
Durham E-Theses

Improving usability in pan gateways by means of a

novel Bluetooth pairing method

Regan, Philippa

How to cite:

Regan, Philippa (2002) Improving usability in pan gateways by means of a novel Bluetooth pairing

method, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3750/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3750/
 http://etheses.dur.ac.uk/3750/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

IMPROVING USABILITY IN PAN GATEWAYS BY MEANS

OF A NOVEL BLUETOOTH PAIRING METHOD

Submitted for the degree of Master of Science, Durham University, 21 51 November 2002.

Philippa Regan

Abstract

This thesis investigates the usability issues surrounding an implementation of the

Personal Area Network (PAN) Gateway, a new concept in mobile communications. The

PAN Gateway device consists of a GSM/GPRS modem and a Bluetooth modem. The

Bluetooth modem is used to link mobile devices to form a PAN and the GSM/GPRS

modem is used to link the PAN to external networks.

The possible Man Machine Interfaces for the PAN Gateway are discussed together with

the usability of existing Bluetooth devices. A weakness was discovered in the usability

and security of Bluetooth Pairing in existing mobile devices and this led to the

development of the "Touch and Find" system and the Pairing Link Protocol. The "Touch

and Find" system interacts with the Bluetooth stack and allows simple, intuitive pairing of

Bluetooth devices via a serial link. A full duplex serial link was implemented using

simple electrical contacts to provide the link. Inductive coupling and infrared solutions

were also developed. The Pairing Link Protocol specifies the signal flow for the "Touch

and Find" process. The "Touch and Find" system that was implemented using simple

electrical contacts shows how simple Bluetooth pairing can be. Pairing is simply carried

out by briefly touching together the devices to be paired.

The "Touch and Find" system was implemented in C on Borland C++ and used in

conjunction with TTPCom's Bluetooth development system, which consists of a "Mad

Cow" evaluation board and Genie -a Bluetooth development tool.

The research carried out demonstrates the feasibility of the "Touch and Find" system

over a variety of physical mediums. The system greatly improves the usability of

Bluetooth Pairing, thus improving the "Out of Box" experience. lt is likely that the

Inductive solution can be extended to enable battery charging across the "Touch and

Find" Inductive interface, further enhancing the "value added" capabilities of this system.

IMPROVING USABILITY IN PAN GATEWAYS

BY MEANS OF A NOVEL BLUETOOTH

PAIRING METHOD

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Philippa Kate Regan

This thesis is submitted in candidature for the degree of Master of Science in the

School of Engineering, University of Durham, 21 51 November 2002.

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

Declaration

The material contained within this thesis is the sole work of the author and has not

been submitted previously in this or any other University.

Statement of Copyright

"The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it should be

acknowledged."

~----~~====------------- - ---

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

ACKNOWLEDGEMENTS

The author wishes to thank TTPCommunications, Cambridge for their support

throughout this project.

The author wishes to thank the following people for their help and patience: -

From the School of Engineering, Durham University: D

Peter Baxendale, lan Hutchison, Dr. Simon Johnson, Richard McWilliam, William

Pugsley and Craig Robinson.

From TTPCommunications, Cambridge: -

Gordon Aspin, Andy Fogg, Jerome Guibal, Dr. John Haine, Dr. David Kyle, Matthew

Waterson, Neil Werdmuller.

Additionally, the author wishes to thank Joanna Donkin, Keith Herrman, Jennifer Regan

and Michael Regan for their continuing support.

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Phil ippa Regan

TABLE OF CONTENTS

TABLE OF CONTENTS ... !

TABLE OF FIGURES ... V

GLOSSARY .. VII

CHAPTER 1 INTRODUCTION ... 1

1.1 INTRODUCTION TO THE THESIS 2

CHAPTER 2 THE PAN GATEWAY DEVICE ... 4

2.1 THE PAN GATEWAY CONCEPT 4

2.2 THE NEED FOR A PAN GATEWAY 6

2.3 USABILITY IN MOBILE DEVICES 8

2.4 METHODS OF TEXT ENTRY 9

2.4.1 Danger's "Hiptop" 10

2.4.2 Graffiti vs. on screen keyboard 11

2.4.3 Soft Keyboards 12

2. 4. 4 Alpha Grip 14

2.4.5 Modo 16

2.4.6 Triple tap, Two-key method or T9? 16

2.4. 7 Digit Wireless 's Fastap n" 18

2. 4. 8 Voice Recognition 19

2.4. 9 Evaluation of Existing text Entry Methods 20

2.5 CHAPTER SUMMARY 21

CHAPTER 3 TECHNOLOGIES FOR SHORT RANGE WIRELESS

COMMUNICATION .. 22

3.1 IRDA 22

3.2 TECHNOLOGIES USING THE 2.4 GHZ ISM BAND 23

3.2.1 Health Issues 23

3.2.2 Spread Spectrum Modulation (SSM) 24

3.2.3 IEEE802.11b 25

3.2.4 HomeRF 26

3. 2. 5 Blue tooth 26

3.2.5.1 Key Features of Bluetooth 27

3.2.5.2 Architecture/Topology 28

3. 2. 6 IEEE 802. 15 29

3.3 COEXISTENCE OF BLUETOOTH AND IRDA 30

-----====------------------·-------------------------

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

3.4 COEXISTENCE IN THE 2.4 GHZ SPECTRUM .. 30

3.4. 1 Solutions to the ISM Band Co-existence Dilemma .. 33

3.5 EVALUATION OF WIRELESS TECHNOLOGIES FOR THE PAN GATEWAY 34

3.6 USABILITY OF BLUETOOTH IN MOBILE 'PHONES .. 34

3.7 FUTURE OF BLUETOOTH .. 35

3.8 CHAPTER SUMMARY .. 37

CHAPTER 4 REQUIREMENTS OF THE PAN GATEWAY ... 38

4.1 AIMS .. 38

4.2 CONCEPTS .. 39

4. 2. 1 Possible MMI's for the PAN Gateway .. 40

4.2.1.1 Minimal User Interface .. 40

4.2.1.2 Basic User lnterface .. 41

4.2.1.3 Advanced User Interface .. 41

4.2.2 Other Modules ... 42

4.3 EVALUATION ... 42

4.3.1 Minimal user Interface .. 42

4.3.2 Basic User Interface ... 43

4.3.3 Advanced User Interface ... 43

4.4 SELECTION OF OPTIMAL MAN MACHINE INTERFACE ... 43

4.5 REQUIREMENTS- USABILITY AND THE MAN MACHINE INTERFACE 44

4.6 A NEW CONCEPT FOR AN INTUITIVE BLUETOOTH PAIRING METHOD 45

4.7 PMG- PERSONAL MOBILE GATEWAY DEVICE ... 46

4.8 CHAPTER SUMMARY .. 47

CHAPTER 5 THE "TOUCH AND FIND" SYSTEM ... 48

5.1 OVERVIEW OF THE "TOUCH AND FIND" SYSTEM .. 48

5. 1. 1 Development Plan .. 48

5. 1. 2 Requirements of "Touch and Find" .. 49

5.1.3 System Concepts .. 49

5.2 MAINPLPTASK ... 5o
5.3 MAIN PLP TASK REQUIREMENTS ... 50

5.4 BLUETOOTH INTERFACE .. 51

5.5 PAIRING LINK PROTOCOL CONCEPTS ... 54

5.5.1 Half Duplex Design ... 54

5.5.2 Full Duplex Design .. 56

5. 5. 3 Conclusion of Pairing Link Protocol Concepts ... 58

5.6 DESIGN OF THE MAIN PLP TASK .. 58

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

5.6.1 Main PLP Task Interfaces ... 61

5.6.2 States .. 61

5.6.3 Important Decisions in the design of the Main PLP Task 64

5.7 IMPLEMENTATION AND TESTING OF THE MAIN PLP TASK ... 66

5. 7.1 Isolation Test ... 66

5. 7.2 Test Task Test. .. 67

5.8 CHAPTER SUMMARY .. 69

CHAPTER 6 THE PLP TRANSPORT TASK ... 70

6.1 PLP TRANSPORT TASK REQUIREMENTS .. 71

6.2 PLPTX TASK DESIGN .. 71

6.3 SERIAL INTERFACE ... 72

6.3.1 Creating Events ... 73

6. 3. 2 Opening the Port and Setting it up ... 7 3

6.3.3 Creating Threads .. 74

6.3.4 Tx Thread Function .. 75

6.3.5 Rx Thread Function .. 75

6.4 PLP TRANSPORT TASK- WRITING A SIGNAL TO THE SERIAL PORT.. 77

6.5 PLP TRANSPORT TASK- SIGNAL FORMAT ... 79

6.6 PLPTX CODE- READING A SIGNAL FROM THE SERIAL PORT.. 80

6.7 IMPORTANT DECISIONS IN THE DESIGN OF THE PLP TRANSPORT (PLPTX) TASK. 83

6.8 IMPLEMENTATION AND TESTING .. 84

6. 8. 1 Addition of Autostart feature .. 87

6.8.2 Disconnection Test ... 90

6.9 CHAPTER SUMMARY .. 91

CHAPTER 7 HARDWARE .. 92

7.1 SIMPLE ELECTRICAL CONTACT SOLUTION ... 92

7. 1. 1 Schmitt Trigger .. 95

7.1.2 Detecting the Connected State ... 97

7. 1. 3 Physical Contacts ... 100

7.1.4 Testing the Simple Electrical Contact Solution .. 100

7.2 INFRARED SOLUTION ... 101

7.3 INDUCTIVE LOOP SOLUTION .. 104

7.4 FOUR COIL SOLUTION .. 106

7.4.1 Calculating the Resonant Frequency of the Circuit. 107

7.4.2 Testing the "Four Coil" Inductive Solution ... 111

7.5 CHAPTER SUMMARY .. 111

iii

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

CHAPTER 8 CONCLUSIONS AND SUMMARIES ... 112

8.1 EVALUATION ... 112

8. 1. 1 Software and Hardware ... 112

8. 1. 2 Hybrid Circuit Analysis ... 114

8. 1. 3 Other Hardware Solutions ... 11 7

8. 1.4 System .. 117

8.2 SUMMARY ... 118

8.3 CONCLUSION .. 119

8.4 ENHANCEMENTS TO THE "TOUCH AND FIND" SYSTEM .. 120

8.5 CONCLUDING STATEMENT ... 122

REFERENCES .. 123

APPENDIX 1 ... 125

APPENDIX 2 ... 126

iv

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

TABLE OF FIGURES

Figure 2-1 Block Diagram of PAN Gateway 4

Figure 2-2 Danger's Hiptop Device 1 0

Figure 2-3 OPT I high performance soft keypad 13

Figure 2-4 Atomik Keyboard Layout. 13

Figure 2-5 Alphagrip 15

Figure 2-6 Modo device 16

Figure 2-7 'Phone Keypad 16

Figure 2-8 Digit's FastapTM Keypad 18

Figure 2-9 Mobile Phone with Fastap™ Keypad 19

Figure 3-1 Bluetooth Topology Diagrams 28

Figure 3-2 Diagram of spectrum usage in the ISM band 31

Figure 4-1 Block Diagram of the PAN Gateway .. 40

Figure 4-2 Furby 45

Figure 4-3 IXI 's PMG (Personal Mobile Gateway) 46

Figure 5-1 Touch and Find Block Diagram 50

Figure 5-2 Wisdom Log 1 52

Figure 5-3 Wisdom Log 2 53

Figure 5-4 Bluetooth Stack Interface Diagram 53

Figure 5-5 Half Duplex Flow Chart 55

Figure 5-6 Full Duplex State Diagram 56

Figure 5-7 Full Duplex Flow Chart 57

Figure 5-8 Full Duplex Signal Diagram 59

Figure 5-9 Pairing Link Protocol Signal Flow 60

Figure 5-10 Full Duplex Solution State Diagram 61

Figure 5-11 Nassi-Schneiderman Diagram of IDLE state 63

Figure 5-12 Nassi-Schneiderman Diagram of ACTIVE state 63

Figure 5-13 Nassi-Schneiderman Diagram of WAIT _FOR_KEY state 64

Figure 5-14 Nassi-Schneiderman Diagram of GOT _KEY state 64

Figure 5-15 Signal Flow between PLP Task and Test Task 68

Figure 6-1 "Touch and Find" Block Diagram 70

Figure 6-2 PLPTX Block Diagram 72

Figure 6-3 Read Generic and WriterGeneric FlowChart 76

Figure 6-4 Flowchart of writing a signal to the serial port 78

Figure 6-5 Bus Signal Structures 80

Figure 6-6 rxState State Diagram 81

V

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

Figure 6-7 Flowchart of Receiving and Processing Signals .. 82

Figure 6-8 Nassi-Schneiderman diagrams of plpbuProcessRxData 83

Figure 6-9 Read/Process Test Signal ... 85

Figure 6-10 PLPTX Test Setup ... 85

Figure 6-11 PLPTX Task txState Diagram .. 87

Figure 6-12 Pairing Link Protocol Signal Flow 2 .. 88

Figure 6-13 Pairing Link Protocol Start Sequence Signal Flow 89

Figure 7-1 "Hybrid Circuit" Diagram .. 93

Figure 7-2 Schmitt Circuit Diagram and Transfer Characteristic 95

Figure 7-3 Block Diagram of Hardware ... 95

Figure 7-4 Full Simple Electrical Contact Solution .. 96

Figure 7-5 Generic Signal Structure .. 98

Figure 7-6 RxState Diagram 2 .. 98

Figure 7-7 Final Signal Flow Diagram ... 99

Figure 7-8 Concept Diagram of Simple Electrical Contacts 100

Figure 7-9 Basic Infrared Solution .. 102

Figure 7-10 PLPTX Interface for Infrared solutions ... 103

Figure 7-11 Circuit Diagram of lrDA Solution .. 104

Figure 7-12 Circuit Diagram of Test Circuit.. ... 105

Figure 7-13 Physical Interface For Inductive Solution ... 106

Figure 7-14 lnductor coil Alignment .. 106

Figure 7-15 Key to Equation 1 .. 107

Figure 7-16 Resonant Frequency Test Circuit .. 108

Figure 7-17 Inductive Solution Development Circuit Diagram 109

Figure 7-18 Fall-off of Voltage in Receive Circuit.. .. 110

Figure 7-19 Circuit Diagram of Inductive Solution ... 110

Figure 8-1 "Hybrid" Circuit for Analysis ... 114

vi

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method

GLOSSARY

AFH

ATOMIK

SWIG

DSSS

FCC

FHSS

FOCC

GPRS

Graffiti

GSM

HCI

lrDA

ISM

LoS

Mbps

MMS

PAN

PDA

RF

SHORE

SMS

T9

TCP/IP

Wpm

Adaptive Frequency Hopping

Alphabetically Tuned & Optimised Character Layout

Bluetooth Wireless Internet Gateway

Direct Sequence Spread Spectrum

Federal Communications Commission

Frequency Hopping Spread Spectrum

Fluctuating Optimal Character Layout

General Packet Radio Service

Input method for palm pilots using a stylus

Global System for Mobile Communication

Human Computer Interaction

Infrared Data Association

Industrial Scientific Medical

Line of Sight

Mega bits per second

Multi-media Messaging Service

Personal Area Network

Personal Digital Assistant

Radio Frequency

Student HCI Online Research Experiments

Short Message Service

Tegic 9- predictive text system.

Transfer Control Protocol/lnternet Protocol

Words per Minute

vii

Philippa Regan

Introduction Philippa Regan

CHAPTER 1 INTRODUCTION

The research investigated how to improve the usability of the Bluetooth Pairing process

used within mobile devices in order to improve the user's "Out of Box" experience.

Initially the research focused on the concept of a Personal Area Network (PAN)

Gateway device and how the user interface should be designed, this led to an

examination of various methods of text entry and an investigation into the usability of

existing Bluetooth enabled mobile 'phones. The project was undertaken in conjunction

with TTPCommunications (TTPCom), Cambridge.

A clear shortfall in the usability and security of Bluetooth pairing was discovered and it

was decided to develop the "Touch and Find" system to overcome these problems.

The "Touch and Find" system uses a serial link to transfer the data required to enable

the pairing of Bluetooth devices. The "Pairing Link Protocol" was designed to specify

the signal flow required in order to exchange the necessary information.

The software for the "Touch and Find" system was developed in C, using Borland C++

and TTPCom's "Genie" emulator in addition to a TTPCom "Mad Cow" Bluetooth

Evaluation Board. The "Touch and Find" system interfaces with the Device Manager

within the TTPCom implementation of the Bluetooth stack and transmits the signals

specified in the "Pairing Link Protocol" from a Windows serial port to the developed

hardware circuitry for transmission.

The investigation into which physical mediums the "Touch and Find" system could use

has resulted in the successful implementation and testing of a simple electrical contact

solution and an inductive solution in addition to the design of two Infrared solutions.

The "Touch and Find" system developed clearly shows the feasibility of using this

method to increase the usability and security of Bluetooth pairing using a variety of

physical mediums. The "Pairing Link Protocol" has enabled a robust link to be formed

to exchange the necessary information.

Introduction Philippa Regan

1.1 INTRODUCTION TO THE THESIS

Chapters 2 and 3 contain the literature survey for the thesis. Chapter 2 introduces the

PAN Gateway concept and how it might be used. lt goes on to discuss the usability of

mobile devices and in particular the various existing text entry methods that have been

designed. The chapter finishes with an evaluation of the text entry methods covered

and a summary of what has been covered in the chapter.

In Chapter 3 the wireless technologies which could be used to provide the local area

connectivity for the PAN Gateway are introduced and evaluated together with relevant

coexistence issues. The usability of Bluetooth in existing mobile devices is evaluated

and the future of Bluetooth considered.

In Chapter 4 the aims of the PAN Gateway are discussed and possible user interfaces

are considered, evaluated and an optimal interface selected. The general

requirements of the PAN Gateway are stated and a new concept to improve the

usability of Bluetooth Pairing is introduced.

Chapter 5 develops the concept proposed in Chapter 4 to improve the usability in

Bluetooth pairing into the "Touch and Find" system. The chapter begins with an

overview of the aims, concepts and requirements of the "Touch and Find" system and

then moves on to describe and evaluate the two different concepts developed by the

author to specify the signal flow (the Pairing Link Protocol) required in the "Touch and

Find" system. The design of the main PLP task code is described and any important

decisions made in the design process highlighted. Finally the implementation and

testing of the main PLP task is documented.

In Chapter 6 the PLP transport task is described. The chapter begins with describing

where the PLP transport task (PLPTX) fits into the "Touch and Find" system and its

requirements. A thorough description of how to set up and use the Windows serial port

for non-overlapped Input/Output is given. The development of the methods to write

code to the serial port and read code from it is described together with a discussion

about the signal structure and how its design affects the processing task in the receive

sections. Finally the successful implementation and testing of the PLP transport task is

described.

In Chapter 7 the hardware is developed, putting into place the final part of the "Touch

and Find" system. The chapter starts with an introduction to the simple electrical

2

Introduction Philippa Regan

contact solution which uses the "hybrid" transceiver and describes the modifications

required to the software in order to detect the connected state. The designs for two

infrared solutions are described and evaluated. Finally, the design of the "four coil"

Inductive coupling solution is described.

Chapter 8 contains the evaluation, conclusion and summary for the work and the

thesis. The software, hardware and the complete system are evaluated. The content

of the thesis and conclusions drawn from the chapters are summarised and then

overall conclusions given. Finally possible enhancements and further work for the

"Touch and Find" system are described and then a concluding statement is given.

3

The PAN Gateway Device Philippa Regan

CHAPTER 2 THE PAN GATEWAY DEVICE

This chapter introduces the concept of the PAN Gateway and shows the context in

which the PAN Gateway might be used. The usability of mobile devices is discussed

together with a comprehensive description of existing text entry methods.

2.1 THE PAN GATEWAY CONCEPT

A Personal Area Network (PAN) is a collection of devices that might be carried by a

mobile, networked individual (for example a professional on the move, an internet-wise

tourist)[1]. The devices may include any subset of: cell phone, laptop, mobile 'phones,

palm pilot and other mobile devices.

The envisaged PAN (Personal Area Network) Gateway would be a small device that

would contain a GSM/GPRS modem and a Bluetooth modem, as shown in Figure 2-1.

The GSM/GPRS modem would be used to connect the PAN to external networks. The

Bluetooth modem is used to enable connections between local Bluetooth enabled

devices such as PDA's (Personal Digital Assistant), cameras and PC's. "Biuetooth is a

low cost, low power, short-range radio technology, originally developed as a cable

replacement to connect devices such as mobile 'phone handsets, headsets, and portable

computers" [2]. Other technologies that could have been used to provide local

connectivity will be discussed in Chapter 3.

Figure 2-1 Block Diagram of PAN Gateway.

Rather than simply using a Bluetooth enabled mobile 'phone it is advantageous to simplify

the interfaces on the PAN gateway in order to create a small, simple, cost effective, user

friendly device. Ideally the PAN gateway will be the size of a matchbox and would only

require an On/Off button and an L.E.D. to indicate network coverage and power on.

4

The PAN Gateway Device Philippa Regan

Bluetooth (see section 3.2.5 for more information) is not a line-of-sight connection and so

the PAN gateway device could be left in a briefcase or attached to the users belt for

example. There are many factors that need to be considered in the design of a PAN

Gateway, such as whether the user will always have another device that they can use to

dial the required number for a 'phone function and how to enable Bluetooth pairing. These

factors are considered in Chapter 4. The usability of existing devices is discussed in

section 2.3 (Usability in Mobile Devices) and the technological aspects are discussed in

Chapter 3.

The PAN gateway system has significant advantages; the use of Bluetooth means that

full functionality can be obtained from your PDA wherever you are in the world. lt can

link up to any Bluetooth enabled handset and is not restricted to countries with

compatible mobile 'phone technologies. Upgrading your PDA will be cheaper as you'll

be replacing a simpler device, as it does not have the GSM functions in it. In a white

paper for Lucent Technologies, Wetzel stated [3] that Bluetooth wireless technology in

PAN's is very likely to change the way we handle and access data in the near future.

He noted that a similar development during the past ten years can be observed in the

way the mobile phone has changed our behaviour in terms of information vs.

independence of location.

In addition, the PAN Gateway concept is advantageous for network operators.

Network operators presently massively subsidise the cost of handsets based on the

revenue that will be gained from use of the handset, i.e. "line rental" and call charges.

As mobile 'phones become more integrated, operators are being expected to provide

users with increasingly expensive handsets for minimal cost. Meanwhile, the mobile

'phone market has become significantly more competitive, reducing the revenue from

each call made. The PAN gateway could allow a move away from this increasingly

undesirable situation by offering a new concept in mobile communication. Initially it will

probably be necessary for operators to include a basic Bluetooth enabled handset to

enable "traditional" voice calls.

A similar concept to the PAN Gateway is BWIG (Biuetooth Wireless Internet Gateway)

[4] which defines a Bluetooth usage model that provides seamless ad-hoc web access

for internet enabled mobile devices through a Bluetooth enabled fixed internet

connection; Users will be able to access the internet without the need for a dialup

connection, providing faster throughput speeds (11 Mbps can be achieved on

aggregate using a fully deployed Scatternet) wirelessly and with the capability to share

5

The PAN Gateway Device Philippa Regan

the connection. In BWIG the TCP/IP protocols are not used over the Bluetooth Radio

in order to reduce the overhead across the Bluetooth link.

Another similar concept is being developed by Norwood Systems [5], their aim is to

provide voice applications throughout the office to create a local network for voice

communications using low power devices such as mobile 'phones, cordless headsets

and voice enabled PDA's. The system will incorporate a voice recognition server and

telephony gateway allowing on screen dialling, voice recognition for calling from a

headset, dictation via headset and other functions.

2.2 THE NEED FOR A PAN GATEWAY

According to a European Commission study carried out in Spring 2000, 55% of the

population own a Mobile 'phone in Europe. Two years later, ownership of a mobile

'phone has increased and in many European countries there are now more mobile

'phone subscriptions than fixed line subscriptions. As usage of mobile 'phones for

voice applications increases so does the usage for data applications.

More and more 'phones now come with built in support for data functions; increasingly

consumers are able to synchronise their mobile 'phone with their PC using a serial,

USB, lrDa or even Bluetooth connection. As the functions of mobile 'phones, PDA's

and PC's continue to merge, the question arises as to whether mobile 'phones with

integrated address, diary and data functions or PDA's with mobile communications

capabilities will become the dominant market force. Despite the continuing

convergence of the mobile 'phone and the PDA it is clear that at present the two

devices have quite different features; display size, input methods, software, services

available, and communication with other services distinguish the devices currently on

offer [6].

Presently the majority of "organiser" functions that are included on mobile 'phones are

not very user friendly or indeed particularly useful, although there are increasingly more

exceptions. lt seems that PDA manufacturers Palm and Handspring are beating many

of the mobile 'phone manufacturers at their own game by creating integrated

'phone's/PDA's. For example, the Handspring Visor 'phone has a large screen and

provides multiple ways of accessing the 'phone book function.

Usability expert Jacob Nielsen [7] stated that there is a major problem in the different

form factors required for each of the two sets of functions. i.e. A device that is suited to

6

----------- --

The PAN Gateway Device Philippa Regan

holding up to your ear is not a device well suited to accessing the Internet (at least until

the Internet becomes voice powered), whereas a PDA has a large screen and is thus

well suited to accessing and viewing data. Similarly, holding a PDA to your ear does

not feel good, although perhaps users will become more accustomed to doing just that

or alternatively using a headset in the same way that users overcame the initial

embarrassment of talking on a mobile 'phone in public.

For business users there is clearly a need for a GSM modem to be attached to a PDA

- it allows web surfing in a more user friendly way than using a mobile 'phone, allows

emails to be sent and received and other similar tasks. Up until now the products that

have been developed focus on integrating the GSM modem into the PDA or vice versa.

For example Nokia have created the Communicator series, more recently the 9210,

Palm have created the VII series of Palm computers that have an integral GSM modem

to allow such functions and have produced "clip on" GSM modems for their other

devices. These products require a monthly subscription which means that the user is

now paying for both a mobile 'phone subscription and a Palm subscription as well as

carrying around two GSM modems!

Handspring have taken it a step further in their Tree series which "combines a 'phone,

a pager and an organizer into one small product so people could carry a single device

instead of two or three" said Jeff Hawkins, founder of Handspring [8].

There are several problems with such integrated devices, for example: -

a If you go out for a walk and want to take your 'phone with you for safety reasons,

do you really want to risk losing your PDA with all your personal information on it.

a To be usable for web surfing the screen needs to be big, making the device bulky

to carry around. If the device is easy to carry, the interface will have to be smaller

and less usable.

a When new technology is released, are the users going to be prepared to pay

several hundred dollars for a new system - when all they need is a small

modification -for example GPRS capability.

For a business user the only alternative to an integrated device is to carry around a

mobile 'phone, a PDA and a PC (for writing longer messages). There is clearly a need

for a different type of device, such as a device that could act as a central hub for

communications between all of an individuals communications devices and the outside

world. Although it could be argued that this already exists in the form of a mobile

'phone, a more revolutionary concept should be considered.

7

The PAN Gateway Device Philippa Regan

2.3 IUJSABIUTY IN MOBILE IOlEVICES

The main usability aspect discussed here is methods of text entry, as text entry is one

of the most limiting factors in the usability of a mobile device. However, there are many

other factors that influence how usable a mobile 'phone is, including the form factor

size, shape and weight, the user interface (see Chapter 4) the screen size, the battery

and the network services. The usability of a device is fundamental to the popularity of

the device although clearly marketing plays a significant role as well.

lt has been suggested [9] that one crucial factor in Nokia being the world's leading

maker of mobile 'phones is their "user-centred approach to developing products". In a

usability evaluation between the Nokia 3210 and the Siemens C25, the following

factors were found to influence the usability of the devices .

., Complexity- the Nokia uses only three buttons to do what the Siemens requires

five buttons.

e Consistency - Button functions on the Nokia are consistent with dedicated buttons

for selecting, scrolling and cancelling - making the device easier to use.

" Clutter - the Siemens 'phone makes heavy use of icons - however these are not

readily interpretable or noticeable because of their small size and varying locations

on the display area.

Overall it was concluded that the Siemens 'phone makes more options available at any

one time, but at considerable cost in complexity, consistency and clarity making the

Siemens 'phone significantly more complex to learn. Another advantage of Nokia

'phones is their consistency, when users upgrade they know that the user interface on

the new 'phone will be similar to that on their old 'phone, making them confident that

they will be able to use it easily.

Matthias suggests that energy storage is the major technological hurdle to be solved in

mobile devices [10]. This is evidenced by the increasing drive to design very low

power systems for use in mobile devices in order to preserve battery life. After all, a

mobile phone is not very "mobile" if you have to charge it every few hours. Low power

consumption was a fundamental factor in the design of the Bluetooth specification and

is one of the main reasons for Bluetooth's dominance over IEEE802.11 b in mobile

devices. Advances have been made in battery technology with the creation of the

Lithium Polymer battery. These batteries have a high energy density, so smaller

batteries can deliver more power for longer. Importantly these batteries are also

8

The PAN Gateway Device Philippa Regan

shapeable and so can be designed to fit inside an ergonomic form of the device.

These batteries are used in the Palm m500 and m505 PDA's.

2.4 METHODS OF TEXT ENTRY

A major limitation on the usability and usage of mobile 'phones is the available text

entry methods. As yet, manufacturers of handheld devices have not successfully

duplicated the functionality of the desktop keyboard; present methods of text entry give

similar input speeds of 10-15 wpm 1 to those available hundreds of years ago with pen

and ink compared to 50+ wpm with a desktop keyboard [11].

A recent study clearly demonstrated the value of handheld computers in the home, but

the lack of an efficient method of text entry made even basic tasks such as email and

web surfing very difficult [12].

Although users have become accustomed to sending SMS2 (text messages) using the

triple tap method or alternatively T9 (Tegic 9) predictive text, most users would find the

existing numerical interface too tedious and inefficient to use for messages that are

much longer than the 160 characters in an SMS. Even the Graffiti™ system and the

touch screen QWERTY keyboard used by Palm are too slow for long messages in

addition to the user needing to learn a new alphabet (for using the Graffiti handwriting

recognition technology).

In order for mobile email and Internet services to become truly user friendly, either a

new approach must be taken to text entry or alternatively new ways to link existing

interfaces must be considered. A particularly challenging problem for human factors

researchers has been to develop alternative text entry methods using on screen

keyboards for use by the "walk up" market; consumers who want to be able to use it

immediately with little or no training.

There are two available methods for shrinking the size of a physical keyboard, the first

is to shrink the size of each key, as done in electronic dictionary's; unfortunately this

significantly slows the input speed due to the difficulty in using small keys. The second

is to reduce the number of keys by giving each key a multiple use as in the mobile

1 Wpm- Words per Minute
2 SMS - Short Message Service

9

The PAN Gateway Device Philippa Regan

telephone keypad. However, this approach results in ambiguity which reduces the

usability of such a device [13].

An investigation of text entry methods for mobile devices carried out by the author has

identified many different methods. The methods outlined below range from QWERTY

and non-QWERTY keyboards to dynamic character layout keyboards in addition to

handwriting recognition (such as Graffiti™), voice recognition, triple tap, predictive text

and the Alphagrip™.

2.4. 1 Danger's "Hiptop"

The Danger "Hiptop" (Figure 2-2) is both a PDA and a cellular 'phone, eliminating the

need to carry two devices. Usability is maximised by making the entire surface area

devoted to screen area with the exception of a few thumb-operated buttons. The

device has two different form factor configurations; the first is the size of a fat deck of

cards in which you can only see the screen - this base form factor works fine for

checking appointments or incoming mail. The second configuration is used to respond

to email; the device twists open like a Russian snuffbox and reveals an QWERTY

keyboard under the screen [14] [15].

Figure 2-2 Danger's Hiptop Device

One of the advantages of the "Hiptop" is that the display area is not reduced by the use

of a soft keyboard. In addition, the physical size and shape of the "Hiptop" enables

two-handed operation on the move by using the users thumbs to type. The two

10

The PAN Gateway Device Philippa Regan

handed approach makes good use of the QWERTY keyboard layout that was designed

for two-handed operation.

2.4.2 Graffiti vs. on screen keyboard

Graffiti™ is a handwriting recognition technology used in Palm PDA's. Users of

Graffiti™ are required to learn a slightly different alphabet in order for recognition of text

to be achieved. An area of the touch screen on the Palm pilot is reserved for use of

Graffiti™. Users write one letter at a time (using the modified alphabet) in the Graffiti™

area with a stylus designed for use on touch screens.

The SHORE [16] 2001 study used subjects with no previous experience of either

keyboard tapping or Graffiti and measured the number of errors that the subjects made

while carrying out a number of specified tasks. Unsurprisingly during the first trial block,

using the keyboard led to faster entry and fewer errors than using Graffiti. In later trial

blocks the time taken for users to complete tasks using Graffiti decreased to the point

where it was almost the same as using the on screen keyboard. However the number

of errors made using Graffiti remained significantly higher. Lalomia [17] observed that

users are only willing to accept error rates of approximately 3%, a significant problem

for Graffiti™.

The SHORE study showed that keyboard entry is faster and less error prone. The

main problem with keyboard tapping is the excessive number of screen switches

required during a common application. The researchers also stated that they believed

that experienced Palm users would find usage of Graffiti significantly faster due to the

delays encountered when making the necessary screen switches. Another study [13]

has found that an experienced user of Graffiti™ on a Palm pilot can write about 20

words per minute, far slower than a well practiced typist on a physical keyboard. Text

entry speeds for QWERTY keyboards implemented on a touch screen as used by Palm

and other PDA manufacturers were determined to be around 30wpm [13].

Both the Graffiti™ handwriting recognition and the touch screen keyboards result in text

entry speeds considerably lower than the 50 wpm that is typically produced on a

physical keyboard, showing that further development is required in text entry methods

although both match the speed of handwriting which is approximately 15-20wpm.

11

The PAN Gateway Device Philippa Regan

2.4.3 Soft Keyboards

QWERTY soft keyboards give a text entry speed of around 30wpm [13]. The primary

advantage of a QWERTY layout is that users are familiar with the layout and therefore

do not need to learn the new layout. However, the QWERTY keyboard is particularly

inefficient for stylus tapping as it was designed for use with two hands as in

conventional typing, thus adjacent letter pairs (digraphs) are placed on opposite sides

of the keyboard. In addition, the QWERTY layout was designed when traditional

typewriters were used; the QWERTY layout was designed to reduce the number of

times the keys hit each other and got jammed. Another disadvantage of the QWERTY

layout is that it is not international. This causes confusion for those who use PC's in

different countries- it is even different between the UK and the U.S!

For stylus operated keyboards, digraphs should be placed next to each other as only

one stylus is used [13]. Performance Modelling is used in the design of Virtual

keyboards. The keyboard is optimised so that the typical total distance travelled to

reach a key is minimised [13], i.e. that the most frequently used keys should be placed

in the centre of the keyboard. Performance modelling is used to optimise the layout for

a given language.

The QWERTY keyboard was analysed using a "sub-optimal" method and the

performance found to be 30.5 wpm assuming that the user always taps on the portion

of the space bar that minimises the character-space-character path [13]. Various non­

QWERTY keyboards have been designed using performance modelling, some

examples have been outlined below: -

Opti - (shown in Figure 2-3) was designed by MacKenzie and Zhang [18] and later

modified by the designers to create OPTI2. Analysis of the OPT12 keyboard showed

that the performance was around 36 to 40 wpm, a considerable improvement over the

QWERTY keyboard [13].

12

The PAN Gateway Device Philippa Regan

Figure 2-3 OPTI high performance soft keypad

Atomik - (Alphabetically Tuned and Optimised Mobile Interface Keyboard) is a highly

optimised method using touch keyboards for entering data into handheld devices.

ATOMIK has the potential to allow text entry speeds of over 40 words per minute using

a touch screen keyboard [13].

The Atomik keyboard has been optimised by increasing the movement efficiency,

alphabetically tuning the layout (letters are generally alphabetically ordered A to Z from

top left to bottom right) to reduce the learning time required by novice users and by

connecting commonly used words or fragments of words, see Figure 2-4 Atomik

Keyboard Layout.

Figure 2-4 Atomik Keyboard Layout

This optimisation was achieved using a "Metropolis Optimization Algorithm" in which

each key is treated as an atom and the keyboard is treated as a molecule. The

"atomic" interactions between each of the keys drove the movement efficiency, defined

13

The PAN Gateway Device Philippa Regan

by the summation of all Fitts's3 law movement times between every pair of keys,

weighted by the statistical frequency of the pair of letters in English.

Other keyboards designed and analysed [13] are: -

• FITALY (Textware Solutions)- performed at about 36 wpm.

e Chubbon - performed at around 32 wpm.

{I Metropolis - the Metropolis keyboard was designed using the Metropolis

random walk method and performed at 43 wpm, the fastest of the above

keyboards.

FOCL (Fluctuating Optimal Character Layout) is a concept developed by Bellmann and

MacKenzie for use in "small, input-limited devices in mobile situations" in which the

existing input method is arrow keys moving around a cursor on the character set

displayed on a 3 or 4 line liquid crystal display. After each character "c" is entered the

layout is rearranged so that the most likely next characters are closer to the cursor.

Each new layout is optimal with respect to "c", but as the layout is perpetually changing

there is a time penalty due to the user having to visually search for the correct

character. FOCL does significantly reduce the mean number of keystrokes per

character, however when tested against the QWERTY keyboard there were no

significant differences in data entry speeds which were approximately 1 0 -15 wpm [19].

Soft keyboards clearly provide a good method for text entry in mobile devices - the best

keyboard layouts to date are the Opti, Atomik and Metropolis which each perform at

around 40 wpm. lt is interesting to note that the FOCL concept, which is intuitively a

bad idea, performs at a similar level to the widely used QWERTY keyboard at around

15wpm.

2.4.4 Alpha Grip

The Alphagrip™ was designed to create a new, faster input interface to replace slow,

tedious text entry technologies and to ensure that productivity is not sacrificed in favour

of portability. The Alphagrip™ is designed to provide a single flexible interface. The

Alphagrip™ interfaces to other devices by means of both wired and wireless

connections.

3 Fitts' Law is a model used to account for the time it takes to point at something, based on the

size and distance of the target object. Fitts' Law and variations of it are used to model the time it

takes to use a mouse and other input devices to click on objects on a screen.

14

The PAN Gateway Device Philippa Regan

Alphagrip is a two-handed touch typing technology which is device agnostic and

features a vertical hand orientation allowing the fingers to fall naturally and comfortably

on full-sized, multi-directional buttons located on the back of the device. By requiring

minimal movement users can quickly teach themselves to generate all the letters of the

alphabet as well as punctuations. A mode switch button allows users to enjoy the

functionality of several (otherwise dedicated) devices (keyboard/mouse, smart 'phone,

PDA, game controller, or TV remote) within one form factor [13].

Alphagrip™ claims to "allow users to enter text quickly (50+wpm), easily and

comfortably on full-sized keys regardless of the user's body position or the availability

of a flat work surface" [20].

However, the Alphagrip™ will require a substantial amount of initial learning, providing

an initial obstacle that may prevent users from learning to use the new technology. In

recognition of this the manufacturers are initially targeting young people - the first

prototypes incorporate the Alphagrip™ interface to a game controller. The

manufacturers hope that learning to type on an Alphagrip™ will be "a game" to young

people and that this will allow them to reach more users.

Figure 2-5 Alphagrip

Another major problem with the Alphagrip™ is its size as shown in Figure 2-5. The

sheer size of the Alphagrip™ means that it is not conducive to portability. However its

use as a single interface may be more beneficial. Once again the key lies in

persuading users to invest the time in learning to use the device.

15

The PAN Gateway Device Philippa Regan

2.4.5 Modo

Modo (as shown in Figure 2-6) is a small device designed for accessing information

specific to your location such as entertainment information and "going out" listings.

Modo is operated by a single hand; the index finger rests on the back button and the

users thumb rests on a wheel. The wheel has two functions ; scrolling the wheel moves

the selection up and down the screen and pressing the wheel activates the current

selection [21] . The major advantage of the Modo is that it only requires one-handed

operation, enabling you to use your other hand for carrying your briefcase or other

items. The egg shaped design is good aesthetically and the device fits into the palm of

your hand comfortably.

Figure 2-6 Modo device.

2.4.6 Triple tap, Two-key method or T9?

There are three methods of text entry based on the traditional 12 key keypad (shown in

Figure 2-7); triple tap, two key input and T9 predictive text. Each of these methods is

described below: -

Triple Tap

••• ••• •••
0····- ~-

Figure 2-7 'Phone Keypad

To use the triple tap method, each key must be pressed one or more times by the user

to specify a character, for example to type an "A" the number "2" key must be pressed

16

The PAN Gateway Device Philippa Regan

once, whereas to type a "C" the "2" key must be pressed three times. This approach

brings out a problem with segmentation; when a character is on the same key as the

previously entered character (as in the word "on") the system must determine if the

new key press "belongs to" a new character or the previous character [22]. This is

solved either by means of a timeout period or alternatively by pressing a key that forces

the system to move onto the next key. The predicted expert rate performance of the

triple tap method is approximately 21 -27 wpm [22].

Twoakey input method

In the two key input method the user selects the group of letters (for example key "2"

gives "abc") and then a second number key is pressed for disambiguation, in this case

"3" could be pressed to give the letter "c". The two key method is not very common but

is very simple and requires no timeouts [22]. The predicted expert rate performance of

the two-key input method is approximately 21 -27 wpm [22].

T9

T9 (patented by Tegic Communication, lnc) text recognition uses a built in dictionary

and adds knowledge to the system itself. lt requires only one keystroke per letter and

uses a built in dictionary for disambiguation. The "0" key is used for "SPACE". The "0"

key is also used to delimit the word and terminate the disambiguation of proceeding

keys. However this creates problems as multiple words may have the same key

sequence, T9 then guesses the most common word and then allows users to press a

key to view the next possible word [23]. The disambiguation is incorrect in around 5%

of cases [22]. The predicted expert rate performance of the T9 system is 41 wpm for

one handed thumb entry to 46 wpm for two handed index finger operation [22].

Text entry methods are compared using accuracy and speed of text entry. However, it

should be noted that performances of expert and novice users are very different. The

novice using T9 for the first time will have to go through some initial training and

practice whereas the expert user will already be adept.

The SHORE 2001 (Student HCI4 Online Research Experiments) study showed that

usage of the T9 system had a longer learning time leading to frustration but that user

satisfaction ratings were significantly higher once the initial training had been

completed as it saved time. lt is interesting to note that despite the initial frustration

that users felt when using T9 that they were found to be more likely to buy a 'phone

4 HCI- Human Computer Interaction

17

The PAN Gateway Device Philippa Regan

which had T9. This shows that users are prepared to cope with some frustration

initially if it leads to a faster performance time in the end.

2.4. 7 Digit Wireless's Fastap rM

Fastap™ is a full keyboard deployed on a telephone handset as shown in Figure 2-8

(there is also a QWERTY version of this design which is smaller than a credit card).

The Fastap™ keyboard uses a "hills and val leys" approach in which the hills are

alphabetic characters and the valleys are numeric characters. Clicking a hill produces

that key (i.e. alphabetic letter). However, the valleys are effectively just a rubber plate

connecting the four surrounding hills and so when a valley is pressed, you are

effectively pressing all four of the surround ing hill simultaneously which results in the

relevant number being pressed. As expected, pressing a valley is a bit harder than

pressing a hill, but as the valleys are larger in size, the effect is both pleasing to the eye

and makes for a surprising ly easy-to-use entry method [24].

Contact area
for letters

Contact a rea
for numbers

Figure 2-8 Digit's Fastap™ Keypad

The Fastap™ keyboard is a very interesting concept but there may be problems if the

keypad itself is made significantly smaller than it is in Figure 2-8 in which case the

usability will rapidly be reduced due to the size of the buttons. However at present

18

The PAN Gateway Device Philippa Regan

Fastap looks like a very promising technology for improving text entry in mobile

phones. A mobile phone with a Fastap™ keypad is shown in Figure 2-9.

Figure 2-9 Mobile Phone with Fastap™ Keypad 5

2.4.8 Voice Recognition

Voice recognition provides the only solution for many "hands free" applications. Whilst

it provides a good solution for short messages it is not suitable for long messages as it

is very tedious to edit text using voice commands not to mention the (high) 50% drop

rate. Another major problem is that text entry by dictation compromises the users

privacy; by definition the user has to read out what they are trying to write making voice

recognition an unsuitable technology for use in public places. Voice recognition also

works poorly in areas with background noise. A recent study showed that the rate of

text entry in corrected words per minute for a voice recognition system is still only 13.6

wpm compared to 32.5 for entry using a keyboard [25]. lt was also noted that users

found it significantly harder to "talk and think" than to "write and think".

Despite the observations made above, lntel 's VP Howard Bubb claims that "Speech will

become the primary interface, especially in mobile computing" as "the (computer's)

processors are becoming tailored to human interaction" [26].

Presently voice recogn ition does not provide a viable alternative text entry method, but

some of its failings can be rectified by further development such as the high drop rate

5 Reproduced with permission from Digit Wireless.

19

The PAN Gateway Device Philippa Regan

of existing systems. Other problems with voice recognition such as the lack of privacy

caused by reading out the text in public places are inherent and cannot be solved.

2.4.9 Evaluation of Existing text Entry Methods

The text entry methods summarised above demonstrate that there is a need to find an

alternative method for entering text into mobile devices such as mobile phones, PDA's

and palm top computers if the usability of these devices is to be improved and their

uses extended. Although many new methods of entering text have been covered there

is still not a good solution. There is a fundamental dilemma with designing a new text

entry method for mobile devices; the system needs to be both new and revolutionary

whilst also being very easy for a "walk-up" user to learn in minimal time.

lt has been shown that the use of the QWERTY layout in soft keyboards is far from

optimal as the QWERTY layout was designed for two handed operation (as in typing)

rather than pointing with a single stylus. Other layouts such as Opti, Atomik and the

Metropolis keyboard result in a significant improvement in performance. These

keyboards perform at rates of around 40wpm - approaching the 50wpm performance

of a physical (full-size) QWERTY keyboard. The performance of a dynamic layout

such as FOCL was low due to the confusion caused by changing the key layout.

Of the existing text entry methods in mobile phones, triple tap and T9, T9 performs

better with 41 - 46 wpm compared to 21 - 27 wpm for triple tap. However, it should be

noted that this increased performance is for "expert" users and must be set against the

time taken for new users to learn how to use the technology. Digit's Fastap™ looks

very promising, offering enhanced text entry - it would be interesting to see how it

performs in comparison to T9.

Voice recognition remains an unattractive option for mobile text entry due to the high

drop rate and the lack of privacy. Handwriting recognition is widely used in PDA's

although users experience quite a lot of frustration when learning to use the system.

The performance of Graffiti™ is not particularly impressive at around 15-20wpm.

In summary, for a device that is primarily a 'phone, T9 or possibly Fastap™ provide the

best method for entering text. For PDA type devices, the best solution is a non­

QWERTY optimised soft keypad such as Opti, Atomik or Metropolis. lt is interesting to

note that these technologies are not widely used in existing devices, primarily due to

the users reluctance to learn or use a new technology.

20

The PAN Gateway Device Philippa Regan

Text entry remains the single most limiting factor in the design and use of mobile

devices as shown by the relatively slow text entry rates present in existing devices.

Bluetooth may provide an alternative solution by means of a single portable text entry

method that can be used to enter text into all devices via Bluetooth.

2.5 CHAPTER SUMMARY

This chapter has discussed the need for the PAN Gateway device and its concept and

has then evaluated the various text entry methods for mobile devices. Finally_jhe

_ _!:!_~ability of Bluetooth in existing mobile devices was investigated. The PAN Gateway is
---~-~

a device that allows users to create a network of personal devices (using Bluetooth)

such as a PDA, laptop, camera, headset and link them to external networks using a

GSM/GPRS modem. The PAN Gateway is advantageous for network operators as it

reduces the cost of the basic unit that they provide to customers.

Text entry methods were discussed and it was determined that the QWERTY layout is

unsuitable for use in soft keyboards where a single stylus is used to "press" the key.

The best text entry method for a PDA type device was optimised non-QWERTY soft

keyboards giving text entry rates of around 40 wpm. For a 'phone type device the best

method was T9, giving up to 56 wpm or potentially Digit's Fastap™ layout.

The short-range wireless technologies that could be used in the PAN Gateway to

provide local connectivity will be discussed in more detail in Chapter 3.

21

0

---- --------

Technologies for Short Range Wireless Communication Philippa Regan

CHAPTER 3 TECHNOLOGIES FOR SHORT RANGE

WIRELESS COMMUNICATION

There are various short-range wireless technologies that could have been used to

connect the mobile devices to form a Personal Area Network (PAN). The various

technologies are discussed in this Chapter to demonstrate why Bluetooth was chosen

as the best technology for use in the PAN Gateway. The coexistence of RF systems

using the 2.4Ghz ISM band is discussed in addition to a brief section on the usability of

Bluetooth in existing devices.

The technologies considered that could be used to achieve short-range wireless

communication fall into two groups, those that use infrared light and those that use

radio frequency (RF) signals. In the Infrared category there is lrDa (Infrared Data

Association), in the RF category there is HomeRF, Bluetooth, IEEE802.11 b (Wi-Fi™)

and IEEE802.15- these will now be considered in more detail: -

3.1 IRDA

lrDA-Data is the standard that is referred to by lrDA in this report. lrDA is a low power,

low cost, cable replacement technology used for short range Line-of-sight

Communication. "lrDA is a point-to-point, narrow angle (30° cone), ad-hoc data

transmission standard designed to operate over a distance of 0 to 1 metre and has

data speeds of 9.6kbps to 16 Mbps" [27].

In the year 2000 lrDA had an installed base of over 150 million units with an annual

growth rate of 40%. lrDA is widely available in portable devices such as PC's,

notebooks, peripherals, mobile telephones, PDA's and embedded systems. lrDA has

been universally adopted and accepted worldwide.

The main limiting factor for lrDA is that it a line-of-sight technology and thus requires

the two devices to be aligned throughout the communication. This limitation makes

lrDA unsuitable for use in the PAN Gateway.

22

Technologies for Short Range Wireless Communication Philippa Regan

3.2 TECHNOLOGIES USING THE 2.4 GHz ISM BAND

Bluetooth, HomeRF, 802.11 b and 802.15.3 all use the (globally) license free 2.4 GHz

Industrial Scientific Medical (I.S.M) band and support wireless networking. Yeadon [28]

claims that the market for wireless connectivity is one of the fastest growing in history

and that this is the case because of applications in the communications infrastructure,

industry and business as well as the consumer market.

To use the 2.4GHz ISM band, the FCC6 requires devices to use Spread Spectrum

technologies.

3.2.1 Health Issues

Microwave ovens operate at around 2.4GHz as this is the frequency that is most

effective for heating water molecules. Intuitively, a device that broadcasts at 2.4GHz

would seem likely to be a danger to human health as humans are made up primarily of

water.

Dempsey, in his paper "The Physiological effects of 2.4GHz Frequency Hopping

Radios" [29] states that are three perspectives from which this needs to be

investigated:-

1. Traditional Thermal effects- i.e. the body being heated.

2. Cellular Interactions- i.e. cell mutations.

3. Effects of the 2.4 GHz radio on a piece of medical equipment (which could be

life critical).

Dempsey concludes that there are no adverse biological effects that are caused by the

2.4 GHz radio. In terms of Cellular effects, to date there appears to be no credible

evidence to suggest that there are any adverse effects caused by using a 2.4 GHz

radio. However the research to date has not proven that there is a fundamental reason

why this must be the case.

With regard to interference problems between 2.4GHz Frequency Hopping Spread

Spectrum systems and medical equipment he states that historically, very few medical

device problems that have been reported have been caused by a radio; only 0.007% of

the total problems reported between 1979 and 1995. lt should also be noted that a 2.4

6 FCC- Federal Communications Commission

23

Technologies for Short Range Wireless Communication Philippa Regan

GHz radio produces field strengths that are only 20% of the typical minimum radiated

susceptibility level of most medical equipment and that these field strengths are

significantly lower than other radios that historically operate in the hospital

environment. At this point it is believed that the potential benefits of using a 2.4 GHz

FHSS radio in a medical environment greatly outweigh the potential risks.

3.2.2 Spread Spectrum Modulation (SSM)

"Spread Spectrum is a means of transmission in which the data of interest occupies a

bandwidth in excess of the minimum bandwidth necessary to send the data" [30]. SSM

is a digital coding technique in which a narrowband signal is spread over a spectrum of

frequencies. The coding operation increases fl'e. n~-m~~~f bi~ transmitted and the

bandwidth used. There are two main types of Spread Spectrum Modulation:-

1. DSSS - Direct Sequence Spread Spectrum.

2. FHSS- Frequency Hopping Spread Spectrum

a) Slow Frequency Hopping.

b) Fast Frequency Hopping.

Direct Sequence Spread Spectrum

In DSSS the radio energy is spread across a larger bandwidth than is necessary by

dividing each data bit into sub bits. The higher modulation rate is achieved by

multiplying the digital sequence with a pseu~~~~~~~om noise sequence known as a chip

\~::: (;J T

' r,,
I
' F . IS")
I

?
i

J

sequence. For example, if the chip sequence is 10 and it is applied to a signal carrying .___
('

data at 300kbps, the resultant signal will have 10 times the original sequence's

bandwidth. The spreading is achieved using a specific code thus creating a unique

spectrum that only a receiver using the same code can collapse into its original form.

The spectrum of a DSSS signal appears to be noise, making it very difficult to detect.

802.11 b uses DSSS.

Frequency Hopping Spread Spectrum

In FHSS the transmitter jumps from one frequency to another at a specific hop rate.

The order in which the frequencies are used is determined by the pseudo random hop

sequence used. The FCC mandates that FHSS systems spend no more than 0.4

seconds on any one channel each 30 seconds and that they must hop through at least

75 channels in the 2.4 GHz band.

24

Technologies for Short Range Wireless Communication Philippa Regan

The use of a frequency hopping spread spectrum method of modulation improves

immunity to interference from other devices. In FHSS systems, data is transmitted for

a very short time (determined by the hopping rate) on a particular frequency before

hopping to the next frequency. Interference typically occurs at a single frequency thus

only a few of the frequencies that are used by the FHSS system are likely to be

impaired by interference, making FHSS resistant to interference. FHSS systems can

be susceptible to noise during any one hop but typically can achieve transmission

during other hops within the wide band. There is also the potential for adaptive

frequency hopping in which the system determines which frequencies are being

degraded by interference and the system effectively "hops around" those frequencies

[31].

Transmission using Spread Spectrum Frequency Hopping typically appear to be

background noise unless the systems are synchronised and the receiving station knows

the pseudo random hopping sequence, making the signal resistant to detection,

interference and jamming.

In slow hopping systems, several symbols are transmitted on each hop; in fast hopping

systems, the carrier frequency hops several times during the transmission of one

symbol. Bluetooth uses slow hopping FHSS.

3.2.3 IEEE802.11b

The 802.11 b specification was written by the IEEE7 802.11 working group. 802.11 b is

designed for use primarily as a wireless Ethernet and allows transmission speeds of 11

million bits per second, making it faster than conventional wired LANS {although

upgrades to wired LANS now allow for data rates of 100Mbps). lt uses Direct

Sequence Spread Spectrum in the 2.4 GHz ISM band and is designed to be

implemented by IT professionals in an office environment. 802.11 b is more expensive

to implement and uses more power (although this does give greater range). Security is

a major issue with 802.11 b; it has been widely reported in the press that many large

companies have failed to implement sufficient security measures on their wireless

networks allowing hackers to access sensitive information and to use their web

connection for free.

7 IEEE - Institute of Electrical and Electronic Engineers

25

Technologies for Short Range Wireless Communication Philippa Regan

Cisco, Lucent, Apple and 3Com all have large stakes in this technology as part of a

special interest group called WECA (Wireless Ethernet Compatibility Alliance); they are

already pushing for it to become the wireless Ethernet standard. 802.11 b is also

known as Wi-Fi™.

3. 2.4 HomeRF

The HomeRF™ Working Group (HRFWG) was set up in March 1998 to create an open

industry specification for wireless digital communication between PCs and consumer

electronic devices in and around the home. lt was also set-up to act as a forum for the

encouragement and support of home wireless networking [2]. HomeRF uses

Frequency Hopping Spread Spectrum in the 2.4 GHz ISM band and is incompatible

with 802.11 b. HomeRf is specifically designed for use in the home and is easy to set­

up as it was designed for consumer use. HomeRf has many advantages over 802.11 b

for use in the home, such as easier configuration, but there seem to be very few

HomeRf products available to consumers.

HomeRF also has substantial Industry backing, including lntel, Microsoft, Motorola,

Proxim and Siemens amongst others in the HomeRF working group. Recently the

FCC approved an upgrade from 2Mbps to 10 Mbps making it a viable challenger to

802.11 b for office use.

3. 2. 5 Blue tooth

"Biuetooth is a low cost, low power, short-range radio technology, originally developed as a

cable replacement to connect devices such as mobile 'phone handsets, headsets, and

portable computers" [2]. This can enable a very powerful ubiquitous computing platform

where each and every device is connected to the network [32]. Bluetooth uses Frequency

Hopping Spread Spectrum in the 2.4 GHz ISM band; with a hopping period of 62f.lS.

Bluetooth has a series of profiles that describe how particular applications can be

achieved, including which parts of the core Bluetooth protocol should be used to support

the profile. In order for a device to support certain functions, the relevant Bluetooth profile

must be supported; for example without a Bluetooth implementation incorporating the

headset profile, it will not be possible to use a headset. The Bluetooth profiles include the

following [2]:-

Generic Access Profile - this is the core Bluetooth profile. Its purpose is to ensure that

Bluetooth devices can all establish a baseband link.

26

---~-----~-------------- -----

Technologies for Short Range Wireless Communication Philippa Regan

Dial Up Networking - provides a dialup data connection. For example it allows a laptop

to be used to check email via a mobile phone.

Headset Profile- defines the facilities required to make and receive voice calls from a

headset to a mobile phone.

LAN Access Profile - allows Bluetooth enabled devices to connect to a fixed network via

a Bluetooth link to LAN access point.

Synchronisation Profile - provides a standard way for personal information to be

synchronised between Bluetooth enabled personal devices such as PDA's, laptops and

cell phones.

Personal Area Network Profile - provides support for ad-hoc networks in the form of full

TCP/IP networking. PAN uses BNEP, the Bluetooth Network Encapsulation Protocol, to

transport common networking protocols over wireless links. Essentially the BNEP

allows Bluetooth to carry lP packets allowing the PAN profile to offer a wireless LAN

function based on lP. For example the PAN profile is used to link computers to peripherals

and 'phones to PDA's and headsets, providing the ad-hoc networking capability. The PAN

profile is fundamental to the PAN Gateway.

Bluetooth has a different usage scenario to 802.11 b and HomeRF as it was originally

intended as a cable replacement technology and not as a Wireless LAN. Wireless LAN

functions can be achieved through use of the LAN Access profile. Bluetooth presently

only supports data rates of 1 Mbps and is designed primarily to connect mobile devices

such as laptop pc's, mobile 'phones, PDA's and headsets wirelessly.

Bluetooth is widely backed by major industry players including 3Com, Motorola,

Toshiba, Nokia, Microsoft, Ericsson Sony, Microsoft, Lucent, IBM, lntel and over 2000

other companies. Bluetooth is expected to be able to replace six to eight ports on a

computer with virtual ports. Bluetooth has received much press coverage and hype but

has taken longer to rollout than expected.

3.2.5.1 Key Features of Bluetooth

" Uses globally license free Industrial Scientific Medical {I.S.M) Band at 2.4GHz.

" Omni-directional, not limited by a small transmission angle.

" Not limited by line-of-sight (LoS).

" Robust.

.. Low Complexity Hardware.

" Low Power (Active power is 0.1 Watts). Uses power saving modes.

" Allows transmission rates up to 1 Mbps, although real throughput (without

overhead) is 721 kbps.

27

Technologies for Short Range Wireless Communication Philippa Regan

• Low Cost ($5 basic hardware cost in the long term).

• High security, uses pseudorandom hop sequence.

• Low power (range - 1 Om) and high power (range - 1 OOm) versions

Bluetooth has been designed to operate in (electronically) noisy environments and uses

spread spectrum frequency hopping to achieve this. Bluetooth typically hops between 79

different frequencies at a rate of 1600 hops/second. If the transmission encounters

interference, it waits for the next frequency hop and re-transmits on a new frequency. The

available channel in the 2.4 GHz ISM band is usually divided into 79 slots (except in Spain,

France and Japan, where there are only 23 slots available). Each slot corresponds to an

RF channel. Each channel is displaced by 1 MHz in the range 2.402GHz- 2.480GHz, with

additional guard bands at either end of the spectrum. Bluetooth systems use shorter

packets and hops faster than any other system in the 2.4Ght band. -=

3.2.5.2 Architecture/Topology

The Bluetooth topology is best described as a multiple Piconet structure. A Piconet is

a kind of miniature LAN formed by a device configured as a Master, which 'owns the

Piconet' and between one and seven devices that always act as Slaves to this Master"

[2].

a) Simple Master- Slave Piconet

b) Piconet

e Master

e Slave

e Slave/
Master

c) Scatternet

Figure 3-1 Bluetooth Topology Diagrams

28

Technologies for Short Range Wireless Communication Philippa Regan

Figure 3-1 shows three Bluetooth architectures, Figure 3-1a) Simple Master-Slave

Pi con et, Figure 3-1 b) Piconet, Figure 3-1 c) Scatternet.

The simplest system consists of a Master and a single Slave (see Figure 3-1a) [1].

Master's can control up to seven Slaves in a piconet, (see Figure 3-1b) [31] [33].

Several piconets can be established and linked together ad hoc to form a Scatternet

(see Figure 3-1c) Scatternet).

Devices in a Piconet share the same channel in which the Master is defined as the

device that initiates the call, although the specification does support Master-Slave role

swapping. The pseudorandom hop sequence is generated from the device address of

the Master and the phase of its clock. The Masters' clock is used as the Piconets'

clock to synchronise all of the devices. Although a device can be in more than one

Piconet by means of time division multiplexing, it can only be the master of one

Piconet. Piconets are uncoordinated with each other and frequency hopping occurs

independently; synchronisation of Piconets is not supported.

Communication in a Piconet is organised such that the master polls each slave. A

slave is only allowed to transmit after the master has polled it, it then transmits

immediately after the poll in the slave-to-master time slot [1].

Work is being carried out on allowing devices to support multiple profiles

simultaneously to meet user expectation. For example, it is necessary for a mobile

phone to be linked to both a PDA using the dial up networking profile and a headset

using the headset profile simultaneously. The above scenario would be used to call a

number from the users PDA whilst allowing the voice call to be handled via the headset

[33].

3.2.6 IEEE 802.15

The IEEE is set to release a new standard, the 802.15.3 specification, at the end of this

year that will heavily outgun Bluetooth in terms of data rate; providing short-range rates

of 20Mbps in comparison to Bluetooth's 1 Mbps. However, it is anticipated that as

802.15.3 will be backwards compatible with Bluetooth, that it will stimulate the market

for Bluetooth as it'll be a few years before any 802.15.3 products are available,

whereas as Bluetooth products are available now.

29

Technologies for Short Range Wireless Communication Philippa Regan

A second 802.15 specification has also been drafted - offering data rates of 55Mbps

throughput, suitable for high-end video distribution within a home. The specification

was created because "no other wireless standards can simultaneously distribute three

different digital video streams, one internet [connection] and three 'phones, and one

CD audio stream perfectly" said Bob Heile, 802.15 working group chairman [34].

3.3 COEXISTENCE OF BLUETOOTH AND IRDA

Both Bluetooth and lrDA are cable replacement technologies, however they are not in

direct competition with each other as each technology has its own strengths and

weaknesses. For example, lrDA is directional and can only be used for line-of-sight

connections and therefore has some built in security features, whereas Bluetooth can

be used over longer distances and is omni-directional.

Both lrDA and Bluetooth consider data exchange to be a fundamental function and use

the OBEX upper layer protocol. By using the same upper layer protocol it is possible

for a single application to run over Bluetooth and lrDA. lt is the intent of both Bluetooth

and lrDA to utilise the same data exchange applications where appropriate. The

presence of both technologies allows the user to select the most appropriate method of

communication based on the present situation [27].

Although the technologies can be found in similar devices, their applications are

inherently different. lrDA is suitable for applications where data transmission takes

place at high speeds over a closely proximate line of sight path. Meanwhile Bluetooth

is more suitable for situations where a line of sight connection is not possible or the two

devices to be connected are not stationary [35].

3.4 COEXISTENCE IN THE 2.4 GHz SPECTRUM

With many types of devices using different specifications sharing the same area of the

spectrum (the 2.4 GHz ISM band), questions must be raised with regard to whether

these different technologies can coexist. Does an 802.11 b device interfere with a

Bluetooth connection? Is the data rate or the range of the devices reduced? In a

recent study Cordeiro and Agrawal [36] concluded that Bluetooth devices themselves

are likely to be interferers to the Bluetooth technology in the near future. They also

observed that Bluetooth has a very high overhead in the current Bluetooth Piconet

switching procedure.

30

Technologies for Short Range Wireless Communication Philippa Regan

The diagram below, Figure 3-2, shows the overlapping usage of the spectrum when

802.11 b OS (Direct Sequence), 802.11 FH (Frequency Hopping) and Bluetooth are

used [37]. HomeRF also uses this spectrum but has not been shown on this diagram.

Coexistence on the ISM band
Note: US representation; 802.11b iS differen~v 7

2.400
GHz I

802 .ll b
DS

Bluetooth 802 .11
FH

frequency

2.4835
GHz

Figure 3-2 Diagram of spectrum usage in the ISM band

Go-channel interference occurs when a Bluetooth transmitter hops into the occupied

channel of an 802.11 Direct Sequence network [38]. The diagram gives the impression

that these technologies cannot coexist; however this is not the case due to the nature

of the technologies. At a particular time each transmitter and receiver is tuned to a

particular frequency and provided that the radios are narrow and clean (i.e. do not

overlap) and excepting the case when they are on the same frequency, coexistence is

possible. How often two stations will be using the same frequency will depend on the

number of stations, the number of frequencies available and the time spent at each

frequency.

In a report for the IEEE [38], Zyren concludes that the interference from a Bluetooth

piconet is a localised effect and the range at which interference from a Bluetooth

piconet seriously degrades the 802.11 network is dependent on the direction of data

flow, local propagation conditions, the 802.11 data rate and the Bluetooth piconet

utilisation. Shorter packet sizes allowed by the 5.5 Mbps and 11 Mbps 802.11 b

systems improved the error free throughput rate and a fragmentation threshold of 750

bytes provides good throughput under heavily loaded conditions, without having a

severe throughput penalty when no interference is present.

31

\

Technologies for Short Range Wireless Communication Philippa Regan

In another report [39] Zyren concludes that 802.11 susceptibility to interference

increases as a function of range from the DSSS wireless node to the DSSS Access

Point and that 802.11 DSSS shows a graceful degradation in the presence of

significant levels of Bluetooth Interference. At the 2001 Bluetooth developers

conference in San Francisco, Dell Computer Corp acknowledged that they are

intending to put Bluetooth and 802.11 b in the same PC card, which gives rise to some

interesting interference issues. However in one study [37], interference between the

two frequency hopping technologies (at reasonable data rates), 802.11 and Bluetooth,

was found to be minimal at less than 10%.

/ 1)c I I 7
Interference between the Frequency Hopping (FHSS) and Direct Sequence (DSSS)

technologies is a rather different story. Direct Sequence technologies provide a large

quantity of interference as shown by their spectrum usage (see Figure 3-2). In the US,

DSSS technologies use three 22MHz bands simultaneously when heavily loaded,

interfering with FH devices. However the degradation of FHSS devices on DSSS

devices is even worse. In a report for the IEEE [40], it was shown that Bluetooth can

impact 802.11 DSSS significantly, particularly on large packets. In addition most

802.11 mechanisms for responding to poor channel quality either have no impact or

make things worse. lt was also found that fragmentation can help, mainly at lower data

rates and high picocell utilisations.

Proxim, Mobilian [41] and Texas Instruments [42] have all performed similar tests on

the effect of Bluetooth Interference on an 802.11 DSSS system and have produced

consistent results. A Bluetooth Interferer was placed 12 feet away from a 802.11 or a

HomeRF node and the resulting impact on data throughput on the victim node was

measured. The 802.11 node located 12 feet from its Access Point degraded about

25%, whilst a HomeRF node only degraded 1 0%. HomeRF incorporates "hopset

adaptation" and "subframe hopping with retries" in the upper layers in order to increase

immunity to 2.4GHz interference [43].

In an Ericsson report for the Bluetooth SIG working group [44] based on a typical office

environment and measuring the effect of a 20dBm 802.11 OS WLAN on a OdBm

Bluetooth system, it was found that if the Bluetooth connection was less than 2m long

the probability of disturbance on a Bluetooth voice link was less than 1%. If the

Bluetooth link increases to 8m, probability of disturbance rises to 8%. For a 1 Om

Bluetooth data link a throughput degradation of more than 10% occurs with a

probability of 24%. "Due to the limited frequency overlap of the WLAN and Bluetooth

32

(1 u
-r\ I
r' fl<;:;, <;; -'f,

I ___ : ___)

Technologies for Short Range Wireless Communication Philippa Regan

systems, the throughput reduction in the Bluetooth system can never exceed 22%"

[44].

However in the Texas Instruments test [42], where degradation on a Bluetooth system

located 1 Ocm from an 802. 11 system was measured it was shown that the degradation

of the Bluetooth System throughput was at least 40%; when the spacing was increased

to 1 Om the degradation dropped to 10%.

During testing Mobilian demonstrated that lowering the transmission power does not

change the basic shape of the Wi-Fi™ performance degradation curve, but it shifts the

curve to the right, increasing the range over any which any given throughput is

available [41].

However, not all reports agree on this topic. A study conducted by the "Pennsylvania

State University's Applied Research Laboratory" and Wireless lnfotech Services found

that "Biuetooth and 802.11 b wireless local area networks can co-exist without

interfering with each other's operation" [45]. The groups stated that the range of both

Bluetooth devices and 802.11 b devices were also found not to be affected by the

presence of a device using the other technology, no matter how close they were.

Bluetooth's range was found to be about 64 feet and 802.11 b range was found to be

around 284 feet. The groups agreed that more tests were required to evaluate

performance in different field conditions. No tests were carried out to evaluate the

effect of presence of a device using the other technology on the speed of the

transmission.

3.4. 1 Solutions to the ISM Band Co-existence Dilemma

Various solutions to coexistence issues are being developed. Adaptive Frequency

Hopping (AFH) is the leading non-collaborative technique for minimising interference

problems between 802.11 and Bluetooth.

AFH works by reducing the number of Bluetooth channels a Bluetooth device uses,

thus leaving channels free for other devices to use. Without AFH, Bluetooth uses 79 of

the available 83 channel; with AFH, it is likely that only 15 channels will be used leaving

up to 68 free. AFH is suitable for use in devices that do not have Bluetooth and 802.11

eo-located, in these devices it is necessary to provide a further solution [46].

33

Technologies for Short Range Wireless Communication Philippa Regan

Bandspeed, Inc. and Open Interface, North America has announced a new product that

utilises Adaptive Frequency Hopping (AFH) to allow 802.11 b and Bluetooth to co-exist.

The solution uses Bandspeed's chipset with Open Interface's BlueMagic protocol stack

and is designed to provide a coexistence solution for hardware manufacturers and

OEM's. "BiueMagi AFH is backwards compatible with Open Interface's Bluetooth Spec

version 1.1 and works with existing Bluetooth wireless devices" [4 7].

Similarly, U.K. based Red-M have produced "Genos"; a "cutting edge software solution

for creating a stable, multi-technology network environment that enables both Bluetooth

and 802.11 enabled devices to co-exist and intemperate successfully" [48]. AFH

significantly reduces the problems caused by interference in the 2.4GHz ISM band.

3.5 EVALUATION OF WIRELESS TECHNOLOGIES FOR THE PAN GATEWAY

Various possible technologies that could be used to provide the local connectivity

required for the PAN Gateway have been discussed in Sections 3.1 to 3.4. lt was

concluded that lrDA was unsuitable, as it requires a line-of-sight between the devices

to communicate and therefore could not provide a link between a laptop and a PAN

Gateway in a briefcase.

Essentially technologies that use the 2.4GHz ISM band were considered. Bluetooth is

a low power FHSS system, designed as a cable replacement technology for mobile

devices giving a throughput of 1 Mbps. HomeRf is designed as a home networking

technology presently offering data rates of 2Mbps using FHSS. 802.11 b provides

wireless Ethernet connectivity using DSSS at data rates of 11 Mbps. Of these,

Bluetooth is the most suitable technology for use in the PAN Gateway, as it requires

the least power and was designed as a cable replacement technology for small mobile

devices with limited resources. With regard to interference issues between the

different technologies that use the 2.4GHz ISM band, it was concluded that 802.11 b is

the most seriously affected and that although Bluetooth immunity to interference was

not as good as HomeRf's it could be significantly improved through the use of Adaptive

Frequency Hopping (AFH).

3.6 USABILITY OF BLUETOOTH IN MOBILE 'PHONES

A number of mobile 'phones (Nokia 6210, Ericsson R520m and T39m, Sony Ericsson

T68i) were used in informal usability tests to determine if there were any obvious

shortfalls in the usability of Bluetooth in existing mobile 'phones.

34

Technologies for Short Range Wireless Communication Philippa Regan

Bluetooth was determined to be very useful once it had been set up for sending emails

whilst on the move (e.g. in a train) without having to try to line up the lrDA ports and

hold them steady. The use of headsets (where applicable) was very briefly tested and

concluded to be a positive experience. However, the pairing procedure on all the

'phones tested seriously diminished the user's "Out of Box" experience. The pairing

procedure is both complex and unintuitive in addition to having shortfalls in terms of

security.

To carry out Bluetooth Pairing the following steps must be completed: -

1. Perform a device discovery to determine what other Bluetooth devices are in

the area.

2. Select the Bluetooth device you want to connect to from the list.

3. Enter the security PINs for both devices.

This procedure has many problems, which have been outlined below.

• The device discovery may return a long list of Bluetooth Enabled devices,

making it difficult to select the correct device to connect to, e.g. there may be four

devices named "John's laptop".

Cll How to exchange PIN numbers? Users are likely to tell the owner of the other

device their device's PIN number, making it easy to "overhear'' the PIN.

e In a Bluetooth SIG Security White Paper [49] it was stated that "we also

recommend that the user be in a "private area", before using the pairing procedure

from the Bluetooth Baseband Specification". I.e. the Security provided by the

baseband pairing mechanism is not sufficient.

• The process is non intuitive and different for each device.

In summary, there are significant issues relating to the usability and security of the

Bluetooth pairing procedure with respect to the average user's "Out of Box" experience.

3. 7 FUTURE OF BLUETOOTH

The long-term future of Bluetooth is very promising, primarily due to the potential impact of

the technology. The freely available specification has resulted in a large number of

companies investing heavily into researching Bluetooth, giving the technology wide

industry support. Presently there are more than 2000 members of the Bluetooth Special

Interest Group (SIG).

35

Technologies for Short Range Wireless Communication Philippa Regan

Despite a slow start and negative publicity in the last year many reports are now

suggesting that a Bluetooth revolution is just around the corner. At the 2001 Bluetooth

developers conference in San Francisco, Microsoft announced that it planned to

provide native support for the Bluetooth standard in future versions of Windows XP

[50]. Predictions about the future use of Bluetooth range from 1.16 billion Bluetooth

chipsets being produced in 2005 (Jack Quinn, Micrologic Research) to 1.4 billion devices

incorporating Bluetooth technology being manufactured in 2005 (Joyce Putscher, Cahners

ln-Stat). A recent report by the ARC group has suggested that market penetration of

Bluetooth in mobile 'phones will reach 75% by 2006. Market indicators show that there will

be over 1 billion mobile 'phone subscribers by 2006 which implies healthy opportunities for

Bluetooth.

lt was also noted that the pending Bluetooth products would be less ambitious than

those originally envisioned. Bluetooth's focus has presently shifted away from the ad­

hoc networking devices as the access points and PC cards implementing the 802.11 b

specification fulfils this role. Presently the focus is on small, portable low power

devices such as PDA's and mobile 'phones where the speed or range of the

connection is less important than the requirement for low power consumption.

Although much of the functionality that was seen as Bluetooth's domain has been lost

to 802.11 b, such as wireless Internet access in cafe's such as Starbuck's, it should be

noted that the two technologies have many different features and do not compete

directly against each other.

The Bluetooth SIG is presently working on the Bluetooth 2.0 specification that will

increase data rates to 12Mbps (compared to 802.11 b's 11 Mbps). However, Cambridge

Silicon Radio's marketing Vice President, Eric Jansen believes that "the real goal is to

get products embodying the 1.1 specification into production" and that the 2.0

specification is "over hyped" [50].

One major advantage that Bluetooth has in the long term is its low cost and small form

factor allowing it to be cheaply and easily embedded into many products. Ericsson

Component's technical manager, Lars Nord stated that Ericsson's latest radio, the

ERC41 requires only eleven external components, is half the cost of the previous

module by integrating a variety of on chip components and consumes a maximum of

27 milliamps.

In summary, it seems that Bluetooth is a very promising technology which has taken

longer than anticipated to reach the market. The market for Bluetooth products has

36

Technologies for Short Range Wireless Communication Philippa Regan

shifted away from LAN type networking and towards low cost, low power, small form

factor embedded systems allowing ad hoc links between mobile devices. A higher

speed specification is also being worked on.

3.8 CHAPTER SUMMARY

In this chapter the various technologies that could have been used to provide the local

connectivity for the PAN Gateway were discussed. lrDA was determined to be

unsuitable for the PAN Gateway due to requiring a Line-of-Sight between the devices

to be connected. lt was concluded that Bluetooth was the best short-range wireless

technology to use in the PAN Gateway as it is low power, low cost, omni-directional

and designed for use in mobile devices.

The interference issues surrounding the use of 2.4GHz wireless technologies were

discussed and it was concluded that although Bluetooth does suffer from interference

from other wireless technologies (such as HomeRf and 802.11 b) the effects are not as

significant as those on 802.11 b and can be reduced through the use of Adaptive

Frequency Hopping (AFH). There appear to be no significant health concerns with the

use of 2.4GHz spread spectrum wireless technologies. In the process of evaluating the

usability and security of Bluetooth in existing Mobile Devices, a significant problem with

usability and security was discovered in the Bluetooth Pairing procedure. In addition to

not being intuitive the Bluetooth SIG had recommended against the pairing of devices

in public places. This problem is one that will need to be addressed in Bluetooth

implementations in mobile devices including the PAN Gateway.

In summary, Bluetooth is the most suitable wireless technology for use within the PAN

Gateway to connect to local devices. The Bluetooth topology is based on a multiple

Piconet structure and PAN's are supported by the Bluetooth Personal Area Network

profile. Bluetooth itself is a relatively new technology that is expected to be in

widespread use in the next 4 years.

In Chapter 4 the requirements of the PAN Gateway with respect to both functionality

and usability will be discussed, taking on board the lessons learnt from Chapter 2 and

Chapter 3.

37

Requirements Of the PAN Gateway Philippa Regan

In this chapter the information gathered in Chapter 2 and Chapter 3 is used to consider

the requirements of the PAN Gateway device and to determine the best user interface

for use in the PAN Gateway. A new concept for improving the usability of Bluetooth

pairing is introduced.

4. ~ AIMS

The aim of the PAN Gateway is to increase both the flexibility and functionality of the

mobile 'phone, whilst reducing the cost to the operator for the basic handset.

Presently, the cost of the mobile 'phone provided to users is ever increasing as

manufacturers integrate more and more functions into their phones, but the price users

are prepared to pay for their 'phone remains minimal with network operators picking up

most of the cost of the 'phone.

This initial outlay (to cover the cost of the phone) by the network operators is recovered

over subsequent months through line rental and call charges. Meanwhile the cost of

voice services to the consumer is being driven down by competition for customers and

increased usage and so network operators are searching for ways to get customers to

use their phones more and more, such as text messaging services (SMS) and the new

Multi-media Messaging Service (MMS).

The PAN Gateway is a device consisting of a Bluetooth modem and a GSM/GPRS

modem; it would be used as the part of a Personal Area Network that provides access

to external networks via the GSM/GPRS modem. For example, the PAN Gateway

would allow email to be checked from a PDA or laptop using the Bluetooth Dialup

Networking profile, or for a voice call to be made or answered using a headset. The

PAN Gateway should also allow calls to be routed through land based telephone lines

where possible, significantly increasing the users perception of functionality. This is

similar to the concept of having mini GSM aerials located within offices so that if users

call from within the office the mobile network is used (assuming that there is sufficient

capacity) but it is billed to the company at landline rates.

lt is imperative that the pairing procedure required for using Bluetooth is simple. Initial

barriers that occur during registration prevent users from using new technology - until

you know the value of a new technology you will not spend time getting over the initial

barriers. For example registering your WAP handset to a service portal can be difficult

38

Requirements Of the PAN Gateway Philippa Regan

enough to prevent users from accessing WAP services; only when configuration is

automatically downloaded to the handset is this barrier removed. Similarly around 40%

of people who own a 'phone with T9 Predictive text do not use it because they cannot

get to grips with how it works. Another example is online banking, if registration takes

more than a few minutes then the chances are that the service will be unsuccessful

due to these initial barriers.

4!..2 CONCEPTS

lt is important to consider the exact circumstances in which the PAN gateway will be

used in order to maximise the usability of the device. Features that make a product

useful vary according to the product and usage scenario; for example on a PC, users

don't mind waiting a few seconds while an application loads because they plan to use

the application for a certain amount of time, whereas on a PDA people want instant

access to information, i.e. speed is critical.

The PAN Gateway enables a modular design of mobile functions which allows the

operator to provide (subsidise) the user with a basic set at a reasonable cost to the

operator. The basic unit can then be enhanced by purchasing additional modules

providing a much wider range of features than are presently available to the user.

There are a number of ways of modularising the PAN Gateway system depending on

which features are included in the base unit. Other factors considered include how to

link the various modules; "express-on" interfaces such as keyboards (similar to Nokia's

"express-on" fascia's)? Plug in modules? A major consideration is how to allow

Bluetooth Pairing to occur between two devices such as a headset and base mobile

'phone unit if neither device has a screen or user interface.

The initial concept for the PAN Gateway base unit is to have a small device that can be

kept in a pocket, in a brief case or even on the users belt. The base unit will act as a

gateway and will contain a GSM/GPRS modem, a Bluetooth Modem, Antenna, Power

supply (see Figure 4-1).

39

Requirements Of the PAN Gateway Philippa Regan

f .• ;; -

~ Application

Router/
Server

.c --Cl) 0
::!:a:: 0
C/)ll,. -(I) <!I(!) ::I

m

Figure 4-1 Block Diagram of the PAN Gateway.

The primary design issues centre on what interface to include in the base unit in order

to make it as functional as possible, allowing greatest flexibility at a reasonable cost to

the operator. There are various MMI8 arrangements that can be used which are

summarised in the following section. All of the described interfaces could be extended

by means of additional Bluetooth enabled modules and these are described in Section

4.2.2.

4.2.1 Possible MMI's for the PAN Gateway

The various MMI concepts for the PAN Gateway are discussed below. The provision

of emergency cover, i.e. the ability to call the emergency services with just the PAN

Gateway was considered at length and determined to be difficult to implement on the

devices with minimal user interface's.

4.2.1.1 Minimal User Interface

The most basic unit has no screen and no keypad. This basic device uses L.E.D's to

indicate power levels, network coverage and Bluetooth connection. lt has a single

button which is a power button. The unit would also contain vibrate and audio alerts to

incoming calls, messages and data. This unit is the most compact solution and will

also be the cheapest to implement. The device would be small enough to carry on a

belt or in a pocket, but would not be able to carry out any functions without other

modules connected; it is simply a gateway.

The basic unit could be extended to include a small screen (one alpha numeric row)

which would allow more detailed information regarding battery level, network coverage

and other status information to be given. These units would not allow calls to be made

8 MMI -Man Machine Interface

40

Requirements Of the PAN Gateway Philippa Regan

from a headset without the involvement of another module (apart from the base unit)

unless voice recognition technology was used.

4.2.1.2 Basic User Interface

This unit would consist of a medium sized screen (four or five alphanumeric rows) and

may include a keypad. Without the keypad this device would be very similar to the

small screen unit; the enlarged screen (four or five alphanumeric rows) would allow the

various power, network, and transmission indicators to be easier for the user to

understand but would still not allow much input from the user unless voice recognition

technology was used. Potentially the unit could have 'phone book functions - the

users 'phone book could be downloaded from a PDA or laptop and then scrolled

through with the addition of a rocker button. This unit would not be very user friendly.

If the basic interface was extended to include a keypad, the device is considerably

more usable but is very similar to existing Bluetooth enabled 'phones.

4.2.1.3 Advanced User Interface

The devices with an advanced user interface have a medium or large touch screen.

The inclusion of a medium touch screen (four or five alphanumeric rows) would allow

keypad functionality to be added without the bulk of a keypad. This would allow calls to

be made to new numbers. However the unit will still have more limited functionality

than a present mobile 'phone due to the touch screen acting as both the screen and

keypad. One solution might be to include the symbols indicating power, network

coverage and other status information on the top row of the screen which would

change to display the number dialled if the touch screen was being used as a keypad

for dialling.

The use of an LCD display is likely to reduce the power consumption of the device

when compared to the consumption of a few L.E.D's. Similarly the inclusion of a touch

screen should not add too much to the cost of the unit as mechanically it is much

simpler and it is also smaller. Suitable touch screens might be sourced from Synaptics

or 3M.

In order to protect the touch screen it may be necessary for the base unit to have a

clamshell type design. In its most integrated form a large touch screen would be

incorporated. However the device would be very similar to an integrated phone/PDA.

41

Requirements Of the PAN Gateway Philippa Regan

4.2.2 Other Modules

The following modules could be added via a Bluetooth link to extend the functionality

that the MMI's described in Section 4.2.1 would allow: -

Headset - allows calls using voice recognition in the base module.

Keypad - would allow calling to new numbers and enable SMS services.

IBiuetooth handset- provides normal mobile 'phone capability. This could potentially

be a very slimline device, as it requires no GSM/GPRS modem, just a

Bluetooth modem and basic handset functionality. This device would also

provide 'phone book functions, SMS functions.

large Screen and keypad- Designed for web browsing.

lt should be noted that any of the modules described above could be incorporated in

other devices such as a PDA (large screen and keypad) or alternatively a laptop PC.

Similarly the headset could be incorporated into an MP3 playing headset.

4.3 !EVALUATION

A major consideration is based on the question "The user has become accustomed to

having a mobile 'phone with many functions at little or no cost due to the subsidisation

of the unit by operators. What is the minimum level of functionality that the user will

now accept?"

4.3.1 Minimal user Interface

The units with minimal user interface have no keypad and either no screen or a screen

with a single alphanumeric row. These devices are the simplest and therefore the

cheapest to produce; they satisfy the criteria of providing a gateway for

communications services with enhanced flexibility, whilst reducing the cost to the

operator. However they are limited by having little or no screen, which may make the

interface difficult for the user to comprehend and in particular the user may have

difficulty in carrying out Bluetooth Pairing.

The operator would almost certainly have to provide a Bluetooth enabled handset to

enable voice calls, SMS services and other services that are presently available but as

discussed earlier this could be a very slimline unit. The headset and other modules

could be made available to the customer at the full price.

42

Requirements Of the PAN Gateway Philippa Regan

4.3.2 Basic User Interface

These units have a medium sized screen (four or five alphanumeric rows) and may

have a keypad. They have the potential to provide a simpler, more intuitive interface to

the user; similar to those provided on mobile 'phones presently.

If the unit did not have a keypad it would limit the functionality of the device, indeed the

provision of a medium sized screen with no keypad to use as an interface is

questionable. The use of a downloadable 'phone book would reduce reliance on the

voice recognition software; dialling of new numbers would still not be facilitated except

through the use of a complicated interface or voice recognition and is unlikely to be

user friendly.

If a keypad is incorporated into the design the unit is very similar to an existing

Bluetooth enabled 'phone and therefore does not adhere to the requirements of a PAN

Gateway.

4.3.3 Advanced User Interface

The use of a medium or large touch screen has many advantages in terms of usability;

one significant advantage of this system is that step-by-step instructions for Bluetooth

pairing could be displayed on the screen. However, these devices are essentially the

same as the present Bluetooth and GSM enabled PDA's and once again do not adhere

to the requirements of a PAN Gateway.

4.4 SELECTION OF OPTIMAL MAN MACHINE INTERFACE

The best MMI that fulfils the criteria of the PAN gateway is the "Minimal User Interface"

device with no keypad and no screen. However for this to be user friendly a simple,

intuitive Bluetooth Pairing mechanism must be created that does not require

instructions to be displayed on screen. This is the best MMI configuration as it allows

the base PAN Gateway unit to be used simply as a Gateway. The minimal MMI is the

most revolutionary concept and is also the cheapest to manufacture and therefore

would reduce the cost to the Network Operator. This PAN Gateway MMI fully supports

the concept of user's simply changing over their PAN Gateway for a Gateway that uses

a different mobile phone technology when travelling abroad.

However, if no such "simple, intuitive Bluetooth pairing mechanism" can be developed

the best solution is the device with the medium touch screen as it would allow step-by-

43

Requirements Of the PAN Gateway Philippa Regan

step instructions to be displayed as well as providing a method for entering text and

numbers. In both cases the network operator would need to provide a small Bluetooth

enabled handset to provide the functions that users have become accustomed to

receiving at little or no cost to themselves. The purchase of Bluetooth enabled

headsets, larger screens, keypads and other devices could then be left to the

customer.

4.5 REQUIREMENTS a USABILITY AND THIE MAN MACHINE ~NTIEIRFACE

The primary principle behind the design of the MMI of the PAN Gateway is that set up

must be intuitive and the device must be user friendly. The user must be able to pair

the devices and carry out other vital tasks without needing to refer to a manual.

As discussed above, the best solution to the usability problems caused by the

Bluetooth Pairing procedure is to create an alternative intuitive Bluetooth Pairing

mechanism that will not require any instructions. However if this is not possible, step­

by-step Bluetooth Pairing instructions could be displayed on either the PAN Gateway

(using an MMI which has a screen) or alternatively on another terminal that is

connected to the PAN.

Displaying the instructions on the PAN Gateway conflicts with the basic

need/philosophy of the PAN Gateway, to create a device with a minimal MMI. For the

instructions to be easy to read and user friendly, they need to be displayed on a

relatively large screen (larger than the present standard mobile screens) whereas one

of the aims is to make the device as small as possible.

However to display instructions on other terminals also creates problems; the terminal

equipment manufacturers will be relied upon to provide a usable interface to drive the

connectivity without reference to manuals. Also what happens if you want to pair a

device such as a headset to the PAN gateway - where do the instructions get

displayed on a headset?

Another solution may be to use a 3rd display device to display the instructions. This 3rd

device could be a PC, a PDA or a viewing terminal provided by the manufacturer.

Unfortunately this system relies on the presence of a third device to pair up say a

headset and the PAN gateway- which is not necessarily very convenient.

44

Requirements Of the PAN Gateway Philippa Regan

4.6 A NEW CONCEPT FOR AN INTUITIVE 8LUETOOTH PAIRING METHOD

The best solution to the usability problem created by the existing Bluetooth Pairing

Procedure is to create a pairing mechanism that is so intuitive that no instructions are

required . For example, a system similar to that used in Furby's (a children 's toy) could

be used - a picture of a Furby is shown in Figure 4-2.

Figure 4-2 Furby

Furby's are a type of child's toys that talk. If you have more than one Furby you can

get them to talk to each other by "synchronising" them - you simply touch the contacts

on the bottom of the toys together, some information is exchanged and they start

talking to each other.

lt was decided to develop a simple pairing mechanism loosely based on the "Furby"

concept in which the information required to pair Bluetooth devices would be

exchanged over a serial link when the contacts on the two units are touched together.

The use of an Infrared link and an Inductive coupling solution would also be

investigated.

The use of a serial link is further supported in a recent Bluetooth SIG Security White

Paper [49] in which it was stated "we also recommend that the user be in a "private

area", before using the pairing procedure from the Bluetooth Baseband Specification".

The White Paper goes on to suggest that "An alternative approach for secure pairing is

45

Requirements Of the PAN Gateway Philippa Regan

to provide a physical serial port interface". The weakness of Bluetooth security with

regards to pairing is also highlighted by Jakobssen and Wetzel [3].

Clearly it is imperative that Bluetooth pairing is sufficiently secure to protect the

user/owner, is user friendly and that the security measures provided are highly visible

to the user to give them peace of mind and confidence in their Bluetooth device.

4.7 PMG- PERSONAL MOBILE GATEWAY DEVICE

During the course of this work it emerged that the GVC Corporation has produced the

"lXI Platform" [51] which is based on a device called a PMG (Personal Mobile

Gateway). The PMG is similar the PAN Gateway described above. lt is interesting to

note that the PMG has a minimal user interface with just a power button and an L.E.D.

as shown in Figure 4-3.

Figure 4-3 IXI's PMG (Personal Mobile Gateway)

46

Requirements Of the PAN Gateway Philippa Regan

4.8 CHAPTER SUMMARY

Chapter 4 has discussed and evaluated the aims and requirements of the PAN

Gateway together with the possible Man Machine Interfaces that could be used to fulfil

the requirements. A new concept for improving the usability of Bluetooth Pairing was

suggested and an example of a device that is similar to the PAN gateway has been

summarised.

A minimal MMI, consisting of a single button and an L.E.D to indicate whether the

device is switched on was found to be the optimal solution provided that a more usable

method for pairing Bluetooth devices could be developed; this configuration satisfied

the requirements of the PAN Gateway discussed. A new concept for Bluetooth Pairing

was proposed based on using a serial link across simple electrical contacts to

exchange the data required for pairing. Finally, an existing device similar to the PAN

gateway has been introduced.

Following the discovery of the poor usability of the Bluetooth Pairing procedure, the

focus of the research changed in order to develop an intuitive Bluetooth pairing method

for use in all Bluetooth devices but in particular for the PAN Gateway. The system that

was developed is discussed in the remaining Chapters of the thesis.

47

The "Touch and Find" System Philippa Regan

CHAPTER 5 THE "'TOUCH AND FINDu SYSTEM

Chapter 5 develops the concept proposed in Chapter 4 for improving the Usability of

Bluetooth pairing by using a serial link into the "Touch and Find" System. In this

chapter an overview of the "Touch and Find" system is given together with a

development plan and the system requirements. The design of the protocol that

specifies the signal flow between the devices is described and the development of the

top-level software task, the main PLP task is documented. Finally, the testing of the

main PLP task is explained.

5.1 OVERVIEW OF THE "TOUCH AND FIND" SYSTEM

The results of the Usability Study (as discussed in Section 3.6) show that the usability

of Bluetooth devices in general needs to be improved considerably in order to meet

user expectations and particularly to provide a good "Out of Box" experience. The

primary problem in terms of the "Out of Box" experience is the difficult and non-intuitive

Bluetooth pairing procedure that must be carried out before any connections are made

between two Bluetooth devices. This process is difficult to understand and can be very

time consuming.

The concept is to create a system such that by touching together the two devices to be

paired, the information that must be exchanged to pair the devices is exchanged over a

serial link enabling pairing without needing to go through the usual procedure. By

using the new "Touch and Find" system it is hoped that this pairing procedure will

become simple, intuitive and even "granny proof'!

5. 1. 1 Development Plan

The system was developed using "C" in Borland C++ and TTPCom's development

system comprised of a "Mad Cow" Evaluation Board (EVB) and Genie9
. Clearly the

interface to the Bluetooth stack would need to be examined and a protocol for the

required signal flow to achieve pairing would need to be developed. Initially a

(crossed-over) serial cable would be used as the hardware interface between the two

9 Genie is a test tool which interprets data streams captured from various interfaces of
a protocol stack under test, according to filters which the user can set up and presents
the results in terms of standard protocol signal primitives. lt provides a method for a
test engineer to observe the performance of the system under test and compare it with
the system specification.

48

The "Touch and Find" System Philippa Regan

devices; following a successful software implementation, the hardware would be

developed.

The development of the "Touch and Find" system was to be carried out as follows:-

1. Investigation into required Bluetooth Interface.

2. Design of basic signal protocol (Pairing Link Protocol).

3. Design and Implementation of Software on PC.

4. Design and Implementation of Hardware.

5. Implement and Test "Touch and Find" system on Evaluation Board.

6. Incorporate "Touch and Find" into a prototype device.

5. 1.2 Requirements of 'Touch and Find"

The requirements of the "Touch and Find" system are outlined below: -

1. The "Touch and Find" process must be initiated on demand from a higher-level

application.

2. lt must not require a display screen user interface.

3. "Touch and Find" should provide the data to be communicated in a manner

compatible with the hardware to be used to transmit the data.

4. lt must form a robust serial link between devices.

5. lt must return the necessary data to the initiating application.

6. lt must provide a high level of security,

7. "Touch and Find" should be a quick process.

5.1. 3 System Concepts

The "Touch and Find" system consists of both hardware and software sections. The

software must interact with the existing Bluetooth stack to provide the information

required to create the link and then output the data in such a way that the hardware

can transmit it to the device with which it is to be paired. This is defined in the Pairing

Link Protocol (PLP) developed by the author and described in the next section. Initially

the hardware will be implemented using a standard RS232 cable. Other methods of

communication including simple electrical contacts, inductive coupling and Infrared

communication will be investigated later on in the project.

49

The ''Touch and Find" System Philippa Regan

"Touch and Find" Block Diagram

Application Application

PLPTX PLPTX
Transport Transport

Bluetooth Stack

Task r------------>OIJ""''-""11.1...---------1 Task

Bluetooth link established after
completion of "Touch and Find"

Figure 5-1 Touch and Find Block Diagram

5.2 MAIN PLP TASK

Bluetooth Stack

The main PLP task acts as a central hub of communication for the "Touch and Find"

process. lt initiates all communication by creating and sending signals and by

processing incoming signals. A three level design was envisaged as shown in Figure

5-1 . The application layer, sitting on top of both the Device Manager and the main PLP

task would require a small modification to give it the necessary interface to both initiate

the "Touch and Find" process and to use the data it returns.

5.3 MAIN PLP TASK REQUIREMENTS

The main PLP task must satisfy the following requirements: -

• Adhere to the Pairing Link Protocol (PLP).

• Initiate on request from higher layer.

• Satisfy the interface requirements of lower layers.

50

The "Touch and Find" System Philippa Regan

o Produce a random number for use as a link key.

@ Retrieve Information as required by the PLP protocol from the Bluetooth Device

Manager.

e Allow the processor to continue with other tasks, e.g. main Bluetooth

operations.

e Complete in a sufficiently short time frame as to be compatible with a handheld

link.

e Be robust and resistant to a "bad connection" caused by dirty contacts and

corrosion.

• Be independent of the physical method of communicating the data.

• Minimise the amount of data to be transferred across the serial link.

SA BLUETOOTHINTERFACE

The processes required to set up a Bluetooth Link were investigated using Wisdom10

software. lt was found that the steps required to create the first link between a pair of

devices were significantly more complex than those required to establish the next

[separate] link between two particular devices. A transcript of the signals viewed on

the log in each of the two situations can be seen in Figure 5-2 and Figure 5-3.

By comparing the transcript of signals sent, shown in Figure 5-2 and Figure 5-3, it is

clear that once a connection between two particular devices has been made

establishing the second link requires less signals. This is shown by the smaller number

of signals present in Figure 5-3 than in Figure 5-2. From the transcript and the

Bluetooth Specification [52], it is clear that this is because when the system first tries to

establish a link, the upper HCI (Host Controller Interface) layer asks the Device

Manager for a link key. However as this is the first connection between these devices

no link key exists. With no link key to use the system then uses a PIN key instead.

However when the second connection is made, the link key is present and therefore

the pin key does not need to be used. This means that the simplest way to create a

connection does not use a PIN key, but is instead based on the Link Key. lt was

concluded that the simplest solution for the PAN Gateway would be to create a new

connection by generating and sharing a new link key.

10 Wisdom is a PC based GUI to allow you to drive a standard Bluetooth $vice using the

standard Bluetooth Host Controller Interface (HCI) over a serial or usb link-frovides a User ~

Interface for use with Bluetooth.

51

The "Touch and Find" System Philippa Regan

Wisdom Log 1for first link io be established between two dlevices, no e)(isting Link

Key

Master Slave

Signal Type Direction Signal Type Direction

HCI Create Connection OM-> HCU Connection Request HCU->DM

Connection Request HCU->DM HCI Accept Connection DM->HCU

Request

Link Key Request HCU->DM HCI Connection Progress HCU->DM

Link Key Request Negative OM-> HCU HCI Pin Code Request HCU->DM

Reply

HCI Link Key Done HCU->DM Pin Code Request OM->

HPTEST

HCI Pin Code Request HCU->DM Pin Code Request HPTEST->

Response OM

Pin Code Request OM-> HCI Pin Code Request DM->HCU

HPTEST Reply

Pin Code Request HPTEST-> HCI Pin Code Done DM->HCU

Response OM

HCI Pin Code Request DM->HCU Link Key Notification HCU->DM

Reply

HCI Pin Code Done HCU->DM Connection Complete HCU->DM

Link Key Notification HCU->DM

Connection Complete HCU->DM

-> = s1gnal travels in the direction of the>.

Figure 5-2 Wisdom Log 1

NB: The following settings were used in Wisdom: - Authentication Enabled, Variable

Pin (entered by user), Security Level 3.

52

The 'Touch and Find" System Philippa Regan

Wisdom Log for subseguen~ connection. i.e. with elCis~ing Unk Key

Master Slave

Signal Type Direction Signal Type Direction

HCI Create Connection OM-> HCU Connection Request HCU->DM

Connection Request HCU->DM HCI Accept Connection Request DM->HCU

Link Key Request HCU->DM HCI Connection Progress HCU->DM

Link Key Request Reply OM-> HCU Link Key Request HCU->DM

HCI Link Key Done HCU->DM Link Key Request Reply DM->HCU

Connection Complete HCU->DM HCI Link Key Done HCU->DM

Connection Complete HCU->DM

Figure 5a3 Wisdom Log 2

NB: The following settings were used in Wisdom: - Authentication Enabled, Variable

Pin (entered by user), Security Level 3.

Bluetooth Stack Interface

PLP DM

\nitia\ise

Figure 5-4 Bluetooth Stack Interface Diagram

53

The "Touch and Find" System Philippa Regan

In order to interface correctly with the existing Bluetooth Stack, the signals shown in

Figure 5-4 need to be sent. The process proceeds as follows:-

1. An "Initialise" signal must be sent from the Device Manager to new main PLP

task to initiate the process.

2. PLP main task must send dmshRegisterAsApplication to the Device Manager.

3. Send a signal from the PLP main task to the Device Manager to request the

local device information {Biuetooth Address and Link Key).

4. Device Manager returns a confirmation of the local information request.

5. Device manager returns with the local information.

5.5 PAIRING liNK PROTOCOL CONCEPTS

There were two main solutions designed for the main PLP task (for design purposes

the signal transport carried out by lower level tasks was assumed). Two concept

solutions were devised, to ensure that the different available options were explored and

in case no method allowing full duplex communication over a two-contact/wire link

could be devised.

The first solution was based on half duplex communication. This solution allowed a

Master and a Slave to be determined, which meant that a single link key could be

generated and then shared (across the physical link) for use in pairing the Bluetooth

devices. The second solution was based on full duplex communication; it worked using

a broadcast type system in which both Bluetooth devices created a packet containing

the Bluetooth address, friendly name and a randomly generated link key - both devices

then transmitted this packet of data and when a device has a copy of both its own

randomly generated link key and the other device's, it simply selects the key with the

highest numerical value for use in pairing. The two solutions are described below:-

5.5.1 Half Duplex Design

In this design, half duplex communication across the physical layer was assumed. In

this solution a Master and Slave are established and the signals must be sent in a pre­

defined order. Initially it is assumed that both devices will have a button that is pressed

to initiate communication; hopefully these will be removed later. A flow chart of the half

duplex solution is shown in Figure 5-5.

54

The "Touch and Find" System

!njtjator

Yes

Yes

UnklnfoRsp
received?

Yes

End- go to IDLE
state

No OevFail-
~ "Restart

Process"

Figure 5-5 Half Duplex Flow Chart

Recejyer

Yes

End

Philippa Regan

Devfaii­
"Restart
Process"

DevFaii­
"Restart
Process·

Oevfaii­
"Restart
Process"

When the button is pressed the device, will initially listen for an incoming signal; after a

period of time it will then start to transmit. The device that receives the first signal is

defined to be the slave, i.e. the Master initiates communication by being the first to

send out its signal. The devices will also transmit a signal to the Bluetooth stack asking

for the device Bluetooth Address. When a link has been established and the Bluetooth

55

The "Touch and Find" System Philippa Regan

Address has been returned, the device initiating the communication (the Master) will

generate a random number of the required length for use as a link key. The Master

then transmits a packet of data containing both its Bluetooth Address and also the link

key. Having received the Master's signal, the receiving device (slave) will then return

its own Bluetooth Address, a copy of the link key and the initiating device's Bluetooth

Address. The Master confirms that the contents of this data packet is correct and

sends a signal to the Slave requesting the end of the link. The Master then sends a

signal to the calling application with all the information necessary to pair the devices.

Once the slave receives the request to terminate the link, it sends the device

information of both devices to its calling application.

5.5.2 Full Duplex Design

This design assumes full duplex communication. Once again it is initially assumed that

both devices will have a button that when pressed will initiate communication and it is

hoped that these will be removed later. The full duplex flow chart is shown in Figure

5-7.

When the button is pressed the device retrieves its own local information, generates a

random link key and transmits the link key and device information at regular intervals

(controlled by a timer) until it receives a signal from the other system. The full duplex

system has four states but does not need to go through all the states; a state timer is

used to ensure that the main PLP task does not stay in one of the states for too long.

The state diagram for the fu ll duplex solution is shown in Figure 5-6.

Full Duplex Solution State Diagram

Own lnfo
Acked

Figure 5·6 Full Duplex State Diagram

56

The "Touch and Find" System

ACTIVE STATE

-·-·-·r
GOT_KEY

STATE

Finish

Full Quplex Solytjon Flow Chart

Generate and store
random link key

Recei\led receipt
for rutput signal

Philippa Regan

ACTIVE STATE

- -A~T~r~A~E---

GOT_KEY STATE...,.4t--...;........-I.,.._WAIT_FOR_KEY STATE

Figure 5-7 Full Duplex Flow Chart

57

WAIT]OR_KEY
STATE

The "Touch and Find" System Philippa Regan

When a device has received the remote device's information and has received a signal

that its own information has been received, it has a complete set of information. The

complete set of information, containing both local and remote device information, is

transmitted as a signal to the application that called the pairing procedure.

5.5.3 Conclusion of Pairing Link Protocol Concepts

lt was decided that the full duplex design would be used for the Pairing Link Protocol,

as this was the most robust and would also allow the data to be transferred quickly.

The "broadcast" type nature of the full duplex solution created a particularly robust

protocol in which many of the signals could be lost and the process would still

complete. The "broadcast" type nature also seemed most appropriate for

communication across a symmetrical system, i.e. where the two devices that need to

communicate are identical and thus can have no permanent Master- Slave hierarchy.

5.6 DESIGN OF THE MAIN PLP TASK

The main PL_j task deals with high level communication and signal flow - it is

independent 91< the physical communication medium used. The main PLP task is the

central component of the software for the "Touch and Find" system as shown in Figure

5-8. The diagram shows the order in which signals are sent and which components

send/receive as defined in the Pairing Link Protocol. The signal flow defined in the

Pairing Link Protocol is shown in Figure 5-9.

Figure 5-9 shows the structure of the "Touch and Find" software and how it interfaces

with the Device Manager in the Bluetooth stack. The process can be started by either

device 1 or device 2, with the plpStartScanReq signal being sent from the application

layer to PLP main task layer. The order of the signals is represented on the diagram

by the vertical position of the signals, with the signals at the top of the page being sent

first. For simplicity the diagram only shows one of the outgoing information signals;

however in reality this signal is sent at regular intervals until the device receives

confirmation that it has been received. lt should be noted that the number of signals

that need to be sent between the two PLPTX (PLP Transport) tasks has been kept to a

minimum to make the system as robust as possible.

58

The "Touch and Find" System

Full Duplex Signal Diagram

PLP _START _SCAN_CNF (9)

PLP _LINK_INFO_IND (14)

Application 1

PLP _START _SCAN_REQ (5)

Pairing Link Protocol
(PLP) Main Task

~ ~==~~==~====~~================~r=======~--~
a
w
a::

I z
0

~
::i
0..
0..
<(
--l l
<(
u
0
__J

a:: I
w
1-­
(/J

(3
w
a:: I
I
(/)

:::i:
0

e
0
~

I
0 u... z
]
<(
u
0
__J

I
0
<(
w
a::

I
I
(/)

:::i:
0

E
u...
z u

I
0 u...
z
]
<(
u
0
__J

I
0
<(
w
a::

I
I
(/)

:::i:
0

§:
a w a::

~ 01
u... w z (/)
] ::J

<(<(
f= u z 0

__J
I I

(9 0
U5 <(

w a::
I

I
(/)

:::i:
0

c;)
0 eo

it) :s ~
~ a ~ :s 0.. u... w (/) z 0 a:: a:: u ~ I I

I I 0 0 0 0 u... u... u... z ~ z u...
;:::1

;:::1 ~
I z I ::J

~ I ::J z 0
0 2 1 X I 1--
XI 0.. 1-- __J
1-- 0.. 0.. 0.. 0.. __J __J
__J 0.. 0..
0..

SIG INITIALISE (2)

PLP Transport Task

DMSH_REGISTER_LOCAL_A
PPLICATION_REQ (4)

Philippa Regan

INFO (11)
ACK (17)

ACK (12)

INFO (14)

N.B. The numbers to the left of the signal names show the order in which the signals
need to be sent, i.e PLP _START_SCAN_REQ (5) is the fifth signal to be sent and is
sent from the Application to the PLP Main Task.

Figure 5-8 Full Duplex Signal Diagram

59

0>
0

"TT
cc
c
~
CJ'I
I

CO

"'0
D)

:::::!.
::I

cc
c
::I
~

"'0 .,
0 -0
(")
0

CJ)

cc
::I
~

::!!
~

Pairing Link Protocol Signal Flow

A pp Pip Plptx Plptx

~ plpStartscanR
)IDLE

--..w.- dmshReadlocal/nfoRe
OM

mshReadLocallnfoCn
mshReadLocallnfolnd

lotxOutt nfoRe

r Into .. 1

ACK

lnfo

I ACK_

IDLE

App - Application Task Pip- PLP Main Task

0 - State
DM - Device Manager Plptx- PLP Transport Task

Pip A pp
?-

lotxOutt nfoCnt

-f
:::r
CD

-4
0
r:::
C)

li
"'Tl
s·
q
(/)
<
(/)

m-
3

"U
:::r

Ol
:::l

The "Touch and Find" System Philippa Regan

5.6.1 Main PLP Task Interfaces

The interfaces of the main PLP task shown in Figure 5-8 are described below in Table

5-1.

Interfaces to Purpose

Application Task • Initiates the "Touch and Find" process .

• Receives and uses the link information received .

Device Manager • Sends Initialise signal.

• Tasks must register with the Device Manager .

• Provides local device information .

• Provides Bluetooth Clock for use in generating

link key.

PLPTX(Transport)Task • Handles transport mechanism specifics and all

low level communication.

Table 5-1 Main PLP task Interfaces

5. 6. 2 States

The main PLP task was designed to use the states shown in Figure 5-10, Full Duplex

Solution State Diagram. This allows the main PLP task to react in a different way to a

given signal according to the state it is in.

Full ouplex Solutjon State pjagram

Own Into
Acked

Recei
Remote Into

GOT KEY

Figure 5-10 Full Duplex Solution State Diagram

61

The "Touch and Find" System Philippa Regan

IDlE- this is the base state. The task starts in the IDLE state and returns to the IDLE

state once completed. After the "button" to initiate the "Touch and Find" process has

been pressed, the local device information has been retrieved and the first signal

containing the local information has been transmitted to the PLPTX (transport) task, the

ACTIVE state is entered.

ACTIVE - In this state the local device information is transmitted at regular intervals

until an incoming signal is received or there is a timeout. If the incoming signal is the

remote device information, then the GOT _KEY state is entered (as the main PLP task

has "got" a copy of the remote link key). Alternatively, if the incoming signal is a

confirmation that the outgoing local information has been received, then the

WAIT _FOR_KEY state is entered.

GOT_KEY -In the GOT_KEY state, the local device has received the Remote device's

information and now waits to receive confirmation that the remote device has received

its outgoing information. The main PLP task continues to output its local information at

regular intervals until it receives a confirmation/acknowledgement that the information it

has sent out has been received. Once the acknowledgement has been received, the

main PLP task selects the link key with the higher numerical value and then sends the

complete link information signal to the calling application. The main PLP task then

returns to the IDLE state.

WAIT_FOR_KEY - In the WAIT_FOR_KEY state, the local device has received

confirmation that its outgoing signal was received by the remote device and now waits

for the remote device's information. Upon receipt of the remote device information, it

sends an acknowledgement, selects the link key with the higher numerical value and

then sends the complete link information signal to the calling application. The main

PLP task then returns to the IDLE state.

The basic structure for the main PLP Task was designed using the Nassi­

Schneiderman diagrams shown in Figure 5-11, Figure 5-12, Figure 5-13 and Figure

5-14 as these diagrams provided a simple way of representing the different states and

case switches.

62

The "Touch and Find" System

IDLE

SK;_INfTIAUSE

Initialise PLP lask

send
SIG_DMSH_REGISTER_APPLICATION_REQ

IDLE (Continued)

SIG_DMSH_REAO_LOCAL_ INFO_IND

Store BD_ADDR and Friendly Name

Generate Random link Key

send:
PLP_START_SCAN_CNF

ACTIVE

Philippa Regan

SIG_OMSH_REGISTER_APPUCATION_CNF SKi_DMSH_READ_LOCAL_INFO_CNF

=--------:=n~ T ~~ ~=n/< False

Do Nothing

PLP_START_SCAN_REQ

send:
DMSH_READ_LOCAL_INFO
REO

I
DevFail "signal Do Nothing
not handled"

SIG_ TIMER_EXPIRY

~ SendlntervaiTimer? ~
True ~ ~ False

=rk as handled I let it through

I
DevFail "local
info failure"

SIG_PLPTX_IN_INFO_IN
D

Not readyfor this signal.
Mark as handled & ignore

Figure 5-11 Nassi-Schneiderman Diagram of IDLE state.

ACTIVE

SIG_ TIMER_EXPIRY PLPTX_IN_INFO_IND

~rvaiTime~
Tr False

~man%
T ~~

send: ~me/< store Remote Device info
Do

PLPTX_OUT _INFO_REQ T False Nothing

DevFail Let it through.
send:
PLPTX_IN - INFO_RSP

IDLE GOT_KEY

ACTIVE (Continued) I

PLPTX_OUT _INFO_CNF

WAIT _FOR_KEY

Figure 5-12 Nassi-Schneiderman Diagram of ACTIVE state.

63

The 'Touch and Find" System Philippa Regan

WAIT - FOR_ KEY

PLPTX_ OUT _INFO _ CNF PLPTX_IN_INFO_IND SIG_ TIMER_EXPIRY

Do Nothing - into already ~MAN~ ~nterval~ been received. T ~~ Fa True

For use elsewhere - let it
Timer not running

Store Remote Device Into Do Nothing
through

Mark as Handled &
ignore

send: IDLE PLPTX_IN_INFO_RSP

Select Link Key ci higher
numerical value.

send:
PLPTX_LINK_INFO_IND

IDLE

Figure 5-13 Nassi-Schneiderman Diagram ofWAIT_FOR_KEY state.

GOT KEY -

PLPTX_IN_INFO_IND SIG_TIMER_EXPIRY PLPTX_OUT _INFO_CNF

send: ::-------__stateTi~ Select Link Key of higher
PLPTX_IN_INFO_RSP Fals True numerical value.

~erval::--------: Del/Fail "outgoing send:
True into not received" PLPTX_LINK_INFO_IND

Let it through I send
PLPTX_OUT _INFO_IND IDLE IDLE

Figure 5-14 Nassi-Schneiderman Diagram of GOT _KEY state.

5.6_3 Important Decisions in the design of the Main PLP Task

Throughout the development of the main PLP task, changes and decisions were made,

the most important decisions have been described below: -

IDLE state

• The main PLP task should be initiated following receipt of a SIG_INITIALISE

signal from the Device Manager, as this is consistent with the other tasks used

in the TTPCom Bluetooth implementation.

• On initial isation the main PLP task should be in the IDLE state.

• Timers should be used to ensure that the main PLP task does not remain in any

of the states (other than IDLE) for too long.

• Timers should be used to regularly output the device information as required by

the Pairing Link Protocol.

• The process should be initiated from the application call ing the "Touch and

Find" process. For testing purposes this was carried out from a Test task.

64

The ''Touch and Find" System Philippa Regan

o The main PLP task should remain in the IDLE state until it has sent the first

plptxOutlnfoReq (outgoing local device information) signal.

c Due to the symmetrical nature of the devices to be connected, both devices

send out a link key and then the link key with the highest numerical value is

selected by both devices and used to create the link.

o The main PLP task should not request the local information from the Device

Manager until it has received the PLP _START _SCAN_REQ (start) signal in

order to ensure that the information is up to date - for example the

friendlyName might be changed.

o The main PLP task should absorb any PLPTX_IN_INFO_IND (incoming device

information) signals received whilst in the IDLE state as a result of the process

having just been completed or not been started yet.

o The main PLP task should absorb any SIG_TIMER_EXPIRY's (timer expiry)

signals received in the IDLE state that were started by other activities that have

now been cancelled.

o Two separate case switches should be used in the main PLP task. The first is

to filter out the SIG_ TIMER_EXPIRY's (timer expiry's) as a result of the state

timer. If the signal received is not a SIG_TIMER_EXPIRY caused by the State

timer the second switch was called. The second switch, switches on the State

and calls the relevant function for that state.

o The device information should be stored in a single structure,

plpLocaiDeviceRecord and plpRemoteDeviceRecord for the local and remote

devices respectively.

ACTIVE State

" Decided to use variables held in the context to store the remote and local

device information, in order to keep all the information together and to make it

easier to manage the variables.

WAIT_FOR_KEY State

o The main PLP task should absorb any SIG_TIMER_EXPIRY's received that

were started by other processes that have subsequently been cancelled.

GOT_KEY state

" Absorb any extra PLPTX_IN_INFO_IND's (incoming device information) signal

that are received.

65

The 'Touch and Find" System Philippa Regan

The use of an "ALL_INFO" state as a final state was considered, in which the signal

containing the local and remote device information for sending to the application would

be sent. However it was deemed to be unnecessary as there was only one signal to be

sent in the ALL_INFO state and no signals were to be received.

5. 7 IMPLEMENTATION AND TIESTING OF THIE MAIN PlP 1r ASK

The main PLP task was the first task built. lt was built on a single PC with a TTPCom

"Mad Cow" Bluetooth Evaluation Board (EVB) connected through the serial port. The

EVB was required as it hosts the Bluetooth Device Manager (OM) and the rest of the

lower stack.

5. 7.1 Isolation Test

The main PLP task was initially tested in total isolation by creating a script to be sent

from the TTPCom Genie emulation tool. The script sent all the signals the main PLP

task required in order to complete the process in the correct order and had some

delays in between the sending of the signals to ensure that the process occurred

smoothly, albeit a little slowly.

The script sent the following signals and the code was stepped through using the

Borland Debugger.

1. SIG_INITIALISE from Device Manager to main PLP task to initialise the main

PLP task.

2. dmshRegisterAsApplicationCnf from Device Manager to main PLP task to

register the main PLP task with the Device Manager as required by the Device

Manager.

3. plpStartScanReq from the Application to the main PLP task to start the "Touch

and Find" process.

4. dmshReadlocallnfolnd from Device Manager to the main PLP task to provide

the main PLP task with the local device information that it would normally

receive from the Device Manager in response to the request for the local device

information.

5. plptxOutlnfoCnf from remote device to local main PLP task to simulate the

"Acknowledge" signal that would otherwise be sent from the remote device.

6. plptxlnlnfolnd from remote device to main PLP task to simulate the device

information from the remote device being received.

66

The "Touch and Find" System Philippa Regan

The most significant problem uncovered in the testing procedure was with the two

timers used in this task. When a timeout occurs, a SIG_TIMER_EXPIRY signal is sent

to the main PLP task Queue. The SIG_ TIMER_EXPIRY signal may not be processed

until after the timer has been stopped which can lead to the signal being processed in

an incorrect state; to avoid this boolean "timerRunning" variables were introduced.

Before processing the SIG_TIMER_EXPIRY signal, the "timerRunning" variable is

checked and if set to FALSE, the signal is marked as "handled" but not processed.

5.7. 2 Test Task Test

In order to ensure that the signals were sent to the main PLP task at the correct time

and to create a more realistic test environment, the existing TTPCom Test task code

was modified to include some signals for the PLP task. The PLP task was tested with

the other TTPCom tasks also running. When Genie is running, it is possible to send

signals from the TEST task when a specific button is pressed. In this case the

plpStartScanReq signal is sent from the Test task when "6" is pressed and the

plptxlnlnfolnd signal is sent when "7" is pressed.

The Test task was designed to respond to the signals received from the main PLP task

in such way as to test all the functions of the main PLP task, i.e. by simulating the

presence of another device. The signal flow of the main PLP task interacting with the

Test task (after reaching the ACTIVE state) is shown in Figure 5-15.

67

The "Touch and Find" System

Sjgnal Flow Between Main PLP Task and Test Task

ACTIVE

PLP
Task

Test Task

Philippa Regan

D User input required

WAIT FOR
KEY

Finish

Q State

user
press

"7"

Figure 5-15 Signal Flow between PLP Task and Test Task

When a plptxOutlnfoReq (outgoing local device information) signal was received by the

Test Task, it ignored the first four copies and on the fifth it generated a

PLPTX_OUT _INFO_CNF (confirmation that the outgoing local information has been

received) and sent it to the main PLP task. The first four were ignored in order to

check that the timer responsible for the interval between the transmissions of the

PLPTX_OUT _INFO_REQ (outgoing local device information) signals was functioning

correctly.

The main PLP task should now have been in the WAIT _FOR_KEY state, waiting to

receive a PLPTX_IN_INFO_IND (incoming remote device information) signal. This

signal was sent from the Test task by the user pressing the "7". The main PLP task

would then respond to receiving this signal by sending a PLPTX_IN_INFO_RSP

(acknowledge) signal and by sending a PLP _LINK_INFO_IND signal to the Test task

containing all the relevant device information. The PLP _LINK_INFO_IND signal would

normally be sent to the application that called the "Touch and Find" system. If the "7"

was not pressed within the interval set in the timeout period of the State timer, the main

PLP task would revert back to the IDLE state. However, the test was successful and

showed that the main PLP task worked.

68

The "Touch and Find" System Philippa Regan

5.8 CHAPTER SUMMARY

In Chapter 5 the "Touch and Find" system and the Pairing Link protocol is introduced.

The "Touch and Find" system is a novel method of Bluetooth Pairing using a serial link

that is designed to improve the usability of Bluetooth Pairing. A development plan for

the "Touch and Find" system was discussed in addition to the requirements of the

system. The basic architecture for the "Touch and Find" system was introduced and

the required interface with the Bluetooth stack was investigated. The signals required

to create a connection were investigated and it was decided that the "Touch and Find"

system should create a Bluetooth connection using a Link key rather than a PIN

number.

Two different methods of exchanging the necessary information for the "Touch and

Find" system based on full duplex and half duplex communication were discussed and

it was concluded that the full duplex solution was the best. The full duplex concept was

then developed by the author into "The Pairing Link Protocol" which specifies the signal

flow between the various sections of the "Touch and Find" system.

Chapter 5 goes on to show the development of the main software task, the PLP task

which adheres to the Pairing Link Protocol and interfaces with the existing Bluetooth

stack. Finally the successful implementation and testing of the main PLP task is

described.

In the following Chapter the PLP Transport task (PLPTX) is described, including the

design, implementation and testing of the PLPTX task. The PLP Transport task

provides the link between the main PLP task and the hardware that is used to link the

two devices using the "Touch and Find" system.

69

The PLP Transport Task Philippa Regan

CHAPTER 6 THE PLP TRANSPORT TASK

Chapter 6 introduces the PLP transport task, its requirements and design and shows

how the software was developed. The interface to the Windows serial port is described

in detail. The methods used to transmit the data and process the received data are

described and finally the implementation and testing of the PLP transport task are

covered.

The PLP transport task has been named the PLPTX task but it does also include the

receive sections of the code. The PLPTX task receives signals from the main PLP task

(described in Chapter 5) and converts them into a suitable format for transmission

across a standard Windows serial port (see Figure 6-1). The PLPTX task also has to

be able to receive signals across the serial link and decode them and create a suitable

signal to be sent to the PLP task.

"Touch and Find" Block Diagram

Application Application

PLPTX
Transport Transport

Task 1-------____,_"'"'"1'-'......._ _____ __, Task

Bluetooth link established after
completion of "Touch and Find"

Bluetooth Stack

Figure 6-1 "Touch and Find" Block Diagram

70

Bluetooth Stack

The PLP Transport Task Philippa Regan

5. ~ if»l[p> URANSPORT U ASK ~IEQUIREMENTS

The PLP Transport task (PLPTX) task is the module that provides the interface

between the main PLP task and the physical layer. The PLPTX task should be

independent of the physical medium used. Initially the PLPTX task should be

developed to use the Windows serial port interface and must generate signals in a

suitable format for transmission and processing at the receiving terminal (i.e. packets

should be designed such that they can be simply processed). The PLPTX task should

carry out the lower level task associated with serial link maintenance and signal

processing.

lt is important that the PLPTX (transport) task should not monopolise the CPU time, i.e.

it should allow other Bluetooth tasks to have processor time as required; the Windows

serial port must be "non-blocking". The PLPTX task must support full duplex

communication and must be capable of decoding and processing the received signals

and sending signals to other tasks as required.

5.2 PliPu}{ U ASK DESIGN

The PLPTX task has five main areas of functionality; the serial Interface, processing

inputs from the other tasks, processing inputs from the windows serial port, generating

and sending signals to the windows serial port and generating and sending signals to

the other tasks. See the PLPTX Block Diagram shown in Figure 6-2 for details.

71

The PLP Transport Task Philippa Regan

PLPTX Block Diagram

PLP Task To other tasks

jll
- ----- ----- ---------- r- ---- -,,

Receive & Process .. Generate and send
signals from PLP task signals to other tasks

Generate signals to Receive & Process
be sent over the serial .. signals from the serial

link interface

Serial Interface
~

PLPTX Task

Figure 6-2 PLPTX Block Diagram

6.3 SERIAL INTERFACE

The serial interface is an overlapped Windows serial port. Overlapped inpuUoutput

(1/0) was used rather than Non Overlapped lnpuUOutput as this (overlapped 1/0) is

non-blocking, i.e. whilst waiting for a read/write to complete, the CPU is freed up to

work on other processes. Overlapped 1/0 allows reading and writing to be done

simultaneously through the use of threads. The code is event driven.

Three threads are used in the PLPTX Bus transport task: -

1. General 1/0 thread .

2. Transmit (tx) thread.

3. Read (rx) thread .

The general 1/0 thread deals with the creation and processing of signals that are

received or need to be transmitted. The other two threads sit in the transmiUread

functions exclusively. lt is necessary to ensure that a variable is not changed by the

read and write threads simultaneously; this has been achieved by locking the "critical

section" as necessary. In this case the "critical section" is the queue that holds the

transmit data.

72

The PLP Transport Task Philippa Regan

6.3.1 Creating Events

Events are used to signal when data has been received, when the port is ready to

transmit more data and when there is more data to be transmitted. "Events" need to be

created for the read and write functions (rdEvent and wrEvent) and also to signal to the

tx (transmit) thread that there is more data to send (txSignal event). The "CreateEvent"

function should be used to create these events.

e.g.

plpbuContext.txSignal = CreateEvent (NULL,/* Security attributes */

TRUE, /* Manual Reset*/

FALSE,/* Initial State*/

NULL /* name */);

Handles are used to indicate which file should be read from or written to. Initially these

should be set to INVALID_HANDLE_VALUE. Three handles were used, general ilo

(input/output), tx (transmit) and rx (receive).

6. 3. 2 Opening the Port and Setting it up

The procedure for opening up the port and setting it up has been summarised in

pseudo code below: -

1. The "CreateFile" function should be used to open the port.

e.g.

ioHandle = CreateFile (PC_COM_PORT,

GENERIC_READ I GENERIC_WRITE,

0, /* share Port*/

NULL, /*No Security*/

OPEN_EXISTING, /* How to Create */

FILE_FLAG_OVERLAPPED, /* File Attributes- No overlapping*/

NULL /*Handle of file with attributes to copy*/);

2. Get the current Device Control Block (DCB) Settings using "GetCommState".

e.g. GetCommState (handle, &dcb);

73

The PLP Transport Task

3. Fill in the Device Control Block.

e.g.

dcb.DCBiength = sizeof (dcb); /* sizeof(DCB)*/

dcb.BaudRate = 9600; /*current baud setting- 9600*/

/*etc */

4. Set the DCB settings using "SetCommState".

e.g. portReady = SetCommState (handle, &dcb);

/* if portReady == 1 command was successful *I

5. Setup the Input and Output Buffer lengths using "SetupComm".

e.g. SetupComm(handle, input buffer length, output buffer length);

6. Set timeouts for read and write operations.

e.g.

/* declare */

COMMTIMEOUTS timeoutsDefault;

/*set default timeouts */

timeoutsDefault. Read lntervaiTimeOut = MAXDWORD;

/* etc ... *I

6.3.3 Creating Threads

Philippa Regan

As described earlier (in Section 6.3), three threads are used (tx, rx and general ilo).

The threads were created using the "CreateThread" function, both the read and write

threads need to be created.

e.g. plpbuContext.txHandle = CreateThread (NULL, /*security attributes*/

0, /*Stack size */

transmitPacket, /* Tx Thread function*/

0, /*Parameter *I

0, /*Create flags */

&threadld /*Thread identifier*/

);

74

The PLP Transport Task Philippa Regan

6.3.4 Tx Thread Function

In the tx thread the transmitPacket function is executed continually; it was declared as

follows:-

DWORD WINAPI transmitPacket (LPVOID ptr);

In the transmitPacket function the tx thread waits for the txSignal event to be set by

calling WaitForSingleObject as follows: -

WaitForSingleObject (plpbuContext.txSignal, INFINITE); /* timeout is infinite*/

Once the txSignal has been set (i.e. there is data to send) the transmitPacket function

calls WriterGeneric which does the WriteFile call to write the data to the serial port.

WriterGeneric is a fairly standard function documented in MSDN help files. A flowchart

of the WriterGeneric function is shown in Figure 6-3.

The WriterGeneric function contains some error trapping for the WriteFile function. In

Overlapped 1/0 the writefile often does not return immediately - this causes WriteFile

to return "operation not successful", GetlastError is then called.

If GetlastError returns anything other than "ERROR_IO_PENDING" there is a fault and

the process will fail. If it returns "ERROR_IO_PENDING" then the WriteFile was

delayed due to the CPU being busy. The WaitForSingleObject function is then called,

it waits for the processor to have time to complete the WriteFile, it also allows time for

the expected data to be received into the buffer. Once the wrEvent is set,

GetOverlappedresult is called to determine if the Write File was successful.

6.3.5 Rx Thread Function

The Rx thread function works in a very similar way, it calls ReadGeneric (see Figure

6-3 for ReadGeneric flowchart) passing in the number of bytes to be read. If the data is

already available, the Read File in ReadGeneric returns immediately. If all of the data is

not there, WaitForSingleObject is called, returning either after the timeout interval or

when the data has been received. Finally, GetlastError is called to verify that the read

operation was successful.

75

The PLP Transport Task

- = WriterGeneric

- = ReadGeneric

Fail

WriterGeneric/ReadGeneric Flowchart

pointer to data pointer to data
number of bytes to write number of bytes to read

pointer to the number of bytes read

Yes

call GetlastError

WaitForSingleObject =?

-----1 Set number of
bytes read

WAIT_TIMEOUT - -----'"'----WAIT_OBJECT_O

Fail

Fail

Call
GetOverlappedRes

ult

GetOverlappedRe
suit successful?

Yes

I set number of bytj-s __ L read

Figure 6-3 ReadGeneric and WriterGeneric FlowChart

76

Philippa Regan

Return

The PLP Transport Task Philippa Regan

6.4 IPlP TRANSPORT TASK= WRITING A SIGNAL TO THE SERIAL PORT

The bus task has been designed such that to output any signal it is necessary to create

a SIG_PLPTX_BUS_WRITE_DATA_REQ signal, fill it with the necessary data and call

the plptxBusWriteData function passing in the newly created signal. This method was

used as it provides a standard way of outputting data via the serial port, thus

simplifying the process and allowing the serial interface section of the code to be re­

used in other modules. From the development point of view, the use of a single signal

to output data to the serial port makes it very easy to see when data is being output to

the serial port during the debugging process.

The PlptxBusWriteData function then adds the contents (i.e. signal to be sent) of the

SIG_PLPTX_BUS_WRITE_DATA_REQ signal to the queue of signals to be output and

signals that there is more data to transmit by setting the txSignal event as shown in

Figure 6-4.

77

The PLP Transport Task Philippa Regan

Writing a signal to the serial port

1. In main code

In main plptx code

Create a
PLPTX_BUS_WRITE_

OAT A_ REQ signal

Fill it with the data to
send

call plptxBusWriteData
passing it a pointer the

signal created

In plptxBu WriteData

2. In tx Thread

In tx Thread

calls plptxTransmitPacket.

calls WriterGeneric, passes
pointer to data & number of

bytes to send

In Writ rGeneric

writes data and checks
for errors

Error?
No

Figure 6-4 Flowchart of writing a signal to the serial port

78

The PLP Transport Task Philippa Regan

The steps carried out in each of the functions in order to write a signal to the serial port

are summarised below: -

In plptxmn (main plptx code) ...

1. A SIG_PLPTX_BUS_WRITE_DATA_REQ signal is created.

2. The SIG_PLPTX_BUS_WRITE_DATA_REQ signal is filled with data/signal to

be sent including any header signals required for processing. The PUT _INT

family of {TTPCom) functions should be used to put the data into the signal to

be sent and the GET _INT family of functions used to read data from received

signals as this avoids the problems caused by some systems being little endian

whilst others are big endian.

3. The plptxBusWriteData function is called and a pointer to the

SIG_PLPTX_BUS_WRITE_DATA_REQ signal that has just been created and

filled is passed into it.

In plptxBusWriteData function ...

4. The queue of signals to be transmitted is locked as this is a "Critical section".

5. The signal to be transmitted is added to the queue of signals.

6. The queue is unlocked {this is no longer in the "critical section").

7. The txSignal event is set to signal that there is more data to transmit in the tx

thread.

8. The signal is destroyed (there's still a copy of the signal on the queue of signals

to be sent).

In the tx (transmit) thread (in transmitPacket) ...

9. The tx thread waits for the txSignal to be set.

1 0. WriterGeneric is called and a pointer to the data and the number of bytes to be

sent is passed in.

In the tx thread (in writerGeneric) ...

11. WriteFile is called (this is the function that writes the data to the serial port.

6.5 PLP TRANSPORT TASK- SIGNAL FORMAT

The signal format was designed to make processing the signal in the receive thread as

simple as possible. The signals to be sent over the serial link were designed to start

with a 1-byte field containing the packet type. The packet type can be either

INFO_TYPE (a signal containing the device information) or ACK TYPE (an

"acknowledge" or "not_ acknowledge" signal).

79

The PLP Transport Task Philippa Regan

The second field consists of 1 byte that contains the signal type (e.g.

PLPTX_BUS_OUT _INFO or PLPTX_BUS_ACK). The rest of the signal then follows.

In the PLPTX_BUS_ACK signal the third byte contains the signal that is being

acknowledged.

The number of bytes to be received is initially setup to be 1, i.e. the packet type byte.

Having received the packet type byte, the size of the signal is known and thus the

number of bytes to be read in ReadGeneric can be set accordingly. The bus signal

structures used are shown in Figure 6-5.

PLPTX BUS OUT INFO (outgoing information) Signal

Byte number o 1 2 258

~,--,N-F-o __ T_Y_PE--~~-PL_P_Tx_m_B_~g-_-o-~--~~----------------s-i~-a-, --------------~~

Packet Type Signal Type

PLPTX BUS ACK (Acknowledge) Signal

Byte number o 2 3
,---------.----------.---------,

PLPTX_BUS_ Si~al being
ACK ACKED

ACK_TYPE

Packet Type Signal Type

Figure 6-5 Bus Signal Structures.

6.6 PLPTX CODE- READING A SIGNAL FROM THE SERIAL PORT

A flowchart of reading a signal from the serial port is given in Figure 6-7. The

receivePacket function is in the receive thread and consists simply of a loop that calls

the following: -

1. Call ReadGeneric with the number of bytes to be read - in ReadGeneric, the

system waits for the required number of bytes to be received, read them and

then returns.

2. Call the plpbuProcessRxData function - this passes a pointer to the received

signal into the plpbuProcessRxData function which processes the signal.

80

The PLP Transport Task Philippa Regan

As previously mentioned, the number of bytes to be read is initialised to be 1 byte. The

receive state rxState is initialised to PLPTX_BUS_RX_PACKET _TYPE (see Figure 6-6

rxState State Diagram). When a signal is received the packet type is determined from

the first byte and from this the number of bytes to be read is set. A flowchart of

receiving and processing signals is shown in Figure 6-7.

Packet Type
Received

rxState State Diagram

Rest of signal
received

Figure 6-6 rxState State Diagram

Received data is processed in plpbuProcessRxData which is called from the receive

Packet function. The plpbuProcessRxData function processes the first byte and

determines what type of packet has been received, i.e. whether it is an INFO

(information) type packet or an ACK (acknowledge/not acknowledge) type. Depending

on what type of packet has been received the number of bytes that are left of the signal

to be read are set and the rxState is set to PLPTX BUS RX SIGNAL. The - - -
plpbuProcessRxData then returns to its calling function receivePacket.

The ReceivePacket function calls ReadGeneric with the new number of bytes to be

read; when it returns plpbuProcessRxData is called. PlpbuProcessRxData initially

processes the first byte to evaluate what type of signal it is and then calls the

appropriate function to deal with the contents of the signal. The number of bytes to be

read is then reset to 1 (for determining the TYPE of packet) and then resets the rxState

to PLPTX_BUS_RX_PACKET _TYPE. The receive thread waits in

WaitForSingleObject in Read Generic for the next data to arrive.

This method of processing the signal has been used as it is simple and can be easily

extended if it becomes necessary to add in more packet types or signal types. lt relies

on the receiving system knowing how many bytes there are in each type of signal but

this simply requires a database of the different signal types.

81

The PLP Transport Task Philippa Regan

Recejyjng and processing sjgnals Flow Chart

(Start)

Initialise

In Receive Thread y

- receivePacket call
Read Generic

~ .

s

call plpbuProcessRxdata

In plpbuProcessRxData

[RX_PACKET _TYPE

~
I ~

ii!'
INFO_TYPE c:

"' ACK_TYPE

Fall

•
Setup Rx to receive Setup Rx to receive

INFO signal ACK signal

~ •
change rxState to change rxState to

PLPTX_BUS_RX_ PLPTX_BUS_RX_
SIGNAL SIGNAL

~
-

In ReadGeneric

~Yes

~Y-

(Fall

Yes

I
11l "

~

•
call ReadFile

Error?

No

Read No
Data?

see flowcha rt of
ric
ils

Read Gene
for full deta

I
f

I ~
~-"G'~ I

c Fall

I ~
IPLPTX_OUT _INFO

ii!' BUS_ACK t'_
Fall)

Create PLPTX_OUT _INFO_CNF Create
signal PLPTX_IN_INFO_IND signal

fill PLPTX_OUT_INFO_CNF
fill PLPTX_IN_INFO_IND

w~h received signal

send signal to PLP task send signal to PLP task

Reset Rx settings to receive Reset Rx settings to receive
type type

I I

J

Figure 6-7 Flowchart of Receiving and Processing Signals

82

The PLP Transport Task Philippa Regan

Nassi-Schneiderman Diagrams representing the plpbuProcessRxData function are

shown in Figure 6-8. The diagrams show that there are three levels of case switches

within the plpbuProcessRxData that are used to process the received data.

Nassi-Schneiderman diagrams of plpbuProcessRxData

PLPBU_PROCESS_RX_DATA

case
case PLPTX_BUS_RX_SIGNAL default:

PLPTX BUS RX PACKET TYPE

PLPTX_BUS_RX_PACKET_TYPE PLPTX_BUS_RX_SIGNAL DevFail (" incorrect type")

PLPTX_BUS_RX_PACKET_TYPE

INFO_TYPE ACK _TYPE default:

set number of bytes to be read set number of bytes to be read DevFail ("incorrect type")

reset receive Buffer pointer reset receive Buffer pointer

PLPTX_BUS_RX_SIGNAL

PLPTX_BUS_OUT _INFO PLPTX_BUS_ACK default:

create PLPTX_IN_INFO_IND create PLPTX_OUT_INFO_CNF DevFail (" incorrect signal")

fill and send to PLP task fill and send to PLP task
PLPTX IN INFO IND PLPTX OUT INFO CNF

Figure 6-8 Nassi-Schneiderman diagrams of plpbuProcessRxData

6.7 IMPORTANT DECISIONS IN THE DESIGN OF THE PLP TRANSPORT

(PLPTX) TASK.

The most important decisions in the design of the PLP Transport task were deciding

which method to use to transmit the data and how the signal structure needed to be

designed to facilitate simple processing of the received signal. To send signals to the

Windows serial port it was decided to always use a single signal type (a

plptxWriteDataReq signal) and fill it with the signal to be sent. This made it very simple

to send any type of signal and can easily be extended if other signals are added .

To simplify the processing of the received signals, the packet type byte was used as

the first byte in the signal. This allowed the number of bytes in the signal to be quickly

determined enabling the rest of the signal to be read. The second byte gives the signal

type which determines how the data in the rest of the data in the signal is processed.

83

The PLP Transport Task Philippa Regan

This structure was used as it is simple and can be easily extended if other signals are

added at a later stage. The received data is processed in the PLPTX task and signals

are sent to the main PLP task and to the PLPTX task (i.e. an internal signal is sent) as

required. The main PLP task only deals with higher level processing.

6.8 IMPLEMENTATION AND TESTING

Initially a very basic procedure was used to test the Windows Serial Port. The basic

code for accessing the serial port and writing to it was implemented and then tested by

connecting the Serial Port via a serial cable to a second PC running Windmill's

ComDebug 11
. ComDebug simply acted as a terminal that showed what data was being

output to the serial port from the code being tested.

Initially just an "A" was output from the PLPTX (PLP Transport Task) code to see if it

was displayed on the ComDebug terminal. When this test was successful, several

bytes were output successfully. Having established that the transmit mechanism

worked the read mechanism was tested.

The number of bytes to be read was set to 1 and an "A" was output from the

ComDebug software running on the other PC whilst the PLPTX code was run in

"debug" or "step through" mode looking at the receive thread. The PLPTX task

satisfactorily read the "A" and output it on a trace signal in Genie that was used for

debugging.

Debugging the code proved to be both difficult and time consuming due to the multi­

threaded processes. Borland C++ supports multi-thread debugging; however only one

thread can be active at any one time and therefore it is imperative that the correct

thread is being looked at during the debugging process. lt is important to remove

breakpoints from sections of code that may be part of a different thread, otherwise it

may be impossible to enter the thread that needs to be stepped through.

Having established that the basic communications mechanisms worked, the

mechanism of writing a real signal to the serial port was tested (i.e. using the

plptxWriteDataReq signal to output all data) using the ComDebug software. Similarly,

the basic structure of the reading and processing of received data from the serial port

was tested using the ComDebug software.

11 ComDebug is a freeware communications debugging tool from "Windmill" that acts as a

terminal.

84

The PLP Transport Task Philippa Regan

The read/process mechanism was checked using a simple test signal that consisted of

the Type byte, the signal name byte and a Bluetooth address as shown in Figure 6-9.

The INFO_TYPE packet type was used and the PLPTX_BUS_OUT_INFO signal name

was used to verify that the processing function handled the signal correctly.

Read/Process Test signal

Byte number o 2 8
~--------~--------~------------------------~

INFO TYPE
PLPTX_BUS_OUT_

INFO
Bluetooth Address

Figure 6-9 Read/Process Test Signal

The rest of the PLPTX task was then implemented based on the architecture described

in Figures 5-9, 6-7 and 6-8. The setup used to test the PLPTX task is shown in Figure

6-10.

PLPTX Test Setup

.,. Serial Cable ., ~I il
Laptop computer Desktop computer

PC "A" PC "B"

Figure 6-10 PLPTX Test Setup

Initially the PLPTX task was run in isolation on the laptop (PC "A"). Once again the

signals required from the device manager were implemented using a script in Genie.

The purpose of this test was to ensure that the correct data was being output in the

PLPTX_OUT_INFO_CNF signal and to check that if a PLPTX_BUS_ACK (an

acknowledge signal for the PLPTX_OUT _INFO_REQ signal) was sent from the

comDebug terminal that it was processed appropriately. After a few changes due to

having incorrectly calculated the length of the various fields whilst filling the outgoing

signal, the results of this test were satisfactory.

The main PLP task was added (PLPTX and main PLP tasks were run on the laptop at

this stage) to check that the PLPTX task interacted with it correctly. lt was not possible

to have all of the other tasks running simultaneously, as this would require having an

85

The PLP Transport Task Philippa Regan

EVB (Evaluation Board) connected to each PC using a serial port, which could not be

done as the laptop's only serial port was being used for testing the serial link.

The next stage was to run the PLPTX and main PLP code on both PC's to determine if

the whole system worked. Once again the Device Manager was being simulated using

the Genie script. Both the main PLP task and the PLPTX task were run in "debug"

mode and the code was stepped through to verify that it functioned correctly.

Having established that there were no problems with the logic, both PC's were taken

out of debug mode and were run normally with both the main PLP and PLPTX tasks

running. This test showed that although the "Touch and Find" process was being

completed, the tasks did not stop on completion and signals continued to be received.

Various solutions to this problem were considered, such as:-

• Clearing the queue of signals to be transmitted.

After consideration it was concluded that this solution would not work as clearing the

queue of signals to be transmitted would stop the other device being able to complete

the "Touch and Find" process.

• Clearing the receive buffer.

Although clearing the receive buffer may help, it would also prevent the device

responding to requests for information from the other device which may not have

completed the "Touch and Find" process yet.

e Adding a signal to be sent between the devices to indicate that that device has

finished. Only if a device has both sent the plptxOutFinishReq signal and received a

plptxlnFinishlnd will it be able to change back to the IDLE state.

This solution (adding a "finish" signal} was implemented and works well as it ensures

that if one device finishes and the other has not, the first device does not go back to the

IDLE state but remains in the same state until either it receives a request to finish the

link or alternatively the state timer times out. This ensures that it can correctly respond

to requests for information from the device that has not yet completed the "Touch and

Find" process. There were still some problems with signals being processed in the

correct state, but these signals were simply handled and absorbed in the relevant

states.

86

The PLP Transport Task Philippa Regan

6. 8. 1 Addition of Autostart feature

lt was realised that instead of needing to activate the "Touch and Find" process

manually, e.g . using a button, it would be beneficial if the "Touch and Find" process

started automatically. This "autostart" required the system to be able to detect when it

was in the "Connected" state.

The simplest solution was to use some handshaking; it was decided to send a start

sequence signal at the beginning of the link and to add two additional states to the

plptx task in the form of tx States, the "DISCONNECTED" state for when there was no

active serial link and the "CONNECTED" state when there was an active serial link (see

Figure 6-11). When in the "DISCONNECTED" state only the start sequences can be

transmitted .

PLPTX Task txState State Diagram

Process completion
or link failure

Figure 6-11 PLPTX Task txState Diagram

The start sequence was sent out at regu lar intervals (using a timer) from both devices'

serial ports. When the start sequence (plptxStartSequencelnd) was received, an

acknowledge signal would be sent. When a device has received both the

plptxStartSequenceReq and plptxStartSequence2Req, a plptxStartSequenceCnf signal

would be sent internally to the main PLP task and the plptx state would change to the

"CONNECTED" state; the serial link is now active.

The signal flow chart with both the start sequence and the finish sequence shown is

shown in Figure 6-12, internal signals are not shown.

87

App
Pip 1 OM

:!!
cc
c: ..,
~
0')
I
N
"'tt
e!.
:::::!.
::::J
cc uenceCnf
!::
::::J
~

~I "'tt ..,
0
0
(')

2.
~
cc

QOT KEY

::::J
!.
:!!

~
N

Pairing Link Protocol Signal Flow 2

Plptx 1 Plptx 2

C(I . TE:D CO J..- EO

. I lnfo_. lnfo

OM
I

I

I

olptxStartSeauencelnd

Plp2 Apf2

IDLE

I dmshReadLocallnfo e ACTIVE
. mshReadLocallnfoCnf
~ dmshReadLocallnfolnd

plptxOutlnfoRea

WAIT_
FOR_KE

t= nfo ..,_ I -.I plptxOutlnfoCnf ~

Into ----... plptxlnlnfolnd ~
QIQtxlnlnfoRsQ

..
ACK -t

~ Finish
t ;l~txFinishReg ~Plinklnfol:

Finish • olotxFinishlnd ...,.

IDU.E

-I
::r
CD

"'0
r
"'0
-I
iil
:J
(/)
0
0
:4.
-I
Dl
(/)
;>:;

"'0
::r

Dl
:J

The PLP Transport Task Philippa Regan

The start sequence was sent at regular intervals from the PLPTX task after the Initialise

signal had been received from the Device Manager. The signal flow for the start

sequence including the internal signals is shown in Figure 6-13; for simplicity the

dmshRegisterAsApplicationCnf signal is not shown and the signal flow in just one

device is shown.

1
)IDLE

ACTIVE

Pairing Link Protocol Start Sequence Signal Flow

OM
I

uencelnd

Plptx 1 Plptx 2
1

01111
Serial I ink .,.1

')LE(IULE

Initialise J

Figure 6-13 Pairing Link Protocol Start Sequence Signal Flow

Having received the SIG_INITIALISE signal from the Device Manager, the PLPTX task

creates and sends the plptxStartSequenceReq signal to the PLPTX task (itself) and

starts a timer with a timeout period of half a second. When the timer expires the

plptxStartSequenceReq signal is created and sent to the PLPTX task. This mechanism

of the PLPTX task generating and sending signals to itself, to then be transmitted via

the serial port was chosen as it isolates the main PLP task from the low level task of

determining if the serial link is connected .

89

The PLP Transport Task Philippa Regan

When the PLPTX task receives the plptxStartSequenceReq, it creates and sends a

"Start1" signal to the serial port transmit queue that consists of "AAA". When the

PLPTX bus receives "AAA", it sends a plptxStartSequence2Req to PLPTX. This

causes the PLPTX task to create a "Start2" signal "ABB" and send it to the serial port

transmit queue. When "ABB" is received the plptxState changes to "CONNECTED"

and a plptxStartSequencelnd signal is sent from the PLPTX task to the PLP task.

By using start sequence packets of "AAA" and "ABB" the packets can easily be

processed by the existing structure of the ProcessRxSignaiFunction. The existing case

switch on the packet type (as shown in Figure 6-8) had just two cases (packet types)

and a default case. Adding in the Start Sequence simply required the addition of a

third START TYPE packet. Similarly a START _SIGNAL and a START2_SIGNAL

were added to the case switch on the signal name. The revised Nassi-Schneidermann

Diagrams are given in Appendix 1.

6.8.2 Disconnection Test

The next test on this code involved disconnecting the serial cable between the PC's

from one of the PC's. Both PC's were then run with both the main PLP and PLPTX

code running and the Test task being used to simulate the required signals from the

Device Manager. As expected, nothing happened until the serial cable was

reconnected to complete the link and the "Touch and Find" process completed as

normal.

The final test in this section was to utilise the presence of two serial ports on the

desktop PC. The TTPCom "Mad Cow" Bluetooth EVB was connected to serial port

"COM 2" and the serial cable for the "Touch and Find" process was connected to the

other serial port "COM 1". The laptop (PC "A"- as shown in the test setup diagram in

Figure 6-1 0) ran both the main PLP task and the PLPTX task and would use the TEST

task to simulate the Device Manager. The desktop PC (PC "B") would run all of the

TTPCom tasks and had the EVB connected. The serial cable was disconnected; "run"

was pressed on both PC's and then after a brief period the serial cable was

reconnected. The "Touch and Find" process completed as normal once the connection

had been re-established showing that both the main PLP and PLPTX tasks were

compatible with the existing TTPCom tasks.

90

The PLP Transport Task Philippa Regan

6.9 CHAPTER SUMMARY

Chapter 6 has described the requirements, design, implementation and testing of the

PLP Transport Task. The chapter started with a description of how the windows serial

port works and how it should be set up for non-overlapped input and output. The text

described the multi-thread nature of the serial interface and how "events" are used.

The chapter then goes on to describe how the serial interface is used in the PLP

Transport task and how the standard method for sending a signal out through the serial

port from the PLPTX task was developed.

The signal structure design was explained together with how it was developed in order

to simplify the data processing at the receiving end of the link. Finally the

implementation and various tests that were carried out have been described, including

the addition of the automatic start feature for the "Touch and Find" process.

91

Hardware Philippa Regan

CHAPTER 7 HARDWARE

The software tasks described in Chapters 5 and 6 were successfully implemented and

then tested using a crossed over serial cable to provide the hardware link between the

two devices to be paired. In this Chapter three types of hardware solution are

investigated to provide the final link between the devices. The solutions developed are:

- electrical contacts, infrared and inductive simple looping. Each of these methods of

communication described has been designed to support full duplex communication as

required by the Pairing Link Protocol. Another possible solution could be based on

capacitive coupling.

The chapter starts by describing the first hardware concept developed which was the

simple electrical contact solution. This solution uses a "hybrid" circuit to achieve full

duplex communication using two contacts. The modifications to the software that were

required in order to detect the "CONNECTED" state are explained together with the

testing of the solution. The chapter goes on to describe the design of two possible

infrared based solutions and the design, implementation and testing of the inductive

loop solution.

7.1 SIMPLE ELECTRICAL CONTACT SOLUTION

The design of a full duplex simple electrical contact solution was complicated by the

constraints placed on the design of the connectors by the need for all devices to have

identical connectors. This "symmetry" is required because the "Touch and Find"

system is to be used on devices which may need to pair to identical devices, thus a

symmetrical connector is required. lt is also necessary to know which of the contacts is

the ground signal. One possible solution to this is to use contacts that are circular and

concentric. lt was decided that the use of three concentric circular contacts (as

required for a traditional three wire full duplex serial link) would be both space

consuming and unnecessarily complex and that a two contact solution would be best

provided that a suitable circuit for providing full duplex over two wires could be

designed.

The method proposed is essentially an electronic "hybrid" [53]. The "hybrid"

transceiver allows the transmit and receive paths to be combined across a single line

whilst having the ability to extract the data to be received from the combined path for

the receive function. The "hybrid" is widely used in communications for separating go

92

Hardware Philippa Regan

and return transmissions; for example in every wired analogue 'phone. For the

purposes of digital data transmission between two devices actually in contact, a simple

realisation is possible, which might have the potential for low cost and to be largely

realised in integrated form.

Figure 7-1 shows the circuit diagram of the proposed "hybrid" circuit. In each device,

the data to be transmitted is buffered by two stages to provide a and a! 12 signals. The

a signal is sent to the other device through R1 and applied to the input of a local

Schmitt receive buffer through R2. The a! signal is applied to the receive buffer

through R3. The method of operation is simply that the resistor values are chosen so

that, when connected, the local signal balances out at the input to the receive buffer.

However the signal from the other side is not nulled out and hence is recovered and

converted to a logic level by the buffer. lt is assumed that the Tx buffers are both

CMOS type which swing effectively from rail-to-rail; the rail voltages on each side are

reasonably equal; and the Schmitt input thresholds are symmetrical around the mid-rail

voltage.

Hybrid Circuits

Contact Interface

• 11 11

Ground-t====~=========r~G=r~o=un~d~-t=========+====T-Ground

Figure 7-1 "Hybrid Circuit" Diagram

The circuit shown in Figure 7-1 was made up and tested to verify that it worked. A

range of resistor combinations were used, but the values shown gave the best voltage

12 ! means negated.

93

Hardware Philippa Regan

swing at "V1" and "V2", the inputs to the Schmitt trigger. The results of the testing of

the "hybrid" circuit are shown in Table 7-1.

Input Volts) Output (Volts)

TX1 TX2 V1 V2

5 5 3.50 3.50

5 0 2.06 2.94

0 5 2.94 2.06

0 0 1.51 1.51

Table 7a1 Table of Output voltages from basic circuit

The ability of the circuit to detect the "connected" state was investigated and it was

found that due to the symmetrical nature of the circuit it would be impossible to

determine whether or not another device was connected to the serial port. The "hybrid"

circuit was tested to determine the voltage level at the input to the Schmitt trigger whilst

the signal line was disconnected, i.e. the effect of TX1 on V1, which is the input to the

Schmitt trigger. The results are shown in Table 7-2.

Input "Connected" "D is connected"
TX1 TX2 Output (V1) Output (V1)

(Volts) (Volts) (Volts) (Volts)

5 5 3.50 3.49

5 0 2.06 3.49

0 5 2.94 1.51

0 0 1.51 1.51

Table 7a2 Table showing the effect of TX1 on V1 in the disconnected state.

The results shown in Table 7-2 show that with the existing circuit it is impossible to

determine when the devices are in the "connected" state, as the voltage at "V1" is the

same if TX1 is 5 volts in the "disconnected" state as it is when TX2 and TX1 are 5 Volts

in the connected state. i.e it is impossible for the circuit to tell the difference between

the "disconnected" state and the "connected" state when both inputs are the same.

Although various hardware solutions to detecting the "connected" state were

considered, it was decided that it was best to minimise the complexity of the hardware

and to use a software solution to ensure that signals that a device transmits are not

received and processed by the same device. This is discussed in Section 7.1.2

"Detecting the Connected State."

94

Hardware Philippa Regan

7. 1. 1 Schmitt Trigger

The Schmitt trigger was used in the circuit to convert the signal received into a logic

signal. lt was not possible to use a Schmitt trigger IC {Integrated Circuit Chip) because

the switching thresholds were not at an appropriate level. Thus it was necessary to

construct a Schmitt trigger using a comparator in order to set the thresholds at the

required levels. The Schmitt trigger used and its transfer characteristic are shown in

Figure 7-2. The Schmitt trigger's thresholds were designed to be in between the

voltages received (2.06V and 2.94V) when the inputs were not the same, i.e Tx1 was

5V and Tx2 was 0 V and vice versa. The Schmitt trigger switches at 2.25V and 2.80V.

Schmitt Trigger Circujt Djaqram Schmjtt Trjgger Transfer Characterjstjc

----,------------------ +5V

47k
+5V

47k

>------ V out

N .B . A ll resistor
values are in ohms

5V

2.25 2.8

Figure 7-2 Schmitt Circuit Diagram and Transfer Characteristic

Vin (Volts)

The Schmitt trigger shown above in is an inverting Schmitt Trigger, so an inverter has

been added after the Schmitt trigger. The Maxim chip was added as a voltage

converter between the input/output of the PC {which uses RS232 compliant voltages:

+12V, -12V) and the "hybrid" transceiver circuit (requires CMOS voltage levels +5V,

OV). A block diagram of the circuit is shown in Figure 7-3. The full simple electrical

contact solution is shown in Figure 7-4.

Block Diagram of Hardware

PC"A" PC"B"

Figure 7-3 Block Diagram of Hardware

95

"T1
cc
c:
""'' ~
.......
I

~

"T1
c:

C/)

I 3
'"0
CD"
!!! I

~I ~
0 -""'' (;'
I»

0
0
::l -I»
0 -C/)
0
c: -cs·
::l

PC"A"
MAX220

CPE

Tx 1----.....L.o"-1 R11N

Rx 1------..:..·~~ T10UT

GND

Galvanic Contact Solution

Contact Interface

* "Hvbrid" Circuit d" Circuit

Ground

Schmitt Trigger Schmitt Trigger

NB. MAX220 chip shows Interface connections only.

MAX220

CPE

I I I I IT11N

PC"B"

I
Ql

a.
~
ro

""0
~

Ql
::I

Hardware Philippa Regan

Having constructed the "hybrid" circuit, Schmitt Trigger and Inverter, the circuit was

tested using two single pole double throw switches to provide the inputs. The Schmitt

triggers were also tested at a frequency of 1 MHz, using a square wave input from a

signal generator to verify that they were capable of switching at the required rate.

The next stage was to connect the PC's to the circuits. This was done using a serial

connector into the PC serial port with wires connected to the Tx, Rx and Ground lines

that were then fed into the Maxim chip and "hybrid" circuit as required. The signal line

and ground between the sets of hardware for each device were also connected and

then the main PLP and PLPTX code was run on both machines with the Test task

running to simulate the required signals from the Device Manager. The local and

remote device information was correctly returned to the test task (which was being

used as the calling application) as defined in the "Pairing Link Protocol". The "Touch

and Find" system worked as intended with no problems encountered in the testing of

the combined hardware and software.

7. 1.2 Detecting the Connected State.

As indicated previously, a method is required to detect the "connected" state. Without

some form of software changes the system was incapable of recognising when another

device was connected; it would simply send signals to itself and then process them.

This would result in the "Touch and Find" process completing incorrectly as the only

device information would be that of the local device which would fill both the remote

and local device information areas.

The simplest solution appeared to be to add a unique header to each packet sent. The

header would consist of three known start bits (so that the start of a packet could be

easily detected) and would then be followed by a unique device identification number.

The full Bluetooth address of the transmitting device was used as the unique device

identification number. The PLPTX task would then compare the received device

Identification (device ID) with that of the local device. If the two ID's are the same then

the PLPTX task would throw away the received signal; if different, the received signal is

processed in the normal way. This allows the software to detect the "connected" state.

The header would be included on all packets sent and if at any stage the device ID of

the received signal became the same as that of the local device, it would be known that

the connection had been lost and the signal would be thrown away. This solution

would also be compatible for use with both the inductive and infrared solutions. The

97

Hardware Philippa Regan

signal structure (shown in Figure 7 -5) now has an additional 3 byte start sequence and

a 6-byte unique device ID (Biuetooth address).

2

Bluetooth Address

Start Bytes Device Id Number

Signal Structure

9 10 11

Packet Signal
Type Type

Signal

Figure 7-5 Generic Signal Structure

The implementation of the above change was simple as it was compatible with the

existing structure in both the rx and tx State switches - it simply required adding two

extra states to the rxStates. The changes required have been represented in Figure

7-6 and in the Nassi-Schneiderman Diagrams in Appendix 2.

rxState State Diagram 2

if remoteDeviceld !=
locaiDeviceld

PLPTX_BUS_RX
SIGNAL

Figure 7-6 RxState Diagram 2

In the process of implementing these changes, the system was made more robust so

that instead of failing if an incorrect signal was received, it would simply throw away the

received signal. The final signal flow diagram used in the "Touch and Find" system is

shown in Figure 7-7.

98

App 1

::!!
cc
r::: ...
(I)

........
I

........

::!!
::::J
a!.
C/)

~I cc
::::J
a!. .,
0
~
0
I» cc ...
I»
3

Pairing Link Protocol Signal Flow

I

Pip 1 OM Plptx 1 Plptx 2 OM Plp2
I

DISCONNE::.<... J .. Serial Link • _.::>NNE:CTED I Apr
2 1i

r I", I - (

\.
)IDLE Initialise i /

I DID LE '/ . c
~shReaisterAoolicationR~n! .Initialise. .

Initialise ! Initialise

lomshReoisterAoolicatio~dlnshRealsterAoohcatiO~ ~hReoisterAon,. . ! dlnshReaisterAoolicatiorlRE!a

- _amshReadLocallnfoRea !~shReaisterAoolicationCr.lf
l~catronRP11 ~shReoisterAnnlicationCr.lf

dmshReadLocallnfoCm--J .,..
amshReaisterAoohcatiOnCot! dmshReadlocallnfORecr"

- dmshReadlocallnfolnd j
,... ~--amshReadLocallnfoCnf

- olotxStartsJouenceReq

! dmshReadLocallnfolnd....,
olotxStartSsouenceReo,

! --. ~tart1 start1 I

I - ••
s:t;:,rt?

I

I •<~rt2 I

t:... plptxStartS~ouenceCnf
(

.....- olntxStartSeauencelnd

....::l.Q.mshReadLocallnfoRea ! COl .. " "'' FO
i dmshReadlocallnfo~eor)ACTIVE

I.J dmshReadlocallnfo(~ COl , ~:F.D -:JlmshReadlocallnfoCnf \..

..: dmshReadlocallnfolnd I . dmshReadLocallnfolnd ~

-- olotxOuilnfoRea lnto.mfn
olotxOutlnfoReo --

I

.......
plptxlnlnfolnd r-- lnfo

·(t--. olotxlnlnfoRso - lnfo

1 ACK~
WAIT

olotxOutlnfoRea
-

..... -- I--

FOR_KE

.,..
1--- Into

-..
olotxOutlnfoCnf

Into
-.

1-- -c D ~
olotxlnlnfolnd

L....
plptxlnlnfoRsp --

ACK olotxFinishReo IPTPrm~<, nrom-
....... plptxOutlnfoCnf r-- ~

Finish

nd ~
p\ptxFinishlnd - d

(D.. olotxFinishReo

l) f-.;... Finish

0 E 7 " !-
PI otxFi nish lnd

App = Application
OISCONNf-CTED \._)

If DM = Device Manager

I
DISCON~FCTED Q =State

PLPTX = PLP Transport Task I

a;

"'0
::r

Dl
::J

Hardware Philippa Regan

7. 1.3 Physical Contacts

The physical design of a set of contacts suitable for use in the simple electrical contact

solution for the "Touch and find" system was considered. Due to the requirement to

have exactly the same contact on each device and the need to have a signal Ground in

a known place, the only solutions available were concentric contacts. A possible

arrangement is shown in Figure 7-8. lt may be necessary to spring load the contacts in

order to ensure a good connection. Although it would be possible to short circuit the

contacts if they were misaligned or a coin came into contact with them, the output

resistance of the circuit is sufficiently high that this would not matter.

Galvanic Contacts

N.B. Not to Scale
Top View

"Signal" Ground Contact

=Insulator
Side View

Figure 7-8 Concept Diagram of Simple Electrical Contacts

7. 1.4 Testing the Simple Electrical Contact Solution

The simple electrical contact solution worked well when tested using two wires (signal

and ground) to connect the two devices. As one of the PC's being used to test the

devices only had one serial port, it was necessary to simulate the role of the Device

Manager using the Genie Test task. The local device information that is normally

provided by the device manager was sent manually by the user from the Genie Test

Task. The following tests were carried out successfully:-

1. With both signal and ground connected, the software was run through Genie on

both systems (PC "A" and PC "B" in Figure 6-10 PLPTX Test Setup).

2. With just ground connected, "Run" was pressed on Genie on both systems.

Nothing happened until the "signal" line was connected and then the process

completed successfully. This showed that the "Connected" state had been

successfully detected.

3. The test outlined in 2 was repeated but this time the "signal" line was quickly

disconnected and reconnected in the middle of the process. The process

100

Hardware Philippa Regan

completed with the correct data after extra signals had been sent to cope with

the signal loss. This demonstrated the robustness of the code.

Finally, the TTPCom "Mad Cow" Bluetooth Evaluation Board was connected to the

second serial port on PC B, so that the system could be tested with the device

manager operating on one side. Again the process completed successfully showing

that the complete "Touch and Find" system had been implemented successfully using

the "simple electrical contacts" hardware solution as the physical medium.

7.2 INFRARED SOLUTION

Two concepts were used for the development of an Infrared solution. The first was

based on a simple pair of matched infrared transmitters and detectors and the second

was based on an lrDA (Infrared Data Association) chipset. Due to time constraints

neither solution was constructed, particularly as the lrDA chipset would require a PCB

to be designed and made. However, designs based on both techniques were

developed and analysed here.

A simple and low cost solution is shown in Figure 7-9. lt is based on using amplitude

modulation of an Infrared carrier (generated locally) with the data signal. This is then

transmitted through an Infrared transmitter which is frequency matched with the

Infrared receiver used in the other device. The received signal is passed through a low

pass filter to remove the high frequency component, leaving just the data signal, and is

then input to an amplifier. The gain of the amplifier was to be determined according to

the amplitude of the received signal. A Maxim level converter was required between

the PC serial port and the circuit to change the voltage levels between RS232 and

CMOS. Infrared modem IC's (Integrated circuits) were researched but there seemed to

be a lack of "non lrDA" infrared modems available. Thus the solution utilising the lrDA

chipset was realised, this is shown in Figure 7-11.

The lrDa compliant chipset design was based on the data sheets and application notes

of the chips used [54] [55]. The lrDA solution should work without significant changes

as it is designed to be used as a cable replacement for use between PC's. No

software changes should be required.

1010

~

0

"'

"T1
CQ
c: ..,
C1)

......
I

CD
DJ
I»
!!!.
C')

::::::1 -Dl ..,
C1)
c.
C/)
0
c:
!:!:
0
::::::1

Basic Infrared Solution

R1

+5V---,---

120kHz
PC"A"

MAX220
CPE MAX220 _]__ '-""

11
'"' o.o~s No

CPE ~ GND nmrr 14
L

___ 1"""31H"' RW" 12 12 RWU RH' 13

' '
14 T10UT 15 L ______ 1~5 GND

T11N 11

PC"B"

120kHz -=-

-___.J'-----+5V

R1

I
Ill
c.
~
ro

"'0
::::r

Ill
::J

Hardware Philippa Regan

lt should be noted that the interface between the two devices is different to that shown

in Figure 5-1 as there is no longer a ground signal. The interface between the PLPTX

Transport tasks for the Infrared solutions is shown in Figure 7-10.

Interface between devices for lnfared solutions

PLPTX
Transport

Task 1

Tx1 Infrared Beam
-- ---

Infrared Beam

PLPTX
Transport

Task2
T x2 '--------'

Figure 7-10 PLPTX Interface for Infrared solutions

The lrDA solution shown in Figure 7-11 uses the Maxim level converter to interface

between the PC and the circuitry. The HSDL7001 chip receives a serial data input (at

CMOS voltage levels) from the Maxim level converter and modulates and demodulates

signals to and from the HSDL 1001 lrDA transceiver. The HSDL7001 is compliant with

the lrDA 1.0 physical layer specification and has an external 3.6864MHz as it is run in

the internal clock mode. The transceiver operates at 875nm.

The infrared solutions offer a good alternative solution to both the simple electrical

contact solution and the inductive looping solution. The link is secure, (although not as

secure as the electrical contact solution that requires physical contact) as Infrared is

restricted by line of sight and typically works within a 30° cone. Both the basic Infrared

solution and the lrDA solution are low power, making the Infrared solutions suitable for

use in mobile devices. In addition, Infrared communication is a mature technology, is

widely available and is very reliable.

The lrDA solution has the advantage that it is almost ready made and very reliable.

However it is also a rather expensive solution if the lrDA chipset is only used for

Bluetooth Pairing. Ideally a full lrDA port would be implemented in the device and if

integrated would also allow Bluetooth pairing, but this would be difficult as the lrDA

stack is very complex. The best long term solution (unless the device has an lrDA port)

is to use the basic lrDA solution which is simpler and lower cost.

103

Hardware

PC

MAX220
CPE

6

10u

GND

4.7u

lrDA Solution

HSDL
7001

10pF

Figure 7-11 Circuit Diagram of lrDA Solution

7.3 INDUCTIVE LOOP SOLUTION

3

10pF

Philippa Regan

HSDL
1001

x1 = 3.6864 MHz

The concept behind this solution is to have two coils, one from each device, placed in

close proximity to one another. One device will then transmit an ac (alternating

current) signal on the first coil and by means of the induced voltage in the second coil,

the second device can detect the transmitted signal. Ideally a circuit enabling full

duplex transmission using a single pair of coils was to be developed.

Two coils with an inductance of 1 mH were made up and subjected to some basic tests

in order to facilitate the design process. The inductance and self-resonant frequency of

the coils was measured using an impedance analyser. The self-resonant frequency of

the coils was determined to be outside the range of frequencies that might be used for

modulation

In order to determine if modulation would be required a signal generator was used to

produce a signal with a frequency equal to the minimum frequency that would be

output from the RS232 serial link. lt was determined that modulation would be required

as the signal did not vary quickly enough to be received on the second coil in a

recognisable form.

104

Hardware Philippa Regan

Having determined that modulation was required, the next step was to determine if

resonant circuits would be beneficial. The circuit shown in Figure 7-12 was used to

evaluate the amplitude of the signal received.

Test Circuit

Signal

Vin lmH Generator '\...; 1mH V out
-variable
frequency

Tx Rx

Figure 7-12 Circuit Diagram of Test Circuit

For a 5V peak-peak input signal, the output voltage "Vout" on the above circuit was 1V

peak-peak. The received signal did not have a sufficiently large amplitude to process

the received signal reliably whilst allowing for variations in amplitude due to the

distance between the coils and noise. Thus some form of resonant circuit would be

required.

Using the inductor's self-resonant frequency was considered but determined to be

unsuitable as each circuit's resonant frequency is different and it would be extremely

difficult to create coils with the same resonant frequency.

A full duplex inductive solution based on the "hybrid" circuit used in the simple electrical

contact solution was investigated, but no solution found. There were many factors that

complicated the development of the required circuit.

• The circuit must resonate in order to create a sufficiently large voltage on the

receive coil.

• Modulation was required.

• Transmit and receive must be carried out on one circuit. lt was not possible to

have a serial "RCL" network for the transmit side and a parallel "RCL" network

for the receive side.

e The inductance of the coil and hence the resonant frequency were affected by

the distance separating the two coils.

• The distance between the two coils affected the inductive coupling.

• Designing a physical aligning device that could be used to align the two coils

and fix the distance between them was very difficult as it is necessary for the

devices to be identical.

105

Hardware Philippa Regan

The above factors made it very difficult to develop a full duplex circuit with two coils in

the limited time available. Instead, a simpler solution was investigated.

7.4 FOUR COIL SOLUTION

The use of four coils greatly simplified the task. lt would be possible to have separate

transmit and receive coils, thus enabling optimisation of the transmit and receive

circuits by using a series "RCL" network for the transmit circuit and a parallel "RCL"

network for the receive circuit.

The use of two sets of linked coils lends itself to each linked pair of coils being

concentric - for example using a small coil as a transmit coil inside the larger receive

coil. Each device would have both a large coil around a recess and a small prominent

coil. This arrangement would increase the linkage and should enable power transfer

across the inductive link if required (as in electric toothbrushes). The envisaged

connector is shown in Figure 7-13.

Physical Interface for Inductive Solution

Device A

~
Coils Depression

for Tx coil to
Side View insert into

~ c
Top View

Device B Tx Rx

Figure 7-13 Physical Interface For Inductive Solution

For test purposes four 1 mH coils were made up. The two larger coils had an internal

diameter of 19mm and the two smaller coils had an external diameter of 15mm. Figure

7-14 shows the arrangement of the Transmit {Tx) and Receive (Rx) coils and their

respective sizes.

E
E

C")
N

Coil Sizes

E
E

1.!)

Figure 7-141nductor coil Alignment

106

Hardware

The number of turns required was estimated using Equation 1.

N = L,tH(6a + 9h +lOb)

(0.3la 2
)

Equation 1 [55]

Figure 7a15 Key to Equation 1

Where:-

L)lH = Inductance in micro Henry's.

a = average radius of coil in cm.

b = winding thickness in cm.

h = winding height in cm.

N = number of turns.

Philippa Regan

The coils were made up and the impedance of the coils was measured using an

Impedance Analyser. lt was verified that the self-resonant frequency of the coil was

not in the frequency range to be used.

7.4. 1 Calculating the Resonant Frequency of the Circuit.

1
llJ =--

res .JLC

Combining Equations 2 and 3 gives

1
fres = 2Jr .JLC

Equation 2

Equation 3

Equation 4

107

Hardware Philippa Regan

lt was decided to use a modulating frequency of approximately 200KHz requiring a

capacitance of 680pF to be used (to the nearest available capacitance value). The

inductance and capacitance values were then substituted into Equation 4 as shown

below.

L = lf.1ll

C=680pF

1
J,.es = ~

2tr 1 X 10-3
X 680 X 1 o-Il

fres = 193kHz

Thus the predicted resonant frequency of the resonating circuit is 193kHz. This was

then verified experimentally using the circuit shown in Figure 7-16. The test circuit

showed that the two circuits (transmit and receive) did not resonate at exactly the same

frequency and that although the amplitude of the received signal could be improved

through tuning, it was not necessary in order to demonstrate that the circuit would

work. The frequency used throughout the development of the inductive looping circuit

was 193kHz, as this was the frequency at which the voltage across the secondary

(receive) coil was maximised.

Resonant Freguency Test Circuit

.------~rl ----~

sv~ ~~ esopF ~~ ~~ fl }out

Figure 7-16 Resonant Frequency Test Circuit

Having determined the frequency of the modulating signal it was simply a matter of

modulating and demodulating the signal. Modulation of the 193kHz signal was carried

out by the use of a transistor as this allowed a bipolar input. When the data bit was a

"1", the modulating signal would be applied across the coil and when the data bit was a

"0", the coil would be short-circuited, thus providing 100% amplitude modulation. The

circuit diagram of the circuit used during the development process is shown in Figure

7-17.

108

Hardware Philippa Regan

The signal applied to the coil, when the data bit was "1 ", was not a perfect sine wave

due to the transistor not being turned on until the voltage at the base reached

approximately 0.6V, however the imperfect sine wave did not cause any problems.

Inductive Solution Development Circuit Diagram

193kHz LPF

~BOpF Rx Data

""'" ;;<! Vout
Data

Figure 7-171nductive Solution Development Circuit Diagram

The receive circuit was slightly more complex. Firstly the voltage across the inductor

was measured to be up to 39.2 V peak-peak and hence required limiting by means of a

pair of 5.1 v Zener Diodes. The signal was then rectified with a diode and demodulated

by passing it through a Low Pass Filter.

The low pass filter was designed to ensure that the capacitor smoothed the output

sufficiently to be read as a "1" whilst the data bit was a "1" and such that the voltage fall

off was sufficiently fast that when the data changed to a "0" the received signal was

also a "0". The time taken for the voltage to drop to 2.5V, following the data bit going

low, was 12.8 1JS which, as required, is considerably shorter than the bit time. A plot of

Voltage against time in shown in Figure 7-18. The points on the circuit at which the

voltages were measured are shown in Figure 7-18.

Finally it was necessary to clean up the signal with a Schmitt trigger so that a clean

logic signal could be input into the Maxim Voltage converter for transmission to the PC

via an RS232 cable. The Inverting Schmitt trigger was designed to have thresholds at

2.25V and 2.8V. The complete circuit is shown in Figure 7-19.

109

Hardware

Fall off of Voltage in Receive Circuit

8.00E+OO

6.00E+OO

4.00E+OO

en 2.00E+OO
;!:::
0
~
Q) O.OOE+OO
Cl
,f!
0 -2.00E+OO >

-4.00E+OO

V 11 V V V V
-6.00E+OO

-8.00E+OO

Time (Seconds)

Figure 7-18 Fall-off of Voltage in Receive Circuit

lndyctjye Solytjon

193kHz FOpF
Txcoil

PC

1mH
Txf-----4;;:;;::--R1run.12..._ ____ _j :::>o---£:::=r--i
R*------g
GND----~

6

10uF
4.7u

Figure 7-19 Circuit Diagram of Inductive Solution

110

Philippa Regan

~
~

Rxcoil

1mH

Hardware Philippa Regan

7.4.2 Testing the "Four Coil" Inductive Solution

The circuit shown in Figure 7-19 was constructed twice, once for each device. Finally

the system was tested by running the complete "Touch and Find" code through Genie.

Both the main PLP task and the PLPTX task were run, together with the Test task (to

simulate the Device Manager). The following tests were carried out successfully: -

1. With both sets of coils aligned, the software was run through Genie on both

systems. The process completed successfully.

2. With both coils apart, "Run" was pressed on Genie on both systems. Nothing

happened until the coils were brought into alignment and then the process

completed as normal.

3. The TTPCom "Mad Cow" Bluetooth Evaluation Board was connected to the

second serial port on PC B, so that the system could be tested with the device

manager operating on one side. The "Touch and Find" process completed

successfully.

This showed that the "Touch and Find" system worked well using the four coil inductive

solution. None of the code used with the simple electrical solution needed to be

changed when the physical medium that the "Touch and Find" system was using was

changed, showing that the Pairing Link Protocol designed was suitable for use with

more than one hardware solution.

7.5 CHAPTER SUMMARY

Chapter 6 introduced the three types of hardware solution developed. The

development of the simple electrical contact solution and the software changes

required in order to detect the "connected" state have been described. The "Touch and

Find" system is then tested with the simple electrical contacts solution being used as

the physical connection. The design and evaluation for two different Infrared solutions

has been documented and a four coil Inductive Coupling solution has been thoroughly

investigated, designed and tested with consideration given to the physical interface

design.

This Chapter shows how flexible both the "Touch and Find" software and the Pairing

Link Protocol are. The "Touch and Find" system has been shown to work very well

using a simple electrical contact solution and an Inductive Coupling solution. Two

Infrared solutions have also been designed further extending the hardware options for

use with the "Touch and Find" system.

111

Conclusions and Summaries Philippa Regan

This chapter covers the evaluation of the hardware/software and of the complete

system. The thesis is then summarised and conclusions are drawn before suggestions

are made for further work on the "Touch and Find" system. At the end there is a

concluding statement.

8. ~ !EVALUATION

The "Touch and Find" system was developed to improve the usability of Bluetooth

pairing in devices. The system was also developed to facilitate simple Bluetooth

pairing when using a PAN Gateway or other device with no user interface. lt was

designed to enable the information required for Bluetooth pairing to be exchanged by

touching the two devices together momentarily. lt was hoped that various different

physical mediums could be used to transfer the information for the "Touch and Find"

system.

The Evaluation section was been split into a hardware and software section which is

then followed by an evaluation of the complete system.

B. 1. 1 Software and Hardware

The Software has been implemented successfully in the form of two tasks; the main

PLP task and the PLP transport task. The software allows a successful demonstration

of the concepts of the "Touch and Find" system. Modularisation has been achieved

and the lower level transport tasks have been carried out in the PLPTX task, making it

simpler to implement on other platforms. Throughout the development there have

been some modifications required to the code and to the Pairing Link Protocol, but the

resulting software supports a robust serial link pairing mechanism, fulfilling the aims of

the "Touch and Find" system. Both the main PLP task and the PLPTX task satisfy the

requirements set out in sections 5.3 and 6.1.

The main PLP task is initiated from a higher level application (as required), it adheres

to the Pairing Link Protocol designed and satisfies the interface requirements of the

lower layers and the Device manager. The main PLP task does not block the

processor allowing other Bluetooth tasks to be completed as normal. The PLP task

successfully interacts with the device manager as required and is independent of the

physical medium used to provide the serial link between the devices.

112

Conclusions and Summaries Philippa Regan

The PLPTX (Transport) task developed is independent of the physical medium used. lt

uses the Windows serial port for non-blocking data 1/0 and generates suitable signals

for transmission across the physical layer. The transport task is also responsible for

receiving and processing signals and carries out low level tasks concerned with signal

transport across the physical layer. The PLPTX task works with different physical

mediums as required.

The hardware developed works well with the "Touch and Find" software, allowing

successful demonstration of the feasibility of the proposed "Touch and Find" system.

All of the proposed hardware solutions provide an intuitive pairing method.

The simple electrical contact "hybrid" solution (see section 7.1) showed that a full

duplex contact solution based on two wires was feasible. One potential problem for

this "hybrid" simple electrical contact solution is the contacts becoming corroded/rusty

leading to a bad connection. lt is likely that the contacts will need to be mounted on a

spring system so that when two devices are touched together a good electrical contact

is formed. However this results in a potential mechanical weakness. The simple

electrical contact solution is secure as physical contact is required. This solution is

also relatively simple and cheap to implement. One possible problem area is the risk of

the exposed contacts being damaged.

The "hybrid" circuit did not cancel out the local signal at the input to the receive buffer

as well as expected and so a formal analysis of the circuit was carried out; this is

shown in section 8.1.2.

113

Conclusions and Summaries

8. 1.2 Hybrid Circuit Analysis

For the purposes of this analysis the following definitions are made: -

"High" end is defined as Tx+ = V and Tx- = 0.

"Low" end is defined as Tx+ = 0 and Tx- = V

Hybrid Cjrcujts

Contact Interface

T x11-l--......--l >-C:::r---r--+l____,;;;llJ.W.lo:IL_T-1--.--CJ-< .--.----+-T x2

Rx Rx2

Philippa Regan

Ground-t====+========i!-~G~ro~un~d~1=========~===rGround

Figure 8-1 "Hybrid" Circuit for Analysis

The impedance of one side of the resistor network is given by: -

R2 Equation 5
R1

R3

Where R0 is the Thevenin resistance.

The Thevenin equivalent of the "high" end is given by: -

Tx+ =V

Equation 6

R2 VH in series with the Thevenin Resistance R0 .

114

Conclusions and Summaries Philippa Regan

The Thevenin equivalent of the "low" end is given by:-

Tx+ = V

R2 R3 Equation 7

I v, V" in series with the Thevenin Resistance R0.

--'-----'-
Ground

If both ends are high: -

The voltage on the "signal" line is VH and the voltage at the input to both Schmitt

triggers (VRx1 and VRx2) is: -

Equation 8

If one end is high and the other is low (Tx1 = high, Tx2 = low), the "high" end presents

a voltage of VH through R0 and the "low" end presents a voltage of VL through R0 . Thus

the voltage on the signal line is given by: -

S. l VH + VL V tgna = =
2 2

Equation 9

The voltage at the input to the "low" end Schmitt trigger VRx2 is given by the sum of the

signal voltage and the potential divider applied to Tx-, as shown below: -

Equation 10

115

Conclusions and Summaries Philippa Regan

In order to be "deaf' to the local signal at the input to the Schmitt trigger, we require

Equation 8 and Equation 10 to be equal: -

(R, +::3+R,) -(~1l+ (R,;RJ Equation 8 = Equation 10

R3 = (RI + R2 + R3) [1 + R2]
2 (R2+R3)

RJ = (RI+ R2 + R3) + R2(Rl + R2 + R3)
2 2(R2 + R3)

R _ (R1 + R2 + R3)(R2 + R3) + R2(R1 + R2 + R3)
3-

2(R2 + R3)

0 = (RI + R2 + RJ(R2 + R3) + R2 (RI + R2 + R3) - 2R3 (R2 + R3)

2(R2 +RJ

Setting R1 =R2=r and substituting into Equation 11 gives: -

R 2
- 2rR - 4r 2 = 0 3 3

Solving the quadratic equation yields: -

R3 = 3.236r

Equation 11

Equation 12

Equation 12 shows that given that R1 = R2 = 1 Okn, R3 (see Figure 8-1) should have

been a 32kn resistor instead of a 47kn resistor. This was due to an incorrect earlier

analysis of the "hybrid" circuit. The use of a 47kn resistor instead of a 32kn did not

stop the circuit working, but it would have made the switching thresholds on the Schmitt

trigger input closer together than would otherwise have been necessary.

116

Conclusions and Summaries Philippa Regan

8.1.3 Other Hardware Solutions

The Infrared solution proposed was not implemented but both the proposed Infrared

links are reliable and will not result in any software changes. The lrDA solution

remains a rather expensive option at present, although this would be reduced if an lrDa

port was already needed in the device and the necessary interface for the "Touch and

Find" system could be incorporated. The Infrared solutions provide a secure means of

Bluetooth pairing as Infrared communication is restricted by line-of-sight and only

works in approximately a 30° cone. The Basic Infrared solution developed is a cheap,

simple, reliable circuit. Both the Basic Infrared solution and the lrDA solution are low

power and hence suitable for use in mobile devices.

The Inductive solution provides a particularly elegant solution to the problem, as it

requires nothing to be mounted on the surface of the device. The "four coil" solution

used works well, giving a large amplitude signal at the receiver. The sizes of the coils

have been designed to give good coupling and to enable a self-alignment mechanism

that will increase the reliability of the system. The Inductive solution could also

potentially be optimised to allow battery charging via the same coils in a similar manner

to that used in modern electric toothbrushes.

8. 1.4 System

The system tests have shown that it is possible to transfer the required data for

Bluetooth pairing across a serial link, in which the physical medium is either a simple

electrical contact link or an inductive link. Infrared solutions have also been designed,

but not implemented. The tests showed that the required data could be transferred

very quickly and thus that it would be easy for the user to manually hold the connection

together whilst the process completed. Unfortunately no "start to finish" time for the

process to complete was recorded, as only one of the PC's used had two serial ports.

Thus the system was dependent on a user pressing a button to activate a script to

simulate the data arriving from the Bluetooth Device Manager.

Throughout the implementation of the software and hardware, the original Pairing Link

Protocol was modified and enhanced. The successful completion of the "Touch and

Find" process, using two different physical mediums and subjected to various tests

(outlined in earlier sections) show that the Pairing Link Protocol was suitable for use

with a variety of mediums and that it was sufficiently robust to create a reliable link.

The decision to use full duplex communication across the serial link and to use a

"broadcast" type protocol has been shown to result in a robust link.

117

Conclusions and Summaries Philippa Regan

lt should be considered whether security should be enhanced by requiring users to

enter a PIN number in order to pair the devices so that, for example, it is not possible

for someone to steal your mobile phone and then use it with all of their Bluetooth

enabled devices. Adding a requirement to enter a PIN number (where possible) would

detract little from the usability advantages of the "Touch and Find" system and would

add a security measure that is highly visible to the user giving increased peace of mind.

In summary, incorporating the "Touch and Find" system into devices will considerably

enhance the users "Out of Box" experience, by improving the usability of the Bluetooth

pairing mechanism to make it more intuitive and more secure. The "Touch and Find"

system can be used with infrared, simple electrical contacts or an inductive loop as the

physical medium with no software changes required. The inductive loop method may

be extended to incorporate a universal battery charging method adding further value to

the system. The "Touch and Find" system is ideal for use in a PAN Gateway and other

Bluetooth devices that do not have a user interface.

8.2 SUMMARY

The initial concept for the MSc was to design and implement a PAN Gateway. But in

the process of investigating the issues surrounding a PAN Gateway, in particular how

Bluetooth pairing could be achieved simply without a user interface, a significant

problem in the usability and security of Bluetooth pairing was discovered. The work

changed focus to develop a system that would improve the usability of Bluetooth

pairing in a way which was suitable for use in a PAN Gateway - a device with no user

interface. A summary of the thesis is given below.

The thesis started in Chapters 1 and 2 by introducing what the PAN Gateway is and

how it would be used and then moves on to discuss the usability in existing mobile

devices. A comprehensive review of existing methods of text entry is given. In

Chapter 3 the text described and evaluated the various technologies that could be used

to provide the local connectivity of the PAN and investigate relevant coexistence and

usability issues of Bluetooth. In Chapter 4 the requirements of the PAN Gateway were

given, different user interfaces for the PAN Gateway were discussed and a novel

concept for improving the usability of Bluetooth devices was introduced.

The thesis then shifted focus to develop and implement a system that improves the

usability of Bluetooth pairing for use in Bluetooth devices, especially those such as the

PAN Gateway that have a minimal user interface. In Chapter 5 the "Touch and Find"

118

Conclusions and Summaries Philippa Regan

system was introduced and the system requirements and proposed architecture were

discussed. This was followed by an explanation of the design of the Pairing Link

Protocol, which specifies the signal flow for the "Touch and Find" system. Chapter 5

finished with the implementation and testing of the main PLP software task.

In Chapter 6, the design, implementation and testing of the PLP Transport task was

discussed with a detailed description of how the Windows serial port was used.

Chapter 7 described the final link in the system, the different physical mediums that

could be used. Three types of solution were introduced, a simple electrical contacts

solution, infrared solutions and an inductive solution. Modifications of the software that

were required in order to detect the "connected" state are documented. In Chapter 8

the evaluation, summary and conclusion of the work was given.

8.3 CONCLUSION

The research has investigated a wide variety of issues relating to the usability of the

Personal Area Network Gateway. Initially the Man Machine Interface (MMI) for the

PAN Gateway was considered including investigation into the existing text entry

methods for mobile devices. Inefficient text entry methods are the source of one of the

most significant usability problems in mobile devices. lt was concluded that the best

MMI for the PAN Gateway was minimal; a power button and an L.E.D.

The different technologies that could be used to provide the local connectivity for

devices in the Personal Area Network were investigated and it was concluded that lrDA

was unsuitable as it's restricted to line-of-sight operation. Of the possible RF

technologies using the 2.4GHz ISM band, only Bluetooth was low power. Bluetooth

also had the advantage of being designed for use by consumers as a cable

replacement technology, making it the optimal technology for use in the PAN Gateway.

The PAN Gateway relies on Bluetooth technology to link with other devices to form the

Personal Area Network and requires "pairing" of devices in order for them to

communicate before the first link can be established. The Bluetooth pairing method in

existing mobile devices was considered and determined to be time consuming, non­

intuitive and unnecessarily complex, in addition to have questionable security

measures when used in public places.

119

Conclusions and Summaries Philippa Regan

To improve the usability of Bluetooth devices and in particular the PAN Gateway, the

"Touch and Find" system was developed. The "Touch and Find" system is based on

the Pairing Link Protocol which specifies the required signal flow between devices to

enable pairing and was designed to enable a robust link to be formed. The system

uses a serial link over a variety of mediums to transfer the necessary information.

The "Touch and Find" system was implemented using simple electrical contacts and an

inductive loop to create the serial link; Infrared solutions were also designed. In the

simple electrical contact solution, the user simply has to touch the contacts from each

of the two devices together to exchange the information.

The "Touch and Find" system could also be used for authorisation purposes in other

wireless networks such as 802.11 b. Indeed it could be used for a wide variety of

authentication and authorisation procedures. In addition it could be used for

synchronising devices or for other technologies in which two devices have to be setup

to work together, for example a similar system could be used to tune a tv to a video.

The "Touch and Find" system has been shown to be a good concept. lt was developed

with the aim of improving the usability of Bluetooth pairing by making it intuitive and to

also enable Bluetooth Pairing to be carried out securely in public places. This has

been achieved; a robust, secure, intuitive method of Bluetooth pairing has been

developed using a variety of different mediums (simple electrical contacts, Infrared and

an Inductive loop). The addition of the "Touch and Find" system to Bluetooth enabled

devices will add value to the devices as the user's "Out of Box" experience will be

significantly enhanced, breaking down initial barriers that may prevent an individual

from using Bluetooth technology.

8.4 ENHANCEMENTS TO THE "TOUCH AND FIND" SYSTEM

Software and Hardware

The PLP transport task could be made even more reliable by using Cyclic Redundancy

Checks (CRC) on all signals transmitted across the hardware link. This would allow

any errors in the data to be detected. The "random" number that is used as the

Bluetooth link key should be made more "random" - this could be achieved by using

the Bluetooth clock to generate the "random" number.

Further work should also be carried out on building and testing the contacts for use in

the simple electrical contact solution. Particular attention should be paid to designing

120

Conclusions and Summaries Philippa Regan

contacts that are unlikely to be damaged and that are aesthetically pleasing so that

potential users are not put off by the look of the contacts. The Infrared solutions should

be built and tested to verify that the 'Touch and Find" system works using an Infrared

link. Finally, it would be very interesting and useful if a "two coil" full duplex inductive

loop solution that was capable of being used to charge the mobile device's battery

could be developed.

System

As far as the "Touch and Find" system is concerned, the next step is to develop an

application interface to enable the results of the "Touch and Find" system to be used in

a real application that actually creates the first Bluetooth link between two devices.

The system should then be implemented on a TTPCom Bluetooth Evaluation Board

before finally creating and testing a prototype and building it into a product!

The lrDA Infrared hardware solution could be improved (and the cost reduced) from a

system point of view if an existing lrDA stack could be extended to support the "Touch

and Find" process. This would mean that it would be very cheap to add the "Touch and

Find" system to devices that have an lrDA port.

Finally, work should be done to develop an Inductive solution that was also capable of

receiving sufficient power to charge the device's batteries. This would be a huge

"value added" feature for mobile devices. lt could enable a universal charger to be

created, so that only one mobile device charger would need to be carried when

travelling with the added advantage that the same interface could be used to quickly

and simply pair Bluetooth devices.

121

Conclusions and Summaries Philippa Regan

8.5 CONCLUDING §TAliEMENT

The PAN Gateway is a revolutionary concept in mobile communication offering great

advantages to users and operators. The optimal PAN Gateway user interface is

minimal; it should consist of just a power button and a single L.E.D to indicate whether

it is switched on. The PAN Gateway should consist of a Bluetooth modem to provide

local connectivity, a GSM/GPRS modem to provide connection to mobile phone

networks and some routing technology.

lt was difficult to design a user friendly Bluetooth Pairing method for the PAN Gateway

using existing technology, as there was no user interface. Indeed, Bluetooth pairing in

many existing devices was found to be unintuitive and difficult. In addition, a Bluetooth

SIG security white paper had advised that the existing Bluetooth Pairing procedure

should not be used in public places.

To solve the usability and security problems encountered, a new concept, the "Touch

and Find" system was developed for use in the PAN Gateway. The system uses a

serial link to transfer the information required by devices in order to pair. The signal

flow for the "Touch and Find" system is specified by the Pairing Link Protocol that was

designed by the author. The Pairing Link Protocol was specifically designed to be

robust. The "Touch and Find" system that was developed interfaces directly with the

Bluetooth Device Manager. The "Touch and Find" system was shown to work using

different physical mediums to link the two devices, including a simple electrical contact

solution and an inductive loop solution. The "Touch and Find" system developed is

quick and very robust.

The 'Touch and Find" system developed by the author significantly improves the user's

"Out of Box" experience, by simplifying the Bluetooth Pairing procedure in addition to

providing a secure means of Bluetooth pairing in public places. "Touch and Find" is a

robust system that will add value to the devices it is used in and could be extended for

use in other systems.

122

References Philippa Regan

REFERENCES
[1] M. Gerla, R. Kapoor, M. Kazantzidis, and P. Johansson, "Ad-hoc Networking with

Bluetooth," presented at WMI at Mobicom, Rome, Italy, 2001 .
[2] J. Bray and C. Sturman, Connect without Cables, vol.: Prentice Hall PTR, 2001 .
[3] M. Jakobsson and S. Wetzel, "Security Weaknesses in Bluetooth," Lucent

Technologies, Bell Labs, Murray Hill, 2001.
[4] N. Rouhana and E. Horlait, "BWIG: Bluetooth Web Internet Gateway," presented at 7th

IEEE ISCC, Toarmina, Italy, 2001 .
[5] P. Ostergaard, "Evaluating Bluetooth for Telephony in the Enterprise ., " presented at

Bluetooth Congress 2001, Grimaldi Forum, Monaco., 2001 .
[6] D. Sumption, "And the Winner is .. . Mobile Phones or Handheld Computers",

www .sumption .org/articles/marketing-MobileVsPDA.asp, 2001 .
[7] J. Nielsen, "Mobile Phones: Europe's Next Minitel?"", Jakob Nielsen's Alertbox,

http :1/www. useit.com/alertbox/200 1 01 07. html, 2001 .
[8] J. Hawkins, "Treo", www.handspring.com, 2001.
[9] M. Megennis, "Mobile Phone Usability," 2001,

http://infocentre.frontend.com/servleUinfocentre?access=no&page=article&rows=5&id=
92 .

[1 0] D. Johnson, "Batteries Hold the Key to Mobility", lt World, 2001 .
[11] M. Wilner, "White Paper: High Speed Text Entry for Handhelds," All net devices,

http:l/allnetdevices.com/developer/white/2001/02/13/high-speed text.html , Feb 13th
2001 2001.

[12] A. McCiard and P. Somers, "Unleashed, Web Tablet Integration into the Home," proc.
of CH/'2000: Human Factors in Computing Systems. 2000. The Hague, The
Netherlands., pp. p1 - 8, 2000,

[13] S. Zhai, M. Hunter, and B. Smith, "The Metropolis Keyboard- An Exploration of
Quantitative Techniques for Virtual Keyboard Design," presented at ACM Symposium
on User Interface Software and Technology (UIST 2000), 2000.

[14] E. Baig, "Demo Show Rounds up the Latest in Wireless Wonders", Usa Today,
www .usatoday.com/life/cyber/ccarch/2001/09/12/baig. htm, 2001 .

[15] J. Nielsen, "Mobile Devices will soon be Useful", Jakob Nielson's Alertbox,
http://www.useit.com/alertbox/2001 0916.html, 2001 .

[16] N. F. Ayan, B. Karagoi-Ayan, D. Kuehurt, and A. Thakkar, "SHORE 2001 : Which is
Faster and More Accurate on a Hand held : Graffiti or Keyboard Tapping?," 2001 ,

[17] M. J. LaLomia, "User Acceptance of Handwritten Recognition Technology," proc. of
CH/'94, pp. p107, 1994,

[18] I. S. MacKenzie and S. X. Zhang, "The design and evaluation of a high-performance
soft keyboard," proc. of CH/'99: AGM Conference on Human Factor in Computing
Systems, pp. p25- 31, 1999,

[19] T. Bellman and I. S. MacKenzie, "A Probabilistic Character Layout for Mobile Text
Entry," Proc. of Graphics Interface '98, Toronto: Canadian Information Processing
Society, pp. pp 168-176, 1998,

[20] "A Survey of Alternate Text Entry Methods," Eatoni Ergonomics,
http :1/www .ea ton i .corn/research/alternates. pdf, 2000.

[21] J. Nielson, "New Devices Augur Decent Mobile Experience", Jakob Nielsen's Alertbox,
http://www. useit.com/alertbox/20000917. htm, 2000.

[22] M. Silfverberg, I. Mackenzie, and P. Korhonen, "Predicting Text Entry Speeds in Mobile
Phones," presented at ACM Conference on Human Factors in Computing Systems.
CHI'2000, New York, 2000.

[23] Z. Friedman, S. Mukherji, G. K. Roeum, and R. Ruchir, "SHORE 2001 : Data Input into
Mobile Phones: T9 or Keypad?," 2001,

[24] S. Weiss, Handheld Usability, vol. : John Wiley and Sons, 2002 .
[25] C.-M. Karat, C. Halverson, D. Horn, and J. Karat, "Patterns of Entry and Corrections in

Large Vocabulary Speech Recognition Systems.," 1999,
[26] E. Batista, "Speaking of Voice Recognition",

www. wired .com/news/prinUO. 1294.4 7545.00, 2001 .
[27] D. Suvak, "lrDA and Bluetooth: A Complementary Comparison," Extended Systems,

Inc. http://www.irda.org/design/ESIIrDA Bluetoothpaper.doc, 2000.

123

References Philippa Regan

[28] G. Yeadon, "What are the coming trends in the wireless world and what are their
implications in the home, the office, and elsewhere?," Richmond,
http://www .student. richmond .ed u/200 1/gyeadon/portfol io/projects/itsite/F rameSet2. html ,
2001.

[29] M. Dempsey, "The Physiological effects of 2.4GHz Frequency Hopping Radios,"
Hewlett Packard Company, 2001 .

[30] P. Mars, "Digital Communication Lecture Notes; Spread Spectrum Modulation," Durham
University, 2001 .

[31] N. J. Muller, Bluetooth Demystified, vol. : McGraw Hill, 2001.
[32] A. Kansal and U. B. Desai, "Mobility Support for Bluetooth Access," Department of

Electrical Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India,
2001 .

[33] D. Suvak, "Supporting Bluetooth Multipoint Networks," presented at Bluetooth
Congress, Grimaldi Forum, Monaco, 2001 .

[34] "Biuetooth and Successor 802 .1 5.3," Wireless World Forum,
http://www.wirelessworldforum .com/printout.php?item=1 0566&s=O&n=1 0, 9th October
2001 .

[35] E. Tay, "Comparing Infrared and Bluetooth Short-Range Solutions," Microwaves and
RF, 2001,

[36] C. d. M. Cordeiro and D. P. Agrawal, "Mitigating the Effects of Intermittent Interference
on Bluetooth Ad Hoc Networks," Center for Distributed and Mobile Computing, ECECS,
Cincinnati, 2001.

[37] "Interference and Coexistence," Code Blue Communications,
http://www.codebluecommunications.com/documents/coexistence%20whitepaper.pdf,
2001 .

[38] J. Zyren, "Extension of Bluetooth and 802.11 Direct Sequence Interference Model,"
IEEE802. 11-98/378, 1998,

[39] J. Zyren, "Reliability of IEEE 802.11 DSSS WLANs in a high density Bluetooth
Environment," lntersi/ Corporation- Prism Products, 1999,

[40] G. Ennis, "Impact of Bluetooth on 802.11 Direct Sequence Wireless LAN's,"
IEEE802.11-98/319a, 1998,

[41] J. Lansford, R. Nevo, and B. Monello, "Wi-Fi (802.11b) and Bluetooth Simultaneous
Operation: Characterising the Problem," Mobilian Corporation,
http://www .mobilian .com/documents/Mobil ianWh itepaper. pdf, 2000.

[42] 'Wi-Fi {IEEE 802.11 b) and Bluetooth- Coexistence Issues and Solutions for the
2.4GHz Band," Texas Instruments, 2001 .

[43] "Interference Immunity of 2.4GHz Wireless LANs," HomeRf Working Group,
www.homerf.org, 2001.

[44] J. Hartsen and S. Zurbes, "Biuetooth voice and data performance in 802.11 OS WLAN
environment", http://www.wirelessethernet.org/downloads/BT inf802 June 8.pdf, 1999.

[45] "Study Finds No Bluetooth-802.11 Interference," Allnet Devices, http://www.80211-
planet.com/news/article/011 1481 937781 IOO.html, 14th December 2001.

[46] "Adaptive Frequency Hopping : Good Enough?," Mobilian Corporation,
www.mobilian.com/images/AFH-final.pdf, 2002.

[47] M. Peretz, "Companies to Show Bluetooth, WLAN Coexistence", 802-11 planet,
http://www .80211 -planet.com/news/article/0 11 1481 937781 I 00. htm I, 2001 .

[48] M. Peretz, "Detente in the Airwaves: 802 .11 and Bluetooth Together," 2001,
http://www .80211-planet.com/news/article/0 11 1781 936271 I 00. html.

[49] C. Gehrmann, "Biuetooth Security White Paper," Bluetooth SIG, 2002.
[50] S. Ohr, "Biuetooth Projected to Emerge in Force Next Year", EE Times,

www.eetimes.com/story/OEG20011214S0076, 2001 .
[51] "The lXI Platform," lXI Mobile Inc., http://www.ixi.com/PDF/IXI Brochure.pdf, 2002.
[52] "Specification of the Bluetooth System Core, version 1.1 ," Bluetooth SIG, 2001 .
[53] J. Haine, "Two-wire duplex data transmission," P. Regan, Ed., 2002.
[54] "Technical Data IR 3/16 Encode/Decode IC," Agilent Technologies,

www .semiconductor.agilent.com, 2000.
[55] "Infrared lrDa Compliant Transceiver Technical Data," Hewlett Packard Company,

1996.

124

Appendix 1 Philippa Regan

APPENDIX 1

f\Sssi &nleiderrran diagram of p!pbuA"003SSRxD3ta 2

Pl..PBJ_PR)CESS_RX_DATA

ca:;e
ca:;e A.PTX_El.JS_ RX_SICNAL dEtait:

A.PTX ElB RX PJID<ET TYF£

A.PTX-El.B_RX _pJID<ET-TYF£ A.PTX_El.JS_RX_SICNAL C&Fal f' irroroct stae')

Pl.PTX_ElJS_RX_P.oct<ET _TYPE

11\FO_TYF£ flO<_TYF£ STJIRT-TYF£ dEtait:

sa rurt:xr ri o,.tes to oo sa rurt:Jer ri o,.tes to sa rurt:xr ri o,.tes to oo
C&Fal C' iro:rra::t ~·) rEH1 =272. oorEH1 =2 rEH1=2

resa nn:i\e EUfe- JXirta"
resa rro:i\e B..tfe- resa ra::ffie B..tfe- JXirte-rx:irte"

Pl.PTX_ElJS_RX_SIGNAL I
STJIRT _SIGNAL STJIRT _SICNAL2 A.PTX-El.JS-aJT ji\FO

cm:te cm:te cm:te
A.PTX STJIRT ~ REQ A.PTX STJIRT SEO..JIN:E OF A.PTX IN li'FO 11\0

fill crd sa-d sig1ci to A.PTX ta;k fill crd sa-d sig1ci to A.PTX ta;k
fill crd sa-d to RP ta>k
A.PTX IN II\FO 11\0

Pl.PTX_ElJS_RX_SIGNAL I
A.PTX_El.B_flD< dEtait:

cm:te C&Fal f' iro:rra::t
A.PTX aJT II\FO Q\F sgu")
fill crd sa-d to RP ta>k
A.PTX aJT II\FO OF

125

Appendix 2 Philippa Regan

APPENDIX 2

Nassj Schneiderman diagrams of plpbuProcessRxData 3

PLPBU_PROCESS_RX_DATA J
case PLPTX_BUS_START I case I

PLPTX BUS RX REMOTE DEVICE ID
case PLPTX_BUS_RX_PACKET _TYPE I

PLPTX_BUS_START I PLPTX_BUS_RX_REMOTE_DEVICE_ID I PLPTX_BUS_RX_PACKET-TYPE I

PLPBU_PROCESS_RX_DATA I
case

default: PLPTX BUS RX SIGNAL

PLPTX_BUS_RX_SIGNAL DevFail (" incorrect type")

PLPTX_BUS_START I
True rxByte PRE AMBLE BYTE -False

startByteCounter++; discard Byte

True startByteCounte~alse PLPTX BUS START

PLPTX_BUS - RX_REMOTE - DEVICE_ID I PLPTX_BUS_START

PLPTX_BUS_RX_REMOTE_DEVICE_ID

True ~emoteDeviceld = loca~ False

discard I PLPTX_BUS_RX_PACKET_TYPE

PLPTX_BUS_START I

PLPTX_BUS_RX_PACKET_TYPE J
case case

START_TYPE default:
INFO TYPE ACK TYPE

set number of bytes to be read set number of bytes to be read set number of bytes to be read discard

reset receive Buffer pointer reset receive Buffer pointer reset receive Buffer pointer

PLPTX_BUS_RX_SIGNAL I
START SIGNAL START _SIGNAL2

case
- PLPTX BUS OUT INFO

create create create PLPTX_IN_INFO_IND
PLPTX START SEOUENCE2 REO PLPTX START SEQUENCE CNF

fill and send signal to PLPTX task fill and send signal to PLPTX task
fill and send to PLP task
PLPTX IN INFO IND

reset to receive Start

PLPTX_BUS_START

PLPTX_BUS_RX_SIGNAL

case
I default:

PLPTX BUS ACK

create PLPTX_OUT - INFO_CNF discard

fill and send to PLP task
PLPTX OUT INFO CNF

reset to receive Start

PLPTX_BUS_START

126

APPENDIX 3 CODE FOR THE TOUCH AND FIND SYSTEM

... ,..
• • $Workfile: pip _fnc.c $
• $Revision:

$Date:
••
• Designed by : PK.R
• Coded by
• Tested by : PK.R ···; #define MODULE_NAME "PLP _FNC"

t••··· • Include Files
••••••••••••••••••••••••••••••••• * * *** ** ** * •• ** ••••••••••• *. * ••••••••••••• *I

#if defined (HPDEFINE)
#if !defined (HPDEFINE_H)
include "hpdefine.h"
endif
#endif

#if !defined (STRING_H)
include "string.h"
#endif

#if I defined (KERNEL_ H)
include "kernel.h"
#endif

#if !defined (PLP_SIG_H)
#include "plp_sig.h"
#endif

#if !defined (PLPTX_SJG_H)
#include "plptx_sig.h"
#endif

#if 'defined (PLP _FNC_H)
#include "plp_fnc.h"
#endif

#if ! defined (PLP _ TYP _H)
#include "plp_typ.h"
#end if

#if !defined (PLPMN_FNC_H)
#include "plpmn_fnc.h"
#endif

#if !defined (PLPTXMN_FNC_H)
#include "plptxmn_fnc.h"
#endif

127

#if !defined (PLPTXBU_TYP _H)
#include "plptxbu_typ.h"
#endif

#if defined (PLP _TRACE_ OUTPUT)
include "pssignal.h"
#include "emmi_sig.h"
include "stdio.h"
#endif

Plp_fnc.c

;•·· • Manifest Constants ···;
I******** • * * • * ** • • •• • • * * * * * * • ** * ** * * * ** * * * * * * • * * * ** * * * * * * * ** * * ** ** * • * * * ** * * *
• Types

* * ** * * * * * * * ** * ** * ** * * * * ** ** * * * * * * * * ** * * * * * ** ** ** * * * * * * * * * ** * * * * • •• *********I
typedef enum PlpStateTag
{

IDLE,
ACTIVE,
GOT_KEY,
WAIT FOR KEY

} PlpState; -

typedef struct PlpContextTag

Boolean signa!Handled;
Boolean plpStateTimerRunning;
Boolean plpSendlnterva!TimerRunning;
PlpState plpState;
PlpState oldState;
PlpDevicelnfo plpLoca!Devicelnfo;
PlpDevicelnfo plpRemoteDevicelnfo;
Int32 plpSendlnterva!Counter;
lnt32 plpStateCounter;
T askld taskld;
Boolean sentFinishReq;
Boolean receiveFinishlnd;

} PlpContext;

/* ** •••••••••••••••• * * ••••••••••••• * ••••• * •••••• * * ••••••• * •••••••• 0: 0:.0 * * ••• *
• General Variables
•••••••• * •••••••••••••••••••••••••••• * •••••••••••••• * * ••••••• * * •••••••••• **I

PlpContext plpContext;
#if defined (PLP _TRACE_ OUTPUT)
extern char traceString[MAX_TEST_FILE_OUT_STRING];
#endif

I** •• • * * * * * • * * ** * ** ** *** * * * ** * * *
• Signal Variables
•••••••••••••••••••••••••••• * ••••• * •••••••• *. * •••••••••••••••••••• * •••••• **/

/* •••••••• * * •••••••••••••••••• * •• * •••••••• * * * •••••• * ••••••••••• * ••••••••••••
• Timer Variables

128

Plp_fnc.c

***** •• ** ** *"' ** ** ** **** * ***** ***** ** **** "'* • ••• ** • ** ** "'***** • ********** *****I
KiTimer
KiTimer

plpSendlntervaiTimer;
plpStateTimer;

!*** •••••••• ** •••• ** *** * •• **** ** ** ••• **** ** •••• *** *****. ***** **** ** *** ******
*Macros

*****************"'**************"'*************************•••**************/

!*********"'*************************************"'*************************"'*
• Functional Prototypes
***************** ***** •••••• * ** ** * ***** •• * ****** •• **************** *** *** ***/

void plplnitTimers (void);
void plpStartSendinterva!Timer (void);
void plpStopSendlntervaiTimer (void);
void plpStartStateTimer (void);
void plpStopStateTimer (void);
void plpStateTimerRunning (Boo lean);
void plpSendlntervaiTimerRunning (Boolean);
void plpldleState (SignalBuffer *);
void plpActiveState (SignaiBuffer *);
void plpWaitForKeyState (SignaiBuffer *);
void plpGotKeyState (SignaiBuffer *);
void plpAlllnfoState (SignalBuffer *);
Int8 plpRandom(lnt8);
void plpSendlnfo (void);
void plpinlnfo (SignaiBuffer *);
void plpLinklnfo (void);
void plptxinlnfoRsp (void);
void plptxOutFinishReq(void);

I***"'***************
Global Functions

***/

!***
• Function: plpSwitch

* Description:

***••················;

void plpSwitch (SignaiBuffer • signa!Buffer_p)

i
plpSignalHandied (TRUE);

switch (*signaiBuffer_p->type)

case SIG_TIMER_EXPIRY:

I* if its the sendlnterval timer the deal with it in the state switch (not here)*/
if (signal Buffer _p->sig->kiTimerExpiry. timerld ~ plpSendintervaiTimer. timerld)
{

plpSignaiHandled (FALSE);

I* call state switch */
plpStateSwitch (signaiBuffer _p);

I

129

Plp_fnc.c

else
{
if (signalBuffer _p->sig->kiTimerExpiry. timerld ~ plpStateTimer.timerid)
{
if (plpContext.plpStateTimerRunning ~~TRUE)
{

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: In state too long- going to IDLE state",*signaiBuffer_p->type);
plpTraceOutput(traceString);

#end if

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Sendinterval TIMER_EXPIRY occurred");
plpTraceOutput(traceString);

#endif

plpContext.plpState ~IDLE;
}
else

i
I* Do Nothing as the timer has now been stopped- plpContext.plpStateTimerRunning ~FALSE*/

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: State TIMER _EXPIRY ignored as timer stopped");
plpTraceOutput(traceString);

#end if
}

}
else

}

I* signal used elsewhere- let it through */
plpSignaiHandied (FALSE);
plpStateSwitch (signaiBuffer _p);

I
break;

default:
plpStateSwitch (signalBuffer_p);
break;

/***
• Function: plpStateSwitch

• Description: Main switch state machine

**************************"'**/

void plpStateSwitch (SignalBuffer • signalBuffer_p)
I
switch (plpContext.plpState)

{
case IDLE:

plpldleState(signaiBuffer _p);
break;

130

Plp_fnc.c

case ACTIVE:
plpActiveState (signaiBuffer _p):
break:

caseGOT_KEY:
plpGotKeyState (signalBuffer_p);
break;

case WAIT_FOR_KEY:
plpWaitForKeyState(signa!Buffer_p);
break:

default:
DevFail ("Unknown State");
break;

/**"'************
• Function: plpldleState

* Description:
••••••••••••••••••••• ** •••••••••••••••••••••••••••••••• "'** ••••••••••• ******!

void plpldleState (SignalBuffer • signalBuffer_p)
{
SignalBuffer signalToSend ~ kiNullBuffer;
lnt8 index;

#if defined (PLP _TRACE_ OUTPUT)
if(plpContext.plpState b plpContext.oldState)
{
sprintf(traceString,"PLP: PLP in IDLE STATE");
plpTraceOutput(traceString):
plpContext.oldStatc ~ plpContext.plpState:

I
#end if

switch (*(signa!Buffer_p->type))
{
case SIG_DMSH_REGISTER_APPLICA TION_CNF:

DevAssen (signa!Buffer _p->sig->dmshRegisterApplicationCnf.comStatus ~~COMMAND_ OK);

if (signa!Buffer _p->sig->dmshRegister ApplicationCnf.comStatus !~ COMMAND_ OK)

I
plpSignaiHandled (FALSE);

I

I* ask Device manager for local info- create signal •;
K iCreateSignal (SIG _ DM SH _READ_ LOCAL _INFO _REQ,

sizeof(DmshReadLocallnfoReq).
&signaiToSend);

I* fill values into signal *I
signaiToSend.sig->dmshReadLocallnfoReq.taskld ~ PLP _TASK_ID;

I* send signal *I
KiSendSignal (DM_ TASK_ID,&signalToSend);

131

Plp_fnc.c

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Expecting DMSH_READ _LOCAL_INFO_IND from device Manager- DM rwming''");
plpTraceOutput(traceString);

#end if
break;

case SIG_PLPTX_OUT_INFO_CNF:
#if defined (PLP TRACE OUTPUT)

sprintf(traceString,"PLP: received PLPTX_OUT_INFO_CNF in wrong state- ignore it");
plpTraceOutput(traceString);

#end if
break;

case SIG_PLPTX_IN_FINISH_IND:
#if defined (PLP TRACE OUTPUT)

sprintf(traceString,"PL-P: received PLPTX_lN_FINISH_IND in wrong state- ignore it");
plpTraceOutput(traceString);

#end if
break;

case SIG_PLPTX_START_SEQUENCE_CNF:
#if defined (PLP _TRACE_ OUTPUT)

sprintf(traceString,"PLP: received stan sequence cnf, now connected");
plpTraceOutput(traceString);

#endif

plptxContext.busConnec.ted ~TRUE;

I* stores Taskld from plpStar1ScanReq as plpContext.taskld for use in plpStanScanCnf*l
memcpy (&plpContext.taskld,

&signa!Buffer_p->sig->plptxStanSequenccCnf.myTaskld,
sizeof (Taskld));

I* ask Device manager for local info- create signal •;
KiCrcatcSignal (SIG_DMSH_READ_LOCAL_INFO_REQ,

sizeof(DmshReadLocallnfoReq),
&signalToSend);

I* fill values into signal *I
signaiToSend.sig->dmshReadLocallnfoReq.taskld ~ PLP _ TASK_!D;

I* send signal •;
KiSendSignal (DM_ TASK_lD.&signaiToSend);

#if defined (PLP TRACE OUTPUT)
sprintf(traceString,"PLP: Expecting DMSH_READ _LOCAL_INFO_IND from device Manager- DM running?");
plpTraceOutput(traceString);

#end if
break;

case SIG_DMSH_READ_LOCAL_INFO_CNF:
if (signa!Buffer _p->sig->dmshRcadLocallnfoCnf.comStatus !~ COMMAND_ OK)
{
DevFail ("Read Locallnfo Request Failed");

I
break;

132

Plp_fnc.c

case S!G_DMSH_READ_LOCAL_INFO_IND:
if (plptxContext.busConnected =TRUE)
{
I* stores BtBdAddr as plpLoca!Devicelnfo.plpBtBdAddr •;
memcpy (&plpContext.plpLocaiDevicelnfo.plpBtBdAddr,

&signa I Buffer _p->si g->drnshReadLocall nfo I nd. btBdAddr,
sizeof (BtBdAddr));

I* stores FriendlyName as PlpLoca!Devicelnfo.plpFriendlyNamc */
memcpy (&plpContext.plpLoca!Devicelnfo.plpFriendlyName,

&signa IB uffer _p->sig->dmshReadLoca 11 nfo I nd. friend! yName,
HCIE_07 _NAME_S!ZE);

!*Generate and store a random link key */
for (index~O: index< BT_ENCRYPTION_KEY _SIZE; index++)
{
plpContcxt.plpLocaiDevicelnfo.plpLinkKey[index] ~ plpRandom(index);

}

!*Start SendlntervaiTimer */
plpStartSendlntervaiTimer ();

I* start StateTimer */
plpStartStateTimer ();

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: PLP changing from IDLE to ACTIVE");
plpTraceOutput(traceString);

#endif

plpContext.plpState ~ACTIVE;
' ' else

!*stores BtBdAddr as plpLoca!Devicelnfo.plpBtBdAddr */
memcpy (&plptxContext.locaiDeviceld,

&signaiBuffer_p->sig->dmshReadLocallnfolnd.btBdAddr,
sizcof (BtBdAddr));

I* activate start sequence (part I of 2)*/
KiCreateSignal (SIG _PLPTX_START _SEQUENCE _REQ,

sizeof (PiptxStartSequenceReq),
&signaiToSend);

signaiToSend.sig->plptxStartSequenceReq.myTaskld ~ PLP _ TASK_ID;
signaiToSend.sig->plptxStartSequenceReq.locaiBtBdAddr ~ plptxContext.locaiDeviceld;

KiSendSignal (PLPTX_TASK_ID, &signaiToSend);
}

break;

case SIG PLPTX IN INFO IND:
I* not ready to r.;,ei;e this Signal. Ignore it for the time being */

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: received PLPTX_IN_INFO_IND in wrong state- ignore it 1"):

plpTraceOutput(traceString);
#end if

133

I* Mark signal as handled */
plpSignaiHandled (TRUE);
break;

Plp_fnc.c

case SIG_T!MER_EXPIRY: /*shouldn't get this here- but just in case*/
/*!fit's the SendlntervaiTimerthat has expired*/
if (signaiBuffer _p->sig->kiTimerExpiry. time rid = plpSendlntervaiTimer. timerld)
{
if(plpContext.plpSendlnterva!TimerRunning =TRUE)
{

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Incorrect- Sendlnterval TIMER_EXPIRY occurred in IDLE state"):
plpTraceOutput(traceString):

#end if
}
else

!*do nothing as timer has already been stopped- plpContext.plpScndlntervaiTimerRunning ~FALSE*/

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Sendlnterval TIMER_EXP!RY ignored as timer stopped");
plpTraceOutput(traceString);

#endif

I
}
else
{

}

!* signal for use elsewhere - let it through */
plpSignaiHandled (FALSE);

break;

default:

I

plpSignaiHandlcd (FALSE);
break;

/***
• Function: plpActiveState

• Description:

* ***** •• ****** * *********** ****** *** **** ** ** "'***** *** *** ** * *** ** **** ********I

void plpActiveState (SignaiBuffer • signa !Buffer _p)
t
#if defined (PLP _TRACE_ OUTPUT)

if(plpContext.plpState !~ plpContext.oldState)
I
sprintf(traceString,"PLP: PLP in ACTIVE State");
plpTraceOutput(traceString);
plpContext.oldState ~ plpContext.plpState:

I
#end if

134

switch (*(signaiBuffer_p->type))
{
case SIG TIMER EXPIRY:

Plp_fnc.c

I* if its the state timer it has been dealt with earlier in plpSwitch() *I

I* If it's the SendintervaiTimer that has expired *I
if (signaiBuffer _p->sig->kiTimerExpiry. time rid = plpSendl ntervaiTimer. timer Id)
{
if (plpContext.plpSendlntervaiTimcrRunning =TRUE)
{

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Sendlnterval TIMER_EXPIRY occurred in ACTIVE state");
plpTraceOutput(traceString);

#end if

plpSendinfo (); I* sends PLP _OUT _!NFO _ REQ *I

I* start send interval timer *I
plpStartSendintervaiTimer ();

}
else
[
I* do nothing as the timer has already been stopped - plpContext.plpSendlntervaiTimerRunning = FALSE *I

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Sendlnterval TIMER_ EXPIRY ignored as timer stopped");
plpTraceOutput(traceString);

#end if
}

}

else

}

I* signal for use elsewhere let it through *I
plpSignaiHandled(FALSE);

break;

case SIG_PLPTX_IN_INFO_IND:
plpSignaiHandled(TRUE);

if(signaiBuffer_p->sig->plptxininfolnd.plpStatus = PLP _COMMAND_OK)
I
plplnlnfo (signaiBuffer_p); I* uses function to store plplnlnfolnd *I

plptxlnlnfoRsp (); I* function to send plptxlnlnfoRsp *I

I* Start StateTimer *I
plpStartStateTimer ();

I* start sendlnterval Timer *I
plpStartSendlntervaiTimer ();

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: PLP State changing from ACTIVE to GOT_KEY");
plpTraceOutput(traceString);

#end if

135

plpContext.plpState = GOT_ KEY;
}

else
{
I* stay in active state - do nothing *I

Plp_fnc.c

DevFail ("Incoming information != PLP _COMMAND _OK");
}
break;

case SIG PLPTX_OUT _INFO_CNF:

if (signaiBuffer_p->sig->plptxOutlnfoCnf.plpStatus = PLP _COMMAND_ OK)
{
I* stop sendlnterval timer *I
plpStopSendlntervaiTimer ();

plpStartStateTimer ();

#if defined (PLP TRACE OUTPUT)
sprintf(trac~String,"PLP: PLP State changing from ACTIVE to WAIT_FOR_KEY");
plpTraceOutput(traccString);

#endif

plpContext.plpState = WAIT_FOR_KEY;

I
else

DevFail ("Outgoing info not received");
}
break;

default:
plpSignaiHandled (FALSE);
break;

I

!*****"'***
• Function: plpWaitForKcyState

• Description: .. ,.. /
void plpWaitForKeyState (SignaiBuffer • signaiBuffer_p)
[
#if defined (PLP _TRACE_ OUTPUT)

if(plpContext.plpState != plpContext.oldState)

I
sprintf(traceString,"PLP: PLP in WAIT_ FOR_ KEY State");
plpTraceOutput(traceString);
plpContext.oldState = plpContext.plpState;

}

#end if

switch (*(signaiBuffcr _p->type))
{

136

Plp_fnc.c

case SIG_PLPTX_IN_INFO_IND:
if (signa!Buffer _p->sig->plptxlnlnfolnd.plpStatus ~ PLP _COMMAND _OK)

I
plplnlnfo (signalBuffer_p); I* uses function to store plplnlnfolnd and to create and send plplnlnfoRsp *I

plptxlnlnfoRsp (); I* send Rsp to pltx task *I

plpLinklnfo ();I* function to create and send plpLinklnfolnd*l

sprintf(traceString,"PLP: This device has all info");
plpTraceOutput(traceString);

I* send the plptxOutFinishReq signal *I
plptxOutFinishReq ();

plpContext.sentFinishReq =TRUE;

if (plpContext.receiveFinishlnd ==TRUE)

I
I* Stop StateTimcr *I
plpStopStateTimer ();

I* finished go back to IDLE state *I
plpContext.plpState =IDLE;

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: PLP Finished. State changing from WAIT_FOR_KEY to IDLE");
plpTraceOutput(traceString);

#end if
I
else
I

#if defined (DEBUG_PLPTX)
sprintf(traceString,"PLP: waiting for plptxlnfinishlnd");
plpTraceOutput(traceString);

#end if

l
l

else
I
I* do nothing- stay in WAIT FOR KEY STATE *I I - - -

break;

case SIG TIMER EXPIRY:
I* If it's the Sendl;;-terva!Timer that has expired */
if (signa!Buffer _p->sig->kiTimerExpiry. timerld = plpSendlnterva!Timer. timer Id)
I
if (plpContext.plpSendlntervalTimerRunning =TRUE)

I
#if defined (PLP _TRACE_ OUTPUT)

sprintf(traceString,"PLP: Incorrect- Sendlnterval TIMER EXPIRY occurred in WAIT FOR KEY state"):
plpTraceOutput(traceString); - - -

#endif
}

137

Plp_fnc.c

else
I
I* do nothing as timer has already been stopped- plpContext.plpSendlntervaiTimerRunning =FALSE *I

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: Send interval TIMER_EXPIRY ignored as timer stopped"):
plpTraceOutput(traceString);

#endif
l

l
else

I

}

I* signal for use elsewhere - let it through *I
plpSignaiHandled (FALSE);

break:

case SIG_PLPTX_OUT_INFO_CNF:

I* This signal has already been received so stay in this state *I
break:

case SIG_PLPTX_IN_FINISH_IND:
I* other device has all the info it needs *I
sprintf(traceString, "PLP: Other device has finished");
plpTraceOutput(traccString);

plpContext.receiveFinishlnd =TRUE;

if (plpContext.sentFinishReq ~TRUE)

I
I* Stop StateTimer *I
plpStopStateTimer ();

I* finished go back to IDLE state *I
plpContext.plpState = IDLE:

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString,"PLP: PLP Finished. State changing from WAIT _FOR_ KEY to IDLE");
plpTraceOutput(traceString);

#end if
I
else

I
#if defined (DEBUG PLPTX)

sprintf(traceStri;;-g,"PLP: received finishlnd. but I'm not ready to finish- ignoring it"):
plpTraceOutput(traceString);

#end if

I
}

l
break;

default:
plpSigna!Handled (FALSE);
break;

!************************•••··
138

Plp_fnc.c Plp_fnc.c

• Function: plpGotKeyState

• Description: case SIG_PLPTX_OUT_INFO_CNF: .. /
void plpGotKeyState (Signa!Buffer • signaiBuffer_p)
{
SignaiBuffer signaiToSend = kiNuliBuffer;

#if defined (PLP TRACE OUTPUT)
if (plpContext:PipState != plpContext.oldState)
{

}

sprintf(traceString,"PLP: PLP in GOT _KEY State");
plpTraceOutput(traceString);
plpContext.oldState = plpContext.plpState;

#end if

switch (*(signaiBuffer _p->type))
I
case SIG_TIMER_EXPIRY:

I* !fit's the SendlntervaiTimer that has expired *I
if (signaiBuffer _p->sig->kiTimerExpiry. timer Id ~ plpSendlntervaiTimer.timerld)

I
if(plpContext.plpScndlntervaiTimerRunning ~TRUE)

I
#if defined (PLP _TRACE_ OUTPUT)

sprintf{traceString,"PLP: Sendlnterval TIMER_EXPIRY occlllTed in GOT_KEY state");
plpTraceOutput(traceString):

#end if
plpSendlnfo (); I* sends PLP _OUT _INFO_REQ *I

I* start send interval timer */
plpStartSendlntervaiTimer ();

I
else

I* do nothing as timer has already been stopped- plpContext.plpSendlntervaiTimerRunning =FALSE *I

#if defined (PLP _TRACE_OUTPUT)
sprintf{traceString,"PLP: Sendlnterval TIMER_ EXPIRY ignored as timer stopped"):
plpTraceOutput(traceString);

#end if
}

I
else
I

}

I* signal for use elsewhere - let it through *I
plpSignaiHandled (FALSE);

break:

case SIG_PLPTX_IN_INFO_IND:
I* already know this but send a rsp anyway *I

plptxlnlnfoRsp (); I* send Rsp to PLPTX *I

break:

139

if (signaiBuffer_p->sig->plptxOutlnfoCnf.plpStatus ~ PLP _COMMAND_ OK)

I
I* stop sendintervaiTimer *I
plpStopSendlntervaiTimer ();

I* stop state timer *I
plpStopStateTimer ();

I* all info now received- create signal to send to application *I
plpLinklnfo();

sprintf\traceString,"PLP: This device has all info");
plpTraceOutput(traccString);

I* send the plptxOutFinishReq signal *I
plptxOutFinishReq ();
plpContext.sentFinishReq =TRUE;

if (plpContext.receiveFinishlnd == TR liE)
{
I* finished go back to IDLE state *I
plpContext.plpState = IDLE:

#if defined (PLP TRACE OUTPUT)
sprintf(traceString,''PLP: PLP Finished. State changing from GOT_ KEY to IDLE"):
plpTraceOutput(traceString);

#end if

I
else
{

#if defined (DEBUG PLPTX)
sprintf\traceStr~g,"PLP: waiting for plptxlnFinishlnd");
plpTraceOutput(traceString);

#end if
I

}
else
I
I* do nothing- stay in GOT _KEY _STATE *I
I

break:

case SIG_PLPTX_IN_FINISH_IND:
I* other device has all the info it needs *I
sprintf(traceString,"PLP: Other device has finished");
plpTraceOutput(traceString);

plpContext.receiveFinishlnd =TRUE;

if (plpContext.sentFinishReq == TRUE)
I
I* finished go back to IDLE state *I

140

Plp_fnc.c

plpContext.plpState = IDLE;

#if defined (PLP _TRACE_ OUTPUT)
sprintf\traceString,"PLP: PLP Finished. State changing from GOT_KEY to IDLE");
plpTraceOutput(traceString);

#end if

I
else
{

#if defined (DEBUG _PLPTX)
sprintf\traceString,"PLP: received finishlnd, but I'm not ready to finish- ignoring it");
plpTraceOutput(traceString);

#end if

I
break;

default:
plpSignaiHandled (FALSE);
break:

!***** ** ****** **** **. ** ****** ** * *** •••••••• **** ** * ••••• * ** **** ** ***. ** ***. **
• Function: plplnit

• Description: Pip Initialisation routine- called when SIG_lNITIALISE
* is received
******* •••• **** ** • ** *** ****** ***** ****** ** ****** * •• *** • ******** "'"'** •• ••• ***I

void plplnit(void)
{
Signa !Buffer signalToSend = kiNuiiBuffer;
DmshRegisterApplicationReq • dmshRegisterApplicationReq_p;

plpContext.sentFinishReq = FALSE;
plpContext.receiveFinishlnd = FALSE;

plptxContext.busConnected =FALSE;

plpContext.plpState =IDLE:

#if defined (PLP _TRACE_ OUTPUT)
plpContext.oldState = IDLE;
sprintf\traceString, "PLP: IDLE State");
p lp T raceOutput(traceString);

#endif

KiCreateSignal (SIG _DMSH _REGISTER_ APPLICA TlON _REQ,
sizeof (DmshRegister ApplicationReq),
&signalToSend);

dmshRegisterApplicationReq_p = &signaiToSend.sig->dmshRegisterApplicationReq;

memset (drnshRe gis ter A pp lica tion Req_p. O,sizeo f\ Dms hRegister A pp licationReq));

dmshRegisterApplicationReq_p->taskld = PLP _ TASK_ID;
dmshRegisterApplicationReq_p->registerAsApplication= TRUE;

141

Plp_fnc.c

plplnitTimers ();

KiSendSignal (DM_TASK_ID,&signaiToSend);
I

/** *******"' **** ***. *** ** •••• ****** * * ******* ********* ** * *** * *** ** ** * ** *** * ** *
• Fw1ction: pip Random

* Description: returns a "random" Int8

··•••**************•*************/ lnt8 plpRandom(lnt8 random)
{

lnt8 rand;

rand= (lnt8) ((random+2) • ((lnt8) plpContext.plpLocaiDevicelnfo.plpBtBdAddr.lap +
(lnt8) (plpContext.plpLocaiDevicelnfo.plpBtBdAddr.uap «random)+
(lnt8) (plpContext.plpLocaiDcvicelnfo.plpBtBdAddr.nap »random)));

retum rand;

/***"'**********"'**"'*****************
• Function: plplnitTimers

• Description: Initialises timer that controls the interval at which outgoing info is transmitted ···! void plplnitTimers (void)
{

I

plpContext.plpSendlntervaiCounter = 0:
plpContext.plpStateCounter = 0;

;•••• •••••••••••••• **** **. ** •••• ** *** ••••••••••••••••• * * * ** *** •• *** •••••• ***
• Function: plpStartSendlntervaiTimer

• Description: Starts timer that controls the interval at which outgoing info is transmitted

*********************************"'***/

void plpStartSendlntervaiTimer (void)
I
plpContext.plpSendlntervaiCounter ++;

I* if> I, counter is already running therefore stop counter and restart it*/
if (I < plpContext.plpSendlntervaiCounter)

I
KiStopTimer (&plpSendlntcrvaiTimer);

I

plpSendlntervaiTimer.timeoutPeriod = MlLLlSECONDS_TO_TlCKS (PLP _SEND _lNTERVAL_TlMER_ VALUE);
plpSendlntervaiTimer.myTaskld = PLP _TASK_ID;
plpSendlntervaiTimer.userValue = 0;
KiStartTimer(&plpSendlntervaiTimer);
plpSendlntervaiTimerRunning (TRUE);
I

;••• •••••••• ** ••••••••• *** •• *** ••• * **** ** ** ***** * *** •• * ** ** ** * **** **********
* Function: plpStopSendlntervaiTimer

142

Plp_fnc.c

• Description: Stops timer that controls the interval at which outgoing info is transmitted
........................... **** •• ***** ** ** **** **** ** ••••••••••••••• ** •••• * •••• *I

void plpStopScndlntervaiTimer (void)
I
KiStopTimer(&plpSendlntervaiTimer);
plpSendlntervaiTimerRwming (FALSE);

1

!**** ••••••••••••••••••••••••••••• * ******"' •••••••••••••••••• * •• ** •• * ••••••••
• Fw1ction: plpStartStateTimcr

• Description: Starts state timeout timer ... /
void plpStartStateTimer (void)

I
plpContcxt.plpStatcCounter ++;

I* if> 1, counter is already running therefore stop counter and restart it*/
if (1 < plpContext.plpStateCounter)
{
KiStopTimer (&plpStateTimer);

)

plpStateTimer.timeoutPeriod = MILLISECONDS_ TO_ TICKS (PLP _STATE_ TIMER_ VALUE);
plpStatcTimer.myTaskld = PLP _TASK_ID;
plpStateTimer.userValue = 0;
KiStartTimer(&plpStateTimer);
plpStateTirnerRunning (TRUE);

}

/********************"'*****************"'*************•**"'************"'******
• Function: plpStopStateTimer

* Description: Stops state timeout timer

***/

void plpStopStateTimer (void)
{
KiStopTimer(&plpStateTimer);
plpStateTimerRunning (FALSE);

)

I******************************* • ** ** * * * **
• Function: plpStateTimerRunning

* Description: TRUE if State timer is running.

***!

void plpStateTimerRunning(Boolean plpStateTimerRunning)
{
plpContext.plpStateTimerRunning = plpStateTimerRunning;

)

/** ••••••••••• ***** •••• ** ••••••••••••• *********** *** ••••••••••••••••••••••• *
• Function: plpSendlntervaiTimcrRunning

143

Plp_fnc.c

• Description: TRUE if sendlntervaiTimer is running .. /
void plpSendlntcrvaiTimerRunning(Boolean plpSendlntervaiTimerRunning)

I
plpContext.plpSendlntervaiTimerRunning = plpScndlntervaiTimerRunning;

}

/********************************"'**'**
* Function: plpSendl nfo

* Description: creates and sends plpOutlnfoReq ... /
void plpSendlnfo (void)
I
SignalBuffer signalToSend = kiNuiiBuffer;

plpSignalHandled (TRUE);

KiCreateSignal (SIG_PLPTX_OUT_INFO_REQ,
sizeof (PiptxOutl nfoReq).
&signaiToSend);

signaiToSend.sig->plptxOutlnfoReq.myTaskld = PLP _ TASK_ID;
signaiToSend.sig->plptxOutlnfoReq.plpFriendlyName = plpContext.plpLocaiDevicelnfo.plpFriendlyName;
signaiToSend.sig->plptxOutlnfoReq.plpBtBdAddr = plpContext.plpLocaiDevicelnfo.plpBtBdAddr;

memcpy (&signalToSend.sig->plptxOutlnfoReq.plpLinkKey.
&plpContext.plpLocaiDevicelnfo.plpLinkKey,
BT_ENCRYPTION_KEY _SIZE* sizeof(lnt8));

KiSendSignal (PLPTX _TASK_ ID,&signaiToScnd);

I***********************************"'***************************************
*Function: plplnlnfo

*Description: Stores info from plplnlnfolnd

***/

void plplnlnfo (SignaiBuffer • signaiBuffer_p)

Signal Buffer signaiToSend = kiNuiiBuffer.

/*store remote device info •;

/*stores BtBdAddr as plpRemoteDevicelnfo.plpBtBdAddr */
rnemcpy (&plpContext.plpRemoteDevicclnfo.plpBtBdAddr,

&signaiBuffer_p->sig->plptxlnlnfolnd.plpBtBdAddr.
sizeof (BtBdAddr));

I* stores plpFriendlyName as plpRemoteDevicelnfo.plpFriendlyName */
memcpy (&plpContext.plpRemoteDcvicelnfo.plpFriendlyName,

&signa !Buffer _p->sig->plptxlnlnfolnd.plpFriendlyNamc,
HCIE_07 _NAME_SIZE);

I* stores plpLinkKey as plpRemotcDevicelnfo.plpLinkKey •;
memcpy (&plpContext.plpRemoteDevicelnfo.plpLinkKey.

144

Plp_fuc.c

&signalBuffer_p->sig->plptxlnlnfolnd.plpLinkKey,
BT _ENCRYPTION _KEY _SIZE • sizeof (lnt8));

!***
• Function: plpLinklnfo

• Description: Creates and sends plpLinklnfolnd

•******/
void plpLinklnfo ()
{
Signal Buffer signa!ToSend = kiNullBuffer;

I* create pip link info signal to send to application •;
KiCreateSignal (SIG_PLP _LINK_INFO_IND,

sizeof (Pip Link! nfolnd),
&signa IT oSend);

signalToSend.sig->plpLinklnfolnd.myTaskJd = PLP _TASK _ID;
signa!ToSend.sig->plpLinklnfolnd.plpStatus = PLP _COMMAND_ OK;
signa!ToSend.sig->plpLinkJnfolnd.plpLocalBtBdAddr = plpContext.plpLocaiDeviceJnfo.plpBtBdAddr;
signaiToSend.sig->plpLinklnfolnd.plpLocalFriendlyName = plpContext.plpLocaiDevicelnfo.plpFriendlyName;
signaiToSend.sig->plpLinklnfolnd.plpRemoteBtBdAddr = plpContext.plpRemoteDevicelnfo.plpBtBdAddr:
signalToSend.sig->plpLinklnfolnd.plpRemoteFriendlyName = plpContext.plpRemoteDevicelnfo.plpFriendlyName;

if (memcmp(plpContext.plpLocalDeviccl nfo. plpLinkKey, plpContext.plpRemoteDevicel nfo.plpLinkKey. 128) >= 0)
{
memcpy (&signalToSend.sig->plpLinklnfolnd.plpLinkKey,

&plpContext.plpLocalDevicelnfo.plpLinkKey,
BT_ENCRYPTION_KEY _SIZE • sizeof(lnt8));

else
{
memcpy (&signa!ToSend.sig->plpLinklnfolnd.plpLinkKey.

&plpContext.plpRemoteDevicelnfo.plpLinkKey,
BT_ENCRYPTION_KEY _SIZE • sizeof(lnt8));

KiSendSignal (TE_ TASK_ID.&signalToSend);
f

/*****•***"'*********
• Function: plptxlnlnfoRsp .
• Description: sends plptxlnlnfoRsp to the plptx task

*************************************••····································!
void plptxlnlnfoRsp ()
{
SignalBuffer signalToSend = kiNullBuffer;

KiCreateSignal (SIG_PLPTX_IN_INFO_RSP,
sizeof (PlptxlnlnfoRsp),
&signalToSend);

signaJToSend.sig -> plptxlnlnfoRsp. myTaskld = PLP _TASK _ID;
signalToSend.sig -> plptxlnlnfoRsp.plpStatus = PLP _COMMAND_OK;

K iSendSignal (PLPTX _TASK _ID, &signa!ToSend);

145

Plp_fnc.c

/************************"'******•***
• Function: plptxOutFinishReq

• Description: sends plptxOutFinishReq to the plptx task
******************* ** ** •••• ** * ** ** * ************* •• ** ** * ** *** ***** * ** * ** ****/

void plptxOutFinishReq ()
{
SignaiBuffer signa!ToSend = kiNullBuffer;

KiCreateSignal (SIG _PLPTX _OUT _FINISH_ REQ,
sizeof(PlptxOutFinishReq),
&signa!ToScnd);

signaiToSend.sig -> plptxOutFinishReq.myTaskld = PLP _TASK_ID;

KiSendSignal (PLPTX_TASK_ID, &signa!ToSend);

146

Plp_fnc.h

/**********************"'**************"'***********************"'*************

• $Workfile: plp_fnc.h $
• $Revision:

$Date:

**•••······················

• Designed by : PKR
• Coded by
* Tested by : PKR

**********************************"'***************"'***********************"'

• File Description

• Pairing Link Protocol- Main fw1ction

***"'*!
#if 'defined (PLP _FNC_H)

#define PLP _FNC H

#if !defined (PLPSIGUN_H)
#include "plpsigun.h"
#end if

void plpSwitch
void plpStateSwitch
void plplnit (void);

#endif

(Signa !Buffer*);
(SignalBuffer *);

147

Plpmn_fnc.c

••• ** •••••• ** •••••••••••••••••••••• **** ****** ••••• ****** ••••••••••• ** * *** •••

• $Workfile: plpmn_fnc.c $
* $Revision:

$Date:

"'********

• Designed by : PKR
• Coded by
* Tested by : PKR

**•

• File Description
* ----------------
• Pairing Link Protocol - Controlling Task main loop

••••• ****** * *** ** * ** ** * •••••• *** ** * ******* ****** *** *** ** ** ** **** ** ** *******

• Revision Details

$Log:

•••*"'*"'*******••••*****"'*******************************"'*******************/

#define MODULE_NAME "PLPMN_FNC"

/******************************••···································••****"'"'
• Include Files hpsigbas.h hpsig.h

******************•····················•***********************************/

#if defined (HPDEFINE)
#if !defined (HPDEFINE_H)
include "hpdefine.h"
#end if
#end if

#if !defined (STRING H)
#include "string.h" -
#end if

#if !defined (KERNEL_H)
#include "kemel.h"
#endif

#if !defined (PLP _SIG_l-1)
#include "plp_sig.h"
#end if

#if !defined (PLPMN_FNC_H)
#include "plpmn_fnc.h"
#end if

148

Plpmn_fuc.c

#if !defined (PLP _FNC_H)
#include "plp_fnc.h"
#end if

#if 'defined (PLP _ TYP _H)
#include "plp_typ.h"
#end if

#if defined (PLP_ TRACE_OUTPUT)
include "pssignal.h"
include "emmi_sig.h"
#include "stdio.h"
#end if

/**"'************
• Manifest Constants ···;

!*****************************"'***
• Types

***********************************"'************************************•**!
typedef struct PlpmnContextTag
(
Boolean signaiHandled;

} PlpmnContext;

/**** "'"'* ** "'* •• **** ***"'**"'** ** *** ****** •• *** ** **** "'***************** **** ****"'
• General Variables

***!

PlpmnContext plpmnContext;

#if defined (PLP _TRACE_ OUTPUT)
char traceString[MAX_TEST_FILE_OUT_STRING];

#endif

!***
*Macros
*******************•*********************•·································!

!***
*Functional Prototypes

*******•********************•**/
static void PlpTaskExitRoutine (void);
KI_ENTRY _POINT PlpTask (void);
Kl_S!NGLE_ TASK (Pip Task, PLP _ QUEUE_ID, PLP _ TASK_ID)

I******"'**"'*****************
Global Functions

***/

/'** ***** ** *** * **** ** * * •• ** * ** ** ** *** **** ... ** ** ** * "'*********"' ** ** ** * ** **** **
• Function: PlpTaskExitRoutine

• Description: pip task exit routine

149

Plpmn_fnc.c

***/

static void PlpTaskExitRoutine(void)
I

/* •• ********** ******* **** ******* *** ******** ***** * ** **** **** **. ********* *****
• Function: PlpTask

• Description: Main entry point to the PLP task
** ***************** ** •••••••• ** •• ***** **** ** ** ******** * **** * *** ** * *********I

KI_ENTRY _POINT Pip Task()

i
Boo lean keepGoing;
SignaiBuffer signaiBuffcr ~ kiNullBufTer;

I* absorb all signals until a SIG_INITIALISE is received *I
kecpGoing ~TRUE;
while (keepGoing =TRUE)

KiReceiveSignal (PLP _ QUEUE_ID,&signaiBuffcr);

if(*(signaiBuffer.type) ~~ SIG_INITIALISE)

I
keepGoing ~ FALSE;

}
KiDestroySignal (&signaiBuffer);

I

plplnit (); I* calls pip initialisation routine*/

I* Never ending loop *I
kecpGoing =TRUE;

while (keepGoing =TRUE)

I
/*mark signal as not handled and destroy at end, then get the next signal*/
plpSignaiHandled(F A LSE);

K iReceiveSignai(PLP _ QUEUE _ID,&signalBuffer);

/*process all signals*/
pipS witch (&signaiBuffer);

#if defined (DEVELOPMENT_ VERSION)
if(plpmnContext.signaiHandled =FALSE)
I
char text[100];
sprintf(&tcxt[O]."Signal %Ox Not Handled", *signaiBuffer.type);
DevFail (&text[O]);
break;

}
#endif

KiDcstroySignal (&signaiBuffer);
I

ISO

Plpmn_fnc.c

I*******************************"'*********"'***"'** ** * * *
• Function: plpSignaiHandled
• plpsig. h pip_ si g. h
• Description: TRUE if signal is handled. ... /

void plpSignaiHandled(Boolean signaiHandled)
{
plpmnContext.signaiHandled ~ signal Handled;

}

/**"'**********************
• Ftmction: plpTraceOutput

• Description: Sends the buffer to the Genic Trace Output window
** ••••••••• ***** * ****** ** ** •••••• ** ******* ****** ***** * ** •••• ** ******/

#if defined PLP _TRACE_OUTI'UT

void plpTraceOutput (char •string)
(
SignaiBuffer signaiToSend ~ kiNu1113uffer;

KiCreatcSignal (S!G_TEST _FILE_ OUT, sizeof(TestFileOut). &signa!ToSend);
memcpy (signaiToSend.sig->testFileOut.string, stting, sizeof(TestFileOut));
KiSendSignal (TEST_TASK_!D, &signaiToSend);

I
#end if

I* How to use PLP_ TRACE_OUTPUT ... *I

I* #if defined (DM _TRACE_ OUTPUT)
sprintf(traceString,"DMMN: DM!N_QU_COM_STATUS Missed.cnfsignallD ~ %x",

signaiBuffer.sig->dminQuComStatus.signalld);
dmmnTraceOutput(traceString);

#endif •;

151

• $Workfile: plpmn_fnc.h $
• $Revision:

$Date:

Plpmn_fnc.h

******************"'**

• Designed by : PKR
• Coded by
* Tested by : PKR

************************•••••••••**********************************•*******

• File Description

• Pairing Link Protocol - Main fw1ction

***/
#if !defined (PLPMN _FNC _H)
#define PLPMN_FNC_H

#if !defined (PLPS!GUN_H)
#include "plpsigun.h"
#endif

void plpSignaiHandled (Boolean);

#endif

#if defined (PLP _TRACE_ OUTPUT)
void plpTraceOutput (char*);
#cndif

152

Plp_typ.h

/**"'***

• $Workfile: plp_typ.h $
* $Revision:

$Date:

*******************"'**

* File Description :
Globally useful Pairing Link Protocol types/definitions

**!

#if !defined (PLP _ TYP _H)
#define PLP _TYP _H

#if !defined (BT_ TYP _H)
#include "bt_typ.h"
#end if

/**
• Nested Include Files

*** ... **********************************/

!**
• Manifest Constants

*************"'**"'***"'***/

#define PLP STATE TIMER VALUE I 0000
#define PLP-SEND INTERVAL TIMER VALUE 500 I* was 10. then 500 then 50*/
#define HCIE_07_N-AME_SIZE 248 -

/****"'************************"'***"'*****"'"'***********************************
• Global Macros

"'**********"'*******"'**/

/***"'*********"'**"'*****************
• Types used in Prototypes and Globals

**/

typedef enum PlpStatusTag
{
PLP _COMMAND_OK
PLP _VALID.
PLP _NOT_ VALID,
PLP_COMMAND_FAIL
fPlpStatus;

typedef struct PlpFriendlyNameTag
{
lnt8 nameLen;
Char name[HCIE_07 _NAME_SIZE];

f PlpFriendlyName:

typedef struct PlpDcvicelnfoTag
{

BtBdAddr plpBtBdAddr;

153

Plp_typ.h

PlpFriendlyName plpFriendlyName;
lnt8 plpLinkKey [BT _ENCRYPTION _KEY _SIZE];
f Pip Device! nfo:

!*******•***"'
• Global Static Variables
******************>Cr***•*********/

/***************************"'*"'**
• Global Function Prototypes

•***********************/

#end if
/* END OF FILE */

154

Plp_sig.h

/****************"'********"'*"'***************************

• $Workfile: plp_sig.h $
* $Revision:

$Date:

"'•*****************************

• Designed by . PKR
• Detailed Design;
• Coded by : PKR
• Tested by

...
• File Description
* ----------------
• PLP signal definitions .
/*** ** ** ** * ****** ** ** ******* **** ** * * ** ** *** ***** * ** *** *** **** **** ** ** *******I

#if !defined (PLP _SJG_H)
#define PLP _SlG_H

#if !defined (SYSTEM_H)
#include "system.h"
#end if

#if 'defined (HCl_TYP _H)
#include "hci_typ.h"
#end if

#if !defined (PLP _ TYP _H)
#include "plp_typ.h"
#end if

!** ** ***** *** * **** ** ****** *** *** *** * ** ** ** "'*** ** *** ********** ****** *** ******
• Type Definitions
****"'***!

typcdef struct PlpRegisterReqTag I
Taskld myTaskld;
lnt8 timeout:

f PlpRegisterReq;

typedefstruct PlpStartScanReqTag 1
Taskld myTaskld;

f PlpStartScanReq;

typedef struct PlpStartScanCniTag 1
PlpStatus plpStatus;

f PlpStartScanCnf;

typedef struct PlpLinklnfolndTag 1
Taskld myTaskld;
PlpStatus plpStatus;

155

Plp_sig.h

BtBdAddr plpLoca!BtBdAddr;
PlpFriendlyName plpLocalFriendlyName;
BtBdAddr plpRemoteBtBdAddr;
PlpFriendlyNamc plpRemoteFriendlyName;
lnt8 plpLinkKey [BT_ENCRYPTION _KEY_ SIZE];

} PlpLinklnfolnd;

typedefstruct PlpLinklnfoRspTag 1
Taskld myTaskld;
PlpStatus plpStatus;

:· PlpLinklnfoRsp;

#end if
I* END OF FILE*/

156

Plpsigbas.h

I***

• $Workfile: plpsigbas.h
* $Revision:

$Date:

•***********"'********

• File Description

* Signal bases used by PAIRING LINK PROTOCOL Task

···;
#if !defined (PLPSIGAS_H)
#define PLPSIGBAS H

PLP _SIGNAL_BASE ~LAST _CUST_SIGBASE + Ox0100,
LAST PLP _SIGBASE ~ PLP _SIGNAL_BASE,

#end if

157

Plpsigun.h

!***"'***

• $Workfile: plpsigun.h $
* $Revision:

$Date:

*****"'***"'***

• Designed by : PKR
* Coded by : PKR
• Tested by

*******************••···············***************"'***********************

* File Description

* Header file containing all signal types used in the Pairing Link Protocol. used for
• debug when inspecting signal unions

*********** ** ******* ** * •• ** •• ***** * ******* * ** •• ******* **** ** * ** *** *** ******

#if !defined (PLPS!GUN_H)

#define PLPSIGUN_H

#if !defined (DMSH_SIG _H)
#include "dmsh_sig.h"
#end if

#if !defined (DMIQ SIG H)
#include "dmiq_sig.h" -
#end if

#if !defined (DMSC SIG H)
#include "dmsc_sig.h" -
#end if

#if !defined (DMCN_SIG_H)
#include "dmcn _sig.h"
#end if

#if !defined (DMSO _SJG _H)
#include "dmso _ sig.h"
llendif

#if !defined (DML2 SIG H)
#include "dml2_sig.h" -
#end if

#if !defined (DMSP _ SIG _H)
#include "dmsp_sig.h"
#end if

#if !defined (DMIN_SIG_H)
#include "dmin_sig.h"
#end if

158

#if !defined (DMSD SIG H)
#include "dmsd_sig.h" -
#endif

#if !defined (L2IF_SIG_H)
#include "12if_sig.h"
#end if
#end if

#if defined (DM _TRACE_ OUTPUT)
#include "emmi_sig.h"

#define SIGNAL TVSIGNAL
#include "sig_defh"

#include "kerncl.h"

#if !defined (PLP _SIG_H)
#include "plp_sig.h"
#endif

#if !defined (PLPTX SIG H)
#include "plptx_sig.l;;' -
#end if

union Signal
{

#if defined (DM_SIGNALS)
#include "dmsig.h"
#end if

#if defined (PLP _SIGNALS)
#include "plpsig.h"
#endif

#if defined (PLPTX SIGNALS)
#include "plptxsig.11'
#endif

TestFileOut testFileOut;

KilnitialiscTask initialise;
KilnitialiseTask kilnitialiseTask;
KiTimerExpiry kiTimerExpiry ;

];
#endif

Plpsigun.h

159

Plpsig.h

/** *"' ****"' ** *** *********** ****** * * * * *** ** * ** ** *** •••• *** ** * **** ** * * ... ** "'**"'
•
• $Workfile: plpsig.h $
• $Revision:

$Date:

...
• File Description

• Pairing Link Protocol signals .
••••••••••• ** ** •••• ** ** ••••• * ••• ** •••••••••••••• *** ** ••••••••••••••• *****/

SIG_DEF(SIG _PLP _DUMMY= PLP _SIGNAL_BASE,
)

EmptySignal

SIG DEF(SIG PLP REGISTER REQ,
SIG=DEF(SIG=PLP=START_SCAN_REQ.

)
SIG DEF(SIG PLP START SCAN CNF.) - - - - -

SIG_DEF(SIG_PLP _LINK_INFO_IND,

PlpRegisterReq
PlpStartScanReq

PlpStartScanCnf

PlpLinklnfolnd

160

plpDummy

plpRegisterReq
plpStartScanReq

plpStartScanCnf

plpLinklnfolnd

Plptxmn_fnc.c

/**"'**********************************

• $Workfile: plptxmn_fnc.c $
• $Revision:

$Date: ...
• Designed by : PKR
• Coded by
* Tested by :PKR

• File Description . ----------------
• Pairing Link Protocol - Controlling Task main loop

···! #define MODULE_NAME "PLPTXMN_FNC"

/***"'"'*"'******"'***
• Include Files
... ********/

#if defined (HPDEFINE)
#if !defined (HPDEF!NE_H)
#include "hpdefine. h"
#end if
#endif

#if !defined(STR!NG_H)
#include "string.h"
#end if

#if !defined (KERNEL_H)
#include "kcmel.h"
#end if

#if !defined (PLPTXMN_FNC_H)
#include "plptxmn_fnc.h"
#end if

#if defined (PLPTX_TRACE_OUTPUT)
include "stdio.h"
#end if

#include 11Stdio.h"

#if !defined (PLPTXBU _FNC _C)
#include "plptxbu_fnc.c"
#end if

#if !defined (PLP _TYP _H)
#include "plp_typ.h"
#end if

#if !defined (PLPTXBU_TYP _H)

161

Plptxmn_fnc.c

#include "plptxbu_typ.h"
#endif

#if defined (PLPTX_TRACE_OUTPUT)
include "pssignal.h"
#include "emmi_sig.h"
#include "stdio.h"
#end if

/******** ••••• ****** •••••• ***** * *** ******* ******* ••••••• ***** ••• ** •• >I<**** •••
• Manifest Constants

***!

#define PLP _S!GNALS_COUNTS 10

/*****************************••••••·· • Types

******"'***"'**************************!

!***********************************"'***************************************
• Variables

************************************"'*******************""******************/
#if defined (PLPTX_ TRACE_ OUTPUT)
char traceString[MAX_ TEST _FILE_ OUT_ STRING];
#end if

!***
• Timer variables

***/

KiTimer plptxStartSequenceTimcr;

/********************************•**
*Macros
****** ******* ****#* ****. ** **************** ** ***** ***** *** ** •• * *** * **** *****I

/***"'*******************
• Functional Prototypes

*************"'***•******•***•*****************•••••••••••••****************/

void plptxOutlnfoReq (PiptxOutlnfoRcq *);

static void PLPTXTaskExitRoutine (void);
Kl_ENTRY _POINT PLPTXTask (void);
KI_S!NGLE_TASK (PLPTXTask. PLPTX_QUEUE_ID. PLPTX _ TASK_ID)
void plptxStateSwitch (SignaiBuffer*);
void sendlnfoTypeByte (void);
void plptx.BusAckReq (void);
void plptxSendOutFinishReq(void);
void plptxDisconnectedState(SignaiBuffer *signaiBuffer _p);
void plptxConnectedState(SignaiBuffcr *signaiBuffer_p);
void plptxStartSequenceReq (PiptxStartSequenceRcq *);
void plptxStartSequence2Req (PiptxStartSequence2Req *);

I* for the timer*/
void plptxlnitStartSequenceTimer (void);

162

Plptxmn_fnc.c

/**"'**********************
• Global Functions ···;

!***"'******************"'********
• Function; PLPTask Exit Routine

• Description; app task exit routine ,.. ... /
static void PLPTXTaskExitRoutine(void)
{

/***"'*************************
• Function; PlptxTask

• Description: Main entry point to the device manager task ... /
Kl_ENTRY _POINT PLPTXTask()
[
Boolean keepGoing;
SignalButTer signalBuffer ~ kiNullBuffer;
SignalBuffer signalToSend ~ kiNullBuffer;
DmshRegisterApplicationReq • dmshRegisterApplicationReq_p;

#if defined (DEVELOPMENT_ VERSION)
sprintf(traceString,"PLPTX: entry point reached");
plptx T raceOutp ut(traceString);

#endif

t• absorb all signals until a SIG_INITIALISE is received */
keepGoing ~TRUE;
while (keepGoing ~~TRUE)
[

KiReceiveSignal (PLPTX_QUEUE_ID,&signalButTer);
if(*(signalBuffer.type) ~ SIG_INITIALISE)
{
kcepGoing ~ F i\LSE;

KiDestroySignal (&signalBuffer);
I

plptxContext.plptxState ~ DISCONNECTED; /* set initial tx state *I
plptxContext.startl Received~ FALSE;

KiCreateSignal (SIG _DMSH _REGISTER _APPLICATION_REQ,
sizeof (DmshRegisterApplicationReq),
&signalToSend);

dmshRegisterApplicationReq_p ~ &signalToSend.sig->dmshRegisterApplicationReq;

memset (dmshRegisterApplicationReq_p,O,sizeoflDmshRegisterApplicationReq));

dm.,hRegisterApplicationReq_p->taskld ~ PLPTX _TASK _ID;

163

Plptxmn_fnc.c

dmshRegisterApplicationReq_p->registerAsApplication~ TRUE;
KiSendSignal (DM_ TASK_ID,&signalToSend);

plptxBuslnit (); I* calls plptx initialisation routine*/

I* set signalcount to zero *I
plptxContext.plpSignalCount ~ 0;

t• Never ending loop */
keepGoing ~TRUE;
while (keepGoing ~TRUE)
{
/*mark signal as not handled and destroy at end, then get the next signal*/
plptxSignalHandled(FALSE);

/*there are no signal no the intemaltmit queue, so
remove the next signal from the external queue*/

KiReceiveSignal(PLPTX _QUEUE_ ID,&signalBuffer);
DevAssert ((signa!Buffer.type)!~PNULL);

/*process all signals*/
plptxStateSwitch (&signalBuffer);

#if defined (DEVELOPMENT_ VERSION)
if(plptxContext.signalHandled ~~FALSE)
[
char text(I 00];
sprintf(&text(O],"Signal %Ox Not Handled",*signalBuffer.type);
DevFail (&text(O]);
break;

I
#end if

I

KiDestroySignal (&signalBuffer);
I

/***
• Function: plptxSignalHandled

• Description; TRUE if signal is handled.
** ** ** •••••••••••••••••••••• ******* •• ** *** ****** •••••• * **** ****** * *** ***** •;

void plptxSignalHandled(Boolean signalHandled)
{

plptxContext.signalHandled ~ signalHandled;
I

/************************************•••••••••********"'"'***************"'*"'**
• Function: plptxStateSwitch

• Description; Main switch for PLPTX task

*******************•••• *********** * **** *** ******** *** * ** **** * ***** ** * ******I
void plptxStateSwitch (Signa !Buffer *signa !Buffer _p)
[
switch (plptxContext.plptxState)

164

Plptxmn_fnc.c

case DISCONNECTED:
plptxDisconnectedState(signa!Buffer _p):

break;

case CONNECTED:
p lptxConnectedS tate(s igna!B utTer _p);
break:

default:
DevFail ("incorrect txState");
break:

!******"'********************************"'***********************************
• Function: plptxDisconnectedState

• Description: Tx disconnected state
* * * * * * * * • * * * * * * * * * • "'• • * • • * • * * * * * • • * * * • • • • • * • • * * * • • • * * * • • • * * • * •"' • • • • • • • • ****I

void plptxDisconnectedState(Signa!Buffer •signa!Buffer _p)

I
Signa!Buffer signa!ToSend ~ kiNuiiBuffer;

plptxSigna!Handled(TRUE);

switch (*(signa!Buffer_p->lype))

I
case SIG_DMSH_REGISTER_APPL!CATION_CNF:

DevAssert (signa!Buffer _p->sig->dmshRegisterApplicationCnf.comStatus =COMMAND_ OK);

if (signa!Buffer _p->sig->dmshRegister ApplicationCnf.comStatus 1~ COMMAND_ OK)

I
plptxSigna!Handled (FALSE);

l

break:

case SIG_T!MER_EXPIRY:

I* !fit's the StartSequenceTimer that has expired*/
if (signa!Buffer _p->sig->kiTimerExpiry.timerld = plptxStartSequenceTimer. timer Id)

I
if (plptxContext. plptxStartSequenceTimerRunning ~~ TRUE)

I
#if defined (PLP _TRACE_OUTPUT)

sprintf(traceString,"PLPTX: StartSequence TIMER_EXPIRY occurred in PLPTX DISCON"NECTED state");
plpTraceOutput(traceString);

#end if

I* activate start sequence (part I of2)*/
KiCreateSignal (SlG_PLPTX_START_SEQUENCE_REQ,

sizeof (PiptxStartSequenceReq).
&signaiToSend);

signalToSend.sig->plptxStartSequenceReq.rnyTaskld ~ PLPTX_ TASK_ID;
signaiToSend.sig->plptxStartSequenceReq.locall3tl3dAddr ~ plptxContext.loca!Deviceld:

165

Plptxmn _ fnc.c

KiSendSignal (PLPTX_TASK_ID. &signa!ToSend):
I
else

/*do nothing as the timer has already been stopped- plptxContcxt.plpStartSequenceTimerRunning ~FALSE*/

#if defined (PLP _TRACE_ OUTPUT)
sprintf(traceString."PLPTX: StartSequence TIMER_EXPIRY ignored as timer stopped"):
plpTraceOutput(traceString);

#end if
I

I
else

I

/*signal for use elsewhere let it through •;
plptxS i gna 1 Handled(F A LSE);

break;

case SIG_PLPTX_START_SEQUENCE_REQ:
I* Start StartSequenceTimer •;
plptxStartStartSequenceTimer ():

memcpy (&plptxContext.locaiDeviccld, &signaiBuffer_p->sig->plptxStartSequenceReq.locall3tl3dAddr, sizeof
(BtBdAddr)):

plptxStartSequenceReq(&signall3uffer_p->sig->plptxStartSequenceReq);
break;

case SIG_PLPTX_ST ART _SEQUENCE2_REQ:
#if defined (DEVELOPMENT_ VERSION)

sprintf(traceString,"PLPTX: received start sequence2 req");
plptxTraceOutput(traceString);

#end if
p lptxStartSeq uence2 Req(&signa ll3u ffer _p->s ig->p lptxStart Seq ucncc2 Req);

plptxContext.startl Received~ TRUE;
break;

case SIG_PLPTX_START_SEQUENCE_CNF:
if (plptxContext.start I Received= TRUE)
I

I

I* send plpStartSequenceCnf to PLPTX task*/
KiCreateSignal (SIG_PLPTX_ST ART _SEQUENCE_ CNF.

sizeof (PiptxStartSequenceCnt).
&signa!ToSend):

signa!ToSend.sig->plptxStartScquenceCnf.myTaskld ~ PLPTX _TASK _ID:

KiSendSignal (PLP _ TASK_ID, &signa!ToSend);

plptxStopStartScquenceTimer ();

I* handshaking complete go to CONNECTED state *I
plptxContext.plptxState ~CONNECTED;

166

Plptxmn_fnc.c

else

I
sprintf(traceString,"PLPTX: ignored as start! (AAA) not received, before rx Start2 (ABB)"):
plptxTraecOutput(traceString):

I
I

I
break:

case SIG PLPTX OUT INFO REQ:
sprintf(traceString,"PLPTX: h~llo)"):
plptxTraceOutput(traceString):
break:

default:
plptxSignalHandled (FALSE);
break;

!***"'*************
• Fwtction: plptxConncctcdState

• Description: Tx connected state

***********************************"'*"'*************************************/
void plptxConnectedState(SignalBuffer *signalBuffer _p)

I
plptxSignalHandled(TRUE);

switch (*(signalBuffer_p->type))

I
I* left over signals from previous state*/
case SIG_PLPTX_START_SEQUENCE2_REQ:

plptxStartSequence2Req(&signalBuffer_p->sig->plptxStartSequence2Req);
#if defined (DEVELOPMENT VERSION)

sprintf(traceString,"PLPT£ now connected- sent START _SEQUENCE2_REQ anyway");
plptxTraceOutput(traceString);

#end if
break:

case SIG PLPTX START SEQUENCE CNF:
#if defined (DEVELCJPMENT VERSION)-

sprintf(traceString,"PLPTX~ now connected- ignored START_ SEQUENCE_ CNF");
plptxTraccOutput(traceString);

#end if
break;

case SIG_PLPTX_START_SEQUENCE_REQ:
#if defined (DEVELOPMENT VERSION)

sprintf(traceString,"PLPT£ now connected- ignored START _SEQUENCE_REQ");
plptxTraceOutput(traceString):

#end if
break;

/*signals for this state *I
case SIG_PLPTX_OUT_INFO_REQ:

plptxOutlnfoReq(&signalBuffer _p->sig->plptxOutlnfoReq);
break;

167

Plptxmn _ fnc.c

case SIG_DMSH_REGISTER_APPLICATION_CNF:
DevAssert (signalBuffer_p->sig->dmshRegisterApplicationCnf.comStatus ~COMMAND _OK):
break:

I
I

case SIG_PLPTX_IN_LNFO_RSP:
I* task needs to send an ACK signal to !'other pc *I
plptxBusAckReq ();
break:

case SIG_PLPTX_OUT_FINISH_REQ:
plptxSendOutFinishReq():
break;

default:
plptxSignalHandled(FALSE);
break;

/***"'***************************
• Function: plptxStartSequenceReq .
• Description: process the plptxStartSequenceReq signal
* * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * "'* ** * * * * * * *******I

void plptxStartSequenceReq (PlptxStartSequenceReq • plptxStartSequenceReq_p)

I
Signa !Buffer busSignal = kiNuliBuffer :
lnt8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_ WRITE_DATA_REQ.
sizeof (PlptxBusWriteDataReq),
&busSignal);

packetBuffer = (lnt8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

I* fill signal */
I* header*/
PUT_INT8 (0, packetBuffer, PRE_AMBLE_BYTE):
PUT_INT8 (1, packetBuffer, PRE_AMBLE_BYTE):
PUT_INT8 (2, packetBuffer, PRE_AMBLE_BYTE):
PUT_BDADDR(3, packetBuffer, plptxContext.locaiDcviceld):

I'UT_INT8((PLPTX_BUS_HEADER_SlZE), packetBuffer, START_TYPE); /*signal type*/
PUT _1NT8 ((SIZE_TO _SlGNAL_NAME), packetBuffer. START _SlGNAL_NAME);
PUT_lNT8 (SlZE_TO_SlGNAL, packetBuffer, START_SlGNAL);

busSignal.sig -> plptxBusWriteDataReq.txDataSize ~ (PLPTX_BUS_START _SEQUENCE_SlZE +
PLPTX_BUS_HEADER_SIZE):

plptxBusWriteData (&busSignal):
KiDestroySignal (&busSignal);

168

Plptxmn _fnc.c

!** •••• ******"' * •• **. ** ***. ** ** •• "'* * **** •••••••• ** ••• *** ••••• *** **** ** * ******
• Function: plptxStartSequence2Req
•
• Description: process the plptxStartSequence2Req signal ... /

void plptxStartSequence2Req (PiptxStartSequence2Req • plptxStartSequence2Req_p)
{
Signa!Buffer busSignal = kiNui!Buffer;
Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_ WRITE_DATA _REQ,
sizeof (PiptxBus W riteDataReq),
&btl~Signal);

packetBuffer = (Int8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

I* fill signal */
/*header*/
PUT_INT8 (0, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (1, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (2, packetBuffer, PRE_AMBLE_BYTE);
PUT _BDADDR(3, packetBuffer, plptxContext.locaiDeviceid);

PUT _INT8((l'LPTX_BUS_HEADER_SIZE), packetBuffer, START _TYPE); /*signal type*/
PUT_INT8 ((SIZE_TO_SIGNAL_NAME), packetBuffer, START2_SIGNAL_NAME);
PUT _INT8 (SIZE_ TO_ SIGNAL, packetBuffer, ST ART2_SIGNAL);

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_START_SEQUENCE_SIZE +
PLPTX _BUS_ HEADER_ SIZE);

plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal) ;

!* * * *. * * * * * * * *. *. * * * *. * * * * •• ** * * * * * * * * * * * * * * * •• * •• * •• *. * * * *. * * * * *. * * *. * * * * *.
• Function: plptxOutlnfoReq

• Description: process the plpOutinfoReq signal

* ** * * * * * * * * ** • * * * * * * * * * * * * * *******I

void plptxOutlnfoReq (PiptxOutlnfoReq • plptxOutlnfoReq_p)
{

int friendlyNameCount
int linkKeyCount;

Signa!Buffer busSignal = kiNui!Buffer;
Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_ WRITE_DATA _REQ,
sizcof (PlptxBusWriteDataReq),
&busSignal);

packetBuffer = (lnt8*) & (busSignal.sig -> plptxBusWriteDataRcq.txData);

I* fill signal */
/*header */
PUT_INT8 (0, packetBuffer, PRE_AMBLE_BYTE);

169

Plptxmn_fnc.c

PUT_INT8 (1, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (2, packetBuffer, PRE_AMBLE_BYTE);
PUT_ BDADDR(3, packetBuffer, plptxContcxt.locaiDeviceld);

PUT_INT8(PLPTX_BUS_HEADER_SIZE, packetBuffer, INFO_TYPE); /*signal type*/
PUT _INT8 ((SIZE_TO _SIGNAL_NAME), packetBuffer, PLPTX_BUS_OUT _INFO);

PUT _BDADDR ((SIZE_ TO_ BDADDR), packetBuffer, plptxOutinfoReq_p -> plpBtBdAddr);

PUT _INT8((SIZE_ TO _NAME_ LEN), packetBuffer, plptxOutlnfoReq_p -> plpFriendlyName.nameLen);

for (friendlyNameCount = 0; friendlyNameCount <248; friendiyNameCount ++)
{
PUT _INT8 ((SIZE_ TO_ NAME+ friendlyNameCount),packetBuffer, plptxOutinfoReq_p -> plpFriendlyNamc.name

I friendlyNameCount]);
I

for (linkKeyCowit = 0; linkKeyCount < 16; linkKcyCount++)
{
PUT _INT8 ((SIZE_TO_LINK_KEY+ linkKcyCount), packctBuffer, plptxOutinfoReq_p -> plpLinkKey

[linkKeyCount]);

I

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_OUT_INFO_DATA_SIZE +
PLPTX_BUS_HEADER_SIZE);

plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal);

I

/***************************************"'***********************************
• Function: plptxBusAckRcq .
• Description: process the plptxBusAckRcq signal

************•*•**!

void plptxBusAckReq ()

l
Signa!Buffer busSignal = kiNuiiBuffer;
lnt8* packetBuffer;

KiCreateSignal (SIG _PLPTX _BUS_ WRITE_DAT A _REQ,
sizeof(PiptxBusWriteDataReq),
&busSignal);

packetBuffer = (lnt8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

/*header*/
PUT_INT8 (0, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (I, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (2, packetBuffer, PRE_AMBLE_BYTE);
PUT _BDADDR(3, packetBuffer, plptxContext.loca!Deviceid);

PUT _INT8 (SIZE_ TO_ TYPE, packetBuffer, ACK _TYPE);
PUT _INT8 (SIZE_TO_SIG_NAME, packetBuffer, PLPTX_BUS_ACK);
PUT_INT8 (SIZE_TO_SIGNAL_BEING_ACKED, packetBuffer, PLPTX_BUS_OUT_INFO);

170

Plptxmn_fnc.c

busSignal.sig -> plptx.BusWriteDataReq.tx.DataSize ~ (PLPTX BUS ACK TYPE SIZE+
PLPTX_BUS_HEADER_SIZE); - - - -

plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal);

I

/****** •• ** ************ ** **** ****** * ******** ** ••• ** ****. ** *** ****** *********
• Function: plptx.SendOutFinishReq .
• Description: send the OutFinishReq signal to the other device

***""*!
void plptx.SendOutFinishReq ()
I
SignaiBuffer busSignal ~ kiNuiiBuffer;
lnt8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_ WRITE_DATA _REQ.
sizeof (Piptx.BusW riteDataReq),
&busSignal);

packetBuffer ~ (lnt8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

I* fill signal •;
I* header •;
PUT _INT8 (0, packetBuffer, PRE_AMBLE _BYTE);
PUT_INT8 (!, packetBuffer. PRE_AMBLE_BYTE);
PUT_INT8 (2, packetBuffer, PRE_AMBLE_BYTE);
PUT_ BDADDR(3, packetBuffer, plptxContext.loca!Deviceld);

!*main signal •;
PUT _INT8 (SIZE_ TO _TYPE. packetBuffer. ACK _TYPE);
PUT_INT8 (SJZE_TO_SIG_NAME, packetBuffer, PLPTX_BUS_ACK);
PUT_INT8 (SIZE_TO_SIGNAL_BEING_ACKED, packetBuffer, PLPTX_FINISH_REQ_ACK);

busSignal.sig -> plptx.BusWriteDataReq.tx.DataSize ~ (PLPTX BUS ACK TYPE SIZE+
PLPTX_BUS_HEADER_SJZE); - - - -
plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal);

}

!******************************"'**
• Function: sendlnfoTypeByte

• Description: sends lnfo type Byte

***/
void sendlnfoTypeByte (void)
{
SignaiBuffer busSignal ~ kiNuiiBuffer;
Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_ WRITE_DATA_REQ,
sizeof (Piptx.BusWriteDataReq),
&busSignal);

packetBuffer ~ (lnt8 *) & (busSignal.sig -> plptxBusWriteDataReq.txData);

!*till signal •;

171

Plptxmn_fnc.c

PUT_INT8(0, packetBuffer, INFO_TYPE); /*signal type*/
busSignal.sig -> plptxBusWt·iteDataReq.tx.DataSize ~ I;

plptxBusWriteData (&busSignal);

KiDcstroySignal (&bus Signal);
I

;•••••••··••••**** • Function: plptxlnit

• Description: Initialise plptx task

····•••**/
void plptxlnit(void)
I
Signa!Buffer signaiToSend ~ kiNuiiBuffer;
DmshRegisterApplicationReq • dmshRegisterApplicationReq_p;

KiCreateSignal (SIG _DMSH _ REGISTER_APPLICATION _REQ.
sizeof(DmshRegisterApplicationReq),
&signaiToSend);

dmshRegisterApplicationReq_p ~ &signaiToSend.sig->dmshRegisterApplicationReq;

memset (dmshRegisterApplicationReq_p,O,sizeof(DmshRegisterApplicationReq));

dmshRegister ApplicationReq_p->taskld ~ PLPTX _TASK _ID;
dmshRegisterApplieationReq_p->registerAsApplication~ TRUE;

KiSendSignal (OM_ TASK_ID,&signaiToSend);

/***
• Function: plptxlnitStartSequenceTimer

• Description: Initialises timer that controls the interval at which start sequence is transmitted

***/
void plptxlnitStartSequenceTimer (void)
{
plptxContext.plptxStartSequenceCounter ~ 0;

I

/**"'**
• Function: plptxStartStartSequenceTimer

• Description: Starts StartSequenceTimer
***/

void plptxStartStartSequenceTimer (void)
{
plptxContex.t.plptxStartSequenceCounter ++;

I* if> I, cow1ter is already running therefore stop counter and restart it *I
if (1 < plptxContex.t.plptxStartSequenceCounter)
I
KiStopTimer (&plptxStartSequenceTimer);

I

172

Plptxmn_fnc.c

plptxStartSequenceTimer.timeoutPeriod ~ MILLISECONDS_ TO_ TICKS
(PLPTX_START_SEQUENCE_TIMER_ VALUE);

plptxStartSequenceTimer.myTaskld ~ PLPTX_ TASK_ID;
plptxStartSequenceTimer.userValue ~ 0;
KiStartTimer(&plptxStartSequenceTimer);
plptxStartSequenceTimerRunning (TRUE);

}

/**"'**********************
* Function: plptxStopStartSequenceTimer

* Description: Stops StartSequence timer

************************************•······································;
void plptxStopStartSequcnccTimer (void)

I
KiStopTimer(&plptxStartSequenceTimer);
plptxStartSequenceTimerRunning (FA LSE);

}

!***"'*********************************
* Function: plptxStartSequenceTimerRunning

* Description: TRUE if StartSequenceTimer is running.

"'"'*********/

void plptxStartSequenceTimerRwming(Boolean plptxStartSequenceTimerRunning)
I
plptxContext.plptxStartSequenceTimerRunning ~ plptxStartSequenceTimerRunning;

I

#if defined PLPTX _TRACE_ OUTPUT

!***
* Function: plptxTraceOutput

• Description: Sends the buffer to the Genie Trace Output window

***/

void plptxTraceOutput (char *string)
(

}

Signa !Buffer signalToSend ~ kiNuJIBuffer;

KiCreateSignal (SIG_TEST _FILE_ OUT, sizeof(TestFileOut), &signa!ToSend);
memcpy (signalToSend.sig->testFileOut.string, string, sizeof(TestFileOut));
KiSendSignal (TEST_TASK_ID. &signalToSend);

#endif

173

Plptxmn_fnc.h

!*** ** ******** ** *** **** ** "'**** **** ** * ** ** *** *** ** * ** ** **** ***** *****"' *

* $Workfile: plptxmn_fnc.h $
* $Revision:

$Date:

...
* Designed by : PKR
* Coded by
* Tested by : PKR

••••••• ** ** **** ••••••• ******* ** ••• ****** •• * **. * * •• **** ** ** **. ********* ** •• *

* File Description
* ----------------
* Transport Layer- main functions /

#if !defined (PLPTXMN _FNC _H)
#define PLPTXMN_FNC_H

#ifO
#if !defined (PLPTXSIGUN_H)
#include "plptxsigun.h"
#endif
llendif

#if !defined (BT _TYP _H)
#include "bt_typ.h"
#endif

typedef enum PlptxStateTag
I
DISCONNECTED,
CONNECTED

} PlptxState;

typedef struct PlptxContextTag
I
Boo lean
lnt8
lnt32
Boo lean

signal Handled;
plpSignalCount;
plptxStartSequenceCounter;

plptxStartSequenceTimerRunning;

plptxState;
busConnected;

rxDeviceld; /* ID just received *I

PlptxState
Boo lean
BtBdAddr
BtBdAddr remoteDeviceld; /* used for verifying that signal received is not signal transmitted by the same

device*/
BtBdAddr
Boo lean
Boo lean

} PlptxContext;

PlptxContext

localDeviceld;
start! Received;
start! Sent;

plptxContext;

174

void plptxlnit (void);
void plptxSignaiHandled
void plptxDoNotDestroy

(Boolean);
(Boo lean);

void plptxStartStartSequenceTimer (void);
void plptxStopStartSequenceTimer (void);
void plptxStartSequenceTimerRunning (Boolean);

llif defined (PLPTX _TRACE_ OUTPUT)
void plptxTraceOutput (char*);

#endif

#end if

Plptxmn_fnc.h

175

Plptxbu_fnc.c

/************"'****~***

• $Workfile: plptxbu_fnc.c $
* $Revision:

$Date:

"'•***********************

• Designed by : PKR
• Coded by
* Tested by : PKR

• File Description
* ----------------
• Transport Layer, bus task - main functions .
******"' ** "'* ************ ***** ****** ** ****** **** *** ** ****** **** ** **** ** ******/

/*#define DEBUG_PLPTX */

#include <stdio.h>
#include <windows.h>
#include <winbase.h>
#include <windowsx.h>
#include <malloc.h>

#include "stdlib.h"

#if !defined (MA_TYP _H)
include "ma_typ.h"
#endif

#if !defined (TM_TYP _H)
include "tm_typ.h"
#end if

#if defined(HPS_ ON_ WINDOWS)
if !defined (GWCOMERR _H)
include "gwcomerr.h"
endif
#end if

#if !defined (STRING_I-1)
#include "string.h"
#end if

#if !defined (PLPTX_SIG_H)
#include "plptx_sig.h"
#end if

#if !defined (PLPTX_ TYP _H)
#include "plptx_typ.h"
#end if

176

Plptxbu_fnc.c

#if 1defined (PLPTXSIGUN_H)
#include "plptxsigun.h"
#end if

#if !defined(PLPTXMN_FNC_H)
#include "plptxmn _fnc.h"
#end if

#if !defined (PLPTXBU_FNC_H)
#include "plptxbu_fnc.h"
#end if

#if !defined (KERNEL_H)
#include "kemel.h"
#endif

#if defined (HPDEFINE)
#if !defined (HPDEFINE_H)
#include "hpdefine.h"
#end if
#end if

#if !defined (PLPTXBU_ TYP _H)
#include "plptxbu_typ.h"
#endif

#if defined (PLPTX _TRACE_ OUTPUT)
char traceString[MAX_TEST _FILE_OUT _STRING];
#end if

/****************"'****••··· • Variables

***/

/**•*************************************
• Types

**************************"'*****"'***"'*"'***"'**"'*******************************/
typedef enurn PlpbuRxStateTag

PLPTX_BUS_START.
PLPTX_BUS_RX_REMOTE_DEYICE_ID,
PLPTX_BUS_RX_PACKET_TYPE,
PLPTX_BUS_RX_SIGNAL

) PlpbuRxState;

typcdef struct PlpbuContextTag

I
PlpbuRxState rxState; /*State of the receiver */

177

Plptxbu _ fuc.c

Boo lean rxActive; /* TRUE if active, FALSE if no longer connected */
Char rxBuffer [280]; /*Initial buffer for packet type and enough for length data*/
Char• rxPtr; /*Pointer to where received data should be written *I
lnt16 rxLenReceived; /*Length of current received data */
lntl6 rxLenWaiting; /*Length of data we are waiting to receive*/
CRJTICAL_SECTION qLock; /*used for locking the send Queue *I
HANDLE txSignal; /* handle to event used to signal more data to send •;
HANDLE wrEvent; /* write event for overlapped write *I
HANDLE rdEvent; /*Read event for overlapped read •;
HANDLE txHandle; /* handle to thread running the transmitter •;
HANDLE rxHandle; /* handle to thread running the receiver*/
HANDLE ioHandle;
KiUnitQueue cmdQueue; /*Queue ofcommmand packets to send •;
lnt16 txLenToSend; /*total munber of bytes to transmit *I
Intl 6 txLenSent; /* number of bytes already sent fi-om this packet •;
Int8 startByteCounter; /* number of start bytes received */

f PlpbuContcxt;

PRIVATE PlpbuContext plpbuContext;

/***** ******** •••••••••••••• ** ** * •••••• ** ••••••••• ***** * •••• *********** ** ••••••
• Function Protoypes

**************"'****"'*************************"'*******************************/
DWORD WINAPI transmitPacket (LPVOID);
DWORD WINAPI plpbuReceivePacket (LPYOID);
void plptxBusWriteData (SignaiBuffer *signaiBuffer);
static void plpbuLockQueues(void);
static void plpbuUnlockQueues(void);
void plpbuCreateThreads (void);
static void plpbuSignaiMoreTxData (void);
static void plpbuPiaceTxDataOnQueue (SignaJBuffer *signaiBuffer);
static Boo lean plpbuTakeTxDataFromQueue (SignaiBuffer *signaiBuffer);
static HANDLE plptxbuOpenPcPort (void);
void WriterGeneric(lnt8 • lpBuf, DWORD dwToWrite);
WtErr WINAPI ReadGeneric(lnt8* lpBuf, lnt16 dwToRead. lnt32 *readBytes);
void plptxBuslnit (void);
static void plpbuProcessRxData (lntl6 rxLen);

void plptxBuslnit (void)
I
int rxBufCount; /* for clearing the rxBuffer */

!*******************************"'******•**************************************!
I* initialise the Tx lock */
lnitializeCriticalSection (&plpbuContext.qLock);

I* Win32 function */
plpbuContext.txSignal ~ CreateEvent (NULL,/* Security attributes *I

TRUE,/* Manual Reset */
FALSE,/* Initial State */
NULL /* name */
);

178

Plptxbu_fuc.c

plpbuContext.wrEvenl ~ CreateEvent (NULL.!* Security attributes •;
TRUE. /* Manual Reset •;
FALSE, /* Initial Stale */
NULL /* name */
);

plpbuContext.rdEvenl ~Create Event (NULL,/* Security attributes*/
TRUE, /* Manual Reset •;
FALSE./* Initial State •;
NULL /* name •;
);

if(plpbuContext.rdEvenl ~~NULL)

I
DevFail("Error creating rdEvent"):

l
else
I
sprintf\traceString,"PLPTX: rdEvent created successfully");
plptxTraceOutput(traceString);

}

if (plpbuContext. wrEvent ~NULL)

I
DevFail("Error creating wrEvent"):

}

if(plpbuComext.txSignal ~NULL)

I
DevFail("Error creating txSignal Event");

}

/*** ** ** ****** * *** ** * ***** ***** * ***** * •• ******** ******* ***** * ** "'*** *** *********I

I* set all handles to invalid •;
pipbuContext.ioHandle ~ INVALID_ HANDLE_ VALUE;
plpbuContcxt.txHandle ~ INVALID_ HANDLE_ VALUE;
plpbuContext.rxHandle ~ INVALID_HANDLE_ VALUE;

/*clear queue */
plpbuLockQueues ();
KiFlushQueue (&plpbuContext.cmdQueue);
plpbuUnlockQueues ();

I* set up Rx State •;
plpbuContext.rxActive ~TRUE;
plpbuContext.rxLenWaiting ~ 1;
plpbuContext.rxLenReceived ~ 0;
plpbuContext.rxState ~ PLPTX_BUS_START;
plpbuContext.startByteCounter ~ 0;

I* clear the rxBuffer */
for (rxBufCount ~ 0; rxBufCount<280; rxBufCount++)

I
plpbuContext.rxBuffer [rxBufCount] ~ 0;

}

plpbuContext.rxPtr ~ plpbuContext.rxBuffer;

179

I* set up the tx state */
plpbuContext.txLenToSend ~ 0;
plpbuContext.txLenSenl ~ 0;
ResetEvent (plpbuContext. txSignal);

I* open the pc port •;
pipbuContcxt. ioHandle ~ plptxbuOpenPcPort ();

plpbuCreateThrcads ();

Plptxbu_fnc.c

/**************************"'**"'****•************
• plpbuOpcnPcPort

• Opens the port

•*******************/
static HANDLE plptxbuOpenPcPort (void)
I
HANDLE handle~ !NVALID_HANDLE_ VALUE;
DCB dcb;
BOOL portReady;

COMMTIMEOUTS timeoutsDefault;

!*To open the port *I
if(plpbuContext.ioHandle = INVALID_l-IANDLE_ VALUE)

handle~ CreateFile (PC_COM_PORT.
GENERIC_READ I GENERIC_ WRITE.
0, I* share Port */
NULL. /* No Security */
OPEN_ EXISTING, /*How to Create */
FILE_FLAG_OVERLAPPED, /*File Attributes- No overlapping*/
NULL /* Handle of file with attributes to copy *I
);

!* Get current Device Control Block Settings */
GetCornmState (handle, &dcb);

!* fill in the dcb *I

dcb.DCBlength ~ sizeof(dcb); /* sizeof{DCB)*/
dcb.BaudRate ~ PC_BUS_BAUD _RATE; /*current baud setting*/
dcb.fBinary ~TRUE; /*binary mode, no EOF check*/
dcb.frarity ~FALSE; /*enable parity checking*/
dcb.fOutxCt.sFlow ~FALSE;/* was TRUE •; /* CTS output flow control*/
dcb.fOutxDsrFlow ~FALSE; /* DSR output flow control*/
dcb.fDtrControl ~ DTR_CONTROL_DISABLE; /* DTR flow control type- assert DTR*/
dcb.fDsrSensitivity ~FALSE; /* DSR sensitivity*/
dcb.fTXContinueOnXotr~ FALSE/*TRUE*/;1* XOFF continues Tx- don't use XON/XOFF*/

dcb.fOutX ~FALSE; !* XONIXOFF out flow control*/

180

I

Plptxbu _ fuc.c

dcb.flnX ~FALSE; I* XON/XOFF in flow control*/
dcb.fErrorChar ~FALSE; /*error replacement- off"/
dcb.fNull ~FALSE; /*null stripping- off"/
dcb.fRtsControl ~ RTS CONTROL DISABLE; /*RTS CONTROL DISABLE;*/ /* RTS flow control */
dcb.fAbortOnError ~ FALSE; -I* abort reads/writ;;s on error*/-
I* dcb.ffiummy2:17 is reserved */
dcb.wReserved ~ 0; I* not currently used*/
dcb.XonLim ~ 0; I* transmit XON threshold*/
dcb.XoffLim ~ 0; I* transmit XOFF threshold*/
dcb.ByteSize ~ 8; /* number of bits/byte, 4-8*/
dcb.Parity ~ NOPARITY; /* 0-4~no,odd,even.mark,space*/
dcb.StopBits ~ ONESTOPBIT; /* 0.1.2 ~I, 1.5. 2*/
dcb.XonChar ~ 0; I* Tx and Rx XON character*/
dcb.XoffChar ~I; /* Tx and Rx XOFF character*/
dcb.ErrorChar ~ 0; I* error replacement character*/
dcb.EofChar ~ 0; I* end of input character*/
dcb.EvtChar ~ 0; /*received event character*/
I* don't use dcb.wReservedl */

portReady ~ SetCommState (handle, &dcb);

if (portRead y= I)

I

}

sprintf(traceString,"PLPTX: Port opened successfully"):
plptxTraceOutput(traceString);

SetupComm(handle, INPUT_ BUFFER _LEN, OUTPUT_ BUFFER_LEN):

I* set port timeouts *I

timeoutsDefault.ReadlntervaiTimeout ~ MAXDWORD: /*TO Do- change tl1is *I
timeoutsDefault.ReadTotaiTimeoutMultiplier ~ 0;
timeoutsDefault.ReadTotaiTimeoutConstant ~ 0;
timeoutsDefault. WriteTotaiTimeoutMultiplier ~ 0;
timeoutsDefault. WriteTotaiTimeoutConstant ~ 0;

return handle:

/**•*******/
I* plpbuCreateThreads
/*
I* Create the threads for transmitting. receiving */
I* ;••···*····················; void plpbuCreateThreads (void)
as in hubu_fnc.c*/

I
lnt32 threadld;

/* thread for transmit */

I* TO DO- ought to make this function return TRUE if successful, FALSE if fail

if(plpbuContext.txHandle = INVALID_HANDLE_ VALUE)
I

181

P1ptxbu _fnc.c

/*Create the thread for transmitting*/
plpbuContext.txHandle ~ CreateThread (NULL, /*security attributes */

0. /*Stack size *I
transmitPacket, /* Tx Thread function*/
0, /*Parameter *I
0. /*Create flags • I
&threadld /*Thread identifier*/
):

if(plpbuContext.rxHandlc ~~ INVALID_HANDLE _VALUE)
(
/*Create the thread for receiving*/
plpbuContcxt.rxHandle ~Create Thread (NULL. /*security attributes *I

0, /*Stack size */
plpbuReceivePacket. /* Rx Thread function*/
0. /*Parameter */
0, /*Create flags • I
&threadld /*Thread identifier*/);

if((plpbuContext.rxHandle = INVALID_HANDLE_ VALUE) 11

(plpbuContext.txl-landle = INVALID_ HANDLE_ VALUE))

I

if (plpbuContext.txHandle = INVALID_HANDLE_ VALUE)

I
DevFail ("PLPTX: tx thread creation failed"):

I
else

DevFail ("PLPTX: rx thread creation failed");

#if defined (DEVELOPMENT_ VERSION)
if(plpbuContext.txHandle !~ 0)

I
sprintf(traceString,"PLPTX: tx thread created successfully"): /*thread appears not to be created if this isn't

present....*/
plptxTraceOutput(traceString):

}

if (plpbuContext.rxHandlc '~ 0)
{
sprintf(traceString,"PLPTX: rx thread created successfully"); /*thread appears not to be created if this isn't

present.... *I
plptxTraceOutput(traceString);

I
#end if
I
I** ••••• ** **** ******** ** ** *** • ***** ******"'"' * **** * *** *** *****"' *"'*"'*"'* *** **"' "'*"'"'"' ***"'*"' **** *
* plpbuLockQueues .
* Locks transmission Queues

* • * ****"' ***"'** ***** • •**"'* • "'"'******* * ••••• ** * "'"'* ******"'****** * ** •••• "'* •******** **I
static void plpbuLockQueues(void)

182

Plptxbu_fnc.c

EnterCriticaiSection (&plpbuContext.qLock);
l

/****************"'**"'"'****"'***********
• plpbuUnlockQueues

• Locks transmission Queues

**/
static void plpbuUnlockQueues(void)

LeaveCriticaiSection (&plpbuContext.qLock);
l

/**************"'*****••••***
• plpbuSignalMoreTxData

• signals that there is more data to send

******** **** ** *** ** •• **** * ** **** ******* **** ** ** *** ******** *** *"'* **"' *************I
static void plpbuSignalMoreTxData (void)
{

SetEvent (plpbuContext. txSignal);
#if defined (DEBUG_PLPTX)

sprintf(traceString,"PLPTX: signalled more data");
plptxTraceOutput(traceString):

#end if
)

/*****"'***
• plptxBusWriteData

• places pkt on transmit Queue

"'*********/
void plptxBusWriteData (Signa!Bufter •signalBuffcr)
{

DevAssert (*signalBuffer ->type~ SIG_PLPTX_BUS_ WRITE_DATA_REQ);

plpbuPlaceTxDataOnQueue (signalBuffer);
pipbuSignalMoreTxData () :

#if defined (DEBUG_PLPTX)
sprintf(traceString,"PLPTX: entered BusWriteData");
plptxTraceOutput(traceString);

#end if

KiDestroySignal (signaiBuffer);
l

/'* * *. *. *. * •• * * *. * * * * * * * * * *. * * * * *. * * * * * * * * *. * * * *. * * * * * ** * * * * * * * * *. * * * * * * * * * * * * * * * ** * * * * * * * *
• transmitPacket

• Thread that continues to transmit as long as there's data to send

******* * * *** ** * ** "'** ** * ********* ** **** * * •• **** ****** ****** •• "'** * *"' ••• **/
DWORD WlNAPI transmitPacket (LPVOlD ptr)
{

183

Plptxbu_fuc.c

I* variables *I
Boolean dataToSend;
Boolcan result~ TRUE;
Ints• txPtr;
Intl 6 txLenToSend;
SignalBuffer signal Buffer~ kiNuliBuffer;

PARAMETER_NOT _USED (ptr):

#if defined (DEDUG_PLPTX)
sprintf(traceString,"PLPTX: entered transmit packet"):
plptxTraceOutput(traceString):

if (result~~ FALSE)
{
sprintf(traceString,"PLPTX: transmit packet- result is FALSE"):
plptxTraceOutput(traceString):

l
#end if

while (result= TRUE)
{

#if defined (DEBUG_PLPTX)
if (result ~~TRUE)
{
sprintf(traceString,"PLPTX: transmit packet, while loop- result is TRUE");
plptxTraceOutput(traceString);

l

sprintf(traceString,"PLPTX: in transmit packet while loop");
plptx TraceOutput(traceString);

#end if

WaitForSingleObject (plpbuContext.txSignal, INFINITE): I* timeout is infinite *I

I* main thread has signalled that there is more data to tx
loop reading from the queue til its empty or write fails *I

do
{

1• read data off the queue *I

if((dataToSend ~ plpbuTakeTxDataFromQueue (&signa!Buffcr)) ~~TRUE)
{

#if defined (DEDUG_PLPTX)
sprintf(traceString,"PLPTX: writing data to serial port");
plptxTraceOutput(traceString);

/lend if

l

txPtr ~ (lnt8 *) &signaiBuffer.sig->plptxBusWriteDataReq.txData:
txLenToSend = signaiBuffer.sig->plptxBusWriteDataReq.txDataSize:

WriterGeneric (txPtr, txLenToSend):

KiDestroySignal (&signaiBuffer):

else

184

Plptxbu _ fnc .c

I
#if defined (DEBUG _PLPTX)

sprintfl.traceString,"PLPTX: transmit packet no data in Q so didn't enter ifloop");
plptxTraceOutput(traceString);

#end if

I
I while ((dataToSend ~TRUE) && (result~TRUE));

I
return 0;

}

/*********************"'**"'***
• Function: WriterGeneric
• Parameters: lpBuf Data to write

dwToWrite Number of bytes to write

• Description:
• Write the number bytes to the COM port

* ** ******* ** ************** ***** •• * ** ****** **** ** *** ** * *** ** * ***********I

void WriterGeneric(Int8 • lpBuf, DWORD dwToWrite)
I
OVERLAPPED osWrite = 10};
HANDLE hArray(l];
DWORD dwWritten;
DWORD dwRes;
int bytes Written= 0;
int packetBytesWritten = 0;

osWrite.hEvent = plpbuContext.wrEvent;
hArray[O] = plpbuContext.wrEvent;

/*
* issue write */

while (bytes Written != dwToWrite)
{
if(!WriteFile(plpbuContext.ioHandle, (lpBuf + packetBytesWritten), dwToWrite, &dwWritten, &os Write))
{

if(GetLastError() ~ ERROR_IO_PENDING)
{
/*
• write is delayed
*I

#if defined (DEBUG _PLPTX)
sprintf\traceString,"write is delayed in writerGeneric");
plptxTraceOutput(traceString);

#endif
dwRes = WaitForSingleObjeet (hArray(O], INFINITE);

switch(dwRes)
{

I*
* write event set
*I

case WAIT_OBJECT_O:
SetLastError(ERROR_SUCCESS);

185

Plptxbu _ fnc.c

if(!GetOverlappedResult(plpbuContext.ioHandle. &osWrite, &dwWrinen, FALSE))
I

#if defined (DEBUG_PLPTX)
sprintf(traceString,"WriterGeneric -GetOverlappedresult, dwWrillen is: %d", dwWrinen);
plptxTraceOutput(traceString);
sprintf(traceString,"WriterGeneric -GetOverlappedresult, dwToWrite is: %d", dwToWrite);
plptxTraceOutput(traceString);

#end if
if (GetLastError() ~ ERROR_ OPERATION _ABORTED)
I
DevFaii("Write aborted\r\n");

}
else

I
I* LPVOID lpMsgBuf; */

#if defined (DEBUG_PLPTX)
sprintf\traceString,"hello");
plptx T raceO utput(traceString);

#endif

/****"'**"'**"'**"'*•*******"'*********************************
*************************/
#ifO /*displays windows error- also tends to crash the pc after displaying it- quite useful though!*/

ForrnatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER I FORMAT_MESSAGE_FROM_SYSTEM,

NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SVBLANG_DEFAULT), //Default

language
(LPTSTR) &lpMsgBuf,

0,
NULL

);

I/ Display the string.
MessageBox(NULL, lpMsgBuf, "GetLastError",

MB_OKIMB_ICONINFORMATIONIMB_SYSTEMMODAL);

#end if

I/ Free the butTer.
Loca!Free(lpMsgBuf);

/*****"'*********•*•***************************************'*****"'*******************••••••*******
*****************•••**"'**/

I
I

DevFail("GetOverlappedResult(in Writer)"):

else
{
packetBytesWritten = packetBytesWrinen + dwWritten;
dwToWrite = dwToWrite- dwWritten;
bytes Written= 0;

I

I* if(dwWritten != dwToWrite)
{

DevFail ("Error writing data to port (overlapped)");
break;

I *I

186

Plptxbu _ fnc.c

#if defined (DEBUG PLPTX)
sprintf(traceString,"WriterGeneric- dwWritten is: %d", dwWritten);
plptxTraceOutput(traceString);
sprintf(traceString,"WriterGeneric- dwToWrite is: %d", dwToWrite);
plptxTraceOutput(traceString);

#end if
break;

case WAIT_TIMEOUT:

case WAIT_FAILED:

default:
DevFail ("WaitForMultipleObjects (WriterGencric)");
break;

}

}

}
else
i
/*
• writefile failed, but it isn't delayed
*I
DevFail ("WriteFile (in Writer)");

}

else

/*
• writefile returned immediately
•;
sprintf(traceString,"writefile returned immediately in writerGeneric");
plptxTraceOutput(traceString);

packetBytesWritten ~ packetBytesWritten + dwWritten;
dwToWrite ~ dwToWrite- dwWritten;
bytes Written= 0;

if(dwWritten != dwToWrite)
{
DcvFail ("Write timed out. (immediate)lrln");

}

ResetEvent (osWrite.hEvent);
ResetEvent (plpbuContext.txSignal);

retun1;

!* •• * •• * •••••••••• * ••••••• * •• * * •• * •••• *. * ••• * •••• *. * *. *. *. * * *. *. * ••• * * •• * •• *
• Function: plpbuProcessRxData
* Parameter:

rxLen Number of bytes received
• Description:
• Called from the interrupt routine, indicates the number of bytes received.
• If we have received all we are waiting for process the state otherwise just

187

Plptxbu _ fnc.c

* wait until the requisite amount of data has been received. ···;
static void plpbuProcessRxData (lntl6 rxLen)
{
lnt8 packetType;
I nt8 signaiName;
lnt8 signaiAcked;

Signa!Buffer signaiToSend ~ kiNuiiBuffer;
int nameCount;
int keyCount;
lnt8 rxByte; /* received byte */

plpbuContcxt.rxLenReceived +~ rxLen;

if (plpbuContext.rxLenReceived ~~ plpbuContextnLenWaiting)
{
switch (plpbuContext.rxState)
{
case PLPTX_BUS_START:

rxByte ~GET _INT8(0, plpbuContext.rxPtr);
if(rxByte ~~ PRE_AMBLE_BYTE)

I
plpbuContext.startByteCounter++;

!* ifrxByte != PRE_AMBLE_BYTE ignore that bit and go to check the next one*/

if(plpbuContcxt.startByteCounter ~~ 3) /*there shoLLid be 3 preamble bytes ... *I
{
plpbuContext.rxLenWaiting = BDADDR_SIZE;
plpbuContextrxPtr ~ &plpbuContext. rxBuffer[OJ;
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_REMOTE_DEVICE_ID;

amble, change to the next state •;
plpbuContcxt.startByteCounter ~o;

}

else

plpbuContextrxLenWaiting ~ I; I* ready to receive pre-amble b]1e •;
plpbuContcxt.rxPtr ~ &plpbuContext.rxBuffcr[O];
plpbuContext.rxLenReccived ~ 0;
plpbuContext.rxState ~ PLPTX_BUS_START:
plptxContext.busConnected ~FALSE;

break;

case PLPTX_BUS_RX_REMOTE_DEVICE_ID:
GET_ BDADDR(O, plpbuContext.rxPtr, plptxContext.rxDeviceld);

I* having received all of the pre-

if(memcmp(&plptxContext.rxDeviceld, &plptxContext.locaiDeviceld, BDADDR_SIZE) ~ 0) /*signal
received was sent by same device, i.e.invalid */

I
I* want to throw away the received data */
plpbuContext.rxLenWaiting = I: /*ready to receive pre-amble byte •;
plpbuContext.rxPtr ~ &plpbuContext.rxBuffer[O];
plpbuContext.rxLenReceived = 0:

188

P1ptxbu_fnc.c

plpbuContcxt.rxState = PLPTX_BUS_START;
plptxContext.busConnected = FALSE;

#if defined (DEVELOPMENT_ VERSION)

#endif
}

sprintf(traceString,"Received signal with my own ID- ignoring it");
plptxTraceOutput(traceString);

else

plpbuContext.rxLenWaiting = I; I* ready to receive type byte *I
plpbuContext.rxPtr = &plpbuContext.rxBuffer(O];
plpbuContext. rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_PACKET _TYPE;

break;

case PLPTX_BUS_RX_PACKET_TYPE:
packetType =GET _INT8(0,plpbuContext.rxl'tr);

#if defined (DEBUG_PLPTX)
sprintf(traceString."packetType is: %c", packctType);
plptxTraceOutput(traceString);

#end if
switch(packetType)
I
case INFO _TYPE:

#if defined (DEVELOPMENT_ VERSION)
sprintf(traceString,"Info type received");
plptxTraceOutput(traceString);

#end if

plpbuContext.rxLenWaiting = (PLPTX_BUS_OUT_INFO_DATA_SIZE- I);
plpbuContext.rxPtr = &plpbuContext.rxBuffer [0];
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL;

break;

case ACK_TYPE: I* NB signal received could be an ACK or a NACK *I
#if defined (DEVELOPMENT_ VERSION)

#end if

sprintf(traceString,"Acklnack type received");
plptxTraceOutput(trace String):

plpbuContext.rxLenWaiting = (PLPTX_BUS_ACK_TYPE_SIZE- I);
plpbuContext.rxPtr = &plpbuContext.rxBuffer (0]:
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL;

break;

case START_TYPE:
#if defined (DEVELOPMENT_ VERSION)

sprintf(traceString,"start type received");
plptxTraceOutput(traceString);

#endif

plpbuContext.rxLenWaiting = (PLPTX_BUS_START_SEQUENCE_SIZE- I);
plpbuContext.rxPtr = &plpbuContext.rxBuffer [0];

189

P1ptxbu _ fnc.c

plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL;
break;

default:

}

I* invalid signal, so ignore it and return to the START state *I
plpbuContextrxState = PLPTX_BUS_START;

break;

break;

case PLPTX_BUS_RX_SIGNAL:
signa IN a me= GET _INT8 (0, plpbuContext.rxPtr);

#if defined (DEBUG _PLPTX)
sprintf(traceString,"signaiName is : %c". signaiName);
plptxTraceOutput(traceString);

#end if

switch (signaiName)
{
case START SIGNAL:

#if defined (DEVELOPMENT_ VERSION)
sprintf(traceString,"start signal received");
plptxTraceOutput(traceString):

#end if
if (plptxContext.startl Sent= TRUE)

I
I* activate start sequence (part 2 of 2)*1
KiCreateSignal (SIG_PLPTX_ START_ SEQUENCE2 _ REQ,

sizeof (PiptxS tartSequence2 Req).
&signaiToSend);

signaiToSend.sig->plptxStartSequence2Rcq.myTaskid = PLPTX_ TASK _ID;

KiSendSignal (PLPTX_TASK_ID. &signaiToSend):
}
else
I

#if defined (DEVELOPMENT_ VERSION)
sprintf(traceString,"no start2req sent as haven't sent start! yet!"):
plptxTraceOutput(traceString);

#end if

plptxContext.start I Received = TRUE;
plpbuContext.rxState = PLPTX_BUS_START:

break;

case START2_SIGNAL:
#if defined (DEVELOPMENT_ VERSION)

sprintf(traceString,"start2 signal received");
plptxTraceOutput(traceString);

#end if
if(plptxContext.start!Received ==TRUE)
{
plptxStopSta•tSequcnceTimer ();

plptxContext.plptxState =CONNECTED;

190

Plptxbu_fnc.c

I* send plpStartSequenceCnf internally to PLP task*/
KiCreateSignal (SIG_PLPTX_ST ART_SEQUENCE_CNF,

sizeof (PlptxStartSequenceCnf).
&signalToSend);

signalToSend.sig->plptxStartSequenceCnf.myTaskld ~ PLPTX_ T ASK_ID;

KiSendSignal (PLP _ T ASK_!D, &signalToSend);
l
else
I

#if defined (DEVELOPMENT_ VERSION)

#end if

sprintf(traceString,"startSequenceCnfnot sent as start! not received. only start2");
plptxTraceOutput(traceString);

I
plpbuContext rxState ~ PLPTX BUS START;

break;

case PLPTX_BUS_OUT_INFO:
#if defined (DEVELOPMENT_ VERSION)

#end if

sprintf(traceString, "PLPTX _BUS_ OUT _IN FO signalName received");
plptxTraceOutput(traceString);

KiCreateSignal (SIG_PLPTX_IN_INFO_IND,
sizeof (Piptxlnlnfolnd).
&signaJToSend);

signalToSend.sig->plptxlnlnfolnd.myTaskld ~ PLPTX_ T ASK_ID;
signalToSend.sig->plptxlnlnfolnd.plpStatus ~ PLP _COMMAND_ OK;

GET_BDADDR ((SIZE_TO_BDADDR- PLPTX_BUS_HEADER_SIZE- SIGNAL_TYPE_SIZE),
plpbuContext.rxPtr, signa!ToSend.sig->plptxlnlnfolnd.plpBtBdAddr);

signaiToSend.sig->plptx.lnlnfolnd.plpFriendlyName.nameLen ~GET _INT8 ((SIZE_TO_NAME _LEN­
PLPTX_BUS_HEADER_SIZE- SIGNAL_TYPE_SIZE), plpbuContext.rxPtr);

for (nameCount ~ 0; nameCount<248; nameCount++)
I
signalToSend.sig->plptxlnlnfolnd.plpFriendlyName.name[nameCount] ~GET _INT8 ((SIZE_TO _NAME -

PLPTX_BUS_HEADER_SIZE- SIGNAL_TYPE_SIZE + nameCount), plpbuContext.rxPtr);
l

for (keyCount ~ 0; keyCount< 16; keyCount++)
I
signalToSend.sig->plptxlnlnfolnd.plpLinkKey[keyCount] ~GET _INT8 ((SIZE_ TO _LINK_ KEY -

PLPTX_BUS_HEADER_SIZE- SIGNAL_ TYPE_SIZE+ keyCount), plpbuContextrxPtr);
I

KiSendSignal (PLP _TASK _ID,&signalToSend);
plpbuContext.rxState ~ PLPTX_BUS_START;

break;

case PLPTX BUS_ACK:

191

Plptxbu_fnc.c

#if defined (DEVELOPMENT_ VERSION)
sprintf(traceString,"PLPTX_BUS_ACK signalName received");
plptx TraceOutput(trace String);

#end if
signa lAcked~ GET _JNT8 (I. plpbuContext.rxPtr);

switch (signa lAcked)
{

case PLPTX BUS OUT INFO:
#if defined (DEVELOPMENT_ VERSION)

#endif

sprintf(traceString, "PLPTX_BUS_ OUT _INFO Ack received");
plptxTraceOutput(traceString);

KiCreateSignal (SJG_?LPTX_OUT _INFO_CNF.
sizeof(PlptxOutlnfoCnf),
&signaiToSend);

signaJToSend.sig -> plptxOutlnfoCnf.myTaskld ~ PLPTX_TASK_!D;
signa!ToSend.sig -> plptxOutlnfoCnf.plpStatus ~ PLP _COMMAND_ OK;

KiSendSignal (PLP _ T ASK_ID, &signalToSend);
plpbuContext.rxState ~ PLPTX_BUS_START;
break;

case PLPTX_FINISH_REQ_ACK:
#if defined (DEVELOPMENT_ VERSION)

#end if

I

sprintf(traceString, "PLPTX _FINISH_ REQ_ ACK signaJName received");
plptxTraceOutput(traceString);

KiCreateSignal (SIG_PLPTX_IN_FINISH_IND.
sizeof (PlptxlnFinishlnd),
&signalToSend);

signaiToSend.sig -> plptxlnFinishlnd.myTaskld ~ PLPTX_TASK_ID;

KiSendSignal (PLP _TASK_ID, &signalToSend):
plpbuContext.rxState = PLPTX_BUS_START;
break;

default:
I* invalid signal. so ignore it and retum to the START state */
plpbuContext.rxState ~ PLPTX_BUS_START;
break;

break;

default:
I* invalid signal, so ignore it and retum to the START state */
plpbuContext.rxState = PLPTX_BUS_START;
break;

plpbuContext.rxLenWaiting ~I; I* size of type Byte *I
plpbuContextrxPtr ~ &plpbuContext.rxBuffer [0];
plpbuContext.rxLenReceived ~ 0;

break;

default:
DevFail ("unrecognised state");

192

Plptxbu_fuc.c

break;
}

else

/*Not read all we need yet, advance pointer to get the next bit*/
plpbuContext.rxPtr +~ rxLen;

I**
• Function: plpbuReceivePacket
•
* Description:
• Thread for receiving data will continue to process.

* •• ** ******** ** **** *. ** ** •••• ** ••• **** **** *** ** * *** ** *********** ** *** ****/
DWORD WINAPI plpbuReceivePacket (LPVOID ptr)

lnt32 receivedLen ~ 0;
Boo lean result ~ 0;

PARAMETER _NOT_ USED (ptr);

if(plpbuContext.rxActivc ~TRUE)
(
/*Read forever until a read error occurs*/
while (result~ 0)
{
result~ ReadGeneric (plpbuContext.rxPtr, /*Buffer for data *I

(plpbuContext.rxLenWaiting- plpbuContext.rxLenReceived), /*Number of bytes to read*/
&receivedl..en /*Number of bytes read*/);

#if defined (DEBUG _PLPTX)
sprintf(traceString,"receivedLen is : %d". receivedl..en);
plptxTraceOutput(traceString);

#end if

}

)

Dev Assert (result = 0);

if (result= 0)
{
p lpbuProcess Rx.Data((I nt 16) recei vedLen);

}

else
(
#if defined (DEVELOPMENT_ VERSION)

sprintf(traceString,"Read deactivated");
plptxTraceOutput(traceString);

#end if
}
retum I;

193

Plptxbu_fuc.c

/*************************•*•************************************"'*****
• Function: Read Generic
• Parameters: lpBuf Buffer to read data into
• dwToRead Number of bytes to read

readBytes Number of bytes actually read

* Description:
*Reads from COMM port, if read does not complete inm1ediately it will
• wait for completion and then return.

* *** •• ** * ** ** ************ ******** * ******** *** ** *** **** * * ******* • *****I

I* buffer for data*/ /*#bytes read*/
I* plpbuContext.rxPtr*/ /*#bytes to read *I!* &receivedLen*/

WtErr WINAPI ReadGeneric(Int8* lpBuf, Intl6 dwToRead, lnt32 *readBytes)
(

OVERLAPPED osReader ~ (01; I* overlapped structure for read operations*/
HANDLE hArray(l];

DWORD
DWORD
BOOL
WtErr

dwRead; /* bytes actually read *I

I*

dwRes; /* result from WaitForSingleObject •;
fWaitingOnRead ~FALSE;/* just added ... setting this to FALSE*/

retVal;

• create overlapped structure for read events
*I

osReader.hEvent ~ plpbuContext.rdEvent;
hArray[O] ~ osReader.hEvent;

I*
• Read from the COM port
*I

I* if(!ReadFile (plpbuContext.ioHandle.lpBuf, 3, &dwRead, &osReader)) */
if (!ReadFilc(plpbuContext. ioHandle, lpBuf, dwToRead, &dwRead, &os Reader))
{

if(GetLastError() !~ ERROR_lO_PENDING) /*read not delayed?*/
{

LPVOID lpMsgBuf;
I* displays windows error *I

f orrna tM essage(
FORMAT _MESSAGE_ALLOCATE_BUFFER I FORMAT _MESSAGE_FROM_SYSTEM,

NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL. SUI3LANG_DEFAULT), //Default

language
(LPTSTR) &lpMsgBuf,

0,
NULL

);

I/ Display the string.
MessageBox(NULL, lpMsgBuf. "GetLastError",

MB_OKIMB_ICONINFORMATIONIMB_SYSTEMMODAL);

I/ Free the buffer.

194

P1ptxbu_fnc.c

Local Free(lpMsgBuf);

DevFai1 ("ReadFile in ReaderAndStatusProc");
fWaitingOnRead =FALSE;
/*retVal = WT_RS232_ERROR; *I

I
else
{
fWaitingOnRead =TRUE;

else

I

/*Read returned immediately with some data •;
*readBytes = dwRead;
fWaitingOnRead =FALSE;
retVal = WT_OK;

;•
• wait for pending operations to complete
•;
if(fWaitingOnRead)

I
dwRes = WaitForSingleObject(hArray [0], INFINITE);
switch(dwRes)
I
;•
• read completed
*I

case WAIT_ OBJECT_ 0:
if (!GetOverlappcdResult(plpbuContext.ioHandle, &osReader, &dwRead, FALSE))
I
if (GetLastError() = ERROR_ OPERATION _ABORTED)
{
DevFaii("Read abortedlrln"):

I
else
{
DevFaii("GetOverlappedResult (in Reader)");

/*Wait for event has failed*/
relY a!= WT _RS232_ERROR;

I
else
\

if(dwRead = 0)
{

I

I* Timed out before reading any data •;
retVal = WT _RECEIVE_ TIMEOUT;

else

/*Read has completed, return numberofbytes read*/
*readBytes = dwRead;
retVal = WT _OK;

I

195

P1ptxbu_fnc.c

break;

case WAIT_TJMEOUT:
default:

DevFail("WaitForMultipleObjects(Reader & Status handles)");
re!Val = WT_RS232_ERROR;

I
I

break;

ResetEvent (osReader.hEvent);

return retVal:

!**********************************•**
* plpbuTakeTxDataFromQueue

* Removes packet from the Queue to send.
•
**/
static Boo lean plpbuTakeTxDataFromQueue (Signa!Buffer *signaiBuffer)
I
Boo lean relY a!= FALSE;

I* lock the queues •;
plpbuLockQueues ():

I• Get Data from the queues */
if(KiOnQueue (&plpbuContext.cmdQueue) =TRUE)
\

I

KiDequeue(&plpbuContext.cmdQueue, signaiBuffer):
retVal = TRUE;

I* finished with the Queues */
plpbuU nlockQueues ();

return retVal;

/************"'"'*********************••••••**
• plpbuP!acetxDataOnQueue .
• places data to be sent on the queue .
···················•**"'*********/
static void plpbuPiaceTxDataOnQueue (Signa !Buffer *signa !Buffer)
\
I* lock queues */
plpbuLockQueues ();

I* put data on queue •;

196

}

Plptxbu_fnc.c

KiEnqueue (&plpbuContcxt.cmdQueue. signaiBuffer);

I* finished with queues- unlock */
plpbuUnlockQueues ();

;••···•••;

197

Plptxbu_fnc.h

/***
* * $Work file: plptxbu _fnc.h $
• $Revision:

$Date:
*** .. ******** •••• ** •••••• **. *** •••••••••

* Designed by : PKR
• Coded by
• Tested by : PKR

..
* File Description
* ----------------
* Pairing Link Protocol - Main function prototypes /

#if !defined (PLPTXBU_FNC_H)
#define PLPTXBU_FNC_H

#if defined (PLPTX_TRACE_OUTPUT)
void plptxTraceOutput (char*);

#end if

#end if

198

Plptx_typ .. h

/*********•••···
• $Workfile: plptx_typ.h
* $Revision:

$Date:

* ** ** * ***** * ** **** ** ** *** * * *** ** * ** * ******* * ** *** * ** **. *** ** ****** *** *** •••

• File Description

*** * ** ***** * *** ******* ** ** * •• ***** •••••••••••••••• * ******** •••••••• ** ****!

#if !defined (PLPTX _ TYP _H)
#define PLPTX _ TYP _H

!**
• Nested Include Files

**************"'***********************"'**********************••·············;
#if !defined (KERNEL_H)
include "kernel.h"
#end if

#if !defined (BT_TYP_H)
include "bt_typ.h"
#endif

#if !defined (TM_TYP _H)
include "trn_typ.h"
#end if

/***"'******•·························
• Manifest Constants

********** "'*********I
#define PLPTX_START_SEQUENCE_TIMER_ VALUE 500 /*was 500 *I

/********************************•••••••••••*********************************
• Types used in Prototypes and Globals
************* ** *****I

typcdef struct PlptxBufferTag

I
lnt8 txData[512];

I PlptxBuffer;

#endif /*of 'defined (HU _ TYP _H)*/

/* END OF FILE*/

199

Plptxbu_typ.h

!*****************•***
•
• $Workfile: plptxbu_typ.h $
* $Revision:

$Date:

••• ** * ***** ** ********* * ** **** * *** ******** * ** •• **** ** ** ******* ** ** ** ** * ** ** *

• File Description
* ----------------
• Globaly useful bus task functions/variables.

···!
#if 'defined (PLPTXBU_TYP _H)
#define PLPTXBU _ TYP _ H

!***'*********
• Types used in Prototypes and Globals
****************0********************"'*****•************************"'*******/

#define PC_COM_PORT "COM2"
#define INPUT _BUFFER_ LEN 1024
#define OUTPUT_BUFFER_LEN 1024
#define PC_ BUS _BAUD_ RATE 9600 /*was 9600 *I

#define SIGNAL_TYPE_SIZE I
#define SIGNAL_NAME_SIZE 1
#define BDADDR_SIZE 6

#define NAME_LEN_SIZE I
#define NAME_SIZE 248
#define PLPTX_BUS_HEADER_SIZE (3 + BDADDR_SIZE)

#define SIZE_ TO_SJGNAL_NAME (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE) /*I */
#define SIZE TO BDADDR (PLPTX BUS HEADER SIZE+ SIGNAL TYPE SIZE +
SIGNAL_NA-ME=SIZE) /* 2 */ - - - - -

#define SIZE_TO_NAME_LEN (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE +
SIGNAL NAME SIZE+ BDADDR SIZE) /* 8 */
#define SIZE_TO=NAME (PLPTX_BUS_HEADER_SIZE +SiGNAL_ TYPE_SIZE + SIGNAL_NAME_SIZE +
BDADDR_SIZE + NAME_LEN_SIZE) /* 9 *I
#define SIZE_TO_LINK_KEY (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE +
SIGNAL_NAME_SIZE + BDADDR_SIZE + NAME_LEN_SIZE + NAME_SIZE) /*257*/

#define SIZE_ TO_ TYPE PLPTX_BUS_HEADER_SIZE
#define SIZE_TO_SIG_NAME (I+ PLPTX_BUS_HEADER_SlZE)
#define SIZE_TO_SIGNAL_BEJNG_ACKED (2 + PLPTX_BUS_HEADER_SIZE)

//define SIZE_TO_SIGNAL (2 + PLPTX_BUS_HEADER_SIZE)

#define INFO TYPE 90
#define ACK_:-TYPE 100
#define START TYPE 65 /*"A" *I
#define PRE_AMBLE_BYTE 37 /*"%"*I

#define PLPTX_BUS_OUT _INFO 200
#define PLPTX_BUS_ACK 210
#define PLPTX_FINISH_REQ_ACK 220

200

Plptxbu_typ.h

#define START _SIGNAL_NAME 65 I* "A" *I
#define START2 SIGNAL_NAME 661* "B" *I

#define START _SIGNAL 65 I* "A" *I
#define START2 SIGNAL 661* "B" *I

#define PI..PTX BUS ACK TYPE_SIZE 3

#define PLPTX_BUS_OUT_INFO_DATA_SIZE 273
#define PLPTX_BUS_START_SEQUENCE_SIZE 3

#end if

I* END OF FILE *I

201

Plptx_sig.h

/***************************"'********"'********"'*****************************

• $Workfile: plptx_sig.h $
* $Revision:

$Date:

"'******

* Designed by : PKR
• Detailed Design:
* Coded by : PKR
• Tested by

••••••••• ** **** ** *** ** * "'** ** ***** ****** * ** * ** *** ** ** ** * **** * ** **** * * * **** **

• File Description
* ----------------
• PI..PTX signal definitions
•
*** ** ** * ***** * ***** * ** "'* ** **** ** ********* ** ** ** ** * ** ** *** ** ** ****** * ****/

1/if !defined (PI..PTX_SIG_H)
#define Pl..PTX_SIG_H
#endif

#if !defined (SYSTEM_H)
include "systcm.h"
#end if

#if 'defined (HCl_TYP _H)
#include "hci_typ.h"
#end if

#if !defined (PLP _TYP _H)
#include "plp_typ.h"
#end if

#if !defined (PI..PTX_TYP _H)
#include "plptx _ typ.h"
#end if

/***********************************"'**********************•****************
• Type Definitions
... "'****************/

typedef stmct PlptxTestTag {
lnt8 timeout;

I PlptxTest;

typedef struct PlptxlnlnfolndTag {
Taskld myTaskld;
PlpStatus plpStatus;
BtBdAddr plpBtBdAddr;
PlpFriendlyName plpFriendlyName;
lnt8 plpi..inkKey [BT _ENCRYPTION_KEY _SIZE];

}Plptxlnlnfolnd;

typcdef struct PlptxlnlnfoRspTag {
Taskld myTaskld;

202

Plptx_sig.h

PlpStatus plpStatus;
} Plptxlnl nfoRsp;

typedcf struct PlptxOutlnfoReqTag (
Taskld myTaskld;
PlpStatus plpStatus;
BtBdAddr plpBtBdAddr;
PlpFriendlyName plpFriendlyNarne;
Int8 plpLinkKey [BT_ENCRYPTION_KEY _SIZE];

} PlptxOutlnfoRcq;

typedefstruct PlptxOutlnfoCnfrag (
Taskld myTaskld;
PlpStatus plpStatus;

} PlptxOutlnfoCnf;

typedef struct PlptxBus WriteDataReqTag
{
Int 16 txDataSize;
PlptxBuffer txData;

} PlptxBusWriteDataReq;

typedef struct PlptxBusAckReqTag
{
Taskld myTaskld;
lnt8 type;
Int8 signa!Name;
lnt8 signa!BeingAcked;

I PlptxBusAckReq;

typedef struct PlptxOutFinishReqTag
{

Taskld myTaskld;
I PlptxOutFinishReq;

typedef struct PlptxJnFinishlndTag
{
Taskld myTaskld;

} PlptxlnFinishlnd:

typedef struct PlptxStartSequenceReq
{
Taskld myTaskld;
BtBdAddr localBtBdAddr;

I PlptxStartSequenceReq;

typedef struct PlptxStartSequence2Req
{
Taskld myTaskld;
BtBdAddr localBtBdAddr;

I PlptxStartSequence2Req;

typedef struct PlptxStartSequenceCnf

Taskld myTaskld;
} PlptxStartSequenceCnf;

t• END OF FILE •;

203

Plptxsigbas.h

/**•********

• $Workfile: plptxsigbas.h $
* $Revision:

$Date:

*** ** * ••• ******** **** ** * **** ******** **** * * ** ** ** * ** ** * *** ** ********* *

• r-ile Description
* ----------------
• Signal bases used by PAIRING LINK PROTOCOL Transport Task .
••••••***

* Revision Details

• $Log:

***************"'***/
PLPTX_SIGNAL_BASE ~ LAST_PLP_SIGBASE + OxOJOO.
I..AST_PLPTX_SIGBASE ~ PLPTX_SIGNAL_BASE,

204

Plptxsig.h

!************************"'"'***

• $Workfile: plptxsig.h $
* $Revision:

$Date:

• File Description . ----------------
* PAIRING LINK PROTOCOL Signals used in Genie

***/

SIG_DEF(SIG_PLPTX_DUMMY ~ PLPTX_SIGNAL_BASE, EmptySignal
)

plptxTest

plptxDummy

SIG_DEF(SIG_PLPTX_TEST,
SIG_DEF(SIG_pLPTX_IN_INFO_IND,
SIG_DEF(SIG_pLPTX_IN_INFO_RSP,
SIG_ DEF(SIG_PLPTX _OUT _INFO _REQ,

PlptxTest
Plptxlnlnfolnd
PlptxlnlnfoRsp

PlptxOutlnfoReq

plptxlnlnfolnd
plptxlnlnfoRsp

plptxOutlnfoReq
)

SIG _ DEF(SIG_PLPTX _OUT _JNFO _CNF.
)

SIG_DEF(SJG_PLPTX_BUS_ WRITE_DATA_REQ,
plptxBusWriteDataReq)

SIG_DEF(S!G_pLPTX_BUS_ACK_REQ,
)

SIG _DEF(SIG_pLPTX _OUT _FINISH_REQ,
)

SIG_ DEF(SIG _PLPTX _IN _FINISH _IND,
SIG_DEF(SIG_PLPTX_START_SEQUENCE_REQ,

plptxStartSequenceReq)
SJG_DEF(SIG_PLPTX_START_SEQUENCE2_REQ,

plptxStartSequence2Req)
SIG_DEF(SIG_PLPTX_START_SEQUENCE_CNF,

plptxStartSequenceCnf)

PlptxOutlnfoCnf plptxOutlnfoCnf

PlptxBusWriteDataReq

PlptxBusAckReq plptxBusAckReq

PlptxOutFinishReq plptxOutFinishReq

PlptxlnFinishlnd plptxlnFinishlnd
PlptxStartSequenceReq

PlptxStartSequence2Req

PlptxStartSequenccCnf

205

)
)

Plptxsigun.h

/********************************"'**

• $Workfile: plptxsigun.h $
• $Revision:

$Date:

"'"'*********

• File Description
* ----------------
• Signal bases used by PAIRING LINK PROTOCOL Transport Task .

#if !defined (DMSH_SIG_H)
#include "dmsh_sig.h"
#end if

llif !defined (DMIQ_SIG H)
#include "dmiq__sig.h" -
#end if

llif !defined (DMSC_SIG_l-1)
#include "dmsc_sig.h"
#endif

#if !defined (DMCN_SIG_H)
#include "dmcn_sig.h''
llendif

#if !defined (DMSO_SIG_H)
#include "dmso_sig.h"
#end if

#if !defined (DML2 SIG H)
#include "dml2_sig.h" -
#end if

#if !defined (DMSP _SIG_H)
#include "dmsp_sig.h"
fiend if

#if !defined (DMIN SIG H)
#include "dmin_sig.h" -
#end if

#if !defined (DMSD SIG H)
#include "dmsd_sig.h" -
#end if

#if !defined (L2IF _SIG_H)
#include "12if_sig.h"
#endif

#if defined (DM _TRACE_ OUTPUT)
#include "emmi_sig.h11

#end if

#define SIGNAL TVSIGNAL

206

#if !defined (SIG_DEF _H)
#include "sig_def.h"
#end if

#if !defined (KERNEL_ H)
#include "kemel.h"
#endif

#if !defined (PLPTX_SIG_H)
#include "plptx_sig.h"
#end if

union Signal

#if defined (PLPTX _SIGNALS)
#include "plptxsig.h"

#endif

#if defined (DM_ SIGNALS)
#include "dmsig.h"

#end if

#if defined (PLPTX TRACE OUTPUT)
TestFileOut te;[FileOut;-

#endif

KilnitialiseTask initialise;
KilnitialiseTask kilnitialiseTask;
KiTimerExpiry kiTimerExpiry;

I;

0

Plptxsigun.h

207

