
Durham E-Theses

Assessing multi-version systems through fault

Injection

Townend, Paul Michael

How to cite:

Townend, Paul Michael (2001) Assessing multi-version systems through fault Injection, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3766/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3766/
 http://etheses.dur.ac.uk/3766/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

I

Assessing Multi-Version. Systems
Through Fault Injection

Paul Michael Townend

The copyright of this thesis rests with
the author. No quotation from it should
be published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

M.Sc. Thesis

Research Institute in Software Engineering,
Department of Computer Science,

University of Durham·
UK

2001

2 6 APR 2002

ABSTRACT

Multi-version design (MVD) has been proposed as a method for increasing the dependability

of critical systems beyond current levels. However, a major · obstacle to large-scale

commercial usage of this approach is the lack of quantitative characterizations available. Fault

injection is used to help seek an answer this problem. Fault injection is a phrase covering a

variety of testing techniques that can be applied to both hardware and software, all of which
I

involve the deliberate insertion of faults into an operational system to determine its response.

This approach has the potential for yielding highly useful metrics with regard to MVD

systems, as well as giving developers a greater insight into the behaviour of each channel
'

within the system. In this research, an automatic fault injection system for multi-version

systems called FITMVS is developed. A multi-version system is then,tested using this system,

and the results analysed.

It is concluded that this appr?ach can yield several extremely useful metrics, such as metrics

related to channel sensitivity, channel sensitivity to common-mode error, program scope

sensitivity, program scope sensitivity to common-mode error, error frequency distribution and

common-mode error frequency distribution. In addition to this, the analysis of the multi

version system tested indicates that the system has an extremely low probability of

experiencing common-mode error, although several key points in ch~nnel code are identified

as having higher sensitivity to faults than others.

2

Copyright

The copyright of this thesis rests with the author. No quotation frop1 it should be published

without his prior written consent and information derived from it should be acknowledged.

Declaration

No part of the material offered has previously been submitted by the ~uthor for a degree in the

University of Durham or in any other University. All the work presented here is the sole work

of the author and no one else.

3

TABLE OF CONTENTS

CHAPTER! .. ' 10

INTRODUCTION... 10

1.1 Introduction... 10

1.2 Objectives ... ,................ 10

1.3 Organization of the Remainder of Thesis.................................. 11

CHAPTER 2... ... 13

THE NEED FOR DEPENDABLE SOFTWARE ,................. 13

2.1 Basic Definitions .. ·................. 13
2.1.1 Software systems.. 13
2.1.2 Errors... 13
2.1.3 Failure.. 13
2.1.4 Faults... 13
2.1.5 System Design.. 14
2.1.6 Design faults and component faults i........... 14
2.1.7 Related errors... 14

2.2 Dependability.. 14

2.3 The Need for Dependable Software :................ 16

2.4 The "Traditional" Software Engineering Approach..................... 17

2.5 Software Fault Tolerance ,................ 18
2.5.1 Recovery blocks.. 19
2.5.2 Multi-version design.. 21
2.5.3 The controversy over multi-version design............................ 22
2.5.4 Cost factors of multi-version design................................... 22
2.5.5 Other FT methods based on RB and MVD. 23

2.6 The Need for Fault Tolerant Metrics :. 24

2. 7 Summary .. ;.............. 25

4

CHAPTER 3 .. .". 26

FAULT INJECTION... 26

3.1 Problems with Traditional Testing ,.................. 26

3.2 Fault Injection... 26
3.2.1 Background of software fault injection ,................. 27
3.2.2 Differences with traditional testing techniques ,................. 30
3.2.3 Issues to consider... 31

'

3.3 Applying fault injection to multi-version systems :................. 31

3.4 Summary... 33

CHAPTER 4 ... -................... :............. 34

IMPLEMENTATION ... :················ 34

4.1 FITMVS.. ... 34
I

4.2 The Design of FITMVS ~.............. .. 34
4.2.1 System input .. '................. 34
4.2.2 The automated process... 40
4.2.3 System outputs ... : 41

4.3 Objectives of the System '................ 41

I

4.4 Limitations of the System.. 42

4.5 Portability Issues.. 43

4.6 The Development ofFITMVS ··:·.. 43
4.6.1 The parser component. ;............... 43
4.6.2 Auto-testing functionality ;................ 45
4.6.3 The main fault injector and user interface components............. 46
4.6.4 Changes required to the target system l............... 46
4.6.5 The test-set file makeup... 47

'
4.7 Summary ... :................ 48

CHAPTER 5... 49

APPLICATION CASE STUDY '............... 49

5.1 Factory Production Cell Case Study.. 49

5

5.2 System Requirements .. , ,.... 50
5.2.1 Assumptions ... ;.................. 50
5.2.2 Operational environment.. 51
5.2.3 External interfaces & data flow... 51
5.2.4 Logging format.. 52
5.2.5 General crane operation ,................. 53
5.2.6 Movement of blanks.. 53
5.2.7 Both blanks need to be moved to the deposit belt.................... 53
5.2.8 Both blanks need to be moved to other workstations................ 54
5.2.9 One blank moves to deposit belt, other to another workstation.... 54
5.2.10 One blank needs to move to another workstation m; deposit belt... 54
5.2.11 Neither needs to be moved.. 55
5.2.12 Belt control ... '................. 55

5.3 Summary .. · :................ 55

CHAPTER 6 .. ~... 56

THE EXPERIMENT PERFORMED '................. 56

6.1 Overview of the Experiment Performed ,................. 56

6.2 Re-development of the Factory Simulation ~................ 56

6.3 Test data .. ·................ 57
6.3.1 Test 1 (single blank) ; 57
6.3.2 Test 2 (single blank) :. 57
6.3.3 Test 3 (two blanks)'................ 58
6.3.4 Test 4 (two blanks) . 58
6.3.5 Test 5 (two blanks) . 58

6.4 P . T' ' rocess1ng 1me .. . 59

6.5 · Summary ... ;............... 59

CHAPTER 7 .. '............ 60

RESULTS AND ANALYSIS ;··············· 60

7.1 Overview ofResults..... 60

7.2 Output ofFITMVS Log Files.. 60

7.3 Sensitivity Metrics ... '............. .. 63

7.4 Sensitivity to Common-mode Failure.. 65

7.5 Sensitivity to Error of Each Program Scope :.............. 69

6

7.6 Error Frequency Analysis :.................. 71

7.7 Issues with FITMVS Arising From the Experiment..................... 75

7.8 Summary .. :................. 76

CHAPTER 8... ... 77

CONCLUSIONS AND FUTURE WORK................................. 77

8.1 Conclusions ... :................. 77

8.2 Future Work .. '................. 79

8.3 Acknowledgements .. ~................ 80

APPENDIX A... 81

REFERENCES .. 87

7

LIST OF FIGURES

Figure 1 Dependability ... ·. 16

Figure 2 Recovery block operation. 20

Figure 3 A 3-version voter system... 21

Figure 4 An example of code mutation. 28

I

Figure 5 An example of a perturbation function... 30

Figure 6 Relationship between functions in separate channels.......................... 32

Figure 7 FITMVS operation flow-chart ~................ 35

Figure 8 FITMVS Main Menu screen... 35

Figure 9 FITMVS System Setup screen. 36

Figure 10 FITMVS Configure Software Settings Screen ~............... 37

Figure 11 FITMVS Edit Version screen.. 38

Figure 12 FITMVS Edit Injectable Sources Screen '................ 38

Figure 13 FITMVS Configure Injection Settings screen 1............... 39

Figure 14 Gaussian probability distribution. 40

Figure 15 The layout of the FITMVS log file... 41

Figure 16 The scoperecord, variablerecord and inject record objects :............. 44

Figure 17 The structure of parse tree generated by the parser component ,of FITMVS... 44

Figure 18 Parse times for different sized programs....................................... 45
I

Figure 19 Diagram of Flexible Production Cell... 50

Figure 20 Assumptions made regarding the controller software's working environment 51

Figure 21 Simulation inputs ... ~............... 52

Figure 22 Format of controller log ... ,............... 52

Figure 23 Assumptions made about the cranes
1
•••••••••••••• 53

Figure 24 Scenarios when there are two blanks in the system............................ 53

8

Figure 25 Example situation of blanks on opposite side of the production cell. 54

Figure 26 Assumptions about the feed belt and deposit belt ,................. 55

Figure 27 Contents of the test file used to test the MVD factory system. 59

Figure 28 Extract of FITMVS output for Channel A ·................. 61

Figure 29 Extract of FIT MVS output for Channel B '·................ 62

Figure 30 Sensitivity results for both MVD channels..................................... 64

Figure 31 Sensitivity results for each set of injections '................ 64

Figure 32 Overall analysis of common-mode failure :................ 67

Figure 33 Analysis of time-out probabilities , 68

Figure 34 Errors detected per program scope for both channels tested.................. 70

Figure 35 Common-mode failures detected per program scope for both channels tested. 71

Figure 36 ·Error type frequency for both MVD channels................................. 72

Figure 37 Error type frequency breakdown for Channel A ; 72

Figure 38 Error type frequency breakdown for Channel B ·,.... 73

Figure 39 Common-mode failure frequency in Channel A and Channel B............... 74

Figure 40 Common-mode failure type frequency breakdown for C~annel A and
Channel B .. ,................ 74

Figure 41 Code example of what FITMVS can and cannot perturb...................... 75

9

Chapter 1 Introduction

1.1 Introduction

An increasing range of industries has a growing dependence on software-based

systems. Many of these systems are critical systems developed for safety-critical, business

critical or mission-critical applications, and it can be seen that failure within such systems has

the potential to be devastating.

Given the need for dependability, many software systems still have an unacceptably

high level of faults. Multi-version design (MVD) has been proposed as a method for

increasing the overall dependability of software systems above that of those developed using

traditional approaches. However, a major obstacle to the large-scale commercial rollout of

MVD systems is the lack of quantitative characterizations of the approach. These are difficult

to assess, but important, as in most cases resource allocation cannot be done arbitrarily or

carelessly [KIMOO], and without relevant metrics, sensible resource allocations cannot be

achieved.

It can therefore be seen that a concerted effort needs to be made to improve the level

of empirical knowledge in regard to multi-version systems. This has been done to limited

effect with traditional testing methods, but the area of fault-injection has been especially

neglected [VOA97, CHE99].

Fault injection as an analysis tool has a number of benefits; for example, it can

effectively simulate rare events that may not have been considered during a target system's

testing phase, and is also a very good method for deriving metrics about a system. Currently

however, most fault injection systems within the software engineering field have concentrated

on the assessment of single version software, with little or no analysis tools for the detection

of common-mode failures in multi-channel systems. [CHE99] states that "as far as fault

injection for diversity evaluation is concerned, the lessons from the literature are limited and

of a general nature only."

1.2 Objectives

This research is centred around the design and development of an automated fault

injection system for the analysis of multi-version systems, in order to provide a method for

10

easily extracting useful metrics from such a system, as well as facilitating the testing process

for MVD systems by identifying areas of code with a high sensitivity to common-mode

failure. A fauit-injection system is developed capable of parsing C and C++ source code,

injecting faults, compiling the resulting code, automatically testing the code using user

specified tests, and logging the results. In addition, an existing factory simulation is re-written

in C++ in order to allow the testing of an existing MVD factory control system to be

performed much faster. The results outputted by the fault injector are then analysed in order to

gauge the sensitivity of individual MVD channels to errors as well as their sensitivity to

common-mode failure. This research also results in good non-commercial fault-injection

being made available for future studies.

1.3 Organization of the Remainder of Dissertation

This chapter (Chapter 1) introduces an overview of the research area of this project,

and details the structure of the rest of the document.

Chapter 2 introduces the basic definitions used throughout the thesis and gives a

detailed definition of the concept of dependability. The traditional software engineering

approach to developing software, software fault tolerant techniques such as recovery blocks

and multi-version design, the controversy over multi-version design, and the cost factors of

MVD systems are also discussed. The chapter concludes by discussing the need for more

fault-tolerant metrics

Chapter 3 details the problems associated with traditional testing techniques, the

background to fault injection, and the differences between fault injection and traditional

testing techniques. A method for applying fault injection to MVD systems is also discussed.

Chapter 4 introduces the tool to be developed for this research. It goes on to detail

the design and operation of the tool, its objectives, its limitations, and portability issues

associated with it. The chapter ends with a detailed description of the development of the tool

and the make-up of the test files used by it.

Chapter 5 describes in detail the factory production cell simulation used to test the

effectiveness of the fault injection tool developed. The system requirements, operational

details, and assumptions made by the production cell simulation are also discussed.

Chapter 6 gives an overview of the experiment performed using the fault injection

tool. It details the re-development of the production cell simulation in C++, and describes the

test data used during the experiment. The chapter concludes by describing the extra hardware

used to combat the large amount of processing time required for each test.

11

Chapter 7 details the results of the experiment performed, together with an analysis

as to what these results mean. The chapter concludes by examining issues that arose from the

fault injection tool as a result of the experiment.

Chapter 8 gives the conclusions of the thesis, describes potential future work and

research directions, and contains acknowledgements.

12

Chapter 2 The Need for Dependable Software

2.1 Basic Definitions

Before beginning a detailed discussion, it is first necessary to define a number of

basic concepts that are related to the areas of dependability, fault tolerance and fault injection.

These will be used throughout the whole thesis.

2.1.1 Software systems

A system may be viewed as a set of components interacting under the control of a

design (which is itself a component of the system) [LEE90]. Components are themselves

systems, and receive requests for service and produce responses; when a component cannot

satisfy a request for service, it will produce an exception. This system model is recursive in

that each component can itself be considered as a system in its own right and thus may have

an internal design which can identify further sub-components.

2.1.2 Errors

An error can be defined as a discrepancy between a computed, observed, or measured

value or condition and the true, specified or theoretically correct value or condition. Errors

occur at run-time, when some part of the computer software enters an undesired state. They

are therefore a property of the state of the system, and cannot be observed easily (unless

special mechanisms are employed to record the occurrence of some types of events.)

2.1.3 Failure

A failure occurs when an error passes through the system-user interface and affects

the service delivered by the system. A component failure results in a fault (1) for the system

which contains the component and (2) as viewed by the other components with which it

interacts; the failure modes of the failed component then become fault types for the

components interacting with it.

2.1.4 Faults

A fault (also referred to as a bug) is a defect that has the potential of generating

errors. It is a static notion, and the presence of a fault may lead to system failure.

13

In most cases, the fault can be located and removed; in .some cases it remains a

hypothesis that cannot be adequately verified (e.g. timing faults in 9istributed systems). It is

important to note the distinction between error detection and fault location; an error shows the

presence of a defect, but the underlying cause of this defect is ohly identified by a fault

location process [HAL90]. This process is very much a problem-solVing activity, but it can be

tackled systematically (see [KER86]).

2.1.5 System design

A system design can be considered as the algorithm which is responsible for defining the

interactions between components, establishing connections between components and the

system environment, and for providing an supplementary processing for the system to achieve

its required behaviour.

2.1.6 Design faults and component faults

A design fault is the failure of the system desigh algorithm to perform its intended

function, whilst the failure of a system component to operate according to its specification is

termed a component fault.

2.1.7 Related errors

A related error is a multi-version design specific conjecture whereby the probability of

a version manifesting an error when another version has manifested an error is greater than
I

the probability of the version manifesting an error on its own. This may lead to a higher

probability of common-mode failure than would be the case if erroJJs within versions were

independent of each other.

2.2 Dependability

Traditional terminology, commonly used by both software epgineers and hardware

reliability engineers, is often inadequate when discussing software . faults. Some of these

traditional terms are defined below.

Reliability Reliability may be defined as the ability of a ·system to perform its

required functions under stated conditions for a specified period of time.

14

Availability

Safety

Confidentiality

Integrity

Availability is the degree to which a system or' component is operational

and accessible when required for use. This , is often expressed as a

probability.

Safety is the non-occurrence of catastrophi,c consequences on the

environment.

Confidentiality is the non-occurrence of the unauthorized disclosure of

information.

Integrity is the degree to which a system or component prevents
'

unauthorized access to, or modification of, computer programs or data.

Maintainability Maintainability has two forms :

1) The ease. with which a software system or component can

be modified to correct faults, impro've performance or other

attributes, or adapt to a changed env:ironment.

2) The ease with which a hardware system or component can

be retained in, or restored to, a state' in which it can perform

its required functions.

The use of these terms is inadequate for several reasons - for example, design faults

often lack any one useful categorization, whilst the actual identification of a particular aspect

of a complex system design as being a fault may well be subjective. Also, depending on the

circumstances, failures of interest could concern differing aspects of the service - e.g. the

average real-time response achieved or the degree to which deliberate security intrusions can

be prevented, etc. Hence, there is a need for a more general definition; ideally this should be

properly recursive, in ord~r to allow adequate discussion of problems :that might occur at any

level of a system.

This concept is known as dependability and was first proposed by Laprie in [LAP92].

Writing in [RAN95a], Laprie defines dependability as "that property of a computer system

such that reliance can justifiably be placed on the service it delivers. The service delivered by

a system is its behaviour as it is perceived by its users".

Dependability has three characteristics: attributes, means and threats. These are

illustrated in figure 1.

15

DEPENDABIT..ITY

ATTRIBUTES

--+--- ~ANS ---§

AVAILABILITY
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILIT Y

FAULT PREVENTION
FAULT TOLERANCE

I

FAULT REMOVAL
FAULT FORECASTING

---E
FAULTS

THREATS ERRORS
FAILURES

Figure 1 - Dependability

Dependability is a global concept, and subsumes the attributes of reliability,

availability, safety, security, maintainability and confidentiality. These attributes enable the

properties which are expected from a system to be expressed, and allow system quality

resulting from the threats and means opposing it to be assessed. The means for dependability ·

refer to methods and techniques that enable a system to provide the ability to deliver a service

on which reliance can be placed, and confidence reached in this~ ability. The threats to

dependability refer to undesired (but not necessarily unexpected) circumstances resulting

from undependability.

Depending on the application, different emphasis may be placed on the various facets

of dependability within a system; however, regardless of this, it can therefore be seen that

dependability is not simply a synonym for reliability; rather, reliability is just one attribute of

the overall concept.

2.3 The Need for Dependable Software

As the role of software becomes more and more entrenched in everyday usage,

software dependability has increasingly come to the foreground. Although faults affect all

types of software, they are of particular concern when developing safety-critical and real-time

applications, where a single fault may result in a serious incident. Safety-critical software may

be defined as any software that can directly or indirectly contribute to the occurrence of a

hazardous system state. Obvious examples of this include aircraft flight systems and nuclear

shutdown systems, but this definition also extends to more common applications, such as

embedded systems within vehicles and domestic appliances, or indeed any system that

16

controls significant amounts of power [ST096]. The cost of failure within such systems is

invariably high; there are numerous documented examples of suc4 failure, many of which

have resulted in the loss of human life [LAD99]. Given the increased need for dependability,

many software systems still have an unacceptably high level of faults.

In an attempt to reduce this level of faults, the safety Of relying on traditional

development techniques has been questioned, and alternative development methodologies
I

have been proposed. The vast majority of these 'alternative' methods fall into a category

known as "Software Fault Tolerance". The question of whether such alternative development

methods result in a more dependable system is multi-faceted and controversial, and is a

question that this research seeks to further explore.

2.4 The "Traditional" Software Engineering Approach

Traditionally, software has been developed using a single variant approach- i.e. all

the resources available for the development and implementation of a. system (such as time to

develop and the number of programmers) are concentrated on producing a single, dependable,

"good" system.

This method addresses the "fault prevention" attribute of dependability, as it aims to

prevent (as much as possible) the occurrence of program faults, through good design

principles and implementation processes. It also addresses the "fault .removal" attribute as it

places an emphasis on thorough testing strategies with the aim of removing as many faults as

possible.

Lack of dependability in such systems has been explained as due to lack of resources
I

allocated to the design and development of software, such as the amount of time for

implementation. This viewpoint suggests that given enough resources,. software dependability

will be greatly increased.

This viewpoint has been called a delusion by some commentators, such as [HAT97],

who argues that different techniques that supposedly promote the goal of improved

dependability have come and gone, whilst the defect density of software has remained similar

for more than 15 years. Even high-integrity systems which have had formal specification

methods and extensive testing applied to them still have faults; the example cited in [HAT97]

is of an air-traffic control system which, despite it's thorough development, still had a defect

density of0.7 faults per thousand lines of code.

Current advances in t)1e field of software engineering, such as
1
object-orientation and

software reuse strategies, attempt to increase the correctness and maintainability of software

and thus reduce the number of undetected faults within systems. However, these approaches

17

cannot completely eliminate the risk of systems being developed wi~h potentially serious and

undetected faults. Pressman [PRE97] states that with the advent of object-oriented

technologies and increased reuse of program components, the amount of system code that

must be 'built from scratch' may decrease, but the overall size and complexity of systems

continues to grow.

The advantage of this development approach is that it is a well-known and well

understood methodology, with a large number of supporting metrics [KIT90] that can be used

to justify the approach to management. Perhaps the main disadvaJ;ltage is that, due to the

reasons given above, it is reasonable to assume that the incidence of faults within software

systems will remain a problem for the foreseeable future,

Given this disadvantage, there is a need to investigate alternative approaches in order

to investigate possible methods to reduce the potential amount of undetected faults within

applications.

2.5 Software Fault Tolerance

The concept of Software Fault Tolerance [L YU95] has become increasingly

recognized in recent years. Fault tolerant software allows errors to be detected and logged,

without affecting the running of a system, and potentially offers great improvements in

dependability over traditional development methods. [A VI85] describes the function of fault

tolerance:

'
" ... to preserve the delivery of expected services despite the presenc~ of fault-caused errors

within the system itself Errors are detected and corrected, and permanent faults are located

and removed while the system continues to deliver acceptable service. "

There are two main approaches to software fault tolerance, d~pending on the goal of

the system designer; these are either preventing a failure from leading to complete system

disruption, or ensuring continuity of service. The aim of the former is: to detect an erroneous

task as soon as possible, and halt it to prevent error propagation- a technique often termed as

fail-fast [GRA90]. The latter approach requires the use of design diversity; this is defined by

[AVI86] as

" the production of two or more systems aimed at delivering the same service through

separate designs and realizations."

18

The majority of fault tolerant methods use design diversity, and as such it is this

approach that is of interest in this research. Two of the principle techniques in the area of

design diversity are Recovery Blocks and Multi-version Design.

2.5.1 Recovery blocks

The recovery blocks technique is one of the earliest in fault tolerance, and was first

introduced by [RAN75]. Recovery blocks work on the principle of acceptance testing; on

entering a recovery block, system state is saved and a primary alternate is executed. An

acceptance test is then performed to provide adjudication on the outcome of this primary

alternate. If the acceptance test fails, then backward recovery is performed by the system

reverting ("rolling back") to its previously saved, and the next alternate is executed. This may

continue until either an alternate passes the acceptance test, or the final alternate is executed

and fails the acceptance test. Should the final alternate fail, then the system will fail also. This

is illustrated in figure 2. Recovery blocks can be nested, and so the raising of an exception

from an inner recovery block can invoke recovery in an enclosing block.

The recovery block approach has a number of advantages. It is fault tolerant as errors

discovered by the acceptance test can be detected, corrected and logged, and the approach can
I

- if necessary - provide gradual degradation of a system, whereby each alternate runs a

progressively smaller number of services in order to enable the system to pass an acceptance

test. Also, provided the primary alternate does not fail, additional alternates will not be

executed, and so the run-time overhead of recovery blocks can be minimal when compared to

a single-variant system. There is a footprint, but tests by [SHR 78a} [SHR 78b] support the

belief that recovery blocks do not impose any serious runtime and recovery data space

overheads - the experiment showed that the run-time overhead ranged between 1 - 11% that

of T1 (a program with no recovery facilities), provided the primal)\" alternate did not fail.

Should the primary alternate fail, the time to restore system state was up to 30% ofTl.

However, the approach also has several disadvantages. For example, the success of
I

recovery blocks rests to a great extent on the effectiveness of the error: detection mechanisms

used, especially (although not solely) the acceptance test. Should the acceptance test be

faulty, alternates that are correct may be treated as though faulty, and f~mlty alternates may be

treated as though correct. Also, there is a danger of what is called the· 'Domino' effect. This

can occur when a system of co-operating processes employs recovery blocks, as each process

will continually establish and discard checkpoints, and may also need to roll-back to a

previously established checkpoint. Should recovery and communication operations not be

performed in a coordinated manner, then the rollback of a process can result in a cascade of

rollbacks that could push all the processes back to their beginnings. Another potential

19

problem is finding a simple and highly reliable acceptance test that does not involve the

development of an additional software version; the form of acceptance test depends on the

application - for example, there may be a different acceptance test for each alternate,

although in practice only one is usually used. This type of system is not considered

appropriate for many real-time systems, as it is not feasible to simply 'roll back' the state of a

system. Also, the nature of the system means execution time is unpredictable, as it depends on

how many alternates fail the acceptance test. Alternates must not retain data locally between

calls, otherwise the modules can become inconsistent with each other. The problem is more

noticeable when attempting to design an alternate as an object. There is no guarantee that the

state of the object is correctly modified unless the object is invoked each time, although

[KIM84, KIM95] proposes distributed recovery blocks as a way of circumventing this

limitation.

exit

Discard
checkpoint

Establish
checkpoint

entry

Failure eJG::eption

Recovery Block

Figure 2 - Recovery block operation

Although the basic implementation of recovery blocks makes no provision for

forward error recovery, this is possible, as described by [MEL 77], whilst [CRI82] states that

forward error recovery mechanisms can support the implementation of backward error

recovery by transforming unexpected errors into default error conditions. However, this ts

very much application specific, and so it is often the case that the recovery block approach is

20

inappropriate for systems that require decisions to be made quickly (such as many real-time

systems). Therefore, when such systems employ a fault tolerant approach, the most common

methodology used is multi-version design.

2.5.2 Multi-version design

Multi-version design was first proposed by [AVI77]. It w,orks on the principle of

independently implementing n versions of a program (channels), which are then executed in

parallel with a single input (although conceptually, parallel execution is not necessary -

channels may be executed separately and their results later compared). The outputs of these

channels are then compared under a voting system, which then forwards a single output based

on the majority agreement of the channels [KNI86]. This is detailed in figure 3.

State-Connection Information

I

-.I * Version 1
I
N I V Consensus Result

!!: p
~I Version 2 0

u T
T E

I

R Fail

-.I
:z

Version 3

Figure 3 - A 3-version voter system

The multi-version approach has gained attention as a number of researchers have

documented significantly increased levels of dependability within software developed using

this methodology, e.g. [AVI89, HAT97] etc.

There is still much debate over how much of an improvement in dependability the

approach offers over single variant design. Some researchers have concluded that the

dependability of software developed using the multi-version 11?-ethodology increases

dramatically; for example, Hatton's 1997 analysis [HAT97], based on the Knight and

Leveson experiment [KNI86] concludes that a three-channel version of the system, governed

by majority polling would have a dependability improvement ratio of 45:1 over a single

21

variant of the system. This is not a new finding; earlier papers, such as [AVI84] have also
I

argued that the approach produces highly dependable software.

2.5.3 The controversy over multi-version design

Such massive increases in dependability have, however, been drawn into question,

and much debate has ensued; Knight and Leveson [KNI90] argue that these gains in

dependability are under the assumption that there are no correlated (common-mode) failures
I

within two or more channels of the system- in other words, no faults will occur in the same

place and produce the same results. Numerous studies, beginning w~th [SC084] have shown

that this is simply not the case. Eckhardt and Lee's study [ECK85] has shown that even small

probabilities of correlated faults can reduce the overall dependability of anN-version system

dramatically, and Leveson [LEV95] further argues that every experim'ent with the approach of

using separate teams to write versions of the software has found that independently written

software routines do not fail in a statistically independent way. Examples of this can also be

found in [ECK91, KEL88].

The voting software used in multi-version design must also' be developed correctly

and free of fault, otherwise the entire system can become unstable. An example of this is the

NASA study of an experimental aircraft, which found that all of the software problems that

occurred during flight testing were the result of faults found in the redundancy management

system, and not the control software itself [MAC88].

Therefore, it appears to be the case that such massive dependcibility gains can only be

assumed on a theoretical level. In real-world applications, the overall cost/dependability ratio

is likely to be much lower for a multi-version system than the theoretical model may suggest.

The factor of cost therefore becomes important, as the extra cost required to develop n

versions of a system may not result in an equivalent increase in system dependability.

2.5.4 Cost factors of multi-version design

The cost of developing multiple versions is not n times the cost of developing one

version, but also n times the cost of maintenance, which c~n be very high. Although

arguments have been advanced that the increase in cost will be less than n [VOU90], Leveson
'

[LEV95] argues that these rest on the assumption that some aspects of the software

development process will not have to be duplicated; also, many aspects of the processing and

outputs have to be specified with more detail than usual, in order to make the results

comparable, thus requiring that the specification phase take more time and effort than usual.

22

This therefore increases the overall algorithmic complexity of the project, which may again

have an impact on the cost of the project as a whole.

[MAC91] argues, using a number of different calculations, tpat it can be the case that

an imperfect 3-version voter system will be less cost effective than a simplex (i.e. single

version) system, although it would be as dependable; this assumes th~t all versions have equal

development costs, whilst [LAP90] calculates that the cost of developing a 3-version system

over a simplex system is at least 178% more costly, and can be as much as 271% more costly;

on average, such a system would be 225% more expensive, although the 3-version system is

more dependable.

It is not simply enough to implement n verswns of a program if the resources

allocated to that implementation are not substantial enough; the dependability of a multi

version system is directly related to the dependability of its indiv!dual channels. [KNI86]

states:

" ... one might note that even in the hardware Triple Modular Red~ndancy (TMR) systems

from which the idea of N-version programming arises, overall system reliability is not

improved if the individual components are not themselves sufficiently reliable."

The emergence of software reuse libraries, whereby reusable software components

may be bought and used to create large, dependable software systems very quickly, shows

much promise for relatively cheap, fast creation of different chanriels within a N-version

system; however, at present, although such software libraries exist, their price has yet to reach

an acceptable level and the number of components available is still quite limited. Although

software libraries may help to drastically reduce the cost of developing N-version systems in
I

the future, at present their impact on the cost of developing N-version systems is quite small.

It therefore appears to be the case that although an N-v~rsion system provides

dependability that is at least equal (and usual superior) to that of an equivalent single version

system, the cost is invariably higher.

2.5.5 Other FT methods based on RB and MVD

Although there are other fault tolerant methodologies, most are in some way based

upon either the recovery block or the multi-version approach. For example, consensus

recovery blocks [SC085] and retry blocks [AMM87] both have th~ir origins within the

23

recovery block approach, whilst acceptance voting [ATH89], n self-checking programming

[LAP90] and n-copy systems [AMM87] are closely related to multi-version design.

2.6 The Need for Fault Tolerant Metrics

At present, there is very little empirical evidence as to which methodology (single

variant or fault tolerant) yields the most dependable system. Tlie knowledge of which

methodology is more dependable is very important - especially in industry - due to the

increased cost associated with developing a fault tolerant system over a single-variant system.

Although much is known about assessing the dependability of single-variant systems

[LAP95], lack of empirical evidence is especially acute when considering fault tolerant

systems. For example, in a recent paper, [KIMOO] states that "effective, let alone optimal,

resource allocation is not possible in the absence of quantitative characterizations of FT

schemes", and goes on to state that "One can says that FT approaches not yielding to easy

quantitative analyses are unsafe to use. Using such approaches is a blind exercise of an art."

This work seeks to develop a method for obtaining metrics from fault tolerant

systems in order to better assess their dependability, and help build a more accurate

dependability model for such systems. Systems that require the highest levels of dependability

are invariably within the safety-critical domain, and are therefore us1,mlly real-time systems.

Because of this, the use of recovery blocks is sometimes inappropriate (although schemes

such as distributed recovery blocks [KIM95] help to address this problem), and so system

designers frequently have to choose between multi-version design and the single-variant

approach. Often, the single-variant approach is chosen due to the lack of empirical evidence

regarding multi-version dependability - given the fact that multi-version systems may offer

only a slight increase in dc;pendability over single-variants, it is unknown whether the

increased cost of developing such a system is worth the extra dependability gained. Therefore,

this research will concentrate on developing a method for ascertaining the dependability of

multi-version systems; derivatives of this method, such as n-copy and n self-checking systems

will not be investigated, as these systems are less commonly applied in industry. Once a

firmer understanding of the basic multi-version method is obtained, further investigations will

be able to apply the technique developed to these systems.

24

2.7 Summary

This chapter begins by defining basic terms and concepts that will be used throughout

the thesis, and gives a detailed definition of the concept of dependability. The traditional

software engineering approach to developing software is then discussed, and both its

advantages and disadvantages are explained. Software fault tolerant techniques such as

recovery blocks and multi-version design are then discussed together with their respective

advantages and disadvantages. The controversy over multi-version design is then described,

and a discussion on the cost factors ofMVD systems is given. The chapter concludes with the

case for the need for more fault-tolerant metrics.

25

Chapter 3 Fault Injection

3.1 Problems with Traditional Testing

·The vast majority of multi-version systems exist within the safety-critical domain.

Within this domain, extremely high levels of dependability often need to be guaranteed; for

example, [CHR94] states that the failure rate of these systems is usually required to be "in the

order of 10-8
- 1 o-10 failures per hour". Unfortunately, it may be the case that traditional

testing alone will not be able to adequately guarantee these levels of, dependability. [HEC96]

states that demonstrating that the failure rate of an item does not exceed x per hour requires

"approximately 1.5/x hours of test time under the most optimistic assumptions (no failures

and a high risk test plan)", and [BUT93] estimates that this would take thousands of years of

testing to demonstrate (assuming one copy of software would be testt7d and one failure would

be observed). Also, most multi-version systems are highly complex, and it is often infeasible

to perform the enormous amount of test cases required to test every possible input and system

state; according to [VOA95], "the number of tests required for establishing high reliability

are impractical if not impossible for software of even modest complexity". Another weakness

of traditional testing is that it often fails to exercise a systems response to rare (i.e. unlikely)

events. A number of studies, such as [HEC93] and [HEC94] have shown that many failures in

well-tested systems are caused by such events. The same data from these studies also shows

that multiple rare events are almost the exclusive cause of the most c;ritical failures in these

systems.

Traditional testing may therefore never reveal any faults in such a system and it is a

truism that non-exhaustive testing cannot reveal the absence of faults. This is a problem, as it

not only means that a system's high levels of dependability cannot necessarily be guaranteed,

but also makes comparisons between high-dependability single-version and multi-version

systems extremely difficult.

3.2 Fault Injection

With this in mind, a different approach to testing is perhaps re'quired. Fault injection

has been proposed as an approach that addresses these limitations. Fault injection is a phrase

covering a variety of testing techniques that can be applied to both hardware and software, all

26

of which involve the "deliberate insertion of faults into an operational system to determine its

response" [CLA95]. Once this has been performed, an examination of the system for

resulting errors and failures occurs, such as analysis of interactions between system

components and of the resilience of the system against known faults. Fault injection is a "late

life-cycle" software analysis [VOA98a] that can simulate human operator errors and observe

their impact on the software as well as the total system. It is a technique that complements,

but is not a substitute for, other verification and validation procedures.

3.2.1 Background of software fault injection

The idea of software fault injection is based upon hardware fault injection [CAR99],

and originated in Mill's fault seeding approach in [MIL72], whereby an estimate of the

number of faults in a system is made based upon how many injected faults are caught by the

testing process. This was further improved using stratified fault-seeding [MOR88]. However,

a number of other approaches have since been developed.

Fault injection is intended to yield three results: an understanding of the effects of

real faults, feedback for system correction or enhancement, and a forecast of expected system

behaviours [CAR99]. One of the major benefits of fault injection i~ its ability to test rare

events and conditions, which, as discussed above, have been shown' to be the cause of the

majority of failures within safety-critical systems. [HEC96] states that "The basic premise of

the rare events approach is that well-tested software does not fa,il under routine input

conditions, which means that failures must be triggered by unusual input data or computer

states". Such unusual input data and hardware states can easily be achieved with fault

injection, and systems can be stress tested with large amounts of unusl:Ial conditions to gamer

their response. In this way, fault injection also helps to test the exception handling and

redundancy management capabilities of a system, which are often overlooked by traditional

testing.

Fault injection is also used to measure software sensitivity, or tolerance. Sensitivity is

measured based upon a system's reaction to injections; high sensitivity means that injections

frequently cause the system to produce undesirable outputs ("undesirable" is defined in either

the system specification, requirements or defined software hazards [VOA97]). High

sensitivity implies a lower tolerance for failure, and thus shows a syste:q1 to have a greater risk

of failure than a low sensitivity system.

Faults are introduced in one of two ways - either through direct alteration of code, or

by the perturbation of data flows or control flows to achieve the effects of faults indirectly -

and can be categorized based on when the faults are injected: either during compile-time or

run-time [HSU97].

27

When altering program code, faults are typically created by ~ither adding code to the

code under analysis, changing the code, or deleting code. Code that is added to a program for

the purpose of either simulating errors or detecting the effects qf those errors is called

instrumentation code. To perform fault injection, some instrumenta~ion is always necessary,

and is usually performed by a tool (although it can be added manually). Instrumentation code

can be placed on top of input or output interfaces to the software, or directly into the logic of

the software, and can be added to a variety of code formats, such ~s source code, assembly

code, binary object code, etc. Typical injected faults include mis~timings, delays, missing

messages, corrupted memory, faulty disk reads, logical errors, syntax errors and perturbation

of variables. Faults can be injected in many ways and can address program state as well as

communication and interactions.

There are two key approaches for instrumentation - code mutation and state

perturbation. Code mutation [DEM78] occurs at compile-time and involves direct alteration

of program code, attempting to reproduce potential human errors within code; this typically

involves changing the syntax of existing code statements or modifying their logic in some

way - an example of this is shown in figure 4. The main danger with code mutation is that of

creating an equivalent mutant; this is a mutation that does not affect the output of the code in

any way (i.e. has no semantic impact on the code base) and is hence meaningless. Mutation

may also result in transient faults occurring - for example, in figure 4, one of the mutations

shown (A = A + A + 2 ;) will only affect the value of A if A is not zero; this is also

undesirable, and needs to be guarded against.

Suppose a program has the following code statement :

A = A + 2;

This statement can be mutated as follows :

A = A + A + 2;

or it could be mutated to :

A = A + 20;

etc. The code could also be deleted.

Figure 4 - An example of code mutation

State perturbation [VOA97] has the intention of forcefully modifying program states

created by the original code, without mutating existing code statements. This is often

28

achieved through the use of code insertion whereby instrumentation code is added to a system

in the form of function calls that modify internal program values (termed perturbation

functions), but it can also be implemented by modifying input data' or by the fault injector

trapping exceptions generated by the system through the use of interrupts.

Perturbation functions are code instrumentation, and are typically applied to

programmer-defined variables. They can change either the value of a variable to a value based

upon the current value, or can change the variable to a value picked at random, independent

of the original value. They may also return a constant replacement value, if it is suspected that

any fault placed at that point in the code will result in one particular ,value regardless of what

the current value is. When non-constant replacement values are used, the perturbation

functions produce random values based upon the current value and a perturbation

distribution, with non-constant perturbation distributions including all of the continuous and

discrete random distributions.

Figure 5 shows an example of a perturbation function. The function,

newvalue (int a), randomly either increases a value by 40% or reduces it by 40%.

Should this increase/decrease not affect the original value in any way, then the function

returns the original value minus one. This perturbation function is then applied to a variable

(in this case, an integer variable) in a desired part of the original code. For example, to modify

the variable a, we simply add

a= newvalue(a);

to the original code.

Additionally,fau/ty input data can be passed into a system at run-time - either by the

mutation of 'real' data or a false set of data. [VOA98a] suggests that faulty input data is the

easiest form of fault to simulate correctly (i.e. in a way that reflects real errors that could

occur naturally). Although state perturbation sometimes requires system code to be re

compiled, original code is not altered (i.e. instrumentation is added, but original code is not

mutated) and injections occur at run-time - it can therefore be thought of as run-time based
I

fault injection. The advantage of state perturbation is that the problem of equivalent mutants

does not arrive, and all perturbations should affect system state.

29

Assume a function equilikely (x, y) that randomly returns either x or y.

int newvalue(int a)
{

}

int counter = 1;
int oldvalue = a;

do
{

}

a= equilikely (oldvalue * 0.6, oldvalue * 1.4);
counter ++;

while ((a== oldvalue) && (counter< 100));

if ((counter== 100) && (a== oldvalue))
{

a = oldvalue - 1;
}

return a;

Figure 5 - An example of a perturbation function

3.2.2 Differences with traditional testing techniques

As stated earlier, fault injection complements traditional testing but does not replace

it. Fault injection cannot be viewed as testing in the traditional sense, as traditional testing

seeks to determine whether a system meets its stated requirements, and \equires a definition

of what the correct outputs of the system should be. Fault injection is generally incapable of

determining correctness, as the act of injecting anomalies into code and/or data results in an

altered state that may produce incorrect outputs with regard to the system requirements. It is

therefore impossible to assert that the code itself produces incorrect output, but it can be

asserted that the modified code produced incorrect output. [VOA98b] states that "The main

use of software fault injection is in demonstrating what sort of outputs software produces

under anomalous circumstances."

Although software engineering practices attempt to predefine system behaviour in the

event of anomalous conditions, testing invariably only looks at 'reasonable' anomalous

conditions that are considered possible. Fault injection however, can often offer insight into a

systems behaviour with the injection of unreasonable, highly unlikely conditions. Should a

· previously unconsidered anomaly be injected and cause the system to fail, then fault injection

will have demonstrated that the system is highly sensitive to the problem it was forced to deal

30

with, and the system will need to be analysed in order to ascertain whether any related faults

also exist.

3.2.3 Issues to consider

When considering how to deploy fault injection, two issues need to be addressed. The

first is that of simulation versus execution. Simulation refers to the development of a model of

a system, with faults introduced into the model rather than the system itself. This method is

often slower to test, but easier to change. Execution refers to the process of injecting faults

into a real system; this is often more useful for analyzing final designs, but is typically more

difficult to modify afterwards.

The second issue is that of invasive and non-invasive techniques. A major problem

with sufficiently complex systems - particularly time dependant ones - is that is may be

impossible to remove the footprint of the testing mechanism from the behaviour of the

system, independent of the fault injected. For example, a real-time ,communication protocol

that would normally meet a deadline for a particular task may miss it because of the extra

latency induced by the fault injection mechanism. Invasive techniques are those that leave

behind such a footprint during testing, whilst non-invasive techniques are able to mask their

presence so as to have no effect on the system other than the faults they inject.

These factors need to be considered when developing a fault injection strategy for a

system, in order to gain the most useful results for the budget and type of system used.

3.3 Applying Fault Injection to Multi-Version Systems

Given the potential benefits of fault injection, it is surprising that the method has

mainly been focused on assessment of single version software. [CHE99] states that "as far as

fault injection for diversity evaluation is concerned, this has not been achieved, and the

lessons from the literature are limited and of a general nature only".

The potential is great; by developing an automated system that can inject faults into

different versions of a multi-version system, test the systems, and then repeat the process with

another set of injected faults, it should be possible to build up a picture of the relationships

between different versions with regard to common-mode failures. For a multi-version system,

there are a total of

31

combinations for fault injection to be applied to, where N is the nur~ber of versions taken rat
'

a time. Given that N will usually be a small odd integer, such as 3, 5 :or 7, this should not pose
I

a problem.

For a more detailed analysis, it may also be possible to inj;ect faults into individual

functions within different versions of a multi-version system, in order to investigate possible
I

relationships between disparate channels. For example, consider a 2-version system, each

version containing 4 functions/procedures (see figure 6). Version 1 contains the set of

functions {A,B,C,D} whilst version 2 contains the set of functiOJ:?.S {E,F,G,H}. Faults are

injected in each of the functions in turn, and the systems are analysed for common-mode

failures following each injection. This is repeated for as many combinations of functions as

possible. Should it be found that injecting faults (either similar or otherwise) into function A

of version 1 and function H of version 2 causes a common-mode failure, then the analysis will

have revealed a potentially unsafe relationship between these functi~ns, even if the functions

have no obvious connection. "Traditional" testing methods can then be fine-tuned to test these

functions in more detail.

Version 1

Version 2

Figure 6 - Should faults injected into functions within individual
versions lead to common-mode failure,' then these
functions can be seen to have a poten;tially unsafe
relationship and need to be tested in more de~ail.

Fault injection can also assess the sensitivicy of each version, on either a system-level

or a function-level. Should any version or function within a version be highly sensitive, then

further debugging/testing can be applied, in order to reduce the ~ensitivicy and hopefully

reduce the likelihood of a failure that could lead to a common-mode failure within the system.

Furthermore, fault injection provides a very good method fo~ deriving metrics about a

system, and could therefore help to provide quantitative charactedzations for multi-version

systems - [VOA95] states that ''fault-injection techniques are 'dynamic, empirical and

32

tractable". Therefore, this approach will help to solve one of the problems highlighted by

[KIMOO], discussed in section 2.6.

This research therefore proposes to implement an automated fault injection system,

designed to assist with the assessment of multi-version systems. This implementation is

detailed in chapter 4.

3.4 Summary

This chapter details the problems associated with traditional testing techniques, and

then goes on to detail the background of fault injection. Different methods of fault injection

are discussed, and the differences with traditional techniques are examined. A method for

applying fault injection to multi-version systems is then discussed.

33

Chapter 4 Implementation

4.1 FITMVS

The major goal of this research is to develop a non-commercial fault injector that will

enable an automated fault injection process to be performed on multi-version systems, in

order to produce valuable metrics, such as sensitivity measures and analysis of potential for

common-mode failure. This system is called FITMVS (Fault Injection Tool for Multi

Version Systems). The remainder of this chapter discusses both the design and

implementation ofFITMVS.

4.2 The Design of FITMVS

FITMVS performs data value perturbation, whereby code modifying a particular

variable's value is added to an existing system's code. Data value perturbation was chosen as

by using this technique, FITMVS neatly avoids the equivalent mutant problem. This occurs

when an injection (in the form of code mutation) is made that does not affect the output of the

code in any way (i.e. has no semantic impact on the code base) and is hence meaningless.

Instead, all injections made by FITMVS will alter system state in some way- whether trivial

or otherwise. Data value perturbation also leads to a simpler parsing process, and hence

allows for quicker development time.

The basic operation of FITMVS is to parse the code of each channel within a multi

version system, and then systematically inject faults into each scope within a specified source

file, compile and execute the code, test the system against a user-created set of tests, log the

results, revert the code back to its original state, and inject a fault into the next scope within

the source file. This is continued until the last scope within the source file has had at least one

injection applied to it. At the conclusion of running FITMVS, a multi-version system will

therefore have had at least one injection made into each scope within its code, and will have

been tested for each of these injections. This is explained in more detail in figure 7. The

process by which this takes place can be split into three stages: system input, the automated

process, and system output. These three stages are detailed below.

4.2.1 System input

User input to the FITMVS system is achieved by way of a menu-driven user

interface, inside of a standard UNIX terminal window. When the program is initially

34

executed, the U!>er IS shown the mam menu screen. which gives the user the opt1on of starting

the system 1mmed1ately. editing the system's settings, or ex1t1ng the system. This main menu

screen ts ~hO\\n m figure 8.

·---~-----··--------*--------------------- --------------- ---------------------------------.
' ' ' '

The vers10n'~ JXOCess IS thtn lulled All processes
wtth the name oftht executable are lermlll8ted

Results oft he test are recorded to Ill\ output file

System Wl!lts for etther a fat! mesSilge, l!st compleie
message or a tlme·OUt (user SJ:eC tfted duration)

A trst from pre·detemuned set c(tests IS J:etformed ~~------'

no

A fault IS Ul)tcled U\lo a copy
Tht ch&Mel's maktflle IS execuri ..,.., _ ____ -! of the versiOn's ongmal source code ..

S;~em selects an unleslltd muJh.versJOn
channel At tlus stage no tn)ec I!Ons are made .

no
.,. __ ...J

-------- -...... -------... -·
~------------------ -----------------------~

User Input- soflwale and In;ectton setlln~
Source code tested to check for successful comp~lt

System illput

'

Finish

Figure 7 - FITMVS Operation Flow-Chart

Automa led process

t8~~----------------T~e~rm~l~na~l ________________ ~l~gl
Window fdl t Qptlons Hej!;J

••••••••••••••••••••• FITMVS *********************

Fault Injection Tool for Multi-Version Systems

MAIN ~ENU

I) Beg1n FITMVS
2) Setup Syste•
3) Exit FITMVS

Please enter 1-3 to choose an option I

I

l~il==============~~================~~~~~~

Figure 8 - FITMVS Main Menu screen

35

Selecting the first optiOn- to start the system immedtatcly - will result in the system

runnmg '''llh '' hatever defaults have been hard-coded into it, and so th1s is only of real use if

the u5er '' ould ltkc to start the system with mimmal effort, and has placed their required

scttmgs mto the FITM\'S source code.

The system setup menu - shown in figure 9 - allows the user to decide the category

of scumgs that they des1re to alter, as well as aliO\\ ing them to load prev1ous setlmgs and save

the current setungs. ··contigure software versions" allows them to configure settings with

regard to the names and locations of the multi-version system channels that are to be tested,

whdst ··con figure mjcct10n settings" allows the user to ed1t the way the system goes about its

automatic task of injecting and testing faults within the software versions. When the user

loads or saves settings, they are prompted for a filename, which is then used to either save

settmgs to, or restore settings from.

~~~----------------~Te=rm='="a~/----------------~18~ 
Window fdlt Qptlons Help I 

1~1••••••••••••••••••••• FITMVS •••••••••••••••~••••• 

SVSTEM SETUP 

1) Configure software vers1ons 
2) Configure injection sett1ngs 
3) load ex1sting setup 
4) Save existing setup 
S) Exit to •ain menu 

Please enter 1-S to choose an option I 

Figure 9 - FITMVS System Setup screen 

The "Configure Software Set1ings" screen. shown in figure 10, displays the name (i.e. 

the name of the executable) of each MVD version that has been entered m to the system. and 

allows users to add vers1ons. remove existing versions or ed1t the version information. When 

a \'ersiOn IS ed1ted or removed, the user is prompted for the number of the version. as 

J1splayed on this screen. When a version is added, the user is prompted for the name of the 

\Crsion. and is then taken to the "Edit Version'' screen, where further details about the version 

can be entered. 

36 



~~~----------------~Te~rm~l~na~l----------------~1~~ 
I Window Edi t Qptlons Help I
••••••••••••••••••••• FITMVS •••••••••••••••••••••

Configure Software Versions

CURRENT NUr~ER OF VERSIONS

n I Naae of executable

johnProg

i ' 1) Add version
2) Edit version
3) Remove version
4) Exit to system setup menu

Please enter 1-4 to choose an option I

Figure 10 - FITMVS Configure Software Settings screen

The "Edtt Vers10n" screen (figure 11) allows the user to modify a number of aspects

of the MVD versiOn. The executable name of the Yersion can be modt lied, as can the source

dtrectory of the \'crston (i.e. the directory where the version source code is contained). The

mvocation command may be set if the version requires a spectal command to execute (for

example, a batch file may be required, that starts other essential processes for the version to

successfully execute).

The "Edit Related Processes" option refers to the names of processes that arc related

to the MVD versiOn at execution time: when FITMVS kills (terminates) the MVD version (at

the concluston of each test perfom1ed). all processes listed m the related process list are also

ktlleu.

The •·Edtt InJectable Sources" optiOn allows the user to specify the filenames of

source code that FITt-. fYS "ill mject faults into: selecting this option will take the user to

another screen (shown m figure 12) and gives the user the option of adding or removing

filenames from the Its!

37

§] Terminal
Window fd it Qptlons

••••••••••••••••••••• FITHVS ••·••••••••••••••••••

Edit version
VerSIOn 1!1

Na1e of executable:
Source directory:
Invocation Co11and:

johnProg
/ho•e/jeeves/student2/dcs3p•t/IHPLEH/new511ulation/testbed/john
start]ohn

Injectable source files: prodcell.cc

Other related processes: factory

1) Change name of executable
2) Change source directory
3) Change invocation com1and
4) Edit injectable source files
5) Edit related processes
6) Exit to software versions menu I

Figure I 1 - FITMVS Edit Version screen

1
I

I

~~--------------~Te=r=m=ln=al~----------------~~~~
Window fdlt Qptlons Help j
••••••••••••••••••••• FITMVS •••••••••••••••••••••

Edit injectable sources

11 I Path/l~a111e

I prodcell . <e

1) Add source
2) Remove source
3) Back to edit ve rsion menu I

jt

Figure 12 - FITMVS Edit Injectable Sources screen

A single screen handles all of the injection settings within FITMVS, and is reached

from the main menu. This screen is detailed in figure 13. The "injections per scope" value sets

how many times an injection/test cyc le will be performed per scope in each source code file

listed in the "Injectable Sources'' list. The "minimum scope lines for injection" value refers to

38

the mmtmum number of lines that a scope within the source code must have before an

inJCCLtest cycle ~~ perfom1cd on it; any scopes with fewer lines than this value are ignored.

The perturbauon dtstnbutton refers to the maxjmum amount by which a vanable may be

perturbed when a fault is injected; this number applies to both positive and negative values.

For example. should the PD be set to 32768 then a perturbation function can be added to

source code that mcrcases or decreases a variable's value by no more than 32768.

ft§.L-----------·------~Te~rm~lna~l----------------~18~
l r Window Edit Qptlons Help I
•••~••••••••••••****• FITHVS *********************

Configure Injection Settings

Injections per scope
Minimum scope lines for injection
Perturbation distribution
Using gaussian distribution
Gaussian standard deviation
Auto-test filenaMe
Ti 11e-out de 1 ay

1) Change inJections per scope

1
1
32768
No
8192
autoTestTest
15

2) Change •1n11u1 scope lines for injection
3) Change perturbation distribution
q) Change whether us1ng gaussian distribution
5) Change gaussian standard deviation
6) Change test f1le na.e
7) Change tile out delay
8) Exit to syste1 setup 1enu I

-

Figure 13 - FITMVS Configure Injection Sett ings screen

The "change '' hether usmg Gaussian distribution" option all ows the user to specifY

whether the values by which variables are perturbed follow etther a normal (i.e. every value is

equally likely) dtstnbution or a Gaussian distribution (for whtch the probability of a number

bemg ptcked follows a bell-shaped cun·e). The "Gaussian standard deviation" value applies

onl} when gaussm dtstnbut10n ts being used, and refers to the wtdth of the Gaussian

distnbuuon cun·e. A Gaussian probability distribution is descnbed as follows:

f (X)

(Il x-p)1
) I - 2 - CI-

----:=== e '
a~

J.1 mean

a = standard devtation

Thts results m a bcll-shnpcd probability curve with a width based upon the standard

dc\'latJOn. w1th the probabi lity of a number being selected increasing ns the number becomes

39

clo~er to the mean value. In FITMVS, this mean value is always 0. An example Gaussian

JtstributtOn 1s shown 111 figure 1-4. 99.9°-'o of all values generated by the Gaussian function will

fall \\llhm 4 standard dcv1at1ons of the mean, and so FITMVS allows the user to specify a

standard dev1at1on of up to 25% of the perturbation distribution. For example, should the

perturbatiOn dtstnbutiOn be set to 32768, then the max1mum allowed Gaussian standard

lie\ 1atton 1s 8191. Thts ensures that 99.9% of possible values outputted by the function will

fall berween ... 32768 and -32768. Any that fall outside of this va luc arc rounded to the nearest

ma\lmum (either postll\ e or negative). This means that the probability curve will have a

.,mall up-turn on large standard deviations, but this should be negligible.

i

-2.0 0.0 2.0
Figure 14 - A Gaussian probabtlity distribution curve \\ tth a standard dev1at10n of 0.2

and a mean of 0.0

The purpose of includmg Gaussian probability distributions 111 FITMVS ts to further

the scope for stausttcal analysts of data outputted by the system: varying the standard

dc\'lation wJll force FITMVS to perturb variables by different ranges, and so it may be of

Interest to see if a relationship between the size of perturbatlons (i.e. the standard deviation)

und the sensit ivity of a system exists.

The ''Change test file name'' allows the user to spec1fy the filename of the test file

that HTMVS reads when testing each MVD version. The "time out delay" value refers to the

number of seconds that must pass without response during testing from the MVD versiOn

before FITMVS deterrmnes that a ttme-out has occurred.

4.2.2 The automated process

The automated phase of FITMVS is completed w1thout any input from the user. The

main loop· of th1s process operates b) injecting a fault m to the source code of a version,

c\eeutmg that \ersJOn·s makefile. and performing the tests listed in the test-set file on this

\erstOn. Once each test has been performed, the system waits for etther a fail message, test

complete message or time-our from the version; this resu lt is then logged in a results ti le

spectlic for that version (either a •·pass'' or a fai l description/number). The version's process is

40

then 'killed' by FITMVS using the standard UNIX kill system call on the version's process

number, and the testing process continues with the next test in the set. When all tests have

been completed, the source code of the version is reverted to its original state and a different

injection is made, and the process is repeated; this is repeated until the specified number of

injections have been performed for every eligible program scope.

This 'main' loop is repeated for each version in the multi-version system, with the

first cycle of the process for each version performed without any injection in order to record

'baseline' results.

4.2.3 System outputs

When all the results for each versiOn have been collected, an analysis can be

performed based on the log file outputted by FITMVS at the conclusion of each injection

cycle. This is shown in figure 15.

Figure 15- The layout of the FITMVS log file

This consists of the filename of the source file being injected, the number of times an

injection has been performed on that scope, the number of the test being performed, the

number of the scope being perturbed, the name of the variable being perturbed, the type of the

variable (int, float, etc.) being perturbed, the character and line of the source file that the

perturbation function was injected at, whether or not the test was a pass or a fail (represented

as 1 or 0 respectively), the message received from the target system following the conclusion

of a test, the perturbation distribution of the injection, the standard deviation of the Gaussian

function being used, and the number of seconds that the time out delay is set for.

4.3 Objectives of the System

Current tools for the implementation of fault injection in multi-version systems are

rare, and of the few that exist (such as [VOA97]), all are commercial and thus inaccessible to

41

most researchers in the field; therefore, one of the implicit goals of this research is to make

such a system available to the general academic community.

The FITMVS system itself has five objectives. The first objective is to help identify

areas of code that might lead to common-mode failure -when the automated fault injection.

process has finished, FITMVS logs can be analyzed and common-mode failures discovered,

together with the location and type of faults injected to cause them. This will enable the user

to ascertain which areas of code in each version of the multi-version system- when faulty

will combine to cause common-mode failure. Subsequent testing can then place a greater

emphasis on proving the correctness of these areas, in order to minimize the risk of common

mode failures arising.

The second objective of FITMVS is to identify any channel of a multi-version system

that shows a high sensitivity to injected faults; from this analysis, it will be possible to

identify which MVD versions are most "at risk" in the event of an error occurring, and hence

perform corrective maintenance on that version. The third objective of FITMVS is related to

this; namely, by analyzing the number of errors resulting from faults injected into each

program scope, the sensitivity of each scope will be determined, thus giving developers more

insight into what areas of code need most attention. Areas of code with high sensitivity

invariably has a much greater risk of failure than a low-sensitivity area, and so any highly

sensitive areas revealed by the fault injection process may then be re-examined and changes

made in order to increase their resilience.

The fourth objective of FITMVS is to calculate the probability that the complete

MVD system will fail with a common-mod.e failure, should a fault be injected into each

version; this metric should help to give much needed empirical data into the relative value of

MVD systems. The fifth objective of FITMVS is to establish which errors manifest

themselves most often when a fault is injected into a MVD channel.

4.4 Limitations of the System

FITMVS in its initial conception has a number of limitations, although these are largely

implementational. Initially, the system will only be developed to analyse and inject faults into

C and C++ source code; however, the actual parser used by the system will be modular, and

so. further language support will have the potential to be added in future versions. The parser

itself will be limited, again due to time constraints, and therefore complex mutations will not

be possible. Initially, the system will be designed to simply add perturbation of data values to

42

code, rather than any form of mutation, although this again will be modular, with the potential

for code mutation functionality to be added in the future.

4.5 Portability Issues

FITMVS is written in ANSI C++ and should therefore be portable to most UNIX and

Linux systems. However, the shared memory functionality and the mechanism used to kill

processes mean that some modification will be required for the system to work in alternative

operating systems, such as Microsoft Windows. Despite this, these changes should not be too

difficult to make.

4.6 The Development of FITMVS

4.6.1 The parser component

The actual development of the FITMVS sy~tem took place over 6 weeks. The first

four weeks of this time was dedicated to the creation of a parser capable of parsing C and

C++ code and producing a parse tree as its output. The parser itself is quite simple, and

records the name and return type of each variable within each code scope. In addition to this,

the position in the code of each variable's definition and first assignment are also stored.

The parse tree is a linked list of type Se opeRe cord. Each ScopeRecord object

contains information in regard to a program scope - it> start and end position, and the

number of its parent scope (should it be a nested scope). It also contains two linked lists; one

of type variableRecord and one of type injectRecord. VariableRecord

contains data with regard to each variable that exists within the scope - the position of its

definition, the position of its first assignment, whether or not is assigned within the current

scopeRecord object, its name and its type. Each variableRecord object is unique to

each scopeRecord object, and so a variable declared early in the code may be represented

in multiple variableRecord objects. The inj ectRecord object is used for storing records of

injections made into each scope in order that no duplicate injections are made; this is not used

in the initial parsing function of FITMVS. Figure 16 details the make-up of the

inj ectRecord, variableRecord and scopeRecord objects, and figure 17 shows

the overall parse tree structure. The parser component of FITMVS was written as a stand-

43

alone module, and hence can be used by any application to produce a parse tree like that

illustrated in figure 17.

scopeRecord

- ScopeNumber : int

+start Character : i nt

+end Character : int

+parentScopeUIN : int

+startline: long

+endline :long

+retumType: string

+van abies In Se ope : I ist <van able R.ec ord >

+injectionR.ecord : vector<injectRecord>

variableRecord

-variable Number : int

+charDefined : int

+line Defined :long

+charAssigned : int

+lineAssigned :long

+isAssigned : bool

+isFunctionVariable : bool

+valiableName :string

+variable Type: string

injectRecord
+operand: char
+variable :string
+value: double

Figure 16 - The scopeRecord, variableRecord and inj ectRecord objects

injectRecon:l

injectRecon:l •

injectRecon:l

injectRecon:J •

Figure 17 - The structure of the parse tree generated by the parser component of FITMVS

44

The performance of the parser module is satisfactory, especially when considering

that the parser is only used once for every channel in the MVD system. In order to provide a

rough guide to the exact performance of the parser, an automated test was created, whereby a

1000 line program was parsed, and then appended to itself (to form a 2000 line program) and

re-parsed. This cycle was continued until the program had reached I 00,000 lines in size, with

the amount of time to parse being recorded in each cycle. The result of these tests is shown in

figure 18.

Execution Times for FITMVS Parser Component

40
35

iii 30
"0
c 25 0

¥ 20
.!!.. 15
CD
E 10
i= 5

0
10 19 28 37 46 55 64 73 82 91 100

Lines Of Code (thousands)

Figure 18 - Parse Times for different sized programs

As can be seen, the relationship between time taken to parse and the size of the target

program was linear; thjs was expected, as the parser was essentially parsing the same

additional code on each test. The main purpose of the test was to determine whether the

structure of the parse tree or the amount of data being placed on the system stack would cause

parse times for realistic-sized programs to be adversely affected. Fortunately, this does not

appear to be the case.

4.6.2 Auto-testing functionaJity

After the parser component was completed, the auto-testing functionality of FITMVS

was implemented. This consisted of the shared memory mechanisms, functionality to decode

and send test messages from a specified test file, mechanisms for checking if a process has

timed-out, and mechanisms for process termination.

The GNU shared memory libraries were used to create two classes

shared.MemoryClient and shared.MemoryServer. These classes are designed to

45

provide a simple interface between the FITMVS system (using sharedMemoryServer)

and the target MVD system (using sharedMemoryClient). The mechanism for

determining whether or not a time-out has occurred simply uses these shared memory objects

to check whether the target (MVD) system has Written to the shared memory space. If such a

write does not occur within an amount of time specified by the user, the process temiination

mechanisms are enforced. These work by simply redirecting the output of the standard UNIX

ps tool through a grep statement designed to filter out all processes that are not related to

the process requiring termination. The output from this is then re-directed to a file, from

which process numbers are extracted and terminated using a kill -9 command. Overall,

this stage of development took approximately 1 week of time.

4.6.3 The main fault injector and user interface components

With the completion of the parser and auto-testing routines, the development of the

main fault injector component ofFITMVS was relatively simple, and only required 3 days of

development time. The injector's main duty is to analyze the parse tree for each program

scope and calculate whether an injection should be performed; if so, then a variable stored

within that scopes variable list is selected at random, and a perturbation function is placed

within the program code at the either the start of that particular scope, or immediately after

the variable is first assigned within the scope (if applicable).

The final major development process was the creation of the user interface. Due to

time constraints, a graphical user interface was not pursued; indeed, it would be unwise to

spend valuable time on such a display when the FITMVS system is still in a proof-of-concept
"'

stage. Instead, the user-interface consists of a series of text-based menus, and input from the

user is entirely keyboard-based. The user interface routines were required to be portable

between UNIX platforms and terminal types, and therefore some re-writing of standard C

functions such as kbhi t () was required; however, despite this, the user interface modules

took only 3 days of development time to complete.

4.6.4 Changes required to the target system

Before FITMVS can be used, a number of preparations must be made in regard to the

target system (i.e. the multi-version system to be tested), in order for the automated process to

function correctly. A standard header file containing the shared.MemoryClient object

46

must be included in the MVD system code in order for the system to be able to communicate

through shared memory to FITMVS.

This header file also contains the functions FITMVS_pass (),

FITMVS_fail (string) and FITMVS_confirm ().These functions will send a 'test

passed' message, a 'test failure' message (with a failure description), and a message

confirming that the current data in the shared memory space has been received, respectively.

It is through this use of shared memory that FITMVS will be able to record the results of tests

performed. The only exception to this is if a version does not report a result within a given

amount of time; should this occur, FITMVS will terminate the target systems process and

record a TIMEOUT message. A FITMVS_getMessage () function is present, and

automatically reads the shared memory and returns the contents as a string to the MVD

system.

A FITMVS _reset () function is also present and will also have to be added to each

target system. This function may involve significant changes between different software

systems. Essentially, the goal of the function is to reset the state of the target system back to

its initial state; should this prove difficult to do, then the function should send a

KILL_ SYSTEM message to the fault injector in order for the target system's process to be

terminated and re-started.

An aim of FITMVS is to make the process of adapting an existing system in the way

described above as easy as possible; this is why most of the function calls needed are pre

written and available in a header file which can then be inserted into the target system's code.

Where necessary, the user will then be able to modify the pre-written functions in order to

best represent the target system.

4.6.5 The test-set file makeup

The process of parsing and applying the data values specified by the test-set file is left

to the user to implement, with a partially written function included in the standard FITMVS

header file that all target systems will need to include. Each line of the test-set file constitutes

a test; this takes the form of the name of the test data, followed by the values appropriate for

this data, separated by commas and enclosed within brackets. Each data element is delimited

with a semi-colon. The form of the test file therefore resembles:

VariableName (value, value, ...) ;VariableName (value,value, ...); etc.

47

Once the target system has parsed this data and entered it appropriately, a

TEST_RECEIVED message is sent to FITMVS and the test is considered to have started,

with FITMVS waiting for the test result to be transmitted through shared memory. Should no

response come within a specified time-out period, then the target system will be considered to

have timed-out.

4.7 Summary

This chapter introduces the Fault Injection Tool for Multi-Version Systems

(FITMVS). It goes on to detail the design and operation of FITMVS, the objectives of the

system, the limitations of the system, and portability issues. The actual development of each

major component of FITMVS is then discussed. The changes that need to be made to target

systems are detailed, and the chapter concludes by describing the make-up of the test files

used by FITMVS.

48

Chapter 5 Application Case Study

5.1 Factory Production Cell Case Study

In addition to the development of FITMVS, it is also necessary to select an

appropriate MVD application to test. Because of the large implementation time required to

develop the FITMVS system, it is prudent to select an existing MVD system for which source

code is available. It is also desirable for the application to be a real-time system, as real-time

systems invariably involve high reliability and safety requirements. To this end, a system

previously researched by the author [TOWOla, TOWOlb] was chosen.

The application is the controller system for a simulation of a flexible factory

production cell (figure 19). The production-cell consists of two conveyor belts, one of which

delivers the raw units (blanks) into the system, and one of which moves the blanks out of the

system once they have been fully processed. The unit also consists of four separate

workstations, each of which has its own number; depending on the type of the workstation, it

can either be switched on and off by the controller software, or is permanently on. Two

cranes, mounted on a racking which prevent them from both being in the same X position at

the same time are used to transport blanks around the system. Each blank has its own bar

code, which identifies which workstations it needs to be placed in, and the minimum and

maximum amounts of time that it can spend within each workstation. Blanks can be processed

either in a specific order, or in any order, depending on the instructions in the bar-code.

The controller software is required to allow the production-cell simulation to process

up to two blanks (units) at any one time, whilst ensuring that the blanks are processed

correctly within the appropriate time constraints. It is also necessary to ensure that the system

remains safe. For example, it is imperative to ensure that the two cranes never collide with

each other, and that no blank is placed in a workstation that already contains a blank. Further

safety requirements include both cranes being returned to safety positions whenever they are

not in use, and ensuring that blanks are not left in workstations for longer than their maximum

stipulated time. Also, the feed belt needs to be controlled by the software in order to ensure

that no more than two blanks enter the system at any given time, and that none fall off the end

of the belt.

49

Barcode Sensor Crane Rack Processing Units

Feed Belt

Figure 19 -Diagram of Flexible Production Cell

5.2 System Requirements

The MVD system compnses of three separate channels, two of which are developed

in C++, and one of which is developed in Java. Each channel of the MVD controlled system

was developed independently, to a rigorous specitication document in order to ensure that the

diverse channels followed the same rules and procedures in given scenarios, and with

min1mum contact between programmers. Although the specification document was rigorous,

at the same time it was important to ensure that the system specification is not over-specified:

therefore. the specification stated functional requirements clearly and unambiguously, whi lst

leaving the widest possible choice of implementations. Over-specification at the requirements

stage has been a criticism of several past experiments [AVI89], as the reduced levels of

diversity increase the probability of correlated faults. and hence reduce the overall

dependability of the resulting multi-version system.

The system requires real-time processing, and is safety-critical. and therefore requires

an extremely high level of dependability. As many experiments have found that correlated

faults can drastically reduce the overall dependability of a multi-version system - e.g.

[KNI86. ECK9l]- a conscious decision was made to make the development of each channel

as diverse as possible.

5.2.1 Assumptions

Within the requirements document, a number of assumptions are made about the

working environment of the controller software and simulation. These are listed in figure 20.

50

Assu~tion
1 The system has no more than one feed belt and one deposit belt.
2 There ts no set value or limit for the number of items passing through the system.
3 There are only two types of workstation as described in the task descriplton document.

4 The setup has only two possible configurations; those of one crane and two workstations, and of two
cranes and four workstattons.

5 Each item has a mmimum and a maximum time that it can spend in each works talion
6 Items may have a max1mum amount of lime in which th~ can be 1n the s_y_stem for.

7 The maximum hme that a blank may spend inside a system may not be less than the total minimum
lime that it must spend 1n each of the workstations.

8 Each workstahon can only process a blank once before it1s removed from the ~stem.
9 A blank may only be placed on the deposit bell if no blank is detected there.

10 The deposit bell is not controlled by the control program.

11 The gnpper has only two vertical positions. 11 can only retrieve blanks while in the lower posttion, and it
can only move honzontany Without colliding with workstations and belts while in the ~erpos1tion.

12 If a blank has a set order of processing, the ~stem must process the blank in that order.
13 The cranes must never be at the same X position.
14 The cranes may not move unless the gripper is In the upper_B9sition.
15 A blank may only be placed in a works1ation if the sensor reports that it is free.
16 The magnet may only be enabled or disabled while In its lower position.

17 The magnet may not be disabled while carrying a blank unless the gripper Is both in its lower position
and above etther a belt or a workstation.

18 The feed belt must be turned off 1f the end-belt sensor reports a blank.
19 Every blank passmg through the ~stem has a bar code, and all bar codes are correct.
20 All blanks are set a dtstance apart so the system can distmguish between separate blanks

21 Every blank tntroduced to the system by the feed bell or present in the system at the start of opera tion
must also leave the system via the output belt.

Figure 20 - AssumptiOns made regarding the controller soft,, arc's worktng environment

5.2.2 Operational em·ironment

The production-cell stmulation is implemented in Java, and can be run on a number

of dtlTcrcnt operating systems (although it is primarily designed for use on UNfX systems).

The controller software did not require any graphical output, and so none of the platforms

used for the development of the software were required to produce graphical output. The

controller software tlself 1s used only to produce output tiles for use by the production-cell

S1mulat10n; therefore there is no minimum speed requirement on any system using the

conrroller software.

5.2.3 External interfaces & data flo·n

rhe productton-cell Simulation and the controller software commumcate via a first-in

first-out ptpc mechanism. with communications bemg sent as ASCII text. For example, a

message to the production-cell Sllnulation consists of a header, the message body and a

termmator. The header consists of an open squared bracket - f - followed by a linefeed. The

51

tennmator conststs of a closing square bracket -]. Figure 21 demonstrates the format of

messages bodtcs.

Message Description
PortaiXn p Move ctane n to horizontal position p.
PortaiYn p Move ctane n to vertical position p.
MagnetOnn Switch on the magnet on the crane n.
MagnetOffn Switch off the magnet on the crane n.
PortaiDownn Move ctane n lo the down position.
PortaiUpn Move crane n to the up position.
FeedBeltOn Switch on the feedbelt.
FeedBeltOff Switch off the feedbelt.
CodeSensorOn Activate the code sensor.

WorkStationOnn
Switch on workstation n. This command is ignored by type 2
devices.

GetState Requests the production-cell simulation to return the current s tate.

Figure 21 - Simulation inputs

5.2A Logging format

fhe conrroller software is required to log its activity m a file. fhese opttons (and the

loggmg tile name) are spectfied as a conunand lme argument. fhe loggmg file is designed to

be used to compare results between different controller versions, and to see where errors have

been made.

A log entry ts made for every program cycle where mfonnatton is received from the

stmulator, or when a dectsion was made. Accordingly, the log records all information

received from the simulation and the results of any decisions made by the controller. Figure

22 shows the format of the log data for each program cycle.

Item Conditional Description
[No Start of log 1tem

lime No Time in milliseconds since the start of the
controller.

<STATUS> Yes Start of status
status Yes The unformatted feedback from 'GetState'
</STATUS> Yes End of status
[OUT PUn Yes Start of output sectiOn

controller output Yes Output of controller: exactly the same as the output
g1ven to the production-cell simulation.

IJOUTPUTI Yes End of output section

J No End of log 1tem

Figure 22 - Fonnat of controller log

52

5.2.5 General crane operation

1t I!> necessary to make assumptions regardmg crane operation within the factory

productiOn cell. These are listed in figure 23.

Assumption
1 The two cranes can move simultaneously

2
When a crane has no job to perform, it will move back to the safety
posihon

3 The safety position is defined as X1. Y2 for crane 1 and X8. Y2 for crane 2
4 Crane 1 w1ll deal with workstations 1 and 2
5 Crane 2 will deal with workstations 3 and 4

Figure 23 - Assumptions made about the cranes

If the mo\ement of a crane results in 1t collidmg with the other crane, then it is

requtred to mo,·e bad. to the appropriate safety posttion defined m figure 23. until the other

crane 1s m a pos1t1on \\ h1ch "tll not result in collision.

5.2.6 l\lovement of blanks

When a smgle blank enters the system, the controller is simply required to process the

blank m the order sttpulated by its bar-code, within specific time limits. If there are two

blanks 111 the system then one of five scenarios described in figure 24 will occur.

Scenario
1 Both blanks needed to be transported to the deposit belt.
2 Both blanks needed to be moved to other workstations.

3 One blank needed to be moved to the deposit belt, the other to another
works talion

4
Only one blank needed to be moved to another production cell or the deposit
belt

5 N61ther needed to be moved.

Figure 24 - Scenanos ''hen there are t'' o blanks m the system

5.2. 7 Botb blanks need to be moved to the deposit belt

If both blanks need to be moved to the deposit belt, then crane one wil l move to its

safety position, whilst crane two collects the blank with the lowest maximum processing

ttme(max,) and moves tt to the deposit belt. Crane two wi ll then repeat the process with the

53

other blank. If both blanks possess the same max; then the blank that is in the station with the

lowest ID number wili be moved first.

5.2.8 Both blanks need to be moved to other workstations

When blanks are on opposite sides of the production ceii and need to be moved to the

opposite workstation, it is specified that the foilowing should be done; crane 1 will pick up

the blank in station 1 or 2, and crane 2 will pick up the blank in station 3 or 4. Both cranes are

Figure 25 - example

situation of blanks on

opposite side of the

production-cell

then moved to their target stations and will both then deposit

their blanks. This is shown in figure 25.

There are several possibilities for the movement of

blanks in this scenario, and the requirements document

specifies the procedure to foilow for every combination of

workstations, in order to make sure the different versions wili

make the same decisions.

5.2.9 One blank needs to be moved to deposit belt, the other to another

workstation

In this case crane 1 wili return to its safety position and crane 2 will move to pick up

the blank which needs to be removed from the system. Crane one will then move and deposit

the remaining blank in the desired station; crane 2 will then move its blank to the deposit belt.

5.2.1 0 Only one blank needs to be moved to another workstation or the deposit

belt.

In this case, the controiier wili move the relevant blank to its target destination as if it

is the only blank within the system; should its target destination be unavailable, the relevant

crane will pick up the blank and move to its safety position until the target destination

becomes free; it wili then deposit the blank appropriately.

54

5.2.11 Neither needs to be moved

If ne1ther blank needs to be moved, the controller software will perfom1 no action.

5.2.1 2 Belt Control

The feed and depos1t belts within the system also need to have their behaviour

specified. F1gurc 26 lists the assumptions that are made about them.

11 Assumption
1 The feed belt is Initialised to be off.
2 The feed belt should be switched off immediately after the feed belt sensor is activated.
3 At the same time that the feed belt is switched off, the code sensor should be activated.

4
Once a blank has been lifted from the feed belt (crane is in upper position). the feed belt should be started in
order to move the next blanK up to the code sensor.

5 The depos1t bel t is controlled separately and will always be running.

6
A blanK may only be placed on the deposit belt if the deposit belt lnd1cator shows that another blank is not
already there
If the above Situation occurs. the crane should stay in the upper position at the deposit belt place until the

7 sensor has ind1cated that the belt is free The blank should then be immedtately lowered and then immediately
released

Figure 26 - Assumptions about the feed belt and deposit belt

5.3 Summary

This chapter describes in detai l the factory production cell simulation that is to be

used to test the effectiveness of the FITMVS system; and describes the system req uirements,

operational details. and assumptions made by the production cell simulation.

55

Chapter 6 The Experiment Performed

6.1 Overvie'Y of the Experiment Performed

In order to assess the effectiveness of the FITMVS system, it is necessary to apply

FITMVS to an existing MVD system; the system chosen is that of the factory production cell

discussed in chapter 5. One of the current limitations of FITMVS is that it is only able to

partially parse Java source code, and so the two MVD channels written in C++ were used to

form a 2-version system for purposes of this experiment.

This experiment seeks to use the FITMVS system to perform injections on each

program scope in both channels; following each injection, FITMVS will automatically

compile the perturbed channel and test it against a set of tests specified below. One complete

run of injections through a target channel is referred to as an "injection cycle". Altogether, a

total of ·25 injections cycles are applied to each channel during the experiment, with 5

injection cycles being performed for Gaussian distributions with standard deviations of 8192,

4096, 2048, and 1, as well as for a normal distribution. All tests will be performed with the

perturbation distribution set to 32768. At the end of each injection cycle, the resultant log files

produced by FITMVS are saved and analyzed; these list every single injection and test

performed, together with the results of the test. From analysis of these log files, a picture of

overall sensitivity to fault is created for each channel.

6.2 Re-development of the Factory Simulation

The major difficulty with testing the factory controller system with FITMVS is that

the actual simulation itself is written in Java, and is both slow, unstable, and difficult to adapt

to automatic testing (i.e. automatic entry of test data). In order to maximize the number of

tests that could be performed on the system, it was decided that the entire simulation must be

re-written. It should be noted that this in no way affects the MVD controller system - merely

the simulation that it controls.

The simulation was therefore re-written entirely in C++. The new simulation includes

all shared memory libraries and routines necessary for communication with FITMVS, as well

as allowing for test data to be entered automatically. In addition, the new system executes

many times faster than the original Java version; unfortunately, due to the real-time nature of

the simulation, the MVD controller channels often process blanks whilst measuring

56

processing time based on the hardware timer, and so the ·time_ taken per test is only reduced by

approximately 83%, from an average test time of 60 seconds to an average test time of

approximately 10 seconds (although this depends on the actual minimum processing time

values set for each blank). It was not possible to increase the interrupt rate (i.e. speed) of the

hardware timer, as the SP ARCstations used to test FITMVS are multi-user machines.

6.3 Test Data

As previously discussed, the MVD channels perform processing based upon the

hardware timer, arid so each test performed requires several seconds to execute. Although

time values can be set to 0 seconds, it is desirable to retain minimum and maximum deadlines

within the test data as the temporal domain is very important when considering real-time

systems, and it is of interest to see if temporal faults are triggered during the injection testing.

Due to the number of injection-cycles that are to be performed, the number of tests per

injection have to be kept to a minimum otherwise the amount of time required to perform the

tests will be too great.

With this in mind, a total of 5 tests are used. These are chosen to cover as broad a

range of situations are can be expected with such a small test set. The setup of the tests is as

follows:

6.3.1 Test 1 (single blank)

Maximum Time in System for blank 1 (ms): 9000

Blank 1 - preserved order
Workstation 1 2 3 4

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

6.3.2 Test 2 (single blank)

Maximum Time in System for blank 1 (ms): 10000

Blank 1 - non-preserved order
Workstation 2 3 1 4

Min (ms) 2000 1000 2000 1000
Max (ms) 3000 2000 4000 3000

57

6.3.3 Test 3 (two blanks)

Maximum Time in System for blank 1 (ms): 7000
Maximum Time in System for blank 2 (ms): 9000

Blank 1 - non-preserved order
Workstation 1 3 4 2

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

Blank 2 - non-preserved order
Workstation 2 1 3 4

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

6.3.4 Test 4 (two blanks)

Maximum Time in System for blank 1 (ms): 9000
Maximum Time in System for blank 2 (ms): 10000

Blank 1 - preserved order
Workstation 1 4 2 3

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

Blank 2 - non-preserved order
Workstation 4 3 2 1

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

6.3.5 Test 5 (two blanks)

Maximum Time in System for blank 1 (ms): 7000
Maximum Time in System for blank 2'(ms): 10000

Blank 1 - non-preserved order
Workstation 3 2 4 1

Min (ms) 1000 1000 1000 1000
Max (ms) 3000 3000 3000 3000

Blank 2 - non-preserved order
Workstation 1 4 2 3

Min (ms) 1000 10.00 1000 1000
Max (ms) 3000 3000 3000 3000

58

The actual contents of the test file used to set up these tests is shown in figure 27.

BLANK(l,l, 3, 4,1000,1000,1000,1000,3000,3000,3000,3000, t, 9000)
BLANK (2, 3, 1, 4.. 2000 I 1000, 2000, 1000, 3000, 2000, 4000, 3000, f, 10000)
BLANK (1, 3. {. 2,1000, 1000, 1000 I 1000, 3000 I 3000 I 3000, 3000 If, 7000); BLANK (2, 1, 3, 4, 1000, 1000. 1000, 1000, 3000 I 3 000, 3000, 3 000, f, 9000)
BLANK (1, 4, 2, 3. 1000. 2000' 1000. 2000, 3000, 3000.2000 I 3000, t, 9000) ; BLANK (4, 3, 2 I 1, 3000, 1000, 2000, 2000, 3000 I 3 000, 4000, 3 000 I£, 10000 l
BLANK. (3, 2, 4. 1, 1000, 1000, 1000, 2000, 3000, 2000, 2000 I 4000, f, 7000); BLANK (1, 4, 2 I 3 I 1000, 1000, 3000, 2000, 3000 I 4000, 5000. 4000 I£, 10000)

Figure 27 - Contents of the test file used to test the MVD fa~tory system

6.4 Processing Time

Due to the large amount of time expected for the completion of each injection cycle,

it is desirable to speed up the testing of the MVD system by executing FITMVS on multiple

machines simultaneously. Therefore, a total of 14 different SPARC workstations will be used

for testing; FITMVS will run on each system simultaneously (running an identical copy of the

MVD channel software). When an injection cycle on a machine finishes, another can be

started on the machine if necessary.

Output from FITMVS is in the form of a log file, which can be directly imported into

a Microsoft Excel spreadsheet. This spreadsheet can then be used to analyse the results of

each injection cycle, and should allow for relatively quick analysis.

6.5 Summary

This chapter gives an overview of the experiment performed using the FITMVS

system. It details the re-development of the factory simulation in C++, and describes the test

data used during the experiment. The chapter concludes by describing the extra hardware used

to combat the large amount of processing time required for each test.

59

Chapter 7 Results and Analysis

7.1 Overview of Results

The experiment was performed over a period of one week. At the conclusion of the

experiment, a total of 21,211 tests were performed; this is in contrast with the 4,320 tests

performed manually on the MVD system in [TOW01a, TOW01b]- an increase of more than

490%. This was in large part due to the automatic testing mechanisms that were put into

place. Each complete run of FITMVS took approximately 2 hours on Channel A of the MVD

system, and 4 hours on Channel B of the MVD system, and the overall amount of processing

time was approximately 150 hours, equating to 6 and a half days of continuous processing

(although it must be remembered that much of this processing was done across multiple

SPARC workstations).

The difference in processing time between the two MVD channels is explained due to

the fact that Channel B has a greater number of code scopes than Channel A (131 scopes as

opposed to 73), and so a larger number of injections and subsequent tests were performed on

Channel B.

7.2 Output ofFITMVS Log Files

The amount of data produced by FITMVS was very pleasing, with a total of more

than 875 pages of Microsoft Excel-readable logs produced from the 25 injection-cycles

performed on both channels. As described in chapter 4, each line of these log files states the

source filename of the injected code, the number of the injection, the test number, the scope

number, the name of the variable perturbed, the type of the perturbed variable, the character

and line number within the source file where the perturbation function was placed, the

injection string itself, whether or not the test was successful (1 indicates success, 0 indicates

failure), the test result message, the perturbation distribution, the standard deviation of the

gaussian distribution and the time-out interval of the test. Due to size considerations, not even

a single log file can be produced in its entirety; however, figure 28 and figure 29 show an

example of the data collected.

60

Thu Aug 16 14:32:08 BST2001
Minimum lines for injectable scope:
Time-out delay: 15
Gaussian distribution: Yes
Perturbation distribution: 32768
Standard Deviation: 8192

components .cpp 1 1 1 t long

components .cpp 1 2 1 t long

components.cpp 1 3 1 t long

components .cpp 1 4 1 t long

components .cpp 1 5 1 t long

components .cpp 1 1 2 yPos int

components .cpp 1 2 2 yPos int

components.cpp 1 3 2 yPos int

components .c pp 1 4 2 yPos int

components .cpp 1 5 2 yPos int

components .cpp 1 1 3 yPos int

components .cpp 1 2 3 yPos int

components .cpp 1 3 3 yPos int

components.cpp 1 4 3 yPos int

components .cpp 1 5 3 yPos int

components.cpp 1 1 13 remp int

components .cpp 1 2 13 remp int

components .cpp 1 3 13 remp int

components .cpp 1 4 13 remp int

components .cpp 1 5 13 remp int

components .cpp 1 1 14 des1ination int

components.cpp 1 2 14 des1ination int

components .cpp 1 3 14 des1ination int

components .cpp 1 4 14 des1ination int

components .cpp 1 5 14 des1ination int

components .cpp 1 1 15 wornTmp int

components .cpp 1 2 15 wornTmp int

components.cpp 1 3 15 wornTmp int

components.cpp 1 4 15 wornTmp int

components .cpp 1 5 15 wornTmp int

components .cpp 1 1 17 des1ination int

components .cpp 1 2 17 des1ination int

components .cpp 1 3 17 des1ination int

19

19

19

19

19

25

25

25

25

25

25

25

25

25

25

6

6

6

6

6

2

2

2

2

2

5

5

5

5

5

4

4

4

17 t = t + 7152; 1 Test passed 32768 8192 15

17 t = t + 7152; 1 Test passed 32768 8192 15

17 t = t + 7152; 1 Test passed 32768 8192 15

17 t = t + 7152; 1 Test passed 32768 8192 15

~
'V
~

17 t=t+7152; 1 Test passed 32768 8192 15 §
37 yPos = yPos + 8234; 0 Test failed: Crane one dropped blank - Factory: :checkCraneMagnetsl) 32768 8192 15 ..c u
37 yPos = yPos + 8234; 0 Time out 32768 8192 15 H

37 yPos = yPos + 8234; 0 Test failed: Crane one dropped blank - Factory: :checkCraneMagnetsl) 32768 8192 15 <-8
37 yPos = yPos + 8234; 0 Test failed: Crane one dropped blank - Factory: :checkCraneMagnetsl) 32768 8192 15

......
;:l

37 yPos = yPos + 8234; 0 Test failed: Crane one dropped blank - Factory: :checkCraneMagnets() 32768 8192 15 &
;:l

37 yPos = yPos + 9713; 0 Test failed: Crane one dropped blank . Factory: :checkCraneMagnetsl) 32768 8192 15 0

37 yPos = yPos + 9713; 0 Time out 32768 8192 15

37 yPos = yPos + 9713; 0 Test failed: Crane one dropped blank · Factory: :checkCraneMagnets() 32768 8192 15

37 yPos = yPos + 9713; 0 Test failed: Crane one dropped blank . Factory: :checkCraneMagnets() 32768 8192 15

VJ
>
~
b 1.0

37 yPos = yPos + 9713; 0 Test failed: Crane one dropped blank . Factory::checkCraneMagnets() 32768 8192 15 ~

145 remp = remp + -6420; 1 Test passed 32768 8192 15
4-<
0

145 remp = remp + -6420; 0 Time out 32768 8192 15
(.)

145 remp = remp + -6420; 0 Time out 32768 8192 15 ro
.tl

145 remp = remp + -6420; 0 Test failed: l1Uor1dation 1 - blank exceeded time limit. Factory: :checkl1Uorbta1ions() 32768 8192 15 X
I:.I-1

145 remp = remp + -6420; 0 Time out 32768 8192 15

149 des1ination = des1ination + 7274; 1 Test passed 32768 8192 15
00

149 des1ination = des1ination + 727 4; 1 Test passed 32768 8192 15 N

149 des1ination = des1ination + 7274; 1 Test passed 32768 8192 15
~

'"'
149 des1ination = des1ination + 7274; 1 Test passed 32768 8192 15 = eJ)
149 des1ination = des1ination + 7274; 1 Test passed 32768 8192 15 ~
155 wornTmp = wornTmp + -446; 1 Test passed 32768 8192 15

155 wornTmp = wornTmp + -446; 1 Test passed 32768 8192 15

155 wornTmp = wornTmp + -446; 0 Test failed: liUornstation 2 - blank exceeded time limit. Factory::checkliUornstations() 32768 8192 15

155 wornTmp = wornTmp + -446; 1 Test passed 32768 8192 15

155 wornTmp = wornTmp + -446; 0 Time out 32768 8192 15

161 des1ination = des1ination + -982; 1 Test passed 32768 8192 15

161 des1ination = des1ination + -982; 1 Test passed 32768 8192 15

161 des1ination = des1ination + -982; 0 Test failed: liUornstation 1 • blank exceeded time limit. Factory::checkliUornstations() 32768 8192 15

Thu Aug 16 18:24:28 BST 2001
Minimum lines for injectable scope:
Time-out delay: 15
Gaussian distribution: Yes
Perturbation distribution: 32768
Standard Deviation: 8192

prodcell.cc 1 1 2 command Wing

prodcell.cc 1 2 2 command Wing

prodcell.cc 1 3 2 command Wing

prodcell.cc 1 4 2 command Wing

prodcell.cc 1 5 2 command Wing

prodcell.cc 1 1 31m2 boo/

prodcell.cc 1 2 31m2 boo/

prodcell.cc 1 3 31m2 boo/

prodcell.cc 1 4 31m2 bool

prodcell.cc 1 5 31m2 boo/

prodcell.cc 1 1 4 command Wing

prodcell.cc 1 2 4 command Wing

prodcell.cc 1 3 4 command Wing

prodcell.cc 1 4 4 command Wing

prodcell.cc 1 5 4 command slring

prodcell.cc 1 1 5 end boo/

prodcell.cc 1 2 5 end boo/

prodcell.cc 1 3 5 end boo/

prodcell.cc 1 4 5 end boo/

prodcell.cc 1 5 5 end boo/

prodcell.cc 1 1 6 end boo/

prodcell.cc 1 2 6 end boo I

prodcell.cc 1 3 6 end boo/

prodcell.cc 1 4 6 end bool

prodcell.cc 1 5 6 end boo/

prodcell.cc 1 1 7 command Wing

prodcell.cc 1 2 7 command Wing

prodcell.cc 1 3 7 command Wing

prodcell.cc 1 4 7 command Wing

prodcell.cc 1 5 7 command Wing

prodcell.cc 1 1 8 command Wing

prodcell.cc 1 2 8 command Wing

prodcell.cc 1 3 8 command Wing

37

37

37

37

37

33

33

33

33

33

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

28 command= command+ 18307; 1 Test passed 32768 8192 15

28 command = command + 18307; 1 Test passed 32768 8192 15

28 command= command+ 18307; 1 Test passed 32768 8192 15

28 command= command+ 18307; 1 rest passed 32768 8192 15

28 command= command+ 18307; 1 Test passed 32768 8192 15

p:)

~
§
c::l

73 1m2= false; 0 Time out 32768 8192 15 .I:: u
73 1m2= false; 0 Time out 32768 8192 15 1-;

73 1m2= false; 0 Test failed: Crane tlfllo dropped blank Factory: :checkCraneMagnels() 32768 8192 15 c8
73 1m2= false; 0 Test failed: Cranetlfllo dropped blank Factory :checkCraneMagnels() 32768 8192 15

73 1m2= false; 0 Test failed: Crane tlfllo dropped blank Factory :checkCraneMagnels() 32768 8192 15

.....
::l
.&
::l

36 command = command + -1924; 1 Test passed 32768 8192 15 0

36 command= command+ -1924; 1 Test passed 32768 8192 15

36 command = command + -1924; 1 Test passed 32768 8192 15

36 command= command+ -1924; 1 Test passed 32768 8192 15

Cl)

>
~ N - \0

36 command = command + -1924; 1 Test passed 32768 8192 15 ~

41 end= false; 1 Test passed 32768 8192 15
<.,.....
0

41 end =false; 1 Test passed 32768 8192 15
u

41 end =false; 1 Test passed 32768 8192 15
c::l

.):::::
41 end =false; 1 Test passed 32768 8192 15 ~

~
41 end =false; 1 Test passed 32768 8192 15

46 end = lrue; 1 Test passed 32768 8192 15 Q\

46 end = lrue; 1 Test passed 32768 8192 15 N

46 end = lnle; 1 Test passed 32768 8192 15
~
I.

46 end = lrue; 1 Test passed 32768 8192 15 = eJ)

46 end = lnle; 1 Test passed 32768 8192 15 ~
52 command= command+ -7551; 1 Test passed 32768 8192 15

52 command = command + -7551; 1 Test passed 32768 8192 15

52 command = command + -7551; 1 Test passed 32768 8192 15

52 command = command + -7551; 1 Test passed 32768 8192 15

52 command = command + -7551; 1 Test passed 32768 8192 15

58 command = command + 5533; 1 Test passed 32768 8192 15

58 command = command + 5533; 1 Test passed 32768 8192 15

58 command • command + 5533; 1 Test passed 32768 8192 15

7.3 Sensitivity Metrics

Despite the large quantity of raw results, it is possible to derive a large number of

different metrics and analyses. One of these metrics is that of sensitivity; this is the percentage

probability that a channel will fail to successfully pass a test after a fault is injected into it. For

example, in one injection cycle, 295 tests were performed on Channel A, of which 45 resulted

in either a failure or a timeout. Therefore, the sensitivity of the channel to a fault in that

particular injection cycle is (100 I 295) x 45 = 15.25424%.

This calculation is performed for each injection cycle performed on both channels;

these results are shown in figure 30. Each row represents a complete injection-cycle;

"procName" refers to the name of the channel, "PD" refers to the perturbation distribution,

"G-SD" refers to the standard deviation of the Gaussian distribution (if applicable), and

"Sensitivity" is the percentage chance of a test failing as a result of a fault being added. The

final two columns in each table refer to the standard deviation of the sensitivity values (not to

be confused with the Gaussian distribution's standard deviation) and the average sensitivity

for each set of 5 injection-cycles respectively.

As can be seen, there is a clear distinction (i.e. no overlap) between the average

sensitivity values of the two channels; channel A has a sensitivity of approximately 20%,

whilst channel B has a sensitivity of approximately 14.5%. The standard deviation of the

sensitivity results for both channels is small, with channel A having a standard deviation of

1.3 and channel B of 0.3; it can therefore be seen that both channel's sensitivity values are

relatively accurate. These sensitivity measures fit in well with what is already know about the

dependability of the two channels as a result of previous studies [TOWOla, TOW01b];

namely, that channel A is error-prone (failing in approximately 25% of all possible

situations), whilst channel B is far more dependable (failing on approximately 1.5% of all

possible situations).

However, there appears to be no pattern amongst the sensitivity results for individual

injection cycles performed within the channels themselves. Although tests using Gaussian

distributions with different standard deviations were performed, it can be seen that for this

application, the differences in sensitivity for each set of tests are very similar and clearly

overlap when the standard deviations of the results are taken into account. It therefore appears

to be the case that either the different distributions have no bearing on the sensitivity of the

MVD system tested, or the number of tests performed is not great enough to establish the

resolution necessary for identifying a possible relationship. Diagrams showing the average

sensitivity for each set of five injection cycles performed in each channel are shown in figure

31.

63

procName

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

Channel A

PO G-SO Sensitivity

32768 8192 15.25-124

32768 8192 24.91909

32768 8192 19.34426

32768 8192 19.6825

32768 8192 20

32768 4096 24.29022

32768 4096 20.63492

32768 4096 25.23077

32768 4096 19.0476

32768 4096 15.9874

32768 2048 21.93548

32768 2048 16.19048

32768 2048 2 1.29032

32768 2048 16.129

32768 2048 14.9206

32768 I 20 73579

32768 I 19.72318

32768 I 25.53846

32768 I 1774194

32768 I 23.49206

32768 None 21.84615

32768 None 20.96774

32768 None 16.825-1

32768 None 21.5873

32768 None 21.63009

SO of SOs:

Average SO:

SO of Averages:

Average of averages:

so Average

3.43229 19.84002

3.80095 21.03818

3 .26069 18.09318

3.08736 21.44629

2.1194 20.57134

0 .628739061

3 .140140299

1.319274278

20.1977996

procName PO G-SO Sensitivity

Channel B 32768 8192 12.7778

Channel B 32768 8192 14.07407

Channel B 32768 8192 16.111T I

Channel B 32768 8192 12.5925

Channel B 32768 8192 17.037

Channel B 32768 4096 14.81481

Channel B 32768 4096 13.33333

Channel B 32768 4096 16.48148

Channel B 32768 4096 16.1111

Channel B 32768 4096 13.4328

Channel B 32768 2048 13.40782

Channel B 32768 2048 14.62963

Channel B 32768 2048 12.40741

Channel B 32768 2048 15.92593

Channel B 32768 2048 15.9259

Channel B 32768 I 11.66667

Channel B 32768 I 16.11111

Channel 8 32768 I 15.58442

Channel 8 32768 I 10.37037

Channel 8 32768 I 16.48148

Channel 8 32768 None 13.72913

Channel B 32768 None 16.2963

Channel B 32768 None 11 .50278

Channel B 32768 None 15.95547

Channel B 32768 None 16.85185

SO ofSOs:

Average SO:

SO of Averages:

Average of averages:

so Average

1.98848 14.5185

1.46295 14.8347

1.55296 14.45934

2.81666 14.04281

2.22374 14.86711

0.548860549

2.008960344

0.33463212

14.5444908

Figu re 30 - Sensitivity results for both MVD channels

Channel A Sensitivity Analysis

8192 • 0!16 2048 None

Stand<lrd devlatJon

Channel B Sensitivity Analysis

n r-----------------------~

~

20

18

16

14

~ 12

i 10

~ 8

0

Slandord deviation

Figure 31 - Sensitivity results for each set of injections

64

7.4 Sensitivity to Common-mode Failure

Although these results are of interest, of even more interest is gauging the sensitivity

of the channels within the overall MVD system to common-modal failure. This is calculated

by analysing the results of each injection-cycle, identifying the scope of each test that

resulted in error, and categorizing this based on the error description; this was done for both

channels. For each channel, the number of failures for each error description were then

calculated as a percentage of the total number of tests performed on that channel. It is

important to note that because each channel has a different number of scopes, the total

number of tests performed on ea~h channel are different. For each error type, the percentages

for each channel were divided by 100 and multiplied together to gain the percentage chance

of common-mode failure for that error type within that injection-cycle. By collating these

resultant common-mode probabilities, the overall probability of a common-mode failure

occurring within that injection-cycle as a result of faults being injected can be discovered.

The results for every injection cycle are shown below; header of each table lists the

standard deviation passed into the Gaussian function for that particular test (or "none" if a

normal distribution was used), the name of the channel, and the number of tests performed

on that channel (in brackets). Following this, the first column in each table lists the error that

was observed, and the second and third columns refer to the number of the code scope in '

which injections were made to cause the error; the number in brackets in the second and third

columns is the percentage probability that this error will occur on any given injection within

the injection cycle. The fourth column gives the probability value (between 0 and 1) that the

relevant error will manifest itself following injections in both channels; this is calculated by :

Pab =Pax Pb
100 100

where Pa is the percentage chance of channel A failing with the relevant error, Pb is the

percentage chance of Channel B failing with the relevant error, and Pab is the probability

(between 0 and 1) that both channels will fail with the relevant error at the same time. The

bottom row in the table gives the sum of the probabilities calculated in column 4; this is the

overall probability that for any random injection into channel A and channel B, the same

error will manifest itself in both (i.e. a common mode failure). This value is multiplied by

100 and placed in brackets to give the percentage figure.

For example, the following table is the result of an injection cycle that perturbed

variables based on a Gaussian distribution with a standard deviation of 8192, with Channel A

having been subjected to 295 tests, and Channel B subjected to 540 tests:

65

Channel B (540) ' '
Standard Deviation: 8192 Channel A (295)

25, 25, 25, 25, 25,
13,13, 58, 58, 58

Crane One dropped blank 25,25,25
(0.92592%)

0.00025
(2.71186%)

Workstation 1- blank
13, 17, 26, 26, 26, 52, 53, 54, 63, 64,

exceeded time limit
26,28,60 73 0.00030
(2.71186%) (1.11111 %)

0.00055
(0.055%)

In this test, two errors with the potential for common mode failure were discovered;

one error manifests itself by crane one dropping a blank, and the other manifests itself by a

blank placed in workstation 1 exceeding its time limit. For Channel A, the first error- "Crane

One dropped blank" - was seen 8 times, all as a result of injections into scope 25 of the

Channel's code. As 295 tests had been performed, this leads to a I 00 I 295 x 8 = 2. 71186%

chance that this error will be seen on any given injection. The same error was seen in Channel

B five times; two times following an injection into scope 13 and three times following an

injection into scope 58. This leads to a 100 I 540 x 5 = 0.92592% chance of the error being

seen on any given injection. The overall probability that following random injections both

channels will manifest the same error is therefore

2.71186 X 0.92592 = 0.00025
100 100

The same process is repeated for the other error with the potential for common-mode

failure- "Workstation 1- blank exceeded time limit", where there is a 2.71186% chance that

the error will be seen in Channel A on any given injection, a 1.11111% chance that the error

will be seen in Channel B on any given injection, and an overall probability of 0.00030 that

the error will be seen in both channels when random injections are made into each channel.

When the two probabilities for common-mode failure are summed together, an overall

probability for common-mode failure of 0.00055 is established. By multiplying this by 100,

an overall percentage probability of 0.055% is obtained. The results for all other injection

cycles performed are listed in appendix A, in the same format.

This data is summarized in figure 32. As can be seen, these results are very

promising; out of more than 20,000 tests performed, despite faults being injected into the

system, the probability of common-mode failure occurring is only approximately 0.049%

with a standard deviation of approximately 0.035, with the "best" result being a probability of

0.005% and the "worst" results being a percentage chance of common-mode failure of

0.115%. However, it is important to remember that the results collected from the FITMVS

66

system do not allow for any non-independence of error weightings (i.e. related errors in two

separate channels) to be taken into consideration.

G-SD
8192
8192
8192
8192
8192
4096
4096
4096
4096
4096
2048
2048
2048
2048
2048

1
1
1
1
1

None
None
None
None
None

%chance of CMF SD
0.055
0.114

0.0275
0.036
0.115 0.04227
0.051
0.075
0.095
0.049
0.005 0.033734
0.016
0.026
0.071
0.008
0.024 0.024536
0.02

0.015
0.0532
0.096

0.0845 0.036645
0.108
0.028
0.021
0.028

0.0195 0.037713

Overall average:
Overall SO:

Average

0.0695

0.055

0.029

0.05374

0.0409

0.049628
0.035284

Figure 32 - Overall analysis of common-mode failure

Although for this experiment there is no obvious way to generate related errors

amongst diverse channels, should we assume that doing so results in the probability for

common-mode failure increasing by 20 fold (slightly more than the factor [HAT97]

hypothesized for the [KNI86] experiment) then results still seem to be promising - with a

worst-case probability of 0.115 x 20 = 2.3% chance of common-mode failure should a

random fault be injected in each channel.

It is important to note, however, that this analysis of potential common-mode failure

does not take into account any tests that resulted in a time-out; in other words, a situation in

which both channels fail to reply within the expected period of time is not regarded as

common-mode failure. This is due to the sheer volume of timeouts reported; for Channel A,

67

a total of 1220 time-outs occurred from 7812 tests performed, whilst Channel B produced a

total of 1291 time-outs from 13399 tests. Figure 33 details the percentage probability of a

timeout occurring on a given test for each injection cycle. The first column refers to the

standard deviation of the Gaussian distribution (if applicable), the second and third columns

detail the percentage probability of a test resulting in a time-out for Channel A and Channel

B respectively, and the fourth column shows the probability that both channels will time-out

on any given test.

SD
8192

8192

8192

8192

8192

4096

4096

4096

4096

4096

2048

2048

2048

2048

2048

1

1

1

1

1

Normal Distribution

Normal Distribution

Normal Distribution

Normal Distribution

Normal Distribution

Standard Deviation:

Average:

Channel A%
7.79661

12.13115

20.06472

16.19048

15.55556

17.46032

18.61199

14.76923

14.92063

14.10658

19.67742

18.38710

12.69841

14.83871

12.69841

13.04348

21.84615

16.26298

9.35484

16.50794

12.00000

14.92063

18.70968

19.68254

17.55486

3..41766

15.59161%

ChannelB%
7.40741

8.33333

8.88889

9.44444

12.22222

11.85185

9.44444

9.81481

10.55556

10.63433

10.80074

8.14815

10.66667

11.85185

11.66667

9.46197

6.85185

11.48148

5.92593

8.51852

11.11111

6.86456

9.83302

10.74074

8.53432

1.74360

9.64219%

% Common<Timeout
0.57753

1.01093

1.78353

1.52910

1.90123

2.06937

1.75780

1.44957

1.57496

1.50014

2.12531

1.49821

1.35450

1.75866

1.48148

1.23417

1.49687

1.86723

0.55436

1.40623

1.33333

1.02424

1.83973

2.11405

1.49819

0.41147

1.50962%

Figure 33 - Analysis of time-out probabilities

68

In order to determine whether or not each time-out result will cause a common

mode failure, it would be necessary to look-up the injection in the FITMVS log file,

manually perform this injection on the channel source code, compile and execute that code,

and then manually observe the operation of the channel up to the point where a time-out

occurs. Even if this process were to only take 5 minutes, this would still .require 2511 x 5 =

12,555 minutes (209.25 hours) of testing time, which is not feasible for this experiment.

However, as can be seen from figure 33, the average probability of both channels

timing out on a given test is 1.50962%. If we are to assume that all time-outs lead to

common-mode failure (an extremely unlikely assumption), then summing this probability

with the average probability of common-mode failure shown in figure 32 would still lead to

an average probability of common-mode failure of only 1.559248% (ignoring any weighting

for related errors).

7.5 Sensitivity to Error of Each Program Scope

In addition to measures with regard to sensitivity and common-modal failure, the

FITMVS log results also give an indication as to the sensitivity to error of each scope within

the source code tested. Figure 34 shows the number of errors detected following injections

into each scope in the two channels tested; this is created by grouping together all the rows

of each FITMVS log file that contained an error message, and then creating a histogram

graph based upon the scope number of the injection. This analysis does not include time

outs.

These results are of interest as they reveal that certain program scopes are far more

prone to error (and are hence far more sensitive) than other scopes. A good example of this is

scope 51 in channel B, responsible for a total of 105 reported errors. This metric is very

useful as it provides a picture of the sensitivity of each channel's source code that can be

assessed very quickly. By identifying scopes of special sensitivity and testing/coding them to

behave more robustly, it should be possible to reduce the overall sensitivity of each channel

significantly.

69

105

90
"0

! 75
u
! 60
• "0 45 • ..
~ 30

&b 15

0

105

90
"0

• 75 u
! • 60
"0 45 • ..
0 30 ..

&b
15

0

Errors detected per program scope for Channel A

~ ~ M ~ ~ ~ ~ M ~ ~ ~ ~ M ~ ~ ~ ~ M
~ N N N M M ~ ~ ~ ~ ~ ~ ~ ~ ~

Scope number

Errors detected per program scope for Channe l B

~ ~ N m ~ M 0 ~ ~ ~ ~ N
N N M ~ ~ ~ ~ ~ ~ ~ m

Scope number

m ~ m o ... M 0
.- N

Figure 34 - Errors detected per program scope for both channels tested

The same analysis can also be performed to see which scopes have a high sensitivity

toward common-mode failure; this is shown in figure 35. This is created by grouping

together all errors in each FITMVS log file that had the potential for common-mode failure

as described in section 7.4.

As can be seen, the results of this analysis show little change from the results

displayed in figure 34, but may help in further refining the overall picture of each channel's

sensitivity. It should be noted that the scale of the vertical axis in figure 34 and figure 35 is

different, as the set of errors with the potential to be common-mode failures was smaller than

that of set of all errors.

70

Common-mode errors detected per program scope for Channe l A

40

35
"0 30
G:l ..
u 25 G:l
; 20 "0 .,

15 ..
0 .. 10 ..
w

5

0
~ m M ~ ~ m M ~ ~ m M ~ ~ ~ m M

N N N M M V V V ~ ~ ID ID ID ~

Scope number

Common-mode e rrors detected per program scope for Channel B

40

35
"0 30 s
u 25 s
Gl 20 "0 ., .. 15
0 .. 10 ..
w

5

0
~ ~ N m ID M 0 ~ V ~ ~ ~ N m ID M 0 ~

N N M V ~ ~ ~ ~ ~ ~ m m 0 N N

Scope number

Figure 35 - Common-mode failures detected per program scope for both channels tested

7.6 Error Frequency Analysis

Finally, an analysis was performed to see what types of error occurred most

frequently in each channel. This is created by grouping together all the rows of each

FITMVS log file that contained an error message, sorting them based on the error

description, and then counting each group of errors. The results of this analysis are shown in

figure 36.

This analysis reveals that some specific types of error occur far more often than

others; in Channel A, error types 6, 8, and 12 occur with most frequency, whilst in Channel

B, error types 1, 9, 13, 19 and 20 occur with most frequency.

71

Error Type Frequency Distribution for Error Type Frequency Distribution for

Channel A Channei B
230 230

207 207

184 184

161 161

~ 138 ~ 138
c c
~ 115 ~ 115
er er • 92 • 92 at .t

69 69

46 46

23 23

0 0
1 2 3 4 5 6 7 8 9 10 11 12 ~

,., I() ,._ 01 ~
,., I() ,._ 01 N

,.,
~ ~ ~ ~ ~ N

Error Number Error Number

Figure 36 - Error type frequency for both MVD channels

A detailed breakdown of each error type is given for both channels in figure 37 and

figure 38.

Error Description Frequency
1 Blank in WS One picked up before minimum time elapsed 10
2 Blank in WS Three picked up before minimum time elapsed 3
3 Blank in WS Two picked up before minimum time elapsed 4
4 Blank passed through system, but exceeds maximum system time 6
5 Blank processed at too few workstations 2

6 Crane one dropped blank - Factory::checkCraneMagnets() 54
7 Crane two dropped blank - Factory: :checkCraneMagnets() 2

8
Workstation 1 - blank exceeded time limit.

189
Factory::checkWorkstations()

9
Workstation 2 - blank exceeded time limit. 7
Factory: :checkWorkstations()

10
Workstation 3 - blank exceeded time limit.

1 Factory: :checkW orkstations()

11
Workstation 4 - blank exceeded time limit. 6
Factory: :checkWorkstations()

12 Workstation used more than once 76

Figure 37 - Error type frequency breakdown for Channel A

72

Error Description ~ c ¥ f5reguency:

1 Blank in WS One picked up before minimum time elapsed 40

2 Blank in WS Three picked up before minimum time elapsed 6

3 Blank in WS Two picked up before minimum time elapsed 22

4 Blank passed through system, but exceeds maximum system time 13

5 Blank processed at more than 4 workstations 3

6 Blank processed at too few workstations 16

7 Blank put back down on the end of the feed belt 4

8 Blanks processed out of order 5

9 Crane one dropped blank - Factory::checkCraneMagnets() 156

10
Crane one has put a blank into workstation 1. lt already has a blank in

13
it

11
Crane one has put a blank into workstation 2. lt already has a blank in

12
it

12
Crane one has put a blank into workstation 4. lt already has a blank in

2
it

13 Crane two dropped blank - Factory::checkCraneMagnets() 40
14 Crane two has put a blank into workstation 1. lt already has a blank in it 3
15 Crane two has put a blank into workstation 2. lt already has a blank in it 3
16 Crane two has put a blank into workstation 3. lt already has a blank in it 9
17 Crane two has put a blank into workstation 4. lt already has a blank in it 14
18 hasBiankExceededLimit: blank inside illegal workstation 1

19
Workstation 1 - blank exceeded time limit.

226
Factory::checkWorkstations()

20
Workstation 2 - blank exceeded time limit.

57
Factory: :checkW orkstations()

21
Workstation 3 - blank exceeded time limit.

13
Factory: :checkW orkstations()

22
Workstation 4 - blank exceeded time limit.

11
Factory: :checkW orkstations()

23 Workstation used more than once 2

Figure 38 - Error type frequency breakdown for Channel B

From this analysis, the system developer may wish to more thoroughly exercise

exception handling mechanisms related to these errors, in order to increase the safety of the

system as much as possible. It will also be possible to use an analysis such as this to rank

common-mode failures by their· severity and also count the number of common-mode

failures that result in system failure, thus providing more MVD metrics

A related analysis to the one mentioned above is to assess the frequency of common

mode failures in the two channels; that is, the frequency of errors with the potential to lead to

common-mode failure. This is shown in figure 39. Figure 40 details a breakdown of the

common-mode failure frequency data.

73

Common-mode Failure Frequency
for Channel A

Common-mode Failure Frequency
for Channel 8

2SO c ~~l
' '

200 11 ·.I ' ··I -

L I

it 1SO

• i 100
.t "

'

Lj
l-- ---~---===--

'" - i IF. I

so ~ lt L --=~

0 ~ 'i i
~l ~ ,

..,_..~~~ ~

1 2 :l .. s 8 7 8 9 10 11 1 2 :l .. s El 7 8 9 10 1 f

Err er N.Jm ber Errcr N.Jmber

Figure 39 - Common-mode failure Frequency in Channel A and Channel B

- - Channel A ChanneiB # Error Description Frequency Frequency TOTAL

1 Crane One Dropped Blank 54 75 129
2 WS 1 - blank exceeded time limit 189 215 404
3 Blank passed through system but exceeds Max Sys 2 1 3

Time
4 Blank in WS1 picked up before min time elapsed 4 7 11
5 Blank in WS2 picked up before min time elapsed 2 5 7
6 WS 2 - blank exceeded time limit 6 12 18
7 Blank processed at too few workstations 2 2 4
8 Workstation used more than once 4 2 6
9 WS 3- blank exceeded time limit 1 1 2
10 WS 4 - blank exceeded time limit 1 1 2
11 Blank in WS3 picked up before min time elapsed 1 1 2

Figure 40 - Common-mode failure type frequency breakdown for Channel A and Channel B

It can also be seen that two of the errors - "Crane One Dropped Blank" and

"Workstation 1 - Blank Exceeded Time Limit" - occur frequently in both channels. The

exact reason as to why this is the case will require further investigation at the source code

level, but nevertheless this analysis gives developers extremely useful information to

investigate.

74

7.7 Issues with FITMVS Arising from the Experiment

At the conclusion of the experiment, a number of limitations with the current

FITMVS system were apparent. The system does not recognise objects, and hence cim only

perturb primitive variable types, not objects or class variables. An example of this is shown in

figure 41.

void function ()

{

}

int a;
long b;
Object theObject =new Object();

11 FITMVS can perturb either primitive
11 variable, such as :

A = A + 43;

11 or

B = B + 20;

11 but does not recognize objects and so
11 could not, for example, do as follows:

theObject->variable = theObject->variable + 20;

Figure 41 - Code example of what FITMVS can and cannot perturb

The reason for this is the lack of sophistication in the FITMVS parser components,

stemming from the lack of development time available. In an age of object-oriented

technologies, this is obviously an issue that will need to be addressed in the future, as many

potential perturbations were ignored by the system and an even greater insight into the two

channels may have been missed.

Another issue to arise as a result of the experiment is that of the "time-out problem".

In order to resolve whether or not time-outs will produce common-mode failure across

channels, it is currently the case that the user must manually study the FITMVS log file,

manually perform the specified injection, and then manually evaluate the execution of the

channel. Although this is possible for a small number of time-outs, as noted in section 7 .4, an

75

average of just over 10% of tests performed resulted in a time-out, and so such a manual

analysis is unfeasible. An investigation is therefore needed into alternate methods for

analysing time-outs between channels.

Perhaps the most profound problem of all is the inability ofFITMVS (and perhaps the

fault injection approach as a whole) to accurately model non-independence of failure. Every

experimental analysis of MVD systems has shown that the probabilities of channels in MVD

systems failing are not dependant of each other, although no research appears to have been

performed on modelling this relationship between channels. Due to the fact that different

channels will have different variable names, different structures, different functions and

different objects, it is simply not possible to insert the "same" fault into more than one

channel (unless perturbing input data). Therefore, all injections performed are completely

independent of each other and so a non-independence relationship cannot be established

between channels.

7.8 Summary

This chapter details the results of the experiment performed, together with an

analysis as to what these results mean. Examples of the FITMVS log files produced by the

experiment are shown, analyses are performed to give channel sensitivity analysis, channel

sensitivity to common-mode failure, program scope sensitivity analysis, program scope

sensitivity to common-mode failure, error frequency distribution analysis and common-mode

failure frequency distribution analysis. The chapter concludes by examining issues that arose

with the FITMVS system as a result of the experiment.

76

Chapter 8 Conclusions and Future Work

8.1 Conclusions

The primary goal of this research has been to develop a system capable of

automatically injecting faults into an MVD system and then testing the system for its

behaviour. Such a system is desirable as multi-version design has been proposed as a method

for increasing the dependability of critical systems beyond current levels, but lack of

quantitative characterizations is a major obstacle to large-scale commercial usage of the

approach. The technique of fault injection provides much potential for generating large

numbers of metrics. Fault injection is a "late life-cycle" software analysis that can simulate

human operator errors and observe their impact on the software as well as the total system. It

is a technique that complements, but is not a substitute for, other verification and validation

procedures. By developing a fault injection system (FITMVS), it was hoped to provide a

method for generating large amounts of data about both an MVD system as a whole, as well

as its constituent channels.

The result of this has been very successful, and as a result, not only has a valuable

tool for the production of detailed metrics into MVD systems been produced, but extremely

useful metrics about a lmown MVD system have been produced also. The automated nature

of the FITMVS system has also allowed for a much greater number of tests to be performed

than might otherwise have been the case (21 ,211 tests automatically performed compared to

the 4,320 tests performed manually over a much greater time period in a previous study). The

following analyses can be produced using the FITMVS system:

1) Channel Sensitivity Analysis. This metric allows the user to gauge how

likely a channel within an MVD system is to fail when a fault is injected

into it. The user may then wish to invest more resources in channels with a

high sensitivity to faults.

2) Channel Sensitivity to Common-mode failure. This metric is related to

channel sensitivity analysis, but applies to the MVD system as a whole.

This analysis is useful as it helps to refine dependability estimates for a

MVD system by giving the user an indication of how likely the system is to

77

fail through common-mode failure, assummg a single random fault Is

injected into each of its constituent channels.

3) Program Scope Sensitivity Analysis. This analysis generates a graph

showing the number of errors that were produced following injections into

each scope within a channel's source code. This allows the user to assess at

a glance which scopes are more sensitive to faults than others; the user may

then wish to either perform increased tests on these scopes, debug them, or

introduce more effective exception-handling routines in them.

4) Program Scope Sensitivity to Common-mode failure Analysis. This analysis

is similar to the program scope sensitivity analysis, and produces a graph

showing the number of errors with the potential for common-mode failure

that were produced following injections into each scope within a channel's

source code. A user may find this analysis helpful in assessing which

scopes are in most urgent need for maintenance (assuming that the MVD

system will be able to handle non-common-mode failures generated by

scopes). This analysis may also be extremely useful in future research

investigating the exact causes of the related-error phenomenon.

5) Error Frequency Distribution Analysis. This analysis measures the number

of occurrences of each type of error reported during the course of testing by

FITMVS. This analysis can help the user to detect which errors occur most

frequently when a fault is present, and allows them the opportunity to

allocate more resources to the development of exception-handling routines

for these errors and/or investigate why the errors are so common.

6) Common-mode Failure Frequency Distribution Analysis. This analysis is

similar to the error frequency distribution analysis, but measures the

number of occurrences of each type of potential common-mode failure

reported during testing. This enables the user to develop more effective

exception-handling routines for the MVD system as a whole.

The MVD system tested was a trivial example, but nevertheless, the results gained are

extremely satisfactory as a proof-of-concept, and show great promise, with the sensitivity to

potential common-mode failure in particular being surprisingly low, whilst the sensitivity

metrics for each channel appear to confirm earlier tests [TOWO 1 a, TOWO 1 b] into their

78

relative dependabilities which established channel B as being the more dependable channel.

The program scope metrics were successful in establishing specific scopes in both channels

with disproportionate sensitivity results, whilst the error type frequency analysis revealed a

number of errors that were far more common than others when faults were injected into either

channel. The common-mode failure type frequency analysis was also very useful, as it

isolated two types of error that were by far the most likely to occur in the event of a common

mode failure.

The MVD system chosen as a test example required several seconds to perform each

test, and so the total number of tests that could be performed was limited; other applications

may not have this speed restriction, and hence much higher numbers of tests may be

performed and the resulting statistics may have a more fine-grained resolution.

As has been stated earlier, the FITMVS system is very much a proof-of-concept

system, but the potential for improvement in the future is great. The current system provides a

method for extracting the much needed quantitative characterizations that are required by the

fault-tolerant distributed-computing community [KIMOO] and can therefore be considered to

be very much a success.

8.2 Future Work

There is great potential for future work both on the implementation of FITMVS and

the application of FITMVS. On the implementation side, perhaps the most pressing need is

for a better parser. The current parser within the FITMVS system cannot handle objects, and

can only parseC and C++. Improvements in the parser should also allow for a wider choice of

possible injections; currently the FITMVS system only supports data value perturbation;

however, one possible goal in the future is to provide the possibility of code mutation as well.

Changes to the parser may include further work on the existing parser, or the replacement of

the existing parser with a ready-made/commercial parser. Another improvement to the system

would be the implementation of an analysis component; currently the system outputs a very

detailed log file, but the actual metrics and analyses of this file have to be done semi

manually (the log file is tab-delimited and should import into most modem spreadsheet

applications). By giving the user the option of automatic analysis of the output logs, the

overall time taken to gain results should be much reduced.

There are also a number of promising research directions in which FITMVS may be

helpful. The most profound of these is an investigation into related errors; currently, there is

no understanding as to the relationship between errors and common-mode failures. By using

the analyses offered by FITMVS, it may be possible to investigate relationships between

79

scopes that are more likely to cause common-mode failure, and perform reverse engineering

to gain a greater understanding of the underlying causes. It is also of interest to analyse the

results of FITMVS on other MVD systems in order to see if there are any underlying patterns

or trends in the data extracted. Although the automated testing mechanism has increased the

number of tests that were able to be performed significantly, the fact that the MVD system

tested waited on the system timer prohibited a truly large number of tests from being

performed, and therefore an alternative MVD system that does not wait on the system timer

will enable a more rigorous analysis.

8.3 Acknowledgements

My thanks to my supervisor Jie Xu, and my mum and dad for all their support.

80

Appendix A

This appendix lists the results of the analysis for common-mode probabilities

performed on every injection cycle. The format of these results is detailed in section 7 .4.

Sta.odard Deviation: 8192 Channel A (315) Channel B (540)

Workstation I - blank
12, 13, 14, 15, 17, 44, 52, 53, 54, 63,

exceeded time limit
34,34,50,50,56 121 0.00035
(3.1 7460%) (1.11111 %)

Workstation 2 - blank 34 65,92
0.00001

exceeded time limit (0.31746%) (0.37037%)
0.00036
(0.036%)

Staadard Deviation: 8192 Channel A (305) Channel B (540)

Blank in Workstation 1 picked 29,29,29
19, 25, 52, 95 , 106,
112 0.00010

up before minTime elapsed (0.98360%) (1.111 11 %)
Blank in Workstation 2 picked 29 32,81

0.00001
up before minTime elapsed (0.32786%) (0.37037%)

2, 2, 2, 2, 3, 3, 3, 3 3 1' 31' 32, 51, 51,
Crane One dropped blank 51,51,51 0.00038

(2.62295%)
(1.48148%)

I 2, 13, 27, 27, 27,
7, 7,30,38, 44,52,

Workstation 1 - blank 53, 54, 63, 68, 73,
exceeded time limit

27,34,34,34
121

0.00065
(2.95081%) (2.22222%)

0.00114
(0.114%)

Standard Deviation: 8192. Channel A (309) Cbannel B (540)
Blank in workstation l picked 28 44

0.000005
up before time limit expired (0.32362%) (0.18518%)

29, 29, 40, 40, 40,

Crane One dropped blank
2 40, 40, 40, 51, 51,

0.00007
(0.32362%) 5 1,51,51

(2.22222%)

Workstation 1 - blank 15, 54, 54, 54, 56 24, 24, 24, 52, 54,

exceeded time limit (1.61812%)
63, 94 0.00020
(1.29629%)

0.000275
(0.0275%)

81

Standard Deviation: 8191 Channel A (315) Channel B (540)
15, 17, 28, 28, 28, 24, 24, 24, 29, 29,

Work:station 1 - blank 28, 33,33, 33, 33, 52, 53, 54, 58, 63,
0.00114

exceeded time limit 34,34,51 64, 83,84, 98, 98
(4.12698%) (2.77777%)

Work:station 2 - blank 34 65, 92, 121 0.00001
exceeded time limit (0.31746%) (0.55555%)

0.00115
(0.115%)

Standud Deviation: 4096 Channel A (315) Channel B (540)

Workstation 1 - blank
12, 17, 28, 28, 28, 44, 52, 54, 73, 93,

exceeded time limit
31 , 31, 31,31 107, 114, 119, 121 0.00047
(2.85714%) (1.66666%)

Work:station 2 - blank 15, 28 64, 121
0.00002

exceeded time limit (0.63492%) (0.37037%)
0.00049
(0.049%)

Studard De¥1adon: 4096 Channel A (319_} Channel B (536)

Crane one dropped blank
2, 3 51

0.00001
(0.62695%) (0.18656%)

Workstation 1 - blank 12, 35 44, 52, 54, 114
0.00004

exceeded time lirnjt (0.62695%) (0.74626%)
0.00005
(0.005%)

Standard Deviation: 4096 Channel A (315) Channel B (540)

13, 16, 32, 32, 34,
22,24, 24,24,44,

Workstation I - blank
34, 34,57

54, 65, 68, 112,
0.00051 exceeded time limit 121 ,130

(2.53968%)
(2.03703%)

0.00051
(0.051 %)

Studard Deviation: 4096 Channel A (317) Channel B (540)

2
40, 40, 40, 40, 40,

Crane One dropped blank
(0.31545%) 51 , 51 , 51 , 51 , 51 0.00005

(1.85185%)
12, 14, 15, 17, 31,

2, 2, 22,22, 22, 44, Workstation 1- blank exceeded 31, 31, 31, 34, 51 ,
time limit 56 53, 54, 63, 68, 92 0.00070

(3.47003%) (2.03703%)

0.00075
(0.075%)

82

StaDdard Deviation: 4096 Chaonel A (325) Channel 8 (540)

2, 2, 2, 2, 3, 3, 3
21, 21 , 51 , 51 , 51,

Crane One dropped blank 51, 51 0.00027
(2.15384%) (1.29629%)
12, 26, 32, 33, 34,

27, 44, 52, 54, 63,
Workstation 1- blank 34, 34, 54, 54, 54,

64, 67, 73, 92, 107 0.00068
exceeded time limit 54,56

(3.69230%)
(1.85185%)

0.00095
(0.095%)

Standard Deviation: 2048 Channel A (315) Channel 8 {540)

15, 16, 28, 28, 28,
3, 3, 9, 53, 54, 63,

Workstation 1 - blank 68,73, 79,92, 103,
exceeded time limit

28,29,34,34,34
107

0.00070
(3.17460%) (2.22222%)

Workstation 2 - blank 17 8, 27
0.00001

exceeded time limit (0.31746%) (0.37037%)
0.00071
(0.071%)

Studard Deviation: 2048 Cbaooel A (310) Cbaonel 8 {540)

Workstation 1- blank 17, 57
53,54, 63, 64, 73,
74, 109 0.00008

exceeded time limit (0.64516%)
(1.29629%)

0.00008
(0.008%)

Standard Deviation: 2048 Gbannel A (315) Chaonel 8 (540)

Workstation 1- blank 3, 3, 3, 4, 5
5, 20, 20, 20, 44,
52,54,63 0.00023

exceeded time limit (1.58730%)
(1.48148%)

Workstation used more than 26, 26 122
0.00001

once (0.63492%) (0.18518%)
0.00024
(0.024%)

Standard Deviation: 2048 Channel A (310) Channel B (537)

Workstation 1- blank
12, 29, 29, 29, 29,

54, 63, 64, 68
exceeded time limit

35, 57
(0.74487%)

0.00016
(2.25806%)

0.00016
(0.016%)

83

Standard Deviation: 2048 Channel A (310) Channel B (540)

Workstation 1 - blank
13, 28, 28, 28, 28,

44,52,54,63, 105
exceeded time limit

33,33,33,33
(0.92592%)

0.00026
(2.90322%)

0.00026
(0.026%)

Standard DeviatioA: 1 Channel A (289) Channel B (540)_
Blank processes at too few 50 38

0.000006 workstations 1 0.34602%) (0.18518%)

Crane one dropped blank
2 51

O.E>00006 (0.34602%) (0.18518%)
21,21 ,2 1, 23, 23,

Workstation 1 - blank 26, 33,33,33,55
23, 28, 28, 28, 52,
54, 60, 63, 67, 68, 0.0005 1 exceeded I (1.73010%)
121
(2.962961Vo)

Workstation used more than 63, 63 64
0.00001 once (0.69204%) (0.18518%)
0.000532
(0.0532%)

Standard Deviation: 1 Channel A (310) Channel B (540)
26, 26, 26, 28, 28,

Workstation 1- blank
28, 27, 29, 29, 29, 21' 23, 24, 52, 54,

exceeded time limit
34, 34, 34, 54, 54, 68, 73, 92, 121 0.00096
54,54,57 (1.66666%)
(5.80645%)

0.00096
(0.096%)

Standard Deviation: 1 ChaDBel A (315) Channel B (540)
Blank processed at too few 53 26

0.000005 workstations 1 0.31746%) (0.18518%)
12, 12, 29, 29, 29, 10, 10, 53, 58, 67,

Workstation 1 - blank 29,50,53,65,65, 73, 77, 87, 88, 121 ,
0.00084 exceeded time limit 65,65,65 125

(4.12698%) (2.03703%)
0.000845
(0.0845%)

Standard Deviation: 1 Channel A (299) Channel B (539)
Blank passed through system 39,65 118 0.00001
but exceeds max time (0.66889%) (0.18552%)
Workstation 1 - blank 13, 32, 33, 33 22, 29, 29, 29, 38, 0.00019
exceeded time limit (1.33779%) 59,63,121

(1.48423%)
0.00020
(0.02%)

84

Standard Deviation: 1 Channel A {325) Channel B (540)
2, 2, 2, 2, 3, 3, 3, 3,

51, 51 , 51
Crane One dropped blank 3

(0.55555%)
0.00015

(2.76923%)
0.00015
(0.015%)

Normal Distribution Channel A (310) Channel B (539)

Workstation I - blank 16. 17, 31, 32, 32
21, 21, 21 , 26, 52,
53,63 0.00020

exceeded time limit (1.61290%)
(1.29870%)

Workstation 2 - blank 13 65, 92, 121
0.00001

exceeded time limit (0.32258%) (0.55658%)
0.00021
(0.021%)

Normal Distribution Channel A (315) Channel B (540)

Workstation 1- blank
13, 16, 27, 27, 27, 21 ' 29, 29, 44, 52,

exceeded time limit
27 53, 54, 63 0.00028
(1.90476%) (1.48148%)

0.00028
(0.028%)

Normal Distribution Channel A {319) Channel B (539)
Blank in workstation 3 picked

28 85
up before minimum time

(0.31347%) (0.18552%)
0.000005

elapsed
Blank in workstation 2 picked

28 63, 121 , 121
up before minimum time

(0.31347%) (0.55658%·)
0.00001

elapsed
23, 23, 40, 40, 40,

Crane one dropped blank
2, 3 40, 51 , 51 , 51, 51,

0.00012 (0.62695%) 51
(2.04081%)
3, 44, 52, 54, 63,

Workstat1on I - blank 15 73, 76, 83, 87, 90,
0.00006

exceeded time limit (0.31347%) 99
(2.04081%)

0.000195
(0.0195%)

Normal Distribution Channel A {315} Channel B {539)

Workstation 1- blank
13, 17, 33, 33, 33, 22, 22, 22, 44, 53,

exceeded time limit 33 54, 63, 92 0.00028
(1.90476%) {1.48423%)

0.00028
(0.028%)

85

Normal Distribution Channel A (325) Channel 8 (540)

2, 2, 2, 2, 3, 3, 3, 3
40, 40, 40, 40, 40,

Crane One dropped blank 51, 51, 51,5151 0.00045
(2.46153%)

{1.85185%)
15, 17, 17, 20, 31,

44, 52, 54, 63 , 73,
Workstation 1 - blank 31 , 31, 31 , 50, 50,

74, 75, 90, 92, 121 0.00062
exceeded time limit 53

(3.38461%)
(1.85185%)

Workstation 3 - blank 33 121
0.000005

exceeded time limit (0.30769%) (0.18518%)
Workstation 4 - blank 1 44

0.000005
exceeded time limit (0.30769%) (0.18518%)

0.00108
(0.108%)

86

References

[AMM87] P.E. Ammann, J.C. Knight, "Data Diversity: an Approach to Software Fault

Tolerance", in Proc. Seventeenth International Symposium on Fault-Tolerant Computing,

p.122-126, Pittsburgh, 1987

[ATH89] A. Athavale, "Performance Evaluation of Hybrid Voting Schemes", M.S. Thesis,

North Carolina State University, Department of Computer Science, December 1989

[AVI77] A. Avizienis, .L. Chen "On the implementation of N-version programming for

software fault tolerance during execution" Proc. IEEE COMPSAC 77 p.149-155 November

1977

[AVI84] A. Avizienis, J. Kelly "Fault Tolerance by Design Diversity. Concepts and

Experiments" IEEE Computer- Vol. 17- No. 8- August 1984 p. 67-80

[AVI85] A. Avizienis, "The N-version Approach to Fault-Tolerant Software" - IEEE

Transactions on Software Engineering - vol. 11 1985

[AVI86] A. Avizienis, J.C. Laprie, "Dependable computing: from concept to design

diversity," in Proceedings of the IEEE, p. 629-638, 1986

[AVI89] A. Avizienis, "Software Fault Tolerance"- IFIP XI World Computer Congress '89-

San Fransisco - August 1989

[BUT93] R. W. Butler, G. B. Finelli, "The Infeasibility of Quantifying the Reliability of Life

Critical Real-Time Software", IEEE. Transactions on Software Engineering, vol SE19 no. 1,

p. 3-12, January 1993

[CAR99] J. V. Carreira, D. Costa, J.G. Silva, "Fault Injection Spot-checks Computer System

Dependability", IEEE Spectrum, p. 50-55, August 1999

87

[CHR94] J. Christmansson, Z. Kalbarczyk, "An Approach to Experimental Evaluation of

Different Data Diversity Schemes", Predictably Dependable Computing Systems second year

report, p. 685-716, September 1994

[CLA95] J.Clark, D. Pradhan, "Fault Injection: A Method for Validating Computer-System

Dependability," in IEEE Computer, p. 47-56, June 1995

[CHE99] L. Chen, J. Napier, J. May, G. Hughes, "Testing the Diversity of Multi-version

Software using Fault Injection," in Proc. Of the Safety and Reliability Society Symposium:

Advances in Safety and Reliability, June 1999

[CR182] F. Cristian, "Exception Handling and Software Fault Tolerance", IEEE Transactions

on Computers, 31(6):531-540, 1982

[DEM78] R.A. DeMillo, R.J. Lipton, F.G. Sayward, "Hints on Test Data Selection: Help for

the Practicing Programmer", IEEE Computer, 11(4), p. 34-41, Aprill978

[ECK85] D.E. Eckhardt, L.D. Lee "A theoretical Basis for the Analysis of Multiversion

Software Subject to Coincident Errors"- IEEE Transactions on Software Engineering- Vol

SE-ll- No. 12- December 1985- p. 1511-1516

[ECK91] D.E. Eckhardt et al, "An Experimental Evaluation of Software Redundancy as a

Strategy for Improving Reliability" IEEE Transactions on Software Engineering Vol. 17 1991

pp 692-702

[GH099] A. K. Ghosh, J. M. Voas, "Inoculating Software for Survivability", m

Communications of the ACM 42(7), p. 38-44, July 1999

[GRA90] J. Gray, "A census of Tandem system availability between 1985 and 1990," in

IEEE Transactions on Reliability, p.409-432, 1990

[HAL90] P. Hall, "Defect Detection and Correction" in "Software Reliability Handbook", Ed.

P. Rook, Elsevier Science Published Ltd., 1990

[HAN95] S. Han, K.G. Shin, H.A. Rosenberg, "Doctor: An Integrated Software Fault

Injection Environment for Real-Time Systems," in Proc. Of the Second Annual IEEE Int.

Computer Performance and Dependability Symp., pp/ 204-214, IEEE 1995

88

[HAT97] L. Hatton, "N-version Design Versus One Good Version"- IEEE Software Vol.14

No.6 1997 pp 71-76

[HEC93] H. Hecht, "Rare Conditions - An Important Cause of Failures", Proc.

COMPASS'93, Gaithersburg MD, June 1993

[HEC94] H. Hecht, P. Crane, "Rare Conditions and their Effect on Software Failures", Proc.

of the 1994 Reliability and Maintainability Symposium, p. 334-337, January 1994

[HEC96] H. Hecht, M. Hecht, "Qualitative Interpretation of Software Test Data", Computer

Aided Design, Test and Evaluation for Dependability Workshop, Beijing, China, July 1996

[HSU97] M-C. Hsueh, T. K. Tsai, R.K. lyer, "Fault Injection Techniques and Tools", IEEE
I

Computer, April 1997, p. 75-82.

[JALOO] P. Jalote, "Fault Tolerance in Distributed Systems", Prentice Hall, Englewood Cliffs

NJ, 2000

[KEL88] J. Kelly, D.E. Eckhardt, A. Caglayan et al, "Large Scale Second Generation

Experiment in Multi-Version Software: description and early results" IEEE Fault Tolerant

Computer Systems Vol18- 1988 pp 9-14

· [KER86] E. Keravnou, L. Johnson, "Competent Expert Systems", Kogan Page, London, 1986

[KIM84] K.H. Kim, "Distributed Execution of Recovery Blocks: An Approach to Uniform

Treatment of Hardware and Software Faults", in Proc. 41
h Int. Conf. On Dist. Comp. Sys, p.

577-632, San Francisco, May 1984

[KIM95] K.H. Kim, "The Distributed Recovery Block Scheme", in [L YU95], p. 189-209,

1995

[KIMOO] K.H. Kim, "Issues Insufficiently Resolved in Century 20 in the Fault-Tolerant

Distributed Computing Field," in Proc. 191
h IEEE Symposium on Reliable Distributed

Systems, October 2000 p. 106 - 115

89

[KIT90] B. Kitchenham, "Software Development Metrics and Models", m "Software

Reliability Handbook", Ed. P. Rook, Elsevier Science Published Ltd., 1990

[KNI86] J. Knight, N. Leveson, "An Experimental Evaluation of the Assumption of

Independence in Multi-version Programming" IEEE Transactions on Software Engineering

vol. 12 1986 pp 96-109

[KNI90] J. Knight, N. Leveson, "A reply to the criticisms of the Knight and Leveson

experiment" ACM Software Engineering Notes- January 1990

[LAD99] P. Ladkin et al, "Computer-related Incidents with Commercial Aircraft"

http://www .rvs. uni -bielefeld.de/publications/Incidents/ 1999

[LAP90] J-C. Laprie et al, "Definition and Analysis of Hardware- and Software- Fault

Tolerant Architectures", IEEE Computer vol. 23 no. 7, July 1990

[LAP92] J-C. Laprie, (ed.). "Dependability: Basic concepts and terminology - in English,

French, German, Italian and Japanese," in "Dependable Computing and Fault Tolerance"

Vienna, Austria, Springer-Verlag, p. 265, 1992

[LAP95] J-C. Laprie, "Software Reliability and System Reliability", in [L YU95], p. 27-69,

1995.

[LEV95] N. Leveson, "Safeware: System Safety and Computers" - Addison-Wesley

Longman - New York - 1995

[L YU95] M.R. Lyu, "Software Fault Tolerance" - John Wiley & Sons - Chichester - UK -

1995

[MAC88] D. A. Mackall, "Development and Flight Test Experiences With a Flight-Crucial

Digital Control System" Technical Report NASA Technical Paper 2857 - National

Aeronautics and Space Administration- Dryden Flight Research Facility- November 1988

[MAC91] D.F. McAllister, R.K. Scott, "Cost Modelling of Fault-Tolerant Software" -

Journal of Information and Software Technology Vol. 33 no.8 October 1991- p. 594-603

90

[MEL77] P.M. Melliar-Smith, B. Randell, "Software Reliability: the Role of Programmed

Exception Handling", SIGPLAN Notices, 12(3):95-100, 1977

[MIL72] H.D. Mills, "On the statistical validation of computer programs," IBM Federal

Systems Division, Gaithersburg, MD, Red. 72-6015, 1972

[MOR88] L. J. Morell, J. Voas, "Infection and Propagation Analysis: A Fault-Based

Approach to Estimating Software Reliability", Technical Report WM-88-2, College of

William and Mary in Virginia, Department of Computer Science, September 1988

[PRE97] R.S. Pressman, "Software Engineering: A Practitioners Approach", 41
h edition,

Addison-Wesley, 1997

[RAN75] B. Randell, "System structure for software fault tolerance," in IEEE Transactions

on Software Engineering, 1(2):220-232, 1975

[RAN95a] B. Randell et al, "Dependability - Its Attributes - Impairments and Means" -

Predictably Dependable Computing Systems- Springer-Verlag 1995 p. 3-24

[SC084] R.K. Scott, J.W. Gault, D.F. McAllister, J. Wiggs, "Experimental Validation of Six

Fault-Tolerant Software Reliability Models" IEEE Fault Tolerant Computer Systems Vol. 14

- 1984- pp 102-107

[SC085] R.K. Scott, J.W. Gault, D.F. McAllister, "The Consensus Recovery Block", in Proc.

Total System Reliability Symposium, p. 74-85, 1985

[SHR78a] S. K. Shrivastava, "Sequential pascal with recovery blocky", Software Practice

and Experience, 8:177- 185, 1978

[SHR78b] S.K. Shrivastava, AA Akinpelu, "Fault-tolerant sequential programming using

recovery blocks", in Proc. Eighth International Symposium on Fault-Tolerant Computing, p.

207, Toulouse, 1978

[ST096] N. Storey, "Safety Critical Computer Systems" Addison-Wesley-Longman - New

York 1996

91

[TOW01a] P.Townend, J. Xu, M. Munro, "Building Dependable Software for Critical

Applications: N-version design versus one good version," in Proc. 61
h IEEE Intl. Workshop on

Object-Oriented Real-Time Dependable Systems, p. 103-110, 2001

[TOW01b] P.Townend, J. Xu, M. Munro, "Multi-Version Software versus One Good

Version: A further study and some results," in Proc. IEEE/IFIP International Conference on

Dependable Systems and Networks, Goteborg, July 2001

[TSA96] T.K. Tsai, R.K. lyer, "An Approach to Benchmarking of Fault~ Tolerant Commercial

Systems," in Proc. 261
h Ann. Int. Symp. Fault-Tolerant Computing, p. 314-323, IEEE, Los

Alamitos, CA, 1996

[VOA95] J. Voas, K. Miller, "Using Fault Injection to Assess Software Engineering

Standards", in IEEE Int. Soft. Eng. Standards Symp. 1082-3670, p. 139-145, 1995

[VOA97] J. Voas, A. Ghosh, F. Charron, L. Kassab, "Reducing Uncertainty about Common

Mode Failures", in Int. Symp. On Reliability Eng. 1071-9458, p. 308-323, 1997

[VOA98a] J. Voas, "Analyzing Software Sensitivity to Human Error", Int. Journal of Failure

and Lessons Learned in Information Technology Management, 2(4), December 1998

[VOA98b] J. Voas, "Software Fault Injection: Inoculating Programs against Errors", Wiley

Computer Publications, New York, 1998

[VOU90] M.A. Vouk, "Back-to-Back Testing"- Information and Software Technology Vol.

32 - No. 1 1990 p. 34-45

92

