0) + DU, ) M) =0, (2259)

Subtracting (2.2.53) from (2.2.52) and summing for i = 1,2, with = u} — u? and
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n = ud — u? respectively of resulting equations, we obtain

ozt u 0z} u u u by by
(ggtl—’ z)) + (ga—;’%) +7(Vzr, Vi) +7(Va3, Vi)

= ((u3) — plub), ul — u) + ($(ud) — p(ul), ul — u2)
+ 2D(\IJ1(U%, Ug) - \Ill(uh u%)v ’LL{ - u%)

+ 2D (W5 (uf, u3) — Wa(uy, ug), ug — uj), (2.2.54)

where we have noted (2.2.51) for the terms on the left hand side. Note that from

the convexity we have

which implies

(r3 — &%) (r —s)>0. (2.2.55)
Hence by (2.2.55), and (2.1.5) we have

(B(ud) = dur), wy — ui) + (b(u3) — $(up), up — uj)

(02 = () + ud =k a8)

+ ((uz)” = (ug)” +up — u3, up — u3)
< (uy = ut,up — ) + (U — uj, vy — u3)
= (21, 21) + (25, 2)
= (V2{,VGz) + (Vzy,VGzy)
< Jzth 2l + Iz 1251

o u 1 1 u u
< U1+ 1221 + 5o U2+ 12112 (2.2.56)

Now the Taylor expansion of ¥ about (u?,u2) and (u},u}) are respectively given
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by

av 2,2 ] 2,2
wiud, o) = W, u) + P gy PR )
Oouy Ous

(2)
T AL T N T )

2 oul? Ouy0uy
10@W(C,6), 1 ave
5(‘91L—52)(1L2 — u3)”, (2.2.57a)

and

oW (ul,ud) oV (ul,ul
(1) = wlad, )+ 20O gz gy QP )
1 Ua

18(2)\11(61,52) ODW(&, &), 5 1\(,.2

(i — u})? o+ S T )~ )

2 3u(12)
1 a(2)\1](517 f?) 2 142

where ¢; and &, are between ul and u?, and (, and &, are between u} and u3.
Adding (2.2.57a) and (2.2.57b), simplifying, integrating over 2, and noting
(1.0.4h) and (1.0.41) we obtain

0= / (W (2, 42) — W (!, b)) (ud — )l
0

T / (T2, ) — Tl ) () — 2
41 / (6‘”@(@,@) +8<2>\P(£1,52))( L2
Q

2 au?) 3u§2) ! '
1 OPW(G1,¢) OV, &)\, 1 o
i 5/9 ( au§2’ i 8u§2) ) (1~ vz do

ODW((1,¢) | OPW(ELE)Y, 1 a1 2
+/Q < Ou1Ous * O, 0uy )(ul — uy)(uy — uj)dz,
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so that using the Cauchy-Schwarz inequality
| (@1 (ut, u3) — Oa (g, up)), (u) — up)) + ((Pa(uf, u3) — Ta(uy, uy)), (up = u3))|
(25 o)
()
L ([P E) e
+ é /Q (‘6(2;51(522@) + ‘6(2;‘51(5252) )(té — uj)’dz. (2.2.58)

Noting the Young inequality (2.1.4) with e = 1, p = ¢ = 2, and for any s!, s? between

u{ and u? and any s3, s between uj and u% we have

8u§2)
0P ¥(s}, 53)
au§2)
0P (s1, 53)
Bug)
02U (s? s2)
8qu)
‘ Ou10us

= (52 + 1) < 2((s2)* +1) < 2((up)® + (up)® + 1),
= (s5+1)? < 2((up)” + (u3)* + 1),
= (s1+1)7 <2((u)® + (u])” +1),
= (s +1)* < 2((w)” + (u))* + 1),

= 2|5{ + 1| |3§ +1] < (s% + 1)2 + (s + 1)?

< 2((up)” + (u)* + (ug)” + (u3)* +2),
0¥ (s}, s3)

Sude | = 2t U 1B 11 < 5T+ 1)+ (53 + 1)

< 2((u))* + ()’ + (u))* + (u3)* +2).

(2.2.59a)

(2.2.59b)

(2.2.59¢)

(2.2.59d)

(2.2.59)

(2.2.59f)
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Hence we can rewrite (2.2.58) as

(W (a2, 2) — 0 (udd), () — ) + (Vo ud) — Wolud, ud), (b — )|
<2 [ (W) + (B + 1)(ud -3
Q
+2 / (W)? + (@2)? + 1) (] — ud)de
42 [ (Wl () + W) + () + 2)(0d — e
Q

+ 2/ ((u})® + () + (ug)® + (ud)® +2) (up — ul)’dz. (2.2.60)
Q
On noting (2.1.5) we obtain

« 1
/Q (uf —uf)?dz = |22}, < (V2P VGz}) < Sl + ol (2.2.61)

The Holder inequality (2.1.7), (2.1.8), (2.2.27), (2.1.5), the Poincaré inequality
(2.1.2) and the Young inequality (2.1.4) with p = 8/7, q = 8 yield, for i,7,k = 1,2,

[t - pas <  [oras)' ([t -ityar)’

. . 1 3

= uplga v — wiloq < Clludll? lui — il (lui — ufll,
1 3 1 3
< Clztls [I2211F = C(Vz, VGz)illz ],

1 1 3 4 1
< CIER 5 10T < ClalE s,

7€ u - u
< gl + G2, (2.2.62)
Noting
d 9 d 2 ozt oz
Dz = & w2 gr — u 1) = o(gZ% Lu 9.
m |221%., ” /Q VG2 | dx Q/Q (VGz!, VG ot ) (G 5t ,2t),  (2.2.63)

(2.2.56), and (2.2.60-2.2.63), we can rewrite (2.2.54) as

d u uw u u
a(”zl ||31 + |23 ”2—1) + 27(|Z1 ﬁ + |2y ﬁ)

< ((12D + Do+ 42De) (|23 + 123 ) + C (121120 + 112511%0).
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Setting a = € and € = 77/(224D + 4), D > 0, and rearranging the terms we obtain

d u u ’)l u u u u
= (212 + 125112%0) + 7 (1227 +12518) < C(l= 1120 + 1#112,). (2.2.64)
dt 4

Integrating over t € (0, T') and using a Gronwall inequality, we conclude from (2.2.64)
that

t
u u ,)/ (73 U u u
Hzl (f)“2—1 + {23 (t)||2_1 + Z/o (|31 (S)E + |23 (s)ﬁ)ds < I (0)”2—1 + ”22 (0)”2—1 =0.

Noting the Poincaré inequality (2.1.2), (2*,1) = 0, we obtain the uniqueness of ;.
The uniqueness of w; follows from (2.2.3) and (2.2.4). This ends the proof of the
existence and uniqueness of the problem (P). O

Below, we shall discuss a regularity result that will be used later in our subsequent

error analysis.

2.3 Regularity

We suppose 92 to be sufficiently smooth so that if z is a weak solution of

—Az+z=f in (2.3.1a)
0z
5, =0 on o9, (2.3.1b)
where f € F N L*(Q) then
llzll2 < Cl — Az + 2|, (2.3.1¢)

see Theorem (3.1.2.3) in [22] for a convex domain or a smooth boundary for exam-

ple.
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Proposition 2.3.1 For 2 sufficiently smooth, we have the following regularity re-

sults:

s,
w; € L*(0,T; HY(R)), and ;} =0 on 00 forae.t. (2.3.2)
Proof. Noting (2.3.1c) and (2.2.27) we have
ufllz < C| — Auf +uf|o < C(|AuE]o + luflo) < ClAuf|o. (2.3.3)

Squaring both sides of (2.3.3), summing the resulting equation for « = 1,2, and

integrating over ¢ € [0, T| we have
¢ t
|t + Iubg)as < € [ (8t + 18utl)as. (23.4)
0
Setting n* = —Au¥ € V¥ in (2.2.8¢) and noting A = —(V)? we obtain
(Vwt, Vub) = (Vo(uk), Vb)) + y(Auk, Au¥) + 2D(VT, (uf, ub), Vuk).

Noting (2.2.8b) and

out .. 10
(ﬁ’ul) 2at| 1|0’
we have
AU+ 5 5 1uals + (Vo(ur), Vui) + 2D(VI (uf, ug), Vui) = 0. (2.3.5)
Since

(Vd’(ul) Vul) (v(ul) VUT,VUID,
= 3((u})*Vuf, Vuf) — [uf}

= 3luiVauqls — Jugli,
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and

(V¥ (ul,u2 Vul ( (u1+1 u2+1) ) Vu'f),
2

((uf + 1) (us + 1) Vug, Vuf) + ((uf +1)°Vul, Vub),

= 2((u1 + 1)Vu2, (u'2c + I)Vu’f) + |(u'2C + l)Vu’flg,

we can rewrite (2.3.5) as

ylAur]y + 5 Btl utls + 3luf Vui[s + 2D|(us + 1) Vuf|
= [uf]} — 4D ((uf + 1) Vus, (uh + 1)Vub). (2.3.6)
Similarly we have
19 o
A5 + 55{|“2|0 + 3lusVus 3 + 2D (uf + 1) Vb3
= |us|? — 4D ((uf + 1) Vb, (uf + 1)Vub). (2.3.7)

Adding (2.3.6) and (2.3.7), and noting the Cauchy-Schwarz inequality we have

HATE + 18u) + 2 0 (b3 + () + BV + [ V)
2D(|( + 1)V R + |(uf + 1)Vubi2),
= |u’f|f + |u§|f - 8D((u’1c + l)Vug, (u'2C + l)Vu'f),
< |ubl} + [us|? + 4D|((uf + 1)V, (uf + 1)Vub)]

+4D|((ug + 1) Vus, (uf +1)Vuf)|. (2.3.8)
Note that

1
[ ((w} + 1) V03, (ug + ) Vur)| < 2 (1(uf + D V] + (5 + D V),
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and

1 1
|((uz + D)Vu3, (uy + 1)Vui)| < 5l(u’5 +1)Vuzlg + 5l(ul + D)Vl

< |usVus|s + [Vugls + [uf Vaf [§ + [Vull3.
Thus we can rewrite (2.3.8) as
k)2 K2y, 10 k|2
Y(lAuli+ [Auslg) + 5 = (luflg + |uslo)
20t
< AD(JufVub|} + JusVub|3) + (1 + 4D)ub|} + [ub)2. (2.3.9)

Noting the Cauchy-Schwarz inequality, (2.1.8), the Poincaré inequality (2.1.2),
(2.2.24), and the Young inequality (2.1.4) with p = 4/d, ¢ = 4/(4 — d), we obtain

|ukV“ |0 < |“ 104 |U 1,4

_d d d
< Clubly™® IublIF 1} 1l

d
< Ol ? b2 I3,

de _ B
< T ludlls + CeDly Tugli= (2.3.10)

Thus substituting (2.3.10) into (2.3.9), integrating the resulting equation over

t € [0,T] and noting (2.2.27) we have

1 t ,
3= (O + 13O + [ (18wt +au)ds

Dde

<D (||u1||2+||u2|| s C [ (i + b

1
e / (W 1177 4 b2 o) )d3+g(lu’f(o)lﬁﬂLIUS(O)lﬁ),
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or

‘ Dde {* t
[t 1autyas < 25 [ b+ fudiR)ds + € [ (T + ubi)as
t 8 8
+0 [ (Wb oI + o2 1017
0
1
+ o ([uf (0)[5 + [u5 (0)[3). (2.3.11)

2

Substituting (2.3.11) into (2.3.4) and choosing € = ¥2/4DdC we obtain

3,7 t t
[t wigyas < o [ (ulle+ adyas
0

t 8 8
+ [ Qb I+ bR 11T as
0

+ (WO + |u';<o>|3))- (2.3.12)

It follows from (2.2.6a) and (2.3.12) that

ufll 20,7 m200)) < C,

which is independent of k.
Since L?(0,T; H%(R)) is a reflexive Banach space (see Zenisek [37] page 40) then
by compactness arguments (see Dautray and Lions [17] page 289), we deduce the

existence of subsequences {uf} € L?(0,T; H%(f2)) such that
uf —w; in L%0,T; H*(Q)) weakly.

Thus u; € L*(0,T; H(?)). Furthermore since du¥/8v = 0 on 8Q , it follows by the
weak convergence of uf — u; in H%(2) that du;/0v = 0 on L?(9Q). O



Chapter 3

A Semidiscrete Approximation

In this chapter we introduce some notation which will be used in the current and
following chapters. For completeness, we prove interpolation error estimates in the
finite element space as these are necessary tools for analysis in the current chapter
and chapter 4. Then a semidiscrete finite element approximation is proposed where
the existence and uniqueness are proven. An error bound between the semidiscrete

and continuous solution is given is the final section.

3.1 Notation

We shall now describe a semidiscrete approximation of the weak formulation of

(1.0.7a-1.0.7f). We will assume the following:

(A) Let 7" be a quasi-uniform partition of Q@ C R?, d = 1,2,3, into disjoint
simplices , 7, with h, = diam(7) and h = max,cs+ hy, 5o that Q@ = U 7,
see Ciarlet [13] page 132. In addition, it is assumed that 7" is an acute
partition; that is for (i) d = 2, the angle of any triangle does not exceed 7/2.
In fact this case can be relaxed to weakly acute, see Nochetto [29]; that is the
sum of opposite angles relative to any side does not exceed 7. (ii) d = 3 the

angle between any two faces of the same tetrahedron does not exceed /2.

Let S* ¢ H'(Q) be a finite element space defined by

Sh .= {x € C(Q) : x|, is linear V7 € T"}.
32
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Denote by {z;};_, the set of nodes of 7" and let {n;};_, be a basis for S defined
by ni(z;) = &5, for 4,5 =1,...,J.
Let 7" : C(Q) ++ S" be the interpolation operator such that #"x(z;) = x(z;),

for:=1,...,J and define a discrete inner product on C({2) as follows

J
(uw) = [ raha@)ds = maleba), (L)
Q i=1
where m; = (;,7;)". The induced norm | - ||» := [(-,-)"]z on S" is equivalent to
|- ]o :=[(,-)]2. Note that the integral (3.1.1) can easily be computed by means of
vertex quadrature rule, which is exact for piecewise linear functions (see Ciarlet [13]
page 182).

Below we recall some well-known results about S* (see [32], [15] respectively)

Cilxlo < Ixln < Calxlo Vx € 8", (3.1.2a)

(1, %) = (m,%)"] SCR* [Inllalxll, ¥xom e S", r=0,1 (3.1.2b)

We also note the following the interpolation error in H?(f2) (see Theorem 3.1.6 in

Ciarlet [13]),
(I — 7™)n|m < Ch* ™0y  VYn€ H*(Q), m=0orl. (3.1.2¢)

The Poincaré inequality (2.1.2) together with (3.1.2a) and (3.1.2b) yields the

discrete Poincaré inequality, for h sufficiently small,

((&,OM = [€ln < Cr(€]L + 1€, 1), (3.1.3)

where Cp is a constant independent of h.
Similar to (2.1.1) we introduce the discrete Green’s operator G" : F +» V" such
that
(VG"v,Vn) = (v,n) V¥ne St (3.1.4)



3.1. Notation 34

where V" := {n" € §" : (5", 1) = 0}. We define a norm on F as
% := 16"} = (n,G"n) = (G"n,m) VneF. (3.1.5)

We have the following analogue of (2.1.5) and (2.1.6) respectively, that is for all
a >0,

« 1
|vh|g = (VGhh, Vo) < ||vh||_h’vh|1 < §|vh|f + 5&”1)"”2_,1 Vol € VR (3.1.6)

and

[0*]1% 4 < CplG" 0™ 1[v"o. (3.1.7)

We note that G" satisfies the error estimate (see Nochetto [29] page 49)
(G — G"lo < CR ™|l ¥y € (H™MQ)Y NF, m=0,1 (318

For later purposes, we recall the inverse inequality for 1 < p; < ps < o0 and
m =0 or 1 (see Ciarlet [13] page 140),

d 1—P2

(»r 2)
Xlmpy < Ch™ P72 |X|mp, VX € S", (3.1.9)

and the Sobolev embedding, for d = 1,2, (see Lemma (5.4) in Thomée [35] for
d=2),

d—

1 1
lIxllo,c0 < C(lng) ®xl Vx e St (3.1.10)

We also note the following inequalities (see Barrett and Blowey [2])
C1R2 [Py < Cohlv™|o < |o®|-n < ([0*|=1 < Csl[o®||—n Vot € VR (3.1.11)

The first inequality on the left is the inverse inequality due to the partition being
quasi-uniform (see Ciarlet [13] page 142). The second inequality follows from the
first and (3.1.6). The third follows from noting [G"v"|; < |Gv"|;. The final inequality

follows from noting (3.1.8) with m = 0 and the second inequality above.
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We define P" to be discrete L? projection onto S*: Given n € L*(Q), P"nis a

unique solution of

(P, )" = (n,&) VEe st

This projection satisfies the following bound (see Blowey and Elliott [10] page 155)
(I = PM)nll—1 < Chlnlo ¥n € L*(). (3.1.12)

Given u? ud € H'(Q), let

my = / uldz, my 1= / ugda:,

0 Q

and take U? = P"u and UY = P"9. Then automatically we have

(U2, 1Y = my, (U2, D) = my. (3.1.13)

Given n € H'(Q), P{n is the projection onto S* such that
(P, 1) = (n,),

and

(VP VE) = (Vn,VE) VEe S

Notice that due to the nature of projections, it follows that
P!'n—n in HY(Q) strongly and |P!n|, < |nl. (3.1.14)

In the next section we prove the existence and uniqueness, however we complete

this section with some preliminary lemmas, which will prove useful.
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Lemma 3.1.1 Let v € S*, and r € R, r > 2 ford =1,2,3. Then

P

Ch*|v|] for d=1,
. 1\ (-2)/2
(1 = 7)o, < 4 ChZ(ln E> W} for d=2, (3.1.15)
CR32||v]|; for d=
\

Proof. Throughout the proof we use the following notation:
Pi(r) :== {v : vis a polynomial of degree < 1on 7}.

We prove this for each dimension separately.
One Dimensional Case: Let 7;(z) and 7,,,(x) be the nodal basis for P;(I;). Thus
for f € P1(I;), we have

f(x) = flzi)mi(z) + f(@iv1)mii(z) Vo € L,
and
7" f(2) = flzi)ni(z) + f(@ip1)niga(z) Vo € L, (3.1.16)
since 7 f(x;) = f(z:).

The Taylor expansion of f € C? about z € I; is

= f"(¢), (3.1.17)

where ¢ lies between z and y. Choosing y = z; and y = z;4; in (3.1.17), we have

respectively

flz:) =f(2) + (z: — ) f'(2) + ———f"(&), (3.1.18)

fan) =/@) + (e — ) () + D= e ) (3.1.19)
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Substituting (3.1.18) and (3.1.19) into (3.1.16), we have for z € (z;, ziy1) = I;

i+1 i-+1 i+1

)Y njilz +Ep]n3 +ZR377] (3.1.20a)
=i

where

pi = (z; — =) f'(2), (3.1.20b)

L 2
R, = R(fiz,z) = 5 priey) (3.1.200

Recall that 7*(f) = f for f € Pi(I;), which follows from the fact that there
is a unique function f € P;(I;) assuming given values at the nodes of I;. Taking

f(z) =1 in (3.1.20a) we obtain

i+1

an(x) =1, (3.1.21)

since in this case p; = R; = 0.

Now let f(z) = az, @ € R in (3.1.20a). Since f is a linear function we have
m(f) = f, pj = (z; — z)a and R; = 0. Substituting these values into (3.1.20a), we
have .

Zp]-nj(a;) =0. (3.1.22)

Thus noting (3.1.21) and (3.1.22) we can rewrite (3.1.20a) as

i+1

= - Z Rin;(z)

hence
i+1
(I =7 f(@)lor, = ZR]T,J
0,1,7;
Recalling
T — Tyt -
ni(z) = Ty = Tinl forx e I;, j =1,
! Tr —T;

Ti =7 forxel, j=1+1,
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we have
Tit1 5 hi

Hence noting the Young inequality (2.1.4) and the Cauchy-Schwarz inequality, we

have

(= 7 (@)o, < Z ( / mmj(x)u.@)

j=i

i1 Tit1 2 3 Tiyi ) 3
<> ( [ pae) ([ o) i)
i+1
< Chzle lo,2,7;- (3.1.23)
j=i

Using the Cauchy-Schwarz inequality we can bound |R;|o2 r, as follows

(z; — x)?

|Rjlo2,r < 5

f1(&)

0)211i

|(:cj — £B)2f"(fj)|o,2,1,-

1

([ =ora) ([ oreya)
he (€ loar- (3.1.24)

J
N = DN = N

TS

RN Te)

Now consider f(z) = v"(z), where v(z) € S" and 7 € R, r > 2, then for

z € I;, f'(z) = rv" Ha)v'(z), and f'(z) = r(r — D)v""2(z)(v'(z))?, since v"(z) = 0.
Substituting (3.1.24) into (3.1.23) we have

i+1

(I = 7" or, < Ch" D P EN W (D) loar,
Jj=t
i+1

<Ch4 ||”“0001 Zh’ (&) |081,

=Ch; 4 ||U||0001 l”|1 8,1

< Chi ||U||0001 lol? 1,2,1;) (3.1.25)
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where we have noted the inverse inequality (3.1.9), for d = 1, p; = 2, p; = 8, and
m = 1 to obtain the last inequality.
Noting the Sobolev embedding result (3.1.10) for d = 1, and summing (3.1.25)

over I; we have

(I = 7" o0 = Z (I = 7" o1,
< Ch? Z HU”o 00,1 1 2,1
< Ch? ullf o Z v]T 2.1,
I.
< C’h2|v|’1”2’9.
Two Dimensional Case: Now consider a triangle 7 € 7" having a local node

points a* = (a¥,a}), k = 1,2,3. Let ni(x) be local basis for P,(7). Thus, in a

similar fashion to the one dimensional case, for f € P;(7), we have
3
Z f(@F)ne(z) Vz e,
k=1

and

3
=Y fla"m(z) Vze (3.1.26)
k=1

since 7" f(a*) = f(a¥). Using a Taylor expansion about z = (1, z;) € 7, we have

fly) = f(z) +p(f;2,9) + R(f,2,y), (3.1.27a)

where

N

z;), (3.1.27D)

— ) (y; — z5), (3.1.27c)
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and ¢ is the point on the line segment between z and y. Choosing y = a* for

=1,2,3 on (3.1.27a), we have

f(a®) = f(z) +p(f; x,a") + R(f, z,a"). (3.1.28)

Substituting (3.1.28) into (3.1.26) we have
3 3 3
mf(z) = f(2)>_ me(x)+ Y _p(f;z ad)m(@) + > R(f;2,a")m(z).  (3.1.29)
k=1

k=1 k=1

Note that #"(f) = f for f € Py(r) assuming given value at the nodes of 7.
Adopting the approach of Johnson in [24], taking f(z) = 1 in (3.1.29), we obtain

> m(z) =1, (3.1.30)

since in this case 7"(f) = f and p(f;z,a*) = R(f, z,a*) = 0.
Now let f(z) = diz, + daza, di,dy € R in (3.1.29). Since f is a linear function
we have 7"(f) = f,

p(f;z,a¥) = di(a} — z1) + do(ah — 22),

and R(f,z,a*) = 0. Substituting these values into (3.1.29) we obtain

3

D ldi(at — z1)+da(af — zo) () = 0.

k=1
Choosing d; = 0f(x)/dz;, for i = 1,2, we have
3

Z[af(w) (a* —z)) + 0/(z) (a% — z2)]nk(z) = 0. (3.1.31)

X
k=1 a 1 8:1:2

Thus by (3.1.30) and (3.1.31) we can express (3.1.29) as

3

" f(z) = f(z)+ ) _ R(f;z,a")m(z). (3.1.32)

k=1



3.1. Notation

41

Following the approach of the one dimensional case closely, we are able to show

that

(I = 7*) f(2)|o,r < Z |R(f;I,ak)77k($)|0,1’T
k=1

< Z ([ @it e ([ ni(w)dfc)%

- ’R(f;x,ak)|0’2ﬁ |nk($)|0,2,'r

(%]

3
< Ch, Y |R(fi2,0Y)],,,

where we have noted the following formula (see [23] page 145)

2al gl Ay!

CiBtr12) area(r),

/ ne (@)l (o)l () dr =

to compute |mk(z)o.2,7-

Since
[(af = z:)(ef — 25)loar = (/(a? - ;)" (af — :vj)“‘drc) "<ond,
we have
R(f: k _ 1 2 82f(€)
I (f,:z:,a )|0,2,-r - 5 Z 82171‘(937]' (az - zi)(a’j - xj)
Li=t 02,7
2
1 9%f(€)
<z (a; — z;)(a’ — x;
2 uz=1 01,0z; ’ 2 0,2,7
2 1
1 82f £)\2 3
=352 (/ <8$-(§x)) (0 = )05 - xj)2d$)
T 1 7

(3.1.33)

IN
[N
[~]-
N
S~
N
gl
Q=
8]
. g
~——
[
Qu
£
S~
N
TN
—
2
I
8
s
[~
(S
I
8
.
=
QU
1)
~—
{
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Now consider f(x) = v"(z), where v(z) € S*, r € R, r > 2 and = = (21, z2),
then for 4,7 = 1,2,

af(ill) _ r—1 a
oz, v (z) 63:1’0(1?),
9 f(x)

55:0, =r(r— 1)vr—2(a:)(aiiv(a:)) (aim]'u(m))

Recall that dv/0zx; is a constant. Hence substituting (3.1.34) into (3.1.33), we have

2

7
(1 = 7)o" fo,1,r < ChE Y |0

ij=1

2
< Ch'2” ”0007' Z

8.’151' aij

dv(€) ov(§)
dz; 0Oz; |,

— Ch|lly2. 1(/1 &Sﬁﬂm>%

0,4,7

ij=
g Ov(€)\8 :
<Ch ||v||OOOT (/ ) </T( Oz, ) dm)
1,5=1
: 81}(6) 67}(6)
< Chi v ”OOOTZ; 0x; 08,7 Oz; 0,8,
< ChQHU”Oooq‘}vll?T’ (3135)

where we have noted the inverse inequality (3.1.9) withd =2, p, =2, p, =8, m =
1, to obtain the last inequality.
Summing (3.1.35) over 7 € 7" and noting the discrete Sobolev embedding result

for d = 2, we have

(1 = '01Q*Z| - U|01750h22“7)”0007|1’|127

TETH TETH

< Ch2||v||ooon Z |'U|12T < Ch2”v“0009 v} 1,20
TETh

1\ (r—2)/2 ,
<cn(lnz)’ " Polia
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Three Dimensional Case: Consider a tetrahedron 7 € 7" having local node

points a' = (al,d},a}), | =1,...,4. Let n(z) be local basis for Pi(7). Thus for
1) Gz, a3

f € Pi(7), we have

= f

=1

and

wfz) =) fla)m(z). (3.1.36)

Following the approach of the two dimensional case we will obtain

n*f(z) = f(z) + Y R(f;,a)m(z),
=1

here n_ 1= 1),
R(f;z,a’) = 512 D201, (a; — z:)(a; — z;)
Hence
4
|f (@) = 7" f(@)lor = (2) LS ;lR(f;ac,al)m(x)lo,l,T

<Z(/T (f; 2, a))%d ‘)%(/Tv;f(a:)dx)%
_Z|Rf,xa Noor 122,

< Chi Z R(f;2,d)],,,, (3.137)

=1

where we have noted the following formula (see Huebner [23] page 148)

[ @ @) i = 2T ohumer),

T (a+ B+ +3)!

to compute |771($)|0,2,r-

Since, for [ =1,...,4,

ESIed

ek = m)(eh = )y, = [l =o' -t < on,

T
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we have

1| o~ 02f(¢
|R(f;$,al)|o,2,7 ~— 9 Z 8Ii6($3- (af — ;)(d} — z;) -~
1,3_1 2
L[ 224
= 2 121 Oz;0z; (a; = 371)(&] — ;) 02,7
1 3 82f(£) 2 - %
B 512 <[r (awi&rj) (a; — z3)"(a; — z5) dz)

IN
DO |
]~
N
T~
—~
R
&=
8] |
. S’
~—
-
QU
5]
N—
r Ty
TN
S~
—~
Sg(\
|
5
’5
|
=2
.
g
-y
Qu
3)
N——
|

o*f
81,—8:17]-

0,4,7

Now consider f(z) = v"(z), where v(z) € S*, r € R, r > 2 and z = (z1, 7o, T3),

then for 7,57 = 1,2, 3, we have

92:0; =7r(r — 1)v(r—2)(g;) (aizv(g:)) (aiw]v(:c))

Recall that Ov/0z; is a constant. Hence substituting (3.1.38) into (3.1.37), noting
the Cauchy-Schwarz inequality, and the inverse inequality (3.1.9) withd = 3, p; = 2,

and p; = 8 and m = 1, respectively, we have

0 sont Bl
W= 04,
"v“ow:é(/ﬁ;';?)“(a;i?rdxf
worf i 3 () (5
3
< Cht Iy ||0m”2ﬂ %@ %@

< Ch? ”U”ODOT |U|12r (3.1.39)
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Summing (3.1.39) over 7 € T", noting the inverse inequality (3.1.9) with p, =
6, pp=00,m=0,d=3and (2.1.8) withr =6, m =1, d=3, p =2 we have

(=7 lore =Y I — 7" |os,r

reTh

<Y CR plls, W3,
TeTh

<CR pls2a > [y,

TETH
< Ch* |vlloemq 10111 20
< Ch¥"/? |U|(r):;i,2ﬂ “””%20

< CH72 ][] 5.0

This completes the proof of the lemma. O

Lemma 3.1.2 Let v» € S*, r e R, r > 2 ford = 1,2, and r € [2, 6] for d = 3.
Then

/w[(vh)’]dx < C|lv"|5. (3.1.40)
0
Proof. Note that the inequality

[ telae < [ 10 -ty e+ [ @y,

Q
= (T =7")[(0") lo + Ivlg, Vr, (3.1.41)
(3.1.15) and (2.1.8) yield
CRAW" [T + C||v™|; for d=1,
hl(yhYr of 1 1NTTI2 h h
)Mz < § Cht ()T R+ Ol for d=2,
Q h
CR= ol + o™ for d =

Then (3.1.40) follows. O
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Lemma 3.1.3 Let v" € S" and d = 1,2,3. Then
7 L
[0*[5.4 < ClIIF (10" 1%, (3.1.42)

Proof. Tt follows from (2.1.8) and (3.1.6). a

Lemma 3.1.4 Let n;(z) € S*,i=1,...,4. and d = 1,2,3. Then

_d
|(m 12 3, 1a)" — (e 3y ma)| < CRET5 (Imully melly Nl lmalls- (3.1.43)

Proof: Noting Theorem 5 in Ciarlet and Raviart [14], we have for i,7 =1,2,3

(e m2 13, ma)"™ — (M2 M3, )| = ‘/Q(I — 1) ((m M2 13 ma) (z))

< Ch? Z

|a|=2

)

d? (771 273 774)

o (3.1.44)

L)

Now we bound each terms on the right hand side (3.1.44). Without loss of
generality, using the generalised Holder inequality, (2.1.8) and (3.1.9) we obtain, for
1,7 =123,

Ox1 0x2 0x1 Ox2
= = d
7 X3 X40T,

ox; a—a:jX3 X4'L1(Q) N Q ox; O: 4

<x1h,3 Ix2l13 Ix3los |X4lo6s

_d
< CR7sIxall lxally lxslh lxallz- (3.1.45)

A bound for remaining terms follows by interchanging the x4 for £k = 1,...,4, on

(3.1.45). Hence (3.1.43) follows. O
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3.2 Existence and Uniqueness

We define the following semidiscrete approximation to the problem (P):

(P") Find {u}, vk, wh, wh} € S* x S" x S* x S" such that for a.e. t € (0,T)

o h
(%,n) = — (Vuw}, Vn), (3.2.1a)
(wi,n) = (B(u),n)"+ Y(Vuf, Vi) + 2D(F (u}, uf), n)", (3.2.1b)
ut(z,0) = P"ud(z), (3.2.1c)
and
oul N
(W’") = — (Vwy, Vn), (3.2.1d)
(wy,n) = (¢(uh), )"+ ¥(Vus, Vn) + 2D(¥a(uf, uf), n)", (3.2.1¢)
uj(z,0) = Phup(e), (3.2.1f)

where ¢(-), ¥;(-, ), ¥a(:, ) are given by (1.0.4g), (1.0.4h) and (1.0.4i) respectively.
Using (3.1.4), we can write (3.2.1a) and (3.2.1d), for ¢ = 1,2, as

h
(v(gh%’ +w}),Vn) =0 Vne H(Q). (3.2.2)

h
1

. ou
Taking n = G" 5

* + w! in (3.2.2), we have for a.e. ¢t € (0,7)

2

h h h

h

ou’ 2
Gh—L +wh

0=
ot 1

Thus by the Poincaré inequality (3.1.3) we have

oul
gh—t +wf—][wf‘

0=19"%

> Cp!

1

oul
g’la—; +wh — ][ w)

Hence we obtain
h hau? h
w =—G"—+ + w?, (3.2.3)
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where

f ot = i (@17 + 2D ), 1)), (3.2.4)

Noting (3.2.3), (3.2.4) and

we can restate the problem (P") as:
Find {u},u’} € S" x S* such that for i = 1,2, u”(0) = P"uf and for a.e. t € (0,T),
(uh(0),1) = (u9,1) and

T

h

(9"a 1) + Y (Vad, V) + (p(ul) + 2DT, (ub, ul), (T - )" =0,  (3.2.5a)
h

(ghaaut 1) +v(Vul, Vi) + ($(ul) + 2Dy (ul, ul), (I —F ))* =0,  (3.2.5b)

for all n € S
Note that taking n = 1 in (3.2.1a) and (3.2.1d) and integrating over (0,t) we

0—// 1dxds—// ’dsdx— Wb (1),1) — (u4(0), 1).

Since ul is piecewise linear, we have

obtain

k), 1) = (ul(t),1) = (u}(0),1) = (u}(0),1)" = (P*u?, 1) = («2,1), (3.2.6)

which implies for any ¢ that
|(wf (), D* < C. (3.2.7)

Theorem 3.2.1 Let the assumptions on u? of Theorem 2.2.1 and the assumptions

(A) hold. Then for all A > 0 and d = 1,2, 3, there exists a unique solution {u?, w?}
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o (P") such that the following stability bounds hold independently of A:

||U?||L°° oTH () < C, (3.2.8a)
w0,y < C, (3.2.8b)
[Jw; o) < C(1+ T%)- (3.2.8¢)

Proof. We write (3.2.1a—c) and (3.2.1d-f) using the representation

J
ul(t,2) = 3 2 (0 (=), (3.2.92)
wi(t, @) =D di(t)n; (), (3.2.9)

with ¢j; (%), (Z-j(t) € R Using (3.2.9a-b) and taking n = n;, 5 = 1,...,J, in
(3.2.1a—c) and (3.2.1d-f), we obtain

J dE J
1z N
g(% n) = — Z dii(Vmi, V), (3.2.10a)
i=1 i=1
. J
D dui(nimy) = ($ud),m)" + 7> E(Vmi, Vi) + 2D(W, (uf, ul), m;)", (3.2.10b)
L= i=1
J
> 2u(0)(mi, my) = (P*ul, m;), (3.2.10¢)
i=1
dE J
21 >
Z 7 (i, m5) = —Z 2:(Vmi, Vi;), (3.2.10d)

J
Zd% (i) = ($(u2), )" + 738 (Y, Vy) + 2D( W (uf, 03), my)", - (3.2:10e)

D 2u(0)(m,m5) = (P™ul, my), (3.2.10f)
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or
dé, ~
B—t— _Ad
dt 1y
Bd, = f(€)) +vAC, + 2Dg,(€1,¢,),
B¢,(0) = P"u?,
de, ~
BX2 _ _4
dt da,
Bdsy = (&) + vACG, + 2D gy (31, S2),
B¢,(0) = Phub,
where

{B}U (772;773)
{A}U = (Vﬂu Vﬂ])
{£(@)}; = (¢(uf), ny)",
(

{92(61,62)}1 \I’z(ul,u2) "71) :

Since B is a nonsingular matrix we have

de ~ ~ ~ -
% = —B 'AB™'f(&)) + yBT'AB 'A%, + 2DB ' AB"¢,(¢1, &),
¢1(0) = B~ Pl
da? -1 -1 g/ -1 -1 45 -1 -1, (=~ =
— = —~BTAB7'f(¢) + yB"'AB™'A¢é, + 2DB ' AB7 ' gy(¢,, ¢,),
&(0) = B~ Phul,
Defining € = [¢; , €]T and u” = [u? | u?]” we have
dc -~ .
dt = H(c),

¢(0) = BP"u".

It follows from the theory of systems of ordinary differential equations that there

exists a unique solution on some time interval for ¢. Hence we have local existence
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for 4 and w! for some t € (0,,,). To obtain existence of a global solution, we only
need to show that a priori estimates of u?, w! independent of h.

Now we derive the bound (3.2.8a). Setting n = dul/dt, for 1 = 1,2, in (3.2.5a-b)
respectively, adding the resulting equations, rearranging the terms and integrating

over (0,t), we have for all t € (0,7)

h
/ (Qhaul aul)ds-{—/ <gh8u2 8u2)d8
0 0 0 Js
8 h t au2
+7/0 (V ut v s )ds+’y/ (Vuz,vas )ds
oul

+ [, Sy as+ [ (o), 52 as
+2D(/(;t(111(ui‘,u3),68h) ds +/Ot (‘I’g(u’f,ug),aaisg)hds>, (3.2.11)

where we have noted

oul 1 6u 1 0 1 0

i atl IQI( 1) = |Q|6t( i )*‘@a(u 1) =0. (3.2.12)

Now we examine each term on the right hand side of (3.2.11) in turn. Using

(3.1.5) we have for 1 =1,2

[ 55

The third and fourth terms of (3.2.11) can be expressed as

2
ds. (3.2.13)
h

gh u
83

oul

d_ Js

1

¢ oul 1 Lo ) N S
/O(Vu v(9 )d = /as(vn Vul)ds = 5|ui(t)|1—§|ui(0)|1. (3.2.14)

while the fifth and sixth terms are
h ‘ m O h i, h
vis o(u; —uids]dx:/'/r {/— u; (s ]d:c
[ ][ outrs, [t [ Zptatts)

= (P(ul(),1)" - (¥(ul(0)),1)" (3.2.15)
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The last two terms of (3.2.11) can be written as
: dul\" : oul\"
/0 <\I'1(u’1‘,uf;), 8_31) ds +/0 (\I@(u?,u'z’), 8_82) ds
oult oul
/Q mh <\I!1(u'1’, ug)a—; + Wy (ul, uh)a—;) da:] ds

/0
(o oul s, oult
_ h hoo hyOUL ho by OU2
——/Q?T {/0 <au,11\11(u1,u2) s +aug\ll(u1,u2) s )ds]da:

= (T(uh (1), ub(8)),1)" ~ (T(u}(0), uk(0)),1)". (3.2.16)

Substituting (3.2.13-3.2.16) into (3.2.11), noting (3.2.1c) and (3.2.1f), and rear-

2

g g
ds + Sl @) + Slua @)
—h

ranging the terms we have
oul oul

/0 0s _hds+/0 ds
+ (Pl (), 1)" + (b (©),1)" + 2D (T (uh(e), ul(£)),1)"
= 1P+ 2P + ((uk (0),1)" + (w(uf(0)), 1)"

+2D (W (u(0), ul(0)),1)". (3.2.17)
It follows from (3.1.40) that
(((uf(0))* = 1%, 1)"

(u(0))* +1,1)"

== [ #"[(u?(0))* 1 x
= 3 [ 00z + 5 [ d
< IOl + 719

1
= C||P "l + 319 (3.2.18)
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The Young inequality (2.1.4), and (3.1.40) yield

h h

(T (1 (0), u3(0)), 1)

I

(u(0) + 1)*(u3(0) + 1)%,1)
1

(((0) + )%, 1)" + S ((w5(0) + 1%, 1)

()" +1,1)" + (o) + 1,1’

IP*udlly + CllP ugllt + 9l (3.2.19)

h

IN A
Q) DO =

IN

2

Y on Y
ds + 3 ui (@)} + §|Ug(t)|%
—h

Substituting (3.2.18)—(3.2.19) into (3.2.17), noting (3.2.1¢) and (3.2.1f), and sim-
plifying we have

t 2 t
/0 Js _hd8+/0 Js
+ (D(ul)),1)" + (w(ub(2)),1)" + 2D (¥ (ul(2), ul(2)), 1)"
= C||P"d||} + C||P™ud)|t + (18D + %)IQI <C, (3.2.20)

where C' is independent of T. Using the Poincaré inequality (3.1.3), (3.2.20) and
(3.2.7) we obtain

) ()l < Cr(luf (8] + |(uf (1), 1)"]) < C. (3.2.21)

It follows that u?(¢) € H*(Q2). Hence

||uf(t)||L°°(o,T;H1(Q)) <C. (3.2.22)

Next we show the bound (3.2.8b). Noting (3.2.3) and (3.1.5) we obtain

2 2

h 2
ou;

ot

h
ou;

h
g ot

(3.2.23)

1

oul
= [- 05+ fut

1 —h

Hence setting t = T in (3.2.20) we obtain

T T 7y v
| ot @har+ [t + IR + LR + @), vt

+ (¥(u3(T)), )" + (L (ui(T), u3(T)), )" < C, (3.2.24)
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and in particular

T h|[2 T 12
/ Ouy ds+/ oull” 4s<c (3.2.25)
o o, o e,
This implies using (3.1.11) that
h
‘ Ouy <cC. (3.2.26)
0t |l 2o,y ()

Recall that the mass is conserved. This allows us to show u is bounded in

L?(0,T; (H'(2))) by showing u? — ul € L*(0,T; (H(Q2))"). Consider

h h

2

= JJui (¢) — w(0) + i (0) — |512|( L), DI,

Noting the Young inequality (2.1.4), (3.1.7), (3.2.6) and taking ¢t = T in (3.2.27) we

—h
2

L oul(t)

1 h
st h(0) — ) (3.2.27)

—h

obtain
T h 2 g
e ][ <o [ 2O o) - o)

0 aS —h |Q| -h
T heey ||

< 2/ W™ 4o 4 Clut(O) + Ol (1), D
0 Os |l_s
T h 2

s ||_,

where we have noted (3.2.25) and the condition on u.

Integrating (3.2.28) over (0,7") we obtain

<C(T) < C. (3.2.29)
L2(0,T5(H'(Q)))

Hence (3.2.25) and (3.2.29) imply that

“u?”H‘(O,T;(Hl(Q))’) <C. (3.2.30)

Now we show that w! € H(Q). Setting £ = w’ in the Poincaré inequality (2.1.2),
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and noting the Young inequality (2.1.4) we have
i ()]s < Clwi (O] + 1(wi' (1), 1)]?). (3.2.31)
The definition of the norm in H! and (3.2.31) yield
lwif (DI} < C(lwf @)1F + 1(wi'(2), DI (3.2.32)
Taking 7 = 1 in (3.2.1b) and (3.2.1e) we have
(i (8), )] < 1w (1)), DM + (2 (i (), w3 (1)), 1)"). (3.2.33)

Now we bound the right hand side terms of (3.2.33) in turn. Noting the Young

inequality (2.1.4), (3.1.2a), (3.1.40) and (3.2.22) we obtain

[(p(us (1)), 1)"| =

/ (b (1)) — (1)) da
9]

IN
N =

Q
A (b ()" + 1+ Sl (0);

IA
5~

IN

[ (8))dz + Q] + Cluf (8)]3

IA
Q3

(Ml ON1F + Cllui @1IF +10] < C.

Using the Young inequality (2.1.4), (3.1.2a), (3.1.40) and (3.2.22) we have

(1 (u (8), u (1)), D)) = [((ug () + 1) (uz(t) +1)%,1)"

/Q Tl () + 1) (ub(2) + 1)%]de
1

-2

< /Q T () + 4G (1) + 5)da

[ w2 =1+ 5 [ 2

h
1

(t))")dz

<1 /Q T () + 1) + (W () + 1)1de

< Clui@)f5 + CM)luz @)1 + 5101 < C.

(3.2.34)

(3.2.35a)
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Similarly we have
|(Ta(u(t), uz (1)), 1)*| < Cluz ()5 + C(A)Iut(®)]IT + 512 < C. (3.2.35b)

Substituting (3.2.34) and (3.2.35a-b) into (3.2.33), then inserting the resulting

equations into (3.2.32) we end up with
lwr @I < Cllwi ()T + C). (3.2.36)
Integrating (3.2.36) over (0,T) and noting (3.2.22), we conclude that
lw! )| 20mm ) < C(L+ T?). (3.2.37)

h k1o Rl
Now we are in the position to show the uniqueness. Let {ul , Wy, Uy, wy' b and

(w2 wi? ul® wir*} be two solutions of (P*). Define

ho okl h2 h_ k1 k2
2y =u —uy, 2y = Uy — Uy (3.2.38)

Substitute these solutions into (3.2.5a-b) we have for i = 1,2,

3uh’i ’ . .y
(@ ot )+ (Ve V) + (@(ur”), )" + 2D(T;(u)”, ug’), )" =0, (3.2.39)
0uy” i i i
("= +¥(Vu3™, V) + ($(us™), )" + 2D(Ws(ui, uy), m)* = 0. (3.2.40)

Subtracting (3.2. 40) from (3.2.39) and summing the resulting equation for i = 1, 2,

- h,1 hl . h : :
with n =« — ™ and n = upt — ul® respectively, we obtain

Ozh
@2 )+ @ 2ty + 4(9ah, Vo) + 9(9 24, V)
= ((up®) — p(u!), ul' — ul?)" 4 ($(uh?) — Plult?), ub — ul?)"
+2D (W (uh?, ub?) — (! up ), ult — o)

+2D(‘I’2(u’11 2,u2 ) — ‘1’2('“’1”,“;1),“3’1 ’212)’1’ (3.2.41)

where we have noted (3.2.38) for the terms on the left hand side.
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Noting (2.2.55), (3.1.2a) and (3.1.6) we have

() = (i), u — )" + (8(u5?) = B(u3"), 5" - u)
= (" = ()l = - )
() = @) ! =g 0! — )’
< !l = ) (ol - o)
= ll2t113 + 1131
< CllA 1+ Cll1;
= C(Vzh, VGh2t) + C(V2h, VGhal)
< C|z?|l =il + Clatha 23 -

(|21|1+|Zzl D+ CU=Z + [12311%4)- (3.2.42)

Now the Taylor expansion of ¥ about (u? u}?) and (u!!, ul') are respectively

given by

\Il(uflll,ule 1) — \I’(U?Q,’U,QZ) + B\Il(ulll27u32)( h,1 h,2 aql(uill27u}212)( h,1 h2)

Bu, uy —uy) + E Uy™ — Uy
10°W(6,G) , na hove , 296, C) , ma hov, k1 b2
+§a—u%(ul — ") +m(u1 —up”) (uy” — uy™)
1?W(C1, ), 1 haye
+ §W(u2 i (3.2.43a)

and

oW (uh !
\p(ulllz’ug2) \Il(ullzl,ugl)+ (uy”", uy )( h2 A€l

Bu, Uy up”) + oy 9 T Uy
10°0(6,6), n2 niye , PV(ELE) e hiyhe  at
+2 Bu? (uy” — uy™) +W(U1 —uy ) (uy” —uy”)
129(&,6), he a1
= 2, (3.2.43b)

1 h,1

h h,2 2
where ¢; and & are between u!"' and u*, and ¢, and & are between u}' and u?

Adding (3.2.43a) and (3.2.43b), simplifying, interpolating, integrating over €2, and
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noting (1.0.4h) and (1.0.4i) we obtain

0= /Q o [(Uy (uy?, uy?) — Ty (! up ) (uy — ul?) ) de
b )~ s ) = )
_|_

[(

Q

1 az\p(ChCQ) 62\11 §17§2 :|
2/07T K Bul &

1 82\1’(<1;C2) §1)£2 h2
(G ) e
h az\P(ClaCQ) aij(€17€2 )1 h,1 h,2
+/Q7T [( 8u18u2 8u18u2 )( _ul )( U2 ):l dil]‘,

so that using the Cauchy-Schwarz inequality yields

(W (u?, ulb?) — Wy (a0 b)), (! = ul?))”

(Do (ul?, ) — Wyt ubh), (et — )]

1 y (C)C?) - (gvg) ,
§5/Q7T’K 8u§12) i au;?)?)(u}fl “?2)}“

1 h [ aQ\P(Clv CQ) 82\1’(61’ £2) h,1 h,2\2
+§/Q7T ( ouZ + 8u% )(u2 — Uy )]da:
1 h [ 62\1’((17 CQ) gla 52
+ 2 /Q i < Ouy0us + au16u2 ) ] do
1 w1029 (C1, C2) (&1, &)
+ 5 /QW < 5,0ty + 0u18u2 ) }dl (3.2.44)

Hence using (2.2.59a—f) we can rewrite (3.2.44) as

(00l ) — Wy (), (= )
(Ta(uh?, uh®) — Tl ), (! — )|
52/9#"[((16’2‘")%( 4+ 1) (! - ul?)?] da

o ()2 + ) + 1) (" — uh?)?| da

J
w2 [ A [( + W+ )+ 2+ 2) ! = ] do
J

wh:((u’l'")2+(ui"z)2+(u’2”) + (ul)? 4+ 2) (ul! — ul?? ]dx. (3.2.45)




3.2. Existence and Uniqueness 59

On noting (3.1.2a) and (3.1.6) we have

P = e = a2 < CLatR < SR 4 CIaAE (2.46)

1

Note that using (3.1.41), (3.1.15), the Poincaré inequality (2.1.2), (3.2.6), (3.2.7),
(2.1.8), and (3.2.22), we have

([ ltra) < r- T o + 8 )%

Ch upi|? for d=1,

l .
<4 Ch (ln %>2|u23|f for d=2,

Chz |ul|? for d=3,

and using (3.1.41), (3.1.15), (3.1.42), the Poincaré inequality (2.1.2) and (22,1) = 0

we obtain

’

7 1
(enizr o, for d=1,
z 3 7 1
([rlea) < {on (ng) ke gt for a-n
7 1
Cha |23+ C 2011|1211, for d=3.

Hence noting the Cauchy-Schwarz inequality, hln% < C, (3.2.22), the first in-
equality in (3.1.11), the Young inequality (2.1.4) with p = 4/3,8/7, ¢ = 4, 8 re-
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spectively, (3.1.6) and simplifying we obtain

[l < ([ farte) ([ i)

”

7 1
W2 |22} + hl=P I 112EI2, for d=1,

. 1
< Clu?F R ind |24 + b (In 1) 285 125, for d=2,

b b for d=3,
7 1
< ChlZ' |} + C 128 1213, for d=1,2,3,
Te
< Clallolelh + Sl + Il for d=1,2,3
b3 Lk 3 7€ hp2 |2
< Clz'l} |2 ||3h+§|zi|1+cllzi 12, for d=1,2,3,

13
< AR+ ClE, for d=1,2,3 (3.2.47)
Noting

dyoppe _ d / h_h|2
dtllzi 12, = at /o, |VQ’ 2 I dz
dzh
—2 / (VG VG =) da
O dt

dzt
= 2(g" =%, 21), (3.2.48)

(3.2.42), (3.2.46), and (3.2.47), we can rewrite (3.2.41) as

(”Z ”2 + ”Z2||2h) + 2’)’“2 |1 + |z2| )

((1 +12D)a + 78Dk) (|Z1 1+ 12513 ) + C(”Z1 125 + 25112 )-

Setting a = € and € = 7y/(360D + 4), D > 0, and rearranging the terms we obtain

d y \
= (22125 + 12112 0) + (12215 +12513) < Cll22 1120 + 123012 0)- (3.2.49)
dt 4

Integrating over ¢ € (0,7T') and using a Gronwall inequality we conclude from (3.2.49)
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that

t
1 7 )
O + 22O+ [ (12 S + 123 (s)F)ds < (121 (01124 + (|22 (0)]I2, = 0.
4 0

Noting the Poincaré inequality (2.1.2) and (2%,1) = 0, we obtain the uniqueness of
u?. The uniqueness of w? follows from (3.2.3) and (3.2.4). This ends the proof of

the existence and uniqueness of the problem (P"). o

3.3 Error bound

In this section we shall estimate the difference between the solutions u; of the coupled
pair of Cahn-Hilliard equations (2.2.1a—f) and their semidiscrete approximations
u” defined in (3.2.1a-f). For the case D = 0, i.e. two decoupled Cahn-Hilliard

equations, the error bound has been discussed in Elliott, French and Milner [19].

They showed that the error bound is H! optimal.

Theorem 3.3.1 Let the assumptions of Theorem 3.2.1 hold. Then for all h > 0
and d = 1,2, 3, we have that

||u - u?||L2(O’T;H1(Q)) + ||’lL — u?”Loo(O’T;Hl(Q):) < Ch?. (331)

Proof. Let be e; = u; —ul, ef = u; —n"u; and e = 7Mu; —ul, i =1,2. Subtracting

(3.2.5a) and (3.2.5b) from (2.2.5a) and (2.2.5b) respectively, we have

1 ot
T )+ 2 (Ver, V) = (G ) — (9lu) + 2DWilan,wa), (T~ )

+ (o(uf) + 2D (ut, ug), (I =) ) (3.3.2)

(G

for all n € Sh.
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ag;,n) from both sides of (3.3.2), substituting = e? € S* into

Subtracting (

the resulting equation, and noting that e; = e + ¢ and (3.2.48) we have
1 1

Ld 2 v dei 4 h oy O
Sl + e = 2(Ver, Vel) + (Gt ) + (6" ~ )5t )

+(p(ul), (I = Jet)" = (p(ws), (T —F )el)
+ 2D ((Wi(ul,ub), (1 —F el)" — (Wilur, uz), (I —F )el))
=L+ 1, + Is, (333)

where I; correspond to the jth line of the terms in the right hand side.

Now we bound each line in turn. Write Iy = I + I, + I, 3, where each [,
denotes the kth term of I,. Hence by the Cauchy-Schwarz and the Young inequality
(2.1.4) we obtain

1 € ¥
Iin < 9| Veilo|Vello < 7(§|€i|% + §|€%4|%) = §|€i|% + Clef |} (3.3.4)

Using the Cauchy-Schwarz inequality, in conjunction with the Poincaré inequality

(2.1.2), and (2.1.3) we have

661 aei

ot

de;
I, < ‘Qa—et

el < o[5S lello = G,

1 le]o. (3.3.5)

Noting the Cauchy-Schwarz inequality, together with the Young inequality (2.1.4),

and the Poincaré inequality (2.1.2) we can express I; 3 as

oul

3 <@ - )| letlo

1 oul |2
< — h _ gyt
- 26| IO (g 9) ot lo

1 A2 e‘ Oul |2
< / h _
< Sl + 2l + (6" - 6)

C 1 Jul |2
< Ze 2 4 Z1eA2 _‘ _ i
< Clelt+ 21+ £leh - )5

oul |2
A

IN

gled? + Clells + ¢|(@" - 9) (3.3.6)

0.
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To bound I,, rewrite it as

Iy = Iy + I, (3.3.7)

where
Ly = ((ub)?, (= )e!)" = ((w), (I = )eb), (3.3.8)
Ly = (us, (I = )el') = (ul, (I —F )e)". (3.3.9)

Adding and subtracting ( (I — jf ) we can rewrite I, as

D < |(ws = uf', (T = Jel)| + [ (ul, (T =F Jel') = (ul, (T~ )eb)"].

Notice that by the Poincaré inequality (2.1.2) we have

(I = Jello < Ce(IU hl1+l I = )et, 1))

(I(

:Cp(|e |1+| €1 ‘fez’ |)
(
(

= Cp(lefh + (e}, —3[ '(1,1)|)
= Cp(le]s + I(ef, 1 MIQI( 1))
= Cplel|;. (3.3.10)

It follows by the definition of the norm in H' that

I = Jebll = (1T —F el 2+ [(T —F ) [2)F < Cletls. (3.3.11)

Noting the Cauchy-Schwarz inequality, (3.1.2b), (3.3.10), (3.3.11), the Young
inequality (2.1.4), (3.2.8a), (2.1.5), and reapplying the Young inequality (2.1.4) we

obtain
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I, < leslo 1(1 "7[ )e?lo + Chz”“?”l (1 —7[ )e?lll

< Cpleslo et + CR*||ul|l1 |el)

< Crledly + 5letl? + CHILI + el
< Cleil2 + ele|? + Cn?

< Clleil|-1es) + 2¢les]? + 26'6;"? + Ch*
< Cllell, + 4eleil} + 2¢le[; + Ch?

< Cllesll?, + %1645 + Cled|? + Cht. (3.3.12)

To bound I»; we add and subtract ((u}')?, (I —+ )el') and note (2.2.55). This
yields

Loy = (), (= )el)" = ((us)?, (I = )eb)
= (), (T = )e)" — (W), (I = Yel) + ((uh)® — (), (T —F )e?)

=D+ I

Hence noting (3.1.43), (3.2.22), (3.3.11) and the Young inequality (2.1.4) we

obtain

h
D= (), (= )el)" = ((Wh)?, (I —F )el)
< CR7BWBR (1T —Ff el
< Ch*~3)el|;
< CH= 4 Zjety?
€

< Chi-u %|e,~|% +Clel); (3.3.13)
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Noting (2.1.9), (3.3.11), (3.2.8a), (2.1.5), and the Young inequality (2.1.4) we

have

Lz < () = (), (I —f )G?N,
= | ((us — ul)(u? + uguf + ( (I = )el)|,
< Clus — ullo (1 —f >e?||1(||ui||l  llly el + D),
< Cleili + Il
< Cllel v ledh + ol
< Cllely + 2 le? + Clel

¥
= Clleil2; + glesli + Clell7 (3.3.14)

Now we bound the term I3. To do so we rewrite I3 for i = 1 as follows

(U1 (uf, ug), (I —F e ) (U1 (ur, us2), (I = )et)
= ((u} + 1)(ug + 1% (I = )e})" - ((u1+1)(u2+1 £ )et)
=((u1+1)(u2+1 (I = )eM)" = ((ul + 1) (ud (L= )ed)
+ ((ut + 1wy +1)% (1 - f Jet) = ((wr + 1)(uz +1)%, (1~ ey)
+ ((w+ 1)y + D)% (I = Jet) = ((wa + (w2 +1)%, (I = ei)
=133 + 32+ Is3. (3.3.15)

Noting (3.1.43), (3.3.11), (3.2.8a) and the Young inequality (2.1.4) we obtain

Ing < |((uf + 1) (uh +1)%,(I - el) = ((uf + 1) (ug + 1)%, (I = )e})|
< CR*™Plut + 1 fluz + 1 1~ Jetlh
< Ch?4/3 E4h
< Ch*7?18 + elef [}

< Ch=23 4 2¢ley|? + Cled)?. (3.3.16)
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Using (2.1.9), (3.2.8a), (3.3.11), the Young inequality (2.1.4), (2.1.5) and reapplying
the Young inequality (2.1.4) we have

I35 = ((“’11— D(ug +1)% (I —F 61)
< Clut —wlo lug + 1|3 1T = )etlls
< Cleilo leth
< Cleals + el
< Cllerll-r lexly + 2eler|i + Clet'[3

< Cllea||®, + 4eler ]} + Clef |3 (3.3.17)
Using the same technique we obtain

Iz = ((u + 1)((uh +1)* = (ug + 1)), (I —F )et)

< Cllea))® | + 2eleq|* + Clef . (3.3.18)

On substituting (3.3.16-3.3.18) into (3.3.15) and setting € = v/ 128D we obtain the
bound I3 forz =1

h
(\Ill(ui‘,ug),(l—f)e’f) — (\I/ uy,u2), (I — e )
< ChAM8 4 8eler |t + C’le1 124+ Clleil|?, + Clleall?,

< OW'=0 4 ferfi + Clel} + Clleall?, + Clleal,. (33.19)

In the same way we have the bound I3 for i = 2

(To(ut, uh), (I —F e ) (Ta(ur, us), (I —F )eb)
< Ch723 4 8eley|? + Cled|? + Clle|® | + Clle2ll?,

< O3 16D|62|2 + C’|e2 |1 + Cller|]? + Clleall?;. (3.3.20)

On substituting (3.3.4-3.3.6), (3.3.12-3.3.14) into (3.3.3) simplifying, summing
for ¢ = 1,2, and substituting (3.3.19)—(3.3.20) into the resulting equation we obtain
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1/d d g
3 (Gpllenl? o+ glleat? ) + Zenf + heal)

< CllealfZy + Nleally + led[3 + le2 Iy

0 0
e e+ [N el i + e
oul 2 Oul 2
h _ oYL R Y% 2
+‘(Q 95 O+’(g 957, + ) (3.3.21)

Integrating over ¢ € (0,7T), using a Gronwall inequality and rearranging the

terms we obtain

(s, + lea(DIP) + / (leaf? + leal?) ds

T
Cler O + llea@)2) +€ [ (1t + e
71, wh

. o

el + |

8”2 | " h2) ds.

lesly + (6" - 9)

+ ’(Qh
Hence we obtain, for d =1, 2, 3,

”elllim(O,T;(Hl(Q))’) + ”eQHim(O,T;(Hl(Q))’) + ||€1||%2(0,T;Hl(n)) + “62|I%2(0,T;Hl(§2))

< C(”(I — PN + (T = PMugll®y + et ”LZ(OTHI(Q))

061
+ [leg’ ”L2(0TH1(Q)) + “ LT @)Y) e | 20,120
H L2(0,T; Hl(n ) [ H ~ 9% ot llr20102(0))
oul
h— 2 C(T)h? < Ch?
* H(Q 9 ot L 0TL2(Q))) + MR < ’

where we have noted the Poincaré inequality (2.1.2), (3.1.12), (3.1.2c), (2.3.2),
(2.2.6a), (2.2.6b), (3.2.8a), (3.2.8b), and (3.1.8) to obtain the last inequality. This
ends the proof. ]



Chapter 4

A Fully Discrete Approximation

In this chapter we introduce a numerical scheme (Scheme 1) to solve the weak
formulation we mentioned in Chapter 1. We discuss the existence and uniqueness
of the solutions for the scheme. We also discuss stability and convergence of the
solution to the continuous problem in the weak formulation. We briefly mention a
second scheme (Scheme 2) and show existence, uniqueness, and stability. We do not

discuss the convergence of Scheme 2.

4.1 Notation

We shall now describe a finite element method for the numerical solution of the
weak formulation of (1.0.7a-1.0.7f).
As in (3.1.4) we introduce the discrete Green’s operator in the presence of the

numerical integration G" : S — S% such that
(VG", V) = (v,n)* vne St (4.1.1)

where St := {n € S": (n,1)* = 0}.

We define a norm on S'(’]‘ as
172 s = G0} = (VG ", VG ) = (G, e = (", Gy (4.1.2)

We have the following analogue to (3.1.6) and (3.1.7) respectively, that is for all
68
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a > 0,
N 1 ~
(" M = (VGhoh, Vol < %|ghvhﬁ + g—|vh|f Vo € Sp, (4.1.3)

and

[V 2 4.0 < CpIG" 0" 1[0"o. (4.1.4)

For later purposes, we recall the following inequality for the discrete Green’s

operator (see Blowey and Elliott [10])
1(G" — GMM|y < CRY|W"|l, Vot e V. (4.1.5)

We also have the analogue of the inequalities (3.1.11), (see Barrett and Blowey
(2]), as follows

h2|Uh|1 S Clhl?)hlh S C2|§h?}h|1 S C'3|thh|1 S C4|§hvh|1 V'Uh € Vh. (416)

The first inequality on the left is the inverse inequality on noting (3.1.2b). The
second follows from the first and (4.1.3). The third and fourth follows (4.1.5) on
noting the first two inequalities in (3.1.11) and (4.1.6) respectively.

In addition we have the analogue of Lemma 3.1.3 as follows:

Lemma 4.1.1 Let v® € S" and d = 1,2, 3. Then
7 1
W2 4 < ClloMIF 0" |2, - (4.1.7)

Proof. Tt follows from (2.1.8), (3.1.2a) and (4.1.3). 0

4.2 Scheme 1

4.2.1 Existence and Uniqueness

Given N, a positive integer, let At = T/N denote a fixed time step, and t¥ = kAt

where kK = 0,..., N. We focus our attention on approximating (P) by the discrete
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scheme defined as follows:
(PP2Y  Given UY, U, find {UT, Uy, WP, W} € ShxShxS"xSh forn=1,...,N,
such that Vn € S”

Ur — Un—l
(—1T1,77)h = — (VW] Vn), (4.2.1a)
(Wit = (Fu/(UF, U3 m)" + v(VU}, Vi), (4.2.1b)
U = P, (4.2.1¢c)
and
n o __ n—1
(Q,n) =— (VWZ, V), (4.2.1d)
At
(Wgt,m)* = (Fo(U}, UF) )" + +(VUg, V), (4.2.1e)
U = P, (4.2.1f)
where
F(UPU) = (Up —Up + DU + Up 4+ 2)(Up 7 1), (42.1g)
B(UNUN = (U3 - U+ DU + UYL + 2)(Ur + 1) (4.2.1h)

Note that (4.2.1a-c) is independent of U} and (4.2.1d—f) is dependent on U7
Using (4.1.1), we can rewrite (4.2.1a,d) as

Unl

(V@

|+ WM, V) =0 VneSh (4.2.2)

Taking n = gh[U U ] + W/ in (4.2.2), we have

Un 1 N
|gh[_A—] +Wpt =0,
which implies
Un 1 Un 1
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where

n 1

i |Q| —(F,(Up, UM, )" for i=1,2. (4.2.3)

Thus by the Poincaré inequality (3.1.3), we have

Un 1 Un Un 1
0= |gh[—A—] +Wr—f WP, >C; 1|gh[—-—At—] + W = WP,
which implies
Un Un 1
g’l[l—t’] +f W (4.2.4)
Noting (4.2.3) and (4.2.4), and
n n 1 T n 13
(E(Ul >U2 )a n)h—'@(ﬂ(Ul ) U2 )7 1)h(17 77),
n T 1 n n
:(Fi(U1 US), 77)h - ﬁ(l, U)h(Fi(Ul ,Ug'), )h
i1} n n n n
:(E(Ul ?UQ )777)h - (FI(UI ¢U2 )’ (17 @)h)h
=(F(U, U3, )" — (Fi(Ul",Uz"),f )"
=(F; (U7, U, (1 — f (4.2.5)

we can restate the problem (P?’A‘) as:

Given U, U9, find {U, U} € S* x S*, for n =1,..., N such that ¥ € S*

GO )+ AVUF, V) + (R(UF,U3), (0~ f )" =0, (4.2:6)
G )+ A (VUR, V) + (B(UF,UF), (1 —f ) =0, (1.2:6b)

Theorem 4.2.1 Let the assumptions of Theorem 3.2.1 hold and At > 0. Then
there exists a unique solution {Uy, Uy, Wy, W,} to (P™**) such that the following
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stability bounds hold:

max {Atz(wh O e )

’)’ m m n n— n n—
(PR + PR+ S0 - VR 10 - U3 )

n=1
1 ¢ n n— n n—
+3 (10} = UF 5 + U = Us~12)
n=1
1 m m m
+ Z((U{")4 = 2(U)? + (Ug")* = 2(Us™)%, 1)
+ DU + 1)U + 1)%, 1)’L} < C, (4.2.7)
N N
ALY IWPRIE + ALY W5 < C, (4.2.8)
n=1 n=1
|FLUTUNR + |E(UF, U))R < C. (4.2.9)
Proof. Let
={meS": (m, 1) =m; =+ 3}, (4.2.10a)
K} ={m € S": (m, )" = my :=F u3}. (4.2.10b)

Consider the coupled variational problems

min  Ef(m),  min  E(n),

meK? nEK}
where
n U" ! 1 ' e
Er(m) —Igh[ Lo 117+ Imlf + (Zni‘, )" — Up,m)"
n— 1 e
+ D((U3 1’*'1) :5771 +(U; 1Jr2)771)h>
\ 1, 4,10 — UR! v 1 e
EX(m) :§|gh—At2*|f + '2"|772|¥ + (an’ 1) — (Uy~t, me)"

+ DU} + 1)%, =02 + (UF' + 2)mp)™.

1
,5772
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Since |gh[’7*—L—]|1 > 0 for i = 1,2, we have

1 e D e
Er(m) > |771|1 (4771‘, D — (U )" + 5((U2 L+ 1)%ph)h
+ D((UF™ 4 Dy, (UP + 2) (U 4+ 1), (4.2.11)

1 i D, .
£y () > |772|2 + (17751, D — Uy )" + 5((U1 +1)%,m3)"

+ D((UF + V)mp, (U5~ + 2)(UF + )™ (4.2.12)
By noting the Young inequality (2.1.4), for p =4,q = 4/3 we are able to show
n—1 h 1 4 h 3 h 4
(U m)" > =01, 1)" = (Up~t)3)da, (4.2.13)
i 1 /g
and for p = ¢ = 2, we obtain

1
(U7 + 1m, (UF + 2) (U3 + 1) 2 =503 + Dml;

1 11— k n—
—5|(U§ Lr)(urt 4+ 2))2 (4.2.14)

We also note that

(U3 + 17,7 = (U3 + D, (1215)
Similarly, we have
~Up w2 g 1 - g [ A e, (42.16)
(U7 + D, (UF + DU +2)) > |7 + Dl
SO D@ R, (217)
(U + 17,58 = (U7 + el (4218)

On substituting (4.2.13-4.2.15) into (4.2.11) and (4.2.16-4.2.18) into (4.2.12),
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and simplifying, we arrive respectively at

1 b n— T~ 3 n—1yz
Ehm) = Jlmf - DU + DO +2)f - § [ @i (@219
Q

3 4
ebm) = Jiml - DIOT + D@ 42— [ #Or)ide (@220
Q

Thus £ and £} are bounded below in K and K2 respectively.

Now let d; = infy EM(m;) and {n;»} be a minimising sequence of £! in K, i
lim,, o0 E(7in) = d;. It follows from the above estimate and the discrete Poincaré
inequality (3.1.3) that {n;,} € H'(Q). Recalling that K are finite dimensional

spaces, then there exist U; € S* and subsequences {7; ,} such that
{nz',m} — Ui € Sh.

Since K are closed and U; € K} then the continuity of £ give £'(n; ) — EXU;) =
d;. As a consequence, there exist solutions U; to the coupled variational problems.
Such minimisers, which are critical points of £} and £%, satisfy the Euler Lagrange
equation of E* and &F given by (4.2.6a) and (4.2.6b) respectively, while {W;, Wy}
exist from (4.2.4) and (4.2.3) .

To show the uniqueness, let U', Up"' and U"*, U;”* be two solutions of (P™2f)
and set

=UPM UM, Z=Upt Ut (4.2.21)
From (4.2.6a) we have, for i = 1,2,

n,i n—1
U =-U]

@),

"+ (VU V) + (UF)? — U3 n —F n)P

+D(UM + UM + U + 1% —f n)" =0, (4.2.22)
Subtracting these equations and noting (4.2.21) yields

]. oo {73 n,
(G Zun)" + AV 2, Vi) + (UF)* = (U120 —f )

+ DU+ 1)2Z,n—Ff )" =0. (4.2.23)
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Taking n = Z; in (4.2.23) and noting (4.1.2) and (4.2.21), we have
CIG R+ AZ 4 (U = O, U~ UR2) 4 DI~ + D2} = 0.

From the convexity it follows that

1 1
(s —r) < 234 — Zr", (4.2.24)
which implies
(1 = s*)(r —s) > 0. (4.2.25)
Thus
1 ~
19" 2+ 12+ DI + 125 < 0, (4.2.26)

and it follows from (3.1.3) that

|2\ =0, ie Z,=0.

In the same way, we are able to show that

ZQ =0.
Thus we have shown the uniqueness.
Next we will show the stability bound (4.2.7). Substituting n = Uln—_Al;L_l— € Sp
into (4.2.6a), we have
o U —UP! U ur~
hi-'1 1 1 n
Y LE R LI ) 5 )
ur - upt
+ (RO 07), [——D"=0.

At

Noting (4.1.2) and the identity

2a(a — b) = a® — b* + (a — b)?, (4.2.27)
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we have
anUT — Un—l Y n i n— 2l n n-—
At|9h[1—At1—]|f + §|U1 7 - §|U1 P+ §|U1 ~Ur'
(U U~ ) (U, U - U
+ DU+ Ut +2)(Up 1t + 12, Urt — UM (4.2.28a)
In the same way, from the equation (4.2.6b), we obtain
At ~h U; — ;_1 2 v Un 2 v Un—l 2 Y Un Un—l 2
14 [T]|1+5‘ 2|1_§| 2 |1+§| > — U3
= (UF), U5 - U)o+ (U3 Up — U
+ D((Uy + U~ +2)(UF + 1)3, Up~t — U™, (4.2.28b)

Now let us consider the right hand side terms of (4.2.28a). By noting the in-

equality (4.2.24) we obtain

(U or= =umt < (O = (U, )M

| =

On noting (4.2.27), we have

O 07 =) =5 (<O R+ UR R = 107 = UP ') -

(NN

The last term on the right hand side (4.2.28a) can be expressed as

(Upr+UP P+ 2) (Ut + 12,007 = Ut

=(Ur 7+ DU + 1) = (U + D205 + )% )M
In the same way, from the right hand side (4.2.28b), we have

(), U™~ Up* < S (U5 ) — (U), 1),

- n n— 1
(U3 U —Up ) = 5

(= U7 2 + U7 — |UZ = Us™)3),

(4.2.29)

(4.2.30)

(4.2.31)

(4.2.32)

(4.2.33)
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and

((Uy + U3~ '+ 2)(Ur + 12,0571 = Up)"
= (U '+ DXUM+ 1) = (Up + 1D)2UP +1)%, 1A (4.2.34)

Substituting (4.2.29-4.2.31) into (4.2.28a) and (4.2.32-4.2.34) into (4.2.28b), and

adding the resulting equations, we have

A Il 11|1 AT
+5 (0 |U"|1 ORI + (U3~ |Up )
+ 2 (Ur - Ur o+ jUp - U
b (037 = 071 + 10~ ~ U3 7)
b3 (07— U+ 103 - U3 )
F O~ )+ (O3 - O3
+ DU} + DU+ 1) — (U '+ DU+ 1), 1) <0, (4.2.35)
Summing the above equation over n = 1,...,m for m < N and rearranging the

terms yield, for d = 1, 2, 3,

(U —URY o Up U
h 1 1 2 hi>~2 2 2
e 48 (19157 o)

-+

N |2

(0B + g + 3oy — Up '+ ug - U )
n=1

S (lup - UptE + jup - UpH )

n=1

(UM =2 + (U)* - (U5, 1)

(U + 125 + 17, 1)h}

—+

+

= B

>

+

S(UD = 2007 + ) - 20 )"

+ DY+ D22+ 12 1) < C, (4.2.36)

’Y
< TP + (g +
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where we have noted the Young inequality (2.1.4), (3.1.40), (4.2.1c), (4.2.1f), (3.1.14)
and the condition on »? for i = 1,2, to obtain the last inequality.

To show (4.2.8), consider the Poincaré inequality (3.1.3), that is

Witlo < Cr(IW]|1 + |(W, 1))

The equation (4.2.3) and the Young inequality (2.1.4) with p = ¢ = 2 yield

Wrlg < CUWT I + QP W), (4.2.37)
It follows that

WP < CUWRE + QP WPA). (4.2.38)

Multiplying both sides of (4.2.38) with At and summing over n we have

N N N
ALY WP < CAtY [WrE+CatQl S | wie. (4.2.39)

n=1 n=1 n=1

Recalling (4.2.4) and (4.2.7), it is enough to bound | W}| to conclude ||[W2{|; is
bounded.
On noting (4.2.3) we have for i = 1

1
W= / w [ - Up + DO + U7 4 ) (U + 1) d
Q
si( JRECHT +] JRACA
12/ \| Ja Q
D
+ 3 / U7 + 12 4+ (U2 +1)2 + 2002 4+ 1)) de )
Q

a
<ie +

ail| [ s | #o7ida

+ ’ /Q T (U + 1)?dz /Q (U + 1)Y)dz

+ g(‘ /Q U7 + 1))de

)

The inequality (3.1.40), (3.1.13) together with the conservation of mass, and (4.2.36)

+ 2

give

|f WP <C for d=1,2,3. (4.2.40a)



4.2. Scheme 1 79

Using the same technique we are able to show
|f W3 <C for d=1,2,3. (4.2.40D)

Substituting (4.2.40a-b) into (4.2.39) yields the desired result (4.2.8).
Now we bound |F;(U7*, U})|2. To do so consider (3.1.2a), that is

F(UD, UD)E = /

< [ (= L@n) + o [y

+t[(UR + U AU+ 1)4])da:. (4.2.41)

o (U = U2+ DT + Up 4+ 2)(05 7+ 1)%) ] da

Noting the Young inequality (2.1.4), and (3.1.40) we have for d = 1,2, 3,
B (U U < CUIUTIR + 0711 + lug—HiE) < €.
Similarly
|F(UT, U < CUITZNE + 10571 + IURIE) < C.

This ends the proof of the theorem. O
Note that on defining

EMNUL, Us) = / [wh(Un) + HIVUL[2 + 7hap(Us) + -;1|VUQ|2 + 208", Uy) | da,
Q
for Uy, U, € S*, the equation (4.2.35) shows that
EMUT,Up) < EMUPLURTY),

that is £"(-,-) is a discrete Lyapunov functional.
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4.2.2 Convergence

To show the convergence of Scheme 1 introduced in this chapter to the weak form of
the coupled pair of Cahn-Hilliard equations we follow closely the idea in Copetti and
Elliott [16]. Let {U, U}, W, W2} be the sequences resulting from (4.2.1a-4.2.1f).
Fort € (t"1,t"), 1 < n < N, we define the piecewise constant sequence in time, for
1=1,2, by

u'&,i(t) = U7, wgt,i(t) =W

i

Fi},LAt(t) = n"F(U7,U3),

part) = p(t"™1) for pe C*(0,7),

and denote by @}, ; and fia,(t") the piecewise linear continuous functions on [0, 7]

defined respectively by

ah,(t") = Up for n=0,...,N,
gac(t™) = p(t") for n=0,...,N—1,
Bar(t™) = p(" )

Notice that Theorem 4.2.1 implies that

ke 1Ml () + Nukeall oo mi ()
+ @k 1 lzeoqommn ) + 18R 2l Looom ()
+ 1wk llzomm @) + lwisallz2oma @)

+ |1 FV adll 202y + 1Faadll 2oz

d_p

d_p
+ HEU‘AM PR

<cC. (4.2.42)

+|
L2(0,T5(H1(2))") L2OT(HY (Q)))

Since L*>°(0,T; H'(f2)) is the dual space of L'(0,T; (H'(Q2))') (see Renardy and
Rogers [33] page 378), which is separable, then there exist u; € L>(0,T; H'(2)) and
subsequences {u},;}, and {a},;} € L(0,T; H'(Q)) such that

uh,; = w; in L%°(0,T; H(Q)) weak-star,

ah,; —u; in L®(0,T; H(Q)) weak-star.
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Since L*(0,T; H'(Q)) is a reflexive Banach space (see Theorem 2.20.4 in Kufner
et.al. [26]), then there exist w;, v; € L*(0,T; H'(Q)) and subsequences {w},,},
{F}'\,}, such that

wh,; 2w in L*0,T; H'()) weakly,
FPyy— v in LX0,T; HY(Q)) weakly.
Similarly, L*(0,T; (H*())) is a reflexive Hilbert space so there exist dii;/dt €
L*(0,T; (H'(€2))') and subsequences {a@%,,} € L*(0,T; (H'(2))') such that
d_p

—UAL;

d
o —a; in L*(0,T;(HY(Q))) weakly.

dt
Also as At — 0 we have

fiag = p in  L*(0,7T),
d

—lar —

= iu in L*0,T).

dt

Note that H'(2) and (H*(Q2))" are reflexive, and the injection of H!(Q) into L?(f)
is compact. Hence the compactness theorem of Lions (see Theorem 5.1 in Lions [27]

page 56) guarantees the existence of subsequence in L*(0,T, L?(Q2)) such that
Uh; = wi in L0, T, L*(Q)). (4.2.43)
Observing that

T
s — Wl oo ey = / @ — e | Bt

N

nAt \ 5
= Z/( ha IlaAt,i - 'U’At,i”?dt
n=1 n— t

N
<AtY |lUr - UMY} < CA,

n=1
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where we have noted Theorem 4.2.1 to obtain the last inequality. This implies that
Upy; = us in L0, T, H'(Q)). (4.2.44)

Let £ € H'(?) be arbitrary. Setting n = P¢ in (4.2.1a-b) and (4.2.1d—e) we

have, fori =1, 2,

yr _ pyn-l h
(T P{‘ﬁ) + (VW], VP}¢) =0, (4.2.45)
(W, Pre)t — (F(UT, Ug), P — 4(VUF, VPE) = 0. (4.2.46)

Multiplying each equation by Atu(¢"!), we have

up - Upt "
st (T )+ Ay vREg =0,

Atp(t" ) (W, PPE)" — (Fy(UT, U3), PLE)* — (VU] VP€)) = 0.

Summing over n we obtain

N-1 (t") — (tn—l)
Aty B (ur, Prot + u(e ) (O, Pre)
n=1 .

N
—p() (U, PIE" + ALY u(t" ) (VW] VPE) =0,

n=1

N
Aty L p(t™HWE, PR — (F(UT, U3), PE)" —4(VUF, VPE)] = 0.
n=1
These equations are equivalent to

T
d et —_
B /o (e PLE" g Radt)dt + n(e™ ) (U, O™ — u(t)(uf, PrE)"
T
+ [ nalo)(Vuk VPR = 0,
0

T
[ msd®l(whess PR = (P, PLE)" = (Wil VPR Id =0
0
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Rewriting these equations as

T
— [ (e PR ZmadBd + " O, PLE — u()(al, Phe)"
T T d
+/O :uAt(t)(vwgt,i’ VPlhg)dt +/(; [(ugt,i’ Plh‘f) - (ugt,h Plhg)h]aﬁAt(t)dt =0,
T
|| oo PHE) — (s, PO~ 2(Vhy, VPNt
T
+ [ anlOl(whe PO = (o PO

T
4 / ()| (Flis, PIE) — (Fliay, PRt = 0,

and applying (3.1.2b) and the Cauchy-Schwarz inequality we find that

T d
[ 00 Pl = (s PO inte)t|

T
< on? / It ol 1P

T 3 T 3
<on( [ idaga) ([ ietera)

T 2
= Ch?||uly;llL20.m 0 () </0 ||P1h§||%dt) :

Similarly

T
/0 s (O)[(whes, PEEY — (wh, ,, PRE)) di

T 7
< CR?|lwiyall 2 o) (/0 IIPl"ﬁllfdt) ,
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and

T
[ s Pl — (R Phe) dt]

T
< Ch / 1 Fy, 1ol PRENL pae(t) dt
0

T % T 3
s@h( / ||szm||§dt) ( / Ile‘fll?dt>
]

2

T
< Chl|Fls |0 zsz0iey ( / ||P{‘£||%dt) .

Choosing p such that u(T) = 0, ©(0) # 0, noting (4.2.42), and observing that
PPe € L2(0,T; H()) as At,h — 0 and pV~' — u(T), we can pass to the limit as
At, h — 0 to obtain

T du .
| |- 0%+ utvw, v - worat 0 =0, (12.47)
/0 () (i, €) — (vi, &) — (Vs VE)dt = 0, (4.2.48)

which implies

—(%uti;f) + (Vw;, V€) =0 a.e. in (0,7),

(wi, &) — (v5,€) —¥(Vu;, VE) =0 ae. in (0,7).
An integration by parts of (4.2.47) gives

(wi(0) - w,€) =0 V¢ e H'(Q),

and therefore u;(0) = u!.

It remains to prove

v; = F;(uy,u9). (4.2.49)

To show (4.2.49) we note the following notation

~h+ .__ rmn ~h— . _ yrn—1
Upy; = UL, Upg; = U
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Now for all n € H'(2) consider

|(Flar — vi,m)| = [(FL(UT, Ug) — 1, )|

)?
| uAtl

“At 1+ D(U’Atl + ﬂg—tl + 2)(uAt2 +1)%n)

— (U} — uy + 2D(uy + 1)(ug + 1)? ,n)l
S|((U}Ktr1)3 u,n |+| uAtlaT/)|

+ D|((aky ) + @ay, +2)(@h,, +1)% — 2(uy + 1) (ug + 1), )]
=1+ 1, + DI,

where I;, for j = 1,2, 3, correspond to the jth-term of the right hand side. Recalling
the convergence in (4.2.43), it is enough to consider I; and I;.

Noting (2.1.9) and (4.2.43) we have

I = |((u'§1 u )((U}.&-it_l)2+agtlu1+ul) 77)|
31/
< §|(|u2t1 ull((uAtl) +u1) |77|)|
< Clas, — walo(IGAL I + gL llurlh + el il — 0 as At 0.

We can rewrite the equation I3 as,

Iy = |((akt, + Upgy T 2)(uAt2 +1)% = 2(up,, + 1)(@py, + 1)
+ 2(uAt 1+ 1)(“At2 +1)? - 2(“&,1 + 1)(“’&,2 +1)?
+ 2(upr + 1) (U + 1)% = 2(us + 1) (uz + 1)%, 1) |
< |((uAt 1t ﬂigl + 2)(1—"&,2 + 1)2 - 2(“At1 + 1)(U‘At2 + 1)2,77)|
+ 2] U’Atl + 1)(“At2 +1)% - (U‘Zt,l + 1)(“At,2 +1) ,77)|

+ 2| (uA,; + 1) (uR,o + 1) = (ur + 1) (ue + 1)2, ).

Now we look at each terms in the right hand side. Using (2.1.9), the Holder inequal-
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ity (2.1.7) and (4.2.43) we have

| ((“At 1+ ﬂgl

)(uAtQ +1) - z(ugt,l + 1)(17}5,2 + 1)2;"7)|
|( “?f:l +ﬂ2_tl +2) - 2(U}&1 +1), (uAtQ +1) 77)|
(@
(@

| uAtl uAt 1)(“At2 +1)%, )] + I(ﬂ&,l - “’&,1)(17’&,2 +1)%,m)|

Il

uAtl uAt1+U‘Atl u’it1:(“At2+1)77)|

ZAN

I/\

|um1 uitl 0 (”71&,2“1 Inllx + Inlo)

+ gy — waenlo (185117 Il + Inlo) — 0 as At — 0,

and

|((ugtl + 1)(“&2 )2 (“Atl + 1)(“At2 + 1) )|
| (( U‘AtZ — (koo + 1) (uh, + 1)n)]
|

( “Ez U‘Atz (uAt2 +U’At2 + 2)(“&1 +1), 77)|

| /\

|Um2 uAt 2|0(||QA?2||1 “Um,l ll1lml1
+ @ ol Il + Nwheoll llwag, lnlinlh

+luaczlly Il + e, Lllnlh + Inlo) — 0 as At — 0.

Similarly to the above analysis
I(uAt 1+ 1)(“2:,2 +1)% = (uy + D(up + 1)4,1)| = 0 as At — 0.
These results imply that
(UL, U7) = v
Similarly we are able to show
F(UMNUY) = vy

Here the analysis proceeds by interchanging subscript ‘1’ and ‘2’ and replacing the
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old ‘D’ term with D(ﬂ'ﬂ,2 + a’,g;ﬂ + 2)(11’5)1 + 1)2. This ends the discussion of the

convergence.

4.3 Scheme 2

4.3.1 Existence and Uniqueness

We consider a two-level scheme for approximating (P) defined as follows:

(PEAY Given U, UL, U9, UL, find {UT, U Wr, W2} € §* x Sk x Sh x S,

forn=1,...,N, such that ¥n € S"

it L "
(T,n) = (VWI 1V77);

Un+1 + Un—
(WP ) = (R (U, U3 ) )" + 7(V ("
Ulo = Phu(l)v U11 = ]Dh'll,i7
and
UTL+1 _ Un—l h .
(T") =~ (VW{, Vi),
Un+1 Un—
(W3, m" = (B(UM, U m)* + (V (%‘L
UP= PR3, U= P,
where

uptt +up!

RUIL U = 0 (5

1 -1
Uptt + Up

RU, U+ = (U (~2—

),Vn>,

),Vn>,

(4.3.1a)

(4.3.1b)

(4.3.1c)

(4.3.1d)

(4.3.1e)

(4.3.1f)

) = U+ DU + Up + 2)(Uf + 1),

(4.3.1g)

) - U+ DU + U +2)(UF +1)2

(4.3.1h)

As we shall show, this is a linear scheme which generates a stable unique sequence.

The treatment of cubic terms in Scheme 2 is based on work by Matsuo and Furi-
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hata [21].
Similarly to (4.2.3) and (4.2.4) we have

1 1
f W= @(Wi", )t = ﬁ(E(U;“fl, Upth,1)* for i =1,2, (4.3.2)
and
~ Urtt —pyrt
Wi = =G =+ v (4.3.3)

Noting (4.3.3), (4.3.2), and (4.2.5) we can restate the problem (P2*%) as:
Given U, U}, UL, U}, find {UP, Ut} € S* x S”, for n = 1,...,N such that
Vn € St

(G A A (G S

+ (AU U, (= ) =0, (4.3.4a)
@ ) s v (Y o

+ (B (U, U™, (I —F )" =0. (4.3.4b)

Theorem 4.3.1 Let At > 0 and the assumptions (A) hold. Given u?,u}, ud, u} €
S™ such that |[udl|; + |Jut|ly + |[u3]l; + ||ullly < C. Then for all h > 0 there exists a
unique solution {Uy, Uz, Wy, Wa} to (PQ'A‘) such that

- n n fy m m
max,, {286 S+ WD) + L0UP 4 o)

m=1,..,.N
n=1

+ DU + 12U +1)%,1)" + (U + D20 +1)%,1)")

1 m m m
+ 5('U1 Ur*s + 105 U2m+l|;21)} <G, (4.3.5)
N N
208 |[WPIIE + 24t ) [[WRIlR < ¢, (4.3.6)
n=1 n=1

|FL (UM U2 + |B (UM UMY2 < ¢ for d=1,2. (4.3.7)
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Proof. Let

K ={mes": (m, )" =m; = %}, (4.3.8a)
Ky ={meS": (m1)" =my =+ u3}. (4.3.8b)

Consider the uncoupled variational problems

min &P (m), min £} (n),
meK} neK}
where
h h Un ! n—1 n 1 n—1 h
E1m) =5IG" LS+ Tl + (VU )+ (O3 g+ U )
1 _
- (Ulna 771) + D((Un + 1) ’ 5771 + (Uln ! + 2)771)h’
h Sh 772 2, 2, 7 n—1 ny2 1 2 n—1
Ey (1) —|g [ ]| |772|1+‘2‘(VU2 , Vi) + (U3)?, gt U )"

1 — h
- (U;’,m) + DU +1)%, 515 + (U7 + 2)m)"

o~ _qn=—1
Since |GH[™2% ]2 > 0 for 4 = 1,2, we have

’Y n— 1 n 1 n n— n
ELm) = 2mlF+ 2 (VU V) + S(UR D) + S (ODR,0F )" — (U7, )"

+ g((Ug" + 12 ) + D(UF +1)%, (U2 + 2)m)™. (4.3.9)

By noting the Young inequality (2.1.4), for p = ¢ = 2 we have

(VU Vi) < 2[U077'F + Im I
(U2, (m)*)" + 19,

(UF + 1%, ()" + 5((UF + 1%, (U7~ +2)7)"

U, m)" <

Uz + 1%, (U +2)p)" <

Using the Young inequality (2.1.4), for p = ¢ = 2, the Poincaré inequality (3.1.3)
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and setting € = 4C/~, we have

L n— 20, . ne
5((U1 )2’U1 1771)h < 7(([]1 )4,(U1 1)2) _‘|771|1 16|("7171) |2-
Hence
Y n—1 n—1(2 Y 2
SI(VUI Vm)| 2 —[UF 7 - el (4.3.10)
1
(U7, m)" = =3O, (m)*)" -1, (4.3.11)
_ D,
ID((U3 +1)%, (U + 2)m)*| > — (U2 + 1)%, (m)*)"
D
- (U + 1% U +2)%)" (43.12)
1 e 2C o
5T U ) = == (0, (U5
Y
—ggimli - 16I(m,l) 2. (4.3.13)

Noting (4.3.10-4.3.13) we can rewrite (4.3.9) as

2C o
ELOn) glmlt = U - (O @)

D n n— h
- 5((U2 +1)%, (U +2)3)" - 176 (n, D*? = 9. (4.3.14)

Similarly we are able to show

2C
E(m) > |n2|1 YUZY2 - 7((U;)4,(U;—1>2)"
D, . ne hooY
- 5((Ul +1)%, (U~ + 2)2) - E'("Z’ D2 -9 (4.3.15)

Thus E! are bounded below and it follows that there exist solutions to the coupled
variational problems. Such minimisers, which are critical points of £ | satisfy the
Euler-Lagrange equation of £ given by (4.3.4a) and (4.3.4b) respectively, while
{W,, Wa} exist from (4.3.3) and (4.3.2).

. 1,1 1,1 1,2 :
To show the uniqueness, let U U and U2 U272 be two solutions of
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Ph’At and set
( 2
Z,=Ut b U{lH’Z, Zy = U;“vl U;H’?. (4.3.16)

From (4.3.4a) we have, fori = 1,2,

" Un+1,i _ Un—l,i Un—}-l,i + U‘n—l,i
hr~1 1 h 1 1
(G* SA7 L™ + v (V( 5 ), V)

+(EOTT U —f )t =0, (43.17)

Subtracting these equations and noting (4.3.16) yields

1 5, Ry,
E(g Z1,m) +§(V21,V77)

+ (RO U = BT U, n—f )t =0, (4.3.18)

Taking n = Z, in (4.3.18) and noting (4.1.2) and (4.3.16), we have

1

2At|§hZI|f + %|Z1|f +(B(UL U — R (U UST), 2k =0,

Note that

Fl(U{l+1,1, U2n+l,1) _ Fl(UiIl+1,2’ U;l'f‘l,Q)

Un+1,1 Un—l,l B
L) S UM DO U 4 2) (U 4 12

U{l+1,2 n UII—I,Q
2

= ((U")* + D(U3 +1)*) Z,. (4.3.19)

= (U

- (U

)+ UM = DU + UF7 + 2) (03 + 1)

Hence

1 5 Y n n
E|ghzl|f + §|Zl|? + (UM + DUS + 1)) 21, Z,)" = 0,
1

= fy n n
5a7|9 2l + 5120+ (U + DUF + 1)?)| 2 = 0.
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It follows from the Poincaré inequality (3.1.3) that
|Z12 =0, ie Z =0.
In the same way, we are able to show that
Zs = 0.

Thus we have shown the uniqueness.
Now we deduce the stability bound (4.3.5). Choosing n = W}, for 7 = 1,2, in
(4.3.1a,4.3.1d) and n = UP*! — U ! in (4.3.1b, 4.3.1¢), we obtain

(U —Up W = 28 WP, (4.3.20)
(W UM = U = (F(UpH, Ugth), Uptt — uphye

1 -1
urtt+ur

+7(V( 5

), V(UM —UMY).  (4.3.21)
Adding (4.3.21) to (4.3.20) yields
2ALWPT + %(IU{‘“I? —|UPIR) = (FBUEL U, Up T - Ut (4.3.22)
Note that, for 7,5 =1, 2‘, ¢ # j, we obtain
(P2, @) = UF?)" = (U2, U)" = (U2, U2
= |UF~'OM; — U7 U, (4.3.23)
(U, urtt — U = (Up, urtY - (U up), (4.3.24)

and

(UM + Urt + 2)(Ur + )2 0Pt — Ut
n— n h n n h
= ((UF T+ 1% (UF + 1)%)" = (UF +1)%, (UF +1)7)" (4.3.25)
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Adding (4.3.22) for 1 = 1,2, and noting (4.3.23-4.3.25) we have

284(|WP R + (W3 + Z(UT R = J0r '+ (U5 = (U3 })
¥ S (URUF = (U7 U+ (U3 — (U3 U5 )
+ (U, up)t - (U o)+ (U, ot - (U op)”
+ DU + 12, (U + 1) = (O + )2, (U5 + 1))
+(UFT )5 U7 + 1) — (P + D5 U+ 1)) =0, (4.3.26)

Summing (4.3.26) for n =1,...,m, m < N and rearranging the terms we obtain
s, 206 S WL+ W) + LU+ 0 )
n=1
(R V(A Ve R (S VS VRV
b3 urope + jopope) |
< L(UIR + UL + VSR — |U3R) + 5 (IUPURE + USUR1R)

+ o)
—

D((U° + 1)*U} + )%, 1)" + (U + 1)2(U2 + 1), 1)"] < C,

where to obtain the last inequality we have noted the Young inequality (2.1.4),

(3.1.40), (4.3.1c), (4.3.1f), (3.1.14) and the condition on u¥ for i = 1,2, k =0, 1.
The proofs of (4.3.6) and (4.3.7) are analogues to those given for (4.2.8) and

(4.2.9) respectively. This ends the proof. i

4.4 Error bound

In this section we derive the error estimate between the semidiscrete approximations
ul defined by (3.2.1a—f) and their fully discrete approximation U defined by (4.2.1a-
f), Scheme 1. We introduce the following variables

t— ! " —t

Ui(t) == X Ul + A7 urt te [ttt n> 1, (4.4.1)
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and

Ut) :=Ur  te (@) n>1 (4.4.2)

)

Using this notation we can restate the problem (P™%?) as:
Find {U;,Us} € HY(0,T;S") x H'(0,T;S"), such that U;(0) = P"*u{ and for a.e.
€ (0,7, (Us(t),1) = (u?,1) and

(" + (VT V) + (Fy(Th, Ua), (1 — +)n (4.4.3)

Bt’n)
(gh "+ (VO V) + (Fa(01, T), (I = ) (4.4.4)

for all n € Sh.

Theorem 4.4.1 Let the assumptions of Theorem (4.2.1) hold. Then we have that
fori=1,2,

4

~ h
lluf — Uil Loogo,rs iy + u = Uil 2o, m ) < C[At + E] (4.4.5)

Proof. Let E; .= ul —U,;, E;:=u'—U;, E7 :=u—U"" €Vt forae. t € (0,7T).
Subtracting (4.4.3) and (4.4.4) from (3.2.5a) and (3.2.5b) respectively we have

h

8
(g" autl 1)

= (G

oU; o
5"+ (B0, 02) = () + 2D ), (1~ f )"

Setting n = E; and recalling that mass is conserved, i.e. Ei = 0, we obtain

Roul NN
(G 5  Ei) +v(VE;, VE;)
-~ BUI -~ -~ =
= (G"=, E)" + (F(U1, Us) — ¢(ul) + 2DV, (ul, ub), E)
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Subtracting (gh%%, E, ;), from both sides, simplifying and rearranging the terms we

have

BU

B~ (0% By + (0" B, D)

+ (Fi(Ul,Uz) — $(ul) + 2DV, (ul, ub), B)".

0
(0" = Bxyul) + 1Bt = (@5

Subtracting (Qh%Ei, U;) from both sides, simplifying, noting (3.2.47) and F; — E; =
IAJ,- — U; we have

Ui ~ -
(3t,1E,-)’1—(g”a E;) + (gh = B, Bi = E)

LB, + 1B = @

+ (Fi(T, O) — (ul) + 2D (ul, uf), By)".

Subtracting and adding (Q"%&,E) to the right hand side equations above and

simplifying we obtain

li 112 I Ahan Y Ahan =
2dt“Et||—h + 7| Eil} = [(g ot , E3) (G 8—:Ez)]

= oU; = OF; ~
+((6" - Qh)——at , Ei) + (gh—‘; — Ej)

+(E(ﬁ1,ﬁ2)—¢( )+2D\I’ (ul,u2) E)
Summing both sides for 2 = 1, 2, and rearranging the terms we obtain

(B2, + 1 Ball) + v (1Baff + 1 Elf)

= [(gh@ El)h - (gAhQ(ﬁ,El)]

~ oUu; « E =
H(@ - N2 By + (@2 B - By

F@22 By - @ %% By

+((@" g")@ B + (@22
+ (F1(U1, U2) — ¢(u}) + 2D\I’1(u1,u2),E1)

+ (R0, 0o) — ¢(ul) + 2Dy (ul, ult), By)",

DO =
D-lg_

B — Ej)

:.[1 +12+I3+I4+I5+I6, (446)
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where I; corresponds to the jth-line of the terms on the right hand side.

Now we bound each I; in turn. Using (3.1.2b), the Poincaré inequality (2.1.2),
and the Young inequality (2.1.4) we have, for j =1, 3,

I <Ch gh

1B < Chzug"

_ AU 1~
< ChIGh 2 —\E;|%. (4.4.
< Ch ”g |+ IR (a7

Notice that for ¢ € ("', "), using (4.4.1) and (4.4.2) we have

Ef -E=U-UM"

= t—At:—l " tnA_t tUi”_l B %:Uin—l
_ yn—1 _ n-1
= Att_lUin - Att v
=@ -ur)
= (t—t"" 1)85, (4.4.8)
and similarly
E—E=U-U"=(t- tn)am (4.4.9)

ot

Thus using the Cauchy-Schwarz inequality, (3.1.5), the Poincaré inequality (2.1.2),
the Young inequality (2.1.4), (3.1.5), and (4.1.5) we have, for j = 2,4,

OE;
5<|@ - M 1Bl+|@ ha 5 - E)
8
= @~ 1By +|(v6 02, VGHE, - B)
~ oU. 2 1 ~
< h Ak OVi L h_ hip B
<c|@ -5 +€|E,|1+c|g | 19"(E: - B,
av, 1 4 ~
<ont| | + 1B U= Till-n
U2 1, .
< Chf + Z'Eil% + i Ui = Uil|-n- (4.4.10)

Now we bound I5 and I5. Noting

(U — (ul)?, E))" <0,
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expanding F; and rearranging the terms we obtain

Is < (uf = UP™L B + D((UF + U 4+ 2)(Up ) + 1)% = 2(ul + 1)(ul + 1)2, By)"

= I5,1 + DI5,2, (4411)
and

Is < (uh = Up™' By)" + D((UF + Up™" + 2)(UF +1) — 2(ul + 1)(u +1)2), B)"

- 16,1 + DIG’Q. (4412)

Also, noting the Cauchy-Schwarz inequality, (3.1.2a), the Poincaré inequality (2.1.2),
the Young inequality (2.1.4), (4.4.8), (3.1.6), and reapplying the Poincaré inequality
(2.1.2) we obtain, for 7,7 = 1,2,

(E7,E)" <|E|n |Ejn
< C|E7 — E; + Eilo |E;lo
< C(|E] — Eilo + |Eilo) |Ejh

. 1 ~
< C|E] — Ei|s + C|E;|2 + ZlEjﬁ

our 2 1 ~
_ _ 4n—1 ] 12 - 12
= |t — )|+ CIER + 1B
our 2 2 ~
< C(AY)* || + ClE|?, + =|Ej)2 (4.4.13)
ot I €
Using the same method we obtain
~~ o~ oU™ |2 2 ~
(B, By) < ca0p| x| + CIBIZ, + 2 1B, (44.14)

where we have used (4.4.9) instead of (4.4.8) in our derivation. Using (4.4.13) we

have

I5; < C(At)zi%

2
1

2 -~
+Cl B2, + ElEl 5 (4.4.15)
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and

2

auy 2 A
—= . + C||Ea%), + E|E2|f (4.4.16)

< 2
Is; < C(AY) Er

Now by subtracting and adding (U} + U;~! +2)(ul + 1)2 to I5 and rearranging

the terms we can express [5 5 as

Iy = (UF +UP 4+ 2) (U2 +1)% — (ul + 1)), )"
+((Ur+ UM = 2ub)(uh + 1)% B
= (UF +UP 42U+l + 2) (U — ul), By)"
— ((By + ED) (@t + 1) Ey)"
< —((UP+ U+ 20U +ul + 2By, By — ((uk +1)2E;, E))"
< (U + UM+ 2) (U +ul + 2By, BY)
— (U + U 2) (U +uk + 2)Ey L )"
+(UF + Up 4 2) (U + Uk + 2)Ey B
+ (g + 0BT, By) — ((uf + 1)2E, Bn)"| + |((uf + 1)2E7, )|

/(1 — ) [(UF 4 UP 4 2) U+l + 2By By da
Q
+ (U +UP "+ 2)(Up~ + b + 2)E5 L)

+

/(I — 7 [(ul + 1)2Ey E\]dz| + | ((ub +1)°E7, Ey))|
Q

=Ison+ oo+ Isps + Is24, (4.4.17)

where Is 2 for k =1,...,4 corresponds to kth-term in the right hand side.
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Similarly we obtain

Iz = ((Up + Uy~ + 2)((UF + 1) = (u +1)?), By)"
+ (U5 4+ U3 — 2ul)(ul + 1)%, )"
= (U3 + U3~ +2)(U7 +uf + 2)(UF — ub), Bu)" = ((Ba + E3)(ul +1)%, By)"
< —(Up + U 4 2)(UP + ul + 20y, By)" — ((wh +1)%E;, EBy)"
<|((Up +Up~ + 2)(UT + ul + 2)EY, By)
— (U + Up=t + 2)(Ul +ul + 2) By, B,)"|
+ (U + Uz~ + 2)(UF +u} + 2)E\, By)|
+ | ((uh + 1)2E5, By) — ((ul + 1)2E5, B)"| + | ((u? + 1By, By)|

<

/(1 (U UF 42U + o+ 2B By de
0

+ (U + U3 +2)(UD + ul +2) By, B)|

+ /(I — ) ((uh +1)2Ey By)da| + | ((ub + 1)2E5 , B,)|
Q

=TIs91+ Iso2+ Is23+ Ig23. (4.4.18)

Now we bound each of the terms on the right hand side of (4.4.17) in turn.

Noting (3.1.43), (4.2.42), (3.2.8a), the Poincaré inequality (2.1.2), and the Young
inequality (2.1.4) we have

Iyon = | /Q(I A (U +UF 4 205+ ol +2) B By )]
- | /9(1 — ) [(UPUP 4 UP(ul + 2) + (UP L+ 2) U
+ (UP™ + 2)(us + 2))E;E1]dx’
< R (U7l 105+ U7 e + 20+ 7" + 20 103
+ 0P+ 20 g + 20 ) 1 B3 Il 1By
< Ch**B||E5 ||, ||EA|),
< C’h4_2d/3|El|1,

1 ~
< ChA28 4 -1y 2 (4.4.19)
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and

~ ~ 1 ~
Isos = /(1 — ") ((uj + 1)*Ey Ey)dz| < Ch*23 4 2By 2. (4.4.20)
0 €

Note that using the generalised Hélder inequality and (2.1.8) we have

(X1 X2 X3 X4, 1) < IxX1los [xalos [x3lo Ixalos < Cllxally lIxallr Ixalo lIxallr-
Hence noting (4.2.42), (3.2.8a), the Poincaré inequality (2.1.2) and (4.4.13) we obtain

Isop < (U7 + UP + 2)(UF ™" + ub + 2)E; , By)|
<O(((UDY + UP1)2 + (U™ + (uh)? + 4| B5 |, | Eu) |
< CUUTIR + 10T + UM + b l13) 1E5 fo |l + C1ES |o |Eno
< C|E5 o |Eyly
< C(|E5 = Exlo + |Ealo) |Eily

ouy ~ ~
< C'(C’(At)2 7;— 1 + |E2|0) |EY |y
oU; |2 2 ~
< C(At)? a—; +C B2, + Z| B3, (4.4.21)
1 €
and
oUT |2 2 ~
Iso4 < C(AL)? —ati o+ C||E|)? ), + E|EI|§. (4.4.22)
Using the same technique to bound I5s54, kK =1,...,4, we obtain
Loy < CH20 4 LBy 2, (4.4.23)
€
1 ~
Is23 < Chi=%/3 ¢ =~ )3, (4.4.24)
€
oUT |2 2 ~
Izz < C(AY?| 5| +CIB24 + 2| Bals, (4.4.25)
Uy |2 2 ~
Is24 < C(At)? 8—; HCIE?, + “|Eafr. (4.4.26)
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Substituting (4.4.7-4.4.10), (4.4.15-4.4.16), (4.4.19-4.4.26) into (4.4.6) we rewrite
(4.4.6) as

st (B2 + B2, + (1B + B
<on (P + |22
+ C(h* + (At) )(‘% 8—8[? 2) + @—+—66@(|E1If + | Ey?)
(|22 10 = Bl + | %22 10— Toll-a)

+ C(IEIZ, + | B2 4) + ChA7243.

Taking € = (16 +24D)/(37), simplifying and integrating over ¢ € (0,T) we have

1 T d 9 9 ¥ oo 9 =~ 9
5 [ GBI+ IENZ)ds + [ (1B + |Eal})ds
o dt 4

<ont [ (|52, HG"E’UZH )

+C(h4+(At)2)/0 (]% 6(;2 )ds

w0 [ (5L - |

v C [ BRI+ 1B s+ Crnt
0

N0z = Tl )ds

Using a Gronwall inequality, the Hélder inequality (2.1.7), the Poincaré inequality

(3.1.3) and rearranging the terms we have

T
(BT + 1E(T)I2,) + / (B2 + 1Bl ds
T . U, 12 ~ OUy |2
2 2 4 nOU1 ho2
IR, + I +cr [ (|07 +[6 52 )as

+C(h4+(At)2)/0 <’8U1 '6U2 )

re( [ 1) ([ - o) ”

OF, |2 172 - 1/2
+C(/ “ ) (/ 1y — Ulllihds> + C(T)h*%3 (4.4.27)
0
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On noting (4.4.1) and Theorem 4.2.1 we obtain

T\8U; 2 T\ur - U2 Mot ur-ur e
/0 ot L% _/0 ‘ At b= ;/m_l At L%
N tn
1 L C
— WZ[ U — U t2ds < N3 (4.4.28)
n=1 n—1

The equations (3.2.1c), (3.2.1f), (4.2.1c), (4.2.1f) and (4.4.1) imply that
IE: (0|24 = [luf(0) — UP|I%, = 0. (4.4.29)

Noting (3.1.5), (4.1.6) and (4.2.7) we obtain

T N n T
~ oU; (12 oU; |2
Ui—UiQd—__— " —t - d<At2/ hZtl d
/0 | I=nds ;/ﬂhl( )” 3t ||, 48 = (A9 o ’g at "
N tn n—1
~ Ur = 2
< 2 n_ hi~i 1
< C(AY) n§:1; /tn_l(t t)‘g | ds
N —~
=Caty |GhUr - UpY|; < oA, (4.4.30)
n=1

Using (4.4.1), (3.1.11), (3.1.5), (3.2.8b) and (4.4.30) we obtain
T 2 T auh 9 T
< )
[ Ve s I Laeve ]
T 2 T ur —~uyrt 2
< hiZi ¢ < C. 4.
o [ e [T <o wan

Hence noting (3.1.11), and (4.4.28-4.4.31) yields the desired result (4.4.5). O

aE, Uln — Uin*l HZ
ot At —h

oult
ot

Now we state a theorem to estimate the difference between the solutions u;
of the coupled pair of Cahn-Hilliard equations (2.2.1a—f) and their fully discrete
approximation U defined by (4.2.1a-f):

Theorem 4.4.2 Let the assumptions of Theorem (4.2.1) hold. Then we have that
fori=1,2,

4

~ h
”U,‘ — Ui”Loo(O’T;Hl(Q)I) —+ ”Ul — Ui|lL2(0,T;H1(Q)) < C[At + h2 + _A_t] (4432)
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Proof. The result follows from combining (3.3.1) and (4.4.5). O

Corollary 4.4.3 Let the assumptions of Theorem 4.4.2 hold and At = O(h?).
Then this gives

lus = Uil Lo o.7m1 (2yy + 14s — Uil 20,111 00)) < Ch?,

which is optimal in H'(Q).

Proof. Tt follows from Theorem 4.4.2. O



Chapter 5

Numerical Experiments

In this chapter we discuss two practical algorithms (implicit and explicit method)
that are used to solve an algebraic system arising from the problem discussed in
this thesis. We discuss the convergence theory for the implicit scheme used to solve
the system arising from Scheme 1. We also discuss some computational results for
one and two dimensions. We used the implicit scheme for all simulations in this
chapter. We have made a comparison with Scheme 2 and the results are similar.
Before showing some computational results, we discuss the linear stability solution

for the problem.

5.1 Practical Algorithms

5.1.1 Iterative Method for Scheme 1

Let us expand U; and W;, 7 = 1, 2, in terms of the standard nodal basis functions of

the finite element space S*, that is,

J J

Up=> Urm, Wp=> Wkm, (5.1.1a)
=1 1=1
J J

Up=> Upm, W§=> Wgm, (5.1.1b)
i=1 1=1

where J be the number of node points.

Given y € S := {y € R : 1My = 0}. The existence of G" defines, implicitly,
104
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the invertible linear transformation 7': S +— S by

T(y) =y,
where vy is the solution of

Ky = My,
1'My =0,
where 1 is a vector with components 1, M is a mass matrix and K is a stiffness
matrix. That is M 'KT(y) = y and T(M~'Ky) = y. Also note that 1'MT (y) =
1'My = 0.
Now substituting (5.1.1a-b) into (4.2.6a) and noting (4.2.5) we have for a jth

element of the basis function {7;} the following:

an s~ U — UL S
(g Z[’Tt’}m,m) +7(;U{‘,ivm,vm)

i=1

J
1
+ Z((% nj)hFl(Ulyi’ Us,i) — ﬁ(ﬂia 1)hF1(U1,i, Us,i)(1, nj)h) =0,

=1

which is equivalent to
Un U T TL n Tl n
Un 1
<=>T( >+7M ‘KUY + F(UT,U3) — A1 =0,
( ) M7'KM'KUY) + R (U}, Uy) — AT1 =0, (5.1.2a)
and similarly

n _ Un—l .
T<U2T2) +yT(M KM KU3) + Fp(UT,U3) = \31 =0,  (5.1.2b)
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where for 1 =1, 2,

v VMEUL UG
’ i

(5.1.2¢)

Our aim is to solve the algebraic nonlinear systems (5.1.2a-b). To accomplish

this let us define the operators A,,A>, B; and B, such that

Al : (a'1 b)J = RJ 'Al(y) - Fl (y7 y2)7

Az (a,b)! = R’ A2(y) = F2(y1,9),

B St S Bulyy) = T(Logi) + 9T (M KM~ Kyy),

By : St S Balwa) = T(Lmgi= ) + 9T (M KM Ky,),
where

Sti={y, R : 1'My, = (ulll,o’ )™,

Sho={y,eR : 1'My, = (u’io, 1",
so that (5.1.2a-b) can be written as:

BQ(U?) + .AQ(U;L) - /\31 = 0. (513b)

To solve the systems (5.1.3a-b) we adapt the algorithm of Lions and Meisier [28],
who consider the case where A; and B; are two general maximal monotone operators
in the absence of Lagrange multipliers. Copetti and Elliott [16] have adapted this
algorithm where there is single Lagrange multiplier present. Barrett and Blowey [3]
have also adapted this algorithm when considering the finite element approximation
of a model for the phase separation of a multi-component alloy with non-smooth
free energy, where there are two Lagrange multipliers present.

Multiplying both sides of (5.1.3a) with x4 > 0, adding U7 to both sides, and
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rearranging the terms we have
U + pA(UT) =UT — uB (UT) + pAT1. (5.1.4a)
In the same way from (5.1.3b) we obtain
U + pA(U3) = Uy — uBay(Uy) + uAsl. (5.1.4b)
Now define
Z7 =U7T — uBi(UT) + uAll, (5.1.5a)
Z5 =Uy — uBs(U3) + pAsl, (5.1.5b)
X7 =2U7 - Z7 =UT + puBy (UT) — pATl, (5.1.5¢)
X5 =2U% — Z5 = UL + puBBy(U3) — pA3l. (5.1.5d)
We perform the iteration as follows:
Find U™ such that
nj+3 n,j+1 n,j . -
Uy" 2 (z) + (U7 2 () = ZY) for i=1,..., 7, (5.1.6a)
and set
. 1 .
b SEARED) J Iy (5.1.6b)
Then find U?/*! and U7 such that
UP 4+ uB (U — pAp e = Xp7+, (5.1.6¢)
where
‘ 1 :
n,j+1 0,h n,j+1
At — m—‘ﬂﬁ((ul 1) — 1M XY, (5.1.6d)
and set
ZWH = Uit - x it (5.1.6e)
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nj+1
Next find U’ "% such that
n,j+3i n,j+1 n.q .
UL 2 (@) + p AUy 2 (0) = 257 for i=1,...,, (5.1.7a)
and set
. 1 .
Xt = oty _ gnd, (5.1.7b)
Finally, find U537 such that
UT 4 pBo (U7 — g7t = X537+, (5.1.7¢)
where
. 1 o
Aot = UE! ((w® )" — 1M XM, (5.1.7d)
and set
Zpith = oupitt _ X (5.1.7¢)

Notice that {U?7} and {U%7} are independent sequences.

Lemma 5.1.1 The operators A; are maximal monotone and B; are coercive.

Proof. We show monotonicity of .A; by showing the monotonicity of F; with y; fixed,

1 # j. Consider Fi, i.e.

Py = =" + Dy + 30 + 2) (g + 1)

=y + Dy(ys + 1) + 2D(yz + 1)? + (D(yz + 1)? — 1)yi" ™V

=y’ +ay+o,
where

C1 = D(yg -+ 1)2 2 0,

¢ = 2D(y; + 1)2 + (D(yz + 1) = 1)y{" V.
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Now without loss of generality let 0 < a < b, then

Fi(a,y2) =’ + cra + ¢, (5.1.8)

Fi(b,ys) = b+ cib+cy. (5.1.9)

Subtracting (5.1.8) from (5.1.9) we have Fi(b, y9) > Fi(a, y2). Similarly we can show
that Fy(y1,b) > Fa(y1,a). Since the range of I + uA; € R/, then A; is maximal (see
Zeidler [36] page 843).

To show B; are coercive, given v;, w; € SP, define (v;, w;) = w!Mwv;, where (-, -)

is an inner product on R’. Then, for ¢ fixed,

wz) Bz( ) - 'Ui)
- T(“’l ) MK, - T(2 YT ik
= +7 w; — (T) -7 Vi, Wi — U;
_ Wi — 1 L= ), w; — v
- (T( At +~yM K (w; — v;), w; vz)
- (T(wl_”’ ) + (VMUK (w; — ), w; — v;)
1
E ;= 0) MT (w; — v;) + y(w; — v;) K (w; — vy). (5.1.10)

Define x; = ijl w; jn; and v; = Zizl v; kM and dropping the index 7, we have
7Ix = vl = y(w - v)'K(w - v),
and on noting x —v € S

Aitlé’l(x — )} = (VG (x - v), VG (x - v))

zit(gh(x v),(x —v))"
1 2 S '
= (gh ;(wj = V)M, ;(wk - Uk)nk)

= —Al—t(w —v)'MT(w — v).
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Hence we can rewrite (5.1.10) as

(Bw) - Bw), w —v) = 118" (x ~ )l +lx — v > 7lx — vl
Noting the Poincaré inequality (3.1.3), we have
(B(w) — B(v),w —v) > Clx — v|; > Clw — v)!M(w — v),
and therefore B; are coercive. ad

i1 i+l
To see how we can compute U’f’”"’ from (5.1.6a), expand AlU;l’ﬁ"’ about the

1th component (¢ = 1,...,J) as follows:

AU (2) =R, (U2 (), U3 H(x))
(U () — U ()
+ DU () + U (@) + 2) (U () + 1)

So the equation (5.1.6a) can be written as

n,J 1 n,J L n—
U, aE (z;) + N((Ul ]+2)3($i) - U ()

n.j4+1L n,J
+ DU (@) + UG (@) + 2) (U3 () +1)%) = 27,
i1
Thus to find U?’H? (z;), (i =1,...,J,) we solve the following equation

_— it
(14+uDUE (@) + DU T2 (2;) + w(UT72)3 (22)
= ZV] + pU () — pD(UT () + 2) (U () + 1) (5.1.11a)

Similarly, we find U;’ﬂ%(zi), (i=1,...,J,) from

(14+uD(U (&) + 1)UL (@) + pUF ) ()
= Z}3 4 pUL @) — pD(UL (&) + 2) (U () + 1)7. (5.1.11b)
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Now let us discuss how to obtain U™ *! from (5.1.6¢). Since 0 is a simple
1

eigenvalue of K with eigenvector 1, solving (5.1.6¢) is equivalent to:

KXPH = KUY 4 uKB (U
lez,j+1 . U?—l
At

U;l’j+1 _ ?—1 -
"1 n)]
= ) + oy KMTIKU™

= KUY + uK (T( )+ fyM‘lKU’f’j“)

= KU+ M (
which after rearranging gives
(ALK + uM + AtuyKM P K)UP T = uMUT ™! + AtK X7, (5.1.12a)
Similarly solving the equation (5.1.7¢) is equivalent to
(AtK + pM 4+ AtpyKMYKYUPT = uMUP™ + AtK X7t (5.1.12b)

The matrix AtK + uM + AtpuyK M~ K is symmetric positive definite, therefore the

system has a unique solution.

Theorem 5.1.2 For all x € Rt and {U}°, AP°, UZ°, \3°} € S x R x Sh xR
, the sequences {U7}7};50 and {U}7};50 generated by algorithms (5.1.6a~d) and
(5.1.7a-d) converge to the unique solution of (5.1.3a) and (5.1.3b) respectively.

Proof. The proof is the same as that of Copetti and Elliott [16] and for completeness
we repeat their proof. Since the algorithms are independent and similar we prove
both of them at the same time. For notational convenience, we drop the depen-

dence on the time level index n and component ¢, throughout this proof. We define
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(compare with (5.1.5a—d))

X =U + uB(U) — pA1, (5.1.13)
Z =U + pA(U), (5.1.14)
a = A(U), (5.1.15)
X7 =U7 4+ puB(U?) — pX1, (5.1.16)
-2 * X (5.1.17)
a’ :E-%m. (5.1.18)

Adding (5.1.13) and (5.1.14), noting (5.1.3a-b), and rearranging the terms we have

X+2Z
U= ; : (5.1.19)

Subtracting (5.1.13) from (5.1.14), noting
AU) = A1 - B(U),

and simplifying we obtain
Z-X

2p
On substituting (5.1.6b) into (5.1.6¢) and (5.1.7b) into (5.1.7¢), noting (5.1.14) and
(5.1.16), we have

a=

X = (I — pA) U,

Hence noting (5.1.6a) and (5.1.7a), we can rewrite the iteration (5.1.6a-d) and
(5.1.7a—d) as

X = (I — p AT + pA)~' 27
= (21 — (I + pA)(I + pA) 127,

which implies
Xitl _ 7

Tiz) = = Z,
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where J4 = (I + pA)~!. Therefore

X = (I pA) T4 2)

(X2

B X+ _ y 4 " Xj+1 7
= 2 H 2 ’

which implies

7z _ X+l A(Xj+1 _ Zj)

i_ 4 A
@ 2

2p

The monotonicity of B and the fact that (1,U? — U ) = 0 yields

0 < (B(U?) - B(U),U? - U)

| - XU
p p

(X'-X)-(U-U), U -U) +(N¥ - ))(1,U’ -U)

—,\1,UJ'—U>

N

= —(IX? - X|?- |2 - Z]), (5.1.20)

where we have noted (5.1.17) and (5.1.19).

From the monotonicity of A, we obtain

) J+1 )
OS (aJ_a,(‘X—2+Z)__.U>
((Z+X) (Z2-X) (XM +Z) (Z+X)
B 24 2u 2 2
1

= 1,((Z = 2) - (X7 = X), (7' - 2) + (X7 - X))

1 . .
= @(|zf —- ZP - | X7 - XP). (5.1.21)
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From (5.1.20) and (5.1.21) we conclude that
(X7 - X< |27 - Z) < | X7 - X

{|X’7 — X|?} is a decreasing sequence that is bounded below so | X’ — X|?
converges. Now, adding (5.1.20) and (5.1.21), we have

0<(B{U?) -BU),U’ -U) + (aj —a, (XJHQ—“LZ]) — U)

< (%0 - X - X7 - XP),

which tends to zero as j — oo. On noting (5.1.21) this shows that

(B(UY) — BU),U’ —~U) 50 as j— oo.

Since B is coercive, we conclude that U’ — U as j — oo. m|

5.1.2 Scheme 2

We now show that Scheme 2 is linear. On substituting (5.1.1a-b) into (4.3.1a-f)
and taking n =mn; for y = 1,...,J we have

J

Z m ) (U = URY) = —2AtZ Vi, V)W, (5.1.22a)
i=1 i=1

J J ’)’ J

Z (i, )" Wi = (mi, )"y (URF, U + 52 Vi, V) (URH + U7,
i=1 i=1 i=1

(5.1.22b)

and

J J
> () UsH = Usih) = =24t Y (Vmi, Vi)W, (5.1.22¢)
i=1 i=1
J J ’)/ J
Z(’?i> nj)hW£1 = 2(771, Uj)'LF:z(Uﬁjl, U;:l 5 Z V77u VTI] U;;‘-l + U;l 1)7

i=1 i=1

(5.1.22d)
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where

n+1 n—1
uri + UL

R U = (U (5

) = Uri + DU + U + 2)(UF + 1),
(5.1.22¢)
Uyt + upt

UL, UR) = (U3)H (22—

) - Ui+ DUZH + Uz + 2)(UT, + 1)%
(5.1.22f)

The equations (5.1.22a—f) lead to the following systems:

MU —UT Y = —2AtKW?7

MW} = MF,\(UTY, U3 + 2K(U + U,

and

MU - U Y) = —2AtKW?
MW} = MF(UTH, U + 2K (U3 + U3,

where

Uy ={Ur}, Wi={Wp},
Uy ={Uz:}, Wi ={W3}
{F(UT, U = RO, U3,
{F (U, U} = B(ULH, U

Hence the algebraic problem to be solved is

MU - U™ = 2AtKF(UT, U — yAtKM ™ KU + U,
MUY — UMY = 2AtKF(UTH  UTYY) — yAtKM KUY + USY.
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This system is equivalent to

(M +yAtKM™T K + AtKILMYUTY = MUY ' — yAtKM'KUT™ — AtKb',
(M +yAtKM7'K + AtKLHUSY = MU' — yAtKM KU — AtKb,

where L7 is a diagonal J x J matrix and

= (U14)? +2D(U3; + 1)%,

= (U, ,i)2 +2D(UT; + 1)?,
{bl}z (URPUR Y — 207, + 2D(UFT + 2)(Ug, +1)?,
{6} = (U3,)°U3; " — 2U3; + 2D(Ug; + 2)(UF, + 1),

Note that M + yAtKM™'K + KL’ is a banded symmetric positive definite
matrix, hence for given UY, U}, U}, Uj we can solve this explicitly; for the one

dimensional case we solve the systems using Cholesky decomposition.

5.2 Linear Stability Analysis

5.2.1 One Dimensional Case

We consider a coupled pair of Cahn-Hilliard Equations:
Find {ui(z,t), us(z,t)} € R x R such that

—a—(;LTl = Arwl iIl Qat > 0> (521&)
0

CZ = Awp in Q,t>0, (5.2.1b)
ot

w = _7Aul + (}5('&1) + 2D‘I’1(U1, UQ), (5.2.1(})

wy = —yAup + d(uz) + 2DV,(uy, up), (5.2.1d)
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where

PO = 30315 80) =9, (5:2.1¢)
Uy(r,8) = (r+1)(s + 1)%, (5.2.1f)
Wy(r,s) = (s+ 1)(r +1)% (5.2.1g)

8u1 a’lLQ _8w1 . 8’1U2 _
- By 90— oy =0 on 09, (5.2.1h)

uy(z,0) = ud(z), wuo(z,0) =ud(z) on . (5.2.11)

For the one-dimensional problem with 2 = (0, 1), we assume the solution of the

linearised problem is of the form

ui (z, 1) = my + &, cos(nmrz) Fy(t), (5.2.2a)

uz (7, ) = My + €2 cos(nmz) Fy(t). (5.2.2b)
The linear Taylor expansion of ¢’ about w;(z,t) = m; for i = 1,2, is given by

Y (ui(z,t)) = ' (my) + 9" (mg) (us — my).

Noting
P =r02-1), W)= -1,
we have
Y (uy(z,t)) =~ m‘;‘ —my + (3m? — D) (u; — my),
- mi” —m; + (Bmf — 1)¢! cos(nmz) Fy(t), (5.2.3a)
and

P (ug(z, 1)) =~ m3 — mg + (3m2 — 1)(ugy — my),

=m3 — my + (3m3 — 1)&% cos(nmz) Fa(t). (5.2.3b)
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The expansion of ¥, for ¢ = 1,2, about u;(z,t) = m; and uy(z,t) = mg is given by

U, (uy(z, 1), ua(z, 1)) = Vi(my, ma) + ¥, 4, (my, ma) (ug — my)

+ \Iji,ug (ml, mg)(u2 - mg).

Noting
\Ill('r7 s) = \I/(’T’, S) = (7' + 1)(5 + 1)2’
5?;‘1’1(7’, S) = \Ijr(r: 5) = (S + 1)2’
%\PI(T, 8) = \Ils(T’ 3) = 2(T + 1)(8 + 1)’
Ty(r,s) = U(s,r) = (s + 1)(r +1)%,
%\112(7‘, s)=V,(s,7) =2(r +1)(s + 1),
%\IIQ(T, S) = \IIS(S,T) = (8 + 1)2’
we have

W) (uy(2,1), ua(x, 1)) = (my + 1) (mg + 1) + (ma + 1)*(uy — my)
+ 2(m1 + 1)(7712 + 1)(U2 — mg),
= (mq1 + 1)(my + 1) + (my + 1)%€} cos(nmz) Fy(t)

+ 2(my + 1)(my + 1)€2 cos(nmz) Fy(t), (5.2.4a)
and

Uy (uy (T, 1), us(z, ) = (Mg + 1) (my + 1) + (my + 1)%(ug — my)
+ 2(777,1 + 1)(7712 + 1)(UQ — mz),
= (mg + 1)(my + 1)® + (my + 1)%€% cos(nnz) Fy(t)

+ 2(my + 1)(my + 1)€} cos(nmz) Fy (t). (5.2.4b)

On substituting (5.2.1c) into (5.2.1a) and (5.2.1d) into (5.2.1b), noting (5.2.3a-
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5.2.4b) and simplifying, we see that the problem reduces to a linear system of ordi-

nary differential equations given by

& dFC}t(t) = — y(nm)'€) Fy(t) - ((3m§ —1)(n7)? + 2D(ma + 1)2(m)2)§;pl(t)
— 4D(my + 1) (ma + 1)(nm)*E Fa (1), (5.2.5)
and
5dF§t(t) = — y(nm)'EEF(t) — ((3mg —1)(n7)% + 2D(my + 1)2(mr)2)g,3p2(t)

—4D(my + 1)(mg + 1) (nm)26L Fi (1) (5.2.5b)
Here we have noted for ¢+ = 1,2, that

A(—7Auw;) = — y(nm)*€ cos(nmz) Fi(t),
du;(t) dF;(t)
dt dt ’
Ad(us) = (1 - 3md)EL (nm)? cos(nra) Fi(t),

= £ cos(nwz)

and

AV (uy,up) = — (mg + 1)%EL (nm)? cos(nrz) Fy ()
— 2(my + 1)(mg + 1)&2(nm)? cos(nnz) Fy(t),
AWy(uy,up) = — (my + 1)%€2(nm)? cos(nmz) Fy(t)

— 2(my + 1)(my + 1)€} (nm)? cos(nmz) Fy (t).

In terms of vectors we can express (5.2.5a-b) as

dl;—t(t) = (—ynir*l — n?r?A)F (1), (5.2.6)
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where

F(t) = [&R(®), &R, (5.2.7)
A= (a;) for 4,j=1,2, (5.2.8)
an = (3m? — 1) +2D(my + 1),
as1 = 4D(my + 1)(my + 1),
a2 = 4D(my + 1)(my + 1),

A2 — (Bmg - 1) + 2D(m1 + 1)2
Thus the solution of (5.2.6) is given by

F(t) = exp((—yn'n*I — n*x*A)t)F(0). (5.2.9)

To see interesting behaviour, i.e. growth of one or more of the component u,
and ug, as t increases, we need at least one of the eigenvalues of A to be smaller
than —yn27r? < 0. A simple calculation reveals that the eigenvalues of the matrix

A are

3 3 1
M o=-mi+-mi+Dmi+mi+2m;+2my+2) -1+ '2—\/Q(7711,m2), (5.2.10a)

2 2
3 2 3 2 2 2 1
where

Q(mi, m2) = D*(4m] + 16m? + 56mim? + 112mim, + 80m? + 112mm]
+ 224myms + 128m, + 4mj + 16m3 + 80m; + 128m; + 64)
+ D( — 12m{ — 24m} + 24mim3 + 24m3imy + 24mym3

— 12mj — 24m}) + 9m} — 18mim3 + 9Im;. (5.2.10c)

Since A is symmetric we have real eigenvalues, i.e. @Q(mi,mg) > 0. By noting

the symmetry of the eigenvalues it is obvious that for D > 0.25, we have A\; > 0.
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Thus we need only seek where A, is negative and less than —vyn?w?. To see where
Ag < 0, for D = 0.5, we plot the curve of the projection onto the m,—m, plane of the
intersection of the surface Ay(m;, my) with the plane m;—ms, which is equivalent to

plotting Det(A) = A; X A, = 0. The result is shown in Figure 5.1.

(a) (b)
2 2
1 1
m,0 my01
-1 -1
-2 2
-2 -1 0 1 2 -2 -1 0 1 2

m, m,

Figure 5.1: (a) The region A indicates where Ay < 0, i.e. where we expect growth
to occur; (b) The contour plot of region A and its boundary.

For the case m; = my =: m, the eigenvalues of A are

A = (3+6D)m*+12Dm + (6D — 1), (5.2.11a)
Ay = (3—2D)m*—4Dm — (2D +1). (5.2.11b)

Setting A; = 0, ¢ = 1, 2, and solving for m we obtain

~12D+y12=8D
ettin =
6+ 12D Y & =1

m= (5.2.12)
4D £+/12+4 16D

6 —4D

by setting A, = 0.

This shows that for D > 0.25, A\; > 0. Thus for the case we consider, i.e. D = 0.5,

the growth may occur if 2m? — 2m — 2 < —yn2#? or

1 1 1 1
m € (— — =v/b = 2yn2n?, 5 + 3 5 — 27n27r2>. (5.2.13)

2 2
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For n =1, from (5.2.2a-b), we have

uy(z,t) = m + cos(mz)ELFi(t), (5.2.14a)
uy(x,t) = m + cos(mz)ELFy(t). (5.2.14b)

Using the formula given by Bernstein and So in {7], we can write

exp (T — 2 AJt) = s(exp(ert) + exp(cat))  3(exp(eit) — exp(cyt)) |
1(exp(c1t) — exp(cat))  1(exp(cit) + exp(cat))
(5.2.15)
where ¢; = —ym* — w2);, 1 = 1, 2. Hence noting (5.2.9) and (5.2.15), we can rewrite
(5.2.14a-b) as
ur(z,t) =m+ %cos(mc) (F1(0)[exp(cit) + exp(cat))
+ F3(0)[exp(cit) — exp(cat)]), (5.2.16a)
ug(z,t) = m+ %cos(m:)( 1(0)[exp(cit) — exp(cat)]
+ F3(0)[exp(cit) + exp(cat)]). (5.2.16b)

5.3 Numerical Simulations

5.3.1 One Dimensional Case

Numerical simulations in one space dimension were performed with Q2 = (0,1). In
all simulations we take N = 101, v = 0.0025, Z% = Z) = 0.51 and D = 0.5.

To choose p we ran one experiment with u € (0,2). We varied the initial con-
ditions and At, and set T = 10, TOL = 1 x 107!°, The value that required on
average fewer iterations, as seen in Table 5.1, is 4 = 0.1. We used this value in
all our simulations. We cannot say this value is the best for all the cases since u
depends on N.

Given initial guesses U} and UY, to solve (5.1.11a-b) for each node the Newton
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UY| U?| p | average iteration | min | max At
0.00 | 0.00|0.10 15.081 13| 178 | 0.001
0.25 | 0.50 | 0.40 4.197 2 19 | 0.001
0.251-0.50 ] 0.10 6.246 1| 284 | 0.001
0.75] 0.7510.20 5.286 ) 15 | 0.001

-0.75 | -0.75 { 0.60 1.241 1 91 0.001
-0.50 { 0.50{ 0.10 4.849 1 81 | 0.001
0.50 | 0.50] 0.10 8.792 8 49 | 0.001
-0.50 | -0.50 | 0.10 20.616 8| 104 | 0.001
0.50 | -0.50 | 0.10 4.757 1 83 | 0.001
0.00 | 0.00 ] 0.10 18.118 14 | 178 | 0.0005
0.00{ 0.001}0.10 20.134 4 178 | 0.00025

Table 5.1: Different initial guesses to choose better u.

method was used. We set its initial guess based on the value of the right hand side
of (5.1.11a-b), say y. If y > 0, we set the initial guess for the Newton method y+0.1,
otherwise y — 0.1. Using this value as an initial guess, we found that for each node
the Newton method never failed to converge to the solution of (5.1.11a-b). We used
TOL x 107! as a tolerance to stop the iteration in the Newton method.

To find the unique solution of the systems (5.1.12a-b) we used Cholesky decom-
position, i.e. exact for the tolerance provided. We moved to the next time level if
102 @) = U (@)oo < TOL.

Note that in all simulations the iterative method we used gave solutions that

conserved mass.

A comparison
We consider the problem (5.2.1a-h) with the following initial conditions

uy(z,0) = ud(x) =(; cos(mx), (5.3.1a)

uy(z, 0) = ud(z) =(; cos(nx), (5.3.1b)

where (j, (o are small.

Comparing to (5.2.2a-b), and setting m; = my = 0, £} = (; and €2 = (, we have
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F1(0) =1, and F5(0) = 1.

Hence from (5.2.16a-b) the solution of the linearised problem is

uy(z, t) -——% cos(mz) ([C1 + Co] explert) + [ — Co) exp(eat)) (5.3.2a)
uy(x, ) =% cos(mx) ([C1 + Go) exp(ert) + [Co — (1] exp(eat)), (5.3.2b)
where ¢; = —yr? — 272 and ¢; = —y7* + 272, If {; = (5, we have

u;i(z,t) = (; cos(mz) exp(cit),

and it follows that u;, 7 = 1,2, decays to zero as t increases. If {; # (5, the solution

will grow as t increases provided that v < 2/7m2. For example, for {; = (»/2, we have

u(z,t) :%(1 cos(mz) (3exp(et) — exp(eat)),

1
uz(z,1) :§C1 cos(mz) (3exp(ait) + exp(cat)),
while for {; = 2(,, we have

uy(z,t) :3(1 cos(mx) (3exp(eit) + exp(eat)),

ug(z, 1) :igl cos(mz) (3exp(cit) — exp(eat)) .

For the first example, we performed a simulation where {; = (3 = 0.001, with
TOL =1 x107% X, = 2.0 and X\, = —2.0. Here we see that the maximum errors
(see Figure 5.2.(a)) decrease linearly as the time-steps are halved, which is what we
expect from the error analysis. The solutions are also in agreement with what we
expect, i.e. u;, 1 = 1,2, decays to zero as t increases (see Figure 5.2.(b)). We also
did simulations with TOL = 1 x 107!°. The results are the same.

In the second example, simulations were performed by setting (o = 0.001, ¢; =
2(,, and (; = 0.002, {; = (»/2 respectively with TOL = 1 x 10~°. Their maximum

errors are depicted in Figures 5.3.(a) and 5.4.(a) respectively. We notice that the
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— dt=0.002

— — dt=0.001

v dt=0.0005
151 — dt=0.00025
.= dt=0.000125
dt=0.0000625

0.5

0.04 0.05

0 001 0.02 003 0.04 0.05 0 0.01 0.02 0.03

Figure 5.2: (a) Maximum Errors of u;, i = 1,2, for {; = ¢, = 0.001 with u} =
¢icos(mz) and ud = (pcos(nz); (b) Plot of the numerical solution and the linear
stability analysis solution of u;,7 = 1,2, for {; = {; = 0.001 at ¢t = 0.05,0.08,0.1.
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] y (a) . u
x10° ! x10° 2
61— dt=0.002 1 5}
— - dt=0.001
5t dt=0.0005 1
— dt=0.00025 4t
4t| =" dt=0.000125 ) ,
—— dt=0.0000625 / 3l ]

0.01 002 003 004 005 001 002 003 004 0.05

t 1
(b)
u _ u
x107° 1 x 107 2
2 2
1 1} ]
0 0 \
_1 o __1 4
_2 2 " _2 "
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x 1072 x 107°
2 , ' . 2
1 1}
-1 ~1f
_D . N N _D . s
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x107° x107°
5 . 5
0 ol
-5 -5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.3: (a) Maximum Errors of u;, 1 = 1,2, for ¢; = 0.002, {; = 0.001, with
u = ¢ cos(mz) and u) = (ycos(rz); (b) Plot of the numerical solution and the
linear stability analysis solution of u;,: = 1,2, for {; = 0.002, {; = 0.001 at t =
0.01,0.05,0.08.



5.3. Numerical Simulations 127
u (a) u
x10”° 1 x10° 2
2 T 7
— dt=0.002
— — dt=0.001 f 6
oo dt=0.0005 f
1.51| — dt=0.00025 A
= dt=0.000125 ;
== dt=0.0000625 /
1 /
/.
/
7/
2
0.5 g
e
0 " N - = = e it / . s
0 0.01 0.02 0.03 0.04 0.05 0 0.01 002 0.03 0.04 0.05
t t
(b)
x 107 R x 107 K
2 2

-5 ‘ - ' -5 -
0 02 04 06 08 1 0o 02 04 06 08 1
0.01 0.01

0.005

—0.005}

0005

-0.005

-0.01 -0.01
0 (0]

Figure 5.4: (a) Maximum Errors of u;, 7 = 1,2, for {; = 0.001, ¢, = 0.002, with
u) = ¢ cos(mz) and ud = (;cos(nz); (b) Plot of the numerical solution and the
linear stability analysis solution of u;,7 = 1,2, for {; = 0.001, {;, = 0.002 at t =
0.05,0.08,0.1.
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x 10 s x107° E
7 - : : - 5
— dt=0.002
6| — - dt=0.001
£o+0 dt=0.0005
5| — dt=0.00025
+=+ dt=0.000125
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Figure 5.5: (a) Maximum Errors of u;, i = 1,2, for {; = 0.0002, {; = 0.0001,
with 4 = (jcos(mz) and u) = (s cos(mz); (b) Plot of the numerical solution and
the linear stability analysis solution of u;,2 = 1,2, for (; = 0.0002, {, = 0.0001 at
t = 0.05,0.08,0.1.
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Figure 5.6: (a) Maximum Errors of u;, ¢ = 1,2, for ¢, = 0.0001, {; = 0.0002,
with ud = ¢; cos(rz) and u3 = {;cos(nz); (b) Plot of the numerical solution and
the linear stability analysis solution of u;,7 = 1,2, for {; = 0.0001, ¢, = 0.0002 at
t =0.05,0.08,0.1.
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errors do not decrease linearly as the time-steps are halved. However the behaviours
of the approximations are quite good in following the linear stability analysis solution
as can be seen in Figures 5.3.(b) and 5.4.(b) respectively. This ensures that our
approximations are good enough.

We also did several simulations by taking ¢, = 0.0001, ¢, = 2¢; and ¢, = 0.0002,
(i = (2/2. In the first run we took TOL = 1 x 107°. We could not see the
linear convergence rate of the maximum errors using these parameters. Then we
reduced the tolerance of the method by a factor of 10 until we could see the linear
convergence rate of the maximum errors. The maximum errors for {; = 0.0001,
Ci = 2(, and (& = 0.0002, {; = (»/2 respectively with TOL = 1 x 10~ are depicted
respectively in Figures 5.5.(a) and 5.6.(a) . We notice that the maximum errors of
the approximations are almost linear as the time-steps are halved for (; = 0.0001
and ¢; = 2(;. However this is not the case for ( = 0.0002 and (; = (3/2. We believe
this is because the scheme is not symmetric. The behaviour of these solutions can be
seen in Figures 5.5.(b) and 5.6.(b) respectively. These figures are what we expect,

i.e. u;, 1 = 1,2, grow as ¢t increases.

Simulations with no exact solutions

For simulations in this section we use as initial conditions
U2 =U™+¢(x), (5.3.3)

where ¢(z) is a random perturbation of the state U = 0 with values distributed
uniformly between —0.05 and +0.05. In all simulations we set TOL = 1x 107!° and
At = 0.001. We ran several simulations with different initial guesses, although some
of them, which are located in the top right hand quadrant and its border, do not
have physical meaning according to the model as mention in Chapter 1. Our aim is
to see whether the results are in agreement with the stability region we obtained in
Section 5.2. For each figure, the last plot indicates that the final numerical solution
plotted is stationary, that is U does not change from one time level to the next.

Figure 5.8.(a)—(c) show the simulations with initial guesses A,C and F respec-
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Figure 5.7: The symbol e indicates the values of U™ in the initial guesses for the
simulations we performed in this section.
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tively. As can be seen in Figure 5.7, these initial guesses are located outside the
region A of the stability region. Here we have stationary solutions, which match
the stability region condition (see Figure 5.1).

The rest of the initial guesses are located inside the A-area of the stability region.
After computing each of their eigenvalues, using (5.2.10a-b), we can compute the
values of ¢; = —ym* — w2)\; (see Table 5.2). Using these c; in the solutions (5.2.16a-
b), and plotting (F1(0) + F3(0)) exp(eit) + (F1(0) — F5(0)) exp(cot) and (F1(0) +
F5(0)) exp(ert) + (Fo(0) — F1(0)) exp(cot) we can judge the behaviour of the solutions

at the early stage of the given initial guesses.

Initial | U} U, c1 o
X -0.75 | -0.25 | -13.25166595 | 7.829818293
Y -0.25 | -0.75 | -13.25166595 | 7.829818293
I -0.50 | -0.50 | -5.178324930 | 4.691279474
J -0.50 | 0.00 | -12.58052823 | 12.09348277
K -0.50 | 0.50 | -27.90580951 | 7.679555244
1% -0.25 | 0.25 | -21.86310670 | 16.44125904
L 0.00 | -0.50 | -12.58052823 | 12.09348277
O -0.50 | -0.50 | -27.90580951 | 7.679555244
W 0.25 | -0.25 | -21.86310670 | 16.44125904
M 0.00 | 0.00 | -19.98273154 | 19.49568608
N 0.00 | 0.50 | -39.82457085 | 19.59831658
P 0.50 | 0.00 | -39.82457085 | 19.59831658
Q 0.50 | 0.50 | -64.39595163 | 24.43048828
R 0.50 | 0.75 | -80.43773010 | 23.20045932
S 0.75 | 0.50 | -80.43773010 | 23.20045932

Table 5.2: The value of ¢; for different initial guesses.

Using the analysis above, we expect using the initial conditions X , Y and T, ,
at the early stage, that the solution will go to a steady state before growing. T
will grow more slowly than X and Y. This observation is in agreement with our
computational results (see Figure 5.9.a,b,c, for X , Yand T respectively). We also
expect that at the early stage the solutions using initial guesses K and O will grow
more quickly than those with J and E, but slower than those with ¥ and W. See

Figures 5.10 and 5.11 for the matching behaviour in our simulations.
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Figure 5.8: The evolution from the initial conditions that are random perturbations
of the uniform state: (a) U; = —0.75 and U, = —0.75 at t = 0.0, 0.1, 0.2, 0.8, 4.0;
(b) Uy = —0.75 and U, = 0.75 at ¢ = 0.0, 0.1, 0.2, 0.8, 4.0; (c) U; = 0.75 and
U, =-0.75at t = 0.0, 0.1, 0.2, 0.8, 4.0.
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Figure 5.9: The evolution from the initial conditions that are random perturbations
of the uniform state: (a) U; = —0.75 and U, = —0.25 at ¢t = 0.0, 0.08, 0.2, 100, 300;
(b) U; = —0.25 and U, = —0.75 at t = 0.0, 0.08, 0.2, 100, 300; (c) U; = —0.5 and

U; =-0.5at t =0.0, 0.4, 0.8, 800, 1000.
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Figure 5.10: The evolution from the initial conditions that are random perturbations
of the uniform state: (a) U; = —0.5 and U, = 0.0 at ¢t = 0.0, 0.08, 0.2, 4.0, 20; (b)
Uy =-0.5and U; =0.5at t =0.0, 0.1, 0.2, 0.8, 8.0; (c) Uy = —0.25 and U, = 0.25
at t = 0.0, 0.1, 0.8, 4.0, 300.
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Figure 5.11: The evolution from the initial conditions that are random perturbations
of the uniform state: (a) U; = 0.0 and U; = —0.5 at t = 0.0, 0.08, 0.2, 4.0, 20; (b)
Uy =0.5and U; = -0.5 at t = 0.0, 0.1, 0.2, 0.8, 8.0; (c) U; = 0.25 and U, = —0.25
at t = 0.0, 0.08, 0.8, 1000, 3000.
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Figure 5.12: The evolution from the initial conditions that are random perturbations
of the uniform state: (a) U; = 0.0 and U, = 0.0 at ¢ = 0.0, 0.2, 16, 600, 800; (b)
U, = 0.0 and Uy = 0.5 at t = 0.0, 0.02, 1.0, 5000, 6000; (c) U; = 0.5 and U; = 0.0
at t = 0.0, 0.02, 0.1, 0.2, 100.
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Figure 5.13: The evolution from the initial conditions that are random perturbations

of the uniform state: (a) U; = 0.5 and U, = 0.5 at £ = 0.0, 0.02, 0.4, 0.6, 1.0; (b)

Uy =0.5and U; =0.75 at t = 0.0, 0.02, 0.2, 1.0, 4.0; (¢) U; = 0.75 and U, = 0.5 at
= 0.0, 0.02, 0.2, 0.4, 400.
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Figure 5.14: Maximum and minimum U, and U, at ¢t = 1000.

In all simulations, including those using initial conditions in the first quadrant
region (see Figure 5.1), where for all initial guesses in region A we get growth of the
solutions.

We notice that in the Figures 5.8-5.13 the growth of the approximate solutions,
which are initially much less than 1, may grow to be close to 2 (see the y-axis of
Figures 5.12 and 5.13). Do the solutions blow-up for increasing time t? To tell us
what happens to the solutions for increasing time ¢, we ran a simulation with the
initial guesses U? = U2 € (—1,3.2). Again our simulations violated the physical
meaning of the model. We plotted the maximum and minimum values of Uy, Uy,
for ¢t = 1000, as can be seen in Figure 5.14. The Figures are consistent with the
stability region (see Figure 5.1) and the interval given in (5.2.13), where we have
stationary solutions outside of this interval.

We note something mathematically interesting in Figure 5.14. The maximum
and minimum values of +1 change as we enter the domain having no physical mean-
ing, i.e. the top right hand quadrant including its boundary. A rough explanation
can be stated as follows: Consider minimising the free energy (2.2.14) with mass

constraints. We ignore the y—terms. Thus we have a problem

. 1 1 1
mm/Q (Z(uf —1)%+ Z(ug -1)%+ §(u1 +1)%(ug + 1)2)d$,
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such that

/Qul(:v)d:r =my, /Quz(:c)d:v = my.

For certain pairs of m; and ms the solution of this problem is

1 in Qi_, 1 in Q?{-’
Uy = and Uy =
—1 iIl Ql_, _1 in QQ_)

where 21 N Q2 =0, Q=0 UQL =02 UQ2, such that
S = 1941~ (0L, 194mp = |03 - 92,

This tells us that if we have growth and the growth is in the domain described
above, then the maximum/minimum will be 1/—1. Comparing the domain to the
stability region in Figure 5.1 we have an area where the maximum/minimum will
be 1/—1 as depicted in Figure 5.15. Our analysis here is in agreement with the

simulations we have done (see Figure 5.9-5.13).

2.0 -

1.0 1

Uz 0.0 ] -~

—1.0 4

—-2.0

-20 —-10 00 1.0 20 \
Uy

Figure 5.15: The region A indicated where the maximum /minimum will have values
1/ - 1.
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5.3.2 Two Dimensional Case

Numerical experiments in two space dimensions were performed with = (0,1) x
(0,1). We took a uniform mesh consisting of a square x of length h = 1/64, each
of which was divided into two triangles by its north-east diagonal (see Figure 5.16).

In all simulations we set v = At = 0.001, Z? = Z3 = 0.51, and D = 0.5.

Figure 5.16: Uniform mesh

As in the one dimensional experiments we use initial guesses (5.3.3), a random
perturbation of the state U = 0 with values distributed uniformly between —0.05
and +0.05. We solve (5.1.11a-b) for each node using the Newton method, applying
the same technique as used for the one dimensional simulations to obtain its initial
guess. The technique to stop the iteration and to move to the next time level is the
same as in the one dimensional case.

To find the unique solutions of the systems (5.1.12a-b), unlike the one dimen-
sional simulations, we used a relaxation method. We chose its ’best’ parameter w,
by running a single simulation for w € (0, 2). We picked the value which took fewest
iterations on average. In this case w = 1.8.

The parameter p was chosen by running one simulation for u € (0,4). Here we
did not vary initial guesses or At as we did in the one dimensional case. We ran
this simulation with the following parameters: T' = 0.01 and TOL =1 x 1079. We
chose p so that it took fewer iteration in average, i.e. p = 2.

We did several simulations in two space dimensions, each of which conserved
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mass. We plotted a gray scale grid plot of U;, that is,
t=1—-U))+UE+1,)+U@GE +1)+UGE+1,5+ 1)+ 4c)/8¢c, c = 1.2,

at several times. Except for Figure 5.18 the final plot of the numerical solution is
stationary. The gray scale ranges from 0.1 to 0.9 with pure black/white corresponds
to 0.1/0.9 representing values larger /smaller than 0.9/0.1.

The aim of our simulations is to see an agreement of the behaviour with the
one dimensional case and the stability analysis at their early stages. Figure 5.17,
where no growth occurs, shows the simulation with initial conditions U; = U; =
—0.75 4+ ¢(z). This matches the one dimension simulation (see Figure 5.8) and the
stability region condition (see Figure 5.1 and 5.7).

Figures 5.18-5.20 represent respectively, the initial stage evolution from the ini-
tial guesses labelled )7, I?, O in Figure 5.7. As can be seen in the Figures, we
obtain the growth as expected. In addition, analysis done as in the one dimensional
simulation showed that in the early stage the solutions inherited the behaviour of

the solutions in one space dimension.

Concluding Remarks

We have done some experiments incorporating a multigrid technique with the im-
plicit algorithm to solve the linear system (5.1.12a-b). In the implementation we
used a V—cycle with a Gauss-Seidel smoother, a seven point prolongation and re-
striction. We did not perform a prolongation and restriction while moving from grid
to grid on the left hand matrix of (5.1.12a-b), instead we used the mass and stiffness
matrices to construct it for each grid levels. However the result is not promising.
The CPU-time required to obtain the solution using this technique was much longer
than when applying the relaxation method to solve the system (5.1.12a-b). We
believe that, one reason for this inefficiency is because the smallest system is of the
order 25 x 25 which is not solvable exactly. Another reason is the dependence of our
problem on the parameter u for each grid level. The best value of u for solving the

system using a multigrid approach may be the worst for the algorithm overall (see


















Chapter 6

Conclusions

It was shown using a Faedo-Galerkin approximation that there exists a unique so-
lution for the coupled pair of Cahn-Hilliard equations modelling a phase separation
on a thin film of binary liquid mixture coating substrate, which is wet by one com-
ponent. This solution satisfies certain stability bounds. The regularity result at the
end of Chapter 2 is essential for obtaining the error bound for the method proposed.

Some mathematical tools were developed for analysing a semi and fully discrete
approximation. The existence, uniqueness, and stability bound for the semidiscrete
finite element approximation were proven for d = 1,2,3. An error bound between
the semidiscrete and continuous solution was given for d =1, 2, 3.

Two types of fully discrete approximations, called Scheme 1 and Scheme 2, for
solving the weak formulation were proposed. The existence and uniqueness of both
schemes, for d = 1,2,3, were proven. Their stability estimates were shown for
d =1,2,3. The convergence of the solutions to the continuous problem in the weak
formulation form for d = 1, 2, 3, was discussed for Scheme 1.

The error bound between the fully discrete and continuous solutions for Scheme 1
was proven by combining the error bound between the semi discrete approximation
and continuous problem, and the fully and semi discrete approximation. The error
bound is not optimal in the sense it linear in At. It might be possible to improve
the error estimate as Barrett and Blowey did in [4-6], and we leave this for future
work.

Two practical algorithms (implicit and explicit) for solving the finite element

148
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approximation at each time step were suggested. The convergence theory for the
implicit scheme, which was used to solve the system arising from Scheme 1 was
proven. The linear stability analysis for one space dimension was given. Simulations
in one and two space dimensions were performed using the implicit scheme, and all
computational results matched the linear stability region we have shown.

The analysis of (1.0.1a—e) would be greatly simplified if the prototype nonsmooth

potential

%(1 - uf) + %(1 - u%) + %|V’LL1|2 -+ %|VU2|2 + D(U1 + 1)(’[1,2 + 1),
F(uy,up) =

+oo for |uy| > 1 or Jus| > 1,

was used instead of (1.0.1e). This would lead to a pair of coupled variational in-
equalities and perhaps the work of Blowey and Elliott [9,10] could be generalised.
The advantage in this case would be that the only “nonlinear” term (for want of a
better word) would be the variational inequality.

Modica in [30] consider a mathematical problem studying the asymptotic be-

haviour as y — 0% of solutions u,, of the minimisation problem
min/ v|Vul|* + ¥ (u)dz,
Q

such that [, u(z)dz = m. It is may be possible to mimic this study to analyse the
asymptotic behaviour as v — 0% of the minimising free energy (2.2.14) which was
mentioned in Section 5.3.1. This could be the basis of rigorous analysis for studying
the behaviour of the solutions of our problem in Figure 5.14. We left this for future

research.
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Appendix A

Basic and Auxiliary Results

A.1 Basic Results

Theorem A.1.1 (Lax-Milgram lemma) Let V be a Hilbert space, let a(:,-) :
V x V — R be a continuous V—elliptic bilinear form, and let f : V +— R be a
continuous linear form. Then the abstract variational problem: Find an element

such that

uwe€V and forall veV, a(u,v)=f(v),

has one and only one solution.

Proof. See Ciarlet [13] page 8, for example.

Theorem A.1.2 (Compactness) Let V, H and V' be three Banach spaces with

V and V' being reflexive and
VcCH=H cV',

where the injection V < H is compact. Also let

dv

W ={v:veLP0,T;V), o

€ L0, T;V},

where T' < co and 1 < p,q < oo. Then the injection W in LP(0,T; H) is compact.

Proof: See Lions [27] page 58.
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Theorem A.1.3 Let V, H and V' be three Hilbert spaces, having the property that
VcH=H cV'.

If we L%(0,T;V) and v’ € L2(0,T;V') then u € C([0,T]; H) a.e and the following

equality holds in the scalar distribution sense on (0,7)

d :
a%|u|2 = 2(u', u)

Proof: See Temam [34] page 261.

Theorem A.1.4 (See Dautray and Lions [17] page 289) Let V be a reflexive
Banach space, {7,,} a bounded sequence in V. Then it is possible to extract from

{nn} a subsequence which convergences weakly in V.

Theorem A.1.5 (See Dautray and Lions [17] page 291) Let V be a separa-
ble normed space and V' its dual. Then from every bounded sequence in V', it is

possible to extract subsequence which is weak-star convergent in V.

Theorem A.1.6 (Gronwall Inequality) Let C be a nonnegative constant and let
u and v be continuous nonnegative functions on some interval ¢ € [a, §] satisfying

the inequality
t

v(t) < C’+/ v(s)u(s)ds for t € [a, F].

[

Then
t

v(t) < Cexp (/ u(s)ds) for t € a, B].

a

Proof. See Brauer and Nohel [12] page 31 for example.
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