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Abstract 

TI1is thesis considers the evolution of play behaviour, focusing on comparative analyses of extant primates 

and carnivores from various perspectives, including intra-specific analyses, life-history, socio-ecology, and 

brain anatomy, taking data from the existing literature, and using phylogenetic comparative techniques. 

Phylogenetic reconstructions suggest that each play category represents its own evolutionary trajectory, and 

suppmi previous fmdings that social play, being the most ancient form of play in primates, may represent a 

distinct category of behaviour. 

Analyses of intra-specific play patterns proved difficult due to a lack of available data in the literature, but 

point to the importance of controlling for variables that differ between populations of the same species, 

such as group composition, and research effort. 

Comparative analyses of life-history variables and play demonstrate that precocial species play more than 

altricial species. Precocial species have a relatively shmier developmental period of postnatal brain 

development, and may therefore require the neurological and physiological benefits afforded by play 

behaviour in order to hone brain development prior to adulthood. 

Comparative analyses of socio-ecology and play suggest that larger groups require increased play time 

budgets, possibly because of a need to fulfil the social skills required to maintain group cohesion. Social 

networks of the population (clique size and network size) predict social play frequency in primates. 

Contrary to previous findings, I found no evidence that diet is a good indicator of time spent in play, 

although basal metabolic rate does correlate with play, suggesting that other socio-ecological factors 

contribute to the performance of play. 

Comparative analyses of brain components and play indicate that brain correlates are selective and do not 

apply to all regions. There are strong correlations between socio-cognitive, motor, emotional, and also 

visual areas of the brain and social play in primates, namely the neocortex, cerebellum, visual cortex and 

LGN, vestibular complex, striatum, medulla, amygdala, and hypothalamus. 

Although play is a difficult ethological topic, it appears to be vital to development and life in social groups. 
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Chanter 1: 

Introduction 

This thesis deals with the evolution of play behaviour, focusing on comparative 

analyses of extant primates and carnivores. Play behaviour is assessed from various 

perspectives, including brain anatomy and cognition; socio-ecological variables such 

as social organisation and foraging ecology; life-history variables such as gestation, 

and lifespan; and behavioural ontogeny. Comparative data on primates and 

carnivores are analysed using phylogenetic methods. 

Before dealing with each broad category in detail, it is necessary to present some 

background on the nature of play, and the factors that have been proposed to affect and 

shape it. 

1 .. 0 Background 

1.1 The Problem of Play 

Play is a behaviour that is often ignored by evolutionary ethologists. It is a category 

frequently dismissed as non-essential, trivial, or unimportant in the behaviour and 

development of animals (Fagen 1981; Burghardt 1998a), and disparaged as the 

harridan or "hobgoblin of animal behavior" (Mitchell 1990: 197). Yet, play IS 

commonly identified in the behavioural repertoires of many animals, and it IS 

assumed that the young of most mammals and some bird and reptile species exhibit 



some form of play behaviour (Ficken 1977; Fagen 1981; Ortega & Bekoff 1987; 

Fagen 1995; Burghardt et al. 1996; Kramer & Burghardt 1998; Burghardt 1998a; 

Heinrich & Smolker 1998; Gamble & Cristol 2002). Remarkably however, there is 

still a lack of data regarding the species that do in fact play (Burghardt 1984; Bekoff 

& Byers 1998: xiv). Play seems to pose a particular problem to ethologists in that 

structurally, the behaviour can vary widely between species, and there remains 

conflict and confusion in attempting to define it functionally (Bekoff & Byers 1985). 

11.o 2 Patterns of Play 

11..2.1 Recognising Play 

It is frequently claimed that although play behaviour is easily recognised (e.g. Poo1e 

& Fish 1975; Bekoff & Byers 1985; Martin & Caro 1985; Fagen 1995), it is difficult 

to define and to quantify (Fagen 1981; Bekoff & Byers 1998). So much so in fact, that 

some researchers have suggested that it is impossible even to ask theoretical questions 

about play, never mind attempting to answer them (Marler & Hamilton 1966). 

Fortunately, further analyses of this behaviour have superseded this pessimistic view 

(see Fagen 1981; Smith 1984; Bekoff & Byers 1998 for reviews). It is often said of 

play, that it is defined by what it is not, and that play all too often becomes a default 

explanation for a behaviour that appears functionless (Martin & Caro 1985; Gamble 

& Cristol 2002). Indeed, there has been much dispute in the literature as to what 

constitutes play and the difficulty in defining it (Fagen 1981; Alien & Bekoff 1997). 

I will not attempt to become embroiled in the ensuing semantics of this debate, and 

instead refer to Bekoff & Byers' (1981: 301) now widely-cited definition that 

provides an excellent basis by which to understand play: 

"Play is all locomotor activity performed postnatally which appears to an 

observer to have no obvious immediate benefits for the player, in which motor 

patterns resembling those used in serious functional contexts may be used in 

modified terms. The motor acts constituting play have some or all of the 

following structural features: exaggeration of movements, repetition of motor 

acts, and fragmentation or disordering of sequences of motor acts. " 
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In spite of play sequences "borrowing" their appearance from "serious" behavioural 

patterns, it might be fair to suggest that a continuum exists between play behaviour 

and more "serious" behaviours, especially given that in older juveniles and adults (in 

species that exhibit adult play) it often becomes difficult to differentiate a play type 

such as play-fighting from actual aggression, and that play-fights often end 

antagonistically (e.g. Poole & Fish 1975; Beckel1991). More recently, a set of five 

criteria have made it possible to recognise play as a distinct behaviour in many 

species (Burghardt 1999, 2001, in press), enabling play to be identified in not only 

many mammals and birds, but also turtles, lizards, and fish (Burghardt 1998a; Kramer 

& Burghardt 1998; Burghardt et al., in press). In brief, these criteria can be explained 

thus (Burghardt 2001: 332): 

"Play is repeated incompletely functional behavior differing from more functional 

versions structurally, contextually, or ontogenetically, and occurring voluntarily 

when the animal is in a relaxed or unstressed setting". 

To date, most studies of animal play divide this heterogeneous category of behaviour 

into one of three types: locomotor-rotational, object-manipulation, and social 

(chasing, wrestling) play (e.g. Bekoff & Byers 1981; Miller & Byers 1998), whilst in 

humans other kinds are frequently identified, including pretence, socio-dramatic play, 

language play, and others (Johnson et al. 1999). Other forms of play, such as sexual 

play, which usually takes the form of mounting (Vankova & Bartos 2002), and play­

mothering (Lancaster 1971 ), might also occur. Although these broad categories are 

specified, they are not necessarily distinct (Burghardt 2001) and are often subdivided 

further; for example, by distinguishing rough-and-tumble play from other forms of 

social play (e.g. Aldis 1975). Table 1.1 details example characteristics of play types 

with example species observed to exhibit each behaviour; the list is not exhaustive in 

either case, but gives an overview ofthe behavioural elements of play. Although such 

studies provide some evidence to support the theories as to why animals play, many 

fail to look at the broader comparative (see Burghardt 1998a); perhaps this is why the 

functions of play behaviour are still poorly understood and disputed (Martin & Caro 
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Table 1.1. Ethogram of play type characteristics and example species of primates and carnivores observed to engage in 
specific play behaviours. 

JP'lay Cat:egocy 

Solitary/ 
Locomotor-rotational 

Object 

Social/ 
Play-fighting 

Adult 

Sexual 

Characteristics Examplle species Somrce 

Hop; leap; roll; somersault; spin; 
flip; jump; bounce; headshake; 
roll; porpoise; spin; galumph; dig. 

Play directed towards inamnnate 
objects: chew; mouth; manipulate; 
shake; bat; paw & bite; carry; toss; 
pick-up-drop . 

Aggressive movement patterns 
without!: threat gestures: chase; 
wrestle; slap; jump at; play bite; 
cuff; pull tail; rough-and-tumble; 
run towards; kick; splash; porpoise; 
sniff. 

Usuanny rare: tickling; gentle 
wrestling; non-aggressive biting; 
grapple. 

Mounting. 

Presbytis entellus; Cercopithecus Sommer & Mendoza- Granados 1995; 
aethiops; Phoca vitulina; Fedigan 1972; Renouf & Lawson 1986; 
Haliochoerus grypus. Wilson 1974. 

Macaca nemestrina; Pan Kirkevold et al. 1982; Mendoza-
troglodytes; Colobus badius; Granados & Sommer 1995; Clutton-
Anonyx cinera; Cerdocyon thous; Brock 1974; Pellis 1991; Biben 1982; 
Speothos venaticus; Felis silvestris. Martin 1984a. 

Macacafuscata; Papio spp; Koyama 1985; Young et al. 1982; 
Theropithecus gelada; Presbytis Barrett et al. 1992; Sommer & 
entellus; Gorilla gorilla; Pan Mendoza-Granados 1995; Fischer 
troglodytes; Callithrixjacchus; & Nadler 1978; Hayaki 1985; 
Panthera Leo; Phoca vitulina; Voland 1977; Schaller 1972; 
Haliochoerus grypus; Ailuropoda Renouf & Lawson 1986; Wilson 
melanoleuca. 1974;Wilson & Kleiman 1974. 

Macacafuscata; Macaca radiata; Koyama 1985; Caine & Mitchell 
Pongo pygmaeus; Ursus maritimus.l979; Zucker et al. 1978; Latour 

1981. 

Papio spp; Cercopithecus aethiops; Young et al. 1982; Fedigan 1972; 
Phoca vitulina. Wilson 1974. 



1985). For this reason, a clearer differentiation of Tinbergen 's Four Whys of 

function, evolution, development, and causation is required (Tinbergen 1963; 

Burghardt 1998a). 

1.3 Functions of Play 

1.3.1 Is play functional? 

The functions of play are often not obvious. One of the ovetwhelming difficulties in 

defining play function is that play behaviour has often been described as 

"functionless" (Bekoff & All en 1998) or "incompletely functionaf' (Burghardt 2001 ). 

This is perhaps because the adaptive significance of play behaviour is less well 

understood than other categories of behaviour such as sex or fighting (Fagen 1981; 

Krebs & Davies 1993). If there is no function in playing however, it might be 

assumed that any costs incurred through playful activity would lead to selection 

against it (Martin & Caro 1985). There do however appear to be several areas of 

proposed functions of play behaviour: to maximise physical benefits of exercise and 

activity, in honing both social and non-social skills, the contribution of play to the 

development of the central nervous system (CNS), and the exhibition of novel 

behaviours and innovation (Burghardt 1988). Typically, for example, social play 

behaviour has long been considered to be one vital aspect in the learning and 

development of skills that are later fully utilised in adulthood, possibly contributing to 

facilitating the learning and maintenance of some adult social relationships (Bekoff 

1978; Lee 1983; Martin & Caro 1985; Mendoza-Granados & Sommer 1995), which 

are developed through social interactions with conspecifics (e.g. Row ell & Chism 

1986; Govindarajulu et al. 1993; Smith et al. 1998). As play generally does not persist 

into adulthood, it is also believed that play may function as preparation for certain 

other skills of adult life, by promoting the learning of adult motor, social, 

communicative, and cognitive skills, as well as sex, dominance and aggression (Doyle 

1979; Jolly 1985: 401; Baldwin 1986; Harcourt 1991; Fagen 1993). The mounting 

behaviour of sexual play forms part of the play repertoire of some mammals, and is 

typically thought to promote locomotor and social skills, and also arguably, to gain 
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sexual experience (Vankova & Bartos 2002); as juveniles typically cannot reproduce, 

this behaviour is sometimes referred to as "pseudo-sexual play" (Bon & Campan 

1996; Yamane 1999). Socially deprived male rats still respond normally when 

introduced to sexually mature females in laboratory situations, although it has been 

reported that male rats of the same age who have been allowed access to play mates 

are more likely to be successful in fighting off other male competitors (Panksepp 

1998). Many theories have been proffered as to what an animal has to gain by 

playing, yet it is not always apparent what the functions of play might be (Bekoff & 

Alien 1998). Perhaps play might not so much practice skills as be a means of 

activating the animal to engage in vigorous complex actions that give its sense organs, 

brain, and muscles experiences in working together and responding to varying, often 

unpredictable, conditions (Burghardt 2001; Spinka et al. 2001 ). Thus, play may assist 

or contribute to the development of permanent effects on physical, neural, and mental 

processes. Table 1.2 details examples of the proposed functions of different aspects 

of play. 

1.3.2 Play as practice? 

From the earliest discourse on play behaviour, the idea that play occurs in juvenile 

animals as practice for adult life has been central to the study of play in animals 

(Groos 1898) and humans (Groos 1901). In fact, this theory has remained a key 

factor in play research to date (e.g. Govindarajulu et al. 1993; Byers & Walker 1995). 

The theories as to why animals play tend to concentrate on different aspects of these 

adult skills, such as fighting (Pellis & Pellis 1996), social skills (Bekoff 1995), object 

manipulation (Takeshita & Walraven 1996) and locomotor skills (Byers & Walker 

1995). Enthusiasm for such theories has to be tempered by the fact that mammals 

deprived of the opportunity to play still develop these adult skills (Baldwin & 

Baldwin 1973). However, the relationship between juvenile play and the level of 

competence in these skills has not been fully assessed, so whilst animals may still 

develop adult skills, they may not be as competent in such skills in comparison with 

those individuals who engaged in play as juveniles (Hol et al. 1999). Despite this, not 

all learning occurs through play (Martin & Caro 1985). The performance of play 

behaviour in general however, may serve to enhance and promote adult skills 
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Table 1.2. Proposed functions of play behaviours 

Play type/ behaviour 

Generalllfwnctions: all play 

Sclitscyllocomotoll"-ll"otatiol!llal play 

Object pUay 

Social pUay 

Social play signals 

Possible fu.nctiollll 

To develop adaptive responses to unexpected events 
To develop awareness of the environment 
To rid of excess energy 
Self-assessment in task-performance 
To modify the CNS during early postnatal development 

Motor training (see section 1.3.3) 
To hone skeletal muscle fibre 
To practice predator avoidance and agility 

To practice hunting/foraging behaviour 
To train hand-eye co-ordination 

For cognitive enhancements for social interactions & in 
"reading" unpredictable social situations 
To relieve group tensions 

To demonstrate or practice intent 

Soru.llll"Ce 

Spinka et al. 2001 
Meaney et al. 1985 
Barber 1991 
Thompson 1998 
Fairbanks 2000; Burghardt 2001 

Byers 1998b 
Byers & Walker 1995 
Spinka et al. 2001 

Martin 1984a 
Takeshita & Walraven 1996 

Spinka et al. 2001 

Enomoto 1990 

Bekoff1975; 1977;2001b 



Play type/ behaviour 

Social play (continued) 

Play-fighting 

00 

Self -handicapping 

Play-mothering 

Possible function 

To practice dominance and aggression/ 
test strength/ mate-defence 
To develop communicative abilities, especially during 
agonistic situations 
To demonstrate behavioural and physical competency 
Learn co-operation/trust/"fair play" 

To create practice for the "unexpected" 

To develop/practice maternal behaviour 

Sou:n.ll."ce 

Bramblett 1976; Fagen 1981; 
Pellis & Pellis 1996 
Dolhinow 1971 

Chiszar 1985 
Bekoff2001a, b 

Spinka et al. 2001 

Lancaster 1971; Meaney et al. 1985 



(Chalmers 1984) through the permanent effects on the developing nervous system 

during the juvenile period (Fairbanks 2000). 

1.3.3 Motor training 

The term "motor-training" refers to juvenile activity that improves physical 

performance (Bekoff & Byers 1981 ). The motor-training hypothesis proposes that 

animals play for physical exercise or to develop and maintain physical skills, and that 

the adaptive function of play in this context is to modify the developing 

neuromuscular system (Brownlee 1954; Bekoff & Byers 1981; Byers & Walker 

1995). The type of play considered in this hypothesis, are the energetic locomotor 

patterns seen in most mammals that are known to play. The patterns mimic other 

behaviour patterns connected with survival and reproduction, such as intra-specific 

fighting, capturing prey, or escaping from predators (Govindarajulu et al. 1993; Byers 

& Walker 1995). Indeed, enhancing and maintaining physical ability, strength, and 

agility through energetic play may be beneficial in terms of these "serious" behaviour 

patterns (Brownlee 1954; Symons 1978; Fagen 1981). However, developing strength 

through this type of play might also be costly to an animal if it means the animal 

spends less time in search of food, detecting danger or risks physical injury. An 

animal may take considerable risks whilst playing, not least in terms of sustaining 

injuries either through collision or a fall, or by falling prey to predators (Byers 1977; 

Berger 1979, 1980; Harcourt 1991). There is considerable evidence that early play 

serves to enhance physical fitness, and develop motor co-ordination and fighting 

skills, so as to minimise the risk of injury (Renouf & Lawson 1986; Govindarajulu et 

al. 1993 ). Thus, the ability to modify physical skills should be adaptive as, in short, 

there is no point in maintaining physical skills that are not, or cannot be, used by the 

individual (Fagen 1981; Byers & Walker 1995). 

1.3.4 Play as training 

Not all physical and neural responses are permanent; physical training may improve 

physical skills at any age (Stamford 1988), but these increments may be lost as 

training ceases. Byers & Walker (1995) maintain that it is important to consider how 

much an animal plays in comparison with how much exercise it needs to take to 
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increase strength and endurance. Byers (1998b) states that it is often the case that the 

duration of play, and the amount of exercise gained through play, is much lower than 

would be needed to maintain physical skills, thus rejecting the theory that play serves 

as "getting into shape". This might show a temporary benefit of play, but not a long 

term one. Indeed, any behaviour (e.g. foraging), will contribute towards the physical 

fitness of an individual in terms of muscle tone and general mobility and activity. If 

play were solely for the purpose of gaining and maintaining physical fitness, then it 

would have to be shown that play provides enough exercise to facilitate aerobic or 

anaerobic physiological training responses (Bekoff 1989a). Byers (1998b) predicts 

that play alone will not meet the necessary criteria. Indeed, the benefits of exercise 

might not be achieved through play due to the varying functional constraints of play 

and exercise (Burghardt 1984). This might not be the case in all species however. The 

locomotor play of some ungulate species, for example, seems to show marked 

physical endurance training (e.g. Berger 1980; Miller & Byers 1991). 

It was previously thought that because locomotor play behaviour can be physical 

exercise, for example, the energetic gambolling of lambs (Ovis canadensis, Bonnett & 

Fewell 1987), or the running of pronghorn fawns (Capra americana, Miller & Byers 

1991 ), the function of play is purely for physical fitness or physical training. It may 

be said that physical fitness is a consequence of locomotor play, but this does not 

necessarily mean it is the reason it evolves (Byers 1998b ). Indeed, it is often the case 

that a playing animal does not engage in enough locomotor play to be of any 

substantial benefit to its physical fitness (Byers & Walker 1995). As play behaviour 

typically occurs only in juvenile animals (Fagen 1981 ), it seems extremely unlikely 

that play occurs only to facilitate physical exercise (Byers 1998b ); this is because 

many physical training responses are only transitory and are not limited by age (Heath 

et al. 1981 ). If play did occur for physical exercise, it would be expected that adults 

would play more than juveniles, as the age-category with the most need for fighting 

ability. 

10 



1.3.5 Adult play 

Play behaviour is usually concerned only with the young, yet in some species it 

progresses beyond the juvenile phase, and into adulthood. Adult play occurs in some 

species of primate, carnivore, and rodent, yet the rate at which adults play is far lower 

than that of juveniles, and is often negligible (Caine & Mitchell 1979; Enomoto 1990; 

Beckel 1991; Walker & Byers 1991; Pellis et al. 1992; Fedigan 1993; Hall et al. 

1998). Adult play appears in various forms: solitary adult play, adult-adult play and 

adult-juvenile play, and occurs in many mammalian species (e.g. Marmota 

jlaviventris, Arrnitage 1962; Gorilla gorilla gorilla, Fischer & Nadler 1978; Phoca 

vitulina, Renouf & Lawson 1986; Orcinus orca, Guinet 1990). Adults may play with 

their offspring or with other juveniles within the group. Indeed mother-infant play is 

relatively common in many species (e.g. Byme et al. 1983; Watson 1993), yet in 

harbour seals (Phoca vitulina) for example, adult play may account for 17.6% of all 

play behaviour recorded, but mother-pup play is rare at only 1.4% (Renouf & Lawson 

1986). Although play is relatively common between a mother and her offspring (e.g. 

Macaca arctoides, Rhine & Hendy-Neeley 1978; Macacafuscata, Glick et al. 1986a; 

Macropus rufogriseus banksianus, Watson 1993), it is often the case that other adult 

members of the group might also engage in playful activity with youngsters (e.g. 

Cercopithecus aethiops, Lancaster 1971; Pongo pygmaeus, Zucker et al. 1978; Pan 

paniscus, Enomoto 1990; Pan troglodytes, Pruetz & Bloomsmith 1995). 

Most discussions of adult play deal with social play behaviour (e.g. Pellis & Iwaniuk 

1999b). However, object play in adults is known to occur in some species, notably 

domestic or captive carnivores (Hall 1998). This type of play is generally associated 

with behaviour patterns usually seen in predatory and hunting behaviour (Martin 

1984a, b), and the two types of behaviour are often difficult to distinguish in adults. 

This is contrary to aggressive behaviour, whereby at any point in life-history, play is 

distinct from aggression, and both are clearly recognisable (Thompson 1998). Adult 

play is also distinct from juvenile play in that patterns from different categories of 

behaviour are not mixed, they are non-random, and may be strikingly similar to the 

"serious" pattern of behaviour that the play resembles (Hall 1998). In some domestic 

carnivores, the structure and motivation for adult play is identical to that of predatory 

behaviour, and the only distinction between them is the absence of a kill bite during 
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play (Sen-Gupta 1988). It seems likely that there is a strong motivational association 

between object play and hunting behaviour, in carnivores at least (Biben 1979). 

Adult play is often considered to be unnecessary "behavioural fat" and that a playing 

adult is being rather indulgent by devoting time and energy to play (Miiller-Schwarze 

1978; Symons 1978; Mi.iller-Schwarze et al. 1982; Martin 1984; Hall 1998). 

However, adult play may have certain benefits in terms of assisting the development 

of their offspring and maintaining aspects of their own social relationships (Fagen 

1981 ). In fact, if play does in part facilitate the practice of skills used later in life, then 

an adult's play with its offspring may be a form of parental investment (Zahavi 1977; 

Fagen 1981). Moreover, it has even been suggested that the exhibition of play 

behaviour offers a means by which parents can assess the behavioural and physical 

competence of their offspring (Chiszar 1985), and indeed rough-and-tumble play may 

function to perfect social competence and affect the transition from juvenile to 

adolescent (Homo sapiens, Pellegrini 1995 a, b). The degree of relatedness between 

players certainly seems to be important within adult play behaviour. It is more likely 

that an adult's play partners, regardless of age, will be close kin (e.g. Panthera Ieo, 

Schaller 1972; Macaca mulatta, Symons 1978). Indeed, relatedness is important for 

juvenile players also, in that play partners are often selected on the basis of the social 

relationships of the player's mother (e.g. Macacafuscata, Koyama 1985; Glick et al. 

1986; Pan troglodytes, Tomasello et al. 1990). 

It is suggested (Fagen 1981) that parental play is more likely to occur in species 

where both parents assist in the rearing of offspring, as there is a greater likelihood of 

paternity; if play can be adaptive, then playing offspring might benefit the parent in 

terms of gene persistence. Adult males in promiscuous species such as chimpanzees 

may also engage in play with infants. It might be expected that adult males should 

only participate in play interactions with infants that they can be relatively sure are 

their own offspring (unless they actually want to harm them), if it is assumed that the 

function is to assist the physical and behavioural development of its own offspring 

(Fagen 1981 ). Moreover, adult males who can be comparatively sure of their paternity 

are more likely than other males to protect and care for infants in any sense (Hrdy 

1976). However, in captivity at least, it has been shown that there are no significant 

differences between the play of adult males and their likely offspring, and play 
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between adult males and other-sired offspring (see Pruetz & Bloomsmith 1995). 

Captive adult orang-utan males may play with their offspring, although this is rarely 

observed in their wild counterparts (Zucker et al. 1978). 

Playing with an infant may grant some level of status to an adult, whilst 

simultaneously demonstrating a "goodwill gesture" to the infant's mother. Such 

signals may be open to falsification should the adult [male] then commit infanticide. 

Although adult-immature play may distance a mother from her infant, play does not 

seem to precede infanticide (F agen 1981 ). Van Schaik et al. (1999) state that in 

primates at least, adult males do not commit infanticide in species where there is a 

stable system of communal care of infants. It seems plausible that this might include 

aspects of alia-mothering and incidences of adult-infant play behaviour. 

Adult-adult play usually occurs between males and females as courtship behaviour 

(F agen 1981; Pellis & Iwaniuk 1999a, 2000b ), but may also occur between same-sex 

individuals (e.g. Fisc her & Nadler 1978). Play fighting occurs in adults both with 

juveniles, as well as with other adults, but the most common form between adults is as 

a prelude to courtship (e.g. Phoca vitulina, Wilson 1974). It is supposed that this 

behaviour functions to dilute possible aggression between unfamiliar potential 

partners (Pellis & Iwaniuk 1999a). Alternatively, adult play-fighting may provide a 

means by which to assess potential mates and may serve as an honest signal of fitness 

(Fagen 1981; Kramer & Burghardt 1998; Pellis & Iwaniuk 1999a, 2000b ). Other 

forms of play might also be indicative of biological fitness; adult hunting dogs 

(Lycaon pictus ), timber wolves (Canis lupus), and choz-choz ( Octodontomys 

gliroides) are species that play socially before hunting (Estes & Goddard 1967; Mech 

1970; Wilson & Kleiman 1974) perhaps in order to warm up physically, and possibly 

also as a sort of "pep rally" (Estes & Goddard 1967). This too may serve as honest 

signalling to other members of the pack to show which individuals are healthy for the 

hunt (see Fagen 1981: 441). Clearly, play does not have to occur for physical 

warming up of muscles to take place, but in tandem with any physical warm up, 

playing before hunting may be beneficial as a social signal to show willingness to 

engage in social activities, in this case, foraging or hunting (Fagen 1981). Using play 

as a warm up also appears to occur in other adult animals, such as the mountain hare 

(Lepus timidus) (Flux 1970), and flying squirrel (Petinomys fuscocapillus) (Krishnan 
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1972) before foraging. It might be expected to find social play incorporated in these 

"pep rallies" in species that hunt co-operatively, such as social carnivores (Fagen 

1981 ). 

There are various theories as to the functions of adult play, and it may be that these 

differ in different taxa. Adult play might allow the maintenance of some predatory 

skills (Hall 1998); competence gained through object play may permit a reduction in 

time required in actual predatory behaviour (Russell 1990). Object play may allow for 

further exploratory and learning skills about novelty and tool use (Rumbaugh et al. 

1972; Tayler & Saayman 1973; Tomasello et al. 1989; Visalberghi & Guidi 1998). In 

other species, it may be so that social play amongst adults serves to relieve group 

tensions (Pan troglodytes, Enomoto 1990). It seems likely that adult social play 

certainly serves to strengthen social relationships within the group (Bekoff 197 4; 

Renouf & Lawson 1986). 

1.3.6 Exploration & inquisitiveness 

Play and exploration may be closely related behaviours, and because play appears to 

develop from exploration, it has been argued that play exists as a learning mechanism, 

to aid the acquisition of experience about the environment (Baldwin & Baldwin 1978; 

Baldwin 1986). For example, juveniles often exhibit much age-specific curiosity 

about the types of food adults may eat, and as such "play-feeding" can occur, which 

may serve as part of the learning process about which foods are edible (Janson & Van 

Schaik 1993; Nash 1993). Play may be linked to diet through inquisitiveness. 

Herbivores are less inquisitive than omnivores (Baldwin 1986); this may be because 

certain skills of exploration are required to find food with an increased nutritional 

value. Thus, if exploration and play are intrinsically linked, play may be selected for 

if inquisitiveness is required for foraging (Baldwin 1986). It might rather be the case, 

as in felids, that predators exhibit certain types of play behaviour more readily as 

practice for hunting skills (Martin 1984a; Hall 1998). In spite of these theories, it is 

important to bear in mind that the function of exploration is to gather information 

about the environment, whereas play does not appear to have an immediate function, 

and it is not the case that animals must and do learn and practice all skills through 

play (Burghardt 1984). So although play may borrow certain aspects of exploratory 
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behaviour, especially with regard to novel stimuli, play and exploration are typically 

considered discrete behaviours. 

1.3.7 Cost§ and benefits 

One of the principal assumptions about play behaviour, like all other behavioural 

patterns, is that it has both costs and benefits (Fagen 1981 ). It is argued that play 

should have immediate costs with delayed benefits, and that these long-term benefits 

should outweigh whatever costs may be incurred in the process (Fagen 1981; 

Chalmers 1984; Caro 1995). Table 1.3 details examples of immediate costs with 

associated long-term benefits to play. 

Table 1.3. Immediate costs with associated delayed benefits to playing 

Immediate cost 

(Risk of) injury ~ 

(Risk of) predation ~ 

Reduction in food ~ 

Delayed. benefit 

Resilience through play 
Agility and behavioural boldness 
Environmental familiarity 

There are many potential risks associated with playing, largely due to lack of control, 

exuberance, or simply failing to notice dangers whilst engrossed in the act of play 

(Fagen 1981 ). Classic examples of the costs of play might include the risk of a fall 

whilst playing in trees, or in other unstable terrain (e.g. Jolly 1966, 1985; van Lawick­

Goodall 1967; Byers 1977); the risk of becoming separated from primary care givers 

or otherwise becoming a potential lone target of predators (e.g. Sugiyama 1971; 

Hausfater 1976), or conversely, startling the potential prey of one's own group 

(Wrogemann 1975); the risk of being too exuberant during play-fighting, or 

misjudging playful intention resulting in aggressive injury (e.g. Angst & Thommen 

1977; Kurland 1977); or becoming at risk from environmental dangers (becoming 

trapped in rocks; falling rocks; collisions; falling against cacti etc.; Kummer 1968; 

Douglas-Hamilton & Douglas-Hamilton 1975; Berger 1980). 
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The age-distribution of play has been cited as evidence that play behaviour must have 

delayed benefits (Fagen 1977, 1981; Smith 1982), but others state that play could also 

have immediate benefits (Bekoff & Byers 1981). Play remains widely regarded as a 

costly activity, in terms of time, energy, risk of injury, and risk of predation 

(Zimmermann et al. 1975; Berger 1980; Fagen 1981; Martin & Caro 1985). Due to 

this, it is believed that there must be significant benefits to play, or individuals would 

not be selected to perform such behaviour. Indeed, the fact that play incurs costs is 

"often the only argument for its benefits" (Martin & Caro 1985: 79-80). Martin & 

Caro (1985) argue that as play occurs, it must be adaptive. However, Gould & 

Lewontin ( 1979) have criticised this kind of statement as lacking scientific credibility. 

The notion that all traits are adaptive (relative to the viable alternatives) as a result of 

natural selection has been termed the "adaptationist programme". Gould & 

Lewontin's (1979) general criticism of this is that it fails to distinguish the current 

utility of a trait from its origin and the evolutionary reasons for it. Insofar as play 

behaviour is concerned, it is clear that the functions of play must be better understood 

relative to its evolution. 

However, in spite of the wide variety of risks and setbacks that play may incur, there 

appears to be a strong motivation for young animals to engage in play (Fagen 1977); 

they will often self-handicap in order to play, even with ill-matched partners (Bekoff 

1978; Fagen 1981 ), and attempt to play regardless of parental discipline and physical 

risks (Bekoff 1978). It thus seems likely that play does have important functions, 

perhaps both proximally and ultimately, for it not to be selected against (Martin & 

Caro 1985). However, play is not always so robust, diminishing under severe 

adversity (Burghardt 1984). It seems thus plausible that playing as a juvenile offers 

significant advantages to those that are able to engage in play, as opposed to 

individuals that do not, both in terms of immediate and delayed benefits, although not 

necessarily in equal measure. In terms of immediate benefits, social and physical 

"enjoyment" (Fag en 1992), immediate social bonds (Spinka et al. 2001 ), and 

immediate learning enhancement, may be key to a juvenile's current situation, which 

may in turn affect ultimate individual fitness. In terms of delayed benefits, crucially 

that of honing the CNS at the period of juvenile plasticity (Byers & Walker 1995; 

Fairbanks 2000) is likely to be the most important factor to a playing juvenile, 

although experience of physical agility in the surrounding environment, and social 
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and co-operative interactions (Bekoff 1978; 2001b; Meaney et al. 1985; Spinka et al. 

2001) are also vital in terms of actual and social survival, especially for primates and 

carnivores. Thus overall, there is likely to be some overlap in the immediate and 

delayed benefits of play as both almost certainly occur. Delayed benefits may be 

argued to contribute most significantly to individual fitness; however, if play 

significantly reduces juvenile mortality as a direct result of enhanced social 

integration, then both immediate and delayed benefits are important facets in play's 

behavioural evolution. 

11..4 Play and Evolution 

The origins of play and the evolution of playfulness are largely ignored in the 

literature through focus on proximate causes and functions (Burghardt 1998a; Pellis & 

lwaniuk 1999a,b, 2000b), and few comparative studies have addressed play 

behaviour. There has often been very little overlap between the structural and the 

functional approach to play (Burghardt 1998a), yet neither approach on its own fully 

informs us as to the origin of play, since there are problems distinguishing origin and 

phylogeny from function or current adaptiveness (Burghardt 1998a; Pellis & Pellis 

1998). 

1.4.1 The roots of play 

Given that play behaviour appears to occur in most mammals, it seems reasonable to 

suppose that play occurred in the earliest mammals. Consequently, researchers such 

as Burghardt are strong proponents of the idea that in order to answer questions about 

the evolutionary patterns of play, it is imperative to study play in those taxonomic 

groups that are ancestral to birds and mammals: reptiles (Burghardt 1984, 1988, 

1998a, b, 1999, 2001, Burghardt et al. 1996, in press, Kramer & Burghardt 1998). 

Reptilian play is seldom reported, and thus considered to be a rare occurrence; thus 

this thesis will not deal directly with the play of reptiles, but it is important to refer to 

reptiles with reference to the evolutionary context of play behaviour. The term 

"reptile" is itself however, rather misleading: Reptilia is a paraphyletic group in that 
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shared traits are found in some, but not all of the descendant species pertaining to the 

common ancestor (Ridley 1996). Forms such as crocodiles have changed very little 

from the ancestral state, but birds represent the excluded species, descended from the 

same common ancestor, but that have undergone extreme phenotypic change 

(Futuyma 1986; Ridley 1996). Crocodiles are more closely related to birds than any 

other non-avian reptile group, and as such they share several behavioural elements in 

common (Burghardt 1998). Arguably, the most important of these insofar as play is 

concerned, is postnatal parental care (Herzog & Burghardt 1977), and longevity 

(Burghardt 1984). However, despite an extended period of parental care in relation to 

some other reptiles, crocodiles have not been observed to engage in social play; the 

same is true of iguanas (Iguana iguana) (Burghardt 1977, 1984) although object play 

may sometimes occur in both species (Burghardt 1998a). 

Traditionally, it has been claimed that fish, reptiles, and amphibians (ectotherms) 

generally do not play (Burghardt 1984, 1988), but recent studies are beginning to 

change this view (Burghardt et al. 1996; Kramer & Burghardt 1998; Mather & 

Anderson 1999; Burghardt in press). Although play is generally considered to be the 

domain only of mammals and some birds, especially if related to neocortical wiring 

(see Chapter 7), there are some reports of other animals, especially some non-avian 

reptiles, engaging in play-like activities. Reptiles are generally believed to be rather 

limited in the behaviours they exhibit through play. There are however, various 

reports in the captive literature about object play in different species, such as komodo 

dragons (Varanus komodoensis, Hill 1946; Burghardt et al. in press), alligators 

(Alligator mississippiensis, Lazell & Spitzer 1977), iguanas (Iguana iguana, Hatfield 

1996), and turtles (Trionyx triunguis, Burghardt et al. 1996; Burghardt 1998a), and 

usually involve some form of aquatic-object play, such as nudging objects around a 

pool or "playfully" snapping at water jets (Burghardt 1998a), arguably suggesting that 

reptilian forms of play-like behaviour are rooted in exploration. Within captive 

settings, objects may be used for environmental enrichment with both juvenile and 

adult animals. Indeed, it is interesting to note that object play is often reported in 

species that typically are not deemed to be playful (Burghardt in press), such as 

reptiles. Beyond reptiles, play has even been reported in cephalopods (Octopus 

dejleini, Mather & Anderson 1999). However, these reports are limited in number and 

are often anecdotal in form. 
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Some reptiles do however exhibit exploratory behaviour (Rand et al. 1975; 

Drummond & Burghardt 1982; Burghardt 1984). It is known that there is a 

behavioural link between on the onset and development of exploratory behaviour and 

play (Baldwin & Baldwin 1977), and that exploration often precedes play in many 

species, including humans (Smith et al. 1998). Indeed, advanced play and exploratory 

activities in animals are generally accepted as evidence of advanced evolutionary 

development (Tayler & Saayman 1973). "Playful" exploration of objects during play, 

might suggest that the ecology of the species is more important than its phylogenetic 

position (Aldis 1975). This might be especially important in species such as pigs, Sus 

scrofa, that are opportunistic and typically curious; thus the practice of exploratory 

behaviour seems to be highly important (Stolba & Wood-Gush 1989; Wood-Gush & 

Vestergaard 1991 ). Play behaviour might represent the origin of curiosity and also the 

novel behaviour patterns that are seen in so many mammals (Burghardt 1998a). 

1.4.2 The ancestral form of mammalian play 

Mammals evolved from reptiles 150 million years ago (Jerison 1973; Eisenberg 

1981 ). If play occurs in most mammals as is predicted, then it is likely that 

mammalian play behaviour, or an approximation thereof, arose during the Cretaceous 

period (144- 65 mya [Futuyma 1986]), before the separation of different taxonomic 

lineages leading to modern taxonomic groups (Byers 1984, 1998b). Play behaviour is 

recognised as having various forms and functions in modern mammals, but it seems 

highly unlikely that play was so heterogeneous in its earliest form. It is possible, 

although unlikely, that play arose either through parallel evolution or convergence, 

after modern taxonomic lineages arose, whereby there was a similarity of playful 

behaviour in independent lineages (rather than a common ancestor). Byers (1984) 

however, states that the most likely path of play evolution is from an ancestral form 

and function of play in mammals, which has been largely retained but with 

modification in form, in response to changing selection pressures and adaptive 

radiation. 

If a common form of play can be recognised across extant species, it might give some 

indication as to the primitive form and function of play. Byers (1984) thus strongly 
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advocates that the ancestral form and function of mammalian play behaviour (as 

opposed to the reptilian "play-like" behaviour) is that of motor training, for the reason 

that it remains a primary function ofplay in mammals (see also Bekoff & Byers 1981; 

Byers & Walker 1995) and can occur without specialised encephalisation or social 

organisation being present. It is improbable that natural selection would have acted 

uniformly to select for social cohesion across taxa, that is, as sociality is not a 

primitive condition in mammalian evolution, it seems unlikely that social play 

represents the primitive condition for play (Byers 1984). Byers (1984) states that play 

patterns that resemble the serious behavioural components of the flight response are 

those most likely to have evolved first, thus solitary locomotor-rotational play 

behaviour is the most likely representation of the earliest form of play, followed by 

play that mimics adult agonistic competition (social play). 

Support for the motor-training hypothesis comes from the long-held assumption that a 

primitive function of play was to enable the development of neuro-muscular systems 

(Bekoff & Byers 1981). As endothermy evolved, the onus on the biological necessity 

to conserve energy increased. The musculo-skeletal systems of endotherms became 

increasingly responsive to the use of specific bones and muscles, which became 

honed and trained through use, and specifically fine-tuned to be more energy efficient 

(Bekoff & Byers 1985; Byers 1985). Moreover, musculo-skeletal systems that are 

use-dependent enable an individual to practice motor skills associated with survival 

skills: thus the increased likelihood for motor training being representative of the 

ancestral form of play behaviour. As play may be connected to endothermy and 

metabolism (Burghardt 1988), it is likely that these specialisations were in place at the 

emergence of play behaviour. Play is less prominent in species with a low basal 

metabolic rate, such as reptiles, and some mammals such as anteaters and sloths 

(Fagen 1981; Burghardt 1984). Play, and other vigorous behavioural activities, might 

actually be detrimental to some reptiles as they are less likely than mammals to 

maintain the homeostasis and metabolism that permit such behaviours in mammals 

(Burghardt 1988). Similarly, most reptiles do not exhibit a juvenile period during 

which social, locomotor, avoidance, and feeding skills are honed: the key play period 

in mammals (Burghardt 1984, 1988). Future research should aim to focus on reptiles, 

especially those such as varanid [ Varanoidea: monitor] lizards that exhibit a relatively 

high metabolic rate (overlapping with the rate of some mammals). It might be 
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possible to glean further knowledge as to the importance of endothermy to the 

evolution of play behaviour (Burghardt 1984, 1988, in press). 

1.4.3 Evo]utio:n & social! complexity 

Endothermy however, might not be the sole driving force in the evolution of play. 

Given that the neocortex is a mammalian neural adaptation, which can be used to 

predict measures of sociality (Dunbar 1992), and that neocortical wiring is critically 

determined by experience early in life (Quartz & Sejnowski 1997), it seems likely that 

across mammalian taxa, the evolution of play behaviour may have arisen with 

neocortical expansion (Lewis 2000). It is widely assumed that play behaviour evolved 

in association with life in social groups, and also with polygyny, for the purpose of 

motor training associated with the development of fighting skills, especially amongst 

males (Smith 1984). The rougher play often seen amongst males is considered to 

serve as practice for physical skills, used later in adulthood for competition for 

resources and mates (Lee 1983). It seems likely that although the evolution of 

endothermy is crucial to the evolution of play, it is neocortical expansion that is 

associated with the diversity of play from the ancestral motor training functions, to the 

development of more socially complex play. Thus, with increasing neocortical 

expansion emerged the specialisation for sociality, which in turn facilitated the 

divergence from the primitive play condition towards the diversity and complexity of 

social forms of play. Further studies should seek to demonstrate to what extent this 

might be the case. 

From comparative studies on social play in muroid rodents, Pellis & Iwaniuk (1999b, 

2000a) claim that the evolution of play "is highly idiosyncratic in form and function" 

and that play is equally likely to exhibit a reduction in complexity and intensity, as it 

is to exhibit an increase through common descent. They claim that play should have a 

positive association with duration of juvenility, thus a greater complexity and 

frequency of play should be present in species with a greater period of postnatal 

development (Pellis & Iwaniuk 2000a). The assumption remains that most 

mammalian species are capable of play, but it should be noted that although rare, play 

is argued to exist in non-mammalian and non-avian species, and that behavioural 

differences between the play of these groups may be due to differing ecological and 
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evolutionary functions (Burghardt 1984): play might not physiologically prepare the 

developing reptile in the same way as the developing mammal, thus the exhibition of 

mammalian play might be more overt than the play of reptiles (Burghardt 1988). 

1.4.4 Play and [aughter 

As this thesis deals with the play of animals, rather than humans, the phenomenon of 

humour and laughter is dealt with very limitedly here; there are of course areas of 

academia that deal with this phenomenon in great detail (e.g. clinical & 

psychological: Berk et al. 1991, Ramachandran 1998, Shibata et al. 2000, Vejleskov 

2001, Rosner 2002; biological bases: Fry 1994; social: Kipper & Todt 2001; 

sociological: Oshima 2000). Smiling is widely considered to have originated as an 

ancient mammalian threat display, indicating the potential for harm or self-defence; it 

may be the case that a simple flash of teeth evolved as a social signal to demonstrate 

this, requiring no further action (e.g. Andrews 1963). Laughter however, is shown to 

have a different origin, and may be more keenly founded in the ancestral emergence 

of play (Panksepp 1998). Laughter may act as a public and social demonstration of 

victory (e.g. winning a play-fight) or to promote social cohesion (human laughter is 

"infectious"). Neurologically, the gap between laughing and crying is small. It is 

hypothesised that the mechanisms that permit the experience of separation-distress, 

along with those that promote the emotional experience of social bonding, may have 

been prerequisites for the origin of laughter (Panksepp 1998). If this is the case, it 

seems intuitive that the mechanisms that allow the experience of social bonding and 

separation-distress, as well as the propensity to cry and to laugh, may well have been 

prerequisites in the neural circuitry for the evolution of play. Indeed, as laughter is 

perhaps synonymous with the play of humans, laughter-like play vocalisations have 

been reported in some non-human animals (e.g. Marler & Tenaza 1977; Panksepp & 

Burgdorf2000; see also section 1.6.2). 
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le5 Development and Distribution 

Due to the nature and timing of play, it is important to ask developmental questions of 

play behaviour in order to gain an understanding of its function; if an understanding 

of play's place in the evolution of animal behaviour is to be reached, it is vital to 

understand the function of play (Burghardt 1988; Fairbanks 2000). However, 

development and function are separate questions, and as any population is in part 

defined by age-structure, it is vital to incorporate the study of development when 

conducting evolutionary and ecological research (Bekoff & Byers 1985). 

1.5.1 Onset and development 

Play is a behaviour particularly embedded in infancy; it begins early in postnatal life, 

reaches a peak during the early juvenile period, and declines with the onset of 

adolescence and adulthood (Bekoff & Byers 1985; Fagen 1993; Byers & Walker 

1995; Fairbanks 2000). In non-human primates, solitary play behaviour is usually the 

first type of play to emerge (Fairbanks 2000), and in primates can occur within the 

first two weeks of life (Cheney 1978; Lee 1984; Clarke 1990). Social play soon 

follows and tends to replace solitary play as the dominant form of play, peaking in 

frequency around one year of age (e.g. Zucker & Clarke 1992; Govindarajulu et al. 

1993). Object play typically begins later than the other forms of play and has its onset 

during the early juvenile period, declining to adult levels by the end of the juvenile 

period (Byme & Suomi 1995, 1996; Fairbanks 2000). 

1.5.2 Behavioural patterns within play 

Play behaviour is likely to occur and be most prominent in species where speedy 

motor patterns occur within their normal (non-playful) behavioural patterns, in 

species that exhibit an extended juvenile period, and species that have the potential to 

learn quickly (Ewer 1968). For these reasons, play behaviour is most readily 

recognised and reported in primates, some carnivores, and some ungulates (e.g. 

Brownlee 1954; Baldwin & Baldwin 1974; Zucker et al. 1978; Berger 1980; Bekoff 

1984; Arnold & Trillmich 1985; Martin & Bateson 1985a; Bonnett & Fewell 1987; 
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Jensen et al. 1998; Kiln er 200 I). Play behaviour changes with age, and in most cases 

declines with the onset of adulthood (Chalmers 1980; Panksepp 1981; Fagen 1981; 

Mendoza-Granados & Sommer 1995; Fairbanks 2000). However, play sequences 

often consist of behaviours seen in many functional contexts as adults, such as 

aggression, hunting, and sex, but these lack the consequences of their "serious" 

behavioural counterparts, such as wounding, killing, or actual copulation (Fagen 

1981; Burghardt 1984; Chalmers 1984). It should be noted that play-fighting itself is 

not a prerequisite for real fighting (Smith 1982). Many of the patterns that appear in 

the play of felids resemble those used in hunting and catching prey, so for example, 

felid play might be an example of practice behaviour for adult skills (Martin 1984a; 

Caro 1995). 

1.5.3 Age & sex differences 

Data on age-specific rates of play are rare (Byers 1998b ). There are however two 

main hypotheses about play behaviour: that juveniles play more than adults, and that 

males play more often and more roughly than females (e.g. Cheney 1978; King et al. 

1980; Oswald & Lockard 1980; Stevenson & Poole 1982; Lee 1983; Jolly 1985; 

Brown 1988; Gomendio 1988; Tomasello et al. 1989; Wilkomm 1990; Harcourt 1991; 

Nash 1993; Watson 1993; Markus & Croft 1995; Mendoza-Granados & Sommer 

1995). Play is less common in older adults and it has been suggested that this is due to 

the fact that motor skills are not required to the same extent in these individuals in 

comparison with their younger counterparts (Watson 1993). If one type of play 

behaviour were more risky for females than for males, for example, then it would be 

expected that female play behaviour would decrease. 

As an animal matures and develops, even within relative immaturity, it often becomes 

harder to distinguish true aggression from boisterous rough-and-tumble play (Martin 

& Caro 1985). It certainly seems to be the case that an individual primate's capacity 

for play varies according to its age and sex (Chalmers 1984). It seems that dominant 

animals are capable of moderating their play behaviour according to relevant 

asymmetry in strength; if one juvenile plays too roughly with another, it risks alerting 

the attention of the mother, who may break up the play interaction. As primates 

mature, they become more aware of intra-troop status, and become more competitive 
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in play (Fagen 1981). Perhaps this is a reason why older male juveniles play more 

roughly than any other age group (e.g. Owens 1975b; Rowell & Chism 1986; Schafer 

& Smith 1996). 

It has been documented in many studies that juvenile males in particular become 

increasingly aggressive with age (e.g. Owens 1975b; Berger 1980; Kraemer et al. 

1982; Pusey 1990; Mendoza-Granados & Sommer 1995; Smith et al. 1998). Ifthis is 

the case, it may also contribute to the understanding of why males of a certain age 

appear to play more frequently, and also more roughly than their female counterparts. 

Females in sexually dimorphic mammals mature earlier than males (Baldwin 1986; 

Smale et al. 1995), which may have some effect on sex-differences in play behaviour. 

In nongregarious primates, such as nocturnal primates, and also the diurnal orang-utan 

(Pongo pygmaeus), older juvenile females tend to play less frequently and exhibit less 

aggressive play than their male counterparts, concentrating more upon interactions 

with infants and alliances with other females (Nash 1993). Males of the same age, 

however, do not form alliances in the same way, but concentrate upon rough play with 

other males, which may, in part at least, serve as a practice of fighting skills (Berger 

1980; Rothstein & Griswold 1991; Nash 1993). 

Chimpanzees have not been reported to exhibit significant sexual dimorphism in play 

(Fagen 1981), but sex-differences have been observed in many wild, captive and 

laboratory studies on play behaviour (e.g. Saimiri sciureus, Baldwin & Baldwin 1973; 

Ovis aries, Sachs & Harris 1978; Cercopithecus diana, Byme et al. 1983; Meaney et 

al. 1985; Macaca fuscata, Baton et al. 1986; Gorilla gorilla, Brown 1988, Meder 

1990; Bison bison, Rothstein & Griswold 1991 ). Self-handicapping by older or 

stronger play-partners may often occur to maintain a play bout with a mismatched 

partner (Pereira & Preisser 1998). However, it has been shown empirically that 

animals predominantly prefer to choose same-age, same-sex, and same-rank play 

partners (e.g. Papio cynocephalus ursinus, Cheney 1978; Bison bison, Rothstein & 

Griswold 1991; Cercopithecus aethiops sabaeus, Govindarajulu et al. 1993; Ovis 

canadensis, Hass & Jenni 1993; Macropus rufogriseus banksianus, Watson 1993). 

Play behaviour is likely to be connected to life histories, and is associated with slower 

development, and parental care and longevity (Daly & Wilson 1983; Burghardt 1984). 
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It is expected that play will appear most frequently within species that exhibit a 

relatively high metabolic rate, some parental care, and advanced cognitive abilities 

relative to other species (Ewer 1968; Fagen 1981; Burghardt 1984). In comparison 

with typically precocial groups such as reptiles, typically altricial mammals display an 

increased metabolic rate and are not limited by their capacity for aerobic activity 

(Burghardt 1988); this might affect the exhibition of play behaviour. 

:n..s.4l?lay and the brain 

Brains are products of natural selection, and their structure and mechanisms are 

evolutionary adaptations that fit the animal's behaviour to its environmental and 

behavioural niche (Barton & Harvey 2000). Behaviour is mediated by the brain and 

recent trends in the play literature increasingly focus upon the correlation between 

aspects of neural anatomy and play behaviour (e.g. neocortex, Lewis 2000; 

cerebellum, Byers & Walker 1995, Pletnikov et al. 1999; localisation, van den Berg et 

al. 1999; hippocampus, Joseph 1999; amygdala, Pellis & Iwaniuk 2002). Thus, there 

are many_wide-ranging implications regarding the cognitive and neurological aspects 

of play behaviour, in addition to the already well-established theories of play. 

As stated previously, play is typically thought to have no immediate function, and 

thus is hard to explain and even study from both proximate (including neural) and 

evolutionary perspectives (Burghardt 2001). As animals change and develop through 

different stages in ontogeny, they must maximise and modify physical skills. Byers & 

Walker (1995) state that skeletal muscle fibre and cerebellar synaptogenesis are the 

two effects that are permanently affected by postnatal development in mammals; the 

modification of these structures results in enhanced motor-performance skills, and as 

such are posited as the true effects of play during the juvenile period (Byers & Walker 

1995). Although synaptogenesis continues into adulthood, it is the early postnatal 

formation of cerebellar synapses that is considered important to the onset of play 

(Byers & Walker 1995). The cerebellum for example, is fundamental in controlling 

motor co-ordination, that is, the control of specific motor sequences, and placing them 

in the context of the motor state of the individual at any given moment (Llimis & 

Walton 1998); Chapter 7 will deal with this in more detail. 
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The juvenile period represents an explosion of learning opportunities, developing the 

body and brain and by extension, the behavior of the individual (Dawson et al. 2000). 

Yet, which physical, social, and cognitive skills are learned and which mature merely 

as a consequence of growth is not understood in relation to play. Significant change 

and growth, both in behaviour and brain, occur during the early stages of life 

(Dawson et al. 2000), both pre- and post-natally. Indeed, much non-human primate 

development occurs in utero, rendering non-human primates more precocial than 

their Homo sapiens relatives. Soon after an infant is born, the connections between 

different parts of the brain develop further and strengthen (e.g. Aoki & Siekevitz 

1988). The basic organisation of the brain typically does not change after birth, but 

aspects of its structure and function remain plastic for much of early life (Aoki & 

Siekevitz 1988), and the juvenile period is a particularly sensitive period during 

which different experiences can permanently affect the developing brain (Aoki & 

Siekevitz 1988; Dawson et al. 2000). Genes dictate basic patterns of connections 

between brain structures, but these are modified by environmental input (Fox et al. 

1994). 

It is known that in some species play is at its peak when brain development is most 

active (Panksepp 1981; Byers & Walker 1995). A previous comparative study by 

Iwaniuk et al. (2001) did not find a relationship between play and overall brain size. 

The brain is however, a heterogeneous organ and it may be necessary to look at 

specific brain components during the juvenile period (Lewis 2000). Physiological 

training responses are also known to occur in connective tissue, bone, the 

cardiopulmonary system, the endocrine system, and the nervous system (e.g. 

Rosenzweig 1971; Basset 1972; Tharp & Buuck 1974; Buller & Pope 1977; Fagen 

1981; Byers & Walker 1995; Hol et al. 1999). If play can benefit these systems early 

in ontogeny, it may increase both the physical and Darwinian fitness of the 

individual later in life. 

It has been shown that some training responses only occur during the juvenile period 

(Byers & Walker 1995). Young animals may also respond more quickly and more 

efficiently to training in comparison with their adult counterparts (e.g. Bekoff 1989a). 

Certainly, an individual that has experienced physical training from a young age may 

be more inclined to exhibit a "head start" of increased skills, than an individual that 
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only begins training in adulthood, even if the result is only temporary. Play therefore 

seems to be an important and prominent behaviour in the formative years of an 

animal's life (Fagen 1981). 

Certain cerebral structures in particular may be adaptively modified by the experience 

of play and exploration during the juvenile period. Bourgeois et al. (1994) showed 

that in rhesus macaques (Macaca mulatta) there is a high synaptic density during the 

first stages of postnatal life, when learning experiences are most intense, but that the 

density decreases via synaptic pruning to become relatively stable during adolescence 

and puberty. If we apply this to play behaviour, it might give an indication as to the 

importance of play during this period. In fact, the effects of modification of the 

cerebellar synaptogenesis and skeletal muscle that influence motor-performance only 

occur during a very small window of postnatal development. These effects are 

permanent, as opposed to many other effects of motor-training that can occur at any 

age. Moreover, the age-distribution of play and the time-frame during which most 

play occurs, tends to suggest that play characterises a sensitive period whereby motor 

patterns alter development (lmmelmann & Suomi 1981; Byers 1998b ). The true 

effects of play are those that permanently affect the developing CNS during critical or 

sensitive periods in development, rather than physiological training or exercise 

responses that can occur at any period during the lifetime of that individual and that 

tend to be temporary; Byers & Walker (1995) argue that these are the effects of 

motor-training during the juvenile period. Byers (1999) states that in marsupial play at 

least, the function of play is to train neural networks. Thus, if the development of 

neural systems is the main benefit of play, then across taxa, play might be expected to 

vary more with relative brain size, or more likely, the size of relevant brain structures 

(Byers 1999). Sensitive periods of development are common in many mammals and 

some bird species (Byers 1998b). It seems to be during such periods that the potential 

to modify developmental systems through experience becomes apparent. Byers 

(1998b) states that it is reasonable to suppose that play, coinciding with periods 

during which the development of the brain and body might be altered, may be a 

performance-dependent development. 

28 



1.5.5 Play and cognition 

The neural basis for the development of skills through play still remains 

comparatively unexplored. Indeed, fairly little is actually known about the developing 

brain during the early and late phases of the juvenile period, a time during which 

social and cognitive learning escalates, and play is at its most prominent (Casey et al. 

2000). Iwaniuk et al. (2001) found that at an interspecies level in primates, there was 

no correlation between play and total brain size. Lewis (2000) found that in primates, 

social, but not other forms of play behaviour, correlate significantly and positively 

with neocortex size across taxa. It might be expected that the neocortex is important 

to the onset of play behaviour, as the development of the neocortex begins and is 

strongest early in the postnatal phase (Da.mbska & Kuchna 1996). It is in this early 

postnatal period that play is especially prevalent. Dunbar (1992, 1995a), and Dunbar 

& Bever (1998) have demonstrated a relationship between neocortex size and group 

size in primates and carnivores, arguing that the larger the social group, the greater the 

cognitive load in maintaining social relationships. Whilst comparative studies of 

cognition have focused exclusively on the neocortex, it has recently been established 

that the neocortex has tended to evolve together with the cerebellum (Barton & 

Harvey 2000; Whiting 2002, but see Clark et al. 2001 and Barton 2002), suggesting 

that the cerebellum ought to be given more attention. It is likely that different parts of 

the brain are involved in different aspects of play behaviour, but the extent of this is 

currently unclear. With increasing evidence that motor development and cognitive 

development are much more tightly interrelated than was previously thought, 

(Willingham 1999; Diamond 2000; Joseph 2000), this thesis will further delineate the 

parts of the brain on which to focus, and the extent to which we can link cognitive 

abilities to play. 

1.5.6 Social Skills and social intelligence 

The social play of animals is likely to have an influence upon other social skills 

pertaining to the individual within the social group, allowing individuals to learn and 

maintain social relationships (Lee 1983; Mendoza-Granados & Sommer 1995). For 

example, Joffe (1997) suggests that primates are selected for an extended juvenile 

period, and that this is presumably related to their need to learn. One mechanism of 

learning adult social skills is through play behaviour, and the extended juvenile period 
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in primates thus suggests that there is increased play behaviour during this period in 

order to maximise learning potential. It may be the case that play behaviour in 

juveniles is a factor in the formation of dominance hierarchies and social ranking in 

some species (Bramblett 1976). Indeed, there might also be a clear preference to play 

with individuals of a similar dominance rank, or indeed with infants of mothers who 

are high-ranking (Cheney 1978; Berman 1983; Colvin 1983; Lee 1983; Koyama 

1985). As an infant slowly matures, it spends increasingly more time away from its 

mother, forming peer bonds with similarly-aged and -ranked individuals with whom 

to engage in playful interactions (Berman 1983; Govindarajulu et al. 1993). Initially, 

there will be no injury as a direct result of play, but as the animals grow in maturity 

and strength, there will be increasing incidences of injury. It is argued that the 

individuals who are playful but injured less frequently may acquire a higher social 

rank than the possibly weaker individuals who sustain more injuries, or who retire 

from playful interactions with their peers (Bramblett 1976: 36; deWaal 1996). So, 

play may function directly in establishing rank relationships. However, it has been 

argued that allo-grooming is a better indicator of social bonds than social play 

behaviour, especially as it is less energy consumptive (Colvin 1983; Poole 1985). 

Also, dominance hierarchies may be decided through direct threat and submissive 

behaviours, thus play-fighting for instance might not be used in this pursuit due to the 

relaxed nature of play and occurrences of self- handicapping (Poole 1985; Pereira & 

Preisser 1998). Furthermore, there is evidence to suggest that social play does not 

underpin group socialisation due to the fact that some solitary animals demonstrate 

rather complex social play episodes with siblings or nest mates (e.g. Ursus 

americanus, Henry & Herrero 1974; Mustela putorius, Poole 1978; Pongo pygmaeus, 

Rijksen 1978; Zucker 1978). Similarly, some social species (Mus musculus) are not 

observed to play (Poole & Fish 1975; Poole 1985). So, play may aid only some 

aspects of socialisation, forming bonds and obtaining information regarding strength 

and dominance (e.g. Bekoff 1978; Bramblett 1978), although this might not be the 

case universally in mammals. The question of play as socialisation further indicates 

the functional enigma of play behaviour. 

Generally, juveniles are unable to reproduce, thus usually unable to contribute genes 

to the next generation. It may be the case that developing skills and relationships 

through play to aid survival into adulthood will increase their lifetime fitness (Janson 
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& Van Schaik 1993: 57). Adult skills, or the pathways leading to them, need to be 

acquired at some point prior to attaining adulthood, and thus it seems probable that 

play may aid, at least in part, the development and learning of such skills (Fagen 

1993). Play and learning are important to developmental patterns, and may be 

especially useful in practising mating and mothering behaviour patterns. Play­

mothering in juvenile females may allow for the practise of behaviour patterns and 

skills utilised in motherhood. Thus the experience of a mothering role, through a 

relaxed context such as play, might prove beneficial (Lancaster 1971 ). A lack of such 

practice has shown an increased likelihood of females becoming aggressive mothers 

(Lancaster 1971 ). Thus play as social practice, might be adaptive. However, it is also 

argued that play does not seem to represent a developmental stage of the equivalent 

adult behaviour (Poole 1985) not least because adults in some species demonstrate 

play (e.g. Hall 1998). In coyotes (Canis latrans) and hyaenas (Crocuta crocuta), play 

emerges after the development of aggressive behaviour that determines dominance 

(Drea et al. 1996). 

1e6 Causation 

Understanding the proximate causation of play - its contexts, eliciting stimuli, and 

physiology - remains crucial (Fagen 1981 ). Studies specifically concerning the 

causation of play are less common in the literature than those pertaining to the 

functions of play, for example. Indeed, in spite of ethological studies and computer 

modelling (Fagen 1981), one argument against play as a separate motivational 

behavioural category has been its apparent lack of physiological or 

neurophysiological evidence (e.g. Welker 1971). Recent laboratory research however, 

has gone some way in elucidating our "play knowledge" with respect to the 

neurobiology of play behaviour (e.g. Panksepp et al. 1987; Siviy & Panksepp 1987; 

Panksepp et al. 1994; Vandershuren et al. 1995, 1997; Ho1 et al. 1999; Pletnikov et al. 

1999; Van den Berg et al. 1999), as well as understanding the hormonal influences on 

the ontogeny of play as a sexually-differentiated behaviour (e.g. Collaer & Hines 

1995; and see Chapter 7). 
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1.6.1 Neurobiological elicitation 

Play usually derives from the physiology and neurochemistry of healthy individuals, 

and (as is discussed in section 1.7 and elsewhere) the amount of play is therefore 

reduced by emotional and physical stress, anxiety, fear, hunger, and illness (Panksepp 

1998). By extension, play is enhanced, and its duration and persistence increased, in 

relaxed contexts. Although we are some way off an understanding as to the full play­

neurochemical system, much of our understanding of "play-circuitry" comes from the 

laboratory. Play has been artificially stimulated through administering opioids such as 

low doses of morphine, to animals in laboratory situations (e.g. Vanderschuren et al. 

1995). Low dosage is essential, as higher doses of opiates reduce all social behaviour 

and may result in catatonic immobility (Panksepp 1998: 294). Similarly, some 

neuropeptides such as oxytocin have been shown to reduce playful expression in 

laboratory rats (Panksepp 1998: 294). Guard et al. (2002) found that morphine 

significantly increased social play and play motivated responses ("play-twittering") in 

common marmosets (Callithrix jacchus), but that non-social play behaviours were 

unaffected. They therefore use these results to argue that social play is a distinct 

category of social behaviour. Chapter 7 will address the neurology and neurobiology 

of play in more detail. 

1.6.2 Play signals 

How does a player or an observer distinguish between play and other categories of 

behaviour? Agonistic signals occur during play-fighting in some species which can 

make the distinction between play and other behaviours that much harder to 

accurately define. It seems that it is not so much the actual behavioural patterns that 

are used, but the way in which they are performed that is important (Pellis & Pellis 

1998), and this is where distinct play signals may come into operation. As it would be 

especially risky for an animal to misinterpret the intention of any behaviour pattern, 

play signals have evolved to distinguish serious from non-serious behaviour patterns, 

allowing an appropriate and constant response to another individual (Bekoff & Alien 

1998). Play cues are often seen in their more functional contexts in other forms of 

behaviour. The play face typifies such a play-signal: the relaxed open-mouth display 
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that appears in playing primates, carnivores and rodents (Fagen 1981 ). Fagen (1981: 

48) states that as the primate play-face typically occurs in conjunction with other 

behavioural gestures or postures that are structurally similar to that of other taxa, it 

may form a "phylogenetic link between primate play signals, and the play signals of 

rodents and ungulates". It is certainly a signal that can occur in all play contexts (i.e. 

solitary, object, and social play). In chimpanzees, a play face is often accompanied 

with a vocalisation that approximates to, but is distinct from, human laughter (Marler 

& Tenaza 1977), and baboons often emit a play-chuckle (Deborah Custance, pers. 

comm.). In rats, Panksepp & Burgdorf (2000) even report chirps as possible laughter 

in response to being tickled, and many carnivores also emit play vocalisations to 

signal motivation to play (Bekoff 1974) (see also section 1.4.4). Other examples of 

play-eliciting behaviours include a play-soliciting behaviour that is more usually 

witnessed between adults as a prelude to sexual mounting in seals (Phoca vitulina 

concolor, Wilson & Kleiman 1974); head-tossing in ungulates, which is also seen in 

fight-flight behaviour (Mtiller-Schwarze & Mtiller-Schwarze 1968); and head-shakes 

during playful body odour investigation in giant pandas (Ailuropoda melanoleuca) 

which are seen in scent-marking behaviour (Wilson & Kleiman 1974). 

Play signals are not known to occur in all species of animal that are known to play, 

yet they are very common in primates, canids, and rodents (Bekoff 1977; Rose 1977b) 

and may differ between species (Fagen 1981 ). Such signals are certainly more readily 

recognised by observers when the signals are visual, but auditory cues exist, as do 

olfactory ones, which might be especially important to those species that rely most 

heavily on olfaction in daily life (e.g. carnivores, rodents) (Wilson 1973; Fagen 1981). 

Touch however, is the dominant sense within the play of any given animal: tickling, 

pinning, and other forms of rough-and-tumble play are reliant on tactile stimulation 

above any other visual, auditory or olfactory response within play (Panksepp 1998). 

Laboratory trials of anaesthetising rats may reduce the amount of rough-and-tumble 

pinning, but it does not reduce the motivation to engage in play. Panksepp (1998) 

therefore claims this as good evidence for an innate desire to play, rather than it being 

reliant on sensory stimuli alone. 

Play signals may have their behavioural basis in other functional categories of 

behaviour, such as fighting or mating, yet they are usually exaggerated actions, and 
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thus unique to play behaviour (Fagen 1981; Watson & Croft 1993). Play-signals are 

not necessary for play to occur (Watson 1998), yet their inclusion might aid in 

initiating and maintaining a play bout (Fagen 1981). Some locomotor-rotational 

movements also act as play signals in some species, and resemble some acts seen in 

functional contexts such as predator defence (Fagen 1981 ). This might be especially 

true of some canid species, whereby the play bow usually occurs just before an action 

that could be misinterpreted as aggression (such as a bite) (Bekoff 1977). In this 

context, play-signals seem to convey the message "This is [still] play" (Symons 1978; 

Fagen 1981; Bekoff & Allen 1998). 

1. 7 Environmental correlates of play 

The exhibition of play behaviour in animals is sensitive to ecological and 

environmental variables (Lee 1983), and there are numerous variables that suppress 

play in mammals, particularly under adverse conditions (Baldwin & Baldwin 1974; 

Fagen 1981; Burghardt 1984). Moreover, play is so susceptible to external stresses 

that it is amongst the first behavioural categories to disintegrate when such 

circumstances arise (e.g. Burghardt 2001). These will be discussed in more detail in 

Chapter 6. 

1.7.1 Food 

Hunger is usually considered to be a dominant motivational system (Martin 1984a; 

Hall & Bradshaw 1998). Play however, is often considered to be a weaker 

"subordinate behaviour tendency" (Amold & Trillmich 1985). Thus it is expected that 

there will be a reduction in play activity upon long-term reduction in food availability 

(Dasman & Tauber 1956, Loy 1970, Zimmermann et al. 1975). Even short-term 

deprivation of food can decrease play rather rapidly, (see Baldwin & Baldwin 1976; 

Miiller-Schwarze et al. 1982). Similarly, play may be an indicator of habitat quality 

(Sommer & Mendoza-Granados 1995; Blackshaw et al. 1997; Jensen et al. 1998). In 

a rich habitat, a band ofHanuman langurs (Presbytis entellus) were shown to play 6-7 

times more than a band living in a poor-habitat area. The frequency of play-fighting 
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and locomotor play was negatively correlated with the amount of leaves (low-energy 

food) in the diet (Sommer & Mendoza-Granados 1995). This supports the theory that 

play is diminished under sub-optimal environmental conditions (Fagen 1981; 

Burghardt 1984). 

1.'/ .2. Confinemell1t 

When the possibility to exercise 1s reduced through close confinement of an 

individual, play is also reduced. It is therefore predicted that an individual should 

play vigorously upon release. Smith & Hagan (1980) found that when children were 

confined indoors, they exhibited high levels of physical activity (expressed through 

play) when released outside. Similar effects have also been seen in other animals 

(Miiller-Schwarze 1968; Chepko 1971; Jensen 2001; Christensen et al. 2002). 

Interestingly however, an opposite effect is witnessed in zoo animals, in that captive­

housed animals tend to exhibit a greater amount of play behaviour; this may be due to 

the need for sensory stimulation, regression to an immature state in adults, or more 

simply that captivity constrains variables such as predator pressure and food 

availability, freeing up more play time (Fagen 1981: 301). The fact remains that in 

most modern zoos, care has been taken to ensure that space is provided in enriched 

captive environments (Erwin & Deni 1979; Maple 1979; Markowitz 1979), and it is 

specifically close confinement that prevents physical exercise and the exhibition of 

play. Additionally it might be argued that "some aspects of social behavior may 

remain relatively unaffected by captivity" and that captive play closely resembles play 

in the wild (King et al. 1980). 

1.7.3 Temperature and weather 

Play in animals tends to occur with greatest frequency during daylight hours, 

particularly in the morning (e.g. Alouatta pallia la, Altmann 1959; Cercopithecus 

ascanius, Galat-Luong 1975) and evening (e.g. Papio anubis, Rose 1977a; Macaca 

arctoides, Bernstein 1980; Lutra canadensis, Beckel 1991), avoiding the periods of 

the day when both the temperature and subsistence activities are at their peak (e.g. 

Ovis canadensis, Berger 1980). There exist few data on the play of nocturnal species, 

or indeed the play of diurnal or cathemeral species at night. This may be in part due to 
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the difficulty in observing animals at night, but the scarcity of the occurrence of 

nocturnal play may be due to the costs and benefits of performing play at this time, 

and also the costs and benefits of performing other behaviours at specific times 

(Fagen 1981). Nocturnal species are often also largely solitary, and rely on use of 

their physical stealth under the cover of darkness to find food. The performance of 

play at such times might demonstrate greater costs in terms of risk of predation to 

nocturnal species, than to those that are diurnal and typically social. 

Inclement weather has also been found to reduce the playing time of individuals, and 

in this way acts rather like confinement (Fagen 1981; Burghardt 1984; Bernstein & 

Baker 1988). Immoderate weather, such as extreme temperatures, heavy rains, and 

high winds reduce play behaviour in animals (Bernstein 1980), and so an 

improvement in bad weather should lead to the immediate increase of play again. The 

last opportunity to play before heavy rains or confinement often reveals a final 

exertion of energy through play behaviour (Fagen 1981 ). Restricting play during hot 

weather, for example, might occur to avoid overheating; play behaviour has also been 

shown to reach its highest peaks during cool weather, which poses the question that 

perhaps there is an added cost of play: thermal stress (Fagen 1981 ); conversely, it 

could be argued that a benefit to play is in preventing hypothermia. 

As temperature affects play, play usually occurs during the cooler parts of the day, 

such as early in the morning, or at sunset (Bernstein 1972; Du gm ore 1986). Seasonal 

temperatures also pose an effect, thus play may be reduced during hot, dry seasons, or 

wet seasons (Richard 1974). Kavanagh (1978) found that adult douc langurs 

(Pygathrix nemaeus) rarely played, yet when play did occur, it was on a sunny day. 
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1.8 Other Forms of Play 

1.8.1 Interspecific play 

lnterspecific social interactions are rare occurrences, but interspecific play behaviour 

is rarer still (e.g. Watson 1998). This is because many interspecific acts are by their 

nature incompatible (Fox 1976), as the play behaviour of different species is often 

motivationally distinct (Rooney et al. 2000). The most common form of interspecific 

play is between humans and other animals, usually in a captive or domestic setting 

(Watson 1998; Rooney et al. 2000). lnterspecific play amongst wild animals is 

known to occur however, and rare occurrences have been reported for example 

between red-necked wallabies (Macropus rufogriseus) and Australian magpies 

( Gymnorhina tibicen) (Watson 1998), although interspecific play typically appears to 

be more common in some primate species (Rose 1977b; Fagen 1981 ). Between black 

and white colobus monkeys (Colobus guereza) and vervet monkeys (Cercopithecus 

aethiops), interspecific play behaviour accounted for 40% of all interspecific 

interactions (Rose 1977b). Baboons (Papio spp.) are known to be especially playful 

with other species, such as jackals (Saayman 1970), but also are also party to 

predatory behaviour with the same species as they both play with, and are hunted by, 

chimpanzees; they also play with, yet hunt, vervet monkeys (van Lawick Goodall 

1968; Altmann & Altmann 1970). Even in situations where play completely 

diminishes, hunting aspects of interactions with these species continues. It is perhaps 

for this reason that much of the interspecific play behaviour observed includes play 

patterns involving no bodily contact between players; if contact is made, it is 

generally fleeting (Rose 1977b). 

Play between different species involves various different behaviour patterns, often 

unseen in other areas of nature. Indeed, the occurrence of interspecific play further 

fuels arguments against play as group socialisation (Poole 1985). In order for play to 

be maintained between two different species, there has to be present some kind of 

interspecific communication (Fagen 1981). Therefore, interspecific play would be 

facilitated where species share common play-specific motor patterns, and similar 

temporal organisation. Even then, interspecific play interactions are usually short in 

duration (Rose 1977b ). If play is to be successfully maintained, the players must be 
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able to judge with increased accuracy the appropriate responses and actions to the 

behaviour of the other species (Fagen 1981). There should be some self-handicapping 

and compromise where species differ in size, and play-bout preferences have to be 

overcome if play is to exist for any reasonable amount of time (Fagen 1981; Pereira & 

Preisser 1998). It is expected therefore, that interspecific play bouts should occur 

only between animals of a similar size and age-range (Rose 1977b). Rose (1977b) 

also states that interspecific play is most likely to occur between species where the 

foraging and resting patterns of sympatric species are similar over time. This would 

obviously allow for the possibility of interactions to occur in the first instance. If the 

patterns are relatively stable then this allows some element of prediction as to the 

appropriate nature of engaging in interspecific play at any given time. 

1.8.2 Play in humans 

Although this thesis does not deal with the play of humans, it is important to mention 

some of the continuities and discontinuities between the play of animals and the play 

of humans. It seems difficult to deny that a behaviour so ubiquitous in human children 

as play has important functions: play must surely help children develop their minds 

and bodies, enhance learning, and be a source of art and creativity (Smith & Simon 

1984). The fact that much play in both people and animals can be dangerous and 

risky, a costly diversion from more "productive" activities, destructive, and even 

cruel, is too often ignored. In humans, most kinds of play involve rough-and-tumble 

behaviour patterns, socio-dramatic, imitation and make-believe, role-playing (Singer 

1995), problem-solving, object-play (with toys) (Goldstein 1995; Kline 1995) and, 

later in life, games and arguably sports (Chick & Barnett 1995). Virtually every kind 

of human play can be seen to have roots in the behaviour of other species, and thus a 

full understanding of human play requires a widespread evolutionary analysis (Byers 

1998a; Burghardt 2001 ). 

Rough-and-tumble play, or chasing and play-fighting, is one form of play that is 

typical of pre-school children, but in many cases endures throughout childhood and 

into early adolescence (Smith & Boulton 1990), as is the case for play-fighting in 

other animals (Aldis 1975). This type of play is relatively universal across human 
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societies (Whiting & Whiting 1975) and seems to be relaxed-aggressive behaviour, as 

is also the case in non-human animals (Fagen 1981 ). Rough-and-tumble play is 

argued to have its roots in a gentler version shared between adults and infants (Aldis 

1975), and as the child progresses in age, noticeable sex-differences emerge with boys 

performing rough-and-tumble play significantly more frequently and more roughly 

than girls (Humphreys & Smith 1984). Arguably, this is due to both hormonal 

influences (e.g. Hines 1982) as well as parental reinforcement of gender roles 

(Thompson 1975). Similar gender patterns in aggressive play can be seen with the use 

of some toys and games (Goldstein 1995). 

Yet, the play of humans forces us to deal with many more psychological, cognitive 

and symbolic issues than the play of non-human animals. Human play, in children and 

adults, may represent an area for the creation and appropriation of culture (Chick & 

Bamett 1995). Knight ( 1999) discusses the possibility of the symbolic culture of 

human ritual being a form of "pretend-play" whereby the "players" agree to suspend 

their usual beliefs. Indeed, symbolic ritual may aid the social cohesion of the group, 

just as play behaviour aids in the social interactions of non-human animals. In animal 

play however, we do not witness the extent of conscious social agreement to suspend 

reality for the projection of imaginary scenarios that we see in the play of humans. 

We can detect imagination in the context of human interactions; we cannot do so 

within the context of non-human animals. This is of course where human play greatly 

differs from that of other animals, even if the basics are present. Freud's ( 197 5) 

suggestion that belief in God [or gods] in human society is no more than a fantastical 

creation of a father-companion gives us pause. Consider the occurrence of imaginary 

playmates in human children. The psychological phenomenon of imaginary friends 

typically occurs in children who have experienced stress, either through negative 

circumstances, or other life-changing occurrences (Partington & Grant 1984; Dawson 

et al. 1999). The characters these children create seem acutely real to them, and the 

children relate to them accordingly. Play in most animals may be severely reduced 

during times of stress (Freeman & Alcock 1973; Wolff 1981; Burghardt 1984; 

Sommer & Mendoza-Granados 1995; Jensen et al. 1998). Indeed, Dawson et al. 

(1999) found that infants of severely depressed mothers were significantly less playful 

and affectionate than the infants of "normal" mothers, and that the depressed mothers 

were less in tune with the developing behavioural requirements of their infants. 
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Dawson and her colleagues (1999) found that this negatively influences the emotional 

well-being of the infant, in turn affecting the "normal" development of brain and of 

behaviour. Similarly, Mol Lous et al. (2000) found in a study of 3-6 year olds, that 

depressed children engage in significantly less play behaviours than non-play 

behaviours in comparison to non-depressed children. Thus for example, if imaginary 

friends are, at least in part, stress-created, this suggests that fantasy "play" at least, 

may have a different function. Perhaps imaginary friends do occur during a child's 

play-time because of the relaxed nature of play behaviour; it does not necessarily 

mean that their creation is actually play per se. Children under stress may indeed 

exhibit more fantastical imagery during play, and in this sense, this type of "play" 

may be similar to that of adult ritualistic symbolism. Therefore, fantasies of this sort 

are not so much play, but suggest something more psychological. It is interesting to 

note, however, that the typical age range of children creating imaginary playmates for 

themselves is between 3 and 6 years old (Partington & Grant 1984), which seems to 

tie in with the age-specific play range and neural development of most mammals, 

including humans (Diamond & Goldman-Rakic 1989; Dawson et al. 2000). Sutton­

Smith (1979) states that play behaviour in children may bridge the gap between 

reality and fantasy in some children. If this is so, then this fantasy play might indeed 

enhance behavioural flexibility as it provides a forum in which the child can exercise 

skills such as language, thoughts, and so on, testing the boundaries of meaning for 

social relationships and inanimate objects, facilitating "divergent thinking abilities" 

(Smith & Simon 1984). Imagination therefore, is not necessarily play, but may occur 

within the context of play in humans. In order to deal fully with human play 

behaviour, it becomes necessary to look at the entire context of human society, 

especially in terms of beliefs, fantasy, and ritual, as well as other psychological issues. 

This is clearly beyond the scope of this PhD, and I do not focus upon human play in 

detail in the context of this thesis. However, given the consensus that great apes 

exhibit socio-cognitive abilities beyond that of other non-hominoid primates (e.g. 

theory of mind, see Byrne & Whiten 1988), it would be interesting if future work 

were to test for differences in those play behaviours that are shared with humans. 
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Two decades ago, Fagen (1981), Burghardt (1984), and others called for more 

comparative studies of play to be undertaken to further our understanding of the 

origins of play. Previous play studies have tended to focus only upon specific 

elements of the behaviour with regard to relatively few species. Whilst these 

elements remain crucial to play research, no major comparative study has been 

conducted into the evolution and function of play. This pursuit requires a 

comprehensive collection of data on the play behaviour of more species, and in more 

diverse orders than is currently in existence. Moreover, in order to conduct 

comparative studies with any degree of confidence, reasonably resolved phylogenies 

are required (e.g. primates: Purvis 1995; rodents: Watts & Baverstock 1995; 

carnivores: Bininda-Emonds et al. 1999). Those few comparative studies of play 

behaviour that do exist include a plea for further data, in increased detail, and on more 

species (e.g. Byers 1999). 

Although this thesis deals only with comparative data on primates and carnivores due 

to the relative lack of data on other orders, it is important to contextualise this with 

reference to other comparative studies, and also with reference to what is known 

about play in other taxa. One of the principal difficulties in comparative analyses is 

that lack of suitable quantitative data (see Chapter 2). 

Robert Fagen's (1981) review of animal play provides an excellent basis by which to 

begin to understand the patterns and distribution of play in birds and mammals, and it 

is this book that collates all the fragmentary evidence for play in a number of species, 

regardless of the quality and usability of the data, the basis of which is included in the 

following sections on play in various orders. 

1.9.1 Monotremata 

Monotremes (the egg-laying mammals) may yield interesting insights into the 

evolution of play, given their phenotypic and phylogenetic divergence from other 

mammalian lineages (Fagen 1981). Very scanty evidence exists for any such play in 

either the duck-billed platypus (Ornithorhynchus anatinus), or the two species of 
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echidna (Tachyglossus aculeatus and Zaglossus bruijni) (Fagen 1981), and that which 

does is concentrated on obsolete observations (e.g. Bennett 1834; Owen 1848) usually 

in captivity, and primarily focused on mother-infant observations (Fagen 1981). With 

increasing evidence as to the behaviour and evolution of these fascinating animals 

(e.g. Pettigrew et al. 1998; Kirsch & Mayer 1998; Hughes & Hall 1998) it should 

soon be possible to proceed with comparative analyses of monotreme play. 

:n..9.2 Mar§upialla 

Marsupials offer a great diversity in many areas of socio-ecology, life-history, and 

behaviour (Watson 1998), and due to their low metabolic rate and variability in brain 

size, are a good place to start when testing for functions of play (Byers 1999). The 

Artiodactyla are the closest living placental equivalent to the Marsupialia in that some 

representatives of the two groups have convergently evolved similar digestive systems 

and behaviours as a result of similar selection pressures for diet and lifestyle, in spite 

being phyletically distinct for 130 million years (Watson 1998). Marsupials have 

been the focus of comparative study (Byers 1999; lwaniuk et al. 2001), and it has 

been shown that some species within the order play, and some do not, or have not 

been observed to, play. Thus again offering a suitable place to commence research 

into the evolution of play behaviour (Watson 1998; Byers 1999). Based on a three­

point scale, demarking play as either absent, rudimentary, or common, Byers' (1999) 

study showed that play exists in the Dasyuridae (e.g. marsupial mice, marsupial cats, 

and Tasmanian devils), Myrmecobiius (numbat), Vombatidae (wombats), and 

Macropodoidea (wallabies, quokka, and kangaroos), but that it is absent in all other 

species (e.g. Petauridae [possums]). Reasons for this patteming are somewhat unclear 

given that social structure, activity timing, habitat, and diet are variable across these 

families. Most (but not all) species in these families are nocturnal and solitary, but 

may come together for feeding and mating, and have overlapping home ranges (Fisher 

& Owens 2000; Long 2001; Oakwood 2002). Play in macropods and potoroids takes 

the form of high speed hopping, and sparring; in larger species of dasyurids as play 

that mimics prey-capture; in vombatids as energetic and frequent bouts of social and 

locomotor play; and as running and chasing in numbats (Byers 1999); play is virtually 

absent from the behavioural repertoires of marsupial adults (Watson 1998). 

Interesting to note is the difference between the rudimentary play of koalas 
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(Phascolarctos cinereus) and the common play of wombats (Vombatus ursinus), as 

the two species are considered to be closely related (Kirsch 1977); however, koalas 

have small smooth brains, whereas wombats exhibit large and well-folded brains 

(Haight & Nelson 1987). This further fuels Byers' hypothesis that marsupial play 

functions to modify postnatal brain development, as play is correlated with relative 

brain mass and not with relative body mass or metabolic rate in marsupials (Byers 

1999). 

1.9.3 Insectivora 

Few reports exist concerning insectivore play patterns other than a handful of 

information regarding hedgehogs (Erinaceus europaeus) and some species of shrew 

(Fagen 1981). It appears that juvenile hedgehogs may engage in play-fighting and 

other forms of locomotor play (Dimelow 1963), similar to that of elephant shrews 

(Fagen 1981). Fagen (1981) reports that in a study by Mohr (1936 a, b) specifically 

seeking play in solenodons (Solenodon paradoxus), no play was observed, although 

some affiliative social interactions occurred. Similarly, no play behaviour has been 

reported in tenrecs (Eisenberg & Gould 1970). 

1.9.4 Chiroptera 

Extremely little is known about the play of bats, due in part to the difficulty in 

observing wild populations. Some good data exist for play in the megachiropterans 

(social and diurnal Old World fruit bats), and typically describe chasing and wrestling 

forms of play (Pteropus rodricensis, Carroll 1979; McCammond & Chock 1998). 

Fagen (1981) reports that the social play of bats can be highly complex. Vampire bats 

(Desmodus rotundus) engage in play not dissimilar from that of the flying foxes 

(Schmidt & Manske 1973) and an early report by Dubkin (1952) details episodes of 

play-biting by brown bats (Myotis lucifugus). Bats offer an interesting focus for 

comparative studies given the diversity in socio-ecology, sociality life-history, and 

phylogeny; they would make an excellent taxonomic group for the study of play with 

an increase in ethological studies. 
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:n..9.5 Pll"ima1tes 

This chapter, and subsequent chapters in this thesis, deal with primate play in 

considerable detail, and thus I will not repeat those facts here. Primates are an 

interesting taxonomic group for comparative study as there is such a diversity of 

species with differing socio-ecological and life-historical patterns. Studies on play in 

captive and wild primates discuss patterns that describe social, locomotor, and object 

play (see Table 1.1. for more details), including kicking, pulling (Voland 1977), 

biting, rolling (Owens 1975a), grappling, tugging (Baldwin & Baldwin 1978), 

grasping, and tickling (Enomoto 1990), and come under various "sub-headings" 

which might include: chasing, wrestling (Chalmers 1980; Hayaki 1983), and 

furthermore, play-fighting, rough-and-tumble play (Smith 1995; Welker et al. 1990), 

sexual play (Latta et al. 1967), play-mothering (Lancaster 1971 ), and interspecific 

play (Rose 1977b). Interestingly, with the exception of chimpanzees, there are few or 

no wild studies that report object play (Fagen 1981). Unsurprisingly, primates have 

formed the basis of some of the few comparative studies of play behaviour currently 

in existence. In defining the character states of adult-adult play-fighting, a behaviour 

associated with courtship in some species of primate, Pellis & Iwaniuk (1999a) 

incorporated a four-point scale of intensity (0 = play rare, 1 = play occurs but without 

wrestling elements, 2 = play as courtship reported, 3 = play as courtship common). 

Using independent contrasts analyses (Felsenstein 1985; Purvis & Rambaut 1995), 

they show that play-fighting as courtship correlates with a lower incidence of male­

female association, and mating system (Pellis & Iwaniuk 1999a). They speculate that 

the primitive condition of adult play-fighting is a scenario in which bouts of play­

fighting punctuate sessions of male-female alia-grooming and that this eventually 

leads to copulation, thus play-fighting in this case functions as an optional strategy in 

counteracting unfamiliarity between potential pair mates, and presumably as a means 

of assessing mate-quality. Pellis & Iwaniuk (1999a) thus argue that with the evolution 

of increased male-female sociality, play-fighting as a courtship strategy decreased in 

value; or that with the reduction in male-female association, the value of this 

behaviour increases. Thus the prevalence of adult play-fighting is likely to be 

strongly associated with socio-ecology. Pellis & Iwaniuk (1999a) further 

corroborated these results in a further comparative study (Pellis & Iwaniuk 2000b) in 

which they state that adult-adult play is a "byproduct of the occurrence of play in 

sexual contexts", and that the function of adult play-fighting is for social assessment, 
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with an added courtship mechanism in some species. They further suggest that adult 

play-fighting may have evolved in a social context in species that typically have 

minimal social contacts between males and females. 

1.9.6 Edentata 

Evidence for play behaviour in armadillos, sloths and anteaters derives primarily from 

old captive literature reports but include anecdotal suggestions for rudimentary social, 

locomotor, and object play in two-toed sloths (Chloeopus didactylus) and giant 

anteaters (Myrmecophaga tridactyla) (Crane 1966 and Honigmann 1935, 

respectively). Further empirical and phylogenetic study is required to differentiate the 

distribution of play in the Edentata given their low metabolic rates (Burghardt 1984) 

coupled with traits typical of playful species such as longevity and parental care 

(Fagen 1981). 

1·9·'7 Philodota 

That play might be the last behaviour in a species' repertoire to be studied with any 

intensity is illustrated by the paucity of any ethological data for pangolins. However, 

social play is reported in the usually solitary African pangolin (Manis tricuspis) in the 

form of juvenile play-fighting between litter-mates (Pages 197 5). 

1.9.8 Lagomorpha 

Rabbits are not the subjects of a great many studies that incorporate play behaviour, 

however locomotor play has been recorded in the literature on European rabbits 

(Oryctolagus cuniculus), and playful behaviour patterns appear to persist well into 

adulthood in this species (Lockley 1974). Mountain hares (Lepus timidus) also 

engage in locomotor-rotational play in this way (Flux 1970). 

1.9.9 Rodentia 

Rodentia is an order comprising squirrels, beavers, the cricetids (hamsters, gerbils, 

voles and lemmings), rats, mice, dormice, porcupines, and caviomorphs (guinea pigs, 
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acouchis, pacas, and other South American rats and mice), and play has been 

described in most of these at the family level at least, although the patterns of these 

behaviours differ markedly between taxonomic families (Fagen 1981). Rodents 

appear to perform as many of the categories of play as are seen in other mammals, 

and as a diverse taxonomic group they therefore represent a good point of reference 

for comparative studies of behaviour (Fagen 1981 ). Indeed, an evolutionary 

comparative study of play-fighting in muroid rodents demonstrates that the 

complexity of social play in rodents is not necessarily correlated with phylogenetic 

relationships, or even patterns of sociality (Pellis & Iwaniuk 1999b ). Pellis & 

Iwaniuk (1999b) claim that changes in the complexity of social play evolved 

independently from the assumed ancestral form, which is arguably likely to have been 

that of a modest level of complexity in play-fighting. They conclude that this pattern 

may demonstrate adaptive radiation. 

1.9.10 Cetacea 

Cetaceans, with their complete independence from land, are the mammals to have 

lived longest in marine environments, believed to have diverged from primitive 

artiodactyls approximately 60 million years ago during the Paleocene epoch; other 

theories suggest a more recent evolutionary history, placing the divergence at 27-30 

million years ago during the Oligocene (Lowenstein 1985). For an order that 

comprise highly social species and those that are commonly considered as playful as 

are the cetaceans, surprisingly little quantitative play data exists, which is due not 

least to the problems in attempting to observe these animals (Fagen 1981) due to 

weather conditions and water visibility (DeLong 1999). Reports of play by bottle­

nosed dolphins (Tursiops truncatus), both at sea, and in captivity are relatively more 

common than reports of play in other cetaceans (Fagen 1981; Galhardo et al. 1996), 

and generally comprise the key categories of play observed in other playful 

mammalian groups (DeLong 1999): social (e.g. chasing), locomotor (e.g. spinning, 

surf-riding, lob-tailing), and object play (e.g. nosing, drop-catch, balancing) (Fagen 

1981; Galhardo et al. 1996); captive bottle-nosed dolphins have even been observed 

playing distinct games ("King of the Mountain", Theia DeLong, pers. comm.). In 

killer whales (Orcinus orca), social play appears to take the form of intentional 

stranding, or beaching, which is a behaviour commonly seen in hunting (Guinet 
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1991 ). No play has been recorded in baleen whales (Fagen 1981 ), although our 

knowledge of play behaviour in the majority of cetaceans is limited by the problems 

encountered in observing them in the wild. In spite of this however, it casually 

appears to be the propensity for play that makes cetaceans popular in aquaria and 

other captive environments. 

n..9.u Calrllllivora 

Carnivores offer a good basis for comparative study as the order offers much in terms 

of diversity of behaviour, life-histories, diet, distribution, and species richness. The 

order is currently believed to be monophyletic (Bininda-Emonds et al. 1999; Purvis et 

al. 2001), and there are 129 genera comprising 271 extant species of carnivores over 

two major clades: the Feliformia (cats, hyaenas, civets and mongooses), and the 

Caniformia (dogs, bears, weasels, skunks, and racoons) (Purvis et al. 2001). 

Additionally, extinction rates among carnivores have been far higher than that of any 

other order, with approximately 352 genera having gone extinct (McKenna & Bell 

1997). Carnivores are species that subsist principally on a meat-based diet, although 

most species supplement their diet with other foods (Bekoff et al. 1984). Some 

carnivores however, are not meat eaters but subsist as insectivores (e.g. white-tailed 

mongoose, Ichneumia albicauda; bat-eared fox, Otocyon megalotis), or folivores and 

frugivores (e.g. black bear, Ursus americanus; red panda, Ailurus fulgens; giant 

panda, Ailuropoda melanoleuca) (Bekoff et al. 1984). This order is classified on the 

basis of "les trets carnassiers ": sectorial dentition adapted for tearing flesh (as 

opposed to grinding); a flexible vertebral column; a long tail; a large relative brain 

size; anal and forehead scent glands; quadrupedal locomotion ranging from 

plantigrade (soles of feet) to digitigrade (on toes), and fur-covered bodies (Bekoff et 

al. 1984). Studies examining the taxonomic distribution of carnivore play are rare 

(Bekoff 1989b ), however play behaviour within the order Carnivora shows some 

parallels with the play of primates in that differences in physiology are less marked 

than in other orders of mammal, allowing some level of "interspecific similarity" 

(Fagen 1981). However, there are differences in social structure between families of 

carnivore species, such as pack-living wolves (Canis lupus), and habitually solitary 

bears (Ursidae) (Fagen 1981; Bekoff et al. 1984). Play begins early postnatally in 

carnivores, and can continue through to adult stages in many species. Social bonds 
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within and between young and adult group members, and group social organisation, 

may be affected by variation in social play experience during the juvenile period 

(Canis latrans, Ortega 1988), especially in terms of eventual dispersal (Bekoff 

1989b ). Highly social canids exhibit much chasing, predatory play, muzzle-wrestling, 

and biting, and incorporates use of the open-mouthed play-face, usually associated 

with primates, and these patterns are seen also in bears, canids, procyonids (e.g. 

racoons, coatis), mustelids (e.g. weasels, ferrets, polecats, otters), hyaenas. Bears 

engage in mother-infant play as their prominent play category, but have also been 

seen to play with objects, both in the wild, and in captivity (Ailuropoda melanoleuca, 

Wilson & Kleiman 1974; Thalarctos maritimus, San Diego Zoo, pers. obs.). Play­

fighting is observed in most bear species, and in polar bears has even been witnessed 

in adult males (La tour 1981 ). Play that involves pouncing, batting, and other forms of 

play, sometimes with objects, are typical of felids and viverrids (e.g. mongooses, 

civets). 

1.9.12 Pinnipedia 

Limited quantitative analyses of pinniped play data are analysed alongside carnivore 

play data in this thesis, although I differentiate them from carnivores in this section 

for clarity. Pinnipeds are believed to have diverged from terrestrial carnivores 

approximately 30 million years ago during the late Oligocene and early Miocene 

epochs. There has been much debate as to whether modem pinnipeds are biphyletic 

in origin, having evolved two superfamilies independently (Repenning 1976), or 

monophyletic, having evolved through common descent (Demere & Berta 2001). The 

biphyletic hypothesis states that phocid (true) seals descended from otter-like 

carnivores during the Miocene, and that walruses and eared seals descended from 

bear- or dog-like carnivores during the Oligocene (Repenning 1976). Recent 

molecular evidence, however, suggests that a monophyletic descent is most likely 

(Wyss 1988). 

Pinnipeds (sea-lions, seals, and walruses) differ markedly between species and 

families in terms of social organisation, breeding, and dietary behaviours (Fagen 

1981 ). This order is certainly generally considered to be playful, but like sea otters 

(Enhydra lutris) and cetaceans, for example, are often difficult to observe. Walruses 
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(Odobenidae) are typically believed to be less playful than seals or sea-lions, but it is 

suspected that their play is virtually all sub-aquatic and only a few episodes of play­

fighting have been recorded (Miller 1975). The play of sea-lions and fur seals 

(Otariidae) and true seals (Phocidae) appears more common, and comprise play­

fights, lunging, shaking, torpedoing, object play with kelp, spinning, porpoising, 

chasing, bouncing, and mother-infant patterns, either in dyads or m peer groups 

(Farentinos 1971; Gentry 1974; Wilson 1974; Harcourt 1991). 

1.9.13 Proboscidea 

Elephants are highly social and long-lived mammals with a large relative brain size, 

and play in African elephants (Loxodonta africana) is relatively well documented 

(e.g. Sikes 1971; Laws et al. 1975) and these elephants exhibit the social, locomotor, 

and object play patterns seen in other taxonomic groups that show similar life-history 

traits, such as primates and cetaceans (Fagen 1981 ). The onset of play occurs early 

and may persist into adulthood, exhibiting self-handicapping between mismatched 

players (Douglas-Hamilton & Douglas Hamilton 1975). Play in Asian elephants 

(Elephas maximus) appears to show similar patterns, but fewer reports exist in the 

literature (McKay 1973; Fagen 1981 ). 

1.9.14 Sirenia 

Almost nothing is known of play in manatees (Trichechus manatus) and dugongs 

(Dugong dugon ), and few behavioural studies appear to exist on these enigmatic 

aquatic creatures, especially in the wild (e.g. Fagen 1981). Hartman (1979) reports 

twisting, rolling, social nibbling and nuzzling, categories he assigns to play behaviour. 

1.9.15 Perissodactyla 

The odd-toed ungulates (horses, asses, zebras, rhinoceroses, and tapirs) are a 

taxonomic group that appear to play quite keenly (Fagen 1981). Play is almost 

always in the form of solitary locomotor play in young foals and calves, and develops 

slowly into social play episodes, usually in the form of play-fighting (Equus cabal/us, 
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Fagen & George 1977; Crowell-Davis et al. 1987; Diceros bicornis, Dittrich 1967; 

Ceratotherium simum, Owen-Smith 1975; Fagen 1981; Byers 1984). 

1.9.16 Artiodactyla 

The play of the even-toed ungulates (pigs, hippopotamuses, giraffes, deer, antelope, 

sheep, and goats) is typically characterised by leaping, kicking, running, and twisting: 

solitary locomotor movements; however, social play patterns such as butting and 

wrestling are also common to their repertoires, and pigs and hippopotamuses engage 

in much mother-infant play (Wilson & Kleiman 1974; Fagen 1981; Byers 1984). The 

amount of time devoted to play in this taxonomic group appears to differ markedly; 

for example, cervids (e.g. deer) and bovids (e.g. sheep) are relatively playful, whereas 

giraffes (Giraffa camelopardalis) are consistently reported as unplayful in contrast 

(Langman 1977), but do exhibit solitary locomotor play and play-fighting both in the 

wild (Pratt & Anderson 1979) and in captivity (Fagen 1981 ). 

1.9.17 Aves 

It should also be noted that play behaviour is present in some species of birds, 

although accounts of this are often rather scarce. Studies of play in birds however, 

should be of great behavioural and evolutionary interest given that birds are not 

ancestral to mammals, thus it can be asserted that aside from play in common reptilian 

ancestors (Burghardt 1988, 1998, 2001), play arose independently in both birds and 

mammals (Fagen 1981). Avian play behaviour often takes the form of object play in 

drop-catch games in gulls (e.g. herring gulls, Larus argentatus, Gamble & Cristol 

2002), object manipulation in parrots and parakeets, and playing with dead prey and 

inedible objects in birds of prey (Fagen 1981 ). Corvids and larger species of parrot 

have a large relative brain size (Ortega & Bekoff 1977), and are renowned for their 

especially playful behaviour both with objects and in social play behaviors (Heinrich 

& Smolker 1998). Other forms of avian play include "playful" swooping, jumping, 

"hustling", and "play-bathing" (see Fagen 1981; Heinrich & Smolker 1998). This 

thesis will not deal with the play of birds directly, but birds may indeed offer an 

excellent outgroup comparison for mammalian play behaviour in future studies. 
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1.9.18 Overview of general phylogenetic patterns 

Generally, play appears to be present in some form, however simplistic or disputed, in 

all extant mammalian orders. One of the difficulties in making generalisations 

however, especially with regard to play behaviour, is that many species have not been 

observed to play. This may be due to several reasons: 

1. The species does not play. 

2. The species plays very rarely, at low frequencies, or at specific developmental 

periods only. 

3. The species is difficult to observe, (due to dense habitat, nocturnal activity 

timing, threatened conservation status, etc.), and thus 

4. Little is known about their behaviour, and/or 

5. Few reports exist as to their behaviour, life-history, socio-ecology, etc., and 

thus 

6. Observing play ts not deemed to be the most important ethological 

consideration. 

Play is often the last behaviour to be observed or recorded in a spectes due to 

historical and continuing debate as to its appearance and function (e.g. Bekoff & 

Byers 1985, 1998). Thus all play is not equal to all mammalian orders, and patterns 

can be observed in the phylogeny of play. Figure 1.1 details a phylogenetic 

reconstruction of play distribution across mammalian orders. The reconstruction is 

based upon what is known from existing reports of play in mammalian orders; thus 

orders containing species about which much is known, may be better represented by 

stronger evidence for play, or higher play frequencies (e.g. primates) than relatively 

less well known orders (e.g. sirenians). The reconstruction indicates that play is 

present, or deemed likely to be present, in all extant orders; those orders that are more 

disputed are the Macroscelidea (elephant shrews), Dermoptera (flying lemurs), 

Sirenia (dugongs and manatees), Hydracoidea (hyraxes and dassies), and 

Monotremata (platypuses and echidnas). These orders represent those species about 

which our knowledge is scantier, due to the species' distribution or life-style. It is 

possible that these species do not play, but it is equally likely that play is not reported, 
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especially given that in most cases, the most recent common ancestor to that order is 

likely to have engaged in play, even at low levels . 
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Play is well-known in Rodentia, Primates, Carnivora, Artiodactyla, and Cetacea; it is 

unlikely to be a coincidence that these orders also comprise many species that are 

large-bodied or highly social, thus rendering them ideal subjects of extensive 

behavioural observations. Chapter 3 will deal with the phylogenetic patterning of 

play across the orders Primates and Carnivora, in more detail. 
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1o10 Summary 

This thesis focuses upon evolutionary patterns in primate and carnivore play 

behaviour, paying particular attention to the development and function of the brain 

and its components, aspects of socio-ecology and life-history, and inter-specific and 

intra- specific play behaviour. Chapter 2 will describe the general methodology of the 

study, and discusses how the comparative method can be used to elucidate the 

phylogenetic relationships between play behaviour and other variables. Chapter 3 will 

look in more detail at the phylogenetic patterns of play behaviour in primates and 

carnivores using data from the literature. Chapter 4 looks more closely at intra­

specific play, or how members of different groups of the same species in different 

regions or habitats engage in play behaviour. Chapter 5 deals with the life-historical 

variables of play behaviour, such as gestation period and lifespan. Chapter 6 focuses 

upon the socio-ecological variables of play behaviour, such as group size and diet. 

Chapter 7 will specifically analyse and discuss evolutionary relationships between 

play behaviour and the brain. Finally, Chapter 8 offers some conclusions to the 

questions arising from chapters 3-7, and speculates on possible applications for future 

research. 

By analysing how different variables contribute to and affect the play behaviour of 

primates and carnivores, it is possible to assess and further speculate upon the 

phylogenetic relationships at work within play behaviour, and the place of play in 

evolution. 
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This thesis has been designed to investigate the evolutionary correlates of play 

behaviour in primates and carnivores using a phylogenetic comparative approach. 

Thus, the data incorporated here come not from observational or experimental work 

carried out specifically for the purposes of this thesis, but have been collated from the 

existing primate and carnivore behavioural literature. Surveying the literature on 

animal behaviour can prove useful to comparative studies, but it is also fraught with 

difficulties. Accounts may pertain to hundreds of species across several orders, but the 

detail of such reports may differ markedly. This is a problem noted by other 

researchers of comparative behaviour (e.g. Fagen 1981). In this thesis, I use only data 

that detail specific quantitative measures, primarily time-budgets, and that are 

available through local academic libraries. Thus, the scale of this comparative study 

whilst not all-inclusive, is certainly representative of the existing literature and 

available quantitative data. 

In essence, there are two principal methodologies incorporated in this thesis, that of a) 

comparative analyses, which focus upon relationships across taxa, and b) intra­

specific analyses (Chapter 4), which focus upon relationships within species. The 

methodological feature that binds the various areas of this thesis is the incorporation 

of the comparative method. 
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2.2.1 What is it? 

Current research evaluating evolutionary patterns increasingly incorporates use of the 

comparative method; this is basically a statistical methodology used in addressing 

questions about adaptation and evolution (Harvey & Page! 1991; Martins 2000). The 

comparative method differs from the experimental method in that it is not possible to 

conduct experiments addressing cause and effect in variation over evolutionary time 

(MacLarnon 1999); but the comparative method provides a model that allows the use 

of data concerning extant species, to hypothesise their most likely evolutionary 

relationships (Harvey & Page! 1991; Purvis & Webster 1999). The comparative 

method is therefore the comparison of trait variation within and between different taxa 

(Ridley 1996; Nunn & Barton 2001). It usually involves correlating two phenotypic 

variables across taxa (e.g. body size and brain size), or comparing one phenotype with 

an environmental variable (e.g. body size and habitat range) (Felsenstein 1985). The 

use of a phylogeny (hypothesised tree of evolutionary relatedness) bases the output of 

comparative analyses within an evolutionary framework, and theoretically ensures the 

statistical independence of data (Martins & Hansen 1996). 

2.2.2 Why use it? 

Although in theory, the comparative method can be used as a statistical means for 

studying anything from noodle quality (Nemeth et al. 1994) to language variation 

(Holden 2002), in practice, it is most usually employed in analysis of trait variation 

and evolution in species of plants or animals (e.g. Martins 1996). The use of 

phylogenetic information has become increasingly important in comparative studies, 

and the techniques for reconstructing evolution can be very powerful in this pursuit. It 

is important to use phylogenetic information for comparative studies to control for 

statistical dependence (Martins & Hansen 1996), that is, to remove the effect of 

relatedness between species descended from a common ancestor. Closely related 

species are likely to be similar, as they share a recent evolutionary history (Purvis & 
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Webster 1999; Nunn & Barton 2001); this is referred to as "phylogenetic inertia" 

(Harvey & Pagel 1991). The comparative method allows us to analyse the variation 

between species independently of their phylogenetic relatedness, offering an effective 

method by which to investigate evolutionary events (Nunn & Barton 2001 ). It is vital 

to any study that independent data are used: this means using data that are not 

"tainted" by other confounding variables, and that are free from phylogenetic inertia 

(Nunn & Barton 2001 ). In order to evaluate the evolution of any given trait, it is 

necessary to elucidate the independent differences between taxa, rather than claiming 

similarities exist purely through recent common ancestry. The use of phylogeny 

within analyses allows us to identify independent data points more clearly (Harvey & 

Pagel 1991 ). 

Comparative methods are used when the hypothesis predicts that some species should 

have a different form of an adaptation from those observed in another species (Ridley 

1996). There are different reasons for carrying out analyses using comparative data, 

for example: in order to assess whether two traits have evolved through correlated 

evolution; to estimate the degree of phylogenetic inertia; the ancestral states of a 

character; or to estimate the rate of phenotypic evolution (Martins & Hansen 1997). 

Comparative methods offer statistical techniques by which to carry out these kinds of 

analyses. 

Phylogenetic information is extremely powerful in the reconstruction of correlated 

evolution (Nunn & Barton 2001 ), that is, the adaptive eo-evolution of two traits 

(Harvey & Pagel 1991 ). Incorporation of phylogeny also reduces the effects of 

unmeasured confounding variables (Nunn & Barton 2001 ), which can occur through 

traits shared purely by common descent. Similarly for example, it is possible to 

compare related groups of species living in different circumstances. However, as 

evolution is modification through descent, the ways in which related species are 

similar might have as much to do with the ways in which their environments are alike 

as well as any other common cause of modification (Bell 1989). A classic example of 

this might be that of brain size in primates. Relatively large brain size across primate 

taxa may be due to a shared recent common ancestry, because these taxa have 

independently evolved large brains due to another variable, such as body size (Bell 

1989). To overcome this problem ofphylogenetic inertia, evolutionary scientists have 
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developed statistical techniques that enable us to use the data measured in extant 

species to infer aspects of character evolution (Martins & Hansen 1996). These 

comparative methods allow examination of the adaptive significance of a trait that is 

subject to natural selection (see Harvey & Pagel1991). 

2.2.3 Phylogenies 

A phylogeny is required in order to reconstruct evolutionary change (Ryan 1996); but 

what is a phylogeny, and why is using one so important in comparative studies? A 

phylogeny is akin to a family tree, showing paths of evolutionary relatedness between 

taxa. The branches leading from one taxon to another represent evolutionary time, 

with longer branch lengths typically indicating longer periods of evolutionary change. 

Thus a phylogenetic tree features a common ancestor and all of its descendents. 

Usually, the common ancestor is unknown and thus hypothetically derived. 

Phylogenies can be based on several traits, and new ones are published frequently. 

They are typically derived from morphological characteristics or molecular data to 

reconstruct relatedness between taxa (Martins & Hansen 1996), and the characteristics 

on which phylogenies are based tend to be discrete (Robson-Brown 1999). By 

conducting statistical analyses on data that control for phylogeny, results are more 

likely to be representative of independent evolutionary change (Harvey & Pagel 

1991). 

2.2.4 Independent contrasts 

Although there are many types of comparative method, the technique used most 

commonly in the analyses of multi-species data (especially if the variables are 

continuous), and throughout this thesis, is that of independent contrasts (Nunn & 

Barton 2001 ). Independent contrasts is a model based on a Brownian motion (or 

random walk) evolutionary paradigm, which assumes that each evolutionary change 

on a given branch is independent of any change that may have gone before 

(Felsenstein 1985; but see also Harvey & Rambaut 2000 and section 2.2.7). Thus, a 

contrast details the difference in traits between species (or at higher levels), indicating 

instances of independent evolutionary change that has arisen since those species last 

shared a common ancestor (Purvis & Webster 1999). If differences in the dependent 
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variable (Y) are correlated with differences in the independent variable (X), it 

suggests that those traits have eo-evolved; thus one of the key uses in the method of 

independent contrasts is to test hypotheses concerning correlated evolutionary change 

(Harvey & Page! 1991; Purvis & Webster 1999; Nunn & Barton 2001). This is the 

primary use of the comparative method throughout the following chapters in this 

thesis. The key word is "independent"; as a species is part of a phylogeny, it renders 

the results statistically weak if species are used as data points (Felsenstein 1985). 

Instead, the contrasts, or differences, between species act in this way within normal 

statistical analyses, whilst taking account of phylogeny. Incorporating phylogenetic 

information in this way ensures the independence and statistical validity of the results. 

Figure 2.1 depicts a simple clade; the arrows indicate the contrasts between two 

species (at the end of the branches), and between sister clades. Notice that in spite of 

four extant species (A-D), there are only three data points that will be used in the 

statistical analysis (i.e. three independent contrasts). 

A B C D 

Fig. 2.1 Illustration of independent contrasts 

2.2.5 Continuous and discrete data 

Within this thesis, most variables are continuous. That is, the traits have a 

measurement such as time (e.g. gestation period), space (e.g. home range size), mass 

(e.g. body size), or number (e.g. group size). Some variables however, are discrete, or 

categorical. These traits typically describe a dichotomous character state as, for 

example, present or absent. Independent contrasts typically take continuous traits as 

their variables, as the focus is on the relative differences between character states, 

rather than whether they are present or absent; and this is the general focus of the 

method of independent contrasts. Discussion in this chapter, unless stated otherwise, 

typically refers to the analysis of continuous variables. It is important to note 
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however, that categorical data can also be analysed by the independent contrasts 

approach. 

Ostensibly within comparative methods, we use discrete data to count instances of 

evolutionary change from one character state to another along the branches of a 

phylogeny. We might correlate, for example, species colouration as either aposematic 

or cryptic (dichotomous variable), with group size (continuous variable). An 

evolutionary transition is deemed as having occurred when there is a change in state 

in either or both of these characters along a branch (Harvey & Pagel 1991 ). In this 

thesis, discrete variables are only measured against continuous ones; comparisons of 

categorical variables however, can be made (Read & Nee 1995) using different 

statistical methodologies, such as the concentrated changes test (Maddison & 

Maddison 1992). This test assumes that the ancestral character states are 

reconstructed; one variable is taken as independent, and the other as dependent, 

assuming no correlation between the two traits. The test shows which character states 

are gained and lost throughout the tree; thus whether changes in the dependent 

character are concentrated in parts of the tree that have a particular character state for 

the independent variable (Maddison & Maddison 1992). One failing of this method is 

that it assumes all branch lengths are equal; modifications to this method attempt to 

rectify this (Pagel 1994). The development of computer packages has made the 

analyses of comparative data far quicker. 

2.2.6 Computer packages 

Associated with the comparative method are the tools designed to implement it. As 

the comparative method relies on statistical modelling and algorithms, application of 

the techniques are best achieved through the use of various computer software 

designed to ensure the analyses are user-friendly. The output files from these 

programmes can usually be transferred for use in familiar statistical packages. One of 

the most popular programmes for independent contrasts, and the main programme 

used in the analyses throughout this thesis, is that of CAIC (Comparative Analysis of 

Independent Contrasts) (Purvis & Rambaut 1995). CAIC is designed for use on 

Apple Macintosh computers and enables the analysis of multi-species data that 

includes at least one continuous variable (Purvis & Rambaut 1995). Testing for 
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correlated evolution between discrete variables however, is better employed through 

the use ofpackages such as MacClade (Maddison & Maddison 1992, and see below). 

CAIC reads the data inputted by the user from a text file; when inputting the data, it is 

important to bear in mind some evolutionary and statistical assumptions. Firstly, 

CAIC is based on Felsenstein's (1985) method of phylogenetically independent 

contrasts, which makes the assumption that evolutionary change follows a Brownian 

model of random change. For this reason, data should be log-transformed, as 

regardless of species, change should be proportional (Felsenstein 1985; Purvis & 

Rambaut 1995; Freckleton 2000). An example commonly used to explain the reasons 

for this, is that an increase of a kilogram is likelier to occur in a large-bodied species, 

such as a whale, than it is in a small-bodied species, such as a mouse (Purvis & 

Rambaut 1995). Log-transformation standardises the data, which makes them more 

suitable for regression analyses (Freckleton 2000). Similarly, to meet the assumptions 

of conventional linear statistics the contrasts are standardised relative to the time of 

evolutionary divergence (branch lengths). Regression models assume that residuals 

have the same mean and variation at all points along the regression line. Use of 

branch lengths (estimates of evolutionary time between clades) and standardised 

contrasts ensures this assumption is met (Purvis & Rambaut 1995; Purvis & Webster 

1999). In conducting statistical analyses of independent contrasts, it has been 

demonstrated that a constraint needs to be placed on the fit by forcing the regression 

through the origin; that is, the regression line has no intercept (Garland et al. 1992). 

More recently, this practice has been advised with caution, given that regression 

through the origin does not always offer the line of best fit (Neter et al. 1996). Others 

suggest further permutation tests to reduce asymmetric statistical error (e.g. see 

Legendre & Desdevises, in press). For the purposes of this thesis, and to conform to 

the standard practice in carrying out independent contrasts, all regressions are set 

through the origin. 

CAIC offers two statistical algorithms for measuring evolutionary change: CRUNCH 

and BRUNCH (Purvis & Rambaut 1995). Both methods are based on Felsenstein's 

(1985) original model of independent contrasts using a Brownian model of evolution 

(although BRUNCH does not require change to be a random walk model), but can be 

used without the phylogeny being completely resolved. CRUNCH is used for 
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calculating contrasts between taxa when the variables are continuous; BRUNCH is 

usually used for comparing an independent discrete variable (X) and a dependent 

continuous variable (Y) (Purvis & Rambaut 1995), as is the case in this thesis. 

Additionally, BRUNCH can be selected to measure continuous variables if they 

cannot be measured under a Brownian motion assumption (Purvis & Webster 1999). 

The other computer package used within this thesis is MacClade (Maddison & 

Maddison 1992), which also runs on Apple Macintosh computers. MacClade does not 

rely on an already-present phylogeny and branch length file in the way that CAIC 

does. Data are inputted into a data file, which produces a default phylogeny; the user 

can then manipulate the branches of this clade. I follow the same phylogenies that I 

used in CAIC (i.e. Purvis 1995 and Bininda-Emonds et al. 1999) in reconstructing the 

clade. MacClade is especially powerful in tracking and displaying evolutionary 

change over a phylogenetic tree. We would expect any taxa to share and exhibit some 

similarities with related taxa that have existed previously. Phenotypes of more 

recently-diverged taxa will be more similar to one another than older ancestral 

relatives. We can use the level of phylogenetic correlation to infer evolutionary 

change (Martins & Hansen 1996) and to track likely behavioural changes over time 

by "projecting back" onto a phylogeny (Ryan 1996). 

With the increasing development of molecular tools for drawing accurate phylogenies 

of living organisms (e.g. Baum 1992; Bininda-Emonds et al. 1999), the evolutionary 

relationships between groups of mammals have become much clearer. We are able to 

use this information to look at evolutionary patterns of adaptation (Harvey & Pagel 

1991). Characters may have evolved over long periods of time, so it may be necessary 

to look at the origins of a trait in an evolutionary context to evaluate this adaptation 

(Bell 1989). Some workers however, have questioned the extent to which an 

adaptation can actually be inferred through analysis of comparative data (Frumhoff & 

Reeve 1994; Leroi et al. 1994; Martins 2000). 

2.2.7 Criticisms ofthe comparative method 

One of the criticisms levelled against use of the comparative method is that errors in 

the dataset lead to invalid evolutionary conclusions (see e.g. Benton 1999). It is true 
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that care must be taken to reduce sampling error, particularly with independent 

contrasts given that the model assumes that any differences between species will be 

due to evolutionary change, and not data error (Purvis & Webster 1999). However, 

regardless of whether a study is phylogenetic or non-phylogenetic, data error is a 

factor that affects any statistical research (Martins & Hansen 1997). Similarly, some 

authors claim that we cannot draw useful conclusions from using phylogenetic 

comparative methods due to the errors in reconstructing ancestral character states 

(Schluter et al. 1997, and see Martins 2000). However, such errors seldom 

significantly affect the conclusions drawn from comparative analysis (Benton 1999). 

Indeed, not using phylogenetic information is far more likely than sampling error, or 

unresolved phylogenies, to increase the probability of Type I errors (likelihood of 

rejecting a null hypothesis) (Nunn & Barton 2001). Failure to incorporate 

phylogenetic analysis is problematic, as one must assume that all relationships 

between species are equal; in that case the study may incorrectly assume that all 

species are descended from a single common ancestor (termed a "star phylogeny ", 

e.g. Nunn & Barton 200 I; see Figure 2.2). Thus, for the purposes of accuracy, it is 

better to use some phylogenetic information, in order to focus upon independent 

differences between species, than to use none at all (Felsenstein 1985; Nunn & Barton 

2001). 

T 

m 
e 

Fig. 2.2 Illustration of a "star" -phylogeny where all taxa radiate from a single point 

Although having become decidedly popular in recent years, independent contrasts has 

again become the topic of some debate (e.g. Harvey & Rambaut 2000). The argument 

stems from discussion over whether independent contrasts truly offer anything over 

and above the results of cross-species (i.e. non-phylogenetic) analyses and the 

hypotheses they generate. One of the major perceived problems of phylogenetic 

comparative methods is their reliance on phylogeny. If a phylogeny has not been fully 

resolved, what can the results using such a phylogeny really impart? This is a 

62 



problem that affects any scientific pursuit: data can always be bettered. A common 

cry from researchers suggests "You can only work with what you've got!"; this does 

not mean the results are of no use. Garland et al. (1992) demonstrate that independent 

contrasts is a robust method for analysing multi-species data, even if the branch 

lengths are inaccurate. Indeed, a study by Lewis (2000) on social play frequency and 

neocortex ratio in captive primates, which incorporated independent contrasts, but 

which did not use branch length information, shows the same pattern of variation 

across taxa as when branch lengths are used (this will be demonstrated in Chapter 7). 

Harvey & Rambaut (2000) claim that a niche model might be better applied in 

standardising contrasts, as closely-related species share similar environs due to 

adaptive radiation. They advise caution in applying independent contrasts blindly, as 

niche adaptation may not follow a Brownian model of evolutionary change. They 

suggest that other non-Brownian models (e.g. Price 1997) might better explain 

character evolution during adaptive radiation; in this case, Felsenstein's (1985) model 

of independent contrasts would not perform as well as non-Brownian cross-species 

analyses (Harvey & Rambaut 2000). Their model assumes that as niche spaces are 

invaded by a new species, and that over time, that same species adapts to the niche 

and speciates, then traits are correlated in niche space. This means that over time 

there will be effectively more traits than niches, and thus as niche space becomes 

available, phenotypically-similar species will compete for space. Whilst Harvey & 

Rambaut's (2000) model certainly explains how environmental neighbours will be 

similarly adapted, it is not a model of correlated evolutionary change, rather a 

correlation of traits within niche space (see e.g. Nunn & Barton 2001). 

Another criticism of comparative methods is that they focus too heavily on 

evolutionary change over the effects of stabilising selection; this is because change 

can be measured as independent far more easily than can periods of evolutionary 

stasis (Nunn & Barton 2001). The selection for species to remain unchanged for long 

periods of time might be just as crucial to our understanding of adaptation as periods 

of rapid evolutionary change (Martins 2000). In any case, phylogeny must be used in 

answering these questions, and Hansen (1997) has developed a new phylogenetic 

comparative method, which aims to redress this by looking at species in terms of traits 

evolving in response to environmental factors during periods of evolutionary stasis. 
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These, and other such phylogenetic methods, can only serve to improve and widen 

our knowledge concerning evolutionary relationships and associated change. 

Despite some early protests, there currently exists a general consensus as to the 

importance of using phylogenetic comparative methods in addressing evolutionary 

questions (Ryan 1996). There remains however, some debate as to which of the 

current comparative methods are most appropriate; perhaps the choice of phylogenetic 

comparative methods is very much "horses for courses". The use of comparative 

methods in recent years has undoubtedly revolutionised the field of evolutionary 

biology and studies reliant on multi-species data. Further applications of these 

methods can only serve to further enhance our understanding of evolutionary 

processes. 

The first, and arguably most crucial stage of this thesis was to collate a database on 

play behaviour and other relevant variables in the taxonomic groups chosen (the 

orders Primates and Carnivora). Comparative or interspecific analyses increasingly 

rely on already published work for their data. This is partly as academia has produced 

a vast body of knowledge on specific species, and partly due to practical constraints 

of time and finance that preclude comparative researchers from collecting all 

necessary data first hand (Martins & Hansen 1996). Independent contrasts are 

especially sensitive to sampling error, and the error variance will be a greater 

proportion of the total variance when comparing closely related taxa, as any 

differences between taxa are assumed by the model to be due to evolutionary change 

(especially when the taxa being compared are closely related) (Purvis & Webster 

1999). I recognise that some margin of error is almost inevitable when collating multi­

species data, but care has been taken to ensure use of as high quality information as 

possible in the collation of this database. It is hoped that one significant contribution 

of this thesis to the current field of play behaviour and evolution, will be the database, 

on which this work is centred (see Appendix for full tabulation). 
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2.3.11. Species 

There are 57 species of primate and 19 species of carnivore variously incorporated 

into the analyses in this thesis. Table 2.1 details these species. References are given 

in the Appendix. 

Table 2.1 Species incorporated within this study 

Order 
Primates 

Family 

Loridae 
Lemuridae 
Callitrichidae 

Cebidae 

Cercopithecidae 

Species Common name 

Nycticebus coucang Slow !oris 
Lemur catta Ring-tailed lemur 
Callithrix geoffroyi Geoffroy's tufted-eared marmoset 
Callithrixjacchus Common marmoset 
Saguinus foscicollis Saddle-back tamarin 
Saguinus midas Red-handed tamarin 
Saguinus oedipus Cotton-top tamarin 
Callicebus moloch Dusky titi monkey 
Cebus albifrons White-fronted capuchin 
Cebus apella Tufted, or brown capuchin 
Cebus capucim1s White-throated capuchin 
Cebus olivaceus Weeper, or wedge-capped capuchin 
Saimiri sciureus Squirrel monkey 
Pithecia monachus Monk saki 
Pithecia pithecia White-faced saki 
Cacajao calvus Bald uacari 
Alouatta caraya Black-and-gold howler 
Alouatta palliata Mantled howler 
Ateles geoffroyi Black-handed spider monkey 
Macaca arctoides Stump-tailed macaque 
Macacafascicularis Long-tailed, or crab-eating macaque 
Macacafuscata Japanese macaque, or snow monkey 
Macaca nemestrina Pig-tailed macaque 
Macaca nigra Celebes, or crested black macaque 
Macaca radiata Bonnet macaque 
Macaca mulatta Rhesus macaque 
Macaca silenus Lion-tailed macaque 
Macaca sinica Toque macaque 
Macaca sylvanus Barbary macaque 
Macaca thibetana Tibetan macaque 
Papio anubis Olive baboon 
Papio cynocephalus Yellow baboon 
Papio hamadryas Hamadryas baboon 
Papio ursinus Chacma baboon 
Mandril/us sphinx Mandrill 
Theropithecus gelada Gelada baboon 
Cercocebus torquatus Sooty mangabey 
Lophocebus albigena Grey-cheeked mangabey 
Allenopithecus nigroviridis Alien's swamp monkey 
Erythrocebus patas Patas monkey 
Cercopithecus aethiops Vervet monkey 
Cercopithecus diana Diana monkey 
Cercopithecus hamlyni Hamlyn' s monkey 
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Order Famil~ S~ecies Common name 
Cercopithecus mitis Blue monkey 
Cercopithecus neglectus De Brazza's monkey 
Colobus guereza Eastern black-and-white colobus 
Procolobus badius Western red colobus 
Semnopithecus entellus Hanuman langur 
Trachypithecus johnii Nilgiri langur 
Trachypithecus pileatus Capped leaf monkey 
Pygathrix nemaeus Red-shanked douc langur 

Hylobatidae Hylobates lar White-handed gibbon 
Hylobates syndactylus Siamang gibbon 

Pongidae Pongo pygmaeus Orangutan 
Hominidae Gorilla gorilla Gorilla 

Pan paniscus Bonobo, or pygmy chimpanzee 
Pan troglodytes Chimpanzee 

Carnivora 

Herpestidae Helogale undulata Mongoose 
Felidae Panthera Ieo Lion 

Felis silvestris European wild [feral] cat 
A cinonyx jubatus Cheetah 

Hyaenidae Crocuta crocuta Spotted hyaena 
Canidae Canis latrans Coyote 

Cerdocyon thous Crab-eating fox, or common zorro 
Speothos venaticus Bush dog 

Ursidae Ursus americanus American black bear 
Ursus arctos Brown, or grizzly bear 
Thalarctos maritimus Polar bear 
Selenarctos thibetanus Asiatic black bear 

Ailuridae Ailuropoda melanoleuca Giant panda 
Mustelidae Lutra canadensis River otter 

Mustela putorius European ferret or polecat 
Mustela vison American mink 

Pinnipedia 
Otariidae Arctocephalus australis South American fur seal 
Phocidae Haliochoerus grypus Grey seal 

Phoca vitulina Harbour, or common seal 

2.3.2 Database 

This database was collated by "trawling" the existing mammalian journals, book 

chapters, personal libraries, relevant theses, and occasionally unpublished data, for 

instances of measured play behaviour in primates and carnivores; that is, articles that 

specifically give a time budget or frequency measure of play and its types relating to 

species of primate and carnivore. There are inherent problems in using time budgets 

for which only "social activity" is measured, without delineating which social 

activities are included (see Dunbar 1988: 90-91); and thus only literature which 

specifically deals with play and its elements has been included here. Time budgets are 

at present the best practicable way to measure investment in significant behaviours 
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across groups or species (Post & Baulu 1978), and these have been used as detailed by 

the authors in cases where they appear in the literature. Elsewhere, where sufficient 

and appropriate information is available, raw data given in the literature, such as 

tables, graphs and histograms, were measured and transformed through simple 

calculations to give a mean time budget percentage for social play for each study 

species, based on the length of the study. 

As an example, King et al.'s (1980) study on chimpanzee social behaviour was 

allocated a time budget mean of 5.3% for social play. Based on 170 hours of 

observation, King et al. (1980) reported the number of minutes per hour spent in 

social play for each of seven conspecifics. The mean of these individual scores is 

calculated as 5.3%. Where two or more suitable replicates for any one species were 

found in the literature, a time budget percentage of social play was taken for each 

study. A mean was calculated from these percentages for each species, and used in the 

phylogenetic analysis. For example, studies on gorillas by Fossey (1979), Fischer & 

Nadler (1978), and Freeman & Alcock (1973) state time budget means for social play 

as 22.2%, 6.4%, and 15.7% respectively. These individual totals are summed (44.3) 

and divided by the number of studies for gorillas, to give a species average: 44.3 I 3 = 

14.8. This number is then log-transformed for analysis to meet the assumptions of the 

test (see Martins & Hansen 1997; Nunn & Barton 2001): log (14.8) = 1.17. 

2.3.3 Data quality 

Any comparative study is affected by the quality of data on which the analyses lie. 

This is largely because the studies from which the data are taken, have not necessarily 

been originally observed with multi-species comparative analysis in mind, and thus 

data quality is often variable (Harvey & Clutton-Brock 1985). It may therefore be 

necessary to weight data based on quality, or to standardise data accordingly (Martins 

& Hansen 1996). With a behavioural trait such as play, where studies containing 

suitable data are scarce, the problem of data collection is further confounded. In this 

thesis, I have used field studies where possible, but these are supplemented with data 

from captive studies. In many cases, species values were derived from both field and 

captive studies. The following list details certain considerations when collating data 

from the available literature: 
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1. Established phylogenies and existing databases are used where possible (e.g. 

Purvis 1995; Watson 1998; Barton 1999). 

2. All data are "quality-checked" in terms of its established contribution to academic 

literature (e.g. high= peer-reviewed paper, to low= undergraduate thesis). Also in 

terms of the length of the study and the techniques used within it. 

3. Does the publication refer to a field or captive study? 

4. What is the context of the play data? (e.g. introduction of novel object) 

5. Does phylogenetic data exist for most of the species in question? 

6. Does play data exist for most of the species in question? 

2.3.4 Data categories 

There are many categories of data incorporated within the database for analysis. 

These categories are explained below in Table 2.2. 

Table 2.2 Data categories 

Category 

Basic information: 
Species 
Source 
Study length 

Captive/Wild 
Demographic information: 

Play categories: 
Total play 
Solitary locomotor-rotational 
play 
Object play 
Social play 
No. of play behaviours 

Play bout length 
Dyadic play 

Polyadic play 

Adult play 

Adult-adult play 

Explanation 

Taxonomic (Latin) and common name of species 
Published literature reference information 
Length of study in observation hours and in months spent in the 
field 
Dichotomous variable: 0 =captive, 1 =wild 
Age (mo), age-category (infant, juvenile, sub-adult, adult), and sex 
composition (number of males and females) of each group 

Percentage of time budget engaged in playful activity 
Percentage of time budget engaged in solitary play 
(see Table 1.1) 
Percentage of time budget engaged in object play 
Percentage of time budget engaged in social play 
The number of different types of play behaviours within the species 
play-repertoire 
Average duration of play bout in seconds. 
Dichotomous variable: does play between 2 partners occur? 
0 =no, I= yes 
Dichotomous variable: does play between 3 or more partners 
occur? 0 = no, 1 = yes 
Dichotomous variable: do adults engage in any type of play? 0 = 
no, 1 =yes 
Dichotomous variable: do adults engage in play with other adults? 
0 =no, 1 =yes 
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Caitegocy 

Adult male play 

Sex play 

Interspecific play 

Vocalisation 

SSD 

SSP 

SAD 

SAP 

Sibling 

Relatedness 

Dominance 

Play-mothering 

Place 

Life-history variables: 
Gestation 
Neonatal weight 
Litter size 
Age at weaning 
Juvenile period 

Age at independence 

Age at sexual maturity 

Age at 151 conception 
Age at 151 reproduction 
Lactation period 
IBI 

Lifespan 

Socio-ecological variables: 
Body size 
Mean group size 
Actual group size 
Feeding group size 
Foraging group size 
Clique size 
Network size 

Exphtll1latiioll1l 

Dichotomous variable: do adult males engage in any type of play? 
0 =no, 1 =yes 
Dichotomous variable: do adults engage in sexually-oriented play 
sequences, such as mounting? 0 = no, 1 = yes 
Dichotomous variable: does the species engage in any type of play 
with other species? 0 = no, 1 = yes 
Dichotomous variable: does the species emit play-specific 
vocalisations? 0 =no, 1 = yes 
Dichotomous variable: Significant sex difference? Play is more 
frequent in one sex (usually males) 0 =no, 1 =yes 
Dichotomous variable: Significant sex preference? Players 
preferentially engage in play with members of their own sex. 0 = 
no, 1 =yes 
Dichotomous variable: Significant age difference? Play is 
performed more frequently by one age category (usually juveniles 
0 =no, 1 =yes 
Dichotomous variable: Significant age preference? Players 
preferentially seek play-partners of their own age category 0 = no, 
1 =yes 
Dichotomous variable: Players preferentially seek to engage in play 
with their siblings 0 = no, 1 = yes 
Dichotomous variable: Players preferentially seek to engage in play 
with their kin 0 =no, 1 =yes 
Dichotomous variable: Play may be used to strengthen dominance 
relationships 0 = no, 1 = yes 
Dichotomous variable: Play appears to resemble mothering 
behaviour in female juveniles 0 = no, 1 = yes 
Dichotomous variable: Play occurs more frequently in trees (1) or 
ground (0). 

Length of gestation period (days) 
Average weight of newborn (g) 
Average number of neonates per litter 
Age in days or years at which an individual is weaned 
Length of the juvenile period (years); period between weaning and 
sexual maturity 
Age in days at which individual is no longer dependent on parental 
investment 
Age in months at which an individual is capable of reproduction 
and therefore adult 
Average age in days at which an individual first conceives 
Average age in months at which first offspring is born 
Duration in months for which a female produces maternal milk 
Inter-birth interval. Average time in years between births in an 
individual female 
Maximum longevity in years 

Average weight of a species member (g) 
Average number of individuals forming a stable group 
Actual number of individuals in each study group 
Number of individuals congregating for the purposes of feeding 
Number of individuals participating in co-operative foraging 
Number of primary social partners of an individual 
Broader number of individuals who are socially linked to an 
individual 
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Category 

Population size 

Home range size 
Day range length 
%Leaves 
%Fruit 
%Prey 
BMR 
Growth 
Sex ratio 
Activity timing 

Usual stratification 

Frugivory 

Folivory 

Zonation 

Diet 

Vegetation (primary habitat) 

Prey size 
Space per individual 

Brain components: 
Adult brain weight 

Exphm.ail:ion1 

Maximum group size (individuals of the same species sharing a 
common home range area) 
Area in km within which a group primarily lives 
Distance (km) travelled by a group on a daily basis 
Percentage of diet from leaves 
Percentage of diet from fruit 
Percentage of diet from animal matter 
Basal metabolic rate 
Rate at which an individual reaches adult weight 
Proportion of males and females within a group 
Dichotomous variable: 0 = diurnal, 1 = nocturnal/arrhythmic/ 
crepuscular 
Dichotomous variable: 0 = arboreal, I = semi­
terrestrial/terrestrial 
Dichotomous variable: 0 =non-frugivorous, 1 =frugivorous (over 
50% diet from fruit) 
Dichotomous variable: 0 = folivorous (over 50% diet from leaves), 
1 = non-folivorous 
Dichotomous variable: 0 =terrestrial/terrestrial and occasionally 
arboreal, 1 = aquatic 
Dichotomous variable: 0 =carnivorous (flesh-eater)/omnivorous, 1 
= insectivorous/piscivorous/frugivorous and folivorous 
Dichotomous variable: 0 = open grassland/forest/woodland, 
I= aquatic 
Dichotomous variable: 0 = small, 1 =medium-large. 
Refers to captive-housed species; enclosure area (m) divided by the 
actual number of individuals housed within that space 

Average species brain weight (g) 

Other brain component data from Stephan et al. 1981 (pons from Matano et al. 1985); brain components 
are measured in volume (mm3

). 

One of the key problems with using data from the existing literature is that "species­

data category matches" are not always available; that is, it is not always possible to 

find information for one or more data category (e.g. social play) and information on 

another independent variable (e.g. brain size) for all species. This is a problem 

inherent in multi-species datasets. Throughout the following chapters in this thesis, 

instances of n = < 4 are indicated in the appropriate tables. 
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2.3.5 Co:nsidleratD.ons for play 

Play is a behavioural category that appears to be affected by many variables, such as 

age, sex, diet, habitat, etc., as have been discussed throughout Chapter 1. Throughout 

this thesis, these factors will be addressed in relevant chapters, and attempts made to 

delineate which are the most important with regard to the exhibition of playful 

behaviour. There are two variables that are commonly considered to affect play: 

whether or not the individuals are wild or captive-housed; and developmental age. 

The question of captivity will be dealt with in Chapter 6, but it is worth noting here 

that the database deals with reports from both captive and wild studies. Certainly, 

captive studies are likely to show higher frequencies of play than do wild studies, as 

less time is devoted to finding food, avoiding predators, etc. Captive studies may 

demonstrate the potential or possible play capacities of a species, given these 

parameters; for this reason, I believe them to be important. Similarly, captive studies 

offer the observer a window by which to view species-typical play behaviours, which 

might not otherwise be observable in the wild (e.g. King et al. 1980). Some analyses 

in this thesis separate captive and wild studies. Elsewhere, captive and wild studies 

represent play averages for most species contained within this database, thus 

demonstrating a fair representation of species playfulness. Importantly, the captive 

studies incorporated here derive from animals housed under similar husbandry 

conditions; thus across species, variation should not be significantly biased. 

Developmental age is typically a measure of an infant's development in terms of body 

size or motor skill, expressed in terms of standard age, and thus is deemed a factor 

affecting the exhibition of play. Throughout this thesis, two parameters have been 

used to deal with this issue: age at which social play first occurs; and weaning age. 

All of the species within the database have been shown to exhibit social play, albeit in 

varying amounts. The emergence of social play also corresponds with the time at 

which myelination occurs in the CNS (see also Chapter 6 & 7) (Gibson 1991). 

Similarly, weaning age is usually a good indicator of the period of most play 

frequency, and is a parameter that is known and reported in many species (more so 

than onset of social play). For this reason, many analyses control for developmental 

age, using these two factors. 
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2.3.6 JPhylogeneitD.c &. statD.sitD.caJI. ruunlyses 

Once the data have been sorted, and hypotheses generated, the next stage is that of 

phylogenetic analysis. This thesis principally aims to test for correlated evolution 

between play variables and socio-ecological, life-history, and brain component 

variables. These hypotheses are detailed specifically in each of the following 

chapters. The data are converted from StatView (version 4.0) data files into text files, 

which can be read by the CAIC programme (Purvis & Rambaut 1995). Already 

present within the CAIC programme are the branch length files, and phylogeny files 

(primates from Purvis 1995; carnivores from Bininda-Emonds et al. 1999), which 

read in the degree of evolutionary relatedness (phylogeny) and time between character 

states (branch lengths) for each species in the dataset. The programme calculates the 

independent contrasts and transfers the results to an output file, which can be 

imported into spreadsheets and statistical applications such as StatView. The CAIC 

programme file identifies any major outliers in the data, if the contrasts are greater 

than 2.0 standard deviations (SD). In very few instances in the following chapters, 

these outliers have been removed from the regression analyses. In this case, it is 

noted in the accompanying text. 

The primary statistical test used on the independent contrasts output from CAIC is 

standard linear regression analysis. This both calculates and illustrates the relationship 

between the variables (Sokal & Rohlf 1995). In this way it offers an insight as to the 

possible adaptive eo-evolution between traits (Harvey & Pagel 1991). In some cases, 

partial correlation analyses have been carried out to remove the effect of one variable 

from the analysis, such as correcting for the effect of body size from group size. The 

specific methods, and details of residual regression are detailed in each chapter. 

Graphs are usually presented only for significant results, although the primary 

independent variable used in residual analysis may be used for all play types as a 

point of illustration (e.g. Chapter 5 details regression of body size and each type of 

play, regardless of significance, as body size is a key confounding variable). 

MacClade was used for analyses of character change in discrete traits; an example of 

this has been seen in Chapter 1 (Figure 1.1 ); other use of this will be seen in Chapter 

3. Character states of play rates (low, medium or high frequency) were assigned to 
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primate and carnivore taxa and transitions in these states were traced onto a tree using 

the "track changes" option which "paints" the character states onto a default tree 

(Maddison & Maddison 1992). I manipulated the branches to match those of the 

standard phylogenies employed in this thesis (i.e. Purvis 1995 and Bininda-Emonds et 

al. 1999). 

In addition to comparative (inter-specific) analyses, intra-specific (within-species) 

analyses were also conducted to look for differences within different populations of 

the same species. These analyses are detailed in Chapter 4. 

2.4Summary 

Data on play, socio-ecology, life-history, and brain components were collated for 

primates and carnivores. Data were log-transformed to meet the assumptions of the 

analyses. Using the method of phylogenetic independent contrasts, these data were 

analysed using existing computer packages and standard statistical applications to test 

for correlated evolution across multi-species data. The use of phylogeny is important, 

as due to shared recent ancestry, species themselves are not statistically independent; 

the differences between them however, are. For this reason, independent contrasts are 

employed, as species cannot be used as data points. Regression and residual analyses 

were conducted to measure the relationship between these variables, and significant 

results presented in graphs. Regression was set through the origin. Intraspecific 

analyses were carried out to look for differences in different groups of the same 

species. Specific details are presented in each chapter. 
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Chanter 3: 

Phylogenetic Patterns of 

Play 

3.1 Introduction 

The evolutionary origin and function of a trait can often be better understood through 

analysis of its phylogenetic distribution (Byers 1999). The results chapters in this 

thesis (chapters 3-7) deal with evolutionary correlations of play in primates and 

carnivores. This chapter aims to provide a background for subsequent chapters 

through focus on the phylogenetic patterning of play behaviour. Chapter 1 outlined 

some of the major phylogenetic patterns of play in mammalian taxa (section 1.9). 

This chapter however, is concerned with addressing the patterning and distribution of 

play across the two focal orders of this thesis: primates and carnivores. It is hoped 

that by focusing on the ancestral conditions for play in these taxa, the conditions 

associated with playful behaviour in other orders will be better elucidated. 

3.1.1 Searching for the origins of play 

Historically, it was believed that only "higher" mammals engaged in play; it was 

thought that this was due to them being better equipped to find food, mates, shelter, 

and protection, and thus a glut of surplus energy meant that spare time could be 

devoted to "fun" (i.e. play) (Spencer 1872; and see Chapter 3 in Burghardt, in press). 

This has led to one argument for play being "behavioural fat" (as was discussed in 

Chapter 1 ). Play however, is rather unlikely to be a mere byproduct of excess energy, 

given its developmental timing, trajectory, and somatic effects during periods of 

developmental plasticity (Byers & Walker 1995; Fairbanks 2000; Burghardt, in 
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press). Similarly, as recent studies suggest, play is not simply the domain of the 

perceived mammalian intelligentsia (e.g. primates), being reported in reptiles and 

cephalopods, for example (Burghardt et al. 1996; Kramer & Burghardt 1998; Mather 

& Anderson 1999; Burghardt, in press). 

As was discussed in Chapter 1, one theory as to the origin of play was its role in 

motor training (Byers 1984). Byers has argued that in order to delineate what aspects 

of motor function may be connected to play, the focus needs to be on training 

responses that are age-limited; that is, those physiological responses to "exercise" that 

occur during the same time frame that play is performed (Byers & Walker 1995; 

Byers 1999). He therefore argues that if the prime benefit of playing is to perfect 

physiology, then play should be limited by metabolic rate (Byers 1999). However, 

Byers (1999) refutes this hypothesis, finding no correlation between metabolic rate or 

body size and play in marsupials, concluding that the true function of play is to 

modify brain development. Chapter 7 will deal with these issues in more depth. 

Pellis & lwaniuk (1999a) looked at the possible origins of adult-adult play m 

primates. Adult play, if it occurs at all, is generally directed towards juveniles. In 

some species however, adult-adult play sequences occur, and these often take the 

form of male-female play-fighting. Such sequences often precede copulation (e.g. 

grizzly bears, Ursus arctos, Herrero & Hamer 1977; giant pandas, Ailuropoda 

melanoleuca, Kleiman 1983). It is widely believed that adult-adult play of this nature 

serves as a means of social and sexual assessment. This is especially believed due to 

the fact that adult-adult play is more prominent in solitary species than in more 

gregarious species. Pellis & lwaniuk (1999a) strongly argue the case that adult-adult 

play serves to overcome unfamiliarity between males and females of solitary-living 

species in overlapping territories. Such species typically demonstrate mother­

offspring groups with solitary males (e.g. nocturnal strepsirhines: see Chapter 6). 

Male-female interactions may therefore be agonistic for the vast majority of time, 

coming together only for mating. Pellis & Iwaniuk (1999a) state that adult-adult play 

may have evolved as a means to dispel aggression, assess potential mates, and be a 

prelude to copulation. They show that when male-female association frequency is 

low, instances of adult-adult play increase. Therefore, for adult-adult play at least, 

play may have evolved as part of the sexual behavioural repertoire. 
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3.1.2 Phylogenetic reconstructions 

Throughout this thesis, the dominant comparative technique employed is that of 

independent contrasts, as is discussed in Chapter 2. This chapter however, focuses on 

phylogenetic reconstructions of particular play behaviours. A major area of 

questioning in play research concerns the origins of play (Burghardt 1998a). What did 

the earliest forms of play look like, when did it emerge, and which species were doing 

it? I do not attempt to answer these questions for all animal taxa; however, by using 

what is known about the play of extant species of primate and carnivore, it may be 

possible to glean a further understanding of the likely evolutionary processes that led 

to what we currently identify as play, and why it is so important and complex in many 

extant taxa (e.g. Burghardt 1998a). As play is widely considered to be such a tricky 

category of behaviour, phylogenetic analysis is required if we are to gain any real 

insight as to its origins and functions (Byers 1999; Burghardt, in press). Indeed, 

modem evolutionary thinking is obsolete without use of the .comparative method 

(Losos 1999). We want to be able to see whether play has arisen independently in 

taxa, and to be able to track those changes throughout the branches of a phylogenetic 

tree. 

Reconstructing possible phylogenetic relationships is a useful means of identifying 

behavioural divergence. This can mean tracking likely patterns in the divergence of 

behaviour, as well as possible ways in which behaviour has influenced other 

adaptations (Ryan 1996). The use of programmes such as MacClade in reconstructing 

character states is useful, since the algorithms are currently believed to be robust, and 

also offer the most parsimonious relationships across the tree (Maddison & Maddison 

1992; Martins 2000). These trees infer patterns of consensus between character states 

(i.e. different forms of the characters), as well as the degree of change relative to time 

(indicated by the branch lengths). As the common ancestor of any given taxon is not 

usually known, MacClade reconstructs the hypothetical (i.e. statistically most likely) 

ancestor (Maddison & Maddison 1992). 

The phylogenetic reconstructions presented in this chapter represent the most 

parsimonious (i.e. statistically conservative) evolutionary relationships. Insofar as the 
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trees are concerned, this means explaining each phylogenetic tree in terms of the most 

homologies. In simple terms, a homology is similarity due to common descent. A 

homologous character evolves once, and is assumed to share the same character state 

as the most recent common ancestor; thus between two species, a character is 

homologous when it is inherited from those species' last common ancestor (Futuyma 

1986). This is sometimes considered to be a somewhat old-fashioned term to many 

evolutionary biologists (e.g. Ridley 1996), but is used here to mean "similarity 

through common ancestry". This is in contrast to homoplasy, whereby similarities 

between character states evolve separately by convergence. If a character is a 

homoplasy, it may be present in two species but not present in their common ancestor. 

This means that although two species may appear phenotypically similar, such as the 

marsupial Tasmanian wolf (Thy/acinus cynocephalus), and the eutherian European 

wolf (Canis lupus), their evolutionary histories are very different. These species 

actually share no common ancestry, and have evolved similar characteristics in 

response to comparable environmental constraints, rather than descent (e.g. Ridley 

1996). The most parsimonious phylogenetic tree will depict fewer changes, and 

therefore the least homoplasy. Homology shows phylogenetic relatedness; homoplasy 

does not. Thus, the reconstructed trees enable us to see which character state currently 

found in extant taxa is ancestral. 

3.2 Methods 

Use of the comparative method is vital to any study investigating evolutionary 

patterns in behaviour. Similarly it is necessary to compare behaviours that derive 

from the same repertoire, rather than those that simply appear to be phenotypically 

similar (Burghardt, in press). Some discrepancies in the play literature render analysis 

potentially tricky. Which variables can and should be used to measure variance in the 

distribution of play? I have chosen to use time spent playing as a measure of the 

relative importance of the execution of play behaviour across taxa. 
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3.2.11. Behavi.orurall measures 

Later chapters will deal with the exhibition of play expressed as a mean time budget 

across species. This chapter also deals with time budgets, but in a broader manner. I 

wanted to see whether investment in different types of play behaviour follows the 

same patterns across taxa. I also wanted to test whether species that appear to invest 

relatively more time in play, also exhibit different behavioural repertoires through the 

course of their play. 

3.2.1a "Continuous" variable§ 

Although given a maximum of four character states, thus for the purposes of this 

chapter appearing discrete, there are four key "continuous" variables used here: total 

play, solitary locomotor-rotational play, object play, and social play. These variables 

appear as continuous throughout subsequent chapters in this thesis, but were 

formulated into discrete variables for the purposes of analysis in this chapter, by 

breaking them down into frequency measurements. The frequency measures are based 

on categorising species time budget measures of each play category (as used 

throughout this thesis) into percentage brackets (see Table 3.1 ). 

Table 3.1 Explanation of play category character states for "continuous" 
variables 

Character state 

0 
1 
2 
3 

Explanation Frequency measure 
(time spent in play%) 

No play reported in that category 
Low frequency of play in that category 
Medium frequency of play in that category 
High frequency of play in that category 

0% 
0.1-5% 
5.1-10% 
10.1% + 

These frequency measures are based on the widely-reported evidence for the play of 

most species to be between 1-10% of the daily time budget (Fagen 1981; Burghardt 

1984; Bekoff & Byers 1992). Therefore, a play time budget either side of this range 

could be distinguished as high or low, with a midpoint as a reasonable estimate of a 

medium frequency play time budget. 
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3.2.:n.b Diiscrete va.ll"iiablles 

The other variables in these analyses concern primate play only; these variables deal 

primarily with whether or not a particular behavioural category for play is present or 

absent in extant primates (see Table 3.2). The character states (0, 1) represent absent 

(0) or present (1) in each case. 

Table 3.2 Explanation of play category character states for discrete variables 

Variable Explanation 

Dyadic play 
Polyadic play 
Adult play 
Adult-adult play 
Adult male play 
Sex play 

Interspecific play 
Vocalisation 

3.2.2 MacClade 

Engages in play with two partners 
Engages in play with more than one other partner 
Adults of either sex are reported to play 
Adults engage in play with other adults 
Adult males engage in any play behaviour 
Adults engage in sexually-oriented play sequences, such 
as mounting 
Species observed to engage in play with other species 
Species emits play-specific vocalisations 

The phylogenetic trees were generated using the MacClade (version 3.01) software 

package (Maddison & Maddison 1992). This is a useful programme for 

reconstructing character sates and mapping their changes across a phylogeny (Ryan 

1996), allowing the user to "explore" ancestral character states (Maddison & 

Maddison 1992). Branches were manipulated to fit Purvis' (1995) primate phylogeny, 

and Bininda-Emonds et al.'s (1999) carnivore phylogeny. One of the fundamental 

assumptions within the MacClade programme is that a character can only have one 

state at any given point on the branch; thus "ancestral species are presumed to be 

monomorphic [and] polymorphism is [only] allowed in the terminal taxa" (Maddison 

& Maddison 1992: 31); this simplifies the evolutionary assumptions within the 

programme, rendering them more parsimonious. Indeed, MacClade traces the most 

parsimonious changes in character state over the tree, and thus where a character state 

is dubious it is shaded "equivocal". This appears in the legends in the tree figures 

presented in this chapter. The trees in this chapter have been produced using the 
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"unordered" algorithm within MacClade. This algorithm calculates the most likely 

character states at the nodes based on the state of the two terminal taxa immediately 

above it. These states are determined in a top-down fashion, thus the extant taxa are 

used as a starting point for "projecting back" through the tree the most likely character 

state. In this way, the root of the tree represents the most parsimonious character state 

relative to the entire tree (Maddison & Maddison 1992). As phylogenies group 

species according to recent common ancestry (e.g. Ridley 1996), I deemed this to be 

the most independent algorithm, and thus the most appropriate in the study of a 

behavioural category such as play. 

The phylogenetic reconstructions are detailed below in Figures 3.1-3.4 for primate, 

and 3.5-3.8 for carnivore "continuous" play categories (i.e. total, solitary, object, and 

social play), and 3.9-3.16 for primate discrete play categories. 
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Legend: 
I = low frequen~· of total pia~· 
2 = medium frequen~· of total play 
3 = high frequen~· of total pia~· 

AU&noptthecU3 nt9f"O'rlrtdit 

Fig. 3.1 Phylogenetic reconstruction of total play distribution in primates 
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legend: 
I = low frequ~- of solitary· play 
2 = medium frequency of solitary pla~-
3 = high frequency of solitary· pia~-

AUenapttheeUfl ntorovtrt• 

Puoatftr1x nemaeus 

Preobvtle pllntua 

Fig. 3.2 Phylogenetic reconstruction of solitary locomotor-rotational play distribution in primates 
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Legend: 

0 = no object pia~· 
I = low frequeu~· of object play 
2 = medium frequen~· of object play 
3 = high frequency of object play 

LDmurcetto 

Nucttcobuoco-no 

tercoptthecuo lleiiiOCI"' 

Allcooptthe:cus ntgruvtrtdb 

Fig. 3.3 Phylogenetic reconstruction of object play distribution in primates 
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c::J 0 

c.:i£J 1 

c::J 2 -3 E3~ 

legend: 
o = no social ploy 
1 = low frequency of social play 
2 =medium frequency of social play 
3 = high frequenc;y of social play 

Fig. 3.4 Phylogenetic reconstruction of social play distribution in primates 
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Legend: 
1 = low frequen~· oftotal play 
2 = medium frequ~· of total play 
J = high frequen~· of total pia~· 

Fig. 3.5 Phylogenetic reconstruction of total play distribution in carnivores 
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3 = high fre<Juen~· o£ soliW)· pia~· 
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Felb silvestris 

Helogale rutula 

Fig. 3.6 Phylogenetic reconstruction of solitary locomotor-rotational play distribution in carnivores 
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legend: 
1 = low frequency of objec:t pia~· 
2 =medium frequency of object play 
3 =high &..q....-y of objec:t play 
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Fig. 3.7 Phylogenetic reconstruction of object play distribution in carnivores 
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legend: 
I = low frequency of social play 
2 =medium frequency of sodal play 
3:::: high frequency of social pia~· 
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Fig. 3.8 Phylogenetic reconstruction of social play distribution in carnivores 

88 



Do ., legend: 
0 = d~-adic pia~- absent 
I = d)-adic pia~- present 

Fig. 3.9 Phylogenetic reconstruction ofdyadic play distribution in primates 
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Legend: 
0 = Polyadic play absent 
I = Polyadfc play present 

Fig. 3.10 Phylogenetic reconstruction ofpolyadic play distribution in primates 
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legend: 
0 = Adult play absent 
I = Adult play present 

Fig. 3.11 Phylogenetic reconstruction of adult play distribution in primates 
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Do -· Legend: 
0 = Adult-adult pia~· absent 
1 = Adult-adult play present 

Fig. 3.12 Phylogenetic reconstruction of adult-adult play distribution in primates 
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Do ., 
E3 equivocal 

l~rnd: 

0 = Adult male pia~· absent 
I = Adult male pia~· present 

Fig. 3.13 Phylogenetic reconstruction of adult male play distribution in primates 
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Do -E3 tquivocal 

Legend: 
0 = Sex pia~· absent 
I = Sex play present 

Fig. 3.14 Phylogenetic reconstruction of sex play distribution in adult primates 
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Fig. 3.15 Phylogenetic reconstruction ofinterspecific play distribution in primates 
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Fig. 3.16 Phylogenetic reconstruction of play vocalisation distribution in primates 
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3·4 Discussion 

3.4.1 Primates: "continuous" variables. 

The character evolution diagrams offer a useful means for tracing the most 

parsimonious patterning of play types across each order. Total play in primates 

appears to have originated in very low amounts (0-5%) at the common ancestor of 

extant primates (see Figure 3.1 ). The branches leading to extant strepsirhines and 

platyrrhines have retained this low-level frequency of play in all major nodes; this 

pattern is consistent across solitary, object, and social play also (see Figures 3.2-3.4). 

There are two independent adaptations towards a medium-level (5-10%) exhibition of 

play at the nodes leading towards Saguinus fuscicollis and Cebus apella (which is a 

very manipulative species), suggesting that the propensity for increases in play arose 

at the node for extant callitrichinae and cebinae; this pattern is retained for social play. 

For solitary locomotor play, the medium level frequency occurs in Cebus ape/la, but 

not in Saguinus. Object play is common to the platyrrhines at a low-level only, 

throughout the clade. Object play is unlikely to have been present in the common 

ancestor of lemurs and lorises according to the clade (Figure 3.3). 

Play is likely to have been present in the common ancestor of the cercopithecoidea 

and apes, although at which level is unclear. Total play appears to have arisen at a 

medium frequency in the branch leading towards extant macaques, although the level 

of play that persists from this node branching towards the baboons, guenons, 

colobines and apes is more doubtful. The reconstruction for solitary play suggests that 

the common ancestor of platyrrhines and catarrhines engaged in this type of play at 

very low rates, and this persists deep into the tree. Object play too, seems to have 

arisen and retained a low frequency at the ancestral node, and diverged at the 

strepsirhine-haplorhine node, persisting in haplorhines but not in strepsirhines. Object 

play again diverges at the node branching towards macaques at a medium level, and 

persisting at a low level throughout the tree, until diverging to a high frequency only 

at the common ancestor of the great apes. Social play however appears to have a 

slightly different evolutionary history. Social play appears to have been present at 

very low levels in the primate common ancestor. This level persisted in the lemurs, 

97 



but diverged at the lorisid branch, where social play appears to have been selected 

against; presumably due to the solitary nature of these nocturnal primates. At the 

platyrrhine-catarrhine node, play diverged into low levels in platyrrhines, and high 

levels throughout the catarrhines, suggesting that social play is the most common and 

the most persistent form of play in catarrhine primate evolution. Social play however, 

evolved at medium levels in the branch leading to the macaque species that is 

considered to represent the most likely primitive Macaca condition, Macaca sylvanus 

(e.g. Purvis 1995), and again is independently reduced to a medium level in the 

branch leading to modem Macaca mulatta. Social play persists at high levels 

throughout the Papio clade, and arguably throughout the species that represent the 

most primitive guenon condition, Erythrocebus patas, and Allenopithecus nigroviridis 

(e.g. Purvis 1995). At the node leading to extant cercopithecines however, the level 

of social play diverges again to a low rate. The ancestral condition of social and 

solitary play is unclear in the colobines, although both total play and social play 

persist at high rates in the common ancestor of the extant apes. 

These phylogenetic trees suggest that low levels of all play categories were present in 

the common ancestor of primates, and that higher levels of playfulness have been 

selected for largely in the catarrhine clade. High levels of social play are also almost 

exclusive to the catarrhines, the one exception being in Cebus ape/la; capuchins are 

known to be especially playful (Visalberghi & Guidi 1998); they are also a common 

laboratory and zoo species. Macaques, baboons, and apes are consistently shown to 

be the most playful taxa, and amongst catarrhines, the colobines are the least playful. 

This may be due to energetic constraints of folivory. Indeed, the patterns of play 

category frequency in colobines is similar to that of the platyrrhine clade, which also 

contains many species whose primary diet is based of leaves (e.g. ate lines and 

Alouatta spp.). Chapter 6 will investigate socio-ecological variables in the expression 

of play. 

The patterning of character states on the primate trees for the four key categories of 

play suggest that social play is the evolutionarily oldest form of play, persisting deep 

into the tree and at high frequencies. This suggests that social play has its roots before 

the divergence of primate ancestors from other mammalian stock. Primates are 

considered to be a gregarious order, and most species are group-living. Social play 
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may have evolved as social-assessment behaviour to cope with the demands of living 

in social groups. Social play may be an effective way to size up potential mates, 

alliances, and agonistic conflict (Byers 1984; Pellis & Iwaniuk 1999a). Indeed, social 

play in its earliest form is likely to have evolved in response to mating strategy; it 

might be expected to see more play-fighting between males in polygynous species 

where males defend both territory and access to mates (Byers 1984). 

3.4.2 Primates: discrete variables 

The patterns shown in the evolution of play categories are also supported by 

phylogenetic analysis of discrete traits. Unsurprisingly, dyadic play (play between two 

individuals) is common to all branches, except that of the solitary-foraging lorises. 

The prevalence of dyadic play throughout the clade is likely to be reflective of the 

general sociality of primate species. The patterning for polyadic play (play between 

three or more individuals) supports the evolution of social play in the catarrhine clade, 

the primary exception being that of Hylobates; gibbons tend to live in small family 

groups containing approximately two offspring (Chivers 1984), thus offering little 

opportunity to engage in polyadic play in comparison with species in larger groups. 

The other exception is that of Cercopithecus hamlyni, which, from casual observation, 

may be said to be a "quiet" species that appear to show a preference for dyadic allo­

grooming rather than for playing in large groups (pers. ohs.). 

The primate clade tends to suggest that adult play (in this case including play with 

offspring) occurred in the common ancestor, and in most branches leading to extant 

species. This may simply reflect the tendency of parents to engage in play with their 

offspring. Play between two adults is far less common however, and has evolved 

throughout the platyrrhines and the apes, and appearing in few cercopiths, seemingly 

emerging independently. Play by adult males follows almost the exact same trend. It 

seems possible that the propensity for adult play has evolved with breeding structure 

and sexual dimorphism, especially within platyrrhines; species with relatively reduced 

dimorphism, such as Callithrix and Saimiri exhibit adult play. This is not necessarily 

true of the ape clade however. Thus, these results do not support the conclusions of 

Pellis & lwaniuk (1999a) who argue that adult-adult play should be prominent in 

solitary species such as nocturnal strepsirhines as a means for mate assessment when 
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male-female association is low. However, the agreement between my results and the 

results of Pellis & Iwaniuk (1999a) might be clearer with the inclusion of more 

strepsirhine species (but see below). Sexual play appears relatively common across 

extant taxa, and may have originated early in primate evolution, possibly as a means 

to practice adult sexual behaviour or to develop and maintain social bonds, or assess 

potential biological fitness. This parameter does not distinguish between juvenile 

"pseudo-sexual" play and adult courtship play, but remains a measure of sexual 

behavioural repertoire within play. In this way, Pellis & Iwaniuk's (1999a) argument 

for adult-adult play as courtship is better supported. However, it is unclear from the 

results presented here whether this pertains to nocturnal strepsirhines or not, given 

that the result is equivocal for Nycticebus coucang. Again, the inclusion of more 

solitary strepsirhine species within the reconstruction may help further elucidate this 

discrepancy. 

The potential for inter-specific play also is likely to have arisen early in primate 

evolution, arguably to dispel or reduce competition for resources among neighbouring 

troops of different species, or to assess or display the potential fitness of or to 

potential prey species. Alternatively, it may be a non-adaptive side-effect of the 

propensity to play, given that it appears almost uniformly throughout the tree. 

Vocalisation during play is typically rare, although has been reported predominantly 

among platyrrhines in the form of "play peeps" (Saimiri, Biben & Symmes 1986; 

Saguinus oedipus, Goedeking & Immelmann 1986). Indeed, the phylogenetic tree 

(Figure 3.16) supports this view indicating the emergence of play calls at the node for 

callitrichids and cebines; this is however, a relatively recent occurrence in terms of 

evolution. Play-chuckles and laughter are reported in the African apes and some 

baboons, and may have arisen independently in these clades. The reasons for this are 

unclear. Play vocalisations may have arisen as contact-calls, signalling to nearby 

adults that any apparent fight between juveniles is playful, or to demonstrate a 

continued desire to play (Burghardt, in press). Play in most primates and carnivores, 

is silent, presumably to avoid the risk of attracting the attention of predators whilst 

distracted by play (Burghardt, in press). 
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3·4·3 Carnivores: "continuous" variables 

The phylogenetic reconstructions for carnivores also offer an interesting insight to the 

divergence and evolution of play behaviour (refer to Figures 3.5-3.8). Total play (i.e. 

all types) at the high frequency level appears to be the key ancestral condition for 

carnivores, persisting in mustelids and lutrines and permeating through ursids, canids, 

and felids. The otariids and phocids are demarked by a change in this condition to a 

reduced frequency of play and the medium-level (and low in Haliochoerus). The 

trend is unclear for some of the ursids, with Ailuropoda (giant pandas) and Ursus 

americanus having evolved from exceptionally playful ancestral stock, whilst other 

ursid species appear to have lost this trait. Arguably this occurred with the increasing 

onset of behavioural solitude, however, all bears are predominantly solitary. 

Interestingly, the phylogenetic trees show that Canis is less playful than reports from 

the literature appear, but the common ancestor of the Canidae is likely to have been 

very playful (high play frequency), which is demonstrated by the extant Speothos and 

Cerdocyon. At the node where canids and felids diverge, so too does the character for 

high play frequency, with medium levels branching off into the herpestids and 

hyaenids, and low frequencies within the felids. One exception is in the domestic cat 

with high levels of playfulness, although this may be due to domestication and the 

selection for neotenous traits (Hemmer 1990), which may include exceptionally high 

levels of playfulness, as well as the likelihood of constant (human) playmates. 

Solitary play appears far more widespread and constant in its evolutionary 

distribution, persisting at low frequencies throughout the order. Exceptions are in 

Phoca vitulina and Thalarctos maritimus where solitary play occurs at high 

frequencies. Two explanations for this relationship are to combat the cold and to 

develop aquatic skills for hunting. Object play too, is very widespread among the 

Carnivora, but tends to persist at low levels throughout the clade. One exception is in 

the giant panda (Ailuropoda melanoleuca), which displays high frequencies of object 

play, presumably due to its highly solitary behaviour and extractive foraging in 

processing bamboo stalks for food (e.g. Sandell 1989). Social play persists at high 

levels throughout the clades of species with relatively large social group sizes, such as 

the mustelids and lutrines, and the canids and felids. Low levels have evolved in the 

branches leading to the pinniped and ursid clades and diverge to medium levels in the 

true bears. This adds further weight to the argument that social play evolved as a 
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means for coping with living in social groups, and arguably for the social assessment 

of conspecifics. 

Discrete play variables have been mapped onto a phylogenetic tree usmg the 

MacClade computer programme (Maddison & Maddison 1992). Primates and 

carnivores are dealt with separately. These trees depict changes in the character states 

of different play categories over time, and thus this type of analysis may help to 

elucidate the origins of play in each taxonomic order. The prevalence of play 

behaviour in extant species can be used to infer that play is a behaviour very likely to 

have been present at the origin of both primates and carnivores, and that solitary 

locomotor-rotational, object, and social play are likely to have been featured in the 

play of the common ancestor to all primates and carnivore clades. In primates, this is 

further supported by the exhibition of dyadic play in all major clades; polyadic play is 

however restricted to Old World monkey and ape clades. Adult play is common to all 

major primate clades, and is believed to be exhibited as parent-infant play 

interactions. Other forms of adult play do not appear to demonstrate an extensive 

evolutionary history, although sex play (e.g. mounting as opposed to play-fighting) is 

present in the common ancestor of haplorhines and may be indicative of courtship 

behaviour. Interspecific play occurs in all major clades and may act as a means for 

assessing other species in the environment. Play vocalisations show a relatively recent 

ancestry, being present in the common ancestor of callitrichids and Cebus, and having 

evolved independently in the African apes. 

The following chapters ( 4-7) will focus upon these evolutionary relationships in more 

detail, with regard to intra-specific relationships, life-history, socio-ecology, and 

neurobiology. 
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Chanter 4: 

Intra -snecific Play 

4o 1 Introduction 

Further chapters will deal with evolutionary relationships between play and life­

history, socio-ecology, and brain structures, focusing on between-species analyses of 

primates and carnivores. Play is a behaviour that is subject to much variability 

(Bekoff & Byers 1998), and as such it is important to understand the variance of play 

within species, and the factors that may influence this variance. Thus we need to 

establish whether differences in species means are likely to represent true species 

differences or simply error variance. One way to do this is to assess the amount of 

variance within species versus the amount of variance between species. In addition, it 

may be possible to correlate play and socio-ecological variables at the intraspecific 

level providing tests of hypotheses about influences and constraints. In terms of age­

related intra-specific trends, developmental trajectories in play behaviour are of 

relevance to hypotheses concerning the functions of play, particularly in the context 

of behavioural development. Finally, study duration may influence numbers of play 

types recorded, and an analysis of this methodological influence is important in aiding 

interpretation of data. 

A defining character of any given species is that it differs from every other in one or 

more ways. Some of the key factors involve social groupings, habitat, and feeding 

ecology (e.g. Oates 1987). These aspects will be dealt with comparatively elsewhere 

in this thesis (see especially Chapter 6). Due to lack of available data on the specifics 

of feeding ecology at an individual population level, for which there is also available 

play data, it is not possible to deal with play and intra-specific feeding ecology 

statistically in this chapter. This chapter does however focus on the intraspecific 

variance in the play behaviour of the following species: chimpanzees (Pan 
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troglodytes), red colobus monkeys (Colobus badius), olive baboons (Papio anubis), 

and Japanese macaques (Macaca fuscata). Developmental trajectory data for play 

over the juvenile period are presented for a greater number of species: mantled howler 

monkeys (Alouatta palliata), vervet monkeys (Cercopithecus aethiops), gorillas, 

stump-tailed macaques (Macaca arctoides), Japanese macaques, rhesus macaques, 

chimpanzees, olive baboons, yellow baboons (Papio cynocephalus), hamadryas 

baboons (Papio hamadryas), and saddleback tamarins (Saguinus fuscicollis). 

Unfortunately, there are insufficient replicates of carnivore species data to permit 

statistical analyses of intraspecific variables, and thus this chapter deals only with 

primates. 

4.2Methods 

One enduring problem in analysing intra-specific (as opposed to inter-specific) play is 

a general lack of suitable data. It is true that there are problems in the existing 

mammalian play literature with a disappointing lack of quantitative data. Although 

qualitative data are undoubtedly useful to the general play literature, it requires the 

support of quantitative data to effectively bridge gaps in our "play knowledge". In too 

many cases, play, and its subsequent categories, are not distinctly recognised, 

sufficiently detailed or described, or fully incorporated into the literature (Burghardt 

2001 ). Much of the ethological literature that specifies behavioural content does not 

detail the amounts of time devoted to it, either in time budget or frequency data, or 

indeed length of study. Thus here, to avoid such entanglements, time budgets of play 

have been incorporated, as is the case for other chapters in this thesis. 

The data presented in this chapter derive directly from each field study on a particular 

group of a given species: hence intra-specific analyses of species replicates. This 

includes group composition in terms of age and sex of the conspecifics described in 

each study, research effort in terms of how long a particular study lasted, and 

environmental particulars, such as space per individual. The "space per individual" 

category is calculated by taking the enclosure space measurements as detailed in each 
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paper from the literature, and dividing it by the number of individuals in each group, 

as detailed below. 

E.g. (38 x 38) = 17.40 m per individual 
83 

(Ehardt & Bemstein 1987) 

All data in this chapter were analysed usmg standard statistics in the StatView 

(version 4.0) statistical programme. The data on developmental trajectories are taken 

from the literature and plotted using bivariate analyses in the StatView programme. 

Regression graphs are given for significant results only, unless otherwise stated. 

4·3 Hypotheses 

The following hypotheses are presented for play in primates with regard to intra­

specific variation. The null hypothesis, Ho, states that there will be no association 

between play behaviour and the variable in question. Below, alternative hypotheses, 

Hm are proffered. 

1. The relationship between study length and the play behaviours 

observed (and reported) will be asymptotic. 

As a study progresses in length it is likely that the number of different behaviours 

recorded will also increase. However, after a sufficient duration, all likely behaviours 

will have been observed, and thus if the study persists beyond such a time, no new 

behaviours will be recorded. Thus this relationship is likely to be an asymptotic one. 

Using these data also enables the ensuing analyses to be controlled for research effort. 
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2. Groups with more infants and jurveniles present will be those 

that exhibit higher piay frequencies. 

As play in adults is far less common than play in juveniles (Hall 1998), it is predicted 

that groups with the greatest proportion of conspecifics of playing age (i.e. infants and 

juveniles) will be those observed to engage in the most play. 

3· Play should differ between males and females 

Play, like sex and aggression, is a sex-differentiated form of behaviour (Hines 1982), 

thus we should expect to see differences between the amounts of play exhibited by 

males and females. This is an observation that pervades the existing literature for 

several species (e.g. Biben 1986; Eaton et al. 1986; Brown 1988). One reason for 

sex-differences in play derives from the fact that males tend to reach sexual maturity 

later than females, and thus in effect have a longer period during which to prepare for 

adult skills. It is also likely that these sex-differences in play occur partly due to 

hormonal influences (Hines 1982; Hines & Shipley 1984), which in turn dictate sex­

specific behaviour (Collaer & Hines 1995). Thus, male and female behaviour show 

distinct differences in adulthood; therefore play may assist these changes in being sex­

differential itself. Play in species that rely heavily on intraspecific fighting in 

adulthood, might therefore be based on male-male rough-and-tumble play during the 

juvenile period. Thus it is predicted that polygynous species will show relatively 

higher levels of rough-and-tumble play behaviour in males during the juvenile period 

as a means of preparation for adult life. This might also explain the tendencies of 

some species for female alia-mothering play (Lancaster 1971 ). It is expected that 

species in larger groups will express a preference for partners of a similar age and sex, 

and that older individuals will play far less than infants or juveniles (Fagen 1981 ). 

Similarly, play complexity, or range of play behaviours should be greater in species 

that exhibit a greater degree of polygyny (Byers 1984). 

4· Groups with more juvenile males present will be those that 

exhibit higher play frequencies. 

Infant and juvenile males are frequently reported to be most playful demographic (e.g. 

Meaney et al. 1985; Biben 1986; Eaton et al. 1986; Brown 1988; Fedigan 1993; 
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Collaer & Hines 1995; Pruetz & Bloomsmith 1995), and thus it is predicted that the 

more juvenile males in a group, the more play will be observed. 

5· Groups housed in relatively large enclosures will be the most 

playful. 

As play is susceptible to environmental effects, and especially to the effects of 

confinement (Fagen 1981 ), it is predicted that species groups housed in enclosures 

that offer the most space per individual will exhibit greater amounts of play than 

groups housed with less space. 

4·4 Data 

Table 4.1 details the species incorporated into the intra-specific analyses, research 

effort in observation hours and in length of study in months (as specified in each 

source), the number of different play behaviours observed in each study pertaining to 

that species, the time-budget percentages for total, solitary locomotor, object, and 

social play behaviour as detailed in each source (or derived from each source [see 

Chapter 2]), actual group size (the number of individuals within each study group, as 

opposed to species mean group size used in other chapters), and source information. 

Analysis of variance (ANOV A) of each species and total play, number of play 

behaviours, and actual group size, show that species differ significantly in play, but 

not in length of study, thus differences are not confounded by methodology. This 

accounts for within species variability, and thus it can be concluded that species 

differences shown in the comparative analyses of subsequent chapters in this thesis 

are meaningful. 
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Table 4.1. Intra-specific data for play and research effort in primates 

Species Source No. of lLength No. of Total Solitary Object Social Acruall Space per 
observation of srudy play pUay pUay play pUay group individuall 
hours (mo) behaviours % % % % size (m} 

Colobus badius Struhsaker 1975 - - - 2.6 
Struhsaker 1975 - - - 2.7 
Struhsaker 1975 - - - 4.2 

- Marsh 1978 - - - 2.6 
0 Marsh 1981 - 14.0 - 3.4 \0 

Clutton-Brock 1974 - 2.0 5 3.3 - - - 64 
Clutton-Brock 1974 - 14.0 5 4.0 - - - 82 
Clutton-Brock 1974 - 2.0 5 1.0 - - - 58 

Macaca fuscata Rostal & Baton 1983 - - - 10.2 - - - 316 51.00 
Hayaki 1983 - - - - - - - 100 
Eaton et al. 1986 - 10.0 10 23.5 - - 23.5 304 106.0 
Glick et al. 1986a - 16.0 - - - - - 274 58.80 
Glick et al. 1986b - 16.0 2 21.28 - - 21.28 314 51.30 

Pan troglodytes Bloomsmith et al. 
1994 792.0 60.0 - 18.96 12.34 - 6.63 - 23.05 
Bloomsmith 1989 225.0 7.0 - 11.08 - - 11.08 
Horvat & Kraemer 
1981 1443.5 36.0 - 32.61 - - - 23 
Kraemer 1979 18.5 - 24 4.1 0.51 0.22 3.59 6 
Lewis 2000 - 2.5 - 18.94 22.1 11.2 21.5 12 
Pruetz & Bloomsmith 
1995 311.0 10.0 - 3.73 - - - 29 28.47 



Species Source No. of LeJrngili No. of Total! Solitary Object Social Actuall Space per 
observation of study play play play play play group individluall 
hours (mo) behaviours % % % % size (m) 

Merrick 1977 - 11.0 17 6.94 - - - 7 
Mendoza-Granados & ..... 

0 Sommer 1995 44.0 4.0 14 19.0 4.99 6.14 14.2 25 400.00 
King et al. 1980 40.0 15.0 7 13.19 7.88 - 5.31 7 
Kraemer et al. 1982 - - - 7.68 - - 7.68 

Papio anubis Tomasello et al. 1989 - - - - - - - 7 35.75 
Tomasello et al. 1990- - - - - - - 15 48.00 
Owens 1975a - 16.0 12 5.93 - - - 65 
Owens 1975b - 16.0 12 - - - - 65 
Rose 1977a 140.0 1.0 21 3.10 - - - 65 
Chalmers 1980 231.0 6.0 30 7.5 - - - 71 



Table 4.2 ANOVA table for within-species differences in total play, actual group 
size, length of study and number of different play behaviours. 

DF Sum Mean F-value P-value Lambda Power 
ofs uares 

Total play 
Species 3 552.11 184.04 14-3 0.002 42-90 0.99 
Residual 7 90.09 12.87 
Actual group size 
Species 3 12143-55 40476.18 511.46 <0.0001 1534-37 1.0 
Residual 7 554.0 79.14 
Length of study 
Species 3 86.97 28.99 0.84 0.52 2.51 0.15 
Residual 7 242.67 34.67 
Number of behaviours 
Species 3 461.88 153-96 4-37 0.05 13.11 0.62 
Residual z 246.6z 35-21 

4·5 Results 

4.5.1 Fitting the data 

Figures 4.1-4.8 show scatter plots of play time budgets on length of study in the species 

dealt with in this chapter. Graphs on the left detail linear scatter plots, whereas graphs 

on the right detail the relationship fitted to a second-order polynomial regression, as the 

relationship is unlikely to be linear. The graphs show that a linear fit is poor, and that 

based on ~, a second-order polynomial provides a better fit to the data. 
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The SSCP Mltrix is singular. 

Figs. 4.1 & 4.2 Linear regression and 2nd order polynomial regression plots of total play on 
length of study in months in Colobus badius 

(Linear: F (1,3) = 1.70, p = 0.32, co-efficient = 0.13, r2 = 0-46; 2nd order polynomial: The SCCP 
matrix is singular). 
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Figs. 4·3 & 4·4· Linear regression and 2nd order polynomial regression plots oftotal play on 
length of study in months in Pan troglodytes 

(Linear: F (1, 7) = 1.51, p = 0.27, co-efficient= 0.20, r2 = 0.20. 2nd order polynomial: F (2, 6) = 
0.75, p = 0.25, co-efficient= 0.81, r2 = 0.33) 
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Figs. 4·5 & 4.6 Linear regression and 2nd order polynomial regression plots of solitary 
locomotor play on length of study in months in Pan troglodytes 

(Linear: F (1, 3) = 0.005, p = 0.95, co-efficient= -0.01, r2 = 0.002. 2nd order polynomial: F (2, 1) 
= 0.15, p = 0.87, co-efficient= o.8g, r2 = 0.23). 
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Figs. 4·7 & 4.8 Linear regression and 2nd order polynomial regression plots of social play on 
length of study in months in Pan troglodytes 

(Linear: F (1, 3) = 1.65, p = 2.90, co-efficient= -0.16, r2 = 0.35. 2nd order polynomial: F (2, 2) = 
8.65, p = 0.10, co-efficient= -1.51, r2 = o.go). 
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4.5.2 Length of study and play category 

The following analyses use polynomial regression to test for a relationship between the 

length of a field study and the number of behaviours seen within the play repertoire of 

that species. I have used a second-order polynomial regression, as the hypotheses 

predict that the relationship will be asymptotic. As a study progresses in length, it is 

expected that more behaviours will be seen, until such a time as all likely behaviours are 

observed. 

4·5·2.i Number of play behaviours 

4·5·2.ia Colobus badius 

Using second-order polynomial regression, there is a positive and significant 

relationship between the length of a field study (mo) and the number of different 

individual play behaviours seen within the play repertoire of red colobus 

monkeys (F (2, 4) = 6.88, p = 0.04, co-efficient= 3.91, r2 = 0.73) (Figure 4.9). 

Compare this with a linear regression analysis, which reveals a positive 

correlation, but a non-significant one (F (1, 5) = 2.34, p = 0.18, co-efficient= 

3.56, r2 = 0.28), demonstrating that second-order polynomial regression offers a 

better fit than linear regression. 

4·5·2.ib Macacafuscata 

Using second-order polynomial regression, there is a positive, but non­

significant relationship between the length of a field study (mo) and the number 

of different individual play behaviours seen within the play repertoire in 

Japanese macaques (F (2, 2) = 2.55, p = 0.41, co-efficient= 32.91, r2 = 0.84). 

Linear regression analysis also reveals a positive but non-significant correlation 

(F (1, 2) = 0.04, p = 0.86, co-efficient= 4.16, ~ = 0.02). 

4·5·2.ic Pan troglodytes 

Using second-order polynomial regression, there is a slightly negative, but non­

significant relationship between the length of a field study (mo) and the number 
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of different individual play behaviours seen within the play repertoire m 

chimpanzees (F (2, 2) = 0.43, p = 0.69, co-efficient= 21.49, r2 = 0.30). Linear 

regression analysis also reveals a negative but non-significant correlation (F (1, 

3) = 1.18, p = 0.36, co-efficient= 20.07, r2 = 0.28). 

7.5.2.id Papio anubis 

Using second-order polynomial regression, there is a slightly negative, but non­

significant relationship between the length of a field study (mo) and the number 

of different individual play behaviours seen within the play repertoire in olive 

baboons (F (2, 2) = 0.30, p = 0.77, co-efficient = 21.82, r = 0.23). Linear 

regression analysis also reveals a negative but not significant correlation (F (1, 

3) = 0.89, p = 0.41, co-efficient= 21.65, r2 = 0.23). 

4.5.2.ii Play categories (play time budgets) 

4.5.2.iia Colobus badius 

Table 4.3 shows regression analyses for research effort in months against each play 

category in red colobus monkeys. There were too few entries for solitary play and 

object play to permit statistical intra-specific analyses. Linear regression analyses 

show that total play and social play are positively, but not significantly, correlated 

with research effort in months. Second-order polynomial regression analyses show 

that total play is positively but not significantly correlated with research effort in 

months, with an increase in total play reported after 5 months. Social play is 

significantly correlated with research effort in months, with a decline in social play 

reported by 13 months (Figure 4.1 0). 

Table 4-3 Regression analyses of research effort in months and play categories 
in red colobus monkeys 

Analysis Play DF F-value p-value co-efficient r2 
category 

Regression Total 1, 6 0.28 0.61 0.02 0.05 
2nd order 
polynomial Total 2,5 1.30 0.35 -0.02 0.34 

Social 2, s.ss 0.04 0.57 0.70 
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Table 4.4 shows regression analyses for research effort in months against each play 

category in Japanese macaques. There were too few entries for all types of play 

except total play to permit statistical intra-specific analyses. Linear regression 

analyses show that total play is positively, but not significantly, correlated with 

research effort in months. Second-order polynomial regression analyses show a 

positive correlation with total play percentage seen declining after 12 months of 

study (Figure 4.11). 

Table 4-4 Regression analyses of research effort in months and play types in 
Japanese macaques 

Analysis Play type DF F-value p-value co-efficient r2 

Regression Total 1, 2 0.96 o.so 0.99 0-49 
2nd order 
polynomial Total 2,0 2·24 1.0 

4.s;.2.iic Pan troglodytes 

Table 4.5 shows regression analyses for research effort in months against each play 

category in chimpanzees. Linear regression analyses show that total play is 

positively, but not significantly, correlated with research effort in months. Linear 

regression analyses reveal that solitary locomotor play and social play are 

negatively, but not significantly correlated with research effort in months. Second­

order polynomial regression analyses show that total play is positively but not 

significantly correlated with research effort in months. Solitary locomotor play and 

social play is negatively, but not significantly, correlated with research effort in 

months. There were too few observations of object play to permit statistical analyses 

of intra-specific variables. 
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Table 4-5 Regression analyses of research effort in months and play types in 
chimpanzees 

Analysis Play type DF F-value p-value co-efficient r2 

Regression Total 1, 6 1.51 0.27 0.20 0.20 
Solitary 1, 2 0.005 0.95 -0.01 0.002 
Social 1, 3 1.65 0.28 -0.16 0.36 

2nd order 
polynomial Total 2,5 0.75 0.52 0.53 0.23 

Solitary 2,1 0.15 0.87 o.8g 0.23 
Social 2,2 8.65 0.10 -1.51 o.8g 

4·5·2.iid Papio anubis 

Table 4.6 shows regression analyses for research effort in months against play types in 

olive baboons. There were too few entries for all types of play except total play to 

permit statistical intra-specific analyses. Linear regression analyses show that total play 

is positively, but not significantly, correlated with research effort in months. Second­

order polynomial regression analyses show that total play is positively and significantly 

correlated with research effort in months (Figure 4.12). 

Table 4.6 Regression analyses of research effort in months and play types in 
olive baboons 

Analysis Play type DF F-value p-value co-efficient r2 

Regression Total 1, 2 0.30 0.68 0.14 0.23 
2nd order 
polynomial Total 2~0 1.36 1.0 

4·5·3 Group size 

The following analyses show intra-specific variation in all play types with actual group 

size (actual number of animals in the study group as detailed in the literature for each 

study), controlling for the effect of research effort in months. 
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4·5·3a Colobus badius 

Table 4.7 shows partial correlation analyses for actual group size against each play 

category in red colobus monkeys, controlling for the effect of research effort in 

months. There were too few entries for solitary locomotor and object play to permit 

statistical intra-specific analyses. Partial correlation analyses show that total play is 

positively, but not significantly, correlated with actual group size. Social play is 

positively and significantly correlated with actual group size even after controlling 

for the effect of research effort (Figure 4.13). These findings correspond with the 

inter-specific independent contrasts analyses detailed in Chapter 6. 

Table 4-7· Partial correlation analyses of play category, research effort (mo) and 
actual group size in red colobus monkeys 

Play category 

Total 
Social 

DF F-value 

1, 3 0.22 
1, 3 127.30 

4·5·3b Macacafu.scata 

p-value 

0.68 
0.007 

co-efficient 

0.008 
0.13 

0.1 
0.99 

Table 4.8 shows partial correlation analyses for actual group size against play types 

in Japanese macaques, controlling for the effect of research effort in months. Partial 

correlation analyses show that total play is positively but not significantly, correlated 

with actual group size. There were too few observations of solitary locomotor, 

object, and social play to permit intra-specific statistical results. 

Table 4.8. Partial correlation analyses of play type, research effort (mo) and 
actual group size in Japanese macaques 

Play type DF F-value p-value co-efficient 

Total 1,4 3.80 0.12 0.17 0.49 
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4·5·3C Papio anubis 

Table 4.9 shows partial correlation analyses for actual group size against play types 

in olive baboons, controlling for the effect of research effort in months. Partial 

correlation analyses show that total play is positively correlated with actual group 

size (Figure 4.14). This result is difficult to statistically quantify, given the small 

sample size. There were too few observations of solitary locomotor, object, and 

social play to permit intra-specific statistical analyses. 

Table 4·9· Partial correlation analyses of play type, research effort (mo) and 
actual group size in olive baboons 

Play type DF F-value p-value co-efficient 

Total 1, 2 0.58 1.0 

4·5·4 Age class 

Conducting intra-specific analyses on age class variations in play is problematic as there 

are few studies within the database that represent species replicates. Here, data for 

Japanese macaques and chimpanzees are presented. There is typically a scarcity of data 

in the literature that detail play rates for separate age classes, as most studies of play 

deal only with infants and/or juveniles. However, individually, most studies report 

decreasing amounts of play with increasing age (e.g. Fairbanks 2000). 

4·5-43 Macacafuscata 

Table 4.10 details regression analyses for age class and play category in Japanese 

macaques. There were too few replicate matches to permit intra-specific analysis on 

solitary, object, and social play. Similarly, insufficient data exist to conduct analysis 

on any age class other than juveniles. Total play is positively, but not significantly 

correlated with the number of juveniles in a group. The amount of total play 

performed by juveniles (juvenile play) is positively, but not significantly correlated 

with the number of juveniles in a group. When actual group size is controlled for, 

juvenile play is negatively, but not significantly, correlated with the number of 

juveniles in the group. 
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Table 4.10. Regression and partial correlation analyses of play type and age 
class in Japanese macaques 

Age class Play type DF F-value p-value co-efficient r2 
(No. in group) 

Juveniles Total 1, 2 1.20 0.47 0.12 0.55 
Juvenile 1' 1 1.17 0.47 0.12 0.55 
~Juvenile 1' 1 0.83 0.52 -18.39 0.45 

- controlled for actual group size 

4·5·4b Pan troglodytes 

Chimpanzees were the only species to yield sufficient data replicates for intra­

specific analyses on age class with play variables. The number of adults in a species' 

group is positively, but not significantly, correlated with the amount of total play, 

solitary locomotor, object or social play exhibited by the group as a whole. In 

controlling for actual group size, the number of adults in a group is positively, but 

not significantly correlated with the amount of play exhibited by adults, expressed as 

a time budget. In controlling for the number of infants in the group, adult play is 

positively, but not significantly correlated with the amount of play expressed by 

adults; the degree of correlation however, is somewhat reduced, suggesting that 

infant number is but one factor driving adult play. 

The number of juveniles in a group is positively but not significantly correlated with 

total play, and negatively but not significantly correlated with solitary locomotor 

play. There were too few matches of object play, and social play with number of 

juveniles to conduct intra-specific analyses. Interestingly, the number of juveniles in 

a group appears to correlate negatively, although not significantly, with the amount 

of play exhibited by juveniles. In controlling for actual group size, there is still a 

negative, although non-significant correlation between juvenile number and juvenile 

play. There were too few observations to control for infant number. In controlling for 

adult number there is a negative but non-significant correlation between number of 

juveniles and juvenile play. 

The number of infants in a group is negatively but not significantly correlated with 

the amount of total and social play exhibited by the group. There were too few 

observations of solitary locomotor play to permit intra-specific analyses. Object play 
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was positively, but not significantly, correlated with infant number. Infant number 

was negatively but not significantly correlated with the amount of infant play 

observed, and this effect holds when adult number was controlled for. In controlling 

for actual group size, infant number was positively but not significantly correlated 

with the amount of infant play observed. 

Table 4.11 Regression and partial correlation analyses of play type and age class 

in chimpanzees 

Age class Play type DF F-value p-value co-efficient r2 
(No. in grou~) 

Adult Total 1, 4 0.17 0.69 0.76 0.04 
Solitary 1, 2 0.02 0.89 0.34 0.01 
Object 1, 2 2.10 0.28 2.35 0.51 
Social 1, 2 1.38 0.36 1.78 0.41 

~Adult 1, 3 5.31 0.10 0.11 0.63 
#Adult 1, 3 0.44 0.55 0.06 0.13 

Juveniles Total 1, 3 0.04 0.86 0.01 0.01 
Solitary 1, 2 0.03 0.88 -0.15 0.03 
Object+ 
Juvenile 1, 3 1.01 0.39 -0.94 0.25 ~ 
Juvenile 1, 3 0.22 0.67 -0.51 0.07 

#Juvenile+ 
-.Juvenile 1, 2 0.26 0.69 -93.03 0.21 

Infant Total 1, 5 0.19 0.68 -0.49 0.04 
Solitary+ 
Object 1, 3 3.44 0.16 0.83 0.53 
Social 1, 2 0.25 0.70 -3.65 0.20 
Infant 1, 2 0.004 0.96 -0.74 0.002 

~Infant 1, 2 0.003 0.96 1.07 0.002 
-.Infants 1, 2 0.10 0.78 -4.96 0.05 

+ Too few observations; - controlled for actual group size; # controlled 
for no. of infants; .., controlled for number of adults 

4·5·5 Sex class 

4·5·5a Macacafuscata 

Table 4.12 below shows regression analyses of sex parameters on play category in 

Japanese macaques. There were insufficient data to conduct intra-specific analyses 

for solitary, object, and social play behaviour. The amount of play performed by 

males (male total play) was the only play type to show a significant correlation, 

when controlled for actual group size; thus male total play was negatively and 
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significantly correlated with the number of males in a group (Figure 4.15), although 

the sample size is very small. Attempts to split the sex parameters into age classes 

were only possible for juvenile males, and no significant correlations were observed. 

Table 4.12. Regression and partial correlation analyses for age and sex 
parameters in Japanese macaques. 

Sex Play type DF F-value p-value co-efficient ra 
Parameter 

No. males Total 1, 2 0.53 0.60 0.06 0.35 
~Total 1, 2 0.82 0.53 -0.35 0.45 
Male play 1' 1 0.07 0.84 -0.03 0.06 
~Male play 1, 1 437.23 0.03 -0.60 0.99 

No. females Total 1, 2 0.79 0.54 0.05 0.44 
~Total 1, 2 0.82 0.53 -0.44 0.45 
Female play+ -

Split by age class: 
No. males Total 1, 2 0.84 0.45 0.36 0.30 
Uuvenile) ~Total 1, 2 0.22 0.68 0.22 0.10 

Male play 1, 2 0.11 0.78 0.15 0.05 
~Male play 1, 2 3.44 0.98 -0.009 1.72 

Juvenile play 1, 2 0.88 0.52 0.19 0.47 
~Juvenile play 1, 2 0.88 0.50 0.19 0.48 

+ Too few observations; - controlled for actual group size 

4·5·5b Pan troglodytes 

Table 4.13 shows regression analyses of sex parameter on each play category in 

chimpanzees. Raw regressions are shown alongside those that have been controlled 

for group size. The number of males in a group is positively, but not significantly 

correlated with all play types in chimpanzees. This trend does not appear quite so 

uniform when based on the number of females in a group, however none of the 

correlations are statistically significant. When these analyses are split by age class, 

only the number of adult females in a group is significantly correlated with solitary 

play when controlled for group size; the relationship is a negative one (Figure 4.16). 
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Table 4.13. Regression and partial correlation analyses for play type and sex 
parameters in chimpanzees. 

Sex Play type DF F-value p-value co-efficient r" 
Parameter 

No. males Total 1, 3 4.83 O.I2 2.22 0.62 
~Total 1, 3 0.37 0.59 1.56 O.li 
Solitary 1, 2 0.75 0.48 1.85 0.27 

~Solitary I, 2 3.66 0.19 4.52 0.65 
Object 1, 2 3.72 0.30 2.11 0.79 

~Object 1, 2 7.09 0.23 3.33 0.88 
No. males Social 1, 2 9.10 0.09 2.86 0.82 

~Social 1, 2 3.35 0.21 3.97 0.63 
Male play I, 2 0.61 0.58 0.51 0.38 

~Male play 1' 2 81.59 0.07 1.17 0.99 
No. females Total 1, 3 2.04 0.25 0.70 0.40 

~Total 1, 3 0.37 0.57 -1.56 0.11 
Solitary 1, 2 0.06 0.83 -0.24 0.03 

~Solitary 1, 2 3.66 0.19 -4.52 0.65 
Object 1, 2 0.03 0.89 0.11 0.03 

~Object 1, 2 7.09 0.23 -3.33 0.88 
Social 1, 3 0.26 0.65 0.21 0.08 

~Social 1, 3 5.47 0.10 -4.05 0.65 
Female play I, 2 0.03 0.89 0.02 0.03 

~Female play 1, 2 4.58 0.27 -0.38 0.82 
Split by age class: 
No. males Total I, 4 0.01 0.92 -0.09 0.003 
(adult) ~Total I, 4 1.36 0.30 1.23 0.25 

Solitary I, 2 0.78 0.47 3.82 0.28 
~Solitary 1, 2 0.78 0.47 3.84 0.28 

Object I, 2 0.27 0.69 2.53 0.2I 
~Object I, 2 7.09 0.23 6.92 0.88 

Social I, 3 0.08 0.79 0.30 0.03 
~Social 1, 3 2.07 0.25 1.80 0.41 
Adult play 1, 2 2.78 0.34 0.49 0.74 
~Adult play 1, 2 0.12 0.78 0.24 0.11 
Male play 1, 2 1.52 0.34 -0.52 0.43 
~Male play 1, 2 0.08 0.79 -0.26 0.04 

No. females Total 1, 4 1.37 0.31 2.07 0.26 
(adult) ~Total 1, 4 0.96 0.38 -3.81 0.19 

Solitary 1, 2 0.03 0.87 -0.41 0.02 
-Solitary 1, 2 5559.89 0.0002 -22.55 1.0 
Object 1, 2 0.04 0.87 0.34 0.04 
~Object 1, 2 7.09 0.22 -10.18 0.88 

Social 1, 2 0.38 0.60 1.16 0.16 
~Social 1, 2 4.23 0.17 -16.58 0.68 
Adult play 1, 2 32.45 0.11 1.50 0.97 

-Adult play 1' 2 0.12 0.78 3.18 0.11 
Female play 1, 2 0.11 0.79 0.08 0.10 

~Female play 1, 2 4.58 0.27 2.07 0.82 
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Sex Play type DF F-value p-value co-efficient r2 
Parameter 

No. males Total 1, 2 3.66 0.19 -0.61 0.65 
Guveniles) -Total 1, 2 2.85 0.23 -1.51 0.59 

Solitary 1, 2 0.003 0.97 0.12 0.003 
-Solitary 1, 2 9.93 0.19 -8.53 0.91 
Object+ 
Social 1, 2 1.51 0.34 -0.79 0.43 

-Social 1, 2 0.07 0.82 -0.56 0.03 
Juvenile play 1, 2 24.82 0.13 -4.32 0.96 

-Juvenile play 1, 2 0.24 0.71 -7.64 0.19 
Male play 1, 3 1.22 0.35 0.46 0.29 

-Male play 1, 3 0.43 0.56 0.74 0.13 
No. females Total 1, 4 4.18 0.11 0.54 0.51 
Guveniles) -Total 1, 4 5.47 0.07 0.79 0.58 

Solitary 1, 2 0.06 0.85 -0.31 0.05 
-Solitary 1, 2 9.93 0.19 -2.46 0.91 
Object+ 
Social 1, 2 7.20 0.23 -1.08 0.88 
-Social 1, 2 1.60 0.43 -1.75 0.62 
Juvenile play 1, 2 121.35 0.06 -2.59 0.99 

-Juvenile play 1, 2 1.60 0.42 -1.75 0.62 
Female play 1, 2 11.80 0.18 0.35 0.92 

-Female play 1, 2 0.07 0.83 0.18 0.07 
No males Total 1, 2 1.74 0.32 9.74 0.47 
(infants)-Total 1, 2 0.05 0.84 8.97 0.03 

Solitary 1, 2 0.66 0.56 -10.00 0.40 
-Solitary 1, 2 5.31 0.26 -54.10 0.84 
Object+ 
Social 1, 2 0.003 0.96 0.79 0.003 

-Social 1, 2 8.58 0.21 -49.40 0.90 
Infant play 1' 2 1.01 0.50 -27.60 0.50 

-Infant play 1, 2 3.11 0.33 -125.68 0.76 
Male play 1, 2 0.16 0.76 -1.54 0.14 

-Male play 1, 2 81.59 0.07 -15.22 0.99 
No. females Total 1, 2 3.15 0.22 8.95 0.61 
(infants) -Total 1, 2 1.24 0.38 7.27 0.38 

Solitary+ 
Object+ 
Social+ 
Infant play 1, 2 5.12 0.26 15.86 0.84 
Female play+ 

+ Too few observations; - controlled for actual group size 
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4.5.6 Space per individual 

Fig. 4.16 Partial correlation of solitary 
play, actual group size, and number of 
adult females in Pan troglodytes 

The following analyses attempt to identify the effect that captive space may have on the 

exhibition of play within species. 

4.5.6a Macacafu.scata 

Table 4.14 shows regression analyses of total play on space per individual in 

captive Japanese macaques. There were too few data to conduct intra­

specific analyses on solitary, object, and social play. Total play is positively 

but not significantly correlated with increasing space in Japanese macaques. 

In controlling for group size a similar result is observed. 

Table 4.14. Regression and partial correlation analyses of total play on 
space per individual in Japanese macaques 

Play type DF F-value p-value co-efficient r2 

Total 1, 2 0.45 0.57 0.24 0.18 
~Total 1, 2 0.61 0.52 0.27 0.23 

- controlled for actual group size 

4.5.6b Pan troglodytes 

Table 4.15 shows regression analyses of total play on space per individual in captive 

chimpanzees. There were too few data to conduct intra-specific analyses on solitary, 

object, and social play. Total play is positively but not significantly correlated with 
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increasing space In chimpanzees. In controlling for group size a similar result 1s 

observed. 

Table 4.15 Regression and partial correlation analyses of total play on space per 
individual in chimpanzees 

Play type DF F-value p-value co-efficient r2 

Total 1, 3 1.16 0.36 0.05 0.28 
~Total 1, 3 2.18 0.24 0.06 0.42 

- controlled for actual group size 

4·5·7 Developmental trajectory 

The following graphs (Figures 4.17 -4.27) plot the developmental trajectory of play 

across the juvenile period in a number of different species. 
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Figs. 4·17-4.27. Developmental trajectory of total play in selected primates. 

Age at weaning: A. palliata, 21 mo; C. aethiops, 8.5 mo; G. gorilla, 52 mo; M. 
arctoides, 9 mo; M. fuscata, unknown; M. mulatta, unknown; P. troglodytes, 
48 mo; P. anubis, 14 mo; P. cynocephalus, 17 mo; P. hamadryas, unknown; S. 
fuscicollis, 3 mo. 

4·5·8 Daily fluctuations 

Play is sensitive to environmental variables, and its frequency fluctuates during the day. 

The following figures (Figures 4.28-4.35) detail intra-specific variation in daily play 

frequency trajectory in selected primate species. A summary of primates as an order 

appears in the Appendix. 
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Figs 4.28-4.35 Average daily fluctuation in play frequency in selected primates. 
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4.6.1 Research effort 

The hypotheses predict that as a study increases in length, the number of play 

behaviours observed in that species will increase to a certain point, after which the 

relationship asymptotes as a species' behavioural repertoire becomes fully observed. 

This is certainly the case among the studies on red colobus monkeys analysed here, 

although the result is not significant for any of the other species focused upon within 

this chapter. Although these results are not necessarily specific to the exhibition of 

play, this analysis allows us to control for research effort. These results may reflect the 

nature of each study, and the extent to which the literature is reported, rather than being 

a definitive insight to a species' behavioural repertoire for play or any other given 

behaviour. 

As with the number of different behaviours within a species' play repertoire, it is also 

likely that the amount of play (as a time budget) will show a similar trend: the longer 

the study, the more instances of a particular behaviour are likely to be reported. Again, 

these results are significant only within red colobus monkeys, and only for the 

exhibition of social play behaviour. 

4.6.2 Group size 

Actual group size (the total number of individuals within each study group) is positively 

and significantly correlated with social play in red colobus monkeys and olive baboons, 

but negatively and significantly correlated with object and social play in chimpanzees, 

and with no significant association in Japanese macaques. In the independent contrasts 

analyses in Chapter 6, mean species group size was only positively and significantly 

correlated with social play in primates and carnivores; the results showed that social 

group sizes, such as clique size, were better predictors of play frequency than the 

overall mean group size. Intra-specifically however, these results suggest that in 

species with very large group sizes, such as red colobus monkeys and olive baboons, 

with mean group sizes of 34 and 50, respectively (Barton 1999; Dunbar 1992), group 

size is important with regards to the time budget for play, but that in species with 
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relatively smaller group sizes in comparison, such as chimpanzees (28 [Barton 1999]) 

the reverse is true. The result for Japanese macaques is interesting, as in the wild they 

live in large groups of around 36 (Barton 1999) and up to 194 (Rowe 1996); the largest 

group size in my collated data reached well in excess of this figure, at 316 individuals 

(Rostal & Eaton 1983). The correlation between group size and play in the results 

however, was non-significant (although positive). It may be the case that very large 

groups offer the capacity for increased clique sizes (for example), and that the overall 

group size is merely a function of this. Similarly, the larger the group, the increased 

likelihood of infants and juveniles, which would arguably increase the amount of play 

behaviour observed. In social species, such as primates, it is likely that social changes 

will create fluctuations in the exhibition of behaviour, and play may be affected thus. 

Merrick (1977) reports that following the death of an adult female, play frequency fell 

to its lowest point in a group of captive chimpanzees. Similarly, socially directed 

behaviour in a captive group of sloth bears (Ursus ursinus) decreased in the presence of 

an unfamiliar adult male (Forthman & Bakeman 1992). 

4.6.3 Age class 

It may be that group size alone is not a good general predictor of play frequency. The 

literature suggests that it is juveniles and infants that exhibit the most play, and thus 

perhaps it is the age composition of the group members that is important. However, 

when group composition was tested for, in terms of age class for individuals in each 

group, no significant results emerged for either Japanese macaques or for chimpanzees. 

Interestingly, even the number of individuals in each age class did not predict the 

amount of play performed by that age class (e.g. juvenile play was not significantly 

correlated with number of juveniles in chimpanzees). Explanations for this are unclear, 

although it suggests that there is a further factor at work within the expression of play in 

these species. Small sample sizes may also play a role in this result. 

4.6.4 Sex class 

Age alone does not appear to explain play frequencies at an intra-specific level in the 

primate species focused upon here. As the literature repeatedly reports that males are 
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more playful than females, the analyses seek to evaluate to what extent this may be true 

for intra-specific comparisons. Social play is likely to be the play type that is most 

explained by the sex composition of a group in primates, given the tendency of males to 

engage in rough-and-tumble play (Meaney et al. 1985). In Japanese macaques, despite 

the small sample size, it is interesting to note that the number of males in a group 

negatively predicts the amount of play exhibited by males, suggesting that different 

group dynamics or demographics are more important to play than simply number. 

However, when splitting the number of males and the amount of play into age-class 

categories, there were no significant correlations for Japanese macaques. A similar 

result is seen in chimpanzees, where age and sex class splits do not appear to explain 

play variance. Indeed, the only significant result is a negative correlation between 

solitary play and the number of adult females present in a group. 

Given the nature of play, and its liability to fall into sex-specific and age-specific 

groupings, it is expected that within species, this relationship would hold. These results 

suggest that this is not necessarily the case, although explanations for this remain 

unclear. One potential problem with these intra-specific analyses is the extremely small 

sample sizes, and future research should aim to test these relationships across a wider 

number of species replicates. 

4.6.5 Space per individual 

If group composition in terms of age and sex cannot sufficiently explain play variance 

within a species, it is necessary to consider other external factors that may be 

influential. Play has been shown to be sensitive to the effects of space and confinement 

(Fagen 1981; Burghardt 1984; Schapiro & Mitchell 1986; Jensen et al 1998; Jensen 

1999, 2001). For this reason, a parameter for space per individual was analysed with 

total play. There are positive, although non-significant correlations between space per 

individual and total play in Japanese and rhesus macaques, and also in chimpanzees, 

indicative of no real association between these variables. 

Explanations for these results are unclear. There are conflicting reports in the literature 

claiming that small or isolated enclosures negatively affect normal behaviour and 

reduce play frequencies in captive animals (Blackshaw et al. 1997; Herskin & Jensen 
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2000). However, studies on pigs have shown that individuals housed in large enclosures 

may play less than those in smaller pens (Apple & Craig 1992). With larger sample 

sizes, the intra-specific results in this chapter may have welfare implications, although 

the sample sizes in these analyses remain rather too small to be convincing correlations 

in either direction in this case. As stress is a factor most likely to decrease play 

(McCune 1992; Carlstead et al. 1993 ), it may be the case that it is the way in which the 

enclosure is enriched that proves more of a predictor of play, be it high quality 

environmental enrichment that increases play through the potential to stabilise social 

groups (Carlstead & Shepherdson 1994; [this is also the case with playground designs 

for children, see Barbour 1999]), or alternatively a lack of environmental enrichment 

increasing play as displacement behaviour (Apple & Craig 1992). Further investigation 

of these and similar results may potentially provide information pertinent to animal 

welfare, although more work is required to address these issues in more depth. 

4.6.6 Developmental trajectory 

The developmental trajectory plots in this chapter typically show two peaks in play 

frequency; one soon after play begins in infancy, and one later in the juvenile period. 

The first peak is usually followed by a rapid decline in play behaviour, which 

eventually increases to bring about the second peak in play activity just prior to weaning 

age. After this period, play declines steadily with the onset of adulthood. These 

patterns have been reported throughout the theoretical and empirical literature on play 

behaviour (e.g. Fagen 1993; Byers & Walker 1995). Indeed, the patterning of play 

during the juvenile period has been used to hypothesise that mammalian play has 

evolved to enhance the developing neuro-muscular system during sensitive periods 

(Byers & Walker 1995; Fairbanks 2000). For some of the species detailed in this 

chapter, available data on play rates throughout juvenility are not available for a period 

long enough to cover the second peak, or weaning age. However, it is worth noting that 

play peaks in baboons appear to tie in with time at which they lose their natal coats 

(Altmann 1998). 

There are insufficient data to detail developmental trajectories for different types of play 

in primate species, although Fairbanks (2000) has done so with vervet monkeys. She 

concludes that solitary play begins early in infancy, being quickly replaced by social 
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play as the most common form of play; social play peaks at around 12 months in 

vervets, and declines steadily to adult levels towards the end of the juvenile period. 

Object play usually begins later and decreases in frequency with increasing age. It 

appears that play trajectories can be measured in tandem with dental eruption and 

midlactation; social play peaks tend to coincide with the eruption of the first molar, and 

decline to adult levels by the emergence of the third molar (Fairbanks 2000). These 

patterns remain consistent across primate species, thus giving further credence to the 

argument that play serves important functions in mammalian development. Play is not 

timed to maximise physical functions that would benefit an animal for training purposes 

(the getting into shape hypothesis, Byers 1998; Byers & Walker 1995), but play is timed 

with neuromuscular plasticity, thus it seems highly likely that the timing of play 

behaviour in mammals has evolved to permanently influence the CNS during the 

juvenile period (Fairbanks 2000). Further studies should aim to delineate the 

developmental timing of different play categories across species, in an attempt to 

understand more the clearly the functions that different forms of play have in modifying 

neural pathways before adulthood. 

4.6.7 Daily fluctuations 

The frequency of play fluctuates over the course of the day, and peaks in activity are 

usually reported during the early part of the day and towards the end of the day and at 

dusk, when daily temperatures are lowest. Although the actual patterning of daily play 

activity is different from species to species, the general trends are similar. Future 

studies should aim to test the degree to which species living at different latitudes differ 

in their typical daily play patterns, and the extent to which seasonality affects this 

patterning. 
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4e7Summary 

Intra-specific analyses here indicate that there is indeed much variation in play between 

different species, but that it is not always clear what factors are driving these changes 

within species, based on analysis of species replicates for parameters such as group size, 

age- and sex class, and habitat space. It is likely that some key elements, such as group 

composition, eo-drive the exhibition of play within species with an external variable, 

such as an environmental correlate. However, given the paucity of suitable data, and 

data-matches, intra-specific analyses here prove difficult and inconclusive. Further 

empirical studies should aim to identify these factors in the field and report the data, and 

comparative and intra-specific studies should collate and analyse these data, hopefully 

with larger sample sizes. Alternatively, it may be that each species is programmed to 

play according to its typical group size, environment, etc., and thus little or no 

correlation will be found across conspecific populations. 
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Chapter 5: 

Play & Life--History 

Patterns 

5.1 Introduction 

This chapter will focus on how life-history variables are correlated with each category 

of play behaviour, and what this might indicate about behavioural evolution in primates 

and carnivores. Partridge & Harvey (1988) define life-histories as "the probabilities of 

survival and the rates of reproduction at each stage in the life span". The diversity of 

life-histories across taxa is variable, but limited (Harvey et al. 1987) and is often 

determined by habitat stability (Partridge & Harvey 1988) and body size (Harvey & 

Clutton-Brock 1985). For the study of play then, it is therefore important to understand 

the ways in which play distribution is related to different life-history strategies (Bekoff 

1989b). 

5.1.1 Reproduction and gestation 

Body size is a variable that is strongly connected to life-history parameters in mammals; 

indeed, in primates, body weight may explain up to 80% of this variation (Ross & Jones 

1999). It is certainly the case that an animal is constrained by its size in terms of 

reproduction and the way in which it can experience and utilise the surrounding 

environment (Ross & Jones 1999). It has also been argued that brain growth, rather than 

body size, constrains variables such as gestation length in mammals (Sacher & Staffeldt 

1974); this is thought to be because neural tissue grows much more slowly than other 

somatic tissues, and thus there is a correlation between gestation length and neonate 
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brain size (Harvey & Clutton-Brock 1985). In primates, gestation length varies between 

60 and 250 days, and birth weight between 10 and over 2000 g (Harvey & Clutton­

Brock 1985). Carnivores too, exhibit diversity in their reproduction, both in terms of 

behaviour, and in output. Much of this variation is due to differences in body size 

(Bekoff et al. 1984). The difficulty, as with the other variables, is that there is often a 

paucity of suitable studies from which to glean life-history data (Harvey & Clutton­

Brock 1985); this is especially true of carnivores, where most families other than the 

Canidae are underrepresented (Bekoff et al. 1984). 

Reproductive variables, as well as correlating with body size (Ross & Jones 1999), may 

also correlate with habitat or lifestyle. In carnivores, the extent of aquatic living in 

certain species may be important; true marine species usually produce a single precocial 

neonate, and this pattern is true of pinnipeds, cetaceans, sirenians, and the only true 

marine carnivore, the sea otter (Enhydra lutris). Other aquatic carnivores such as 

freshwater otters (lutrines) typically bear litters of 4-6 (Estes 1989). Reports exist of 

sea-otters giving birth to twins, however, only the strongest of the twins will be weaned 

by its mother, and the other twin is usually abandoned (Jameson & Bodkin 1986; Estes 

1989). Habitat and genetic diversity and distribution may also affect reproductive 

output in terms of finding suitable mates. Indeed, this is a problem exacerbated in males 

of both wild and captive populations of cheetahs (Acinonyx jubatus), lions (Panthera 

Ieo ), and Florida panthers (Puma con eo/or coryi) with the condition of teratospermia. 

This condition is characterised by a high proportion of abnormal sperm per ejaculate, 

thus female ova are often not fertilised. Teratospermia is believed to have arisen due to 

a lack of genetic diversity in local populations (Wildt et al. 2001 ). 

As with socio-ecological factors such as group size, carnivore and primate life-histories 

are affected by diet. In canids for example, relatively larger (although fewer) offspring 

are born to typically omnivorous species, such as crab-eating foxes (Cerdocyon thous), 

than to exclusive carnivores such as coyotes (Canis latrans) (Bekoff et al. 1984). It has 

been hypothesised that this is due in part to the relationship between food preferences 

and reproductive effort: omnivores may experience fewer threats to reproductive 

success as they can monopolise a greater supply of food sources throughout the year 

(e.g. Smithers 1971 ), thus more likely to enable stasis of body fat which facilitates 

longer gestation and lactation periods, and play; whereas in times of food scarcity, 
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exclusive meat-eaters might expenence more marked difficulty in maintaining 

nutritional levels (Bekoff et al. 1984). Alternatively, it may be that large and exclusive 

carnivores exhibit higher levels of playfulness in comparison with smaller omnivorous 

species, as they require increased hunting experience prior to leaving the natal group 

(Bekoff et al. 1984 ). In this case, we should expect to see exclusive carnivores 

exhibiting more object play. 

5.1.2 Precocial vs. altricial 

Animals exhibit differing degrees of neonatal development, m terms of 

thermoregulation, nutrition, locomotion, and sensory development, and the extent to 

which this development varies, is described in terms of altricial and precocial young 

(Derrickson 1992). There is generally a lack of behavioural development data in 

ethological literature, especially for carnivores (Bekoff 1989b ), and thus it is important 

to distinguish between altricial and precocial species where possible, in the study of 

animal behaviour. 

In mammals, altricial species are typically those that are relatively undeveloped and 

helpless at birth, and thus reliant on maternal effort to impart warmth and food for 

survival (Derrickson 1992). Altricial species typically produce small-bodied offspring 

in large litters; most brain development occurs postnatally, so although neonate brains 

are small at birth, by adulthood their brains have developed to a comparable size as the 

brains of other mammals of a similar body size (Bennett & Harvey 1985). Precocial 

mammalian species are typically those that are well developed as neonates, and that can 

achieve independence quickly. Precocial species give birth to heavier neonates, in 

smaller litters, and over a longer gestation period, and thus are relatively well developed 

at birth; they do however tend to reach full adult mass at a slower rate than do altricial 

species (Derrickson 1992) and thus may present a longer juvenile period, which would 

potentially increase the opportunity to engage in play behaviour. Precocial species 

typically have reduced levels of postnatal brain growth in comparison with altricial 

species, having higher levels of foetal brain growth, and thus precocial species have a 

larger neonatal brain weight than do altricial neonates (Bennett & Harvey 1985). 

Humans are an exception to this rule in that they have extensive pre- and post-natal 

neural development (Harvey & Clutton-Brock 1985; Key 2000). 
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The altricial-precocial scale is very much a continuum, with some spectes being 

relatively more altricial or precocial than others (Burghardt 1988). The ancestral 

mammalian condition is likely to have been for a relatively small body size with 

altricial neonates (Derrickson 1992). Indeed, the majority of extant mammals are 

altricial at the genera and species levels, but precocial neonates are present in many 

orders (Derrickson 1992). In canids, for example, relative female body size is a good 

indicator of altricia1ity; larger females give birth to larger litters of smaller neonates 

who are relatively altricial; in contrast, smaller females produce fewer and more 

precocial offspring (Moehlman 1989). In this vein, the degree to which a species 

produces precocial or altricial infants is also indicative of other aspects of life-history 

and socio-ecology. Species in which neonates are altricial tend also to be species with a 

high degree of territoriality, and in some cases, a prevalence of infanticide. Female 

territoriality is common among some fissipeds and some strepsirhines, who also give 

birth to relatively non-mobile altricial young. This is in contrast to pinnipeds and 

haplorhine primates, whereby female territoriality is usually reduced or absent, and 

neonates are mobile altricial or precocial (W oolf 1997). Allometric analyses indicate 

that there is a positive and significant relationship between neonate weight, litter 

weight, and maternal body weight (Moehlman 1986; Ross & Jones 1999). Thus in the 

analyses in this chapter, body size, and maternal body size have been partialled out 

using residual regression. Fissiped carnivores, marsupials, and insectivores are typically 

altricial (Bennett & Harvey 1985) and are born with limited locomotor abilities, 

nominal visual, acoustic, and olfactory functions, and a long period of maternal 

dependence during which infants become "socialised" (Bekoff 1977) and develop motor 

and social skills (Bekoff 1989b ). Pinnipeds, primates, chiropterans, artiodactyls, 

perissodactyls, proboscideans, and cetaceans are typically precocial (Bennett & Harvey 

1985). Primates, for example, are relatively more mature at birth than other altricial 

mammals such as rats, cats, and dogs. However, in spite of this high level of precocial 

physical development, primates are sometimes considered behaviourally altricial, being 

relatively mobile, but reliant on maternal input for milk, warmth, and safety (Nicholson 

1987; Wolff 1997). By contrast, in birds and reptiles, altricial species have larger 

brains, but that are smaller at hatching, than do precocial species (Bennett & Harvey 

1985). In birds, precocial species grow at 25% the rate of altricial species (Derrickson 

1992). 
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5.1.3 1'he e:ffed o1flhalbliita1!: 

Ecological variables are known to affect life-history diversity, and habitat variation is a 

key factor affecting life-histories (Harvey & Clutton-Brock 1985; Partridge & Harvey 

1988). Species that occupy open grasslands (e.g. African wild dogs, Lycaon pictus) tend 

to produce relatively smaller offspring than woodland (e.g. culpeo, Dusicyon culpaeus; 

cougar, Puma concolor) or forest-dwelling species (e.g. dhole, Cuon alpinus; ocelot, 

Leopardus pardalis) (Bekoff et al. 1984). Again, this may be due to dietary diversity 

with increasingly forested habitats facilitating a wider array of food sources (Kleiman & 

Eisenberg 1973). Gittleman (1984) found that forest-dwelling and aquatic mustelids 

such as minks and otters respectively, reach sexual maturity later in comparison with 

open grassland or woodland species such as badgers (Meles meles). This longer period 

of juvenility might explain the apparent playfulness of such species. Conversely, social 

species tend to occupy open habitats in larger groups (Gittleman 1989), which may act 

in predator avoidance, as well as providing an increased need to engage in play. 

s;.:n..4 Longevity 

Perhaps the best predictor of life-history variation is that of mortality, where species 

with lower longevity tend to reach maturity sooner, than in comparison with naturally 

long-lived species; thus those with a high adult mortality rate quite literally "live fast 

and die young" (Promislow & Harvey 1990). Mammals with a long life-span, tend to 

reach sexual maturity later, and produce precocial young, after a long gestation period; 

this is especially true of primates (Ross & Jones 1999; Alvarez 2000). Other mammals 

with a higher rate of adult mortality conversely tend to have a shorter natural lifespan, 

with a high birth rate, and give birth to altricial young (Ross & Jones 1999). 

Unsurprisingly then, body size is a further factor in mammalian life-spans, with larger 

species usually far outliving smaller ones; there is one notable exception to this within 

pinnipeds however, with the largest species, the elephant seal (Mirounga 

angustirostris), being rather short-lived (Estes 1989). Among carnivores, the problems 

of genetic diversity in extant populations (Wildt et al. 2001) may also be represented by 

longevity data; reproductive rates, juvenile weight, sexual maturation, and lifespan are 

all seriously reduced by the deleterious effects of inbreeding, and may be especially 

prevalent in social canids such as wolves (Canis lupus) (Laikre & Ryman 1991). 
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5.2 Methods 

The data on primate body size (g) are taken from a compilation in Barton (1999), and 

carnivore body size from Deaner et al. (in press), Gittleman (1986), Bininda-Emonds 

(2000) and Oftedal & Gittleman (1989). The data for primate life-history variables are 

taken from Barton (1999), Ross & Jones (1999), Deaner et al. (in press), Harvey et al. 

(1987), and additionally from Rowe (1996), and Sacher & Staffeldt (1974). Carnivore 

life-history data are taken from Gittleman (1989), Oftedal & Gittleman (1989), Mead 

(1989), and Deaner et al. (in press). The data on each type of play behaviour were 

collected from the existing primate and carnivore behaviour literature, as detailed in 

Chapter 2. I used the method of independent contrasts (Felsenstein 1985; Harvey & 

Pagel 1991) with the primate phylogeny based on Purvis (1995), and the carnivore 

phylogeny from Bininda-Emonds et al. (1999). The analyses were conducted using the 

CAIC computer software programme (Purvis & Rambaut 1995), using the CRUNCH 

option for continuous variables, and the BRUNCH option for dichotomous variables. 

Statistical analyses of the output from CAIC were carried out using StatView versions 

4.0 and 5.0. Regressions were set through the origin (Purvis & Rambaut 1995). For the 

purposes of these analyses, the data have been log-transformed, rendering them suitable 

for standard regressions (Freckleton 2000; Purvis & Rambaut 1995). 

As life-history variables are highly correlated with body size, the statistical analyses, 

unless otherwise indicated, were corrected for body size; this was done by regressing 

body size (independent variable X) on a dependent variable (Y) (such as gestation 

length) to get the residual; the residual was then used as the independent variable in a 

regression of X on the play category variable Y. The effect of this is to partial out the 

effect of body size from the analysis. 

Bonferroni procedure was used to adjust the statistical significance at a 5% significance 

level (Moore & McCabe 1999). The equation for Bonferroni procedure is: 

alk 

Where a is the protection level, or "cut-off' point for significance, and k is the number 

of tests in the sample. For regression analyses that meet statistical significance prior to 
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Bonferroni corrections, the graphs are presented here to be illustrative of a likely effect, 

given that sample sizes are often small; this is especially true of analyses on carnivore 

play and life-history variables in this chapter. 

5e3 Hypotheses 

The following hypotheses are presented for play in primates and carnivores with regard 

to life-history determinants. The null hypothesis, Ho, states that there will be no 

association between play behaviour and the life-history variable in question. Below, 

alternative hypotheses, Ha, are proffered. 

1. Body size will correlate with social, but not non-social, play. 

As body size appears to be a confounding variable in most life-history traits (e.g. Bekoff 

& Byers 1985; Burghardt 1988; Pagel & Harvey 1993), which in turn may have an 

affect on development and behavioural output, it is likely that play behaviour too will 

be confounded by body size. This is likely to be due to metabolic constraints (see 

Chapter 6) as well as a play-preference for similar sized players (Fagen 1981 ). Very 

small mammals are seldom reported to play; for example, in marsupials, the smallest 

mouse-like species play very simply and in low amounts, whereas the larger species 

play far more complexly and devoting a greater proportion of their daily time budget to 

play (Fagen 1981: 81-82). Such differences in play output are unclear, although it may 

be concerned with the relative degree of precociality or altriciality, or with prey-status, 

that is, the extent to which the species is more or less likely to be a predator or prey 

species. Indeed, larger species are more likely to be diurnal and gregarious, especially in 

primates (Harvey et al. 1987), and thus relatively larger species may have evolved a 

mechanism to allow play more readily than smaller, nocturnal and solitary species. 

Socio-ecological and neurological parameters will be dealt with in subsequent chapters. 

In any case, the extremes of body size may be limiting in terms of energy requirements 

and play output (Burghardt 1988). 
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It is possible that sexual dimorphism may correlate with social play, assuming that 

significant differences in body size are reflective of male-male competition, for 

example. Additionally, relative body size is likely to affect interspecific play, as 

differing body sizes between the two species may lead to their play becoming unstable 

(Fag en 1981 ). However, in these analyses, it is unlikely that body size will show a 

correlation with the dichotomous variable of whether or not a species engages m 

interspecies play, as the body size of the other species is not included here. 

2. Play will be strongly associated with rdative development. 

It is predicted that the mode of development, in terms of the altricial-precocial 

distinction, will be a strong predictor of the type and amount of play that is exhibited. 

Thus, young that are precocial are predicted to be those that are most playful (Burghardt 

1988) as their bodies and brains are more developed at birth than those of their altricial 

counterparts. Species with large neonate weight, small litters, and parental care are 

more likely to have evolved under conditions requiring behavioural flexibility, which is 

argued to have given rise to behaviours such as exploration and play (Bekoff & Byers 

1985). Relatively more precocial species also tend to have larger relative brains, with 

higher encephalisation quotients (E.Q.); E.Q is also strongly correlated with life-history 

variables such as longevity and delayed sexual maturity, as well as with information 

storage (Eisenberg 1981 ). It is therefore likely that species born with a relatively long 

gestation period will be those that are relatively most playful. Similarly, and by 

extension, species with a higher relative birth weight, and smaller litter size (indicators 

of precociality) will also exhibit higher frequencies of play. Conversely, it might be the 

case that more altricial species require play in order to wire up their brains during their 

extended postnatal brain development. 

Play usually rises to its peak just prior to weaning at which point it begins its continual 

decline towards the end of the juvenile period and the beginning of sexual maturity 

(Fairbanks 2000). It is likely that by the time of weaning, an individual has developed 

much of its body and brain, and thus its need to play becomes gradually reduced. It is 

predicted that in precocial species, play will occur earlier than in relatively more 

altricial species, although the peak of play activity during development may be the same 

in altricial species. The play peak plots will determine to what extent this is the case. 
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3· Play will be associated with reproductive markers. 

Play is predicted to be associated with reproduction in terms of development, and the 

timing of an individual's first offspring. The period of lactation is also predicted to 

correlate with play time. This is true of mothers and neonates, who will engage each 

other in play during the period of nutritional dependency, and additionally for potential 

siblings, who may engage in play with their infant relation. Inter-birth interval (IBI) is 

also predicted to be a good measure of play in terms of development, as younger 

females typically have a longer IBI than relatively older females (Ross & Jones 1999). 

If this is true, then perhaps it suggests that younger adult females may play more, in 

terms of mother-infant playful interactions. Indeed, Pagel & Harvey (1993) suggest that 

selection pressures act on body size, and in primates, this has resulted in a later age at 

maturity, and reduced adult mortality. Such factors have led to a longer juvenile period 

(Ross & Jones 1999). If it is so that individuals that use this period to their adaptive 

advantage, by gaining behavioural experience, subsequently improve their biological 

fitness, then it can be argued that play during this time also has adaptive benefits. 

4· Longevity may predict patterns of play. 

It is predicted here that species that live longer, will also be those to be most playful. 

This is partly due to longevity correlating with certain other traits associated with 

relative precociality, such as a relative late onset of sexual maturity and relatively large 

brain size, as well as energetic traits such as a low to medium metabolic rate (Hofman 

1993 ). It is thus expected that the longer an animal lives, the more social it is likely to 

be, and thus the more (social) play it is likely to engage in. It should be noted that other 

life-history variables correlate with brain size (e.g. Martin 1989), although body size 

may be a more suitable key variable (e.g. Key 2000; cf. Deaner et al. in press), and thus 

for the purposes of these analyses, it is body size that will generally be corrected for 

with regard to life-history variation. Chapter 7 will deal with brains and play, and 

Chapter 6 with energetic constraints. 
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5·4 Data 

Table 5.1 details continuous life-history variables for primates. Table 5.2 details 

continuous carnivore life-history variables. Further information on data categories are 

detailed in Chapter 2. 
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Table 5.1. Continuous life-history variables for primates 

Species Gestation• Neonatal• litterD Agea11:0 Juvenile* Age ail: a Age at :n.st V' lLactatimn* ][]8][0 Maximum V' 
(days) weight(g) size weaning period sexuall reproduction period (yeus) life-span 

(years) (years) (years) marurity (mo) (mo) (years) 
(mo 

Allenopithecus 
nigroviridis 
Alouatta palliata 187 480.0 1 1.73 - 45.0 43.2 - 1.88 20.0 
Ateles geoffroyi 229 426.0 1 2.25 3.37 48.0 60.0 25.03 2.66 27.3 

....... Callicebus moloch - - 1 0.16 - - 36.0 - 1.00 10.0 
~ Callithrixjacchus 148 28.0 2.1 0.25 1.25 12.0 18.0 - 0.52 12.0 ....,J 

Cebus albifrons 154* 234.0 1 0.75 3.27 43.1 48.0 - 1.5 44.0 
Cebus apella 160 248.0 1 - - - 66.0 8.71 1.79 44.0 
Cebus capucinus 162* 230.0 1 - - - 48.0 16.98 1.6 46.9 
Cebus olivaceus - - 1 2.00 - - - - 2.17 
Cercocebus albigena 177 425.0 1 1.00 - 48.0 49.2 - 2.12 32.7 
Cercocebus atys 167 - 1 - - - 56.4 - 1.08 27.0 
Cercopithecus aethiops 163 314.0 1 1.00 4.0 30.0 42.0 6.69 1.33 31.0 
Cercopithecus diana - 450.0 1 1.00 - - 64.8 - 1.00 34.8 
Cercopithecus hamlyni - - 1 
Cercopithecus mitis 140 402.0 1 1.91 4.01 62.0 51.6 - 3.92 20.0 
Cercopithecus neglectus 182 260.0 1 1.00 - 48.0 48.0 - 1.62 22.0 
Colobus badius - - 1 2.16 - - 49.00 - 2.12 
Colobus guereza - 445.0 1 1.07 - - 56.4 - 1.00 22.3 
Erythrocebus patas 163 - 1 0.58 2.42 33.0 36.0 8.49 1.00 21.6 
Gorilla gorilla 256 2110.0 1 2.75 7.29 78.0 118.2 29.99 3.83 50.0 



Species Gestation• Neonatal• lltterD AgeatD Juvenile* Age at • Age at 1st V LactatiQn* IB][O Maximum V 
(days) weight (g) size weaning period sexual reproduction period (years) life-span 

(years) (years) (years) maturity (mo) (mo) (years) 
(mo) 

Hylobates lar 205 410.5 1 2.00 7.31 108.0 111.6 24.49 2.69 31.5 
Hylobates syndactylus 231 517.0 1 - - - 108.0 - 3.00 35.0 
Lemurcatta 135 88.2 1.2 0.29 1.72 - 24.0 - 1.50 27.1 
Macaca arctoides 175 - 1 - - 30.0 42.0 - 1.48 30.0 
Macaca fascicularis 162 346.0 1 1.15 2.71 - 46.8 7.60 1.07 37.1 
Macaca fuscata 173 503.0 1 1.00 - - 66.0 - 1.50 33.0 - Macaca mulatta 167 481.0 1 1.00 3.5 34.0 45.0 6.39 1.00 29.0 .j:>. 

00 Macaca nemestrina 167 473.0 1 1.00 2.92 35.0 47.3 7.78 1.11 26.3 
Macaca nigra 176 455.0 1 - - - 57.6 - 1.48 
Macaca radiata 162 404.0 1 1.00 - - - - 1.00 30.00 
Macaca silenus - - 1 1.00 - - - - 1.38 38.00 
Macaca sinica - - 1 0.85 - - - - 1.50 
Macaca sylvanus 164* - 1 - - 46.0 57.6 - 1.00 22.0 
Mandrillus sphinx 173 613.0 1 0.96 3.14 - 60.5 10.09 1.46 29.1 
Nycticebus coucang 193 49.3 1 0.49 - - - - 1.00 14.5 
Pan troglodytes 228 1756.0 1 4.00 9.0 118.0 122.4 55.97 5.50 53.0 
Papio anubis 180 1068.0 1 - - - - 20.0 1.16 
Papio cynocephalus 175 854.0 1 1.00 4.50 51.0 73.0 15.0 1.75 
Papio hamadryas 172 443.0t 1 1.00 5.11 - - 18.71 2.00 
Papio ursinus 187 - 1 - - - - 28.97 
Pithecia pithecia 163 - 1 - - - 25.2 - 1.58 13.8 
Pongo pygmaeus 260 1728.0 1 1.12 8.56 84.0 128.4 41.97 6.5 57.3 
Presbytis entellus 168 - 1 1.25 2.17 42.0 51.0 8.30 1.68 25.0 
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Species Gestation• 
(days) 

Neonatal• 
weight (g) 

litter!J Age at 0 
size weaning 

(years) (years) 

Juvenile* Age at • Age at 1st V 
period sexual reproduction 

(years) maturity (mo) 
(mo) 

Lactation* IBID 
period (years) 
(mo) 

Pygathrix nemaeus 165 - 1 - - - - - 1.36 

Maximum V 
Hfe-span 

(years) 

Saguinusfuscicollis 149 40.0 2 0.25 - - - - 1.00 
Saguinus midas 127 36.0 2 0.19 1.81 20.0 24.0 - 0.55 13.3 
Saguinus oedipus 145 43.2 1.9 - - 18.0 22.8 - 0.58 13.5 
Saimiri sciureus 170 195.0 1 0.14 - - 30.0 - 1.17 21.0 
Theropithecus gelada 170 464.0 1 1.23 - 49.5 48.0 - 1.00 19.3 

• Harvey et al. (1987); * Deaner et al. (in press);~ Rowe (1996); 0 Ross & Jones (1999); V Barton (1999); t Sacher & Staffeldt (1974) 



Table 5.2 Continuous life-history variables for carnivores 

Species Gestation+ Birtlln * lit11:er* Age at • Age at~ Age at :n.st " ][B][" MaximUJJ.m" 
(days) weight size weaning independence conception (mo) captive lifespan 

(g) (da;rs) (da;rs) (days) (da;rs) (years) 
Acinonyx jubatus 91.0* 287.5 3.8 108.9 464 645.5 18.0 
Ailuropoda melanoleuca 140.0 104.8 1.5 179.8 - 2312.1 12.0 18.0 
Arctocephalus australis 365.0 
Canis latrans 61.52* 225.0 6.2 98.0 - 364.8 12.0 
Cerdocyon thous 56.0 140.0 3.1 90.0 - 364.7 8.0 
Crocuta crocuta 109.9* 1500.0 2.0 390.0 916 912.0 17.0 23.0 

...... Felis silvestris 67.0* 137.10 3.0~ 84.0 140 313.3 6.0 VI 
0 Haliochoerus grypus 345.0 

Helogale undulata - - 4.0{> 
Lnntra canadensis 305 - 3.0{> 93.0 - 729.5 
Mustela putorius 41.0 - 5.0{> - - - 12.0 
Mustela vison 57.5 - - - - 419.8 12.0 
Panthera Leo 105.4* 1650.0 2.6 150.0 1075 1621.8 25.0 18.0 
Phoca vitulina 300.0 
Selenarctos thibetanus 216.0 - 2.0~ 119.1 337 1185.8 - 33.0 
Speothos venaticus 65.01* 
Ursus americanus 225.0 285.0 2.5 167.8 483 10839.3 27.0 22.5 
Ursus arctos 210.0 1000.0 2.0 729.0 645 1336.6 30.0 25.3 
Thalarctos maritimus 265.5 641.6 1.9 - 821 1733.8 24.0 34.0 

+Mead (1989); * Deaner et al. (in press); * Oftedal & Gittleman (1989); ~ Gittleman 1989 



First, bivariate regressiOns of contrasts of each play category and body size are 

presented, with graphs. Thereafter, results are presented for each play category on life­

history variables, controlling for body size (partial correlation analysis), and graphs are 

only presented for significant results. Statistics are presented for each section where 

there is a significant correlation, and results for the non-significant statistics appear in 

the Appendix. It should be noted that where sufficient data are available, results for 

both primates and carnivores are analysed and presented; however, due to a lack of play 

data, many carnivore analyses are apparently "missing". A summary of the results is 

presented in Table 5.21 at the end ofthis section. 

5·5·1 Primate body size 

Table 5.3 details bivariate regression analyses of contrasts for each play category on 

body size in primates. Mean body size is positively and significantly correlated with 

total play (Figure 5.1 ). Mean body size is not significantly associated with solitary 

locomotor play (Figure 5.2); one outlier has been removed from the result, as indicated 

by the CAIC programme (see Chapter 2), although this does not change the overall 

trend of the graph. Mean body size is positively correlated with object play although 

the result falls short of significance (Figure 5.3); one outlier has been removed from the 

analyses as indicated in the CAIC programme. Mean body size is not significantly 

associated with social play (Figure 5.4). 

Table 5.3 Bivariate regression analyses of play category on mean body size 
in primates 

Pia~ category DF F-value _e-value co-efficient r2 
Total 1,38 12.93 0.009 0.68 0.26 
Solitary 1, 19 0.16 0.70 0.15 0.009 
Object 1' 10 3.68 0.08 0.37 0.27 
Social 1, 22 0.03 0.85 0.003 0.001 
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5·5·2 Carnivore body size 

Contrasts in Jog (mean body size) 

Fig. 5·4 Regression plot of log (social on 
play) on log (body size) in primates 

Table 5.4 details bivariate regression analyses of contrasts for each play category on 

mean body size in carnivores. Mean body size is negatively and significantly correlated 

with total play (Figure 5.5); however, Bonferroni correction renders this result non­

significant. Mean body size is not significantly associated with solitary locomotor play 

(Figure 5.6), although insufficient sample size renders a statistical result impermissible. 

Mean body size is not significantly correlated with object play (Figure 5.7), or with 

social play (Figure 5.8). 
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Table 5·4 Bivariate regression analyses of play category on mean body size in 
carnivores 

Play category DF F-value 

Total 1, 12 
Solitary I, 2 
Object I, 4 
Social I, 8 

Bonferroni 0.013 = n.s. 

5.34 
0.22 
0.86 
O.I4 

.02 ,-------------------, 

.01 

~ -a 0 

~ 
~.01 

~ 
5-m 
~ 
l::l-.03 
§ 
u 

-.04 

0 
0 0 

0 

0 

0 
-.05 '-----------------' 

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
Contrasts in log (body size) 

Fig. 5 ·5. Regression plot of log (total play) 
play) on log (body size) in carnivores 

.06 
0 

.05 

~ 
0. .04 

!.03 0 -S 
~.02 
.5 
!:] .01 
gj 
l:l 0 ~ 
0 
u 

-.01 

.02 .025 .03 .035 .04 .045 .05 .055 
Contrasts in log (body weight) 

Fig. 5·7 Regression plot oflog (object play) 
on log (body size) in carnivores 

p-value co-efficient r2 

0.04 -0.33 0.31 
0.68 0.26 0.10 
0.41 0.39 0.18 
0.9I 0.02 0.002 

.05 .-------------------, 

~ 0. .04 

* .03 
8 
8 .02 

..9 
~ .01 

! 0 

_g'-.01 

·~ -.02 
gj 

~ -.03 

0 

0 

u -.04 L.JJ..._ _____________ __J 

.04 

.03 

~.02 
0. 
., .01 

~ 0 
00 
0 

5-.01 

!-.02 
c 
8-.03 

-.04 

.01 .02 .03 .04 .05 .06 .07 

0 

Contrasts in log (body size) 

Fig. 5.6. Regression plot oflog (total 
on log (body size) in carnivores 

0 

0 

0 
0 

0 
0 0 

0 

0 

.01 .02 .03 .04 .05 .06 .07 .08 .09 
Contrasts in log (body weight) 

Fig. 5.8 Regression plot oflog (social play) 
on log (body size) in carnivores 

5·5·3 Carnivore female body weight 

Table 5.5 details bivariate regression analyses of contrasts for each play category on 

mean female body weight in carnivores. Female body size is negatively and 

significantly correlated with total play (Figure 5.9), however Bonferroni correction 
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renders this result non-significant. Female body size IS not associated with either 

solitary locomotor play (Figure 5.1 0), object play (Figure 5.11 ), or social play (Figure 

5.12). 

Table 5.5 Bivariate regression analyses of play category on female body size in 
carnivores 
Pia~ category DF F-value 

Total 1, 11 6.08 
Solitary 1, 3 0.19 
Object 1, 4 0.58 
Social 1, 8 0.10 

Bonferroni 0.013 = n.s 
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5·5·4 Gestation period 

Partial correlation analyses are used throughout the following sections to remove the 

effect of body size. This was done by regressing the dependent variable (e.g. gestation 

period) on body size (independent variable); these residuals were then regressed against 

each play category. Partial correlation analyses of contrasts for each play category in 

primates revealed a positive but non-significant relationship. Table 5.6 details partial 

correlation analyses of contrasts for each play category on gestation length in 

camtvores. Gestation length is not significantly correlated with total, solitary 

locomotor, or object play. Gestation period is however positively and significantly 

correlated with social play in carnivores (Figure 5.13). 

Table 5.6. Partial correlation analyses of play type on gestation length in 
carnivores controlling for female body size 

Play type DF 

Total 1, 12 
Solitary 1, 2 
Object 1, 4 
Social 1, 7 

F-value 

0.05 
9.75 
0.01 
11.34 
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0. 
:§ .02 
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Fig. 5.13 Partial correlation plot of log (social play) on log (gestation period) in carnivores 

5·5·5 Birth weight in primates 

Table 5. 7 shows the results of partial correlation analyses of contrasts for each play 

category on birth weight in primates, removing the effect of body size. Birth weight is 
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not significantly associated with total, solitary, or object play in primates. Birth weight 

is however, positively and significantly correlated with social play in primates (Figure 

5.14). 

Table 5·7· Partial correlation analyses of play category on birth weight in 
primates, controlling for body size 

Play type DF F-value p-value co-efficient r2 

Total 1, 29 0.16 0.69 0.12 0.005 
Solitary 1, 16 1.98 0.18 1.30 0.11 
Object 1, 8 0.92 0.37 0.29 0.10 
Social 1,16 6.84 0.002 0.55 0.30 

Partial correlation analyses were similarly conducted of contrasts for each play category 

on birth weight in carnivores. None of the play categories were significantly correlated 

with birth weight in carnivores . 
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Fig. 5.14 Partial coiTelation plot oflog (social play) on log (birth weight) in primates 

5.5.6 Litter size 

Partial correlation analyses of contrasts for each play category on litter size in primates 

show no significant correlation. 

Table 5.8 shows partial correlation analyses of contrasts for play category on litter size 

in carnivores, controlling for body size. Litter size is not significantly correlated with 
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solitary locomotor, object or social play. Litter size 1s however negatively and 

significantly correlated with total play in carnivores (Figure 5.15). 

Table 5.8. Partial correlation analyses of play type on litter size in carnivores, 
controlling for female body weight 

Play type DF F-value p-value co-efficient 

Total 1, 9 57.34 <0.0001 -2.58 
Solitary+ 
Object 1, 2 7.20 0.11 -4.47 
Social 1, 4 0.41 0.56 -0.90 

+Too few observations 
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Fig. 5.15 Partial correlation plot of log (total play) on log (litter size) in carnivores 

5·5·'7 Age at weaning 

Table 5.9 details partial correlation analyses of contrasts for each play category on 

weaning age in primates, controlling for body size. Age at weaning is negatively and 

significantly associated with total play (Figure 5.16). Age at weaning is not 

significantly associated with solitary locomotor, object of social play. 
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Table 5.9. Partial correlation analyses of play category age at weaning in 
primates, controlling for body size 

Play type DF F-value p-value co-efficient r2 

Total 1, 15 16.46 0.001 -1.10 0.52 
Solitary 1, 7 1.04 0.34 -1.15 0.13 
Object 1' 3 0.35 0.59 -0.38 0.11 
Social 1, 8 0.09 0.77 0.19 0.01 

Partial correlation analyses of contrasts for each play category on age at weaning in 

carnivores, controlling for body size shows no significant correlation. 
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Fig. 5.16. Partial correlation plot oflog (total play) on log (age at weaning) in primates 

5.5.8 Juvenile period in primates 

Table 5.10 details results of partial correlation analyses of contrasts for each play 

category on juvenile period in primates, controlling for body size. Juvenile period is 

positively and significantly correlated with total play (Figure 5.17). Juvenile period 

shows no significant associated with any other play category. 
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Table 5.10 Partial correlation analyses of play category on juvenile period in 
primates, controlling for body size 

Play type DF 

'fotal 1,15 
Solitary 1, 7 
Object 1, 3 
Social 1, 8 

F-value p-value co-efficient r2 

12.89 0.002 0.28 0.46 
0.99 0.35 1.90 0.12 
5.05 0.11 2.64 0.63 
0.07 0.80 0.03 0.008 
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Fig. 5.17. Partial coiTelation plot oflog (total play) log Guvenile period) in primates 

5·5·9 Age at independence in carnivores 

Table 5.11 shows the results of partial correlation analyses of contrasts for each play 

category on age at independence in carnivores, controlling for body size. Partial 

correlation of total play on age at independence shows a negative and significant result 

(Figure 5.18). Partial correlation of social play on age at independence shows no 

association. There were too few observations of solitary locomotor play and object play 

to permit a statistical result. 
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Table 5.11 Partial correlation analyses of play category on age at independence 
in carnivores, controlling for body size 

Play type DF F-value p-value co-efficient r2 

Total 1, 7 17.52 0.004 -0.55 0.72 
Solitary+ 
Object+ 
Social 1, 3 0.08 0.88 -0.40 0.03 
+ Too few observations 
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Fig. 5.18. Partial correlation plot of log (total play) on log (age at independence) in carnivores 

5·5-10 Age at first conception in carnivores 

Table 5.12 shows the results of partial correlation analyses of contrasts for each play 

category on age at first conception in carnivores, controlling for female body weight. 

Age at first conception is not significantly correlated with total, solitary locomotor, or 

social play. Age at first conception in carnivores is however positively and 

significantly correlated with object play, although there are too few observations to 

permit statistical analysis. 

160 



Table 5.12 Partial correlation analyses of play category on age at first 
conception in carnivores, controlling for female body weight 

Play type DF F-value p-value co-efficient r2 

Total 1, 8 0.02 0.91 0.04 0.002 
Solitary+ 
Object+ 1, 2 673.18 0.001 3.20 0.99 
Social 1, 4 0.38 0.57 0.09 0.09 
+ Too few observations 

5·5·11 Age at first reproduction in primates 

Table 5.13 details partial correlation analyses of contrasts for each play category on age 

at first reproduction in primates, controlling for body size Age at first reproduction is 

positively and significantly correlated with both total and social play (Figures 5.19 and 

5 .20). However, after Bonferroni correction, neither of these results ate significant. Age 

at first reproduction shows no significant association with solitary locomotor or object 

play. 

Table 5.13. Partial correlation analyses of play category on age at first 
reproduction in primates, controlling for body size 

Play type DF F-value p-value 

Total 1, 31 5.26 0.03 
Solitary 1' 16 0.31 0.59 
Object 1, 9 0.03 0.86 
Social 1, 20 4.05 0.05 
Bonferroni 0.013 = n.s 
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5.5.12 Lactation period in primates 

Table 5.14 shows the results of partial correlation analyses of contrasts for each play 

category on lactation period in primates, controlling for body size. Lactation period is 

positively and significantly correlated with total play (Figure 5.21). Lactation period 

shows no significant association with solitary locomotor, object play, or social play. 

Table 5.14. Partial correlation analyses of play category on age at lactation 
period in primates, controlling for body size 

Play type DF F-value p-value co-efficient 

Total 1, 13 6.05 0.03 0.88 
Solitary 1, 6 1.53 0.26 1.08 
Object 1, 2 0.24 0.67 0.29 
Social 1, 7 1.80 0.22 0.55 

Bonferroni 0.013 = n.s 
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Fig. 5.21 Partial correlation oflog (social play) on log (lactation period) in primates 

5.5.13 Inter-birth interval (IBI) 

Table 5.15 shows partial correlation analyses of contrasts for each play category on 

inter-birth interval in primates, controlling for body size Inter-birth interval is 

positively and significantly correlated with total and object play (Figures 5.22 and 

5.23). There was no such association between inter-birth interval and solitary 

locomotor, or social play. 
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Table 5.15 Partial correlation analyses of play category on inter-birth interval in 
primates, controlling for body size 

Play type DF F-value p-value co-efficient r2 

Total 1, 37 18.48 0.0001 1.55 0.33 
Solitary 1, 19 1.66 0.21 1.75 0.08 
Object 1, 11 5.67 0.03 1.76 0.34 
Social 1, 23 1.44 0.24 0.55 0.06 

Bonferroni 0.013 =Object play n.s 

Table 5.16 shows partial correlation analyses of contrasts for each play category on 

inter-birth interval in camivores, controlling for body size. Partial correlation of total 

play on inter-birth interval shows a negative and significant correlation (Figure 5.24), 

after Bonferroni correction however, this result is not significant. There was no 

association object or social play and inter-birth interval. There were too few 

observations of solitary locomotor play to permit a statistical result. 

Table 5.16 Partial correlation analyses of play category on inter-birth interval in 
carnivores, controlling for body size 

Play type DF F-value p-value co-efficient r,. 

Total 1, 8 7.29 0.03 -1.01 0.48 
Solitary+ 
Object 1, 2 0.07 0.83 1.52 0.07 
Social 1, 4 0.001 0.97 0.03 2.4 
+ Too few observations; Bonferroni 0.013 = n.s 
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5·5·14 Maximum lifespan 

Table 5.17 shows the results of partial correlation analyses of contrasts for each play 

category on maximum lifespan in primates, controlling for body size. Maximum 

lifespan shows a positive and significant correlation with both solitary locomotor play 

and social play (Figures 5.25 and 5.26), after Bonferroni correction however, these 

results are non- significant. Maximum lifespan is not significantly associated with total 

play or object play. 

Table 5.17. Partial correlation of play category on maximum lifespan in 
primates, controlling for body size 

Play type DF F-value p-value co-efficient r2 

Total 1, 32 0.36 0.55 0.29 0.01 
Solitary 1, 18 6.50 0.02 4.22 0.27 
Object 1, 10 0.24 0.64 0.44 0.02 
Social 1,20 5.29 0.03 1.70 0.21 
Bonferroni 0.013 = n.s 

Lifespan is one life-history variable that has been shown to correlate very strongly with 

brain size (Deaner et al. in press). Thus, partial correlation analyses were also run to 

remove the effect of adult brain size in primates. Table 5.18 details the results of partial 

correlation analyses of contrasts for each play category on maximum lifespan in 
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primates, controlling for brain size. Total play was not significantly associated with 

maximum life span in primates. Object play was negatively but non-significantly 

correlated with maximum lifespan in primates. Solitary locomotor-rotational play, and 

social play however, were positively and significantly correlated with maximum life 

span in primates after the effect of brain size was removed from the analyses (Figures 

5.27-5.28). However, Bonferroni correction renders the result for social play non­

significant. 

Table 5.18 Partial correlation of play category on maximum lifespan in primates, 
controlling for brain size 

Play type DF F-value p-value co-efficient r2 

Total I, 32 0.02 0.90 -0.06 4.85 
Solitary 1,18 8.03 0.01 5.22 0.31 
Object 1, 10 1.87 0.20 -1.56 1.57 
Social 1, 19 4.78 0.04 2.13 0.20 
Bonferroni 0.013 = social play n.s 

Maximum lifespan is not significantly associated with total play or social play in 

carnivores. There were too few observations of solitary locomotor play and object play 

to permit a statistical result. Unfortunately, there were too few observations to permit 

partial correlation analyses removing the effects of brain size for all play categories 

except total play. Partial correlation analysis of total play on maximum lifespan in 

carnivores shows no association. 
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5.5.15 Play peaks 

Play is subject to peaks of activity during the juvenile period (Fairbanks 2000). Table 

5.19 shows partial correlation analyses of weaning age and relative neonatal body size 

(neonate size controlled for maternal body size) on the onset and developmental peaks 

in the play of primates. Regression analyses show a negative and significant correlation 

between relative neonatal body weight on month at which play first appears (Figure 

5.29). Developmental trajectories for individual species are presented in Chapter 4. 

Table 5.19 Partial correlation analyses of weaning age and neonatal body weight 
on developmental onset and peak-frequency of play in juvenile primates 

Timing DF F-value }!-value co-efficient r" 
Age at weaning on: 
Month play appears 1, 11 0.94 0.35 0-41 0.08 
Month at 1st play peak 1, 6 0.04 o.85 0.58 o.oo6 
Month at 2nd play peak 1, 3 0.001 0.97 0.003 4.68 
N eo natal body weight on: 
Month play appears t, 8 11.65 0.009 -0.17 0-59 
Month at 1st play peak 1, 5 0.17 o.69 0.75 0.03 
Month at 2nd 2lay 2eak 1, 3 0.18 0.54 -0.13 0.14 
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5·5·11.6 Dichotomous variables 

The following one sample analyses (t-test) testing for significant evolutionary change in 

body size relative to the transitions in the dichotomous variables. 

Table 5.20 T -tests on changes in body size with transitions in dichotomous play 
variables 

Variable Mean DF t-value p-value Significance? 

Adult play -0.01 13 -0.60 0.56 N.S 
Adult male play -0.03 11 -1.18 0.26 N.S 
Adult-adult play 0.002 16 0.08 0.94 N.S 
Sex play 0.003 17 0.12 0.90 N.S 
SSD -0.03 13 -1.03 0.32 N.S 
SSP -.001 11 -0.02 0.98 N.S 
SAD 0.01 12 0.40 0.69 N.S 
SAP -0.005 8 -0.14 0.89 N.S 
Sibling 0.06 4 1.42 0.23 N.S 
Relatedness -0.07 5 -1.35 0.24 N.S 
Dominance 0.02 3 0.25 0.82 N.S 
Vocalisation -0.02 10 -0.62 0.55 N.S 
Dyadic 0.06 2 52.39 0.01 * 
Polyadic 0.04 8 1.19 0.27 N.S 
Interspecific 0.03 3 0.35 0.75 N.S 
Place -0.03 5 -1.05 0.34 N.S 
* p = <o.os; Bonferroni 0.003, thus N.S. 
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Table 5.21 Summary of results of life-history variables on each category of play in primates and carnivores 

Life-history variable Play category: significant correlation? 

Total Solitary locomotor Object Social 

Body size vi'+ X X X 
yl'_ X X X 

Female body size vi'+ X X X 

Gestation period X X X X 
X X X vi'+ 

Birth weight X X X vi'+ 
X X X X 

Litter size X X X X 
_. yl' _ X X X 
0\ 
'-0 

Age at weaning yl'_ X X X 
X - X X 

Juvenile period vi'+ X X X 

Age at independence 
yl'_ X X X 

Age at first conception 
X - vi'+ X 

Age at sexual maturation X X X X 

- - -
Age at first reproduction vi'+ X X vi'+ 

Lactation period vi'+ X X X 



-'-...! 
0 

lLife-history variable 

Inter-birth interval 

Maximum lifespan 

Total 

v"+ 
,/_ 

X 
X 

!Play category: significant correlation? 

Solitary locomotor Object 

X v"+ 
X 

v"+ X 

Social 

X 
X 

v"+ 
X 

,( = significant, X =not significant, + = positive correlation, - = negative correlation/no data; Symbols: Black = primates, Rcc = carni1 or,·s. 



5e6 Discussion 

5.6.1 Body size 

These results indicate that body size is positively and significantly correlated with total 

play in primates, suggesting that increases in total play over evolutionary time have eo­

evolved with increases in body size. Interestingly, the reverse trend is seen in 

carnivores, where both mean body size, and female body size, are negatively and 

significantly correlated with total play (except that Bonferroni correction renders this 

actually non-significant). These results may be explained by reproductive influences. In 

carnivores, larger females give birth to relatively altricial young; this is a byproduct of 

carrying larger litters of smaller, less well-developed, neonates (Moehlman 1989). The 

hypothesis predicts that precocial species are more playful than altricial ones. Primates, 

with relatively larger brains, typically give birth to precocial infants, with well­

developed brains. Primates therefore, are less likely to be constrained by body size in 

terms of altriciality, and thus with increasing body sizes and larger relative brains, are 

also more playful. Indeed, raw and unconstrasted play category values from the 

literature tend to suggest that primates spend more time in play than do carnivores. We 

might expect to see body size correlate with social play, if social play functions in social 

assessment and fighting practice. The lack of a relationship here may be suggestive of a 

seemingly innate trend towards choosing evenly-matched partners in terms of size. The 

largest carnivores, such as bears, also tend to be those species that are more solitary (see 

Chapter 6). Species that are habitually solitary are less likely to find the need or 

opportunity to engage in play (especially social play) to the extent to which relatively 

more social species do. Additionally, large body size acts as an anti-predator 

mechanism (Key 2000). In carnivores, species that are large and solitary may be better 

able to avoid predation through sheer size, thus potentially limiting the role that play 

appears to offer in terms of honing physical skills. Body size is correlated with group 

size, and Chapter 6 will address these issues in more detail. 

5.6.2 Reproductive effects 

As with body size, reproductive effects appear to be important in the expression of play 

behaviour. Body size, for example, appears to affect the relationship of gestation length 
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to play. In primates, although the trend is a positive one, none of the play categories 

show a significant correlation when regressed against gestation length. In carnivores, 

when the confounding effect of body size is removed from the analysis, there is a 

positive and significant correlation between social play and gestation length. This 

suggests that increases in gestational period have been correlated with increases in 

social play over evolutionary time. This again seems to be indicative of the level of 

development of carnivore neonates. A relatively longer relative gestation time is 

associated with an increased level of precociality among neonates. This may be crucial, 

especially in terms of social play, as precocial young are better equipped to engage in 

social interactions far sooner than relatively more altricial young. This trend may be 

similar for primates, although the lack of significance of the result suggests that another 

factor is at work, possibly brain size. 

The relationship between birth weight and play is interesting. In primates, the results 

appear to fit the hypothesis, and a positive and significant relationship is found between 

social play and birth weight, suggesting that evolutionary increases in birth weight 

correlate with increases in the amount of social play exhibited. More importantly, this 

relationship holds when the effects of body size are removed, thus rendering the result 

true of relative birth weight in primates. It is likely that this too, is indicative of relative 

development, with relatively larger neonates being relatively more precocial and hence 

more able to play, especially in terms of social play behaviours. 

The results for play type and litter size corroborate the association between precociality 

and play. In carnivores, the results reveal a negative and significant correlation between 

litter size and play in carnivores, even when body size is controlled for. This indicates 

that as litter size has increased, play has decreased in frequency. Again, this appears to 

add further support to the hypothesis that the degree to which an animal is altricial or 

precocial has huge impacts on behavioural development. In carnivores, the larger the 

litter, the smaller the offspring, and the more altricial the neonates (Moehlman 1989). 

Carnivore litter sizes vary widely, and thus may be a good indicator of life-history and 

behavioural variation. In primates, the variation in number of offspring is far more 

limited. Most species bear a single and precocial neonate, with twins being the norm in 

callitrichids (e.g. Dun bar 1995b; Windfelder 2000). Thus, litter size is unlikely to be a 

significant variable in the exhibition of primate play, although intra-specific analyses 
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may delineate the importance more specifically (see Chapter 4). This may explain the 

non-significance of the result for litter size and play in primates. 

5.6.3 Weaning and sexual maturity 

As an individual approaches the end of infancy and into the period of weaning and 

juvenility, play remains a prominent behaviour although the rate at which it occurs 

begins to decline towards the onset of adolescence and sexual maturity (Fairbanks 

2000). Results here show no significant correlation between play budgets and age at 

weaning in either carnivores or primates. However, when the effects of juvenile period 

are removed from the analyses, age at weaning shows a negative and significant 

relationship with total play in primates. This suggests that as age at weaning becomes 

later relative to the total length of the juvenile period, the tendency to engage in play 

behaviour declines. This might be explained by the frequent sharp decline in play of 

many species specifically at weaning age (e.g. vervet monkeys, Cercopithecus aethiops, 

Fairbanks 2000). This might be due to parent-offspring conflict during the transition 

from a maternal milk diet, to a more solid diet (Nicholson 1987). The distress of this 

conflict, coupled with the need to become more independent at this time, might best 

explain the negative relationship between play and weaning in primates. There is no 

correlation between weaning age and play in carnivores. 

With the onset of weaning, the juvenile period, as opposed to that of infancy, begins. 

The juvenile period is as the dominant period of play behaviour in primates (Freeman & 

Alcock 1973; Fagen 1981; Hayaki 1983; Eaton et al. 1986; Pereira & Fairbanks 1993a, 

b; Bloom smith et al. 1994 ). Thus, the hypothesis states that the longer the juvenile 

period, the greater potential exists for the exhibition of playful behaviour. The results 

here concern primates, as there are no data available for the length of the juvenile period 

in carnivores. These findings reveal that the juvenile period is positively and 

significantly correlated with social play in primates; and when the effects of weaning 

age are removed, the juvenile period is positively and significantly correlated with total 

play in primates. These results thus support the hypothesis, as with the selection for an 

extended juvenile period, there have been increases in the amount of play exhibited. 

Juvenile primates have been selected for an extended juvenile period (Joffe 1997) 

during which social learning occurs, and the body, brain, and social relationships are 
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developed, modified, and perfected in readiness for independent adult life (Byers 1999). 

It is therefore likely that play serves to facilitate these developments during the period 

when the brain and body are relatively plastic; indeed the trajectory of play during this 

period maps closely onto the shift towards maturity, with increasing independence 

limiting the prevalence of play (Fairbanks 2000). It is important to note that because 

females reach sexual maturity far earlier than their male counterparts (e.g. Dunbar 

1979), males ostensibly have a longer pre-adult phase during which to prepare for 

adulthood. Thus, males tend to devote significantly more time to play than do females. 

5.6.4 Birth and lactation 

Although Bonferroni correction renders the relationship actually non-significant, we see 

a trend towards a positive correlation between age at first reproduction and both total 

and social play in primates. Explanations for this finding may be that females who reach 

sexual maturity somewhat later after a relatively longer juvenile period may have had 

more opportunity, or more need, in which to engage in play before becoming mothers. 

These individuals are likely to have had increased opportunities for social interactions, 

including play, and this may better equip them for adulthood. Play-mothering is a 

behaviour that occurs in some primates during adolescence (Lancaster 1971 ); this may 

enable experience of pseudo-mothering behaviours, especially in species that attain 

adulthood quickly. Additionally, new mothers may begin to increase their social play 

output at this time, after the cessation of play at the time of sexual maturity, by 

engaging in mother-infant playful behaviours with their offspring. 

A similar trend, and pattern of significance is seen for lactation period in primates. 

Lactation period is positively and significantly correlated with total play in primates 

(prior to Bonferroni correction), suggesting that there is a trend for longer lactation 

periods being selected for, thus the propensity to engage in playful behaviours also 

increased. This may add further support to the hypothesis that the degree of postnatal 

development is vital to the expression of playful behaviours, although the result here is 

actually not significant. Lactation periods are indicative of the amount of time an infant 

remains dependent on its mother, and primates may suckle their young for up to 4.5 

years (e.g. in chimpanzees). This dictates the period of infancy, dependence and 

relative development, which in turn may influence the potential to engage in play. 
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Again, prior to Bonferroni correction, IBI is positively and significantly correlated with 

total play and object play in primates, suggesting that the wider the gap between births, 

the greater likelihood of total and object play being exhibited. In carnivores, the reverse 

trend is true, with IBI being negatively and significantly correlated with total play, 

suggesting that as IBI has increased, the exhibition of total play has declined. This is 

likely to be connected to relative development and maturity rates, which differ between 

primates and carnivores. That these results fall short of significance may be due to 

small sample sizes. 

Primates, by mammalian standards, have rather unusual life-histories, having long 

periods of growth, juvenility, and life expectancy, and a late onset of maturity and 

reproduction. Primates therefore, appear to have eo-evolved traits for long life history, 

social complexity, and cognition (Key 2000). Conversely, carnivores tend to be more 

representative of the "typical" mammalian trend. If we are to understand the evolution 

of play in these two orders, then it is necessary to understand their life-history 

adaptations. Litter size is a variable that can be closely associated with diet. Species 

that give birth to small litter sizes tend also to be those that have an omnivorous diet. 

Conversely, species that give birth to larger litters tend to be those with a more 

carnivorous diet (Bekoff & Byers 1985). These factors might be associated with play in 

one of two ways. Omnivorous species tend to be those with longer gestation and 

lactation periods. It is thought that omnivores are better equipped to store and stabilise 

body fat enabling a more precocial life history and one that is adapted to surviving 

periods of famine. Under these conditions, we should expect omnivorous species to be 

relatively more playful than species is reliant on a more exclusive diet (Bekoff & Byers 

1985). This is because play is so susceptible to changes in environmental conditions 

(Fagen 1981 ). Relatively more omnivorous species, with their long life histories and 

fewer precocial offspring, are also most likely to exhibit social complexity and socially 

cohesive groups, as well as demonstrating cognitive abilities (Key 2000). Conversely, 

it may be argued that large and exclusive carnivores play more to gain hunting 

experience; in this case we should expect to see significantly more object play amongst 

exclusive carnivores (Bekoff & Byers 1985). Indeed, relatively larger species also tend 

to be those with the longest lifespan. Such species are typically more prone to 

precociality, and thus more likely to be not only playful, but also to exhibit complexity 
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in their play (Bekoff & Byers 1985). Play may therefore have evolved under conditions 

of behavioural flexibility due to changing environments, and that have selected for 

larger brains, and social groups. 

5.6.5 Longevity 

Maximum lifespan 1s positively and significantly correlated with both solitary 

locomotor play, and social play in primates. This relationship is borne out when both 

body size and brain size are partialled out of the analyses. Thus, the selection for 

longevity correlated with the selection for an increased amount of both solitary 

locomotor play and social play. This relationship does not however hold for carnivores, 

where there is a negative, but non-significant correlation with play. The sample size for 

these analyses are however, very small. We should expect play to correlate with 

lifespan, given that the most long lived species tend also to be those that give birth to 

precocial neonates, with longer periods of juvenility, during which the brain is 

permanently modified by playful behaviour (Bekoff & Byers 1985; Byers & Walker 

1995; Fairbanks 2000). In captive situations, where species tend to live beyond the age 

of their wild counterparts, play is also a behaviour seen more frequently. This is due to 

the reduction of energetic constraints on finding food, shelter, and mates, and fighting 

disease and infection. One of the problems in using longevity data is that species that 

are not common in captivity will be assigned lower estimates of maximum lifespan 

(Deaner et al. in press). 

Longevity is also strongly correlated with body size, which may act as an anti-predator 

mechanism (Harvey et al. 1987). It may be the case that relatively larger species, and 

thus those with the longest lives, and precocial neonates, are also those that can better 

afford to play, as they are also likely to be diurnal and group-living (gregarious). 

Indeed, it seems that long life, large brains, and large bodies have been eo-selected over 

evolutionary time. It may be that complex behaviours are only possible where the CNS 

is fully mature; thus evolutionary increases in brain size not only delays sexual and 

physiological maturation, but in doing so facilitates a longer juvenile period during 

which the CNS is honed and complex behaviours mastered (Fairbanks 2000; Deaner et 

al. in press). Given the time frame of such maturation, the onset of play behaviour, and 
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the results shown in this chapter, it seems reasonable to suppose that play too, has eo­

evolved with these adaptations for longer life and augmented cognitive abilities. 

5.6.6 Play peaks 

The results here suggest that across primates, neonatal body weight, more so than 

weaning age, is a good predictor of the developmental onset of play. This adds further 

weight to the hypothesis that relatively more precocial species are more playful than 

relatively more altricial ones, as precocial species are equipped to be playful very soon 

after birth. There are no significant results to suggest that weaning age predicts later 

peaks in play frequency. Fairbanks (2000) has shown that molar eruption is a good 

predictor of play peaks in juvenile primates. 

s.7Summary 

Many life-history variables are demonstrated to have an effect on play behaviour in 

these analyses. Play behaviour appears to have eo-evolved with the selection for large 

bodies, large precocial neonates in small litters, long-life histories, diumality, social 

group living, and a large relative brain size. The strongest contingent in the exhibition 

of play, appears to be the extent to which a species bears altricial or precocial neonates. 

Play is most prominent in species that are relatively more precocial, and thus more well­

developed at birth and with a longer period of postnatal infant and juvenile development 

in which to hone their bodies, brains, and behaviours to suit the conditions of the 

population. Under these conditions, play has evolved to be widespread and complex. 

Play is highly susceptible to environmental and social influences, and Chapter 6 will 

focus on the ways in which socio-ecology fits in with life-history in the evolution and 

exhibition of play behaviour in primates and carnivores. 
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Cha:uter 6: 

Play & Socio-ecology 

In the prevtous chapter, life-history variables were analysed with regard to play 

behaviour, and inferences drawn about the evolution of play. Life-history variables are 

often strongly related to ecology, especially in terms of the constraints of diet on body 

size (e.g. Harvey et al. 1987), and the influence on group dynamics (Dunbar 1988: 55). 

Thus in turn, body size constrains life-history. Here, the focus is upon how socio­

ecological factors are correlated with each category of play behaviour and what this 

might indicate about behavioural evolution in primates and carnivores. The play 

behaviour of any given species is likely to be especially associated with socio-ecology, 

in terms of environment, diet, and social organisation (Poole 1985). Both primates and 

carnivores offer an excellent basis for comparative studies of socio-ecology, given the 

variation within and between the species of each order in terms of habitat, diet, and 

social and behavioural traits (Bekoff et al. 1984; Bekoff 1989b; Lee 1999). The extent 

to which variation in play is related to variation in habitat and resources in largely 

unknown (Berger 1979; Bekoff 1989b ), but it seems likely that play experience will be 

affected by diet and food distribution in the environment (Lee 1984). This chapter aims 

to shed some light on this from a comparative perspective. 

6.1.1 Sociality 

Most mammals are solitary (Poole 1985). Indeed, most carnivores are solitary, often 

only consorting with conspecifics for the purposes of mating (Sandell 1989). Primates 

are typically considered social, but do however comprise a great diversity of social 

strategies, including species that are group living, pair-bonded, and also solitary (Smuts 
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et al. 1987; Rowe 1996; see also section 6.1.2 below). In companson, only 

approximately 10-15% of carnivore species are habitually group-living (Gittleman 

1989). However, studies of play appear to be heavily skewed towards canids, 

presumably due to the fact that canids include many species that are diurnal and live in 

social groups (Bekoff et al. 1984 ), and thus more easily observed, but also to the fact 

that some have relatively large brains, and often display food-sharing behaviours as 

well as tolerating, and even apparently caring for, sick adult group mates (Moehlman 

1989). 

There are clear advantages and disadvantages to living in groups, and several 

hypotheses exist for the evolution of group living. The benefits of group-living might 

include protection from predators (Elgar 1989; Fichtel & Kappeler 2002; Hass & 

Valenzuela 2002; Stanford 2002), access to mates and reproductive success (McNutt 

1996), co-operative hunting (Mitani et al. 2002), especially with large prey (Stander 

1992), effective group foraging (Rita et al. 1997; Zhang et al. 1999), enhanced 

opportunities for care-giving (Dunbar 1988: 106), and defence of resources (food; 

mates; suitable habitat) (Wrangham 1980; Krebs & Davies 1993; Johnson et al. 2001 ). 

Conversely, the costs to group-living might entail the transfer of parasites (Poulin 

1991 ), competition for resources (both within and between groups) (Sterck et al. 1997), 

and visibility to predators (e.g. Poole 1985). Smaller species, or species that occupy 

open habitats, are typically most likely to exhibit forms of group defence, as they are 

more likely to be conspicuous to predators (Gittleman 1989). Group size is often 

dependent on ranging area and food availability. Thus in lions (Panthera Ieo ), for 

example, pride size depends on territory range, which in turn is determined by the 

availability of prey. Numbers may vary from a few members, to prides of over 40 

(Bothma & Walker 1999). In both primates and carnivores, variation in group size 

emerges in the form of units; there may be differences between overall group size, 

feeding groups where individuals share the same food source simultaneously, foraging 

or hunting groups where individuals form bands in search of food (Gittleman 1989), and 

there may be further distinctions in coalition group sizes, such as primary social 

partners (clique size), and overall social network sizes (Kudo & Dun bar 2001 ). As 

multi-level societies complicate the analysis of group size, it is important to consider 

these different levels of sociality in the study of behaviour, as they all yield different 

values. 
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6.1.2 Breeding strategy, mating system, and social organisation 

Social organisation, as well as mating and breeding strategies, are also key factors in 

group-living, and systems vary widely across mammalian taxa, not least in carnivores 

and primates where several very different systems of social organisation are in place 

(Poole 1985). The mating and social systems of a species are likely to affect the way in 

which that species plays (Fagen 1981 ). Adult play, for example, might be more 

common in solitary species, whereby play may be used as a mechanism to overcome 

unfamiliarity (Pellis & Iwaniuk 1999a). In species where there is reduced paternal 

contribution to raising offspring, there is reduced female competition for males, and this 

is associated with polygyny, an adult sex ratio biased towards females, and male 

dispersal (Parental investment and sexual selection theory: Trivers 1972); this is 

typically true of smaller bodied carnivores (Moehlman 1989), and such species may 

exhibit higher levels of male-male play. Conversely, in species with larger litters of 

altricial neonates, male investment may be increased, and female competition for males 

might also increase as females cannot afford to share male investment with other 

females, and monogamy is more likely (Trivers 1972). In larger canids for example, co­

operative male-female hunting, group defence, obligate monogamy, and "helpers at the 

den", are relatively frequent (Moehlman 1989). 

Fissipeds (terrestrial carnivores) compnse species with very different mating and 

rearing systems, and include species that are basically solitary with overlapping male 

and female territories, such as bears and most felids; species with a system of dispersed 

harems, which includes many species of mustelids; canids, that are usually 

monogamous (Moehlman 1989), but often exhibit temporary monogamy (e.g. foxes, 

Vu/pes vu/pes); permanent monogamy whereby there is one breeding pair within a pack 

(e.g. jackals, Canis aureus); and those that live in permanent social groups or packs 

with clearly defined dominance hierarchies (e.g. wolves, Canis lupus) (Bekoff et al. 

1984; Poole 1985; Gittleman 1989). Solitary species may only consort with 

conspecifics for the purposes of mating (e.g. leopard, Panthera pardus; caracal, 

Caracal caracal, Bothma & Walker 1999) and in this vein may exhibit opportunistic 

mating strategies (Poole 1985); other solitary species may be very hostile to species 

conspecifics (e.g. aardwolf, Proteles cristatus, Bothma & Walker 1999). Some solitary 
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species are highly territorial with both males and females defending a home range. 

Other species may be less territorial, or seasonally so (African hunting dog, Lycaon 

pictis, Bothma & Walker 1999). Alternatively, some species may show a mix of solitary 

and social group-living, often with typically solitary or nomadic males, and with 

females forming stable units with their dependent offspring and perhaps some siblings 

(e.g. cheetah, Acinonyx jubatus, Bothma & Walker 1999). Pinniped social organisation 

is determined largely by food availability and breeding sites, as they come ashore to 

breed; those with the largest group sizes tend to be highly polygynous, whereas those 

with small or dispersed groups have a tendency toward monogamy (Poole 1985). 

Primates too exhibit a great diversity in social organisation and breeding systems. 

Strepsirhines (Family: Lorisidae, Galagonidae, Cheirogaleidae, Megaladapidae, 

Lemuridae) are typically nocturnal and solitary, with the exception of some lemurs, 

which are cathemeral or diurnal (Doyle & Martin 1979; Tattersall 1987; Curtis & 

Zaramody 1999). Some males defend territories that encompass the territories of nearby 

females, exhibiting dispersed polygyny, whereas others are nomadic and have loose and 

overlapping ranges (Poole 1985). Although females may exhibit solitary foraging, due 

to wide food dispersal, the females of many species will group together in sleeping sites 

(e.g. grey mouse lemur, Microcebus murinus; fat-tailed dwarf lemur, Cheirogaleus 

medius; Demidoffs bush baby, Galagoides demidoff, Charles-Dominique & Bearder 

1979; Poole 1985; Radespiel & Zimmerman 2001). Indris (Jndri indri), in contrast 

exhibit monogamy, and ring-tailed lemurs (Lemur catta) support both male and female 

dominance hierarchies, with overall female dominance, and aggressively defend large 

territories (Jolly 1966; Sauther et al. 1999). Some gregarious sakis, uacaris 

(Pitheciinae), and some lemurs (Lemuridae) may also be monogamous (Rowe 1996). 

Amongst haplorhines, species that exhibit typical monogamy tend to live in pairs or 

family units and are often highly territorial (e.g. marmosets, Callithrix spp.; gibbons, 

Hylobates spp. Dunbar 1995b, c; Bartlett 1999). Polygynous species tend to live in 

social groups, as a male's defence of his harem requires female-female tolerance (e.g. 

mountain gorilla, Gorilla gorilla berengei, Stoinki et al. 2001 ). Males often leave their 

natal group with the onset of adulthood to form male-bands, competing with one 

another for alpha status when attempting to join an established group (e.g. Hanuman 

langurs, Semnopithecus entellus, Hrdy 1977; Sommer & Mendoza-Granados 1995). 
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Alpha males usually cannot obtain and defend two harems simultaneously, due to the 

intolerance of the females towards members of the opposing harem (Poole 1985); 

however, juvenile offspring of different harems will often play when they encounter one 

another (Dolhinow 1972). Highly social multimale-mu1tifemale groups or troops also 

exist, and may exhibit male or female dominance hierarchies (e.g. ring-tailed lemur, 

Lemur catta; chimpanzee, Pan troglodytes, Stanford 1998) or fission-fusion 

communities (bonobo, Pan paniscus, Indani 1991; spider monkeys, Ateles spp, 

Symington 1990). Dominance is usually positively correlated with age in these species, 

although lower-ranking males might compete for dominance ranking (Poole 1985). In 

such social systems, various mating strategies may be employed at different times: 

opportunistic mating, promiscuous mating, mate-guarding of an oestrous female, or 

affiliative and sexual bonding where the pair actively avoid other males (Goodall 1975; 

Poole 1985). 

6.1.3 Habitat and dietary influences 

Group-living and dietary habitats are typically linked, both in terms of nutritional value 

and in distribution; group-living may offer advantages in finding both a quantity and 

diversity of food, but a disadvantage in terms of intra-group competition (Kruuk 1972; 

Gittleman 1989). Food that is dispersed but high in quality tends to be exploited by 

solitary species, whereas species in social groups may show an advantage in gaining 

food that is unpredictably dispersed (Krebs & Davies 1993 ). Habitat richness in terms 

of food dispersal is one element likely to affect the exhibition of play behaviour 

(Sommer & Mendoza-Granados 1995); play diminishes when food distribution is 

scattered, as individuals transfer play time to foraging time (Ba1dwin & Baldwin 1974, 

1976). Factors such as metabolism may have an effect on the play behaviour of these 

species (Burghardt 1988). The rate at which an individual can exploit environmental 

resources is governed by daily energy requirements (Nagy et al. 1999), and thus 

energetic constraints are likely to be a factor in play variability. Martin (1984a, b) has 

shown that in domestic cats, play accounts for 9% of the daily time budget and 

approximately 4% of an individual's daily energy expenditure under favourable 

conditions, so diet may constrain metabolic rate. Sharpe et al. (2002) showed that long­

term nutritional status was positively correlated with social play frequency in wild 

meerkats (Suricatta suricatta). It has been shown that brain size and metabolism are 
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correlated in mammals (Armstrong 1983), as are metabolism and ranging patterns and 

sociability (Martin 1981 ); these studies however, treated species as independent data 

points (Barton 1999). Conversely, McNab & Eisenberg (1989) and Barton (1999) claim 

that there actually exists fairly little evidence for a strong relationship between brain 

size and metabolic rate, as some variables affect metabolic rate without affecting the 

brain. Yet primates for example, may allocate 9-20% of their metabolism to the brain; 

in other mammals the figure stands closer to 5% (Bennett & Harvey 1985). More 

importantly, variation in metabolism can usually be explained by differences in body 

size and phylogeny, although factors such as diet, seasonality, temperature, and so on, 

may also contribute to this variance (Nagy 1994). Furthermore, it should be borne in 

mind that both body size and group size are often interrelated variables in mammalian 

orders, and may be also associated with energetic consumption and the availability of 

food sources (Gittleman 1989). This trend is not necessarily true of all orders however, 

and does not seem to be a strong factor in carnivore grouping systems; this may be due 

to the diversity of carnivore species with a greater percentage of large-bodied species 

(e.g. bears) living typically solitary existences, whilst smaller species such as meerkats 

live in large packs (Gittleman 1989). 

Play types are largely dictated by habitat preference in terms of the degree to which an 

animal is arboreal or terrestrial. Aquatic and sub-aquatic play appears in some 

carnivores, such as otters and sea otters (Lutra canadensis; Enhydra lutris), mink 

(Mustela vison), and leopard cats (Felis viverrinus), although data are typically scarce 

(Poole 1985). In fact, most carnivores are actually good swimmers, but not all can be 

termed aquatic; but even predominantly aquatic species such as otters and pinnipeds, 

spend a substantial proportion of their time on land (Estes 1989). 
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6e2 Methods 

Primate group size and adult mean body weight data are taken from a compilation in 

Barton (1999); missing values from Barton (1999) are taken from the relevant chapters 

in Smuts et al. (1987), and additionally from Rowe (1996). Carnivore group size data 

are taken from Gittleman (1989), and Dunbar & Bever (1998) (see Appendix). The data 

for other continuous and dichotomous ecological variables (see Tables 6.1-6.4) are 

taken from Barton (1999), Ross & Jones (1999), and Deaner & Barton (2002). Other 

carnivore data are also taken from Gittleman (1989). The data on each play behaviour 

category were collected from the existing primate and carnivore behaviour literature, as 

detailed in Chapter 2. Food availability can affect social interactions, and thus it is 

important to differentiate at some level between species that are artificially fed and 

those that are not (Rowell 1972; Bekoff et al. 1984). In this case, distinctions will be 

drawn where possible between captive- and wild-studied groups. The method of 

independent contrasts is used here, conducted on the CAIC computer programme (see 

Chapter 2 for details). Outliers have been removed in instances where CAIC has flagged 

them, and are indicated in the accompanying text. Statistics are shown only where there 

is a significant correlation in the sample, unless otherwise indicated. Non-significant 

statistics are presented in the Appendix. 

6.3 Hypotheses 

The following hypotheses are presented for play in primates and carnivores with regard 

to socio-ecological determinants. The null hypothesis, Ho, states that there will be no 

association between play behaviour and the socio-ecological variable in question. 

Below, alternative hypotheses, Ha, are proffered. 

1. Species in larger groups should play more than those in smaller 

groups. 

Group size is a variable proposed to affect play behaviours (Fagen 1981 ); play 

behaviour is likely to occur at a higher frequency in groups that offer more 
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opportunities to engage in play, in terms of increased access to suitable playmates. 

However, it is unlikely that effect of group size is merely a constraint on the number of 

potential partners. Species in larger groups tend also to have relatively larger brains 

(Dunbar 1992), and therefore play may be functionally related to sociality, as sociality 

requires more learning mediated by play. Thus, it might be predicted that the amount of 

play will be greater in larger groups, due to the need to develop and maintain the skills 

required in group-living. In this case, it is predicted that social play in particular will be 

more frequent in larger groups, as group-living might have evolved to be beneficial for 

social facilitation and learning (Gittleman 1989). Thus it is predicted that social play 

behaviours in particular will correlate most significantly with breeding or "social" 

group size than with feeding group size. In addition, it may be the case the social play is 

the most important category of play for social development in social species. Indeed, 

social groups not only offer the opportunity to play, but this may be buffered by a 

necessity to engage in social play. Given that social play has been shown to have its 

own trajectory, and recently even considered to have an entirely separate function from 

other play categories (Panksepp 1998; Fairbanks 2000), social play may be the most 

important play within social groups, and an area that merits close attention in relation to 

group life. 

2. Group size correlates with number of partners in play 

interactions. 

It might be expected that group size and polyadic play are associated, as a larger group 

potentially requires a greater level of social interaction that can be facilitated through 

social play. Additionally of course, larger groups provide a greater number of 

prospective play-partners; this is unlikely to be true of dyadic play, as engaging in play 

with only one partner is less likely to be dependent on an increased group size above a 

threshold cohort size of 2. However, group size may correlate with the availability of 

similarly-aged partners; in species such as gorillas, where the group sizes are relatively 

small, there will be less probability of like-aged play partners than in comparison with 

species such as baboons, that live in much larger groups and thus with a relatively high 

probability of same-aged play partners. Similar to the hypothesis that group size may 

affect polyadic play, is the hypothesis that group size will be important to the 

inclination and preference to engage in play with same-aged, and possibly also same-
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sex conspecifics. Primates typically prefer to play with like-aged players whenever 

there is the opportunity to do so (e.g. Brown 1988). A larger group might typically 

offer the opportunity for play with individuals, most importantly of the preferred age, 

and in addition, the preferred sex. It is unlikely that a larger group alone will explain 

preferences for play with siblings or other relatives in juvenile primates. Group size is 

therefore likely to predict play frequency, both due to the availability of partners, but 

more likely, that life in social groups requires increased levels of social cognition that 

may be mediated by engaging in social play at an early age. 

3· Play is affected by ecological constraints. 

It has been established that time spent playing declines under conditions where food 

supplies are depleted (e.g. Baldwin & Bald win 1976), thus play is especially sensitive to 

nutritional requirements (Burghardt 1988). By this argument, it is expected that species 

with animal protein-rich diets, especially those with a varied dietary intake, will exhibit 

more play than those without such a diet (Bekoff et al. 1984; Burghardt 1988). 

Primates may actually have relatively low protein requirements, due to growth rates 

being spread over time, thus despite the possibility of exploiting protein-rich food 

patches, the necessity for protein is not augmented, especially when diets include leaves 

(Oftedal 1991 ). Although leaves are protein-rich in comparison with fruit, their 

calorific value is lower (e.g. Kool 1992; Merkel et al. 1999); leaves however, are more 

abundant than either fruit or prey, and thus easier to obtain. Folivorous species must 

spend much more time eating and digesting their food than do frugivorous or predator 

species, and may seek leaves that are relatively lower in fibre (digestion inhibitors) to 

compensate for the relatively lower metabolic rate of folivores in comparison with 

frugivores (Kool 1992; Yeager et al. 1997). Folivore digestion and lower metabolic rate 

may conceivably impose a constraint on activity levels (Dasilva 1992), which may 

include play time. In tandem with a relatively low metabolic rate, folivores (especially 

folivorous primates) also have a smaller relative brain size (Bennett & Harvey 1985). It 

is predicted that play will be most prominent in species with a relatively high metabolic 

rate, and a larger relative brain size (see Chapter 7) in comparison with species with a 

lower metabolic rate and smaller relative brain size. Thus play should be more 

prominent in frugivores or predator species, than in folivores. Furthermore, species that 

are more frugivorous or subsist on prey items should show a greater expression of play 
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in their behavioural repertoire (e.g. Fagen 1981; Bekoff et al. 1984; Burghardt 1988; 

Burghardt 2001). 

4· Play will be more frequent in captive animals than in wild 

animals. 

Play seems to be reduced when more pressing survival behaviours are required, such as 

predator avoidance, foraging, or finding shelter (Fagen 1981 ). These constraints are 

effectively removed in a well-maintained and thoughtful captive environment 

(Markowitz 1979), thus "freeing-up" time during which an individual can engage in 

behaviours such as play (Burghardt 1988). 

6.4 Data 

Table 6.1 gtves continuous socio-ecological variables for primates. Table 6.2 gtves 

continuous socio-ecological variables for carnivores. Table 6.3 gives dichotomous 

socio-ecological variables for primates. Table 6.4 gives dichotomous ecological 

variables for carnivores. Where two or more play data replicates exist for any one 

species, a mean was taken to represent the species average in this type of play (Chapter 

2). 
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Table 6.1. Continuous socio-ecological variables for primates 

Species t Feeding tBreeding *Clique *Network tHome- tDay eLeaves tPrey -.Fruit -. BMR t Growth tSex 
group group size size range range % % % rate ratio 
size size (km) length 

Alouatta palliata - - - - - - - - 32.0 2000 
Ateles geoffroyi - 16.98 3.38 9.5 1.4 - 10.96 2.0 79.8 - 20 
Callicebus moloch - - - - - - - - 53.7 
Callithrix jacchus - - - - - - - - 22.0 
Cebus albifrons - 13.0 - - 0.80 - 2.1 62.2 24.6 

...... Cebus apella 
00 

- - 2.38 8.0 - - - - 52.0 
00 Cebus capucinus - - - - - - - - 67.5 

Cercocebus albigena - - - - - - - - 64.0 
Cercocebus atys - - - - - - - - 79.0 
Cercopithecus aethiops - - 1.47 4.7 - - - - 71.0 
Cercopithecus diana - - 2.20 4.0 - - - - 41.4 
Cercopithecus mitis 14.9 18.66 5.20 17.0 0.37 1.3 20.0 19.78 54.5 3391.5 18 3.70 
Cercopithecus neglectus - - - - - - - - 77.0 
Colobus badius 50.03 33.96 2.40 6.5 0.53 0.66 76.03 4.0 26.0 - - 2.5 
Colobus guereza - - 1.36 3.9 - - - - 14.0 2978 
Erythrocebus patas 20.0 35.48 2.86 6.2 52.0 2.5 12.1 13.02 75.0 - - 1.0 
Gorilla gorilla 10.0 10.0 - - 6.51 0.4 92.9 1.0 3.0 
Hylobates lar 3.9 4.0 - - 0.49 1.70 221.3 12.50 60.0 - 31 
Hylobates syndactylus - - - - - - - - 47.0 
Lemurcatta - - 2.06 15.0 - - - - 54.0 
Macaca arctoides - - 1.60 5.0 
Macaca fascicularis - - - - - - - - 66.9 



Species tFeeding tBreeding *Clique *Network tHome- tDay eLeaves tPrey -.Frw11: -. BMR t Growth tSex 
group group size size range range % % % rate ratio 
size size (km) length 

Macaca fuscata - - 4.57 22.6 - - - - 38.0 
Macaca mulatta - - 2.56 8.5 - - - - 63.0 2239 
Macaca nemestrina - - - - - - - - 75.0 
Macaca nigra 
Macaca radiata - - 8.60 21.3 
Macaca sinica - - - - - - - - 97.0 
Macaca sylvanus - - 2.21 8.0 - - - - 33.0 
Mandrillus sphinx - Nycticebus coucang 1.0 1.0 - - - - 1.0 30.97 60.0 272.6 00 

.J:) Pan troglodytes 3.9 27.99 3.07 8.8 21.49 3.89 25.03 11.51 28.0 9000 19 1.90 
Papio anubis - - 1.77 7.0 
Papio cynocephalus 33.96 63.5 2.44 21.0 24.1 3.61 23.71 4.89 62.0 - - 2.0 
Papio hamadryas - - 4.83 17.0 - - - - 88.0 - - 2.0 
Papio ursinus 34.0 63.53 2.00 7.0 24.0 3.59 23.74 4.9 73.0 
Pithecia pithecia 2.99 2.9 - - 5.0 - 7.9 - 92.0 - 16 
Pongo pygmaeus - - - - - - - - 64.0 
Presbytis entellus - - 3.46 9.0 - - - - 52.0 
Pygathrix nemaeus 2.0 9.3 - - 0.97 
Saguinus midas - - - - - - - - 69.0 
Saguinus oedipus 
Saimiri sciureus 6.98 40.27 - - 2.5 - 5.99 74.9 28.0 677 14 
Theroe.ithecus B.elada - - 1.70 4.9 - - - - 26.0 

t Deaner & Barton 2002; * Kudo & Dunbar 2001; ~ Barton 1999; e Ross & Jones 1999. 



Table 6.2. Continuous ecological variables for carnivores 

Species Population* Feeding* Foraging* 
group size group size group size 

Acinonyx jubatus 1.0 1.0 1.0 
Ailuropoda melanoleuca 1.0 
Arctocephalus australis 
Canis latrans 2.0 1.5 1.5 
Cerdocyon thous 
Crocuta crocuta 55.0 18.5 6.4 
Felis silvestris 1.0 1.0 1.0 
Haliochoerus grypus 
Helogale undulata 10.0 1.0 1.0 
Lontra canadensis 3.2 
Mustela putorius 1.0 
Mustela vison 1.0 
Panthera Ieo 9.0 6.5 2.5 
Phoca vitulina 
Selenarctos thibetanus 1.0 
Speothos venaticus 
Ursus americanus 1.0 1.0 1.0 
Ursus arctos 1.0 
Thalarctos maritimus 1.0 1.0 1.0 

*Taken from Gittleman (1989). 

190 



Table 6.3 Dichotomous ecological variables for primates 

Species ....,Activity tStrati- ....., • Frugivory t ~ Folivory Mating 
Timing fication system 

Allenopithecus nigroviridis 0 1 1 1 0 
Alouatta caraya 0 0 0 0 0 
Alouatta palliata 0 0 0 0 0 
Ateles geoffroyi 0 0 1 1 0 
Callicebus moloch 0 0 1 1 1 
Callithrix jacchus 0 0 1 1 1 
Cebus albifrons 0 0 1 1 0 
Cebus ape/la 0 0 1 1 0 
Cebus capucinus 0 0 1 1 0 
Cebus olivaceus 0 0 1 1 0 
Cercocebus albigena 0 0 1 1 0 
Cercocebus atys 0 1 1 1 0 
Cercopithecus aethiops 0 1 1 1 0 
Cercopithecus diana 0 0 1 1 0 
Cercopithecus hamlyni 0 0 1 1 0 
Cercopithecus mitis 0 0 1 1 0 
Cercopithecus neglectus 0 1 1 1 0 
Colobus badius 0 0 0 0 0 
Colobus guereza 0 0 0 0 0 
Erythrocebus patas 0 1 0 1 0 
Gorilla gorilla 0 1 0 0 0 
Hylobates lar 0 0 1 1 1 
Hylobates syndactylus 0 0 1 1 1 
Lemur catta 0 0 1 0 0 
Macaca arctoides 0 1 1 1 0 
Mac a ea fascicularis 0 0 1 1 0 
Macaca fuscata 0 1 1 1 0 
Macaca mulatta 0 1 1 1 0 
Macaca nemestrina 0 1 1 1 0 
Macaca nigra 0 1 1 1 0 
Macaca radiata 0 1 1 1 0 
Macaca silenus 0 0 1 0 0 
Macaca sinica 0 1 1 1 0 
Macaca sylvanus 0 1 1 0 0 
Mandril/us sphinx 0 1 1 1 0 
Nycticebus coucang 1 0 1 1 0 
Pan paniscus 0 1 1 1 0 
Pan troglodytes 0 1 1 1 0 
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Species .,Activity tStrati- .,+Frugivory t+Folivory ooMating 
Timing fication system 

Papio anubis 0 1 1 1 0 
Papio cynocephalus 0 1 0 1 0 
Papio lzamadryas 0 1 0 1 0 
Papio ursinus 0 1 0 1 0 
Pithecia pithecia 0 0 1 1 1 
Pongo pygmaeus 0 0 1 1 0 
Presbytis entellus 0 1 0 0 0 
Pygathrix nemaeus 0 0 0 0 0 
Saguinus fuscicollis 0 0 1 1 1 
Saguinus midas 0 0 1 1 1 
Saguinus oedipus 0 0 1 1 1 
Saimiri sciureus 0 0 0 1 0 
Theropithecus gelada 0 1 0 1 0 

-. Barton 1999; t Deaner & Barton 2002; + Derived from Rowe 1996; oo Smuts 
et al. 1987 

Activity timing: o = day, 1 = night; Usual stratification: o = arboreal, 1 = semi­
terrestrial/terrestrial; Frugivory: o = non-frugivorous, 1 = frugivorous (over 
so% diet from fruit); Folivory: o = folivorous (over so% diet from leaves), 1 = 
non-folivorous; Mating system (usual): o = polygynous/promiscuous, 1 = 
monogamous 
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Table 6.4. Dichotomous ecological variables for carnivores 

Species 

Acinoynx jubatus 
Ailuropoda melanoleuca 
Arctocephalus australis 
Canis latrans 
Cerdocyon thous 
Crocuta crocuta 
Felis silvestris 
Haliochoerus grypus 
Helogale undulata 
Lontra canadensis 
Mustela putorius 
Mustela vison 
Panthera Ieo 
Phoca vitulina 
Selenarctos thibetanus 
Speothos venaticus 
Ursus americanus 
Ursus arctos 
Thalarctos maritimus 

From Gittleman 1989. 

Activity Zonation Diet Vegetation Prey 
pattern size 

0 
1 

0 

1 
1 
1 

0 
1 
0 

0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
1 
0 

0 
0 
1 
0 
1 
0 
0 
0 
1 
0 

0 
0 

0 

0 
0 

1 
0 

0 

0 
0 
1 

1 

Activity pattern: o = diurnal, 1 = nocturnal/ arrhythmic/ crepusular; 
Zonation: o = terrestrial/terrestrial and occasionally arboreal, 1 = aquatic; 
Diet: o = carmvorous (flesh-eater)/omnivorous, 1 = 
insectivorousjpiscivorous/frugivorous and folivorous; Vegetation 
(primary habitat): o = open grassland/forest/woodland, 1 = aquatic; Prey 
size: o = small, 1 = medium-large. 
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First, bivariate regressiOns of contrasts for each play category and group size are 

presented, with graphs. Thereafter, results are presented for each play category on 

socio-ecological variables, controlling for group size (partial correlation analysis), and 

graphs are only presented for significant results. Statistics are presented for each section 

where there is a significant correlation, and results for the non-significant statistics 

appear in the Appendix. It should be noted that where sufficient data are available, 

results for both primates and carnivores are analysed and presented; however, due to a 

lack of play data, many carnivore analyses are apparently "missing". A summary of the 

results is presented in Table 6.28 at the end of this section. 

6.5.1 Primate mean group size 

Table 6.5 details bivariate regression analyses of contrasts for each play category on 

mean group size in primates. Mean group size is positively and significantly correlated 

with total play (Figure 6.1 ). Group size is not significantly correlated with solitary 

locomotor play or with object play (Figures 6.2 and 6.3). Group size is positively and 

significantly correlated with social play (Figure 6.4). 

Table 6.5 Bivariate regression analyses of play category on mean group size in 
primates 

Play type DF F-value p-value co-efficient r" 

Total 1, 41 4.87 0.03 0.31 0.11 
Solitary 1, 20 0.35 0.56 0.08 0.02 
Object 1, 14 0.002 0.96 -0.20 1.30 
Social 1, 23 6.29 0.01 0.56 0.22 
Bonferroni = 0.013, total play n.s. 

These results therefore indicate, as predicted, an association between group size and 

social play, but no association between group size and non-social play categories. 
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Table 6.6 details bivariate regression analyses of contrasts for each play category on 

mean group size in carnivores. Mean group size is not significantly associated with 

total play (Figure 6.5); one outlier has been removed as indicated by the CAIC 

programme. There were too few observations of solitary locomotor play and object play 

to permit a statistical result. Mean group size is positively correlated with social play, 

although the result does not reach significance (Figure 6.6). 
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Table 6.6 Bivariate regression analyses of play category on mean group size in 
carnivores 

Play type DF F-value p-value co-efficient r" 

Total 1, 5 0.08 0.78 -0.11 0.02 
Solitary+ 
Object+ 
Social 1, 3 2.71 0.20 1.09 0.47 
+ Too few observations 
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6.5.3 Breeding group size in primates 

Table 6.7 shows the results of bivariate regression analyses of contrasts for each play 

category on breeding group size in primates. Regressions of total, solitary, and object 

play on breeding group size do not show any significant correlations. Regression of 

social play on breeding group size shows a positive and significant correlation (Figure 

6. 7); however, Bonferroni correction renders this result non-significant. 

Table 6. 7 Bivariate regression analyses of play category on breeding group size 
in primates 

Play type DF F-value p-value co-efficient r" 

Total 1, 9 0.72 0.42 0.25 0.07 
Solitary 1, 4 2.06 0.25 0.79 0.41 
Object 1, 3 0.03 0.88 0.14 0.02 
Social 1, 7 6.20 0.04 0.58 0.47 
Bonferroni = 0.013, n.s. 
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Fig. 6.7. Regression plot of social play on log (breeding group) size in primates 

6.5.4 Population group size in carnivores 

Table 6.8 shows the results of bivariate regression analyses of contrasts for each play 

category on population (maximum) group size in carnivores. Population group size is 

not significantly correlated with total or object play. There were too few observations of 

solitary play to permit a statistical result. Population group size is however positively 

and significantly correlated with social play (Figure 6.8). The relationship in Figure 6.8 

is entirely driven by one point however; a larger sample size would enable a more 

detailed understanding of this relationship. 

Table 6.8 Bivariate regression analyses of play category on population group . . . 
stze In carmvores 

Play type DF F-value p-value co-efficient r2 

Total 1, 8 0.47 0.51 -0.16 0.06 
Solitary+ 
Object 1, 3 1.30 0.37 0.73 0.39 
Social 1, 4 17.70 0.01 1.12 0.82 

+ Too few observations 
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6.5.5 Clique group size in primates 

Table 6.9 shows the results of bivariate regression analyses of contrasts for each play 

category on clique size in primates. Regressions of total, solitary and social play on 

clique size show positive and significant correlations (Figures 6.9-6.11 ); however, 

Bonferroni correction renders the results for total and solitary play non-significant. 

Regression of object play on clique size does not show any association. The results for 

both total play and social play on clique size are displayed having removed one outlier 

as indicated in the CAIC analyses. 

Table 6.9 Bivariate regression analyses of play category on clique size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1,15 5.72 0.03 0.65 0.28 
Solitary 1, 8 5.70 0.04 0.49 0.44 
Object 1, 3 0.39 0.58 6.25 0.12 
Social 1, 12 6.41 0.01 0.50 0.35 
Bonferroni = 0.013, total and solitary play n.s. 
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6.5.6 Network size in primates 

.45 

Table 6.10 shows the results of bivariate regression analyses of contrasts for each play 

category on network size in primates. Regressions of total, solitary and social play on 

network size show positive and significant correlations (Figures 6.12-5.14); however, 

Bonferroni correction renders the results for total and solitary play non-significant. 

Regression of object play on network group size however, does not show any 

association. The results for social play and clique size (Figure 6.14) are displayed 

having removed one outlier as indicated in the CAIC analyses. 
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Table 6.10 Bivariate regression analyses of play category on network group size 
in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 17 5.231 0.04 0.42 0.24 
Solitary 1, 8 5.76 0.04 0.41 0.42 
Object 1, 3 0.22 0.67 -1.31 0.07 
Social 1,12 5.87 0.01 0.42 0.33 
Bonferroni = 0.013, total and solitary play n.s . 
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6.5.7 Home range size in primates 

Home range size is a variable likely to be confounded by group size, thus the following 

analyses remove the effect of group size through partial correlation_ Table 6.11 shows 

the results of partial correlation analyses of contrasts for each play category on home 
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range s1ze m primates, having removed the effect of group size by regressiOn. 

Regressions of total and social play on home range size show a significant and positive 

correlation (Figures 6.15 and 5.16). Regression of solitary play on home range size does 

not reach the same significance, and there were too few observations of object play to 

permit a statistical result. 

Table 6.11 Partial correlation analyses of play category on home range size in 
primates, controlling for group size 

Play type DF F-value p-value co-efficient r2 

Total 1, 8 24.35 0.001 0.31 0.75 
Solitary 1, 3 4.27 0.17 1.01 0.68 
Object+ 
Social 1, 6 9.97 0.01 0.30 0.62 

+ Too few observations. 

A further variable likely to confound home range size is that of body size, thus the 

following partial correlation analyses remove the effect of body size. Table 6.12 shows 

the results of partial correlation analyses of contrasts for each play category on home 

range size in primates, controlling for body size. Regressions of total and social play on 

home range size show a significant and positive correlation (Figures 6.17 and 6.18). 

Regression of solitary play on home range size falls short of significance, and there 

were too few observations of object play to permit a statistical result. 

Table 6.12 Partial correlation analyses of play category on home range size in 
primates, controlling for body size. 

Play type DF F-value p-value co-efficient r2 

Total 1, 8 10.90 0.001 0.22 0.58 
Solitary 1, 3 11.23 0.07 0.60 0.85 
Object+ 
Social 1, 6 10.94 0.01 0.28 0.65 
+ Too few observations 
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6.5.8 Day range length in primates 

Table 6.13 shows the results of bivariate regression analyses for contrasts of each play 

category on day range length in primates. Regression of total play on day range length 

shows a positive and significant correlation, with the removal of one outlier as indicated 

in the CAIC programme (Figure 6.19). Regression of social play on day range length 

does not show such a correlation. There were too few observations of either object play 

or solitary locomotor play to test for a statistical correlation. Unfortunately, there were 

rather too few contrasts to partial out the effects of either group size or body size from 

these analyses. 
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Table 6.13 Bivariate regression analyses of play category and day range length in 
primates 

Play type DF F-value p-value co-efficient 

Total 1, 4 13.91 0.01 1.13 
Solitary+ 
Object+ 
Social 1, 4 1.35 0.31 0.36 

+ Too few observations 
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Fig. 6.19. Regression oflog (total play) on log (day range length) in primates 

6.5.9 BMR (Basal metabolic rate) in primates 

Bivariate regression analyses were conducted for contrasts of each play category on 

BMR in primates. There were too few observations of solitary locomotor, object and 

social play to test for a statistical correlation. Regression of total play on BMR does not 

show a significant correlation. 

However, as BMR is likely to be confounded by body size, the following partial 

correlation analyses remove this effect. Table 6.14 shows the results of partial 

correlation analyses of contrasts for each play category on BMR, removing the effect of 

body size. All results show a stronger correlation, having removed the effect of body 

size, however, it is only social play that is positively and significantly correlated with 

BMR in primates (Figure 6.20). 
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Table 6.14 Partial correlation analyses of play category on BMR in primates, 
controlling for body size 

Play type DF F-value p-value co-efficient r 2 

Total 1,4 
Solitary I, 3 
Object+ 
Socian 1, 3 

+ Too few observations 
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Fig. 6.20. Partial correlation oflog (social play) on residual log 
(BMR) in primates, controlling for body size 

6.5.10 Captive and wild studies in primates 

0.56 
0.75 

0.97 

Table 6.15 shows regression analyses of contrasts of play on mean group size within 

each play category in primates. The results are split by whether a study is based in 

captive or wild observations. Graphs are detailed for all results to illustrate captive-wild 

comparison (Figures 6.21-6.27). Graphs on the left refer to captive studies, whilst those 

on the right refer to wild studies. 

Table 6.15. Regression of mean group size on each play category, split by captive 
and wild studies in primates. 

Play Captive/ DF F-value p-value co-efficient r2 
Category wild? 

Total Captive 1, 23 0.38 0.54 0.097 0.02 
Wild 1, 14 0.001 0.97 0.008 1.09 

Solitary Captive 1,13 8.19 0.01 1.40 0.41 
Wild 1, 4 23.44 0.02 1.54 0.89 

Object Captive 1, 7 4.69 0.07 0.53 0.44 
Wild+ 

Social Captive 1, 15 8.74 0.01 0.47 0.38 
Wild 1, 5 0.34 0.59 0.71 0.08 

+Too few observations 
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Fig. 6.27 Regression plot of contrasts of log 
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6.5.11 No. ofbehaviours 

The following set of analyses focus upon the number of different play behaviours 

recorded within a species' repertoire in primates, and control for research effort in 

months. 

6.s.ua Group size 

The following analyses focus on group size and number of behaviours controlling for 

research effort in months using the method of independent contrasts. 

6.5.11ai Primates 

Regression analyses of contrasts m the number of different play behaviours 

observed in a species' play repertoire against group size, controlling for research 

effort in months, reveals a positive correlation although falling short of 

significance (F (1, 16) = 3 .32, p = 0.09, co-efficient= 0.33, r2 = 0.17). 

6.5.11aii Platyrrhines (New World primates) 

Regression analyses of contrasts in the number of different play behaviours 

observed in a species' play repertoire against group size, controlling for research 

effort in months, reveals a positive, but non-significant correlation (F (1, 5) = 

0.48, p = 0.52, co-efficient= 0.28, r2 = 0.11 ). 
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6.s;.uruiii Ca1trurrhimes (Old World primates and apes) 

Regression analyses of contrasts in the number of different play behaviours 

observed in a species' play repertoire against group size, controlling for research 

effort in months, reveals a positive and significant correlation (F (1, 14) = 9.39, 

p = 0.008, co-efficient= 2.38, r2 = 0.40) (Figure 6.45). 
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Fig. 6.28 Partial regression of mean group size on no. of play 
behaviours in the repertoire of catarrhines 

6.5.12 Dichotomous variables 

Table 6.16 shows one sample analyses (t-test) testing for significant evolutionary 

change in group size relative to the transitions in the dichotomous play variables in 

primates. Similar analyses with body size appear in Chapter 5. 

Table 6.16 T-tests on changes in mean group size with transitions m 
dichotomous play variables in primates 

Variable Mean DF t-value p-value Significance? 

Adult play 0.06 7 1.56 0.16 N.S. 
Adult male play -0.02 7 -0.53 0.61 N.S. 
Adult-adult play 0.05 13 1.94 0.07 N.S. 
Sex play -0.02 14 -0.58 0.57 N.S. 
SSD 0.03 14 0.98 0.34 N.S. 
SSP 0.02 7 0.46 0.66 N.S. 
SAD -0.01 5 -0.35 0.74 N.S. 
SAP -0.06 7 -2.57 0.04 * 
Sibling -0.03 4 -0.99 0.37 N.S. 
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Variable Mean DF t-value p-va].ue Significance? 

Relatedness -0.04 5 -0.98 0.37 N.S. 
Dominance -0.003 3 -0.08 0.94 N.S. 
Vocalisation 0.03 6 0.80 0.45 N.S. 
Polyadic 0.06 3 2.79 0.07 N.S. 
Interspecific 0.04 3 1.26 0.29 N.S. 

* p = < o.os; Bonferroni: 0.004, thus N.S. 

Only one of the results detailed above is significant at p <0.05. After making a 

Bonferroni adjustment (Moore & McCabe 1999), this result is non-significant. 

As regression analyses showed the amount of play observed in a species to be predicted 

by social group variables, such as clique size and network size, and also home range 

size, Tables 6.17-6.27 show one sample analyses (t-test) testing for significant 

evolutionary change in these variables relative to the transitions in the dichotomous play 

variables in primates. 

Table 6.17 T -tests on changes in mean clique size with transitions in 
dichotomous play variables in primates 

Variable Mean DF t-value p-value Significance? 

Adult play -0.03 6 -0.95 0.38 N.S. 
Adult male play 0.005 4 0.31 0.77 N.S. 
Adult-adult play 0.05 5 1.42 0.22 N.S. 
Sex play 0.04 8 1.09 0.31 N.S. 
SSD 0.01 7 0.89 0.40 N.S. 
SSP 0.01 3 0.59 0.62 N.S. 
SAD -0.01 2 -0.15 0.91 N.S. 
SAP 0.02 4 0.77 0.48 N.S. 
Sibling+ 
Relatedness -0.01 2 -2.75 0.11 N.S. 
Dominance 0.02 2 0.64 0.58 N.S. 
Vocalisation 0.01 3 0.94 0.42 N.S. 
Dyadic+ 
Polyadic+ 
Parent play+ 
Place -0.002 2 -0.09 0.94 N.S. 
Interspecific+ 

+Too few observations 
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Table 6.18. T-tests on changes in mean network size with transitions in 
dichotomous play variables in primates 

Variable Mean DF t-value p-value Significance? 

Adult play -0.03 6 -5.68 0.58 N.S. 
Adult male play 0.003 4 0.20 0.85 N.S. 
Adult-adult play 0.08 5 1.33 0.24 N.S. 
Sex play 0.08 8 1.43 0.19 N.S. 
SSD 0.41 7 0.66 0.53 N.S. 
SSP 0.12 3 0.38 0.73 N.S. 
SAD 0.01 2 0.80 0.57 N.S. 
SAP 0.13 4 0.33 0.76 N.S. 
Sibling+ 
Relatedness -0.002 2 -0.09 0.93 N.S. 
Dominance 0.02 2 0.44 0.70 N.S. 
Vocalisation 0.02 3 1.18 0.32 N.S. 
Dyadic+ 
Polyadic+ 
Parent play+ 
Place+ -0.003 2 -0.50 0.71 N.S. 
Interspecific+ 

* p = < o.os 

Table 6.19. T-tests on changes in mean home range size with transitions in 
dichotomous play variables in primates 

Variable Mean DF t-value p-value Significance? 

Adult play 0.17 3 1.93 0.15 N.S. 
Adult male play 0.11 2 1.58 0.36 N.S. 
Adult-adult play 0.11 2 1.72 0.34 N.S. 
Sex play -0.22 3 -0.16 0.88 N.S. 
SSD -0.03 5 -0.82 0.45 N.S. 
SSP 0.08 2 1.37 0.40 N.S. 
SAD+ 
SAP+ 
Sibling+ 
Relatedness -0.01 2 -0.55 0.68 N.S. 
Dominance+ 
Vocalisation 0.008 2 0.08 0.94 N.S. 
Dyadic+ 
Polyadic 0.05 2 0.60 0.66 N.S. 
Parent play+ 
Place+ 
Interspecific 0.06 2 0.39 0.74 N.S. 

+ Too few observations. 
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Tables 6.20-6.23 show tests for significant evolutionary change in play categories 

relative to the transitions in the dichotomous variables detailed below, where the 

hypothesised mean is equal to 0. As stratification is a variable likely to be confounded 

by group size, multiple regression analyses have been used here to remove such effects. 

Indeed, without controlling for group size, stratification shows a highly significant 

correlation with all play types, suggesting that group size accounts for most of the 

vanance. 

Table 6.20 Total play with dichotomous ecological variables in primates 

Variable Mean DF t-value p-value Significance? 

Activity timing -0.05 2 -15.91 0.04 N.S 
Stratification 0.06 5 1.008 0.35 N.S 
Frugivory -0.06 15 -1.77 0.09 N.S 
Folivory -0.006 17 -0.30 0.77 N.S 
Mating system 0.06 4 5.15 0.001 * 

* p = < o.os. Bonferroni = 0.01, activity timing n.s. 

Table 6.21 Solitary play with dichotomous ecological variables in primates 

Variable Mean D.F. t-value p-value Significance? 

Activity timing 0.75 2 3.00 0.20 N.S 
Stratification 0.03 3 0.34 0.75 N.S. 
Frugivory -0.02 10 -0.82 0.43 N.S 
Folivory -0.02 10 -0.75 0.47 N.S 
Mating system -0.55 2 0.75 0.53 N.S 

Table 6.22 Object play with dichotomous ecological variables in primates 

Variable Mean D.F. t-value p-value Significance? 

Activity timing 0.001 2 0.005 0.99 N.S 
Stratification 0.33 3 0.27 0.81 N.S 
Frugivory -0.10 5 -1.717 0.15 N.S 
Folivory 0.05 8 0.78 0.46 N.S 
Mating system -0.14 2 -2.26 0.15 N.S 
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Table 6.23 Social play with dichotomous ecological variables in primates 

Variable Mean D.F. t-value p-value Significance? 

Activity timing -0.05 2 -1.71 0.34 N.S 
Stratification 0.07 4 0.74 0.50 N.S 
Frugivory -0.02 11 -0.54 0.60 N.S 
Folivory -0.02 12 -0.60 0.56 N.S 
Mating system 0.48 5 0.97 0.37 N.S 

Tables 6.24-6.27 show tests for significant evolutionary change in play categories 

relative to the transitions in the dichotomous variables for carnivores detailed below, 

where the hypothesised mean is equal to 0. 

Table 6.24 Total play with dichotomous ecological variables in carnivores 

Variable Mean D.F. t-value p-value Significance? 

Activity pattern 4.63 6 0.06 0.96 N.S. 
Zonation -1.14 6 -0.02 0.98 N.S. 
Diet -0.001 6 -0.23 0.82 N.S. 
Vegetation -1.80 4 -0.02 0.99 N.S. 

Prey size -0.01 4 -0.14 0.89 N.S. 

Table 6.25 Solitary play with dichotomous ecological variables in carnivores 

Variable Mean D.F. t-value p-value Significance? 

Activity pattern+ 
Zonation 0.03 2 1.65 0.24 N.S. 
Diet 0.02 2 1.66 0.24 N.S. 
Vegetation+ 
Prey size+ 

+ Too few observations 

Table 6.26 Object play with dichotomous ecological variables in carnivores 

Variable Mean D.F. t-value p-value Significance? 

Activity pattern 0.04 2 3.78 0.16 N.S. 
Zonation 0.002 2 0.13 0.91 N.S. 
Diet 0.02 2 14.15 0.04 * 
Vegetation -0.03 2 -0.13 0.92 N.S. 
Prey size+ 

+Too few observations; * p = <0.05, Bonferroni: 0.013, thus N.S. 
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Table 6.27 Social play with dichotomous ecological variables in carnivores 

Variable 

Activity pattern 
Zonation 
Diet 
Vegetation 
Prey size+ 

Mean 

-0.001 
0.01 
0.01 
0.02 

D.F. t-value p-value Significance? 

2 
4 
5 
3 

-0.13 
1.39 
1.56 
3.39 

0.91 
0.24 
0.18 
0.04 

+Too few observations;* p = <o.os, Bonferroni 0.013, thus N.S. 

6.6 Discussion 

6.6.1 Sociality 

N.S. 
N.S. 
N.S. 
* 

Play frequency is likely to be not only increased in large groups, through an increased 

number of potential partners (Fagen 1981; Gittleman 1989), but also necessary in large 

groups, because of the need to develop social skills. Social complexity selects for social 

skills, mediated by large brains (and specifically larger neocortices) (e.g. Dunbar 1992, 

1995a). A larger relative neocortex may require more play behaviour over the juvenile 

period to become properly "wired up". Thus, the performance of play behaviour 

supports the development of skills necessary for life in large groups. We therefore 

expect that species in larger groups will be those that are also most playful. The results 

in this chapter support this hypothesis for primates, in that group size correlates 

significantly with the amount of social play behaviour observed, suggesting that over 

the course of behavioural evolution, increases in group size were associated with 

increases in the amount of social play behaviour exhibited. The same trend is 

demonstrated for total play in primates, but the results fall short of significance after 

Bonferroni correction. There is a positive correlation between social play and group 

size in carnivores, although the result falls short of significance; possibly because of 

small sample sizes. However, with carnivore overall (maximum) population group size, 

the result is both positive and significant: the larger the (local) population group size, 

the greater the number of increased partners, and thus the increased likelihood and 

opportunity for (social) play. Again, the sample sizes for the carnivores analysed here 

are small, and thus caution is required in forming conclusions as to this relationship. 
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Table 6.28 Summary of results of socio-ecological variables on each category of play in primates and carnivores 

Socio-ecological variable 

Mean group size 

Feeding group size 

Breeding group size 

Population group size 

Clique size 

Network size 

Foraging group size 

Home range size (group) 

Home range size (body) 

Day range length 

% leaves in diet 

% prey items in diet 

% fruit in diet 

Sex ratio 

BMR 

BMR (body) 

Growth rate 

Total 

V"'+ 

X 

X 

X 

X 

X 

V"'+ 

V"'+ 

X 

V"'+ 

V"'+ 

V"'+ 

X 

X 

X 
X 

X 

X 
X 

Play category: significant correlation? 

Solitary locomotor Object 
X 

X 

X 

V"'+ 

V"'+ 

X 

X 

X 

X 

X 

X 

X 

X 

-
X 

-
X 
)( 

X 

X 

X 

X 

X 
X 

Social 

V"'= significant, X =not significant, +=positive correlation,-= negative correlation/no data; Symbols: Black =primates, 2e~~ = carninJrv~. 

,....+ 
X 

X 
X 

V"'+ 

,/ + 
V"'+ 
,/'+ 

V"'+ 
,/'+ 

X 
X 

X 
X 
X 

,....+ 
X 



As social groups often break off into smaller units for social and foraging purposes 

(Kudo and Dunbar 2001), it is expected that play, especially social play, will show an 

evolutionary relationship with more tight-knit social group units, such as clique size and 

network size, which is indeed what is shown in the results presented here. Play 

categories and feeding group sizes (number of individuals simultaneously collecting 

around a food source or kill) show no significant associations. However, feeding group 

size is not necessarily a relevant measure of partner availability or sociality. For 

example, it may be that adults control feeding group numbers. Additionally, infants and 

juveniles might not always be present in typical feeding groups. As the need to feed 

suppresses play behaviours (Fagen 1981 ), it seems unlikely that feeding group size will 

predict the amount of play behaviour expressed. None of the play categories showed an 

association in primates, and although carnivore data for this result pertain only to total 

play, no significant correlation emerged. The same trend thus links primate feeding 

group size, and carnivore feeding group and foraging group size, and possibly for 

similar reasons. 

There is a positive and significant evolutionary correlation between breeding group size 

and social play in primates, however this falls short of significance when controlled for 

Bonferroni procedure. However, a trend is indicated for smaller social groups to be 

important to the exhibition of social play. Breeding groups, network sizes, and clique 

sizes are generally small and close-knit units, and thus may be an indicator of social 

bonds. In multi-level societies, these close-knit groupings represent the "true" social 

units, within which individuals have well-differentiated and stable long-term 

relationships (Kudo & Dunbar 2001). In species with especially large population sizes, 

such as baboons (Papio spp.), it is possible that these affiliative subgroups hold more 

sway in the exhibition of play, rather than overall group size, as it may be difficult to 

maintain social bonds with extremely large numbers of conspecifics. Indeed, amongst 

primates, it seems that clique size best predicts evolutionary increases in time spent 

playing. The results here indicate that total, solitary, and social play, are positively and 

significantly correlated with clique size in primates. The exception to this rule is object 

play, although the sample size is small. This result is interesting as clique size is formed 

of the individual's most common social partners (Kudo & Dunbar 2001), thus it is 

expected that the social kernel of the player's own network should be useful in 

predicting social behaviours, such as social play. Interestingly, before Bonferroni 
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correction, clique size also correlates strongly with solitary locomotor play. This may 

be due to an increase in play behaviour in a general sense. As a juvenile's clique is 

likely to include its mother, there is limited argument for locomotor play acting in 

displays of competence to parents (Chiszar 1985). An almost identical trend is shown 

in primates for play and network size. This may be as network size is an expanded 

version of clique size, incorporating all major social partners (Kudo & Dun bar 2001 ). 

Adult sex ratio does not appear to be a significant factor in the evolution of each play 

category. This is an interesting finding given that play assists in preparation for adult 

social behaviour, and that sex ratio correlates with mating systems and sexual 

competition. Sex differences and preferences for same-aged and same-sex partners in 

play are apparent in many species, although the dichotomous variables analysed here do 

not show any significant relationship with group size, clique size, network size or home 

range size. Socio-ecological variables are likely to affect and control the hormonal 

mechanisms of an individual. These in turn affect and control the exhibition of play. 

The results here can draw no positive conclusions regarding the relationships between 

such variables, although particularly small sample sizes in some analyses may be 

crucial. There is certainly a shortage of available data studies that detail these 

occurrences in field studies; future ethological work should aim to report such episodes 

where possible. 

In primates, mating system is shown to be a variable significantly associated with the 

amount of total play. This is likely to be concerned with social structure. We would 

expect polygynous species to exhibit high rates of social play, due to the increased 

prevalence of male-male aggression in adulthood to compete for mates and resources. 

However, social play and mating structure are not significantly associated in the results 

from the dichotomous analyses here. It may be necessary to distinguish more explicitly 

the range of mating systems into more categories (e.g. dispersed polygyny, harem, 

promiscuity, etc.). 

The results detailed in this chapter indicate the importance of sociality to the expression 

of social play behaviour. It is likely therefore, that the social play of relatively large 

brained taxa, or those with large neocortices, such as primates and carnivores, is 

necessary for successful group living. In order to be a "successful" member of the 
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group, it is important to be able to react to social cues quickly, efficiently, and 

accurately. The same skills are required for a successful social play bout (Spinka et al 

2001). In addition to honing the CNS during development (Fairbanks 2000), play, and 

especially social play, contributes to forming social bonds, learning social skills, and 

may even facilitate "socialisation" during infancy and juvenility (Bekoff et al. 1984). 

This is borne out by the evolutionary correlation between time spent in social play and 

clique and network group sizes, in that social play is especially prevalent among highly 

social units. 

6.6.2 Habitat & Diet 

It has been shown that species in richer habitats exhibit relatively greater amounts of 

play behaviour than species in poorer habitats (Sommer & Mendoza-Granados 1995). 

Species with a larger home range size are also likely to be those with a relatively larger 

group size, and possibly also larger relative brain sizes (see Chapter 5 and Chapter 7 for 

further discussion). Additionally, home range size and body mass should also be 

correlated as larger species require more energy (McNab 1963). It is therefore expected 

that species that occupy a larger home range are more playful. In such species, play 

may be a necessary behaviour, given that large home ranges are typically associated 

with lower environmental productivity and food density, and increased risk of 

predation. The factors have selected for a larger group size, especially in open habitats 

(Gittleman 1989), and as the results show, group size correlates with play time budgets. 

However, the results here show that there is a positive and significant correlation 

between home range size and time spent in total and social play behaviour in primates, 

which remains even after removing the confounding effects of group size and body size. 

There was also a positive and significant relationship between total play and day range 

length in primates. Species or populations with an increased day range length tend also 

to spend more time travelling and foraging (Dunbar 1992). So this result is somewhat 

counter to the expectations of the idea of time and energy constraints. The result may 

reflect the positive correlation between group size and day range length (Dunbar 1992). 

As habitat and nutritional richness appear to affect the exhibition of play behaviour 

(Fagen 1981; Burghardt 1984), it is predicted that access to (high-quality) food as well 
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as primary food sources, will be important constraints on play behaviour, especially 

given that diurnal and frugivorous species typically have larger neocortical visual areas 

(Barton 1996) (Chapter 7 will look more closely at how the brain relates to play). 

However, the results here do not support such hypotheses when percentages of leaves, 

fruit, and prey items in the diet are considered. Non-significance is also reported for 

prey size and diet in carnivores, in the dichotomous variables analysed here. It was 

predicted that species with increased access to animal protein would exhibit more play, 

whilst species with a diet high in toxins (e.g. folivores) would be relatively less playful 

(Burghardt 1988). Although none of the results here are significant, the general trends 

in the data reveal that for all play categories, there is no association between play and 

percent of leaves in the diet, and mildly negative associations between percent of fruit 

and prey items in the diet. Thus, according to my results here, diet does not actually 

appear to be a good predictor of play prevalence. Growth rate is also affected by diet 

and metabolism, but does not appear to be an evolutionary factor in the evolution of 

play time budgets, which is an interesting result, given the evidence for precocial 

species being more playful in the results in Chapter 5. Explanations for this are unclear, 

although small sample size may again have an effect. 

6.6.3 Metabolic rate 

One difficulty here is the lack of data on basal metabolic rates (BMR) for the species 

analysed. However, the results show that social play is positively and significantly 

correlated with BMR in primates, controlling for the effect of body size, although the 

sample size is small. This is an important finding. Given the motor elements of most 

play behaviours, it seems intuitive that BMR should be a factor in the exhibition of 

play, even though play itself is almost certainly not performed for the purposes of 

exercise (Byers 1998b ). Caution must still be taken given the small sample size; 

however, the strength of the relationship suggests that energy constraints are important 

in the expression of (social) play. Indeed, although the rate of energy consumed by play 

may typically be relatively low, like other behaviours and conditions such as 

thermoregulation and other activity patterns, it remains a metabolic expenditure and 

should affect an individual's daily energy requirement and metabolic rate (Nagy 1994). 

Thus the results in this chapter indicate that certain ecological variables do in fact affect 

the expression and exhibition of play behaviour, especially in terms of metabolism and 
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home range size. It is odd that there was no relationship found between BMR and total 

play; the p-value falls short of significance, perhaps due to small sample sizes, or 

because only social play is energetically expensive. 

Metabolism may certainly pose a constraint on the exhibition of play behaviour. The 

time and energy devoted to play is typically reported at less than 10% of a species' daily 

budget (Bekoff & Byers 1992). Bekoff and Byers (1992) argue that it might be more 

intuitive to describe time and energy devoted to play in terms of the amount exhibited 

relative to the daily active time budget, rather than include time spent resting. The 

examples they offer include Bekoff & Wells' (1986) study of coyotes (Canis latrans) 

whereby play accounts for 1% of the daily time budget, but 2% of the daily active time 

budget; and Miller & Byers' (1991) study of pronghorn fawns, that devote 1.9% of the 

day playing, which translates to 8.4% of their active daily active time budget. Martin 

(1984b) has also shown that kittens devote between 4 and 9% of their time and energy 

budgets in play. BMR not only varies with diet, also varies considerably with climate, 

with species in more tropical zones typically having lower BMR than species in colder 

climates (McNab 1989). This of course, is connected to diet and food availability, but in 

any case, future studies of play should aim to include latitude of species' populations as 

a dependent variable. 

Although the brain is somewhat robust in terms of sensitivity to nutritional deficiencies 

(Guesry 1998), marked malnutrition during critical periods in development may 

adversely affect brain and retinal development, especially in terms of skill acquisition 

(Gordon 1997). It is argued that providing the developing infant receives sufficient 

psychomotor stimulation, the brain should develop normally (Guesry 1998). Could it 

then be argued that play acts as a buffer against certain aspects of malnutrition, 

particularly early in ontogeny? Play may certainly provide a sufficient stimulus for 

psychomotor development, and arguably could protect the process of myelination from 

the deleterious effects of malnutrition. Myelin is a fatty insulating sheath that covers 

nerve fibres (e.g. Bear et al. 2001 ). It is especially associated with brain conductivity, 

and thus myelination is considered to be one key indicator of intellectual performance 

(Miller 1994). Myelin synthesis is sensitive to nutritional effects, and severe 

. malnutrition may lead to fewer fibres becoming myelinated (Gordon 1997). "More 

intelligent" brains are argued to be more energy efficient (Parks et al. 1988). Haier et al. 
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( 1988) showed that individuals considered to be highly intelligent, performing well in a 

variety of neuropsychological tasks, also had thickly myelinated axons, which use less 

glucose, in comparison with individuals who performed less well, with thinly 

myelinated axons, requiring a high glucose consumption. Diamond (1988) found that 

rats raised in an enriched environment, which has been shown to improve maze­

learning abilities, also had lower glucose utilisation in certain neural regions. Thus, 

thicker myelin is associated with faster reaction times and skill acuity, and importantly, 

its developmental trajectory appears to correspond with the honing of certain skills and 

stages of developmental advancement (Miller 1994). Additionally, myelination is 

considered to be one marker for, and explanation of, improved intelligence through 

juvenility and into adulthood (Miller 1994). It may be the case that species in large 

groups require play behaviour, and that this can be better facilitated by encouraging 

psychomotor development through play at crucial periods of neural development, 

thereby honing the CNS (see Fairbanks 2000). This may have a dual purpose of 

combating environmental variance, specifically fluctuations in food availability, in 

order to produce more efficient brains. Chapter 7 will consider the role of the brain to 

play in more detail, however, there is considerable overlap in the effects of 

neurological, socio-ecological, metabolic, and life-historical variables. 

6.6.4 Captive and wild studies 

The results here suggest that captivity is likely to have an effect on the rate at which 

species engage in different play categories. In regression of total play on group size for 

all studies, total play is positively and significantly correlated with group size. When 

split by captive and wild, however, we see that although captive studies reveal a 

positive relationship, it is not a significant one. Wild studies do not appear to make up 

the shortfall in this significance, showing almost no association between group size and 

total play time budgets in primates. Similarly, in the complete sample, we see no 

association between solitary locomotor play and group size; yet split by captive and 

wild studies, both samples are positive and significant. This discrepancy may be due to 

sampling effects. There are too few observations of wild object play to split wild 

studies from captive studies, however, here the trend is less surprising: the entire sample 

shows a negative but non-significant correlation between object play and group size, 

whereas there is a positive although non-significant relationship between object play 
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and group size in captive studies. Captive studies may offer the best way to assess 

object play and its patterns, as so few of these are reported in the wild. Finally, social 

play in the entire sample shows a positive and significant correlation with group size. 

When split by captive and wild studies, we see that captive studies show the same trend, 

whereas wild studies, although positive, are non-significant. This suggests that the data 

from captive studies are driving the result. Further work is needed to establish whether 

the stronger correlation for captive than wild populations is a real effect or a sampling 

effect. 

As the complete database sample takes data from wild and from captive studies, I 

suggest that this measure offers a reasonable way in which to assess the potential, as 

well as the actual play time budget investment among species. What these results do 

indicate however, is the need to distinguish between captive and wild studies, especially 

in the study of behavioural categories such as play, that are so sensitive to 

environmental and social factors (e.g. Bernstein 1972; Erwin & Deni 1979; Maple 

1979; Fagen 1981; Smith 1984; Brown 1988; Jensen 2001; Bloomsmith 1989). It is 

often useful to split these categories in order to assess behavioural differences. It is 

always likely that more complex, or indeed novel behaviours will be both witnessed and 

recorded from animals housed in captivity, whereas wild observations are fewer in 

number and in study duration for most species. I believe that pooling captive and wild 

data, as well as using phylogenetic information, can provide a rounded understanding of 

species behaviour, provided the effects ofboth are borne in mind. 

6.6.5 Number of play behaviours 

The results here show that group size explains some of the variance in the number of 

distinct play behaviours recorded in a species group. Amongst primates the result is not 

significant, but for catarrhines alone, the result is significant. These results suggest that 

among Old World anthropoids, evolutionary increases in group size are correlated with 

increases in behavioural play repertoires. It is likely that there simply is not the same 

variance in group size in the platyrrhines in the database, as for the catarrhines, 

especially as many of the platyrrhine species in the sample are callitrichids (thus living 

in habitually monogamous pair bonds rather than large social groups). 
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6e7Summary 

Play behaviour, like other behavioural categories, appears to be affected by socto­

ecological variables. The results in this chapter demonstrate the importance of group 

size to the expression of play behaviour in primates and where analyses were possible, 

in carnivores. In primates, clique size and network sizes best predict play time budgets. 

In carnivores there is a similar correlation between social play and population group 

size, and the trend holds for mean group size, although the result is not significant in 

this case. It is likely that "social" groups, meaning those groups within which 

individuals have stable, differentiated relationships, best predict the expression of social 

play behaviour. This may be due to the increased reliance on social relationships in 

larger groups. Captivity appears to increase certain play behaviours in terms of time 

devoted to it; this is likely to be as socio-ecological factors can be better controlled, thus 

limiting the time required for foraging and predator avoidance, as in their wild 

counterparts. 

The amount of time spent playing represents a trade-off between costs and benefits. 

Energy expenditure is one such cost. Despite previous work, diet alone does not appear 

to be a key factor in the evolution of play time budgets. The correlation between play 

and home range size may be explained by the fact that species with larger home ranges 

typically form larger social groups. Further work is needed to assess the roles of energy 

constraints and socio-cognitive benefits in the evolution of play time budgets. 
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Chanter z: 
Play and the Brain 

7. Jl Knitrodu~etion 

Despite a recent rise in interest as to the brain's role in play behaviour, relatively little is 

understood regarding relationships between the brain and play in mammals (Siviy 

1998). Most studies that deal with play and neurobiology are concerned with rats 

(Vanderschuren et al. 1997), although comparative research is starting to focus on other 

mammalian species and orders (e.g. Byers 1999; Iwaniuk et al. 2001). Given the 

heterogeneity of both play as a behaviour, and of the brain as an organ, it is likely that 

different parts of the brain are involved in different aspects of play behaviour; thus a 

component-specific approach is required. By studying neural components that may be 

involved in mediating the various facets of play behaviour, it is hoped that a greater 

recognition of play and brain interactions will be achieved. This might be especially 

useful in attempting to understand evolutionary patterns and processes in brain­

behaviour development. 

7.2 Regions of the brain 

The neuronal components of each region of the brain are selectively connected to form 

organised patterns (Eccles 1977), thus each part of the brain has been selected to 

perform different but overlapping tasks. Part of the key to understanding brain­

behaviour relationships is in looking closely at the part that each brain region plays in 

specific behaviours, and how these are connected to make up distributed neural systems. 

Size comparison of different brain components across different species can assist the 

understanding of brain function capacity (Stephan et al. 1988). Below is an overview of 
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the functions of various brain parts for which extensive comparative volumetric data 

exists. Figure 7.1 is a diagram of the lateral view of a macaque brain; a diagram of the 

human brain will be used to demark further brain components in this chapter. 

Fig. 7.1 Lateral view of the macaque cerebral cortex 

7.2.1 Forebrain 

The forebrain comprises various structures that function in the perception, awareness, 

cognition, and voluntary actions, through sensory-motor neuron interconnections of the 

brain stem and spinal cord (Bear et al. 2001 ). Evidence from the play literature 

suggests that forebrain structures are likely to be important to play behaviour 

(Burghardt 2001 ). The structures of the forebrain are detailed below. 

7.2.1.1 Neocortex 

Possibly the most important fore brain structure is the cerebral cortex (or cerebral 

neocortex), which is thought to be the most expanded part of the brain in human 

evolution (Deacon 1997). The neocortex encloses the entire midbrain region in 

humans, and comprises between 50-80% of the brain's volume in primates, and 

75% of the brain's neurons (Russell 1988), and is present only in mammals (Bear 

et al. 2001). Indeed, most differences between extant primate species have been 

brought about by neocortical evolution (Passingham 1973; Dunbar 1992). 

Although the size of the neocortex has expanded in mammals over evolutionary 

time, its basic structure has not (Jerison 1973). It appears that large areas of the 

cortex are not associated with a single modality, but integrate information from 

various senses in order to create a coherent understanding of the external 

environment. These are called association areas (Russell 1988). Recent 

comparative studies of the neocortex have found correlations with group and 
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network sizes in mammalian taxa, such as primates (Dunbar 1992, 1995; Kudo & 

Dun bar 2001 ), and in particular haplorhines (Barton 1993, 1996), as well as 

carnivores and selected insectivores (Dunbar & Bever 1998) and dolphins 

(Marino et al. 2000). These studies particularly refer to the way in which large 

brained species such as primates process social information and other cognitive 

aspects of group living, or "social intelligence" (e.g. Dunbar 1992), and aspects of 

behavioural ecology (e.g. Barton 1996). Dunbar & Bever (1998) have 

demonstrated that primates and carnivores share a comparable pattern of 

neocortical evolution, and thus they state the similarity between the orders in 

terms of social cognition: in essence, the larger the neocortex, the larger the 

group, and the greater the capacity for social intelligence. 

Lewis (2000) applied Dunbar's theory to the evolution of social play behaviour in 

primates. If the neocortex is a measure of social cognition, then perhaps it can be 

meaningfully applied to evolutionary elaborations in socially complex aspects of 

primate play behaviour. Even having controlled for the confounding effects of 

group size, the study demonstrated a positive and significant relationship between 

social play and neocortex ratio in non-human primates. This relationship might 

be best explained in terms of the extent to which social complexity is vital to a 

successful bout of social play; if an individual is to ensure the success (in terms of 

length) of its play with a partner, it is necessary to react to play-specific cues in a 

suitable manner (Fagen 1981; Lewis 2000). Failure to do so risks the termination 

of play, either through aggression or abandonment. To a behaviour such as social 

play, where the flipping of roles is commonplace, appropriate processing of social 

information is crucial, and this may require increased cognitive skills (Lewis 

2000). Alternatively, or additionally, it may be that species with elaborate social 

skills, and large brains, need to develop these skills through play. 

7.2.1.2 Limbic system 

The limbic system is a group of structures situated just beneath the corpus 

callosum (that joins the two hemispheres of the brain) (Carter 1999), and 

comprises structures that are widely considered to be vital to the experience of 

emotion and motivation (Russell 1988), such as the olfactory system, brain 
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stem, hippocampus, amygdala, hypothalamus, anterior nuclei of the thalamus, 

septum, and the cingulate cortex (Isaacson 1982; Joseph 1999; Burghardt 

2001). These structures project to the neocortex, and are concerned with both 

the "primitive" functions of response, as well as the more "advanced" 

functions of cognition and emotion - thus demonstrating both mosaic and 

correlated evolutionary change (Barton & Aggleton 2000). Traditionally, the 

limbic system was believed to be the evolutionarily oldest part of the 

mammalian brain (Carter 1999), and subsequently it was believed that the 

functions of the limbic system must also be primitive in comparison with more 

advanced systems such as the neocortex (Barton & Aggleton 2000). Recent 

research suggests that this is not necessarily the case, and that over 

evolutionary time, limbic components have changed together with the 

neocortex (Barton & Aggleton 2000; Barton & Harvey 2000). Similarly, the 

traditional view was that the limbic system was the neural system for emotions. 

Generally, modern neuroscientists no longer view the limbic system as existing 

as a coherent entity. This is due to the fact that structures once believed to be 

absolutely intrinsic to the expression of emotion, such as the hippocampus, are 

currently viewed as having different functions, such as memory formation 

(Bear et al. 2000). Similarly, the concept of a "system" implies that all the 

various structures are working together (Barton & Aggleton 2000); we now 

understand that such structures have both evolved, and function in different 

ways, thus making the classification of a limbic "system" per se somewhat 

trickier to define. "Limbic system" remains a commonly-used term, but these 

issues should be borne in mind. 

In a recent review of the extensive neurological literature on (primarily) rodent 

play fighting, Burghardt (200 1) hypothesised that play derives from instinctive 

behaviour patterns and associated affective states; thus the basal ganglia and 

limbic system may be important to the generation, mediation, and expression 

of play behaviour. The first study supporting this conclusion using modern 

comparative methods documented that the size of the primate amygdala 

predicts the amount of sexual, but not non-sexual, play in adult primates (Pellis 

& Iwaniuk 2002). Unfortunately, there has not been sufficient comparative 

documentation of juvenile play in primates to extend this analysis, and even the 
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existing studies are based on ranking the prevalence of play in a three category 

system (0, 1, and 2). 

7.2.1.3 Olfactory !bulb 

The olfactory bulb differentiates from the telencephalon during 

development, and receives neural information from the olfactmy 

receptor neurons, which is vital to olfaction (Bear et al. 2001) and 

gustation (Russell 1988). 

7.2.1.4 Hippocampus 

The hippocampus is fundamental in the formation of long-term conscious 

memory (recognition memory) (Woolf 1998; Carter 1999), perceptual 

learning (Manns & Squire 2001), and the regulation of stress responses 

(Bear et al. 2001; Nestler et al. 2002). Crucially, the hippocampus is vital to 

the formation of spatial memory (Chiba et al. 2002; Yamada et al. 2002), 

such as recognising and responding to landmarks in pigeons (Gagliardo et 

al. 2002), object-recognition in rats (Garcia-Moreno et al. 2002), and maze­

learning and long-term spatial memory (Kesner 2000; He et al. 2002; 

Ramos 2002). The hippocampus also appears to be critical in the retention 

of information concerning new faces and facial expressions (Crane & 

Milner 2002). It is possible that the hippocampus is also involved in the 

expression and experience of emotions, as damage to this area results in 

hyperemotional expression, such as impulsive crying or hysterical laughter, 

and hyperactivity and stereotypical behaviour in some animals (Bauman & 

Kemper 1994). Early evidence for the role of the hippocampus to emotions 

was found in rabies victims; characterised by hydrophobia and other 

exaggerated emotional responses of fear and anxiety, the rabies vtrus 

damages the hippocampus (Bear et al. 2001 ). However, current thinking 

tends to restrict the hippocampus as playing a lead role in emotions, and its 

role in declarative memory is considered key (Bear et al. 2001 ). 
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7.2.1.5 Amygdalla 

The amygdala is located within the temporal lobe and situated anteriorly to 

the hippocampus (Bear et al. 2001 ). It is a part of that brain that becomes 

sexually-differentiated by gonadal hormones during the perinatal stages of 

development, along with the hypothalamus (Hines & Shipley 1984); such 

differentiation ultimately leads to sex-differences in behaviour, namely 

sexual orientation, aggression, and also play behaviour (Collaer & Hines 

1995), further suggesting that such behaviours from a "continuum", as sex 

and aggression remain key elements of play-directed behaviour. The 

amygdala appears to be concerned with recognising and generating emotion 

(Bear et al. 2001 ), which might include basic emotional responses, such as 

fear, anger, anxiety, and hunger (Davis 1992) - emotive states that 

ultimately reduce play behaviour (Panksepp 1998) - as well as more 

complex aspects of emotion, such as love or shame (Bear et al. 2001). 

Indeed, Pellis & Iwaniuk's (2002) findings that the amygdala may be 

important to sexual play in adult primates further suggest its potential 

importance to the study of play evolution. 

Until recently, the amygdala was conventionally thought of as the brain's 

"alarm system", having evolved to produce and execute survival 

mechanisms of fight, flight, and appeasement (Carter 1999). Traditionally, 

the amygdala is seen as the site of control for "negative" emotions and 

vigilance reactions, but this view is beginning to change. Recent evidence 

suggests that the control of more positive emotions, as well as negative 

ones, is also within the remit of amygdala function (Hamman et al. 2002). It 

has also been suggested by Kahn et al. (2002), that the amygdala plays a 

role in decision-making processes that are governed by a potential negative 

outcome. Recent research suggests that the amygdala has evolved with both 

visual and olfactory connections. It may therefore play a vital role in socio­

cognitive, and socio-sexual processing, with an emphasis on vision or 

olfaction, depending on the ecology of the species (Barton & Aggleton 

2000). 
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Additionally, the amygdala responds to facial and vocal expressions, and 

appears to play some role in unconscious memory (Carter 1999). This may 

be important to play in reading play faces and species-specific "play­

chuckles", as well as in recognising conspecifics as potential play-partners. 

It has been shown that the amygdala may have evolved for emotional 

responses of an individual to an "emotional" face, such as an anxious, or 

tearful face; faces that impart social information (Ohman 2002). 

Interestingly, the amygdala is relatively mature by birth in contrast with the 

cortex, to which it is connected. This goes some way towards explaining the 

imbalance of the juvenile brain; the immature cortex cannot override the 

powerful urges of the fully active amygdala (Bear et al. 2001 ). 

Damage to the amygdala in humans is associated with reduced articulation 

of emotional responses, and an inability to recognise facial expressions, and 

respond to fear and anger (Adolphs et al. 1994). In animals, such damage is 

expressed through an apparent loss of fear (Bear et al. 2001 ). Similarly, 

damage to both the amygdala and the caudate-putamen nuclei have been 

shown to reduce the performance of play behaviour in rats (Panksepp 1998). 

In addition, although the amygdala is not believed to be a primary locus for 

memory, it does appear to be strongly implicated in emotional memory, or 

rather, the emotional content of memory (Bear et al. 2001). Current 

thinking appears to suggest that the amygdala is important in regulating and 

expressing the emotional states of an individual through behaviour, but 

moreover that it enables an individual to cognitively assess the emotional 

content of complex perceptual cues, such as facial expression and body 

language (Gallagher & Chiba 1996). 

7.2.1.6 Complexus centro-medialis & Comp.D.exus 

cortico-basolateraHs 

The amygdala is divided into two regions, the cortico-, or centro­

medial, and the cortico-basolateral complexes. The former is 

228 



considered to be a part of the olfactory system, the latter with 

organising self-protective behaviour - the basic responses such as 

fight-flight mechanisms (Bear et al. 2001 ). In addition, it has recently 

been demonstrated in rats that the basolateral nucleus is vital in 

associative learning between sensory information and behavioural 

outputs, especially regarding appetite (Toyomitsu et al. 2002). The 

cortico-basolateral complex receives sensory input from the inferior 

temporal lobe, and its output is directed towards the hypothalamus 

(Bear et al. 2001). 

7.2.1.7 Septum 

The septum appears to play an important role in the regulation of emotions, 

most specifically in the production of fear and also in the reduction of 

anxiety, or relief (Yadin et al. 1993). Similarly, studies on rats have shown 

that high levels of oestrogen in the septum can contribute to the facilitation 

and execution of maternal behaviour (Sheehan & Numan 2002). The septum 

may also play a part in sexual and copulatory behaviour (Panzica et al. 

2001 ), and damage to this region in humans may result in male priapism 

(permanent erection) or conversely in impotence (Carter 1999). 

7.2.1.8 Triangular septal nucleus 

This nucleus is part of the limbic system and is vital in the control of 

response inhibition (Bear et al. 2001 ). It has been shown that septally­

damaged animals cannot exhibit behaviourally appropriate responses 

(Menard & Treit 1996), and thus the septal area of the brain (septum 

and its nuclei) may prove important to play behaviour in exhibiting 

appropriate reactions: one of the hallmarks of successful play 

behaviour (F agen 1981 ). In addition, the septal nuclei in general may 

also be important for regulating fluid ingestion (Bear et al. 2001 ). 
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;.2.J1.9 ]])ienceplhtaio:n 

The diencephalon lies between the telencephalon and optic vesicles (Bear et al. 

2001 ). The diencephalon differentiates into two further structures: the thalamus 

and the hypothalamus (Bear et al. 2001). Whilst temporal lobe structures such as 

the amygdala and the hippocampus are implicated in the formation of recognition 

memory, outside of the temporal lobe, it is the diencephalon that is associated 

with memory. Indeed, damage to the human diencephalon may result in amnesia 

(Bear et al. 2001). 

;.2.ll.llO Thalammil 

The thalamus is key in relaying information from one area of the cortex to 

another, and also sensory information to the cortex, interacting with the 

reticular formation and the limbic system (Russell 1988; Bear et al. 2001 ). 

The anterior and dorsomedial nuclei of the thalamus are involved in the 

processing of recognition memory (Bear et al. 2001). Recently, the thalamus 

has also been implicated alongside the amygdala as a neural centre for 

"moral" behaviours and emotions in humans (Moll et al. 2002). It has also 

been demonstrated in rats that thalamic structures are key to the expression 

of rough-and-tumble (R&T) play (Panksepp 1998). 

;.2.1.11 Lateral Geniculate Nucleus (LGN) 

The lateral geniculate body is made of two nuclei located within the 

thalamus, and is generally abbreviated to the initials LGN. Most of the 

primate visual system is well-developed by birth, however, the LGN 

increases in volume by approximately 17% (in macaques) between 

birth and 4 weeks of age; the percent volume increase differs between 

species depending on maturational variables (Kaas & Huerta 1988). 

The LGN is an important part of the brain as it receives input from 

both eyes and integrates the information permitting binocular vision; 

as such, it is often referred to as the "gateway to the visual cortex" and 

is thus important in perceiving visual information (Bear et al. 2001 ). 

Damage to the LGN critically affects visual behaviour (Kaas & 
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Huerta 1988). Social cognition may rely very heavily on visual acuity, 

especially in primates, which are heavily reliant on vision (Barton 

1998). Similarly, as thalamic nuclei are increasingly considered to be 

involved in the articulation of social skills (Armstrong et al. 1987; 

Dunbar 1992), including rough-and-tumble play (Panksepp 1998), it 

might be expected that neural components such as the LGN may be 

important to social aspects of play behaviour. 

7.2.1.12 Hypothalamus 

The hypothalamus is a tiny yet vital part of the brain (Russell 1988) that is a 

collection of nuclei controlling and maintaining bodily functions such as 

homeostasis (Isaacson 1982). The basic structure and function of the 

hypothalamus has changed little over the course of its evolution, and performs 

many primitive or basic bodily functions, such as the fight-or-flight response 

(Bear et al. 2001 ). It is the part of the brain that is vital in generating and 

regulating the visceral (autonomic) nervous system, controlling blood-flow, 

breathing, hunger and appetite, thirst, temperature, sleep, sexual behaviour and 

emotions (Russell 1988). It may also be an important component in regulating and 

expressing aggression (Bear et al. 2001 ), and moreover is a part of the brain that 

becomes sexually differentiated during development, specifically giving rise to 

sex-differences in aggressive, sexual, and play behaviour (Collaer & Hines 1995). 

The mammilliary bodies in the hypothalamus are involved in the processing of 

recognition memory (Bear et al. 2001). The hypothalamus is important as it can 

change the neural activity in regions of the forebrain such as other limbic 

structures and the neocortex, and also in the midbrain and hindbrain, such as the 

brain stem and spinal cord (lsaacson 1982). Such alterations provide a role for the 

hypothalamus in learning, memory, motivation, and performance, and crucially 

the lateral hypothalamus may be enable the experience and understanding of 

pleasure (Isaacson 1982); this may prove to be an important factor in the 

experience of play behaviour (see Fagen 1992). 
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7.2.1.13 lEpitlhtallarn1llls 

The epithalamus is part of the diencephalon, above the thalamus, that 

comprises the habenular nuclei, the stria media, and the pineal body 

(Concha & Wilson 2001 ). This part of the brain appears to play a vital role 

in maintaining the body clock, and producing melatonin, a hormone that 

regulates sleep and wakefulness. The epithalamus may also regulate 

menstrual cycles in females, as melatonin controls the balance of oestrogen 

in the body (Mikkelsen et al. 2001 ). 

7.2.1.14 Habenular n1lllclei 

The habenular nuclei are part of the epithalamus in mammals, and are 

believed to function in facilitating interactions between the limbic 

forebrain and the midbrain (Sutherland 1982). This structure has 

therefore been hypothesised to be important to olfactory responses, 

sleep patterning, food and water intake, and arguably may even 

facilitate certain elements of some social behaviours such as mating 

and feeding (Sandyk 1991 ). The habenular nuclei might also play a 

role in avoiding stressful situations, and avoidance learning (Concha 

& Wilson 2001). 

7.2.1.15 Corpus pineale (pineal body) 

The corpus pineale is a minute part of the brain situated between the 

corpus callosum and the third ventricle, and is also a part of the 

epithalamus (Bear et al. 2001 ). Its function in mammals is to secrete 

the hormone melatonin, which regulates body temperature and 

photoperiodism, or how an animal responds to changes in the length 

of daily and annual periods of light (Brown 1994). Disruptions to the 

balance of melatonin levels can result in sleeplessness, negatively 

affect sexual maturation (Webb & Puigdomingo 1995), and even 

induce depression, stress, and some forms of cancer (Bartsch 1989). 
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7.2.ll..16 Basal ganglia 

The basal ganglia are often referred to as the primitive "reptilian brain" (e.g. 

Panksepp 1998), and comprise a group of nuclei, including the caudate nucleus, 

putamen, globus pallidus, and subthalamus, that are responsible for unconscious 

and automatic motor acts, attention, and consciousness (Carter 1999; Bear et al. 

2001 ). If dopamine becomes restricted in this area, it can lead to motor disorders, 

which in humans might include Parkinson's disease, attention deficit disorder, 

depression, and schizophrenia (Carter 1999). Caudate-putamen impairment has 

been shown to reduce play behaviour in rodents (Panksepp 1998), and thus further 

comparative study of these structures with play may prove useful to our 

understanding of how the basal ganglia perform in the expression of play 

behaviour in other mammals. 

7.2.1.17 Subthalamus and subthalamic nucleus 

The subthalamus is situated laterally between the thalamus and the 

hypothalamus, and is also part of the basal ganglia. It is believed to play a 

critical role in regulating movements performed by the skeletal muscles 

(Bear et al. 2001 ). Most of the subthalamus comprises of the grey-matter 

structure of the subthalamic nucleus. Damage to the subthalamus and the 

surrounding area may contribute towards Parkinson's disease and 

Huntington's disease in humans (Moretti et al. 2001). 

7.2.1.18 Pallidum 

Part of the basal ganglia, the pallidum is comprised of the globus pallidus 

and the ventral pallidum. The pallidum, along with the other nuclei of the 

basal ganglia, is key in motor control and movement (Wannier et al. 2002), 

as well as forming part of the secondary olfactory region along with the 

thalamus, hypothalamus, hippocampus, and striatum (Weisman et al. 2001). 

In addition, in a rodent model, it has recently been hypothesised that the 

pallidum may also function in the promotion of context recognition of social 

behaviours, assisting the assessment of social stimuli, and even regulating 

and maintaining social relationships and pair-bonding (Young 2002). 
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7.2.1.19 Striatum 

The striatum comprises two nuclei that also form the basal ganglia: the 

putamen and the caudate nucleus, and these control automatic movement 

(Carter 1999; Bear et al. 2001) as well as skilled motor control (La force & 

Doyon 2001). The putamen is connected to both the pre-motor and motor 

cortices, and the caudate nucleus is connected to the orbital cortex, believed 

to be vital in planning action (Carter 1999). In this vein, the striatum is 

critical in procedural memory and may be instrumental in forming and 

executing behavioural habits (Jog et al. 1999; Bear et al. 2001). In humans, 

over-activity in the putamen can result in Tourettic tics, and over-activity in 

the caudate nucleus may result in compulsive-obsessive and other 

stereotypic disorders (Carter 1999). 

7.2.1.20 Piriform lobe 

The piriform lobe is a pear-shaped structure that is important in detecting and 

processing odour information (Valverde 1965). In humans, it may play a role in 

emotional memory, due to certain smells triggering "associative memories" 

(Barkai & Hasselmo 1997). 

7.2..1.21 Corpus subfornicale 

The corpus subfomicale, or subfomical organ, has extensive connections to the 

hypothalamus and is key in maintaining homeostasis of blood pressure and bodily 

fluids through fluid and sodium intake (Simon 2000; Starbuck & Fitts 2001 ). 

7.2.1.22 Corpus subcommissurale 

Although found in all vertebrates, the function of the corpus subcommissurale, or 

the subcommissural organ, is currently not fully understood. It is however 

involved in the development of the brain during the embryonic stage, and is 

indeed the first secretory brain structure to differentiate (Rodriguez et al. 2001). It 
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is believed that the subcommissural organ plays a role in cerebrospinal fluid 

(CSF) circulation (Perez-Figares et al. 2001 ), which ensures the healthy 

functioning of the brain (Bear et al. 2001 ). 

7.2.1.23 Capsula interna (internal capsule) 

The capsula intema joins the cortex to the brain stem via the thalamus, and is 

continuous with the cortical white matter (Bear et al. 2001 ). The capsula intema 

appears to be important in evaluating motor ability (Morecraft et al. 2002) or the 

sensory guidance of movement (Glickstein 1998); indeed, axon-loss to this area of 

the brain, typically following a stroke, is associated with severe motor-impairment 

and paralysis (Shelton & Reading 2001). 

7.2.2 Midbrain (Mesencephalon) 

The midbrain or mesencephalon contains structures that act as transmitters of neural 

information between the midbrain, forebrain, and spinal cord, and contains neurons that 

factor in sensory information and motor-control (Bear et al. 2001 ). Axons of cells 

within the midbrain penetrate the CNS, and function to control and regulate moods 

(such as pleasure), pain, and consciousness (Bear et al. 2001). 

7.2.2.1 Inferior colliculus 

The inferior colliculus is vital in transmitting neural and sensory information to 

and from the ear, via the thalamus (Bear et al. 2001 ). Both the superior colliculus, 

and the inferior colliculus, are part of the tegmentum, which comprises the red 

nucleus and the substantia nigra (black substance), concerned with the control of 

voluntary movement (Bear et al. 2001). A recent study focusing on the activation 

of c-fos genes during rough-and-tumble play in rats suggests that the inferior 

colliculus may indeed be specifically accessed during play behaviour, and may 

aid the reaction to vocal cues, given that it receives information from auditory 

pathways (Gordon et al. 2002). The authors advise caution in assigning such a 

relationship, due to the possibility of the gene activation being due to other sounds 
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during play behaviour, and further studies should be able to determine to what 

extent there is a relationship. 

7.2.2.2 Optic tract 

The optic tract extends between the optic chiasm to the brain stem and is 

comprised of retinal ganglion cell axons. Two vital targets of the optic tract are 

the superior colliculus, and the LGN (Bear et al. 2001 ). 

7.2.3 Hindbrain 

During development, the hindbrain differentiates into three maJor structures: the 

cerebellum, the pons, and the medulla oblongata. The structures of the hindbrain are 

vital in the passing of information to and from the spinal cord and the forebrain, and act 

to process both sensory information, and regulate voluntary movement and the 

autonomic nervous system (Bear et al. 2001). 

7.2.3.1 Cerebellum 

The cerebellum is situated posteriorly to the cerebrum (Eccles 1977), and has 

extensive connections both to the neocortex and spinal cord (Bear et al. 2001 ). 

The cerebellum is a vital centre for motor co-ordination and integration of 

information to produce smooth and accurate movement (Russell 1988). The 

cerebellum also maintains posture and balance (Ackerman 1992), but it seems that 

the cerebellum may be much more than a mere motor-control centre. It also acts 

as a "tracking system" in all vertebrates, not only controlling and co-ordinating 

the bodily movements of the individual, but also tracking those made by others in 

the environment (Paulin 1993). This has implications for the study of play, as it 

may be necessary for the individual to follow trajectories of moving objects and 

individuals in play, as well as in the context of more serious behaviour patterns, 

notably hunting and foraging; the cerebellum may well facilitate this ability. The 

late postnatal maturation of the cerebellum and its control of skilled motor 

movements (Ackerman 1992) suggest a sensitive period in animal development; it 

might be specifically during this time that the motor patterns of play behaviour in 
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young animals influence brain and muscular development. The traditional view 

that the cerebellum acts only in the control of movement has recently been 

disputed in the literature with increasing evidence that the cerebellum contributes 

to cognitive functions as well (Akshoomoff & Courchesne 1992; Habas 2001 ); it 

seems that the long-standing opinion that motor development begins and ends 

relatively early in ontogeny, whereas cognitive development is initiated relatively 

later, is now challenged with some evidence that the two are very much more 

closely interrelated and occur during the same time window (Diamond 2000). 

Byers & Walker (1995) looked at the relationship between play behaviour and the 

cerebellum very closely; they concluded that cerebellar synaptogenesis was one of 

the permanent and true effects of all play. They showed that in mice (locomotor 

play), cats (social play), and rats (locomotor and social play), it appears that play 

may be timed to actively modify or terminate synapse formation in the 

cerebellum, and in this view characterises a sensitive period in mammalian 

development. Cerebellar synaptogenesis is one effect that seems permanently 

affected by postnatal behaviour in mammals, and the modification of these 

structures results in enhanced motor-performance skills. Play might be an 

important mechanism as in some species the timing of play and such cerebellar 

changes are linked (Byers & Walker 1995). 

7.2.3.2 Pons 

The pons is often referred to as the brain's "switchboard", connecting the 

cerebellum to the cerebral cortex. It is estimated that 90% of axons passing 

through the midbrain synapse on the neurons in the pons (Bear et al. 2001). The 

trigeminal motor nucleus situated within the pons is believed to be vital to the 

control of vocalisation, forming a network between the amygdala and spinal cord 

to control sound, facial position, and respiratory movements required to emit 

controlled vocalisations (Jurgens 2002) as well as startle responses (Pissiota 

2002). 
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7.2.3.3 Medulla oblongata 

The medulla oblongata (medulla) is key to various sensory and motor functions, 

including auditory information, touch, smell, and taste. Its neurons relay 

information from the spinal cord to the thalamus (Bear et al. 2001). The medulla 

may be especially important to the regulation of the sleep-wake cycle 

(Gottesmann 1999), sexual reflexes (Holmes et al. 2002), and in the control of 

involuntary mechanisms of the CNS, such as hiccupping (Musumeci et al. 2000). 

7.2.3-4 Vestibular complex and vestibular nuclei 

The vestibular nuclei are situated inside the medulla, and are instrumental in 

receiving input from the vestibular complex of the inner ear. This is a vital 

area for detecting head motion and maintaining balance (Bear et al. 2001 ). 

7.2.3.5 Visual cortex 

The visual cortex is a critical part of the brain, especially to primates (including 

humans), as primates rely so heavily on sight. In fact, amongst diurnal primates, 

the visual cortex comprises up to 50% of the variance in neocortex size (Barton 

1996). The visual system of primates undergoes much of its development 

prenatally, and hence is considerably more developed at birth in comparison with 

most other mammals (Kaas & Huerta 1988). The primary visual cortex is often 

referred to interchangeably as Brodmann's area 17, V 1, and striate cortex (Bear et 

al. 2001 ). This cortex is formed of six layers of cells, axons, and pathways, 

enabling visual function and perception. The visual cortex projects to many other 

areas of the neocortex, especially in primates. 
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1 = hippocampus 
2 =amygdala 
3 = olfactory bulb 
4 = hypothalamus 
5 = mesencepahlon 
6 = corpus callosum 
7 = telencephalon 
8 = neocortex 
9 = cingulate gyrus 

10 = stria turn 
11 =thalamus 
12 = pineal body 
13 = visual cortex 
14 =cerebellum 
15 =pons 
16 = medulla oblongata 
17 =brain stem (leading to spinal cord). 

Fig. 7.2 Diagram of the human brain and its major components 

7·3 Methods 

Adult brain weights (g) for primates were taken from Barton (1999), and for carnivores 

from Deaner et al. (in press). Pinniped brain and body size data were taken from 

Bininda-Emonds (2000). The data for fundamental adult brain parts for primates were 

taken from Stephan et al. (1981), and pons data are from Matano et al. (1985). 

Cerebellar data for carnivores are taken from Putnam (1927). The data on each category 

of play behaviour (total play, social play, solitary locomotor play and object play) and 
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dichotomous variables were collected from the primate and carnivore behaviour 

literature, as detailed in Chapter 2. I used the method of independent contrasts 

(Felsenstein 1985; Harvey & Pagel 1991) with the primate phylogeny based on Purvis 

(1995), and the carnivore phylogeny from Bininda-Emonds et al. (1999). The analyses 

were conducted using the CAIC computer programme (Purvis & Rambaut 1995), using 

the CRUNCH option for continuous variables, and the BRUNCH option for 

dichotomous variables. Statistical analyses of the output from CAIC were carried out 

using StatView version 4.0. Regressions were set through the origin (Purvis & Rambaut 

1995). As brain size is subject to the effects of allometry, it is necessary that a relative 

measure be used in analysis. Body size correlates strongly with brain size, with larger 

species typically having larger brains; but there is much variation in brain size for 

species of the same body size. For this reason, studies of brain size must remove body 

size from the analysis (e.g. Jerison 1973; Northcutt 1985). Here, the confounding effect 

of body size has been removed by regression for all results. For the purposes of these 

analyses, the data have been log-transformed, rendering them suitable for standard 

regressions (Freckleton 2000; Purvis & Rambaut 1995). 

Additionally, as body and brain size are correlated, Table 7.27 at the end of the results 

section takes the brain components for which there were significant correlations with 

one or more of each play category, and controls for the confounding effect of both body 

size and the rest of the brain, through removal by partial correlation. The "rest of the 

brain" variable has been calculated by summing the significant brain components (i.e. 

the parts that are correlated with play in this chapter) for which there are full species 

matches (i.e. no missing brain data), and subtracting this total from the total brain 

volume as provided by Stephan et al. (1981 ). 

Thus, the sum of the medulla, mesencephalon, cerebellum, septum, striatum, neocortex, 

and hippocampus for each species in the database was taken. This total, S, was then 

subtracted from the measurement for total brain, B. 

B-S=R 

Where R is the rest of the brain. 
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Multiple regression analyses of each play category (dependent variable Y) on adult 

body mass, rest of brain, and the brain component that showed a significant relationship 

in the independent contrasts analyses in this chapter (3 independent variables X) were 

conducted. 

The following hypotheses are presented for play in primates and carnivores with regard 

to constituent parts of the brain. The null hypothesis, H0, states that there will be no 

association between play behaviour and the neural component in question. Below, 

alternative hypotheses, Ha, are presented. 

1. The amount of time spent in play should correlate with relative 

brain size; and more specifically, social play behaviours should 

correlate with neocortical! expansion. 

If aspects of play behaviour are cognitively demanding, or contribute to the facilitation 

of learning in large-brained species (e.g. Fagen 1981; Lewis 2000), then it is expected 

that the amount of play behaviour should correlate positively and significantly with 

relative brain size in primates and carnivores. In particular, the play categories that are 

associated with higher cognitive capacities, such as object and social play, should show 

this trend more significantly than with solitary locomotor play, which is deemed less 

cognitively demanding (Poole 1985). Moreover, areas of the brain that are especially 

associated with the processing of social information should also be positively correlated 

with social play. Given that the neocortex is key in mammalian brain evolution (Jerison 

1973), and that primates and carnivores are widely considered to be the most playful of 

these mammals (e.g. Fag en 1981; Bekoff et al. 1984; Bekoff & Byers 1998), and further 

that the neocortex functions in the representation of social intelligence (Dunbar 1992, 

1995), it is predicted that neocortical expansion will reflect similar elaborations in 

primate and carnivore social play behaviours. 
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Brain size is a variable that may affect play behaviours that are argued to be associated 

with increased intelligence, such as object manipulation and socially complex aspects of 

play. In terms of the dichotomous variables detailed here, it is expected that there will 

be an evolutionary correlation with interspecific play, as it may be argued that in order 

to engage in play behaviour that is appropriate (e.g. reading signals sufficiently) with a 

different species requires a high level of cognitive ability. It is also expected that 

increased brain size accompanies increases in the propensity of a species to engage in 

polyadic play. This is because keeping track of several players in the surrounding 

environment requires that appropriate actions and reactions are directed to more than 

one conspecific simultaneously. This is likely to represent a heavy parallel processing 

load. 

2.. Play may correla1te with limbic struc1tures and the basai ganglia. 

Burghardt (200 1) suggests that play may stem from instinctive behavioural patterns, and 

thus calls for a closer analysis of play with limbic structures and basal ganglia. Such 

structures are believed to function in the foundation and representation of emotions, and 

the existing literature suggests that damage to certain limbic areas may lead to a 

cessation of play behaviour (Panksepp 1998). Additionally, structures such as the 

amygdala and hypothalamus are prenatally affected by gonadal hormones, leading to 

their role in mediating sex-differential behaviour, of which play is one such behaviour 

(Hines 1982; Collaer & Hines 1995). Given the importance of thalamic structures to the 

expression of rough-and-tumble play, and the role that the amygdala, and also the 

hippocampus, play in terms of reading facial expressions (Gallagher & Chiba 1996), it is 

predicted here that social forms of play behaviour may be better represented by limbic 

structures than other forms of play behaviour. 

In terms of the basal ganglia, it is predicted that components related to motor control 

may be key to the expression of play behaviour. For example, the subthalamus 

regulates skeletal muscle movements (Bear et al. 2001 ), and play is known to 

permanently affect skeletal muscle fibre during postnatal development (Byers & Walker 

1995). Similarly, the pallidum is involved with motor control and context recognition 

of social behaviour (Bear et al. 2001 ), thus it might be hypothesised that this too 

contributes to aspects of social play behaviour. In addition, the striatum, which is 
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comprised of the caudate-putamen nuclei, is implicated alongside the cerebellum in 

planning action and procedural memory (Russell 1988), as well as with some aspects of 

cognition (La force & Doyon 2001 ), which might ensure the smoothness of motor 

movements and cognitive competency in mammalian play behaviour. 

3· §odall and object play §h.ould correllate with. cerebdlllllm §ize. 

Given the role of the cerebellum to motor control and accuracy (Ackerman 1992), 

procedural memory (Carter 1999), the ability to follow path trajectory (Paulin 1993), 

and arguably, cognition (Habas 2001 ), together with its own nemo-developmental 

trajectory (Byers & Walker 1995; Diamond 2000), it is expected that the cerebellum 

will play a crucial part in the expression and development of social and object play 

behaviour. 

In the same vein, it is predicted that vestibular components of the brain, those that are 

vital in maintaining balance and motor acuity (Bear et al. 2001 ), are also crucial to the 

onset, development, and expression of motor control, including those of play behaviour. 

4· Play §hould correlate with visual components of the brain in 

primates. 

As there are no data available for analyses on the visual complexes of carnivores, the 

predictions here are limited to primates. Primates are visually specialised, and vision 

plays a critical role in social interactions in anthropoids. Thus it is predicted that play is 

most likely to be associated with visual expansion (in the visual cortex and LGN). In 

strepsirhines however, the olfactory system is critical to social interaction and social play 

may be important to the development of scent-marking behaviour in ring-tailed lemurs 

(Lemur catta) (Palagi et al. 2002). The same premise may also apply to some carnivores, 

although data for both strepsirhine and carnivore olfactory brain components for those 

species in the play database are lacking. 

5· Play will be uncorrelated with homeostatic functions governed by 

the corpus subfornicale and the triangular septal nucleus. 
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Homeostatic functions, and hence the relative size of the structures mediating them are 

likely to be conserved, but there is no reason to link such fundamental physiological 

maintenance with play behaviour. 

6. The number of behaviours observed in a species' play repertoire 

will be correlated with group size and relative brain size of that 

species. 

The number of distinct play behaviours recorded in a species' repertoire may be an 

important indicator of other factors regarding a species' behavioural capacity. It is 

possible that increased numbers of behaviours stem from novel stimuli or are indicative 

of behavioural innovation. It is likely that larger groups offer a greater propensity to 

exhibit and discover new behaviours, which may in turn lead to the eventual display of 

more play behaviours. Alternatively, a high number of distinct play behaviours may be 

an indicator of cognitive abilities. In order to see which factor is most important to the 

evolutionary elaboration of play behaviours, the relationship is tested with both group 

size and relative brain size. 

7· Relative brain size will predict a species' average play bout length. 

If it is the case that juvenile animals are playful in order to hone the neuro-muscular 

system prior to adulthood (Byers & Walker 1995; Fairbanks 2000), then it might be 

argued that the longer an individual devotes to the pursuit of play, the more honing is 

required of that species during the period of plasticity. Thus, average play bout length 

may offer a suitable indicator of complexity. For this reason the relationship is tested 

against relative brain size. 

7·5 Data 

Data are tabulated in the Appendix. Dichotomous variables are detailed in Table 2.2 (Chapter 2). Brain 

structure data are taken from Stephan et al. ( 1981 ), with pons data from Matano et al. ( 1985), and 

cerebellar data for carnivores from Putnam (1927). Additional data are taken from Deaner et al. (in press). 

244 



7.6 Results 

The following regressions of brain component and play type contrasts control for the 

effect of body size through residual regression analyses. Graphs detail regressions of all 

play categories and relative adult brain size for primates and carnivores; thereafter in 

brain component analyses, graphs are only presented for significant results. It should be 

noted that where sufficient data are available, results for both primates and carnivores 

are analysed and presented; however, due to a lack of play data, many carnivore 

analyses are apparently "missing". A summary of the results is presented in Table 7.27 

at the end of this section. 

Before analyses are presented, Figure 7.3 details a simple regressiOn (i.e. non­

contrasted) comparison of brain weight against brain volume in primates. Brain weight 

data are taken from Barton (1999), and brain volume data are taken from Stephan et al. 

(1981) (F (1, 21) = 340.07, co-efficient= 1.07, p = <0.0001, r2 = 0.94). 
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7.6.1 Primate brain size 

Table 7.1 shows regression analyses of each play category on brain size in primates. 

Relative adult brain size shows no significant correlation with any of the play categories 

in primates (Figures 7.4-7.7). One outlier has been removed as specified by the CAIC 

programme for regressions of total play and object play. 

Table 7.1 Regression analyses of play category on brain size in primates 

Play type DF F-value p-value co-efficient r" 

Total 
Solitary 
Object 
Social 

1, 36 
1' 18 
1, 13 
1, 22 

0.59 
0.004 
0.51 
1.56 

0.45 
0.95 
0.49 
0.22 

0.43 
0.11 
1.12 
1.17 

0.002 
2.38 
0.04 
0.07 

Table 7.2 shows regression analyses of each play category on the size of the relative 

brain in primates; that is, brain controlling for relative neocortex size. Figures 7.8-7.11 

illustrate the correlations. Relative brain size is positively and significantly correlated 

with both object play and social play in primates . 
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Table 7.2 Regression analyses of play category on brain size-neocortex size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 14 1.78 0.20 0.46 0.11 
Solitary 1, 5 0.12 0.74 0.19 0.02 
Object 1, 3 30.97 0.01 1.03 0.91 
Social 1, 7 16.03 0.005 0.66 0.70 

7.6.2 Carnivore brain size 

Table 7.3 shows regression analyses of each play category on brain size in carnivores. 

Relative adult brain size is not significant with total play in carnivores (Figure 7 .12). 

One outlier has been removed as specified in the CAIC programme; the trend of the 

graph is largely unaffected. Relative adult brain size is positively and significantly 

correlated with solitary locomotor play in carnivores (Figure 7.13), although Bonfenoni 

correction renders this non-significant, and additionally the sample size is too small to 

be conclusive. Relative adult brain size is positively, but not significantly correlated 

with object play in carnivores (Figure 7 .14). Relative adult brain size is positively and 

significantly correlated with social play in carnivores (Figure 7 .15). 
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Table 7.3 Regression analyses of play category on brain size in carnivores 

Play type DF F-value p-value co-efficient r2 

Total 1' 11 0.01 0.91 -0.11 0.001 
Solitary 1, 2 17.83 0.05 9.13 0.89 
Object 1, 4 2.62 0.18 6.27 0.33 
Social 1, 7 11.37 0.01 2.58 0.62 
Bonferroni = 0.013, solitary n.s. 
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The following results detail contrasts analyses of each category of play and brain 

components. The brain component data are from Stephan et al. (1981) and Matano et al. 

(1985). 

7.6.2.1 Telencephalon 

Table 7.4 shows the results of regressiOn analyses for each play category on 

telencephalon size in primates. Telencephalon size is not significantly correlated with 

either solitary locomotor or object play. Telencephalon size is however positively and 

significantly correlated with total play and social play (Figures 7.16 and 7.17). 
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Table 7-4 Regression analyses of play category on telencephalon size in primates 

Play type DF 

Total 1,14 
Solitary 1, 5 
Object 1, 3 
Social 1, 12 
Bonferroni = 0.013, n.s. 
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Fig. 7.16 Regression plot of residual log Fig. 7.17 Regression plot of residual log 
(total play) on residual log (telencephalon) (social play) on residual log (telencephalon) 
in primates in primates 

7.6.2.2 Medulla oblongata 

Table 7.5 shows the results of regression analyses for each play category on the medulla 

oblongata in primates. Medulla oblongata is not significantly correlated with total, 

solitary, or object play; medulla oblongata size is however positively and significantly 

correlated with social play (Figure 7 .18). 

Table 7.5 Regression analyses of play category on medulla oblongata size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 14 2.43 0.14 1.77 0.15 
Solitary 1, 5 1.24 0.31 -3.65 0.20 
Object 1, 3 0.48 0.54 -3.65 0.14 
Social 1, 12 5.82 0.01 1.94 0.36 
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7.6.2.3 Cerebellum 

Table 7.6 shows the results of regression analyses for each play category on cerebellum 

size in primates. Cerebellum size is positively but not significantly correlated with total 

play. Cerebellum size is negatively and not significantly correlated with solitary 

locomotor play. Cerebellum size is positively correlated with object play, and although 

falling just short of significance, I have included the corresponding graph (Figure 7 .19) 

to show the trend of this result as I believe the number of contrasts for object play (n = 

4) may have an effect. Cerebellum size is however, positively and significantly 

correlated with social play (Figure 7 .20). 

Table 7.6 Regression analyses of play category on cerebellum size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 14 3.81 0.07 1.99 0.21 
Solitary 1, 5 2.31 0.19 -2.93 0.32 
Object 1, 3 5.65 0.09 5.82 0.65 
Social 1,13 8.19 0.01 2.52 0.38 

Regression of cerebellum size on total play in carnivores was non-significant. 

Unfortunately, there are too few observations of solitary locomotor, object and social 

play to pem1it a statistical result. 
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7.6.2.4 Septum 

Table 7.7 shows the results of regression analyses for each play category on septum size 

in primates. Septum size is not significantly correlated with total, solitary locomotor, or 

social play; but is negatively and significantly correlated with object play (Figure 7.21 ). 

Table 7.7 Regression analyses of play category on septum size in primates 

Play type 

Total 
Solitary 
Object 
Social 

DF F-value p-value co-efficient r2 

1, 14 0.84 0.37 -1.05 0.06 
1, 5 2.75 0.16 -4.22 0.36 
1, 3 97.01 0.001 -7.96 0.97 
1, 12 2.41 0.15 -1.31 0.17 
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Fig. 7.21 Regression plot of residual log (object play) on residual log 
(septum size) in primates 
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7.6.2.5 Striatum 

Table 7.8 shows the results of regression analyses for each play category on striatum 

size in primates. Striatum size is not significantly associated with solitary locomotor or 

object play; it is however, positively and significantly correlated with total play 

(although this is non-significant after Bonferroni correction) and social play (Figures 

7.22 and 7.23), thus according with its role in motor systems. 

Table 7.8 Regression analyses of play category on striatum size in primates 

Play type DF F-value p-value co-efficient r" 

Total 1,14 4.86 0.04 1.94 0.26 
Solitary 1, 5 1.04 0.35 -1.68 0.17 
Object 1' 3 3.79 0.14 -3.55 0.56 
Social 1, 12 4.93 0.01 1.43 0.39 
Bonferroni = 0.013, total n.s . 
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Fig. 7.22 Regression plot of residual log (total Fig. 7.23 Regression plot of residual log 
play) on residual log (striatum size) in primates (social play) on residual log (striatum 

size) in primates 

7.6.2.6 Hippocampus 

Table 7.9 shows the results of regressiOn analyses for each play category on 

hippocampus size in primates. Hippocampus size is not positively correlated with total 

play or social play; it is however, negatively and significantly correlated with solitary 

locomotor and object play (Figures 7.24 and 7.25). 
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Table 7-9 Regression analyses of play category on hippocampus size in primates 

Play type 

Total 
Solitary 
Object 
Social 
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Fig. 7.24 Regression plot of residual log (solitary Fig. 7.25 Regression plot of residual log 
locomotor play) on residual log (hippocampus size) (object play) on residual log (hippocampus 
in primates size) in primates 

7.6.2.7 Schizocortex 

Table 7.10 shows the results of regressiOn analyses for each play category on 

schizocortex size in primates. Schizocortex size is not significantly associated with 

total , object, or social play, but is however, negatively and significantly correlated with 

solitary locomotor (Figure 7.26). This is perhaps not surprising given that the 

schizocortex (comprising the entorhinal cortex and subiculum) are part of the 

hippocampal formation (see section 7.6.2.6 above) . 

Table 7.10 Regression analyses of play category on schizocortex size in primates 

Play type DF F-value p-value co-efficient r 2 

Total 1, 14 1.53 0.24 1.39 0.10 
Solitary 1, 5 17.59 0.008 -3.76 0.78 
Object 1, 3 2.64 0.20 -9.13 0.47 
Social 1, 12 0.01 0.92 -0.08 0.001 
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7.6.2.8 Neocortex 

Table 7.11 shows the results of regression analyses for each play category on neocortex 

size in primates. Neocortex size is not significantly correlated with total play, solitary 

locomotor play or object play; it is however, positively and significantly correlated with 

social play (Figure 7.27). 

Table 7.11 Regression analyses of play category on neocortex size in primates 

Play type DF F-value p-value co-efficient r,. 

Total I, 15 0.07 0.79 0.13 0.005 
Solitary 1, 5 0.001 0.97 0.05 2.90 
Object 1, 3 1.37 0.33 -1.50 0.31 
Social 1, 12 9.77 0.008 0.91 0.45 

Table 7.12 shows the results of regression analyses for each play category on neocortex 

size in carnivores. Neocortex size is not significantly correlated with total play. There 

were too few observations of solitary locomotor and object play to permit a statistical 

result. Neocortex size is however positively and significantly correlated with social play 

(Figure 7.28). 
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Table 7.12 Regression analyses of play category on neocortex size in carnivores 

Play type DF F-value 

Total 1, 5 1.10 
Solitary+ 
Object+ 
Social 1, 3 42.24 

+ Too few observations 
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Fig. 7.27 Regression plot of log (social play) on 
play) on log (neocortex size) in primates 

7.6.2.9 Thalamus 

Contrasts in residual log (neocortex) 

Fig. 7.28 Regression plot of log (social 
log (neocortex size) in carnivores 

Table 7.13 shows the results of regression analyses for each play category on thalamus 

size in primates. Thalamus size is not significantly correlated with total play. There 

were too few observations of solitary locomotor and object play to permit a statistical 

result. Thalamus size is however, positively and significantly correlated with social play 

(Figure 7.29). 

Table 7.13 Regression analyses of play category on thalamus size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.26 0.63 0.26 0.04 
Solitary+ 
Object+ 
Social 1, 6 6.00 0.01 1.27 0.50 

+ Too few observations 
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Fig. 7.29 Regression plot of log (social play) on log (thalamus) in primates 

7.6.2.10 Hypothalamus 

Table 7.14 shows the results of regressiOn analyses for each play category on 

hypothalamus size in primates. Hypothalamus size shows no significant relationship 

with total play. There were too few observations of solitary locomotor and object play 

to permit a statistical result. Hypothalamus size is however positively and significantly 

correlated with social play (Figure 7.30). 

Table 7.14 Regression analyses of play category on hypothalamus size in 
primates 

Playtype DF F-value p-value co-efficient 

Total 1, 6 0.42 0.54 0.44 0.07 
Solitary+ 
Object+ 
Social 1, 6 11.61 0.01 1.87 0.66 
+ Too few observations 
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7.6.2.11 Optic tract 

Table 7.15 shows the results of regression analyses for each play category on optic tract 

size in primates. Optic tract size shows no significant correlation with total play; it is 

however, positively and significantly correlated with social play (Figure 7.31 ). There 

were too few observations of solitary locomotor and object play to permit a statistical 

result. 

Table 7.15 Regression analyses of play category on optic tract size in primates 

Play type DF F-value p-value co-efficient 

Total 1, 6 0.70 0.44 0.39 
Solitary+ 
Object+ 
Social 1, 6 14.20 0.009 1.49 

+ Too few observations 
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Fig. 7.31 Regression plot oflog (social play) on log (optic tract) in primates 
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7.6.2.12 Visuall cortex 

Table 7.16 shows the results of regression analyses for each play category on visual 

cortex size in primates. Visual cortex size is not significantly associated with total or 

object play. It is however, positively and significantly correlated solitary locomotor 

play (although non-significant after Bonferroni correction) and social play (Figures 

7.32 and 7.33). 

Table 7.16 Regression analyses of play category on visual cortex size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 12 1.64 
Solitary 1, 4 8.69 
Object 1, 3 0.42 
Social 1, 10 15.91 

Bonferroni = 0.013, solitary n.s. 
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7.6.2.13 Lateral geniculate nucleus (LGN) 

Table 7.17 shows the results of regression analyses for each play category on Lateral 

geniculate nucleus (LGN) size in primates. LGN size is positively and significantly 

correlated with total play (although non-significant after Bonferroni correction) and 
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social play (Figures 7.34 and 7.35). LGN stze ts not significantly correlated with 

solitary locomotor or object play. 

Table 7.17 Regression analyses of play category on lateral geniculate nucleus 
(LGN) size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 13 5.44 0.03 1.02 0.30 
Solitary 1, 5 0.08 0.78 -0.56 0.02 
Object 1, 3 1.27 0.34 -2.44 0.30 
Social 1,11 9.92 0.009 1.31 0.47 
Bonferroni = 0.013, total n.s . 
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Fig. 7·34 Regression plot oflog (total play) on log 
(lateral geniculate nucleus [LGN]) in primates 

Fig. 7·35 Regression plot oflog (social play) 
on log (lateral geniculate nucleus [LGN]) 
in primates 

7.6.2.14Amygdala 

Table 7.18 below shows the results of regression analyses for each play category on 

amygdala size in primates. Amygdala size is not significantly associated with total or 

solitary locomotor play; it is however, positively and significantly correlated with social 

play (Figure 7.36). There were too few observations of object play to permit a statistical 

result. 
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Table 7.18 Regression analyses of play category on amygdala size in primates 

Play type DF F-value p-value co-efficient 

Total 1, 9 0.08 0.79 -0.22 
Solitary 1' 3 1.89 0.26 -5.93 
Object+ 
Social 1, 7 15.64 0.005 1.442 
+Too few observations 
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Fig. 7.36 Regression plot oflog (social play) on log (amygdala) in primates 

7.6.2.15 Complexus centrornedialis 

Table 7.19 below, shows the results of regression analyses for each play category on 

complexus centromedialis size in primates. Complexus centromedialis is not 

significantly associated with total or solitary locomotor play; it is however, positively 

and significantly correlated with social play (Figure 7.37). There were too few 

observations of object play to permit a statistical result. 

Table 7.19 Regression analyses of play category on complexus centromedialis 
size in primates 

Play type DF F-value p-value co-efficient r2 

Total I, 9 0.14 0.72 -0.27 0.02 
Solitary 1, 3 0.14 0.74 -1.88 0.04 
Object+ 
Social 1, 7 13.36 0.008 1.28 0.66 
+Too few observations 
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Fig. 7·37 Regression plot oflog (social play) on log 
(complexus centromedialis) in primates 

7.6.2.16 Nucleus amygdalae basalis, pars magnocellularis 

Table 7.20 shows the results of regression analyses for each play category on nucleus 

amygdalae basalis, pars magnocellularis size in primates. Nucleus amygdalae basalis, 

pars magnocellularis is positively and significantly correlated with social play (Figure 

7.38); this result however is rendered non-significant following Bonferroni correction. 

There is no significant association with total, solitary locomotor, or object play. 

Table 7.20 Regression analyses of play category on nucleus amygdalae basalis, 
pars magnocellularis size in primates 

Play type DF F-value p-value co-efficient 
r2 

Total 1, 9 0.007 0.94 0.06 0.001 
Solitary 1, 3 2.64 0.20 -2.51 0.47 
Object 1, 3 1.44 0.35 -1.26 0.42 
Social 1, 7 7.44 0.02 1.04 0.52 
Bonferroni = 0.013, n.s. 
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7.6.2.17 Complexus vestibularis 

Table 7.21 shows the results of regression analyses for each play category on 

complexus vestibularis size in primates. Complexus vestibularis is not significantly 

associated with total play; it is however positively and significantly correlated with 

social play (Figure 7.39). There were too few observations of both solitary locomotor 

play and object play to permit a statistical result. 

Table 7.21 Regression analyses of play category on complexus vestibularis size 
in primates 

Play type DF F-value p-value co-efficient ra 

Total 1, 6 0.38 0.56 0.47 0.06 
Solitary+ 
Object+ 
Social 1, 6 7.54 0.01 1.84 0.56 
+ Too few observations 
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Fig. 7·39 Regression plot oflog (social play) on residual log (complexus 
vestibularis) in primates 

7.6.2.18 Nucleus vestibularis superior 

Table 7.22 shows the results of regression analyses for each play category on nucleus 

vestibularis superior size in primates. Nucleus vestibularis superior is positively and 

significantly correlated with total play (Figure 7.40), although this result is non­

significant when controlled for Bonferroni procedure. There is no correction with social 

play. There were too few observations of both solitary locomotor play and object play 

to permit a statistical result. 

Table 7.22 Regression analyses of play category on nucleus vestibularis superior 
size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 6.33 0.04 1.09 0.51 
Solitary+ 
Object+ 
Social 1, 6 1.46 0.27 0.79 0.20 
+Too few observations; Bonferroni = 0.013, n.s. 
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Fig. 7.40 Regression plot of log (total play) on residual log 
(nucleus vestibularis superior) in primates 

7.6.2.19 Nucleus vestibularis medialis 

Table 7.23 shows the results of regression analyses for each play category on nucleus 

vestibularis medialis size in primates. Nucleus vestibularis medialis is not significantly 

correlated with total play; it is however positively and significantly correlated with 

social (Figure 7.41). There were too few observations of both solitary locomotor play 

and object play to permit a statistical result. 

Table 7.23 Regression analyses of play category on nucleus vestibularis medialis 
size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.18 0.69 0.32 0.03 
Solitary+ 
Object+ 
Social 1, 6 11.86 0.01 1.98 0.66 
+ Too few observations 
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Fig. 7.41 Regression plot of residual log (social play) 
on residual log (nucleus vestibularis medialis) 

7.6.2.20 Nucleus vestibularis descendens 

Table 7.24 shows the results of regression analyses for each play category on nucleus 

vestibularis descendens size in primates. Nucleus vestibularis descendens is not 

significantly correlated with total play; it is however, positively and significantly 

correlated with social play (Figure 7.42). There were too few observations of both 

solitary locomotor play and object play to permit a statistical result. 

Table 7.24 Regression analyses of play category on nucleus vestibularis 
descendens size in primates 

Play type 

Total 
Solitary+ 
Object+ 

DF 

1, 6 

Social 1, 6 
+ Too few observations 

F-value 

0.26 

16.45 

p-value co-efficient 

0.63 0.29 0.04 

0.006 1.70 0.73 
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Fig. 7.42 Regression plot of residual log (social play) on residual log (nucleus vestibularis 
descendens) in primates 

7.6.2.21 Corpus subfornicale 

Table 7.25 shows the results of regression analyses for each play category on corpus 

subfomicale size in primates. Regression of total play on corpus subfomicale shows a 

negative and significant relationship (Figure 7 .43). After Bonferroni correction 

however, this result is rendered non-significant. Regressions of all other types of play 

on corpus subfomicale show no significant association. 

Table 7.25 Regression analyses of play category on corpus subfornicale size in 
primates 

Play type DF F-value p-value co-efficient r" 

Total 1, 12 4.81 0.05 -0.69 0.29 
Solitary 1, 4 0.33 0.60 -0.53 0.75 
Object 1, 3 1.38 0.32 -2.12 0.32 
Social 1, 11 0.41 0.54 -0.23 0.04 
Bonferroni = 0.013, n.s. 
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Fig. 7·43 Regression plot of residual log (total play) on residual log 
(corpus subfornicale) in primates 

7.6.2.22 Pons 

Table 7.26 shows the results of regression analyses for each play category on pons size 

in primates. Total, solitary locomotor, and object play show no significant association 

with pons. Social play however, is positively and significantly correlated with relative 

pons size in primates (Figure 7.44). 

Table 7.26 Regression analyses of play category on pons size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 8 0.75 0.41 0.47 0.09 
Solitary 1, 3 0.15 0.72 -0.63 0.05 
Object 1, 3 0.11 0.77 -0.65 0.05 
Social 1, 5 9.09 0.01 0.66 0.65 
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Fig. 7·44 Regression plot oflog (social play) on residual log (pons) in primates 

The following brain components did not show a significant correlation when regressed 

against any play category: mesencephalon, diencephalon, olfactory bulb, piriform lobe, 

epithalamus, subthalamus, pallidum, nucleus subthalamicus, capsula intema, nucleus 

tractus olfactorii lateralis, complexus basolateralis, nucleus vestibularis lateralis, 

nucleus septalis triangularis, nucleus habenularis medialis, corpus pinneale, and corpus 

subcommisurale. 
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Table 7.27 Summary of results of brain components with each play category in primates and carnivores 

Brain part I Play category: significant correlation? 

I Total Solitary locomotor Object Social 
Whole brain X X X X 

'' ,•' 

Whole brain-neocortex X X v"+ "'+ 
Forebrain: 

Neocortex X X X "'+ 
,,. 
·' 

Limbic system: 

Olfactory bulb X X X X 

Hippocampus: X y'_ ,(_ X 

Schizocortex X ,(_ X X 

Amygdala: X X - -~'+ 

Complexus centromedialis X X - v"+ 
Complexus cortico-basolateralis X X X X 

Nucleus tractus olfactorii lateralis X X - X 

Nucleus amygdalae basalis, 
pars magnocellularis X X X v"+ 

Septum: X X ,(_ X 

Triangular septal nucleus X X X X 

Diencephalon: X X X X 

Thalamus X - - v"+ 
Corpus geniculate laterale (LGN) v" X X "'+ 
Hypothalamus X - - ,(+ 

Epithalamus X - - X 

Habenular nuclei X X X X 



Brain part I Play category: significant correlation? 

Total Solitar~ locomotor Object Social 
Corpus pineale X X X X 

Telencephalon ~+ X X ~+ 

Basal ganglia: 

Subthalamus X - - X 

Subthalamic nuclei X - - X 

Pallid urn X - - X 

Striatum ~+ X X ~+ 

Piriform lobe X X X X 

Corpus subfornicale ~- X X X 

Corpus subcommissurale X X X X 

Capsula interna X - - X 

N Midbrain (mesencephalon): X X X X 
.....:1 
N Optic tract X - - ~+ 

Hind brain 

Cerebellum X X X ~+ 

-
Pons X X X ~+ 

Medulla oblongata X X X ~+ 

Vestibular complex X - - ~+ 

Vestibular nuclei: 

Nucleus vestibularis superior ~+ - - X 

Nucleus vestibularis lateralis X - - X 

Nucleus vestibularis medialis X - - ~+ 

Nucleus vestibularis descendens X - - ~+ 

Visual cortex X ~+ X ~+ 

~ = significant, X =not significant, + = positive correlation, -=negative correlation/no data; 

Black =primates, 



7.6.2.23 Rest of Brain analyses 

As detailed in the Methods section, it is necessary to control for the rest of the brain in 

conducting brain component analyses, and to further assess the significant results 

detailed in the above sections. The following analyses in Table 7.28 details multiple 

regression analyses of each play category (dependent variable Y) on adult body mass, 

rest of brain, and the brain component that showed a significant relationship in the 

independent contrasts analyses in this chapter (3 independent variables X). 

Table 7.28 Summary of multiple regression analyses of each play category on 
body mass, rest of brain, and each significant brain component for play in 
primates 

Play Brain component Standard t-value p-value r2 
categor~ co-efficient 

Total Medulla 0.272 0.66 0.52 0.32 
Solitary 0.29 0-41 o.69 0.20 
Object 1.07 1.45 0.29 0.91 
Social 1.08 2.87 0.01 0.58 

Total Cerebellum -0.05 -0.11 0.92 0.30 
Solitary 0.18 0.29 0.78 0.19 
Object 0.87 1.15 0.36 o.89 
Social 1.30 3·25 0.01 0.67 

Total Septum -0.28 -0.86 0-41 0.34 
Solitary -0.86 -0.73 0.50 0.25 
Object 2.00 1.69 0.23 0.92 
Social 0.54 1.67 0.12 0-43 

Total Striatum 0.18 0.36 0.72 0.31 
Solitary -0.23 -0.35 0.74 0.20 
Object 1.15 2.35 0.14 0.95 
Social 1.58 3·85 0.003 0.87 

Total Hippocampus 0.13 0.39 0.71 0.31 
Solitary -o.75 -3.20 0.02 0.73 
Object 1.54 1.12 0.38 o.89 
Social 0.22 0.57 o.58 0.31 

Total Schizocortex 1.16 0.02 0.04 0.30 
Solitary -0.95 -3.06 0.02 0.71 
Object 4-03 1.17 0.36 o.89 
Social 0.13 0.27 0.79 0.30 

Total Neocortex 0-42 0.84 0-41 0.34 
Solitary 0.61 0.72 0.50 0.25 
Object 1.02 1.16 0.34 o.89 
Social 1.29 3.26 0.009 0.71 
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Play Brain component Standard t-value p-value r2 
category co-efficient 

Total Thalamus -0.13 -0.24 0.82 0-44 
Solitary+ 
Object+ 
Social 1.75 3.61 0.03 0.91 

Total Hypothalamus 0.20 0.52 0.63 0.35 
Solitary+ 
Object+ 
Social 1.48 4·23 0.01 0.89 

Total Optic tract 0.18 0.51 0.64 0-46 
Solitary+ 
Object+ 
Social 1.41 4·67 0.009 0.92 

Total Visual cortex 0.18 0.39 0.70 0.35 
Solitary 0-47 1.03 0.36 0.73 
Object 0.62 0.83 0-49 0.86 
Social 1.27 3.01 0.01 0.68 

Total LGN -0-42 -0.07 0.94 0.35 
Solitary 0.66 1.46 0.22 0.78 
Object 0.88 1.23 0.34 o.89 
Social 1.68 3·15 0.01 0.67 

Total Amygdala -0.81 -0.23 0.72 0.25 
Solitary 0.20 0-57 0-45 0-41 
Object+ 
Social 1.60 3·97 0.004 0.82 

Total Complexus -0.74 -0.18 0.58 0.31 
Solitary centro-medialis -o. 73 -0.20 0.61 0.31 
Object+ 
Social 1.18 2.94 0.009 0.71 

Total Nucleus 0.03 0.14 0.79 0.20 
Solitary amygdalae 0.56 o.89 0.32 0.51 
Object+ basalis, pars 
Social magnocellularis 0.92 1.08 0.19 o.69 

Total Vestibular 0.38 0.86 0-43 0.51 
Solitary+ complex 
Object+ 
Social 2.28 8.47 0.01 0.99 

Total Nucleus 0.36 0.59 0.58 0-47 
Solitary+ vestibularis 
Object+ medialis 
Social 1-49 1.21 0.29 0.61 

Total Nucleus 0.22 0.53 0.62 0.46 
Solitary+ vestibularis 
Object+ descendens 
Social 1.03 1.37 0.24 0.64 
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Play Brain component Standard t-value p-value r2 
category co-efficient 

Total Corpus -0-43 -1.80 0.10 0-49 
Solitary subfornicale -0.12 -0.39 0.71 0.67 
Object 0.18 0.38 0.74 0.83 
Social 0.16 0.54 0.60 0.31 

Total Pons 0-47 0.94 0.38 0-44 
Solitary -o.os -0.07 0.95 0.14 
Object 1.31 1.32 0-41 0.93 
Social 1.27 4·93 0.002 o.89 

+Too few observations 

These results show that a range of brain structures correlate positively with play 

independently of variation in the rest of the brain, including the neocortex, cerebellum, 

visual system, vestibular system, striatum, and pons. These brain regions are all 

connected to visuo-motor co-ordination, as well as to socio-cognitive processes. These 

results show a general pattern of an increased strength in the correlation between the 

significant play category from the previous analyses, and the brain component, 

controlling for body mass and rest of brain. This is especially true of the results for 

social play. The above multiple regression analyses typically increase the value of r2
, 

even if the p-values are reduced in significance. This suggests that the relationship 

between significant play categories and significant brain components is statistically 

robust. 

7.6.3 Brain size 

The following analyses continue to focus upon the number of behaviours in a species' 

repertoire, but with relative brain size as the independent variable. Research effort is 

controlled for by regressing the play variable against the total number of months of 

study (as reported in the literature); a residual is taken from this line. 

7.6.3.1 Primates 

Regression analyses of number of play behaviours observed in a species' repertoire 

(controlled for research effort in months) on relative brain size (controlled for body 
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size) in primates show a positive and significant correlation (F (1, 24) = 16.89, p = 

0.0004, co-efficient= 3.46, r2 = 0.44) (Figure 7.45). 

'/.6.3.2 Platyrrhines 

Regression analyses of number of play behaviours observed m a species' repertoire 

(controlled for research effort in months) on relative brain size (controlled for body 

size) in platyrrhines show a positive and significant correlation (F (1, 3) = 10.72, p = 

0.04, co-efficient= 3.17, r2 = 0.78) (Figure 7.46). 

'7·6·3·3 Catarrhines 

Regression analyses of number of play behaviours observed m a species' repertoire 

(controlled for research effort in months) on relative brain size (controlled for body 

size) in catarrhines show a positive and significant correlation (F (1, 18) = 12. 78, p = 

0.002, co-efficient= 3.48,? = 0.42) (Figure 7.47). 

'7·6·3·4 Bout length 

Independent contrasts analyses aim to focus on the evolutionary relationship of play 

category and bout length, by using a species mean for bout length in seconds. Figure 

7.48 shows partial regression analyses for bout length. Average bout length is positively 

and significantly correlated with adult brain weight in primates (F ( 1, 7) = 7 .26, p = 

0.03, co-efficient= 280.76, r2 = 0.51). One outlier has been removed from this analysis 

as specified by the CAIC programme . 
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Table 7.29 shows the using one-sample t-tests detailing the evolutionary changes in 

relative brain size relative to the transitions in the above dichotomous variables in 

primates. 

Table 7.29 Results of relative log brain size and dichotomous play variables 
in primates 

Variable Mean DF t p Significance? 

Adult play -0.006 13 -0.378 0.71 N.S. 
Adult male play -0.02 11 -0.94 0.38 N.S. 
Adult-adult play 0.007 16 0.50 0.62 N.S. 
Sex play -0.001 17 -0.06 0.95 N.S. 
SSD -0.03 15 -1.96 0.07 N.S. 
SSP -0.004 11 -0.17 0.87 N.S. 
SAD -0.002 12 -0.10 0.92 N.S. 
SAP 0.014 8 0.62 0.55 N.S. 
Sibling 0.03 4 0.84 0.45 N.S. 
Relatedness -0.06 5 -2.22 0.07 N.S. 
Dominance 0.02 3 0.35 0.75 N.S. 
Vocalisation -0.005 10 -2.14 0.83 N.S. 
Polyadic 0.042 8 1.93 0.09 N.S. 
Interspec i fie 0.02 3 0.35 0.75 N.S. 
Place -0.03 5 -1.02 0.35 N.S. 

There were too few observations of dyadic play to permit a result. 
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7 o 7 DiscussioJm 

The results in this chapter show that there were significant correlations between certain 

play categories and certain brain areas, namely the neocortex, cerebellum, striatum, 

vestibular system, amygdala, hypothalamus, and visual areas. The following sections 

discuss these relationships in more detail. 

7·'7·1 Brain size and play 

Although we might expect brain expansion to reflect cognitive elaborations in play 

behaviour, these results show no significant evolutionary correlation between whole 

brain size and play behaviour in primates. These results support those of Iwaniuk et al. 

(2001) who found no correlation between adult primate play and overall brain size. 

Here, the results suggest that in juvenile and adult primates, the trend holds for relative 

brain size also. In carnivores however, these results show a conflicting trend from the 

results for primates, in that both solitary play (although non-significant after Bonferroni 

correction) and social play are positively correlated with brain size, supporting the 

claim that larger-brained species may also be among the most playful. Moreover, 

although not statistically significant in this case, object play shows a strong tendency 

towards correlation with brain size in carnivores also. In carnivores, it may be that 

group size accounts for this trend, that is, group-living carnivores may have a larger 

overall brain size (perhaps through neocortical expansion, Dunbar & Bever 1998) to 

cope with the demands of social living. This in turn not only provides a greater 

opportunity to engage in social play behaviours, but also suggests that social play is 

beneficial to such species in terms of honing brain development to cope with the rigours 

of group life. Primates are habitually more social in terms of group size and social 

complexity than are carnivores, the vast majority of which are solitary (Bekoff et al. 

1984), and thus for primates it might be even more necessary to concentrate on the 

evolutionary relationships between play and specific neural components, rather than 

with the relative size of the entire brain. 
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7.7.2 Neocortex and pRay 

One of the most noticeable patterns m the results presented in this chapter is the 

prominence of social play over other forms of play in the eo-evolution of play and brain 

structures. I suggest that this provides some support to the hypothesis that social play 

represents a distinct category of behaviour (Panksepp 1998), and that social play may be 

an especially cognitive aspect to play behaviour. The results here indicate a positive and 

significant evolutionary relationship between neocortex size and social play behaviour 

in primates. This result supports previous findings based on an independent dataset 

(Lewis 2000) that social play, but not total, solitary locomotor, or object play, show an 

evolutionary correlation with neocortex size. The results here reveal the same 

relationship for carnivores - the larger the relative neocortex size, the more social play 

behaviour is exhibited. For both primates and carnivores, these relationships hold true 

when the confounding effects of body size are removed, thus the results presented in 

this section support the hypothesis that neocortex size can predict the frequency of 

social play in primates and carnivores. Additionally, these results support the theory that 

primates and carnivores share a similar pattern of neocortical evolution (Dunbar & 

Bever 1998). The neocortex comprises most of the volume of the telencephalon in 

mammals, thus forebrain, and especially telencephalic (and neocortical) evolution, is a 

factor that drives behavioural evolution in mammals, and thus it may be expected that 

species with larger telencephalons (and therefore neocortices) exhibit not only more, but 

more complex, play behaviour (Burghardt 2001). In birds, for example, forebrain size 

can be used to predict innovative patterns of feeding behaviour (Lefebvre et al. 1997); it 

would be interesting to see if feeding innovations can predict object play, for example 

(Burghardt 2001). 

The significant correlation between social play and neocortex size is an interesting 

finding in that primates and carnivores are especially playful mammalian orders, and 

both contain species that are highly social. Indeed, insofar as carnivores are concerned, 

it is most likely to be the more easily-observable diurnal and social species that have 

been recorded engaging in playful episodes (Bekoff et al. 1984). Given the propensity 

of species with large neocortices to be social species, and those both requiring and 

exhibiting evidence of social intelligence to maintain this sociality (Dunbar 1992), it 

seems likely that neocortical expansion over evolutionary time reflects social play 

behaviour, and further that social play occurs at higher rates in species with relatively 
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more socio-cognitive processing power. Social play can only been successful if there is 

an awareness of role-appropriateness (Fagen 1981 ). In some primate and carnivore 

species where the level of social play behaviour can become especially complex, the 

continued accuracy of reading behavioural cues is rendered all the more important. I 

suggest that the species that are especially skilled in social interactions, such as 

chimpanzees (Pan troglodytes), are also the species that are especially skilled in social 

play, and it is no coincidence that these are also the species with the largest relative 

neocortex size (relative to body size). These playful interactions, especially those 

during the juvenile period, occur in order to assist in the formation of social 

relationships, but crucially enable the developing brain to be perfected in readiness for 

adult life. Thus social play may represent the development of an adult socio-cognitive 

system. The finding that a socially complex behaviour such as social play, correlates 

strongly with the size of the largest socio-cognitive structure of the brain, further 

supports this hypothesis. 

7·7·3 Limbic system and play 

As mentioned in the previous sections of this chapter, there is some evidence to suggest 

that structures of the limbic system might be important to play behaviour (Burghardt 

2001). The results presented here suggest that this is the case and that much can be 

learned from studying these components in relation to neural eo-evolution with play. 

These results are concerned only with primates from Stephan et al.'s (1981) database, as 

there are no comparable data for carnivores. 

7·7·4 Amygdala 

The positive and significant result in the correlation of social play and the 

amygdala indicates that over the course of primate evolution, there has been some 

degree of eo-evolution between expansions in both the size of the amygdala, and 

in social play behaviour. This relationship does not hold for any other type of 

play. Other studies, mainly concerning the evolution of rat play-fighting, suggest 

that the importance of the amygdala in the emotional regulation of behaviour 

seems to be an important aspect in the expression of social play behaviour, in 

terms of assessment, affiliation and in social bonding (Pellis & Pellis 1998; 
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Burghardt 2001 ). As the amygdala is also important in the expressiOn of 

aggression (Davis 1992), it might also be the case that the amygdala regulates the 

aggressive elements of play-fighting; in carnivores and primates this might be 

especially important, as one of the key elements is that of the play-bite (Symons 

1978). Playful attack and defence are the basis of play-fighting (Aldis 1975), and 

this is also the play behaviour that demonstrates the greatest degree of sex- and 

age-differences, with younger males being far rougher in their play than older 

individuals and like-aged females (e.g. Biben 1986; Brown 1988). With the 

gonadal hormone influence on the amygdala contributing to sex-differences in 

aggression, sexual orientation, and play (e.g. Hines 1982), and the "confusion" 

between play-fighting and aggression, and gradual cessation of play towards the 

period when the individual reaches sexual maturity (Pellis & Pellis 1988, 1998), it 

seems likely that the amygdala is connected to the representation of social play 

behaviour. Pellis & Pellis (1998) suggest that the need for affiliation in social 

play may be dependent on both the amygdala and the cingulate cortex, and thus 

limbic structures may require further study in relation to play; my results 

contribute to the confirmation of this hypothesis for primates. Thus, the amygdala 

in particular seems to play a key role in the task of assessing play-partners and 

eliciting appropriate responses during social play behaviour (Burghardt 2001). 

7·7·5 Hypothalamus 

Parallel with the amygdala, the results here indicate a similar trend for the 

hypothalamus and social play behaviour in primates. This is interesting as like 

the amygdala, the hypothalamus is also a target for perinatal androgens resulting 

in sexually differentiated behaviours, including play (Hines & Shipley 1984). It is 

also important in the regulation of sexual and aggressive behaviours, as well as in 

the experience of emotions (Russell 1988), thus play-fighting and sexual elements 

of social play behaviour may also have a point of localisation in the 

hypothalamus. Similarly, both the amygdala and the lateral hypothalamus are 

deemed to be important neural "pleasure regions" that generate the understanding 

of enjoyable experiences (Isaacson 1982); it might be the case that play 

behaviour, as a "fun" behaviour (Fagen 1992), is incorporated in such experiences 

controlled by this part of the brain. It might be, however, that the ancient 
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evolutionary origins of hypothalamic elaboration, has played a key part in the 

evolution of play behaviour. For example, one of the most basic emotional 

behavioural responses in animals is that of the fight-flight mechanism (Bear et al. 

2001). It has been shown, specifically in ungulates, that some forms of behaviour 

mimic both flight response, and interspecific aggression (Byers 1984 ). As the 

hypothalamus is one part of the brain that regulates this response, there is an 

argument for the eo-evolution of hypothalamic structures with play behaviour. 

Unfortunately, there are insufficient data here to test for a relationship between 

play that might usually reveal elements of fight-flight (i.e. locomotor play), but I 

predict that given sufficient data, such a relationship will emerge. 

'7·'7·6 Thalamus 

Results here show that the thalamus is positively and significantly correlated with 

social play behaviour in primates. As the thalamus contains the LGN, it might be 

argued that this result is supportive of the role of vision to social play interactions. 

However, the thalamus contains relays to for all cortical-sub-cortical traffic, not 

just vision. The thalamus, and especially its anterior nuclei, appears to be involved 

in recognition memory and emotion (Bear et al. 2001 ), and thus it is perhaps 

social play, rather than other forms of play, that is especially relevant. Social play 

may require emotional memory to augment its behavioural complexity, such as is 

witnessed in some primates and carnivores. Moreover, the context recognition of 

behaviour, and the recognition memory of other players and past interactions, may 

enhance play bouts and play complexity. Additionally, it has been shown that 

damage to the thalamic nuclei drastically reduces the performance of R&T 

(social-aggressive) play episodes in rats, and thus it has been hypothesised that the 

thalamus is important in the generation and mediation of social play (Panksepp 

1998); thus my result here supports this hypothesis. 

'7. '7. '7 Hippocampal Formation (including schizocortex) 

Given the apparent social role of the hippocampus to the regulation of emotions, 

learning, and conscious memory, not least its regulation of stress responses and 

recognition of new faces (Woolf 1998; Bear et al. 2001; Nestler 2002; Crane & 
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Milner 2002), it was predicted that the hippocampus would show a strong positive 

eo-evolutionary relationship with social play behaviour. The results however, 

indicate a very different trend. There are strong negative correlations with the 

hippocampus and both solitary locomotor play and object play behaviour, and no 

significant correlations with either total play or social play. These results suggest 

that evolutionarily, increases in hippocampus size are correlated with decreases in 

the propensity for non-social forms of behaviour. The possible reasons for this 

are unclear, however, perhaps increases in relative hippocampus size have been at 

the cost of increases in neural components that control motor and reasoning tasks, 

such as that are more closely associated with solitary locomotor and object play 

responses, than emotive regions that may mediate social play more readily. 

Alternatively, the reverse may be true as both the hippocampus and solitary 

locomotor play are relatively ancient components in evolutionary terms (Byers 

1984; Bear et al. 2001 ). 

7·7·8 Septum 

The septum is concerned with some basic emotional responses; those such as fear 

and relief, maternal instincts, and copulation (Yadin et al. 1993; Panzica et al. 

2001; Sheehan & Numan 2002). With such elements arguably being present in 

some forms of play behaviour, it might be expected that the septum will show a 

positive elaborations with play through evolution. The results suggest however, 

that like the results for hippocampal-play evolution, this is not the case. 

Evolutionary relationships between object play and the septum are significantly, 

yet strongly negatively, correlated, suggesting that over the course of primate 

evolution, increases in septum size map onto decreases in the exhibition of object 

play behaviour. The triangular septal nucleus, which is a part of the septum, is 

believed to function in the regulation of appropriate behavioural responses 

(Menard & Treit 1996), and thus is also expected to be vital to the expression of 

play behaviour. These results present no such finding, as there are no significant 

correlations between this nucleus and primate play. Speculations for these results 

arguably suggest that increases in more "cognitive" regions of the brain are 

greater than limbic structures, thus render the locus of "cognitive" areas of play, 

such as object play, to regions such as the neocortex, for example. It might be the 
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case that behavioural responses are more greatly mediated by other neural areas, 

or that the septum functions in the "serious" expression of serious behavioural 

responses, rather than play, which by definition appears functionless or non­

serious (e.g. Martin & Caro 1985). 

7·7·9 OUactory complex 

It was predicted that in primates, an order with a reliance on vision, that brain 

structures involved with olfaction were unlikely to be strongly associated with the 

expression of play behaviour. The results presented in this section confirm this 

hypothesis, with both the olfactory bulb, and the piriform lobe showing no 

evolutionary association with any play type. This relationship holds primarily for 

haplorhine primates, given their representation in the data used here; future results 

might show a different trend across strepsirhine primates and carnivores, as they 

show a greater adaptation for olfaction, and exhibit the presence of a nasal 

rhinarium for scent marking and detection (Fleagle 1988). 

7·7·:n.o Basal ganglia and play 

The basal ganglia, or striatopallidal complex (Butler & Hodos 1996), have been 

implicated as important structures in the expression of play behaviour (Burghardt 

2001 ). The results here too indicate the potential importance of these structures to 

the evolution of play behaviour in primates. Indeed, the basal ganglia appear to 

be vital in both motor and cognitive functions (Jog et al. 1999), suggesting that 

both motor and cognitive functions have ancient eo-evolutionary relationships, or 

that this is a slight adaptation from the ancestral form (Katz & Harris-Warrick 

1999; Burghardt 2001). Again, as the available data derive from Stephan et al. 

( 1981 ), the following discussion deals only with primates. 

7·7·U Striatum 

The results here show positive and significant correlations between both total and 

social play and the striatum, indicating that striatum expansion has evolved with 

social, but not non-social, forms of play. The role of the striatum to social play is 
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especially augmented as it is connected to the neocortex and the cerebellum in 

terms of function and cortical projections, thus suggesting the importance of both 

motor co-ordination and socio-cognitive processes to social play. This result 

supports previous studies that claim that damage to the caudate-putamen area can 

significantly reduce play in rats (Panksepp 1998); given that the striatum is 

comprised of the caudate nucleus and the putamen, this is an important finding, 

especially given the role of the striatum in motor control and motor learning (Jog 

et al. 1999). Indeed, the evolution of social play and the striatum ties in very 

closely with the eo-evolution of social play and the cerebellum. It has been 

demonstrated in humans that damage to the striatum, and the cerebellum, results 

in both motor and cognitive impairment, albeit it in differing ways (Laforce & 

Doyon 2001). As the striatum is involved with visual systems and the planning of 

motor movements and procedural memory (Jog et al. 1999) it seems likely that 

this too will affect the expression of play, where reliance on vision and the innate 

understanding of motor actions is vital. Crucially, the striatal neurons project on 

neocortical circuits (Jog et al. 1999; Burghardt 2001 ), thus the striatum may be 

implicated in social behaviours also (see section on neocortex). My results here 

certainly indicate the likelihood of such an evolutionary trend. 

7·7·12 Subthalamus & subthallamic nucleus 

Given the role that the subthalamus plays in skeletal muscle motor actions (Bear 

et al. 2001), it was predicted that there would be a positive evolutionary 

relationship with play, as the performance of play behaviour during the juvenile 

period is known to permanently affect the modification of skeletal muscle fibre 

(Byers & Walker 1995). These results, however, although showing a positive 

relationship, fall short of statistical significance for social play, and show no 

significant association for total play. Unfortunately, there are too few data to 

conduct the analyses on solitary locomotor play or object play. I predict that 

given sufficient data for solitary locomotor play, a significant relationship will 

emerge, as it is likely that the energetic motor displays seen in locomotor play will 

contribute most greatly to the honing of skeletal muscle during the juvenile phase; 

a development that may in part be facilitated by subthalamic structures. 
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7. 7.113 Pallllhllum 

There is a non-significant correlation between pallidum size and social play in 

primates, although there is a positive trend (p = <0.1 ). The non-significance of 

this result is perhaps surprising, as, along with the subthalamic regions, the 

pallidum is an important region of the basal ganglia in terms of motor control 

(Wannier et al. 2002). More importantly, however, its role in social assessment 

and pair-bonding (Young 2002) suggest its potential as a key neural region in the 

expression of social play, where the context recognition of social behaviours is 

critical to its success. 

7·7·14 Diencephalon 

The results here show no correlation between play behaviour and the 

diencephalon in primates. As the diencephalon is heterogeneous, (e.g. containing 

the epithalamus), more attention should be paid to individual parts, including the 

thalamus. 

7·7·15 Epithalamus 

The results show no association between the epithalamus and play behaviour. 

Similarly, the habenular nucleus and the pineal body, parts that comprise the 

epithalamus, also do not show an association with play behaviour. This region of 

the brain is concerned with the body clock and with melatonin secretion, and thus 

supports the hypothesis that neural regions that function in somatic homeostasis 

are unlikely to show significant evolutionary elaborations with play behaviour. 

7.7.116 Visual areas and play 

The results here indicate that the visual areas of the brain are key to the play of 

primates, with the visual cortex being positively and significantly correlated 

with both solitary locomotor and social play, and the LGN and optic tract being 

positively and significantly correlated with social play. The hypotheses 

predicted that visual components of the brain would be important in the 
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expression of primate play due to primates' reliance on vision. Indeed, Barton 

(1996) suggested that social complexity is reliant on the visual system, and 

therefore may contribute significantly to socio-cognitive interactions. Play is in 

many ways a very visual behaviour; social play relies on appropriate reactions to 

movement and intention, which are best served by sight; locomotor-rotational 

play may best achieved through the visual perception of the surrounding habitat 

and landscape; and object play relies on visual perception of items in the 

environment (e.g. Bekoff & Byers 1981). With a reduced reliance on olfaction, 

primates' dominant sensory ability is that of sight, and thus vision, and visual 

areas of the brain will be vital to primate survival and expression of behaviours, 

including play. However, as Chapter 6 has shown, the degree to which a species 

is frugivorous does not accurately predict play frequency. Thus, insofar as play 

is concerned, visual areas appear key to play, but this does not appear to be 

directly correlated with socio-ecological systems. Indeed, this may be another 

product or byproduct of the different selection pressures on the neocortex over 

evolutionary time (Barton 1996). Reliance on visual senses may also allow for 

better motor control, and social interactions, hence the importance of vision to 

the evolutionary elaborations of play; such neural regions might also account for 

trends in primate play complexity and overall frequency (see Barton 1998, 

1999). 

7·7·17 Medulla and play 

The results here indicate that the medulla is positively and significantly correlated 

with social play, but not non-social forms of play, in primates. One explanation 

for this relationship is its control of sexual reflexes (Holmes et al. 2002); perhaps 

these also control forms of affiliative bonds that are expressed through play. A 

further point of interest and explanation is that the medulla has been shown to be 

extremely active during periods of vocalisation; this has been specifically 

demonstrated in domestic cats, where mews can be elicited by stimulation of the 

pons and medulla (Peters & Wozencraft 1989), and also in squirrel monkeys 

(Saimiri sciureus) (Luthe et al. 2000). Interestingly, squirrel monkeys are one of 

the few primate species to emit play-specific vocalisations, considered to 

demonstrate motivation to engage in social play behaviours (Biben & Symmes 
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1986). Play vocalisations are present in some New World primate species (e.g. 

cotton-top tamarins, Saguinus oedipus) (Goedeking & Immelmann 1986), and 

have also recently been shown to accompany social play behaviour in Barbary 

macaques (Macaca sylvanus) (Kipper & Todt 2002); similarly, "laughter" occurs 

in the play of chimpanzees and baboons (Marler & Tenaza 1977; Masataka & 

Kohda 1988). It might be the case that the medulla contributes to the emission of 

play-specific vocalisations, which would correlate with the expression of social 

play. Many fissiped carnivores incorporate vocalisations into their play behaviour, 

possibly to demonstrate motivation to engage in play (Bekoff 1974, 1975; Peters 

& Wozencraft 1989). The typical silence of primates during play has been 

explained in terms of predator avoidance (Biben & Symmes 1986), however, the 

data analysed here include that for species that are known to be atypically vocal in 

play. Additionally, the medulla is connected to motor control areas, such as the 

cortico-spinal tract and the cerebellum (Bear et al. 200 I). It may be that these 

connections influence the performance of movement, including play. 

'i·'i-18 Vestibular complex and play 

The vestibular system is a part of the medulla, and the results indicate its 

importance to the expression of play behaviour in primates. The vestibular 

complex is positively and significantly correlated with social play; the superior 

vestibular nucleus is positively and significantly correlated with total play, and 

both the medial and descendens vestibular nuclei are positively correlated with 

social play. The lateral vestibular nucleus however, does not show any 

association with primate play. In all of these analyses, there were too few 

observations of solitary locomotor and object play to permit a statistical result. 

However, given the importance of the vestibular complex and its nuclei to 

maintaining balance and motor control (Bear et al. 2001), we might expect there 

to be a relationship between locomotor-rotational play and perhaps object play, 

given sufficient data. It seems clear that the vestibular system is vital in 

maintaining equilibrium, and this is indeed crucial to the expression of physical 

behaviours such as play, thus evolutionarily, selection for a well-developed 

vestibular system, may directly or indirectly promote the expression of play. 
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7·7·19 OerebeHum and play 

The positive and significant relationship between social play and the cerebellum 

in primates is an interesting one. Unfortunately, there are insufficient data to 

conduct comparable analyses on carnivores, although the lack of an association 

for total play and cerebellum size in carnivores is comparable with that of 

primates. To my knowledge, this is the first comparative phylogenetic study to 

show a relationship between cerebellum size and social play behaviour in non­

human primates. Comparative analyses here indicate that the cerebellum is still 

positively and significantly correlated with social play in non-human primates, 

even after the confounding effects of body size have been removed. 

Explanations for this relationship may be that the learning and execution of 

playful behaviour in social groups may require that both cognitive and motor 

responses be highly developed. If actions and responses during a social play bout 

are to be interpreted and reacted to appropriately, we would expect a high level of 

cognitive awareness, and it is for this reason that social play is deemed to be 

cognitively demanding (Lewis 2000; Spinka et al. 2001 ). Social play in particular 

requires control if it is to be "successful" (Spinka et al. 2001 ); that is, control and 

understanding of the context in which the social play bout occurs, physical control 

of the body in exhibiting social play-specific behaviour, and often self-control in 

terms of "self-handicapping" with a smaller or weaker player (Pereira & Preisser 

1998). The primate cerebellum seems to be integral to this type of behaviour 

(Thach 1996). 

The cerebellum should be interesting to proponents of play behaviour as it enables 

practice of movement, adjusting the action for increased precision and accuracy 

(Thach 1996). It also plays an anticipatory role in the execution of movement 

(Blakemore et al. 1999); this of course is relevant to all movement, not only play, 

where predicting movement of all involved players is key. So, cerebellar circuits 

are trained by sensory-motor feedback, including those movements exhibited 

during social play, whilst play itself is performed in part to practice, develop, 

modify, and maintain skills (e.g. Byers & Walker 1995). This modification and 
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development may improve performance, and in this vein may even serve to train 

neural networks during early brain development (e.g. Byers 1999; Fairbanks 

2000). I propose that social play may be especially important for honing the 

functions of the cerebellum. 

'It has been shown in other mammalian species that the development of all play 

behaviours map very closely onto the post-natal development and growth of the 

cerebellum (Byers & Walker 1995), and this very time-specific period marks a 

sensitive period in mammalian development. These sensitive periods typically 

mark the juvenile period, during which most play behaviour tends to occur (Fagen 

1981; Joffe 1997). Indeed, it is expected that play will be more prevalent in 

species with extended postnatal development (Pellis & Iwaniuk 2000a). Each type 

of play has a distinctive timing and trajectory, the pattern of which is essential to 

our understanding of play function (Fairbanks 2000). Unfortunately, there is a 

lack of extensive data on both the time-specific development of play types, and of 

the cerebellum in primates. Although my results here do not show a statistically 

significant result for a cerebellar relationship to object play in primates, the result 

indicates a positive trend; it may be that the small number of contrasts (n = 4) 

contributes to its failure to reach significance. I predict that given further data, a 

similar trend for object play will emerge. 

7.7.20 Number of play behaviours 

Across primates, the contrasts analyses show that evolutionary increases in brain 

size are correlated with increases in play behaviours to the play repertoire in 

primates. This relationship is borne out in both platyrrhines and in catarrhines, 

suggesting the homogeneity of the relationship. The causation of this could 

arguably follow one of two trends. Firstly, that a large group size gives rise to 

larger brains, and also greater amounts of play behaviour, thus play correlates 

with both brain size and with group size. Or secondly, that a large group size 

requires a bigger brain, which in turn gives rise to greater amounts of play. In the 

latter scenario, play would still correlate with both brain size and group size (see 

Figure 7.49). 
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Scenario 1: 

Group size 

~~ 
Brain size Play 

Scenario 2: 

Group size 

~ 
Br1nsize 

Play 

Fig. 7·49 Hypothesised causations of play frequency 

A greater diversity and practice of play behaviours arguably suggests behavioural 

complexity and thus species with a larger relative brain may indeed be those to require 

and exhibit more elaborate play with variations in sequence. This might also explain 

some of the variance in the previous comparisons of play behaviours and group size 

(see Dunbar 1995). 

7.7.21 Bout length 

It would be preferable to conduct intra-specific analyses on bout length data in order to 

test for external variables such as diet or habitat that may alter the empirical expression 

of play behaviour in primates, although sample sizes are too small. Results of relative 

brain size on play bout length across primates suggest that over evolutionary time, 

increases in play time have been correlated with increases in brain size. It seems 

reasonable to suppose that species with relatively larger brains require greater extended 

periods of play during which to permanently affect the CNS during the juvenile period 

when the brain is at its most plastic (Byers & Walker 1995). Individuals that devote a 

lot of their daily time budget to play may risk injury or predation more so than 

individuals that play less, and thus there is the suggestion that play at this risky period 

also offers dividends. Play bout length might be a more useful measure of social play 

complexity, or indeed the extent to which play may be beneficial, than is the overall 

time budget. 
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7o8 Summary 

The results in this chapter indicate that some brain structures are likely to have played a 

role in the evolution of play, whilst others have not. The regions of note are those of the 

neocortex, cerebellum, vestibular system, visual system, amygdala and hypothalamus. 

Interestingly, relative whole brain size does not predict play frequency in either 

primates or carnivores, thus providing a basis for focus on specific neural components. 

Social play is the type that appears to be best predicted by relative brain component 

size. I suggest that this is due to the fact that social play requires the social complexity 

afforded by larger socially-complex groups. In turn, play, during the period of 

developmental plasticity, and beyond, enables honing of the key neural structures, 

which facilitates and maintains physical and social bonding within the group; the 

"social glue" that Fagen suggested (1981 ). Thus play has been selected to benefit body, 

brain, and social environment. Thus social and cognitive species will be those that are 

the most playful. The neural anatomy key to play's evolution comprises cognitive 

centres, such as the neocortex, motor centres, such as the cerebellum, visual systems, 

that link into both cognitive and motor elements, and emotional recognition and 

regulation as controlled by the amygdala and hypothalamus. These elements are likely 

to be have shared patterns of evolutionary change, and developmentally permit the 

occurrence of play, the timing of which is likely to influence synapse termination and 

brain maturation (Byers & Walker 1995). The "primed" homing of these structures not 

only permit behaviours such as social play, and to facilitate its "success", but this 

success contributes to the fine-tuning of the brain, which is likely to contribute 

significantly to enhanced socio-cognitive abilities throughout adulthood. 
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Chanter 8: 

Conclusions & Further 

Study 

Sol Introduction 

This thesis has focused on a comparative analysis of play behaviour in primates and 

carnivores, assessing play from various perspectives including phylogenetic patterns, 

life-history, socio-ecology, neurological components, and intra-specific analyses. Play 

is a behavioural category that has been frequently overlooked in the field of ethology, 

due to difficulties in defining and quantifying play. Indeed, one of the major difficulties 

in conducting a comparative analysis of play is in collating sufficient species replicates 

to enable statistically valid analyses within and between species. The following 

sections summarise the key results from each of the preceding chapters and attempt to 

draw conclusions regarding the relationship between play and the variables discussed 

throughout this thesis. 

8.2 Phylogenetic patterns 

The MacClade-generated trees detailed in Chapter 3 offer insights into character state 

changes in play over evolutionary time. We see that play categories in both primates 

and carnivores are rather distinct, suggesting that different categories of play possess 

their own evolutionary trajectories. Indeed, it has been argued in the literature that 

social play in particular may be further distinct from other forms of play, and is 

293 



suggestive of an innate play instinct (Panksepp 1998). Social play appears to offer the 

individual numerous benefits, not least in shaping and perfecting the brain and body, 

but also in facilitating and maintaining social bonds and learning capacity (e.g. 

Fairbanks 2000). Additionally, social play is argued to be a vital way in which to assess 

partner fitness (both physiologically and sexually) in those species where potential 

mates play (Panksepp 1998; Pellis & lwaniuk 1999a). That play, and social play in 

particular, are conserved in mammalian lineages, further suggest its importance in 

development and social relationships. 

8.2.::n. Primate JPllay evollurll:ion 

The phylogenetic reconstructions, perhaps surprisingly reveal, that social play was not 

only likely to have been present at the divergence of primates from other mammals, but 

also that dyadic play is the most widespread throughout the clade (rather than solitary or 

polyadic play). A two-partner play scenario is suggestive of one of two theories: that 

play originated between adults and their offspring; or that play originated as a means of 

assessing mates. 

The phylogenetic reconstructions reveal social play as the most evolutionarily ancient 

of play behaviours. It is likely that playful forms of behaviour originated at a low level 

in mammals; we see that there has been a selection for higher frequencies of play in 

highly social and manipulative species (e.g. Cebus apella). Social play in its most 

ancient form may have arisen due to the need to assess socio-sexual relationships. 

Indeed, Pellis & Iwaniuk (1999a) argue that adult-adult social play should be more 

prevalent in solitary nocturnal species as a means for assessing potential mates when 

levels of male-female association are low. My results indicate that the ancestral low­

level of play has been retained in extant strepsirhines: a sub-order that comprises largely 

solitary and nocturnal primates. Additionally, my results further indicate that sexual 

play has been a prominent form of adult play throughout evolution: a finding in support 

of Pellis & lwaniuk's findings. My results also indicate however, that adult play is most 

likely to have originated between adults and their infant offspring, which tends to 

suggest that play may have been more likely to have originated as a means for parents 

to assist the neuro-muscular development of their progeny. This adds some weight to 
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the controversial hypothesis that infant play offers one means by which parents can 

assess the biological fitness potential of their offspring (Chiszar 1985). 

One crucial factor to be borne in mind regarding possible conclusions as to the 

evolutionary path of social play is that we use data from extant species in order to 

determine these ancient character states. Social play is by far the most widely reported 

of all play behaviours, thus social play is better represented in the literature for many 

species, than are other forms of play. Social play may indeed represent the ancestral 

condition, given the variety of functions argued to classify this behaviour. However, 

conclusions to this effect are accompanied by the caveat that social play remains the 

most easily-observed of play behaviours, possibly, the most widespread, and certainly 

the most widely-reported. 

The phylogenetic reconstructions reveal that the most playful clades compnse Old 

World monkeys (especially the macaques and baboons), and apes. With the exception 

of gibbons, these families live in large groups. Given that group living requires 

advanced social skills, it seems likely that species in large groups will be more playful 

(especially in a social sense) than species in much smaller groups. One notable 

exception to this concerns Old World colobines. Colobus monkeys typically live in 

extremely large groups (e.g. Clutton-Brock 1975; Smuts et al. 1987); their play 

frequencies however, are rather low. Colobines subsist on a largely folivorous diet, and 

spend much of their daily time budget resting in order to digest their food (Dunbar 

1988). Indeed, diet is one factor argued to significantly affect the performance of play 

(Burghardt 1988). However, in spite of this hypothesis, the results in Chapter 6 indicate 

no general association between diet and play time budgets. Thus colobus monkeys 

provide something of an enigma in primate play time budgets. 

8.2.2 Carnivore play evolution 

Carnivores, as assessed in the phylogenetic reconstructions, appear to be an especially 

playful order. Total play (i.e. all categories) persists at high levels in fissipeds 

throughout the clade. Pinnipeds however, have been selected for a reduction in play 

frequency relative to their fissiped counterparts. It is shown that pinnipeds and polar 

bears exhibit high levels of solitary locomotor play. This may be to counteract the 
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effects of cold climates and to develop hunting and predator avoidance skills in aquatic 

environments (solitary locomotor play in these species comprises fleeing and twisting 

behaviour). Object play appears more commonly in carnivores (especially canids, 

felids, and ursids) relative to primates. This is likely to be practice for direct hunting 

ability. Typical behaviours include pouncing at and batting inanimate objects. 

Although some carnivores are not exclusive meat eaters, all carnivores exhibit 

carnassial dentition (Bekoff et al. 1984 ). This suggests that behaviourally, carnivores 

may possess an innate and "typical" carnivorous behavioural tendency towards this 

behaviour. Social play permeates the carnivore clade at high frequencies, which 

supports the hypothesis that social play occurs in order to facilitate the integration and 

social success of the individual within the group. Domestic cats exhibit an unusually 

high level of play behaviour, presumably due to the selective breeding for neotenous 

traits (Hemmer 1990). Canids appear relatively less playful than casual knowledge 

predicts, especially given their social structure and typical group size. However, at the 

node where canids and felids diverge, we see a selection for higher play frequencies in 

the canid clade, with far lower frequencies in the felid clade. Although some felids will 

live in large prides, these are often broken down into smaller hunting packs, or more 

usually, solitary hunting. Canids conversely, tend to live and hunt in large packs, with 

co-operative hunting, and a monogamous breeding pair. Thus canid social systems 

remain co-operative in that non-breeders contribute to the raising and provisioning of 

pups (Kleiman & Eisenberg 1973; Bekoff 1974; Moehlman 1986). 

8.3 Intra-specific variation 

The analyses of intra-specific play proved difficult, given the lack of suitable data 

available from the literature. This, I concede, is the case for several analyses within this 

thesis. However, the paucity of data is especially prominent in Chapter 4, and it remains 

difficult to draw any real conclusions. What this chapter does point out however, is the 

importance of controlling for variables that differ between populations of the same 

species. Using means is a useful way to derive general trends in data, especially at the 

genus, family or order level. At a species level however, it becomes clear that there are 

often significant differences between local populations, and in the resources available to 
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them. Further still, many of these differences are not fully understood, due to what 

actually gets published in the literature. As I stated in Chapter 2 however, "You can 

only work with what you've got". 

Existing literature concerning play behaviour frequently cites factors that reduce or 

affect play. These typically include housing and group composition. Analyses of play 

and sex-differences, age-class, and actual group size (as opposed to a species mean) 

remain inconclusive. We would expect to see higher play rates in groups with more 

juvenile males, and with a large group size. Patterns however, are unclear, and do not 

appear to reflect previous studies, or intuition. I propose that this is largely due to 

insufficient sample sizes, rather than any external factor. Alternatively, these results can 

be used to encourage further studies of play within species in order to determine the 

range of differences of the same species living under different conditions. 

Understanding these differences in behaviour in line with differences in local ecology, 

housing (if captive), and group size and composition, may enable us to both conserve 

wild species and enrich the lives of captive species in a welfare sense (Veasey et al. 

1996). I conclude that not only sample sizes, but also extensive differences between 

populations render analyses of intra-specific play impracticable with the data currently 

available. This is especially true of play behaviour, given its natural fluctuations and 

sensitivity to external factors. Alternatively, it may be that each species is selected to 

exhibit play behaviour according to its typical group size and environment, and thus 

little or no correlation will be found across conspecific populations. 

8.4 Life-history 

Life-history variables are correlated with each other (e.g. Harvey & Clutton-Brock 

1985). We tend to see trends for large-bodied females giving birth to large litters of 

small-bodied altricial neonates after a relatively short gestation period, that rapidly 

reach adulthood; or smaller-bodied females giving birth to larger neonates in smaller 

litters after longer gestation periods, and requiring longer periods of parental care to 

reach adulthood (Sacher & Staffeldt 1974; Bekoff et al. 1984; Partridge & Harvey 

(1988; Ross & Jones 1999). The neonates of any given species can therefore be placed 
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on an altricial-precocial continuum. Chapter 5 focused on how these inter-related life­

history variables affect play. 

8.4.1 Precocia.Hty selects for increased piay behaviour 

The key conclusion to be drawn from these analyses is that play is more prominent in 

species that give birth to relatively more precocial offspring than do species that give 

birth to relatively more altricial offspring. In primates, we see that longer gestation 

periods, higher birth weights, lower litter sizes, and longer lactation periods, are all 

positively and significantly correlated with increased play frequency. Such is the typical 

primate condition. In carnivores, there is a general trend towards the typical mammalian 

condition, comprising females that give birth to more altricial multi-neonate litters, as 

opposed to the usual single births of primates. However, the same trend emerges in 

carnivores, in that species with a long gestation period, lower litter size, later age at 

independence, and sexual maturity (age at first conception), are also those that play 

more frequently. Additionally, carnivore species taking longer to reach adulthood 

engage in more object play: behaviour believed to function in hunting skills required in 

adulthood (Biben 1979; Biben 1982; Hall 1998). 

Species that are relatively more precocial are born with more significantly developed 

brains, in comparison with the relatively more helpless altricial species that develop 

their brains more postnatally (Bennett & Harvey 1985). Hence, precocial species are 

far more independent at birth. In primates however, there is a degree of "behavioural 

altriciality" as infants remain dependent upon their mothers for nutrition and protection 

(Nicholson 1987; Wolff 1997). Given that play is shown to be more prominent in 

relatively more precocial species, an insight into the possible function of play can be 

proposed. Play is argued to be an innate behaviour; infants and juveniles appear to 

strive to engage in playful behaviour, suggesting its importance in development 

(Panksepp 1998). Precocial species, being born with relatively less brain development 

to achieve postnatally, are under significant neurological pressure to hone in their brains 

as quickly as possible, in order to benefit from external factors. These species are also 

more physiologically and neurologically capable of engaging in motor activities 

relatively soon into infancy. If it is the case that play behaviour serves to enrich and 

refine neuro-muscular systems prior to adulthood (Byers & Walker 1995; Fairbanks 

298 



2000; Burghardt 2001) then play has a relatively small time window during which to be 

effective (Dolhinow 1999). Indeed, sensitive and critical periods of development are 

well-documented (e.g. Scott 1962; Wynder 1998; Diamond 2000). It is vital for any 

animal to engage in behaviour that benefits its fitness, and also to maximise these 

benefits by engaging in them at appropriate stages. Altricial juveniles play intensively 

for a short period of time due to their rapid development. Precocial species conversely 

play over a longer period of time resulting in higher average play time budgets in 

comparison with their altricial counterparts. Therefore, estimates of peak time spent 

playing are important to the play literature as different patterns in play are likely to exist 

depending on the degree to which a species is altricial or precocial. I therefore suggest 

that play is a crucial developmental marker, which needs to be performed before the end 

of major neuro-muscular development prior to adulthood; precocial species therefore 

are able, and equally require, that play be performed as soon as possible postnatally. 

8.4.2 Parental investment and play 

Additionally, precocial species are likely to have the early experience of adult-infant 

play. This is in some way supported by the phylogenetic reconstructions of Chapter 3 

in that adult play persists throughout the clade, suggesting that adults may seek to 

engage their neonates in play in order to assist the neurological development of their 

young. Precocial infant mammals are typically born into small litters, and in primates, 

with the notable exception of callitrichid twins, this means being born as a single 

neonate (e.g. Smuts et al. 1987). It seems likely that primate mothers invest 

considerable time not only protecting and nursing their single offspring, but also 

encouraging it to develop its neuro-muscular system. Thus, by playing with their 

offspring, primate parents may be ensuring the best possible start in life for their infants. 

If play can encourage an individual to develop fully within key developmental periods, 

and become independent, then parental investment in this way contributes to the 

propagation of genes (e.g. Daly & Wilson 1983). Altricial infants born in large litters 

may not receive this level of individual investment, given that more infants weigh more 

heavily on maternal resources. Indeed, if more neonates are born to counteract normal 

mortality rates, then we should expect to see less parental investment in these 

individuals. Hence, play might not be as pressing a behaviour as that of finding reported 

that sibling aggression occurs prior to play. This is an unusual pattern, but in large 
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litters where resources are scarce, early injury or death from sibling rivalry ensures that 

only the fittest pups survive to the next developmental stage (Drea et al. 1996). 

8.5 Socio-ecology 

Chapter 6 concentrated on the effects that life in social groups and ecology may have on 

the exhibition and evolution of play behaviour. Primates are renowned for being an 

especially social order, even amongst the relatively more solitary strepsirhines; whereas 

carnivore social life varies more widely, with many species being largely solitary, and 

with canids in particular being highly social. Just as different group-living existences 

are variable, so too is the surrounding environment, in terms of what can be exploited 

for food, shelter, and protection. These factors are intimately bound together. 

8.5.1 Group-living 

It appears that life in large groups facilitates play behaviour; a trend seen for group size 

in primates and population size in carnivores. Certainly, we may expect that the more 

individuals present within a group, the more opportunity there is to engage in play, as 

there are an increased number of potential partners. If the propensity to play is as innate 

as some neurobiologists suggest (e.g. Panksepp 1998), then we would expect to see 

individuals playing at every opportunity. Life in a large group however, is not simply 

concerned with the number of individuals. It is the social relationships between these 

individuals that create social group life. Dunbar (1992, 1995a) demonstrated the 

importance of social networks to group living, and showed that neocortex size is a 

predictor of group size. If group members are to keep track of their social relationships, 

they require a socially dedicated neurological processing power. My results in Chapter 

7 support this hypothesis, showing that neocortex size is actually a good predictor of 

social play behaviour. Thus neocortex size, group size, and social play frequency are 

indicative measures of sociality (see also Lewis 2000). It might therefore be the case 

play necessarily, but that socially complex groups require it. One key element to social 

play appears to be the formation, facilitation, maintenance, and on-going assessment of 

social relationships within a social group. Additionally, play is likely to assist in the 
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practice and formation of skills that are used specifically in adulthood, such as mate 

assessment and fighting ability (e.g. Bekoff 1978; Lee 1983; Martin & Caro 1985; 

Rowell & Chism 1986; Govindarajulu et al. 1993; Mendoza-Granados & Sommer 1995; 

Smith et al. 1998). Coupled with the hypothesis that play is vital to maximise brain 

development, it appears that play is actually a highly important behaviour for social 

group living. 

Some social groups can be very large indeed, and although members of these groups are 

likely to maintain some affiliation with most or all group members, it is unlikely that 

they will form close bonds with each and every member of the group. Smaller, more 

closely-knitted, groups are often formed, and these may include mothers and their 

offspring, females and their sisters with their offspring, or all-male bands (e.g. Smuts et 

al. 1987; Dunbar 1988). These smaller affiliations within a larger social group are 

referred to as cliques, and networks, much as in the same way as we as humans might 

differentiate friends from a wider social circle (Kudo & Dun bar 2001 ). These smaller 

social cliques and networks are thought to underpin the essence of social group living. 

Indeed, my results in Chapter 6 add further weight to this hypothesis, demonstrating 

that both clique size, and network size predict social play frequency in primates. These 

smaller social units may be a factor of overall group size, but these interrelated 

correlations suggest that they are good indicators of sociality, and by extension that 

social play has been selected to assist in such affiliations. 

8.5.2 Habitat 

The ecology of a species is likely to have strong effects on its behaviour, and social and 

physiological requirements. Play has consistently been shown to be sensitive to these 

effects, diminishing under stressful conditions, including lack of food, insufficient 

shelter, and high levels of predation (e.g. Burghardt 1984; Jensen 2001). For example, 

Sommer & Mendoza-Granados (1995) showed that Hanuman langurs (Semnopithecus 

presbytis) are more playful in rich habitats than poorer ones. This is likely to be due to 

an abundance of food and resources, limiting the time required to forage, and freeing up 

spare time during which to engage in play. My results indicate that species occupying 

large home ranges also play more frequently than do those occupying smaller home 

ranges. This may be due to access to a wider range of food resources over a large area; 
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however, large habitats tend only to be occupied by species when resources are sparsely 

distributed, hence requiring larger areas in which to find sufficient food. Species in 

larger groups also tend to have relatively larger body sizes, and additionally live in large 

groups. These factors combined are suggestive of play being beneficial in the 

maintenance of social relationships over a wide area. Play is not significantly correlated 

with feeding groups in either primates or carnivores, thus it is likely that play occurs 

within smaller social cliques or networks between infants and juveniles of adults in a 

particular feeding group, thus maintaining social affiliation within and between 

different facets of the local species population. 

8.5.3 Diet 

Previous hypotheses in the literature point to diet being influential in the exhibition of 

play behaviour; indeed, it has been suggested that a high-quality diet, rich in protein 

(especially animal protein) facilitates play due to an increase in energetic availability 

and a reduction in the need for lengthy digestion of plant matter (e.g. Baldwin & 

Baldwin 1976; Miiller-Schwarze et al. 1982; Burghardt 1988; Sommer & Mendoza­

Granados 1995). My results do not support this hypothesis and show that diet does not 

in fact appear to be a good indicator of the evolutionary patterning of play. No play 

category in my sample was significantly correlated with either percentage of leaves, 

prey items, or fruit in the diet. Given the visual and cognitive capacities required to find 

and process ripe fruits and prey items (Barton 1996), it was predicted that omnivorous, 

carnivorous, and frugivorous species would be significantly more playful than 

folivorous species. The results however, failed to find a significant relationship. It may 

be that diet, and its subsequent effect on behaviour, such as play, is reliant upon other 

"hidden" factors. Despite the small sample sizes however, a positive and significant 

correlation was found between play and basal metabolic rate (BMR). BMR is linked not 

only to diet, but also to body size, which has been shown to be a key variable in 

predicting play behaviour, hence the need to control for body size throughout certain 

thus it seems likely that BMR should be an important variable in analyses of play 

behaviour. It should be borne in mind however, that current ethological thinking 

precludes play as being performed for the purposes of exercise, although this may 

indeed be a small byproduct of the perforn1ance of play (Byers 1998b ). As BMR is 

often incorrectly estimated in the field, especially in tropical species, (e.g. McNab 
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1989), future studies regarding play and BMR should a1m to include latitude as a 

dependent variable. 

8.5.4 Growili. 

That growth rate is not significantly correlated with play behaviour is interesting, given 

that the results in Chapter 5 are highly indicative of play being connected to the degree 

of precociality of neonates. It is likely that small sample sizes play an effect in this 

analysis; explanations however, remain unclear. 

8.5.5 Ecology runtdl myelima1tion 

It is often difficult to completely separate analyses of socio-ecology from analyses of 

the brain. This is especially true of play behaviour where neural capacity is an 

apparently driving force in the exhibition of play across species. Play is shown to be 

prevalent among species that occupy large home range sizes. As previously mentioned, 

species in these habitats are faced with the likelihood of widely dispersed resources 

(Poole 1985). It may also be the case that such species are prone to seasonal fluctuations 

in food availability, which will affect their capacity to maintain nutritional equilibrium, 

as well as potentially altering their social behaviour. The brain is actually fairly well 

protected against fluctuations in nutritional deficiency, although severe malnutrition 

may have an adverse effect on the developing brain (Guesry 1998). This is suggested to 

largely affect the development of skill acquisition during sensitive periods (Gordon 

1997). However, sufficient sensory-motor stimulation during this period usually ensures 

limitation of adverse effects on the developing brain (Guesry 1998). Play and nutrition 

may therefore have synergistic effects. One effect that is prominent in malnourished 

infants is in the thickness of the neural insulating sheath, myelin. As explained in 

Chapter 6, myelin aids the efficiency of brain conductivity, and skill acuity; or more 

simply: better brains (Parks et al. 1988; Haier et al. 1988; Miller 1994; Gordon 1997). 

The process of myelination appears to be especially crucial during early development: 

the time at which play is most prominent (Miller 1994; Byers & Walker 1995). 

Myelination is clearly important during development, but may also be crucial to studies 

of socio-ecology, if play during this sensitive period can assist myelination and 

contribute to the combative effects of a changing environment. Arguably, this would 
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make it doubly important for parents to encourage play in their offspring to assist the 

honing of their developing CNS, especially in species that occupy large habitats and 

where food and resources are widely dispersed, or during periods of food scarcity. This 

adds further weight to the conclusion that play frequencies are higher in species living 

in large social groups, with large body sizes, and in large home ranges. Play therefore, 

is more than simply a behavioural category that helps to facilitate a cohesive social 

structure; play may indeed, be a critical developmental marker, promoting a stronger 

and more efficient neurological system (as for example, Byers & Walker 1995, 

Fairbanks 2000, and Burghardt 2001 suggest). 

8.6 Brain 

One of the most striking patterns in analyses of brain components and play behaviour, is 

the prominence of social play in the eo-evolution of play and brain structures. This may 

be a reflection of the increased number of reports and observations of social play found 

in the literature. Alternatively, these results might further provide an insight as to the 

brain's role in social play, and further elucidate the hypothesis that social play is a 

behavioural category distinct from other forms of play (Panksepp 1998). 

8.6.1 Neocortex size predicts social play frequency 

Results in Chapter 6 demonstrated the importance of group size to the frequency of 

social play behaviour. Dunbar (1992) and Dunbar & Bever (1998) have demonstrated 

that neocortex size in primates and carnivores is a good predictor of group size. My 

results in Chapter 7 add to Dunbar's findings, and support the findings of Lewis (2000) 

by showing that neocortex size also predicts social play frequency in primates and 

carnivores. This further supports Dunbar & Bever's (1998) suggestion that neocortical 

evolution in primates and carnivores is similar. The neocortex is a vital part of the brain 

in terms of social complexity. Indeed, it is often argued that primates possess advanced 

social intelligence as a measure of their highly complex social systems (Whiten 2000), 

and that the neocortex mediates this social intelligence. Thus species with relatively 

larger neocortices should show more complex social behaviour than species with 
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smaller ones (Social Brain Hypothesis: Brothers 1990). Social play is argued to be a 

potentially highly complex social behaviour, especially among social species with large 

neocortices, such as primates and carnivores (e.g. Bekoff 1974, 1978, 1995; Bekoff & 

Alien 1998; Panksepp et al. 1994; Pereira & Preisser 1998; Pellis & lwaniuk 1999b, 

2001a, 2002). Additionally, Pawlowski et al. (1998) have shown that species with 

relatively larger neocortices may hold an advantage in being better able to manipulate 

socio-sexual situations in order to gain access to mates by employing social strategies. 

They argue that heightened cognitive processing power enables socially complex 

advancement. That social play is so strongly correlated with neocortex size might 

provide further support for the theory that adult play at least assists in socio-sexual 

assessment (Iwaniuk & Pellis 2002). It seems reasonable to conclude that social play 

during developmental periods in such species assists the development of these social 

skills as well as in developing the neuro-muscular system (Fairbanks 2000; Spinka et al. 

2001). Indeed, infants and juveniles exposed to socially-complex or even 

"Machiavellian" sequences in play, are likely to develop these skills within the remit of 

other adult social behaviours, thus being more able to utilise them should the need or 

opportunity arise to gain a social advantage. 

8.6.2 Cerebellum size predicts social play 

One of the key findings in Chapter 7 is that cerebellum size also provides a good 

predictor of social play in primates, even after removing the confounding effects of 

body size. This may be due to the need for accurate and complex cognitive and motor 

skills during social play: functions controlled by the cerebellum (Diamond 2000). This 

trend was not shown to be true of carnivores, although this may be due to insufficient 

data. 

The cerebellum is a crucial part of the brain in terms of motor control (e.g. Bear et al. 

2001). The traditional theory that motor control develops and ends early in ontogeny, 

whereas cognitive development begins and ends relatively later, has recently been 

challenged, with some controversy. It has been suggested that the two developmental 

trajectories actually share a very similar time frame of postnatal development and are 

thus much more closely interlinked than was previously thought (Akshoomoff & 

Courchesne 1992; Diamond 2000; Habas 2001 ). My results here may in fact offer some 
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support to this theory, given that play behaviour actually occurs during this motor­

cognitive developmental time window (Byers & Walker 1995). In fact, this evidence 

has been used to purport that the true function of play is to terminate synapse formation 

in the cerebellum, in effect "finishing off' crucial cerebellar development; additionally, 

this only occurs during the developmental sensitive period when synapses are 

terminated, and play occurs (Byers & Walker 1995). Given the evolutionary correlation 

between cerebellum size and social play, I suggest that this is likely. Social play 

requires the modification of many skills if it is to be successful. Socio-cognitive and 

socio-motor skills contribute strongly to successful playing. When we also consider the 

other vital roles of the cerebellum, it seems intuitive that cerebellum development and 

size should also be vital to the expression of social play. The cerebellum is important 

for the practice, perfection, and accuracy of motor performance (Thach 1996), for 

posture and balance (Ackerman 1992), and to track the trajectory of objects in the 

environment (Paulin 1993). These factors are all vital to development, but I propose 

that given the eo-evolution of social play and cerebellum size in primates, as 

demonstrated by the independent contrasts analyses, that these are also intrinsic to 

social play behaviour. Moreover, I suggest that social play actively requires motor and 

cognitive skills, and that these skills are strongly rooted in the cerebellum, especially 

given the sensitivity of cerebellar development during a critical period during which 

play occurs, the cerebellum has clearly been a vital brain structure in the evolution of 

play. 

In the light of these findings, I believe it would be useful to study in greater depth the 

cerebellar relationship with other categories of play behaviour, not analysed here. 

Object play, for example, demonstrated a positive evolutionary correlation with 

cerebellum size, although the result fell short of significance. Given the function of the 

cerebellum in the development of manual skills and co-ordination, and sufficient data 

on object play, I predict a strong positive relationship between the cerebellum and 

object play behaviour to emerge. However, the data for object play behaviour in species 

for which there are cerebellar data are limited, and object play itself is a rarer play 

category in the literature (Pellis & Iwaniuk 1999). 

I intend this result to offer a general starting point for future work into which categories 

of social play activity may be associated with cerebellar and other brain functions. This 
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thesis concentrates on a general description of social play; future studies might aim to 

collect and analyse data on the timing of specific motor patterns in play categories with 

reference to the developing brain and nervous system, which would prove extremely 

important to behavioural neuroscience. This may, for example, delineate specific 

behavioural aspects, such as proportion of wrestling or chasing, and complexity. Such 

markers may prove critical to our understanding of the relationship between play and 

brain development. 

8.6.3 Striatum, Medulla, and Vestibular complex 

Supporting the evolutionary relationship between social play and the cerebellum is the 

finding that social play is also correlated with the striatum, medulla, and vestibular 

system. Akin to the cerebellum, these neural components play a role in motor control, 

motor learning, and balance. Additionally, I suggest that the medulla may be crucial to 

vocalisation within play, and further studies should aim to determine the differences in 

play and medulla size between New World and Old World monkeys, given that most 

instances of play vocalisations are reported only in platyrrhines (Biben & Symmes 

1986; Luthe et al. 2000). Similarly, the role of the medulla in sexual behaviour may 

further add to its importance in the evolution of social play, especially if social play in 

adults does indeed function as a means of mate-assessment in primates, as lwaniuk & 

Pellis (2002) suggest. There are also strong ties to the visual system, which is also 

demonstrated here to be key in the evolution of play behaviour (Jog et al. 1999) (see 

section 8.5.4). My findings here support previous findings that damage to the striatum 

(the caudate-putamen area) severely adversely affects the performance of rough-and­

tumble play in rats (Panksepp 1998). These findings are suggestive of the importance of 

both motor and cognitive proficiency in the exhibition of social play in mammals. My 

findings further imply that these systems have eo-evolved with social play to enhance 

the socio-cognitive capabilities of the species. 

8.6.4 Visual areas 

Adding further support to the role of motor and cognitive neural regions sharing a 

correlated evolutionary history with play, is the finding that visual areas of the brain 

correlate strongly with social play in primates, namely the visual cortex, the LGN, and 
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the optic tract. The eo-evolution of all these brain components with social play is 

suggestive of a visual system being key to socio-cognitive processes within the 

performance of social play behaviour. Primates are highly reliant on vision, and the 

visual system may provide a level of socio-cognitive competence within the lives of 

primates (Barton 1996). It is interesting that frugivory and diurnality failed to show 

significant correlations with play in Chapter 6, especially given the evidence for 

correlated evolution between social play and visual systems in Chapter 7. Primate 

vision appears to have been selected for diurnal existence, especially among 

haplorhines, and is likely to aid in distinguishing fruits from a leafy background and in 

identifying ripe fruits. The results here however, point to the conclusion that the 

primate visual system aids and facilitates the complex social behaviours observed 

within social play. Social play relies heavily on the reading of behaviour, and in 

responding quickly and appropriately (Spinka et al. 2001 ). In primates, where facial 

expressions can be highly indicative of an individual's emotive state, reliance on vision 

is an important factor. Indeed, this adds further support to the amygdala being involved 

in social play (see section 8.5.5), given its importance in reading social signals and 

responding to facial expression (Ohman 2002). I conclude that over the course of 

evolution, increased reliance on vision by primates has eo-evolved with socio-cognitive 

and socio-emotive systems (Barton 1996; Burghardt 2001, in press), giving rise to 

enhanced social play behaviours that are both motor-driven, and cognitively-driven. 

This further suggests evidence for the mosaic evolution of brain structures that facilitate 

these interrelated behavioural patterns (Barton & Aggleton 2000; Barton & Harvey 

2000). 

8.6.5 Amygdala and hypothalamus 

The structures of the limbic system have been suggested to play a role in the execution 

of playful behaviour, given that play is supposed to derive from instinctive behavioral 

patterns (Burghardt 2001). Additionally, given the role of the neocortex to social play, 

as reported in Chapter 7, and the fact that limbic structures project to the neocortex, we 

might expect to see some overlap in the relationship between limbic and neocortical 

structures and play. 
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I found evidence for correlated evolution between play and the amygdala and the 

hypothalamus in primates. These two limbic structures have previously been implicated 

in the expression of play. Principally, it is these two structures that become sexually­

differentiated by gonadal hormones during the perinatal period; these hormonal changes 

give rise to sexually-differentiated behaviours, namely aggression, sexual orientation, 

and play behaviour (Hines 1982; Collaer & Hines 1995). Aggression and play in 

particular, are marked as being dominant among males (thus males are both more 

aggressive and typically more playful than females) (e.g. Brown 1988). That the 

amygdala has also recently been implicated in the performance of adult sexual play and 

in juvenile play-fighting is strongly indicative of an evolutionary relationship between 

sex, aggression, play, and the amygdala (Pellis & Pellis 1998; Burghardt 2001; Pellis & 

Iwaniuk 2002). My findings support this theory from an evolutionary perspective. I 

propose that behaviours driven by the amygdala, such as social assessment, recognising 

and responding to facial expression, and response-appropriateness (Ohman 2002), drive 

matched facets of play. Thus the instinctive socio-emotive aspects of play are those 

determined by the size of the amygdala in primates. 

The role of the amygdala, coupled with that of the hypothalamus, may ensure that the 

instinctive underpinnings of play are further elaborated. Play behaviour is argued to 

represent a behavioural equivalent of "fun" (Fagen 1992; Bekoff 2001b). This can be 

dangerous terminology insofar as ethology is concerned, and I am reluctant to use the 

term. However, the hypothalamus is implicated in the experience of pleasurable 

emotions (Isaacson 1982). Few humans would disagree that the experience of play is 

one that elicits great pleasure, especially among children. Humans are primates, and 

although largely elaborated from our non-human primate relatives, our brains are not 

dissimilar. Could it then be argued, that play, for all its apparent (and yet seemingly 

hidden) functions, can also be fun? Indeed play as being fun may represent the 

proximate mechanism for ensuring play occurs. If play is pleasurable, as well as useful 

in terms of developing brains, bodies, and skills, then this explains why mammals 

appear to strive to engage in play when the opportunity arises. I therefore tentatively 

conclude, that brain components, such as the hypothalamus, that are believed to 

function in the experience of emotive states, ensure that play is performed, through it 

being "fun", thus also ensuring that play occurs to benefit the developing brain. 

309 



8.6.6 Brain size 

Although my results in Chapter 7 found no evidence for whole brain size predicting 

play frequency in primates (supporting the work of lwaniuk et al. 2001 ), I found strong 

evidence to suggest that brain size can be used to predict the number of different 

behaviours observed within the play repertoire of primates; this relationship holds when 

primates are split into platyrrhines and catarrhines. Although relatively crude, the 

number of different behaviours is a simple and effective way of quantifying play 

complexity. This result therefore, demonstrates that implied cognitive processing 

capacity, as determined by the relative size of the brain (removing the effect of body 

size), in turn can be used to predict the potential capacity of play complexity m 

primates. A similar finding was reported for brain size and play bout duration m 

primates; the larger the relative brain size, the longer the play bout. I conclude that 

relatively larger and therefore presumably more complex brains in primates, require that 

play occurs during development in order to sharpen the brain during neural and 

behavioural plasticity. Therefore, longer bouts of play comprising increased numbers of 

different motor and cognitive behaviours should ensure that the brain be honed to the 

best possible advantage. 

Social play in particular appears to be a highly complex behaviour insofar as the brain is 

concerned. My results in this thesis point to the conclusion that brains that have been 

selected for highly developed motor and cognitive skills are also those that have been 

selected for increased frequencies in social play behaviour. It seems likely that parts of 

the brain concerned with cognitive and motor complexity, and emotive states, have eo­

evolved, facilitating complex social behaviours, of which social play is one such 

behaviour. Social play during neural development has been posited as a behavioural aid 

to the individual in terms of perfecting the CNS within the confines of the environment 

(Fairbanks 2000). I therefore conclude that social play has been selected for to enhance 

the development of these highly complex brain structures, to ensure that motor, 

cognitive, and emotive states are sufficiently "fused" during the period of neural 

plasticity. This must surely help an individual in achieving the best possible neural, 

behavioural, and social route to adulthood. 
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This thesis has demonstrated that although play remains an often somewhat difficult 

ethological topic, it is also a highly important behavioural category in terms of 

development and life in social groups. It is hoped that this thesis has contributed to the 

greater understanding of play behaviour. This thesis also attempts to point out to other 

workers that more needs to be achieved in identifying, quantifying, and reporting play 

episodes, and more widely across many more taxa, enabling a greater comparative 

knowledge of play and the factors that facilitate and affect it. Only then, can we arrive 

at a true understanding of this enigmatic behaviour, and its place in evolution and 

development. I believe that play remains however, a category of behaviour worthy of 

extensive study. And as Bekoff and Byers (1985) point out "That unwelcome guest is 

here to stay, like it or not!" 
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Appendix A Table 1. Group size and body weight (g) with mean % values for total play, solitary play, object play and social 
play in primates 

Species Adult brain Mean group Mean body 'fotall play So litan-y play Object pllay Social play 
size (g) t size* weight (g)t % % % % 

Allenopithecus nigroviridis 62.50 39.0 5495 2.50 
Alouatta palliata 55.10 12.9 6577 1.56 1.04 - 0.08 
Ateles geoffroyi 110.90 42.0 7568 1.00 
Callicebus moloch 19.00 3.2 900 1.44 
Callithrix jacchus 7.90 9.0 288 1.08 
Cebus albifrons 82.00 25.0 2489 1.00 

VJ Cebus apella 71.00 15.0 2742 12.4 5.69 3.18 18.87 -VJ Cebus capucinus 79.40 18.8 3006 3.49 
Cebus olivaceus 80.8 21.5 - 3.50 
Cercocebus albigena 109.60 15.4 7362 - - - 9.0 
Cercocebus atys - 26.9 8933 8.99 
Cercopithecus aethiops 59.80 21.4 4178 8.95 6.00 - 4.40 
Cercopithecus diana 77.30 26.9 3811 5.44 5.20 1.45 4.49 
Cercopithecus hamlyni 72.30 10.0 - 6.93 1.65 1.25 4.75 
Cercopithecus mitis 75.00 18.6 5821 4.00 
Cercopithecus neglectus 70.80 4.0 5559 5.09 0.03 3.15 1.86 
Colobus badius 73.80 34.0 7998 2.98 - - 2.41 
Colobus guereza 82.30 6.9 9863 4.60 
Erythrocebus patas 82.30 28.0 8690 12.58 
Gorilla gorilla 505.90 11.0 114551 10.01 2.55 9.21 13.64 
Hylobates lar 107.70 3.4 5559 13.59 0.50 - 3.68 



Species Adullt bll"ain Mean group Mean body ToW play Soliitary pRay Object pliay SocialipRay 
size (g) t size<> weight (g)t % % % % 

Hylobates syndactylus 121.70 4.0 10839 18.76 5.00 0.40 10.67 
Lemurcatta 25.60 16.0 2466 3.85 4.15 0.00 1.60 
Macaca arctoides 104.10 22.5 8590 8.19 5.25 - 11.15 
Macaca fascicularis 69.20 24.5 4977 4.00 
Macaca fuscata 109.10 36.3 10447 18.33 - - 14.93 
Macaca mulatta 95.10 33.0 5902 8.14 1.28 - 5.50 
Macaca nemestrina 106.00 26.9 7762 5.78 
Macaca nigra 94.90 56.8 8492 6.91 

w Macaca radiata 76.80 34.7 5000 6.19 8.43 18.13 - -
~ Macaca silenus 85.00 18.9 5902 3.50 

Macaca sinica 69.9 18.6 4656 
Macaca sylvanus 93.20 24.0 9750 6.69 4.00 9.55 6.50 
Mandrillus sphinx 159.40 251.2 16444 13.59 5.91 - 18.65 
Nycticebus coucang 10.00 1.5 659 1.20 1.20 0.00 0.00 
Pan troglodytes 410.30 28.0 37844 18.60 8.97 6.98 13.27 
Papio anubis 165.20 50.0 17579 5.51 
Papio cynocephalus 169.10 41.0 17140 12.5 - - 12.5 
Papio hamadryas 142.5 66.5 13996 
Papio ursinus 214.4 34.7 21777 20.9 
Pithecia spp. 38.10 2.7 1710 2.82 4.20 0.70 3.00 
Pongo pygmaeus 413.30 2.0 55208 17.34 22.28 16.03 13.74 
Presbytis entellus 135.2 19.1 12647 
Pygathrix nemaeus 108.5 - 9550 



Species Adult bram Mean group MeaJIJI.oody Total! play Solitary play Object pRay Sociall play 
size (g) t size" weight:(g)t % % % % 

Saguinus fuscicollis 9.30 6.5 395 9.84 0.20 4.08 7.57 
Saguinus midas 10.50 4.7 543 4.72 4.39 0.16 3.00 
Saguinus oedipus 10.00 6.0 417 1.87 
Saimiri sciureus 24.4 34.7 752 
TheroeJthecus s_elada 131.90 10.0 15560 15.89 14.90 - 19.86 

* Barton 1999 & Smuts et al. 1987; tBarton 1999 only. 
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Appendix A Table 2. Mean body weight (g), and female body weight (kg), with total play(%), solitary locomotor play(%), 
object play(%) and social play(%) values, for the carnivore species examined. 

Species Mean body* Female body+ Meant Total Solitary Objec11: Social 

weight(g) weight(kg) group size play% locomotor play% play% play% 

Acinonyx jubatus 58 748.9 60.0 - 3.39 0.35 0.50 2.96 

Ailuropoda melanoleuca 13 4586.0 96.8 1.0 22.02 - 17.2 4.81 

Arctocephalus australis 103 752.8* 52.5* - 6.09 

Canis latrans 10 592.5 9.7 2.1 1.09 

Cerdocyon thous 5 997.9 6.0 - 13.49 

Crocuta crocuta 51 999.6 55.3 55.0 6.99 

Felis silvestris 4 666.6 4.33 - 11.48 

V.) 
Haliochoerus grypus 193 642.2* 182.5* - 1.46 - 3.54 10.10 

- Helogale undulata 456.0 0.27* - 5.15 
0\ 

Lontra canadensis 8 203.5 7.80* 3.2 15.52 9.11 4.14 10.19 

Mustela putorius 1 030.4 0.80* 1.0 19.45 - - 1.46 

Mustela vison 388.2 0.61* 1.0 - - - 3.99 

Panthera Leo 155 955.3 135.0 8.7 3.03 - 5.12 

Phoca vitulina 112 460.5* 102.35* - 9.04 - - 15.52 

Selenarctos thibetanus 103 752.8 77.50* 

Speothos venaticus 7 998.3 8.00* - 21.38 0.83 2.62 15.99 

Ursus americanus 110 407.9 97.0 1.0 10.54 - - 4.1 

Ursus arctos 298 538.3 298.5 
Thalarctos maritimus 363 915.0 320.0 - 8.99 12.56 - 3.17 

"Deaner & Barton (2002) partly derived from Gittlernan (1986); + Oftedal & Gittlernan (1989); t Dunbar & Bever 1998; * Bininda-Ernonds (2ooo). 



Appendix A Table 3· Fundamental brain part measurements for primates from Stephan et al. 1981 

Species Medulla Cerebellum Mesen- Dien- Telen- Olfactory Piriform 
oblongata (mm3) cephalon cephalon cephalon bulb lobe 

(mm3) (nun3) (mm~) - (11!ffi3) (mm3) (nun3) 

Ateles geoffroyi 1834 12438 1482 5334 79946 90.4 1625 
Callicebus moloch 787 1622 530 1375 13465 19.2 454 
Callithrix jacchus 318 757 295 554 5318 22.8 191 
Cebus albifrons 1738 7871 1221 3996 52113 39.9 931 
Cercocebus albigena 2708 10726 1770 5351 77049 121 1639 
Cercopithecus mitis 1999 6758 1354 4176 56277 117 1265 

w Colobus badius 2007 8648 1333 3945 57885 51.3 937 - Erythrocebus patas 2616 8738 1621 5423 84770 51.8 1339 -.l 

Gorilla gorilla 7509 69249 4352 19370 369878 316 4871 
Hylobates lar 2251 12078 1459 5716 76001 43.9 1264 
Macaca mulatta 1992 8965 1380 4480 71080 84.3 1220 
Nycticebus coucang 528 1310 345 1077 8495 159 510 
Pan troglodytes 5817 43663 3739 15392 313493 257 2750 
Papio anubis 5297 18683 2711 9280 154987 287 2111 
Pithecia sp. 1009 3908 754 2285 24920 34.8 675 
Saguinus midas 428 1061 332 692 7055 17.3 243 
Saguinus oedipus 413 984 333 754 7052 19.1 256 



Appendix A Table 3 (continued). Fundamental brain part measurements for primates from Stephan et al. 1981 

Species Septum Striatum Schizo- Hippo- Neocortex Ventricles Meninges Epi-
(mm.J) (mmJ) cortex campus (mm.J) (mmJ) (mmJ) iliallam1lli.S 

(nunJ) (nunJ) (mmJ) 

Ateles geoffroyi 324 4950 732 1366 70856 1389 1824 30.5 
Callicebus moloch 86.4 920 234 588 11163 . 279 242 • 

I.U Callithri.x jacchus 49.8 372 90.0 221 4371 :. 52.0 42.9 -00 Cebus albifrons 174 3258 390 890 46429 729 864 23.7 
Cercocebus albigena 294 4146 630 1485 68733 742 2041 27.9 
Cercopithecus mitis 246 2733 617 1366 49933 467 1363 
Colobus badius 288 3217 814 1671 50906 455 1016 22.3 
Erythrocebus patas 330 3624 693 1591 77141 561 519 
Gorilla gorilla 1173 14567 2729 4781 341444 3608 8659 106 
Hylobates lar 302 4784 1136 2673 65800 555 395 31.2 
Macaca mulatta 271 . 4032 639 1353 63482 834 1038 
Nycticebus coucang 92.0 760 212 566 6192 142 169 
Pan troglodytes 851 12246 2018 3779 291592 1899 6924 53.6 
Papio anubis 559 7182 1309 3398 140142 1081 1977 65.4 
Pithecia spp. 140 1918 289 834 21028 631 286 
Saguinus midas 40.9 471 120 280 5883 251 122 
Saguinus oedipus 60.5 453 107 262 5894 62.6 52.8 4.93 



Appendix A Table 3 (continued). Fundamental brain part measurements for primates from Stephan et al. 1981 

Species Thalamus Hypo- Sub- Pallidum Nucleus Capsula Optic Visual LGN 
(mma) thalamus thalamus (mm3) sub- interna tract cortex (mm3) 

(mma) (mma) thalamicus (mm3) (1DUD13) (ImUll3) 
(mma) 

Ateles geoffroyi 2930 629 860 807 52.8 570 204 4738 151 
Callicebus moloch - - - - - - - 1502 53.2 

1.,.) Callithrix jacchus - - - - - - - 692 25.7 -\C 
Cebus albifrons 2163 418 609 567 41.7 549 207 4690 137 
Cercocebus albigena 2933 681 726 674 52.4 708 308 6831 182 
Cercopithecus mitis - - - - - - - 5274 150 
Colobus badius 2164 484 553 521 31.9 460 201 3984 128 
Erythrocebus patas - - - - - - - 7780 266.7 
Gorilla gorilla 10547 2215 2782 2604 178 2471 671 15185 384 
Hylobates lar 3226 629 777 715 61.6 693 302 - 175 
Macaca mulatta - - - - - - - 6586 158 
Pan troglodytes 7987 1739 2078 1951 127 2510 630 14691 356 
Papio anubis 4788 1076 1241 1147 94.7 1257 601 10001 
Pithecia spp. - - - - - - - 2154 72.3 
Saguinus midas - - - - - - - 1077 36.8 
Saguinus oedipus 410 152 77.6 73.2 4.45 62.7 50.5 1003 33.0 
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Appendix A. Table 3 (continued). Fundamental brain part measurements for primates from Stephan et al. 1981 

Species Amygdala Complexus Nucleus 
(mm3) centro-

medialis 
(mm3) 

Ateles geoffroyi 869 224.4 
Callicebus nwloch 
Callithrix jacchus 113 28.3 
Cebus albifrons 458.1 120.5 
Cercocebus albigena - -
Cercopithecus mitis 704.7 210.9 
Colobus badius 501 123.6 
Erythrocebus patas 688.7 199.5 

Gorilla gorilla 2754 755.1 
Hylobates lar 666.8 156 
Macaca mulatta 
Nycticebus coucang 189.2 67.8 
Pan troglodytes 1422.3 375 

365.6 91.6 

tractus 
olfactorii 
lateralis 
(mm3~ 

0 

0.195 
0 
-
0 
0 
0 
0 
,0 

2.6 
0 

0 

Nucleus Complexus Complexus 
cortico-baso- aiilygdalae vestibularis 

(mm3) lateralis 
(mm3) 

644.2 

84.6 
384 
-
493.2 
377.6 
488.7 
1999.8 
510.5 

121.3 
1047.1 

273.5 

basalis, pars 
magnocellularis 

(mm3) 

74.6 

8.6 
36 
-
66.4 
47.8 
63.7 
227.5 
84.5 

11.4 
136.1 

31.7 

49.7 

50.2 
87.1 

57.3 

136 
59.3 

118 
107 

Nucleus 
vestibularis 
su.perim.· 

(mm3) 

7.2 

11.2 
16.2 

8.68 

34.7 
14.9 

23.5 
14.4 

Papio anubis 
Pithecia spp 
Saguinus midas 
Saguinus oedi us - - - - - 18.4 2.98 



Appendix A Table 3 (continued). Fundamental brain part measurements for primates from Stephan et al. 1981 

Species Nucleus Nucleus Nucleus Nucleus Corpus Nucelus Corpus Corpus 
vestibularis vestibularis vestibularis septalis subforn- habenularis pinn- subcom-

lateralis medialis descendens triangularis icale medialis eale missurale 
(mm3) (mm3) (mm3) (mm3) (mm3) (mm3) (mm3) (mm3) 

Ateles geoffroyi 6.81 23.8 11.9 3.18 0.443 7.29 3.10 0.608 

Callicebus moloch - - - 0.890 0.135 2.66 2.90 0.154 

Callithrix jacchus - - - 0.440 0.133 1.63 0.486 0.0789 

Cebus albifrons 7.45 19.2 12.3 1.50 0.410 4.90 3.80 0.425 

VJ Cercocebus albigena 10.0 35.6 25.2 1.69 0.658 6.00 11.9 0.233 
N Cercopithecus mitis 1.96 0.432 5.38 15.3 0.258 - - -

Colobus badius 10.0 24.1 14.5 2.26 0.454 4.54 7.31 0.265 

Erythrocebus patas -
Gorilla gorilla 19.5 58.4 23.6 5.79 1.30 23.9 7.96 1.41 

Hylobates lar 5.53 24.5 14.5 - 0.359 
Macaca mulatta - - - 2.83 0.360 7.66 12.4 0.270 
Nycticebus coucang - - - 1.34 0.175 2.04 1.83 0.154 
Pan troglodytes 9.65 54.7 29.8 2.70 0.606 9.40 38.0 0.387 
Papio anubis 10.5 48.1 33.9 1.86 0.405 12.7 51.1 0.347 
Pithecia spp. - - - 1.31 0.300 2.53 0.0623 0.189 
Saguinus midas - - - 0.559 0.0795 1.18 0.216 0.0994 
Saguinus oedipus 3.63 7.25 4.49 1.08 0.167 1.55 0.392 0.0921 



Appendix A. Table 4. Brain weight, body weight, neocortex volume, and 
cerebellum size in carnivores 

Species Brain* Body* neocortex t cere bell urn+ 
weight (g) weight (g) vonume (mm3) 

Acinonyx jubatus 110.9 58 748.9 
Ailuropoda melanoleuca 234.4 13 4586.0 136435.7 
Arctocephalus australis 307.6* 103 752.8:J: 
Canis latrans 88.3 10 592.5 53217 5.66 
Cerdocyon thous 41.8 5 997.9 
Crocuta crocuta 143.5 51 999.6 106105 
Felis silvestris 37.5 4 666.6 
Haliochoerus grypus 307.6* 193 642.2:J: 
Helogale undulata 456.0 
Lontra canadensis 53.5 8 203.5 33718 2.05 
Mustela putorius 8.3 1 030.4 4326 0.61 
Mustela vison 8.5 388.2 4512 
Panthera Ieo 223.4 155 955.3 145983 19.65 
Phoca vitulina 273.5:J: 112 460.5:J: 29.51 
Selenarctos thibetanus 312.6 103 752.8 
Speothos venaticus 40.5 7 998.3 
Ursus americanus 258.8 110 407.9 88420.25 
Ursus arctos 338.0 298 538.3 35.97 
Thalarctos maritimus 459.2 363 915.0 68.8 

* Deaner & Barton (2002) partly derived from Gittleman 1986; t Dunbar & 
Bever 1998; +Putnam 1927; :J: Bininda-Emonds 2000. 
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AppendixB 

B.1 Life-History 

The following tables detail the statistics for non-significant results of analyses of each 

play category on life-history variables in Chapter 5. 

Table B.1.1. Partial correlation analyses of play category on gestation length, 
controlling for body size in primates 

Play type 

Total 
Solitary 
Object 
Social 

DF 

1, 32 
1, 17 
1' 10 
1, 21 

F-value 

0.88 
1.14 
1.86 
0.18 

p-value 

0.36 
0.29 
0.20 
0.67 

co-efficient 

1.43 
-4.47 
4.92 
-1.21 

0.03 
0.06 
0.16 
0.67 

Table B.1.2. Partial correlation analyses of play category on birth weight, 
controlling for female body weight in carnivores 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 1.27 0.30 -0.34 0.18 
Solitary+ 
Object+ 
Social 1, 2 5.82 0.13 -0.28 0.74 
+ Too few observations 

Table B.1.3. Partial correlation analyses of play category on litter size, 
controlling for body size in primates 

Play type DF F-value p-value co-efficient r" 

Total 1' 37 0.61 0.44 1.58 0.02 
Solitary 1' 18 0.06 0.80 -1.18 0.004 
Object 1' 11 0.01 0.92 -0.38 0.001 
Social 1, 23 0.36 0.55 1.65 0.02 
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Table B.1.4. Partial correlation analyses of play category on age at weaning, 
controlling for body size in carnivores. 

Play type DF F-value p-value co-efficient r2 

Total 1, 7 0.16 0.70 -0.49 0.02 
Solitary+ 
Object 1, 2 3.31 0.21 3.93 0.62 
Social 1, 2 0.96 0.43 -0.93 0.33 
+ Too few observations 

Table B.1.5. Partial correlation analyses of play category on age at sexual 
maturation, controlling for body size in primates 

Play type DF F-value p-value co-efficient 
r2 

Total 1' 18 0.17 0.68 -0.17 0.01 
Solitary 1, 10 2.44 0.15 -3.28 0.19 
Object 1, 4 2.06 0.22 1.61 0.34 
Social 1' 12 0.46 0.51 -0.52 0.04 

Table B.1.6. Partial correlation analyses of play category on maximum lifespan, 
controlling for body size in carnivores. 

Play type DF F-value p-value co-efficient r2 

Total 1, 3 0.36 0.59 -0.48 0.11 
Solitary+ 
Object+ 
Social 1, 2 09.47 0.06 -0.60 0.99 
+ Too few observations 

B.2 Socio-Ecology 

The following tables detail the statistics for non-significant results of analyses of each 

play category on socio-ecological variables in Chapter 6. 
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Table B.2.1. Partial correlation analyses of play category on feeding group size 
in primates 

Playtype DF 

Total 1, 7 
Solitary 1, 4 
Object 1, 3 
Social 1, 6 

F-value 

0.27 
0.38 
9.56 
0.09 

p-value 

0.62 
0.58 
0.09 
0.76 

co-efficient 

0.20 
0.61 
1.42 
0.12 

0.04 
0.11 
0.83 
0.02 

Table B.2.2. Partial correlation analyses of play category on feeding group size 
in carnivores 

Play type DF F-value p-value co-efficient 

Total 1, 5 0.27 0.63 -0.16 0.05 
Solitary+ 
Object+ 
Social+ 
+ Too few observations 

Table B.2.3. Partial correlation analyses of play category on percentage of 
leaves in diet in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 9 0.002 0.97 -0.01 1.7 
Solitary 1, 3 0.43 0.56 0.37 0.12 
Object 1, 3 14.23 0.06 0.85 0.88 
Social 1, 7 0.02 0.89 0.04 0.003 

Table B.2-4. Partial correlation analyses of play category on percentage of prey 
items in diet in primates 

Play type DF F-value p-value co-efficient r" 

Total 1, 8 0.35 0.57 -0.14 0.04 
Solitary 1, 3 0.31 0.63 -0.28 0.13 
Object+ 
Social 1, 6 0.12 0.68 -0.11 0.03 
+Too few observations. 
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Table B.2.5. Partial correlation analyses of play category on percentage of fruit 
in diet in primates 

Play type 

Total 
Solitary 
Object 
Social 

DF 

1' 31 
1' 16 
1' 11 
1, 22 

F-value 

0.69 
0.78 
0.28 
1.60 

p-value co-efficient 

0.41 -0.18 
0.39 -0.75 
0.61 -0.23 
0.22 -0.27 

r" 

0.02 
0.05 
0.03 
0.07 

Table B.2.6. Partial correlation analyses of play category on sex ratio in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.23 0.65 0.36 0.04 
Solitary+ 
Object+ 
Social 1, 4 0.06 0.82 -0.28 0.02 
+ Too few observations 

Table B.2. 7. Partial correlation analyses of play category on growth rate in 
primates 

Play type 

Total 
Solitary+ 
Object+ 

DF 

1, 4 

Social 1, 4 
+ Too few observations 

B.3 Brain 

F-value p-value co-efficient r" 

0.22 0.67 0.84 0.07 

0.53 0.54 -1.56 0.21 

The following tables detail the statistics for non-significant results of analyses of each 

play category on different brain components in Chapter 7. 
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Table B.3.1. Regression analyses of play category on cerebellum size in 
carnivores 

Playtype DF F-value p-value co-efficient 

Total 1, 4 0.54 0.50 0.12 
Solitary+ 
Object+ 
Social+ 
+Too few observations 

Table B.3.2. Regression analyses of play category on mesencephalon size in 
primates 

Play type DF F-value p-value co-efficient r,. 

Total 1, 14 1.40 0.25 2.05 0.09 
Solitary 1, 5 0.14 0.73 -1.11 0.03 
Object 1, 3 0.33 0.61 -2.17 0.10 
Social 1, 12 2.42 0.14 1.72 0.02 

Table B.3.3. Regression analyses of play category on diencephalon size in 
primates 

Play type DF F-value p-value co-efficient r,. 

Total 1' 14 1.63 0.22 1.65 0.11 
Solitary 1, 5 2.03 0.21 -2.83 0.29 
Object 1, 3 2.89 0.18 -4.58 0.49 
Social 1' 12 0.83 0.38 0.89 0.07 

Table B.3-4. Regression analyses of play category on olfactory bulb size in 
primates 

Play type DF F-value p-value co-efficient r" 

Total 1' 14 1.56 0.23 -0.37 0.10 
Solitary 1' 5 0.38 0.57 0.60 0.07 
Object 1, 3 0.83 0.43 -1.25 0.22 
Social 1' 12 1.69 0.22 0.31 0.12 
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Table B.3.5. Regression analyses of play category on piriform lobe size in 
primates 

Play type DF F-value p-value co-efficient ra 

Total 1, 14 1.74 0.21 0.63 0.11 
Solitary 1, 5 3.53 0.12 -5.11 0.41 
Object 1' 3 0.30 0.62 -2.61 0.09 
Social 1' 12 0.05 0.82 -0.22 0.005 

Table B.3.6. Regression analyses of play category on epithalamus size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.13 0.73 0.18 0.02 
Solitary+ 
Object+ 
Social 1, 6 2.58 0.16 1.06 0.30 
+ Too few observations 

Table B.3. 7· Regression analyses of play category on subthalamus size m 
primates 

Play type DF F-value p-value co-efficient ra 

Total 1, 6 0.05 0.82 0.10 0.009 
Solitary+ 
Object+ 
Social 1, 6 4.38 0.08 0.98 0.42 

+ Too few observations 

Table B.3.8. Regression analyses of play category on pallidum size in primates 

Play type DF F-value p-value co-efficient ra 

Total 1, 6 0.05 0.84 0.09 0.007 
Solitary+ 
Object+ 
Social 1, 6 4.31 0.08 0.99 0.42 
+ Too few observations 
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Table B.3.9. Regression analyses of play category on nucleus subthalamicus size 
in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.21 0.66 0.18 0.03 
Solitary+ 
Object+ 
Social 1, 6 2.65 0.15 0.89 0.31 
+ Too few observations 

Table B.3.10. Regression analyses of play category on capsula interna size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1' 6 0.14 0.72 0.14 0.2 
Solitary+ 
Object+ 
Social 1, 6 0.87 0.39 0.39 0.13 
+ Too few observations 

Table B.3.11. Regression analyses of play category on nucleus tractus 
olfactorii lateralis size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 9 0.02 0.88 0.11 0.003 
Solitary 1, 3 0.03 0.87 4.20 0.01 
Object+ 
Social 1, 7 0.44 0.53 0.38 0.06 
+Too few observations 

Table B.3.12. Regression analyses of play category on complexus cortico-
basolateralis size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 9 0.05 0.86 -0.18 0.006 
Solitary 1' 3 1.64 0.29 -4.44 0.35 
Object 1, 3 0.09 0.79 0.55 0.04 
Social 1, 7 4.42 0.07 1.10 0.39 
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Table B.3.13. Regression analyses of play category on nucleus vestibularis 
lateralis size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 6 0.22 0.66 -0.34 0.04 
Solitary+ 
Object+ 
Social 1, 6 0.004 0.95 0.06 0.001 
+ Too few observations 

Table B.3.14. Regression analyses of play category on nucleus septalis 
triangularis size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 12 1.38 0.26 -0.44 0.10 
Solitary 1, 4 0.002 0.97 0.03 3.93 
Object 1, 3 0.22 0.67 -1.04 0.07 
Social 1, 11 0.54 0.48 -0.32 0.05 

Table B.3.15. Regression analyses of play category on nucleus habenularis 
medialis size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 12 1.54 0.24 -0.55 0.01 
Solitary 1, 4 0.16 0.71 0.37 0.04 
Object 1, 3 0.007 0.94 0.24 0.002 
Social 1, 11 1.22 0.29 0.53 0.10 

Table B.3.16. Regression analyses of play category on corpus pinneale size in 
primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 12 1.47 0.25 -0.18 0.11 
Solitary 1, 4 0.57 0.49 0.11 0.13 
Object 1, 3 0.07 0.81 -0.10 0.02 
Social 1, 11 2.34 0.15 0.24 0.18 
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Table B.3.17. Regression analyses of play category on corpus subcommissurale 
size in primates 

Play type DF F-value p-value co-efficient r2 

Total 1, 12 0.23 0.64 -0.21 0.02 
Solitary 1, 4 0.56 0.51 -0.43 0.12 
Object 1, 3 0.24 0.66 0.67 0.08 
Social 1' 11 0.04 0.86 0.09 0.003 
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Figure 1 details a mean of daily fluctuations in play activity across all primates. The 

results here show the sort of pattern commonly reported in the play literature for daily 

fluctuations in play. Dawn and dusk are frequently cited as common times for daily 

play peaks; in these results, the peak in the day is certainly at dusk, but the earlier peak 

occurs around mid-morning rather than at dawn, but with the usual cessation of play 

towards the middle of the day when the sun is at its hottest. Amongst primates, 

morning periods have been shown to be the time at which play occurs most frequently 

in vervet, red-tail, patas, and squirrel monkeys, and in lemurs (Fagen 1981: 304). Daily 

fluctuations in the play of individual species are presented in Chapter 4. 

14 
,._ 

[ 12 

Jl 10 

0 

~ 
tn 
~ .,. 
~ s· 
"' 

;:: z m 

~ a; g ~ 

~ 
.,. 
1l> ~· a 

"" ~ 
Tilrx:ofday 

Fig. C.t Mean daily play frequency trajectory in primates 

Table C.1. Play by age group on group sizes in primates, controlling for brain 
and body weights. 

Age&play DF F-value p-value co-efficient r2 
category 

Adult play% 1,14 0.28 0.60 0.42 0.02 
Subadult play% 1, 11 0.95 0.35 0.43 0.08 
Juvenile play% 1, 20 0.52 0.48 -0.27 0.03 
Infant play % 1, 14 7.96 0.01 0.43 0.36 
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Fig.C.2 Independent contrasts partial correlation regression plot of 
mean group size on infant play in primates 

Table C.2. Play by age group on mean group size in carnivores, controlling for 
brain and body weights. 

Age & play category DF F-value p-value co-efficient r" 

Adult play% + 
Subadult play%+ 
Juvenile play % I, 3 2.89 0.18 0.27 0.49 
Infant play % + 

+ Too few observations 

Table C.3. Independent contrasts partial correlation regression analyses of play 
category on sex composition in primates. 

Sex Play type DF F-value p-value co-efficient r" 
(No. in grou~) 

Male Total 1, 26 0.02 0.88 -0.03 0.001 
Solitary 1, 17 0.25 0.62 -0.67 0.02 
Object 1, 10 3.86 0.07 1.45 0.28 
Social 1, 19 1.11 0.30 0.55 0.06 
Male 1, 16 1.72 0.21 0.30 0.10 
Female 1, 16 1.42 0.25 -0.64 0.08 

Female Total 1, 27 0.02 0.89 -0.03 0.001 
Solitary 1, 18 5.22 0.03 3.94 0.23 
Object 1' 10 9.15 0.01 3.33 0.48 
Social 1, 20 22.97 0.0001 2.05 0.54 
Male 1, 17 0.65 0.43 -0.29 0.04 
Female 1, 17 0.007 0.93 -0.05 4.34 

Bonferroni = 0.004, Female solitary and object n.s. 
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Fig. C.3 Independent contrasts partial correlation regression plot of number 
of females in a group on social play in primates 

Table C-4. Independent contrasts regression analyses of play category on sex 
composition in platyrrhines. 

Sex Play type DF F-value p-value co-efficient ra 
(No. in grou~) 

Male Total 1, 5 0.98 0.37 -1.48 0.16 
Solitary 1, 3 3.60 0.15 7.86 0.55 
Object 1, 3 15.46 0.06 -12.96 0.89 
Social 1, 3 0.14 0.73 1.83 0.04 

Female Total 1, 5 0.73 0.43 0.88 0.13 
Solitary 1, 3 2.68 0.20 -3.23 0.47 
Object 1, 3 11.37 0.07 4.94 0.85 
Social 1, 3 1.94 0.26 2.43 0.39 

Table C.s. Independent contrasts regression analyses of play category on sex 
composition in catarrhines 

Sex Play type DF F-value p-value co-efficient ra 
(No. in grou~) 

Male Total 1, 19 0.008 0.93 -0.02 4.18 
Solitary 1, 12 0.33 0.57 -0.88 0.03 
Object 1, 6 0.79 0.03 1.47 0.57 

Social 1, 14 0.44 0.52 0.35 0.03 
Male 1' 15 0.12 0.74 -0.12 0.008 
Female 1' 15 1.29 2.73 -0.63 0.08 

Female Total 1' 19 0.11 0.74 -0.10 0.006 
Solitary 1, 12 17.26 0.001 7.65 0.59 
Object 1, 7 0.02 0.88 -0.24 0.003 
Social 1, 14 20.68 0.0005 2.01 0.60 
Male 1' 15 1.16 0.30 -0.38 0.07 
Female 1' 15 0.005 0.95 -0.04 3.00 
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Appendix D. Tab.D.e 1. Primate play database 

Species Data type Source Captive= of No. in No. No. adult Age of No. adult Age adult 

wild=t study group observed males adult females females 
male (yrs) 
( s) 

Allenopithecus nigroviridis Undergraduate thesis Potter 1999 - -

Alouaua caraya Paper Jones 1983 0 5.000 5.000 1.000- 2.000-

Alouatta palliata Paper C1arke 1990 1 28.000 11.000 3.000- 9.000-

Alouatta palliata Paper Ba1dwin & Baldwin 1978 1 151.000 151.000 

Ateles geoffroyi Paper Fedigan & Bax.ter 1984 

Cacajao rubicundus Paper Abordo et al. 1975 

w Cacajao rubicundus Book chapter Schapiro & Mitchell 1986 0 
w 
-J Callicebus moloch Paper Fragaszy et al. 1982 0 8.000 8.000 2.000- 2.000-

Callithrix geoffroyi Undergraduate thesis Potter 1999 

Callithrix jacchus Paper Voland 1977 0 21.000 21.000 8.000 1-10 6.000 1-10 

Callithrix jacchus Paper Stevenson & Poo1e 1976 0 21.000 8.000 4.000 3 4.000 2.6, 3, 3 

Cebus albifrons Paper Bemstein 1965 0 

Cebus apella Paper Ross & Giller 1988 0 18.000 16.000 3.000 20,6,5 6.000 9,9,7,7,6,5 

Cebus apella Paper Terborgh 1983 1 

Cebus apella Paper Visalberghi & Guidi 1998 0 17.000 9.000 2.000- 6.000-

Cebus capucinus Paper Fontaine 1994 

Cebus cupucinus Paper Fedigan 1993 

Cebus olivaceus Paper Robinson 1985 

Cercocebus arys Paper Bemstein 1976 

Cercopithecus aethiops Paper Govindaraj u1u et al. 1993 1 12.000 12.000 1.000- 4.000 

Cercopithecus aelhiops Paper Lancaster 1971 1 55.000 55.000 7.000- 15.000-

Cercopithecus aethiops Paper Lee 1984 1 

Cercopithecus aethiops Paper Fedigan 1972 0 17.000 17.000 1.000- 3.000-

Cercopithecus aethiops Paper Rose 1977b 1 16.000 16.000 2.000- 2.000-

Cercopithecus diana Paper Lewis 2000 0 7.000 6.000 1.000- 1.000-



Species Data type Source Captive=o/ No. in No. No. adult Age of No. adult Age adult 
wild=l study group observed males adult females females 

male (yrs) 
(yrs~ 

Cercopithecus diana Paper Byme et al. 1983 0 8.000 8.000 1.000- 3.000-

Cercopithecus diana Undergraduate thesis Potter 1999 

Cercopithecus hamlyni 0 

Cercopithecus hamlyni Paper Lewis 2000 0 7.000 7.000 1.000- 1.000-

Cercopithecus mitis Paper Lawes & Piper 1992 ·1 

Cercopithecus neglectus Paper Oswa1d & Lockard 1980 0 10.000 10.000 1.000- 2.000-

Colobus badius Book Struhsaker 197 5 w 
w Colobus badius Book Struhsaker 1975 
00 

Colobus badius Paper Marsh 1978 

Colobus badius Book Struhsaker 197 5 

Colobus badius rufomitratus Paper Marsh 1981 

Colobus badius tephrosecles Paper C1utton-Brock 1974 1 64.000 64.000 

Colobus badius tephrosecles Paper C1utton-Brock 1974 1 58.000 58.000 
Colobus badius tephrosecles Paper C1utton-Brock 1974 1 82.000 82.000 

Colobus guereza Paper Horwich & Wurrnan 1978 0 8.000 8.000 1.000 - 2.000-
Colobus guereza Book Struhsaker 1975 

Colobus guereza Book chapter Oates 1977 

Colobus guereza PhD Oates 1974 

Colobus guereza Paper Rose 1977b 1 19.000 19.000 2.000- 3.000-
Erythrocebus patas Paper Rowell & Chism 1986 0 20.000 

Gorilla gorilla berengei Book chapter Fossey 1979 1 120.000 32.000 
Gorilla gorilla berengei Paper Yamagiwa 1992 1 6.000 6.000 4.000 21,17,11,9 0.000-
Gorilla gorilla berengei Book Schaller 1965 1 156.000 

Gorilla gorilla gorilla Paper Meder 1990 0 26.000 26.000 

Gorilla gorilla gorilla Paper Hoff et al. 1981 0 7.000 6.000 1.000 12 3.00012,12,16 

Gorilla gorilla gorilla Paper Fischer & Nadler 1978 0 4.000 4.000 - - 4.000 9-11 

Hylobates lar PhD. thesis B artlett 1999 



Species Data type Source Captive=o/ No. in No. No. adult Age of No. adult Age adult 
wild=l study group observed males adult females females 

male (yrs) 
(rrs) 

Hylubates lar Book chapter Schapiro & Mitchell 1986 0 

Hylubates lar Paper Bemstein & Schusterrnan 1964 0 13.000 13.000 2.000- 2.000-

Hylubates syndacrylus Paper 2 Orge1dinger 1996 0 3.000 2.000 1.000- 1.000-

Hylobates syndacrylus Paper Lewis 2000 0 4.000 4.000 1.000- 1.000-

Hylobates syndacrylus 0 

Lemurcatta 0 

Lemurcana Paper Lewis 2000 0 9.000 9.000 0.000- 2.000-

VJ Macaca arctoides Paper Rhine & Kronen wetter 1972 
w 
\0 Macaca arctoides Paper O'Keefe & Lifshitz 1985 

Macaca arctoides Paper Estrada & Estrada 1978 I 35.000 35.000 3.000- 9.000-
Macaca arctoides Paper Charnove 1973 0 

Macaca arctoides Paper Bernstein 1980 0 40.000 40.000 

Macaca arctoides Review Caine & Mitchelll979 

Macaca arctoides Paper Rhine & Kronenwetter 1972 

Macaca arctoides Paper Rhine & Hendy-Neeley 1978 0 7.000 
Macaca brunnescens Paper2 Kilner 2001 1 16.000 16.000 2.000- 4.000-
M acaca fascicularis Review Caine & Mitchell 1979 

Macacafascicularis Paper Sussman & Tattersall 1981 

M acaca fuscata Paper Rostal & Eaton 1983 0 316.000 16.000 8.000 9-10 
Macaca fuscata Paper Glick et al. 1986b 0 314.000 18.000 
Macaca juscata Paper Eaton et al. 1986 0 304.000 18.000 57.000- 113.000-
Macaca juscata Paper Hayaki 1983 1 100.000 18.000 

Macacajuscata Review Caine & Mitchell 1979 

Macaca fuscata Paper Imakawa 1990 1 274.000 - 42.000 5-25 82.000 5-25 
Macaca juscata Paper Glick et al. 1986a 0 274.000 44.000 - - 22.000-

Macaca fuscata Paper Koyarna 1985 1 125.000 104.000 

Macaca mulatta Paper Post & Bau1u 1978 0 36.000 20.000 4.000- 10.000-

Macaca mulatta Paper Gard & Meier 1977 0 32.000 11.000 



Species Data type Source Captive= of No. in No. No. adult Age of No. adult Age adult 
wild=l study group observed males adult females females 

male (yrs) 
(yrs) 

Macaca mulatta Paper Harlow & Harlow 1965 0 

Macaca mulatta Paper Ehardt & Bernstein 1987 0 83.000 83.000 

Macaca mularta Review Caine & Mitchell1979 

Macaca mulatta Paper Baulu & Redmond 1980 1 32.000 16.000 3.000 4-10 11.000 6-17 

Macaca mulatta Paper Chamove 1973 0 

Macaca nemestrina Paper Bernstein 1970 

Macaca nemestrina Paper Kirkevo1d et al. 1982 0 5.000 5.000 

Macaca nemestrina Review Caine & Mitchell 1979 
1,;.) 

~ Macaca nemestrina Paper Bernstein 1972 0 48.000 48.000 
0 

Macaca nigra Paper Bernstein & Baker 1988 0 23.000 23.000 6.000- 7.000-

Macaca nigra Paper Nicke1son & Lockard 1978 0 10.000 10.000 1.000- 3.000-
Macaca radiata Paper Singh & Sachdeva 1977 1 23.000 5.000 4.000- 5.000-
Macaca radiala Review Caine & Mitchell1979 

Macaca silenus ? ? 

Macaca sinica Review Caine & Mitchell 1979 

Macaca sylvanus Paper O'Leary & Fa 1993 1 27.000 27.000 

Macaca sylvanus Review Caine & Mitchell 1979 

Macaca sylvanus Paper Lahiri & Southwick 1966 

Macaca sylvanus Paper Lewis 2000 0 8.000 8.000 1.000- 3.000-
Macaca sylvanus 0 
Macaca thiberana Paper Zi-Yun 1993 

Ma11drillus sphinx Undergraduate project ? 0 

Mandrillus sphinx Paper Mellen et al. 1981 0 6.000 6.000 1.000- 2.000-
Nycticebus coucang Paper ? 

Pan paniscus Paper Enomoto 1990 

Pan paniscus Paper Mori 1984 1 17.000 5.000- 5.000-

Pan troglodytes Paper Tomasello et al. 1990 0 7.000 7.000 



Species Data type Source Captive=o/ No. in No. No. adult Age of No. adult Age adult 
wild=l study group observed males adult females females 

male (yrs) 
(yrs) 

Pan troglodytes Book chapter Schapiro &Mitche111986 0 

Pan troglodytes Paper Bloomsmith et al. 1994 0 21.000 

Pan troglodytes Paper Kraemer 1979 0 6.000 6.000 3.000- 3.000-

Pan troglodytes Paper King et al. 1980 0 7.000 7.000 1.000 26 3.000 27,24,10 
Pan troglodytes 0 

Pan troglodytes Paper Horvat & Kraemer 1981 0 23.000 10.000 - - 5.000-

VJ Pan troglodytes Paper B1oomsmith 1989 0 - 11.000-
+>- Pan troglodytes Paper Tomasello et al. 1990 0 15.000 6.000 1.000- 8.000-..-

Pan troglodytes Paper Nishida 1983 1 34.000 
Pan troglodytes Paper Merrick 1977 0 7.000 7.000 2.000 12, 10 2.000 11, 10 
Pan troglodytes Paper Pruetz & B1oomsmith 1995 0 29.000 17.000 
Pan troglodytes Paper Lewis 2000 0 12.000 11.000 4.000- 4.000-
Pan troglodytes Paper Mendoza-Granados & Sommer 0 25.000 11.000 2.000 24, 15 9.000 34,33,31 ,3 

1995 0,21,20,13, 

Pan troglodytes Paper Hayaki 1985 1 
11 '11 

100.000 9.000 
Pan troglodytes Paper Kraemer et al. 1982 0 
Papio Paper Coelho & Bramb1en 1982 0 87.000 45.000 6.000-
Papio anubis Paper Chalmers 1980 1 71.000 71.000 7.000- 19.000-
Papio anubis Paper Owens 1975b I 65.000 45.000 
Papio anubis Paper Rose 1977a 1 65.000 65.000 7.000- 19.000-
Papio anubis Paper Owens 1975a 1 65.000 45.000 
Papio c. ursinus Paper Cheney 1978 1 30.000 30.000 
Papio cynocephalus Paper Young & Hankins 1979 0 25.000 
Papio cynocephaluslanubis Paper Young et al. 1982 0 77.000 77.000 46.000- 31.000-
(mixed) 
Papio hamadryas Paper Pereira & Preisser 1998 0 7.000 7.000 2.000 8, 7 3.000 7,6,5 
Pithecia pithecia ? ? 



Species Data type Source Captive=o/ No. in No. No. adult Age of No. adult Age adult 

wild=l study group observed males adult females females 
male {yrs) 
(yrs) 

Pithecia pithecia Paper Dugmore 1986 0 2.000 2.000 1.000 2 1.000 2 

Pithecia pithecia Undergraduate thesis Potter 1999 

Pongo pygmaeus Paper Zucker et al. 197 8 0 4.000 2.000 1.000 19.000 2.000 20.000 

Presbytis entellus Paper Dolhinow & Murphy 1982 0 19.000 

Presbyris enrellus Paper Sommer & Mendoza-Granados 1 22.000 22.000 5.000- 0.000-

1995 

Presbytis johnii Paper Poirier 1969 1 212.000 212.000 27.000- 31.000-

Presbytis pilearus Paper Islam & Husain 1982 

V.l Pygathri.x nemaeus Paper Kavanagh 1978 0 6.000 6.000 1.000- 3.000-
..,.. 
IV Saguinus fuscicollis Paper Vogt 1978 0 8.000 4.000 1.000- 1.000-

Saguinus fuscicollis Paper Vogt et al. 1978 0 10.000 1.000- 1.000-

Saguinus midas 0 

Saguinus midas Paper Lewis 2000 0 8.000 8.000 1.000- 1.000-

Saguinus oedipus Undergraduate thesis Potter 1999 

Saimiri buliviensis Paper Bihen et al. 1989 0 13.000 13.000 1.000- 6.000-

Saimiri sciureus Paper Abordo et al. 197 5 

Saimiri sciureus Paper Biben & Symmes 1986 0 4.000 4.000 

Saimiri sciureus Book chapter Schapiro & Mitchell 1986 0 

Theropithecus gelada Paper Bernstein 1975 



Species No. sub- Age sub- No. sub- Age sub- No. age adol- no. adol- age adol- No. Age No.juv- Agejuv-
adult adult adult adult adol- escent escent escent juv- juv- enile enile 
males males females females escent males females females enile enile females females 

males males males (mo) 
(mo) 

Allenopizhecus nigroviridis 

Aloualla caraya 1.000 - 1.000 

Alouaua palliaza - - -- - - 2.000- 3.000-
Alouaua palliaza 

Azeles geoffroyi 

Cacajao rubicuruius 

Cacajao rubicuruius 
(..,.) 

CalJicebus moloch -- -- 1.000 -.;:.. - - - --
(..,.) 

Callilhri:c geoffroyi 

Callizhri:c jacchus 1.000 0.750 1.000 0.750 -- - - 3.000 3-8 0.000-
Callithri:c jacchus 1.000 1.000 - - - - 3.000 8,8,7 3.000 8,7 
Cebus albifrons 

Cebus apella 2.000 4.000 1.000 4.000 -- - - 2.000 1,1 2.000 1 
Cebus apella 

Cebus apella - - - 2.000 4.000 - - 4.000 1,2,3 3.000 1, 2, 3 
Cebus capucinus 

Cebus capucinus 

Cebus olivaceus 

Cercocebus at:ys 

Cercopizhecus aelhiops - - - - - 2.000 3.5,4.6 1.000 2.5 
Cercopithecus aethiops 1.000 3.000 4.000- 3.000- 4.000- 4.000-
Cercopizhecus aelhiops 

Cercopithecus aelhiops - -- 3.000 48 7.000 36,36,3 
6,36,12, 
12,12 

Cercopithecus aethiops - - 3.000- 2.000- 2.000- 2.000-
Cercopithecus diana 1.000 - - - - - -- 2.000-

Cercopizhecus diana 



Species No. sub- Age sub- No. sub- Age sub- No. age ado!- no. adol- age adol- No. Age No.juv- Agejuv-
adult adult adult adult ado I- escent escent escent juv- juv- enile enile 
males males females females escent males females females enile enile females females 

males males males (mo) 
(mo 

Cercopithecus diaJUJ - - -- . - . - 1.000-
Cercopithecus diaoo 

Cercopithecus hamlyni 

Cercopithecus hamlyni - - 2.000 - - - -- 2.000-
Cercopithecus mitis 

Cercopithecus neglectus - 2.000 - - -- 4.000-
Colobus badius 

w Colobus badius 
~ 
~ Colobus badius 

Colobus badius 

Colobus badius rufomitratus 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus guereza - - 1.000 1.000 2.5 -- -- 1.000 12 
Colobus guereza 

Colobus guereza 

Colobus guereza 

Colobus guereza - - 4.000- 3.000- 2.000- 2.000-
Erythrocebus paras 

Gorilla gorilla berengei 

Gorilla gorilla berengei 2.000 87.000 0.000 
Gorilla gorilla berengei 

Gorilla gorilla gorilla 

Gorilla gorilla gorilla 

Gorilla gorilla gorilla 

Hylobates lar 



w 
~ 
\JI 

Species 

Hylubates lar 

Hylubates lar 

Hylubates lyndacrylus 

Hylubates syndacrylus 

Hylobates syndacrylus 

Lemurcalla 

Lemurcatta 

Macaca arctoides 

Macaca arctuides 

Macaca arctuides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca brunnescens 

Macacafascicularis 

M acaca fascicularis 

M acaca fuscara 

M acaca fuse a/a 

Macacafuscata 

M acaca fuscara 

M acaca fuscata 

Macaca fuscata 

Macaca fuscata 

Macaca fuscata 

Macaca mulalla 

No. sub-
adult 
males 

Age sub- No. sub- Age sub- No. age adol- no. adol- age adol- No. Age 
adult adult adult adol- escent 
males females females escent males 

males 

9.000 9.000 

9.000 3.000 -

- 21.000 4 

escent escent 
females females 

15.000 4 

juv- juv-
enile enile 
males males 

(mo) 

2.000-

0.000-

8.000 12-25 

4.000-

5.000 4 
9.000-

52.000-

8.000-

31.000 1-3 

4.000-

No.juv- Agejuv-
enile enile 
females females 

(mo) 

5.000-

6.000 18-25 

1.000-

9.000-
34.000-

10.000-

41.000 1-3 

2.000-



Species No. sub- Age sub- No. sub- Age sub- No. age adol- no. adol- age adol- No. Age No.juv- Agejuv-
adult adult adult adult ado I- escent escent escent juv- juv- enile enile 
males males females females escent males females females enile enile females females 

males males males (mo) 
(mo) 

Macaca mulatta - - 9.000 - 9.000-
Macaca mulatta 

Macaca mulatta 

Macaca mulatta 

Macaca mulatta - - -- 5.000 3-4 2.000 2-3 
Macaca mulatta 

Macaca nemestrina 

VJ 
Macaca nemestrina 

.j:>. Macaca nemestrina 0\ 
Macaca nemestrina 

Macaca nigra 

Macaca nigra 1.000 -- - - 3.000- 2.000-
Macaca radiata 2.000 - 2.000 -- - - 3.000- 5.000-
Macaca radiata 

Macaca silenus 

Macaca sinica 

Macaca sylvanus 

Macaca sylvar1us 

Macaca sylvanus 

Macaca sylvanus - - - - 1.000- - - 2.000-
Macaca sylvanus 

Macaca thibetana - - - -- - 9 
Mandrillus sphinx 

Mandril/us sphinx 

Nycticebus coucang 

Pan paniscus 

Pan paniscus - - 3.000- 1.000- 2.000- 1.000-



Species No. sub- Age sub- No. sub- Age sub- No. age adol- no. adol- age adol- No. Age No.juv- Agejuv-
adult adult adult adult adol- escent escent escent juv- juv- enile enile 
males males females females escent males females females enile enile females females 

males males males (mo) 
(mo) 

Pan troglodytes -- - - 5.000- 2.000-
Pan troglodytes 

Pan troglodytes - - - - 8.000- 13.000-
Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

V-l Pan troglodytes 
.j::.. 

Pan troglodytes - - - - - 12.000- 9.000--...J 

Pan troglodytes 

Pan troglodytes - - - - - 3.000 3-4 
Pan troglodytes 1.000 8.000 1.000 9.000 
Pan troglodytes 

Pan troglodytes 0.000 - - - - - -- 2.000- 1.000-
Pan troglodytes 1.000 9.000 1.000 8.000 1.000 6.000 3.000 7,6, 6 1 .000 44.000 3.000 41, 51,52 
Pan troglodytes - - 5.000- 1.000- 1.000- 2.000-
Pan troglodytes 

Papio 

Papio anubis 

Papio anubis 

Papio anubis - - - 6.000- 2.000- 13.000- 3.000-
Papio anubis 

Papio c. ursinus 3.000 4.000 - 2.000 3 1.000 3 3.000 1.5 3.000 1.5 
Papio cynocephalus 

Papio cynocephaluslanubis 
(mixed) 
Papio hamadryas - - - - - 1.000 48 1.000 24 
Pithecia pithecia 



L.J 
.j::>. 
00 

Species 

Pithecia pithecia 

Pungo pygmaeus 

Presbytis entellus 

Presbytis entellus 

Presbyzis johnii 

Presbytis pileatus 

Pygathrix nemaeus 

Saguinus fuscicollis 

Saguinus fuscicollis 

Saguinus midas 

Saguinus midas 

Saguinus oedipus 

Saimiri buliviensis 

Saimiri sciureus 

Saimiri sciureus 

Saimiri sciureus 

Theropizhecus gelada 

No. sub- Age sub- No. sub- Age sub- No. 
adult adult adult adult adol-
males males females females escent 

males 

age adol- no. adol- age adol- No. 
escent escent escent juv-
males females females enile 

males 

Age 
juv­
enile 
males 
(mo) 

1 .000 48.000 

8.000 
9.000 

0.000 
3.000 

0.000 0.000 - 0.000- 9.000-

3.000-

1.000 

1.000 

2.000 2.5 

1.000 15 

3.000-

2.000 12 

2.000 12 

No. juv­
enile 
females 

Age juv­
enile 
females 
(mo) 

0.000-
3.000-

1.000-

2.000 12 



Species No. of Age No Age Un- Total Total no. Total Total Total Total 
infant infant infant infant known no. females adults adoles- juv- inf-
males males females females sex males cents eniles ants 

(mo) (mo) 
Allenopithecus nigroviridis 

Aloualla caraya - - - - 2.000 3.000 3.000 2.000 0.000 0.000 
Aloualla palliata 6.000- 5.000- - 11.000 13.000 12.000 5.000 11.000 
Aloualla palliata - - -- - 95.000 - 56.000 
Ateles geoffroyi 

Cacajao rubicundus 

Cacajao rubicundus 

(....) Callicebus moloch 1.000- 2.000- - 3.000 5.000 4.000 1.000 3.000 
.j::o. 

Callithrix geoffroyi \0 

Callithrix jacchus - - -- 2.000 12.000 7.000 14.000 2.000 3.000 2.000 
Callithrix jacchus 3.000 3 3.000 3 - 10.000 11.000 8.000 1.000 6.000 6.000 
Cebus albifrons 

Cebus apella - - -- 2.000 7.000 11.000 9.000 3.000 4.000 2.000 
Cebus apella 

Cebus apella - - -- - 8.000 9.000 8.000 2.000 7.000 
Cebus capucinus 

Cebus capucinus 

Cebus olivaceus 

Cercocebus atys 

Cercopithecus aethiops 3.000 6 1.000 6.000 6.000 6.000 5.000 3.000 4.000 
Cercopithecus aethiops 9.000- 5.000- - 25.000 30.000 22.000 11.000 8.000 14.000 
Cercopithecus aethiops 

Cercopithecus aethiops -- -- 3.000 8.000 6.000 4.000 3.000 7.000 3.000 
Cercopithecus aethiops 1.000- 2.000- - 8.000 8.000 4.000 5.000 4.000 3.000 
Cercopithecus diana - - 1.000- 1.000 2.000 4.000 2.000 1.000 2.000 2.000 
Cercopithecus diana 

Cercopithecus diana 2.000- 1.000- 3.000 5.000 4.000 1.000 3.000 



Species No. of Age No Age Un- Total Total no. Total Total Total Total 
infant infant infant infant known no. females adults adoles- juv- inf-
males males females females sex males cents eniles ants 

(mo) (mo) 
Cercopithecus diana 

Cercopithecus hamlyni 

Cercopithecus hamlyni - - 1.000- 3.000 4.000 2.000 2.000 2.000 1.000 
Cercopithecus mitis 

Cercopithecus neglectus - 1 - - - 6.000 4.000 3.000 2.000 4.000 1.000 
Colobus badius 

Colobus badius 

w Colobus badius 
Vl Colobus badius 0 

Colobus badius rufomitratus 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus guereza -- -- 2.000 1.000 4.000 3.000 2.000 1.000 2.000 
Colobus guereza 

Colobus guereza 

Colobus guereza 

Colvbus guereza 1.000 - 2.000- - 9.000 10.000 5.000 7.000 4.000 3.000 
Erythrocebus patas - - - - - 11.000 9.000 
Gorilla gorilla berengei - - - - - - - - 32.000 
Gorilla gorilla berengei -- -- 6.000 0.000 4.000 2.000 
Gorilla gorilla berengei 

Gorilla gorilla gorilla - - - - - 12.000 14.000 
Gorilla gorilla gorilla 2.000 4 1.000 4.000 - 3.000 4.000 4.000 - 3.000 
Gorilla gorilla gorilla -- -- - - 4.000 
Hylobates lar 

Hylobates tar 

Hylobates lar - - -- 9.000 2.000 2.000 4.000 - 9.000 



Species No.of Age No Age Un- Total Total Total Total Total Total 
infant infant infant infant known no. no. adults adoles- juv- inf-
males males females females sex males females cents eniles ants 

(mo) (mo) 
Hylubales syndacrylus - - -- 1.000 1.000 2.000 

Hylvbales syndacrylus - - -- 3.000 1.000 2.000 2.000 
Hylubales syndacrylus 

Lemur calta 

Lemurcaua - - -- 2.000 0.000 9.000 2.000 - 5.000 2.000 
Macaca arctoides 

Macaca arctoides 

Macaca arcluides 3.000 1-5 6.000 1-5 - 14.000 21.000 12.000 - 10.000 9.000 
w Macaca arctoides 
'-" 

Macaca arctvides - - - - - 24.000 16.000 
Macaca arctvides 

Macaca arctvides 

Macaca arctvides 4.000- 3.000- - 4.000 3.000 - - - 7.000 
Macaca brwmescens 1.000- - - - 7.000 5.000 6.000 5.000 1.000 
Macaca fascicularis - - - - - 9.000 
Macaca fascicularis 

Macacafuscata - - -- - 16.000 0.000 8.000 3.000 5.000 
Macaca fuscata - - -- 9.000 9.000 - - 18.000 
Macaca fuscata 19.000- 29.000- - 128.000 176.000 170.000 - 86.000 48.000 
Macaca fuscata 

Macaca fuscata 

Macaca fuscata 17.000 0 25.000 0.000 - 111.000 163.000 124.000 36.000 72.000 42.000 
Macaca fuscaza 10.000- 12.000- - 10.000 34.000 22.000 - - 22.000 
Macaca fuscata - - - - - 45.000 80.000 

Macaca mulatta -- -- - 8.000 12.000 14.000 6.000 
Macaca mulatta 

Macaca mulalta 

Macaca mulatta 



Species No. of Age No Age Un- Total Total no. Total Total Total Total! 
infant infant infant infant known no. females adults adoles- juv- inf-
males males females females sex males cents eniles ants 

(mo~ (mo) 
Macaca mulatta 

Macaca mulatta 

Macaca mulatta 

Macaca nemestrina 

Macaca nemestrina 2.000 1, .75 3.000 211.000 - 2.000 3.000 - - 5.000 
Macaca nemestrina 

Macaca nemesrrina 

Macaca nigra 4.000- 6.000- - 10.000 13.000 13.000 - 10.000 

w Macaca nigra - - -- 5.000 5.000 4.000 1.000 5.000 
VI Macaca radiata N 

Macaca radiata 

Macaca silenus 

Macaca sinica 

Macaca sylvatiUS - - - - - 16.000 11.000 
Macaca sylvanus 

Macaca sylvanus 

Macaca sylvanus 1.000- -- - 5.000 3.000 4.000 1.000 2.000 1.000 
Macaca sylvanus 

Macaca thibetana 

Mandrillus sphinx 

Mandrillus sphinx 2.000- 1.000- - 3.000 3.000 3.000 - - 3.000 
Nycticebus coucang 

Pan paniscus 

Pan paniscus 

Pan troglodytes - - -- - 5.000 2.000 7.000 
Pan troglodytes 

Pan troglodytes - - - - - - 21.000 
Pan troglodytes - - -- 3.000 3.000 6.000 



Species No. of Age No Age Un- Total Total no. Total Total Total Total 
infant infant infant infant known no. females adults adoles- juv- inf-
males males females females sex males cents eniles ants 

(mo) (mo) 
-------

Pan troglodytes 1.000 12 2.000 18,21 - 2.000 5.000 4.000 3.000 
Pan troglodytes 

Pan troglodytes 2.000- 3.000- - 5.000 - - 5.000 
Pan troglodytes -- - - - - - 21.000 
Pan troglodytes 4.000 18,28,50, 2.000 33,40 5.000 10.000 9.000 - 6.000 

44 
Pan troglodytes 4.000 6-24 1.000 6-24 
Pan troglodytes - - 1.000 4.000 - 3.000 4.000 4.000 2.000 0.000 1.000 
Pan troglodytes 

\;) 
Pan troglodytes 1.000- 0.000 7.000 5.000 8.000 0.000 Ul -- 2.000 2.000 \.;.) 

Pan troglodytes 2.000 13, 18 1.000 8.000 - 7.000 18.000 11.000 6.000 4.000 4.000 
Pan troglodytes - - - - - 6.000 3.000 - 6.000 3.000 
Pan troglodytes 

Papio - - -- - 45.000 42.000 
Papio anubis - - -- - - 26.000 - - 8.000 
Papio anubis 

Papio anubis 8.000- 7.000- - 34.000 31.000 26.000 8.000 16.000 15.000 
Papio anubis 

Papio c. ursinus 8.000- - - - 10.000 6.000 6.000 8.000 
Papio cynocephalus 11.000 0-3 14.000 0-3 - 11.000 14.000 25.000 
Papio cynocephaluslanubis -- - - - 46.000 31.000 
(mixed) 
Papio hamadryas - - - - - 3.000 4.000 5.000 - 2.000 
Pithecia pithecia 

Pithecia pithecia -- -- 1.000 1.000 2.000 
Pithecia pithecia 

Pongo pygmaeus - - -- - 2.000 2.000 3.000 0.000 1.000 0.000 
Presbytis entellus 15.000- 4.000-
Presbytis entellus 0.000- 0.000- 0.000 20.000 0.000 5.000 8.000 9.000 0.000 



Species No.of Age No Age Un- To tall Total Total Total Total To tall 
infant infant infant infant knowllll 111.0. lllO. adults adoles- juv- inf-
males males females females sex males females cents eniles ants 

(mo) (mo) 
Presbytis johnii 6.000- 4.000- 62.000 45.000 41.000 98.000 17.000 13.000 20.000 

Presbytis pileatus 

Pygathrix nemaeus -- 1.000 4.5 2.000 4.000 4.000 1.000 1.000 
Saguinus fuscicollis - - 1.000- 4.000 2.000 3.000 2.000 1.000 - 6.000 
Saguinus fuscicollis 3.000- 4.000- - 5.000 5.000 2.000 1.000 - 7.000 
Saguinus midas 

Saguinus midas - - - - 2.000 4.000 2.000 2.000 - 4.000 2.000 

I.H 
VI 

Saguinus oedipus 

Saimiri boliviensis -- --
~ 

3.000 8.000 7.000 - 4.000 
Saimiri sciureus 

Saimiri sciureus - - - - 4.000 - 2.000 2.000 
Saimiri sciureus 

Theropithecus gelada 



Species Adult Adult- Sex Length No. of No. of No. of Average Male Female Group 
play? adult play? of study observ- play play length of play play play 
(yesll play? (yes ll (mo} ation behav- inter- play Freq- freq- frequ-
rare2 noo} hours iours actions bout uency uency ency 
noo) (sec} per per hour per hour 

hour 
AILenopithecus nigroviridis 

Aloualla caraya 1 1 1 0.50 40.000 176.000 - 176.000 
Aloualla palliata 22.00 1456.000 
Aloualla palliata 1 0 - 2.50 - - 15.000 
Ateles geoffroyi - - - - 0.230 0.620 

VJ Cacajao rubicundus 
V\ 

Cacajao rubicundus V\ 

Callicebus mowch 

Callithri:c geoffroyi 

Callithri:c jacchus 1 1 - - - 38.0 950.000 231.000 - 0.777 
Callithri:c jacchus 1 1 1 - 720.000 43.0 17.000 30.000 
Cebus albifrons 

Cebus ape/la - 6.00 75.000 
Cebus apella 

Cebus apella - 3.00 77.500 - 3060.000 
Cebus capucinus 

Cebus capucinus - - - - - - 0.180 0.240 
Cebus olivaceus 

Cercocebus atys 

Cercopithecus aethiops - - 7.00 425.000 - 34.100 11.475 7.800 
Cercopithecus aethiops - 1 8.00 840.000 
Cercopithecus aethiops - - - - - 5.160 3.083 11.100 
Cercopithecus aethiops 2 - - 6.00 198.000 26.0 
Cercopithecus aethiops 0 
Cercopithecus diarUJ 2 0 0 2.50 



Species Adult Adult- Sex Length No. of No. olf No. of Average Male Female Group 
play? adult play? of study observ- play play length of play play play 
(yes :a play? (yes1 (mo) ation behav- inter- play Freq- freq- Jfrequ-
rare2 noo) hours iours actions bout uency uency ency 
noo) (sec) per per hour per hour 

hour 
Cercopithecus diana 
Cercopithecus diana 2 
Cercopithecus diana 
Cercopithec!IS hamlyni 
Cercopithec!IS hamlyni 2 0 0 2.50 
Cercopithecus mitis 0 0 
Cercopithec!IS neglectu.s 0 0 - - - 6.0 
Colobu.s badiu.s 

w Colobus badiu.s 
V. Colobu.s badiu.s 2 0\ 

Colobu.s badiu.s 

Colobu.s badiu.s rufomitratu.s 2 0 - 14.00 
Colobu.s badi!IS tephrosec/es 0 0 0 2.00 
Colobu.s badius tephrosecles 0 0 0 2.00 
Colobus badius tephrosecles 0 0 0 14.00 
Colobu.s guereza 1 - - 8.00 - 3.0 - - - - 3.909 
Colobu.s guereza 

Colobu.s guereza 
Colobu.s guereza 0 0 
Co/obus guereza 0 - - 6.00 1184.000 - 43.000 3.000 
Erythrocebus patas - - - - - - - 4.040 10.200 6.125 
Gorilla gorilla berengei 1 2 - 84.00 413.000 23.0 
Gorilla gorilla berengei 2 2 1 9.00 - - 364.000 - 0.450 
Gorilla gorilla berengei - - - - - - 91.000 
Gorilla gorilla gorilla - - - - - - - - 1.250 0.616 
Gorilla gorilla gorilla 1 - 0 16.00 



Species Adult Adult- Sex Length No. of No. of No. of Average Male Female Group 
play? adult play? of study observ- play play length of play play play 
(yes 1 play? (yes 1 (mo) ation behav- inter- play Freq- freq- frequ-
rare2 noo) hours iours actions bout uency uency ency 
noo) (sec) per per hour per hour 

hour 
Gorilla gorilla gorilla 1 2 - 7.00 80.000 - 972.000 - 0.063 0.063 
Hylobares Jar 1 1 - 4.0 
Hylobares Lar 

Hylobares Jar 

Hylobares syndactylus 1 1 1 1.50 117.700 4.0 - - - - 5.830 

w Hylobares syndactylus 1 - 2.50 
VI Hylobares syndactylus -...J 

Lemurcaua 

Lemurcalla 2 0 0 2.50 9.0 
Macaca arcloides 

Macaca arcloides 

Macaca arcroides 2 0 - - - - 9.600 
Macaca arcroides 

Macaca an·roides 1 36.00 
Macaca arcroides 

Macaca arctoides 

Macaca arcroides 2 2.00 14.0 
Macaca brunnescens - - 0 .. 55 150.000 
Macaca fascicularis 2 0 
Macaca fascicularis 

Macacajuscata 0 0 - 6.00 - 9.000 
Macaca juscara - 1 16.00 - - - 9.000 
Macacajuscata - 1 10.00 
Macacajuscara 2 - - 9.000 
Macaca fuscara - 1 - - 9.000 
Macaca juscara - - 15.00 - - 19.380 12.660 



Species Adult Adult- Sex Length No.olf No. of No. of Average Male Female Group 

play? adult play? of study observ- play play length of play play play 

(yesll. play? (yes 1 (mo) ation behav- inter- play Freq- freq- frequ-

rare2 noo) hours iours actions bout uency uency ency 

noo) (sec) per per hour per hour 
hour 

Macaca juscata 1 - - 9.000 

Macaca Juscala 0 0 - - 6068.000 

Macaca rrwlalla 1 0 0 7.00 

Macaca rrwlalta - 2.00 - 9.000 

Macaca rrwlalla 

Macaca rrwlalla 

\;.) Macaca rrwlalta 2 0 
VI 
00 Macaca rrwlalla 2 0 

Macaca rrwlalla 

Macaca nemeslrina 

Macaca nemeslrina - - 5.00 

Macaca nemeslrii'Ul 

Macaca nemeslrii'Ul 

Macaca nigra 

Macaca nigra 1 - 7.50 9.000 14.0 

Macaca radiala 

Macaca radiala 

Macaca silenus 

Macaca sinica 

Macaca sylvanus 1 - 1.80 

Macaca sylvanus 1 0 

Macaca sylvanus 

Macaca sylvanus 1 0 - 2.50 

Macaca sylvanus 

Macaca thibetana 0 0 

Mandrillus sphiru 



Species Adult Adult- Sex Length No. of No. of No. of Average Male Female Group 

play? adult play? of study observ- play play length of play play play 

{yes1 play? (yes 1 (mo) ation behav- inter- play Freq- freq- frequ-

rare2 noo) hours iours actions bout uency uency ency 

noo) (sec) per per hour per hour 
hour 

Mandrillus sphinx 

Nycticebus coucang 

Pan paniscus 1 1 1 - - 19.0 

Pan paniscus - - - - - - - - 42.000 

Pan troglodytes - - - 13.000 

Pan troglodytes 

w Pan troglodytes - - 60.00 792.000 
VI Pan troglodytes 1 1 - 18.500 24.0 
\0 

Pan troglodytes 1 2 1 15.00 - 7.0 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 1 1 - 7.00 225.500 - 3.700 

Pan troglodytes - - 2.00 

Pan troglodytes 1 - 1 12.00 

Pan troglodytes 1 - 11.00 - 17.0 

Pan troglodytes 1 10.00 311.000 - - 9.660 

Pan troglodytes 1 1 1 2.50 

Pan troglodytes - - 4.00 44.000 - 1651.000 27.700 

Pan troglodytes 1 - - 11.00 384.000 12.5 661.000 60.000 

Pan troglodytes 

Papio - - - - - 4.0 2100.000 - 33.850 15.950 

Papiu anubis - - 6.00 231.000 30.0 

Papio anubis 1 - 1 16.00 - 6.0 

Papio anubis 2 0 1.00 140.000 - - 180.000 

Papio anubis 1 0 1 16.00 - - 5.000 

Papio c. ursinus - - 15.00 



Species Adult Adult- Sex .ILength No. of No. of No. of Average Male Female Group 

play? adult play? of study observ- play play length of play play play 

(yes 1 play? (yes1 (mo) ation behav- inter- play Freq- freq- frequ-

rare2 noo) hours iours actions bout uency uency ency 

noo) (sec) per per hour per hour 
hour 

Papio cynocephalus 12.00 98.000 

Papio cynocephalus/anubis 1 - 1 24.00 11 .. 0 - 12.100 5.920 

(mixed) 
Papio hamadryas 0 0.50 17.000 - 21.000 

Pirhecia pirhecia 

Pirhecia pithecia 1 1 1 5.00 - - - - 34.778 25.778 33.667 

Pirhecia pirhecia 
w 
0\ Pongo pygmaeus 1 - 3.00 100.000 10.0 30.000 
0 

Presbytis enrellus 1 - - - 2.404 

Presbyris entellus 0 0 12.00 515.000 - 1429.000 114.000 0.767 0.767 

Presbytis johnii 1 0 12.00 1250.000 - - 7.000 

Presbytis pileatus 

Pygathrix nemaeus 2 

Saguinus juscicollis 1 1 14.00 

Saguinus fuscicollis 1 1 7.50 

Saguinus midas 

Saguinus midas 2 0 0 2.50 

Saguinus oedipus 

Saimiri boliviensis 1 - - 3.00 - 54.000 

Saimiri sciureus 

Saimiri sciureus - 2.00 7.0 109.000 15.000 

Saimiri sciureus 

Theropithecus gelada 



Species %play %play Mean Mean Mean Mean Mean Mean Mean Mean 
perlonnedbyperlormed male female play play total Solitary Social Object 

males by females time time wrest- chasing play% play% play% play% 
budget budget ling% % 
of ~la~% of ~la~% 

Allenopithecus nigroviridis - - - - - 2.500 

Alouatta caraya 

Alouatta palliata - - - - 14.533 

Alouatta palliata - - - - - - 1.560 1.040 0.083 

Ateles geoffroyi 9.000 - - - 1.000 

Cacajao rubicundus 

Cacajao rubicundus 

Callicebus moloch - - - 1.440 

Vl 
Callithrix geoffroyi - - - - - 5.830 

0\ Callithrix jacchus - - 1.075 - Callithrix jacchus 

Cebus albifrons - - - - 1.000 

Cebus apella - - - 14.705 

Cebus apella - - - - 2.000 

Cebus apella 45.400 40.500 - 4.000 1.100 20.528 17.070 18.870 9.550 

Cebus capucinus - - 3.500 

Cebus capucinus 

Cebus olivaceus - - - - 3.500 

Cercocebus atys - - - - - 9.000 

Cercopithecus aethiops - 9.125 6.000 - 7.562 

Cercopithecus aethiops - - - - - 10.330 6.000 4.400 

Cercopithecus aethiops 

Cercopithecus aethiops 84.200 15.800 

Cercopithecus aethiops 

Cercopithecus diana - 5.200 17.300 - - 13.260 12.500 5.300 1.700 

Cercopithecus diana - - 5.765 5.925 - 8.300 3.700 1.200 



Species %play %play Mean Mean Mean Mean Mean Mean Mean Mean 
perlonnedbyperlormed male female play play total Solitary Social Object 
males by females time time wrest- chasing play% play% play% play% 

budget budget ling% % 
of play % of play% 

Cercopithecus diana - 2.910 
Cercopithecus diarul - - 0.140 
Cercopithecus IUJmlyni - - 7.550 2.350 - - - 0.200 3.800 1.100 
Cercopithecus hamlyni - - 7.550 6.625 - - 6.940 3.100 5.700 1.400 
Cercopithecus mitis - - - 4.000 
Cercopithecus neglectus - 7.930 0.700 0.590 0.470 5.040 0.030 1.860 3.150 

w 
0\ Colobus badius - - - 2.700 
N 

Colobus badius - - - - 2.600 
Colobus badius - - - 2.600 
Colobus badius - - - 4.200 
Colobus badius rufomitratus - - - - - 3.400 
Colobus badius tephrosecles - - 3.300 3.300 
Colobus badius tephrosecles - - - - 1.000 - 1.000 
Colobus badius tephrosecles - - - 4.000 - 2.925 
Colobus guereza 

Colobus guereza 

Colobus guereza - - 4.600 
Colobus guereza 

Colobus guereza 

Erythrocebus paras - 8.499 5.104 0.556 0.335 12.582 
Gorilla gorilla berengei - - - - 13.260 3.450 22.187 9.213 
Gorilla gorilla berengei 

Gorilla gorilla berengei 

Gorilla gorilla gorilla 

Gorilla gorilla gorilla 



Species %play %play Mean Mean Mean Mean Mean Mean Mean Mean 
performed by performed male female play play total Solitary Social Object 
males by females time time wrest- chasing play% play% play% play% 

budget budget ling% % 
of l!lal: % of l!lal: % 

Gorilla gorilla gorilla - - - 1.688 - 6.750 1.647 5.103 
Hylobates lar - - - 4.185 0.500 3.685 
Hylobates lar 

Hylobates lar - - - 10.000 23.000 
Hylobates syndactylus 

Hylobates syndactylus - - 24.833 0.600 - - 18.760 15.000 21.000 0.500 
Hylobates syndactylus - 12.667 0.600 - - - - 11.000 0.300 
Lemurcatta - 0.000 0.700 - 2.600 1.200 0.000 

w 
0\ Lemurcatta - - 0.000 0.500 w - - 3.850 5.700 2.000 0.000 

Macaca arctoides - - - - - 13.000 
Macaca arctoides - - - - - - 1.400 
Macaca arctoides 

Macaca arctoides - - - - - 12.500 8.000 17.000 
Macaca arctoides - - - - - 10.000 
Macaca arctoides 

Macaca arctoides - - - 5.000 
Macaca arctoides - - - - - 7.290 
Macaca brunnescens - - 5.100 
Macaca fascic~Laris 
Macaca fascicularis - - - - 4.000 
Macaca fuscata - - 10.200 - - 10.200 
Macaca fuscata - - 26.328 16.230 - - 21.279 - 21.279 
Macaca fuse ala - - 15.375 8.125 - 23.500 - 23.500 
Macaca fuscata 

Macaca fuscata 

Macaca fuscata 



Species %play %play Mean Mean Mean Mean Meallll Mean Mean Mean 

performed by performed male female play play total Solitary Social Object 

males by females time time wrest- chasing play% play% play% play% 
budget budget ling% % 
of J:!la~% of J:!la~% 

Macaca fuse ala 

Macaca fuscata 

Macaca mulatta 3.850 6.150 - 5.000 - 5.000 

Macaca mulatta 

Macaca mulatta 

Macaca mulalla - - 18.200 5.450 - 10.914 

Macaca mulalla 

w Macaca mulatta - - - - - - 4.500 

0\ Macaca mulatta - - - - 12.125 18.250 6.000 
.j::.. 

Macaca nemestrina - 4.500 2.400 3.400 

Macaca nemestrina 

Macaca nemestrina 

Macaca nemestrina - - - - - 8.160 

Macaca nigra - - - - - 8.000 

Macaca nigra - 6.233 5.400 - - 5.816 

Macaca radiara - - - - - - 6.196 16.850 36.267 

Macaca radiata 

Macaca silenus - 3.500 

Macaca sinica 

Macaca sylvanus - - 7.280 4.950 - - 5.687 

Macaca sylvanus 

Macaca sylvanus - - - - 20.900 

Macaca sylvanus - 21.080 1.130 - 13.570 5.200 4.100 17.000 

Macaca sylvanus - - 5.285 1.130 - - 2.800 8.900 2.100 

Macaca rhiberana 

Mandrillus sphiru: - - - - - 13.750 8.830 18.650 



Species 

Mandrillus sphinx 

Nycticebus coucang 

Pan paniscus 

Pan paniscus 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglo iytes 
(;) 

0\ Pan troglodytes 
V\ 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Papio 

Papio anubis 

Papio anubis 

Papio anubis 

Papio anubis 

Papio c. ursinus 

%play %play 
perlonnedbyperlormed 
males by females 

Mean Mean Mean Mean Mean Mean Mean Mean 
male female play play total Solitary Social Object 
time time wrest- chasing play% play% play% play % 
budget budget ling % % 
of play% ofpla:=-=:%:-::--------:-:::-=-::----::-:::-=---=--=-=-=-----

18.653 3.736 - - 13.430 2.980 18.650 

20.140 

15.358 
9.504 

11.083 

3.733 
19.770 
16.026 

17.755 -

12.320 2.589 

9.066 

-

14.000 

1.200 1.200 0.000 0.000 

- 18.962 
4.100 

0.327 13.188 

- -
- 32.611 

- 11.083 

12.335 6.628 
0.510 3.590 
7.875 5.313 

6.060 9.400 

- 11.083 

22.100 21.500 

4.985 14.200 

0.220 

3.400 

11.200 

6.140 

64.145 35.854 

13.402 13.120 

- 82.000 
7.800 

6.940 
3.733 

- 18.940 
9.372 19.000 

29.000 

7.500 

5.050 

3.738 

2.400 
- 24.250 

2.900 
2.194 

7.667 

7.500 
10.875 

3.100 

5.932 
- 20.940 

7.667 



Species %play %play Mean Mean Mean Mean Mean Mean Mean Mean 

perlonnedbyperlonned male female play play to tan Solitary Social Object 

males by females time time wrest- chasing play% play% play% play% 
budget budget ling% % 
of J:!la;r % of J:!lar % 

Papio cynocephalus 13.900 11.100 - - 12.500 - 12.500 

Papio cynocephalus/anubis 
(mixed) 
Papio hamadryas 71.420 85.714 - - 57.142 

Pithecia pithecia - 2.630 4.200 3.000 0.700 

Pithecia pithecia 

Pithecia pithecia - - - - 3.000 

Pongo pygmaeus - - - 19.563 
V) Presbytis entellus 0\ 
0\ Presbytis entellus 

Presbytis johnii 

Presbytis pileatus - - - 3.120 

Pygathrix nemaeus 

Saguinus fuscicollis 3.870 3.910 16.140 0.200 7.780 8.160 

Saguinus fuscicollis - - 23.550 - 4.050 3.300 23.550 7.350 16.200 

Saguinus midas - - 3.413 0.600 - - - 4.600 2.500 0.000 

Saguinus midas - - 6.825 0.600 - 7.130 4.200 3.200 0.000 

Saguinus oedipus - - - - - 1.870 

Saimiri boliviensis 

Saimiri sciureus 

Saimiri sciureus 100.000 0.000 

Saimiri sciureus - - 9.000 

Theropithecus gelada - - - - - - 11.167 



Species Play by Play by Play by Play by Play by Play at Play at Play at 9 Play at Play at Play at Play at Play at 

infants juv- adoles sub- adults% 3 mo% 6 mo mo% 12-14 t8mo% 24IDO JOIDO 36mo 

% eniles% cents adults% % mo% % % % 

% 
Alouatta palliata 14.533 - - - - 6.250 4.500 36.000 27.428 

Alouatta palliata - 2.083 

Ateles geoffroyi - - - - 9.000 

Callithrix jacchus - 12.113 - 10.273 0.193 

Callithrix jacchus 

Cebus apella 

Cebus apella 

Cebus apella 43.537 12.866 
w 
0'1 Cercocebus atys 
-...J 

Cercopithecus aethiops 

Cercopithecus aethiops 9.000 

Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus diana 35.100 16.550 10.100 0.650 

Cercopithecus diana 

Cercopithecus diana - 6.610 - 0.300 

Cercopithecus diana 

Cercopithecus hamlyni 

Cercopithecus hamlyni 23.500 15.000 - 1.050 0.500 

Cercopithecus mitis - 4.000 

Cercopithecus neglectus 18.400 7.300 - 1.350 0.030 

Colobus badius 

Colobus badius 

Colobus badius 

Colobus badius 

Colobus badius rufomitratus 23.100 15.200 - 0.200 0.100 



Species Play by Play by Play by Play by Play by Play at Play at Play at 9 Play at Play at Play at Play at Play at 
infants juv- adoles sub- adults % 3 mo % 6 mo mo% 11.2-14 18mo% 24mo 30mo 36mo 
% eniles% cents adults% % mo% % % % 

% 
Colobus badius tephrosecles - - - - - - - 9.000 
Colobus badius tephrosecles 

Colobus badius tephrosecles 0.000 0.000 14.000 0.000 0.000 - - 9.000 
Erythrocebus patas - - - 1.670 - - - 27.080 
Gorilla gorilla berengei 36.800 12.707 1.702 0.525 
Gorilla gorilla berengei 

Gorilla gorilla berengei 

Gorilla gorilla gorilla 

w Gorilla gorilla gorilla 
0\ Gorilla gorilla gorilla 1.688 00 -

Hylobates lar 7.700 6.050 - 1.210 
Hylobates lar 

Hylobates lar 

Hylobates syndacrylus 

Hylobates syndacrylus - 36.500 - 1.050 
Hylobates syndacrylus - - - - - - 9.000 
Lemurcatta 

Lemurcatta 15.600 0.000 - 0.700 
Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 12.500 - - - 27.000 - 23.000 
Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 2.480 0.040 



Species Play by Play by Play by Play by Play by Play at Play at Play at 9 Play at Play at Play a11: Play at Play at 
infants juv- adoles sub- adults % 3 mo % 6 mo mo% 12-ll4 18mo% 24mo 30mo 36mo 
% eniles % cents adults% % mo% % % % 

% 
Macaca juscata - 9.800 0.400 

Macacafuscata 21.279 - - - - - 21.779 

Macacafuscata - 23.500 - - - - - 19.750 23.000 45.000 

Macaca juscata 

Macaca fuscata 

Macaca juscata 

Macaca juscata 

Macaca fuscata 

~ Macaca mulatta - 9.450 - 0.550 
0\ Macaca mulatta \0 

Macaca mulatta 

Macaca mulatta 17.850 16.600 3.300 0.900 
Macaca mulatta 

Macaca mulatta 

Macaca mulatta 12.125 - - - - 23.000 - 25.500 

Macaca nemestrina 

Macaca nemestrina 

Macaca nemestrina 

Macaca nemestrina - 15.000 
Macaca nigra 

Macaca nigra 25.000 4.000 3.125 
Macaca radiata 18.300 51.300 
Macaca radiata 

Macaca sinica 

Macaca sylvanus - 18.900 - 2.700 1.150 

Macaca sylvanus 

Macaca sylvanus 20.900 - - - - 39.600 



Species Play by Play by Play by Play by Play by Play at Play at Play at 9 Play at Play at Play at Play at Play at 
infants juv- adoles sub- adults% 3mo% 6mo mo% 12-14 :t8mo% 24mo 30mo 36mo 
% eniles % cents adults% % mo% % % % 

% 
Macaca sylvanus 45.600 26.400 9.000 6.900 0.875 
Macaca sylvanus 

Macaca thibetana 

Mandrillus sphiru: 

Mandrillus sphiru: 37.740 - 2.550 
Nycticebus coucang 

Pan troglodytes 

Pan troglodytes 

w Pan troglodytes 29.260 20.155 6.280 
-...) 

Pan troglodytes 0 - - - - 4.100 
Pan troglodytes 25.711 - 3.796 
Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 5.860 - 0.840 - 10.950 
Pan troglodytes - 3.733 
Pan troglodytes 57.350 50.100 - 5.450 
Pan troglodytes 13.930 47.910 28.528 9.630 
Pan troglodytes 

Pan troglodytes 11.000 18.500 7.000 - 2.250 
Papio 

Papio anubis - - - - - 9.500 9.000 9.000 16.000 
Papio anubis - - - - 9.000 
Papio anubis 5.742 1.050 0.000 0.000 0.000 
Papio anubis - 0.830 0.830 0.028 - 7.638 8.889 8.330 



w 
-...J 

Species 

Papio c. ursinus 

Papio cynocephalus 

Papio cynocephaluslanubis 
(mixed) 
Papio hamadryas 

Saguinus fuscicollis 

Saguinus fuscicollis 

Saguinus midas 

Saguinus midas 

Saguinus oedipus 

Play by 
infants 
% 

29.360 
12.500 

19.565 
23.550 

14.400 

Play by Play by Play by 
juv- adoles sub-
eniles % cents adults % 

% 
5.000 

2.110 

8.300 

Play by Play at Play at Play at 9 Play at Play at 
adults% 3 mo% 6 mo mo% JL2-ll.4 18 mo% 

% mo% 

- 29.800 43.670 

0.000 
5.410 14.700 11.700 10.700 24.550 

1.200 

Play at Play at Play a11: 
24 mo 30 mo 36 mo 
% % % 



!..;.) 

-...J 
N 

Species 

Allenopithecus nigroviridis 

Alouatta caraya 

Alouatta palliata 

Alouatta palliata 

Ateles geoffroyi 

Cacajaa rubicundus 

Cacajao rubicundus 

Callicebus moloch 

Callithrix geo.ffroyi 

Callithrix jacchus 

Callithrix jacchus 

Cebus albifrons 

Cebus apella 

Cebus apella 

Cebus apella 

Cebus capucinus 

Cebus capucinus 

Cebus olivaceus 

Cercocebus atys 

Cercopithecus aezhiops 

Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus diana 

Mo at 1st Mo at Males Moplay 
appears play 2nd play play 

peak peak more? 

2.500 

3.750 

-
1.000 
1.200 

0.250 

6.500 

9.000 

-

12.500 

-
-

yes1,no 
0 

2 

0 

0 

Same sex 
preference? 
Yes 1, no o 

-
-

-
2 

-

Signif- Same Vocal- Sibling 
icant age age pref- isation?y pref­
differ- erence? es 1 no o erence? 
ence? Yes 1 no o 
Yes1 

0 

0 

0 0 
- -

Related­
ness? 
(J.=sigjo=n. 
s) 



w 
-..) 
w 

Species 

Cercopithecus diana 

Cercopithecus diana 

Cercopithecus diana 

Cercopithecus hamlyni 

Cercopithecus hamlyni 

Cercopithecus mitis 

Cercopithecus neglectus 

Colobus badius 

Colobus badius 

Colobus badius 

Colobus badius 

Colobus badius rufomitratus 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus guereza 

Colobus guereza 

Colobus guereza 

Colobus guereza 

Colobus guereza 

Erythrocebus patas 

Gorilla gorilla berengei 

Gorilla gorilla berengei 

Gorilla gorilla berengei 

Gorilla gorilla gorilla 

Gorilla gorilla gorilla 

Moplay 
appears 

Mo at 1st Mo at Males 
play 2nd play play 
peak peak more? 

3.500 

1.250 

2.000 

4.000 

8.000 

3.000 
12.000 

yes1, no 
0 

14.000 

Sanle sex 
preference? 
Yesl, noo 

Signif- Same Vocal- Sibling 
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Species 

M acaca fuscata 

M acaca fuscata 
Macaca mu/ana 

Macaca mulatta 

Macaca mulatta 

Macaca mulatta 
Macaca mulatta 

w Macaca mulatta 
-.1 
Vl Macaca mulatto 

Macaca mulatto 

Macaca nemestrina 

Macaca nemestrina 
Macaca nemestrina 

Macaca nemestrina 
Macaca nigra 

Macaca nigra 

Macaca radiata 
Macaca radiata 

Macaca silenus 

Macaca sinica 

Macaca sylvanus 

Macaca sylvanus 

Macaca sylvanus 
Macaca sylvanus 

Moplay 
appears 

Mo at 1st Mo at Males 
play 2nd play play 
peak peak n1ore? 

0.750 

1.000 
3.000 

2.000 

3.000 

0.750 

2.000 

1.500 

yes ll, no 
0 
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preference? 
Yes1,noo 

Signif- Same Vocal- Sibling 
iicant age age pref- isation?y pref­
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Species 

Macaca sylvanus 

Macaca thibetana 

Mandrillus sphinx 

Mandrillus sphinx 

Nycticebus coucang 

Pan paniscus 

Pan paniscus 

w Pan troglodytes 
-.l Pan troglodytes 0\ 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 

Pan troglodytes 
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Moplay 
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peak peak more? 
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Species Moplay Moat list Mo at Males -Same sex Signif- Same Vocal- Sibling Related-
appears play 2nd play play preference? icant age age pref- isation?y pref- ness? 

peak peak more? Yes 1, noo differ- erence? es ll no o erence? (ll=sig/o=n. 
yest,no ence? Yestnoo s) 
0 Yesll 

Papio anubis 1.000 3.000 17.000 1 - 1 - 0 
Papio anubis - - - 0 - 0 - 0 
Papio c. ursinus 

Papio cynocephalus 
Papio cynocephaluslanubis 
(mixed) 
Papio hamadryas 

Pithecia pithecia 1.000 2.250 
VJ 

Pitlzecia pithecia -...) 
-...) 

1 1 0 Pithecia pithecia • 
Pongo pygmaeus 

Presbytis entellus 1.000 2.000 13.000 
Presbytis entellus 

Presbytis johnii 

Presbytis pileatus 

Pygathrix nemaeus 

Saguinus juscicollis 

Saguinus juscicollis 

Saguinus midas 
Saguinus midas 

Saguinus oedipus 
Saimiri sciureus 
Saimiri sciureus 

Saimiri sciureus 2.500 6.500 12.500 
Theropithecus gelada - - - - - 1 - 0 



Species J!)yadie Poly- Inter- Preferred Domin- Play- Place dawn early mid- noon early 
play? adie specific time of anee parenting? pref. a. m a.m p.m 

play? play? day signif- (o=gmd/ 
ieant? ll=tree 

Allenopithecus nigroviridis 

Alouatta caraya 

Alouatta pa/liata 

Alouatta palliata 1 0 
Ateles geoffroyi 

Cacajao rubicundus 

Cacajao rubicundus 

Callicebus moloch 

VJ Callithrix geoffroyi 
--.I 
00 Callithri.x jacchus 

Callithrix jacchus 

Cebus albifrons 

Cebus apel/a - - - 5 - - - - - 14.446 

Cebus apel/a 

Cebus apella 

Cebus capucinus 

Cebus capucinus 

Cebus olivaceus 

Cercocebus atys - - 6 - - 9.000 8.000 7.000 10.000 

Cercopithecus aethiops 1 0 - - 0 
Cercopithecus aethiops 

Cercopithecus aethiops 

Cercopithecus aethiops 1 1 - 2 0 

Cercopithecus aethiops 1 1 1 5 
Cercopithecus diana 

Cercopithecus diana 

Cercopithecus diana 

Cercopithecus diana 



Species Dyadic Poly- Inter- - Preferred Domin- PRay- Place dawn early mid- noon early 
play? adic specific time of ance parenting? pref. a. m a.m p.m 

play? play? day signif- (o=grnd/ 
icant? l=tree 

Cercopithecus hamlyni 1 0 
Cercopithecus hamlyni 

Cercopithecus mitis 

Cercopithecus neglectus 

Colobus badius 

Colobus badius 

Colobus badius 

Colobus badius 

w Colobus badius rufomitratus 
-...) Colobus badius tephrosecles \0 

Colobus badius tephrosecles 

Colobus badius tephrosecles 

Colobus guereza 

Colobus guereza 

Colobus guereza 

Colobus guereza 1 1 1 2 
Colobus guereza 

Erythrocebus patas 

Gorilla gorilla berengei 

Gorilla gorilla berengei 1 1 - 3 - - 0 

Gorilla gorilla berengei 

Gorilla gorilla gorilla 

Gorilla gorilla gorilla 1 0 
Gorilla gorilla gorilla 

Hylobates lar - 0 



Species Dyadic Poly- Inter- Preferred Domin- Play- Place dawn early mid- noon 
play? adic specifi time of mnce parenting? pref. a. m a.m 

play? cpiay? day signif- (o=grnd/ 
icant? 1=tree 

Hylobates lar 1 0 
Hylobates tar 
Hylobates syndactylus 

Hylobates syndactylus 

Hylobates syndactylus 

Lemurcatta 

Lemurcatta 

Macaca arctoides 

w Macaca arctoides 
00 Macaca arctoides 1 - 7 - - - 10.000 9.000 11.000 8.000 0 -

Macaca arctoides 

Macaca arctoides 

Macaca arctoides 

Macaca arctoides - - - - -· 
Macaca arctoides 
Macaca brunnescens 

Macaca fascicularis 

Macaca fascicularis 

Macaca fuscata 

Macaca fuscata 

Macaca fusci:zta 

Macaca juscata 
Macaca fuscata 
Macaca fuscata 

Macaca fuscata 1 - - 6 - - - 5.600 5.400 2.600 4.600 5.900 

Macaca fuscata 
Macaca mulatta 



Species Dyadic Poly· Inter· Preferred Domin- Play- Place dawn early mid- noon early 
play? a die specific time of ance parenting? pref. a. m a.m p.m 

play? play? day signif- (o=grnd/ 
icant? !=tree 

Macaca mulatto 

Macaca mulatto 
Macaca mulatta 

Macaca mulatta 
Macaca mulatta 
Macaca mulatta 

Macaca nemestrina - - - 7 - - - 8.000 5.000 9.000 6.000 
Macaca nemestrina - - - 7 - - - 9.000 9.000 11.000 4.000 

\.>.) 
Macaca nemestrina 00 - Macaca nemestrina 
Macaca nigra 

Macaca nigra 

Macaca radiata - - - - - - - - - - - -· 
Macaca radiata 1 - 1 2 - - - - 4.000 8.500 4.000 3.500 

Macaca silenus 
Macaca sinica 

Macaca sylvanus 1 1 - - - - 0 

Macaca sylvanus 

Macaca sylvanus 

Macaca .sylvanus 
Macaca sylvanus 

Macaca thibetana 0 0 
Mandril/us sphinx 

Mandril/us sphinx 
Nycticebus coucang 
Pan paniscus 
Pan paniscus 
Pan troglodytes 
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Species Dyadic Poly- ·· Inter:--Preferred Domin- Play- Place dawn early mid- noon early 
play? adic specific time of ance parenting? pref. a.m a.m p.m 

play? play? day signif- (o=grnd/ 
icant? l=tree 

Pongo pygiTIIleus 1 - - - - - 0 
Presbytis entellus 
Presbytis entellus 

Presbytis johnii 

Presbytis pileatus 
Pygathrbc nemaeus 

Saguinus fuscicollis 1 0 
Saguinus fuscicollis 

Saguinus midas 
w Saguinus midas 
00 
w Saguinus oedipus - - - 7 - - - 3.000 13.000 8.000 9.000 

Saimiri sciureus 

Saimiri sciureus 

Saimiri sciureus - - - - - -
Theropithecus gelada 1 0 



Appendix E. Carnivore play database 

Species Data Source Captive=o/w No. in No. Adult play? Adult- Sex play? Length of No. of 
type lld=ll. study observed (yes=1,rare2 adult (yes=1) study (mo) observation 

1!:0U:2 1 noo) :elay? hours 
Helogale Paper Rasa 1984 0 9.000 9.000 . - - 3.00 
undulata nifula 
Thalarctos Paper Latour 1980 1 - - 1 1 0 1.00 
maritimus 
Felis catlls Paper Martin & Bateson 0 39.000 28.000 - - - ·.00 

1985b 
Felis catus Paper Hall & Bradshaw 0 9.000 9.000 1 1 0 -.00 

1998 
Fells catlls Paper Bateson et al. 1990 0 54.000 50.000 - - . -.00 

Felis catus Paper Martin & Bateson 0 21.000 21.000 1 - - -.00 

c..,) 
1985a 

00 Lutra Paper Becke11991 0 16.000 16.000 1 1 - 21.00 521.000 
~ canadensis 

Anonyx cinerea Paper PeDis 1991 0 12.000 12.000 - - - 1.00 
Phoca vitulina Paper Renouf & Lawson 1 - - 1 - - 2.50 120.000 

1986 
Mustela putorius Paper Poo1e 1978 0 36.000 - - - - -.00 

Mustela vison Paper Poo1e 1978 0 18.000 - - - - -.00 
Crocuta crocuta Paper Drea et al. 1996 0 21.000 21.000 - - - -.00 
Canis latrans Paper Bekoff & Wells 1986 1 - 56.000 - - - -.00 

Canis aureus Paper Wilkomm 1990 - - - - - - -.00 

Thalarctos Paper Grlttlnger 1997 0 2.000 2.000 1 1 - 19.50 140.000 
maritimus 
Acinonyx Paper Care 1995 1 - - 0 0 0 45.00 2600.000 
jubatus 
Panthera Ieo Book Schaller 1972 - - - - - - -.00 

Panrhera Ieo Book Schaller 1972 - - - - - - -.00 

Panthera Ieo Book Schaller 1972 - - - - - - -.00 

Arctocephalus Paper Harcourt 1991 - - - - - - -.00 
australis 
Arctocephalus Paper Harcourt 1991 - - - - - -.00 
australis 



Cerdocyon thous Paper Biben 1982 0 - 9.000 - 6.00 

Species Data Source Captive= No. No. Adult Adult- Sex Lengtll No. of 
type ofwild=t in observe pRay? adwt play? of study obserwtio 

study d (yes=l,ra play? (yes=t) (mo) nll:mu.li."S 
grou ll"e2, noo) 

Speothos Paper Biben 1982 0 - 9.000 - - - 6.00 
venaticus 
Thalarctos Paper Ramsay & Waterman 1 - 18.000 1 1 - 0.75 
maritimus 1999 
Phoca vitulina Paper Wilson 1974 1 - 84.000 - - 2 3.00 

Halichoerus Paper Wilson 1974 1 - 44.000 - - - 3.00 w 
00 grypus 
VI Phoca vitulina Paper Wilson 1974 0 6.000 6.000 - - 0.75 40.000 

Haliochoerus Paper Wilson 1974 0 2.000 2.000 - - - 0.75 40.000 
grypus 
Ailuropoda Paper Wilson & Kleiman 0 - - 1 1 - 9.00 9.000 
melanoleuca 1974 
Phoca vitulina Paper Wilson & Kleiman 0 - - 1 0 - 1.00 

Canis familiaris Paper Rooney et al. 2000 0 - - - - -.00 

Ursus Paper Henry & Herrero 197 4 0 3.000 3.000 - 1 1.50 
americanus 
Melursus Paper Henry & Herrero 1974 0 - - - - -.00 
ursinus 
Selenarctos Paper Henry & Herrero 1974 0 - - - - - -.00 
thibetanus 
Thalarctos Paper Henry & Herrero 1974 0 - - - - -.00 
maritim.us 
Ursus arctos Paper Henry & Herrero 1974 0 - - - -.00 



Species No. of No. of Average Mean Mean Mean Mean Slg.sex Same sex Sig. age Same Voca.ll-- Adult 
play play length of total Solitary Social Object: differ- pref- differ- age isation? male 
behav- inter- play bout play% play% play% play% enee? erence? ence? prefere yes=n pnay? 
iours actions s yesn, yes=n yes=:n nee? 

females yes= :a 
more=2 

Helogale undulata 36.0 78.000 630.000 5.150 - - 5.150 
rujula 
Thalarctos maritimus 14.0 73.000 221.000 - - - - - - - - 0 
Fe! is catus 4.0 - - 11.000 
Felis catus 11.0 
Felis catus 2.0 - - 14.317 - 10.175 4.140 0 
Felis catus 13.0 - - 9.100 9.100 - - - - 1 - 2 
Lutra canadensis 10.0 - 282.000 15.510 - 15.510 - 2 

w 
00 Anonyx cinerea -.0 
0\ 

Phoca vitulina 13.0 345.000 16.130 15.700 12.560 0.722 0.000 0 1 0 0 
M1tstela putorius 19.0 - 0.907 19.455 0.831 16.000 2.624 
Mustela vison -.0 - - - - 4.000 
Crocuta crocuta 13.0 - 2.625 - - - - 0 
Canis latrans -.0 - - 1.000 
Canis aureus -.0 
Thalarctos maritimus 7.0 - - 9.000 11.000 7.000 - 1 0 

Acinonyx jubatus 15.0 - - 3.400 0.347 2.958 0.503 
Panthera !eo -.0 - - 1.500 
Panthera Ieo -.0 - 1.600 
Panthera !eo -.0 - - 6.000 
Arctocephalus -.0 - - 6.100 
australis 
Cerdocyon thous 18.0 236.000 - 13.500 - 10.000 3.500 

Speothos venaticus 9.0 849.000 - 21.375 - 8.750 12.625 

Thalarctos maritimus 18.0 - 330.000 
Phoca vitulina 11.0 - 40.000 



Species No. of No. of Average Mean Mean Memn Mean Sig. sex Same sex Sig. age Same Vocal- Adwt 
play play length of total Solitl!lli.'Y Soeimll Object differ- pref- clliffer- age isation? male 
behav- inter- play bout play% play% play% pRay% enee? erenee? exnee? prefere yes=l pD.ay? 
iours actions s yest, yes=:n. yes=ll. nee? 

femalles yes=t 
more=2 

Halichoerus grypus 6.0 133.000 
Phoca vitulina 11.0 - - 5.625 - 5.625 
Halichoerus grypus 6.0 - - 1.458 - 1.458 - 0 
Ailuropoda 11.0 95.000 140.000 22.037 - 4.812 17.225 
melanoleuca 
Phoca vitulina 16.0 - 990.000 5.n9 
Canis familiaris -.0 

w Ursus americanus 31.0 508.000 - 10.550 1.4n 8.862 - - - - - 0 
00 Melursus ursinus -.0 - - - - - - - - - - 0 -...) 

Selenarctos thibetanus -.0 - - - - - - - - - - 0 
Ursus maritimus -.0 - - - - - - - - - - 0 
Ursus arctos -.0 - - - - - - - - - 0 
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