W Durham
University

AR

Durham E-Theses

Improving usability in pan gateways by means of a
novel Bluetooth pairing method

Regan, Philippa

How to cite:

Regan, Philippa (2002) Improving usability in pan gateways by means of a novel Bluetooth pairing
method, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3750/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3750/
 http://etheses.dur.ac.uk/3750/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

IMPROVING USABILITY IN PAN GATEWAYS
BY MEANS OF A NOVEL BLUETOOTH
PAIRING METHOD

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Philippa Kate Regan

L L 7003

This thesis is submitted in candidature for the degree of Master of Science in the
School of Engineering, University of Durham, 21 November 2002.

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

Declaration

The material contained within this thesis is the sole work of the author and has not

been submitted previously in this or any other University.

Statement of Copyright

“The copyright of this thesis rests with the author. No quotation from it should be
published without their prior written consent and information derived from it should be

acknowledged.”

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

ACKNOWLEDGEMENTS

The author wishes to thank TTPCommunications, Cambridge for their support
throughout this project.

The author wishes to thank the following people for their help and patience: -

From the School of Engineering, Durham University: -
Peter Baxendale, lan Hutchison, Dr. Simon Johnson, Richard McWilliam, William

Pugsley and Craig Robinson.

From TTPCommunications, Cambridge: -
Gordon Aspin, Andy Fogg, Jerome Guibal, Dr. John Haine, Dr. David Kyle, Matthew

Waterson, Neil Werdmuller.

Additionally, the author wishes to thank Joanna Donkin, Keith Herrman, Jennifer Regan

and Michael Regan for their continuing support.

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

3.4 COEXISTENCE IN THE 2.4 GHZ SPECTRUM.....ecoitvirieririirenienesieinieresesesssessesesneeeee s 30
3.4.1 Solutions to the ISM Band Co-existence Dilemma..................c.cccecceinnc.. 33
3.5 EVALUATION OF WIRELESS TECHNOLOGIES FOR THE PAN GATEWAYcccccceunnen. 34
3.6 USABILITY OF BLUETOOTH IN MOBILE ‘PHONESc.ooeiiiiiricieiice e 34
3.7 FUTURE OF BLUETOOTHcootitiieieieiesietesierestesestesesresse e essscsaessseese st ssasse e anensesssesnennene 35
3.8 CHAPTER SUMMARYcooiuiiiitieieteeitesieteeatesteaesseeesessesesssseseesetessesesastesessasassessssesansens 37
CHAPTER4 REQUIREMENTS OF THE PAN GATEWAYcccccnvenennceccnsoncesaronsanas 38
4.1 AIMS et ae e a bt h ettt s e ae e e b s it eten 38
4.2 CONCEPTS....civieieiiiteteiee ettt ettt eb s et s s st es s s ebese e ss b e s esaseebesesesnssesesesersasancn 39
4.2.1 Possible MMI’s for the PAN Gateway..............cc.ccccooveveiiiveieieiieecieaieens 40
4211 Minimal User INterface ...t 40
4.2.1.2 Basic User INterface........cccocoovvvirroireicrccree s 41
4.21.3 Advanced User Interface...........coooiveiiiiicoeci e, 41
4.2.2 OtREIr MOQUIES ...ttt b et anea e 42
4.3 EVALUATION ..ottt ettt ea ettt sttt eaa sttt b bt e bt es e e b st et e b st aanasesenneen 42
4.3.1 Minimal USEr INTEITACE................ccocoveeeeeiieiiiceie et 42
4.3.2 BasSiC USErINtEITACEcc.cooooeeeeeeeeeeeeeee e 43
4.3.3 Advanced USerinterface..............c.cccoooveecioicoiicecccieeeeeieeeeeee e 43
4.4 SELECTION OF OPTIMAL MAN MACHINE INTERFACEc.c.covevieiniiiirirereeseeeeveneeenns 43
4.5 REQUIREMENTS - USABILITY AND THE MAN MACHINE INTERFACEcccceveviervenne 44
4.6 A NEW CONCEPT FOR AN INTUITIVE BLUETOOTH PAIRING METHODccccvnveee.. 45
4.7 PMG — PERSONAL MOBILE GATEWAY DEVICEccceoiimiiiciiriiniei e 46
4.8 CHAPTER SUMMARYociiiiriiirieiiterieteseesetereseesessesesiessasaresseaseseseesensssessasensaseseasansenes 47
CHAPTER 5 THE “TOUCH AND FIND” SYSTEM.........ccocvcerernnens 48
5.1 OVERVIEW OF THE “TOUCH AND FIND” SYSTEMccoviiiieiieiieienieeeiesierecenreneereenenne 48
5.1.1 DevelopmENTt PIAIcccccoovecieieieiee ettt s 48
5.1.2 Requirements of “Touch and Find”cccoveeieeieicceieei e 49
5.1.3 SYSIEM CONCEPLS......ooooeioeeeieeeee ettt 49
5.2 IMAIN PLP TASK ...ttt ettt sees st ass b eses s tassssstesssasassssesesnsnsssssses 50
5.3 MAIN PLP TASK REQUIREMENTSc.oiiiieieuiiriererinseieseresesresessesesesesassssesessasssesssesssenes 50
5.4 BLUETOOTH INTERFACEccoviirteiiiirieiesiseeresesnesesassasesesesessssessscssssesesassssesesessesesessnes 51
5.5 PAIRING LINK PROTOCOL CONCEPTS.....coooveviuiietereieairieteiesteiese e stsaasecsseseaeseesesannnas 54
5.5.1 Half DUPIEX DESIGN ..ottt 54
5.5.2 Full DUPIEX DESIGN..........c.ocoovviiiiiiiiiiiiiiiit et 56
5.5.3 Conclusion of Pairing Link Protocol CONCeptscc.cccovevviicvecieinncrnnnnnn 58
5.6 DESIGN OF THE MAIN PLP TASK ...oouiiiiieie ettt 58

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

5.6.1 Main PLP TaSk INterfacesc..ccccoooevieveiiiieieeieeceeee e 61
5.6.2 SHAIES........c.ooeeeeeeveeeeeeeee e e 61
5.6.3 Important Decisions in the design of the Main PLP Task........................... 64
5.7 IMPLEMENTATION AND TESTING OF THE MAIN PLP TASK........ccoivieiiicieice e 66
S5.7. 7 1SOIALION TESL ...t 66
5.7.2 TESETASK TESL........ooooeeeeeeeeoee ettt 67
5.8 CHAPTER SUMMARYooviiiiiiiiuirinienrenesiaseaesinrsesestasssesesastesensasssasasasssasasassssssasessasesesons 69
CHAPTER 6 THE PLP TRANSPORT TASKcoccvnmrnnecnssmsismsasossssssssssssessssossssssene 70
6.1 PLP TRANSPORT TASK REQUIREMENTScciiuriirieieiereeieireseseressiesaesessesessssessasnines 71
8.2 PLPTX TASK DESIGN.....c.civiiiiiiirinieistriseeiestnae e sisaeesiesbeseesessesesassesaesenssesessessesssnns 71
6.3 SERIAL INTERFACEc.coiiiiiiiieietiiiete ettt sttt e stes et ses s rese st e assesesesesareas 72
6.3.1 Creating EVENIS.............ccooooviieeioeeeeeeeeeeeeeeeee e 73
6.3.2 Opening the Port and Setting it Up..............ccccoovecveeicieciieieeeceeeee 73
6.3.3 Creating TRr@AUS...........ccccocveerieiiei ettt ebass e 74
6.3.4 TX Thread FUNCHONcccccooceieieieei e 75
6.3.5 RX TRread FUNCHONcc.cccoovieiiiiieiieieet ettt 75
6.4 PLP TRANSPORT TASK — WRITING A SIGNAL TO THE SERIAL PORT......cccoiviievinunne. 77
6.5 PLP TRANSPORT TASK — SIGNAL FORMATccccooviiiiiiiiiieieeiieciesreenaerese e 79
6.6 PLPTX CODE — READING A SIGNAL FROM THE SERIAL PORTcccovviririnerisiriennas 80

6.7 IMPORTANT DECISIONS IN THE DESIGN OF THE PLP TRANSPORT (PLPTX) TASK. 83

6.8 IMPLEMENTATION AND TESTINGceeiriruiieriieirseeririereraeressessesissesesnsseseesessssesssassesesens 84
6.8.1 Addition of AUtOSIart fEatUre................c.ccccccoouiiieiiiiiiieieeeceee s 87
6.8.2 DiSCONNECHION TESL.........c.cocooieiiieeeeeeee et 90

6.9 CHAPTER SUMMARYcoiiiitiiitiiitetieteeteteeie e sts e seae e ete e s etese e e s sesseae et aseseseanes 91

CHAPTER7 HARDWARE . 92

7.1 SIMPLE ELECTRICAL CONTACT SOLUTIONocvuiiriririerieieniieieenereeieneresnssesesasessanas 92
711 SCAMUE THIGQET ... 95
7.1.2 Detecting the Connected State............c..cccoovcvvevieeniecieeieeie e 97
7.1.3 PRYSICAl CONACLEScoeviviiiiiieeiieeeee ettt 100
7.1.4 Testing the Simple Electrical Contact Solutionc..ccccooveinl. 100

7.2 INFRARED SOLUTION ...cuiiiitiieiiiinie ittt stet e cetese et se s e s et asassessesessenensesensasassas 101

7.3 INDUCTIVE LOOP SOLUTION ...otciiierieieiteieierteeeeneeresteneesseniessestensesasssesesseseesseseessesens 104

7.4 FOUR COIL SOLUTION. ...cueittetetieteiaiesieetetetesteeasestesseseessestessessessesssssesessestessesessserens 106
7.4.1 Calculating the Resonant Frequency of the Circuit..................cccecooeeu.. 107
7.4.2 Testing the “Four Coil” Inductive Solution..................ccccccceeveciienveieninciannnn.. 111

7.5 CHAPTER SUMMARYcoioiiiiiieitatietessesesietessesessesassesessassssessesassassssesessassesensasensssess 111

Improving Usability in PAN Gateways by Means of a Novel Biuetooth Pairing Method Philippa Regan

CHAPTER 8 CONCLUSIONS AND SUMMARIES . 112
B BV ALUATION oo e e e e e e et er e et e e s e e s eteeeeneseaaenanaesernean 112
8.1.7 SOftWare and HAIAWAIEoeeeeeeeeeeeeeeeeeeee e e et e e 112
8.1.2 Hybrid Circuit AN@IYSIS...........cocoveuiiiiiiiiiiiiiie ettt 114
8.1.3 Other Hardware SOIULIONScccooeeeceeceeeceeeeeeeeeeee et eees e 117
814 SYSIOMI.....oooeeeeeeee et 117

8.2 SUMMARY ..ottt ee e e e e et e et r et e et e a e e et et e e e e aneas 118
8.3 CONCLUSION ..ottt e e et e et e e e e et e s ateesaneennee 119
8.4 ENHANCEMENTS TO THE “TOUCH AND FIND” SYSTEMoovoeteeeeeeeeeeee e 120
8.5 CONCLUDING STATEMENT ...ttt eeeteee e e eeee e e e e e e e et e e e e e e e ereeresrene e s e e s arraeseaes 122
REFERENGCES.......oo o eeccieeetreneressssossasccssssosossesosasesssssosssssssssssssssesesssrossssosssssssassessssesssssssnssss 123
APPENDIX 1........ 125
APPENDIX 2 ereeeeeeeecneicntesestrosssesssssosssssossasssssasesssssossassssonssssstsossssossssessnsssssssosssssossasesse 126

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method Philippa Regan

Figure 6-7 Flowchart of Receiving and Processing Signalsc.occoeeiiiinnnenne 82
Figure 6-8 Nassi-Schneiderman diagrams of plpbuProcessRxData............................ 83
Figure 6-9 Read/Process Test Signal..........cooooiiiiiiiii e 85
Figure 6-10 PLPTX TeSt SEIUDuurieiiiiiiie et 85
Figure 6-11 PLPTX Task txState Diagram.........ccccccovviiiiiiiiiic e 87
Figure 6-12 Pairing Link Protocol Signal FIOW 2. 88
Figure 6-13 Pairing Link Protocol Start Sequence Signal Flowc..cccoovviiiinne 89
Figure 7-1 “Hybrid Circuit” Diagramc.ooriiiiiiiiiie e 93
Figure 7-2 Schmitt Circuit Diagram and Transfer Characteristicc....ccccccees 95
Figure 7-3 Block Diagram of Hardware ...t 95
Figure 7-4 Full Simple Electrical Contact Solution.cccciiiin 96
Figure 7-5 Generic Signal StruCtUre.ccoiiiiiiiiiei e 98
Figure 7-6 RxState Diagram 2..............ooiiiiiiiii et 98
Figure 7-7 Final Signal FIow Diagram.........ccooouueiiiiiiiiiiiiiiieee e 99
Figure 7-8 Concept Diagram of Simple Electrical Contacts..............ccoccoeviiinnnn, 100
Figure 7-9 Basic Infrared SOIUtION ..ot 102
Figure 7-10 PLPTX Interface for Infrared solutionsccccoeeeniiiiiiiiiiiiii, 103
Figure 7-11 Circuit Diagram of IrDA Solution ... 104
Figure 7-12 Circuit Diagram of Test CirCuUIt..............oovieiiiiiiiii e 105
Figure 7-13 Physical Interface For Inductive Solution..............cccocccniiiiiiininnens 106
Figure 7-14 Inductor coil AlIgNment ..o 106
Figure 7-15 Key to EQUAtioN 1 ..o 107
Figure 7-16 Resonant Frequency Test CirCuitooooiiiiiiiiieieiiiiiieeee e 108
Figure 7-17 Inductive Solution Development Circuit Diagramcccccccovvviiiinnnnnnn. 109
Figure 7-18 Fall-off of Voltage in Receive Circuit............ccoocooiiiiii, 110
Figure 7-19 Circuit Diagram of Inductive Solution ..., 110
Figure 8-1 “Hybrid” Circuit for ANalYSiSccooiiiiiciiiei e 114

Vi

Improving Usability in PAN Gateways by Means of a Novel Bluetooth Pairing Method

Philippa Regan

GLOSSARY

AFH Adaptive Frequency Hopping

ATOMIK Alphabetically Tuned & Optimised Character Layout
BWIG Bluetooth Wireless Internet Gateway
DSSS Direct Sequence Spread Spectrum

FCC Federal Communications Commission
FHSS Frequency Hopping Spread Spectrum
FOCC Fluctuating Optimal Character Layout
GPRS General Packet Radio Service

Graffiti Input method for palm pilots using a stylus
GSM Global System for Mobile Communication
HCI Human Computer Interaction

IrDA infrared Data Association

ISM Industrial Scientific Medical

LoS Line of Sight

Mbps Mega bits per second

MMS Multi-media Messaging Service

PAN Personal Area Network

PDA Personai Digital Assistant

RF Radio Frequency

SHORE Student HCI Online Research Experiments
SMS Short Message Service

T9 Tegic 9 — predictive text system.

TCP/IP Transfer Control Protocol/Internet Protocol
Wpm Words per Minute

vii

Introduction Philippa Regan

contact solution which uses the “hybrid” transceiver and describes the modifications
required to the software in order to detect the connected state. The designs for two
infrared solutions are described and evaluated. Finally, the design of the “four coil”

Inductive coupling solution is described.

Chapter 8 contains the evaluation, conclusion and summary for the work and the
thesis. The software, hardware and the complete system are evaluated. The content
of the thesis and conclusions drawn from the chapters are summarised and then
overall conclusions given. Finally possible enhancements and further work for the

“Touch and Find” system are described and then a concluding statement is given.

The PAN Gateway Device Philippa Regan

Bluetooth (see section 3.2.5 for more information) is not a line-of-sight connection and so
the PAN gateway device could be left in a briefcase or attached to the users belt for
example. There are many factors that need to be considered in the design of a PAN
Gateway, such as whether the user will aiways have another device that they can use to
dial the required number for a ‘phone function and how to enable Bluetooth pairing. These
factors are considered in Chapter 4. The usability of existing devices is discussed in
section 2.3 (Usability in Mobile Devices) and the technological aspects are discussed in
Chapter 3.

The PAN gateway system has significant advantages; the use of Bluetooth means that
full functionality can be obtained from your PDA wherever you are in the world. It can
link up to any Bluetooth enabled handset and is not restricted to countries with
compatible mobile ‘phone technologies. Upgrading your PDA will be cheaper as you'l
be replacing a simpler device, as it does not have the GSM functions in it. In a white
paper for Lucent Technologies, Wetzel stated [3] that Bluetooth wireless technology in
PAN's is very likely to change the way we handle and access data in the near future.
He noted that a similar development during the past ten years can be observed in the
way the mobile phone has changed our behaviour in terms of information vs.

independence of location.

In addition, the PAN Gateway concept is advantageous for network operators.
Network operators presently massively subsidise the cost of handsets based on the
revenue that will be gained from use of the handset, i.e. “line rental” and call charges.
As mobile ‘phones become more integrated, operators are being expected to provide
users with increasingly expensive handsets for minimal cost. Meanwhile, the mobile
‘phone market has become significantly more competitive, reducing the revenue from
each call made. The PAN gateway could allow a move away from this increasingly
undesirable situation by offering a new concept in mobile communication. Initially it will
probably be necessary for operators to include a basic Bluetooth enabled handset to

enable “traditional” voice calls.

A similar concept to the PAN Gateway is BWIG (Bluetooth Wireless Internet Gateway)
[4] which defines a Bluetooth usage madel that provides seamless ad-hoc web access
for internet enabled mobile devices through a Bluetooth enabled fixed internet
connection; Users will be able to access the internet without the need for a dialup
connection, providing faster throughput speeds (11Mbps can be achieved on
aggregate using a fully deployed Scatternet) wirelessly and with the capability to share

The PAN Gateway Device Philippa Regan

the connection. In BWIG the TCP/IP protocols are not used over the Bluetooth Radio
in order to reduce the overhead across the Bluetooth link.

Another similar concept is being developed by Norwood Systems [5], their aim is to
provide voice applications throughout the office to create a local network for voice
communications using low power devices such as mobile ‘phones, cordless headsets
and voice enabled PDA’s. The system will incorporate a voice recognition server and
telephony gateway allowing on screen dialling, voice recognition for calling from a

headset, dictation via headset and other functions.

2.2 THE NEED FOR A PAN GATEWAY

According to a European Commission study carried out in Spring 2000, 55% of the
population own a Mobile ‘phone in Europe. Two years later, ownership of a mobile
‘phone has increased and in many European countries there are now more mobile
‘phone subscriptions than fixed line subscriptions. As usage of mobile ‘phones for

voice applications increases so does the usage for data applications.

More and more ‘phones now come with built in support for data functions; increasingly
consumers are able to synchronise their mobile ‘phone with their PC using a serial,
USB, IrDa or even Bluetooth connection. As the functions of mobile ‘phones, PDA’s
and PC’s continue to merge, the question arises as to whether mobile ‘phones with
integrated address, diary and data functions or PDA’s with mobile communications
capabilities will become the dominant market force. Despite the continuing
convergence of the mobile ‘phone and the PDA it is clear that at present the two
devices have quite different features; display size, input methods, software, services
available, and communication with other services distinguish the devices currently on
offer [6].

Presently the majority of “organiser” functions that are included on mobile ‘phones are
not very user friendly or indeed particularly useful, although there are increasingly more
exceptions. It seems that PDA manufacturers Palm and Handspring are beating many
of the mobile ‘phone manufacturers at their own game by creating integrated
‘phone’s/PDA’s. For example, the Handspring Visor ‘phone has a large screen and

provides multiple ways of accessing the ‘phone book function.

Usability expert Jacob Nielson [7] stated that there is a major problem in the different

form factors required for each of the two sets of functions. i.e. A device that is suited to

The PAN Gateway Device Philippa Regan

holding up to your ear is not a device well suited to accessing the Internet (at least until
the Internet becomes voice powered), whereas a PDA has a large screen and is thus
well suited to accessing and viewing data. Similarly, holding a PDA to your ear does
not feel good, although perhaps users will become more accustomed to doing just that
or alternatively using a headset in the same way that users overcame the initial

embarrassment of talking on a mobile ‘phone in public.

For business users there is clearly a need for a GSM modem to be attached to a PDA
— it allows web surfing in @ more user friendly way than using a mobile ‘phone, allows
emails to be sent and received and other similar tasks. Up until now the products that
have been developed focus on integrating the GSM modem into the PDA or vice versa.
For example Nokia have created the Communicator series, more recently the 9210,
Palm have created the VII series of Palm computers that have an integral GSM modem
to allow such functions and have produced “clip on” GSM modems for their other
devices. These products require a monthly subscription which means that the user is
now paying for both a mobile ‘phone subscription and a Palm subscription as well as

carrying around two GSM modems!

Handspring have taken it a step further in their Treo series which “combines a ‘phone,
a pager and an organizer into one small product so people could carry a single device

instead of two or three” said Jeff Hawkins, founder of Handspring [8].

There are several problems with such integrated devices, for example: -

s |If you go out for a walk and want to take your ‘phone with you for safety reasons,
do you really want to risk losing your PDA with all your personal information on it.

= To be usable for web surfing the screen needs to be big, making the device bulky
to carry around. If the device is easy to carry, the interface will have to be smaller
and less usable.

= When new technology is released, are the users going to be prepared to pay
several hundred dollars for a new system — when all they need is a small

modification — for example GPRS capability.

For a business user the only alternative to an integrated device is to carry around a
mobile ‘phone, a PDA and a PC (for writing longer messages). There is clearly a need
for a different type of device, such as a device that could act as a central hub for
communications between all of an individuals communications devices and the outside
world. Although it could be argued that this already exists in the form of a mobile
‘phone, a more revolutionary concept should be considered.

The PAN Gateway Device Philippa Regan

2.3 UsABILITY IN MOBILE DEVICES

The main usability aspect discussed here is methods of text entry, as text entry is one
of the most limiting factors in the usability of a mobile device. However, there are many
other factors that influence how usable a mobile ‘phone is, including the form factor
size, shape and weight, the user interface (see Chapter 4) the screen size, the battery
and the network services. The usability of a device is fundamental to the popularity of
the device although clearly marketing plays a significant role as well.

It has been suggested [9] that one crucial factor in Nokia being the world's leading
maker of mobile ‘phones is their “user-centred approach to developing products”. In a
usability evaluation between the Nokia 3210 and the Siemens C25, the following

factors were found to influence the usability of the devices.

e Complexity — the Nokia uses only three buttons to do what the Siemens requires
five buttons.

e Consistency — Button functions on the Nokia are consistent with dedicated buttons
for selecting, scrolling and cancelling - making the device easier to use.

s Clutter — the Siemens ‘phone makes heavy use of icons — however these are not
readily interpretable or noticeable because of their small size and varying locations

on the display area.

Overall it was concluded that the Siemens ‘phone makes more options available at any
one time, but at considerable cost in complexity, consistency and clarity making the
Siemens ‘phone significantly more compiex to learn. Another advantage of Nokia
‘phones is their consistency, when users upgrade they know that the user interface on
the new ‘phone will be similar to that on their old ‘phone, making them confident that
they will be able to use it easily.

Matthias suggests that energy storage is the major technological hurdle to be solved in
mobile devices [10]. This is evidenced by the increasing drive to design very low
power systems for use in mobile devices in order to preserve battery life. After all, a
mobile phone is not very “mobile” if you have to charge it every few hours. Low power
consumption was a fundamental factor in the design of the Bluetooth specification and
is one of the main reasons for Bluetooth’s dominance over IEEE802.11b in mobile
devices. Advances have been made in battery technology with the creation of the
Lithium Polymer battery. These batteries have a high energy density, so smaller

batteries can deliver more power for longer. Importantly these batteries are also

The PAN Gateway Device Philippa Regan

shapeable and so can be designed to fit inside an ergonomic form of the device.
These batteries are used in the Palm m500 and m505 PDA's.

2.4 METHODS OF TEXT ENTRY

A major limitation on the usability and usage of mobile ‘phones is the available text
entry methods. As yet, manufacturers of handheld devices have not successfully
duplicated the functionality of the desktop keyboard; present methods of text entry give
similar input speeds of 10 —15 wpm’ to those available hundreds of years ago with pen
and ink compared to 50+ wpm with a desktop keyboard [11].

A recent study clearly demonstrated the value of handheld computers in the home, but
the lack of an efficient method of text entry made even basic tasks such as email and

web surfing very difficult [12].

Although users have become accustomed to sending SMS? (text messages) using the
triple tap method or alternatively T9 (Tegic 9) predictive text, most users would find the
existing numerical interface too tedious and inefficient to use for messages that are
much longer than the 160 characters in an SMS. Even the Graffiti™ system and the
touch screen QWERTY keyboard used by Palm are too slow for long messages in
addition to the user needing to learn a new alphabet (for using the Graffiti handwriting

recognition technology).

In order for mobile email and Internet services to become truly user friendly, either a
new approach must be taken to text entry or alternatively new ways to link existing
interfaces must be considered. A particularly challenging problem for human factors
researchers has been to develop alternative text entry methods using on screen
keyboards for use by the “walk up” market; consumers who want to be able to use it

immediately with little or no training.

There are two available methods for shrinking the size of a physical keyboard, the first
is to shrink the size of each key, as done in electronic dictionary’s; unfortunately this
significantly slows the input speed due to the difficulty in using small keys. The second

is to reduce the number of keys by giving each key a multiple use as in the mobile

' Wpm — Words per Minute
2 SMS — Short Message Service

The PAN Gateway Device Philippa Regan

handed approach makes good use of the QWERTY keyboard layout that was designed
for two-handed operation.

2.4.2 Graffiti vs. on screen keyboard

Graffiti™ is a handwriting recognition technology used in Palm PDA’s. Users of
Graffiti™ are required to learn a slightly different alphabet in order for recognition of text
to be achieved. An area of the touch screen on the Palm pilot is reserved for use of
Graffiti™. Users write one letter at a time (using the modified alphabet) in the Graffiti™

area with a stylus designed for use on touch screens.

The SHORE [16] 2001 study used subjects with no previous experience of either
keyboard tapping or Graffiti and measured the number of errors that the subjects made
while carrying out a number of specified tasks. Unsurprisingly during the first trial block,
using the keyboard led to faster entry and fewer errors than using Graffiti. In later trial
blocks the time taken for users to complete tasks using Graffiti decreased to the point
where it was almost the same as using the on screen keyboard. However the number
of errors made using Graffiti remained significantly higher. LaLomia [17] observed that
users are only willing to accept error rates of approximately 3%, a significant problem
for Graffiti™.

The SHORE study showed that keyboard entry is faster and less error prone. The
main problem with keyboard tapping is the excessive number of screen switches
required during a common application. The researchers also stated that they believed
that experienced Palm users would find usage of Graffiti significantly faster due to the
delays encountered when making the necessary screen switches. Another study [13]
has found that an experienced user of Graffiti'™ on a Palm pilot can write about 20
words per minute, far slower than a well practiced typist on a physical keyboard. Text
entry speeds for QWERTY keyboards implemented on a touch screen as used by Palm

and other PDA manufacturers were determined to be around 30wpm [13].

Both the Graffiti™ handwriting recognition and the touch screen keyboards result in text
entry speeds considerably lower than the 50 wpm that is typically produced on a
physical keyboard, showing that further development is required in text entry methods
although both match the speed of handwriting which is approximately 15-20wpm.

11

The PAN Gateway Device Philippa Regan

2.4.3 Soft Keyboards

QWERTY soft keyboards give a text entry speed of around 30wpm [13]. The primary
advantage of a QWERTY layout is that users are familiar with the layout and therefore
do not need to learn the new layout. However, the QWERTY keyboard is particularly
inefficient for stylus tapping as it was designed for use with two hands as in
conventional typing, thus adjacent letter pairs (digraphs) are placed on opposite sides
of the keyboard. In addition, the QWERTY layout was designed when traditional
typewriters were used; the QWERTY layout was designed to reduce the number of
times the keys hit each other and got jammed. Another disadvantage of the QWERTY
layout is that it is not international. This causes confusion for those who use PC’s in

different countries - it is even different between the UK and the U.S!

For stylus operated keyboards, digraphs should be placed next to each other as only
one stylus is used [13]. Performance Modelling is used in the design of Virtual
keyboards. The keyboard is optimised so that the typical total distance travelled to
reach a key is minimised [13], i.e. that the most frequently used keys should be placed
in the centre of the keyboard. Performance modelling is used to optimise the layout for

a given language.

The QWERTY keyboard was analysed using a “sub-optimal” method and the
performance found to be 30.5 wpm assuming that the user always taps on the portion
of the space bar that minimises the character-space-character path [13]. Various non-
QWERTY keyboards have been designed using performance modelling, some

examples have been outlined below: -

Opti - (shown in Figure 2-3) was designed by MacKenzie and Zhang [18] and later
modified by the designers to create OPTI2. Analysis of the OPTI2 keyboard showed
that the performance was around 36 to 40 wpm, a considerable improvement over the
QWERTY keyboard [13].

12

The PAN Gateway Device Philippa Regan

by the summation of all Fitts’s® law movement times between every pair of keys,

weighted by the statistical frequency of the pair of letters in English.

Other keyboards designed and analysed [13] are: -
¢ FITALY (Textware Solutions) - performed at about 36 wpm.
e Chubbon - performed at around 32 wpm.
o Metropolis — the Metropolis keyboard was designed using the Metropolis
random walk method and performed at 43 wpm, the fastest of the above

keyboards.

FOCL (Fluctuating Optimal Character Layout) is a concept developed by Bellmann and
MacKenzie for use in “small, input-limited devices in mobile situations” in which the
existing input method is arrow keys moving around a cursor on the character set
displayed on a 3 or 4 line liquid crystal display. After each character “c” is entered the
layout is rearranged so that the most likely next characters are closer to the cursor.
Each new layout is optimal with respect to “c”, but as the layout is perpetually changing
there is a time penalty due to the user having to visually search for the correct
character. FOCL does significantly reduce the mean number of keystrokes per
character, however when tested against the QWERTY keyboard there were no
significant differences in data entry speeds which were approximately 10 —15 wpm [19].

Soft keyboards clearly provide a good method for text entry in mobile devices - the best
keyboard layouts to date are the Opti, Atomik and Metropolis which each perform at
around 40 wpm. It is interesting to note that the FOCL concept, which is intuitively a
bad idea, performs at a similar level to the widely used QWERTY keyboard at around
15wpm.

2.4.4 Alpha Grip

The Alphagrip™ was designed to create a new, faster input interface to replace slow,
tedious text entry technologies and to ensure that productivity is not sacrificed in favour
of portability. The Alphagrip™ is designed to provide a single flexible interface. The
Alphagrip™ interfaces to other devices by means of both wired and wireless

connections.

3 Fitts' Law is a model used to account for the time it takes to point at something, based on the
size and distance of the target object. Fitts' Law and variations of it are used to model the time it

takes to use a mouse and other input devices to click on objects on a screen.

14

The PAN Gateway Device Philippa Regan

once, whereas to type a “C” the “2” key must be pressed three times. This approach
brings out a problem with segmentation; when a character is on the same key as the
previously entered character (as in the word “on”) the system must determine if the
new key press “belongs to” a new character or the previous character [22]. This is
solved either by means of a timeout period or alternatively by pressing a key that forces
the system to move onto the next key. The predicted expert rate performance of the

triple tap method is approximately 21 — 27 wpm [22].

Two-key input method

In the two key input method the user selects the group of letters (for example key “2”
gives “abc”) and then a second number key is pressed for disambiguation, in this case
“3” could be pressed to give the letter “c”. The two key method is not very common but
is very simple and requires no timeouts [22]). The predicted expert rate performance of

the two-key input method is approximately 21 — 27 wpm [22].

T9

T9 (patented by Tegic Communication, Inc) text recognition uses a built in dictionary
and adds knowledge to the system itself. It requires only one keystroke per letter and
uses a built in dictionary for disambiguation. The “0” key is used for “SPACE”. The “0”
key is also used to delimit the word and terminate the disambiguation of proceeding
keys. However this creates problems as multiple words may have the same key
sequence, T9 then guesses the most common word and then allows users to press a
key to view the next possible word [23]. The disambiguation is incorrect in around 5%
of cases [22]. The predicted expert rate performance of the T9 system is 41 wpm for
one handed thumb entry to 46 wpm for two handed index finger operation [22].

Text entry methods are compared using accuracy and speed of text entry. However, it
should be noted that performances of expert and novice users are very different. The
novice using T9 for the first time will have to go through some initial training and

practice whereas the expert user will already be adept.

The SHORE 2001 (Student HCI* Online Research Experiments) study showed that
usage of the T9 system had a longer learning time leading to frustration but that user
satisfaction ratings were significantly higher once the initial training had been
completed as it saved time. It is interesting to note that despite the initial frustration
that users felt when using T9 that they were found to be more likely to buy a ‘phone

* HCI — Human Computer Interaction

17

The PAN Gateway Device Philippa Regan

of existing systems. Other problems with voice recognition such as the lack of privacy

caused by reading out the text in public places are inherent and cannot be solved.

2.4.9 Evaluation of Existing text Entry Methods

The text entry methods summarised above demonstrate that there is a need to find an
alternative method for entering text into mobile devices such as mobile phones, PDA’s
and palm top computers if the usability of these devices is to be improved and their
uses extended. Although many new methods of entering text have been covered there
is still not a good solution. There is a fundamental dilemma with designing a new text
entry method for mobile devices; the system needs to be both new and revolutionary

whilst also being very easy for a “walk-up” user to learn in minimal time.

It has been shown that the use of the QWERTY layout in soft keyboards is far from
optimal as the QWERTY layout was designed for two handed operation (as in typing)
rather than pointing with a single stylus. Other layouts such as Opti, Atomik and the
Metropolis keyboard result in a significant improvement in performance. These
keyboards perform at rates of around 40wpm — approaching the 50wpm performance
of a physical (full-size) QWERTY keyboard. The performance of a dynamic layout

such as FOCL was low due to the confusion caused by changing the key layout.

Of the existing text entry methods in mobile phones, triple tap and T9, T9 performs
better with 41 — 46 wpm compared to 21 - 27 wpm for triple tap. However, it should be
noted that this increased performance is for “expert” users and must be set against the
time taken for new users to learn how to use the technology. Digit'’s Fastap™ looks
very promising, offering enhanced text entry — it would be interesting to see how it

performs in comparison to T9.

Voice recognition remains an unattractive option for mobile text entry due to the high
drop rate and the lack of privacy. Handwriting recognition is widely used in PDA’s
although users experience quite a iot of frustration when learning to use the system.

The performance of Graffiti™ is not particularly impressive at around 15-20wpm.

In summary, for a device that is primarily a ‘phone, T9 or possibly Fastap™ provide the
best method for entering text. For PDA type devices, the best solution is a non-
QWERTY optimised soft keypad such as Opti, Atomik or Metropolis. It is interesting to
note that these technologies are not widely used in existing devices, primarily due to

the users reluctance to learn or use a new technology.

20

The PAN Gateway Device Philippa Regan

Text entry remains the single most limiting factor in the design and use of mobile
devices as shown by the relatively slow text entry rates present in existing devices.
Bluetooth may provide an alternative solution by means of a single portable text entry

method that can be used to enter text into all devices via Bluetooth.

2.5 CHAPTER SUMMARY

This chapter has discussed the need for the PAN Gateway device and its concept and -

has then evaluated the various text entry methods for mobile devices. _Finally the

. __usability of Bluetooth in existing mobile devices was investigated. The PAN Gateway is

a device that allows users to create a riethrkré_f»;—)érsonal devices (using Bluetooth)
such as a PDA, laptop, camera, headset and link them to external networks using a
GSM/GPRS modem. The PAN Gateway is advantageous for network operators as it

reduces the cost of the basic unit that they provide to customers.

Text entry methods were discussed and it was determined that the QWERTY layout is
unsuitable for use in soft keyboards where a single stylus is used to “press” the key.
The best text entry method for a PDA type device was optimised non-QWERTY soft
keyboards giving text entry rates of around 40 wpm. For a ‘phone type device the best

method was T9, giving up to 56 wpm or potentially Digit's Fastap™ layout.

The short-range wireless technologies that could be used in the PAN Gateway to

provide local connectivity will be discussed in more detail in Chapter 3.

21

Technologies for Short Range Wireless Communication Philippa Regan

CHAPTER 3 TECHNOLOGIES FOR SHORT RANGE
WIRELESS COMMUNICATION

There are various short-range wireless technologies that could have been used to
connect the mobile devices to form a Personal Area Network (PAN). The various
technologies are discussed in this Chapter to demonstrate why Bluetooth was chosen
as the best technology for use in the PAN Gateway. The coexistence of RF systems
using the 2.4Ghz ISM band is discussed in addition to a brief section on the usability of

Bluetooth in existing devices.

The technologies considered that could be used to achieve short-range wireless
communication fall into two groups, those that use infrared light and those that use
radio frequency (RF) signals. In the Infrared category there is IrDa (Infrared Data
Association), in the RF category there is HomeRF, Bluetooth, IEEE802.11b (Wi-Fi™)
and IEEE802.15 — these will now be considered in more detail: -

3.1 IRDA

IrDA-Data is the standard that is referred to by IrDA in this report. IrDA is a low power,
low cost, cable replacement technology used for short range Line-of-sight
Communication. “IrDA is a point-to-point, narrow angle (30° cone), ad-hoc data
transmission standard designed to operate over a distance of 0 to 1 metre and has
data speeds of 9.6kbps to 16 Mbps” [27].

In the year 2000 IrDA had an installed base of over 150 million units with an annual
growth rate of 40%. IrDA is widely available in portable devices such as PC’s,
notebooks, peripherals, mobile telephones, PDA’s and embedded systems. IrDA has
been universally adopted and accepted worldwide.

The main limiting factor for IrDA is that it a line-of-sight technology and thus requires
the two devices to be aligned throughout the communication. This limitation makes
IrDA unsuitable for use in the PAN Gateway.

22

Technologies for Short Range Wireless Communication Philippa Regan

3.2 TECHNOLOGIES USING THE 2.4 GHz ISM BAND

Bluetooth, HomeRF, 802.11b and 802.15.3 all use the (globally) license free 2.4 GHz
Industrial Scientific Medical (1.S.M) band and support wireless networking. Yeadon [28]
claims that the market for wireless connectivity is one of the fastest growing in history
and that this is the case because of applications in the communications infrastructure,

industry and business as well as the consumer market.

To use the 2.4GHz ISM band, the FCC® requires devices to use Spread Spectrum

technologies.

3.2.1 Health Issues

Microwave ovens operate at around 2.4GHz as this is the frequency that is most
effective for heating water molecules. Intuitively, a device that broadcasts at 2.4GHz
would seem likely to be a danger to human health as humans are made up primarily of

water.

Dempsey, in his paper “The Physiological effects of 2.4GHz Frequency Hopping
Radios” [29] states that are three perspectives from which this needs to be
investigated:-

1. Traditional Thermal effects — i.e. the body being heated.

2. Cellular Interactions —i.e. cell mutations.

3. Effects of the 2.4 GHz radio on a piece of medical equipment (which could be

life critical).

Dempsey concludes that there are no adverse biological effects that are caused by the
2.4 GHz radio. In terms of Cellular effects, to date there appears to be no credible
evidence to suggest that there are any adverse effects caused by using a 2.4 GHz
radio. However the research to date has not proven that there is a fundamental reason

why this must be the case.

With regard to interference problems between 2.4GHz Frequency Hopping Spread
Spectrum systems and medical equipment he states that historically, very few medical
device problems that have been reported have been caused by a radio; only 0.007% of
the total problems reported between 1979 and 1995. It should also be noted that a 2.4

® FCC — Federal Communications Commission

23

Technologies for Short Range Wireless Communication Philippa Regan

GHz radio produces field strengths that are only 20% of the typical minimum radiated
susceptibility level of most medical equipment and that these field strengths are
significantly lower than other radios that historically operate in the hospital
environment. At this point it is believed that the potential benefits of using a 2.4 GHz
FHSS radio in a medical environment greatly outweigh the potential risks.

3.2.2 Spread Spectrum Modulation (SSM)

“Spread Spectrum is a means of transmission in which the data of interest occupies a
bandwidth in excess of the minimum bandwidth necessary to send the data” [30]. SSM
is a digital coding technique in which a narrowband signal is spread over a spectrum of

frequencies. The coding operation increases the number of bits transmitted and the

bandwidth used. There are two main types of Spread Spectrum Modulation: -

1. DSSS - Direct Sequence Spread Spectrum.
2. FHSS - Frequency Hopping Spread Spectrum
a) Slow Frequency Hopping.
b) Fast Frequency Hopping.

Direct Sequence Spread Spectrum

In DSSS the radio energy is spread across a larger bandwidth than is necessary by
dividing each data bit into sub bits. The higher modulation rate is achieved by
multiplying the digital sequence with a psequj‘aévf(aom noise sequence known as a chip
sequence. For example, if the chip sequence is 10 and it is applied to a signal carrying
data at 300kbps, the resuitant signal will phave 10 times the original sequence’s
bandwidth. The spreading is achieved using a specific code thus creating a unique
spectrum that only a receiver using the same code can collapse into its original form.
The spectrum of a DSSS signal appears to be noise, making it very difficult to detect.

802.11b uses DSSS.

Frequency Hopping Spread Spectrum

In FHSS the transmitter jumps from one frequency to another at a specific hop rate.
The order in which the frequencies are used is determined by the pseudo random hop
sequence used. The FCC mandates that FHSS systems spend no more than 0.4
seconds on any one channel each 30 seconds and that they must hop through at least
75 channels in the 2.4 GHz band.

24

Technologies for Short Range Wireless Communication Philippa Regan

The use of a frequency hopping spread spectrum method of modulation improves
immunity to interference from other devices. In FHSS systems, data is transmitted for
a very short time (determined by the hopping rate) on a particular frequency before
hopping to the next frequency. Interference typically occurs at a single frequency thus
only a few of the frequencies that are used by the FHSS system are likely to be
impaired by interference, making FHSS resistant to interference. FHSS systems can
be susceptible to noise during any one hop but typically can achieve transmission
during other hops within the wide band. There is also the potential for adaptive
frequency hopping in which the system determines which frequencies are being
degraded by interference and the system effectively “hops around” those frequencies
[31].

Transmission using Spread Spectrum Frequency Hopping typically appear to be
background noise unless the systems are synchronised and the receiving station knows
the pseudo random hopping sequence, making the signal resistant to detection,

interference and jamming.

In slow hopping systems, several symbols are transmitted on each hop; in fast hopping
systems, the carrier frequency hops several times during the transmission of one
symbol. Bluetooth uses slow hopping FHSS.

3.2.3 IEEE802.11b
The 802.11b specification was written by the IEEE’ 802.11 working group. 802.11b is

designed for use primarily as a wireless Ethernet and allows transmission speeds of 11
million bits per second, making it faster than conventional wired LANS (although
upgrades to wired LANS now allow for data rates of 100Mbps). It uses Direct
Sequence Spread Spectrum in the 2.4 GHz ISM band and is designed to be
implemented by IT professionals in an office environment. 802.11b is more expensive

to implement and uses more power (although this does give greater range). Security is

a major issue with 802.11b; it has been widely reported in the press that many large)

companies have failed to implement sufficient security measures on their wireless
networks allowing hackers to access sensitive information and to use their web

connection for free.

" IEEE - Institute of Electrical and Electronic Engineers

25

\
whi b

Lo

~

/

Technologies for Short Range Wireless Communication Philippa Regan

Cisco, Lucent, Apple and 3Com all have large stakes in this technology as part of a
special interest group called WECA (Wireless Ethernet Compatibility Alliance); they are
already pushing for it to become the wireless Ethernet standard. 802.11b is also

known as Wi-Fi™,

3.2.4 HomeRF

The HomeRF™ Working Group (HRFWG) was set up in March 1998 to create an open
industry specification for wireless digital communication between PCs and consumer
electronic devices in and around the home. It was also set-up to act as a forum for the
encouragement and support of home wireless networking [2]. HomeRF uses
Frequency Hopping Spread Spectrum in the 2.4 GHz ISM band and is incompatible
with 802.11b. HomeR(is specifically designed for use in the home and is easy to set-
up as it was designed for consumer use. HomeRf has many advantages over 802.11b
for use in the home, such as easier configuration, but there seem to be very few

HomeR(f products available to consumers.

HomeRF also has substantial Industry backing, including Intel, Microsoft, Motorola,
Proxim and Siemens amongst others in the HomeRF working group. Recently the
FCC approved an upgrade from 2Mbps to 10 Mbps making it a viable challenger to
802.11b for office use.

3.2.5 Bluetooth

“Bluetooth is a low cost, low power, short-range radio technology, originally developed as a
cable replacement to connect devices such as mobile ‘phone handsets, headsets, and
portable computers” [2]. This can enable a very powerful ubiquitous computing platform
where each and every device is connected to the network [32]. Bluetooth uses Frequency
Hopping Spread Spectrum in the 2.4 GHz ISM band; with a hopping period of 62uS.
Bluetooth has a series of profiles that describe how particular applications can be
achieved, including which parts of the core Bluetooth protocol should be used to support
the profile. In order for a device to support certain functions, the relevant Bluetooth profile
must be supported; for example without a Bluetooth implementation incorporating the
headset profile, it will not be possible to use a headset. The Bluetooth profiles include the
following [2]: -

Generic Access Profile — this is the core Bluetooth profile. Its purpose is to ensure that

Bluetooth devices can all establish a baseband link.

26

Technologies for Short Range Wireless Communication Philippa Regan

Dial Up Networking — provides a dialup data connection. For example it allows a laptop
to be used to check email via a mobile phone.

Headset Profile — defines the facilities required to make and receive voice calls from a
headset to a mobile phone.

LAN Access Profile — allows Bluetooth enabled devices to connect to a fixed network via
a Bluetooth link to LAN access point.

Synchronisation Profile — provides a standard way for personal information to be
synchronised between Bluetooth enabled personal devices such as PDA's, laptops and
cell phones.

Personal Area Network Profile — provides support for ad-hoc networks in the form of full
TCP/IP networking. PAN uses BNEP, the Biuetooth Network Encapsulation Protocol, to
transport common networking protocols over wireless links. Essentially the BNEP
allows Bluetooth to carry IP packets allowing the PAN profile to offer a wireless LAN
function based on IP. For example the PAN profile is used to link computers to peripherals
and ‘phones to PDA’s and headsets, providing the ad-hoc networking capability. The PAN
profile is fundamental to the PAN Gateway.

Bluetooth has a different usage scenario to 802.11b and HomeRF as it was originally
intended as a cable replacement technology and not as a Wireless LAN. Wireless LAN
functions can be achieved through use of the LAN Access profile. Bluetooth presently
only supports data rates of 1Mbps and is designed primarily to connect mobile devices

such as laptop pc’s, mobile ‘phones, PDA’s and headsets wirelessly.

Bluetooth is widely backed by major industry players including 3Com, Motorola,
Toshiba, Nokia, Microsoft, Ericsson Sony, Microsoft, Lucent, IBM, Intel and over 2000
other companies. Bluetooth is expected to be able to replace six to eight ports on a
computer with virtual ports. Bluetooth has received much press coverage and hype but
has taken longer to rollout than expected.

3.2.5.1 Key Features of Bluetooth
= Uses globally license free Industrial Scientific Medical (1.S.M) Band at 2.4GHz.

= Omni-directional, not limited by a small transmission angle.

s Not limited by line-of-sight (LoS).

Robust.

= Low Complexity Hardware.

= Low Power (Active power is 0.1 Watts). Uses power saving modes.

= Allows transmission rates up to 1Mbps, although real throughput (without
overhead) is 721kbps.

27

Technologies for Short Range Wireless Communication Philippa Regan

Figure 3-1 shows three Bluetooth architectures, Figure 3-1a) Simple Master-Slave
Piconet, Figure 3-1b) Piconet, Figure 3-1c) Scatternet.

The simplest system consists of a Master and a single Slave (see Figure 3-1a) [1].
Master's can control up to seven Slaves in a piconet, (see Figure 3-1b) [31] [33].
Several piconets can be established and linked together ad hoc to form a Scatternet

(see Figure 3-1c) Scatternet).

Devices in a Piconet share the same channel in which the Master is defined as the
device that initiates the call, although the specification does support Master-Slave role
swapping. The pseudorandom hop sequence is generated from the device address of
the Master and the phase of its clock. The Masters’ clock is used as the Piconets’
clock to synchronise all of the devices. Although a device can be in more than one
Piconet by means of time division multiplexing, it can only be the master of one
Piconet. Piconets are uncoordinated with each other and frequency hopping occurs

independently; synchronisation of Piconets is not supported.

Communication in a Piconet is organised such that the master polis each slave. A
slave is only allowed to transmit after the master has polled it, it then transmits

immediately after the poll in the slave-to-master time slot [1].

Work is being carried out on allowing devices to support multiple profiles
simultaneously to meet user expectation. For example, it is necessary for a mobile
phone to be linked to both a PDA using the dial up networking profile and a headset
using the headset profile simultaneously. The above scenario would be used to call a
number from the users PDA whilst allowing the voice call to be handled via the headset
[33].

3.2.6 IEEE 802.15

The IEEE is set to release a new standard, the 802.15.3 specification, at the end of this
year that will heavily outgun Bluetooth in terms of data rate; providing short-range rates
of 20Mbps in comparison to Bluetooth’s 1Mbps. However, it is anticipated that as
802.15.3 will be backwards compatible with Bluetooth, that it will stimulate the market
for Bluetooth as it'll be a few years before any 802.15.3 products are available,

whereas as Bluetooth products are available now.

29

Technologies for Short Range Wireless Communication Philippa Regan

A second 802.15 specification has also been drafted — offering data rates of 55Mbps
throughput, suitable for high-end video distribution within a home. The specification
was created because “no other wireless standards can simultaneously distribute three
different digital video streams, one internet [connection] and three ‘phones, and one

CD audio stream perfectly” said Bob Heile, 802.15 working group chairman [34].

3.3 COEXISTENCE OF BLUETOOTH AND IRDA

Both Bluetooth and IrDA are cable replacement technologies, however they are not in
direct competition with each other as each technology has its own strengths and
weaknesses. For example, IrDA is directional and can only be used for line-of-sight
connections and therefore has some built in security features, whereas Bluetooth can

be used over longer distances and is omni-directional.

Both IrDA and Bluetooth consider data exchange to be a fundamental function and use
the OBEX upper layer protocol. By using the same upper layer protocol it is possible
for a single application to run over Bluetooth and IrDA. It is the intent of both Bluetooth
and IrDA to utilise the same data exchange applications where appropriate. The
presence of both technologies allows the user to select the most appropriate method of

communication based on the present situation [27].

Although the technologies can be found in similar devices, their applications are
inherently different. IrDA is suitable for applications where data transmission takes
place at high speeds over a closely proximate line of sight path. Meanwhile Bluetooth
is more suitable for situations where a line of sight connection is not possible or the two

devices to be connected are not stationary [35].

3.4 COEXISTENCE IN THE 2.4 GHz SPECTRUM

With many types of devices using different specifications sharing the same area of the
spectrum (the 2.4 GHz ISM band), questions must be raised with regard to whether
these different technologies can coexist. Does an 802.11b device interfere with a
Bluetooth connection? Is the data rate or the range of the devices reduced? In a
recent study Cordeiro and Agrawal [36] concluded that Bluetooth devices themselves
are likely to be interferers to the Bluetooth technology in the near future. They also
observed that Bluetooth has a very high overhead in the current Bluetooth Piconet

switching procedure.

30

Technologies for Short Range Wireless Communication Philippa Regan

In another report [39] Zyren concludes that 802.11 susceptibility to interference
increases as a function of range from the DSSS wireless node to the DSSS Access
Point and that 802.11 DSSS shows a graceful degradation in the presence of
significant levels of Bluetooth Interference. At the 2001 Bluetooth developers
conference in San Francisco, Dell Computer Corp acknowledged that they are
intending to put Bluetooth and 802.11b in the same PC card, which gives rise to some
interesting interference issues. However in one study [37], interference between the
two frequency hopping technologies (at reasonable data rates), 802.11 and Bluetooth,
was found to be minimal at less than 10%.

'?Q/l v 7

Ve

Interference between the Frequency Hopping (FHSS) and Direct Sequence (DSSS) !

technologies is a rather different story. Direct Sequence technologies provide a large
quantity of interference as shown by their spectrum usage (see Figure 3-2). In the US,
DSSS technologies use three 22MHz bands simultaneously when heavily loaded,
interfering with FH devices. However the degradation of FHSS devices on DSSS
devices is even worse. In a report for the |IEEE [40], it was shown that Bluetooth can
impact 802.11 DSSS significantly, particularly on large packets. In addition most
802.11 mechanisms for responding to poor channel quality either have no impact or
make things worse. It was also found that fragmentation can help, mainly at lower data

rates and high picocell utilisations.

Proxim, Mobilian [41] and Texas Instruments [42] have all performed similar tests on
the effect of Bluetooth Interference on an 802.11 DSSS system and have produced
consistent results. A Bluetooth Interferer was placed 12 feet away from a 802.11 or a
HomeRF node and the resulting impact on data throughput on the victim node was
measured. The 802.11 node located 12 feet from its Access Point degraded about
25%, whilst a HomeRF node only degraded 10%. HomeRF incorporates “hopset
adaptation” and “subframe hopping with retries” in the upper layers in order to increase
immunity to 2.4GHz interference [43].

In an Ericsson report for the Bluetooth SIG working group [44] based on a typical office
environment and measuring the effect of a 20dBm 802.11 DS WLAN on a 0dBm
Bluetooth system, it was found that if the Bluetooth connection was less than 2m long
the probability of disturbance on a Bluetooth voice link was less than 1%. If the
Bluetooth link increases to 8m, probability of disturbance rises to 8%. For a 10m
Bluetooth data link a throughput degradation of more than 10% occurs with a
probability of 24%. “Due to the limited frequency overlap of the WLAN and Bluetooth

32

Technologies for Short Range Wireless Communication Philippa Regan

systems, the throughput reduction in the Bluetooth system can never exceed 22%"
[44].

However in the Texas Instruments test [42], where degradation on a Bluetooth system
located 10cm from an 802.11 system was measured it was shown that the degradation
of the Bluetooth System throughput was at least 40%; when the spacing was increased
to 10m the degradation dropped to 10%.

During testing Mobilian demonstrated that lowering the transmission power does not
change the basic shape of the Wi-Fi™ performance degradation curve, but it shifts the
curve to the right, increasing the range over any which any given throughput is
available [41].

However, not all reports agree on this topic. A study conducted by the “Pennsylvania
State University’s Applied Research Laboratory” and Wireless Infotech Services found
that “Bluetooth and 802.11b wireless local area networks can co-exist without
interfering with each other’s operation” [45]. The groups stated that the range of both
Bluetooth devices and 802.11b devices were also found not to be affected by the
presence of a device using the other technology, no matter how close they were.
Bluetooth’s range was found to be about 64 feet and 802.11b range was found to be
around 284 feet. The groups agreed that more tests were required to evaluate
performance in different field conditions. No tests were carried out to evaluate the
effect of presence of a device using the other technology on the speed of the

transmission.

3.4.1 Solutions to the ISM Band Co-existence Dilemma

Various solutions to coexistence issues are being developed. Adaptive Frequency
Hopping (AFH) is the leading non-collaborative technique for minimising interference
problems between 802.11 and Bluetooth.

AFH works by reducing the number of Bluetooth channels a Bluetooth device uses,
thus leaving channels free for other devices to use. Without AFH, Bluetooth uses 79 of
the available 83 channel; with AFH, it is likely that only 15 channels will be used leaving
up to 68 free. AFH is suitable for use in devices that do not have Bluetooth and 802.11
co-located, in these devices it is necessary to provide a further solution [46].

33

Technologies for Short Range Wireless Communication Philippa Regan

Bandspeed, Inc. and Open Interface, North America has announced a new product that
utilises Adaptive Frequency Hopping (AFH) to allow 802.11b and Bluetooth to co-exist.
The solution uses Bandspeed's chipset with Open Interface’s BlueMagic protocol stack
and is designed to provide a coexistence solution for hardware manufacturers and
OEM's. “BlueMagi AFH is backwards compatible with Open Interface’s Bluetooth Spec

version 1.1 and works with existing Bluetooth wireless devices” [47].

Similarly, U.K. based Red-M have produced “Genos”; a “cutting edge software solution
for creating a stable, multi-technology network environment that enables both Bluetooth
and 802.11 enabled devices to co-exist and interoperate successfully” [48]. AFH
significantly reduces the problems caused by interference in the 2.4GHz ISM band.

3.5 EVALUATION OF WIRELESS TECHNOLOGIES FOR THE PAN GATEWAY

Various possible technologies that could be used to provide the local connectivity
required for the PAN Gateway have been discussed in Sections 3.1 to 3.4. It was
concluded that IrDA was unsuitable, as it requires a line-of-sight between the devices
to communicate and therefore could not provide a link between a laptop and a PAN

Gateway in a briefcase.

Essentially technologies that use the 2.4GHz ISM band were considered. Bluetooth is
a low power FHSS system, designed as a cable replacement technology for mobile
devices giving a throughput of 1Mbps. HomeRf is designed as a home networking
technology presently offering data rates of 2Mbps using FHSS. 802.11b provides
wireless Ethernet connectivity using DSSS at data rates of 11Mbps. Of these,
Bluetooth is the most suitable technology for use in the PAN Gateway, as it requires
the least power and was designed as a cable replacement technology for small mobile
devices with limited resources. With regard to interference issues between the
different technologies that use the 2.4GHz ISM band, it was concluded that 802.11b is
the most seriously affected and that although Bluetooth immunity to interference was
not as good as HomeR(f's it could be significantly improved through the use of Adaptive
Frequency Hopping (AFH).

3.6 USABILITY OF BLUETOOTH IN MOBILE ‘PHONES

A number of mobile ‘phones (Nokia 6210, Ericsson R520m and T39m, Sony Ericsson
T68i) were used in informal usability tests to determine if there were any obvious

shortfalls in the usability of Bluetooth in existing mobile ‘phones.

34

Technologies for Short Range Wireless Communication Philippa Regan

Bluetooth was determined to be very useful once it had been set up for sending emails
whilst on the move (e.g. in a train) without having to try to line up the IrDA ports and
hold them steady. The use of headsets (where applicable) was very briefly tested and
concluded to be a positive experience. However, the pairing procedure on all the
‘phones tested seriously diminished the user's “Out of Box” experience. The pairing
procedure is both complex and unintuitive in addition to having shortfalls in terms of

security.

To carry out Bluetooth Pairing the following steps must be completed: -
1. Perform a device discovery to determine what other Bluetooth devices are in
the area.
Select the Bluetooth device you want to connect to from the list.

Enter the security PINs for both devices.

This procedure has many problems, which have been outlined below.
e The device discovery may return a long list of Bluetooth Enabled devices,
making it difficult to select the correct device to connect to, e.g. there may be four
devices named “John’s laptop”.
e How to exchange PIN numbers? Users are likely to tell the owner of the other
device their device’s PIN number, making it easy to “overhear” the PIN.
e In a Bluetooth SIG Security White Paper [49] it was stated that “we also
recommend that the user be in a “private area”, before using the pairing procedure
from the Bluetooth Baseband Specification”. l.e. the Security provided by the
baseband pairing mechanism is not sufficient.

e The process is non intuitive and different for each device.

In summary, there are significant issues relating to the usability and security of the

Bluetooth pairing procedure with respect to the average user’s “Out of Box” experience.

3.7 FUTURE OF BLUETOOTH

The long-term future of Bluetooth is very promising, primarily due to the potential impact of
the technology. The freely available specification has resulted in a large number of
companies investing heavily into researching Bluetooth, giving the technology wide
industry support. Presently there are more than 2000 members of the Bluetooth Special
Interest Group (SIG).

35

Technologies for Short Range Wireless Communication Philippa Regan

Despite a slow start and negative publicity in the last year many reports are now
suggesting that a Bluetooth revolution is just around the corner. At the 2001 Bluetooth
developers conference in San Francisco, Microsoft announced that it planned to
provide native support for the Bluetooth standard in future versions of Windows XP
[50]. Predictions about the future use of Bluetooth range from 1.16 billion Bluetooth
chipsets being produced in 2005 (Jack Quinn, Micrologic Research) to 1.4 billion devices
incorporating Bluetooth technology being manufactured in 2005 (Joyce Putscher, Cahners
In-Stat). A recent report by the ARC group has suggested that market penetration of
Bluetooth in mobile ‘phones will reach 75% by 2006. Market indicators show that there will
be over 1 billion mobile ‘phone subscribers by 2006 which implies healthy opportunities for
Bluetooth.

It was also noted that the pending Bluetooth products would be less ambitious than
those originally envisioned. Bluetooth’s focus has presently shifted away from the ad-
hoc networking devices as the access points and PC cards implementing the 802.11b
specification fulfils this role. Presently the focus is on small, portable low power
devices such as PDA’s and mobile ‘phones where the speed or range of the
connection is less important than the requirement for low power consumption.
Although much of the functionality that was seen as Bluetooth’s domain has been lost
to 802.11b, such as wireless Internet access in café’s such as Starbuck’s, it should be
noted that the two technologies have many different features and do not compete
directly against each other.

The Bluetooth SIG is presently working on the Bluetooth 2.0 specification that will
increase data rates to 12Mbps (compared to 802.11b’s 11Mbps). However, Cambridge
Silicon Radio’s marketing Vice President, Eric Jansen believes that “the real goal is to
get products embodying the 1.1 specification into production” and that the 2.0
specification is “over hyped” [50].

One major advantage that Bluetooth has in the long term is its low cost and small form
factor allowing it to be cheaply and easily embedded into many products. Ericsson
Component’s technical manager, Lars Nord stated that Ericsson’s latest radio, the
ERC41 requires only eleven external components, is half the cost of the previous
module by integrating a variety of on chip components and consumes a maximum of

27 milliamps.

In summary, it seems that Bluetooth is a very promising technology which has taken

longer than anticipated to reach the market. The market for Bluetooth products has

36

Technologies for Short Range Wireless Communication Philippa Regan

shifted away from LAN type networking and towards low cost, low power, small form
factor embedded systems allowing ad hoc links between mobile devices. A higher

speed specification is also being worked on.

3.8 CHAPTER SUMMARY

In this chapter the various technologies that could have been used to provide the local
connectivity for the PAN Gateway were discussed. IrDA was determined to be
unsuitable for the PAN Gateway due to requiring a Line-of-Sight between the devices
to be connected. It was concluded that Bluetooth was the best short-range wireless
technology to use in the PAN Gateway as it is low power, low cost, omni-directional

and designed for use in mobile devices.

The interference issues surrounding the use of 2.4GHz wireless technologies were
discussed and it was concluded that although Bluetooth does suffer from interference
from other wireless technologies (such as HomeRf and 802.11b) the effects are not as
significant as those on 802.11b and can be reduced through the use of Adaptive
Frequency Hopping (AFH). There appear to be no significant health concerns with the
use of 2.4GHz spread spectrum wireless technologies. In the process of evaluating the
usability and security of Bluetooth in existing Mobile Devices, a significant problem with
usability and security was discovered in the Bluetooth Pairing procedure. In addition to
not being intuitive the Bluetooth SIG had recommended against the pairing of devices
in public places. This problem is one that will need to be addressed in Bluetooth

implementations in mobile devices including the PAN Gateway.

In summary, Bluetooth is the most suitable wireless technology for use within the PAN
Gateway to connect to local devices. The Bluetooth topology is based on a multiple
Piconet structure and PAN'’s are supported by the Bluetooth Personal Area Network
profile. Bluetooth itself is a relatively new technology that is expected to be in
widespread use in the next 4 years.

In Chapter 4 the requirements of the PAN Gateway with respect to both functionality
and usability will be discussed, taking on board the lessons learnt from Chapter 2 and
Chapter 3.

37

Requirements Of the PAN Gateway Philippa Regan

CHAPTER 4 REQUIREMENTS OF THE PAN GATEWAY

In this chapter the information gathered in Chapter 2 and Chapter 3 is used to consider
the requirements of the PAN Gateway device and to determine the best user interface
for use in the PAN Gateway. A new concept for improving the usability of Bluetooth

pairing is introduced.

4.1 AImMS

The aim of the PAN Gateway is to increase both the flexibility and functionality of the
mobile ‘phone, whilst reducing the cost to the operator for the basic handset.
Presently, the cost of the mobile ‘phone provided to users is ever increasing as
manufacturers integrate more and more functions into their phones, but the price users
are prepared to pay for their ‘phone remains minimal with network operators picking up

most of the cost of the ‘phone.

This initial outlay (to cover the cost of the phone) by the network operators is recovered
over subsequent months through line rental and call charges. Meanwhile the cost of
voice services to the consumer is being driven down by competition for customers and
increased usage and so network operators are searching for ways to get customers to
use their phones more and more, such as text messaging services (SMS) and the new

Multi-media Messaging Service (MMS).

The PAN Gateway is a device consisting of a Bluetooth modem and a GSM/GPRS
modem; it would be used as the part of a Personal Area Network that provides access
to external networks via the GSM/GPRS modem. For example, the PAN Gateway
would allow email to be checked from a PDA or laptop using the Bluetooth Dialup
Networking profile, or for a voice call to be made or answered using a headset. The
PAN Gateway should also allow calls to be routed through land based telephone lines
where possible, significantly increasing the users perception of functionality. This is
similar to the concept of having mini GSM aerials located within offices so that if users
call from within the office the mobile network is used (assuming that there is sufficient

capacity) but it is billed to the company at landline rates.

It is imperative that the pairing procedure required for using Bluetooth is simple. Initial
barriers that occur during registration prevent users from using new technology — until
you know the value of a new technology you will not spend time getting over the initial

barriers. For example registering your WAP handset to a service portal can be difficult

38

Requirements Of the PAN Gateway Philippa Regan

enough to prevent users from accessing WAP services; only when configuration is
automatically downloaded to the handset is this barrier removed. Similarly around 40%
of people who own a ‘phone with TS Predictive text do not use it because they cannot
get to grips with how it works. Another example is online banking, if registration takes
more than a few minutes then the chances are that the service will be unsuccessful

due to these initial barriers.

4.2 CONCEPTS

It is important to consider the exact circumstances in which the PAN gateway will be
used in order to maximise the usability of the device. Features that make a product
useful vary according to the product and usage scenario; for example on a PC, users
don’'t mind waiting a few seconds while an application loads because they plan to use
the application for a certain amount of time, whereas on a PDA people want instant

access to information, i.e. speed is critical.

The PAN Gateway enables a modular design of mobile functions which allows the
operator to provide (subsidise) the user with a basic set at a reasonable cost to the
operator. The basic unit can then be enhanced by purchasing additional modules

providing a much wider range of features than are presently available to the user.

There are a number of ways of modularising the PAN Gateway system depending on
which features are included in the base unit. Other factors considered include how to
link the various modules; “express-on” interfaces such as keyboards (similar to Nokia’s
“express-on” fascia’s)? Plug in modules? A major consideration is how to allow
Bluetooth Pairing to occur between two devices such as a headset and base mobile

‘phone unit if neither device has a screen or user interface.

The initial concept for the PAN Gateway base unit is to have a small device that can be
kept in a pocket, in a brief case or even on the users belt. The base unit will act as a
gateway and will contain a GSM/GPRS modem, a Bluetooth Modem, Antenna, Power
supply (see Figure 4-1).

39

Requirements Of the PAN Gateway Philippa Regan

from a headset without the involvement of another module (apart from the base unit)

unless voice recognition technology was used.

4.2.1.2 Basic User Interface

This unit would consist of a medium sized screen (four or five alphanumeric rows) and
may include a keypad. Without the keypad this device would be very similar to the
small screen unit; the enlarged screen (four or five alphanumeric rows) would allow the
various power, network, and transmission indicators to be easier for the user to
understand but would still not allow much input from the user unless voice recognition
technology was used. Potentially the unit could have ‘phone book functions — the
users ‘phone book could be downloaded from a PDA or laptop and then scrolled

through with the addition of a rocker button. This unit would not be very user friendly.

If the basic interface was extended to include a keypad, the device is considerably
more usable but is very similar to existing Bluetooth enabled ‘phones.

4.2.1.3 Advanced User Interface

The devices with an advanced user interface have a medium or large touch screen.
The inclusion of a medium touch screen (four or five alphanumeric rows) would allow
keypad functionality to be added without the bulk of a keypad. This would allow calls to
be made to new numbers. However the unit will still have more limited functionality
than a present mobile ‘phone due to the touch screen acting as both the screen and
keypad. One solution might be to include the symbols indicating power, network
coverage and other status information on the top row of the screen which would
change to display the number dialled if the touch screen was being used as a keypad
for dialling.

The use of an LCD display is likely to reduce the power consumption of the device
when compared to the consumption of a few L.E.D’s. Similarly the inclusion of a touch
screen should not add too much to the cost of the unit as mechanically it is much
simpler and it is also smaller. Suitable touch screens might be sourced from Synaptics
or 3M.

In order to protect the touch screen it may be necessary for the base unit to have a
clamshell type design. In its most integrated form a large touch screen would be

incorporated. However the device would be very similar to an integrated phone/PDA.

41

Requirements Of the PAN Gateway Philippa Regan

4.2.2 Other Modules

The following modules could be added via a Bluetooth link to extend the functionality

that the MMI's described in Section 4.2.1 would allow: -

Headset - allows calls using voice recognition in the base moduie.

Keypad - would allow calling to new numbers and enable SMS services.

Bluetooth handset - provides normal mobile ‘phone capability. This could potentially
be a very slimline device, as it requires no GSM/GPRS modem, just a
Bluetooth modem and basic handset functionality. This device would also
provide ‘phone book functions, SMS functions.

Large Screen and keypad - Designed for web browsing.

it should be noted that any of the modules described above could be incorporated in
other devices such as a PDA (large screen and keypad) or alternatively a laptop PC.
Similarly the headset could be incorporated into an MP3 playing headset.

4.3 EVALUATION

A major consideration is based on the question “The user has become accustomed to
having a mobile ‘phone with many functions at little or no cost due to the subsidisation
of the unit by operators. What is the minimum level of functionality that the user will

now accept?”

4.3.1 Minimal user Interface

The units with minimal user interface have no keypad and either no screen or a screen
with a single alphanumeric row. These devices are the simplest and therefore the
cheapest to produce; they satisfy the criteria of providing a gateway for
communications services with enhanced flexibility, whilst reducing the cost to the
operator. However they are limited by having little or no screen, which may make the
interface difficult for the user to comprehend and in particular the user may have
difficulty in carrying out Bluetooth Pairing.

The operator would almost certainly have to provide a Bluetooth enabled handset to
enable voice calls, SMS services and other services that are presently available but as
discussed earlier this could be a very slimline unit. The headset and other modules

could be made available to the customer at the full price.

42

Requirements Of the PAN Gateway Philippa Regan

4.3.2 Basic User Interface

These units have a medium sized screen (four or five alphanumeric rows) and may
have a keypad. They have the potential to provide a simpler, more intuitive interface to

the user; similar to those provided on mobile ‘phones presently.

If the unit did not have a keypad it would limit the functionality of the device, indeed the
provision of a medium sized screen with no keypad to use as an interface is
questionable. The use of a downloadable ‘phone book would reduce reliance on the
voice recognition software; dialling of new numbers would still not be facilitated except
through the use of a complicated interface or voice recognition and is unlikely to be

user friendly.

If a keypad is incorporated into the design the unit is very similar to an existing
Bluetooth enabled ‘phone and therefore does not adhere to the requirements of a PAN
Gateway.

4.3.3 Advanced User Interface

The use of a medium or large touch screen has many advantages in terms of usability;
one significant advantage of this system is that step-by-step instructions for Bluetooth
pairing could be displayed on the screen. However, these devices are essentially the
same as the present Bluetooth and GSM enabled PDA’s and once again do not adhere
to the requirements of a PAN Gateway.

4.4 SELECTION OF OPTIMAL MAN MACHINE INTERFACE

The best MMI that fulfils the criteria of the PAN gateway is the “Minimal User Interface”
device with no keypad and no screen. However for this to be user friendly a simple,
intuitive Bluetooth Pairing mechanism must be created that does not require
instructions to be displayed on screen. This is the best MMI configuration as it allows
the base PAN Gateway unit to be used simply as a Gateway. The minimal MMI is the
most revolutionary concept and is also the cheapest to manufacture and therefore
would reduce the cost to the Network Operator. This PAN Gateway MMl fully supports
the concept of user’s simply changing over their PAN Gateway for a Gateway that uses
a different mobile phone technology when travelling abroad.

However, if no such “simple, intuitive Bluetooth pairing mechanism” can be developed

the best solution is the device with the medium touch screen as it would allow step-by-

43

Requirements Of the PAN Gateway Philippa Regan

step instructions to be displayed as well as providing a method for entering text and
numbers. In both cases the network operator would need to provide a small Bluetooth
enabled handset to provide the functions that users have become accustomed to
receiving at little or no cost to themselves. The purchase of Bluetooth enabled
headsets, larger screens, keypads and other devices could then be left to the

customer.

4.5 REQUIREMENTS - USABILITY AND THE MAN MACHINE INTERFACE

The primary principle behind the design of the MMI of the PAN Gateway is that set up
must be intuitive and the device must be user friendly. The user must be able to pair
the devices and carry out other vital tasks without needing to refer to a manual.

As discussed above, the best solution to the usability problems caused by the
Bluetooth Pairing procedure is to create an alternative intuitive Bluetooth Pairing
mechanism that will not require any instructions. However if this is not possible, step-
by-step Bluetooth Pairing instructions could be displayed on either the PAN Gateway
(using an MMI which has a screen) or alternatively on another terminal that is
connected to the PAN.

Displaying the instructions on the PAN Gateway conflicts with the basic
need/philosophy of the PAN Gateway, to create a device with a minimal MMI. For the
instructions to be easy to read and user friendly, they need to be displayed on a
relatively large screen (larger than the present standard mobile screens) whereas one

of the aims is to make the device as small as possible.

However to display instructions on other terminals also creates problems; the terminal
equipment manufacturers will be relied upon to provide a usable interface to drive the
connectivity without reference to manuals. Also what happens if you want to pair a
device such as a headset to the PAN gateway — where do the instructions get
displayed on a headset?

Another solution may be to use a 3" display device to display the instructions. This 3
device could be a PC, a PDA or a viewing terminal provided by the manufacturer.
Unfortunately this system relies on the presence of a third device to pair up say a

headset and the PAN gateway — which is not necessarily very convenient.

44

Requirements Of the PAN Gateway Philippa Regan

4.8 CHAPTER SUMMARY

Chapter 4 has discussed and evaluated the aims and requirements of the PAN
Gateway together with the possible Man Machine Interfaces that could be used to fulfil
the requirements. A new concept for improving the usability of Bluetooth Pairing was
suggested and an example of a device that is similar to the PAN gateway has been

summarised.

A minimal MMI, consisting of a single button and an L.E.D to indicate whether the
device is switched on was found to be the optimal solution provided that a more usable
method for pairing Bluetooth devices could be developed; this configuration satisfied
the requirements of the PAN Gateway discussed. A new concept for Bluetooth Pairing
was proposed based on using a serial link across simple electrical contacts to
exchange the data required for pairing. Finally, an existing device similar to the PAN

gateway has been introduced.

Following the discovery of the poor usability of the Bluetooth Pairing procedure, the
focus of the research changed in order to develop an intuitive Bluetooth pairing method
for use in all Bluetooth devices but in particular for the PAN Gateway. The system that
was developed is discussed in the remaining Chapters of the thesis.

47

The “Touch and Find” System Philippa Regan

CHAPTER 5 THE “TOUCH AND

FIND” SYSTEM

Chapter 5 develops the concept proposed in Chapter 4 for improving the Usability of
Bluetooth pairing by using a serial link into the “Touch and Find” System. In this
chapter an overview of the “Touch and Find” system is given together with a
development plan and the system requirements. The design of the protocol that
specifies the signal flow between the devices is described and the development of the
top-level software task, the main_PLP task is documented. Finally, the testing of the
main PLP task is explained.

5.1 OVERVIEW OF THE “TOUCH AND FIND” SYSTEM

The results of the Usability Study (as discussed in Section 3.6) show that the usability
of Bluetooth devices in general needs to be improved considerably in order to meet
user expectations and particularly to provide a good “Out of Box” experience. The
primary problem in terms of the “Out of Box” experience is the difficult and non-intuitive
Bluetooth pairing procedure that must be carried out before any connections are made
between two Bluetooth devices. This process is difficult to understand and can be very

time consuming.

The concept is to create a system such that by touching together the two devices to be
paired, the information that must be exchanged to pair the devices is exchanged over a
serial link enabling pairing without needing to go through the usual procedure. By
using the new “Touch and Find” system it is hoped that this pairing procedure will

become simple, intuitive and even “granny proof”!

5.1.1 Development Plan

The system was developed using “C” in Borland C++ and TTPCom’s development
system comprised of a “Mad Cow” Evaluation Board (EVB) and Genie®. Clearly the
interface to the Bluetooth stack would need to be examined and a protocol for the
required signal flow to achieve pairing would need to be developed. Initially a

(crossed-over) serial cable would be used as the hardware interface between the two

° Genie is a test tool which interprets data streams captured from various interfaces of
a protocol stack under test, according to filters which the user can set up and presents
the results in terms of standard protocol signal primitives. It provides a method for a
test engineer to observe the performance of the system under test and compare it with
the system specification.

48

The “Touch and Find” System Philippa Regan

devices; following a successful software implementation, the hardware would be
developed.

The development of the “Touch and Find” system was to be carried out as follows: -
Investigation into required Bluetooth Interface.

Design of basic signal protocol (Pairing Link Protocol).

Design and Implementation of Software on PC.

Design and Implementation of Hardware.

Implement and Test “Touch and Find” system on Evaluation Board.

I O

Incorporate “Touch and Find” into a prototype device.

5.1.2 Requirements of “Touch and Find”

The requirements of the “Touch and Find” system are outlined below: -

1. The “Touch and Find” process must be initiated on demand from a higher-level
application.

2. It must not require a display screen user interface.

w

“Touch and Find” should provide the data to be communicated in a manner
compatible with the hardware to be used to transmit the data.

It must form a robust serial link between devices.

It must return the necessary data to the initiating application.

It must provide a high level of security,

N o o~

“Touch and Find” should be a quick process.

5.1.3 System Concepts

The “Touch and Find” system consists of both hardware and software sections. The
software must interact with the existing Bluetooth stack to provide the information
required to create the link and then output the data in such a way that the hardware
can transmit it to the device with which it is to be paired. This is defined in the Pairing
Link Protocol (PLP) developed by the author and described in the next section. Initially
the hardware will be implemented using a standard RS232 cable. Other methods of
communication including simple electrical contacts, inductive coupling and Infrared

communication will be investigated later on in the project.

49

The “Touch and Find” System Philippa Regan

o Produce a random number for use as a link key.

o Retrieve Information as required by the PLP protocol from the Bluetooth Device
Manager.

e Allow the processor to continue with other tasks, e.g. main Bluetooth
operations.

e Complete in a sufficiently short time frame as to be compatible with a handheld
link.

e Be robust and resistant to a “bad connection” caused by dirty contacts and
corrosion.

e Be independent of the physical method of communicating the data.

¢ Minimise the amount of data to be transferred across the serial link.

5.4 BLUETOOTH INTERFACE

The processes required to set up a Bluetooth Link were investigated using Wisdom'?
software. It was found that the steps required to create the first link between a pair of
devices were significantly more complex than those required to establish the next
[separate] link between two particular devices. A transcript of the signals viewed on

the log in each of the two situations can be seen in Figure 5-2 and Figure 5-3.

By comparing the transcript of signals sent, shown in Figure 5-2 and Figure 5-3, it is
clear that once a connection between two particular devices has been made
establishing the second link requires less signals. This is shown by the smaller number
of signals present in Figure 5-3 than in Figure 5-2. From the transcript and the
Bluetooth Specification [52], it is clear that this is because when the system first tries to
establish a link, the upper HCI (Host Controller Interface) layer asks the Device
Manager for a link key. However as this is the first connection between these devices
no link key exists. With no link key to use the system then uses a PIN key instead.
However when the second connection is made, the link key is present and therefore
the pin key does not need to be used. This means that the simplest way to create a
connection does not use a PIN key, but is instead based on the Link Key. It was
concluded that the simplest solution for the PAN Gateway would be to create a new

connection by generating and sharing a new link key.

'® Wisdom is a PC based GUI to allow you to drive a standard Bluetooth c}gvice using the
standard Bluetooth Host Controller Interface (HCI) over a serial or usb link.]frovides a User
J

Interface for use with Bluetooth.

51

The “Touch and Find” System

Philippa Regan

Wisdom Log for first link to be established between two devices, no existing Link

Key
Master Slave
Signal Type Direction Signal Type Direction
HCI Create Connection DM -> HCU | Connection Request HCU->DM
Connection Request HCU->DM HCI Accept Connection DM->HCU
Request
Link Key Request HCU->DM HCI Connection Progress | HCU->DM
Link Key Request Negative | DM -> HCU HCI Pin Code Request HCU->DM
Reply
HCI Link Key Done HCU->DM Pin Code Request DM->
HPTEST
HCI Pin Code Request HCU->DM Pin Code Request HPTEST->
Response DM
Pin Code Request DM-> HCI Pin Code Request DM->HCU
HPTEST Reply
Pin Code Request HPTEST-> HCI Pin Code Done DM->HCU
Response DM
HCI Pin Code Request DM->HCU Link Key Notification HCU->DM
Reply
HCI! Pin Code Done HCU->DM Connection Complete HCU->DM
Link Key Notification HCU->DM
Connection Complete HCU->DM

-> = signal travels in the direction of the >.

NB: The following settings were used in Wisdom: - Authentication Enabled, Variable

Figure 5-2 Wisdom Log 1

Pin (entered by user), Security Level 3.

52

The “Touch and Find” System

Philippa Regan

Wisdom Log for subsequent connection, i.e. with existing Link Key

Master Slave
Signal Type Direction Signal Type Direction
HCI Create Connection | DM -> HCU | Connection Request HCU->DM
Connection Request HCU->DM | HCI Accept Connection Request | DM->HCU
Link Key Request HCU->DM | HCI Connection Progress HCU->DM
Link Key Request Reply | DM -> HCU | Link Key Request HCU->DM
HCI Link Key Done HCU->DM | Link Key Request Reply DM->HCU
Connection Complete HCU->DM | HCI Link Key Done HCU->DM
Connection Complete HCU->DM

Figure 5-3 Wisdom Log 2

NB: The following settings were used in Wisdom: - Authentication Enabled, Variable

Pin (entered by user), Security Level 3.

PLP

luetooth Stac

d

errace

MshReqgisterasa

g licationRe

mshRead[ocgjj

mshRegisterAsApD!

w

icationCnf

dmshReadLoca\\m‘oCnf
dmshReadLoca\\nfo\ d

DM

Figure 5-4 Bluetooth Stack Interface Diagram

53

The “Touch and Find” System Philippa Regan

In order to interface correctly with the existing Bluetooth Stack, the signals shown in

Figure 5-4 need to be sent. The process proceeds as follows: -

1. An “Initialise” signal must be sent from the Device Manager to new main PLP
task to initiate the process.
PLP main task must send dmshRegisterAsApplication to the Device Manager.
Send a signal from the PLP main task to the Device Manager to request the
local device information (Bluetooth Address and Link Key).

4. Device Manager returns a confirmation of the local information request.

Device manager returns with the local information.

5.5 PAIRING LINK PROTOCOL CONCEPTS

There were two main solutions designed for the main PLP task (for design purposes
the signal transport carried out by lower level tasks was assumed). Two concept
solutions were devised, to ensure that the different available options were explored and
in case no method allowing full duplex communication over a two-contact/wire link
could be devised.

The first solution was based on half duplex communication. This solution allowed a
Master and a Slave to be determined, which meant that a single link key could be
generated and then shared (across the physical link) for use in pairing the Bluetooth
devices. The second solution was based on full duplex communication; it worked using
a broadcast type system in which both Bluetooth devices created a packet containing
the Bluetooth address, friendly name and a randomly generated link key — both devices
then transmitted this packet of data and when a device has a copy of both its own
randomly generated link key and the other device’s, it simply selects the key with the

highest numerical value for use in pairing. The two solutions are described below: -

5.5.1 Half Duplex Design

In this design, half duplex communication across the physical layer was assumed. In
this solution a Master and Slave are established and the signals must be sent in a pre-
defined order. Initially it is assumed that both devices will have a button that is pressed
to initiate communication; hopefully these will be removed later. A flow chart of the half

duplex solution is shown in Figure 5-5.

54

The “Touch and Find” System Philippa Regan

When a device has received the remote device's information and has received a signal
that its own information has been received, it has a complete set of information. The
complete set of information, containing both local and remote device information, is

transmitted as a signal to the application that called the pairing procedure.

5.5.3 Conclusion of Pairing Link Protocol Concepts

It was decided that the full duplex design would be used for the Pairing Link Protocol,
as this was the most robust and would also allow the data to be transferred quickly.
The “broadcast” type nature of the full duplex solution created a particularly robust
protocol in which many of the signals could be lost and the process would still
complete. The “broadcast” type nature also seemed most appropriate for
communication across a symmetrical system, i.e. where the two devices that need to

communicate are identical and thus can have no permanent Master — Slave hierarchy.

5.6 DESIGN OF THE MAIN PLP TAsSK

The main PLP. task deals with high level communication and signal flow — it is
independent 9r(the physical communication medium used. The main PLP task is the
central component of the software for the “Touch and Find” system as shown in Figure
5-8. The diagram shows the order in which signals are sent and which components
send/receive as defined in the Pairing Link Protocol. The signal flow defined in the

Pairing Link Protocol is shown in Figure 5-9.

Figure 5-9 shows the structure of the “Touch and Find” software and how it interfaces
with the Device Manager in the Bluetooth stack. The process can be started by either
device 1 or device 2, with the plpStartScanReq signal being sent from the application
layer to PLP main task layer. The order of the signals is represented on the diagram
by the vertical position of the signals, with the signals at the top of the page being sent
first. For simplicity the diagram only shows one of the outgoing information signals;
however in reality this signal is sent at regular intervals until the device receives
confirmation that it has been received. It should be noted that the number of signals
that need to be sent between the two PLPTX (PLP Transport) tasks has been kept to a

minimum to make the system as robust as possible.

58

The “Touch and Find” System Philippa Regan

IDLE - this is the base state. The task starts in the IDLE state and returns to the IDLE
state once completed. After the “button” to initiate the “Touch and Find” process has
been pressed, the local device information has been retrieved and the first signal
containing the local information has been transmitted to the PLPTX (transport) task, the
ACTIVE state is entered.

ACTIVE - In this state the local device information is transmitted at regular intervals
until an incoming signal is received or there is a timeout. If the incoming signal is the
remote device information, then the GOT_KEY state is entered (as the main PLP task
has “got” a copy of the remote link key). Alternatively, if the incoming signal is a
confirmation that the outgoing local information has been received, then the
WAIT_FOR_KEY state is entered.

GOT_KEY - In the GOT_KEY state, the local device has received the Remote device’s
information and now waits to receive confirmation that the remote device has received
its outgoing information. The main PLP task continues to output its local information at
regular intervals until it receives a confirmation/acknowledgement that the information it
has sent out has been received. Once the acknowledgement has been received, the
main PLP task selects the link key with the higher numerical value and then sends the
complete link information signal to the calling application. The main PLP task then
returns to the IDLE state.

WAIT_FOR_KEY - In the WAIT_FOR_KEY state, the local device has received
confirmation that its outgoing signal was received by the remote device and now waits
for the remote device’s information. Upon receipt of the remote device information, it
sends an acknowledgement, selects the link key with the higher numerical value and
then sends the complete link information signal to the calling application. The main
PLP task then returns to the IDLE state.

The basic structure for the main PLP Task was designed using the Nassi-
Schneiderman diagrams shown in Figure 5-11, Figure 5-12, Figure 5-13 and Figure
5-14 as these diagrams provided a simple way of representing the different states and

case switches.

62

The “Touch and Find” System Philippa Regan

o

The main PLP task should remain in the IDLE state until it has sent the first
piptxOutinfoReq (outgoing local device information) signal.

Due to the symmetrical nature of the devices to be connected, both devices
send out a link key and then the link key with the highest numerical value is
selected by both devices and used to create the link.

The main PLP task should not request the local information from the Device
Manager until it has received the PLP_START_SCAN_REQ (start) signal in
order to ensure that the information is up to date — for example the
friendlyName might be changed.

The main PLP task should absorb any PLPTX_IN_INFO_IND (incoming device
information) signals received whilst in the IDLE state as a result of the process
having just been completed or not been started yet.

The main PLP task should absorb any SIG_TIMER_EXPIRY's (timer expiry)
signals received in the IDLE state that were started by other activities that have
now been cancelled.

Two separate case switches should be used in the main PLP task. The first is
to filter out the SIG_TIMER_EXPIRY’s (timer expiry’s) as a result of the state
timer. If the signal received is not a SIG_TIMER_EXPIRY caused by the State
timer the second switch was called. The second switch, switches on the State
and calls the relevant function for that state.

The device information should be stored in a single structure,
plpLocalDeviceRecord and pipRemoteDeviceRecord for the local and remote

devices respectively.

ACTIVE State

Decided to use variables held in the context to store the remote and local
device information, in order to keep all the information together and to make it

easier to manage the variables.

WAIT_FOR_KEY State

The main PLP task should absorb any SIG_TIMER_EXPIRY's received that

were started by other processes that have subsequently been cancelled.

GOT_KEY state

Absorb any extra PLPTX_IN_INFO_IND’s (incoming device information) signal

that are received.

65

The “Touch and Find” System Philippa Regan

The use of an "ALL_INFQ” state as a final state was considered, in which the signal
containing the local and remote device information for sending to the application would
be sent. However it was deemed to be unnecessary as there was only one signal to be

sent in the ALL_INFO state and no signals were to be received.

5.7 IMPLEMENTATION AND TESTING OF THE MAIN PLP TASK

The main PLP task was the first task built. It was built on a single PC with a TTPCom
“Mad Cow” Bluetooth Evaluation Board (EVB) connected through the serial port. The
EVB was required as it hosts the Bluetooth Device Manager (DM) and the rest of the

lower stack.

5.7.1 lIsolation Test

The main PLP task was initially tested in total isolation by creating a script to be sent
from the TTPCom Genie emulation tool. The script sent ali the signals the main PLP
task required in order to complete the process in the correct order and had some
delays in between the sending of the signals to ensure that the process occurred

smoothly, albeit a little slowly.

The script sent the following signals and the code was stepped through using the
Borland Debugger.

1. SIG_INITIALISE from Device Manager to main PLP task to initialise the main
PLP task.

2. dmshRegisterAsApplicationCnf from Device Manager to main PLP task to
register the main PLP task with the Device Manager as required by the Device
Manager.

3. plpStartScanReq from the Application to the main PLP task to start the “Touch
and Find” process.

4. dmshReadLocallnfolnd from Device Manager to the main PLP task to provide
the main PLP task with the local device information that it would normally
receive from the Device Manager in response to the request for the local device
information.

5. plptxOutinfoCnf from remote device to local main PLP task to simulate the
“Acknowledge” signal that would otherwise be sent from the remote device.

6. piptxIninfolnd from remote device to main PLP task to simulate the device

information from the remote device being received.

66

The “Touch and Find” System Philippa Regan

The most significant problem uncovered in the testing procedure was with the two
timers used in this task. When a timeout occurs, a SIG_TIMER_EXPIRY signal is sent
to the main PLP task Queue. The SIG_TIMER_EXPIRY signal may not be processed
until after the timer has been stopped which can lead to the signal being processed in
an incorrect state; to avoid this boolean “timerRunning” variables were introduced.
Before processing the SIG_TIMER_EXPIRY signal, the “timerRunning” variable is
checked and if set to FALSE, the signal is marked as “handled” but not processed.

5.7.2 Test Task Test

In order to ensure that the signals were sent to the main PLP task at the correct time
and to create a more realistic test environment, the existing TTPCom Test task code
was modified to include some signals for the PLP task. The PLP task was tested with
the other TTPCom tasks also running. When Genie is running, it is possible to send
signals from the TEST task when a specific button is pressed. In this case the
plpStartScanReq signal is sent from the Test task when “6” is pressed and the

plptxininfolnd signal is sent when “7” is pressed.

The Test task was designed to respond to the signals received from the main PLP task
in such way as to test all the functions of the main PLP task, i.e. by simulating the
presence of another device. The signal flow of the main PLP task interacting with the
Test task (after reaching the ACTIVE state) is shown in Figure 5-15.

67

The “Touch and Find” System Philippa Regan

5.8 CHAPTER SUMMARY

In Chapter 5 the “Touch and Find” system and the Pairing Link protocol is introduced.
The “Touch and Find” system is a novel method of Bluetooth Pairing using a serial link
that is designed to improve the usability of Bluetooth Pairing. A development plan for
the “Touch and Find” system was discussed in addition to the requirements of the
system. The basic architecture for the “Touch and Find” system was introduced and
the required interface with the Bluetooth stack was investigated. The signals required
to create a connection were investigated and it was decided that the “Touch and Find”
system should create a Bluetooth connection using a Link key rather than a PIN

number.

Two different methods of exchanging the necessary information for the “Touch and
Find” system based on full duplex and half duplex communication were discussed and
it was concluded that the full duplex solution was the best. The full duplex concept was
then developed by the author into “The Pairing Link Protocol” which specifies the signal

flow between the various sections of the “Touch and Find” system.

Chapter 5 goes on to show the development of the main software task, the PLP task
which adheres to the Pairing Link Protocol and interfaces with the existing Bluetooth
stack. Finally the successful implementation and testing of the main PLP task is
described.

In the following Chapter the PLP Transport task (PLPTX) is described, including the
design, implementation and testing of the PLPTX task. The PLP Transport task
provides the link between the main PLP task and the hardware that is used to link the
two devices using the “Touch and Find” system.

69

The PLP Transport Task Philippa Regan

6.1 PLP TRANSPORT TASK REQUIREMENTS

The PLP Transport task (PLPTX) task is the module that provides the interface
between the main PLP task and the physical layer. The PLPTX task should be
independent of the physical medium used. |Initially the PLPTX task should be
developed to use the Windows serial port interface and must generate signals in a
suitable format for transmission and processing at the receiving terminal (i.e. packets
should be designed such that they can be simply processed). The PLPTX task should
carry out the lower level task associated with serial link maintenance and signal

processing.

It is important that the PLPTX (transport) task should not monopolise the CPU time, i.e.
it should allow other Bluetooth tasks to have processor time as required; the Windows
serial port must be “non-blocking”. The PLPTX task must support full duplex
communication and must be capable of decoding and processing the received signals

and sending signals to other tasks as required.

6.2 PLPTX Task DESIGN

The PLPTX task has five main areas of functionality; the serial Interface, processing
inputs from the other tasks, processing inputs from the windows serial port, generating
and sending signals to the windows serial port and generating and sending signals to

the other tasks. See the PLPTX Block Diagram shown in Figure 6-2 for details.

71

The PLP Transport Task Philippa Regan

6.3.1 Creating Events

Events are used to signal when data has been received, when the port is ready to
transmit more data and when there is more data to be transmitted. “Events” need to be
created for the read and write functions (rdEvent and wrEvent) and also to signal to the
tx (transmit) thread that there is more data to send (txSignal event). The “CreateEvent”
function should be used to create these events.
e.g.
plpbuContext.txSignal = CreateEvent (NULL,/* Security attributes */

TRUE, /* Manual Reset */

FALSE, /* Initial State */

NULL /* name*/);

Handles are used to indicate which file should be read from or written to. Initially these
should be set to INVALID_HANDLE_VALUE. Three handles were used, general i/o

(input/output), tx (transmit) and rx (receive).

6.3.2 Opening the Port and Setting it up

The procedure for opening up the port and setting it up has been summarised in

pseudo code below: -

1. The “CreateFile” function should be used to open the port.

e.g.

ioHandle = CreateFile (PC_COM_PORT,
GENERIC_READ | GENERIC_WRITE,
0, /* share Port */
NULL, /* No Security */
OPEN_EXISTING, /* How to Create */
FILE_FLAG_OVERLAPPED, /* File Attributes - No overlapping */
NULL /* Handle of file with attributes to copy */);

2. Get the current Device Control Block (DCB) Settings using “GetCommState”.
e.g. GetCommState (handle, &dcb);

73

The PLP Transport Task Philippa Regan

3.

Fill in the Device Control Block.
e.g.
dcb.DCBIlength = sizeof (dcb); /* sizeof(DCB)*/
dcb.BaudRate = 9600; /* current baud setting - 9600*/
[* etc....*/

Set the DCB settings using “SetCommState”.
e.g. portReady = SetCommState (handle, &dcb);

/* if portReady == 1 command was successful */

Setup the Input and Output Buffer lengths using “SetupComm”.
e.g. SetupComm(handle, input buffer length, output buffer length};

Set timeouts for read and write operations.
e.g.

* declare */

COMMTIMEOUTS timeoutsDefault;

/* set default timeouts */
timeoutsDefault.ReadInterval TimeOut = MAXDWORD;

[*etc... */

6.3.3 Creating Threads

As described earlier (in Section 6.3), three threads are used (tx, rx and general i/0).

The threads were created using the “CreateThread” function, both the read and write

threads need to be created.

e.g. plpbuContext.txHandle = CreateThread (NULL, /*security attributes */
0, /*Stack size */
transmitPacket, /* Tx Thread function*/
0, /*Parameter */
0, /*Create flags */
&threadld /*Thread identifier*/
);

74

The PLP Transport Task Philippa Regan

6.3.4 Tx Thread Function

In the tx thread the transmitPacket function is executed continually; it was declared as
follows:-
DWORD WINAPI transmitPacket (LPVOID ptr);

In the transmitPacket function the tx thread waits for the txSignal event to be set by
calling WaitForSingleObject as follows: -

WaitForSingleObject (plpbuContext.txSignal, INFINITE); /* timeout is infinite */

Once the txSignal has been set (i.e. there is data to send) the transmitPacket function
calls WriterGeneric which does the WriteFile call to write the data to the serial port.
WriterGeneric is a fairly standard function documented in MSDN help files. A flowchart
of the WriterGeneric function is shown in Figure 6-3.

The WriterGeneric function contains some error trapping for the WriteFile function. In
Overlapped /O the writefile often does not return immediately — this causes WriteFile

to return “operation not successful”, GetLastError is then called.

If GetLastError returns anything other than “ERROR_IO_PENDING” there is a fault and
the process will fail. If it returns “ERROR_IO_PENDING” then the WriteFile was
delayed due to the CPU being busy. The WaitForSingleObject function is then called,
it waits for the processor to have time to complete the WriteFile, it also allows time for
the expected data to be received into the buffer. Once the wrEvent is set,

GetOverlappedresult is called to determine if the WriteFile was successful.

6.3.5 Rx Thread Function

The Rx thread function works in a very similar way, it calls ReadGeneric (see Figure
6-3 for ReadGeneric flowchart) passing in the number of bytes to be read. If the data is
already available, the ReadFile in ReadGeneric returns immediately. If all of the data is
not there, WaitForSingleObject is called, returning either after the timeout interval or
when the data has been received. Finally, GetLastError is called to verify that the read

operation was successful.

75

The PLP Transport Task Philippa Regan

6.4 PLP TRANSPORT TASK — WRITING A SIGNAL TO THE SERIAL PORT

The bus task has been designed such that to output any signal it is necessary to create
a SIG_PLPTX_BUS_WRITE_DATA_REQ signal, fill it with the necessary data and call
the piptxBusWriteData function passing in the newly created signal. This method was
used as it provides a standard way of outputting data via the serial port, thus
simplifying the process and allowing the serial interface section of the code to be re-
used in other modules. From the development point of view, the use of a single signal
to output data to the serial port makes it very easy to see when data is being output to

the serial port during the debugging process.

The PlptxBusWriteData function then adds the contents (i.e. signal to be sent) of the
SIG_PLPTX_BUS_WRITE_DATA_REQ signal to the queue of signals to be output and
signals that there is more data to transmit by setting the txSignal event as shown in

Figure 6-4.

77

The PLP Transport Task Philippa Regan

The steps carried out in each of the functions in order to write a signal to the serial port

are summarised below: -

In plptxmn (main plptx code)...

1. A SIG_PLPTX BUS WRITE_DATA_REQ signal is created.

2. The SIG_PLPTX BUS WRITE_DATA_REQ signal is filled with data/signal to
be sent including any header signals required for processing. The PUT_INT
family of (TTPCom) functions should be used to put the data into the signal to
be sent and the GET_INT family of functions used to read data from received
signals as this avoids the problems caused by some systems being little endian
whilst others are big endian.

3. The plptxBusWriteData function is called and a pointer to the
SIG_PLPTX_BUS_WRITE_DATA_REQ signal that has just been created and
filled is passed into it.

In plptxBusWriteData function...

4. The queue of signals to be transmitted is locked as this is a “Critical section”.

5. The signal to be transmitted is added to the queue of signals.

6. The queue is unlocked (this is no longer in the “critical section”).

7. The txSignal event is set to signal that there is more data to transmit in the tx
thread.

8. The signal is destroyed (there’s still a copy of the signal on the queue of signals
to be sent).

In the tx (transmit) thread (in transmitPacket)...

9. The tx thread waits for the txSignal to be set.

10. WriterGeneric is called and a pointer to the data and the number of bytes to be
sent is passed in.

In the tx thread (in writerGeneric)...

11. WriteFile is called (this is the function that writes the data to the serial port.

6.5 PLP TRANSPORT TASK — SIGNAL FORMAT

The signal format was designed to make processing the signal in the receive thread as
simple as possible. The signals to be sent over the serial link were designed to start
with a 1-byte field containing the packet type. The packet type can be either
INFO_TYPE (a signal containing the device information) or ACK_TYPE (an

“acknowledge” or “not_acknowledge” signal).

79

The PLP Transport Task Philippa Regan

This structure was used as it is simple and can be easily extended if other signals are
added at a later stage. The received data is processed in the PLPTX task and signals
are sent to the main PLP task and to the PLPTX task (i.e. an internal signal is sent) as
required. The main PLP task only deals with higher level processing.

6.8 IMPLEMENTATION AND TESTING

Initially a very basic procedure was used to test the Windows Serial Port. The basic
code for accessing the serial port and writing to it was implemented and then tested by
connecting the Serial Port via a serial cable to a second PC running Windmill's
ComDebug''. ComDebug simply acted as a terminal that showed what data was being
output to the serial port from the code being tested.

Initially just an “A” was output from the PLPTX (PLP Transport Task) code to see if it
was displayed on the ComDebug terminal. When this test was successful, several
bytes were output successfully. Having established that the transmit mechanism

worked the read mechanism was tested.

The number of bytes to be read was set to 1 and an “A” was output from the
ComDebug software running on the other PC whilst the PLPTX code was run in
“‘debug” or “step through” mode looking at the receive thread. The PLPTX task
satisfactorily read the “A” and output it on a trace signal in Genie that was used for
debugging.

Debugging the code proved to be both difficult and time consuming due to the multi-
threaded processes. Borland C++ supports multi-thread debugging; however only one
thread can be active at any one time and therefore it is imperative that the correct
thread is being looked at during the debugging process. It is important to remove
breakpoints from sections of code that may be part of a different thread, otherwise it

may be impossible to enter the thread that needs to be stepped through.

Having established that the basic communications mechanisms worked, the
mechanism of writing a real signal to the serial port was tested (i.e. using the
plptxWriteDataReq signal to output all data) using the ComDebug software. Similarly,
the basic structure of the reading and processing of received data from the serial port

was tested using the ComDebug software.

" ComDebug is a freeware communications debugging tool from “Windmill” that acts as a

terminal.

84

The PLP Transport Task Philippa Regan

EVB (Evaluation Board) connected to each PC using a serial port, which could not be

done as the laptop’s only serial port was being used for testing the serial link.

The next stage was to run the PLPTX and main PLP code on both PC'’s to determine if
the whole system worked. Once again the Device Manager was being simulated using
the Genie script. Both the main PLP task and the PLPTX task were run in “debug”
mode and the code was stepped through to verify that it functioned correctly.

Having established that there were no problems with the logic, both PC’s were taken
out of debug mode and were run normally with both the main PLP and PLPTX tasks
running. This test showed that although the “Touch and Find” process was being
completed, the tasks did not stop on completion and signals continued to be received.

Various solutions to this problem were considered, such as: -

e Clearing the queue of signals to be transmitted.
After consideration it was concluded that this solution would not work as clearing the
queue of signals to be transmitted would stop the other device being able to complete

the “Touch and Find” process.

o Clearing the receive buffer.
Although clearing the receive buffer may help, it would also prevent the device
responding to requests for information from the other device which may not have

completed the “Touch and Find” process yet.

e Adding a signal to be sent between the devices to indicate that that device has
finished. Only if a device has both sent the plptxOutFinishReq signal and received a
plptxInFinishind will it be able to change back to the IDLE state.

This solution (adding a “finish” signal) was implemented and works well as it ensures
that if one device finishes and the other has not, the first device does not go back to the
IDLE state but remains in the same state until either it receives a request to finish the
link or alternatively the state timer times out. This ensures that it can correctly respond
to requests for information from the device that has not yet completed the “Touch and
Find” process. There were still some problems with signals being processed in the
correct state, but these signals were simply handled and absorbed in the relevant

states.

86

The PLP Transport Task Philippa Regan

When the PLPTX task receives the plptxStartSequenceReq, it creates and sends a
“Start1” signal to the serial port transmit queue that consists of “AAA". When the
PLPTX bus receives “AAA”, it sends a plptxStartSequence2Req to PLPTX. This
causes the PLPTX task to create a “Start2” signal “ABB” and send it to the serial port
transmit queue. When “ABB” is received the plptxState changes to “CONNECTED”
and a plptxStartSequencelnd signal is sent from the PLPTX task to the PLP task.

By using start sequence packets of “AAA” and “ABB” the packets can easily be
processed by the existing structure of the ProcessRxSignalFunction. The existing case
switch on the packet type (as shown in Figure 6-8) had just two cases (packet types)
and a defauit case. Adding in the Start Sequence simply required the addition of a
third START_TYPE packet. Similarly a START_SIGNAL and a START2_SIGNAL
were added to the case switch on the signal name. The revised Nassi-Schneidermann

Diagrams are given in Appendix 1.

6.8.2 Disconnection Test

The next test on this code involved disconnecting the serial cable between the PC'’s
from one of the PC’s. Both PC’s were then run with both the main PLP and PLPTX
code running and the Test task being used to simulate the required signals from the
Device Manager. As expected, nothing happened until the serial cable was
reconnected to complete the link and the “Touch and Find” process completed as

normal.

The final test in this section was to utilise the presence of two serial ports on the
desktop PC. The TTPCom “Mad Cow” Bluetooth EVB was connected to serial port
“COM 2" and the serial cable for the “Touch and Find” process was connected to the
other serial port “COM 1". The laptop (PC “A” — as shown in the test setup diagram in
Figure 6-10) ran both the main PLP task and the PLPTX task and would use the TEST
task to simulate the Device Manager. The desktop PC (PC “B”) would run all of the
TTPCom tasks and had the EVB connected. The serial cable was disconnected; “run”
was pressed on both PC's and then after a brief period the serial cable was
reconnected. The “Touch and Find” process completed as normal once the connection
had been re-established showing that both the main PLP and PLPTX tasks were
compatible with the existing TTPCom tasks.

90

The PLP Transport Task Philippa Regan

6.9 CHAPTER SUMMARY

Chapter 6 has described the requirements, design, implementation and testing of the
PLP Transport Task. The chapter started with a description of how the windows serial
port works and how it should be set up for non-overlapped input and output. The text
described the multi-thread nature of the serial interface and how “events” are used.
The chapter then goes on to describe how the serial interface is used in the PLP
Transport task and how the standard method for sending a signal out through the serial
port from the PLPTX task was developed.

The signal structure design was explained together with how it was developed in order
to simplify the data processing at the receiving end of the link. Finally the
implementation and various tests that were carried out have been described, including

the addition of the automatic start feature for the “Touch and Find” process.

91

Hardware Philippa Regan

CHAPTER7 HARDWARE

The software tasks described in Chapters 5 and 6 were successfully implemented and
then tested using a crossed over serial cable to provide the hardware link between the
two devices to be paired. In this Chapter three types of hardware solution are
investigated to provide the final link between the devices. The solutions developed are:
- electrical contacts, infrared and inductive simple looping. Each of these methods of
communication described has been designed to support full duplex communication as
required by the Pairing Link Protocol. Another possible solution could be based on

capacitive coupling.

The chapter starts by describing the first hardware concept developed which was the
simple electrical contact solution. This solution uses a “hybrid” circuit to achieve full
duplex communication using two contacts. The modifications to the software that were
required in order to detect the “CONNECTED” state are explained together with the
testing of the solution. The chapter goes on to describe the design of two possible
infrared based solutions and the design, implementation and testing of the inductive

loop solution.

7.1 SIMPLE ELECTRICAL CONTACT SOLUTION

The design of a full duplex simple electrical contact solution was complicated by the
constraints placed on the design of the connectors by the need for all devices to have
identical connectors. This “symmetry” is required because the “Touch and Find”
system is to be used on devices which may need to pair to identical devices, thus a
symmetrical connector is required. It is also necessary to know which of the contacts is
the ground signal. One possible solution to this is to use contacts that are circular and
concentric. It was decided that the use of three concentric circular contacts (as
required for a traditional three wire full duplex serial link) would be both space
consuming and unnecessarily complex and that a two contact solution would be best
provided that a suitable circuit for providing full duplex over two wires could be
designed.

The method proposed is essentially an electronic “hybrid” [563]. The “hybrid”
transceiver allows the transmit and receive paths to be combined across a single line
whilst having the ability to extract the data to be received from the combined path for

the receive function. The “hybrid” is widely used in communications for separating go

92

Hardware Philippa Regan

and return transmissions; for example in every wired analogue ‘phone. For the
purposes of digital data transmission between two devices actually in contact, a simple
realisation is possible, which might have the potential for low cost and to be largely

realised in integrated form.

Figure 7-1 shows the circuit diagram of the proposed “hybrid” circuit. In each device,
the data to be transmitted is buffered by two stages to provide Q and Q!" signals. The
Q signal is sent to the other device through R1 and applied to the input of a local
Schmitt receive buffer through R2. The Q! signal is applied to the receive buffer
through R3. The method of operation is simply that the resistor values are chosen so
that, when connected, the local signal balances out at the input to the receive buffer.
However the signal from the other side is not nuilled out and hence is recovered and
converted to a logic level by the buffer. It is assumed that the Tx buffers are both
CMOS type which swing effectively from rail-to-rail; the rail voltages on each side are
reasonably equal; and the Schmitt input thresholds are symmetrical around the mid-rail

voltage.

Hybrid Circuits

Contact Interface

'

"Hybrid" Circuit "Hybrid" Circuit

| |
| |
| |
| |
ll Signal : L Tx2
1] s e
| | V2
| | R3
| |

Schmitt | } Schmitt

Trigger | I Trigger
| |

Ground [L Ground | 1 Ground
- | | -

1 [}

Figure 7-1 “Hybrid Circuit” Diagram

The circuit shown in Figure 7-1 was made up and tested to verify that it worked. A

range of resistor combinations were used, but the values shown gave the best voltage

12
! means negated.

93

Hardware Philippa Regan

swing at “V1” and “V2”, the inputs to the Schmitt trigger. The results of the testing of
the “hybrid” circuit are shown in Table 7-1.

Input (Volts) Output (Volts)
™1 X2 V1 V2
5 5 3.50 3.50
5 0 2.06 2.94
0 5 2.94 2.06
0 0 1.51 1.51

Table 7-1 Table of Output voltages from basic circuit

The ability of the circuit to detect the “connected” state was investigated and it was
found that due to the symmetrical nature of the circuit it would be impossible to
determine whether or not another device was connected to the serial port. The “hybrid”
circuit was tested to determine the voltage level at the input to the Schmitt trigger whilst
the signal line was disconnected, i.e. the effect of TX1 on V1, which is the input to the
Schmitt trigger. The results are shown in Table 7-2.

Input “Connected” | “Disconnected”
TX1 X2 Output (V1) Output (V1)
(Volts) (Volts) (Volts) (Volts)
5 5 3.50 3.49
5 0 2.06 3.49
0 5 2.94 1.51
0 0 1.51 1.51

Table 7-2 Table showing the effect of TX1 on V1 in the disconnected state.

The results shown in Table 7-2 show that with the existing circuit it is impossible to
determine when the devices are in the “connected” state, as the voltage at “V1” is the
same if TX1 is 5 volts in the “disconnected” state as it is when TX2 and TX1 are 5 Voits
in the connected state. i.e it is impossible for the circuit to tell the difference between

the “disconnected” state and the “connected” state when both inputs are the same.

Although various hardware solutions to detecting the “connected” state were
considered, it was decided that it was best to minimise the complexity of the hardware
and to use a software solution to ensure that signals that a device transmits are not
received and processed by the same device. This is discussed in Section 7.1.2
“Detecting the Connected State.”

94

Hardware Philippa Regan

Having constructed the “hybrid” circuit, Schmitt Trigger and Inverter, the circuit was
tested using two single pole double throw switches to provide the inputs. The Schmitt
triggers were also tested at a frequency of 1MHz, using a square wave input from a

signal generator to verify that they were capable of switching at the required rate.

The next stage was to connect the PC’s to the circuits. This was done using a serial
connector into the PC serial port with wires connected to the Tx, Rx and Ground lines
that were then fed into the Maxim chip and “hybrid” circuit as required. The signal line
and ground between the sets of hardware for each device were also connected and
then the main PLP and PLPTX code was run on both machines with the Test task
running to simulate the required signals from the Device Manager. The local and
remote device information was correctly returned to the test task (which was being
used as the calling application) as defined in the “Pairing Link Protocol”. The “Touch
and Find” system worked as intended with no problems encountered in the testing of

the combined hardware and software.

7.1.2 Detecting the Connected State.

As indicated previously, a method is required to detect the “connected” state. Without
some form of software changes the system was incapable of recognising when another
device was connected; it would simply send signals to itself and then process them.
This would result in the “Touch and Find” process completing incorrectly as the only
device information would be that of the local device which would fill both the remote

and local device information areas.

The simplest solution appeared to be to add a unique header to each packet sent. The
header would consist of three known start bits (so that the start of a packet could be
easily detected) and would then be followed by a unique device identification number.
The full Bluetooth address of the transmitting device was used as the unique device
identification number. The PLPTX task would then compare the received device
Identification (device ID) with that of the local device. If the two ID’s are the same then
the PLPTX task would throw away the received signal; if different, the received signal is

processed in the normal way. This allows the software to detect the “connected” state.

The header would be included on all packets sent and if at any stage the device ID of
the received signal became the same as that of the local device, it would be known that
the connection had been lost and the signal would be thrown away. This solution

would also be compatible for use with both the inductive and infrared solutions. The

97

Hardware Philippa Regan

signal structure (shown in Figure 7-5) now has an additional 3 byte start sequence and
a 6-byte unique device ID (Bluetooth address).

Signal Structure

Bytenumber 0 1 2 3 9 10 1
% | % | % Bluetooth Address }] l
Start Bytes Device Id Number f \ Signal
Packet Signal
Type Type

Figure 7-5 Generic Signal Structure

The implementation of the above change was simple as it was compatible with the
existing structure in both the rx and tx State switches — it simply required adding two
extra states to the rxStates. The changes required have been represented in Figure
7-6 and in the Nassi-Schneiderman Diagrams in Appendix 2.

xState State Diagram 2

PLPTX_BUS_START

if startByteCo if remoteDeviceld\l=

localDeviceld

PLPTX_BUS_RX_RE
MOTE_DEVICE_ID

if remoteDeviceld 1=
localDeviceld

PLPTX_BUS_RX_PA
CKET_TYPE

PLPTX_BUS_RX
_SIGNAL

Figure 7-6 RxState Diagram 2

In the process of implementing these changes, the system was made more robust so
that instead of failing if an incorrect signal was received, it would simply throw away the

received signal. The final signal flow diagram used in the “Touch and Find” system is
shown in Figure 7-7.

98

Hardware Philippa Regan

completed with the correct data after extra signals had been sent to cope with

the signal loss. This demonstrated the robustness of the code.

Finally, the TTPCom “Mad Cow” Bluetooth Evaluation Board was connected to the
second serial port on PC B, so that the system could be tested with the device
manager operating on one side. Again the process completed successfully showing
that the complete “Touch and Find” system had been implemented successfully using

the “simple electrical contacts” hardware solution as the physical medium.

7.2 INFRARED SOLUTION

Two concepts were used for the development of an Infrared solution. The first was
based on a simple pair of matched infrared transmitters and detectors and the second
was based on an IrDA (Infrared Data Association) chipset. Due to time constraints
neither solution was constructed, particularly as the IrDA chipset would require a PCB
to be designed and made. However, designs based on both techniques were
developed and analysed here.

A simple and low cost solution is shown in Figure 7-9. It is based on using amplitude
modulation of an Infrared carrier (generated locally) with the data signal. This is then
transmitted through an Infrared transmitter which is frequency matched with the
Infrared receiver used in the other device. The received signal is passed through a low
pass filter to remove the high frequency component, leaving just the data signal, and is
then input to an amplifier. The gain of the amplifier was to be determined according to
the amplitude of the received signal. A Maxim level converter was required between
the PC serial port and the circuit to change the voltage levels between RS232 and
CMOS. Infrared modem IC'’s (Integrated circuits) were researched but there seemed to
be a lack of “non IrDA” infrared modems available. Thus the solution utilising the IrDA

chipset was realised, this is shown in Figure 7-11.

The IrDa compliant chipset design was based on the data sheets and application notes
of the chips used [54] [55]. The IrDA solution should work without significant changes
as it is designed to be used as a cable replacement for use between PC’'s. No

software changes should be required.

Hardware Philippa Regan

Having determined that modulation was required, the next step was to determine if
resonant circuits would be beneficial. The circuit shown in Figure 7-12 was used to

evaluate the amplitude of the signal received.

Test Circuit

Signal
Generator ’\> Vin | 1mH mH Vout
- variable
frequency
- Tx Rx L

Figure 7-12 Circuit Diagram of Test Circuit

For a 5V peak-peak input signal, the output voltage “Vout” on the above circuit was 1V
peak-peak. The received signal did not have a sufficiently large amplitude to process
the received signal reliably whilst allowing for variations in amplitude due to the
distance between the coils and noise. Thus some form of resonant circuit would be

required.

Using the inductor's self-resonant frequency was considered but determined to be
unsuitable as each circuit’s resonant frequency is different and it would be extremely

difficult to create coils with the same resonant frequency.

A full duplex inductive solution based on the “hybrid” circuit used in the simple electrical
contact solution was investigated, but no solution found. There were many factors that
complicated the development of the required circuit.

e The circuit must resonate in order to create a sufficiently large voltage on the
receive coil.

e Modulation was required.

e Transmit and receive must be carried out on one circuit. It was not possible to
have a serial “RCL” network for the transmit side and a parallel “RCL” network
for the receive side.

e The inductance of the coil and hence the resonant frequency were affected by
the distance separating the two coils.

¢ The distance between the two coils affected the inductive coupling.

¢ Designing a physical aligning device that could be used to align the two coils
and fix the distance between them was very difficult as it is necessary for the

devices to be identical.

105

Hardware Philippa Regan

The above factors made it very difficult to develop a full duplex circuit with two coils in

the limited time available. Instead, a simpler solution was investigated.

7.4 FOUR CoIL SOLUTION

The use of four coils greatly simplified the task. It would be possible to have separate
transmit and receive coils, thus enabling optimisation of the transmit and receive
circuits by using a series “RCL” network for the transmit circuit and a parallel “RCL”

network for the receive circuit.

The use of two sets of linked coils lends itself to each linked pair of coils being
concentric — for example using a small coil as a transmit coil inside the larger receive
coil. Each device would have both a large coil around a recess and a small prominent
coil. This arrangement would increase the linkage and should enable power transfer
across the inductive link if required (as in electric toothbrushes). The envisaged

connector is shown in Figure 7-13.

Physical Interface for Inductive Solution

Device A
Depression
Rx for Tx coil to
Side View %TX insert into
Tx Rx
Top View
Device B

Figure 7-13 Physical Interface For Inductive Solution

For test purposes four 1mH coils were made up. The two larger coils had an internal
diameter of 19mm and the two smaller coils had an external diameter of 15mm. Figure

7-14 shows the arrangement of the Transmit (Tx) and Receive (Rx) coils and their

respective sizes.

Coil Sizes
Rx
— = Coil
U .
g € ET €
£ £ £ £
[s2] N — Yo
S [—= -l
= Tx
Coil

Figure 7-14 Inductor coil Alignment

106

Hardware Philippa Regan

The number of turns required was estimated using Equation 1.

N L, (6a +9h+10b) Equation 1 [55]
B (0.31a%)

ny To
k—
Figure 7-15 Key to Equation 1
Where : -

L.+ = Inductance in micro Henry’s.
a = average radius of coil in cm.
b = winding thickness in cm.

h = winding height in cm.

N = number of turns.

The coils were made up and the impedance of the coils was measured using an
Impedance Analyser. It was verified that the self-resonant frequency of the coil was
not in the frequency range to be used.

7.4.1 Calculating the Resonant Frequency of the Circuit.

1
W, =—F——
= JLC Equation 2
o, =271, Equation 3

Combining Equations 2 and 3 gives

Equation 4

ro- 1
o 2xALC

107

Hardware Philippa Regan

It was decided to use a modulating frequency of approximately 200KHz requiring a
capacitance of 680pF to be used (to the nearest available capacitance value). The
inductance and capacitance values were then substituted into Equation 4 as shown

below.

L=1uH
C=680pF
1
f;'es = _3 _12
2771x107* x 680x 10
f.. =193kHz

Thus the predicted resonant frequency of the resonating circuit is 193kHz. This was
then verified experimentally using the circuit shown in Figure 7-16. The test circuit
showed that the two circuits (transmit and receive) did not resonate at exactly the same
frequency and that although the amplitude of the received signal could be improved
through tuning, it was not necessary in order to demonstrate that the circuit would
work. The frequency used throughout the development of the inductive looping circuit
was 193kHz, as this was the frequency at which the voltage across the secondary

(receive) coil was maximised.

Resonant Frequency Test Circuit

10R
 +—} >
680pF
f T Vout
5V p-p
L 0

Figure 7-16 Resonant Frequency Test Circuit

imH
1mH
680pF

L
T

Having determined the frequency of the modulating signal it was simply a matter of
modulating and demodulating the signal. Modulation of the 193kHz signal was carried
out by the use of a transistor as this allowed a bipolar input. When the data bit was a
“1”, the modulating signal would be applied across the coil and when the data bit was a
“0”, the coil would be short-circuited, thus providing 100% amplitude modulation. The
circuit diagram of the circuit used during the development process is shown in Figure
7-17.

108

Hardware Philippa Regan

The signal applied to the coil, when the data bit was “1”, was not a perfect sine wave
due to the transistor not being turned on until the voltage at the base reached
approximately 0.6V, however the imperfect sine wave did not cause any problems.

Inductive Solution Development Circuit Diagram

193 kHz . LPF
—_ Rx coil ~ Rx Data
: 680pF 1 ~
L 51V
AR
100k T
Data—-[>—(:)——t
51V
T T

Figure 7-17 Inductive Solution Development Circuit Diagram

The receive circuit was slightly more complex. Firstly the voltage across the inductor
was measured to be up to 39.2 V peak-peak and hence required limiting by means of a
pair of 5.1v Zener Diodes. The signal was then rectified with a diode and demodulated
by passing it through a Low Pass Filter.

The low pass filter was designed to ensure that the capacitor smoothed the output
sufficiently to be read as a “1” whilst the data bit was a “1” and such that the voltage fall
off was sufficiently fast that when the data changed to a “0” the received signal was
also a “0". The time taken for the voltage to drop to 2.5V, following the data bit going
low, was 12.8 uS which, as required, is considerably shorter than the bit time. A plot of
Voltage against time in shown in Figure 7-18. The points on the circuit at which the
voltages were measured are shown in Figure 7-18.

Finally it was necessary to clean up the signal with a Schmitt trigger so that a clean
logic signal could be input into the Maxim Voltage converter for transmission to the PC

via an RS232 cable. The Inverting Schmitt trigger was designed to have thresholds at
2.25V and 2.8V. The complete circuit is shown in Figure 7-19.

109

Hardware Philippa Regan

7.4.2 Testing the “Four Coil” Inductive Solution

The circuit shown in Figure 7-19 was constructed twice, once for each device. Finally
the system was tested by running the complete “Touch and Find” code through Genie.
Both the main PLP task and the PLPTX task were run, together with the Test task (to
simulate the Device Manager). The following tests were carried out successfully: -

1. With both sets of coils aligned, the software was run through Genie on both
systems. The process completed successfully.

2. With both coils apart, “Run” was pressed on Genie on both systems. Nothing
happened until the coils were brought into alignment and then the process
completed as normal.

3. The TTPCom “Mad Cow” Bluetooth Evaluation Board was connected to the
second serial port on PC B, so that the system could be tested with the device
manager operating on one side. The “Touch and Find” process completed

successfully.

This showed that the “Touch and Find” system worked well using the four coil inductive
solution. None of the code used with the simple electrical solution needed to be
changed when the physical medium that the “Touch and Find” system was using was
changed, showing that the Pairing Link Protocol designed was suitable for use with

more than one hardware solution.

7.5 CHAPTER SUMMARY

Chapter 6 introduced the three types of hardware solution developed. The
development of the simple electrical contact solution and the software changes
required in order to detect the “connected” state have been described. The “Touch and
Find” system is then tested with the simple electrical contacts solution being used as
the physical connection. The design and evaluation for two different Infrared solutions
has been documented and a four coil Inductive Coupling solution has been thoroughly
investigated, designed and tested with consideration given to the physical interface

design.

This Chapter shows how flexible both the “Touch and Find” software and the Pairing
Link Protocol are. The “Touch and Find” system has been shown to work very well
using a simple electrical contact solution and an Inductive Coupling solution. Two
Infrared solutions have also been designed further extending the hardware options for

use with the “Touch and Find” system.

111

Conclusions and Summaries Philippa Regan

CHAPTER 8 CONCLUSIONS AND SUMMARIES

This chapter covers the evaluation of the hardware/software and of the complete
system. The thesis is then summarised and conclusions are drawn before suggestions
are made for further work on the “Touch and Find” system. At the end there is a
concluding statement.

8.1 EVALUATION

The “Touch and Find” system was developed to improve the usability of Bluetooth
pairing in devices. The system was also developed to facilitate simple Bluetooth
pairing when using a PAN Gateway or other device with no user interface. It was
designed to enable the information required for Bluetooth pairing to be exchanged by
touching the two devices together momentarily. It was hoped that various different
physical mediums could be used to transfer the information for the “Touch and Find”

system.

The Evaluation section was been split into a hardware and software section which is

then followed by an evaluation of the complete system.

8.1.1 Software and Hardware

The Software has been implemented successfully in the form of two tasks; the main
PLP task and the PLP transport task. The software allows a successful demonstration
of the concepts of the “Touch and Find” system. Modularisation has been achieved
and the lower level transport tasks have been carried out in the PLPTX task, making it
simpler to implement on other platforms. Throughout the development there have
been some modifications required to the code and to the Pairing Link Protocol, but the
resulting software supports a robust serial link pairing mechanism, fulfilling the aims of
the “Touch and Find” system. Both the main PLP task and the PLPTX task satisfy the

requirements set out in sections 5.3 and 6.1.

The main PLP task is initiated from a higher level application (as required), it adheres
to the Pairing Link Protocol designed and satisfies the interface requirements of the
lower layers and the Device manager. The main PLP task does not block the
processor allowing other Bluetooth tasks to be completed as normal. The PLP task
successfully interacts with the device manager as required and is independent of the

physical medium used to provide the serial link between the devices.

112

Conclusions and Summaries Philippa Regan

The PLPTX (Transport) task developed is independent of the physical medium used. It
uses the Windows serial port for non-blocking data I/O and generates suitable signals
for transmission across the physical layer. The transport task is also responsible for
receiving and processing signals and carries out low level tasks concerned with signal
transport across the physical layer. The PLPTX task works with different physical
mediums as required.

The hardware developed works well with the “Touch and Find” software, allowing
successful demonstration of the feasibility of the proposed “Touch and Find” system.

All of the proposed hardware solutions provide an intuitive pairing method.

The simple electrical contact “hybrid” solution (see section 7.1) showed that a full
duplex contact solution based on two wires was feasible. One potential problem for
this “hybrid” simple electrical contact solution is the contacts becoming corroded/rusty
leading to a bad connection. It is likely that the contacts will need to be mounted on a
spring system so that when two devices are touched together a good electrical contact
is formed. However this results in a potential mechanical weakness. The simple
electrical contact solution is secure as physical contact is required. This solution is
also relatively simple and cheap to implement. One possible problem area is the risk of

the exposed contacts being damaged.

The “hybrid” circuit did not cancel out the local signal at the input to the receive buffer
as well as expected and so a formal analysis of the circuit was carried out; this is

shown in section 8.1.2.

113

Conclusions and Summaries Philippa Regan

In order to be “deaf” to the local signal at the input to the Schmitt trigger, we require

Equation 8 and Equation 10 to be equal: -

VR, —(K)[H R, }
(R+R,+R) \2) (R, +R) Equation 8 = Equation 10
R = (R+R,+R)| R
2 (R, + R;)
Ry (R1+R2+R3) R(Rl+R2+R3)
2 2(R2+ R3)
R - (R+R, +R)R, +R)+R,(R+R,+R,)
? 2(R, +R)
0= (R+R, +R)R, +R)+R,(R +R, +R,)-2R,(R, + R;)

2(R, + Ry)
0=RR, +RR,+ R’ +R,R,+R,R, +R’+RR, + R’ +R,R, —2R,R, - 2R

0=-2RR,—RR,— R,R, - 2R, + R

0=R,’ —R,(R +R,)—2R,(R +R,) Equation 11

Setting Ry =R,=r and substituting into Equation 11 gives: -
R’ -2rR,—4r’ =0

Solving the quadratic equation yields: -

R3=3.236r Equation 12

Equation 12 shows that given that R1 = R2 = 10kQ), R3 (see Figure 8-1) should have
been a 32kQ resistor instead of a 47k() resistor. This was due to an incorrect earlier
analysis of the “hybrid” circuit. The use of a 47kQ resistor instead of a 32kQ did not
stop the circuit working, but it would have made the switching thresholds on the Schmitt

trigger input closer together than would otherwise have been necessary.

116

Conclusions and Summaries Philippa Regan

8.1.3 Other Hardware Solutions

The Infrared solution proposed was not implemented but both the proposed Infrared
links are reliable and will not result in any software changes. The IrDA solution
remains a rather expensive option at present, although this would be reduced if an IrDa
port was already needed in the device and the necessary interface for the “Touch and
Find” system could be incorporated. The Infrared solutions provide a secure means of
Bluetooth pairing as Infrared communication is restricted by line-of-sight and only
works in approximately a 30° cone. The Basic Infrared solution developed is a cheap,
simple, reliable circuit. Both the Basic Infrared solution and the IrDA solution are low

power and hence suitable for use in mobile devices.

The Inductive solution provides a particularly elegant solution to the problem, as it
requires nothing to be mounted on the surface of the device. The “four coil” solution
used works well, giving a large amplitude signal at the receiver. The sizes of the coils
have been designed to give good coupling and to enable a self-alignment mechanism
that will increase the reliability of the system. The Inductive solution could also
potentially be optimised to allow battery charging via the same coils in a similar manner

to that used in modern electric toothbrushes.

8.1.4 System

The system tests have shown that it is possible to transfer the required data for
Bluetooth pairing across a serial link, in which the physical medium is either a simple
electrical contact link or an inductive link. Infrared solutions have also been designed,
but not implemented. The tests showed that the required data could be transferred
very quickly and thus that it would be easy for the user to manually hold the connection
together whilst the process completed. Unfortunately no “start to finish” time for the
process to complete was recorded, as only one of the PC’'s used had two serial ports.
Thus the system was dependent on a user pressing a button to activate a script to

simulate the data arriving from the Bluetooth Device Manager.

Throughout the implementation of the software and hardware, the original Pairing Link
Protocol was modified and enhanced. The successful completion of the “Touch and
Find” process, using two different physical mediums and subjected to various tests
(outlined in earlier sections) show that the Pairing Link Protocol was suitable for use
with a variety of mediums and that it was sufficiently robust to create a reliable link.
The decision to use full duplex communication across the serial link and to use a

“broadcast” type protocol has been shown to result in a robust link.

117

Conclusions and Summaries Philippa Regan

It should be considered whether security should be enhanced by requiring users to
enter a PIN number in order to pair the devices so that, for example, it is not possible
for someone to steal your mobile phone and then use it with all of their Bluetooth
enabled devices. Adding a requirement to enter a PIN number (where possible) would
detract little from the usability advantages of the “Touch and Find” system and would

add a security measure that is highly visible to the user giving increased peace of mind.

In summary, incorporating the “Touch and Find” system into devices will considerably
enhance the users “Out of Box" experience, by improving the usability of the Bluetooth
pairing mechanism to make it more intuitive and more secure. The “Touch and Find”
system can be used with infrared, simple electrical contacts or an inductive loop as the
physical medium with no software changes required. The inductive loop method may
be extended to incorporate a universal battery charging method adding further value to
the system. The “Touch and Find” system is ideal for use in a PAN Gateway and other

Bluetooth devices that do not have a user interface.

8.2 SUMMARY

The initial concept for the MSc was to design and implement a PAN Gateway. But in
the process of investigating the issues surrounding a PAN Gateway, in particular how
Bluetooth pairing could be achieved simply without a user interface, a significant
problem in the usability and security of Bluetooth pairing was discovered. The work
changed focus to develop a system that would improve the usability of Bluetooth
pairing in a way which was suitable for use in a PAN Gateway — a device with no user

interface. A summary of the thesis is given below.

The thesis started in Chapters 1 and 2 by introducing what the PAN Gateway is and
how it would be used and then moves on to discuss the usability in existing mobile
devices. A comprehensive review of existing methods of text entry is given. In
Chapter 3 the text described and evaluated the various technologies that could be used
to provide the local connectivity of the PAN and investigate relevant coexistence and
usability issues of Bluetooth. In Chapter 4 the requirements of the PAN Gateway were
given, different user interfaces for the PAN Gateway were discussed and a novel

concept for improving the usability of Bluetooth devices was introduced.

The thesis then shifted focus to develop and implement a system that improves the
usability of Bluetooth pairing for use in Bluetooth devices, especially those such as the
PAN Gateway that have a minimal user interface. In Chapter 5 the “Touch and Find”

118

Conclusions and Summaries Philippa Regan

system was introduced and the system requirements and proposed architecture were
discussed. This was followed by an explanation of the design of the Pairing Link
Protocol, which specifies the signal flow for the "Touch and Find" system. Chapter 5

finished with the implementation and testing of the main PLP software task.

In Chapter 6, the design, implementation and testing of the PLP Transport task was
discussed with a detailed description of how the Windows serial port was used.
Chapter 7 described the final link in the system, the different physical mediums that
could be used. Three types of solution were introduced, a simple electrical contacts
solution, infrared solutions and an inductive solution. Modifications of the software that
were required in order to detect the “connected” state are documented. In Chapter 8

the evaluation, summary and conclusion of the work was given.

8.3 CoNcLUSION

The research has investigated a wide variety of issues relating to the usability of the
Personal Area Network Gateway. Initially the Man Machine Interface (MMI) for the
PAN Gateway was considered including investigation into the existing text entry
methods for mobile devices. Inefficient text entry methods are the source of one of the
most significant usability problems in mobile devices. It was concluded that the best

MMI for the PAN Gateway was minimal; a power button and an L.E.D.

The different technologies that could be used to provide the local connectivvity for
devices in the Personal Area Network were investigated and it was concluded that [rDA
was unsuitable as it's restricted to line-of-sight operation. Of the possible RF
technologies using the 2.4GHz ISM band, only Bluetooth was low power. Bluetooth
also had the advantage of being designed for use by consumers as a cable

replacement technology, making it the optimal technology for use in the PAN Gateway.

The PAN Gateway relies on Bluetooth technology to link with other devices to form the
Personal Area Network and requires “pairing” of devices in order for them to
communicate before the first link can be established. The Bluetooth pairing method in
existing mobile devices was considered and determined to be time consuming, non-
intuitive and unnecessarily complex, in addition to have questionable security

measures when used in public places.

119

Conclusions and Summaries Philippa Regan

To improve the usability of Bluetooth devices and in particular the PAN Gateway, the
“Touch and Find” system was developed. The “Touch and Find” system is based on
the Pairing Link Protocol which specifies the required signal flow between devices to
enable pairing and was designed to enable a robust link to be formed. The system

uses a serial link over a variety of mediums to transfer the necessary information.

The “Touch and Find” system was implemented using simple electrical contacts and an
inductive loop to create the serial link; Infrared solutions were also designed. In the
simple electrical contact solution, the user simply has to touch the contacts from each

of the two devices together to exchange the information.

The "Touch and Find" system could also be used for authorisation purposes in other
wireless networks such as 802.11b. Indeed it could be used for a wide variety of
authentication and authorisation procedures. In addition it could be used for
synchronising devices or for other technologies in which two devices have to be setup
to work together, for example a similar system could be used to tune a tv to a video.

The “Touch and Find” system has been shown to be a good concept. It was developed
with the aim of improving the usability of Bluetooth pairing by making it intuitive and to
also enable Bluetooth Pairing to be carried out securely in public places. This has
been achieved; a robust, secure, intuitive method of Bluetooth pairing has been
developed using a variety of different mediums (simple electrical contacts, Infrared and
an Inductive loop). The addition of the "Touch and Find" system to Bluetooth enabled
devices will add value to the devices as the user's “Out of Box” experience will be
significantly enhanced, breaking down initial barriers that may prevent an individual

from using Bluetooth technology.

8.4 ENHANCEMENTS TO THE “TOUCH AND FIND” SYSTEM

Software and Hardware

The PLP transport task could be made even more reliable by using Cyclic Redundancy
Checks (CRC) on all signals transmitted across the hardware link. This would allow
any errors in the data to be detected. The “random” number that is used as the
Bluetooth link key should be made more “random” — this could be achieved by using

the Bluetooth clock to generate the “random” number.

Further work should also be carried out on building and testing the contacts for use in

the simple electrical contact solution. Particular attention should be paid to designing

120

Conclusions and Summaries Philippa Regan

contacts that are unlikely to be damaged and that are aesthetically pleasing so that
potential users are not put off by the look of the contacts. The Infrared solutions should
be built and tested to verify that the “Touch and Find” system works using an Infrared
link. Finally, it would be very interesting and useful if a “two coil” full duplex inductive
loop solution that was capable of being used to charge the mobile device's battery
could be developed.

System

As far as the “Touch and Find” system is concerned, the next step is to develop an
application interface to enable the results of the “Touch and Find” system to be used in
a real application that actually creates the first Bluetooth link between two devices.
The system should then be implemented on a TTPCom Bluetooth Evaluation Board
before finally creating and testing a prototype and building it into a product!

The IrDA Infrared hardware solution could be improved (and the cost reduced) from a
system point of view if an existing IrDA stack could be extended to support the “Touch
and Find” process. This would mean that it would be very cheap to add the “Touch and
Find” system to devices that have an IrDA port.

Finally, work should be done to develop an Inductive solution that was also capable of
receiving sufficient power to charge the device’s batteries. This would be a huge
“value added” feature for mobile devices. It could enable a universal charger to be
created, so that only one mobile device charger would need to be carried when
travelling with the added advantage that the same interface could be used to quickly
and simply pair Bluetooth devices.

121

Conclusions and Summaries Philippa Regan

8.5 CONCLUDING STATEMENT

The PAN Gateway is a revolutionary concept in mobile communication offering great
advantages to users and operators. The optimal PAN Gateway user interface is
minimal; it should consist of just a power button and a single L.E.D to indicate whether
it is switched on. The PAN Gateway should consist of a Bluetooth modem to provide
local connectivity, a GSM/GPRS modem to provide connection to mobile phone

networks and some routing technology.

It was difficult to design a user friendly Bluetooth Pairing method for the PAN Gateway
using existing technology, as there was no user interface. Indeed, Bluetooth pairing in
many existing devices was found to be unintuitive and difficult. In addition, a Bluetooth
SIG security white paper had advised that the existing Bluetooth Pairing procedure
should not be used in public places.

To solve the usability and security problems encountered, a new concept, the "Touch
and Find" system was developed for use in the PAN Gateway. The system uses a
serial link to transfer the information required by devices in order to pair. The signal
flow for the "Touch and Find" system is specified by the Pairing Link Protocol that was
designed by the author. The Pairing Link Protocol was specifically designed to be
robust. The "Touch and Find" system that was developed interfaces directly with the
Bluetooth Device Manager. The "Touch and Find" system was shown to work using
different physical mediums to link the two devices, including a simple electrical contact
solution and an inductive loop solution. The “Touch and Find” system developed is

quick and very robust.

The “Touch and Find” system developed by the author significantly improves the user’s
“Out of Box” experience, by simplifying the Bluetooth Pairing procedure in addition to
providing a secure means of Bluetooth pairing in public places. "Touch and Find" is a
robust system that will add value to the devices it is used in and could be extended for

use in other systems.

122

Appendix 2

Philippa Regan

APPENDIX 2

iS eide iagrams of pl ProcessRxD

PLPBU_PROCESS_RX_DATA

case
case PLPTX_BUS_START PLPTX BUS RX REMOTE DEVICE ID case PLPTX_BUS_RX_PACKET_TYPE
PLPTX_BUS_START PLPTX_BUS_RX_REMOTE_DEVICE_ID PLPTX_BUS_RX_PACKET_TYPE

PLPBU_PROCESS_RX_DATA

case
PLPTX BUS_RX SIGNAL

PLPTX_BUS_RX_SIGNAL DevFail (" incorrect type™)

default:

PLPTX_BUS_START

True rxByte = PRE_AMBLE_BYTE False
startByteCounter++; discard Byte
True stantByteCounter = 32 False PLPTX_BUS_START

PLPTX BUS_RX_REMOTE_DEVICE_ID |7 PLPTX _BUS_START

PLPTX_BUS_RX_REMOTE_DEVICE_ID

True if remoteDeviceld = localDevice False

discard PLPTX_BUS_RX_PACKET_TYPE

PLPTX_BUS_START

PLPTX_BUS_RX_PACKET_TYPE

case case .

INFO TYPE ACK TYPE START_TYPE defauit:

set number of bytes to be read set number of bytes to be read set number of bytes to be read discard
{ reset receive Buffer pointer reset receive Buffer pointer reset receive Buffer pointer
{ PLPTX_BUS_RX_SIGNAL

START_SIGNAL START_SIGNAL2 case

n - PLPTX BUS QUT_INFO
create create
PLPTX_START SEQUENCE2 REQ PLPTX_START SEQUENGCE_CNF create PLPTX_IN_INFO_IND
. .) . fill and send to PLP task
fill and send signal to PLPTX task fill and send signal to PLPTX task PLPTX IN INFO IND

reset to receive Start

PLPTX_BUS_START

PLPTX_BUS_RX_SIGNAL

case
PLPTX 8US ACK

create PLPTX_OUT_INFO_CNF discard

fill and send to PLP task
PLPTX QUT INFO CNF

reset to receive Start

default:

L PLPTX_BUS_START

126

APPENDIX 3 CODE FOR THE TOUCH AND FIND SYSTEM

FESABEFREERUBERRREE R R R R RSN R AN ET R R TR F RN TR AR RN EE R R RN R SRR R SRR R RS R ERR RS

** $Workfile: plp_fnc.c $

* $Revision:

* $Date:

FEREREEF RN A R A RRR R AR AR R R AR AR R IR AR RN R R S S TR R ISR E R SRR SRR R R RN I k&
* Designed by :PKR

* Coded by

* Testedby :PKR

“ttt“"ti#lit#““il‘l“t“"‘tt#'i"t“!‘!#tt!*ti*ttt‘itt"*‘*i#“"lt#i/

#define MODULE_NAME "PLP_FNC"

/“"‘l.t““.'*‘#““‘*t““““‘*“'t‘*#‘l‘*"“i!‘tt““““.“‘itt‘#““‘

* Include Files
‘tl‘i##‘ti‘i““‘#‘t#‘t‘t“"‘l‘##*!t“‘*‘ﬁtt‘*‘*“i*"t'l*!**#*#t**ﬁ‘#*‘/

#if defined (HPDEFINE)
if Idefined (HPDEFINE_H)
include "hpdefine.h"

endif

#endif

#if !defined (STRING_H)
include "string.h"
#endif

#if \defined (KERNEL_H)
include "kernel.h"
#endif

#f Idefined (PLP_SIG_H)
#include "plp_sig.h"
#endif

#if 'defined (PLPTX_SIG_H)
#include "plptx_sig.h"
#endif

#if !defined (PLP_FNC_H)
#include "plp_fnc.h"
#endif

#if !defined (PLP_TYP_H)
#include “plp_typ.h"
#endif

#if \defined (PLPMN_FNC_H)
#include "pipmn_fnc h"
#endif

#if |defined (PLPTXMN_FNC_H)

#include "plptxmn_fnc.h"
#endif

127

Plp_fnc.c

#if |defined (PLPTXBU_TYP_H)
#include "plptxbu_typ.h"
#endif

#if defined (PLP_TRACE_OUTPUT)
include "pssignal h"

include "emmi_sig.h"

include "stdio.h"

#endif

/l#"t**ﬁ‘*#*##**it&‘l#ﬁ*t*#t###*t*#***t*#l#*‘t‘t*#lt‘tt*‘#*t“#‘i‘ii*‘**‘*.

* Manifest Constants
t*#t!tttl'#*t“tt‘ﬂi*‘tt“*tttil.lt**‘t*#t‘i#'*#‘#tt#‘#tt"‘tt“‘t*‘t“#"*#t/

/‘t!‘itt“‘tttt"‘t‘tl"titi‘t#*t#"##*i#t#i‘.*####l‘lt‘*l*"t“““t#"lﬂt‘tt
* Types
“t“#t#t*‘ttt*‘##tl#t‘t“t##ﬁ#titt“#il##**#ttt##l‘*ttt“'#*!****t*t#*#***/
typedef enum PlpStateTag

IDLE,

ACTIVE,

GOT_KEY,

WAIT_FOR_KEY

} PlpState;

typedef struct PlpContextTag

Boolean signalHandled,

Boolean plpStateTimerRunning;
Boolean plpSendInterval TimerRunning;
PlpState plpState;

PlpState oldState;

PlpDevicelnfo plpLocalDevicelnfo;,
PlpDevicelnfo plpRemoteDevicelnfo;

Int32 plpSendintervalCounter;

Int32 plpStateCounter;

Taskld taskid,;

Boolean sentFinishReq;

Boolean receiveFinishind;
}PlpContext;

/“"t‘#t1“1““‘3“#"#3““#“t#‘l‘t*t.*i##*#t‘#*"it‘ttt‘tt“t‘*‘t‘tt‘#t*ﬁ

* General Variables
‘‘“".*"*‘**"0““‘#“*“*#“.#*‘t*‘t*’*#tt*t#*.‘*i‘#*ttti*#itt#‘#*"“/

PlpContext plpContext;

#f defined (PLP_TRACE_OUTPUT)

extern char traceString] MAX_TEST_FILE_OUT_STRING];
#endif

/li##tt‘t#ll*#t#‘i*t‘*‘*i#t#t**t‘t#*t**#t‘t*###t.tt#‘t#ittt*##tttt#t#ttti#‘ttt
* Signal Variables

“"#“‘*‘#l'*l"‘t#‘*‘##ttt*##t'#tt‘tt*tti#!*"it*t#ttt‘tttt.ltﬁt*!#tttt‘t/
/ti‘.t‘tlﬁi'tt‘t#‘#‘t"‘l*l‘#tl*."ttltt*tt#t#lttttt‘l‘“*t“‘il*#t#‘t#‘t‘tt‘tt

* Timer Variables

128

Plp_fnc.c
!#‘******t********tt*t***\hﬁt***t****li****l!*******ﬁ***t#*#*‘*****tt#**/

KiTimer plpSendIntervalTimer;
KiTimer plpStateTimer;

ARk AR R OK o o RO R kA KOROK A o K R kR K kR kR ok ok Kk

* Macros
tt*tttt*tttt**l‘t!ﬁ******t*##t***##tﬁ‘i*******tt*************t*#*t*#*****ﬂl**/

AR o sk o R o o Ko R o oA oK o K o o o o oo R oo ok o K KK o O ok R

* Functional Prototypes
ek ok 3 8 ke e e ok 3 OK Ok 3 o okt ok ook o ok ok ok sk ok ook ok ik ok i R AOR Kok k ok ok ok ok ok oK R R Ok Rk ok Rk *tt**t**t/

void plpInitTimers (void);

void pipStartSendintervalTimer (void);
void plpStopSendInterval Timer (void);
void plpStartStateTimer (void);

void plpStopStateTimer (void);

void plpStateTimerRunning (Boolean);
void plpSendintervalTimerRunning (Boolean);
void plpldleState (SignalBuffer *);

void plpActiveState (SignalBuffer *);

void plpWaitForKeyState (SignalBuffer *);
void plpGotKeyState (SignalBuffer *);
void pipAllinfoState (SignalBuffer *);

Int8 plpRandom(Int8);

void plpSendinfo (void);

void plpIninfo (SignalBuffer *);

void plpLinkInfo (void);

void plptxInInfoRsp (void);

void plptxQutFinishReq(void);

J A o R R o KR K RO ok o AR R o o s R ok o KK oK K

* Global Functions
*lll**l‘f!‘l#**l!****lkt!lk*tt#*****‘“**ll*“*#***t***“"ilﬁ***¥*#“‘l****tt*ttt*l‘*#/

JHR R kKR RO R K KK RS OK KR R E K R R kk

* Function: plpSwitch
*

* Description:
ﬁ‘l#***lﬁ*************‘**************’tl‘“*********‘t!t****###t*******tt*****/

void plpSwitch (SignalBuffer * signalBuffer_p)

{
plpSignalHandled (TRUE);

switch (*signalBuffer_p->type)
1

1

case SIG_TIMER_EXPIRY:

/* if its the sendInterval timer the deal with it in the state switch (not here)*/
if (signaiBuffer_p->sig->kiTimerExpiry.timerld = plpSendintervalTimer.timerld)
{

plpSignalHandled (FALSE);

/* call state switch */
plpStateSwitch (signalBuffer_p);
b

129

Plp_fnc.c

else

if (signalBuffer_p->sig->kiTimerExpiry.timerid = pipStateTimer.timerld)
{
if (plpContext.plpStateTimerRunning == TRUE)

{
#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: In state too long - going to IDLE state",*signaiBuffer_p->type);
plpTraceOutput(traceString);
#endif

#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: SendInterval TIMER_EXPIRY occurred");
plpTraceQutput(traceString);

#endif

plpContext.plpState = IDLE;
i

else
!

1
/* Do Nothing as the timer has now been stopped - plpContext.plpStateTimerRunning = FALSE*/

#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: State TIMER_EXPIRY ignored as timer stopped");
plpTraceQutput(traceString);
#endif
b

\
¥

else

{
/* signal used elsewhere - let it through */
plpSignalHandled (FALSE);
plpStateSwitch (signalBuffer p);
H
'

break;

defauit:
plpStateSwitch (signalBuffer_p);
break;

}

J AR s oK AR Kk ok o o R ke o o e K ol ook o ok SR ol o O R K Kk o R o ks ok ok ok R ok ook ok

* Function: pipStateSwitch
*

* Description: Main switch state machine
t******#t*#*******’k*!*****Q“ll#t*#t*k#*l‘*t***ttt*t****ttit****ltttt*#**i*ttt/

void pipStateSwitch (SignalBuffer * signalBuffer_p)
i
switch (pipContext.plpState)

case [DLE:

pipldleState(signalBuffer_p);
break;

130

Plp_fnc.c

case ACTIVE:
plpActiveState (signalBuffer_p):
break:

case GOT_KEY:
plpGotKeyState (signalBuffer_p);
break;

case WAIT_FOR_KEY:
plpWaitForKeyState(signalBuffer_p);
break:

default:
DevFail ("Unknown State");
break:;
§
b

/***t##t*1**t*#t*t*t***#*it***##*tt*V*t*‘*tt#t*t**ll#t‘Uﬁ*****t#*#****ttﬂl‘***

* Function: plpldieState
*

* Description:
t‘tk**tttt‘***lt#i#‘i***tttit****tt‘*#***tti#t*************‘tt****##i‘t*##‘/
void plpldleState (SignalBuffer * signaiBuffer_p)

{
SignalBuffer signalToSend = kiNuliBuffer ;
Int8 index ;

#if defined (PLP_TRACE_OUTPUT)
if (plpContext.pipState = plpContext.oldState)
{
sprintf{traceString,”PLP: PLP in IDLE STATE");
plpTraceOutput(traceString);
plpContext.oldState = plpContext.plpState:

4
#endif

switch (*(signalBuffer_p->type))

{
case SIG_DMSH_REGISTER_APPLICATION_CNF:

DevAssert (signalBuffer_p->sig->dmshRegisterApplicationCnf.comStatus == COMMAND_OK)
if (signalBuffer_p->sig->dmshRegisterApplicationCnf.comStatus '= COMMAND_OK)
K

{
plpSignalHandled (FALSE):
!

/* ask Device manager for local info - create signal */

KiCreateSignal (SIG_DMSH_READ_LOCAL_INFO_REQ,
sizeof (DmshReadLocallnfoReq),
&signalToSend);

/* fill values into signal */
signalToSend.sig->dmshReadLocallnfoReq. taskld = PLP_TASK_ID;

/* send signal */
KiSendSignal (DM_TASK_ID,&signalToSend);

131

Pip_fnc.c

#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: Expecting DMSH_READ_LOCAL_INFO_IND from device Manager - DM running?");
plpTraceOutput(traceString);

#endif
break;

case SIG_PLPTX_QUT_INFO_CNF:
#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: received PLPTX_OUT_INFO_CNF in wrong state - ignore it");
plpTraceOQutput(traceString);
#endif
break:

case SIG_PLPTX_IN_FINISH_IND:
#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: received PLPTX_IN_FINISH_IND in wrong state - ignore it");
plpTraceOutput(traceString);
#endif
break;

case SIG_PLPTX_START_SEQUENCE_CNF:
#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: received start sequence cnf, now connected");
plpTraceOutput(traceString):
#endif

plptxContext.busConnected = TRUE;

/* stores Taskld from plpStartScanReq as plpContext.taskld for use in plpStartScanCnf*/
memepy (&plpContext.taskld,
&signalBuffer_p->sig->plptxStartSequenceCnf.myTaskId,
sizeof (Taskld));

/* ask Device manager for local info - create signal */
KiCreateSignal (SIG_DMSH_READ_LOCAL_INFO_REQ,
sizeof (DmshReadLocallnfoReq),
&signalToSend);

/* fill values into signal */
signalToSend.sig->dmshReadLocallnfoReq.taskld = PLP_TASK_ID;

/* send signal */
KiSendSignal (DM_TASK_ID.&signalToSend):

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: Expecting DMSH_READ_LOCAL_INFO_IND from device Manager - DM running?");
plpTraceQutput(traceString);

#endif
break;

case SIG_DMSH_READ_LOCAL_INFO_CNF:
if (signalBuffer_p->sig->drashReadLocallnfoCnf.comStatus '= COMMAND_OK)

{
DevFail ("Read Local Info Request Failed");

i
break;

132

Plp_fnc.c

case SIG_DMSH_READ_LOCAL_INFO_IND:
if (plptxContext.busConnected ==TRUE)
{
/* stores BtBdAddr as plpLocalDevicelnfo.plpBiBdAddr */
memepy (&plpContext.plpLocalDevicelnfo.plpBtBdAddr,
&signalBuffer_p->sig->dmshReadLocalinfolnd.btBdAddr,
sizeof (BtBdAddr));

/* stores FriendlyName as PlpLocalDevicelnfo.plpFriendlyName */

memepy (&plpContext.plpLocalDeviceinfo.plpFriendlyName,
&signalBuffer_p->sig->dmshReadLocallnfolnd.friendlyName,
HCIE_07_NAME_SIZE);

/* Generate and store a random link key */
for (index=0 ; index < BT_ENCRYPTION_KEY_SIZE ; index++)
{
pipContext.plpLocalDeviceInfo.plpLinkKey[index] = plpRandom(index);
}

/* Start SendIntervalTimer */
plpStartSendInterval Timer ();

/* start StateTimer */
pipStartStateTimer ();
#if defined (PLP_TRACE_QUTPUT)
sprintf{traceString,"PLP: PLP changing from IDLE to ACTIVE");
plpTraceOutput(traceString);
#endif

pipContext.plpState = ACTIVE;
:
else
{
/* stores BtBdAddr as plpLocalDevicelnfo.plpBtBdAddr */
memepy (&plptxContext.localDeviceld,
&signalBuffer_p->sig->dmshReadLocalinfolnd btBdAddr,
sizeof (BtBdAddr));

/* activate start sequence (part 1 of 2)*%/

KiCreateSignal (SIG_PLPTX_START SEQUENCE_REQ,
sizeof (PlptxStartSequenceReq),
&signalToSend);

signalToSend.sig->plptxStartSequenceReq.myTaskld = PLP_TASK_ID;

signalToSend.sig->plptxStartSequenceReq.localBtBdAddr = plptxContext.localDeviceld

KiSendSignal (PLPTX_TASK_ID, &signalToSend);

H
break;

case SIG_PLPTX_IN_INFO_IND:
/* not ready to receive this signal. Ignore it for the time being */

#if defined (PLP_TRACE_OUTPUT)

sprintf{(traceString,"PLP: received PLPTX_IN_INFO_IND in wrong state- ignore it!");

plpTraceOutput(traceString);
tendif

133

Plp_fnc.c

/* Mark signal as handled */
pipSignalHandled (TRUE);
break;

case SIG_TIMER_EXPIRY: /* shouldn't get this here - but just in case */
/* If it's the SendIntervalTimer that has expired */
if (signalBuffer_p->sig->kiTimerExpiry.timerid = plpSendlnterval Timer.timerld)
{
if (pIpContext.plpSendIntervalTimerRunning == TRUE)

{
#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: Incorrect - SendInterval TIMER_EXPIRY occurred in [DLE state”);
plpTraceOutput(traceString):
#endif
t
else

{
/* do nothing as timer has already been stopped - plpContext.plpSendintervalTimerRunning = FALSE */

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: SendInterval TIMER_EXPIRY ignored as timer stopped");
plpTraceOutput(traceString);

#endif
}

3
§

else

/* signal for use elsewhere - let it through */
plpSignalHandled (FALSE);
'
break:

default:
plpSignalHandled (FALSE);
break;

}

ok o K AR R R R o R o o o o ok oK KK K R K OO R R R R ok o s R ok ok

* Function: plpActiveState
*

* Description:
t*****#*****t*#‘f*****************t*****l(l*******************************/

void plpActiveState (SignalBuffer * signalBuffer_p)

t
#if defined (PLP_TRACE_OUTPUT)
if (plpContext.plpState != plpContext.oldState)
{
sprintf(traceString,"PLP: PLP in ACTIVE State™);
plpTraceOutput(traceString);
pipContext.oldState = plpContext.plpState;
I
#Hendif

134

Plp_fnc.c
switch (*(signalBuffer_p->type))
5

t
case SIG_TIMER_EXPIRY:
/* if its the state timer it has been dealt with earlier in plpSwitch() */

/* If it's the SendIntervalTimer that has expired */
if (signalBuffer p->sig->kiTimerExpiry.timerld = pipSendIntervalTimer.timerld)
i

1
if (plpContext.plpSendInterval TimerRunning = TRUE)

{
#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: SendInterval TIMER_EXPIRY occurred in ACTIVE state");
plpTraceOutput(traceString);
#endif

plpSendInfo (); /* sends PLP_OUT_INFO_REQ */

/* start send interval timer */
plpStartSendInterval Timer ();
'
else

{
/* do nothing as the timer has already been stopped - pipContext.plpSendInterval TimerRunning = FALSE */

#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: Sendinterval TIMER_EXPIRY ignored as timer stopped");
plpTraceOutput(traceString);

#endif

}
b

else

{

/* signal for use elsewhere let it through */
pipSignalHandled(FALSE);

|

break:

case SIG_PLPTX_IN_INFO_IND:
plpSignalHandled(TRUEY),

if (signalBuffer_p->sig->plptxIninfolnd.pipStatus == PLP_COMMAND_OK)

{
plpininfo (signaiBuffer_p); /* uses function to store pipInlnfolnd */

plptxIninfoRsp (); /* function to send plptxIninfoRsp */

/* Start StateTimer */
plpStartStateTimer ();

/* start sendinterval Timer */
plpStartSendIntervalTimer ();

#if defined (PLP_TRACE_OUTPUT)
sprintfi{traceString,"PLP: PLP State changing from ACTIVE to GOT_KEY™);

plpTraceOutput(traceString);
#endif

Plp_fnc.c

plpContext.plpState = GOT_KEY;
t

else
:

1
/* stay in active state - do nothing */
DevFail ("Incoming information != PLP_COMMAND OK");

'
break;

case SIG_PLPTX_OUT_INFO_CNF:

if (signalBuffer_p->sig->piptxOutinfoCnf.plpStatus == PLP_COMMAND_OK)

/* stop sendInterval timer */
plpStopSendIntervalTimer ();

pipStartStateTimer ();

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: PLP State changing from ACTIVE to WAIT_FOR_KEY™");
plpTraceQutput(traceString);

#endif

plpContext.pipState = WAIT_FOR_KEY;
}
else

{
DevFail ("Outgoing info not received");

}
break;

default:
plpSignaltandled (FALSE);
break;
i
b

A AR AR R o o K Ko Ko R o o KK R R ok ok s R Rk kR oK K K

* Function: plpWaitForKeyState

*

* Description:
*****l‘*******t#“****t*‘*#***t********#*******t*lk******t*‘*****t‘******'itt/

void plpWaitForKeyState (SignalBuffer * signalBuffer_p)

{
#if defined (PLP_TRACE_OUTPUT)
if (plpContext.plpState != plpContext.oldState)

{
sprintf{traceString,"PLP: PLP in WAIT_FOR_KEY State");

plpTraceQutput(traceString);
plpContext.oldState = pipContext.plpState;

i
#endif

switch (*(signalBuffer_p->type))
{

136

Plp_fnc.c

case SIG_PLPTX_IN_INFO_IND:
if (signalBuffer p->sig->plptxininfolnd.plpStatus == PLP_COMMAND_OK)

{
plpIninfo (signalBuffer_p): /* uses function to store plpIninfolnd and to create and send plpininfoRsp */

plptxininfoRsp (); /* send Rsp to pltx task */
plpLinkinfo (); /* function to create and send plpLinkInfolnd*/

sprintf{traceString,"PLP: This device has all info");
plpTraceOQutput(traceString);

/* send the plptxOutFinishReq signal */
plptxOutFinishReq ();

plpContext.sentFinishReq = TRUE;
if (plpContext.receiveFinishInd == TRUE)

{
/* Stop StateTimer */
plpStopStateTimer ();

/* finished go back to IDLE state */
plpContext.plpState = IDLE;

#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: PLP Finished. State changing from WAIT_FOR_KEY to IDLE");
plpTraceOutput(traceString);

#endif
4

else

{
#if defined (DEBUG_PLPTX)
sprintf{traceString,"PLP: waiting for piptxInFinishind");
plpTraceOutput(traceString);
#endif
}
}

else
{
/* do nothing - stay in WAIT_FOR_KEY_STATE */

}

break;

case SIG_TIMER_EXPIRY:
/* 1f it's the SendIntervalTimer that has expired */
if (signalBuffer_p->sig->kiTimerExpiry.timerld == plpSendinterval Timer.timerld)
{
if (pipContext.plpSendIntervalT imerRunning = TRUE)

{
#if defined (PLP_TRACE_OUTPUT)

sprintf{traceString, "PLP: Incorrect - Sendinterval TIMER_EXPIRY occurred in WAIT_FOR_KEY state"):

plpTraceOutput(traceString);
#endif
t

Plp_fnc.c

clse
{
/* do nothing as timer has already been stopped - plpContext.plpSendInterval TimerRunning = FALSE */

#f defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: SendInterval TIMER_EXPIRY ignored as timer stopped”);
plpTraceOutput(traceString);

#endif

}
}
clse
{
/* signal for use elsewhere - let it through */
plipSignalHandled (FALSE);
}
break:

case SIG_PLPTX_OUT_INFO_CNF;

/* This signal has already been received so stay in this state */
break:

case SIG_PLPTX_IN_FINISH_IND:
/* other device has all the info it needs */
sprintf(traceString,"PLP: Other device has finished");
plpTraceQutput(traceString);

plpContext.receiveFinishind = TRUE;

if (plpContext.sentFinishReq == TRUE)
{
/* Stop StateTimer */
plpStopStateTimer ();

/* finished go back to IDLE state */
pipContext.plpState = IDLE;

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: PLP Finished. State changing from WAIT_FOR_KEY to IDLE");
plpTraceOutpui(iraceString);

#endif
}

else

{
#if defined (DEBUG_PLPTX)
sprintf{traceString,"PLP: received finishind. but I'm not ready to finish- ignoring it");
plpTraceOutput(traceString);
#endif
i
break;

default:
plpSignalHandled (FALSE);
break;
}
H

JAA A SR R o R R R oo R R OR FOR SRR BRSO KOR Ok ROR R R KRR R Rk Rk

138

Plp_fnc.c

* Function: plpGotKeyState
*

* Description:
“*****#t*tt***t*‘t‘tt‘*!*ﬁ*t!"it***‘*ttt'#*****‘t‘i**************!‘*‘**kt/

void plpGotKeyState (SignalBuffer * signalBuffer_p)
{
SignalBuffer signalToSend = kiNullBuffer ;

#if defined (PLP_TRACE_OUTPUT)
if (plpContext.plpState != plpContext.oldState)
i
sprintf(traceString,"PLP: PLP in GOT_KEY State");
plpTraceQutput(traceString);
plpContext.oldState = plpContext.pipState;
t
#endif

switch (*(signalBuffer_p->type))
{
case SIG_TIMER_EXPIRY:

/*1f it's the SendInterval Timer that has expired */
if (signalBuffer_p->sig->kiTimerExpiry.timerld == plpSendIntervalTimer.timerld)
1l

1
if (plpContext.pipSendIntervalTimerRunning == TRUE)

¢
#if defined (PLP_TRACE_OUTPUT)
sprintf(traceString,"PLP: SendInterval TIMER_EXPIRY occurred in GOT_KEY state");
plpTraceOutput(traceString);
#endif
plpSendinfo (); /* sends PLP_OUT_INFO_REQ */

/* start send interval timer */
plpStartSendInterval Timer ();
b
else

{

/* do nothing as timer has already been stopped - plpContext.plpSendIntervalTimerRunning = FALSE */

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: SendInterval TIMER_EXPIRY ignored as timer stopped”);
plpTraceOutput(traceString);
#endif
i
H
else

{

/* signal for use elsewhere - let it through */
plpSignalHandled (FALSE);

t
break;

case SIG_PLPTX_IN_INFO_IND:
/* already know this but send a rsp anyway */

plptxIninfoRsp (); /* send Rsp to PLPTX */

break:

Plp_fnc.c

case SIG_PLPTX_OUT_INFO_CNF:

if (signalBuffer_p->sig->plptxQutlnfoCnf.plpStatus == PLP_COMMAND_OK)
{

/* stop sendIntervalTimer */

plpStopSendInterval Timer ();

/* stop state timer */
plpStopStateTimer ();

/* all info now received - create signal to send to application */
pipLinkInfo();

sprintf{traceString,"PLP: This device has all info");
plpTraceOutput(traceString);

/* send the plptxOutFinishReq signal */
plptxOutFinishReq ();
plpContext.sentFinishReq = TRUE;

if (plpContext.receiveFinishind == TRUE)

{
/* finished go back to IDLE state */
plpContext.plpState = IDLE;

#if defined (PLP_TRACE_OUTPUT)

sprintf{traceString,"PLP: PLP Finished. State changing from GOT_KEY to IDLE"),
plpTraceOutput(traceString);

#endif

}

else

i
#if defined (DEBUG_PLPTX)

sprintf(traceString,"PLP: waiting for plptxInFinishind");
plpTraceQutput(traceString);

#endif

!

else
§

t
/* do nothing - stay in GOT_KEY _STATE */
!

break;

case SIG_PLPTX_IN_FINISH_IND:
/* other device has all the info it needs */
sprintf(traceString,"PLP: Other device has finished");
plpTraceOutput{traceString);

plpContext.receiveFinishind = TRUE;

if (plpContext.sentFinishReq == TRUE)

{
/* finished go back to IDLE state */

140

Plp_fnc.c
pipContext.plpState = IDLE;

#if defined (PLP_TRACE_OUTPUT)
sprintf{traceString,"PLP: PLP Finished. State changing from GOT_KEY to IDLE");
plpTraceOutput(traceString);
#endif
}

else

{
#if defined (DEBUG_PLPTX)
sprintf{traceString,"PLP: received finishind, but I'm not ready to finish- ignoring it");
plpTraceOQutput(traceString);
#endif
t
break;

default:
plpSignalHandled (FALSE);
break:

H

/*‘*ll*ttt#*‘*******‘l*******t*¥***l*kt*tt#tt****l‘t#tt#*t****#t#*#**t***‘#t
* Function: plplnit

*

* Description: Plp Initialisation routine - called when SIG_INITIALISE

hd is received
33 o ook o R ko K R K R K tt*t*tt*t*t‘t##*ttt**t*ttt*#**t*t*******t*t‘t*******/

void plpInit(void)

{
SignalBuffer signalToSend = kiNullBuffer ;
DmshRegisterApplicationReq * dmshRegisterApplicationReq_p;

plpContext.sentFinishReq = FALSE;
plpContext.receiveFinishind = FALSE;

plptxContext.busConnected = FALSE;
plpContext.plpState = IDLE;
#if defined (PLP_TRACE_OUTPUT)
plpContext.oldState = IDLE;

sprintf{traceString,"PLP: IDLE State");
pipTraceOutput(traceString);

#endif
KiCreateSignal (SIG_DMSH REGISTER_APPLICATION_REQ,
sizeof (DmshRegister ApplicationiReq),
&signalToSend);

dmshRegisterApplicationReq_p = &signalToSend.sig->dmshRegisterApplicationReq;
memset (dmshRegister ApplicationReq_p.0.sizeoff DmshRegister ApplicationReq));

dmshRegisterApplicationReq_p->taskld = PLP_TASK_1D;
dmshRegisterApplicationReq_p->registerAsApplication= TRUE;

141

Plp_fnc.c

plpInitTimers ();

KiSendSignal (DM_TASK_ID,&signalToSend);
|

/*#‘#‘ttt*l‘#*t#*tt“*****#‘t#tt*l‘**###ttt*****#!*tt****#*t***#**************
* Function: plpRandom

*

* Description: returns a "random" Int8
tttt***ﬁ*##t#ttt‘#*“#t**#***#t#‘t*******#***#***************t*****‘***/
Int8 plpRandom(Int8 random)

Int8 rand;

rand = (Int8) ((random+2) * ((Int8) plpContext.plpLocalDevicelnfo.plpBtBdAddr.lap +
(Int8) (plpContext.pipLocalDevicelnfo.pipBtBdAddr.uap << random)+
(Int8) (plpContext.plpLocalDevicelnfo.plpBtBdAddr.nap >> random)));

return rand;

}

/**‘t#t*t*t***t‘t*t******'#**#****‘**t*‘****‘(‘#*********“***********‘***t**
* Function: plpInitTimers
«
* Description: Initialises timer that controls the interval at which outgoing info is transmitted
ﬁ***t******“t#‘t**“*****ll***#‘*********t*#*i****t****‘****t‘kt*‘***t**t*t/
void plpInitTimers (void)
{
plpContext.plpSendIntervalCounter = 0;
plpContext.plpStateCounter = 0;
}

/*#*#*‘*!‘******“*““****W*t###*#***t*ﬁti*******t#*************** A ok ok
* Function: plpStartSendIntervalTimer
*

* Description: Starts timer that controls the interval at which outgoing info is transmitted
‘*‘lttt**t***#t#*t*#t*l‘*‘*t**********t**)tl****i*******************#l********/

void plpStartSendIntervalTimer (void)
{
plpContext.plpSendIntervalCounter ++;

/*if > 1, counter is already running therefore stop counter and restart it */
if (1 < plpContext.plpSendIntervalCounter)
t
KiStopTimer (&plpSendintervalTimer);
i

plpSendIntervalTimer.timeoutPeriod = MILLISECONDS_TO_TICKS (PLP_SEND_INTERVAL TIMER VALUE),

plpSendIntervalTimer.myTaskld = PLP_TASK_ID;
plpSendintervalTimer.userValue = 0;
KiStartTimer(&plpSendintervalTimer);
plpSendIntervalTimerRunning (TRUE);

}

7R oo s o o oo oo R RO S R o K R 3 O KK o o R s e R ok kS Kook

* Function: plpStopSendIntervalTimer
. P

142

Plp_fnc.c

* Description: Stops timer that controls the interval at which outgoing info is transmitted
t****‘ﬁ‘!*"**tt‘tt*t*tt*ttt#***#ttttt***tttt‘**##*t‘t**t**ttti*****t*****”

void plpStopSendinterval Timer (void)
{
KiStopTimen(&plpSendInterval Timer);
plpSendinterval TimerRunning (FALSE),
1

JAA KRR R R R KKK O Ko R K kKK R KRR KK KK K R

* Function: plpStartStateTimer
*

* Description: Starts state timeout timer
*t*******t*******i*******#*t‘****ttt*tt‘***‘*********‘******#**‘******‘***ﬂ

void plpStartStateTimer (void)

{
plpContext.plpStateCounter +-;

/*if > 1, counter is already running therefore stop counter and restart it */
if (1 < plpContext.plpStateCounter)
{
KiStopTimer (&plpStateTimer);
H

plpState Timer.timeoutPeriod = MILLISECONDS_TO_TICKS (PLP_STATE_TIMER_VALUE),
plpState Timer.myTaskld = PLP_TASK_ID;

plpStateTimer.userValue = 0;

KiStartTimer(&plpStateTimer);

plpState TimerRunning (TRUE);
}

JAR ARl oo O R KK KRR KK K KKK O 3o Ok R R K K KK

* Function: plpStopStateTimer
.

* Description: Stops state timeout timer

EELET S L] o KK A KK o KK ok R KOR R S K R KOR Rk

void plpStopStateTimer (void)
{
KiStopTimer(&plpState Timer);
plpState TimerRunning (FALSE);
}

JER R R Kk R AOK R K AR Ak R KOR AR AR R R OKOR KR ROk R Rk R K

* Function: plpStateTimerRunning
*

* Description: TRUE if State timer is running.
******t****“**t***t***tt!!******#t**‘**********‘*k**#*#t***#**‘**it*******/

void plpStateTimerRunning(Boolean plpStateTimerRunning)

{
plpContext.plpState TimerRunning = plpStateTimerRunning;
/tﬁtt***t‘#“***i**"********“‘*‘*#*‘"*‘**l*tt‘t‘*t*'****ti*“t“**t*l*t*#

* Function: plpSendIntervalTimerRunning
*

143

Plp_fnc.c

* Description: TRUE if sendIntervalTimer is running
‘#t***#*#‘**************t**‘*******‘t***t*‘#t‘*****tltt******tttt*t**/

void plpSendinterval TimerRunning(Boolean plpSendInterval TimerRunning)
;

t
pipContext.plpSendinterval TimerRunning = pipSendInterval TimerRunning;

/*#t******‘*****‘i*ﬁ*****#*******************ﬁ****#****‘#***#***************
* Function: - plpSendInfo
.

* Description: creates and sends plpOutinfoReq
t**t‘i******#t*ti*#***#*****tﬁt*t**4****#*‘#***#********ttttt***ttt*******”

void plpSendInfo (void)
t
SignalBuffer signalToSend = kiNullBuffer ;

plpSignalHandled (TRUE);

KiCreateSignal (SIG_PLPTX_OUT_INFO_REQ,
sizeof (PlptxOutInfoReq),
&signalToSend);

signal ToSend.sig->plptxOutinfoReq. myTaskld = PLP_TASK_ID;
signalToSend.sig->plptxOutlnfoReq.plpFriendlyName = plpContext.plpLocalDevicelnfo.plpFriendlyName;
signalToSend.sig->plptxOutinfoReq.plpBtBdAddr = plpContext.plpLocalDevicelnfo.plpBtBdAddr;

memepy (&signalToSend.sig->plptxOutlnfoReg.plpLinkKey,
&plpContext.plpLocalDevicelnfo.plpLinkKey,
BT_ENCRYPTION_KEY_SIZE * sizeof (Int8));

KiSendSignal (PLPTX_TASK_ID,&signalToSend);
I
!
/‘*#t*****ﬁ***#*it**mt***#****************************#****#l**************t

* Function: plpInInfo
*

* Description: Stores info from plpInlnfolnd
t#*t*t*%**#**#******1‘*******t#****#****#‘**l‘*t‘*t‘tt*t*!***t*****#****#/

void plpininfo (SignaiBuffer * signalBuffer_p)
i
{
SignalBuffer signalToSend = kiNullBuffer ;
/*store remote device info */

/*stores BtBdAddr as plpRemoteDevicelnfo.plpBtBdAddr */
memcepy (&plpContext.plpRemoteDevicelnfo.plpBtBdAddr,
&signalBuffer_p->sig->plptxInlnfolnd.plpBtBdAddr,
sizeof (BtBdAddr));

/* stores plpFriendlyName as plpRemoteDevicelnfo.plpFriendlyName */

memepy (&plpContext.plpRemoteDevicelnfo.pipFriendlyName,
&signalBuffer_p->sig->plptxIninfolnd.plpFriendlyName,
HCIE_07_NAME_SIZE):;

/* stores plpLinkKey as plpRemoteDevicelnfo.plpLinkKey */
memcpy (&plpContext.plpRemoteDevicelnfo.plpLinkKey,

144

Plp_fnc.c

&signalBuffer_p->sig->plptxIninfolnd.plpLinkKey,
BT_ENCRYPTION_KEY_SIZE * sizeof (Int8));
t

/ﬂl*ﬁl##*tt*!t********ttt******tt*tlﬁ#****t#t*********ttttt*******m#t**********
* Function: plpLinkInfo

*

* Description: Creates and sends pipLinkInfolnd
‘*t***#‘*#‘*3**1**#**#**1*#**ttt!t*t*‘#ttttt*******##t*****t#tt#t**'**‘#ti*/

void plpLinkInfo ()
{
SignalBuffer signalToSend = kiNullBuffer ;

/* create plp link info signal to send to application */
KiCreateSignal (SIG_PLP_LINK_INFO_IND,
sizeof (PlpLinkInfolnd),
&signalToSend);

signalToSend.sig->plpLinklnfolnd. myTaskld = PLP_TASK_ID;

signalToSend.sig->plpLinkInfolnd.plpStatus = PLP_COMMAND_OK;
signalToSend.sig->plpLinkInfolnd.plpLocalBtBd Addr = plpContext.plpLocalDevicelnfo.plpBtBd Addr;
signalToSend.sig->plpLinkInfoind.pipLocalFriendlyName = plpContext.plpLocalDevicelnfo.plpFriendlyName;
signalToSend.sig->plpLinkInfolnd.plpRemoteBtBdAddr = plpContext.plpRemoteDevicelnfo.plpBtBdAddr;
signalToSend.sig->plpLinkInfolnd.plpRemoteFriendiyName = pipContext.plpRemoteDevicelnfo.plpFriendlyName;

if (mememp(plpContext.plpLocalDevicelnfo.plpLinkKey, plpContext.plpRemoteDevicenfo.plpLinkKey, 128) >=0)
(

1
memcpy (&signal ToSend. sig->plpLinkInfolnd.plpLinkKey,
&plpContext.plpLocalDeviceinfo.pipLinkKey.,
BT_ENCRYPTION_KEY_SIZE * sizeof (Int8));
t
clse
{
memcpy (&signalToSend.sig->plpLinkInfolnd.plpLinkKey,
&plpContext.plpRemoteDevicelnfo.plpLinkKey,
BT_ENCRYPTION_KEY_SIZE * sizeof (Int8));
t

KiSendSignal (TE_TASK_ID.&signalToSend);
i

/***!‘#“******'t**#ﬁ‘tﬁl***‘tt‘t!***‘l“tttt*******‘tt**t*****t*ttt*#*lﬂk*ttﬂ'i*
* Function: plptxIninfoRsp
*
* Description: sends plptxInInfoRsp to the plptx task
t‘**t**##***t#t***#*********t#*****‘*!*#**#*******##****i*l*tt*************/
void plptxInlnfoRsp ()

{

SignalBuffer signalToSend = kiNuliBuffer;

KiCreateSignal (SIG_PLPTX_IN_INFO_RSP,
sizeof (PlptxInInfoRsp),
&signalToSend);

signalToSend sig -> plptxininfoRsp.myTaskld = PLP_TASK_ID;
signalToSend.sig -> plptxIninfoRsp.plpStatus = PLP_COMMAND_OK;

KiSendSignal (PLPTX_TASK_ID, &signalToSend);

145

Plp_fnc.c
i

7 oo o ok o s o o R o o R o B RS o oo R Ko K o o o R s o KK K R Rk e

* Function: piptxOutFinishReq

*
* Description: sends plptxQutFinishReq to the plptx task
4k e 3 e e o ok e 3 R e o8 ok ok e ok e o ook o Kok ke Sk 3 S o oo ok ok o ok ok e R ok Kok ok o Ok Rk #i*************/
void plptxOutFinishReq ()
i
t
SignalBuffer signalToSend = kiNuliBuffer;
KiCreateSignal (SIG_PLPTX_OUT_FINISH REQ,
sizeof (PlptxOutFinishReq),
&signalToSend);
signalToSend.sig -> plptxOutFinishReq.myTaskld = PLP_TASK_ID;

KiSendSignal (PLPTX_TASK_ID, &signalToSend);

146

Plp_fnc.h
/‘*‘*****************#*****‘iﬁ*#*******‘t*‘******"*‘tt*******“#*#*********
*
* $Workfile: plp_fnc.h $
* $Revision:
* $Date:

*

ek ok 3k ok e o ke ok b K 0 o ok ke ol ok ek ok ok kK K ok e sk 3 e ok 3 2Kk oK oK ok o o i ke i ok ok K K R o ok 3 ek ok i KK 3K ok e Ok ok ok ok OK RoR oK
*

* Designed by :PKR

* Coded by

¥ Testedby :PKR

*

o kol s oo o 3K o e o o ko oK ok ol ok o o K 8 o oSk ok ok e o o oKk 0 e ok o oo K KK o ke o ok KRR K
*

* File Description
*

* Pairing Link Protocol - Main function
*

*
‘**tt#ttl‘**t*ttt***t*1!#t#********t****#*#**tt**it*#***#*ﬁ*********#********/

#if !defined (PLP_FNC_H)
#define PLP_FNC_H

#if tdefined (PLPSIGUN_H)
#include “plpsigun.h”

#endif

void plpSwitch (SignalBuffer *):
void plpStateSwitch (SignalBuffer *);
void plplnit (void);

#endif

147

Plpmn_fnc.c

3k 3 3k o ok e ok ke e ok Ok sk e s i ok ke sk o ROk s ok ke ok ok ok 3k ok 3 3k e ol Ok ik o Kk ok ok ok i oK s o 3k ke e K okl K K R e oK K KOk K ok oK
*

* $Workfile: plpmn_fnc.c $

* $Revision:

* $Date:

*

¢ 3 e ok 3k ok ke e o 3 ok o o ke o s R 3 ok ok ok oK K ko sk ke st ol ok ol ol o ke oKk ke ok ke ok o o e 3K ok ok ok ok ok sk 3 ok e ok ki ok ok ook ok kel Rk kR ko ook
*

* Designed by :PKR

* Coded by

* Testedby :PKR

*

e o sl o o ook ok ok o Stk R e o K oK K o KK o e kK ook K 3 o ook S R o Kok SR S OK o ekl ko ok ok o
*

* File Description
*

* Pairing Link Protocol - Controlling Task main loop
*
43k e 3 ok e ke e o ok ok ok ok ok ok ok ok ok ok R ke ekl ol ok ok ok o oK 3K 30k 3Ok ok ok K o koK AR o ok kR kR R Rk oR ok kR kR R R ok

*

* Revision Details
*

*
*
*
*
*
*
ok o s o ke o s e sk e ook b ok ok o o b s sk o o K ok s o o Rk oK K o ok ok o o o s oo sk sk ok ol RO R koK A K Sk kR OR K ok

#define MODULE_NAME "PLPMN_FNC"

A A O R A K K R o o K KK RO KRR KR R

* Include Files hpsigbas.h hpsig.h

ke o o o oo ok ook o ok ke o o b o o ok OB ek o R R o Kk sk of ko sk ok ok R K RO K Ok kR ROk KKk

#if defined (HPDEFINE)

if Idefined (HPDEFINE_H)
include "hpdefine.h"

endif

#endif

#if !defined (STRING_H)
inctude "string.h"
#endif

#if tdefined (KERNEL_H)
include "kernel.h"
#Hendif

#if 1defined (PLP_SIG_I)
#include "plp_sig.h"
#endif

#if defined (PLPMN_ENC_H)

#include "plpmn_foc.h"
#endif

148

Plpmn_fnc.c

#if 'defined (PLP_FNC_H)
#include "plp_fnc.h"
#endif

#if Idefined (PLP_TYP_H)
#include "pip_typ.h"
#endif

#if defined (PLP_TRACE_OUTPUT)
include "pssignal.h"

include "emmi_sig.h"

include "stdio.h"

t#endif

R o o ok o ok b ok ok ok O K K s ok AR Kk sk O Okl ook ok oKk ok kol ok ok sk ok ok o ol sk ok ok ok ik kKoK Kk

* Manifest Constants
ﬁt‘ttli*ltt*l‘**t!*t#t‘tt‘**tt*tttttt*****tt!ﬂt#*tt*tt*tttt#ttt*!tttt**tittt**i/

/***ttt#*l‘\#*****kt*lk***********t#*#*********‘#*“*******t*#t*****t*tt##*****
* Types
t**##t*“*t#*t**t*‘*‘*#******t**tt#****t!**t##t*t**l*ﬁ‘*ti*t*****‘***/
typedef struct PlpmnContextTag
5

t
Boolean signalHandled;
} PlpmnContext;

A s A o R R R KRR RO K KR KR R KR R R R R R R R R Ok Ok K

* General Variables
i*"**‘**************#**********tlﬁt*********#t“*i*****#*#‘****‘#***#/

PlpmnContext pipmnContext;

#if defined (PLP_TRACE_OUTPUT)
char traceString] MAX_TEST _FILE_OUT_STRING];
#Hendif

R oo A o R R KR oo o K o R KR o ok oo KRR R K o sk o R OR RO K ok

* Macros
*****t*titttt***t*t#t*#******t*t#ttttlt#**t‘*t*tttltttt**#t#**tt#t*t*t#t#t*/

AR R o o R oA R o oK SRS o o ok A o o R R o o R K Rk o

* Functional Prototypes
#*#*ttltttttt*ll**ililt*t#i‘#**i*#"#ttﬁ*#‘it**#*#***#**ktttt*#*t***tt***#**#‘***/

static void PlpTaskExitRoutine (void);
KI_ENTRY_POINT PlpTask (void):
KI_SINGLE_TASK (PipTask, PLP_QUEUE _ID, PLP TASK_ID)

/lt**#kttttt#*t***t#"#*##*******tt*#*t**t***t****##*i**********t****t**#tt***
* Global Functions

*‘****t*‘*t“**t"li!*K*ﬂ‘*‘tt‘t**l**“t#ﬂt#t‘**lﬂll!-\tt'#t#“‘*t*‘*tti#‘t*!**/
/U*‘i*****‘*‘**i**********‘****#*** b e o afe ke s ofe ok 3k 3k K oKl e o 3 ok 3 o K HOK o K K 3 ok ke Rk R kR

* Function: PlpTaskExitRoutine

*

* Description: plp task exit routine

149

Pipmn_fnc.c

AR Ao R Ko R KR o o KoK RO OK KSR AR R KSR KRRk o/

static void PipTaskExitRoutine(void)
{

}

JARRR R A e R KR B KK O KK o R KRS KK K K R R R R R RO KR

* Function: PlpTask

*

* Description: Main entry point to the PLP task
l*******“##‘tt********i**i*#t*********“******‘***ﬁ*t*********‘*******/

KI_ENTRY_POINT PlpTask()

§
1

Boolean keepGoing;
SignalBuffer signalBuffer = kiNuliBuffer;

/* absorb all signals until a SIG_INITIALISE is received */
keepGoing = TRUE;

while (keepGoing == TRUE)

;

KiReceiveSignal (PLP_QUEUE_ID,&signalBuffer);

if (*(signalBuffer.type) == SIG_INITIALISE)
{
keepGoing = FALSE;
t
KiDestroySignal (&signalBuffer);
}

plpinit (); /* calls plp initialisation routine*/

/* Never ending loop */
keepGoing = TRUE;

while (keepGoing == TRUE)

{
/*mark signal as not handled and destroy at end, then get the next signal*/
plpSignalHandled(FALSE);

KiReceiveSignal(PLP_QUEUE ID,&signalBuffer);

/*process all signals*/
plpSwitch (&signalBuffer):

#if defined (DEVELOPMENT_VERSION)
if (plpmnContext.signalHandled == FALSE)
{
char text[100];
sprintf{&text[0]."Signal %0x Not Handled”, *signalBuffer.type);
DevFail (&text[0]);
break;
i
#endif

KiDestroySignal (&signalBuffer);
}

150

Plpmn_fnc.c
}

/"*tﬁ**‘*‘**'#*#tit#"*‘**tt**‘l#“‘*‘t‘**#*****t********ﬁ““******“#‘#**
* Function: plpSignalHandled

* plpsig.h plp_sig.h

* Description: TRUE if signal is handled.

*t*********#***********l“i***#*Illl###*tt****t*t**#*******l#‘#‘##****t**#*****/

void plpSignalHandled(Boolean signalHandled)
t

plpmnContext.signalHandled = signaiHandled;
}

/***t!'-'##******‘#t#*‘*t**#**ttt#*t‘**‘*#i*tt#*******t*“**‘******#“#‘******
* Function: plpTraceQutput

*

* Description: Sends the buffer to the Genie Trace Output window
i**##lﬁ#****#********************t**####*******#*******1*#‘******t**t*******/

#f defined PLP_TRACE_OUTPUT

void plpTraceOutput (char *string)

{
SignalBuffer signalToSend = kiNullBuffer;

KiCreateSignal (SIG_TEST_FILE_OUT, sizeof(TestFileOut), &signalToSend);
memepy (signal ToSend.sig->testFileOut.string, string, sizeof{ TestFileOut));
KiSendSignal (TEST_TASK_ID, &signalToSend);

¢

fendif

/* How to use PLP_TRACE_OUTPUT... ¥/

/* #if defined (DM_TRACE_OUTPUT)
sprintf{traceString,"DMMN: DMIN_QU_COM_STATUS Missed.cnf signallD = %6x",
signalBuffer.sig->dminQuComStatus.signalld);
dmmnTraceQutput(traceString);
#endif */

151

Plpmn_fnc.h

*
* $Workfile: plpmn_foch $
* $Revision:

* $Date:

*

3K o e 2 3 o ok o 3k ok o 6 a9 ke e o ke ke ok K ok e T o ke s af e o ok o e 3K gk ke sk 30k k3 30K K ok sk ik ok ok 3Ok 3 ok sk s e o o ik ok K KoK ok 30k
-

* Designed by : PKR

* Codedby

* Testedby :PKR

*

A oK o R oo 0K R K ok o o B o ko S o koK o K K R ok R ok o oK 3 sk o o ok ok e ok ok ok ok
*

* File Description

* Pairing Link Protocol - Main function
tt*******tt#***##*#t********#***#**t'“ﬁt******#t*************l‘********/

#if !defined (PLPMN_FNC_H)
#define PLPMN_FNC_H

#f 'defined (PLPSIGUN _H)
#include "plpsigun.h”

#endif

void plpSignalHandled (Boolean);
#endif

#if defined (PLP_TRACE_OUTPUT)

void plpTraceOutput (char*),
#endif

152

Plp_typ.h
/'t*‘***#***********ﬁ*‘t*******#*'t*tt****‘t**tt#**‘*t******ttt**t**#*t***##*
*
* $Workfile: plp_typ.h $
* $Revision:
* $Date:

*
03 el ok ke o kO ok sk 3 3 HOR s kol ke sk o 3K R ok ok o i ok e O K ok ook oK ok o ok ok kR ke o ke ok okok ok koK R ko ok ook K
*

* File Description :

* Globaliy useful Pairing Link Protoco! types/definitions
*

KooK o ok o R KO KR K KR K R A R R K kKRR OK R KKk ek

#if Idefined (PLP_TYP H)
#define PLP_TYP_H

#if !defined (BT_TYP H)
#include "bt_typ.h"
#endif

AR o o R K R ROR KR R oo K R KK R R KO K

* Nested Include Files

AR Ak o3 K R KA RK o KR R o K oo A K MR o K Kok kK

JAR AR AR K A KK AR oo R KR R K OR Ko R K KK ko

* Manifest Constants
*t****##t********#*#******t**i#******#tt*!**#*t********#ttitk#****t**i****it/

#define PLP_STATE_TIMER_VALUE 10000
#define PLP_SEND_INTERVAL_TIMER_VALUE 500 /* was 10 , then 500 then 50*/
#define HCIE_07_NAME SIZE 248

AR AKROR R o R SO OKOK R HOR SR R OK K R OR R R R R R ok kR

* Global Macros

A AR o K S A oK AR ko o R o R o R o o K R Kk K

/****#*t*i*!*#t*##****#**#*******#t*#ﬁ*****#ﬁ*“****t*#t*****t*t#*‘**t!*#****

* Types used in Prototypes and Globals

AR Ak o KAk AR R AR KR AR R AR Ok KK KRR K KK KK

typedefenum PlpStatusTag

{

PLP_COMMAND _OK,
PLP_VALID,
PLP_NOT_VALID,
PLP_COMMAND_FAIL
}PlpStatus;

typedef struct PlpFriendlyNameTag
{

Int8 nameLen;
Char name[HCIE_07_NAME_SIZE];
PlpFriendlyName;

typedef struct PlpDevicelnfoTag
{
BtBdAddr plpBtBdAddr;

153

Plp_typ.h
PlpFriendlyName plpFriendlyName;
Int8 plpLinkKey [BT_ENCRYPTION_KEY_SIZE];
tPlpDevicelnfo;

/7o o o oo s o o o R SRR o oo ol SRR o R O R o oK Ok oo K o o K R K KO

* Global Static Variables
*"‘*****“*******‘**3****#*****‘***"*****l‘***!‘*##i***#**tﬁ#******##*i********/

/3 o o e o AR o ok o o ook oo oo oK R ko Bk o ok o ok ok Rl R R K K OK RO R KR K

* Global Function Prototypes
*******t***#***“*******-ﬁ**‘#*t****‘*t*k******tttt*t******t#*******tt******lk/

#endif
/* END OF FILE */

154

Plp_sig.h

JAER oK K kR OK ok Rk ok ok K SRRk KRR KK kR Rk

*

* $Workfile: plp_sigh $

* $Revision:
* $Date:
*

e e o e e 3 o ok ok ok ok R o o o o ok ke o KON sk o o s ok ok ok kA K ok ol ook ok ok o ok ok sk ok ok sk ok ok ok R ok b ok kK ok R ok R Kk
*

* Designed by : PKR

* Detailed Design:

* Coded by :PKR

* Tested by

*

o ko o o o ol oK K Ak o o o ok 8 R ok sk ok ok Ok Kl S ok ok ok ok Nk ok ok o ok ok o ok R N ke e ok ook Sk ok R O ok
*
* File Description

* PLP signal definitions
*

7 o o o SRR K oK AR R R R ROR R R ek ROk R Ak R

#if 'defined (PLP_SIG_H)
#define PLP_SIG_H

#if !defined (SYSTEM_H)
include "system.h”
fendif

#if 'defined (HCI_ TYP_H)
#include "hei_typ.h”
#endif

#f !defined (PLP_TYP_H)
#include "plp_typ.h"
Hendif

JER A kAR AKORROKKKKKRR K KR KRR R kR ARk KRR R KR

* Type Definitions
t**tﬁit‘lt*‘*t“‘i*‘ﬁ*#*t*tt****‘t*******‘*#********t*********“*‘**/
typedef struct PlpRegisterReqTag |{

Taskld myTaskld;

nt8 timeout:

PlpRegisterReq;

typedef struct PlpStartScanReqTag {
Taskld myTaskld;
| PlpStartScanReg;

typedef struct PlpStartScanCnfTag {
PlpStatus plpStatus;
} PlpStartScanCnf;

typedef struct PlpLinkinfolndTag{
Taskld myTaskld;
PlpStatus plpStatus;

155

BtBdAddr plpLocalBtBdAddr;
PlpFriendiyName plpLocalFriendlyName;
BtBdAddr plpRemoteBtBdAddr;
PlpFriendlyName plpRemoteFriendlyName;

Plp_sig.h

Int8 plpLinkKey [BT_ENCRYPTION KEY_SIZE];

}PipLinkInfoInd,

typedef struct PlpLinkInfoRspTag}
Taskld ryTaskld;
PlpStatus plpStatus;
iPlpLinkInfoRsp;

#endif
/* END OF FILE */

156

Plpsigbas.h

FRARR AR AR Aok KR R o A ROK R K R R R ROR KRR K K
EL R e R I e

$Workfile: plpsigbas.h $
$Revision:
$Date:

* % % % ®

A 6o o 6 ks ok ok R K K O R 0 o KR K o o o ok ke ok o o oo o s ok ok oo Kk o o K K KK
*

* File Description

* Signal bases used by PAIRING LINK PROTOCOL Task
*

AR ok R OF KR R R R o R o o KR R K R o Ok

#if !defined (PLPSIGAS_H)
#define PLPSIGBAS_H

PLP_SIGNAL_BASE = LAST_CUST_SIGBASE + 0x0100,
LAST PLP_SIGBASE =PLP_SIGNAL BASE,

#endif

157

Plpsigun.h

o o koK e oo R R ok o R ok o ok R o R ek Kok Kok sk ok ok sk ok

.
* $Workfite: plpsigun.h $
* $Revision:

* $Date:
L]

Nk ok ok b e o R o ok bk ke o R R Ok ol sk ok 8 sk sk el o kol ok ok 8 i ok R je ok i ok ok ok A e 3k ke ok ik OK K O ek kR K 30k ROk 3 ok o ok ok ok
*

* Designed by :PKR

* Coded by : PKR

* Tested by

*

ks o o ke T o ok ok ke ok i o ol sk ok ok ok ko bk N ook ol ok koK sk sk ok ROk K ke o o ok i K ek oo o K K K o e ok R R ok
*

* File Description

* Header file containing all signal types used in the Pairing Link Protocol, used for

* debug when inspecting signal unions
*

A o oK 0 K e 3060 K oo ook MR K o oo R ok oo O kR R 3K o ok R K R R ok ok ok Ok

#if tdefined (PLPSIGUN_H)
#define PLPSIGUN_H

#if defined (DMSH_SIG H)
#inciude "dmsh_sig.h"
#endif

#if !defined (DMIQ_SIG_H)
#include "dmiq_sig.h"
#endif

#f Idefined (DMSC_SIG_H)
#include "dmsc_sig.h"
#endif

#if !defined (DMCN_SIG_H)
#include "dmen_sig.h"
#endif

#if ldefined (DMSO_SIG_H)
#include "dmso_sig.h"
Hendif

#if !defined (DML2_SIG_H)
#include "dmi2_sig.h"
Hendif

#if tdefined (DMSP_SIG_H)
#include "dmsp_sig.h"
#endif

#f !defined (DMIN_SIG_H)

#include "dmin_sig.h"
#endif

158

Plpsigun.h

#if tdefined (DMSD_SIG_H)
#include "dmsd_sig.h"
#endif

#if 'defined (L2IF_SIG_H)
#include "12if_sig.h"
#endif

#endif

#if defined (DM_TRACE_OUTPUT)
#include "emmi_sig.h"

#define SIGNAL TVSIGNAL
#include "sig_defh"

#include "kemnel.h"

#if 'defined (PLP_SIG_H)
#include "plp_sig.h"
#endif

#if 'defined (PLPTX_SIG_H)
#include "plptx_sig.h"
#endif

union Signal

{

#if defined (DM_SIGNALS)
#include "dmsig.h”
#endif

#if defined (PLP_SIGNALS)
#include "plpsig.h”
#endif

#if defined (PLPTX_SIGNALS)
#include "plptxsig.h"

#endif

TestFileOut testFileOQut;
KilnitialiseTask initialise;
KilnitialiseTask kilnitialiseTask;

KiTimerExpiry kiTimerExpiry ;

b
#endif

159

Plpsig.h

AR K oA o KO K oS o OB oA K SR o ok ok o K R K ROK KRR R R oK o

)

)

*

* $Workfile: plpsig.h §
* $Revision:

* $Date:

*

o o ok o oK o O o b oo oo s e KK R o o KK K o K K K o o oo R oK O HOK R R Kk

*

* File Description
*

* Pairing Link Protocol signals
o>

Ko o ok A SRR o e o ok K R SO ok o o R R R R o KK O KSR K R R R Kok ok

SIG_DEF(SIG_PLP_DUMMY = PLP_SIGNAL_BASE, EmptySignal
SIG_DEF(SIG_PLP_REGISTER_REQ, PlpRegisterReq
SIG_DEF(SIG_PLP_START SCAN_REQ, PlpStartScanReq
SIG_DEF(SIG_PLP_START SCAN_CNF. PipStartScanCnf
SIG_DEF(SIG_PLP_LINK_INFO_IND, PlpLinkInfoind

160

plpDummy

plpRegisterReq
plpStartScanReq

pipStartScanCnf

pipLinkinfolnd

Plptxmn_fnc.c

/#tt**i!tﬁt***t#t#**1‘*******#**‘*l#****‘*’ﬁ*****#*****#**********“*****#***‘
*

* $Workfile: plptxmn_foc.c §

* $Revision:

* $Date:

*

A A ol o o ok e ok ok ok Kok o O Ok KOk K o ok 0 ok e ok ok ol ke ok ke o o ook e ool ok o o sk ok koK ok e ook ok ok ok
*

* Designed by :PKR

* Coded by :

* Testedby :PKR

*

A o ool ok o ook R o oK o o 6 S ok ok o A R ok o o K KO o K sk K o e o ko o ok ok o kK ok
*

* File Description

* Pairing Link Protocol - Controlling Task main loop
*

K A o ol e b ol o R A O o O R K 4k ok ok AR K s ok ok R o o o ok R ok sk ok kR K OR R ok

#define MODULE_NAME "PLPTXMN_FNC"

/o o o oo R o o R o KR R ol ok o o ok o R R R RO o R sk ek ok

* Include Files

oo R o R R SR R SR K AR KR K ko K R S R K o R o K

#if defined (HPDEFINE)

#if 'defined (HPDEFINE_H)
#include "hpdefine.h"
#endif

#endif

#if Idefined (STRING_H)
#include "string.h”
#endif

#if !defined (KERNEL_H)
#include "kernel.h”
#endif

#if !defined (PLPTXMN_FNC_H)
#include "plptxmn_fnc.h"
#endif

#if defined (PLPTX_TRACE OUTPUT)
include "stdio.h"”
#iendif

include "stdio.h"

#if !defined (PLPTXBU_FNC C)
#include "plptxbu_fnc.c”

#endif

#if !defined (PLP_TYP_H)
#include "plp_typ.h"

#endif

#if defined (PLPTXBU_TYP H)

161

Plptxmn_fnc.c

#include "plptxbu_typ.h"
#endif

#if defined (PLPTX_TRACE_OUTPUT)
include "pssignal.h"

include "emmi_sig.h"

include "stdio.h"

#endif

Mo s oo oo oKl 3 o R R kR ek ok K o ok o Kk K OK R R e o o R R OK O o

* Manifest Constants
*t*****t**#ll***tt#********t********!‘*!********t*************k**##****tt*##*/

#define PLP_SIGNALS_COUNTS 10

79 O o KK K0 HROR R K a K R RK o R O ok OO R

* Types

****************“k****#‘k*************************#*t****t***t******tt*****t/

7k oo Ak o O oK oo Ao R SR o s o K R R R KOK R s ok KRR Ok

* Variables
t‘##t**t‘tti‘***t**ﬁ‘Ull****lkt#****t*t**‘***t#tt*****tttt‘***“t*#i*#*‘*t/
#if defined (PLPTX_TRACE_OUTPUT)

char traceString{f MAX_TEST_FILE_OUT_STRING |;

#endif

70 oo o o RO o ok kKR o o ok KK A R RO S K K

* Timer variables
*****t*********ﬁ‘#******#t*****t**i#*******i******lﬂk*******#‘******#‘******/

KiTimer plptxStartSequence Timer;

s s KK oKl ook R o oK oo ok o o SR R o ko KR ok o KR KK Kk kR R KRR sk kKR

* Macros
e ok ook oK 0 e o o ok kol o 28 ok ok ok ok o o ol ok ok ok o ke s ok KK o o o K ok o ke R ok ok s O o ok e ko ol ok ke ok ok ok “t**/

/0o R KSR R 60 ok o o KR o o o o Ko R 6o o o o o K R S R KK e

* Functional Prototypes
****************t‘*t*****1!**U********#**********************#********t**t**/

void plpixOutinfoReq (PlptxOutlnfoReq *);

static void PLPTXTaskExitRoutine (void);
KI_ENTRY POINT PLPTXTask (void);
KI_SINGLE_TASK (PLPTXTask, PLPTX_QUEUE_ID, PLPTX_TASK_ID)
void piptxStateSwitch (SignalBuffer*);

void sendInfoTypeByte (void);

void piptxBusAckReq (void);

void plptxSendOutFinishReq(void),

void plptxDisconnectedState(SignaiBuffer *signalBuffer p);
void plptxConnectedState(SignalBuffer *signalBuffer_p);
void plptxStartSequenceReq (PiptxStartSequenceReq *);
void plptxStartSequence2Req (PlptxStartSequence2Req *);

/* for the timer */
void plptxinitStartSequence Timer (void);

162

Plptxmn_fnc.c

s oo o oo RS KR K o R o KK R R R R HOR K sk o o o Ok ek o

* QGlobal Functions
t*t‘***ttt#tt***#t****i****‘t*t****ttﬁ*‘***#**#ﬁﬁt‘****t#t‘*tt!*****##**t*lﬁ/

JRE R AR KRR R K R K R R KR K K ORI kKK R R R

* Function: PLPTaskExitRoutine
*

* Description: app task exit routine
#t******‘***t*******#*********‘**i****t*ktlﬂl‘\‘*llitt**********#**‘****#**/

static void PLPTXTaskExitRoutine(void)
{

H

JARAR A R SR AR KR AR R O K R K O R ko JOR R o R R K oK o

* Function: PlptxTask
*

* Description: Main entry point o the device manager task
t!"*#*‘****lt*“******‘*‘t***********i*****lllﬂ(ﬂii#***tt*#t*#*tt***‘***#**#***/

KI_ENTRY_POINT PLPTXTask()

Boolean keepGoing;

SignalBuffer signalBuffer = kiNuliBuffer;

SignalBuffer signalToSend = kiNullBuffer;
DmshRegisterApplicationReq * dmshRegisterApplicationReq_p;

#if defined (DEVELOPMENT VERSION)
sprintf{traceString,"PLPTX: entry point reached");
plptx TraceOutput(traceString);

#endif

/* absorb all signals until a SIG_INITIALISE is received */
keepGoing = TRUE;
while (keepGoing == TRUE)
i

KiReceiveSignal (PLPTX_QUEUE_ID,&signalBuffer);

if (*(signalBuffer.type) = SIG_INITIALISE)

{

keepGoing = FALSE;
1

Ll
KiDestroySignal (&signalBuffer);
t

plptxContext.plptxState = DISCONNECTED; /* set initial tx state */
plptxContext.start1 Received = FALSE;

KiCreateSignal (SIG_DMSH_REGISTER_APPLICATION_REQ,
sizeof (DmshRegisterApplicationReq),
&signalToSend).
dmshRegisterApplicationReq_p = &signalToSend sig->dmshRegisterApplicationReg;
memset (dmshRegisterApplicationReq_p.0.sizeofi DmshRegister ApplicationReq));
dmshRegisterApplicationReq_p->taskld = PLPTX_TASK_ID;
163

Plptxmn_fnc.c

dmshRegisterApplicationReq_p->registerAsApplication= TRUE;
KiSendSignal (DM_TASK_[D,&signalToSend);

plptxBuslnit (); /* calls plptx initialisation routine*/

/* set signalcount to zero */
plptxContext.plpSignalCount = 0;

/* Never ending loop */

keepGoing = TRUE;

while (keepGoing == TRUE)

{
/*mark signal as not handled and destroy at end, then get the next signal*/
plptxSignalHandled(FALSE);

/*there are no signal no the internal unit queue, so

remove the next signal from the external queue*/
KiReceiveSignal(PLPTX_QUEUE ID.&signalBuffer);
DevAssert ((signalBuffer.type)!=PNULL);

/*process all signals®*/
plptxStateSwitch (&signaiBuffer);

#if defined (DEVELOPMENT_VERSION)
if (plptxContext.signalHandled == FALSE)
{
char text{100];
sprintf(&text[0],"Signal %0x Not Handled", *signalBuffer.type):
DevFail (&text[0]):
break;
i
#endif

KiDestroySignal (&signalBuffer);
i
}

Kk R KR o K RO K R KooK SR KK O SRR o o o K O R Rk

* Function: plptxSignalHandled

*

* Description: TRUE if signal is handled.

O K S AR SAAOK K SR R KR K SO KK oo K Ko K A AR KO O OR Kk ok o/

void plptxSignalHandled(Boolean signalHandled)

{
plptxContext.signalHandled = signalHandled:

t

430 o ok s o O A0 o oo oo o ok Ko o o o o R o K R R kS R K KK RO K

* Function: plptxStateSwitch
*

* Description: Main switch for PLPTX task
LRSI 2222 ST R 23 ******““*****t““‘*'tk*******‘."*‘.‘*****/

void plptxStateSwitch (SignaiBuffer *signalBuffer_p)

{
switch (plptxContext.plptxState)
5

{

Plptxmn_fnc.c Plptxmn_fnc.c

case DISCONNECTED: KiSendSignal (PLPTX_TASK_ID, &signalToSend);
plptxDisconnectedState(signalBuffer_p): '
break; else
{
case CONNECTED: /* do nothing as the timer has already been stopped - piptxContext.plpStartSequenceTimerRunning = FALSE */
plptxConnectedState(signalBuffer_p);
break; #if defined (PLLP_TRACE_OUTPUT)
sprintf{traceString,"PLPTX: StartSequence TIMER_EXPIRY ignored as timer stopped”):
default: pipTraceOutput(traceString);
DevFail ("incorrect txState"); #endif
break; t
¥ }
H else
{
/***lll**lkl(l*********ti‘************#t*t*#**‘*##*******t******#********t******* /* Slgnal for use elsewhere let n thI‘Ough */
* Function: plptxDisconnectedState plptxSignalHandled(FALSE);
»*
!
* Description: Tx disconnected state break;

tt#****lttt‘*****ll"ﬂl‘li*#*#t**#***tt#‘t*l***t‘********t*******#***‘**#*****/
void plptxDisconnectedState(SignalBuffer *signalBuffer_p)
{ case SIG_PLPTX_START SEQUENCE_REQ:
SignalBuffer signalToSend = kiNullBuffer; /* Start StartSequenceTimer */
plptxStartStartSequenceTimer ();
piptxSignalHandled(TRUE);
memcpy (&plptxContext.localDeviceld, &signalBuffer_p->sig->plptxStartSequenceReq.localBtBdAddr, sizeol

switch (*(signalBuffer_p->type)) (BtBdAddr));
{ plptxStartSequenceReq(&signalBuffer_p->sig->plptxStartSequenceReq);
case SIG_DMSH_REGISTER_APPLICATION_CNF: break;

DevAssert (signalBuffer_p->sig->dmshRegisterApplicationCnf.comStatus == COMMAND_OK);
case SIG_PLPTX_START SEQUENCE2_REQ:

if (signalBuffer_p->sig->dmshRegister ApplicationCnf.comStatus '= COMMAND_OK) #if defined (DEVELOPMENT _VERSION)
{ sprintf(traceString,"PLPTX: received start sequence2 req");
plptxSignalHandled (FALSE); plptxTraceQutput(traceString);
} #Hendif
plptx StartSequence2Req(&signalBuffer_p->sig->plptxStartSequence2Req);
break;
piptxContext.start1 Received = TRUE;
case SIG_TIMER_EXPIRY: break;

/* If it's the StartSequenceTimer that has expired */
if (signalBuffer p->sig->kiTimerExpiry.timerld == plptxStartSequence Timer.timerld) case SIG_PLPTX_START_SEQUENCE_CNF:
1 if (pIptxContext.startl Received == TRUE)

if (plptxContext. plptxStartSequence TimerRunning == TRUE) {

{ /* send plpStartSequenceCnf to PLPTX task*/

#if defined (PLP_TRACE_OUTPUT) KiCreateSignal (SIG_PLPTX_START_SEQUENCE_CNF,
sprintf{traceString,"PLPTX: StartSequence TIMER_EXPIRY occurred in PLPTX DISCONNECTED state”); sizeof (PlptxStartSequenceCnf),
plpTraceOutput(traceString); &signalToSend):

#endif

signalToSend.sig->plptxStartSequenceCnf.myTaskid = PLPTX_TASK_ID;
/* activate start sequence (part 1 of 2)*/

KiCreateSignal (SIG_PLPTX_START_SEQUENCE_REQ, KiSendSignal (PLP_TASK_ID, &signalToSend);
sizeof (PiptxStartSequenceReq), .
&signalToSend); plptxStopStartSequenceTimer ();

signalToSend.sig->plptxStartSequenceReq.myTaskld = PLPTX_TASK_ID; /* handshaking complete go to CONNECTED state */

signalToSend.sig->plptxStartSequenceReq. localBtBdAddr = plptxContext.localDeviceld; plptxContext.plptxState = CONNECTED;

165 166

Plptxmn_fnc.c

else

{

sprintf{traceString,"PLPTX: ignored as start] (AAA) not received, before rx Start2 (ABB)");

plptxTraceOutput(traceString);

!
break;

case SIG_PLPTX_OUT_INFO_REQ:
sprintf{traceString,"PLPTX: hello)");
plptxTraceOutput(traceString);
break;

default:
plptxSignalHandled (FALSE);
break;
t
t

AR oo kR ok ol o o o ol K K o kKK e KRk sk e O B R R ok ok sk K sk ok o ok

* Function: plptxConnectedState
*

* Description: Tx connected state
!t*t****#*#‘****####*************lll********#t***#********‘#l*#*t#t****#*t***/
void plptxConnectedState(SignalBuffer *signalBuffer_p)

{
plptxSignalHandled(TRUE);

switch (*(signalBuffer_p->type))
H

1
/* left over signals from previous state*/
case SIG_PLPTX_START SEQUENCE2 REQ:
plptxStartSequence2Req(&signalBuffer_p->sig->plptxStartSequence2Req);
#if defined (DEVELOPMENT _VERSION)
sprintf{traceString,"PLPTX: now connected - sent START_SEQUENCE2_REQ anyway");
plptxTraceOutput(traceString);
#endif
break;

case SIG_PLPTX_START _SEQUENCE_CNF:
#if defined (DEVELOPMENT_VERSION)
sprintf(traceString,"PLPTX: now connected - ignored START_SEQUENCE_CNF");
plptxTraceOutput(traceString);
#endif
break;

case SIG_PLPTX_START_SEQUENCE_REQ:
#if defined (DEVELOPMENT_VERSION)
sprintf{traceString,"PLPTX: now connected - ignored START_SEQUENCE_REQ™);
plptxTraceOutput(traceString);
#endif
break;

/* signals for this state */

case SIG_PLPTX_OUT_INFO_REQ:
plptxQutinfoReq(&signalBuffer_p->sig->plptxOutinfoReq);
break;

167

Piptxmn_fnc.c

case SIG_DMSH_REGISTER_APPLICATION_CNF:

DevAssert (signalBuffer_p->sig->dmshRegisterApplicationCnf.comStatus == COMMAND_OK}):

break;

case SIG_PLPTX_IN_INFO_RSP:
/* task needs to send an ACK signal to t'other pc */
plptxBusAckReq ();
break;

case SIG_PLPTX_OUT_FINISH_REQ:
plptxSendOutFinishReq():
break;

default:
plptxSignalHandled(FALSE);
break;
b

o oo o a8 0o o SR o R K ol R S o K SRR Kk R S o o K o R R

* Function: plptxStartSequenceReq
*

* Description: process the plptxStartSequenceReq signal
tﬁt#“it**'##‘**tt**t**ﬁ#**“t##***ﬁ‘##********t*****t*t#t***t*t******#*t**/

void plptxStartSequenceReq (PiptxStartSequenceReq * piptxStartSequenceReq_p)

t
SignalBuffer busSignal = kiNullBuffer ;
Intg* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE_DATA_REQ,
sizeof (PiptxBusWriteDataReq),
&busSignal);

packetBuffer = (Int8%) & (busSignal.sig -> plptxBusWriteDataReq.txData);

/* fill signal */

/* header */

PUT_INTS (0, packetBuffer, PRE_AMBLE_BYTE);
PUT_INT8 (1, packetBuffer, PRE_AMBLE_BYTE):
PUT_INTS (2, packetBuffer, PRE_AMBLE_BYTE),
PUT_BDADDR(3, packetBuffer, plptxContext.localDeviceld);

PUT_INT8((PLPTX_BUS_HEADER_SIZE), packetBuffer, START TYPE); /* signal type */
PUT_INT8 ((SIZE_TO_SIGNAL_NAME), packetBuffer, START_SIGNAL_NAME);
PUT_INTS (SIZE_TO_SIGNAL, packetBuffer, START SIGNAL);

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_START_SEQUENCE_SIZE +

PLPTX_BUS_HEADER_SIZE);

plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal) ;

168

Plptxmn_fnc.c
0k K KR R R AOKOK RO ROR Ok s o R R R R K R KK R R O kR R RO kK

* Function: plptxStartSequence2Req
*

* Description: process the plptxStartSequence2Req signal
\ﬁ‘“.**tﬁ*******!ll*i***‘*‘****l“‘tt**‘*“ﬁt*l‘t**‘*ttt*“-"**!t**“‘*tt#**‘*/
void plptxStartSequence2Req (PiptxStartSequence2Req * plptxStartSequence?Req_p)
{

SignalBuffer busSignal = kiNullBuffer ;

Ini8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE_DATA_REQ,
sizeof (PlptxBusWriteDataReq).
&busSignal);

packetBuffer = (Int8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

/* fill signal */

/*header */

PUT_INTS (0, packetBuffer, PRE_AMBLE BYTE),
PUT_INTS (1, packetBuffer, PRE_AMBLE_BYTE);
PUT_INTS (2, packetBuffer, PRE_AMBLE_BYTE);
PUT_BDADDR(3, packetBuffer, plptxContext.localDeviceld);

PUT_INTS((PLPTX_BUS_HEADER_SIZE), packetBuffer, START_TYPE); /* signal typc */
PUT_INTS ((SIZE_TO_SIGNAL_NAME), packetBuffer, START2_SIGNAL NAME);
PUT_INTS (SIZE_TO_SIGNAL, packetBuffer. START2_SIGNALY);

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_START_SEQUENCE_SIZE +

PLPTX_BUS_HEADER_SIZE);

plpixBusWriteData (&busSignal);
KiDestroySignal (&busSignal) ;

}

ks ok koo koK R R ok ol ok o ok oo ok o 0K RO sk o AR SRk ok R K ok K Rk sk K

* Function: plptxQutinfoReq
*

* Description: process the plpOutInfoReq signal
t#‘*‘**t***t**k*l*ﬁ‘****ttt*#***t*t‘#‘**‘**‘tt***##il@*t**“#*it**t*‘t*t**t#/

void plptxOutInfoReq (PlptxOQutinfoReq * plptxOutinfoReq_p)
P q

{
int friendlyNameCount;
int linkKeyCount;

SignalBuffer busSignal = kiNullBuffer ;
Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE_DATA_REQ.
sizeof (PlptxBusWriteDataReq),
&busSignal);

packetBuffer = (Int8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);
/* fill signal */
/*header */
PUT_INTS8 (0, packetBuffer, PRE_AMBLE_BYTE);
169

Plptxmn_fnc.c

PUT INTS (1, packetBuffer, PRE_AMBLE_BYTE);
PUT_INTS (2, packetBuffer, PRE_AMBLE_BYTE),
PUT_BDADDR(3. packetBuffer, plptxContext.localDeviceld);

PUT_INT8(PLPTX_BUS_HEADER_SIZE, packetBuffer, INFO_TYPE); /* signal type */
PUT_INTS ((SIZE_TO_SIGNAL_NAME), packetBuffer. PLPTX_BUS_OUT_INFOY);

PUT_BDADDR ((SIZE_TO_BDADDRY), packetBuffer, plptxOutlnfoReq_p -> plpBtBdAddr);
PUT_INT8((SIZE_TO_NAME_LEN), packetBuffer, plptxOutinfoReq p -> plpFriendlyName.nameLen);

for (friendlyNameCount = 0; friendlyNameCount <248; friendlyNameCount ++)
{
PUT_INTS8 ((SIZE_TO_NAME + friendlyNameCount),packetBuffer. plptxOutInfoReq_p -> plpFriendlyName.name
| friendlyNameCount]);
!

for (linkKeyCount = 0; linkKeyCount < 16; linkKeyCount++)

{
PUT_INT3 ((SIZE_TO_LINK_KEY+ linkKeyCount), packetBuffer, plptxOutlnfoReq_p -> plpLinkKey
{linkKeyCount]);
}

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_OUT_INFO_DATA_SIZE +
PLPTX_BUS_HEADER_SIZE),

plptxBusWriteData (&busSignal);
KiDestroySignal (&busSignal } ;
|

JHA R AR K KR KK O R KR K OO SR R AR RO KRR KR R R kR K kK

* Function: plptxBusAckReq
*

* Description: process the piptxBusAckRegq signal
***********#lﬂk*#i*********************t*******tt****************\k*#***t****/

void plptxBusAckReq ()

!

L
SignalBuffer busSignal = kiNullBuffer ;
Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE_DATA REQ,
sizeof (PlptxBusWriteDataReq),
&busSignal),

packetBuffer = (Int8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

/*header */

PUT_INTS (0, packetBuffer, PRE_AMBLE_BYTE);
PUT_INTS (1, packetBuffer, PRE_ AMBLE_BYTE);
PUT_INTS (2, packetBuffer, PRE_AMBLE BYTE);
PUT_BDADDRQ(3, packetBuffer, plptxContext.localDeviceld);

PUT_INT8 (SIZE_TO_TYPE, packetBuffer, ACK_TYPE);

PUT_INTS (SIZE_TO_SIG_NAME, packetBuffer, PLPTX_BUS_ACK);
PUT_INT8 (SIZE_TO_SIGNAL BEING_ACKED, packetBuffer, PLPTX_BUS_OUT_INFO);

170

Plptxmn_fnc.c

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_ACK_TYPE_SIZE +
PLPTX_BUS_HEADER_SIZE);

plptxBusWriteData (&busSignal);

KiDestroySignal (&busSignal);
4

AR AR AR AR R R AR R R K SR o R R OKOK R o ok ORI K ok ok Kk K

* Function: plptxSendOutFinishReq
*

* Description: send the OutFinishReq signal to the other device
3*‘*‘*‘***#t****tt##*l‘t**t***ltU#‘l*‘**t*t***#lﬂt#******“i*****t**!t****t**#/
void plptxSendOutFinishReq ()
{

SignalBuffer busSignal = kiNuliBuffer ;

Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE _DATA REQ.
sizeof (PlptxBusWriteDataReq),
&busSignal);

packetBuffer = (Int8*) & (busSignal.sig -> plptxBusWriteDataReq.txData);

/* fill signal */

/* header */

PUT_INTS (0, packetBuffer, PRE_AMBLE_BYTE);
PUT_INTS (1, packetBuffer, PRE_AMBLE_BYTE);
PUT_INTS (2, packetBuffer, PRE_AMBLE_BYTE),
PUT_BDADDR(3, packetBuffer, plptxContext.localDeviceld);

/* main signal */
PUT_INT8 (SIZE_TO_TYPE, packetBuffer, ACK_TYPE);
PUT_INTS (SIZE_TO_SIG_NAME, packetBuffer, PLPTX_BUS_ACK);

PUT_INTS (SIZE_TO_SIGNAL_BEING_ACKED, packetBuffer, PLPTX_FINISH_REQ ACK);

busSignal.sig -> plptxBusWriteDataReq.txDataSize = (PLPTX_BUS_ACK_TYPE_SIZE +
PLPTX_BUS_HEADER_SIZE);

plptxBusWriteData (&busSignal);

KiDestroySignal (&busSignal);
}

779K o SR o o o RO Ol O R SRR Koo o o R A KR ok

* Function: sendInfoTypeByte
*

* Description: sends Info type Byte

t#t#t*tttt*****t******t#**l‘**‘i**l*ti“'**‘*tt*#‘##‘***#‘*ttt*t*t**t*******/
void sendInfoTypeByte (void)

{

SignalBuffer busSignal = kiNullBuffer ;

Int8* packetBuffer;

KiCreateSignal (SIG_PLPTX_BUS_WRITE_DATA_REQ,
sizeof (PlptxBusWriteDataReq),
&busSignal);

packetBuffer = (Int8*) & (busSignal.sig > plptxBusWriteDataReq.txData);

/* till signal */

171

Plptxmn_fnc.c

PUT_INT8(0, packetBuffer, INFO_TYPE): /* signal type */
busSignal.sig -> plptxBusWriteDataReq.txDataSize = 1;

piptxBusWriteData (&busSignal);

KiDestroySignal (&busSignal) ;
H

7Aoo o ok ok oo o o o KRR S O A o o o KRR o KKK S o K o okl K HOR O

* Function: plptxInit
*

* Description: Initialise plptx task
*****t******#*‘*ttﬁ**#***t*t*****t******t*****#‘****!t*#t************#**#**#/

void plptx[nit(void)

t
SignaiBuffer signalToSend = kiNullBuffer ;
DmshRegisterApplicationReq * dmshRegisterApplicationReq_p:

KiCreateSignal (SIG_DMSH REGISTER_APPLICATION_REQ.
sizeof (DmshRegisterApplicationReq),
&signalToSend);

dmshRegisterApplicationReq_p = &signalToSend.sig->dmshRegisterApplicationReq;
memset (dmshRegisterApplicationReq_p.0.sizeof{ DmshRegisterApplicationReq)):

dmshRegisterApplicationReq_p->taskld = PLPTX_TASK_ID;
dmshRegisterApplicationReq_p->tegisterAsApplication= TRUE;

KiSendSignal (DM_TASK_ID,&signalToSend);
i

ko sk o o R KK o e o R Ko oK S Kook oK o o e Kool KRR o ok Ok

* Function: plptxinitStartSequenceTimer
*

* Description: Initialises timer that controls the interval at which start sequence is transmitted
*****t******#***t**#*****t#************iﬂt***t*t*****tt******#****tt*#!t**t*/

void plptxInitStartSequenceTimer (void)
k)

1
plptxContext.plptxStartSequenceCounter = 0;
§

Ao Ao o o Ko KK o R KR KK R KRR ko K KK o o K o ok

* Function: plptxStartStartiSequenceTimer
*

* Description: Starts StartSequenceTimer
‘**t*l*#t#‘#*'**ti**t*#*t************lk*lll**¥*i***“‘*******#‘**“‘t#*‘*****\k/

void piptxStartStartSequenceTimer (void)
t
plptxContext.plptxStartSequenceCounter ++;

/*if > 1, counter is already running therefore stop counter and restart it */
if (1 < plptxContext.plptxStartSequenceCounter)
{
KiStopTimer (&plptxStartSequenceTimer);
}

172

Plptxmn_fnc.c

plptxStartSequenceTimer.timeoutPeriod = MILLISECONDS_TO_TICKS
(PLPTX_START_SEQUENCE_TIMER_VALUE);
plptxStartSequenceTimer. myTaskld = PLPTX_TASK_ID;
plptxStartSequence Timer.userValue = 0;
KiStartTimer(&piptxStartSequenceTimer);
plptxStartSequence TimerRunning (TRUE);
}

JEA AR AR R K KR R oK RO SR AR R R oK K AR o R R o o o KRR ok K ok

* Function: plptxStopStartSequence Timer
*

* Description: Stops StartSequence timer
*#****‘*!**********‘V't*'****#i***t*tt****##******t**t****#‘ttﬂ**#tttt****‘/

void plptxStopStartSequence Timer (void)
{
KiStopTimer(&plptxStartSequenceTimer);
plptxStartSequenceTimerRunning (FALSE);
i

/00 ok ok SR R K R Ao o o o o K KR o o K R O R O AR K o o R R

* Function: plptxStartSequence TimerRunning
*

* Description: TRUE if StartSequenceTimer is running.
t*t*‘******#“**t*t*‘**l(*"*‘**#!****‘*l‘***‘***\8#"*i*****************/

void plptxStartSequence TimerRunning(Boolean plptxStartSequenceTimerRunning)
t

plptxContext.plptxStartSequence TimerRunning = plptxStartSequenceTimerRunning;
t

#if defined PLPTX_TRACE_OUTPUT

o oK O 0 Ko R o o oo o KO o 6 R ok R o R o KK ok KK O

* Function: plptxTraceOutput
N

* Description: Sends the buffer to the Genie Trace Output window
t*#***‘#t*#‘******************t*t##************1‘********‘****‘***#********#/

void plptxTraceOutput (char *string)

{
SignalBuffer signalToSend = kiNullBuffer;

KiCreateSignal (SIG_TEST_FILE OUT, sizeof{TestFileOut), &signalToSend);
memcpy (signalToSend.sig->testFileOut.string, string, sizeof{ TestFileOut));
KiSendSignal (TEST_TASK_ID, &signalToSend);

t

#endif

173

Plptxmn_fnc.h

Ak o R R R R R SR KA R K o o KR R R o K R O RO o R
*

* $Workfile: plptxmn_foc.h $
* $Revision:
* S$Date:

*
3 o e o o ok o i e 2 ke ko ke ok oK ok ok ek ok ok ke ok ok K ok ok ok ok e SOR dok kR OR R ROk kR ok Rk ok R ok kok Rk R
*

* Designed by :PKR

* Coded by

* Testedby :PKR

.

e s o oK oK o8 R o K o K S R oK ok R o ok ko KON o ok K R SR Kk o A o K ok o e A ok ok
*

* File Description

* Transport Layer - main functions
*

AR K AR OB R KK R R KKK R R R O R OROR R ok R R KRk Rk ok

#if 1defined (PLPTXMN_FNC_H)
define PLPTXMN_FNC_H

#if O

#f Idefined (PLPTXSIGUN_H)
#include "plptxsigun.h”

#endif

Hendif

#if defined (BT_TYP_H)
#include "bt_typ.h"
#endif

typedef enum PlptxStateTag
{
DISCONNECTED,
CONNECTED
{PIptxState;

typedef struct PlptxContextTag
{

Boolean signalHandled;

Int8 plpSignalCount;

Int32 plptxStartSequenceCounter;
Boolean plptxStartSequence TimerRunning;

PlptxState plptxState;

Boolean busConnected;

BtBdAddr rxDeviceld; /* ID just received */

BtBdAddr remoteDeviceld; /* used for verifying that signal received is not signal transmitted by the same
device */

BtBdAddr localDeviceld;

Boolean start] Received;

Boolean starti Sent;

1 PlptxContext;

PlptxContext plptxContext;
174

Plptxmn_fnc.h

void plptxInit (void);
void plptxSignalHandled (Boolean);
void plptxDoNotDestroy (Boolean);

void plptxStartStartSequence Timer (void),
void plptxStopStartSequenceTimer (void);
void plptxStartSequence TimerRunning (Boolean);
#if defined (PLPTX_TRACE_OUTPUT)
void plptxTraceQutput (char*);
#endif

#endif

175

Plptxbu_fnc.c

/*tttttt****tttt#ts**ttm************t*********t*t**ttttt#t**tttt******t***t*
*

* $Workfile: plptxbu_fnc.c $

* $Revision:

* $Date:

.
03K ok e e sk o oK o ol ok o o ke e 2 e o e oAk ok ok 3 4 KOk e ok 6 ok ok ol o ok ok ek ok R ok ok ok 3 b ok a3 ko ok R ok o ROk o ok R ok ok
*

* Designed by : PKR

* Coded by

* Testedby :PKR

*

o o o o o ok e ool ok oK ok 3 0 3 K o ok 6K 3 ok ok ok ok skt K K ok i ook ke R O 3 8K K K o o ek o KOOk ok ok ok koK Kok Kk
*

* File Description
*

* Transport Layer, bus task - main functions
.

AR AR R K o R K KR K AR o oK R oK KKK R R R R o o K Rk |

/*#define DEBUG_PLPTX */

f#tinclude <stdio.h>
#include <windows.h>
#include <winbase.h>
#include <windowsx.h>
#include <malloc.h>

#include "stdlib.h"

#if \defined (MA_TYP_H)
include "ma_typ.h"
#endif

#if {defined (TM_TYP_H)
include "tm_typ.h"
#endif

#if defined(HPS_ON_WINDOWS)
if !defined (GWCOMERR_H)

include "gwcomerr.h”

endif

#endif

#if \defined (STRING_H)
#include “string.h"
#endif

#if \defined (PLPTX_SIG_H)
#include "plptx_sig.h"
#endif

#if tdefined (PLPTX_TYP_H)
#include “plptx_typ.h"
#endif

176

Plptxbu_fnc.c

#f 1defined (PLPTXSIGUN_H)
#include "plptxsigun.h"
#endif

#if 'defined (PLPTXMN_FNC_H)
#include "plptxmn_fnc.h"
#endif

#if !defined (PLPTXBU_FNC_H)
#include "plptxbu_fnc.h"
#endif

#if 'defined (KERNEL_H)
#include "kernel.h”
Hendif

#if defined (HPDEFINE)
#if !defined (HPDEFINE_H)
#include "hpdefine.h”
#endif

#endif

#if ldefined (PLPTXBU_TYP_H)
#include "plptxbu_typ.h"
#endif

#if defined (PLPTX_TRACE_OUTPUT)
char traceString] MAX_TEST_FILE_OUT_STRING];
#Hendif

R KoK K KR kR O R R kKR K R R Ok K OOR R OR R Ok R Rk

* Variables
-
*

ok ok ok o oK ok s R okt ok K ok ok O R ol 6 RO ook ok oK o o ok ok e o K ok ROR R s ok Rk S olokokoR Aok /

o o o MR o o 6 KSR S SRR RO R Ko KKK KOk K

* Types
*

*
RO ACH ok ook o o oS oK R R o AR o o K ok kR ok kR R R R Ok ok Aok /

typedef enum PlpbuRxStateTag

{
PLPTX_BUS_START,
PLPTX_BUS_RX_REMOTE_DEVICE_ID,
PLPTX_BUS_RX_PACKET_TYPE,
PLPTX_BUS_RX_SIGNAL

}PipbuRxState;

typedef struct PlpbuContextTag

{
PlpbuRxState rxState; /*State of the receiver */

177

Plptxbu_fnc.c

Boolean rxActive; /* TRUE if active, FALSE if no longer connected */
Char rxBuffer [280]; /*Initial buffer for packet type and enough for length data */
Char* rxPtr; /* Pointer to where received data should be written */

Int16 rxLenReceived; /*Length of current received data */

Int16 rxLenWaiting; /*Length of data we are waiting to receive */
CRITICAL_SECTION qLock; /* used for locking the send Queue */
HANDLE txSignal; /* handle to event used to signal more data to send */
HANDLE wrEvent; /* write event for overlapped write */

HANDLE rdEvent; /*Read event for overlapped read */

HANDLE txHandle; /* handle to thread running the transmitter */
HANDLE rxHandle; /* handle to thread running the receiver */
HANDLE toHandle;

KiUnitQueue cmdQueue; /* Queue of commmand packets to send */

Int16 txLenToSend; /* total number of bytes to transmit */

Int16 txLenSent; /* number of bytes already sent from this packet */
Int8 startByteCounter; /* number of start bytes received */

¢ PlpbuContext;

PRIVATE PlpbuContext plpbuContext;

/***Qtt*****#*tt'#tt***#t**********t*‘##****##***##**##t*i*****‘*#t*t**#*#t****
* Function Protoypes

*®

*
#t***#***lll**t*llll(l*******t**********l*****t*#*******i****tk*****#******l‘***/

DWORD WINAPI transmitPacket (LPVOID);

DWORD WINAPI plpbuReceivePacket (LPVOID);

void piptxBusWriteData (SignalBuffer *signalBuffer):

static void plpbuLockQueues(void);

static void plpbuUnlockQueues(void);

void pipbuCreateThreads (void);

static void plpbuSignalMoreTxData (void);

static void plpbuPlace TxDataOnQueue (SignalBuffer *signalBuffer);

static Boolean plpbuTakeTxDataFromQueue (SignalBuffer *signalBuffer);
static HANDLE plptxbuOpenPcPort (void);

void WriterGeneric(Intg * IpBuf, DWORD dwToWrite);

WiErr WINAPI ReadGeneric([nt8* IpBuf, Int16 dwToRead, Int32 *readBytes);
void plptxBuslnit (void);

static void plpbuProcessRxData (Int16 rxLen);

void piptxBuslnit (void)
{
int rxBufCount; /* for clearing the rxBuffer */
/*#*!*‘***l***#*tt*****tl#******t******t****'*****tt‘t*tt‘t*tt*t#tt**#‘#*#**%ﬁ/
/* initialise the Tx lock */
[nitiatizeCriticalSection (&plpbuContext.qLock);

/* Win32 function */
plpbuContext.txSignal = CreateEvent { NULL,/* Security attributes */
TRUE, /* Manual Reset */
FALSE, /* Initial State */
NULL /* name */
X

178

Plptxbu_fnc.c

plpbuContext.wrEvent = CreateEvent (NULL./* Security attributes */
TRUE, /* Manual Reset */
FALSE, /* Initial State */
NULL /* name */
)

plpbuContext.rdEvent = CreateEvent { NULL,/* Security attributes */
TRUE, /* Manual Reset */
FALSE, /* Initial State */
NULL /* name */
)

if (plpbuContext.rdEvent == NULL)

{
DevFail("Error creating rdEvent");

}

else

{
sprintf{traceString,"PLPTX: rdEvent created successfully”);
plptxTraceOutput(traceString);

}

if (plpbuContext.wrEvent == NULL)
{

DevFail("Error creating wrEvent”);

}

if (plpbuContext.txSignal == NULL)
{

DevFail("Error creating txSignal Event”);

AR AR A K AR o R o K O o RO R KR R RO K s g ok ok e o ok ok ok ok

/* set all handles to invalid */

plpbuContext.ioHandle = INVALID_HANDLE_VALUE;
plpbuContext.txHandle = INVALID_HANDLE_VALUE;
plpbuContext.rxHandle = INVALID_HANDLE_VALUE;

/*clear queue */

pipbulockQueues ();

KiFlushQueue (&plpbuContext.cmdQueue);
plpbutinlockQueues ();

/* set up Rx State */

plpbuContext.rxActive = TRUE;
plpbuContext.rxLenWaiting = 1;
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_START;
pipbuContext.startByteCounter = 0;

/* clear the rxBuffer */
for (rxBufCount = 0; rxBufCount<280; rxBufCount++)

t
pipbuContext.rxBuffer [rxBufCount] = 0 ;
i

plpbuContext.rxPtr = plpbuContext.rxBuffer;
179

Piptxbu_fnc.c

/* set up the tx state */
plpbuContext.txLenToSend = 0;
plpbuContext.txLenSent = 0;
ResetEvent (plpbuContext. txSignal);

/* open the pc port */
plpbuContext.ioHandle = plptxbuOpenPcPort ();

plpbuCreateThreads ();

}

JRE KR KR K K KK KKK R KKK R R R R ko R ORROR R AR R ok R R Kk

* plpbuOpenPcPort *
» *

* Opens the port *
* *
‘****litt##***t******#*1!***‘************‘*ﬁ*‘*tt***l‘l“'**4‘*‘************“**/

static HANDLE plptxbuOpenPcPort { void)
{

HANDLE handle = INVALID_HANDLE_VALUE;
DCB dcb;
BOOL portReady;

COMMTIMEQUTS timeoutsDefault;

/* To open the port */
if (plpbuContext.ioHandle == INVALID_HANDLE_VALUE)
{
handle = CreateFile (PC_COM_PORT,
GENERIC_READ | GENERIC_WRITE,

0, /* share Port */

NULL, /* No Security */

OPEN_EXISTING, /* How to Create */

FILE_FLAG OVERLAPPED, /* File Attributes - No overlapping */
NULL /* Handle of file with attributes to copy */

);

/* Get current Device Control Biock Settings */
GetCommState (handie, &dcb);

/* fill in the dcb */

dcb.DCBIength = sizeof (dcb); /* sizeof(DCB)*/
dcb.BaudRate = PC_BUS_BAUD_RATE; /* current baud setting*/

dcb.fBinary = TRUE; /* binary mode, no EOF check*/
dcb.fParity = FALSE; /* enable parity checking*/
deb.fOutxCtsFlow = FALSE:/* was TRUE */ /* CTS output flow control*/
dcb. fOutxDsrFlow = FALSE; /* DSR output flow control*/
dcb.fDuControl = DTR_CONTROL_DISABLE; /* DTR flow control type - assert DTR*/
deb.fDsrSensitivity = FALSE; /* DSR sensitivity*/
deb fTXContinueOnXoff = FALSE/*TRUE*/;/* XOFF continues Tx - don't use XON/XOQFF*/
deb. fOutX = FALSE; /* XON/XOFF out flow control*/
180

deb.finX = FALSE;
deb.fErrorChar = FALSE,;
dcb.fNull = FALSE;

Piptxbu_fnc.c

/* XON/XOFF in flow control */
/* error replacement - off™/
/* null stripping - of P/

deb.fRtsControl = RTS_CONTROL_DISABLE; /*RTS_CONTROL_DISABLE;* /*RTS flow control */

dcb.fAbortOnError = FALSE;

/* dcb.fDummy2:17 is reserved */
/* not currently used*/
/* transmit XON threshold*/
/* transmit XOFF threshold */
/* number of bits/byte, 4-8*/
/* 0-4=no,0dd,even,mark,space*/

deb.wReserved = 0;
dcb.XonLim = 0;

dcb. XoffLim = 0,
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

deb. XonChar = 0;
deb. XoffChar = 1;
deb.ErrorChar = 0,
dcb.EofChar = 0;
dcb.EvtChar = 0;

/* abort reads/writes on error*/

/*01.2=1,1.52%

/* Tx and Rx XON character*/
/* Tx and Rx XOFF character*/
/* error replacement character*/
/* end of input character*/

/* received event character*/

/* don't use dcb.wReservedl */

portReady = SetCommState (handle, &dcb);

if (portReady==1)
{

sprintf{traceString,"PLPTX: Port opened successfully"):

plptxTraceOutput(traceString);

}

SetupComm(handie, INPUT_BUFFER_LEN, OUTPUT_BUFFER_LEN);

/* set port timeouts */

timeoutsDefault.ReadInterval Timeout =MAXDWORD:; /*TO Do - change this.... */
timeoutsDefault.ReadTotal TimeoutMultiplier = 0;
timeoutsDefault.ReadTotalTimeoutConstant = 0;
timeoutsDefault. WriteTotal TimeoutM ultiplier = 0;
timeoutsDefault. WriteTotal TimeoutConstant = 0;

return handle:

!

Ak M o K K OK SKOK RROK KRR R Kok R AR R R K O SSk ok Rk R AOROR OROR kR

/* plpbuCreateThreads
/ﬂl

/* Create the threads for transmitting, receiving */

/*

FAE oo R oK R R KR K SRR ORI K KR Ok R ko ok oR kR ok)

void plpbuCreateThreads (void)

as in hubu_fnc.c*/
i

t
Int32 threadld;

/* thread for transmit */

/* TO DO - ought to make this function return TRUE if successful, FALSE if fail

if (plpbuContext.txHandle == INVALID_HANDLE_VALUE)

{

181

Plptxbu_fnc.c

/*Create the thread for transmitting*/
plpbuContext.txHandle = CreateThread (NULL, /*security attributes */
0. /*Stack size */
transmitPacket, /* Tx Thread function*/
0, /*Parameter */
0. /*Create flags */
&threadld /*Thread identifier*/
)

1
i

if (plpbuContext.rxHandle == INVALID_HANDLE VALUE)
{
/*Create the thread for receiving*/
plpbuContext.rxHandle = CreateThread (NULL. /*security attributes */
0, /*Stack size */
plpbuReceivePacket, /* Rx Thread function*/
0. /*Parameter */
0, /*Create flags */
&threadld /*Thread identifier*/);

if ((plpbuContext.rxHandle = INVALID_HANDLE_VALUE) ||
(plpbuContext.txHandle == INVALID _HANDLE_VALUE})

!
1

if (plpbuContext.txHandle == INVALID_HANDLE_VALUE)

{
DevFail ("PLPTX: tx thread creation failed");
!

else

t
DevFail ("PLPTX: rx thread creation failed™);

!
I

b
#if defined (DEVELOPMENT_VERSION)
if (plpbuContext.txHandle != 0)
t
sprintf{traceString,"PLPTX: tx thread created successfully”); /* thread appears not to be created if this isn't
present....*/
plptxTraceOutput(traceString);
t

if (pipbuContext.rxHandle = 0)
1)

1
sprintf{traceString,"PLPTX: rx thread created successfully”); /* thread appears not to be created if this isn't
present....*/
plptxTraceOutput(traceString);
i
#endif
}

/**l"***********“‘********t‘********‘t**#*‘(t***“************‘***‘#***‘****t*!*itt#**t*****
* plpbuLockQueues *
*

"

* Locks transmission Queucs
* *
ﬁ*‘*‘**t#*‘**k“**'!*t**‘t*#**‘#********“*****‘#l‘*"‘*I‘**“*l‘#‘***"***l‘/

static void plpbul.ockQueues(void)
182

Plptxbu_fnc.c

{
EnterCriticalSection (&plpbuContext.qLock);
)

/*t**********‘*****************‘****‘***#********#*****‘*‘****************##**************
* plpbuUnlockQueues *
.

*

* Locks transmission Queues .
* *

AR K ROR AR OO R K Ok ARk R KR R Ok R R kAR O R ROk Kk kR ok ok ok

static void pIpbuUnlockQueues(void)
1]

t
LeaveCriticalSection (&plpbuContext.qLock);
}

/***#*t*###*#***t*************#**##****#t****#*#********t*%#***t**‘*********t*****#‘*****‘
* pipbuSignalMore TxData *
* *
* signals that there is more data to send
* *
t#*#**‘*i*lﬁ*t****t*****************‘*‘******‘*#t**‘*****t****t****l‘l*************/
static void plpbuSignalMoreTxData (void)
{

SetEvent (plpbuContext.txSignal);
#if defined (DEBUG_PLPTX)

sprintf{traceString,"PLPTX: signalied more data");

plptxTraceQutput(traceString);

#endif
/#*tt****#*************#**#************t******##t‘i**************#******‘****#“t##tt*k*#*
* plptxBusWriteData *

* L

* places pkt on transmit Queue
* *

*‘****‘*‘t‘**********ﬁ****‘t**#ti***1‘ttﬁ*ﬁV*tt***tt**t‘#****‘Uﬁ****“t**‘#tt**#*/
void plptxBusWriteData (SignalBuffer *signalBuffer)

{
DevAssert (*signalBuffer ->type = SIG_PLPTX_BUS_WRITE_DATA_REQ);

pipbuPlaceTxDataOnQueue (signalBuffer);
plpbuSignalMoreTxData () ;

#if defined (DEBUG_PLPTX)
sprintf{traceString,"PLPTX: entered BusWriteData");
piptxTraceQutpui(traceString);

#endif

KiDestroySignal (signalBuffer):
t

JAER R o R R KOO ORI K K O o S AR KK SR ORI R KKK R K

* transmitPacket *

* *

* Thread that continues to transmit as long as there's data to send *
* *

AR A K O o KR o KA R A AR K R KR K K K KR K KR R K Kk

DWORD WINAP!I transmitPacket (LPVOID ptr)
{

183

Plptxbu_fne.c

/* variables */

Boolean dataToSend;
Boolean result = TRUE;
Int8* txPtr;

Int16 txLenToSend;

SignalBuffer signa!Buffer = kiNullBuffer;
PARAMETER_NOT_USED (ptr):

H#if defined (DEDUG_PLPTX)
sprintf(traceString,"PLPTX: entered transmit packet”);
plptxTraceQutput(traceString);

if (result == FALSE)

sprintf(traceString,"PLPTX: transmit packet - result is FALSE");
plptxTraceOutput(traceString);
b

#endif

while (result==TRUE)

{
#if defined (DEBUG_PLPTX)
if (result ==TRUE)
t
sprintf{traceString,"PLPTX: transmit packet, while loop - result is TRUE");
plptxTraceOutput(traceString);
}

sprintf(traceString,"PLPTX: in transmit packet while loop");
plptx TraceQutput(traceString);
#endif

WaitForSingleObject (plpbuContext.txSignal, INFINITE); /* timeout is infinite */

/* main thread has signalled that there is more data to tx
loop reading from the queue til its empty or write fails */

do
{

/* read data off the queue */
if ((dataToSend = plpbuTakeTxDataFromQueue (&signalBuffer)) == TRUE)

{
#if defined (DEDUG_PLPTX)
sprintf{traceString,"PLPTX: writing data to serial port");
plptxTraceOutput(traceString);
#endif
txPtr = (Int8 *) &signalBuffer.sig->plptxBusWriteDataReq.txData;
txLenToSend = signalBuffer.sig->plptxBusWriteDataReq.txDataSize;

WriterGeneric (txPtr, txLenToSend);

KiDestroySignal (&signalBuffer);

1
¥

else

184

Plptxbu_finc.c

{
#if defined (DEBUG_PLPTX)
sprintf{traceString,"PLPTX: transmit packet no data in Q so didn't enter if loop");
piptxTraceOutput(traceString);
#endif

H
}+ while ({(dataToSend == TRUE) && (result==TRUE));
}
return 0;

}

/**************‘**V‘******t*****t****tt**‘t****t*#**ti****t***#****#*****
* Function: WriterGeneric

* Parameters: IpBuf Data to write

* dwToWrite Number of bytes to write

*

* Description:

* Write the number bytes to the COM port

R kR A KR KO KKK K R O RO KRR R)

void WriterGeneric(Int8 * IpBuf, DWORD dwToWrite)
!

OVERLAPPED osWrite = {0};

HANDLE hArray({1];

DWORD dwWritten;

DWORD dwRes;

int bytesWritten = 0;

int packetBytesWritten = 0;

osWrite.hEvent = plpbuContext.wrEvent;
hATay[0] = plpbuContext.wrEvent;

/*
* issue write */

while (bytesWritten != dwToWrite)

{
if ('WriteFile(plpbuContext.ioHandle, (IpBuf + packetBytesWritten), dwToWrite, &dwWritten, &osWrite))
{

if (GetLastError() == ERROR_IO_PENDING)
{
/*
* write is delayed
*/
#if defined (DEBUG_PLPTX)
sprintf{traceString,"write is delayed in writerGeneric");
plptxTraceOutput(traceString);
#endif
dwRes = WaitForSingleObject { hArmay[0], INFINITE);

switch(dwRes)
{
/t
* write event set
¥/
case WAIT_OBIECT_O:
SetLastError(ERROR_SUCCESS),

185

Plptxbu_fnc.c

if (!GetOverlappedResult(plpbuContext.ioHandle, &osWrite, &dwWritten, FALSE))
|
#if defined (DEBUG_PLPTX)
sprintf(traceSwring, " WriterGeneric -GetOverlappedresult, dwWritten is: %d", dwWritten);
plptxTraceQutput(traceString);
sprintf(traceString,"WriterGeneric -GetOverlappedresult, dwToWrite is: %d", dwToWrite);
plptxTraceOutput(traceString);
#endif
if (GetLastError() = ERROR_OPERATION_ABORTED)

1
DevFail("Write aborted\r\n");

Il
else

{

/* LPVOID IpMsgBuf, */
#if defined (DEBUG_PLPTX)

sprintf{traceString, "hello™);

plptxTraceOutput(traceString);
#endif

49 ok oo o SR R 38K o S oo RS o S R R R S R R o R R K3 6 3 o R o R RO KOk o
Ao oo O K ook KRk [

#f 0 /* displays windows error - also tends to crash the pe after displaying it - quite useful though!*/
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default
language
(LPTSTR) &IpMsgBuf,
NULL
%

// Display the string. |
MessageBox(NULL, IpMsgBulf, "GetLastError", |
MB_OKMB_ICONINFORMATIONMB_SYSTEMMODAL)

/ Free the buffer.
LocalFree(ipMsgBuf');
#endif

/*****ﬂl***#**********l‘********************tﬁ****t*********lk**************#*t**k**********tﬁ#****
tti*tt***t‘*l"‘**l‘l**/
DevFail("GetOverlappedResult(in Writer)");
}
!
clse
{
packetBytes Written = packetBytes Written + dw Written;
dwToWrite = dwToWrite - dwWritten;
bytesWritten = 0;
}

/* if (dwWritten 1= dwToWrite)
{
DevFail ("Error writing data to port (overlapped)™);
break;
} *

186

Plptxbu_fnc.c
#if defined (DEBUG_PLPTX)
sprinif{traceString,"WriterGeneric - dwWritten is: %d", dwWritten);
plptxTraceOutput(traceString);
sprintf{traceString, " WriterGeneric - dwToWTrite is: %d", dwToWrite);

plptxTraceOutput(traceString);
#endif

break;
case WAIT_TIMEOUT:
case WAIT_FAILED:

default:
DevFail ("WaitForMultipleObjects (WriterGeneric)"');
break;
t
1
else

i
1

/*
* writefile failed, but it isn't delayed
*/
DevFail ("WriteFile (in Writer)");
}
H

else
{

/*

* writefile returned immediately

*/

sprintf{traceString,"writefile returned immediately in writerGeneric");
plptxTraceOutpui(traceString);

packetBytesWritten = packetBytesWritten + dwWritten;
dwToWrite = dwToWrite - dwWritten;
bytesWritten = 0;

if (dwWritten != dwToWrite)
{

DevFail ("Write timed out. (immediate)\r\n");
}

i3
§

t
ResetEvent (osWrite.hEvent);
ResetEvent (plpbuContext.txSignal);

return;

1
|

/‘*‘t*‘*t#tt‘ttlltt*‘****‘i‘*****‘*i#*#*‘*‘ii******‘************#******‘**‘**
* Function: plpbuProcessRxData

* Parameter:

* rxLen Number of bytes received.

* Description:

* Called from the interrupt routine, indicates the number of bytes received.

* If we have received all we are waiting for process the state otherwise just

187

Plptxbu_fnc.c

* wait until the requisite amount of data has been received.
ﬁ‘#ﬁ**‘*““t"****i*‘*****“"tti**t*“tt‘***#‘ttt*t**#ﬁttt****#*t*****ﬁl*it/

static void plpbuProcessRxData (Int16 rxLen)
{

Int8 packetType;

Int8 signalName;

Int8 signalAcked;

SignalBuffer signalToSend = kiNullBuffer;
int nameCount;

int keyCount;

Int8 rxByte; /* received byte */

plpbuContext.rxLenReceived += rxLen;

if (plpbuContext.rxLenReceived == plpbuContext.rxLenWaiting)
{
switch (plpbuContext.rxState)

t
case PLPTX_BUS_START:
rxByte = GET_INT8(0, plpbuContext.rxPtr);
if (rxByte == PRE_AMBLE_BYTE)
}
plpbuContext.startByteCounter++;
1
]

/* if rxByte 1= PRE_AMBLE_BYTE ignore that bit and go to check the next one */

if (plpbuContext.startByteCounter == 3) /* there should be 3 pre amble bytes.... */
{
plpbuContext.rxLenWaiting = BDADDR_SIZE;
pipbuContext.rxPtr = &plpbuContext.rxBuffer[0];
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_REMOTE_DEVICE _ID;
amble, change to the next state */
plpbuContext.startByteCounter =0;
}
else
{
pipbuContext.rxLenWaiting = t; /* ready to receive pre-amble byte */

/* having received all of the pre-

plpbuContext.rxPtr = &plpbuContext.rxBuffer[0]:
plpbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_START;

plptxContext.busConnected = FALSE;

L
§

break;

case PLPTX_BUS_RX_REMOTE_DEVICE_ID:
GET_BDADDR(0, plpbuContext.rxPtr, plptxContexi.rxDeviceld);

iff mememp(&plptxContext.rxDeviceld, &plptxContext.localDeviceld, BDADDR_SIZE) == 0)
received was sent by same device, i.e.invalid */

{

/* want to throw away the received data */

plpbuContext.rxLenWaiting = 1; /* ready to receive pre-amble byte */
pipbuContext.rxPtr = &plpbuContext.rxBuffer(0];
plpbuContext.rxLenReceived = 0;

/* signal

188

Plptxbu_fnc.c Plptxbu_fnc.c

pipbuContext.rxState = PLPTX_BUS_START; plpbuContext.rxLenReceived = 0;
plptxContext.busConnected = FALSE; plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL;

#if defined (DEVELOPMENT_VERSION) break;

sprintf(traceString,"Received signal with my own ID - ignoring it");
plptxTraceQutput(traceString); default:
#Hendif /* invalid signal, so ignore it and return to the START state */
t plpbuContext.rxState = PLPTX_BUS_START;
else break:
{ i
plpbuContext.rxLenWaiting = 1; /* ready to receive type byte */ break;
plpbuContext.rxPtr = &plpbuContext.rxBuffer(0];
plpbuContext.rxLenReceived = 0; case PLPTX_BUS_RX_SIGNAL:
pipbuContext.rxState =PLPTX_BUS RX_PACKET_TYPE; signalName = GET_INTS (0, plpbuContext.rxPtr);
} #if defined (DEBUG_PLPTX)
break; sprintf(traceString,"signalName is : %c", signalName);
plptxTraceOutput(traceString);
#endif
case PLPTX_BUS_RX PACKET_TYPE:
packetType = GET_INT8(0,pipbuContext.rxPtr); switch (signalName)
#if defined (DEBUG_PI.PTX) {
sprintf(traceString,"packetType is : %c", packetType); case START_SIGNAL:
plptxTraceOutput(traceString); #if defined (DEVELOPMENT_VERSION)
#endif sprintf{traceString,"start signal received”);
switch(packetType) plptx TraceQutput(traceString);
t #endif
case INFO_TYPE: if (piptxContext.start! Sent = TRUE)

#if defined (DEVELOPMENT_VERSION) {
sprintf(traceString," Info type received"); /* activate start sequence (part 2 of 2)*/
plptxTraceQutput(traceString); KiCreateSignal (SIG_PLPTX_START_SEQUENCE2_REQ,

#endif sizeof (PiptxStartSequence2Req).

&signalToSend);
plpbuContext.rxLenWaiting = (PLPTX_BUS OUT_INFO_DATA_SIZE - 1);
p'pbuContext.rxPtr = &plpbuContext.rxBuffer [0]; signalToSend.sig->plptxStartSequence?Req.myTaskld = PLPTX_TASK_ID;
pipbuContext.rxLenReceived = 0;
plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL: KiSendSignal (PLPTX_TASK_ID. &signalToSend);
break; }
else
case ACK_TYPE: /* NB signal received could be an ACK ora NACK */ {

#if defined (DEVELOPMENT_VERSION) #if defined (DEVELOPMENT_VERSION)
sprintf{traceString," Ack/nack type received”); sprintf{traceString,"no start2req sent as haven't sent startl yet!");
plptxTraceOutput(traceString); plptxTraceOQutput(traceString);

#endif tendif

}
pipbuContext.rxLenWaiting = (PLPTX_BUS_ACK_TYPE_SIZE - 1); plptxContext.start1 Received = TRUE;
plpbuContext.rxPtr = &plpbuContext.rxBuffer [0]; plpbuContext.rxState = PLPTX_BUS_START;
pipbuContext.rxLenReceived = 0; break;
plpbuContext.rxState = PLPTX_BUS_RX_SIGNAL;
break; case START2_SIGNAL.:
#if defined (DEVELOPMENT_VERSION)
case START_TYPE: sprintf{traceString,"start2 signal received");

#if defined (DEVELOPMENT _VERSION) plptxTraceOutput(traceString);
sprintf{traceString,"start type received”); #endif
plptxTraceOutput(traceString); if (plptxContext.start! Received == TRUE)

#endif {

plptxStopStartSequenceTimer ();
plpbuContext.rxLenWaiting = (PLPTX_BUS_START SEQUENCE_SIZE - 1);
plpbuContext.rxPtr = &plpbuContext.rxBuffer [0]; plptxContext.plptxState = CONNECTED;

189 190

Plptxbu_fnc.c

/* send plpStartSequenceCnf internally 1o PLP task*/
KiCreateSignal (SIG_PLPTX_START_SEQUENCE_CNF,
sizeof (PlptxStartSequenceCnf),
&signalToSend);

signalToSend.sig->plptxStartSequenceCnf.myTaskld = PLPTX_TASK_ID;

KiSendSignal (PLP_TASK_ID, &signaiToSend);
}

else

{

#if defined (DEVELOPMENT_VERSION)
sprintf{traceString,"startSequenceCnf not sent as start] not received, only start2");
plptxTraceQutput(traceString);

Hendif

}
pipbuContext.rxState = PLPTX_BUS_START;

break;

case PLPTX_BUS_OUT_INFO:
#if defined (DEVELOPMENT_VERSION)
sprintfitraceString, "PLPTX_BUS_OUT_INFO signalName received");
piptx TraceQutput(traceString);
#endif

KiCreateSignal (SIG_PLPTX_IN_INFO_IND,
sizeof (PlptxIninfolnd),
&signalToSend);

signalToSend.sig->plptxIninfolnd. myTaskld = PLPTX_TASK_ID;
signalToSend.sig->plptxIninfolnd.pipStatus = PLP_COMMAND_OK;

GET_BDADDR ((SIZE_TO_BDADDR - PLPTX_BUS_HEADER_SIZE - SIGNAL_TYPE_SIZE),
pipbuContext.rxPtr, signalToSend.sig->plptxIninfolnd.plpBtBdAddr).

signalToSend.sig->plptxdnInfolnd.plpFriendlyName.nameLen = GET_INT8 ((SIZE_TO_NAME LEN -
PLPTX_BUS_HEADER_SIZE - SIGNAL_TYPE_SIZE), plpbuContext.rxPtr);

for (nameCount = 0; nameCount<248; nameCount-++)

{
signal ToSend.sig->plptxIninfolnd. plpFriendlyName.name[nameCount] = GET_INT8 ((SIZE_TO_NAME -

PLPTX _BUS_HEADER_SIZE - SIGNAL_TYPE_SIZE + nameCount), plpbuContext.rxPtr);
i

for (keyCount = 0; keyCount<16; keyCount+-)

{
signalToSend.sig->plptxInInfolnd.plpLinkKey[keyCount) = GET_INT8 ((SIZE_TO_LINK_KEY -

PLPTX_BUS_HEADER_SIZE - SIGNAL_TYPE_SIZE+ keyCount), plpbuContext. rxPtr);
b

KiSendSignal (PLP_TASK_ID,&signalToSend);
pipbuContext.rxState = PLPTX_BUS_START;

break;

case PLPTX_BUS_ACK:
191

Plptxbu_fnc.c

#if defined (DEVELOPMENT_VERSION)
sprintf{traceString,"PLPTX_BUS ACK signalName received");
plptxTraceQutput(traceString);

#endif
signalAcked = GET_INTS (1, plpbuContext.rxPtr);

switch (signalAcked)
{
case PLPTX_BUS_OUT_INFO:

#if defined (DEVELOPMENT _VERSION)
sprintf{traceString,"PLPTX_BUS_OUT_INFO Ack received");
plptxTraceQutput(traceString);

#endif
KiCreateSignal (SIG_PLPTX_QUT_INFO_CNF,

sizeof (PlptxOutInfoCnf),
&signalToSend);

signalToSend.sig -> plptxOutinfoCnf.myTaskld = PLPTX_TASK_ID;
signalToSend.sig -> plptxOutlnfoCnf.plpStatus = PLP._ COMMAND_OK;

KiSendSignal (PLP_TASK_ID, &signalToSend);
plpbuContext.rxState = PLPTX_BUS_START;
break;

case PLPTX_FINISH_REQ_ACK:

#if defined (DEVELOPMENT_VERSION)
sprintf(traceString,"PLPTX_FINISH_REQ_ACK signalName received”);
plptxTraceOutput(traceString);

#endif
KiCreateSignai (SIG_PLPTX_IN_FINISH_IND,

sizeof (PlptxInFinishind),
&signalToSend);

signalToSend.sig -> plptxInFinishind. myTaskld = PLPTX_TASK_ID;

KiSendSignal (PLP_TASK_ID, &signalToSend);
plpbuContext.rxState = PLPTX_BUS_START;
break;

default:
/* invalid signal, so ignore it and return to the START state */
pipbuContext.rxState = PLPTX_BUS_START;
break;
t
break;

default:
/* invalid signal, so ignore it and return to the START state */
plpbuContext.rxState = PLPTX_BUS_START;
break;
H
pipbuContext.rxLenWaiting = 1; /* size of type Byte */
plpbuContext.rxPtr = &plpbuContext.rxBuffer [0];
plpbuContext.rxLenReceived = 0;
break;

default:
DevFail ("unrecognised state");

192

Plptxbu_fnc.c

break;
1
!

else

/*Not read all we need yet, advance pointer to get the next bit*/
plpbuContext.rxPtr += rxLen:

t

A R AR KKK R KRR K KR KK o R R R K s o KA K KK o O o ok

* Function: plpbuReceivePacket
*

* Description:
* Thread for receiving data will continue to process.
* ##*!ﬂ#**tt*t**k*tt#‘t*****tit*t*ti**t‘i*****t*****tt#***#‘#****t***ﬁ****/

DWORD WINAP! plpbuReceivePacket (LPVOID ptr)
{

1
Int32 receivedlen = 0;
Boolean result =0;

PARAMETER _NOT_USED (ptr);

if (plpbuContext.rxActive = TRUE)
{
/*Read forever until a read error occurs*/
while (result ==0)
{
result = ReadGeneric (plpbuContext.rxPtr, /*Buffer for data */

(plpbuContext.rxLenWaiting - plpbuContext.rxLenReceived), /*Number of bytes to read*/

&receivedlen /*Number of bytes read*/).

#if defined (DEBUG_PLPTX)
sprintf{traceString, "receivedLen is : %d". receivedLen);
plptxTraceQutput(traceString);

#endif

DevAssert (result ==0};

if (resuit == 0)
{

plpbuProcessRxData({Int16) receivedLen);
}

t
1

else

{

#if defined (DEVELOPMENT_VERSION)
sprintf{traceString,"Read deactivated");
plptxTraceQutput(traceString);

#endif

H

return 1;

193

Plptxbu_fnc.c
t

/****************t********l‘l*************#*\!*t*****t*t****t#*****tmit***
* Function: ReadGeneric

* Parameters: IpBuf Buffer to read data into

* dwToRead Number of bytes to read

* readBytes Number of bytes actually read

.

* Description:

* Reads from COMM port, if read does not complete immediately it will

* wait for completion and then return.
* ‘t*****##****tt‘**#tt‘*l*‘tt***tt****tt*#l‘##***tmt*t**t*t*****ﬁ**##/

/* buffer for data*/ /bytes read*/
/* plpbuContext.rxPtr*/ /* # bytes to read *//* &receivedLen*/
WiErr WINAPI ReadGeneric(Int8* IpBuf, Int16 dwToRead, Int32 *readBytes)
{
OVERLAPPED osReader = {0}; /* overlapped structure for read operations*/
HANDLE hArray([1};

DWORD dwRead; /* bytes actually read */

DWORD dwRes; /* result from WaitForSingleObject */

BOOL fWaitingOnRead = FALSE, /* just added ...setting this to FALSE */
WILEmr retVal;

/t

* create overlapped structure for read events

*/

osReader.hEvent = plpbuContext.rdEvent;

hArray([0] = osReader.hEvent;

/*
* Read from the COM port
*/

/* if (ReadFile (plpbuContext.joHandle,lpBuf, 3, &dwRead, &osReader)) */
if ('ReadFile(plpbuContext.ioHandle, pBuf, dwToRead, &dwRead, &osReader))

{

if (GetLastError() '= ERROR_IO_PENDING) /* read not delayed? */
{

LPVOID IpMsgBuf;

/* displays windows error */

FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default
language
(LPTSTR) &!pMsgBuf,
NULL
)%
// Display the string.
MessageBox(NULL, IpMsgBuf, "GetLastError",
MB_OK|MB_ICONINFORMATIONIMB_SYSTEMMODAL %

/1 Free the buffer.

194

Plptxbu_fnc.c
LocalFree(IpMsgBuf);

DevFail ("ReadFile in ReaderAndStatusProc");
fWaitingOnRead = FALSE;
/*retVal = WT_RS232_ERROR: */
1
else
{
fWaitingOnRead = TRUE;
L

}
else
{
/*Read returned immediately with some data */
*readBytes = dwRead;
fWaitingOnRead = FALSE;
retVal = WT_OK;
'

/*
* wait for pending operations to complete
*/
if (fWaitingOnRead)
|
dwRes = WaitForSingleObject(hArray [0], INFINITE),
switch(dwRes)
{
/‘!
* read completed
*/
case WAIT_OBJECT_0:

if (!GetOverlappedResult(plpbuContext.ioHandle, &osReader, &dwRead, FALSE))

|
if (GetLastError() — ERROR_OPERATION_ABORTED)
!

1
DevFail("Read aborted\r\n");
t

else
i

1
DevFail("GetOverlappedResult (in Reader)");
13
/*Wait for event has failed*/
retVal = WT_RS232_ERROR;
}
else

{
if { dwRead == 0)

/* Timed out before reading any data */
retVal = WT_RECEIVE_TIMEOUT,;

}

else
/*Read has completed, return numberofbytes read*/
*readBytes = dwRead;
retVal = WT_OK;

}

195

Plptxbu_fnc.c

i

break;

case WAIT_TIMEOUT:
default:
DevFail("WaitForMultipleObjects(Reader & Status handles)");

retVal = WT_RS232_ERROR;
break;
}
H

ResetEvent (osReader.hEvent);

return retVal:
|

A e K e Koo R S KO MR R R KK R o S o K R K R KR M kK MR R KoK

* plpbuTakeTxDataFromQueue
*

* Removes packet from the Queue to send.
*
****#*********#*******#***#****#*****t***********!Klk****#*****#****#*****!*#*****l

static Boolean plpbuTakeTxDataFromQueue (SignalBuffer *signalBuffer)
{
Boolean retVal = FALSE;

/* lock the queues */
plpbul.ockQueues ();

/* Get Data from the queues */
if (KiOnQueue (&plpbuContext.cmdQueue) == TRUE)

KiDequeue(&plpbuContext.cmdQueue, signalBuffer);
retVal = TRUE;
i

/* finished with the Queues */
plpbuUnlockQueues ();

return retVal;

3 e R R AR R o R oK R Ko o R oS R K o R K ol RS R R Kool o o ok s o e O S R o ok ok ok

* plpbuPlacetxDataOnQueue
*

* places data to be sent on the queue
*
t#**##*k*tt#**tt#*******l‘**#***t#“t*kt****##ttl(#ttt*t*tt#*ttt***tt***ttm#**#t#t/

static void pipbuPlaceTxDataOnQueue (SignalBuffer *signalBuffer)
{/”‘ lock queues */
plpbuLockQueues ():
/* put data on queue */
196

Plptxbu_fnc.c
KiEnqueue (&plpbuContext.cmdQueue, signalBuffer);

/* finished with queues - uniock */
pipbulnlockQueues ();

JAAR Nk koo KK R KA OROROK R R R AR RO R AR o ek

197

Plptxbu_fnc.h
/*'*‘#*W*t#‘*k**“**#‘*****#*****#***‘*tlt**ttt‘**tt**'****t"t##*‘*‘*******

* * $Workfile: plptxbu_fnc.h §
* $Revision:
* $Date:

e 2 3 o ok ok o 8 e o ok o sk e 2 K e s ok ko 00K ok K 3k o ol ok 0 R ok K okl Kk e kK ok ok ok 0k ok ok ok KOO Kok ROk S ok KoKk R Rk K
*

* Designed by : PKR

* Coded by :

* Testedby PKR

*

3ol e ok ok e ook ke e o ok R ok O ok e ok ok ke sk ok ok o ok KOk SR kol ok 3k R okok e o sk ok ok ik ok ok o ok R ok koK o N K ok 3Ok
*

* File Description

* Pairing Link Protocol - Main function prototypes
*

sk R KO K MR K oo R O KO oK RO R ROk o o o

Hif 'defined (PLPTXBU_FNC_H)
define PLPTXBU_FNC_H

#if defined (PLPTX_TRACE_OUTPUT)
void plptxTraceQutput (char*);
#Hendif

#endif

198

Plptx_typ..h
/*****t**‘i""il*t*#t***ttttI‘lﬂitlk‘3&‘**t*t*t#!*tt##***t‘#*ttt*#*ttti*tttl*#*t
*
* $Workfile: plptx_typ.h
* $Revision:

* $Date:
*

K A oK RO o K Ao K o KR K S O KK K 0 o K KA K K K K R R R R Rk
*

* File Description

Ko o R R AR K AR o R KR RO R K o R OO SR OO R K ok Rk

#if defined (PLPTX_TYP_H)
#define PLPTX_TYP_H

JAROK AR KK o R R K S OK KRROKRR KK OR KOR R R K

* Nested Include Files
tt't#*ttttt#*i‘t#*#**it****ttt**‘*t!*!tttt**‘tt***t!il!***t*ttt‘t********l‘“t*/

#if !defined (KERNEL_H)
include "kernel.h”
#endif

#if ldefined (BT_TYP_H)
include "bt_typ.h"
#endif

#f !defined (TM_TYP_H)
include "tm_typ.h"
#endif

R RO ROK AR AR KRk KRR K O R KRR R K KR K ok Kk K

* Manifest Constants
t*#tt***tt**t*‘*****/

#define PLPTX_START_SEQUENCE_TIMER_VALUE 500 /* was 500 */

JR AR A R OR KR HOROK AR O R O sk R KR R KKK OR R RRRdOR R R

* Types used in Prototypes and Globals
‘*t***#t****#*#”

typedef struct PlptxBufferTag
{
Int8 txData[512];
} PlptxBuffer;
#endif /* of tdefined (HU_TYP_H) ¥/

/* END OF FILE */

199

Plptxbu_typ.h
/‘*t***t*t****'*‘**¥*ﬁ**#"******##*****'!‘***V****'t*t‘*****‘*******‘*“***
*
* $Workfile: plptxbu_typ.h $
* $Revision:
* 3Date:

*

e e ok ke ok R O S R R o oK o o s i o oK ol o Rk e ok ek o ke ol ok R o e o K o Rk o Ok Ok R KOOk R
*

* File Description

* Globaly useful bus task functions/variables.
*

AR R kR KRR K OR OK R R R ROK KR KRRk kK Ok R R

#if defined (PLPTXBU_TYP_H)
#define PLPTXBU_TYP_H

/#*#**tt****#t*t‘t##**#t*****t****#**#*t#***t*t****tt***#****ttt***w*t#*i#***

* Types used in Prototypes and Globals
t******‘**l*ﬁ****t#*t#tt#**t#i**ttt***#tt*****l‘***t*t****t****#*t***tt**/
#define PC_COM_PORT "COM2"

#define INPUT_BUFFER_LEN 1024

#define OUTPUT_BUFFER_LEN 1024

#define PC_BUS_BAUD_RATE 9600 /*was 9600 */

#define SIGNAL_TYPE_SIZE |
#define SIGNAL_NAME_SIZE 1
#define BDADDR_SIZE 6

#define NAME_LEN_SIZE 1
#define NAME_SIZE 248
#define PLPTX_BUS_HEADER_SIZE (3 + BDADDR_SIZE)

#define SIZE_TO_SIGNAL_NAME (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE)
#define SIZE_TO_BDADDR (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE +
SIGNAL_NAME_SIZE) /*2 %/

#idefine SIZE_TO_NAME_LEN (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE -
SIGNAL_NAME_SIZE + BDADDR_SIZE) /*8*

#define SIZE_TO_NAME (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE + SIGNAL_NAME _SIZE +

BDADDR_SIZE + NAME_LEN SIZE) /* 9 %/
#define SIZE_TO_LINK_KEY (PLPTX_BUS_HEADER_SIZE + SIGNAL_TYPE_SIZE +
SIGNAL_NAME_SIZE + BDADDR_SIZE + NAME_LEN_SIZE + NAME_SIZE) /*257%

#idefine SIZE_TO_TYPE PLPTX_BUS_HEADER_SIZE
#define SIZE_TO_SIG_NAME (1 + PLPTX_BUS_HEADER_SIZE)
#define SIZE_TO_SIGNAL_BEING_ACKED (2 + PLPTX BUS_HEADER_SIZE)

#define SIZE_TO_SIGNAL (2 + PLPTX_BUS_HEADER_SIZE)

#define INFO_TYPE 90

#define ACK_TYPE 100

#define START_TYPE 65 /* "A" */

#define PRE_AMBLE_BYTE 37 /* """ */

#idefine PLPTX_BUS_OUT_INFO 200
#define PLPTX BUS_ACK 210
#define PLPTX_FINISH REQ_ACK 220

200

/%1%

Plptxbu_typ.h
#define START SIGNAL_NAME 65 /* "A" ¥/
#define START2_SIGNAL_NAME 66 /* "B" */

#define START_SIGNAL 65 /* "A" */
#define START2_SIGNAL 66 /* "B" */

#define PLPTX_BUS ACK_TYPE_SIZE 3

#define PLPTX_BUS_OUT_INFO_DATA_SIZE 273
#define PLPTX BUS _START_SEQUENCE_SIZE 3

#endif

/* END OF FILE ¥/

201

Plptx_sig.h

AR R oo oo R R R AR o SRR KR s Kl o KK K SR K kK ok
*

* $Workfite: plptx_sig.h $
* $Revision:
* $Date:

*

0ok e e o s oK e o 300 3K 3K ok e e 3k e ook sk o ok ok e s ok kK ok ok ok ok ok e ik ok 3k ok OK K s ko Sk kK ok e oK oKk ok 3K K R ok R ok ok ko
*

* Designed by :PKR

* Detailed Design:

* Codedby :PKR

* Tested by

*
s e o ok s o ke ol e ok o ok o ok ok ek o o ok K ook e K K o ol o o o o e ok o oK o o R K o ok K o ok e ok e ek Ok K kKR Rk
*

* File Description

* PLPTX signal definitions
*

et o o e Ao ok o o S8R A kO o R o ko Kk o R K Kk ok R sk e ROK k R ROR K ok kR ks ok ok /

#if 1defined (PLPTX_SIG_H)
#define PLPTX_SIG_H
#endif

#if 'defined (SYSTEM_H)
include "system.h"
#endif

#if tdefined (HC1 _TYP_H)
#include "hei_typ.h”
#endif

#f tdefined (PLP_TYP_H)
#include "plp_typ.h"
#endif

#if tdefined (PLPTX_TYP_H)

#include "plptx_typ.h"

#endif
/*******'t*#"t*ﬁ'***#***it****************************#********************

* Type Definitions

SR o o o O K K A SR o o ok o R R ROk R R ok ok R ok ok ke ok otk s ok ook ok ko ok ok kok ok)

typedef struct PlptxTestTag {

Int8 timeout;
} PlptxTest;
typedef struct PlptxInInfolndTag {

Taskld myTaskld;

PlpStatus plpStatus;

BtBdAddr plpBtBdAddr;

PipFriendlyName plpFriendlyName;

Int8 plpLinkKey [BT_ENCRYPTION_KEY_SIZE];
}PIptxIninfolnd;

typedef struct PlptxInlnfoRspTag {
Taskld myTaskid;

202

Plptx_sig.h

PlpStatus plpStatus;
PiptxInInfoRsp;

typedefstruct PlptxOutinfoReqTag {

Taskld myTaskld;

PipStatus pipStatus;

BtBdAddr plpBtBdAddr;

PlpFriendiyName plpFriendlyName;

Int8 plpLinkKey [BT_ENCRYPTION_KEY_SIZE];
1 PiptxOutlnfoReq;

typedefstruct PlptxQutlnfoCnfTag |

Taskid myTaskld;
PlpStatus plpStatus;
} PiptxOutInfoCnf;

typedef struct PlptxBusWriteDataReqTag
{

Int16 txDataSize;

PipixBuffer txData;
tPlptxBusWriteDataReq;

typedef struct PlptxBusAckReqTag
{

Taskld myTaskld;

Int8 type;

Int8 signalName;

Int8 signalBeingAcked;
i PlptxBusAckReq;

typedef struct PlptxOutFinishReqTag
{

Taskld myTaskld:
1 PlptxOutFinishReq;

typedef struct PlptxinFinishindTag

{
Taskld myTaskId;
}PIptxinFinishind;

typedef struct PiptxStartSequenceReq
{
Taskld myTaskld;
BtBdAddr localBtBdAddr;
} PlptxStartSequenceReq;

typedef struct PlptxStartSequence2Req

t
Taskld myTaskld;
BtBdAddr localBtBdAddr;
}PlptxStartSequence2Req;

typedef struct PlptxStartSequenceCnf
1

!
Taskld myTaskld;
} PiptxStartSequenceCnf;

/* END OF FILE */
203

Plptxsigbas.h

/*******‘********‘t*******‘#****#*‘****‘**i*****l*****t*#**********‘*******I
L]

* SWorkfile: plptxsigbas.h §
* $Revision:

* $Date:
*

4k b e s ok B o ok 3 ok s o ok o 3k ok e o ke ok ok ok s ok ok KR af e s 3ok i 3K e sl i kol o oK ok o ok i ok kR OK o kool ok s ok o Kook ok ok Ok SOk ok
*
* File Description

* Signal bases used by PAIRING LINK PROTOCOL Transport Task
*

ek oo ok ok ok o ook ok ok 3 ok ok ok o K oK K K o o R KR o o O KK o o e K 0K o S o K K e A ROk ook ROk Kok ek
*

* Revision Details

* $Log:

*
Ao o R OK R R A OK R RO ok ORI R R Ok R o AR R OOk R ROk ok Rk

PLPTX_SIGNAL_BASE = LAST_PLP_SIGBASE + 0x0100,
LLAST PLPTX_SIGBASE = PLPTX_SIGNAL BASE,

204

Plptxsig.h

JRA A KRR KRR K OOK R KR AR OISR Bk R R R K R Kk ok
*

* $Workfile: plptxsig.h §

* $Revision:

* $Date:

*

A0k e ok o 0k e oK ko ok oK Ok kR ok ok e o ok i bk A O Ak o o K ok R o R R Rl o R ok R e KOk Rk ook R ke
*

* File Description

* PAIRING LINK PROTOCOL Signals used in Genie
*

Ao e oo oK R KK AR B OR K OR R K KRR KRR R R R R R R kR Rk kK

SIG_DEF(SIG_PLPTX_DUMMY =PLPTX_SIGNAL_BASE, EmptySignal piptxDummy
SIG_DEF(SIG_PLPTX_TEST, PlptxTest plptxTest)
SIG_DEF(SIG_PLPTX_IN_INFO_IND, PiptxIninfolnd plptxIninfolnd
SIG_DEF(SIG_PLPTX_IN_INFO_RSP, PlptxIninfoRsp piptxIninfoRsp
SIG_DEF(SIG_PLPTX_OUT_INFO_REQ, PlptxQutinfoReq plptxOutInfoReq
SIG_DEF(SIG_PLPTX_OUT_INFO_CNF, PlptxOutInfoCnf plptxOutInfoCnf
SIG_DEF(SIG_PLPTX_BUS_WRITE_DATA_REQ, PlptxBus Write DataReq
plptxBusWriteDataReq)
SIG_DEF(SIG_PLPTX_BUS_ACK_REQ, PlptxBusAckReq plptxBusAckReq
SIG_DEF(SIG_PLPTX_OUT_FINISH_REQ, PiptxOutFinishReq plptxOutFinishReq
SIG_DEF(SIG_PLPTX_IN_FINISH_IND, PlptxInFinishInd plptxInFinishInd
SIG_DEF(SIG_PLPTX_START_SEQUENCE_REQ, PlptxStartSequenceReq

plptxStartSequenceReq }

SIG_DEF(SIG_PLPTX_START_SEQUENCE2 REQ,
plptxStartSequence2Req

SIG_DEF(SIG_PLPTX_START_SEQUENCE_CNF,
plptxStartSequenceCnf)

PlptxStartSequence2Req

PlptxStartSequenceCnf

Piptxsigun.h

/0 e oo oo e s e e s o oo e oSS oo o o RSk ek ok KRR MOl R R sl K ok ok oK Kk ok K o K
*

* $Workfile: plptxsigun.h $
* $Revision:
* $Date:

*

3] ok e s ok ok ok b s o okl ok ke ok i ok ok o 3 Ok o ok ok ke ko O ok ok K ke o koK 3k sk ok o sk i 38 e sk ok ok kOl ok ok e K alook ok KoK ok ok
*

* File Description

* Signal bases used by PAIRING LINK PROTOCOL Transport Task
*

338k ke o 3 e ok o ok Kk ok S ok e K oK ok b sk ok ok e ok o e kol oK ok sk i ke kO okl oo oK SR ke ook a8 K s kol Ok ok ko o ok ok ok ok ok ok ok
#if Idefined (DMSH_SIG_H)

#include "dmsh_sig.h"

#endif

#if tdefined (DMIQ_SIG_H)
#include "dmiq_sig.h”
#endif

#if tdefined (DMSC_SIG_H)
#include "dmsc_sig.h"
#endif

#if 'defined (DMCN_SIG_H)
#include "dmen_sig.h"
#endif

#if !defined (DMSO_SIG_H)
#include "dmso_sig.h"
Hendifl

#if defined (DML2_SIG_H)
#include "dmi2_sig.h"
#endif

#if 1defined (DMSP_SIG_H)
#include "dmsp_sig.h"
#endif

#if Idefined (DMIN_SIG_H)
#include "dmin_sig.h"
f#tendif

#f ldefined (DMSD_SIG_H)
#include "dmsd_sig.h"
#endif

#if 'defined (L2IF_SIG_H)
#include "12if_sig.h"
#endif

#if defined (DM_TRACE_OUTPUT)
#include "emmi_sig.h"

#Hendif

#define SIGNAL TVSIGNAL

206

Plptxsigun.h

#if 'defined (SIG_DEF_H)
#include "sig_def.h"
#endif

#if tdefined (KERNEL_H)
#include "kernel.h"
#endif

#if !defined (PLPTX_SIG_H)
#include "plptx_sig.h”
#endif

union Signal
]

1

#if defined (PLPTX_SIGNALS)
#include "plptxsig.h"
#endif

#f defined (DM_SIGNALS)
#include "dmsig.h"
#endif

#if defined (PLPTX_TRACE_OUTPUT)
TestFileOut testFileOut;
#endif

KilnitialiseTask initialise;
KilnitialiseTask kilnitialiseTask;
KiTimerExpiry kiTimerExpiry ;

b

207

