
Durham E-Theses

Object-orientated planning domain engineering

Tully, Mark

How to cite:

Tully, Mark (2001) Object-orientated planning domain engineering, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3764/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3764/
 http://etheses.dur.ac.uk/3764/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Object-Orientated Planning
Domain Engineering

Mark Tully

M.Sca Thesis
2001

The c01)yright of this thesis rests \\;th
the author. No quotation from it should
be published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

Planning Group
Department of Computer Science

University of Durham

Ohicct.--Ori..:ntatcd Planning Dornain Engineering
Abstract

Abstract

The development of domain independent planners focuses on the creation of

generic problem solvers. These solvers are designed to solve problems that are

declaratively described to them.

In order to solve arbitrary problems, the planner must possess efficient and

effective algorithms; however, an often overlooked requirement is the need for a

complete and correct description of the problern domain.

Currently, the most common domain description language is a propositional

logic, state-based language called STRIPS. This thesis develops a new object

orientated domain description language that addresses some of the common

errors made in writing STRIPS domains. This new language also features

powerful semantics that are shown to greatly ease the description of certain

domain features.

A common criticism of domain independent planning is that the requirement

of being domain independent necessarily precludes the exploitation of domain

specific knowledge that would increase efficiency. One technique used to

address this is to recognise patterns of behaviour in domains and abstract them

out into a higher-level representations that are exploitable. These higher-level

representations are called generic types.

This thesis investigates the ways in which generic types can be used to assist

the domain engineering process. A language is developed for describing the

behavioural patterns of generic types and the ways in which they can be

exploited. This opens a domain independent channel for domain specific

knowledge to pass from the domain engineer to the planner.

Mark Tully • M.Sc. Thesis o 2001 Pagci

Obic,:t-Oric-ntatcd Planning Domain l~nginc:'ri'lL~
Preliminaries

Acknowledgements
This thesis would not have been possible without the inspiration given to me by

my supervisor Dr. Maria Fox and my pseudo-supervisor Dr. Derek Long. I

would like to thank them and the rest of the planning group for their guidance

and support.

I would also like to extend my thanks to the EPSRC for their funding and the

PLANFORM project for their grant, both of which allowed me to complete this

work.

Copyright
The copyright of this thesis rests with the author. No quotation from it should be

published without prior written consent from the author and information derived

from it should be acknowledged.

Declaration
No part of the material offered has previously been submitted by the author for a

degree in the University of Durham or in any other University. All the work

presented here is the sole work of the author and no one else.

Mark Tully o M.Sc. Thesis o 2001 Page ii

Obicei -OriL·ntatecl Planning Dornai n Fngi 1:ccri ng
TalJlc of Conte11ts -

Ta · ie of Contents
"'

~ lrilt lrOld u et~ (Q l11l DD 0 DD CD D IJ CD D 0 DD DD ll DD DD 0 0 CD 0 DD DC DD DD DD DD DD D 0 DD D ~

1.1 The Sc~ence of Problem Solv~ ng 1

1.2 !Domain ~ndependernt P~ann~ng 2

1.3 Domain Engineering .. 2

1.4 Exploiting Domain Specific Knowledge 3

1.5 Object~Orientation .. 4

1 .. 6 Project Aims III ~~~ IIQIIDDIIIIIIIID 4

1.7 Structure of this Thesis 5

Background ... " .. 6
2.1 The Process of Domain Engineering 6

2.2 Capturing the Domain .. 6
2.2.1 The Logistics Domain .. 7

2.3 Designing the Model .. 8
2.3.1 The Functional Model .. 8

2.3.2 The Object Model .. 1 0

2.3.3 Visualising Domain Models ... 11

2.3.4 Summary of Models .. 12

2.4 The Use of Ontologies 12

2.5 An Overview of Domain Description
languages ... 13

2.5.1 STRIPS , ... 14

2.5.2 The Issue of Typing ... 15

2.5.3 PDDL ... 16

2.5.4 ADL .. 17

2.5.5 The Usefulness of ADL ... 20

2.5.6 TLPian ... 21

2.5.7 Hierarchical Task Networks ... 22

2.5.8 Object Centred Language .. 24

2.5.9 OCLh ... 26

Mark Tully o M.Sc. Thesis o 2001 Page iii

Obicct-Oricntatccl Planning Dornain F:ngiweril:~
Table of Coute11ts

2.5.1 0 Summary of Domain Description Languages 26

2.6 Domain Analysis and Generic Types 28
2.6.1 The Mobile Generic Type ... 29

2.6.2 The Carrier Generic Type ... 29

2.6.3 Generic Type Fingerprints ... 29

2.6.4 Generic Types and Planners ... 30

2.7 Existing Domain Engineering Tools 30

2.8 Summary aaaaaaaDDIIIIIDGaaaaaaaaaaaaaaaaaaDIIDDIIDIIIIIIDIIDDDaaa 31

3 Design of OODDL 33
3.1 Requirements ~~ 33

3.2 Compatibility a •••••••••••••••• 34
3.2.1 PDDL Compatibility ... 35

3.3 Introducing OODDL ... 36

3.4 OODDL vs. STRIPS .. 37
3.4.1 Addressing Typing Errors .. 38

3.4.2 Addressing Omitted Negative Effects 38

3.4.3 OODDL Variables .. 39

3.5 Object References .. 40
3.5.1 Object References in STRIPS .. 40

3.5.2 Requiring the Absence of a Relationship 40

3.5.3 Requiring the Absence of a Specific Relationship 42

3.5.4 Object References in OODDL .. 43

3.6 Managing Sets in STRIPS 44

3.7 Managing Sets in OODDL. 46

3.8 The Enumerated Type 46
3.8.1 Enumerated Types in STRIPS ... 47

3.8.2 Enumerated Types in OODDL ... 49

3.9 Actions in STRIPS .. 50
3.9.1 The Light Switch Domain in STRIPS 51

3.10 Actions in OODDL .. 52
3.10.1 The Light Switch Domain in OODDL. 54

3.11 Inheritance in STRIPS 54

3.12 Inheritance in OODDL 55

Mark Tully o M.Sc. Thesis & 2001 Pagciv

Objcct--Oric:ntatccl Planning Donwin Engineering
Table of Conte11ts

3.13 Implementing Method ~nvocation in OODDL 55

3.14 Draughtsman ~~~~··· .. ····u·~~··························~~~········· 56
3.15 Overview of the OODDL to STRIPS

Translation 0111111111 a 11111111111111111111111111 g 11 a 111111111111111111 ••••••• 11 •••• DD aaaaaa 11111111111 56
3.15.1 Classes ... 57

3.15.2 Enumerated Types .. 57

3.15.3 Variables ... 58

3.15.4 Actions .. 58

3.15.5 Overriding Actions .. 60

3.15.6 Problem Specifications .. 61

3.15.7 Resultant Plans .. 62

3.16 Summary .. 64

4 Design of GTL a························· 65
4.1 Modelling with Generic Types 65
4.1.1 Generic Types as Superclasses .. 66

4.1.2 Automatic Generic Type Recognition 68

4.2 The Declarative Model 69

4.3 The Tern plated Approach 70
4.3.1 Finite State Machine Representation 70

4.3.2 The Components of a Generic Type 72

4.4 A Case Study of Generic Types 73
4.4.1 Mobile .. 74

4.4.2 Carrier ... 74

4.5 Introducing the Generic Type language 74

4.6 'Flat' GTL a 75

4. 7 ObjectaOrientated GTL. 76
4.7.1 Structuring the Templates ... 77

4.7.2 Addressing Disjunctions .. 77

4.8 Transportation Template in GTL 80

4.9 Generic Type Services 82
4.9.1 Editing Tags for Domain Engineering 82

4.9.2 State Model ... 82

4.9.3 Planner Assistance ... 83

4.9.4 Visualisation ... 83

Mark Tully o M.Sc. Thesis o 2001 Page v

Object OricnLitecl Planning Domain Engineering
Ta.lJ!e of Conte11ts .

4.10 Applying GTl .. 84

4.111 Summary DD a 111111111 Ill Ill Ill Ill a Ill a a Ill IIJIIIIIIIIIDDG Ill Ill 111111 aaaaoauaaaaaa •••••• DD Dill a 11111 •••••• a 84

[E:y-(81~ ~caltHOITll a a a o a a a o o a a a a o o a a a a coo o o Do o a a cc a a aDo a o o c a o a a a o o 85
5.1 !Evah.nation Aims ... 86

5.2 Designing the Tests ... 88
5.2.1 Question 1: The Understanding Test 88

5.2.2 Question 2: Negative Effects Test 91

5.2.3 Question 3: Enumerated Types Test.. 93

5.3 The Tests ... a••••ga••··········Q·· 96

5.4 Expected Results ... 97

5.5 Results ··········~~~······~~················~~~~··········· .. ·············· 98
5.6 Discussion of !Results 102
5.6.1 Question 1 .. 1 02

5.6.2 Question 2 .. 103

5.6.3 Question 3 .. 1 07

5.7 Summall"y of Tests .. 1 08

(C{QIT1}{C~UJI5)~(Q}rri1oaaaaaaaoaaoaaooocaooDaooaaaaoaaoocoacooaaao ~ ~ 1
6.1 OODDl DDDIIIDDDDDDDIIDDDDDDDDIIIIIDDDDDDDDIIIIIDDDIIIIDDDIIDIIIIIIIIIIIIIIIIDIIIIIIIIIIIIIIIIIIIIII i 11

6.2 GTL ••••••••••••••••oaaeauaaaaaa••••••••••••••••••••aaaaaa•aaaaaaaaaaa 112

6.3 Draughtsman ... 113

6.4 Scope for Future V\fork 113

6.5 Summary ... 115

Appendices ... i 16
7.1 Notation for OODDl Domains 116
7.1.1 Domain Description .. 116

7.1.2 Member Variables .. 116

7.1.3 Actions .. 118

7 .1.4 A Problem Specification ... 119

7.1.5 OODDL Example: Blocks World .. 119

7.2 Foll"mal Gll"ammar for GTl 120
7.2.1 Template Tags ... 120

Mark Tully o M.Sc. Thesis o 2001 Page vi

Object--Orientated Planning Dornain Engineering
Table of Conte11ts

7.2.2 The Types Tag ... 120

7.2.3 The Instance Tag ... 122

7.2.4 GTL Example: Mobile .. 123

7.2.5 GTL Example: Construction .. 124

7.3 Test: Understanding STRIPS 125

7.4 Test: Understanding OODDL 128

8 References .. 132

Mark Tully o M.Sc. Thesis o 2001

Ohied Orit.'ntatccl Planning Dom;1in Enj2ith~·criii~:
llltroductioll

1 Introduction
&

This section introduces the basic concepts of planning and planning domain

engineering. An overview is given of the current state of domain engineering

followed by a short discussion of the aims of this project. A general overview of

the structure of the thesis can be found at the end of this section.

1.1 The Science of Problem Solving
Computers are good at following instructions. When a solution to a problem

exists, computers can be programmed to implement a solution and will do so

quickly and accurately.

When a computer is to be used tu solve a prohlem, the usual approach is for a

computer scientist to design an algorithm to solve the problem, and then execute

the program on the computer. This approach will, more often than not, result in

a highly efficient solver for that particular problem and the same algorithm can

be deployed on future problems of the same kind to solve them just as quickly.

One of the requirements of this approach is that a solution to the problem at

hand either exists, or can be developed. If there are a large number of varied

problems that need to be solved, this can mean a lot of time spent developing

algorithms and maintaining previous solutions.

An alternative approach is to develop a generic problem solver, which is

capable of solving a wide range of problems given only a problem specification.

A problem specification would be much quicker to write than a specialised

solver meaning the time from problem conception to solution is reduced. The

study and development of such generic solvers is called donwin independent

planning.

---------···-·
Mark Tully o M.Sc. Thesis <> 2001 Page J

Object -Orientated Planning Domain Engineering
Introductio11

1.2 Domain Independent Planning
The disadvantage of a domain dependent problem solver is that the algorithm

cannot generally be transferred to another domain. For example, a route

planning algorithm cannot be easily deployed on a map colouring problem 1
•

Domain independent planning differs from domain dependent planning in that

the domain is given to the planner as part of its input, where as a domain

dependent planner has it implicitly encoded within its algorithms.

A domain description for a domain independent planner describes the "laws of

physics" for that domain, it describes what is permissible and what is not. The

description defines actions that can be used in the domain and what the actions

achieve. Finally, a problem specification describing the initial state and desired

states of the domain is written. The planner takes both the domain description

and the problem description and produces a sequence of actions that, when

applied, will take the domain from the initial state to the desired state. This

action sequence is called a plan.

1.3 Domain Engineering
Planning as a research interest has been mainly fuelled by the desire to solve

problems of increasing difficulty. Although this has doubtlessly lead to the

development of better planning algorithms, the question of whether or not

planners can be easily used to solve problems has been largely neglected.

Before a planner can be deployed on a given domain, a domain description

must first be created in a process called domain engineering. Several different

languages exist for describing domains, but the most commonly used one is a

predicate logic based model called STRIPS. Engineering a domain in STRIPS

means editing a text file by hand to encode into predicate logic the rules and

actions of the domain. This is not always a straightforward process, mainly

because it is often the case that a fair amount of experience is needed with

STRIPS before correct domain descriptions can be created.

1 Complexity theory demonstrates how problems can be translated between domains,
allowing solutions for one domain to be deployed in another. However, the problem
translators must still be hand written.

Mark Tully o M.Sc. Thesis o 2001 Pane 2
"'

Obtcct Orientated Planning Domain 1:-:nginccr-ing
In troductiolt

Domain engineering tools that assist the user in the process of creating a

domain description are not very common, meaning that someone who wishes to

deploy a planner for the first time may find the hurdle of writing their first

domain in STRIPS too high to clear.

If planning is to become more widespread outside of the research field it is not

just the planners than need work, good support from the domain engineering

side is also needed so that planners can be deployed with the minimum of effort

and experience on the user's behalf.

1.4 Exploiting Domain Specific Knowledge
As domain independent planners cannot be programmed for any particular

domain, they cannot even exploit the most trivial of domain dependent

knowledge. Although it is possible to pass the planner "clues" such as search

heuristics to help guide its search, this is seen by some to be counter to the goals

of domain independent planning. However, the performance boost given to

planners by the introduction of domain dependent knowledge is too large to be

ignored.

An approach more inline with the philosophy of domain independent planning

is to perform automatic analysis on the domain in a pre-planning phase, this

phase can lead to the production of domain invariants and higher level structures

that were previously not apparent. This new information can then be directly

exploited by the planner to improve its efficiency.

One form of this analysis is to recognise known patterns of behaviour in the

domain and abstract them out into higher level types that can be reasoned with

by more specialised algorithms. For example, route planning is often a common

part of a problem, it may be possible to always identify maps in a domain

description and abstract them out into a specialised data structures in the

planner. This structure could then be manipulated by the planner by specialised

route planning algorithms. These higher-level types are called generic types.

Generic types can also be used in domain engineering as well as planners. In

domain engineering they can be used to focus the editing session more,

introducing terms that are relevant to the domain in question, tailoring the

Mark Tnlly o M.Sc. Thesis o 2001

Obj~.x·t-Oricntatcd Planning Dornain Engineering
In troduc tioll

editing experience. Specialised sub editors can also be called upon, such as a

map editor for the aforementioned map generic type.

1 a5 Object-Orientation
Object-orientation is the process of viewing a domain in terms of its objects,

their properties and the messages that they pass between them. Object

orientation was first talked about in the 1960s by those working on the SlMULA

language, by the 1970s it was an important part of the Smai!Talk language being

developed at Xerox Pare [Coad and Youren, 1990]. Some authors claim that

object-orientation is one of the most important developments in software

engineering since its foundation [Coad and Nicola, 1993] [Cox, 1986].

Booch' s work on object -orientated design [Booch, 1991] showed how the

same ideas could be used to design programs. Object-orientation is closer to the

real world model because the real world consists of objects. Work on object

orientated analysis has shown how object-orientation can reduces the semantic

distance between the real domain and the domain model [Gardarin et al, 1997].

1.6 Project Aims
The aim of this thesis is investigate whether the use of an object-orientated

domain description language benefits domain engineering. This is achieved

though the development of a new domain description language called the object

orientated domain description language, or OODDL for short. OODDL is

evaluated against the most popular domain description language by a usability

study.

Further to the development of OODDL, methods for the exploitation of

domain specific knowledge in a domain independent environment are discussed.

This specifically relates to existing research concerning the recognition of

common planning domain behaviour patterns in the form of generic types.

The role of generic types in domain engineering is discussed in detail and a

new language for describing generic types and the manipulations that can be

performed on them is developed. This language is called the generic type

language, or GTL for short.

Mark Tully o M.Sc. Thesis o 2001

ObicL·t-Oricnutcd Planning Domain Enginc,:·ring
11ltroductioll

1. 7 Structure of this Thesis
Introduction

The introduction provides an overview of planning, domain engineering and

generic types. It also includes a statement of the aims of the thesis.

Background

This chapter provides in-depth background on domain description languages,

generic types, object-orientation and existing domain engineering tools.

Design of OODDL

This chapter details the development of the new domain description language

OODDL and compares and contrasts it with STRIPS. A discussion of the

translation algorithm from OODDL to STRIPS is also included.

Design of G TL

This chapter details the development of the generic type description language:

GTL. The use of generic types in domain engineering is discussed and the

possibilities for future work in this area are explored.

Evaluation

The evaluation details tests that are designed to pit OODDL against STRIPS.

The ideas behind the tests and a discussion of the expectations are included.

The results of the tests are analysed and conclusions drawn.

Conclusion

This chapter provides a concluding discussion relating to the usefulness of

OODDL and GTL. Possible future directions for domain engineering are also

discussed.

Appendices

This chapter includes a formal grammar for both OODDL and GTL, followed

by a copy of the tests designed to evaluate OODDL.

References

A list of referenced sources.

Mark Tully o M.Sc. Thesis o 2001 Page 5

Ob_jcL't--Oric-ntatecl PI ann i ng Domain Eng i w:cri ng
BackgrouHd

2 Background
====================·· ~~===w======================-===~

This section details some of the existing methods available for domain

engineering, including existing domain engineering tools and domain

description languages. An introduction to generic types and their place in

planning is detailed, followed by an overview of object-orientation and the

benefits it could bring a modelling language.

2.1 The Process of Dotnain Engineering
Domain independent planners depend on an accurate domain description if a

suitable plan is to be produced. lt is the job of the domain engineer to describe a

real world domain to the planner, by use of a domain modelling language. This

language must be expressive enough to capture the semantics of the domain, yet

it must not be so confusing that a high degree of expertise is required.

The easier the communication is between the domain engineer and the

planner, the more flexible the planning system as a whole will become. A better

domain modelling process will allow domain independent planners to be

deployed quickly and effectively, for everyday problem solving.

2.2 Capturing the Domain
The first stage of creating a domain model is to understand the real domain that

is to be modelled. Once the domain is understood, it can then be captured in a

domain modelling language.

It is important to decide what the scope of the domain model will be, how

much of the real world domain will it capture? How much of the domain can be

abstracted out whilst keeping the model equivalent enough for the plans to be

valid in the real world?

Mark Tul1y o M.Sc. Thesis o 2001 Page 6

Object-Orientated Planning Do1min Eni,'ir:~·ci·ir~·
Backgromtd

2.2.1 The Logistics Domain
A popular example from the field of planning can be used to explain this further.

This problem is called logistics [Veloso, 1992] and is common benchmark for

comparison of domain independent planners.

Consider a logistics problem relating to delivery of a number of packages to a

number of possibly different destinations. The packages can travel by road in

trucks, or by air in freight planes. The starting point for a package can be any

location in a city and the destination can he any location in the same, or

different, city.

The cities are too far apart for road travel to be feasible, and so the only

method of getting a package from one city to another is for a truck to take it to

the city's airport and for the freight plane to fly it to the other city, where

another truck can complete the delivery.

The problem is to find the optimal pattern of truck movements and plane

deliveries so that all the packages are delivered in the shortest possible time.

Once the domain engineer has a problem specification, they must decide how

detailed the model must be. Should fuel usage be considered? Should the

optimal routes for trucks within cities be found? Perhaps the capacity of the

trucks should be taken into account? Should a schedule be imposed on the

aeroplanes as might be necessary in the real world?

This is a very similar process to the situation in software designing when one

must perform requirements capture [Sommerville, 1992]. The scope of the

domain model need only be detailed enough so that the plans produced are valid

in the real domain. With the logistics domain, the central problem is the efficient

flow of packages between the initial and final destinations. It's perfectly

acceptable to assume the trucks don't need to make fuel stops on their journeys,

or that if they do, they don't need to be detailed in advance.

Study of the real world domain in this case will possibly bring about the

following requirements:

"There are locations that can hold packages, the locations are grouped into

cities. Each city has a single airport that can be visited by an aircraft. The

Mark Tnlly o M.Sc. Thesis o 2001 Paue 7 b

Ohjcci--OricnLllccl Planning Domain Engineering
Bockgroulld

aircraft can ferry packages between the airports in the different cities. Within the

cities, there are trucks that can move the packages between locations, it can be

assumed that the trucks and aeroplanes have unlimited carrying capacity and

unlimited fuel.

The packages must be moved from their start location to their final location in

as efficient manner as possible."

2.3 Designing the Model
Once the real world domain is understood and it has been decided what is to be

modelled, the next stage is to design the model. There are two main assumptions

that are almost universally accepted across the field of domain independent

planning, these are the finite world assumption and the STRIPS assumption.

The finite world assumption states that the domain is bound and finite; objects

can neither be created nor destroyed. This assumption was originally made to

simplify the task of the planner, however it has the effect of relieving the

domain engineer of potential tasks such as memory management and dynamic

object tracking.

The STRIPS assumption was made to tackle the frame problem. The frame

problem is the question of whether facts in the domain not mentioned by an

action persist after the action is applied. The STRIPS assumption, so called

because the Stanford Research Institute Problem Solver assumed it, states that

facts persist unless explicitly deleted by an action.

Planning domain modelling is quite different from software engineering,

however there are similarities. Two of the most useful approaches to the design

of a domain model can be taken from software engineering: the functional model

and the object model.

2.3.1 The Functional Model
One method of creating a model from a specification is to progressively refine

the model from a high level functional view into a more detailed design. The

domain engineer selects areas of functionality in the real world domain and

creates equivalent functionality in the model. The entire model is developed

Mark Tully o M.Sc. Thesis o 2001

Objcc"l Orientated Planning Dom:1in F:JgiJlCcri:lg
Background

concurrently with each action possibly influencing others. The functional model

was popularised in software engineering by 1 ackson [J ackson, 197 5] with his

Jackson System Diagrams, and Wirth in his development of step-wise

refinement [Wirth, 1971].

The functional method of design can work quite well with domain modelling

languages that work with operator hierarchies, such as Hierarchical Task

Network languages that are discussed later in this section. However, most

domain modelling languages do not support the definition of operators in terms

of other operators and so the functional model can only extend to one level.

The functional model does not attempt to capture the state of the domain, only

the functionality of the domain. For this reason the functional model will need to

be coupled with a method of representing state, such as the propositional model.

The propositional model uses first order predicates to describe the state of the

world at any time. Actions in the model take affect by creating or deleting

predicate instances from the world state.

This model is very flexible, and can support powerful functional operators

including mathematical operators and logical quantification. Geffner has even

explored a purely functional variant of STRIPS that is function orientated in a

similar way to functional programming [Geffner, 2000]. However, the purely

function or propositional model can seem unnatural to the inexperienced, mainly

because people generally think in terms of objects and their properties, rather

than predicates and populating objects2
•

Constructing a domain using the propositional model involves creating a list

of predicates to instantiate on domain objects. All relations between objects

must be captured in instances of these predicates.

Although some research has been clone outside the field of planning on object

orientating predicate-based models [Conery, 1987], the propositionalmoclel

used in planning is often quite flat and unstructured.

2 Cognitive theory states that humans think primarily in terms of objects, images and object
propositions [Eysenck and Keane, 2000]

Mark Tully o M.Sc. Thesis o 2001 Paoe 9
"'

Object Orientated Planning Donwin Fng1nc·cring
Ba-ckground

2.3.2 The Object Model
"Objects with encapsulated state and well defined messages have been found

very suitable for describing real world entities and their dynamic behaviour"

[Chen and Warren, 1988]

Object-orientated programming and object-orientated design are arguably the

most influential developments in software engineering. The object-oriented

methods extend well to planning domain modelling where real world objects can

be represented in the model directly.

With an object-orientated model, the system is organised as a cooperative

collection of objects; because each object manages its own state information, the

system state is decentralised. Each object is a member of a class that defines the

object by declaring variables held by the object and methods that can be invoked

upon it.

Object classes can inherit attributes from super-classes. This can be used in

domain modelling to model one class of objects as being an extension to

another. If a class derived from multiple superclasses it is called rnultiple

inheritance.

When a class inherits from another, it has the opportunity to replace part of

the super class's behaviour by overriding. Overriding is the process of declaring

a method with the same signature as one in the super class, causing it to be used

by instances of the class instead of the original. This is a very useful feature in

domain modelling because it allows physical domain objects to have default

behaviour unless otherwise stated by an override from a subclass.

Planners working with an object-orientated domain description could

theoretically produce plans showing the behaviour of individual objects in the

domain, perhaps allowing resultant plans to be more easily deployed in multi

agent systems.

Object-orientated design is the process of creating a program or a simulation

model consisting of objects, it was first formalised by Booch [Booch, 1991].

Booch explores diagrammatic methods for getting from a requirements list to a

specification for object classes, his formal diagram notation has become widely

Mark Tully o M.Sc. Thesis o 2001 Page 10

Ohjcct--Oricntatcd Pl:mning Dotmtin En~~i11<..'cring
Backgrouud

adopted in the software engineering field. Other methods for generating class

specifications from a requirements list include CRC cards and the Noun-Verb

method.

Beck and Cunningham first proposed CRC cards as a tool for teaching object

orientated programming [Beck and Cunningham, 1989]. They are simple 3x5

index cards upon which the name of a class is written at the top. The class's

responsibilities are written on one half of the card and the class's collaborators

are written on the other. By iteratively developing the description of each class it

becomes very clear what the responsibilities of each class is. The cards can be

spatially arranged to show patterns of collaboration, or task orientated

functionality.

The Noun-Verb method was iirst proposed by Abbot as a simple way of

generating a starting point for producing object specifications from a natural

language description [Abbot, 1983]. His method involves underlining all nouns

in the description and proposing them as objects (or in the general case: classes),

and the selecting all the verbs in the description and proposing them as object

methods. The Tokyo Institute of Technology has even demonstrated how this

method can be automated [Saeki et al, 1989].

2.3.3 Visualising Domain Models
Designing domain models visually, whereby real world domain objects are

represented in the domain model by icons or 3D models, could greatly enhance

the domain engineers understanding of the domain model. However, creating

domains visually poses problems with ambiguity in much the same way as

describing a domain in natural language does.

Lowering the ambitions slightly one can imagine a domain engineering tool

that assists the domain engineer by providing state diagrams and visual typing

hierarchies, perhaps similar to entity relationship diagrams in database design

[Date, 1999]. Such methods could ease the domain engineer's task by

representing relationships between types or objects graphically rather than in

syntax. Grant has already looked at using entity relationship diagrams in domain

modelling, as well as other inductive modelling techniques [Grant, 1996].

Mark Tully o M.Sc. Thesis o 2001 Page 11

Ohicct Oril'ntakcl Planning DcHnai11 Engineering
Background

Effective diagrams do allow for better understanding of data, for instance,

Venn diagrams are generally seen as easier to understand than set theory;

however, one must keep in mind that designing good diagrammatic

representation is often a very difficult task.

"Too often it is taken for granted that a diagrammatic notation will be easier

to read than a conventional one, an assumption that is not always correct."

[Green, 1979]

Whether a planning domain can be built visually or not, it will still require a

solid underlying data model, be it propositional or object-orientated.

2.3.4 Summary of Models
Meyer made the prudent observation that:

"Finding an infallible technique of designing software is about as likely as

jlnding an infallible technique for designing a house"

[Meyer, 1988]

This statement is true for planning domain models also, there are many different

ways of encoding a real world domain, and no one model is necessarily better

than another. However, the following observations can be made:

The object model has proved very popular in the software engineering field

and object-orientated programming has showed the benefit of its application.

The propositional model has already shown itself to be a flexible method of

encoding planning domains, although it is often not easy to clearly relate to a

real world domain.

2.4 The Use of Ontologies
Once the basic model is laid out, it must be encoded into a domain modelling

language for a planner to use. The most common way of doing this is simply to

take the modelling language of choice and write the domain description by hand.

One branch of domain engineering research is concerned with the use of

ontologies. An ontology is a "specification of a conceptualisation" [Gruber,

1993]. It is used to describe the relationships and behaviour of a set of agents. In

Mark Tully o M.Sc. Thesis o 2001 Page 12

Object--Orientated Planning Domain Engineering
Bt1ckgrouud .

the context of planning domain engineering, an ontology is used as a framework

for describing a particular domain. Joint-research at the universities of Salford

and Huddersfield has been looking at ways that reusable libraries of ontologies

can be used as a foundation for starting new domain descriptions.

Ontologies can be linked to the idea of software reuse easily. If a library of

reusable domain components is maintained and updated, domains could be more

rapidly developed by directly using, or extending from, existing domain

descriptions.

2.5 An Overview of Domain Description Languages
There are several different domain description languages3

, which largely reflect

the myriad of different planning architectures that are actively under research.

The domain description languages discussed in this section were all developed

to suit the different needs of the various planners, providing each with a domain

representation that could be efficiently manipulated during the search for a plan.

Although the quest for an efficient and effective model is very important in

the development of a planning system, this aim often opposes the ideal of

making a domain language easy to use and productive to develop domain

models in.

To use an analogy from software engineering, hand-optimised assembly may

be faster and give the most efficient implementations of an algorithm, however

higher level languages such as C++ provide implementations that are both easier

to understand and more portable.

Portability is an issue in planning as well as the variety of domain description

languages serves to reduce domain compatibility between the planners. This

makes direct comparisons between planning systems more difficult as identical

problem encodings cannot be used, meaning it is unclear whether all planners

have the same amount of information.

3 The terms "domain modelling language" and "domain description language" are used
interchangeably throughout this document. Both terms refer to the same thing, the language
that describes a domain model to the planner.

Mark Tully o M.Sc. Thesis o 2001 Page 13

Ohjed Orientated Planning Dorn:1i11 Engineering
Background

If a new domain description language is to be effective, it must address the

concerns of efficiency, portability and usability. This section discusses some of

the existing domain description languages, their features and limitations.

2.5.1 STRIPS
One of the most popular domain description languages in planning is the

ubiquitous STRIPS language. STRIPS is an acronym for Stanford Research

Institute Problem Solver [Fikes and Nilsson, 1971], which was one of the early

domain independent planners.

The STRIPS system handled finite domains, that is, domains in which objects

could not be created or destroyed, using logic predicates to model world state

information. A STRIPS domain consists of a collection of predicate declarations

and a collection of domain operators. The domain predicates are m·bitrary arity

first order predicates that are instantiated with problem domain objects to create

facts. For example, using the aforementioned logistics domain, we could state

that the truck, truckl was at location location] with the follmving grounded

predicate:

at(truckl,locationl)

STRIPS domain operators have three components:

e Parameters

• Preconditions

• Effects

An operator can be instantiated by the planner by matching any combination

of domain objects to the operator parameters. However, the action is not a valid

instace unless the preconditions of the action hold. The preconditions are a list

of domain predicates based on the operator parameters4
; the preconditions must

be true of the parameters before the operator effects can take place. The effects

4 A STRIPS operator's preconditions and effects lists in general involve only the operator's
parameters, however domains can have constant objects that are globally available to all
operators. These objects can be directly referred to in the operator description without use of
a parameter, but do not allow the domain engineer to do anything that they could not do
before.

Mark Tully • M.Sc. Thesis o 2001 Page 14

Object Orientated Planning Domain Engineering
Bockgroulld

are a list of predicates involving the parameters that are either created or

destroyed when the action is applied.

If a fact is added that is already present, then a duplicate is created. This is

perfectly valid and some domains rely on this behaviour to implement counting

behaviour. However, a fact cannot be removed if it doesn't exist and so all

negative effects must be declared as preconditions to the action.

A simple operator to move the truck in the previous example from one

location to another would look like the following:

move(truck, from, to)

preconditions:

end

at (truck, from)

effects:

at(truck,to)

•at(truck,from)

A sample STRIPS move operator from the logistics domain

2.5.2 The Issue of Typing
Basic STRIPS has no typing, meaning that any object can be assigned to any

operator parameter by the planner. Although later editions of STRIPS supported

typing, the types of objects can be verified easily enough in the operator

preconditions. If the domain engineer declares a unary predicate for a type in the

domain, and then instantiates it for each object of that type, operators requiring

that predicate of the input parameters will be guaranteed an object of the correct

type.

The logistics domain could use typing predicates: truck(x), aeroplane(x),

package(x) andlocation(x) for example.

If a domain is encoded in un-typecl STRIPS then the domain engineer has the

responsibility of maintaining another set of predicates. Typed STRIPS is

becoming more popular, however the majority of the STRIPS domains in

circulation now are in un-typecl STRIPS, using typing predicates instead.

Mark Tully o M.Sc. Thesis o 2001 Page 15

Oh]CCl Orientated Planning Dom~1in Engincc!·ing
Backgrou1td

2.5.3 POOL
As research into domain independent planning became wider spread, the basic

STRIPS concept was being stretched in different directions. Different planners

used different STRIPS based encodings for the same data, making it hard to

directly compare planners on the same set of domains.

In 1998 the Artificial Intelligence and Planning Scheduling (AlPS) conference

was to feature a competition between various planning systems. Research

institutes from around the world were to meet in Carnegie Mellon University in

the USA to compare and contrast different planning techniques and pit their

planners against each other.

It was realised that in order for this to be possible a standardised domain

representation would be needed, one which encompassed not only the core

features of STRIPS, but the additional features implemented by the myriad of

planners it would be used by.

The resulting language was called the Problem Domain Description Language

(PDDL) [McDermott et al, 1998]. It used a text based USP structure to encode,

in an extensible way, a solid standardised implementation of STRIPS. It also

addressed a newer direction in planning being taken by Pednault called the

Action Description Language, or ADL [Pednault, 1989].

PDDL also supported, as an option, typing for actions and predicates, to

address the variants of STRIPS that required typing.

PDDL should really be seen simply as a "container" language for encoding

domains in using other languages, such as STRIPS, ADL or HTN models

(which are described in the following sections). Although PDDL does an

admirable job of standardising domain descriptions, its syntax is often quite

cumbersome to edit by hand, where the domain engineer can make simple

syntax errors by getting confused by the multitude of nesting brackets.

PDDL has become the standard language for domain independent planners

and it is constantly evolving to meet the researchers' needs. A recent revision of

the language, POOL 2.1, has introduced numbers (along with a limited number

Mark Tully o M.Sc. Thesis o 2001 Page 16

Objcc! Ori~_·ntatcd Planning Don:()in Engilk'Ct'ing
Background
--

of mathematical operations) and temporality (in the form of durative actions)

[Fox and Long, 2001 b].

One of the significant extensions to STRIPS is the Action Description

Language, or ADL [Pednault, 1989]. ADL brings more powerful actions to

STRIPS by allowing the use of quantification operators such as "for all" and

"exists".

In standard STRIPS, effects and preconditions could only involve explicitly

identified objects, e.g. the operator parameters. With ADL it is possible to use

very general expressions to accomplish tasks that in standard STRIPS would

require additional work.

For example, in the logistics domain mentioned earlier, it is stated that a

package can only be loaded if it is not already in a vehicle. The most common

way of accomplishing this in the basic STRIPS encoding of logistics is to delete

the "at" predicate that records the location of the package. This means the

package will not meet the preconditions of any other load operators and so

cannot be loaded into another vehicle. Conversely, the unload operator would

re-create the "at" predicate for the package with whatever location the vehicle is

at when unloading.

Mark Tully o M.Sc. Thesis o 2001 Page 17

ObicL·t-Oricnl;llcd Planning Dorm1in Eng.i11Ccring.
Background

(:action load-truck

:parameters

(?obj

?tru

?loc)

:precondition

(and (package ?obj)

(truck ?tru)

(location ?loc)

(at ?tru ?loc)

(at ?obj ?loc))

:effect

(and (not (at ?obj ?loc))

(in ?obj ?tru))

Example load opel"ator in basic PDDL STRIPS5

In a way, this could be seen as a trick on behalf of the domain engineer.

Technically the package is still at the location; it's just in the truck as well.

Using ADL, it is possible to leave the package's "at" predicate intact, while still

retaining the mutually exclusive loading condition. The example below shows

the use of ADL' s quantification and typing to create a load operator that still

meets the mutually exclusive loading conditions, but without deleting the "at"

predicate.

5 These domain excerpts are encoded in PDDL, to demonstrate the typical structures that a
domain engineer must create by hand when using PDDL.

Mark Tully o M.Sc. Thesis o 2001 Page 18

Object--Orientated Planning Dornain Engineering
Background

(:action load-adl

:parameters

(?obj - package

?veh - vehicle

?loc - location)

:precondition

(and (at ?obj ?loc)

(at ?veh ?loc)

(forall (x? - vehicle)

(and (not (in ?obj ?x))))

:effect

(and (in ?obj ?veh)))

Example load operator in PDDL STRIPS ADL

The above operator introduces another problem that wasn't present in the

basic STRIPS encoding, that is the problem of ensuring that when the vehicle

moves, the packages move with it. As the basic STRIPS version deleted the "at"

predicate from the packages as they were loaded, it did not need to update them

when the vehicle was moved. (See the previous move operator definition in

section 2.5.1).

The ADL version must use conditional effects to change the "at" predicate of

all packages that are "in" the vehicle moving, for example:

Mark Tully o M.Sc. Thesis o 2001 Page 19

Object Oril'l1latcd Planning Domain Engineering
Background

(:action move-adl

:parameters

(?vehicle - vehicle

?from - location

?to - location)

:precondition

(and (at ?vehicle ?from))

:effect

(and (at ?vehicle ?to)

(not (at ?vehicle ?from))

(forall (?x - package)

(when (and (in ?x ?vehicle))

(and (not (at ?x ? from))

(at ?x ?to)))))

Example move operator in PDDL STRIPS ADL

One further extension that ADL brings to STRIPS is the use of negative

preconditions. Basic STRIPS only allows it to be asserted that a precondition is

true; ADL allows preconditions to assert negative preconditions also.

2.5.5 The Usefulness of ADL
ADL allows some domains to be expressed much more concisely than would be

possible with basic STRIPS. Some domains are very difficult, if not near

impossible to model without access to ADL's conditional effects and

quantifications.

Gazen and Knoblock have demonstrated that it is possible to automatically

convert the most common features of ADL domain description into STRIPS at

the cost of an exponential blow-up in the number of operators [Gazen and

Knoblock, 1997]. However, one would be mistaken to interpret this as meaning

ADL is no more expressive than STRIPS, in the same way one would be

mistaken for thinking C++ was no more expressive than assembler just because

it is complied clown to it.

Mark Tully o M.Sc. Thesis o 2001 Page 20

Object-Orientated Planning Donwin F~nginccring
Background

2.5.6 TLPian
The University of Toronto in Canada are developing a planner called TLPlan,

standing for temporal logic planner. The philosophy behind TLPlan is that a

domain independent planner cannot succeed without domain specific knowledge

[Bacchus and Fabanza, 2000], however a domain dependant planner is not

flexible enough. There is also the performance issue related to domain

independent planners; indeed, as Wilkins and Des Jardins observe [Wilkins and

desJardins, 2000], there is still a significant difference in the performance of

domain independent planners and domain dependent planners.

The approach taken with TLPlan is a compromise; domains are described for

the planner as usual, but with the addition of search control rules that provide

TLPlan with domain specific knowledge to help it plan.

TLPlan uses its own proprietary language for the domain descriptions, but it is

based on STRIPS and ADL. Besides being able to declare standard predicates

and STRIPS or ADL operators, TLPlan also supports the definition of custom

first order logic equations. These custom predicates can be used to create

expressions whose truth-value depends on other predicates in the current world

state.

By building on these custom predicates, it is possible to create search

heuristics recommending actions to the planner when faced with certain

situations. For example, in the logistics domain when the truck is at the

packages goal location, invoke the action to unload the package.

The following domain excerpt is a custom predicate in the TLPlan logistics

domain that is true if, and only if, a package must be unloaded from the truck it

is in. This is true if the truck is at the goal location of the package, or if the

package is in the wrong city and the truck is at an airport:

Mark Tully o M.Sc. Thesis o 2001 Page 21

Object Orientated PI ann i ng Do1; L! in [ngi nn·1 i ng
Backgrotmd

, , We need to unload an object from a truck at the

, , current location iff, ?curr-loc is the goal

, , location of the object, or the object is in

, , the wrong city and the current-location is an

, , airport.

(def-defined-predicate

(need-to-unload-from-truck ?obj ?curr-loc)

(exists (?goal-loc)

(goal (at ?obj ?goal-loc))

(or

(= ?curr-loc ?goal-loc)

(and

(in-wrong-city ?obj ?curr-loc ?goal-loc)

(airport ?curr-loc)))))

Excerpt from a TLPian logisistics domain showing

The domains used by TLPlan are obviously better for the planner, allowing

plans to be produced in a much shorter time, but they do not help the domain

engineer. A higher degree of expertise is needed to make an effective domain

encoding for TLPlan, expertise in both the real-world domain and TLPlan' s

domain language. Essentially the user must already have a good idea about the

solution of the problem in order to create effective heuristics and then they must

be able to express these heuristics in such a way as to assist the planner.

2.5.7 Hierarchical Task Networks
An interesting way of modelling a planning domain is though the use of

Hierarchical Task Networks, or HTNs [Erol, 1995, Erol et al., 1994]. The HTN

model, like STRIPS, makes use of predicate based operators with add and delete

lists; but in HTNs, these operators are called primitive operators. HTNs also

support the notion of higher-level compound operators or methods.

A method is defined in terms of either other methods or primitive operators;

each method can have more than one definition. Ordering constraints are defined

for each decomposition definition, any of the actions on the decomposition list

Mark Tully o M.Sc. Thesis o 2001 Page 22

Object Oricnlatcd Plannin~~ Dornain En!:!inccring
Backgrou11d

agreeing with the ordering constraints can be selected by the planner as a

substitution for the method instance.

A task is a request for a method to be recursively decomposed into applicable

primitive operators; a resultant plan consists only of primitive operator

instances. Goals are posed for the planner in forms of instantiated tasks.

The following is a pseudo code example of a HTN operator for delivering a

package in the logistics domain:

method DeliverPackage(package,to)

If package is at "to"

End

Else if package is ln the correct city

TransferByTruck(package,

currentloc,to)

end method

Else if package is in the wrong city

1: TransferByTruck(package,

currentloc,city-airport)

2: Fly(package,city-airport,

dest-airport)

3: TransferByTruck(package,

dest-airport,to)

Ordering constraints:

1 before 2, 2 before 3

End if

Excerpt from a pseudo code description of the logisitiocs domain in HTN

Similar methods would be needed for "Fly" and "TransferByTruck". The

primitive operators in this domain could be identical to the standard STRIPS

ones, i.e. load, unload, drive-truck and fly-plane.

This form of domain modelling is less about modelling the physics of the

domain and more about modelling the functionality. To a certain extent, the

domain engineer is encoding the solution into the domain. They must know the

different possible ways of accomplishing various tasks and understand the

Mark Tully o M.Sc. Thesis o 2001 Page 23

Objcct---Oric'ntatecl Planning Don1ain Engineering
Backgrourui

interactions between them. However, this is often not a problem for someone

who is familiar with the real-world domain.

One problem type that can be expressed more easily in HTN than in STRIPS

is the case where the goal state is a subset of the initial state. For instance,

planning an itinerary where the ultimate goal is to be back in the starting

location. The problem for STRIPS here is that the initial state and goal state are

equal. In STRIPS the domain engineer would have to express each event of the

clay that was required as a goal before the planner would generate a plan to

attend them all.

In HTN, the domain engineer could have a method called "Makeltinerary"

that would decompose in different ways into all the subtasks that needed doing

to attend all the events. The domain engineer wouldn't have to explicitly state

that all events must be attended because that is implicitly encoded in the

hierarchy of methods.

2.5.8 Object Centred Language
The object centred language, or OCL, was developed and is maintained by the

University of Huddersfield [McCluskey and Liu, 1999]. OCL domains are much

more structured than STRIPS domains because they revolve around objects and

their states, rather than predicate literals.

In a STRIPS domain, the domain engineer creates predicates and instantiates

them in the problem description to create a world state. STRIPS operators can

add or delete these world predicates to change the world state.

OCL too makes use of predicates to describe the world state, however OCL

also features invariants that allow the domain designer to restrict the domain

model. For instance, the invariants can describe which grounded predicates are

always true; the road links in the logistics domain would be declared as always

true, because they do not change during plan execution.

A key structure in OCL is the sort. A sort is essentially an object class that

describes the characteristics and behaviours of a group of objects. An important

feature of sorts is that all possible states that objects of that sort can occupy must

Mark Tnlly o M.Sc. Thesis o 2001 Page 24

Object-Orientated Planning Domain EJtginC'er·ing
Background

be enumerated; this is contrast to STRIPS where the reachable states of objects,

and their transitions, depend solely on the operator definitions.

OCL operators describe transitions between object states explicitly, making

resultant condition of the object very clear. The operators have three parts:

prevail conditions, necessary changes and conditional changes.

• Prevail Conditions: These are conditions on the objects that must be

true before and after the action takes place.

• Necessary Changes: These show the conditions on objects that must

be true before the operator is executed, and describes the new state of

the object after execution.

• Conditional Changes: Each conditional change describes a new state

of the object that will become true only if a certain condition is true

before the action takes place.

The main difference between OCL operators and STRIPS operators are that

there is no default persistence of facts. If a fact is not mentioned in the post

execution state of the operator, it becomes negated.

OCL domains are generally more unwieldy than equivalent STRIPS domains.

OCL domains need states to be explicitly specified for all the different sorts of

objects, and also additional information such as invariants. This places an extra

burden on the domain engineer who must now calculate all possible states for

the objects in the domain. However, once the states are defined writing operators

is simply a case of declaring which states objects are in before and after the

application. In STRIPS, the domain engineer must instead be careful to maintain

consistency by careful construction of domain operators.

An OCL domain makes explicit the object states, transitions and invariants. A

STRIPS domain encodes all of these implicitly in the operator definitions.

Which approach is better is mainly a matter of preference for the domain

engineer.

Mark Tully o M.Sc. Thesis o 2001 Page 25

Obwct-Ori..:ntaled PLmning Dom~tin r:nginccrin~~
Backgrowut

2.5.9 OCLh
OCLh is the HTN variant of OCL and is where all the OCL development is now

focused. OCLh still makes use of operators, substates and all other features of

OCL but it incorporates HTN task methods [McCluskey and Kitchin, 1998].

This allows domains to be expressed with the state transition model of OCL,

while also being task orientated.

Its authors have described OCLh as a domain modelling language, but the

lack of support for OCLh in rest of the community has so far stifled its uptake.

OCL can be translated in POOL [Simpson et al, 2000], but as yet OCLh cannot.

2.5.1 0 Summary of Domain Description
Languages

Although OCL and OCLh are object centred languages they are not strictly

object-orientated. Neither operators nor predicates are bound to OCL's sorts to

create classes; the only data bound to a sort in OCL are the substate definitions.

Using object-orientated design, the domain engineer may want to have certain

variables or actions related to certain classes and develop the classes to some

extent independently. In OCL, all predicates and actions are in the "global

scope" that is, they are not bound to any particular class. This means OCL is not

ideal for object-oriented domain modelling.

The main issue with OCL is that the domain engineer must define the

substates of each the sorts in the domain. The consideration of substates and

declaration of domain invariants can be both a powerful consistency tool and a

barrier to easy domain construction.

With correct substates and invariants defined, type-checking tools can check

all domain operators for consistency. However, the development of substates

and invariants also means the domain engineer has more information to encode

and maintain.

STRIPS, by contrast, does not require the explicit definition of substates or

invariants, this information is instead implicitly encoded in the domain operators

by the way they add or delete predicates. This means that it is much harder to

Mark Tully o M.Sc. Thesis o 2001 Page 26

Objeci-Oricnlatccl Plm1ning Dont<lin l:ilginz:<:rin~~
Bt1ckground

verify domain consistency than with OCL because it cannot be done

automatically. With STRIPS, domain analysis tools, such as TIM, can derive the

domain invariants and substates allowing the domain engineer to verify them;

however, whether it is better to check the derived invariants or to explicitly state

the invariants is very much a matter or personal preference. It is certainly easier

for inexperienced domain engineers not to have to enumerate sort substates and

invariants.

This can be seen as one of the faults with the planner TLPlan's approach to

domain modelling. In TLPlan it is necessary for the domain engineer, or planner

operator, to describe a search heuristic that will effectively "guide" the planner

to the correct solution. This can often require not only an in depth knowledge of

the domain encoding and real world domain, but also an in depth understanding

of the solution. This can mean that it is often difficult even for an experienced

domain engineer to deploy TLPlan on a new domain, creating an obvious

problem for inexperienced domain engineers.

HTN domain modelling views a domain as a collection of tasks that can be

defined further in terms of other tasks. This leads to a different approach to the

process of domain modelling because the domain engineer must, to a certain

extent, understand how the goal of the problem will be encoded. One could see

state based languages such as STRIPS as modelling the physics, while HTN

languages like OCLh model higher level processes that can occur in the domain.

ADL, or the action description language, is an extension to STRIPS that

bestows the power of first order logic to the domain engineer. ADL permits the

use of quantification, existential preconditions, negative preconditions and

conditional effects. Although most of these features can be encoded into basic

STRIPS, doing so often means specialising the domain to a specific problem

instance, and often results in an exponential increase in the domain size. ADL

offers a concise way of describing many domain actions, although an equivalent

basic STRIPS model can often be created by an experienced domain engineer.

This leads onto one of the main problems with STRIPS, which is that it is

often necessary for the domain engineer to know tricks and methods to encode

problems. For instance, the example STRlPS load-truck operator (in section

Mark Tully o M.Sc. Thesis o 2001 Paoe 27 b

Ob]cc·t-Oricntated Planning D(liT1~lin Engineering
Background

2.5.4) deleted the packages "at" predicate as it was loaded, allowing the domain

engineer to update the packages easily as it is unloaded, whilst still maintaining

the mutually exclusive loading condition.

Sometimes the methods needed are not obvious to an inexperienced domain

engineer, which can make STRIPS a less than ideal language for beginners.

2.6 Domain Analysis and Generic Types
Domain independent planners are designed to solve planning problems without

the aiel of additional domain specific knowledge. However, extra domain

knowledge is sometimes implicitly encoded within the domain in the form of

invariants and recognisable object behavioural patterns. Domain analysis is a

collection of methods designed to extract this information and provide a more

enriched domain description.

Domains often exhibit common patterns of behaviour that can be abstracted

upwards into higher-level operators. For example, the logistics domain has

trucks whose behaviour can be abstracted into a representation of a mobile on a

map of locations. This allows the exploitation of route planning algorithms for

an increase in planning efficiency [Fox and Long, 2000b]. Such abstracted types

like "mobile" and "location" are called generic types [Fox and Long, 1999].

Generic types are useful to planners because they allow the invocation of

powerful heuristics and solvers that are not normally available. However, they

are also very useful in the process of domain construction. In the context of

domain construction, a generic type represents a conceptual component to the

domain engineer. It maps onto a semantic object in the engineers mind, that is,

one that they know manipulation rules for and even invariants.

If a domain tool uses generic types, then the engineer can manipulate the

domain in higher-level ways, which are closer to their way of thinking for a

particular domain. The tool can also focus the editing context more, allowing the

engineer to manipulate what is, essentially, an arbitrary domain in terms familiar

to the real domain it represents.

Mark Tully o M.Sc. Thesis o 2001 Page 28

Object--Orientated Planning Domain fn~~iiK'cring
Backgro1out

2.6.1 The Mobile Generic Type
The mobile is a generic type that conceptualises a self-propelled movable object

that moves around on a network of locations. Example mobiles would include

typical domain elements such as trucks, aeroplanes and robots.

The mobile is characterised by its ability to have a move operator invoked

upon it to change its current location. Locations are generic types that are

defined solely by their association with the mobile.

2.6.2 The Carrier Generic Type
A carrier is a simple extension of a mobile that is able to transport objects

around the map of locations. Carriers can load domain objects that are classified

as portable objects, then move to another location and unload them. Carrier

portable pairs include: trucks and packages, robots and balls and ferries and cars.

2.6.3 Generic Type Fingerprints
The signature or fingerprint of a generic type is a description of the pattern of

behaviour in the domain that constitutes a generic type. This fingerprint should

try to capture as many different encodings of the same behaviour as possible,

however, even if the fingerprint does not match a description that a human

would consider to be a particular generic type, it is not a disaster.

From the planner's point of view, generic types describe exploitable

behavioural patterns. From a domain engineers point of view they represent

concepts. If a generic type fingerprint does not match a particular domain

description then the planner can still work with the domain, simply without the

higher-level generic type manipulations. The same is true for the domain

engineer, he can still work with the domain without generic types; the tool

simply wouldn't use specialised terminology relevant to that generic type.

Generic types can offer assistance but they are not vital, therefore the

fingerprints need not be all encompassing, they must simply recognise the most

common patterns.

Mark Tully o M.Sc. Thesis o 2001 Page 29

Objcct-Oricntatecl Planning Domain Engineering
B 11 c kgro und

2.6.4 Generic Types and Planners
The STAN planner exploits generic types to increase its performance. It makes

use of the TIM domain analysis tool to analyse a stock PDDL domain and

automatically identify types, generic types [Fox and Long, 1999] and invariants

[Fox and Long, 1998]. This extra information is used with a modified version of

GraphPlan to improve search efficiency. The current version of ST AN, ST AN4,

also makes use of specialised sub-solvers to tackle problems containing generic

types and reintegrate the solutions back into the overall plan [Fox and Long,

2000] [Koehler, 1998].

This analysis allows ST AN to process larger problem instances and at a

greater speed whilst still maintaining optimality.

2.7 Existing Domain Engineering Tools
The importance of having tools to support domain engineering has been

discussed by Des Jardins [desJardins, 1994], where she stated that an effective

domain engineering tool would allow planning domains to be built and

debugged by experts of the real domain, rather than planning experts.

One direction explored in early software engineering was the method of

analysing a program that has been input by a programmer, and then describing

back to them what has been understood by their input. If the programmer does

not agree with what is presented, he can modify the input and try again [Klerer

and May, 1965].

If domain analysis and domain engineering are tied together, a similar effect

can be attained. The user could edit their domain, have it analysed and then re

presented to them. If they did not agree with the produced invariants, state

models or generic types discovered by the analysis, it could indicate an error in

the domain encoding.

The Draughtsman domain-engineering tool, developed by the author, took this

approach. Draughtsman edited STRIPS domains by allowing the user to create

or remove predicates, actions and objects though a GUI.

Mark Tully o M.Sc. Thesis o 2001 Page 30

Objcc·t--Orienuted Planning Dornain En):.:irKcring
Backgrowui

The TIM domain analysis tool gave Draughtsman the ability to analyse the

domain. At any point, the user could run an analysis on the domain and have

displayed to them state models, typing information, invariants and generic types.

If the analysis indicated errors in the domain encoding the user could correct

them and reanalyse the domain.

Although Draughtsman was very good at relating domain engineering and

domain analysis, it was essentially founded on STRIPS. This meant that it

assisted the user to construct a domain in STRIPS, but offered no help on how to

go about it.

Research on the formalisation of domain modelling, including knowledge

acquisition and constructing effective knowledge based models has developed

into the idea of tools to support domain self-consistency [Porteous and

McCluskey, 1997].

This research has prompted the development of another planning domain

modelling tool called GIPO, the Graphical Interface for Planning with Objects.

This tool is under development at the Universities of Salford and Huddersfield.

GIPO allows creation of OCLlz domains by allowing the editing of HTN based

domain descriptions. It permits graphical state based display of the domain and

maintains domain consistency and utilises ontologies to provide faster

development of new domains from scratch.

However, the system is based around the OCLlz language, which by GIPO's

authors' own admittance, involves engineering constructs that are still too

theoretical for an unskilled user [Simpson et al, 2001].

2.8 Summary
This chapter introduced some of the existing languages and tools available for

domain engineering. Two different models were discussed: the functional

model, used by languages such as STRIPS, and the object model, used by

languages such as OCL. The domain description languages discussed have been

summarised separately in section 2.5.10 and the different models have been

summarised in section 2.3.4.

Mark Tu11y o M.Sc. Thesis o 2001 Page 31

Oh]cl'l--Oricnlated Planning Dlllll<lin Fll~!iiK'Crin.L'
Background

The ways in which generic types can be used in both domain-engineering

tools and planners were discussed; overviews of the two most common generic

types: mobiles and carriers were also included.

Domain-engineering tools such as an early edition of the Draughtsman tool

for editing STRIPS domains, and the GIPO tool for editing OCLh domains were

also introduced.

Mark Tnlly o M.Sc. Thesis o 2001 Page 32

Ohjc .. ·t Oric'ntatcd Planning Do!llain Enginccrinr~
Desig11 of OODDL

3 Design of OODDL
The user's main interface with planners is through the domain engineering

language used to model their problems. If the user is unable to communicate a

problem to the planner, then no matter how good the planner is it will not be

able to solve the user's problem.

To this end, it is important that the domain language be easily understood and

powerful. Section 2.5 discusses some of the existing planning domain

description languages, the most common of which is PDDL STRIPS. One of the

ideas explored in this chapter is that the use of object-orientated techniques in

modelling domains can make domain modelling both more powerful and more

easily understood, especially in comparison to STRIPS.

This chapter discusses the needs of a domain engineer and provides the

motivation for, and a discussion of, a new object-orientated domain description

language called OODDL.

3.1 Requirements
Object-orientated languages are generally regarded as being easier to relate to

real world domains [Gardarin et al, 1997]. This refers to the physical

organisation of real world domains, which are very easy to see as collections of

objects. When a domain-engineer begins to write a domain model, they will be

working from a real domain that will have real objects in it. If they are able

work with objects in their design too, then it will be easier to relate the model to

the real domain.

Existing domain modelling languages were discussed in section 2.5. If a new

domain modelling language is to be proved useful, it must attempt to address

some of the shortcomings of the existing languages.

Given that it has been decided that the new language will be object

orientated, the existing domain modelling language OCL should be given

particular note. OCL is able to describe domains in an object centred manner,

however it is fairly tricky to use; mainly because the domain engineer must

Mark Tully o M.Sc. Thesis o 2001 Page 33

Object-Orientated Planning Dornain Engineering
Desig11 of OODDL

specify substates for the objects in the domain. This is perhaps useful for

advanced domain engineers as it provides consistency checking, but it means the

user must specify more information and it works against the ease of use of the

language. OODDL will not require the user to specify substates or invariants

explicitly and so this should make it easier to use for inexperienced users.

STRIPS has been serving the planning community for the past 30 years, but

the problems with STRIPS have also been highlighted: such as the exploitation

of "tricks" in domain encoclings, meaning that domain engineers often require

more experience to successfully create a domain. The common ways of

encoding information in STRIPS are compared to the ways of accomplishing the

same tasks in OODDL later in this chapter.

OODDL will try to move away from the need for users to have a large

experience of domain modelling in order to create a domain. Where special

tricks and techniques are used in STRIPS to model the domain, OODDL will

instead use higher-level, more explicit, syntax to perform the same operations.

This should make OODDL clearer than STRIPS.

The requirements of OODDL are therefore:

• OODDL will not rely on the user knowing tricks to be able to successfully

encode domains. OODDL will use higher-level syntax to make explicit

and obvious what before may have required greater experience to know.

• OODDL will not require the user to specify invariants or state models with

their domain. Such information can be extracted using domain analysis

tools such as TIM where necessary (see section 2.6.4).

• OODDL will be to be easy to understand and easy to relate to the real

domain. It is hoped a combination of object-orientated structure and clear

high-level syntax similar to Java or C++ will aiel this encl.

3.2 Compatibility
Inventing an entirely new language brings with it compatibility problems for

existing planners, which would be unable to understand domains encoded using

it. If OODDL is to be a viable option for domain engineers planners must

Mark Tully o M.Sc. Thesis o 2001 Page 34

Object Orientated Planning Domain Engineering
Desig11 of OODDL

support it. This means that either planners must be updated to work with

OODDL, or OODDL must be translatable into an existing supported language.

The translating approach has already been used in the field of software

engineering to good effect; as Stroustrup demonstrated during the design of C++

[Stroustrup, 1994]. In order to provide easy compatibility with C, C++ was first

implemented as a pre-processor for a C compiler. This meant programmers

could utilise the new language without having to throw away their existing C

compilers. C++ could then become more widely adopted, until eventually

compilers implemented native support for it.

If the advantage to domain engineers given by the new language is great

enough, then it will succeed on its own grounds. However, translation offers an

easy path of adoption that would require no work to existing planners.

3.2.1 POOL Compatibility
PDDL is the de facto language of domain-independent domain-engineering.

Maintaining compatibility with PDDL, and in particular STRIPS, would provide

good compatibility benefits to OODDL.

PDDL was designed to be an extendable language, so even though PDDL has

no object-orientated characteristics, it is technically possible to add a new sub

set of PDDL that could be object-orientated. However, any extensions to PDDL

would still break compatibility with existing planners in that they would require

new parser modules writing in order to understand the new sections. This makes

a direct extension to PDDL less fruitful because it cannot be immediately

exploited and if the extensions are too dissimilar from STRIPS then it could be

hard for the planner to even get the domain to work with its algorithms.

Another approach would be to design a language that could be translated into

PDDL STRIPS. Using this model, STRIPS can be seen as the assembly

language that encapsulates the basic commands and data for the planner to work

with; OODDL would be similar ro a high level object-orientated language like

C++, which is translated clown into assembly for execution.

This would more than likely introduce inefficiencies in the STRIPS domains,

as the output is unlikely to be as concise as a hand coded STRIPS domain.

Mark Tully o M.Sc. Thesis o 2001 Page 35

Objcl'!-Orienlated Planning Doin~1i11 Engineering
Desig11 of OODDL

However, by utilising domain analysis techniques (see section 2.6) it should be

possible to optimise the resultant domain.

The benefits of this model are two fold: the module for translating into

STRIPS could be replaced with one for generating another target language, such

as ADL or OCL, with no change to the domains or planners. It gives the

planners a degree of freedom whilst maintaining compatibility with the domain

engineering side.

Secondly, it simplifies the job for domain engineers; they need only know one

domain description language. This language could conceivably work with many

different planners if the appropriate translator was written for the target

language.

Translation from an object-orientated language to STRIPS is quite possible,

because in essence all that need~ to be clone is throw structure away. Translation

back from STRIPS would be considerably more difficult, in a similar way to

decompiling being more difficult that compiling. This draws attention to the fact

that some domain modelling languages are harder to translate than others.

OODDL must have high enough level semantics to be "down translated" easily

into the STRIPS and possibly other target languages in the future.

3.3 Introducing OODDL
The language that has been designed to meet these criteria is called OODDL, an

acronym for Object-Orientated Domain Description Language. It has the same

underlying expressive power as the ubiquitous STRIPS and is easily translatable

into it, but it is easier to work with than raw STRIPS itself.

An OODDL domain description consists of a collection of classes. Each class

has a set of typed variables and a set of actions. Every action is further divided

into three parts: the typed parameter list, the preconditions and the effects. In

contrast to STRIPS, OODDL actions work with variables rather than predicates.

OODDL actions are discussed in detail later, in section 3.1 0.

The classes can inherit actions and variables from other classes if desired.

This allows subclasses to reuse the super classes functionality and override their

behaviour as necessary. Inheritance in OODDL is discussed in section 3.12.

Mark Tully o M.Sc. Thesis o 2001 Page 36

OhJCCL Orientated Planning Dornain En~incerill)c
Desig11 of OODDL

Although OODDL is object-orientated, it is a planning domain modelling

language rather than a programming language and as such, it doesn't represent

all of the features of object-orientated programming languages. For instance,

although inheritance and encapsulation (or more specifically aggregation) are

both present and contribute to the usefulness of OODDL, abstraction, data

hiding and polymorphism are not.

Abstraction and polymorphism do not have a place in OODDL because

methods cannot invoke other methods. This is essentially a limitation of the

underlying STRIPS target language; this is further discussed later in this chapter

in section 3.12 and 3.13.

Data hiding cannot be implemented because all OODDL class variables are

public, that is, any action can directly access any variable from any class. This is

necessary because protected or private variables would require accessor

functions and OODDL does not support functions.

3.4 OODDL vs. STRIPS
This section will compare and contrast OODDL and STRIPS, so that a general

feeling of the scope of OODDL can be grasped in the familiar terms of STRIPS.

When domain engineers wish to describe a domain in STRIPS, they tend to

think about the domain in terms of functionality. They think about all the actions

that can be done and all the states that objects can be in, eventually distilling

these into a list of predicates and actions.

In OODDL the domain designer can think in terms of objects and classes. The

variables that concern a specific object are all found in its class, similarly so

with its actions. This allows the domain designer to think, to a certain extent,

about the objects in isolation.

This highlights the difference in the model used to develop with the two

languages. OODDL follows the object model whereas STRIPS follows the

functional model.

Mark Tully o M.Sc. Thesis o 2001 Page 37

Object-Orientated Planning Domain Engineering
Desigu of OODDL

3.4.1 Addressing Typing Errors
OODDL's syntax is designed to allow some of the common errors of STRIPS to

be bypassed. For instance, in OODDL all variables and action parameters are

typed. This allows type checking of actions and stops any errors arising due to

actions being applied to unsuitable objects by the planner. In STRIPS, it is

possible to forget to assign a type to an object or parameter, whereas in

OODDL, this will cause a parse error.

3.4.2 Addressing Omitted Negative Effects
A common error in STRIPS occurs when negative effects are omitted; this

happens when a user is concerning themselves with the positive effects of an

action and assumes that planner will somehow enforce trivially obvious negative

consequences. It was explained by Lifschitz [Lifschitz, 1986] that the STRIPS

notation of preconditions, add lists and delete lists is very sensitive to seemingly

minor modifications and errors.

For instance, when attempting to create a STRIPS action which will move an

truck from being at location A to being at location B, one must remember to

remove the fact that the truck is at A after asserting that it is at B, otherwise it

will be at both points simultaneously.

(:action drive-truck

:parameters

(?truck

?loc-from

?loc-to)

:precondition

(and (at ?truck ?loc-from))

:effect

(and (at ?truck ?loc-to))

Example of a flawed PDDL STRIPS move operator

Mark Tully o M.Sc. Thesis o 2001 Page 38

Ohicci--OriL'lltatcd Planning Dum~tin En~in._'cring
Desig11 of OODDL

This example is perfectly valid in STRIPS because there is no way to declare

that an object can and should only be at once place at once. Errors like this can

go undetected until the planner begins producing unexpected plans.

A simple analogy of this error in traditional imperative programming would

be if when a program assigned a value to a simple integer variable, the variable

could return either the old value or the newly assigned value next time it was

accessed. It would hold both values at once. The difference with planners is that

they will return the result that is most beneficial to the plan, in effect, exploiting

the error to their advantage.

Thankfully, imperative languages do not suffer from this problem because

deleting the previous value of a variable is an implicit requirement of the

assignment operation. The use of variables and assignments gives a higher level

semantic unit, the concept of a variable that can only hold one value, no matter

how the rest of the program, or planning domain, is constructed.

In the generalised predicate logic sense, a single valued variable can be seen

as a predicate that has an invariant stating that it only has one value. When a

language supports variables, the language's compiler can enforce the variables'

invariants resulting in correct typing and value maintenance. The user doesn't

worry about the low-level data manipulations, they can think at the higher level.

STRIPS has no concept of these higher-level single-value variables, because it

has no concept of enforcing invariants. This means that a domain engineer must

form variables from the predicates and be careful to maintain whatever variable

invariants they have decided on throughout the rest of their model.

3.4.3 OODDL Variables
As previously mentioned, OODDL directly supports variables and so relieves

the domain engineer of the burden of maintaining simple single-value invariants.

All variables in OODDL are typed; meaning an attempt to assign a variable with

the wrong type will generate a parse error. Furthermore, by the nature of object

orientation, all domain variables in OODDL are bound to an owning object, akin

to member variables in C++ or Java.

Mark Tully e M.Sc. Thesis e 2001 Page 39

Ohic.:t Oricnutcd PlcHHling !Jonwin Fn;,:int·criil~'
Dcsig11 of OODDL

OODDL supports five variable types: object reference, maybe object

reference, enumerated type, boolean and object-bag. The remainder of this

chapter will discuss the five different types of variable implemented by

OODDL, and why the need for them arose. Methods of modelling data in

STRIPS and OODDL are compared and contrasted. The relations between the

two are referred back to later in section 3.15 on translating OODDL.

An object reference is a way of recording a relationship between two objects.

The previous sections have noted how the STRIPS method of creating a single

object reference required more work to maintain its single valued constraint than

the same variable would in OODDL. This section discusses the use of object

references in domain descriptions and the operations that are performed on them

in both STRIPS and OODDL.

3.5.1 Object References in STRIPS
In STRIPS, object references are created by use of a binary predicate. One

argument is declared as the referring object, and the other is the object being

referred to. Actions in the domain can instantiate this predicate with any

arguments it chooses in order to establish a relationship; any action can also

delete an existing predicate instance, thus removing the association.

3.5.2 Requiring the Absence of a
Relationship

When an action requires that a relationship between two objects does not exist, it

seems trivial enough that one would assert •relation(a,h) as a precondition.

Using a logical not in an action precondition is called a negative precondition.

Negative preconditions are a feature of ADL rather than basic STRIPS, if a

domain is to be compatible with as many planners as possible, it should avoid

the use of ADL. This means negative preconditions should be avoided and other

methods for asserting the absence of a relationship must be used.

The simplest way of checking for the absence of a relationship is when it is

acceptable to assert that the object isn't related to any other object. Using a

Mark Tully o M.Sc. Thesis o 2001 Page 40

Objcct-Oric'ntatccl Planning Dcnnain En!~inc,:rin~
Desig11 of OODDL

family tree as an example: if a person did not have a father, they could be said to

not have a relationship with any father. This expressive power can be

accomplished in STRIPS by the addition of a unary predicate to represent when

an object has no relations at all:

Child Of(offspring,father) -asserts that "father" is the father of "offspring"

NoFather(offspring)- asserts that "offspring" has no father

This would allows actions to assert preconditions such as:

NoFather(a)- "a" has no father

This dual predicate arrangement is useful because it allows the domain engineer

to construct actions that require a specific object relationship, or require that

there is no relationship.

One minor problem with this dual predicate model comes when an action

wishes to establish a relationship, for example, if an Adopt() action wished to

assign a father to a child. The child may currently have no father, in which case

it would posses the NoFather() predicate, or it may already have a father, in

which case it would posses a ChildOf() predicate. Because non ADL STRIPS

actions do not support disjunctions, the domain engineer must create two

Adopt() actions, one to handle the case where the NoFather() predicate must be

deleted as ChildOf() is established, and one to handle the case where an existing

ChildOf() predicate must be deleted as the new one is established. Having

multiple actions that semantically achieve the same effect is wasteful, on both

the domain engineer's time and the planners.

An alternative method of recording that a relationship doesn't exist is to

establish a relationship with a special "null" object. For example, a special "null

father" object would exist in the domain, any child related to the null-father via

a ChildOf() predicate would be seen as having no father. This means that only

one Adopt() action would be needed as the NoFather() predicate would no

longer be used. It would still be possible to assert that a child had no father as an

action precondition by asserting that the child was a child of the specific null

father object.

Mark Tully o M.Sc. Thesis o 2001 Page 41

Object Orientated Plmming Don;;1!11 l-,r1~:ilk'cring
Desig11 of OODDL

To summarise, requiring the absence of a general relationship in STRIPS can

be accomplished in two ways. The first uses a second predicate, this method is

quite clear and easy to understand, but has more maintenance overhead if the

relations need to be altered by the domain actions.

The second method uses a special null object; objects related to this object can

be seen as being semantically related to no object. This method involves

creating an additional object in the domain, but allows relationships to be easily

altered.

3.5.3 Requiring the Absence of a Specific
Relationship

The methods from the previous section are only able to establish that two

specific objects have a relationship, or that an object has no relationships. These

methods are useful for when an action wants to establish that there is no

standing relationship before creating one. A more difficult case to encode is

when an action is required to check that a specific relationship doesn't hold; for

instance to check that a specific person is not the father of a specific child.

To accomplish this without the use of negative preconditions, the domain

engineer, in the general case, must introduce another predicate to record the fact

that the two objects do not have a relation.

Therefore, where previously only the fact that a child was related to a father

was recorded, now the fact that the same child is not the child of every other

father in the domain is also individually recorded. This requires the addition of a

"NotChildOf()" predicate to the family tree domain.

This method can often generate a large number of predicate instances owing

to the fact that the counter-predicate must be asserted in everyplace where the

predicate isn't. It becomes easy for the domain engineer to make omissions that

could invalidate the domain. This again shows the maintenance burden placed

on the domain engineer when manually encoding domains in STRIPS.

An alternative method can he employed if the domain engineer knows that the

relation is singled valued. In this case, he can make compare the current value of

the relation with the object being tested; if they're not equal then the relation

Mark Tully o M.Sc. Thesis o 2001 Page 42

Object Oricnl<ited Pl:Hlning Dom:1in fn;:intXTing
Desig11 of OODDL

doesn't exist. Testing if objects are not equal without using ADL requires a

"NotEqual()" predicate to be instantiated for every pair of objects in the

problem.

To summarise, object relations in STRIPS generally take the form of binary

predicates. One argument represents the referring object, the other the referee.

The predicate name provides the name of the relation.

The domain engineer must construct the actions carefully in order to maintain

the single-valued invariant of object references. This requirement, along with the

requirement of checking for the absence of relations, can lead to the extra

burden of maintaining several auxiliary predicates.

3.5.4 Object References in OODDL
In STRIPS, it is necessary to use binary predicates and, in some cases, auxiliary

predicates to maintain a single valued object reference. OODDL has language

level support for single valued object references thus relieving the domain

engineer of the burden of maintaining the variable's invariants manually.

OODDL supports two forms of object reference variable: the object reference

and the maybe object reference.

Object references in OODDL contain a reference to exactly one instantiated

object at all times. The variable has a type associated with it and can only hold

references to objects of that type or a sub class of that type. The object reference

can be reassigned with any other correctly typed object by an action. An attempt

to assign it with the wrong type will generate a parse error.

The object references in OODDL have no NULL value. This decision was

made to assist the domain engineer when working with domain variables that

must always refer to valid objects, and as such have no legitimate NULL value.

From the compilation into STRIPS point of view, if an object has no NULL

value then the compiler does not need to output auxiliary predicates or objects to

track the NULL value, therefore declaring that a variable has no NULL value

also leads to more efficient STRIPS domain generation.

The maybe object reference is very similar type of variable. It is identical to

the object reference in every respect except that it may hold a NULL value. This

Mark Tully e M.Sc. Thesis o 2001 Page 43

Objcc·t-Oricntatccl Plannin2. Donwin En2.in~:crinQ - ,__. ~-. '··

Desig11 of OODDL

variant of the object reference can be used where a NULL value is needed, for

instance to represent an optional object association.

The object reference variable is declared in OODDL with the following

notation:

<object-type> <variable-name>

For example:

Father childOf

Maybe object references are declared in the similar way except the variable

name is preceded with a '*'.

Father *childOf

Both variables can be assigned and tested against other values, including the

NULL value for the maybe object reference.

3.6 Managing Sets in STRIPS
Sets in STRIPS are a simple extension of the object reference; previously a

single binary predicate was used to represent a single relation, here multiple

instances of a binary predicate are used to represent a set.

The simple example below shows how a set could be constructed to record all

the children of a given father in the family tree example:

FatherTo(father,child)- "father" is the father of "child"

FatherTo(f,a) - "f' is father to a, b and c

FatherTo(f,b)

FatherTo(f,c)

Sets are generally quite easy to work with in STRIPS, however a problem can

arise when one wishes to stop duplicates being created in the set, i.e. to maintain

a strict set rather than a multi-sd'. To accomplish this, actions must check that

the set relation doesn't already exist before allowing it to be created. As

discussed in section 3.5.3 previously, this can cause problems for the domain

6 Multi-sets are also known as bags

Mark Tully o M.Sc. Thesis o 2001 Page 44

Ohjcct-Oric·ntatcd Planning Dcnmin En;:incer;n~
Desig11 of OODDL

engineer, as it requires a counter-predicate to be instantiated for each object not

in the set.

The most common way of maintaining a strict set it to mark objects that aren't

in a set with a unary predicate. Then, only objects that have this predicate can be

added to a set and when being added their availability predicate is deleted.

Conversely when being removed they are marked as available again.

This has the side effect of allowing objects to be placed in only one set across

the entire domain, useful for the previous example because a child can only have

one father and so can only be in one FatherTo() set. This is the method used in

section 3.5.2 previously, for checking that a child is not related to any father.

One hard to address problem with sets is that it is very difficult to test if the

set is empty. To achieve this, a "set-empty()" predicate would have to be added

when the last element is deleted from the set by an action. This is difficult

because there is no way of counting how many elements are in the set and so the

action cannot tell if the element being removed is the last one. This is a

limitation of basic STRIPS that cannot be addressed without an exponential

blow up in the number of actions [Gazen and Knoblock, 1997], or by

implementing a specialised element counting scheme that is maintained in

parallel to the set. Either method places a burden on the domain engineer.

In summary, STRIPS sets are very similar to object references. It is very easy

to create a multi-set, where relations are added and removed without any special

invariants to maintain. It is simple enough to maintain a strict set if set

membership can be mutually exclusive with membership of other sets.

Maintaining strict sets without this limitation can be accomplished by use of

counter-predicates to indicate non-membership of individual sets. It is very

difficult to test if a set is empty in an action precondition.

Any of these methods introduces a number of auxiliary predicates and places

the onus on the domain designer to attempt to maintain the validity of the data

model.

Mark Tully e M.Sc. Thesis o 2001 Page 45

Ohjcct-Ori,;ntated Planning Donwin Engineering
Desig11 of OODDL

3.7 Managing Sets in OODDL
OODDL provides language level support for the multi-set, or object bag,

discussed in the previous section. Support for the more specialised strict set

hasn't yet been needed and so has not been implemented in OODDL at this

stage. This could be added at a future date by the addition of a strict-set variable

type that generates STRIPS counter-predicates as discussed in the previous

section and enforces the single set entry invariant.

OODDL permits actions to add or remove objects of the correct type, or a sub

class of the correct type, from the object bag. One cannot test if an object is not

in the bag clue to the problem of establishing non existent relationships for

multi-sets in the compiled STRIPS domain description, as discussed in the

previous section. This feature could be added to OODDL at a future elate.

The object bag in OODDL is denoted by the name of the domain type it holds,

followed by a variable name suffixed with a pair of square brackets (' []').

For example:

Child fatherTo []

3.8 The Enumerated Type
A common domain feature in planning is the use of enumermed types. An

enumerated type is a type that has a fixed collection of named discreet values.

An example might be if objects in a domain could be one of a fixed set of

colours. This set of colours would form an enumerated type, "colour", and could

have the values reel, green or blue.

Only values from the same enumerated type can be assigned to enumerated

type variables. The enumerated type is useful for domain constants that do not

vary from problem instance to problem instance.

Mark Tully o M.Sc. Thesis o 2001 Page 46

OhjCL'I--Oricntakcl Planning Dnm<lill En~in·~'Ci'l!-1;2
Desi:-;11 of OODDL

3.8.1 Enumerated Types in STRIPS
There are two common ways of representing enumerated types in STRIPS. The

first is to use a collection of unary predicates that encode the value in the

predicate name, for example:

Object Is Red(x) - object x is red

Object Is_Blue(x} -object x is blue

The second is to use binary predicates to separate out the value from the variable

name:

Object Colour(x,c) - object x is colour c

"C" would be a type of object that would possess one of the following

predicates:

Red(c) - Used only by enum value objects

Blue(c)

Here special objects exist in the domain whose sole purpose is to be referenced

as enumerated values. They are differentiated by the unary value predicates

Red() and Blue().

Each of these methods has their advantages and disadvantages. A problem

with the first method is that it doesn't scale very well. If the requirements were

changed a little to require that all objects have two distinct colours recorded for

them, a second set of predicates would be needed. For example:

A_Red(x) -object x's A colour is red

A_Blue(x) -object x's A colour is blue

B Red(x) -object x's B colour is red

B Blue(x) - object x's B colour is blue

Another problem with this method becomes apparent when actions are

constructed to change the values of these variables. STRIPS actions cannot

parameterise the names of predicates in their effects list; because the value of

the enumerated type is encoded in the name of the predicate, separate actions

must be written to change between any pair of colours:

Mark Tully o M.Sc. Thesis o 2001 Paoe 47 b

ObJCCt-Oricntated Planning Domain Fnginccrillg
Desig11 of OODDL

ColourAFromRedToBlue(x) - Changes object x's A colour

from red to blue

ColourAFromBlueToRed(x) -Changes object x's A colour

from blue to red

ColourBFromRedToBlue(x) -Changes object x's B colour

from red to blue

ColourBFromBlueToRed(x) - Changes object x's B colour

from blue to red

These restrictions mean that this form of enumerated types is good only where it

isn't necessary to reassign the colour variables, or where there are very few

possible values meaning that the number of reassigning actions are small.

The benefits of this method lie in its simplicity. If the values do not need to be

reassigned then this is a simple and effective way of implementing enumerated

types.

The second method of accomplishing the enumerated type in STRIPS is to use

binary predicates. This method requires additional objects to be added to the

problem description, along with predicates to make each unique from the others.

By having what are essentially object reference variables referring to these

objects, it's possible to hold an enumerated value in a more flexible way. For

instance, it is now possible to construct an action that can receive an enumerated

type, such as colour, as a parameter:

ColourAChange(x,prevcol,newcol)

ColourBChange(x,prevcol,newcol)

The domain engineer now has a lot more freedom with his enumerated type, but

he would have to be careful to restrict the values of "prevcol" and "newcol" in

the action preconditions to ensure they're one of his colour objects and not some

other arbitrary object. He must also ensure, as with the previous method, that the

actions maintain a single value for both "A" and "B" colour variables.

Mark Tully o M.Sc. Thesis o 2001 Page 48

ObJCCt-Oricntatccl Planning Dom~1in Engineering
Desig11 of OODDL

3.8.2 Enumerated Types in OODDL
OODDL provides direct support for enumerated types, simplifying the job of the

domain engineer considerably in cases like the above. The previous example

would be encoded into OODDL by first declaring an enumerated type colour:

Enum Colour = { red, green, blue }

Now any class can have an enumerated type variable of type "Colour" as a

member variable. Colour becomes a valid type for passing to actions and so it is

trivial to construct actions for reassigning colours, and because all actions and

variables in OODDL are typed, the domain engineer doesn't need to explicitly

verify value types before assignment.

type ColouredOb

Colour colour-a

Colour colour-b

ColourAChange(Colour newCol)

e: colour-a:=newCol

end

ColourBChange(Colour newCol)

e: colour-b:=newCol

end

end

An OODDL class7 with two colours made from enumerated types

OODDL also supports ordering on the enumerated types. Expressions can be

formed to test if one enumerated value is greater than, or less than, another is.

For example:

Enum CardValue = { ace, two, three, four, five,

six, seven, eight, nine, ten, jack, queen, king }

7 The notation used here for the OODDL class is explained in section 7.1 in the appendix.

Mark Tully o M.Sc. Thesis o 2001 Page 49

Ohjcci--OriL'ntatcd Planning Don\<1in Engineering
Desig11 of OODDL

Actions that needed to ensure that a card was greater than another before it used

it could use an OODDL precondition like the following:

p: cardl.value < card2.value

Where "value" is an enumerated variable of type "CardValue".

STRIPS has no support for ordering in this form, all ordering must be

explicitly encoded in the form of predicates. For example, more-than(two,ace),

more-than(three,ace), ... This technique generates an exponential number of

predicate instances, and takes effort to maintain by hand in STRIPS.

OODDL also predefines the commonly used boolean enumerated type. This

means that domain engineers can make use of boolean variables without having

to manually define the type themselves.

3.9 Actions in STRIPS
Domain actions are what allow a planner to form a plan; they affect the domain

facts and thus change the world state. The only changes possible to a domain are

those made by actions. Encoded into actions are the laws of physics for the

domain, by carefully constructing the actions the domain engineer implicitly

encodes the physics of the domain.

Actions in basic STRIPS are untyped; any typing restrictions for the

parameters must be made in the action preconditions. STRIPS actions were

discussed in detail in section 2.5 .1.

Mark Tully o M.Sc. Thesis o 2001 Page 50

Object Ori~..·ntatcd Planning Don1ain Engineering
Desig11 of OODDL

3.9.1 The Light Switch Domain in STRIPS
A simple example of a STRIPS domain is declared here for comparison

purposes with OODDL:

(define (domain light-switch)

(:requirements :strips)

(:predicates

(on ? l)

(off ?l)

(light ?l))

(:action switchon

:parameters (?l)

:precondition (and

(off ?l)

(light ?l))

:effect (and

(on ?l)

(not (off ?l))))

(:action switchoff

:parameters (?l)

:precondition (and

(on ?l)

(light ?l))

:effect (and

(off ?l)

(not (on ?l))))

Light switch domain in PDDL STRIPS

The above domain makes use of a typing predicate light() to ensure that the

parameter passed is of the correct type. In domains like this that feature only one

type, typing predicates would normally be omitted.

Mark Tully o M.Sc. Thesis o 2001 Page 51

Obicct--Ori,~ntatcd Planning Domain Engineering
Desig11 of OODDL

Another case where the typing predicates are often omitted is if the action's

other preconditions can only be true of a certain type anyway. For example the

light_on() predicate above would only ever be given to the "light" type and so

this establishes the type of the parameter. However, sometimes typing

predicates are added anyway, because their omission can make the domains less

clear to a human reader.

3.1 0 Actions in OODDL
OODDL actions are quite similar to STRIPS actions in that they have a

parameter list, a preconditions list and an effects list. However, unlike STRIPS,

OODDL actions are bound to an owning class.

In STRIPS, an action could only refer to its parameters. In OODDL, when an

action is instantiated there is a concept of the this object which, as with normal

object-orientated languages, can supply the action with values without the

explicit use of parameters. All member variables for the class are in the scope of

the action and so the action can freely refer to them in its preconditions and

effects. An action can also dereference its parameters in order to refer to their

member variables too.

When a STRIPS action needs to assign a new value to an existing relationship,

it requires the previous value to be passed as a parameter in order to delete the

existing relationship. This results in the use of an extra parameter that may not

be used for anything except deleting an old relation. For instance, instead of

having an action with the title:

move(truck,destination)

We have:

move(truck,source,destination)

Because OODDL uses member variables that are in scope throughout the action,

the previous value does not need to be passed in as a parameter. Instead, the

member variable can be referred to directly, without the need for any extra

parameters. This results in a more concise action definition.

The parameter lists in OODDL actions are typed and so the domain engineer

doesn't need to worry about objects of the wrong type being passed to the

Mark Tully o M.Sc. Thesis o 2001 Page 52

Object-Orientated Planning D(mmin Engineering
Design of OODDL

action. This reduces the number of preconditions the domain engineer has to

maintain.

The preconditions are a list of boolean expressions written in a similar way to

expressions from an imperative language. In OODDL, preconditions are made

up of operations such as testing for equality, or establishing set membership

rather than a list of predicates as with STRIPS.

Again, disjunctive preconditions are not allowed, only conjunctions. This is

for simplicity when compiling into STRIPS, which doesn't support disjunctive

preconditions. Disjunctive preconditions could be added to OODDL at a later

elate.

The effects are a list of operations on the parameters and the member

variables of both the owning object and the parameters. Instead of consisting of

predicates that are added and removed, the effects in an OODDL action are

higher-level operations such as variable assignments or set insertions.

The effects in OODDL actions are seen as happening in parallel and so the

ordering of the effects in the action is unimportant. If a variable is assigned a

new value and then the variable is used in an expression further down the action,

it is the original value that will be used, not the new one. This decision was

made to ease the translation into STRIPS where all effects happen in parallel

and there are no intermediate states in an action. However, a future version of

OODDL could respect the ordering of expressions in actions, by having a

special STRIPS translator that emulates ordering and intermediate states.

Mark Tully o M.Sc. Thesis o 2001 Page 53

ObJCCI ()ricnlated Planning Domain En;!inccring
Desig11 of OODDL

3.1 0.1 The Light Switch Domain in OODDL
The following is the light switch domain from section 3.9.1 in OODDL.

type Light

boolean on

swi tchoff ()

e:on=false

end

switchon ()

e:on=true

end

end

Light switch domain in OODDL

In contrast to the STRIPS domain, the OODDL domain appears clearer. There

is no need for the type checks and so there are fewer preconditions in the

actions. Because OODDL supports atomic assignments, the separate and delete

effects from the STRIPS version have been collapsed into a single statement.

3.11 Inheritance in STRIPS
Although STRIPS is not an object-orientated language, it does allow inheritance

of a sort. Section 2.5.2 discussed how typing is generally accomplished in

STRIPS using unary predicates. Actions will check in their preconditions that an

object has the correct type predicate before operating on it.

To implement inheritance, all that needs to be clone is to take all the predicates

from one type (including the typing predicate) and give them to an object from

another type. Now the object implements both types and can be passed to

actions from either type.

This is probably better classified as unordered inheritance, as it yields the

same results no matter which type one views as the super type. Ordering

however only becomes important when features such as overriding are allowed,

but overriding isn't applicable in a t1at modelling language like STRIPS.

Mark Tully o M.Sc. Thesis o 2001 Page 54

ObJCCt-Oricntatecl Planning Domain Engineering
Desig11 of OODDL

3.12 Inheritance in OODDL
OODDL is an object-orientated language and so inheritance plays a more

important role as a modelling merhod than it does in STRIPS. Classes in

OODDL can inherit from one or more superclasses by using multiple

inheritance.

All attributes from each of the superclasses become part of the subclass. If

methods have the same name then overriding takes place, and the most recently

defined action, in terms of the inheritance chain, takes precedence. If member

variables are redefined, an error is generated.

Polymorphism is a popular feature of object-orientated programming

languages, however it is not appropriate to OODDL. Polymorphism allows a

client object to call another object which is believes to be of a certain type. The

receiving object however can be a subclass of that type, and if the subclass has a

method with the same signature as the one being called, it is called instead. This

means that when a method is called, the caller cannot be sure which class's

methods will actually be called, only that the type that eventually is called will

be the same as, or a subclass of, the type expected.

In OODDL, actions cannot invoke other actions and so there is no opportunity

for polymorphism to take place. The planner is the only agent calling actions

and it will select the action it deems appropriate based on the action definition.

Overriding still has a place however, as that essentially stops an action being

applicable to a sub class and replaces it with another, generally more specialised

one.

3.13 Implementing Method Invocation in OODDL
It was mentioned in the previous section that actions couldn't invoke other

domain actions as part of their effects. This is a fundamental feature of STRIPS,

on which OODDL is based. In STRIPS all actions' effects are completely

defined as a list of positive and negative predicates, to invoke another method

would presumably mean the intention was to have that action's effects applied

also. The action's preconditions would have to be met as well, so either they

would have to be combined into the calling action's preconditions or the action

Mark Tnlly o M.Sc. Thesis o 2001 Page 55

Ohjc~.:L Orientated Planning Don1<lin Engineering
Desig11 of OODDL

being called would only take affect if the preconditions were met at the time of

invocation. Whichever option is taken would have increased the complexity of

STRIPS and made implementing a STRIPS parser unnecessarily difficult.

Then there are other issues related to recursion and such which begin to create

more problems, at the end of the clay, invoking other methods in STRIPS is a lot

more effort that it's worth.

OODDL builds upon STRIPS, if OODDL allowed method invocation then

STRIPS would have to be extended to support it, or OODDL's compiler would

have to emulate it by clever domain encoding.

The decision was to not have method invocation in OODDL either, it would

be next to impossible to implement correctly on top of STRIPS and any

extensions to STRIPS would require planners to be updated or rewritten to work

with the new syntax.

With the absence of method invocation, abstraction and polymorphism lose

their value and so OODDL does not support them either.

3.14 Draughtsman
It was mentioned in section 2.7 that an earlier version of the Draughtsman

domain engineering tool edited STRIPS domains through a GUI. With the

development of OODDL, a new version of Draughtsman has been created. This

version allows OODDL domains to be edited through a CLI interface and then

translated into POOL STRIPS; this translation is outlined in the next section.

Draughtsman can also be compiled into a library that exports an API for

parsing and manipulating OODDL domains, allowing existing tools to exploit

OODDL more easily. This functionality has been demonstrated by attaching a

Java GUI to Draughtsman and using it to edit and translate OODDL domains.

Because Draughtsman uses wizards to help the user create domains, all the

OODDL domains generated are guaranteed to be syntactically correct.

3.15 Overview of the OODDL to STRIPS Translation
The goal of OODDL is to give domain-engineers an object-orientated domain

modelling language that is both easier to use and more powerful than STRIPS.

Mark Tully o M.Sc. Thesis o 2001 Page 56

Object-Orientated Planning Dclllwin Engineering
Desig11 of OODDL

However, all of these aims are moot unless planners can make use of it. OODDL

could theoretically be translated into languages such as OCL or ADL, but the

most widespread language is currently PDDL STRIPS.

The translation between OODDL and STRIPS converts the object-orientated

domain model, complete with class hierarchies and variables down to a "flat"

predicate based STRIPS model. The algorithm used to do this is outlined in this

section. There are five elements of the OODDL domain that contribute to the

STRIPS encoding, these are: classes, enumerated types, variables, actions and

the problem specifications.

3.15.1 Classes
Translating an OODDL domain's class hierarchy to STRIPS is the most trivial

part of the translation. It was decided to target untyped STRIPS rather than

typed STRIPS to keep the potential audience as large as possible. Planners that

can deal with typed STRIPS can deal with untyped STRIPS, but not vice versa.

To translate the class structure, a single argument STRIPS predicate is

declared for each class in the domain. Problem domain objects that are an

instance of, or a subclass of, a particular OODDL class will possess this

predicate. Actions will be able to type check their arguments by requiring a

specific class's typing predicate in their preconditions.

3.15.2 Enumerated Types
The various ways of implementing enumerated types in STRIPS were discussed

in section 3.8.1. OODDL will utilise the second approach that was discussed in

this section; each enumerated type value will be translated into a problem

domain object with a unique unary predicate to identify it. This allows STRIPS

action's to directly refer to these values by name by requiring this unique

predicate of an argument in the action's preconditions.

One of the features of OODDL's enumerated types is the ability to create

ordered enumerated types, where OODDL expressions with">",">=","<" and

"<=" operators can be used. To record these relationships between the

enumerated type value objects in the STRIPS domain, four binary predicates are

Mark Tully o M.Sc. Thesis o 2001 Page 57

Ohjc(·t--Oricntated Planning Domain Engineering
Desig11 of OODDL

declared called "greater(a,b)", "greatereq(a,b)", "lessthan(a,b)" and

"lessthaneq(a,b)".

These predicates are instantiated for the relevant values in the enumerated

type when the STRIPS problem specification is written out. STRIPS actions can

then test the relative value of enumerated type values by requiring these

predicates in their preconditions.

3.15.3 Variables
OODDL class member variables relate a particular class instantiation and

variable name to a value. In general, these relations can be represented by binary

predicates where the first argument is the owning object (the instance of the

class) and the second is the value.

To translate OODDL class member variables into STRIPS, a predicate is

generated for each class variable formed from the class name and the variable

name. These binary predicates address all OODDL's variable types: object

reference, maybe object reference, object bag and enumerated type. Enumerated

type variables, including the boolean type, are simply object references to

OODDL generated problem objects, as discussed in previously in section 3.8.1.

The maybe object reference is identical to the object reference variable

discussed in section 3.5.1, except it uses one OODDL generated problem object

to represent the null value. The maybe object reference's implementation is

described in section 3.5.2.

3.15.4 Actions
Actions in STRIPS consist of three parts, the parameters, the preconditions and

the effects. The preconditions and effects are lists of domain predicates

grounded by the action parameters.

OODDL has a similar action structure, but OODDL's preconditions and

effects are made up from expressions formed using the parameters, member

variables and dereferences thereof. This means that OODDL often makes use of

temporary values that have to be made explicit on the conversion to STRIPS.

The simplest of these is the "this" parameter, the object that the action is bound

Mark Tully o M.Sc. Thesis 0 2001 Page 58

Object--Orientated Plarmin!! Domain Frw:inecrinu.
De.sig11 of OODDL ~· , ,

to in the OODDL domain; this must be made explicit in the STRIPS domain and

have preconditions generated for it to ensure it is of the correct type.

Further examples of generated parameters can be seen in the following

example, which assigns an enumerated type variable "colour" with an

enumerated type value "green".

e: colour:=green

As discussed previously, enumerated values like this are represented as objects

when converted to STRIPS, so "green" has to become a parameter, with

associated preconditions, to ensure that it can only be matched to the unique

"green" object in the domain. Furthermore, the previous value of the "colour"

variable has to be passed in so that the existing fact associating "colour" with it

can be deleted.

OODDL expressions consist of three parts: the left side (the !value), the right

side (the rvalue) and the in fix operator. Each of these can generate parameters

and preconditions in the resulting STRIPS actions. The expression operator can

also generate effects.

If the !value and rvalue terms make use of dereferencing, e.g.

"destination.surface.clear==true", then this will mean additional STRIPS

parameters and preconditions have to be generated in order to get at the final

dereferenced value. Using the above example, "destination" is a variable of the

"this" object; it has a value that is an object, this in turn has a "surface" variable.

The surface variable has a value that is an object, finally this object has a

boo lean variable called "clear", which also has value associated with it. The

expression requires this value to be obtained and compared with the boolean

value of true.

To generate STRIPS code for this !value term, three additional parameters

must be generated (one for each dereference) and linked via preconditions to

access the final dereferenced value. The STRIPS code for this expression would

look like:

Mark Tully o M.Sc. Thesis o 2001 Page 59

Obicct--Oricntatt.:~d Planning Domain Engin~·ci·ini!
Desig11 of OODDL

Parameters needed:

this, this destination,

this destination_surface,

this destination surface clear

Preconditions needed:

MyType destination(this,this destination)

Table surface(this destination,this destination

surface)

Surface clear(this destination surface,this_des

tination surface clear)

Boolean true(this destination surface clear)

This dereferencing technique allows access to any member variable and any

dereferenced variable. Each expression generates its preconditions, effects and

parameters independently of the other expressions in the action. By using a

naming convention for the implicit parameters that are generated, and collapsing

multiple needs of the same named parameters into one, it becomes possible to

avoid duplicated parameters and preconditions when generating the action.

Once the appropriate !values and rvalues are obtained, the next stage is to

generate effects. In general, the translation from OODDL infix operators to

STRIPS effects is straightforward. For example, an object reference assignment

will generate an add effect and a delete effect. The delete effect will remove the

!value's association with the rvalue, and the add effect will create a new

association with the new value. The assignment of enumerated types, including

booleans, follows exactly the same structure. Object bag addition and removal

operators simply omit the delete effect or the add effect respectively.

3.15.5 Overriding Actions
Overriding is a popular feature in object-orientated languages, it allows a

subclass to selectively alter the behaviour of its parent by replacing its methods.

As discussed in sections 3.12 and 3. L 3, the lack of method invocation in

OODDL means polymorphism isn't applicable, however overriding is.

Mark Tully o M.Sc. Thesis o 2001 Page 60

Object-Orientated Planning Domain Engineering
De.sig11 of OODDL

To implement overriding in the generated STRIPS domain, it must be ensured

that an action can be applied to the owning class and its subclasses, but not to

the subclasses (and their subclasses) for which an override has been defined. To

accomplish this, each action in the OODDL domain is given a unary enabling

predicate that objects must posses in order to be passed as the action's this

parameter.

By using action specific enablers in this way, it is possible to turn individual

actions on and off on an object-by-object basis in the generated domain. By

coupling this with the inheritance hierarchy from the OODDL domain, actions

that have been overridden can be turned off by not giving class instances the

action enablers needed. Action enablers are granted for all the actions in the

object's class, and all the actions in the inheritance hierarchy that have not been

overridden.

3. 15.6 Problem Specifications
The STRIPS problem specification contains two things, firstly it contains the

actual OODDL problem in a STRIPS encoding, and secondly it contains meta

data needed to ensure the STRIPS domain functions correctly.

An OODDL problem specification has a value for every variable of every

instantiated object. Given that the predicates for the class variables have already

been generated, all that must be clone is to instantiate these predicates with the

values defined. A STRIPS object is generated for every OODDL domain object,

and predicates are instantiated to record the initial state of every variable. Goal

state predicates are also instantiated for those variables with goal states defined.

Besides the data from the actual problem specification, additional meta-clata is

also required. Meta-clata is static data that must also be added to the STRIPS

domain to ensure that certain actions in the OODDL domain function correctly.

The majority of this is generated from OODDL's enumerated types. They

require objects to be generated in the problem specification to represent each

value in the enumerated type. Furthermore, instances of the relativity predicates

such as greaterthan(), lessthan() etc. must also be generated.

Mark Tully o M.Sc. Thesis o 2001 Page 61

ObiccL-Oricntated Planning Dornain Engineering
Desig11 of OODIJL

The remaining static meta-data is generated from unary typing predicates,

unary action enabler predicates and null values for maybe object references.

3.15.7 Resultant Plans
A STRIPS domain generated from OODDL contains names and predicates that

are generated by the translator. Subsequently, it may not be clear from the

resultant STRIPS plan what the actual OODDL plan is.

The names generated for STRIPS actions and predicates follow a rigorous

naming convention, this means that instantiated actions can be translated back

into an OODDL encoding with no reference to the original domain.

For instance, the OODDL generated logistics domain may generate the

following plan:

Time:l

carrier_loadl(truckl,packagel,poO,poO)

truck_drive-truckl(truck2,airportl,pol,roadl)

aeroplane_fly-planel(aeroplanel,airportO,

airportl)

Time:2

truck_drive-truckl(truckl,airportO,poO,roadO)

Time:3

carrier_unloadl(truckl,packagel,airportO)

Time:4

carrier_loadl(aeroplanel,packagel,airportO,

airportO)

Time:S

aeroplane_fly-planel(aeroplanel,airportl,

airport a)

Time:6

carrier_unloadl(aeroplanel,packagel,airportl)

Time:7

carrier_loadl(truck2,packagel,airportl,airportl

Mark Tully a M.Sc. Thesis o 2001 Page 62

Obicc!-Orit'!ltatcd Planning Domain Engiliccrin~~
Desig11 of OODDL

Time:B

truck drive-truckl(truck2,pol,airportl,roadl)

Time:9

carrier_unload(truck2,packagel,pol)

Plan found for an OODDL generated STRIPS domain

This can be automatically converted to OODDL notation by using the first

parameter of each action as the "this" object, and dropping all the implicit

parameters until only the original OODDL ones remain. The number of

parameters originally in the action is appended to the end of the generated action

for just this purpose. Dropping the number from the end of the name and

removing the class prefix to the left of the underscore will translate the action

names back to their original OODDL encoding.

Time:l

truckl.load(packagel)

truck2.drive-truck(airportl)

aeroplanel.fly-plane(airportO)

Time:2

truckl.drive-truck(airportO)

Time:3

truckl.unload(packagel)

Time:4

aeroplanel.load(packagel)

Time:S

aeroplanel.fly-plane(airportl)

Time:6

aeroplanel.unload(packagel)

Time:7

truck2.load(packagel)

Time:B

truck2.drive-truck(pol)

Mark Tully o M.Sc. Thesis o 2001 Page 63

Objccl-Oricntatccl Planning Dunwin Engineering
Desig11 of OODDL

Time:9

truck2.unload(packagel)

OODDL notation plan from the logistics domain

A simple shell script could be written that takes an OODDL domain,

translates it to PDDL using Draughtsman, runs a STRIPS planner on it, and then

translates and displays the resultant plan in OODDL notation. This functionality

could even be executed from inside Draughtsman.

3.16 Summary
This chapter has detailed the development of the object-orientated domain

description language: OODDL. OODDL is designed to be an easier and more

powerful language for domain engineering than POOL STRIPS.

OODDL is designed to lift the task of modelling a domain from the level of

the predicate literal to the level of the object. It does this by employing the use

of class definitions, variables and actions formed from lists of imperative

statements, rather than add and delete lists. The motivation for OODDL's syntax

and semantics is based upon common traits in existing domain encodings,

especially STRIPS. This chapter has explained OODDL's features in relation to

STRIPS, using case studies where appropriate.

Mark Tully o M.Sc. Thesis o 2001 Page 64

Object-Orientated Planning Durnain EnginL'cring
Desig11 of GTL

4 Design of GTL
Domain analysis has demonstrated the usefulness of recognising common

generic behaviours in planning domains in the form of generic types (see section

2.6). A domain exhibiting generic types can be planned with more efficiently

because known heuristics and solvers can be employed that work with the

generic types directly.

However, generic types can also be used in domain engineering, where they

give higher-level semantic meaning to an otherwise abstract domain description.

Once a generic type is identified, it is possible to deploy context sensitive sub

editors or to introduce terminology that is more relevant to the editing session.

This chapter first discusses some of the different ways a domain-engineering

tool could implement generic types, particularly with reference to OODDL; it

then moves on to the development of a generic type description language called

GTL for allowing domain-engineering tools and planners alike to work with

arbitrary generic types.

4.1 Modelling with Generic Types
Generic types are very useful for domain modelling because they represent a

concept to the domain engineer. For instance, a rnobile type (see section 2.6.1)

represents the concept of something that moves around on a map of locations. If

a domain-engineering tool allowed the user to manipulate the domains in terms

of these concepts then the user could work at a higher level, in terms that are

more representative of the true meaning of the domain.

For example, if the domain-engineering tool was able to identify the mobile

and location relations, it could allow the domain engineer to edit the map of

locations using a graph editor rather than by editing the relations directly. This

would allow the engineer to visualise the domain more effectively.

Mark Tully o M.Sc. Thesis o 2001 Page 65

Obicct-Oricntatcd Planning Domain Engineering
Desig11 of GTL

4.1.1 Generic Types as Superclasses
A domain object that matches the criteria of a generic type could be seen as

implementing the generic type's behaviour as a sub set of its own. In a sense, the

object could be viewed as having inherited the behaviour from a superclass.

This leads on to the simplest way of implementing generic types in OODDL,

which is to simply generate ready-made generic types classes for the engineer to

derive from. This means the functionality of the generic type is captured in the

superclass and the subclass must simply extend and customise the type as it sees

fit.

Unfortunately, this approach has its problems, the main one being the lack of

flexibility it offers. The default actions that operate on the generic types, such as

the move operator for the mobile, often cannot be used in a stock, fixed manner.

The actions frequently must be augmented with additional effects or

preconditions to ensure that they work in harmony with the rest of the domain.

To an extent this can be accomplished from the subclass by overriding, however

sometimes this is not possible because the domain requires an action with a

different signature8 from the existing one; for example an additional parameter

might be needed for a move operator. When this is the case, the original default

action must be edited, or somehow disabled, to ensure the planner does not

invoke it.

This often involves substantial re-engineering of the generic type classes to an

extent that negates the usefulness of having them auto-generated in the first

place. This problem can be partially addressed by the use of wizards to

customise the generation of the generic types' actions. The wizards would

present the user with a series of options for the addition of extra preconditions or

effects; however, this method becomes increasingly cumbersome as more

options are added, although the flexibility increases accordingly.

lf such wizards were implemented in Draughtsman, the wizards would have to

mark the generic types so Draughtsman would be able to recognise them and

8 The signature of a method is a combination of its name and its typed parameter list. For
example: drive(Truck t, Location from, Location to). If a subclass defines a method with the
same signature as a superclass's method, it is overridden.

Mark Tully o M.Sc. Thesis o 2001 Page 66

Ohiect-Oricnlated Planning Dcllnain Engineering
Design of GTL

deploy the correct context sensitive editor on them. In turn, Draughtsman would

have to protect the class in order to ensure that further editing does not destroy

the behaviour that makes it meet the criteria of the generic type it implements.

This could conflict with the user's ideas or designs, for example stopping them

removing an action or property that is no longer needed, but is still required for

the generic type to meet its criteria. This could happen if during the editing

cycle, a type initially declared as a generic type turns out not to be a generic type

at all.

A further problem with the superclass approach is revealed when the user

doesn't use the generic types to build the domain; this could happen if they fail

to recognise that their type meets the criteria of an existing generic type. If the

wizards were not used to create the generic type based classes, then features that

would allow the user to manipulate the domain more easily would not be

enabled.

Further problems can also be caused if the engineer wants a type to extend

multiple generic types, for example, when a type is seen as both a portable and a

carrier. Mixing two generic types is not always trivial as sometimes there are

subtle interactions between the generic types that must be addressed, but again

this could be solved programmatically via wizards.

Using wizards in this way would however cause problems, the main one being

the difficulty in writing the wizards due to the large number of possible

combinations of generic types. Furthermore, adding new generic types would

mean writing a new wizard and probably updating the older wizards to offer

new combinations with the new generic type.

In summary, superclasses could be used to implement generic type editing in

Draughtsman. The user would import stock generic types from a ready-made

source by use of specialised wizards. The wizards would question the user in

order to cater and combine existing generic types into a customised edition for

the domain in question. The resulting classes would be tagged as generic types

and Draughtsman would then be able to deploy specialised editors on them, such

as map editors or visualisation aids. Draughtsman would have to protect the

Mark Tully o M.Sc. Thesis o 2001 Page 67

Oh]ect -Orientated Planning Domain Engineering
Desig11 of GTL

resultant classes in some way to ensure they maintained the qualities that qualify

them as generic types and allow the specialised editors to work with them.

4.1.2 Automatic Generic Type Recognition
The TIM tool, discussed in section 2.6, is able to analyse STRIPS domains and

identify generic types. The resulting analysis is used to improve planner

performance by allowing the deployment of specialised sub-solvers and

exploitation of tailored heuristics. If generic types could be recognised

automatically in Draughtsman, the user wouldn't need to first declare which

generic types their domain uses.

TIM identifies its generic types by using hard coded recognition algorithms

for each of its supported generic types. It also allows these algorithms to be

employed by planners by providing an API to analyse the domain and provide

access to each of the generic types. Unfortunately TIM cannot be used directly

on OODDL domains, they must first be compiled into STRIPS. The problem

with this is that it is often difficult to relate the resulting STRIPS analysis back

to the original OODDL, making applying the TIM analysis to OODDL quite

difficult.

Given that STRIPS is the domain engineering standard, the fact that TIM

can't work with other languages is not really a shortcoming ofTIM, but it does

mean TIM cannot be directly applied to OODDL domains.

A solution to this would be to rewrite TIM's generic type recognition

algorithms to work with OODDL domains. This would result in a duplicate code

base, one designed to recognise each generic type in STRIPS and one for each

generic type in OODDL. This approach has the consequence that the addition of

new generic types would mean updating both the STRIPS and OODDL

recognition algorithms.

The next evolution of this idea would be for TIM to use a declarative model

for describing generic types. This would separate the description of the generic

types from their recognition. As a result, this would require a single general

purpose generic type recognition algorithm for each domain language supported

by TIM, the algorithm would apply generic type descriptions to the source

:Mark Tully o M.Sc. Thesis o 2001 Page 68

Objcct-Oric·ntatcd Planning Domain Engineering
Design of GTL

domain. TlM would have to report its results in syntax applicable to the source

domain language; for example, predicates based results for STRIPS and class

based results for OODDL.

If TIM could be applied to OODDL domains then the domain engineer could

reap additional benefits besides generic type recognition. TIM would be able to

provide the same invariant extraction in OODDL as it does currently for

STRIPS. This would allow the user to see a state model implied by their domain

description, allowing them to identify and correct any errors in the domain

actions.

This provides an opening for much future work on TIM that could mean it

becomes as valuable a tool in the construction of OODDL domains as it has

proved itself to be with STRIPS domains.

4.2 The Declarative Model
The problem of having to write the same generic type recognition algorithm for

different domain description languages can be addressed if the generic type

declaration is separated from the generic type recognition algorithm.

One implementation of this idea would be to develop a language independent

way of describing generic types and then to apply this to both STRIPS and

OODDL. This method would have the additional advantage of easy

extendibility; a new generic type could be added by simply adding a new

description to the descriptions repository.

It was mentioned earlier that generic types have benefits to planners in that

they supply heuristics or recommend sub-solvers for problems. Using a

declarative model, information such as heuristics or recommended sub-editors

could be embedded within the description. For instance, if a domain expert

recommends a particular heuristic for a domain, then a new generic type could

be added to the repository with the heuristic attached, this would allow the

domain specific knowledge to be exploited by the domain independent planner.

In addition, perhaps crucially, other domains that can be seen in the abstract to

implement the generic type would also benefit from the heuristics.

Mark Tully o M.Sc. Thesis o 2001 Page 69

Objcct---Oricntatccl Planning Donwin Engineering
Des ig11 of G TL

The same applies to sub-editors, if a domain expert recommends the best way

of working with a particular domain type is through a graph editor, then a

generic type could be added to recognise the type and recommend a graph editor

interface for editing some of its parameters. Recommended heuristics, sub

solvers, sub-editors and so on provided by the generic type are called services.

Extendable generic types are very useful for domain-engineering and planning

alike, they represent a valuable addition to the whole process from domain

engineering through to resultant plan.

4.3 The Templated Approach
If a declarative model is to be used to recognise generic types and supply

manipulation information for the domain-engineering tool, the task now

becomes one of finding an effective way to describe generic types. One method

would be to use some form of template to describe the generic type.

The templates could be used either to spot generic types in fully or partially

constructed domains, or to create new classes implementing a given generic

type. If generic types could be spotted as the domain engineer builds the

domain, then the editing session could be focused by the application of a

specialised sub-editor.

Because new templates can be added, this solution is extendable; furthermore,

it has the additional benefit of standardising the representation of all generic

types, allowing them to be accessed through an API that need not be specialised

for each generic type.

A template approach presents two problems, identifying generic types in a

domain and describing generic types in a template language.

4.3.1 Finite State Machine Representation
One approach to describing generic types is to show a generic type's behaviour

diagrammatically usingfinite state rnachines or FSMs, as shown by Fox and

Long [Fox and Long, 1999]. FSMs offer a concise way of showing the states

that a generic type exhibits, and the transitions, via high-level actions, that

Mark Tully o M.Sc. Thesis o 2001 Page 70

Objcci--Oricnl~ttcd Planning Domain Enginccl'ing
Desig11 of GTL

connect them. The example below shows a STRIPS FSM9 representation for

portables and carriers, as described in section 2.6.2.

load

1.0
Requires:
portable 1

1.1 unload 1.2

load

2.0
Requires:
at 1, carrier 1

2.1 unload 2.2

load

3.0
Requires:
location 1

3.1 unload 3.2

FSM based definition of a carrier generic type; the names of the properties

and actions are arbitrary, only the behaviour is important

This diagrammatic representation is good for graphically explaining the

functioning of the generic types, but it isn't exact enough to precisely capture

the complete picture. For example, the three FSMs depicted are intricately

linked, when one FSM undergoes a transition, the other FSMs must also make a

transition.

In this case, when a load action is executed, the portable will traverse the first

FSM moving from 1.1 to 1.2, because its at 1 property will be deleted and it will

gain an in 1 predicate instead. Meanwhile, the carrier will move from 2.1 to 2.2

on the second FSM as it gains an in2 property. The in 1 and in2 properties are

created together because they are part of the same add effect; they are related

properties. Similarly so, the at 1 from 1.1 is related to the at2 from 3.1 and so this

FSM must also make a transition as part of the load action.

9 FSMs of this form are also known as property space diagrams. A subscripted predicate
means that the object in that state appears in a grounded predicate at that argument position.

Mark Tully o M.Sc. Thesis o 2001 Page 71

ObjcctOri~..'ntated Planning Domain Engineering
Desig11 of GTL

The problem of expressing the relationships between the FSMs gets worse

when its realised that it cannot be any carrier, any location and any package

undergoing these transitions simultaneously, the objects undergoing the

transitions must also be linked. The location object that is traversing FSM 3.0

must be the one related to the portables at 1 property in state 1.1, and the carrier's

at 1 in 2.0. This defines that the carrier must be at the same location as the

portable that it is loading.

FSMs are good for diagrammatic representation, but they would not be able to

define a generic type without a significant amount of meta-data describing the

relations between the FSMs.

4.3.2 The Components of a Generic Type
In order to capture a more holistic view of the generic type's behaviour, it is

necessary to formalise the generic types and break them into separate

representable components. From examination and study of the currently

available generic types, it was decided that a generic type can be seen as

consisting of three main components:

• Variables

• Actions

• Services

Using the aforementioned transportation example, a carrier has two variables, an

at variable defining its location and a contents variable describing its current

load.

It has three high-level actions: one to move it around a network of locations,

where the current location is defined by the at variable, and two more that allow

it to load and unload portables from the same location into the contents variable.

A high-level action need not map onto a whole action in the target domain

language, it could simply map onto a small section of it, or an expression inside

it. This handles the case where an action may do several things and only part of

it is the high-level generic type action.

Mark Tully o M.Sc. Thesis • 2001 Page 72

Ohicct--Oric'ntatcd P!allnin~ Domain Enuinccrin~
. . . - t~-· <...• (_

Desig11 of GTL

The portable has two high level variables only: the location it is at and a

boolean locking condition ensuring it cannot be loaded into two carriers at once.

The definition of load and unload ensure that the portable is locked if it is

loaded in a carrier and unlocked if not.

The variables and actions are enough to describe and capture the behaviour of

a generic type; any domain object that matches the behaviour can be mapped

onto the description and declared a generic type.

The third and final part of the generic type is the services it provides. These

are things such as heuristics, state models or manipulation hints for domain

engineering. For the transportation generic types, the heuristics may advise that

a portable is not loaded into a carrier when it is already at its goal location for

example.

A state model could be overlaid that declares states such as loaded and

unloaded for the portables. This would allow them to be manipulated in terms

that are more familiar by the domain engineer. Manipulation hints may advise

that the network of values traversed by the at variables of the portables and

carriers are represented by a graph where locations are represented by nodes and

traversable paths by edges.

In summary, the template language will need to represent high-level variables

that map onto whatever lower level representation is employed by the domain

language; that would be variables in OODDL and predicates in STRIPS. It

would also have to describe high-level actions that manipulate these variables,

these actions would map onto parts of actions in the source domain.

Finally services will have to be described, it is likely that each service

description will have to be designed on a case by case basis, however it is likely

that they will all refer to the high level variables of their generic types.

4e4 A Case Study of Generic Types
Any candidate generic type description language must be at least able to

describe the existing generic types. ideally, it should be flexible enough to allow

a domain expert to describe generic types that haven't yet been discovered,

although of course there's no guarantee of this.

Mark Tully o M.Sc. Thesis o 2001 Page 73

Object-Orientated Planning Domain Engi necri ng
Design of GTL

4.4.1 Mobile
The mobile is the simplest generic type. It has only one high level variable that

dictates where the mobile is on a map of locations; the variable is generally

called at. The mobile has one simple operator, the move operator. It assigns at

with a new value.

To support this generic type the template would have to support different

generic types in the same template, in this case mobile and location. The

location type is defined only by its association with the mobile. A simple object

reference variable is needed to represent at, and the move operator needs a way

of representing an assignment.

4.4.2 Carrier
The carrier is an extension of the mobile generic type. A carrier has an

additional high-level variable that represents its contents. It could carry only one

object, or it could carry multiple objects. The carrier has a load operator and an

unload operator that load and unload from contents to the current location that

the carrier is at. The carrier defines the type portable by association. The

portable type can only be in one carrier at once, so it has the notion of a

mutually exclusive loading condition. This condition can be represented in many

ways; it may not even be explicit.

4.5 Introducing the Generic Type Language
The template language that was designed to describe generic types is called

Generic Type Language or simply GTL. GTL went through a rapid prototyping

development cycle and its final form bears little or no relation to the original

designs. The final version is able to describe all the existing generic types and is

similar (although not identical) to OODDL's syntax.

Although the initial version turned out to be insufficient to represent all of the

generic types, it is interesting in that it highlights some of the problems

encountered when trying to capture the generic types, and it provides motivation

for the features of the final version of GTL.

Mark Tully o M.Sc. Thesis o 2001 Page 74

Object-Orientated Planning DOin:Jin Engint·c:·ing
Desig11 of GTL

4.6 ~Flat' GTl
The initial version of GTL was very simple, all the language did was to list

variables, operator expressions and types that needed to be matched for the

template to fit. Then it placed a few restrictions on these elements to ensure

correct interoperability between them. There was no hierarchy or structure in the

initial version of GTL, hence the use of the term 'tlat'.

A simple example of the initial direction of GTL is shown below:

Enements Conditions Element Names

[1] Variable Object reference to type [2) at

[2] Type location

[3) Expression [l] := Value of type [2] move

Prototype template for representing a mobile generic type

One of the design requirements of GTL was easy matching with OODDL, as

the above snippet indicates. The matching algorithm here simply did a brute

force search trying every possible combination of variable, type and expression

for each type in the domain. Then it would check the conditions in the second

column held, if they did then the values where recorded and the type was

marked as a generic type.

The problem with this language is that is isn't quite powerful enough to

achieve the more complex generic type descriptions elegantly. When it came to

describing the carrier generic type, the conditions began to become very

complex.

The first problem was that the definition of a carrier in OODDL varies

depending on whether it is a multi-carrier or a single-carrier. A multi-carrier in

OODDL would have an object-bag variable for its contents, so it could have

more than one portable in its contents at once. A single carrier would have a

maybe object reference as its contents as it is either referring to exactly one

portable or none. This meant that the template had to match to both of these

different encodings, and disjunctions had to be introduced into the conditions.

This made the language more complex but still manageable.

Mark Tully o M.Sc. Thesis o 2001 Paoe 75
"'

Object Orientated Planning Dornain Engineering
Design of GTL

The next problem was that due to its simplicity the language lacked any

inherit structure, so simple relations between the various elements in the

template had to be expressed explicitly. This became increasingly cumbersome

as the need grew to group these elements into higher-level semantic units. For

example, individual expressions were matched in the previous example; in that

case, the move expression was identified. When a high-level generic type action

consisted of more than one expression, additional syntax had to be added to the

language to ensure the expressions matched were all from the same domain

action.

An example of this is the carrier, which needed to find several expressions in

the same domain action for it to qualify as one of its high-level operators. For

instance, load needed an expression to check the location of the portable, one to

acid it into the carrier's contents and one to disassociate the portable with its

location so it wouldn't be loaded again.

Finally, there was the problem related to the values in expressions. The

expressions were identified by looking for a candidate expression in the domain

that assigns a given variable with a value of a given type. This was insufficient

for the carrier because besides the expressions being of the correct form, they

also had to be referring to the same object. The object that is checked for

location must not only be the same type as the object being added to the

contents, it must be the same object. This is represented in OODDL and STRIPS

by an action parameter, a value that is matched at the beginning of the action

and then used in all the expressions in the action. Now additional syntax was

needed to represent parameters in groups of expressions. This added further

syntax and the language was by this point becoming very difficult to

comprehend!

4. 7 ObjectmOrientated GTL
The three problems with the flat version of GTL were: the lack of a good way of

handling disjunctions, lack of easy means to group elements into higher-level

semantic units and lack of a way to refer to values. The decision was made to

move towards a more structured object-orientated template representation; in

doing so, all three of these issues were resolved.

Mark Tully o M.Sc. Thesis o 2001 Page 76

Obicct-Oric'ntatcd Planning Domain EngilJc'cring
De-sigil of GTL

4.7.1 Structuring the Templates
In order to describe a generic type fully, it is necessary to group elements such

as expressions into actions, and then actions and variables into types. The

problem with the flat version of GTL is that extra definitions had to be given in

order to do this. If the template contained more inherit structure, then these

relationships would not have to be specified explicitly.

It was decided that the best structure would be one close to OODDL itself;

this would make it very easy to match to OODDL, which was a high priority.

The final version of GTL consists of object-orientated templates that matched

against the domain description. The object-orientation allows variables and

actions to be bound to a class, simplifying the conditions that need to be asserted

while pattern matching.

High-level generic type operators look very much like OODDL actions, with

parameters, preconditions and effects. Similarly to OODDL they are also

embedded within the class declaration and they can refer to the this object and

its member variables.

As before, GTL actions don't need to map directly onto a domain action, they

can simply map onto some of the expressions in a domain action. Similarly, the

use of parameters in the template need not be directly matched to action

parameters in the domain description; a template parameter is simple a label for

any value used in a domain action. Therefore, a parameter from a template

action could refer to a member variable in the actual domain, or any other value

that is used in the action being compared against the template. This allows

templates to refer to values easily.

4.7.2 Addressing Disjunctions
The next problem that needed to be addressed was the issue of disjunctions in

the templates. Disjunctions make the template harder to write because a

disjunction in one place often means that other dis_iunctions have to be made in

other places.

This is seen in the carrier template, where the contents variable can be either

an object bag or a maybe object reference. This in turn changes what the load

Mark Tully G M.Sc. Thesis e 2001 Page 77

Objc('l Orientated Planning Dcnm1in Engineering
Desig11 of GTL

and unload operators look like, because they will either assign the contents

variable if it's an maybe object reference, or add an element if it's an object bag.

One way of eliminating the need for disjunctions would be to create two

different templates, one for the multi-carrier and one for the single carrier,

however this is not ideal as the template definitions would then greatly increase

in size.

A better way of addressing the disjunctions is to abstract them out. All of the

disjunctions that occurred were related to the type of variable, for example

whether it was an object bag or an object reference. So instead of having

disjunctions, two new equivalence variable types were introduced. These are the

single-object reference and the multi-object reference.

These two variable kinds view object relationships in the most abstract

manner possible, a variable either can refer to one object, or more than one

object. Specifically, a single-object reference maps onto a variable that can refer

to zero or one objects. It can be matched to OODDL object references, maybe

object references, enumerated type variables and booleans. A multi-object

reference refers to zero or more objects. It can map to anything a single-object

reference can, plus it can also map to the OODDL object bag type.

Besides these two object reference variable types, there is also a boolean

variable type. The boolean can be asserted as true or false and assigned like a

normal variable. In the target domain however, it maps on to a boolean

expression rather than a variable. By asserting its value to be true or false in the

template action description, it is possible to assert state restrictions on the

objects undergoing actions, without caring how these states are actually

represented.

For instance, a boolean may be used to ensure a portable can only be loaded

into one carrier at a time. It would map to an expression that would be true when

the portable is unloaded and false when it is loaded. The exact expression would

of course depend on the domain encoding; for example at!=NULL (the location

is not NULL) or in-carrier==NULL (there is no carrier assigned).

Mark Tully • M.Sc. Thesis o 2001 Page 78

Object Orit..'ntated Planning Domain Engint·cring
Desig11 of GTL

A template assignment of true would map to an effect that makes this

condition true, conversely a template assignment of false would map to an

expression that makes this condition false. The boolean is a very flexible

variable clue to its high abstraction; it greatly increases the number of different

generic type encodings that can be recognised by a template.

GTL is very similar to OODDL and this means that a domain engineer

wishing to create a new generic type template doesn't need to learn an entirely

new language. However, GTL and OODDL are not identical. In a sense, a GTL

generic type template could be seen as a more abstract or "looser" version of an

OODDL type definition. Where OODDL states the types of its variables, GTL

states simply what they can be.

Mark Tully o M.Sc. Thesis o 2001 Page 79

Object--Orientated PI ann ing Domain Engi nccri ng
Desig11 of GTL

4.8 Transportation Template in GTL
The previous transportation generic types could be captured in GTL template

using three generic type definitions as so:

type Carrier

11 at is a single-value variable

11 contents is a multi-value

11 variable

Location at

Portable +contents

11 Action definitions

11 "P" denotes a precondition

11 "E" denotes an effect

Move(Location to)

P: at!=null

E: at:=to

end

11 Ensure the carrier is on a map

11 and check the package ~s at the

11 same location before loading

Load(Portable p)

P: at!=null

P: p.at==at

P: p.loaded==false

E: contents+=p

E: p.loaded:=true

end

Mark Tully o M.Sc. Thesis o 2001 Page 80

Obiccl Orientated Planning OClmain Fnginc-cring
Design of GTL

end

Unload(Portable p)

P: at!=null

end

P: p in contents

E: p.at:=at

E: p.loaded:=false

E: contents -= p

type Portable

Location at

Boolean loaded

end

type Location

end

GTL template definition of the transportation generic types

In the above template there are three generic types defined. The carrier type is

the main type in this template and it defines the functionality of the other two

types by association. This template completely captures the behaviour of the

transportation generic types.

The three actions, move, load and unload, are self-explanatory. An important

point about these actions is that they need not map directly to domain actions,

but, as previously stated, can be subsets of the actions instead. Therefore, an

action may have other effects besides those of the generic type operator.

A domain-engineering tool that was editing a domain containing the carrier

type could hide the statements that form the generic type actions and replace

them with their respective high-level collective names, simplifying the editing.

For example, an action in OODDL that was identified as performing, amongst

other things, a load operation; could have that section of it hidden and replaced

with the high-level equivalent, such as "load(thePackage)".

Mark Tully o M.Sc. Thesis o 2001 Page 81

Obicct Oricntatccl Planning Domain En~:inccring
Desig11 of GTL

4.9 Generic Type Services
It has been previously stated that generic types can be beneficial to both

planners and domain engineering tools. However, each type of tool may require

different services from the generic type. For example, planners would be

interested in search heuristics whereas domain-engineering tools would not.

Each GTL generic type description also describes exactly what services the

generic type implements, allowing tools to use only the generic types that will

bring it benefit. The ranges of services available from the generic types are far

reaching, but some of the services so far proposed are outlined in the following

sections.

4.9.1 Editing Tags for Domain Engineering
Editing tags supply information describing a method for editing instances of the

generic type. For example, a graph structure tag would denote object

relationships best edited with a graph editor. Such types include location

networks in transportation domains, or complex value transition networks.

Linear parameters could also be identified, such as task length for the multi

processor-scheduling generic type [Fox and Long, 2001] or fuel capacity for

fuelled mobiles. These could then be manipulated with a range slider GUI

widget or another appropriate interface.

Construction domain instances could be better edited using a tailored

graphical user interface. This would be better able to express the idea of an

object being composed of other objects, as seen in the MacGyver domain [Clark,

2000].

The domain-engineering tool would have to support a number of different

configurable editing methods that could be selected by the editing tag.

4.9.2 State Model
Object states allow another interpretation of the domain and actions to be

overlaid. This would allow the various states that an object can partake in to be

categorised and labelled. This could then form a basis for conveying further

Mark Tully o M.Sc. Thesis o 2001 Page 82

Objec·i--Oricntatccl Planning Dornain Fnginc·crillg
Dcsig11 of GTL

features to the client, such as state invariants or qualifying an object's state

[Gerevini and Schubert, 1998].

Each state definition would consist of a boolean expression involving the

generic type's variables and a label. Whenever the expression is true of an

instance of the generic type, it is labelled as being in that state. The states would

be disjunctive.

States would also allow a visual representation for a domain-engineering tool.

When creating a new object, a user could specify the state the object is in and

then the necessary invariants could be automatically met.

4.9.3 Planner Assistance
This service would centre on providing information to assist a planner during

search, such as heuristics or sub-solver specification.

Heuristics would present guidelines for manipulation of the generic types;

they could be used to prune the search space and improve performance, by

recommending situations where a specific action should never be performed, or

conversely where one should always be performed.

Sub-solver recommendations would mean describing sub-problems in the plan

in terms of generic type instances and then suggesting an algorithm for solving

them. For example, the ST AN planner is able to identify route-planning sub

problems involving mobile generic types; these are then handled by a separate

path-finding algorithm [Fox and Long, 2000b].

Implementing the sub-solver service would require specifications of sub

solvers to be published and then implemented by planners. The planners would

then be able to invoke the required sub-solver on the domain sub-problem to

solve it. An ultimate version of the sub-solver could even define an algorithm in

a simple scripting language or in terms of collections of closely interrelated

heuristics.

4.9.4 Visualisation
Visualisation is a way of using graphics to interpret a domain description.

Graphical descriptions could be suggested for the generic types and the generic

Mark Tu1ly o M.Sc. Thesis o 2001 Page 83

Object-Orientated Planning Dornain Enginccrin[c
Desig11 of GTL

type parameters linked to how they are displayed. 3D object descriptions could

even be parameterised in this way, allowing domain states to be viewed or

edited in a more "physical" sense.

Plan execution could be visualised using a simple extension of this idea.

4.10 Applying GTL
Now that a formal declarative language is available for describing generic types,

the problem becomes one of applying the template language to a source domain.

Throughout the discussion of GTL, thought has been given about the application

to OODDL.

It section 4.6, it was mentioned how the flat version of GTL could be matched

against an OODDL source domain by a brute force pattern match. This involved

a generate-and-test approach where every single possible assignment of values

was made and then tested against the conditions attached to the template.

The same method can be applied to the final version of GTL, which is simply

the flat GTL with additional structure. This method has been implemented in

Draughtsman allowing generic types from GTL templates to be identified.

This simple method works well, however it is notoriously inefficient. A more

efficient method would be one similar to the approach taken by TTM. TIM

constructs finite state machines describing behaviours of types in the domain. As

was discussed in section 4.3.1, generic types can also be viewed as FSMs. By

applying GTL templates to the domain FSMs it should be possible to quickly

search the domain for matching patterns without having to index though every

possible potential match. This would also allow GTL to be potentially applied to

STRIPS or other domain languages for which a FSM representation was

available.

4.11 Summary
Generic types are types that are described by their semantics, not their

implementation. They often represent common concepts in the mind of the

domain engineer, such as mobile objects that move on maps of locations, or

building blocks that build larger structures.

Mark Tully o M.Sc. Thesis o 2001 Page 84

ObJCCL-Ori'-'nlatcd Planning Domain Engineering
Desig11 of GTL

If the domain-engineering tool is able to assist the domain engineer in creating

these common types then it will be providing a good starting point for new

domains. Furthermore, if the tool is able to provide tailored sub-editors for some

of these types, the editing session will become more focussed on the underlying

semantics of the domain, rather than the syntax.

GTL is a template language for describing generic types. A GTL template can

be used to create a new type in the domain, or it can be used to spot existing

types in the domain, possibly giving the user a new viewpoint. Once a generic

type is identified, the user can manipulate the domain using more relevant

terminology, supplied by the template. GTL templates can potentially supply a

wide range of services to the template client; examples include domain

engineering hints, recommended heuristics and sub solvers for planning and

state models.

Mark Tu11y o M.Sc. Thesis o 2001 Page 85

Objcl't-Oricntated Planning Domain Engineering
Evaluation

5 Evaluation

The outcomes of this study have been two languages for domain modelling and

a domain-engineering tool. The first language, the Object Orientated Domain

Description Language (OODDL), is a language for describing planning domains

and their associated problems. The domain-engineering prototype tool

Draughtsrnan provides a CLI driven menu system for editing domains and

providing specialised sub-editors for any higher-level generic types found in the

domain. Draughtsman is also able to convert OODDL domains into PDDL

STRIPS.

The second language, the Generic Type Language (GTL) is a language to

describe generic types to both planners and domain construction tools alike.

GTL provides a means for domain experts to express services of the generic

types, such as heuristics, domain editing tags or invariants. Using an extendable

"plug-in" approach, both editors and planners alike can be extended through

GTL to recognise and manipulate new generic types. This allows domain

editing tools to become more context sensitive, for example using real-world

domain terms instead of generalised terms, and it allows planners to exploit any

performance benefits available from the generic types. In a sense, GTL allows

domain specific knowledge to be passed from the domain engineer to lhe

planner in a domain independent way.

5.1 Evaluation Aims
Of the three products of this study: OODDL, GTL and Draughtsman, it has been

decided to evaluate only OODDL.

Draughtsman assists creation of OODDL domains by providing a text menu

driven interface that uses wizards to create action expressions that are always

well typed. However, Draughtsman isn't user friendly enough in its current

prototype to be usable for domain construction by inexperienced users, so

OODDL will have to be evaluated without it.

Mark Tully o M.Sc. Thesis o 2001 Paue 86 M

Obicct--Oricntatcd Planning Domain Enginc·cring
Evaluation

Draughtsman's OODDL to STRIPS algorithms could be evaluated, however

work on this conversion module has so far been focused on simply creating a

sound and complete STRIPS domain, very little work has been done on

optimising the output. This means that although the STRIPS domains produced

are sound and complete, comparing the generated domains to hand coded

STRIPS at this stage would prove very little.

Evaluating GTL is difficult on two fronts: firstly, the language currently has

not been implemented beyond a specification and parser. GTL specifications

have been created for existing generic types (e.g. construction, mobile, carrier,

mps), however identifying these in a domain will require new domain analysis

algorithms that either build on the work of TIM or are entirely new.

Currently Draughtsman is able to read GTL specifications and instantiate

some templates by use of a brute force pattern match, however this approach has

little future when larger domains and greater numbers of templates are used.

However, OODDL can be evaluated by direct comparison to STRIPS by use

of a test on planning literate undergraduates. These tests will attempt to address

how easily a candidate can understand an existing domain excerpt in both

STRIPS and OODDL, and how easily they can create one.

The features that OODDL presents over STRIPS are:

• Object-orientated

• Easy maintenance of single valued-ness

• Explicit inheritance with overriding

• Enumerated values

• Typing

The aims of evaluating OODDL will be two fold: firstly to try to attain if

OODDL's object-orientated approach is easier for candidates to work with than

STRIPS flat approach. Some features of OODDL will be hard to evaluate on

simple tests, such as the possible benefits of object-orientated domains mapping

to real world domains more easily. The effectiveness of inheritance in modelling

Mark Tully o M.Sc. Thesis o 20{)1 Pane 87
"'

Object Oricnutecl Planning Donwin Fngineerint:
Evaluation

will also be hard to evaluate, as this will require large domains with many

classes, this is beyond the scope of a simple test.

The second objective when evaluating OODDL is to rate the effectiveness of

OODDL's variables against STRIPS predicates. OODDL's variables

automatically enforce single-valued-ness constraints, meaning that the scope for

errors due to missing negative effects is greatly reduced.

5.2 Designing the Tests
The test design for OODDL consisted of two parts, an understanding part and a

construction part. It is a written test and does not require a computer. The same

questions were asked in both STRIPS and OODDL to see which language the

candidates were more successful with.

5.2.1 Question 1: The Understanding Test
Initially the understanding test presented the candidate with a logistics domain

with all names mangled, similar to the mystery domain. The candidate's task

was to examine the underlying semantics of the domain and through

understanding the semantics, to suggest possible labels for actions and

predicates in the domain.

It was hoped that this would test how well OODDL's syntax displayed the

underlying semantics of the domain in comparison to how STRIPS was able to;

the hypothesis being that the structure exhibited by OODDL's object-orientated

approach would yield more clues as to the domain's meaning.

It was decided however that this test was too complex and difficult to grade, it

was very likely that candidates would either completely understand it or not

even know where to start.

The next approach for the understanding test was to present a flawed blocks

world operator and ask the candidates to identify the error. This would require

that the candidates understand what the operator was trying to do at the semantic

level and be able to relate it to the syntax for either the flawed STRIPS or

OODDL action on the test.

Mark Tu lly o M.Sc. Thesis o 2001 Page 88

Ohjcct-Oricntatccl Planning Dornain Engi11ccring
Evaluation

It was decided to use a simple STRIPS notation rather than PODL STRIPS

because PODL would most likely prove too confusing for the inexperienced.

Using POOL would have made the test results more applicable to the real world

where POOL STRIPS is the standard, however for the purposes of this test a

comparison with STRIPS was sufficient.

The simple STRIPS notation will essentially follow the POOL STRIPS format

but omit the LISP syntax. Instead actions will have clearly marked precondition

and effects lists. The same notation will be adopted for OODDL to minimise the

number of unnecessary differences between the tests.

Mark Tully o M.Sc. Thesis o 2001 Page 89

Objcct-Ori~'nlatecl Planning Domain Engineering
Evaluation

STRIPS Domain Description

Predicates:
on(a,b)
clear(a)
on-table(a)
arm-empty()
is-held(b)

Actions:
pickUpFromTable(block)

end

preconditions:
arm-empty()
clear(block)
on-table(block)

effects:
is-held(block)
•on -table(block)
•arm-empty()

putOnTower(block,to)
preconditions:

is-held(block)
clear(to)

effects:

end

on(block,to)
ann-empty()
•is-held(block)
•clear(to)

Completed STRIPS version of question 1

STRIPS Problem Description

Objects:
a,b,c,d

Initial State:
on(a,b)
clear(a)
clear(c)
clear(d)
on-table(d)
on-table(c)
on-table(b)
arm-empty()

Goal State:
on(c,d)
on(d,a)
on(a,b)

The flaw in the operator would be an omitted effect for marking the arm as

available after it stacks a block (marked in italics in this completed question).

The candidates would have to understand the preconditions and effects of the

action and explain why it is not possible for the action to be executed more than

once.

In the OODDL version of this question, the arm's empty status is recorded in

a boolean in the arm class. Both the OODDL versions and STRIPS versions of

these questions are expected to be of the same difficulty.

Mark Tu11y o M.Sc. Thesis o 2001 Page 90

Object Orientated Planning Dornai11 Enginccri11g
Evaluation

5.2.2 Question 2: Negative Effects Test
The purpose of the rest of the test is to identify whether OODDL was able to

address two particular theorised shortcomings of STRIPS. The first shortcoming

was to do with missing negative effects breaking the domain model. This occurs

in STRIPS, when a particular relation between two objects is supposed to be

single-valued and an operator adds a new predicate to change the relation and

forgets to remove the previous one. This was discussed in detail in section 3.4.2.

OODDL addresses this by its use of variables that automatically maintain

their single-valued-ness when assigned. The test should highlight this difference

and attempt to show OODDL's benefits in that area.

The question designed to address this issue was a domain that involved

moving an object from being in one bucket to being in another.

STRIPS Domain Description

Predicates:
in(thing,bucket)
bucket(ob)
thing(ob)

Actions:
Fill out the contents of this
action!
move(thing,from,to)

preconditions:

effects:

end

STRIPS version of question 2

STRIPS Problem Description

uu
bucket! bucket2

Objects:
bucket 1, bucket2, thing 1

Initial State:
bucket(bucket 1)
bucket(bucket2)
thing(thing 1)
in(thing 1 ,bucket I)

Goal:
in(thing 1 ,bucket2)

The candidate would have to complete the preconditions and effects of the

existing operator. This question would attempt to catch candidates who are not

Mark Tully o M.Sc. Thesis o 2001 Page 91

Object--Orientated Planning Dorrwin Engineering
Eval1totion

thinking about negative effects and who fail to remove the existing in predicate

instance when instantiating a new one.

There will be two OODDL variants of this question. The first variant will

track the object's location by use of an object reference variable. This variable

can only have one value at a time and so all the candidate need do is assign the

variable with the new bucket.

type Thing

Bucket *inside

move-into-bucket(Bucket b)

end

end

type Bucket

end

preconditions:

effects:

inside:=b

Maybe object reference version of OODDL question 2

The text in italics would be the part the candidates would need to write

The second variant of this OODDL question would represent the object's

location by each bucket having a contents object-bag variable. The move

operator would have to remove the object from the contents of one bucket, and

acid it to the contents of the other.

Mark Tully o M.Sc. Thesis o 2001 Page 92

Ohiccl-Oricniatcd Planning Do11Wi11 fngillcc:t·in~~
Evaluation

type Bucket

Thing contents{}

move-into-bucket(Bucket b,Thing t)

preconditions:

end

type Thing

end

end

effects:

b.contents-=t

contents+=t

Object bag version of OODDL question 2

The text in italics would be the parts the candidates would need to write

This variant of the question was designed to see if the candidates were as

likely to omit negative effects (in this case the effect of removing the object

from the previous bucket) as readily in OODDL as it is predicted they will in

STRIPS. It is hoped that by explicitly representing the contents relation with an

object bag, the candidates will realise that moving will require the removal of

the object from one contents, and the addition of it to the other. This should

result in candidates being more aware of negative effects in ODDDL than they

would in STRIPS.

5.2.3 Question 3: Enumerated Types Test
The second area where it was theorised STRIPS has a weakness is the use of

enumerated types. In STRIPS, domain constants often have to be implemented

as objects with unique predicates to identify them, as discussed in section 3.8.1.

This can cause confusion for inexperienced users because the distinction

between the unique predicates and the unique objects that possess this unique

predicates becomes blurred.

For example, in a lift domain it is required that a lift be recorded as either

being at floor one, two or three. To represent this in STRIPS a unique predicate

Mark Tu11y o M.Sc. Thesis o 2001 Page 93

Object Orientated Planning Domain Fngin<,;'Cring
Evaluation

could be assigned to each floor to allow operators to differentiate between them

in their preconditions: e.g. "floor_one(x)", "floor_two(y)" and "floor_three(z)".

OODDL, by comparison, directly supports enumerated types, allowing the

user to simply assign a pre-declared value of either "one", "two" or "three" to

the object's "floor" variable.

To highlight this difference the tests require the candidate to write two

operators in either OODDL or STRIPS. The operators have to move the lift from

floor two to floor three and from floor one to floor two. This requires the

candidate to establish the identity of the floors passed to the action, and then

assert the correct add and delete effects to move the lift. This gives the

candidates the opportunity to forget negative effects and to fail to establish

preconditions for differentiating between the floors.

Mark Tu1ly o M.Sc. Thesis o 2001 Page 94

Objcct--Ori,:nlatccl Planning Donwin [P!-!.in._'criil~
Evaluation

STRIPS Domain Description

Predicates:
at-floor(lift,floor)
lift(ob)
floor-1 (ob)
floor-2(ob)
floor-3(ob)

Actions:

moveFroml To2(lift,wasFloor,newFloor)

end

preconditions:
at-floor(lift, wasFloor)
floor-] (wasFloor)
floor-2(new Floor)

effects:
at~floor(lUt.newFloor)
•at-floor(lift, was Floor)

moveFrom2To3(lift,wasFloor,newFloor)

end

preconditions:
at~floor(lijt, wasFloor)
j7oor-2(wasFloor)
floor-3(newFloor)

effects:
at-floor(l{ft,newFloor)
•at-floor(lijt, wasFloor)

Completed STRIPS version of question 3

Mark Tully o M.Sc. Thesis o 2001

STRIPS Problem Description

floor3

floor2

lift 1

floor1

Objects:
lift1, floorl, floor2,

t1oor3

Initial State:

Goal:

floor-1 (floorl)
floor-2(floor2)
t1oor-3(floor3)
lift(lift 1)
at-floor(lift 1 ,floor 1)

at-floor(lift l ,floor3)

Page 95

Objccl-Oricntatcd Planning Dont~1in Enginccri11g
Evaluation

In OODDL, the use of a "FloorNumber" enumerated type simplifies the

domain description:

enum FloorNumber { one, two, three }

type Lift

end

FloorNumber

moveFromOneToTwo()

preconditions:

floor==one

end

effects:

floor:=two

moveFromTwoToThree()

preconditions:

floor== two

effects:

floor

floor:=three

end

Completed OODDL version of question 3

It is hoped that candidates constructing the STRIPS versions will make errors

both due to missing negative effects and confusion between the unique domain

objects representing the floors in the domain and the unique floor identifying

predicates.

5.3 The Tests
The tests consisted of four A4 typed sheets per language. Each test sheet came

with a concise manual for the language for the candidates to refer to if they

couldn't understand the domain excerpts. The candidates were allowed as much

time as they needed, but they were not allowed to discuss the tests with one

another.

Mark Tully o M.Sc. Thesis o 2001 Page 96

Objcci-Oril'fltatcd Planning Domain Fn)c'incct·ing
Evaluation

The candidates chosen were second year undergraduates form the Artificial

Intelligence degree at the University of Durham. A total of 25 candidates were

recruited which resulted in 11 results for STRIPS and 7 for each of the OODDL

papers. The candidates were only allowed to take one paper.

The tests were conducted in two phases; the initial phase was a pilot test that

was used to identify errors or potential improvements in the tests themselves.

This identified a couple of typographical errors that were subsequently fixed, but

also showed that none of the candidates doing the STRIPS tests missed out

negative effects.

It was thought that this might have been because the operator template on the

test had a field for both negative effects and positive effects; causing the

candidates to ask themselves what negative effects there were. In the next

edition of the tests STRIPS operator templates had only a single effects field, as

would be the case if the candidates were working with PDDL where negative

effects are created by prefixing effects with a not operator. The OODDL tests

already had a combined effects field and so this evened the field between the

tests.

The tests can be found in sections 7.3 and 7.4 in the appendix.

5.4 Expected Results
One of the main errors expected from STRIPS candidates is the failure to

maintain single-valued-ness during construction of actions. This shouldn't pose

a problem on the OODDL version of the tests.

It is anticipated that candidates on the STRIPS test will break single-valued

ness invariants on questions 2 and 3 by omitting negative effects.

The first variant of question 2 on OODDL paper 1 allows scope for candidates

to omit negative effects also, however it is hoped that fewer candidates will

make this error on the OODDL question. The OODDL question uses object bags

to represent the bucket contents and so the candidate could add the object to one

bucket and forget to remove it from the previous one. However, is hoped the

explicit declaration of the bucket contents as an object bag will mean the

Mark Tully o M.Sc. Thesis o 2001 Page 97

Object Orientated Planning D\muin Fngincc:·ing
Evaluation

candidates think about the move operation in two stages and subsequently both

add the object to the new bucket and remove it from the old one.

In the second variant of question 2 on the OODDL paper, an object reference

variable is used to represent the bucket containing the object. It is anticipated

that most, if not all candidates will get this question trivially correct.

Question 3 offers further opportunities for STRIPS candidates to omit

negative effects and thus break single-valued-ness invariants. Furthermore, this

question may prove quite difficult to candidates who are not familiar with the

technique of using transitive assertions to assert facts. For instance, stating:

at-floor(lift,floor)

floor-l(floor)

To encode the fact that "lift" is at floor-1.

The OODDL version of this question makes use of OODDL's enumerated

types to provide a trivial encoding. It is anticipated that a significantly higher

percentage of candidates will correctly answer the OODDL version as opposed

to the STRIPS version.

Question 1 should be of equal difficulty in both STRIPS and OODDL, this

question will highlight the "instinctive" understanding candidates possess of

predicate based language and object-orientated languages respectively. It is

expected than OODDL will be generally more easily understood.

5.5 Results
The following table shows the length taken for each question by the candidate,

along with the result of the question.

Mark Tnlly o M.Sc. Thesis o 2001 Page 98

Ohicct--Oricntatcd Planning Dotwiin Enginccrin)!
Evaluation

;,c- _;-

Paper
:-"":

~aper Ql Q2 Q3r

ID :: time time time"v 7

1 OODDL(l) 3 12

2 STRIPS 8 2 7

3 STRIPS 4 2 4

4 STRIPS 8 2 3

5 OODDL(l) 10 5

6 OODDL(2) 9 4 3

7 OODDL(2) 9 5 2

8 OODDL(l)

9 OODDL(l) 9 2 5

10 STRIPS 10 6 4

11 OODDL(2) 10 2 3

12 STRIPS 7 3 5

13 STRIPS 5 2 5

14 STRIPS 6 5 3

15 STRIPS 6 6 5

16 STRIPS

17 STRIPS 6 5 3

18 OODDL(2)

19 OODDL(2) 9 1 5

20 OODDL(2) 3 3 1

21 OODDL(l) 8 3 5

22 OODDL(l) 8 7 1

23 OODDL(2) 5 5 3

24 OODDL(l) 5 5 3

25 STRIPS 7 2 4

Q'{i';;: Q2 Q3

correct correct_ correct~
<>\J ~ ~ - 1 -: -- -Ji!:Wt-

./ ./ ./

X ./ X

./ ./ ./

./ ./ X

X X X

./ X ./

X ./ ./

X X ./

X X X

X X X

./ X X

./ ./ X

./ ./ X

./ ./ X

./ ./ X

X X X

X ./ ./

./ ./ ./

./ ./ ./

./ ./ ./

X X ./

./ ./ ./

./ ./ ./

./ ./ ./

./ ./ ./

Results of tests, blank timings represent missing times from the candidates

Mark Tully " M.Sc. Thesis • 2001 Page 99

Object Oril'ntated Planning Domain Engineering
Evaluation

The following table holds additional information on the test results in the form

of comments:

,'' ,;:\

Paper
Paper Comments "'

"
~< ;

·ID "
'

1 OODDL(J) All correct.

2 STRIPS In Q3, candidate gives correct effects however he got his

predicates and objects confused in the preconditions.

3 STRIPS Fully correct, candidate even put in typing preconditions

in the actions, showing a good understanding of the

available predicates.

4 STRIPS In Q2 the candidate uses negative preconditions.

In Q3, candidate gives correct effects however he got his

predicates and objects confused in the preconditions.

5 OODDL(l) In Q3, candidate gives correct effects however he got his

predicates and objects confused in the preconditions.

6 OODDL(2) In Q2, candidate has the correct action structure, however

he makes direct reference to problem objects instead of

using the action parameters.

7 OODDL(2) Candidate misunderstands Q 1.2 and proposes a new action

instead of correcting the existing one.

8 OODDL(l) In Q2, candidate produces correct structure but

systematically swaps the left and right side of every

expressiOn.

In Q3, candidate produces correct preconditions and then

refers to a problem object directly in the effects, instead of

using the action parameters.

Mark Tully • M.Sc. Thesis • 2001 Page lOO

Object Orientated Plannin!l Dunl~lin En~inccrim~
Evaluation ,_, c. ,

9 OODDL(l) This candidate didn't really understand the test at all.

Some questions left blank. Made use of natural numbers

and invented variable names in Q3.

10 STRIPS Candidate fails to comprehend any of the domain excerpts.

11 OODDL(2) On Q2 and Q3, this candidate has correct structure, but

fails to access member variables correctly. On Q3 integers

are used.

12 STRIPS On Q3, candidate breaks the single-value-ness of the lift

floor. He also shows confusion between objects and

predicates.

13 STRIPS Candidate adds typing preconditions on Q2.

In Q3 he fails to maintain single-value-ness and he makes

use of equality operators for a variable that to him is

clearly single-valued.

14 STRIPS In Q3, candidate fails to maintain single-value-ness and

also confuses objects and predicates completely.

15 STRIPS In Q3, candidate fails to maintain single-value-ness and

also confuses objects and predicates completely.

16 STRIPS In Q2 and Q3 the candidate fails to maintain single-value-

ness. In Q3 he confuses objects and predicates completely.

17 STRIPS All correct+ candidate makes use of typing on Q3.

18 OODDL(2) On Q2 the candidate checks value is not already set in

preconditions.

19 OODDL(2) All correct+ candidate checks value is not already set in

preconditions.

20 OODDL(2) All correct.

Mark Tully o M.Sc. Thesis o 2001 Page 101

Ohjcct-Oricntatccl Plmmin!2 Domain Ens.rinccrin!2
Evaluation ,, ' '

21 OODDL(1) In Q2, the candidate had the right idea but made use of the

wrong operator. He attempted to assign to the contents set

instead of using add/remove operations on it.

22 OODDL(l) All correct.

23 OODDL(2) All correct.

24 OODDL(l) All correct.

25 STRIPS All correct + candidate makes use of typing in Q2.

5.6 Discussion of Results
The following table summaries the number of correct answers, along with the

time taken, for each of the questions on the tests.

Paper and Question %Correct
Average Time for Correct

Answers in Minutes

OODDL Ql 9/14 (64%) 6.2

STRIPS Q1 7111 (64%) 6.2

OODDL(l)Q2 317 (43%) 810

OODDL(2) Q2 517 (71 %) 3.5

STRIPS Q2 9111 (82%) 3.9

OODDLQ3 11114 (79%) 2.9

STRIPS Q3 3/11 (27%) 3.7

5.6.1 Question 1
The difference between results on question 1 is startling small. Both the

OODDL and STRIPS questions took, on average, the same amount of time to

solve and had the same percentage of correct answers.

This question was designed to evaluate how easily a domain description in

both OODDL and STRIPS could be understood by the candidate. If they

10 This high number is suspected to be clue, at least in part, to candidate 1 misreporting the
time. If candidate 1 is omitted from this mean then the result is 6 minutes.

Mark Tully o M.Sc. Thesis o 2001 IP'age 102

Object Oril'nUtt'd Pl;mning Dumnin Engineering
Evaluation

understood it to a good enough degree, they should have been able to identify

the error in the operator. As candidates answered the question in the same

amount of time and with the same accuracy regardless of the domain language,

it would indicate that STRIPS is no harder to understand than OODDL.

Although it was expected that OODDL would be demonstrably easier to

understand than STRIPS, the domain was necessarily very trivial. It is now

hypothesised that the benefits of object-orientated domain descriptions may only

become relevant on larger domains with many more classes and actions. This is

perhaps analogous to small programs being equally well understood in C and

C++, but larger programs being easier to comprehend in C++. A larger domain

could not have been used in this test clue to the time restraints placed on the

tests.

Overall, this question could have been improved by using a larger domain

example where OODDL's inherit structuring of the domain would have been

better used. Although that could not have been done here, perhaps a test purely

addressing the unclerstandability could use larger and more in-depth domains.

5.6.2 Question 2
Question 2 was designed to evaluate OODDL's facilities for preventing the

omission of negative effects. It was expected that answers for the STRIPS

question would frequently omit negative effects, in this case, adding the fact that

the object was in the destination bucket but failing to assert the fact it was no

longer in the source bucket.

Unfortunately, a firm confirmation of this hypothesis cannot be drawn from

these results. There was only one instance of missing negative effects: from

STRIPS candidate 16. Question 2 on OODDL paper 1 was designed to allow

candidates to omit negative effects on an OODDL question. Although no

candidates omitted negative effects on the OODDL version, the statistical

variation between a single candidate making an error on STRIPS and no

candidates making an error on OODDL is not significant enough to draw a

conclusion.

Mark Tully o M.Sc. Thesis o 2001 Page U03

Object-Orientated Pbnning Domain Engineering
Evaluation

It is still felt that missing negative effects are a common fault in STRIPS

domains, however it is likely that this particular question was simply unable to

capture this fact. For a domain engineer to omit negative effects in a domain

description it would probably require a larger domain description with more

complicated actions. In this question, the candidate only had to maintain one

predicate, the object's location. If they had been required to maintain multiple

predicates, it is more likely that some negative effects would be omitted.

This question was carefully designed to be simple and to the point because it

was believed that the candidates would not be experienced enough to work with

more complex domains. Although some candidates were unable to complete the

question, most candidates found it very trivial. It is now believed that the

candidates were able to draw on other areas of experience, such as

undergraduate logic courses and Java courses, more than was expected. It is now

anticipated that the candidates would be able to complete a more complex

question in future tests, one that would provide greater scope for errors, but time

and resource constraints prevented further testing.

Although question 2 did not yield the expected result with regard to negative

effects, it did yield other useful information that can be analysed. Primarily the

results indicate that a higher percentage of candidates were able to correctly

answer the question in STRIPS than in OODDL. Indeed only two candidates

made errors in the STRIPS paper on this question. One as mentioned was due to

missing negative effects, the other indicated confusion between predicates and

objects that resulted in badly formed expressions. As discussed later in the

analysis of question 3, this confusion between predicates and objects is shown to

be a common error in the STRIPS tests.

In OODDL paper 2, or OODDL(2), all the candidates were required to do was

to simply assign a single variable that was already defined with the only

parameter passed into the action. Two candidates made errors with this: the first

directly accessed the object instance by name from the problem definition.

Clearly the action should not refer directly to object instances in the domain, but

should instead work with either the implicit "this" object (as in this case), or

with a parameter of the action. As will be discussed in the analysis of question 3,

Mark Tully o M.Sc. Thesis o 2001 Page 104

Obicct-Oricntatccl Planning Domain Engineering
Evaluation

the confusion between problem domain object instances, and the action

parameters that are actually available to use, proved to be a very common error

in OODDL.

The second candidate's error on the OODDL(2) test was much in the same

vain: he made the error of prefixing the variable with the name of the class, as

one would do to access a static class variable in C++ or Java. Static class

variables are not a feature of OODDL.

The difference between the accuracy percentages of STRIPS and OODDL(2)

appear large but, due to the small sample, they only evaluate to approximately a

single candidate. The difference in the timings is likewise too small to be

considered significant.

The OODDL(l) variant of question 2 used object bags to represent the

contents of the bucket. The structure of the action that the candidates were

required to produced was identical to the STRIPS question. The candidate

needed to add the object to one bucket's contents with OODDL's add operator

("+=")and remove it from the other using the remove operator("-=").

Of the seven candidates who attempted this question, four answered

incorrectly. Two of the candidates attempted to assign the bucket contents to be

equal to the object. This is simply incorrect use of the object bag, or indeed any

vector data structure where an update is required. Of the remaining erroneous

candidates, one was simply unable to answer any questions correctly and

indicated a complete lack of understanding of the test; the remaining candidate

gave the correct structure of action, but swapped the left and right sides of the

add and remove expressions around, creating a badly formed expression.

The most likely reason for incorrect use of the object bag variable in the

OODDL question is that none of the other questions on the paper made use of

one. This meant that the candidate had no "working example" to base their use

of object bag add and remove expressions on, meaning they weren't sure how to

add or remove objects from the bag. It had been originally believed that the

candidates' experience with set theory, Java or C++ would make the object bag

seem obvious, however this did not seem to be the case. Although they had been

Mark Tully o M.Sc. Thesis o 2001 Page 105

Ohjcct- Orientated Plannin•2 Domain Fn~inccrin~
Evaluat-ion ~~ ~ '

given a concise OODDL reference sheet showing all operators and variable

types, hardly any candidates used it at all.

With a few more examples or a little experience, the candidates would almost

certainly recognise how to add and remove objects from an object bag in

OODDL. STRIPS, in essence, has two effects: add fact or remove fact, different

data structures yield no new syntax and subsequently no opportunity for

ignorance.

This does not mean it can be stated that STRIPS is easier because it has less

syntax, any more than it could be stated that binary notation is easier for humans

than ASCII, just because it has a smaller set of symbols.

The final point about question 2 on the OODDL(l) paper is the significantly

larger amount of time spent on the question. It is incredibly likely that this was

simply due to the candidates who did answer the question, having to refer to the

language reference sheet to answer the question. It is hypothesised that if the

candidates were to be asked another question using object bags the time would

be significantly shorter.

Furthermore, candidate 1 took 12 minutes to answer this question, which

severely upset the mean time. It is expected that this candidate misreported the

time and combined it with the time for question 3, which he doesn't supply.

OODDL doesn't have a large amount of syntax and a user could easily learn

the syntax and work without a reference sheet, so it would be unfair to

extrapolate this example into a statement about OODDL' s ease of use.

Overall, question 2 could have been improved by asking candidates to do

more things in the action. This would have widened the scope for the expected

omission of negative effects. Candidates may have benefited from a working

example of object-bag addition and deletion in the OODDL(l) variant of the

question, this would have precluded simple syntax errors arising from the lack

of familiarity with the object bag.

Mark Tully a M.Sc. Thesis o 2001 Page 106

()hjcl'! Orientated Plannin!..'. Dom<lin Fn~iJtcerin•!
Ev~Il11t1tion '- ' c.

5.6.3 Question 3
The third and final question of the tests was designed to evaluate OODDL's

enumerated type features. In this test, the OODDL candidates gave significantly

more correct answers than the STRIPS candidates did; the OODDL candidates

also took, on average, less time.

This question described a simple lift domain. The lift could be at one of

several floors at any time. In STRIPS the floors were described by objects, each

of which has a different typing predicate to differentiate them. In OODDL, the

floors were described by an enumerated type. The candidates were asked to

construct two operators, one to move the lift from floor 1 to floor 2, and one to

move it from floor 2 to floor 3.

In OODDL, this required the candidates to establish in the preconditions that

the floor variable was equal to the enumerated value for the floor required. The

effect needed was a simple assignment to the floor variable with the new value.

In OODDL, the floors did not need to be passed in as action parameters; they

could be referred to directly. This is shown in the specimen answer in section

5.2.3.

In STRIPS however, the candidate was required to do a little more work in

order to achieve the same effect, they had to assert both that the lift was at the

floor passed as the source floor, and that the source and destination floor passed

in were the ones required. This gave greater scope for errors from the STRIPS

candidates.

On the OODDL test, only three candidates answered this question incorrectly.

One candidate referred directly to problem domain objects instead of making

use of the action parameters. The other two made the trivial error of substituting

the numeral for the constant name of the floor, i.e. putting "1" instead of "one"

etc. Otherwise, their structure and intentions were perfectly clear.

The STRIPS candidates made two common errors, the most overwhelming

common of which was confusion between predicates and objects. As discussed

in section 5.4, it was required that the candidate assert transitively that the lift be

at a specific floor. This should have been achieved with:

Mark Tully 0 M.Sc. Thesis o 2001 Page 107

Object-Orientated Planning Donwin Engineering
Evaluation

at-floor(lift,floor)

floor-l(floor)

Yet, a number of candidates attempted to assert this fact with:

at-floor(lift,floor-1)

Besides these mistakes, there were two cases of missing negative effects, which

broke the single-valued-ness invariant for the lift's floor relation.

The difference in the time spent between the two questions is most likely an

indication of the extra work required for the STRIPS version. In STRIPS, the

candidates have more preconditions to both write and think about.

The techniques of transitively asserting facts in preconditions is a very

common one in STRIPS, it is used in most domains, including the standard

logistics domain where it is used to assert that a package is at the same location

as the vehicle loading it.

at(package,loc)

at(vehicle,loc)

If candidates do not understand how to use transitive assertions in this way, then

it is very likely that they would run into a number of problems when attempting

to encode domains in STRIPS.

OODDL doesn't make use of transitive assertions; instead, variables can be

directly compared to one another. An equivalent statement in OODDL for the

previous example would be:

package.at==vehicle.at

OODDL's use of enumerated types and facility to directly compare variables is

a powerful tool when encoding domains and, as this test has shown, is easier and

quicker to work with than transitive assertions.

5.7 Summary of Tests
The tests were successful in demonstrating that OODDL can address some

common errors in STRIPS domain modelling. It was hypothesised that omitted

negative effects would be a prevailing error in the answers from the STRIPS

Mark Tully o M.Sc. Thesis o 2001 Page 108

Objcct--OrienLtled Planning Donlai11 Fng:ir~c·L:ring
Evalitll tion

tests, however instead the prevailing error was found to be a confusion between

predicates and objects possessing the predicates.

OODDL's enumerated type support allowed candidates to easily construct the

lift domain used in question 3. By contrast, a high proportion of the STRIPS

candidates were unable to correctly answer this question, mainly due to

confusing predicates and objects.

There were only three cases of omitted negative effects across all of the

STRIPS tests. It is believed that this small number of errors is related to the

simplicity of the domains used in the tests. It is anticipated that omitted negative

effects would be a prevailing error in more complex questions featuring more

state maintenance from the domain actions. In these cases, OODDL's use of

single-valued variables would allow for easier domain construction.

A further hypothesis was that OODDL is easier to understand than STRIPS.

These tests have demonstrated only that OODDL is no harder to understand than

STRIPS. However, it is postulated that with larger domain instances, OODDL's

inherit structure would make the description more understandable than the

equivalent encoding in STRIPS.

Another interesting point with the test results is that some STRIPS candidates

put in typing preconditions in the actions, to ensure the parameters were of the

correct type. In these specific questions, the lack of different types in the

domains meant that the domain description was still completely correct without

typing preconditions, however it is unlikely that the candidates who omitted

them did so for that reason. If the tests had have required the candidates to

differentiate between similar types, it is likely that many of the candidates would

have omitted typing preconditions and subsequently produced incorrect answers.

As parameters to OODDL actions are all typed, it is not possible to omit

typing requirements in OODDL. This could have been used to demonstrate

another key difference between STRIPS and OODDL.

One of the common errors from the OODDL candidates was confusion

between problem domain object instances and actions parameters. In the

interactive domain-engineering tool Draughtsman, action expressions are built

using wizards that present lists of variables, followed by operations that can be

Mark Tully o M.Sc. Thesis o 2001 Page 109

Object-Orientated Planning Dornain Engineering
Evaluation

performed on them, finally followed by values that can be used with the

operators. Draughtsman would have forced candidates to make well-formed

expressions and it would have been impossible for the candidates to refer to

problem domain objects, as they wouldn't be listed in the expression creator

wizard. Essentially, none of the errors made by the OODDL candidates on

questions 2 and 3 could have been made if the domains had been created in

Draughtsman.

It was discussed in section 2. 7, that an earlier version of Draughtsman edited

STRIPS domains with wizards, thus ensuring preconditions and effects were

well formed. Although this tool would have stopped STRIPS candidates

becoming confused about the difference between objects and predicates, as seen

in question 3, it would not have assisted them in creating the transitive assertions

required, nor would it have offered assistance in enforcing single-valued-ness

invariants. This level of assistance is not available in STRIPS because it is not

structured enough to allow users to declare these requirements.

Mark Tully e M.Sc. Thesis o 2001 Page 110

Obiccl Orientated Planning Dornain Engineering
Conclusiou

6 Conclusion

This work has been an investigation into the usefulness of object-orientated

techniques in planning domain engineering. The products of the study were: an

object-orientated domain modelling language (OODDL), an object-orientated

generic type description language (GTL) and an interactive domain engineering

tool that worked with these two languages (Draughtsman).

6.1 OODDL
OODDL was developed by analysing the common requirements of planning

domain models and taking into account the shortcomings of STRIPS. OODDL's

object-orientated structure was created to allow planning models to relate more

easily to real world domains.

The decision to use variables instead of predicates was taken to make OODDL

more accessible to a wider technical audience, such as those familiar with C++

or Java, but not necessarily comfortable with predicate logic. The use of

variables also allowed the creation of explicit object reference relations between

objects, references that were explicitly stated as only having a single value; this

invariant was enforced by the language design.

OODDL gave the domain engineer access to tools such as full typing,

inheritance, method overriding and enumerated types. The hypothesis being that

a large number of computer programmers are already familiar with such tools

and would be able to model domains easily.

To evaluate how useful OODDL is, it was pitted against STRIPS in a written

test taken by undergraduate candidates familiar with both Java and planning in

general. The tests gave domain excerpts that the candidates had to either

understand and answer questions on, or complete by means of adding

preconditions and effects to existing operator skeletons.

A simple STRIPS syntax was used rather than the bracket intensive PDDL

because it the tests were designed to compare the ideas behind OODDL to those

Mark Tully e M.Sc. Thesis o 2001 Page 111

Ohjcci---Oricnt;tt,~d Plan11ing [)(ltmtin Fn;.cinccrit\L'
Conclusion

behind STRIPS. PDDL would have added an unnecessary layer of noise to the

results.

The results indicate that both OODDL and STRIPS are equally easy to

understand. However, it was further hypothesised that large OODDL domains

may be easier to comprehend than large STRIPS domains; in the same way that

large object-orientated C++ programs are generally easier to work with than

large C programs.

The use of variables in OODDL had a generally positive effect on the models,

eliminating some errors and making domains descriptions more concise.

However, it caused confusion for some candidates; these candidates made

fundamental errors that would have been errors in any language, such as

referring to variables outside the scope of the action. The use of the domain

engineering tool Draughtsman would have eliminated these errors by helping the

user build valid actions.

Although it was not possible to evaluate all features of OODDL in depth, the

evaluation of OODDL's enumerated types was very beneficial. Candidates

working with OODDL were able to model the specified domain with over three

times the success rate of the STRIPS candidates; they also created the models in

less time.

OODDL clearly demonstrates that well designed higher-level semantics can

assist the domain engineer in domain modelling.

6.2 GTL
The usefulness of GTL, the generic type language, could not be directly

evaluated. This was clue to a need for tools that applied GTL descriptions to

domains or used them to build domains. Draughtsman was being extended to do

this but was not yet at a testable stage.

Mark Tully o M.Sc. Thesis o 20<H Page 112

Obicct-Oriclllatccl Phnning [),llllain En~ill'''-'rin~:
Conclusion

GTL has been used to model several generic types, including:

• Mobiles

• Carriers

• Construction

• Multi-processor schedules

The potential for GTL to offer a secondary channel of communication

between the domain engineer and the planner is great, and there is a large scope

for future work with GTL.

6.3 Draughtsman
Draughtsman is a tool capable of editing OODDL domains and translating them

into PDDL STRIPS. It can also be compiled into a library and used to parse and

obtain information about these domains. This functionality was demonstrated by

attaching a Java GUI to the library and using it to edit and translate OODDL

domains. By using Draughtsman, domain engineers can also be assured that

their domains will be syntactically correct.

Draughtsman is able to apply some GTL templates to a domain to identify

generic types. In particular, it can recognise mobiles and location maps, and then

provide a customised map editor allowing the user to manipulate the map. With

further work, Draughtsman could apply GTL templates to a domain and then

allow clients to access the results though its library APJ.

The high-level nature of OODDL allows different underlying domain

modelling languages to be targeted for translation, for example ADL or OCL.

Draughtsman provides a solid base from which such work could begin.

6.4 Scope for Future Work
The scope for future work in this area is huge. Good domain engineering tools

will allow planners to be more easily deployed, and raise the status of planning

in the wider community.

Mark Tully o M.Sc. Thesis o 2001 Page 113

Object-Orientated Planning Domain Engineering
Conclusion

OODDL can provide a foundation for this work, further development on

OODDL could include:

• Static class variables

• Disjunctive preconditions

• Conditional or quantified effects

• HTN extensions

Preliminary work has already been done on implementing conditional effects

by using multiple STRIPS actions to represent a single OODDL action. Each

STRIPS action has different preconditions to ensure its effects only take place

when the original condition is true.

GTL is also a useful tool, for both domain engineer tools and planners. It will

allow domain specific information to be encoded in a domain independent

manner, allowing heuristics and editing hints to be reapplied to any domain that

has a similar structure. Future development on GTL could include:

• Extending TIM to use GTL templates

• Development of more GTL services, such as a detailed grammar for

temporal heuristics or sub-solver specifications

Common to the development of both OODDL and GTL is Draughtsman.

Draughtsman provides a flexible tool for working with, or allowing other tools

to work with, OODDL and GTL. Future development on Draughtsman could

include:

• Further development on the Java based GUI

• Use of TIM domain analysis techniques to optimise STRIPS output

• Improve the GTL application algorithms for efficiency and

compatibility

• Ability to create new domains based on GTL templates

• Integration with existing planners to create a one stop planning

solution from modelling through to resultant plan

• Translation from OODDL to other languages such as ADL or OCL

Mark Tully o M.Sc. Thesis o 2001 Page 114

Obicc·t Oricnt;ltcd Plannin~~ Domain Engineering
ConclusioJt

6.5 Summary
This work has been an investigation into the usefulness of object-orientation in

planning domain engineering. This involved the development of the object

orientated domain description language, OODDL, which was shown to be more

effective at describing certain domains than the existing STRIPS language.

The role of generic types in domain engineering was also investigated,

cumulating in the development of the generic type description language, GTL.

GTL offers great potential as a new tool for conveying domain-dependent

information from the domain engineer to the planner in a domain-independent

manner. Some of the potential uses for GTL and its possible future

developments are discussed.

A domain-engineering tool called Draughtsman was developed as a means of

working with OODDL and GTL. Draughtsman can translate OODDL domains

into PDDL STRIPS meaning that OODDL will be compatible with many

existing planners; this should assist its adoption as a domain engineering

language.

Mark Tully o M.Sc. Thesis o 2001 Page 115

Object-Orientated Planning Domain Engineering
Appendices

7 Appendices

7.1 Notation for OODDL Domains
During the development of OODDL, all domains were edited by the domain

engineering tool Draughtsman. Draughtsman uses a binary file format to store

domains rather than an ASCII-based meaning that a pm·sable formal grammar

was not required, nor developed, for OODDL.

However, a text-based notation has been developed for OODDL, simply as a

way of writing down domain descriptions in a human readable form; although

this notation is largely self-explanatory, this section provides a very informal

description of it. OODDL is discussed in detail in chapter 3.

7.1.1 Domain Description
An OODDL domain description consists of a set of type declarations that are

similar to Java or C++ classes. Each type can have member variables and

member functions (called actions).

7.1.2 Member Variables
A member variable can be of four types:

Boolean:

A simple boolean variable that can be either true or false.

E.g. boolean myBool

Enum:

An enumerated variable, you must declare which enumerated type it refers to.

E.g. en urn Kind = { apple, orange, pear }

Kind myKind

Mark Tully o M.Sc. Thesis o 2001 Page 116

Obicct-Oricnutccl Planning Dom~tin Engineering
Appendices

Object Reference:

Refers to an object of the declared type (or a subtype thereof) in the domain. If

the variable name is prefixed with a * then it means the variable is a maybe

object reference and can hold a NULL value. If there is no * then the variable

is an object reference and cannot hold the NULL value.

E.g. MyType *myMaybeObRef ' Maybe object ref

Mytype myObRef ' Object ref

Note: Object reference variables can be dereferenced using the dot notation as

seen in Java and C++.

E.g. a.b.c=d

Object Bag:

The object bag is an unordered collection of objects. Objects in the bag are of

the type specified, or a subtype thereof. The object bag is declared in a similar

way to the object reference, except that it is suffixed with a pair of brackets.

E.g. MyType mySet []

Mark Tully o M.Sc. Thesis o 2001 Page ll7

OhjeCL--OricnLlkd Plmming Domain EnginC'cring
Ar;pendices

7.1 a3 Actions
Actions in OODDL are divided into three parts: the parameters list, the

preconditions and the effects.

Parameters:

A typed list of variables that can be used to form expressions.

Preconditions:

A set of expressions that must be true before the action can be invoked.

Precondition expressions are prefixed with a "p:", this is differentiate them

from effect expressions, which are prefixed with an "e:".

Possible expressions are:

a -- b Equality

a ! = b Inequality

Variables are equal/not equal. Can be used with boo/emu;, enums and

object references. You can compare object references to NULL.

a e b Set Membership

The set b contains the object a. Can only be used with sets. Note:

There is no ~ operator.

Effects:

A set of expressions that are applied when the actions preconditions are met.

Effect expressions are prefixed with a "e:" in the action definition to

differentiate them easily from the preconditions, which are prefixed with a

"p:".

Possible effects expressions are:

a = b Assignment

Variable a becomes equal to value b. This can be used for

parameters, booleans, enums and object references.

Mark Tully s M.Sc. Thesis o 2001 Page 118

Objcct-OriL'ntatcd Planning Domain Engineering
,--tppendiccs

a + = b Add to bag

a - = b Remove from bag

Object b is added to/removed from the set a. This can be used for

object bags only.

7 c 1.4 A Problem Specification
A problem specification in OODDL has two parts. The first is a list of objects in

the domain, along with their type and initial values for all their member

variables. The second is a list of goal conditions that are required to be true at

the end of the plan.

7.1.5 OODDL Example: Blocks World
This is an encoding of the ubiquitous blocks world in OODDL.

type block

block *on

end

boo lean clear

put on_block(block block)

p:block!=this

p:block.clear=true

end

p:on=<None>

p:clear=true

e:block.clear=false

e:on=block

put on table ()

p:clear=true

e:on=<None>

e:on.clear=true

end

Mark Tully o M.Sc. Thesis o 2001 Page 1J9

ObjeC'lOricntated Planning Durnain Enginl·ning
Appendices

7.2 Formal Grammar for GTL
This section contains a formal grammar for the GTL generic type template

language. GTL is used to describe generic types declaratively rather than the

current method of describing them procedurally.

GTL's syntax is similar to the notation used for OODDL, however it is a more

abstract way of describing a domain than OODDL. This allows several different

OODDL domain definitions to be matched to the same GTL template.

GTL is discussed in detail in chapter 4.

7.2.1 Template Tags
A GTL template file is divided into sections denoted by tags. The main tag is the

types section, which is where the generic type template descriptions actually

reside. Related to the types tag is the instances tag. This tag provides two

functions; firstly, it lists the type combinations that must be matched in order to

instantiate the template. Secondly, it names these instances so that other

templates can extend the template and refer to matched generic type instances.

Other simple tags include the version of the file format and the name of the

template. The option of implementing other tags is for future expandability viz.,

to offer new generic type services. Currently there are no implemented GTL

services and so there are no grammars for the services tags. Only two tags

currently exist: the types tag and the instances tag.

7.2.2 The Types Tag
This is the grammar for the types tag. The types tag defines the generic type

structures.

%%start=gtlTypesSection

Mark Tully s M.Sc. Thesis o 2001 Page 120

Objcct-Oric-ntt~tcd Planning Domain Engiuccrin~~
Appendices

gtlTypesSection := ENDLINES typeslist I typeslist

typeslist := typeslist type I null

type := typeHeader propList actionList END ENDLINES

typeHeader := TYPE STRING extends ENDLINES

extends := EXTENDS STRING I null

propList := propList prop I null

prop := STRING STRING ENDLINES I STRING PLUS STRING

ENDLINES I BOOLEAN STRING ENDLINES

actionList := actionList action I null

action := actionHeader expsList END ENDLINES

actionHeader := STRING OPENB plist CLOSEB ENDLINES

plist := param commaedplist

commaedplist := COMMA param

param := STRING STRING

null

null

expsList := expsList exp I null

exp := actioninstance I EXPTYPE STRINGPATH OPERATOR

STRINGPATH ENDLINES

actioninstance .- STRING OPENB strpathList CLOSEB

ENDLINES

strpathList := STRINGPATH commaedStrPathList

commaedStrPathList := COMMA strpathList I null

STRING := std identifier

STRINGPATH := std identifier with optional

breaking fields (eg a.b.c)

TYPE := "type"

EXTENDS := "extends"

ENDLINES := "\n"*

Mark Tully o M.Sc. Thesis o 2001

" "

Page 121

OhiccL---OriL'ntatcd Planning Domain Engineering
Appendices

END := "end"

PLUS := "+"

COMMA := 11 11
I

OPERATOR . - ": = '' ''--'' 11! ="

CLOSEB : = 11
) ''

OPENB : = " (''

EXPTYPE . - '' p : '' ue: u

BOOLEAN .- "boolean 11

REM : = 11 I 11 0 *

WHITESPACE := " \t"

7.2.3 The Instance Tag

''in" "+=11

11-=" " =11

The instance tag denotes which types from the types tag must be instantiated

(matched) in order for the template instance to be valid. This is useful for

complex templates where only one of several possible generic type definitions

must be matched, or where multiple occurrences of the same generic type must

be matched. If the instance tag is omitted, then one instance of each root type (or

one if its subtypes) is matched.

The types listed, or a subtype thereof, must be matched and named. Because

instances are named, other templates can import the template and refer to

instantiated generic types.

%%start = typeinstanceList

typeinstanceList .- typeinstanceList typeinstance I
null

typeinstance .- STRING STRING ENDLINE

Mark Tully o M.Sc. Thesis o 2001 Page 122

Objcci-Oricntalt..'d Planning Domain Engineering
Appendices

7.2.4 GTL Example: Mobile
The mobile represents the notion of a self-propelled object that can move around

a map of locations. The mobile is discussed in section 2.6.1.

#gtlversion 1

#name Mobile

' describes the Mobile and Location types

#section types

TYPE Mobile

Location at

move (Location to)

p: at != null

e: at .- to

end

end

TYPE Location

end

#endsection

' matches a single mobile and a location

#section instance

Mobile aMobile

Location aLocation

#endsection

Mark Tully o M.Sc. Thesis o 2001 Page 123

Object-Orientated Planning f)(Jmain Engilll'Cring
Appendices

7.2.5 GTL Example: Construction
Construction is a more complex GTL template definition. The construction

generic type attempts to capture the notion of a construction, or building

component composed of other components. There are two operators, join and

split for building and destroying components respectively.

#gtlversion 1

#name Construction

#section types

type Component

boo lean available

Component +subcomponents

join (Component c)

p: this != c

p: available -- true

p: c.available true

e: c.available . - false

e: subComponents += c

end

end

type GeneralComponent extends Component

end

#endsection

split (Component c)

end

p: c in subcomponents

p: available == true

e: subComponents -= c

e: c.available := true

' by not including an instance section, either

' GeneralComponent or Component will be matched

Mark Tully o M.Sc. Thesis o 2001 Page 124

Object-Orientated Planning Dornain Engineering
1lppendices

7.3 Test: Understanding STRIPS
This test is designed to evaluate how easily the candidate can understand the

intricacies of a domain encoded in STRIPS.

Task

This test consists of three parts. Answer all parts. You may refer to the language

notes when answering the questions.

Question 1: Action Application

This description describes a world containing a tower of blocks. It has an action

to lift a block from the table into the air (only one block can be in the air at

once) and another to put a block down on top of another block.

STRIPS Domain Description

Predicates:
on(a,b)
clear(a)
on-table(a)
arm-empty()
is-held(b)

Actions:
pickUpFromTable(block)

end

preconditions:
arm-empty()
clear(block)
on-table(block)

effects:
is-held(block)
•on-table(block)
•ann-empty()

putOnTower(block,to)
preconditions:

is-held(block)
clear(to)

effects:

end

on(block,to)
•is-held(block)
•clear(to)

Mark Tu1ly o M.Sc. Thesis o 2001

STRIPS Problem Description

Objects:
a,b,c,d

Initial State:
on(a,b)
clear(a)
clear(c)
clear(d)
on-table(d)
on-table(c)
on-table(b)
arm-empty()

Goal State:
on(c,d)
on(d,a)
on(a,b)

Page 125

Ohicct--Oricntatcd Planning Domain Fnfcinccring
Appendices

l. Is it possible to execute the action pickUpFrmnTable(d)?

2. There is a problem with one of the actions in the domain, for some reason

the planner cannot stack block c after it has stacked d on top of a. Can you

identify the problem and correct it?

Hint: Write out the states after each action execution if it helps.

Question 2: Action Construction

This domain features two buckets and a "thing" that can be placed in only one

bucket at a time. Given a partially complete world description you must

construct an action to move a thing from one bucket to another.

You are given the types and an empty action. Complete the action so that it

moves a thing from one bucket to another. Remember that an action has two

parts: the preconditions and the effects. Your action can only work with the

action parameters and the predicates declared in the domain. An example

problem has been declared to aid in your understanding of the question.

STRIPS Domain Description

Predicates:
in(thing,bucket)
bucket(ob)
thing(ob)

Actions:
move(thing,from, to)

Fill out the contents of
this action!
preconditions:

effects:

Mark Tully o M.Sc. Thesis o 2001

STRIPS Problem Description

wu
bucketl bucket2

Objects:
bucket 1, bucket2, thing 1

Initial State:
bucket(bucket 1)
bucket(bucket2)
thing(thing 1)
in(thing 1 ,bucket!)

Goal:
in(thing 1 ,bucket2)

Page 126

Objel'l- Ori'-·nL~itl'd Planning Donwin Enginccrin~:
Appendices

Question 3: Action Preconditions

For this question, you will once more have to fill out the contents of two actions.

This domain concerns a lift. The lift can only be at one floor at once and can

only move one floor at a time.

Below is a partial domain description for this domain. You need to fill out the

two actions for the lift. One moves it from being at floor one to floor two, and

the other from floor two to floor three. All the parameters and predicates needed

have been declared for you. An example problem has also been declared to aiel

in your understanding of the question.

IMPORTANT: Ensure that the lift is only permitted to visit the floors in the

correct order. Floor 2 and then floor 3.

STRIPS Domain Description

Predicates:
at-floor(lift,floor)
lift(ob)
floor-l(ob)
floor-2(ob)
floor-3(ob)

Actions:

moveFrom 1 To2(lift, wasFloor,new Floor)
Fill out the contents of
this action!
preconditions:

effects:

end

moveFrom2To3(lift, wasFloor ,new Floor)
Fill out the contents of
this action!
preconditions:

effects:

end

STRIPS Problem Description

floor3

floor2

lift 1

floor1

Objects:
lift 1, floorl, floor2,

floor3

Initial State:

Goal:

floor-1 (floor 1)
floor-2(floor2)
floor-3(floor3)
lift(lift 1)
at -floor(lift 1 ,floor 1)

at-floor(lift 1 ,floor3)

Mark Tully o M.Sc. Thesis o 2001 Page 127

Ob)cct-Oricntatcd Planning Domain Engineering
Appendices

7a4 Test: Understanding OOIDfDl
This test is designed to evaluate how easily the candidate can understand the

intricacies of a domain encoded in OODDL.

Task

This test consists of three parts. Answer all parts. You may refer to the language

notes when answering the questions.

Question 1: Action Application

This description describes a world containing a tower of blocks. It has an action

to lift a block from the table into the air (only one block can be in the air at

once) and a different action to put a block clown on top of another block.

OODDL Domain Description

type Block
Block
boo lean

end

type Arm
Block

*onTopOf
clear

*holding

pickUpFromTable(Block b)
preconditions:

holding== NULL
b.clear==true
b.onTopOf==NULL

effects:
holding=b

end

putOnTower(Block b)
preconditions:

holding!=NULL
b.clear==true

effects:
holding.onTopOf=b
b. clear= false

end

end

Mark Tully o M.Sc. Thesis o 2001

OODDL Problem Description

Initial Values:

object a : Block
onTopOf=b
clear= true

end

object b : Block
onTopOf=NULL
clear=false

end

object c : Block
onTopOf=NULL
clear=true

end

Goal Conditions:
c.onTopOf==d
d.onTopOf==a
a.onTopOf==b

object d : Block
onTopOf=NULL
clear= true

end

object arm : Arm
holding=NULL

end

Page 128

Objcct-Oric'ntatcd Planning Domain Ellgitll'ct·ing
ilp pend ices

1. Is it possible to execute the action arm.pickUpFromTable(d)?

2. There is a problem with one of the actions in the domain, for some reason

the planner cannot stack block c after it has stacked d on top of a. Can you

identify the problem and correct it?

Hint: Write out the values of the objects' variables after each action

execution if it helps.

Question 2: Action Construction (Variant 1)

This domain features two buckets and a "thing" that can be placed in only one

bucket at a time. Given a partially complete world description you must

construct an action to move a thing from one bucket to another.

You are given the types and an empty action. Complete the action so that it

moves a thing from one bucket to another. Remember that an action has two

parts: the preconditions and the effects. You do not need to modify the domain,

all the variables and parameters you need are there. An example problem has

been declared to aid in your understanding of the question.

OODDL Domain Description

type Thing
end

type Bucket
Thing contents{}

move-into-bucket(Bucket b,Thing t)
Fill out the contents of

end
end

this action!
preconditions:

effects:

Mark Tully o M.Sc. Thesis o 2001

OODDL Problem Description

wu
bucket1 bucket2

Initial Values:
object bucket1 : Bucket

contents= {thing 1 }
end

object bucket2 : Bucket
contents= { }

end

object thing 1 : Thing
end

Goal Condition:
thing1 E bucket2.contents

Page 129

Object-Orientated Planning Domain Engineering
Appendices

Question 2: Action Construction (Variant 2)

This domain features two buckets and a "thing" that can be placed in only one

bucket at a time. Given a partially complete world description you must

construct an action to move a thing from one bucket to another.

You are given the types and an empty action. Complete the action so that it

moves a thing from one bucket to another. Remember that an action has two

parts: the preconditions and the effects. You do not need to modify the domain,

all the variables and parameters you need are there. An example problem has

been declared to aid in your understanding of the question.

OODDL Domain Description

type Thing
Bucket *inside

end

move-into-bucket(B ucket b)
Fill out the contents of
this action!
preconditions:

effects:

end

type Bucket
end

Mark Tully o M.Sc. Thesis o 2001

OODDL Problem Description

uu
bucketl bucket2

Initial V a lues:
object bucketl :Bucket
end

object bucket2 : Bucket
end

object thingl :Thing
inside=bucket 1

end

Goal Condition:
thing 1. inside==bucket2

Page 130

Object Orientated Planning Dornain Engineering
Appendices

Question 3: Action Preconditions

For this question, you will once more have to fill out the contents of two actions.

This domain concerns a lift. The lift can only be at one floor at once and can

only move one floor at a time.

Below is a partial domain description for this domain. You need to fill out the

two actions for the lift. One moves it from being at floor one to floor two, and

the other from floor two to floor three. All the variables and types needed have

been declared for you. An example problem has also been declared to aid in

your understanding of the question.

IMPORTANT: Ensure that the lift is only permitted to visit the floors in the

correct order. Floor 2 and then floor 3.

OODDL Domain Description

enum Flo01·Number = { one, two, three }

type Lift

end

FloorNumber floor

moveFromOneToTwo()

end

Fill out the contents of
this action!
preconditions:

effects:

moveFromTwoToThree()

end

Fill out the contents of
this action!
preconditions:

effects:

Mark Tully o M.Sc. Thesis o 2001

OODDL Problem
Description

lift 1

Initial Values:
object lift 1 : Lift

tloor=one
end

Goal Condition:
lift 1. floor==three

floor3

tloor2

tloorl

Page 131

Obicct-Oricntdtcd Planning Domain Engineering.
References -

8 References

[Abbot, 1983] Program Design by Informal English Descriptions

R. Abbot

Communications of the ACM, Vol. 26 (11)

[Bacchus and Fabanza, 2000]

Using Temporal Logics to Express Search Control Knowledge

for Planning

F. Bacchus, F. Kabanza

Artificial Intelligence, Vol. 116

[Beck and Cunningham, 1989]

[Booch, 1991]

[Chen and Warren, 1988]

[Clark, 2000]

A Laboratory for Teaching Object-Orientated Thinking

K. Beck, W. Cunningham

SIGPLAN Notices, Vol. 24 (10)

Object-Orientated Design with Applications

G. Booch

Benjamin Cummins

Objects as Intensions

W. Chen, D. S. Warren

Proceedings of 5'h International Conference on Logic

Programming, pages 404-419

Construction Domains: Their Detections and Exploitation in

TIM

M.S. Clark

Proceedings of PLANSIG 2000

Mark Tully o M.Sc. Thesis o 2001 Page 132

Object Oricntatt·d Plmllling Dum<lin Engin(·cri11g
References

[Coad and Nicola, 1993]

[Coad and Youren, 1990]

[Conery, 1987]

[Cox, 1986]

[Date, 1999]

[desJardins, 1994]

[Erol, 1995]

[Erol et al., 1994]

Object-Orientated Programming

P. Coad, J. Nicola

Y ourdon Press

Object Orientated Analysis

P. Coad, E. Youren

Prentice Hall

O~ject Oriented Programming with First Order Logic

J.S. Conery

University of Oregon Tech Report CIS-TR-87-09

Object-orientated Programming: An Evolutionary Approach

B. Cox

Addison Wesley

An Introduction to Database Systems, ?" Edition

C.J. Date

Addison Wesley

Knowledge De1!elopment Methods for Planning Systems

M. Des Jardins

Proceedings of the AAAI Fall Symposium on Planning and

Learning, New Orleans

Hierarchical Task Network Planning: Formalization, Analysis

and Implementation

K. Erol

Ph.D. Thesis, University of Maryland

UMCP: A Sound and Complete Procedure for Hierarchical

Task Network Planning

K. Erol, J. Hendler, D.S. Nau

Proceedings of AlPS '94

Mark Tully o M.Sc. Thesis o 2001 Page 133

Objcct--Oricnlalcd Planning Dornain F"nginccring
References

[Eysenck and Keane, 2000] Cognitive Psychology: A Student's Handbook, 4'" Edition

Michael Eysenck, Mark T. Keane

Psychology Press

[Fikes and Nilsson, 1971] STRIPS: A New Approach to Theorem Proving in Problem

Solving

[Fox and Long, 1998]

[Fox and Long, 1999]

[Fox and Long, 2000]

[Fox and Long, 2000b]

[Fox and Long, 2001]

R. E. Fikes, N. J. Nilsson

Artificial Intelligence, Vol. 2, pages 189-208

The Automatic b~ference of State invariants in TIM

D. Long, M. Fox

Journal of Artificial Intelligence Research, Vol. 9, pages 367-

421

The Automatic Synthesis and use of Generic Types in Planning

D. Long, M. Fox

Proceedings of the 18'h Workshop of the UK Planning and

Scheduling Special Interest Group

Hybrid STAN: Identifying and Managing Combinatorial

Optimisation Sub=Problems in Planning

D. Long, M. Fox

Proceedings of PLANSIG 2000

Extracting Route Planning: First Steps in Automatic Problem

Decomposition

D. Long, M. Fox

Workshop on Analysing and Exploiting Domain Knowledge for

Efficient Planning, AIPS-2000

Multi-Processor Scheduling Problen1s in Planning

D. Long, M. Fox

Proceedings of 2nd IC-AI, Special Session on "Learning and

Adapting in AI Planning", Las Vegas

Mark Tully o M.Sc. Thesis o 2001 Page 134

Object OricnLltt~d Planning Dmnain Engincning
Rtjerenccs

[Fox and Long, 2001 b]

[Garclarin et al, 1997]

PDDL 2.1 Language Specification

D. Long, M. Fox

http://www.clur.ac.uk/cl.p.long/competition.html

Valid: 1st October 200 l

Object Technology: Concepts and Methods

M. Bouzeghoub, G. Garclarin, P. Valcluriez

International Thomson Computer Press

[Gazen and Knoblock, 1997] Combining the Expressivity of UCPOP with the Efficiency of

Graphplan

[Geffner, 2000]

B.C. Gazen, C.A. Knoblock

Proceedings of ECP 1997

Functional STRIPS: A More Flexible Language for Planning

and Problem Solving

H. Geffner

Logic-Based Artificial Intelligence, Jack Minker (Eel.), Kluwer

Academic Publishers

[Gerevini and Schubert, 1998]

[Grant, 1996]

[Green, 1979]

Inferring State Constraintsfor Domain Independent Planning

A. Gerevini and L. Schubert

Proceedings of AAAI-98

Inductive Learning ofKnowledge-Based Planning Operators

T. J. Grant

Ph.D. Thesis, Universiteit Maastricht, Maastricht

When do Diagrams Make a Good Computer Language?

M. Fitter, T.R.G. Green

International Journal of Man-Machine Studies, Vol. 2, pages

235-261

Mark Tully o M.Sc. Thesis o 2001 Page 135

Obicct--Oril'fltatcd Planning Dcnnain Engineering
References

[Gruber, 1993]

[Jackson, 1975]

[Klerer and May, 1965]

[Koehler, 1998]

[Lifschitz, 1986]

A Translation Approach to Portable Ontologies

T. R. Gruber

Knowledge Acquisition, Vol. 5(2), pages 199-220

Principles of Program Design

M.A. Jackson

Academic Press

A User-Orientated Programming Language

M. Klerer, J. May

Computer Journal 8, No 2, July 1965

Solving Complex Planning Tasks through Extraction of Sub

Problems

J. Koehler

Proceedings of AIPS-98

On the Semantics of STRIPS

V. Lifschitz

Proceedings of the 1986 Workshop on Planning and Reasoning

about Action, Timberline, Oregon

[McCluskey and Kitchin, 1998]

A Tool-Supported Approach to Engineering HTN Planning

Models

T. L. McCluskey, D.E.Kitchin

Proceedings of the Tenth International Conference on Tools

with Artificial Intelligence (T AI'98)

[McCluskey and Liu, 1999] The OCL Language Manual

D. Liu, T.L. McCluskey

Technical report, Department of Computing Science, University

of Huddersfield

Mark Tully e M.Sc. Thesis o 2001 Page 136

Object Orientated Planning Domain Engineering
References

[McDermott et a!, 1998]

[Pednault, 1989]

The Planning Domain Definition Language

D. McDermott, AIPS-98 Competition Committee

http:/ /cs-www .cs.yale.edu/homes/dvm/

Valid: 1st October 2001

ADL: Exploring the Middle Ground between STRIPS and

Situation Calculus

E. P. D. Pedault

Proceedings of the 1 '1 International Conference on Principles of

Knowledge Representation and Reasoning

[Porteous and McCluskey, 1997]

[Saeki et al, 1989]

[Simpson et a!, 2000]

[Simpson et al, 2001]

Engineering and Compiling Planning Domain Models to

Promote Validity and Efficiency

J. Porteous, T.L. McCluskey

Artificial Intelligence, Vol. 95 (1), pages 1-65

Software Development Processfrom Natural Language

Specification

M. Saeki, H. Horai, H. Enomoto

Proceedings of the 11 111 International Conference on Software

Engineering

Knowledge Representation in Planning: A PDDL to OCL

Translation

R.M. Simpson, T. L. McCluskey, D.Liu, D.E.Kitchin

Proceedings of ISMIS 2000, Charlotte, NC.

GIPO: An Integrated Graphical Tool to Support Knowledge

Engineering in AI Planning

R.M.Simpson, T.L. McCluskey, W. Zhao, R.S. Aylett, C.

Doniat

Proceedings of ECP 200 1

Mark Tully o M.Sc. Thesis o 2001 Page 137

ObJCCt-Ori ... 'ntated Planning Donuin Engincerin~:
References

[Sommerville, 1992]

[Stroustrup, 1994]

[Veloso, 1992]

Software Engineering, 41
" Edition

I. Sommerville

Addison Wesley

The Design and Evolution of C++

B. Stroustrup

Addison-Wesley

Leaminfi by Analogical Reasoning in General Problem Solving

M. Veloso

Tech. Report CMU-CS-92-174, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA

[Wilkins and desJardins, 2000]

[Wirth, 1971]

A Call for Knowledge Based Planning

D. E. Wilkins, M. Des Jardins

Workshop on Analysing and Exploiting Domain Knowledge for

Efficient Planning, AIPS-2000

Program Developrnent by Stepwise Refinernent

N. Wirth

Communications of the ACM, Vol. 14 (4), page 221-7

Mark Tully o M.Sc. Thesis o 2001 Page 138

