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ABSTRACT

Present guidance on levels of vibration generated by pile driving is primarily empirical,
conservative and often contradictory. The objective of this research was to model the
ground waves generated by pile driving using the ABAQUS finite element program in
order to predict the free ground surface response resulting from installation by both
impact and vibratory hammers. ‘

New procedures including infinite element and quiet boundary formulations have been
developed for the computation of ground surface vibrations caused by impact and
vibratory driving of pre-formed piles. The procedures do not require a detailed
knowledge of site conditions and are therefore particularly useful as a preliminary
design tool and for modelling the large amount of site data that currently exists in order
to assist in the development of more rational guidance. The work has brought together
research from several areas of study in order to produce computational procedures for
modelling vibrations from pile driving.

" The new models have been validated by comparisons with measurements from various
piling sites. The new methods now need to be applied to a large number of varied sites
in order to develop site specific guidance. It is envisaged that this guidance could be in
the form of design charts or simple formulae for incorporation into the relevant British
Standards or Eurocodes.

A range of common building forms has been incorporated into the models. The results
indicate that slender frames can be analysed by transient displacements imposed on the
foundations; however, a full three-dimensional analysis with soil-structure interaction is
required for walls and infilled panels so that the reduced foundation displacements are
modelled correctly. The techniques developed during this project could be usefully
extended to model the effects of pile driving on various geotechnical structures and
pipelines and also other forms of excitation, such as vibrocompaction.
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CHAPTER 1
INTRODUCTION

1.1  GENERAL BACKGROUND

Piles are widely used for transmitting building loads from ground surface through weak
soils to more competent soil or rock strata, while interlocking sheet piles are used for
temporary or permanent retaining walls. The process of pile installation using high
energy impact or vibratory hammers causes outgoing ground waves which can have a
significant influence on the surrounding ground, on adjacent buildings and on their
occupants. In severe cases, adjacent structures are at risk of damage. Although the
issue of vibration from piling is addressed in codes and regulatory standards, little is
understood about how the various aspects of the pile installation process influence the
generation of ground waves. Assessment of risk is conventionally by reference to
threshold limits of vibration, primarily based on empirical rules, often with no
consideration given to the interactive effects between ground and structure nor to
frequency and duration. It is not therefore surprising that the prediction of vibration is,
in many cases, unreliable.

Within this framework of empiricism, it would be of considerable reference value to the
piling industry to clarify the risk of direct vibration damage, and to classify
combinations of piling and structure systems which offer higher or lower risk of
damage.

Although several workers have developed finite element and analytical models for the
simulation of pile driving in the context of pile drivability, the ground waves generated
by pile driving have not been modelled computationally.

Recent developments within finite element computational methods, including infinite
elements and quiet boundaries (Bettess 1992, Noorzaei et al 1994), allow the generation
of a suitable two-dimensional axisymmetric representation of appropriate ground
vibration systems of vertical and radial wave components, and then the incorporation of
a range of structural forms and dimensions. The latter must include dynamic soil-
structure interaction. ' :

The main objective of the work described in this thesis was to develop computational
models based on finite element techniques. that satisfactorily simulate the piling-induced
vibrations that have,been recorded on many sites and held in databases at Durham
University (Uromeihy 1990) and the Transport Research Laboratory (Hiller 1999 and
Hiller & Crabb, 2000). Techniques were then devised to extend the computational
models to include common structural forms.

1.2  CURRENT GUIDELINES

The environmental consequences of groundborne vibration generally take one of three
forms. The most severe cases of vibration may cause direct cosmetic or structural
damage to existing structures or buried services, although this is uncommon during
_ construction works (Siskind et al 1980). However damage may occur indirectly due to
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compaction settlement of loose granular soils by the action of the groundborne
vibration. The third effect comprises the disturbance of occupiers of neighbouring
properties. The latter is the most common problem because the magnitudes of vibration
which are perceptible to humans are at least an order of magnitude smaller than those
which might cause damage.

Current UK and overseas standards generally provide two sets of threshold limits for
vibration. The first relates to the prevention of damage to adjacent structures and the
second to the perception and disturbance of occupiers in adjacent structures. No
standards address the specific issue of structural damage due to vibration-induced
compaction settlement.

1.2.1 Thresholds for damage

Two British Standards, BS 5228 Part 4 (1992) and BS 7385 Part 2 (1993) address the
specific issue of threshold limits of vibration on nearby structures so as to provide an
acceptably low risk of cosmetic and structural damage. BS 7385 is based on a survey of
UK damage data and experience from overseas (Malam 1993) and relates to vibration
generated by a variety of sources.

BS 7385 consists of two parts. Part 1 (BSI 1990a) describes the principles for carrying
out vibration measurements and processing the data. Part 2 (BSI 1993) suggests
vibration magnitudes at which cosmetic, minor and major damage might occur in terms
of the peak particle velocity (ppv). At frequencies below 4Hz the damage threshold is
specified in terms of the peak particle displacement. The threshold limits in BS 7385
relate to transient vibrations but the Standard states that these values may need to be
reduced by up to 50 per cent for continuous vibration because of the potential for
dynamic magnification of continuous vibrations by elements of structures.

BS 5228 Part 4 (BSI 1992b) gives guidance on thresholds for damage to structures by
groundborne vibration from piling. A conservative threshold for minor or cosmetic
damage to residential property of 10mm/s for intermittent vibration and Smm/s for
continuous vibration is recommended. The threshold magnitudes from BS 5228 are
generally lower than those from BS 7385.

Hiller (1999) has undertaken a detailed review of vibration standards in use outside the
UK. He concludes that there is considerable difference between the magnitudes of
vibration that are acceptable in different countries (see Figure 1.1). New (1986)
reported that, in general, the more recent the standard the more conservative were the
specified vibration limits. The British Standard BS 7385 : Part 2 (BSI 1993) reversed
- this trend but the most recent European guidance (CEN 1998) has reverted to a greater
degree of conservatism. '

The basis for the recommendations given in the British Standards, and various other
overseas standards, is primarily empirical and they sometimes offer conflicting advice.
There is a general recognition that continuous vibration is more damaging than
intermittent, and that high frequency vibration poses a smaller risk than low frequency
vibration.



1.2.2 Thresholds for perception and disturbance

BS 6472 (BSI 1992a) specifies threshold values which take account of the different
sensitivity of humans to x- y- and z-axis vibration when standing, sitting and lying
down. Base curves are presented for the most sensitive environments such as hospital
operating theatres and precision laboratories. Multiplying factors are given to specify
acceptable magnitudes of vibration for other environments and for different times of
day.

Hiller (1999) has reviewed and compared the threshold limits for human perception
given by various national standards and concludes the threshold of perceptible vibration
is considered to be the same in all countries. However, the levels of vibration which are
considered to be acceptable within residential properties vary between different
countries. Adopted European Prestandard Eurocode 3, Chapter 5 (CEN 1998) is
concerned specifically with the appraisal of vibration arising from pile driving.
Eurocode 3 adopts a different approach to intrusion assessment to that given by other
standards, recognising that human tolerance is dependent upon the duration as well as
the magnitude of the vibration. For a thorough assessment of the potential for
groundborne vibration to cause disturbance it is necessary to consider not only the
magnitude of vibration, but also its duration, direction, time of day and the particular
environment which is affected. ‘

1.3  AIMS AND OBJECTIVES

The various UK and overseas national standards have been shown to offer conflicting
advice as to threshold limits for vibration on nearby structures. This is perhaps not
surprising, since the basis for the recommendations is primarily empirical, sometimes
taking into account the condition of the building. However, the global approach
adopted by these standards considers neither the interactive effects of foundation and
structure, nor detailed frequency and duration.

The mechanisms involved in the generation of vibration from piling are extremely
complex and are not presently well understood. There are many parameters involved
and the selection of parameters is likely to vary with the particular set of circumstances
at each site and the method of pile installation. It would be therefore particularly
valuable to be able to simulate the generation, propagation and interaction of ground
waves from pile driving by numerical modelling techniques. This approach potentially
offers a means of understanding the complex processes of vibration generation during

piling.

Improved prediction of vibration from pile driving at an early stage in the design
process has many benefits. The correct choice of piling method and pile type to
minimise vibration for the particular site conditions avoids delays to construction works
which may be caused if excessive vibrations cause annoyance to occupants of nearby
buildings or, in severe cases, result in damage to adjacent structures. One of the
particular benefits of numerical modelling is that it allows the rapid assessment of the
effectiveness of various types of vibration reduction measures, such as cut-off walls and
barriers.



‘The main beneficiaries of improved vibration prediction are likely to be consultants,
local authority officers implementing the Control of Pollution Act, and specialist piling
contractors. :

The main objectives of the work contained in this thesis are:

e To develop finite element/infinite element models which simulate the transmission
of ground waves correctly

e To investigate the effectiveness of various quiet boundaries in the absorption of

ground waves generated by piling

To generate realistic input force functions for both impact and vibratory hammers

To calibrate the methods against site data

To use the models in limited parametric studies of hammer, pile and soil variables

To include structures in the models, so as to identify damaging wave types

To devise a computationally efficient method to overcome the difficulties of

modelling structures without the need for a time-consuming and expensive full

three-dimensional analysis.

The FE/IE models developed in this work have been designed to be computationally
efficient so that they can be analysed using a reasonably powerful computer likely to be
available to engineers in the design office.

1.4 GENERAL APPROACH TO THE PROBLEM

Although several substantial databases of site records of “green-field” vibrations exist,
including one held at Durham University (Uromeihy 1990) the data tend to be confined
to ground surface vibrations at various stand-off distances, together with a description
of the hammer and pile type and a brief description of ground conditions usually in the
form of borehole records. The databases do not contain detailed records of pile
excitation such as pile head strain, acceleration and transient displacement and they
certainly do not provide information about suitable plastic and dynamic soil parameters.

Following an extensive literature search and discussions with various engineering
companies and research organisations, it became evident that high quality and
simultaneous measurement of most of these parameters does not presently exist.
However, it is likely that valuable comprehensive data sets will become available when
the ‘SIPDIS’ programme of monitored pile installation tests are analysed (partly by
BRE) and published. The SIPDIS programme is described in more detail in Section 2.8.

Given the lack of comprehensive data, it was decided that a pragmatic approach to the
problem was required. The computational models that have been developed to simulate
the ground waves generated by piling are designed to use a minimum of site data but are
versatile enough to be refined as comprehensive data sets become available and the
complex dynamic behaviour of soils subjected to piling becomes better understood.

The models provide a preliminary framework for the computation of ground waves
generated by pile driving by finite element techniques. It is hoped that future workers
will adopt and refine them in order to develop a robust computational model for the
confident prediction of vibrations from pile driving. The ultimate aim might be the
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publication of design charts for various piling methods, site conditions and common
structural forms for incorporation into the relevant British standards.

1.5 THESIS STRUCTURE

The structure of the remainder of this thesis is as follows. Chapter 2 presents a general
overview of the mechanisms involved in the generation of vibration from piling. It
reviews the common methods of pile installation and the empirical techniques available
in the literature for vibration prediction. As the work in this thesis encompasses a
number of different areas of research, literature reviews on more specific areas are
contained in the relevant chapters.

The work described in this thesis was undertaken using the ABAQUS finite element
program. Chapter 3 describes the work that was undertaken to validate the ability of the
program to simulate the ground waves satisfactorily.

Chapter 4 describes the development of a new quiet boundary to effectively absorb the
complex ground waves generated by piling, thus providing an accurate representation of
the far field and preventing reflection back into the finite element mesh.

The development of a new finite element model for the computation of ground waves
from vibratory piling is described in Chapter 5. The ground response predicted by the
model is compared with vibration measurements taken during vibratory extraction and
installation of different pile types at two sites with contrasting ground conditions. The
effectiveness of the new quiet boundary developed in Chapter 4 is investigated by
applying it to the model developed in Chapter 5.

A new finite element model for impact piling is described in Chapter 6 and the
predicted ground response is compared to measurements of vibration at two very
different sites.

The models developed in Chapters 5 and 6 are then extended in Chapter 7 to incorporate
some common structural forms. A computationally efficient technique is developed to
overcome the difficulties of modelling soil-structure interaction without the need for a
full three-dimensional analysis.

Chapter 8 gives a brief review of the major observations of the work, and includes
recommendations for further work.






CHAPTER 2
GROUND VIBRATIONS FROM PILING

2.1 INTRODUCTION

This Chapter provides basic background information on the mechanisms involved in the
generation of ground waves from piling operations and their propagation through the
ground and into adjacent structures. It defines the terms and measures used to describe
vibration and provides a summary of the factors affecting the transmission of energy
from pile driving into the ground wave. This includes a description of pile types and
installation methods. The mechanisms of the propagation and attenuation of ground
waves from pile driving and the transmission of vibrations into structures are then
described. The Chapter concludes with a review of the (mainly empirical) techniques
available in the literature for vibration prediction.

As the work contained in this thesis encompasses and brings together a number of
several different areas of research, literature reviews on more specific areas are
contained in the relevant Chapters.

2.2  VIBRATION TERMS AND DEFINITIONS
Vibration is usually defined by the following terms:

Amplitude (A) — Single amplitude is defined as the maximum displacement of a body
from its equilibrium position. Peak-to-peak amplitude is described as the double
amplitude. Amplitude is also used to loosely describe the magnitude of particle velocity
and acceleration. (mm, mm/s, mm/sz)

Period (T) — The duration of one complete vibration cycle. (s)

Wavelength (A) — This is the distance between any two identical parts of adjacent
vibration cycles. The wavelength is proportional to wave velocity and inversely

proportional to frequency (ie A = ¢/f). (m)

Frequency (f) — The number of vibrations occurring in a given period of time, in cycles
per second. (Hz) '

Wave velocity (¢) — The ratio of change in distance position (Ax) to the time change (Af)
ie ¢ = Ax/At. (m/s)

Particle velocity (v) — Temporal velocity of a particle as a wave passes through. (mm/s)

Free vibration — The vibration of a system under the action of its internal forces (ie
natural frequency)

Forced vibration — The vibration of a system due to excitation of external forces,
occurring at the frequency of the exciting force.




Resonance — This state occurs when an exciting frequency coincides with a system’s
natural frequency. At resonance, a system’s amplitude may dramatically increase.

Degrees of freedom — The number of independent co-ordinates necessary to describe the
motion of a system. A free particle may have three degrees of freedom in three
orthogonal positions (longitudinal, vertical and transverse). A rigid block may have six
degrees of freedom; three describing its displacements along the x, y and z axes which
are known as lateral, longitudinal and vertical, and three describing the rotations of the
block about x, y and z axes which are known as pitching, rocking/rolling and yawing.

Damping — When the motion of a particle is affected by frictional or viscous resistance,
the amplitude of vibration decreases with time and with distance. The degree of
damping depends on the presence of friction forces. The vibrating system is said to be
weakly damped where the friction forces have little effect, over-damped where the
effect of friction is greater and critically damped where the system returns to its
equilibrium position in the shortest possible time. Damping has a great influence in
limiting the amplitude of vibration at resonance.

Periodic vibration — The same form of vibration motion occurs repeatedly. Sinusoidal
vibration is the basic form of periodic motion generated by vibratory hammers. An
example of sinusoidal vibration is illustrated in Figure 2.1.

Transient vibration — This is characterised by the occurrence of an impulsive force,
causing a vibratory motion of relatively short duration. Impact piling generates
transient vibrations similar to that illustrated in Figure 2.2.

2.3  MEASURES OF VIBRATION
The amplitude of vibration may be expressed in terms of particle displacement, velocity

or acceleration. For sinusoidal vibration, these quantities are related to each other.
Referring to Figure 2.3, the particle displacement and its amplitude is given by:

x = Asinot 2.1
Particle velocity can be obtained by differentiating equation (2.1) with respect to time:
v = wAcosat 22)

or
v = wAsin(wt + n/2) (2.3)

Differentiation of equation (2.2) with respect to time gives the particle acceleration:

a = -0 Asinat (2.4)
or
a=w’Asin(ot + ) ' ‘ (2.5)

The phase relationships between displacement, velocity and acceleration are illustrated
in Figure 2.3.



Transient vibrations do not have a similar simple relationship. If any one parameter is
known as a function of time, then the signal may be differentiated or integrated digitally
to obtain the other two.

Exposure of the human body to vibration is often quoted in terms of acceleration
(Griffin 1998). Human response to vibration is frequency dependent when specified in
terms of acceleration but, in the range of frequencies typically generated by piling
operations, human perception is independent of frequency when quantified in terms of
velocity (British Standards Institution 1992a).

The assessment of the susceptibility of structures to damage is commonly measured in
velocity terms, except at frequencies below 4Hz, where the British Standards Institution
specifies damage thresholds in terms of displacement (BSI 1993). The particle velocity
is used in most cases because this is the parameter which has been found to correlate
best with the onset of damage (Siskind et al 1980). Furthermore, the dynamic strain
induced during the passage of a wave is proportional to the particle velocity; it is strain
which causes damage (New 1986).

Field measurement of vibrations from piling is commonly made using geophones which
give output proportional to velocity. Geophones have a low output impedance which
enables their use with long cable lengths (Crabb et al 1991). They are also ruggedly
designed making them well suited to use on construction sites (New 1982). The
parameter most often used for the quantification of groundborne vibration is therefore
the peak particle velocity (Maguire & Wyatt 1999), abbreviated to ppv. The prefix
“peak” refers to the maximum magnitude achieved during a specified period of time.

The motion of the ground during vibration can be resolved into three orthogonal
components namely the vertical, radial and transverse. In the literature, the term “ppv”
has been defined in various ways which can present difficulties when attempting to
compare data from different sources (Hiller & Bowers 1997). The four main definitions
of ppv are as follows:

1) The peak value attained by any one of the three mutually perpendicular
components (Vmax, VRmax VTmar)-

(i)  The peak value attained by the vertical component (V).

(ii) The vector sum of the maximum of each component regardless of
whether these individual component maxima occurred simultaneously:

Vi =10y ) + G + 07 V| 2.6)

(iv)  The true resultant, which is the maximum value of the instantaneous
vector summation of the three components.

y_ = L/(vf +v, 4, )Lu @2.7)




24  FACTORS AFFECTING THE ENERGY TRANSMITTED FROM PILE
DRIVING INTO THE GROUND

The magnitude of vibration at any point in the ground, arising from any activity, is
dependent on the amount of energy transmitted into the ground by the source, the rate of
attenuation of the energy as it propagates through the ground and the distance of the
observation point from the location at which the energy enters the ground. The factors
affecting the transmission of energy generated by piling through the surrounding ground
and adjacent structures are summarised in Figure 2.4.

Vibrations generated by piling operations differ from many other sources of
groundborne vibration in several respects. Firstly, the actual energy source used for
piling, the hammer or driver, does not, in most cases, come into direct contact with the
ground; the energy is transmitted to the ground via the pile. The amount of energy
transmitted from the hammer to the pile may be affected by the size, shape and material
of the pile, the piling hammer or driver, and any packing between the pile and driver.
Secondly, the depth of the pile toe increases as driving progresses and the length of the
pile shaft also increases. The source therefore changes throughout the drive, whether
the source is the toe of the pile, the pile shaft or a combination of the toe and shaft. The
nature of the ground into which the pile is driven and the distance from the pile to the
measurement location also change continuously during the driving of a pile.

2.4.1 Types of pile and hammer

Piles are relatively long and slender structural members used to transmit foundation
loads through soil strata of low bearing capacity to deeper soil or rock strata having a
high bearing capacity thereby reducing the potential for excessive settlement of the
structure. They are also used in normal ground conditions to resist heavy uplift forces
or in poor soil conditions to resist horizontal loads. Piles are a convenient method of
foundation construction for works over water, such as jetties or bridge piers. Piles may
be classified by their function either as load bearing piles (jacked, driven or bored piles)
or retaining piles (sheet piles, contiguous or secant bored pile retaining walls), BS 8004
(1986). '

In general, piles may be classified with respect to the way in which load is transferred to
the soil either as friction piles or end bearing piles. In friction piles, the applied load is
transmitted to the surrounding soil primarily through friction at the pile/soil interface,
although some of the load may be carried by the pile toe. End bearing piles are driven
into a layer having a high bearing capacity and the applied load is transferred from the
pile to the ground mainly through the pile toe, although some of the load may be carried
by skin friction. In settling ground, end bearing piles may attract negative skin friction,
which imposes additional loads.

The main types of pile in general use are as follows:

Driven piles. Preformed units, usually in timber, concrete or steel, driven into the soil
by vibratory motion or the blows of a hammer.

Driven and cast-in-place piles. Formed by driving a tube with a closed end into the soil,
and filling the tube with concrete. The tube may or may not be withdrawn.
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Jacked piles. Steel or concrete units jacked into the soil.

Bored and cast-in-place piles. Piles formed by boring a hole into the soil and filling it
with concrete.

Continuous-flight augered (CFA) piles. Piles are constructed by screwing the
continuous-flight auger into the ground to the required depth, then injecting grout down
the hollow auger stem to the head of the auger. The auger is lifted out of the ground as
the grout continues to be injected. A

Composite piles. Combinations of two or more of the preceding types, or combinations
of different materials in the same type of pile.

The driven and jacked piles are sometimes called displacement piles because the soil is
disturbed and laterally displaced during pile driving. The properties of the surrounding
soil are changed, and demonstrate local compaction in cohesionless soils and reduction
of the shear strength in cohesive soils. Small displacement piles such as H-section and
steel sheet piles cause small changes in the strength and properties of the surrounding
soil provided that such piling activity does not induce plugging at the pile toe. In the
case of non-displacement piles (augered, bored piles and drilled casings), the soil is first
removed by boring a hole, into which concrete is placed.

Driven piles are installed into the ground by means of a hammer. There are many types
of hammers available to suit driving different types of piles in varied ground conditions.
The- selection of the most effective type of hammer for a given situation involves
consideration of the length and weight of the pile and the ground conditions. The
choice of hammer and pile type may also be restricted by environmental considerations
such as restrictions on the levels of noise and vibration.

Hammers may be classified into two main types: impact hammers, which include drop
hammers, air hammers, diesel hammers and hydraulic hammers; and vibratory hammers
for granular soils. Detailed descriptions of the operation and specification of such
hammers can be found in standard textbooks, such as Harris (1983) and Tomlinson
(1994), and manufacturers’ handbooks. Air hammers and diesel hammers are no longer
used in the UK because of environmental considerations.

- The mechanism of an impact or percussive piling hammer simply comprises a solid
mass usually made of cast steel and known as a ram falling through a certain height on
to the pile head or a mandrel to cause an impact which drives the pile into the ground.
The simplest type is the winch operated drop hammer but modern impact hammers are
powered by hydraulics to speed up the number of strikes per minute and to enhance the
efficiency of the blow. The driving assembly of an impact hammer basically consists of
a leader which has the function of holding and guiding the pile and hammer at its
correct alignment. A cap, usually made of cast steel, is attached to the top of the pile to
protect the pile head from potential damage from the hammer during driving. A
wooden or plastic cushion (or dolly) may be used between the pile head and the cap to
reduce damage from the hammer impact. The notional input energy of most impact
hammers can be obtained by multiplying the ram weight by the drop height as follows:
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Notional input energy (J) = ram mass (kg) x g (m.s'z) x drop height (m)

For effective pile driving, the weight of the hammer should normally be between 0.5 to
2 times the weight of the pile. The overall efficiency of the hammer may be affected by
a number of factors including the presence of friction between the hammer and the
guide, misalignment of the hammer and pile, and the amount of packing material
between the hammer and pile.

Hydraulic drop hammers are now widely used. They are more efficient than simple
drop weights and are both controllable and energy-efficient.

During percussive driving, the hammer impact initiates a stress wave in the pile which
travels down the pile until it reaches the pile toe, where the energy which is not
dissipated in advancing the pile is partly reflected and partly transmitted into the
ground. The relative proportions of the energy transmitted and reflected are governed
by the contrast in acoustic impedances of the pile and ground (Attewell & Farmer
1973). Although the stress pulse does not transmit energy into the ground whilst
propagating along the shaft, Attewell & Farmer (1973), Martin (1980), Selby (1991)
and Massarsch (1992) considered that energy may be transmitted to the ground along
the pile shaft through friction as the pile moves through the soil. This would generate a
vertically polarised shear wave, with a conical or cylindrical wavefront. Mallard &
Bastow (1979), Selby (1989) and Massarsch (1992) suggested that flexure of the pile
shaft may also occur during driving, which may initiate vibration from the shaft.

Vibratory hammers, or vibrodrivers, introduce continuous sinusoidal vibration into the
pile and the surrounding ground during its operation. The soil particles are forced to
vibrate at the operating frequency of the vibrodriver, irrespective of the natural
frequency of the ground. The forced vibration may be made up of a number of
component frequencies, but the dominant frequency will be that of the vibrodriver. This
method is used to reduce the pile/soil interface friction and toe resistance during driving
(the granular soil immediately adjacent to the pile is effectively fluidised), allowing pile
penetration under the self-weight of the pile, the vibrodriver and its reaction block. The
vibrodriver is suitable for driving most types of pile in granular soil deposits. In
cohesive soils, fluidisation will not occur, and vibratory pile driving methods are not
generally as effective.

Vibrodrivers may be classified into two main groups, namely standard frequency (up to
about 30 Hz) and high frequency or ‘City’ vibrators (over about 35Hz). Non-resonant
vibrodrivers, where the counter-rotating eccentric masses are not applied during start-up
and shut-down until the operating frequency has been reached, are used in some cases to
minimise vibration levels. Vibrodrivers are also sometimes classified as sub-sonic (6-
50Hz), and sonic (140-150Hz). At frequencies of operation above about 100Hz, the pile
will resonant longitudinally, and penetration rates can approach 20m per minute in loose
to moderately dense granular soils. However, noise and vibration propagation can be
high, leading to settlement in nearby structures.

Many makes of vibrodriver are currently available which encompass a wide range of
input energies and operation frequencies. Recently the vibrodriver has become a
popular choice with pile driving contractors, especially when piling is undertaken in
residential areas where stringent noise and vibration restrictions apply. Vibrodrivers
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have several advantages over impact hammers in that they can be used for both driving
and extraction, they generally produce low levels of noise and vibration, driving is very
rapid in granular soils, there is a low risk of damage to the pile head and they are
relatively lightweight. However, they are generally unsuitable for use in cohesive soils,
they are not very efficient in medium dense to dense granular materials, they can
generate substantial ground vibrations when the operating frequency matches the
" resonant frequency of the ground and the load-carrying capacity of the pile can not be -
estimated during pile driving.

2.4.2 Driving energy

The concept of scaled energy (the quotient of the square root of the nominal energy
rating of the hammer divided by the distance from the pile toe) for the presentation of
vibration data from percussive pile driving was first introduced by Wiss (1967). A
similar approach, with the distance term specified in various ways, has since been
adopted by many other workers for data presentation (Attewell & Farmer 1973, Mallard
& Bastow 1979, Martin 1980, Uromeihy 1990, Whyley & Sarsby 1992) and is used in
many documents as a basis for vibration prediction (Head & Jardine 1982, BSI 1992b,
CEN 1998). Such predictors are provided in the form:

= W (2.8)

r

1%

where

v is the ppv, which may be measured in a number of ways (Section 2.3);
W is an estimate of the nominal energy input; '
r is the distance from the source;

C is a factor for driving conditions, see Table 2.1 below.

Driving Ground conditions C
Method
Impact Very stiff cohesive soils, dense | 1.0

granular, obstructions
Stiff cohesive soils, medium | 0.75
dense granular, compact fill
Soft cohesive soils, loose | 0.5
granular media, loose fill
Vibratory | All soil conditions 0.7
Table 2.1: Suggested C values given by Draft Eurocode 3

Relating the groundborne vibration to the energy of the driver has a theoretical basis,
since the particle velocity is proportional to the square root of the energy propagated by
a surface wave. However the use of the nominal energy of the pile driver takes no
account of the variability which may exist in the inefficiencies of different hammer and
pile systems. Svinkin (1992) reported that the measured energy transferred to the pile is
typically only 20 to 60 per cent of the rated hammer energy, and in most cases between

30 and 40 per cent.

The use of the nominal energy of the hammer for estimating the energy input during
percussive piling has been adapted for vibrodriving of piles. For vibrodriving, the
13



energy per cycle of the vibratory mechanism is used, calculated from the output of the
power supply divided by the operating frequency (Head & Jardine 1992). This method
has been used by many authors (Uromeihy 1990, Attewell et al 1992a & 1992b, Head &
Jardine 1992) and has been adopted by the British and European standardising
authorities (BSI 1992b, CEN 1998) for vibration prediction.

2.4.3 The properties of the pile

The energy transmitted from the pile to the soil depends mainly on the type and
efficiency of the hammer, the nature of the impulse (transient or steady-state) and the
impedance of the pile, which can very significantly with pile type. For example, the
impedance of a steel pile is almost 10 times higher than that of a timber pile. The
impedance, I, is a measure of the capability of the pile to transmit the longitudinal force
generated by the impact of the hammer, and is given by

I=pcA . (2.9)
where

p is the mass density of the pile;
c is the velocity of longitudinal wave propagation in the pile;
A is the cross-sectional area of the pile

Heckman and Hagerty (1978) considered that the magnitude of groundborne vibration .
arising from percussive piling was dependent upon the cross-sectional area of the pile
and upon the acoustic impedance of the pile material. They presented a summary of
field data in which the maximum vibration magnitude arising from piling was plotted
against the impedance. Heckman and Hagerty reported that, as the pile impedance
increased, the maximum magnitude of ground vibration decreased. Head & Jardine
(1992), however, concluded that, because of the wide range of ground conditions and
the difficulties in accurately defining the energy levels of the drivers and the impedance
of the piles, it was impossible to draw any general conclusions on the validity of
Heckman and Hagerty’s work. Conversely, Massarsch (1992) considered Heckman and
Hagerty’s observations to be important and commented that a reduction in pile
impedance of 30 per cent could increase the ground vibration amplitude by a factor of
ten. Massarsch added further case history data which supported Heckman and
Hagerty’s conclusions. '

2.4.4 Ground conditions :

Interaction between the pile and the soil may affect the transmission of energy into the
ground from the pile. The dynamic behaviour of the soil subjected to transient loading
from percussive piling is likely to be very different to the behaviour of soil subjected to
continuous cyclic loading from vibratory piling. The behaviour of the soil and the
pile/soil interaction under each of these loading conditions is therefore considered
separately in the following sub-section.

The energy transferred from an impact hammer to a pile remains approximately
constant throughout driving (Rempe & Davisson, 1977). For a constant energy input to
the pile, D’ Appolonia (1971) considered that the vibration magnitude was dependent
upon the relative amounts of energy used in advancing the pile through the ground and
in causing elastic deformation of the soil. It is the elastic deformations which give rise
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to groundborne vibrations. D’Appolonia therefore concluded that, in stiff or dense
soils, a high magnitude of vibration would arise because the rate of penetration is small
so more energy is dissipated as elastic deformation of the soil than occurs when driving
in weaker soils. In easily penetrated soils, most of the energy is expended in advancing
the pile, resulting in relatively low magnitudes of groundborne vibration.

Increasing ground vibration magnitudes with increasing penetration resistance have
been observed by many other workers (for example, Wiss 1967, Martin 1980 and
Whyley & Sarsby 1992).

The apparent relationship between penetration resistance and the magnitude of
groundborne vibration has led to attempts to correlate the ppv with field data from
penetration tests. The cone penetration test enables toe resistance and skin friction to be
measured separately and is therefore used to interpret stratification, soil type and
engineering soil properties. The cone penetration test is the basis of the TNOWAVE
program developed by Van Staadlduinen & Waarts (1992) who used data from the cone
penetrometer to predict vibration magnitudes from percussive piling.

Following a review of vibratory driving analysis, Holeyman (2000) concluded that the
soil resistance to vibratory driving was the most critical parameter affecting vibro-
drivability and argued that a proper understanding of soil behaviour was the key to
dealing with the issues related to vibratory driving, including vibration prediction.
Hiller (1999) concluded that the source of ground borne vibration during vibratory
piling is the interaction between the pile shaft and the ground, with little contribution
being made by the pile toe. He also concluded that the magnitude of vibration increases
as the rate of penetration decreases. However, measurements of the rate of driving were
not undertaken to verify this. :

Clough & Chameau (1980) reported a case history of vibration arising from vibratory
piling which showed that higher magnitudes of vibration arose when the penetration rate
was low than when driving was relatively easy. The threshold values and empirical
relationships for the prediction of vibration from vibratory piling in the British
Standards and Eurocodes (BSI 1992b CEN 1998) do not make any allowance for
different ground conditions.

Following a review of published data, Massarsch (1992) concluded that in spite of the
great significance of dynamic soil properties (wave propagation velocity and material
damping) for almost all aspects of ground vibration problems, most empirical estimates
of vibration ignore them.

2.5 WAVE PROPAGATION

In order to drive a pile into the ground, sufficient force must be transmitted to the pile
head to overcome the shaft and toe resistance provided by the soil. Part of the energy,
transmitted through the pile is transferred to the soil along the pile shaft and part to the
toe. The displacement of the soil by the penetrating pile generates both plastic and
elastic deformation. Beyond a short distance from the pile (about one pile radius) most
of the energy is propagated in the form of elastic waves (Massarsch (1992). These
elastic waves comprise body waves, which radiate energy in all directions in the ground
and surface waves, which transmit the energy close to the ground surface.
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Body waves are classified according to the propagation direction as compressional (P)
waves or shear (S) waves.

2.5.1 Compressional waves (P waves)

These waves (also known as dilational, longitudinal and primary waves) cause particles
to vibrate parallel to the direction of the wave propagation as shown in Figure 2.5
Volume change occurs in the propagation medium as the particles vibrate back and
forth causing compression and expansion. The degree of soil saturation directly affects
P wave propagation velocity. As water is relatively incompressible compared to the soil
skeleton, the measurement of P wave velocity in a saturated soil does not represent the
velocity in the soil alone. Das (1983) suggested that a P wave propagates in a saturated
soil via the pore water and the soil skeleton as two components, a “fluid” and a “frame”
wave. :

The propagation velocity of a P wave, (¢p), in a medium with a Young’s Modulus, E, a
Poisson’s ratio, v, and a density, p, is given by:

¢, = /“2(; | (2.10)
p

where

E

- 2.11
2(1+Vv) 10

1= LBV ' 2.12)

(1+v)i-2v)

2.5.2 Shear waves (S waves)

Shear waves (also known as transverse, distortional and secondary waves) cause
particles to vibrate normal to the direction of the wave propagation, as shown in Figure
2.5. S waves may be polarised into a single plane such as a vertical plane as an S, wave
or a horizontal plane as a S, wave. A propagating S wave causes distortion of an
element in the medium, but no volume change.

Propagation of a shear wave depends on the degree of saturation of the medium. As
pore water has no shear strength, the S wave velocity in a saturated soil represents the
wave velocity in the soil only if the particles remain in direct contact ie. in effective
stress terms. The propagation velocity of a shear wave, (c;), is related to the elastic
properties of the medium through which it passes and is given by:

c= |G (2.13)
o
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2.5.3 Surface waves (R waves)

Surface waves are generated at boundaries between media that have different acoustic
impedances.  Surface waves include Rayleigh waves (R waves) which are a
combination of refracted and reflected P and S waves, with no horizontal shear
component, and Love waves which are horizontally polarised (S;) waves transmitted
through a surface layer. The propagation velocity of a Rayleigh wave (c,), assuming a
Poisson’s ratio of 0.25,is given by:

c, :O.9194\/§ (2.14)
P

The motion of a Rayleigh wave is illustrated in Figure 2.6.

2.5.4 Propagation of ground waves from pile driving

The propagation of ground waves from pile driving is complex as the source of
vibration varies both in location and excitation mechanism. Attewell & Farmer (1973)
proposed two sources of energy transfer during driven piling (Figure 2.7): the pile toe,
from which a quasi-spherical wavefront emanates, and the pile shaft from which a
quasi-cylindrical wavefront propagates as a result of shaft friction.

2.6 ATTENUATION OF GROUND VIBRATIONS GENERATED BY PILING

Wave attenuation is caused by two types of damping. Geometrical damping is due to
enlargement of the wave front as the distance from the source increases. Material
damping is caused by internal absorption of wave energy by the soil.

2.6.1 Geometrical damping
If an impulse of short duration is created at a point on the surface of an elastic half
space, the body waves travel into the medium with a hemispherical wavefront (Das,
1983). The Rayleigh waves will propagate outwards along a cylindrical wavefront.
When body waves spread out around a hemispherical wave front, the energy is
distributed over an area that increases with the square of the radius:

E' o L (2.15)

r2

where E’ is the energy per unit area and r is the radius. However, the amplitude is
proportional to the square root of the energy per unit area:

Amplitude o< \E’ o< 1’—12 (2.16)
r
or »

Amplitude o< 1 : 2.17)
r

The Rayleigh waves expand on a cylindrical wavefront, so E” is proportional to 1/r.
Hence, the amplitude of the Rayleigh waves, which spread out in a cylindrical wave
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front, is proportional to 1A(r). Thus the attenuation of the amplitude of the Rayleigh
waves is slower than for the body waves.

The relationships for wave attenuation given above are for waves propagating from a
point source on the surface of an elastic half space. However, in the case of piling, the
source of vibration is not a discrete point, but is complex with P waves generated at the
toe, S waves generated down the entire length of the pile shaft and R waves generated
on the ground surface and at material boundaries. As illustrated in Figure 2.7, the S
waves will tend to propagate on a cylindrical or conical wavefront rather than a
hemispherical wavefront. The attenuation of S waves generated from a pile shaft is
therefore much slower than the attenuation of S waves generated by a vibrating point
source on the surface of a half space.

2.6.2 Material damping

As waves pass through the soil, part of the energy is absorbed by friction and cohesion,
and this reduction in the vibration amplitude is due to material damping. Mintrop
(1911, cited by Bornitz 1931) proposed an equation for the attenuation of surface waves
in terms of geometric attenuation, dependent upon the square root of distance measured
along the ground surface (d), and an exponential material damping component:

V:WJ%{WWM (2.18)

v is the ppv at a distance d measured along the ground surface from the source
v, is the ppv at a reference distance d;
a is the material damping coefficient.

where

The value of « is dependent upon the properties of the soil (Barkan, 1962, Woods &
Jedele 1985) and is also proportional to the vibration frequency (Richart et al 1970).
Massarsch (1992) states that the assessment of the material damping coefficient is of
great importance for a reliable prediction of wave attenuation and suggests the
following relationship after Haupt (1986):

o = 27DF) . (2.19)
C

where D is the material damping (%), f the vibration frequency and c¢ the wave
propoagation velocity.

A further consideration which may affect the attenuation of vibration and which may
disturb the relationship between frequency and material damping is that soils behave as
bandpass filters, possessing a limited range of frequencies within which vibration
energy propagates with least attenuation (Attewell 1995).
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2.7 FACTORS AFFECTING THE TRANSMISSION OF GROUNDBORNE
VIBRATIONS INTO STRUCTURES

Damage to structures from ground vibrations are usually attributed to “dynamic effects”
such as vibration amplification and soil resonance. Massarsch and Broms (1991)
demonstrated both theoretically and by a review of the available literature that ground
distortion caused by pseudo-dynamic ground movements (resulting from the passage of
waves below a building) is the single most important factor controlling building
damage. While during static deformations, the soil supporting the structure can either
settle or heave, both upward and downward deformations of structural supports can
occur at the same time during the passage of waves travelling below a building.
Generally a ‘rigid’ floor slab shows reduced vibrations, while a slender suspended floor
may amplify vibrations (BS5228, 1992).

Massarsch (1992) concluded that the most critical situation arises when the building
length corresponds to about half of the length of the propagating wave. Massarsch
emphasised that other factors can cause vibration problems or damage to structures,
especially at high frequencies and in the vicinity of the vibration source, or when
resonance occurs between the induced vibrations and various components of a building.

2.8  PREDICTION OF VIBRATIONS GENERATED BY PILING

The intrusive nature of piling and the perceived risk of vibration-induced damage on
adjacent structures have led to many attempts to predict the magnitude of vibration
generated by piling. Many case histories have been reported in the literature but in a
fairly inconsistent manner. Head & Jardine (1992) attempted to compile a database on
piling vibrations with the objective of assessing the potential for piling to cause
annoyance or damage. They commented that many records lacked important
information.

The most common form of relationship for the prediction of ground vibration frdm
piling is based on that proposed by Attewell & Farmer (1973) as

y, = k[-‘/——_“i] (2.20)

d

where

vy is the vertical component ppv (mm/s)
W is the nominal energy per blow (or per cycle) (J)

~d is the radial distance between source and receiver (m)
k and y are empirically determined constants

This relationship has been the basis of many empirical methods which consider the
nominal energy at the source and attempt to fit curves to field data. This has resulted in
a series of different scaling factors which can be applied within essentially the same
equation. This approach has been developed for percussive piling and adapted for
vibratory piling by use of the energy per cycle of the vibrodriver. Attewell et al (1992),
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Whyley & Sarsby (1992) and CEN (1998) proposed different scaling factors for the
prediction of vibration from percussive piling which were dependent on the ground
conditions. Van Staalduinen and Waarts (1992) and Jongmans (1996) attempted to
quantify the effects of vibration magnitude on parameters other than the driver energy
so that site specific predictions could be developed.

More recently, the use of numerical modelling techniques has been considered as a
possible tool for the prediction of vibration from piling (Mabsout 1995; Ramshaw et al
1998). Such techniques potentially offer a means to understanding the complex
processes of vibration generated by piling but they can not be used in isolation: they
require high quality field data for validation (Ramshaw et al 1998).

2.9  VIBRATION DATABASES

Various workers (Uromeihy 1990; Head & Jardine 1992; Hiller 1999) have attempted to
quantify the magnitude of vibrations by compiling large databases of vibration
measurements recorded during piling operations at many sites. The data from these
measurements have generally been used to refine the empirical relationships suggested
in the literature. However, the data sets are often not very comprehensive and do not
include sufficient data for detailed numerical modelling.

The ‘SIPDIS’ program, initiated by Massarsch in the early 1990’s, was an extensive
suite of controlled pile driving with comprehensive in situ measurements. Steel piles of
various sizes were driven at one site in Germany and at one site in the UK (Immingham)
using both impact and vibratory hammers. Water-flush was used occasionally.

Instrumentation was designed by Loster, GmbH, and was based on a digital acquisition
system linked to a range of sensors. These included pile head strain gauges and
accelerometers, ground surface and sub-surface velocity transducers, and pore pressure
transducers.

A massive data set has been recorded but, as yet, it has not been released into the public
domain. '

2.10 SUMMARY

Ground waves from- piling mainly comprise P (compressional), S (shear) and R
(Rayleigh or surface) waves. The source of vibration is not a discrete point, but is
complex with P and S wavefronts generated from various parts of the pile. The
transmission of vibration from the pile to the soil is also dependent on the method of
installation, whether impact or vibratory, as the dynamic response of the soil is likely to
be very different in each case. The wavefronts propagate outwards from the pile at
differing velocities depending on the properties of the soil through which they travel.
The wavefronts may be reflected or refracted at changes in strata and may interact with
each other.

The attenuation of vibration from piling is complex and prediction relies on many site-
specific parameters. The usefulness of empirical relationships based on case history
data are therefore limited for confident prediction of piling vibration at any particular
site. The use of numerical modelling techniques to simulate the ground waves
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generated by pile driving therefore appears to be an attractive alternative, as these
techniques potentially offer a means of understanding the complex processes of
vibration generation during piling. However, numerical modelling requires high quality
and comprehensive field data for validation.
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CHAPTER 3
NUMERICAL MODELLING OF GROUND WAVES IN ABAQUS

3.1 INTRODUCTION

The work detailed in this thesis was undertaken using the ABAQUS finite element
program, developed and distributed by Hibbitt, Karlsson & Sorensen, Inc. It is one of
the most powerful and versatile finite element programs on the market. Of particular
value to this work is the availability of infinite elements within the program together
with an interface which allows the user to define additional element types in FORTRAN
code.

This Chapter details the preliminary work that was undertaken to validate the ability of
ABAQUS to simulate ground waves satisfactorily. The first section describes the
ABAQUS finite element program and the system that it was run on at the University of
Durham. The performance of the infinite elements provided by ABAQUS in modelling
the far field domain is then verified in Section 3.3 using some of the examples given in
the ABAQUS Example Manual (HKS, 1998). The ability of the program to simulate
ground waves with sufficient accuracy is demonstrated in Section 3.4 by transmitting
pure P, S and R waves in turn along a channelled wave guide of finite elements with
infinite elements at the far end (Ramshaw et al 1998). Various finite element/infinite
element (FE/IE) meshes were then used to verify the geometrical attenuation of P, S and
R waves against analytical solutions (section 3.5).

3.2 THE ABAQUS FINITE ELEMENT PROGRAM

ABAQUS is a suite of powerful engineering simulation programs, based on the finite
element method, which can solve problems ranging from relatively simple linear
analyses to highly complex non-linear simulations. ABAQUS contains an extensive
library of elements that can model virtually any geometry. It has an equally extensive
list of material models that can simulate the behaviour of most engineering materials.

The ABAQUS system comprises three main modules, namely ABAQUS/Pre,
ABAQUS/Standard and ABAQUS/Post.

ABAQUS/Pre is an interactive, graphical pre-processor that allows models to be created
quickly and easily by producing or importing the geometry of the structure to be
analysed and decomposing the geometry into meshable regions. Physical and material -
properties can be assigned to the geometry, together with loads and boundary
conditions. ABAQUS/Pre contains powerful options to mesh the geometry and verify
the resulting analysis model. Once the model is complete, it produces an ABAQUS
input file.

ABAQUS/Standard is a general-purpose analysis module that can solve a wide range of
linear and non-linear problems involving the static, dynamic, thermal and electrical
response of components. General transient dynamic analysis in ABAQUS/Standard
uses implicit integration of the entire model to calculate the transient dynamic response
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of the system. An implicit integration method is one where the equations are solved at
each time increment and therefore requires an inversion of the system equations.

ABAQUS/Post is an interactive, graphical post-processor that supports all of the
capabilities in the ABAQUS analysis modules and provides a wide range of options for
interpreting the results.

The ABAQUS suite of programs was installed onto two UNIX systems at the
University of Durham. The first was a general time sharing server called deneb
comprising a Sparc E450 with four 250 MHz processors with 1GB of memory plus
13GB of swap space (4GB + 9GB disks). The Solaris 2.6 operating system was
installed on deneb. The larger analyses were run on a computer called marvin which
comprised a Silicon Graphics Power Challenge with 16 x R10000 processors and 1Gb
of memory. Its operating system was IRIX 6.5.

The data for the ABAQUS analyses were prepared and the results were viewed on a
SUN Ultra 1 workstation. Versions 5.5 through to 5.8 of ABAQUS were used in this

work.

The analyses were run and the results output to a temporary file space which was
automatically deleted about once a week. The size of the various types of output files
generated by ABAQUS were generally too large to be saved routinely so post-
processing of the results usually took place immediately. Selected results files, usually
those suffixed .fil in binary format containing the data for x-y plots or printed tabular
output, were saved onto ‘Zip’ disks.

3.3 VERIFICATION OF THE INFINITE ELEMENTS AVAILABLE IN
ABAQUS

3.3.1 Infinite Elements

One of the limitations of finite element methods arises when they are employed for the
modelling of an infinite domain, in which energy radiates from a source outwardly
towards infinity. In numerical calculations, only a finite region of the medium is
analysed. Unless something is done to prevent outwardly radiating waves from
reflecting from the region’s boundaries, errors are introduced into the results.

The use of infinite elements in conjunction with finite elements has been demonstrated
to be a very effective means for simulating interaction problems with unbounded
domains. Following the conceptual works of Ungless (1973) and Zienkiewicz &
Bettess (1975), infinite elements have been widely applied to the solution of various
wave propagation problems, and are particularly applicable to geotechnical problems
where the engineering medium, the soil/rock, is effectively modelled as a semi-infinite
half-space.

ABAQUS provides first- and second-order infinite elements that are based on the work
of Zienkiewicz et al (1983) for static response, and of Lysmer & Kuhlemeyer (1969) for
dynamic response. The elements are used in conjunction with standard finite elements,
which model the area of interest, with the infinite elements modelling the far field
domain.
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3.3.2 Static Response: The Boussinesq and Flamant Problems

These examples, which are included in the ABAQUS Example Manual (HKS, 1998),
verify the performance of infinite elements in modelling the far field domain. The
results from the problem of a point load on a half-space and a line load on a half-space
are compared with the analytical solutions due to Boussinesq and Flamant (Timoshenko
& Goodier, 1970), respectively. For comparison purposes, results obtained using only
finite elements are also given.

Two axisymmetric mesh configurations are used for the Boussinesq problem of a point
load on a half-space. The finite element/infinite element (FE/IE) mesh, Figure 3.1, is
composed of twelve finite elements extending to a radius of 4.0, with four infinite
elements modelling the far field domain. The finite element (FE) mesh, Figure 3.2, is
made up of sixteen finite elements, truncated at a radius of 5.0, where fully fixed
boundary conditions are applied.

The material is chosen to be linear elastic, with a Young’s modulus, E, of 1.0 and a
Poisson’s ratio, v, of 0.1. A unit load is applied in both problems.

Boussinesq’s analytical solution for the problem of a point load on a half-space gives
the vertical displacement as: :

w=%[(l+v)z2(r2+zz)_%+2(1—v2Xr2+z2)—%} .

where r and z are the radial and vertical distance from the point load, respectively. This
equation clearly shows the 1/r singularity at the point of application of the load (r=0).

The displacement variation along a vertical line beneath the point load obtained from
the finite and infinite element models is shown together with a plot of the analytical
solution in Figure 3.3.

It is clear that the results obtained with the infinite element meshes show a significant
improvement over the finite element meshes with the same number of elements, and
that the infinite elements provide reasonable accuracy even with a relatively coarse
mesh.

The same mesh configurations are used for the Flamant problem of a line load on a half-
space. This case is a plane strain problem and a vertical plane of symmetry is used.

Flamant’s analytical solution for the problem of a line.load on a half-space gives the
displacement along a vertical line beneath the line load as:

2P (d)
w=—1In| —
mE \z (3.2)

where d is an arbitrary large distance at which the displacement is assumed to be zero.
In this example, the far field nodes on the infinite elements are chosen to be fixed so
that the value of d is 8.0. The results obtained from the finite and infinite element
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models are shown in Figure 3.4 together with a plot of the analytical solution. This
graph shows that even though the infinite elements contain displacement interpolations
in the infinite direction with terms of order 1/z, 1/7> while the analytical solution is of a
In(z) nature, they provide a significant improvement over the solution obtained with
finite elements only.

3.3.3 Dynamic Response: Wave Propagation in an Infinite Medium

This example, which is included in the ABAQUS Example Manual (HKS, 1998), tests
the effectiveness of the infinite element (quiet boundary) formulation in dynamic
applications. The problem is similar to that analysed by Cohen & Jennings (1983). The
purpose of this example is to compare the results obtained using a small mesh including
infinite element quiet boundaries with an extended mesh of finite elements only.
Results obtained using the small mesh without the infinite element quiet boundaries are
also given to show how the solution is affected by the reflection of the propagating
waves.

The problem is an infinite half-space (plane strain is assumed) subjected to a vertical
pulse line load. A vertical plane of symmetry is used so that only half the configuration
is meshed. Three meshes are used: a small FE/IE (quiet boundary) mesh of 8 x 8 first
order (4 noded) finite elements plus sixteen first order infinite elements as shown in
Figure 3.5; a small FE mesh of 8 x 8 first order elements as shown in Figure 3.6; and an
extended FE mesh of 24 x 24 first order elements as shown in Figure 3.7. The FE
meshes are assumed to have free boundaries at the far field and will reflect the
propagating waves, whereas the FE/IE mesh models the infinite domain and provides
quiet boundaries that minimise reflection of propagating waves back into the mesh.

The material is assumed to be elastic with Young’s Modulus, E, of 1.0, a Poisson’s
ratio, v, of 0.1 and a density, p, of 0.01. Material damping is not included in the
analyses. Based on these material properties, the speed of propagation of compression
waves (P-waves) in the material is approximately 10.0 and the speed of propagation of
shear waves (S-waves) is approximately 6.7. Therefore the compression waves, which
are predominant with the vertical pulse excitation, should reach the boundary of the
extended mesh in about 2.4 time units. The analyses are run for 4.0 time units so that
the waves are allowed to reflect significantly into the finite element meshes that do not
have quiet boundaries. The applied vertical pulse is in the form of unit impulse
function, or Dirac delta function, with an amplitude of 1.0.

The results of the analyses for the meshes are shown in the form of time histories of
vertical displacements at nodes 7, 27 and 151 (Figures 3.8, 3.9 and 3.10 respectively).
The wave reflection caused by the free boundaries in the small FE mesh is evident,
while the small FE/IE quiet boundary mesh largely succeeds in eliminating this
reflection.

The next test of the computational method was to apply a pulse load to a small circular
disc on the surface of an axisymmetric elastic half-space. A ‘snapshot’ of
displacements is presented in Figure 3.11. Outgoing wavefronts can be clearly
observed, in which the first is a P wave expanding over a hemispherical surface. The
displacements are normal to the polar source; they are largest directly below the origin,
and reduce towards zero as the ground surface is approached, with values being
negligible after some 40° from the axis of symmetry. Following behind the P wavefront
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is an S wave, also mapped around an expanding hemisphere, but this time with larger
values nearer ground surface; there is a sharp reduction close to the axis of symmetry;
close to ground surface the S wave regresses into a Rayleigh wave. Intermingled with
the S wave is a second P wavefront.

Other features emerge: firstly, the ratio of the two wave speeds is close to 0.577, which
is the theoretical ratio (calculated as c/c, = +/|(1-2v)/2(1~v)]), for the chosen
Poisson’s ratio of 0.25. The estimated ratio of half-wavelengths of the two waves is
about 0.6, slightly higher than the 0.577 value for pure sine waves. The ratio of

energies between the P and S wavefronts is difficult to compute, but a rough estimate
suggests a value very close to the ratio of 0.21:0.79 derived by Miller & Pursey (1955).

VERIFICATION OF FE/IE MODEL TO TRANSMIT P, S, AND R WAVES

3.4.1 General

This section of work was undertaken to verify that ABAQUS models P, S, and R waves
sufficiently accurately. Pure P, S and R waves were modelled in ABAQUS and were
compared with analytical solutions. These analyses also provided a check of the
efficiency of the ABAQUS infinite elements in absorbing outgoing waves.

3.4.2 Compressional Waves (P waves)

For examination of P waves, a plane strain mesh of finite elements, 10 elements wide
and 10 elements high, with infinite elements applied to the right-hand vertical boundary
was used with upper and lower boundaries restrained in the y-direction, Figure 3.12.

A pure sinusoidal P wave was applied to the left-hand vertical boundary of the mesh.
The analytical form of a P wave is given by :

u(x,t) = acos(kx — wr) ' (3.3)
where o is a chosen angular frequency, k£ is the wave number and a is the amplitude
For a pure P-wave, the displacements u, and u, are given by

_9

u = , u, =0 34
s = y (34)
Hence, assuming a=1,
u, _99_ —k sin(kx — oot (3.5)

ox

The P wave was applied to the FE mesh by specifying the horizontal displacements on
the vertical boundaries as a function of time using the following technique.

1. Choose elastic constants E, v and p.

2. Calculate the Lame constants from the following equations,
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Ev

B (1+v)(1f2v) (3-6)
E
G o) | 3.7)

Choose an angular frequency, ®

Calculate the propagation velocity of the P wave, ¢,

c, = A+2G (3.8)

Calculate the wave number, £,

¢,

Calculate the wavelength, A,

AR (3.10)

k .
In ABAQUS, the periodic displacement of nodes is specified by the use of the

*AMPLITUDE and *BOUNDARY commands. Periodic variation of amplitude
is defined as a Fourier series as follows: :

N
a=A0+Z[An cosna(t—t,)+B, sinna)(t—to)] for t 21t (3.11)

n=1

a=A, for t <0 (3.12)

where the constants, ¢,, @, A,, A,, B,, n=1, 2...N are defined on the datalines
following the *AMPLITUDE command in ABAQUS.

The calculation of the Fourier constant for a P wave is given in Appendix B.

The P wave was applied to the left-hand vertical boundary of the FE mesh shown in
Figure 3.12 using the technique described above.

The displacements produced by a pure P wave are plotted at intervals of 0.18 seconds in
Figures 3.13. The P wave plotted spatially was found to reproduce the analytical sine
wave as shown in Figure 3.14. These plots demonstrate that ABAQUS models the P-
wave almost exactly and that the infinite elements absorb the P waves very effectively.
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3.4.3 Shear Waves (S waves)

The capability of ABAQUS to model pure shear waves was verified using a similar
technique to that described above for P waves except that the upper and lower
boundaries of the mesh were restrained against movement in the x-direction and the
prescribed disturbances were tangential to the left- and right-hand sides (Figure 3.15).
The displacements u, and u, for a pure shear wave are given by:

u, :a—‘p:—ksin(kx—'wt), u, =0 (3.13)
ox

These equations were used to specify the displacements on the vertical boundaries of
the mesh as a function of time. The wave number, k, was based on the propagation
velocity of an S wave, ¢;, which is given by

c = (3.14)

5

G
p

The calculation of the Fourier constant for an S wave is given in Appendix B.

The displacements produced by a pure S wave in an FE/IE mesh are plotted at intervals
of 0.18 seconds in Figures 3.16. The S wave plotted spatially was found to reproduce
the analytical sine wave as shown in Figure 3.17. These plots demonstrate that
ABAQUS models the S wave almost exactly and that the infinite elements absorb the S
waves very effectively. The displacement of the infinite elements is representative
rather than realistic.

3.4.4 Rayleigh Waves (R waves)

The capability of ABAQUS to model pure Rayleigh surface waves was undertaken
using a similar technique to that described above for P and S waves. A 20 x 20 mesh
was used . (Figure 3.18). However, the specification of R waves is more complex
because they are defined by a combination of horizontal and vertical displacements as a
function of depth (y is negative down). As shown by Ewing, Jardetzky & Press (1957),
and substituting —y for depth z, the analytical form of an R wave is given by

u = D|e*™™™ —0.5773¢"** Jsin (kx - at) (3.15)

and,

v = D[~ 0.8475¢"™ +1.4679¢"** |cos(kx — wr) . (3.16)

where k is the wave number, ® is the frequency, and D is a constant. (D is taken as 1.0
in this theoretical case; the actual magnitude of the R wave depends on how it is
generated.) The other constants in the equations correspond to a Poisson's ratio of 0.25,
for which the propagation velocity, c,, is given by
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c, =0.9194\fg (3.17)
p

These equations were used to specify the displacements on the left-hand vertical
boundary and the bottom boundary of the mesh as a function of time. In this case, the
top boundary of the FE mesh was unrestrained.

The calculations of the Fourier constants for an R wave are given in Appendix B.

The displacements produced by a pure R wave are plotted at intervals of 0.18 seconds in
Figures 3.19. The horizontal and vertical displacements along a horizontal line 55.19m
below the top of the mesh at times of 2.1, 4.2, 8.4 and 16.8 seconds are compared with
the analytical solutions in Figures 3.20 — 3.23. Reflection from the boundary is evident
and the predicted displacements diverge from the analytical solution with time as the
amount of reflection increases. This indicates that the ABAQUS infinite elements do
not absorb the complex Rayleigh wave very effectively.

The variation of the amplitude of the horizontal and vertical components of the R wave
with depth at a time of 3.6 seconds, before significant reflection has taken place, match
the analytical solution closely as shown in Figure 3.24.

3.5 VERIFICATION OF WAVE ATTENUATION IN ABAQUS

The performance of the finite element meshes in representing each of the three wave
types, P, S and R, was tested by setting up a wave channel with appropriate boundary
conditions, including infinite elements to model the far field, in both plane strain and
axisymmetric conditions. A pure P wave was imposed, and the difference between the
uniform waves of the plane strain condition and the attenuating waves in the
axisymmetric condition was observed. The peaks of amplitude were found to attenuate
with 7%, while energy density attenuated with r'; these values correspond with
geometric attenuation around a cylindrical wavefront (Figure 3.25). The P-wave system
was next applied to a spherical cavity in an elastic continuum (Figure 3.26); this time
the geometric attenuations were in proportion to r” for amplitude, and r? for energy
density, correlating with standard theory, Figure 3.27.

Shear wave attenuation could be tested only in the cylindrical configuration, in which it
showed behaviour similar to the P-wave test. Finally, the R-waves were tested for
attenuation of vertical and horizontal components of amplitude and for energy density.
Again, the attenuations correlated with the theoretical values of ¥ and r” respectively
(Figure 3.28).
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3.6 CONCLUSIONS

This Chapter verifies the ability of the ABAQUS finite element program to model
ground waves accurately. The performance of the FE/IE model has been verified by
applying pure P, S and R waves in turn along a channelled wave guide of finite
elements with infinite elements at the far end. The model reproduced the analytical
wave patterns very closely within the finite element zone and the ABAQUS infinite
elements were shown to absorb the P and S waves almost exactly. However
inaccuracies were observed for the more complex Rayleigh waveform where some
reflection from the boundary of ABAQUS infinite elements was ev1dent Improvement
of this boundary is the subject of Chapter 4.

Methods were also devised to test the performance of ABAQUS to simulate geometrical
attenuation of the three wave types. Comparisons with analytical solutions
demonstrated the ability of the program to simulate the attenuation of elastic waves
accurately.

Further detailed verification of the performance of various elements, materials and
analysis types can be found in the ABAQUS Verification manual.

37



swiafqoid juewe|q pue bsourssnog oy ur pasn ysswr g/

I°¢ 2an31y

]

SNOVEW




swi
91qoid jueuwre),] pue bsauissnog oy ut pasn yssw

7€ 2Indyy

SNOVEW

34



01

BAQUS

FE/IE4
FE/IE8
FE4

FE8
ANALYTIC

+X0e
+ XOe

XMIN O0.000E+00
XMAX 8.000E+00

YMIN -5.933E-39
YMAX 4.902E+00

Figure 3.3

VERTICAL DISPLACEMENT (m)

.50

.45

.40

.35

.30

.25

.20

.15

.10

.05

.00

.5 1.0 1.5 2.0

DEPTH (m)

The Boussinesq problem: displacement resulits

2.

5




14

BAQUS

2.0
® o rE/IE4
O O FE/IES
X X FE4
+  + FES8 1.5 (-
ANALYTIC -
g
.
3]
& 1.0 |-
=
A
[}
=
a
g
E
oé 0.5
XMIN 0.000E+00
XMAX 8.000E+00
YMIN 3.116E-38
YMAX 2.790E+00 0.0 | I 1
0.0 0.5 1.0 1.5
Figure 3.4 The Flamant problem: displacement results

2.0

DEPTH

(m)

2.

5




wo[qo1d uoneFedoid aaem ur pasn ysaw JI/9 [[BWS

L.C

§'¢ N3y

SNOVEW

¥



warqoid uonefedosd saem ur pasn ysow 7. [[pug

.¢

9°¢ 2andr,

SNOVEW




4

ABAQUS

[

Figure 3.7 Extended FE mesh used in wave propagation problem




BAQUS

.1 T T
L—1 gquiet boundary
2—2 small mesh
i3 extended mesh o
3
3
iy
~
) -.1
K 1 3
9 2
o}
2 2
s 2,
o
bt -.2 -
il
i}
Y
0
B
-3 F
XMIN 1.000E-01
XMAX 4.000E+00
YMIN -3.268E-01
YMAX 2.919E-02 —-.a | |
0 1. 2

time

Figure 3.8 Vertical displacement responses at node 7




G

BAQUS

.1 T |
I—1 guiet boundary
2——2 gmall mesh /
i3 extended mesh -0 \
2
g 2
o -1
Lol
0
5}
o
0
-
o]
w  -.2
3]
-
o
9
o
S
-.3 =
XMIN 1.000E-01
XMAX 4.000E+00
YMIN -3.776E-01
YMAX 5.937E-02 -.4 ] 1
0 1. 2

Figure 3.9

time

Vertical displacement responses at node 27




L

BAQUS

.2 T |
A—1 gquiet boundary
2—— gsmall mesh
i3 extended mesh
.0
—
n
i
]
o]
0
=]
o -2
15}
-
o]
—
o
0
-
Fa)
%
o
S
-.4
XMIN 1.000E-01
XMAX 4.000E+00
YMIN -5.049E-01
YMAX 1.207E-01 -6 | |
0 1. 2
time

Figure 3.10 Vertical displacement responses at node 151







b A

y=-3335
2

-

Figure 3.12

- x=3335

FE/IE mesh used for P wave verification







SAQUS

20.
[x10 ~ ]

&——® Analytical 15.
A----A ABAQUS IE

10.

-10.

Horizontal displacements

-15.

-20.

0. 50. 100. 150. 200. 250. 300.

Distance across mesh at y-coord of -100.05

Figure 3.14 Horizontal displacement of nodes at 3.6 seconds: Analytical vs ABAQUS solution




x =204.23

y =-204.23
2

-

Figure 3.15

FE/IE mesh used for S wave verification




ABAQUS

DISPLACENEIT MAGUIFICATION FACTOR » 1.000F-OBRIGINAL u:nl
TINE COMPLETED I TWIS STEP  1.000K-61 TOTAL

ASAWS VERSION 3.3-1  DATE: 19-WAR-97 TINE: 03: u.sl
STEP 1 INCRENENT 1

DISPLACED HESH
1.000€-02

ABAQUS

FacToR

COMNILETED 19 TRIS STEP
DATE: {9-RAR-97 TINE: 09:48:%1

mw: VERSIoW: $.5-1
STE? | InCRENDNT 19

1 ol
0190 TOBL ACCINAATID TIRE  0.190

ABAQUS

\
]
7

P

FAFRFRTADAVAVAVAIANS

osPLACEHDT PACTIR « 1. MESH  DISPLACED nESH
TINE COMSLETED 1#f THIS STEP  0.)38 TOTAL ACCNGRATED TIME  0.370
ABAZUS VERSICH: $.5+1  DATE: 13-MAR-37 TINE: DY:40:81

RTEP 1 trCRENENT 37

ABAQUS

4

A

AVATATAVLATATAYAVAWA
VAVATAVAVAVATRVAVAI V)

A

oIsFLACRET

TINE COMPLETED In Tis

ABAQUS VERSION: 5.5-1
STEP 1 mMCRDNDNT 55

ACToR o 1.
STIF 5,330 TOTAL ACCOMLATED ThNE

oaTE:

19-RAN-93 TINE: OP14015)

ABAQUS

A\
)
]

AEARARATATANATATAY

DISPLACKNENT AAGIFICATION FACTOR o 1. uwl-nnnc(mu. s
nnx CCMPLETED IN TMIS STEP . TOTAL ACCUMULATED T1
BACUS VERSION: 5.5.1  DATE: 17- m $7 TIKE: 03:60:%1

mv I IHCRBMENT 1)

DISPLACED NESH
10

ABAQUS

1

A )

L

(I

nnn- -t o
0.9 e e.ne

TINE CONPLETED DN THIS STEF

ABAQUS VERSION: 3.3-1
sTEP 1 INC) n

oAtz

oIsFLACKD weem

TOTAL ACCUMILATED
n-m-n TOHE: 03148051

ABAQUS

T A )

[ RIRSEARIAAI|

L7

DESPLACENENT MAGHIFICATION ncrw 1 ann:-uncnm. m;su
TIHE COMPLETED fn THIS STE TOTAL ACCUMULATED
ABACUS VERSION: 3 $-t
STEF 1 INCREWENT 109

nuvucm nESH
1.0

09:4:31

oATE: et T,

ABAQUS

Y7

JALARATARRTARATAIAVI)

(WEYAVAVAVATATATAYAYAY

N

2
TINE CCKFLETED IN THIS STEY

ABACUS VERSION: 3.3-1
STEF 1 ImcRDMENT 177

e

1 MENX  DISPLACED WS

327 TOTAL ACCORLATED THRX  1.27
19-MAR-97  TINE: 09160151 .

Figure 3.16

‘Snapshots’ of S wave in an FE/IE mesh



hs

BAQUS

®&—8® Analytical
A----A ABAQUS IE

Vertical displacements

-0.02

] | |

-0.04

0. 50. 100. 150.

Distance across mesh at y-coord of -61.27

Figure 3.17 Vertical displacement of nodes at 3.6 seconds: Analytical vs ABAQUS solution

200.




UONBOIJIIOA 9ABM Y JOJ Pasn ysaw HI/g4q

81°¢ d1In3dry

-

4

6'L9¢- =K

6'L9E =X

SNOVEW

4



ABAQUS

O1SPLACENDIT MAGNIFICATION FACTOR = 75.0  OAIGINAL MESH  DISPLACED NESH

1 TIME CONPLETED IN TMIS STEP  1.000F-92 TOTAL ACCUNULATED TINE  2.000E-02
AMAGUS VERSIOH: $.$-1  PATE: 10-RAN-97 TIXE: 09:
STEP 1 DNCRDIDNT 3

.22

ABAQUS

T
IBIARIw;

DISPLACDEIDIT NAGRIFICATION FACTOR » 5.0  ORIGDOL KESY  CISPLACID XTSR
1 TINE COMPLETED IN TWIS FTEP J TOTAL ACCURLATID TIKZ  £.302
ARAQUS VERSION: $.8-1  DATE: 13-MAR-3) YINE: #9127:22
STEP 1 INCKENDNT 19

ABAQUS

i

rs

f
IBIRATAS
H

DISPLACEMDNT MAGUTFICATICH FACTSP «  15.9  OPICIMAL MESH  DISPLACED WESW
1 TINE COMFLETED TW TMIS $TEP  4.740 TOTAL ACCUNULATED TINE  0.740

ABAQUS VERSISH: $.3.1  DATE: L0-WGR-97 TINE: 09:27:22

STEP | INCRENENT 31

TTHREET
p174

are
'8
1

DISPLACDHINT MAGNIFICATION FACTOR

5.0 ORICHUL XKEIW  DISFLACTD KESR
TED TINE

1 TINE COMPLETED IN THIS STEX 1.1 TOTAL ACCUMILA! 1.18
ABACUS VIPSION: $.5-1  DATE: 10-WAR-3T TDNE: 3322
sTE 0 s

ABAQUS

AY

R1AY
Y

HEIVIT

DISPLACENDNT MAGHIFICATICN FACTOR o  75.5  ORICIHAL MESH  DISPLACED WESH
1 TINE COMPLETED IN THIS STEP  1.46 TOTAL ACCMULATED TIME  1.46

AWAQUS VERSION: $.5-1  OATE: L0-MAN-9? TINE: 09:27:22

STEP 1 INCREMENT 73

ABAQUS

Ly v QAT
N
)4

DIEPLACDINT MACNIPICATION FACTOR «  73.0  ORIGDUL KESX  DISPUACED RESK
To® ™ s D L4 TOTAL ACCORATID THE 182
Amagus versiow: 5.5-1 129122

STE? 1 TRCRDDIT 91

ABAQUS

7t 7 Y
4 e LY
') N NN
T -
2B -,
H AT L H H

DISFLACEMENT MAZNIFICATION FACTOR +  75.0  ORIGUIAL WESH  DISPLACED WESH
1 TINE COMPLETED M TWIS STEP LR TOTAL ACCUMULATED TIME 2.1

ABAZUS VERSION: 3.%-1  OATE 18-mAR-97 TINE: 99:27:22

STEP 1 IHCREMENT 109

ABAQUS

[Faspai ¥
H AN
= = ¥

DISPLACEMINT FAGNITICATION FACTOR »  75.0  ONICDUL MZSN  CISFLACED KR
1 TINE COMPLETED IN THIB STEF  1.34 TOTAL ACCREAATID TIRE  3.54
ATAQUS VERSION: 5.5-1  DATEY 19-MAR-91 TOME: 00:3032  *
STEP 1 TNCRETDNT 127

Figure 3.19

‘Snapshots’ of R wave in an FE/IE mesh

S6



ABAQUS

®—=® Analytical
A----A ABAQUS IE

-0.05

Horizontal displacements

_0.10 I 1 1 [ 1 1 | | B
0. 40. 80. 120. 160.  200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(a) Horizontal displacements
0.8 T T T T T T T T T
®—=@ Analytical 0.6 - 1

A----A aBAQUS IE

Vertical displacements

0.8 | 1 | I | ! 1 [ | I
0. 40. 80. 120. 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(b) Vertical displacements
Figure 3.20 Displacement of nodes at 2.1 seconds: Analytical solution vs

ABAQUS

S



ABAQUS

®——@ Analytical
A----A ABAQUS IE

Horizontal displacements

] n 1 1 1 ] ! ]

-0.10 1
0. 40. 80. 120. 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(a) Horizontal displacements
0.8

®-~—@ Analytical
A----A ABAQUS IE

Vertical displacements

| 1 | Jo | | | 1

40. 80. 120. 160. 200. 240. 280.

Distance across mesh at y-coord of -55.19

(b) Vertical displacements

Figure 3.21

Displacement of nodes at 4.2 seconds: Analytical solution vs

ABAQUS

S&



ABAQUS

®—@ Analytical
A----A ABAQUS IE

Horizontal displacements

I} 1 H { 1 | | 1 i

-0.10
0. 40. 80.  120. 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(a) Horizontal displacements
0.8 T U T T T T T T T

®-——@ Analytical
A----A ABAQUS IE

Vertical displacements

L 1 | 1 1 1 1 { 1

'0.80. 40. 80. 120. 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(b) Vertical displacements
Figure 3.22 Displacement of nodes at 8.4 seconds: Analytical solution vs

ABAQUS
$9



ABAQUS

®&——8 Analytical
A----A ABAQUS IE

Horizontal displacements

-0.05

-0.10 ] L ] 1 | 1 1 ] 1
0. 40.  80. 120, 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(a) Horizontal displacements
0.8 T T T T T T T T T
®&——8 Analytical 0.6 A .‘A.‘ —

A----A ABAQUS IE

Vertical displacements

1 ! 1 ! I 1 1 ! 1

>0VBO. 40. 80. 120. 160. 200. 240. 280. 320. 360.
Distance across mesh at y-coord of -55.19
(b) Vertical displacements
Figure 3.23 Displacement of nodes at 16.8 seconds: Analytical solution vs

ABAQUS
6o



19

BAQUS

0.
~ — — Ul ABAQUS -40. = B
----- U2 ABAQUS
Ul Analytical -80. —
U2 Analytical
-120. u
¥ -160. ]
N
S -200. -1
o]
[
o]
-240. |- =
-280. |- m
XMIN -2.746E-01 -320. I~ I
XMAX 1.172E+00
YMIN -3.679E+02 B i
YMAX 0.000E+00 -360. J L L
-0.4 0.0 0.4 0.8 1.2
u(at depth z)/u(at 0 depth) (m)
Figure 3.24 Normalised plots of the horizontal and vertical components of an R wave with depth at a time of 3.6

seconds




BAQUS

pure P-wave

——

Figure 3.25 FE/IE mesh used for uniaxial and axisymmetric conditions

AQUS

pure P-wave .

T

Figure 3.26 FE/IE mesh used for spherical conditions




ABAQUS

200. T T
— — = SENER-PE
——— SENER-AX
""" SENER-SP
+—+ 1/r - 150.
¥——X 1/r**2 &
1 2]
g —
5 uniaxial’
g 100.
5]
z
g
@
153
E 50.
3
(5]
XMIN 0.000E+00 €«
XMAX 1.472E+03 1 1
YMIN 0.000E+00 axisymmetric
YMAX 2.011E+02 : 0. S
° .. spherical
ABSOLUTE DISTANCE [x10 )
Figure 3.27 Attenuation of energy densities for a P wave in uniaxial,
axisymmetric and spherical conditions
0.8 T T
— — — RWAVE-PE
RWAVE-AX
X—X 1/(r**0.5)
0.4 uniaxial
8
é 0.0 F
8 axisymmetric
5
0
a
-0.4
XMIN 0.000E+D0
XMAX 1.472E+03
YMIN -6.256E-01
YMAX  6.258E-01 -0.8 1 I
0.0 0.5 1.0 1.5
ABSOLUTE DISTANCE ACROSS TOP OF MESH [ %10 3]
Figure 3.28 Attenuation of vertical amplitude for an R wave in uniaxial and

axisymmetric conditions .
3
o




CHAPTER 4
DEVELOPMENT OF A QUIET BOUNDARY FOR THE EFFECTIVE
ABSORPTION OF GROUND WAVES GENERATED BY PILE DRIVING

41 INTRODUCTION

One of the limitations of finite element methods arises when they are employed as a
discrete mesh for the modelling of an infinite domain, in which energy radiates from a
source outwardly towards infinity. Unless something is done to prevent outwardly
radiating waves from reflecting from the region’s boundaries, errors are introduced into
the results. In the past, several different methods for the treatment of absorbing
boundaries have been proposed and employed with varying success. In all cases, the
object of the work has been to make the artificial boundary behave, as nearly as
possible, as if the mesh extended to infinity. The resulting techniques are variously
known as silent, radiating, absorbing, non-reflecting, transmitting, open, free-space, and
one-way boundary conditions. Some of the absorbing boundaries developed in this
Chapter (the standard viscous boundary, for example) transmit all normally impinging
plane body waves exactly (provided that the material behaviour close to the boundary is
linear elastic). General problems involve body waves that do not impinge on the
boundary from an orthogonal direction and may also involve Rayleigh surface waves.
Nevertheless these ‘quiet boundaries’ work quite well even for such general cases,
provided that they are arranged so that the dominant direction of wave propagation is
orthogonal to the surface. As the boundaries are ‘quiet’ rather than silent (perfect
transmitters of all waveforms), and because the boundaries rely on the solution adjacent
to them being linear elastic, they should be placed some reasonable distance from the
region of main interest.

Application of the various silent boundaries to wave propagation problems in an elastic
medium has, to date, been limited to wave propagation problems originating from a
point source, usually a vibrating plate or disc on the surface of an elastic half-space.
Some workers (eg Gutowski and Dym, 1976) have also considered a point source
vibrating at depth in the elastic medium. However, in the case of pile driving, the
source of vibration is very complex, with P waves generated at the pile toe, S waves
generated down the entire length of the pile shaft, and R waves generated both as the P
and S waves are reflected at the free ground surface (see Chapter 2). The attenuations
of the various waves also differ from the classical case of a vibrating disc on the surface
of an elastic half-space (Miller & Pursey, 1955), because the S waves propagate on a
near-cylindrical wavefront instead of a hemispherical wavefront. The attenuation of S
waves generated from a pile shaft is therefore much slower than for those generated
from a vibrating disc. The S waves tend to combine with the R waves which also
propagate on a cylindrical wavefront at a slightly slower velocity. (In the case of a
vibrating disc, the R waves are the dominant waves at distance from the source because
the energy from the P and S waves rapidly attenuates over their respective
hemispherical wavefronts.)

The ABAQUS finite element program currently provides first- and second-order infinite
elements which can be used for dynamic response in the form of a simple tuned damper
giving silent boundary behaviour. The performance of the finite/infinite element model
has been verified by applying pure P, S and R waves in turn along a channelled wave
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guide of finite elements with the ABAQUS infinite elements at the far end as described
in Chapter 3. The model reproduced the analytical wave patterns very closely within
the finite element zone and the ABAQUS infinite elements were shown to absorb the P
and S waves almost exactly (see Figures 3.14 and 3.17). However inaccuracies were
observed for the more complex Rayleigh waveform where some reflection from the
boundary was evident (Figures 3.20-3.23). It is particularly important to address these
inaccuracies as the model needs to be calibrated against measurements of vertical and
horizontal particle velocities from geophones on the ground surface and, as stated
above, R waves tend to be the dominant waveform at distance from the source.

The main objective of the work described in this Chapter is to develop a quiet boundary
which will absorb effectively the complex ground waves generated by pile driving and
allow the size of the finite element mesh and thus the computation time to be
minimised.

This Chapter firstly presents a literature review (Section 4.2) of the various types of
absorbing boundaries which have been developed to date, followed by an assessment of
their suitability for this problem (Section 4.3). Derivations of two viscous boundary
formulations are presented in Section 4.4. These boundaries are then attached to the far
end of a simple channelled wave guide of finite elements for comparison with analytical
solutions for pure P S and R waves. Proposals for the application of the viscous
boundary formulations to the pile driving model are given in Section 4.5 for maximum
effectiveness. These proposals are developed further in Chapter 5 where the viscous
boundary formulations are applied to a model for the computation of ground waves
generated by vibratory piling. Section 4.6 contains some proposals for the insertion of
periodic infinite elements into an ABAQUS time domain analysis using a
transformation technique developed by Astley (1995). Conclusions and
recommendations for further work are given in Section 4.7.

4.2 LITERATURE REVIEW

4.2.1 Viscous boundaries )

The first local silent boundary was proposed by Lysmer and Kuhlemeyer (1969) and
later improved by White et al (1977). The method uses viscous damping forces, which
act along the boundary, as a means of absorbing, rather than reflecting, the radiated
energy. The method, being directly analogous to the use of viscous dashpots, is
relatively easy to implement, and it appears to absorb both dilatational and shear waves
with acceptable accuracy in many applications. The viscous forces, or dashpots, have
another advantage in that they do not depend upon the frequencies of the transmitted
waves. This technique is therefore suitable for transient analysis.

One drawback of the standard viscous boundary described above, is its inability to
transmit Rayleigh waves as effectively as it transmits body waves. In addition to the
standard viscous boundary, Lysmer and Kuhlemeyer (1969) also developed a special
viscous boundary for Rayleigh waves, the Rayleigh viscous boundary, in which the
dashpots have coefficients that depend upon the frequency of the transmitted waves.
The accuracy of the Rayleigh viscous boundary is not well established. The
computational mesh has to be refined especially near the ground surface because at one
point a parameter of the dashpot goes to infinity. In addition, there have been few
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comparisons between the standard viscous and Rayleigh viscous boundaries, except for
the axisymmetric problem discussed in Lysmer and Kuhlemeyer. The use of standard
viscous boundaries for problems that involve Rayleigh waves should not necessarily be
ruled out. Unlike the Rayleigh viscous boundary, it is independent of frequency and is
much easier to implement. -For example Haupt (1977) used the standard viscous
boundary along with some of his own boundary innovations to achieve a good, steady
state, Rayleigh wave solution. Cohen and Jennings presented a further Rayleigh wave
example in 1983. '

White, Valliappan and Lee (1977) attempted to improve upon Lysmer and
Kuhlemeyer’s technique, and also tried to broaden the theory to include anisotropic
materials. However, the authors did not demonstrate the effectiveness of this technique
for anisotropic materials. For the isotropic case, the method offered virtually no
improvement on the Lysmer-Kuhlemeyer boundary and was more complicated to
implement.

4.2.2 Para-axial Boundaries
Claerbout (1976) devised the idea of creating equations that transmit waves in only one
direction. He derived these equations, termed para-axial approximations, for the two-
dimensional, scalar-wave case. Clayton and Engquist (1977) Ilater expanded
Claerbout’s method to include elastic waves and conceived the notion of applying it as
an energy-absorbing boundary.

The method is based on differential operators that satisfy the condition of only outgoing
waves. While these differential operators may be of a high order, the para-axial
boundary of the first order is identical to the viscous boundary. The technique has
several disadvantages. The first is that the technique was originally implemented using
a finite difference technique and it does not directly lend itself to finite element
utilisation. Hughes (1978) and Cohen & Jennings (1983) adapted this technique for
finite element applications. However, in numerical tests, their boundary condition
performed only slightly better than those of Lysmer and Kuhlemeyer and White et al.

Another major problem with the para-axial technique is that when Poisson’s ratio is
greater than 1/3, a negative stiffness term is introduced into the para-axial equations.
This term leads to instabilities; the boundary erroneously causes the displacements and
stresses to increase with time.

4.2.3 Time-dependent problems

Bamberger et al (1988) considered time-dependent elastodynamics. They proposed to
modify the first-order boundary condition of Cohen and Jennings in order to absorb
. Rayleigh surface waves as well. Their modified boundary condition involves the
operator (d/0t - crd/dx1) similar to the Clayton-Enquist condition, where cg is the
Rayleigh wave speed. The authors proved that the proposed boundary condition is
perfectly absorbing for P and S waves at normal incidence, as well as for Rayleigh
waves. They used finite elements in the spatial domain together with a time-stepping
scheme.

Robinson (1976) considered time-harmonic .elastic waves in two dimensions and
proposed a non-reflecting boundary condition that involved the elastic potentials
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associated with the Helmholtz decomposition. Both plane waves and cylindrical waves
were considered.

4.2.4 Multi-directional boundaries

Higdon (1990 & 1992) developed a silent boundary condition based on a series of first-
order differential operators. This boundary is a generalisation of the higher-order
differential operators used in the para-axial boundary. Higdon’s boundary gives perfect
absorption at certain angles of incidence and is therefore called a multi-directional
boundary. It also has the advantage of avoiding tangential derivatives at the boundary
so that the implementation near a corner is straightforward. Surface waves were not
treated.

Higdon (1992) demonstrated how to generalise the silent boundaries for the case of
stratified media. He also showed that his silent boundaries were effective in absorbing
Rayleigh surface waves.

Gajo et al (1996) developed the first-order form of the multi-directional boundary, i.e.
the viscous boundary, to extend to saturated porous media for time-dependent problems.
This was achieved by first developing a set of first-order differential equations which
allowed the propagation of elastic waves travelling only in a single direction; higher
order multi-directional boundaries were thus obtained by using the same generalisations
proposed by Higdon (1990 & 1992) for one-phase media. Gajo et al demonstrated the
use of this boundary for wave propagation along a pile shaft to simulate a non-
destructive dynamic pile test.

4.2.5 Extrapolation Boundaries

A silent boundary method related to the para-axial technique but which avoids the
numerical difficulties of the latter is the scheme proposed by Liao and Wong (1984).
This method is also related to the space-time extrapolation scheme proposed by Higdon
(1986). These methods are well suited to finite element applications and are based on
predicting the motion at the boundary by extrapolating the motion at points in the
neighbourhood of the boundary. An analysis of the numerical stability of this method
can be found in Liao and Liu (1992). An improvement to this method has been
proposed by Peng and Toksoz (1994).

4.2.6 Boundary for a layered medium - Love or Rayleigh waves

In a series of papers (Lysmer (1970), Lysmer and Waas (1972) and Lysmer and Drake
(1972)), a boundary was developed in order to transmit either Love waves or Rayleigh
waves. In particular, the boundary was designed for a layered medium.

The method initially assumes that a wave of a certain frequency is propagating in a
certain layer. The displacements of a finite element of width i beyond the boundary are
then calculated by multiplying the displacements of the last element at the boundary by
¢™ (where k is the wave number). The stiffness of the elements beyond the boundary
are then calculated and inserted into the equations of motion for the lumped masses at
the boundary. This reduces to an eigenvalue problem for each layer. The impinging
wave (shear or Rayleigh) causes stresses at the boundary. The idea is to apply
oppositional forces to effectively nullify them. In the case of a shear wave, these
stresses are proportional to both the displacements at the boundary and the eigenvalues.

67



A matrix can therefore be assembled which relates the nullifying forces to be applied at
the boundary to the displacements at the boundary.

Although this method is suitable for transmitting periodic surface waves, it is highly
restrictive.  First, the boundary terms are frequency dependent and are therefore
unsuitable for transient analyses in the time domain. Also, the method can not be used
if the interior equations are non-linear. Only shear or Rayleigh waves can be
transmitted and this transmitting boundary is more difficult to implement than most
other boundary schemes.

4.2.7 Smith technique - adding wave solutions for fixed and free boundary

conditions

A completely different silent boundary method is the scheme originally proposed by-
Smith (1974) and modified by Cundall et al (1978). This method is based on averaging

the solutions of two complementary problems, one involving a fixed and the other a free

boundary condition. The efficiency of the method, as modified by Cundall et al (1978)

is comparable with that of the viscous method.

Smith demonstrated that this boundary method eliminates all reflections, regardless of
frequency or angle of incidence. It also absorbs all types of waves, including body,
Rayleigh or Love waves. The only drawback of this method is that two solutions are
required for each possible wave reflection. For example, a two-dimensional corner
requires two solutions for each boundary side meaning that the problem must be solved
four times to cancel the reflections. Similarly, if there is enough time for a wave to
reflect from one boundary, strike another and return then the number of calculations
must be doubled. Therefore, the number of complete solutions required .is equal to 2n,
where n is the number of possible reflections. If the calculations are performed over a
long period of time, the number of required solutions increases very rapidly. This
method does not therefore appear to be as attractive as other approaches, except for one-
dimensional problems and problems with very short characteristic times.

Cundall et al (1978) introduced a cost-saving scheme that attempts to retain the '
advantages of the Smith method. This scheme sets up a small boundary region in which
equations are formed and solved for each boundary condition. The two solutions are
added together at every fourth time step. Thus, the boundary area that is four elements
deep requires two solutions at each step while the interior region only requires one
solution. The efficiency of the modified Smith method is comparable with that of
viscous boundary techniques.

4.2.8 Damping techniques

Luco et al (1975) attempted to simulate the effects of wave radiation by incorporating
material damping into the model. Alternatively, Hilber et al (1977) employed
numerical damping to account for the transmitted energy. While these techniques are
easily implemented it is not clear how they could be practically employed. For
example, questions remain as to how much damping should be put into the system,
where it should be applied and how the damping can discriminate between the effects of
wave radiation and the actual physical dissipation within the model.

A systematic approach to the use of damping in various systems is not available. Luco
et al (1975) demonstrated some of the problems that can occur. They compared
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analytical solutions for wave propagation to calculations from a finite element model
that used ‘plausible’ damping estimates. In general, the material damping did not
duplicate the radiation effect satisfactorily.

4.2.9 Substructuring

A relatively simple idea proposed by Haupt (1977) can be applied for repetitive
analyses of certain systems that can be split into interior and exterior parts. The interior
is altered for each analysis (for example, the geometry or load history) but the exterior
region remains constant. Initially an extensive mesh of the whole system is set up, but
then the degrees of freedom in the outlying region are condensed. Each successive
problem can then be solved by utilising just the small interior mesh and the force
contribution from the condensed equations. This method reduces the computational
expense for these special cases.

4.2.10 Large finite element meshes

Several investigators, namely Anderson (1972), Day (1977) and Isenberg et al (1978),
experimented with extensive meshes to determine where the boundary should be placed
in order to produce acceptably small réflections. Day (1977) found that undesirable
reflections could be prevented by successively increasing the size of outlying elements
by a factor of 1.1. This growth factor of 1.1 helps to reduce the number of required
elements, but the computatlonal costs still remain high, and prohibitively so for three-
dimensional elements.

4.2.11 Periodic infinite elements

A simple numerical method for treating infinite domains in the context of the finite
element method is the use of ‘infinite elements’. An infinite element is a semi-infinite
interval (in one dimension) or a semi-infinite strip (in two dimensions) or a semi-infinite
prism (in three dimensions), associated with. shape functions that attempt to represent
the far-field behaviour of the solution. Sometimes the semi-infinite domain is replaced
by a finite but very large domain (see below). In both cases, the numerical solution
contains errors due to the fact that the infinite domain is not accounted for exactly. In
general, some integrals over infinite domains must be calculated numerically.

The construction of one-dimensional infinite elements and of two- and three-
dimensional parallel-edged elements. (e.g. semi-infinite rectangles) can be performed
directly in the ‘physical’ system. Special shape functions are used: they are defined
over the infinite domain of the elements, and try to mimic the asymptotic behaviour of
the exact solution at infinity.

For elements with a more general geometry (e.g. a general semi-infinite quadrilateral
element) two approaches have been employed. In the first approach, special shape
functions, expressed in the ‘physical’ co-ordinate system and having the appropriate
behaviour at infinity, are used. Usually in this case, the semi-infinite element domain is
replaced by a very large finite element. In the second approach, which has become
more popular, a semi-infinite element is obtained by mapping the domain of a parent
parallel-edged finite element. The usual Lagrangian or serendipity shape functions are
used in the local co-ordinates of the parent element, and transformed via the mapping.

Bettess (1977 & 1980) devised the first version of the general one-dimensional and two-
dimensional infinite element. For non-rectangular geometry he proposed the first
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approach mentioned above, namely that of constructing the shape functions in the
‘physical’ co-ordinates of a large finite element domain. This infinite element was
developed in the context of static problems, such as problems of steady-state heat
conduction.

Bettess and Zienkiewicz (1977 & 1981) developed an analogous infinite element for
time-harmonic wave problems. Their second-order element has 9 nodes, including 3
that are very far away towards infinity. The shape functions are chosen so that they
have the correct behaviour at infinity, namely that they satisfy the Sommerfeld radiation
condition there. Numerical integration must be performed over a semi-infinite domain
to compute the stiffness matrix and load vector. To this end, a special Newton-Cotes
integration rule was devised and used in the infinite direction.

Following the increasing popularity of the serendipity-type finite elements at the
~ beginning of the 1980’s, Chow and Smith (1981) proposed to use an infinite element
similar to that of Bettess and Zienkiewicz, but with serendipity shape functions rather
than the Lagrangian type. Serendipity elements do not contain interior nodes; they have
nodes only on their boundaries. Chow and Smith’s second-order element has 8 nodes.
Serendipity elements up to third order are more efficient than their Lagrangian
counterparts, while maintaining the same rate of convergence.

Chow and Smith (1981) then examined the problem of developing a suitable quiet
boundary to absorb the waves generated by a vibrating disc on the surface of a layered
and anisotropic elastic half-space (as is common in geotechnical models). For each
wave speed there is a separate wavelength, since the problem has a fixed period, 7, and
thus a separate wave number, k. Since the wave number forms part of the element
shape function in the original concept of an infinite element for surface waves, the
formulation rapidly becomes extremely complicated.

Chow and Smith (1981) developed a simple and pragmatic solution to reduce the
complexity of the problem. They considered two-dimensional problems and reasoned
that the vertical displacement, uy, is related to shear waves and the horizontal
displacement, uy, is related to dilatation waves. Thus the appropriate wave number
could be used in the shape function for u, or uy. This is clearly only an approximation.
In addition they reasoned that near to the free surface, the Rayleigh waves would be
more important and so the Rayleigh wave number could be used in that region. They
interpreted ‘close to the surface’ ‘as 0.1L; where L; is the wavelength of the shear wave,
see Figure 4.1. They then developed suitable infinite element models with the infinite
elements extending both horizontally and vertically. Although this approach was based
on approximations and assumptions, the results obtained in comparison with classical
solutions were excellent.

Beer and Meek (1981) devised a five-noded serendipity infinite element based on the
mapping of a parent element. Both two- and three-dimensional problems in elasticity
were considered. Results were compared with exact solutions and with solutions
obtained by the boundary element method.

Medina (1981) proposed a similar axisymmetric frequency-dependent infinite element,
capable of propagating multi-component waves, using a Gauss-Laguerre integration
rule. The shape functions are formulated by using approximate expressions for the

70



analytical far-field solutions. Although acceptable results are obtained using the
method, the accuracy of the results deteriorates due to the non-conforming conditions
between the finite and infinite elements and also between adjacent infinite elements.
Furthermore the method can not easily be extended to more complex problems such as
those with layered media, since it is very difficult to obtain the analytical far-field
solutions and also to formulate the shape functions based on analytical results. Medina
and Taylor (1983) applied this infinite element to problems in elasto-dynamics.

Yang and Yun (1992) further developed the dynamic infinite element proposed by
Medina (1981) by formulating the shape functions using more general expressions for
the wave components. They are in terms of complex exponential functions of the
corresponding wave numbers, and satisfy the Sommerfeld radiation condition. Hence,
this infinite element may be easily extended to problems for which analytical far-field
solutions can not easily be computed.

Zhao and Valliappan (1993) developed a three-dimensional dynamic infinite element
that can absorb P, S and R waves simultaneously. The infinite element demonstrates
displacement compatibility on the . finite/infinite element boundary, and between
adjacent infinite elements in the case of multiple material layers or multiple wave
numbers within the foundation. Wave propagation functions are used to define the
wave propagation and amplitude attenuation behaviours in the infinite element. The
seismic response of an arch-dam foundation system can be economically calculated
using this infinite element coupled with finite elements. This case demonstrates the
computational advantage of the infinite element over the boundary element method for
simulating wave scattering problems in non-homogeneous media due to the banded and
symmetrical nature of the global and stiffness matrices. This infinite element can, in
principle, be used to simulate any non-homogeneous foundation provided that each of
the infinite elements has constant material properties. However it is only suitable for
the absorption of waves generated by a point source, such as a vibrating plate on the
surface of an elastic half-space. It is not designed for a multi-source excitation such as
pile driving.

Laghrouche (1996) developed a two-dimensional form of Zhao & Valliappan’s three-
dimensional periodic infinite element. He developed a coupled finite/infinite element
model to simulate wave propagation in soils and then extended the model to investigate
the effectiveness of various forms of vibration isolation. However, Laghrouche only
considered wave propagation from a point source on the surface of the elastic half-
space.

Yang, Kuo and Hung (1996) developed a method of dynamic condensation whereby the
far-field impedance matrices for waves of lower frequencies can be obtained
repetitively from the one for waves of the highest frequency, using exactly the same
finite/infinite mesh. Such an approach ensures that accuracy of the same degree can be
maintained for waves of all frequencies within the range of consideration. For the case
of an elastic half-space subjected to a line load on the free surface, the amplitude decay
parameter, o, should be selected as @=1/2R) for modelling the regions where the body
waves are dominant, with R denoting the distance between the source and the boundary
of the far-field. Since the Rayleigh waves do not decay on the free surface under the
same loading condition, it is suggested that a=0 be used for regions near the free
surface.
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4.2.12 Transient infinite elements

Hiaggblad and Nordgren (1987) applied infinite elements to transient problems of non-
linear soil interaction. Their infinite elements were based.on the standard viscous
boundary proposed by Lysmer and Kuhlemeyer (1969) with the improvement suggested
by White et al (1977).

Astley (1995) developed a technique for the solution of transient wave problems in
unbounded domains. He proposed a family of infinite ‘wave envelope’ elements that
are formed by applying an inverse Fourier transformation to a discrete wave envelope
model in the frequency domain. The infinite elements formed in this way can be
applied quite generally to two-dimensional and three-dimensional problems and are
fully compatible with conventional finite elements.

4.3  ASSESSMENT OF THE VARIOUS QUIET BOUNDARY TECHNIQUES
FOR THE SIMULATION OF GROUND WAVES FROM PILE DRIVING

The literature review has revealed that many different silent boundary formulations are
available. However only a few of them are suitable for elasto-dynamic problems, some
can not absorb Rayleigh waves effectively, and some are frequency dependent and are
not therefore suitable for transient analyses. A further complication arises in that the
current version of ABAQUS does not allow the insertion of user-defined elements into a
frequency domain analysis. The periodic infinite elements developed by various
workers can not therefore be inserted into ABAQUS unless they are transformed in
some way for use in a time domain analysis.

The literature review has also revealed that, although silent boundary formulations have
been developed to absorb the waves generated by a relatively simple excitation point
source (such as a vibrating disc on the surface of an elastic half-space), they have not
been extended to deal with more complex excitation sources such as pile driving.

For the purposes of this research, it was decided that a good starting point would be to
use a combination of standard and Rayleigh viscous boundaries around the sides of a
large finite element mesh in a similar manner to that described by Chow and Smith
(1981), see Figure 4.1. As the infinite elements in ABAQUS are based on the standard
viscous boundary developed by Lysmer and Kuhlemeyer (1969), this approach had the
particular advantage that the performance of the user-defined standard viscous
boundaries could be checked against that of the ABAQUS infinite elements as well as
the analytical solutions. The method of applying a user-defined boundary within
ABAQUS could then be extended to the insertion of a Rayleigh viscous boundary.

Once these viscous boundary formulations were performing satisfactorily in ABAQUS,
it was then possible to investigate the optimum arrangement of standard and Rayleigh
viscous boundaries around the finite element mesh for the effective absorption of
ground waves generated by pile driving.

Some speculative work was also undertaken to look at the possibility of using Astley’s
(1995) transformation technique in order to insert periodic infinite elements into an
ABAQUS time domain analysis. This is described in Section 4.5.
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44  DERIVATION AND INSERTION OF VISCOUS BOUNDARY
FORMULATIONS INTO ABAQUS

4.4.1 Description of the ABAQUS user element interface

ABAQUS allows the user to introduce ‘user-defined element’ types into a model in a
very general way. The element may be a finite element in the usual sense of
representing a geometric part of the model, or it may be a feedback link such as silent
boundary, supplying forces at some points as functions of values of displacement,
velocity, etc at other points in the model. For a general user element, user subroutine
UEL must be coded to define the contribution of the element to the model. ABAQUS
calls this subroutine each time any information about a user-defined element is needed.
At each such call, ABAQUS provides the values of the nodal co-ordinates and of all
solution dependent nodal variables at all degrees of freedoms associated with the
element, as well as values, at the beginning of the current increment, of the solution
dependent state variables associated with the element. ABAQUS also provides the
values of all element parameters associated with this element which have been defined
in the *UEL PROPERTY option, and a control flag array indicating what functions the
user subroutine must perform. Depending on this set of control flags, the subroutine
must: define the contribution of the element to the residual vector; define the
contribution of the element to the Jacobian (stiffness) matrix; update the solution
dependent state variables associated with the element; and so on. Often several of these
functions must be performed in a single call to the subroutine.

4.4.2 Standard viscous boundary
In order to test the interface for user-defined infinite elements, the standard viscous

boundary proposed by Lysmer and Kuhlemeyer (1969) has been programmed into
ABAQUS and its behaviour compared with that of the corresponding infinite elements
available in ABAQUS. The derivation of the standard viscous boundary is given below:

Commencing with the one-dimensional wave equation

%9 _ 297 4.1)

where ¢ is the variable of interest, ¢ is the time and x is the single co-ordinate.
The general solution to equation (4.1) was first given by d’Alembert as

¢ - filx=ct)+ f,(x+ct) | 4.2)
where f; represents any disturbance travelling in the positive x direction, f; represents
any disturbance travelling in the negative x direction and c is the wave celerity. The

exact form of f; and f> will depend upon the initial conditions for the problem.

Consider plane waves travelling along the x-axis. There are two body wave solutions of
equation (4.2). One describes plane, longitudinal P waves that have the form

u,=flexet),  u =u,=0 “3)
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where the wave speed, ¢, is given by

c, = /)“ +26 (4.4)
p ‘

The other solution of this form is the shear or S wave solution

u, = f(x+c,t), u.=u, =0 . (4.5)

or

uzzf(xicxt), u . =u, =0 4.6)

c = |G @4.7)
P

Now consider a boundary at x=L of a medium modelled by finite elements in x<L. In
order to eliminate the incoming disturbance we introduce damping on this boundary so
that

6 =-du | | | (4.8)

xx px

and
o, =—d, 49
o_=—-du (4.10)

where we choose the damping constants -d,, and d; to avoid reflection of longitudinal and
shear wave energy back into the medium where x<L, (ie. no incoming waves or the
‘radiation condition’).

Plane longitudinal P waves approaching the boundary have the form
u,=filx—c,t), u,=u, =0 C @11

If they are reflected back at all as plane longitudinal waves, their reflection will travel
away from the boundary in some form

u, :fz(x+cpt), u,=u,=0 ' | 4.12)
As the problem is linear, the total displacement is calculated by superposition

u =fi+1 ' (4.13)
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with corresponding stresses

o, = (/1+2G)( f,' + fz' ) all other o, =0 | (4.14)
and velocity

U, =—C,,(f1,—f2’) (4.15)

For this solution to satisfy the damping behaviour, o, =—d u, introduced on the

boundary at x=L requires

().+2G(f,' +f2,)=—dp.—cp(fl, —fz,) (4.16)
Rearranging
(W+26-dc,)f, +(l+2G+d,c,)f, =0 4.17)

To ensure that f, =0 (so that f, =0) forany f,, choose .

d,c,=A+2G (4.18)
Therefore
dp=)”c'2G= , (4.19)

A similar argument for shear waves gives
d,=c,p ' (4.20)
The normal énd shear stresses , G and T, on the boundary can therefore be expressed as

o =ad,u, (4.21)

and
T= bdsuy (4.22)

where a and b are dimensionless parameters. This boundary condition corresponds to a
situation where the boundary is supported on infinitesimal dashpots oriented normal and
tangential to the boundary.
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Lysmer and Kuhlemeyer (1969) demonstrated that maximum absorption of P and S
waves occurs when a=b=1 (98.5% effective for P waves and 95% effective for S
waves).

To summarise, the viscous boundary defined by equations (4.21) and (4.22) is an almost
perfect absorber of harmonic elastic waves. Because the absorption characteristics are
" independent of frequency, the boundary can absorb both harmonic and non-harmonic
waves and is known as the standard viscous boundary.

The subroutine is reproduced in full in Appendix C together with the
ABAQUS/Standard input file that calls the subroutine. ,The horizontal displacements
across the mesh resulting from applying a pure P wave to the left-hand side of the finite
element mesh and a user-defined standard viscous boundary to the right-hand side
(Figure 4.2a) are compared to those obtained using the ABAQUS infinite elements
(Figure 4.2b) in Figure 4.2(c). A similar comparison of the vertical displacements
resulting from an S wave is shown in Figures 4.3(a-c). These graphs show that the user-
defined standard viscous boundary performs as well as the ABAQUS infinite element in
absorbing body waves.

The derivations given above are for plane body waves travelling through a mesh of
plane strain finite elements. However, the computational models for pile driving will
need to be assembled with axisymmetric finite elements to simulate the radial
propagation of the waves through the ground. It is therefore necessary to convert the
viscous boundary formulations from plane strain to axisymmetric conditions.

This simply involves calculating the cross-sectional area of the element at the FE/IE
boundary. This is equal to the circumference of the circle swept out by the
axisymmetric mesh at the FE/IE boundary (27r). (In the plane strain case the cross-
sectional area is taken as equal to 1.0.)

The analytical solution is determined as follows:

A = [” ‘/—] . ) (4.23)

1/4r,

where A, is the amplitude of the body wave component (u, or u,) in the axisymmetric
case at any radius r, ry is the radius at the point of application of the body wave and A
is the amplitude of the body wave component (u, or u,) for the plane strain case at any
radius .

The subroutine for the axisymmetric standard viscous boundary is also reproduced in
full in Appendix C together with the ABAQUS/Standard input file that calls the
subroutine. The horizontal displacements resulting from a P wave travelling across the
axisymmetric mesh (Figure 4.4a) with a user-defined standard viscous boundary are
compared with the aralytical solutions and the ABAQUS infinite elements in Figures
4.4(b) and 4.4(c) respectively. The corresponding plots for an S wave in an
axisymmetric mesh are given in Figures 4.5(a-c). These graphs show that the user-
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defined standard viscous boundary performs as well as the ABAQUS infinite elements
in absorbing body waves in an axisymmetric mesh.

4.4.3 Rayleigh viscous boundary
As stated earlier, one drawback of the standard viscous boundary is its inability to

transmit Rayleigh waves as effectively as it transmits body waves. In order to
overcome this problem, Lysmer and Kuhlemeyer (1969) also developed a special
viscous boundary for Rayleigh waves in which the dashpots have coefficients that
depend upon the frequency of the transmitted waves. The derivation of the Rayleigh
viscous boundary is given below:

. Consider a Rayleigh wave travelling with velocity c, in the positive x direction (Figure
4.6). As shown by Ewing, Jardetzky and Press (1957), the displacements are given by
u, = f(ky)sin(kx — or) (4.24)

and '
u, = g(ky)cos(kx — wr) (4.25)

in which the wave number, %, is defined as

=2 (4.26)
C

r

For the special case of a homogeneous half space, the functions f{ky) and g(ky) vary as
shown in Figure 4.7. The velocity of the Rayleigh wave may be expressed as a fraction

of the shear wave velocity by

c =% 4.27)

The value of 77 and the functions f{ky) and g(ky) vary with Poisson’s ratio. For v=0.25,

n =1.08766,

f(ky) _ Dleoswsky _0.5773¢%%%% J (4.28)
and

g(ky)= D|-0.8475¢°%79 +1.4679¢°% | (4.29)

in which D is a constant. (D is taken as 1.0 in this theoretical case: the actual magnitude
of R wave depends on how it is generated).

The compressive stress on a vertical plane is

d
o 2% | (4.30)

ox ay

c =-(A+2G)
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Substitutioﬁ of equations (4.24) and (4.25) into equation (4.30) gives

o =k[(A+2G)f (ky)— Ag’(ky)]cos(kx — ax) (4.31)
where g'(ky) indicates the differentiation d(g)/d(ky) so that | |

g'(ky)= D|-0.7183¢"*" +0.5773¢°%% | (4.32)
Similarly, the shear stress on a vertical plane is given by

T = —kG[f (ky)+ g(ky)]sin(kx — oor) | (4.33)
where

£'(ky) = D|0.8475¢°%™% —0.2271°™% | (4.34)

The parﬁcle velocities are found by simple differentiation of equations (4.24) and (4.25)
to give

i, = —o.f (ky)cos(kx — wr) (4.35)
and
i, = .g (ky)sin(kx —r) (4.36)

Perfect energy absorption will be obtained if equations (4.21) and (4.22) are satisfied
identically. The values of a and b are therefore found by simple substitution of
equations (4.31) and (4.33) into equations (4.21) and (4.22) as follows

I I | APORY((2)

a(ky)—cpp.ux s[l 1 ‘2 )f( )} 4.37)
oz fky)

b(ky)= i —n[l+ p (ky)} (4.38)

where s is an elastic constant defined by

st = (4.39)

The variation of a and b with ky is shown in Figure 4.8. Recognising that the physical
meaning of the variable ky is 2w X depth/wavelength, it can be seen that at depths
greater than one half-wavelength, the parameters a and b approach constant values. At
the depth where the horizontal displacement vanishes, the parameter a goes to infinity
which agrees with the physical fact that an infinitely viscous dashpot is required to fix a
point. The computational finite element mesh has to be refined near the ground surface
so that the asymptote falls at a mid-node position. The horizontal displacement at this
node is then set to zero in the code (see Appendix D).
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The subroutine for the Rayleigh viscous boundary is reproduced in full in Appendix D
together with the ABAQUS/Standard input file that calls the subroutine. The horizontal
and vertical displacements across the mesh resulting from the application of a user-
defined Rayleigh viscous boundary are compared with the analytical solutions and the
ABAQUS infinite elements in Figures 4.9(c) and 4.9(d) respectively. The user-defined
Rayleigh viscous boundary demonstrates a marked improvement over the ABAQUS
infinite element in absorbing Rayleigh waves (Figures 4.10a and 4.10b).

The derivations given above are for plane body waves travelling through a mesh of
plane strain finite elements. However, the computational models for pile driving will
need to be assembled with axisymmetric finite elements to simulate the radial
propagation of the waves through the ground. It is therefore necessary to convert the
viscous boundary formulations from plane strain to axisymmetric conditions.

This simply involves calculating the cross-sectional area of the element at the FE/IE
boundary. This is equal to the circumference of the circle swept out by the
axisymmetric mesh at the FE/IE boundary (27r). (In the plane strain case the cross-
sectional area is taken as equal to 1.0.)

The analytical solution is determined as follows:

A, = [1/ ‘/—] " (4.40)

1/

where A, is the amplitude of the Rayleigh wave component (4, or u,) in the
axisymmetric case at any radius r, rp is the radius at the point of application of the R
wave and A, is the amplitude of the Rayleigh wave component (u, or u,) for the plane
strain case at any radius r.

The subroutine for the axisymmetric Rayleigh viscous boundary is also reproduced in
full in Appendix D together with the ABAQUS/Standard input file that calls the
subroutine. The horizontal and vertical displacements a P wave travelling across the
axisymmetric mesh with a user-defined standard viscous boundary (Figure 4.11a) are
compared with the analytical solutions and the ABAQUS infinite elements (Figure
4.11b) in Figures 4.11(c) and 4.11(d) respectively. The axisymmetric user-defined
Rayleigh viscous boundary demonstrates a marked improvement over the ABAQUS
infinite elements in absorbing Rayleigh waves.

4.5 APPLICATION OF VISCOUS BOUNDARY FORMULATIONS TO THE
PILE DRIVING MODEL

The standard and Raleigh viscous boundaries can now be applied to boundaries of an
axisymmetric finite element mesh within ABAQUS. As mentioned in Section 4.2
above, Chow and Smith (1981) developed a “quiet boundary” for the absorption of
waves generated by a vertically vibrating disc on the surface of an elastic half-space, see
Figure 4.1. The results compared extremely well with classical solutions. However, the
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waves generated by pile driving are much more complex than those generated by a
single excitation source, and classical solutions or experimental data do not exist.

The only method available for determining the effectiveness of a quiet boundary for
such a complex case is to compare the response of the FE/IE mesh with that of a very
large finite element mesh, of sufficient size to prevent any boundary reflection into the
area (time period) of interest. This is the approach used in Chapter 5 to investigate the
effectiveness of the combined standard/Rayleigh viscous boundaries in the absorption of
ground waves generated by vibratory pile driving, see Section 5.5. The approach is
further verified by comparison with actual field measurements of surface vibrations
(Section 5.5).

A disadvantage of the Rayleigh viscous boundary is that it is frequency-dependent and
therefore can not be used for transient problems. The boundary is therefore suitable for
use in a vibratory piling model where there is a known frequency of excitation but it can
not be used to absorb waves generated by impact piling, which contain many different
frequencies. This limitation, however, is not particularly troublesome as impact piling
comprises discrete “events” (when the hammer hits the pile) rather than the continuous
excitation of vibratory piling. The standard viscous boundary (or ABAQUS infinite
elements) in conjunction with a large finite element mesh therefore provides an
adequate model for impact piling because the boundary only needs to absorb the faster
moving P and S waves. Once the R waves (the slowest waves) have reached the
furthest point of interest, the analysis can be stopped (before the R waves reach and
reflect off the standard viscous boundary).

4.6 PROPOSED TECHNIQUE FOR INSERTING PERIODIC INFINITE
ELEMENTS INTO ABAQUS

Unfortunately, the current version of ABAQUS does not allow the insertion of user-
defined elements into a frequency domain analysis. The periodic infinite elements
developed by various workers can not therefore be inserted into ABAQUS unless they
are transformed in some way for use in a time domain analysis. Such a technique has
been developed by Astley (1995). He developed a family of infinite ‘wave envelope’
elements which are formed by applying an inverse Fourier transform to a discrete wave
envelope model in the frequency domain. This gives a coupled system of second-order
ordinary differential equations which are readily integrated in time to yield transient
pressure histories at nodal points on the surface of the radiating body, and, in retarded
form, at discrete points within the infinite domain.

Some preliminary work was undertaken as part of this research project to test the
suitability of Astley’s technique for the insertion of periodic infinite elements into an
ABAQUS time domain analysis. Unfortunately, time constraints prevented completion
of this work. The proposed technique is outlined below for the benefit of others who

may wish to develop it further.
e Modify the two-dimensional infinite element code developed by Laghrouche (1996),

which is based on the work of Zhao and Valliappan (1993), to incorporate the values
of o suggested by Yang and Hung (1997). '
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e Transform Laghrouche’s periodic infinite element code for use in a time domain
analysis using Astley’s technique.

e Insert the transformed infinite elements into an equivalent model in ABAQUS as
user-defined elements. (The method for inserting a user-defined quadrilateral
element into an ABAQUS time domain analys1s was determined and verified as part
of this preliminary work.)

* Compare the performance of the infinite element within Laghroughe’s finite element
program with its performance within ABAQUS for a range of frequencies.

e Following validation of this technique, other types of periodic infinite elements
could be incorporated into ABAQUS using this technique. The efficiency of the
various types of infinite elements in eliminating wave reflection could then be

compared.
47 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

A number of quiet boundary methods have been reviewed, but none offer a total
solution for the case of pile driving. Standard and Rayleigh viscous boundaries have
therefore been developed for use in an ABAQUS axisymmetric FE mesh. The Rayleigh
viscous boundary has demonstrated a marked improvement over the ABAQUS infinite
elements in absorbing R waves.

It was therefore decided to apply a combination of standard and Rayleigh viscous
boundaries to the sides of the axisymmetric finite element mesh in similar manner to
technique developed by Chow & Smith (1981). The effectiveness of the combined
standard/Rayleigh viscous boundary in the absorption of ground waves generated by
vibratory piling is investigated in Chapter 5.

The boundary proposed by Chow & Smith (1981) is only an approximation and was
developed for a single excitation source. Further work is required to develop a
boundary that can absorb P, S and R waves simultaneously for a multi-source excitation
such as piling. Some preliminary work has been undertaken to test the suitability of the
transformation technique developed by Astley (1995) for the insertion of periodic
infinite elements into an ABAQUS time domain analysis.
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CHAPTER 5
DEVELOPMENT OF A NUMERICAL MODEL
FOR VIBRATORY PILING

5.1 INTRODUCTION

The prediction of ground vibrations generated by vibratory piling has, to date, been
based on similar empirical techniques to those developed for percussive driving. Both
the British Standard (BSI 1992b) and Eurocode (CEN 1998) relate the peak particle
velocity at a given distance from the source to the square root of the energy per cycle of
the vibrodriver. None of the methods for predicting vibration generated by vibratory
piling consider the influence of any other variables, see Chapter 2.

Hiller (1999) has examined the validity of the methods presented in the literature for the
prediction of vibration generated by vibrodriving on the basis of continuous vibration
records for complete vibratory piling drives acquired during his research. Hiller
suggests that the magnitude of vibration from vibrodriving is not related to the
vibrodriver energy rating. Instead, he suggests that the magnitude of vibration at any
instant in the drive is related to the resistance to driving, mainly on the pile shaft, which
is a function of the soil type. This is also the opinion of Holeyman (2000), who
concluded that the most critical parameter to be assessed in order to produce a
reasonable prediction of vibro-drivability is the soil resistance to vibratory driving.

Further examination of the vibratory pile driving data obtained from the Transport
Research Laboratory (Hiller, 1999) and by Uromeihy (1990) reveals some interesting
phenomena. For example, the vertical particle velocities recorded during the first 12
seconds of the extraction of a pile from 15.5m depth by geophones at 8.9m, 16.9m, 33m
and 61m on the Second Severn Crossing site are plotted in Figure 5.1. This shows that
although the largest particle velocities are generally recorded by the geophones closest
to the pile, as would be expected, there are occasions where the particle velocities
recorded by the more distant exceed those of the nearer geophones. Similar non-
monotonical decay of vibration with distance from source was observed during the
extraction and installation of other piles on the Second Severn Crossing, as shown in
Appendix E, and at other sites (Hiller, 1999). :

Detailed inspection of Figure 5.1 indicates that the vibratory extraction commenced at
an operating frequency of about 6.5 Hz increasing gradually to about 17.5 Hz in the first
5 seconds. During this time, the magnitudes of vibration recorded by the four
geophones were highly variable, and the more distant geophones often recorded higher
levels of vibration than the nearer geophones. For example, although the largest vertical
particle velocities during the first 12 seconds were always recorded by the geophone at
8.9m, the geophone at 33m recorded significantly larger vibrations than the geophone at
16.9m for most of the first 3 seconds. On a few occasions, the geophone at 61m
recorded higher vertical particle velocities than that at 33m. Similar effects were
recorded by the geophones in the radial (longitudinal) direction (Figure 5.2), but it
should be noted that increases in vertical particle velocity recorded by a particular
geophone were not necessarily reflected by similar increases in the radial direction.
This demonstrates the importance of recording and reporting the velocity/time traces in
all three orthogonal directions, especially when the data are to be used to validate

99



computational models. These records indicate that the magnitude of vibration at any
point on the ground surface appears to be a function of the operating frequency.
However, the relative magnitudes of vibration at the geophones also appeared to vary
.when there was no apparent change in frequency, only a change in the depth of
penetration of the pile into the ground. Of particular interest is the way in which
amplification of vibration occurred discretely at certain horizontal distances from the
source at various times during the extraction process. This phenomenon does not
appear to have been previously identified or commented on in the literature.

The non-monotonical decay of ground surface vibrations has been observed on other
sites for various types of pile driving (Uromeihy 1990, Hiller 1999, Attewell et al 1991)
and various attempts have been made to explain it. O’Neill (1971) and Massarsch
(1992) suggested that the significant amplification that can occur during start-up and
shut-down of a vibratory hammer is due to soil layer resonance. This occurs when the
dominating frequency of the propagating wave coincides with the natural frequency of
one or several soil layers. However, Holeyman (2000) suggested that this apparent
resonance of soil vibration may be no more than the transient combination of increased
rotation speed and soil degradation. He suggested that vibratory pile/soil interaction
occurs in two modes; a coupled mode, where the soil remains in contact with the slowly
vibrating pile and so the transfer of energy from pile to soil is nearly perfect, and an
uncoupled mode, where as the vibratory motion accelerates, the soil degrades and
liquefies, and the soil effectively uncouples itself from the motion of the pile. Hiller
(1999) also suggested that the greater magnitudes of vibration that are often observed
during start-up of the vibratory hammer may be because the energy transferred to the
soil is dependent upon the resistance to movement. As the soil resistance will be
greatest when the pile first starts to move, the greatest amount of energy will be
transferred to the ground during the start-up process.

Attewell et al (1991) also identified that vibration amplitude at ground surface resulting
from pile driving does not decay progressively as distance from the pile increases. They
attributed this effect to the superposition of body waves from the pile toe and shear
waves generated by pile/soil interaction on the pile shaft. This does not appear to be the
explanation for the non-monotonical decay recorded during the extraction of piles at the
Second Severn Crossing site because body waves are not generated at the toe during
extraction of a pile.

There is clearly a case here for a new approach to the prediction of vibration generated
by vibratory piling. The process is obviously extremely complex — Hiller suggests that
the location of the vibration source is centred on the location of greatest soil resistance
on the pile shaft and this will obviously move during the installation or extraction of the
pile. The simple straight-line empirical relationships presented in the literature offer
reasonable upper bounds to ground vibration. However they do not account for, or
explain, the non-monotonical decay of ground surface vibrations shown in Figures 5.1
and 5.2 which has also been identified by Uromeihy (19