W Durham
University

AR

Durham E-Theses

Assessing multi-version systems through fault
Injection

Townend, Paul Michael

How to cite:

Townend, Paul Michael (2001) Assessing multi-version systems through fault Injection, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3766

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3766/
 http://etheses.dur.ac.uk/3766/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Assessing Multi-Version Systems
Through Fault Injection

Paul Michael T owneﬁd

The copyright of this thesis rests with .
the author. No quotation from it should

be published in any form, including
Electronic and the Internet, without the
author’s prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

M.Sc. Thesis

Research Institute in Software Engineering,
Department of Computer Science,
University of Durham
UK

2001

&

26 APR 200

ABSTRACT

i

Multi-version design (MVD) has been proposed as a method for increasing the dependability
of critical systems beyond current levels. However, a major obstacle to large-scale
commercial usage of this approach is the lack of quantitative characterizations available. Fault
injection is used to help seek an answer this problem. Fault injection is a phrase covering a
variety of testing techﬁiques that can be applied to both hardware and software, all of which
involve the deliberate insertion of faults into an operational system tlo determine its response.
This approach has the potential for yielding highly useful metrics with regard to MVD
systems, as well as giving developers a greater insight into the behaviour of each channel
within the system. In this research, an automatic fault injection éystem for multi-version
systems called FITMVS is developed. A multi-version system is then:tested using this system,

and the results analysed.

It is concluded that this approach can yield several extremely useful metrics, such as metrics
related to channel sensitivity, channel sensitivity to common-mode error, program scope
sensitivity, program scope sensitivity to common-mode error, error fréquency distribution and
common-mode error frequency distribution. In addition to this, the analysis of the multi-
version system tested indicates that the system has an extremely low probability of
experiencing common-mode error, although several key points in chajnnel code are identified

as having higher sensitivity to faults than others.

Copyright

The copyright of this thesis rests with the author. No quotation from it should be published

without his prior written consent and information derived from it should be acknowledged.
Declaration
No part of the material offered has previously been submitted by the éuthor for a degree in the

University of Durham or in any other University. All the work presented here is the sole work

of the author and no one else.

TABLE OF CONTENTS

CHAPTER 1. ..o e 10
INTRODUCTION. ..o, 10
1.1 Introduction............ ..o 10
1.2 Objectives.........ooovriiiiiiiii bt 10
1.3 Organization of the Remainder of Thesis................. e, 11
CHAPTER 2. 13
THE NEED FOR DEPENDABLE SOFTWARE....... eeeeeneeneeenn 13
2.1 BasicDefinitions...................cooi 13
2.1.1 SOftWare SYStEIMS. ... cvvi ettt 13

2.1.2 ErTOrS. e 13
213 Fallure.o 13
2.1.4 Faults. ... e 13
2.1.5 System DeSiZN. ..o.viiii e e 14
2.1.6 Design faults and component faults.................... e 14
2.1.7 Related erTors.v vt 14

2.2 Dependability..............c..coioveeiiiieriiieeeiieeee e, 14
2.3 The Need for Dependable Software......................... TR 16
2.4 The “Traditional” Software Engineering Approach..................... 17
2.5 Software Fault Tolerance............................coooil. e 18
2.5.1 Recovery blocks......c.vvvuiiiiiiiii e, 19

2,52 - Multi-version design...........ooeeeeiiiiiiiiiiiiininians e 21
253 The controversy over multi-version design............ e 22
2.54 Cost factors of multi-version design.................... e 22
2.5.5 Other FT methods based on RBand MVD........................... 23

2,6 The Need for Fault Tolerant Metrics TUURP 24

S 27 SUMMANY...ooi e e 25

CHAPTER 3. e, . 26

FAULT INJECTION......ccoooiiiiii e 26
3.1 Problems with Traditional Testing.. e, faaerensien e 26
3.2 Fault Injection.................... J TP USRS 26

3.2.1 Background of software fault injection.............. Lo 27
3.2.2 Differences with traditional testing techniques....................... 30
3.23 Issuestoconsider..........ooooviiviiiiiiiiiiiia, P, 31
3.3 Applying fault injection to multi-version systems........................ 31
3.4 SUMMATY......cooiiiiiiiiii i e e e e 33

CHAPTER 4.....oooooooooooooo) RO 34

IMPLEMENTATION............... e ST 34
4.1 FITMV S 34
4.2 TheDesign of FITMVS.. ..., 34

4.2.1 System iNPUL.....c.vveiiei e e 34
4.2.2 The automated ProCess........oovvuiieeiiiit it iie e iiaeeaea e 40
423 SYStEm OULPULS. ...ttt e e 41
4.3 Objectives of the System.......................oooini. e 41
4.4 Limitations of the System........... e e 42
4.5 PortabilityIssues..........................ooeoi e, 43
4.6 The Development of FITMVS..........................0s e 43
4.6.1 The parser COMpPONeNt.........covvvveiriniiiieiiieiirenneeenenns 43
4.6.2 Auto-testing functionality..................c 45
4.6.3 The main fault injector and user interface components 46
4.6.4 Changes required to the target system.................iveeinnnnnn. 46
4.6.5 The test-set file makeup..............ccooviiiiiiiiii 47
4.7 Summary 48

CHAPTER 5. oo, 49

APPLICATION CASE STUDY ..o, 49
5.1 Factory Production Cell Case Study..............................oone . 49

5.2 System Requirements.........................ccoeiiiiine. e ... 50

521 ASSUMPLIONS. ... eeeiieiiiiie e e 50
5.2.2 Operational environment.............ovvvvireirivneesioinnenennenn. 51
523 External interfaces & data flow...........coooiiiiiiiiiiiiiiinnenen 51
5.2.4 Logging format...........ooiiiiiii e, 52
5.2.5 General crane operation..........c.c.cocveiiieeninns OO 53
5.2.6 Movement of blanks............c.coviiiiiiiiiiiinn, PRI 53
5.2.7 Both blanks need to be moved to the deposit belt.................... 53
5.2.8 Both blanks need to be moved to other workstations................ 54
5.2.9 One blank moves to deposit belt, other to another workstation.... 54
5.2.10 One blank needs to move to another workstation or deposit belt... 54
5.2.11 Neitherneedstobemoved............oooiiiiiiiiiiiiiniiineen . 55
5.2.12 Belt cqntrol .. 55
53 Summary...........ccoociiiiiii e e, 55
CHAPTER 6......coo.oovoeeoeeeeeeeee e 56
THE EXPERIMENT PERFORMED......................... e 56
6.1 Overview of the Experiment Performed................... e 56
6.2 Re-development of the Factory Simulation............... e, 56
6.3 Testdata............... e 57
6.3.1 Test 1 (single blank) ... 57
6.3.2 Test 2 (single blank)cooiviiiiiiii e 57
6.3.3 Test 3 (two blanks)ooooiiiiii. S 58
6.3.4 Test4 (two blanks)cooovvviiiiiiiiiiiens e 58
6.3.5 Test 5 (two blanks)c.cocviviiiiiiiini, P 58
6.4 Processing Time....................... e 59
6.5 "SUMMATY..........iii i 59
CHAPTER 7., 60
RESULTS AND ANALYSIS........oo 60
7.1 Overviewof Results..............................cnl, e, 60
7.2 Output of FITMVS LogFiles.................coooiiiiiiiiiiiiiie, 60
7.3 Sensitivity Metrics.ovvveeeeeeeeeeeee e RUURTU 63
7.4 Sensitivity to Common-mode Failure........................ e 65
7.5 Sensitivity to Error of Each Program Scope.............. e, 69

7.6 Error Frequency Analysis.......................cool PO 71

7.7 Issues with FITMVS Arising From the Experiment................... 75
7.8 SUMIMATY..........ooiiiiiiiiiiieiiei e e 76
CHAPTER 8. 77
CONCLUSIONS AND FUTURE WORK............coociiiiii 77
8.1 Conclusions..........c.ooooiiiiiiiiiii e 77
82 Future Work.........coooiiiii 79
8.3 Acknowledgements.....................i 80
APPENDIX A . 81
REFERENCES. ..., 87

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

LIST OF FIGURES

Dependabilityeeeeeeeeeeeeeeenenn. SUTTUTRURRR IRUUTTTR
Recovery block operation....................coveiiiivininne e eereireneean

A 3-version voter SYStem............oviuniiuiiiniiienetiiierieriaiarianaans

An example of code mutation......................

An example of a perturbation function............

Relationship between functions in separate channels..........................

FITMYVS operation flow-chart................cooooviiinncidnin i
FITMVS Main Menu SCreen.couiiniiiuniiineiniiiiiriniaraieneinns
FITMYVS System Setup screen................ovvvvniiiiinnanns freea e
FITMYS Configure Software Settings Screen................ LESTPTTRRRESLRY
FITMYVS Edit Versionscreen...................oocoiviiviinnn e
FITMVS Edit Injectable Sources Screen....................... v e
FITMYVS Configure Injection Settings screen...............ccovvviiniviiinnn..
Gaussian probability distribution.....................

The layout of the FITMVS logfile...........cccvvvveereienn... ST

The scoperecord, variablerecord and inject record

objects..... [

The structure of parse tree generated by the parser component of FITMVS...

Parse times for different sized programs..................... .

Diagram of Flexible Production Cell......................ooooinin

Assumptions made regarding the controller software’s working environment

Simulation inputs..............coo i e

Format of controllerlog...................oocociiiiiiiiiinan, FT PO

Assumptions made about the cranes...............

Scenarios when there are two blanks in the system

16
20
21
28
30
32
35
35
36
37
38
38
39
40
41

44

45
50
51
52
52
53

53

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Example situation of blanks on opposite side of the production cell.

Assumptions about the feed belt and deposit belt........

Contents of the test file used to test the MVD factory system.‘.

Extract of FITMVS output for Channel A.................... N
Extract of FITMVS output for ChannelB.................... everiieeninnens

Sensitivity results for both MVD channels....................cooonviiinnn

Sensitivity results for each set of injections..............

Overall analysis of common-mode failure................

Analysis of time-out probabilities....................coiiiiiiinini

Errors detected per program scope for both channels tested. . e

Common-mode failures detected per program scope for both channels tested.

‘Error type frequency for both MVD channels...........

Error type frequency breakdown for Channel A..............................

Error type frequency breakdown for Channel B.........

Common-mode failure frequency in Channel A and Channel B...............

Common-mode failure type frequency breakdown for Channel A and
Channel B....o e e

Code example of what FITMYVS can and cannot perturb

54

55

59

61

62

64

64

67

68

70

71

72

72

73

74

74

75

Chapter 1 Introduction

1.1 Introduction

An increasing range of industries has a growing dependence on software-based
systems. Many of these systems are critical systems developed for safety-critical, business-
critical or mission-critical applications, and it can be seen that failure within such systems has
the potential to be devastating.

Given the need for dependability, many software systems still have an unacceptably
high level of faults. Multi-version design (MVD) has been proposed as a method for
increasing the overall dependability of software systems above that of those developed using
traditional approaches. However, a major obstacle to the large-scale commercial rollout of
MVD systems is the lack of quantitative characterizations of the approach. These are difficult
to assess, but important, as in most cases resource allocation cannot be done arbitrarily or
carelessly [KIM0O], and without relevant metrics, sensible resource allocations cannot be
achieved.

It can therefore be seen that a concerted effort needs to be made to improve the level
of empirical knowledge in regard to multi-version systems. This has been done to limited
effect with traditional testing methods, but the area of fault-injection has been especially
neglected [VOA97, CHE99].

Fault injection as an analysis tool has a number of benefits; for example, it can
effectively simulate rare events that may not have been considered during a target system’s
testing phase, and is also a very good method for deriving metrics about a system. Currently
however, most fault injection systems within the software engineering field have concentrated
on the assessment of single version software, with little or no analysis tools for the detection
of common-mode failures in multi-channel systems. [CHE99] states that “as far as fault
injection for diversity evaluation is concerned, the lessons from the literature are limited and

of a general nature only.”

1.2 Objectives

This research is centred around the design and development of an automated fault-

injection system for the analysis of multi-version systems, in order to provide a method for

10

easily extracting useful metrics from such a system, as well as facilitating the testing process
for MVD systems by identifying areas of code with a high sensitivity to common-mode
failure. A fault-injection system is developed capable of parsing C and C++ source code,
injecting faults, compiling the resulting code, automatically testing the code using user-
specified tests, and logging the results. In addition, an existing factory simulation is re-written
in C++ in order to allow the testing of an existing MVD factory control system to be
performed much faster. The results outputted by the fault injector are then analysed in order to
gauge the sensitivity of individual MVD channels to errors as well as their sensitivity to
common-mode failure. This research also results in good non-commercial fault-injection

being made available for future studies.

1.3 Organization of the Remainder of Dissertation

This chapter (Chapter i) introduces an overview of the re.search area of this project,
and details the structure of the rest of the document. |

Chapter 2 introduces the basic definitions used throughout the thesis and gives a
detailed definition of the concept of dependability. The traditional software engineering
approach to developing software, software fault tolerant techniques such as recovery blocks
and multi-version design, the controversy over multi-version design, and the cost factors of
MVD systems are also discussed. The chapter concludes by discussing the need for more
fault-tolerant metrics '

Chapter 3 details the problems associated with traditional testing techniques, the
background to fault injection, and the differences between fault injection and traditional
testing techniques. A method for applying fault injection to MVD systems is also discussed.

Chapter 4 introduces the tool to be developed for this research. It goes on to detail
the design and operation of the tool, its objectives, its limitations, and portability issues
associated with it. The chapter ends with a detailed description of the development of the tool
and the make-up of the test files used by it.

Chapter S describes in detail the factory production cell simulation used to test the
effectiveness of the fault injection tool developed. The system requirements, operational
details, and assumptions made by the production cell simulation are also discussed.

Chapter 6 gives an overview of the experiment performed using the fault injection
tool. It details the re-development of the production cell simulation in C++, and describes the
test data used during the experiment. The chapter concludes by describing the extra hardware

used to combat the large amount of processing time required for each test.

11

Chapter 7 details the results of the experiment performed, together with an analysis
as to what these results mean. The chapter concludes by examining issues that arose from the
fault injection tool as a result of the experiment.

Chapter 8 gives the conclusions of the thesis, describes potential future work and

research directions, and contains acknowledgements.

12

Chapter 2 The Need for Dependable Software

2.1 Basic Definitions

Before beginning a detailed discussion, it is first necessary to define a number of
basic concepts that are related to the areas of dependability, fault tolerance and fault injection.

These will be used throughout the whole thesis.

2.1.1 Software systems

A system may be viewed as a set of components interacting under the control of a
design (which is itself a component of the system) [LEE90]. Components are themselves
systems, and receive requests for service and produce responses; when a component cannot
satisfy a request for service, it will produce an exception. This system model is recursive in
that each component can itself be considered as a system in its own right and thus may have

an internal design which can identify further sub-components.

2.1.2 Errors

An error can be defined as a discrepancy between a computed, observed, or measured
value or condition and the true, specified or theoretically correct value or condition. Errors
occur at run-time, when some part of the computer software enters an undesired state. They
are therefore a property of the state of the system, and cannot be observed easily (unless

special mechanisms are employed to record the occurrence of some types of events.)

2.1.3 Failure

A failure occurs when an error passes through the system-user interface and affects
the service delivered by the system. A component failure results in a fault (1) for the system
which contains the component and (2) as viewed by the other components with which it
interacts; the failure modes of the failed component then become fault types for the

components interacting with it.

2.1.4 Faults

A fault (also referred to as a bug) is a defect that has the potential of generating

errors. It is a static notion, and the presence of a fault may lead to system failure.

13

In most cases, the fault can be located and removed; in some cases it remains a
hypothesis that cannot be adequately verified (e.g. timing faults in distributed systems). It is
important to note the distinction between error detection and fault location; an error shows the
presence of a defect, but the underlying cause of this defect is ohly identified by a fault
location process [HAL90]. This process is very much a problem-solv“ing activity, but it can be

tackled systematically (see [KER&6]).

2.1.5 System design

A system design can be considered as the algorithm which is responsible for defining the
interactions between components, establishing connections between components and the
system environment, and for providing an supplementary processing for the system to achieve

its required behaviour.

2.1.6 Design faults and component faults

A design fault is the failure of the system design algorithm to perform its intended
function, whilst the failure of a system component to operate according to its specification is

termed a component fault. ‘

[

2.1.7 Related errors

A related error is a multi-version design specific conjecture whereby the probability of
a version manifesting an error when another version has manifested ;an error is greater than
the probability of the version manifesting an error on its own. This may lead to a higher
probability of common-mode failure than would be the case if errors within versions were

independent of each other.

2.2 Dependability |)

Traditional terminology, commonly used by both software engineers and hardware
reliability engineers, is often inadequate when discussing software .faults. Some of these

traditional terms are defined below.

Reliability Reliability may be defined as the ability of a system to perform its

required functions under stated conditions for a specified period of time.

14

Availability Availability is the degree to which a system or' component is operational

and accessible when required for use. This is often expressed as a

probability.

Safety Safety is the non-occurrence of catastrophic consequences on the
environment. ‘
Confidentiality Confidentiality is the non-occurrence of the unauthorized disclosure of

information.

Integrity Integrity is the degree to which a system or component prevents

unauthorized access to, or modification of, computer programs or data.

Maintainability —Maintainability has two forms : 1

1) The ease. with which a software system or component can
be modified to correct faults, improve performance or other
attributes, or adapt to a changed em%ironment.

2) The ease with which a hardware system or component can
be retained in, or restored to, a state'in which it can perform

its required functions.

The use of these terms is inadequate for several reasons - for example, design faults
often lack any one useful categorization, whilst the actual identification of a particular aspect
of a complex system design as being a fault may well be subjective. Also, depending on the
circumstances, failures of interest could concern differing aspects of the service — e.g. the
average real-time response achieved or the degree to which deliberate security intrusions can
be prevented, etc. Hence, there is a need for a more general definition; ideally this should be
properly recursive, in ord;r to allow adequat'e discussion of problems that might occur at any
level of a system.

This concept is known as dependability and was first proposed by Laprie in [LAP92].
Writing in [RAN95a], Laprie defines dependability as “that property of a computer system
such that reliance can justifiably be placed on the service it delivers. T he service delivered by
a system is its behaviour as it is perceived by its users”.

Dependability has three characteristics: attributes, means and threats. These are

illustrated in figure 1.

15

— AVAILABILITY

| RELIABILITY

| SAFETY

— ATTRIBUTES — . ~ONFIDENTIALITY
|— INTEGRITY

L MAINTAINABILITY

—— FAULT PREVENTION

—— FAULT TOLERANCE
DEPENDABILITY —|—— MEANS ———{ [0 T enOVaL

| FAULT FORECASTING
— FAULTS

| ERRORS

L FAILURES

—— THREATS

Figure 1 - Dependability

Dependability is a global concept, and subsumes the attributes of reliability,
availability, safety, security, maintainability and confidentiality. These attributes enable the
properties which are expected from a system to be expressed, and allow system quality
resulting from the threats and means opposing it to be assessed. The means for dependability
refer to methods and techniques that enable a system to provide the aBility to deliver a service
on which reliance can be placed, and confidence reached in this'ability. The threats to
dependability refer to undesired (but not necessarily unexpected) circumstances resulting
from undependability. ‘

Depending on the application, different emphasis may be placed on the various facets
of dependability within a system; however, regardless of this, it can therefore be seen that
dependability is not simply a synonym for reliability; rather, reliability is just one attribute of

the overall concept.

2.3 The Need for Dependable Software

As the role of software becomes more and more entrenched in eyeryday usage,
software dependability has increasingly come to the foreground. Alfhough faults affect all
types of software, they are of particular concern when developing safefy—critical and real-time
applications, where a single fault may result in a serious incident. Safety-critical software may
be defined as any software that can directly or indirectly contribute to the occurrence of a
hazardous system state. Obvious examples of this include aircraft flight systems and nuclear
shutdown systems, but this definition also extends to more common applications, such as

embedded systems within vehicles and domestic appliances, or indeed any system that

16

controls significant amounts of power [STO96]. The cost of failur:e within such systems is
invariably high; there are numerous documented examples of such failure, many of which
have resulted in the loss of human life [LAD99]. Given the increased need for dependability,
many software systems still have an unacceptably high level of faulté.

In an attempt to reduce this level of faults, the safety of relying on traditional
development techniques has been questioned, and alternative dev“elopment methodologies
have been proposed. The vast méjority of these ‘alternative’ methods fall into a category
known as “Software Fault Tolerance”. The question of whether such: alternative development
methods result in a more dependable system is multi-faceted and controversial, and is a

question that this research seeks to further explore.

2.4 The “Traditional” Software Engineering Approach

Traditionally, software has been developed using a single variant approach — i.e. all
the resources available for the development and implementation of a:system (such as time to
develop and the number of programmers) are concentrated on producing a single, dependable,
“good” system.

This method addresses the “fault prevention” attribute of dependability, as it aims to
prevent (as much as possible) the occurrence of program faults? through good design
principles and implementation processes. It also addresses the “fault 1removal” attribute as it
places an emphasis on thorough testing strategies with the aim of removing as many faults as
possible.

Lack of dependability in such systems has been explained as due to lack of resources
allocated to the design and development of software, such as tﬂe amount of time for
implementation. This viewpoint suggests that given enough resources, software dependability
will be greatly increased.

This viewpoint has been called a delusion by some commentators, such as [HAT97],
who argues that different techniques that supposedly promote ‘(he goal of improved
dependability have come and gone, whilst the defect density of softwafe has remained similar
for more than 15 years. Even high-integrity systems which have had formal specification
methods and extensive testing applied to them still have faults; the example cited in [HAT97]
is of an air-traffic control system which, despite it’s thorough development, still had a defect
density of 0.7 faults per thousand lines of code.

Current advances in the field of software engineering, such as object-orientation and
software reuse strategies, attempt to increase the correctness and maintainability of software

and thus reduce the number of undetected faults within systems. However, these approaches

17

cannot completely eliminate the risk of systems being developed wi%ch potentially serious and
undetected faults. Pressman [PRE97] states that with the advent of object-oriented
technologies and increased reuse of program components, the amount of system code that
must be ‘built from scratch’ may decrease, but the overall size and complexity of systems
continues to grow. 1

The advantage of this development approach is that it is a well-known and well-
understood methodology, with a large number of supporting metrics [KIT90] that can be used
to justify- the approach to management. Perhaps the main disadvantage is that, due to the
reasons given above, it is reasonable to assume that the incidence of faults within software
systems will remain a problem for the foreseeable future.

Given this disadvantage, there is a need to investigate alternative approaches in order
to investigate possible methods to reduce the potential amount of undetected faults within

applications.

2.5 Software Fault Tolerance

The concept of Software Fault Tolerance [LYU95] has become increasingly
recognized in recent years. Fault tolerant software allows errors to be detected and logged,
without affecting the running of a system, and potentially offers great improvements in
dependability over traditional development methods. [AVI85] describes the function of fault-

tolerance:

“...to preserve the delivery of expected services despite the presence of fault-caused errors
within the system itself. Errors are detected and corrected, and permanent faults are located

and removed while the system continues to deliver acceptable service.”

There are two main approaches to software fault tolerance, de;pending on the goal of
the system designer; these are either preventing a failure from leading to complete system
disruption, or ensuring continuity of service. The aim of the former is to detect an erroneous
task as soon as possible, and halt it to prevent error propagation — a teéhnique often termed as
Jfail-fast [GRA90]. The latter approach requires the use of design diversity; this is defined by
[AVI86] as

“....the production of two or more systems aimed at delivering the same service through

separate designs and realizations.”

18

!

The majority of fault tolerant methods use design diversity, and as such it is this
approach that is of interest in this research. Two of the principle techniques in the area of

design diversity are Recovery Blocks and Multi-version Design.

2.5.1 Recovery blocks

The recovery blocks technique is one of the earliest in fault tolerance, and was first
introduced by [RAN75]. Recovery blocks work on the principle of acceptance testing; on
entering a recovery block, system state is saved and a primary aitemate is executed. An
acceptance test is then performed to provide adjudication on the outcome of this primary
alternate. If the acceptance test fails, then backward recovery is performed by the system
reverting (“rolling back”) to its previously saved, and the next altema‘}e is executed. This may
continue until either an alternate passes the acceptance test, or the final alternate is executed
and fails the acceptance test. Should the final alternate fail, then the system will fail also. This
is illustrated in figure 2. Recovery blocks can be nested, and so the“raising of an exception
from an inner recovery block can invoke recovery in an enclosing block.

The recovery block approach has a number of advantages. It is fault tolerant as errors
discovered by the acceptance test can be detected, corrected and loggf%d, and the approach can
— if necessary - provide gradual degradation of a system, whereby each alternate runs a
progressively smaller number of services in order to enable the system to pass an acceptance
test. Also, provided the primary alternate does not fail, additional alternates will not be
executed, and so the run-time overhead of recovery blocks can be miﬁimal when compared to
a single-variant system. There is a footprint, but tests by [SHR78a]: [SHR78b] support the
belief that recovery blocks do not impose any serious runtime and recovery data space
overheads - the experiment showed that the run-time overhead ranged between 1 — 11% that
of T1 (a program with no recovery facilities), provided the primary, alternate did not fail.
Should the primary alternate fail, the time to restore system state was up to 30% of T1.

However, the approach also has several disadvantages. For example, the success of
recovery blocks rests to a great extent on the effectiveness of the eno£ detection mechanisms
used, especially (although not solely) the acceptance test. Should the acceptance test be
faulty, alternates that are correct may be treated as though faulty, and féulty alternates may be
treated as though correct. Also, there is a danger of what is called the ‘Domino’ effect. This
can occur when a system of co-operating processes employs recovery blocks, as each process
will continually establish and discard checkpoints, and may also need to roll-back to a
previously established checkpoint. Should recovery and communication operations not be
performed in a coordinated manner, then the rollback of a process can result in a cascade of

rollbacks that could push all the processes back to their beginnings. Another potential

19

problem is finding a simple and highly reliable acceptance test that does not involve the
development of an additional software version; the form of acceptance test depends on the
application — for example, there may be a different acceptance test for each alternate,
although in practice only one is usually used. This type of system is not considered
appropriate for many real-time systems, as it is not feasible to simply ‘roll back’ the state of a
system. Also, the nature of the system means execution time is unpredictable, as it depends on
how many alternates fail the acceptance test. Alternates must not retain data locally between
calls, otherwise the modules can become inconsistent with each other. The problem is more
noticeable when attempting to design an alternate as an object. There is no guarantee that the
state of the object is correctly modified unless the object is invoked each time, although
[KIM84, KIM95] proposes distributed recovery blocks as a way of circumventing this

limitation.

4
4 exit Failure exception

Discard
checkpoint

Evaluate
acceptance test Restore
checkpoint
4 exception
signals J’
Execute New alternate
alternate exists & deadline
T Not expired? ho
Establish
checkpoint
| entry Recovery Block

Figure 2 - Recovery block operation

Although the basic implementation of recovery blocks makes no provision for
forward error recovery, this is possible, as described by [MEL77], whilst [CRI82] states that
forward error recovery mechanisms can support the implementation of backward error
recovery by transforming unexpected errors into default error conditions. However, this is

very much application specific, and so it is often the case that the recovery block approach is

20

inappropriate for systems that require decisions to be made quickly (such as many real-time
systems). Therefore, when such systems employ a fault tolerant approach, the most common

methodology used is multi-version design.
2.5.2 Multi-version design

Multi-version design was first proposed by [AVI77]. It W:orks on the principle of
independently implementing » versions of a program (channels), wfaich are then executed in
parallel with a single input (although conceptually, parallel execution is not necessary -
channels may be executed separately and their results later compared). The outputs of these
channels are then compared under a voting system, which then forwards a single output based

on the majority agreement of the channels [KNI86]. This is detailed in figure 3.

State-Connection Information

r T T
I] I
I] I
1 I 1
1 1

I !

¥
I " Versllon 1 . \
1; v ! y Consensus Result
U l—s Version 2 » ? >
T X E
¥ R Fail
» Version 3

||

Figure 3 - A 3-version voter system

The multi-version approach has gained attention as a number of researchers have
documented significantly increased levels of dependability within software developed using
this methodology, e.g. [AVI89, HAT97] etc.

There is still much debate over how much of an improvement in dependability the
approach offers over single variant design. Some researchers have concluded that the
dependability of software developed using the multi-version methodology increases
dramatically; for example, Hatton’s 1997 analysis [HAT97], based on the Knight and
Leveson experiment [KNI86] concludes that a three-channel version of the system, governed

by majority polling would have a dependability improvement ratio of 45:1 over a single

21

variant of the system. This is not a new finding; earlier papers, su:ch as [AVI84] have also

argued that the approach produces highly dependable software.
2.5.3 The controversy over multi-version design

Such massive increases in dependability have, however, been drawn into question,
and much debate has ensued; Knight and Leveson [KNI90] argue that these gains in
dependability are under the assumption that there are no correlated (common-mode) failures
within two or more channels of the system — in other words, no faults will occur in the same
place and produce the same results. Numerous studies, beginning with [SCO84] have shown
that this is simply not the case. Eckhardt and Lee’s study [ECK85] has shown that even small
probabilities of correlated faults can reduce the overall dependability of an N-version system
dramatically, and Leveson [LEV95] further argues that every experiment with the approach of
using separate teams to write versions of the software has found that independently written
software routines do not fail in a statistically independent way. Examples of this can also be
found in [ECK91, KELS8S].

The voting software used in multi-version design must also' be developed correctly
and free of fault, otherwise the entire system can become unstable. An example of this is the
NASA study of an experimental aircraft, which found that all of the software problems that
occurred during flight testing were the result of faults found in the redundancy management
system, and not the control software itself [MAC88].

Therefore, it appears to be the case that such massive dependébility gains can only be
assumed on a theoretical level. In real-world applications, the overall icost/dependability ratio
is likely to be much lower for a multi-version system than the theoreti:cal model may suggest.
The factor of cost therefore becomes important, as the extra cost required to develop n

versions of a system may not result in an equivalent increase in system dependability.

2.5.4 Cost factors of multi-version design

The cost of developing multiple versions is not » times the cost of developing one
version, but also # times the cost of maintenance, which can be very high. Although
arguments have been advanced that the increase in cost will be less than n [VOU90], Leveson
[LEV9S] argues that these rest on the assumption that some asf)ects of the software
development process will not have to be duplicated; also, many aspects of the processing and
outputs have to be speciﬁed with more detail than usual, in order to make the results

comparable, thus requiring that the specification phase take more time and effort than usual.

22

This therefore increases the overall algorithmic complexity of the project, which may agaiﬁ
have an impact on the cost of the project as a whole. |

[MAC91] argues, using a number of different calculations, that it can be the case that
an imperfect 3-version voter system will be less cost effective than a simplex (i.e. single-
version) system, although it would be as dependable; this assumes thgt all versions have equal
development costs, whilst [LAP90] calculates that the cost of developing a 3-version system
over a simplex system is at least 178% more costly, and can be as much as 271% more costly;
on average, such a system would be 225% more expensive, although the 3-version system is

more dependable.

It is not simply enough to implement n versions of a program if the resources
allocated to that implementation are not substantial enough; the dependability of a multi-
version system is directly related to the dependability of its individual channels. [KNI86]

states:

“...one might note that even in the hardware Triple Modular Redimdancy (TMR) systems
from which the idea of N-version programming arises, overall system reliability is not

improved if the individual components are not themselves sufficiently reliable.”

The emergence of software reuse libraries, whereby reusable software components
may be bought and used to create large, dependable software systems very quickly, shows
much promise for relatively cheap, fast creation of different channels within a N-version
system; however, at present, although such software libraries exist, their price has yet to reach
an acceptable level and the number of components available is still quite limited. Although
software libraries may help to drastically reduce the cost of developing N-version systems in
the future, at present their impact on the cost of developing N-version éystems is quite small.

It therefore appears to be the case that although an N-version system provides
dependability that is at least equal (and usual superior) to that of an equivalent single version

system, the cost is invariably higher.

2.5.5 Other FT methods based on RB and MVD

Although there are other fault tolerant methodologies, most are in some way based
upon either the recovery block or the multi-version approach. For example, consensus

recovery blocks [SCO85] and retry blocks [AMMS&7] both have their origins within the

23

recovery block approach, whilst acceptance voting [ATH89], n self-checking programming
[LAP90] and n-copy systems [AMMZ87] are closely related to multi-version design.

2.6 The Need for Fault Tolerant Metrics

At present, there is very little empirical evidence as to which methodology (single-
variant or fault tolerant) yields the most dependable system. The knowledge of which
methodology is more dependable is very important — especially in industry — due to the
increased cost associated with developing a fault tolerant system over a single-variant system.

Although much is known about assessing the dependability of single-variant systems
[LAP95], lack of empirical evidence is especially acute when considering fault tolerant
systems. For example, in a recent paper, [KIMO0O] states that “eﬁ’eétive, let alone optimal,
resource allocation is not possible in the absence of quaﬁtitative characterizations of FT
schemes”, and goes on to state that “One can says that FT approaches not yielding to easy
quantitative analyses are unsafe to use. Using such approaches is a blind exercise of an art.”

This work seeks to develop a method for obtaining metrics from fault tolerant
systems in order to better assess their dependability, and help build a more accurate
dependability model for such systems. Systems that require the highest levels of dependability
are invariably Withi‘n the safety-critical domain, and are therefore usually real-time systems.
Because of this, the use of recovery blocks is sometimes inappropriate (although schemes
such as distributed recovery blocks [KIM95] help to address this problem), and so system
designers frequently have to choose between multi-version design and the single-variant
approach. Often, the single-variant approach is chosen due to the lack of empirical evidence
regarding multi-version dependability - given the fact that multi-version systems may offer
only a slight increase in dependability over single-variants, it is unknown whether the
increased cost of developing such a system is worth the extra dependability gained. Therefore,
this research will concentrate on developing a method for ascertaining the dependability of
multi-version systems; derivatives of this method, such as n-copy and n self-checking systems
will not be investigated, as these systems are less commonly applied in industry. Once a
firmer understanding of the basic multi-version method is obtained, further investigations will

be able to apply the technique developed to these systems.

24

2.7 Summary

This chapter begins by defining basic terms and concepts tha{t will be used throughout
the thesis, and gives a detailed definition of the concept of dependability. The traditional
software engineering approach to developing software is then discussed, and both its
advantages and disadvantages are explained. Software fault tolerant techniques such as
recovery blocks and multi-version design are then discussed together with their respective
advantages and disadvantages. The controversy over multi-version design is then described,
and a discussion on the cost factors of MVD systems is given. The cHapter concludes with the

case for the need for more fault-tolerant metrics.

25

Chapter 3 Fault Injection

3.1 Problems with Traditional Testing

The vast majority of multi-version systems exist within the safety-critical domain.
Within this domain, extremely high levels of dependability often need to be guaranteed; for
example, [CHR94] states that the failure rate of these systems is usually required to be “in the
order of 10% - 10°7° failures per hour”. Unfortunately, it may be ;[he case that traditional
testing alone will not be able to adequately guarantee these levels of dependability. [HEC96]
states that demonstrating that the failure rate of an item does not exceed x per hour requires
“approximately 1.5/x hours of test time under the most optimistic assumptions (no failures
and a high risk test plan)”, and [BUT93] estimates that this would take thousands of years of
testing to demonstrate (assuming one copy of software would be tested and one failure would
be observed). Also, most multi-version systems are highly complex, and it is often infeasible
to perform the enormous amount of test cases required to test every possible input and system
state; according to [VOA95], “the number of tests required for establishing high reliability
are impractical if not impossible for software of even modest complexity”. Another weakness
of traditional testing is that it often fails to exercise a systems response to rare (i.e. unlikely)
events. A number of studies, such as [HEC93] and [HEC94] have shown that many failures in
well-tested systems are caused by such events. The same data from these studies also shows
that multiple rare events are almost the exclusive cause of the most critical failures in these
systems. .

Traditional testing may therefore never reveal any faults in such a system and it is a
truism that non-exhaustive testing cannot reveal the absence of faults. This is a problem, as it
not only means that a system’s high levels of dependability cannot necessarily be guaranteed,
but also makes comparisons between high-dépendability single-version and multi-version

systems extremely difficult.

3.2 Fault Injection

With this in mind, a different approach to testing is perhaps required. Fault injection
has been proposed as an approach that addresses these limitations. Fault injection is a phrase

covering a variety of testing techniques that can be applied to both hardware and software, all

26

of which involve the “deliberate insertion of faults into an operational system to determine its
response” [CLA95]. Once this has been performed, an examination of the system for
resulting errors and failures occurs, such as analysis of interactions between system
components and of the resilience of the system against known faults. Fault injection is a “late
life-cycle” software analysis [VOA98a] that can simulate human operator errors and observe
their impact on the software as well as the total system. It is a tecﬁnique that complements,

but is not a substitute for, other verification and validation procedures.

3.2.1 Background of software fault injection

The idea of software fault injection is based upon hardware fault injection [CAR99],
and originated \in Mill’s fault seeding approach in [MIL72], wherpby an estimate of the
number of faults in a system is made based upon how many injected faults are caught by the
testing process. This was further improved using stratified fault-seeding [MORS88]. However,
a number of other approaches have since been developed.

Fault injection is intended to yield three results: an understanding of the effects of
real faults, feedback for system correction or enhancement, and a forecast of expected system
behaviours [CAR99]. One of the major benefits of fault injection 1s its ability to test rare
events and conditions, which, as discussed above, have been shown to be the cause of the
majority of failures within safety-critical systems. [HEC96] states that “The basic premise of
the rare events approach is that well-tested software does not fail under routine input
conditions, which means that failures must be triggered by unusual input data or computer
states”. Such unusual input data and hardware states can easily be achieved with fault
injection, and systems can be stress tested with large amounts of unusﬁal conditions to garner
their response. In this way, fault injection also helps to test the exception handling and
redundancy management capabilities of a system, which are often overlooked by traditional
testing.

Fault injection is also used to measure software sensitivity, or tolerance. Sensitivity is
measured based upon a system’s reaction to injections; high sensitivity means that injections
frequently cause the system to produce undesirable outputs (“undesirable” is defined in either
the system specification, requirements or defined software hazards [VOA97]). High
sensitivity implies a lower tolerance for failure, and thus shows a systerh to have a greater risk
of failure than a low sensitivity system.

Faults are introduced in one of two ways - either through direct alteration of code, or
by the perturbation of data flows or control flows to achieve the effects of faults indirectly -
and can be categorized based on when the faults are injected: either during compile-time or

run-time {HSU97].

27

When altering program code, faults are typically created by §ither adding code to the
code under analysis, changing the code, or deleting code. Code that is added to a program for
the purpose of either simulating errors or detecting the effects of those errors is called
instrumentation code. To perform fault injection, some instrumentation is always necessary,
and is usually performed by a tool (although it can be added manually). Instrumentation code
can be placed on top of input or output interfaces to the software, or directly into the logic of
the software, and can be added to a variety of code formats, such as source code, assembly
code, binary object code, etc. Typical injected faults include mis-timings, delays, missing
messages, corrupted memory, faulty disk reads, logical errors, syntax errors and perturbation
of variables. Faults can be injected in many ways and can address program state as well as
communication and interactions.

There are two key approaches for instrumentation — code mutation and state
perturbation. Code mutation [DEM78] occurs at compile-time and involves direct alteration
of program code, attempting to reproduce potential human errors within code; this typically
involves changing the syntax of existing code statements or modifying their logic in some
way — an example of this is shown in figure 4. The main danger with code mutation is that of
creating an equivalent mutant; this is a mutation that does ndt affect the output of the code in
any way (i.e. has no semantic impact on the code base) and is hence meaningless. Mutation
may also result in transient faults occurring - for example, in figure 4, one of the mutations

shown (A = A + A + 2;) will only affect the value of A if A is not zero; this is also

undesirable, and needs to be guarded against.

Suppose a program has the following code statement :
A=A + 2;

This statement can be mutated as follows :

A=A+ A+ 2;

or it could be mutated to :

A = A + 20;

etc. The code could also be deleted.

Figure 4 - An example of code mutation

State perturbation [VOA97] has the intention of forcefully modifying program states

created by the original code, without mutating existing code statements. This is often

28

achieved through the use of code insertion whereby instrumentation code is added to a system
in the form of function calls that modify internal program values (termed perturbation
functions), but it can also be implemented by modifying input dataj or by the fault injector
trapping exceptions generated by the system through the use of interrﬁpts.

Perturbation functions are code instrumentation, and afe typically applied to
programmer-defined variables. They can change either the value of a variable to a value based
upon the current value, or can change the variable to a value picked at random, independent
of the original value. They may also return a constant replacement value, if it is suspected that
any fault placed at that point in the code will result in one particular value regardless of what
the current value is. When non-constant replacement values are used, the perturbation
functions produce random values based upon the current value and a perturbation
distribution, with non-constant perturbation distributions including all of the continuous and
discrete random distributions.

Figure 5 shows an example of a perturbation function. The function,
newvalue (int a), randomly either increases a value by 40% or reduces it by 40%.
Should this increase/decrease not affect the original value in any way, then the function
returns the original value minus one. This perturbation function is then applied to a variable
(in this case, an integer variable) in a desired part of the original code. For example, to modify

the variable a, we simply add
a = newvalue(a);
to the original code.

Additionally, faulty input data can be passed into a system at run-time — either by the
mutation of ‘real’ data or a false set of data. [VOA98a] suggests that faulty input data is the
easiest form of fault to simulate correctly (i.e. in a way that reflects real errors that could
occur naturally). Although state perturbation sometimes requires system code to be re-
compiled, original code is not altered (i.e. instrumentation is added, but original code is not
mutated) and injections occur at run-time — it can therefore be th01,‘1ght of as run-time based
fault injection. The advantage of state perturbation is that the problem of equivalent mutants

does not arrive, and all perturbations should affect system state.

29

Assume a function equilikely (x,y) that randomly returns either x or y.

int newvalue(int a)

{

int counter = 1;
int oldvalue = a;

do

{

a = equilikely (oldvalue * 0.6, oldvalue * 1.4);
counter ++;

}

while ((a == oldvalue) && (counter < 100));

if ((counter == 100) && (a == oldvalue))

{
}

return a;

a = oldvalue - 1;

Figure 5 - Anexample of a perturbation function

3.2.2 Differences with traditional testing techniques

As stated earlier, fault injection complements traditional testing but does not replace
it. Fault injection cannot be viewed as testing in the traditional sense, as traditional testing
seeks to determine whether a system meets its stated requirements, and requires a definition
of what the correct outputs of the system should be. Fault injection is generally incapable of
determining correctness, as the act of injecting anomalies into code and/or data results in an
altered state that may produce incorrect outputs with regard to the system requirements. It is
therefore impossible to assert that the code itself produces incorrect output, but it can be
asserted that the modified code produced incorrect output. [VOA98b] states that “The main
use of software fault injection is in demonstrating what sort of butputs software produces
under anomalous circumstances.”

Although software engineering practices attempt to predefine system behaviour in the
event of anomalous conditions, testing invariably only looks at ‘reasonable’ anomalous
conditions that are considered possible. Fault injection however, can often offer insight into a
systems behaviour with the injection of unreasonable, highly unlikely conditions. Should a
" previously unconsidered anomaly be injected and cause the system to fail, then fault injection

will have demonstrated that the system is highly sensitive to the problem it was forced to deal

30

with, and the system will need to be analysed in order to ascertain whether any related faults

also exist.

3.2.3 Issues to consider

When considering how to deploy fault injection, two issues need to be addressed. The
first is that of simulation versus execution. Simulation refers to the development of a model of
a system, with faults introduced into the model rather than the system itself. This method is
often slower to test, but easier to change. Execution refers to the process of injecting faults
into a real system, this is often more useful for analyzing final designs, but is typically more

difficult to modify afterwards.

The second issue is that of invasive and non-invasive techniques. A major problem
with sufficiently complex systems — particularly time dependant ones - is that is may be
impossible to remove the footprint of the testing mechanism from the behaviour of the
system, independent of the fault injected. For example, a real-time .communication protocol
that would normally meet a deadline for a particular task may misg it because of the extra
latency induced by the fault injection mechanism. Invasive techniques are those that leave
behind such a footprint during testing, whilst non-invasive techniques are able to mask their
presence so as to have no effect on the system other than the faults they inject.

These factors need to be considered when developing a fault injection strategy for a

system, in order to gain the most useful results for the budget and type of system used.

3.3 Applying Fault Injection to Multi-Version Systems

Given the potential benefits of fault injection, it is surprising that the method has
mainly been focused on assessment of single version software. [CHE99] states that “as far as
Sfault injection for diversity evaluation is concerned, this has not been achieved, and the
lessons from the literature are limited and of a general nature only”.

The potential is great; by developing an automated system fhat can inject faults into
different versions of a multi-version system, test the systems, and then repeat the process with
another set of injected faults, it should be possible to build up a picture of the relationships
between different versions with regard to common-mode failures. For a multi-version system,

there are a total of

ZN N'
RL(N = r)Ixr!

31

combinations for fault injection to be applied to, where N is the numfber of versions taken 7 at

a time. Given that N will usually be a small odd integer, such as 3, 5 or 7, this should not pose
|

a problem. '

For a more detailed analysis, it may also be possible to injject faults into individual
functions within different versions of a multi-version system, in order to investigate possible
relationships between disparate channels. For example, consider é 2-version system, each
version containing 4 functions/procedures (see figure 6). Versioh 1 contains the set of
functions {A,B,C,D} whilst version 2 contains the set of functimias {E,F,G,H}. Faults are
injected in each of the functions in turn, and the systems are anglysed for common-mode
failures following each injection. This is repeated for as many corribinations of functions as
possible. Should it be found that injecting faults (either similar or ofherwise) into function A
of version 1 and function H of version 2 causes a common-mode failure, then the analysis will
have revealed a potentially unsafe relationship between these functions, even if the functions

have no obvious connection. “Traditional” testing methods can then be fine-tuned to test these

functions in more detail.

Version 1

Version 2

Figure 6 — Should faults injected into functions within individual
versions lead to common-mode failure, then these
functions can be seen to have a potentially unsafe
relationship and need to be tested in more detail.

Fault injection can also assess the sensitivity of each version, on either a system-level
or a function-level. Should any version or function within a version be highly sensitive, then
further debugging/testing can be applied, in order to reduce the isensitivity and hopefully
reduce the likelihood of a failure that could lead to a common-mode failure within the system.

Furthermore, fault injection provides a very good method fof deriving metrics about a
system, and could therefore help to provide quantitative characteri:zations for multi-version

systems — [VOA9S] states that “fault-injection techniques are ':dynamic, empirical and

32

tractable”. Therefore, this approach will help to solve one of the problems highlighted by
[KIMOO0], discussed in section 2.6.

This research therefore proposes to implement an automated fault injection system,
designed to assist with the assessment of multi-version systems. This implementation is

detailed in chapter 4.

3.4 Summary

This chapter details the problems associated with traditional testing techniques, and
then goes on to detail the background of fault injection. Different methods of fault injection
are discussed, and the differences with traditional techniques are examined. A method for

applying fault injection to multi-version systems is then discussed.

33

Chapter 4 Implementation

41 FITMVS

The major goal of this research is to develop a non-commercial fault injector that will
enable an automated fault injection process to be performed on multi-version systems, in
order to produce valuable metrics, such as sensitivity measures and analysis of potential for
common-mode failure. This system is called FITMVS (Fault Injection Tool for Multi-
Version Systems). The remainder of this chapter discusses both the design and

implementation of FITMVS.

4.2 The Design of FITMVS

FITMVS performs data value perturbation, whereby code modifying a particular
variable’s value is added to an existing system’s code. Data value perturbation was chosen as
by using this technique, FITMVS neatly avoids the equivalent mutant problem. This occurs
when an injection (in the form of code mutation) is made that does not affect the output of the
code in any way (i.e. has no semantic impact on the code base) and is hence meaningless.
Instead, all injections made by FITMVS will alter system state in some way — whether trivial
or otherwise. Data value perturbation also leads to a simpler parsing process, and hence
allows for quicker development time.

The basic operation of FITMVS is to parse the code of each channel within a multi-
version system, and then systematically inject faults into each scope within a specified source
file, compile and execute the code, test the system against a user-created set of tests, log the
results, revert the code back to its original state, and inject a fault into the next scope within
the source file. This is continued until the last scope within the source file has had at least one
injection applied to it. At the conclusion of running FITMVS, a multi-version system will
therefore have had at least one injection made into each scope within its code, and will have
been tested for each of these injections. This is explained in more detail in figure 7. The
process by which this takes place can be split into three stages: system input, the automated

process, and system output. These three stages are detailed below.

4.2.1 System input

User input to the FITMVS system is achieved by way of a menu-driven user

interface, inside of a standard UNIX terminal window. When the program is initially

34

then ‘killed’ by FITMVS using the standard UNIX kill system call on the version’s process
number, and the testing process continues with the next test in the set. When all tests have
been completed, the source code of the version is reverted to its original state and a different
injection is made, and the process is repeated; this is repeated until the speciﬁed number of
injections have been performed for every eligible program scope.

This ‘main’ loop is repeated for each version in the multi-version system, with the
first cycle of the process for each version performed without any injection in order to record

‘baseline’ results.

4.2.3 System outputs

- When all the results for each version have been collected, an analysis can be
performed based on the log file outputted by FITMVS at the conclusion of each injection

cycle. This is shown in figure 15.

Source | Injection Test Scope Variable | Variable | Injection | . b il o e ue
filename | number | Number | Number | Perurbed Type Character !

Perturbation | Gaussian Standand

Distribution Devition Tirme-out

= « a o | Injection String | Pass orFail | Test Resultstring

Figure 15 — The layout of the FITMVS log file

This consists of the filename of the source file being injécted, the number of times an
injection has been performed on that scope, the number of the test being performed, the
number of the scope being perturbed, the name of the variable being perturbed, the type of the
variable (int, float, etc.) being perturbed, the character and line of the source file that the
perturbation function was injected at, whether or not the test was a pass or a fail (represented
as 1 or 0 respectively), the message received from the target system following the conclusion
of a test, the perturbation distribution of the injection, the standard deviation of the Gaussian

function being used, and the number of seconds that the time out delay is set for.

4.3 Objectiveé of the System

Current tools for the implementation of fault injection in multi-version systems are

rare, and of the few that exist (such as [VOA97]), all are commercial and thus inaccessible to

41

most researchers in the field; therefore, one of the implicit goals of this research is to make
such a system available to the general academic community.

The FITMVS system itself has five objectives. The first objective is to help identify
areas of code that might lead to common-mode failure - when the automated fault injection.
process has finished, FITMVS logs can be analyzed and common-mode failures discovered,
together with the location and type of faults injected to cause them. This will enable the user
to ascertain which areas of code in each version of the multi-version system — when faulty —
will combine to cause common-mode failure. Subsequent testing can then place a greater
emphasis on proving the correctness of these areas, in order to minimize the risk of common-
mode failures arising.

The second objective of FITMVS is to identify any channel of a multi-version system
that shows a high sensitivity to injected faults; from this analysis, it will be possible to
identify which MVD versions are most “at risk” in the event of an error occurring, and hence
perform corrective maintenance on that version. The third objective of FITMVS is related to
this; namely, by analyzing the number of errors resulting from faults injected into each
program scope, the sensitivity of each scope will be determined, thus giving developers more
insight into what areas of code need most attention. Areas of code with high sensitivity
invariably has a much greater risk of failure than a low-sensitivity area, and so any highly
sensitive areas revealed by the fault injection process may then be re-examined and changes
made in order to increase their resilience.

The fourth objective of FITMVS is to calculate the probability that the complete
MVD system will fail with a common-mode failure, should a fault be injected into each
version; this metric should help to give much needed empirical data into the relative value of
MVD systems. The fifth objective of FITMVS is to establish which errors manifest

themselves most often when a fault is injected into a MVD channel.

4.4 Limitations of the System

FITMVS in its initial conception has a number of liﬁitations, although these are largely
implementational. Initially, the system will only be developed to analyse and inject faults into
C and C++ source code; however, the actual parser used by the system will be modular, and
so further language support will have the potential to be added in future versions. The parser
itself will be limited, again due to time constraints, and therefore complex mutations will not

be possible. Initially, the system will be designed to simply add perturbation of data values to

42

code, rather than any form of mutation, although this again will be modular, with the potential

for code mutation functionality to be added in the future.

4.5 Portability Issues

FITMVS is written in ANSI C++ and should therefore be portable to most UNIX and
Linux systems. However, the shared memory functionality and the mechanism used to kill
processes mean that some modification will be required. for the system to work in alternative

operating systems, such as Microsoft Windows. Despite this, these changes should not be too

difficult to make.

4.6 The Development of FITMVS

4.6.1 The parser component

The actual development of the FITMVS syétem took place over 6 weeks. The first
four weeks of this time was dedicated to the creation of a parser capable of parsing C and
C++ code and producing a parse tree as its output. The parser itself is quite simple, and
records the name and return type of each variable within each code scope. In addition to this,
the position in the code of each variable’s definition and first assignment are also stored.

The parse tree is a linked list of type ScopeRecord. Each ScopeRecord object
contains information in regard to a program scope — it’s start and end position, and the
number of its parent scope (should it be a nested scope). It also contains two linked lists; one
of type variableRecord and one of type injectRecord. VariableRecord
contains data with regard to each variable that exists within the scope — the position of its
definition, the position of its first assignment, whether or not is assigned within the current
scopeRecord object, its name and its type. Each variableRecord object is unique to
each scopeRecorad object, and so a variable declared early in the code may be represented
in multiple variableRecord objects. The injectRecord object is used for storing records of
injections made into each scope in order that no duplicate injections are made; this is not used
in the initial parsing function of FITMVS. Figure 16 details the make-up of the
injectRecord, variableRecord and scopeRecord objects, and figure 17 shows

the overall parse tree structure. The parser component of FITMVS was written as a stand-

43

alone module, and hence can be used by any application to produce a parse tree like that

illustrated in figure 17.

/ scopeRecord \ / variableRecord (injectRecordw

- ScopeNumber : int - vatiableNumber :int :Egﬁ;?)r;z::cs?r?r:g
+startCharacter : int +charDefined :int +vyalue - double
+endCharacter :int +lineDefined : long

+parentScopgUIN :int +charAssigned : int

+stattline : long +lineAssigned :long A

+endline : long +isAssigned : bool

+retumType : sting +isFunctionVariable : bool

+vatiables InScope : list <variakleRecord> +yariableName : stiing

QjectionRecord :vector<injectRec0ml>/ \iuan'ableType ssting ’/

Figure 16 - The scopeRecord, variableRecord and injectRecord objects

injectRecord

variableRecord] [injectRecord]—y
_—p variableRecord |—p»

injectRecord

variableRecord] [injectRecord }—b
| variahleRecord |—»

scopeRecord

scopeRecord

Figure 17 - The structure of the parse tree generated by the parser component of FITMVS

44

provide a simple interface between the FITMVS system (using sharedMemoryServer)
and the target MVD system (using sharedMemoryClient). The mechanism for
determining whether or not a time-out has occurred simply uses these shared memory objects
to check whether the target (MVD) system has written to the shared memory space. If such a
write does not occur within an amount of time specified by the user, the process termination
mechanisms are enforced. These work by simply redirecting the output of the standard UNIX
ps tool through a grep statement designed to filter out all processes that are not related to
the process requiring termination. The output from this is then re-directed to a file, from
which process numbers are extracted and terminated using a kill -9 command. Overall,

this stage of development took approximately 1 week of time.

4.6.3 The main fault injector and user interface components

With the completion of the parser and auto-testing routines, the development of the
main fault injector component of FITMVS was relatively simple, and only required 3 days of
development time. The injector’s main duty is to analyze the parse tree for each program
scopé and calculate whether an injection should be performed; if so, then a variable stored
within that scopes variable list is selected at random, and a perturbation function is placed
within the program code at the either the start of that particular scope, or immediately after
the variable is first assigned within the scope (if applicable).

The final major development process was the creation of the user interfa;:e. Due to
time constraints, a graphical user interface was not pursued; indeed, it would be unwise to
spend valuable time on such a display when the FITMVS system is still in a proof-of-concept
stage. Instead, the user-interface consists of a series of text-based menus, and input fror; the
user is entirely keyboard-based. The user interface routines were required to be portable
between UNIX platforms and terminal types, and therefore some re-writing of standard C
functions such as kbhit () was required; however, despite this, the user interface modules

took only 3 days of development time to complete.

4.6.4 Changes required to the target system

Before FITMVS can be used, a number of preparations must be made in regard to the
target system (i.e. the multi-version system to be tested), in order for the automated process to

function correctly. A standard header file containing the sharedMemoryClient object

46

must be included in the MVD system code in order for the system to be able to communicate
through shared memory to FITMVS.

This header file also contains the functions FITMVS_pass(),
FITMVS fail (string) and FITMVS_confirm(). These functions will send a ‘test
passed’ message, a ‘test failure’ message (with a failure description), and a message
confirming that the current data in the shared memory space has been received, respectively.
1t is through this use of shared memory that FITMVS will be able to record the results of tests
performed. The only exception to this is if a version does not report a result within a given
amount of time; should this occur, FITMVS will terminate the target systems process and
record a TIMEOUT message. A FITMVS getMessage () function is present, and
automatically reads the shared memory and returns the contents as a string to the MVD

system.

A FITMVS reset () function is also present and will also have to be added to each
target system. This function may involve significant changes between different software
systems. Essentially, the goal of the function is to reset the state of the target system back to
its initial state; should this prove difficult to do, then the function should send a
KILL SYSTEM message to the fault injéctor in order for the target system’s process to be
terminated and re-started.

An aim of FITMVS is to make the process of adapting an existing system in the way
described above as easy as possible; this is why most of the function calls needed are pre-
written and available in a header file which can then be inserted into the target system’s code.
Where necessary, the user will then be able to modify the pre-written functions in order to

best represent the target system.

4.6.5 The test-set file makeup

The process of parsing and applying the data values specified by the test-set file is left
to the user to implement, with a partially written function included in the standard FITMVS
header file that all target systems will need to include. Each line of the test-set file constitutes
a test; this takes the form of the name of the test data, followed by the values appropriate for
this data, separated by commas and enclosed within brackets. Each data element is delimited

with a semi-colon. The form of the test file therefore resembles:

VariableName (value,value,..) ;VariableName (value,value,..); etc.

47

Once the target system has parsed this data and entered it appropriately, a
TEST_RECEIVED message is sent to FITMVS and the test is considered to have started,
with FITMVS waiting for the test result to be transmitted through shared memory. Should no
response come within a specified time-out period, then the target system will be considered to

have timed-out.

4.7 Summary

This chapter introduces the Fault Injection” Tool for Multi-Version Systems
(FITMVS). It goes on to detail the design and operation of FITMVS, the objectives of the
system, the limitations of the system, and portability issues. The actual development of each
major component of FITMVS is then discussed. The changes that need to be made to target
systems are detailed, and the chapter concludes by describing the make-up of the test files

used by FITMVS.

48

Chapter 5 Application Case Study

5.1 Factory Production Cell Case Study

In addition to the development of FITMVS, it is also necessary to select an
appropriate MVD application to test. Because of the large implementation time required to
develop the FITMVS system, it is prudent to select an existing MVD system for which source
code is available. It is also desirable for the application to be a real-time system, as real-time
systems invariably involve high reliability and safety requirements. To this end, a system
previously researched by the author [TOW01a, TOWO01b] was chosen.

The application is the controller system for a simulatiqn of a flexible factory
production cell (figure 19). The production-cell consists of two conveyor belts, one of which
delivers the raw units (blanks) into the system, and one of which moves the blanks out of the
system once they have been fully processed. The unit also consists of four separate
workstations, each of which has its own number; depending on the type of the workstation, it
can either be switched on and off by the controller software, or is permanently on. Two
cranes, mounted on a racking which prevent them from both being in the same X position at
the same time are used to transport blanks around the system. Each blank has its own bar-
code, which identifies which workstations it needs to be placed in, and the minimum and
maximum amounts of time that it can spend within each workstation. Blanks can be processed
either in a specific order, or in any order, depending on the instructions in the bar-code.

The controller software is required to allow the production-cell simulation to process
up to two blanks (units) at any one time, whilst ensuring that the blanks are processed
carrectly within the appropriate time constraints. It is also neceésary to ensure that the system
remains safe. For example, it is imperative to ensure that the two cranes never collide with
each other, and that no blank is placed in a workstation that already contains a blank. Further
safety requirements include both cranes being returned to safety positions whenever they are
not in use, and ensuring that blanks are not left in workstations for longer than their maximum
stipulated time. Also, the feed belt needs to be controlled by the software in order to ensure
that no more than two blanks enter the system at any given time, and that none fall off the end

of the belt.

49

other blank. If both blanks possess the same max; then the blank that is in the station with the

lowest ID number will be moved first.

5.2.8 Both blanks need to be moved to other workstations

When blanks are on opposite sides of the production cell and need to be moved to the
opposite workstation, it is specified that the following should be done; crane 1 will pick up
the blank in station 1 or 2, and crane 2 will pick up the blank in station 3 or 4. Both cranes are

then moved to their target stations and will both then deposit

their blanks. This is shown in figure 25.

There are several possibilities for the movement of

Figure 25 - example blanks in this scenario, and the r¢qu1rements document

situation of blanks on specifies the procedure to follow for every combination of

opposite side of the
PP workstations, in order to make sure the different.versions will

production-cell
make the same decisions.

5.2.9 One blank needs to be moved to deposit belt, the other to another

workstation

In this case crane 1 will return to its safety position and crane 2 will move to pick up
the blank which needs to be removed from the system. Crane one will then move and deposit

the remaining blank in the desired station; crane 2 will then move its blank to the deposit belt.

5.2.10 Only one blank needs to be moved to another workstation or the deposit

belt.

In this case, the controller will move the relevant blank to its target destination as if it
is the only blank within the system; should its target destination be unavailable, the relevant
crane will pick up the blank and move to its safety position until the target destination

becomes free; it will then deposit the blank appropriately.

54

Chapter 6 The Experiment Performed

6.1 Overview of the Experiment Performed

In order to assess the effectiveness of the FITMVS system, it is necessary to apply
FITMVS to an existing MVD system,; the system chosen is that of the factory production cell
discussed in chapter 5. One of the current limitations of FITMVS is that it is only able to
partially parse Java source code, and so the two MVD channels vyritten in C++ were used to
form a 2-version system for purposes of this experiment.

This experiment seeks to use the FITMVS system to perform injections on each
program scope in both channels; following each injection, FITMVS will automatically
compile the perturbed channel and test it against a set of tests specified below. One complete
run of injections through a target éhannel is referred to as an “injection cycle”. Altogether, a
total of ‘25 injections cycles are applied to each channel during the experiment, with 5
injection cycles being performed for Gaussian distributions with standard deviations of 8192,
4096, 2048, and 1, as well as for a normal distribution. All tests will be performed with the
perturbation distribution set to 32768. At the end of each injection cycle, the resultant log files
produced by FITMVS are saved and analyzed; these list every single injection and test
performed, together with the results of the test. From analysis of these log files, a picture of

overall sensitivity to fault is created for each channel.

6.2 Re-development of the Factory Simulation

The rﬁajor difficulty with testing the factory controller system with FITMVS is that
the actual simulation itself is written in Java, and is both slow, unstable, and difficult to adapt
to automatic testing (i.e. automatic entry of test data). In order to maximize the number of
tests that could be performéd on the system, it was decided that the entire simulation must be
re-written. It should be noted that this in no way affects the MVD controller system - merely
the simulation that it controls.

~ The simulation was therefore re-written entirely in C++. The new simulation includes
all shared memory libraries and routines necessary for communication with FITMVS, as well
as allowing for test data to be entered automatically. In addition, the new system executes
many times faster than the original Java version; unfortunately, due to the real-time nature of

the simulation, the MVD controller channels often process blanks whilst measuring

56

processing time based on the hardware timer, and so the "'timeA taken per test is only reduced by
approximately 83%, from an average test time of 60 seconds to an average test time of
approximately 10 seconds (although this depends on the actual minimum processing time
values set for each blank). It was not possible to increase the interrupt rate (i.e. speed) of the

hardware timer, as the SPARCstations used to test FITMVS are multi-user machines.

6.3 Test Data

As previously discussed, the MVD channels perform processing based upon the
hardware timer, and so each test performed requires several seconds to execute. Although
time values can be set to 0 seconds, it is desirable to retain minimum and maximum deadlines
within the test data as the temporal domain is very important when considering real-time
systems, and it is of interest to see if temporal faults are triggered during the injection testing.
Due to the number of injection-cycles that are to be performed, ';he number of tests per
injection have to be kept to a minimum otherwise the amount of time required to perform the
tests will be too great.

With this in mind, a total of 5 tests are used. These are chosen to cover as broad a
range of situations are can be expected with such a small test set. The setup of the tests is as

follows :

6.3.1 Test1 (single blank)

Maximum Time in System for blank 1 (ms) : 9000

Blank 1 - preserved order
Workstation 1 2 3 4
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

6.3.2 Test2 (single blank)

Maximum Time in System for blank 1 (ms) : 10000

Blank 1 — non-preserved order
Workstation 2 3 1 4
Min (ms) 2000 | 1000 | 2000 | 1000
Max (ms) 3000 | 2000 | 4000 | 3000

57

6.3.3 Test3 (two blanks)

Maximum Time in System for blank 1 (ms) : 7000
Maximum Time in System for blank 2 (ms) : 9000

Blank 1 — non-preserved order
Workstation 1 3 4 2
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

Blank 2 — non-preserved order
Workstation 2 1 3 4
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 { 3000 | 3000

6.3.4 Test4 (two blanks)

Maximum Time in System for blank 1 (ms) : 9000
Maximum Time in System for blank 2 (ms) : 10000

Blank 1 — preserved order
Workstation 1 4 2 3
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

Blank 2 — non-preserved order
Workstation 4 3 2 1
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

6.3.5 TestS (two blanks)

Maximum Time in System for blank 1 (ms) : 7000
Maximum Time in System for blank 2'(ms) : 10000

Blank 1 — non-preserved order
Workstation 3 2 4 1
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

Blank 2 — non-preserved order
Workstation 1 4 2 3
Min (ms) 1000 | 1000 | 1000 | 1000
Max (ms) 3000 | 3000 | 3000 | 3000

58

The actual contents of the test file used to set up these tests is shown in figure 27.

BLANK{1,2,3,4,1000,1000,1000,1000,3000,3000,3000,3000,t,9000)
BLANK(2,3,1,4,2000,1000,2000,1000,3000,2000,4000,3000,£,10000)
BLANK(1,3,4,2,1000,1000,1000,2000,3000,3000,3000,3000,£,7000);BLANK(2,1,3,4,1000,1000,1000,1000,3000,3000,3000,3000, £,9000)
BLANK(1,4,2,3,1000,2000,1000,2000,3000,3000,2000,3000,t,9000);BLANK(4,3,2,1,3000,1000,2000,2000,3000,3000,4000,3000,£,10000)
BLANK(3,2,4,1,1000,1000,1000,2000,3000,2000,2000,4000,£,7000);BLANK(1,4,2,3,2000,1000,3000,2000,3000,4000,5000,4000,£,10000)

Figure 27 - Contents of the test file used to test the MVD factory system

6.4 Processing Time

Due to the large amount of time expected for the completion of each injection cycle,
it is desirable to speed up the testing of the MVD system by executing FITMVS on multiple
machines simultaneously. Therefore, a total of 14 different SPARC workstations will be used
for testing; FITMVS will run on each system simultaneously (running an identical copy of the
MVD channel software). When an injection cycle on a machine finishes, another can be
started on the machine if necessary. ’

Output from FITMVS is in the form of a log file, which can be directly imported into
a Microsoft Excel spreadsheet. This spreadsheet can then be used to analyse the results of

each injection cycle, and should allow for relatively quick analysis.

6.5 Summary

This chapter gives an overview of the experiment performed using the FITMVS
system. It details the re-development of the factory simulation in C++, and describes the test
data used during the experiment. The chapter concludes by describing the extra hardware used

to combat the large amount of processing time required for each test.

59

Chaptér 7 Results and Analysis

7.1 Overview of Results

The experiment was performed over a period of one week. At the conclusion of the
experiment, a total of 21,211 tests were performed; this is in contrast with the 4,320 tests
performed manually on the MVD system in [TOW01a, TOW01b] — an increase of more than
490%. This was in large part due to the automatic testing mechanisms that were put into
place. Each complete run of FITMVS took approximately 2 hours on Channel A of the MVD
system, and 4 hours on Channel B of the MVD system, and the overall amount of processing
time was approximately 150 hours, equating to 6 and a half days of continuous processing
(although it must be remembered that much of this processing was done across multiple
SPARC workstations).

The difference in processing time betweeﬁ the two MVD channels is explained due to
the fact that Channel B has a greater number of code scopes than Channel A (131 scopes as
opposed to 73), and so a larger number of injections and subsequent tests were performed on

Channel B.

7.2 Output of FITMVS Log Files

The amount of data produced by FITMVS was very pleasing, with a total of more
than 875 pages of Microsoft Excel-readable logs produced from the 25 injection-cycles
performed on both channels. As described in chapter 4, each line of these log files states the
source filename of the injected code, the number of the injection, the test number, the scope
number, the name of the variable perturbed, the type of the perturbed variable, the character
and line number within the source file where the perturbation function was placed, the
injection string itself, whether or not the test was successful (1 indicates success, 0 indicates
.failure), the test result message, the perturbation distribution, the standard deviation of the
gaussian distribution and the time-out interval of the test. Due to size considerations, not even
a single log file can be produced in its entirety; however, figure 28 and figure 29 show an

example of the data collected.

60

Thu Aug 16 14:32:08 BST 2001

Minimum lines for injectable scope: 1

Time-out delay: 15

Gaussian distribution: Yes

Perturbation distribution: 32768

Standard Deviation: 8192

components.cpp |11 1] 1]t long | 19| 17|t=t+7152; 1 |Test passed 32768 | 8192 15
components.cpp | 1] 2| 1t long ; 19| 17|t=1+7152; 1]Test passed 32768| 8192| 15
components.epp | 1] 31 1t long | 19} 47lt=1+7152; 1|Test passed 32768| 8192| 15
compohents.cpp | 1| 4] 1t fong | 19] 17|t=t+7152; 1| Test passed 32768| 8192] 15
components.cpp | 1| 5] 1]t long | 19| 17jt=t+T7152; 11Test passed 32768| 8192| 15
components.cpp | 1| 1] 2|yPos int 251 37|yPos = yPos +8234; 0|Test failed: Crane one dropped blank - Factory::checkCraneMagnets() 32768| 8192| 15
components.cpp | 11 2| 2|yPos int 25| 37|yPos = yPos +8234; 0|Time out 32768 8192| 15
componerds.cpp | 1| 3| 2|yPos int 25| 37|yPos = yPos + 8234, 0| Testfailed: Crane one dropped klank - Factory::checkCraneMagnets() 32768| 8192| 15
components.cpp | 1] 47 2|yPos it § 25] 37|yPos = yPos +8234; 0{Testfailed: Crane one dropped blank - Factory::checkCraneMagnets(} 327681 8192} 15
components.cpp | 1| 5| 2|yPos int 25] 37|yPos = yPos +8234; 0|Testfailed: Crane one dropped blank - Factory::.checkCraneMagnets() 32768| 8192| 15
components.cpp | 1| 1| 3|yPos int 25| 37|yPos = yPos +9713; 0|Testfailed: Crane one dropped blank - Factory::.checkCraneMagnets() 32768| 8192| 15
compohents.cpp | 1] 2| 3|yPos int 25| 37{yPos = yPos +9713; 0| Time out 32768} 8192| 15
componerts.cpp | 1| 3| 3|yPos int 25| 37|yPos = yPos +9713; 0{Test failed: Crane one dropped blank - Factory::checkCranetagnets() 32768 | 81921 15
components.cpp {1| 4| 3|yPos int 25| 37[yPos = yPos +9713; 0|Testfailed: Crane one dropped blank - Factory ::checkCraneMagnets() 32768 8192] 15
componerds.cpp | 1] 5] 3|yPos int 25] 37|yPos = yPos +9713; 0] Test failed: Crane one dropped blank - Factory::checkCranettagnets() 32768) 8192 15
components.cpp | 1] 1} 13{temp int 6| 145 |temp = temp + -6420; 1 |Test passed 32768| 8192 15
components.cpp | 1] 2| 13jtemp int B| 145 [temp = temp +-6420; 0[Time out 32768| 8192| 15
components.cpp | 1] 3| 13[temp int 6| 145 |temp =temp + -6420; 0|Time out 32768 | 8192| 15
components.cpp | 1| 4] 13[temp int 6| 145 temp = temp +-6420; 0|Testfailed: Workstation 1 - blank exceeded ime mit. Factory ::checkWorkstations() | 32768 | 8192 15
componerts.cpp | 1] 5| 13[emp int 6| 145|temp = temp +-6420; 0[Time out 32768| 8192| 15
componerts.cpp | 1| 1| 14|destination |int 2| 149|destination = destination + 7274;| 1]|Test passed 32768 8192] 15
components.cpp | 1| 2| 14|destination |int 2| 149|destination = destination + 7274;| 1(Test passed 32768 8192| 15
components.cpp | 1| 3} 14|destnation jint 2| 149 |destination = destination + 7274;| 1{Test passed 32768| 8192| 15
componerts.cpp | 1| 4| 14|destination |int 2| 149|destination = destination + 7274;} 1 |Test passed 32768| 8192| 15
components.cpp | 1| 5| 14|destination |int 2| 149 |destination = destination + 7274; | 1|Test passed 32768 8192| 15
componerts.cpp | 1] 1| 15|workTmp |int 5] 155 |workTmp = workTmp + -446; 1 |Test passed 32768 8192| 15
components.cpp | 1] 2| 15|workTmp |int 5] 155 |workTmp = workTmp + -446; 1|Test passed 32768 8192| 15
componerts.cpp | 1| 3| 15|workTmp |int 5| 155|workTmp = workTmp + -446; 0|Test failed: Workstation 2 - blank exceeded time limit. Factory::checkWorkstations() | 32768 | 8132| 15
components.cpp | 1| 4| 15|workTmp lint 5| 155 workTmp = workTmp + -446; 4|Test passed 32768| 8192| 15
components.cpp | 1| 5] 15|workTmp [int 5| 155 |workTmp = workTmp +-446; 0]Time out 32768| 8192} 15
components.cpp | 1| 1| 17 |destination |int 4| 161 |destination = destination +.982; | 1|Testpassed 32768} 8192| 15
components.cpp | 1] 2| 17 |destination |int 4| 161 |destination = destination +-982; | 1|Test passed 32768{ 8192] 15
components.cpp | 1| 3| 17|destination |int 4| 161 |destination = destination +-982; | 0{Testfailed: Workstation 1 - blank exceeded time limit. Factory::checkWWorkstations() | 32768 | 8192| 15

Figure 28 - Extract of FITMVS output for Channel A

61

Thu Aug 16 18:24:28 BST 2001

Minimum lines for injectable scope: 1
Time-out delay: 15
Gaussian distribution: Yes
Perturbation distribution: 32768

Standard Deviation: 8192

prodeell.ce| 1] 1| 2|command [sting| 37| 28|command = cormmand + 18307;| 1]Test passed 32768 8192 15
prodcelice| 4| 2| 2|command |sting| 37| 28|command = command +18307;] 1|Test passed 32768 8192 15
prodecellcel 1] 3| 2|command |sting| 37| 28{command = command +18307;| 1|Test passed 32768| 81921 15
prodcell.cc| 1| 4| 2{command |string| 37| 28 |command = command + 18307;| 1|Test passed 32768(8192] 15
prodeell.ce| 1| 5| 2|command |sting| 37| 28|command = command +18307;| 1|Test passed 32768 8192| 15
prodcell.cc| 1} 1| 3[m2 bool | 33| 73[tm2 =false; 0|Time out 32768 8192| 15
prodceficc{ 1| 2f 3({tm2 bool 1 33| 73}im2 = false; 0| Time out 32768 8192| 15
prodeell.cc| 1] 3| 3|tm2 bool | 33| 73|tm2 =false; 0} Test failed: Crane two dropped blank - Factory:.checkCranemagnets() | 32768 8192 15
prodeell.cc] 1] 4] 3(m2 boot | 33} 73|tm2 =false; 0|Test failed: Crane two dropped blank - Factory::checkCraneMagnets{) | 32768} 8192| 15
prodeell.cc) 1] 5| 3|m2 bool | 33| 73[m2 =false; 0| Testfailed: Crane two dropped blank - Factdry::checkCraneMagneis[] 32768| 8192| 15
prodeell.cc| 1] 1| 4|command [sting| 7| 36{command = command +.1824; | 1|Test passed 32768 8192) 15
prodceil.cc| 1| 2| 4|command [sting| 7| 36[command = command +.1924; | 1|Test passed 32768 8192| 15
prodcell.ce| 1| 3| 4jcommand isting| 7| 36|command = command +-1924; | 1|Test passed 32768 8192 15
prodeell.ce] 1| 4| 4|command |sting| 7| 36[command = command +-1924; | 1|Test passed 32768 8192| 15
prodeell.cc] 1] 5] 4|command |sting| 7| 36}command = command +-1924; | 1|Test passed 32768] 8192 15
prodeell.ec| 1| 1[5[end bool 7| 41 lend = false; 1] Test passed 32768 8192| 15
prodeell.cc| 1| 2| 5|end bool 71 41]end = false; 1| Test passed 32768 8192 15
prodeell.cc] 1] 3| 5jend bool 7| 41|end = false; 1|Test passed 32768 8192| 15
prodeell.ce| 1] 4f Slend bool 7| 4 jend = false; 1{Test passed 32768| 8192 15
prodcell.cc| 1| 5| 5|end bool 7| 41 |end =false; 1|Test passed 32768 8192| 15
prodcell.cc| 1§ 1| B|end bool 7] 46|end = tue; 1| Test passed 32768 8192| 15
prodcell.cc| 1| 2| 6lend hool 7| 46|end = tue; 1|Test passed 32768 8192| 15
prodeell.ce| 1] 3| 6lend hool 7| 46lend = tue; 1|Test passed 32768| 8192 15
prodcell.cc| 1| 4| 6|end bool 7| 46 |end = frue; 1 |Test passed 32768 8192| 15
prodcell.ecc} 1| 5| 6(end bool 7| 46|end = true; 1|Test passed 32768| 8192| 15
prodcell.ecc| 1| 1| 7|command |sting| 7] 52[command = command +.7551; { 1|Test passed 32788 8192 15
prodeell.cc| 1| 2| 7|command |sting] 7| 52|command = command +-7551; | 1|Test passed 32768| 8192| 15
prodcell.ecc| 1| 3| 7|command |sting] 7| 52|command = command +-7551; | 1|Test passed 32768 8192 15
prodcell.cc| 1| 4| 7|command |sting| 7| 52|command = command +-7551; | 1|Test passed 32768 8192| 15
prodeell.cc| 1| 5| 7|command |sting| 7| 52|command = command +.7551; | 1{Test passed 32768 8192| 15
prodcefl.cc| 1| 1| 8|command [sting] 7| 58|command = command +5533; | 1|Test passed 32768| 8192 15
prodeeli.cc| 1] 2| 8|command |sting| 7| 58|command = command +5533; | 1|Test passed 32768| 8192 15
prodcell.cc| 1] 3| 8|command |sting| 7| 58|command = command +5533; | 1|Test passed 32768| 8192f 15

Figure 29 - Extract of FITMVS output for Channel B

62

7.3 Sensitivity Metrics

Despite the large quantity of raw results, it is possible to derive a large number of
different metrics and analyses. One of these metrics is that of sensitivity; this is the percentage
probability that a channel will fail to successfully pass a test after a fault is injected into it. For
example, in one injection cycle, 295 tests were performed on Channel A, of which 45 resulted
in either a failure or a timeout. Therefore, the sensitivity of the channel to a fault in that
particular injection cycle is (100 /295) x 45 = 15.25424%.

This calculation is performed for each injection cycle performed on both channels;
these results are shown in ﬁgﬁre 30. Each row represents a complete injection-cycle;
“procName” refers to the name of the channel, “PD” refers to the perturbation distribution,
“G-SD” refers to the standard deviation of the Gaussian distribution (if applicable), and
“Sensitivity” is the percentage chance of a test failing as a result of a fault being added. The
final two columns in each table refer to the standard deviation of the sensitivity values (not to
be confused with the Gaussian distribution’s standard deviation) and the average sensitivity
for each set of 5 injection-cycles respectively. '

As can be seen, there is a clear distinction (i.e. no overlap) between the average
sensitivity values of the two channels; channel A has a sensitivity of approximately 20%,
whilst channel B has a sensitivity of approximately 14.5%. The standard deviation of the
sensitivity results for both channels is small, with channel A having a standard deviation of
1.3 and channel B of 0.3; it can therefore be seen that both channel’s sensitivity values are
relatively accurate. These sensitivity measures fit in well with what is already know about the
dependability of the two channels as a result of previous studies [TOW01a, TOWOI1b];
namely, that channel A is error-prone (failing in approximately 25% of all possible
situations), whilst channel B is far more dependable (failing on approximately 1.5% of all
possible situations).

However, there appears to be no pattern amongst the sensitivity results for individual
injection cycles performed within the channels themselves. Although tests using Gaussian
distributions with different standard deviations were performed, it can be seen that for this
application, the differences in sensitivity for each set of tests are very similar and clearly
overlap when the standard deviations of the results are taken into account. It therefore appears
to be the case that either the different distributions have no bearing on the sensitivity of the
MVD system tested, or the number of tests performed is not great enough to establish the
resolution necessary for identifying a possible relationship. Diagrams showing the average
sensitivity for each set of five injection cycles performed in each channel are shown in figure

31.

63

7.4 Sensitivity to Common-mode Failure

Although these results are of interest, of even more interest is gauging the sensitivity
of the channels within the overall MVD system to common-modal failure. This is calculated
by analysing the results of each injection-cycle, identifying the scope of each test that
resulted in error, and categorizing this based on the error description; this was done for both
channels. For each channel, the number of failures for each error description were then
calculated as a percentage of the total number of tests performed on that channel. It is
important to note that because each channel has a different number of scopes, the total
number of tests performed on each channel are different. For each error type, the percentages
for each channel were divided by 100 and multiplied together to gain the percentage chance
of common-mode failure for that error type within that injection-cycle. By collating these
resultant common-mode probabilities, the overall probability of a common-mode failure
occurring within that injection-cycle as a result of faults being injected can be discovered.

The results for every injection cycle are shown below; header of each table lists the
standard deviation passed into the Gaussian function for that particular test (or “none” if a
normal distribution was used), the name of the channel, and the number of tests performed
on that channel (in brackets). Following this, the first column in each table lists the error that
was observed, and the second and third columns refer to the number of the code scope in
which injections were made to cause the error; the number in brackets in the second and third
columns is the percentage probability that this error will occur on anyb given injection within
the injection cycle. The fourth column gives the probability value (between 0 and 1) that the

relevant error will manifest itself following injections in both channels; this is calculated by :

_Pa _Pb

—_—X——

7100 100

where Pa is the percentage chance of channel A failing with the relevant error, Pb is the
percentage chance of Channel B failing with the relevant error, and Pab is the probability
(between 0 and 1) that both channels will fail With the relevant error at the same time. The
bottom row in the table gives the sum of the probabilities calculated in column 4; this is the
overall probability that for any random injection into channel A and channel B, the same
error will manifest itself in both (i.e. a common mode failure). This value is multiplied by
100 and placed in brackets to give the percentage figure.

For example, the following table is the result of an injection cycle that perturbed
variables based on a Gaussian distribution with a standard deviation of 8192, with Channel A

having been subjected to 295 tests, and Channel B subjected to 540 tests:

65

Standard Deviation: 8192 | Channel A (295) | Channel B (540)
' 25,25, 25, 25, 25,
Crane One dropped blank | 25, 25, 25 (103’;235’9528;/05)8’ >8 1 0.00025
(2.71186%) '

. 13,17, 26, 26, 26, | 52, 53, 54, 63, 64,
wOrtha;?n L bl.?“k 26, 28, 60 73 0.00030
exceeded fime fimt (2.71186%) (1.11111%)

0.00055
(0.055%)

In this test, two errors with the potential for common mode failure were discovered;
one error manifests itself by crane one dropping a blank, and the other manifests itself by a
blank placed in workstation 1 exceeding its time limit. For Channel A, the first error - “Crane
One dropped blank” — was seen 8 times, all as a result of injections into scope 25 of the
Channel’s code. As 295 tests had been performed, this leads to a 100 /295 x 8 = 2.71186%
chance that this error will be seen on any given injection. The same error was seen in Channel
B five times; two times following an injection into scope 13 and three times following an
injection into scope 58. This leads to a 100 / 540 x 5 =.0.92592% chance of the error being
seen on any given injection. The overall probability that following random injections both

channels will manifest the same error is therefore

2.71186 y 0.92592
100

=0.00025

The same process is repeated for the other error with the potential for common-mode
failure — “Workstation 1 ~ blank exceeded time limit”, where there is a 2.71186% chance that
the error will be seen in Channel A on any given injection, a 1.11111% chance that the error
will be seen in Channel B on any given injection, and an overall probability of 0.00030 that
the error will be seen in both channels when random injections are made into each channel.
When the two probabilities for common-mode failure are summed together, an overall
probability for common-mode failure of 0.00055 is established. By multiplying this by 100,
an overall percentage probability of 0.055% is obtained. The results for all other injection
cycles performed are listed in appendix A, in the same format.

This data is summarized in figure 32. As can be seen, these results are very
promising; out of more than 20,000 tests performed, despite faults being injected into the
system, the probability of common-mode failure occurring is only approximately 0.049%
‘with a standard deviation of approximately 0.035, with the “best” result being a probability of
0.005% and the “worst” results being a percentage chance of common-mode failure of

0.115%. However, it is important to remember that the results collected from the FITMVS

66

system -do not allow for any non-independence of error weightings (i.e. related errors in two

separate channels) to be taken into consideration.

G-SD % chance of CMF SD Average |
8192 0.055 :
8192 0.114
8192 0.0275
8192 0.036
8192 0.115 0.04227 0.0695
4096 0.051 ‘
4096 0.075
4096 0.095
4096 0.049
4096 0.005 0.033734 0.055
2048 0.016
2048 0.026
2048 0.071
2048 0.008
2048 0.024 0.024536| 0.029
1 0.02
1 0.015
1 0.0532
1 0.096
1 0.0845 0.036645| 0.05374
None 0.108
None 0.028
None 0.021
None 0.028
None 0.0195 0.037713| 0.0409
Overall average: 0.049628
Overall SD: 0.035284

Figure 32 - Overall analysis of common-mode failure

Although for this experiment there is no obvious way to generate related errors
amongst diverse channels, should we assume that doing so results in the probability for
common-mode failure increasing by 20 fold (slightly more than the factor [HAT97]
hypothesized for the [KNI86] experiment) then results still seem to be promising — with a
worst-case probability of 0.115 x 20 = 2.3% chance of common-mode failure should a
random fault be injected in each channel. ‘

It is important to note, however, that this analysis of potential common-mode failure
does not take into account any tests that resulted in a tinﬁe-out; in other words, a situation in
which both channels fail to reply within the expected period of time is not regarded as

common-mode failure. This is due to the sheer volume of timeouts reported; for Channel A,

67

a total of 1220 time-outs occurred from 7812 tests performed, whilst Channel B produced a
total of 1291 time-outs from 13399 tests. Figure 33 details the percentage probability of a
timeout occurring on a given test for each injection cycle. The first column refers to the
standard deviation of the Gaussian distribution (if applicable), the second and third columns
detail the percentage probability of a test resulting in a time-out for Channel A and Channel

B respectively, and the fourth column shows the probability that both channels will time-out

on any given test.

SD Channel A % Channel B % % Common Timeout

8192 7.79661 7.40741 0.57753

8192 12.13115 8.33333 1.01093

8192 20.06472 8.88889 1.78353

8192 16.19048 9.44444 1.52910

8192 15.55556 12.22222 1.90123

4096 17.46032 11.85185 2.06937

4096 © 18.61199 9.44444 1.75780

4096 14.76923 9.81481 1.44957

4096 14.92063 10.55556 1.57496

4096 14.10658 10.63433 1.50014

2048 19.67742 10.80074 2.12531

2048 18.38710 8.14815 1.49821

2048 12.69841 10.66667 1.35450

2048 14.83871 11.85185 1.75866

2048 12.69841 11.66667 1.48148

1 13.04348 : 9.46197 1.23417

1 21.84615 6.85185 1.49687

1 16.26298 11.48148 1.86723

1 9.35484 5.92593 0.55436

1 16.50794 8.51852 1.40623

Normal Distribution 12.00000 11.11111 1.33333
Normal Distribution 14.92063 6.86456 1.02424
Normal Distribution 18.70968 9.83302 1.83973
Normal Distribution 19.68254 10.74074 2.11405
Normal Distribution 17.55486 8.53432 1.49819
Standard Deviation: 3.41766 1.74360 0.41147

Average: 15.59161% 9.64219 % 1.50962%

Figure 33 - Analysis of time-out probabilities

68

In order to determine whether or not each time-out result will cause a common-
mode failure, it would be necessary to look-up the injection in the FITMVS log file,
manually perform this injection on the channel source code, compile and execute that code,
and then manually observe the operation of the channel up to the point where a time-out
occurs. Even if this process were to only take 5 minutes, this would still require 2511 x 5 =
12,555 minutes (209.25 hours) of testing time, which is not feasible for this experiment.

However, as can be seen from figure 33, the average probability of both channels
timing out on a given test is 1.50962%. If we are tov assume that all time-outs lead to
common-mode failure (an extremely unlikely assumption), then summing this probability
with the average probability of common-mode failure shown in figure 32 would still lead to
an average probability of common-mode failure of only 1.559248% (ignoring any weighting

for related errors).

7.5 Sensitivity to Error of Each Program Scope

In addition to measures with regard to sensitivity and common-modal failure, the
FITMVS log results also give an indication as to the sensitivity to error of each scope within
the source code tested. Figure 34 shows the number of errors detected following injections
into each scope in the two channels tested; this is created by grouping together all the rows
of each FITMVS log file that contained an error message, and then creating a histogram
graph based upon the scope number of the injection. This analysis does not include time-
outs.

These results are of interest as they reveal that certain program scopes are far more
prone to error (and are hence far more sensitive) than other scopes. A good example of this is
scope 51 in channel B, responsible for a total of 105 reported errors. This metric is very
useful as it provides a picture of the sensitivity of each channel’s source code that can be
assessed very quickly. By identifying scopes of special sensitivity and testing/coding them to
behave more robustly, it should be possible to reduce the overall sensitivity of each channel

significantly.

69

: Frequency:

Error Description i A

1 Blank in WS One picked up before minimum time elapsed 40

2 [Blank in WS Three picked up before minimum time elapsed 6

3 [Blank in WS Two picked up before minimum time elapsed 22

4 |Blank passed through system, but exceeds maximum system time 13

5 |Blank processed at more than 4 workstations 3

6 |Blank processed at too few workstations 16

7 Blank put back down on the end of the feedbelt 4

8 |[Blanks processed out of order 5

9 [Crane one dropped blank - Factory::checkCraneMagnets() 156

10 srane one has put a blank into workstation 1. It already has a blank in 13
i

11 _(i‘,rane one has put a blank into workstation 2. It already has a blank in 12
i

12 i:rane one has put a blank into workstation 4. It already has a blank in 2
i

13 |Crane two dropped blank - Factory::checkCraneMagnets() 40

14 |Crane two has put a blank into workstation 1. It already has a blank in it 3

15 |Crane two has put a blank into workstation 2. It already has a blank in it 3

16 |Crane two has put a blank into workstation 3. It already has a blank in it 9

17 |Crane two has put a blank into workstation 4. It already has a blank in it 14

18 |hasBlankExceededLimit: blank inside illegal workstation 1

19 Workstation 1 - blank 9xceeded time limit. 226
Factory::checkWorkstations()

20 Workstation 2 - blank gxceeded time limit. 57
Factory::.checkWorkstations()

21 Workstation 3 - blank gxceeded time limit. 13
Factory::.checkWorkstations()

22 Workstation 4 - blank gxceeded time limit. 11
Factory::checkWorkstations()

23 [Workstation used more than once 2

Figure 38 - Error type frequency breakdown for Channel B

From this analysis, the system developer may wish to more thoroughly exercise

exception handling mechanisms related to these errors, in order to increase the safety of the

system as much as possible. It will also be possible to use an analysis such as this to rank

common-mode failures by their severity and also count the number of common-mode

failures that result in system failure, thus providing more MVD metrics

A related analysis to the one mentioned above is to assess the frequency of common-

mode failures in the two channels; that is, the frequency of errors with the potential to lead to

common-mode failure. This is shown in figure 39. Figure 40 details a breakdown of the

comnmon-mode failure frequency data.

73

7.7 Issues with FITMVS Arising from the Experimgnt

At the conclusion of the experiment, a number of limitations with the current
FITMVS system were apparent. The system does not recognise objects, and hence can only

perturb primitive variable types, not objects or class variables. An example of this is shown in

figure 41.

void function ()

{) 1
int a;
long b;
Object theObject = new Object();

// FITMVS can perturb either primitive
// variable, such as :

A=A + 43;
// or
B =B + 20;

// but does not recognize objects and so
// could not, for example, do as follows:

theObject->variable = theObject->variable + 20;

Figure 41 - Code example of what FITMVS can and cannot perturb

The reason for this is the lack of sophistication. in the FITMVS parser components,
stemming from the lack of development time available. In an age of object-oriented
technologies, this is obviously an issue that will need to be addressed in the future, as many
potential perturbations were ignored by the system and an even greater insight into the two
channels may have been missed.

Another issue to arise as a result of the experiment is that of the “time-out problem”.
In order to resolve whether or not time-outs will produce common-mode failure across
channels, it is currently the case that the user must manually study the FITMVS log file,
manually perform the specified injection, and then manually evaluate the execution of the

channel. Although this is possible for a small number of time-outs, as noted in section 7.4, an

75

average of just over 10% of tests performed resulted in a time-out, and so such a manual
analysis is unfeasible. An investigation is therefore needed into alternate methods for
aﬁalysing time-outs between channels.

Perhaps the most profound problem of all is the inability of FITMVS (and perhaps the
fault injection approach as a whole) to accurately model non-independgnce of failure. Every
experimental analysis of MVD systems has shown that the probabilities of channels in MVD
systems failing are not dependant of each other, although no research appears to have been
performed on modelling this relationship between channels. Due to the fact that different
channels will have different variable names, different structures, different functions and
different objects, it is simply not possible to insert the “same” fault into more than one
channel (unless perturbing input data). Therefore, all injections performed are completely
independent of each other and so a non-independence relationship cannot be established

between channels.

7.8 Summary

This chapter details the results of the experiment performed, together with an
analysis as to what these results mean. Examples of the FITMVS log files produced by the
experiment are shown, analyses are performed to give channel sensitivity analysis, channel
sensitivity to common-mode failure, program scope sensitivity analysis, program scope
sensitivity to common-mode failure, error frequency distribution analysis and common-mode
failure frequency distribution analysis. The chapter concludes by examining issues that arose

with the FITMVS system as a result of the experiment.

76

Chapter 8 Conclusions and Future Work

8.1 Conclusions

The primary goal of this research has been to develop a system capable of
automatically injecting faults into an MVD system and then testing the system for its
behaviour. Such a system is desirable as multi-version design has been proposed as a method
for increasing the dependability of critical systems beyond current levels, but lack of
quantitative characterizations is a major obstacle to large-scale commercial usage of the
approach. The technique of fault injection provides much potential for generating large
numbers of metrics. Fault injection is a “late life-cycle” software analysis that can simulate
human operator errors and observe their impact on the software as well as the total system. It
is a technique that complements, but is not a substitute for, other verification and validation
procedures. By developing a fault injection system (FITMVS), it was hoped to provide a
method for generating large amounts of data about both an MVD system as a whole, as well
as its constituent channels.

The result of this has been very successful, and as a result, not only has a valuable
tool for the production of detailed metrics into MVD systems been produced, but extremely
useful metrics about a known MVD system have been produced also. The automated nature
of the FITMVS system has also allowed for a much greater number of tests to be performed
than might otherwise have been the case (21,211 tests automatically performed compared to
the 4,320 tests performed manually over a much greater time period in a previous study). The

following analyses can be produced using the FITMVS system:

1) Channel Sensitivity Analysis. This metric allows the user to gauge how
likely a channel within an MVD system is to fail when a fault is injected
into it. The user may then wish to invest more resources in channels with a

high sensitivity to faults.

2) Channel Sensitivity to Common-mode failure. This metric is related to
channel sensitivity analysis, but applies to the MVD system as a whole.
This analysis is useful as it helps to refine dependability estimates for a

MVD system by giving the user an indication of how likely the system is to

77

fail through common-mode failure, assuming a single random fault is

injected into each of its constituent channels.

3) Program Scope Sensitivity Analysis. This analysis generates a graph
showing the number of errors that were produced following injections into
each scope within a channel’s source code. This allows the user to assess at
a glance which scopes are more sensitive to faults than others; the user may
then wish to either perform increased tests on these scopes, debug them, or

introduce more effective exception-handling routines in them.

4) Program Scope Sensitivity to Common-mode failure Analysis. This analysis
is similar to the program scope sensitivity analysis, and produces a graph
showing the number of errors with the potential for common-mode failure
that were produced following injections into each scope within a channel’s
source code. A user may find this analysis helpful in assessing which
scopes are in most urgent need for maintenance (assurﬁing that the MVD
system will be able to handle non-common-mode failures generated by
scopes). This analysis may also be extremely useful in future research

investigating the exact causes of the related-error phenomenon.

5) Error Frequency Distribution Analysis. This analysis measures the number
of occurrences of each type of error reported during the course of testing by
FITMVS. This analysis can help the user to detect which errors occur most
frequently when a fault is present, and allows them the opportunity to
allocate more resources to the development of exception-handling routines

for these errors and/or investigate why the errors are so common.

6) Common-mode Failure Frequency Distribution Analysis. Th'is analysis is
similar to the error frequency distribution analysis, but measures the
number of occurrences of each type of potential common-mode failure
reported during testing. This enables the user to develop more effective

exception-handling routines for the MVD system as a whole.

The MVD system tested was a trivial example, but nevertheless, the results gained are
extremely satisfactory as a proof-of-concept, and show great promise, with the sensitivity to
potential common-mode failure in particular being surprisingly low, whilst the sensitivity

metrics for each channel appear to confirm earlier tests [TOW01la, TOWO01b] into their

78

relative dependabilities which established channel B as being the more dependable channel.
The program scope metrics were successful in establishing specific scopes in both channels
with disproportionate sensitivity results, whilst the error type frequency analysis revealed a
number of errors that were far more common than others when faults were injected into either
channel. The common-mode failure type frequendy analysis was also very useful, as it
isolated two types of error that were by far the most likely to occur in the event of a common-
mode failure.

The MVD system chosen as a test example required several seconds to perform each
test, and so the total number of tests that could be performed was limited; other applications
may not have this speed restriction, and hence much higher numbers of tests may be
performed and the resulting statistics may have a more fine-grained resolution.

As has been stated earlier, the FITMVS system is very much a proof-of-concept
system, but the potential for improvement in the future is great. The current system provides a
method for extracting the much needed quantitative characterizations that are required by the
fault-tolerant distributed-computing community [KIMO0O] and can therefore be considered to

be very much a success.

8.2 Future Work

There is great potential for future work both on the implementation of FITMVS and
the application of FITMVS. On the implementation side, perhaps the most pressing need is
for a better parser. The current parser within the FITMVS system cannot handle objects, and
can only parse C and C++. Improvements in the parser should also allow for a wider choice of
possible injections; currently the FITMVS system only supports data value perturbation;
however, one possible goal in the future is to provide the possibility of code mutation as well.
Changes to the parser may include further work on the existing parser, or the replacement of
the existing parser with a ready-made/commercial parser. Another improvement to the system
would be the impiementation of an analysis component; currently the system outputs a very
detailed log file, but the actual metrics and analyses of this file have to be done semi-
manually (the log file is tab-delimited and should import into most modern spreadsheet
applications). By giving the user the option of automatic analysis of the output logs, the
overall time taken to gain results should be much reduced.

There are also a number of promising research directions in which FITMVS may be
helpful. The most profound of these is an investigation into related errors; currently, there is
no understanding as to the relationship between errors and common-mode failures. By using

the analyses offered by FITMVS, it may be possible to investigate relationships between

79

scopes that are more likely to cause common-mode failure, and perform reverse engineering
to gain a greater understanding of the underlying causes. It is also of interest to analyse the
results of FITMVS on other MVD systems in order to see if there are any underlying patterns
or trends in the data extracted. Although the automated testing mechanism has increased the
number of tests that were able to be performed significantly, the fact that the MVD system
- tested waited on the system timer prohibited a truly large number of tests from being
performed, and therefore an alternative MVD system that does not wait on the system timer

will enable a more rigorous analysis.

8.3 Acknowledgements

My thanks to my supervisor Jie Xu, and my mum and dad for all their support.

80

References

[AMMS87] P.E. Ammann, J.C. Knight, “Data Diversity: an Approach to Software Fault
Tolerance”, in Proc. Seventeenth International Symposium on Fault-Tolerant Computing,

p.122-126, Pittsburgh, 1987

[ATH89] A. Athavale, “Performance Evaluation of Hybrid Voting Schemes”, M.S. Thesis,
North Carolina State University, Department of Computer Science, December 1989

[AVI77] A. Avizienis, L. Chen “On the implementation of N-version programming for
software fault tolerance during execution” Proc. IEEE COMPSAC 77 p.149-155 November

1977

[AVI84] A. Avizienis, J. Kelly “Fault Tolerance by Design Diversity. Concepts and
Experiments” IEEE Computer - Vol. 17 - No. 8 - August 1984 p. 67-80

[AVI85] A. Avizienis, “The N-version Approach to Fault-Tolerant Software” - IEEE

Transactions on Software Engineering - vol. 11 1985

[AVI86] A. Awizienis, J.C. Laprie, “Dependable computing: from concept to design
diversity,” in Proceedings of the IEEE, p. 629-638, 1986

[AVIR9] A. Avizienis, “Software Fault Tolerance” - IFIP XI World Computer Congress 89 -
San Fransisco - August 1989

[BUT93] R. W. Butler, G. B. Finelli, “The Infeasibility of Quantifying the Reliability of Life-
Critical Real-Time Software”, IEEE Transactions on Software Engineering, vol SE19 no. 1,
p. 3-12, January 1993

[CAR99] J. V. Carreira, D. Costa, J.G. Silva, “Fault Injection Spot-checks Computer System
Dependability”, IEEE Spectrum, p. 50-55, August 1999

87

[CHR94] J. Christmansson, Z. Kalbarczyk, “An Approach to Experimental Evaluation of
Different Data Diversity Schemes”, Predictably Dependable Computing Systems second year
report, p. 685-716, September 1994

[CLA95] J.Clark, D. Pradhan, “Fault Injection: A Method for Validating Computer-System
Dependability,” in IEEE Computer, p. 47-56, June 1995

[CHE99] L. Chen, J. Napier, J. May, G. Hughes, “Testing the Diversity of Multi-version
Software using Fault Injection,” in Proc. Of the Safety and Reliability Society Symposium:
Advances in Safety and Reliability, June 1999

[CRI82] F. Cristian, “Exception Handling and Software Fault Tolerance”, IEEE Transactions
on Computers, 31(6):531-540, 1982

[DEM78] R.A. DeMillo, R.J. Lipton, F.G. Sayward, “Hints on Test Data Selection: Help for
the Practicing Programmer”, IEEE Computer, 11(4), p. 34-41, April 1978

[ECKS85] D.E. Eckhardf, L.D. Lee “A theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Errors” - IEEE Transactions on Software Engineering - Vol
SE-11 - No. 12 - December 1985 - p. 1511-1516

[ECKO91] D.E. Eckhardt et al, “An Experimental Evaluation of Software Redundancy as a
Strategy for Improving Reliability” IEEE Transactions on Software Engineering Vol. 17 1991
pp 692-702

[GHO99] A. K. Ghosh, J. M. Voas, “Inoculating Software for Survivability”, in
Communications of the ACM 42(7), p. 38-44, July 1999

[GRA90] J. Gray, “A census of Tandem system availability between 1985 and 1990,” in
IEEE Transactions on Reliability, p.409-432, 1990

[HAL90] P. Hall, “Defect Detection and Correction” in “Software Reliability Handbook”, Ed.
P. Rook, Elsevier Science Published Ltd., 1990

[HAN9S] S. Han, K.G. Shin, H.A. Rosenberg, “Doctor: An Integrated Software Fault-
Injection Environment for Real-Time Systems,” in Proc. Of the Second Annual IEEE Int.
Computer Performance and Dependability Symp., pp/ 204-214, IEEE 1995

88

[HAT97] L. Hatton, “N-version Design Versus One Good Version” - IEEE Software Vol.14
No.6 1997 pp 71-76

[HEC93] H. Hecht, “Rare Conditions — An Important Cause of Failures”, Proc.
COMPASS 93, Gaithersburg MD, June 1993

[HEC94] H. Hecht, P. Crane, “Rare Conditions and their Effect on Software Failures”, Proc.
of the 1994 Reliability and Maihtainability Symposium, p. 334-337, January 1994

[HEC96] H. Hecht, M. Hecht, “Qualitative Interpretation of Software Test Data”, Computer-
Aided Design, Test and Evaluation for Dependability Workshop, Beijing, China, July 1996

[HSU97] M-C. Hsueh, T. K. Tsai, R.K. Iyer, “Fault Injection Techniques and Tools”, IEEE
Computer, April 1997, p. 75-82.

[JALOOQ] P. Jalote, “Fault Tolerance in Distributed Systems”, Prentice Hall, Englewood Cliffs
NJ, 2000

[KEL88] J. Kelly, D.E. Eckhardt, A. Caglayan et al, “Large Scale Second Generation
Experiment in Multi-Version Software: description and early results” IEEE Fault Tolerant

Computer Systems Vol 18 - 1988 pp 9-14
- [KER86] E. Keravnou, L. Johnson, “Competent Expert Systems”, Kogan Page, London, 1986

[KIM84] K.H. Kim, “Distributed Execution of Recovery Blocks: An Approach to Uniform
Treatment of Hardware and Software Faults”, in Proc. 4" Int. Conf. On Dist. Comp. Sys, p.
577-632, San Francisco, May 1984

[KIM95] K.H. Kim, “The Distributed Recovery Block Scheme”, in [LYU95], p. 189-209,
1995

(KIMO00] K.H. Kim, “Issues Insufficiently Resolved in Century 20 in the Fault-Tolerant

Distributed Computing Field,” in Proc. 19" IEEE Symposium on Reliable Distributed
Systems, October 2000 p. 106 - 115

89

[KIT90] B. Kitchenham, “Software Development Metrics and Models”, in “Software
Reliability Handbook”, Ed. P. Rook, Elsevie_r Science Published Ltd., 1990

[KNI86] J. Knight, N. Leveson, “An Experimental Evaluation of the Assumption of
Independence in Multi-version Programming” IEEE Transactions on Software Engineering -

vol. 12 1986 pp 96-109

[KNI9O0] J. Knight, N. Leveson, “A reply to the criticisms of the Knight and Leveson
experiment” ACM Software Engineering Notes - January 1990

[LAD99] P. Ladkin et al, “Computer-related Incidents with Commercial Aircraft”
http://www.rvs.uni-bielefeld.de/publications/Incidents/ 1999

[LAP90] J-C. Laprie et al, “Definition and Analysis of Hardware- and Software- Fault-
Tolerant Architectures”, IEEE Computer vol. 23 no. 7, July 1990

[LAP92] J-C. Laprie, (ed.). “Dependability: Basic concepts and terminology — in English,
French, German, Italian and Japanese,” in “Dependable Computing and Fault Tolerance”

Vienna, Austria, Springer-Verlag, p. 265, 1992

[LAP95] J-C. Laprie, “Software Reliability and System Reliability”, in [LYU95], p. 27-69,
1995, |

[LEV95] N. Leveson, “Safeware: System Safety and Computers” - Addison-Wesley-
Longman - New York - 1995

[LYU95] M.R. Lyu, “Software Fault Tolerance” - John Wiley & Sons - Chichester - UK -
1995

[MACS88] D. A. Mackall, “Development and Flight Test Experiences With a Flight-Crucial
Digital Control System” Technical Report NASA Technical Paper 2857 - National

Aeronautics and Space Administration - Dryden Flight Research Facility - November 1988

[MACI1] D.F. McAllister, RK. Scott, “Cost Modelling of Fault-Tolerant Software” -
Journal of Information and Software Technology Vol. 33 no.8 October 1991 - p. 594-603

90

[MEL77] P.M. Melliar-Smith, B. Randell, “Software Reliability: the Role of Programmed
Exception Handling”, SIGPLAN Notices, 12(3):95-100, 1977

[MIL72] H.D. Mills, “On the statistical validation of computer programs,” IBM Federal
Systems Division, Gaithersburg, MD, Red. 72-6015, 1972

[MORS8S8] L. J. Morell, J. Voas, “Infection and Propagation Analysis: A Fault-Based
Approach to Estimating Software Reliability”, Technical Report WM-88-2, College of
William and Mary in Virginia, Department of Computer Science, Séptember 1988

[PRE97] R.S. Pressman, “Software Engineering: A Practitioners Approach”, 4™ edition,
Addison-Wesley, 1997

[RAN7S] B. Randell, “System structure for software fault tolerance,” in JEEE Transactions
on Software Engineering, 1(2):220-232, 1975

[RAN95a] B. Randell et al, “Dependability - Its Attributes - Impairments and Means” -
Predictably Dependable Computing Systems - Springer-Verlag 1995 p. 3-24

[SCO84] R.K. Scott, J.W. Gault, D.F. McAllister, J. Wiggs, “Experimental Validation of Six
Fault-Tolerant Software Reliability Models” IEEE Fault Tolerant Computer Systems Vol. 14
- 1984 - pp 102-107

[SCO85] R K. Scott, J.W. Gault, D.F. McAllister, “The Consensus Recovery Block”, in Proc.
Total System Reliability Symposium, p. 74-85, 1985

[SHR78a] S. K. Shrivastava, “Sequential pascal with recovery blocky”, Software Practice
and Experience, 8:177 — 185, 1978

[SHR78b] S.K. Shrivastava, A.A Akinpelu, “Fault-tolerant sequential programming using
recovery blocks”, in Proc. Eighth International Symposium on Fault-Tolerant Computing, p.

207, Toulouse, 1978

[STO96] N. Storey, “Safety Critical Computer Systems” Addison-Wesley-Longman - New
York 1996

91

[TOWO01a] P.Townend, J. Xu, M. Munro, “Building Dependable Software for Critical
Applications: N-version design versus one good version,” in Proc. 6" IEEE Intl. Workshop on

Object-Oriented Real-Time Dependable Systems, p. 103-110, 2001

[TOWO01b] P.Townend, J. Xu, M. Munro, “Multi-Version Software versus One Good
Version: A further study and some results,” in Proc. IEEE/IFIP International Conference on

Dependable Systems and Networks, Goteborg, July 2001

[TSA96] T.K. Tsai, R.K. Iyer, “An Approach to Benchmarking of Fault-Tolerant Commercial
Systems,” in Proc. 26" Ann. Int. Symp. Fault-Tolerant Computing, p. 314-323, IEEE, Los
Alamitos, CA, 1996

[VOA95] J. Voas, K. Miller, “Using Fault Injection to Assess Software Engineering
Standards”, in IEEE Int. Soft. Eng. Standards Symp. 1082-3670, p. 139-145, 1995

[VOA97] J. Voas, A. Ghosh, F. Charron, L. Kassab, “Reducing Uncertainty about Common-
Mode Failures”, in Int. Symp. On Reliability Eng. 1071-9458, p. 308-323, 1997

[VOA98a] J. Voas, “Analyzing Software Sensitivity to Human Error”, Int. Journal of Failure
and Lessons Learned in Information Technology Management, 2(4), December 1998

[VOA98b] J. Voas, “Software Fault Injection: Inoculating Programs against Errors”, Wiley
Computer Publications, New York, 1998

[VOU90] M.A. Vouk, “Back-to-Back Testing” - Information and Software Technology Vol.
32 - No. 11990 p. 34-45

92

