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Abstract 

A mathematical analysis has been carried out for a coupled pair of Cahn-Hilliard 

equations, which appear in modelling a phase separation on a thin film of binary 

liquid mixture coating substrate, which is wet by one component. Existence and 

uniqueness are proved for a weak formulation of the problem, which possesses a 

Lyapunov functional. Regularity results are presented for the weak formulation. 

A fully practical piecewise linear finite element approximation is proposed where 

existence and uniqueness of the numerical solution, and its convergence to the so­

lution of the continuous problem are proven. An error bound between the discrete 

and continuous solutions is given in three space dimensions. A practical algorithm 

for solving the resulting algebraic problem at each time step is suggested and its 

convergence is proven. Finally, linear stability analysis for one space dimension is 

presented, and some numerical simulations in one and two spaces dimension are 

exhibited. 
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Chapter 1 

Introduction 

Let 0 be bounded domain in JRd (d:::; 3) with Lipschitz boundary aO. We consider a 

coupled pair of Cahn-Hilliard Equations modelling a phase separation on a thin film 

of binary liquid mixture coating substrate, which is wet by one component denoted 

by A and the other by B (see [25]): 

Find { u 1 (x, t), u2 (x, t)} E IR x IR such that 

where 

aul = LJ.wl 
at 

111 O,t > 0, 

au2 
0, t > 0, - = LJ.w2 111 

at 

6F(u1, u2) 
wl = K ' 

uu1 

6F(u1, u2) 
w2 = K ' 

uu2 

F(u1,u2) = b1u~- a1ui + c1JV'u1J2 

+ b2u~- a2u~ + c2JV'u2J2 

+ D (Ut + Rf) 
2 
( u, + If£) 2 

(l.O.la) 

(l.O.lb) 

(l.O.lc) 

(l.O.ld) 

(l.O.le) 

Here 6F(u1 , u2)/6ui, fori= 1, 2, indicates the functional derivative. The variable u 1 

denotes a local concentration of A or B and u2 indicates the presence of a liquid or a 

vapour phase. The constant ci denotes the surface tension of ui. The coefficient ai is 

1 
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proportional to Tc;- T, where Tc 1 corresponds to the critical temperature of the A-B 

phase separation, and Tc2 represents the critical temperature of the liquid-vapour 

phase separation. 

If a1 > 0, a2 > 0, there are two equilibrium phases for each field corresponding 

to u1 = ±["if and u2 = ±yfi;, denoted ut, u1, ut, and u2, respectively. The 

coupling D energetically inhibits the existence of the phase denoted by the (ut, ut). 

Thus we have a three-phase system: liquid A corresponds to ( u1, u2) regions, liquid 

B to (ut, u2) regions and the vapour phase to ( u1, ut) regions. 

To simplify the presentation, as in [25], we choose the values in (1.0.1e) as follows: 

namely 

where 

1 2 ? 1/J(r)= 4(r -1)-, 

'll(r, s) = ~(r + 1)2 (s + 1)2
, 

(1.0.2a) 

(1.0.2b) 

(1.0.2c) 

although all of the results may be modified to the general case. Here D > 0 and 

1 > 0 are prescribed constants. Together with this problem we include the following 

boundary conditions 

8ul = 8u2 = owl = aw2 = 0 on an 
8v 8v 8v 8v ' 

u1(x, 0) = u~(x), u2 (x, 0) = u~(x) on n, 

where v is the unit normal pointing out of 0.. 

(1.0.3a) 

(1.0.3b) 
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Thus the problem now is to find { u1 (x, t), u2(x, t)} E lR x lR such that 

where 

O'Ul = AWl n 0 Ot L.l. m H, t > , 

0U2 = AW2 n t 0 Ot L.l. m H, > ' 

cjy(r) = 1/J'(r), 

,T,( )_o'll(r,s) 
'1' 1 r' s - or ' 

,T, (' ) _ 0'lf(r, S) 
'1'2 1,S - OS . 

3 

(1.0.4a) 

(1.0.4b) 

(1.0.4c) 

(1.0.4d) 

(1.0.4e) 

(1.0.4f) 

(1.0.4g) 

(1.0.4h) 

(1.0.4i) 

If D = 0, the problem reduces to two decoupled Cahn-Hilliard equations, which 

has been discussed at length in the mathematical literature; for reviews see [18, 20, 

31]. For this type of problem, we do not have liquid-vapour interfaces. 

To obtain a weak formulation of the problem above, let V be the trial space, 

that is, 

Multiply (1.0.4a) and (1.0.4c) by any test function v E V, integrate over n and 

rearrange the terms to get 

(1.0.5a) 

(1.0.5b) 
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similarly from (1.0.4b) and (1.0.4d) we obtain 

( 
8~2 

, V) = ( 6 W2 , V), (1.0.5c) 

(w2, v) = (q{u2), v)- 1'(6u2, v) + 2D('ll2(u1, 1t2), v). (1.0.5d) 

Applying Green's formula 

(1.0.6) 

to the terms containing the Laplacian in (1.0.5a-d) and using boundary conditions 

(1.0.4e), we obtain the weak formulation 

(P) Find {u1, u2, w1, w2} E H 1(D,) x H 1(D,) x H 1(D,) x H 1(D,), t E [0, Tj such that 

\:fr; E H 1 (D,) 

and 

( 8~:1 
,r;) = -('Vw1, 'VrJ), 

(w1, r;) = (r,D(ui), r;) + l'('Vu1, 'Vr;) + 2D(wl(ut, u2), 17), 

u1(x, 0) = u~(x), 

( 8~2 ' r;) = - ( \7 w2' \7 r;) ' 

(w2, r;) = (r,D(u2), r;) + ')'('Vu2, 'Vr;) + 2D(w2(ui, u2), r;), 

u2 (x, 0) = ug(x). 

(1.0.7a) 

(1.0. 7b) 

(1.0.7c) 

(1.0.7d) 

(1.0.7e) 

(1.0.7f) 

We now give a brief description of the content of this thesis. In Chapter 2 a global 

existence and uniqueness theorem for a weak formulation possessing a Lyapunov 

function is proven. Regularity results are presented for the weak formulation. 

In Chapter 3 we prove interpolation error estimates in the finite element space 

as tools for analysis in Chapter 3 and 4. Then a semidiscrete finite element approx­

imation is proposed where the existence and uniqueness are proven. Also an error 
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bound between the semidiscrete and continuous solutions is given. 

In Chapter 4 two fully discrete finite element approximation are proposed where 

the existence and uniqueness are proven. The convergence of the discrete to the 

continuous solutions is shown for Scheme 1. An error bound between the discrete 

and continuous solutions is also proven for Scheme 1. 

In Chapter 5 two practical algorithms (implicit and explicit methods) for solving 

the finite element approximation at each time step are suggested. We discuss the 

convergence theory for the implicit scheme, which is used to solve the system arising 

from Scheme 1. We also discuss in this chapter some computational results for one 

and two space dimensions. We use the implicit scheme for all simulations. Before 

showing some computational results, we discuss linear stability solutions in one space 

dimension. 



Chapter 2 

Evolutionary Problem 

In this chapter a global existence and uniqueness theorem for a weak formulation 

possessing a Lyapunov function is proven. Regularity results are presented for the 

weak solution. 

2.1 Notation 

Let 0 be a bounded domain in JRd, d s; 3 with boundary 80. For d = 2, 3 we assume 

that 80 is a Lipschitz boundary. Throughout this thesis we adopt the standard 

notation for Sobolev spaces, denoting the norm of ~vm,p(O) (mE N,p E [1, oo]) by 

11 · llm,p and semi-norm by I · lm,p· For p = 2, ~vm,p(O) will be denoted by Hm(O) 

with the associated norm and semi-norm written as 11 · llm and I · lm, respectively. 

In addition we denote the L 2 (0) inner product over 0 by(·,·) and define the mean 

integral by 

We also use the following notation, for 1 s; q < oo, 

Lq(O, T; ~Vm,p(O)) := { ry(x, t) : ry(·, t) E Wm,p(O), 1T llry(·, t)ll~t,p dt < oo}, 

VXJ(O, T; wm,p(O)) := {ry(x, t) : ry(·, t) E wm,p(O), esssupllry(·, t)llm,p < oo}, 
tE(O,T) 

6 



2.1. Notation 

({ llx( ·, t) ll'fn.pdt) 'I' 

esssupllx(·, t)llm,p 
tE(O,T) 

7 

for 1 :s; q < oo, 

for q = oo. 

We introduce the Green's operator Q : :F r-+ V approximating the inverse Lapla­

cian with zero Neumann boundary data defined by 

where 

:F := {1,7 E (H1 (0))': (TJ, 1) = 0}, 

V:= {1,7 E H 1(0): (77, 1) = 0}, 

and (·,·)denotes the duality pairing between (H1(0))' and H 1(0) such that 

(2.1.1) 

The existence and uniqueness of Qv follows from the Lax-Milgram theorem (see 

Appendix) and the Poincare inequality 

l~lo,p :S: Cp(l~h,P + 1(~, 1)1) V~ E HI1•P(O), p E [1, oo). (2.1.2) 

We define a norm on :F as 

llvll-1 := IQvll· 

Note that for v E :F n L2 (0), we have 

llvll~ 1 = (\!Qv, \!Qv)= (v, Qv)= (v, Qv)= (Qv, v), (2.1.3) 



2.1. Notation 

and noting the Young inequality, forE > 0, a, b ~ 0 and 1 < p < oo 

aP bq 
ab< E- + E-qjp_ 

- ' p q 

1 1 
where - + - = 1, 

p q 

we obtain for all a > 0 with E =a, and p = q = 2, 

a 1 
(v,v) = (\79v, \7v) = (Vv, \79v) ~ lvllllvll-1 ~ 2lvli + 

2
al9vli-

8 

(2.1.4) 

(2.1.5) 

Using the Poincare inequality (2.1.2), the Cauchy-Schwarz inequality and (2.1.3) we 

obtain 

(2.1.6) 

For later purposes, we recall the Holder inequality for u E LP, v E Lq and 

1 < p < oo, 

1 1 
where - + - = 1, 

p q 
(2.1. 7) 

and the following well-known Sobolev interpolation results, e.g. see Theorem 3 

in [1]: Let p E [1, oo], m ~ 1 and v E vVm,p(O). Then there are constants C and 

~L = !.l (l - l) such that the inequality 
m p r 

[p, oo] 

holds for r E [p ) ,oo 

if m- 1:. > 0 p , 

if m- 1:. = 0 p , 

if m- 1:. < 0. 
p 

(2.1.8) 

We also state the following lemma, which will prove useful in our subsequent analysis. 

Lemma 2.1.1 Let u, v, TJ E H 1 (D), f = 'U- v, g = umvn-m, m, n = 0, 1, 2, and 

n- m 2::0. Then ford= 1, 2,3, 

(2.1.9) 
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Proof: Note that using the Cauchy-Schwarz inequality we have 

I 
m n-m I 0,2mp 0,2(n-m)p 

U V O,p ::; 
{ 

l·ulnt lvl(n-m) for n- m =1- 0, and m =1- 0, 

I lm I l(n-m) c 0 0 . l u o,mp or v o,(n-m)p 10r n- m= , or m= respective y. 

From the generalised Holder inequality and the result above we have for n = 2, 

ll fgrJdxl ::; lu- vlo lumvn-mlo,3 lr7lo,6, 

lul5,6 for m= 2, 

::; lu.- vlo l77lo,6 l·ulo,6 lvlo,6 for m= 1, 

lvl5,6 for m= 0, 

where we have noted (2.1.8) to obtain the last inequality. Similarly we can show for 

n = 0, 1. This ends the proof. D 

2.2 The Existence and Uniqueness of the Contin-

uous Problem 

Given 1 > 0 and u? E H 1(0.), fori= 1, 2, such that llu~ll 1 + lluglh :::; C, we consider 

the problem: 

(P) Find { ui, wi} such that ui E H 1(0, T; (H1(0.))') n L 00 (0, T; H 1(0.)) for a.e. 

t E (0, T), wi E £ 2 (0, T; H 1 (0.)) 

( aa~~, 77) = - (Vwl, \777), 

(w1, 77) = (4>(u1), 77)+ 1(Vu1, \?77) + 2D(wi(ui, u2), 77), 

u1(x, 0) = u~(x), 

(2.2.1a) 

(2.2.1b) 

(2.2.1c) 
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and 

\ a~2 ' TJ) = - ( \1 w2' \1 TJ) ' 

(w2, ry) = (cp(u2), ry)+ 1(V·u2, Vry) + 2D(w2(ui, 1t2), ry), 

u2 (x, 0) = u~(x), 

(2.2.1d) 

(2.2.1e) 

(2.2.1f) 

for all TJ E H 1(f2) for a.e. t E (0, T), where c/>(·), \ll 1 (·, ·), and \ll2(-, ·) are given by 

(1.0.4g), (1.0.4h) and (1.0.4i) respectively. 

Using (2.1.3), we can write (2.2.1a) and (2.2.1d) as 

(2.2.2) 

Taking TJ = Q 88~; + wi in (2.2.2), we have for a. e. t E (0, T) 

which implies 

~Q~;i + w{ = IQaa~i + wi- f will= 0. 

Thus by the Poincare inequality (2.1.2) we have 

I 
au. f I ~ I au. f I 0 = r._t + w - w > c-l "'-2 + w· - w . 

'::1 at l 2 - p '::1 at l 2 

1 0 

Hence we obtain 

(2.2.3) 

where 

J wi = 
1

A
1 

((c/>(ui), 1) + 2D(wi(u1 , v.2), 1)). (2.2.4) 

Noting (2.2.3), (2.2.4) and 

1 
(<p(r),ry) -"fOT((<p(r), 1),ry) = (<p(r), (I--f )rJ), 
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1 
where (I--f )TJ := TJ -im(TJ, 1), we can restate the problem (P) as: 

Find {u1,u2} such that fori= 1,2, ui E H 1(0,T;(H 1(rJ))') n L00 (0,T;H1(rJ)), 

ui(-, 0) = u?(-) and for a.e. t E (0, T) 

(2.2.5a) 

(2.2.5b) 

Theorem 2.2.1 Given u? E H 1(rJ), i = 1, 2, such that llu~ll1 + llu~ih ::::; C then 

there exists a unique solution { ui, wi} to (P) such that the following stability bounds 

hold 

lluiiiL=(o,T;Hi(O)) ::::; C, 

lluiiiiJi(O,T;(FJl(O))') =S; C, 
I 

llwiiiLz(o,T;IJl(fl)) ::::; C(1 + T2), 

where C is independent ofT. 

(2.2.6a) 

(2.2.6b) 

(2.2.6c) 

Proof. To prove the existence we use the Faedo-Galerkin method of Lions [27]. Let 

{ Zj }_~1 be the orthonormal basis for H 1 ( n) consisting of the eigenfunctions for 

-.6.z + z = AZ in n, 
fJz 
fJv = 0 on an. 

(2.2.7a) 

(2.2. 7b) 

Let Vk denote the finite dimensional subspace of H 1(rJ), spanned by {z1}j=1• Note 

that z1 = 1/lrJI ~. The Galerkin approximation for the problem (P) is the following: 

Find {u~,u~,wt,wn E Vk x vk x vk x Vk, 

k 

u~ = L ci,J(t)z1, 
j=l 

k 

wf = L di,J(t)zj, for i = 1, 2 
j=l 

(2.2.8a) 
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such that 

(d~~~ ,1Jk) = - (\7w~, \7ryk) Vryk E Vk, 

(w~, ·rl) = (<,b(u~), 1Jk) + 1(\?u~, \7ryk) + 2D('l1 1 (u~, u~), ryk) Vryk E Vk, 

u~(x, 0) = Pk(u~), 

and 

( d~~' 1Jk) = - (\7w;' \7ryk) Vryk E Vk' 

(w;, ryk) = (<,b(u~), ryk) + 1(\?u~, \7ryk) + 2D(\l1 2 (u~, n~), r/) Vryk E V\ 

u~ ( x, 0) = pk ( u~), 

where pk is a projection from H 1 (D.) into Vk defined by 

(Pkv- v, ryk) 

IIPkiiL:(Hl,Vk) 

L;=1(v, Zj)Zj Vrl E Vk, 

(\7(Pkv- v), \7ryk) = 0 Vrl E Vk, 

11Pkll£(£2,vk) = 1. 

(2.2.8b) 

(2.2.8c) 

(2.2.8d) 

(2.2.8e) 

(2.2.8f) 

(2.2.8g) 

(2.2.9) 

Straightforward calculation shows that this projection operator satisfies the following 

properties, for i = 0, 1, 

IPkv- vli :=::; l~k- vli ve E vk, 

IPkvli :=::; lvli Vv E H 1 (D.). 

(2.2.10) 

(2.2.11) 

Since Vk is dense in H 1 (D.) and the injection of H 1 (D.) into £ 2 (0.) is compact 

(see Dautray and Lions [17] page 140) it follows that, 

(2.2.12) 

Using (2.2.7a-b) and taking 1Jk = Zj we can rewrite (2.2.8a-g) as a coupled system 
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of first order differential equations, for j = 1, 2, ... , k, 

and 

where 

dckl .(t) k 
,J = - (>. - 1)d ·(t) dt J lJ , 

d~)t) = (Jk(c~(t)))j- cL(t) + !(Aj- 1)cL(t) 

+ 2D(g~(c~(t), c~(t)))j, 

dck (t) 
2,j = - (>.. - 1)dk . 
dt J 2J' 

dL(t) = (Jk(c~(t)))j- c~,j(t) + !(Aj- 1)cL(t) 

+ 2D (g~(c~ (t), c~ (t))) j' 

(Jk(c~(t)))j := ((11~) 3 ,zj), 

(g~(c~(t), c~(t)))j := ((u~ + 1)(u~ + 1)2
, zj), 

(g~(c~(t),c~(t)))j := ((u~ + 1)(u~ + 1)2 ,zj)· 

(2.2.13a) 

(2.2.13b) 

(2.2.13c) 

(2.2.13d) 

The functions Jk(cf(t)), g~(c~(t), c~(t)) and g~(c~(t), c~(t)) are locally Lipschitz 

continuous functions of cf. 

Letting ck = [c~, c~]T we can rewrite (2.2.13a-d) as df = 1-l(ck), which is 

locally Lipschitz continuous. Hence from the theory existence and uniqueness for 

systems of ordinary differential equations (see [8] for example) we deduce the local 

existence for uf, wf, i = 1, 2. To get existence of a global solution, we only need to 

obtain a priori estimates of uf, wf independent of k. 

Now consider the free energy 

where '1/J(·) and W(·, ·) are given by (1.0.2b) and (1.0.2c) respectively. 

Since duf(t)jdt E Vk fori= 1, 2, differentiating £(u~, u~) with respect tot and 
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rearranging the terms, we obtain 

(2.2.15) 

where W1 (·, ·) and W2 (-, ·) are given by (1.0.4h) and (1.0.4i) respectively. Noting 

(2.2.1b) and (2.2.1e), together with (2.2.1a) and (2.2.1d), and rearranging the terms 

we can express (2.2.15) as 

In particular 

d
d £(u~(t), u~(t)) + lw}(t)li + lw~(t)li = 0. 
t ' 

i.e. £ is a Lyapunov functional. 

Integrating (2.2.16) over (0, t) and rearranging the terms we have 

where we have noted (2.2.17), (2.2.8d) and (2.2.8g). 

Note that '1/J(r) = t(r2
- 1) 2

, so that 

1 1 
0 < ·1·(r) < -r4 + -. 

_'f' -4 4 

Hence recalling (2.1.8) we have fori= 1, 2, 

(2.2.16) 

(2.2.17) 

(2.2.18) 

(2.2.19) 

Noting the Cauchy-Schwarz inequality and the Young inequality (2.1.4) with c = 1 
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and p = q = 2 we have 

1 w(r, s)dx = ~ 1 (r + 1)2 (s + 1)2 dx 
n 2 n 

::; 21 (r2 s2 + r 2 + s2 + 1)dx 

S 2 (lrl6,4 fsi6,4 + frl6 + isi6 + fOI) 

S frlci,4 + fsi6,4 + 2frl6 + 2fsf6 + 2fOI 

S Cllrlli + Cllslli + 2frl6 + 2lsl6 + 2101, (2.2.20) 

where we have noted (2.1.8) to obtain the last inequality. 

By the strong convergence of Pku? to u?, i = 1, 2, in £ 2 (0), (2.2.19), (2.2.20), 

(2.2.11) and the assumption of the theorem, llu~lh + lluglh ::; C, we have 

£(Pku~, Pku~)::; CIIPku~lli + CIIPku~lli + (4D + ~)IOI 

+ 4DIPku~l6 + 4DIPkugl6 + ~IPku~ii + ~IPku~li 
1 

S Cllu~iii + Cllu~iii + (4D + 2)101 

+ 4Diu~l6 + 4Diu~l6 + ~~u~li + ~~u~li S C, (2.2.21) 

where C is independent ofT and k. It follows from (2.2.18), and (2.2.21) that 

(2.2.22) 

where C is independent ofT and k. 

Now taking 7Jk = 1 in (2.2.8b) and (2.2.8e), we have fori= 1, 2, that 

(
duf(t) ) _ 

dt '1 - 0. (2.2.23) 

Integrating both side of (2.2.23) over (0, t), we obtain 

1t r duk 11t duk(s) r 
0 = 

0 
Jn d; dxds = n 

0 
ds dsdx = Jn (u~(t)- uf(O))dx 

= ( u~ ( t), 1) - ( u~ ( 0), 1) . 
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Hence 

(2.2.24) 

which implies for any t that 

i(u~(t), 1)1:::; C. (2.2.25) 

Using the Poincare inequality (2.1.2), (2.2.22) and (2.2.25) we obtain 

(2.2.26) 

The equations (2.2.25) and (2.2.26) imply that uf(t) E H 1 (D), and it follows from 

(2.2.22) that 

llu~IIL=(o,T;Hl(fl)) :::; C. (2.2.27) 

Recalling (2.1.3) and (2.2.3) we have fori= 1, 2, 

(2.2.28) 

So setting t = T we can rewrite (2.2.22) as 

(2.2.29) 

in particular 

(2.2.30) 

which implies for i = 1, 2, that 

11 

duf(t) 11 C 
dt £2(0,T;(Hl(fl))') :::; ' 

(2.2.31) 

where C is independent ofT and k. 

To show that uf(t) is bounded in £ 2 (0, T; (H1(D))'), we show that uf(t) -
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-f uf(t) E L2 (0, T; (H1(0))') since the mass is conserved. Noting (2.2.24) we have 

Hence noting (2.1.6) and the Young inequality (2.1.4), setting t =Tin the integra­

tion on the right hand side, and using (2.2.31) we obtain 

llu~(t) -l u~(t)[ ~ (11 [ dd~ dsL + llui(O) - 1~1 (ui(O), l) 11 J 2 

~ (11 [ ~~ dsL + c+:(o)- ~~~ (u:(o), l)IJ, 
~ (11 [ d~; dsL + Crlui(O)Io + Cl(u~(O), l)lo) 

2 

~ell [ dd~ ds[ + Clu7(0)I6 + Cl(u~(O), 1)16 

~ C [ lldd~[ds + C ~ C (2.2.32) 

Integrating (2.2.32) over (0, T) we obtain 

(2.2.33) 

where we have noted to obtain the last inequality that by (2.2.17) for T -+ oo, 

duf jds-+ 0. 

Hence (2.2.31) and (2.2.33) imply that 

(2.2.34) 

Now we show llwfll 1 is bounded. Setting ~ = wf in the Poincare inequality 

(2.1.2) and noting the Young inequality (2.1.4) with p = q = 2, we have 

(2.2.35) 
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Recalling 

llwflli = lwfl6 + lwfli, (2.2.36) 

and substituting (2.2.35) into (2.2.36), we have 

llwflli ~ C(lwfli + l(wf, 1W). (2.2.37) 

Thus by (2.2.22), it is enough to bound l(wf, 1)1 to conclude llwflh is bounded. 

Taking TJk = 1 in (2.2.8c) and (2.2.8f) we have fori = 1, 2, 

(wf(t), 1) = (cf>(u7(t)), 1) + 2D(wi(u~(t), u~(t)), 1), 

which implies that 

l(wf(t), 1)1 ~ l(cf>(u7(t)), 1)1 + 2DI(wi(u~(t), u~(t)), 1)1. (2.2.38) 

Noting the Young inequality (2.1.4), (2.1.8) and (2.2.27) we can bound the terms 

on the right hand side (2.2.38) as follows: 

I ( cf> ( u7 ( t)), 1) I = I i ( ( u7 ( t)) 3 
- u7 ( t)) dx I 

= li ((u7(t)) 2
- 1)u7(t)dxl 

::; ~ r ( ( u7 ( t)) 2 
- 1) 2 

dx + ~ r ( u7 ( t)) 2 dx 
2 ln 2 ln 

~ ~ i ((u7(t)) 4 + 1)dx 

1 k )4 1 I ~ 2lui (t lo,4 + 2ID 

~ ~llu7(t)111 + ~IDI ~ C, (2.2.39) 
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and 

l(wi(u1(t),u~(t)), 1)1 = lln ((u1(t) + 1)(u~(t) + 1)2)dxl 

Similarly we can show that 

::; In ((u1(t) + 1)2 + ((u~(t)) 2 + 1)
2)dx 

::; 2ln ((u1(t)) 2 + (u~(t)) 4 + 2)dx 

= 2lu1(t) I~+ 2lu~(t) 1~,4 + 4101 

::; 2lu1(t) I~+ Cllu~(t) lli + 4101 

::; C. 

Noting (2.2.39), (2.2.40) and (2.2.41), we conclude that 

l(wf(t), 1)1::; C. 

(2.2.40) 

(2.2.41) 

(2.2.42) 

Substituting (2.2.42) into (2.2.37), integrating the resulting equation over (0, T) 

and noting (2.2.29) we conclude that 

where C is independent ofT and k. 

Furthermore, since L00 (0, T; H 1(0)) c L2 (0, T; H 1(0)) we have 

(2.2.43) 

Thus u7 E H 1 (0, T; (H1(0))') n L2 (0, T; H 1(0)). Now since H 1 (0, T; (H1(0))') and 

L2 (0, T; H 1(0)) are reflexive Banach spaces then by compactness arguments (see 

Dautray and Lions [17] page 289) we deduce the existence of subsequences { u7, wf} 
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such that 

u~-7ui m H 1 (0,T;(H1(0.))')nL2 (0,T;H1(0.)) weakly, 

wf --7 wi m £ 2 (0, T; H 1(0.)) weakly. 

(2.2.44) 

(2.2.45) 

Since £ 00 (0, T; H 1 (0.)) is the dual of £ 1 (0, T; (H1(0.))') (see Renardy and Rogers [33] 

page 378), which is separable, we can extract a subsequence in £ 00 (0, T; H 1(0.)) such 

that 

(2.2.46) 

Note that H 1 (0.) and (H1 (0.))' are reflexive, and the injection of H 1 (0.) into £ 2 (0.) 

is compact. Hence as a consequence of the compactness theorem of Lions (see 

Theorem 5.1 in Lions [27] page 56) we can extract a subsequence in £ 2 (0, T, £ 2 (0.)) 

such that 

(2.2.47) 

Moreover if ·ui E £ 2 (0, T; H 1(0.)) and dui/dt E £ 2 (0, T; (H1(0.))') then 

ui E C(O, T; £ 2 (0.)) a.e. (see Lemma 1.2 in Temam [34] page 261). This result 

together with (2.2.44) and the strong convergence of Pk(u?) to u? in £ 2 (0.) implies 

that ui(O) = u?. 

Now we will show that these limits satisfy the problem (P). For any ryE H 1 (0.) 

set ryk = pkry in (2.2.8b-c) and (2.2.8e-f), we have 

(
du7 k ) k k 1 dt ,Pry = - (\7w1 , \7P ry) \:;fry EH (0.), 

(w~, pkry) = (4>(u~), Pkry)+ ')'(\7u~, \7 pkry) + 2D('l1 1 (u~, u~), Pkry), 

and 

( du~ k ) k k 1 dt , P ry = - (\7w2 , \7 P 17) \:;fry EH (0.), 

(w~, Pkry) = (4>(u~), Pkry)+ ')'(\7u~, \7 Pkr7) + 2D('l12 (u~, u~), pkry). 

(2.2.48a) 

(2.2.48b) 

(2.2.48c) 

(2.2.48d) 
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Passing to the limit a..e. in (2.2.48a) and (2.2.48c) we have (2.2.1a) and (2.2.1d). To 

yield the results it remains to show that fori = 1, 2, 

(if>(un, pkrJ)---+ (cp(ui), rJ) as k---+ oo, 

(wi(u~, u~), pkrJ)---+ ('lli(u1, u2), rJ) as k---+ oo. 

(2.2.49) 

(2.2.50) 

Recalling the Young inequality (2.1.4), (2.1.9), (2.2.12), and (2.2.44) we are able 

to show (2.2.49), that is 

I ( 1>( 1L~), pkrJ) - ( c/J( ui), f)) I 

~ I (c/J(u~L pkr]- rJ) I+ I (c/J(u~)- c/J(ui), rJ) I 
=I (((un 2

- 1)u~, pkrJ- rJ) I+ I ((u~) 3 - (ui) 3
, rJ) I+ I (ui- u~, rJ) I 

=I (((un 2
- 1)u~, pkrJ- rJ) I+ I (ui- u~, rJ) I 

+I ((u~ -1Li)((un 2 + uiu~ + (ui) 2
), rJ) I 

~ c( (llu~ll{ + i·u~lo)IPkrJ- rJio + lu~lo lu~- uilo 

+ iu~- uilo llrJII1 (llu~lli + llu~lh lluilh + lluilli)) ---+ 0 as k---+ oo. 

Now we write (2.2.50) for i = 1 as 

i('lli(u~,u~),Pk17)- ('lli(ui,u2),rJ)I 

~ l(wl(u~,u~)- 'lli(u~,u2),PkrJ)I + l('lli(u~,u2),PkrJ_ rJ)I 

+ l('ll1(u~,u2)- wl(ui,u2),rJ)I 

where Ij, j = 1, 2, 3 are the corresponding terms in the right hand side. We show 

in turn that each of these terms will tend to zero as k ---+ oo. 
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Noting the Young inequality (2.1.4), (2.1.9), (2.2.12), and (2.2.44) we obtain 

h = l((u~ + 1)((u~ + 1)2 - (u2 + 1)2),Pk77)1 

=I ((u~ + 1)(u~ + u2 + 2)(u~- u2), pk77) I 

and 

= I (u~u~ + u~u2 + 2u~ + u~ + u2 + 2)(u~- u 2 ), pk77) I 

::; C (lu~- u2lo 11Pk77lh (ll'u~lh llu~lh + llu~ll1 llu2ll1 + llu~lh + llu~ll1 + llu2ll1) 

+ lu~- u2lo 1Pk77lo) ---+ 0 as k---+ oo, 

/2 =I ((u~ + 1)(u2 + 1)2, pk77- 77) I 
::; 21 (lu~ + 1l((u2)2 + 1), IPk77- 771) I 

=I (u7(u2) 2 + (u2)2 + u~ + 1), IPk77- 771) I 
::; CIPk17- 77lo(llu~ll1 llu2lli + llu2lli + llu~llt + IDI)---+ 0 as k---+ oo, 

h = 1 ( ( u ~ - u d ( u2 + 1) 2, 77) 1 

::; 2 (I 'U ~ - u 11 ( ( 1l2) 2 + 1) ' 177 I) 

::; Clu~- u1lo (llu211i ll77lh + l77lo) ---+ 0 as k---+ oo. 

N h h h l. · · · L { 1 1 1 1} d { 2 2 2 2} ow we s ow t at t e umt IS umque. et u1 , w1, u2, w2 an u1 , w1 , u2, w2 

be two solutions of (P). Define 

Substitute these solution into (2.2.5a-b) we have for i = 1, 2, 

(2.2.51) 

(2.2.52) 

(2.2.53) 

Subtracting (2.2.53) from (2.2.52) and summing for 'i = 1, 2, with 77 = u} - ui and 
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T} = u~ - u~ respectively of resulting equations, we obtain 

w8;tr' zn + (9
8
;:' z~) + 'Y(vzr, vzr) + 'Y(V'z~, V'z~) 

= (<f>(ui)- <f>(uD,u~- ui) + (<f>(u~)- <f>(u~),u~- uD 

+ 2D(wl(ui,uD- w1(u~,uD,u~- ui) 

+ 2D(w2(ui, u~)- W2(u~, u~), u~- uD, (2.2.54) 

where we have noted (2.2.51) for the terms on the left hand side. Note that from 

the convexity we have 

3 1 4 1 4 r (s- r) < -s - -r 
- 4 4 ' 

which implies 

Hence by (2.2.55), and (2.1.5) we have 

(<f>(ui)- <f>(uD, u~- ui) + (<f>(u~)- <f>(u~), u~- uD 

= ((ui) 3
- (uD 3 + u~- ui, u~- ui) 

+ ( ( uD 3 
- ( u~) 3 + u~ - u~, u~ - uD 

::; (u~- ui, u~- ui) + (u~- u~, u~- u~) 

S lzfl1 llzrll-1 + iz~h llz~II-I 

::; ~ (izrli + iz~ID + 2~ (llzrll~l + llz~ll~1). 

(2.2.55) 

(2.2.56) 

Now the Taylor expansion of W about ( ui, uD and (ut, u~) are respectively given 
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by 

(2.2.57a) 

and 

(2.2.57b) 

where ( 1 and ~1 are between u~ and ui, and ( 2 and 6 are between u~ and 1L~. 

Adding (2.2.57a) and (2.2.57b), simplifying, integrating over S1, and noting 

(1.0.4h) and (1.0.4i) we obtain 



2.2. The Existence and Uniqueness of the Continuous Problem 25 

so that using the Cauchy-Schwarz inequality 

(2.2.58) 

Noting the Young inequality (2.1.4) ·with f.= 1, p = q = 2, and for any sL si between 

u{ and ui and any s~, s~ between u~ and u~ we have 

(2.2.59a) 

(2.2.59b) 

(2.2.59c) 

(2.2.59d) 

(2.2.59e) 

(2.2.59f) 
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Hence we can rewrite (2.2.58) as 

l(wl(ui,u~)- wl(ut,u~), (u~- ui)) + (w2(ui,u~)- w2(ut,u~), (u~- u~))i 

:::; 2l ((u~) 2 + (u~) 2 + 1)(u~- ui) 2dx 

+ 2l ((ut) 2 + (ui) 2 + 1)(u~- uD 2dx 

+ 2l ((ui) 2 + (ui) 2 + (u~) 2 + (u~) 2 + 2)(ui- ui?dx 

+ 2l ((ui) 2 + (ui) 2 + (u~) 2 + (uD 2 + 2)(u~- u~fdx. 

On noting (2.1.5) we obtain 

(2.2.60) 

(2.2.61) 

The Holder inequality (2.1.7), (2.1.8), (2.2.27), (2.1.5), the Poincare inequality 

(2.1.2) and the Young inequality (2.1.4) with p = 8/7, q = 8 yield, fori, j, k = 1, 2, 

. . 1 3 

= lu{l6,4 lul - 'u~l6,4 :S Cllu{lli lul- u~IJ lluJ- u~IIJ, 

1 1 3 7 1 

:S Clzflf llzfll~l llzfiiJ :S Clzflf llzfll~l, 
7E 

:S glzfli + C(E-1) llzfll~l· (2.2.62) 

Noting 

(2.2.56), and (2.2.60-2.2.63), we can rewrite (2.2.54) as 

d 
dt (llzYII~l + llz~ll~1) + 21(izYii + lz~ID 

:::; ((12D + 1)a + 42DE) (lzYii + lz~li) + C(llzfll~l + llz~ll~1). 
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Setting o: = E and E = 7r/(224D + 4), D 2:: 0, and rearranging the terms we obtain 

(2.2.64) 

Integrating overt E (0, T) and using a Gronwall inequality, we conclude from (2.2.64) 

that 

Noting the Poincare inequality (2.1.2), (zi, 1) = 0, we obtain the uniqueness of ui. 

The uniqueness of wi follows from (2.2.3) and (2.2.4). This ends the proof of the 

existence and uniqueness of the problem (P). 0 

Below, we shall discuss a regularity result that will be used later in our subsequent 

error analysis. 

2.3 Regularity 

Y..le suppose an to be sufficiently smooth so that if z is a weak solution of 

where f E F n L2 (n) then 

-6z + z = f in n, 
az 
- = 0 on an, av 

(2.3.1a) 

(2.3.1b) 

(2.3.lc) 

see Theorem (3.1.2.3) in [22] for a convex domain or a smooth boundary for exam­

ple. 
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Proposition 2.3.1 For D sufficiently smooth, we have the following regularity re­

sults: 

and 
ou· 
_z = 0 on an for a.e. t. 
OIJ 

Proof. Noting (2.3.1c) and (2.2.27) we have 

(2.3.2) 

(2.3.3) 

Squaring both sides of (2.3.3), summing the resulting equation for i = 1, 2, and 

integrating over t E [0, T] we have 

Setting r/ = -~u~ E Vk in (2.2.8c) and noting~= -(\7) 2 we obtain 

Noting (2.2.8b) and 

we have 

Since 

(\lf/>(u~), Vu~)= (\7(un3
- Vu~, \lu~), 

= 3((u~) 2 \7u~, Vu~)- lu~li, 

= 3lu~\7u~l~- lu~li, 

(2.3.4) 

(2.3.5) 
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and 

(\7\l!I(u~,u~), Y'u~) = (Y'((u~ + l)(u~ + 1)2
), Y'un, 

= 2((u~ + l)(u~ + l)V'ut V'u~) + ((u~ + 1) 2 Y'u~, V'u~), 

= 2((u~ + l)Y'u~, (u~ + l)Y'u~) + l(u~ + l)Y'u~l~, 

we can rewrite (2.3.5) as 

'YI6u~l~ + ~ :t lu~l~ + 3lu1Y'u~l~ + 2DI(u~ + l)Y'u~l~ 
= lu11i- 4D((u1 + l)V'u~, (u~ + l)V'un. (2.3.6) 

Similarly we have 

(2.3.7) 

Adding (2.3.6) and (2.3. 7), and noting the Cauchy-Schwarz inequality we have 

'Y(I6u11~ + l6u~l~) + ~ 8
8 (11t~l~ + lu~l~) + 3(11t~V'u~l~ + lu~V'u~l~) 2 t 

Note that 

+ 2D(I(u~ + l)V'u11~ + l(u~ + l)V'u~l~), 

= lu~li + lu~li- 8D((u1 + l)V'u~, (u~ + l)V'un, 

:::; lu~li + lu~li + 4DI ((u1 + l)V'u~, (u~ + l)V'un I 

+ 4DI ((u~ + l)V'u~, (u1 + l)V'un I· (2.3.8) 
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and 

I ((u~ + 1)Vut (u1 + 1)Vu1) I ::=; ~l(u~ + 1)Vu~l6 + ~l(u1 + 1)Vu116, 

::=; lu~Vu~l6 + 1Vu~l6 + lu1Vu116 + 1Vu116-

Thus we can rewrite (2.3.8) as 

l(l~u116+ l~u~l6) + ~ :t (lu116 + lu~l6) 
:::; 4D(Iu~Vu116 + lu~Vu~l6) + (1 + 4D)Iu11i + lu~li· (2.3.9) 

Noting the Cauchy-Schwarz inequality, (2.1.8), the Poincare inequality (2.1.2), 

(2.2.24), and the Young inequality (2.1.4) with p = 4/d, q = 4/(4- d), we obtain 

(2.3.10) 

Thus substituting (2.3.10) into (2.3.9), integrating the resulting equation over 

t E [0, T] and noting (2.2.27) we have 
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or 

1t (l~tt~l~ + l~u~i~)ds::; DdE 1t (llu~ll~ + llu~ll~)ds + C 1t (lu~li + iu~li)ds 
o I o o 

+ C 1t (lu~l~ lu~li~d + lu~l~ lu~li~d)ds 

+ 2~ (lu~(O)I~ + lu~(O)I~). (2.3.11) 

Substituting (2.3.11) into (2.3.4) and choosing E = 1 2 j4DdC we obtain 

3
: 1t (llu~ll~ + llu~IIDds::; C ( 1t (lu~li + lu~li)ds 

+ 1t (lu~l~ lu~li~d + lu~l~ iu~li~d)ds 

+ (lu~(O)I~ + lu~(O)I~)). (2.3.12) 

It follows from (2.2.6a) and (2.3.12) that 

which is independent of k. 

Since L2 (0, T; H 2 (D)) is a reflexive Banach space (see Zenisek [37] page 40) then 

by compactness arguments (see Dautray and Lions [17] page 289), we deduce the 

existence of subsequences { uf} E L2 (0, T; H 2 (D)) such that 

Thus Ui E L2 (0, T; H 2 (D)). Furthermore since au:;av = 0 on an' it follows by the 

weak convergence of uf-----) ui in H 2 (D) that 8ud8v = 0 on L2 (8D). D 



Chapter 3 

A Semidiscrete Approximation 

In this chapter we introduce some notation which will be used in the current and 

following chapters. For completeness, we prove interpolation error estimates in the 

finite element space as these are necessary tools for analysis in the current chapter 

and chapter 4. Then a semidiscrete finite element approximation is proposed where 

the existence and uniqueness are proven. An error bound between the semidiscrete 

and continuous solution is given is the final section. 

3.1 Notation 

We shall now describe a semidiscrete approximation of the weak formulation of 

(1.0.7a-1.0.7f). We will assume the following: 

(A) Let Th be a quasi-uniform partition of 0 c JRd, d = 1, 2, 3, into disjoint 

simplices , r, with h7 = diam(r) and h = max7 ETh hn so that 0 = U7 EThf, 

see Ciarlet [13] page 132. In addition, it is assumed that Th is an acute 

partition; that is for (i) d = 2, the angle of any triangle does not exceed 1r /2. 

In fact this case can be relaxed to weakly acute, see Nochetto [29]; that is the 

sum of opposite angles relative to any side does not exceed 1r. (ii) d = 3 the 

angle between any two faces of the same tetrahedron does not exceed 1r /2. 

Let Sh C H 1 (0) be a finite element space defined by 

Sh :={X E C(O) : Xi 7 is linear Vr E Th}. 

32 
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Denote by { xi}/=1 the set of nodes of Th and let { 7Ji}f=1 be a basis for S 11 defined 

by 1Ji(xj) = Ji1, for i,j = 1, ... , J. 

Let 1rh : C(D) M S11 be the interpolation operator such that 1r 11x(xi) = x(xi), 

for i = 1, ... , J and define a discrete inner product on C(D) as follows 

J 

(XI, X2) 11 
:= 11rh(x1(x)x2(x))dx L miXl(xi)X2(xi), 

n ~1 

(3.1.1) 

where mi = (7Ji, 1Ji)h. The induced norm 11 · llh := [(·, ·) 11]! on Sh is equivalent to 

I· lo := [(-, ·)]!. Note that the integral (3.1.1) can easily be computed by means of 

vertex quadrature rule, which is exact for piecewise linear functions (see Ciarlet [13] 

page 182). 

Below we recall some well-known results about S 11 (see [32], [15] respectively) 

C1IXIo :S ixih :S C2lxlo Vx E Sh, 

I(7J, x)- (7J, x)hl :SChl+rll77lhllxllr Vx, 7] E S\ r = 0, 1. 

(3.1.2a) 

(3.1.2b) 

Vve also note the following the interpolation error in H 2 (rt) (see Theorem 3.1.6 in 

Ciarlet [13]), 

(3.1.2c) 

The Poincare inequality (2.1.2) together with (3.1.2a) and (3.1.2b) yields the 

discrete Poincare inequality, for h sufficiently small, 

(3.1.3) 

where Cp is a constant independent of h. 

Similar to (2.1.1) we introduce the discrete Green's operator gh : FM V 11 such 

that 

(3.1.4) 
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where "Vh := {1Jh E Sh: (1Jh, 1) = 0}. We define a norm on :F as 

(3.1.5) 

We have the following analogue of (2.1.5) and (2.1.6) respectively, that is for all 

a> 0, 

and 

(3.1.7) 

We note that Qh satisfies the error estimate (see Nochetto [29) page 49) 

(3.1.8) 

For later purposes, we recall the inverse inequality for 1 ::; p 1 ::; p2 ::; oo and 

m= 0 or 1 (see Ciarlet [13) page 140), 

d(p!-Pz) 

lxlm,p2 ::; Ch P!P2 lxlm,pl Vx E sh, (3.1.9) 

and the Sobolev embedding, for d = 1, 2, (see Lemma (5.4) in Thomee [35) for 

d = 2), 
1 d-1 

llxllo,oo::; c( ln h) 2 lxh Vx E Sh. (3.1.10) 

We also note the following inequalities (see Barrett and Blowey [2]) 

(3.1.11) 

The first inequality on the left is the inverse inequality due to the partition being 

quasi-uniform (see Ciarlet [13) page 142). The second inequality follows from the 

first and (3.1.6). The third follows from noting IQhvhh ::; IQvhh· The final inequality 

follows from noting (3.1.8) with m= 0 and the second inequality above. 
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We define ph to be discrete L 2 projection onto Sh: Given ry E L2 (D), phry is a 

unique solution of 

This projection satisfies the following bound (see Blowey and Elliott [10] page 155) 

(3.1.12) 

Given u~, u~ E H 1(D), let 

and take Uf = Phu~ and U~ = Phu~. Then automatically we have 

(3.1.13) 

Given T7 E H 1(D), P1hry is the projection onto Sh such that 

(Ptry, 1) = (ry, 1), 

and 

Notice that due to the nature of projections, it follows that 

(3.1.14) 

In the next section we prove the existence and uniqueness, however we complete 

this section with some preliminary lemmas, which will prove useful. 



3.1. Notation 36 

Lemma 3.1.1 Let v E Sh, and T E IR, T::::: 2 ford= 1, 2, 3. Then 

Ch2 Jvl~ for d = 1, 
I (I - 7rh )vr lo,l :S ( 1) (r-2)/2 

Ch2 In- lvlr h 1 
for d = 2, (3.1.15) 

Ch3-r12 llvll~ for d = 3. 

Pr-oof. Throughout the proof we use the following notation: 

P 1 ( T) := { v : v is a polynomial of degree :S 1 on r}. 

We prove this for each dimension separately. 

One Dimensional Case: Let 'T/i(x) and 'T/i+l(x) be the nodal basis for P1(Ii)· Thus 

for f E P 1 (Ii), we have 

and 

(3.1.16) 

since 1rh f(xi) = f(xi)· 

The Taylor expansion of f E C 2 about x E Ji is 

j(y) = f(x) + (y- x)j'(x) + (y ~ x)
2 

j"(E,), (3.1.17) 

where E, lies between x and y. Choosing y = xi and y = xi+l in (3.1.17), we have 

respectively 

f(xi) =f(x) +(xi- x)f'(x) +(xi; x)
2 

J"(f,i), 

f(xi+l) =f(x) + (xi+l- x)j'(x) + (xi+l
2
- x)

2 
j"(E,i+d· 

(3.1.18) 

(3.1.19) 
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Substituting (3.1.18) and (3.1.19) into (3.1.16), we have for x E (xi, Xi+l) = Ii 

i+l i+l i+l 

nh f(x) = f(x) L 1Jj(x) + LP]1Jj(x) + L Rj1}j(x), 
j=i j=i j=i 

where 

Pj = (xj- x)J'(x), 

(f ) (xj- x) 2 
"( ) 

Rj = R ; X' X j = 2 f f;,j . 

(3.1.20a) 

(3.1.20b) 

(3.1.20c) 

Recall that nh (f) = f for f E P 1 (Ii), which follows from the fact that there 

is a unique function f E P 1 (Ii) assuming given values at the nodes of h Taking 

f(x) = 1 in (3.1.20a) we obtain 

i+l 

L 1Jj(x) = 1, (3.1.21) 
j=i 

since in this case Pj = Rj = 0. 

Now let f ( x) = o:x, o: E IR in ( 3.1. 20a). Since f is a linear function we have 

nh(J) = j, ]Jj = (xj- x)o: and Rj = 0. Substituting these values into (3.1.20a), we 

have 
i+l 

LP11Jj(x) = 0. 
j=i 

Thus noting (3.1.21) and (3.1.22) we can rewrite (3.1.20a) as 

hence 

Recalling 

i+l 

f- nh f = - L Rj1Jj(x), 
j=i 

i+l 

I (I- rr•)f{x)lo,l,I, = It; R;q;(x) I.,,,I, 

for x E Ii, j = i, 

for x E h j = i + 1, 

(3.1.22) 
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we have 

Hence noting the Young inequality (2.1.4) and the Cauchy-Schwarz inequality, we 

have 

I(I- "')f(x)lo,J,I, <: ~ ({'+' IR;ry;(x)ldx) 

<: ~ ([+' (R;) 2dx) l ([+' (ry;(x)) 2dx) l 

I i+1 

::; Chl L 1Rjl0,2,!;· 
j=i 

Using the Cauchy-Schwarz inequality we can bound 1Rjlo,2,I; as follows 

(3.1.23) 

(3.1.24) 

Now consider f(x) = vr(x), where v(x) E Sh and r E IR, r ;::: 2, then for 

x Eh f'(x) = rvr- 1(x)v'(x), and f"(x) = r(r- l)vr-2(x)(v'(x))2, since v"(x) = 0. 

Substituting (3.1.24) into (3.1.23) we have 

j=i 

11 i+1 

< Ch 4 llvllr-2 "\:""""' lv'(t: ·) 12 
- 1 O,oo,I; L <,J 0,8,/; 

j=i 

I! 

= Ch4 llvllr-2 jvj2 
1 O,oo,I; 1,8,/; 

< Ch2 llvllr-2 lvl2 
- 1 O,oo,I; 1,2,/;' (3.1.25) 
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where we have noted the inverse inequality (3.1.9), for d = 1, p1 = 2, p2 = 8, and 

m = 1 to obtain the last inequality. 

Noting the Sobolev embedding result (3.1.10) for d = 1, and summing (3.1.25) 

over Ji we have 

I(J- 7rh)vrlo,1,l1 = L I(J- 7rh)vrlo,1,/; 
!; 

< Ch2 ~ llvllr-2 lvl2 - ~ O,oo,I; 1,2,/; 
!; 

< Ch2 llvllr-2 ~ lvl2 
- O,oo,l1 ~ 1,2,!; 

I; 

Two Dimensional Case: Now consider a triangle T E Th having a local node 

points ak = (a~, a~), k = 1, 2, 3. Let 'Tlk(x) be local basis for P1(T). Thus, in a 

similar fashion to the one dimensional case, for f E P 1 ( T), we have 

3 

f(x) = L f(ak)17k(x) Vx ET, 

k=1 

and 
3 

1rh f(x) = L f(ak)'Tlk(x) Vx ET, (3.1.26) 
k=1 

since 1rh f(ak) = f(ak). Using a Taylor expansion about x = (x1, x2) ET, we have 

f(y) = f(x) + p(f; x, y) + R(f, x, y), (3.1.27a) 

where 

(3.1.27b) 

(3.1.27c) 



3.1. Notation 40 

and ~ is the point on the line segment between x and y. Choosing y = ak for 

k = 1, 2, 3 on (3.1.27a), we have 

(3.1.28) 

Substituting (3.1.28) into (3.1.26) we have 

3 3 3 

1rh f(x) = f(x) L "lk(x) +LP(!; x, ak)77k(x) + L R(f; x, ak)77k(x). (3.1.29) 
k=l k=l k=l 

Note that 1rh (f) = f for f E P1 ( T) assuming given value at the nodes of T. 

Adopting the approach of Johnson in [24), taking f(x) 1 in (3.1.29), we obtain 

3 

L 77k(x) = 1, (3.1.30) 
k=l 

since in this case 1rh(J) = f and p(f; x, ak) = R(f, x, ak) = 0. 

Now let f(x) = d1x1 + d2x2, d1, d2 E lR in (3.1.29). Since f is a linear function 

we have 1rh(J) = j, 

and R(f, x, ak) = 0. Substituting these values into (3.1.29) we obtain 

3 

L[dl (a~ - x1)+d2(a~- x2)]77k(x) = 0. 
k=l 

Choosing di = oj(x)joxi, fori= 1, 2, we have 

(3.1.31) 

Thus by (3.1.30) and (3.1.31) we can express (3.1.29) as 

3 

1rh f(x) = f(x) + L R(f; x, ak)77k(x). (3.1.32) 
k=l 
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Following the approach of the one dimensional case closely, we are able to show 

that 

3 

I (I- 7rh)f(x)lo,l,7::; L IR(.f; x, ak)1Jk(x)lo,1,
7 

k=l 
3 ! ! 

~ £; U (R(J;l:,a'))
2rix)' U ~i(x)dx)' 

3 

= L IR(.f; x, ak) lo,2,7 11Jk(x) lo,2,7 
k=l 

3 

::; Ch7 L IR(f; x, ak) lo,2,7' 
k=l 

where we have noted the following formula (see [23] page 145) 

to compute I7Jk(x)lo,2,7· 

Since 

1 

l(a~- xi)(aj- xj)lo,4,7 = (l(a~- xi) 4 (aj- Xj)
4dx) 

4

::; Chi, 

we have 

I k)l 1 2:::2 fJ2j(f,) k k R(f; x, a 0 2 =- >l >l (ai - xi)(a1- - Xj) 
'•

7 2 ux·ux · 
i,j=l 2 J 0,2,7 

::; c hi ~ I ()2 f ( o I . 
~ ox·ox· 
i,j=l 2 J 0,4,7 

(3.1.33) 

(3.1.34) 
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Now consider f(x) = vr(x), where v(x) E sh, r E IR, r :2: 2 and X = (xl, x2), 

then fori, j = 1, 2, 

Recall that ovjoxj is a constant. Hence substituting (3.1.34) into (3.1.33), we have 

(3.1.35) 

where we have noted the inverse inequality (3.1.9) with d = 2, p1 = 2, p2 = 8, m= 

1, to obtain the last inequality. 

Summing (3.1.35) overT E Th and noting the discrete Sobolev embedding result 

ford= 2, we have 

( 1) (r-2)/2 
:::; Ch2 ln h lvl~,2 ,0 . 
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Three Dimensional Case: Consider a tetrahedron T E Th having local node 

points a1 = (ai,a~,a~), l = 1, ... ,4. Let TJt(x) be local basis for P 1(r). Thus for 

f E P1(r), we have 
4 

f(x) = L f(a1)TJt(x), 
1=1 

and 
4 

1rh f(x) = L f(a1)TJt(x). (3.1.36) 
1=1 

Following the approach of the two dimensional case we will obtain 

4 

1rh f(x) = f(x) + L R(f; x, a1)TJt(x), 
1=1 

where 

( 
I 1 2::3 

EP !(~) l l R f;x,a) =- a a (ai- xi)(aj- Xj)· 
2 x x· 

i,j=1 t J 

Hence 

If (:c) - "" f ( x) lo,I,, = I t. R(f; x, a')ry, ( x) lo,< ·' S t.IR(f; x, a')r/, (:c) lo,I,, 

4 l l 

"~ (1 (R(f; x, a1
))

2dx)' (117{(x)dx)' 
4 

= L IR(f; x, a
1
) lo,2,T /TJt(x) lo,2,T 

1=1 

(3.1.37) 

where we have noted the following formula (see Huebner [23] page 148) 

to compute /TJt(x)/o,2,T· 

Since, for l = 1, ... , 4, 

I 

I (a!- xi)(a~ - Xj) lo,4 ,
7 

= ( 1 (a~- xi) 4 (a~ - Xj) 4dx) 
4 

:::; ChJ, 
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we have 

I z I 11 2:3 a2 !(~) z z I R(J; x, a) 0 2 = - a a (ai- xi)(aj- Xj) 
• ,r 2 x· x· 

i,j=l Z J 0,2,T 

!..!. 3 I a2 f I :S Chr4 """" a a . L-t X X· 
i,j=l z J 0,4,T 

(3.1.38) 

Now consider f(x) = vr(x), where v(x) E Sh, rE IR, r;::: 2 and x = (x1 , x2 , x3 ), 

then for i,j = 1,2,3, we have 

Recall that avjaxj is a constant. Hence substituting (3.1.38) into (3.1.37), noting 

the Cauchy-Schwarz inequality, and the inverse inequality (3.1.9) with d = 3, p1 = 2, 

and p2 = 8 and m= 1, respectively, we have 

I (I - rr•)v' lo,I,, ~ Ch'J itl lv'-'(~) a~;:) o~;;) 10,4,, 

~ Ch'J llvll;~,,i~ u ( 0~;;)n~;;))'dx r 
3 ! ! 

~ c h'J llvll;~,, ij; (1 ( 0~;;) )' dx) ' (1 ( o;;;) )' dx) ' 

:::; ChJIIvllr-2 ~ I av(~) I I av(~) I 
O,oo,r L-t ax- ax · 

i,j=l z 0,8,T J 0,8,T 

(3.1.39) 
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Summing (3.1.39) overT E Th, noting the inverse inequality (3.1.9) with p1 = 

6, p2 = oo, m= 0, d = 3 and (2.1.8) with r = 6, m= 1, d = 3, p = 2 we have 

~ L eh; llvii~~,T lvli,2,T 
TETh 

~ Ch
2 llvll~~,n L lvli,2,T 

TETh 

~ Ch
2 llvll~~,n llvlli,2,n 

< Ch3-r/2 lvlr-2 llvll2 - 0,6,!1 1,2,!1 

~ Ch3-r/2 llvllr . 1,2,!1 

This completes the proof of the lemma. 0 

Lemma 3.1.2 Let vh E Sh, rE JR., r 2: 2 ford= 1,2, and rE [2, 6] ford= 3. 

Then 

Proof. Note that the inequality 

i 1rh[(vhY]dx ~ i I(I- 7rh)[(vhYJidx + i (vhYdx, 

= I(I- 7rh)[(vhrJio,l + lvl~,r Vr, 

(3.1.15) and (2.1.8) yield 

Ch2 lvhl~ + Cllvhll~ for d = 1, 

i 1fh[(vhrJdx ~ Ch2 ( ln *) (r-2)/21vhl~ + Cllvhll~ for d = 2, 

Ch3-r12 llvll~ + Cllvhll~ for d = 3. 

Then (3.1.40) follows. 

(3.1.40) 

(3.1.41) 

0 
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Lemma 3.1.3 Let vh E Sh and d = 1, 2, 3. Then 

(3.1.42) 

Proof. It follows from (2.1.8) and (3.1.6). 0 

Lemma 3.1.4 Let 'TJi(x) E Sh, i = 1, ... , 4. and d = 1, 2, 3. Then 

(3.1.43) 

Proof: Noting Theorem 5 in Ciarlet and Raviart [14], we have fori, j = 1, 2, 3 

I ( 'T/1 'T/2 'T/3' 'T/4) h - ( 'T/1 'T/2 'T/3' 'T/4) I = I i (I - 1fh) ( ( 'T/1 'T/2 'T/3 'T/4 )(X)) I ' 

::::; Ch2 L I EP('T/1 'T/2 T73 TJ4) I . 
lnl=2 axiaxj £1(!1) 

(3.1.44) 

Now we bound each terms on the right hand side (3.1.44). Without loss of 

generality, using the generalised Holder inequality, (2.1.8) and (3.1.9) we obtain, for 

i,j=1,2,3, 

::::; lx1h.3IX211,3 lx3lo,6 lx4lo,6, 
d 

::::; Ch- 3 llx1lh llx2ll1 llx31h llx41h· (3.1.45) 

A bound for remaining terms follows by interchanging the Xk for k = 1, ... , 4, on 

(3.1.45). Hence (3.1.43) follows. 0 
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3.2 Existence and Uniqueness 

We define the following semidiscrete approximation to the problem (P): 

(Ph) Find { u~, u~, w?, wn E Sh X Sh X Sh X Sh such that for a. e. t E (0, T) 

and 

( au~ ) ( h at '17 = - V'wl' \717), 

(w~, 17) = (cp(u~), 17)h+ !'(V'u~, Y'17) + 2D(w1 (u~, u~), 17)1!, 

u~(x, 0) = Phu~(x), 

( au~ ) h at ) 17 = - (V'w2' Y'17), 

(w~, 17) = (cp(u~), 17)h+ !'(V'u~, Y'17) + 2D(w2 (u~, u~), 17)'\ 

u~ ( x, 0) = ph ug ( x), 

(3.2.1a) 

(3.2.1b) 

(3.2.1c) 

(3.2.1d) 

(3.2.le) 

(3.2.1f) 

where if!(·), w1 (·, ·), w2 (·, ·)are given by (1.0.4g), (1.0.4h) and (1.0.4i) respectively. 

Using (3.1.4), we can write (3.2.1a) and (3.2.1d), fori= 1, 2, as 

(3.2.2) 

Taking 17 = Qh
8
;/ + w:t in (3.2.2), we have for a. e. t E (0, T) 

Thus by the Poincare inequality (3.1.3) we have 

Hence we obtain 

(3.2.3) 
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where 

j w? = 
1

A
1 

((<P(u7), 1)h + 2D(wi(u~,u~), 1)h). (3.2.4) 

Noting (3.2.3), (3.2.4) and 

we can restate the problem (Ph) as: 

Find {ut, un E sh X Sh such that fori= 1, 2, u?(o) = phu? and for a.e. t E (0, T), 

(u?(t), 1) = (u?, 1) and 

(3.2.5a) 

(3.2.5b) 

for all 77 E Sh. 

Note that taking 7] = 1 in (3.2.1a) and (3.2.1d) and integrating over (0, t) we 

obtain 

Since u? is piecewise linear, we have 

which implies for any t that 

(3.2.7) 

Theorem 3.2.1 Let the assumptions on u? of Theorem 2.2.1 and the assumptions 

(A) hold. Then for all h > 0 and d = 1, 2, 3, there exists a unique solution { u~t, wf} 
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to (Ph) such that the following stability bounds hold independently of h: 

llu711u"'(O,T;H1(!1)) :S: C, 

llu711H1(0,T;(H1(!1))') :S: C, 

llw~~IIP(o,T;Hl(n)) :S: C(l + T~). 

Proof. We write (3.2.1a-c) and (3.2.ld-f) using the representation 

~ 

J 

u7(t,x) = L:ci1(t)r]j(x), 
j=l 

J 
h ~~ wi (t, x) = L dij(t)ry1(x), 

j=l 

with ci1(t), di1(t) E JR. Using (3.2.9a-b) and taking ry = ry1, J -

(3.2.la-c) and (3.2.1d-f), we obtain 

J J 

(3.2.8a) 

(3.2.8b) 

(3.2.8c) 

(3.2.9a) 

(3.2.9b) 

1, ... , J, lll 

(3.2.10a) 

L dli('T/i, "11) = (c/J(u~), ry1)h + 1 L:::cli(V'ryi, V'ry1) + 2D(wl(u~, u~), ry1)h, (3.2.10b) 
i=l i=l 

J 

I:cli(O)(ryi, ry1) = (Phu~, ry1), (3.2.10c) 
i=l 

(3.2.10d) 

J J 

L d2i('T/i, 'T/j) = (cjJ(u~), ry1)h + 1 :L:c2i(V'ryi, V'ry1) + 2D(w2(u~, u~), ry1)h, (3.2.10e) 
i=l i=l 

J 

:L:c2i(O)(ryi,'T/j) = (Phug,,1), (3.2.10f) 
i=l 
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or 

where 

ac1 ~ 
B- = -Ad1 

dt ' 

Bd1 = J(cl) +,A-cl+ 2Dg1(c1, c2), 

Bc1 (O) = Phu~, 

Bac2 =-Ad 
dt 

2
' 

Bd2 = J(c2) + ,Ac.2 + 2Dg2(c1, c2), 

Bc2(0) = Phu~, 

{B}i1 = (TJi, TJj), 

{A}i1 = (V'TJi, V'TJj), 

{f(ci)}1 = (<P(u~), TJ1)h, 

{g2(cl, c2)}j = (\IIi(u~, u~), T}j)h. 

Since B is a nonsingular matrix we have 

~1 
= -B- 1AB-1 f(ci) +1B- 1AB-1Ac1 +2DB-1AB-1gl(cl,c2), 

c1 (0) = B-1 Phu~, 

~2 
= -B-1 AB-1 j(c2) + ,B-1 AB-1 Ac2 + 2DB-1 AB-1g2(c1, c2), 

c2 (0) = B-1 Phu~, 

Defining c = [cl ' c2V and uh = [u~ ' u~V we have 

~ = ii(c), 

c(O) = BPhuh. 

50 

It follows from the theory of systems of ordinary differential equations that there 

exists a unique solution on some time interval for c. Hence we have local existence 
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for u? and wf for some t E (0, tm). To obtain existence of a global solution, we only 

need to show that a priori estimates of u~1 , wf independent of h. 

Now we derive the bound (3.2.8a). Setting 77 = ou? jot, fori= 1, 2, in (3.2.5a-b) 

respectively, adding the resulting equations, rearranging the terms and integrating 

over (0, t), we have for all t E (0, T) 

(3.2.11) 

where we have noted 

(3.2.12) 

Now we examine each term on the right hand side of (3.2.11) in turn. Using 

(3.1.5) we have fori= 1, 2 

1t (gh ou?' ou?) ds = 1t lgh ou? 12 ds = 1t 11 ou? 112 ds. 
0 os os 0 os 1 0 os -h 

The third and fourth terms of (3.2.11) can be expressed as 

1t ( h ou?) 1 1t a ( h h) 1 h ) 2 1 h 12 \lui, \7~ ds =- ~ \7ui, \7ui ds = -lui (t 11 - -lui (0) 1 . 
o us 2 o uS 2 2 

while the fifth and sixth terms are 

In 1fh[1t ~(u7):su7ds]dx =In 1fh[1t :s~(u7(s))]dx 
= In 1rh [ '1/J ( u? ( t)) - ~ ( u7 ( 0))] dx 

= (1/J(u7(t)), l)h- (~(u7(o)), It. 

(3.2.13) 

(3.2.14) 

(3.2.15) 
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The last two terms of (3.2.11) can be written as 

Substituting (3.2.13-3.2.16) into (3.2.11), noting (3.2.lc) and (3.2.1f), and rear-

ranging the terms we have 

[ II~:T,ds+ [ ~~~:~ Lds + ~~u~(t)ll + ~~u~(tlll 
+ ( 7/J( 'Lt~(t) ), 1 )h + ( 7/J( u~(t) ), 1 )h + 2D (w( u~(t), u~(t) ), 1 )h 

= ~IPhu~li + ~IPhugli + (7/J(u~(O)), l)h + (7/J(u~(O)), It 
+ 2D(w(u~(O), u~(O)), l)h. (3.2.17) 

It follows from (3.1.40) that 

(7/J(u~~(O)), l)h = l(((u7(0))2- 1)2, l)h 

::; l ( ( u? ( 0)) 4 + 1, 1) h 

= l L nh[(u7(0))4]dx + l L dx 

::; Cllu?(o)llf + l1n1 

= CIIPhu?llf + l1n1. (3.2.18) 
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The Young inequality (2.I.4), and (3.1.40) yield 

(w(u~(O), u~(O)), I)h = ((u~(O) + I) 2 (u~(O) + I) 2
, I)h 

~ ~((u~(O) +I)\ l)h + ~((u~(O) + I) 4
, I)h 

~ ~((u~(0))4 +I, I)h + ~((u~(0))4 +I, It 

~ CIIPhu~llf + CIIPhugllf + 9101. 
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(3.2.I9) 

Substituting (3.2.I8)-(3.2.I9) into (3.2.I7), noting (3.2.Ic) and (3.2.1f), and sim­

plifying we have 

1' 11 
88:~ [ ds + 1' 11 a;.~[. ds+ ~~u~(t)ll + ~~u~(t)ll 

+ (1/J(u~(t)), I)h + (1/J(u~(t)), I)h + 2D(w(u~(t),u~(t)), It 

= CIIPhu~llf + CIIPhugllf + (I8D + ~)IOI ~ C, (3.2.20) 

where C is independent ofT. Using the Poincare inequality (3.1.3), (3.2.20) and 

(3.2.7) we obtain 

(3.2.2I) 

It follows that u?(t) E H 1(0). Hence 

(3.2.22) 

Next we show the bound (3.2.8b). Noting (3.2.3) and (3.1.5) we obtain 

(3.2.23) 

Hence setting t = T in (3.2.20) we obtain 

1r lw~(t)lidt + 1T lw~(t)lidt + ~~u~(T)Ii + ~~u~(T)Ii + (?j;(u~(T)), I)h 

+ (?j;(u~(T)), I)h + (w(u~(T), u~(T)), I)h ~ C, (3.2.24) 
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and in particular 

(3.2.25) 

This implies using (3.1.11) that 

11 8ufll C at L2(0,T;(Ifl (fl))') ~ . 
(3.2.26) 

Recall that the mass is conserved. This allows us to show uf is bounded in 

L2 (0, T; (H1(D))') by showing uf --f u~L E £ 2 (0, T; (H1(D))'). Consider 

llu?- J uf. ~ llu?(t)- u?(o) + u?(o)- l~l (u?(t), 1)11~. 

111
t ouf(t) h 1 11 11 2 

= 
0 08 

ds + ui (0)- jnl(ui (t), 1) _
11

• (3.2.27) 

Noting the Young inequality (2.1.4), (3.1.7), (3.2.6) and taking t =Tin (3.2.27) we 

obtain 

llu?- f u?[, ~ 2 [ 11 Dut;t) L ds + 211u?(O)- 1~1 (u:'(t),l{, 

~ 2 [ 11 mi;t) L ds + Clu?(O)Ii + Cl(u?(t), 1)1~ 

~ 2 [ 11 Dut;t) [,ds + C ~ C, (3.2.28) 

where we have noted (3.2.25) and the condition on u?. 
Integrating (3.2.28) over (0, T) we obtain 

llu?- f u?ll < C(T) < C. 
£2 (O,T;(Ifl (fl) )') 

(3.2.29) 

Hence (3.2.25) and (3.2.29) imply that 

iiu?iiHI(O,T;(Ifl(fl))') < C. (3.2.30) 

Now we show that wf E H 1 (D). Setting~= wf in the Poincare inequality (2.1.2), 
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and noting the Young inequality (2.1.4) we have 

lwf(t)l6 ~ C(lwf(t)li + l(wf(t), 1)n. (3.2.31) 

The definition of the norm in H 1 and (3.2.31) yield 

llwf(t)lli ~ C(lwf(t)li + l(wf(t), 1)1 2
). (3.2.32) 

Taking T7 = 1 in (3.2.1b) and (3.2.1e) we have 

(3.2.33) 

Now we bound the right hand side terms of (3.2.33) in turn. Noting the Young 

inequality (2.1.4), (3.1.2a), (3.1.40) and (3.2.22) we obtain 

l(f/J(1l7(t)), 1)hl =I In 7rh[(1l7(t)) 3
- 'u7(t)Jdxl 

~ ~ 17rh[((1l?(t))2
- 1) 2Jdx + ~ r 7rh[(u7(t)) 2 ]dx 

2 n 2)n 

~ In 1rh[( u7(t) )4 + 1 ]dx + ~ iu7(t) lh 

~In 7rh[(u7(t)) 4 ]dx + IDI + Clu?(t)16 

~ C(h)llu?(t)lli + Cllu?(t)lli + IDI ~C. (3.2.34) 

Using the Young inequality (2.1.4), (3.1.2a), (3.1.40) and (3.2.22) we have 

l(wi(u~(t), u~(t)), 1)hl = i((u~(t) + 1)(u~(t) + 1)2
, 1)hl 

= I In 1rh[(u~(t) + 1)(u~(t) + 1)2Jdxl 

~ ~In 1rh[(u~(t) + 1)2 + (u~(t) + 1)4]dx 

~In 1rh[(u~(t)) 2 + 4(u~(t)) 4 + 5]dx 

~ Clu~(t)l6 + C(h)llu~(t)lli + 5IDI ~C. (3.2.35a) 
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Similarly we have 

(3.2.35b) 

Substituting (3.2.34) and (3.2.35a-b) into (3.2.33), then inserting the resulting 

equations into (3.2.32) we end up with 

llwf(t)lli::; C(lwf(t)li +C). (3.2.36) 

Integrating (3.2.36) over (0, T) and noting (3.2.22), we conclude that 

(3.2.37) 

N · h · · 1 h · L { hl hl hl hl} d ow we are m t e pos1t10n to s 1ow t e umqueness. et u1' , w 1 ' , u2' , w2' an 

{ h,2 h,2 h,2 1!,2} b t I t. f (Ph) D fi u1 , w1 , u2 , w2 e wo so u IOns o . e ne 

(3.2.38) 

Substitute these solutions into (3.2.5a-b) we have fori= 1, 2, 

(Qh 
0~r, rt) + 1(\lu~'i, "Vrt) + (</>('u~·t rt)h + 2D(wi(u~'\ u~'i), 77)1! = 0, (3.2.39) 

(Qh 
0~r, 77) +!("Vu~'\ "Vrt) + (</>(u~'i), rt)h + 2D(wi(u~'i, u~'i), rt)h = 0. (3.2.40) 

Subtracting (3.2.40) from (3.2.39) and summing the resulting equation for i = 1, 2, 

. h Ill 1!2 d hi h2 . I b . w1t T7 = u1' - u1' an 7] = u2' - u2' respective y, we o tam 

+ 2D (,r, ( 1!,2 h,2) _ ,r, ( h,l h,l) h,l _ h,2) h 
'J-' 1 ul 'u2 'J-' 1 ul 'u2 'ul ul 

+ 2D(,r, ( h,2 uh,2) _ ,r, ( h,l h,l) h,l _ h,2)h 
'1-' 2 U1 ' 2 '1-' 2 ul , U2 , U2 U2 , (3.2.41) 

where we have noted (3.2.38) for the terms on the left hand side. 
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Noting (2.2.55), (3.1.2a) and (3.1.6) we have 

(A.( h,2) - A.( h,l) h,l - h,2) h + (A.( h,2) - A.( h,l) h,l - h,2) h 
'f/ ul 'f/ ul ' ul ul 'f/ u2 'f/ u2 ' u2 u2 

- (( h,2)3 - (' h,1)3 + h,l - h,2 h,l - h,2)h 
- ul ul ul ui 'ul ui 

+ (( h,2)3 - ( h,1)3 + h,l - h,2 h,l - h,2)h 
u2 u2 u2 u2 ' u2 u2 

< ( h,l h,2 h,l h,2)h + ( h,l h,2 h,l h,2)h _ u 1 - u 1 , u 1 - u 1 u 2 - 1t2 , u 2 - u 2 

= iiz~ 11~ + llz~ll~ 

s; Cllz~ll~ + Cllz~ll~ 

= C(V'z~, \79hz~)+ C(V'z~, \79hz;) 

s; Clz~lt llz~ll-h + Clz;h llz~ll-h 

s; %(1z~li + lz~ID + C(llz~ll~h + llz~ll~h). (3.2.42) 

Now the Taylor expansion of \{I about ( u~'2 , u~'2 ) and ( u~' 1 , u~' 1 ) are respectively 

given by 

(3.2.43a) 

and 

(3.2.43b) 

where ( 1 and 6 are between u~' 1 and u~'2 , and ( 2 and 6 are between u~' 1 and u~'2 . 

Adding (3.2.43a) and (3.2.43b), simplifying, interpolating, integrating over rl, and 
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noting (1.0.4h) and (1.0.4i) we obtain 

so that using the Cauchy-Schwarz inequality yields 

I ((
,Tr ( h,2 h,2) _ ,T, ( h,1 h,1)) ( h,1 _ h,2))h 
'~' 1 u1 'u2 '~' 1 u1 ' u2 ' ul ul 

+(( ,Tr ( h,2 h,2) _ >Tr ( h,1 h,1)) ( h,1 _ h,2))hl 
'1' 2 u1 , u2 '1' 2 u1 , u2 , u2 u2 

Hence using (2.2.59a-f) we can rewrite (3.2.44) as 

I (,T, ( h,2 h,2) _ •Tr ( h,1 h,1) ( h,1 _ h,2))h 
'~' 1 u1 ' u2 '~' 1 u1 ' u2 ' u1 u1 

+(w2(u~'2, u~'2)- w2(u~,l' u~'1), (u~,l- u~'2))hl 

:::; 217rh [ ( ( u~,1 )2 + ( u~'2)2 + 1) ( u~,l - u~'2)2 J dx 

+ 217rh[((u~'l)2 + (u~'2)2 + l)(u~,1- u~'2)2]dx 

+ 2 fn7rh[((u~'l)2 + (u~'2)2 + (u~'l)2 + (u~'2)2 + 2)(u~,l _ u~'2)2]dx 

+ 217rh[((u~' 1 ) 2 + (u~'2 ) 2 + (u~' 1 ) 2 + (u~'2 ) 2 + 2)(u~' 1 - u~'2 ) 2]dx. (3.2.45) 
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On noting (3.1.2a) and (3.1.6) we have 

(3.2.46) 

Note that using (3.1.41), (3.1.15), the Poincare inequality (2.1.2), (3.2.6), (3.2.7), 

(2.1.8), and (3.2.22), we have 

1 ( i 1rh [(uZ'j)4] dx) 2 

~ (I (I- 7rh)[(uZ'j)4]lo,I + luZ'jl6,4)t 

Ch luZ'jli for d = 1, 

< 
I 

Ch ( ln k) 
2 luZ'jli for d = 2, 

Cht luZ'jli for d= 3, 

and using (3.1.41), (3.1.15), (3.1.42), the Poincare inequality (2.1.2) and (zi1
, 1) = 0 

we obtain 

7 1 

Ch lzfli + C lzflfllzfll~h for d = 1, 
.!_ 7 I 

Ch ( ln k) 2 lzfli + C lzflfllzfll~h for d = 2, 
l 7 1 

Ch 2 lzfli + C lzflfllzfll~h for d = 3. 

Hence noting the Cauchy-Schwarz inequality, h Ink ~ C, (3.2.22), the first in­

equality in (3.1.11), the Young inequality (2.1.4) with p = 4/3, 8/7, q = 4, 8 re-
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spectively, (3.1.6) and simplifying we obtain 

7 1 

h2 lzfli + h lzflt llzi1 II~h for d = 1, 
.!_ 7 1 

:s; CJuZ'jl~ h2 ln k lzfli + h ( ln k) 2 lzflt llzfll~h for d = 2, 
I 7 1 

h lzfli + h2 lzflt llzfll~h for d = 3, 
h 2 h ]_ h .!_ 

:s; Chlzi 11 + C lzi lt llzi ll~h for d = 1, 2, 3, 
h h 7t h 2 11 hll2 :s; Clzi lolzi h + slzi 11 + C zi -h for d = 1, 2, 3, 

3 1 7E 
:s; Clzi!I? llzi!II~h + slz?l~ + Cllz?ll~h for d = 1, 2, 3, 

:s; 
1!E lzi1 1i + Cllz?ll~h for d = 1, 2, 3. (3.2.47) 

Noting 

(3.2.48) 

(3.2.42), (3.2.46), and (3.2.47), we can rewrite (3.2.41) as 

cl 
dt (llz~1 ll~h + llz~II~,J + 2r(lz~1 1i + lz;li) 

:s; ((1 + 12D)a + 78DE) (lz~li + lz;li) + C(llz~ll~h + llz;ll~h)· 

Setting a= E and E = 7r/(360D + 4), D 2: 0, and rearranging the terms we obtain 

(3.2.49) 

Integrating overt E (0, T) and using a Gri::inwall inequality we conclude from (3.2.49) 
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that 

Noting the Poincare inequality (2.1.2) and (zf, 1) = 0, we obtain the uniqueness of 

u?. The uniqueness of wf follows from (3.2.3) and (3.2.4). This ends the proof of 

the existence and uniqueness of the problem (P 11
). 0 

3.3 Error bound 

In this section we shall estimate the difference between the solutions ui of the coupled 

pair of Cahn-Hilliard equations (2.2.1a-f) and their semidiscrete approximations 

u~1 defined in (3.2.1a-f). For the case D = 0, i.e. two decoupled Cahn-Hilliard 

equations, the error bound has been discussed in Elliott, French and Milner [19]. 

They showed that the error bound is H 1 optimal. 

Theorem 3.3.1 Let the assumptions of Theorem 3.2.1 hold. Then for all h > 0 

and d = 1, 2, 3, we have that 

(3.3.1) 

(3.2.5a) and (3.2.5b) from (2.2.5a) and (2.2.5b) respectively, we have 

81li h au? ( -f ) (Qat, TJ) + !(Y'ei, Y'TJ) = (Q at , TJ)- </J(ui) + 2D\lli(u1 , u 2), (I- )TJ 

+ (</J(u?) + 2Dwi(u~, u~), (I--f )TJ)h, (3.3.2) 
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Subtracting (9 8;t' rt) from both sides of (3.3.2), substituting TJ = e? E Sh into 

the resulting equation, and noting that ei = ef + e? and (3.2.48) we have 

1 d 12 2 A 8ei A h ) 8u? h 2 dt lleil-1 + 'Yieil1 = 'Y(V'ei, V'ei) +(Qat' ei) + ((9 - 9 at 'ei) 

+ (1>(u7), (I--f )e?)h- (rf>(ui), (I--f )e?) 

+ 2D( (wi(1t~, u~), (I--f )e?)h- (wi(u1 , u2), (I--f )e~~)) 

= /1 + /2 + h, (3.3.3) 

where Ij correspond to the jth line of the terms in the right hand side. 

Now we bound each line in turn. ·write 11 = 11,1 + 11,2 + 11,3 , where each I 1,k 

denotes the kth term of 11 . Hence by the Cauchy-Schwarz and the Young inequality 

(2.1.4) we obtain 

(3.3.4) 

Using the Cauchy-Schwarz inequality, in conjunction with the Poincare inequality 

(2.1.2), and (2.1.3) we have 

(3.3.5) 

Noting the Cauchy-Schwarz inequality, together with the Young inequality (2.1.4), 

and the Poincare inequality (2.1.2) we can express 11,3 as 

(3.3.6) 
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To bound I2, rewrite it as 

(3.3.7) 

where 

I2,1 = ((u?) 3
, (I--f )e?)h- ((ui) 3

, (I--f )e?), (3.3.8) 

I2,2 = (ui, (I--f )e?)- (u?, (I--f )e?)h. (3.3.9) 

Adding and subtracting ( u?, (I--f )e~1 ), we can rewrite I2,2 as 

I2,2::; I (ui- u?, (I--f )e?)l + i(u?, (I--f )e?)- (u?, (I--f )e?tl· 

Notice that by the Poincare inequality (2.1.2) we have 

I(J --f )e?lo::; Cp(I(J --f )e?h + I((J --f )e?, 1)1) 

= Cp(le?ll + l(e?, 1)- (-f e?, 1)1) 

= C p (I e?l1 + I ( e?, 1) - -f e? ( 1, 1) I) 

( h h 1 h ) = Cp lei l1 + l(ei, 1)- lr21!m(ei, 1)1 

= Cple?h. 

It follows by the definition of the norm in H 1 that 

I 

II(I --f )e?lh =(I (I--f )e?l6 +I (I--f )e?liP::; Cle?h. 

(3.3.10) 

(3.3.11) 

Noting the Cauchy-Schwarz inequality, (3.1.2b), (3.3.10), (3.3.11), the Young 

inequality (2.1.4), (3.2.8a), (2.1.5), and reapplying the Young inequality (2.1.4) we 

obtain 
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h,2 S leilo I(I -J )e~lo + Ch2 llu~ll1 II(I -J )e?ll1 

S Cpleilo le~l1 + Ch2 ll'u.~ll1 le?l1 

S Cpleil~ + ~le?li + Ch4 llu?lli + ~le?li 

S Cleil~ + Eie?li + Ch4 

S Clleill-1leih + 2Eieili + 2Eietli + Ch4 

S Clleill~1 + 4Eieili + 2Eietli + Ch4 

S Clleill~1 + ~leili + Cletli + Ch
4

. 
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(3.3.12) 

To bound h,1 we add and subtract ((uf) 3
, (I--f )e?) and note (2.2.55). This 

yields 

h,1 = ((u?)3, (I -J )e?)h- ((ui)3, (I -J )e?) 

= ( ( u~t) 3, (I - J ) e?) h - ( ( u?) 3, (I - -f ) e?) + ( ( u?) 3 - ( ui) 3, (I - J ) e?) 

= I2 1 1 + I2 1 2. 
'' '' 

Hence noting (3.1.43), (3.2.22), (3.3.11) and the Young inequality (2.1.4) we 

obtain 

I2,1,1 = ((u??, (I--f )e?)h- ((u~) 3 , (I--f )e?) 

S Ch2-d13 llu?lli II(I -J )e?ll1 

< Ch2-d/31ehl 
- t 1 

(3.3.13) 
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Noting (2.1.9), (3.3.11), (3.2.8a), (2.1.5), and the Young inequality (2.1.4) we 

have 

I2,1,2 ~ l((ui)3 - (u7)3, (I--f )e7)1, 

= l((ui -u7)(uT + uiu7 + (u7)2), (I--f )e?)l, 

~ Clui- u?lo II(I --f )e?lh(lluilli + lluill1 llu?ll1 + llu?lli), 

~ Clei 16 + ;E le~~li, 
1 h 2 

~ C 11 ei ll-1 I ei l1 + 2E I ei l1, 

~ Clleill~1 + ~leili + Clefli, 
E 

= Clleill~1 + ~leili + Clefli· (3.3.14) 

Now we bound the term h. To do so we rewrite I3 fori = 1 as follows 

(w1(u~,u~), (I--f )enh- (w1(u1,u2), (I--f )en 

= ((u~ + 1)(u~ + 1)2, (I--f )enh- ((u1 + 1)(u2 + 1)2, (I--f )en 

= ((u~ + 1)(u~ + 1)2, (I--f )enh- ((1t~ + 1)(u~ + 1)2, (I--f )en 

+ ((u~ + 1)(u~ + 1)2, (I--f )en- ((u1 + 1)(u~ + 1?, (I--f )en 

+ ((ul + 1)(u~ + 1)2, (I--f )en- ((u1 + 1)(u2 + 1)2, (I--f )en 

= h,1 + I3,2 + I3,3· (3.3.15) 

Noting (3.1.43), (3.3.11), (3.2.8a) and the Young inequality (2.1.4) we obtain 

I3,1 ~ l((u~ + 1)(u~ + 1)2, (I--f )enh- ((u~ + 1)(u~ + 1)2, (I--f )en I 

~ Ch2-d13 llu~ + 1lh llu~ + 1lli II(I --f )e~lh 

< C h2-d/3 I eh I 
- 1 1 

< Ch4-2d/3 + clehl2 
- 1 1 

(3.3.16) 



3.3. Error bound 66 

Using (2.1.9), (3.2.8a), (3.3.11), the Young inequality (2.1.4), (2.1.5) and reapplying 

the Young inequality (2.1.4) we have 

I3,2 = ((u~- ut)(u~ + 1) 2
, (I--f )en 

:S Clu~- u1lo llu~ + 1lli 11(1 --f )e~ll1 

:S Cle1lo le~h 

:S Cle1l6 + cle~li 

:S Clle1ll-1 le1l1 + 2cledi + Cletli 

:S Clle1ll~1 + 4cle11i + Cletli-

Using the same technique we obtain 

h,3 = ((u1 + 1)((u~ + 1)2 - (u2 + 1?), (I--f )en 

:S Clle2ll~1 + 2cieJii + Cletli-

(3.3.17) 

(3.3.18) 

On substituting (3.3.16-3.3.18) into (3.3.15) and setting E = 1/ 128D we obtain the 

bound h for i = 1 

(w1(u~,u~), (I--f )enh- (W1(u1,u2), (I--f )en 

:S Ch4
-

2
d/

3 + 8cle1li + Cletli + Clle1ll~1 + Clle2ll~1 

< Ch4
-

2
d

13 +_']_le 12 + CleAI 2 + Clle 11 2 + Clle 11 2 · - 16D 1 1 1 1 1 -1 2 _1 (3.3.19) 

In the same way we have the bound h for i = 2 

(\It 2 ( u ~, u~) , (I - -f ) e~) h - (\It 2 ( u 1 , u2) , (I - -f ) e~) 

:S Ch4
-

2
d/

3 + 8cle2li + Cle~li + Clle1ll~1 + Clle2ll~1 

< Ch4
-

2
d/

3 +_']_le 12 + CleAI 2 + Clle 11 2 + Clle 11 2 · - 16D 2 1 2 1 1 -1 2 _1 (3.3.20) 

On substituting (3.3.4-3.3.6), (3.3.12-3.3.14) into (3.3.3) simplifying, summing 

fori= 1, 2, and substituting (3.3.19)-(3.3.20) into the resulting equation we obtain 
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a. e. 

1 ( cl 2 cl 2 ) I ( 2 2) 2 dt lle1ll-1 + dt lle2ll-1 + 4 le1l1 + le2l1 

:::; C(lledi~I + lle2ll~1 + le~1 li + le~li 

(3.3.21) 

Integrating over t E (0, T), using a Gronwall inequality and rearranging the 

terms we obtain 

(llel(T)II~l + lle2(T)II~1) + 1r (ledi + le2li)ds 

:::; C(lle1(0)II~1 + lle2(0)II~1) + C 1r (11etlli + lle~lli 

+ 11 EJelll lle~llh + 11 EJe211 IleA Ill+ I (gh- 9) EJu~ 12 
EJt -1 EJt -1 

2 EJt 0 

+I (gh- 9) EJ~~ 1: + h2) ds. 

Hence we obtain, for d = 1, 2, 3, 

lle1lli=(O,T;(H1 (0))') + lle211i=(O,T;(Hl(O))') + lle1lli2(0,T;Hl (0)) + lle2lli2(0,T;H1 (0)) 

:::; c(II(I- ph)u~ll~1 + II(I- ph)ugll~1 + lletlli2(0,T;Hl(O)) 

+ lle~lli2(0,T;Hl(O)) + 11 ~tlii£2(0,T;(Hl(O))') lletll£2(0,1';£2(0)) 

11 EJe21J A 11 h EJu~ 112 + Oi £2(0,T;(Hl(O))') lle211L2(0,T;L2(0)) + (9 - 9 ) EJt £2(0,1';£2(0)) 

+ 11 (9h- 9) a:~ 112 ) + C(T)h2 :::; Ch2' 
ut £2(0,1';£2(0)) 

where we have noted the Poincare inequality (2.1.2), (3.1.12), (3.1.2c), (2.3.2), 

(2.2.6a), (2.2.6b), (3.2.8a), (3.2.8b), and (3.1.8) to obtain the last inequality. This 

ends the proof. D 



Chapter 4 

A Fully Discrete Approximation 

In this chapter we introduce a numerical scheme (Scheme 1) to solve the weak 

formulation we mentioned in Chapter 1. We discuss the existence and uniqueness 

of the solutions for the scheme. We also discuss stability and convergence of the 

solution to the continuous problem in the weak formulation. We briefly mention a 

second scheme (Scheme 2) and show existence, uniqueness, and stability. We do not 

discuss the convergence of Scheme 2. 

4.1 Notation 

We shall now describe a finite element method for the numerical solution of the 

weak formulation of (1.0.7a-1.0.7f). 

As in (3.1.4) we introduce the discrete Green's operator in the presence of the 

numerical integration Qh : S~ H S~ such that 

(4.1.1) 

where S~ := {17 E Sh: (17, 1)h = 0}. 

We define a norm on S~ as 

(4.1.2) 

We have the following analogue to (3.1.6) and (3.1.7) respectively, that is for all 
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a> 0, 

(4.1.3) 

and 

( 4.1.4) 

For later purposes, we recall the following inequality for the discrete Green's 

operator (see Blowey and Elliott [10]) 

(4.1.5) 

We also have the analogue of the inequalities (3.1.11), (see Barrett and Blowey 

[2]), as follows 

(4.1.6) 

The first inequality on the left is the inverse inequality on noting (3.1.2b). The 

second follows from the first and (4.1.3). The third and fourth follows (4.1.5) on 

noting the first two inequalities in (3.1.11) and ( 4.1.6) respectively. 

In addition we have the analogue of Lemma 3.1.3 as follows: 

Lemma 4.1.1 Let vh E Sh and d = 1, 2, 3. Then 

(4.1.7) 

Proof. It follows from (2.1.8), (3.1.2a) and (4.1.3). 0 

4.2 Scheme 1 

4.2.1 Existence and Uniqueness 

Given N, a positive integer, let L:l.t = T / N denote a fixed time step, and tk = kL:l.t 

where k = 0, ... , N. We focus our attention on approximating (P) by the discrete 
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scheme defined as follows: 

(Pit,D.t) Given Uf, U~, find {Ur, U!j, vVr, vV!j} E Sh xSh xSh x Sh, for n = 1, ... , N, 

such that Vry E Sh 

and 

where 

un- un-1 
( 1 !:::.t 1 'ry)h =- (V'Wf, V'ry), 

(W1n, ry)h = (FI(Uf, U2:),ry)h + r(V'Uf, V'TJ), 

( U!J: ~~;-], TJ)h =- (Vvv;, V'TJ), 

(vV2n, TJ)h = (F2(Uf, u;),TJ)h + 1(V'U~\ V'TJ), 

Fl(Uf, U2) = (U{1
)
3

- Uf- 1 + D(U{1 + Uf- 1 + 2)(U2- 1 + 1)2, 

F2(Uf, U~1 ) = (U2) 3
- u;-1 + D(U~1 + u;- 1 + 2)(U{1 + lf 

(4.2.1a) 

(4.2.1b) 

( 4.2.1c) 

(4.2.1d) 

( 4.2.1e) 

(4.2.1f) 

( 4.2.lg) 

(4.2.lh) 

Note that (4.2.la-c) is independent of U!j and (4.2.ld-f) is dependent on Ui1
• 

Using (4.1.1), we can rewrite (4.2.1a,d) as 

(4.2.2) 

~ un-un-1 
Taking TJ = Qh[ i D./ ] + Wt in (4.2.2), we have 

un un-1 
I gh [ i - i l + wn 12 = 0 

!:::.t t 1 ' 

which implies 

un un-1 un un-1 
I gh [ i - i l + wn I· = I gh [ i - i l + wn - -f wn I = o 

!:::.t t 1 !:::.t t t 1 ' 
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where 

(4.2.3) 

Thus by the Poincare inequality (3.1.3), we have 

un un-1 un un-1 
0 = IQ~h[ i - i l + vvn --f wnl > c-11Q~h[ i - i l + wn --f vVnl 6.t l l 1 - p 6.t l l h, 

which implies 

Noting (4.2.3) and (4.2.4), and 

( Fi ( u~, u;), TJ) h-
1 

A 
1 

( Fi ( u~, u;), 1) h ( 1, TJ) h 

= ( Fi ( u~' u;)' TJ) h - I A I ( 1' TJ) h ( Fi ( u~' un ' ) h 

= ( Fi ( u~, u;l), TJ) h - ( Fi ( u~, u;), ( 1, 
1 

~ 
1 

) h) h 

= ( Fi ( u~, u;), TJ) h - ( Fi ( u~, u;), -f TJ) h 

= ( Fi ( u~, u;l), (I - -f ) TJ) h, 

we can restate the problem (P~'~t) as: 

Given up,u~, find {Uf,U~} E Sh X Sh, for n = 1, ... ,N such that VTJ E Sh 

(Qh[ur ~~~-1], TJ)h +!(vu~, 'VTJ) + (F1 (u~, u;), (I--f )TJ)h = o, 

(Qh[U~ ~~;-
1

], TJ)h +!(VU;, 'VTJ) + (F2 (U~, un, (I--f )TJ)h = 0. 

(4.2.4) 

(4.2.5) 

(4.2.6a) 

(4.2.6b) 

Theorem 4.2.1 Let the assumptions of Theorem 3.2.1 hold and 6.t > 0. Then 

there exists a unique solution {U1 , U2 , W1 , W2 } to (P~At) such that the following 



4.2. Scheme 1 

stability bounds hold: 

max {~t f= (19h[ur- U{t-1 m+ IQh[ur- u;-1lli) 
m=1, ... ,N ~t ~t 

n=l 
m 

+ ~ (1u~1i + IU~Ii + 2)1U~- u~- 1 li + 1u;- u;-1li)) 
n=l 

+ ~ f= (IU~- u~- 1 1~ + 1u;- u;-1 ID 
n=l 

+ l ( ( u~) 4 
- 2 ( u~) 2 + ( u~) 4 

- 2 ( u~) 2 , 1) h 

+ D((u;n + 1) 2 (U~ + 1) 2
, 1)h} :::; C, 

N N 

~t L IIW1nlli + ~t L IIW;IIi :S C, 
n=1 n=1 

Proof. Let 

K~ = {771 E Sh: (771, 1)h = m1 :=-f u~}, 

K; = {772 E Sh: (772, 1)h = m2 :=-fug}. 

Consider the coupled variational problems 

where 

72 

(4.2.7) 

(4.2.8) 

(4.2.9) 

(4.2.10a) 

(4.2.10b) 
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~ . un-1 

Since l"h[r~t- · ]1 2 > 0 for ·i = 1 2 we have '=' 6-t 1 - ' ' 

~ 1 D 
£f(77d 2:~1771li + (417t, 1)h- (ur- 1 ,17dh + 2 ((u;-1 + 1)2, 77;)h 

+ D((u;-1 + 1)771, (ur-1 + 2)(u;-1 + 1))\ (4.2.11) 

£~(112) 2:~1772li + (~17i, 1)h- (u;- 1 ,772)h + ~ ((ur + 1) 2 ,77~)h 
+ n((ur + 1)772, (u;-1 + 2)(ur + 1))h. (4.2.12) 

By noting the Young inequality (2.1.4), for p = 4, q = 4/3 we are able to show 

( 4.2.13) 

and for p = q = 2, we obtain 

((u;- 1 + 1)771, (U{1
-

1 + 2)(u;-1 + 1))h 2: -~l(u;- 1 + 1)7711~ 

- ~I(U~l- 1 + 1)(ur-1 + 2)1~· (4.2.14) 

We also note that 

Similarly, we have 

-(u;-1,772)h 2: -~(77i, 1)h- ~ fn nh[(u;-1)~]dx, 
((Uf + 1)772, (Uf + 1)(u;-1 + 2))h 2: -~I(Uf + 1)7721~ 

- ~I(Uf + 1)(U~l- 1 + 2)1~, 

( (Uf + 1)2' 17~)h = I (Uf + 1 )7721~· 

( 4.2.15) 

( 4.2.16) 

(4.2.17) 

(4.2.18) 

On substituting (4.2.13-4.2.15) into (4.2.11) and (4.2.16-4.2.18) into (4.2.12), 
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and simplifying, we arrive respectively at 

E{t(77d ~ ~l771li- Dl(u;- 1 + 1)(u~- 1 + 2)1~- ~ i 1rh(U~- 1 )~dx 

E;(772) ~ ~l772li- DI(U~ + 1)(u;-1 + 2)1~- ~ fn 1fh(u;- 1 )~dx. 

Thus Ef and Eg are bounded below in Kf and K~ respectively. 
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(4.2.19) 

(4.2.20) 

Now let di = infKh [ih(7Ji) and {7Ji,n} be a minimising sequence of [ih in Kf, i.e, 
1 

limn--->oo [ih(7Ji,n) = di. It follows from the above estimate and the discrete Poincare 

inequality (3.1.3) that {7Ji,n} E H 1(D). Recalling that Kf are finite dimensional 

spaces, then there exist Ui E Sh and subsequences { 7Ji,m} such that 

Since Kf are closed and Ui E Kf then the continuity of Eih give Eih(7Ji,n) --t Eih(Ui) = 

di. As a consequence, there exist solutions Ui to the coupled variational problems. 

Such minimisers, which are critical points of Ef and Eg, satisfy the Euler Lagrange 

equation of Ef and E~ given by (4.2.6a) and (4.2.6b) respectively, while {vV1 , vV2 } 

exist from (4.2.4) and (4.2.3) . 

To show the uniqueness, let U~' 1 , u;·1 and U~'2 , u;·2 be two solutions of (Ph,~t) 

and set 

Z - un,1 - un,2 
1 - 1 1 ' Z _ rrn,1 _ rrn,2 

2- u2 u2 · 

From (4.2.6a) we have, fori= 1, 2, 

(Qh[U~,i ~tuf-\ 7J)h + r(VU~,i, '\77]) + ((U~·i)3 _ Uf-1, 77 _ -f 7J)h 

+ D((u~·i + u~- 1 + 2)(u;-1 + 1)2
, 77 --f 77 )h = o. 

Subtracting these equations and noting (4.2.21) yields 

~t (Qh Z1, 77)h + 1('\l Z1, VTJ) + ( (U~.l )3 
- (U~·2 ) 3 , 77 - -f TJ)h 

+ D((u;-1 + 1)2 
z1, 77 - -f TJ)h = o. 

( 4.2.21) 

(4.2.22) 

(4.2.23) 
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Taking TJ = Z1 in (4.2.23) and noting (4.1.2) and (4.2.21), we have 

From the convexity it follows that 

3 ) 1 4 1 4 r (s- r < -s - -r 
- 4 4 ' 

( 4.2.24) 

which implies 

(4.2.25) 

Thus 

( 4.2.26) 

and it follows from (3.1.3) that 

IZ1I~ = o, 1.e. Z1 - o. 

In the same way, we are able to show that 

Thus we have shown the uniqueness. 
un un-1 h 

Next we will show the stability bound (4.2.7). Substituting TJ = 1 -b./ E 50 

into (4.2.6a), we have 

(Qh[ur ~~r-
1 

J, [ur ~~~-
1 

Dh+y(vur, v[ur ~~~-l D 

+ (F1(u~, u;), [ur ~~~-
1 

])h = o. 

Noting (4.1.2) and the identity 

2a(a- b) = a2
- b2 +(a- b) 2

, (4.2.27) 
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we have 

6.tiQh[Uf- ur-
1

JI2 + 2IUnl2 _ 2lun-tl2 + 2lun _ un-1l2 
!:it 1 2 1 1 2 1 1 2 1 1 1 

=((ur)3,ur-1- ur)h + (ur-1,ur- ur-1)h 

+ D((ur + ur-1 + 2)(u;-1 + 1)2, ur-1 - Ur)h. (4.2.28a) 

In the same way, from the equation (4.2.6b), we obtain 

!:itiQ~h[U~- u;-1]12 + 21Unl2- l:lun-112 + 21un- un-112 
!:it 1 2 2 1 2 2 1 2 2 2 1 

=((U~)3, u;l-1 _ u;)h + (u;-1, u; _ u;-1)h 

+ D((u; + u;-1 + 2)(ur + 1)2, u;-1- u;)h. ( 4.2.28b) 

Now let us consider the right hand side terms of (4.2.28a). By noting the in­

equality ( 4.2.24) we obtain 

On noting (4.2.27), we have 

(un-1 un- un-l)h = ~ (-lun-112 + 1Unl2 - IUn- un-112) 
1 '1 1 2 1 h lh 1 1 h· 

The last term on the right hand side (4.2.28a) can be expressed as 

((Ur+ur-1 + 2)(u;-1 + 1)2, ur-1 - ur)h 

=((ur-1 + 1)2(u;-1 + 1)2- (ur + 1)2(u;-1 + 1)2, 1)h. 

In the same way, from the right hand side ( 4.2.28b), we have 

((u;)3, u;-1- u;)h :S l((u;-1)4- (u;)\ 1)\ 

(un-1 un _ un-1)h _ ~( -lun-1l2 + IUnl2 -IUn _ un-1l2) 2 '2 2 -2 2 h 2h 2 2 h' 

( 4.2.29) 

(4.2.30) 

(4.2.31) 

( 4.2.32) 

(4.2.33) 
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and 

((u; + u;-1 + 2)(U~ + 1)2 ,u;-1
- u;)h 

= ((u;-1 + 1) 2 (U~ + 1)2 - (u; + 1) 2 (U~ + 1)2, 1)ho (402034) 

Substituting ( 402029-402031) into ( 402028a) and ( 402032-402034) into ( 402028b), and 

adding the resulting equations, we have 

~t(IQh[Ui ~~~-1lli + IOh[Uf ~~;-1lli) 

+ ~ ((IU{lli- IU{l-1ID + (IU;Ii- lu;-1li)) 

+ ~ (IV~ - u~- 1 li + 1u; - u;- 1 ID 

+ 1 (lu~- 1 1~ -IU{ll~ + lu;- 1 1~ -1u;1D 

+! (IUn- un-112 + IUn- un-112) 21 1 h 2 2 h 

+ ~((U~)4 _ (u~-1)4, 1)h + ~((u;)4 _ (u;-1)4, 1)h 

+ D((u~ + 1)2(u; + 1)2 - (u;-1 + 1) 2 (u~- 1 + 1)2, 1)h:::; oo ( 402035) 

Summing the above equation over n = 1, 0 0 0 , m for m :::; N and rearranging the 

terms yield, for d = 1, 2, 3, 

max {~t t (19h[U1- u~-1lli + IQh[Uf- u;-lm) 
m=l,Ooo,N ~t ~t 

n=l 
m 

+ ~(IU~Ii + IU~Ii + L)IU~- u~- 1 li + IU;- u;-1li)) 
n=1 

+ 1 t (IU~- u~- 1 1~ + 1u;- u;- 1 ID 
n=1 

+ ~ ( ( u~) 4 
- 2 ( u~) 2 + ( u~) 4 

- ( u~) 2 , 1) h 

+ D ( ( u~ + 1) 2 ( u~ + 1) 2, 1) h } 

:::; ~(IUfli + IU~Ii) + ~((Uf) 4 - 2(Uf)2 + (U~) 4 - 2(U~) 2 , 1)h 

+ D((Uf + 1) 2 (U~ + 1)2, 1)h:::; C, (402036) 
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where we have noted the Young inequality (2.1.4), (3.1.40), (4.2.1c), (4.2.1f), (3.1.14) 

and the condition on u? for i = 1, 2, to obtain the last inequality. 

To show ( 4.2.8), consider the Poincare inequality (3.1.3), that is 

The equation (4.2.3) and the Young inequality (2.1.4) with p = q = 2 yield 

(4.2.37) 

It follows that 

( 4.2.38) 

Multiplying both sides of ( 4.2.38) with ~t and summing over n we have 

N N N 

~t 2:::: llvVtlli ~ C~t L lvVtli + C~t1DI 2 L 1-f vvinl 2
. ( 4.2.39) 

n=1 n=1 n=1 

Recalling (4.2.4) and (4.2.7), it is enough to bound 1-f Winl to conclude IIT¥tll 1 is 

bounded. 

On noting (4.2.3) we have fori= 1 

1-f wrl = lA II i 7rh [(Uf)3- ur + D(Uf + ur-1 + 2)(Uj-1 + 1)2] dxl 

~ IAI (I L 7rh[(Uf)3]dxl +I i 7rh[Uf]dxl 

+ ~I fn 7rh[(Uf + 1)2 + (uf-1 + 1)2 + 2(u;-1 + 1)4Jdxl) 

~ IAI [I L 7rh[(Uf)3]dxl +I i 7rh[Uf]dxl + ~(I i 7rh[(Uf + 1)2]dxl 

+ I fn 7rh[(ur-l + 1)2]dxl + 21 fn 7rh[(u;-1 + 1)4]dxl) ]· 

The inequality (3.1.40), (3.1.13) together with the conservation of mass, and ( 4.2.36) 

(4.2.40a) 
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Using the same technique we are able to show 

I-f w;1 ~ c for d = 1, 2, 3. (4.2.40b) 

Substituting (4.2.40a-b) into (4.2.39) yields the desired result (4.2.8). 

Now we bound IFi(Uf, U:f)l~· To do so consider (3.1.2a), that is 

IF1(U~, u;)l~ = fn 1rh [ ((U~) 3 - u~- 1 + D(U~ + u~- 1 + 2)(u;- 1 + 1) 2
)

2
]dx 

~ fn ( 7rh [ (u~ )6] + 7rh [(u~-l )2) 

( 4.2.41) 

Noting the Young inequality (2.1.4), and (3.1.40) we have ford= 1, 2, 3, 

Similarly 

This ends the proof of the theorem. 0 

Note that on defining 

for U1 , U2 E Sh, the equation ( 4.2.35) shows that 

that is £h ( ·, ·) is a discrete Lyapunov functional. 
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4.2.2 Convergence 

To show the convergence of Scheme 1 introduced in this chapter to the weak form of 

the coupled pair of Cahn-Hilliard equations we follow closely the idea in Copetti and 

Elliott [16]. Let {Uf, U!j, W1n, W2} be the sequences resulting from (4.2.1a-4.2.1f). 

Fort E (tn-l, tn), 1 :::; n :::; N, we define the piecewise constant sequence in time, for 

i = 1, 2, by 

and denote by u~t i and Pe::.t(tn) the piecewise linear continuous functions on [0, T] 
' 

defined respectively by 

u~t,i ( tn) 

flt::.t(tn) 

Pt::.t(tN) 

Notice that Theorem 4.2.1 implies that 

for n = 0, ... , N, 

for n = 0, ... , N- 1, 

llu1t,lll £<X>(O,T;H 1 (!1)) + llu1t,211v"'(O,T;H1 (!1)) 

+ llu1t,liiL=(o,T;H1 (!1)) + llu1t,211L=(O,T;H1 (!1)) 

+ llw~t,lii£2(0,T;H 1 (!1)) + llw1t,211£2(0,T;H1 (!1)) 

+ 11Fte::.tii£2(0,T;£2(!1)) + IIF£e::.tii£2(0,T;L2 (!1)) 

+ 11 !!...uh 11 + 11 !!...uh 11 < c. dt t::.t,l £2(0,T;(Hl(!1))') dt t::.t,2 £2(0,T;(Hl(!1))') -
( 4.2.42) 

Since L00 (0, T; H 1(0.)) is the dual space of L1 (0, T; (H1(0.))') (see Renardy and 

Rogers [33] page 378), which is separable, then there exist ui E L00 (0, T; H 1(0.)) and 

subsequences {u~tJ, and {u~t,J E L00 (0, T; H 1(0.)) such that 

h ~ Loo(O, T,· Hl(n)) U t::.t,i --r Ui ln H weak-star, 

-h ~ . Loo(O, T·, Hl(n)) U t::.t,i --r Ui lll H weak-star. 
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Since £ 2 (0, T; H 1 (0.)) is a reflexive Banach space (see Theorem 2.20.4 in Kufner 

et. al. [26]), then there exist wi, vi E £ 2 (0, T; H 1(0.)) and subsequences {wit J, 
' 

{ Fi~6..t}, such that 

w~t,i ---t wi m L2 (0, T; H 1(rl)) weakly, 

Fih6..t ---t vi m L2 (0, T; H 1(0.)) weakly. 
' 

Similarly, £ 2 (0, T; (H1(D.))') is a reflexive Hilbert space so there exist dui/dt E 

L2(0, T; (H1(0.))') and subsequences {uit,J E £ 2 (0, T; (H1(0.))') such that 

d -h d - 2 1 I 
-d u6..t i---t -d ui in L (0, T; (H (0.))) weakly. 

t ' t 

Also as flt ---t 0 we have 

fl6..t ---t J-L m L2 (0, T), 

d d 
dtfl6..t ---t dtJ-l m £2(0, T). 

Note that H 1 (0.) and (H1 (0.))' are reflexive, and the injection of H 1(0.) into £ 2 (0.) 

is compact. Hence the compactness theorem of Lions (see Theorem 5.1 in Lions [27] 

page 56) guarantees the existence of subsequence in £ 2 (0, T, L2 (0.)) such that 

Observing that 

llu~t,i- u~t,illi2co,T;Hl(n)) = 1r llu~t,i- u~t,illidt 
N 1n6..t 

= L llu~t,i- u~t,illidt 
n=l (n-l)6..t 

N 

::; flt :L 11ur- uin-llli::; Cflt, 
n=l 

( 4.2.43) 



4.2. Scheme 1 82 

where we have noted Theorem 4.2.1 to obtain the last inequality. This implies that 

( 4.2.44) 

Let f. E H 1 (D) be arbitrary. Setting TJ = Pff, in (4.2.1a-b) and (4.2.ld-e) we 

have, fori= 1, 2, 

Multiplying each equation by 6.t11(tn- 1 ), we have 

(
un un-1 )h 

6.tf-l(tn-t) i ~t i 'p1hf, + 6.tf-l(tn-1)(\TWt' V Pilf.) = 0, 

6.t11(tn-1) ( CWt, P1hf,)h - (Fi(Uf, u;), Pff,)h - !(VUI\ V Pff,)) = 0. 

Summing over n we obtain 

6.t I: !-l(tn) ~~(tn-1) (Uin' p1hf,)h + f.-l(tN-1 )(Uf' Pff,)h 
n=1 · 

N 

( 4.2.45) 

( 4.2.46) 

-11(t0 )(U?, Pff.)h + 6.t L 11(tn-1 )(VvVt, v P1hf.) = o, 
n=1 

N 

6.t L !-l(tn-1)[(Wt, p1hf,)h- (Fi(Uf, u;), Pi1f.)h -!(VUin, V Pff,)] = 0. 
n=1 

These equations are equivalent to 

-1T (u~t,i' P1hf.)h :tllD.t(t)dt + f-l(tN- 1)(Uf, P1hf.)h- f.-l(t 0 )(u?, Pff,)h 

+ 1T /-lD.t(t)(Vw~t,i' V Pff,)dt = 0, 

1T /-lD.t(t)[(w~t,i' Pff,)h- (F/,1D.t' Pff,)h -1(Vu~t,i, V Pff,)]dt = 0. 
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Rewriting these equations as 

-for (u1t,i, P1hO :tflL:-.t(t)dt + p,(tN-l )(ut, Pt~)h- p,(t0 )(u?, P1h0h 

+ 1r /-lL:-.t(t)("Vw1t i> "V Pt~)dt + 1r [(u1t i> Pt~) - (u1t i> Pt0h] dd JlL:-.t(t)dt = 0, 
0 , 0 , , t 

1r /-lL:-.t(t)[(w1t,i> plh~)- (Fi~L:-.t> Pi!~) -!("Vu1t,i> "V Pt~)]dt 

+ 1r /-lL:-.t(t)[(w1t,i' plh~)h- (w1t,i' Pt0Jdt 

+ 1r 1-li:-.t(t)[(Fi~L:-.t> p1hO - (Fi~L:-.t> plh~)h]dt = 0, 

and applying (3.1.2b) and the Cauchy-Schwarz inequality we find that 

11r [( u';,.,,,, Pi' f.) - (n'J..,,,, Ptfl"J :tji",(t)dtl 

:S: Ch2 1r [fu1t,iiii IIPt~I[Idt 
T .!_ T .!_ 

::::: ch2 
( forru1dli dt) 

2 

( fotiPt~lli dt) 
2 

T .!_ 

= Ch
2 flu1t,iiiL 2 (o,r;H1 (n)) ( for1Pt~lli dt) 

2

. 

Similarly 

11r J-LL:-.t(t)[(w1t,i, p1hOh- (w1t,i' P1hOl dtl 

T .!_ 

::::: ch2 flw1t,ill£2co,r;H 1 (n)) ( forrplh~lli dt) 
2

, 
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and 

I [ Vt>t(t)[(Fk,,,, Pi'~)"- (Fk,,,, PtOJ dtl 

~ Ch 1r 11Fi~6.t lloiiPlh~ll1 J-lt>t(t) dt 

T ! T ! 

~ Ch(fo11Fi~t>tll6dt) 
2 

(fo11Plh~llidt) 
2 

T ! 

~ ChiiF?,t>tiiP(o,rp(n)) (fo11P~~IIidt) 
2

• 

Choosing J-l such that J-t(T) = 0, J-t(O) -=/= 0, noting (4.2.42), and observing that 

P1h~ E L2 (0, T; H 1(rl)) as tlt, h-+ 0 and J-lN-l -+ J-t(T), we can pass to the limit as 

tlt, h -+ 0 to obtain 

1T [ df-l ] 0 _ 

0 
-(ui, ~) dt + J-t(t)("Vwi, "VO dt- J-t(O)(ui, ~) - 0, 

1T J-t(t)[(wi, ~)-(vi,~)- ry("Vui, "V~)]dt = 0, 

which implies 

OUi 
-(at'~)+ ("Vwi, "V~)= 0 a.e. in (0, T), 

(wi, 0- (vi,~)- ry("Vui, "V~)= 0 a.e. in (0, T). 

An integration by parts of ( 4.2.4 7) gives 

and therefore u1 (0) = u~. 

It remains to prove 

To show ( 4.2.49) we note the following notation 

-h+ ·- un u6.t,i .- i ' 
-h- un-l u6.ti:= i · , 

( 4.2.47) 

( 4.2.48) 

( 4.2.49) 
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Now for all ryE H 1 (0) consider 

- (uf- u1 + 2D(ul + 1)(u2 + 1)2, ry)l 

::; l((u~1, 1 ) 3 - uf,ry)l + l(u- u~t,1,ry)l 
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+ Dl((u~t,l + u~t, 1 + 2)(u~t,2 + 1)2 - 2(ul + 1)(u2 + 1)2, ry)l 

= 11 + 12 + D13, 

where 1j, for j = 1, 2, 3, correspond to the jth-term of the right hand side. Recalling 

the convergence in (4.2.43), it is enough to consider 11 and 13 . 

Noting (2.1.9) and (4.2.43) we have 

11 = l((u~1, 1 -ui)((u~1, 1 ) 2 +u~1, 1 ul+ui),ry)l 
3 

< 2l(lu~t,1- u1l((u~t,1f +ui), 1"71)1 

::; Clu~t,l - udo (llu~t,llli + llu~t,1lh llu1lh + llu1lli) IITJih ---+ 0 as /J.t ---+ 0. 

We can rewrite the equation 13 as, 

h =I ((u~t, 1 + u~t, 1 + 2)(u~t,2 + 1)2 - 2(u~t, 1 + 1)(u~t,2 + 1)2 

+ 2(u~t,l + 1)(u~t,2 + 1)2- 2(u~t,l + 1)(u1t,2 + 1)2 

+ 2(u1t,l + 1)(u1t,2 + 1)2 - 2(ul + 1)(u2 + 1)2, ry) I 

::; I ((u~t,l + u~t,l + 2)(u~t,2 + 1f- 2(u~t,l + 1)(u~t,2 + 1)2, ry) I 

+ 2l(u~t,I + 1)(u~t,2 + 1f- (u~t,l + 1)(u~t,2 + 1)2, TJ)I 

+ 2l(u~t, 1 + 1)(u~t,2 + 1)2 - (u1 + 1)(u2 + 1)2,ry)l. 

Now we look at each terms in the right hand side. Using (2.1.9), the Holder inequal-
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ity (2.1.7) and (4.2.43) we have 

I ( (u~7, 1 + u~~, 1 +2)( u~~,2 + 1)2 - 2( u~t,l + 1 )(u~~,2 + 1 )2, 77) I 

=I ((u~7, 1 + u~~, 1 + 2)- 2(u~t,l + 1), (u~~,2 + 1)277) I 

=l(u~t1- u~t,1 + u~~,1- u~t,1, (u~~,2 + 1)277)1 
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:SI(u~7,1- u~t,1)(u~~,2 + 1)2, 77)1 + l(u~~,1- u~t,1)(u~~,2 + 1)2, 77)1 

:SCiu~7,1- u~t,1lo (llu~~,2lli 1177111 + l77lo) 

+ lu~~,1- u~t,1lo (llu~~,211i 1177111 + l77lo) ----t 0 as ~t ----t 0, 

and 

I ((u~t,l + 1)(u~~,2 + 1)2- (u~t,l + 1)(u~t,2 + 1)2, 77) I 

=I ((u~~,2 + 1?- (u~t,2 + 1)2, (u~t, 1 + 1)77) I 

=I ((u~~,2- u~t,2Hu~~,2 + u~t,2 + 2)(u~t,1 + 1), 77) I 

:S Clu~~,2- u~t,2lo(llu~~,2lh llu~t,1 lhll77111 

+ llu~~2lh ll77lh + llu~t2lh llu~tl ll1ll77ll1 
' ' ' 

Similarly to the above analysis 

These results imply that 

Similarly we are able to show 

Here the analysis proceeds by interchanging subscript '1' and '2' and replacing the 
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old 'D' term with D(u~t2 + u~~,2 + 2)(u~t 1 + 1)2
. This ends the discussion of the 

convergence. 

4.3 Scheme 2 

4.3.1 Existence and Uniqueness 

We consider a two-level scheme for approximating (P) defined as follows: 

(P~,LH) Given up' ut, ug' Ui' find { u~+l' u~+ 1 ' l¥1n' vv2n} E Sh X sh X sh X sh' 

for n = 1, ... , N, such that 't/7] E Sh 

(4.3.1a) 

(4.3.1b) 

(4.3.1c) 

and 

(4.3.1d) 

(4.3.1e) 

(4.3.1f) 

where 

un+1 + un-1 
F1(u~+l, u~+1) = (Ur)2( 1 2 1 ) - Uf + D(Uf+1 + Uf-1 + 2)(U~ + 1)2, 

(4.3.1g) 

u.n+1 + u.n-1 
F2(u~+1, u~+1) = (u;y ( 2 2 2 ) - u~ + D(u~+1 + uf-1 + 2)(Uf + 1)2. 

(4.3.1h) 

As we shall show, this is a linear scheme which generates a stable unique sequence. 

The treatment of cubic terms in Scheme 2 is based on work by Matsuo and Furi-
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hata [21]. 

Similarly to (4.2.3) and (4.2.4) we have 

(4.3.2) 

and 

(4.3.3) 

Noting (4.3.3), (4.3.2), and (4.2.5) we can restate the problem (P~·[}.t) as: 

Given Uf, U{, ug, U}, find {ur+1, u;+1} E Sh x Sh, for n = 1, ... , N such that 

'1/ry E Sh 

(g~h[ur+
1 - ur-

1
] )h (V(ur+

1 
+ ur-

1
) \7 ) 

2!::it ' 1J + I 2 ' 1J 

+ (F1(ur+1,u;+1), (I--f )17)h = o, (4.3.4a) 

(g~h[u;+1_u;1-1J )h (V(u;+1+u;-1) v) 
2!::lt ' 1J + I 2 ' 1J 

+ (g(ur+I, u;+1), (I--f )17 )h = o. ( 4.3.4b) 

Theorem 4.3.1 Let !:it > 0 and the assumptions (A) hold. Given u~, uL u~, u~ E 

Sh such that llu~lh + lluUI1 + llu~ll1 + llu~lh ::; C. Then for all h > 0 there exists a 

unique solution {U1, U2 , W1, W2 } to (P~·[}.t) such that 

m~:":N { 2L\.t ~(I w~ ll + IW~Il) + ~ (IU;"+lll + IU;"+lll) 

+ n[((ur+l + 1)2 (U;' + 1)2
, 1)h + ((u;n + 1)2 (u;n+1 + 1)2

, 1tJ 

+ ~ (lurnurn+ll~ + 1u;nu;n+1ID} < c, (4.3.5) 

N N 

2!::it 2::11Wflli + 2!::it L IIW:rlli::; C, (4.3.6) 
n=1 n=1 

(4.3.7) 
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Proof. Let 

K h _ { sh . ( 1)h _ ._ -f o} 1 - T/1 E . T/1, - m1 .- u 1 , 

Consider the uncoupled variational problems 

where 
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( 4.3.8a) 

( 4.3.8b) 

eh( ) 119~h[T/1 - ur-lll2 I I 12 I (l!un-1 l/ ) ((Un)2 1 2 1 un-1 )h 0 1 T/1 =2 26t 1 + 4 T/1 1 + 2 V 1 > V T/1 + 1 '4TJ1 + 2 1 T/1 

- (Uf, TJI)h + D((U!j + 1)2, ~TJ~ + (Uf-1 + 2)TJI)\ 

£h(n) =~IQ~h[ 172- u;-
1

JI2 + l:ln 12 + 1(\7un-I \7n) + ((Un)2 ~n2 + ~un-1 71 )h 2 '/2 2 26t 1 4 '/2 1 2 2 ) '/2 2 ) 4 '/2 2 2 '/2 
1 

- (U!j, TJ2)h + D( (Uf + 1?, 2 TJ~ + (U!j- 1 + 2)TJ2)h. 

£~( TJd ~ ~ ITJ11i + ~ (\7U{t-t, \7T]I) + l ( (Uf )2) TJnh + ~ ( (Uf )2) ur- 1T]t)h - (U{\ TJI)h 

D + 2:((U!j + 1) 2 ,TJ~)h + D((U!j + 1)2, (Uf-1 + 2)TJI)h. (4.3.9) 

By noting the Young inequality (2.1.4), for p = q = 2 we have 

1 
(\7ur-l, \7rJd :s; 2lur-1li + 81TJ1Ii, 

(Uf, TJI)h :s; l ( (Uf)2, ( T/1)2)/t + 101, 

((u:; + 1)2, (ur-1 + 2)TJdh :s; ~((u:; + 1)2, (TJd2)h + ~((u:; + 1)2, (ur-1 + 2)2)h. 

Using the Young inequality (2.1.4), for p = q = 2, the Poincare inequality (3.1.3) 
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and setting E = 4C /'y, we have 

Hence 

~l(\7u~-I, V'17dl 2: -,lu~- 1 li- ~l771li, 

I(U~,17I)hl 2: -~((U~)2 , (77I) 2 )h -101, 

ID((u; + 1)2, (u~- 1 + 2)771)hl ;::: - ~ ((u; + 1)2, (771) 2 )h 

D - 2((u; + 1)2, (u~-1 + 2)2)\ 

I~((U~)2, ur-117dhl 2:- 2~ ((U~)4, (u~-1f)h 

- 1~ 17711 i - 1
1
61 ( 771 , 1 ) h 1

2 
0 

Noting (4.3.10-4.3.13) we can rewrite (4.3.9) as 

£~(771) 2:~1771li -,lu~- 1 li- 2~ ((U~) 4 , (u~- 1 ) 2 )h 

- ~ ((U~1 + 1)2, (u~- 1 + 2) 2)h- ;
6

1(771, 1)hl 2 -101. 

Similarly we are able to show 

£~(772) 2:~l772li -,lu;-1li-
2~ ((u;) 4

, (u;-1)2)h 

- ~ ((ur + 1) 2
, (u;-1 + 2) 2)h- ~1(772, 1)hl2 -101. 
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(4.3.10) 

( 4.3.11) 

(4.3.12) 

( 4.3.13) 

(4.3.14) 

(4.3.15) 

Thus Eih are bounded below and it follows that there exist solutions to the coupled 

variational problems. Such minimisers, which are critical points of £f1 
, satisfy the 

Euler-Lagrange equation of Ef given by ( 4.3.4a) and ( 4.3.4b) respectively, while 

{W1, W2} exist from (4.3.3) and (4.3.2). 

To show the uniqueness, let u~+ 1 ' 1 , u;+1
'
1 and u~+ 1 '2 , u;t+l,2 be two solutions of 
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z - un+1,1 - un+1,2 
1 - 1 1 ' 

From (4.3.4a) we have, fori= 1, 2, 

Z - un+1,1 - un+1,2 2- 2 2 . 

~ un+l,i - un-1,i un+1,i + un-1,i 
(Qh[ 1 2D.t 1 ], TJ)h + 1(\7( 1 2 1 ), \77]) 

+ (F1 (U{t+1,i' u;+1,i), TJ _ -f TJ)h = O. 

Subtracting these equations and noting (4.3.16) yields 

Taking rJ = Z1 in (4.3.18) and noting (4.1.2) and (4.3.16), we have 

91 

( 4.3.16) 

(4.3.17) 

(4.3.18) 

_1_ 19~hz 12 + :IIZ 12 + (F (un+1,1 un+1,1) _ F (un+t,2 un+l,2) z )h = o. 
2D.t 1 1 2 1 1 1 1 ' 2 1 1 ' 2 ' 1 

Note that 

F (un+1,1 un+1,1) _ F (un+1,2 un+1,2) 11 >2 11 >2 

un+1,1 + un-1,1 
= (U~,l)2( 1 

2 
1 ) _ u~,1 + D(u~+1,1 + u~-1,1 + 2)(u;·1 + 1)2 

Hence 

un+1,2 + un-1,2 
- (u~·2)2( 1 2 1 ) + u~,2- D(u~+1,2 + u~-1,2 + 2)(u;·2 + 1f 

2~t IQh Z1l~ + ~IZ1I~ + (((Uf)2 + n(u; + 1)2)Z1, Z1)h = o, 

2~tiQhZd~ + ~IZd~ + ((Uf)2 + D(U; + 1) 2 )1Zd~ = 0. 

(4.3.19) 
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It follows from the Poincare inequality (3.1.3) that 

In the same way, we are able to show that 

Thus we have shown the uniqueness. 

Now we deduce the stability bound (4.3.5). Choosing TJ = vVt, fori = 1, 2, in 

(4.3.1a, 4.3.1d) and T} = ur+1 - uin-1 in (4.3.1b, 4.3.1e), we obtain 

(un+l - un-1 vVn)h = -2!::..tiWnl2 
t t ' t t 11 

(TVn un+1 _ un-1)h = (F(un+1 [;n+1) un+1 _ un-1)h 
tl t t t 1 '2 't t 

un+l un-1 
+,(V'( i + i ), V'(ut+1 _ u;t-1)). 

2 

Adding (4.3.21) to (4.3.20) yields 

( 4.3.20) 

(4.3.21) 

2!::..t1Wnl2 +I_ (lun+112- IU:n-112) = (F(un+l u:n+1) un-l - un+1)h (4 3 22) 
t1 2 t 1 t l t1 12 lt t ... 

Note that, for i,j = 1, 2, i =/:- j, we obtain 

(4.3.23) 

(4.3.24) 

and 

((ur+1 + uin-t + 2)(Uj + 1)2, uin-1- uin+l)h 

= ((ur-1 + 1)2, (u; + 1)2)h- ((ur+1 + 1)2, (u; + 1)2)h. (4.3.25) 



4.4. Error bound 

Adding (4.3.22) fori= 1, 2, and noting (4.3.23-4.3.25) we have 

2~t(IH'rli + IW;Ii) + ~(lu~+ 1 li -lu~-lli + 1u;+1 li -lu;-1 li) 

+ ~ (lu~ur+ll~- 1u~-lu~1~ + 1u;u;+ 1 l~- lu;-lu;l~) 
+ (u~,u~+ 1)h- (u~-I,u~)h + (u;,u~1+l)h- (u;-I,u;)h 

+ D[((u~+l + 1f, (u; + 1f)h- ((u~-l + 1) 2
, (u; + 1)2t 

+ ((u;+l + 1)2
, (u~ + 1) 2)h- ((u;-l + 1) 2

, (u~ + 1f)h] = o. 
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( 4.3.26) 

Summing (4.3.26) for n = 1, ... , m, m:::; Nand rearranging the terms we obtain 

m~:"';N2L'.t{ t,(IW~Ii + IW~IiJ + ~(IU;"+lli + IU2+1Il) 

+ n[((urn+l + 1) 2 (u;n + 1)2
, 1)h +((urn+ 1) 2 (u;n+l + 1) 2

, 1)h] 

+ ~ (lurur+~l~ + 1u;nu~n+liD} 

:::; ~(IUfli + IUfli + IUgli -IUili) + ~(IUfUfl~ + IUgUiiD 

+ D[((Uf + 1)2 (UJ + 1f, 1)h + ((Uf + 1)2 (Ug + 1) 2
, 1)h] < C, 

where to obtain the last inequality we have noted the Young inequality (2.1.4), 

(3.1.40), (4.3.1c), (4.3.1£), (3.i.14) and the condition on u7 fori= 1, 2, k = 0, 1. 

The proofs of ( 4.3.6) and ( 4.3. 7) are analogues to those given for ( 4.2.8) and 

( 4.2.9) respectively. This ends the proof. D 

4.4 Error bound 

In this section we derive the error estimate between the semidiscrete approximations 

uf defined by (3.2.1a-f) and their fully discrete approximation ur defined by (4.2.la­

f), Scheme 1. We introduce the following variables 

(4.4.1) 
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and 

(4.4.2) 

Using this notation we can restate the problem (Ph,ll.t) as: 

Find {U1 , U2 } E H 1(0, T; Sh) x H 1(0, T; Sh), such that Ui(O) Phu~ and for a. e. 

t E (0, T), (Ui(t), 1) = (u~, 1) and 

for all TJ E Sh. 

( 4.4.3) 

( 4.4.4) 

Theorem 4.4.1 Let the assumptions of Theorem (4.2.1) hold. Then we have that 

fori= 1,2, 

(4.4.5) 

Subtracting ( 4.4.3) and ( 4.4.4) from (3.2.5a) and (3.2.5b) respectively we have 

Setting TJ = Ei and recalling that mass is conserved, i.e. f Ei = 0, we obtain 
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Subtracting (Qh~, Ei), from both sides, simplifying and rearranging the terms we 

have 

Subtracting (Qh %tEi, Ui) from both sides, simplifying, noting (3.2.47) and Ei- Ei = 

1 d 2 ~ 2 ~h aui ~ h h aui ~ h a ~ 

2 dt IIEill-h + 1IEil1 = (9 at' Ei) - (9 at' Ei) + (9 at Ei, Ei- Ei) 

+ (Fi(fJl, U2)- </>(u?) + 2D\IIi(u~, u~), Ei)h. 

Subtracting and adding (Qh~, &) to the right hand side equations above and 

simplifying we obtain 

Summing both sides fori= 1, 2, and rearranging the terms we obtain 

(4.4.6) 
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where Ij corresponds to the jth-line of the terms on the right hand side. 

Now we bound each Ij in turn. Using (3.1.2b), the Poincare inequality (2.1.2), 

and the Young inequality (2.1.4) we have, for j = 1, 3, 

Notice that fortE (tn-l, tn), using (4.4.1) and (4.4.2) we have 

it-:- - E- = u - un-l z z z z 

t-tn-1 tn-t tn-tn-l 
---un + --un-l - un-1 

tlt z tlt z tlt z 

t- tn-l t - tn-1 
---un- un-l 

tlt z tl.t z 

= t- tn-l (Un - un-l) 
tlt z z 

aun 
= (t- tn-l) atz ' ( 4.4.8) 

and similarly 

if - E- = u- un = (t- tn)aur 
z z z z at . (4.4.9) 

Thus using the Cauchy-Schwarz inequality, (3.1.5), the Poincare inequality (2.1.2), 

the Young inequality (2.1.4), (3.1.5), and (4.1.5) we have, for j = 2, 4, 

(4.4.10) 

Now we bound h and /s. Noting 
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expanding Fi and rearranging the terms we obtain 

= ls,1 + Dls,2, (4.4.11) 

and 

( 4.4.12) 

Also, noting the Cauchy-Schwarz inequality, (3.1.2a), the Poincare inequality (2.1.2), 

the Young inequality (2.1.4), (4.4.8), (3.1.6), and reapplying the Poincare inequality 

(2.1.2) we obtain, fori, j = 1, 2, 

~- ~ h ~- ~ 

(Ei ,Ej) ::; IEi lh IEjlh 

::; CIEi-- Ei + Eilo IEjlo 

::; C(IEi-- Eilo + IEilo) IEjh 
~- 2 2 1 ~ 2 ::; CIEi - Eilo + CIEilo + -IEJI1 

E 

= cl(t- tn-1) a~in 1: + CIEil6 + ~IEjli 
21 aun 12 2 2 ~ 2 ::; C(6t) 8; 1 + CIIEill-h + ~IEjl1· ( 4.4.13) 

Using the same method we obtain 

(4.4.14) 

where we have used (4.4.9) instead of (4.4.8) in our derivation. Using (4.4.13) we 

have 

( 4.4.15) 
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and 

21aurl2 11 112 21~ 12 h,1 S C(L~t) at 1 + C E2 -h + ~ E2 1. (4.4.16) 

Now by subtracting and adding (Uf + ur-1 + 2) ( u~ + 1 )2 to I5,2 and rearranging 

the terms we can express h,2 as 

I5,2 = ((ur + ur-l + 2)((u;-l + 1)2- (u~ + 1)2),E1)h 

+ ((ur + u;t-l- 2u~)(u~ + 1)2, E1)h 

= ((ur + ur-l + 2)(u;-l + u~ + 2)(u;-l- u~), E1t 

( ~ ~ h 2 ~ )h - (E1 + El)(u2 + 1) , E1 

s -((ur + ur-l + 2)(u;-l + u~ + 2)E:;, fA)h- ((u~ + 1)2 E!, E1)h 

s I ((ur + ur-l + 2)(u;-l + u~ + 2)E:;' El) 

- ((Uf + ur-1 + 2)(u;-l + u~ + 2)E:;, E1)hl 

+I ((ur + ur-l + 2)(u;-l + u~ + 2)E:;, E1) I 

I( h 2~ ~ ( h 2~ ~)hi I( h 2~ ~)I + (u2+1)E!,EI)- (u2 +1)E!,EI + (u2 +1)E!,EI 

=I In (I- 7rh) [(ur + ur-l + 2)(u;-l + u~ + 2)E:; El]dxl 

+I ((ur + ur-l + 2)(u;-l + u~ + 2)E:;, El) I 

+I i (I -7rh)[(u~ + 1) 2E!Et]dxl + l((u~ + 1)2E!,E1)1 

= h,2,1 + h,2,2 + h,2,3 + h,2,4, (4.4.17) 

where h,2,k for k = 1, ... , 4 corresponds to kth-term in the right hand side. 
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Similarly we obtain 

h,2 = ((u; + u;-1 + 2)((ur + 1?- (u~ + 1)2), ft2t 

+ ((u; + u;-1
- 2u~)(u~ + 1)2

, ft2)h 

= ((u; + u;-1 + 2)(ur + u~ + 2)(ur - u~), E2)h- ( (E2 + E2)(u~ + 1)2, E2)h 

::; -((u; + u;-1 + 2)(ur +u~ + 2)E\,E2)h- ((u7 + 1)2E2,E2)h 

::; I ((u; + u;-1 + 2)(ur + u~ + 2)E1, E2) 

- ((u; + u;-1 + 2)(ur + u~ + 2)E1, E2tl 

+ I ( (u;L + u;-l + 2)(ur + u~ + 2)E1' E2) I 

I( I 2"" ----) ( h 2"" ----)hi I( h 2"" ----)I + ( u{ + 1) E2, E2 - ( u1 + 1) E2, E2 + ( u1 + 1) E2, E2 

::; I i (I- 7rh) ((u; + u;-1 + 2)(ur + u~ + 2)E1E2)dxl 

+I ((u; + u;-l + 2)(ur + u~ + 2)it1, ft2) I 

+I i (I- 1rh)((u~ + 1)2E2 E2)dxl +I ((u~ + 1)2E2, E2) I 

= h,2,1 + h,2,2 + h,2,3 + h,2,3· ( 4.4.18) 

Now we bound each of the terms on the right hand side of (4.4.17) in turn. 

Noting (3.1.43), (4.2.42), (3.2.8a), the Poincare inequality (2.1.2), and the Young 

inequality (2.1.4) we have 

h,2,1 = I i (I- 7rh) ( (ur + ur-1 + 2)(u;-l + u~ + 2)E2 E1)dxl 

= 1 i u- 1rh) [(uru;-1 + ur(u~ + 2) + (ur-1 + 2)u;-1 

+ (ur-1 + 2)(u~ + 2))E2 Et]dxl 

::; Ch2
-d

13 (11Urll1 11u;-1lh + 11ur111 llu~ + 2lh + IIUr-1 + 2111 11u;-1 lh 

+ llur-
1 + 2lh llu~ + 2lh)IIE21h IIE1Ih 

::; Ch2
-d

13 IIE21h 11Edl1, 

< Ch4-2d/31E I - 1 1, 

I 1 ----< Ch4-2d 3 +-lE 12 - 1 1> 
€ 

(4.4.19) 
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and 

I 

r h ( h 2 ~ _ ~ ) 1 4-2d/3 1 ~ 2 ls,2,3 = Jn (I- rr ) (u2 + 1) E1 E1 dx :::; Ch + ~IE1 1 1 0 ( 404020) 

Note that using the generalised Holder inequality and (201.8) we have 

Hence noting (402.42), (30208a), the Poincare inequality (201.2) and (4.4013) we obtain 

and 

ls,2,2:::; I ((U~ + u~-l + 2)(u;-l + u~ + 2)E:;, El) I 

:::; Cl ( ((U~) 2 + (Ult-l? + (u;-1 )2 + (u~) 2 + 4) lE:; I, IE1I) I 

:::; C(IIUillli + IIU~- 1 IIi + 11u;-1lli + llu~lli)IE2Io IIE1II1 + CIE2Io IE1Io 

:::; GIE:; la IE1 h 

:::; C(IE:;- E2lo + IE2Io) IE1h 

:::; C(C(llt) 2 1 8~; 11 + IE2Io) IE1I1 

( )21 au~t 12 112 2 ~ 12 :::; c llt 8t 1 + CIIE2 -h + ~IEl 1) ( 4.4021) 

( 218Ufl2 11 112 21~ 12 ls,2,4 ::S: C llt) fit: 1 + C E1 -h + ~ E1 1 ° (404022) 

Using the same technique to bound 15,2,k, k = 1, 0 0 0, 4, we obtain 

1 < Ch4
-

2
d13 +!liE 11 2 6,2,1 - 2 1) 

E 

1 < Ch4
-

2
d13 +!liE 11 2 6,2,3 - 2 1) 

E 

21 aur 12 2 2 ~ h,2,2 :::; C(llt) fit: 1 + CIIElll-h + ~IE2h, 
21 8U212 2 2 ~ h,2,4 :::; C(llt) fit: 1 + CIIE211-h + ~IE2ho 

( 4.4.23) 

(4.4024) 

(4.4025) 

( 4.4.26) 
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Substituting (4.4.7-4.4.10), (4.4.15-4.4.16), (4.4.19-4.4.26) into (4.4.6) we rewrite 

( 4.4.6) as 

1 d ( 2 2 ) ( ....... 2 ....... 2) 2 dt IIElll-h + IIE211-h +I IElll + IE211 

~ Ch
4 
(ll9h 

8~1 11: + ll9h 
8~2 11:) 

+ C(h4 + (llt)2) (I 8~1 1: + I 8~21:) + ( 4 +E 6D) (IElli + IE21i) 

+ c(ll 
8fft1ll_h IIU1- 01ll-h + 11 

8fft211_h IIU2- 02ll-h) 

+ C(IIElll~h + IIE211~h) + Ch4
-

2
d

13 -

Taking E = ( 16 + 24D) / ( 31), simplifying and integrating over t E ( 0, T) we have 

1 1T d ( 2 2 ) I 1T ( ....... 2 ....... 2) 2 
0 

dt IIE1II-h + IIE2II-h ds + 4 
0 

IE1I1 + IE2I1 ds 

~ Ch41T (11Qh8~111: + llgh8~211:)ds 

+ C(h4 + (llt)2) 1r (I 8~1 1: + I 8~21:) ds 

+ C 1r (ll 8fft1ll_h IIU1- 01ll-h + ll
8fft211_h IIU2- 0211-~t)ds 

+ C 1T(IIE1II~h + IIE2II~h)ds + C(T)h4
-
2
d/

3
. 

Using a Gronwall inequality, the Holder inequality (2.1.7), the Poincare inequality 

(3.1.3) and rearranging the terms we have 
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On noting (4.4.1) and Theorem 4.2.1 we obtain 

1T I aui 12 1T I un- un-112 N 1tn I un- un-112 - ds = t t ds = L t t ds 
0 at 1 0 6t 1 n=1 tn-l 6t 1 

N tn 

1 "1 IUn n-112 C = ( A )2 L...t i - ui 1 ds :::;; A. 
ut n=1 tn-l ut 

( 4.4.28) 

The equations (3.2.1c), (3.2.1f), (4.2.1c), (4.2.1f) and (4.4.1) imply that 

( 4.4.29) 

Noting (3.1.5), (4.1.6) and (4.2.7) we obtain 

(4.4.30) 
n=1 

Using (4.4.1), (3.1.11), (3.1.5), (3.2.8b) and (4.4.30) we obtain 

for 11 a~i ~~~h ds :::;; 21r 11 a~?~~~h ds + 21r 11 ur ~~;-1 ~~~h 

:::;; c 1T 11 8~711~1 ds + c 1T IIQh[Ui ~~in-1]11::::;; C. (4.4.31) 

Hence noting (3.1.11), and (4.4.28-4.4.31) yields the desired result (4.4.5). 0 

Now we state a theorem to estimate the difference between the solutions ui 

of the coupled pair of Cahn-Hilliard equations (2.2.1a-f) and their fully discrete 

approximation Ui defined by (4.2.1a-f): 

Theorem 4.4.2 Let the assumptions of Theorem (4.2.1) hold. Then we have that 

fori= 1,2, 

( 4.4.32) 
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Proof. The result follows from combining (3.3.1) and (4.4.5). 

Corollary 4.4.3 Let the assumptions of Theorem 4.4.2 hold and f:lt 

Then this gives 

which is optimal in H 1 (rl). 

Proof. It follows from Theorem 4.4.2. 

103 

0 

0 



Chapter 5 

Numerical Experiments 

In this chapter we discuss two practical algorithms (implicit and explicit method) 

that are used to solve an algebraic system arising from the problem discussed in 

this thesis. We discuss the convergence theory for the implicit scheme used to solve 

the system arising from Scheme 1. We also discuss some computational results for 

one and two dimensions. We used the implicit scheme for all simulations in this 

chapter. We have made a comparison with Scheme 2 and the results are similar. 

Before showing some computational results, we discuss the linear stability solution 

for the problem. 

5.1 Practical Algorithms 

5.1.1 Iterative Method for Scheme 1 

Let us expand Ui and Wi, i = 1, 2, in terms of the standard nodal basis functions of 

the finite element space Sh, that is, 

J 

u~ = :L u~i1Ji, (5.1.1a) 
i=l i=l 

J J 

u:; = L u;,i1Ji, w; = L W£i1Ji, (5.1.1b) 
i=l i=l 

where J be the number of node points. 

Given yES:= {yE JRJ : ltMy = 0}. The existence of Qh defines, implicitly, 
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the invertible linear transformation T : S H S by 

T(y) = y, 

where y is the solution of 

Ky= My, 

where 1 is a vector with components 1, iVI is a mass matrix and K is a stiffness 

matrix. That is M- 1KT(y) = y and T(iVI- 1Ky) = y. Also note that 1tiVIT(y) = 

1t~My = 0. 

Now substituting (5.1.1a-b) into (4.2.6a) and noting (4.2.5) we have for a jth 

element of the basis function { ry1} the following: 

( 

J un - un-l ) h J 

gh~[ l,i 6.t l,i ]7Ji,7Jj +i(~u~i'VrJi,'VrJj) 

J 

+ ~ ( ( ry,, ry; )• F, (Ut,;, u,,,) -
1

A 
1 

( ry,, 1 )• Ft (ut,,, u,,,) (1, ry; )•) = o, 

which is equivalent to 

(5.1.2a) 

and similarly 

r(U~- u~-l) + "~T(M- 1 KM- 1 KUn) + P. (Un un)- -\nl = 0 
6.t I 2 2 1 ' 2 2 ' 

(5.1.2b) 
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where fori= 1, 2, 

.X n = 1 t M Fi (U7, U~) 
l IDI 0 (5.1.2c) 

Our aim is to solve the algebraic nonlinear systems (5.1.2a-b). To accomplish 

this let us define the operators A 1 ,A2 , 8 1 and 8 2 such that 

AI(Y) = Fl (y, Y2), 

A2(y) = F2(Y1, y), 

A1 : (a, b)J t-t RJ 

A2 : (a, b)J t-t RJ 

81 : Sf t-t S 81(Y1) = r(Y~-~~-~) + ,r(M-1KM- 1Ky 1), 

82 : sg t-t s B2(Y2) = r(Y2-~;-
1

) +rT(JvJ- 1KM- 1Ky2 ), 

where 

S~ := {y1 E lRJ : 1t.Nfy1 = (u~,0 , l)h}, 

s; := {y2 E lRJ : 1tMy2 = (u~,0 , l)h}, 

so that (5.1.2a-b) can be written as: 

81 (U7) + A1 (U~) - -X71 = 0, 

82(U~) + A2(U~)- .X~1 = 0. 

(5.1.3a) 

(5.1.3b) 

To solve the systems (5.1.3a-b) we adapt the algorithm of Lions and Meisier [28], 

who consider the case where Ai and 8i are two general maximal monotone operators 

in the absence of Lagrange multipliers. Copetti and Elliott [16] have adapted this 

algorithm where there is single Lagrange multiplier present. Barrett and Blowey [3] 

have also adapted this algorithm when considering the finite element approximation 

of a model for the phase separation of a multi-component alloy with non-smooth 

free energy, where there are two Lagrange multipliers present. 

Multiplying both sides of (5.1.3a) with 11 > 0, adding U~ to both sides, and 
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rearranging the terms we have 

In the same way from (5.1.3b) we obtain 

Now define 

z~ =U~- ~LB1 (un + 1-L>.~l, 

Z~ =U~- 1LB2(U~) + f-LA~l, 

X~ =2U~- Z~ = U~ + 1LB1 (U~) - f-LA~l, 

We perform the iteration as follows: 

Find U~,J+~ such that 

Un,J+~ ( ·) + A (Un,J+~ ( ·)) - zn,J 
1 x~ f-L 1 1 x~ - 1 ,i for i = 1, ... , J, 

and set 

Then find un,J+1 and un,J+1 such that 1 2 

where 

and set 
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(5.1.4a) 

(5.1.4b) 

(5.1.5a) 

(5.1.5b) 

(5.1.5c) 

(5.1.5d) 

(5.1.6a) 

(5.1.6b) 

(5.1.6c) 

(5.1.6d) 

(5.1.6e) 
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Next find 
nj-t-l 

U 2 ' 2 such that 

Un,J+~ ( ·) + A (Un,J+~ ( ·)) - zn,j 2 Xz J1 2 2 Xz - 2,i for i = 1, ... , J, (5.1.7a) 

and set 

(5.1.7b) 

Finally, find U~'J+1 such that 

(5.1.7c) 

where 

(5.1.7d) 

and set 

(5.1.7e) 

Notice that {U~'j} and {U~'j} are independent sequences. 

Lemma 5.1.1 The operators Ai are maximal monotone and Bi are coercive. 

Proof. We show monotonicity of Ai by showing the monotonicity of Fi with Yj fixed, 

i -=/= j. Consider F1 , i.e. 

F ( ) 3 (n-1) D( (n-1) 2) ( 1)2 
1 y, Y2 = Y - Y1 + Y + Y1 + Y2 + 

= y3 + Dy(y2 +I?+ 2D(y2 + 1)2 + (D(y2 + 1)2
- l)y~n-l) 

where 

c1 = D(y2 + 1)2 2: 0, 

C2 = 2D(y2 + 1)2 + (D(y2 + 1)2
- l)y~n-l). 
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Now without loss of generality let 0 < a < b, then 
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(5.1.8) 

(5.1.9) 

Subtracting (5.1.8) from (5.1.9) we have F1 (b, y2 ) ~ F 1 (a, y2 ). Similarly we can show 

that F2(y1 , b) ~ F2(y1, a). Since the range of I+ 11Ai E ne, then Ai is maximal (see 

Zeidler [36] page 843). 

To show Bi are coercive, given vi,wi E Sf, define (vi,wi) = w~Mvi, where(·,·) 

is an inner product on JR1 . Then, for i fixed, 

(Bi(wi)- Bi(vi), wi- vi) 

= (r(wi- u~-l) + rvM- 1 Kw·- r(vi- u~-
1

) - rv]vf-1 Kv W·- v·) t:J.t I l D.t I ll l l 

= ( T(Wi~ Vi)+ {JVf- 1K(wi- Vi), Wi- Vi) 

= (r(wi~ vi),wi- vi)+ (!N!- 1K(wi- vi),wi- vi) 

1 t t 
= D.t (wi- vi) MT(wi- vi)+ !(Wi- vi) K(wi- vi)· (5.1.10) 

Define Xi = 'Lf=1 Wi,j'T/j and vi = 'Li=l vi,k'T/k and dropping the index i, we have 

!IX- vli = 1(w- v)tK(w- v), 

and on noting x - v E S 



5.1. Practical Algorithms 110 

Hence we can rewrite (5.1.10) as 

Noting the Poincare inequality (3.1.3), we have 

(B(w)- B(v),w- v) 2: Clx- vi~ 2: C(w- v)tM(w- v), 

and therefore Bi are coercive. 0 

n j+l n j+l 
To see how we can compute U 1 ' 2 from (5.1.6a), expand A 1 U 1 ' 2 about the 

ith component (i = 1, ... , J) as follows: 

A1(U~,J+~ (xi)) =F1(U~t,J+~ (xi), u~- 1 (xi)) 

=(U~,j+~) 3 (xi)- u~- 1 (xi) 

+ D(U~,J+~ (xi)+ u~- 1 (xi) + 2)(U~- 1 (xi) + 1)2
. 

So the equation (5.1.6a) can be written as 

U~,J+~ (xi)+ f.L( (U~,J+~) 3 (xi) - u~-1 (xi) 

+ D(U~,j+~ (xi) + u~- 1 (xi) + 2) (u~- 1 (xi)+ 1)2
) = Z~:{ 

Thus to find U~,j+~ (xi), (i = 1, ... , J,) we solve the following equation 

(1+J.tD(u~- 1 (xi) + 1) 2 )U~,J+~ (xi)+ f.L(U~,j+~) 3 (xi) 

= z~:! + f.lu~- 1 (xi)- J.tD(u~- 1 (xi) + 2)(u~- 1 (xi) + 1)2
. (5.1.11a) 

Similarly, we find u;,J+~ (xi), (i = 1, ... , J,) from 

(1+J.tD(U~(xi) + 1) 2 )u;,J+~ (xi)+ f.l(u;·J+~) 3 (xi) 

= z;:! + f.lu~- 1 (xi)- J.tD(u~- 1 (xi) + 2)(U~(xi) + 1)2
• (5.l.llb) 
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Now let us discuss how to obtain U~·i+ 1 from (5.1.6c). Since 0 is a simple 

eigenvalue of]( with eigenvector 1, solving (5.1.6c) is equivalent to: 

which after rearranging gives 

(5.1.12a) 

Similarly solving the equation (5.1.7c) is equivalent to 

(5.1.12b) 

The matrix tlt]( + J-LM + D...twyi< M- 1 I< is symmetric positive definite, therefore the 

system has a unique solution. 

Theorem 5.1.2 For all J-L E ffi.+ and {U~·0 , >..~· 0 , U~·0 , ).,~' 0 } E Sf x ffi. x S~ x ffi. 

, the sequences {U~·1 L::::o and {U~·1 L::::o generated by algorithms (5.1.6a-d) and 

(5.1.7a-d) converge to the unique solution of (5.1.3a) and (5.1.3b) respectively. 

Proof The proof is the same as that of Copetti and Elliott [16] and for completeness 

we repeat their proof. Since the algorithms are independent and similar we prove 

both of them at the same time. For notational convenience, we drop the depen­

dence on the time level index nand component i, throughout this proof. We define 
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(compare with (5.1.5a-d)) 

X = U + JJB(U) - f.LA1, 

Z = U + f.LA(U), 

a =A(U), 

X1 = U1 + f.LB(U1) - f.LJ\11, 

z1 +X1 

UJ=---
2 

Z 1 - x 1+1 

aJ=----
2f.L 
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(5.1.13) 

(5.1.14) 

(5.1.15) 

(5.1.16) 

(5.1.17) 

(5.1.18) 

Adding (5.1.13) and (5.1.14), noting (5.1.3a-b), and rearranging the terms we have 

(5.1.19) 

Subtracting (5.1.13) from (5.1.14), noting 

A(U) = J\1 - B(U), 

and simplifying we obtain 
Z-X 

a=---
2f.L 

On substituting (5.1.6b) into (5.1.6c) and (5.1.7b) into (5.1.7c), noting (5.1.14) and 

(5.1.16), we have 

Hence noting (5.1.6a) and (5.1.7a), we can rewrite the iteration (5.1.6a-d) and 

(5.1.7a-d) as 

X1+ 1 = (I- f.LA)(I + f.LA)- 1 z1 

= (21- (I+ f.LA))(I + f.LA)- 1z1, 

which implies 
X J+l z1 

.J~(z1) = 2- , 



5.1. Practical Algorithms 

where .J!;, = (I+ J.LA)- 1
. Therefore 

which implies 

a1 = =A . 
. zi- xi+l (xHl- zi) 

2J.L 2 

The monotonicity of Band the fact that (1, Ui - U) = 0 yields 

0 ~ (B(Ui) - B(U), Ui- U) 

= (xi: ui +Ail- x: u- Al, ui- u) 
=~((Xi- X)- (Ui- U), Ui- U) + (Ai- ,\)(1, Ui- U) 

J.L 
=~((Xi- X)_ (zi- Z) (Xi- X) (Zi- X)) 

J.L 2 2 ' 2 + 2 
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= ~(IXi- Xl2- IZi- Zl2), (5.1.20) 
4!l 

where we have noted (5.1.17) and (5.1.19). 

From the monotonicity of A, we obtain 

0 < a1 - a - U ( 
. (xi+l + zi) ) 

- ' 2 

= ((zi + xH1
) _ (Z- x) (xi+l + zi) _ (Z + x)) 

2J.L 2J.L ' 2 2 

= 4~ ((zi- Z)- (Xi+1
- X), (zi- Z) + (Xi+I- X)) 

= ~(lzi- Zl2 -IXi+l- Xl2). 
4J.L 

(5.1.21) 
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From (5.1.20) and (5.1.21) we conclude that 

i.e. {IX1 - X 1
2} is a decreasing sequence that is bounded below so IX1 - Xl2 

converges. Now, adding (5.1.20) and (5.1.21), we have 

0 :S: (B(U1)- B(U), u1- U) + ( a1- a, (Xj+l
2
+ Zl) - U) 

:::;: 4~ (IXj- Xl2 -IXj+l- Xl2), 

which tends to zero as j -+ oo. On noting (5.1.21) this shows that 

(B(U1) - B(U), u1- U) -+ 0 as j -+ oo. 

Since B is coercive, we conclude that u1 -+ U as j -+ oo. 

5.1.2 Scheme 2 

0 

We now show that Scheme 2 is linear. On substituting (5.1.1a-b) into (4.3.1a-f) 

and taking 7J = 'T}j for j = 1, ... , J we have 

J J 

L)7Ji, 'T}j)h(U~tl- U~i 1 ) = -26.t L(\77Ji, V'T}j)W~i' (5.1.22a) 
i=l i=l 
J J J 

L(7Ji,7Jj)hw~i = L(7Ji,7Jj)hFl(Uf.t1 ,u;,t1
) + ~ L(V7Ji, V7J1 )(u~t 1 + u~; 1 ), 

i=l i=l i=l 

(5.1.22b) 

and 

J J 

L('fJi, 7J1)h(u;,t1
- u;,; 1

) = -26.t 2:)v7Ji, \77J1)W£i, (5.1.22c) 
i=l i=l 
J J J 

L(7Ji,7J1)hW£i = L(7Ji,7J1)hF2(Uf.t1 ,u;,t1
) + ~ L(V7Ji, V7J1)(u;,t1 + u;,; 1

), 

i=l i=l i=l 

(5.1.22d) 
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where 

un+1 + un-:-1 
F (Un+l un+1) = (Un)2 ( 1,z 1,1 ) _ un. + D(un+1 + un-:-1 + 2)(Un + 1)2 

1 1,z ' 2,z 1,z 2 1,z 1,z 1,z 2,z ' 

(5.1.22e) 

r;n+1 + un-:-1 
F (un+1 un+l) = (Un)2( 2,1 2,1 ) _ un. + D(Un~1 + un-:-1 + 2)(Un + 1)2. 

2 1,z ' 2,z 2,z 2 2,z 2,z 2,z 1,z 

The equations (5.1.22a-f) lead to the following systems: 

and 

where 

M(u~+ 1 - u~- 1 ) = -2~tKW~ 

MWn- MF (un+1 un+1) + }_K(un+1 + un-1) 
1- 1 1 ' 2 2 1 1 ' 

M(u~+1 - u~- 1 ) = -2~tKW~ 

MWn = JI.1F (Un+1 un+1) + }_K(un+1 + un-1) 
2 2 1l2 2 2 2' 

u~ ={U~J, w~ = {W~J, 

u~ ={u;,J, w~ = {w;,J, 

{F (un+1 un+l)}· = F (un+1 un+1) 
1 1 ' 2 t 1 1,t ' 2,t ' 

{F (un+1 un+l)}· = F (un+1 un+1) 
2 1 ' 2 z 2 1 ,z ' 2,z · 

Hence the algebraic problem to be solved is 

(5.1.22f) 

M(U~+l - u~-1 ) = -2~tJ( F1 (U~+l, u~+1 ) - 1~tK M- 1 K(U~+l + u~- 1 
), 

M(u~+1 - u~- 1 ) = -2~tK F2(u~+ 1 , u~+ 1 ) - 1~tK M- 1 K(u~+1 + u~-1 
). 
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This system is equivalent to 

(M+ 16.tK JIII- 1 K + 6.tK L 1 )U~+l = MU~-1 
- 16.tK JIII- 1 KU~-1 

- 6.tKb1
, 

(M+ 16.tK JIIJ- 1 K + 6.tl( L2)U~+l = Mu~-l - 16.tK M-1 Ku~-l - 6.tKb2, 

where V is a diagonal J x J matrix and 

Ll. = (Uln.)2 + 2D(U.2n + 1)2 
t,t ,t ,t ' 

L2. = (U.2n ·)2 + 2D(Uln + 1)2 
t,t ,t ,t ' 

Note that JIII + 16.tK Jvf- 1 K + K Li is a banded symmetric positive definite 

matrix, hence for given U~, U~, Ui, U~ we can solve this explicitly; for the one 

dimensional case we solve the systems using Cholesky decomposition. 

5.2 Linear Stability Analysis 

5. 2.1 One Dimensional Case 

We consider a coupled pair of Cahn-Hilliard Equations: 

Find { u1 (x, t), u2 (x, t)} E lR x lR such that 

aul 
6.w1 in n,t > o, -

at 
au2 

6.w2 n,t > o, - m 
at 

w1 = -16.u1 + c/J(ui) + 2Dwi(ui, u2), 

w2 = -16.u2 + cjJ(u2) + 2Dw2(u1, u2), 

(5.2.1a) 

(5.2.1b) 

(5.2.1c) 

(5.2.1d) 
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where 

</J(r) = 1;/(r), 

wl(r, s) = (r + 1)(s + 1f, 

w2(r, s) = (s + 1)(r + 1)2, 

oul ou2 owl ow2 
-=-=-=-=0 on an, 
ov ov ov ov 

u1(x, 0) = u~(x), u2(x, 0) = ug(x) on n. 
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(5.2.1e) 

(5.2.1f) 

(5.2.1g) 

(5.2.1h) 

(5.2.1i) 

For the one-dimensional problem with n = (0, 1), we assume the solution of the 

linearised problem is of the form 

'u1(x, t) = m 1 + ~~ cos(mrx)F1 (t), 

u2(x, t) = m 2 + ~~ cos(n1rx)F2 (t). 

(5.2.2a) 

(5.2.2b) 

The linear Taylor expansion of '1/J' about ui(x, t) = mi fori= 1, 2, is given by 

Noting 

we have 

and 

'1/J'(r) = r(r2
- 1), '1/J"(r) = 3r2

- 1, 

'1/J'(ui(x, t)) ~m~- m1 + (3mi- 1)(ui- m1), 

=m~- m1 + (3mi- 1)~~ cos(n1rx)F1 (t), 

'ljJ'(u2(x, t)) ~m~- m2 + (3m~- 1)(u2 - m2), 

=m~- m2 + (3m~- 1)~~ cos(n1rx)F2(t). 

(5.2.3a) 

(5.2.3b) 
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The expansion of \lli fori= 1, 2, about u1 (x, t) = m1 and u2 (x, t) = m2 is given by 

Noting 

we have 

\lli( U1 (x, t), u2(x, t)) ~ 'lli(mi, m2) + 'lli,u 1 (m1, m2)(u1 - mi) 

+ 'll i,u2 ( m1, m2)( u2 - m2). 

'll1(r, s) = 'll(r, s) = (r + 1)(s + 1)2, 

f) ) 2 or \lll(r, s) = 'llr(r, s = (s + 1) ' 

f) 

08 
'll1(r, s) = 'll 8 (r, s) = 2(r + 1)(s + 1), 

'll2(r, s) = 'll(s, r) = (s + 1)(r + 1)2, 

f) 
or \ll2 ( r' s) = \ll r ( s' r) = 2 ( r + 1 )( s + 1) ' 

:s 'll2(r, s) = 'll 8 (s, r) = (s + 1)2, 

\l!I(ui(x, t), u2(x, t)) ~ (m1 + 1)(m2 + 1)2 + (m2 + 1)2(u1 - mi) 

+ 2(mi + 1)(m2 + 1)(u2- m2), 

= (m1 + 1)(m2 + 1)2 + (m2 + 1) 2~~ cos(mrx)F1(t) 

and 

+ 2(m1 + 1)(m2 + 1)~~ cos(mrx)F2(t), 

W2(u1(x, t), u2(x, t)) ~ (m2 + 1)(m1 + 1)2 + (m1 + 1?(u1 - m1) 

+ 2(mi + 1)(m2 + 1)(u2- mz), 

(5.2.4a) 

= (m2 + 1)(m1 + 1)2 + (m1 + 1?~~ cos(mrx)F2(t) 

+ 2(m1 + 1)(m2 + 1)~~ cos(mrx)F1 (t). (5.2.4b) 

On substituting (5.2.1c) into (5.2.1a) and (5.2.1d) into (5.2.1b), noting (5.2.3a-
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5.2.4b) and simplifying, we see that the problem reduces to a linear system of ordi­

nary differential equations given by 

~; dd?) = - 'Y(mr)'1~;F1 (t) - ( (3mi - 1 )(mr )2 + 2D( m2 + 1 )2(mr )2) ~;F1 (t) 
- 4D(m1 + 1)(m2 + 1)(mr) 2~~F2 (t), (5.2.5a) 

and 

~~dd?) = - 'Y(mr) 4~~F2 (t)- ((3m~ -1)(mr? + 2D(m1 + l?(mr) 2)~~F2 (t) 
- 4D(m1 + l)(m2 + l)(mr) 2~;F1 (t). (5.2.5b) 

Here we have noted fori= 1, 2, that 

and 

~(-'Y~ui) =- 'Y(mr) 4~~cos(mrx)Fi(t), 

dui(t) _ ci ( ·) dFi(t) 
dt - '>n cos mrx dt , 

~cp( ui) = ( 1 - 3m;}~~ ( mr )2 cos( mrx) Fi ( t), 

~'ltl(u1,u2) = - (m2 + 1) 2~;(mr) 2 cos(mrx)F1 (t) 

- 2(m1 + 1)(m2 + 1)~~(mr) 2 cos(mrx)F2(t), 

~'lt 2 (u 1 , u2) = - (m1 + 1) 2~~(mr? cos(mrx)F2(t) 

- 2(m1 + 1)(m2 + 1)~;(mr) 2 cos(mrx)F1(t). 

In terms of vectors we can express (5.2.5a-b) as 

(5.2.6) 
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where 

A= (aij) for i,j=1,2, 

an= (3m~- 1) + 2D(m2 + 1)2, 

a21 = 4D(ml + l)(m2 + 1), 

a12 = 4D(ml + l)(m2 + 1), 

a22 = (3m~- 1) + 2D(m1 + 1)2. 

Thus the solution of (5.2.6) is given by 
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(5.2.7) 

(5.2.8) 

(5.2.9) 

To see interesting behaviour, i.e. growth of one or more of the component u1 

and u2, as t increases, we need at least one of the eigenvalues of A to be smaller 

than -1n2
1r

2 < 0. A simple calculation reveals that the eigenvalues of the matrix 

A are 

where 

(5.2.10a) 

(5.2.10b) 

Q(m1, m2) = D 2(4mf + 16m~ + 56m~m~ + 112m~m2 + 80m~ + 112m1m~ 

+ 224m1m2 + 128m1 + 4m~ + 16m~ + 80m~ +128m2 + 64) 

+ D ( - 12mf - 24m~ + 24m~m~ + 24mim2 + 24m1 m~ 

- 12m~- 24mD + 9mf - 18m~m~ + 9m~. (5.2.10c) 

Since A is symmetric we have real eigenvalues, i.e. Q(m1, m2) 2: 0. By noting 

the symmetry of the eigenvalues it is obvious that for D 2: 0.25, we have .\1 2: 0. 
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Thus we need only seek where /\2 is negative and less than -1n2
1r

2
. To see where 

A2 < 0, forD= 0.5, we plot the curve of the projection onto the mi-m2 plane of the 

intersection of the surface A2 (mi, m2 ) with the plane mi-m2 , which is equivalent to 

plotting Det(A) = AI x A2 = 0. The result is shown in Figure 5.1. 

(a) (b) 

2 2 

1 1 

m2o 11120 

-1 -1 

-2 -2 

-2 -1 0 1 2 -2 -1 0 1 2 
ml ml 

Figure 5.1: (a) The region A indicates where A2 < 0, i.e. where we expect growth 
to occur; (b) The contour plot of region A and its boundary. 

For the case m 1 = m2 =: m, the eigenvalues of A are 

(3 + 6D)m2 + 12Dm + (6D- 1), 

(3- 2D)m2
- 4Dm- (2D + 1). 

Setting Ai = 0, i = 1, 2, and solving for m we obtain 

-12D ± v12- 48D 
by setting AI= 0, 

6+ 12D 
m= 

4D ± v12+ 16D 
by setting A2 = 0. 

6-4D 

(5.2.11a) 

(5.2.11b) 

(5.2.12) 

This shows that for D 2: 0.25, AI 2: 0. Thus for the case we consider, i.e. D = 0.5, 

the growth may occur if 2m2 -2m-2 ::; -1n21r2 or 

(5.2.13) 
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For n = 1, from (5.2.2a-b), we have 

u1(x, t) =m+ cos(1rx)~~F1 (t), 

u2 (x, t) =m+ cos(1rx)~i F2(t). 

Using the formula given by Bernstein and So in [7), we can write 
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(5.2.14a) 

(5.2.14b) 

exp [-11r I- 1r A]t = , ( 
4 2 ) ( ~(exp(c1t) + exp(c2t)) ~(exp(c 1 t)- exp(c2t)) ) 

Hexp(c1t)- exp(c2t)) ~(exp(c1 t) + exp(c2t)) 
(5.2.15) 

where ci = -11r4 
- 1r2 .Ai, i = 1, 2. Hence noting (5.2.9) and (5.2.15), we can rewrite 

(5.2.14a-b) as 

1 
u1 (x, t) = m+ 2 cos(1rx) ( F1 (O)[exp(c1 t) + exp(c2t)] 

+ F2 (0) [exp( c1 t) - exp( c2t)]), (5.2.16a) 

1 
u2 (x, t) = m+ 2 cos(1rx) ( F1 (0) [exp(c1t) - exp(c2t)] 

+ F2(0)[exp(c1t) + exp(c2t)]). (5.2.16b) 

5.3 Numerical Simulations 

5.3.1 One Dimensional Case 

Numerical simulations in one space dimension were performed with n = (0, 1). In 

all simulations we take N = 101, 1 = 0.0025, Z~ = Z~ = 0.51 and D = 0.5. 

To choose J-l we ran one experiment with J-l E (0, 2). We varied the initial con­

ditions and D..t, and set T = 10, TOL = 1 x 10-10 . The value that required on 

average fewer iterations, as seen in Table 5.1, is J-l = 0.1. We used this value in 

all our simulations. We cannot say this value is the best for all the cases since J-l 

depends on N. 

Given initial guesses U~ and U~, to solve (5.l.lla-b) for each node the Newton 
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uo 
1 

uo 
2 fJ, average iteration nun max 6.t 

0.00 0.00 0.10 15.081 13 178 0.001 
0.25 0.50 0.40 4.197 2 19 0.001 
0.25 -0.50 0.10 6.246 1 284 0.001 
0.75 0.75 0.20 5.286 5 15 0.001 

-0.75 -0.75 0.60 1.241 1 9 0.001 
-0.50 0.50 0.10 4.849 1 81 0.001 
0.50 0.50 0.10 8.792 8 49 0.001 

-0.50 -0.50 0.10 20.616 8 104 0.001 
0.50 -0.50 0.10 4.757 1 83 0.001 
0.00 0.00 0.10 18.118 14 178 0.0005 
0.00 0.00 0.10 20.134 4 178 0.00025 

Table 5.1: Different initial guesses to choose better f-L· 

method was used. We set its initial guess based on the value of the right hand side 

of (5.1.11a-b), say y. If y 2: 0, we set the initial guess for the Newton method y+0.1, 

otherwise y- 0.1. Using this value as an initial guess, we found that for each node 

the Newton method never failed to converge to the solution of (5.1.11a-b). vVe used 

TOL x 10-1 as a tolerance to stop the iteration in the Newton method. 

To find the unique solution of the systems (5.1.12a-b) we used Cholesky decom­

position, i.e. exact for the tolerance provided. We moved to the next time level if 

11Uin,j+1(xi)- uin,j+~ (xi)lloo < TOL. 

Note that in all simulations the iterative method we used gave solutions that 

conserved mass. 

A comparison 

We consider the problem (5.2.1a-h) with the following initial conditions 

where ( 1 , ( 2 are small. 

u1(x, 0) = u~(x) =(1 cos(nx), 

u2 (x, 0) = ug(x) =(2 cos(nx), 

(5.3.1a) 

(5.3.1b) 

Comparing to (5.2.2a-b), and setting m 1 = m2 = 0, ~} = (1 and ~i = ( 2 we have 
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Hence from (5.2.16a-b) the solution of the linearised problem is 

1 
u1(x, t) = 2 cos(1rx) ([(1 + (2] exp(c1t) +[(I- (2] exp(c2t)), 

1 
u2 (x, t) = 2 cos(1rx) ([(1 + (2] exp(c1t) + [(2- (I] exp(c2t)), 
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(5.3.2a) 

(5.3.2b) 

and it follows that ui, i = 1, 2, decays to zero as t increases. If ( 1 #- (2, the solution 

will grow as t increases provided that 'Y < 2/7r2. For example, for ( 1 = ( 2/2, we have 

while for ( 1 = 2(2, we have 

1 
u1(x, t) = 4(1 cos(1rx) (3exp(c1t) + exp(c2t)), 

1 
u2 (x, t) = 4(1 cos(1rx) (3exp(c1t)- exp(c2t)). 

For the first example, we performed a simulation where ( 1 = ( 2 = 0.001, with 

TOL = 1 x 10-9 , .X 1 = 2.0 and .X2 = -2.0. Here we see that the maximum errors 

(see Figure 5.2.(a)) decrease linearly as the time-steps are halved, which is what we 

expect from the error analysis. The solutions are also in agreement with what we 

expect, i.e. ui, i = 1, 2, decays to zero as t increases (see Figure 5.2.(b)). We also 

did simulations with TOL = 1 x 10-10 . The results are the same. 

In the second example, simulations were performed by setting ( 2 = 0.001, ( 1 = 

2(2 , and (2 = 0.002, ( 1 = (2/2 respectively with TOL = 1 x 10-9 . Their maximum 

errors are depicted in Figures 5.3.(a) and 5.4.(a) respectively. We notice that the 
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Figure 5.2: (a) Maximum Errors of ui, i = 1, 2, for (I = ( 2 = 0.001 with u~ = 

(I cos( 1rx) and ug = ( 2 cos( 1rx); (b) Plot of the numerical solution and the linear 
stability analysis solution of ui, i = 1, 2, for (I = ( 2 = 0.001 at t = 0.05, 0.08, 0.1. 
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Figure 5.3: (a) Maximum Errors of ui, i = 1, 2, for (I = 0.002, ( 2 = 0.001, with 
u~ = (I cos(1rx) and ug = ( 2 cos(1rx); (b) Plot of the numerical solution and the 
linear stability analysis solution of ui, i = 1, 2, for (I = 0.002, ( 2 = 0.001 at t = 
0.01, 0.05, 0.08. 
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errors do not decrease linearly as the time-steps are halved. However the behaviours 

of the approximations are quite good in following the linear stability analysis solution 

as can be seen in Figures 5.3.(b) and 5.4.(b) respectively. This ensures that our 

approximations are good enough. 

We also did several simulations by taking ( 2 = 0.0001, (I = 2(2 and ( 2 = 0.0002, 

(I = (2/2. In the first run we took TOL = 1 x 10-9 . We could not see the 

linear convergence rate of the maximum errors using these parameters. Then we 

reduced the tolerance of the method by a factor of 10 until we could see the linear 

convergence rate of the maximum errors. The maximum errors for (2 = 0.0001, 

(I = 2(2 , and ( 2 = 0.0002, (I = (2/2 respectively with TOL = 1 x w-I2 are depicted 

respectively in Figures 5.5.(a) and 5.6.(a) . We notice that the maximum errors of 

the approximations are almost linear as the time-steps are halved for ( 2 = 0.0001 

and ( 1 = 2(2 . However this is not the case for ( 2 = 0.0002 and (I = (2/2. We believe 

this is because the scheme is not symmetric. The behaviour of these solutions can be 

seen in Figures 5.5.(b) and 5.6.(b) respectively. These figures are what we expect, 

i.e. ui, i = 1, 2, grow as t increases. 

Simulations with no exact solutions 

For simulations in this section we use as initial conditions 

(5.3.3) 

where <;(x) is a random perturbation of the state U = 0 with values distributed 

uniformly between -0.05 and +0.05. In all simulations we set TOL = 1 x w-Io and 

tlt = 0.001. We ran several simulations with different initial guesses, although some 

of them, which are located in the top right hand quadrant and its border, do not 

have physical meaning according to the model as mention in Chapter 1. Our aim is 

to see whether the results are in agreement with the stability region we obtained in 

Section 5.2. For each figure, the last plot indicates that the final numerical solution 

plotted is stationary, that is ur does not change from one time level to the next. 

Figure 5.8.(a)-(c) show the simulations with initial guesses A, C and F respec-
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tively. As can be seen in Figure 5.7, these initial guesses are located outside the 

region A of the stability region. Here we have stationary solutions, which match 

the stability region condition (see Figure 5.1). 

The rest of the initial guesses are located inside the A-area of the stability region. 

After computing each of their eigenvalues, using (5.2.10a-b), we can compute the 

values of ci = -11r4
- 1r

2 ,\i (see Table 5.2). Using these ci in the solutions (5.2.16a-

b), and plotting (F1 (0) + F2(0))exp(c1t) + (F1(0)- F2(0))exp(c2t) and (F1 (0) + 
F2(0)) exp(c1t) + (F2(0)- F1 (0)) exp(c2t) we can judge the behaviour of the solutions 

at the early stage of the given initial guesses. 

Initial uo 
1 

uo 2 cl c2 
X -0.75 -0.25 -13.25166595 7.829818293 
y -0.25 -0.75 -13.25166595 7.829818293 

I -0.50 -0.50 -5.178324930 4.691279474 

J -0.50 0.00 -12.58052823 12.09348277 

K -0.50 0.50 -27.90580951 7.679555244 

V -0.25 0.25 -21.86310670 16.44125904 

L 0.00 -0.50 -12.58052823 12.09348277 

0 -0.50 -0.50 -27.90580951 7.679555244 

w 0.25 -0.25 -21.86310670 16.44125904 

M 0.00 0.00 -19.98273154 19.49568608 

N 0.00 0.50 -39.82457085 19.59831658 
p 0.50 0.00 -39.82457085 19.59831658 

Q 0.50 0.50 -64.39595163 24.43048828 

R 0.50 0.75 -80.43773010 23.20045932 

s 0.75 0.50 -80.43773010 23.20045932 

Table 5.2: The value of Ci for different initial guesses. 

Using the analysis above, we expect using the initial conditions X, Y and I, 
~ 

at the early stage, that the solution will go to a steady state before growing. I 

will grow more slowly than X and Y. This observation is in agreement with our 

computational results (see Figure 5.9.a,b,c, for X, Y and I respectively). We also 
~ ~ 

expect that at the early stage the solutions using initial guesses K and 0 will grow 

more quickly than those with J and L, but slower than those with V and W. See 

Figures 5.10 and 5.11 for the matching behaviour in our simulations. 
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Figure 5.11: The evolution from the initial conditions that are random perturbations 
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Figure 5.12: The evolution from the initial conditions that are random perturbations 
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In all simulations, including those using initial conditions in the first quadrant 

---------E, G, H, Q, R, S, T, U, the results are consistent with the corresponding stability 

region (see Figure 5.1), where for all initial guesses in region A we get growth of the 

solutions. 

We notice that in the Figures 5.8-5.13 the growth of the approximate solutions, 

which are initially much less than 1, may grow to be close to 2 (see the y-axis of 

Figures 5.12 and 5.13). Do the solutions blow-up for increasing timet? To tell us 

what happens to the solutions for increasing time t, we ran a simulation with the 

initial guesses ur = U~ E ( -1, 3.2). Again our simulations violated the physical 

meaning of the model. We plotted the maximum and minimum values of U1 , U2 , 

for t = 1000, as can be seen in Figure 5.14. The Figures are consistent with the 

stability region (see Figure 5.1) and the interval given in (5.2.13), where we have 

stationary solutions outside of this interval. 

We note something mathematically interesting in Figure 5.14. The maximum 

and minimum values of ±1 change as we enter the domain having no physical mean­

ing, i.e. the top right hand quadrant including its boundary. A rough explanation 

can be stated as follows: Consider minimising the free energy (2.2.14) with mass 

constraints. We ignore the 1-terms. Thus we have a problem 
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such that 

For certain pairs of m1 and m2 the solution of this problem is 

u 1 = {

1 

-1 
and u 2 = {

1 

-1 

m n~, 

where S11 n S12 = 0 n = 01 u 0 1 = 02 u 02 such that + + ' + - + _, 

This tells us that if we have growth and the growth is in the domain described 

above, then the maximum/minimum will be 1/-1. Comparing the domain to the 

stability region in Figure 5.1 we have an area where the maximum/minimum will 

be 1/-1 as depicted in Figure 5.15. Our analysis here is in agreement with the 

simulations we have done (see Figure 5.9-5.13). 

2.0 
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-1.0 

-2.0 

-2.0 -1.0 0.0 1.0 2.0 
u1 

Figure 5.15: The region A indicated where the maximum/minimum will have values 
1/- 1. 
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5.3.2 Two Dimensional Case 

Numerical experiments in two space dimensions were performed with n = (0, 1) X 

(0, 1). We took a uniform mesh consisting of a square r;; of length h = 1/64, each 

of which was divided into two triangles by its north-east diagonal (see Figure 5.16). 

In all simulations we set 1 = 6:..t = 0.001, Z~ = zg = 0.51, and D = 0.5. 

Figure 5.16: Uniform mesh 

As in the one dimensional experiments we use initial guesses (5.3.3), a random 

perturbation of the state U = 0 with values distributed uniformly between -0.05 

and +0.05. We solve (5.1.11a-b) for each node using the Newton method, applying 

the same technique as used for the one dimensional simulations to obtain its initial 

guess. The technique to stop the iteration and to move to the next time level is the 

same as in the one dimensional case. 

To find the unique solutions of the systems (5.1.12a-b), unlike the one dimen­

sional simulations, we used a relaxation method. We chose its 'best' parameter w, 

by running a single simulation for w E (0, 2). We picked the value which took fewest 

iterations on average. In this case w = 1.8. 

The parameter J-L was chosen by running one simulation for J-L E (0, 4). Here we 

did not vary initial guesses or 6:..t as we did in the one dimensional case. We ran 

this simulation with the following parameters: T = 0.01 and TOL = 1 x 10-9
• We 

chose 1-l so that it took fewer iteration in average, i.e. J-L = 2. 

We did several simulations in two space dimensions, each of which conserved 
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mass. We plotted a gray scale grid plot of Ui, that is, 

t = 1- (U(i,j) + U(i + 1,j) + U(i,j + 1) + U(i + 1,j + 1) + 4c)/8c, c = 1.2, 

at several times. Except for Figure 5.18 the final plot of the numerical solution is 

stationary. The gray scale ranges from 0.1 to 0.9 with pure black/white corresponds 

to 0.1/0.9 representing values larger/smaller than 0.9/0.1. 

The aim of our simulations is to see an agreement of the behaviour with the 

one dimensional case and the stability analysis at their early stages. Figure 5.17, 

where no growth occurs, shows the simulation with initial conditions ul = u2 = 

-0.75 + .:;(x). This matches the one dimension simulation (see Figure 5.8) and the 

stability region condition (see Figure 5.1 and 5.7). 

Figures 5.18-5.20 represent respectively, the initial stage evolution from the ini-
~ ~ ~ 

tial guesses labelled Y, J(, 0 in Figure 5. 7. As can be seen in the Figures, we 

obtain the growth as expected. In addition, analysis clone as in the one dimensional 

simulation showed that in the early stage the solutions inherited the behaviour of 

the solutions in one space dimension. 

Concluding Remarks 

vVe have clone some experiments incorporating a multigrid technique with the im­

plicit algorithm to solve the linear system (5.1.12a-b). In the implementation we 

used a V -cycle with a Gauss-Seiclel smoother, a seven point prolongation and re­

striction. We did not perform a prolongation and restriction while moving from grid 

to grid on the left hand matrix of (5.1.12a-b), instead we used the mass and stiffness 

matrices to construct it for each grid levels. However the result is not promising. 

The CPU-time required to obtain the solution using this technique was much longer 

than when applying the relaxation method to solve the system (5.1.12a-b). We 

believe that, one reason for this inefficiency is because the smallest system is of the 

order 25 x 25 which is not solvable exactly. Another reason is the dependence of our 

problem on the parameter Jl for each grid level. The best value of Jl for solving the 

system using a multigricl approach may be the worst for the algorithm overall (see 
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t = 0.0 

t = 0.06 

t = 0.1 

Figure 5.17: The early stage evolution from the initial conditions that are random 
perturbations of the uniform state ul = -0.75 and u2 = -0.75 at t = 0.0, 0.06, 0.1. 
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t = 0.04 

t = 0.06 

t = 0.1 

Figure 5.18: The early stage evolution from the initial conditions that are random 
perturbations of the uniform state ul = - 0.25 and u2 = -0.75 at t = 0.04, 0.06, 
0.1. 
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t = 0.06 

t = 0.6 

t = 8.0 

Figure 5.19: The early stage evolution from the initial conditions that are random 
perturbations of the uniform state ul = -0.5 and u2 = 0.5 at t = 0.06, 0.6, 8.0. 
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t = 0.09 

t = 0.4 

t = 8.0 

Figure 5.20: The early stage evolution from the initial conditions that are random 
perturbations of the uniform state ul = 0.5 and u2 = -0.5 at t = 0.09, 0.4, 8.0. 
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(5.1.11a- b)) . 

To see a clear interaction between the solutions U1 and U2 in terms of their 

physical meaning, it would be worthwhile doing computational experiment in three 

space dimensions. 



Chapter 6 

Conclusions 

It was shown using a Faedo-Galerkin approximation that there exists a unique so­

lution for the coupled pair of Cahn-Hilliard equations modelling a phase separation 

on a thin film of binary liquid mixture coating substrate, which is wet by one com­

ponent. This solution satisfies certain stability bounds. The regularity result at the 

end of Chapter 2 is essential for obtaining the error bound for the method proposed. 

Some mathematical tools were developed for analysing a semi and fully discrete 

approximation. The existence, uniqueness, and stability bound for the semidiscrete 

finite element approximation were proven for d = 1, 2, 3. An error bound between 

the semidiscrete and continuous solution was given for d = 1, 2, 3. 

Two types of fully discrete approximations, called Scheme 1 and Scheme 2, for 

solving the weak formulation were proposed. The existence and uniqueness of both 

schemes, for d = 1, 2, 3, were proven. Their stability estimates were shown for 

d = 1, 2, 3. The convergence of the solutions to the continuous problem in the weak 

formulation form ford= 1, 2, 3, was discussed for Scheme 1. 

The error bound between the fully discrete and continuous solutions for Scheme 1 

was proven by combining the error bound between the semi discrete approximation 

and continuous problem, and the fully and semi discrete approximation. The error 

bound is not optimal in the sense it linear in tlt. It might be possible to improve 

the error estimate as Barrett and Blowey did in [4-6], and we leave this for future 

work. 

Two practical algorithms (implicit and explicit) for solving the finite element 
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approximation at each time step were suggested. The convergence theory for the 

implicit scheme, which was used to solve the system arising from Scheme I was 

proven. The linear stability analysis for one space dimension was given. Simulations 

in one and two space dimensions were performed using the implicit scheme, and all 

computational results matched the linear stability region we have shown. 

The analysis of (l.O.Ia-e) would be greatly simplified if the prototype nonsmooth 

potential 

{

HI- ui) +HI- uD + ~IY'u1l 2 + ~IY'u2l 2 +D(ul + I)(u2 +I), 
F(u1, u2) = 

+oo for lu1 1 2: I or lu2l 2: I, 

was used instead of (l.O.Ie). This would lead to a pair of coupled variational in­

equalities and perhaps the work of Blowey and Elliott [9, IO] could be generalised. 

The advantage in this case would be that the only "nonlinear" term (for want of a 

better word) would be the variational inequality. 

Modica in [30] consider a mathematical problem studying the asymptotic be­

haviour as 1----+ o+ of solutions u'Y of the minimisation problem 

mini 1IY'ul2 + w(u)dx, 

such that fn u(x)dx =m. It is may be possible to mimic this study to analyse the 

asymptotic behaviour as 1 ----+ o+ of the minimising free energy (2.2.I4) which was 

mentioned in Section 5.3.I. This could be the basis of rigorous analysis for studying 

the behaviour of the solutions of our problem in Figure 5.I4. We left this for future 

research. 
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Appcen.dJix A 

Basic and Auxiliary Results 

A. 1 Basic Results 

Theorem A.l.l (Lax-Milgram lemma) Let V be a Hilbert space, let a(·,·) : 

V x V t----t lR be a continuous V ~elliptic bilinear form, and let f : V t----t lR be a 

continuous linear form. Then the abstract variational problem: Find an element u 

such that 

u E V and for all v E V, a(u, v) = f(v), 

has one and only one solution. 

Proof See Ciarlet [13] page 8, for example. 

Theorem A.1.2 (Compactness) Let V, H and V' be three Banach spaces with 

V and V' being reflexive and 

V c H H' c V', 

where the injection V '--+ H is compact. Also let 

W = { v: v E £P(O, T; V),~~ E Lq(O, T; V')}, 

where T < oo and 1 < p, q < oo. Then the injection W in V(O, T; H) is compact. 

Proof See Lions [27] page 58. 
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Theorem A.1.3 Let V, Hand V' be three Hilbert spaces, having the property that 

V c H= H' c V'. 

If u E L2 (0, T; V) and u' E L2 (0, T; V') then u E C([O, T]; H) a.e and the following 

equality holds in the scalar distribution sense on (0, T) 

d 
-lul 2 = 2(u', v,) 
dt 

Pr-oof See Temam [34] page 261. 

Theorem A.1.4 (See Dautray and Lions [17] page 289) Let V be a reflexive 

Banach space, { 7Jn} a bounded sequence in V. Then it is possible to extract from 

{7Jn} a subsequence which convergences weakly in V. 

Theorem A.1.5 (See Dautray and Lions [17] page 291) Let V be a separa­

ble normed space and V' its dual. Then from every bounded sequence in V', it is 

possible to extract subsequence which is weak-star convergent in V'. 

Theorem A.1.6 (Gronwall Inequality) Let C be a nonnegative constant and let 

u and v be continuous nonnegative functions on some interval t E [a, ,B] satisfying 

the inequality 

v(t) ::::; C + 1t v(s)u(s)ds for t E [a, ,B]. 

Then 

v(t)::::; Cexp (it u(s)ds) fortE [a, ,B]. 

Pmof See Brauer and Nohel [12] page 31 for example. 


