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Abstract 

This thesis is a study of the affine super-algebra ;[(211; C) and N = 2 superconformal 

algebra at fractional levels. 

In the first chapter we review background material on Conformal Field Theory, 

and how it appears in the context of string theory and the Wess- Zumino- Novikov 

- Witten model. We also discuss integrable and admissible representations of infinite 

dimensional algebras and their modular transformations. 

In Chapter 2 we elaborate some more on modular transformations and we derive 

them in the case of non - unitary minimal N = 2 characters. Some very explicit 

formulas are presented. 

In Chapter 3 we discuss character formulas for the affine ;{(211; C) algebra and 

some of their general properties are given, in particular their behaviour under spec­

tral flow. 

In Chapter 4 we turn to the study of sumrules for ;{(211; C) at level k. These 

involve the product of ;{(2) characters at level k, k', and 1 with (k + 1)(k' + 1) = 1. 

We consider k + 1 = ~ for (p, u) = 1, p E Z *, u E N and show that the sum rules 

we have obtained agree with the literature when the parameter p is restricted to 

p = 1. We use the integral form of the sumrules to study the modular properties of 
~ 

sl (211) characters at fractional level in the last section of Chapter 4. 

The advisor for this work has been Dr. Anne Taormina. 
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Chapter 1 

Introduction and Background 

Twentieth - century physics has witnessed the triumph of symmetry and its precise 

formulation in theoretical language. The work of Lie and Cartan paved the way 

for the general application of symmetries in microscopic physics within quantum 

mechanics. Wigner, probably the most important figure in the application of group 

theory to physics, fitted the possible elementary particles into representations of 

the Lorentz and Poincare groups. The principles of special and general relativity 

- the seeds of the other great revolution of twentieth - century physics - were also 

motivated by the appeal of symmetry. Modern theories of elementary particles (the 

so - called standard model) rest on the principle of local gauge symmetry. Our 

understanding of phase transitions and critical phenomena draws a great deal on 

the concept of broken symmetry. In particular broken gauge symmetries are central 

to our understanding of weak interactions, superconductivity and cosmology. So 

symmetry is a very powerful organising principle in physics and one can witness 

many symmetries in nature. 

Two- dimensional conformal symmetry has been an important tool in theoretical 

physics during the last decade. Its origins can be traced back on the one hand 

to statistical mechanics, and on the other hand to string theory. Historically the 

most important impetus came from statistical mechanics, where it described and 

classified critical phenomena. Mainly after 1984 the subject went through a period 

of rapid development because of its importance for string theory. In addition there 

has been important input from mathematics, in particular through the work of Kac 

1 

0 
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1.1. Conformal Transformations 2 

and collaborators. One can distinguish yet another separate origin of some ideas, 

namely from work on rigorous approaches to quantum field theory. Another reason 

of this interest lies certainly in the beautiful mathematical structure of Quantum 

Field Theory ( QFT). 

In this chapter we start by reviewing conformal symmetry, string theory and 

the Wess - Zumino - Novikov - Witten (WZNW) model. Finally we will show some 

mathematical aspects of this subject related to N = 2 and sl(2/1) super-algebras. 

lol Conformal Transformations 

In this section, we briefly review the basic properties of Conformal Field Theory 

(CFT) in d dimensions, with particular emphasis on the case of two dimensions [1]. 

A conformal field theory in d - dimensions is a related quantum field theory which 

is invariant under conformal transformations. These form a special class of general 

coordinate transformations under which the metric is rescaled by a local scalar 

function A(x) : 

I x---tx, 

(1.1) 

where {t, v = 1, ... , d. So, conformal transformations act on the metric as Weyl trans­

formations (note that an arbitrary transformation x ---t x' has the following effect 

on the metric, 

(1.2) 

They are therefore local changes of scale which preserve the angle between any 

two vectors u and w at a given point, u.w = u1Lg1wwv. 

We will study this conformal group first. In flat space- time of dimension (n, m) 

(n +m i= 2) they form a group isomorphic with SO(n + 1, m+ 1). However, in 

the complex plane it is well- known that all (anti-) analytic transformations are 

conformal. This extends to the Minkowski plane where in light-cone coordinates, 
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the conformal transformations are given by: 

(1.3) 

For a space of Euclidean signature, it is advantageous to use a complex basis ( T + 
ia, T- ia). In string theory, the space in which these coordinates live is a cylinder, 

as a is used as periodic coordinate. This also applies to two - dimensional statistical 

systems with periodic boundary conditions in one dimension. One then maps this 

cylinder to the full complex plane with coordinates, 

(z, z) = (exp(T + ia), exp(T- ia)), (1.4) 

where we will take a flat metric proportional to bii in the real coordinates, or in the 

complex coordinates, 

ds2 = 2-J9dzdz. (1.5) 

In complex coordinates, a conformal transformation is given by: 

z---+ z' = f(z), z---+ z' = /(z), (1.6) 

where f is an analytic function, and f is anti-analytic. A primary field transforms 

under a conformal transformation as: 

c/>(z, z) ---+ ct>'(f(z), /(z)) = (of(z))-h(&f(z))-Ftc/>(z, z). (1. 7) 

The numbers h and 1i are called the conformal dimensions of the field c/>. For 

infinitesimal transformations of the coordinates f(z) = z-t:, we see that the primary 

fields transform as : 

bEc/>(z, z) = t:(z)84>(z, z) + hot:(z)c/>(z, z). (1.8) 

By choosing for t:( z) any po-wer of z we see that the conformal transformations form 

an infinite algebra generated by Lm = -zm+l and Lm = -zm+l, m E Z. 

A CFT is always characterised by its scale invariance. As in any local field theory, 

scale invariance implies full conformal invariance. Scale invariance is equivalent to 

the vanishing of the trace of energy- momentum tensor. In complex coordinates this 
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means that Tzz = 0. Hence there are only two independent components of energy­

momentum tensors Tzz, T22 and their conservation law becomes: 

(1.9) 

implying that Tzz = T(z)(T22 = T(z)) is a holomorphic (anti holomorphic) function 

of z(z). We recall that if a field theory has a conserved, trace-less energy momen­

tum tensor, it is invariant both under general coordinate transformations and Weyl 

transformations. The generators of infinitesimal conformal transformations are : 

(1.10) 

and similarly for Ln. The contour circles the origin only once. 

By using (1.10) we have, 

T(z) = LLnz-n-2
, T(z) = L Ln:z-n-2

. (1.11) 
nEZ nEZ 

In a quantum theory Tand T become operators, and by using the operator product 

expansion T(z)T(w) and (1.11) we will arrive at 

(1.12) 

where c is the central charge. Clearly, L 0 corresponds to scaling transformations in 

z. The combination L 0 + L0 generates scaling transformations in the complex plane 

x -t >.x, while i(L0 - L0 ) generates rotations. This means that a field <P(x) with 

conformal dimensions hand h has scaling dimensions h+h ancllh-hl. The three gen­

erators { L_ 1 , L 0 , Ld are associated to infinitesimal Mobius transformations. They 

are obtained from the vector fields 1, z, z2
. These are the conformal Killing vectors 

on the sphere. The integrated form of the infinitesimal transformations is the group 

of fractional linear transformations SL(2; C) : 

, az + b 
z-t ' cz+d 

a, b, c, dE C, ad- be= 1, (1.13) 

thus L_ 1 generates translations, L 0 generates scalar transformations, and L1 gener­

ates special conformal transformations. 
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1.2 String Theory 

A striking application of conformal symmetry is provided by string theory. The 

universe seems to contain a large number of elementary particles. It is an appealing 

idea to think of these particles as different states of one single object. This would 

enable us to treat them in a symmetric way , the simplest objects in every- day 

experience which have such different eigenstates are strings. We will attempt to 

give a brief introduction to the subject of strings to give the flavour for some impor­

tant concepts which will be needed in conformal field theory. In recent years great 

efforts have been spent in the quest for a theory of quantum gravity, which probably 

must be a unifying theory of all known interactions. Based on the principles of me­

chanics and local gauge invariance, the standard model is a widely recognised and 

experimentally tested quantum field theory of electro - weak and strong interactions. 

Einstein's theory of general covariance and the equivalence principle, is likewise an 

accepted and tested classical field theory of gravity. As we know, gravity is a weak 

force and negligible in particle scattering experiments done in order to test the stan­

dard model. A prime candidate for a theory of quantum gravity is (super-) string 

theory. The terminology originates from the basic description of elementary particles 

as excitations of one dimensional objects [2] [3] [4] [5] [6] called strings, of the size 

of the Planck length. 

Strings are not the subject of the present thesis but serve as a motivation for 

studying conformal field theory. One then has to find which action governs a string 

like object moving through space- time. The simplest action, was found by Polyakov 

. Here one considers a field theory defined on the world sheet of string. Let xl1 (a, T) 

be D real variables that depend on two independent real variables a and T. The index 

f-1 will be allowed to take values 1, 2, ... , D, the first D - 1 corresponding to space -

like coordinates. The quantity a will be assumed to lie in the interval 0 :::; a :::; 1r, but 

T will be allowed to take any real value. The interpretation will be that each fixed 

value of a specifies a particular point of the string, different values of a corresponding 

to different points, the D coordinates x11 (a, T) describe the trajectory of that point 

in aD- dimensional space- time. The variables a and T will be called world sheet -

coordinates, a being described as the spatial and T as the time coordinate, whereas 
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the x't will be referred to as space - time coordinates. If 

X 11 ( Q, T) = X{L ( 7r, T) , (1.14) 

for J-l = 1, 2, ... , D and all values ofT, the string is said to be closed string. Closed 

bosonic strings are described by means of the bosonic action: 

(1.15) 

defined on a two - dimensional surface with the topology of cylinder (for the non 

- interacting string, at least), where g= det ga,/3 and a, (3 = 1, 2. The parameter T 

is the string tension. It is often rewritten as T = 2;a' , where a' has dimensions of 

length square. 

Here X~L(O', T) is a map from two dimensional space (called the world sheet) to 

space time (often target space). This function defines the embedding of the string 

in space time, as a function of the proper time T, i.e. specifies where a point 0' along 

the string is located at proper time T. 

The conformal invariance of that action plays an important role in the proper 

quantisation of string theory in Minkowski space. If we now proceed to quantise the 

bosonic string theory we must consider the path integral as following, 

Z = J Dd X Dge-S(X,g). (1.16) 

We know that the ga/3 is an integral over the intrinsic shapes of 2d surfaces, 

whereas the X 11 integral is over the different ways of embedding a 2d surface into D­

dimensional space- time. Indeed, the path integral (1.15 )also describes interacting 

strings with just a slight change of boundary conditions. If one requires string 

interactions to be local, then strings can only interact when they touch. Two strings 

that touch can join together, to become one, or in the time- reversed process a single 

string can split into two [7]. So interactions between strings involve their creation 

and annihilation and would most naturally be described in the framework of second 

quantisation. For the interaction case the partition function will be as, 

Z = f (gs)2h-2 J Dd X Dgaf3e-S(X,g). 

genus h=O 

(1.17) 
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This is called the Polyakov path integral. All the surfaces are closed. The number 

of handles of a 2d surface characterises its genus and is denoted by h, h = 0, 1, 2, .... 

The surfaces of lowest genus are the sphere (h = 0) and the torus (h = 1). The action 

(1.15) has a very large symmetry group, corresponding to re-parametrisation of the 

world - sheet, and rescaling of the metric gaf3. These invariances are quite natural 

from the point of view of string theory. So when viewing the theory defined by ( 1.17) 

as a field theory in two dimensions, a first surprise awaits us. The field theory has an 

infinite dimensional symmetry group. A second surprise arises when we quantise the 

bosonic string theory. Requiring that the symmetry survives quantisation fixes the 

number of space - time dimensions to 26. By adding an extra action to (1.15), one 

can make a consistent quantum theory for other dimensions of space - time than 26, 

the noncritical strings. It is the two dimensional world - sheet metric that becomes 

a dynamical quantum field and in a certain gauge the surviving freedom is assigned 

to the so - called Liouville field. Within the framework of non - critical strings, much 

progress has been made in describing the coupling of minimal conformal matter to 

2D gravity. Extending the Virasoro algebra, which is inherent in every CFT, leads 

to more complicated and perhaps even more realistic string theories. As it is well­

known since Einstein that the metric is related to gravity, the study of consistent 

quantum actions for the metric provides a quantisation of gravity in two dimensions. 

The Polyakov action S(x, g) is invariant under general coordinate transformations 

x11 ---+ x'11 , local Weyl rescaling of the metric g11v(x) ---+ A(x)g11v(x), and of the 

fields rf>(x) ---+ A(x)hrf>(x), h being the scaling dimension of the field rf>(x). We see 

that the group formed by the conformal transformations is infinite dimensional in 

two dimensions. This makes clear why the symmetry group of string theory is so 

exceptionally large. The conformal transformations are generated by the energy -

momentum tensor TiJ of the theory, which has scaling dimension h = 2. 

So in Minkowski space-time we can obtain the Virasoro generators Ln from the 

bosonic string theory as quantities bilinear in oscillator modes which are the Fourier 

modes of the solution to the equations of motion, 

02 Xll 02 Xll 
fJT2 - fJa2 = 0, (1.18) 
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1.2 String Theory 

A striking application of conformal symmetry is provided by string theory. The 

universe seems to contain a large number of elementary particles. It is an appealing 

idea to think of these particles as different states of one single object. This would 

enable us to treat them in a symmetric way , the simplest objects in every- day 

experience which have such different eigenstates are strings. We will attempt to 

give a brief introduction to the subject of strings to give the flavour for some impor­

tant concepts which will be needed in conformal field theory. In recent years great 
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must be a unifying theory of all known interactions. Based on the principles of me­

chanics and local gauge invariance, the standard model is a widely recognised and 
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Einstein's theory of general covariance and the equivalence principle, is likewise an 

accepted and tested classical field theory of gravity. As we know, gravity is a weak 

force and negligible in particle scattering experiments done in order to test the stan­
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theory. The terminology originates from the basic description of elementary particles 

as excitations of one dimensional objects [2] [3] [4] [5] [6] called strings, of the size 
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. Here one considers a field theory defined on the world sheet of string. Let xJ.L (a, T) 

be D real variables that depend on two independent real variables a and T. The index 

f-t will be allowed to take values 1, 2, ... , D, the first D - 1 corresponding to space -

like coordinates. The quantity a will be assumed to lie in the interval 0 ::; a ::; 1r, but 

T will be allowed to take any real value. The interpretation will be that each fixed 

value of a specifies a particular point of the string, different values of a corresponding 

to different points, the D coordinates xJ.L (a, T) describe the trajectory of that point 

in a D - dimensional space - time. The variables a and T will be called world sheet -

coordinates, a being described as the spatial and T as the time coordinate, whereas 
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obtained from the action (1.15). The solution to these equations can be written, 

(1.19) 

That XJJ.(a + 27f, T) = XJJ.(a, T) is evident. 

In quantising the theory in the canonical manner, one makes the a~ into opera­

tors and demands that they satisfy the following commutation relations, 

(1.20) 

Then with, 

L - ~ . .,..,Jl. r.P. 
n - L.-J · '--"n-m'--"m ., (1.21) 

mEZ 

one can recover the Virasoro algebra from the commutation relations. In that case 

the central charge c will be the dimension of space-time. 

1.3 Wess = Zumino = Novikov- Witten Model 

In 1984, Belavin, Polyakov and Zamolodchikov [8] showed how an infinite - dimen­

sional field theory problem could effectively be reduced to a finite problem, by the 

presence of an infinite - dimensional symmetry. The symmetry algebra was the Vi­

rasoro algebra, or two - dimensional symmetry, and the field theories studied were 

examples of two dimensional conformal field theories.. They showed how to solve 

the minimal models of conformal field theory, so - called because they realise just 

the Virasoro algebra, and they do it in a minimal fashion. All fields in these models 

could be grouped into a discrete, finite set of conformal families, each associated with 

a representation of the Virasoro algebra. This strategy has since been extended to a 

large class of conformal field theories with similar structure, the rational conformal 

field theories [9]. The new feature is that the theories realise infinite - dimensional 

algebras that contain the Virasoro algebra as sub-algebra. Special among these in­

finite - dimensional algebras are the affine Kac - Moody algebras, realised in the 

\iVess- Zumino -Novikov- \iVitten model (WZNvV). They are the simplest infinite­

dimensional extensions of ordinary semi - simple Lie algebras, and much is known 
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about them, and also about the WZN\tV model. In here we introduce the WZNW 

model, including its current algebra. 

A Lagrangian realisation of CFT with an affine symmetry is the WZNW theory 

[10} [11] [12] [13} . Let's see how that model realises g tJJ g as current algebra [10} [14] 

. Given a group G, we can define a corresponding CJ model, which is a theory with 

action, 

(1.22) 

where g is a field that takes its values in the group G. This action is not conformally 

invariant. However, one can make the theory conformally invariant by adding a Wess 

- Zumino term, leading to the action, 

(1.23) 

In here k is the level of the corresponding affine Lie algebra. In the first term g 

is a map from the two dimensional manifold to G. In the second term the strange 

feature is that the integral is over a three - dimensional volume V , so g is a map 

from a three dimensional manifold to G. However the integral is a total derivative, 

and hence it can be written as a surface integral over the boundary of V, which 

is the 2- surface used in the first term . The extra term is required to make the 

theory conformally invariant. In general then we can say that in the second term, 

the integral is over a 3 - dimensional space which has a physical two - dimensional 

space as its boundary. The above action is invariant under transformations of the 

groups G and G (the groups G and G are isomorphic). The separate conservation 

of the currents Jz and Jz implies the invariance of the action under, 

g(z, z)-+ w(z)g(z, z)w-1 (2), 

(1.24) 

where w and w are two arbitrary matrices valued in G and G respectively. 
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For infinitesimal transformations w(z) = 1 + E(z), w(z) = 1 + E"(z), the WZNW 

field g transforms as 

(1.25) 

The action is invariant under transformations r5g = r5fg + r5f:g, in other words, r5S = 0 

forS given in (1.23). 

The equations of motion of the WZNW model are 

(1.26) 

Switching to the complex coordinates z, z, and using all = 28z, EIJ.V = ~' these give 

(1.27) 

with hermitian conjugate 

(1.28) 

Defining 

- -1 
J :=kg azg, (1.29) 

we have 

(1.30) 

So the currents J and J are purely holomorphic and anti-holomorphic respectively. 

These currents will realise two copies of the affine algebra g. In the Euclidean path 

integral formulation, a correlation function of the product X of fields is given by 

f[dcf>]X c 5 l.Pl 
(X) = f[dcf>Je-S[cf>] ' 

(1.31) 

where [dcf>] indicates path integration over the fields 4> of the theory. If the action S 

transforms with r5S = fc dzr5s(z), then 

r5(X) = -1 dz((r5s)X). (1.32) 
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So by taking w = .La wata, J = .La Jata where ta are the generators of G and using 

Nother's theorem in the WZNW action we can write 

(1.33) 

where we have put w = 0 for simplicity. Putting X 

-k(ozg)g- 1 and 6wg = wg, we get 

Jb(w), with J(w) = 

(1.34) 

More explicitly this is 

6wJb(w) = L ifbcdwc(w)Jd(w)- kowwb(w). 
c,d 

(1.35) 

In ( 1. 33) this gives 

1 "'I . bdJd(w) k6bc 1 I b -. L dwwc(w) < zr -- + >= -. dwwa(w) < Ja(z)J (w) > . 
27rz z- w (z- w) 2 21rz c,d 

(1.36) 

This relation determines the singular part of the product expansion (OPE) of the 

two currents Ja ( z) and Jb ( w), 

Ja(z)Jb(w) = kbab + irbcJc(w) +regular. 
(z-w)2 z-w 

(1.37) 

A similar OPE holds for the currents Ja(.z) The Laurent expansion of currents 

about z = 0 is Ja(z) = .LnEZ J~z-n-1, or equivalently, J7~ = 2;i fcdzznJa(z). 

We can translate this expansion, so that 

JU(z) = L(z- w)- 1-n J~(w), (1.38) 
nEZ 

is the Laurent expansion about the point z = w, and J~(O) = J~(w). Of course, we 

also have 

JU(w) = ~ 1 dz(z- w)nJU(z), 
27rz w 

(1.39) 
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where fw dz will indicate integration around a contour enclosing the point z = w. 

This allows us to write 

[J~, J~] = 

(1.40) 

So, by subtraction of contours, and using (1.37), residue calculus then gives 

[J~, J~] = L i rbc J~+m + knbab bm+n,O 0 (1.41) 
c 

Identical commutation relations hold for the current modes 1!. These are the 

commutation relations of g EB g. It is easy to see that (1.41) is a central extension 

of the loop algebra of g. Consider Ja EB sn, with s on the unit circle in the complex 

plane, and n E Z. The loop algebra of g is generated by the Ja EB sn, since they are 

g- valued functions on S1 . Now 

(1.42) 

so only the central extension term k is missing. The central extension term is known 

as a Schwinger term. (1.37) is not the usual form in quantum field theory, because 

radial quantisation is not typical. If we switch variables using z = expe~x), then 

Laurent series become Fourier series, and we recover the more familiar form 

(1.43) 

where we have put 

The Schwinger term (and therefore, the presence of the level k [15]) is a quantum 

effect and is related to chiral anomalies. The conformal invariance of the model can 

now be established in a straightforward way. The Sugawara construction expresses 
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the stress - energy tensor in terms of normal ordered products of currents Ja ( z). 

The Sugawara stress - energy tensor is 

1 
T(z) = ( ) : la(z)Ja(z) : 

2 k + hg 
(1.44) 

where :: denotes normal ordering with respect to the modes of Ja(z), and h9 is the 

dual Coxeter number of g. Using the above information, we have the OPE 

~ 2T(w) 8T(w) 
T(z)T(w) = ( )4 + ( )2 + , z-w z-w z-w 

(1.45) 

with the central charge 

kdimg 
c = ----=~ 

k + hg 
(1.46) 

Each highest weight representations at level k is labelled by a vector p in the set 

{p E PI p.wi 2:: 0, p.p :S k }, (1.47) 

where P is the weight lattice of g, { wi} the corresponding fundamental weights, and 

p half the sum of the positive roots in g. The primary field with highest weight p 

has conformal weight 

~ - p.(p+ 2p) 
P- k+h 

g 
(1.48) 

Substituting T(z) = 'L-nEZ z-2-n Ln yields the usual form of the Virasoro algebra: 

(1.49) 

For completeness, we also write 

a Ja(w) aJa(w) 
T(z)J (w) = ( )2 + ( ) + ... z-w z-w 

(1.50) 

Expanding the currents in Laurent series, J(z) = 'L_ lnz-n-l and likewise for J, we 

can recover the affine Kac - Moody algebra, 

(1.51) 

which corresponds to 

(1.52) 
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This shows that the g and Virasoro algebras extend to a semi - direct product in 

the theory. Furthermore, the full chiral algebra of the WZNW model consists of the 

Virasoro and Kac - Moody algebras. So the energy momentum tensor of the theory 

is bilinear in the current J(z) and so its Laurent modes, the generators Ln of the 

Virasoro algebra, are bilinear in the Kac - Moody generators Jc:;,. That tensor has 

the Sugawara form. This is a characteristic feature of WZNW models. 

Witten and Gepner took [16] the WZNW model to describe strings propagating 

on group manifolds, so now we have a string theory with a large symmetry algebra, 

an affine Kac- Moody algebra and the Virasoro algebra. They showed that modular 

invariant partition functions of WZNW models can be constructed as bilinear in 

characters of the Kac - Moody algebras g, g, which carry a finite representation of 

the modular group as shown by Kac and Peterson [17]. More particularly, for a given 

integer value of the level of the representation, there is a finite number of characters. 

A character under modular transformations will be a linear combination of all the 

characters at that level. It is generally argued that integer level is required for a 

single valued Wess -Zumino contribution to the exponential of the WZNW action. 

However, one might investigate the consequences of allowing a fractional value 

for the level in the context of the WZNW model and of extended CFT. A geometric 

view of fractional level in WZNW models was provided in [18], and there are nowa­

days several contexts in which fractional level plays role. Here we mention three 

applications : SL(2; JR), SL(2/1; IR) and N = 2. 

First of all we start with the SL(2; IR) WZNW model. In the case where WZNW 

models are based on compact Lie groups such as SU(2) [14] [16], the unitary repre­

sentations are finite- dimensional and correlation functions can be written as a finite 

sum of conformal blocks by the bootstrap approach. The non- compact groups give 

a much more complicated situation and the general solution is not known. There has 

been much work done on analysing this [19] [20]. We know that the group SL(2; IR) 

which is one of the simplest non- compact Lie groups, is important in many key ar­

eas. The first is in two - dimensional gravity [21] [22]. In that case the gravitational 

Ward identities for correlation functions of the metric are precisely the same as the 

SL(2; IR) Knizhnik- Zamolodchikov (KZ) equations [23]. 
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The second application is the Quantum Hall Plateau Transition where the SL(2; JR) 

WZNW model has recently been proposed as a low energy effective field theory [24]. 

Finally, String theory on AdS3 [25] [26] which is the SL(2; JR) group manifold, 

is described by a SL(2; JR) WZNW theory. The duality is between string theory in 

the bulk of AdS and conformal field theory ( CFT) on the boundary of the space­

time. Bulk fields naturally couple to local operators in the boundary CFT. Cor­

relation functions on the boundary can be computed from the bulk theory in the 

super-gravity approximation by taking the classical tree level graphs for the bulk 

interactions. For general AdSn, still there is an open problem because one does not 

know how to describe the full string theory in such a background. For the case of 

AdS3 however the world sheet theory is described by the SL(2; JR) WZNW model 

and the boundary theory is a two dimensional CFT . In that case fields are natu­

rally classified according to the representation theory of SL(2; JR). We have unitary 

representations and the string theory is exactly solvable in principle. 

In my thesis we investigate further the characters of the complex affine super­

algebra sl(211; C) and their modular transformations, because our results will be 

useful in determining the exact nature of the correspondence between the theory of 

N=2 non- critical strings and the S£(211; lR)/ S£(211; JR)gauged WZNW model [27]. 

Such theories are certainly not studied in this work. The essential ingredients of the 

WZNW theory are encoded in its current algebra, the Kac - Moody algebra. The ex­

act correspondence between the traditional approach to noncritical string and G /G 

models is yet to be proven. However, a crucial ingredient in the description of the 

spectrum in the G /G picture is the representation theory of the corresponding affine 

Lie algebra, g, at fractional level k = ~- h9 , p E Z*, u EN and gcd(p, u) = 1 with 

h9 the dual Coxeter number of g. For instance, the S£(211; lR)/ S£(211; JR) topolog­

ical quantum field theory obtained by gauging the anomaly free diagonal subgroup 

S£(211; JR) of the global S£(211; JR)L@ S£(211; JR)R symmetry of the WZNW model 

appears to be intimately related to the noncritical charged fermionic string, which 

is the prototype of N = 2 super-gravity in two dimensions. A comparison of the 

ghost content of the two theories strongly suggests that the N = 2 noncritical string 

is equivalent to the tensor product of twisted SL(2I1;1R)/SL(2I1;1R) WZNvV model. 
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It is however only when a one- to- one correspondence between the physical states 

and the equivalence of the correlation functions of the two theories are established 

that one can view the twisted G jG model as the topological version of the corre­

sponding noncritical string theory. Our original motivation in the analysis of the 

representation theory of ;l(2l1; C) at fractional level k is its potential relevance in 

the description of N = 2 super-strings. We take the matter coupled to super-gravity 

in an N = 2 super Coulomb gas representation with central charge 

2p 
Cmatter = 3(1 - -), p, u E N, gcd(p, u) = 1. 

u 
(1.53) 

The level k of the affine super-algebra ;l(211) appearing in the S£(211; IR)/ SL(2f1; IR) 

gauged WZNW model, believed to be intimately related to the N = 2 string, is of 

the form 

p 
k=--1. 

u 
(1.54) 

This is precisely the type of fractional level first discussed in the paper by Kac and 

Wakimoto on admissible representations of affine Lie algebras [28). For levels of the 

form (1.54) with p = 1, one obtained a description of unitary minimal N = 2 matter 

whose spectrum is described by a finite number of irreducible representations, whose 

characters form a finite representation of the modular group [29). There are thus 

rational, although non unitary, theories associated with sl(2l1; C) at fractional level, 

as we shall discuss in chapters 3 and 4. 

1.4 Modular Transformations 

Modular invariance has recently emerged as a powerful tool in the study of conformal 

field theory in tvm dimensions. Constraints from modular invariance make it possible 

to determine the exact spectrum of the theories, with various boundary conditions. 

Such constraints were found in the work of Cardy [30) for the minimal conformal 

models [8). Modular invariance for the WZNW theories was analysed by Gepner 

and Witten [16), as part of study of string propagation on group manifolds. The 

super-conformal models [31) were treated by Kastor [32). 
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In this section we first express the modular transformation. For applications 

in string theory one needs to consider conformal field theories that are defined on 

general Riemann surfaces rather then on the complex plane. Conformal field theory 

is described algebraically by a set of states. One would expect all the states in 

a theory to contribute to loop diagrams. For this reason we are going to study 

conformal field theory on the simplest loop diagram, the torus. In (1.17) his the 

genus of the surface and 9s is the string coupling constant. String perturbation 

theory is a summation over two - dimensional surfaces. This sum splits in a sum 

over all different topologies, and integrals over all different shapes of surfaces with a 

given topology, the moduli. This is analogous to Feynman diagrams with different 

numbers of loops in ordinary field theory. In two dimensions the topology can be 

described by a single parameter (the number of handles or genus). At genus 1 

(torus) there is one complex modulus, the parameter T. The integral over T is not 

over the full positive upper half plane, but should be restricted to a region that 

covers the set of distinct tori just once. The entire upper half plane is covered with 

an infinite number of regions with different shapes and sizes. The integral over 

T should not depend on the choice of the region, or otherwise the theory is not 

well - defined. If the theory is modular invariant, this problem does not arise. So 

modular transformations change the value of the moduli but not the shape of the 

surface. Now we describe the torus in terms of a lattice defined by two basis vectors, 

corresponding to the points 1 and Tin the complex plane. However, the same lattice 

and the same torus can be described just as well by choosing different basis vectors. 

One should keep in mind that the torus was defined by aligning one basis vector 

along the real axis in the complex plane, and scaling it to one, but one could have 

chosen instead the direction T. This has the effect of replacing T by =!. This is most 
T 

easily illustrated by taking T purely imaginary. The set of such transformations of 

the torus forms a group, called the modular group. 

We have identified two elements of that group, namely 

T: T ~ T + 1, 

S: T ~ -l, 
T 

(1.55) 

It turns out that these two transformations generate the entire group. 



1.5. A pedestrian approach to Admissible Representations of Affine Lie 
Algebras 18 

The most general modular transformation has the form 

T -+ ~;~~, a, b, c, d E Z; 
(1.56) 

ad- be= 1. 

It is now natural to ask how the partition function behaves under transformations 

in the modular group. If we start with a well - defined two - dimensional theory 

on the torus, in which all fields are periodic along all cycles around the torus, the 

result of the path- integral should not depend on how that torus was parametrised. 

Hence the partition function should be invariant under modular transformations. If 

we compute the path integral for (1.17) on the torus, we will automatically get a 

modular invariant partition function. On the other hand, if we verify a partition 

function written in terms of characters is modular invariant we need to know how 

the characters transform. 

Kac and Peterson [17] have shown how nicely the characters transform under 

modular transformations. 

1.5 A pedestrian approach to Admissible Repre-

sentations of Affine Lie Alge bras 

We try to give first an informal and hopefully intuitive version of admissibility in 

the case of the well - known affine Lie algebra su(2) at level k, and introduce the 

conventional formalism of representation theory in order to provide the reader with 

the tools necessary for reading the mathematical literature on this subject [35]. The 

book by Di Francesco, Mathieu and Senechal [33] is a very good source of inspiration, 

as well as a few papers by Mathieu and Walton [34]. 

Consider su(2) at generic level k, whose commutation relations are given by 

(1.57) 

for m, n E Z and i, j, k = 1, 2, 3. vVe will use the complexified version of the alge­

bra, with the step operators J/;,_ = 1)
11 

± iJ'/,_, and the Cartan generator Jg. The 
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commutation relations become 

[J~,J;] 

[J!, J!] 

[J!, J~] 

2J!+n + kmc5m+n,o, 

±J!+n' 

mkcJm+n,O· 

A highest weight state jrl > of su(2)k satisfies 

J;tln > 

J;ln > 

J~lrl > 

0, 

0, 

0, 

'\In ;?; 0, 

'\In ;?; 1, 

'\In ;?; 1, 

(1.58) 

(1.59) 

and we will label j the JJ - eigenvalue of jrl >: JJ = jjrl > . Using (1.58)( 1.59), 

one can show 

Jti(J0)njn >= n(2j + 1- n)(Jo)n-110 >, 

nE N (ie n = 1, 2, 3, ... ). 

The smallest nonzero integer n for which the above expression vanishes is 

n = 2j + 1, 

which has a solution if j E ~Z+ (Z+ = {0, 1, 2, .... }).Consider 

The smallest nonzero integer n' for which the above expression vanishes is 

n' = k + 1- 2j. 

Given (1.61), the equality (1.63) is possible if k is an integer satisfying 

k ;?; 0. 

(1.60) 

(1.61) 

(1.62) 

(1.63) 

When (1.61) and (1.63) hold, there exist two primitive singular vectors (J0)2J+1 jr2 > 

and (J~1 )(k- 2j+l)jf2 >in the Verma module built from jrl > . A direct consequence is 

that, for k a positive integer, there exist (k + 1) irreducible highest weight representa­

tions labelled by j = 0, ~, ... , ~. In each of them, the weights organise themselves into 

finite representations of the "horizontal" algebra su(2). The crucial powers 2j + 1 

and k + 1 - 2j can be re-expressed in a formalism which allows generalisation to 

other Lie groups. 
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It is conventional to describe the simple roots of su(2) as 

ao = (-a;O, 1), 

a 1 =(a; 0, 0). 

In general, the components of the affine weight A at level k are given by 

(1.64) 

{1.65) 

where .\ is the finite part of A (it is a weight in the Lie algebra su(2)), k>.. is the 

level and n>.. refers to ( -L0 ). The scalar product (A, v) is given by 

(1.66) 

In (1.64), the su(2) simple root a is normalised as a 2 = 2. One associates the 

generator J:t-1 to a0 , and Jft to a1 . The coroots are given by ari = -5-ao and a{' = 
ao 

-5-a1 , and consequently, the fundamental weights are 
a! 

A0 = (0; 1, 0), A1=(~a;1,0). {1.67) 

It is customary to parametrise an arbitrary weight A at level k as 

A= (k- 2j)A0 + 2jAl, {1.68) 

where n0 = k - 2j and n1 = 2j are the Dynkin labels associated to A. When those 

are non-negative integers, the representation with highest weight A is integrable, 

which means in particular, that A generates an "horizontal" representation which is 

finite - dimensional. 

The eo-marks a;j and a{' satisfy k = a;j no + a{' n 1 (in our case of su(2)k, a;j = 

a{' = 1) and their sum is the dual Coxeter number 

They also provide an expression for the canonical central element 

1 

J( = L:afaj. (1.69) 
j=O 

In order to rewrite (k- 2j + 1) and 2j + 1 in the language of roots and weights, we 

also need to introduce the Weyl vector 

(1.70) 
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It is now easy to see that 

(a;)', A+ p) =(a;)', (k- 2j)A0 + 2jA1 + A0 +AI) 

(a{', A+ p) =(a{', (k- 2j)Ao + 2jA1 + Ao + A1). 

(1.71) 

So the condition (a, A + p) E N Va E rt (f1v is the set of coroots, ie TIV = 

{a;)', ai}) is crucial in ensuring the integrability of representations. Note that it is 

the highest weight shifted by the Weyl vector p which enters the condition. Since 

(k, A+ p) = k + h9 it will come as little surprise that the shifted level (k + h9 ) also 

plays a role in the admissible case. 

In general, denoting by Xr,k the untwisted affine algebra X~l) of rank ( r + 1) and 

level k, the set of integrable highest weights is 

V 

P! = {AI(a,A) E Z+ Va Efi; (K,A) = k} (1. 72) 

Next we discuss characters. One defines the character of an integrable represen­

tation 111(A) of highest weight A by 

Ch;.. = L mult;..(a)eu, 
uEP 

where P is the weight lattice. 

The elegant Weyl - Kac formula for characters is, 

LwEW det( w )ew.>. 
Ch;.. = f1 (1 _ e-a)mult(a) · 

oECl.+ 

(1. 73) 

(1.74) 

6+ is the set of positive roots and w.A = w(A + p) - p is the shifted action of w, 

and vV is the affine Weyl group. 

The normalised character is 

X _ -o(h;..-L)Ch >. _ e 24 >., (1.75) 

where the conformal weight of the primary field A is 

h = (A, A+ 2p) = lA+ Pl
2 

- IPI
2 

>. 2(k+ hg) 2(k +hg) ' 
(1.76) 

with central charge 

(1.77) 
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h9 stands for the dual Coxeter number, k for the level of the affine algebra. 

Suppose that a weight (} has imaginary part - nb. Define 

ea(T, z, t) := exp[2ni(nr + ((Jiz) + kt)], 

where z in an element of the Cartan subalgebra of the horizontal subalgebra Xr· 

Then the normalised characters X>.(T, z, t) are the conformal blocks for the torus 

partition function of the WZNW conformal field theory. Kac and Peterson [17] have 

shown how the characters transform under modular transformations. We can see 

and 

1 z y- (ziz) L k x>-( --, -, 
2 

) = s>- ,XJ-l(r, z, y), T T T >r 

J-LEP!j_ 

X>.(r + 1, z, y) = L r;,J-LxJ-l(r, z, y), 
J-LEP!j_ 

The S~,J-L (T;,J-L) are the elements of a unitary, symmetric matrix Sk (Tk). 

(1.78) 

(1. 79) 

What if one relaxes the condition that k is a positive integer? Let us come ---back to su(2)k. If k becomes fractional, some Dynkin labels will become fractional, 

leading in some cases to infinite - dimensional representations of the " horizontal " 

algebra su(2) (when 2j rf_ Z). 

As Kac and Wakimoto discovered however [28] [35] [36] , the situation is " almost 

" as pleasant when the level k is given by 

k = !_, gcd(t, u) = 1, t E Z*, u EN 
u 

(1.80) 

as in the integrable (u = 1) case. Since we already noticed that (k + h9 ) plays an 

important role in the integrable case, and since we expect 2j + 1 to become fractional 

for some values of j at fixed level k, let us write 

2j + 1 = n- n'(k + Tt9 ) (1.81) 

with 0 'S n' 'S u -1 and n E Z. This parametrisation isolates an integer contribution 

to 2j + 1 (note that n'h9 E Z+ and n'[k] E Z, for [k] the integer part of k, so that 

the integer contribution n is not the integer part of 2j + 1). 
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Why is this parametrisation useful? With (1.81), we can write (1.68) as 

A [k + 1- n + n'(k + h9 ]A0 + [n- 1- n'(k + h9)]A1 

{[1- n- h9 + u(k + h9 )]A0 + [n- 1]AI}- (k + h9){[u- 1- n']Ao + n'AI} 

(1.82) 

where AF = (u- 1- n')Ao + n'A1 is an integrable weight at level u- 1 2: 0 (in 

view of then' range in (1.81) and the u in (1.80)). On the other hand, the weight 

AI= (1- n- h9 + u(k + h9 ))A0 + (n- 1)A1 is integrable provided 

(1.83) 

which implies u(k + h9 ) - h9 2: 0. 

Bearing in mind that h9 = 2, we conclude that, for j parametrised as 

2jnn' + 1 = n- n'(k + 2) , 1 :S n :S t + 2u - 1 
(1.84) 

0 :S n' :S u - 1, 

one may split a non - integrable weight at level k = ~ in two integrable weights at 

levels u(k + 2) - 2 and u- 1 according to the formula 

(1.85) 

All admissible weights in su(2)k can be put in the form (1.85). When u = 1, n' = 0 

and 2j + 1 = n, 1 ::; n ::; t + 1 and one recovers the integrable case, with AF = 0, 

e = k = t. 

For higher rank groups, an admissible level k weight A may be rewritten as 

where A1 and AF,y are both integrable at levels e u(k + hg) - hg > 0 and 

kF = u - 1 2: 0 respectively. 
~ 

The new ingredient when comparing with SU(2)k is the action of a non- trivial 

element y of the subgroup l¥jl1V(A) where vV is the finite Weyl group and vV(A) is 

the subgroup of W isomorphic to the outer- automorphism group of Xr,k· We refer 

to Di Francesco [33] for a more complete analysis of this point. Because A is built 

---------------------------- --- ---
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from two integrable weights at finite possible levels, there exists a finite number 

(k 1 + 1).(kF + 1) of admissible representations at level k = e- (k + h9 )kF. 

In this thesis, we have used the following parametrisation of j for su(2), k+2 = ~ 

j(r, s) = ~(r- 1)- ~(s- 1)~, {1 ~ r ~ p- 1, 
(1.87) 

1 ~ s ~ u. 

The con formal dimension of the highest weight with isospin j ( r, s) is 

h( ) = j(r, s)[j(r, s) + 1] 
r,s k + 2 , (1.88) 

and is negative for some values of r and s, which is a very strong sign of non -

unitarity. 

Although non - unitary, the admissible representations share many important 

properties with integrable representations. For instance, their characters obey a 

generalisation of the Weyl- Kac formula and they have" nice" modular properties. 

By this we mean that in the case of su(2)k, k = ~, the admissible characters (and 

there is a finite number of them) transform covariantly under the action of the 

modular group. 

This property percolates to the coset theories 

su(2h x S:U(2h 
su(2)k+l 

which are non - unitary Virasoro theories with 

- 3k 1 3(k+l) - 1 6 
c - k+2 + -~ - - (k+2)(k+3) 

= 1 - ~ = 1 - 6(p-p')2 
p(p+u) pp' ' 

where we used k + 2 = E. and p' = p + u. u 

(1.89) 

(1.90) 

The main object of this thesis has been to derive the modular transformations of 

the admissible characters of the ;[(211) super-algebra at fractional level k + 1 = ~, 

p E Z*, u EN, (p, u) = 1 (p, u coprime). 

To this effect, we have heavily exploited the ;L(2)k content of ;L(211)k, as well 

as sumrules which allow to re-express a sum of products of ;L(211)k characters with 

U(1) characters as a sum of triple products of ;[(2) at levels 

k' : k' + 1 = :!!:., 
p 

(1.91) 
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and 1. 

Here the level k is shifted by h9 and the level k' becomes integer when p = 1. 

In that case, we have shown the covariance of admissible d (211) k characters under 

the action of the modular group using the sumrules. We can confirm the embryonic 

work of M. Hayes [37] and the follow up in G. Johnstone's [38], where the modular 

transformations were obtained by a different method. 

The d(2J1) algebra is intimately related to the superconformal algebra (SCA) 

N = 2. The latter may be obtained from the former by Hamiltonian reduction [39]. 

At the level of characters, one notes that a subset of admissible d(2J1)k characters 

develop simple poles when the angular variable z = e27riJ.L -t 1. The residues at these 

poles are proportional to theN= 2 SCA characters, at c = 3(1- 2~). When p = 1, 

one recognises the unitary minimal N = 2 series, and the nice modular properties 

of d(2J1)k characters are inherited by the corresponding unitary N = 2 characters. 

However, when p =f 1, the minimal N = 2 characters obtained by residuing are non 

- unitary and do not transform as nicely under the modular group as their N = 0 

counterpart, as we establish in Chapter 2. 

There, the modular properties were derived by exploiting branching rules of 

d(2)k into N = 2 characters, but the results can also be obtained indirectly, by 

taking the appropriate residues in the modular transformed d(2J1)k characters which 

can be found in Chapter 4. 

When p =f 1, the d(2J1) admissible characters are no more periodic in the spectral 

flow parameter and consequently, one has to face the complication of an infinite 

family of admissible characters, which transform covariantly up to extra terms which 

vanish when p = 1, but whose presence should receive an elegant interpretation fairly 

soon. 

In conclusion, this thesis contributes to the study of conformal field theory in 

the non - unitary sector. By using a pedestrian method which required however 

some specific skills to implement, we were able to challenge our collaborators who 

are deriving the same results with much more powerful techniques, providing them 

with reliable expressions against which results can be compared and merged [40]. 
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1.6 Layout of the thesis 

The remaining chapters of this thesis split naturally into two parts. The first part 

consists of just Chapter 2, and Chapters 3 and 4 form the second part. 

In Chapter 2 we give a detailed review of the calculation of modular transforma­

tions of N = 2 characters. The chapter treats both the unitary and non - unitary 

minimal cases. In the former case, the character formula has a nice periodicity under 

spectral flow, so we can easily write modular transformations for N = 2 characters. 

This result agrees with Ravanini and Wakimoto [41] [42]. I have also computed 

modular transformations for N = 2 characters in non - unitary case. In that case 

we had several difficulties, because the N = 2 characters under spectral flow are 

linear combinations of an infinite number of characters. We could hardly solve this 

problem. The results of this chapter are new and have not appeared before in the 

literature. The results of this chapter were impotant for us to solve the modular 

transformations for ;[(211) in Chapter 4. 

Characters for ;[(211) at fractional level are presented in Chapter 3. The complete 

set was first obtained for general p by A. Semikhatov and A. Taormina. 

Chapter 4 deals with nice sumrules one can write for ;[(211) characters. These 

have enabled me to calculate their S modular transformation at general level k = t 
(the T transform is straightforward). 

All results in chapters 2 and 4 are new and will be published soon [40]. 



Chapter 2 

TheN 2 Superconformal Algeb:ra 

2ol Introduction 

Supersymmetric extensions of two-dimensional conformal symmetry play an impor­

tant role in the formulation of superstring theories and in various statistical me­

chanics models. The first example of superconformal symmetry was developed by 

Neveu and Schwarz [43), and also Ramond [44] when they constructed fermionic 

string models. This 'world-sheet' supersymmetry corresponds to the N = 1 super­

conformal algebra (SCA). 

A natural generalisation of the above SCA consists in increasing the number N 

of supersymmetry generators. The closure of the N-extended conformal algebra 

(N ~ 2) usually requires additional bosonic generators corresponding to the Kac­

Moody symmetries that rotate the supersymmetry generators among themselves. 

The N = 2 SCA is the simplest non-minimally extended conformal algebra, hav­

ing an 0(2) Kac-Moody subalgebra. Originally, it appeared in the formulation of 

the 'spinning' string, a fermionic string with extended world-sheet supersymme­

try [45, 46]. However, it subsequently found beautiful applications in the study 

of space-time supersymmetric compactifications of ten-dimensional superstrings to 

four dimensions [47, 48]. It is also believed to play a role in some two-dimensional 

statistical systems at criticality [49]. 

In most string applications so far, the unitary representations of the N = 2 SCA 

have been used. This explains the huge literature available on this particular class 

27 
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of representations, the corresponding characters and the construction of modular in­

variant partition functions [50) [51) [52). Unitary representations occur for discrete 

values of the central charge in the series, 

2 
c(u, 1) = 3(1- -), 

u 
u = 3,4,···, (2.1) 

or for continuous values of c in the range c 2: 3. However, in the context of non­

critical superstrings [53) [54) [55) as well as in two-dimensional critical phenomena, 

non-unitary representations of N = 2 come into play. From a more mathematical 

point of view, the representation theory in the non-unitary discrete sector has not 

been much developed so far. Irreducible representations occur for central charges in 

the series, 

2p 
c(u,p) = 3(1- -), 

u 
u = 3, 4, · · · p = 2, 3, · · · , u and p coprime, (2.2) 

but the corresponding characters do not close under the action of the modular group, 

in striking contrast with the unitary case. 

The aim of this chapter is to study the behaviour of these N = 2 non-unitary 

characters under the action of the modular group and to highlight the differences 

with the unitary characters. In section 2, we review the basic structure of the 

N = 2 SCA. In section 3, we introduce a special class of irreducible highest weight 

representations of theN= 2 SCA which are non-unitary and called admissible, and 

present their character formulas. Section 4 reviews some fundamental features of 

spectral flow and studies periodicity properties of characters. Finally, in section 5, 

we study the behaviour of characters under the modular group. 

2.2 The N = 2 Superconformal Algebra 

The full N = 2 SCA is the direct sum of two copies of the algebra we write down 

below, and corresponds to the analytic and anti-analytic components of the N = 

2 currents. Throughout this thesis, we concentrate on the analytic sector when 

discussing representation theory, and losely call 'N = 2 SCA' the analytic sector of 

the full algebra. 

The N = 2 SCA is generated by two bosonic currents (the stress energy tensor 
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T(z) of conformal dimension two and the U(l) current J(z) of conformal dimension 

one), and two supercharges G±(z) of conformal dimension 3/2. The complex plane 

variable z is related to the string coordinates on the cylindrical worldsheet by z = 

e7 +ia-, with T E lR. and 0::; a::; 211'. 

The (non regular) operator product expansions defining theN = 2 SCA are [56], 

T(z)T(w) -,----c_/ 2----,-,- + 2T ( w) + fJT ( w) + .. . 
(z-w)4 (z-w)2 z-w ' 

T(z)J(w) J(w) + fJJ(w) + ... 
(z-w)2 z-w ' 

J(z)J(w) 
c/3 

( )
2 + ... ' z-w 

3G±(w) fJG±(w) ----:-----:-:-::- + + ... 
2(z- w)2 z- w ' 

± G±(w) + ... , 
z-w 

2c 2J(w) fJJ(w) 2T(w) 
-------,---::- + + + + ... 
3(z-w)3 (z-w)2 z-w z-w · 

(2.3) 

The above current algebra is invariant under 0(2) rotations of the two supercharges 

G1 = c+ + c- and G2 = i(G+- c-), namely under the transformations, 

(2.4) 

where 0 is a 2 x 2 orthogonal matrix. The S0(2) U(l) continuous subsymmetry 

allows for the boundary conditions, 

e'f2i7fli c± ( z)' 

J(e2
i1r z) = J(z), 

(2.5) 

(2.6) 

with e a continuous parameter in the range 0 ::; e ::; 1. The above boundary condi­

tions determine the mode expansions of all currents. Let us discuss the supercharges 

in some detail. The Laurent expansion of G±(z) is given by, 

G± (z) = ~ c± -k-3/2 - ~ c± -n'fll-2 L kz - L n±li+l/2z · (2.7) 
kEZ±0-3/2 nEZ 

If e = 0, c± have half-integer modes and the fields are single-valued. This corre­

sponds to the Neveu-Schwarz (NS) sector of the theory, as the fields defined on the 



2.2. TheN= 2 Superconformal Algebra 30 

cylinder are anti-periodic for a --+ a + 27r. Indeed, one has, 

c±(T + ia + 2i7r) = 2: G!+l/2e-(n+2)(T+ia+2i7r) = c±(T + ia). (2.8) 
nEZ 

On the other hand, when () = 1/2, c± have integer modes and the fields have 

a branch cut. This corresponds to the Ramond sector of the theory as the fields 

defined on the cylinder are periodic. All continuous intermediate values of() provide 

isomorphic N = 2 algebras. This is clearly seen when expressing the OPE of the 

currents (2.3) in terms of (anti)-commutation relations between their modes. To fix 

ideas, let us work in the Ramond sector, i.e. let us take (} = 1/2. Note that (2.6) 

reqmres, 

T(z) L Lnz-n-2
, 

nEZ 

J(z) = L Jnz-n-1, 
nEZ 

and therefore, the Ramond N = 2 SCA reads, 

[Lm,Ln] 

[Lm, ln] 

[Jm, Jn] 

[Lm, c;=] 

[Jm, c;=] 

[c:, c;]+ 

The transformation 

c 3 ) (m- n)Lm+n + 
12 

(m -m bm+n,o, 

-nJm+n, 
c 
3m6m+n,o, 

(;- r)G!+r' 

±G!+r' 
c 2 1 

2Lr+s + (r- s)Jr+s + 3(r - 4)6r+s,O· 

c 
lnHln + 3(}6n,o, 

G;;HG;;_ 9, 

(2.9) 

(2.10) 

(2.11) 

is an isomorphism of the above algebra and is called spectral flow. It continuously 

connects the Ramond algebra(()= 1/2) to the Neveu-Schwarz algebra(()= 0). 

We will only be concerned here with the infinite family of isomorphic algebras 

parametrised by B, and in particular with the Ramond (R) and Neveu-Schwarz (NS) 

algebras. Let us however mention that there exists a twisted N = 2 SCA which is 
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obtained by exploiting the Z2 symmetry which interchanges c+ and c-. The latter 

is nothing else than the transformation (2.4) when 0 is the orthogonal matrix 

(2.12) 

and therefore allows for opposite boundary conditions for G 1 and G2 . 

2.3 Admissible N 2 representations and their 

characters 

In order to make contact with the works of Semikhatov and collaborators, we work 

in the new basis, 

which yields the following N = 2 commutation relations, 

[.Cm, .Cn] 

[.Cm,.Jn] 

[.Jm, .Jn] 

[.Cm,Q:] 

[.Cm, Q;] 

[.Jrn,Q;=] 

[Q:,Q;L 

(m- n).Crn+n' 

c 3 ) -n.Jrn+n + 6(m +m b"m+n,o, 
c 
3m6m+n,o, 

(m- r)Q~+r' 

c 2 
2.Cr+s + (r- s):J;·+s + 3(r + r)b"r+s,o, 

with m, rE Z. In this new basis, the spectral flow acts as follows(() E Z), 

c ( 2 Uo : .Cn~--+.Cn + ().Jn + 6 () + ())6n,o, 

Q;t~--+Q;;-+0' 

We will call the spectral flow parameter () a twist. 

(2.13) 

(2.14) 

(2.15) 

We focus in this thesis on a particular class of N = 2 irreducible highest weight 

representations called admissible. They exist when the central charge is given by 
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(2.2). In order to characterise them, we first define a twisted highest weight vector 

lh, c; (} > as a vector satisfying the annihilation conditions, 

with 

c 
(Jo + 3B) lh, c; (} > 
c 

(.Co + B:Jo + 6(B2 + O))lh, c; (} > 

hlh,c;O > 

0. 

(2.16) 

(2.17) 

A twisted Verma module is a module freely generated from a twisted highest weight 

vector lh, c; 0 > by g~m+IJ' g=m-O' :l-m and L-m with m a strictly positive integer. 

The admissible N = 2 highest weight representations are the quotients of twisted 

highest weight Verma modules over maximal submodules whose highest weights are 

singular vectors. 

The corresponding characters were obtained in [57] and were also privately dis­

closed to us by [58]. They are labelled by integers r, s, and 0 such that 

1 :'S r :::; u- 1, 1 - p :'S s :'S p, (2.18) 

The quantum number h appearing in (2.17) is related tor, s and 0 by, 

p 2p 
h = s- 1- (r- 1)- + 0(1- -). 

u u 
(2.19) 

The untwisted Ramond characters are formally defined as a trace over untwisted 

highest weight irreducible modules as, 

xN=2 (z q) = Tr(q.Co z30 ) 
r,s,u,p ' ' 

(2.20) 

where q and z are two complex variables, q = e2i1fT and z = e2i1rv, with T, v E C and 

Im(T) > 0 in order for the character series to be convergent. The twisted Ramond 

characters may be obtained from the untwisted ones by spectral flow with integer 

twist 0. Note that we twist by -0 (for historical reasons) in the following definition. 

Since 

(2.21) 

we have, 

X N=2 ( ) _ -JO ~(02 -0)xN=2 ( -0 ) 
r,s,u,p;O z, q - z q r,s,u,p zq 'q ' (2.22) 
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where the untwisted N = 2 Ramond characters (2.20) read, 

xN=2 ( ) _ s-1-~(r-1) -z9l,O(z, q) A.. ( ) 
r,s,u,p z, q - Z 7J(q)3 'f'r,s,u,p z, q ' 

with 

( 

mpr -mpr ) 
z = m2up-mu(s-l) q _ r(s-1) q 

cPr,s,u,p( , q) 2: q 1 + z-lqmu q 1 + z-1qmu-r . 
mEZ 

We use the theta functions, 

'!91,o(z, q) 

'!91,1 (z, q) 

n m~1 

nEZ 

q1/8 rr (1 _ Z-1qm-1)(1 - zqm)(1 _ qm) 

m~1 

and the Dedekind function 
00 00 

7J(q) = qf4 L) _ 1 tq~(3n
2 +n) = qf4 rr (1 _ qn). 

n=O n=1 

33 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The range (2.18) for the parameters r, s, () labelling the admissible characters 

(2.22) results from the following properties. First of all, for a E Z, one has, 

(2.27) 

and 

xN=2 ( ) xN=2 ( ) au+r,s,u,p;O z, q = r,s-ap,u,p;O z, q · (2.28) 

Wh . xN=2 ( ) xN=2 ( ) xN=2 ( ) Wh en a 1S even, 2ku+r,s,u,p;O z, q = r,s-2kp,u,p;O z, q = r,s,u,p;O-ku z, q · en a 

is odd however, the characters satisfy, 

X~;;'f_1)u+r,s,u,p;O(z, q) xN=2 ( ) -x_N=2 ( ) r,s-(2k+1)p,u,p;O z, q = ./ u+r,s,u,p;O-ku z, q 

X N-2 ( ) r s~p u p·O-ku z, q · 
' ' '' 

(2.29) 

Second of all, the function c/>r,s,u,p;O(z,q) = cPr,s,u,p(zq-0 ,q) is not periodic in the 

spectral flow parameter() for p other than one. Indeed, using the explicit expression 

(2.24), one can show that, for any integer n ~ 1, one has ( [57]), 

z2pnqpn(r-un)-un(s-1)A, . (zq-un q) -"' (z q) = 
\f'r,s,u,p ' 'f'r,s,u,p ' 

2pn-1 2:: ( _1 t+1 za+1 q- ¥ ['!91,0 ( q-up+u(s+a)-pr, q2up) _ qr(s+a) 191 ,
0 

( q-up+u(s+a)+pr, q2up) 1 
a=O 

(2.30) 
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while for any integer n :::; -1, 

z2pnqpn(r-un)-un(s-1)~ (zq-un q) - ~ (z q) = 
¥-'r,s,u,p , "Pr,s,u,p ' 

-1 2:: ( -l)a za+1 q-¥ ['!9
1

,
0 

( q-up+u(s+a)-pr, q2up) _ qr(s+a) 191 ,o ( q-up+u(s+a)+pr, q2up). 

a=2pn 

(2.31) 

This non quasi-periodicity for p non unity is an obstruction to write the admis­

sible characters in terms of products of theta functions, and is a source of difficulty 

when studying the modular properties of these characters as we shall discuss later. 

We end up this section with a parenthesis on the special case p = 1, which 

corresponds to the well-known unitary minimal N = 2 characters at central charge 

c = 3(1- ~). We set p = 1 in (2.22) and write, 

xN=2 ( ) r,s,u,1;0 z, q z-~oq~(o2 -o)xN=2 (zq-o q) 
r,s,u,l ' 

-'=-0 '=-(02 -0)[ -O]s-1-1-(r-1) fh,o(zq-O' q) rl.. ( -0 ) 
z 3 q6 zq u TJ3(q) 'f'r,s,u,1 zq 'q ' 

(2.32) 

with 

~ (z -0 ) = ~ um2 -mu(s-1) [ qmr _ r(s-1) q-mr ] (2 33) 
'f'r,s,u,1 q 'q L,.; q 1 + z-1qmu+B q 1 + z-1qmu+B-r . . 

mEZ 

A remarkable property of the above series is that it can be rewritten as the following 

infinite product, for the two allowed values s = 0, 1 in the range (2.18). One in fact 

has, 

rl.. ( -0 ) -1 0 ~ ( -0 ) 'l-'r,1,u,1 zq , Q = -z Q 'f'r,O,u,1 zq , q 
IJ~= 1 (1 _ qu(n-1)+r)(1 _ qun-r)(1 _ qun)2 

TI~=l (1 + zqun-0)(1 + z-lqu(n-1)+0)(1 + z-1qun-r+0)(1 + zqu(n-l)+r-0)' 

(2.34) 

as can be checked by a residue analysis (see [59]). This in turn leads to, 

X N=2 ( ) xN=2 ( ) r1u1·0 z,q =- r0u1·0 z,q' 
I ) J I I l I I 

(2.35) 

and to the conclusion the parameters can be chosen to be s = 1 when p = 1. Using 

the Jacobi triple product identity 
00 L sn2 tn = IT (1 - s2n)(1 + ts2n-lt)(1 + ts2n-1cl) (2.36) 

nEz n=1 
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and the functions (2.25), we rewrite (2.34) as, 

~~~(zqr-O,qu)~I~(z-lqO,qu)" 
(2.37) 

To summarize, the unitary N = 2 Ramond characters at central charge c = 3(1- ~), 

u EN\ {1} are given by, 

xN=2 ( ) r,l,u,l;O z, q 

Let us discuss the range (2.18) further. It is a well-known fact that there are u(u
2
-I) 

irreducible unitary N = 2 characters at central charge c = 3(1 - ~). A priori, the 

range (2.18) when p = 1 allows () to be any integer. However the characters (2.38) 

satisfy two remarkable properties, namely, 

and 

x;:u~i+u(z, q) 

x:_=;.~,,o(z, q), 

(2.39) 

(2.40) 

so that the fundamental range (2.18) is effectively restricted to 1 ~ r, () ~ u- 1 and 

() ~ r. 

Note that we have adopted the conventions of (57]. They differ very slightly from 

the conventions in [41] and (42] by a factor z-c/6 . One has, 

X N=2( ) _ -c/6ChR,N=2( ) r,u;O z, q - Z O,r-0 z, q ' (2.41) 

where Ch:,..:_;2 (z, q) are the Ramond irreducible unitary N = 2 characters as they 

appear in (41]. This is easily established once the parameter () is relabelled j and 

T- (}is relabelled k, while c/Jr,l,u,l(zq-0, q) is relabelled f~~l-o(z, q). 

We stress once more that the periodicity property (2.39), which is intimately 

related to the fact the characters can be written in the form of products of theta 

functions and therefore have a standard behaviour under the modular group, does 

not survive when p is different from one. The main object of this chapter is to 
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study how this non-periodicity for higher values of the parameter p influences the 

behaviour of minimal non-unitary N = 2 characters under the modular group. 

2.4 Modular transformations of irreducible N = 2 

minimal characters 

A conformal field theory must satisfy several properties if it is to be of use in 

string theory. One of them is modular invariance. Let us review how modular 

invariance severely constrains the theory of closed bosonic strings. The vacuum-to­

vacuum amplitude for interacting, closed bosonic strings is given by the Polyakov 

path integral, 

Z = f (g5 )
2h-2 I VD Xll.Vgaf3e-S(X,g), a, f3 = 1, 2; fJ, = 0, .. , D- 1, (2.42) 

genus h=O 

where one sums over all two-dimensional surfaces swept by closed strings in inter­

action, organising them by their genus h, and weighting each term by the strength 

of the interaction, encoded in an appropriate power of the string coupling constant 

9s· The string action is given by, 

(2.43) 

and the 9af3 integral is over the intrinsic shapes of two-dimensional surfaces at fixed 

genus. The Xll. integral is over the different ways of embedding a two-dimensional 

surface in D-dimensional space-time. The vacuum-to-vacuum contribution of a free 

closed string evolving in a higher D-dimensional space corresponds to an infinitely 

long cylindrical worldsheet , and therefore, the leading term in (2.42) is a sphere 

(genus zero) and it gives a classical tree-level contribution to the amplitude. Any 

non-perturbative contributions like instantons for instance are missing from the 

Polyakov integral, and would typically be proportional to e-l/g'; or e-l/gs. We will 

not discuss them here. 

The Polyakov integral can be generalised to include external states by introducing 

vertex operators. It requires correlation functions to be well-defined on any closed 

two-dimensional surface, and different parametrisations of the same two-dimensional 
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surface should give the same answer. Surfaces of genus h 2:: 1 have a set of complex 

parameters called moduli, whose values are modified by large reparametrisations 

(i.e. not continuously connected to the identity) called modular transformations. 

These transformations do not change the shape of the surface, and any correlation 

function on the surface should therefore be invariant under them. The lowest genus 

surface with a modulus is the torus (h = 1) (actually, the torus has exactly one 

modulus traditionally called T, while a surface of genus h > 1 has 3(h- 1) moduli). 

The vacuum amplitude on the torus is called the partition function of the theory, 

and it describes the one-loop quantum correction of a free closed string. Its modular 

invariance is a very strong constraint on the theory. 

A two-dimensional torus is constructed by identifying points of the complex z­

plane in the following way, 

z z + w1, (2.44) 

with w1 and w2 the two periods, whose ratio is the modulus, i.e. wtfw2 = T. The 

most general basis to describe the above torus is actually (aw 1 +bw2 , cw1 +dw2 ) with 

a, b, e, dE Z and ad- be= 1, so that the modular transformations of the torus are 

aT + b ( a b ) ( T ) Fa b c d : T -----* d - , ''' eT+ e d 1 
a, b, e, dE Z, ad- be= 1. 

Since Fa,b,c,d = F-a,-b,-c,-d, the group of modular transformations on the torus is 

actually PSL(2, Z) rather than S£(2, Z), the former being the quotient of the latter 

by the discrete subgroup {I, -I}, with I the identity. The group has two generators 

conventionally denoted S and T, with matrix representation, 

and 

and obeying the relations S2 =I= (ST) 3
. 

The partition function on a torus with periods w2 (defining a cylinder) and w1 

(defining a time period for the time coordinate running along the cylinder) is, 

1 cyl+- L-cyl L plane c £-plane c Z(q) = Tr(ew2 '-1 w2 -1) = Tr(q o -24ij o -24), 
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where q = exp(27ri~~) and we used the fact that under a conformal transformation 

from the cylinder (with period w1 ) to the plane we have 

We recall that this construction gives a very useful relation between the path 

integral of a CFT on the torus and a trace over the Hilbert space. First, the 

propagation along the cylinder is governed by the Hamiltonian 

27r - c 
H = - (Lo + Lo - -), 

w1 12 
(2.45) 

and rotations around the cylider are implemented by the momentum operator 

27r - c 
P = - ( Lo - Lo - -), 

w1 12 
(2.46) 

where c = c. H and P are generating transformations along the time and space 

directions. Conformal invariance tells us that the Hilbert space splits as a sum of 

representations of the conformal algebra and affine Kac - Moody algebra. So ac­

cordingly in the presence of conformal symmetry alone, the torus partition function 

has the following form, 

Z(q) = LXh(q)Nh,TtX~t(iJ), (2.47) 
h,h 

where Xh are characters for the irreducible representations of the Virasoro algebra 

with highest weight of conformal dimension h. 

In the presence of a Kac - Moody symmetry, the partition is given by, 

(2.48) 

where H& are the zero modes of the Cartan generators. 

This trace is also over the full Hilbert space of states of the theory, and may be 

decomposed into a trace over irreducible modules. We have 

(2.49) 
>.,v 

where X>.(Q, pi) = TrH(qLo-#4 e21r:iL_; p;HiJ) are characters for the affine algebra g. So 

the partition function will be expressible as a bilinear combination of characters. 
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In a two-dimensional conformal field theory with bosons and fermions, one must 

take into account the number of topologically distinct ways to put a spinor field on 

a genus g surface, in other words, the number of spin structures on that surface. 

In superspace, a torus can be described as the (z, 0) plane ( e here is a Grassmann 

variable) modded out by a group of global superconformal transformations, 

(2.50) 

where TJ1 , TJ2 = ±1 define the four spin structures of the torus. The choice (TJ1 , TJ2 ) = 

( -1, -1) corresponds to the N eveu-Schwarz (NS) sector of the theory, while the 

choice (TJ1 , TJ2 ) = (1, -1) corresponds to the Ramond (R) sector. Furthermore, 

(TJ1 , TJ2 ) = ( -1, 1) is the super NS sector and (TJ1 , TJ2 ) = (1, 1) is the super R sec­

tor. The building blocks of the partition function are the characters of irreducible 

representations of the infinite dimensional symmetry algebra and they are of NS, 

R, super NS and super R types. Under the S transformation, which basically in­

terchanges the two periods w1 and w2 , the Ramond characters transform into super 

NS characters, while the NS characters transform into NS characters and the su­

per R transform into super R characters. In order to construct modular invariant 

partition functions, it is crucial to know how the characters transform under the 

modular group. The behaviour under T is straightforward while the S transform is 

usually much more complicated. In the case of unitary minimal N = 2 characters, 

this behaviour has been known for a long time because of the relevance of unitary 

representations in the description of N = 2 superstrings. We will however rederive 

the S transform of the Ramond unitary minimal characters as a warm up exercise 

before tackling the much more involved case of non unitary minimal characters, 

whose relevance in a physical context has been the object of constant debate over 

the last decade. Nevertheless, their study is a mathematical challenge we have taken 

up. 

In N = 2 superconformal symmetry, recall the characters are functions of the 

complex modulus T and of a complex angle v, and the modular transformations S 

and T act on these variables as, 

V 1 
S(v,T) = (-, --) 

T T 
T(v, T) = (v, T + 1). (2.51) 
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In the previous section, we described irreducible characters in the R sector. To 

obtain the NS characters, one allows the spectral flow parameter e to be half integer. 

Typically, the NS characters are given by, 

xN=2 ( ) 
rsup·B±l z,q 

' ) ' ' 2 

c c [1 1] N-2 1 z'F6q6 4'f2 X - . (zq'f-2 q), 
r,s,u,p/) ' (2.52) 

where we have used (2.22). We will choose to twist by e- ~ in the following, as 

comparison with [41) and [42) for p = 1 is straightforward in that case. The super­

characters are obtained by inserting the operator ( -1)F in the trace (2.20), with F 

the fermion number. This is equivalent to evaluate the R and NS characters at the 

variable -z or v + ~· Hence, the R and NS super-characters are respectively given 

by, 

xN=2 ( ) r,s,u,p;B -z, q and xN=2 ( ) 
rsup·B±l -z,q · 

' J J ' 2 
(2.53) 

Consider thus the unitary minimal characters (2.38) where q = e2
i1fT and z = e2i1rv, 

and introduce the function 

(2.54) 

so that 

N-2 2 . [29-r+1j 2. [9(r-9)] '!91 o(V, T) 
X - (v T) = -e l7r " v e l7r " 

7 
' C(v- OT v + (r - O)T uT) (2.55) 

r u·B ' ( )3 ' ' · ', 'T/ T 

Under S, we expect them to transform as a linear combination of super-NS characters 

of the type, 

N=2 ( 1 ) i7r[!+28-r] !+29-r £+29-r+1+8(r-8) '!91,0(1/ + ~ + ~' T) X 1 v +- T = -e 2 u z2 u qB 2u u 
r,u;B- 2 2' TJ( T )3 

1 1 1 1 
X C(v- (e- 2)T + 2' V- (e-r- 2)T + 2' UT). (2.56) 

Let us first calculate the S transform of C(v - OT, v - (0- r)T, uT). The theta 

functions (2.25) and the Dedekind functions transform as, 

V -1 
'!91 o( -, -) 

' T T 

V -1 
'!911( -, -) 

' T T 

1 
TJ( --) 

T 

. ! _ irrr i1rv2 -v T 1 
(-~T)2e 4 e r '!9 1,0(v- 2 + 2,T), 

( 
. ) ! 3irrr i1r v

2
- v 2i7rl/ .Q ( T 1 ) 

- -~T 2 e 4 e r e u 1,0 v + 2 + 2, T , 

-i( -iT)~ ei1r(v
2

;v +v)'!91,1 (v, T), 

(2.57) 
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and this leads to, 

J-i V -1 C(-,-,-) 
T T T 

n(-1)31J ('!..=.1!:. -1) 
'I T 1,1 T ) T (2.58) 

1) ( J!:. -1)'19 (V -1) 
1,o - T, --:r 1,o r' --:r 

· ( + ) rriT 2 · ~ T 1 T 1 
Te-m v J1. -2- m T C(u +- +- V+-+- T) 

,_,., 2 2' 2 2' ' (2.59) 

so that the S transform of C(v- (h, v + (r- O)T, uT) is, 

C( V+ e' V+ ( -r + 0)' -u) = 
T T T 

T -i7r2...+2i7r[-dft+L+r<"+BJ_Cv+BJ
2
lC(v+0 T 1 v+O-r T 1 T) -e 2u U 2U UT UT -- + - + - + - + - -

u u 2u 2 ' u 2u 2 ' u ' 
(2.60) 

and it follows that the S transform of (2.55) is, 

X N=2(v 1) _ i -7ri2v(I-u)+28-r !!!.(1_1)v(v- 1) i"T(3_1)1J1,o(v + ~ + ~' T) - -- _ -e u eT " e 4 u 
r,u;B T' T U TJ(T)3 

C( 
V+{) T 1 V+{)- r T 1 T) 

X --+-+-, +-+-,-. 
u 2u 2 u 2u 2 u 

(2.61) 

If we want to interpret the right hand side as a combination of N = 2 characters, 

the C function should have UT as its third argument instead of ~· Note one can 

write , 

u-1 u-1 
T 

C(a,/3,-) 
u 

2:: 2:: e2i7r[bn-a/3]+i7r[a+b]+ 2rriuabT 

a=O b=O 

u+1 u+1 
xC(ua + Ta + -

2
-, u/3- Tb + -

2
-, uT) 

u-1 u-1 

2:2:J(a,b), (2.62) 
a=O b=O 

where 

u-1 u-1 u-1 r u-1 u-1 

LLf(a,b) = LLf(a,r- a)+ L L f(a,u+r- a). (2.63) 
r=1 a=O r=1 a=r+1 

We recall that (2. 64) only is true for the specific function given in (2. 63). Rela-

belling r ---+ u - T and a ---+ u - a, we arrive at , 

u-1 u-1 u-1 1t u-1 r-1 

LLf(a,b) = LLf(u-a,a-r)+ LLf(1t-a,a+u-r), (2.64) 
r=l a=r r=1 a=1 
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and finally, 

u-1 u-1 u-1 u 

LLf(a,b) = LLf(-a,a-r). (2.65) 
a=O b=O r=l a=l 

Let us now apply this trick to the function Cas it appears in (2.61), and consider 

and j3 

in (2.62). We find, 

v+O T 1 --+-+-
u 2u 2 

v+O-r T 1 
----+-+-

u 2u 2 

X
N=2(V 1) _ i -i1T2v(l-u)+28-r i1L( 1_l)v(v-l) ;,.,.(3_1)'191,0(1/ + ~ + ~' T) - -- _ -e u e.,. u e 4 ,. 
r,u;O T' T U 7J( T )3 

u-1 u 

x LLf(-a,a- r1
), 

r'=l a=1 

where 

u-1 u u-1 u L L !(-a, a- r1) = L L e~[(a-r')(20+2v+T)+a(20+2v-2r+T)-2a(a-r')T] 
r'=1 a=1 r'=1 a=1 

(2.66) 

(2.67) 

x C(v- (a- ~)T + ~' v- (a- r
1

- ~)T +~'uT), (2.68) 

smce 

u+1 1 u+1 
C(ua- Ta + -

2
-, uj3- T(a- r) + -

2
-, uT)= 

1 1 I 1 1 
C(v- (a- 2)T + 2 + () + u, v- (a- r - 2)T + 2 + ()- r + u, uT)= 

1 1 I 1 1 
C(v- (a- 2)T + 2, v- (a- r - 2)T + 2, uT). (2.69) 

Now compare with (2.56). Put()= a, r = r1 in that formula to rewrite, 

(2. 70) 
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Finally, we can exploit the isomorphisms (2.39) and (2.40) to express the above 

modular transformation property in a form directly comparable with the literature 

[41] and [42]. Changing the summation 2::~~-==\ 2::~= 1 in (2.70) by, 

(2.71) 
r'=1 a=O r'=1 a=O a=r' 

and relabelling r' = u-r", a = a'-r" +u in the second term, one obtains the following 

S transformation behaviour for the unitary N = 2 superconformal characters, 

X N=2(l/ 1) _ 2 i7r(1-.£)("
2
-"+v+!) - -- _ -e u , 2 

r,u;ll T' T U 

Lu-
1 

rL'-
1 

!.!c(2ll-r-1)(2a-r'-1) · 1frr'xN=2 ( 1 ) e u s1n -- , . 1 v + -, T . 
U r ,u,a-2 2 

r'=l a=O 

(2.72) 

The derivation of how non-unitary minimal N = 2 characters (2.22) transform 

under S is more involved, and as we stressed before, can be traced to the fact that 

these characters are not periodic under the spectral flow (2.30) (2.31). We will --use a result by [57], namely, that the affine sl(2) characters can be branched into 

N = 2 characters. This is a consequence of the equivalence between categories of --representations of the sl(2) and N = 2 algebras [60]. --The affine sl(2) algebra is defined by the commutation relations 

[J~, 1;] = ±J~+n' [J~, J~] = ~mc5m+n,O 
[J~, J;;] = 2J~+n + kmc5m+n,o, 

and is (in particular) isomorphic under the spectral flow transformations, 

(2.73) 

(2.74) 

where the twist () E Z. Note that under the spectral flow, the Sugawara energy­

momentum tensor transforms as, 

I 3 k 2 
Ln = Ln + ()Jn + 4() c5n,O· (2.75) 

The character of an irreducible highest weight state representation V is formally 

given by, 

(2.76) 
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where c = k~2 is the central charge of the associated Virasoro algebra. The variables 

z, q are complex, with jqj < 1. 

-----We need to consider here the branching of admissible sl(2) characters at level 

k = :!! - 2, with :!! > 0 and u and p coprime. These characters have been thoroughly p p 

studied [61,62]. The untwisted characters are labelled by two integers rand sin the 

ranges 1 :::; r :::; u- 1 and 1 :::; s:::; p, and given by, 
1 I 

x;l(2) (z ) = eb+,up(z"P,q)- eb_,up(z"P,q) 
r,s,u,p ' q e ( ) e ( ) 1,2 z, q - -1,2 z, q 

(2.77) 

with b± = ±pr- (s- 1)u and the generalised theta functions given by Om,£(z, q) = 

LnEZ q£(n+¥l )2 
z£(n+¥Z). Note the relation 

x;l(2) (z ) = - x;l(2) (z ) r,s-p,u,p 'q u-r,s,u,p ' q for 1 :::; s:::; p 

which will be extensively used in what follows. 

Equivalently, in view of the definitions (2.25), one has, 

X
;l(2) ( ) !:.=..!.-(s-1).!!.. ~-!:(s-1)+u(s-1)2 -~ 
r,s,u,p z, q = z 2 2p q 4u 2 4p 4 

?J1,o(zuqp(r-u)-(s-1)u' q2up) _ z-T qr(s-1)?J1,o(zuq-p(r+u)-(s-1)u' q2up) 

?J1,1(z,q) 

-----

(2.78) 

(2.79) 

The branching of admissible sl(2) into N = 2 characters occurs at a common 

central charge value of c = k~2 = 3(1 - ~). It is given, in the range 1 :::; r :::; u- 1 

and 1 - p :::; s :::; p, by, 

X;l(2) (z q)?J1 o(zy q) = ~ XN=2 . (y q) y~(j-O)zj-Oq~(j-1.1+!) 2 

r,s,u,p ' , ' ~ r,s,u,p,B ' ' 
I.IEZ 

where the quantum number j is actually the sl(2) isospin, 

. r-1 s-1u 
J = -2-- -2-p' 

and the twisted N = 2 characters have been defined earlier (2.22). 

(2.80) 

(2.81) 

The above sumrule provides us with an integral representation of the N 2 

non-unitary minimal characters. We write, for n E Z, 

1 1 d n-jxsl(2) ( )-0 ( ) --.- ZZ rsup z,q U1Q zy,q -
227r c ' ' ' ' 

~ XN=2 . (y q)y~(j-O)q~(j-1.1+!)2 X ~ 1 dzzn·-o = 
~ r,s,u,p,O ' 2 I.IEZ 1-7r C 

xN=2 ( ) ~(j-n-1) ~(j-n-!)2 r,s,u,p;n+1 y, q Y q · (2.82) 
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We shall derive the S transform of untwisted non-unitary minimal N = 2 charac­

ters for simplicity, that is we consider the above integral representation for n = -1. 

Setting q = e2in, z = e 2inv and y = e 2inp,, we obtain, 

xN=2 (11,T) =e- 4~"p,pje- 2:iTp(j+~)2 1IdVe-2invjx;l(2} (v T)1Jio(u+v T). (2.83) 
r,s,u,p ~-'""' r,s,u,p ' , J-N ' 

0 

Under S, these characters behave as, 

X N=2 (!!_ -1) = -;:;p,pj+~;;PU+!)21Id -2nivjX;l(2} ( -1).o (!!_ -1) 
r s up l e Ve r sup V, VI 0 + V, 
''' T T 0 ' '' T 'T T 

_ _ 4i"p,pj+2i"p(j+l)211Td _2i"vjX;r--(2) (V -1).o (p+v -1) ( ) _ e uT UT 2 - ve T -,- vi 0 --,- , 2.84 
T O r,s,u,p T T ' T T 

where we have changed variable from v to VT in the second integral. We now use the 

well-known modular transformations of generalised theta functions to obtain those 

of affine sl(2) admissible characters. In particular, the S modular transformation of 

the generalised theta functions is [63], 

(2.85) 

---and leads to the following S transform of sl(2) admissible characters, 

X -;r--(2) (V -1) - 1 f!i 1Tiv
2 

(_!!_-I) - _ _ -e T 2p 
r,s,u,p T' T - 2 up 

u-I P 1 -

L L in[r(s'-I)+r'(s-I)-(s-I)(s'-I).!!.J . p7rrr xsl(2) ( ) 
X e P Sill-- r' s' uP V, T . u , '' 

(2.86) 
r'=I s'=I-p 

We also use (2.57) to write, 

{) (
J.L+V 1) ( . )! 3irrT in(p+v)2-(p+v) 2in(p,+v).a ( T 1 ) (2.87) 

· I 0 -- -- =- -zT 2e 4 e T e vi 0 u + v +- +- T . 
' T ' T ' f"' 2 2' 

The expression (2.84) becomes, 

p 

2: 
r'=I s'=I-p 

I 
in[r(s'-I)+r'(s-1)-(s-l)(s'-I).!!.] . p1rrr e v sm--

u 

--------------------------- -------
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Now use the branching relation (2.80) as well as (2.52) to rewrite, 

where 
.1 (r1

- 1) 
J = 2 

(s1
- 1) u 
2 p 

(2.89) 

(2.90) 

Inserting the last relation in (2.88), and completing the squares in the v-integral, 

we obtain, 

X N=2 (J-L -1) _ 1~Up( .)l i7r(l-lr.)(~+tL+l)+i7rs - - -- - -z 2e u r 2 
r,s,u,p 7' 7 U 7 

u-1 P 1 

X ~ ~ ~ e7(29-r'-1)(-r-l)+i1rs' sin p7rrr Xflj=,2 . _l (fJ + ~' 7) 
~ ~ ~ U r ,s ,u,p,O 2 2 
r'=l s'=l-p 9EZ 

L(u) ( 7 2J-L-r s-1) 
X -2p9+p(r'+l)-u(s'-1) 2up' 2u + ~ (2.91) 

where the integral Lhm) ( 7, 17) is defined as 

(2.92) 

This integral is defined by analytic continuation from the real axis, as the imaginary 

part of 7 is positive. For t E Jl4 and y E IR, define the function 

!
y+(n+m)t 2 

f~m)(t,y)= dxe-11"T. 
y+nt 

(2.93) 

Continuing off the real axis, we have 

(2.94) 

It is at this stage of the derivation that the complications clue to the non­

periodicity of N = 2 non-unitary characters under the spectral flow emerge. Our 

first step is to exploit properties of the N = 2 characters which derive from the fact 

they can be expressed in terms of generalised Appell functions whose study goes 

beyond the scope of this thesis. However, the following properties can be checked 

directly from the expressions presented in (2. 23). 
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For s' - s > 0, one has, 

N=2 ( 1) ( )s'-sxN=2 ( 1) 
Xr' s' up ·O-l fL + -2' T = -1 r' sup ·O-l fL + -2' T 

' ' l , 2 ' ' ' " 2 

s'-s-1 

"'"' -a -( Lo)aA ( ) ~ Y q 2 s'-1-a,r'+l,u,p T ' (2.95) 
a=O 

while for s' - s < 0, one has, 

xN=2 ( + ~ T) _ (-1)s'-sxN=2 ( + ~ T) 
r's'up·O-l fL 2' - r'sup·O-l fL 2' 

' ' ' n 2 ' ' ' " 2 

+ . _..£.._~+1 fll,o(J.L + ~ + i' T) i1r(s'-l!.(r1 -20)) _l+s'-l!.(r'-20) 
2q 24 4 2 e " y 2 " x 

rp(q) 

q- ~ (1-0)2 +( &-O)(s'-1- ~(r' -1)) 

-1 

L Y-aq-( &-O)a As'-1-a,r'+l,u,p( T), (2.96) 
a=s'-s 

where we have defined the function 

A (T) = f) (q-us+p(r-u) q2up) _ qrsf) (q-us-p(r+u) q2up). 
s,r+l,u,p 1,0 , 1,0 , (2.97) 

Note for future reference that 

As,l,u,p(T) = As,u+1,u,p(T) = 0. (2.98) 

The formula (2.91) therefore becomes 

xN=2 (!!. -1) = w(ll + e(l) 
r,s,u,p T' T (2.99) 

with 

(1) 1 f{iup . 1 . c(~) . c c w =- -(-2)2e11r3 T em6y6 
1l T 

u-1 1 

L L !EI!.(20-r'-1)(-r-l) · p1rrr vN=2 ( + 1 ) x e " s1n --./\. , .0 1 JL -, T 
U r,.,s,u,p,, -2 2 

r'=l OEZ 

~ (u) T 2j.L - r s - 1 
X ~ L-2p0+p(r'+l)-u(s'-l)(2up' 2u + 2P), (2.100) 

s'=l-p 
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and 

8 (1) 1 ffiup( .)! i7r£("
2
-l') i1rs £+! _s___~+! fJ1 o(fl + ~ + ~' T) =- - -z 2e 3 T e y6 2q 24 4 2 -'----=---=----

u T 1J3(q) 
u-1 
"'"'"'"' -~(28-r'-1)r _E.(r'-28) -£(1-8)2-£(l-8)(r'-1) . p1rrr' x ~~e " y " q " "2 sm--

u 
r'=1 8EZ 

s'-s-1 s-1 -1 

2:-L: "'"' ] s'-1-a (l-8)(s'-1-a)A ( ) 
~ Y q 2 s1 -1-a,r'+1,u,p T 

s'=s+1 a=O s'=1-p a=s'-s 

L(u) ( T 2p- r s- 1) ( ) 
X -2p8+p(r'+1)-u(s'-1) 2up' 2u + ~ . 2.101 

Let us first rearrange 8(1) by combining the summation on s' and a. Call­

ing a' = a - s', we see that the s' dependence disappears from all factors but 

L~1p8+p(r'+ 1)-u(s'- 1 ). Note that 

p -s-1 -p p s-1 -s'-1 p-2 -a'-1 

I: I:= I: I: and I:I:=I:I:· 
s'=s+1 a'=-s' a'=-s-1 s'=-a' s'=l-p a'=-s a'=-s s'=1-p 

Moreover, as a direct consequence of the definition (2.92), one has, 

p 
"'"' L(u) _!_ 2t.t- r s- 1 _ 
~ -2p8+p(r'+l)-u(s'-1)(2up' 2u + 2p ) -

s'=-a' 

(2.102) 

(u[a'+l+p)) T 2p- r S- 1 
L-2p8+p(r'+1)+u(1-p)(2up' 2u + ~ ), (2.103) 

-a'-1 
"'"' (u) T 2t.t - r s - 1 
~ L-2p8+p(r'+l)-u(s'-1)(2up' 2u + ~) = 

s'=1-p 

(-u[a'+1-p)) ( T 2t.t- r S- 1) 
L-2p8+p(r'+1)+u(2+a') 2up' 2u + ~ ' 

so that the expression for 8( 1) becomes, 

8 (1) 1 ffiup( .)! i1r£(~) i1rs £+! _s___~+! fJ1,o(JJ + ~ + ~' T) =- - -z 2e 3 T e y6 2q 24 4 2 -----=---=----
u T 1]3 (q) 

u-1 1 

"'"'"'"' -~(28-r'-l)r -E(r'-28) _.e_(l-8)2_£(!-8)(r'-l) . p1rrr x ~ ~ e " y " q " " 2 sm --
u 

r'=1 8EZ 
-p 

[ 
"'"' L(u[a'+l+p]) T 2t.t- r s- 1 

X ~ -2p8+p(r'+I)+u(l-p)(2up' 21l + ~ )-
a'=-s-l 

p-2 
"'"'L(-u[a'+l-p]) ( T 2t.t-r s-1)] 
~ -2p8+p(r'+l)+u(2+a') 2up' 2·u + ~ 

a'=-s 

-a'-l -(~-8)(a'+1)A ( ) 
X Y q -a'-l,r'+l,u,p T · 

(2.104) 

(2.105) 
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A simpler expression can be provided, where the sum in the square bracket is re­

placed by a sum running from s + 1 to s + 2p. To see this, introduce the relabelling 

a" = a' - 2p in the second sum of the square bracket and use the easily derived 

property, 

A ( ) _ -upj2 -u(a"+l)j-pr'jA ( ) 
-a11 -l-2pj,r'+l,u,p T - q q -a"-l,r'+l,u,p T , j E Z (2.106) 

for j = 1. This allows to check that the relabelling a" = a' - 2p just amounts to a 

shift of -u in the sum over (} E Z. Finally, since 

L (-au) ( ) _ L(au) ( ) 
au+N T, TJ - - N T, TJ ' (2.107) 

we rewrite 

L(-u[a"+l+p]) _ -L(u[a"+l+p]) 
-2p0+p(r'+l)-u(p-l)+u(a11 +l+p) - -2p0+p(r'+l)-u(p-l) · (2.108) 

This enables us to merge the two sums in the square bracket of (2.105) into a sum 

.z::::::t~+ 1 . The term a" = p + 1 appears to be missing in (2.105), but this is simply 

due to the fact that Ap,r'+l,u,p(r) = 0. Our simplest expression for 8(1) is therefore, 

8 (1) 1 ~up( .) ! i1r"-(~) i1r(s+l'.r) _E. L~ 13I,o(J.L + ~ + ~' r) =- - -'/, 2e 3 T e U y uq8 4 --~~-;----=---

u T TJ3(q) 

u-1 s+2p 
"" "" "" (u[-a"+l+p]) T 2p- T S- 1 

X L..t L..t L..tL2pO+p(r'+l)+u(l-p)( 2U ' 2U + 2P)Aa"-1,r'+l,u,p(r) 
r'=1 a"=s+1 OEZ p 

I 

X e~(20+r')rya"-~(20+r')q-~(!+0)2+(!+0)(a"-l-~r') sin p7rrr . (2.109) 
u 

We now proceed and discuss the term w(l) in (2.99). We rearrange the sum on 

(} E Z as LnEZ 2:::::~:~ where (} = un- /3 in (2.100) and eliminate the n-dependence 

of x:;,~~,p;un-{3-~ (ft + ~' r) by using the following non-quasi periodicity properties, 

vN=2 ( 1 ) V ( 1 ) · i1rs ;)__up ! 
./\ I . _a_.! fl + -, T = ./\r' s u p·-R_.! f-l + -, T - ze qs 4 y2 r ,s,u,p,un JJ 2 2 , , , , JJ 2 2 

(} ( 1 7 ) 2pn-1 
1,0 f-l + 2 + 2• 7 "" -i7r1'.(2f3+r') s+£-P.(2f3+r') _P.(!+f3) 2 

X L..te u y u q u2 

TJ(T)3 
f=O 

X q(~+f3)(sH-~r') As+f,r'+1,u,p(T) (2.110) 

The above formula is valid for n > 1. For n ::; -1, just replace 2:::::~~~-l by 

'""'-[ w "t ,T,(1) 
- L.-£=2pn. e rewn e 'I' as, 

w(ll = wC 2l + 8c2J, (2.111) 
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with 

{2) 1 ~up( .)! i11"£(~) i11"£ £ W = - - -z ze 3 .,. e 6y6 
U T 

tt-1 tt-1 1 

L L -~{2{3+r1 +1)(-r-1) · p1rrr xN=2 ( 1 ) x e " s1n -- 1 . f3 1 f1 + -, T U r ,s,u,p,- -2 2 
r 1=1 /3=0 

p 

[
"'"""' "'"""' L(u) ( T 211- r s -1)] 

X ~ ~ -2p{un-/3)+p(r1+1)-u(s1-1) 2up' 2u + ~ 
nEZ s1=1-p 

tt-1 tt-1 1 

1 i11"£(~) i11"£ £ L L -~{2/3+r1 +1){-r-1) . p7rrr xN=2 ( 1 ) = -e 3 .,. e 6y6 e " s1n -- I . 13 1 11 +- T 
U U r ,s,tt,p,- -2 2' 

r 1=1 /3=0 

(2.112) 

and 

( 
1 ) tt-1 tt-1 

8 {2) 1 2up ( ")! i11"£(~) i11"S £+! ~-up '/91,0 f1 + 2 + ~' T X "'"""'"'"""' = - - -z ze 3 .,. e y6 2qs 4 ----=--=--- ~ ~ 
U T ry3(q) 

r 1=1 /3=0 
oo 2pn-1 -1 -1 p 

["'"""' "'"""' "'"""' "'"""'] "'"""' L(u) ( T 211- r s- 1) ~ ~ - ~ ~ ~ -2p(un-f3)+p(r1+l)-u(s1 -1) 2up' 2u + ~ 
n=1 1!=0 n=-oo e=2pn s1=1-p 

. I 

A ( ) !..'a'.(2/3+r1+1)r s+f-1'.(2f3+r1
) -1'.( !+(3)2 ( !+f3)(s+f-1'.r1

) • p1rrr 
X s+frl+lupTeu y " q u2 qz "Slll--. ' ', u 

(2.113) 

The above expression for 8(2) can be reorganised in such a way it looks similar 

to 8{1). First set f = 2pj +a so that L:~~~- 1 
= I:;::~ L:~~-;;1 (when n 2 1) and 

L:i~2pn = L:j~n L:~~-;;1 (when n::; -1) . Then relabel a= a" -1- sand use (2.106) 

together with the result, 

p 
"'"""' (u) T 211 - r s - 1 
~ L-2p(un-f3)+p(r1 +1)-u(s1 -1)(2up' 2u + ~) 

s1=1-p 

_ L(2pu) (_!__ 211- r s -1) ( 4) 
- -2p(un-f3)+p(r1+1)+u(1-p) 2up' 2u + 2p 2.11 
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to write, 

.a ( 1 T ) u-1 u-1 
8(2) 1 ( ·)! i1r£(~) i1rs £+! ~-.'!£ v1,0 J-l + 2 + 2' T ""'""' = - - z 2 e 3 T e y 6 2 q s 4 ___ -,--=--,------=..._ L; L; 

U T TJ3(q) r'=1 {3=0 

oo n-1 -1 -1 

[""'""' _ ""' ""'J L(2up) (_!__ 2p,- r s- 1) 
L._; L._; L L._; -2p(u[n-j]-({3-uj))+p(r'+1)-u(1-p) 2up' 2u + 2p 
n=l j=O n=-oo j=n 

s+2p 
""' A ( ) ~(2[{3-uj]+r'+1)r a"-1-£(2[{3-uj)-r') -R( !+[f3-uj))2 

X L a11 -1,r'+1,u,p T e " y " q " 2 

a"=s+1 

Replace 

and 

Also note that, 

I 

X q(~+[f3-uj])(a"- 1 -~r') sin p1rrr . (2.115) 
u 

oo n-1 oo oo oo oo 

LL--7L I: =I: I: (2.116) 
n=1 j=O j=O n=j+1 j=O n 1=n-j=1 

-1 -1 -oo -oo -oo -oo 

LL---72:2:=2: I: (2.117) 
n=-oo j=n j=-1 n=j j=-1 n'=n-j=O 

~ L(2up) _!__ 2p,- r s- 1 _ 
L -2p(un'-f3+uj)+p(r'+1)-u(1-p)(2up' 2u + 2p ) -
n'=1 

and 

1
2'2-r +';l+r(-2p(-f3+uj)+p(r'+1)+u(1-p)) . o 

u p up 2urupp-

e T dp = 
-oo 

T 2p,- r s- 1 
L~p({3-uj)+p(r'+1)-u(l-p)(2up' 2u + ~) (2.118) 

~ L(2up) _!__ 2p,- r S- 1 _ 
6 -2p(un'-f3+uj)+p(r'+l)-u(1-p)(2up' 2u + 2p ) -
n'=O 

loo 2irrupe2 

e T dp = 
'2;:-r + •;;/ + 2:P ( -2p( -f3+uj)+p(r' +l)+u(l-p)) 

T 2p,- r s- 1 
L+ (- + -) (2 119) 

2p(f3-uj)+p(r'+l)-u(1-p) 2up' 2u 2p ' · 

where we have defined 

(2.120) 

We have thus arrived at a rewriting of 8(2
) whose (3 and j dependence is through 

the combination (3 - uj. Since the domains of summation are 2.:;:,0 l:p:~ and 
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I:j~ 1 I:fi:;~, we can relabel f3- uj = e and consider the sums I:~:~oo and I::u 

respectively. We therefore write, 

8 (2) 1 ffjup( .)! i1r£(~) i1r(s+Rr) _E. L~ 191,o(J-L +! + ~' r) =- -- -z 2e 3 7" e u y uqs 4 ----::-:"-:--~-

u T 173(q) 
u-1 u-1 oo 

"""' [ """' L- """' L + J ( r 2JL - r s - 1) 
X L L 2p0+p(r'+1)+u(1-p)- L 2p9+p(r'+1)+u(1-p) 2up' 2u + ~ 

r'=1 0=-oo O=u 

s+2p 
"""' A ( ) ~(20+r')r a"-R(20+r') -R(!+0)2 

X L a"-1,r'+l,u,p T e " y " q " 2 

a"=s+1 
I 

(!+O)(a"-1-p_r') · p1rrr x q 2 " sm--. 
u 

(2.121) 

This latest rewriting of 8(2) allows us to effortlessly add it to 8(1) as given in 

(2.109). We obtain, 

8 (1) 8(2) 1 ffjup( .)! i1r£(~) i1r(s+.!'.r) _E. L~ fJl,o(J.L +! + ~' r) + - = - -- -z 2 e 3 .,. e " y "qs 4 ----::-;=-,---=--
u T 173 (q) 

u-1 s+2p u-1 oo 2 1 

XL L [ L L;-pO+p(r'+l)-u(a"-2)-L L~p9+p(r'+1)-u(a"-2)] (2:p' J.L2: r + s; ) 
r1=1 a"=s+1 0=-oo O=u 

A ( ) ~(20+r')r a"-R(20+r') -R( !+0)2 
X a"-1,r'+1,u,p T e u y u q u 2 

I 
(!+O)(a"-1-Rr') · p1rrr x q 2 u sm--, 

u 
(2.122) 

or again, relabelling a" =a+ 1 + 2p and e = 01 + u, 

8(1) + 8 (2) 1 ffjup( .)! i1r£(~) i1r(s+Rr) _E. .L~ fJ1,o(J.L +! + ~' r) - =- - -z 2e 3 T e U y uqB 4 ---~-,--~-

'U T ry3(q) 
u-1 s-1 -1 oo 
"""' """' [ ~ ~ J r 2JL - r s - 1 X~ L._. ~ L2pO'+p(r'+1)-u(a-1)- L L~pO'+p(r'+l)-u(a-1) (2up' 2u +~) 
r'=1 a=s-2p 0'=-oo 0'=0 

A ( ) ~(20'+r')r a+l-.!'.(20'+r') _1'.(!+0') 2 

X a,r'+1,u,p T e u y u q u 2 

I 

(!+O')(a-Rr') . p1rrr x q 2 " sm--. 
u 

(2.123) 

Going back to (2.99) with \f/(1) given by (2.111), and using (2.112) and (2.123), 

we can write the S-transform of the non-unitary minimal N = 2 characters at central 
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charge c = 3(1 - ~) as, 

xN=2 (!:!_ -1) = wC2) + 8(1) + 8(2) 
r,s,u,p T' T 

u-1 u-1 1 

1 in£(~) in£ £ L L _i!cE(2,B+r'+l)(-r-1) . p7rrr xN=2 ( 1 ) = - e 3 r e 6 y 6 e u s1n -- , . 1 J.t + - T 
U U r ,s,u,p,-,B-2 2' 

r'=1 ,8=0 

+ 8(1) + 8(2) (2.124) 

It is very interesting to analyse the unitary case from the above formula to get a 

feeling of how the generalisation to higher values of p complicates matters. When 

the parameter p is one, the 8(1) + 8(2) contribution vanishes. We are thus left 

with, 

xN=2 (!:!_ -1)-
r,s,u,1 T' T -

u-1 u-1 1 

_!_ei1T%(1'
2

r-l')ein~y~ """"'""""' e-~(2,B+r'+ 1 )(-r- 1 ) sin 7rrr x!>j=2 ·- _! (J.t + ~' T) (2.125) 
U L.....t L.....t U r ,s,u,1, ,B 2 2 

r'=1 ,8=0 

for 1 ::; r ::; u- 1 and 0 ::; s ::; 1. In view of (2.35), it is sufficient to consider s = 1 

say. In order to make contact with the formula derived earlier (2.72), write 

u-1 u-1 u-1 r'-1 u-1 

2:2:=2:(2:+2:) (2.126) 
r'=l ,8=0 r'=1 ,8=0 f3=r' 

in (2.125) and relabel r 1 = u- r", (3 = (31
- r" + u in the second term. After using 

the properties (2.39) and (2.40), we exactly obtain the result (2.72). 

2.5 Summary 

In this chapter we looked at some basic properties of the N = 2 superconformal 

algebra. We showed that when the spectral flow is applied to unitary characters, it 

generates a finite number of characters. 

vVe also discussed admissible (non - unitary) characters which were not quasi -

periodic under the spectral flow. The N = 2 characters can not be expressed in 

terns of e - functions. 

We have found expressions for the modular S transformation of N = 2 character 

at c = 3(1 - ~). This has allowed us to calculate all modular transformations for 

the cases p = 1 and pi- 1. 



Chapter 3 

---The affine superalgebra sl(2 ll; C) 

3.1 Introduction 

As mentioned in the introduction, the affine superalgebra ;[(2 ll; C) is relevant in 

a variety of physical contexts, and the ultimate purpose of this chapter is to present 

character formulas which encode the content of a particular class of highest weight 

irreducible representations which emerge when the level of ;[(2 ll; C) is of the form 

k = ~ - 1 with p, u two coprime positive integers. The irreducible highest weight 

representations of affine (super )algebras at level k = ~ - h v where h v is the dual 

Coxeter number are called admissible [64] and [65]. We will not derive the character 

formulas here, but introduce the necessary background to provide a good feeling of 

their mathematical meaning. 

In section 2, we give a brief description of the root and weight lattices of the 

;;,(2 ll; C) algebra and identify a variety of automorphisms of this algebra. These 

are relevant when studying the structure of modules, as in general, applying algebra 

automorphisms to modules gives non-isomorphic modules. Furthermore, the auto­

morphisms play an important role in the analysis of Verma module singular vectors 

and their embedding structure. They are therefore relevant in the construction of 

character formulas. 

Most of this chapter is based on published works, except for the character for-

54 
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mulas in section 3, which are written here for the first time for admissible represen­

tations at level k = ~ - 1 with p different from one . 

..-... 
3.2 The affine superalgebra sl(2 ll; CC) 

The affine superalgebra ;i(2 I 1; C) is generated by eight currents of conformal 

dimension one. The currents J±(z), J3(z) and U(z) are bosonic and generate the 

-----even affine subalgebra sl(2) x u(1) while the remaining currents are fermionic and 

are labelled j± ( z), j±' ( z). If we assume the eight currents satisfy periodic boundary 

conditions of the type, 

(3.1) 

so that their Laurent expansion is given by, 

J(z) = L Jnz-n-1' (3.2) 
nEZ 

their non vanishing (anti)commutation relations are, 

[J~,J;] 2J!+n + kmbm+n,o, [J!, J!] ±J~+n' 
[J~,j'~] ±'± Jm+n' [J~,j:f] 

.,± 
=fJ m+n' 

[21!, j'~] ±',± 
J m+n' [2J!,j;] ±'± Jm+n' 

[2Um,J'~] ±''± J m+n' [2Um,J~] ·± 
=fJm+n' 

[J!, J~] ~mbm+n,o, [Um,Un] -~mbm+n,o, (3.3) 

[J'~, j'~] + Um+n - J!+n - mkbm+n,O 

[ ·+ . l Jm,J; + Um+n + J!+n + mkbm+n,O 

[ ·f+ ·+] J m,Jn + Jr~+n' [J'~,j;]+ J~+n· 

The zero-mode generators close among themselves to form the basic, classical sim­

ple complex superalgebra. sl(2/1) in the classification of Kac. Its Ca.rtan subalgebra 

is generated by Jg and U0 , and the two-dimensional root diagram may be repre­

sented in Minkowski space with the fermionic roots along the light-cone directions, 

as illustrated in Fig.3.1. 

The step operators corresponding to the roots o:1 , o:2 and ( o:1 + o:2 ) are j+', j+ 

and J+ respectively. A particularity of superalgebras is that there exist several 
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j - j +' 
~ :t 

' / 

' / 

' / 

' / 

' / 

' / 

J - ' / J + 
/ ' / ' / ' / ' / ' / ' 

' 
/ ' 

J 
-j{ ~ j + 

Figure 3.1: The s£(211) root diagram. 

choices of simple roots which are not related by a Weyl transformation. The simple 

roots are a useful subset of roots because all positive (resp. negative) roots can be 

written as linear combinations of these simple roots with positive (resp. negative) 

coefficients. Each independent set of simple roots contains as many roots as the rank 

of the algebra (in our case, the rank is two since the maximal number of commuting 

generators is two). In [37], the simple roots were taken to be the fermionic roots o:1 

and o:2 , with the scalar products, 

(3.4) 

These roots are therefore isotropic (zero norm) and the notion of fundamental weight 

as introduced in the context of affine Lie algebras does not have a straightforward 

generalisation. We will come back later in this section on a description of the affine 

root and weight systems, as these are important when discussing highest weight 

states and singular vectors within Verma modules, and therefore when describing 

the characters of irreducible representations of the affine Lie superalgebra. 

Here we choose as simple roots the bosonic root a1 and the fermionic root a2 -a1 . 

They are related to the previous set by, 

(3.5) 

The eigenvalue k of the central element k which appears in the commutation 

relations (3.3) is the level of the algebra. A priori, it can be any complex number, 

but we will mainly discuss here a particular class of levels of the form, 

p 
k =- -1, 

'U 
with p, u cop rime and p, u E N. (3.6) 
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Note that the Sugawara energy-momentum tensor is given by, 

and its Laurent modes generate a Virasoro algebra with zero central charge. This 

very particular value of central charge is related to the fact that ;L(2 I 1; C) has 

an equal number of even and odd generators. Indeed, in the context of affine su­

peralgebras, the central charge associated to the Sugawara tensor is given by the 

formula, 
k sdim g 

C= 
k+hV ' 

(3.8) 

with sdim giving the superdimension of the algebra g, that is the difference between 

the numbers of even (bosonic) and odd (fermionic) generators. It is quite remarkable 

that the central charge vanishes irrespectively of the value of the level. 

The affine ;L(2 I 1; C) algebra possesses several automorphisms. We have not 

studied them all in details, but we would like to list those we are aware of. One 

of them is the spectral flow and will become relevant when we discuss the modular 
~ 

transformations of sl(2 I 1; C) characters in Chapter 4. The first automorphism is 

given by, 

·+I 
Jm t--+ JrrP 

·+ ._1 

Jm t--+ Jm' J~ t--+ J~, 

a: Jm t--+ ·+I 
Jm' j~ 

I ·+ t--+ Jm, J~ t--+ J~, 

Un t--+ Un J~ t--+ -J~. (3.9) 

The (3 automorphism is, 

·+ ·+I I 
J~ t--+ J~, Jm t--+ Jm' j~ t--+-j~, 

(3: ·+I ·+ i~. 
I 

t--+ -j~. Jm t--+ Jm, 

Un t--+ -Un J~ t--+ J1~. (3.10) 

The transformation, 

Uo : ·+I ·+I 
Jm t--+ lm-0' 

j~ (3.11) 
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is an automorphism of ;t(2 11; <C) whenever () E Z. If() E Z + ~' the transformation 

U0 is a mapping into an isomorphic algebra. We call Uo a spectral flow . Note 

that u±l maps integer moded fermionic (odd) generators into half-integer moded 
2 

ones, and we continue to refer to the sector of the algebra with half-integer moded 

fermionic generators as being the 'Neveu-Schwarz' sector. However, it should be 

noted that because all currents in ;t(2 I 1; C) have conformal dimension one, the 

Neveu-Schwarz currents have a branch cut while the Ramond fields are single valued, 

in contrast with the situation described in the previous chapter for N = 2. 

Another type of automorphisms acts as, 

A1) : ·+' Jm H ·+' 
Jm+1J' 

·+ ·+ 
Jm H Jm+1J' 

I 

j~ H j~-1)' j~ H J~-17' 

(3.12) 

The composition U 1 o A1 is an automorphism, and we also have the following 
2 2 

properties, 

/32 = 1, (a/3)4 = 1, 

(f3Uo) 2 = 1. (3.13) 

We end up this section by introducing the quantum numbers associated with 

a generic state I-X) of a ;t(2 I 1; C) module, and by presenting the condition for a 

singular vector to exist in a Verma module with highest weight state I A). 

Given an affine Lie superalgebra, it is always possible to construct a Sugawara 

energy- momentum tensor whose modes obey the commutation relations of a Vi­

rasoro algebra. The resulting algebraic structure is a semi-direct product of the 

affine superalgebra and the Virasoro algebra, and the associated Cartan subalgebra 

is spanned by the Cartan algebra of the affine superalgebra and a derivative opera­

tor d associated to the zero mode of the Sugawara energy- momentum tensor. The 

commutation relations of this operator d with all the generators Xn of ;[(2 I 1; <C) 

(except the central element k) are of the form, 

(3.14) 
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In the case of ;[ ( 2 I 1; q, the Cart an algebra is spanned by the set { Jg, U0 , k, d} 

where d is the zero mode of (3.7). We introduce &1 , &2 , ).0 , 8 as the dual to these 

Cartan elements in accordance to, 

Their scalar products are defined to be, 

(.Ao, .Ao) = 0, 

(.A0 , k) = 1, 

(.Ao, &2) = 0, 

(&1, 8) = 0, 

(8,8)=0. 

(8, d) = 1. (3.15) 

(.A0 , 8) = 1, 

(3.16) 

We choose to express a generic weight ). as a linear combination of these dual 

elements, 

(3.17) 

and interpret the coefficients as the isospin ( h_), hypercharge ( h+) and conformal 

weight (~) of the weight .A. k is the level at which we consider ;[(2 11; C). 

Note that the weight lattice P of the affine superalgebra ;{(2 11; q may therefore 

be described as, 

where 
al 

A1 = Ao + 2' 

The simple roots are taken to be, 

and 

The real non-isotropic positive roots are 

&1 + (s- 1)8, 

while the isotropic ones are, 

&2 - &1 + (s- 1)8, 

&1 + &2 + (s- 1)8, 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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where s E N. We also define the affine Weyl vector p as follows, 

(3.23) 

and therefore, 

(p, b) = 1, (p,ai) = 1, i = o, 1,2. (3.24) 

This enables us to introduce Ro:, which is a shifted reflection with respect to a real 

root a. If A is a highest weight, the condition for a singular vector to exist in the 

Verma module is, 

R A = A_ 2(A + p, a) _A_ 
o: _ ( ) a - ra, 

a, a 
(3.25) 

where r E N. This condition is equivalent to 

(A+ p, a) = r EN (3.26) 

for the non-isotropic roots (3.21). Therefore, for this subset of positive real roots, 

one finds, using the notations (3.17), that the isospin h_ of the highest weight state 

must take one of the following values in order for a singular vector to exist, i.e. in 

order to get a zero of the Kac-Wakimoto determinant, 

r-1 s-1 
h_ = -- -(k + 1) 

2 2 
for &1 + (s- 1)6, r,s EN, (3.27) 

or 
r+1 s 

for - &1 + sb, (3.28) h_ = -- + -(k + 1) r,s EN. 
2 2 

For the isotropic roots (3.22) the reflection Ro: does not exist, but one can use 

the condition 

(A+ p, a) = 0 (3.29) 

instead. This produces relations between the isospin and the hypercharge of the 

highest weight A, which must be satisfied if a singular vector has to exist, 

or 

1 
h_ + h+ = 2(s- 1)(k + 1), 

1 
h_- h+ = --(s- 1)(k + 1), 

2 

(3.30) 

1 
h_- h+ = 2s(k + 1). (3.31) 
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In conclusion, a ;L(2 11; <C) highest weight at level k is characterised by its isospin 

h_, hypercharge h+ and conformal weight .6.. We write lA) = lh_, h+, k) with 

(3.32) 

and 

(3.33) 

where the conformal weight .6.h-,h+,k can be read off the expression (3.7) for the 

Sugawara energy-momentum tensor. It is given by, 

(3.34) 

The annihilation conditions for the highest weight state are, [ 66] 

(3.35) 

3.3 Twisted highest weight states and character 

formulas 

The existence of an automorphism group leads to a freedom in choosing the type of 

annihilation conditions imposed on highest weight states of Verma modules. 

A twisted Verma module Vh-,h+,k;O (with integer twist B) over the level k = ~ -1 

;L(2 I 1; <C) algebra is freely generated by j1~o-P j1o-P j-;_~, j-;__ 0 , J1_ 1 , J-;_0 , 
-...;::: -.....;;: ' -....;: -...;:: -....;: 

u~-1, and J~-1 from the twisted highest weight state lh_, h+, k; (} > satisfying the 

annihilation conditions 

The particular case when (} = 0 corresponds to the untwisted highest weight state 

conditions discussed in the previous section ( 3. 35). The twisted highest weight 

conditions (3.36) are mapped into one another by the spectral flow (3.11). The 

action of the latter on { J~P Um, Lm} is given by, 

U 13 '--'- 13' = 13 0 : m ,--, m m' 

(3.37) 
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and therefore, in view of (3.32) one has, 

U~lh_, h+, k; 0) = (h+- kO)Ih_, h+, k; 0) 

(3.38) 

and 

where the conformal weight of this twisted highest weight state is, 

h2 - h2 

f:lh h+ k 0 = k + + 2()h+- k()2
. _, , , + 1 

(3.39) 

(3.40) 

Note the following spectral flow action on the highest weight state and the Verma 

module, 

lh_, h+, k; () + ()'), 

(3.41) 

The character of an untwisted Verma module of highest weight lh_, h+, k) is 

formally defined as a trace over the module VL,h+,k' 

(3.42) 

where q, z and ( are three complex variables, q = e2in:r, z = e2in:v and ( = e2in:p, 

with T, v, p E C and Im(T) > 0 for convergence purposes. Note that the trace 

apparently does not include a Casimir factor q-#4, but the Virasoro central charge 

c for ;L(2 11; C) is actually zero, as argued previously (3.8). The twisted characters 

are obtained from the untwisted ones by spectral flow. Since 

(3.43) 

the character of a twisted Verma module is given by, 

V ( ) -kO -k02 V ( 20 ) 
XL,h+,k;O z, (, q = ( q XL,h+,k z, (q 'q , (3.44) 

where the untwisted Verma module character is given by [27], 

(3.45) 
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where the theta functions have been introduced earlier (2.25). 

One of the themes of this thesis is the study of the modular properties of charac­

ters corresponding to a particular class of irreducible representations of ;t(2 11; q 
at level k = ~- 1, with p, u coprime. These irreducible characters may be found by 

constructing resolutions, but this in turn requires analyzing Verma module singular 

vectors and embeddings, taking advantage of the ;[(2 I 1; C) automorphisms we 

discovered earlier. It is beyond the scope of this thesis to explain in details the steps 

which lead from the character of twisted highest weight state Verma modules of the 

type (3.44) to character formulas for the irreducible, admissible representations of 

interest to us. These steps are presented in great details in [66], and we now provide 

the character formulas which can be derived from that publication. They are the 

most important formulas of the present chapter and are the starting point of the 

next chapter, when we discuss their modular properties. They were provided to us 

by A. Semikhatov and A. Taormina and will be the object of intense study in a 

forthcoming publication based on the results in this thesis [40]. 

For specific values of the quantum numbers h_ and h+ (3.27, 3.28,3.30,3.31), the 

untwisted Verma module Vh-,h+,k contains singular vectors which are responsible for 

the reducibility of the Verma module. Indeed, each singular vector may be viewed as 

the highest weight state of a module of zero norm states which should be eliminated 

from the Verma module in order to obtain an irreducible representation. We consider 

the ;[(2 11; C) algebra at level k = ~- 1 and the class of representations with 

and 

r-1 s-1p 
h_ = ------

2 2 u' 
1- p :S r :S p, 

p 
h_- h+ = -. 

u 

1 :S s :S u, (3.46) 

(3.47) 

The character formula (3.45) acquires a 'corrective' factor '1/Jr,s,u,p(z, (, q) which takes 

into account the modding out by submodules ·with a singular vector as highest weight 

state. Explicitly, the untwisted .;i,(2 11; <C) admissible characters are given by, 

X ;I(2IHC)( ( ) r:- 1 -~E.(!:.=l_~:e_ r-1-sE. r,s,u,p z, , q = z 2 2 u 2 2 u q u 

fh,o(z~(~,q)Bl,o(A(-~,q) ( ) 
X (t ( ) ( )3 '1/Jr,s,u,p Z, (, q , (3.48) l,lZ,qT]q 
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with 

'1/Jr,s,u,p(z, (, q) = 

The integer-twisted characters are labelled by integers r, s, e such that 

1- p ~ r ~ p, 1 ~ s ~ u, e E z. 

They are given by, 

x;/(2ll;IC) (z ( q) = c-k£Jq-k(J2 x;/(2ll;IC) (z (q2(J q) 
r,s,u,p;O ' ' r,s,u,p ' ' ' 

Le. 

X ;/(2ll;IC)( ( ) !..::l_:!.::.!R(r-l_s+lp__(JE (O+l){r-1-R(s+O)) 
r,s,u,p;O z, , q = z 2 2 u 2 2 u u q u 

iJl,o(z~(~,q)iJI,o(z~(-~,q)"'' ( ( 20 ) 
X .a ( ) 3 ( ) 'f/r,s,u,p Z, q , q · 

U!,l z, q TJ q 
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(3.50) 

(3.51) 

(3.52) 

The fundamental range (3.50) is consistent with the following properties enjoyed by 

the characters. First of all, when n E Z, 

;/(2ll;IC) ( ( ) - ;/(2ll;IC) ( ( ) - ;/(2ll;IC) ( ( ) 
X2np+r,s,u,p;(J z, 'q - Xr,s,u,p;O-nu z, 'q - Xr,s-2nu,u,p;(J z, 'q ' (3.53) 

and 

;/(2ll;IC) ( ( ) - ;/(2ll;IC) ( ( ) -
X-(2n+l)p+r,s,u,p;O z, 'q - Xr,s+u,u,p;O+nu z, 'q -

;/(2ll;IC) ( ( ) - ;/(2ll;IC) ( ( ) 
Xr,s+(2n+l)u,u,p;O z, 'q - Xr-p,s,u,p;O+nu z, 'q · (3.54) 

Second of all, exactly as in the case of N = 2, the function 1/Jr,s,u,p;o(z, (, q) 

'1/Jr,s,u,p(z, (q 20 , q) is not periodic in the spectral flow parameter e for pother than one, 

and this behaviour is at the root of complications in the derivation of the modular 
~ 

transformations of the sl(2 I 1; C) characters. For instance, in the case where the 

twist e is zero, one has, for n ~ -1, 

?/J. . (z (q2nu q) = (npqupn
2
+n[p(s+l)-u(r-l)]"'' (z ( q)+ 

Y1 ,s,u,p , ' lf/r,s,u,p , , 

-2pn-l 

"' (- 1 )e(-~fz-~fq-'!f-l(upn+l) A_ _ . (z-1 q) (3.55) L....t r 1 f+p,s+u,u,p , 
i'=O 
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where we have defined 

A (z q) =f) (zPq-p(s-1)+ru q2up) _ q(s-1)rz-riJ (zPq-p(s-1)-ru q2up). r,s,u,p ' 1,0 , 1,0 , (3.56) 

We see that the second term spoils the quasi-periodicity of the function 1/Jr,s,u,p(z, (, q) 

under the shift ( ~ (q 2nu when p is different from one. It vanishes when p = 1, 

restoring the quasi-periodicity in that case, and rendering the discussion of modular 

properties much simpler. 

It is worthwhile remarking that the beta automorphism (3.10) acts on any module 

M as, 

xf.~u,p(z, (, q) = x::S,u,p(z, (-1
' q), (3.57) 

and therefore, we have 

x;t(2I1;1C) ( (-1 ) _ x;t(211;C) ( ( ) 
r,s,u,p;O z, 'q - - 1-r,s,u,p;O-s-1 z, 'q · (3.58) 

We have mainly discussed so far one sector of the theory (we shall call it the 

'Ramond' sector by tradition), but modular transformations mix the Ramond sector 

with other sectors which we now discuss briefly. 

Instead of considering integer twists (), let us consider twists of the form () ± ~, () E 

Z, and write, in accordance with (3.51), 

x;t(2I1;C) ( ( ) 
r,s,u,p;O±! z, 'q 

('f~ -~x;t(2I1;1C)( ( ±1 ) q r,s,u,p;O z, q 'q · (3.59) 

The above characters belong to a new sector called the 'Neveu-Schwarz' sector. Two 

more sectors are relevant in the discussion of modular properties. The corresponding 

characters are usually called supercharacters and are given by, 

x;t(211;1C)( -( ) r,s,u,p;O z, 'q and x;t(2I1;C) ( ( ) 
T S U p·(i±1. z,- ) q . 

I I I I 2 
(3.60) 

The formula (3.52) for an infinite family of twisted admissible ;{(2 ll; C) char-

acters is the most important expression in this chapter. It generalises character 

formulas which were derived previously when the level of the affine Lie superalgebra 

was of the form k = ~ - 1 (the case we refer to as the p = 1 case). 
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It is instructive to set p = 1 in (3.52) and see how the characters compare with 

those available in the literature [66] [29]. 

When p = 1, the label r takes the values r = 0 and r = 1 according to the range 

(3.50). Let us first consider the characters (3.52) for r = 1. It was shown in [66) that 

these characters can be written in an infinite product form (using a residue analysis 

for the single poles in 'l/11,s,u,1 (z, (, q)), namely, 

(3.61) 

with 
F( ( ) = 191,o(z~(~, q)191,o(z~(-~, q) 

z, 'q 191,1 (z, q)TJ(q)3 · 
(3.62) 

The above expression is extremely convenient to prove the periodicity of admissible 

;[(2 I 1; C) characters when the twist () is shifted by an integer amount of u. One 

has indeed (see appendix A), 

X;t(211;C) ( r ) _ r-knu -kn2u2 X;t(211;C) ( r 2nu ) _ XJ(211;C) ( r ) 
1,s,u,1;1J+nu z, '>' q - '> q 1,s,u,1;1J z, sQ 'q - 1,s,u,1;1J z, S' q ' (3.63) 

since 

z-% (-I q-n(IJ+l+~(n+1))191,0(z~ (~ q0+1' qu), 19 1 ~(z~(~q0+1+nu,qu) 

19 1 ~(z~(-~q-IJ-s-nu,qu) zi (-1" q-n(O+s+~(n-1))191,0 (z~ (-~ q-0-s) qu)) (3.64) 

and 

2 2 2 
F(z, (q nu, q) = (-nuq-n u F(z, (, q). (3.65) 

The product formula (3.61) is also useful to relate the characters labelled by 

r = 1 to the characters labelled by r = 0. The first equality in (3.54) for n = 0 and 

p = 1, r = 1 gives, 

X ;l(2ll;C) ( r ) _ x;z(2ll;C) ( r ) 
O,s,u,1;0 z, S' q - l,s+u,u,l;O z, S' q · (3.66) 

But 

XJ(2Il;C) ( r ) XJ(2Il;C) ( r ) 
l,s+u,u,1;1J z' '>' q = - l,s,u,l;O Z' S' q ' (3.67) 
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as can be easily checked using (3.61). This relation is a manifestation of the fact 

that the beta automorphism (3.10) acts trivially when p = 1. So we conclude that 

when p is one, all independent characters are labelled by r = 1 and, 

1::::; s::::; u, and o::::;o::::;u-1. (3.68) 

This gives a finite number of irreducible characters, namely u2 characters, which are 

in one-to-one correspondence with those introduced in [66] [67]. There, ~u(u+ 1) of 

them formed the class IV and ~u(u- 1) of them formed the class V. One has, 

x;zc211;q ( ( ) 
1,s,u,1;1J z, 'q R,IV ( ( ) 

Xs-1u-IJ-1 z, 'q , for 1 ::::; s ::::; u, u - s ::::; () ::::; u - 1 

x~:__~_ 1 _9 , 9 (z, (, q) for 1 ::::; s ::::; u - 1, 0 ::::; () ::::; u - s - 1. 

The most direct check of the above correspondence is to rewrite (3.61) as two equiv­

alent expressions, using properties of theta functions of the type described in (3.64). 

The first one is, 

(3.69) 

which is precisely the product formula obtained in ( [29, 66]) for class IV characters. 

The second rewriting of (3.61) is, 

(3.70) 

which is the product formula for class V. 

So we have presented new formulas for admissible characters of the affine Lie 

superalgebra :J(2 11; q at fractional level k = ~ - 1 with p, u coprime and positive 

integers, when the quantum numbers of the highest weight state obey the relations 

(3.46,3.47). These character formulas generalise character formulas obtained previ­

ously in the particular case of fractional level k = ~ - 1, and we have emphasized 
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in which ways the generalised formulas are much harder to handle mathematically. 

The essence of the difficulty is that it is impossible to express them as an infinite 

product (unlike the case p = 1) of modular functions, and as a consequence, they 

have a non-quasi-periodic behaviour which complicates the derivation of modular 

transformations as we will discover in the next chapter. 

3.4 Summary 

In this chapter we have described the ;[(2 ll; C) affine algebra. Several properties 

have been obtained which will be useful in later chapters. 

We have discussed different automorphisms between algebras, the most impor­

tant is the spectral flow which is very helpful in the next chapter. 



Chapter 4 

Modular behaviour of admissible 
........... 

sl(2 ll; C) characters 

4.1 Introduction 

In this chapter, we present sumrules involving admissible ;l(2) as well as the admissi­

ble ;[(2 ll; <C) characters introduced earlier. The structure underlying the sumrules 

is extremely interesting as a natural generalisation of the situation encountered in 

two-dimensional matter plus gravity systems. It involves the extension of the sum 

;l(2)k1 EB ;l(2)k2 of two affine ;l(2) algebras atduallevels k1 and k2 , i.e. at levels 

related through k
1 
~2 + k2~2 = 1. The extended algebraic structure is the affine 

superalgebra D(2ll; k2)k1 , which can be decomposed in ;[(2 ll) EB U(l) or in three 

;l(2) algebras at levels k1 , k2 and 1. The sumrules we use here are character iden­

tities which encode the link between two subalgebra decompositions of D(2ll; k2)k1 

we just mentioned. Schematically we have, 

( 4.1) 

The number of bosonic and fermionic generators in ;[(2 ll; <C) is the same, so we are 

faced with a vanishing central charge for ;[(2 ll;<C), while the U(l) factor, which 

describes a free scalar theory, contributes one to the central charge. On the right 

hand side, the sum of central charges is also one thanks to the duality of the levels 

69 
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k1 and k2. Indeed, since the duality implies k2 = - k~~l' the central charge is, 

3kl 3k2 
c = kl + 2 + k2 + 2 + 1 = 1. (4.2) 

Sumrules of the same type have been discussed in [66], but only when the level 

k1 is fractional of the form k1 = ~ - 1 with u E N \ {1}. In that case, the duality of 

levels implies that k2 = u - 1, i.e. k2 is an integer so that the sumrules involve, on 

the right hand side, products of three ;l(2) characters with two of them at integer 

level. Here, we consider the more general situation where k1 = ; - 1, with p, u 

coprime. Our aim is to exploit the ;l(2) content of the sumrules to obtain the 

modular behaviour of admissible ;[(2 I 1; C) characters for a general value of the 

parameter p. 

In section 2, we show how the various highest weight modules of the different 

subalgebras organise themselves in the sumrules. We then present in section 3 

explicit sumrules in the Ramond sector, which we spectral flow to obtain Neveu­

Schwarz sumrules. We have chosen to derive the modular transformations in the 

Neveu-Schwarz sector in this thesis. 

In section 4, we consider the integral form for the sumrules as it will be useful in 

the calculation of the modular transformations of ;[(2 11; C) admissible characters, 

which will be presented in section 5. The appendix gives some explicit checks of the 

general sumrules in the special case p = 1, u = 2, and also provides some technical 

results relevant for the study of modular transformations. 

4.2 Notations and conventions for the sumrules 

Vie consider a class of ;[(2 11; C) representations that can be arrived at as follows. 

The vertex- operator extension of ;l(2)k EB ;l(2)k' where the two ;l(2) algebras have 

dual fractional levels, i.e. levels of the form k = E - 1 and k' = :!! - 1 with p, 'U u p 

coprime, provides the affine superalgebra D(211; k')k with affine subalgebra ;,(2 l1)k. 

For every ;[(2 I 1; C) representation L, this vertex- operator extension leads to a 

decomposition of the sum over the spectral flow orbit of L into a sum of terms 

lvf ®.M' rgd\1(1), where M is an ;l(2)k representation, lVI' is an ;z(2)k, representation, 

and M(l) is a representation of the level one ;l(2) algebra [66] . 
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More precisely, according to [40], one may write pu sumrules parametrized by 

1 :S s' :S p and 1 :S s :S u. (4.3) 

They are, 

s'-s-1 

J\1 n+u-1_1'_~ 1'__1 0 M' n-s u •'-1 u 0 M<(n+u-1) 
1 

= 
2 u 2 'u --2--p-2-,p-1 2 ' 

n=s'-s+1-p-u 

where 

t:(2n) = 0 and t:(2n + 1) = 1 nE Z. (4.5) 

The modules Ai are Fock modules and the level k = ~ - 1 ;L(2 I 1; <C) untwisted 

highest weight quantum numbers of isospin and hypercharge are given by, 

h_ 
p- s' ps-1 
------

2 u 2 

h+ 
p- s' ps + 1 

(4.6) ------
2 u 2 

On the left hand side, start by relabelling n = r + s' - s - p- u so that we obtain, 

p+u-1 

E9 Mr-1_E.±.!!_s-1 1'__1 0 M~+u-r-1 E.±.!!_s'-1 .!!._
1 

0 M<(r+1+p+s+s 1 ) 
1

, (4.7) 
r= 1 2 u 2 'u 2 P 2 'P 2 , 

where the isospin of the ;z(2)K highest weight states are given by, 

r-1 p+us-1 
when 

p 
J ------- K=k=--1 

2 u 2 u 
·I p+u-r-1 p +us'- 1 

when 
I U 

J ----- K=k =--1 
2 p 2 p 

·(1) t:(r + 1 + p + s + s') 
J 2 

when K=l. (4.8) 

We recall here (see chapter 2) that there are P(U- 1) irreducible admissible rep­

resentations of the affine algebra ;l(2) at level K = ~ - 2. The corresponding 

characters are given by, 

(4.9) 
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where 

>-n,s,u,P(x, q) = 

J fJ 1,0 (xU qP(R-U)-(S-1)U, q2UP) _ x-RqR(S-1)fJ1,o(XU q-P(R+U)-(S-1)U, q2U P) 

x fJ1,1 (x, q) ' 

(4.10) 

with 1 ::; R ::; U- 1 and 1 ::; S ::; P. The isospin of the highest weight state is, 

R-1 S-lU 
]=------. 

2 2 p 
(4.11) 

The sumrules involve affine ;l(2) characters at three different levels. When K = 

~- 1, we use the character formula (4.9) with U = p + u, P = u, when K = ~- 1, 

we use the character formula (4.9) with U = p + u, P = p and when K = 1, we use 

U = 3, P = 1. The dependence in the angular variable x in (4.10) is different in 

the three ;l(2) types of characters. We will write the sumrules explicitly in the next 

section, with the exact dependence in the angular variables. 

4.3 Ramond and Neveu=Schwarz sumrules for 
..-... 

sl(2 jl; C) 

In this section we shall present the character sumrules in the Ramond sector, when 

the level of the ;[ (2 11; <C) affine superalgebra is fractional of the form k = ~ -1, with 

p, u coprime. The original work of this kind is from [66], but it only relates to the 

special case p = 1. As we already stressed, the mathematics is much less complicated 

in that special case because the character functions are periodic in the spectral flow, 

leaving us to deal with a finite number of characters transforming among themselves 

under the modular group. In the general case, the sumrules are still elegant and we 

show in the appendix how to recover the sumrules in a particularly simple special 

case where p = 1 and u = 2 (see appendix C). 

We also give here the sumrules in the Neveu-Schwarz sector, by spectral flowing 

from the Ramond sector according to the prescription given in (3.59). This form 

of the sumrules is slightly more easy to deal with when studying their modular be-
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haviour. Indeed, Neveu-Schwarz characters transform in Neveu-Schwarz characters 

under S. 

Now let us write down the sumrules in the Ramond sector [40]. We have, 

p+u-1 
"""' X;t(2)k ( )X;t(2h, (1 k+1 )X;t(2h (1 -k -1 ) _ 
~ r,s,p+u,u z, q p+u-r,s',p+u,p '> y, q 1+i(p+1+s+s'+r),1,3,1 '> Y 'q -
r=1 

~ yA(s,s',8)ql'.A2 (s,s',8) 
"""'Xsl(2il;IC)k ( I ) u 

~ p+1-s 1 ,s,u,p;8 z, '>' q TJ(q) ' 
8EZ 

(4.12) 

where 

A(s 
3

, O) = u - 1 - s _ '!!'_ s' - 1 _ () 
' ' 2 p 2 ' 

( 4.13) 

and where 1 ~ s ~ u, 1 ~ s' ~ p, and k + 1 = ~' k' + 1 = ~- The above expression 

provides pu sumrules. However, the fundamental range for ;[(2 11; C) characters at 

level k = ~- 1 should include 2p values for the labels', not just p (see (3.50)). It 

is sufficient to extend the range of s' to 1 ~ s' ~ 2p and to recall (see (2.78)) that 

;1(2)~ ( k+l ) - ;1(2)~ ( k+l ) - ;1(2)~ ( k+l ) 
xp+u-r,s'+p,p+u,p ( y, q - xp+u-r,s'-p,p+u,p ( y, q - -xr,s',p+u,p ( y, q . 

(4.14) 

We obtain the Neveu-Schwarz sector by flowing 

(--+ (q and y ----t yq-(k+1) ( 4.15) 

in the sumrules (4.12). Note that this implies we obtain the Neveu-Schwarz ;[(2 11) 

characters by a different flow to the one used in previous literature, and in particular 

in Michael Hayes thesis, where the Neveu-Schwarz sector was obtained by flowing 

in the z variable, namely z -t z- 1q- 1. 

So the Neveu-Schwarz sumrules are given by, 

p+u-1 
"""' x;t(2h ( ) x;t(2h, (1 k+1 ) x;t(2h (1 -k -1 ) _ 
~ r,s,p+u,u z, q p+u-r,s',p+u,p '> y, q 2-i(p+1+s+s'+r),1,3,1 '> Y 'q -
r=1 

~ YA(s,s 1,8)ql'. [A2 (s,s' ,8)-A(s,s' ,8)] 
= !u -1/2 """'xsl(2ll;IC) (z 1 ) u (4 16) 

q Y ~ p+1-s',s,u,p;B+4 ''>' q TJ(q) · · 
8CZ 

The above formula is easily established once the following remarks are made. 

First of all, the only characters on the left hand side of ( 4.12) which are affected by 

the flow ( 4.15) are the sl(2)I characters. They are given by (see appendix B), 

x-;1(2) (~-k -1 ) - o€,1((-ky-I,q) (4.17) 
./ l+€,1,3,1 '> y 'q - TJ(q) ' 
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where the level one theta function is, 

e (;--k -1 ) _ ~ (n+!-)2 ;--k(n+!.) -(n+!.) 
£,1 ., y 'q - 0 q 2 ., 2 y 2 • 

nEZ 

Under the flow (4.15) they give, 

so that the affine sl(2h characters transform as, 

xsl(2) (r-k -1 ) ri£ 1 _! xst(2) (r-k -1 ) 
l+£(p+1+s+s'+r),1,3,1 '> Y q, q = '> 

2 Y2 q 4 
2-£(p+l+s+s'+r),1,3,1 '> Y 'q · 
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(4.18) 

(4.19) 

(4.20) 

Second of all, the right hand side of the sumrules ( 4.12) involves the spectral­

flowed ;[(2 11; C) characters, 

;1(2ll;C) ( ) 1£ 1£ ;L(2I1;C) ( ) 
Xp+l-s',s,u,p;O z, (q, q = ( 2 q 4

Xp+1-s',s,u,p;B+4 z, (, q · (4.21) 

We are now in a position to discuss the modular behaviour of these ;[(2 11; q 
characters. 

4.4 Modular Transformations of the Neveu~Schwarz 
......... 

sl(2 ll; CC) characters 

We first extract an integral representation of the Neveu-Schwarz ;[(2 I 1; C) char­

acters from the sumrules (4.16) which will be suitable for our study of modular 

properties. We recall our notations for the various variables entering the sumrules, 

( 4.22) 

with Imr 2': 0 and v, p,, p E C. 

Multiply left and right of (4.16) by y!-A(s,s',O)-O+n for any integer n, then inte­

grate over a closed contour C around y = 0, recalling that, 

( 4.23) 
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One obtains, 
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Xsl(2jl;IC) (v 11 T) = q-;[A(s,s',n+l)2 -A(s,s',n+l)+tJ7J(T) dpe-2i7rp[A(s,s',n+l)-!J - 11 
P+ l-s' s u p·n+!! ',_.,, 

, ' , ' 2 0 

p+u-1 
"' xsl(2)k ( )Xsl(2h, ((k+1) + )Xsl(2h ( k ) 

X ~ r,s,p+u,u v, T p+u-r,s',p+u,p f--L p, T 2-f(p+l+s+s'+r),1,3,1 - J--t-p, T ' 
r=l 

(4.24) 

where k = E. - 1. 
u 

The above formula provides a way to derive the modular behaviour of ;[(2 11; C) 

characters using the well-known modular transformations of ;l(2) characters. In the 

case where p = 1, the modular transformations of ;[(2 I 1; C) characters have 

been calculated in [38), where a decomposition into sl(2)k characters was used, with 

the branching coefficients being string functions. Examples for p = 1, u = 2 and 

p = 1, u = 3 were given in [37]. 

Under the two transformations S and T generating the modular group, the ar­

guments (v, J--t, T) of the ;[(2 11; C) transform as, 

V f--t 1 
S(v,J--t,T) = (-,-,--) 

T T T 
T(v, J--t, T) = (v, J--t, T + 1). ( 4.25) 

First consider the modular transformation T. Using the characters and super 

characters given in the previous chapter, it is quite plain to see that shifting T --1- T+1 

gives the following results, 

XR(T + 1, 1/, p) --1- e27rit:J..R XR(T, v, p) 

SXR(T + 1, v, p) --1- e 21rit:J..R SXR(T, v, p) 

XNS(T+ 1,1/,p) --1- e21rie:,.Ns XR(T, v, p) 

SXNS(T + 1, V, p) --1- e21rie:,.Ns SXR(T, v, p). 

where ~ R is defined by 

~ R = h~ - h~ + 2Bh - k(}2 
k + 1 + ' 

and the conformal weight for N S sector are given by 

1 
(} --t B+-. 

2 

( 4.26) 

( 4.27) 

( 4.28) 
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Now let us discuss the S transform. Unlike in the special case p = 1, there is 

no branching relations of ;[(2 I 1; C) characters into ;l(2) characters of the type 

introduced in [66] (with the branching coefficients being parafermionic characters). 

We therefore S-transform (4.24), i.e. replace T---+ -1/r, v---+ vfr and JL---+ JL/T, 

and change the integration variable p to pfr. This leads to, 

;!(2I1;<C) lJ fL -1 -
xp+1-s' s u p·n+1 ( -, -, -) -

'' '' 2 T T T 

'TJ( -1 )e 2~" ;[A(s,s',n+1)2 -A(s,s' ,n+l)+!J ~ 1T dpe-~[A(s,s',n+1)-1/2] 
T T 0 

p+u-1 ) 

{ 
~ x;z(2) (~ -1)x;z(2) ((k+1 JL+P -1) 

X L_s r,s,p+u,u T' T p+u-r,s',p+u,p T ' T 
r=1 

x;z(2) . -kJL- P -1 } 
2-£(p+l+s+s'+r),1,3,1 ( T ' T ). ( 4.29) 

We must now use the S transform of ;l(2) characters. Recall from Chapter 2 

(2.86) that the ;l(2) characters at level I< = ~ - 2 transform under S as, 

x;/(2) (~ -1) = ~ [2e";;2<2~-1) 
r,s,U,P r' T 2 V UP 

U-1 P p 1 -

L L i7r[r(s'-1)+r'(s-1)-(s-1)(s'-1)~) 0 nrr xsl(2) ( ) 
X e S1n r' 8 , Up lJ, T . u ) '' 

r'=1 s'=1-P 

( 4.30) 

Note that in view of (4.30), the above S transformation formula is a rewriting of the 

more standard relation, 

X ;/(2) ( 1J -1) _ {;!; rriv2 ( _Q__ 1) -- _ -eT 2P 
r,s,U,P T' T Up 

U-1 P p 1 -

~ ~ i7r[r(s'-1)+r'(s-1)-(s-1)(s'-l)~) 0 nrr xsl(2) ( ) 
X L L e sm u r',s',U,P v, T 0 

r'=1 s'=1 

(4.31) 

Here, we apply (4.31) for the ;l(2) at levels corresponding to (U, P) = (p+u, u), (p+ 

u, p) and (3, 1). 

We therefore rewrite ( 4.29) as, 

;!(2ll;<C) (V fL -1) _ ( ·) l 2J2 ( ) 2irr E.[A(s,s' ,n+1)-l j2 x - - - - -~ 2 'T/ 7 e T ,. 2 
p+1-s',s,u,p;n+~ T' T' T (p + u).J3UjiT 

1T ~ 1 1 irr(u-p)v 2 i1r(u-p) [E. ]2 irr .'!..=:_E 2 
X 0 dpe- T [A(s,s,n+l)-:i]e- 2ur e 2pr UJ.L+P e2r[ u J.L-p] a(v,j.L,p,T), ( 4.32) 



4.4. Modular Transformations of the Neveu-Schwarz 
;t(2 11; C) characters 

with 

p+u-1 p+u-1 u p+u-1 p 2 

a(v,J-t,p,T) = 2: 2: 2: 2: 2: 2: 
r=1 r"=1 s"=1 r 111 =1 s'"=1 riv=1 

ein(r(s"-1)+r"(s-1)-(s-1)(s"-1)~+(p+u-r)(s'"-1)+(s'-1)r'"-(s'-1)(s'"-1) 7J 

. 1rurr" . 1rp(p + u - r )r111 
• 1r(2 - t(p + 1 + s + s' + r )riv x sm--sm sm---'---...:...._ ______ ___:__ 

p+u p+u 3 
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S'z(2J ( ) sL(2J (P ) sL(2J (u-P ) 
X Xr" s" p+u u V, T Xr'" s111 p+u p - f.l + p, T Xriv 1 3 1 --f.l - p, T ( 4.33) , , ' ' , , u , ) , u 

After some lengthy calculations described in the appendix D, we can rewrite the 

above as, (from now on, we consider p + u even, which implies p and u are 

odd since they are cop rime), 

/ri u 2p 

( ) __ V_v( )-1-~ ~ in(ss"'+s's"-(s-1)(s"-1J;-(s'-1)(s111 -1).!!.] 
a v, J-l, p, T - 4 p + u (T) L.....t L.....t e P 

TJ s"=1 s'"=l 

X ~ X;)(2j1;1C) (v T) A(s",s'",O)-! ;(A(s",s'",OJ-!f 
L.....t p+1-s'" s" u p·IJ+l 'f-l, Y q · , ) , ' 2 

(4.34) 
IJEZ 

The S transform of the Neveu-Schwarz characters takes the form, 

~ 1 ( ")! 2 2 sl(2jl;IC) (V f-l - ) -'/, 2 i1r(u-p)(l' -v) 2i"E.[A(ss'n+1)-l] 2 
X - - - = e 2uT e T u , ' 2 
p+l-s',s,u,p;n+~ T' T' T yl2upT 

u 2p 
X ~ ~ ~ ein(ss111 +s's"-(s-1)(s"-1J;-(s'-1)(s'"-l)*Jx;)(2j1;1C) (v T) 

L L £.....- p+1-s'" s" u p·IJ+! 'f-1, 
s"=l s'"=l IJEZ 

' ' ' ) 2 

1!_ 11 Ill 12 ~ I 1 i7rU 2 · If f/1 1 1
T 

X qu[A(s ,s ,0)-2] 0 dp e- T [A(s,s ,n+l)-2le2pTP e2mp[A(s ,s ,0)-2J. (4.35) 

In the remaining part of this chapter, we attempt to rewrite the above modular 

transformation in a more suggestive way. 

First set () = um + (3, for (3 = 0, ... , u- 1 and m E Z, noting that, 

4( 11 Ill (3) .. s , s , u1n + A(s", s"' + 2pm, (3) 

and 

:y-;z(2jl;iCJ ( ) 
"' p+1-s"',s",u,p;um+f1+! v, f-l, T 

x;z(2jl;IC) ( ) 
p+1-s'"-2pm,s",u,p;/1+~ v, p, T ( 4.36) 

according to the definition ( 4.13) and the properties (3.53). Then, relabel s"' + 2pm = 
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m' for m' E Z, and write, 

1 ( ").!. 2 2 
;}(2[1;<C) (~ _f-L _- ) _ -1, 2 

i1r(u-p)(l' -v ) 2i" l!.[A(s s1 n+1)-.!.] 2 
X e 2uT e T U ' ' 2 

+1 I . +3 l l - ~ P -s ,s,u,p,n 2 T T T V '-UPT 

u u-1 
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X ~ """"~ ei7r[sm1 +s1 s"-(s-1)(s"-l)~-(s1 -1)(m1 -1)*Jx;}(2[1;<C) (v r) 
~ ~ ~ p+l-m1 ,s11 ,u,p;f3+t 'p,, 
s"=l m 1 EZ {3=0 

l!.[A( 1t I t:J) 1]21
7 

~(A( 1 +1) 1] i1ru 2 2· (A( 11 1 R) 1) X qu s ,m''"' -2 0 dp e- T s,s ,n -2 e2prP e mp s ,m''"' -2 . (4.37) 

Our next task is to reexpress the p-integral in terms of the function L defined 

in (2.92). After some elementary manipulations, we obtain, 

- dp e- T [A(s,s ,n+1)-2le2prP e2mp[A(s ,m ,{3)-2] = 1 1T ~ I 1 i1ru 2 · 11 1 1 

2p 0 

e-~[A(s,s1 ,n+1)-t-T(A(s",m',f))-!)J2 L(u) (_!_ s + 2n + 4- u s'- 1) 
-p(2/1+2+s")-u(m'-1-p) 2pu' 2u + 2p · 

(4.38) 

Relabelling s' = p + 1- rand m'= p + 1- m, the S transform of the ;{(2 11; <C) 

characters becomes, 

s"=1 mEZ {3=0 

X ;}(2[1;<C) ( )L(u) ( T s + 2n + 4 r ) X V T --- - -
m,s" ,u,p;f3+4 'p,, -p(2/3+2+s")+um 2pu' 2u 2p . (4.39) 

We now rewrite X;}(
2}/;C).a 1 (v, p,, r) for any integer value m in terms of 

m,s ,u,p,l-'+ 2 

x;}(2 1 1 ;~) 3 (v, p,, r) in an effort to eliminate the m-dependence in the ;{(2 I 1; <C) 
r,s,u,p,n+ 2 

characters. Although it is a rather non-trivial exercise, one may check the following 

relations using the explicit expressions for twisted ;{(2 11; <C) characters (3.52) when 
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'\'r-m-1( 1)a(( )-la -(.B+.:!)aA ( ) 
L.....a=O - Z 2 q 2 r-1-a,s",u,p v, T ' 

'\'-1 ( 1)l+a(( )-la -(.B+.:!)aA ( ) 
L.....a=r-m - Z 2 q 2 r-1-a,s",u,p V, T , 

where we have defined the function, 

for 

for 

r- m> 0, 

r- m< 0, 
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( 4.40) 

A (v T) = {) (zPq-p(s-l+u)+ur q2ttp) - qr(s-1) z-r {) (zPq-p(s-1+u)-ur q2up) r,s,u,p , 1,0 , 1,0 , , 

(4.41) 

and note the following property for future reference, 

A . (v T) = zPjq-upj2q-pj(s-1)+ujr A . (v T) r-2p],s,u,p , r,s,u,p , , j E Z. ( 4.42) 

Remark: as an intermediate step in obtaining the above, one may check that, 

n/, ( ) _ ( l)r-m( ( 2)-l(r-m)n/, ( ) 'f/r,s,u,p V, j..t, T - - z q 2 'f/m,s,u,p V, j..t, T 

+ L.....a=O - Z 2 q 4 r-1-a,s,u,p V, T , 

{ 

'\'r-m-1( 1)a(( )-la -a-~A ( ) 

-1 1+a -la -a-~ La=r-m(-1) ((z) 2 q 4 Ar-1-a,s,u,p(v,T), 

for 

for 

using the expression (3.49). Inserting (4.40) in (4.39), we obtain, 

X;/(2I1;1C) 3 ( ~, !!._, -1) = E(1) + E(2), 
r,s,u,p,n+2 T T T 

where 

r- m> 0, 

r- m< 0, 

( 4.43) 

(4.44) 

( 4.45) 
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and 

u r-1 r-m-1 oo -1 u-1 
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X 2:{ L L- L L } L( -l)ae2in({,B+~)(s+2n+4)+(n+%)(s"-1)J; 
s"=1 m=-oo a=O m=r+ 1 a=r-m /3=0 

r-2-a _ s 11 -1 I!. ( r-1-a -(f3+l+ s
11 -1) E. -(/3+.:!)2 I!.+(/3+ l)(r-1-a-(s" -1) I!.) 

XZ 2 2 u 2 2 2 uq 2 u 2 u 

(u) T s + 2n + 4 r 
Ar-1-a,s",u,p(v, r)L_P(2/3+ 2+s")+um ( -

2 
, 

2 
- -

2 
). (4.46) 

pu u p 

It is easy to see, from the definition (2.92), that 

"""' (u) T s+2n+4 r .! ~ 
~L-p(2f3+2+s")+um(2pu' 2u - 2p) = ~2V 2up' 
mEZ 

so that E(1) is given by, 

( 4.47) 

( 4.48) 

The treatment of E(2) is more involved. First we flip the sign of m, then relabel 

m= m'- r and a= a'- 1. This implies in particular, 

r-1 r-m-1 oo -1 oo oo 0 a'-1 

{ 2::: I: - I: I: } ---* {2::: 2::: - 2::: 2::: }. ( 4.49) 

m=-oo a=O m=r+l a=r-m a'=l m'=a a'=-oo m'=-oo 

We also use (2.120) to rewrite (71 = s+2n+4 - .!:_) 
' ., 2u 2p ' 

00 

"""' L(u) ( T ) ~ -p(2/3+2+s")-u(m'-r) 2 U' TJ 
m'=a' p 

L- ( T ) 
-p(2/3+2+s")+u(r+l-a') 2pu' T7 

a'-1 
"""' L(u) ( T ) ~ -p(2f3+2+s")-u(m'-r) 2pu' T7 

rn'=-oo 

+ T 
L -p(2/3+2+s")+u(r+l-a') ( 2pu' T])' ( 4.50) 

and therefore, 

u u-1 0 oo 

XL L { L L~p(2/3+2+s")+u(r+1-a')- L L=p(2/3+2+s")+u(r·+l-a')}(2~u' TJ) 
s"=1 /3=0 a'=-oo a1=1 

X ( -1 t' e2in[(IH~)(s+2n+4)+(n+% )(s"-1)J; Z r-12-a'- •"2-1; (-;a' -(/3+~+ •"2-1 ); 

-(f3+.:!) 2 I!.+(f3+.:!)(r-a1 -(s"-1)I!.)A ( ) 
X q 2 u 2 u r-a',s",u,p v, T . (4.51) 
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Now split a' modulo 2pj, a'= 2pj- a", and use (4.42), 

u u-1 2p-1 0 oo 

XL L L { L L ~p(2f3+2uj+2+s")+u(r+l+a")-L L :::p(2,8+2uj+2+s")+u(r+l+a")} ( 2;u' 1]) 
s"=1 f3=0 a"=O j=-oo j=1 

X ( -1)a" e2irr((f3+uj+~)(s+2n+4)+(n+~)(s"-1)J; Z r- 1r" -•"2-
1

; (+/' -(,B+uJ+~+•"2-I ); 

-(f3+uj+.:!)2.l'.+(f3+uj+.:!)(r+a"-(s"-l).l'.)A ( ) 
X q 2 u 2 u r+a" ,s" ,u,p V, T . ( 4.52) 

Relabelling j3 + uj = j' + u, we may write, 

u 2p-1 -1 00 

X L L { L L~p(2j'+2+s")+u(r+l+a"-2p)- L L:::p(2j'+2+s")+u(r+l+a"-2p)} (2;u' 17) 
s"=1 a"=O j'=-oo j'=O 

X ( -l)a" e2irr((j'+~)(s+2n+4)+(n+ ~ )(s"-1)J; Z r-1r"- •"2-1 ~ (+2a" -(j' +u+~+ •"2-1 )~ 

-(j'+u+~)2~+(j'+u+.:!)(r+a"-(s"-1).l'.)A ( ) (4 53) 
X q 2 

u r+a",s",u,p ll, T · · 

4.5 Summary 

In this chapter we have considered sumrules for the Ramond and N eveu - Schwarz 

sectors of ;{(211; <C)k at level k = ~ -1. The approach used to examine this problem 

is that of studying the decomposition of ;{(211)k, in ;{(2)k, characters. This gives 

rise to sumrules involving triple products of characters ;{(2)k, ;{(2)k' and ,;[(2)1 with 

( k + 1 )( k' + 1) = 1. 

The expressions for the sumrules in the case p I= 1 are vastly more complicated 

than for the case of p = 1, which was studied in [66]. 'vVe have been able to determine 

consistent modular transformation for k = ~ - 1 and found these to agree with the 

modular transformations found in the (p = 1) case [37] [38]. 



Chapter 5 

Conclusions 

In any physical context where two - dimensional conformal field theory or any ex­

tension thereof is relevant, a good understanding of the representation theory of the 

underlying infinite- dimensional algebra is valuable. 

In string theory so far, unitary representations have been extensively studied 

and used, especially those corresponding to rational theories. In these theories, the 

physical states organize themselves in a finite number of unitary irreducible high­

est weight state representations, whose corresponding characters are building blocks 

of the partition functions. The modular invariance of the latter is central for the 

consistency of those theories, and therefore, it is essential to study the behaviour of 

characters under the modular group. A lot is known about this behaviour as long 

as one deals with rational theories, like the minimal unitary representations of con­

formal and superconformal theories or the integrable Kac - Moody representations 

in the context of the WZNW models. So far, it is mainly in these contexts that the 

physical interpretation in manageable . However, there are important applications, 

in non - critical string theory and also in condensed matter physics, where non -

unitary representations are needed. 

The motivation of this thesis was originally in string theory, where gauged G jG 

WZNvV models provide a method to tackle the study of strings coupled to 2d gravity 

or supergravity. In this area, affine Kac - Moody algebras or superalgebras G at 

fractional level play an important role, and it soon became desirable to deepen our 

knowledge of their representation theory and corresponding characters. 

82 
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Our work, which is quite mathematical in nature, is a study of the behaviour 

under modular transformations of the minimal non- unitary N = 2 superconformal 

characters as well as of the fractional level non - unitary admissible characters of 

the affine superalgebra ;L(211). 

Our approach has been pedestrian and very concrete. It has the merit of provid­

ing reliable checks of more sophisticated techniques which were developed simulta­

neously by Taormina, Semikhatov and Tipunin, and which involve the use of Appell 

functions [68). 

Although we have concentrated our efforts on two specific algebras here, we 

believe there is a general pattern which will emerge and which might even provide a 

new insight in the study of strings compactified on a K 3 manifold where the N = 4 

superconformal algebra is crucial. 

Here follows a summary of our results. In Chapter 2, we started by studying 

theN= 2 superconformal algebra at central charge c = 3(1- ~), (p, u) = 1 , u E 

N, p E Z*. We used the general character formula of [60] and applied a spectral flow 

with integer parameter () to it, generating an infinite family of so- called " Ramond 

sector "characters. 

In the case where p = 1, the above characters are quasi- periodic in the spectral 

flow and can be written as products of theta functions. We show the link between 

these characters and the unitary minimal N = 2 characters previously given in the 

literature . Although their modular transformations have been known for a long 

time [41] [42), we rederived them to emphasize how much more easily they can be 

obtained than in the case of general p. In the latter case, we used a remarkable 

branching rule between affine ;L(2) and N = 2 characters due to [60]. The analysis 

requires quite a bit of work but we managed to obtain a formula for the S transform 

which splits in two terms. The second term vanishes when p is set to one while 

the first term yields the S transform of the N = 2 unitary minimal characters. The 

interpretation of the second term when p =/:- 1 is still under intense investigation at 

present. 

In Chapter 3, we introduce the ;L(211) affine superalgebra. By making use of 

data provided by Taormina and Semikhatov, we explicitly established a dictionary 

--------------------------------------------------------------· 
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between their notations and the conventions used in previous literature in the partic­

ular case where the level of ;L(2j1) is k + 1 = ~with p = 1. Although the characters 

may be written as products of generalized theta functions when p = 1, they loose 

this property in general, exactly for the same reason as the N = 2 non - unitary 

minimal characters do : they are non quasi - periodic in the spectral flow. 

Chapter 4 is the truly original part of this thesis. Its objective is to derive the 

modular transformations of ;L(2j1) admissible characters at fractional level k+ 1 = ~' 

p # 1. 

We used a generalization top# 1 of the sumrules presented in [66] and which 

involve, besides the ;L(2j1)k characters, a sum of triple products of ;L(2) characters 

at levels k, k', and 1 with (k + 1)(k' + 1) = 1. 

The sumrules provide an integral representation of ;L(2j1)k characters which we 

explicit in order to achieve our goal. As for N = 2, the S modular transformation 

here can be separated into two terms, one of which vanishes at p = 1. It is extremely 

satisfactory to be able to check that the first term is in agreement with [38] when p 

is set to one. Here again, the structure of the second term has not been completely 

decoded and will only be clear once the derivation via Appell functions is available 

to us. 



Appendix A 

Behaviour of F and Theta function 

Under Shift 

In this appendix we show the behaviour of the F and Theta functions under spectral 

flow (in Chapter 3). This will be useful for deriving a relationship between the 

general character and class V and class IV character. As we said in chapter 3, we 

shall calculate FR and 01,101,0 under following shift: 

(A.0.1) 

For this purpose first of all we consider F(q, z, () as follows, 

[1~=1 (1 + z~(~qn)(1 + z-~(-~qn- 1 )(1 + A(-~qn) 
F(q, z, () = 1 • 

(1 + z-2 qn-l )(1 _ zqn)(1 _ qn)2(1 _ z-lqn-1) 
(A.0.2) 

By using the above shift, we have 
00 

F(q, zq-au, (qQU) = IT (1 + z~(~qn)(1 + z-~(-~qn-1)(1 + A(-~qn-au) 
n=1 

(A.0.3) 

and 
00 

n=l 
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So finally, we will arrive at 

(A.0.5) 

In here we want to calculate the theta function under the above shift, 

00 

01,1(qu, zqM+M'+2-ou) =IT (1- z-1qu(n-1)-M-M'-2+ou)(1- zqun+/11+M'+2-ou)(1- qn), 

n=1 

So 

00 IT (1 - z-1qu(n-1)-M-M'-2)(1 - zqun+M+M'+2)(1- qn) 

n=1 

X (1 _ z-1q-M-M'-2) ... (1 _ z-1q-M-M'-2+ou-u)' 

(A.0.7) 

Finally we have ; 

(A.0.8) 

For 01 0 , we can write as 
' 

01,o(qu' z! (! qM'+1 )01,o(qu' z! (-! qM+l-ou) = 01,o(qu' z! (! qM'+1) 
00 

X IT (1 + z-!(!qu(n-l+o)-M-1)(1 + z!(-!qu(n-o)+M+1)(1- qn), 

n=1 
(A.0.9) 

00 

X IT (1 + z -2
1 (!qu(n-1)-M-1)(1 + z!(-!qun+M+1)(1- qn) 

n=1 
(1 + z!(-!qu(1-o)+M+1) ... (1 + z!(-!qM+1) 

X 1 I I 1 
(1 + z-2(2q-M-1) .. (1 + z-2(2q-M-l+uo-u) 

= z'f (-% qo(M+1)q- a2u (o-1)01,o(Qu' z! (! qM'+1 )01,o(qu' z-! (! qM+1 XA.0.10) 

(A.0.6) 
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Theta function and Level one 

Character 

--The sl(2) characters at level k = 1 can be expressed in terms of theta functions [66], 

xsi(2) ( c-k -1 ) - f)£(p+l+s+s'+r),1 (q, c-ky-
1
q) 

1+£(p+l+s+s'+r),1,3,1 q, Y q - TJ(q) 

(B.O. I) 

For theta function we can write as, 

ll ( c-k -1 ) - ~ (n+<(p+l+•+•'+r})2( -k -1)(n+<(p+l+s+s'+l)) 
U£(p+l+s+s'+r),1 q, Y q - L.....J q 2 ( Y 2 

So we can write 

nEZ 

( + 1+ + '+ )+ <(p+1+s+s1 +r) -k<(p+1+s+s1 +r) _ <(p+1+s+s1 +r} q" p s s r 2 ( 2 y 2 

XL qn
2
+m(p+l+s+s'+r)+n((-ky-1 t. 

nEZ 

(B.0.2) 

The above expression restricts us to write the following equation; 

k 1 3 <(p+!+s+s1 +r) -k <(p+1+s+s1 +r) _ <(p+l+s+s' +•·) 
f)f(p+l+s+s'+r),1 (q, c- y- q) = q 4 ( 2 y 2 

X q- i(l+<(p+l+s+s'+r)) 2 
( (-ky-1) -(l+<(p+l+s+s' +r)) 

X L q(n+ !+<(p+!~s+s' +r) )2 ( c-ky-1 )(n+ !+<(p+l~s+s' +r) )2 0 

nEZ 

(B.0.3) 
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Finally we will arrive at 

() ( ( -k -1 ) _.! .!(!£() ( (-k -1) 
E(P+l+s+s'+r),1 q, Y q = q 4Y 2 2 E(p+1+s+s'+r),1 q, Y · (B.0.4) 

By using the relation between theta function and level one character we can write 

xsi(2) ( (-k -1 ) _.! .!(!£ xsi(2) ( (-k -1) 
l+E(p+l+s+s'+r),1,3,1 q, Y q = q 4 Y 2 2 

2+E(p+l+s+s'+r),1,3,1 q, Y 

(B.0.5) 



Appendix C 

Link Between General Character 

And [66] 

We only tested of p = 1, u = 2 [66), [37) with our formula. Now, we would like to 

compare this general formula with sumrules given in [66), where p = 1. 

Let us first look at Bf(T, a, v, p). The check is a bit involved in general and we 

will only test the theory p = 1, u = 2. In that paper , the sumrule with .\ = 0 is as 

follows, 

( 
V ) sl(2) ( ) sl(2) ( V ) 

81 1 T,- - p X3 2 1 1 T, a X3 1 2 1 T,- + p , 2 , , ' , '' 2 

( 
V ) s1(2) ( ) sl(2) ( V · +Bo 1 T,-- P X3 2 2 1 T, a X3 1 1 1 T,- + p). ' 2 '') ' ') 2 

(C.0.1) 

And in terms of class V and IV, we have 

A~= e2,1(T, -p)X~o!V (T, a, p) + Bo,2(T, -p)X~{ (T, a, v) (C.0.2) 

By using the following formulas, 

1 V sl(2) V 
ry(q/1,1 (T, 2 - p) = X3,1,2,1 (T, 2 - p) 

1 V rsl(2) V 
ry(q/O,l(T, 2- p) = X3,l,l,l(T, 2- p) (C.0.3) 

and 

vR,IV( ) vsl(2/1);R( ) Aoo T,a,v =A!o_!.1 T,a,v 
' 2' ' 2' 

1.rR,V( ) vsl(2/l);R( ) Ao 0 T, a, v =A! 0 _!.0 T, a, v 
' 2 J l 2' 

(C.0.4) 

89 
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So finally the sumrule A = 0 in [66] can be re- written as: 

xsl(2) ( )Xsl(2) ( V + )Xs!(2) ( V ) + 
3,2,1,1 T, (j 3,1,2,1 T, 2 p 3,1,2,1 T, 2 - p 

Xsl(2) (T fJ)Xsl(2). (T ~ + )Xs!(2) (T ~ _ ) _ 
3,2,2,1 ' 3,1,1,1 ' 2 p 3,1,1,1 ' 2 p -

1 ( ) sl(2/1);R( ) 
-( ) ()2,2 T, -p X l 0·1 T, fJ, V + TJ T 2, , 

1 ( ) sl(2/1);R( ) 
-( ) eo,2 T, -p X l 0·0 T, fJ, V 
TJ T 2" 

(C.0.5) 

Now we want to compare it with our generalised formula as we told before, that 

sZ(2/1) characters are periodic when () --t f3 + un, n E Z, and p = 1 where 

f3 = 0, ... u- 1. The RHS of the (4.3) in this case becomes: 

1 • 6s1-s-4n-2/3 
"'""""'""" Xsl(2/1);R (T (j v) ~(3-s-2s'-2(2n+/3))2 =y==----,----
~ ~ 2-s' _l(s-1) 2-s' _l(s+1) _.!_./3 l ' q rrr: (1 - i)' 
R '71 2 4 ' 2 4 ' 2' ~=1 q ,..,=0 nEtu 

where s' = 1, so we have 

1 
"'"""Xsl(2/1);R ( ) "'""" (n+ 2{3~s-1 )2 _ 2(n+ 2(3~s-1) _ 
~ 3-s _.!_.R T 1 fJ 1 V ~q y _ 

4 ' 2 lfJ 
/3=0 nEZ 

1 

L X
sl(2/1);R ( ) ()2,B+s-1,2 ( T, - P) 
3-s _.!_.R T, fJ, V ( ) . 

4 ' 2 ,,.., TJ T 
fJ=O 

(C.0.6) 

Let us now, collect all the information, we have two cases, first of all we shall 

mainly consider s = 1 and s' = 1. Finally we will arrive at 

1 () ( ) sl(2/l);R( ) 1 () ( )Xsi(2/l);R( ) _ 
-() 0,2 T,-p Xlo-l·o T,fJ,V + -() 2,2 T,-p lo-l·I T,fJ,V -
TJT 2'' 2' TJT 2'' 2' 

s!(2) ( ) sl(2) V ) sl(2) ( V 
X3211 T,fJ X312l(T,-+pX3121 T,--p)+ 

''' ''' 2 ''' 2 
xsl(2) ( )Xsl(2) ( V + )Xs!(2) ( V ) 

3,2,2,1 T, (j 3,1,1,1 T, 2 p 3,1,1,1 T, 2 - p 

(C.0.7) 

This is totally aggress with the sumrule A = 0 in [66]. For s=2 and s'=1 we can 
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write as; 

1 e ( ) sl(2/1);R ( ) 1 ( sl(2/1);R ( ) _ 
-() 1,2 T,-pX1 _ 1 _ 1 .0 T,a,v +-( )03,2 T,-p)X1 _ 1 _ 1 .1 T,a,v-
'TJ T 4' 4' 2' 'TJ T 4' 4' 2' 

xsl(2) ( )Xsl(2) ( V + )Xsl(2) ( V ) + 
3,2,1,2 T, a 3,1,2,1 T, 2 p 3,1,1,1 T, 2 - p 

sl(2) ( ) sl(2) ( V ) sl(2) ( V ) 
X3 2 2 2 T, a X3 1 1 1 T,- + p X3 1 2 1 T,- - p · 

''' ''' 2 '', 2 

(C.0.8) 

This totally agrees with the sumrule A = 1 in [66], as can be checked in the following. 

Bf = 
V sl(2) V sl(2) V 

02,1(1, 2 - p)X3,2,1,2(T, 2 + p)X3,1,2,1(1, 2 - p) + 
V sl(2) V sl(2) V 

01,1(1, 2 - p)X3,2,2,2(1, 2 + p)X3,1,1,1(T, 2 - p) 

(C.0.9) 

and 

A R _ e ( )Xsl(2/1);IV( ) O ( )Xsi(2/1);IV( ) 
1 - 3,2 T, -p 1,0 T, a, p + 1,2 T, -p 1,1 T, a, p (C.0.10) 

The same as before, we can write as 

(C.O.ll) 

also we can write for class IV character, 

X
sl(2/1);IV ( ) _ Xsl(2/1);R ( ) 
10 T,a,v - 1 _ 1 _ 1 .

1 
T,a,v 

' 4' 4' 2' 

X
sl(2/1);IV ( ) _ Xsl(2/1);R ( ) 
1 1 T, a, V - 1 1 1 ·O T, a, V 

' 4,-4,-2, 

(C.0.12) 

The sumrule for this case is : 

vsl(2) ( ) vsl(2) ( V ) vsl(2) ( V ) 
1 \.3 2 1 2 T, a ./\.3 1 2 1 T,- + p -'\.3 1 1 1 T,- - p + 

'', ''' 2 ''' 2 
vsl(2) ( )Xsl(2) ( V )Xsl(2) ( V ) 

./\.3 2 2 2 T, a 3 1 1 1 T, - + p 3 1 2 1 T,- - p = ''' '', 2 , ', 2 

1 ( ) sl(2/1);R ( ) 1 ( ) rsl(2/1);R ( ) 
-( -) e3,2 T, -p X! _l _1.1 T, a, V + -( -) e1,2 T, -p X! _l _l.o T, a, V 
'TJ T 4' 4' 2' 'TJ T 4' 4' 2' 

(C.0.13) 



Appendix D 

Discussion about p+u even and 

odd 

Our starting point is (4.33), where we use 

. "'"P(P + u - r)r
111 

"'"prr
111 

11 i1rpr111 . 11 

Sill = -e Slll , 
p+u p+u 

(D.0.1) 

as well as the exponential representation of sinus to write, 

. p+u-1 p+u-l u p+u-l p 2 

a(v,/l,p,T) = (;i)
2 I: I: I: I: 2:: 2: 

r=l r"=l s"=l r 111 =1 s'"=l riv=l 

ei7r [(s-l)(r"-~(s11 -l))+(s1 -l)(r'"-7(s111 -l))+(p+u-r)(s 111 -l)+r(s11 -l)+p7· 111 ] 

X e p+u + e p+u - e p+u - e p+u [ 
~(ur11 -pr'") -~(ur11 -pr111 ) ~(ur11 +pr111 ) -~(ur"+pr'")] 

. 1r(2 - E(p + 1 + s + s' + r )riv 
xsm 

3 
st(2) ( ) st(2) (P ) st(2) (u-P ) 

X Xr" s" p+u u V, T Xr 111 s111 p+u p - /l + p, T Xriv 1 3 1 --/-i - p, T · 
) l ' ' ' ) u , '' u 

(D.0.2) 

Our analysis is divided in two cases: p + u even and odd. We note that, for r even, 

. 1r(2- E(p + 1 + S + s' + r)riv J3 [ ( 1 ') [1 ( 1 ')] i1r(l+riv)] sm 
3 

= 2 E p+ +s+s + -E p+ +s+s e , 

(D.0.3) 

while for r odd, 

. 1r(2- E(p + 1 + S + s' + r)riv J3 [ ( ') [1 ( ')] i1r(l+riv)] sm 
3 

= 2 E p + s + s + - E p + s + s e , 

(D.0.4) 
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so that we split our study of each parity of p + u according to the parity of r. 

Here, we will only detail the case where p + u is even, but only because the 

treatment of th ecase p + u odd is similar and would make this appendix tedious. 

The result for the case p + u odd is quoted in (D.0.26). 

p + u even. Note that since p and u are coprime, they must both be odd in this 

case. 

• r even We relabel r = 2k, so that in this case, (D.0.2) becomes, 

ei1r [pr'" +(s-1)(r"- ~(s"-1))+(s'-1)(r'"-7(s'"-1))] 

X [A+ A*- c-c*] [E(p + 1 + s + s')- [1- E(p + 1 + s + s')Jei1rriv] 

sl(2) ( ) s!(2) ( P ) s!(2) ( u - P ) ( ) 
X xr" s" p+u u v, T xr'" s'" p+u p -p, + p, T xriv 1 3 1 --p,- p, T ' D.0.5 ' ) ' ' ' ' u , , ' u 

where 

~(p+u-2) 

A ~ 2irrk(ur"-pr'") 
~ ep+u 

k=l 

~(p+u-2) 

c ~ 2irrk(ur"+pr'") 
~ ep+u . (D.0.6) 
k=1 

If ur"- pr111 = a(p + u), for a E Z, Le. if (r",r 111
) = (p + u- j,j) for 

j = 1, ... , p + u- 1, then A+ A* = p + u- 2. If ur"- pT111 is not proportional 

to (p + u) and is even, use 

N Nf 

L ar r1- e 
e =e 

a=1 
1 - er 

(D.0.7) 

1 2i1r(ur" pr'") with N = 2 (p + u- 2) and f = p+: to conclude A+ A* = -2. If 

ur"- pr111 is not proportional to (p + u) and is odd, A+ A* = 0. Similarly, 

if ur" + pr 111 = a(p + u), for a E Z, i.e. if ( r", r"') = (p + u - j, j) for 

j = 1, ... , p + u - 1, then C + C* = p + 1t; if ur" + pr111 is not proportional to 

(p + u) and is even, C + C* = -2 and if UT 11 + pr"' is not proportional to (p + u) 

and is odd, C + C* = 0. 
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So the non-zero contributions to A+ A* - C - C* come from two sources. 

When (r",r'") = (p+u-j,j) withj = 1, ... ,p+u-1, A+A* =p+u-2 and 

C + C* = -2 because ur" + pr"' = u(p + u- j) + pj = u(p + u) + j(p- u) is 

always even. However, when j = ~(p + u), C + C* = p + u- 2. In conclusion, 

A+A*-C-C* =p+uwhen (r",r"') = (p+u-j,j) withj = 1, ... ,p+u-1, 

except j = ~(p+u). Similarly, A+A*-C-C* = -(p+u) when (r", r"') = (j,j) 

with j = 1, ... ,p + u- 1, except j = ~(p + u). 

We write, 

v'3 
aeven(v,jj,,p,T) = B(p+u) 

2 

x { L [t(p + s + s')ei1rr;"- (1- t:(p + s + s'))l}x;:~~L,l (u: p fJ,- p, r) 
riv:=:1 

p+u-1 u p 
X L L L ei7r[pj+(s-1)(j-~(s"-1))+(s'-1)(j-~(s"'-l))] 

j==1 s"==1 s"'==1 

{ 
it(2) ( ) it(2) (p ) it(2) ( ) it(2) (p ) } 

X xp+u-j,s",p+u,u v, T xj,s"',p+u,p -:;;_M+P, T -Xj,s",p+u,u v, T xj,s'",p+u,p -:;;_M+P, T 

(D.0.8) 

• r odd 

We relabel r = 2k- 1, so that in this case, (D.0.2) becomes, 

y13 
1 

p+u-1 u p+u-1 p 2 

a(v,jj,,p,r) = 2(2i)2 2: 2: 2::: 2: I: 
r"==1 s"==1 r"'==1 s"'==l riv==l 

ei7r [pr"' +s" +s111 +(s-l)(r"-~(s"-l))+(s'-l)(r"'- ~(s"'-1))] 

X [Ji +A*- 6- 6*] [t:(p + s + s') + [1- t:(p + s + s')k7r(l+riv)J 

it(2) ( ) it(2) (p ) it(2) (u-P ) ( ) 
X xr" s" p+u u v, T xr"' s'" p+u p - jJ, + p, T xriv 1 3 1 --jJ,- p, T ' D.0.9 ' ' ) ' ' ' u l'' u 

where 

~(p+u) 
~ i7r(2k-1)( 11 "') A ~ e~ur -pr 

c 

k==1 

~(p+u) 
~ ,,.(2+k-t)(ur"+pr'") 
~ e p u 

k==l 

(D.0.10) 

The non-zero contributions to A+ A*- 6- 6* come from two sources. When 

(r",r"') = (p+u-j,j) withj = 1, ... ,p+u-1, A+A* = (-1)u-j(p+u) = 
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( -1)J+1 (p + u) and 6 + 6* = 0 except when j = !(P + u), when 6 + 6* = 

( -1)!(p+u)(p + 11.) so that A+ A*- 6- 6* = o. 

In conclusion, A+ A*-6- 6* = ( -1)1+1 (p+ u) when (r", r111
) = (p+ u- j, j) 

with j = 1, ... ,p + u- 1, except j = !(p + u). Similarly, A+ A* - 6-

6* = ( -1)J+l(p + u) when (r", r 111
) = (j, j) with j = 1, ... ,p + u- 1, except 

j = !(P + u). 

We write, 

v'3 
aodd(v, f.L, p, 7) = B(p + u) 

2 

{ 
~ 1 · iv 1 l} sl(2) ( U - p 

X .L.J [(1- E(p + S + S ))e111
-r - E(p + S + S) Xriv,1,3 ,1 -U-f.J,- p, 7) 

riv=l 
p+u-1 u p 

X L L L ei11"[1+s"+s"'+(s-l)(j-~(s"-l))+(s'-l)(j-7(s"'-l))] 

j=l s"=l s"'=l 

{ 
st(2) ( ) st(2) (P ) st(2) ( ) s1(2) (P ) } 

X xp+u-j,s",p+u,u v, 7 xj,s"',p+u,p -;;,f.L+p, 7 +Xj,s",p+u,u v, 7 xj,s'",p+u,p -;;,f.L+p, 7 

(D.O.ll) 

We now proceed to express a even+ a odd when p + u is even. First note that, 

2 

L [E(p + s + s1)ei11"riv - (1- E(p + s + S1))]xff?i,3,1 = 

- xf~~~i, 1 + ei11"(s+s') xi~~~i, 1 , (D.0.12) 

while 

2 

L [(1- E(p + s + s1))ei11"riv - E(p + s + S1 )]xff~~{,3 , 1 = 

- xf~i~i,l - ei11"(s+s') xi~i~i, 1 . (D.0.13) 

Inserting these expressions in (D.0.8) and (D.O.ll), and after some elementary 
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steps, we write, omitting the character arguments for clarity, 

M p+u-1 u p 
_ _ _V_0( ) """' """'"""' i7r[(l+s+s')j-(s-1)(s"-1)~-(s 1 -1)(s111 -1)i±":.J a- aeven+aodd- 8 p+u L....t L....t L....t e p 

j=1 s11 =1 s"'=1 

X { { [ei7r(s" +s
111 

+j) -1]Xsl(2) +ei7r(s+s') [1 +ei7r(s" +s"' +i)]Xsl(2) }xsl(,~) xsl(2) . Ill 

1,1,3,1 2,1,3,1 J,s ,p+u,u p+u-J,s ,p+u,p 

+ { [ei1r(s" +s"' +i) + 1]Xsl(2) -ei1r(s+s') [1 -ei1r(s" +s"' +il]Xsl(2) } xsz(,~) Xsl(,~/ } 
1,1,3,1 2,1,3,1 J,S ,p+u,u J,s ,p+u,p 

(D.0.14) 

The first two terms in (D.0.14) may be rewritten as, 

10 p+u-1 u p ¥(p + u) ~ 2:: 2:: ei7r [1+(l+s+s')j-(s-1)(s"-1)~-(s'-1)(s"'-1)~ J 
]=1 s11 =1 s"'=l 

i7r(l+s+s')f(s11 +s"' +j+l)xsl(2) xsl(2) xsl(2) 
X e J,s" ,p+u,u p+u-j,s'" ,p+u,p 2-E(s" +s'" +j),1,3,1' (D.0.15) 

but 

ei7r(l+s+s')(j+f(s"+s"'+j+l)) = ei7r(1+s+s')(1+s"+s111
)' (D.0.16) 

so that these terms give, 

~.; (p + u) ~ t ei1r [1-(s-l)(s"-l)~-(s'-l)(s"'-1))~] X ei7r(l+s+s')(l+s"+s"') 

s11 =1 s11'=1 

(D.0.17) 

Using the Neveu-Schwarz sumrules (4.16), and remembering that here, pis odd, and 

therefore E(s" + s'" + j) = E(s" + s111 + j + p + 1), we have, 

j=l 

- A(s" s'" 0) E.[A2 (s" s"' 0)-A(s" s'" 0)] 
.J!._ _l L 1(211-IC) Y ' ' qu ' ' ' ' 
4u 2 ..~Y 8 ' 

q Y p+l-s"' s" u p·O+l ( ) ,,, 2 1]q 
OEZ 

(D.0.18) 

The first two terms in (D.0.14) become, 

M u p 
V 0 ( ) L _l L L i7r[l+(l+s+s')(l+s"+s"')-(s-l)(s11 -l)i±":.-(s'-l)(s"'-1)p+u] - p + u q4u y 2 e u p 

4 
s11 =1 s"'=l 

- A(s" s"' 0) E.[A 2 (s" s'" 0)-A(s" s"' 0)] 

Lx
sl(2ll;C) Y ' ' qu ' ' ' ' 

1 (D.0.19) 
p+l-s111 ,s11 ,u,p;0+ 2 ry(q) 

OEZ 
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he last two terms in (D.0.14) may be rewritten as, 

M p+u-1 u p 
Y<J( ) '"""' '"""' '"""' in[1+(1+s+s')j-(s-1)(s"-1)l±":.-(s'-1)(s"'-1)l±":.J --p+u L LLe " p 
4 . 

J=1 s"=1 s"'=1 

X in(l+s+s')f(s" +s"' +j) X;!(2) X;!(2) . X;!(2) 
e J,S 11 ,p+u,u p+u-],S111 ,p+u,p 2-f(s"+s'"+j+1),1,3,1' (D.0.20) 

or again, using (4.16) and 

ein(1+s+s')(j+f(s" +s"' +j)) = ein(1+s+s')(s" +s"') 
' 

(D.0.21) 

one has, 

M u P 
Y....f(p + u) I: I: ei1r [1+(1+s+s')(s"+s"')-(s-1)(s"-1)~-(s'-1)(s"'-1)~ J 

s"=1 s'"=1 

- A(s" ,s"' ,0) E.[A2(s" ,s"' ,0)-A(s" ,s"' ,O)(u+1)) 
f,;(u+1)2 -!<u+1) '"""'Xs!(2J1;1C) _Y ____ q_" _________ _ 

q Y L p+1-s"',s"+u,u,p;O+! ry(q) 
OEZ 

Now use the sl(2 11; C) property (3.54), i.e. 

x;/<211 ;C) _ x;/<211 ;C) 
p+1-s"' ,s"+u,u,p;O+! - 1-s"' ,s" ,u,p;O+!' 

and relabel s"' = siv - p, so that (D.0.22) is given by, 

- u 2p 
J3 ( ) L L in [l+(l+s+s')(s" +siv+1)-(s-l)(s" -1) l±":.-(s'-l)(siv -1) I±":.] - p+u e " P 

4 . 
s"=1 stv=1+p 

(D.0.22) 

(D.0.23) 

1 
- A(s",siv,o) ![A2 (s",siv,O)-A(s",siv,o)] 

-!u -2 ~ Xs1(211;1C) y q . (D.0.24) 
q Y L p+1-s•v,s",u,p;O+! ry(q) 

OEZ 

By combining the above contribution (for r odd) with the contribution (D.0.19) (for 

r even), we write, when p + u is even, 

M u 2p 

( ) __ V_<J( )-1-~ ~ in(ss"'+s's"-(s-1)(s"-1)!-(s'-l)(s"'-1):!!.) 
a v, /1, p, T - 4 p + u (T) L L e P 

TJ s"=1 s"'=1 

X~ X;/(2J1;<C) (v T) A(s",s"',O)-! ;(A(s",s"',O)-!J2 
L p+1-s1" s" u p·O+l '/1, Y q · 

' l l l 2 
OEZ 

(D.0.25) 

When p + u is odd, the expression (D.0.2) can be shown to give, 

10 1 u P 

( ) 
__ Y_0 ( + )--~ '"""' ni(p+s+s')(s"+s"') ni[-(s-1)~(s"-l)-(s'-l)~(s"'-1)) 

a v, /1, p, T - 4 p 1t (T) L L e e 
TJ s"=l s"'=1 

X nis"' -!(u+1) fu+~+!:f '"""'X;/(2Jl;IC) ( ) A(s",s"',O) ;[A(s",s'",0)2 -A(s",s"',O)] 
e y q L p+1-s"' ,s'+u' ,u,p;O v, /1, T y q . 

OEZ 

(D.0.26) 
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