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Abstract

We present an algorithm for the calculation of scalar and tensor one- and two-loop
integrals that contribute to the virtual corrections of 2 — 2 partonic scattering. First, the
tensor integrals are related to scalar integrals that contain an irreducible propagator-like
structure in the numerator. Then, we use Integration by Parts and Lorentz Invariance
recurrence relations to build a general system of equations that enables the reduction of
any scalar integral (with and without structure in the numerator) to a basis set of master
integrals. Their expansions in € = 2 — D /2 have already been calculated and we present
a summary of the techniques that have been used to this end, as well as a compilation of
the expansions we need in the different physical regions.

We then apply this algorithm to the direct evaluation of the Feynman diagrams con-
tributing to the O(a?) one- and two-loop matrix-elements for massless like and unlike
quark-quark, quark-gluon and gluon-gluon scattering. The analytic expressions we pro-
vide are regularised in Convensional Dimensional Regularisation and renormalised in the
MS scheme. Finally, we show that the structure of the infrared divergences agrees with
that predicted by the application of Catani’s formalism to the analysis of each partonic
scattering process.

The results presented in this thesis provide the complete calculation of the one- and
two-loop matrix-elements for 2 — 2 processes needed for the next-to-next-to-leading order

contribution to inclusive jet production at hadron colliders.
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Preface
Parton-Parton Scattering

at Two-Loops

The aim of this thesis is to provide an insight into the workings of Quantum Chromo-
dynamics (QCD) as a quantum field theory. More precisely, to use perturbation theory
at high orders and calculate matrix elements for partonic scattering processes.

Before presenting our main results in Chapter 6, the structure of this thesis aims at
providing the tools needed to perform a higher order matrix element calculation as well
as describing the general context on which it stands. This enables the reader to find
out what (s)he needs to undertake such a calculation and which are the next steps to be
taken in order to move forward in the description of QCD phenomena within perturbative
calculations at high orders.

In the first two Chapters we review some of the basic concepts of QCD starting with
a description of the dynamics of the theory in terms of its Lagrangian. We continue
with concepts inherent to the nature of QCD, such as asymptotic freedom and finish the
introductory discussion with an exploration into the type of phenomena we can use this
description for, namely highly energetic jets.

Chapters 3, 4 and 5 encompass a discussion centered around the main techniques
and algorithms for explicit loop integration, loop integral reduction in terms of simpler
integrals and isolation of their divergent behaviour. We present the complete calculation
of one- and two-loop matrix elements for 2 — 2 scattering, needed for the improvement
in the theoretical description of jet production at hadron colliders, in Chapter 6.

In the last Chapter, we provide a summary of our main results and a brief account
of recent work within the fields that complement matrix element calculations (such as
analytic cancellation of singularities and distribution functions), which are needed for a
complete estimate of a jet cross section. We finish with an outlook on future calculations

and lines of work that could build on the methods currently used.

xii



Chapter 1
Basics of Quantum

Chromodynamacs

In this Chapter we discuss briefly the basic aspects of Quantum Chromodynamics as
a gauge theory and as a tool for perturbative calculations. By no means do we intend to
present an exhaustive exploration of these topics, but we do provide a guide that can be
followed with the aid of several text books*.

We begin with an introduction to the quark model that leads us to the dynamics
of partons presented in section 1.2 through the QCD Lagrangian. There we look at its
different pieces and make a small exploration into their nature. In section 1.3 we give
the Feynman rules that allow a diagrammatic study of the strong interactions in the
perturbative limit. This is followed by two very important topics in QCD: regularisation
and renormalisation in sections 1.4 and 1.5.

In these last two sections we provide qualitative and quantitative arguments on the
nature of the divergent behaviour of the perturbative analysis we use in QCD and on the
implication it has on our description of strong interactions. We finish by looking into the

concept of asymptotic freedom and on the running of the strong coupling.

1.1 The Quark Model

Particle Physics is concerned with the fundamental constituents of matter and their in-
teractions. In particular, the field theory that allows us to study the phenomena arising
from strong interactions, is Quantum Chromodynamics (QCD).

All the particles that interact strongly such as baryons and mesons, are called hadrons.
The large number of observed hadrons led to the supposition that they were not elemen-
tary but that they had a more basic structure. As it is today, our theoretical understand-

ing of strong interactions started with the identification of these elementary particles

*For a more formal and detailed discussion of QCD and Quantum Field Theory the references [1, 2, 3,

4,5, 6, 7, 8] and references therein, are recommended.




1. Basics of Quantum Chromodynamics 2

called fermions.

The quark model establishes a structure for hadrons. Mesons are a bound state of a
quark-antiquark pair ¢g, while baryons are bound states of three quarks ggqq. At present,
there have been observed 6 species (flavours) of quarks all carrying spin 1/2. The electric
charge of the up(u), charm(c) and top(t) is +2/3, while that of the down(d), strange(s) and
bottom(b) is —1/3. When correctly assembled, the quark quantum numbers reproduce
the quantum number belonging to the composite mesons and baryons.

Nevertheless, this quark scheme forces us to combine three quarks with the same spin
in order to reproduce experimental results for some baryonic states, such as the AT+ =
uuu baryon, thereby violating Fermi statistics. To avoid this problem an additional
quantum number is introduced for quarks, the so called colour charge. This helps to
distinguish between identical quarks and since the hadrons contain at most three quarks,
we need three different values or colour charges, i.e. red, green and blue.

The fact that experimentally no single quark or colour-full bound state had been ob-
served reinforced the idea of hadrons being confined to colour-less states, e.g. (blue, anti—
blue) or (red, green,blue). The confinement of the quarks is an additional theoretical hy-
pothesis that has yet to be understood fully and that is likely to be a direct consequence
of the dynamical properties of the quarks.

As we mentioned before, the dynamical interactions of all elementary particles in
hadrons are described using QCD. In this theory, quarks are considered to be point-like
entities carrying colour charge and interacting via the exchange of spin 1 bosons called
gluons (in analogy to the photon for electro-magnetic interactions).

Furthermore, the theory postulates invariance of the physical description for the in-
teracting quarks inside hadrons to redefine their colour labels at any point in space-time.
To compensate for this local phase invariance there are 8 gluons that carry colour charge
and also self-interact.

More formally, the theory postulates invariance under local SU(3), transformations.
In particular, quarks transform in the fundamental representation and gluons in the ad-
joint representation, giving a symmetric colour singlet for mesons ¢;g; and a totally anti-
symmetric one for baryons €;;5q:q;qx.

In this thesis we are interested in the short-distance (or high energy) limit of QCD,
where the strong interactions inside hadrons become weak. Here, the quarks and gluons
are asymptotically free and we are able 1o use a sensible diagrammatic perturbation theory

study of these interactions.
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1.2 The gauge principle in QCD

In this thesis we are interested in using the perturbative SU(3) model of QCD and the
Feynman rules derived from it in the analysis of physical processes. In this section we
give a brief discussion of QCD as a gauge theory and touch upon the topics related to it

that comprise the tools needed for our work.

1.2.1 Quarks and gluons

The Lagrangian density that describes the quark content of the theory of QCD is

Lquark =) _¥s( D — msl ) (1.1)
quar Ef: f f fs

kinetic mass

term term

where the quark fields 9 carry a flavour index f. We use a shorthand notation for the

contraction of an arbitrary vector with the gamma matrices v#,
vyt =9
which themselves must fulfill the Clifford algebra anticommutation relation
{7} =2 4" (1.2)

In eq.(1.1), every quark field flavour is actually formed by a triplet of fields in colour space

(usually referred to as red, green and blue)

<

)
¥i() = | ¥3a)
(z)

These internal degrees of freedom do not manifest in an actual physical measurement.

<

The fact that any physical observable is independent of them is a consequence of the
freedom we have to rotate any of these fields into one another. This can be enforced
upon the quark field arbitrarily at any point in space-time to introduce a local SU(3)
symmetry.

Formally, this means that the Lagrangian density must be invariant under any local

SU(3) transformation U(x) which can be parametrized as

U(z) =exp (i T -0(z)), (1.3)
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where T' -8 = T0, and T® are the generators of SU(3) in the fundamental representation
and the matrix U(z) is unitary so the generators T'® are traceless and satisfy the following

commutation relation

[Te, 1] =i g T (1.4)
—
structure
constant
The quark field transforms as

under the SU(3) rotation, so unitarity ensures that the quark mass term in eq.(1.1) is
invariant as well. On the other hand, the kinetic term of the Lagrangian requires a more
thorough analysis. We must ensure that the covariant derivative (which is contracted
with the vy matrices) has a structure that balances with the rotation of the quark fields
accompanying it.

The covariant derivative term transforms as

Dy(2)ys(z) = Ulz) Du(z) ¥¢(z),

so in order to have a term that cancels out the rotation of the quark fields, we must
add a new vector gauge field Aj, to the definition of the covariant derivative. This field
represents the degrees of freedom corresponding to the gluons, and carries colour indices

a =1,...,8. Then the definition of the covariant derivative is
D, = 08,1 +1igT*A,, (1.5)

where the coupling strength between the quarks and gluons is g. We must also have a
term in the Lagrangian that comprises the dynamics of the gauge particles. The kinetic

energy term of the gluon fields is built in terms of the commutator between two covariant

derivatives,
(D, Do) 9s(z) = 19T - Fuuips(x), (1.6)
where
Fi, = 8,45 - 8,4, - LWCAZ@ : (1.7)
Abelian Non— Abelian

The Non-Abelian (not present in QED) term in this equation is the one representing
the interactions amongst gluons. In the Lagrangian density, the term associated with the
presence of gluons, will contain the normalized trace of the field-strength as

1 14
Lgluon == _ZF# F;V’ (1.8)
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which is a gauge invariant kinetic term.

So the classical Lagrangian of QCD is given by

Lassical = Equark + Egluon

- 1
= Y H P - my)yy - (FES, (19)
f
which is built under the basic principle of gauge invariance, where the fields transform as

ToAL 5 U(a) (TGA; - éU“l(m)aﬂU(ac)) Uz)~L.

This part of the QCD lagrangian describes the dynamics of the quarks as particles with
spin 1/2 that carry colour charge and interact with the gluons, which are bosons with

spin 1, also carrying colour.

1.2.2 Gauges and ghosts

The next step towards a consistent quantum theory of gauge fields is the quantization
itself. Inevitably this will lead to inconsistencies that must be fixed in order to have a
sensibly defined theory.

In the canonical quantization method, we use the fields of the theory as operators and
calculate canonical commutation relations for them. If we apply this method to the gluon
fields, the time-like component of the conjugate momentum vanishes. This contradicts
the non-vanishing commutation relation that is calculated for the time-like components
of the gluon field and its conjugate canonical momentum.

The fact that we rely on a gauge invariant Lagrangian where the field A} has the free-
dom of gauge transformations (it changes by a total derivative and leaves the Lagrangian
invariant), will always lead to this difficulty.

We can eliminate the freedom of the gauge transformation by adding constraints to

the gluon field. For example, we may choose the Lorentz condition
oA} =0,

which is effectively a gauge fizing condition. This is not the only choice we can make to fix
the gauge. We can otherwise use the Coulomb gauge (9; A7 = 0), axial gauge (n- A* =0
with n? = 1) or temporal gauge (A% = 0). We want to quantize the theory in a covariant

way, so we use the Lorentz gauge. In this manner, the gauge fixing term we add to the
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Lagrangian is the following
1 2
Legauge—fixing = % (G“AZ) , (1.10)
where the parameter £ is called the gauge parameter.
Due to this term, the QCD lagrangian is not gauge invariant any more, but any
physical prediction that arises from it, will be gauge invariant and independent of the
gauge parameter £ T. Since the value of £ is not relevant, we can choose a value for it, for

| example

§=0, (=1, {2
——’ N—— ——
Landau Feynman Unitary
gauge gauge gauge

In the rest of this thesis we will work within the Feynman gauge, i.e. £ = 1.

The same choice of gauge has to be made at some point if one uses, for example,
the Feynman path-integral formalism. This occurs because the functional integral over
the exponential of the action diverges (as the region of integration is infinite) when we
consider the infinite number of gauge transformations the gluon field can sustain, without
changing the action.

There are still unphysical degrees of freedom that we must take care of. We must
restrict the gluon fields to have only two physical polarisations. We introduce the Fadeev-
Popov ghost field that enables us to cancel the contribution of those unphysical polarisa-
tions. These are scalar fields with a fermionic property: they are anticommuting scalar

fields. The ghost term contributing to the QCD lagrangian is then

ﬁghost = (8u77a*)ng77b

= (8un™) (8"0ap + gfabc AP P (1.11)

The contribution of the Fadeev-Popov ghost should be added to every loop diagram, in
order to obtain the correct result. On the other hand, we can work in the axial gauge and
this would restrict the gluon polarisations to be only two at the level of the gauge-fixing

term, thus avoiding the use of ghost fields.

'In fact this constitutes an important and reliable test in big calculations. If one decides to keep an

arbitrary value for £, the result associated to a physical observable, must be independent of this parameter.

- -
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1.2.3 The QCD lagrangian

As a summary, we collect the terms given by egs.(1.9), (1.10) and (1.11) and present the
full Lagrangian density for the gauge theory of QCD,

EQCD = Lclasical + Egauge—ﬁxing + Eghost
- 1 1
= 2 s(P-mpl)gy - TPV - o
i

2
3¢ ("45) + @un™) D’ (112)

The QCD lagrangian is the platform on which the theoretical calculation of physi-
cal observables are resting. This theoretical description should match that coming from
the experimental observations which, in a broad sense, consist of setting up a well char-
acterised initial state of particles, having them interact in a “controlled” manner and
measuring the production rates of particles in the final state.

A way to proceed in the theoretical calculation of any physical observable, is to divide

the Lagrangian into a free field piece £y and an interacting one £; (proportional to the

coupling g),
£QCD = Lo+ L
= Lo-— {gi/jTaAﬂ/)

1

+§gfabc (8MA$) AbH pcv
1

— 59 ane (9,A5) A A
1

_192 (feabAZAzb/) (fechc'uAdU)

~9fabe (8un™) n*A* } (1.13)

The free field part of the Lagrangian, contains only dynamical terms for the propa-
gation of the fields involved in the theory: quarks, gluons and ghosts. In the interaction
part of the Lagrangian, the first of the three non-linear terms gives the fermion-gauge
boson vertex interaction, the second and third terms lead to a triple gauge boson vertex
interaction and the fourth term to a quartic gauge boson vertex interaction. These last
two interactions are coming directly from the non-Abelian terms of the field strength
tensor and are not present in QED, since photons do not self-interact. The last term
represents the ghost-gluon vertex interaction.

If we consider the action defined as

S= / Lacp d'z,
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then the interacting theory can be solved perturbatively as an expansion in the strong
coupling. This approximation will be valid if the coupling of the strong interactions is
small and we will see that this is so at high energies.

The perturbative expansion involves the calculation of transition probabilities from
initial to final states and taking into account all possible interaction configurations of the
transition process between these states. More precisely, the description of the dynamical
evolution between these two states is done in terms of the S— matrix (or scattering
matrix). The fact that we evaluate this matrix perturbatively is inherent to its highly
complex nature.

A convenient way of describing pictorially each of the interaction terms invoived in
the perturbative calculation is by using Feynman diagrams, regulated by Feynman rules.
These are nothing more than a book-keeping mechanism that allows us to represent
the elements and topology of an interaction in a condensed manner. Each diagram,
contributes to a particular order in the perturbation series and we only need to consider
those which contribute to the order of the approximation that interests us.

In this way, the terms arising from the free field action Sy lead to propagators of the
fields in momentum space (lines in a Feynman diagram), while Sy leads to quark-gluon

and gluon-gluon interactions in momentum-conserving vertices.

1.3 The Feynman rules

In this section we present the Feynman rules for QCD. Quarks are depicted as solid lines,

gluons as curly lines and ghosts as dashed lines. For the external legs we have,

incoming lines: outgoing lines:

5/ u(p) ;/ u(p)
\é (p) \i‘ v(p)
é@é@ ¢(p) @ **(p)
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where the momentum flow along a lines is p in the direction indicated by the arrow

alongside it. For fermion lines, the arrow on the line itself indicates the momentum flow.

The quark, gluon and ghost propagators are,

2 J i(p+m 6
p?—m24ie U
a b 1 74 . v
,wﬁmmm —t [g"” -(1- 5)& ] s
—_ p2tic p?
a b —i_ fab
—— > — — p2+i56

The Lorentz indices are denoted with {u,v,...}. For the colour indices of gluons and
ghosts we use {a,b,...} and for the quarks 7, j. Spinor and flavour indices for the quarks

are implicit. The quark-gluon, ghost-gluon and gluon-gluon interaction vertices are,
a,

—igy* (Ta)ij

% gfep*

p17a7/1'
—gf%  (p1 — p2)?g*™
+(p2 — p3)*g**
+(ps —p1) 9" ]

b3, Cp p2)b’l/

a, [t b,v
_Z'g2fabefcde (guagup _ g;wgup)
__ig2facefbde (gpagm/ . g;wgup)
_iQZfadefcbe (guagup _ gpaguu)
d, g c,p

Note that the gluon propagator is given in a covariant gauge specified by the parameter

€. Also, we use the Feynman prescription and assign a positive imaginary part to the
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denominator of the propagators, to ensure that the propagation is from earlier to later
times. In the triple gluon vertex all particles are outgoing and momentum is conserved
(PY +ph +p5 =0).

Together with the previous set of rules, we must also

1. integrate over loop momentum k for every closed loop, with a measure
/ d*k
(2m)*’
2. multiply by a factor of (—1) for every quark or ghost loop,

3. multiply by a symmetry factor that normalises for permutations of the fields in a
diagram. For example, multiply by a factor of 1/(n!) for a loop with n identical

gluons.

In principle, we are able to write an expression for any physical amplitude iM at any
order in perturbation theory, provided we follow these rules and sum over all relevant
diagrams. For the squared of the amplitude (or matrix elements), the following sums will
also be needed

> a(p)u(p) =p+m, (1.14)

spins

> v(p)u(p) =p—m, (1.15)

spins
and in the Feynman gauge the sum over gluon polarisations is

3 (M) e = —g*. (1.16)

pols.

It can be easily inferred that the squared matrix elements will always be proportional to
an even power of the coupling g, therefore it is usual to have the perturbative expansion

in powers of ag, where \
as = Z—W (1.17)
Once we have summed over the spins and polarisations, we can simplify the gamma
matrices using identities that are easily derived from the Clifford algebra expression (1.2).
Things can be further simplified if we neglect the masses of the quarks. This turns out

to be a good assumption if the physical observations we are comparing our results with,

are done at high energies. Throughout this thesis, this will be assumed.
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1.4 Regularisation

The Feynman rules given in the previous section, allow us to calculate easily Feynman
diagrams at tree-level (or without loops). But, as soon as we calculate diagrams with
loops (which are associated with higher order terms in the perturbative calculation of any
physical observable), we will discover that these generate divergent integrals due to the
behavior of the integrand at high and low virtual momenta.

For example, consider the following one-loop integral, associated with the diagram

shown,

D2

=p1+
P=Dp1 T P2 d4£f(£2)

e L= e

L+p

D1

The divergences of the integrand associated with high virtual momenta,
00 = I— oo (logarithmically),

are called ultraviolet (UV) divergences. Furthermore, there are divergences appearing
when one of the propagators in the loop becomes zero for a specific value of loop momenta,
i.e. when for example

£—-0,-pp = I — o0,

where we consider p? = p3 = 0. These are the so-called infrared (IR) divergences. If the
propagators are massive, e.g. (£+ p)? —m?, the mass plays the role of regulator. In QCD,
the presence of massless gluons and the assumption of light quarks, give rise to this IR
divergent behavior.

At first sight, the presence of these divergences would render all the perturbation
procedure, meaningless. Fortunately, QCD is a renormalisable quantum field theory. In
practice, this means we have a well defined set of rules which allow us to calculate matrix
elements that are free from UV divergences order by order in the interaction coupling
constant of the perturbative series (see section 1.5). On the other hand, we will see
in Chapter 2, that IR divergences cancel for a particular kind of physical observables
and that we are now able to largely predict their structure even for one- and two-loop

amplitudes.
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To be able to manipulate these integrals in a safe manner, we must first regularise
them, i.e. provide a well defined meaning to their divergent behavior and be able to
isolate it. The regularisation prescription we use, must preserve the gauge invariance of
the theory, otherwise the renormalisability of the theory cannot be guaranteed

Let us look at the different methods we have to regulate Feynman integrals by means
of a simple example. We will see in Chapter 3 that to be able to integrate out the loop-
momenta from these integrals, we will need to calculate the following (Minkowski space)

integral

I +°°d4e——1 1.18

where m is a positive integer and the ie term is the Feynman prescription for the propa-
gators to keep the integral convergent for all values of A. If we do not have this imaginary
piece, there is a value of A for which the denominator of this integral vanishes, producing
a singularity that cannot be regularised.

The contents of the parameter A are linear combinations of invariant masses (Man-
delstam variables) and masses of the fields. The fact that singularities can arise when a
scale acquires a value that makes it cross a discontinuity in the kinematic phase space is
precisely what we want to avoid.

This always happens when we want to calculate a loop integral in what would otherwise
be an inaccessible region of the kinematic phase space. So the i piece provides appropriate
analytic continuations that prescribe the imaginary part gained by the integral after a
scale (or scales) shifts its value to a value below its physical threshold. A complete
discussion about the analytic properties of Feynman integrals, can be found in ref.[9] and
a recent example of analytical continuation of a Feynman integral, in ref. [10].

Now, let us go back to the description of the integral in eq. (1.18). Its denominator
is,

den = (£g)? — 2 — A +ice (1.19)

and has poles in the complex £y plane at (—1/£2 + A +ie/,\/£2 + A —i€'). So it would be

best to rotate the integration contour, to be able to integrate along the complex direction,

i.e. we want to Wick rotate (WR) the integration space. This means

Minkowski space — Euclidean space

!Gauge invariance of the theory must be preserved otherwise the Slavnov-Taylor identities (which are
needed to prove the renormalisability of the theory) are not longer valid. Invariance under local gauge
transformations imply extensive relations among Green’s functions. In non-abelian theories these relations

are the so called Slavnov-Taylor identities. In QED, they are the Ward-Takahashi identities [1, 3, 4].
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b — iF (1.20)
¢  —  id*® (1.21)

so that eq.(1.19), becomes
den = —(£F)? — 62 - A, (1.22)

where the Feynman prescription is implicit. With this decision, we have made the de-
nominator of the integral, to be dependent only on the length of the momentum vector.

Therefore it is more natural to work in polar coordinates, so eq.(1.21) becomes
d*ef = dQy x (£F)3 def = 2n? (£P)3 de? (1.23)
~~

surface of a
4 — dim sphere

and the integral in eq.(1.18) is now

+oo 1 WR . +o00 (eE)S

We have not dealt with the divergences yet. We can see that our integral is still divergent
when ¢Z grows and in fact if we apply the change of variables z = (¢F)2, to this integral

in Euclidean space, we get

1 ftoo z 1
N 5/0 mdm = 2(m - 1)(m — 2)Am-2’ (1.25)

which is singular for a particular choice in the power m. This would still happen even if
we had extra powers of loop momenta in the numerator.
We now want to regulate these integrals, so we briefly look into the three most im-

portant regularisation procedures

1. Cut-off regularisation Instead of integrating up to infinity, introduce a large, but
finite, momentum cut-off. For example, in eq.(1.25), for m = 2 the integral is

clearly divergent, but with the cut-off A we have

/+A z d_l(A+A)_ A
0 @+ar® T A A+ A’

which is now a regulated integral. This is all fine, except for the fact that by

introducing the momentum cut-off we are automatically spoiling Lorentz invariance.

2. Pauli-Villars regularisation Introduce massive auxiliary fields called regulators in

order to eliminate the singularities from propagators, so for each one we would have

1 1
ErE PR
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for a large mass of the new particle A2. When £2 >> A2, propagators partially cancel.

Our previous example would now look like

/0+oo [(z _:A)2 _ 5 +1AA)2] zdz =1n (%) )

where Ay = A + A% Again, this is a regulated integral, but when applying this

procedure we spoil gauge invariance, since we would need to introduce a mass for

the gluon.

3. Dimensional reqularisation Make a continuation of the integral in the number of di-
mensions by assuming that they are analytic functions of the number of dimensions
D = 4 — 2¢, where ¢ is a small parameter. The divergent integrals are now well
behaved and the divergent pieces are explicit poles in the dimensional continuation
parameter (1/¢”, n = 1,2,3,...). Dimensional regularisation allows a consistent
gauge invariant treatment of divergent Feynman integrals to all orders in perturba-
tion theory. For the reminder of this section we will concentrate on this method,

since it is the one we choose to apply in our calculations.

The integral we have been using as our example is based on that of eq. (1.24), but
now, using dimensional regularisation (DR), it will be written as
+oo (eE‘):& D +00 (ZE)D—l
1=i¢- [doq [ 4P i PRy [anp [T e
S R N (e N G NG
(1.26)

The integral for the area of a D-dimensional sphere (or integral over the solid angle), can

be done knowing that
1 * 2
/2 = / dr e *,
—00

then

D .o , . D
P2 = H/ dr; e % :/ dPz exp —me ,
i — -0 :

)

but, the r.h.s. can also be written in polar coordinates as
D/2 ®  D-1 _—r?
D/ z/dQD/ drr e .
0

Finally, we can change variables to y = p® and use the definition of the Gamma function®

SThe integral form of the Gamma function for an arbitrary complex number (with positive real part)

“+o0
I'(z) = / dt t*7 et
0
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to have

oo -
P2 = /dQDxl/ dny_zze_yz/dQDxlF<2).
2Jo 2 2

So for the integration over the solid angle we have

D

/dQD _ A (1.27)
r(3)

To complete the integrations in eq. (1.26), we need to calculate the integral over the

loop momenta. If we consider the change of variables

__a
(B2 + A

r =

and use the definition of the Beta function¥, we obtain

’i(—l)m /()+oo de [(eg;)i:]m — i(_zl)mADﬂ—m /(;1 dz wm—l—D/Z (1 _ :L_)D/Z—l
o _D\p(D
— Z(_21) AD/2—mF (m F(;))F (2 ) i (128)

Finally, the integration in DR (Euclidean space) can be obtained after substitution of
eqs. (1.27) and (1.28) in eq. (1.26), as

(¢)> nppl(m =%

+oo )
i(—1)™ =i(-1)"nz ——— =L AD/Z-m .
(=1 / dQD/o W e T A — Y ooy AT (129)

The same procedure can be applied to an integral that has an arbitrary power of

squared loop momentum in the numerator. So a general integral in Minkowski space that
is dimensionally regulated,
+00 ( 22)0‘
o= [ ae O
A (2 — A+ i)

will be in Euclidean space,

= iyt [T aper Py [agy [ ETT
Iaﬂ_%/_w dDZE[(gE)2+A]ﬂ =i(-1)** /dQD/O dEE[(ZE)2+A]ﬂ'

Applying the same substitutions and changes of variable as before, we get
3 T(a+2)r(8-a-2)
r(2)  r@afe¥

TThe Beta function is defined as follows

Ig = i(—1)"P (1.30)

R -1 _ [(a)T(d)
ﬂ(a,b)—/o dtt* (1)t = Tatb

[
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It must be noted that to arrive to this result we are implicitly assuming that the
dimension is a positive integer and that it must satisfy —g— < B —-aq (or % < m, in the
previous examples) otherwise, the integrals would not be convergent.

So far, we have looked at how DR affects the way we perform loop integrals. But, this
is not the only aspect of a perturbative calculation that changes. To have a consistent

result we must have in mind the following modifications
o the loop integral measure given in the Feynman rules, changes (as already seen)
d*¢ dP¢
| @i~ oo
o the Clifford algebra of eq. (1.2) will be affected in the sense that we now have D

gamma matrices spanning this space. So when summing over x and v, we will have

extra terms proportional to D, i.e. g,,g" = D, v,7,7* = (2 — D)., etc.

o the integration of a physical observable over the external momenta phase space, will
also change,

3 D-1
/ 2Ed(§7r)3 e (271')454(1),' - pf) /é% e (27r)D5D(pi —pys)

o the action
S= / Pz L

is a dimensionless quantity, so the QCD lagrangian has to be modified to have a
consistent number of dimensions. From the kinetic energy terms of the quarks and

gluons of this Lagrangian, we can see that the mass dimension of their fields are

) D-1
from mypyy = [YPy] = —
fom 8,A%0,A% — [A%] = % ~1

Then the interaction term gt Aty is actually telling us that [ Ays] = 3D/2 — 2
(when in fact it should be D). This automatically imposes a dimension for the
coupling g such that at D = 4 the coupling has no dimension. We introduce an

arbitrary mass scale u to replace the coupling as

D
g—utg, €e=2- 5 (1.31)

We have one more scale in our theory because we use the dimension as a regulator.
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We have seen how DR impacts the structure of loop integration and forces us to
introduce a new scale to regulate the dimension of the action. Still, we have some freedom
to choose the number of polarisations of internal and external gluon and quark fields,
which defines different DR schemes. In our calculations and throughout this thesis, we
use the Conventional Dimensional Regularisation (CDR) scheme. This implies that we
make no distinction between real and virtual partons (radiated partons and partons in
loops, respectively). Furthermore, we consider quarks to have two helicity states and
gluons to have D — 2. A thorough discussion of the different DR schemes can be found
in ref.[11] and references therein. For an introduction to the technique of DR and some

applications see ref.[12] and references therein.

1.5 Renormalisation

In section 1.4 we saw how the Feynman integrals, arising from a perturbative calculation
in QCD, are singular in the high (UV singularities) and low (IR singularities) momentum
limit. Then, we isolated this divergent behaviour using a regularisation scheme (CDR).
We have hinted to the fact that IR singularities will cancel and this will be discussed
further on. In this section, we will discuss how renormalisation provides a theory free
from UV divergences.

Current experimental set-ups can only probe with energies ~ 1 TeV, which imposes
boundaries on the phenomena we are able to describe and on the way the description
itself is done. There is a limit on the resolution of our measurement and this must be
reflected by the theoretical calculations we do.

The fact that UV divergences stem from a high loop momentum limit of an integral
rendering it infinite, has repercussions on any perturbative calculation that involves such
terms. The mere existence of UV divergences (before renormalisation) means that in any
physical process there are contributions from quantum fluctuations on every time (dis-
tance) scale [4]. However, there is a way to describe physical observables perturbatively
that is consistent with our experimental (finite) results.

Let us explain what we mean using the diagram in fig.(1.1). We can insert a per-
turbative correction to the propagators and vertices of a generic Feynman diagram. The
loop integrals in these kind of Feynman graphs will have big contributions from momenta

much larger than, say, /s (the scale of the process). This means that our perturbative

calculation for a physical observable, e.g. a cross section, will have big contributions from
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Figure 1.1: Physics at different time scales

interactions that occur on time scales much smaller than 1/./s.
Furthermore, consider loop corrections on short time scales (and before gravity takes
over),

tPlanck < At < l/A,

where A is a UV cut off scale much larger than the characteristic scale 1/s. Then these
contributions can be absorbed into changes in the definition of the couplings, masses and
normalisation of fields of the theory if we are willing to neglect contributions to the cross
section of O(‘/TE) (or smaller than the cross section itself) [13, 4].

The process of consistently absorbing short-time physics into a finite number of pa-
rameters (associated with the masses, couplings and fields of the theory) and performing
it to all orders of the perturbative expansion, is called renormalisation.

In practice, this means we take the fields and coupling from the QCD Lagrangian of

eq.(1.12), and redefine them with a multiplicative factor

¥ o ZY g, (1.32)
As oz A (1.33)
N - ZMn%, (1.34)
g — Zy9r, (1.35)
m — Znpmg, (1.36)
€ — Zalnr, (1.37)

where we have used the R subscript to denote the renormalised quantities. The renormal-
isation constant for the gauge parameter £ is the same as the one for the gluon fields, so

that the gauge fixing term in the Lagrangian, remains with the same structure as before.
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Since we have only redefined the fields and couplings, we expect that the integration
over the exponential of the action (or generating functional from which the Green’s func-
tions are derived) does not change. Therefore everything that we have extracted from it,
such as the structure of the S-matrix and Feynman rules, is still valid for the renormalised
quantities.

The idea is that the Green’s functions for the unrenormalised fields carrying the UV
divergences, are proportional to the Green’s functions for the renormalised fields with
the renormalisation constant as the constant of proportionality. If we can absorb the
UV divergences from the Green’s functions of the original fields into the renormalisation
constant, and leave the new ones as quantities free from UV singularities, then our theory
has been renormalised.

In this way the renormalised fields are interpreted as the ones that have a physical
meaning and the renormalised couplings as the ones we (indirectly) measure.

As we mentioned in section 1.4, QCD is a renormalisable theory and it has been proven
that the renormalisation procedure works at all orders by adjusting the renormalisation
constants at each order. The proof is rather involved and uses the symmetries of the
Lagrangian, such as gauge invariance, to obtain relations amongst the renormalisation
constants. These are the so called Slavnov-Taylor identities, which are equivalent to the
Ward-Takahashi identities found in QED.

Apart from absorbing the UV divergences in the Z factors, we may want to absorb an
extra finite quantity and this should just be a matter of choice. In fact, there is a degree of
arbitrariness on the amount of information we can add to the multiplicative factors after
absorbing the singular piece. The choice we make defines the renormalisation scheme
with which we decide to renormalise the theory and present our results.

In this thesis we use the MS (Modified Minimal subtraction) scheme, where we only

remove the UV singularity as poles of the following structure

= (4m)" exp(—e7) (1.38)

N[ =
M}

where, v = 0.5772. .. is Euler’s constant.

The choice of renormalisation scheme goes hand in hand with the fact that we have
introduced a parameter that is not intrinsic to the theory. Since we regularised with CDR,
we had to use a mass scale 4 (renormalisation scale) that keeps the action dimensionless.

The dependence on this renormalisation scale y is present on the renormalised fields

and couplings. Depending on the value we chose for 1 (and on the renormalisation scheme
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we work in), we will have a different value for the same physical observable. But, this
does not mean that our results are inconsistent. On the contrary, the description we
make of an observable in a particular scheme should be equivalent to any other. This
automatically restricts the behaviour of renormalised quantities when we change from one
scheme to another and take different values for the renormalisation scale.

Mathematically, the behaviour of a physical observable under these changes of scheme
and scale are compiled in differential equations called renormalisation group equations.
These equations are based on the ultimate independence on p for all physical observables
(since p is not a parameter natural to the theory).

There is a nice but approximate way of thinking of y, that follows on the argumen-
tation we gave at the beginning of this section. When we choose a particular value of
p = fi, we are effectively removing the physics of time scales At < 1/, from the pertur-
bative calculation of a physical observable. Then, these effects are accounted for by the

dependence on p of the value of the strong coupling in eq.(1.17), i.e. as — as(i).

1.5.1 The running of ags

From egs. (1.17), (1.31) and (1.35), we can write the renormalised strong coupling con-
stant as

ag = Z2 (4% ar, (1.39)

where we have used the subscripts 0 and R for the unrenormalised (“bare”) and renor-
malised coupling, respectively.

Here, the value of Z; can be calculated perturbatively for a general SU(N) gauge
theory (see for example [1, 6]) to give

08, = (1) an [1 _ % ("‘—R) + (f—§ - %) ("—R)z + O(a%)]  (1.40)

2T 27
where
Se = exp(—ey) (4)F, (1.41)
and
fo = §(11Ca~ 4TaNy) (1.42)
B = é (17C% - 10CATRNF — 6CFTrNF) (1.43)

In these equations, we have used the usual notation

N2 -1
CF— 2N )

1
Ca=N and Tr= 3 (1.44)
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and Np is the number of quark flavours.

The parameters y and 5, are actually the first two coefficients in a perturbative
expansion of the 8 function (renormalisation group equation) which provides the u de-
pendence of the strong coupling and is given by

Blas(u)) = 1 55 = ~Poas(u®)? ~ Frau(uf — - (1.45)

where we now refer to the renormalised coupling, simply as ag.

Eq.(1.45) can be verified by taking eq.(1.39) and calculating the differential form of
the beta function. Using the expression for Z, used in eq.(1.40), one is able to check order
by order the expansion on the r.h.s. of eq.(1.45).

The renormalisation group equation tells us how to account for the short time scale
physics in the value of the renormalised coupling, given that we know its value for a
particular mass scale pg. This is what was represented in fig. (1.1) as the scale cut-off A.

The scale pg represents the boundary condition for the differential equation of (1.45)

which can also be expressed as

as(u?) dag <ﬂ2)
——=log| =], 1.46
/asmg) Blas) B\ uZ (1.46)
with solution
1 1 AN as(u2))
- = folog | —5 | — =~lo , 1.47
as®)  as(R) D g(u%) 808 \ as(d) (140

when we keep the first two terms of the beta function. Or for simplicity

2

as(k’) = a:ifﬁi =) (1.48)
[T

when we keep only the first one. Note that the value of as decreases as p increases. This

means QCD enjoys the property of asymptotic freedom!l. In other words, QCD acts like

a weakly interacting theory on short time scales (or high energies).

The same conclusion can be drawn from the fact that any physical observable must
not depend on the renormalisation scale, when we consider all orders of its perturbative
expansion in the strong coupling. In fact, a dimensionless physical observable (for example
a decay rate I') can only depend on the dimensionless ratio s/u?, where s is the energy
of the system.

We can then write the renormalisation group equation for the rate as

dl’ 0

77 = | +Plos) gor| Plas(u), exp(t) =, (1.49)

ITogether with Bo having a positive value for Np < 16. This is crucial since By with the opposite sign

would make the coupling increase at large .
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where t = log(s/p?). The fact that I'(as(s), 1) is a solution to this equation**, proves
that we are allowed to have a perturbative expansion to describe the rate (in terms of the

strong coupling and at high energies) as

[ =(as(s),1) =a as(s) + b ass® +c ag(s)® +--- (1.50)

1.5.2 ag from experiment

Consider the result of solving the renormalisation group equation with all the coefficients

B; beyond By set to zero, then we have (see eq.(1.48))

2 2 2
as(w) = as(@ - (L) (g-) 3@+ (2) w2 (g—) a3(Q) + -

_ as(Q) ' _
as(p) 1+ (%) In (%27) as(Q) (1.51)

We can see that a series in powers of ag(Q), i.e. the strong coupling at a large scale (GUT
scale), is summed into a simple function of u. Then the renormalisation group equation
is summing the effects of short-time physics. Here ag(Q) appears as a parameter for the
solution, the boundary value for the differential equation.

In theory, we can have solutions to this equation for different boundary values, given
a description for different versions of QCD. Thus the parameter ag(Q@), tells us which
version of QCD we have. It should be possible then to extract the value of this parameter
by making a number of experimental observations at different energy scales (). The results
can be compared with the theoretical prediction given by eq.(1.45), to confirm that the
coupling behaves as we expected.

Instead of eq.(1.51) and since we know that the coupling diverges as we reduce the

energy scale, a more convenient way to write the solution for the running coupling is

1

() (%;) , (1.52)

as(u) =

where we introduced a parameter A, a scale near which perturbation theory becomes
unreliable. These two forms of description of the running coupling are completely equiv-

alent. Nevertheless, A has been disfavored (since its definition changes order-by-order in

**Just by changing the derivatives on the first term of eq.(1.49) we can see that

aF(as(S),l) — %01—‘(&5(8),1) - ‘B(as)ar‘(as(s),l)

ot ot dasg das ’

which cancels the second term of the same equation.
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perturbation theory) and instead it has become more common to use @ = Mz the mass

of the Z boson, so

as(n) = os(My) . (1.53)

1+ (&) 1n (f) as(iz)

This last choice, moves the description to the asymptotic region where perturbation
theory works best. Moreover, the experimental measurements on the Z-pole are of high
precision (LEP) due to high statistics.

The most recent data analysis, compiles measurements of the strong coupling from a
wide rage of experiments and scales. The values are consistent with the theory and at
NNLO is [14]

as(Mz) = 0.1172 + 0.0045. (1.54)

1.5.3 Scale choice and uncertainty

In eq.(2.31) of section 2.1.4 we will calculate the rate for the (next-to-leading order to the

+

leading-order) cross section in e™e” annihilation to hadrons via virtual photon as

roq4 W
(s

In fact more than the next-to-leading correction is known [15] and we can write it in the

1.4092 + 1.9167 ln( 2)] (0‘3(“))2

2
+ [—12.805 +7.8186 In (“?) +3.674 In? (%)l aS(“

following form

r - 1+Ots(#)+
i

4. (1.55)

Since we have higher order terms, we have to use for ag(y), the solution of the
renormalisation group equation with at least two terms included (see eq.(1.47)).

We discussed in the previous section how we define the running of the strong coupling
by a particular choice of g. In the r.h.s. of eq.(1.55), both ag and the perturbative

coefficients depend on g. On the Lh.s. the rate does not depend on p, so we still have

d

2 r=o. 1.
Tl =0 (1.56)

Nevertheless, if in eq.(1.55) we truncate the series and use only the first correction to the

rate, we spoil its p independence. Let us demonstrate what we mean by writing the rate
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as a general series
oo
T~ ea(p)as(n). (1.57)
i=1

Then, let us truncate this series to take only N terms. If we differentiate this truncated

series we get, from eq.(1.56),
N d oo
> en(u)as(n) = ~ ding Y calp)al(u),

i=1 i=N+1

4
dlnp?

this reminder is of order oz]SV+1 as ag — 0, i.e.

N
ﬁduz, gcn(u)a"s‘(#) = o(a’s"“ (u))- (1.58)
This obviously means that the more higher order terms we calculate, the less the rate
depends on the renormalisation scale. If we truncate the series, we do not allow for
the cancellation of the scale dependence between different orders and we have a residual
dependence on p of one order higher than the truncation order.

We can ultimately assess the uncertainty in a perturbative calculation, if we allow the
renormalisation scale to vary in an interval proportional to the physical scale @, usually
Q/2 < p < 2Q. This uncertainty (theoretical error) will then dominate all determinations
of our measurements. Thus, as more orders of the perturbation theory are included, the
determination becomes more accurate and the uncertainty is reduced. In section 2.4.1 we
will see an example of this behaviour.

For the moment let us turn to a more practical discussion in terms of electron-positron
annihilation. We will show the infrared singular behaviour of some terms in a higher order
calculation and how we can deal with them. This will lead to the discussion of the hard

scattering cross section which is directly related to the partonic matrix element calculation

we shall present in the last Chapter.



Chapter 2
Partons, Hadrons and

Jets

Electron-positron annihilation into hadrons at high energies provides an example that
helps to illustrate the basic ideas and properties of perturbative QCD. Experimentally, it
represents one of the cleanest and therefore most precise environments in which to make
QCD studies.

In section 2.1, we calculate the total cross section for ete™ — hadrons at leading
order (LO), and see how the IR singularities arise and cancel at next-to-leading order
(NLO).

This serves as a didactic introduction into section 2.2 where the concept of an infrared
observable is discussed giving particular attention to jets. A jet is a highly collimated
spray of hadrons and perturbative QCD confirms the intricate jet structure observed
in high energy experiments for electron-positron annihilation. To be able to describe
this phenomena, we need to explore the jet definition together with the discussion of
ete” — hadrons, already mentioned.

Moving closer to our final goal, which is the calculation of partonic matrix elements,
in section 2.3 we establish the link between these and the total hadronic cross section
using factorisation. We also provide a summary of the parts needed for such a partonic
matrix element calculation and isolate the ones that need to be calculated.

In the last section of this Chapter, we explore the different areas upon which a NNLO
calculation has an impact. In section 2.2 we discuss briefly the improvements on the jet
description and in section 2.4.1, we show how the dependence on the renormalisation scale
is reduced, using a concrete example. The Chapter ends with a discussion of a possible

new physics signature at the TeV scale in the single jet inclusive cross section.

25



2. Partons, Hadrons and Jets 26

2.1 Electron-positron annihilation

For simplicity we consider the cross section for et e~ annihilation into two massless partons
(a quark-antiquark pair), via a virtual photon*.

Furthermore, we will leave the fermion current out of our calculation, since it will
contribute with the same overall factor to all orders. Effectively, we look at the “decay”

¥* — qq at LO and NLO.

2.1.1 LO cross section: no emissions

At lowest order, the Feynman diagram we must analyse is the one shown in fig.(2.1),

where p!' are the momenta for the outgoing quarks and Q? = s. Applying the Feynman

Figure 2.1: Leading order Feynman diagram for v* — qq

rules of section 1.3 we get the following LO scattering amplitude

iMo = w(p2)(—i g V) eu(@)ulpr), (2.1)

where g, is the quark charge and Q is the virtuality of the photon. We take the sum over

spins and colours, so that the matrix element squared is

> IMolt =N g tr (" trva) 2.2)
q

spin,col.
where N is the number of colours. Using the Clifford algebra in CDR (see section 1.4)
will give

S Mo =2D-2) N> ¢ s, (2.3)
q

spin,col.

where we have also used the invariant mass scale (or Mandelstam variable) s for massless

partons, defined as

s=(p1+p2)?=2p1 po (2.4)

*The Z° boson also contributes since it can couple to electrons and quarks, but we shall only look at

the v channel.

o
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Schematically, the LO differential cross section for 2 partons in the final state is
/ dopo = % Mol / i, (2.5)
spin,col.

where d®; is the differential phase space for 2 partons (in D dimensions) and F' is the
incident flux .

To obtain the cross section we need to integrate over the available phase space for this
reaction. In Appendix A, we provide this result in eq.(A.6). Substituting this result and
eq.(2.3) in eq.(2.5), gives the LO cross section as

1 s75 (D

—2) 2
= — N E 2.6
oLO F 22D—57I‘D2_3 I (D2—1) - 4q> (2.6)

or, doing D = 4 — 2¢,

) N > ¢ (2.7)

This is better presented as a rate, i.e.

_ — N
o(ete™ = qg) 29
=N 2.
olete™ — ptp-) qz_:qu’ (28)

at lowest order.

2.1.2 NLO cross section: real emissions

For the NLO real contribution to the cross section, we have to consider the Feynman

diagrams shown in fig.2.2. In this diagram, again we have /s as the total energy in the

Figure 2.2: Next-to-leading order Feynman diagrams for the real emission in y* — ¢¢

tFor a general collision between particles 1 and 2, F = 4[(p1 - p2)* — m%m%]l/?‘. Note also that the
dimensions for the cross section are [¢] = 1/F and that the matrix element squared is dimensionless.

Recall we have an implicit overall factor from the electron current.
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c.m. rest frame, i.e. Q% = 5. Also, the p' are the momenta of the outgoing partons, so
that p) = E;.

It is convenient to define energy fractions z;, as

w‘:2Ei=2pi'Q
2 \/g P i

In this notation, energy conservation provides the following constraint on the energy

z; > 0. (2.9)

fractions

_2(im)Q
;wz == T =y, (2.10)

therefore, only two of the energy fractions z; are independent.
We can also have a description of the kinematics of this system if we use the angle
0;; between the momenta for partons i and j. The energy fractions and the angles are

related as follows (given conservation of momenta)

(Q - p3)? (p1 + p2)*

=8-2Q -ps=38(l—-z3) = 2FE1E; (1—cosbi2). (2.11)

Rearranging this expression, we can see that we have three relations for the angles and

the energy fractions

2(1 - :131) = :I)z.’l?g(l — COoSs 923), (212)
2(1 - 2:2) = 11735131(1 — COos 031), (2.13)
2(1 et 11:3) = 1811:2(1 — COS 912)- (2.14)

We can see that the energy fractions must also be ; < 1. To further our analysis, we
can construct the allowed z; space and relate the boundary values within this region, to
parton physical configurations.

More precisely, we can take the limits z; — 0, ; — 1 and construct diagrams like the
ones shown in fig.(2.3). There we have three possible soft configurations when z; — 0

and three collinear configurations when

1 = 1 <= 03 — 0,
9 = 1 <= 03 =0, (2.15)

:1:3—+1<:>012—)0.

The diagram on the Lh.s of this figure shows the allowed region in the (z;,z2) space

as a triangle, which is built using the constraint relations for the energy fractions, i.e.
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0 <z; <1and z3 =2 — 23 — z3. From the diagram of the r.h.s, we can see that the edges
of the allowed region (z; = 1) correspond to two partons being collinear and the corners

(z; = 0) to one parton momentum being soft.

2&3 collinear

3 soft

._@<’
1&3 collinear

1&2 collinear

.'123:0

Figure 2.3: The diagram on the left presents the allowed region for the energy fractions
(z1,22). On the right we show the physical configuration of the partons for limiting

behaviour within the allowed triangle.

The real emission cross section can be calculated using energy fractions and CDR,
as we did for the LO cross section. Since this cross section has contributions from both
diagrams shown in fig.(2.2), the expression is somewhat large. We will omit a few algebraic

(Clifford and Dirac trace algebra) steps and present the matrix element squared
> IME? = Cr2(D-2)d (u9)® N q
q

spin,col.
1—.’1,‘1 1—:1)2) (iL‘1+:112—1)
D -2 4 2D —-4);,
X{( )(1—w2+1—w1 * (1—$1)(1—932)+ ( )

(2.16)

where we use the colour factor Cr = 4/3 (which is Cp = (N? — 1)/(2N) for SU(N)).
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Similar to the LO case, the real cross section can be written as
1
[ohbo=5 [ X IME? dss (2.17)
spin,col.
Here, the flux factor is the same as before. The matrix element is given by eq.(2.16) and

the integration over phase space has been provided in eq.(A.21) of Appendix A.

This provides the following expression for the real cross section

2 2—€n3—2¢
R _ 2 (#7) T2
oNo = 010 CF g (3) T —¢)
3 + 2% — e(zy + zo — 2)?
dzid S 2.18
X // 14T (1 _ w1)1+e(1 _ w2)1+e($1 + z9 — 1)5 ( )

where we have used eq.(2.7) and applied D = 4 — 2¢ and the integration region is 0 <
1,22 <1, z1 +x9 > 1.

If we had not applied CDR to this calculation, the integral in eq.(2.18) would have
singularities for certain values of the integration variables. From this equation, we can

look at the divergent behaviour of the differential cross section in 4-dimensions,

| doR,, ol 1)
Lo d.’l:ldmz (1 - :131)(1 - :122)
The cross section has collinear singularities (see fig.(2.3))
for ¢y =1 = (1-=z;) >0, (partons 2 and 3 collinear)

for zo 41 = (1—122) — 0, (partons 1 and 3 collinear). (2.20)
Also, there is a soft singularity. This occurs when 23 — 0, which in terms of z; and x5, is
zy, zg > 1 = (1 —=z), (1 -z2) = 0. (2.21)

These singularities are manifest as poles in € = 0 when we regulate with CDR. Indeed, if

we calculate the integrals over the phase space in eq.(2.18), we obtain

€
as [4rn p? 2 1
UJ}E’LO = ULOCFZT‘ ( A ) {E—2+(3—27)Z

19
+ (? +(y-3)y - 7((2)) + O(e)}, (2.22)
which can be renormalised in the MS scheme to be

2 Ee'yI\ _ A2
R as (p°) 7 TA-97)2 3 19
UNLO =0L0 GF o ( 9 ) F(l — 36) {62 + p + 2 +0(6) . (2.23)
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2.1.83 NLO cross section: virtual emissions

The virtual contribution to the NLO cross section takes into account the interference of
the Feynman diagram shown in fig.(2.4), with the LO diagram. Effectively, one has to
calculate the real part of the momentum integral arising from the bubble diagram shown

in the same figure.

Figure 2.4: Next-to-leading order Feynman diagrams for the virtual emission in v* — ¢g

The necessary tools for this calculation, are to be discussed further on in this thesis.
However, for the sake of completion, we present here the basic steps, as we did for the
previous contributions.

The matrix element squared is

> M = —iCr (09 NY ¢
q

spin,col.

x/ dPk tr (Y*go®(ph— EB)vu (@t B)vapd (2.24)
@mP B(p - kPpz + R '

We can see that this integral becomes divergent when one of the factors of the denominator
in the integrand vanishes. The soft infrared singularities occur for small values of the loop
momentum (in contrast with ultraviolet singularities). Note that the collinear infrared
singularities would not be present if we had massive quarks. In this case the divergent
behaviour is said to be regulated by the mass and instead of poles in €, we would have
mass dependent logarithms.

After some Dirac-matrix algebra and using Feynman parameters (see Chapter 3),
we can integrate out the loop momentum and be left with integrals over the Feynman

parameters (y, z) as

1—e¢

E : € € s
|~/\/tlv|2 = (_1) Cr (,U, 9)2 N § :q§21_257r2—5(1 - 6)
q

spin,col.
1 1=z (e—1)yz+y+z—1
(1 d / d
X{ ( +6)/o “J Y (ye)i+e
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1 1-2
+(1 - 6)21"(6)/ dz/ dy(yz)_f}, (2.25)
0 0
which after integration, becomes
1—¢
Viz _ € €12 2_ 8 (1—¢)
Z |M1 | - (—1) CF (ll' g) quq 21_267['2—6 (1 —_ 26)
spin,col. q
[(1+ €)T2(1 —¢) 1 1
-—-+—-1]. 2

T - 2¢) ( z 1o 1) (2.26)

Now, we can proceed with the virtual contribution to the NLO cross section and write

it schematically as

/a,‘(,w =2 Re{% Y MY /d@z}. (2.27)

spin,col.

In terms on the LO contribution and using eq.(A.6) in the Appendix, we have

2 €
onto = 0oLo Cr g—; (4:“ ) {—;22—+(—3+27)%
+(—4 - (7 =37+ 7¢(2)) + O(e)}, (2.28)

which can be renormalised in the MS scheme to be

2\ e T(1-¢?f 2 3
v oo_ as (p2) eTT(A—-¢] 2 3
O'NLo—O'LO CF 27‘( (3) ]__‘(]_—36) { 62 e 4+O(6)}. (2.29)

2.1.4 Cancellation and nature of IR singularities

We can calculate the rate for the NLO cross section normalised to the LO cross section

as

R |4
T = lim 2¥20 — im (1 + INLO 4 M) : (2.30)
0 oo >0 OLO oLo

We insert in this expression, the real and virtual contributions from eq.(2.23) and
eq.(2.29). Immediately we can see that the poles cancel so we can take the limit safely,
to arrive at

r=1+25, (2.31)
ks

Note that the correction to the rate is independent of the exchanged boson. Therefore,
the same correction applies to the Z* decay into a massless quark-antiquark pair.

So far we have only given a summary of the NLO calculation and we have shown that
the singularities indeed cancel. But we have not discussed the nature of these singularities

nor the concept underlying their, almost miraculous, cancellation.
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The singularity structure arising from Feynman diagrams in a perturbative calculation
such as the cross section, implies that there are large contributions from particular parton
configurations. These can be either partons moving in fast collinear bunches or soft
momentum partons that probe large distances but with no preferential direction.

In terms of the example we adopted in this section, we can give a qualitative argument
about the final state of the process ete™ — hadrons. According to perturbative QCD,
the final state should have jets (reflected in the detector as a highly collimated spray of
hadrons) of almost collinear particles and soft particles that move with no preferential
direction. However, if we want quantitative predictions we must be prepared to find
observables we can measure and that are insensitive to interactions that occur much later

than the (hard) partonic interaction. We discuss this in the next section.

2.2 IR-safe observables and jets

The total cross section to produce hadrons in ete™ annihilation is an example of a mea-
surement that is not sensitive to long-time physics. In this case, the cancellation of
divergences associated with the inter-emission of a virtual gluon against the divergences
associated with the radiation of a soft/collinear gluon, implies that these final states are
indistinguishable long after the partons are created.

More formally, the cancellation of soft and collinear singularities between real and
virtual diagrams in our example is by no means miraculous. There are theorems ! which
guarantee that any transition rate will be free of singularities in the massless limit, if
we take into account all degenerate states. If we perform a calculation of a physical
observable (at some fixed order in perturbative QCD) where we sum over all radiative
configurations which degenerate into the same final-state (i.e. have the same behaviour
in the soft/collinear limit), then the result is guaranteed to be finite. The total hadronic
cross section in electron-positron annihilation is an example of such quantities, whereas
the production of a quark-antiquark pair plus a gluon (& o) is not.

There are other quantities that are not sensitive to infrared effects (long-time physics).

They are all called infrared safe quantities and are insensitive to, for example,

e a mother particle that divides into two collinear daughter particles sharing its mo-

mentum,

tKinoshita-Lee-Nauenberg [16, 17] and Bloch-Nordsieck [18] theorems. For a thorough discussion see

for example [2].
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o a mother particle that decays into a daughter particle carrying most of its momen-
tum and a soft daughter particle carrying almost no momentum,

etc.

In other words, for an infrared safe quantity a physical event with jets in the final
state, should give (approximately) the same measurement as a parton event, with each
Jet replaced by a parton. Following our intuition, we can say now that a jet is a spray
of fast particles all going in approximately the same direction. But, this definition is not
enough if we want to make precise calculations at high energies, where we can have more
than three jets.

There are several algorithms that exploit different properties of these highly collimated
particles, to define a jet. The simplest one starts with a list of momenta {p¥,p%,...,plv}

for each of the partons in the final state and uses a parameter y.,;. Then

1. finds the pair (i,7) such that the test variable d;; (e.g. the invariant mass d;; =
(pi +pj)? or dij = 2 min(E?, E})(1 — costj;) for the kr algorithm) between them is

the smallest.
2. If (pi +P;)? > Yeut 8, exits. Otherwise,

3. it replaces the two momenta p; and p; in the list by their sum pf' + p; = ph (two

daughter particles — mother particle).
4. Returns to 1.

At the end we have a list of momenta for the jets, instead of the partons. The other
algorithms are variations of this simple one and they can have different specifications on
the test variable (step 1), the resolution condition (step 2) or the combination prescription
(step 3) [19].

Apart from the eTe™ — hadrons cross section, there are other infrared safe observables
which we can study and that we have not mentioned, such as the thrust distribution and
the energy-energy correlation. Their study is not directly relevant to this work, but a

thorough discussion can be found in ref.[5].

2.3 The hard scattering cross section and factorisation

The study of processes with quarks and gluons in the initial state has a great impact on

the description of hard scattering processes at the LHC and the Tevatron.
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The cross section for a hard scattering process is illustrated in fig.(2.5) and has the

following factorised structure

o(P, Pp) = Z/d-’vl dzy fip(z1, 4% fij2(T2, uF) 6ii(p1,p2, as(p?), s/u?, s/ u%).
7 (2.32)
The partons participating in the hard scattering have a fraction of the momenta of the
incoming hadrons P;, i.e. p; = x; P;. As usual, we used the physical scale to be s =

(P, + P;)?, the characteristic scale for the hard scattering.

Figure 2.5: Schematic representation for the cross section factorisation of a hard scattering

process

The first two terms in the r.h.s. of eq.(2.32), the functions f, (z, p2), are the so called
parton distribution functions (pdf’s). The quantity dz f,/4(, p%) gives the probability
to find a parton with flavour a in hadron %, carrying a momentum fraction between z
and z + dz. Effectively, these functions describe the initial state hadrons in terms of their
constituents and comprise non-perturbative effects. Nevertheless, they can be determined
indirectly from experiments such as deeply inelastic scattering.

The last factor in eq.(2.32), &ij(pk, as(u?), s/u?, s/u%) is the hard scattering matrix
that involves the interaction of partons (7,j) arising from hadrons (1,2), respectively.
This hard scattering matrix can be calculated perturbatively.

The property of factorisation for the hard scattering cross section presented in eq.(2.32)

is well established [20]. This is done by showing that the perturbative expansion can be
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rearranged so that the contributions from long time scales appear in the pdf’s, while the
ones from short time scales are left as part of the hard scattering 6. For example, a
high transverse momentum gluon emitted from a parton inside one hadron can probe the
second hadron, therefore its effects should be taken into account when calculating . On
the other hand, a small transverse momentum gluon cannot resolve the second hadron
and must be included in the pdf’s.

This separation of short and long time physics (hard and soft radiation), requires the
introduction of a factorisation scale prp. An important consequence of this break up is
that both the pdf’s and the hard scattering matrix depend on pp.

Thus, the structure suggested for the factorised cross section will have functions de-
pending on both the renormalisation and factorisation scale. But, as with u, the cross
section does not depend on pr. In theoretical calculations, one often sets up = p.

Again, there is an equation
do

T ="
that is satisfied within the accuracy of the perturbative expansion used. Clearly, the more

higher order terms we include, the less the dependence on up.

2.3.1 Matrix elements for the partonic cross section

The calculation of the total hadronic cross section involves several steps. First, one must
obtain the matrix elements for all possible partonic processes involved in the hadronic
scattering, which is what concerns this thesis. Second, these matrix elements are inte-
grated over their corresponding phase space which depends on the number of particles in
the final state. The study and cancellation of infrared divergences (see section 2.1.4) also
has to occur at this stage.

Finally, and before integrating over the energy fractions in eq.(2.32), one must obtain
the pdf’s and their evolution at an accuracy that matches that of the matrix element
calculation. In a NNLO calculation this requires the knowledge of the three-loop splitting
functions. At this order, the even moments of the splitting functions are known for the
flavour singlet and non-singlet structure functions F» and Fj, up to N = 12 while the odd
moments up to N = 13 are known for F3 [21, 22, 23]. The numerically small N4 non-
singlet contribution is also known [24] and Van Neerven and Vogt have provided accurate
parametrisations of the splitting functions in z—space [25, 26, 27] which are now starting

to be implemented in global analyses [28].
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So far, the calculation of a total hadronic cross section has been achieved for NLO
accuracy and this required a great amount of work (see for example [29, 30, 31, 32, 33]
and references therein).

At NNLO, the partonic cross section for 2-particle production can be written as follows

G2 jot ~ /[l(M(O)IM(O)>|2] d®,
4

g
+f

where [ ], indicates the number of particles in the final state with d®,, the corresponding

(M(0)|M(1)> + (M(I)IM(O))] d®;
3

(MOIMD)Y 4 (MO M)y 4 (M(2)|M(0))] d®, (2.33)

2

phase space and M® is the i-th order scattering amplitude.

We can see that we need three sets amplitudes

1. 4-particle production amplitudes at tree-level,
2. 3-particle production amplitudes at tree-level and one-loop,

3. 2-particle production amplitudes at tree-level, one-loop and two-loops

and in table 2.1 we present what has already been calculated.

In terms of matrix elements, the integrand of the last row in eq.(2.33) (or equivalently,
the contents of the bottom-right square on table 2.1) needs to be calculated for all 2 — 2
partonic scattering. We have accomplished these calculations and they shall be presented

in Chapter 6 of this thesis.

2.4 Beyond NLO

In the previous section we showed that there is a missing piece in the matrix elements
needed for the NNLO partonic cross section. So far, the only motivation to perform this
highly non trivial calculation is that if we have a higher order term in our perturbative
calculation, then the cross section dependence on yx and pp can be reduced.

If the dependence on these scales is reduced, we can have a more accurate determi-
nation of QCD parameters, in particular a;. This is an important achievement in itself
but, it is better if we can give an estimate on how it would change the already existing
description of, say the jet inclusive cross section.

We summarise some of the areas in which a NNLO calculation has an impact in the

following sections.
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n Processes Tree-Level One-Loop Two-Loop
g9 — 9999
4 qq — 9999 see not not
qq — ¢'d'gg | ref.[34, 35, 36, 37] required required
97~ 4797
99 — 999
3 qqd — 999 see ref.[32, 31, 38] | see ref.[32, 31, 38| not required
97—+ 4'qg
99 — 99
2 qq9 — g9 see see in this Thesis
qd — q'q ref.[39] ref.[39] refs.[40, 41, 42, 43, 44, 45]
qq9 — qq

Table 2.1: Summary of 3,4-particle production (helicity) amplitudes for parton scattering.
In the case of 2-particle production, the matrix elements for the tree self-interference and

its interference with the one-loop amplitude have also been calculated.

2.4.1 Scale dependence at NNLO order

As we mentioned in section 1.5.3, the sensitivity on u of the truncated perturbative
expansion, decreases as we increase the number of calculated terms. Let us see how well
this works taking on an example.

Consider, the single jet inclusive differential cross section at NNLO $

2 = Aad®
+ [B + 255 Aln (ELTN o3 (p)
+ [C + 36y Bln (ELT> + A (3,5’§ln2 (ELT> + 2B11n (E%))] ok (),

where the NNLO coefficient C is unknown.

$This can be easily obtained inserting the NNLO expansion for the running coupling in the NNLO

perturbative expansion for the jet cross section

do
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between the theoretically and experimentally defined jets.
As shown in in fig.(2.7), at leading order the jet will be represented by a single parton.
But we can see that at NNLO there is a further improvement on the jet description, since

the phase space available is extended and up to three partons can combine to form a jet.

) >

Q_sD

LO NLO NNLO

Figure 2.7: Partons contained in the jet cone at leading and higher order.

Together with this, higher order corrections involve more modelling of soft gluon
radiation within the jet event so they provide a more accurate picture of the jet shape
(fraction of the jet’s energy within a cone of a given size, centred on the jet direction)
and structure.

If we want to use jet algorithms to describe perturbative QCD phenomena (e.g. mea-
sure the inclusive jet cross section), it is important that the jet definition is IR-safe to
all orders, not just the order at which the theoretical calculations are performed. In fact,
when compared with the perturbative calculation, an unsafe algorithm can lead to a cross
section that scales differently with energy [47, 48].

Recent studies [48] show that jet algorithms that are considered to be IR-safe at
NLO, are found to be genuinely unsafe at NNLO. So a theoretical calculation at this
order would help isolate the problems of infrared safeness, since it is based on the soft
and collinear approximations. Moreover, it can also help identify the kinematic regions
where the logarithms are large and enable a comparison with the numerical all orders

resumed results from theory and from simulations.

2.4.3 New physics at the TeV scale

Unknown physics will obviously affect the couplings and masses of the Standard Model,
but so far as we know these parameters have been well measured. Nevertheless, there

may be another way in which unknown physics can tamper with current experiments [13].
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Suppose there is a new particle that can be exchanged by quarks and has a heavy mass
M of the order of a few TeV. It may well be that this new interaction introduces extra
terms into the QCD Lagrangian that we may be able to probe with future experiments.

Taking into account the already existing terms of the Lagrangian, this new term will
be typically proportional to §2/M?2. Since the mass of the new particle is quite big, the
effects of these new terms are small. Therefore we need an experiment with good precision
and that operates at high energies.

If we consider the experimental results for inclusive jet cross section in pp scattering
(CDF and DO at the Tevatron) and we compare with the theoretical prediction when the
transverse energy of the jet is Er < M, then on dimensional grounds we expect,

Data — Theory o &2 E’_%
Theory I M7

(2.35)

This comparison is plotted in fig.(2.8) (taken from ref.[49]) for data from CDF and DO
(50, 51] and NLO theoretical results. The theory predicts correctly the experimental

1 —————

CTEQ3M
¢ CDF (Preliminary) * 1.03
A DO (Preliminary) * 1.01

o
)
T
.

o

(Data - Theory)/ Theory
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Figure 2.8: Inclusive jet cross sections from CDF and D0 compared to QCD theory.

results for By < 200 GeV, but for higher transverse energies there appears to be a
deviation that could indicate non-Standard Model physics (or even quark substructure).
Equation (2.35) offers a qualitative explanation to the nature of this excess.

On the other hand, the DO measurements are in better agreement with the theory
than the CDF measurements at high 7, but the overlapping error bars prevent us from
choosing one data set over the other. It has also been argued that this discrepancy

between theory and data may be only a case of insufficient precision on the theoretical
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uncertainties. [52]. In any case a next-to-next-to-leading order calculation will help clarify

the picture.
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o basic graphs that represent a particular way of interconnecting the propagators,

without resorting to insertions in propagators, i.e.

nnnnnnn

e self energy insertions correspond to bubble insertions in the propagators of a basic

graph, i.e.

—>—&9.!1M!1§Q9.Q/

o products of one-loop graphs, or graphs that arise from the elimination of propagators

in a basic graph, i.e.

Each of these graphs carries information about the way the particles interact and about
the particles themselves. Most of this is encoded in the tensor structure of the loop
integral associated with each diagram.

Since we are dealing with particles that carry spin and interactions of up to two-loops,

the types of integrals arising in matrix-element calculations such as
( —— USRS —

+ +...)x

include integrals with scalar numerators

A%k [ dP f(ki ks, ks psopi-p;
[ bopnn), @)

inT ) in% A7
where k; = k, £ are the loop momenta, p; are the external momenta and f is a scalar

function. Here, the massless propagators A; are typically
Ai ~ (k; £v +ig)?, (3.2)

where v can be any loop-momenta or external momenta. The term +ie gives the Feynman

prescription for the analytical properties of the integral and its definition is crucial when
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a)

Py —¢ De

Figure 3.1: a) Deformation of what seems a non-planar graph to relate it to a planar

one. b) Genuine non-planar topology (two-loop crossed bozx ).

doing analytic continuations to other kinematically available regions (see section 1.4).
In the rest of this thesis we will work within this prescription but we will not write it
explicitly.

Also arising from these matrix elements calculations, are integrals with irreducible
numerators (IN), which are generated through tensor integrals that carry information
about the spin structure of the process

dPk / dPe frv (k, 0)
e Ayl AV"

Fuw (i) / (3.3)

in%
where now, the function f,, ... is a tensor that can depend on the momenta of the system
and/or other tensors (such as the metric tensor g, ).

In the examples we have shown so far all diagrams have been planar diagrams but,
sometimes the structure of a graph can be more complicated than that. It will become
clear that two-loop non-planar diagrams, have an intrinsically different description from
that of the planar diagrams, although the structure of the nested divergences arising from
both types of integrals is equally difficult to isolate.

The fact that a graph is non-planar will be reflected in the structure of its propagators.
We will see that they have an extra propagator making up for a structure that cannot be
mapped into the planar case, unless this extra propagator is cancelled by the appropriate
numerator. These types of graphs have had a special réle in the history of loop integration
and the non-planar double box was one of the last issues to be resolved last year.

For example, figure 3.1 shows in (a) a very simple case of the equivalence between
two graphs that seem to belong to different topologies and in (b) an authentic non-planar

topology.
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In order to describe the topology* of a graph (or to identify the properties of a graph
that are unaffected by continuous distortion), one needs only to specify the set of propa-
gators present in it (or equivalently the denominator of the actual integral).

Therefore, two graphs of the same topology must either have the same set of propa-
gators or sets that are related by a linear mapping of the loop momenta and sometimes
a permutation of the external momenta. Following the same line of argument, a sub-
topology (or a pinching) can be a topology that contains a sub-set of the propagators of
the original topology.

To summarise, we can say that the information in the numerator of an integral as-
sociated with a Feynman diagram provides information about the spinorial structure of
the particles interacting in the loop. On the other hand, the denominator provides the
momentum flow in the graph and gives a complete description of its skeleton or topol-
ogy. The topology can be planar or non-planar and within these two categories we will
identify sub-topologies or pinchings, depending on the absence of a particular sub-set of
propagators.

In this way, we can identify families of integrals that can be treated in a similar way,
enabling us to study groups of integrals and develop general procedures that apply to

them without loss of generality.

3.1.1 Planar topologies

A way of encapsulating all information regarding the planar topologies is to create an
object that can be a general representation of them. To this end we have created a

(fictitious) general planar diagram, shown in figure 3.2. In it, each of the propagators

P2

Figure 3.2: General planar diagram

*from the Greek, topos : To'wog, a place
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is labelled by an integer and carries a specific momentum that fulfils conservation of

momenta throughout. This can be verified with the following definition of the propagators

Ay =k?, Ay =02

4 = (k+pm)? As = (L+m)?

A3 = (k+p1+p2) A7 = (L+p+p2)?

Ay = (k+p1+p2+ps)?, Ag = (L+p1+p2+ps)?

Ay = (k- £)?,

where we have a symmetric description of the k-loop and the £-loop, mediated by the 9th
propagator that participates in both. This is, per se, one of the first advantages of this
particular description of the planar topologies. It allows us to interchange the k and ¢
loop without affecting the results.

A trivial remark, but worth mentioning, is that this general diagram does not represent
a Feynman diagram arising from a 2 — 2 scattering process analysis. Nevertheless,
all possible distributions of momenta in planar Feynman diagrams with different sets
of propagators, can be obtained from this general diagram by pinching two or more
propagators. This general representation is a good starting point to the description of all
of them at once.

The graph in fig.(3.2) is associated with a general two-loop integral

dPk [ dPe 1

/5 i3 = in T AV AT AT AT AT AT AT AT AT (34
where, the v; are arbitrary powers of the propagators. They can be positive (part of the
topology description), negative (part of the numerator or tensor content) or zero for a

pinched propagator.
We also need a compact way to present this information; a way that allows us to
manipulate hundreds of integrals with the minimum amount of information and without
compromising the accuracy of the description. So to refer to the general integral in eq.(3.4)

we will use the powers of the propagators as entries in the following array

D
I [Vh Vq, vs, V4, Vs, Vg, V7, V8, V9, 812, 323]) (35)

where the D indicates a two-loop integral in D-dimensional space. Using this array, we
can represent any planar topology, by eliminating, increasing or decreasing the values of
v;. The last two entries are for the characteristic scales of the graph.

So, for example, figure (3.3) shows two of the planar boxes that arise in the calculation

of the scattering of two massless unlike quarks. Clearly, the graphs have the same topology,
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Figure 3.3: The planar box graphs for ¢q7 — ¢'q

but the distribution of momenta has been done in a different way. Their characteristic
scales and propagators present will be different. Nevertheless, their treatment can be
done with this general approach. The graph on the lLh.s of figure (3.3) will produce an

integral like

(s12,823) = IP[1,1,1,0,1,0,1,1,1,s12,823],

whereas the graph on the r.h.s will be related to

(s23,812) = IP[1,1,0,1,0,1,1,1,1, 803, 812).

In fact, we can get all possible orientations of the same topology, just by simultaneously

inner-cycling the sections of the array that correspond to k& and ¢ loop, i.e.

D D
I [VlaV2;V3,V47V57V67V7aV8aV97312;323] = 1 [V25V3,V4aV17V67V7>V8aV57V9a323;312]
D
= I7[v3,vs,11,v2,v7,V8,Vs5, Vs, Vo, S12, $23)

D
= 17 [V4;Vl)V27V3,VB)”S)V61V77V973237312]

which reflects on the alternation of the scales. This, together with the fact that the

integral is invariant to the interchange of loops,
ID _ ID
[v1,v2,v3, V4, V5, V6, U7, Vg, Vg, 812, 823] = [vs, ve, V7, V8, V1, V2, V3, V4, Vg, 812, $23]

is one of the advantages of this general description.

There are many different topologies that arise in a 2 — 2 matrix element calculation
but the most complicated one is the double box. The propagators 4 and 6 do not appear
in its description and the graphical representation is shown in fig. 3.4.

We can obtain some sub-topologies, by eliminating propagators from the two-loop box
and in table 3.2 we see some examples that can clarify this.

In particular, we show a double box with one negative power on a propagator, this
means it contains that particular propagator in the numerator. It is still a scalar integral,

but contains tensorial structure embedded in its numerator.
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Figure 3.4: Structure of planar double box

Name Diagram Identification

PBOX1 (312a 323) ID[]-; 11 ]-’ 0) 1a 07 17 1) 1) 812, 323]

$ IP[1,1,1,0,1,0,1,1,2, 512, 523

PBOX2 (s12, 823) D IP[1,1,1,-1,1,0,1,1,1, 812, 823
ABOX (312)323) g é ID[].,1,1,0,0,0,0,1,1,312,823]
CBOX (312>323) ID[].,].,O,O,O,O,I,I,1,812,823]

TRI (8127323) _< é ID[l;O;1107())0’071)1)312’323]

GLASS (3123323) m ID[]"O)17071v011’070’3127323]
SUNC (312)323) _‘@— ID[Oa1,070,0707()3]-’1’312’323]

Table 3.2: Some examples of planar diagrams with their identifications

3.1.2 Non-Planar topologies

Similar to the analysis we made on the planar topologies, we have a general diagram in
fig.(3.5) that deals with all possible non-planar sub-topologies in a concise way.

Comparing fig.(3.5) with fig.(3.2), we note that the non-planar diagram involves a
10th propagator but not the 4th one. This makes the general diagram asymmetric on
the k and [ loops, but this does not exclude the possibility that a particular sub-topology
may become symmetric when eliminating a sub-set of propagators.

This extra propagator also participates in both the k-loop and the £-loop and is defined
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Pa

P3

Figure 3.5: General non-planar diagram

Aig=(k—0—p1 —p2 — p3)*.

The rest of the propagators have the same definition as the one given in the previous
section.

According to this description, we can assign the array
ID[V11V2)V3aO)VS)VGaV7’V87V97V10] (36)

that represents all D-dimensional two-loop non-planar integrals, instead of using the

integral itself

/ dPk [ dP¢ 1
i | R A AT AP AT AP AY ATy

Again, all powers of the propagators may be positive or negative and the pinched propa-

(3.7)

gators are represented with 0.

Looking at the different topologies we can have in a 2 — 2 matrix element calculation,
the crossed double box (shown in fig.(3.6)) is the most complicated non-planar topology.
We can see that this topology does not have propagators 5 and 6 in its description (apart
from the common absence of propagator 4 for all non-planar diagrams). Figure (3.7},
presents the same crossed box, but the structure of the drawing allows us to examine it
better. It is not so clear at the moment, but we may be able to see an internal symmetry
in the loop formed by propagators 7 — 10 and between propagators 1 and 3. These
observations can be used to shed some light in the design of a non-planar algorithm to
treat these integrals.

We can obtain the rest of the sub-topologies, by eliminating propagators present in
the crossed double box and in table 3.3 we see some examples that help to visualise this.

Note the representation of the crossed box with propagator 5 having a negative power
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Figure 3.6: Structure of non-planar double box
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Figure 3.7: Another version of the structure of non-planar double box

Name Diagram Identification

XBOX1 (5121 323) ID[la 1, 1,0, 0,0,1,1,1, 1, 312,323]
ID[I, 21 1) 0’ Oa 07 11 11 1, 1; 312a323]

XBOX2 (s12,523) IP[1,1,1,0,-1,0,1,1,1,1, 512, s23]

il

XTRIA (312’ 323) ID[]-a O) ]-a 07 0>0’ 1; 11 1, 1, 3127323]

s

Table 3.3: Some examples of non-planar diagrams with their identifications

which is of particular importance to us. It will be appearing in the rest of this work
since it becomes part of a family of master integrals with a particular réle in the matrix
elements calculations. It is also worth mentioning that any extra pinchings on the crossed

triangle sub-topology will produce a planar topology.



3. Loop Integrals 52

3.2 Explicit loop integration

So far we have seen that we can have different families of loop integrals, depending on
their participating propagators, and they can either be scalar or tensor integrals. Also,
we have found ways to collect all the information an integral carries in a compact way.
But we still have not discussed how to calculate them.

The calculation of Feynman integrals is a very old matter. People have tried different
approaches to the same problem: how to calculate multi-loop integrals of propagators
with arbitrary powers and masses. In principle, our problem is not as general; we want
to calculate two-loop integrals with massless propagators and say, up to 7 propagators
and 5 tensors in the numerator. Nevertheless, this problem still requires a strategy that
can help us undertake the loop integration for integrals with a rich propagator and tensor
structure.

We can classify the loop integration strategies into two types

(a) Explicit evaluation of the loop integration which is the brute force approach. This
may involve finding changes of variables, mappings to the complex plane and equiv-
alent mathematical representations for a loop integral, in order to shrink the math-
ematical problem until a result is produced. So far these approaches have produced
the strategically important results needed for the advancement of the more auto-

mated ways of tackling the same problem.

(b) Rewriting the integrals in terms of simpler known integrals. A system of equations
relating several kinds of integrals, solved in a particular manner, can provide an
automated reduction of integrals with large powers in the propagators in terms of

simpler integrals; integrals that can easily be calculated using the explicit methods.

We will discuss the explicit calculation of loop-integrals in this section. Also, we will
start the discussion on the methods using systems of equations in the last section of this

Chapter, since Chapter 4 is entirely dedicated to precisely this topic.

3.2.1 Parametric forms of loop integrals and integration strategies

We start by looking at the Feynman and Schwinger prescriptions which have the same
type of approach. They both express the propagators of a loop integral, in terms of
integrations of real parameters over a particular range. The difference between these

two prescriptions is in the types of relations these parameters have, and this is in turn
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related to the kernel used in each representation (a J-function in the Feynman form
and the exponential function in the Schwinger form). In both of these approaches the
loop momenta integration can be done easily and the remaining integrations over the
parameters are doable for reasonably sized topologies.

Sometimes applying the Schwinger and Feynman parametric representations to a loop
integral does not leave a parametric integral that can be solved easily. The solution
of the integrals over the parameters already introduced can become cumbersome when
the number of loops and external legs increases. Different techniques arose due to this
situation.

The Mellin-Barnes (MB) [53, 54, 55] method is applied over a loop integral in a
parametric form. It is based on the representation of a power of a sum as a contour
integral over complex variables and the integration is performed over straight lines parallel
to the imaginary axis. The result of the integration, after closing a contour, is a sum of
all the enclosed residues that (most of the time) can be expressed as a hypergeometric
series.

The Negative Dimensions (NDIM) [56, 57] technique takes the representation given
by the Schwinger prescription and introduces a multinomial expansion of the sum of the
variables of integration.

In this particular scheme, there are many conditions to be satisfied between the original
parameters and the ones introduced by the multinomial expansion. This has immediate
repercussions over the dimension D of the integration; D must be a negative integer
number. One obtains solutions for different valid parameter regions and they all must be
taken into account in the final result.

There are other strategies being explored by Binoth and Heinrich [58] whereby any
Feynman integral associated to a particular graph is stripped of its infrared singularities
analytically. The remaining integrations are too numerous and complicated to be done
analytically, so a numerical result is obtained.

Let us begin with the discussion on the parametric forms and proceed afterwards with
the different techniques developed to integrate over the parameters associated with each
propagator.

The two parametric representations we already introduced are

1. Feynman Parameters Based on Feynman’s idea to express a set of propagators as

integrals over parameters assigned to each propagator. The relation between these

parameters is prescribed by a delta function so that the integration is over a unit
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length, and normalised by a ratio of I functions. The prescription is as follows

1

_ i 1 1 ERZE! _ - , - x:A; -
A I'(N) []1 o) /O dz; = ]5(1 §x> (; 1Az) (3.8)

with

N = zn: v;. (3.9)
i=1

2. Schwinger Parameters  Based on Schwinger’s approach to use the exponential
function, rather than the §-function to express a propagator as an integral over
some parameter. This time the integration is over an infinite interval and for a
single propagator is as follows

1 _ (=D~
A7 T(w)

00
/ d:l:i :B;-ji-lexp (.’ElAz) s (3.10)
0

then, for and arbitrary number of propagators we have

1 n (_1)1/,» /oo 4 n
—_— = l I dz; 7| ex E z;A; ] . 3.11
A;l..-A;/L" |J:=1 F(Vz) 0 ’ ! p ’L:1 e ( )

Both of the parametric forms allow the propagators in the denominator to be embed-

ded into a polynomial that can be used to integrate out the loop momenta with a simple

change of variables. The polynomial has the following structure
n
> xiAi=ak® +b6% +2ck-€+2d-k+2e- L+ f, (3.12)
i=1

where we have taken apart the actual inner structure of the propagators into the different
contributions that may arise . More precisely, a and b are sums of parameters associated
with the propagators that contribute to the k and ¢-loop, respectively. The tensors d*
and e* pick up the tensorial contributions arising from terms like p; - k;, where p; can be
any of the external momenta. In ¢, we collect information on the parameters that belong
to propagators that participate in both the k& and the ¢ loop. Last, the f term has all
dependence on the external momenta squared. In all these terms we always have a linear
dependence in the parameters x;.

By now, we may have an idea of the structure of these terms since we already saw
in section 3.1 how our general integral is described and how the propagators look like.
More so, we may be able to read off the structure of the polynomial in eq.(3.12), from
the actual graph associated with it.

Let us extract the structure of the polynomial associated with the general planar

diagram shown in fig.(3.2), whose integral involves the following propagators

tIn the one-loop case, taking the k-loop, we have toset : b=c=¢e =0
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Terms contributing to :

Propagator a and b ¢, d* and e* f
A= k? k?
Ay = (k+p1)? k2 +2k - py
Ay = (k+p1+p2)° k? +2k - (p1 + p2) +2p1 - p2
Ay= (k+p1+p2+p3) k*  +2k-(p1+p2+p3)
As = £2 2
Ag= (L+p)? £ +2¢-p;
A7 = (£+p1+p2)? A +2¢ - (p1 + p2) +2p1 - p2
Ag= (£+p1+p2+p3)? £ +2¢ - (p1 + p2 + p3)
Ag= (k—-1£)? K+ 2 —2k-¢

where we have considered p? = 0 for all external momenta and we have made a clear sep-
aration of the terms contributing to each factor of the polynomial in eq.(3.12). Therefore

we will have

a = T1+x9+x3+ x4+ Ty,

b = x5+ 2z + x7+ 28 + T9,

¢ = —Tg,
d* = =z pi +z3 (p1 +p2)* + 24 (p1 + p2 + p3)*, (3.13)
e = z¢pl +z7 (p1 +p2)* + x5 (P +p2 + p3)¥,

f = 2(z3+z7)p1-p2

for the polynomial associated with the general planar integral of eq.(3.4).
With this in mind, we can apply either of the two parametrisations to an arbitrary

two-loop integral

dPk [ dPe
P, ... v =/ _ 3.14
[ 1 'n] z7‘r2 171'2 AV1 A n ( )

and use the structure of the polynomial we have analysed to solve the integration with

respect to the loop momenta. We can do this easily with the following general change of

variables,
[ AT K#_EL#+M,
a ab — c?
b _ get
oo g e (3.15)

ab — c?

If we apply this change of variables to the L.h.s. of eq.(3.12), we are effectively diagonalising
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the polynomial (completing the squares for the loop momenta) and have

n
dwidi = ak®+ b2 +2k-£+2d - k+2e-L+f
i=1

ab—¢?

= aK?+ L2+A
a
s, P oy
= oK2+ = L?+A, (3.16)
a
where,
—ae?—bd*+2cd-e+ flab—c*) Q@
A= == A7
ab — ¢? P (3.17)
and
P =ab- ¢ (3.18)

Following on the example, the values of () and P for the general planar topology are
Q = [w5a:7 (z1 4+ 22 + z3 + z4) + 2123 (75 + T6 + T7 + T3)

+ (z1 + z5) (x3 + z7) 379] 812

+ [zezs (T1 + T2 + T3 + T4) + Toz4 (x5 + T6 + T7 + T3)

+ (22 + z6) (z4 + z3) 139] 823, (3.19)
P = (.’121 +$2—+-:1:3+:v4)(:c5+:1:6+1:7+a:8)

+(zy + 2 + z3 + T4 + 5 + T6 + T7 + T8) T9, (3.20)

where s;; = 2 p; - p;. The complex structure of these objects, makes the job of integrating
over the parameters, a hard one.
In any case, according to what we have discussed so far, our arbitrary integral of

eq.(3.14) can be written in two ways. If we use the Feynman prescription,

n o 1 . n
ID[V.‘-,...,Vn] = F(N) [H ﬁ/ d(l,‘i xi' 1] ) (1 — ;(Ei)

/ d°L ( g L? + A) - (3.21)

7/71'2 271'2

and if we use the Schwinger prescription,

n
ID[II,;,. % [ V' 1:|

/ / %L exp (aK2 + Py A) . (3.22)
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Now, the dependence on the loop momenta is only through their magnitude, so we
can integrate it out. We perform the Wick rotation in a similar way as we did in section
1.4 and integrate out the loop momentum.

We are left with the parametric integrations over the @ and P structures, which can
be reconstructed directly from the graph (using a, b, ¢, d*, e#, f) to which the integral is

associated. Therefore, the loop integration result is

o = ({5 L) o5

- D) PN QDN (3.23)

in the Feynman prescription, whereas in the Schwinger prescription, we have

Ply...vy] = (zl l@,/ iz, m—j P;ﬂ(xp(%>. (3.24)

3.2.1.1 Mellin-Barnes technique

Once we have an integral in the Feynman prescription we can integrate over the param-
eters using the Mellin-Barnes method which is based on the representation of a power of
a sum as a contour integral. In the case of a sum of two terms with an arbitrary power,

1 1 +ioo Jy B\t
(A+By:5mT@y[m)gg(z)FW+UWG%) (3.25)

where we have introduced a complex variable u and the contour is separating the poles

of the two I' functions as it is shown in figure (3.8).

Im(u)
4
B> A ! A>B
————— R B ity
%X X—  Re(u)
""’"'"-/:\\T ___________ e

Figure 3.8: Region of integration with open and closed contour

This identity can be generalized to an arbitrary number of terms for the sum and
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be applied to convert the term QPN

of the Feynman representation, into a product of
integrations over complex variables.

Equation (3.25) can be easily verified. We can see that the integrand has poles for
u = n (positive branch) and for ¥ = —v — n (negative branch), with n = 0,1,2, ....
Depending on whether B > A or not, we can close the contour to the left or to the right,
respectively.

Taking A > B to be the case, then we close the contour to the right (see fig.(3.8))
and pick up the residues corresponding to the poles at u = n, to apply Cauchy’s residues

theorem? on the integral of eq.(3.25).

The residues of the integrand are

Res[['(—x) = Res[I'(z)]

](D:n Ir=—n

= Res[[(z' —n)]_,

= Res[(' —n-1)!]__,
_ Res[ a:-!—l) ]
(@ —1)---(2' —n)] g
1)"

= (3.27)

for n =0,1,2,... With this, the integral in eq.(3.25) will become
1 [t du B\ 1 & /B\" (-1)"
AT /_,-oo i (?4‘) Po+wlw) = Grgy 2 (Z) Ll +n)
1 & B\"T'(v +n)
- oy rrn 2
A"; ( A) n! T'(v)’ (3:28)

which is the Taylor expansion of 1/(A + B)¥ for a very small B. A similar result can be

obtained when closing the contour to the left.

In the literature, the MB method has been applied widely and successfully to one and
two-loop integrals. For one-loop integrals, the method is fairly straightforward to apply.
The two-loop integrals have proven to be a highly complex task and involve clever changes

of variables and manipulations of the integrand.

3.2.1.2 Negative Dimensions technique

The Negative Dimensions method (NDIM) deals with the same kinds of sums that the

MB deals with. It consists of writing a sum of terms that has an arbitrary power, as a

! An integral over a closed contour of an analytic complex function is

j[ F(z) do = 2mi )  Res[F(w:)] (3.26)



3. Loop Integrals 50

binomial expansion. However, an assumption that this power has to be a positive integer
has repercussions on the dimension, forcing it to be negative.
To show this for a particular case, let us (temporarily) assume that —v is a positive

integer and make a binomial expansion,

(n1 + ng)!
AM Bt~ =2 3.29
(A + B m,nzz 0 n1'ng! ( )
which is subject to the constraint
ni+ng = —v. (3.30)

To see that we can verify this expansion, we can look at the two solutions: either take n;

as integer and ng = —v — n; or exchange the roles for ny and ns.
Taking the case where ny = n=0,1,2,... and no = —v — n then
> gm g1+ ma)! _ AT T -)
ni,n2=0 nl'n2' n=0 n! F(l -V — n)

nij=n,nz=-—v—n
1/+n) n
= B~
Lt ()

which converges to (1 + A/B)~Y, provided that A < B. The other solution, corresponds
to exchanging roles of A and B and converges when B < A.

Therefore, in the NDIM approach, it is necessary to explore all possible series solutions
and collect the solutions that converge in the domains defined by the available kinematic
regions of the particular system.

The name of the method arises due to the fact that when the generalised version of
eq.(3.29) is applied to polynomial terms such as PP/2 (from the parametrisation recipe),
then several conditions such as the one in eq.(3.30) drive the dimension parameter D to
be a negative integer. This is a valid assumption, since the loop integral is an analytic
function of the number of dimensions D.

Multiple examples of loop integration using the MB and NDIM methods can be found

in references [56, 57, 59] and references therein.

3.3 Loop integration through systems of equations

We have seen different ways of approaching the calculation of loop integrals. Some are
more cumbersome than others and it is not yet straightforward how to implement these
methods to be able to calculate integrals with arbitrary powers of propagators and with

a fair load of tensorial structure.
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However, there is another approach that produces an environment in which loop inte-
grals can be treated in a general and automated way. Moreover, complex topologies with
high powers on the propagators can be reduced down to integrals that can be solved with
the methods described in the previous section and sometimes can be solved altogether.
This reduction can be achieved using systems of equations stemming from Integration by
Parts identities [60, 61, 62] and exploiting the Lorentz invariance of the Feynman integrals
[63].

In this section we will study the basics of this method and will provide a simple
example of its capabilities. This mechanism is the backbone of the algorithm with which
we perform our calculations.

A detailed discussion of the automated reduction of loop integrals within the context

of matrix elements calculations will be given in the next chapter.

3.3.1 Integration by Parts identities

Let us consider the arbitrary loop integral provided in eq.(3.14) and given by

D D
Pl = [ LR [HE

. D . D AV1 . AVUn’
1T 2 z7r2A1 Ar

The idea behind the integration by parts (IBP) method is to find relations between
integrals generated through a total derivative with vanishing surface terms, expressed as

the following identity

/de dP¢ 8 [ YH ] — (3.31)

in? J in7 Ok LAT .- AR
where k; = k,£ and V can be any internal or external momenta involved in the loop

integration.

If we apply the derivative we will get two kinds of terms related to

1. the derivative of the numerator

1 ) X‘l’hl?-T;’," if V depends on k;,
v Vn H -
Ay An® Ok 0 otherwise,

2. the derivative of the denominator

" l o 1 ] it g if Ai depends on ki, (3.32)
v, .. Vn b _Vl ' " .
A Ay | Ok A] 0 otherwise.
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Note that we will generate a set of relations between integrals with dot products in the
numerator, arising from terms like those in eq.(3.32). These dot products can be rewritten

in terms of linear combinations of propagators as follows
24V ~2kit+g) (ki+h) = (ki+9)*+(ki+h)’—(g-h)

With this simple step we can rewrite all the contents of the numerator in terms of propa-
gators that may or may not be part of the denominator. We then say that the numerator
is reducible if we can cancel it through and irreducible otherwise. The former will make
the integral less complex since it will diminish the power of a propagator (or eliminate it
altogether if we are lucky), and the latter will make a more complex integral since it adds
a tensorial structure to the numerator.

Even though we may not be able to have a relation between our original integral and
simpler integrals (which would be the solution to our problem), we manage to construct
an identity that relates different integrals on the same footing. We have found a way to
translate the original integral into a sum of other integrals of different structure.

Now, in eq.(3.31) we can take all possible momenta of the system as the value of V
and consider the derivative with respect to both the ¥ and £ loop momenta, to have a
system of identities with the characteristics mentioned. More precisely, for any two-loop
integral we have two loop momenta and V can be any of the momenta of the graph k;, p;
or combinations of them, e.g. {ki, k; + p1, ki + p1 + p2, ki + p1 + p2 + p3, ki — k;}. In this
case we can have 10 IBP identities.

In general, for a graph with m loops and n independent external momenta, we have
Nigp = m (m +n), (3.33)

identities.

Having some irreducible numerators in the system of identities is not a very good
thing but, there is always the possibility that we can manipulate it to build a new system
of identities, free from irreducible numerators. We will discuss this possibility in the next
chapter.

For now, let us turn our attention to a simple example where we can exercise what

we have just learned.

3.3.1.1 An example using IBP

Consider the Pentaboz, which is the name of the graph shown in fig.(3.9), with arbitrary

powers in its propagators.



3. Loop Integrals

62

P1 > <« P4
Ag

A,
Ay

P2 3> P3
Ay

Figure 3.9: The Pentaboz diagram

This diagram can be obtained by adding propagator 4 and eliminating propagator 7

in the double planar box shown in fig.(3.4), so it has the following propagators present

A= k2 Ag= £2

Ay= (k+p1)? As=  (£+p123)?

As= (k+ p12)? Ag= (k—1¢)?
As=  (k+p13)?

where we have used the notation p;;x = p; + p; + ps.

We can apply the IBP identity of eq.(3.31) with any of these propagators in the

numerator. For example, let us take V¥ = (£ 4 py23)* and derivate with respect to £#, to

have

o= [LE[AD R

D [ T D
itz J g7 OCF

V1 AV2 AV3 AV4 AV5 AV8 AVa
Al A2 A3 A4 A5 A8 AQ

Working on the r.h.s. of this expression and using the definitions for the propagators

already provided, we find

0 = /de dDe[ 1 ]
ik ) ¥ LATAT AT A AT AT AT

x (D — uﬁm)‘_f ye 2 (£ 4 p12s) - (€ + pras)

Ag o As
2(l+pi3)- (£— k))
—lg Ag .

Following on, we can rewrite the dot products (recall eq.(3.33)) as
2 (+pi23) - (L +pizs) = 24,
2(l+pizs) € = As+A4s,

2(£+p123)-(13—k) = Ag+ Ag — Ay.

Introducing these expressions in the identity, gives

0 = /de dDE[ 1
= it ) ok | A A AT A A
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A A
X(D—V5—2Vg—Vg—V5-ﬁ~:—-VgA—Z+V9A—:>.

We can see that, inside the integrand, we have produced some constant terms, but we have
also produced ratios of propagators. A propagator in the numerator, will be absorbed in
the denominator by reducing one power in the corresponding propagator and the terms in
the denominator will do the opposite. This can be represented, using raising and lowering
operators that act at the level of the integrand. More precisely, the equation above can

be symbolically written as
0 = (D —vs —2vg — vy — 1/55+8_ - 1/99+8_ + V99+4_) IPentabo:z;.

Perhaps it can be better appreciated if we write it as follows

1
JPentaboz  _ I T—— (1/55+8_ + V99+8_ - 1/994”4“) JPentaboz (3.34)

This relation allows us to determine the original Pentaboz with arbitrary powers in the
propagators, as a sum of three integrals, each of which have a unit reduction in one
propagator and an increment in another. In practical terms, we could apply this relation
recursively to Pentaboz integrals that have large powers in propagators 4 and 8 until we
eliminate completely these two propagators and obtain integrals of a smaller topology.
This would bring us closer to an integral that we can calculate by other methods.

We can see how this would work if we take a Pentaboz that has unit powers in all its

propagators. In that case eq.(3.34) will be written as

_ 1 (5+8_ _9tg 4+ 9+4—) IPentaboa:’

IPentaboz
@9

which can be best visualised with the aid of fig.(3.10). In this figure, each of the diagrams
1 ~ ~

Figure 3.10: Reduction of the Penta boz.

on the r.h.s. are obtained by eliminating the corresponding propagator in the original
Pentaboz diagram of fig.(3.9). The black dots correspond to an extra power of the prop-
agator on which they appear. We can find relations that act on the pinched integrals

and reduce them further, until we arrive to a set of simpler integrals that can be easily

calculated with MB or NDIM.
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This example just shows how a particular identity for a specific topology can work.
But, we can create many identities for each family of integrals and use the system as
a tool to express any integral in terms of a handful of simpler integrals. The analysis
has to be done on each topology since the types of terms that will produce irreducible
numerators will change depending on such a topology. We will see some examples of this

in Chapter 4.

3.3.2 Lorentz Invariance identities

In addition to the IBP identities, one can also exploit the fact that all integrals arising
from the Feynman diagrams depend on scalar products of the external momenta. This
means that any of these integrals must be invariant under a Lorentz transformation of
the external momenta of the Feynman graph to which it is associated.

Specifically, any of these integrals fulfils

I(p’l)"';p;z) = I(Pl,---,Pn), (335)

where we take the infinitesimal rotation to be
= Abp{ (3.36)

with AY = g, + de, and €4 = —€y.

We can Taylor expand the r.h.s. of eq.(3.35) to have

! ! 8 8
I(pl"--ypn) = I(pl,...,pn)+(56‘,f plljwl(plv"’pn)"' +(565 pna (pl,--~,pn)-
1

Considering the initial requirement of eq.(3.35) we can see that the term on the lLh.s
cancels against the first term on the r.h.s. of the equation above, therefore we get the

following expression

o 15}
dely (Plfa—p? e +P7La—pg) I(p1,...,pn) = 0.

Now, de# has six independent components so, in principle we have six Lorentz Invariance

(LI) identities. However, these identities are not always linearly independent. To max-

imise the number of linearly independent identities, we make use of the antisymmetry of
del, to get

(vt g — P g+ + P — P ) To010erp) = 0. (337)

This equation can now be used to generate identities between scalar integrals. We

need only to contract it with all possible antisymmetric combinations of pf’ p;. For our
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processes we will have diagrams with four legs and three independent external momenta,

so we can choose the following three antisymmetric combinations

iy — pypy
s — p5py (3.38)
phps — Dhph

providing 3 LI identities. In general we can have up to
1
Ny = ETL X (n - 1) (3.39)

identities for n independent external momenta.
The identities produced using this method, are similar to the ones produced using IBP.
To achieve the reduction of two-loop planar integrals of arbitrary powers, the LI identities
are not needed. However, for the non-planar topologies, they proved to be indispensable.
In Chapter 4, we will see the structure of these identities and briefly discuss their
involvement in the reduction of the non-planar topologies. For now, let us see how we

can tackle the problem of loop integrals with tensor structure.

3.4 Dealing with tensors in loop integration

So far, we have seen how we can calculate scalar loop integrals using different parametric
representations and applying, for example, the MB and NDIM methods. Also, we dis-
cussed how we can have a system of equations that helps us write an integral in terms of
integrals with different structure that may or may not be easier to deal with.

A system of equations like the ones we have discussed, have the potential to provide
a complete reduction of an integral. But, they also can give us a partial answer that
contains integrals with irreducible numerators. We must then find a way to deal with
these.

We can work with either the isolated tensor structure (and calculate explicit tensor
integrals), or the irreducible numerators themselves (and calculate scalar integrals). In
this section we review the former approach and leave the discussion for the latter to the
next chapter.

Consider an arbitrary integral with a tensor in the numerator, such as

P, .., v ] {04}

/de dPe¢ ¢

ir? ) in% ALt AR
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and let us suppose that the tensor comes from a dot product in the numerator (such as
p; - £) that cannot be written as a linear combination of the existing propagators, i.e. it
comes from an irreducible numerator.

However, recall that to solve the integral using, say, the Schwinger parametrisation

we shifted the loop momentum (see eq.(3.15)) as

¢ - LH 4 —Cd# — ae“)
ab— c?
cdt — aet
- Py —
+ P

So if we apply this shift of momentum and perform the loop integration as was done in

section 3.2.1 for the Schwinger parametrisation, we will have

— o (_]_)Vi o PRZES
ID[Vl,...,Vn]{Z”} = (g F(Vi)/o‘ dz:.la:i )

Q) cd”* — aet
exp ( 7 2 (3.40)

X

PpD/2
since the (odd) L* term does not contribute.

Let us look into the answer that integration provides. From eq.(3.13) we know that
the terms a, b, ¢, d* and e* have a linear dependence on the Schwinger parameters z;.
Then, we can absorb the extra factors of z; (coming from a, b, ¢, d* and e#) and P into
the already present terms.

We will have two types of modifications in our integrand

1. extra powers in the Schwinger parameters

vi—1 Vi

wi Z; — V'L ~ V‘i+

F(V,') } IF(Vi + 1) !
from cdf_aek

2. and extra dimensions
1 1 N 1 da+tt

PD/2 P P(D+2)/2

from M

Moreover, the term cd* — ae* is quadratic in the z; parameters, so the actual change
of powers will occur in two propagators at a time. The integral of eq.(3.40) will be a sum

of integrals with a similar structure, schematically

TP, ey Viy oo Uy ey v {04} ~ ZV,; v; ID+2[V1,...,Vi+1,...,uj+1,...,un]{pZ}. (3.41)

So we have written our tensor integral in terms of a sum of integrals that have extra

powers in the propagators and extra dimensions.
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This procedure can be applied to integrals with any number of tensors in the nu-
merator, all that is needed is to apply the change of variables given in eq.(3.15). For

example
dPk [ dPe Kk
[zl imaam = [P
in% J in%

D D
/d k /d LfAmeue"Aun _ / Do ((cd“—ae“l))(?cd”—ae") _é%guu)’
z7r2 e 41 " 4an

D D v Lo LAl V _ oV
/d k/d 14 Vlk ¢ _ /’Dm (ce* — bd: )(2cd ae”) +igw,)

in? J in? Al n" P 2P

/de / dPe  kHkY _ /’Da: (ce* — bd*)(ce” —bd”) b W)

in? J in% A AT

where
(L)% 1 Q
/’D ( e / dz; ) P2 exp (F) . (3.42)

2 ~2pY
In summary, we have replaced the problem of having a tensor integral with the problem

of solving scalar integrals that have arbitrary powers in the propagators and arbitrary
dimension.

For each loop momentum in the numerator, we would increase two propagators of
the integral by a unit and increase the dimension of the integral by two. If we consider
that we may need up to, say 4 tensors for the matrix element calculations, we can expect
to have integrals with up to 4 extra powers in two different propagators and 8 extra
dimensions. The reduction of such types of integral using IBP and LI identities, is an
involved manipulation and turns out to be impractical.

In the next chapter we study an algorithm that helps us deal with tensor integrals
without having to change the dimensions. Even more, this algorithm allows us to manip-
ulate scalar integrals and integrals with irreducible numerators on the same footing and

in an automated way.
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issues related to the algorithm.

4.1 Symbolic reduction of loop integrals

In the previous chapter, we saw how we could represent all planar two-loop topologies
with the graph in fig.(3.2) and all non-planar ones with the one in fig.(3.5). We are looking
for a general algorithm that can help us calculate these types of integrals. To that end, we
devise a symbolic mechanism with which we can easily do a general manipulation of the
two-loop integrals, using all the IBP and LI identities arising from a particular topology.

First, we will analyse what we can have in general and then we can apply it to a
particular topology.

As usual, we will be considering lightlike vectors, i.e.
Pi=pi=p=pi=0 with ps=—p; —ps - ps. (4.1)
To shorten the expressions, we use
PitpP;+Pr = DPijk,
Vitvituvg+vy = Vg,
(pi +p;)° = sy
and to facilitate the manipulation of relations between integrals with different powers of
propagators, we use a notation to represent the raising and lowering in the powers of the
propagators (as we did on section 3.3.1.1), so that

i+ID[l/1,...,Vi,...,Vg] = ID[Ul,...,I/i—{—l,...,I/g],

i_ID[Vl,...,u,-,...,ug] = ID[Vl,...,l/i—l,...,Vg].

4.1.1 Symbolic reduction for planar two-loop integrals

From the discussion on IBP in the previous chapter, we know that it led us to obtain a set
of relations amongst integrals involving different powers of propagators. This was done
by taking the total derivative with respect to either k* or £* of the integrand that has

been multiplied by any of the independent momenta, of the system. This means taking

il

/de dPe¢ 9 [ (k; + v)* 0. (4.2)

. D . D g1lh | AVL AV2 AVU3 AVs AUS AUG AUT AU AV9
me2 T2 aki Al A2 AS A4 As AG A7 A8 A9

where k; = k, £ and the definitions of the propagators are those presented in section 3.1.1.
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This will generate dot products in the numerator, but with the aid of eq.(3.33) we
can write them as linear combinations of propagators so that we re-incorporate all the
information to the integrand in terms of a change in the powers of the propagators. To
clarify, let us fill in a couple of steps.

The derivation of the integrand will produce

0 1
: p
+ (ki +v) K [A¥1~--A59}'

) [ (k; + v)H D (43)

kP A‘1’1~--A59] T AT AR

The loop derivative on the r.h.s of this equation will contain a sum of terms with the

(ks + v)" ( —2vds ) , (4.4)

v z+1 2
AV AL A

same structure

but since, in general

2ki + )l = 2Aki ) (ki +w) = (ki +0) + (ki + 0 — (o - w)?

= (ki +v)*+ A4, — (v—u)? (4.5)
then
—2u, AH —vg(k; + )% — v Ag + vg(v — )2
(k'i+v)“ vy u:—f-lm vg = -T( : ul) l/::-')-lz mug )
AV At A AV AT AY

—(k; + 'u)z vpxt — 1y

1
AL A= .. A
1 z 9

+(v — u)? uzx+] (4.6)

In this way, using the shorthand notation

ID:/de dDZ[ 1 ] @)
) i) n® (AT AT AT AT AT AT AT AT AT |

and taking the partial derivation to be with respect to k' = k¥, ¢#, we find the following

two general expressions for the IBP symbolic reduction of planar two-loop integrals

(D —vig3g — ) IP = |(k+v)%a™ — (£ 4 v)%09

—v?n 1T — (v —p) 22t

—(’U - p12)2V33+ — ('U — p123)21/44+:| ID, (48)

(D —vsers ~v9)[° = |(£+v)*b* — (k +v)?y9t

—viust — (v — p1)%v6™

—(1) bt p12)21/77+ — (’U — p123)21138+:| ID. (49)



4. Reduction of Loop Integrals 71

All the propagators that belong to a particular loop, contribute to the derivative of the

corresponding loop, so we introduced the following notation

at = 11t + 127 4133t + vt + 197, (4.10)
bt = wsBT + g6t + 07T + 18T + 19T, (4.11)
ct = —197, (4.12)

since it groups the contribution coming from the propagators that belong to each loop
and the contribution from the 9th propagator, which belongs to both.

If for loop i we choose v to be either 0, p1, p12, p123 or —k;, we will generate a set of
equations that will be a particular case of these previous ones.

For example, let us focus on egs.(4.8) and (4.9) and take two cases on the values of v

for both of them. We generate the following relations

e with v = P1
(D — V1934 — l/g)ID = l:(k +p1)2a+ — (ﬂ +p1)2llg9+ — 893 V44+} ID, (413)

(D — vsgrs — ) IV =

(€+p1)®bT — (k +p1)°ve97 — 593 V88+] I°.(4.14)
e withv = —/¢
(D — vig3g — )P = [(k — 0%t — 21t — (L+p) a2
— (£ +p12)®v38t — (£ +p123)21/44+] IP, (4.15)
(D — vsers — vo)I° = - [(k — %099 + PusBt + (£+ p1)?re6t
+ (€4 pra)?ur Tt + (£ + p123)21/88+] IP. (4.16)

As it stands, this system of equations is potentially helpful. Depending on the propa-
gators of the integral I” we apply it upon, we may get relations that can help us reduce
the integral. This is because we have written the system of equations is such a way that
on the left hand side is the original integral multiplied by some constant (D — vy334 — vy,
for example) and on the right hand side we have modifications on the same integral.
These modifications can result in an easier integral, but they can also lead to irreducible

numerators.
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As we know, we have an IN when one of the momentum factors in the numerator
does not cancel against one in the denominator. This can be addressed by taking linear
combinations of the equations that contain these factors.

In the two particular cases taken above, if (£ + p;)? does not occur as a propagator
in the denominator of integral I”, then we have problems with eqs.(4.13 - 4.16), since
they all contain this factor in some term. Having IN in all these equations makes them
useless, in a sense, because we would be exchanging an integral with extra powers on
the propagators (say) with an integral with IN. We would not be solving the problem.
Finding a way to eliminate them and still have a useful identity, would be ideal.

Let us concentrate on equations (4.13) and (4.15). If we apply the rising operator
v52% on eq.(4.13) and the operator 19971 on eq.(4.15), we can eliminate the terms that
contain (£ + p1)?, by taking the difference of the modified equations.

The new relation arising from this operation, may now be of use for integrals that do
not have (£+ p1)? in the denominator. This amounts to applying the integration by parts
identities to the following integrand

vo (k4 p1)¥ B vy (k—O)#
A;l A;2+1A§3AZ4A;5AE6A$7A§8A19’9 Allfl AnggaAZ4Ag5 AEGA?‘TAgBAgQ‘l‘l’

(4.17)

which has the effect of producing identities that are linear combinations of the 10 identities
we had before.
There’s also another way of viewing this. It follows from the scaling of the external

momenta in the loop integral. If we do p — Ap in an arbitrary integral, then
I°(p) = NP-M1P(p), (4.18)

where N is the sum of the powers of the propagators involved in the integral. If we

differentiate with respect to A in both sides and then take A = 1, we have

1 0
) = 2(D - N) [3_/\ID(AP)] A=t

What this expression means is that instead of having a term like
[k ! (k +p)] Vii+7

that would come from IBP (since we differentiate with respect to the loop momenta), it

produces terms such as

[p ’ (k +p)] Vii+a
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since we differentiate with respect to A that always brings out factors of external momenta.

These terms can in turn be written as
[(k+p~k)- (k+p)vit = (k+p)°wiit — k- (k+ puit,

which is equivalent to a combination of two terms coming from IBP identities, just like in
eq.(4.17). So we can see that the scaling saves us a bit of work when we are trying to get
an expression free of irreducible numerators since it can produce a combination of IBP
identities without us having to look for it. Still, this scheme depends on the cancellation
of terms between numerator and denominator, and some relations are not IN free.

The way we generate expressions that contain irreducible numerators, depends on
which propagators are present in the integral we use as the starting point. If the integral
has propagators v, ..., v; missing, then the presence of the operators 17, ...,i~ in the IBP
identities, indicates a reduction in the powers of precisely the missing propagators.

We then must find a way to combine the identities for a particular topology to assemble
an algorithm that relates the integrals of this topology to integrals of simpler topology.
If this is not possible, a relation to integrals of the same topology but with less powers
on propagators and simpler integrals is also good.

This has already been done for all the MI we use in our algorithm [64, 10, 53, 54]. In
fact, we already saw in section 3.3.1.1, how a Pentabozr has a complete reduction in terms
of triangles.

The derivation of these symbolic reduction formulae requires a lot of ingenuity and its
disadvantage is that it is based on the direct inspection of the explicit form of the IBP
identities for each topology. Nevertheless, it provides a useful insight into the symmetries
and shortcuts we might have for different topologies, so let us look at an example of this

symbolic manipulation [54, 53].

4.1.1.1 Symbolic IBP reduction of the Planar Double Box

The planar double box integral that arises from the general diagram of fig.(3.2) when
pinching propagators 4 and 6 is the one shown in fig.(3.4). In terms of the integral that
it represents, we have

dPk [ dPe 1
in3 ] in% ATVA AP AL AT AG AL

ID[VlaV2aV310)V570a V71V83V9] = / (419)

where the A;’s are the propagators as defined in section 3.1.1.
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When we do integration by parts with all possible momenta in the numerator and
with respect to both k and ¢, we get 10 relations. Of these relations, the following are

free of irreducible numerators:

si2 m1tIP = —(D—vy — vy —2v3 — ug)ID

+ [(n11T +152%)37 + 1591 (37 — 77)] 17, (4.20)
810 133TIP = —(D —2v; —vy —v3 — Vg)ID

+ [(v22% + 33117 + 197 (1~ - 57)] IP, (4.21)
s12 usBTIP = —(D —vs — 2v7 — vg — vg)IP

+ [(vs5™ + vg8T)7T™ + 19t (77 - 87)] 1P, (4.22)
s12 1 THIP = —(D - 2us — v7 — vg — 1) IP

+ [(rTh +158%)5™ + 18% (57 — 17)] I, (4.23)

Note also that these relations are symmetric in the propagators 1, 3, 5 and 7, which
reflects the symmetry of the topology itself.

The remaining six relations that do contain irreducible numerators, are combined (in
the same way as we did in the previous section) to get rid of these. We get two sets of

symmetric relations (in propagators 2 and 8)

(D—2—v — 205 —3)1n2tIP = (D—2—-v1 —v3 — 209)1y97 1P

+(vo — vg) (111 + 1337 IP

+ 117199757 + 1331917 1P, (4.24)
(D=2-vs —vr —208)us8 TP = (D —2— w5 — vy — 20919t 1P

+(vs — vo) (w51 + vy 7HIP

+ (55119971 + 17T 19737 1P, (4.25)
and

823 V88+1/99+ID = D—-2— Vs — V7 — g — l/g)l/99+ID

—(

—(D—1-vi—vy—v3—vo) (w55 + 17T + 1g8% + 19T 1P
+(@*bt —cteh)2712, (4.26)
So3 19210t P — —(D-2-vy—vy—v3 ~ 1/9)1/99+ID

—(D -1- Vs — V7 — g — l/g)(l/11+ + V22+ + V33+ + 1/99+)ID

+(@a*bt —ctch)8 1P, (4.27)
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We can use eqs.(4.20 - 4.23) to reduce to unity the powers of propagators 1, 3, 5 and
7. Once this is done, we can use eqs.(4.24) and (4.25) to reduce to unity the powers of
propagators 2 and 8.

So far all propagators but the 9th, can be manipulated to have unit powers. We can
find a relation that can reduce the power of propagator 9 if we combine egs.(4.25) and
(4.26).

If we substitute the value of 138+ IP given by eq.(4.25) in the left and right hand side
of eq.(4.26) we get

0 = 393 [(D —2—-vy5—v7r— 21/9) + l/55+1_ + 1/77+3_] Vg(llg + 1)9++ID
823 (vg — 1) (BT +7T)

+(D—-1—v1 —vp—v3 — 1) (15517 +0,737)
+(D—2—V5—V7—2V8)(D—2—l/5~l/7—l/8—l/9)
+(D-2-vs—vr =208} (D —1~-v) — vy — v3 ~ 1)
+(D—-1-v1—ve—v3— 1) (D —2—vs —v7 — 2u) ve9t 1P
+(D-1-v1—ve—v3—vg)(D —2—vs5 — vy —vg — 1) (57 + 7H)IP
—(D -2 —v5 — vy — 25)(aTbt — ctet)2- 1P, (4.28)

Now, since this equation is going to be used when all but the 9th propagator have

powers of one, we can shorten it. Furthermore, we can substitute the values of v55% and

v77T given by eqs.(4.22) and (4.23), in the terms appearing as (5% + 77), to have

0 = s23 [(D—4-2u9)+5T1" + 7787 wp(rg +1)9F 1P

—225 (1~ 1g)(2D — 8 — 2g)

812

+Zﬁ (1—vp) (57 +81)7~ + (77 + 87)57)
12

+zﬂ(1 ) (5™ + 7T — 17 — 37 )19
12

+(D -4 —1)(5T1 +7737)

+(D - 6)(D — 5 — w)

+

(
(D~ 6)(D — 4 —vy)
+(D — 4 — vg)(D — 4 — 2v9) | vy9t IP

1
—— (D—4-w)(D~5-1)(2D ~ 8~ 2ug) TP
12
1
+— (D—4-v)(D =5~ ) (57 +8T)7 + (7t +8%)57) IV
12
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(D=4 1) (D=5 )5~ + T —1- — 3)9* P
812

—(D -6)(atbt —ctet)2—IP. (4.29)

But, we can also take advantage of the symmetry properties inherent to the integral.
When the powers of the propagators are one, pinching with 1~ is the same as pinching
with 37 and the analogous happens with the symmetric side of the box (propagators 5
and 7). So in the end we can do 571~ = 7+3~ in the equation above. Rearranging the

terms we have

s23 [(D—4—2u9)+2 5717 wy(vg 4+ 1)9++ 1P
| 2823

=|—— (1-w)(D—4—1) — == (1 —1)(5" + 8%)7~
812 2

—2(D -4~ 19)5%17 — (D — 5~ 19)(3D — 14 — 2u) | g9+ IP

2
+— (D —4 — )2 (D - 5 — ) I?
812

—Si (D — 4— vg)(D — 5 vy)(5+ + 8)7~1P
12

+(D - 6)(a*bt —ctet)27 1P, (4.30)
which is valid only when all powers of the propagators (except the 9th) are one. This
identity provides a reduction of the power on propagator 9, but it can only reduce it to

the values of 1 or 2 (depending of whether the initial integral has an odd or even value of

vg). The two integrals at which we arrive are

PBOX1 = = IP1,1,1,0,1,0,1,1,1] (4.31)

° = 1”[1,1,1,0,1,0,1,1,2]. (4.32)

As can be seen by the pinching operators in eq.(4.30), the reduction not only produces

these two box integrals, but also pinched integrals, such as

TO T O -00- &

(4.33)

which are described in table 3.2.

4.1.2 Symbolic reduction for non-planar two-loop integrals

The general symbolic reduction of non-planar two-loop integrals is highly non-trivial (in

fact, it can only be achieved with the identities produced from both integration by parts

-
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and Lorentz Invariance conditions). It was finally conceived and presented in ref.[10].
The way to obtain the IBP and LI identities is the same as that explained in the previous
sections. The difference is that there is a more complicated way to combine these identities
to be able to get a reduction algorithm.

In the end, the identities obtained provide a complete reduction of all topologies in
terms of simpler topologies and integrals of the same topology. They found that the
pattern is repeated; they also needed two crossed boxes as master integrals for the non-

planar double box topology. We represent them as

XBOX1 = g = I?[1,1,1,0,0,0,1,1,1,1] (4.34)
% 8 = I7[1,2,1,0,0,0,1,1,1,1]. (4.35)

Similar to the planar case, the reduction of the non-planar double box not only produces

these two box integrals, but also pinched integrals, such as

‘<X (4.36)

and the planar pinchings shown in eq.(4.33), which are all described in tables (3.2) and
(3.3).

4.2 Automatic reduction of loop integrals

So far we have dealt with IN in the past by expressing them in terms of a combination of
tensors that are themselves related to integrals with very high powers on the propagators
and also extra dimensions (see section 3.4). This generates the need to devise a mechanism
to diminish the dimensions on top of the already existing need of reducing the powers of
propagators.

This is because the basis of integrals which spans, through linear combinations, every
possible integral (with and without IN) does not contain an integral with IN. So instead
of having a reduction that encodes the information using IN, we have to encode the same
information but using extra powers of propagators and extra dimensions.

This sole fact makes a huge difference in the amount of computing work before us when
calculating integrals with up to 4 IN (or tensors). In fact it amounts to having integrals

with up to 8 extra powers on the propagators and up to 4 shifts of the dimension. Since
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we are contemplating the calculation of hundreds of integrals, having the IN as another
form of encapsulating information on extra powers and dimensions, is rather appealing
[63, 65].

Consider the following general structure of scalar two-loop integrals:

dPk [ dP¢ 1

. D . D a1 7R
1m 2 T2 Al At

1G1,m) = [

where the A; are massless scalar propagators that depend on the internal k; = k, £ and
external py, ..., p, momenta of the system. We choose to describe it using the following

three positive parameters

r= Zu,- V v;>1 : dimension of denominator (4.37)
B

§=— Z v; YV 1, £0 : dimension of numerator (4.38)
i

t : number of propagators (4.39)

The topology of the integral is uniquely determined by the way the propagators and
the external legs are interconnected and this is specified by the ¢t parameter representing
the set {4, ..., A;} of different propagators in the graph.

The specification of the integral is completed when we assign values to the positive and
negative powers v; of the propagators, making them become part of the denominator and
numerator, respectively. Therefore, integrals of a particular topology ¢ with dimensions s
of the numerator and r of the denominator, belong to a particular class of integrals I, , ;.

Now, as noted before, any of these integrals will depend on the external momenta and
on the loop momenta. At two loops we can combine the loop momenta k and £ and the
three external momenta, to form 9 different scalar products involving k or £. Knowing

that the propagators are linear combinations of scalar products, i.e.
A=(k+p?=k>+2k-p+p? (4.40)

only 9 —t different scalar products in the numerator of an integral with ¢ propagators can
give rise to irreducible numerators.

The number of different four-point integrals of a given topology ¢ and a particular di-
mension of the numerator 8 and the denominator r, can be calculated with combinatorics.

It is simple but is presented here for completion.
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It is useful to recall from eq.(4.37) the definition of the parameter r. This has been
done considering all powers of propagators bigger than 0. If we want to compute all
the possible denominators of the integrals we can come upon when calculating matrix
elements, we also have to consider the appearance of master integrals (1; = 1). In that
case, the sum of the powers of propagators will be

t
Svi=r—t V>0 (4.41)
i=1

Now, consider the number of combinations of n different objects, taken k£ at a time
with their subsequent replacement. This is the same as the number of sets that can be

made up of k objects chosen from the given n objects, each being used as often as desired,

n+k—1
n_ (4.42)
k
Then the number of different I, ;; is
combinations combinations
N(Irst) = | of different |X| of different
numerators denominators
= c;t X Cr_y
8—t+s ( r—1
= X (4.43)
L r—t

For a given topology, the number of integrals increases quickly as r and s become
larger. We can see that for the case of the double box topology (¢ = 7), where we will

have
_ L(l%—s)! (r—1)!
N(Ir’s’t) 720 8! (r=71 " (4.44)

which, as can be seen in fig.(4.1) and table (4.1), reaches hundreds of integrals with only
a few extra powers on propagators and irreducible numerators.

This is not so good, but, as we saw in the previous chapter, they are related among
themselves by IBP and LI identities. For each value of r and s we can get 10 IBP and
3 LI identities. The identities applied to a seed integral I, , ; will contain integrals of the
type shown in fig.(4.2)

The loop integrals that arise in the calculation of 2 — 2 parton scattering are integrals
of different topologies (2 < ¢t < 7) that involve at the most 4 irreducible numerators (s = 4)

and sometimes extra powers in the propagators (r > t).
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It is therefore desirable to have an algorithm that can be used to solve IBP and LI
identities for integrals of any topology but with fixed powers of propagators and irreducible
numerators. So the idea is to have a collection of identities with the description given
above and use them to obtain an algorithm for the reduction of complex integrals (i.e.
I 41 541,t) in terms of the seed integral and simpler integrals (i.e. pinchings and known
integrals).

In fig.(4.3) we have a schematic representation of the links between different integrals
that belong to a system of identities generated by a particular seed. One of the seed
integrals (labelled (r,s,t)) will be able to generate identities involving five types of inte-
grals (shown in black dots). If we add to this group of identities, the system of identities
generated by the next seed up (labelled (r,s + 1,t)), we will find more equations relating
the same kinds of integrals (which are the dots in common between the two groups of

seed links).

A
(r,s+1,t) (r+1,s+1,t)
(J r.j
a
S 7 r’S’t) (r+1,s,t)
(r-1,s,t) x
@ (I‘,S,t-l)
(r-1,s-1,1)
B

Figure 4.3: Links between systems of identities generated by different seed integrals

As a direct consequence of this, we can consider the set of all possible equations of a
given topology ¢, generated by taking high enough values of r and s. We will have an over
constrained system of equations that can be used for expressing the more complicated
integrals, with greater values of r and s in terms of simpler ones.

We can find the values # and 8, for r and s, necessary to have a satisfactory reduction

for our unknown integrals. Recall that the number of accumulated equations that will be
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generated by using these values will be

(MBP + ML) X DY Npoe =13 Y- Npos (4.45)

r=t s=0 r=t =0

To check if the number of equations is enough for the actual number of unknowns,
we can compare it with the number of accumulated unknown integrals that are involved
in the over constrained system, but removing the master integrals of the topology, which

effectively means

N(Ir<iy1, s<sv1, t) = Dr=t1t — Tr=t,0,t- (4.46)

To clarify, we take on the following example. In table (4.2) we show the number of
equations and unknowns for a topology with 7 propagators (¢t = 7). The squares given by
(#,8) = (7,2),(8,1) and (9,0) are the minimal values that can be used for a satisfactory

reduction of the system.

° 0 1 2 3

r
13 39 78 | 130
7 22 45 76 | 115
104 | 312 | 624 | 1040
8 106 | 213 | 354 | 535
468 | 1404 | 2808 | 4680
9 358 | 717 | 1196 | 1795

Table 4.2: Accumulated equations (upper number) exceeding the number of accumulated
unknowns (lower number) as 7 and s increase. Reduction of the system is achieved by

choosing at least one of the couples (7, 8) = (7,2),(8,1) or (9,0)

The fact that the system is over constrained can be helpful in some topologies, be-
cause it may lead to a complete reduction of the integrals under consideration, in terms
of pinched and/or known integrals. What usually happens in topologies with ¢ > 4 is
that the system provides a reduction towards a small number (typically one or two) of
integrals of the topology under consideration and integrals of simpler topology (pinched
and known). The left over integrals are the master integrals (MI) of the particular topol-
ogy and in principle we are free to choose them a priori, as long as they are independent

from each other.
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It is worth mentioning that the procedure described above is not the only way to
attack the problem of reducing tensor integrals to doable scalar integrals. Nevertheless,
by using a particular set of master integrals as a basis to generate all unknown integrals
and combining with the automatic reduction, we were able to calculate all integrals needed
for the parton processes we studied. This is no trivial task and in fact, we were able to
customise our algorithm so as to have the possibility to calculate even higher numbers
of irreducible numerators than the ones needed (the limitation always being computer
power).

In the next section we will specify the nature of the actual algorithm we use and the
extra software used to generate the Feynman diagrams contributing to the QCD parton
processes. But before that, we must discuss how are we going to choose the MI of our

algorithm, paying special attention to the double boxes.

4.2.1 A more natural set of master integrals

A particular choice of master integrals for a topology can make a great deal of difference
in terms of the amount of work that will be done in the reduction of a system. In fact,

our decision to choose

(4.47)

@)
EX:

as master integrals for the double and crossed boxes topologies, arose from the idea of
reducing integrals with high irreducible numerators in terms of a basis of integrals that
contained irreducible numerators themselves.

This proved to be crucial in our algorithm, since we could have an easier system
reduction without damping it with a further reduction of very high powers of propagators
and extra dimensions.

The only problem is that the reduction for the double boxes (see section 4.1), leads to

double boxes that have an extra power in one of the propagators, instead of an irreducible
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(7,1,7){ :,& (8,1,7)

S e >
(7,0,7) ><L(8’°’7)
3

Figure 4.4: Links between the double box master integrals

numerator. So we must find a way to relate these two pairs, i.e.

Q — % and —@8 — % 8 . (4.48)

We can do this with the reduction algorithm we just studied in the last section. This

is schematically represented in fig.(4.4). We apply our system of IBP and LI identities to
two seed integrals (marked with @) belonging to the topologies (r, s,t) = (7,0,7),(7,1,7),
which are precisely the two master integrals we want to use, as described in eq.(4.47).

The seed integral belonging to the (7,0, 7) family will produce an integral of the same
topology (¢ = 7), no numerator (s = 0) and an extra power in a propagator (r = 8)
(shown in the figure with a x) which is the integral we have arising from our general
reduction.

Then, the links between the integrals of eq.(4.48) exist through the family of unknown
integrals belonging to (r, s,t) = (8,1,7) which are of no interest to us. Nevertheless, we
can use this fact and eliminate these last uninteresting integrals, in favour of a relation
(represented in the figure as X) between the integral with irreducible numerator, the one
with all unit powers and no irreducible numerator, and the one with an extra power in a
propagator together with some pinched integrals.

For the planar double boxes, we obtain the following relation

D —14)s D —6)s
HLen = 557" :D:[(“”t)_%(p(_4)(19)f5) BHECY
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(s +1t)
st

(7TD? - 68D + 164)s + (3D — 14)(3D — 16)¢
(D—5)(D -6) J 1A 6o

(D - 3) (D - 3)2
25 g 1O 00—+ g D 5)32 3 -00-

3 (D-3)3D-10)

z —11D% + 158D? — 754D + 11
2(D_4)2(1)_5)2(1)_6)8%( D3 + 158 754D + 1196)t

+

D D~ D —
R e

X [(D — 5)(7D* — 68D + 164)s + (23D° — 337D + 1640D — 2652)t| ) (s)

(D — 3)(3D — 8)(3D — 10)

3D 43 (D= 5)%(D — 6)5202

[(16D3 —229D% +1088D — 1716)s

+(D - 5)(3D — 14)(3D — 16)tJ - ), (4.49)

whereas for the non-planar boxes we get

1 [1(3D —14)s +2(2D — 9)t
X e - 3+2t{2( (;D+—£§ 1X (0
1 st(s +t)(D — 6) 1s(D — 4)
t32D —9)(D =5 I X (ot D+ 3105 K

3(D — 3)(3D — 14)[2(D — 5)s + (3D — 16){]
T G- 4D -5)(@2D -9) 1O G-s-9

3(D - 3)[(-D? 4+ 6D — 6)s + (D? — 14D + 44)t] :[O: (s.8)

+ (D —4)(D —5)(2D —9)

34(3D — 14)[2(D — 5)s + (3D — 16)¢]
Ty S+ 0D —5)(2D -9 1A =s-t)

_3(s+t)[(=D*+ 6D — 6)s + (D* — 14D + 44)t]
2 st(D — 5)(2D — 9) 1A @0

s2(D — 4)( 3D—14)
_3(s+t)( )(2D —9) :IZ[(t’ T

3 (D - 3)(3D 8)(3D — 10)
2 st2(s + t)(D — 4)3(D - 5)2(D — 6)(2D - 9)

x [ (=16D* + 291 D3 — 1972D?% + 5898D — 6564) s>
+(—9D* + 154D — 962D? + 2574 D — 2444)st

+(D ~ 5)(D — 6)(D? - 14D + 44)t* | - (t)

3  (D-3)3D-8)(3D - 10)
252t(s +t)(D — 4)3(D — 5)2(2D - 9)
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X [—(D — 5)(D? — 6D + 6)s® + (5D — 82D? + 444D — 794)st

+(9D® — 140D? + 724D — 1244)t2] - (s)

3 (D -3)(3D—8)(3D —10)(3D — 14)
" 2st(s+1)2(D — 4)3(D - 5)2(D - 6)(2D - 9)

X [—2(1) —4)(D - 5)%s? + (5D® — 72D? + 346D — 556)st

+(D - 5)(D — 6)(3D — 16)t2J (-5 1)

3 (D - 3)(3D — 10)
§st(s +t)(D — 4)2(D - 5)(2D — 9) [(—D"’ + 6D — 6)32
+2(D = 5)(4D = 21)st +12(D — 5)%2] pOXO (4.50)

Equations (4.49) and (4.50) provide the “bridge” between the two types of choices of
master integrals. If the irreducible numerators are going to be dismantled into tensors
and translated to extra powers of propagators and dimensions, it is more adequate to
use the integrals with extra powers, as MIL. But if we want to manipulate the irreducible
numerators keeping them as scalars and using them on the same footing as any other
integral, the best choice is to have MI that have irreducible numerators. For the algorithm

we use and described at the beginning of this section, this is best.

4.2.1.1 The new choice of master integrals

There is just one problem about this particular choice. Looking at eq.(4.49), we can see
that the coefficients in front of the two planar boxes are of order 1/e. This is due to the
fact that in the reduction of integrals with one IN it is necessary to reduce the dimension
from at least D = 6 — 2¢, down to D = 4 — 2e. All this conspires together to leave a factor
of D — 4 in the denominator of the two MI. This implies that in order to calculate the
new MI up to order ¢, one must know the expansions of the old MI (r.h.s. of eq.(4.49))
to one order higher in € than they are given in refs.[54, 53].

To solve this problem, we calculated the planar double box with an IN [55], using
the MB method and checked our results in two different ways; we verified that the result
satisfies a system of differential equations and then, we used these differential equations
to obtain the old set of MI in D = 6 dimensions and compare with the numerical result.

We use the reduction algorithm presented at the beginning of this section to obtain a
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set of differential equations. As a result of doing

0 0

BtPBOXI(S t) = 5 (s, 1),
o 0

— = _— D

5 PBOX2(s,t) = = o T (s,4),

we will effectively be producing integrals with extra powers on the propagators. To
these integrals, we can apply our reduction algorithm to write them again as a linear

combination of MI. The result is the following,

7] _[(D 5s—t]
& MTew = 28 T+ 28 T
D—-4 D -3
—6‘ dzwthjzzw

(D -3)

(D — 4)s2t(s + ) OO~

(D - 3)(3D — 10)(2s + )
3
+ (D —4)s%t2(s +t) _CE (2)

+4

D - 3)(3D — 8)(3D — 10)(s — ¢)

(
6 (D —4)283t2(s + t) o (s)

(D - 3)(3D — 8)(3D - 10)

O ety o O (4.51)
% [Ty = -5 (IZ+3): t)+2%+—‘8—3 T s
o 4) 1T st)+12 DH:Q TO 0
+2((1l)) f ):2:<: ftt) -0~ )
R OO
o et S @
LoD =3)(8D - 83D — 10) =~ ws)

(D —4)2st2(s + t)
Expanding eqgs.(4.51) and (4.52) in € and inserting the expressions for the pinched integrals

and the double boxes :DI and :[D:, we find that they are satisfied, when we used

the result

_ Td+e*f 9 2 72
[T = W{@*?X—gg

8 €
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+1 [%X:’ + %sz — 4(X? + 7?)Y + 8Li3(—z) — 8XLis(—z) — 16((3)}
€

2
——X4—§7T2X2+ <?X3+?6W2X)Y—5(X2+W2)Y2

N <6X2 _90XY — %ﬂ) Lig(=2) + (8X + 20Y) Lis(~z)

4
20S;.2(~z) — 20XS; 2(—7) — 28Lig(—2z) + (28X — 20Y) ((3) — %}

(4.53)

obtained by MB method integration directly in the region where s,¢t < 0 (see Appendix
B) and where

T = E, X =log(z), Y =log(l+ z).
s

This calculation provides the last ingredient we need for our matrix element calcu-
lation. We have now all the master integrals required for the reduction of any generic
integral arising from this calculation. In the next section we summarise the information
we have for the master integrals themselves and discuss other work that has been done

related to them.

4.3 Master integrals

Here we briefly summarise the master integrals we will need and provide the references

where more information can be found about them.

1. The MI for the one-loop topologies are provided in table (4.3 ) and their expansions

are in Appendix B. Actually, the one loop box in six dimensions is related to the

Name Diagram References

BUB(s) eq.(B.3) and ref.[1]

O
Box®(s, 1) :E[ egs.(B.1),(B.2) and ref.[64, 63]

Table 4.3: One-Loop Master Integrals

box in four dimensions and the bubble as follows

st
TT 60 = sp—sp7g LL 6
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2
tosaerg @O0 @

2. The MI for the two-loop topologies are provided in table (4.4) and their expansions

are also in Appendix B.

Name Diagram References
SUNC(s) —e— egs.(B.4), (B.4) and ref.[64, 63]
TRI(s) -0 eqgs.(B.5),(B.5) and ref.[64, 63)]
GLASS(s) | ()X~ | eas.(B.6),(B.6) and ref.[64, 63]
XTRI(s) | —<X | eqs.(B.7),(B.7) and ret.[66, 10]
CBOX(s, t) :|Z[ eqs.(B.8),(B.8) and ref.[64]
ABOX(s,t) :]II eqs.(B.9),(B.9) and ref.[64]
PBOX1(s,t) | ||| | eqs.(B.10),(B.10) and ref.[54, 53]
PBOX2(s,t) egs.(B.11),(B.11) and ref.[55]
XBOX1(s,t) l z egs.(B.12),(B.12) and ref.[10]
XBOX2(s, t) X eqs.(B.13),(B.13)

Table 4.4: Two-Loop Master Integrals

All these integrals have been calculated (in the references mentioned) by means of
parametrisation and MB or NDIM methods. But they have also been calculated in other
ways. Binoth and Heinrich (58], have found a way to strip the singularities off the integrals,
and calculated the divergence-free integral numerically.

Gehrmann and Remiddi [63, 67] derive differential equations in the internal propagator
masses or in the external momenta for the master integrals and solve these for appropriate
boundary conditions. This has turned out to be a good method and they have also
managed to calculate the master integrals with one mass in one external leg (which are
needed for i.e. v* — ¢qgg) [68, 69].

These methods provide alternative ways to the calculation of MI. But, even without
them, we have calculated the missing links, compiled the necessary results and turned

the problem we are interested in to a manageable task. Tables 4.3 and 4.4, comprise
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the basis set of MI that are required for a NNLO matrix element calculation for 2 — 2
massless scattering and their analytic expansions in € has been calculated and presented

in Appendix B.

4.4 General algorithm for matrix element calculations

Based on this new choice of master integrals we can undertake the calculation of the matrix
elements themselves. We devise a mechanism to do it but it requires several parallel steps.
In this section we give a brief account of this procedure and provide the most relevant
practical issues that arose. After all, practical issues represent the challenging problems to
overcome when faced with big calculations and their associated dilemmas of optimisation.

To start, we use QGRAF [70] to produce the two-loop Feynman diagrams to construct
the one- and two-loop amplitudes. We then project by tree-level or one-loop amplitudes
and perform the summation over colours and spins.

The trace over the Dirac matrices is carried out in D dimensions using conventional
dimensional regularisation. It is then straightforward to identify the scalar and tensor
integrals present in the calculation. We replace them with combinations of the basis set
of master integrals using the symbolic reduction of two-loop integrals described in section
4.2, based on IBP and LI identities. The final result is a combination of master integrals
in D = 4 — 2¢ for which the expansions around € = 0 are presented in Appendix B.

Let us now draw on a few details and give the complete picture of the algorithm in a

clearer way, with the aid of fig.(4.5).

4.4.1 Generation of Feynman diagrams with QGRAF

QGRAF is a computer program that generates symbolic descriptions of Feynman di-
agrams in quantum field theories. The generated output is a list of diagrams whose
description depends on the style file that accompanies the compilation but it is based in
the combinatorial design of the program (STEP 1 on fig.(4.5)). This means that together
with the description of the topology, it assigns a symmetry factor and the sign that follows
from anti-commutation rules.

The description of the field theory model is done by specifying the propagators and
the interaction vertices in an input file. Similarly, there is another input file where one
describes the style with which the output will be made.

Due to the fact that QGRAF starts distributing momenta in a non-fixed manner
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' IBP/LI identities ,
STEP 1)+ | QGRAF | QCD model . MAPLH  Solve system |

__________ of equations

----------- |

STEP 3} FORM |Feynman rules, List of all integrals

in terms of MI :
int(1,2,1,0,1,0,1,1,1,8,t) =

S

¢ JTO +d @O@ +-.

Sum of all tree x loop diagrams
in terms of integrals :
{(MO|AM2)y =

STEP 4 )} a int(l,2,1,0,1,0,1,1,1,S,t)

+ b int(1,0,1,0,1,-1,1,1,1,t,u)
+ “ee

Sum of all tree x loop diagrams
in terms of MI :
(MA@ =

‘I o

¢ JTOX +d @ +---

€ expansions |—

| JMOMED) = fafel 1 12/ 4 f2/ @+ frfet+ o | rampn

fi = fi(ln, Lig, Li3, Lia)

Figure 4.5: General algorithm to calculate matrix elements
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(the s,t and u-channel version of the same graph, have different output descriptions), we
needed to map all the information we have to a minimal set of topologies and carry any
extra information as parameters of a minimal description. We designed a style for the
description of the graphs that generated output we could use as input for MAPLE (STEP
2 on fig.(4.5)), where the mapping of the topologies was carried out.

Finally the specification for a particular process is done on yet another input file.
Here one specifies the incoming and outgoing states of the process, the number of loops
to be considered and extra options on the conditions of the external legs and tadpoles.
Table 4.5 shows the number of Feynman diagrams that are generated by QGRAF in the
processes that are of interest to us. Throughout, we have set the external legs to be free

of self energy insertions and the graphs free of tadpoles.

QGRATF output Actual Calculation
Process Tree | 1-Loop | 2-Loops | 1-Loop X 1-Loop | 2-Loops x Tree
99 — 99 4 81 1771 6561 7084
qq — g9 3 30 595 900 1785
qq — qq 2 18 316 324 632
Qg1 — q2q2 | 1 10 189 100 189

Table 4.5: Number of Feynman diagrams generated by QGRAF. Also, number of terms

involved in an the actual matrix element calculation

4.4.2 Performing the matrix element calculation with FORM

Once we have the set of diagrams for a particular process with a proper identification of
the two-loop integral topology for each of them, we assemble the matrix element. This is
done with a specifically designed FORM program (STEP 3 on fig.(4.5)).

In this program, each of the terms representing propagators and interaction vertices
are assigned to their specific values, according to the Feynman rules. After performing
the sums over colour and spin, we incorporate the information of extra (or less) powers
of propagators into the basic integral and keep track of the additional information that
may be generated after doing the trace over the Dirac matrices.

It should be noted that when summing over the gluon polarisations, we ensure that
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the polarisations states are transversal (i.e. physical) by using an axial gauge

By vt
)R AR Lo ek £ (4.55)
spins i * Pi

where p; is the momentum of gluon ¢ and n; is an arbitrary light-like 4-vector. For

simplicity, we choose

b p woo_ B
ny = Py, Ny =Py
b p b B
ng = Py Ny =DP3.

At the end of this stage we have written the matrix elements in terms of hundreds of
integrals of different topologies and with different amounts of powers in the propagators
(STEP 4 on fig.(4.5)).

From the IBP reduction program that was described in section 4.1, we generated
files for each topology, containing the expressions for all the integrals (within a range
of powers of propagators and irreducible numerators) in terms of master integrals and
simpler integrals (STEP 5 on fig.(4.5)). We feed this information to the result we have
from FORM so far, and now we can express the matrix elements in terms of a linear
combination of only a handful of master integrals (STEP 6 on fig.(4.5)).

The final input are the € expansions for these master integrals. We finish the calcu-
lation with a result for the matrix elements that consists of a series in the parameter ¢
(STEP 7 on fig.(4.5)). The coefficients of this series are functions of the scales of the
system and of the number of colours (for gluons) and flavours (for quarks). More pre-
cisely, they are sums of logarithms, polylogarithms and characteristic constants such as

Riemann ¢ function.



Chapter 5
Loop Amplitudes

In the last two chapters we have described how we constructed an algorithm that
allows us to do a matrix element calculation for the virtual corrections to any 2 — 2
scattering of massless particles. The result of applying this algorithm to four partonic
processes (and their crossed and time-reversed versions) shall be presented on Chapter 6.

This in itself is a tremendous amount of work and involves many different stages that
can be checked within the calculation. Therefore it is desirable to have an independent
way of verifying our results.

We will see that this is achieved at two levels. First, we can compare a subset of our
results with the work presented by Bern, Dixon and Ghinculov in ref.[71]. Second, we
can use the Catani formalism [72, 73] as a more general independent way of checking the
singularity structure of our results.

In this Chapter we resume the discussion we had in Chapter 2 about the divergent
behaviour of the matrix elements in a physical observable calculation. This time we want
to touch upon these issues in a more general manner.

We want to discuss the possibility of isolating the divergent behaviour at the level
of the loop amplitudes. We will briefly discuss the factorisation of collinear and soft
singularities of an amplitude and how this allows their cancellation.

Then we will describe the Catani formalism and show how it can help us extract these
singularities using (implicitly) the factorisation properties we just described. We finish
by providing a concrete example to give an idea on how the last chapter will be presented

and to illustrate the importance and limitations of this formalism.

5.1 Colour structure of QCD amplitudes

In previous chapters we have seen how we can expose and cancel the divergent behaviour
in the calculation of infrared safe quantities. Now, we will discuss a procedure that makes
the singularities easier to isolate, the decomposition of the matrix elements in terms of
its colour factors.

In order to accomplish this, we need to separate each diagram involved in a QCD

94
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amplitude into a term that contains the colour structure and another that is colour-less
and contains all the kinematics. This allows us to regroup all the diagrams that contain
the same colour structure into colour-less structures which we call subamplitudes. Each of
these subamplitudes are gauge invariant and have important factorisation properties in
the collinear and soft limits that can help us isolate the divergent behaviour of a Feynman
amplitude.

Let us take an example to further what we mean. Consider the matrix-element for
the tree level process ¢¢ — gg. The diagrams and their amplitudes, involved at this level

of the calculation, are the ones shown in fig.(5.1). Each amplitude has been written in

Figure 5.1: Tree-level diagrams for ¢qg — gg

3

terms of a colour factor and a kinematical piece A;, ¢ = 1,2, 3.
Using eq.(1.4), the amplitude of the third diagram can also be written as a combination
of terms, each term contributing to the first two. Then the total tree-level amplitude is
b b
Arot = (T°T%) _[AL+ Ag] + (1°7%) 1Az — As), (5.1)
which is the colour structure for any process where these are the only coloured particles.
Now that we have decomposed the amplitude, we want to construct the squared matrix
elements. To do this, we need a set of rules for the evaluation of colour factor products.
More precisely, we need to know the Casimir colour charges of our theory and the Fierz

identity which can reduce the amount of colour algebra.

5.1.1 Casimir colour charges

The diagrammatic representation of the three quadratic Casimir colour charges of SU(N)

is given as follows

q()999_9,9\?9

—U‘ = (T%)i(T*)k; = Crbij, (5.2)
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9999,
®() 2 d pbcd ab
G660R Booee = FOO = Cad®, (5.3)
= g
2 S
66 o = (T%)i(T%)i = Tré®. (5.4)

In analogy with the electric charge, these diagrams are used to interpret the Casimir
factors as colour charges.

For this gauge group we find the following

N?2 -1

Ca = N, (5.6)
1

Tp = Ea (57)

the last one being a normalisation factor (a matter of choice).

5.1.2 The Fierz identity

Consider an arbitrary element of SU(N) in the adjoint representation, we can write it as
a linear combination of delta functions for a fermionic line and open 7' matrices for the
emission of gluons, i.e.
Xy =Y 6+ Y Z2°Tg, (5.8)
a
where a runs over the N? — 1 generators of this gauge group. Since the generators are
traceless, we can determine Y by taking the trace of this equation, so that

_trX

Y= (5.9)

On the other hand, we can determine Z¢ if we multiply by T? and then take the trace
on eq.(5.8)*, as
tr (XTY) = 3 z° tr(1e7?)
a
= > Z°Trs®
a
= TrZ’,

tr (XT?)

T (5.10)

*Recall tr(T°%) =TS = 0.



5. Loop Amplitudes 97

where we have used the definitions presented in egs.(5.2) to (5.4).
The decomposition presented in eq.(5.8) can be rewritten using egs.(5.9) and (5.10)

1 1
Xij = - (1X) & + T—Rza:tr(XT“) T,

or

1 1
Xij = 75 Xwk G35 + Tr za:szTJ?z Ti;-
Since this identity is valid for an arbitrary X;;, we can write it as
1 ..
Xk | 6ubji — N‘Slk&.? - Z T ) =

to have the following result

Z IR (6116119 5ij5kz), (5.11)

which is known as the Fierz identity. Figure (5.2) shows how this identity represents the
colour flow between two quark lines and along a gluon 7Ty, as simpler quark colour

flows 6,-]-,6“,...

1 l ; ] 7 l
=Tg _’117
J k J k J k

Figure 5.2: Diagrammatic representation for the Fierz identity

5.2 Factorisation of matrix elements in the singular limit

Let us extend the example of ¢ — gg and use it to illustrate how the matrix elements
factorise when we study their divergent behaviour. We can easily calculate (AfA)¢ using

eq.(5.1) and the Fierz identity, as
|2, = CF— | AL + Az2 + (A2 — A3]2 + O ( )} (5.12)

The first two terms on the r.h.s. of this equation are colour-less subamplitudes that

represent an ordered way of emitting gluons a and b from a quark-antiquark line. There-
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fore it is convenient (and commonly used) to write them as ordered subamplitudes,

AL+ As? = [S(g5a,b,9)I% (5.13)
Az — A3 = |S(g;b,0,9)". (5.14)

This analysis can be easily extended to the case where we have multiple gluon emission,
where the ordered subamplitudes have a special factorisation when we look into their
singular limits. This is due to the fact that the emission of the partons is well ordered
and forms well defined colour flows to which the soft/collinear parton can couple.

For example, in the limit where gluon b is soft [74, 75, 36] we have the QED-like
factorisation into an eikonal-type singular factor and a colour ordered tree-level squared
amplitude where gluon b has been removed. The amplitude for the emission of n gluons

in the limit where gluon b is soft,

Ep—0

|S(q; 17""a, b’ c"",n; Q)l2 H g(sac) Sab78bc) IS(q; 1"")a,c)""n;q‘)|2
(5.15)
c c
° C °
' Ep—0 °
b . 2 P— X 5
° a ]
a a
———
Eikonal factor
where the eikonal factor is given by,
48
E(Samsabasbc) = e (5.16)
SabShc

and the diagrams represent the colour ordered subamplitudes.

Similarly, in the limit where partons a and b become collinear and cluster to form
a new parton ¢, such that p, + p, = p., there is a factorisation of the matrix elements
[74, 75]. The factorisation is in terms of a function that is directly related to the Altarelli-
Parisi splitting function and a tree-level squared-amplitude, where the partons a and b

are replaced by the cluster parton ¢, i.e.

_ allb _
|S(q;1,...,a,b,...,n;q)l2 l) Popse(2, 8ap) |S(q;1,...,c,...,n;q)|2
(5.17)

b ° b °

* b a+b ath .

. T X -

° a °
a

—

X Altarelli—Parisi
splitting function
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where p, = zp. and py = (1 — 2)p. and after integrating over the azimuthal angle of the
plane containing the collinear particles with respect to the rest of the hard processes, the
collinear splitting function Py, is given by

2
Pab—)c(za sab) = S—Pab—m(z)' (5'18)

ab
The function Pgp—,.(2) is the Altarelli-Parisi [76, 77, 78] splitting kernel for partons a and
b with momentum fraction z, clustering to form parton ¢ (with colour factors removed
and in D = 4 — 2¢ dimensions). These are given by

1+ 2% —€(1-2)?

Pygg(z) = 1- 2
224+ (1-2)2—¢ .
Pug—o(2) (1 — e) (5.19)
1+z44(1-2)*
Pygg(z) = 21— 2)

satisfying,

Poyse(2) = Ppase(l—2)
P&T)—)E(z) = Pab—)c(z)'
Unfortunately, the squared subamplitudes corresponding to the O(z) terms of eq. (5.12),
do not have such a straightforward singular factorisation. Nevertheless, this example is

enough to demonstrate that there is an underlying issue of utmost importance in this

section. The factorisation of the matrix element

1. is universal, in the sense that we need only to specify the type of singular limit
and the singular behaviour (at leading order in colour) will have a characteristic

structure,
2. is process independent,
3. occurs when any parton is unresolved,

4. is always in the form of singular term x finite subamplitude squared

5.2.1 IR cancellations

In section 2.1.4 we saw how the NLO cross section for ete™ — ¢4 is finite when we sum
all possible real and virtual emissions despite their individual singular behaviour. The
same analysis can be performed for the NNLO calculation, only this time we will have to

consider more contributions over which the cancellation of singularities has to be done.
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The study of soft and collinear divergences allows for an easier analysis of the cancella-
tion between divergent pieces at different levels in the calculation of a cross section. A lot
of work has been done related to the factorisation of NLO and NNLO virtual and real emis-
sion partonic matrix elements and of the phase space integration [29, 79, 80, 81, 82, 83, 84].

Recall the general structure for the NNLO cross section for 2 — 2 partonic scattering
provided in eq. (2.33). We can see that we will have several levels of cancellation of
singularities and they have all been thoroughly studied by different people and with
different approaches. It is important to have a general picture of these analyses and what
they involve, since it will naturally lead to Catani’s formalism, which is the one we use
to verify our results.

For completeness we present some of the main results with schematic diagrams, similar
to those used in the previous section, and provide some references where the details can
be looked up.

Consider the partonic cross section for n-particle production at NNLO

On jet ™~ / [l (MO |M(O))l2] d®r2

N
o f |

where [ ]; indicates the number of particles in the final state with d®; the corresponding

(M(O)IM(I)) + (M(I)IM(O)) d®p 41

n-41

MOIMDY 1 (M <°>|M<2>>+<M(2)|M(°>>] d®,, (5.20)

n

phase space and M is the i-th order scattering amplitude.
To have an idea of the different layers of cancellations between divergences, we sum-

marise them as follows

e the cancellation between the (n+2) and (n)-levels (first row in eq.(5.20), contribut-
ing to last row), when two particles are unresolved requires to take into account the

cases [29, 85, 86, 87, 88] when, e.g. for isolated emissions

— three partons are simultaneously collinear

c
° c °
° b atbtc atb+g °
b . ol b>’- X .
° a °
a

where p, = WPatbter Po = TPa+tbte a0d Pe = YPatbte, Withw +z+y =1,
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— two gluons are soft

E.—0
Ep—0
—

B0 d+e /,.

c e
d|le d+e °
- X X gt
a d o

e the cancellation between the (n + 1) and (n)-levels (second row in eq.(5.20), con-

tributing to last row), when one particle is unresolved requires to take into account

the cases (89, 30, 31, 82, 32, 90, 83] when, e.g. for isolated emissions

~ two partons are collinear

— a gluon is soft

which are only examples of isolated emissions !.

This work has provided the platform for the development of more general approaches
in the prediction of the divergent behaviour of scattering amplitudes. In particular, the
general (process-independent) algorithm to obtain the singular behaviour of QCD ampli-
tudes at one- and two-loop order devised by Catani and Seymour [73, 72] provides an
excellent testing ground for the divergences of our explicit two-loop calculations. More-
over, this formalism does not require the decomposition of the matrix elements into colour

subamplitudes. In Chapter 6 we apply such a formalism to various partonic processes.

tThere are also contributions from singular behaviour of partons belonging to the same colour current

(colour connected singularities). See reference [29] and references therein.
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The fact that we agree with the predictions stemming from Catani’s formalism, is a
very strong check for the divergent structure of our explicit calculation. It represents a
thorough verification because typically all Feynman diagrams of the massless QCD ampli-
tudes are infrared divergent (therefore all contribute to the structure of the singularities).

In the next sections we explore the basic results in Catani’s formalism and the neces-

sary tools required to construct the divergent structure prediction.

5.3 Colour space

Based on the fact that the singular structure of the sum of all possible real and virtual
emissions cancels order by order in perturbation theory and that this structure follows a
factorisation pattern that has been well studied, we can predict the infrared singularities
of one- and two-loop QCD amplitudes with light-quark flavours.

By construction, we have an algorithm that allows for the amplitudes to be computed
within CDR and all UV singularities removed within the MS renormalisation scheme.
Together with this, the amplitudes are represented as vectors in a colour space. All this
provides a natural environment in which the real and virtual emissions can be thought
of as insertions of colour interactions between all the partons in a particular colour state
amplitude. In this section we discuss this colour space and how these colour operations
are defined.

Consider a general QCD amplitude with m external legs M,,,
Mm — M%,...,Cm;sl,...,sm (pl; ---7pm), (521)

that depends on the colours ¢;, helicities s; and momenta p; carried by the external
particles. As we have mentioned before, if the particle 7 is a quark (gluon), the colour
indices will be ¢; = 1,...,N (¢; = 1,...,N? — 1) and the helicities will be s; = 1,2
(¢, =1,...,D-2).

In the colour + helicity-space we introduce a basis {|c1,...,cm) ® |$1,...,8m)}, such

that our amplitude can be written as

MLrmidlyendm(p, o) = ((Cl, ceyCm| ® (81, .. ,sm|) [1,...,m)m, (5.22)

so we can define the matrix element squared, summed over colours and spins, to be

M2 =(1,...,m[L,...,m). (5.23)
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To study the colour structure of the amplitude within this framework (to obtain its
singular behaviour), we do not need to consider the decomposition of the matrix elements
into colour subamplitudes as we did before, instead we introduce the concept of colour
charges T;.

We are now interested in the general case where any external parton of the amplitude
radiates a gluon with colour, say, ¢g. When this happens, the parton colour space increases
by one parton to be able to accommodate the emitted gluon in an arbitrary emission
state. This also has repercussions on the colour index of the emitter, which has to change
according to the SU(N) colour algebra.

Given that the emitted gluon has colour charge ¢y, we define a colour charge operator
Ty,

T, = Tf%|c,), (5.24)
which represents the emission of such gluon from the 4-th parton, acting on the colour

space as

(Cl, ey Ciyun oy Cyy,y CngilbI; e ,bi, e ,bm> = O¢yby " TCC;%,‘ te ‘Scmbm' (525)
The specific value for the T4 matrix, is

b =tg,  if the emitter is a final — state quark or inital — state anti — quark,
Ty = —ty  if the emitter is a final — state anti — quark or inital — state quark,

T3 = ifeap if the emitter is a gluon

and the colour charge algebra is simply,

T; T; ifi+#j,
ToT =4 # g (5.26)
T7 = C; otherwise.

The Casimir operator C; will be C; = Cp (Ci = Cy) if parton i is a quark (gluon), as
given in section 5.1.1 and from colour conservation we have

m
> Till,...,m)=0. (5.27)
i=1

Using this notation, it is useful to have in mind the square of the colour-correlated

amplitudes,

IMpf2 = (1,...,m|T; - TiL,...,m)
1.
— M%,...,bi,...,bk,...am (pl, ---,pm) Tbc,‘a,-Tbckak Mg,ri,...,a;,...,ak,...am (ph ---,Pm)-

(5.28)
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i.e. the square of an amplitude with m external legs arising from the square of another
amplitude with m partons linked with its complex-conjugated by the insertion of a gluon

emission.

5.4 Singular behaviour of one-loop amplitudes

Consider the QCD amplitude | M) in colour space with m external legs. We can perform

a perturbative expansion of it as follows

IM) = (%) [lM(O)) + (%) IMD) ¢ (%)2 IMP) 1+ 0 (ai)} , (5.29)

where as before we work in the MS scheme, use CDR (D = 4 — 2¢) and |[M®) is the
i-loop amplitude in colour spacef.

The singularities for the one-loop amplitudes can be isolated as follows

MDY = 1D (M) 4 | mIm) (5.30)
1 m

- o )( )@(
2 3 singular fa.ctor

where |MB/i") is finite when we take the e — 0 limit. Note how all infrared divergences
are factorised with respect to the tree-level amplitude, in agreement with our discussion
of section 5.2.
The insertion operator I") acts on the colour vector |[M®) and contains all the
singular behaviour of the loop amplitude. Its structure is given in general as
_ €
M) = %F_(f—iej Zi:u;i"g(e) ST T, (“ ¢ M’”) (5.31)

i 2p; - b

v

—

soft/collinear gluon radiation
singularities  between two partons

where 4,7 = 1,...,m and p; is the momenta for the ith external particle. Also

1 if both particles are incoming or outgoing,

/\,;j =
0 otherwise.
The singularities are embedded in the 1*9 function as poles in the dimension param-
eter ¢,

(3

; 1 1
3ing _ o
vi () =g +vi, (5.32)

tn depends on the particular process we choose to study.
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with
3 Bo
=" =5 M= o (5.33)

and Sy given in eq. (1.42).

5.5 An example: v* — ¢¢ one-loop singularities
Y

We apply the Catani formalism to the example of the virtual corrections for v* — ¢g at
NLO we looked into in 2.1.3 and compare with our previous result.

We have from colour conservation
Ty =-T,, (5.34)
S0
Ty - T;= -T2 =-Crl (5.35)

and the colour charge operator is then

IM (e) = —Cp%i—e) le + %J (—“—2) 1 (5.36)

The singular part of the one-loop amplitude is then

€ 2\ ¢
Leing _ 28 (1) pmO)y = _cp @5 __ €7 [1 EJ _EY) o
M 27rI ()M Cr 2n (1 —¢) €2 + 2¢ 8 M (5.37)

or, contracted with the tree-level amplitude, we would simply have

(0)| AqLisingy _ _ &L[i i] AWV
(MOWM9) = —CpZt s [t 5[ (=15 ) (MOLmM©) (5.38)

On the other hand, rearranging eqs. (2.3) and (2.26) and renormalising in the MS scheme
(see eq.(1.40)), we can write the averaged matrix element squared for the one-loop virtual

corrections as

€Y 2\ ¢
(MO|MVNLOY = _cpZe € [i LA 4J (-%) (MOIMO) - (5.39)

2rD(1—€) [ 2
where
(MONMVNEC) = 3 (MY,
spin,col.
(MOMO) = 3™ | M2,
spin,col.

It is evident from egs. (5.38) and (5.39), that we predict the complete singular be-

haviour for the one-loop matrix element, since their difference is indeed finite.
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5.6 Singular behaviour of two-loop amplitudes

The divergent structure of two-loop amplitudes is given by a more complex equation,
where we even have a new insertion operator and the one-loop amplitude interacts with

the previous operator, i.e.

IMP) = IO MDY + 1P ()| MOy 4 | pm2fin) (5.40)
1 1 m 1 m 1
/" . /| -
A (1) ° (2) ° .
© !\/ X -t _ i/ X . .
2 3 singular factor 9 3 singular factor 9 3 9 3

Here, again we have |M?/%) which is finite in the limit ¢ — 0. Now, the singularities
are embedded in two terms. First, the double and single poles of I{Y)(¢) are multiplying
those in the one-loop amplitude |M(1)), providing poles of up to 1/e*. Then, the new
operator I (¢) multiplying the finite tree amplitude M) is also carrying up to 1/e

poles, as can be seen in its expression

™) = _.;_ 1M () ( 1M + @)
—eyT(1 —2€) (Bo
ey \= 2=/ (0 (1)
+e T =) (6 +K>I (2¢)
+HO), (5.41)
with
67 2 10
K=|—=-= — —Tg. 42
<18 ; ) Ca— 5T (5.42)

Here, the function H®) contains poles of O(e7!) and it is not universal. It depends on
both the process we analyse and the renormalisation scheme we use. Usually, it contains
characteristic constants such as C4, Cp, 7, By, 51 and the Riemann zeta function evaluated
at different points ({2, (3).

If we gather the results presented in egs. (5.40) and (5.41), we can specify all the
singularities of the two-loop amplitudes up to and including O(e~2). Furthermore, we can
largely predict the 1/¢ poles that depend on generalised polylogarithms. The remaining
parts, namely H®) and |M?2fi") can only be obtained by the ezplicit calculation of the

Feynman diagrams conributing to the two-loop amplitude.
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5.7 An example: unlike quark-quark scattering

Consider the scattering of unlike quarks as

q(p1) + q@(p2) — ¢'(p3) +  (pa), (5.43)
where the partons are all incoming with conserved light-like momenta,
e+ +pf=0,  pl=0
And we use the associated Mandelstam variables given by

s=(p1+p2)% t=(p2+p3)? u=(p1+p3)’=—-s—t (5.44)

Now, to be able to isolate the singular parts of the renormalised one and two-loop
amplitudes for this process, we need to construct the operator IY) of eq. (5.31) in colour

space. For this, we need the amplitude at tree-level associated with this process
i l

= T%Tgl = % ((&ﬁjk — %Jijdkl)
J k
where we have used eq. (5.11) for the Fierz identity.

The tree-level amplitude for this diagram is then

1
(0) -\ _ (0)
MO o (12 =l 1) x MO (5.45)
N —
kinematics
colour space
where we have defined the colour vectors
|=) = dudjk,
LY = 6ijni, (5.46)

to represent each of the colour currents as shown in fig. (5.2) and to act as a colour basis
over which the insertion operator I() acts.
We can see both pictorially and using egs. (5.31), (5.11) and eqgs.(5.2)-(5.4), that the

operator I () acts on each colour state as

o 1<)

b= 51=)s (5.47

1

2
t — channel : &2 = ( =)) T (5.48)
u — channel : & = %

(11h-5=)u (5.49)
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o IW||))
s — channel ;%’j l - (N;]; 1|=>) s (5.50)
¢~ channel : fossae] = 5 (|=> - ||)> T (5.51)
u— channel : Feogsee] = % (;:) _ 1—1,-| ||)) U (5.52)

which is a pictorial interpretation of the calculation of the operands T; - Tj|=) and T -

T;| |}, together with the fact that each operand has an associated scale ratio,

I = T A

It is worth noting in these equations that the natural structure of the amplitudes and
the insertion operand within colour states, allows these results to be presented also using

matrices in the same space, so that schematically we can have the following mapping

o M= - [ == L= | yo

My L= Iy
where M=, M|, are the components of the colour vector for the tree-level matrix element
given in eq. (5.45).
So we can now calculate the action of this operator onto the tree-level amplitude,

using egs. (5.47) to (5.52), as

o 1 3
IOMm©)y = H_f__e)(6_2+2_6) o)
S N?-1 U
x{(s+unn>+(—ﬁ+ . T_N>|_>

1 N2_1 T U
N (( N S—ﬁ—ﬁ)[l|)+(7'+u)|=)>},

which can be rewritten to be

e 1 3
IOMOy = T (?2 4 E) ©
S T N?+1
S N?2-2 U
+ (—ﬁ + N T— F) —)] (5.54)

We saw in eq. (5.30) of previous sections how the singularities of, say the one-loop
amplitude, looks like
(M) = 1D (M) + I,
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so, if we want to calculate the singularities for the one-loop amplitude (or even the two-
loop amplitude) contracted with the tree-level amplitude, we will need to calculate terms
like (MO TO|IMO)Y or (MO|IP M), The need for the calculation of such terms
will become clear in the next Chapter. Let us assume that indeed we need these terms,

then we proceed with our example and we can now calculate

1
(MOEDIMO) = MO (== (1) 10MO)

ec7 1 3
_ T (1 3N oo
I'(1 -¢) <e2+2e) M

2
x [ (% MEANLS L lu) (== )i

S N2?2-2 2U 1
+<_N+ ~ T_W) ((=I—N(H |)l=)J (5.55)

which is a result of using simply eqgs. (5.45) and (5.54).

Now, using eq. (5.46), the action of these colour states among themselves, can easily

be verified as

li=)=(=11 = N,

(i =(=1=) = W2, (5:56)
so that we can calculate
(=1=Fanm = o,
1 2
(-1 = = w2-1 (5.57)

Then using eq. (5.57), we can see that the first term on the r.h.s. of eq. (5.55) does

not contribute and we are left with

©) 70 A0y — _e”_(i i) 2 _ 1) 11+ 2@
(MO | 1D M) (LR (N 1)M M
S N2-2_ 29
X (—ﬁ'f‘ N T - _"L{r) (558)

where we identify the Born level matrix element
(N2 = 1) M OMO 5 (MOIMO), (5.59)

Applying the same colour algebra and following the same procedure, we can obtain

other terms that make up the ingredients for the two-loop matrix element singularities,
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such as
(M(O)[I(l)(e)I(I)(e)|M(0)) = (MO M)
e (@) (T T (Y
~2 (%) ST +2 (Nj\/,; 3) uTt

4 1
~ 3zSU + W‘Sz]’ (5.60)

which arises from the first term on the r.h.s. of eq. (5.41) acting between the tree-level
amplitude and its complex conjugated.

This example shows how we calculate these terms individually and how the insertion
operator is working at the level of the colour states. In the next Chapter we present our
results using the notation we have just introduced and, as was mentioned before, using

matrices in colour space.



Chapter 6
Results

In Chapters 2 and 5 we looked at the structure of the infrared divergences of the loop
amplitudes associated with the divergent loop-momenta integration. We saw how we can
isolate the divergent behaviour so that we can have an explicit cancellation of the singu-
larities when combining virtual and real emissions. All this can be done systematically
using the Catani formalism.

In this Chapter we apply this knowledge to the calculation matrix elements for 2 — 2
scattering of massless partons at next-to-next-to-leading order. First, we present the
general structure of the IR divergences for any of the matrix elements and in terms of
general operators. We also provide the general structure for the finite pieces and introduce
our notation.

Sections 6.2 through to 6.5 are dedicated to each of the partonic processes and provide
the process-dependent definitions of the operators involved in the IR structure, We finish
each section by providing the processes’ structure of the finite piece and refer the reader

to Apendix C for its expansion.

6.1 General structure of IR divergences

In this section we provide the general structure of the IR singularities [72, 73], associated
to the one and two-loop matrix element for a generic 2 — 2 partonic scattering process.

The description presented in this section is valid for all the processes and the fact that
we can present it in this way provides a very powerful check on our highly non trivial
calculation.

Before the general expressions, we start with some general notation.

6.1.1 Notation

We work in conventional dimensional regularisation treating all external states in D di-

mensions. We renormalise in the MS scheme where the bare coupling «y is related to the

111
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running coupling a; = a,(u?) at renormalisation scale y via
_ Bo (as BE B\ [as)? 3
Qg Sf—as l:l—? (E) + 6—2— Z % +(’)(as) . (61)
In this expression
Se = (4m)e 7, v =0.5772... = Euler constant (6.2)

is the typical phase-space volume factor in D = 4 — 2¢ dimensions, and fy, S are the

first two coefficients of the QCD beta function for Np (massless) quark flavours

8y = 11C4 — 4TRrNF = 17C% — 10C4aTrNF — 6CrTgrNF . (6.3)
6 6
For an SU(N) gauge theory (N is the number of colours)
N2 -1 1
= Cas=N Tp = —. 4
Cr ( oN ) ’ A ’ R 2 (6 )

6.1.2 Two-loop contribution

We can write the infrared pole structure of the two loop contributions renormalised in
the MS scheme in terms of the tree and unrenormalised one-loop amplitudes, |M(®) and

|MLun)y respectively, as

Poles = 2Re —%(M(O)II(I)(e)I(l)(e)|M(O)) _ 2% (MO T ()| M @)

€

+ (MO ()| M Lundy

+e—ﬂrlf(11—__2:)) (i—“ + K) (MO 1) (26)| M)

+ (MO H® (6)| MO )] (6.5)

This expression is valid for all the processes to be considered, except for the scattering
of like quarks. In this case, it will become clear that we need to analyse only the inter-
ference of the s-channel graphs with the t-channel graphs. For this specific function we

have the following expression for the infrared pole structure

260

Poles = 2Re|  —2 (M IO (IN (M) - =2

(A1) ()| MOy

+ (ﬂ(o)lI(l)(e),M(l,un))

+e_€7F—I‘(% (% + K) O |10 (26)| M)

+ W‘O’|H(2>(e)w<0>) + (s ¢ t)], (6.6)
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The unrenormalised one-loop amplitude |M(1’"”)) is what is obtained by direct Feyn-
man diagram evaluation of the one-loop graphs. As discussed before, the matrix I M (e)

acts directly as a rotation matrix on [M(©®) and |M14™) in colour space.

6.1.3 One-loop self-interference contribution

In the same spirit, we can write the infrared pole structure of the one-loop contributions

renormalised in the MS scheme as

Poles = 2Re —é(M(O)|I(1)T(e)I(1)(e)|M(O))

_% (MO 1O ()| M)

+ (MG T ()| MmOy (6.7)

which is valid for all processes except for like quark scattering. In this case, again we only
need to look at the interference of the s-channel graphs with the t-channel graphs. For

this specific function we have the following expression

Poles = 2Re —%(J\_A(O)lI“”(e)I(l)(e)lM(O))

2 10 (0 1)

+ (M 1O (MO + (5 o 1) . (6.8)

Again, |M(1’“")) is the unrenormalised one-loop amplitude, obtained by direct Feyn-
man diagram evaluation and the matrix I (1)(6) acts directly as a rotation matrix on
IM©) and |MT¥n)Y in colour space.

In this case, since we calculate the one-loop self-interference divergent piece, we have
to be careful in the expansion, since the operator I(1) (¢) also depends on the scales of the
process s, t and u. On expanding this operator imaginary parts are generated, the sign
of which is fixed by the small imaginary part +i0 assigned to each Mandelstam variable.
Combinations such as (M |IT()1(¢) are obtained using the hermitian conjugate operator
IM1(¢) where the only practical change is that the sign of the imaginary part of s, ¢ and

u are reversed.
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6.1.4 Finite piece

In general the expansions of the two-loop master integrals [54, 91, 53, 10, 64, 67, 55]

contain the generalised polylogarithms of Nielsen

(—1)ntr-1 /1 log™(t) log?(1 — xt)
Snp(z) =17 Jo dt , , n,p>1, < (6.9)

where the level is n + p. Keeping terms up to O (€) corresponds to probing level 4 so that

only polylogarithms with n + p < 4 occur. For p = 1 we find the usual polylogarithms
Sn—l,l(z) = Lin(z). (6.10)

A basis set of 6 polylogarithms (one with n+p = 2, two with n+p = 3 and three with
n + p = 4 is sufficient to describe a function of level 4. At level 4, we choose to eliminate
the Syg, S13 and Si2 functions using the standard polylogarithm identities [92] and retain

the three Lis functions with arguments z and 1 — z and (z — 1)/z where

t U u z—1
=——, :__:1_ = —— = . 6.].].
x P Y P x, z 7 T ( )

For convenience, we also introduce the following logarithms

-t —-u 3 —u
X =log (—8—) , Y =log (?) , S =log </?> , U =log (F> , (6.12)

where p is the renormalisation scale. The common choice p? = s, for example, corresponds
to setting S = 0.

For each channel, we choose to present our results by grouping terms according to the
power of the number of colours NV and the number of light quarks Ng so that in channel

¢, we can have for example
.. 2 1 N, F 2
Finite, = N“A. + B, + FCC + NNrD, + WEC + NFFc (613)
All the expansions for the finite pieces are compiled in Appendix C and are organised for
each process and for the one and two-loop contributions, separately.
6.2 Unlike quark scattering

It is the purpose of this section to provide dimensionally regularised and renormalised

analytic expressions at the two-loop level for the process

g+q — ¢+7,
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together with the time-reversed and crossed processes,

g+q — q+d,
g+q - q+7,

g+qd — §+7q.

As it has been specified before, we use the M S renormalisation scheme and conventional

dimensional regularisation (CDR) where all external particles are treated in D dimensions.

6.2.1 Notation

For calculational convenience, we treat all particles as incoming so that

q(p1) + @(p2) + ¢ (p3) + 7 (pa) = 0 (6.14)

The renormalised four point amplitude in the MS scheme is thus

M) = dna, [w(")) +(52) M)+ (%)2 IM®) 40 (a?’)]

(6.15)

where the IM(i)) represents the colour-space vector describing the i-loop amplitude. The
dependence on both renormalisation scale 4 and renormalisation scheme is implicit.

We denote the squared amplitude summed over spins and colours by,
(MIM) = A(s, t,u), (6.16)

For the physical processes, the spin and colour averaged amplitudes are related to .A

by,

SIM@+ T T+ = g Als,tu) (6.17)
NIMg+qd =g+ = ﬁ A(u, t, 3) (6.18)
Z Mg+d = q+q)? = 41W A(t,s,u) (6.19)
SIM@+T 2 a+q) = ﬁ A(u, t,s), (6.20)

where N is the number of colours.

The summed and squared amplitude has the perturbative expansion,

A(s, t,u) = 16m%a2 <.A4(s,t,u) + (;—;) AS(s,t,u) + (;—;>2A8(s,t,u) +0 (ai)) .
(6.21)



6. Results 116

In terms of the amplitudes,

Ads,t,u) = (MOIMO) =2(N? - 1) (tz ;ZUZ - e) , (6.22)
A, tw) = ((MOMO) + (MDMO)), (6.23)
As,tu) = ((MOMD) + (MOME) + (MO|MO)). (6.24)

Expressions for A% are given in ref.[39] using dimensional regularisation to isolate the
infrared and ultraviolet singularities.

We concentrate on the next-to-next-to-leading order contribution .48 which consists of
the interference of the two-loop and tree graphs and the self-interference of the one-loop
graphs.

We give explicit formulae for the e-expansion of the two-loop contribution to the next-
to-next-to-leading order term .48(s,¢,u). To distinguish between the genuine two-loop
contribution (M| M®@)) 4 (MP|M®) and the squared one-loop part (MM |MD), we
decompose A% as

AB = A8 (2x0) 4 48 (1x1), (6.25)
where
A8 @0 = MO APy L (M| A0y,
A8 (x1) — (M(l)lM(l)).

Section 6.2.2 deals with A% (2%9) and section 6.2.3 with 48 (1x1),

6.2.2 Two-loop contribution

We divide the two-loop contributions into into two classes, those that multiply poles in

the dimensional regularisation parameter € and those that are finite as ¢ = 0,
A8 X0 (g ¢ 4) = Poles + Finite. (6.26)

Poles contains both infrared singularities and ultraviolet divergences. The latter are
removed by renormalisation, while the former must be analytically cancelled by the in-
frared singularities occuring in radiative processes of the same order. The structure of

these infrared divergences has been provided in eq.(6.5).

6.2.2.1 Infrared pole structure

It is convenient to decompose |M(®) and |JM1¥™) in terms of SU(N) matrices in the

fundamental representation, 7%, so that the tree amplitude may be written as [93, 36, 94,
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95, 96, 97, 98]
MOy = 37 (TATR) AT*(15, 24,34, 47)
a
((sﬂ(sjk - %5@-5“) AF(10, 24 30+ 47) (6.27)
while the one-loop amplitude has the form {33, 30, 82]
Moy (5i15,-k - —leaijak,) AH (10,24, 347, 47)
+ (Gudje) Al (g, 20,34, 47) (6.28)

To evaluate eq. (6.5) we find it convenient to express |M(®) and |MLun)) a5 two-

dimensional vectors in colour space

MOy = (71, T)T, (6.29)
MOy = (£, L)7, (6.30)

where 7 indicate the transpose vector. Here the T: and L; are the components of |M(©))

and |[M1¥™)) in the colour space spanned by the basis

Ci = dubj,

Co = 8;0u,
The tree and loop amplitudes 7; and £; are directly obtained in terms of Abree, AE}}I,
A‘[& and AE;F] by reading off from eqs. (6.27) and (6.28). As we will see, the amplitudes
themselves are not required since we compute the interference of tree and loop amplitudes

directly.

In the same colour basis, the infrared-singularity operator I (1)(6) has the form

WE=__ 1 (iﬁg) . [ Alestu) Blestu)
€ 2 B(e, t,s,u) Ale,t,s,u)

I'l-¢) N
Ale, s, t,u) = [N2_ 1] (—%2)6%- (—%2)6— (—?)6 (6.32)

B(e,s,t,u) = N [(—?)6 — (—%) E] (6.33)

The matrix IY)(e) acts directly as a rotation matrix on IMO)Y and |MAun)y ip

(6.31)

where

colour space, to give a new colour vector |X), equal to I()(€)| M(®), I(l)(e)I(I)(e)lM(O))
or I(l)(e)|M(1’"“)).



6. Results 118

The contraction of the colour vector |X) with the conjugate tree amplitude obeys the

rule

MOIxy =% ¥ Z T X; G Cy. (6.34)

spins colours %,j=1

In evaluating these contractions, we typically encounter )., C; C; which is given by

the ij component of the symmetric matrix (C

N2 N
a = , (6.35)
N N?
Similarly, we find that the interference of the tree-level amplitudes 3 ¢, 7," 7; is given

by TT;j, where

2 2
TT =2 (t :2“ —~ e) VT, (6.36)
and the vector V is
1
V= <1, —N) , (6.37)

while the interference of the tree-level amplitudes with one-loop amplitudes > ;s 7;*£;
is given by 7L;;, where
L =VTWw, (6.38)

and the vector W is
W = (El(s,t,u), La(s,t, u)) (6.39)

Here the functions £, and L3 are defined as

2

Li(s,t,u) = N21; 2f(s t,u) + f(s u,t) + 3807 (s,t,u) 31 Bub(s)
%% [(N2 ~ 1) (=6 + Te + 2¢) + 10€* — 4¢*] Bub(s) (6.40)
Lalstyu) = =3 Lils,ut) + 3y (F(s,6u) = £(s, 1) (6.41)

where the function f is

4(u? + t?) — 2¢(3ut + 6t% 4 5u?) — €25(7t + 5u) \ /Bub(s) — Bub(t)
f(s’ { 'U.) = 2
s €
1— 2 2 _q.q2

+u( 2€)(6t ;—2u 3¢s )Boxﬁ(s,t) (6.42)

8
and the tree type structure
2 4 2

T(s,t,u) =2 ( :2“ - e) . (6.43)

These expressions are valid in all kinematic regions. However, to evaluate the pole

structure in a particular region, the one-loop bubble graph Bub and the one-loop box
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integral in D = 6 — 2¢ dimensions, Box®, must be expanded as a series in €. This analytic
expansion is given in Appendix B.
The function Hg, that appears in eq. (6.5), exhibits only a single pole in € and is given

by

— (MO Oy — €7 g@ @ A 6.44
Ha = (MY |HY ()| M) 2€P(1_6)H (METIMY) (6.44)
with
1 5 28 16
H® = 7Y T 3CFK + 56B0CF — - BoCr — (3 - 7Cs> CFCA] (6.45)
and
17 88 4 32
’)’(1) = (—3 + 24{2 — 48(3)0}2:1 + (—? - ?Cz + 24(3) CFCA + (g + ?CL’) C’FTR-]VF-
(6.46)

and (, is the Riemann Zeta function with (2 = 7%/6 and (3 = 1.202056... We note that
H®) is renormalisation-scheme dependent and eq. (6.45) is valid in the MS scheme. We
expect that in the four-quark two loop amplitude, we might obtain contributions from
H® for each of the six colour antennae.

It can be easily noted that the leading infrared singularity in Eq. (6.5) is O (1/€*).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.5) through to O (1/€). We therefore

construct the finite remainder by subtracting eq. (6.5) from the full result.

6.2.2.2 Finite contributions

In this subsection, we give explicit expressions for the finite two-loop contribution to

AB 2X0) | Finite which is given by (see eq.(6.26) and eq.(6.5)
Finite = A% @0 (s, 1, u) — Poles (6.47)

For high energy hadron-hadron collisions, we probe all parton-parton scattering processes
simultaneously. We therefore need to be able to evaluate the finite parts in the s-, t- and

u-channels corresponding to the processes,

g+d —- 7+4
g+7 — q+@

g+4qd - q+4,
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respectively. In principle, the analytic expressions for different channels are related by
crossing symmetry. However, the Xbox has cuts in all three channels yielding complex
parts in all physical regions. The analytic continuation is therefore rather involved and
prone to error.

Due to this, we choose to give expressions describing A% 2%0)(s,t,u), A8 (X0 (¢, s, u)
and A® 3%0(y, ¢, s) which are directly valid in the physical region, s > 0 and u,t < 0,
and are given in terms of logarithms and polylogarithms that have no imaginary parts.

In channel ¢,

Finite, =V (N2Ac + B, + %C’c + NNpD, + %EC + N;%Fc> . (6.48)
The values of A., B, C,, D, E., and F,, are presented in sections C.1.1.1 and C.1.2.1 of
Appendix C.

We can check some of these results by comparing with the analytic expressions pre-
sented in ref.[71] for the QED process ete™ — ptpu~. Taking the QED limit corre-
spond to setting C4 = 0, Cr = 1, Tp = 1 as well as setting the cubic Casimir
Cs = (N?-1)(N?-2)/N? = 0. This means that we can compare directly E;(ox CpTrNF)

and Fy(oc TANZ) but not Cs which receives contributions from both C3 and C4. We see

that egs.(C.5) and (C.6) agree with eqs.(2.38) and (2.39) of ref.[71].

6.2.3 One-loop self-interference contribution

We divide the one-loop self-interference contributions into into two classes, those that
multiply poles in the dimensional regularisation parameter € and those that are finite as
e — 0,

A8 (D) (g ¢ ) = Poles + Finite. (6.49)

Poles contains both infrared singularities and ultraviolet divergences. The latter are
removed by renormalisation, while the former must be analytically cancelled by the in-
frared singularities occuring in radiative processes of the same order. The structure of

these infrared divergences has been provided in eq.(6.7).

6.2.3.1 Infrared pole structure

Again, the pole structure of the one-loop self-interference given in eq.(6.7) involves the

contraction of the colour vector |X) with the conjugate colour vector (Y| obeys the rule

9
yix =Y ¥ ¥ wxcc (6.50)

spins colours i,j=1
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For the expansion of the pole structure coming from this contribution, eqs.(6.31)
through to (6.43) are valid. This calculation is somewhat simpler than the two-loop one,
nevertheless contributes at the same level.

It can be easily noted that the leading infrared singularity in eq. (6.7) is O (1/¢€?).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.7) up to and including O (1/¢). We

therefore construct the finite remainder by subtracting eq. (6.7) from the full result.

6.2.3.2 Finite contributions

The finite one-loop self-interference contribution to .48(s, ¢, u) is defined as
Finite(s, t,u) = A8V (5t u) — Poles(s, t,u), (6.51)

where we subtract the series expansions of both 43 (1X1)(s, ¢, u) and Poles(s, t,u) and set
e — 0.

Then in channel c,
Finite, = V ( N2 Ay + By + —=C, + NNgDo + F B, + NLF, 6.52
tnite. = ct c+m ¢t F c+W ctNplc). (6.52)

The values of A, B, C;, D., E., and F,, are presented in sections C.1.1.2 and C.1.2.2 of

Appendix C.

6.3 Like quark scattering

In this section we extend the work of section 6.2 to describe the case of identical quark
scattering. We use the MS renormalisation scheme and conventional dimensional regular-
isation where all external particles are treated in D dimensions to provide dimensionally
regularised and renormalised analytic expressions at the two-loop level for the scattering
process

99 — 99,

together with the time-reversed and crossed processes

g+q — g+gq,

g+q — q+4q
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As in the unlike quark case, we present analytic expressions for the infrared pole structure,
as well as explicit formulae for the finite remainder decomposed according to powers of

the number of colours N and the number of light-quark flavours Np.

6.3.1 Notation

For calculational convenience, we treat all particles as incoming so that

q(p1) + q(p2) + q(p3) + q(ps) = 0. (6.53)

The renormalised four point amplitude in the MS scheme is thus
— on _ 70 Qs Wy o
M) = 47ra3[(|M y— M )) + (27r> (|M ) — M >)
2
Qs @y _ g 3
+ (%) (Im@) — 7)) +O(a3)], (6.54)

where the |M()) represents the colour-space vector describing the i-loop amplitude for
the s-channel graphs, and the ¢-channel contribution Iﬂ(i)) is obtained by exchanging

the roles of particles 2 and 4:
MYy = |IMDy(2 & 4). (6.55)

The dependence on both renormalisation scale p and renormalisation scheme is implicit.

We denote the squared amplitude summed over spins and colours by

(MIM) = Y IM(g+q—q+q)
= A(s,t,u) + A(t,s,u) + B(s, t,u), (6.56)
The squared matrix elements for the gg — gq process are obtained by exchanging s

and u

Z IM(g+q— g+ q)> = A(u,t,8) + A(t, u, s) + B(u, t, s). (6.57)

The function A is related to the squared matrix elements for unlike quark scattering

A(s,t,u) = Y IMg+3—7 +4d) (6.58)
Alt,s,u) = D [Mg+7d =7 +q)f (6.59)

while B(s,t,u) represents the interference between s-channel and t-channel graphs that

is only present for identical quark scattering.
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The function 4 can be expanded perturbatively to yield

A(s,t,u) = 16722 |A%(s, t,u) + (a—) AS(s,t,u) + (9‘—“‘)2,48(8 t,iu) + 0 (a3)
87 ,u - 8 1Yy 27r ¥y 27r L] 8 bl
(6.60)
where
4 )1 A4(0)\ — of A2 t* 4 u?
A (s,t,u) = (M IM >=2(N _1) 52 —€l, (661)
As,tu) = ((MOMD) + (MOIMO)), (6.62)
As,tu) = (MOMD) + (MOME) + (MO|MO)) (6.63)

Expressions for A% are given in ref. [39] using dimensional regularisation to isolate the
infrared and ultraviolet singularities. Analytical formulae for the two-loop contribution
to A%, (MM + (M@ M), are given in ref. [40].

Similarly, the expansion of B can be written

B(s,t,u) = 16x%a? [34(s,t, u) + (%) BS(s,t,u) + (%)2 B3(s,t,u) + O (ai)} ,

27r 27r
(6.64)
where, in terms of the amplitudes, we have
84(8, t,u) = - ((H(O)IM(O)) + (M(O) IM(O)))
_ N?—1 u?
= —4( N )(1—€)<§+6), (6.65)
Be(s,t,u) = - ((H(I)M/[(O)) + (M(O)lﬂ(l)) + (H(O)M/i(l)) 4 (M(l)lﬂ(o)))
(6.66)
B%s,t,u) = - ((N_(l)IM“)> + (MO

HMOMD) + (MOF) + (MOTFD) + (TP | M)
(6.67)

As before, expressions for B® which are valid in conventional dimensional regularisation are
given in ref. [39]. Here, in order to complete the calculation of the two-loop contribution to
quark-quark scattering, we concentrate on the next-to-next-to-leading order contribution
B® which contains both the interference of the two-loop with tree graphs and the one-loop
self-interference.

We provide explicit formulae for the e-expansion of the two-loop contribution to the

next-to-next-to-leading order term B3(s,t,u). To distinguish between the genuine two-
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loop contribution and the squared one-loop part, we decompose B® as

B8 = B8 (2x0) 4 g8 (1x1). (6.68)
where
B8 (2x0) — _ ((H(O)IM@)) + <M(2)|m(0)> + (M(O)IM@)) + (ﬂ@)lM(O)))
Bd (x1) — _ ((ﬂ(l)lM(l)) n (M(l)lﬂ(l)))

The former is discussed in section 6.3.2, while the latter in section 6.3.3.

6.3.2 Two-loop contribution

As before, we divide the two-loop contributions into two classes: those that multiply poles

in the dimensional regularisation parameter ¢ and those that are finite as ¢ — 0
B® 0)(4 t,u) = Poles + Finite. (6.69)

Poles contains infrared singularities that will be analytically canceled by the infrared
singularities occurring in radiative processes of the same order (ultraviolet divergences
are removed by renormalisation). The structure of these infrared divergences has been
provided in eq.(6.6).

6.3.2.1 Infrared pole structure

It is convenient to decompose |[M(®) and |M(4P) in terms of SU(N) matrices in the
fundamental representation, 7%, so that the tree amplitude may be written as [93, 36, 94,

95, 96, 97, 98]
MO) = 3 (TETE) AF=(14, 24,34, 47)
a
= (5i15jk - %5@'5“) A (14,24, 3¢, 47) (6.70)
and
MOy = 3 (TETE) AT (14,24, 3¢, 4¢)
a
= (aijakl - %daajk) AT (14,24, 34, 44) (6.71)
while the one-loop amplitude has the form [33, 30, 82]

un 1
lM(l, )> = ((5,‘1(5175 — N(Si]‘(skl) Ag;]l(lqa2tj:3q’a4q’)

+ (Sabik) AL (1g, 20, 34, 47) (6.72)
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To evaluate Eq. (6.6) we find it convenient to express IM©)Y and |ML#7)) as two-
dimensional vectors in colour space

MOy = (71, T)7, (6.73)

MOy = (£, L3)T, (6.74)

where T indicates the transpose vector. Here the 7; and L; are the components of IM(O) )

and [M¥M) in the colour space spanned by the basis

Ci = dubj,
Co = 6;0u,
whereas
M) = (7, T)" (6.75)
is spanned by the basis
Ci = 6;6m,
Co = 0udjp-

The tree and loop amplitudes 7; and L; are directly obtained in terms of AY®®, AE;]I,

A[}}s and A[;l;{z] by reading off from egs. (6.70) and (6.72). As we will see, the amplitudes
themselves are not required since we compute the interference of tree and loop amplitudes
directly.

In the same colour basis, the infrared-singularity operator IY)(¢) has the form

IW(e) = -

efY 1 (i 3 ) A(E,S, t7u) B(E, S,t,U) (6 76)

Fl-¢N 2¢ B(e,t,s,u) A(e,t,s,u)

A(e,8,t,u) = [N2 - 1] <—ﬂ72)6+ (—%2)6 - (—?)6 (6.77)

o[- ()]

The matrix I (e) acts directly as a rotation matrix on |[M®) and |[MI#M) in

where

B(e, s,t,u)

colour space, to give a new colour vector | X), equal to ITM ()] M), T () 1M (€)| M)
or IW (e)| mLun)y,

Similar to the unlike quark scattering case, the contraction of the colour vector [X)
with the conjugate tree amplitude obeys the rule

#O1xy =% 3 Z T X,CC (6.79)

spins colours ¢,j=1
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In evaluating these contractions, we typically encounter > colours Ci C; which is given by

the 5 component of the symmetric matrix (C

N N?
a = , (6.80)
N? N
Similarly, we find that the interference of the tree-level amplitudes 2 spins T:*T, is given
by TTi;, where

2
TT=2(1—e) (% + e) VT, (6.81)
and the vector V is

V= (1, —%) , (6.82)

while the interference of the tree-level amplitudes with one-loop amplitudes 3> ;. T L,
1s given by TL;;, where
L =VTw, (6.83)

and the vector W is
W = (El(s,t, u), Eg(s,t,u)). (6.84)
The functions £, and £, are defined as

N2 -2

1 —€
Li(s,t,u) = 5N fi(s, t,u) + Nfz(s,t, u) + 3[307'(3,t,u)3 — 26Bub(s)
1 T(s,t,u) 2 2 2 3
1 N% -1 '
E?(S, t,u) = _Nﬁl(s) t:”) + W (fl(syt, u) - f2('sa { 'U,)) (686)
where the functions f; and fy are
fi(s,t,u) = i—ltt(l — 2¢) [u2 + 1% — 2¢ (t2 + 32) + 6232] Box®(s, t)
2 2 2 2 2 2 2
+= [2u% - ¢ (55% + 6 +9st) + (25 + 4t +st) e
+ (32 + 33t) e — ste4] [Bub(s) — Bub(t)] , (6.87)
€
2
fa(s,t,u) = ;(1 — 2¢) [2u2 —€ (t2 + s+ u2) + 3242 + 3263] Box®(s, u)
2 2 2 2 2 2 2
+— [2u® — e (657 + 612 + 10st) + (357 + 412 + 3st) ¢
— Bub
+ (o? +2st) & ~ ste’] [Bub(s) : ub(w) J . (6.88)

and the tree type structure

U

T(s,t,u) =2(1—e) (—2 + e) (6.89)

st
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These expressions are valid in all kinematic regions. However, to evaluate the pole
structure in a particular region, the one-loop bubble graph Bub and the one-loop box
integral in D = 6 — 2¢ dimensions, Box®, must be expanded as a series in e. This analytic
expansion is given in Appendix B.

The function Ha, that appears in eq. (6.6), exhibits only a single pole in € and is given

by

— (MO @ Oy — 7 m@ a0 40 90
Ha = (MOIHO©QIMO) = 52 SHOMOWO)  (690)
with
1 5 28 16
H(2) = Z’)’(l) + 3CFK + E(Qﬂocp' - F,BOCF - (? - 7{3) CFCA] (6-91)
and
17 88 4 32
Yay = (=3 +24¢ — 48¢3)C% + (—? - ?Cz + 24(3) CrCy + (g + ?@) CrTrNF.
(6.92)

We note that H(? is renormalisation-scheme dependent and eq. (6.91) is valid in the
MS scheme. We expect that in the four-quark two loop amplitude, we might obtain
contributions from H® for each of the six colour antennae. |

It can be easily noted that the leading infrared singularity in eq. (6.6) is O (1/€*).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in e for the scalar master integrals agrees with eq. (6.6) through to O (1/¢). We therefore
construct the finite remainder by subtracting Eq. (6.6) from the full result.

6.3.2.2 Finite contributions
In this subsection, we give explicit expressions for the finite two-loop contribution to
B8 (2x0) Finjte which is given by (see eq.(6.69) and eq.(6.6)
Finite = B® @0 (g ¢, u) — Poles (6.93)

The identical-quark processes probed in high-energy hadron-hadron collisions are the

mixed s- and t-channel process
q+q—q+q,
controlled by B(s,t,u) (as well as the distinct quark matrix elements .A(s,¢,u) and
A(t, s,u) as indicated in eq. (6.57)), and the mixed ¢- and u-channel processes
q9+q9 — q+tgq

q+q — q4+t4q,
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which are determined by the B(t, s,u). We need to be able to evaluate the finite parts
for each of these processes. Of course, the analytic expressions for different channels
are related by crossing symmetry. However, the master crossed boxes have cuts in all
three channels yielding complex parts in all physical regions. The analytic continuation
is therefore rather involved and prone to error. We therefore choose to give expressions
describing B%(s,t,u) and B%(t,s,u) which are directly valid in the physical region s > 0
and u,t < 0, and are given in terms of logarithms and polylogarithms that have no
imaginary parts.

In channel ¢

N?2-1 Ng

1
) (NQAC + Be + 55Ce + NNpDe + < B + N};,Fc> . (6.94)

Finite, = ( N

Here ¢ = st (ut) to denote the mixed s- and t-channel (u- and ¢-channel) processes
respectively. The values of 4., B, C., D., F., and F,, are presented in sections C.2.1.1
and C.2.2.1 of Appendix C.

6.3.3 One-loop self-interference contribution

We divide the one-loop self-interference contributions into into two classes, those that
multiply poles in the dimensional regularisation parameter ¢ and those that are finite as
e — 0,

B8 V(g ¢ ) = Poles + Finite. (6.95)

Poles contains both infrared singularities and ultraviolet divergences. The latter are
removed by renormalisation, while the former must be analytically cancelled by the in-
frared singularities occuring in radiative processes of the same order. The structure of

these infrared divergences has been provided in eq.(6.8).

6.3.3.1 Infrared pole structure

Again, the pole structure of the one-loop self-interference given in eq.(6.8) involves the

contraction of the colour vector |X) with the conjugate colour vector (Y| obeys the rule

9
Yixy=> > > Y'X;Cc; (6.96)

spins colours ¢,j=1
For the expansion of the pole structure coming from this contribution, egs.(6.76)

through to (6.89) are valid. This calculation is somewhat simpler than the two-loop one,

nevertheless it contributes at the same level.
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6.3.3.2 Finite contributions
The finite one-loop self-interference contribution to B3(s,t,u) is defined as
Finite(s, t,u) = B2V (s, t,u) — Poles(s, t,u), (6.97)

where we subtract the series expansions of both B8 (1) (s ¢, u) and Poles(s,t,u) and set
e — 0.
Then in channel ¢,
Finite, = % <N2Ac + B, + %Ca + NNpD, + %E + N,%Fc) : (6.98)

The values of A., B, C., D., E,, and F,, are presented in sections C.2.1.2 and C.2.2.2 of

Appendix C.

6.4 Quark-gluon scattering

In this section, we address the O (a?) one- and two-loop corrections to the QCD process
qg+q—g+g, (6.99)

together with the time-reversed and crossed processes

g+g — q+g, (6.100)
g+q — g+4q, (6.101)
g+g — q+4q. (6.102)

As is in the previous sections, we use the MS renormalisation scheme to remove the
ultraviolet singularities and conventional dimensional regularisation, where all external
particles are treated in D dimensions. We provide expressions for both the interference
of tree-level and two-loop graphs as well as the self-interference of one-loop amplitudes.
Also in this section, we give explicit analytic expressions valid for each of the processes
of egs. (6.99)-(6.102) in terms of logarithms and polylogarithms that are real in the

physical domain.

6.4.1 Notation

For calculational purposes, the process we consider is

q(p1) + @(p2) + g(p3s) + g(ps) — 0, (6.103)
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The renormalised four point amplitude in the MS scheme is thus

M) = 47ra3[|M(0))+ (;—W) MDY 4 (207)2 |M(2))+O(a2)},

(6.104)

where the ]M(i)) represents the colour-space vector describing the ¢-loop amplitude. The
dependence on both renormalisation scale y and renormalisation scheme is implicit.

We denote the squared amplitude summed over spins and colours by
(MIM) =Y IM(g+G— g+ 9)I* =C(s,t,u). (6.105)

which is symmetric under the exchange of ¢ and u.
The squared matrix elements for the crossed processes are obtained by exchanging
the Mandelstam variables and introducing a minus sign for each quark change between

initial and final states

S Mlg+g—qg+dI? = Clst,u), (6.106)
Y IMg+g—sqa+g) = —Clut,s), (6.107)
Yo Mg+a—g+dP = —Clut,s). (6.108)

The function C can be expanded perturbatively to yield

a; as)? 8 3
C(s,t,u) = 1672a2 |C4(s,t,u) + (2—> CS(s, t,u) + (ﬂ) C°(s,t,u) + O (as) ,

™

(6.109)

where

Ci(s,t,u) = (MOMO) =

2 _ 1 2 _ 1 N2
= 2 N (]. — 6) (N — 28_2) (t2 + U2 - 682) y (6110)

N ut
Clstu) = ((MOMD) + (MOIMO)), (6.111)
C¥(s,t,u) = (<M(1>|M<1>> + (MM ¢ <M<2)|M(°>>) : (6.112)

Expressions for C% are given in ref. [39] using dimensional regularisation to isolate the
infrared and ultraviolet singularities.

In the following sections, we present expressions for the infrared singular and finite
contributions to C® and the crossed processes. For convenience, we divide C3(s,t,u) into

two pieces
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- the pure two-loop contributions
B @0 (g ¢ u) = (MOIM®@) + (M| MOy, (6.113)
described in sec. 6.4.2 and
- the self-interference of the one-loop amplitude
Cs(lxl)(s’t’u) - (M(l)IM(l)), (6.114)
described in sec. 6.4.3.

For simplicity the arbitrary vectors for the axial gauge we use in this process are

B B
ny = py and ny = py.

6.4.2 Two-loop contribution

We further decompose the two-loop contributions as a sum of two terms
c8(2x0) (g ¢ u) = Poles(s, t,u) + Finite(s, t,u). (6.115)

Poles contains infrared singularities that will be analytically canceled by the infrared
singularities occurring in radiative processes of the same order (ultraviolet divergences
are removed by renormalisation), which is given by eq. (6.5). Finite is the remainder

which is finite as € — 0.

6.4.2.1 Infrared pole structure

It is convenient to decompose |M(®) and |[ML#P) in terms of SU(N) matrices in the
fundamental representation, 7%, so that the tree amplitude may be written as [93, 36, 94,
95, 96, 97, 98]

'M(O)) = Z (TasTa4)ij A‘tiree(lq’Qq’ 3,4), (6.116)
P(4)

while the one-loop amplitude has the form [33, 30, 82]
M) = NS (T, A (1,24,3,4)
P(4)
+Te (TT%) 6540 (1,,24,3,4)
2
+ N |3 (TT%) = STr (T%T™) 8 AL (14,24,3,4). (6.117)
P(4)

In these expressions ) P(4) Tuns over the 2 permutations of indices of gluons 3 and 4

as it is further detailed in eq. (6.120). We note that the tree subamplitudes are further
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related by cyclic and reflection properties as well as by the dual Ward identity [36, 94, 81]
and more general identities [88, 99], while the subleading-colour loop amplitudes A‘[ll;]g are
related to the leading-colour amplitudes Al[ll;]l [33, 30, 82]. Some of these relationships
are made explicit using an alternative basis in terms of SU(N) matrices in the adjoint
representation [87].

To evaluate eq. (6.5) we find it convenient to express |[M(®) and |M1¥")) as three-

dimensional vectors in colour space

MOy = (71, 0, T)T, (6.118)
|M(l,un)> = (‘Cla EQ, L3)T1 (6119)

where T indicate the transpose vector. Here the 7; and £; are the components of |M(O))

and | M%) in the colour space spanned by the (non-orthogonal) basis

Ci = (T%T™)y,

Cz = (T04T0.3)ij s (6120)

C3 = 'I‘r(T“3T“4)5¢j,

The tree and loop amplitudes 7; and £; are directly obtained in terms of A*®, .A‘[f;]l, AE;L
and A%z] by reading off from Egs. (6.116) and (6.117). As we will see, the amplitudes
themselves are not required since we compute the interference of tree and loop amplitudes
directly.

In the same colour basis, the infrared-singularity operator I (1)(6) has the form

A(e,s,t,u) D(es,t,u) 0
e’
I (e) = O B(e,s,t,u)  C(e,8)  Bl(es,u,t) (6.121)
0 D(e,s,u,t) Ale, s,u,t)

where
o = o)) 2o (2]
() (£)] o

B(e,s,t,u) = (612 + 4—36 + 2ﬁ_1\(;e) [(~“72> - (—“;) J (6.123)
Cle,s) = - (;2 + %) Cr+ (elZ + %) N] (— “?2) (6.124)
D(e,s,t,u) = (612 + 4% + %) (—?) - (—%) ] (6.125)
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The matrix I (e) acts directly as a rotation matrix on MO and |MEun)y i
colour space, to give a new colour vector |X), equal to 7! (e)|M©), T I () 1M ()| M®)
or I ()| MLun)y,

The contraction of the colour vector | X) with the conjugate tree amplitude obeys the

rule

MO1x)y=5% Y Z T X; Cr €. (6.126)

spins colours i,j=1

In evaluating these contractions, we typically encounter > colours Ci C; which is given by

the ij component of the symmetric matrix C

Vv N -1
v
-7 2 12
« Nl N NN, (6.127)
-1 N V

Similarly, we find that the interference of the tree-level amplitudes 3> ;. 7;*7; is given

by TTi;, where
8(1 — €)(¢2 + u? — es?)
%ty

TT = VTy, (6.128)

and the vector V is

V={(t 0, u, (6.129)

while the interference of the tree-level amplitudes with one-loop amplitudes > spins T L

is given by TL;;, where

L =VTw, (6.130)
and the vector W is
W = (L1(s,t,u), Lo, La(s,u,1)), (6.131)
where
L2 = £a(s,t,u) + la(s, u,t) (6.132)
and
Li(s,t,u) = N?N“L 1f2(s t,u) — ifl(s,u,t) + f3(s,t,u)
-36 (1 _26) ;T(s t,u) Bub(s)
—e(1 - 2¢) [ Bub(u) + & (632 - % + 2%) Bub(s)
—% (Elz + 2—36) Bub(s)] %T(s,t,u) (6.133)
bs,t,u) = 4(1— 26)% [ +u? + (ut — 222 2u?) e+ (£ +u? + 3ut) €] Box® (¢, u)

N (% _ 2) [Bub(t) — Bub(s)] %T(s, £ u) + %f1(s,t, w). (6.134)
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The infrared-finite functions f1, f2 and f3 are

fils,t,u) = 4(1- 2e)3i2 [u (2u2 1582 4 3tu) +e (3t3 ~ 4ud - 3tu2)

—e%s (4752 + 2u? + 5tu> + s2te3} Box%(s, t) (6.135)
_ 1 2 2 3 2 2 3
fols,t,u) = 4(1- 26)32—u[(t—u) (£ + 20 +tu) + € (26> + ut? + 420’ + 5u )
—s%*| Box® (s, u) (6.136)
fa(s,t,u) = —2(1 - e)i{K [23 —t—€(2s ~ 3u) — 3862]
. sulN

+4N (v — ue + sez)} [Bub(u) — Bub(s)]

2
—N |18u? 4+ 15t2 — 3t(s — t
+s2u(1—e)(3—2e){ 187 + 15 (s —1)

—e (78u? — 36t(s — t) + st) + € (80u® + 10s(s — t) — 69st) |

—% [~24u? + 3tu — 2147 + € (85u? — 43t(s — t) + 3st)
—e? (112u? + 63(s — t) — 109st)] + B [20s* — 40tu
—2¢ (385% — 3us — 62tu) + 4¢? (275? - 26tu) | } eBub(s) + O(e’)

(6.137)

and the tree type structure

t2 + u? — es?
&2

T(s,t,u) =8(1 —¢) (6.138)

These expressions are valid in all kinematic regions. However, to evaluate the pole struc-
ture in a particular region, the one-loop bubble graph Bub and the one-loop box integral
in D = 6—2¢ dimensions, Box®, must be expanded as a series in e. This analytic expansion
is given in Appendix B.

The function Hsg, that appears in Eq. (6.5), exhibits only a single pole in € and is

given by
— (O @) ©y— € @ a0 g
Hs = (MOLHO(OIMO) = s HO MO M) (6.139)
where the constant H(?) is
5 11 245 23 10
H(2)=( __2)2( ___2) 10 o
C3+6+727l' CA+ 13C3+108 247r CACF+27NF
71'2 58 7T2 29 3 2 )
+<_%_ﬁ)CANF+(ﬁ+a)NFCF+(_Z+W —12C3)C'F,
(6.140)

We note that H(® is renormalisation-scheme dependent and eq. (6.140) is valid in the MS

scheme. We also note that eq. (6.140) differs from the corresponding expressions found in
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the singularity structure of two-loop quark-quark scattering in all but the C% coefficient.
This is due to the presence of infrared emissions from gluons which modify the terms
involving either C4 or Np.

It can be easily noted that the leading infrared singularity in Eq. (6.5) is O (1/€?).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.5) through to O (1/€). We therefore

construct the finite remainder by subtracting eq. (6.5) from the full result.

6.4.2.2 Finite contributions

In this subsection, we give explicit expressions for the finite two-loop contribution to

C8 (2x0) " Finite which is given by (see eq.(6.115) and eq.(6.5)
Finite = C® 0 (5, t,u) — Poles (6.141)

In hadronic collisions, all parton scattering processes (egs. (6.99)—(6.102)) contribute si-
multaneously. We therefore need to evaluate Finite(s,t,u) for the ¢¢ — gg and gg — q¢
process (which we denote as the s-channel since, although the tree-level process contains
graphs in all three channels, the squared tree matrix elements are proportional to 1/s%)
and Finite(u,t, s) for the QCD Compton processes g9 — qg and g§ — gg (which we label
as the u-channel).

Of course, the analytic expressions for the various processes are related by crossing
symmetry. However, the master crossed boxes have cuts in all three channels yielding
complex parts in all physical regions. The analytic continuation is therefore rather in-
volved and prone to error. We therefore choose to give expressions describing C8(s, t, )
and C8®(u,t,s) which are directly valid in the physical region s > 0 and u,t < 0, and are
given in terms of logarithms and polylogarithms that have no imaginary parts.

In the generic c-channel we write

D. + NpN?E,

. 1 1
fznztec(s,t,u) = V(N3A6+NBC+]—VCC+F

Np 2 N12r
+NpF. + FGC + NpNH,+ WIC (6.142)

The values of A., B, C., D., E;, F,, G., H. and I, are presented in sections C.3.1.1 and
C.3.2.1 of Appendix C.
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6.4.3 One-loop self-interference contribution

We divide the one-loop self-interference contributions into into two classes, those that
multiply poles in the dimensional regularisation parameter ¢ and those that are finite as
€ — 0,

c® (N (s ¢ u) = Poles + Finite. (6.143)

Poles contains both infrared singularities and ultraviolet divergences. The latter are
removed by renormalisation, while the former must be analytically cancelled by the in-
frared singularities occuring in radiative processes of the same order. The structure of

these infrared divergences has been provided in eq.(6.7).

6.4.3.1 Infrared pole structure

Again, the pole structure of the one-loop self-interference given in eq.(6.7) involves the
contraction of the colour vector |X) with the conjugate colour vector (Y| obeys the rule

yixy=>% Y XQ: Y X,C ;. (6.144)

spins colours %,j=1

For the expansion of the pole structure coming from this contribution, eqgs.(6.121)
through to (6.138) are valid. This calculation is somewhat simpler than the two-loop one,
nevertheless it contributes at the same level.

It can be easily noted that the leading infrared singularity in eq. (6.7) is O (1/¢?).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.7) up to and including O (1/¢). We

therefore construct the finite remainder by subtracting eq. (6.7) from the full result.

6.4.3.2 Finite contributions

The finite one-loop self-interference contribution to C8(s,¢,u) is defined as
Finite(s, t,u) = C®A*V(s,t,u) — Poles(s, t, u), (6.145)

where we subtract the series expansions of both €8 (1% (s, ¢, u) and Poles(s,t,u) and set
e—0.

Then in channel ¢,

1 1
Finite,(s,t,u) = V (N?’Ac +NBe + 5:Ce + w3 De + NpN*E.

N, N2
+NpF, + N—ZGC + NiNH, + WFI) (6.146)
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The values of A, B, Cq, D, E., F,, G., H. and I, are presented in sections C.3.1.2 and
C.3.2.2 of Appendix C.

6.5 Gluon-gluon scattering

It is the goal of this section to provide analytic expressions for the O (o) two-loop and

one-loop corrections to gluon-gluon scattering

g+g—g+g (6.147)

6.5.1 Notation

For calculational purposes, the process we consider is

g(p1) + 9(p2) + g(p3) + g9(p4) — 0, (6.148)

where the gluons are all incoming with light-like momenta. The gluons also carry colour
indexes, a;, in the adjoint representation.

We denote the squared amplitude summed over spins and colours by
(MIM) =3 [M(g+g = g+9)I° = D(s,t,u). (6.149)

which is symmetric under the exchange of s, t and . The function D can be expanded

perturbatively to yield

2
D(s,t,u) = 167%a2 [D4(3,t,u) + (;—s) DS(s,t,u) + (;x_s) Dé(s,t,u) + O (ag)} ,

Yy T

(6.150)
whepe
D(s,t,u) = (MOIMO)

ut  us st
= 16VN?%(1—¢)? (3—3—2—t—2—u—2>, (6.151)
Do(s,tyw) = ((MOIMD) + (MOIMO)), (6.152)
Di(s,t,u) = ((MU)W(I))+<M(°>|M<2>>+(M<2)|M(°>>). (6.153)

Expressions for D are given in ref. [39] using dimensional regularisation to isolate the
infrared and ultraviolet singularities.
In the following sections, we present expressions for the infrared singular and finite

two-loop contributions to D8

D8R0 (5 ¢ u) = (MOIM®D) 4 (MO |MO), (6.154)
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and the self-interference of the one-loop amplitudes
DEOXD) (g ¢ u) = (MD|MD), (6.155)

For simplicity the arbitrary vectors for the axial gauge we use in this process are

B B bo_ B
ny = p,, ny = py, ng = p; and nj = ps.

6.5.2 Two-loop contribution

We further decompose the two-loop contributions as a sum of two terms
DE(x0) (5,1, u) = Poles(s, t,u) + Finite(s,t,u). (6.156)

Poles contains infrared singularities that will be analytically canceled by those occurring
in radiative processes of the same order (ultraviolet divergences are removed by renor-

malisation) and is given by eq. (6.5). Finite is the remainder which is finite as € — 0.

6.5.2.1 Infrared pole structure

It is convenient to decompose |M(®) and |[M1¥n)) in terms of SU(N) matrices in the
fundamental representation, 7%, so that the tree amplitude may be written as [93, 36, 94,
95, 96, 97, 98]

MOy = 3 T (TUT2TST) AF(1,2,3,4), (6.157)
P(2,3,4)

while the one-loop amplitude has the form [33, 30, 82]

|M(1,un)> - N Z Tr(Ta‘Ta2Ta3Ta")A‘[11;]1(1’2’3’4)

P(2,3,4)
+ 3 T (TT®) Tr(TT™) AL (1,2,3,4)
Q(2.3,4)
+ Np Y Tr(ruTeToT) AN, 2,3,4). (6.158)
P(2’3’4)

In these expressions 3" p (s 3 4) runs over the 6 permutations of indices of gluons 2, 3 and

4 while 325534y includes the three choices of pairs of indices, as it is further detailed

in eq. (6.161). We note that the tree subamplitudes are further related by cyclic and

reflection properties as well as by the dual Ward identity [36, 94, 81] and more general

identities [88, 99], while the subleading-colour loop amplitudes AE% are related to the
(1]

leading-colour amplitudes A4 [33, 30, 82]. Some of these relationships are made explicit

using an alternative basis in terms of SU(N) matrices in the adjoint representation [87].
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To evaluate eq. (6.5) we find it convenient to express |M(®) and |[M14m)Y ag nine-

dimensional vectors in colour space

MOy = (T, T, T, Tay Ty T, 0, 0, 0)T, (6.159)
IM(]-,UH)> = (£17 £2, £3) ‘647 £5) CG, £7, ES, EQ)T, (6160)

where T indicate the transpose vector. Here the 7: and L; are the components of |M ()

and |ML¥n)) in the colour space spanned by the (non-orthogonal) basis

Ci = Te(TUT*T®RT*

)

Ca = Tx(THT=T%T9s

3

Cs = Tr(THTRTY2T™

3

)
)
Cs = Tr(THTHUT™T®),
)
)

C; = Tr(TTSTT%),

Co = Tr(T™T™T%T92),

Cr = Tr(T“T%)Tr (T9T%),

Cs = Tr(T™T%)Tr(T%T),

Co = Tr(T™T™)Tr(T°T). (6.161)

The tree and loop amplitudes 7; and £; are directly obtained in terms of Atree, -Az[11]1, .A ]
and .A‘[,I;{ ] by reading off from eqs. (6.157) and (6.158). As we will see, the amphtudes
themselves are not required since we compute the interference of tree and loop amplitudes
directly.

In the same colour basis, the infrared-singularity operator I (1)(5) has the form

[ Ns+1) 0 0 0 0 0 (T-Uv) 0 (S—U)
0  N@ES+U) 0 0 0 0 (@U-T) (S-T) o0
0 0  N(T+U) 0 0 0 0 (T-S) U—s)
0 0 0  N(T+U) 0 0 0 (T-5) (U-5)
x 0 0 0 0 N(S+Uu) 0 U-T) (-1 0
0 0 0 0 0  NE+T) (T-U) 0 (3-U)
S-U) (5-T) 0 0 S—-T) (S-u) 2Ns 0 0
0 U-T) (U-S) (U-s) (U-T) 0 0 2NU 0
(T —U) 0 (T-S) (T—9) 0 (T-U) 0 0 2NT

(6.16
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5= (_“_) r- (J*_) v= (_ﬂ_) (6.163)
8 t U

The matrix I (€) acts directly as a rotation matrix on |[M(®) and |M1¥) in colour

where

space, to give a new colour vector |X), equal to I ()] M©®), 1M ()IM (€)|M©®) or
(1)(6)|M(1,un)),
The contraction of the colour vector |X') with the conjugate tree amplitude obeys the

rule

MOIxy=% % Z TP X;CC (6.164)

spins colours ¢,j=1

In evaluating these contractions, we typically encounter ) . jous Ci C; which is given by

the ij component of the symmetric matrix OC

(C, ¢ € G C C NV —-N NV )
C, G C, C; C3 Cy NV NV -N
C; C, C C3 C, C, -N NV NV
C, C, C3 C C, Co -N NV NV
C; Ci C, C; C C, NV NV -N |, (6.165)
Cs C, C C C, C NV -N NV
NV NV -N -N NV NV N?V N? N?
-N NV NV NV NV —-N N? N2V N?
NV -N NV NV -N NV N? N2? N2V

~ 16N?2

with
C;=N*'-3N?+3, (C;=3-N?  (C3=3+N2 (6.166)

Similarly, we find that the interference of the tree-level amplitudes 2 spins 13 74 1S given

by TT;j, where

64(1 — €)2(t2 + ut + u?)?
8242y2

TT = VIy, (6.167)

and the vector V is

V=_(u t, s, st u 0,0, 0), (6.168)

while the interference of the tree-level amplitudes with one-loop amplitudes Y ;s 7;* C;
is given by 7L;;, where
T =VTw, (6.169)

and the vector W is

W= (Fls,8), Fla,w), Flut), Flu,t), Fls,u), F(s,1), 6, G, G). (6.170)
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Here the function F(s,t) is symmetric under the exchange of s and ¢, while G is symmetric

under the exchange of any two Mandelstam invariants, so that
‘7:(37t) = fl(S,t,’U,) +f1(t,S,’U,), (6.171)

g f2(8,t,U) + f2(3,u7t) + f2(t) 8,u) + fZ(tau; 3) + f2(u,s7t) + f2(u’t9 3)'

(6.172)

Here f; and fo are given in terms of the one-loop box integral in D = 6 — 2¢ dimensions

and the one-loop bubble graph in D = 4 — 2¢,

16N(1 — 2
fi(s,t,u) = %tz—fl [ (1—¢)? (34 + 8%t + st + t4) +3(1 - 56)32t2] Box5(s, t)
N
. SNe(l -2 [(1 - €2 (s +£2) + (1 + 3¢)st] Box®(s, 1)
st
16N(1 —¢€) 2 3\ .4 2 3 4\ .3
- m [(12—22€+12€ +2€ )S + (24—58€+50€ — 6e” — 2¢ )3 t
+ (36 — 99 + 93¢* — 24¢® 2¢') %% + (1 — ¢) (24 — 50¢ + 23¢7) st°
+4(1 — €)(1 - 2€)(3 — 2¢)t*] Bub(z)
16N 2 3\ .3 2 3\ .2
] m[(4—126+166 —4¢%) ® + (3 — 10¢ + 23¢* — 8¢*) 5%t
+ (6 — 15¢ +21€? — 8¢%) 51> + (1 —€) (5 — 6e + 2¢%) ¢°] Bub(t), (6.173)
32(1 — 2
Fals,tu) = % [—4(1 — €)2st + 3(1 — 56)11,2] Box%(u, t)
L 32(1 -

Tes? 229 [a(1 - 201 - 2 + (8 - 176)(1 ~ Jut

+ (6 — 20 + 15¢2 + ) u?] Bub(s), (6.174)

Series expansions around e = 0 for the one-loop integrals are given in Appendix B.
Finally, the last term of eq. (6.5) that involves H(? (¢) produces only a single pole in

€ and is given by

0 @) ©y = — €7 g@ OO 17
(MW HY ()| M) = ZeT= ) (MM (6.175)
where the constant H(? is
5 11 20 72 89 N
2 _ 2 2 &V _r _ 9o _F
H (2( + -4+ — 36 )N + 7 NF < T 27) NNp N (6.176)

We note that H(® is renormalisation-scheme dependent and eq. (6.176) is valid in the MS
scheme. We also note that eq. (6.176) differs from the corresponding expressions found
in the singularity structure of two-loop quark-quark and quark-gluon scattering. This

is due to double emissions from the gluons. In fact, H(® for quark-gluon scattering is
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the average of the H @) for gluon-gluon scattering and quark-quark scattering, as may be
expected by counting the number of different types of radiating partons.

It can be easily noted that the leading infrared singularity in eq. (6.5) is O (1/€%).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.5) through to O (1/€). We therefore

construct the finite remainder by subtracting eq. (6.5) from the full result.

6.5.2.2 Finite contributions

The finite two-loop contribution to D8(s, ¢, u) is defined as
Finite(s, t,u) = DEX0 (s ¢ u) — Poles(s, t, ), (6.177)

where we subtract the series expansions of both D® X0 (s ¢ u) and Poles(s,t,u) and set
e — 0.

Then
Finite(s,t,u) =V (N4A + N?B + N3NpC + NNpD + N?N2E + N,,%F) ,  (6.178)

and the values of A, B, C, D, FE and F are presented in section C.4.1 of Appendix C.

6.5.3 One-loop self-interference contribution

We divide the one-loop self-interference contributions into into two classes, those that
multiply poles in the dimensional regularisation parameter ¢ and those that are finite as
e — 0,

D8 X (g ¢, u) = Poles + Finite. (6.179)

Poles contains both infrared singularities and ultraviolet divergences. The latter are
removed by renormalisation, while the former must be analytically cancelled by the in-
frared singularities occuring in radiative processes of the same order. The structure of

these infrared divergences has been provided in eq.(6.7).

6.5.3.1 Infrared pole structure

The contraction of the colour vector |[X) with the conjugate colour vector (Y| obeys the

rule

yixy=> > ng Y X;C; €. (6.180)

spins colours %,j=1
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In evaluating these contractions, we typically encounter Y i us Ci C; which is given by
eq.(6.165).

For the expansion of the pole structure coming from this contribution, eqs.(6.162)
through to (6.174) are valid. This calculation is somewhat simpler than the two-loop one,
but it is nevertheless contributing at the same level.

It can be easily noted that the leading infrared singularity in eq. (6.7) is O (1/€%).
It is a very stringent check on the reliability of our calculation that the pole structure
obtained by computing the Feynman diagrams directly and introducing series expansions
in € for the scalar master integrals agrees with eq. (6.7) up to and including O (1/€). We

therefore construct the finite remainder by subtracting eq. (6.7) from the full result.
6.5.3.2 Finite contributions
The finite two-loop contribution to D3(s,t,u) is defined as

Finite(s, t,u) = DXV (5t u) — Poles(s, t,u), (6.181)

where we subtract the series expansions of both D? (IXI)(s, t,u) and Poles(s,t,u) and set
e — 0.

Then
N2
Finite(s, t,u) = V (N4A+N’~’B+N3NFC+NNFD+N2N§E+N§F+ N—§G> , (6.182)

and the values of A, B, C, D, E, F and G are presented in section C.4.2 of Appendix C.




Chapter 7
Conclusions

7.1 Summary

The main driving force of this thesis has been to accomplish the calculation of all two-loop
matrix elements for massless partonic 2 — 2 scattering processes. This is one of the major
tasks required for the construction of numerical programs that will enable next-to-next-to
leading order QCD estimates of jet production at hadron colliders. This calculation is
expected to increase the quality of the theoretical predictions to a level that matches that
of the improved experimental accuracy expected in forthcoming runs at the Tevatron and
LHC.

To achieve the calculation of matrix elements at this level of accuracy is highly non
trivial and it becomes clear that it is necessary to construct an algorithm to calculate
hundreds of one- and two-loop integrals with a tensor structure.

In order to create such algorithm, we first need to study how these integrals arise within
perturbative QCD and what is their characteristic structure and analytic behaviour. So,
in Chapter 1 we discussed their direct relation to the Feynman diagrams contributing to
the matrix elements at this order and their divergent behaviour in D = 4 dimensions. We
saw (section 1.4) how Convensional Dimensional Regularisation (CDR) is used to expose
these divergences as poles in the small non-integer parameter ¢ = 0, when we continue
the dimensionas D =4 - D =4 — 2.

The singularities of Feynman integrals arise in two different momentum limits, the ul-
traviolet or high momentum limit (UV singularities) and the infrared or low momentum
limit (IR singularities). The former type of singularities can be consistently absorbed
at each order in perturbation series using a redefinition of the parameters and fields of
the theory (section 1.5). This procedure is called renormalisation and it is not uniquely
defined, so that any fixed order perturbative calculation result will depend on the pre-
scription used for the absorption of the UV singularities. In all our calculations we have
chosen to renormalise in the MS scheme.

Our calculations involve massless particles, so for some loop-configurations their prop-
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agators vanish and give rise to IR singularities. In Chapter 2 we use the example of
electron-positron annihilation into hadrons as a didactic aid to show how these diver-
gences arise and cancel at next-to-leading order (section 2.1). This naturally leads to
the more general discussion on cancellation of IR divergences for appropriately defined
infrared safe observables (section 2.2). To put our calculation of NNLO matrix elements
in context, we establish the link between these and the total hadronic cross section using
factorisation (section 2.3) and provide some ideas as to the areas where such a calculation
has an impact (section 2.4).

We then progress to Chapter 3, where we provide an overview on various methods
used in the calculation of loop integrals. We start with the classification of the integrals
by their topology and give a general representation for both the planar and the non-
planar topologies (section 3.1). Then, we revise the different techniques for solving loop
integrals explicitly, such as Mellin-Barnes and Negative Dimensions, with a preamble on
the parametric forms used to represent the integrals in a suitable manner prior to their
integration (section 3.2). The second half of this Chapter is dedicated to the exploration
of a simple loop integration mechanism through systems of equations (section 3.3). This
is the backbone of the algorithm with which we perform our calculations because it pro-
duces an environment in which loop integrals can be treated in a general and automated
way. Some simple examples provide an insight on how these reduction equations work
in practise. We conclude the Chapter with a discussion on how we could deal with ten-
sor structure in Feynman integrals by replacing them with extra dimensions and extra
powers in the propagators. It turns out that this only complicates the problem of solving
tensorial integrals so we need to provide a better solution, which leads to the discussion
of the next Chapter (section 3.4).

Given that the two-loop matrix element calculation involves a large number of scalar
and tensor integrals, the need arises for an algorithm that can deal with them systemat-
ically. Furthermore, the algorithm must be able to reduce an arbitrary integral in terms
of the ones we can calculate using the techniques given in the previous Chapter. This is
precisely what our program for calculating matrix elements does and the characteristic
elements we build into it are discussed in Chapter 4. We use the Integration by Parts
(IBP) and Lorentz Invariance (LI) identities to find relations between a generic integral
and the more basic (and already calculated) master integrals (section 4.1). Then we make
an automatic implementation of this algorithm by generating all the identities spanning

the range of tensors and powers of propagators we require and solve the system of equa-
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tions using a computer program (section 4.2). A particular choice of double box master
integrals, makes for a further improvement to the reduction algorithm (section 4.3). Near
the end of the Chapter we discuss the solution of the new set of double box master inte-
grals in terms of the previous one and close with the description of the general algorithm
we use for the explicit matrix element calculations (section 4.4).

An independent check on the singular structure of the results is presented in the last
Chapter, via the Catani formalism. This is briefly discussed in Chapter 5 and to illustrate
the importance and limitations of this formalism we give a couple of examples. Chapter
6 contains the O(a?) one- and two-loop matrix elements for massless partonic 2 — 2
scattering. The fact that the singular structure of our results agrees with the predictions
stemming from Catani’s formalism is a very strong check of our explicit calculation where
we made extensive use of the reduction algorithm previously discussed. This is an impor-
tant verification due to the fact that typically all of the Feynman diagrams contribute to
the divergent behaviour.

The results presented in this last Chapter [40, 41, 42, 43, 44, 45] provide the matrix
elements needed for the NNLO contribution to inclusive jet production at hadron collid-
ers. This moves us one step closer in the process of achieving an improved theoretical

description of the high energy jet phenomena in the experimental runs to come.

7.2 QOutlook

The algorithm we use to calculate NNLO matrix elements is, in principle, suitable for
multi-loop calculations with integrals that have a rich tensor structure as well as extra
powers on the propagators. In practice, there is a limitation due to computer resources
such as memory and CPU time, directly linked to the large systems of equations we need
to solve for such integrals. The number of terms in each equation grows even more if we
want to consider the case with, say a massive external leg for Z* — 3 jets. Both the
manipulation and solution of the system of equations in this case, is a major stumbling
block in the path to obtain analytic matrix elements.

However, recent developments in the implementation of reduction algorithms that
take different approaches to this problem and use different platforms and languages, may
prove to be the solution for such important calculations. Tarasov [100], Gehrmann and
Remiddi [63], and Laporta [101, 102] have provided various schemes for the automation

of reduction algorithms.
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Not only can the general reduction algorithm be improved, but also the numerical
or analytic calculation of the master integrals. Binoth and Heinrich [58], for example,
have proposed an algorithm for the isolation and removal of the poles given a Feynman
representation of a loop integral and to proceed afterwards with the numerical evaluation
of the finite integral. Gehrmann and Remiddi [67, 68, 69, 103] presented a method based
on the analytic solution, in terms of generalised harmonic polylogarithms, of differential
equations satisfied by the master integrals. Furthermore, Tarasov [100] and Laporta
[102, 101], have set out to calculate master integrals using difference equations that arise
from IBP identities, providing an algorithm that can also be automated.

These improvements will enable us to go further in the calculation of matrix elements
which are vital ingredients for the NNLO predictions for jet cross sections in hadron
collisions. However, they are insufficient to make physical predictions. A major task,
still to be established for semi-inclusive jet cross sections, is a systematic procedure for
analytically cancelling the IR divergences between the tree-level 2 — 4, the one-loop
2 — 3 and the 2 — 2 processes. Recent progress in determining the singular limits
of matrix elements [29, 79, 104, 80, 88, 105, 106, 83, 86, 107, 84, 82| together with the
analytic cancellation of these singularities in the case of e*e™ — photon + jet at NLO
[108], suggest that the technical problems for 2 — 2 scattering processes are not far from
being solved.

We should note that a further complication is due to initial state radiation, since the
factorisation of the collinear singularities from the incoming partons requires the evolution
of the parton density functions to be known to an accuracy that matches the one from the
hard scattering matrix element. This requires the knowledge of the three-loop splitting
functions and in this field there are several recent results that should be noted here
(22, 21, 23, 24, 27, 26, 25, 28].

Much work remains to be done, but looking at the latest results in different areas
within the context of higher order corrections to jet cross sections, seems that NNLO
numerical estimates of these may become available in the next couple of years. The
theoretical uncertainties at this order will be smaller than the already existing NLO

estimates thereby enabling improved descriptions of high energy QCD phenomena.



Appendix A
Integration over

phase-space

In this Appendix we present the D-dimensional integration over phase-space for the

production of 2 and 3 particles.

A.1 2 particles in the final state

Consider the Lorentz invariant phase space factor given (in the centre of mass frame) by

(2m)P dpi dpz §O-1) (51 4 g 1
/d(b2 22[ D 1]2 // El E2 )(pl +p2) 6( )(Etot - El - E2)7 (Al)

where

p; : momentum vector in D — 1 dimensions,
Eit : incoming total energy in the CM frame Fip = /s,
(27)P . normalisation for each delta function,
22[(27)P~1)2 . for each momentum vector (normalisation

of volume element).

We use the delta function for the momenta to eliminate the integral over p3 to write

dpipl % 1
/d@ o )D 2/dQD [ B O (Bt~ By - B). (A.2)

Here, we used D-dimensional polar coordinates to express the remaining differential over

the vectorial momentum as
dp; = dpipP~2dQp_1 with |p}] = p;. (A.3)

Now, to eliminate the delta function for the total energy, we need to change the
differential over the momentum to a differential over the energy. This is easily done

(recall E = p? and E; = E» because of momentum delta function), so eq.(A.2) becomes
/ d®y = / dQp_q / dE,EP~ 5V (B, — 2Ey). (A.4)
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We know that E; = /3/2, so after using the last delta function we can complete the

integration over the energy as

D—4
1 ]
/d‘I’z = W (%) / dQp-1. (A.5)

Finally, we use eq. (1.27) to substitute for the (D — 1)-dimensional area of a wunit

sphere, to have

’ (A6
) )

which in D = 4 reduces to

By= —. (A.7)

A.2 3 particles in the final state

Consider the Lorentz invariant phase space factor given by

_ (2m)P dpi dp2 dps (p-1) (o =,
[ao = s |55 7 WA

x8MW) (B — By — By — E3), (A.8)

where

—

p; : momentum vector in D — 1 dimensions,
E.: : incoming total energy in the CM frame Ey = /s,
(2m)P  : normalisation for each delta function,
23[(217)D ~11* . for each momentum vector (normalisation

of volume element).

We use the delta function for the momenta to eliminate the integral over p3 to write

1
/d‘I’3 = _T)zl)—:%//dlgD 2d2@D 2
dpy dp2 P 2 P32
8 // E\EyE3 8 (Buoe = By = Bz = B). (A.9)

Here, we used D-dimensional polar coordinates to express the remaining differentials over

the vectorial momenta pj and pz as
dp; = dpipy "*di®p-2 with |pi| = p;. (A.10)

In eq.(A.9) and using fig.(A.1), we can rewrite the integral over the two differentials

of angle as
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Figure A.1: Schematic representation of the relation amongst the angles for a three
particle phase space. The angle for the third momenta is specified in terms of the other
angles by conservation of momenta.

d1@D_2 dg@D_z = dﬂ]_)_l (sin 012)D_3 d012 dQD._z (A.ll)
S—— ~ - S——

N

solid angle angle between solid angle
for p} p1 and pp for p3

Then, eq.(A.9) becomes
]. 1 [
/d(I);:, = W-/dQD_l /dQD—z 88 (Byp — Ey — Ey — E3)

dpy dps p 2 pd % D3
(7] G19. A12
x // NN (sin 012)” " db12 ( )

Now, to eliminate the delta function for the total energy, we need to change the
differential over the momenta and the angle, to a differential over the e?iergy. This is

easily done if we consider the following
¢ the usual relation F;dE; = p;dp;,

e from the Law of Cosines and conservation of energy, we have

EZ = pi®+p3® + 2p; py cos Oy

E
= d(cosfyy) = ——dEs, (A.13)
pip2

e can rewrite the integral over the angle, using eq.(A.13), as

(Singlg)D_B d912 = - (sin912)D_4 d (Cosolg)

E
= (sin912)D_3 dfia = L (sinng)D_4 dEg, (A.14)
Pip2
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so that now eq.(A.12) looks like

/d‘I)3 = 2D 3/dQD 1 /dQD 2 // ElEQSlll 912 dEldEQ

X /dE3 68 (Bypr — By — Ey — Ej). (A.15)

v

v

integrate out
= cons. of energy

With the aid of the kinematics analysis done in section 2.1.2, we can change the
integration over energy into integration over energy fractions. We need only algebraic

manipulations that can be summarised as follows

1. change of variables

E;, = ?mi (A.16)
=dF; = ?dmi (A.17)
2. change cosine relations to ratios of z;’s
2 _
I1T2
1-+cos B = 2(1— 1—:33)
T1T2
1—
= sin? 13 = 4— 2 [mymy — (1 — a3)] (A.18)
1%

3. have to consider relation amongst energy fractions 1 — z3 = z, +z2 -1, 50

sin B1p = —— [(1 - 21)(1 - 22)(1 — 23)]"/2. (A.19)
T1X9

We introduce this information into eq.(A.15), to have

oD-4 sP-3 D-4
/d‘I);; 92D 3 2D S/dQD 1 /dQD 2 // 1—:171 1—:132)(1—.’113)] 7 dx dxs.

(A.20)
Finally, we use eq. (1.27) to substitute for the (D — 1)~ and (D — 2)-dimensional area
of the unit spheres, to have

gD-3 1 Ds
R ()1 () J [0 =200 21 - 20 *F* da ds,

(A.21)

with 1 — 23 =71+ 29— 1. The integration region is 0 < z;,z2 < 1 with z; + 29 +x3 = 2.



Appendix B
Master Integrals

In general the expansions of the master integrals contain the generalised polyloga-

rithms of Nielsen

Snp(z) =

—1)nte-l 1 n—1l P(] —
(-1) / log" ™" (t) logP(1 — xt) np>1 o<l
0

(n—1)!p! t ’
where the level is n + p. Keeping terms up to O (¢) corresponds to probing level 4 so that

only polylogarithms with n + p < 4 occur. For p = 1 we find the usual polylogarithms
Sn—1,1(2) = Lip(2).

A basis set of 6 polylogarithms (one with n+p = 2, two with n+p = 3 and three with
n -+ p = 4 is sufficient to describe a function of level 4. At level 4, we choose to eliminate
the Sgq, S13 and Si2 functions using the standard polylogarithm identities [92] and retain

the three Lis functions with arguments z and 1 — z and (z — 1)/z where

t U 1 u xz-—1
r=—-— = —-— = -, 2= —— = .
s’ y 3 t z

For convenience, we also introduce the following logarithms

-1 —U K] —u
X =log (2 Y =log [ =% —log(Z), U=1log[=2),
Og<3)’ Og(s)’ 5 Og<;42) Og(u2)

where p is the renormalisation scale. The common choice u? = s, for example, corresponds
to setting S = 0.
For relations between polylogarithms of different arguments and other identities see

ref.[109] and references therein.

B.1 One-loop master integrals

In this appendix, we list the expansions for the one-loop box integrals in D = 6 — 2¢. We
remain in the physical region s > 0, u,t < 0, and write coefficients in terms of logarithms
and polylogarithms that are real in this domain. More precisely, we use the notation
presented at the beginning of this section to define the arguments of the logarithms and

polylogarithms.
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6 (8ij, 85k)

Figure B.1: Symbol for the Box® topology

We find that the box integrals have the expansion

Bot(u,y) = SEUTITU-o (ﬂ_z)e{l[(X - ¥) + 7]

25T (1 - 2€) (1 —2¢) \ s 2

+2¢

. . 1 4 =2
Liz(z) — XLis(z) — §X - 7X

1 1 1
—2¢2 [Li4(a:) + YLiz(z) — %XzLig(a:) - gX‘* - gX3Y + ZX?W

2 2 4
T . W T 3
_Doy2_ 7 _ 5 1
4X 3XY 45J+(u<—>t)}+(9(e), (B.1)
and

eT(1 + e)I(1 — ¢)? 2\ .
Box®(s,t) = 2ul'(1 — 26)(1 — 2¢) (—%) {(X2 + 2z7rX)

2
+e[(—2Li3(m) +2XLig(z) - 3X° +2Y X* — X + 2@,)

2
+im <2Li2(m) F4YX — X2 - %)J

+¢? (2Li4(z) + 2Li4(y) — 2Y'Liz(z) — 2XLis(y) + (2XY — X? — 7?)Liy(z)
%X“ - §X3Y + gX2Y2 + ngxz ~2m2XY +2Y (5 + %w‘i)

1
+im (—2Li3(a:) — 2Lia(y) + 2YLix(2) + 5 X* — 2X7Y +3XY?

-%2)/ + 2@)} } +0 (63) . (B.2)

Box®(s, u) is obtained from eq.(B.2) by exchanging u and ¢.

Finally, the one-loop bubble integral in D = 4 — 2¢ dimensions is given by

‘Q (si7)

Figure B.2: Symbol for the BUB topology

e (14T (1—€)? [ u2\°
Bub(s) = CETRP (-?) . (B.3)
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B.2 Two-loop master integrals

In our calculation there are 10 master integrals for the two-loop planar and non-planar
topologies. Here we list the expansion in € = 2 — D/2 for each of them, following the

notation we introduced at the beginning of this appendix.

B.2.1 The SUNC topology

Figure B.3: Symbol for the SUNC topology

SUNC(s) = I(1+¢)? s72+! {—— —cim— =+ FC(?) - lszivr - %L

5 1.5 91 115, 865 | o
+l:2<(3) + 2’L7I' + zC(Q) — Tlﬂ'— g]f

[—@4() (T +5im) €@ + Lim 4 o) - Tlim - 59”] }

4 4 16 64

_ —2e+1 I 13 |1 115

SUNC(u) = TI(1+¢€)? (—u)~2t {—4—6 g T [ ¢(2) —16}
) 13 865 11 115 5971

+ [54(3) +-¢2) - ) :I }

() + e (3) + 1) - 2

SUNC(t) = [SUNC(U)]
u=t

(B.4)

B.2.2 The TRI topology

SOKT

Figure B.4: Symbol for the TRI topology

—6¢(2 9) + 5ir + 22

z7r+5
2

TRI(s) = T(1+¢€)%s7% {2% +1

—4((3) — gz7r —30¢(2) + 197 + 625
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+ [244(4) —4(5+2im) ((3) - %Oivre’ — 114¢(2) + 65im + 2# 52}
TRI(u) = T(1+¢)® (~u)™* {% + 2% + 12—9 + [_44(3) + % ;

+ [—6((4) —20¢(3) + 2—;1

:

TRI(t) = [TRI(u)

u=t
(B.5)
B.2.3 The GLASS topology
Figure B.5: Symbol for the GLASS topology
GLASS(s) = T(1+¢€)?s2% {}2 + % [2 +im| + 8im — 14¢(2) + 12
+ [—4((3) — 2im® — 56¢(2) + 24im + 32 ¢
+ [118{(4) —8(2+14m) ((3) — 8im® — 168((2) + 64im + 80} 62}
_ 1 4 1
GLASS(u) = T(1+¢€)? (—u)~% {—2 + - — = (m—6) (7 +6)
€ e 3
+ [—4((3) —8¢(2) + 32] e+ [—2((4) — 16¢(3) — 24¢(2) + 80] 62}
GLASS(t) = [GLASS(u)]
u=t
(B.6)

B.2.4 The XTRI topology

—<X(3ij)

Figure B.6: Symbol for the XTRI topology
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XTRI(s) = TI(1+ ¢)? s~A1+e) {614 + 2:—3” - 195( ) 6[ 27¢(3) — %liws}

+42ﬁ4(4) - 54m<(3)}

XTRI(w) = D(1+€)? (—u) 20+ {14 SO LU —<<4>}

XTRI(t) = [XTRI(u)}

(B.7)

B.2.5 The CBOX topology

(845, 85%)

Figure B.7: Symbol for the CBOX topology
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CBOX(t,u) = [CBOX(u,t)}

u=t,i=u
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B.2.6 The ABOX topology

: ( ) (845, 85k)

Figure B.8: Symbol for the ABOX topology
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1, ,
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(B.9)
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B.2.7 The PBOXI1 topology

(835, 8jk)

Figure B.9: Symbol for the PBOX1 topology
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(B.10)

B.2.8 The PBOX2 topology

@ (845, S5k)

Figure B.10: Symbol for the PBOX2 topology

T(1 2 —2¢ 1
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+4(5Y + 2X + 6im)Lig(z) + (6X2 — 4(im + 5Y) X + 52¢(2) — 204 7)Lis(z)
4

—§X4 + §(2Y —im) X® + (8iYm — 5Y% — 26¢(2)) X2 — 29¢(4)

+ (52Y§(2) +28¢(3) + gz'vrs - 10iY27r) X +10 Giﬁ - 24(3)) Y - 4i§(3)7r}

+% 8Lis(2) + 8(X — Y)Liz(2) + 4X® — 8Y X2 + 4(Y2 + 7¢(2)) X — 4Y¢(2)

—16((3)} +2085,2(2) — 12Li4(2) + 20(X — Y)S12(2) + 4(3Y — 8X)Lis(z)
+2(~13X2 + 16Y X — 3Y2 + 4¢(2))Liy(2) — 7X* + 16Y X3

—11(Y2 + 2¢(2)) X% + 2(—4Y¢(2) + Y + 14¢(3)) X — 8Y((3) + 20g(4)}
PBOX2(t,u) = [PBOX2(u,t)}

(B.11)

B.2.9 The XBOX1 topology

8 (54, 85k)

Figure B.11: Symbol for the XBOX1 topology

[(1+¢€)? 572 28 1
XBOX].(S,t) = —W —6—4 + 6_3

(—t+ gs) X + <t+ ;3) Y + 2ins

1
€2

—sX? - (4Y3 + (2t + s)m + 6t>X -Y2%s 4 (i(2t + 8)m + 6(s + t))Y

—24(2)3 + 6ims

€

1
+ ! {—2381,2(3:) + 2sLig(z) — 2sLiz(z) X + §(2t —-8) X3

—2(tY +ims)X? + ((2t +33)Y? — 2s(im + 6)Y + (5s + 34¢t) ((2)

2
—12i(s + t)m + 24t)X - (3 + gt) Y3 - 2inY2%s — 2<(l7t + 793) ¢(2)

3
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—6itm + 12(s + t)) Y — 24ims — 3?livr?’s + %C(3)S] — 36(2t + s)S2,2(x)
+2(435 + 30£)Lig(z) + 2(30t — 135)S; 3(z) + (4(73 +136)X — 2(3s — 100)Y
+4i(11s + 3t)7 — 24(s — t)) S12(z) + (—20(33 +2)X — 4(5t + 38)Y

+44(3t — 8s)m + 24(t + 23)) Lis(z) + ((lOt +175) X2 + (4(5t + 35)Y
—2i(—7s + 6t)m — 24(2s + )) X + 18iwY s + 60(s + 2¢)((2)

2
—o4i(2t + s)7r) Liz(z) +3(s — X" + (g(s Y+ gi(Ss +2t)m + 4t> X3

+ ((t ~8)Y? — 4(3t + itw + 35)Y — 30 (t + %s) ¢(2) + 12i(s + t)w) X2

+ (*%(s +26)Y3 4+ 2(6s — itm)Y? + (12 (%3 + 5t) ¢(2)

—24i(s + t)7 + 483) Y + (—13s + 38)C(3) + %i(7s + 5¢)m3 + 84t¢(2)
. 2 4 2. 3
+48i(s + t)m — 96t | X + 5(23 +)Y* + —§z(2t —38)r —4(s+1)|Y

+6< (1—53 + St) ¢(2) - 2it7r) v 4 (-(38t +338)¢(3) — %z’(s + 206)r®

—84(s + t)¢(2) — 48itm + 96(s + t)) Y — (i(12t + 89s)m + 24¢)¢(3)

49 (%s -~ 63—7t) ¢(4) + 2i(2t — s)7° + 96i7rs}

P(1+e? (—u)y 2 [ 2u 1 5 1.
XBOX1(u,t) = (a1 1) — + =3 (—t + §u) X —6Yu— 52(275 + Tu)m

1 31
+e_2 {—qu +2(3Yw — 3t + 2imu) X — 6Y2u — 6u(l + im)Y + 7((2)11

1
—6i(u + )| + =
€

2
251 2(2)u + 2iLiy(2)mu + gXf"t + 2it X 2r + <3Y2u

1
+6u(2 4+ im)Y + 2 (—%u + 5t) ¢(2) + 122t + m))x —2Y3u — 3u(4 + im)Y?

15 1
+(54¢ (2)u — 12imu + 24u)Y + 5 $B)u + 5i(6t + 1u)r® + 24i(u + t)7

—2(6t + 31’11,)82’2(2) + 12(’11, + 2t)Li4(z) - 281’3(2)(3015 — 13u)

+ (2(4t — 27u)X + 12(du + t)Y — 20i(2t — u)7 — 24(t — u)) S1,2(2)

+ (6(5u +48)X — 12(2t + u)Y — 4i(3t + 11u)7 + 24(u + 2t)> Lis(2)
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+ (12(t +2u) X% + (—6(4t + 5u)Y + 45(—9u + 2t)7 + 24(u + 2t)) X
+6(u + 26)Y? + (6i(5u + 2t)m — 24(u + 2t))Y + 6(—11u + 2t)¢(2)
17

2
—244(t — u)ﬂ') Lia(2) + % (5t + ?u) X4+ (—3(3u +2t)Y — 57}(5t + 13u)w

+4(3u + 4t)> X34+ (g(u +1)Y? + (3i(5u + 4t)m — 12(2u + 3t))Y — 2¢(2)u
—12it7r> X2 4 (—(u +4t)Y? + 6(du + 4t — itm) Y2 + (—12(¢ + 4u)C(2)
+24i(u + ) — 48u)Y + 3(6¢ — Tu)((3) — 23(t + 4u)n® + 84¢((2) — 48inu
—96t)X - %Y‘*u — u(8+im)Y> + (33¢(2) + 48 — 12im)Y%u + (5in® — 96
+84¢(2) + 48im + 60((3))Y u + 3(5i(5u + 6t)m — 8u)((3)

- 220 (4) + 2i(3u + 1) — 96i(u + t)w}

XBOX1(t,u) = {XBOXl(u,t)}
u=t,i=u

(B.12)

B.2.10 The XBOX2 topology

Q 8 (8455 Sjk)

Figure B.12: Symbol for the XBOX2 topology

F(l +6)2 3—25
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5i(s £ 1) t+33} +6—3[<§3—2t)X—2zt7r+§tYJ

11 5
+55 |53 + 8)X? + (—itw — 3t + 4Y)X — 26Y2 + (3t + 35 + itm)Y + 5t(2)

+3i7rsJ + ! [—4t81’2(m) + (t + 3s)Lis(z) + (—(8s + £) X + 3i(t — s)7)Liz(z)
€
1
+(2t + 8) X3 + (—5(7t +3s)Y + 2z't7r) X%+ (—tY'~’ — (i(t + 38)7 + 65)Y
+29¢¢(2) — 6i(s + t)w + 12t) X+ gtY3 + 2itnY? — (125 + 12t + 5t¢(2) — 6itm) Y

1
+ (%t + 33) ¢(3) — 12imws + 26—5it7r3

+ 9(3 - 5t)82‘2 (.’1)) - 2(33 + 16t)Li4 (:L')

+98tS; 3(z) + ((15t —98)X 4 38tY — (53¢ + 9s)m — 12(s — t)) S1,2(z)

-
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+ (20Xt + (98 +¢)Y + 2i(34t + 3s)m + 12(¢ + 23)) Lis(z) + ((—4t + 3s)Xx?
~((9s +t)Y + 24s + 26it7 + 12¢) X — 3¢(3s + 13t)7Y + 3(7s + 13t)¢(2)
11

—~126(2t + s)w) Lig(z) — % (s + ?t) Xt +2((s +t)Y —itw + ) X3

+ (-%(93 +1)Y? — (i(t — 3s)m + 6(s + t))Y — 25t¢(2) + 64(s + t)7r) X2

4 1 1
+ (—gty3 + <—§z‘(13t + 9s)7 + 63) Y2+ (5 (73 + §t> 72 — 12i(s + t)7 + 243) Y

(45t — 65)((3) — gim?’ + 42t¢(2) + 24i(s + t)m — 48t)X - gy‘*t

- (%m +2(s + t)) Y? + (—6itm + 5t¢(2)) Y2 + (—(93 + 38t)¢(3)

—éi(—gs + 177 — 42(s + £)¢(2) — 24itm + 48(s + t)) Y + (—12¢ + 71itm)((3)

+9 (—19t + %3) C(4) +i(—s +2t)73 + 48m}

I(1+4€)? (—u)~2 1 1 3
XBOX2(u,t) = S — (= hd
(u,t) wt(u+ 2 |3utt + ( 2t+2u>X
1. 11 ) ,
+-(t—uw)Y — Eztﬂ +3 —E(t +3u)X* + (3(u — b)Y — 3t — 4itm) X

+=(t—u)Y? - 3Yu + gtC(?) - 3i(u+ t)ﬂJ + % 4tS1 2(2) + 3(u — t)Liz(2)

+

~ W oW

3(u—t)X —3(u—-t)Y + 4z't7r) Lig(z) + (2u + gt) X3
+ (—%(314 + )Y + 5it7r) X%+ (3(u —)Y? + 6(=2itw +u)Y
+41£¢(2) + 6(2t + Mru)) X - %(u —1)Y3 - 6Y2%u + (9(u —-1)¢(2)

—6u(im — 2)) Y + (gt + 3u> ¢(3) + ;—)itﬂ'3 + 12¢(u + t)'/r}
+(9’U, + 53t)32’2(z) + 12(2t - u)Li4(z) - 9881,3(2')t

+ ((83t +9u)X — 9(u + 58)Y — 60ctmw + 12(u — t)) S1,2(2)
+ (-18(u +t)X +3(3u — 7)Y + 14itmw + 12(2t + u)) Lig(2)
+ (—6(2u +56) X2 + (3(5u + Tt)Y + dditm + 12(2t + u)) X — 3(u — 3t)Y?

—6(itm + 4t + 2u)Y + 3(15¢ — u){(2) — 12i(t — u)w) Lig(z)
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127 1 2
—% (23u + Tt) X4+ <5(13u + 258)Y + %‘m + 2(3u + 4t)> X3
3 5 , 3 /29 , 5
+ —5(4t +3u)Y* — 6(2u + 3t +itm)Y — 3 ?t +u){(2) - 6itw | X

+ <(u — 3t)Y? + 3(4u + 4t — 3itm)Y? + (6(8t — 3u)((2) + 12i(u + t)7 — 24u)Y
+3(—2u + 5t)¢(3) + 9itn® + 42¢¢(2) — 24(2t + mu)) X + é(t —u)Y* — 4Y3u

+ (6(u —t)¢(2) + 6u(4 — m)) Y2+ (15(u — £)¢(3) + 24imu — 48u + 42((2)u) Y
+(—12u + 45itm)C(3) — 12—5 (u - Ht) C(4) +i(3u + ) — 48i(u + t)7r}

XBOX2(t,u) = [XBOX2(u,t)}
u=t,t=u

(B.13)



Appendix C
Finate Contributions

In this appendix we present, for each partonic process, the expressions for the colour
expansion coeflicients of the finite pieces for the relevant physical channels indicated in

Chapter 6. We use the notation introduced in Appendix B.

C.1 Unlike quark scattering

C.1.1 The s-channel process ¢§ — §'¢’

C.1.1.1 Two-loop contribution

A, = <4Li4(z)+(—23—2—4X)L13(:v)+(23—2X+2X2—§7r2>Li2(x)+22XS

1y S x3_ L 20y Oy 2 x2y
8Bt T3 g Xy 37 P g
4 P 155 , . 2777 s oo 22 .. 23213
Xy 22y 200 X3Y —14¢ S + —
37 36 " 1085+3 1CSJF12”S 355 To6
2
—2XC3+£52) d _ZUJ
3
+(— 6 Lia(y) + 12 Lig(z) — 6 Lig(z) + 6 Lia(y) X + (— 7 4)() Lis(z)
7 64 . A7 11 34
2 2 . 4 2 2 2
TX + X?| Lig(z) - — 2t — 2 x Yy —
+<1r+ + )12() 60" 5 +18 +n¢ X 3XS+9
2 3 7 49 12— g2
9 X (a0 2 3y _ 2 y2 2, [ 4o _¥ s
-5 T X+ XY -5 X224 S X Y+3XS 5 X0+ >

+ <6Li4(y) — 6 Lig(z) + 6 Lig(z) — 6 Lis(y) X — 5 Lis(z) + ( — 4 5X> Lis(z)

1 64 11 7 5 11
_X4 =X X2 2 X -2 2 Y yv2 -
+4 9 + 7™ +6X (s i 37rX+2XY 3XS
8 1 t
_X3__ 2 = 4_X3 _ 2X 2 ° )
+8C3+3 3X +207r Y-nXY )| +6X - (C.1)
44 44 617 443 125 55
B, = 12X + — | Lig(z) - — L P h4X G- 5 n?
p (( + 3) i3(z) — 5 Lis(y) - g X" +4X ¢ gt g X -
9 4, 8 , 16 . 632 4 31 o 155 ,
+3607r 37 XY 2__{,X 12 Lig(z) - 27Y X ?X Y + 1871'X
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1
+6X27r2+(4%2—6X2—43—4X—%Y)Liz(m)—2X3Y+E7r2S—44XS
44 _, . 1502 30659 4 0 0 o
— - —4Y (3 — =Y X2y?24+44Y S
+2(3 5+ 3 X“S 97 S+ 394 (3 3 ™+ +
44 1 71 31 37 599 2 +u?
YIS VI 0XY - Y o o xYr oy g2 22 [T
g ot Ay 9 3 ST 52
37 131 88 1 2 74
— 24 Lig(y) - = X% - 18 — X -t oI XY+ X
+( (v) ~ 75 SRS 9" T10" T3T ATty
12 17 1 1
+6Li4(w)+TSY—EX4—;X2Y+f—gan+F3X27r2+2X3Y—X2Y2

2
+<8XY—3X2 - §7r2 —11X+16Y) Lis(z) — %XS+23—2X25'—16Li4(z)

. 2
+<11 —24Y+8X) Liz(z) + <4Y+16) Lis(y) + §XY3+12Y§3+ ngﬂ

22 22 1., 34 2 _ 2
——Y5+—Y2S——Y4+—Y3+10XY2+@YW2—EY2) [t “}

3 3 3 9 18 18 82

+((9 - 12 Y) Liz(z) + (4«2 -12Y - gx) Lig(z) — 24 Lig(y) + 56—9)(2

5 4 17
—12X{+10G--X3 -2 - Lt 442 XY — z‘f)<'+24Li4(ac)+EY
3 3 30 9 9

25
7!'2

—X‘*—4X2Y+F X—2X27r2+4X3Y+23—2XS+ 12(X—1> Liz(y)

22
+12Y ¢ - 3X%2Y? - 3Y5+XY+%Y3—%XY2— gywz—%—g'Y2—24Li4(z))

t
~14 X7+ IOYZ% (C.2)

. 5 29 49 44
C, = (32L14(y)— §X2— 15C3—9X3+E7r2— %ﬂ4+?7r2XY+48X+16Li4(9:)

5 22
—48Y+6X4+9X2Y—?X27r2—16Li3(m)X+§X3Y—7rzS+12(35

16 . 3 11 : 2
+(8X2—16Y2+?7r2> ng(a:)-f-ZS-i—E)l—ﬁ - 32Li3(y) Y — %XY3—2Y27r2

1 2 2
—3X2Y2+6Y4—27XY—9Y3+9XY2+%Y2) [t T
L)

. 27 16 1
+<24L14(y)— 7X'~’+16X¢3+8¢3 - ?X3— §7r2+ﬁ7r4+27r2XY+12X

—48Li4(z)+12Y+§X4+2X2Y+16—17r2X+ ész2—6X3Y

+(36Y+8—4X) Lis(z) + (—36X+20Y—4) Lis(y)

+4(2Y2+ X?-92x - Y—6XY+27r2> Lip(z) +6 X Y - 32Y (5 — %Y%r?
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t2— 2
éY4+%4Y3—8XY2+gYw2+gY2+48Li4(z)>[ SQ”J

—-6X%2Y?%—

3

19 7
+<8Li3(y) +4Lis(z) + (SY - 4X) Lig(e) ~ 5 Yo’ — 12X + >

—ys

2
Y+2

z 2X—7X2Y—%X2+27r2+gXY2+%X3—3XY+12Y—24§3)
P 2 U
+6X% - 4672 (C.3)
U t
46 37 2, 4. 4_. 4 5 29 , 41,
= [=5+2 -2 - = -L X X4 =
D, <3S+187TX 3X Y 3L12((L‘)X+3 is(z )+9 5 tg"
455 9 4 _, 124 49 t2 + u?
—Z = _ == =z X - = L
6 7?8 > S —4X S+ X184 o > 5 83 .
8 13 4 16 12 — 2
i X X3 Byt 2y X2
(9 A -GN g XS g Y )[ 52 }
Ly 216
= —q? - 4
( 5 X 9X+3XS) (C.4)
8 8 8 236 37 4 248
E, = |[-Lis(y) — = Li Y+ X =S5 x? 2y-=X
s (3 i3(y) 5 Lis(z) + 3( + )le(:c)+ ST X+3 XY >
1370 4 8 58 7 8 11
2 L Exy2_Sx8 2 2, -2 ©y2 e 2 X
| 31 +3 Y 9 +9X 187r+67rS+3YS+3Y7r+8 S
8 58 35 8 248 t? + u?
- X25-2y?2_8yS§- =2 i v | |5
3 S 9Y 8Y S 9C3+9 S+ 7 ) 2 }
16 5, 2., 16 , 4_ . 32 ; 4 4,
- = Dyr_ Dy fys 32y 4 +-X8--X
+( 9X 9Ty e e A R R
4 4 26 16 t? —u?
__Y2 = 2 v 2
3 S+3YS+9X g YT 3
2
+3 (X—Y) (3X+16—6S+3Y> (C.5)
4 2 + u?
F, = -5 (35 5+37r) (—3S+5+37r) — ] (C.6)
C.1.1.2 One-loop self-interference contribution
4 1
A, = —X1r2—3X3+g7r2+11XS— 11 S——3X 12—152
3 9 g X 3
L Lo7 2 169 143 2 2 L 4\ [t?+4?
T X e T ST 45X 52
+(—§X —X4—%7r2—§X7r2+290X2
| o
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t2_ 2
+Hlxs oxtyoxze2_Lyeg Y
6 6 82

- = 2p? =X-_-X8§
+<2X7r +8X +67T X +18 6

t 1 t?
1y —4n? + X2 —2X2 44X 7| -+ = X2 (472 + X2 — (C.7)
4 u 8 U

133 26 8 3 104 46 22
B — _Y2__ _° 2 2 _2 3 _ Y yv4 —~_Zx_Zz 2
i (18 3Y 3X7r 6X2n2+9X 2X+g 3 3YS
22 2 2 2 2 2 151 2
+22YS+?X S—2XS+4Y X7 -3Y2 X 4+9Y X +V2%X —FX
1 2 2
2y?a2 o3y tys 88 By a Ly e |titu
2 3 3 §2
53 13 8 3 4 23
_2y2, Gy 0 2 _ 2.2 3_2y4 2 49
+( 13 +9 +3X7r 6 X“m+6X 2X +37r 9X
11 11 11 11
+—Y2S——YS+—X2S——XS+Y2X—3—5X2—2Y27T2+2Y3
3 3 3 3 8
5Y gyn —YX)[ —
1 1
+ —YZX—3YX——IYS—Y2+§Y+X7¥—§X%2—§X4—7r2
2 3 9 2 8
11 2 1 1
+—XS+—3X+3X2+—Y27r2+—YX2+Y7r2+1Y4
3 9 2 2 8
3 2 1 u?
__X2 4 2 X2 e —v2 2 2 bl
3 ( T+ u2+8Y Y“+4n 2
3 2 3 2 2\t
+ZX —4r" 4+ X -2X° 44X 7% | =
. U
1 2 2 2 3| U
—4—Y —4r°+4Y n* -2Y°4+Y n (C.8)
59 2 2 _2 3 3 4 2 2
C, = S Y - 48Y +6X%x° —9X +5 X +48X +32-12Y X nP +9Y2X
2 2
—27YX—3Y2X2—gX2+6Y27r2—9Y3+gY4+9YX2) EAu
S
3 2 2 2 25 2 3 4 2 2
+{6Y3-3Y2X —6Y2r +8X—7Y — Y H3Y X -6 X

t2— 2
+6 X7 +8Y —6X° — gX2+6Y7r2+gX4) [Tu]
S

+(—8X—3Y7r2—gY2X+9YX—3X2+gY27r2—3Y2

+8Y—3X7r2+gX27r2—gYX2+gX4+37r2+gY4>
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2 2
B3x2arexz)| L 13y (y2pane) L
u? 8 2

8
t
—§X(—47r2+X3—2X2+4X7r2>—

4 U
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2
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£ \81 27 9 9 82 '

C.1.2 The u-channel process ¢q7 — q7

C.1.2.1 Two-loop contribution

22 2 22
A, = ((—+4X—4Y) Lis(z) + (23—2+4X—4Y) Lis(y) + (—EWZ—?X—zyz

3
22 7 4 1
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3
+Y272 4+ 6Y (3 +4X2Y? —6XC3+1§—1U2 -9XY?- 23—2Y2U— 23%5)(7#

22 23213 2777 1 49
—14 -2 XU+ 22 . _—__U-4Li ) G ¢
GU- X U+2X U+~ o U 4L14(z)+6X 5 X
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C.2 Like quark scattering

C.2.1 The mixed st-channel process q§ — gq
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C.2.1.2 One-loop self-interference contribution
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n 83 21 4

52 2
Y2 _ 2Y 2 . 2+y,2 Syv2_ 2 _ F 3
9 +—3 (3 —12X +4XY +8X (3 2XY+3Y7T 3XY

82 t?
-3Y? - + —3X2—3Y2—37r2+6XY)—
t 52
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227 11 3401
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79 173 , 11 4, 79 1 0 . .
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10 4 2+ 52
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+27 QXU)[ u?
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20 4 ., 4 10 1., 7 o 2 5
- = = _Z - hl - Z - X
+( U tgU YU+ Y+ Vi —qmem + XU — o
1 1 t? + 52
-~ XY +— Xx?
6 +12 ) st
-t 2xusdixilxy-Llx s (C.74)
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4 10 8 20 1 1 5 13
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4 o 20 t2 4+ 52
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A, = (—10X2Y—|~%Xﬂ2—X27r2—3X2Y2+10XY2—TOXU+TYU
11 22 1 2 23
+?X2U+49—6XY+?Y2U—3Y2WZ—10Y7r2+2X3Y—§7r4—%—§7r2
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~x?y_-= = = - Xy?4y o -y
+(4X 12X7r+8X7r—i-8XY 4X +36XU 13 U
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*36
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-2X27? —4Y? 7% - 40X2 + B2 10y +§U+24—@w2
1 t2+s ’ ’ ’ "
proar)
+<—§X+£XU+¥XY— By 3minxyn +49X3+3XY3
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2 .2
Iy By 19y +2—1Y7r2—m1r2+£X2)[t 3]
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—62X3 +18 X% 4+128Y3 —36Y4+120XY7r2+109X+117r2U—8) (C.77)
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9 19 2 — 2
2 2 x?
+16 ¥ 16 ) [ st ]
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—
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1
+3 (4—5X3+14Y3+2X2U+27r2U—4XYU—21XY2+4Y2U
+17X2Y - 2Y + X —-20YU+10XU - 18XY -5 X w2+ 17Y w2 +4U

+57% +5X% +18 Y2> (C.81)
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C.4

C4.1
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Gluon-gluon scattering

Two-loop contribution

4 4 1
_asx -3 g6y Liz(y) + _ 3y My 320 Lig(m)——ﬁXYvrz
3 3 3 3 3
3 44372 1864
—%w2s+%S—256Li4(:c)+96Li4(z)+¥52—83—1+%g3+76)(2
26 176 5392 176 200 496
—X*+4Y* - 96Li — XYS+ Y - —Y3 4ty — gt
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T XYPH20X°Y5 4+ oV r® 4 | — = +80X +48Y | Lig(a) | ~

2 22
+((—40—64Y+40X) Liz(z) + (% —40Y+64X> Liz(y) + 8 X Y n? — ?Hs

16 2 4312 484 22186
+<4ox e %Y) Lis(z) + 2—7 S +48Lis(z) ~ 128 Lig(z) + “g- 57— 20

11 2 62
+T§3—%8X2 3 X4+38Y2+§Y4—48Li4(y)+—7§}’—3—Y3+—7r2

27 3 9

19 4 49 124 5 16 o 44 _, , 4,
A 9 g Xm - g XS+ g V'S
+338X5+2§O.Y5+20XY+16YC3+20X2Y+13_6XY2_14X27T2_69_7Y7r2

836 1w

t2

2
~24X (53— ?OXY3—16X2Y2—6Y2W2> 3

16 308 8624 88 968 44372 1408
- XY 2 _ WYY 2 Dhes b g VY g2 _ ERote Ve
+< 3 T 9 S+ 57 S+ 3 Lig(z) + 9 S 51 + 9 (3

1 4
+3%X2+2X4+4Y4+¥XYS+%Y—lsﬁw—mwz—ﬁw"—szggs
1616 220 7 88 176 968
_X__X3__X 2 _ Y y2cq _ 3 __Y2 = x
+— 5 g Xm = S XS —8X°Y - =Y+ =X S

—8—8Li2(m)X—16Y§3+§X2Y+§X27r2—@sz—SXcg—SXYS

3 3 3 9
20 t? 184 64 253
2,2 2.2 : 2 2
+12X“Y -3 Y W)—u2+(<88Y——3 )Lla(y)+ 3 XYnm -5 T S

11374 121
S sy OS2+¥C3—W;—6Y2+?;—1Y4—176Li4(y)+44XYS

27 9

8579 80 196 5 220 1628 194
i __Y3__2 Y4 ——Y2 —av -V

5 ¥ - 3 g T 3T —40GS - YIS+ —— Y S+ = XY
184 104
+TLi2(x)X+%XYz—%Yﬂ2—16X§3—168Li3(a:)Y—43—0XY3




C. Finite Contributions 207
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