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Parton-Parton Scattering at Two=Loops 
a Ph.D. thesis by 

Maria Elena Tejeda Yeomans 

July 2001 

Abstract 

We present an algorithm for the calculation of scalar and tensor one- and two-loop 

integrals that contribute to the virtual corrections of 2 --t 2 partonic scattering. First, the 

tensor integrals are related to scalar integrals that contain an irreducible propagator-like 

structure in the numerator. Then, we use Integration by Parts and Lorentz Invariance 

recurrence relations to build a general system of equations that enables the reduction of 

any scalar integral (with and without structure in the numerator) to a basis set of master 

integrals. Their expansions in E = 2 - D /2 have already been calculated and we present 

a summary of the techniques that have been used to this end, as well as a compilation of 

the expansions we need in the different physical regions. 

We then apply this algorithm to the direct evaluation of the Feynman diagrams con­

tributing to the O(a~) one- and two-loop matrix-elements for massless like and unlike 

quark-quark, quark-gluon and gluon-gluon scattering. The analytic expressions we pro­

vide are regularised in Convensional Dimensional Regularisation and renormalised in the 

MS scheme. Finally, we show that the structure of the infrared divergences agrees with 

that predicted by the application of Catani's formalism to the analysis of each partonic 

scattering process. 

The results presented in this thesis provide the complete calculation of the one- and 

two-loop matrix-elements for 2 --t 2 processes needed for the next-to-next-to-leading order 

contribution to inclusive jet production at hadron colliders. 
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Preface 
Part on-Part on Scattering 

at Two-Loops 

The aim of this thesis is to provide an insight into the workings of Quantum Chromo­

dynamics (QCD) as a quantum field theory. More precisely, to use perturbation theory 

at high orders and calculate matrix elements for partonic scattering processes. 

Before presenting our main results in Chapter 6, the structure of this thesis aims at 

providing the tools needed to perform a higher order matrix element calculation as well 

as describing the general context on which it stands. This enables the reader to find 

out what (s)he needs to undertake such a calculation and which are the next steps to be 

taken in order to move forward in the description of QCD phenomena within perturbative 

calculations at high orders. 

In the first two Chapters we review some of the basic concepts of QCD starting with 

a description of the dynamics of the theory in terms of its Lagrangian. We continue 

with concepts inherent to the nature of QCD, such as asymptotic freedom and finish the 

introductory discussion with an exploration into the type of phenomena we can use this 

description for, namely highly energetic jets. 

Chapters 3, 4 and 5 encompass a discussion centered around the main techniques 

and algorithms for explicit loop integration, loop integral reduction in terms of simpler 

integrals and isolation of their divergent behaviour. We present the complete calculation 

of one- and two-loop matrix elements for 2 -+ 2 scattering, needed for the improvement 

in the theoretical description of jet production at hadron colliders, in Chapter 6. 

In the last Chapter, we provide a summary of our main results and a brief account 

of recent work within the fields that complement matrix element calculations (such as 

analytic cancellation of singularities and distribution functions), which are needed for a 

complete estimate of a jet cross section. We finish with an outlook on future calculations 

and lines of work that could build on the methods currently used. 
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Chapter 1 
Basics of Quantum 

Chromodynamics 

In this Chapter we discuss briefly the basic aspects of Quantum Chromodynamics as 

a gauge theory and as a tool for perturbative calculations. By no means do we intend to 

present an exhaustive exploration of these topics, but we do provide a guide that can be 

followed with the aid of several text books*. 

We begin with an introduction to the quark model that leads us to the dynamics 

of partons presented in section 1.2 through the QCD Lagrangian. There we look at its 

different pieces and make a small exploration into their nature. In section 1.3 we give 

the Feynman rules that allow a diagrammatic study of the strong interactions in the 

perturbative limit. This is followed by two very important topics in QCD: regularisation 

and renormalisation in sections 1.4 and 1.5. 

In these last two sections we provide qualitative and quantitative arguments on the 

nature of the divergent behaviour of the perturbative analysis we use in QCD and on the 

implication it has on our description of strong interactions. We finish by looking into the 

concept of asymptotic freedom and on the running of the strong coupling. 

1.1 The Quark Model 

Particle Physics is concerned with the fundamental constituents of matter and their in­

teractions. In particular, the field theory that allows us to study the phenomena arising 

from strong interactions, is Quantum Chromodynamics ( QCD). 

All the particles that interact strongly such as baryons and mesons, are called hadrons. 

The large number of observed hadrons led to the supposition that they were not elemen­

tary but that they had a more basic structure. As it is today, our theoretical understand­

ing of strong interactions started with the identification of these elementary particles 

*For a more formal and detailed discussion of QCD and Quantum Field Theory the references [1, 2, 3, 

4, 5, 6, 7, 8] and references therein, are recommended. 

1 



1. Basics of Quantum Chromodynamics 2 

called fermions. 

The quark model establishes a structure for hadrons. Mesons are a bound state of a 

quark-antiquark pair qij, while baryons are bound states of three quarks qqq. At present, 

there have been observed 6 species (flavours) of quarks all carrying spin 1/2. The electric 

charge of the up(u), charm( c) and top(t) is +2/3, while that of the down(d), strange(s) and 

bottom(b) is -1/3. When correctly assembled, the quark quantum numbers reproduce 

the quantum number belonging to the composite mesons and baryons. 

Nevertheless, this quark scheme forces us to combine three quarks with the same spin 

in order to reproduce experimental results for some baryonic states, such as the ~ ++ = 

uuu baryon, thereby violating Fermi statistics. To avoid this problem an additional 

quantum number is introduced for quarks, the so called colour charge. This helps to 

distinguish between identical quarks and since the hadrons contain at most three quarks, 

we need three different values or colour charges, i.e. red, green and blue. 

The fact that experimentally no single quark or colour-full bound state had been ob­

served reinforced the idea of hadrons being confined to colour-less states, e.g. (blue, anti­

blue) or (red, green, blue). The confinement of the quarks is an additional theoretical hy­

pothesis that has yet to be understood fully and that is likely to be a direct consequence 

of the dynamical properties of the quarks. 

As we mentioned before, the dynamical interactions of all elementary particles in 

hadrons are described using QCD. In this theory, quarks are considered to be point-like 

entities carrying colour charge and interacting via the exchange of spin 1 bosons called 

gluons (in analogy to the photon for electro-magnetic interactions). 

Furthermore, the theory postulates invariance of the physical description for the in­

teracting quarks inside hadrons to redefine their colour labels at any point in space-time. 

To compensate for this local phase invariance there are 8 gluons that carry colour charge 

and also self-interact. 

More formally, the theory postulates invariance under local SU(3)c transformations. 

In particular, quarks transform in the fundamental representation and gluons in the ad­

joint representation, giving a symmetric colour singlet for mesons qiifi and a totally anti­

symmetric one for baryons Eijkqiqjqk. 

In this thesis we are interested in the short-distance (or high energy) limit of QCD, 

where the strong interactions inside hadrons become weak. Here, the quarks and gluons 

are asymptotically free and we are able to use a sensible diagrammatic perturbation theory 

study of these interactions. 



1. Basics of Quantum Chromodynamics 3 

1.2 The gauge principle in QCD 

In this thesis we are interested in using the perturbative SU(3) model of QCD and the 

Feynman rules derived from it in the analysis of physical processes. In this section we 

give a brief discussion of QCD as a gauge theory and touch upon the topics related to it 

that comprise the tools needed for our work. 

1.2.1 Quarks and gluons 

The Lagrangian density that describes the quark content of the theory of QCD is 

.Cquark = L i/J f ( 
f 

iT/J ..._.., 
kinetic 
term 

mass 
term 

(1.1) 

where the quark fields '1/JJ carry a flavour index f. We use a shorthand notation for the 

contraction of an arbitrary vector with the gamma matrices rJ.L, 

which themselves must fulfill the Clifford algebra anticommutation relation 

(1.2) 

In eq.(l.l), every quark field flavour is actually formed by a triplet of fields in colour space 

(usually referred to as red, green and blue) 

( 

'1/J'j(x) l 
'1/Jj(x) = 'lj;~(x) · 

'1/J}(x) 

These internal degrees of freedom do not manifest in an actual physical measurement. 

The fact that any physical observable is independent of them is a consequence of the 

freedom we have to rotate any of these fields into one another. This can be enforced 

upon the quark field arbitrarily at any point in space-time to introduce a local SU(3) 

symmetry. 

Formally, this means that the Lagrangian density must be invariant under any local 

SU(3) transformation U(x) which can be parametrized as 

U(x) = exp (iT· B(x)), (1.3) 
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where T · () = Ta()a and Ta are the generators of SU(3) in the fundamental representation 

and the matrix U(x) is unitary so the generators Ta are traceless and satisfy the following 

commutation relation 

The quark field transforms as 

Jabc 

'-v-" 

structure 
constant 

(1.4) 

under the SU(3) rotation, so unitarity ensures that the quark mass term in eq.(1.1) is 

invariant as well. On the other hand, the kinetic term of the Lagrangian requires a more 

thorough analysis. We must ensure that the covariant derivative (which is contracted 

with the 1 matrices) has a structure that balances with the rotation of the quark fields 

accompanying it. 

The covariant derivative term transforms as 

so in order to have a term that cancels out the rotation of the quark fields, we must 

add a new vector gauge field A~ to the definition of the covariant derivative. This field 

represents the degrees of freedom corresponding to the gluons, and carries colour indices 

a= 1, ... , 8. Then the definition of the covariant derivative is 

(1.5) 

where the coupling strength between the quarks and gluons is g. We must also have a 

term in the Lagrangian that comprises the dynamics of the gauge particles. The kinetic 

energy term of the gluon fields is built in terms of the commutator between two covariant 

derivatives, 

(1.6) 

where 

F:v = 81-LA~ - ovA~ - grbc At A~ . (1. 7) 
'-----v------" '--v---' 

Abelian Non-Abelian 

The Non-Abelian (not present in QED) term in this equation is the one representing 

the interactions amongst gluons. In the Lagrangian density, the term associated with the 

presence of gluons, will contain the normalized trace of the field-strength as 

(1.8) 
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which is a gauge invariant kinetic term. 

So the classical Lagrangian of QCD is given by 

Lclassical 

(1.9) 

which is built under the basic principle of gauge invariance, where the fields transform as 

'1/Ji ----7 U(x)'l/JJ, 

----7 U(x) ( Ta A~- ~u-1 (x)8JLU(x)) U(x)-1
. 

This part of the QCD lagrangian describes the dynamics of the quarks as particles with 

spin 1/2 that carry colour charge and interact with the gluons, which are bosons with 

spin 1, also carrying colour. 

1.2.2 Gauges and ghosts 

The next step towards a consistent quantum theory of gauge fields is the quantization 

itself. Inevitably this will lead to inconsistencies that must be fixed in order to have a 

sensibly defined theory. 

In the canonical quantization method, we use the fields of the theory as operators and 

calculate canonical commutation relations for them. If we apply this method to the gluon 

fields, the time-like component of the conjugate momentum vanishes. This contradicts 

the non-vanishing commutation relation that is calculated for the time-like components 

of the gluon field and its conjugate canonical momentum. 

The fact that we rely on a gauge invariant Lagrangian where the field A~ has the free­

dom of gauge transformations (it changes by a total derivative and leaves the Lagrangian 

invariant), will always lead to this difficulty. 

We can eliminate the freedom of the gauge transformation by adding constraints to 

the gluon field. For example, we may choose the Lorentz condition 

which is effectively a gauge fixing condition. This is not the only choice we can make to fix 

the gauge. We can otherwise use the Coulomb gauge (8iA~ = 0), axial gauge (n · Aa = 0 

with n2 = 1) or temporal gauge (Ag = 0). We want to quantize the theory in a covariant 

way, so we use the Lorentz gauge. In this manner, the gauge fixing term we add to the 
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Lagrangian is the following 

L:gauge-fixing = - 2
1~ ( 8/l A~) 2 

, (1.10) 

where the parameter ~ is called the gauge parameter. 

Due to this term, the QCD lagrangian is not gauge invariant any more, but any 

physical prediction that arises from it, will be gauge invariant and independent of the 

gauge parameter ~ t. Since the value of~ is not relevant, we can choose a value for it, for 

example 

~=0 -.......---
Landau 
gauge 

~=1 -.......---
Feynman 

gauge 

~--+ 00 ......_......._ 

Unitary 
gauge 

In the rest of this thesis we will work within the Feynman gauge, i.e. ~ = 1. 

The same choice of gauge has to be made at some point if one uses, for example, 

the Feynman path-integral formalism. This occurs because the functional integral over 

the exponential of the action diverges (as the region of integration is infinite) when we 

consider the infinite number of gauge transformations the gluon field can sustain, without 

changing the action. 

There are still unphysical degrees of freedom that we must take care of. We must 

restrict the gluon fields to have only two physical polarisations. We introduce the Fadeev­

Popov ghost field that enables us to cancel the contribution of those unphysical polarisa­

tions. These are scalar fields with a fermionic property: they are anticommuting scalar 

fields. The ghost term contributing to the QCD lagrangian is then 

£ghost (8/lr,a*) D~brl 

(8/lrya*) (81lJab + gfabcA~) "lb· (1.11) 

The contribution of the Fadeev-Popov ghost should be added to every loop diagram, in 

order to obtain the correct result. On the other hand, we can work in the axial gauge and 

this would restrict the gluon polarisations to be only two at the level of the gauge-fixing 

term, thus avoiding the use of ghost fields. 

t1n fact this constitutes an important and reliable test in big calculations. If one decides to keep an 

arbitrary value for{, the result associated to a physical observable, must be independent of this parameter. 
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1.2.3 The QCD lagrangian 

As a summary, we collect the terms given by eqs.(1.9), (1.10) and (1.11) and present the 

full Lagrangian density for the gauge theory of QCD, 

Lciasical + Lgauge-fixing + Lghost 

L 1fiJ(ii/)- mJl)'l/JJ- ~p~w F:v- 2
1~ (BM A~) 2 

+ (8Mrr) D~br/ (1.12) 
f 

The QCD lagrangian is the platform on which the theoretical calculation of physi­

cal observables are resting. This theoretical description should match that coming from 

the experimental observations which, in a broad sense, consist of setting up a well char­

acterised initial state of particles, having them interact in a "controlled" manner and 

measuring the production rates of particles in the final state. 

A way to proceed in the theoretical calculation of any physical observable, is to divide 

the Lagrangian into a free field piece L.:o and an interacting one £1 (proportional to the 

coupling g), 

.Lo +£I 

.Lo - { g{;Ta .if'll; 

+~gfabc (8/lA~) AbM Acv 

-~gfabc (avA~) AbMAcv 

-~g2 (feabA~A~) (fecdACflAdv) 

-gfabc (8/lT]a*) r/ ACJl }· (1.13) 

The free field part of the Lagrangian, contains only dynamical terms for the propa­

gation of the fields involved in the theory: quarks, gluons and ghosts. In the interaction 

part of the Lagrangian, the first of the three non-linear terms gives the fermion-gauge 

boson vertex interaction, the second and third terms lead to a triple gauge boson vertex 

interaction and the fourth term to a quartic gauge boson vertex interaction. These last 

two interactions are coming directly from the non-Abelian terms of the field strength 

tensor and are not present in QED, since photons do not self-interact. The last term 

represents the ghost-gluon vertex interaction. 

If we consider the action defined as 
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then the interacting theory can be solved perturbatively as an expansion in the strong 

coupling. This approximation will be valid if the coupling of the strong interactions is 

small and we will see that this is so at high energies. 

The perturbative expansion involves the calculation of transition probabilities from 

initial to final states and taking into account all possible interaction configurations of the 

transition process between these states. More precisely, the description of the dynamical 

evolution between these two states is done in terms of the S- matrix (or scattering 

matrix). The fact that we evaluate this matrix perturbatively is inherent to its highly 

complex nature. 

A convenient way of describing pictorially each of the interaction terms involved in 

the perturbative calculation is by using Feynman diagrams, regulated by Feynman rules. 

These are nothing more than a book-keeping mechanism that allows us to represent 

the elements and topology of an interaction in a condensed manner. Each diagram, 

contributes to a particular order in the perturbation series and we only need to consider 

those which contribute to the order of the approximation that interests us. 

In this way, the terms arising from the free field action So lead to propagators of the 

fields in momentum space (lines in a Feynman diagram), while S1 leads to quark-gluon 

and gluon-gluon interactions in momentum-conserving vertices. 

1.3 The Feynman rules 

In this section we present the Feynman rules for QCD. Quarks are depicted as solid lines, 

gluons as curly lines and ghosts as dashed lines. For the external legs we have, 

incoming lines: outgoing lines: 

u(p) u(p) 

v(p) v(p) 
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where the momentum flow along a lines is p in the direction indicated by the arrow 

alongside it. For fermion lines, the arrow on the line itself indicates the momentum flow. 

The quark, gluon and ghost propagators are, 

J -
a,J.l b,v 

Mooooooooooooooooo -
a b 
--~---

The Lorentz indices are denoted with {J..t, v, ... }. For the colour indices of gluons and 

ghosts we use {a, b, ... } and for the quarks i, j. Spinor and flavour indices for the quarks 

are implicit. The quark-gluon, ghost-gluon and gluon-gluon interaction vertices are, 
a,/-L 

j 

a,/-L 

b c 

p3,c,p p2,b,v 

a,/-L b,v 

X 
d,a c,p 

-grbc[ (pl - P2)PgJ.l.V 
+(P2 - P3)J.i.gVP 
+(P3- PI)VgJ.l.P 

-ig2 rbe rde (gvu gJ.l.P _ gJ.l.U gVP) 
-ig2 rce jbde (gPU gJ.l.V _ gJ.l.U gVP) 
-ig2 rde rbe (gvu gJ.l.P _ gPU gJ.i.V) 

Note that the gluon propagator is given in a covariant gauge specified by the parameter 

~. Also, we use the Feynman prescription and assign a positive imaginary part to the 
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denominator of the propagators, to ensure that the propagation is from earlier to later 

times. In the triple gluon vertex all particles are outgoing and momentum is conserved 

(Pi+ P~ + P~ = 0). 

Together with the previous set of rules, we must also 

1. integrate over loop momentum k for every closed loop, with a measure 

2. multiply by a factor of ( -1) for every quark or ghost loop, 

3. multiply by a symmetry factor that normalises for permutations of the fields in a 

diagram. For example, multiply by a factor of 1/(n!) for a loop with n identical 

gluons. 

In principle, we are able to write an expression for any physical amplitude iM at any 

order in perturbation theory, provided we follow these rules and sum over all relevant 

diagrams. For the squared of the amplitude (or matrix elements), the following sums will 

also be needed 

L u(p)u(p) = p +m, 
spins 

L v(p)v(p) =p-m, 
spins 

and in the Feynman gauge the sum over gluon polarisations is 

L (Ell)* Ev = -gllv. 
pals. 

(1.14) 

(1.15) 

(1.16) 

It can be easily inferred that the squared matrix elements will always be proportional to 

an even power of the coupling g, therefore it is usual to have the perturbative expansion 

in powers of as, where 

(1.17) 

Once we have summed over the spins and polarisations, we can simplify the gamma 

matrices using identities that are easily derived from the Clifford algebra expression (1.2). 

Things can be further simplified if we neglect the masses of the quarks. This turns out 

to be a good assumption if the physical observations we are comparing our results with, 

are done at high energies. Throughout this thesis, this will be assumed. 



1. Basics of Quantum Chromodynamics 11 

1.4 Regularisation 

The Feynman rules given in the previous section, allow us to calculate easily Feynman 

diagrams at tree-level (or without loops). But, as soon as we calculate diagrams with 

loops (which are associated with higher order terms in the perturbative calculation of any 

physical observable), we will discover that these generate divergent integrals due to the 

behavior of the integrand at high and low virtual momenta. 

For example, consider the following one-loop integral, associated with the diagram 

shown, 

P2 

PI 

The divergences of the integrand associated with high virtual momenta, 

f -t oo ==? I-t oo (logarithmically), 

are called ultraviolet (UV) divergences. Furthermore, there are divergences appearing 

when one of the propagators in the loop becomes zero for a specific value of loop momenta, 

i.e. when for example 

f -t 0, -p2 ==? I -t oo, 

where we consider Pt = p~ = 0. These are the so-called infrared (IR) divergences. If the 

propagators are massive, e.g. (f+p) 2 -m2 , the mass plays the role of regulator. In QCD, 

the presence of massless gluons and the assumption of light quarks, give rise to this IR 

divergent behavior. 

At first sight, the presence of these divergences would render all the perturbation 

procedure, meaningless. Fortunately, QCD is a renormalisable quantum field theory. In 

practice, this means we have a well defined set of rules which allow us to calculate matrix 

elements that are free from UV divergences order by order in the interaction coupling 

constant of the perturbative series (see section 1.5). On the other hand, we will see 

in Chapter 2, that IR divergences cancel for a particular kind of physical observables 

and that we are now able to largely predict their structure even for one- and two-loop 

amplitudes. 
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To be able to manipulate these integrals in a safe manner, we must first regularise 

them, i.e. provide a well defined meaning to their divergent behavior and be able to 

isolate it. The regularisation prescription we use, must preserve the gauge invariance of 

the theory, otherwise the renormalisability of the theory cannot be guaranteed + 

Let us look at the different methods we have to regulate Feynman integrals by means 

of a simple example. We will see in Chapter 3 that to be able to integrate out the loop­

momenta from these integrals, we will need to calculate the following (Minkowski space) 

integral 

!+oo 4 1 
I rv -oo d p(£2- .6. + ic)m' (1.18) 

where m is a positive integer and the ic term is the Feynman prescription for the propa-

gators to keep the integral convergent for all values of .6.. If we do not have this imaginary 

piece, there is a value of .6. for which the denominator of this integral vanishes, producing 

a singularity that cannot be regularised. 

The contents of the parameter .6. are linear combinations of invariant masses (Man­

delstam variables) and masses of the fields. The fact that singularities can arise when a 

scale acquires a value that makes it cross a discontinuity in the kinematic phase space is 

precisely what we want to avoid. 

This always happens when we want to calculate a loop integral in what would otherwise 

be an inaccessible region of the kinematic phase space. So the ic piece provides appropriate 

analytic continuations that prescribe the imaginary part gained by the integral after a 

scale (or scales) shifts its value to a value below its physical threshold. A complete 

discussion about the analytic properties of Feynman integrals, can be found in ref. [9] and 

a recent example of analytical continuation of a Feynman integral, in ref. [10]. 

Now, let us go back to the description of the integral in eq. (1.18). Its denominator 

is, 

den= (Po) 2 
- f? - .6. + ic (1.19) 

and has poles in the complex £0 plane at (- .j !,_2 + .6. + ic', .j !,_2 + .6. - ic'). So it would be 

best to rotate the integration contour, to be able to integrate along the complex direction, 

1.e. we want to Wick rotate (WR) the integration space. This means 

Minkowski space Euclidean space 

tcauge invariance of the theory must be preserved otherwise the Slavnov-Taylor identities (which are 

needed to prove the renormalisability of the theory) are not longer valid. Invariance under local gauge 

transformations imply extensive relations among Green's functions. In non-abelian theories these relations 

are the so called Slavnov-Taylor identities. In QED, they are the Ward-Takahashi identities [1, 3, 4). 
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so that eq.(l.19), becomes 

·nE 
Z<-o 

den= -(£E)2- g2- ~ 0 - l 

13 

(1.20) 

(1.21) 

(1.22) 

where the Feynman prescription is implicit. With this decision, we have made the de­

nominator of the integral, to be dependent only on the length of the momentum vector. 

Therefore it is more natural to work in polar coordinates, so eq.(1.21) becomes 

d04 
~ 

surface of a 
4 - dim sphere 

and the integral in eq.(1.18) is now 

r+oo 4 1 WR . m I r+oo (£E)3 E 
I= l-oo d £(£2-~+ic)m -H(-1) d04Jo [(£E)2+~Jmdf 

(1.23) 

(1.24) 

We have not dealt with the divergences yet. We can see that our integral is still divergent 

when gE grows and in fact if we apply the change of variables x = (£E)2, to this integral 

in Euclidean space, we get 

1 r+oo X 1 
I= 2 Jo (x +~)m dx = 2(m- 1)(m- 2)~m-2 ' (1.25) 

which is singular for a particular choice in the power m. This would still happen even if 

we had extra powers of loop momenta in the numerator. 

We now want to regulate these integrals, so we briefly look into the three most im­

portant regularisation procedures 

1. Cut-off regularisation Instead of integrating up to infinity, introduce a large, but 

finite, momentum cut-off. For example, in eq.(1.25), for m = 2 the integral is 

clearly divergent, but with the cut-off A we have 

which is now a regulated integral. This is all fine, except for the fact that by 

introducing the momentum cut-off we are automatically spoiling Lorentz invariance. 

2. Pauli- Villars regularisation Introduce massive auxiliary fields called regulators in 

order to eliminate the singularities from propagators, so for each one we would have 

1 1 1 
g2 -+ £2 - g2 _ A2' 
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for a large mass of the new particle A 2 . When £2 » A 2 , propagators partially cancel. 

Our previous example would now look like 

where b.. A = b.. + o:A 2 . Again, this is a regulated integral, but when applying this 

procedure we spoil gauge invariance, since we would need to introduce a mass for 

the gluon. 

3. Dimensional regularisation Make a continuation of the integral in the number of di­

mensions by assuming that they are analytic functions of the number of dimensions 

D = 4 - 2E, where E is a small parameter. The divergent integrals are now well 

behaved and the divergent pieces are explicit poles in the dimensional continuation 

parameter (1/En, n = 1, 2, 3, ... ). Dimensional regularisation allows a consistent 

gauge invariant treatment of divergent Feynman integrals to all orders in perturba­

tion theory. For the reminder of this section we will concentrate on this method, 

since it is the one we choose to apply in our calculations. 

The integral we have been using as our example is based on that of eq. (1.24), but 

now, using dimensional regularisation (DR), it will be written as 

The integral for the area of a D-dimensional sphere (or integral over the solid angle), can 

be done knowing that 

l
oo 2 

7rl/2 = dx e-x ' 
-00 

then 

but, the r.h.s. can also be written in polar coordinates as 

Finally, we can change variables toy= p2 and use the definition of the Gamma function§ 

§The integral form of the Gamma function for an arbitrary complex number (with positive real part) 

is 
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to have 

I I 1 (00 
D-2 I 1 (D) 1rn 2 = dOn x 2 Jo dy y-2- e-Y = dOn X 2r 2 . 

So for the integration over the solid angle we have 

(1.27) 

To complete the integrations in eq. (1.26), we need to calculate the integral over the 

loop momenta. If we consider the change of variables 

and use the definition of the Beta function 'If, we obtain 

i{ -1)m jj.D/2-m {
1 

dx xm-l-D/2 (1 _ x)D/2-l 
2 lo 

i{-1)m jj.D/2-mf (m-~) f (~) 
2 r{m) . (1.28) 

Finally, the integration in DR {Euclidean space) can be obtained after substitution of 

eqs. {1.27) and (1.28) in eq. {1.26), as 

(1.29) 

The same procedure can be applied to an integral that has an arbitrary power of 

squared loop momentum in the numerator. So a general integral in Minkowski space that 

is dimensionally regulated, 

will be in Euclidean space, 

/_
+oo (£E)2a I r+oo (£E)2a+n-l 

Ia(3 =~ -oo dn£E[(£E)2+f:1]f3 =i(-1)a+(3 dOn Jo d£E[(£E)2+f:1]f3. 
WR 

Applying the same substitutions and changes of variable as before, we get 

. o f3 7r If r (a + ~) r (11 - a - ~) 
10 (3 = z(-1) + -- v 

r ( ~) r(jj)/:1f3-o- 2 
(1.30) 

---------------------------
'If The Beta function is defined as follows 

f3(a, b) = ( dt ta-l (1- t)b-l = r(a)r(b) 
lo r(a+b) 
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It must be noted that to arrive to this result we are implicitly assuming that the 

dimension is a positive integer and that it must satisfy ~ < {3 - a, (or ~ < m, in the 

previous examples) otherwise, the integrals would not be convergent. 

So far, we have looked at how DR affects the way we perform loop integrals. But, this 

is not the only aspect of a perturbative calculation that changes. To have a consistent 

result we must have in mind the following modifications 

o the loop integral measure given in the Feynman rules, changes (as already seen) 

I!> the Clifford algebra of eq. (1.2) will be affected in the sense that we now have D 

gamma matrices spanning this space. So when summing over JL and v, we will have 

extra terms proportional to D, i.e. g11vg11v = D, 111 /v/JJ = (2- D)rv, etc. 

e the integration of a physical observable over the external momenta phase space, will 

also change, 

p 44 p DD I d 3 I dD-1 

2E (21r)3 · · · (27r) 8 (Pi- PJ) --> 2E (21r)D-l · · · (27r) 8 (Pi- PJ) 

G the action 

is a dimensionless quantity, so the QCD lagrangian has to be modified to have a 

consistent number of dimensions. From the kinetic energy terms of the quarks and 

gluons of this Lagrangian, we can see that the mass dimension of their fields are 

from m1/Ji'!fJJ ===> ['!fJJ] = D; 1 

from 811A~8vA~ ===> [A~]= ~ - 1 

Then the interaction term g1/Ji4'!fJJ is actually telling us that [~J4'!fJJ] = 3D /2- 2 

(when in fact it should be D). This automatically imposes a dimension for the 

coupling g such that at D = 4 the coupling has no dimension. We introduce an 

arbitrary mass scale JL to replace the coupling as 

D 
€ = 2- 2" (1.31) 

We have one more scale in our theory because we use the dimension as a regulator. 
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We have seen how DR impacts the structure of loop integration and forces us to 

introduce a new scale to regulate the dimension of the action. Still, we have some freedom 

to choose the number of polarisations of internal and external gluon and quark fields, 

which defines different DR schemes. In our calculations and throughout this thesis, we 

use the Conventional Dimensional Regularisation (CDR) scheme. This implies that we 

make no distinction between real and virtual partons (radiated partons and partons in 

loops, respectively). Furthermore, we consider quarks to have two helicity states and 

gluons to have D - 2. A thorough discussion of the different DR schemes can be found 

in ref.[11] and references therein. For an introduction to the technique of DR and some 

applications see ref.[12] and references therein. 

1.5 Renormalisation 

In section 1.4 we saw how the Feynman integrals, arising from a perturbative calculation 

in QCD, are singular in the high (UV singularities) and low (IR singularities) momentum 

limit. Then, we isolated this divergent behaviour using a regularisation scheme (CDR). 

We have hinted to the fact that IR singularities will cancel and this will be discussed 

further on. In this section, we will discuss how renormalisation provides a theory free 

from UV divergences. 

Current experimental set-ups can only probe with energies "' 1 TeV, which imposes 

boundaries on the phenomena we are able to describe and on the way the description 

itself is done. There is a limit on the resolution of our measurement and this must be 

reflected by the theoretical calculations we do. 

The fact that UV divergences stem from a high loop momentum limit of an integral 

rendering it infinite, has repercussions on any perturbative calculation that involves such 

terms. The mere existence of UV divergences (before renormalisation) means that in any 

physical process there are contributions from quantum fluctuations on every time ( dis­

tance) scale [4]. However, there is a way to describe physical observables perturbatively 

that is consistent with our experimental (finite) results. 

Let us explain what we mean using the diagram in fig.(l.l). We can insert a per­

turbative correction to the propagators and vertices of a generic Feynman diagram. The 

loop integrals in these kind of Feynman graphs will have big contributions from momenta 

much larger than, say, ..[8 (the scale of the process). This means that our perturbative 

calculation for a physical observable, e.g. a cross section, will have big contributions from 
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---------------~~~----

t Planck < b..t < * « Js 

Figure 1.1: Physics at different time scales 

interactions that occur on time scales much smaller than 1/ y's. 

Furthermore, consider loop corrections on short time scales (and before gravity takes 

over), 

tpzanck < b..t < 1/ A, 

where A is a UV cut off scale much larger than the characteristic scale y's. Then these 

contributions can be absorbed into changes in the definition of the couplings, masses and 

normalisation of fields of the theory if we are willing to neglect contributions to the cross 

section of 0( f) (or smaller than the cross section itself) [13, 4]. 

The process of consistently absorbing short-time physics into a finite number of pa­

rameters (associated with the masses, couplings and fields of the theory) and performing 

it to all orders of the perturbative expansion, is called renormalisation. 

In practice, this means we take the fields and coupling from the QCD Lagrangian of 

eq.(l.12), and redefine them with a multiplicative factor 

1/J} --+ 

A a 
J.t --+ 

"'a --+ 

g --+ 

m --+ 

~ --+ 

zl/21/Ji J,R, 

zl/2 Aa 
A J.t,R, 

zl/2'fJa 11 R, 

ZggR, 

Zmmn, 

ZA~R, 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

where we have used the R subscript to denote the renormalised quantities. The renormal­

isation constant for the gauge parameter ~ is the same as the one for the gluon fields, so 

that the gauge fixing term in the Lagrangian, remains with the same structure as before. 
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Since we have only redefined the fields and couplings, we expect that the integration 

over the exponential of the action (or generating functional from which the Green's func­

tions are derived) does not change. Therefore everything that we have extracted from it, 

such as the structure of the S-matrix and Feynman rules, is still valid for the renormalised 

quantities. 

The idea is that the Green's functions for the unrenormalised fields carrying the UV 

divergences, are proportional to the Green's functions for the renormalised fields with 

the renormalisation constant as the constant of proportionality. If we can absorb the 

UV divergences from the Green's functions of the original fields into the renormalisation 

constant, and leave the new ones as quantities free from UV singularities, then our theory 

has been renormalised. 

In this way the renormalised fields are interpreted as the ones that have a physical 

meaning and the renormalised couplings as the ones we (indirectly) measure. 

As we mentioned in section 1.4, QCD is a renormalisable theory and it has been proven 

that the renormalisation procedure works at all orders by adjusting the renormalisation 

constants at each order. The proof is rather involved and uses the symmetries of the 

Lagrangian, such as gauge invariance, to obtain relations amongst the renormalisation 

constants. These are the so called Slavnov-Taylor identities, which are equivalent to the 

Ward-Takahashi identities found in QED. 

Apart from absorbing the UV divergences in the Z factors, we may want to absorb an 

extra finite quantity and this should just be a matter of choice. In fact, there is a degree of 

arbitrariness on the amount of information we can add to the multiplicative factors after 

absorbing the singular piece. The choice we make defines the renormalisation scheme 

with which we decide to renormalise the theory and present our results. 

In this thesis we use the MS (Modified Minimal subtraction) scheme, where we only 

remove the UV singularity as poles of the following structure 

~ = (47rf exp( -ey) ! 
E E 

(1.38) 

where, "'( = 0.5772 ... is Euler's constant. 

The choice of renormalisation scheme goes hand in hand with the fact that we have 

introduced a parameter that is not intrinsic to the theory. Since we regularised with CDR, 

we had to use a mass scale 1-L (renormalisation scale) that keeps the action dimensionless. 

The dependence on this renormalisation scale 1-L is present on the renormalised fields 

and couplings. Depending on the value we chose for 1-L (and on the renormalisation scheme 
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we work in), we will have a different value for the same physical observable. But, this 

does not mean that our results are inconsistent. On the contrary, the description we 

make of an observable in a particular scheme should be equivalent to any other. This 

automatically restricts the behaviour of renormalised quantities when we change from one 

scheme to another and take different values for the renormalisation scale. 

Mathematically, the behaviour of a physical observable under these changes of scheme 

and scale are compiled in differential equations called renormalisation group equations. 

These equations are based on the ultimate independence on f.L for all physical observables 

(since f.L is not a parameter natural to the theory). 

There is a nice but approximate way of thinking of f.L, that follows on the argumen­

tation we gave at the beginning of this section. When we choose a particular value of 

f.L = jl, we are effectively removing the physics of time scales fl.t « 1/ jl, from the pertur­

bative calculation of a physical observable. Then, these effects are accounted for by the 

dependence on f.L of the value of the strong coupling in eq.(1.17), i.e. as ~ as(fl). 

1.5.1 The running of as 

From eqs. (1.17), (1.31) and (1.35), we can write the renormalised strong coupling con-

stant as 

(1.39) 

where we have used the subscripts 0 and R for the unrenormalised ("bare") and renor­

malised coupling, respectively. 

Here, the value of Z9 can be calculated perturbatively for a general SU(N) gauge 

theory (see for example [1, 6]) to give 

( 2)f [ /3o (aR) (!35 !31) (aR) 2 
"'( 3 )] aoSf = f.L aR 1-- - + - - - - + v aR , 

E 21!" E2 2E 21!" 

where 

and 

f3o 
1 6 (llCA- 4TRNF) 

~ (17C1-10CATRNF- 6CpTRNF). 

In these equations, we have used the usual notation 

N 2 -1 
Cp = 2N ' and 

1 
TR=-

2 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 
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and N F is the number of quark flavours. 

The parameters f3o and /31 are actually the first two coefficients in a perturbative 

expansion of the f3 function (renormalisation group equation) which provides the JL de­

pendence of the strong coupling and is given by 

2 2 8as 2 2 2 3 
f3(as(JL )) = JL Bp2 = -f3oas(JL ) - f3Ias(JL ) - · · ·, (1.45) 

where we now refer to the renormalised coupling, simply as as. 

Eq.(1.45) can be verified by taking eq.(1.39) and calculating the differential form of 

the beta function. Using the expression for Z9 used in eq.(l.40), one is able to check order 

by order the expansion on the r.h.s. of eq.(1.45). 

The renormalisation group equation tells us how to account for the short time scale 

physics in the value of the renormalised coupling, given that we know its value for a 

particular mass scale JLO· This is what was represented in fig. (1.1) as the scale cut-off A. 

The scale JLo represents the boundary condition for the differential equation of (1.45) 

which can also be expressed as 

(1.46) 

with solution 

1 - 1 - f3olog (JL2)- f31log (as(JL2)) 
as(p2 ) as(JL~) - JL~ f3o as(JL~) ' 

(1.47) 

when we keep the first two terms of the beta function. Or for simplicity 

( 2) as(JL~) 
as JL = ( 2), 

1 + as f3olog ~ 
(1.48) 

when we keep only the first one. Note that the value of as decreases as JL increases. This 

means QCD enjoys the property of asymptotic freedomll. In other words, QCD acts like 

a weakly interacting theory on short time scales (or high energies). 

The same conclusion can be drawn from the fact that any physical observable must 

not depend on the renormalisation scale, when we consider all orders of its perturbative 

expansion in the strong coupling. In fact, a dimensionless physical observable (for example 

a decay rate r) can only depend on the dimensionless ratio s / p2, where s is the energy 

of the system. 

We can then write the renormalisation group equation for the rate as 

dr_[a a] 2 
______ ....:c:d=g2_=_.:_-_:8:....:.t_+_f3(as) 8as r(as(JL ),exp(t)) = 0, (1.49) 

IITogether with f3o having a positive value for NF ::::; 16. This is crucial since f3o with the opposite sign 

would make the coupling increase at large 1J.2 • 
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where t = log(s/JL2 ). The fact that r(as(s),1) is a solution to this equation**, proves 

that we are allowed to have a perturbative expansion to describe the rate (in terms of the 

strong coupling and at high energies) as 

r = r(as(s), 1) =a as(s) + b ass2 + c as(s)3 + ... (1.50) 

1.5.2 as from experiment 

Consider the result of solving the renormalisation group equation with all the coefficients 

f3i beyond f3o set to zero, then we have (see eq.(1.48)) 

as(Q) 
(1.51) 

1+(~)ln(~) as(Q) 

We can see that a series in powers of as(Q), i.e. the strong coupling at a large scale (GUT 

scale), is summed into a simple function of JL· Then the renormalisation group equation 

is summing the effects of short-time physics. Here as(Q) appears as a parameter for the 

solution, the boundary value for the differential equation. 

In theory, we can have solutions to this equation for different boundary values, given 

a description for different versions of QCD. Thus the parameter as(Q), tells us which 

version of QCD we have. It should be possible then to extract the value of this parameter 

by making a number of experimental observations at different energy scales Q. The results 

can be compared with the theoretical prediction given by eq.(1.45), to confirm that the 

coupling behaves as we expected. 

Instead of eq.(1.51) and since we know that the coupling diverges as we reduce the 

energy scale, a more convenient way to write the solution for the running coupling is 

as (JL) = ( 2 ) , 
f3oln 1G" 

1 
(1.52) 

where we introduced a parameter A, a scale near which perturbation theory becomes 

unreliable. These two forms of description of the running coupling are completely equiv­

alent. Nevertheless, A has been disfavored (since its definition changes order-by-order in 

•• Just by changing the derivatives on the first term of eq.(l.49) we can see that 

ar(as(s), 1) = aas ar(as(s), 1) -+ ,B(as) ar(as(s), 1), 
at at aas aas 

which cancels the second term of the same equation. 
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perturbation theory) and instead it has become more common to use Q = Mz the mass 

of the Z boson, so 

as(Mz) 
(1.53) 

This last choice, moves the description to the asymptotic region where perturbation 

theory works best. Moreover, the experimental measurements on the Z-pole are of high 

precision (LEP) due to high statistics. 

The most recent data analysis, compiles measurements of the strong coupling from a 

wide rage of experiments and scales. The values are consistent with the theory and at 

NNLO is [14] 

as(Mz) = 0.1172 ± 0.0045. (1.54) 

1.5.3 Scale choice and uncertainty 

In eq.(2.31) of section 2.1.4 we will calculate the rate for the (next-to-leading order to the 

leading-order) cross section in e+e- annihilation to hadrons via virtual photon as 

In fact more than the next-to-leading correction is known [15] and we can write it in the 

following form 

r = 1 + as;!L) + [1.4092 + 1.9167ln (~
2

)] (as;/L)) 2 

+ [ -12.805 + 7.8186 ln (~
2

) + 3.674 ln2 (~
2

) l ( as;/L)r 

+ ... (1.55) 

Since we have higher order terms, we have to use for as(ft), the solution of the 

renormalisation group equation with at least two terms included (see eq.(1.47)). 

We discussed in the previous section how we define the running of the strong coupling 

by a particular choice of fL· In the r.h.s. of eq.(1.55), both as and the perturbative 

coefficients depend on fL· On the l.h.s. the rate does not depend on fL, so we still have 

d 
dlnfL2r = o. (1.56) 

Nevertheless, if in eq.(1.55) we truncate the series and use only the first correction to the 

rate, we spoil its fL independence. Let us demonstrate what we mean by writing the rate 
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as a general series 
00 

r ""2: en(p)a8(p). (1.57) 
i=l 

Then, let us truncate this series to take only N terms. If we differentiate this truncated 

series we get, from eq.(1.56), 

this reminder is of order a~+l as as ---+ 0, i.e. 

(1.58) 

This obviously means that the more higher order terms we calculate, the less the rate 

depends on the renormalisation scale. If we truncate the series, we do not allow for 

the cancellation of the scale dependence between different orders and we have a residual 

dependence on p of one order higher than the truncation order. 

We can ultimately assess the uncertainty in a perturbative calculation, if we allow the 

renormalisation scale to vary in an interval proportional to the physical scale Q, usually 

Q /2 ::::; p ::::; 2Q. This uncertainty (theoretical error) will then dominate all determinations 

of our measurements. Thus, as more orders of the perturbation theory are included, the 

determination becomes more accurate and the uncertainty is reduced. In section 2.4.1 we 

will see an example of this behaviour. 

For the moment let us turn to a more practical discussion in terms of electron-positron 

annihilation. We will show the infrared singular behaviour of some terms in a higher order 

calculation and how we can deal with them. This will lead to the discussion of the hard 

scattering cross section which is directly related to the partonic matrix element calculation 

we shall present in the last Chapter. 



Chapter 2 
Partons, Hadrons and 

Jets 

Electron-positron annihilation into hadrons at high energies provides an example that 

helps to illustrate the basic ideas and properties of perturbative QCD. Experimentally, it 

represents one of the cleanest and therefore most precise environments in which to make 

QCD studies. 

In section 2.1, we calculate the total cross section for e+e- --r hadrons at leading 

order (LO), and see how the IR singularities arise and cancel at next- to-leading order 

(NLO). 

This serves as a didactic introduction into section 2.2 where the concept of an infrared 

observable is discussed giving particular attention to jets. A jet is a highly collimated 

spray of hadrons and perturbative QCD confirms the intricate jet structure observed 

in high energy experiments for electron-positron annihilation. To be able to describe 

this phenomena, we need to explore the jet definition together with the discussion of 

e+ e- --r hadrons, already mentioned. 

Moving closer to our final goal, which is the calculation of partonic matrix elements, 

in section 2.3 we establish the link between these and the total hadronic cross section 

using factorisation. We also provide a summary of the parts needed for such a partonic 

matrix element calculation and isolate the ones that need to be calculated. 

In the last section of this Chapter, we explore the different areas upon which a NNLO 

calculation has an impact. In section 2.2 we discuss briefly the improvements on the jet 

description and in section 2.4.1, we show how the dependence on the renormalisation scale 

is reduced, using a concrete example. The Chapter ends with a discussion of a possible 

new physics signature at the TeV scale in the single jet inclusive cross section. 

25 
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2.1 Electron-positron annihilation 

For simplicity we consider the cross section fore+ e- annihilation into two massless partons 

(a quark-antiquark pair), via a virtual photon*. 

Furthermore, we will leave the fermion current out of our calculation, since it will 

contribute with the same overall factor to all orders. Effectively, we look at the "decay" 

1* -+ qij at LO and NLO. 

2.1.1 LO cross section: no emissions 

At lowest order, the Feynman diagram we must analyse is the one shown in fig.(2.1), 

where pf are the momenta for the outgoing quarks and Q2 = 8. Applying the Feynman 

q 

ij 

Figure 2.1: Leading order Feynman diagram for 1* -+ qij 

rules of section 1.3 we get the following LO scattering amplitude 

(2.1) 

where qq is the quark charge and Q is the virtuality of the photon. We take the sum over 

spins and colours, so that the matrix element squared is 

(2.2) 
spin,col. q 

where N is the number of colours. Using the Clifford algebra in CDR (see section 1.4) 

will give 

(2.3) 
spin,col. q 

where we have also used the invariant mass scale (or Mandelstam variable) 8 for massless 

partons, defined as 

(2.4) 

*The Z 0 boson also contributes since it can couple to electrons and quarks, but we shall only look at 

the 1 channel. 
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Schematically, the LO differential cross section for 2 partons in the final state is 

(2.5) 

where dci?2 is the differential phase space for 2 partons (in D dimensions) and F is the 

incident flux t. 

To obtain the cross section we need to integrate over the available phase space for this 

reaction. In Appendix A, we provide this result in eq.(A.6). Substituting this result and 

eq.(2.3) in eq.(2.5), gives the LO cross section as 

D-2 

- 1 S-2 (D - 2) N L 2 
0'£0 - - D 3 q ' 

F 22n-51r-2- f ( D21) q q 
(2.6) 

or, doing D = 4- 2E, 

(2.7) 

This is better presented as a rate, i.e. 

(2.8) 

at lowest order. 

2.1.2 NLO cross section: real emissions 

For the NLO real contribution to the cross section, we have to consider the Feynman 

diagrams shown in fig.2.2. In this diagram, again we have ..jS as the total energy in the 

Figure 2.2: Next-to-leading order Feynman diagrams for the real emission in 'Y* ---+ qij 

tFor a general collision between particles 1 and 2, F = 4[(p1 • P2? - mhnW12. Note also that the 

dimensions for the cross section are [a] = 1/ F and that the matrix element squared is dimensionless. 

Recall we have an implicit overall factor from the electron current. 
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c.m. rest frame, i.e. Q2 = 8. Also, the pf are the moment a of the outgoing partons, so 

that p~ = Ei. 

It is convenient to define energy fractions Xi, as 

2 Ei 2 Pi· Q 
Xi=--= 

Vs 8 
Xi> 0. (2.9) 

In this notation, energy conservation provides the following constraint on the energy 

fractions 

(2.10) 

therefore, only two of the energy fractions Xi are independent. 

We can also have a description of the kinematics of this system if we use the angle 

eij between the momenta for partons i and j. The energy fractions and the angles are 

related as follows (given conservation of momenta) 

(Q- P3)2 

::::? 8 - 2 Q · P3 = 8(1 - x3) 

(PI+ P2)2 

2 EIE2 (1 - cos OI2) . (2.11) 

Rearranging this expression, we can see that we have three relations for the angles and 

the energy fractions 

2(1- XI) 

2(1- X2) 

2(1- X3) 

X2X3(1- COS 023), 

X3XI(1- COS 03I), 

XIX2(1- COS 0I2)· 

(2.12) 

(2.13) 

(2.14) 

We can see that the energy fractions must also be Xi < 1. To further our analysis, we 

can construct the allowed Xi space and relate the boundary values within this region, to 

parton physical configurations. 

More precisely, we can take the limits Xi ---+ 0, Xi ---+ 1 and construct diagrams like the 

ones shown in fig.(2.3). There we have three possible soft configurations when Xi ---+ 0 

and three collinear configurations when 

(2.15) 

The diagram on the l.h.s of this figure shows the allowed region in the (xi, x2) space 

as a triangle, which is built using the constraint relations for the energy fractions, i.e. 
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0 :::; Xi :::; 1 and X3 = 2- x2- x3. From the diagram of the r.h.s, we can see that the edges 

of the allowed region (xi = 1) correspond to two partons being collinear and the corners 

(xi = 0) to one parton momentum being soft. 

2 

----r-
2 soft 

2&3 collinear 
------o::::::: 

1&2 collinear 

2 

----r-
3 soft 

~ 

1&3 collinear 

----r-
1 soft 

Figure 2.3: The diagram on the left presents the allowed region for the energy fractions 

(x1, x2). On the right we show the physical configuration of the partons for limiting 

behaviour within the allowed triangle. 

The real emission cross section can be calculated using energy fractions and CDR, 

as we did for the LO cross section. Since this cross section has contributions from both 

diagrams shown in fig.(2.2), the expression is somewhat large. We will omit a few algebraic 

(Clifford and Dirac trace algebra) steps and present the matrix element squared 

L IM~I2 Cp 2(D- 2) q; (J.i/g) 2 N L q~ 
spin,col. q 

x{(D- 2)(1-x1+1-x2)+ 4 (x1+x2-1) + 2(D- 4)}, 
1-x2 1-xl (1-x1)(1-x2) 

(2.16) 

where we use the colour factor Cp = 4/3 (which is Cp = (N2 - 1)/(2N) for SU(N)). 
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Similar to the LO case, the real cross section can be written as 

I R 1 I "' R2 aNLO = F ~ IMI I d<l>g. 
spln,col. 

(2.17) 

Here, the flux factor is the same as before. The matrix element is given by eq.(2.16) and 

the integration over phase space has been provided in eq.(A.21) of Appendix A. 

This provides the following expression for the real cross section 

(2.18) 

where we have used eq.(2.7) and applied D = 4- 2E and the integration region is 0 ~ 

If we had not applied CDR to this calculation, the integral in eq.(2.18) would have 

singularities for certain values of the integration variables. From this equation, we can 

look at the divergent behaviour of the differential cross section in 4-dimensions, 

(2.19) 

The cross section has collinear singularities (see fig.(2.3)) 

for XI ---+ 1 ==? (1 -xi) ---+ 0, (partons 2 and 3 collinear) 

for x2 ---+ 1 ==? (1 - x 2 ) ---+ 0, (partons 1 and 3 collinear). (2.20) 

Also, there is a soft singularity. This occurs when xg ---+ 0, which in terms of XI and x2, is 

(2.21) 

These singularities are manifest as poles in E = 0 when we regulate with CDR. Indeed, if 

we calculate the integrals over the phase space in eq.(2.18), we obtain 

R 
aNLO 

which can be renormalised in the MS scheme to be 

(2.22) 

(2.23) 
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2.1.3 NlLO cross section: virtual emissions 

The virtual contribution to the NLO cross section takes into account the interference of 

the Feynman diagram shown in fig.(2.4), with the 10 diagram. Effectively, one has to 

calculate the real part of the momentum integral arising from the bubble diagram shown 

in the same figure. 

q 

ij 

Figure 2.4: Next-to-leading order Feynman diagrams for the virtual emission in 1* ----t qij 

The necessary tools for this calculation, are to be discussed further on in this thesis. 

However, for the sake of completion, we present here the basic steps, as we did for the 

previous contributions. 

The matrix element squared is 

L IMYI 2 

spin,col. q 

(2.24) 

We can see that this integral becomes divergent when one of the factors of the denominator 

in the integrand vanishes. The soft infrared singularities occur for small values of the loop 

momentum (in contrast with ultraviolet singularities). Note that the collinear infrared 

singularities would not be present if we had massive quarks. In this case the divergent 

behaviour is said to be regulated by the mass and instead of poles in E, we would have 

mass dependent logarithms. 

After some Dirac-matrix algebra and using Feynman parameters (see Chapter 3), 

we can integrate out the loop momentum and be left with integrals over the Feynman 

parameters (y, z) as 

L IMYI 2 

spin,col. 

1-~ 

(-1)€ Cp (Jl/g)2 NLq~21~2€7r2-~(1- E) 
q 

X { r(1 +E) fol dz fol-z dy (€- 1)~;z~~~~+ z- 1 



2. Partons, Hadrons and Jets 32 

(2.25) 

which after integration, becomes 

L 1Mil2 

spin,col. 

(2.26) 

Now, we can proceed with the virtual contribution to the NLO cross section and write 

it schematically as 

(2.27) 

In terms on the LO contribution and using eq.(A.6) in the Appendix, we have 

as (4rrJ.L2 )~{ 2 1 CJLO CF - -- -- + ( -3 + 21)-
27r S E2 E 

+ (-4- (!- 3)1 + 7((2)) + O(E) }) (2.28) 

which can be renormalised in the MS scheme to be 

(2.29) 

2.1.4 Cancellation and nature of IR singularities 

We can calculate the rate for the NLO cross section normalised to the LO cross section 

as 

f = lim CJNLO = lim (1 + CJ~LO + CJJGLo) . (2.30) 
~--+0 CJLO ~--+0 CJLO CJLO 

We insert in this expression, the real and virtual contributions from eq.(2.23) and 

eq.(2.29). Immediately we can see that the poles cancel so we can take the limit safely, 

to arrive at 

r = 1 +as. 
7f 

(2.31) 

Note that the correction to the rate is independent of the exchanged boson. Therefore, 

the same correction applies to the Z* decay into a massless quark-antiquark pair. 

So far we have only given a summary of the NLO calculation and we have shown that 

the singularities indeed cancel. But we have not discussed the nature of these singularities 

nor the concept underlying their, almost miraculous, cancellation. 
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The singularity structure arising from Feynman diagrams in a perturbative calculation 

such as the cross section, implies that there are large contributions from particular parton 

configurations. These can be either partons moving in fast collinear bunches or soft 

momentum partons that probe large distances but with no preferential direction. 

In terms of the example we adopted in this section, we can give a qualitative argument 

about the final state of the process e+e- ---+ hadrons. According to perturbative QCD, 

the final state should have jets (reflected in the detector as a highly collimated spray of 

hadrons) of almost collinear particles and soft particles that move with no preferential 

direction. However, if we want quantitative predictions we must be prepared to find 

observables we can measure and that are insensitive to interactions that occur much later 

than the (hard) partonic interaction. We discuss this in the next section. 

2.2 IR-safe observables and jets 

The total cross section to produce hadrons in e+ e- annihilation is an example of a mea­

surement that is not sensitive to long-time physics. In this case, the cancellation of 

divergences associated with the inter-emission of a virtual gluon against the divergences 

associated with the radiation of a softjcollinear gluon, implies that these final states are 

indistinguishable long after the partons are created. 

More formally, the cancellation of soft and collinear singularities between real and 

virtual diagrams in our example is by no means miraculous. There are theorems + which 

guarantee that any transition rate will be free of singularities in the massless limit, if 

we take into account all degenerate states. If we perform a calculation of a physical 

observable (at some fixed order in perturbative QCD) where we sum over all radiative 

configurations which degenerate into the same final-state (i.e. have the same behaviour 

in the softjcollinear limit), then the result is guaranteed to be finite. The total hadronic 

cross section in electron-positron annihilation is an example of such quantities, whereas 

the production of a quark-antiquark pair plus a gluon (a}h0 ) is not. 

There are other quantities that are not sensitive to infrared effects (long-time physics). 

They are all called infrared safe quantities and are insensitive to, for example, 

e a mother particle that divides into two collinear daughter particles sharing its mo­

mentum, 

tKinoshita-Lee-Nauenberg [16, 17] and Bloch-Nordsieck [18] theorems. For a thorough discussion see 

for example [2]. 
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o a mother particle that decays into a daughter particle carrying most of its momen­

tum and a soft daughter particle carrying almost no momentum, 

etc. 

In other words, for an infrared safe quantity a physical event with jets in the final 

state, should give (approximately) the same measurement as a parton event, with each 

jet replaced by a parton. Following our intuition, we can say now that a jet is a spray 

of fast particles all going in approximately the same direction. But, this definition is not 

enough if we want to make precise calculations at high energies, where we can have more 

than three jets. 

There are several algorithms that exploit different properties of these highly collimated 

particles, to define a jet. The simplest one starts with a list of momenta {Pi, p~, ... , p~} 

for each of the partons in the final state and uses a parameter Ycv.t· Then 

1. finds the pair ( i, j) such that the test variable dij (e.g. the invariant mass dij 

(pi+ Pi )2 or dij = 2 min(E[, EJ)(1 - cos()ij) for the kr algorithm) between them is 

the smallest. 

2. If (Pi +Pi )2 > Ycut s, exits. Otherwise, 

3. it replaces the two momenta Pi and Pi in the list by their sum pr + pj = p~ (two 

daughter particles ---+ mother particle). 

4. Returns to 1. 

At the end we have a list of momenta for the jets, instead of the partons. The other 

algorithms are variations of this simple one and they can have different specifications on 

the test variable (step 1), the resolution condition (step 2) or the combination prescription 

(step 3) [19]. 

Apart from thee+ e- ---+ hadrons cross section, there are other infrared safe observables 

which we can study and that we have not mentioned, such as the thrust distribution and 

the energy-energy correlation. Their study is not directly relevant to this work, but a 

thorough discussion can be found in ref. [5]. 

2.3 The hard scattering cross section and factorisation 

The study of processes with quarks and gluons in the initial state has a great impact on 

the description of hard scattering processes at the LHC and the Tevatron. 
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The cross section for a hard scattering process is illustrated in fig.(2.5) and has the 

following factorised structure 

O"(P1,P2) = ~ J dx1 dx2 fifl(xi,f.t}) /jj2(x2,P,}) D-ij(PI,P2,as(p,2),s/p,2,s/p,}). 
~J 

(2.32) 

The partons participating in the hard scattering have a fraction of the momenta of the 

incoming hadrons Pi, i.e. Pi = Xi Pi. As usual, we used the physical scale to be s 

(P1 + P2 ) 2 , the characteristic scale for the hard scattering. 

Figure 2.5: Schematic representation for the cross section factorisation of a hard scattering 

process 

The first two terms in the r.h.s. of eq.(2.32), the functions fa;h(x, p,} ), are the so called 

parton distribution functions (pdf's). The quantity dx fa;h(x, p,}) gives the probability 

to find a parton with flavour a in hadron h, carrying a momentum fraction between x 

and x + dx. Effectively, these functions describe the initial state hadrons in terms of their 

constituents and comprise non-perturbative effects. Nevertheless, they can be determined 

indirectly from experiments such as deeply inelastic scattering. 

The last factor in eq.(2.32), D-ij(Pk,as(p,2 ),sjp,2 ,sjp,}) is the hard scattering matrix 

that involves the interaction of partons (i, j) arising from hadrons (1, 2), respectively. 

This hard scattering matrix can be calculated perturbatively. 

The property of factorisation for the hard scattering cross section presented in eq. (2.32) 

is well established [20]. This is done by showing that the perturbative expansion can be 
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rearranged so that the contributions from long time scales appear in the pdf's, while the 

ones from short time scales are left as part of the hard scattering &-. For example, a 

high transverse momentum gluon emitted from a parton inside one hadron can probe the 

second hadron, therefore its effects should be taken into account when calculating&-. On 

the other hand, a small transverse momentum gluon cannot resolve the second hadron 

and must be included in the pdf's. 

This separation of short and long time physics (hard and soft radiation), requires the 

introduction of a factorisation scale f.LF· An important consequence of this break up is 

that both the pdf's and the hard scattering matrix depend on f.LF· 

Thus, the structure suggested for the factorised cross section will have functions de­

pending on both the renormalisation and factorisation scale. But, as with p, the cross 

section does not depend on f.LF· In theoretical calculations, one often sets f.LF = f.L· 

Again, there is an equation 
da _ 

0 dpp- ' 

that is satisfied within the accuracy of the perturbative expansion used. Clearly, the more 

higher order terms we include, the less the dependence on f.LF· 

2.3.1 Matrix elements for the partonic cross section 

The calculation of the total hadronic cross section involves several steps. First, one must 

obtain the matrix elements for all possible partonic processes involved in the hadronic 

scattering, which is what concerns this thesis. Second, these matrix elements are inte­

grated over their corresponding phase space which depends on the number of particles in 

the final state. The study and cancellation of infrared divergences (see section 2.1.4) also 

has to occur at this stage. 

Finally, and before integrating over the energy fractions in eq.(2.32), one must obtain 

the pdf's and their evolution at an accuracy that matches that of the matrix element 

calculation. In a NNLO calculation this requires the knowledge of the three-loop splitting 

functions. At this order, the even moments of the splitting functions are known for the 

flavour singlet and non-singlet structure functions F2 and FL up toN= 12 while the odd 

moments up to N = 13 are known for F3 [21, 22, 23]. The numerically small N'j. non­

singlet contribution is also known [24] and Van Neerven and Vogt have provided accurate 

parametrisations of the splitting functions in x-space [25, 26, 27] which are now starting 

to be implemented in global analyses [28]. 
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So far, the calculation of a total hadronic cross section has been achieved for NLO 

accuracy and this required a great amount of work (see for example [29, 30, 31, 32, 33] 

and references therein). 

At NNLO, the partonic cross section for 2-particle production can be written as follows 

0"2jet"" /[l(M(o)IM(ol)J 2L d<I>4 

+I [ (M(O) IM(l)) + (M(l) IM(O)) L d<I>3 

+ /[(M(1lJM(1l) + (M(0lJM(2l) + (M(2lJM(0l)L d<I>2 (2.33) 

where [ ]n indicates the number of particles in the final state with d<I>n the corresponding 

phase space and M(i) is the i-th order scattering amplitude. 

We can see that we need three sets amplitudes 

1. 4-particle production amplitudes at tree-level, 

2. 3-particle production amplitudes at tree-level and one-loop, 

3. 2-particle production amplitudes at tree-level, one-loop and two-loops 

and in table 2.1 we present what has already been calculated. 

In terms of matrix elements, the integrand of the last row in eq. (2.33) (or equivalently, 

the contents of the bottom-right square on table 2.1) needs to be calculated for all 2 ---+ 2 

partonic scattering. We have accomplished these calculations and they shall be presented 

in Chapter 6 of this thesis. 

2.4 Beyond NLO 

In the previous section we showed that there is a missing piece in the matrix elements 

needed for the NNLO partonic cross section. So far, the only motivation to perform this 

highly non trivial calculation is that if we have a higher order term in our perturbative 

calculation, then the cross section dependence on J.L and f.LF can be reduced. 

If the dependence on these scales is reduced, we can have a more accurate determi­

nation of QCD parameters, in particular a 8 • This is an important achievement in itself 

but, it is better if we can give an estimate on how it would change the already existing 

description of, say the jet inclusive cross section. 

We summarise some of the areas in which a NNLO calculation has an impact in the 

following sections. 
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I n I Processes Tree-Level One-Loop Two-Loop 

gg--+ gggg 

4 qij--+ gggg see not not 

qij --+ q' ii' gg ref.[34, 35, 36, 37] required required 

qij --+ q' ii' q" ii" 

gg--+ ggg 

3 qij--+ ggg see ref.[32, 31, 38] see ref.[32, 31, 38] not required 

qij --+ q' q' g 

gg--+ gg 

2 qij--+ gg see see in this Thesis 

qij --+ q' ii' ref.[39] ref.[39] refs.[40, 41, 42, 43, 44, 45] 

qij --+ qij 

Table 2.1: Summary of 3,4-particle production (helicity) amplitudes for parton scattering. 

In the case of 2-particle production, the matrix elements for the tree self-interference and 

its interference with the one-loop amplitude have also been calculated. 

2.4.1 Scale dependence at NNLO order 

As we mentioned in section 1.5.3, the sensitivity on 1-L of the truncated perturbative 

expansion, decreases as we increase the number of calculated terms. Let us see how well 

this works taking on an example. 

Consider, the single jet inclusive differential cross section at NNLO § 

da 

dEr 
A a1(~-L) 

+ [B + 2/JoAln (;T)] a~(/-L) 
+ [c + 3{30 Bln (;T) +A ( 3fJ5ln

2 (;T) + 2/31ln (;T)) J a~(/-L), 

where the NNLO coefficient C is unknown. 

(2.34) 

§This can be easily obtained inserting the NNLO expansion for the running coupling in the NNLO 

perturbative expansion for the jet cross section 

da 2 3 4 
dEr = A as + B as + C as 
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Now, fig.(2.6) shows this prediction for the cross section. It has been calculated for 

jets with transverse energy of 100 GeV [46]. The renormalisation scale dependence is 

shown for the 10, NLO and NNLO predictions assuming that the (presently unknown) 

genuine contribution is zero, i.e. C = 0 in eq.(2.34). The factorisation scale and choice of 

parton density functions are kept fixed. 

co­
rL.o -·-" NI"L.O un1111 

0~------~--------~--------~--------~ 
0 0.5 , ,!!! 

renormalisation scale/jet energy 

Figure 2.6: Renormalisation scale dependence for the single jet distribution at Er 

lOOGeV 

We can see that for renormalisation scales with a value within a factor of two of 

the jet energy, the renormalisation scale uncertainty is reduced from 20% to 9% to 1%. 

Interestingly enough, the systematic error from CDF with Run 1 for this data point is 

about 10%, while the statistical experimental error is about 2%. 

Currently, most of the theoretical predictions for physical observables in QCD are 

performed at the NLO accuracy and in general show a good agreement with the data, 

but our example shows that the dependence on the unphysical scale J.t is still significant. 

Moreover, the forthcoming runs in the new generation accelerators such as LHC will 

provide high quality data with improved statistics leading to an experimental error smaller 

than the theoretical one. The theoretical prediction may be improved by including the 

NNLO contributions. 

2.4.2 Improved jet description 

The addition of NNLO effects also provides significant improvement on the jet description. 

When we consider higher order corrections we are automatically improving the matching 
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between the theoretically and experimentally defined jets. 

As shown in in fig.(2.7), at leading order the jet will be represented by a single parton. 

But we can see that at NNLO there is a further improvement on the jet description, since 

the phase space available is extended and up to three partons can combine to form a jet. 

LO NLO NNLO 

Figure 2. 7: Partons contained in the jet cone at leading and higher order. 

Together with this, higher order corrections involve more modelling of soft gluon 

radiation within the jet event so they provide a more accurate picture of the jet shape 

(fraction of the jet's energy within a cone of a given size, centred on the jet direction) 

and structure. 

If we want to use jet algorithms to describe perturbative QCD phenomena (e.g. mea­

sure the inclusive jet cross section), it is important that the jet definition is IR-safe to 

all orders, not just the order at which the theoretical calculations are performed. In fact, 

when compared with the perturbative calculation, an unsafe algorithm can lead to a cross 

section that scales differently with energy [47, 48]. 

Recent studies [48] show that jet algorithms that are considered to be IR-safe at 

NLO, are found to be genuinely unsafe at NNLO. So a theoretical calculation at this 

order would help isolate the problems of infrared safeness, since it is based on the soft 

and collinear approximations. Moreover, it can also help identify the kinematic regions 

where the logarithms are large and enable a comparison with the numerical all orders 

resumed results from theory and from simulations. 

2.4.3 New physics at the TeV scale 

Unknown physics will obviously affect the couplings and masses of the Standard Model, 

but so far as we know these parameters have been well measured. Nevertheless, there 

may be another way in which unknown physics can tamper with current experiments [13]. 
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Suppose there is a new particle that can be exchanged by quarks and has a heavy mass 

M of the order of a few TeV. It may well be that this new interaction introduces extra 

terms into the QCD Lagrangian that we may be able to probe with future experiments. 

Taking into account the already existing terms of the Lagrangian, this new term will 

be typically proportional to fl j M 2 . Since the mass of the new particle is quite big, the 

effects of these new terms are small. Therefore we need an experiment with good precision 

and that operates at high energies. 

If we consider the experimental results for inclusive jet cross section in pp scattering 

(CDF and DO at the Tevatron) and we compare with the theoretical prediction when the 

transverse energy of the jet is ET < M, then on dimensional grounds we expect, 

Data -Theory A 2 E:j. 
------- ex g -. 

Theory M2 
(2.35) 

This comparison is plotted in fig.(2.8) (taken from ref.[49]) for data from CDF and DO 

[50, 51] and NLO theoretical results. The theory predicts correctly the experimental 

~ 
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o CDF (Preliminary) • 1.03 
A DO (Preliminary) • 1.01 
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Figure 2.8: Inclusive jet cross sections from CDF and DO compared to QCD theory. 

results for ET < 200 GeV, but for higher transverse energies there appears to be a 

deviation that could indicate non-Standard Model physics (or even quark substructure). 

Equation (2.35) offers a qualitative explanation to the nature of this excess. 

On the other hand, the DO measurements are in better agreement with the theory 

than the CDF measurements at high ET, but the overlapping error bars prevent us from 

choosing one data set over the other. It has also been argued that this discrepancy 

between theory and data may be only a case of insufficient precision on the theoretical 
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uncertainties. [52]. In any case a next-to-next-to-leading order calculation will help clarify 

the picture. 



Chapter 3 
Loop Integrals 

Our final objective is to calculate two-loop matrix elements for 2 --+ 2 scattering of 

massless partons. This automatically imposes some conditions on the types of problems 

we have to solve in order to achieve this goal. One of the main problems we are faced 

with is the calculation of two-loop integrals. 

The calculation of scalar loop integrals by itself is a complex task, but the fact that 

we want matrix elements adds an extra degree of complexity. There is now the need to 

calculate hundreds of two-loop integrals with a tensor structure. 

In this Chapter we will explore the different ways of calculating loop integrals and 

the advantages (or disadvantages) a particular method may bring to the process. It is 

therefore important that we make a good description of the type of problem we want to 

solve, since this will be the discerning tool in the search for an adequate loop integration 

technique. 

3.1 General structure of loop integrals 

The analytic evaluation of two-loop parton mat~ix elements involves t he calculation of up 

to a thousand Feynman diagrams, as shown in table 3.1. 

One-Loop Two-Loops 

Processes self-energy products self-energy products 

insertions and basic insertions and basic 

gg--+ gg 27 54 739 1032 

qij--+ gg 4 26 128 467 

qij --+ qij 18 26 290 

Ql ii.l --+ q2if2 10 13 176 

Table 3.1: Basic classification of Feynman diagrams contributing to partonic processes. 

These diagrams can come in various shapes and particle content. As a simple starting 

point on their description we can classify them as follows 

43 
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o basic graphs that represent a particular way of interconnecting the propagators, 

without resorting to insertions in propagators, i.e. 

00000 

e self energy insertions correspond to bubble insertions in the propagators of a basic 

graph, i.e. 

o products of one-loop graphs, or graphs that arise from the elimination of propagators 

in a basic graph, i.e. 

Each of these graphs carries information about the way the particles interact and about 

the particles themselves. Most of this is encoded in the tensor structure of the loop 

integral associated with each diagram. 

Since we are dealing with particles that carry spin and interactions of up to two-loops, 

the types of integrals arising in matrix-element calculations such as 

include integrals with scalar numerators 

(3.1) 

where ki = k, £ are the loop momenta, Pi are the external momenta and f is a scalar 

function. Here, the massless propagators Ai are typically 

(3.2) 

where v can be any loop-momenta or external momenta. The term +ic: gives the Feynman 

prescription for the analytical properties of the integral and its definition is crucial when 
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a) M:: II
Py 

Px 

b) JX 
Figure 3.1: a) Deformation of what seems a non-planar graph to relate it to a planar 

one. b) Genuine non-planar topology (two-loop crossed box). 

doing analytic continuations to other kinematically available regions (see section 1.4). 

In the rest of this thesis we will work within this prescription but we will not write it 

explicitly. 

Also arising from these matrix elements calculations, are integrals with irreducible 

numerators (IN), which are generated through tensor integrals that carry information 

about the spin structure of the process 

(3.3) 

where now, the function f JJ.V··· is a tensor that can depend on the momenta of the system 

and/or other tensors (such as the metric tensor 9JJ.v)· 

In the examples we have shown so far all diagrams have been planar diagrams but, 

sometimes the structure of a graph can be more complicated than that. It will become 

clear that two-loop non-planar diagrams, have an intrinsically different description from 

that of the planar diagrams, although the structure of the nested divergences arising from 

both types of integrals is equally difficult to isolate. 

The fact that a graph is non-planar will be reflected in the structure of its propagators. 

We will see that they have an extra propagator making up for a structure that cannot be 

mapped into the planar case, unless this extra propagator is cancelled by the appropriate 

numerator. These types of graphs have had a special role in the history of loop integration 

and the non-planar double box was one of the last issues to be resolved last year. 

For example, figure 3.1 shows in (a) a very simple case of the equivalence between 

two graphs that seem to belong to different topologies and in (b) an authentic non-planar 

topology. 
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In order to describe the topology* of a graph (or to identify the properties of a graph 

that are unaffected by continuous distortion), one needs only to specify the set of propa­

gators present in it (or equivalently the denominator of the actual integral). 

Therefore, two graphs of the same topology must either have the same set of propa­

gators or sets that are related by a linear mapping of the loop momenta and sometimes 

a permutation of the external momenta. Following the same line of argument, a sub­

topology (or a pinching) can be a topology that contains a sub-set of the propagators of 

the original topology. 

To summarise, we can say that the information in the numerator of an integral as­

sociated with a Feynman diagram provides information about the spinorial structure of 

the particles interacting in the loop. On the other hand, the denominator provides the 

momentum flow in the graph and gives a complete description of its skeleton or topol­

ogy. The topology can be planar or non-planar and within these two categories we will 

identify sub-topologies or pinchings, depending on the absence of a particular sub-set of 

propagators. 

In this way, we can identify families of integrals that can be treated in a similar way, 

enabling us to study groups of integrals and develop general procedures that apply to 

them without loss of generality. 

3.1.1 Planar topologies 

A way of encapsulating all information regarding the planar topologies is to create an 

object that can be a general representation of them. To this end we have created a 

(fictitious) general planar diagram, shown in figure 3.2. In it, each of the propagators 

Pz P2 

Figure 3.2: General planar diagram 

*from the Greek, topos : ro'1ro<;, a place 
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is labelled by an integer and carries a specific momentum that fulfils conservation of 

momenta throughout. This can be verified with the following definition of the propagators 

A1 = k2, A5 -£2 
- ' 

A2 = (k + pi)2, A6 = (£+p1)2, 

A3 =(k+p1+P2)2, A1 = (£+p1 +p2)2, 

A4 = (k + Pl + P2 + P3)2, As = ( l + P1 + P2 + P3 )2, 

A9 = (k- £?, 
where we have a symmetric description of the k-loop and the £-loop, mediated by the 9th 

propagator that participates in both. This is, per se, one of the first advantages of this 

particular description of the planar topologies. It allows us to interchange the k and e 
loop without affecting the results. 

A trivial remark, but worth mentioning, is that this general diagram does not represent 

a Feynman diagram arising from a 2 ---+ 2 scattering process analysis. Nevertheless, 

all possible distributions of momenta in planar Feynman diagrams with different sets 

of propagators, can be obtained from this general diagram by pinching two or more 

propagators. This general representation is a good starting point to the description of all 

of them at once. 

(3.4) 

where, the 1/i are arbitrary powers of the propagators. They can be positive (part of the 

topology description), negative (part of the numerator or tensor content) or zero for a 

pinched propagator. 

We also need a compact way to present this information; a way that allows us to 

manipulate hundreds of integrals with the minimum amount of information and without 

compromising the accuracy of the description. So to refer to the general integral in eq.(3.4) 

we will use the powers of the propagators as entries in the following array 

(3.5) 

where the D indicates a two-loop integral in D-dimensional space. Using this array, we 

can represent any planar topology, by eliminating, increasing or decreasing the values of 

Vi. The last two entries are for the characteristic scales of the graph. 

So, for example, figure (3.3) shows two of the planar boxes that arise in the calculation 

oft he scattering of two massless unlike quarks. Clearly, the graphs have the same topology, 
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Figure 3.3: The planar box graphs for qij ---+ q' ij1 

but the distribution of momenta has been done in a different way. Their characteristic 

scales and propagators present will be different. Nevertheless, their treatment can be 

done with this general approach. The graph on the l.h.s of figure (3.3) will produce an 

integral like 

I[[ (812, 823) = JD[1, 1, 1, 0, 1, 0, 1, 1, 1, 812, 823], 

whereas the graph on the r.h.s will be related to 

I[[ (823,812) = JD[1,1,0,1,0,1,1,1,1,823,8I2]· 

In fact, we can get all possible orientations of the same topology, just by simultaneously 

inner-cycling the sections of the array that correspond to k and R loop, i.e. 

JD[v2, Z13, Z14, Z11, Z16, Z17, Zlg, Z15, Zlg, 823, 812] 

JD[v3, Z14, ZII, Z12, Z17, Zlg, Z15, Z16, llg, 812, 823] 

JD[Z14, ZII, Z12, Z13, Zlg, Z15, Zl6, Z17, Zlg, 823, 812] 

which reflects on the alternation of the scales. This, together with the fact that the 

integral is invariant to the interchange of loops, 

is one of the advantages of this general description. 

There are many different topologies that arise in a 2 ---+ 2 matrix element calculation 

but the most complicated one is the double box. The propagators 4 and 6 do not appear 

in its description and the graphical representation is shown in fig. 3.4. 

We can obtain some sub-topologies, by eliminating propagators from the two-loop box 

and in table 3.2 we see some examples that can clarify this. 

In particular, we show a double box with one negative power on a propagator, this 

means it contains that particular propagator in the numerator. It is still a scalar integral, 

but contains tensorial structure embedded in its numerator. 
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5 
Pt 

2 9 8 

P2 P3 

3 7 

Figure 3.4: Structure of planar double box 

Name Diagram Identification 

PBOXl (812, 823) JI[ JD[l, 1, 1, 0, 1, 0, 1, 1, 1, 812, 823) 

JI[ JD [1, 1, 1, 0, 1, 0, 1, 1, 2, 812, 823) 

PBOX2 (812, 823) JIT JD[l, 1, 1, -1, 1, 0, 1, 1, 1, 812, 823) 

ABOX (812, 823) I () JD[l, 1, 1, 0, 0, 0, 0, 1, 1, 812, 823) 

CBOX (812, 823) JZ[ JD[l, 1, 0, 0, 0, 0, 1, 1, 1, 812, 823) 

TRI (812, 823) ---<li JD[l, 0, 1, 0, 0, 0, 0, 1, 1, 812, 823) 

GLASS (812, 823) -eo- JD[l, 0, 1, 0, 1, 0, 1, 0, 0, 812, 823) 

SUNC (812, 823) 8 JD[o, 1, o, o, o, o, o, 1, 1, 812, 823) 

Table 3.2: Some examples of planar diagrams with their identifications 

3.1.2 Non-Planar topologies 

Similar to the analysis we made on the planar topologies, we have a general diagram in 

fig.(3.5) that deals with all possible non-planar sub-topologies in a concise way. 

Comparing fig.(3.5) with fig.(3.2), we note that the non-planar diagram involves a 

lOth propagator but not the 4th one. This makes the general diagram asymmetric on 

the k and l loops, but this does not exclude the possibility that a particular sub-topology 

may become symmetric when eliminating a sub-set of propagators. 

This extra propagator also participates in both the k-loop and the £-loop and is defined 
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Pt 

P3 

Figure 3.5: General non-planar diagram 

as 

The rest of the propagators have the same definition as the one given in the previous 

section. 

According to this description, we can assign the array 

(3.6) 

that represents all D-dimensional two-loop non-planar integrals, instead of using the 

integral itself 

I dDk I dD£ 1 
. Q . Q AVI AV2 AV3 AV5 AV6 AV7 AVB AVg AVIO . 
t7r 2 t7r 2 1 2 3 5 6 7 8 9 10 

(3.7) 

Again, all powers of the propagators may be positive or negative and the pinched propa-

gators are represented with 0. 

Looking at the different topologies we can have in a 2 -+ 2 matrix element calculation, 

the crossed double box (shown in fig.(3.6)) is the most complicated non-planar topology. 

We can see that this topology does not have propagators 5 and 6 in its description (apart 

from the common absence of propagator 4 for all non-planar diagrams). Figure (3.7), 

presents the same crossed box, but the structure of the drawing allows us to examine it 

better. It is not so clear at the moment, but we may be able to see an internal symmetry 

in the loop formed by propagators 7 -+ 10 and between propagators 1 and 3. These 

observations can be used to shed some light in the design of a non-planar algorithm to 

treat these integrals. 

We can obtain the rest of the sub-topologies, by eliminating propagators present in 

the crossed double box and in table 3.3 we see some examples that help to visualise this. 

Note the representation of the crossed box with propagator 5 having a negative power 
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Figure 3.6: Structure of non-planar double box 

Pt 

2 

P2 

3 

Figure 3. 7: Another version of the structure of non-planar double box 

Name Diagram Identification 

XBOX1 (s12, s23) rr JD[1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 812, 823) 

rr JD[1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 812, 823) 

XBOX2 (s12, s23) K JD[1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 812, 823) 

XTRIA (812, 823) -<X JD[1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 812, 823) 

Table 3.3: Some examples of non-planar diagrams with their identifications 

which is of particular importance to us. It will be appearing in the rest of this work 

since it becomes part of a family of master integrals with a particular role in the matrix 

elements calculations. It is also worth mentioning that any extra pinchings on the crossed 

triangle sub-topology will produce a planar topology. 
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3.2 Explicit loop integration 

So far we have seen that we can have different families of loop integrals, depending on 

their participating propagators, and they can either be scalar or tensor integrals. Also, 

we have found ways to collect all the information an integral carries in a compact way. 

But we still have not discussed how to calculate them. 

The calculation of Feynman integrals is a very old matter. People have tried different 

approaches to the same problem: how to calculate multi-loop integrals of propagators 

with arbitrary powers and masses. In principle, our problem is not as general; we want 

to calculate two-loop integrals with massless propagators and say, up to 7 propagators 

and 5 tensors in the numerator. Nevertheless, this problem still requires a strategy that 

can help us undertake the loop integration for integrals with a rich propagator and tensor 

structure. 

We can classify the loop integration strategies into two types 

(a) Explicit evaluation of the loop integration which is the brute force approach. This 

may involve finding changes of variables, mappings to the complex plane and equiv­

alent mathematical representations for a loop integral, in order to shrink the math­

ematical problem until a result is produced. So far these approaches have produced 

the strategically important results needed for the advancement of the more auto­

mated ways of tackling the same problem. 

(b) Rewriting the integrals in terms of simpler known integrals. A system of equations 

relating several kinds of integrals, solved in a particular manner, can provide an 

automated reduction of integrals with large powers in the propagators in terms of 

simpler integrals; integrals that can easily be calculated using the explicit methods. 

We will discuss the explicit calculation of loop-integrals in this section. Also, we will 

start the discussion on the methods using systems of equations in the last section of this 

Chapter, since Chapter 4 is entirely dedicated to precisely this topic. 

3.2.1 Parametric forms of loop integrals and integration strategies 

We start by looking at the Feynman and Schwinger prescriptions which have the same 

type of approach. They both express the propagators of a loop integral, in terms of 

integrations of real parameters over a particular range. The difference between these 

two prescriptions is in the types of relations these parameters have, and this is in turn 
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related to the kernel used in each representation (a &-function in the Feynman form 

and the exponential function in the Schwinger form). In both of these approaches the 

loop momenta integration can be done easily and the remaining integrations over the 

parameters are doable for reasonably sized topologies. 

Sometimes applying the Schwinger and Feynman parametric representations to a loop 

integral does not leave a parametric integral that can be solved easily. The solution 

of the integrals over the parameters already introduced can become cumbersome when 

the number of loops and external legs increases. Different techniques arose due to this 

situation. 

The Mellin-Barnes (MB) [53, 54, 55] method is applied over a loop integral in a 

parametric form. It is based on the representation of a power of a sum as a contour 

integral over complex variables and the integration is performed over straight lines parallel 

to the imaginary axis. The result of the integration, after closing a contour, is a sum of 

all the enclosed residues that (most of the time) can be expressed as a hypergeometric 

senes. 

The Negative Dimensions (NDIM) [56, 57] technique takes the representation given 

by the Schwinger prescription and introduces a multinomial expansion of the sum of the 

variables of integration. 

In this particular scheme, there are many conditions to be satisfied between the original 

parameters and the ones introduced by the multinomial expansion. This has immediate 

repercussions over the dimension D of the integration; D must be a negative integer 

number. One obtains solutions for different valid parameter regions and they all must be 

taken into account in the final result. 

There are other strategies being explored by Binoth and Heinrich [58] whereby any 

Feynman integral associated to a particular graph is stripped of its infrared singularities 

analytically. The remaining integrations are too numerous and complicated to be done 

analytically, so a numerical result is obtained. 

Let us begin with the discussion on the parametric forms and proceed afterwards with 

the different techniques developed to integrate over the parameters associated with each 

propagator. 

The two parametric representations we already introduced are 

1. Feynman Parameters Based on Feynman's idea to express a set of propagators as 

integrals over parameters assigned to each propagator. The relation between these 

parameters is prescribed by a delta function so that the integration is over a unit 
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length, and normalised by a ratio of r functions. The prescription is as follows 

1 
[ 

n 1 1 l ( n ) ( n ) -N r(N) n r(v) lo dxi xri-
1 

6 1 - ~Xi ~ XiAi (3.8) 
~=1 t 0 t=1 t=1 

with 

(3.9) 

2. Schwinger Parameters Based on Schwinger's approach to use the exponential 

function, rather than the 6-function to express a propagator as an integral over 

some parameter. This time the integration is over an infinite interval and for a 

single propagator is as follows 

1 ( -1ti rXJ Vi-1 

Ari = r(vi) Jo dxi xi exp (xiAi), 

then, for and arbitrary number of propagators we have 

1 
AVI AVn 

1 ... n 

(3.10) 

(3.11) 

Both of the parametric forms allow the propagators in the denominator to be embed­

ded into a polynomial that can be used to integrate out the loop momenta with a simple 

change of variables. The polynomial has the following structure 

n 

L XiAi = ak2 + b£2 + 2ck · f + 2d · k + 2e · f + f, 
i=1 

(3.12) 

where we have taken apart the actual inner structure of the propagators into the different 

contributions that may arise t. More precisely, a and b are sums of parameters associated 

with the propagators that contribute to the k and £-loop, respectively. The tensors dJ.t 

and eM pick up the tensorial contributions arising from terms like Pi· ki, where Pi can be 

any of the external momenta. In c, we collect information on the parameters that belong 

to propagators that participate in both the k and the f loop. Last, the f term has all 

dependence on the external momenta squared. In all these terms we always have a linear 

dependence in the parameters Xi· 

By now, we may have an idea of the structure of these terms since we already saw 

in section 3.1 how our general integral is described and how the propagators look like. 

More so, we may be able to read off the structure of the polynomial in eq.(3.12), from 

the actual graph associated with it. 

Let us extract the structure of the polynomial associated with the general planar 

diagram shown in fig.(3.2), whose integral involves the following propagators 

tin the one-loop case, taking the k-loop, we have to set : b = c = e = 0 
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Terms contributing to : 

Propagator a and b c, df-£ and ef-£ f 

Al= k2 k2 

A2 = (k + p1)2 k2 +2k · Pl 

A3 = (k + P1 + P2)2 k2 +2k · (Pl + P2) +2pl · P2 

A4 = (k + Pl + P2 + P3)2 k2 + 2k · (Pl + P2 + P3) 

A5 = £2 £2 

A6 = (£ + P1)2 £2 +2£ · Pl 

A7 = (£ + P1 + P2)2 £2 +2£ · (p1 + P2) +2pl · P2 

As= (f+p1+P2+p3) 2 £2 +2£ · (Pl + P2 + P3) 

Ag = (k- £)2 k2 + £2 -2k. f 

where we have considered pr = 0 for all external momenta and we have made a clear sep­

aration of the terms contributing to each factor of the polynomial in eq.(3.12). Therefore 

we will have 

b X5 + X6 + X7 + Xg + Xg, 

c -xg, 

(3.13) 

ef-! X6 Pi+ X7 (Pl + P2)f-£ + xs (PI+ P2 + P3)f-£, 

f 2 (x3 + X7) Pl · P2, 

for the polynomial associated with the general planar integral of eq.(3.4). 

With this in mind, we can apply either of the two parametrisations to an arbitrary 

two-loop integral 

(3.14) 

and use the structure of the polynomial we have analysed to solve the integration with 

respect to the loop momenta. We can do this easily with the following general change of 

variables, 

kf-£ c eel-£- bdJl. 
---7 KM- -LJ.i.+ 

ab- c2 ' a 

f_f-£ LJ.i.+ 
cdJl. - aef-£ 

(3.15) ---7 
ab- c2 

If we apply this change of variables to the l.h.s. of eq.(3.12), we are effectively diagonalising 
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the polynomial (completing the squares for the loop momenta) and have 

ak2 + b£2 + 2ck · f + 2d · k + 2e · f + f 

(3.16) 

where, 
~ = -a e2

- b d2 + 2 c d · e + f(ab- c2
) = Q 

ab- c2 P 
(3.17) 

and 

(3.18) 

Following on the example, the values of Q and P for the general planar topology are 

Q = [ X5X7 (xl + X2 + X3 + X4) + X1X3 (x5 + X6 + X7 + Xg) 

+ (x1 + x5) (x3 + X7) xg] 812 

+ [X6XB (xl + X2 + X3 + X4) + X2X4 (x5 + X6 + X7 + Xg) 

+ (x2 + x6) (x4 + xs) xg] 823, 

p (Xl + X2 + X3 + X4) (x5 + X6 + X7 + Xg) 

(3.19) 

(3.20) 

where 8ij = 2 Pi· Pi. The complex structure of these objects, makes the job of integrating 

over the parameters, a hard one. 

In any case, according to what we have discussed so far, our arbitrary integral of 

eq.(3.14) can be written in two ways. If we use the Feynman prescription, 

(3.21) 

and if we use the Schwinger prescription, 

(3.22) 
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Now, the dependence on the loop momenta is only through their magnitude, so we 

can integrate it out. We perform the Wick rotation in a similar way as we did in section 

1.4 and integrate out the loop momentum. 

We are left with the parametric integrations over the Q and P structures, which can 

be reconstructed directly from the graph (using a, b, c, d'"', eJL, f) to which the integral is 

associated. Therefore, the loop integration result is 

(3.23) 

in the Feynman prescription, whereas in the Schwinger prescription, we have 

(3.24) 

3.2.1.1 Mellin-Barnes technique 

Once we have an integral in the Feynman prescription we can integrate over the param­

eters using the Mellin-Barnes method which is based on the representation of a power of 

a sum as a contour integral. In the case of a sum of two terms with an arbitrary power, 

1 1 f+ioo du (B) u 
(A+B}V = Avr(v) 1-ioo 21ri A r(v+u)r(-u) (3.25) 

where we have introduced a complex variable u and the contour is separating the poles 

of the two r functions as it is shown in figure (3.8). 

Im(u) 
I 
I 
I 
I 
I 

~ 

B>A A>B 
-----~----, I _,. ---------..-----------

'1/ 

'I' /I' 
----~------"' I ' 

I 
I 
I 
I 

----------~---------

Re(u) 

Figure 3.8: Region of integration with open and closed contour 

This identity can be generalized to an arbitrary number of terms for the sum and 
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be applied to convert the term QD-N of the Feynman representation, into a product of 

integrations over complex variables. 

Equation (3.25) can be easily verified. We can see that the integrand has poles for 

u = n (positive branch) and for u = -v - n (negative branch), with n = 0, 1, 2, .... 

Depending on whether B > A or not, we can close the contour to the left or to the right, 

respectively. 

Taking A > B to be the case, then we close the contour to the right (see fig.(3.8)) 

and pick up the residues corresponding to the poles at u = n, to apply Cauchy's residues 

theoremt on the integral of eq.(3.25). 

The residues of the integrand are 

Res [r( -x)Jx=n Res [r(x)Jx=-n 

Res [r(x'- n)]x'=O 

Res [(x'- n- 1)!]x'=O 

R [ r(x' + 1) J 
es x'(x'- 1) · · · (x'- n) x'=O 

( -l)n 
n! 

for n = 0, 1, 2, ... With this, the integral in eq.(3.25) will become 

(3.27) 

1 !+ioo du (B)u 
A 11r(v) -ioo 21T'i A r(v + u)r( -u) = 

1 
00 (B)n (-1)n 

AZT(v) ~ A r(v + n)~ 

1 f: ( B)nr(v+n) (3.28) 
A11 n=O -A n! r(v) ' 

which is the Taylor expansion of 1/(A + Bt for a very small B. A similar result can be 

obtained when closing the contour to the left. 

In the literature, the MB method has been applied widely and successfully to one and 

two-loop integrals. For one-loop integrals, the method is fairly straightforward to apply. 

The two-loop integrals have proven to be a highly complex task and involve clever changes 

of variables and manipulations of the integrand. 

3.2.1.2 Negative Dimensions technique 

The Negative Dimensions method (NDIM) deals with the same kinds of sums that the 

MB deals with. It consists of writing a sum of terms that has an arbitrary power, as a 

tAn integral over a closed contour of an analytic complex function is 

f F(x) dx = 27riLRes[.F(x;)] (3.26) 

• 
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binomial expansion. However, an assumption that this power has to be a positive integer 

has repercussions on the dimension, forcing it to be negative. 

To show this for a particular case, let us (temporarily) assume that -v is a positive 

integer and make a binomial expansion, 

1 
(3.29) 

which is subject to the constraint 

(3.30) 

To see that we can verify this expansion, we can look at the two solutions: either take n1 

as integer and n2 = -v- n1 or exchange the roles for n1 and n2. 

Taking the case where n 1 = n = 0, 1, 2, ... and n2 = -v- n then 

oo An n-v-n f(1- v) 

E n! r(1- V- n) 

n-v f: f(v + n) (-A)n 
n=O r(v) n! B 

which converges to (1 + A/B)-v, provided that A< B. The other solution, corresponds 

to exchanging roles of A and B and converges when B <A. 

Therefore, in the NDIM approach, it is necessary to explore all possible series solutions 

and collect the solutions that converge in the domains defined by the available kinematic 

regions of the particular system. 

The name of the method arises due to the fact that when the generalised version of 

eq.(3.29) is applied to polynomial terms such as pD/2 (from the parametrisation recipe), 

then several conditions such as the one in eq.(3.30) drive the dimension parameter D to 

be a negative integer. This is a valid assumption, since the loop integral is an analytic 

function of the number of dimensions D. 

Multiple examples of loop integration using the MB and NDIM methods can be found 

in references [56, 57, 59] and references therein. 

3.3 Loop integration through systems of equations 

We have seen different ways of approaching the calculation of loop integrals. Some are 

more cumbersome than others and it is not yet straightforward how to implement these 

methods to be able to calculate integrals with arbitrary powers of propagators and with 

a fair load of tensorial structure. 



3. Loop Integrals 60 

However, there is another approach that produces an environment in which loop inte­

grals can be treated in a general and automated way. Moreover, complex topologies with 

high powers on the propagators can be reduced down to integrals that can be solved with 

the methods described in the previous section and sometimes can be solved altogether. 

This reduction can be achieved using systems of equations stemming from Integration by 

Parts identities [60, 61, 62] and exploiting the Lorentz invariance of the Feynman integrals 

[63]. 

In this section we will study the basics of this method and will provide a simple 

example of its capabilities. This mechanism is the backbone of the algorithm with which 

we perform our calculations. 

A detailed discussion of the automated reduction of loop integrals within the context 

of matrix elements calculations will be given in the next chapter. 

3.3.1 Integration by Parts identities 

Let us consider the arbitrary loop integral provided in eq.(3.14) and given by 

The idea behind the integration by parts (IBP) method is to find relations between 

integrals generated through a total derivative with vanishing surface terms, expressed as 

the following identity 

(3.31) 

where ki = k, .e and V can be any internal or external momenta involved in the loop 

integration. 

If we apply the derivative we will get two kinds of terms related to 

1. the derivative of the numerator 

1 8V" if V depends on ki, 

AVI AVn 8k'! 
1 · · · n t otherwise, 

2. the derivative of the denominator 

if Ai depends on ki, 
(3.32) 

otherwise. 
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Note that we will generate a set of relations between integrals with dot products in the 

numerator, arising from terms like those in eq.(3.32). These dot products can be rewritten 

in terms of linear combinations of propagators as follows 

With this simple step we can rewrite all the contents of the numerator in terms of propa­

gators that may or may not be part of the denominator. We then say that the numerator 

is reducible if we can cancel it through and irreducible otherwise. The former will make 

the integral less complex since it will diminish the power of a propagator (or eliminate it 

altogether if we are lucky), and the latter will make a more complex integral since it adds 

a tensorial structure to the numerator. 

Even though we may not be able to have a relation between our original integral and 

simpler integrals (which would be the solution to our problem), we manage to construct 

an identity that relates different integrals on the same footing. We have found a way to 

translate the original integral into a sum of other integrals of different structure. 

Now, in eq.(3.31) we can take all possible momenta of the system as the value of V 

and consider the derivative with respect to both the k and £ loop momenta, to have a 

system of identities with the characteristics mentioned. More precisely, for any two-loop 

integral we have two loop momenta and V can be any of the moment a of the graph ki, Pi 

or combinations of them, e.g. {ki, ki +PI, ki +PI+ P2, ki +PI+ P2 + p3, ki- kj}· In this 

case we can have 10 IBP identities. 

In general, for a graph with m loops and n independent external momenta, we have 

Nmp = m (m + n), (3.33) 

identities. 

Having some irreducible numerators in the system of identities is not a very good 

thing but, there is always the possibility that we can manipulate it to build a new system 

of identities, free from irreducible numerators. We will discuss this possibility in the next 

chapter. 

For now, let us turn our attention to a simple example where we can exercise what 

we have just learned. 

3.3.1.1 An example using IBP 

Consider the Pentabox, which is the name of the graph shown in fig.(3.9), with arbitrary 

powers in its propagators. 
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At As 
Pt 

~ 
P4 

As 

Az 

A4 

Pz P3 
A3 

Figure 3.9: The Pentabox diagram 

This diagram can be obtained by adding propagator 4 and eliminating propagator 7 

in the double planar box shown in fig.(3.4), so it has the following propagators present 

A1= k2 A5= p_2 

A2= (k + P1)2 As= (f + P123)2 

A3= (k + P12)2 Ag= (k- £)2 

A4= (k + P123)2 

where we have used the notation Pijk =Pi+ Pi+ Pk· 

We can apply the IBP identity of eq.(3.31) with any of these propagators in the 

numerator. For example, let us take V~-'= (f + p123 )~-' and derivate with respect to£~-', to 

have 

0 = I dDk I dDf {) [ (£+P123)1L ] 
. Q . Q of~-' Av1 Av2 Av3 Av4 Av5 Ava Av9 • 
27!' 2 27!' 2 1 2 3 4 5 s 9 

Working on the r.h.s. of this expression and using the definitions for the propagators 

already provided, we find 

I dD k I dD £ [ 1 ] 
. Q • Q Av1 Av2 Av3 Av4 Av5 Ava Avg 
Z7r 2 Z7r 2 1 2 3 4 5 S 9 

0 = 
(D 2 (£ + P123) · £ 2 (£ + P123) · (£ + P123) 

X - 115 - liS ___:c______:__.:.,-_:______::_....:... 

A5 As 

2 ( £ + P123) · ( £ - k) ) 
-vg Ag . 

Following on, we can rewrite the dot products (recall eq.(3.33)) as 

2 (£ + P123) · (£ + P123) 

2 ( £ + P123) · £ 

2 ( £ + P123) · ( £ - k) 

Introducing these expressions in the identity, gives 

2As, 

A5 +As, 
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We can see that, inside the integrand, we have produced some constant terms, but we have 

also produced ratios of propagators. A propagator in the numerator, will be absorbed in 

the denominator by reducing one power in the corresponding propagator and the terms in 

the denominator will do the opposite. This can be represented, using raising and lowering 

operators that act at the level of the integrand. More precisely, the equation above can 

be symbolically written as 

Perhaps it can be better appreciated if we write it as follows 

This relation allows us to determine the original Pentabox with arbitrary powers in the 

propagators, as a sum of three integrals, each of which have a unit reduction in one 

propagator and an increment in another. In practical terms, we could apply this relation 

recursively to Pentabox integrals that have large powers in propagators 4 and 8 until we 

eliminate completely these two propagators and obtain integrals of a smaller topology. 

This would bring us closer to an integral that we can calculate by other methods. 

We can see how this would work if we take a Pentabox that has unit powers in all its 

propagators. In that case eq.(3.34) will be written as 

which can be best visualised with the aid of fig.(3.10). In this figure, each of the diagrams 

Figure 3.10: Reduction of the Penta box. 

on the r.h.s. are obtained by eliminating the corresponding propagator in the original 

Pentabox diagram of fig.(3.9). The black dots correspond to an extra power of the prop­

agator on which they appear. We can find relations that act on the pinched integrals 

and reduce them further, until we arrive to a set of simpler integrals that can be easily 

calculated with MB or NDIM. 
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This example just shows how a particular identity for a specific topology can work. 

But, we can create many identities for each family of integrals and use the system as 

a tool to express any integral in terms of a handful of simpler integrals. The analysis 

has to be done on each topology since the types of terms that will produce irreducible 

numerators will change depending on such a topology. We will see some examples of this 

in Chapter 4. 

3.3.2 Lorentz Invariance identities 

In addition to the IBP identities, one can also exploit the fact that all integrals arising 

from the Feynman diagrams depend on scalar products of the external momenta. This 

means that any of these integrals must be invariant under a Lorentz transformation of 

the external momenta of the Feynman graph to which it is associated. 

Specifically, any of these integrals fulfils 

(3.35) 

where we take the infinitesimal rotation to be 

P'.IL = AILpl( 
~ lJ ~ 

(3.36) 

with A~ = 9p.v + &Ep.v and f.p.v = -Evw 

We can Taylor expand the r.h.s. of eq.(3.35) to have 

Considering the initial requirement of eq.(3.35) we can see that the term on the l.h.s 

cancels against the first term on the r.h.s. of the equation above, therefore we get the 

following expression 

Now, &~ has six independent components so, in principle we have six Lorentz Invariance 

(LI) identities. However, these identities are not always linearly independent. To max­

imise the number of linearly independent identities, we make use of the antisymmetry of 

&~, to get 

( 
V 8 IL 8 V 8 IL 8 ) I(p ) -P1

8 
JL -p1

8 
v +·+Pn

8 
JL -Pn

8 
v 1, ... ,pn -0. 

P1 P1 Pn Pn 
(3.37) 

This equation can now be used to generate identities between scalar integrals. We 

need only to contract it with all possible antisymmetric combinations of pfpj. For our 



3. Loop Integrals 65 

processes we will have diagrams with four legs and three independent external momenta, 

so we can choose the following three antisymmetric combinations 

providing 3 LI identities. In general we can have up to 

1 
N11 = -n x (n- 1) 

2 

identities for n independent external momenta. 

(3.38) 

(3.39) 

The identities produced using this method, are similar to the ones produced using IBP. 

To achieve the reduction of two-loop planar integrals of arbitrary powers, the 11 identities 

are not needed. However, for the non-planar topologies, they proved to be indispensable. 

In Chapter 4, we will see the structure of these identities and briefly discuss their 

involvement in the reduction of the non-planar topologies. For now, let us see how we 

can tackle the problem of loop integrals with tensor structure. 

3.4 Dealing with tensors in loop integration 

So far, we have seen how we can calculate scalar loop integrals using different parametric 

representations and applying, for example, the MB and NDIM methods. Also, we dis­

cussed how we can have a system of equations that helps us write an integral in terms of 

integrals with different structure that may or may not be easier to deal with. 

A system of equations like the ones we have discussed, have the potential to provide 

a complete reduction of an integral. But, they also can give us a partial answer that 

contains integrals with irreducible numerators. We must then find a way to deal with 

these. 

We can work with either the isolated tensor structure (and calculate explicit tensor 

integrals), or the irreducible numerators themselves (and calculate scalar integrals). In 

this section we review the former approach and leave the discussion for the latter to the 

next chapter. 

Consider an arbitrary integral with a tensor in the numerator, such as 
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and let us suppose that the tensor comes from a dot product in the numerator (such as 

Pi · £) that cannot be written as a linear combination of the existing propagators, i.e. it 

comes from an irreducible numerator. 

However, recall that to solve the integral using, say, the Schwinger parametrisation 

we shifted the loop momentum (see eq.(3.15)) as 

cdJ.l - aeJ.l 
fJ.l ---+ LJ.l + b 2 ' a - c 

cdJ.l- aeJ.l 
---+ LJ.l+---­

p 

So if we apply this shift of momentum and perform the loop integration as was done in 

section 3.2.1 for the Schwinger parametrisation, we will have 

( 

n ( -1)1/i rJC) ) 
ID[vl,···,vn]{tJ.l} = g r(vi) la dxixr;-l 

x p;/2 exp (~) cd!J; aeJ.l (3.40) 

since the (odd) LJ.l term does not contribute. 

Let us look into the answer that integration provides. From eq.(3.13) we know that 

the terms a, b, c, dJ.l and eJ.l have a linear dependence on the Schwinger parameters Xi· 

Then, we can absorb the extra factors of Xi (coming from a, b, c, dJ.l and eJ.l) and P into 

the already present terms. 

We will have two types of modifications in our integrand 

1. extra powers in the Schwinger parameters 

2. and extra dimensions 

1 
pD/2 

1 
p .._,_, 

f cdl-'-ael-' rom--P-

1 ++ 
p(D+2)/2 ""' d 

Moreover, the term cdJ.l- aeJ.l is quadratic in the Xi parameters, so the actual change 

of powers will occur in two propagators at a time. The integral of eq.(3.40) will be a sum 

of integrals with a similar structure, schematically 

So we have written our tensor integral in terms of a sum of integrals that have extra 

powers in the propagators and extra dimensions. 
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This procedure can be applied to integrals with any number of tensors in the nu­

merator, all that is needed is to apply the change of variables given in eq.(3.15). For 

example 

where 

I (ceP.- bdP.) 
Vx p , 

I Vx 

I Vx 

I Vx 

1 
pD/2 (3.42) 

In summary, we have replaced the problem of having a tensor integral with the problem 

of solving scalar integrals that have arbitrary powers in the propagators and arbitrary 

dimension. 

For each loop momentum in the numerator, we would increase two propagators of 

the integral by a unit and increase the dimension of the integral by two. If we consider 

that we may need up to, say 4 tensors for the matrix element calculations, we can expect 

to have integrals with up to 4 extra powers in two different propagators and 8 extra 

dimensions. The reduction of such types of integral using IBP and LI identities, is an 

involved manipulation and turns out to be impractical. 

In the next chapter we study an algorithm that helps us deal with tensor integrals 

without having to change the dimensions. Even more, this algorithm allows us to manip­

ulate scalar integrals and integrals with irreducible numerators on the same footing and 

in an automated way. 



Chapter 4 
Reduction of Loop 

Integrals 

In Chapter 3 we discussed how to calculate loop integrals using various techniques and 

we saw how the adequacy of a technique depends on the type of integral we are dealing 

with. The process of explicitly calculating a loop integral, involves choosing changes 

of variable, mappings to the complex plane and mathematical representations of a loop 

integral that can help disentangle the mathematical problem until a result is produced. 

These methods have proven to be indispensable in the calculation of integrals that 

have a particular set of propagators, powers of propagators and dimension. Unfortunately, 

the results obtained for these particular cases do not cover all the possible integrals that 

can arise in a matrix element calculation. This does not mean that they are not useful. 

On the contrary, we can build an algorithm that can help us rewrite an arbitrary integral 

(planar or non-planar, scalar or tensorial) in terms of the ones we already calculated using 

MB, NDIM or any other method. This Chapter presents a discussion of precisely this 

idea. 

We start by exploring a way of expressing the IBP and LI identities we have for 

the loop integrals in a symbolic and general manner. Then we can manipulate these 

expressions easily and find out how they can help in the task of loop integral reduction. 

Afterwards, we build an algorithm to reduce the two-loop box integrals into a set 

of simpler integrals. This important set of integrals will be later refered to as Master 

Integrals (MI). 

The symbolic algorithm is a powerful tool but it involves direct trial and error ma­

nipulation of the expressions. In section 4.2, we build and automatic algorithm that can 

reduce the integrals without resourcing to a manual (symbolic) manipulation. We also 

make particular choice of double box MI, due to the nature of this algorithm, that makes 

for a further improvement. 

Finally, in section 4.4 we discuss the general algorithm we apply to perform matrix 

element calculations. Also, we describe briefly the ingredients, extra tools and practical 

68 
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issues related to the algorithm. 

4.1 Symbolic reduction of loop integrals 

In the previous chapter, we saw how we could represent all planar two-loop topologies 

with the graph in fig.(3.2) and all non-planar ones with the one in fig.(3.5). We are looking 

for a general algorithm that can help us calculate these types of integrals. To that end, we 

devise a symbolic mechanism with which we can easily do a general manipulation of the 

two-loop integrals, using all the IBP and LI identities arising from a particular topology. 

First, we will analyse what we can have in general and then we can apply it to a 

particular topology. 

As usual, we will be considering lightlike vectors, i.e. 

2 2 2 2 0 'h P1 = P2 = Ps = P4 = w1t P4 =-pi- P2- P3· (4.1) 

To shorten the expressions, we use 

Pi +Pi + Pk Pijk, 

and to facilitate the manipulation of relations between integrals with different powers of 

propagators, we use a notation to represent the raising and lowering in the powers of the 

propagators (as we did on section 3.3.1.1), so that 

ID[v1, ... , Vi+ 1, ... , vg], 

ID[v1 , ... , vi- 1, ... , vg]. 

4.1.1 Symbolic reduction for planar two-loop integrals 

From the discussion on IBP in the previous chapter, we know that it led us to obtain a set 

of relations amongst integrals involving different powers of propagators. This was done 

by taking the total derivative with respect to either kJl. or f_Jl. of the integrand that has 

been multiplied by any of the independent momenta of the system. This means taking 

(4.2) 

where ki = k, f and the definitions of the propagators are those presented in section 3.1.1. 
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This will generate dot products in the numerator, but with the aid of eq.(3.33) we 

can write them as linear combinations of propagators so that we re-incorporate all the 

information to the integrand in terms of a change in the powers of the propagators. To 

clarify, let us fill in a couple of steps. 

The derivation of the integrand will produce 

(4.3) 

The loop derivative on the r.h.s of this equation will contain a sum of terms with the 

same structure 

(4.4) 

but since, in general 

(ki + v) 2 + (ki + u)2 - (v- u)2 

(ki + v) 2 + Ax- (v- u) 2 (4.5) 

then 

-vx(ki + v) 2
- VxAx + Vx(v- u) 2 

A vl Av,+l Avg 1 .. • X .. • 9 

[ -(ki + v)2 VxX+- Vx 

+(v- u)2 vxx+ l Arl ... A~"' ... A~9. (4.6) 

In this way, using the shorthand notation 

(4.7) 

and taking the partial derivation to be with respect to kf = kf.J., PJ', we find the following 

two general expressions for the IBP symbolic reduction of planar two-loop integrals 

(D- v1234- vg)ID = [(k + v) 2a+- (£ + v) 2v99+ 

-v2v11+- (v- p1)2v22+ 

-(v- P12)2v33+- (v- P123)2v44+] ID, (4.8) 

(D- 1/5678- vg)ID [(£ + v) 2b+- (k + v)2v99+ 

-v2vs5+- (v- p1)2v66+ 

-(v- P12)2v7'l+- (v- P123)2vs8+] ID. (4.9) 
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All the propagators that belong to a particular loop, contribute to the derivative of the 

corresponding loop, so we introduced the following notation 

1111 + + 1122+ + 1133+ + 1144+ + llg9+' 

1155+ + 1166+ + 1171+ + 1188+ + llg9+' 

(4.10) 

(4.11) 

(4.12) 

since it groups the contribution coming from the propagators that belong to each loop 

and the contribution from the 9th propagator, which belongs to both. 

If for loop i we choose v to be either 0, PI. P12, P123 or -kj, we will generate a set of 

equations that will be a particular case of these previous ones. 

For example, let us focus on eqs.(4.8) and (4.9) and take two cases on the values of v 

for both of them. We generate the following relations 

• with v = P1 

(D- 111234- llg)ID 

(D- 115678- llg)ID 

e with v = -£ 

(D - 111234 - llg)ID 

(D - 115678 - llg)ID 

[(k + PI)2a+- (£ + P1) 211g9+- 823 1144+ lID, (4.13) 

[(£ + PI)2b+- (k + PI)211g9+- 823 1188+ lID. (4.14) 

[(k- £) 2a+- £21111+- (£ + pr)21122+ 

- (£+P12)21133+- (£+p123) 21144+]ID, (4.15) 

-[(k- £)211g9+ + £21155+ + (£ + P1) 21166+ 

+ (£ + P12) 21177+ + (£ + P123)211s8+ lID. (4.16) 

As it stands, this system of equations is potentially helpful. Depending on the propa­

gators of the integral ID we apply it upon, we may get relations that can help us reduce 

the integral. This is because we have written the system of equations is such a way that 

on the left hand side is the original integral multiplied by some constant (D- 111234 - 119, 

for example) and on the right hand side we have modifications on the same integral. 

These modifications can result in an easier integral, but they can also lead to irreducible 

numerators. 
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As we know, we have an IN when one of the momentum factors in the numerator 

does not cancel against one in the denominator. This can be addressed by taking linear 

combinations of the equations that contain these factors. 

In the two particular cases taken above, if(£+ p1) 2 does not occur as a propagator 

in the denominator of integral ID, then we have problems with eqs.(4.13 - 4.16), since 

they all contain this factor in some term. Having IN in all these equations makes them 

useless, in a sense, because we would be exchanging an integral with extra powers on 

the propagators (say) with an integral with IN. We would not be solving the problem. 

Finding a way to eliminate them and still have a useful identity, would be ideal. 

Let us concentrate on equations ( 4.13) and ( 4.15). If we apply the rising operator 

v22+ on eq.(4.13) and the operator vg9+ on eq.(4.15), we can eliminate the terms that 

contain ( £ +PI )2 , by taking the difference of the modified equations. 

The new relation arising from this operation, may now be of use for integrals that do 

not have (£ + pi)2 in the denominator. This amounts to applying the integration by parts 

identities to the following integrand 

(4.17) 

which has the effect of producing identities that are linear combinations of the 10 identities 

we had before. 

There's also another way of viewing this. It follows from the scaling of the external 

momenta in the loop integral. If we do p -+ >.p in an arbitrary integral, then 

(4.18) 

where N is the sum of the powers of the propagators involved in the integral. If we 

differentiate with respect to >. in both sides and then take >. = 1, we have 

D 1 [{) D ] 
I (p) = 2(D- N) 8>. I (>.p) A==l. 

What this expression means is that instead of having a term like 

that would come from IBP (since we differentiate with respect to the loop momenta), it 

produces terms such as 
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since we differentiate with respect to A that always brings out factors of external momenta. 

These terms can in turn be written as 

which is equivalent to a combination of two terms coming from IBP identities, just like in 

eq.(4.17). So we can see that the scaling saves us a bit of work when we are trying to get 

an expression free of irreducible numerators since it can produce a combination of IBP 

identities without us having to look for it. Still, this scheme depends on the cancellation 

of terms between numerator and denominator, and some relations are not IN free. 

The way we generate expressions that contain irreducible numerators, depends on 

which propagators are present in the integral we use as the starting point. If the integral 

has propagators VI, ... , Vi missing, then the presence of the operators 1-, ... , i- in the IBP 

identities, indicates a reduction in the powers of precisely the missing propagators. 

We then must find a way to combine the identities for a particular topology to assemble 

an algorithm that relates the integrals of this topology to integrals of simpler topology. 

If this is not possible, a relation to integrals of the same topology but with less powers 

on propagators and simpler integrals is also good. 

This has already been done for all the MI we use in our algorithm [64, 10, 53, 54]. In 

fact, we already saw in section 3.3.1.1, how a Pentabox has a complete reduction in terms 

of triangles. 

The derivation of these symbolic reduction formulae requires a lot of ingenuity and its 

disadvantage is that it is based on the direct inspection of the explicit form of the IBP 

identities for each topology. Nevertheless, it provides a useful insight into the symmetries 

and shortcuts we might have for different topologies, so let us look at an example of this 

symbolic manipulation [54, 53]. 

4.1.1.1 Symbolic IBP reduction of the Planar Double Box 

The planar double box integral that arises from the general diagram of fig.(3.2) when 

pinching propagators 4 and 6 is the one shown in fig.(3.4). In terms of the integral that 

it represents, we have 

(4.19) 

where the Ai's are the propagators as defined in section 3.1.1. 
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When we do integration by parts with all possible momenta in the numerator and 

with respect to both k and £, we get 10 relations. Of these relations, the following are 

free of irreducible numerators: 

8I2 VI!+ ID = -(D- VI- V2- 2v3- Vg)ID 

+ [(vil+ + v22+)3- + v99+(a- -7-)J ID, (4.20) 

8I2 v33+ ID -(D- 2vi - v2- v3- vg)ID 

+ [(v22+ + v33+)1- + Vg9+(1- - s-)] ID' (4.21) 

8I2 V55+ ID -(D- v5- 2v7- vs- vg)ID 

+ [(v55+ + vs8+)7- + v99+('r- a-)] ID, (4.22) 

-(D- 2v5- V7- vs- vg)ID 

+ [(v71+ + vs8+)s- + v99+(s-- 1-)] ID. (4.23) 

Note also that these relations are symmetric in the propagators 1, 3, 5 and 7, which 

reflects the symmetry of the topology itself. 

The remaining six relations that do contain irreducible numerators, are combined (in 

the same way as we did in the previous section) to get rid of these. We get two sets of 

symmetric relations (in propagators 2 and 8) 

and 

(D- 2- VI- 2v2- v3)v22+ ID = (D- 2- VI- v3- 2vg)vg9+ ID 

+(v2- vg)(vil + + v33+)ID 

+ [vil+v99+s- + v33+v99+7-J ID, (4.24) 

(D- 2- v5- v7- 2vg)v99+ ID 

+(vs- vg)(v55+ + v71+)ID 

+ [v55+vg9+1- + V77+vg9+3-] ID, (4.25) 

-(D- 2- v5- V7- vs- vg)vg9+ ID 

-(D- 1- VI- V2- V3- Vg)(v55+ + V77+ + Vs8+ + Vg9+)ID 

( 4.26) 

-(D- 2- VI- v2- v3- vg)vg9+ ID 

-(D- 1- v5- V7- vs- vg)(vil+ + v22+ + v33+ + v99+)ID 

( 4.27) 
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We can use eqs.(4.20- 4.23) to reduce to unity the powers of propagators 1, 3, 5 and 

7. Once this is done, we can use eqs.(4.24) and (4.25) to reduce to unity the powers of 

propagators 2 and 8. 

So far all propagators but the 9th, can be manipulated to have unit powers. We can 

find a relation that can reduce the power of propagator 9 if we combine eqs.(4.25) and 

( 4.26). 

If we substitute the value of vsB+ ID given by eq.( 4.25) in the left and right hand side 

of eq. ( 4.26) we get 

0 = 823 [(D - 2- 1/5 - 1/7- 2vg) + 1/55+1- + 1/77+3-] vg(vg + 1)9++ ID 

[823 (vs- vg)(5+ + 7+) 

+(D- 1- 1/1- 1/2- 1/3- vg)(v55+1- + 1/77+3-) 

+(D- 2- v5- v7- 2vs)(D- 2- v5- 1/7- vs- vg) 

+(D - 2 - v5 - v7 - 2vs)(D - 1 - v1 - v2 - v3 - vg) 

+(D- 1 - 1/1 - 1/2 - 1/3 - vg)(D- 2- 1/5 - 1/7- 2vg) ]vg9+ ID 

+(D- 1 - v1 - v2 - v3 - vg)(D- 2- 1/5 - v7 -vs - vg)(5+ + 1+)ID 

(4.28) 

Now, since this equation is going to be used when all but the 9th propagator have 

powers of one, we can shorten it. Furthermore, we can substitute the values of v55+ and 

1/77+ given by eqs.(4.22) and (4.23), in the terms appearing as (5+ + 7+), to have 

0 = 823 [(D- 4- 2vg) + 5+1- + 7+3-] vg(vg + 1)9++ ID 

[ -
823 

(1 - v9)(2D- 8- 2vg) 
812 

+ 823 
(1- vg) ((5+ + s+)7- + (7+ + s+)5-) 

812 

+ 823 (1- v9)(5- + 7-- 1-- 3-)v99+ 
812 

+(D- 4- v9)(5+1- + 7+3-) 

+(D- 6)(D- 5- vg) 

+(D- 6)(D- 4- vg) 

+(D- 4- vg)(D- 4- 2v9)]v99+ ID 

1 D -- (D- 4- vg)(D- 5- vg)(2D- 8- 2vg)I 
812 
1 +- (D- 4- vg)(D- 5- vg) ((5+ + 8+)7- + (7+ + 8+)5-) ID 

812 
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+__!___ (D- 4- v9)(D- 5- v9)(5- + 7-- 1-- 3-)9+ ID 
812 

-(D- 6)(a+b+- c+c+)2- ID. 

16 

(4.29) 

But, we can also take advantage of the symmetry properties inherent to the integral. 

When the powers of the propagators are one, pinching with 1- is the same as pinching 

with a- and the analogous happens with the symmetric side of the box (propagators 5 

and 7). So in the end we can do 5+1- = 7+3- in the equation above. Rearranging the 

terms we have 

823 [(D- 4- 2vg) + 2 5+1-] llg(llg + 1)9++ ID 

= [
2823 

(1- v9 )(D- 4- v9 )-
2823 

(1- vg)(s+ + s+)'l-
812 812 

-2(D- 4- vg)5+1-- (D- 5- vg)(3D- 14- 2v9)]v99+ ID 

+_2_ (D- 4- vg)2(D- 5- v9)ID 
812 

_ __!___ (D- 4- v9 )(D- 5- v9 )(5+ + 8+)7-ID 
812 

+(D- 6)(a+b+- c+c+)2-ID, (4.30) 

which is valid only when all powers of the propagators (except the 9th) are one. This 

identity provides a reduction of the power on propagator 9, but it can only reduce it to 

the values of 1 or 2 (depending of whether the initial integral has an odd or even value of 

v9 ). The two integrals at which we arrive are 

PBOX1 := Ili ID[1, 1, 1, 0, 1, 0, 1, 1, 1] 

Ili = ID[1,1,1,0,1,0,1,1,2]. 

(4.31) 

( 4.32) 

As can be seen by the pinching operators in eq.(4.30), the reduction not only produces 

these two box integrals, but also pinched integrals, such as 

I C) 8 
( 4.33) 

which are described in table 3.2. 

4.1.2 Symbolic reduction for non-planar two-loop integrals 

The general symbolic reduction of non-planar two-loop integrals is highly non-trivial (in 

fact, it can only be achieved with the identities produced from both integration by parts 
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and Lorentz Invariance conditions). It was finally conceived and presented in ref.[lO]. 

The way to obtain the IBP and LI identities is the same as that explained in the previous 

sections. The difference is that there is a more complicated way to combine these identities 

to be able to get a reduction algorithm. 

In the end, the identities obtained provide a complete reduction of all topologies in 

terms of simpler topologies and integrals of the same topology. They found that the 

pattern is repeated; they also needed two crossed boxes as master integrals for the non­

planar double box topology. We represent them as 

XBOX1 := rr = JD[1, 1, 1, 0, 0, 0, 1, 1, 1, 1] 

rr JD[1,2,1,0,0,0,1,1,1,1]. 

(4.34) 

(4.35) 

Similar to the planar case, the reduction of the non-planar double box not only produces 

these two box integrals, but also pinched integrals, such as 

-<X (4.36) 

and the planar pinchings shown in eq.(4.33), which are all described in tables (3.2) and 

(3.3). 

4.2 Automatic reduction of loop integrals 

So far we have dealt with IN in the past by expressing them in terms of a combination of 

tensors that are themselves related to integrals with very high powers on the propagators 

and also extra dimensions (see section 3.4). This generates the need to devise a mechanism 

to diminish the dimensions on top of the already existing need of reducing the powers of 

propagators. 

This is because the basis of integrals which spans, through linear combinations, every 

possible integral (with and without IN) does not contain an integral with IN. So instead 

of having a reduction that encodes the information using IN, we have to encode the same 

information but using extra powers of propagators and extra dimensions. 

This sole fact makes a huge difference in the amount of computing work before us when 

calculating integrals with up to 4 IN (or tensors). In fact it amounts to having integrals 

with up to 8 extra powers on the propagators and up to 4 shifts of the dimension. Since 
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we are contemplating the calculation of hundreds of integrals, having the IN as another 

form of encapsulating information on extra powers and dimensions, is rather appealing 

[63, 65). 

Consider the following general structure of scalar two-loop integrals: 

where the Ai are massless scalar propagators that depend on the internal ki = k, I! and 

external PI, ... ,pn momenta of the system. We choose to describe it using the following 

three positive parameters 

r= .Lvi V 

s =- L:vi V 

lli ~ 1 

lli ::;: 0 

t 

dimension of denominator 

dimension of numerator 

number of propagators 

(4.37) 

(4.38) 

(4.39) 

The topology of the integral is uniquely determined by the way the propagators and 

the external legs are interconnected and this is specified by the t parameter representing 

the set {AI, ... , At} of different propagators in the graph. 

The specification of the integral is completed when we assign values to the positive and 

negative powers lli of the propagators, making them become part of the denominator and 

numerator, respectively. Therefore, integrals of a particular topology t with dimensions s 

of the numerator and r of the denominator, belong to a particular class of integrals Ir,s,t· 

Now, as noted before, any of these integrals will depend on the external momenta and 

on the loop momenta. At two loops we can combine the loop momenta k and I! and the 

three external momenta, to form 9 different scalar products involving k or £. Knowing 

that the propagators are linear combinations of scalar products, i.e. 

(4.40) 

only 9- t different scalar products in the numerator of an integral with t propagators can 

give rise to irreducible numerators. 

The number of different four-point integrals of a given topology t and a particular di­

mension of the numerator s and the denominator r, can be calculated with combinatorics. 

It is simple but is presented here for completion. 
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It is useful to recall from eq.( 4.37) the definition of the parameter r. This has been 

done considering all powers of propagators bigger than 0. If we want to compute all 

the possible denominators of the integrals we can come upon when calculating matrix 

elements, we also have to consider the appearance of master integrals (Vi = 1). In that 

case, the sum of the powers of propagators will be 

t 

L vi = r - t V Vi 2: 0 ( 4.41) 
i=l 

Now, consider the number of combinations of n different objects, taken k at a time 

with their subsequent replacement. This is the same as the number of sets that can be 

made up of k objects chosen from the given n objects, each being used as often as desired, 

n_(n+k-1) ck- . 
k 

( 4.42) 

Then the number of different Ir,s,t is 

combinations combinations 

N(Ir,s,t) of different X of different 

numerators denominators 

c9-t 
s X c;_t 

(S-:+•)x(:=:) (4.43) 

For a given topology, the number of integrals increases quickly as r and s become 

larger. We can see that for the case of the double box topology (t = 7), where we will 

have 

N(I ) = _1_ (1 + s)! (r- 1)! 
r,s,t 720 s! (r - 7)! ' (4.44) 

which, as can be seen in fig.(4.1) and table (4.1), reaches hundreds of integrals with only 

a few extra powers on propagators and irreducible numerators. 

This is not so good, but, as we saw in the previous chapter, they are related among 

themselves by IBP and LI identities. For each value of r and s we can get 10 IBP and 

3 LI identities. The identities applied to a seed integral Ir,s,t will contain integrals of the 

type shown in fig.( 4.2) 

The loop integrals that arise in the calculation of 2 --+ 2 parton scattering are integrals 

of different topologies (2 < t s; 7) that involve at the most 4 irreducible numerators (s = 4) 

and sometimes extra powers in the propagators ( r > t). 
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Figure 4.1: Growth of N(Ir,s,t) for t = 7 and with increasing r and s 

7 1 1+1 3 4 5 

8 1+6 14 21 28 35 

9 28 56 84 112 140 

10 84 168 252 336 420 

Table 4.1: Number of different Ir,s,t 

I Ir+l,s,t, Ir+l,s+l,t: same topology but more complicated I 

I Ir,s,t-1: simpler topology Ir,s,t: seed integralj 

I Ir-l,s,t, Ir-l,s-l,t: same topology but simpler J 

Figure 4.2: Integrals that result from the IBP and LI identities of a seed integral 

80 
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It is therefore desirable to have an algorithm that can be used to solve IBP and LI 

identities for integrals of any topology but with fixed powers of propagators and irreducible 

numerators. So the idea is to have a collection of identities with the description given 

above and use them to obtain an algorithm for the reduction of complex integrals (i.e. 

Ir+l,s+l,t) in terms of the seed integral and simpler integrals (i.e. pinchings and known 

integrals). 

In fig.(4.3) we have a schematic representation of the links between different integrals 

that belong to a system of identities generated by a particular seed. One of the seed 

integrals (labelled ( r, s, t)) will be able to generate identities involving five types of inte­

grals (shown in black dots). If we add to this group of identities, the system of identities 

generated by the next seed up (labelled (r, s + 1, t)), we will find more equations relating 

the same kinds of integrals (which are the dots in common between the two groups of 

seed links). 

(r+l,s+l,t) 

(r+l,s,t) 
s r---~~--~H+----~-----

(r-l,s-1, ) 

r 

Figure 4.3: Links between systems of identities generated by different seed integrals 

As a direct consequence of this, we can consider the set of all possible equations of a 

given topology t, generated by taking high enough values of rand s. We will have an over 

constrained system of equations that can be used for expressing the more complicated 

integrals, with greater values of r and s in terms of simpler ones. 

We can find the values rand s, for rand s, necessary to have a satisfactory reduction 

for our unknown integrals. Recall that the number of accumulated equations that will be 
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generated by using these values will be 

i' § i' 8 

(NiBP + NLr) X L L Nr,s,t = 13 L L Nr,s,t· (4.45) 
r=t s=O r=t s=O 

To check if the number of equations is enough for the actual number of unknowns, 

we can compare it with the number of accumulated unknown integrals that are involved 

in the over constrained system, but removing the master integrals of the topology, which 

effectively means 

N(Ir-:;_f+l, s:SB+l, t) - Ir=t,l,t - Ir=t,O,t· (4.46) 

To clarify, we take on the following example. In table (4.2) we show the number of 

equations and unknowns for a topology with 7 propagators (t = 7). The squares given by 

(r, s) = (7, 2), (8, 1) and (9, 0) are the minimal values that can be used for a satisfactory 

reduction of the system. 

13 39 78 130 
7 

22 45 76 115 

104 312 624 1040 
8 

106 213 354 535 

468 1404 2808 4680 
9 

358 717 1196 1795 

Table 4.2: Accumulated equations (upper number) exceeding the number of accumulated 

unknowns (lower number) as r and s increase. Reduction of the system is achieved by 

choosing at least one of the couples (f, s) = (7, 2), (8, 1) or (9, 0) 

The fact that the system is over constrained can be helpful in some topologies, be­

cause it may lead to a complete reduction of the integrals under consideration, in terms 

of pinched and/or known integrals. What usually happens in topologies with t > 4 is 

that the system provides a reduction towards a small number (typically one or two) of 

integrals of the topology under consideration and integrals of simpler topology (pinched 

and known). The left over integrals are the master integrals (MI) of the particular topol­

ogy and in principle we are free to choose them a priori, as long as they are independent 

from each other. 
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It is worth mentioning that the procedure described above is not the only way to 

attack the problem of reducing tensor integrals to doable scalar integrals. Nevertheless, 

by using a particular set of master integrals as a basis to generate all unknown integrals 

and combining with the automatic reduction, we were able to calculate all integrals needed 

for the parton processes we studied. This is no trivial task and in fact, we were able to 

customise our algorithm so as to have the possibility to calculate even higher numbers 

of irreducible numerators than the ones needed (the limitation always being computer 

power). 

In the next section we will specify the nature of the actual algorithm we use and the 

extra software used to generate the Feynman diagrams contributing to the QCD parton 

processes. But before that, we must discuss how are we going to choose the MI of our 

algorithm, paying special attention to the double boxes. 

4.2.1 A more natural set of master integrals 

A particular choice of master integrals for a topology can make a great deal of difference 

in terms of the amount of work that will be done in the reduction of a system. In fact, 

our decision to choose 

r = 7, s = 0, t = 7 

r = 7, s = 1, t = 7 

r = 7, s = 0, t = 7 

r = 7, s = 1, t = 7 

IIT 
:RI 
rr 
K (4.47) 

as master integrals for the double and crossed boxes topologies, arose from the idea of 

reducing integrals with high irreducible numerators in terms of a basis of integrals that 

contained irreducible numerators themselves. 

This proved to be crucial in our algorithm, since we could have an easier system 

reduction without damping it with a further reduction of very high powers of propagators 

and extra dimensions. 

The only problem is that the reduction for the double boxes (see section 4.1), leads to 

double boxes that have an extra power in one of the propagators, instead of an irreducible 
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lt - 71 -

s 
(7,1,7) (8,1,7) 

(7,0,7) X (8,0,7) 

r 

Figure 4.4: Links between the double box master integrals 

numerator. So we must find a way to relate these two pairs, i.e. 

=err=~ JII and K ~ IT· (4.48) 

We can do this with the reduction algorithm we just studied in the last section. This 

is schematically represented in fig. ( 4.4). We apply our system of IBP and 11 identities to 

two seed integrals (marked with EB) belonging to the topologies (r, s, t) = (7, 0, 7), (7, 1, 7), 

which are precisely the two master integrals we want to use, as described in eq.(4.47). 

The seed integral belonging to the (7, 0, 7) family will produce an integral of the same 

topology (t = 7), no numerator (s = 0) and an extra power in a propagator (r = 8) 

(shown in the figure with a *) which is the integral we have arising from our general 

reduction. 

Then, the links between the integrals of eq.( 4.48) exist through the family of unknown 

integrals belonging to (r, s, t) = (8, 1, 7) which are of no interest to us. Nevertheless, we 

can use this fact and eliminate these last uninteresting integrals, in favour of a relation 

(represented in the figure as'\) between the integral with irreducible numerator, the one 

with all unit powers and no irreducible numerator, and the one with an extra power in a 

propagator together with some pinched integrals. 

For the planar double boxes, we obtain the following relation 

-,;:;n- 1 (3D - 14)s JI[ 1 (D - 6)st JI[ 
1u_(s, t) = 2 D- 4 (s, t)- 2 (D- 4)(D- 5) (s, t) 
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_ 3 (
8 + t) [(7 D2 - 68D + 164)8 +(3D - 14)(3D- 16)tl JZ[ (8, t) 
82t (D - 5)(D - 6) 

(D- 3) (D- 3) 2 (2D- 9) 
+24 (D- 6)t I ( ) (8, t) - 4 (D- 4)2(D- 5)82 -CD- (8) 

+~ (D- 3)(3D- lO) [( -11D3 + 158D2 - 754D + 1196)t 
2 (D - 4)2 (D- 5)2(D- 6)82 t 

2 ] _m- (D- 3)(3D- 8)(3D- 10) 
+8(D- 4)(D- 5) 8 '-LL-(8) + 3 (D- 4)3(D- 5)2(D- 6)s3t 

x [(D- 5)(7D2 - 68D + 164)s + (23D3
- 337D2 + 1640D- 2652)t]-B- (s) 

3 (D- 3)(3D- B)(3D- 10) [(16D3 - 229D2 + 1088D- 1716) 
+ (D- 4)3(D- 5)2(D- 6)s2t2 

8 

+(D- 5)(3D- 14)(3D- 16)t]-e- (t), (4.49) 

whereas for the non-planar boxes we get 

K(s t) = _1_ {~(3D- 14)s + 2(2D- 9)t ]Y(s, t) 
' s + 2t 2 (2D - 9) 

1 8t(s + t)(D- 6) T\1" 1 s(D- 4) _____/'\! 
+2 (2D- 9)(D- 5) _I__LL(8

, t) + 2 (D- 5) ~ (s) 

3(D- 3)(3D - 14)(2(D - 5)s +(3D- 16)t] I () ( _ _ ) 
+ (8+t)(D-4)(D-5)(2D-9) - --

8
' 

8 
t 

3(D- 3)[( -D2 + 6D- 6)8 + (D2 - 14D + 44)t] I () 
+ t ( D - 4) ( D - 5) ( 2D - 9) - - - ( 8 ' t) 

+~ t(3D- 14)[2(D- 5)8 +(3D- 16)t] JZ[ (
8 

_
8 

_ t) 
2 8(8 + t)(D- 5)(2D- 9) ' 

-~ (8 + t)[( -D2 + 6D- 6)s + (D2 -14D + 44)t] JZ[ ( t) 
2 8t(D- 5)(2D- 9) 

8
' 

82(D -4)(3D- 14) 
- 3 (8 + t)t(D- 6)(2D- 9) JZ[ (t, -s- t) 

3 (D- 3)(3D- 8)(3D- 10) 
+2 st2(s + t)(D- 4)3(D - 5)2(D- 6)(2D - 9) 

x [( -16D4 + 291D3
- 1972D2 + 5898D- 6564)s2 

+( -9D4 + 154D3
- 962D2 + 2574D- 2444)st 

+(D- 5)(D- 6)(D2 - 14D + 44)t2]-e- (t) 

3 (D- 3)(3D- 8)(3D- 10) 
+2 s2t(s + t)(D- 4)3(D - 5)2(2D- 9) 
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x [ -(D- 5)(D2 - 6D + 6)82 + (5D3 - 82D2 + 444D- 794)8t 

+(9D3 -140D2 + 724D -1244)t2]-e- (8) 

3 (D- 3)(3D- 8)(3D- 10)(3D- 14) 
-2 8t(8 + t)2(D- 4)3(D- 5)2(D- 6)(2D- 9) 

x [ -2(D- 4)(D- 5)282 + (5D3 - 72D2 + 346D- 556)8t 

+(D- 5)(D- 6)(3D- 16)t2]-e-( -8- t) 

3 (D- 3)(3D - 10) [( 2 D ) 2 

+2 8t(8 + t)(D- 4)2(D- 5)(2D- 9) -D + 6 - 6 8 

+2(D- 5)(4D- 21)8t + 12(D- 5)2t2]--([I(8) 
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( 4.50) 

Equations (4.49) and (4.50) provide the "bridge" between the two types of choices of 

master integrals. If the irreducible numerators are going to be dismantled into tensors 

and translated to extra powers of propagators and dimensions, it is more adequate to 

use the integrals with extra powers, as MI. But if we want to manipulate the irreducible 

numerators keeping them as scalars and using them on the same footing as any other 

integral, the best choice is to have MI that have irreducible numerators. For the algorithm 

we use and described at the beginning of this section, this is best. 

4.2.1.1 The new choice of master integrals 

There is just one problem about this particular choice. Looking at eq.(4.49), we can see 

that the coefficients in front of the two planar boxes are of order 1/E. This is due to the 

fact that in the reduction of integrals with one IN it is necessary to reduce the dimension 

from at least D = 6- 2E, down to D = 4- 2E. All this conspires together to leave a factor 

of D - 4 in the denominator of the two MI. This implies that in order to calculate the 

new MI up to order E, one must know the expansions of the old MI (r.h.s. of eq.(4.49)) 

to one order higher in E than they are given in refs.[54, 53]. 

To solve this problem, we calculated the planar double box with an IN [55], using 

the MB method and checked our results in two different ways; we verified that the result 

satisfies a system of differential equations and then, we used these differential equations 

to obtain the old set of MI in D = 6 dimensions and compare with the numerical result. 

We use the reduction algorithm presented at the beginning of this section to obtain a 
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set of differential equations. As a result of doing 

f) 
atPBOX1(s, t) 

f) 
at PBOX2(s, t) 

0 
JI[(s, t), 

at 

~ ]IT(s,t), 
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we will effectively be producing integrals with extra powers on the propagators. To 

these integrals, we can apply our reduction algorithm to write them again as a linear 

combination of Ml. The result is the following, 

~t JI[(s, t) = [(D- 5)s- t] JI[(s, t) + (D- 4) X[(s, t) 
u (s+t)t (s+t)t 

(D - 4) JZ[ (D - 3) 
-6 st2 (s,t)+12(s+t)t2 I() (s,t) 

4 (D - 3)2 -(X)-
+ (D-4)s2t(s+t) (s) 

+
3 
(D- 3)(3D- 10)(2s + t) ---<I.[ 

(D- 4)s2t2(s + t) (s) 

+6 (D- 3)(3D- 8)(3D- 10)(s - t) -e- (s) 
(D- 4)2 s3 t2 (s + t) 

+6 (D- 3)(3D- 8)(3D- 10) -e- (t) 
(D- 4)2st3(s + t) ' (4-51) 

8 I,;JI 1 (D - 4)s I,;JI 1 (D - 4)s JI[ 
at _eu_(s, t) = -2 (s + t)t 1u.Js, t) + 2 (s + t) (s, t) 

-9 (D- 4) JZ[ (s, t) + 12 (D- 3) I ( ) (s, t) 
st (s + t)t -'--_,_"""--

2 (D- 3)2(s + 2t) -(X)-
+ (D-4)s2t(s+t) (s) 

+ 15 (D- 3)(3D- 10) ---<I.[ (s) 
2 (D- 4)st(s + t) 

+6 (D- 3)(3D- 8)(3D- 10) -e- (s) 
(D- 4)2s2t(s + t) 

9 
(D - 3)(3D - 8)(3D - 10) -e- ( ) 

+ (D- 4) 2st2 (s + t) t · 
(4.52) 

Expanding eqs.(4.51) and (4.52) in E and inserting the expressions for the pinched integrals 

and the double boxes JJI and JJI, we find that they are satisfied, when we used 

the result 
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+~ [~x3 + 14 
1r

2 X- 4(X2 + 1r
2)Y + 8Li3(-x)- 8XLi2( -x)- 16((3)] 

E 3 3 

- ~ x4 - 133 7r2 x2 + ( 1: x3 + 236 7r2 x) Y - 5 ( x2 + 7r2) y2 

+ ( 6X2 - 20XY- ~1r2) Li2( -x) + (8X + 20Y) Li3( -x) 

77r4} 2082,2(-x)- 20XS1,2(-x)- 28Li4(-x) + (28X- 20Y)((3)-
45 

(4.53) 

obtained by MB method integration directly in the region where s, t < 0 (see Appendix 

B) and where 

t 
X=-, 

8 
X= log(x), Y = log(1 + x). 

This calculation provides the last ingredient we need for our matrix element calcu­

lation. We have now all the master integrals required for the reduction of any generic 

integral arising from this calculation. In the next section we summarise the information 

we have for the master integrals themselves and discuss other work that has been done 

related to them. 

4.3 Master integrals 

Here we briefly summarise the master integrals we will need and provide the references 

where more information can be found about them. 

1. The MI for the one-loop topologies are provided in table (4.3) and their expansions 

are in Appendix B. Actually, the one loop box in six dimensions is related to the 

Name I Diagram I References 

BUB(s) -o- eq.(B.3) and ref.[1) 

Box6 (s, t) H eqs.(B.1),(B.2) and ref.[64, 63) 

Table 4.3: One-Loop Master Integrals 

box in four dimensions and the bubble as follows 

H (s, t) = 2(D- ;~(s + t) rr (s, t) 
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+ (D- ~(s + t) [ -Q- (s) + -Q- (t)] (4.54) 

2. The MI for the two-loop topologies are provided in table ( 4.4) and their expansions 

are also in Appendix B. 

Name I Diagram References 

SUNC(s) -e- eqs.(B.4), (B.4) and ref.[64, 63] 

TRI(s) -([I eqs.(B.5),(B.5) and ref.[64, 63] 

GLASS(s) -ro- eqs.(B.6),(B.6) and ref.[64, 63] 

XTRI(s) -<X eqs.(B.7),(B.7) and ref.[66, 10] 

CBOX(s, t) JZ[ eqs.(B.8),(B.8) and ref.[64] 

ABOX(s, t) I ~J eqs.(B.9),(B.9) and ref.[64] 

PBOXl(s, t) JI[ eqs.(B.lO),(B.lO) and ref.[54, 53] 

PBOX2(s, t) ]IT eqs.(B.ll),(B.ll) and ref.[55] 

XBOXl(s,t) IT eqs.(B.12),(B.l2) and ref.[lO] 

XBOX2(s, t) K eqs.(B.13) ,(B.13) 

Table 4.4: Two-Loop Master Integrals 

All these integrals have been calculated (in the references mentioned) by means of 

parametrisation and MB or NDIM methods. But they have also been calculated in other 

ways. Binoth and Heinrich [58], have found a way to strip the singularities off the integrals, 

and calculated the divergence-free integral numerically. 

Gehrmann and Remiddi [63, 67] derive differential equations in the internal propagator 

masses or in the external momenta for the master integrals and solve these for appropriate 

boundary conditions. This has turned out to be a good method and they have also 

managed to calculate the master integrals with one mass in one external leg (which are 

needed for i.e. 1* --+ qqg) [68, 69]. 

These methods provide alternative ways to the calculation of MI. But, even without 

them, we have calculated the missing links, compiled the necessary results and turned 

the problem we are interested in to a manageable task. Tables 4.3 and 4.4, comprise 
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the basis set of MI that are required for a NNLO matrix element calculation for 2 ---+ 2 

massless scattering and their analytic expansions in E has been calculated and presented 

in Appendix B. 

4.4 General algorithm for matrix element calculations 

Based on this new choice of master integrals we can undertake the calculation of the matrix 

elements themselves. We devise a mechanism to do it but it requires several parallel steps. 

In this section we give a brief account of this procedure and provide the most relevant 

practical issues that arose. After all, practical issues represent the challenging problems to 

overcome when faced with big calculations and their associated dilemmas of optimisation. 

To start, we use QGRAF [70] to produce the two-loop Feynman diagrams to construct 

the one- and two-loop amplitudes. We then project by tree-level or one-loop amplitudes 

and perform the summation over colours and spins. 

The trace over the Dirac matrices is carried out in D dimensions using conventional 

dimensional regularisation. It is then straightforward to identify the scalar and tensor 

integrals present in the calculation. We replace them with combinations of the basis set 

of master integrals using the symbolic reduction of two-loop integrals described in section 

4.2, based on IBP and LI identities. The final result is a combination of master integrals 

in D = 4- 2E for which the expansions around E = 0 are presented in Appendix B. 

Let us now draw on a few details and give the complete picture of the algorithm in a 

clearer way, with the aid of fig.(4.5). 

4.4.1 Generation of Feynman diagrams with QGRAF 

QGRAF is a computer program that generates symbolic descriptions of Feynman di­

agrams in quantum field theories. The generated output is a list of diagrams whose 

description depends on the style file that accompanies the compilation but it is based in 

the combinatorial design of the program (STEP 1 on fig.(4.5)). This means that together 

with the description of the topology, it assigns a symmetry factor and the sign that follows 

from anti-commutation rules. 

The description of the field theory model is done by specifying the propagators and 

the interaction vertices in an input file. Similarly, there is another input file where one 

describes the style with which the output will be made. 

Due to the fact that QGRAF starts distributing momenta in a non-fixed manner 
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~ 

~ 

~ 

---------, 
IBP /LI identities 1 I 

QGRAF QCD model I MAPL Solve system 
I 

• I I 

~n{ ~':t _ s:~t~s- : I 
of equations I 

---------, 

-r-------- J 

I 

a------ --- : 
FORM Feynman rules: 

List of all integrals 
I 

---------· in terms of MI : 

int(1,2,l,O,l,O,l,l,l,s,t) = 
a III +b -e-
c IIT +d -<rr + ... 

Sum of all tree x loop diagrams 

in terms of integrals : 
(M(o)IM(2J) = 

a int(1,2,1,0,1,0,1,1,1,s,t) 

+ b int(l,O,l,O,l,-l,l,l,l,t,u) 
+ ... 

Sum of all tree x loop diagrams 

in terms of MI : 
(M(o)IM(2)) = 
a III +b -e-

[ f expansiont 
c IIT +d -<rr + ... 

'----+ 
(M<0 liM(2l) = !4/£4 + h/£3 + h/£2 + h/£ + fo 

J; = f;(ln, Li2, Li3, Li4) 

Figure 4.5: General algorithm to calculate matrix elements 
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(the s,t and u-channel version of the same graph, have different output descriptions), we 

needed to map all the information we have to a minimal set of topologies and carry any 

extra information as parameters of a minimal description. We designed a style for the 

description of the graphs that generated output we could use as input for MAPLE (STEP 

2 on fig.(4.5)), where the mapping of the topologies was carried out. 

Finally the specification for a particular process is done on yet another input file. 

Here one specifies the incoming and outgoing states of the process, the number of loops 

to be considered and extra options on the conditions of the external legs and tadpoles. 

Table 4.5 shows the number of Feynman diagrams that are generated by QGRAF in the 

processes that are of interest to us. Throughout, we have set the external legs to be free 

of self energy insertions and the graphs free of tadpoles. 

QGRAF output Actual Calculation 

Process Tree 1-Loop 2-Loops 1-Loop x 1-Loop 2-Loops x Tree 

gg---+ gg 4 81 1771 6561 7084 

qij ---+ gg 3 30 595 900 1785 

qij ---+ qij 2 18 316 324 632 

Ql i'J1 ---+ Q2i'J2 1 10 189 100 189 

Table 4.5: Number of Feynman diagrams generated by QGRAF. Also, number of terms 

involved in an the actual matrix element calculation 

4.4.2 Performing the matrix element calculation with FORM 

Once we have the set of diagrams for a particular process with a proper identification of 

the two-loop integral topology for each of them, we assemble the matrix element. This is 

done with a specifically designed FORM program (STEP 3 on fig.(4.5)). 

In this program, each of the terms representing propagators and interaction vertices 

are assigned to their specific values, according to the Feynman rules. After performing 

the sums over colour and spin, we incorporate the information of extra (or less) powers 

of propagators into the basic integral and keep track of the additional information that 

may be generated after doing the trace over the Dirac matrices. 

It should be noted that when summing over the gluon polarisations, we ensure that 
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the polarisations states are transversal (i.e. physical) by using an axial gauge 

(4.55) 

where Pi is the momentum of gluon i and ni is an arbitrary light-like 4-vector. For 

simplicity, we choose 

nt = p~, 

n~ = p~, 

n jl. -pjl. 
2 - 1 

n jl. -pjl. 
4 - 3• 

At the end of this stage we have written the matrix elements in terms of hundreds of 

integrals of different topologies and with different amounts of powers in the propagators 

(STEP 4 on fig.(4.5)). 

From the IBP reduction program that was described in section 4.1, we generated 

files for each topology, containing the expressions for all the integrals (within a range 

of powers of propagators and irreducible numerators) in terms of master integrals and 

simpler integrals (STEP 5 on fig.(4.5)). We feed this information to the result we have 

from FORM so far, and now we can express the matrix elements in terms of a linear 

combination of only a handful of master integrals (STEP 6 on fig.(4.5)). 

The final input are the E expansions for these master integrals. We finish the calcu­

lation with a result for the matrix elements that consists of a series in the parameter E 

(STEP 7 on fig. ( 4.5)). The coefficients of this series are functions of the scales of the 

system and of the number of colours (for gluons) and flavours (for quarks). More pre­

cisely, they are sums of logarithms, polylogarithms and characteristic constants such as 

Riemann (function. 



Chapter 5 
Loop Amplitudes 

In the last two chapters we have described how we constructed an algorithm that 

allows us to do a matrix element calculation for the virtual corrections to any 2 ---+ 2 

scattering of massless particles. The result of applying this algorithm to four partonic 

processes (and their crossed and time-reversed versions) shall be presented on Chapter 6. 

This in itself is a tremendous amount of work and involves many different stages that 

can be checked within the calculation. Therefore it is desirable to have an independent 

way of verifying our results. 

We will see that this is achieved at two levels. First, we can compare a subset of our 

results with the work presented by Bern, Dixon and Ghinculov in ref.(71]. Second, we 

can use the Catani formalism (72, 73] as a more general independent way of checking the 

singularity structure of our results. 

In this Chapter we resume the discussion we had in Chapter 2 about the divergent 

behaviour of the matrix elements in a physical observable calculation. This time we want 

to touch upon these issues in a more general manner. 

We want to discuss the possibility of isolating the divergent behaviour at the level 

of the loop amplitudes. We will briefly discuss the factorisation of collinear and soft 

singularities of an amplitude and how this allows their cancellation. 

Then we will describe the Catani formalism and show how it can help us extract these 

singularities using (implicitly) the factorisation properties we just described. We finish 

by providing a concrete example to give an idea on how the last chapter will be presented 

and to illustrate the importance and limitations of this formalism. 

5.1 Colour structure of QCD amplitudes 

In previous chapters we have seen how we can expose and cancel the divergent behaviour 

in the calculation of infrared safe quantities. Now, we will discuss a procedure that makes 

the singularities easier to isolate, the decomposition of the matrix elements in terms of 

its colour factors. 

In order to accomplish this, we need to separate each diagram involved in a QCD 

94 
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amplitude into a term that contains the colour structure and another that is colour-less 

and contains all the kinematics. This allows us to regroup all the diagrams that contain 

the same colour structure into colour-less structures which we call subamplitudes. Each of 

these subamplitudes are gauge invariant and have important factorisation properties in 

the collinear and soft limits that can help us isolate the divergent behaviour of a Feynman 

amplitude. 

Let us take an example to further what we mean. Consider the matrix-element for 

the tree level process qij--+ 99· The diagrams and their amplitudes, involved at this level 

of the calculation, are the ones shown in fig.(5.1). Each amplitude has been written in 

a 

b 

Figure 5.1: Thee-level diagrams for qij--+ 99 

terms of a colour factor and a kinematical piece Ai, i = 1, 2, 3. 

Using eq.(1.4), the amplitude of the third diagram can also be written as a combination 

of terms, each term contributing to the first two. Then the total tree-level amplitude is 

(5.1) 

which is the colour structure for any process where these are the only coloured particles. 

Now that we have decomposed the amplitude, we want to construct the squared matrix 

elements. To do this, we need a set of rules for the evaluation of colour factor products. 

More precisely, we need to know the Casimir colour charges of our theory and the Fierz 

identity which can reduce the amount of colour algebra. 

5.1.1 Casimir colour charges 

The diagrammatic representation of the three quadratic Casimir colour charges of SU(N) 

is given as follows 

(5.2) 
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(5.3) 

(5.4) 

In analogy with the electric charge, these diagrams are used to interpret the Casimir 

factors as colour charges. 

For this gauge group we find the following 

Cp 
N 2 -1 

(5.5) 2N ' 
CA N, (5.6) 

Tn 
1 

(5.7) 2' 

the last one being a normalisation factor (a matter of choice). 

5.1.2 The Fierz identity 

Consider an arbitrary element of SU(N) in the adjoint representation, we can write it as 

a linear combination of delta functions for a fermionic line and open T matrices for the 

emission of gluons, i.e. 

(5.8) 
a 

where a runs over the N 2 
- 1 generators of this gauge group. Since the generators are 

traceless, we can determine Y by taking the trace of this equation, so that 

Y = trX 
N. (5.9) 

On the other hand, we can determine za if we multiply by Tb and then take the trace 

on eq.(5.8)*, as 

a 

a 

(5.10) 

*Recall tr(Ta) = T;"; = 0. 
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where we have used the definitions presented in eqs.(5.2) to (5.4). 

The decomposition presented in eq.(5.8) can be rewritten using eqs.(5.9) and (5.10) 

as 

X .· = _!_ (trX) 8· · + _.!.._ "tr (XTa) T~-
tJ N tJ T ~ tJ' 

R a 

or 

Xij = _!_Xkk Oij +; L XtkTf:z T[j. 
N R a 

Since this identity is valid for an arbitrary Xij, we can write it as 

to have the following result 

(5.11) 

which is known as the Fierz identity. Figure (5.2) shows how this identity represents the 

colour flow between two quark lines and along a gluon T[jTJ:1, as simpler quark colour 

flows Oij, Okz, ... 

J k 

( 

i 

J,-. ----k 

1 
N 

J 
I) 

Figure 5.2: Diagrammatic representation for the Fierz identity 

5.2 Factorisation of matrix elements in the singular limit 

Let us extend the example of qij --+ gg and use it to illustrate how the matrix elements 

factorise when we study their divergent behaviour. We can easily calculate (AtA)tot using 

eq.(5.1) and the Fierz identity, as 

(5.12) 

The first two terms on the r.h.s. of this equation are colour-less subamplitudes that 

represent an ordered way of emitting gluons a and b from a quark-antiquark line. There-
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fore it is convenient (and commonly used) to write them as ordered subamplitudes, 

IAI +A31 2 

IA2- A312 

IS(q; a, b, qw' 
IS(q; b, a, qw. 

(5.13) 

(5.14) 

This analysis can be easily extended to the case where we have multiple gluon emission, 

where the ordered subamplitudes have a special factorisation when we look into their 

singular limits. This is due to the fact that the emission of the partons is well ordered 

and forms well defined colour flows to which the soft/collinear parton can couple. 

For example, in the limit where gluon b is soft [74, 75, 36] we have the QED-like 

factorisation into an eikonal-type singular factor and a colour ordered tree-level squared 

amplitude where gluon b has been removed. The amplitude for the emission of n gluons 

in the limit where gluon b is soft, 

IS(q; 1, ... , a, b, c, ... , n; q)l 2 ~~ 2 
--=---+ £(sac, Sab, Sbc) IS(q; 1, ... , a, c, ... , n; q)l 

a 

where the eikonal factor is given by, 

c>-
a 

"--....--' 
Eikonal factor 

a 

and the diagrams represent the colour ordered subamplitudes. 

(5.15) 

(5.16) 

Similarly, in the limit where partons a and b become collinear and cluster to form 

a new parton c, such that Pa + Pb = Pc, there is a factorisation of the matrix elements 

[7 4, 75]. The factorisation is in terms of a function that is directly related to the Altarelli­

Parisi splitting function and a tree-level squared-amplitude, where the partons a and b 

are replaced by the cluster parton c, i.e. 

IS(q; 1, ... , a, b, ... , n; q)l2 

a 

a!lb 2 
---'-'-+ Pab---tc(z, Sab) IS(q; 1, ... , c, ... , n; q)l 

b 

~ a 

ex: Altarelli-Parisi 

splitting function 

(5.17) 
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where Pa = ZPc and Pb = (1 - z)pc and after integrating over the azimuthal angle of the 

plane containing the collinear particles with respect to the rest of the hard processes, the 

collinear splitting function Pab-+c is given by 

2 
Pab-+c(z, Sab) = -Pab-+c(z). 

Sab 
(5.18) 

The function Pab-+c(z) is the Altarelli-Parisi [76, 77, 78] splitting kernel for partons a and 

b with momentum fraction z, clustering to form parton c (with colour factors removed 

and in D = 4 - 2E dimensions). These are given by 

satisfying, 

Pqq-+g(z) 

P99-+9 (z) 

Pab-+c(z) 

Pab-+c(z) 

1 + z2 - E(1 - z)2 

1-z 
z2 + (1- z) 2

- E 

1-E 
1 + z4 + (1 - z )4 

z(1- z) 

Pba-+c(1- z) 

Pab-+c(z). 

(5.19) 

Unfortunately, the squared subamplitudes corresponding to the 0( ~)terms of eq. (5.12), 

do not have such a straightforward singular factorisation. Nevertheless, this example is 

enough to demonstrate that there is an underlying issue of utmost importance in this 

section. The factorisation of the matrix element 

1. is universal, in the sense that we need only to specify the type of singular limit 

and the singular behaviour (at leading order in colour) will have a characteristic 

structure, 

2. is process independent, 

3. occurs when any parton is unresolved, 

4. is always in the form of singular term x finite subamplitude squared 

5.2.1 IR cancellations 

In section 2.1.4 we saw how the NLO cross section for e+e- -r qij is finite when we sum 

all possible real and virtual emissions despite their individual singular behaviour. The 

same analysis can be performed for the NNLO calculation, only this time we will have to 

consider more contributions over which the cancellation of singularities has to be done. 
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The study of soft and collinear divergences allows for an easier analysis of the cancella­

tion between divergent pieces at different levels in the calculation of a cross section. A lot 

of work has been done related to the factorisation of NLO and NNLO virtual and real emis­

sion partonic matrix elements and of the phase space integration [29, 79, 80, 81, 82, 83, 84]. 

Recall the general structure for the NNLO cross section for 2 ---+ 2 partonic scattering 

provided in eq. (2.33). We can see that we will have several levels of cancellation of 

singularities and they have all been thoroughly studied by different people and with 

different approaches. It is important to have a general picture of these analyses and what 

they involve, since it will naturally lead to Catani's formalism, which is the one we use 

to verify our results. 

For completeness we present some of the main results with schematic diagrams, similar 

to those used in the previous section, and provide some references where the details can 

be looked up. 

Consider the partonic cross section for n-particle production at NNLO 

Crn jet "' I [1 (M(O) IM(O)) 12] d<Pn+2 
n+2 

+I [(M(O) IM(l)) + (M(l) IM(O))l d<Pn+l 
n+l 

+ /[(M('liM('l) + (M<0>/M(2l) + (M<2l/M(o)l, d<l>" (5.20) 

where [ ]i indicates the number of particles in the final state with d<Pi the corresponding 

phase space and M(i) is the i-th order scattering amplitude. 

To have an idea of the different layers of cancellations between divergences, we sum­

marise them as follows 

• the cancellation between the (n + 2) and (n)-levels (first row in eq.(5.20), contribut­

ing to last row), when two particles are unresolved requires to take into account the 

cases [29, 85, 86, 87, 88] when, e.g. for isolated emissions 

- three partons are simultaneously collinear 

where Pa = WPa+b+c, Pb = XPa+b+c and Pc= YPa+b+c, with w +X+ y = 1, 
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two gluons are soft 

de~! . 
0 0 

c 0 0 

0 

b 

c>-x '>-x 
a d 

/~ . . 
c 0 0 

0 

a 
a 

two partons are collinear and one gluon is soft 

de* 0 0 

c 0 0 

0 

b 

c e 

'r-x 'rx 
a d 

d+e /o 0* c 0 0 . 
a 

a 

e the cancellation between the (n +I) and (n)-levels (second row in eq.(5.20), con­

tributing to last row), when one particle is unresolved requires to take into account 

the cases [89, 30, 31, 82, 32, 90, 83] when, e.g. for isolated emissions 

two partons are collinear 

- a gluon is soft 

a 

aiib 
----'-'-+ 

br ~b 0. + X • . 
a 

:)(.··. cv·o E'1° :>-X ~ 
a a 

c~ ex·· + X • . 
a a 

which are only examples of isolated emissions t. 

This work has provided the platform for the development of more general approaches 

in the prediction of the divergent behaviour of scattering amplitudes. In particular, the 

general (process-independent) algorithm to obtain the singular behaviour of QCD ampli­

tudes at one- and two-loop order devised by Catani and Seymour [73, 72] provides an 

excellent testing ground for the divergences of our explicit two-loop calculations. More­

over, this formalism does not require the decomposition of the matrix elements into colour 

subamplitudes. In Chapter 6 we apply such a formalism to various partonic processes. 

tThere are also contributions from singular behaviour of partons belonging to the same colour current 

(colour connected singularities). See reference [29] and references therein. 
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The fact that we agree with the predictions stemming from Catani's formalism, is a 

very strong check for the divergent structure of our explicit calculation. It represents a 

thorough verification because typically all Feynman diagrams of the massless QCD ampli­

tudes are infrared divergent (therefore all contribute to the structure of the singularities). 

In the next sections we explore the basic results in Catani's formalism and the neces­

sary tools required to construct the divergent structure prediction. 

5.3 Colour space 

Based on the fact that the singular structure of the sum of all possible real and virtual 

emissions cancels order by order in perturbation theory and that this structure follows a 

factorisation pattern that has been well studied, we can predict the infrared singularities 

of one- and two-loop QCD amplitudes with light-quark flavours. 

By construction, we have an algorithm that allows for the amplitudes to be computed 

within CDR and all UV singularities removed within the MS renormalisation scheme. 

Together with this, the amplitudes are represented as vectors in a colour space. All this 

provides a natural environment in which the real and virtual emissions can be thought 

of as insertions of colour interactions between all the partons in a particular colour state 

amplitude. In this section we discuss this colour space and how these colour operations 

are defined. 

Consider a general QCD amplitude with m external legs Mm, 

M = MCJ, ... ,cm;Bl,···•Sm(p p ) m m 1, ... , m, (5.21) 

that depends on the colours Ci, helicities Si and moment a Pi carried by the external 

particles. As we have mentioned before, if the particle i is a quark (gluon), the colour 

indices will be Ci = 1, ... , N (Ci = 1, ... , N 2 - 1) and the helicities will be si = 1, 2 

(si = 1, ... , D- 2). 

In the colour+ helicity-space we introduce a basis {lc1, ... , Cm) ®ls1, ... , sm) }, such 

that our amplitude can be written as 

M q, ... ,c ... ;sl,···•Sm( ) - (( 1 .o-. ( 1) 11 ) m Pl, ···,pm - ct, ···,Cm '61 s1, · · ·, Sm , ···,m m, (5.22) 

so we can define the matrix element squared, summed over colours and spins, to be 

1Mml2 = (1, ... , ml1, ... , m). (5.23) 
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To study the colour structure of the amplitude within this framework (to obtain its 

singular behaviour), we do not need to consider the decomposition of the matrix elements 

into colour subamplitudes as we did before, instead we introduce the concept of colour 

charges Ti. 

We are now interested in the general case where any external parton of the amplitude 

radiates a gluon with colour, say, c9 . When this happens, the parton colour space increases 

by one parton to be able to accommodate the emitted gluon in an arbitrary emission 

state. This also has repercussions on the colour index of the emitter, which has to change 

according to the SU(N) colour algebra. 

Given that the emitted gluon has colour charge c9 , we define a colour charge operator 

(5.24) 

which represents the emission of such gluon from the i-th parton, acting on the colour 

space as 

(5.25) 

The specific value for the Tcb matrix, is 

if the emitter is a final- state quark or inital- state anti - quark, 

if the emitter is a final - state anti - quark or inital - state quark, 

if the emitter is a gluon 

and the colour charge algebra is simply, 

Ti · Tj = 
{ 

T··T· J ~ 

T 2 -C· i - ~ 

if i f= j' 
(5.26) 

otherwise. 

The Casimir operator Ci will be Ci = Cp (Ci = CA) if parton i is a quark (gluon), as 

given in section 5.1.1 and from colour conservation we have 

m 

LTil1, ... ,m)= 0. (5.27) 
i=1 

Using this notation, it is useful to have in mind the square of the colour-correlated 

amplitudes, 

(1, ... , miTi · Tkl1, ... , m) 

[
Mal, ... ,b;, ... ,bk, ... am (p p )] t r,c r,c Mal, ... ,a;, ... ,ak, ... am (p p ) 

m 1, ... , m b;a; bkak m 1, ... , m· 

(5.28) 
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i.e. the square of an amplitude with m external legs arising from the square of another 

amplitude with m partons linked with its complex-conjugated by the insertion of a gluon 

emission. 

5.4 Singular behaviour of one-loop amplitudes 

Consider the QCD amplitude IM) in colour space with m external legs. We can perform 

a perturbative expansion of it as follows 

(5.29) 

where as before we work in the MS scheme, use CDR (D = 4- 2E) and IM(i)) is the 

i-loop amplitude in colour space+. 

The singularities for the one-loop amplitudes can be isolated as follows 

(5.30) 

l)(J 
2 3 

lx~ lx:n 
/(1} X • + F • -.....,._... . . 

singular factor 2 3 2 3 

where IM1•fin) is finite when we take the E-+ 0 limit. Note how all infrared divergences 

are factorised with respect to the tree-level amplitude, in agreement with our discussion 

of section 5.2. 

The insertion operator J(l) acts on the colour vector IM(i)) and contains all the 

singular behaviour of the loop amplitude. Its structure is given in general as 

L vrng(E) 
i ...____,....... 

sojtjcollinear 
singularities 

gluon radiation 
between two partons 

where i, j = 1, ... , m and Pi is the momenta for the ith external particle. Also 

{ 

1 if both particles are incoming or outgoing, 
Aij = 

0 otherwise. 

(5.31) 

The singularities are embedded in the vsing function as poles in the dimension param-

eter E, 

sing( ) _ 1 1 
vi E - 2 + li-' 

---------------------------- E E 

(5.32) 

~n depends on the particular process we choose to study. 
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with 

and f3o given in eq. (1.42). 

3 rq = rq = 2, 

5.5 An example: 'Y* ---7 qij one-loop singularities 
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(5.33) 

We apply the Catani formalism to the example of the virtual corrections for 1* --+ qij at 

NLO we looked into in 2.1.3 and compare with our previous result. 

We have from colour conservation 

(5.34) 

so 

Tq · Tq = -T~ = -Cpl (5.35) 

and the colour charge operator is then 

(5.36) 

The singular part of the one-loop amplitude is then 

Ml,sing =as I(l)(E)jM(o)) = -Cp as ef"f [!._ + 2_] (-/-L2)€ M(o) 
27!" 27r r(l -E) E2 2E S 

(5.37) 

or, contracted with the tree-level amplitude, we would simply have 

(5.38) 

On the other hand, rearranging eqs. (2.3) and (2.26) and renormalising in the MS scheme 

(see eq.(1.40)), we can write the averaged matrix element squared for the one-loop virtual 

corrections as 

(5.39) 

where 

L 1Mil2
, 

spin,col. 

L IMol 2
• 

spin,col. 

It is evident from eqs. (5.38) and (5.39), that we predict the complete singular be­

haviour for the one-loop matrix element, since their difference is indeed finite. 
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5o6 Singular behaviour of two~loop amplitudes 

The divergent structure of two-loop amplitudes is given by a more complex equation, 

where we even have a new insertion operator and the one-loop amplitude interacts with 

the previous operator, i.e. 

l)x(~ 
2 3 

J(l) X 
............... 

singular factor 

1 m 1 /m 
V 0

o + /(2) X )( 
0

o + ~0 ............... 0 

2 3 singular factor 2 3 

(5.40) 

1)r(~ 
F F • 

0 

2 3 

Here, again we have IM2,Jin) which is finite in the limit E ---+ 0. Now, the singularities 

are embedded in two terms. First, the double and single poles of J(1)(E) are multiplying 

those in the one-loop amplitude IM(1)), providing poles of up to 1/E4 . Then, the new 

operator J(2)(E) multiplying the finite tree amplitude IM(0)), is also carrying up to 1/E4 

poles, as can be seen in its expression 

(5.41) 

with 

(5.42) 

Here, the function H(2) contains poles of 0( c 1) and it is not universal. It depends on 

both the process we analyse and the renormalisation scheme we use. Usually, it contains 

characteristic constants such as CA, C F, 1r, f3o, f3l and the Riemann zeta function evaluated 

at different points ((2, (3). 

If we gather the results presented in eqs. (5.40) and (5.41), we can specify all the 

singularities of the two-loop amplitudes up to and including O(c2 ). Furthermore, we can 

largely predict the 1/ E poles that depend on generalised poly logarithms. The remaining 

parts, namely H(2) and IM2,Jin), can only be obtained by the explicit calculation of the 

Feynman diagrams conributing to the two-loop amplitude. 
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5. 7 An example: unlike quark-quark scattering 

Consider the scattering of unlike quarks as 

(5.43) 

where the partons are all incoming with conserved light-like momenta, 

PI= 0. 

And we use the associated Mandelstam variables given by 

(5.44) 

Now, to be able to isolate the singular parts of the renormalised one and two-loop 

amplitudes for this process, we need to construct the operator J(l) of eq. (5.31) in colour 

space. For this, we need the amplitude at tree-level associated with this process 
i l 

~ = TI'jTkl = ~ ( 6il6jk - Jvr6ij6kl) j /vvvvvvvvv~ k 

where we have used eq. (5.11) for the Fierz identity. 

The tree-level amplitude for this diagram is then 

M(O) ....__... 
kinematics 

colour space 

where we have defined the colour vectors 

I 11) 

(5.45) 

(5.46) 

to represent each of the colour currents as shown in fig. (5.2) and to act as a colour basis 

over which the insertion operator J(l) acts. 

We can see both pictorially and using eqs. (5.31), (5.11) and eqs.(5.2)-(5.4), that the 

operator J(l) acts on each colour state as 

s - channel : fii 

t - channel : <c;,<lull6 

u - channel : fii 

~ (111)- ~I=)) s 

( N~; 11=)) T 
~(Ill)- ~I=)) u 

(5.47) 

(5.48) 

(5.49) 
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s- channel:~ 

t- channel: ruuuuu~ 

u - channel : ruuuuu~ 

( N:; 11=)) S 
~ (1=)- ~Ill)) T 

~ (1=)- ~Ill)) u 
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(5.50) 

(5.51) 

(5.52) 

which is a pictorial interpretation of the calculation of the operands Ti · Tjl=) and Ti · 

T j I 11), together with the fact that each operand has an associated scale ratio, 

(5.53) 

It is worth noting in these equations that the natural structure of the amplitudes and 

the insertion operand within colour states, allows these results to be presented also using 

matrices in the same space, so that schematically we can have the following mapping 

where M=, M11 are the components of the colour vector for the tree-level matrix element 

given in eq. (5.45). 

So we can now calculate the action of this operator onto the tree-level amplitude, 

using eqs. (5.47) to (5.52), as 

which can be rewritten to be 

(5.54) 

We saw in eq. (5.30) of previous sections how the singularities of, say the one-loop 

amplitude, looks like 
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so, if we want to calculate the singularities for the one-loop amplitude (or even the two­

loop amplitude) contracted with the tree-level amplitude, we will need to calculate terms 

like (M(0)1J(1)1M(0)) or (M(0)1J(2)1M(0)). The need for the calculation of such terms 

will become clear in the next Chapter. Let us assume that indeed we need these terms, 

then we proceed with our example and we can now calculate 

(5.55) 

which is a result of using simply eqs. (5.45) and (5.54). 

Now, using eq. (5.46), the action of these colour states among themselves, can easily 

be verified as 

so that we can calculate 

(11 I=) = (= Ill) 

(11 I 11) = (= I =) 

((=1- ~(11 1) I 11) 

((=1- ~(11 1) I=) 

N, 

(5.56) 

0, 

(5.57) 

Then using eq. (5.57), we can see that the first term on the r.h.s. of eq. (5.55) does 

not contribute and we are left with 

(5.58) 

where we identify the Born level matrix element 

(5.59) 

Applying the same colour algebra and following the same procedure, we can obtain 

other terms that make up the ingredients for the two-loop matrix element singularities, 
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such as 

(5.60) 

which arises from the first term on the r.h.s. of eq. (5.41) acting between the tree-level 

amplitude and its complex conjugated. 

This example shows how we calculate these terms individually and how the insertion 

operator is working at the level of the colour states. In the next Chapter we present our 

results using the notation we have just introduced and, as was mentioned before, using 

matrices in colour space. 



Chapter 6 
Results 

In Chapters 2 and 5 we looked at the structure of the infrared divergences of the loop 

amplitudes associated with the divergent loop-momenta integration. We saw how we can 

isolate the divergent behaviour so that we can have an explicit cancellation of the singu­

larities when combining virtual and real emissions. All this can be done systematically 

using the Catani formalism. 

In this Chapter we apply this knowledge to the calculation matrix elements for 2 ---+ 2 

scattering of massless partons at next-to-next-to-leading order. First, we present the 

general structure of the IR divergences for any of the matrix elements and in terms of 

general operators. We also provide the general structure for the finite pieces and introduce 

our notation. 

Sections 6.2 through to 6.5 are dedicated to each of the partonic processes and provide 

the process-dependent definitions of the operators involved in the IR structure, We finish 

each section by providing the processes' structure of the finite piece and refer the reader 

to Apendix C for its expansion. 

6.1 General structure of IR divergences 

In this section we provide the general structure of the IR singularities [72, 73], associated 

to the one and two-loop matrix element for a generic 2 ---+ 2 partonic scattering process. 

The description presented in this section is valid for all the processes and the fact that 

we can present it in this way provides a very powerful check on our highly non trivial 

calculation. 

Before the general expressions, we start with some general notation. 

6.1.1 Notation 

We work in conventional dimensional regularisation treating all external states in D di­

mensions. We renormalise in the MS scheme where the bare coupling a 0 is related to the 

111 
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running coupling a 8 = a 8 (f.-l2 ) at renormalisation scale f-l via 

In this expression 

1 = 0.5772 ... = Euler constant (6.2) 

is the typical phase-space volume factor in D = 4 - 2t: dimensions, and /3o, /31 are the 

first two coefficients of the QCD beta function for Np (massless) quark flavours 

(6.3) 

For an SU(N) gauge theory (N is the number of colours) 

(6.4) 

6.1.2 Two-loop contribution 

We can write the infrared pole structure of the two loop contributions renormalised in 

the MS scheme in terms of the tree and unrenormalised one-loop amplitudes, /M(0
)) and 

/M(l,un)) respectively, as 

Poles= 2Re[ -~(M(o)/J{l)(t:)J{l)(t:)/M(O)) _ 2/3o (M(o)/J{l)(t:)/M(o)) 
2 E 

+ (M(o)/J{l)(t:)/M{l,un)) 

+e-qT(l- 2t:) (/3o + K) (M(o)/J{1)(2t:)/M(o)) 
r(I-t:) E 

+ (M(o)/H{2)(t:)/M(o))l (6.5) 

This expression is valid for all the processes to be considered, except for the scattering 

of like quarks. In this case, it will become clear that we need to analyse only the inter­

ference of the s-channel graphs with the t-channel graphs. For this specific function we 

have the following expression for the infrared pole structure 

Poles= 2Re[ - ~(M(o) /I{l) ( t:)I{l) ( t:)/M(o)) - 2/3o (M(o) /I{l) ( t:) /M(o)) 
2 E 

+ (M{o)/I{l)(t:)/M(l,un)) 

+e-qT(l- 2t:) (/3o + K) (M(o)/I{1)(2t:)/M(O)) 
f(l-t:) E 

+ (M{o)/H(2)(t:)/M(o)) + (s +-+ t)], (6.6) 
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The unrenormalised one-loop amplitude IM(l,un)) is what is obtained by direct Feyn­

man diagram evaluation of the one-loop graphs. As discussed before, the matrix J(l)(E) 

acts directly as a rotation matrix on IM(0)) and IM(l,un)) in colour space. 

6.1.3 One-loop self-interference contribution 

In the same spirit, we can write the infrared pole structure of the one-loop contributions 

renormalised in the MS scheme as 

Poles = 2Re[-~(M(o)IJ(1 )t(<:)I( 1)(<:)1M( 0)) 

_f3o (M(o)IJ(l)(<:)IM(o)) 
f 

+ (M(l,un)IJ(ll(<:)IM(o))l (6.7) 

which is valid for all processes except for like quark scattering. In this case, again we only 

need to look at the interference of the s-channel graphs with the t-channel graphs. For 

this specific function we have the following expression 

Poles = 2Re[-~(M(o)II(1)t(<:)J( 1 )(<:)1M(0)) 

_f3o (M(o)II(l)(<:)IM(o)) 
f 

+ (M(l,un) II(l)(E)IM{O)) + (s ++ t) ]· (6.8) 

Again, IM(l,un)) is the unrenormalised one-loop amplitude, obtained by direct Feyn­

man diagram evaluation and the matrix 1(1)(<:) acts directly as a rotation matrix on 

IM(0)) and IM(l,un)) in colour space. 

In this case, since we calculate the one-loop self-interference divergent piece, we have 

to be careful in the expansion, since the operator J(l) (E) also depends on the scales of the 

process s, t and u. On expanding this operator imaginary parts are generated, the sign 

of which is fixed by the small imaginary part +iO assigned to each Mandelstam variable. 

Combinations such as (M(0)1J(llt(E) are obtained using the hermitian conjugate operator 

I{l)t(E) where the only practical change is that the sign of the imaginary part of s, t and 

u are reversed. 
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6.1.4 Finite piece 

In general the expansions of the two-loop master integrals [54, 91, 53, 10, 64, 67, 55] 

contain the generalised polylogarithms of Nielsen 

_ ( -l)n+p-l 1nl logn-l(t) logP(I - xt) 
Sn,p(x) - ( _ I)l 1 dt , n .p. o t 

n,p;::: 1, x ~ 1 (6.9) 

where the level is n + p. Keeping terms up to 0 (E) corresponds to probing level 4 so that 

only polylogarithms with n + p ~ 4 occur. For p = 1 we find the usual polylogarithms 

Sn-I,I(z) = Lin(z). (6.10) 

A basis set of6 polylogarithms (one with n+p = 2, two with n+p = 3 and three with 

n + p = 4 is sufficient to describe a function of level 4. At level 4, we choose to eliminate 

the 822, 813 and 812 functions using the standard polylogarithm identities [92] and retain 

the three Li4 functions with arguments x and 1 - x and (x- 1)/x where 

t 
X=--, 

8 

u 
y=--=1-x, 

8 

u X -I 
Z=--=--. 

t X 

For convenience, we also introduce the following logarithms 

(6.11) 

U =log ( :~), (6.12) 

where J.L is the renormalisation scale. The common choice J.L2 = 8, for example, corresponds 

to setting 8 = 0. 

For each channel, we choose to present our results by grouping terms according to the 

power of the number of colours N and the number of light quarks N F so that in channel 

c, we can have for example 

(6.13) 

All the expansions for the finite pieces are compiled in Appendix C and are organised for 

each process and for the one and two-loop contributions, separately. 

6.2 Unlike quark scattering 

It is the purpose of this section to provide dimensionally regularised and renormalised 

analytic expressions at the two-loop level for the process 

q + ij --+ q' + q'' 
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together with the time-reversed and crossed processes, 

q+q'---+ q+q', 

q+q' ---+ q+q', 

ij + ii' ---+ ij + q' . 

115 

As it has been specified before, we use the MS renormalisation scheme and conventional 

dimensional regularisation (CDR) where all external particles are treated in D dimensions. 

6.2.1 Notation 

For calculational convenience, we treat all particles as incoming so that 

(6.14) 

The renormalised four point amplitude in the MS scheme is thus 

(6.15) 

where the JM(i)) represents the colour-space vector describing the i-loop amplitude. The 

dependence on both renormalisation scale f.L and renormalisation scheme is implicit. 

by, 

We denote the squared amplitude summed over spins and colours by, 

(MJM) = A(s, t, u), (6.16) 

For the physical processes, the spin and colour averaged amplitudes are related to A 

L JM(q + ij---+ ij' + q')J2 

L JM(q + q'---+ q + q')J2 

L JM(q + ij'---+ q + q')J2 

L JM(ij + ij'---+ ij + ij')J2 

1 
4

N 2 A(s, t, u) 

1 
4

N 2 A(u,t,s) 

1 
4

N 2 A(t, s, u) 

1 
4

N 2 A(u,t,s), 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

where N is the number of colours. 

The summed and squared amplitude has the perturbative expansion, 

A(s, t, u) = 1611"2a; ( A 4 (s, t, u) + (;;) A 6 (s, t, u) + (;;) 
2 

A 8 (s, t, u) + 0 (an) . 
(6.21) 
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In terms of the amplitudes, 

A6 (s, t, u) 

A8 (s, t, u) 

(M(O)IM(o)) = 2(N2- 1) ( t2 ~ u2 -E)' 

((M(o)IM(l)) 1- (M(l)IM(o)))' 

((M(l)IM(l)) 1- (M(o)IM(2)) 1- (M(2)1M(o))). 
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(6.22) 

(6.23) 

(6.24) 

Expressions for A 6 are given in ref.[39] using dimensional regularisation to isolate the 

infrared and ultraviolet singularities. 

We concentrate on the next-to-next-to-leading order contribution A 8 which consists of 

the interference of the two-loop and tree graphs and the self-interference of the one-loop 

graphs. 

We give explicit formulae for theE-expansion of the two-loop contribution to the next­

to-next-to-leading order term AB(s, t, u). To distinguish between the genuine two-loop 

contribution (M(0)1M(2)) 1- (M(2)1M(0)) and the squared one-loop part (M(l)IM(1)), we 

decompose AB as 

where 

AB (2x0) 

AB (lxl) 

(M(o)IM(2)) 1- (M(2)1M(o)), 

(M(l) IM(l)). 

Section 6.2.2 deals with AB (2xo) and section 6.2.3 with AB (lxl). 

6.2.2 Two-loop contribution 

(6.25) 

We divide the two-loop contributions into into two classes, those that multiply poles in 

the dimensional regularisation parameter E and those that are finite as E--+ 0, 

AB (2 x 0)(s, t, u) =Poles 1- Finite. (6.26) 

Poles contains both infrared singularities and ultraviolet divergences. The latter are 

removed by renormalisation, while the former must be analytically cancelled by the in­

frared singularities occuring in radiative processes of the same order. The structure of 

these infrared divergences has been provided in eq.(6.5). 

6.2.2.1 Infrared pole structure 

It is convenient to decompose IM(0)) and IM(l,un)) in terms of SU(N) matrices in the 

fundamental representation, Ta, so that the tree amplitude may be written as [93, 36, 94, 
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95, 96, 97, 98] 

L ( TijTkl) A~ree(lq, 2q, 3q', 4q') 
a 

(5w>"jk - ~OijOkl) A~ree(lq, 2q, 3q', 4q') 

while the one-loop amplitude has the form [33, 30, 82] 

IM(l,un)) = ( t5ilt5jk - ~OijOkt) A1~i (lq, 2q, 3q1 , 4q1 ) 

+ ( t5ilt5jk) A1~~ (lq, 2q, 3q', 4q') 
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(6.27) 

(6.28) 

To evaluate eq. (6.5) we find it convenient to express IM(0)) and IM(l,un)) as two-

dimensional vectors in colour space 

IM(O)) = (Ti, ~f' 

IM(l,un)) (.Cl, .C2f, 

(6.29) 

(6.30) 

where T indicate the transpose vector. Here the ~and .Ci are the components of IM(0)) 

and IM(l,un)) in the colour space spanned by the basis 

C1 t5itt5jk, 

c2 oij t5 kt, 

The tree and loop amplitudes ~ and Li are directly obtained in terms of A~ree, A1~i, 

AN and A1~{21 
by reading off from eqs. (6.27) and (6.28). As we will see, the amplitudes , , 

themselves are not required since we compute the interference of tree and loop amplitudes 

directly. 

In the same colour basis, the infrared-singularity operator J(l) (E) has the form 

( 
A(~:,s,t,u) B(~:,s,t,u)) 
B(~:, t, s, u) A(~:, t, s, u) 

( 6.31) 

where 

A(,,s,t,u) [N
2 

-1] ( -~')' + ( <')'- ( <')' (6.32) 

B(,,s,t,u) = N [ ( -~')'- ( -';:)'] (6.33) 

The matrix J( 1l(~:) acts directly as a rotation matrix on IM(0)) and IM(l,un)) in 

colour space, to give a new colour vector IX), equal to J(1l(~:)IM(0l), J( 1 l(~:)J( 1 l(~:)IM(0)) 

or J(l)(t:)IM(l,un)). 
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The contraction of the colour vector IX) with the conjugate tree amplitude obeys the 

rule 
9 

(M(o)IX) = L: L: L: r: xjc;cj. (6.34) 
spins colours i,j=l 

In evaluating these contractions, we typically encounter I:colours CJ Cj which is given by 

the ij component of the symmetric matrix a? 

(6.35) 

Similarly, we find that the interference of the tree-level amplitudes I:spins T;*Tj is given 

by TTij, where 

(6.36) 

and the vector V is 

(6.37) 

while the interference of the tree-level amplitudes with one-loop amplitudes I:spins ~* Lj 

is given by nij' where 

(6.38) 

and the vector W is 

(6.39) 

Here the functions £ 1 and £ 2 are defined as 

£1(s, t, u) 
N 2 -2 1 1-E 

= 
2
N f(s,t,u) + Nf(s,u,t) + 3f3oT(s,t,u)

3 
_ 

2
EBub(s) 

+ 2~ ~~s~~:j [ ( N 2 
- 1) ( -6 + 7E + 2E2

) + 10E2 
- 4E3

] Bub(s) (6.40) 

1 3 
= - N£1(s, u, t) + 

2
N 2 (f(s, t, u)- f(s, u, t)) (6.41) 

where the function f is 

(
4(u2 + t2

)- 2E(3ut + 6
8

t
2

2 + 5u2
)- E2s(7t + 5u)) (Bub(s) ~ Bub(t)) 

f(s,t,u) = L 

+ u(1- 2E)(6t
2 

;- 2u
2

- 3Es
2

) Box6 (s, t) (6.42) 
8 

and the tree type structure 

(
t2 + u2 ) 

T(s,t,u) = 2 
82 

- E . (6.43) 

These expressions are valid in all kinematic regions. However, to evaluate the pole 

structure in a particular region, the one-loop bubble graph Bub and the one-loop box 
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integral in D = 6 - 2E dimensions, Box6 , must be expanded as a series in E. This analytic 

expansion is given in Appendix B. 

The function 1-£2, that appears in eq. (6.5), exhibits only a single pole in E and is given 

by 

(6.44) 

with 

(6.45) 

and 

1'(1) = ( -3 + 24(2- 48(3)C~ + (-
1

3
7 

-
8
: (2 + 24(3) CpCA + (~ + 

3
3
2 

(2) CpTRNp. 

(6.46) 

and (n is the Riemann Zeta function with (2 = 1r2 /6 and (3 = 1.202056 ... We note that 

H(2) is renormalisation-scheme dependent and eq. (6.45) is valid in the MS scheme. We 

expect that in the four-quark two loop amplitude, we might obtain contributions from 

H(2
) for each of the six colour antennae. 

It can be easily noted that the leading infrared singularity in Eq. (6.5) is 0 (1/E4
). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.5) through to 0 (1/E). We therefore 

construct the finite remainder by subtracting eq. (6.5) from the full result. 

6.2.2.2 Finite contributions 

In this subsection, we give explicit expressions for the finite two-loop contribution to 

AB (2xo), Finite which is given by (see eq.(6.26) and eq.(6.5) 

Finite= AB (2 xo) (s, t, u) -Poles (6.47) 

For high energy hadron-hadron collisions, we probe all parton-parton scattering processes 

simultaneously. We therefore need to be able to evaluate the finite parts in the s-, t- and 

u-channels corresponding to the processes, 

q+ij-+ ii'+q' 

q+q -+ q+ij' 

q + q' -+ q + q'' 
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respectively. In principle, the analytic expressions for different channels are related by 

crossing symmetry. However, the Xbox has cuts in all three channels yielding complex 

parts in all physical regions. The analytic continuation is therefore rather involved and 

prone to error. 

Due to this, we choose to give expressions describing AB (2x0)(s, t, u), AB (2x0)(t, s, u) 

and AB (2 x 0)(u, t, s) which are directly valid in the physical region, s > 0 and u, t < 0, 

and are given in terms of logarithms and polylogarithms that have no imaginary parts. 

In channel c, 

(6.48) 

The values of Ac, Be, Cc, De, Ec, and Fe, are presented in sections C.l.l.l and C.l.2.1 of 

Appendix C. 

We can check some of these results by comparing with the analytic expressions pre­

sented in ref.[71] for the QED process e+ e- -+ JL+ JL-. Taking the QED limit corre­

spond to setting CA = 0, CF = 1, TR = 1 as well as setting the cubic Casimir 

C3 = (N2 -l)(N2 -2)/N2 = 0. This means that we can compare directly E 8 (r:x CFTRNF) 

and F 8 (r:x T~NM but not C8 which receives contributions from both C3 and C~. We see 

that eqs.(C.5) and (C.6) agree with eqs.(2.38) and (2.39) of ref.[71]. 

6.2.3 One-loop self-interference contribution 

We divide the one-loop self-interference contributions into into two classes, those that 

multiply poles in the dimensional regularisation parameter E and those that are finite as 

E-+ 0, 

AB (lxl) (s, t, u) =Poles+ :Finite. (6.49) 

Poles contains both infrared singularities and ultraviolet divergences. The latter are 

removed by renormalisation, while the former must be analytically cancelled by the in­

frared singularities occuring in radiative processes of the same order. The structure of 

these infrared divergences has been provided in eq.(6.7). 

6.2.3.1 Infrared pole structure 

Again, the pole structure of the one-loop self-interference given in eq.(6.7) involves the 

contraction of the colour vector IX) with the conjugate colour vector (YI obeys the rule 

9 

(YIX) = L L L Yi* xj c; cj. (6.50) 
spins colours i,j=l 
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For the expansion of the pole structure coming from this contribution, eqs.(6.31) 

through to (6.43) are valid. This calculation is somewhat simpler than the two-loop one, 

nevertheless contributes at the same level. 

It can be easily noted that the leading infrared singularity in eq. (6.7) is 0 (1/t:4
). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.7) up to and including 0 (1/t:). We 

therefore construct the finite remainder by subtracting eq. ( 6. 7) from the full result. 

6.2.3.2 Finite contributions 

The finite one-loop self-interference contribution to A8(s, t, u) is defined as 

Finite(s, t, u) = A8 (lxl)(s, t, u)- 'Poles(s, t, u), (6.51) 

where we subtract the series expansions of both A8 (lxl)(s, t, u) and 'Poles(s, t, u) and set 

E-t 0. 

Then in channel c, 

(6.52) 

The values of Ac, Be, Cc, De, Ec, and Fe, are presented in sections C.1.1.2 and C.1.2.2 of 

Appendix C. 

6.3 Like quark scattering 

In this section we extend the work of section 6.2 to describe the case of identical quark 

scattering. We use the MS renormalisation scheme and conventional dimensional regular­

isation where all external particles are treated in D dimensions to provide dimensionally 

regularised and renormalised analytic expressions at the two-loop level for the scattering 

process 

qij -t qij, 

together with the time-reversed and crossed processes 

q + q -t q + q, 

ij + ij -t ij + ij. 
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As in the unlike quark case, we present analytic expressions for the infrared pole structure, 

as well as explicit formulae for the finite remainder decomposed according to powers of 

the number of colours Nand the number of light-quark flavours Np. 

6.3.1 Notation 

For calculational convenience, we treat all particles as incoming so that 

(6.53) 

The renormalised four point amplitude in the MS scheme is thus 

!M) = 47ras [ (IM(o)) -IM(O))) + (;;) ( IM(1
)) -IM(l))) 

+ (;;) 
2 

(1M(2
))- IM(

2
))) + 0 (a~) l, (6.54) 

where the IM(i)) represents the colour-space vector describing the i-loop amplitude for 

the s-channel graphs, and the t-channel contribution IM(i)) is obtained by exchanging 

the roles of particles 2 and 4: 

(6.55) 

The dependence on both renormalisation scale J.L and renormalisation scheme is implicit. 

We denote the squared amplitude summed over spins and colours by 

(M I M) L IM(q + ij--+ ij + q)j2 

A(s, t, u) + A(t, s, u) + B(s, t, u), (6.56) 

The squared matrix elements for the qq --+ qq process are obtained by exchanging s 

and u 

L IM(q + q--+ q + q)j 2 = A(u, t, s) + A(t, u, s) + B(u, t, s). (6.57) 

The function A is related to the squared matrix elements for unlike quark scattering 

A(s, t, u) 

A(t, s, u) 

L IM(q + ij--+ if+ q')l 2 

L IM(q +if--+ if+ q)l 2 

(6.58) 

(6.59) 

while B(s, t, u) represents the interference between s-channel and t-channel graphs that 

is only present for identical quark scattering. 
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The function A can be expanded perturbatively to yield 

A(s, t, u) = 16rr2 a~ [A'(s, t, u) + (;;) A 6(s, t, u) + ( ;; ) 
2 

A 8 (s, t, u) + 0 (an l , 
(6.60) 

where 

A 6(s, t, u) 

AB(s, t, u) 

(M(o)IM(o)) = 2(N2- 1) ( t2 :2 u2- c), 

( (M(O) IM(l)) + (M(l) IM(O))), 

((M(lliM(1l) + (M(o)IM(2l) + (M(2)IM(0l)). 

(6.61) 

(6.62) 

(6.63) 

Expressions for A6 are given in ref. [39] using dimensional regularisation to isolate the 

infrared and ultraviolet singularities. Analytical formulae for the two-loop contribution 

to AB, (M(o) IM(2)) + (M(2) IM(o)), are given in ref. [40]. 

Similarly, the expansion of B can be written 

B(s, t, u) = 167r2a; [ B4 (s, t, u) + (~;) B6 (s, t, u) + (~;) 
2 

BB(s, t, u) + 0 (an l , 
(6.64) 

where, in terms of the amplitudes, we have 

- ((M(o)IM(0l) + (M(o)IM(0
))) 

(
N2 1) (u2 ) -4 N (1- c) st + c , (6.65) 

- ((M(1)IM(0l) + (M(o)IM(1
)) + (M(o)IM(1l) + (M(1)IM(0l)) 

(6.66) 

- ((M(1liM(1l) + (M(1liM(1l) 

+(M(o)IM(2l) + (M(2liM(0)) + (M(o)IM(2)) + (M(2)IM(0l)). 

(6.67) 

As before, expressions for B6 which are valid in conventional dimensional regularisation are 

given in ref. [39]. Here, in order to complete the calculation of the two-loop contribution to 

quark-quark scattering, we concentrate on the next-to-next-to-leading order contribution 

BB which contains both the interference of the two-loop with tree graphs and the one-loop 

self-interference. 

We provide explicit formulae for the c-expansion of the two-loop contribution to the 

next-to-next-to-leading order term BB(s,t,u). To distinguish between the genuine two-
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loop contribution and the squared one-loop part, we decompose 8 8 as 

where 

88 (2xO) 

8 8 (lxl) 

- ( (M(O),M(2)) + (M(2) IM(O)) + (M(O) IM(2)) + (M(2)1M(O))) 

- ((M(I)IM(I)) + (M(l)IM(l))) 

The former is discussed in section 6.3.2, while the latter in section 6.3.3. 

6.3.2 Two-loop contribution 

124 

(6.68) 

As before, we divide the two-loop contributions into two classes: those that multiply poles 

in the dimensional regularisation parameter E and those that are finite as E --+ 0 

8 8 (2x0)(s, t, u) =Poles+ Finite. (6.69) 

Poles contains infrared singularities that will be analytically canceled by the infrared 

singularities occurring in radiative processes of the same order (ultraviolet divergences 

are removed by renormalisation). The structure of these infrared divergences has been 

provided in eq.(6.6). 

6.3.2.1 Infrared pole structure 

It is convenient to decompose IM(0)) and IM(l,un)) in terms of SU(N) matrices in the 

fundamental representation, Ta, so that the tree amplitude may be written as [93, 36, 94, 

95, 96, 97, 98] 

L ( TljTkl) A~ree(lq, 2q, 3q', 4q') 
a 

and 

L ( TBTA) A~ree(lq, 2q, 3q', 4q') 
a 

(&ij&kl- ~&il&jk) A~ree(lq,2q,3q',4q') 

while the one-loop amplitude has the form [33, 30, 82] 

IM(l,un)) = (&il&jk- ~&ij&kl) A~~~(lq,2q,3q',4q') 

+ (&il&jk) A~~1(1q, 2q, 3q', 4ii') 

(6.70) 

(6.71) 

(6.72) 
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To evaluate Eq. (6.6) we find it convenient to express IM(0)) and IM(l,un)) as two-

dimensional vectors in colour space 

(7i, 72f' 

(£1, £2)T, 

(6.73) 

(6.74) 

where T indicates the transpose vector. Here the 'Ti, and .Ci are the components of IM(o)) 

and IM(l,un)) in the colour space spanned by the basis 

whereas 

(6.75) 

is spanned by the basis 

The tree and loop amplitudes 'Ti, and .Ci are directly obtained in terms of A~ree, A~~~, 
' 

A~~1 and A~{2l by reading off from eqs. (6.70) and (6.72). As we will see, the amplitudes 
' ' 

themselves are not required since we compute the interference of tree and loop amplitudes 

directly. 

In the same colour basis, the infrared-singularity operator J(l) (E) has the form 

J( ) (E) = - - - + -1 eer 1 ( 1 3) 
r(1-t:)N t:2 2E 

where 

X 
( 

A(E,s,t,u) B(E,s,t,u)) 

B(E, t, s, u) A(t:, t, s, u) 
(6.76) 

(6.77) 

(6.78) 

The matrix J(l)(E) acts directly as a rotation matrix on IM(0)) and IM(l,un)) in 

colour space, to give a new colour vector IX), equal to J(1)(E)IM(0)), J(1l(t:)J(1)(t:)IM(0)) 

or J(l)(t:)IM(l,un)). 

Similar to the unlike quark scattering case, the contraction of the colour vector IX) 

with the conjugate tree amplitude obeys the rule 

2 

L t; xjc;cj. (6.79) 
spins colours i,j=l 
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In evaluating these contractions, we typically encounter Lcolours Ci* Cj which is given by 

the ij component of the symmetric matrix er 

(6.80) 

Similarly, we find that the interference of the tree-level amplitudes Lspins 'fi*7j is given 

by TTij, where 

( 6.81) 

and the vector V is 

(6.82) 

while the interference of the tree-level amplitudes with one-loop amplitudes Lspins 'fi* Cj 

is given by TCij, where 

(6.83) 

and the vector W is 

(6.84) 

The functions £1 and £2 are defined as 

N 2
- 2 1 1- c 

= 2N h(8,t,u)+ Nh(s,t,u)+3,8oT(8,t,u)
3

_
2

EBub(8) 

+ 2~ ~;
8~t~:~ [ ( N

2
- 1) ( -6 + 7c + 2c2

) + 10c2
- 4c3

] Bub(8) (6.85) 

1 N 2 -1 
= - NC1(8,t,u) + 2N 2 (h(s,t,u)- h(8,t,u)) (6.86) 

where the functions h and h are 

!1(8, t, u) = 

!2(8, t, u) 

~~ (1- 2c) [u
2 + t 2

- 2E (t2 + 82
) + c2s2

] Box6(8, t) 

+ :t [2u
2

- E (5s
2 + 6t2 + 98t) + (282 + 4t2 + 8t) c2 

( 
2 3 ) 3 4] [Bub(8)- Bub(t)] + s + 8t E - 8tE , 

€ 

~(1- 2c) [2u
2

- E (t2 + 82 + u2
) + 3c282 + 82c3] Box6(8, u) 

+ :t [ 2u
2 

- E ( 68
2 + 6t2 + lOst) + ( 382 + 4t2 + 38t) c2 

( 
2 2 ) 3 4] [Bub(8)- Bub(u)] + 8 + 8t E - 8tc . 

€ 

and the tree type structure 

T(8,t,u) = 2(1-e) (~:+c) 

(6.87) 

(6.88) 

(6.89) 
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These expressions are valid in all kinematic regions. However, to evaluate the pole 

structure in a particular region, the one-loop bubble graph Bub and the one-loop box 

integral in D = 6- 2E dimensions, Box6 , must be expanded as a series in E. This analytic 

expansion is given in Appendix B. 

The function 1-£2 , that appears in eq. (6.6), exhibits only a single pole in E and is given 

by 

(6.90) 

with 

(6.91) 

and 

r(l) = ( -3 + 24(2- 48(3)C~ + (-
1
3
7

-
8
3
8 

(2 + 24(3) CpCA + (~ + 
3
: (2) CpTRNp. 

(6.92) 

We note that H(2) is renormalisation-scheme dependent and eq. (6.91) is valid in the 

MS scheme. We expect that in the four-quark two loop amplitude, we might obtain 

contributions from H(2) for each of the six colour antennae. 

It can be easily noted that the leading infrared singularity in eq. (6.6) is 0 (1/E4). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.6) through to 0 (1/E). We therefore 

construct the finite remainder by subtracting Eq. (6.6) from the full result. 

6.3.2.2 Finite contributions 

In this subsection, we give explicit expressions for the finite two-loop contribution to 

BB (2 xO), :Finite which is given by (see eq.(6.69) and eq.(6.6) 

:Finite= BB (2 xo) (s, t, u) -Poles (6.93) 

The identical-quark processes probed in high-energy hadron-hadron collisions are the 

mixed s- and t-channel process 

q + ij ---7 ij + q, 

controlled by B(s, t, u) (as well as the distinct quark matrix elements A(s, t, u) and 

A(t, s, u) as indicated in eq. (6.57)), and the mixed t- and u-channel processes 

q + q ---7 q + q, 

ij + ij ---7 ij + ij, 
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which are determined by the B(t, s, u). We need to be able to evaluate the finite parts 

for each of these processes. Of course, the analytic expressions for different channels 

are related by crossing symmetry. However, the master crossed boxes have cuts in all 

three channels yielding complex parts in all physical regions. The analytic continuation 

is therefore rather involved and prone to error. We therefore choose to give expressions 

describing B8 (s, t, u) and B8 (t, s, u) which are directly valid in the physical region s > 0 

and u, t < 0, and are given in terms of logarithms and poly logarithms that have no 

imaginary parts. 

In channel c 

(6.94) 

Here c = st (ut) to denote the mixed s- and t-channel (u- and t-channel) processes 

respectively. The values of Ac, Be, Cc, De, Ec, and Fe, are presented in sections C.2.1.1 

and C.2.2.1 of Appendix C. 

6.3.3 One-loop self-interference contribution 

We divide the one-loop self-interference contributions into into two classes, those that 

multiply poles in the dimensional regularisation parameter E and those that are finite as 

E-+ 0, 

B8 (lxl)(s, t, u) =Poles+ Finite. (6.95) 

Poles contains both infrared singularities and ultraviolet divergences. The latter are 

removed by renormalisation, while the former must be analytically cancelled by the in­

frared singularities occuring in radiative processes of the same order. The structure of 

these infrared divergences has been provided in eq.(6.8). 

6.3.3.1 Infrared pole structure 

Again, the pole structure of the one-loop self-interference given in eq.(6.8) involves the 

contraction of the colour vector JX) with the conjugate colour vector (YJ obeys the rule 

9 

(YJX) = 2: 2: 2: Yi* xjc;cj. (6.96) 
spins colours i,j=l 

For the expansion of the pole structure coming from this contribution, eqs.(6.76) 

through to (6.89) are valid. This calculation is somewhat simpler than the two-loop one, 

nevertheless it contributes at the same level. 
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6.3.3.2 Finite contributions 

The finite one-loop self-interference contribution to B8 (s, t, u) is defined as 

Finite(s,t,u) = BB(lxl)(s,t,u)- Poles(s,t,u), (6.97) 

where we subtract the series expansions of both 8 8 (lxl) (s, t, u) and Poles(s, t, u) and set 

E-T 0. 

Then in channel c, 

(6.98) 

The values of Ac, Be, Cc, De, Ec, and Fe, are presented in sections C.2.1.2 and C.2.2.2 of 

Appendix C. 

6.4 Quark-gluon scattering 

In this section, we address the() (a!) one- and two-loop corrections to the QCD process 

q + ij -T g + g, 

together with the time-reversed and crossed processes 

q + g -T q + g, 

g + ij -T g + ij, 

g + g -T q + ij. 

(6.99) 

(6.100) 

(6.101) 

(6.102) 

As is in the previous sections, we use the MS renormalisation scheme to remove the 

ultraviolet singularities and conventional dimensional regularisation, where all external 

particles are treated in D dimensions. We provide expressions for both the interference 

of tree-level and two-loop graphs as well as the self-interference of one-loop amplitudes. 

Also in this section, we give explicit analytic expressions valid for each of the processes 

of eqs. (6.99)-(6.102) in terms of logarithms and polylogarithms that are real in the 

physical domain. 

6.4.1 Notation 

For calculational purposes, the process we consider is 

(6.103) 
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The renormalised four point amplitude in the MS scheme is thus 

(6.104) 

where the IM(i)) represents the colour-space vector describing the i-loop amplitude. The 

dependence on both renormalisation scale J.L and renormalisation scheme is implicit. 

We denote the squared amplitude summed over spins and colours by 

(MIM) = L IM(q + q -t g + g)j2 = C(s, t, u). (6.105) 

which is symmetric under the exchange of t and u. 

The squared matrix elements for the crossed processes are obtained by exchanging 

the Mandelstam variables and introducing a minus sign for each quark change between 

initial and final states 

L IM(g + g -t q + q)l 2 

L IM(q + g -t q + g)l2 

L IM (g + q -t g + iJW 

C(s, t, u), 

-C(u,t,s), 

-C(u, t, s). 

The function C can be expanded perturbatively to yield 

(6.106) 

(6.107) 

(6.108) 

C(s, t, u) = 161r2a; [c4 (s, t, u) + (;;) C6 (s, t, u) + (;;) 
2 

C8 (s, t, u) + 0 (an l , 
(6.109) 

where 

C6 (s, t, u) 

C8 (s, t, u) 

(M(o)IM(o)) = 

2 (1- E) - 2- (t2 + u 2 - Es2), N
2

- 1 (N
2

- 1 N
2

) 
N ut s 2 

((M(o)IM(l)) + (M(l)IM(o)))' 

((M(l)IM(l)) + (M(o)IM(2)) + (M(2)1M(o))). 

(6.110) 

(6.111) 

(6.112) 

Expressions for C6 are given in ref. [39] using dimensional regularisation to isolate the 

infrared and ultraviolet singularities. 

In the following sections, we present expressions for the infrared singular and finite 

contributions to C8 and the crossed processes. For convenience, we divide C8 (s, t, u) into 

two pieces 
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- the pure two-loop contributions 

(6.113) 

described in sec. 6.4.2 and 

- the self-interference of the one-loop amplitude 

(6.114) 

described in sec. 6.4.3. 

For simplicity the arbitrary vectors for the axial gauge we use in this process are 

n~ = p~ and n~ = p~. 

6.4.2 Two-loop contribution 

We further decompose the two-loop contributions as a sum of two terms 

C8 
(
2 xo) (s, t, u) = Poles(s, t, u) + Finite(s, t, u). (6.115) 

Poles contains infrared singularities that will be analytically canceled by the infrared 

singularities occurring in radiative processes of the same order (ultraviolet divergences 

are removed by renormalisation), which is given by eq. (6.5). Finite is the remainder 

which is finite as E -7 0. 

6.4.2.1 Infrared pole structure 

It is convenient to decompose IM(0)) and IM(l,un)) in terms of SU(N) matrices in the 

fundamental representation, Ta, so that the tree amplitude may be written as [93, 36, 94, 

95, 96, 97, 98] 

IM(O)) = ""'(Ta3Ta4) .. Atree(l 2- 3 4) 
LJ l] 4 q' q' ' ' 
P(4) 

while the one-loop amplitude has the form [33, 30, 82] 

IM(l,un)) = N L (Ta3Ta4 )ij A1~l (lq, 2q, 3, 4) 
P(4) 

+ Tr (Ta3Ta4) OijA~~1(lq, 2q, 3, 4) 

(6.116) 

+ Np [L (Ta3Ta4
)- ~Tr(Ta3 Ta4 )0ijl A~~~2l(lq,2q,3,4). (6.117) 

P(4) 

In these expressions LP(4) runs over the 2 permutations of indices of gluons 3 and 4 

as it is further detailed in eq. (6.120). We note that the tree subamplitudes are further 



6. Results 132 

related by cyclic and reflection properties as well as by the dual Ward identity [36, 94, 81] 

and more general identities [88, 99], while the subleading-colour loop amplitudes A1~1 are 

related to the leading-colour amplitudes A1~l [33, 30, 82]. Some of these relationships 
' 

are made explicit using an alternative basis in terms of SU(N) matrices in the adjoint 

representation [87]. 

To evaluate eq. (6.5) we find it convenient to express IM(0)) and IM(l,un)) as three­

dimensional vectors in colour space 

(1i, 0, T2)T' 

(.Cl, .c2, .c3f' 

(6.118) 

(6.119) 

where T indicate the transpose vector. Here the Ti and .Ci are the components of IM(0)) 

and IM(l,un)) in the colour space spanned by the (non-orthogonal) basis 

(6.120) 

The tree and loop amplitudes Ti and Li are directly obtained in terms of A~ree, A1~l, A1~1 
' ' 

and AN2l by reading off from Eqs. (6.116) and (6.117). As we will see, the amplitudes 
' 

themselves are not required since we compute the interference of tree and loop amplitudes 

directly. 

In the same colour basis, the infrared-singularity operator J{l)(E) has the form 

X 

( 

A(E, s, t, u) D(E, s, t, u) 

B(E,s,t,u) C(E,s) 

0 D(E, s, u, t) 

B(E,:,u,t) l 
A(E, s, u, t) 

(6.121) 

where 

A(E, s, t, u) 

(6.122) 

B(E, s, t, u) (6.123) 

C(E,s) (6.124) 

D(E, s, t, u) (6.125) 
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The matrix J(1)(E) acts directly as a rotation matrix on JM(0)) and JM(l,un)) in 

colour space, to give a new colour vector JX), equal to J(1)(E)JM(0l), J(1)(E)J(l)(E)JM(0)) 

or J(l)(E)JM(l,un)). 

The contraction of the colour vector JX) with the conjugate tree amplitude obeys the 

rule 
9 

(M(o) JX) = L L: L: T/ xj c; cj. (6.126) 
spins colours i,j=l 

In evaluating these contractions, we typically encounter l:colours C: Cj which is given by 

the ij component of the symmetric matrix er 

(6.127) 

Similarly, we find that the interference of the tree-level amplitudes l:spins T/Tj is given 

by rrij, where 

(6.128) 

and the vector V is 

V= (t, 0, u), (6.129) 

while the interference of the tree-level amplitudes with one-loop amplitudes l:spins T/ Lj 

is given by nij, where 

(6.130) 

and the vector W is 

(6.131) 

where 

(6.132) 

and 

N 2 + 1 1 
N h(s,t,u)- Nuh(s,u,t)+h(s,t,u) 

(1- E) 1 
-3f3o 

3 
- T(s, t, u) Bub(s) 

- 2E U 

-E(1- 2E) -Bub(u) +- ---+- Bub(s) [
N N ( 1 2/30 3 ) 
E2 2 E2 NE 2E 

1 (1 3) ] 1 -- - +- Bub(s) -T(s,t,u) 
2N E2 2E u (6.133) 

4(1 - 2E) t~ [t
2 + u2 + (ut- 2t2 - 2u2) E + (t2 + u2 + 3ut) E2] Box6 (t, u) 

(
1 ) 1 1 + --2 [Bub(t)- Bub(s)] -T(s, t, u) +-h(s, t, u). 
E U t (6.134) 
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The infrared-finite functions JI, h and h are 

fi(s, t, u) = 4(1- 2E) : 2 [u ( 2u2 + 5t2 + 3tu) + E ( 3t3
- 4u3

- 3tu2
) 

-E2 s ( 4t2 + 2u2 + 5tu) + s2tE3
] Box6

( s, t) (6.135) 

h(s, t, u) 4(1- 2E) s:u [(t-u) (t2 + 2u2 +tu)+ E ( -2t3 + ut2 + 4tu2 + 5u3
) 

-s3
E

2]Box6 (s,u) (6.136) 

h(s, t, u) -2(1- E) 8~ { ~ [2s- t- E(2s- 3u)- 3sE2
] 

+4N(u- UE + sE2
)} [Bub(u)- Bub(s)] 

+ 2 ( 
2
)( ) {-N [18u2 + 15t2

- 3t(s- t) 
S U 1- E 3- 2E 

-E (78u2
- 36t(s- t) + st) + E2 (8ou2 + 10s(s- t)- 69st)] 

- ~ [ -24u2 + 3tu- 21t2 + E (85u2
- 43t(s- t) + 3st) 

-E2 
( 112u2 + 6s(s- t)- l09st) J + f3o [20s2 

- 40tu 

-2E (38s2
- 3us- 62tu) +4E2 (27s2

- 26tu)]} EBub(s) + 0(E3
) 

(6.137) 

and the tree type structure 

t 2 + u 2
- ES

2 

T(s, t, u) = 8(1 -E) 2 s 
(6.138) 

These expressions are valid in all kinematic regions. However, to evaluate the pole struc­

ture in a particular region, the one-loop bubble graph Bub and the one-loop box integral 

in D = 6- 2E dimensions, Box6
, must be expanded as a series in E. This analytic expansion 

is given in Appendix B. 

The function 1-£2, that appears in Eq. (6.5), exhibits only a single pole in E and is 

given by 

(6.139) 

where the constant H(2) is 

We note that H(2) is renormalisation-scheme dependent and eq. (6.140) is valid in the MS 

scheme. We also note that eq. (6.140) differs from the corresponding expressions found in 
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the singularity structure of two-loop quark-quark scattering in all but the C~ coefficient. 

This is due to the presence of infrared emissions from gluons which modify the terms 

involving either CA or Np. 

It can be easily noted that the leading infrared singularity in Eq. (6.5) is () (1/E4
). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.5) through to () (1/E). We therefore 

construct the finite remainder by subtracting eq. (6.5) from the full result. 

6.4.2.2 Finite contributions 

In this subsection, we give explicit expressions for the finite two-loop contribution to 

C8 (2 xo), Finite which is given by (see eq.(6.115) and eq.(6.5) 

Finite= C8 (2 x0)(s, t, u)- Poles (6.141) 

In hadronic collisions, all parton scattering processes (eqs. (6.99)-(6.102)) contribute si­

multaneously. We therefore need to evaluate Finite(s, t, u) for the qij---+ gg and gg ---+ qij 

process (which we denote as the s-channel since, although the tree-level process contains 

graphs in all three channels, the squared tree matrix elements are proportional to 1/ s2 ) 

and Finite( u, t, s) for the QCD Compton processes qg ---+ qg and gij ---+ gij (which we label 

as the u-channel). 

Of course, the analytic expressions for the various processes are related by crossing 

symmetry. However, the master crossed boxes have cuts in all three channels yielding 

complex parts in all physical regions. The analytic continuation is therefore rather in­

volved and prone to error. We therefore choose to give expressions describing C8 (s, t, u) 

and C8 ( u, t, s) which are directly valid in the physical region s > 0 and u, t < 0, and are 

given in terms of logarithms and polylogarithms that have no imaginary parts. 

In the generic c-channel we write 

(6.142) 

The values of Ac, Be, Cc, De, Ec, Fe, Gc, He and le are presented in sections C.3.1.1 and 

C.3.2.1 of Appendix C. 
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6.4.3 One-loop self-interference contribution 

We divide the one-loop self-interference contributions into into two classes, those that 

multiply poles in the dimensional regularisation parameter E and those that are finite as 

E-t 0, 

C8 (lxl) (s, t, u) =Poles+ :Finite. (6.143) 

Poles contains both infrared singularities and ultraviolet divergences. The latter are 

removed by renormalisation, while the former must be analytically cancelled by the in­

frared singularities occuring in radiative processes of the same order. The structure of 

these infrared divergences has been provided in eq.(6.7). 

6.4.3.1 Infrared pole structure 

Again, the pole structure of the one-loop self-interference given in eq.(6.7) involves the 

contraction of the colour vector IX) with the conjugate colour vector (YI obeys the rule 

9 

(YIX) = L: L: L: Yi* xjc;cj. (6.144) 
spins colours i,j=l 

For the expansion of the pole structure coming from this contribution, eqs.(6.121) 

through to (6.138) are valid. This calculation is somewhat simpler than the two-loop one, 

nevertheless it contributes at the same level. 

It can be easily noted that the leading infrared singularity in eq. (6.7) is() (1/t:4 ). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.7) up to and including() (1/t:). We 

therefore construct the finite remainder by subtracting eq. (6.7) from the full result. 

6.4.3.2 Finite contributions 

The finite one-loop self-interference contribution to C8 (s, t, u) is defined as 

:Finite(s, t, u) = C8 (lxl)(s, t, u)- Poles(s, t, u), (6.145) 

where we subtract the series expansions of both C8 (lxl)(s,t,u) and Poles(s,t,u) and set 

E-t 0. 

Then in channel c, 

:Finitec(s, t, u) 

(6.146) 
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The values of Ac, Be, Cc, De, Ec, Fe, Gc, He and le are presented in sections C.3.1.2 and 

C.3.2.2 of Appendix C. 

6.5 Gluon=gluon scattering 

It is the goal of this section to provide analytic expressions for the 0 (a!) two-loop and 

one-loop corrections to gluon-gluon scattering 

g + g ---+ g +g. (6.147) 

6.5.1 Notation 

For calculational purposes, the process we consider is 

(6.148) 

where the gluons are all incoming with light-like momenta. The gluons also carry colour 

indexes, ai, in the adjoint representation. 

We denote the squared amplitude summed over spins and colours by 

(M I M) = L IM(g + g---+ g + g)l2 = V(s, t, u). (6.149) 

which is symmetric under the exchange of s, t and u. The function V can be expanded 

perturbatively to yield 

V(s, t, u) = l61r
2a; [v4 (s, t, u) + (~;) V 6 (s, t, u) + (~; r V 8 (s, t, u) + 0 (an l , 

(6.150) 

where 

V 6 (s, t, u) 

V 8 (s, t, u) 

(M(O) IM(O)) 

2 2 ( ut us st) 16 V N (I - t:) 3 -
82 

- t2 - u 2 , 

( (M(O) IM(l)) + (M(l) IM(O))) ' 

((M(l)IM(l)) + (M(o)IM(2)) + (M(2)1M(o))). 

(6.151) 

(6.152) 

(6.153) 

Expressions for V 6 are given in ref. [39] using dimensional regularisation to isolate the 

infrared and ultraviolet singularities. 

In the following sections, we present expressions for the infrared singular and finite 

two-loop contributions to V 8 

(6.154) 
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and the self-interference of the one-loop amplitudes 

(6.155) 

For simplicity the arbitrary vectors for the axial gauge we use in this process are 

n/1- - p/1- n/1- - p/1- n/1- - p/1- and n11- - p/1-1- 2> 2- 1> 3-4 4- 3' 

6.5.2 Two-loop contribution 

We further decompose the two-loop contributions as a sum of two terms 

1)8 (2x0)(s, t, u) = Poles(s, t, u) + Finite(s, t, u). (6.156) 

Poles contains infrared singularities that will be analytically canceled by those occurring 

in radiative processes of the same order (ultraviolet divergences are removed by renor­

malisation) and is given by eq. (6.5). Finite is the remainder which is finite as E --+ 0. 

6.5.2.1 Infrared pole structure 

It is convenient to decompose IM(0)) and IM(1,un)) in terms of SU(N) matrices in the 

fundamental representation, ra' so that the tree amplitude may be written as [93, 36, 94, 

95, 96, 97, 98] 

IM(O)) = L Tr (Ta1TU2Ta3Ta4) A~ree(l, 2, 3, 4), 
P(2,3,4) 

while the one-loop amplitude has the form [33, 30, 82] 

IM(1,un)) = N L Tr (Ta1Ta2Ta3TU4) A~~l (1, 2, 3, 4) 
P(2,3,4) 

+ L Tr(Ta 1 Ta2 )Tr(Ta3 Ta4 )A~~1(1,2,3,4) 
Q(2,3,4) 

+ Np L Tr(Ta1 Ta2 Ta3 Ta4 )A~~{2l(1,2,3,4). 
P(2,3,4) 

(6.157) 

(6.158) 

In these expressions Lp(2,3,4) runs over the 6 permutations of indices of gluons 2, 3 and 

4 while LQ(2,3,4) includes the three choices of pairs of indices, as it is further detailed 

in eq. (6.161). We note that the tree subamplitudes are further related by cyclic and 

reflection properties as well as by the dual Ward identity [36, 94, 81] and more general 

identities [88, 99], while the subleading-colour loop amplitudes A~~1 are related to the 

leading-colour amplitudes A~~l [33, 30, 82]. Some of these relationships are made explicit 
' 

using an alternative basis in terms of SU(N) matrices in the adjoint representation [87]. 
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To evaluate eq. (6.5) we find it convenient to express IM(0)) and IM(l,un)) as nine-

dimensional vectors in colour space 

(Ti, 72, 73, ~. ~. 76, o, o, o)r, 

(£1, £2, £3, £4, £5, £6, £7, .Cs, £ 9)T, 

(6.159) 

(6.160) 

where T indicate the transpose vector. Here the Ti and Li are the components of IM(0)) 

and IM(l,un)) in the colour space spanned by the (non-orthogonal) basis 

c1 Tr (Ta1ya2ya3ya4), 

c2 Tr (Ta1ya2ya4ya3), 

c3 Tr (Ta1ya4ya2ya3), 

c4 Tr (Ta1ya3ya2ya4), 

c5 Tr (Ta1ya3ya4ya2), 

c6 Tr (Ta1ya4ya3ya2), 

c1 Tr (Tal ya2) Tr (Ta3ya4) , 

Cs Tr (Ta1ya3) Tr (Ta2ya4), 

Cg Tr (Ta1ya4) Tr (Ta2ya3). (6.161) 

The tree and loop amplitudes Ti and Li are directly obtained in terms of A~ree, A~~l, A~~1 
' ' 

and A~~(2l by reading off from eqs. (6.157) and (6.158). As we will see, the amplitudes 
' 

themselves are not required since we compute the interference of tree and loop amplitudes 

directly. 

In the same colour basis, the infrared-singularity operator J(1)(E) has the form 

1(1) (E) = - ef'Y ( ~ + P!J__) 
r(1-E) E2 NE 

N(S + T) 0 0 0 0 0 (T-U) 0 (s -u) 
0 N(S + U) 0 0 0 0 (U-T) (s - r) 0 

0 0 N(T + U) 0 0 0 0 (T - S) (u-s) 
0 0 0 N(T + U) 0 0 0 (T - S) (u - s) 

X 0 0 0 0 N(S + U) 0 (U-T) (s - r) 0 
0 0 0 0 0 N(S + T) (T-U) 0 (S - U) 

(s -u) (S - T) 0 0 (s - r) (s -u) 2NS 0 0 

0 (U-T) (u-s) (u-s) (U - T) 0 0 2NU 0 

(T-U) 0 (T- S) (T- S) 0 (T-U) 0 0 2NT 

(6.16 
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where 

(6.163) 

The matrix J(l)(t::) acts directly as a rotation matrix on IM(0)) and IM(l,un)) in colour 

space, to give a new colour vector IX), equal to J(1)(t::)IM(0)), J(1)(t::)J(1)(t::)IM(0)) or 

J(l) ( t::) IM(l,un)). 

The contraction of the colour vector IX) with the conjugate tree amplitude obeys the 

rule 
9 

(M(o) IX) = L: L: L: Ti xj c; cj. (6.164) 
spins colours i,j=l 

In evaluating these contractions, we typically encounter Lcolours c; Cj which is given by 

the ij component of the symmetric matrix er 

c1 c2 c2 c2 c2 Ca NV -N NV 

c2 c1 c2 c2 Ca c2 NV NV -N 

c2 c2 c1 Ca c2 c2 -N NV NV 

c2 c2 Ca c1 c2 c2 -N NV NV 

lT=~ 
16N2 c2 Ca c2 c2 c1 c2 NV NV -N (6.165) 

Ca c2 c2 c2 c2 c1 NV -N NV 

NV NV -N -N NV NV N2V N2 N2 

-N NV NV NV NV -N N2 N2V N2 

NV -N NV NV -N NV N2 N2 N2V 

with 

C1 = N4 
- 3N2 + 3, c2 = 3- N2, C3 = 3+ N2. (6.166) 

Similarly, we find that the interference of the tree-level amplitudes Lspins T;,*Tj is given 

by rrij, where 

(6.167) 

and the vector V is 

V= (u, t, s, s, t, u, 0, 0, 0), (6.168) 

while the interference of the tree-level amplitudes with one-loop amplitudes Lspins T;,* Lj 

is given by nij, where 

(6.169) 

and the vector W is 

W = (F(s,t), F(s,u), F(u,t), F(u,t), F(s,u), F(s,t), 9, Q, 9). (6.170) 
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Here the function :F(8, t) is symmetric under the exchange of 8 and t, while g is symmetric 

under the exchange of any two Mandelstam invariants, so that 

:F(8, t) !1(8, t, u) + fi(t, 8, u), (6.171) 

g !2(8, t, u) + f2(8, u, t) + h(t, 8, u) + h(t, u, 8) + h(u, 8, t) + h(u, t, 8). 

(6.172) 

Here fi and h are given in terms of the one-loop box integral in D = 6 - 2E dimensions 

and the one-loop bubble graph in D = 4- 2E, 

!1(8, t, u) 
16Ni!t~ 2E) [2(1- t:) 2 ( 84 + 83t + 8t3 + t4

) + 3(1- 5t:)82t2] Box6 (8, t) 

+ 
8NF(~t- 2

E) [(1- t:) 2 (82 + t2) + t:(l + 3E)8t] Box6(8, t) 

821t~:~~-=- ~E) [ ( 12- 22E + 12t:
2 

+ 2€
3
) 8

4 
+ ( 24- 58E + 50t:

2 
- 6t:

3 
- 2t:

4
) 8

3
t 

+ ( 36- 99E + 93t:2 - 24t:3 - 2t:4 ) 82t2 + {1 -E) ( 24- 50E + 23t:2) 8t3 

+4(1- t:)(l- 2t:)(3- 2t:)t4
) Bub(t) 

+ 8t2~~;~ 2E) [ ( 4- 12E + 16E2 - 4t:3) 8
3 + ( 3- lOt:+ 23t:2 - 8t:3) 8

2
t 

+ ( 6- 15€ + 21t:2 - 8t:3) 8t2 + (1 - t:) ( 5- 6t: + 2t:2) t3) Bub(t), (6.173) 

32(1- 2t:) [ 2] !2(8, t, u) = u2 -4(1- t:)28t + 3{1- 5t:)u Box6 (u, t) 

32(1- E) [ 2 + 2 4(1- 2t:)(l- t:)t + (8- 17t:)(l- t:)ut 
E8U 

+ ( 6- 20E + 15t:2 + t:3) u2] Bub(8). (6.174) 

Series expansions around E = 0 for the one-loop integrals are given in Appendix B. 

Finally, the last term of eq. (6.5) that involves H(2)(t:) produces only a single pole in 

E and is given by 

(6.175) 

where the constant H(2) is 

(2) ( 5 11 2) 2 20 2 ( 7r
2 

89) NF H = 2(3 + - + - 1r N + - N F + -- - - N N F - -
3 36 27 18 27 N ' 

(6.176) 

We note that H(2) is renormalisation-scheme dependent and eq. (6.176) is valid in the MS 

scheme. We also note that eq. (6.176) differs from the corresponding expressions found 

in the singularity structure of two-loop quark-quark and quark-gluon scattering. This 

is due to double emissions from the gluons. In fact, H(2 ) for quark-gluon scattering is 
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the average of the H(2) for gluon-gluon scattering and quark-quark scattering, as may be 

expected by counting the number of different types of radiating partons. 

It can be easily noted that the leading infrared singularity in eq. (6.5) is 0 (1/EA). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.5) through to 0 (1/~:). We therefore 

construct the finite remainder by subtracting eq. (6.5) from the full result. 

6.5.2.2 Finite contributions 

The finite two-loop contribution to vs(s, t, u) is defined as 

:Finite(s,t,u) = vs(2x 0)(s,t,u) -Poles(s,t,u), (6.177) 

where we subtract the series expansions of both vs (2 x0)(s, t, u) and Poles(s, t, u) and set 

E--+ 0. 

Then 

and the values of A, B, C, D, E and Fare presented in section C.4.1 of Appendix C. 

6.5.3 One-loop self-interference contribution 

We divide the one-loop self-interference contributions into into two classes, those that 

multiply poles in the dimensional regularisation parameter E and those that are finite as 

E--+ 0, 

vs (lxl)(s, t, u) =Poles+ :Finite. (6.179) 

Poles contains both infrared singularities and ultraviolet divergences. The latter are 

removed by renormalisation, while the former must be analytically cancelled by the in­

frared singularities occuring in radiative processes of the same order. The structure of 

these infrared divergences has been provided in eq.(6.7). 

6.5.3.1 Infrared pole structure 

The contraction of the colour vector IX) with the conjugate colour vector (Y I obeys the 

rule 
9 

(YIX) = 2:: 2:: 2:: Yi* xjc;cj. (6.180) 
spins colours i,j=l 
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In evaluating these contractions, we typically encounter Lcolours c; Cj which is given by 

eq.(6.165). 

For the expansion of the pole structure coming from this contribution, eqs.(6.162) 

through to (6.174) are valid. This calculation is somewhat simpler than the two-loop one, 

but it is nevertheless contributing at the same level. 

It can be easily noted that the leading infrared singularity in eq. (6.7) is 0 (1/E4). 

It is a very stringent check on the reliability of our calculation that the pole structure 

obtained by computing the Feynman diagrams directly and introducing series expansions 

in E for the scalar master integrals agrees with eq. (6.7) up to and including 0 (1/E). We 

therefore construct the finite remainder by subtracting eq. (6. 7) from the full result. 

6.5.3.2 Finite contributions 

The finite two-loop contribution to vs(s, t, u) is defined as 

:Finite(s, t, u) = vs (lxl) (s, t, u) - Poles(s, t, u), (6.181) 

where we subtract the series expansions of both vs (lxl)(s, t, u) and Poles(s, t, u) and set 

E --? 0. 

Then 

Finite(s,t,u) = v( N 4A+N2B+N3NFC+NNFD+N2Nj,E+NfF+ ~G), (6.182) 

and the values of A, B, C, D, E, F and G are presented in section C.4.2 of Appendix C. 



Chapter 1 
Conclusions 

7.1 Summary 

The main driving force of this thesis has been to accomplish the calculation of all two-loop 

matrix elements for massless partonic 2 ---t 2 scattering processes. This is one of the major 

tasks required for the construction of numerical programs that will enable next-to-next-to 

leading order QCD estimates of jet production at hadron colliders. This calculation is 

expected to increase the quality of the theoretical predictions to a level that matches that 

of the improved experimental accuracy expected in forthcoming runs at the Tevatron and 

LHC. 

To achieve the calculation of matrix elements at this level of accuracy is highly non 

trivial and it becomes clear that it is necessary to construct an algorithm to calculate 

hundreds of one- and two-loop integrals with a tensor structure. 

In order to create such algorithm, we first need to study how these integrals arise within 

perturbative QCD and what is their characteristic structure and analytic behaviour. So, 

in Chapter 1 we discussed their direct relation to the Feynman diagrams contributing to 

the matrix elements at this order and their divergent behaviour in D = 4 dimensions. We 

saw (section 1.4) how Convensional Dimensional Regularisation (CDR) is used to expose 

these divergences as poles in the small non-integer parameter f = 0, when we continue 

the dimension as D = 4 ---t D = 4- 2E. 

The singularities of Feynman integrals arise in two different momentum limits, the ul­

traviolet or high momentum limit (UV singularities) and the infrared or low momentum 

limit (IR singularities). The former type of singularities can be consistently absorbed 

at each order in perturbation series using a redefinition of the parameters and fields of 

the theory (section 1.5). This procedure is called renormalisation and it is not uniquely 

defined, so that any fixed order perturbative calculation result will depend on the pre­

scription used for the absorption of the UV singularities. In all our calculations we have 

chosen to renormalise in the MS scheme. 

Our calculations involve massless particles, so for some loop-configurations their prop-
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agators vanish and give rise to IR singularities. In Chapter 2 we use the example of 

electron-positron annihilation into hadrons as a didactic aid to show how these diver­

gences arise and cancel at next-to-leading order (section 2.1). This naturally leads to 

the more general discussion on cancellation of IR divergences for appropriately defined 

infrared safe observables (section 2.2). To put our calculation of NNLO matrix elements 

in context, we establish the link between these and the total hadronic cross section using 

factorisation (section 2.3) and provide some ideas as to the areas where such a calculation 

has an impact (section 2.4). 

We then progress to Chapter 3, where we provide an overview on various methods 

used in the calculation of loop integrals. We start with the classification of the integrals 

by their topology and give a general representation for both the planar and the non­

planar topologies (section 3.1). Then, we revise the different techniques for solving loop 

integrals explicitly, such as Mellin-Barnes and Negative Dimensions, with a preamble on 

the parametric forms used to represent the integrals in a suitable manner prior to their 

integration (section 3.2). The second half of this Chapter is dedicated to the exploration 

of a simple loop integration mechanism through systems of equations (section 3.3). This 

is the backbone of the algorithm with which we perform our calculations because it pro­

duces an environment in which loop integrals can be treated in a general and automated 

way. Some simple examples provide an insight on how these reduction equations work 

in practise. We conclude the Chapter with a discussion on how we could deal with ten­

sor structure in Feynman integrals by replacing them with extra dimensions and extra 

powers in the propagators. It turns out that this only complicates the problem of solving 

tensorial integrals so we need to provide a better solution, which leads to the discussion 

of the next Chapter (section 3.4). 

Given that the two-loop matrix element calculation involves a large number of scalar 

and tensor integrals, the need arises for an algorithm that can deal with them systemat­

ically. Furthermore, the algorithm must be able to reduce an arbitrary integral in terms 

of the ones we can calculate using the techniques given in the previous Chapter. This is 

precisely what our program for calculating matrix elements does and the characteristic 

elements we build into it are discussed in Chapter 4. We use the Integration by Parts 

(IBP) and Lorentz Invariance (LI) identities to find relations between a generic integral 

and the more basic (and already calculated) master integrals (section 4.1). Then we make 

an automatic implementation of this algorithm by generating all the identities spanning 

the range of tensors and powers of propagators we require and solve the system of equa-
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tions using a computer program (section 4.2). A particular choice of double box master 

integrals, makes for a further improvement to the reduction algorithm (section 4.3). Near 

the end of the Chapter we discuss the solution of the new set of double box master inte­

grals in terms of the previous one and close with the description of the general algorithm 

we use for the explicit matrix element calculations (section 4.4). 

An independent check on the singular structure of the results is presented in the last 

Chapter, via the Cat ani formalism. This is briefly discussed in Chapter 5 and to illustrate 

the importance and limitations of this formalism we give a couple of examples. Chapter 

6 contains the O(a!) one- and two-loop matrix elements for massless partonic 2 ~ 2 

scattering. The fact that the singular structure of our results agrees with the predictions 

stemming from Catani's formalism is a very strong check of our explicit calculation where 

we made extensive use of the reduction algorithm previously discussed. This is an impor­

tant verification due to the fact that typically all of the Feynman diagrams contribute to 

the divergent behaviour. 

The results presented in this last Chapter [40, 41, 42, 43, 44, 45] provide the matrix 

elements needed for the NNLO contribution to inclusive jet production at hadron collid­

ers. This moves us one step closer in the process of achieving an improved theoretical 

description of the high energy jet phenomena in the experimental runs to come. 

7.2 Outlook 

The algorithm we use to calculate NNLO matrix elements is, in principle, suitable for 

multi-loop calculations with integrals that have a rich tensor structure as well as extra 

powers on the propagators. In practice, there is a limitation due to computer resources 

such as memory and CPU time, directly linked to the large systems of equations we need 

to solve for such integrals. The number of terms in each equation grows even more if we 

want to consider the case with, say a massive external leg for Z* ~ 3 jets. Both the 

manipulation and solution of the system of equations in this case, is a major stumbling 

block in the path to obtain analytic matrix elements. 

However, recent developments in the implementation of reduction algorithms that 

take different approaches to this problem and use different platforms and languages, may 

prove to be the solution for such important calculations. Tarasov (100], Gehrmann and 

Remiddi (63], and Laporta (101, 102] have provided various schemes for the automation 

of reduction algorithms. 
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Not only can the general reduction algorithm be improved, but also the numerical 

or analytic calculation of the master integrals. Binoth and Heinrich (58], for example, 

have proposed an algorithm for the isolation and removal of the poles given a Feynman 

representation of a loop integral and to proceed afterwards with the numerical evaluation 

of the finite integral. Gehrmann and Remiddi (67, 68, 69, 103] presented a method based 

on the analytic solution, in terms of generalised harmonic polylogarithms, of differential 

equations satisfied by the master integrals. Furthermore, Tarasov (100] and Laporta 

(102, 101], have set out to calculate master integrals using difference equations that arise 

from IBP identities, providing an algorithm that can also be automated. 

These improvements will enable us to go further in the calculation of matrix elements 

which are vital ingredients for the NNLO predictions for jet cross sections in hadron 

collisions. However, they are insufficient to make physical predictions. A major task, 

still to be established for semi-inclusive jet cross sections, is a systematic procedure for 

analytically cancelling the IR divergences between the tree-level 2 -+ 4, the one-loop 

2 -+ 3 and the 2 -+ 2 processes. Recent progress in determining the singular limits 

of matrix elements (29, 79, 104, 80, 88, 105, 106, 83, 86, 107, 84, 82] together with the 

analytic cancellation of these singularities in the case of e+e- -+photon+ jet at NLO 

(108], suggest that the technical problems for 2-+ 2 scattering processes are not far from 

being solved. 

We should note that a further complication is due to initial state radiation, since the 

factorisation of the collinear singularities from the incoming partons requires the evolution 

of the parton density functions to be known to an accuracy that matches the one from the 

hard scattering matrix element. This requires the knowledge of the three-loop splitting 

functions and in this field there are several recent results that should be noted here 

~2, 21, 23, 24, 27, 26, 25, 2~. 

Much work remains to be done, but looking at the latest results in different areas 

within the context of higher order corrections to jet cross sections, seems that NNLO 

numerical estimates of these may become available in the next couple of years. The 

theoretical uncertainties at this order will be smaller than the already existing NLO 

estimates thereby enabling improved descriptions of high energy QCD phenomena. 



Appendix A 
Integration over 

phase-space 

In this Appendix we present the D-dimensional integration over phase-space for the 

production of 2 and 3 particles. 

A.l 2 particles in the final state 

Consider the Lorentz invariant phase space factor given (in the centre of mass frame) by 

where 

Pi 
Etot 

(211' )D 

22[(27r)D-lj2 

momentum vector in D - 1 dimensions, 

incoming total energy in the CM frame Etot = .jS, 

normalisation for each delta function, 

for each momentum vector (normalisation 

of volume element). 

We use the delta function for the momenta to eliminate the integral over p2 to write 

(A.2) 

Here, we used D-dimensional polar coordinates to express the remaining differential over 

the vectorial momentum as 

(A.3) 

Now, to eliminate the delta function for the total energy, we need to change the 

differential over the momentum to a differential over the energy. This is easily done 

(recall Er= Pt and E 1 = E2 because of momentum delta function), so eq.(A.2) becomes 
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We know that E 1 = y's /2, so after using the last delta function we can complete the 

integration over the energy as 

(A.5) 

Finally, we use eq. (1.27) to substitute for the (D - !)-dimensional area of a unit 

sphere, to have 

which in D = 4 reduces to 

cp2 = D-3 ( ) ' 
22D-4 1f-2- f D21 

D-4 
8-2-

1 
<P2 = -. 

871" 

A.2 3 particles in the final state 

Consider the Lorentz invariant phase space factor given by 

where 

Pi 

Etot 

(27r)D 

23[(27r)D-lj3 

momentum vector in D - 1 dimensions, 

incoming total energy in the CM frame Etot = -/S, 
normalisation for each delta function, 

for each momentum vector (normalisation 

of volume element). 

(A.6) 

(A.7) 

We use the delta function for the momenta to eliminate the integral over p3 to write 

(A.9) 

Here, we used D-dimensional polar coordinates to express the remaining differentials over 

the vectorial momenta p]. and p2 as 

(A.lO) 

In eq.(A.9) and using fig.(A.l), we can rewrite the integral over the two differentials 

of angle as 
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, 
'I( 

P2 

P3 

Figure A.l: Schematic representation of the relation amongst the angles for a three 

particle phase space. The angle for the third momenta is specified in terms of the other 

angles by conservation of momenta. 

Then, eq.(A.9) becomes 

solid angle 
for p]_ 

angle between 
p]_ and p2 

solid angle 
for P2 

1 I df!v 1 I df!v-2 J(l) (Etat- E1 _··E2- E3) 23(27r)2D-3 -

I
d d D-2 D-2 

I Pl P2 P1 P2 ( · () )D-3 d() x E sm 12 12· 
E1 2E3 

(A.ll) 

(A.l2) 

Now, to eliminate the delta function for the total energy, we need to change the 

differential over the momenta and the angle, to a differential over the e~ergy. This is 

easily done if we consider the following 

• from the Law of Cosines and conservation of energy, we have 

~2 ~2 2 () Pl + P2 + Pl P2 cos 12 

::::} d ( cose12) E3 dE3, 
PlP2 

e can rewrite the integral over the angle, using eq.(A.13), as 

( sine12 )D-3 d()12 

::::} (sin()12)D-3 d()12 

(A.l3) 

(A.l4) 
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so that now eq.(A.12) looks like 

I d<I>3 = 23(27r~2D-3 I dOD-l I dOD-2 I I (EIE2sin 012)D-
4 

dEldE2 

X I dE3 J(l) (Etot- E1- E2- E3). (A.15) 

integrate out 
=> cons. of energy 

With the aid of the kinematics analysis done in section 2.1.2, we can change the 

integration over energy into integration over energy fractions. We need only algebraic 

manipulations that can be summarised as follows 

1. change of variables 

Vs -x· 2 ~ 

Vs -dx· 2 t 

2. change cosine relations to ratios of xi's 

1- cos 012 

1 +cos 012 

. 2 ll => sm u12 

2(1- X3) 

X1X2 

2 ( 1 _ 1- X3) 
XIX2 

1- X3 
4-2- 2- [XIX2 - (1 - X3)] 

xlx2 

3. have to corisider relation amongst energy fractions 1 - X3 = x1 + x2 - 1, so 

We introduce this information into eq.(A.15), to have 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

Finally, we use eq. (1.27) to substitute for the (D -1)- and (D- 2)-dimensional area 

of the unit spheres, to have 

(A.21) 

with 1 - X3 = x1 + x2 - 1. The integration region is 0 ::; x1, x2 ::; 1 with x1 + x2 + x3 = 2. 



Appendix B 
M aster Integrals 

In general the expansions of the master integrals contain the generalised polyloga­

rithms of Nielsen 

_ (-I)n+p-1 11 logn-1(t)logP(1- xt) 
Sn,p( X) - ( - 1) I I dt t ' n .p. o 

n,p ~ 1, x::; 1 

where the level is n + p. Keeping terms up to 0 (E) corresponds to probing level 4 so that 

only polylogarithms with n + p::; 4 occur. For p = 1 we find the usual polylogarithms 

Sn-1,1(z) = Lin(z). 

A basis set of 6 poly logarithms (one with n + p = 2, two with n + p = 3 and three with 

n + p = 4 is sufficient to describe a function of level 4. At level 4, we choose to eliminate 

the 822, 813 and 812 functions using the standard polylogarithm identities [92] and retain 

the three Li4 functions with arguments x and 1- x and (x- 1)/x where 

t 
X=--, 

8 

u 
y=--=1-x, 

8 

U X -1 
z=--=--. 

t X 

For convenience, we also introduce the following logarithms 

where J.L is the renormalisation scale. The common choice J.L2 = 8, for example, corresponds 

to setting 8 = 0. 

For relations between polylogarithms of different arguments and other identities see 

ref.[109] and references therein. 

B.l One-loop master integrals 

In this appendix, we list the expansions for the one-loop box integrals in D = 6- 2E. We 

remain in the physical region s > 0, u, t < 0, and write coefficients in terms of logarithms 

and polylogarithms that are real in this domain. More precisely, we use the notation 

presented at the beginning of this section to define the arguments of the logarithms and 

poly logarithms. 
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Figure B.1: Symbol for the Box6 topology 

We find that the box integrals have the expansion 

Box6(u, t) = eerr (1 +E) r (1- E)2 (l-l2) ~ {! [(x- Y)2 + 7r2] 
28f(1-2E)(1-2E) 8 2 

+2, [Li3(x)- XLi2(x)- ~X3 - ~2 
X l 

2[ . . 1 2 . 1 4 1 3 1 2 2 -2E L14(x) + YL13(x)- 2x L12(x)- 8x -
6

x Y + 
4

x Y 

-:
2
x 2

- ~
2

XY- ;;] +(u++t)}+0(E3), (B.1) 

and 

e~"Yf(1 + E)f(1- E)
2 (-J.L2

) ~ { (X2 + 2i1rX) 
2uf(1 - 2E)(1 - 2E) U 

+E [ ( -2Li3(x) + 2XLi2(x)- ~X3 + 2Y X 2 - 1r2 X+ 2(3) 

+irr ( 2Liz(x) + 4Y X- X 2
- :') l 

+E
2 

[ (2Li4(z) + 2Li4(Y)- 2YLia(x)- 2XLi3(Y) + (2XY- X 2 -1r2)Lh(x) 

+-X4- -X3Y + -x2y2 + -?r2 X2- 27r2 XY + 2Y(3 + -7r4 1 5 3 2 1 ) 
3 3 2 3 6 

+i1r( -2Li3(x)- 2Li3(Y) + 2YLi2(x) + ~X3 - 2X2Y + 3XY2 

-~
2

Y+2(3)]}+0(E3). (B.2) 

Box6(8, u) is obtained from eq.(B.2) by exchanging u and t. 

Finally, the one-loop bubble integral in D = 4- 2E dimensions is given by 

-o-(8ij) 

Figure B.2: Symbol for the BUB topology 

Bub(8) = eerr (1 +E) r (1- ti (-J.L2
) ~ 

f(2-2E)E 8 
(B.3) 
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B. 2 Two-loop master integrals 

In our calculation there are 10 master integrals for the two-loop planar and non-planar 

topologies. Here we list the expansion in E = 2 - D /2 for each of them, following the 

notation we introduced at the beginning of this appendix. 

B.2.1 The SUNC topology 

8 (Bij) 

Figure B.3: Symbol for the SUNC topology 

SUNC s = r 1 +E) s ----m--+ -((2)- -Z71"- - E ( ) ( 2 -2e+l { 1 1 . 13 [7 13 . 115] 
4E 2 8 2 4 16 

+ -((3) +-m + -((2)- -i1r-- E [
5 1. 3 91 115 865]2 
2 2 4 8 32 

[ 
109 (65 . ) 13. . 805 865 5971] } + -4((4) + 4 + 5m ((3) +4m3+ 8((2) -16i7r- M E3 

( ) ( 2 ( -2e+l { 1 13 [ 1 115] SUNC u = r 1 +E) -u) ---- + -((2)-- E 
4E 8 2 16 

[
5 13 865] [11 65 115 5971] } + 2((3) + 4((2)- 32 E2 + 4((4) + 4((3) + 8((2)- M E3 

SUNC(t) = [suNC(u)L~, 
(B.4) 

B.2.2 The TRI topology 

Figure B.4: Symbol for the TRI topology 

- { 1 1 [· 5] . 19 TRI(s) = r(1 + E) 2 s 2
€ -2 +- m+- - 6((2) + 5z71" +-

2E E 2 2 

+ [ -4((3) - ~i1r3 - 30((2) + 19i7r + 
6
2
5

] E 
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[ 10 211] } + 24(( 4) - 4 (5 + 2i7r) ((3) - 3i7r3 
- 114((2) + 65i7r + 2 £ 2 

{ 
1 5 19 [ 65] TRI(u) = f(1 + E)

2 
( -u)-2

€ 
2

£2 + 
2

£ + 2 + -4((3) + 2 E 

+ [ -6((4) - 20((3) + 2~ 1 ] ,, } 

TRl(t) ~ [ TRl( u) L=, 

B.2.3 The GLASS topology 

-(X)-(sij) 

Figure B.5: Symbol for the GLASS topology 

GLASS(s) ~ r(1 + <) 2 
s-2

' { ,~ + ~ [ 2 + i>cl + 8i1e- 14((2) + 12 

+ [ -4((3) - 2i>c3 
- 56((2) + 24i,.- + 32]' 

+ [ 118(( 4) - 8 (2 + ;,.-) ((3) - 8i,.-3 
- 168((2) + 64i,.- + 80 l <2 } 

GLASS(u) = f(1 + E)
2 

( -u)-2
€ 2 +-- - (1r- 6) (1r + 6) { 

1 4 1 
E E 3 

+ [ -4((3) - 8( (2) + 3+ + [ -2(( 4) - 16((3) - 24((2) +80 l ,, } 

GLASS(t) ~ [ GLASS(ul=t 

B.2.4 The XTRI topology 

Figure B.6: Symbol for the XTRI topology 
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XTRI(s) = r(1 + E)2 8-2(l+c) {_!:_ + 2i7r- 19((2) + ~ [-27((3)- 11 irr3] 
E4 E3 E2 E 3 

+ 
4~3 ((4)- 54irr((3)} 

XTRI(u) = r(l + E)2 ( -u)-2(l+c) { _!:_ _ 7((2) _ 27((3) _ 57 ((4)} 
E4 E2 e 2 

XTRI(t) = [xTRI(ul:, 
(B.7) 

B.2.5 The CBOX topology 

Figure B. 7: Symbol for the CBOX topology 

r(1 + E)2 8-2c { 1 [1 l 1 [ 
CBOX(s, t) = 2 -X2 + irrX +- -2Li3(x) + 2 (X+ irr) Li2(x) 

s+t E 2 E 

- ~X3 
+ (Y- irr) X 2 + 2 ( -3((2) + iY rr) X- ~irr3 + 2((3) ]- 4S2,2(x) + 4Li4(x) 

+4 (X+ irr) S1,2(x)- 4 (Y + irr) Li3(x) + 2 ( -6((2) + 2Y X+ 2iYrr- X 2) Li2(x) 

+~X4 
+ ~ (irr- 2Y) X 3 + (Y2 - 2iY rr + 5((2)) X 2 + ( -4((3)- 12Y((2) 

- ~irr3 + 2iY2rr) X + 2 ( 2((3) - ~irr3) Y + 27(( 4)} 

CBOX(u, t) = r(
1 

+ E)
2 

( -u)-
2
" { 

1
2 [~X2 - Y X+ ~Y2 + 3((2)] + ~ [-2Li3(z) 

u+t E 2 2 E 

4 1 l +2(Y- X)Li2(z)- 3x 3 + 3Y X 2 - 2(Y2 + 3((2))X + 2((3) + 3"Y3 - 4S2,2(z) 

+4Li4(z) + 4(Y- X)S1,2(z)- 4(Y- 2X)Li3 (z) + 2(3X2 - 4Y X+ Y2)Li2(z) 

+ 
1
6
1 

X
4

-
1
3
4

YX3 + (4Y2 + 5((2))X2 - 2(~Y3 + 2((3)- Y((2))X 

-Y2((2) + ~Y4 - 3((4)} 

CBOX(t, u) = [csox(u, t)L:!,!:" 

(B.8) 
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B.2.6 The ABOX topology 

Figure B.8: Symbol for the ABOX topology 

ABOX(s, t) = r{1 + t)2 
,-(l+2>) { ,~ + ,~ [i.-- X+ 2] + H ~X2 - (2 + i.-) X 

-7((2) + 4 + 2i7r l + Li3(x) +(X+ in-) Li2(x) + ( 1- ~y + i7r) X 2 

+ ( -iY 1r- 2i?r + 7((2) - 4) X + 8 - ~i1r3 + 4i?r - 14((2) - 10((3) 

+ [ S2,2(x)- 2Li4(x)- (X+ i1r) S1,2(x) + (2 + 2i?r + Y) Li3(x) 

+ ( X
2

- (Y + 2)X- iY1r + ~1r( -12i + S1r)) Li2(x) 

--X +- Y- z1r X + --Y + m- 1 Y + 2z?r- 6( 2 + 2 X 1 4 2( . ) 3 ( 1 2 (' ) . ( ) ) 2 
6 3 4 

( 
1 1 1 ) + -2iY

2
1r + "67r(-12i + S1r)Y + Ji1r3 - 8 + 14((2) + 11((3)- 4i?r X 

+ ( -((3) + ~i.-3) Y - {20 + 9i.-)((3) + 16 + 3
4
1 

(( 4) - 28((2) + Si.- - i.-3] t} 
ABOX(u,t) = r(l+t)2 (-u)-(1+2€) {~+~[2+Y-x] 

€3 €2 

+- -X2 - (Y +2)X +4+2Y -4((2) + -Y2 1 [1 1 l 
€ 2 2 

+Li3(z) + Li2(z)(X- Y) + ~X3 + ( 1- ~y) X 2 + (7((2)- 2Y- 4) X 

+~Y3 
+ Y

2 
+ 4(1- ((2)) Y -10((3)- 8((2) + 8 + [s2,2(z) +(X- Y)S1,2(z) 

+ (Y- 2X + 2) Li3(z) + ( -2X2 + (3Y + 2)X- 2Y + ((2)- Y2) Li2(z) 

17 4 ( 11 2) 3 ( 3 2 11 ) 2 --X+ -Y+- X+ --Y -Y--((2)+2 X 
24 6 3 2 2 

(
1 ) 1 1 + JY

3 
+ (1r- 2)(7r + 2)Y + 11((3)- 8 + 14((2) X+ 

24 
Y 4 + JY3 

+2(1- ((2))Y2 + ( -10((3) - 8((2) + 8) Y + 16- 3((4)- 16((2)- 20((3) l t} 

ABOX( t, U) = [ ABOX{ u, t) L~t,t~u 
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B.2.7 The PBOXl topology 

Figure B.9: Symbol for the PBOX1 topology 

r( 1 + E) 
2 

s-
2

€ { 4 1 [ l 1 [ l PBOX1(s, t) = 
82

t E4 + E3 -5X + 3i7r + E2 2X2 - 6i1l'X- 19((2) 

+} [ 4Li3(x) - 4(X + i7r)Li2(x) + ~X3 + 2(3i71'- Y)X2 + ( -4iY 7r + 38((2))X 

-19((3)] + 4S2,2(x)- 44Li4(x)- 4(X + i11')S1,2(x) + 4(6X + 8i7r + Y)Li3(x) 

-2(X
2 

+ 2(Y + 3i7r)X- 10((2) + 2iY 7r)Li2(x)- ~X4 + 4 (~y- i71') X 3 

+( -38((2) + 4iY 71'- Y2)X2 + (20Y((2) + 26((3)- 2iY27r)X 

+ ( -4((3) + ~i71'3) y-
9
2
3 
((4)- 12i((3)7r} 

PBOX!(u, t) = r(! + '~,; -u)-'' { ,~ +:, [y- X l + ,1
2 

[2X2 - 4Y X+ 2Y2 

-19((2) l + } [ 4Li3(z) + 4(X - Y)Li2(z) + 2X3 - 4Y X 2 + 2(19((2) + Y2)X 

-26Y((2)- 19((3) l + 4S2,2(z) + 36Li4(z) + 4(X- Y)S1,2(z) + 4(4X- 5Y)Li3(z) 

+2( -X2 + Y2 + 20((2))Li2(z)- 3X4 + 8Y X 3 - (7Y2 + 18((2))X2 

+2(8Y((2) + Y3 + 13((3))X- 22Y((3)- 4Y2((2) + 
2~7 ((4)} 

PBOX!(t, u) = [PBOX!(u, t)L=t,t=u 

B.2.8 The PBOX2 topology 

Figure B.lO: Symbol for the PBOX2 topology 

f(1 + E)
2 

s-
2

€ { 9 1 [5 l 1 [ l PBOX2(s, t) = 82 4E4 + E3 2"i71'- 2X - E2 4i7l'X + 17((2) 

(B.10) 
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+~ [8Li3(x) - 8(X + i1r)Li2(x) + ~X3 + 4(-Y + i1r)X2 - 4(2iY 1r- 7((2))X 
E 3 

-16((3)- ~i1r3] + 20S2,2(x)- 28Li4(x)- 20(X + i1r)S1,2(x) 

+4(5Y + 2X + 6i1r)Li3(x) + (6X2 - 4(i7r + 5Y)X + 52((2)- 20iY7r)Li2(x) 

-~X4 + ~(2Y- i1r)X3 + (8iY 1r- 5Y2 - 26((2))X2 - 29((4) 

+ (52Y((2) + 28((3) + ~i1r3 -10iY27r) X+ 10 (~i1r3 - 2((3)) Y- 4i((3)7r} 

PBOX2( u, t) = r(1 + E)2 ( -u)-2€ { ~ + ! [y- x]- 14((2) 
u2 4E4 E3 E2 

+~ [ 8Li3(z) + 8(X- Y)Lh(z) + 4X3 - 8Y X 2 + 4(Y2 + 7((2))X- 4Y((2) 

-16((3) l + 20S2,2(z) - 12Li4(z) + 20(X- Y)S1,2(z) + 4(3Y- 8X)Li3(z) 

+2(-13X2 + 16YX- 3Y2 + 4((2))Li2(z) -7X4 + 16YX3 

-ll(Y
2 

+ 2((2))X2 + 2( -4Y((2) + Y 3 + 14((3))X- 8Y((3) + 20((4)} 

PBOX2(t,u) ~ [PBOX2(u,t)L~t,h 

B.2.9 The XBOXl topology 

Figure B.ll: Symbol for the XBOX1 topology 

r(1 + E)
2 

8-
2
€ { 28 1 [( 5 ) ( 7 ) l XBOX1(8, t) = 82t(s + t) - E4 + E3 -t + 28 X+ t + 28 Y + 2i7rs 

+ ,; [ -sX
2

- (4Y s + i(2t + s)1r + 6t)x- Y 2s + (i(2t + s)1r + 6(s + t))Y 

-~((2)s + 6i1r8] + ~ [ -28SI,2(x) + 28Li3(x)- 28Li2(x)X + ~(2t- 8)X3 

-2(tY + i1r8)X2 + ((2t + 38)Y2 - 2s(i7r + 6)Y +(58+ 34t) ((2) 

-12i(s + t)1r + 24t) X- (• + ~~) Y3
- 2i1rY2s- 2 ( ( 17t + 2: s) ((2) 

(B.ll) 



B. Master Integrals 

. ) . 31. 19 l -6zt7r + 12{8 + t) Y- 24zrr8- 6 zrr3
8 + 2 ({3)8 - 36{2t + 8)S2,2(x) 

+2{438 + 30t)Li4{x) + 2{30t- 138)S1,3(x) + (4(78 + 13t)X- 2{38- 10t)Y 

+4i{ll8 + 3t)rr- 24(8- t))s1,2{x) + ( -20(38 + 2t)X- 4(5t + 38)Y 

+4i(3t- 88)rr + 24(t + 28))Li3(x) +((lot+ 178)X2 + {4(5t + 38)Y 

-2i( -7 8 + 6t)rr- 24{28 + t))X + 18irrY 8 + 60(8 + 2t)((2) 

-24i(2t + 8)rr )Li2{x) + ~(8- t)X4 + (~(8 + t)Y + ~i(58 + 2t)rr + 4t)x3 

+((t- 8)Y2
- 4(3t + itrr + 38)Y- 30 (t + ~8) ({2) + 12i(8 + t)rr )x2 

+( -~(8+2t)Y3 +2(68 -itrr)Y2 + (12 (
1
; 8+5t) ((2) 

-24i(8 + t)rr + 488) Y + ( -138 + 38t)({3) + ~i(78 + 5t)rr3 + 84t((2) 

+48i(8 + t)rr- 96t) X+ ~(28 + t)Y4 + (- ~i(2t- 38 )rr- 4(8 + t)) Y 3 

+6( (~5 8+ 5t) ((2)- 2itrr )Y2 + ( -(38t + 338}((3) -li(8 + 20t)rr3 

-84(8 + t)((2)- 48itrr + 96(8 + t)) Y- (i(12t + 898)rr + 24t)((3) 

(
37 67 ) . } +9 48- 3t ((4) + 2z(2t- 8)rr3 + 96irr8 
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r(1 + t:)
2 

( -u)-2
€ { 2u 1 [( 5 ) 1. l XBOX1(u, t) = 2 ( ) - 4 + 3 -t + -u X- 6Yu- -z(2t + 7u)rr 

utu+t E E 2 2 

1 [ . 31 +2 -uX2 + 2(3Yu- 3t + 2mu)X- 6Y2u- 6u(1 + irr)Y + -((2)u 
€ 2 

-6i(u + t)rr] + ~ [2s1,2(z)u + 2iLi2(z)rru + ~X3t + 2itX2rr + (3Y 2u 

+6u(2 + irr)Y + 2 (-
3
2
1 

u + 5t) ((2) + 12(2t + irru)) X- 2Y3u- 3u(4 + irr)Y2 

+(54((2)u- 12irru + 24u)Y + 
1
; ((3)u + ~i(6t + llu)rr3 + 24i(u + t)rr] 

-2(6t + 31u)S2,2(z) + 12(u + 2t)Li4(z)- 2S1,3(z)(30t- 13u) 

+(2(4t- 27u)X + 12(4u + t)Y- 20i(2t- u)rr- 24(t- u))s1,2(z) 

+ ( 6(5u + 4t)X- 12(2t + u)Y- 4i(3t + llu)rr + 24(u + 2t)) Li3(z) 
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+ ( 12(t + 2u)X2 + ( -6(4t + 5u)Y + 4i( -9u + 2t)rr + 24(u + 2t))X 

+6(u + 2t)Y2 + (6i(5u + 2t)rr- 24(u + 2t))Y + 6( -llu + 2t)((2) 

) 
1 ( 17 ) ( 2. -24i(t- u)rr Liz(z) + 3 5t + 

2
u X 4 + -3(3u + 2t)Y-

3
z(5t + 13u)rr 

+4(3u + 4t)) X 3 + ( 9(u + t)Y2 + (3i(5u + 4t)rr- 12(2u + 3t))Y- 2((2)u 

-12itrr )x2 + ( -(u + 4t)Y3 + 6(4u + 4t- itrr)Y2 + (-12(t + 4u)((2) 

+24i(u + t)rr- 48u)Y + 3(6t- 7u)((3)- 2i(t + 4u)rr3 + 84t((2)- 48irru 

-96t)x- ~Y4u- u(8 + irr)Y3 + (33((2) + 48 -12irr)Y2u + (5irr3 - 96 

+84((2) + 48irr + 60((3))Yu + 3(5i(5u + 6t)rr- 8u)((3) 

-
9~3 u((4) + 2i(3u + t)rr3 - 96i(u + t)rr} 

XBOXI(t, u) ~ [xBOX!(u, t)L~•.•~• 
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(B.12) 

B.2.10 The XBOX2 topology 

Figure B.12: Symbol for the XBOX2 topology 

r(1 + E)
2 

s-
2

€ { 1 [ l 1 [(3 ) 1 l XBOX2(s, t) = ( ) - 4 t + 3s + 3 -s- 2t X- 2itrr + -tY 
st S + t 4E E 2 2 

1 [ 1 5 + E2 -2(3s + t)X2 + ( -itrr- 3t + 4tY)X- 2tY2 + (3t + 3s + itrr)Y + 
2

t((2) 

+3irrs] + ~ [ -4tSI,z(x) + (t + 3s)Li3(x) + ( -(3s + t)X + 3i(t- s)rr)Li2 (x) 

+(2t + s)X
3 

+ ( -~(7t + 3s)Y + 2itrr) X 2 + ( -tY2
- (i(t + 3s)rr + 6s)Y 

+29t((2)- 6i(s + t)rr + 12t) X+ ~tY3 + 2itrrY2
- (12s + 12t + 5t((2)- 6itrr) Y 

( 11 ) 25 l + 2t + 3s ((3)- 12irrs + 6 itrr3 + 9(s- 5t)Sz,z(x)- 2(3s + 16t)Li4 (x) 

+98tS,,,(x) + ( (15t- 9s)X + 38tY - i(53t + 9s).-- 12(s - t)) S1,2(x) 



B. Master Integrals 

+ (20Xt + (9s + t)Y + 2i(34t + 3s)7r + 12(t + 2s) )Lh(x) + (( -4t + 3s)X2 

-((9s + t)Y + 24s + 26it7r + 12t)X- 3i(3s + 13t)7rY + 3(7s + 13t)((2) 

-12i(2t + s)1r) Li2(x)- ~ (s + 
1
3
1 
t) X 4 + 2((s + t)Y- it1r + t)X3 

+ ( -~(9s + t)Y2 - (i(t- 3s )1r + 6(s + t))Y- 25t((2) + 6i(s + t)1r) X 2 

162 

+ ( -~tY3 + ( -~i(l3t + 9s)" + 6s) Y 2 + G ( 7s + ~~) "'- 12i(s + t)" + 24s) Y 

+(45t- 6s)((3)- ~it1r3 + 42t((2) + 24i(s + t)1r- 48t) X- ~Y4 t 

- ( 
1
3
° it1r + 2(s + t)) Y3 + ( -6it1r + 5t((2)) Y2 + ( -(9s + 38t)((3) 

- ~i( -9s + 17t)7r3 - 42(s + t)((2) - 24it7r + 48(s + t)) Y + ( -12t + 71it7r)((3) 

+9 ( -19t + 
1
7
2

s) ((4) + i( -s + 2t)7r3 + 48i7rs} 

r ( 1 + r:? ( u)-
2

t { 1 [ ] 1 [ ( 3 ) XBOX2(u, t) = ut(u + t) - 4104 3u + t + 103 -2t + 2u X 

+~(t- u)Y- ~it1r] +I_ [-~(t + 3u)X2 + (3(u- t)Y- 3t- 4it7r)X 
2 2 r:2 2 

+~(t- u)Y2 - 3Yu + ~t((2)- 3i(u + t)1rl + ~ [4tSI,2(z) + 3(u- t)Li3(z) 

+(3(u- t)X- 3(u- t)Y + 4it7r )Li2(z) + (2u + ~t) X 3 

+ ( -~(3u + t)Y + Sit1r) X 2 + ( 3(u- t)Y2 + 6( -2it7r + u)Y 

+41t((2) + 6(2t + i1ru))x- ~(u- t)Y3 - 6Y2u + (9(u- t)((2) 

-6u( ;, - 2)) Y + Gt + 3u) ((3) + ~it"' + 12i( u + t)"] 

+(9u + 53t)S2,2(z) + 12(2t- u)Li4(z)- 98SI,3(z)t 

+ ((83t + 9u)X- 9(u + 5t)Y- 60it1r + 12(u- t)) S1,2(z) 

+ ( -18(u + t)X + 3(3u- 7t)Y + 14it" + 12(2t + u)) Li3(z) 

+ ( -6(2u + 5t)X2 + (3(5u + 7t)Y + 44it7r + 12(2t + u))X- 3(u- 3t)Y2 

-6(it1r + 4t + 2u)Y + 3(15t- u)((2) - 12i(t- u)1r) Li2(z) 
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1 ( 127 ) ( 1 25 ) - 8 23u + 3 t X 4 + 2"(13u + 25t)Y + 3 it1r + 2(3u + 4t) X 3 

+ ( -~(4t + 3u)Y2
- 6(2u + 3t + it1r)Y- ~ (

2
; t + u) ((2)- 6it1r) X 2 

+ ((u- 3t)Y3 + 3(4u + 4t- 3it7r)Y2 + (6(8t- 3u)((2) + 12i(u + t)1r- 24u)Y 

+3( -2u + 5t)((3) + 9it7r3 + 42t((2) - 24(2t + i1ru)) X+ ~(t- u)Y4
- 4Y3u 

163 

+ ( 6( u - !)((2) + 6u( 4 - i")) Y2 + ( 15( u - t)((3) + 24im< - 48u + 42((2)u) Y 

. 15 ( 11 ) } +( -12u + 45zt7r)((3) - 2 u-
10 

t ((4) + i(3u + t)1r3 - 48i(u + t)1r 

XBOX2( t, u) = [ XBOX2( u, t) L=t,t=" 
(B.13) 



Appendix C 
Finite Contributions 

In this appendix we present, for each partonic process, the expressions for the colour 

expansion coefficients of the finite pieces for the relevant physical channels indicated in 

Chapter 6. We use the notation introduced in Appendix B. 

C.l Unlike quark scattering 

C.l.l The s-channel process qfj ---t q'q' 

C.l.l.l Two-loop contribution 

A, (4Li4 (x) + (-
2
:- 4X) Li3 (x) + e: X+ 2X2

- ~ ,-2
) Li2 (x) + 22X S 

+ 197 (3 + 113 rr4 + ~ x 4 + 110 x 2 _ 49 x 3 _ ~ rr2 _ 316 x _ ~ x 2 rr2 + Q x2 Y 
18 360 3 9 9 3 27 3 3 

_ ~ rr2 x Y _ 155 rr2 x _ 2777 8 + ~ x 3 Y _ 14 (3 8 + Q rr2 8 _ 22 x 2 8 + 23213 
3 36 108 3 12 3 1296 

_ 2X(3 + 1~1 82) [t2~u2] 

+ (- 6 Li,(y) + 12 Li4 (x) - 6 Li4 (z) + 6 Li3 (y) X+ (- 7- 4 X) Li3 (x) 

( 
2 2) . 7 4 64 4 7 2 2 11 2 34 2 + 1r + 7 X+ X L12(x)-

60 
1r - 9 X+ 

18 
1r + 1r X Y-

3 
X S + 9 X 

26 2 3 3 2 2 7 2 11 49 3 ) [t2 - u2] -2 X (3 - 9 1r X + X Y - 2 X 1r + 2 X Y + 3 X S -
18 

X + 4 (3 
82 

+ ( 6 Li,(y) - 6 Li,(x) + 6 Li4 (z) - 6 Li3 (y) X - 5 Li3 (x) + (- ,-2 + 5 X) Li2 (x) 

14 64 122 112 72 52 11 
+ 4 X + 9 X + 2 X 1r + 6 X (3 -

18 
1r - 3 1r X + 2 X Y -

3 
X S 

2 3 8 2 1 4 3 2 ) 2t +8 (3 + 3 X - 3 X + 20 1r - X Y - 1r X Y + 6 X ~ ( C .1) 

( ( 
44) . 44 . 617 2 443 125 3 55 2 B 8 12X + 3 L13(x)- 3 L13(y) - 18 x +4X(3-

18 
(3 + g-X -

36 
7r 

79 4 8 2 16 . 632 4 31 2 155 2 
+ 360 7r - 3 7r X y- 27 X- 12 LI4(x)- 27 y- X - 3 X y + 18 7r X 

164 
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+6 x 2 
1r

2 + 4 1r
2 - 6 X 2 - - x - - Y L12 ( x) - 2 X 3 Y + - 1r2 s - 44 x s ( 

44 44). 1 
3 3 12 

44 2 1502 30659 4 2 2 2 2 s 
+2 (3 S + 3 X S - ---r/ S + 324 - 4 Y (3 - 3 Y 1r +X Y + 44 Y 

_ 44 y 2 S + ! y 4 + g X y _ 71 y 3 _ 31 X y 2 _ 37 y 71"2 + 599 y 2) [t2 
+ u

2
] 

3 2 9 3 6 18 s 2 

( 
37 2 131 3 88 2 1 4 2 2 74 

+ -24Li4(y)-
18

x -18(3+lSX - 9 1r -
10

1r -
3

1r XY+
9

X 

. 128 17 4 15 2 89 2 13 2 2 3 2 2 
+6LI4(x)+g-Y-

12
X - 2 x Y+

18
1r X+ 6 X 1r +2X Y-X Y 

+ (8 X Y - 3 X 2 - ~ 1r
2 - 11 X + 16 Y) Li2 ( x) -

22 
X S + 

22 
X 2 S - 16 Li4 ( z) 

3 3 3 

+(1!- 24Y + BX) Li,(x) + (4Y + 16) Li3 (y) + ~XY3 + 12Y (3 + ~ Y 2
,-

2 

_ 22 y S + 22 y 2 S _ ! y 4 + 34 y 3 + 10 X y 2 + 59 y 11"2 _ 181 y 2) [t2 
- u

2
] 

3 3 3 9 18 18 s2 

+( (9 -12Y) Li,(x) + (4,-2 -12Y- 9X) Li2(x)- 24Li4(y) + 5: X2 

5 3 4 2 17 4 2 74 128 
-12X (3 + 10 (3- 3 X - 3 1r -

30 
1r + 47r X Y- 9 X+ 24Li4(x) + g Y 

-X
4

- 4X
2 

Y + 
2
6
5 

1r
2 
X- 2X2 1r2 + 4X3 Y + ~2 X S + 12 (X- 1) Li3(y) 

+12 Y (3- 3 X 2 Y2 -
22 

Y S +X Y +! Y3 - 1l X Y 2 - ~ Y 1r2 -
23 Y 2 - 24 Li4(z)) 

3 2 2 2 6 

-14X2 
!___ + 10Y2 ~ (C.2) 
u t 

Cs = (32Li4(Y)- ~X2 -15(3- 9X3 + 
29 

1r
2 -

49 
1r4 + 

44 
rr2 XY +48X + 16Li4(x) 

2 12 30 3 

5 4 2 22 2 2 . 8 3 2 -48Y+ 6X +9X Y- 3 x 1r -16LI3(x)X+ 3X Y-1r S+12(3S 

( 
2 2 16 2) . 3 511 . 32 3 2 2 + 8X -16Y + 3 1r LI2(x)+ 4S+l6-32LI3(y)Y-

3
XY -2Y 1r 

-3 X2 y2 + ! y4 - 27 X y- 9 y3 + 9 X y2 + 59 y2) [t2 + u2] 
6 2 s2 

( 
. 27 2 16 3 8 2 1 4 2 

+ 24LI4(Y)- 2 x + 16X(3+8(3- 3 x - 31r + 
15 

1r +27r XY+ 12X 

. 8 11 1 
-48LI4(x) + 12Y + -X4 +2X2Y + -rr2 X+ -X2 1r2 - 6X3 Y 

3 6 6 

+(36Y + 8- 4X) Li3(x) + (- 36X + 20Y- 4) Li3 (y) 

+4(2Y
2 

+ X
2

- 2X- Y- 6X Y + 2,-2
) Li2(x) + 6XY3 - 32Y(3 - ~ Y2 ,-2 
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-6X2 y2- ~ y4 + 14 y3- 8XY2 + ~ Y1r2 + ~ y2 +48Li4(z)) [t2 -2 u2] 
3 3 2 2 s 

( 
. . ( ) . ) 19 2 3 2 7 y3 + 8L13(y) + 4LI3(x) + 8Y- 4X L12(x -6 Y 7r -12X + 2 Y + 2 

+~ 1r
2 x- ~ x 2 y-

21 
x 2 + 2 1r

2 + ~ x Y 2 + ~ X 3 - 3 x Y + 12 Y- 24 (3) 
6 2 2 2 2 

+6X2 .!_ + 6Y2 ~ (C.3) 
u t 

(
46 37 2 2 2 4 4 . 4 3 29 2 41 2 - s + - 7r X - - X y - - Li2 (X) X + - LI3 (X) + - X - - X + - 7r 
3 18 3 3 3 9 9 18 

-~1r2 S- 455_ 44 82 _ 4XS+ix28 +124X- 49(3) [t
2

+u
2

] 
6 27 9 3 27 9 s2 

+ -1r X+-X --X --1r --X8+-X 8+-X (
8 2 2 3 13 2 4 2 2 2 2 16 ) [t2 - u2] 
9 9 9 9 3 3 9 s2 

+ --X +-1r --X+-XS ( 
1 2 4 2 16 2 ) 
3 9 9 3 (C.4) 

(~ Li3(y)- ~ Lia(x) + ~ (y + x) Li2(x) + 
236 

8-
37 

1r2 X+ i X 2 y- 248 X 
3 3 3 27 9 3 27 

_ 1370 + i x y 2 _ ~ x3 + 58 x2 _ !_ 71"2 + ~ 71"2 8 + ~ y2 8 + g y 11"2 + 8 x 8 81 3 9 9 18 6 3 3 

-~ x2 8- 58 y2- 8 y 8- 35 (3 + ~ y3 + 248 y) [t
2 + u2

] 
3 9 9 9 27 s2 

+ ( - 32 X + 16 71"2 + 26 y2 - 16 71"2 X - i y3 - 32 y - i X3 + i X 8 - i X2 8 
9 9 9 9 9 9 9 3 3 

_i y2 s + i y 8 + 26 x2- 16 y 11"2) [t2- u2] 
3 3 9 9 s2 

+~(x-Y) (3X+l6-6S+3Y) (C.5) 

C.l.1.2 One-loop self-interference contribution 

(
4 2 3 2 2 11 2 13 121 2 -X1r -3X +-1r +11X8--X 8--X+-8 
3 9 3 3 18 

107 X 2 169 _ 143 8 2 X 2 2 ~ x 4) [t
2 + u2

] 
+ 18 + 162 27 + 7r + 2 s2 

( 
13 1 4 1 2 1 2 20 2 + --X+-X--1r--X1r+-X 
18 2 3 3 9 
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(C.7) 

Bs ( 133 y2 - 26 Y - ~X rr2 - 6 x2 rr2 + 9 x3 - ~ x4 + 104 - 46 X - 22 y2 s 
18 3 3 2 9 3 3 

+22 Y S + 
2

3
2 

X 2 S- 22 X S + 4 Y X rr2 - 3 Y2 X+ 9 Y X + Y2 X 2 - 1
1
5
8

1 X 2 

+2 y2 7r2 - 3 y3 + ! y4 - 88 s + ~ y 7r2 - 3 y x2) [t2 + u2] 
2 3 3 s2 

( 
53 2 13 8 2 2 2 3 3 4 4 2 23 

+ --Y +-Y+-Xrr -6X rr +6X --X +-rr --X 
18 9 3 2 3 9 

+!! y2 s - 11 Y s + 11 x2 s - 11 x s + y2 x - 35 x2 - 2 y2 rr2 + 2 y3 
3 3 3 3 18 

_! y4- ~ y 7r2- y x2) [t2- u2] 
2 3 s2 

+ (! y2 X - 3 y X - 11 y S - y2 + 13 y + X rr2 - ~ X2 rr2 - ~ X4 - rr2 
2 3 9 2 8 

+!! x s + 23 x + 3 x2 + ! y2 rr2 + ! Y x2 + Y rr2 + ! y4) 
3 9 2 2 8 

-~ x2 (4rr2 + x2) f_ +! y2 (y2 + 4rr2) u2 
8 u2 8 t2 

+ ~ x ( - 47r
2 + x' - 2 x' + 4 x "') ~ 

-~ y (- 411"
2 +4Y "'- 2Y

2 + Y') T (C.8) 

Cs ( 
5
; Y

2 
- 48 Y + 6 X 2 rr2 - 9 X 3 + ~ X 4 + 48 x + 32 - 12 Y x rr2 + 9 Y2 x 

-27 y X- 3 y2 X2- ~ X2 + 6 y2 rr2- 9 y3 + ~ y4 + 9 y x2) [t2 + u2] 
2 2 s 2 

+ (6 y3 - 3 y2 X - 6 y2 rr2 + 8 X - 25 y2 - ~ y4 + 3 y X2 - 6 X rr2 
2 2 

+6 x2 7r2 + 8 y - 6 x3 - ~ x2 + 6 y 7r2 + ~ x4) [t2 - u2] 
2 2 s2 

+ ( - 8 X - 3 Y rr2 - ~ Y2 X + 9 Y X - 3 X 2 + ~ Y2 rr2 - 3 Y2 
2 2 

+8 Y - 3 x rr2 + ~ x2 rr2 - ~ Y x2 + ~ x4 + 3 rr2 + ~ y4) 
2 2 8 8 
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--X1r --1r +-X+-X S-2XS--S --X ( 
4 2 4 2 10 2 2 22 2 10 2 
3 9 3 3 9 9 

-130 136 s) [t
2 

+ u
2

] 
81 + 27 s2 

+ --X1r +-7r +-X+-X S--XS--X ( 
2 2 1 2 5 1 2 1 5 2) [t

2 
- u

2
] 

3 3 9 3 3 9 s2 

(
1 5 1 2) + 3xs- 9x- 37r 

( 
20 2 20 8 2 20 80 4 2 

--Y +-Y+-X7r --X+4XS--+-Y S 
9 3 3 3 9 3 

-4 y s + 20 x2 + 16 s - ~ y 7r2 - ~ x2 s) [t2 + u2] 
9 3 3 3 s2 

+ -Y --Y+-X1r --1r --X+-XS--Y S (
10 2 10 4 2 4 2 10 2 2 2 
9 9 3 3 9 3 3 

+~ y s + 10 x2 + ~ y 7r2- ~ x2 s) [t2- u2] 
3 9 3 3 s2 

-~(3s-s) (x-Y) 

F = (50 - 20 S ~ 2 ~ s2) [t2 + u2] 
8 81 27 + 9 7r + 9 s 2 

C.1.2 The u-channel process qij' ---+ qij' 

C.1.2.1 Two-loop contribution 

168 

(C.9) 

(C.10) 

(C.ll) 

(C.12) 

Au ( ( 
2
3
2 

+ 4 X - 4 Y) Li3 ( x) + ( 
2
3
2 

+ 4 X - 4 Y) LiJ (y) + ( - ~ 1r
2 -

2
3
2 

X - 2 Y2 

-2X2 +4Y X+ 
22

Y) Li2(x)-
77 

1r2 U + 
44

Y XU- ~XY1r2 - 10 
XY3 

3 12 3 3 3 

+ y2 7r2 + 6 y (3 + 4 X2 y2 - 6 X (3 + 121 U2 - 9 X y2 - 22 y2 U - 215 X 7r2 
9 3 36 

-14(3 u- 22 
X 2 u + 22x u + 

23213
-

2777 u- 4Li4(z) + !x4 -
49 

X 3 

3 1296 108 6 9 
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38 y3 ~ y4 38 x2 y 65 r 170 x2 170 y2 316 y - 22 y u 
+ 9 + 2 + 3 + 18 "3 + 9 + 9 + 27 

+8 1r + - 1r - -X - -X Y - - Y X+ - Y 1r 
2 17 4 316 4 3 340 13 2)[t2+s

2
] 

72 27 3 9 12 u2 

+ ( ( 10 X+ 7- 10 Y) Li3(y) + ( 4X + 7- 4 Y) Li3(x) + (- 2 1r
2 + 7 Y- X 2 

-7 X + 2 Y X - Y2) Li2 ( x) - g 1r
2 U + 

22 
Y X U - ~ X Y 1r

2 - ~ 1r
2 X 2 

3 3 3 2 

. 53 522 322 7 2 
+6L14(x)- 3XY -6Y 1r +6Y(3+ 2X Y -6X(3-6XY 

-
11 

Y 2 U-
67 

Xrr2 - gx2 u + 
11 xu -12Li4(z)- ~X4 - 49 

X 3 
3 18 3 3 4 18 
14 3 1 4 . 14 2 34 2 34 2 64 

+g-Y -
12

Y +6L14(y)+ 3 X Y-3(3+-gX +g-Y +g-Y 

--YU+-1r --rr --X+X Y--YX--Yrr 11 49 2 7 4 64 3 68 17 2) [t2 - s2] 
3 18 60 9 9 18 u2 

+ ( ( - 5 X + 5 Y + rr2) Li2 ( x) + ( 6 Y - 6 X + 5) Li3 (y) + X Y rr2 + ~ 1r
2 X 2 

-6 Li4 (X) + Y2 7r2 - 6 y (3 + 6 X (3 + 5 Lia (X) + 7 X Y2 - ~ X 7r2 -
1
3
1 

X u 
. 14 23 3314 92 82 

+6 L14(z) + 4 X + 3 X - 2 Y + 4 Y - 6 Li4(y)- 2 X Y + 3 (3- 3 X 

- ~ y2 - 64 y + g y U + !_ rr2 + g rr4 + 64 X - X3 y + 16 y X - 3 y 7r2) 
3 9 3 18 60 9 3 

+(6X2 +67r2 -12YX+6Y2)~ (C.13) 
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-X4+ 131 X3- 59Y3+!Y4+24Li4(y)- 43 X2Y-7(3- 37 X2_109y2 
18 9 6 3 18 9 

202y 44YU 17 2 61 4 74X 14X3Y 37YX 59y 2) [t
2
-8

2
. 

-9 + 3 + 6 7r - 45 7r + 9 + 3 + 9 + 18 7r u 2 

+( ( -12Y- 9) Li3(x) + (- 471"2 + 9X- 21 Y) Li2(x) + 24Li4(x) 

+ ( - 21 - 24 Y + 12 X) Lis (y) - 2 1r2 X 2 - 2 X Y3 - 3 Y2 1r2 + 12 Y (3 - 3 X 2 Y2 

37 2 1 2 22 4 5 3 1 3 
-12X(3-

2
XY +6"X1r +

3
XU-24Li4(z)-X - 3x - 3Y 

+24Li4(Y) + 9X2 Y + 19(3 +
59 

X 2 + 7Y2 - 6 Y + 
19 

1r2 -!! 1r4 
6 2 10 

_ 7 4 X + 4 X 3 y _ 62 y X + 65 y 71"2) 
9 3 6 

+(28Y X -147r2 -14X2 -14Y2) ~ + 10Y2 f (C.14 

Cu ((- ~0 1r2 +8Y2 -8X2 +16YX)Li2(x)+( -16Y+16X)Li3(x) 

( ) 
. 2 2 11 2 2 16 3 22 2 2 

+ 16Y+16X L13(y)-1r U-6XY1r -
3

1r X +3XY -3Y 7r 

2 2 2 511 3 . 
+16Y(3+10X Y -16X(3-9X7r +12(3U+16+4U-16LI4(z) 

+! X 4
- 9 X 3 

- 32 Li4(y) + 18 X 2 Y- 15 (3 - ~ x2 -
325 

1r2 + 
18 

1r4 + 48 x 
6 2 12 5 

- 130 x3 Y + 32 Y x - 18 Y 71"2) [ t2 ~ 82] 

+( ( -12Y + 121r2 + 8X + 12Y2 - 4X2 -16Y X) Li2(x)- XY1r2 

+(4X +32Y- 8) Li3(x) + 
2
6
5 

1r2 X 2 + ( -12 +48Y- 32X) Li3(y) 

. 20 3 10 2 2 2 2 2 27 2 -48LI4(x)+
3

XY +
3

Y 1r -16Y(3+4X Y +12X(3 -20XY -
2

x 
13 2 . 8 4 16 3 4 3 2 4 . 2 

-6X1r +48L14(z)+3X -
3

x +JY +JY -24LI4(y)+14X Y+16(3 

-12 y2 - 24 y - 97 71"2 + 21 71"4 + 12 X - 38 X3 y + 27 y X + 40 y 71"2) [t2 - 82] 
6 10 3 3 u 2 

+ ( - 4 Li3 (X) + 4 Li3 (y) + ( 4 X + 4 y) Li2 (X) + 
1
3
6 y 7!"

2 - 12 Y2 + i X 7!"
2 

3 3 23 2 21 2 2 ) +2X -27r -2X -X Y-20(3-12X+24YX 

+(6X2 +67r2 -12YX+6Y2) ~+6Y2 f (C.15) 
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( 
4 4 (4 4 ) 1 2 13 2 58 Du = - 3 Li3(x)- 3 Li3(y) + 3 X- 3 Y Li2(x) + 6 Y 7r + 

18 
X 1r + g Y X 

+ i x 3 + ~ 1r
2 u - ~ Y x u + i x 2 u - 4 x u + 4 Y u + i Y2 u - 44 

u 2 + 46 u 
9 6 3 3 3 9 3 

_ 455 _ 124 Y + 124 x _ ~ x 2 Y _ 29 Y 2 _ g 71"2 _ ~ Y 3 _ 29 x 2 _ 37 c
3
) [t

2 + 8: 
27 27 27 3 9 6 9 9 9 u 2 

+ (- 16 y + 16 X-~ X2 y +~X y2 + ~ 11"2 U- ~ y 7r2 + 26 y X+~ X 7r2 
9 9 3 3 3 9 9 9 

+~ x 3 _ 13 y2 _ 13 x2 _ _!_!. 11"2 _ ~ y3 + ~ x2 u _ ~ x u + ~ y2 u 
9 9 9 9 9 3 3 3 

+ ~ y U - ! y X U) [ t2 ~/2] 

+ ( 16 y - 16 X + ~ y X - ! y2 - ! X2 - ~ 7r2 - ~ y U + ~X u) (C 1 
9 9 3 3 3 9 3 3 . 

4 t 2 + 8 2 

( ) 
2 [ l Fu = 

81 
3 U - 5 u 2 (C.18) 

C.1.2.2 One-loop self-interference contribution 

Au 1~2 (- 9 X 2 + 18 X Y + 27 X - 27 Y - 9 Y 2 
- 9.-2 + 33 U - 13 r [ t':, •'] 

- 1
1
8 ( 1r

2 - X + Y + X 2 + Y2 - 2 X Y) ( - 9 X 2 + 18 X Y + 27 X - 27 Y 

-9 y2 - 9 11"2 + 33 u - 13) [ t2 ~ 82] 

+ ( _ 13 y + _!_!. y u + ! 11"4 + ! x4 + ! y4 _ x2 _ ! y3 x + ! y2 71"2 + ! x2 11"2 
18 6 8 8 8 2 4 4 



C. Finite Contributions 

+2 X Y- - Y X +- Y X - -X U- Y - - Y X 1r +-X 1 3 3 2 2 11 2 1 2 13 ) 
2 4 6 2 18 

- ~ ( X 2 
- 2 X Y + Y 2 + ~') ( X 2 

- 2 X + ~2 
- 2 X Y + 2 Y + Y 2

) ~ 

+- X 2 -2XY+Y2 +rr2 2 -1 ( ) t2 
8 82 

Bu ( - 24 Y X 2 + 9 X rr2 + 4 Y 3 X - 3 X 2 rr2 + 
7

9
° X Y + 18 Y 2 X + 6 Y X 3 

-8 y2 x2 + 104 + 22 rr2 u - 22 x u + 22 x2 u - 44 x Y u + 24 Y - ~ rr4 
9 3 3 3 2 

172 

(C.19) 

-~ x4 + 173 rr2- 151 x2 + 9 x3 + 8 y2- 46 x- 88 u + 6 Y x rr2) [t2 + 82] 
2 18 18 3 3 u2 

+ ( 6 X 3 
- 8 Y 3 

- 17 Y X 2 + 6 x 71'2 + 17 Y2 x + 
1

3

1 
x 2 u + 

2

3

2 
Y2 u - 9 y 71'2 

- 22 X y U + 6 y X 71'2 + 19 rr2 + !..!_ 71'2 U - ~ rr4 + 35 X y - 23 X - 35 X2 
3 18 3 2 9 9 18 

+ 10 Y _ 44 y 2 _ ~ x 4 _ 2 y4 + 22 Y u + 6 y3 x _ 5 y2 71'2 _ 3 x2 rr2 
9 9 2 3 

+6 Y x3 - 9 y2 x2 - 131 x u) [ t2 :2 82] 

+ ( _ ! y2 71'2 _ y2 _ ~ x2 rr2 _ ~ x4 + ~ y2 x + ~ y x3 + 3 x2 _ ~ y2 x2 
4 4 8 2 2 4 

314 2 11 1 212 33 34 -Y --Y -rr -3XY+-XU--YX --Yrr -4Y+-Y X--11' 
4 3 2 2 2 8 

+ 23 X + ~ y X rr2) 
9 2 

_ ~ (x2 _ 2 x y + y2 + 71'2) 2 t
2 

+ ! y2 ( 4 rr2 + y2) 8
2 

8 8 2 8 t 2 

+ ~ ( X 2 
- 2 X Y + Y 2 + ~') ( X 2 

- 2 X + ~2 - 2 X Y + 2 Y + Y 2
) ~ 

-lY(2Y
2

+Y
3

+4rr
2

+4Y7r
2
) f (C.20) 

Cu ( 18 Y X 2 + 18 Y rr2 - 9 x rr2 + 6 Y 2 rr2 + 3 X 2 rr2 + 32 x y - 6 Y X 3 + 6 Y 2 x 2 

3 4 3 4 5 2 5 2 3 2 ) [t
2 

+ 8
2
] +2 7r + 2 X - 2 1r - 2 X - 9 X + 48 X- 6 Y X 1r + 32 u

2 

+ ( 15 Y X 2 - 9 Y 71'2 - 6 X rr2 - 6 Y 3 X - 3 Y 2 rr2 + 3 X 2 rr2 + 7 X Y - 15 Y2 X 

-6 Y x3 + 9 y2 x2 - 16 Y + ~ 71'4 + ~ x4 - 25 rr2 - ~ x2 - 6 x3 
2 2 2 2 

-16 y2 + 8 X - 6 y X rr2) [ t2 ~ 82] 
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+ _ 7!"4 + _ x4 + 3 y3 + _ y4 + _ y x2 + _ y 7!"2 __ y3 x + _ y2 7!"2 + _ x2 7!"2 
(

3 3 3 3 3 3 9 3 
8 8 4 2 2 2 4 4 

-3XY--Y X--YX +-Y X -31!" -3X --YX1r -8X+3Y 9 2 3 3 9 2 2 2 2 3 2 2) 

2 2 4 2 

Du - 8
2
1 ( 3 U - 5) ( - 9 X 2 + 18 X Y + 27 X - 27 Y - 9 Y2 

-97r
2

+33U-13) [t
2

~ 82 ] 

+ ~ ( "' - X + Y + X' + Y2 
- 2 X Y) ( 3 U -5) [ t' ::' l 

(C.21) 

+H3u-5)(x-Y) (c.22) 

E, - t ( 3 U - 5) ( 1r
2 

- 3 X + X2 
- 2 X Y -4) [ t' ::' l 

-~x(3u-s) 

-~("'-X+ 2Y +X'+ 2Y
2

- 2XY) (3u- 5) [t' ::'] (C.23) 

(C.24) 

C.2 Like quark scattering 

C.2.1 The mixed st-channel process qij--+ ijq 

C.2.1.1 Two-loop contribution 



C. Finite Contributions 1 '74 

2 3 2 1513 44 115 2) 1 4 44 3 +- Y - 12 Y + ---- S + 20 (3 + -1r X-- Y +- Y 
3 108 9 9 3 9 

+ - - + - s + - 7r y + - 44 s- 4 (3 + - + - 7r y + -- s ( 
169 44 1 2) 2 ( 632 299 2) 2777 
9 3 3 27 18 54 

_ 23213 _ 242 82 _ ~ 7r2 + 11 7r2 s _ 131 (3 + 28 (3 s _ 59 7r4) ! 
648 9 3 2 9 60 8 

+ ( 4 Li4 ( z) - 4 Li4 ( x) + 4 Li4 (y) + ( - 4 X + 8 Y - ~6 ) Li3 ( x) - 4 (X - 6) Li3 (y) 

( 
2 ( 46) 10 2 ) . 1 4 ( 10 28) 3 + 4 X + - 8 Y + 3 X + 3 1r + 24 Y L12 ( x) - 3 X + 3 Y + g X 

+ --1r ---6Y +-Y+-S X+ ---S+-7r Y ( 
11 2 31 2 13 22 ) 2 ( ( 16 44 20 2) 
6 3 6 3 9 3 3 

2 3 2 1513 44 28 2) 1 4 44 3 +-Y +12Y +----S+16(3+-7r X--Y +-Y 
3 108 9 9 3 9 

( 
169 44 1 2) 2 ( 632 155 2) 2777 + - - + - s + - 7r y + - 44 s- 4 (3 + - + - 7r y + -- s 
9 3 3 27 18 54 

_ 23213 _ 242 82 _ 16 7r2 + g 7r2 s _ 347 (
3 

+ 28 (
3 
s _ 121 7r4) ~ 

648 9 3 2 9 180 t 

+ (-56 Li4(z)- 56 Li4(y) + ( 24 X- 40 Y-
1~2 ) Li3(x) + 8 Li3(y) X 

+(4x
2 

+ (- 8Y + 
1~2 ) x +47r

2
) Li2(x)- ~X4 

+ (16Y + 
7
9
4

) X
3 

+ - - 1r - - - 20 Y + - Y + - S X + - - S + - + - 1r Y ( 
10 2 35 2 16 44 ) 2 ( ( 88 50 52 2) 
3 3 3 3 3 9 3 

+i Y3 _ 88 s + 1513 + 116 7r2) x _ ~ Y4 + 88 Y3 + ( _ 446 + ~ 7r2 + 88 s) Y2 
3 9 54 9 3 9 9 3 3 

( 
1264 227 2 ) 2777 23213 484 2 

+ - 88 s + - + - 7r + 48 (3 y + -- s - -- - - s +56 (3 s 
27 9 27 324 9 

-- 7r - - (3 + 11 7r s - - 7r 35 2 514 2 89 4) 
3 9 90 

( ) 
t2 82 

+ 6 1r
2 + 6 X 2 + 6 Y2 - 12 X Y 

82 
+ 6 Y2 f,2 (C.25) 

Bst = (- 16 Li4(z) + 6 Li4(x)- 16 Li4(y) + (- 24 Y- 12 + 16 X) Li3(x) + 16 Li3(y) X 

+( -11X
2

+ (24Y+12)X-127r2)Li2(x)-~X4 -X3 + (7Y-
1
3

1 
S-i1r2 

+ 545 + 7 y2) x2 + (2 y3 - 27 y2 + ( - 10 7r2 + 7o - 44 s) Y + 88 s -20 (3 
18 9 3 3 

+ 154 _ 417r2) X_ y 4 + 206 y 3 + (44 S + 5 7r2 _ 484) y 2 + (1928 _ 448 
27 18 9 3 9 27 
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257 2) 3004 30659 34 2 43 2 581 11 4) 
+28 (3 + - 7T' y + -- s - -- + - 7T' + - 7T' s + -9 (3 - 4 (3 s - 36 7T' 

18 27 162 9 6 

+ (- 16 Li4(z)- 6 Li4(x)- 16 Li4(y) + (- 24 Y- 12 + 24X) Lh(x) + 16 Li3(y) X 

( ( ) ) 
7 14 ( 11 1 + -13X2 + 24Y+12 X-l27r2 Li2(x)-

12
X 4 -g-X3 + 7Y-3S-31 

19 2) 2 ( 3 2 ( 2 502 44 ) 44 92~ -- + 7 Y X + 2 Y - 27 Y + - 10 1r + - - - S Y + - S - 28 (3 + -
18 9 3 3 27 

11 2) 4 206 3 (44 2 484) 2 (1928 -- 1r X - Y + - Y + - S + 5 1r - - Y + -- - 44 S + 28 (3 
6 9 3 9 27 

+ 257 7T'2) y + 3004 s- 30659 - 248 7T'2 + 43 7T'2 s + 581 (3 - 4 (3 s-~ 7T'4) ~ 
18 27 162 9 6 9 180 t 

+(( -32Y+16X-20)Li3(x)+ ( -16X2 + (32Y+20)X-167r2)Li2(x) 

1 4 ( 8 13) 3 ( 2 2 2 ) 2 ( 3 2 + 6 X + - 3 Y + 9 X + - 3 1r - 7 + 6 Y + 12 Y X + 4 Y - 54 Y 

( 
2 716 88 ) 1076 29 2) 4 412 3 + - 12 1r + - - - S Y + 44 S- 24 (3 + -- + - 1r X - 2 Y + - Y 

9 3 27 9 9 

( 10 2 1112 88 s) Y2 ( 40 ,. 3856 257 2 8 s) Y 6008 8 + 7T' - -- + - + '>3 + -- + - 7T' - 8 + --
9 3 27 9 27 

_ 30659 _ 286 7T'2 + 43 7T'2 8 + 1126 (
3 

_ 163 7T'4 _ 8 (3 
s) 

81 9 3 9 90 

( ) 
t2 82 

+ 8 X2- 16 X y + 8 7r2 + 8 y2 s2 + 8 y2 t2 

Cst = ( -4Li4(z)+10Li4(x)-4Li4(y)+ ( -8Y+2)Li3(x)+4Li3(y)X 

+( -3X
2

+ (8Y-2)x-
1

3°1r
2
)Li2(x)-tX

4
+ ( -~Y+3)x3 

+(3Y2- ~ Y + 15 + 13 7T'2) x2 + (- 9Y2 + (16- 14 7T'2) Y- 147 + ~7T'2 
2 2 6 3 4 3 

-12(3) X+ 6Y
3 

+ (~7T'2 - 21) Y
2 

+ (48 + 8(3 +I 7T'
2
) y- ~ s- 5~1 

2 7 4 16 2) t +2 7T' s + 38 (3- 24 (3 s- 15 7T' - 3 7T' ~ 

+( -4Li4(z)-10Li4(x)-4Li4(Y)+ ( -8Y+2+12X)Li3(x)+4Li3(y)X 

+ ( - s X 2 
+ ( 8 Y - 2) x - 1

3
4 

1r
2
) Li2 ( x) - ~ X 4 + ( - ~ Y + ~) x 3 

+ ( 3 y2 _ ~ Y + ~ + 17 7T'2) x 2 + ( _ 9 Y 2 + ( 26 _ 14 7T'2) Y _ si + 22 7T'2 
2 2 6 3 4 3 

(C.26 
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) (
8 ) ( 7 ) 3 511 -24 (3 X+ 6 Y 3 + 3 7!"2 - 21 Y2 + 48 + 8 (3 + 3 7l"

2 Y- 2 8- B 

2 1 4 31 2) s +2 7l" 8 + 38 (3 - 24 (3 8- - 7l" - - 7l" -
45 3 t 

+(81i4(z) + 81i4(Y) + (- 8Y + 12) 1i3(x)- 81i3(y)X + ( (8Y -12) X+ 

2 2) . 1 4 ( 8 ) 3 ( 2 8 2) 2 -4 X - 4 7l" 112 (X) + 2 X + - 3 y + 3 X + 2 y - 4 y - 8 + 3 7l" X 

( 
2 ( 16 2) 99 20 2 ) 3 + - 18 Y + 46 - 3 7l" Y - 2 + 3 7l" - 24 (3 X + 12 Y 

(
16 2 ) 2 ( 14 2) 511 2 + 3 7l" - 46 y + 96 + 8 (3 + 3 7l" y - 3 8 - 4 + 4 7l" 8 + 68 (3 

-48 (3 8 - - 7l" - - 7l" 52 4 53 2) 
45 3 

( ) 
t2 82 

+ 2 7!"2 - 4 X Y + 2 X 2 + 2 Y2 
82 + 2 Y2 (i (C.27) 

- 113 (X) - - 112 (X) X - - X + - + - y - - 8 X + - 8 - - y (
4 . 4 . 10 3 (37 4 4 ) 2 ((8 22) 
3 3 9 9 3 3 3 9 

+-8----1!" X--Y + --8+- Y + ----7!" +88 Y 52 290 10 2) 8 3 ( 8 58) 2 ( 248 25 2 ) 
9 27 9 9 3 9 27 9 

-- 8 + - + - 8 - - 7l" - 7l" 8 + - (3 - + - 113( X) - - 112( X) X - - X 92 910 88 2 4 2 2 86 ) t (4 . 4 . 10 3 
3 27 9 9 9 s 3 3 9 

+ -+-Y--8 X+ -8-- Y+-8----1!" X--Y (
37 4 4 ) 2 ((8 22) 52 290 10 2) 8 3 
9 3 3 3 9 9 27 9 9 

+ --8+- Y + ----7!" +88 Y--8+-+-8 --1!" ( 
8 58) 2 ( 248 25 2 ) 92 910 88 2 4 2 
3 9 27 9 3 27 9 9 

-7!" 8 +- (3 - + - 113(x)- - 112(x) X-- X + - - 8 +- +- Y X 2 86 ) s ( 8 . 8 . 20 3 ( 8 7 4 8 ) 2 
9 t 3 3 9 3 9 3 

+ ( ( 16 8 _ 44) y _ 580 + 104 8 _ 20 7!"2) X _ 16 y 3 + ( _ 16 8 + 116) y 2 
3 9 27 9 9 9 3 9 

+ ( 16 8 _ 496 _ 5o 7!"2) Y _ 184 8 + 176 82 _ ~ 7!"2 + 112 (3 + 1820 _ 2 7!"2 8 ) 
27 9 3 9 9 9 27 

(C.28) 

( 
. ( . ( 31 2 ) 2 ((8 22) 7 2 16 4113 x)-4112(x)X+ - 9 + 38 X+ 38-g Y+g-1!" -38 

-- X--Y + --8+- Y + ----7!" +88 Y+-1!" 16) 8 3 ( 8 58) 2 ( 248 25 2 ) 32 2 
27 9 3 9 27 9 9 

+58 (3 - ~ 7!"2 8 - 4 72 8 + 27 40) ! 
9 3 27 81 s 
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C.2.1.2 One-loop self-interference contribution 

--XY8--8 ----rr +-8+-rr 8-10rr Y-47r XY ( 
44 242 2 338 8 2 572 22 2 2 2 

3 9 81 9 27 3 

52 3 4 52 2 8 2 3 52 2 2 2 3 2 2 +-X-- X -- Y --X + 2 X +-Y- 2 Y X - 4 Y X +-X 1r 
27 8 9 9 3 2 

-- Y X+ 2 Y X + 111r X + - Y X - 44 Y 8 - -X 8 + - Y 8 + -X 8 146 3 2 22 2 44 44 2 22 2 ) 

9 3 9 3 3 

+ --Y +-Y 8--XY8--YX-4rr XY+-YX +-Y X ( 
26 2 22 2 22 46 2 1 2 8 2 

9 3 3 9 2 3 

3 2 2 14 2 11 2 26 22 3 2 169 286 
--Y X +-rr +-7r 8+-X--X8+YX +7rr X--+-8 

2 9 3 27 9 81 27 

-- 8 + - Y - 22 Y 8 + - X 1r - 6 1r Y - -X + - X 8 -121 2 26 3 2 2 2 13 2 11 2 ) s 
9 3 2 9 3 t 

+ --XY8--8 --rr --+-8+-Jr 8-47r Y-2rr XY ( 
22 121 2 13 2 169 286 11 2 2 2 

3 9 9 81 27 3 

+ 26 x - ! x4 - 26 y2 + 14 x2 + ! x3 + 26 Y - ~ y2 x2 - ~ Y x2 + x2 11"2 
27 2 9 9 2 3 2 2 

-- Y X+ 2 Y X + 7rr X + - Y X - 22 Y 8 - -X 8 + - Y 8 + -X 8 -100 3 2 14 2 22 22 2 11 2 ) t 
9 3 9 3 3 s 

-- x 4 rr2 x - 4 X 2 
- 8 1r2 + X 3 - - - x 4 rr2 x + x 3 + 4 x 2 + 8 rr2 -1 ( ) t2 1 ( ) 82 

8 u 2 8 u 2 

(C.31) 
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( 
44 158 352 22 11 

- -X Y 8 - - 1r
2 + - 8 + - 1r

2 8 + 38 1r
2 Y + 8 1r

2 X Y + 2 X + -
8 

X 4 

3 9 3 3 

_ 826 Y2 _ 44 x 2 _ 23 x 3 + 340 Y _ 2 y2 x 2 _ 416 + 26 Y x2 _ ! x2 71"2 
9 3 3 3 9 2 

628 3 44 2 140 2 44 2 
+- Y X - 4 Y X - - 1r X - - Y X - 44 Y 8 + 22 X 8 + - Y 8 

9 3 3 3 

-6 1r
2 Y2 + 12 Y 3 X + 36 Y 3 

- 6 Y 4
) 

+ - - X Y 8 - - 1r + - 8 + - 1r 8 + 21 1r Y + 8 1r X Y + -X + - X ( 
22 94 2 176 11 2 2 2 22 1 4 

3 9 3 3 9 2 

_ 413 Y2 _ 101 x 2 _ ~ x 3 + 110 Y _ 208 + 8 Y x 2 _ x 2 71"2 + 260 Y x _ 2 Y x3 
9 18 3 3 9 9 

23 2 64 2 22 22 2 11 2 2 2 
-- 1r X - - Y X - 22 Y 8 + -X 8 + - Y 8 - -X 8 - 3 1r Y 

3 3 3 3 6 

+6Y3 X+ 18Y3
- 3Y4

) f 
+ --XY8--1r +-8+-11" 8+1771" Y+47r XY--X+-X ( 

22 73 2 176 11 2 2 2 4 3 4 

3 9 3 3 9 2 

_ 413 Y2 _ 149 x 2 _ 25 x 3 + 110 Y _ 208 + 12 Y x 2 + 368 Y x _ 4 Y x3 
9 18 6 3 9 9 

28 2 76 2 44 22 2 11 2 2 2 3 -- 1r X - - Y X - 22 Y 8 + - X 8 + - Y 8 - -X 8 - 3 1r Y + 6 Y X 
3 3 3 3 6 

+ 18 Y
3 

- 3 Y
4

) ~ 

+- x 4 1r
2 x - 4 X 2 - 8 1r

2 + x 3 - + - x 4 1r
2 x + x 3 + 4 X 2 + 8 1r

2 -1 ( ) t2 1 ( ) 82 
8 u 2 8 u2 

(C.32) 

( - 128 + ~ X 4 - 18 1r
2 - ~ X 2 

1r
2 - 2 x 3 - 11 1r

2 x - 2 Y x 3 - 50 Y2 - 2 x 2 
8 2 

+ 12 Y 3 + 96 Y - 48 X + 4 Y 3 X - 2 Y 4 + 4 1r
2 X Y - 2 1r

2 Y2 + 50 Y X + 10 Y X 2 

+167r2Y -18Y2 X) 

+ ( 6 Y 3 
- Y X 3 

- 64 - 1171"2 + 22 Y X - 25 Y2 + 4 X 2 - Y 4 - 7 1r
2 X - 1r

2 Y2 - 16 X 

- ~ X 2 
1r

2 - 8 Y2 x + 48 Y + 2 Y 3 x + 4 1r
2 x Y + ~ y x 2 + 9 1r

2 Y + ! Y2 x 2) ~ 
2 2 2 t 

+ (- 8 1r
2 - 64- X 2 

1r
2 - 10 Y2 x- 2 Y X 3- ~ x 3- 25 Y2 - 7 1r

2 x- Y 4- 1r
2 Y2 

1 9 
+2 1r

2 x Y + 28 Y x + - X 4 + 7 1r
2 Y + - Y x 2 + 48 Y + 2 Y 3 x + 6 Y 3 + x 2 

2 2 
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(C.33) 

---X+-8 --1r 8+8Y8--X 8+-XY8+-X8+-1r ( 
520 92 88 2 4 2 4 2 8 52 20 2 
81 27 9 3 3 3 9 9 

+-Y +-X --Y X--Y--Y 8--8--YX 40 2 20 2 4 2 40 8 2 544 4 ) 
9 9 3 3 3 27 9 

+ -XY8--YX+-Y --Y 8+-X8--X+-1r --1r 8 (
4 2 20 2 4 2 26 46 10 2 2 2 
3 9 9 3 9 27 9 3 

_ ~ Y2 x _ 212 8 + 44 82 + 260 _ 20 Y + 4 Y 8 + 10 x2 _ ~ x2 8 ) ~ 
3 27 9 81 3 9 3 t 

+ -XY8--YX+-Y --Y 8+-X8--X+-1r --1r 8 ( 
4 2 20 2 4 2 26 46 10 2 2 2 
3 9 9 3 9 27 9 3 

_ ~ Y2 x _ 212 8 + 44 82 + 260 _ 20 Y + 4 Y 8 + 10 x2 _ ~ x2 8 ) ! 
3 27 9 81 3 9 3 8 

(C.34) 

--4X+-X --8--Y 8--1r X-4X8+8Y8+-XY8 (
320 2 3 64 8 2 4 2 8 
9 3 3 3 3 3 

10 2 10 2 40 2 40 4 2 4 2 4 ) 
-3X -g1r +g-Y - 3 Y- 37r 8-JY X--gYX 

+ -Y --Y 8+-X --X8--X--Y+4Y8--1r --1r 8 ( 
20 2 4 2 1 3 4 28 20 8 2 2 2 
9 3 3 3 9 3 9 3 

+---8-- 1r X-- Y X+- X 8-- X +-X Y 8-- Y X -160 32 4 2 2 2 1 2 17 2 4 2 ) 8 

9 3 3 3 3 9 3 9 t 

+ -XY8--YX--1r X+-Y --Y 8--X--X8--Y X ( 
4 2 2 2 20 2 4 2 8 8 2 2 
3 9 3 9 3 9 3 3 

+-X + - - - 8 + -X 8- -X - - 1r - - 1r 8 - - Y + 4 Y 8 -2 3 160 32 1 2 23 2 2 2 2 2 20 ) t 

3 9 3 3 9 9 3 3 8 

Fst = - 8
8
1 ( - 5 + 3 8) ( 3 8 + 3 X - 5) 

- 8

4
1 ( -5+38) (38+3X-5) ~ 

- 8

4
1 ( -5+38) (38+3X-5) ~ 

C.2.2 The mixed ut-channel process qq --t qq 

C.2.2.1 Two-loop contribution 

(C.35) 

(C.36) 

Aut = (- 4Li,(y)- 4Li,(x)- 4LL.(z) + (4x + ~ + 4 Y) Li3(y) + ( BX + i~B) Li3(x) 
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But ( 16 Li,(y) + 16 Li,(x) - 6Li.,(z) + 12 ( 1- 2 Y) Li,(y) + (- 16X - 8 Y + 12) Li3 (x: 

+(11X
2 

+ (2Y -12) X+ 12Y -1r
2 -13Y2

) Li2(x)-
1
1
2 

X 4 + ( -1 +3Y) X 3 



C. Finite Contributions 18]. 

+ ( - 4 Y + 545 - !..!. u + 15 7!"2) x2 + ( - 32 y3 - 16 y2 + ( - 7!"2 + 22 u - 205) 
18 3 2 3 3 

154 88 337 2) 1 4 19 3 (29 2 11 283) 2 
+ 27 + 3 U - 4 (3 + 18 7r X + 12 y + 9 y + 3 7r - 3 U - 18 y 

+(80 7!"2 + 44 u- 694) y- 79 7!"4- 30659- 67 7!"2 u + 113 7!"2 + 3004 u- 4(3 u 
3 3 9 30 162 6 2 27 

+ 473 (3)! 
9 u 

+ ( 16 Li,(y) + 16Li4 (x) + 6Li,(z) + ( 12- BX- 16 Y) Li,(y) + 12 (- 2X + 1) Lis 

+ ( 13X
2 

+ (- 12- 2Y) X- 1J Y2 
+ .-2 + 12Y) Li,(x) + ~ X 4 + (- ~4 + ~ Y) 

+ ( - 19 - 11 u + 8 7!"2 - ~ Y - ~ y2) x2 + ( - 9 y3 - 53 y2 
18 3 3 2 3 

( 
161 2 2) 44 35 2 922) 1 4 8 3 

+ - 3 + 22 U - 3 7r y - 4 (3 + 3 U + 2 7r + 27 X + 6 y + 3 y 

+(17- 11 u +59 7!"2) y2 + (2517!"2 + 88 u- 950) y- 30659- 67 7!"2 u 
18 3 6 9 3 9 162 6 

113 2 3004 161 4 473 ) u 
+ 2 7r + 27 u - 4 (3 u - 60 7r + 9 (3 t 

+(( -16Y-16X+20)Li,(y)+ ( -16Y-16X+20)Li3(x) 

+(20Y -16Y
2

- 20X + 16X2
) Li,(x) + ~X4 + c

9
3 

+ 2Y) X 3 

(
49 2 2 49 ) 2 ( 3 77 2 ( 590 88 2) + 3 1r - 7- Y - 3 Y X + - 14 Y - 3 Y + -

9 
+ 3 U- 2 1r Y 

368 1076) 1 13 ( ) -8 (3 + 9 1r
2 + 44 U + 27 X + 6 Y

4 + 9 Y 3 + 19 1r
2 - 51 Y2 

+ ( _ 548 + 473 7!"2 + 44 u) Y _ 134 7!"4 _ 30659 _ 15 7!"2 u + 6008 u _ 8 (3 u 
3 9 45 81 27 

763 2 946 r ) + 8 x2 f._ + 8 y2 u
2 

+97r + 9"'3 u2 t2 (C.3 
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-- - - u + - 7r - - 7r + 40 (3 + 2 7r u - 24 (3 u -511 3 109 2 181 4 2 ) t 
8 2 6 180 u 

+ ( 4Li4(y) + 4Li,(x) + 10Li4(z)- 2 (I+ 4X) Li3(y) + ( 4 Y- 12X- 2) Li3 (x) 

+ ( 5 X 2 + ( - 2 y + 2) X + ~ n 2 
- 3 Y2 

- 2 y) Li,( X) + ~ X 4 + ~ X3 

( 
7 2 5 3 2) 2 ( 3 19 2 ( 2 ) 51 + - Y + 2 7r + 2 - 2 Y X + - Y - 2 Y + - 1r - 31 Y - 12 (3 - 4 

+- 1r X - - Y + 3 Y + - + 4 1r Y + 12 (3 + - 1r - - Y - -53 2) 1 4 3 ( 15 2) 2 ( 26 2 141) 511 
6 6 2 3 4 8 

+ 2 7r u + - 7r + 40 (3 - - u - - 7r - 24 (3 u -2 109 2 3 49 4 ) u 
6 2 45 t 

+( -8Li,(y)-8Li4 (x)+( -12-8X)Li3(y)+( -8Y-12)Li3(x) 

+ ( - 12 Y -4 Y' + 12 x + 4 x') Li2 ( x) + ~ x' + ( 3 + ~ Y) x' 

( 
2 2 ) 2 ( 10 3 2 ( 10 2) + 7 1r - Y - 8 - 5 Y X + - 3 Y - 17 Y + - 30 - 3 1r Y - 24 (3 

59 2 99) 1 4 3 ( 23 2) 2 ( 93 53 2) +- 1r - - X + - Y + 3 Y + - 8 + - 1r Y + 24 (3 - - + - 1r Y 
3 2 6 3 2 3 

-- - 3 U + - 1r - - 1r + 80 (3 + 4 1r U - 48 (3 U + 2 X - + 2 Y -
511 61 2 29 4 2 ) 2 t

2 
2 u

2 

4 3 30 u2 t2 

(C.39) 

- - Ll3 (y) - - Ll3 (X) + - - y + - X Ll2 (X) - - X + 2 y + - - - u X ( 
4 . 4 . ( 4 4 ) . 10 3 ( 37 4 ) 2 

3 3 3 3 9 9 3 

( 
2 2 52 4 2 290 52 ) 2 3 ( 4 73) 2 

+ - 3 y - 9 y - 9 7r - 27 + 9 U X + 9 y + - 3 U + 9 y 

+ - - - 7r - - u y + - + - (3 - - u + - u - - 7r + - 7r u -(
538 5 2 124 ) 910 98 92 88 2 25 2 1 2 ) t 

27 9 9 27 9 3 9 9 3 u 

+ --L13(y)--L13(x)+ --Y+-X L12(x)--X + 2Y+---U X" ( 
4 , 4 , ( 4 4 ) , 10 3 ( 37 4 ) r 

3 3 3 3 9 9 3 

( 
2 2 52 4 2 290 52 ) 2 3 ( 4 73) 2 

+ - 3 y - 9 y - 9 7r - 27 + 9 U X + 9 y + - 3 U + 9 y 

+ (538 _ ~ 7r2 _ 124 u) Y + 910 + 98 (3 _ 92 u + 88 u2 _ 25 7r2 + ~ 7r2 u) '!!_ 
27 9 9 27 9 3 9 9 3 t 

+(- ~Li3(y)- ~Li3(x) + (- ~ Y + ~x) Lh(x)-
20 

X 3 + (4Y + 
74

- ~ u) x2 

3 3 3 3 9 9 3 

( 
4 2 104 8 2 580 104 ) 4 3 ( 8 146) 2 

+ - 3 y - 9 y - 9 7r - 27 + 9 U X + 9 y + - 3 U + 9 y 
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+ ( 1076 _ 10 7r2 _ 248 u) Y + 1s2o + 196 (3 _ 184 u + 176 u 2 _ 50 7r2 + ~ 7r2 u) 
27 9 9 27 9 3 9 9 3 

(C.40 

(- 4Li3 (y)- 4Li3 (x) + ( 4X- 4 Y) Li,(x) + 0 U- 3n X 2 

+ --4U Y--U+-1r -- X--Y + -U+- Y ( (
28 ) 16 7 2 16) 4 3 (2 5) 2 
3 3 9 27 9 3 9 

( 
8 88) 4 72 27 40 5 2 94 2) t + - - u + - y - - u + -- + - 7r u + - (3 - 5 7r -
3 9 27 81 3 9 u 

( 
. . ( ) . 2 3 4 72 27 40 5 2 + -4LI3(y)-4LI3(x)+4 X- Y L12(x)+gX-

27 
U+Bl+31r U 

+ --Y--+-U X+ -Y + -4U+- Y+1r --U-- X ( 
2 19 2 ) 2 (2 2 ( 20) 2 8 208) 
3 9 3 3 3 3 27 

-- y + - + - u y + - - u + - - - 7r y + - (3 - 5 7r -2 3 ( 17 2 ) 2 ( 16 152 2 2) 94 2) u 
3 9 3 3 9 9 9 t 

+ ( - 8 Li3 (y) - 8 Li3 (x) + 8 ( - Y + X) Li, (x) - t X 3 + ( - 2 + ~ Y) X2 

+ --Y + --U+- Y-8U+-1r -- X--Y +6Y ( 
4 2 ( 16 80) 10 2 224) 4 3 2 
3 3 9 9 27 9 

+ - - 8 u + - 7r y - - u + - (3 + 2 7r u + -- - - 7r (
80 4 2) 944 188 2 5480 58 2) 
3 9 27 9 81 9 (C.41) 

--X+ -+-Y--U X--Y + -U-- Y-- 3U-5 -( 4 2 (40 8 8 ) 4 2 (8 40) 8 ( ) 2) t 
9 27 9 9 9 9 27 81 u 

+ --X+ -+-Y--U X--Y + -U-- Y-- 3U-5 -( 4 2 (40 8 8 ) 4 2 (8 40) 8 ( ) 2) u 
9 27 9 9 9 9 27 81 t 

+ --X+ -Y--U+- X--Y + -U-- Y-- 3U-5 ( 
8 2 ( 16 16 80) 8 2 ( 16 80) 16 ( ) 2) 
9 9 9 27 9 9 27 81 

(C.42) 

C.2.2.2 One-loop self-interference contribution 

Aut = (~ 7r4 _ 242 u2 _ ~ Y x 7r2 + 52 x _ 520 Y _ ~ x 2 _ 206 Y 2 _ ~ Y 4 _ 16 Y 3 
8 9 2 27 27 9 9 8 3 

- ~ x4 + 2 x3 - 44 x u + 22 y2 u + 16 y2 x + 22 x2 u + 18 Y x + 440 u Y 
8 9 3 3 3 9 

_! x3 y + ! x2 7r2 + ! y2 7r2 _ ! x y3 _ 3 y 7r2 _ 2 x2 y _ 3 x 7r2 + ~ x2 y2 
2 4 4 2 4 

572 u- 338) 
+ 27 81 

- ~ ( 1r
2 + Y2 

- 2 Y X + X 2
) ( Y2 

- 4 Y + 1r
2 

- 2 Y X + 4 X + X 2) :: 
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+ ( _ 121 U2 _ 169 + 286 U _ X y 3 _ g y 3 + ~ X 2 y 2 + 19 y 2 X _ 22 X U 
9 81 27 3 2 6 9 

+ 26 X _ ~ X 1!"2 + 11 y 2 U _ 112 y 2 + 220 U y _ 260 y _ 2 y X 1!"2 + ~ X 3 
27 2 3 9 9 27 2 

+8 Y x + 11 x2 u + 14 x2 - 2 Y 1!"2 - ~ x4 + ~ y2 1!"2 + ~ 1!"4) !__ 
3 9 2 2 2 u 

- ~ ( 1r
2 

- 4 X + X 2 + 4 Y - 2 Y X + Y
2
) ( 1r

2 + Y2 - 2 Y X + X 2) ~: 
+ ( _ ~ y 4 + 220 UY _ 260 y _ 22 X U + 26 X+~ X 2 1!"2 + ~ 1!"4 _ 19 y 3 

2 9 27 9 27 2 2 6 

- x3 Y + 11 x2 u - 13 x2 + ~ x2 y2 - 2 x 1!"2 - 2 Y x 1!"2 + 8 Y x - ~ x2 Y 
3 9 2 2 

-~ Y 1!"2 + 11 Y2 x _ 85 Y2 + 11 Y2 u _ 121 u 2 _ 169 + 286 u) ~ (C.43) 
2 3 9 3 9 81 27 t 

But ( 
_ ~ 1!"4 + 44 y X U _ 460 1!"2 _ 43 y X 1!"2 + 2 X _ 346 y _ 44 X 2 _ 110 y 2 

8 3 9 2 3 3 3 

+ 11 y4 - 23 y3 + 11 X4 - 23 X3 + 22 X U - 53 y2 X - 364 y X + 22 U y 
8 3 8 3 3 9 

-416 - ~ x3 Y + ~ x2 1!"2 + ~ y2 1!"2 - ~ x y3 - 22 1!"2 u - 79 Y 1!"2 - 3 x2 Y 
9 2 4 4 2 3 3 

_ 101 x 1!"2 _ 23 x 2 Y2 + 352 u) 
3 4 3 

+ ~ ( 1r
2 

+ Y
2 

- 2 Y X + X 2) ( Y2 - 4 Y + 1r
2 - 2 Y X + 4 X + X 2) ~: 

+ ( _ ~ 1!"4 + 11 y X U _ 149 1!"2 _ 10 y X 1!"2 _ i X _ 506 y _ 149 X 2 _ 239 y 2 
2 6 9 9 18 18 

+ ~ y4 - ~ y3 + ~ x4 - 25 x3 - 208 + 44 x u - g y2 u - 83 y2 x - g x2 u 
2 2 2 6 9 3 6 6 6 

- 73 Y x + 22 u Y - 2 x3 Y + x2 1!"2 - 11 1!"2 u - 65 Y 1!"2 + ~ x2 Y - 97 x 1!"2 
3 3 2 6 2 6 

-3X2 y2 + 176 u) !__ 
3 u 

+ ~ ( 1r
2 

- 4 X + X 2 + 4 Y - 2 Y X + Y2) ( 1r
2 + Y2 - 2 Y X + X 2) ~: 

+ ( _ ~ 1!"4 + 11 y X U _ 149 1!"2 _ 10 y X 1!"2 + 22 X _ 532 y _ 107 X 2 _ 413 y 2 
2 6 9 9 18 18 

+~ y4- ~ y3 + ~ x4- ~ x3- 208 + 22 x u- 11 y2 u- 37 y2 x- 11 x2 u 
2 3 2 3 9 3 6 3 6 

44 2 2 3 11 2 32 2 2 49 2 -17YX+-UY+Y 1r -2XY --1r U--Y1r -X Y--X1r 
3 2 3 3 

-3X2y2 + 176 u) ~ (C.44) 
3 t 

- 48 X - -X Y - 2 X - 2 Y - 48 Y - 128 - - Y X 1r - 9 Y 1r + - Y ( 
15 2 2 2 2 11 2 2 3 4 
4 2 8 
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1 1 1 1 5 _ 2 y3 _ 2 7r2 _ 4 x2 y _ 9 x 7r2 + _ x3 y __ x2 7r2 __ y2 7r2 + _ x y3 __ 7r4 
2 4 4 2 8 

3 4 2 3) + 8 X - 4 Y X - 46 Y X - 2 X 

+ ~ ( ,-2 + Y 2 
- 2 Y X + X 2

) ( Y 2 
- 4 Y + ,-2 

- 2 Y X + 4 X + X 2
) :: 

+ ( - 64 + 4 Y 2 - ~ X 2 Y 2 - 16 Y - ~ Y 2 x + 3 1r2 - 3 x 2 y + x 2 + x Y 3 - ! 1r4 

2 2 2 

+- X - 32 X - - X - 2 Y X 1r - - Y 1r - - X 1r - 4 Y 1r - 30 Y X -14 13 2122 7 2 2 )t 
2 2 2 2 u 

+~ ( ,-2 
- 4 X + X 2 + 4 Y - 2 Y X + Y2

) ( ,-
2 + Y 2 

- 2 Y X + X 2
) :: 

( 
2 522 3 13 2 214 + - 3 Y X - -X Y - 32 Y + X Y - - Y + 4 X - 64 - 2 Y X 1r + - Y 

2 2 2 

--X Y - - Y 1r - 16 X - 30 Y X - - 1r - -X 1r + Y - 4 X 1r + 3 1r -5 2 7 2 1 4 1 2 2 2 2 2) u 
2 2 2 2 t 

(C.45) 

( 
520 + 88 u 2 _ 544 u _ ~ Y 2 x _ 4 Y x + 20 x 2 _ ~ x 2 u _ ~ y 2 u + 56 y2 
81 9 27 3 9 3 3 9 

+ 452 y _ 124 U y _ 92 X + 52 X U + ~ y3) 
27 9 27 9 3 

+ ( 10 X2 - ~ X2 U - ~ y2 X - 2 y X - 46 X + 26 X U + ~ y3 - ~ y2 U + 28 y2 
9 3 3 27 9 3 3 9 

+ 226 Y _ 62 u Y + 44 u 2 + 260 _ 212 u) ! 
27 9 9 81 27 u 

+ ( 10 X2 - ~ X2 U - ~ y2 X - 2 y X - 46 X + 26 X U + ~ y3 - ~ y2 U + 28 y2 
9 3 3 27 9 3 3 9 

+ 226 y _ 62 UY + 44 U2 + 260 _ 272 u) ~ (C.46) 
27 9 9 81 27 t 

( 
320 2 52 64 2 2 20 2 4 2 64 
--2X Y+-Y-4UY--U+-Y --1r +-1r U+-YX 

9 3 3 3 9 3 9 

--YXU+-X1r +-Y X+-X -4X-4XU+-Y --Y1r --X 8 2 2 2 2 2 3 2 3 2 2 10 2) 
3 3 3 3 3 3 3 

( 
160 32 5 2 2 5 2 1 2 2 2 16 2 + ---U--1r +1r U--Y +-Y U--Y1r +-YX-2YXU+-X11 
9 3 3 9 3 3 3 3 

-2X Y--X--XU+-X U--X +-X +-Y--UY+-Y X -2 8 8 1 2 23 2 2 3 68 4 4 2 ) t 
9 3 3 9 3 9 3 3 u 

( 
5 2 2 160 32 2 17 2 1 2 + 4YX-2YXU--7r +1r U+---U-X Y--X +-X U 
3 9 3 9 3 
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-! y 1f2 + ! y3 + ! X3 + ! X 1f2 + ! y2 X - ~ X U - 28 X + ! y2 + ! y2 U 
3 3 3 3 3 3 9 9 3 

+-Y--UY -88 8 ) u 
9 3 t 

8
8
1 ( -5+3U) ( -3U+3Y-3X+5) 

+8

4

1 ( -5+3U) ( -3U+3Y-3X+5) ~ 

+ 8~ ( -5+3U) ( -3U+3Y-3X+5) ~ 

C.3 Quark~gluon scattering 

C.3.1 The s-channel process qij --t gg and gg --t qij 

C.3.1.1 Two-loop contribution 

(C.48) 

(C.L 
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(C.49) 

(C.50) 

( 
16 2 ( 1 2 2 8 2 15 ) . 2 X Y - - X 1r Y + 4 X Y + - Y - 4 X - - 1r - - Y + 3 X L12 ( x) 
3 2 3 2 
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( 
15 ) . ( ) . 13 + - 2 +10X+4Y L13(y)+ -3+10X+14Y L13(x)-

24
1r

2 S 

5297 . . 41393 133 2 301 4 59 49 2 
+ -- s + 8 114(Z) - 20 114( X) - -- - - 7r + - 7r + -X + - X 7r 

216 2592 36 720 3 18 
3 2 2 15 2 2 3 2 2 65 3 55 2 1 3 -6 X (3 + -X 1r + -X Y + - Y 1r - 12 Y (3 - - X + - Y 1r - - X Y 
2 2 4 18 36 6 

8 3 22 2 10 2 11 2 . 3 4 --X Y + 5 (3 S - -X S - - X Y - - Y S - 11 Y S + 114 (y) + - Y 
3 3 3 3 8 

143 x 2 _ 425 Y2 _ 23 Y3 173,.. !x4 211 Y _ 101 XY2)! 
+ 18 72 36 + 36 "3 + 3 + 24 12 u 

( 
11 2 2 ( 11 )· 2 3 + - - X y + - X 7r y + - - - 3 y L13 (X) + 7r s - - s - 6 1i4 ( z) 
2 3 4 4 

11 . 255 ( 1 2 1 2 1 2 11 11 ) . 1 2 +- 114 (X) - - + - 7r + - X + - y + - y + - X 112 (X) + - 7r 
2 16 3 4 4 4 4 3 

( 
11) . ( 13 4 21 7 2 7 2 2 3 2 2 + 3X+- L13 y)+-7r --X--X7r -3X(3--X 7r --X y 
4 360 16 6 12 4 

1 2 2 13 3 17 2 1 3 3 25 2 
+ 

24 
Y 7r + 3 Y (3 -

24 
X + 

24 
Y 1r + 4 X Y + X Y - 12 ( 3 S + B X Y 

-- 114(y -- Y +-X +- Y +- Y + 15 (3-- X +-Y-- X Y -11 . ) 5 4 21 2 67 2 13 3 7 4 21 3 2) t
2 

2 48 16 16 24 48 16 8 s2 

2 t
2 

( 83 . ( ) . 13 . 3 271 4 +X 2 + --
2 

114(y) + 26X + 15 Y 113(x)- -113(y) +- (3 + -1r 
u 4 2 240 

127 2 1 ( ) 55 2 3133 55 
--1r -- Y 21 Y- 13 1i2(Y) +- Y 1r -25 Y (3 + --Y-- X Y 

72 4 18 144 12 

_ 22 x 2 8 + ~ y2 7r2 _ ~ x 7r2 Y _ 22 Y 8 + 23 + ~ Y 4 _ 119 x 2 Y + 1063 Y2 
3 4 6 3 16 16 24 144 

--X --X Y+-X Y + t+----+u 209 3 4 3 23 2 2) { } 
72 3 8 

( 
7 2 1 2 3 . 5 2 1 4 10 2 187 

--X 1r Y + -1r S--S+ 14L14(z) +- 1r -- 1r +X+- X 1r --
3 2 8 8 90 3 32 

+4 x (3 + ( 16 Y - 6 x + 8) 1i3 ( x) + ~ X 2 
1r

2 + 4 x 2 Y2 + t
2 

Y2 
1r

2 - 18 Y (3 

9 21 3 73 112 1412 +- Y 1r + - X Y - - X Y - 6 (3 S - - X Y + 11 1i4 (y) - - Y - - X 
4 2 3 2 8 4 

5 2 3 3 5 1 4 39 3 2 ( 3) +- Y - - Y + - (3 - -X + - Y - -X Y + 2 Y + 2 X - - Lh (y) 
8 4 2 12 8 4 2 

(
1 2 2 2 3 ) . ) t 2 t

2 
+ - y - X + 7r - - y - 8 X 112 (X) - - X -

2 2 u u2 

(
3 3 3 ) t

2 
+ 2 7r2 - 3 X y + 2 y2 + 2 X2 - 3 X + 3 y s2 

+ ( 10 Li4 (y) + ( 16 Y - 4 X) 1i3( x) + 19 1h (y) - Y ( Y + 19) Li2 (y) + l 

(C.51) 
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4 4 43 7 15 29 
+2 x2 y2 + - Y 1f2 - 2 (3 - - 7f4 + - 7f2 - - y4 - 12 Y (3 - - x2 Y + - Y 

3 45 12 12 2 4 

-- Y 1r + 3 Y --X Y-- X 11 Y-- X + t +------+ u 1 2 2 2 7 4 2 11 3) { } 
3 2 3 6 

(C.52) 

( - i X 1r
2 Y + (- i 1r

2 + i Y) 1i2(x)- __!_ 1r
2 S + 

185 
S-

44 
S 2 + 8 1i4(z) 

3 3 3 36 54 9 

. 1307 77 2 14 4 2 2 2 2 2 1 2 
-8114(x)+ 

216 
+ 

54
1r + 

45
1r + 3X 1r +2X Y -8Y(3 +2"Y7i 

4 3 2 2 44 . 2 43 2 7 3 1 7 1 4 - 3 X Y + 3 Y S - 9 Y S + 8 114 (y) + 2 X -
18 

Y + 
18 

Y - 6 (3 + 3 X 

+i 1h(y) + 
10 

Y + ~ XY 2 + 81i3(x) Y) !_ 
3 9 3 u 

+ ( ( ~ + 2 X) Li, (y) + ~ X 1r
2 Y + ( ~ 1r

2 + ~ Y + 4 X) Li, ( x) + 
1
1
8 

1r
2 S - 2

2
2
7
1 S 

+ 
88 

S2
- 41i4(z) + 41i4(x)-

863 
+ (- 2Y- 4) 1i3(x)-

32 
1r

2 -
17 

1r
4 -

19 
X 

9 108 27 180 18 

16 2 1 2 2 1 2 2 7 3 2 2 3 4 2 - 9 X 1r - 2 X (3 - 3 X 1r - 2" X Y + 2 Y (3 - g X - Y 1r + 3 X Y - 3 X S 

2 5 4 2 109 . 1 2 70 2 7 3 1 7 
+2X Y+ 3Xs- 3Y S+g-YS-4114(y)+-gX + 9 Y - 9Y +3(3 

--X --Y+-XY -1 4 31 2 2) t
2 

6 6 3 s2 

+(-
37 

+ ~ Y1r2
- 4(3- __!_!__ 1r

4 -
49 

1r
2 + 2Y (3- 21i3(x) Y + 

91 
Y + 41i3(Y) 

36 3 360 36 18 

-2 x
2 

Y - ~ Y s + ~ s - 2 Y 2 - 4 1i2 (y) Y -l X 2 Y 2) + { t +------+ u} 
(C.53) 

( 
1 8 8 2 112 7 442 .. 

--XY+-XYS+-X7r Y--1r S+-S+-S -16114(z)+16114(x) 
2 3 3 9 9 9 

3661 ( ) . 347 2 28 4 161 37 2 4 2 2 --- + -16Y +4 113(x) + -1r - -1r --X- -X1r --X 1r 
324 108 45 18 18 3 

2 2 2 3 1 2 8 3 2 2 62 4 2 -4 X Y + 16 Y (3 + -X - - Y 1r + -X Y- -X Y +-X S- - Y S 
3 6 3 3 9 3 

26 . 29 2 35 2 7 3 10 2 4 4 . 
+- Y S- 16 114(y) +-X +- Y -- Y -- (3-- X +- 113(y) 

9 18 18 9 9 3 3 

23 11 2 ( 8 2 4 ) . ) t +- y + - X y + - 7f + - y - 4 X 112 (X) -
9 6 3 3 u 

( 
4 . 4 . (4 4 ) . 7 263 25 2 + -- 113(x) +- 113(y) + - Y +-X 112(x) +-X-- S + -1r 
3 3 3 3 9 27 18 

+ 4085 + 13 Y 2 + 103 x 2 _ 31 Y _ 73 x 3 _ 58 x Y _ ! (
3 

+ 25 y3 _ ! 7f2 8 
324 18 18 9 36 9 9 36 6 

+-X Y--Y1r +-XY +-X7r --X S--XS+-Y S+-YS -5 2 31 2 1 2 3 2 1 2 1 1 2 1 ) t 2 

2 18 6 2 3 3 3 3 s2 



C. Finite Contributions 190 

2 t
2 

( 19 1 2 52 11 4 35 2 . ( ) 50 -3 X - + - - +- y 1T +- (3-- 1T + -1T + 8 y (3- 8113 X y-- y 
u2 36 18 3 90 12 9 

52 . 47 2 5 1 2 1 5 2 52 . ) 11 3 
-- 113 (y) + -X Y + - Y 5 + -X 5 + - 5 - - Y + - 112 (y Y - -X 

3 6 3 3 3 18 3 36 

-X
2

Y
2

- ~XY) + {t +----> u} 
(C.54) 

( 
1 2 1 2 227 . . 3401 64 2 
- X y - 8 X 1T y - - 1T 5 - - 5 + 48 114 ( z) - 48 114 (X) + -- + - X 1T 
2 12 54 648 9 

( ) ( ) 
. 19 28 101 1 

+ -81r2 +8X 1i2(x)+ 48Y-8 113(x)+
36

1r2 + 
15

1r4 +TX+3X2Y 

+4 x 2 1r2 + 12 x 2 Y2 - 48 Y (3 + ~ x 3 + ~ y 1r2 - 8 x 3 y + i x 2 5 + ~ Y2 5 
9 9 3 3 

+2 Y 5 + 48 1i4(Y)-- X +- Y +- Y +- (3 + 2 X - - Y +-X Y -73 2 4 2 7 3 143 4 11 1 2) t 
9 9 18 18 3 6 u 

+(4Li3(x)- 4Li3(y)- 4( X+ Y) Li2(x)- 4XY2
- ~X 1r

2 +BY- 8X + 4 Y "') 

2 t
2 

(46 2 11 4 107 2 . 71 7 . +9X -+ -Y1r -52(3+-7r --1r -24Y(3 +24113(x)Y+-Y+-X· 
u2 9 30 18 9 9 

. ) 712 4 42 442 . 22 2) +52 113 (y - 3 X Y + 
3 

Y 5 + 
3 

X 5 + g Y - 52 112 (y) Y + 3 X Y -
3 

X Y 

+{t +----> u} 

( 
8 8 2 8 2 1 2 40 20 ) t2 

--Y5--5 +-1r --Y +-5+-Y -
9 9 27 3 27 27 s2 

+ -Y --Y+-Y5--1T --5+-5 -(
1 2 10 4 4 2 20 4 2) t 
6 27 9 27 27 9 u 

+{t +----> u} 

(C. 

(C.56) 

(C.57) 
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C.3.1.2 One-loop self-interference contribution 

(
25 Y 3 +55 x 3 _ x 4 _ 133 Y2 + 11 x 11"2 + 11 y2 8 _ 19 Y 11"2 _ 4 x2 11"2 + ~ x2 5 
12 12 36 6 3 6 3 

_ 205 y _ 2 8 _ 121 82 _ 715 y 8 _ 55 X 8 _ 82 _ ~ 11"2 _ 35 X _ 17 x 2) t
2 

12 
2 

9 36 12 9 9 12 12 s2 

+ --Y --Y 8+-X +2X 1r +-X +-8 +-8+-+-Y1r 
( 

5 2 11 2 3 2 2 2 1 4 121 2 77 51 11 2 
72 6 4 2 18 6 8 6 

_ ~ x 11"2 _ ~ x 3 _ ~ Y 3 + 121 Y 8 + 77 Y + ~ Y 2 11"2 + 157 11"2 + ~ Y 4 ) ! 
2 4 12 18 12 2 72 8 u 

--X 4X7r -47r +X -2X -+-X 47r +X -1 ( 2 2 3 2) t
2 

1 2 ( 2 2) t
3 

4 u 2 8 u3 

+ --+-X -X 1r +-Y8--1r --8+-Y--X ( 
31 8 2 2 2 55 23 2 11 41 1 4) 
36 3 12 12 12 12 4 

+{t~u} 
(C.58) 

B s ( 2 X 2 Y 2 + 4 X 3 Y + 
2~0 X Y + 

3

3

5 
X Y 2 - 25 X 2 Y - 4 X Y 3 + 8 X Y 1r

2 + 24 

+ 88 8 + 79 x _ 224 x 2 + 241 Y _ 67 Y3 + 221 x 3 _ 15 x 4 _ 16 Y2 + ~ Y 4 
3 12 9 12 12 12 4 3 4 

+58 x 11"2 - 11 y2 8 - 58 Y 11"2 - 9 x2 11"2 + 11 x2 8 - ~ Y 8 + 11 x 8 + y2 11"2) t2 
3 12 3 12 12 12 s2 

+ (2 X 2 Y 2 - 4 X 3 Y -
118 

X Y - 2 X Y 2 + 
71 

X 2 Y + X Y 3 - 4 X Y 1r
2 

9 12 

_ 22 x Y 8 + 809 11"2 _ 121 82 _ 77 8 _ 35 x + 59 x 2 _ 91 Y + 13 Y3 _ 77 x 3 
3 72 18 3 3 9 12 12 12 

+ 25 x 4 + 455 Y 2 _ ~ Y 4 _ 22 x 11"2 + 11 Y 2 8 + 31 Y 11"2 + 17 x 2 11"2 _ 11 Y 8 
8 72 8 3 3 3 2 9 

-110 x 8 + 2 y2 11"2 + ~ 11"4- 145 + ~ 11"2 8) ! 
9 2 8 3 u 

-~ x (4x 1r
2 - 411"2 + x 3 - 2x2) !._ + ~ x 2 (411"2 + x 2) !__ 

4 u 2 8 u 3 

+ (~ _ x 2 y 2 _ 41 x 2 _ 11 Y 2 8 _ 55 Y 8 _ 17 11"2 _ ~ 8 _ 109 Y + 27 Y 11"2 
3 12 12 12 12 12 12 2 

- ~ X4 + 31 y3 + 4 X y 11"2 + 4 X y3 - 10 X y + ~ X2 y) 
2 6 3 6 

+{t~u} 
(C.59) 
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11 49 14 2 11 2 145 77 2 1 4 
--Y8--Y--XY +2XY--X Y+-+-8-4XY7r +-X 

2 12 3 6 8 6 8 

-41 7r2 - ~ x2 7r2 - !..! y2 8 - 55 y2 - 43 x3 + ~ y4) !__ 
8 2 6 8 12 8 u 

1 ( ) t2 ( ) t2 -2 X 2 7r2 + X2 + 4 X 7r2 + X3 u2 + - 16 - X2 + y - X + y2 s2 

(
3 13 2 2 2 11 2 11 3 2 3 2 1 4 4 3 +---X -X 1r --Y 8--Y8--1r +-Y-5Y7r +-X --Y 
2 3 3 3 2 2 2 3 

-4XY7r - 2XY - -XY- -X Y 2 3 10 16 2 ) 

3 3 

-~X2 (41r2 +X')::+ {t ~ u} 
(C.60) 

( 
1 2 2 1 4 2 2 13 2 1 2 2 51 7 2 2 --Y 1r --Y -2XY7r +3X --1r --X Y ----X 1r 
2 8 8 2 8 2 

+-Y-- X - - Y 1r --X - 5 X 1r +- Y --X Y-- Y -21 7 3 3 2 7 4 2 5 2 3 2 3 3) t 
4 4 2 8 8 4 4 u 

-- x 2 1r
2 + X 2 + 4 x 1r

2 + X 3 - - - x 2 4 1r2 + x 2 -1 ( ) t2 1 ( ) t3 
2 u2 8 u3 

(
1 1 2 2 2 2 2 3 2 7 2 1 4 3 2 +---X Y +2X -2X 1r --1r +-Y-5Y7r --X -2Y -2XY1r 
4 2 2 2 2 

-~ x2 y) + { t ~ u} 
(C.61) 

( 
1 3 1 3 65 2 2 2 2 2 2 2 2 2 25 --Y --X +-Y +-X7r --Y 8+-Y1r --X 8+-Y 
3 3 36 3 3 3 3 12 

+-+48+-8 +-Y8+-X8+-7r --X+-X -2 44 2 109 5 2 2 1 5 2) t2 

9 9 18 6 9 12 12 s2 

+ --1r --Y +-Y 8+-Y --Y8--Y--Y1r --8 --8 -( 
11 2 11 2 1 2 1 3 22 7 1 2 22 2 7 ) t 
18 18 3 6 9 6 3 9 3 u 

+---X --Y8+-1r +-8+-Y + t~u (
1 5 2 5 5 2 1 1 ) { } 

18 12 6 12 6 12 

(C.62) 

p 8 = (2_ y3 _ ~X y2 + ~ y2 8 + _!_ y2 + ~ X2 y _ 31 y + !..!_ y 7r2 + ~ y 8 12 6 6 12 2 12 6 6 

23 3 1 11 2 1 1 2 157 2 16 40 ) t2 

- 12 X - 12 X - 6 X 7r - 6 X 8 - 6 X 8 + 36 X - 3 8 - g X y s2 

+ (14 8 + 22 82- 10 X2 +~X y2 +~X+ 31 X 8 +~X 7r2- ~ X2 y + ~ X3 + ~ y 
3 9 9 2 6 9 3 3 3 3 
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+ 31 X y + i X y S - ! y3 + 13 y S - ~ 7r2 S - 31 7r2 - ~ y2 S + ! y2 - i y 7r2) !__ 
18 3 3 9 3 18 3 9 3 u 

+-+-X +-Y S+-YS--1r +-S+-Y (
1 5 2 1 2 5 1 2 1 1 
6 12 6 6 12 6 12 

--Y1r --Y +-XY--X Y + t+----+u 3 2 531 12) { } 
2 12 3 6 

(C.63 

G s t ( 3 Y + 2 X
2 

- 7 + Y2
) ( Y + 2 S + X) ~ 

+ (! x 2 + ~ Y2 s + ~ Y s + ! Y3 + ! x Y + ! X 2 Y) 
3 3 3 3 3 3 

+{ t +-----+ u} 
(C.64) 

( _ ! y2 _ i y s _ ! 1!"2 _ ! _ i 82) t2 
9 9 9 9 9 s 2 

+ -YS+-S +-1r +-Y -+-( 
2 2 2 1 2 1 2) t 1 
9 9 18 18 u 18 

+{ t +-----+ u} 
(C.65) 

(C.66) 

C.3.2 The u-channel process qg --t qg and gij --t gij 

C.3.2.1 Two-loop contribution 
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155 2 220 290 44 2 22 2 440 1 4 
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X 
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275 X U _ 509 X y ~ 4 ~ X 3 509 2 83 r 17 X 2 y _ 39 X y 2 

+ 18 24 + 3 X + 24 + 48 X + 12 "'3 + 6 4 

) [
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216 3 9 72 2 864 
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] 
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3
XYU+

3
XY1r 
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41 . 11 2 865 2 35 4 2273 55 2 7 2 2 23 3 
+- 114(y) + - 1r U - - 1r - - 1r - --X + -X 1r - -X 1r + -X Y 

2 6 144 36 432 36 4 6 

10 Y'" _ ~ Y 7f2 _ 121 x u 865 x Y 11 x 2 u _ !..!. x 4 77 x 3 _ 865 x 2 
+ "'
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9 18 + 72 + 6 12 + 72 144 

+ 35 (3- ~ X2 y- ~X y2- 8 X (3 - 27 X2 y2- 10 y2 7f2 -X y3) [t2- 82] 
12 4 6 8 3 8t 
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11 8 2 457 2417 19 2 11 4 2417 35 2 
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3 3 72 72 144 45 144 24 

. ( 33 . 10 2 55 141 55 
+8 Y (3 + 8 113 y) X - - 112 (x) X - - Y 1r + - X U - -X Y - - Y U 

4 3 6 8 3 
17 3 2 4 4 3 141 2 141 2 3 2 2 

--X - - Y - - Y + -X + - Y + - (3 - 2 X Y + 2 X Y - 8 X (3 
24 3 3 16 8 4 

2 4 ( 33) ) +2X2y2_3y27r2+3XY3+ 8Y+4 1i3(x) (C.67) 
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(Co6: 
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] 
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180 16 2 24 12 2 

29 2 23 1 4 13 3 23 2 11 3 2 
+3 Y (3 - - Y 1r + -X Y - -X - -X - -X - - (3 - -X Y 

12 8 8 24 16 4 2 
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79 173 2 11 4 79 1 2 . . ( ) -- Y - - 7r + - 7r + - X - - X 7r + 24 Y (3 + 24 113 (y) X - 4 112 x X 
6 36 15 12 12 

5 2 43 2 2 7 3 4 3 23 2 +- Y 7r +X U +-X Y + 2 Y U +X U- 2 Y U +-X - 2 Y + Y --X 
3 6 12 6 

) [ 

2 . 
43 2 71 2 3 2 2 2 2 2 3 t + 8 

-- Y + - (3 - 2 X Y - -X Y - 24 X (3 + 6 X Y - 2 Y 7r + 4 X Y --
6 18 2 8t 

+ ( ( 8 + 48 Y - 24 X) 1i3 (y) + ( 8 71'2 - 4 X + 8 Y) 1b ( x) - ~ X Y U 

+(24Y +4) 1i3(x) -481i4(x) + !7r
2 U +481i4(z) -481i4(y)-

77 
7r

2 + .!_.!:_71'4 
3 18 5 

41 17 2 2 2 3 2 77 1 2 +- X - - X 7r + 4 X 7r - 8 X Y - 24 Y (3 - 2 Y 7r - X U + - X Y + - X U 
4 36 9 3 

+2 x4 + 2._ x3 - 77 x2 - 4 (3 - ~ x2 Y + 14 x y2 + 24 x (3 + 6 x2 y2 + 6 y2 71'2 
36 18 3 3 

+4X y
3

) [ t2 ~/
2

] 

+ -52+24Y 113(x)--XYU-8XY1!' +-11' U--Y-1111' +-11' ( ( ) 
. 8 2 4 2 142 2 11 4 

3 3 9 15 

71 85 . . 64 4 76 
+ 9 X + 9 X 71'2 + 24 Y (3 + 24 113 (y) X + 52 112 ( x) X + 9 Y 71'2 + J X U - 9 X Y 

8 2 4 2 8 7 3 4 100 3 44 2 76 2 
+- Y U +-X U-- Y U +-X - 2 Y +- Y +-X +- Y -52 (3 

3 3 3 9 9 9 9 

+ 64 X2 y - 50 X y2 - 24 X (3 + 6 X2 y2 - 2 y2 71'2 + 4 X y3) 
3 3 

( ) 
t2 82 

+ 9 7r
2 + 9 X 2 - 18 X Y + 9 Y2 

82 + 9 Y2 t2 (C.7 

--Y +-U--Y+-YU--U +-11' --X +-XY ( 
1 2 40 20 8 8 2 7 2 1 2 1 
3 27 27 9 9 54 6 3 

1o x-i x u) [e + 82] + 27 9 u 2 

+ -71' +-X --XY--X+-XU (
1 2 1 2 1 10 4 ) [t

2
- 82] 

6 6 3 27 9 u 2 

+ --U+-U --YU+-Y+-Y --11' +-XU--X ( 
20 4 2 4 10 1 2 7 2 2 5 
27 9 9 27 6 108 9 27 

_!xy _!_x2) [t2 + 82] 
6 + 12 8t 

+ --7!' --XU+-X+-XY--X ( 
1 2 2 5 1 1 2) [t

2
- 8

2
] 

12 9 27 6 12 8t 
(C.74) 
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( 
4 10 8 20 1 2 1 5 2 13 2 

+ --XU+-X+-YU--Y--Y +-XY--X +-7r 
9 27 9 27 3 3 36 108 

_i u2 20 u) [t2 + s2] 
9 + 27 st 

+ - - x Y + - x2 + - 7["2 ( 
1 1 1 ) [t2- 8 2] 

18 36 36 st (C.75) 

C.3.2.2 One-loop self-interference contribution 

( 
- 10 x2 Y + 10 x 1["2 - x2 7["2 - 3 x2 y2 + 10 x y2 - 110 x u + 220 Y u 

3 9 9 

11 2 46 22 2 2 2 2 3 1 4 82 23 2 
+-X U+-XY+-Y U-3Y 1r -10Y1r +2X Y--1r ----1r 

3 9 3 2 9 9 
121 2 3 22 23 2 46 2 10 3 1 4 -- U - 22 U + 2 X Y - -X Y U - -X + 20 Y - - Y + -X - -X 
9 3 9 9 3 2 

- 20 y3 - y4 + 2 X y 7r2 - 10 X + 11 7r2 u) [t2 + s2] 
3 3 ~ 

+ - x + 2 x Y3 - - X 4 + 2 X 3 Y + - x 2 - - 1r4 + - x 3 + 2 x y 1r2 - x 2 1r2 
(

85 1 41 1 5 
12 2 36 2 4 

5 2 275 2 2 2 2 59 2 15 2 41 
+-X 1r +-X U- 3 X Y + Y 1r -- 1r +-X Y - -X Y 

4 36 36 4 18 

_15 X2Y + ~ Y7r2) [t2- s2] 
4 4 u2 

+ ( 13 x 2 Y _ 13 x 1["2 + ~ x 2 7["2 + 15 x 2 Y2 _ 13 x Y2 + 121 x u _ 121 Y u 
4 12 8 8 4 36 18 

11 2 49 11 2 15 2 2 13 2 5 3 5 4 49 2 --X U--XY--Y U+-Y 1r +-Y7r --X Y+-1r +-1[" 
12 72 6 8 4 4 16 144 
121 u2 77 u _ ~ x Y3 11 x Y u 49 x 2 _ 77 Y 49 Y2 _ 13 x 3 ~ x 4 

+ 18 + 6 4 + 6 + 144 12 + 72 12 + 16 

+ 13 y3 + ~ y4 - ~X y 7r2 + 77 X - _!! 7r2 U + 51) [t2 + s2] 
6 8 4 24 12 8 st 

( 
77 121 59 3 4 3 4 3 2 1 3 3 3 + --X--XU--XY+-X +-1r --XY1r --X --XY 
24 36 72 16 16 4 6 4 

112 112 11 33 922 322 322 +-X U+-1r U--XYU--X Y+-X Y +-X 1r --Y 1r 
12 12 6 4 8 8 8 

_!X y2 +! X2 y _!X 1r2 _! y 7r2 + 229 7r2 + 59 x 2) [t2- s
2

] 
2 2 6 6 144 144 st 

-- y y3 + 4 y 7["2 + 4 7["2 + 2 y2 -1 ( ) 8
2 

4 t 2 

- ~ ( X 2 
- 2 X Y - 2 X + Y 2 + 2 Y + ,-2

) ( X 2 
- 2 X Y + Y 2 + ,-2

) :: 

+ _ y2 y2 + 4 7["2 _ + _ x2 _ 2 x y + y2 + 7["2 _ 1 ( ) 8
3 1 ( ) 

2 

t3 
8 ~ 8 s3 
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+ ~ (96 X 2 + 36 X Y 1r
2 + 192 Y2 + 96 1r

2 + 36 X Y 3 + 123 X - 62 + 36 X 3 Y 
36 

-54 X 2 Y2 - 66 u + 165 x u - 330 Y u - 192 x Y - 246 Y - 9 X 4 - 54 Y2 1r2 

( 
- 80 Y + 40 x + 8 x Y - x4 - 7r4 + 4 x Y 7r2 + 20 x3 + 4 x3 Y - 4 x2 y2 

3 3 3 

_ 2 x2 7r2 _ 4 y 2 7r2 _ 40 x 2 Y + 20 x 7r2 _ 40 Y 7r2 + 88 u + 24 _ 136 7r2 
3 3 3 3 9 

_ 1~6 x 2 _ 8 Y2) [ t
2 ~ 82

] 

(C.76) 

+ ( - 27 X + 11 X U + 176 X y - 11 X4 - ~ 7r4 + 11 X y 7r2 + 49 X3 + 3 X y3 
4 12 9 4 4 4 

+ 11 x2 u + !! 7r2 u - 11 x Y u + 7 x3 Y - ~ x2 y2 - ~ x2 7r2 + ~ y2 7r2 
12 12 6 2 2 2 

221 x Y2 _ 221 x 2 Y 221 x 2 47 Y 2 97 2 _ 88 x 2) [t
2

- 8
2

] 
+ 12 12 + 12 7r + 12 7r + 9 7r 9 u2 

+ (145 X 2 y _~X 7r2 + 4 X 2 7r2 + 23 X 2 y 2 _ 17 X y 2 _ 121 X U + 121 y U 
24 12 4 8 18 9 

+!! x2 u + 17 x Y _ !! y 2 u + 25 Y 2 7r2 + 109 Y 7r2 _ 4 x 3 Y + ~ 7r4 _ 145 
6 72 3 4 24 8 8 

+ 47 7r2 _ 121 u2 _ 77 u _ ~ x Y 3 + 11 x Y u + 103 x 2 + 77 Y _ 17 Y 2 
16 18 3 2 3 16 4 72 

- ~ x3 + 11 x4 + 17 y3 + ~ y4 - !! x Y 7r2 - 77 x - 11 7r2 u) [t2 + 82] 
3 8 12 4 2 8 6 8t 

+ ( - 49 X - !! X U - 17 X y + ~ X4 + ! 7r4 - 7 X y 7r2 - 15 X3 - 2 X y3 
24 2 72 4 2 4 

-!! x2 u - 11 7r2 u + 11 x Y u - ~ x3 Y + 3 x2 y2 + ~ x2 7r2 - y2 7r2 
6 6 3 2 4 

_175 XY2 175 x 2y_19 x 2 21Y 2 _ 701 2 17 x 2) [t
2
-8

2
] 

24 + 24 3 7r + 8 7r 144 7r + 144 8t 

-! y (y3 + 4 y 7r2 + 4 7r2 + 2 y2) 82 
4 t 2 

- ~ ( X 2 
- 2 X Y - 2 X + Y2 + 2 Y + 1r

2
) ( X 2 

- 2 X Y + y 2 + , 2
) :: 

+! y2 (y2 + 4 7r2) 83 + ! (x2 - 2 x Y + y2 + 7r2) 2 t3 
8 t 3 8 83 

- : 2 ( 188 X 2 Y - 26 x 1r
2 + 12 X 2 

1r
2 - 12 x 2 Y 2 - 192 x Y 2 + 55 x u 

-110 Y u + 11 X 2 u - 162 x Y + 22 Y 2 u - 60 Y2 
1r2 + 164 y 1r2 - 24 x 3 y 

-6 1r
4 + 41 1r

2 + 22 U + 72 X Y 3 
- 22 X Y U + 41 X 2 - 218 Y + 162 Y 2 
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-62 X 3 + 18 X 4 + 128 Y3 - 36 Y4 + 120 X Y 1r2 + 109 X + 11 1r2 U - 8) (C. 77) 

C,. - 16 [ t':, •'] + ( - "' - X + 2 X Y - X
2

) [ 
12 
::' l 

+ (31 x2 Y- 15 x 7r2 - ~ x2 7r2 - ~ x2 y2 - 57 x y2 - g x u + g Y u 
4 4 4 2 4 4 2 

- g x2 u + 69 x Y - 11 y2 u - 4 y2 7r2 + 37 Y 7r2 + ~ x3 Y - ~ 7r4 - 29 7r2 
4 8 2 4 2 2 16 

+ 77 u + 145 + 4 x y3 + g x Y u - 85 x2 - 91 Y - 69 y2 - ~ x3 + ~ x4 
6 8 2 16 12 8 2 4 

+ 19 y3- 2 y4 + 5 X y 7r2 + 91 X- 11 7r2 u) [t2 + 82] 
2 24 4 st 

+(63 x + gxu- 25 XY- ~x4- ~7r4 + ~XY7r2- 25 x3 + ~xy3 
8 4 8 8 8 2 12 2 

- 11 x2 u - 11 7r2 u + 11 x Y u + x3 Y - ~ x2 y2 - ~ x2 7r2 + ~ y2 7r2 
12 12 6 4 2 4 

- 29 X y2 + 29 X2 y - 17 X 7r2 - ~ y 7r2 + !_ 7r2 + 25 x2) [ t2 - s2] 
6 6 6 2 16 16 8t 

--Y -Y -21r +Y +4Y7r -1 ( 2 2 3 2) 8
2 

2 ~ 

- ~ ( X 2 + X + "' - 2 X Y - Y + Y 2
) ( X 2 

- 2 X Y + Y 2 + , 2
) :: 

- ~ y2 (y2 + 4 7r2) s3 - ~ (x2 - 2 X y + y2 + 7r2) 2 ~ 
8 t3 8 s3 

- ~ ( - 56 X 2 Y + 26 X 1r2 + 18 X 2 Y2 + 120 X Y2 + 22 X U - 44 Y U 

+22 X 2 U - 92 X Y + 44 Y2 U + 30 Y2 1r2 - 68 Y 1r2 + 3 1r4 + 26 1r2 - 36 X Y3 

-44 x Y u + 26 X 2 + 18 Y + 92 Y2 + 8 x 3 - 3 x4 - 80 Y3 + 18 Y4 - 36 x y 1r2 

-9X+227r2U-18) (C.78) 

( 
21 21 29 1 4 1 4 3 4 2 5 3 

--Y+-X--XY--X --1r --Y +2XY7r --X 
4 8 8 2 2 2 4 

+ 13 y3 + 3 x y3 + 2 x3 Y - ~ x2 y2 - x2 7r2 - ~ y2 7r2 - 39 x y2 
4 2 2 8 

+ 33 x2 Y _ ~ x 7r2 + 33 Y 7r2 + 29 7r2 + 29 x 2 + 29 Y2 _ 51) [e + 8
2
] 

8 4 8 16 16 8 8 st 

( 
21 19 3 4 3 4 3 2 1 3 3 3 3 3 + --X--XY--X --1r +-XY7r --X +-XY +-X Y 
8 8 8 8 2 2 2 2 

9 2 2 3 2 2 3 2 2 15 2 15 2 1 2 1 2 --X Y --X 1r +-Y 1r --XY +-X Y--X1r --Y1r 
4 4 4 8 8 2 8 

~ 2 19 x 2) [t
2

- 8
2

] 
+ 16 7r + 16 st 
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--Y -Y -21r +Y +4Y7r -1 ( 2 2 3 2) 8
2 

2 t2 

- ~ ( X
2 

+ X + 1r2 - 2 X Y - Y + Y2) ( X 2 - 2 X Y + Y2 + 1r2) :: 

__ y2 y2 + 4 1!"2 _ _ _ x2 _ 2 x y + y2 + 1!"2 2 _ 1 ( ) 83 1 ( ) t3 
8 t3 8 83 

- ~ ( - 4 X 2 - 4 X Y 1r2 - 8 Y2 - 4 1r2 - 8 X Y 3 - 7 X - 13 Y 1r2 - 4 X 3 Y 

+8 X 2 Y2 + 15 x Y2 + 4 x 3 
- 1 + 8 x Y + 14 Y + x 4 - 10 Y 3 + 8 Y2 1r2 + 4 Y4 

(C.79) 

-2Y+X--YU+-XU--XY--X +-Y +-U --X U ( 
62 31 20 1 3 2 3 44 2 2 2 
9 9 9 3 3 9 3 

2 2 4 2 4 2 2 1 2 2 10 2 --1r U+-XYU-XY --Y U+X Y--X1r +Y1r +4U+-?r 
3 3 3 3 9 

+- +-Y +-10 x 2 20 2 2) [t
2 

+ 8
2

] 
9 9 9 u2 

( 
_ 13 X_ 47 X U 25 X y 25 2 _ 25 x 2) [t

2 
- 8

2
] 

+ 12 18 + 18 + 36 7r 36 u2 

+ -Y--X+-YU--XU+-XY+-X --Y --U ( 
7 7 22 11 11 1 3 1 3 22 2 
6 12 9 9 18 12 6 9 

12 12 1 1 212 12 1 212 
+-X U+-1r U--XYU+-XY +-Y U--X Y+-X1r --Y1r 

6 6 3 4 3 4 12 4 

-~ u- .!..!:. 1!"2-.!..!:. x2- .!..!:. y2) [t2 + 82] 
3 36 36 18 8t 

+ -X+-XU--XY--X --X U--1r U+-XYU--XY (
7 11 11 1 3 1 2 1 2 1 1 2 

12 9 18 12 6 6 3 4 

+-X Y--X1r --Y1r --1r +-X 1 2 1 2 1 2 11 2 11 2) [t
2

- 8
2

] 
4 12 12 36 36 8t 

-
3
1
6 

( - 4 + 6 Y - 3 X - 60 Y U + 30 X U - 30 X Y - 12 U + 15 1r2 + 15 X 2 + 30 Y2) 

(C.80 

-Y--X--X +-X Y--X1r +-Y?r --U+-?r (
8 4 2 3 4 2 2 2 4 2 16 20 2 
3 3 3 3 3 3 3 9 

+ 2
9
0 x 2) [ t

2 ~ 82
] 

+ -X--XU--XY--X --X U--1r U+-XYU--XY ( 
5 1 77 5 3 1 2 1 2 1 23 2 
4 6 18 4 6 6 3 12 

+ 23 x 2 Y _ 23 x 1!"2 _ ~ Y 1!"2 _ 77 1!"2 + 77 x 2) [t
2

- 8
2

] 
12 12 12 36 36 u2 
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+ --Y+-X--YU+-XU--XY+-X --Y +-U ( 
7 7 44 22 13 1 3 1 3 22 2 
2 4 9 9 18 6 6 9 

12 12 2 1 2 22 52 1 2 --X U+-1r U--XYU+-XY +-Y U--X Y+-X1r 
3 3 3 4 3 12 6 

-~ Y 7r2 + 14 u-! 7r2-! x2 + 13 y2) [t2 + 82] 
12 3 2 2 18 8t 

+ --X+XU+-XY+-X +-X U+-1r U--XYU+-XY ( 
7 11 1312 12 2 11 2 
12 9 2 3 3 3 12 

_!!x2y + ~X7r2-! Y7r2 + !!7r2- 11 x2) [t2- 82] 
12 6 4 18 18 8t 

+ 
1
1
2 

( 4 - 5 X 3 + 14 Y 3 + 2 x 2 u + 2 1r2 u - 4 x Y u - 21 x Y2 + 4 Y2 u 

+ 17 X 2 Y - 2 Y + X - 20 Y U + 10 X U - 18 X Y - 5 X 1r2 + 17 Y 1r2 + 4 U 

(C.81) 

(~ Y - ~X - Y U + ! X U - X Y + ! X 3 - Y 3 + ! X 2 U + ! 1r2 U - X Y U 
3 6 2 4 2 2 

+- x y2 + y2 u _ x2 y + _ x 7r2 _ y 7r2 __ u + _ 7r2 + _ x2 + y2 3 1 7 1 1 )[t
2

+8
2

] 
2 4 3 4 4 8t 

+ ( - ! X U + ! X Y + _!_ X 3 + ! X 2 U + ! 1r2 U - ! X Y U + ! X Y2 - ! X 2 Y 
2 2 12 6 6 3 3 3 

+-X7r +-7r --X 1 2 1 2 1 2) [t2- 82] 
12 4 4 8t 

+ l ( -4 Y 1r2 - 4 Y U - 4 Y 3 
- 4 X 2 Y - 4 X Y - 4 X Y U + 2 X 2 U 

+X2 +X 1r2 + 6 X Y2 + X 3 + 4 Y2 + 4 Y2 U + 21r2 U + 2 X U + 1r2) (C.82) 

1 ( 1 2 4 4 2 1 2 1 1 2 1 2 ) [t
2 

+ 8
2
] 9 + - 18 7r + 9 y U - 9 U - 9 y - 9 - 18 X + 9 X y - 9 X U u2 

+ - - 1r2 + - X 2 - - X Y + -X U -
( 

1 1 1 2 ) [t2 82] 
18 18 9 9 u2 

+ -U +-Y +-7r --YU--XY+-X +-XU (
2 2 1 2 1 2 2 1 1 2 1 ) 
9 18 36 9 18 36 9 

+ -1r +-XY--X --XU ( 
1 2 1 1 2 1 ) [t

2 
- 8

2
] 

36 18 36 9 8t 
(C.83) 

(
! x y _ _!_ x2 _!_ 2) [t2 - 82

] 
9 18 + 18 7r u2 

+ --XU--Y --U +-YU--1r +-XY--X ( 
2 1 2 2 2 4 1 2 1 1 2) [t

2 
+ 8

2
] 

9 9 9 9 36 9 36 8t 
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+ --XY+-X --1r ( 
1 1 2 1 2) [t2- s

2] 
18 36 36 st 

(C.84) 

C.4 Gluon-gluon scattering 

C.4.1 Two-loop contribution 
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(C.85) 

B ( ( 384 X Y- 544 1r
2 + 896 Y- 192 X 2 - 448 X) Lb(x)- 128 X Y 1r

2 - 576 Li4(x) 

c 

. 2 4 . 1912 2 1216 4 
-1152 L14(z)- 448 (3- 64X - 28 X + 384 L14(y)- -

3
- 1r + ~ 1r + 160 X 

+ 
3~0 x 3 

- 288 x 1r
2 + 144 X 3 Y + 

18
3
88 x Y + 768 Y (3 - 224 X 2 Y + 1024 x Y2 

-40 x 2 
1r

2 -
3232 

Y 1r
2 - 1248 x (3 - 32 x Y 3 + 48 X 2 Y2 - 240 Y2 

1r
2 

3 

+ ( 768 X+ 896- 768 Y) Li3(y) + ( 448 + 1056 X- 768 Y) Li3(x)) ~ 

+( ( -17671"2 - 224X- 224Y + 96X2 - 96Y2) Li2(x) -192Li4(x)- 288Li4(z) 

+(- 144Y + 224 + 144X) Li3(x) + (144X- 528Y- 224) Li3(y) + 32XY 1r
2 

848 160 10 
+- X 2 - 14 X 4

- 32 Y2 + 10 Y4 + 576 Li4(y) + 80 Y +- Y3 - 36 1r
2 +- 1r

4 
3 3 3 

688 3 2 3 752 2 2 
-80 X - 3 X - 16 X 1r + 128 X Y - 3 X Y - 96 Y (3 + 224 X Y - 272 X Y 

-64 X 2 
1r

2 + 
160 

Y 1r
2 + 96 x (3 - 112 x Y 3 - 60 x 2 Y2 - 40 Y2 

1r
2) t

2 

3 s2 

+ (- 384Li4(z)- 384Li4(Y) + (- 384 Y + 384X) Lh(x) + 384Li3(Y) X 

+ ( - 192 X 2 + 384 x Y - 192 1r
2) Li2 ( x) + 352 x 2 y -

9~8 1r
2 - 352 y 1r

2 

-32 X 3 Y + 384 Y (3 - 96 Y2 
1r

2 - 96 x Y 1r
2 + 192 x 2 Y2 + 56 1r

4 + 
752 x 2 

3 

-384 x (3 - 8 X 4 
- 176 x 1r

2 - 80 X 2 
1r

2 - 176 x 3 ) !__ 
u2 

+(- 96Li4(Y) + 144Li3(x)Y + (672 + 144Y) Lh(y)- 36- 96Y2Li2(Y)- 624Y7r2 

268 128 3 . 3 1256 2 2 2 
+3XY+

3
Y -672LI2(x)X-48XY -288X(3+-

3
-Y -168Y 1r 

+ 14 Y4 + 48 X Y 1r
2 - 32 X Y2 - 2800 (3 + 

51~ 1r
4 + 30 X 2 Y2 + 80 Y - 698 1r

2) 

+{t~u} 
(C.86) 

( 
2 2 10 2 1544 . . 352 2 388 

- -XY1r - -1r S- --S+224LI4(x) -48LI4(z)- -S - -(3 
3 9 27 9 9 
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_ 70 X2 _ 31 X4 + 481i4(y) + 4 XY S _ 1096 y + 32 y 3 _ 356 n2 _ 829 n4 
3 6 27 9 27 90 
938 4 3 22 2 2 3 32 2 124 148 

+-X--X --Xn -2X 8+6X Y+-Y 8--XS+-XY 
27 3 3 3 3 3 

56 2 202 2 55 2 2 2 3 +24 Y (3-- X Y +-X Y - -X 1r - 16 Y 1r + 64 X (3- 6 X Y 
3 3 3 

3 x 2 y 2 3 y 2 2 9698 (64 2 280 y 124 x) 1 . ( ) 
- - 7r + -- + - 7r + - - - 12 X 

81 3 3 3 

( 
280 ) . ( 124 ) ) t + 24X+
3

-48Y 113(y)+ -24Y+
3

-88X 1i3(x) ~ 

+ ( (26- 44X +56 Y) Li3(x) + ( 44 Y- 6: -56 X) Li,(y)- 24Li,(x) + 112Li,(z) 

+ - 26 X + - 7r - - y 112 (X) - 4 X y 7r + - 7r s - - s - - s - - (3 
( 

32 2 62 ) . 2 4 2 772 176 2 8 
3 3 9 27 9 9 

+ 121 x 2 + 25 x 4 _ 35 Y2 _ 19 Y4 + 24 1 i4(y) + 469 Y _ ~ Y3 + 203 n2 +! n4 
9 4 3 12 27 3 27 5 

77 46 3 17 2 19 2 3 2 166 62 
--X + -X + -X 1r + -X S- 26 X Y- Y S - -X S - - Y S 

3 9 3 3 9 3 
2 31 2 2 2 2 2 22 3 -22 X Y- 12 Y (3 - 13 X Y- -X Y + 7 X 1r - - Y 1r + 12 X (3 +-X Y 

3 9 3 

14 X 2 y2 7 y2 2 4849) t
2 

+ +- 7r +-- -
3 81 s2 

+ ---Y--X--XS+-Y +-n +-n S+-112(x)X 
( 

1096 224 352 32 3 340 2 56 2 16 . 
27 27 9 9 27 9 3 

+ 14 X n2 _ 16 1 i
3

(x) _ 1544 S _ 352 52 + 9698 + 32 y 2 S _ 16 X 2 y + 32 (3 
3 3 27 9 81 3 3 9 

+ 40 x 3 + 22 x 2 + 16 x 2 8 _ 32 x Y 8 + 116 Y n2) f_ 
9 9 3 3 9 u2 

+ -68Y+- 1i3(y)--XYn +-n S--5--S +-(3 ( ( 
202) 62 2 46 2 2632 440 2 934 

3 3 9 27 9 9 

481 2 71 4 1319 26 3 899 2 47 4 
+-Y --Y +1361i4(y)-8XYS---Y--Y +-n --n 

9 12 27 3 27 30 
73 2 538 53 202 . 7 2 163 2 

+- Y S - - Y S - -X Y - - 112(x) X + -X Y - - Y 1r + 4 X (3 
3 9 3 3 3 9 

. 14 29 16294) { } + 120 113 ( x) Y + 3 x Y3 + 15 x 2 Y2 - 3 Y2 n2 + ~ + t +----+ u 

(C.87) 

D ~ (( -104X+32Y- g:)Li3(x)+ ( -32X+64Y-
1
:
4
)Li3(y)-6XY1r2 

(
160 2 184 92 2 2) 742 2 

+ 31r -3Y+ 3 X-16XY+16Y -8X 1i2(x)+8S+Jn 

. . 188 80 2 23 4 . 571 4 
+17614(x)+48114(z)+J(3+ 3 X - 6 x -48114(Y)+8Y-

90 
1r 

- 152 x - 385 x3 + 215 x n2 - 10 x3 Y - 260 x Y - 32 Y (3 + 161 x2 Y - 110 
3 9 3 3 3 
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E 

F 

-Y8+-8 +-Y +-X8+-11" +-X --X--X11" --X 8 (
4 16 2 2 2 20 4 2 10 2 2 2 2 2 2 

3 9 3 9 27 9 3 3 3 

--X +-Y +-Y 8+-Y+-Y11" -1 3 1 3 2 2 2 2 2) t2 
3 3 3 3 3 s2 

+ --71" +-71" 8+-X8+-X--Y11" --XY +-X11" +-8 ( 
52 2 4 2 8 4 2 2 2 2 2 2 32 2 

27 3 3 3 3 3 3 9 

--X Y+-X +-X 8+-X --XY8 -2 2 4 2 4 2 2 3 8 )t 
3 3 3 3 3 u 

+ (32 82 + 32 x 8 _ 40 71"2 + 16 x 2) !!__ 
9 9 27 9 u2 

+ --2Y7T -Y -2Y 8+-Y8+-Y +48+-Y+-8 --11" ( 
1 2 3 2 44 22 2 10 40 2 44 2) 

2 9 9 3 9 27 

+{t~u} 
(C.89) 

( 
2 8 2 8 2 8 2 80 8 2 2 16 3) t - 4 X 71" - -X Y - - Y 71" + -X Y + - X Y - -X - 24 71" + -X + 4 X -

3 3 3 3 3 3 u 
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- ~ (X - Y) ( 3 Y
2 

- 2 Y - 4 X Y + 2 1r
2 + 3 X 2 

- 18 X + 4) :: 

_ 3
3
2 ( 7r _ X) ( 7r + X) :: 

+ --Y1r +-Y +4XY+-Y +2XY +-Y--7r ( 
16 2 2 3 52 2 2 8 64 2) 

3 3 3 3 3 

+{t~u} 
(C.90) 

C.4.2 One-loop self-interference contribution 

A ~ ( X2 
- 2 X - 2 X Y + 2 Y + Y 2 + ~2) ( X2 

- 2 X Y + Y2 + ~') :: 

+X
2 
(h' + x') !: + 2X (4X ~' +X3 +2X2 + h 2

) :: 

+ (2948 8 + 7!"2 + 9014 + 7!"4 + 242 82 + 20 x2 Y + 10 x2 7!"2 _ 4 x y3 + 2 y2 7!"2 + y4 
27 81 9 

-4 x3 Y + 16 Y 7!"2 + 110 Y s + 154 x s + 6 x2 y2 - 22 x2 s - 22 y2 s - 20 x y2 + : 
3 9 3 3 

28 2 56 3 721 56 2 785 2 3 2) t 2 

-9 Y - 3 X + g Y + 9 X + 
27 

X- 6 X Y- 16 X 1r + 4 Y - 4 X Y 1r 
82 

+ ( 4 y 4 _ 536 y 2 _ 88 y 2 S + 88 X y S + 880 X y + 12 X 3 + 1442 X + 220 X S 
9 3 3 9 9 3 

16 Y2 2 44 2 s 58 2 44 x2 s 56 x2 4 x2 Y 116 Y 2 16 x2 2 
+ 7r - 37!" + 97!" -3 -9 + 3 + 3 7r + 7r 

5896 8 484 82 1so2s 4 x 4 ss x 2 40 x y2) !_ 
+ 27 + 9 + 81 + + 3 7r + 3 u 

( 
5896 8 10 2 2 4 484 82 18028 ss x 2 Y 44 2 

8 24 x2 2 
8 

x y3 + -- +-7r + 7r +- +--+- --7!" + 7r-
27 9 9 81 3 3 

+ 12 y2 7!"2 - s x3 Y + ss Y 7!"2 + 484 x s + 12 x2 y2 - 44 x2 s - ss y2 s - 44 x y2 
3 9 3 3 3 

+ 7 X 4 + 4 y 4 _ 536 y 2 _ 26 X 3 + 28 X 2 + 2948 X + 536 X y _ ~ X 7r2 _ 8 X y 7r2 

9 3 9 27 9 3 

+ 88 
XY s) !_ 

3 u 2 

(
24533 596 X y 122 X 2 17 y 4 107 X 2 814 X S 15 X 2 2 + --+- -- +- +- 7r +- +- y 

81 9 3 2 3 9 2 

110 2 113 2 2 605 2 7 3 5 4 2 -- Y S + - 1r + 22 X Y S - 11 1r S + - S - -X + - 1r + 11 X Y 
3 18 9 3 4 

7667 5309 ) { } + 27 S - 10 X Y 3 + 29 Y2 
1r

2 + 27 Y - 5 X Y 1r
2 + t +-+ u 

(C 
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B = 6 ( X 2 
- 2 X - 2 X Y + 2 Y + Y2 + 1r

2
) ( X 2 

- 2 X Y + Y2 + 1r
2

) ;: 

+ 12 x 2 
( 4 1r

2 + x
2

) :: + 24 x ( 4 x 1r
2 

+ x 3 
+ 2 x

2 
+ 4 1r

2
) :: 
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+ ( - 120 X 3 Y + 156 x 2 
1r

2 
- 392 x 1r

2 
- 404 x Y 2 + 580 x 2 Y + 392 Y 1r

2 

+48 x 2 Y 2 
-

1184 x y + 24 x Y 3 
- 12 Y 2 

1r
2 

- 32 Y 2 + 12 1r
2 + 72 X 4 

- 24 Y 4 

3 

+ 
12

3
80 x 2 + 180 Y 3 - 356 x 3 + 12 1r

4 - 144 x Y 1r
2 

- 112 x + 112 Y) ;: 

+ ( 624 X Y 2 
- 64 X 2 + 528 Y 1r

2 + 144 X 3 Y + 792 X 1r
2 + 96 X Y 3 + 224 X 

-272 x 2 Y + 408 x 3 + 
27

3

52 x Y + 144 Y2 
1r

2 + 288 x Y 1r
2 - 48 X 2 Y2 

- 24 x 4 

+ 120 x2 71"2 + 2200 71"2) ! 
3 u 

+ ( 352 X 2 Y - 32 x 1r
2 + 24 1r

4 + 288 x 2 
1r

2 + 352 Y 1r
2 

- 104 x 3 + 84 x 4 + 96 Y2 
1r

2 

+ 1184 x2 - 96 x Y 71"2 + 1112 71"2 - 96 x3 Y + 96 x2 y2) !_ 
3 3 u2 

( 
424 1808 

+ 48 + 3 x Y + -
3

- X 2 + 42 Y 4 + 716 x 1r
2 + 66 X 2 Y 2 + 666 1r

2 + 32 x 3 

+ 15 1r
4 + 416 x 2 Y + 288 Y 2 

1r
2 + 112 Y + 84 x Y 1r

2
) + { t +-+ u} 

C - ( X 2 
- 2 X - 2 X Y + 2 Y + Y 2 + 1r

2
) ( X 2 

- 2 X Y + Y 2 + 1r
2

) :: 

-2X
2 

(47r
2
+X

2
) :: -4X (4X7r

2
+X

3
+2X

2
+47r

2
) :: 

(C.92) 

+ ( - 976 s - 2 71"2 - ! 71"4 - 88 s2 - 22 x2 Y - 3 x2 71"2 + 2 x y3 + y2 71"2 + 2 x3 Y 
27 2 9 

-32 Y 71"2 - 31 Y s - 83 x s - 3 x2 y2 + 19 x2 s - ! y2 s + 22 x y2 - x4 - 127 y2 
3 3 9 6 2 18 

+ 73 X 3 _ 242 y _ 185 X 2 _ 250 X + 12 X y + 32 X 7r2 _ 19 y3 _ 2752 + 2 X y 7r2) 

6 9 18 27 3 2 81 

+ ( _ 1952 8 _ 247 71"2 + 71"4 _ 176 8 2 + 12 x2 Y _ 71"2 8 _ 18 x2 71"2 _ 4 x y3 _ 2 y2 71"2 

27 9 9 

-4 X 3 Y - 16 Y 1r
2 -

62 x s + 6 x 2 Y 2 - X 2 s + 
16 

Y 2 s - 11 x Y 2 - 4 x 4 + 
80 

Y 2 

3 3 9 

_ 27 X 3 _ 127 X 2 _ 484 X _ 148 X y _ 149 X 7r2 _ 5504 _ 4 X y 7r2 + 2 X y s) !_ 
9 9 9 3 81 u 
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( 
_ 80 X y _ 16 X y 8 80 y 2 16 y 2 8 _ 28 X 3 _ 7 X 4 _ 976 X _ 176 X 8 

+ 9 3 + 9 + 3 3 27 9 

_ 16 x 2 Y _ 16 Y 11"2 + ~ x Y2 _ 176 82 _ 5504 _ 1952 8 _ 64 x 11"2 _ 28 x2 11"2 
3 3 3 9 81 27 3 

+~ 11"2 8 _ 40 11"2 + ~ x 2 8 _ 52 x 2) !_ + ( _ 9337 _ 97 x Y _ 131 x 2 
3 3 3 3 u2 81 9 18 

-4 y4 - 94 X 11"2 - 269 X 8 - ~ X2 y2 + 73 y2 8 - 367 11"2 - 4 X y 8 + 2 11"2 8 
3 9 2 6 18 

_ 220 82 _ 13 x 3 _ ! 11"4 _ 2 x 2 Y _ 2791 8 + 2 x Y 3 _ 15 Y2 11"2 _ 1936 Y + x Y 11"2) 
9 2 4 27 27 

+{t B u} 

D - 2 ( x' - 2 x - 2 x Y + 2 Y + Y' + K2
) ( x' - 2 x Y + v' + K') :: 

-4X2 (4K2 +X')~:- BX (4X K2 + X 3 +2X2 +4K2
) :: 

+ (8 x3 Y - 8 x2 11"2 + 232 x 11"2 + 293 x y2 - 389 x2 Y - 232 Y 11"2 - 6 x2 y2 
3 3 3 3 

+ 424 x Y + 4 y2 11"2 + 22 y2 - 4 11"2 - 4 x4 + 2 y4 - 446 x2 - 43 y3 
3 3 3 

+75X3 -11"4 + 4X y 11"2 + 116 X- 116 y) t2 
3 3 s 2 

+ ( - 578 x 11"2 - 4 x4 - 820 11"2 - 312 x Y + 44 x2 - 16 x3 Y - 380 x y2 
3 3 3 3 

+ 12 x2 y2 + 2 rr4 - 332 Y 11"2 - 8 x y3 - 32 x2 11"2 + 188 x2 Y - 102 x3 - 4 y2 11"2 
3 3 

-232 X - 24 X y 11"2) !_ 
3 u 

(C.! 

+ --1r -16Xrr +8X -56X 1r -64X Y--X -64Y1r -14X -( 
400 2 2 3 2 2 2 424 2 2 4) t

2 

3 3 u 2 

+ (- 16- 148 x Y- 206 x2- 4 y4- 484 x 11"2- 72111"2- 35 x3-! 11"4 
3 3 3 3 2 

-85 X 2 Y- 4 X Y 3
- 26 Y 2 

1r
2 -

1 ~6 Y- 2 X Y 1r
2) + { t B u} 

E ~(x2 -2X-2XY+2Y+Y2 +K') (x2 -2XY+Y2 +K2
) :: 

+ X2 
( 4K2 + X2

) :: + 2 X ( 4 X K2 + X 3 + 2 X2 + 4K2
) :: 

(C.94) 

+ (236 + 80 8 + 11"2 _ ! 11"4 + ~ 8 2 + 2 x2 y _ x2 rr2 + 2 x y3 _ y2 11"2 + 2 x3 y 
81 27 2 9 
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2 2 2 10 2212 12 21414 +-Y7r +-Y8+-X8-3X Y --X 8+-Y 8-2XY --X --Y 
3 3 9 3 3 2 2 

+-Y -X +-Y+-X --X-6XY--X1r +Y +2XY7r -10 2 3 34 32 2 22 2 2 3 2) t2 

3 9 9 27 3 s 2 

+ -XY +-X+-X8--X Y+X +6X +-Y7r +-X 8+-X (
2 2 68 4 4 2 4 3 4 2 2 2 20 2 
3 9 3 3 3 3 3 

+- 7r + -7r + -7r + 7r -- +- +- +- -34X 2 22 2 2 28 4 X 2 2 4XY 8 16 82 160 8 472) t 
3 3 3 3 9 27 81 u 

(
62 x2 2 x 4 16 82 160 8 472 16 x 8 80 x 

6 
x 3 44 2 

+ 9 + + 9 + 27 + 81 + 9 + 27 + + 9 7r 

) 
t2 

+8 X2 7r2 + 12 X 7r2 u2 

+ --+-XY+-X +-Y +-X7r +-X8+-X Y -Y 8 ( 
1049 5 28 2 1 4 14 2 22 3 2 2 2 

81 9 9 2 3 9 4 

+-7r +- 8 +-X + -1r +-8- X Y +- Y 1r +-Y-- X Y 1r 37 2 20 2 4 3 1 4 254 3 3 2 2 218 1 2) 
9 9 3 8 27 2 27 2 

+{ t B u} 
(C.95) 

(C.96) 
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G = 3 ( X 2 
- 2 X - 2 X Y + 2 Y + Y2 + 1r

2
) ( X 2 

- 2 X Y + Y2 + 1r
2

) :: 

+6 x 2 
( 4 1r

2 
+ X

2
) :: + 12 x ( 4 x 1r

2 
+ x 3 

+ 2 x 2 
+ 4 1r

2
) :: 

214 

-3 ( X 2 
- 2 X - 2 X Y + 2 Y + Y2 + 1r

2
) ( X 2 + 2 X - 2 + 1r

2 
- 2 X Y - 2 Y + Y2

) :~ 

+ ( 24 1r
2 + 6 x 4 + 24 x 2 

1r
2 + 48 x 1r

2 + 24 x 3 + 24 x + 36 x 2
) ~ 

+ ( 12 X 4 + 24 1r
2 + 48 X 2 

1r
2 + 36 x 3 + 36 x 2 + 12 x 1r

2
) :: 

+ ( 24 + 6 x Y + 6 X 2 + 3 Y 4 + 12 x 1r
2 + ~ X 2 Y2 + 6 1r

2 + 6 x 3 + ~ 1r
4 

-6XY3 + 9Y2 7r2 + 12Y- 3XY7r2
) + {t +-+ u} (C.97: 
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