
Durham E-Theses

Runtime visualisation of object-oriented software

Smith, Michael Philip

How t o cite:

Smith, Mich ael Philip (2003) Runtime visualisation of object-oriented software , Durham the se s,
Durham Unive rsity. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3732 /

Use p olicy

The full-text may b e used and/or repro duced, and given to third parties in any format or medium, without prior p ermission or
charge, for p ersonal research or study, ed ucational, or not-for -pro�t purp os es provided that:

� a full bibliographic reference is made to the original source

� a link is made to the metadat a record in Durham E-Theses

� the full-text is not changed in any way

The full-text must not b e sold in any for mat or medium without the formal p ermission of the copyright holders.

Please consult the full Durham E-Theses p olicy for further details.

Academic Supp ort O�ce, T he Palatine Centre, Durham University, S to ckt on Road , Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6 107

http://eth es es.d ur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3732/
 http://etheses.dur.ac.uk/3732/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Run time Visualisation of Object-Oriented Software

Michael Philip Smith

Department of Computer Science

University of Durham

1999-2003

June 2003

PhD Thesis

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

1 9 JAN 2004

Abstract

Software is a complex and invisible entity, yet one which is core to modem life. The development and

maintenance of such software includes one staple task, the need to understand the software at the

implementation level. This process of program comprehension is difficult and time consuming. Yet,

despite its importance, there remains very limited tool support for program comprehension activities.

The results of this research show the role that runtime visualisation can play in aiding the comprehension

of object-oriented software by highlighting both its static and dynamic structure. Previous work in this

area is discussed, both in terms of the representations used and the methods of extracting runtime

information. Building on this previous work, this thesis develops new representations of object-oriented

software at runtime, which are then implemented in a proof of concept tool. This tool allowed the

representations to be investigated on real software systems. The representations are evaluated against two

feature-based evaluation frameworks. The evaluation focuses on generic software visualisation criteria,

due to the lack of any specific frameworks for visualising dynamic information. The evaluation also

includes lessons learnt in the implementation of a prototype visualisation tool.

The object-oriented paradigm continues to grow in popularity and provides advantages to program

comprehension activities. However, it also brings a number of new challenges to program comprehension

due to the discrepancies between its static definition and its runtime structure. Therefore, techniques that

highlight both the static definition and the runtime behaviour of object-oriented systems offer benefits to

their comprehension.

Software visualisation offers an approach to aid program comprehension activities through providing a

means to deal with the size and complexity of the software and its invisible nature.

This thesis highlights the generic issues that software visualisation faces, before focusing on how the

visualisation ofruntime information affects these issues. Many of the issues are compounded by the

dynamic nature of the information to be visualised and the explosive growth in the volume of information

that this dynamism can bring.

Wider results of this research have allowed the proposal of the necessary concepts that should be

considered in the design and evaluation of runtime visualisations.

Software visualisation at runtime is still a relatively unexplored area and there remains many research

challenges within it. This thesis aims to act as a first step to addressing these challenges and aims to

promote interest and future development within this area.

Acknowledgements

First and foremost, a special thanks goes to my wife, Julie, for all her support and encouragement

throughout my time studying for my PhD. Also for all the time she spent reading various documents and

thesis drafts.

I would also like to thank my family, and in particular, my parents, Anne and Roger, for their continual

support throughout my entire education. Without their help and support I would not have got this far.

Thanks also to Malcolm Mumo who has been an excellent supervisor and provided much encouragement

and feedback.

Many thanks go to Julie, Chris Taylor, Jill Mumo and Claire Knight for proofreading this thesis. I greatly

appreciate all the time they spent and the helpful feedback that I received.

I wish to thank all the members of the VRG and the Computer Science department with whom I have

shared many good times.

Finally, I would like to thank the EPSRC for funding this research.

ii

Copyright
The copyright of this thesis rests with the author. No quotation from this thesis should be published

without prior written consent. Information derived from this thesis should also be acknowledged.

Declaration
No part of the material provided has previously been submitted by the author for a higher degree in the

University of Durham or in any other University. All the work presented here is the sole work of the

author and no-one else.

This research has been documented, in part, within the following publications:

• M. Smith and M. Munro, Runtime Visualisation of Object Oriented Software, Proceedings of the

IEEE 1st International Workshop on Visualizing Software for Understanding and Analysis, Paris,

pages 81-89, June 2002.

• A. S. Hatch, M. P. Smith, C. M. B. Taylor and M. Munro, No Silver Bullet for Software

Visualisation Evaluation, Proceedings of the Workshop on Fundamental Issues of Visualization,

Proceedings of The International Conference on Imaging Science, Systems and Technology (CISST),

Las Vegas, USA, pages 651-657, June 2001.

iii

Contents

Abstract ... i

Acknowledgements ... ii

Copyright .. iii

Declaration ... iii

Contents .. iv

List of Figures ... viii

List of Tables ... x

Chapter 1 Introduction .. 1

1.1 Introduction .. 2

1.2 Objectives .. 4

1.3 Criteria for Success .. 5

1.4 Thesis Overview ... 5

Chapter 2 Program Comprehension ... 7

2.1 Introduction .. 8

2.2 Key terminology ... 8

2.2.1 Cognitive model ... 8

2.2.2 Mental model ... 8

2.2.3 Knowledge base ... 9

2.2.4 Assimilation process .. 9

2. 3 Key Theories .. 1 0

2.3.1 Shneiderman and Mayer : ... 10

2.3.2 Brooks .. 10

2.3.3 Wiedenbeck .. 11

2.3.4 Soloway and Ehrlich .. 11

2.3.5 Pennington ... 12

2.3.6 Littman et al. .. 13

2.3.7 Letovsky ... 13

2.3.8 V on Mayrhauser and Vans ... 14

2.4 Summary .. 15

Chapter 3 Software Visualisation .. 16

3.1 Introduction .. 17

3.2

3.3

3.4

3.4.1

3.4.2

3.4.3

3.4.4

Definition ... 17

The Need for Visualisation .. 18

Existing Taxonornies .. 19

Myers ... 19

Price et al. ... 20

Roman and Cox .. 21

Summary ofTaxonornies ... 22

iv

3.5 An Overview of Current Software Visualisation Systems ... 23

3.6 Issues and Challenges .. 31

3.7 Conclusions .. 32

Chapter 4 Software Visualisation at Run time ... 34

4.1 Introduction .. 35

4.2 Debugging Tools .. 35

4.3 Extracting runtime information .. 36

4.4 Online Vs. Offline Approaches .. 37

4.5 Dynamic Software Visualisation Tools .. 38

4.5.1 NestedVision3D (NV3D) ... 38

4.5.2 Virtual Images: Interactive Visualisation of Distributed Object-Oriented Systems 40

4.5.3 VizBug++ ... 41

4.5.4 Look! .. 42

4.5.5 I insight ... 44

4.5.6 Program Explorer ... 45

4.5.7 HotWire .. 46

4.5.8 VisiVuerM .. 47

4.6 The Benefits for Object-Oriented Software ... 48

4. 7 Current Trends and Issues and Challenges ... 49

4.8 Conclusions .. 52

Chapter 5 The DJVis Approach .. 53

5.1 Introduction .. 54

5.2 Terms ... 54

5.3 Language Choice .. 54

5.3.1 Language Constructs .. 55

5.4 DJVis .. 58

5.4.1 Overview .. 58

5.4.2 DJVis Views .. 61

5.4.2.1 The Runtime View ... 61

5.4.2.2 The Class View .. 66

5.4.2.3 The Variable Watch View .. 75

5.4.2.4 The Method Pixel View ... 80

5.4.2.5 The Query View ... 82

5.4.3 General Features ofDJVis ... 87

5.5 Conclusions .. 89

Chapter 6 Implementation ... 90

6.1 Introduction .. 91

6.2 Information Extraction Method .. 91

6.3 DJVis Prototype Implementation ... 91

6.4 Limitations ... 93

6.5 Use of the Prototype Tool .. 93

V

6.6 Conclusions .. 95

Chapter 7 Evaluation Approach ... 96

7.1 Introduction .. 97

7.2 Evaluation Techniques ... 97

7.3 Chosen Evaluation Approach ... 100

7.4 Scenarios .. 104

7.5 Conclusions .. 105

Chapter 8 DJVis Evaluation .. 106

8.1

8.2

Introduction .. 107

Informal Evaluation ofDNis .. 107

The Views .. 107

The Visualisation and implementation approach ... 114

8.2.1

8.2.2

8.3 Application of the Frameworks to DNis ... 118

8.4 Scenarios .. 130

8.4.1

8.4.1.1

8.4.1.2

8.4.1.3

8.4.2

8.4.2.1

8.4.2.2

8.4.2.3

8.4.3

8.4.3.1

Scenario 1: Corrective Maintenance .. 130

Task .. 130

Information Requirements .. 130

Application ofDJVis .. 130

Scenario 2: Code Familiarisation ... 132

Task .. 132

Information Requirements .. 132

Application ofDJVis .. 132

Scenario 3: Preventative Maintenance ... 134

Task .. 134

8.4.3.2 Information Requirements .. 134

8.4.3.3 Application ofDNis .. 134

8.4.4 Scenario 4: Impact Analysis ... 137

8.4.4.1 Task .. 137

8.4.4.2

8.4.4.3

8.4.5

8.4.5.1

8.4.5.2

8.4.5.3

Information Requirements .. 137

Application ofDNis .. 137

Scenario 5: Test Case Validation ... 138

Task .. 138

Information Requirements .. 138

Application ofDNis .. 139

8.5 Case Study: Understanding GraphTool... ... 140

8.6 Conclusions .. 151

Chapter 9 Conclusions ... 154

9.1 Introduction .. 155

9.2 Summary of Research .. 155

9.3 Criteria for Success .. 156

9.4 Future Work ... 159

VI

9.5 Conclusion ... 160

Abbreviations .. 162

References .. 163

vii

List of Figures
Figure 3-1 The SHriMP System ... 24

Figure 3-2 SeeSoft [Eick92] showing 4000 lines of code. The oldest lines are in blue and the newest lines

in red. Image from Stephen Eick's web page http://www.bell-labs.com/user/eick/SoftwareVis.html25

Figure 3-3 The Execution Mural of an object oriented programs message trace [Jerd96a]. Image from:

http://www.cc.gatech.edu/gvu/softviz/infoviz/inforrnation mural.html .. 26

Figure 3-4 Revision Tower representation of source code version information [Tayl02] 27

Figure 3-5 3D representation ofUML [DwyeOl]. Image available at: http://www.wilmascope.org/ 28

Figure 3-6 File Viz showing an overview of files in a software system. .. 29

Figure 3-7 A view of part of a city district in Software World [KnigOO] ... 30

Figure 4-1 Objects name used to create representation [Vion94] .. 40

Figure 4-2 An overview of the system [Vion94] ... 40

Figure 4-3 VizBug++ showing class and instance relations [Jerd94] .. 41

Figure 4-4 Look! showing object references .. 43

Figure 4-5 The cluster and class views respectively .. 43

Figure 4-6 Jinsight showing execution view .. 44

Figure 4-7 Histogram View showing object relations .. 44

Figure 4-8 Reference Pattern View .. 45

Figure 4-9 Program Explorer showing multiple views [Lang95] .. 46

Figure 4-10 Hotwire [Laff94] .. 47

Figure 4-11 VisiVueTM ... 48

Figure 5-1 An overview of the information shown by each view .. 60

Figure 5-2 The Thread Group Hierarchy ... 62

Figure 5-3 A single thread ... 62

Figure 5-4 A possible scaling of methods on the stack .. 63

Figure 5-5 Methods on a call stack .. 63

Figure 5-6 Details of a method on the stack ... 64

Figure 5-7 Presenting an overview of control flow information .. 65

Figure 5-8 Viewing the GraphDesktop class in Class View .. 67

Figure 5-9 Class View showing static and dynamic references ... 68

Figure 5-10 Showing field variables in the Class View ... 69

Figure 5-12 Showing data encapsulation using the Class View ... 69

Figure 5-13 Displaying User Abstractions ... 70

Figure 5-14 Embedded Abstractions .. 71

Figure 5-15 Showing Package Inclusion in the Class View ... 71

Figure 5-16 Displaying the method name and source code in the Class View .. 72

Figure 5-17 Creating a user filter ... 73

Figure 5-18 Length Mapping Modes ... 74

Figure 5-19 The Variable Watch View showing field access by type and frequency 76

Figure 5-20 Multiple patterns in the Variable Watch View ... 77

Figure 5-21 Displaying class and method accesses through the use of method lines 79

V Ill

Figure 5-22 Methods of the GraphDesktop class shown in the Method Pixel View 80

Figure 5-23 Showing two thread groups in the Query View .. 83

Figure 5-24 Displaying loaded classes ... 84

Figure 5-25 Visualising the structure of a class in the Query View ... 84

Figure 5-26 Showing an overview of the methods and fields .. 85

Figure 5-27 Detailed view of a class in the Query View ... 86

Figure 5-28 Showing a class has user annotated documents in the Class View ... 87

Figure 5-29 Showing annotation levels .. 87

Figure 5-30 Displaying annotation details for the class MessageCatalog .. 88

Figure 6-1 Generating a visualisation within the prototype tool .. 94

Figure 7-1 Cognitive Design Elements for Software Exploration [Stor97a] ... 101

Figure 8-1 Navigation options within the Runtime and Query Views ... 108

Figure 8-2 Game based navigation aid for showing the position of objects relative to the user [Frontier].

··· 109

Figure 8-3 Method Calling shown in the Class View .. 131

Figure 8-4 Focusing on three threads of interest in the Query View ... 133

Figure 8-5 Showing the class structure of a web server ... 135

Figure 8-6 Inspecting for inheritance candidates ... 136

Figure 8-7 Inspecting the inheritance/implements structure of four classes in the Query View 136

Figure 8-8 Gaining an overview of the method calling relationships for the Lexer class using the Method

Pixel View .. 138

Figure 8-9 Custom mapping for the easy identification of methods which are not called 139

Figure 8-10 Highlighting uncalled methods ... 140

Figure 8-11 GraphTool classes after initialisation as shown in the Class View 141

Figure 8-12 Identification of interesting features in the main sub graph ... 142

Figure 8-13 Classes loaded as a result of displaying the Preferences Dialog .. 143

Figure 8-14 Displaying the field information for the Graph class ... 145

Figure 8-15 Invesigating field names and types using mouse over information 145

Figure 8-16 Investigating the threading structure of GraphTool... ... 14 7

Figure 8-17 Showing the methods involved in the horizontal layout functionality of Graph Tool 148

Figure 8-18 Investigating the fields of the Node and Edge classes .. 149

Figure 8-19 Close up of Edge class showing field types ... 149

Figure 8-20 Watching the from_edges vector of the Node class in the Variable Watch View 150

IX

List of Tables
Table 3-1 Software World mapping [KnigOOJ ... 30

Table 5-1 Dynamic relationships between Java items in an executing Java program 58

Table 5-2 Object level relationships .. 58

Table 5-3 Viewing the different relationships in the different views ... 60

Table 5-4 Class View Representations .. 67

Table 5-5 Possible interpretations of patterns from Figure 5-18 .. 78

Table 7-1 Shneiderman's seven tasks [Shne96] ... 97

Table 8-1 Information that is unavailable using the JPDA .. 115

Table 8-2 Application of Storey et al. [Stor97a] framework to DJVis ... 121

Table 8-3 Application of Knight's [KnigOO] framework to DJVis .. 126

X

Chapter 1 Introduction

1. 1 Introduction

The objective of this thesis is to investigate the issues involved in understanding object-oriented code.

This takes the form of showing the execution behaviour of object-oriented code using visualisation

techniques.

The task of comprehending software is central to the majority, if not all, of software engineering tasks.

This is particularly true for understanding the software's implementation details. Program comprehension

is not an easy task and it can be time-consuming and problematic, even for experts. Software is highly

complex and program comprehension requires gaining an understanding of the complex and varied

relationships between its constructs. This understanding of the software is typically based on its source

code and documentation. However, documentation and designs can often be out-of-date and differ from

the actual structure of the software. The pressures of deadlines, poor coding standards and unrecorded

changes can often mean that software is significantly different in its implementation and structure

compared to that defined in the documentation on the software. However, it is difficult to understand a

program from the source code alone, due to the complexity and size of source code that defmes real world

software and the low-level nature of its description. Relationships between source code constructs are not

obvious and it can be difficult to find the particular piece of source code of interest that implements a

particular feature, or follow the code in a logical manner, such as through the calling structure. Good

coding practices, structuring, encapsulation and cross-referencing and searching facilities in source code

editors can all help, but they cannot solve the problem due to the inherently complex and abstract nature

of software.

Software development is a team activity and therefore each team member will often need to understand

the code developed by other members of the team, for example, if it interacts with their code, or there is a

bug that needs fixing. Thus there is a need for program comprehension of unfamiliar code as well as their

own. High staff turnover can compound this problem, especially if additional programmers join a project

in the middle of its development stage as they will have no existing knowledge of the software. These

new programmers will need to gain an understanding of the current structure of the software, before they

can be most effective. Loss of existing staff also means that a large amount of typically undocumented

knowledge and experience is lost. It will take a new employee a significant amount of time to reach this

level of knowledge and experience. These issues also affect the maintenance of the software.

Software maintenance is:

"The process of modifYing a software system or component after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment." [IEEE]

Software maintenance can be categorised in to four subsections [Benn91]:

• Perfective maintenance: Enhancing the original program by adding new

functionality.

• Corrective maintenance:

• Adaptive maintenance:

The fixing of errors and bugs in the original program.

The adaptation of the original program to a changed

2

• Preventative maintenance:

environment e.g. Operating system.

Reengineering the original program to improve its structure

and quality in order to allow for easier future maintenance.

All of these maintenance activities require some level of program comprehension and they can also offer

increased challenges compared to development activities. The people maintaining a piece of software will

normally not have developed it. Therefore, they have no initial experience or knowledge of its structure or

design to aid them in their initial maintenance activities. Existing documentation will often be out-of-date,

especially if the software has already undergone maintenance by another team. Software maintenance

consumes a large amount of resources in the software lifecycle and much of the time involved in software

maintenance is spent on program comprehension activities. Program comprehension is needed in order to

carry out maintenance tasks, for instance in a corrective maintenance task it may be necessary to

understand at the code level when an unhandled exception is thrown. Therefore, any improvements

offered to program comprehension tasks will be of substantial benefit to the development and

maintenance of software.

The Object-Oriented (00) paradigm has grown increasingly popular in recent years and it has brought a

number of advantages. Its supporters claim that it allows increased reusability and understanding by

maintainers, due to its ability to encapsulate and provide inheritance of existing classes. Such facilities

allow developers to focus their program comprehension activities and reduce the understanding they need

of other classes, often to just the class' interface and the functionality it provides. However, the object­

oriented paradigm is certainly not a silver bullet and program comprehension of 00 systems is still a

difficult and time-consuming task. With its benefits to program understanding come new challenges. 00

programs are comprised of a network of communicating objects at runtime and this results in a large

discrepancy when compared to the static class descriptions of the program. This discrepancy is increased

by the use of inheritance and dynamic binding. The latter make it impossible to see the actual calling

structure based on the static source code alone, because the actual call is only resolved at runtime. When

there are a large number of objects inheriting from a class, it can be difficult to ascertain which actual

object type is referenced by variables of that type. For instance, is it an object of the variable type, or an

object of one of the classes, which inherit from it? The aforementioned techniques are beneficial to a

developer, as for example, the same data structure can be used for all objects by simply storing references

to a base class and this reduces the need to understand and debug multiple variations of the same data

structure. However, this makes it increasingly difficult to see how each instance of the data structure is

used.

Visualisation is defined as [OED]:

"The process of forming a mental picture or vision of something not actually present to the sight"

This is a generic dictionary definition of visualisation, however it captures the goal of building a mental

picture. Visualisation involves the representation of data in order to aid the user's understanding and this

representation is typically based on graphical representations. Sophisticated visualisation techniques are

increasingly available on desktop PCs, as graphical hardware has become very powerful and affordable

due to its growth in areas such as games and entertainment. Visualisation has been applied to a number of

3

areas, such as information and scientific visualisation and has proved successful in aiding such tasks, for

example, in visualising airflow in aerodynamic studies. Software visualisation is the application of

visualisation techniques to aid in software understanding tasks, and provides an approach to assist with

program comprehension tasks. One of the problems in program comprehension is dealing with the vast

amount of information and trying to understand the complex and often hidden relationships between

software constructs. Software visualisation can aid such tasks by presenting information on the program

in a different form to its source code. This may be achieved by using techniques such as abstraction,

filtering and pattern recognition to help the user understand the software's structure and behaviour.

However, software offers a number of challenges to visualisation techniques. Software is an abstract

entity and massively complex, encompassing a vast number of varied relationships between different

constructs. Therefore, the application of visualisation techniques to software is not an easy task and

designing a suitable representation is difficult and problematic. Software visualisation cannot rely on

intuitive real world representations, as is often the case in scientific visualisation, where the data typically

represents some physical item. Much research is therefore needed into software visualisation

representations.

Runtime visualisation is defined, for the purposes of this thesis, to be the visualisation of the runtime

behaviour of software. Software visualisation can be applied to both the statically available details of

software and the dynamic details available as the program executes. Runtime visualisation offers a way to

aid the understanding of maintainers and developers by showing the actual behaviour and structure of the

software as it executes, using dynamically extracted facts. Runtime visualisation provides an approach to

deal with the discrepancies between the static description of the software and its runtime behaviour. It is

therefore particularly useful when applied to object-oriented software where these discrepancies are

especially prevalent. Runtime visualisation faces the generic software visualisation challenges, however,

the dynamic aspects together with the vast volume of information available on an executing program

result in new intricacies in these challenges, such as those of scale and representation.

1. 2 Objectives

Program comprehension is an area that offers significant potential for improvements through tool support.

It is a major task in many software engineering activities and it is currently time-consuming and therefore

costly. This research aims to focus on the application of visualisation techniques in order to aid program

comprehension tasks. This will specifically focus on the visualisation of object-oriented systems, due to

the growth of this paradigm. Object-oriented software also offers additional challenges due to the

discrepancies between its static specification and its dynamic structure. Therefore, it is the dynamic

structure that will be visualised in order to highlight the dynamic nature of the paradigm. Effective aids to

program comprehension will help to maximise the benefits of object-oriented development.

This research will investigate the current state of runtime visualisation research and highlight the research

issues and challenges that the field still faces. These issues will then drive the development of new

representations of object-oriented programs, whose aim is to improve program comprehension tasks on

object-oriented software. These representations will need to take into account the issues and challenges

for runtime visualisation, as well as generic software visualisation challenges. Issues, such as scale and

4

the abstract nature of software, will need to be considered in the design of the new representations. The

developed representations will need to be able to show the structure of the software as it executes and at

various levels of abstraction, in order to allow the user to deal with the large volume of information.

An important aspect of a software visualisation, and in particular, a runtime visualisation, is the ability to

generate the visualisation automatically without the need to modify the original source code of the

program. This allows the visualisation to be applied to real world programs. This research discusses the

possible information extraction techniques for gaining access to details of the software's execution. The

visualisations developed as part of this research will be incorporated into a proof of concept tool, which

will allow both the visualisations and the information extraction technique to be evaluated. This will

focus on the investigation of debugging techniques for runtime visualisation.

The visualisations produced by this research will aim to aid program comprehension activities. However,

they will only be one step towards addressing the issues involved. Therefore, this research also aims to

discuss issues that should be considered in the design and evaluation of runtime visualisations as a means

of driving future research. Areas for future development both in terms of the ideas presented in this thesis,

and in runtime visualisation generally, will also be discussed at the end of the thesis.

1.3 Criteria for Success

This research aims to investigate the applicability of visualisation to the runtime behaviour of software in

order to aid in maintenance tasks. The success of the research will be judged against the following

criteria:

a) Address the visualisation issues of representing an object-oriented language such as Java at runtime.

b) Develop new visual representations of object-oriented system at runtime.

c) Provide various levels of abstractions in visualisations of runtime information.

d) Develop a proof of concept prototype tool to demonstrate visualisations.

e) Show the applicability of these concepts to maintenance tasks using this proof of concept tool.

f) Demonstrate that the visualisations can be generated automatically with the programmer needing no

knowledge of the structure of the software under study.

These criteria are revisited in chapter 9, where they are compared against the research achieved.

1.4 Thesis Overview

This thesis is structured into a number of chapters, each of which addresses a different aspect of the

research and its background. The remaining 8 chapters can be summarised as follows:

Chapter 2 introduces the program comprehension field and presents an overview of the main concepts

involved. Key work within the field is presented, thus allowing an understanding of the current state of

research to be gained.

5

Chapter 3 introduces software visualisation. The different defmitions and sub areas of software

visualisation are presented, followed by the benefits that software visualisation can offer. This chapter

also provides the definition of software visualisation as used by this research. The chapter provides an

overview of what the field entails by summarising three of the major taxonomies on software

visualisation and thus showing where this research fits into the larger field. A number of existing

visualisations are also presented to show the current state of the field and demonstrate some of the

representations that exist. Finally, software visualisation faces a number of generic challenges and issues

and these are outlined in this chapter.

Chapter 4 goes on to focus on software visualisation at runtime. This chapter presents an overview of the

existing work that has been performed in this area through the presentation of a number of runtime

visualisations. A summary of the different techniques for information extraction is also presented which

outlines the respective benefits and drawbacks of each. The chapter outlines why this research focuses on

visualising object-oriented software and the particular benefits that can be gained for aiding the

understanding of object-oriented software. The chapter concludes with a discussion of the specific issues

and challenges that runtime visualisation presents.

Chapter 5 introduces the DJVis approach and defines a number ofvisualisations ofruntime information

that aim to address the issues identified in the previous chapter. Each of these visualisations forms a view

that shows some particular aspect of the executing software. Each of these views is discussed along with

issues that affect all views and the interoperation of the views.

Chapter 6 discusses the implementation of the prototype tool version ofDJVis. The techniques and

technologies used are briefly described, as well as, a guide on how the prototype tool can be used to

visualise Java programs without the need for programmer intervention.

Chapter 7 introduces the evaluation ofDNis. The chapter outlines the different evaluation techniques

that could be applied, providing details of the advantages and disadvantages of each. From this, the

chosen approach of two feature-based frameworks and multiple usage scenarios are described in more

detail.

Chapter 8 goes on to show the application of the evaluation approach to DNis. This is preceded by an

informal discussion of the merits and issues of the main aspects ofDNis and the implementation

techniques used for the prototype tool. The feature-based frameworks are then applied followed by five

usage scenarios and one in-depth case study.

Chapter 9 draws the thesis to a conclusion by providing an overview of the research and discussing its

contributions. The criteria for success defined in chapter 1 are also re-examined against the achieved

results. Finally, areas for future research are outlined for both DNis and runtime visualisation in general.

6

Chapter 2 Program Comprehension

7

2. 1 Introduction

Program comprehension is the task of understanding how a program is constructed and how it operates.

Therefore, program comprehension is essential to the task of modifying or maintaining a program. It is a

major component of any software maintenance task, occupying 50-90% of the maintenance time

according to some estimates [Stan84]. It is also present in the initial software development process,

through tasks such as code reviews, debugging and some testing strategies. There are a number of

theories on the methods used in program comprehension, varying between top-down and bottom-up

techniques. An introduction to the main terminology and ideas will be presented, followed by summaries

of the main work in the field.

2.2 Key terminology

A number of terms are used in the various program comprehension theories, however V on Mayrhauser

and Vans [Mayr95] provide a summary of the key theories and draw similarities between them. All the

approaches use existing knowledge, combined with a comprehension strategy in order to acquire new

knowledge and understanding of the program. A brief summary of the general terminology is presented

below, this includes the cognitive model, mental model, knowledge base and assimilation process. The

key theories are then summarised to show the individual approaches.

2.2.1 Cognitive model

A key term is that of the cognitive model, which refers to the complete set of processes, mental models,

knowledge and heuristics used in program comprehension. This is composed of three main components: a

mental model, a knowledge base and an assimilation process.

2.2.2 Mental model

The mental model is the programmer's internal, working representation of the software and is

continuously updated as the comprehension process proceeds. It is made up of semantic constructs and a

number of definitions for these exist within the different theories, which are summarised by V on

Mayrhauser and Vans [Mayr95].

Text structure knowledge is made up from the program text and its structure. Examples of this include

conditional constructs, such as IF constructs, variables and function defmitions and looping constructs.

Chunks are constructed from various levels of text structure abstractions. Macrostructures are text

structure chunks identifiable by a label. For example, a sort routine macrostructure is simply its label sort,

representing the abstracted code microstructures (individual code statements) that make up the sort code

block. Chunking is the process of creating new higher level abstractions from existing lower level

abstractions.

8

Plans are ''program fragments that represent stereotypic action sequences in programs" [Solo84]. V on

Mayrhauser and Vans [Mayr95] define plans as "knowledge elements for developing and validating

expectations, interpretations and inferences" and defme them as either slot types or slot fillers. Slot types

describe generic objects, for example data structures such as trees, whilst slot fillers are specialised for a

specific task, with specific program fragments being an example of these. V on Mayrhauser and Vans

further classify plans as programming plans or domain plans. Programming plans relate to programming

knowledge and can vary in abstraction from high (e.g. abstract program functionality), to intermediate

(e.g. data structures and algorithms), to low level (e.g. individual control statements). Domain plans

contain knowledge of the problem area, such as knowledge on the real world operations of the software.

This excludes low-level details of the code and algorithms.

Hypotheses [Broo83], is the method by which Brooks suggests that maintainers build a mapping between

the problem domain (top level) and the programming domain (bottom level). They drive the direction of

future investigations as they are refined, rejected or accepted.

Conjectures are how Letovsky [Leto86] refers to hypotheses. Letovsky classifies these, identifying three

main types:

• Why conjectures, e.g. why a certain design choice?

• How conjectures, e.g. how a program goal is achieved?

• What conjectures, e.g. what does a variable do?

Associated with each conjecture is a degree of certainty, ranging from almost certain to uncertain guesses.

2.2.3 Knowledge base

The knowledge base is the maintainer's understanding of the domain. It consists of both general

knowledge and task specific knowledge and this can be existing knowledge or that newly acquired in the

comprehension processes. General knowledge is things that do not relate directly to the task. An example

of this is general knowledge about software engineering, such as general data structures and programming

language knowledge. Task specific knowledge is knowledge that relates directly to the software under

study, such as system goals or implicit business rules used by the system. If the maintainer has worked on

the software before, they will have some (partial) mental model. Variations exist across the key theories

over how this knowledge base is structured and the different levels of abstraction used.

2.2.4 Assimilation process

The assimilation process is the glue that binds the knowledge base to the mental model. This is the

process by which the maintainer refines and updates their mental model using their knowledge base. A

number of aids and strategies exist for knowledge acquisition.

Rules of programming discourse are rules of conventions in programming [Solo84] and these rules

produce expectations with the maintainer on what should be in the program.

9

Beacons are idioms in programming or stereotypical code, which are typically associated with some

functionality or operation [Broo83], for example, a function name. They act as cues that index into

knowledge and allow a high-level understanding to be gained.

Cross-referencing is the process by which different abstraction levels are related allowing mappings from

program parts to functional descriptions.

2. 3 Key Theories

This section presents some of the main theories on program comprehension and shows how some of the

concepts in the terminology section were devised.

2.3.1 Shneiderman and Mayer

Shneiderman and Mayer [Shne79] believe that comprehension relies on semantic and syntactic

knowledge. This is stored in long term memory, each with differing levels of abstraction. Syntactic

knowledge is knowledge of the programming language syntax and any specific issues of that

programming language, such as library functions etc. It is more specific and detailed than semantic

knowledge, and therefore, more easily forgotten. However, they suggest that it is easier for humans to

learn a new syntactic representation for an existing semantic structure, than to learn a new semantic

structure. As an example of this, they highlight learning a programming language. The first is difficult,

because it requires both semantic and syntactic learning, whilst learning a subsequent language (of the

same semantic structure e.g. imperative) is easier as only the syntax needs learning. Semantic knowledge

consists of general programming concepts that are independent of a specific language. This can vary in

abstraction from low level details, such as what data types are, to higher level concepts, such as searching

techniques. Higher than this there may be domain knowledge, for example, knowledge to solve problems

in an application area such as airline reservation systems.

Shneiderman [Shne80] then goes on to suggest that programmers abstract program information into

chunks, which are used to build an internal semantic structure that represents the program. Chunks are

syntactic or semantic abstractions of text structures within the source code. Sections of the source code

are abstracted into chunks by the maintainer and then these chunks can be abstracted into higher level

chunks. This represents a bottom-up approach to comprehension.

2.3.2 Brooks

Brooks [Broo83] suggests a top-down approach to comprehension based on the hypothesis of a mapping

between the problem domain (top level) and the programming domain (bottom level). The theory

suggests that maintainers form a number of increasingly refmed hypotheses about the program function

instead of reading the program line by line. The initial hypothesis is formed from the first information on

the program known by the maintainer. This can be a brief description of its purpose, or simply just its

name. This initial hypothesis then sets up expectations with the maintainer of objects and operations to

see in the program. Through comprehension the maintainer verifies the hypotheses from information on

the program and rejects or modifies any which are not supported. This occurs until the maintainer has

10

sufficient knowledge to perform the maintenance task required. Brooks [Broo83] believes that a notion of

beacons is used in the process of hypothesis verification by the maintainers, rather than them studying

individual lines of code. Beacons are idioms in programming or stereotypical code, which are typically

associated with some functionality or operation. For example, the common example is the swapping of

two variables, which could be a beacon for a sorting routine.

2.3.3 Wiedenbeck

Wiedenbeck expanded on Brooks' notion of beacons and investigated them empirically in a number of

studies [Wied86a, Wied86b, Wied91]. The results of these suggest an association between

comprehension of programs, programmer expertise and beacon recognition [W ied91]. One study

[Wied86a] found a significant difference in the number of lines containing beacons that could be recalled

depending on the programmer's experience. Novices recalled only 14%, compared to 79% for

experienced programmers, whereas there was not a significant difference for non-beacon lines. However,

Wiedenbeck [Wied91] found a much smaller percentage of recall of a standard, non-disguised swap

beacon by advanced programmers (33%), compared to the 78% in previous work [Wied86b]. The results

must be viewed with caution as pointed out in the paper, due to design difficulties in the experiment. For

example, the shellsort code used [Wied91] may have been familiar to some of the subject population.

Despite this, Wiedenbeck believes that the accumulation of the results supports the role of beacons in

program comprehension by stating " the meaning of these findings is that the idiomatic or stereotypical

code did appear to play a large role in the initial high level comprehension of programs" [Wied9 I].

However, the studies also showed that a strong beacon can lead to rniscomprehension, as discrepancies

between the beacon and surrounding context information are not often noticed at the initial stage of

comprehension.

2.3.4 Soloway and Ehrlich

Soloway and Ehrlich [Solo84] suggest that expert programmers use two types of programming

knowledge, which novice programmers typically do not have.

I) Programming plans.

2) Rules of programming discourse.

They define programming plans as ''program fragments that represent stereotypic action sequences in

programs" [Solo84], for example, an item search loop plan. They take inspiration from work in the field

of text comprehension where there is a notion of schemas which "are generic knowledge structures that

guide the comprehender 's interpretations, inferences, expectations and attention when passages are

comprehendecf' [Grae81]. They view programming plans as corresponding directly to schema.

Rules of programming discourse are the rules of convention in programming. These rules produce

expectations with the maintainer on what should be in the program. They identify the following rules of

discourse: (Fig. 2 from Soloway and Ehrlich [Solo84])

(1) Variable name should reflect function.

(2) Do not include code that will not be used.

11

(2a) If there is a test for a condition, then the condition must have the potential to be true.

(3) A variable that is intialized via an assignment statement should be updated via an assignment

statement.

(4) Do not do double duty with code in a non-obvious way.

(5) An IF should be used when a statement body is guaranteed to be executed only once and a

WHILE when a statement body may need to be repeatedly executed.

Using this, they view programs as being composed from programming plans altered to suit a specific

problem, with the rules of programming discourse specifying how the plans are composed. They" believe

that programs that conform to these rules of discourse (plan-like programs) are easier to understand for

expert programmers (who possess knowledge of plans and rules of discourse) than those that do not

conform to the rules (unplan-like programs). They investigated this empirically, proposing that expert

programmers are much better at understanding plan-like programs than novice programmers. However,

when programs are unplan-like, the performance of the expert programmers reduces to that of novice

programmers, due to the confusion caused by their strong expectations being broken by rule violations.

Novice programmers are less sensitive as their lack of knowledge means they have fewer expectations.

This theory was supported by the study's results showing that programming plans and rules of

programming discourse have an impact on program comprehension, with the strong expectations of

expert programmers and the subsequent drop in performance when these expectations are broken by rule

violations. Later work [Solo88] also supported the use of plans in comprehension, with shallow reasoning

occurring in plan like programs. Here, plans are matched to code without significant reasoning about

relationships within the code. In unplan-like programs they suggest deep reasoning is employed, which

involves reasoning casually about the goals of the program and how they relate to the code of the

program.

2.3.5 Pennington

Pennington [Penn87a, Penn87b] describes a bottom-up comprehension process, which develops two

different mental representations.

• Program model. Pennington suggests that when new code is presented to a programmer they initially

try to build a control flow model. This is built up using beacons in a bottom-up manner. Text

structures e.g. control primes such as loops and plans are used in the program model development, as

microstructures are chunked together to give macrostructures. Cross-referencing is used to link

knowledge.

• Situation model. This is also built bottom-up and it uses real world knowledge of the domain to

represent the code in terms of real world objects. This model is built using cross-referencing and

chunking.

Cross-referencing is used to link the mental representations, allowing mappings from statement level

representations, to a functional abstract program view.

12

2.3.6 Littman et al.

Littman et al. [Litt86] investigated program comprehension through experiments with expert

programmers implementing an enhancement to a small existing system. Their studies suggest that there

are two basic approaches to program comprehension: the systematic strategy and the as-needed strategy.

• Systematic strategy. Here the maintainer examines the program in depth, performing extensive

symbolic execution on the control and data flow paths. Using this study of the dynamic and static

aspects of the program, the casual interactions between components of the program are understood.

This knowledge allows the maintainer to take these interactions into account when modifying the

program. With the systematic strategy the aim is to understand the program before modifying it.

• As-needed strategy. With this approach, the maintainer attempts to minimise the study of the

program. This is done by localising the parts of the program that need to be modified, in order to

make the change. When the change is made the maintainer will then typically be required to

investigate further on an as-needed basis, to gather additional information to make the change. This

can be problematic as the maintainer may not understand sufficiently the casual interactions and are

therefore unlikely to detect any unforeseen side effects of their changes.

The results of the study also suggest that the approach a maintainer uses to study a program heavily

influences the knowledge they acquire about the program. This knowledge then directly determines if

they can successfully make the change to the program. However, the applicability of each approach is

dependent on the system size, as it is unfeasible to use the systematic strategy on larger programs

although it may still be possible to subdivide the program into sections, which can then be tackled with

the systematic strategy. Larger programs cause problems for both strategies, due to the vast amount of

information involved.

2.3. 7 Letovsky

Letovsky [Leto86] performed an empirical study of the cognitive processes in program comprehension.

This was done by encouraging the maintainers to "think aloud" whilst trying to add an enhancement to an

unfamiliar piece of code. These responses were classified into questions and conjectures. Letovsky

[Leto86] suggests a cognitive model with three main components: a knowledge base, a mental model and

an assimilation process. The knowledge base contains all the maintainer's programming expertise,

domain knowledge, goals, plans and rules of programming discourse. The mental model is split into three

layers: specification, implementation and annotation layers. The specification layer contains the program

goals and is the highest level of abstraction. The implementation layer is the description of the program's

actions and data structures and therefore is the lowest level of abstraction. The final annotation layer

represents a mapping between corresponding parts of the code and goals. The assimilation process uses

any available information from the program code or the maintainer's knowledge base to construct the

mental model of the program. Letovsky believes that this assimilation process is opportunistic, with the

maintainer using either a top-down or bottom-up approach, depending on the situation. They use

whichever they believe will give them the highest knowledge gain.

13

2.3.8 V on Mayrhauser and Vans

V on Mayrhauser and Vans [Mayr95] offer a summary of these approaches and define an integrated

metamodel which incorporates aspects ofSoloway, Adelson and Enrlich's [Solo88] top-down model

with Pennington's [Penn87a, Penn87b] program and situation models. The integrated metamodel has

four main components: the top-down (or domain) model; the situation model; the program model and the

knowledge base. The knowledge base is used to build the other three model components, which are

related to the comprehension process. Their experiments showed that programmers frequently switch

between the three types of comprehension model components defmed in the integrated model. When a

programming language or code is familiar, a top-down (or domain) model approach may be used, for

example if the programmer spots a beacon. This includes domain knowledge describing the program's

functionality and this can be used for formulating hypotheses. An opportunistic or as-needed strategy is

often used to develop the top-down model. When faced with unfamiliar code, the programmer may switch

to developing a program model i.e. control flow abstractions. The situation model describes functional

attractions and data flow within the program and unlike Pennington's model [Penn87a, Penn87b], they

suggest that a situation model can be developed after only a partial program model has been formed,

rather than the complete program model as suggested by Pennington . This was because they felt that

developing a complete program model was unrealistic for large programs [Mayr93]. Structures built by a

model component are also accessible to the other model components. Finally, a knowledge base stores the

information needed to build up the other three model components.

Vans et al. [Vans99] also specifically investigated their integrated metamodel within program

understanding behaviour during corrective maintenance oflarge scale software. A small study was

undertaken observing four experienced professional programmers debugging software. They investigated

how maintainers go about debugging software, looking at the work process and information needs. Their

conclusions can be summarised as [Vans99]:

• Actions: Knowledge use and hypothesising are important actions at all levels of abstraction.

Chunking and knowledge storage are common at lower levels.

• Process: Comprehension will occur at lower levels when there is little experience in the domain, until

enough domain experience allows connections to be made at higher levels. When there is little

knowledge of the software but the maintainer has domain knowledge, then comprehension will again

occur at low levels but use direct connections to the domain model. Knowledge of both the domain

and software allows connections between all levels of abstraction.

• Information needs: Connected program, situation and domain knowledge are important during

corrective maintenance, along with domain concepts. Existing tools do not normally support domain

concepts and connect model information, meaning that anything above the program model has to be

searched for and connected manually.

• Hypotheses are made at code, algorithm and application domain levels, which suggests that the

software must be understood at all levels of abstraction.

14

The small sample size of the study means that these conclusions are working hypotheses, however they

do support the integrated model. They suggest the need for knowledge support at multiple levels of

abstraction and mechanisms to allow tool support for working at different abstraction levels and ease of

changing between abstraction levels.

2.4 Summary

A number of program comprehension theories exist and commonalties exist between them, as highlighted

by V on Mayrhauser and Vans [Mayr95). All the theories defme a cognitive model and they all use

existing knowledge, combined with a comprehension strategy in order to acquire new knowledge and

understanding of the program. The most pertinent approach will of course depend on the task at hand and

the experience of the maintainer with the program, domain and implementation language. All

maintenance activities require some understanding of the program and this is typically from the source

code, due to the common problems of poor, inaccurate, or even missing documentation. Therefore,

program comprehension is a major task and could thus benefit from tool support. This could take the form

of tools for increased cross-referencing between source code and documentation, or improved methods

and support for documentation maintenance. Visualisation offers a way to help rnaintainers construct their

mental models by helping to abstract out the semantic constructs which they use in its construction.

Visualisation allows them to easily explore the large amount of data that the source code contains, in

order to aid in verification of hypotheses.

15

Chapter 3 Software Visualisation

16

3. 1 Introduction

This chapter introduces software visualisation. Various definitions of software visualisation are presented

in order to show the variations within the field. The main taxonomies are then summarised to allow the

context of this work to be seen. An overview of current visualisation systems is then presented, which

provides examples of the different application areas of software visualisation, as well as examples of

some of the representations that have been used within the field. Issues and challenges that are faced by

all software visualisations are discussed.

3.2 Definition

Visualisation is defmed as the "process offorming a mental picture or vision of something not actually

present to the sight" [OED]. This generic English language defmition specifies the goal of visualisation,

that is the forming of a mental picture of some phenomenon. However, the application of visualisation

techniques not only attempts to provide a mental image, but also improve the understanding of the item

under study. The formation of a mental picture is the important feature and this does not have to occur

purely through visual means, for example techniques using sound have been tried in order to aid program

comprehension [Baec97]. However, most software visualisation systems focus entirely on using visual

stimulus to present information on the software.

The visualisation field can be subdivided into a number of distinct areas, of which software visualisation

is one. Software visualisation is therefore the application of visualisation techniques with software as the

item under study. Many authors have provided their own definitions of software visualisation based on

the idea of forming a mental image of software. For instance, Price et al. define software visualisation as

"the use of the crafts of typography, graphic design, animation and cinematography with modern human­

computer interaction and computer graphics technology to facilitate both the human understanding and

effective use of computer software" [Pric93]. However, Knight goes further and includes the goal of

reducing complexity, by defining software visualisation as "a discipline that makes use of various forms

of imagery to provide insight and understanding and to reduce complexity of the existing software system

under consideration." [Knig99a]

To confuse matters there exist a number of related terms that are often used instead of software

visualisation. Program visualisation is a commonly used term especially for the early taxonomies. For

example: "Program visualisation uses graphics to illustrate some aspect of the program or its run-time

execution, where the program is specified in a conventional, textual manner" [Myer90] or "program

visualisation as a mapping from programs to graphical representations" [Roma93]. However, the term

software visualisation shall be used for this work as it encompasses all aspect of a piece of software,

rather than just the code and executable properties that the term program visualisation can suggest. The

other terms used can be briefly summarised as:

• Computation visualisation is introduced by Stasko and "is the use of computer graphics to

explain, illustrate and show how computer hardware and software function "[Stas92b].

17

• Algorithm animation or algorithm visualisation shows the behaviour and abstract operation of an

algorithm.

• Code visualisation focuses on displaying the source code and its attributes.

• Data visualisation illustrates the data structures and values used in the program.

Visual programming is also often confused with software visualisation. However, these are distinct areas,

with visual programming being the use of graphics to allow program code to be specified and developed.

Whereas software visualisation is based upon aiding the understanding of programs that have already

been written.

3.3 The Need for Visualisation

Understanding existing programs is a significant overhead in the software maintenance process. The

majority of time used by maintenance, debugging and code re-use processes is spent on understanding

existing programs [Stor97a]. Here, visualisation can be beneficial by aiding maintainers, allowing them to

interact with large volumes of data, in a fast and effective manner and in an attempt to discover hidden

characteristics and patterns. Visualisation offers a way to cope with the massive information overload that

can occur with traditional techniques, such as simple code browsing. Many authors see it as a way to

interact with programs and indeed computers in general, in a more natural way. For example, Walker

states "the traditional interface of mouse, keyboard and screens of text allows us to work on computers,

while techniques such as visualisation will truly enable us to work with computers" [Walk95].

Program comprehension is a major component of any software maintenance task, occupying 50-90% of

the maintenance time according to some estimates [Stan84]. Therefore, any improvements in

comprehension activities, due to the use of software visualisation, will have a large impact on improving

maintenance activities. This is combined with the growing size and complexity of software, as systems

are required to perform more and more functionality and are increasingly interconnected. Modern

software is also moving towards more rapid development and deployment and in this environment of high

paced change, tools are need to allow software to be understood quickly and reliably. Software

visualisation offers a solution for this problem and can help developers keep pace with the rapid change

as it is no longer possible for users to maintain a detailed mental model of the software they are working

on, unless all their tasks are highly localised.

Software visualisation offers a chance for developers to see an otherwise invisible item. However, Brooks

defines software as "invisible and unvisualizable" [Broo87]. He highlights the difficulty in visualising

software and argues that one sees only one dimension of the software through the different views, yet

superimposing these views together makes it difficult to extract any global overview. It may be true that

each view of an aspect of the software, such as control flow or variable cross-referencing, presents only a

one dimensional view and simply adding the views together results in a lack of global overview.

However, software visualisation does not aim to present a single picture that allows an entire piece of

software to be understood in all its intricacies. It instead aims to aid the understanding of software by

humans by presenting details on the software in a more easily understood form. As Myers [Myer90]

18

highlights the "The human visual system and human visual information processing are clearly optimized

for multi-dimensional data. Computer programs, however, are conventionally presented in a one­

dimensional textual form, not utilizing the full power of the brain". Software visualisation has moved on

since Brooks' statement. It still remains a major challenge for which there are no easy answers, however

software is no longer represented as simple flow charts and graphs. Visualisation offers a way for humans

to utilise their natural visual skills using techniques such as pattern matching and by allowing the greater

depth of information that graphical representations can present over textual representations. Software

visualisation offers views of the different facets of software and overviews can be presented for some

information, such as higher-level design patterns or overview graphs. It must be remembered that

understanding a piece of software from simply reading its source code presents a huge effort and is

problematic. Therefore, any help that visualisation can provide is beneficial, even if this still requires

significant effort in acquiring the understanding, provided that it is quicker or more reliable than

traditional approaches. Software visualisation is often judged as failing, because the users do not suddenly

understand the software under study when they use it. However, despite their desire of instant

understanding from software visualisation systems, they are still willing to invest a significant amount of

effort in studying the code using traditional methods. Software visualisation also offers the advantage of

surprising users and making them think about the software, even if they have existing knowledge of it.

This questioning of the users mental model can help them build a more detailed and reliable model and

highlight anomalies in the data, such as redundant code or overly complex sections that they had not

considered. These things can often be overlooked when simply reading the source code. For instance, De

Pauw et al. state that "animated visual displays let users assimilate information rapidly and help them

identifY trends and anomalies" [DePa97].

3.4 Existing Taxonomies

There have been a number oftaxonomies on software visualisation. The most notable are those by Myers

[Myer90], Price et al. [Pric93] and Roman and Cox [Roma93]. They aim to classify the types of software

visualisation tools and a number of similarities exist between the taxonomies particularly between Price et

al. and Roman and Cox. This section aims to give a summary of these taxonomies whilst comparing and

contrasting their differences. This will allow some of the variations in approaches to software

visualisation to be seen, as well as allowing this research to be placed in context.

3.4.1 Myers

Myers [Myer90] provides one of the earliest taxonomies on software visualisation and clearly separates

visual programming from program visualisation. Stating that program visualisation systems "try to make

programs more understandable by using graphics to illustrate the programs after they have been

created' [Myer90]. Myers classifies software visualisation systems into:

• Static code visualisation

• Dynamic code visualisation

• Static data visualisation

• Dynamic data visualisation

19

• Static algorithm visualisation

• Dynamic algorithm visualisation

This can be represented as two axes: area of code being visualised (code, data, algorithm) and the

program state during visualisation (static or dynamic). Systems can belong to multiple categories within

this classification.

3.4.2 Price et al.

Price et al. [Pric93] define a taxonomy of software visualisation with six distinct categories. The six main

categories are then sub divided in minor categories, which may themselves be sub divided. These

categories are structured hierarchically, to allow the taxonomy to be extended and revised as software

visualisation develops, with the easy addition of new categories or sub categories. The six main

categories are:

A. Scope:

B. Content:

C. Form:

D. Method:

E. Interaction:

The range of programs that can be input and visualised by the program.

The subset of information from Scope that is actually used in the visualisation.

The parameters and limitations that govern the output.

How the visualisation is specified.

Characterises the system interaction methods.

F. Effectiveness: Does the system meet it objectives?

Each of these categories can then be summarised:

A: Scope

The scope is the range of programs that can be input and visualised by the program. Price et al. see a

division in this, into generality and scalability. The generality of the visualisation is the range of programs

it can visualise based on hardware, operating system, language and application type. The scalability of the

program is classified in terms of the largest program it can handle in terms of program and data size. This

idea of scalability is purely the fundamental limit and not related to the effectiveness of the visualisation,

which is assessed in section F of the taxonomy.

B: Content

The content is the subset of information from Scope that is actually used in the visualisation. The authors

split this into a number of categories, namely: Program, Algorithm, Fidelity and Completeness and Data

Gathering Time. The program subsection classifies on the amount of the implemented program that is

visualised in terms of its code and data and their flows. The algorithm subsection looks at the amount of

the "higher level" algorithm(s) that is visualised, again in terms of its instructions and data. The fidelity

and completeness category classifies on the extent to which a true and complete a picture of the system is

presented by the visualisation and whether the visualisation modifies the behaviour of the program under

study. Finally, the data gathering time categorises visualisations on when the data on the program is

20

gathered. If this is at runtime then the details of the mapping of program time to visualisation time is also

used in the classification.

C: Form

The form is the parameters and limitations that govern the output of the visualisation system. This is

divided into a number of sections classifying on: the medium used for the visualisation; the presentation

styles used in terms of colour, dimensions, animation and sound; the granularity of the visualisation in

terms of at what level is the program shown; the use of multiple views; and the abilities of the

visualisation to synchronise and view multiple programs at the same time.

D: Method

The method is how the visualisation is specified. This is divided into two areas, how the visualiser

specifies the visualisation and how the visualisation system and the source code are connected.

E: Interaction

The interaction section characterises the system interaction methods. Price et al. [Pric93] identified three

main facets to this, which they say fundamentally affect the design of the visualisation system. These

facets are: Style (how the user gives commands to the systems); Navigation (how can the user navigate

the visualisation and hide information of no interest); and scripting facilities (does the visualisation allow

the interactions to recorded or scripted and viewed at a later date).

F: Effectiveness

The effectiveness section investigates how well the system meets its objectives and how well it

communicates information to the user. This section is highly subjective and the authors split it into the

following sections; purpose (What purpose is the system suited for? This is needed to see how effective it

is at achieving its intended purpose); appropriateness and clarity (How well do automatic visualisation

communicate information?); empirical evaluation (To what extent has the system been evaluated

experimentally?); and production use (To what extent are people using the system?).

3.4.3 Roman and Cox

Roman and Cox see "program visualisation as a mapping from programs to graphical representations"

[Roma93]. They classify program visualisation into five main categories:

1. Scope. What aspect of the program (code, data, control and execution behaviour) is to be visualised?

Visualisation systems often limit their scope to a subset of these program aspects.

2. Abstraction. What level of information presentation is supported by the visualisation? The taxonomy

distinguishes three levels of abstraction, though the boundaries between them are blurred.

• Direct representation. Some aspect of the program is mapped directly to a picture giving the

most basic graphical representation. For example, a flow chart may represent control flow, or an

array can be colour coded to show the magnitude of the stored values. These direct

representations have the advantage of being easy to produce automatically (without needing

21

programmers intent) and are easy to relate to the program. However, the lack of any real

abstraction can lead to excessive amounts of visual information for large data sets.

• Structural representation. Here greater abstraction is used by highlighting "important"

information, or alternatively by encapsulating or concealing information and using a direct

representation for the rest. For example, encapsulating the bodies of classes and their member

functions in the representation.

• Synthesised representation. These representations show information that is not explicitly

represented in the program, but can be derived from it. For example, there may be higher level

abstractions of an algorithm, which are not explicitly contained in the program.

3. Specification Method. How is the visualisation specified? This can be by a number of methods:

• Predefinition. The mapping is highly constrained or fixed. While this constrains the visualisation

it has the advantage of speed and allows automatic generation.

• Annotation. The input program is augmented with calls to the visualisation system typically at

the point of "interesting events" which pass in the required program state and cause the

visualisation to be updated. This method has the major disadvantage of having to modify the

input code.

• Declaration. A mapping is specified between the program state and the visualisation so that

changes in state are immediately reflected in the image. For example a variable mapped to an

attribute of a visual object.

• Manipulation. Visualisations are specified through the use of examples, which the system tries to

capture and link to a program event.

4. Interface. This category focus on what the user sees and how they can interact with the system. This

is split into two sub-categories:

• Graphical Vocabulary. This specifies the types of graphical objects and their operations as

supported by the system in the construction of the visualisation.

• Interaction. How does the user control the system?

5. Presentation. How the system conveys information through the visualisation.

• Interpretation of graphics. How is the visualisation understood and explained?

• Analytical presentation. How is the analytical reasoning of a program, rather than its mechanics

presented. For example formal correctness properties.

3.4.4 Summary of Taxonomies

Price et al. [Pric93] believe that Myers' [Myer90] taxonomy, while being a good starting point, is not

detailed enough due to the variety of systems, goals and techniques available. Myers' axes do defme some

of the most important aspects of a software visualisation system, however they miss other attributes that

are important for distinguishing systems. Price et al. and Roman and Cox's taxonomies offer a more

detailed set of attributes to distinguish systems and some parallels can be drawn between these two

taxonomies. Many themes appear in both taxonomies, but under slightly different classifications, for

22

example visualisation specification (Specification method category in Roman and Cox and in the Method

category in Price et al.). However, these taxonornies, while being broad, are not particularly well suited to

some aspects of 3D visualisation due to the differences introduced by the extra dimension on areas such

as navigation.

The taxonornies all use a number of example systems to illustrate their classification method and this also

showed areas that many visualisation systems have failed to exploit. For example, Price et al.

categorisation showed that relatively few systems made extensive use of colour in visualisations. Things

have moved on since the taxonomy was completed with the increase in computer power, although colour

is still not always used to its maximum effect. Price et al. also noted that intelligence is sorely lacking

among automatic software visualisation systems and visualisation systems suffer from a lack of empirical

evaluation. This is mainly due to the lack of methods to reliable compare techniques, due to the poor state

of the art in software psychology. However, such evaluation is needed as it would show the effectiveness

of a system and help to guide research efforts and system developments. Much of the evaluation done on

systems at present, if any is done, is informal. Myers also identifies the need for experimental results for

visualisation systems and mentions the problems with the scale of large programs that visualisation

systems typically struggle with.

3.5 An Overview of Current Software Visualisation Systems

Software visualisation presents a breadth of different approaches, despite still being in its infancy. This

section outlines a number of software visualisations, which are broadly categorised on the representations

they use. The presented visualisations provide a glimpse of the different problem areas and

representations that have been investigated within the field. However, the focus of this research is the

visualisation of real software systems and not on algorithm animation systems, such as Tango [Stas90],

Balsa [Brow85], Pavane [Roman92] and Eliot [Laht98] which all require some level of modification to

the software and focus on small-scale sections of code. These systems focus on aiding a user's

understanding by presenting them with an animation. This animation typically requires a specification to

map program events to animation constructs. Therefore, these techniques do not allow a user to apply the

visualisations to arbitrary programs of the supported programming language, and due to this, they are not

presented in this summary.

The traditional focus of software visualisation has been the use of graphs to display information about

programs, such as call graphs, control flow graphs and variable access graphs. These graphs can often be

very closely mapped to the source code, for example, a control flow graph of the code. Therefore, they

suffer from the same information overload issues as simply reading the source code itself. To alleviate

these issues, there has been work on reducing the complexity of such graphs through filtering and

clustering, as well as using hierarchical graphs and fish eye techniques. One such example is SHriMP

(Simple Hierarchical Multi-Perspective) [Stor97b, Stor97c]. It uses a nested graph representation to

present the structure of the software. The graph has composite nodes, which contain other nodes. This

therefore provides the hierarchical structure. The composite nodes are typically used to represent software

subsystems. The graph may be laid out in SHriMP using a grid, tree, spring or Sugiyama layout. The

system uses fisheye and pan and zoom navigation techniques in order to try and retain context and reduce

23

user disorientation. The fish eye technique has a distorting optical effect so that objects in the centre of

the view are larger than surrounding objects, thus providing focus and context. SHriMP's fisheye

presentation can handle multiple focal points, in order to allow several subsystems to be examined at

once. The source code of the program is represented in the graph by being embedded in the lowest level

nodes. Figure shows an example of the SHriMP system in use, with some nodes in the graph being

expanded to show more detail.

Figure The SHriMP System

Some systems focus on presenting queries about the software' s structure, rather than presenting the whole

system. For example, Richner and Ducasse (Rich99] present an approach that uses tailorable views of

software, based on both static and dynamic information. This approach allows users to

specify the views of interest, which are then displayed as a graph using the dot framework [dot].

Some 20 representations use augmented graph representations, such as work by Lanza and Ducasse

[LanzO I] on visualising classes using their Class Blueprint. This is a visualisation of one or many classes

and it focuses on their internal structure. The class blueprint separates a class into a number oflayers,

namely initialisation, interface implementation, accessor and attribute. The first layer (constructor)

contains methods that create and initialise objects of the class. The interface layer contains methods that

provide access to the functionality of the class (e.g. declared public or protected in Java or C++), though

accessor methods (provide access to attributes) are placed in their own layer. The implementation layer

includes methods that are used by the class itself or are declared private. Finally, the attribute layer

contains the attributes of the class. The items (methods or attributes) in each layer are represented as

rectangles where the width and height can be mapped to a number ofmetrics, such as the number of lines

of code in the method. The layers are positioned horizontally and the items in each layer are linked by

edges that represent relationships between the methods and attributes, such as method A calls method B.

24

The invocation sequence is also laid out horizontally. The items and the edges representing their

relationships are colour-coded to show types. This visualisation can be used to view multiple classes at

once, for example, those in an inheritance hierarchy. Here, edges between the class blueprints represent

inheritance relationships, whilst edges between items within the class blueprints represent relationships

between methods and attributes in the class hierarchy. This separation of methods dependent on their role

allows a class to be broken down, thus allowing the user to focus their search and compare classes more

easily.

Whilst traditional software visualisations focus on the use of2D representations, not all are based around

graphs. Many other representations have been investigated and one notable example is that ofSeeSoft.

SeeSoft [Eick92] is a system which represents source code lines as rows ofpixels. These rows are colour

coded to display information such as modification date or scope level. This provides an overview of the

source code and a source code browser shows the source code at a selected point in detail. For instance,

Figure 3-2 shows a SeeSoft representation of 4000 lines of code, with the colouring of a line representing

its age from old (blue) to new (red). The main ideas are:

• Reduces the representation by displaying tiles as columns and lines of code as thin pixel rows.

• Lines are coloured by statistic, for example, code age.

• Gives both an overview and detailed view with the capability to read the actual code

The method has been used to display a number of source code metrics, from code age to Y2K impact and

changes to COBOL code [Burk98].

Figure 3-2 SeeSoft [Eick92) showing 4000 lines of code. The oldest lines are in blue and the newest

lines in red. Image from Stepben Eick's web page bttp://www.bell-labs.romluser/eick!SofiwareYI5.btml

SeeSoft provides an intuitive visualisation due to the direct link between the representation and the

underlying information. This is one software visualisation that can easily be applied to other text

25

documents and is not restricted to source code visualisation . Not all software visualisations are explicitly

designed for software visualisation and there has been some cross over with the information visualisation

community. For example, Jerding and Stasko [Jerd96aJ define an Information Mural that allows a 20

reduced representation of a large information space to be presented at once. This representation is applied

to numerous information types [Jerd96a], including object-oriented program method traces, sun spot

records, river flow and automobile data. The aim of Information Mural is to allow large information

spaces to be presented in their entirety, even when there is more information than available pixels on the

display. It uses a pixel based technique that uses visual attributes such as greyscale shading, colour,

intensity and the pixel size along with anti-alias compression techniques. Figure 3-3 demonstrates an

application of the technique to visualising message patterns in object-oriented programs [Jerd96a]

[Jerd96b]. In Figure 3-3 the bottom of the figure shows the entire execution trace using an Information

Mural. The top of Figure 3-3 shows a zoomed in section of the trace. ln both views the classes are

assigned rows across the trace and a message between two classes is represented as a vertical line

between the two class rows. The horizontal axis of the mural represents the sequence of the messages.

Figure 3-3 The Execution Mur al of an object oriented programs message trace [Jerd96a). Image

from: bttp://www.cc.gatecb.edu/gvulsoftvi.z/infoviz/information mural.btml

This work is expanded upon for object-oriented traces though the addition of pattern extraction facilities

for regular patterns in the message trace [Jerd96b). The Information Mural approach is also used in the

1SVis tool [ISVis], which allows a user to browse scenarios in a program's execution trace. Here, the

mural is used to show the location of the scenario in the trace and to act as a navigation method.

Work by Taylor and Munro [Tayl02] has focused on the use of20 representations for the visualisation of

source code version data. Their Revision Tower approach [Tayl02] is based on tower structures where

each level represents a version in the software. The left side of the tower structure shows header file

changes whilst the right side of the tower represents changes in the implementation file (e.g. *.c). Figure

3-4 demonstrates an example of the Revision Tower approach showing three stages of an animation. This

26

visualisation is designed to use animation as a core element in order to allow the changes over time to be

seen. Therefore, the user can observe the picture being built up rather than being presented with the

information all at once. This makes it easier to observe temporal patterns within the data

Figure 3-4 Revision Tower representation of source code version information [Tayi02J

Moving away from the traditional 20 approaches has been experimentation with 3D representations.

These approaches can be categorised into two separate strands; namely those based on using 3D graphs as

the representation and those where more novel representations have been tried. Some of the first

visualisations to use a 30 representation simply moved the traditional20 graph structures into a 30

space. This was done with the rational of being able to present more information and in a manner that can

be understood more easily. This approach has been adopted by a number of systems such as Irnagix 4D

(Imag], NV3D [Park98] and Zebedee [Youn99). Some of these systems allow graph abstraction

mechanisms, such as sub graphs being contained within nodes, in order to simplifY the graph strucrure.

These 30 graphs have been used to represent a wide range of information on software, including method

control flow [lmag], function calls [Youn99), metrics-based visualisation of large 00 programs

[Lewe02], UML diagrams (lrnag][Gogo99][Dwye0 I] and software architecture (Feij98]. for example,

Figure 3-5 shows a small UML class diagram in 30 [DwyeO I], the purple spheres define package

structures, whilst the nodes are classes.

27

Figure 3-5 3D representation of UML (DwyeOl). Image available at: http://www. wilmascope.org/

Many systems support the use of 30 representations by claiming gains in understanding and in the ability

to present greater amounts of information. For example, work by Ware and Franck [Ware96]. However,

not all applications of30 graphs have been claimed as a success. Young [Youn99] highlights issues in his

Zebebee visualisation, commenting that the different view points result in an altered view of the graph,

which could make it difficult to recognise, and that the crossing of the edge lines is also dependent on the

viewpoint. Therefore, this area still offers potential, but as with any graph representation, the layout is a

major challenge. The use of30 also introduces navigation issues within the 30 space that the

visualisation must address.

The use of novel and graph based 30 representations has been mixed in some visualisations. Work by

Maletic et al. [MaleOl] defines a mixed approach where object-oriented systems are visualised. Their

approach called lmsovision (IMmersive Software VISualizatiON) uses a Virtual Environment and is

designed to use a CAVE as the primary display. The CAVE is a virtual reality system, which is based on

a room. Stereoscopic images are projected onto the room's walls and the user wears stereoscopic glasses,

in order to see the images in 30. The user is tracked within the room and the views are based on the user's

current viewpoint allowing them walk around objects that appear in the centre of the room. However,

lmsovision is based on VRML, so the visualisations can also be viewed on desktop PCs. Their

visualisation represents object-oriented systems. The classes are represented as platforms, with the size

depicting the number of methods and attributes ofthe class. The methods of a class are represented as

columns that appear on the platforms. These columns are coloured according to the use of the method

(constructor, accessor or modifier) and the size of the column represents the size of the method.

Attributes are represented as spheres and they are also located on the class platforms. The interclass

relationships (dependency and aggregation) are represented as edges between classes. Inheritance

between classes is shown as the adjacency of the class platforms. This representation therefore uses a

28

graph as its underlying representation between the classes themselves. However. some 30 visualisations

do not use a graph as the underlying representations. For instance, File Viz is a prototype system by

Young for presenting a high level overview of a software system [Youn98, Youn99]. The visualisation is

structured around the C source code files within a software system and the contents of those files. Files

are represented as flat coloured pedestals as can be seen in Figure 3-6. The actual file type is shown by a

glyph (an iconic representation in three dimensional space), for example a cylindrical glyph for a

declaration file (*.h). Colour is used to identify files with the same name e.g. test.c and test.h.

Figure 3 -6 File Viz showing an overview of tiles in a software system.

The system uses the Viscape plugin 1 to provide the 30 visualisation within a WWW browser window.

This is combined with two other HTML frames, one displaying information on the currently selected

object in the 30 world and the other for showing the source code. Young's CaliStax visualisation

[Youn97][Youn99] is used to show dependencies between the various files. This allows file inclusion and

library usage to be seen, and file details are also presented showing statistics, the functions defined and

functions called within the file. The functions defined within a file are represented as blocks on the file

pedestal and they are shown at two levels of detai I depending on viewer's distance. Distance viewing

shows low detail, with length and relative complexity presented, while the close up views shows greater

detail. The system provides overviews of the files and functions defined. lt uses Level Of Detail (LOO) to

allow greater detail on the objects to be seen as the user moves closer to them, and so provides abstraction

from overview to detail.

File Vis [Youn99] represents an abstract metaphor visualisation of the software. The use of abstract

metaphors is the most common case within software visualisation. However, there has been some work

done on the application of real world metaphors to software visualisation. For instance, Software World

(K.nig99b, KnigOO] presents a 3D virtual environment approach to visualising Java source code. A real

world metaphor is used in an attempt to deal with software of differing sizes in a coherent manner. The

system aims to exploit the natural perception of users by providing a familiar environment. The following

mapping (Table 3-1) is used from Java code to representation.

1 Available at http://www.superscnpe.com

29

Ll'\ .:I Cod.: I .:H·I

World Whole system. at very high level.

Country Directory structure (packages m Java)

Cny A single file from the current package.

District A single class from the cur.-ent file.

Building Methods.

lns1de Buildings Lowest level allowmg d1rect mappmg to code.

Table 3-l Software World mapping fKnigOOI

The real world metaphor is further used, by having additional urban features such as parks to represent

non-method file and class details. These can also act as navigation aids. Figure 3-7 provides an example

of the visualisation at the district level with the building heights representing the method's length.

Figure 3-7 A view of part of a city district in Software World JKnigOOJ.

The system uses the MA VERIK2 (MAnchester Virtual EnviRonment Interface Kernel) [I lubb99] to

create the Software World virtual environment. This is a C tOolkit for the development of single user

Virtual Reality applications and can be compiled for multiple platforms. The \ 1suallsation is generated

automatically through a four step process of:

I. Java code is parsed and extracted information stored m a database.

2. The database is queried to extract the information t11e user wants to nsuahse.

3. The extracted information is used to build the MA VERIK so.trce files for the' 1suahsauon.

4. Generated C code is compiled to produce the executable v1sua1Jsauon.

The system demonstrates the use of real world metaphors, showing that they can be successfull} used

within the software visualisation field. However, Knight [KnigOO] highlights that violating the logical

framework of such metaphors will result in user disorientation.

' D.:vcloped at Manchester Uni\Crsity and available for d0\\11load at http: 11a•gcs.man.ac.uls.

30

File Vis and Software World demonstrate two novel approaches to software visualisation where the use of

3D representations has been investigated for none graph-based representations.

This section has attempted to provide an overview of software visualisation by highlighting some of the

different approaches within the field. This is obviously not a definitive list and many other representations

and visualisations exist.

3.6 Issues and Challenges

Software visualisation offers a way to support program comprehension and therefore maintenance

activities. However, this is not to say that this approach is not problematic and a number of challenges

exist for software visualisation research. These general issues are faced by all software visualisation

systems, regardless of which specific aspects of software they are representing. They can be summarised

as.

• Representation: One of the main problems is that of representation. Software is made up of abstract

constructs that have no geometric representation, therefore, there are no intuitive representations of

such data. This contrasts to some other visualisation fields, where the data often maps to real world

phenomena, such as flow visualisation. This abstract nature of software and the complexity of the

relationships involved has lead some authors to suggest that software is unvisualisable [Broo87].

Representations need to be consistent and allow incremental change as the software is modified.

Traditionally, node and arc based representations have been used to show all aspects of a piece of

software. However, while it is an easily accessible representation to users, it suffers from problems of

scale as the size and complexity of the program increases. Therefore, research into new

representations is needed to enhance or replace the existing techniques.

• Abstraction: In order to handle the volume and complexity of software, abstraction is necessary.

This offers challenges in finding visualisations that allow multiple levels of abstraction and provide

coherent changes between them. This need for abstraction is supported by the program

comprehension theories such as V on Mayrhauser and Vans integrated metamodel [Mayr95], where

understanding occurs at different levels of abstraction. However, the extraction of meaningful

abstractions can be difficult, and furthermore these abstractions must be supported within the

representation which introduces effects on layout, presentation, navigation and interaction.

• Scale: Software is constantly growing in size and in order to be useful software visualisation

systems must be able to handle the scale of real world problems. Typically "toy" programs are used

to demonstrate visualisation systems, especially algorithm animation systems. Scale introduces many

challenges, especially in terms of providing a representation that can scale up coherently and

navigation methods to easily explore and locate information.

• Interaction: Not only must the data be represented in an understandable way, but it must also

support ease of interaction. The user must be able to navigate the data easily and in a number of

31

forms dependent on their task. Support is needed for browsing and searching to allow rapid access to

information. The interaction must be intuitive and consistent, so as not to increase the cognitive load

on the user. The user should be thinking about the data and not having to think about how to use the

interface to explore it. Research is needed into navigation techniques to aid user interaction.

• Customisation: Understanding is an individual process, dependent on person, task, time-scale and

the information present. To support this, software visualisation tools need to provide custornisation

features to allow different users to tune the display to their information needs. For example, filtering

information that is unnecessary for the current task and support for multiple views, as well as for the

addition of new views.

• Integration and Acceptance: In order for software visualisation to be accepted and integrated into

software lifecycle processes, software visualisation tools need to be designed specifically to support

these processes. This means that the visualisations need to be generated automatically with very little

or no intervention from the user. It must support the software as it occurs in its original form and not

forcing it to use specific environments, libraries or language subsets. Many current systems have

restrictions that prevent them from being used on real world programs. This is not to say that

prototype systems should necessarily support all features. However, in order to show the usefulness

of software visualisation to real world problems, systems are needed to demonstrate that the

techniques are applicable to such problems and can be integrated into current environments.

• Evaluation: Currently, evaluation is a major problem in software visualisation with few real

evaluation frameworks existing and very little evaluation occurring of prototype systems. Research

into evaluation is needed to identify the contributions provided by systems and to direct future

visualisation research. It would also benefit the acceptance of visualisation, by providing scientific

results on its benefits allowing industry to make informed choices.

This is not a definitive list, but it highlights some of the main problems faced by the software

visualisation field. These issues must be considered in the design of all software visualisations and are

critical to the success of a visualisation. However, there may be trade-offs between different issues, for

example the graph representation is widely accepted in the software engineering community and therefore

a visualisation using this representation may gain more acceptance because of this, despite the scale

issues of graph representations. Conversely, a visualisation based on more novel techniques such as an

abstract three-dimensional representation may be better for large-scale problems, but face acceptance

problems due to the unfamiliar nature of the representation.

3. 7 Conclusions

This chapter has presented a summary of software visualisation and discussed some of the defmitions that

exist for software visualisation, as well as highlighting related areas. The three main taxonornies on

software visualisation were briefly summarised to give an overview of the field and to show how the

subsequent work fits into the larger software visualisation arena. An overview of some of the existing

32

approaches and trends within software visualisation was then presented. Finally, some of the main issues

to be faced by the software visualisation field were discussed, highlighting the need for further research

within the field.

33

Chapter 4 Software Visualisation at

Runtime

34

4. 1 Introduction

This chapter provides an overview of the visualisation of the runtime behaviour of software, and this is

defined as 'runtime visualisation' for the purposes of this work. A number of approaches to run time

visualisation exist and these are presented here, some of the existing runtime visualisation tools are also

summarised. Runtime visualisation introduces many issues and challenges and these are discussed in this

chapter, the desirable features ofruntime visualisation tool are then considered.

Runtime visualisation can show how a program executes in terms of both control flow and data flow. It

can benefit program comprehension activities and therefore maintenance and debugging, by providing

insights into how the software actually executes. Many program errors and attributes are only visible at

runtime and as Lieberman and Fry indicate what "makes programming cognitively difficult is that the

programmer must imagine the dynamic process of execution while he or she is constructing the static

description" [Lieb95]. Traditionally, there has been little support for demonstrating to a programmer how

the program executes. Few runtime visualisation tools exist and their acceptance is very low, therefore,

traditional debugging techniques are often used to inspect the program. Nevertheless, despite

developments in program development environments, debugging techniques are still fairly basic and

debugging is often viewed as a second class activity. A common technique for observing how a program

is executing is to simply add trace code to the existing program code to give an execution trace. For

example, "First, the bad news. Adding printfO calls to your code is still a state-ofthe-art methodology"

[Geis94] is a common case. Even when debuggers are used, they have typically changed very little in

overall design over the years. This makes understanding the execution, and therefore behaviour of a piece

of software, a difficult task. The current state and shortcomings of runtime visualisation tools are

discussed in this chapter.

4.2 Debugging Tools

A common approach by programmers when trying to understand the runtime behaviour of a piece of

software is to use a debugging tool to inspect the program's structure at points in the execution. Java

debuggers focus on the level of the virtual machine, which is in terms of threads and methods. This is,

therefore, very similar to the information that is presented for a procedural language. Often the same

debuggers are used across procedural and object-oriented languages, such as C and C++. Even for

languages such as Java, the debugging interface has changed little. The debuggers show variables in terms

of objects, and functions in terms of methods on those objects, however, it is difficult to get an impression

of how the classes interact and the object-oriented nature of the program is often hidden. This view is also

very different to that of the low level design views, such as UML class diagrams, which are commonly

used by software engineers in the design and implementation of object-oriented software. Some

debuggers have been expanded to have visual elements [Hans97][DDD]. The GNU Data Display

Debugger is a prime example [DDD], with support for displaying data structures graphically and

displaying values of arrays in a graph. However, there is no specific object-oriented support and as with

all debuggers they are more suitable for investigating specific data structures or details, rather than for

gaining an overview of the software.

35

Another common approach by some programmers is to place print statements in their code to allow them

to see which parts of the code are being executed and to print out key values. Trace code such as this can

be valuable when developing a system to record the progress of the program at key sections. However, in

order to understand such trace code the programmer needs knowledge of their placement within the

program and the relevance of the values being outputted. Also, such trace code output offers no support

for aiding the programmer in understanding the structure of the program or its 00 nature.

4.3 Extracting runtime information

The visualisation of the runtirne behaviour of software requires runtime information to be extracted.

Therefore, dynamic analysis of the program is needed. There are numerous methods of extracting

dynamic information on a running program and these are summarised below.

One technique is to augment the code of the program to be analysed. The simplest approach to this is the

hand coding of the visualisation by adding event notification or drawing code to the original source code.

This is the method used by many of the Algorithm Animation systems, such as Tango[Stas90] and Balsa

[Brow85]. These systems typically show the operation of particular algorithms, such as sorting routines.

The hand coding of the visualisation allows the person doing the augmentation to encode higher level

information and focus the representation to that specific algorithm. However, this approach is obviously

unsuitable for real world application, due to the lack of automation and the huge investment needed to

produce the visualisations. It is also very intrusive to the source code of the program under study, which

can require significant additions.

An alternative technique is the declarative approach. Here, a set of graphic objects is supplied by the

system. These objects are then used in the program to be visualised, for example, a binary tree data

structure. As these structures change state, the visualisation is updated accordingly. Thus, there is

mapping between computational objects and graphical objects. This has the advantage of separating the

program code from the animation code, however, the original program may still need to be changed

significantly. New graphical objects may also need to be defmed, if there are no suitable ones present in

the system. An example of this approach is the Eliot system [Laht98].

An approach to these restrictions is the automatic augmentation of the code. In this case, the source code

is augmented using some automatic means, such as using a pre-processor to augment C/C++ code. The

augmentation is not seen by the programmer, however, extra code is added and complied into the final

executable to capture events such as method calls. This additional code communicates these events to a

visualisation tool, which then produces the visualisation. This approach has the advantage of being able to

produce the visualisations with no user intervention. However, the source code must be recompiled in

order for it to be visualised. A number of tools use this method, such as HotWire [Laff94] (pre-processor

annotation) and Program Explorer [Lang95] (tool annotation). Standard compilers can also be modified to

augment the code with tracing functionality. Languages such as Java do not have a pre-processing stage

before compilation, however, Java offers another variation on this approach. Java loads the classes of the

program dynamically using a class loader. This class loader can be modified to automatically augment the

36

byte-code as it is loaded. This has the advantage of not needing to modify the source code, or even have

access to it.

The approaches discussed so far have all modified the code of the program in some way. However, this is

not necessary in order to extract runtime information. Debuggers offer a way for software engineers to

inspect the internal state of a program. Therefore, they can be used by visualisation tools to access

runtime information. Some de buggers offer graphical representations of the program. A notable example

is the GNU Data Display Debugger [DDD]. A visualisation tool can simply communicate through an

existing de bugger, such as gdb [gdb], by parsing the textual output and generating textual commands to

request information. This approach has been used by systems such as DDD, however, it can suffer from

performance issues of having to go through the textual conversion and it is highly dependent on

consistency within the textual display. A more efficient solution is to use the underlying debugging

mechanism, but to access it directly, either through a debugging interface, if one exists, or through the

modification of an existing de bugger. The use of debugging techniques means that the source code is not

necessary and the source code does not need to be changed. It also allows information to be extracted on

demand, unlike some augmentation methods where it must be decided which events to record, before the

program is complied. The only constraint with this method is that the code is complied with debugging

information included.

Code that is run on a virtual machine, such as Java, offers another avenue for extracting runtime

information. In this case, the virtual machine can be used to record information on the program. This is

the technique used by Jinsight [Jins], which uses a modified version of a virtual machine to record events

to a trace file, this is then viewed in Jinsight.

4.4 On line Vs. Offline Approaches

Visualisation ofruntime events can take either an online or offline approach. The offline approach is

when information on runtime events, such as method entries, is extracted to some store, such as a trace

file or database. Once the program has completed its execution, the stored information is then visualised.

The online approach is when the visualisation is connected to the live program and is generated in real­

time as events occur in the program under study. Each approach has its own advantages and

disadvantages. The offline approach allows the trace file to be visualised many times for a single run of

the program, which can be especially useful if the execution of the program is long, or places a large

demand on resources. The use of a store of the execution also means that a complete record of the

execution is present at the point of generating the visualisation, which can be used to provide a more

optimal layout. The complete record of events also allows summary information to be extracted that could

be used to give summary information and views within the visualisation. In addition, it allows the events

to be easily replayed in reverse as well as forward. The separation between the extraction of the runtime

information and the visualisation of that information allows the information to be processed in its whole,

without the performance constraints of having to update the visualisation inline with the events. Thus,

complex analysis can be performed without affecting the speed of interactivity of the visualisation. The

offline approach can therefore have a performance advantage; when the program is running, events only

need to be recorded and these can be processed before the visualisation is displayed. However, the offline

37

approach also has a number of disadvantages. The record of the execution can be substantial even for a

small program, due to the large number ofruntime events, such as method calls, that are present. The

recording of events means that the run time events of interest must be known before the program is

executed. Problems can occur when a particular piece of information is desired at only one point in the

program. For example, if the value of a field is wanted at a particular point, its value must be record for

the whole trace. This can lead to a massive increase in the recorded information and a performance issue,

if that value is modified frequently. In order to tackle this issue, some offline approaches allow the tracing

to be switched on and off from within the program, however, this means that the source code for the

program must be modified.

Online approaches are tightly coupled to the execution of the program under study. They allow the

monitoring of different events to be changed on the fly as the user sees fit, for example, inspecting a

field's value. This allows the visualisation to provide additional services, such as setting breakpoints on

the use of a field for example. The visualisation acts on events as they occur which means that only

events that make up the current state must be recorded and not necessarily all events to that point.

However, this makes it more difficult to reverse some of the execution as the program is then not at the

same point as the visualisation and items that are queried on demand, such as field values, will be

unavailable. The tight coupling to the program under study also brings disadvantages. In order to view the

visualisation, the program under study must be running which may not always to feasible or desirable, if

the program is substantial or requires a particular set up that is unavailable. The visualisation can also be

under greater performance constraints than offline approaches, as it must compete with the program under

study for resources when they are running on the same machine. The visualisation must also try to "keep

pace" with the program under study in terms of the events it shows. This makes the speed of generation of

the visualisation an issue, especially as the complete record of the execution is never available as in

offline approaches. This means that only the current state information can be used when generating the

visualisation, so information on future states cannot be used, for example, to optirnise the layout.

Both approaches have been used by current runtime visualisation systems as the next section highlights.

4.5 Dynamic Software Visualisation Tools

A number of runtime visualisation systems have been developed and this section aims to provide an

overview of the different approaches tried within the field. The presented systems are not a definitive list

but aim to demonstrate the main features that existing approaches display.

4.5.1 NestedVision3D (NV3D)

NestedVision3D is a system by Parker et al. [Park98] for visualising large nested graphs in 3D. The paper

[Park98] considers the problem of focus and context, where one wishes to provide detail on an area whilst

providing the context of that detail, i.e. the bigger picture. The techniques presented for this are (for

graphs):

38

• Distortion Techniques. The graph is distorted spatially to make the area of focus more prominent, for

example, by giving more room in the graph and making other points less prominent. For example, the

fish eye effects and the hyperbolic lens [Lamp95].

• Rapid Zooming Techniques. A large amount of information is present but only a small amount is

visible at any one time. However, it is possible to quickly zoom in and out on a point of interest,

giving smooth changes between context and focus, although both cannot be seen at the same time.

• Elision Techniques. Parts of the structure are hidden, typically using a collapse and expand idea, for

example on sub-graphs. These elided structures then provide context whilst others can be expanded

to provided detail.

• Multiple Windows. Separate windows are used to provide focus and context. However, visual cues

are needed to show how the windows interrelate. E.g. which area of the overview is showed zoomed

in another window.

• 3D Interactive Visualisation. Focus and context is provided through the use of perspective, with

distant objects being less detailed than the foreground, especially if level of detail is used in the

display. However, the context is very dependent on the layout and the orientation of the view leading

to arbitrary context.

The authors argue the use of 3D over 2D, using Robertson et al. Cone Trees [Robe9l] as an example

where a 3D representation allows the viewing oflarger structures than 2D.

NV3D is a 3D data visualisation tool for large relational information structures. The system uses the

typical node and arc representation, with the nodes being colour coded or texture mapped according to

type. The system uses elision with nodes able to represent sub-graphs that can be expanded or collapsed.

This is key to the system and only through this is it able to deal with large data structures in real time. The

graph can be explored using navigation widgets and rapid zooming and also non-spatially through queries

and layout variations. The graph can be queried dynamically on relationship type from a node. A slider

then controls the depth of this query from the start node. The layout can also be used to explore the graph

by changing which relationship are used for layering the graph and relationships can be weighted

according to importance.

The system allows the viewing of static data such as calling structures and object relations, however the

system also supports dynamic behaviour, mainly to provide an outlet for viewing execution threads. The

system uses a notion of snakes to visualise execution threads. These are animated heads and tails, where

the head shape represents the type of action and the tail shows the recent history of the process as well as

attracting the users attention. The viewpoint can also be attached to a snake to provide automatic tracing

of the snake. In order to view the details of a snakes passage, for example the calling arguments, data

probes can be attached to nodes which show the message when the snake arrives at the node. These work

on a hierarchy so messages are passed up to other probes allowing a sub hierarchy to be monitored by

placing a probe at the top of the hierarchy. The notion of snakes provides a novel way to represent

process execution. However, it would appear to suffer from the problem of scale, since it could be

difficult to maintain a viewpoint that allows multiple snakes to be observed in a large graph.

39

4.5.2 Virtual Images: Interactive Visualisation of Distributed

Object-Oriented Systems

Yion-Oury et al. [Vion94] present a system for the observation of objects in distributed object-oriented

systems. They propose the notion of virtual images as a graphical representation whose main principles

are a 30 spatial model where objects are represented by polyhedrons with significant orientation, size

colour and shape. One of the more novel ideas presented is that of the shape of an object is representative

of its name, in an attempt to allow object recognition without cluttering the display with names. An

example of this is shown in Figure 4-1. This is combined with pop-up labels on mouse over to show the

actual label of an object.

Figure 4-1 Objects name used to create representation [Vion941

The system is implemented as a number of modules. Firstly, a debugging kernel allows the recording and

replay of events and aims to solve the non-determinism of the parallelism and allow cyclic debugging.

This kernel then passes information to a number of views using a bus architecture allowing for

extensibility. These are then able to use a 30 graphical abstract machine to produce the virtual images.

The system offers a number of views visualising the execution model and con currency of an application.

.. . . till

"'H
old'Cl'

LUP

t -$1.1

,.., "-*' .. \t. '; 1

u.. . v .- l.l .1 ·"_ . l ._,.nvl. .• , - ,J ... t .. \: ;

Figure 4-2 An overview of the system [Vion941

.. . :

....
....... - ·---. • . .•• • :.x-a

40

The execution model (shown top right in Figure 4-2) is represented by showing the call graph of each

activity and the memory mapping of objects. Activities are represented as pulsing spirals, which grow

with each method call and have a segment pointing to the object being called. Thus recursion is easy to

observe with segments going to the same object. The concurrent aspects are shown (shown top left in

Figure 4-2) as a horizontal grid representing each activity and all objects linked in its context. Within this,

the call graph is shown by an animated coloured line passing through objects on the grids. Object sharing

is shown when the same instance is stored in multiple grids. The evolution of the stacks of program

execution is shown in the activity stack view (shown bottom right in Figure 4-2). Here, the circle

represents the application with the activities placed on the circle. Objects used by each activity are

stacked above it in the order they are called.

4.5.3 VizBug++

VizBug++ [Jerd94] is a simple prototype for the visual debugging of C++ programs. It is based on

previous work on GROOVE [Shil92], a visual design tool using the same visual paradigm. The view

contains three basic entities: a tree structure representing class hierarchies, rectangular nodes representing

global functions and circular nodes representing instances. Classes are represented as upside-down

triangles, while arrows from the bottom of a class to the top of another class represent inheritance. The

view shows the message passing that occurs during execution by drawing arrows between instances.

From implementing this prototypical view, the authors found that the necessary information to construct a

useful visualisation is difficult to gather and that view layout and information overload were major

problems with the simple view. They suggest that multiple views with different levels of abstraction may

be needed to present information in an organised and informative way [Jerd94].

..
· ..

/ . ./
...............

e

Figure 4-3 VizBug++ showing class and instance relations [Jerd94)

Through the development ofVizBug++, Jerding and Stasko [Jerd94] defme four main objectives that they

suggest a visualisation of object-oriented software must fulfil.

• Little or no programming intervention. The visualisation should take no all little

programmer overhead.

41

• Present the "right" things. The most important aspects of the software system should be

presented.

• Allow viewers to focus quickly. The visualisation should support navigation so that users

can focus on a particular concern.

• Handle real world problems. The visualisation must be applicable to large-scale systems.

These are presented in the context of visualising object-oriented systems, however they can be applied to

the general software visualisation case. Oudshoom et al. [Ouds96] refine the requirement of presenting

the "right" things. Suggesting that:

• The system should provide feedback and allow the user to discover new information, not just

confrrming what they already know.

• The graphical representation must provide information and not just act as decoration.

• The visualisation should also allow users to focus quickly on areas of information and allow

customisation over the views.

Oudshoom et al. also state the need for:

• Scalability. The tool should be sufficiently scalable in terms of the problem sizes it can handle.

• Extensibility. The tool should be flexible to change. For example, allowing the modification or

addition of views.

• Portability. The tool or its concepts implemented on one platform should not restrict porting to

another platform.

4.5.4 Look!

Look! is a runtime visualisation and debugging tool for C++ originally developed by Objectives Software

Technology Ltd [Look]. It offers a number of views for displaying runtime information on C++

programs, including object creation and destruction, object relationships, inter-object communication and

memory usage. The views allow graphical selection giving point and click access to source code, data and

breakpoint setting.

The Reference View shows the reference relationships between objects in the system. It displays objects

as they are created and destroyed, allowing pointer relationships and object interactions to be easily seen.

All reference relationships to, or from, a selected object can be optionally shown to aid debugging.

Threads in the application are visible and mapped to the objects that they use. The system also offers the

ability to filter the view, for example by excluding objects of a particular class. Figure 4-4 shows an

example of the reference view.

42

u_ ... ,........ c

-r _

: :)latvf-tt ; .,.
Poo'<l t

Figure 4-4 Look! showing object references

The Class View (Figure 4-5) provides information on the static structure of the program by displaying the

class hierarchy. The view scrolls and illuminates the currently active class. The view also allows a quick

way to navigate to the source code and to the instances that exist for the selected class. Clusters of classes

can be created which allows the rwttirne operation of the program to be viewed at the architectural level ,

or to allow the user to focus on the specific application activity of these clusters. The Cluster View

(Figure 4-5) enahles the architectural level to he viewed hy showing message interaction hetween

and the objects that exist in a particular cluster. This can be useful for design verification and behaviour

checking at a higher level of abstraction .

.-.

Figure 4-S The cluster and class views respectively

I Lntl

f llrc • .-...1

oshe- ..,.h<luognJ

utre.wa llf<th.l u n

A Message View provides an active trace of function invocations, thus minimising the need for trace

instructions (e.g. printt) in the code. Object creation is also shown in a Creation view and as with a

standard debugger, a source code view is present.

The system offers a number of views and reporting facilities (coverage, hot spots, memory usage and

leaks). As with a normal debugger, it operates on a version of the executable compiled with debug

information. therefore having the advantage of no programmer intervention.

43

4.5.5 Jinsight

Jinsight [Jins] is a tool for visualising the execution of Java programs developed by IBM. A Java program

to be analysed is nm through a modified version of the Java Virtual Machine which is supplied with

Jinsight and produces a trace file of the execution. User options allow the specification of which events to

record. This trace file is then loaded into Jinsight to be analysed using an oftline approach. The system

offers a number of views and is designed with object-oriented and multithreaded programs in mind. An

Execution View represents the programs threads as vertical "lanes" as shown in Figure 4-6. Time

proceeds from top to bottom in the view and the execution stack for each thread is shown left to right

down the lane. This is shown as coloured strips where the colour indicates the class of the invoked

method. Relative timing between the thread activities can be seen by comparing events across the lanes.

• ··· "'" · 8r;JC; --- :t,.

Figure 4-6 Jinsight showing execution view.

A Histogram View shows the program resource usage in terms of classes .

...................................

.................. 4 ...

Figure 4-7 Histogram View showing object relations

Each row in Figure 4-7 shows the name of a class with the coloured rectangles representing the instances

of the class. The colours used for the instances can represent various information depending on user

choices, such as the number of calls, the amount of memory taken up and the time spent in methods of

that instance or class. The rectangle turns into an outline when the object has been garbage-collected.

Lines represent relationships among objects. For example, all of the method calls on objects of class

44

java.lang.lnteger as in Figure 4-7. The lines can show how each object calls, creates, or refers to other

objects. The view can also show the methods of each class rather than the instances.

The invocation Browser displays all of the invocations of a selected method and uses the same graphical

representation as the Execution View. This is expanded on by the Execution Pattern View, which

automatically extracts patterns related to the given method, thus showing how the method typically

executes and cases in which it diverges from the general pattern. This aims to overcome the massive

numbers of innovations that may be present in the invocation browser.

f• h • I I .,. I• I ' • • I ., • " • • • lt 11 I!!!IL!JD

Figure 4-8 Reference Pattern View

A Reference Pattern View (Figure 4-8) shows object references. The view can be used to detect memor)

leaks, where objects that should be reclaimed aren't because they are still being referenced. Memory

references can be recorded at two different program execution points allowing differences to be observed

between the snapshots (old-generation objects and new generation objects).

4.5.6 Program Explorer

Program Explorer (Lang95] is a program visualiser for C++ developed by IBM research. lt aims to

provide class and object centred views of the structure and behaviour oflarge C++ systems and to allow

programmers to maintain and re-use undocumented parts of such systems. This is tackled by using static

and dynamic information on the program, with couplings from classes-to-objects and objects-to-classes.

Classes-to-objects coupling is used to filter the dynamic information by using static information, for

example selecting objects based on a class. Whilst objects-to-classes coupling uses the dynamic

information to filter the static information, for example, providing information on relationships that are

actually used, rather than all relationships.

45

Figure 4-9 Program Explorer showing multiple views [Lang951

Figure 4-9 shows the multiple views of the system, with the source code browser. mhentance v1e'' (top

left). invocation chart (bonom left, showing object longe,•ity (lengths of bars) and the creauon order

(from top to bortom)) and the object graph showing objects interacuons (bonom nght). The system uses

two methods of information extraction. The static information is extracted from a program database

generated by the compiler. This gives details of the classes and the1r mheritancc rclauonsh1ps. The

dynamiC information IS extracted by instrumenting the original C' program, USing the program database

as a gu1de. The system allows the user to specify wh1ch classes should be instmmented. thus allowmg

tr1v1al or very active classes to be ignored. The instrumentation captures events of Object longe\ ll)

(creation and destruction), function invocation (entry and exit) and variable access, '' h1ch are stored by a

Trace Recorder. The instrumented program is then executed under the control of the Program Explorer.

allowing the program to be run or single stepped using typical debugger controls. Th1s event recordmg

tC'rhnicpw ht-1s thl' that when the program is halted, the system hns a record of all the events up

to that halt and not just the content of the call stack as would be available with a standard debugger.

4.5.7 HotWire

HotWire (Laff94] is a visual debugger for developed by Laffra and Malhotra at IB:'v1. The system

works by annotating the C++ program using a special pre-processor. The mstrumented program then

makes calls m to the mnume hbrary of the system.

46

....
I 11 ... I

·-­... _
...... .. ,
1\--•
·-, _, ,.,.., -··-·-·
, _
"'"'-•r-.:.•

Oft

::
Oft

"'
Oft .,

n 1fll

Figure 4-10 Hotwirc [Laff94)

The view shown in Figure 4-10 shows the call stack (bonom), with the classes and the instances invol\ed

(middle) in a view similar to that of the histogram view of the later Jinsight system lJins]. A history of

the method calls is shown (top), with each pixel from left to right representing one call and the height

defined by the address of the instance.

The system offers some in-built visualisations, however there is also the ability to deJine custom

visualisations using scripting facilities. The default visualisarions show classes and instances and rhe

relationships between them, as well as displaying call history and method variable values. The custom

visua lisations are defmed in terms of models (application objects of interest), views (shapes to represent

them) and controller (a mapping between the two). When the models are changed then the views are

updated.

4.5.8 VisiVue TM

VisiVueTM is a runtime visualisation system for Java developed by Yisicomp [\'1si] . It pro"ides an object

reference view using a graph representation, which offers a split screen showing overview and detatl as

shown in Figme 4-ll. Class files of interest are augmented with calls to the VisiVue tool. which then

produces the visual updates of references and object values. Classes can be filtered from the tracmg and

additional method calls can be placed in the source code to focus the tracing on specific points of the

execution.

47

0
file Ylev lteiJ

Figure 4-11 VisiVue™

Vlstcomp:vtsuallzlno sun.applet.AppletVIewer

lee .. ,.aeet(411

I
flevleyellt , I

5
5 : Ji'

600 I .. .,.
810

1 I ia Moua ... false
,., .. I I.CIIc:k ... felae
tree ----

Mr•r ,.,uw
'''""' 1...,. ,., ••• .-,

The tool offers a simple mapping from the objects to the representation, thus making it easy to relate the

resulting visualisations to the code. However, this also results in the complexity of the visualisation rising

linearly with the complexity of the program. The tool is designed for educational use and for small-scale

applications and therefore it would be oflimited use in trying to aid the comprehension of a substantial

program. The system does not offer support for user abstractions and objects with a large number of fields

could be problematic using this representation, as the size of the node is directly related to the number of

fields that an object encompasses.

4.6 The Benefits for Object-Oriented Software

The object-oriented (00) programming paradigm introduces new language ideas and these affect its

analysis and comprehension. Object-oriented software offers many advantages, however Jerding and

Stasko [Jerd94] suggest it is "a double-edged sword''. This is due to the discrepancies between the static

class descriptions and run time behaviour as networks of communicating objects [Gamm94] [DePa97].

For example, De Pauw et al. state that "There is a dichotomy between the code structure (static

hierarchies of classes) and the execution structure (dynamic networks of communicating objects) of

object-oriented programs. The programmer must understand and map between these structures, a

significant burden even after the programmer is familiar with them." [DePa97). lt is due to this that De

Pauw et al. state that "insight into dynamic aspects is critical for understanding, tuning and debugging

object-oriented software" [DePa97). De Pauw et al. go on to say that·· We believe that tools that focus on

the dynamic behaviour are essential to fulfulling the promise of the object-oriented paradigm. We also

believe that visual tools are most effective for this purpose" [DePa97]. A number ofvisualisations exist

for object-oriented software, many of which are based on static analysis of the source code. These are

useful, however, a number of issues arise when static analysis is applied to object-oriented software due

to the dichotomy between the static specification and dynamic behaviour. Dynamic binding introduces

48

problems as the method calls are decided at runtime and not at compile time. Therefore, it is impossible

for the calling structure to be extracted using static analysis in cases when dynamic binding is used. It can

be very difficult to work out which class is referenced and/or called when the reference type is to a base

class or interface that has a large number of classes derived from it. In this case, the possible structure or

behaviour of the program can be very different dependent on which class is actually referenced. Problems

also occur with "invisible connections" between classes. For instance, in Java every class inherits from a

base class Object. Therefore, the standard data structure classes just need to store references to the Object

class in order to be able to store objects of any class. When these data structures are used it is then very

difficult, or even impossible, to see which classes are being stored in them. It can also be very difficult to

see how the classes are used from the source code alone, for example in terms of the number of instances

of the class and what other objects the instances reference. Inheritance, dynamic binding and

polymorphism introduce new challenges into the comprehension process. Inheritance allows a large

amount of functionality to be provided by an object, with the possibility of overloading methods of the

inherited classes. Therefore, in order to understand a class, one must understand the classes it inherits

from and observe which, if any, methods are overloaded. Runtime visualisation of 00 software can

therefore help with these challenges and allow a better idea of the structure of a piece 00 software to be

gained. It is for these reasons that this work focuses on visualising object-oriented systems using runtime

information.

As with any code, a number of bugs can exist in an 00 system. These can include traditional control

flow errors, such as looping unexpectedly and also errors to do with the object-oriented nature of the

program, such as creating too many instances of an object. A number of these are summarised by [Laff94]

and highlight another area where 00 specific visualisations can be beneficial, as such errors are only

apparent at runtime.

4. 7 Current Trends and Issues and Challenges

Current runtime visualisation systems come under a number of trends. They can be broadly categorised

into:

• Educational tools. These systems are designed to aid the teaching and learning of programming. They

include systems such as Java Vis [Oech02] and VisiVue™ [Visi]. These systems therefore focus on

the details of the running programs and are useful for very small "learning" programs. A number of

systems have also been developed for demonstrating specific data structures by having specific

layouts for trees and lists, or by allowing the user to declare the visualisation of these, for instance

work by Kom and Appel [Kom98].

• Debugging tools. These systems focus on aiding the debugging and development of 00 software.

They are often based on debugging techniques allowing control over the execution of the program

under study. They allow detailed inspection of specific sections of the code and often offer support

for other views of the software. Systems designed for this include Look [Look], Program Explorer

[Lang95] and VisiVue [Visi].

• Higher level performance and architectural aids. These systems focus on presenting summary

information on the program's execution to aid in performance tuning tasks and showing more

49

abstract views of the program. They typically use an offline approach. Jinsight [Jins] is an example of

such as tool though it focuses on lower level class and object interactions. Other systems include

work by Walker et al. [Walk98], who use high-level models to visualise dynamic information about

00 systems at the architectural level.

These are not exclusive categories and some systems could be classified as focusing on more than one

area, such as educational and debugging uses. However, these categories aim to show the main trends in

the field. This shows the current focus of the different systems. There is also growing use ofUML

representations to show dynamic features of the software. For instance, sequence diagrams and statechart

diagrams have been used, examples of this can be seen in work by Mehner [Mehn01][Mehn02] and in

work by Systa [SystOO] where variations on these diagrams are presented.

One of the main focuses of the existing tools is showing low level details with the aim of aiding

debugging tasks. Tools such as VisiVue, can be useful for investigating specific parts of the software or

for demonstrating how smaller programs and data structures work. However, it is not their aim to aid

comprehension oflarge-scale software of which the user has no previous knowledge. Therefore, there is

potential for higher level views combined with showing such low level details in order to aid program

comprehension. The current tools provide limited levels of abstraction and typically use only one or two

representations to represent the software. Progress could be made by using multiple representations to

display different aspects of the system in a common environment. This combined with user abstractions

and annotation and an increasing linkage to external data sources, such as JavaDoc, could aid program

comprehension activities. Many tasks require both high level and low level information in order to

complete them successfully. For instance, debugging tasks may require the user to first gain an overview

of the software in order for them to localise their search to the problem area, once the search has been

refined, then low level information may be needed to see which elements are actually causing the error.

Runtime visualisation systems face the generic software visualisation challenges discussed in section 3.6.

However, the runtime aspects can introduce new intricacies and difficulties. Scale is a major issue for

software visualisations in terms of dealing with the massive amounts of information that are present on a

real world piece of software. This is a particular problem for run time visualisation, as there can be even

more information, making it difficult to mange let alone visualise! This is due to the combination of the

large amount of static information available, plus the state of constant change that is introduced by the

dynamic nature of the software. This run time information also introduces temporal relationships between

items and a large amount of new information may need to be presented at once in a coherent manner. This

dynamism affects all aspects of the visualisation, from layout, to representation and evolution. The layout

cannot be known in advance (for online systems) resulting in added complications for the layout of items

within views. Many issues arise when incorporating the new information in existing views. Should the

layout try to maintain as much consistency as possible with the old layout? Or should the items be laid

out in the best possible way given the new data? How shall changes in the data be presented? When the

user is focusing on a specific item of interest how shall changes in the rest of the data be presented? What

about changes that affect views other than the one the user is currently using? Does the user want to see

just the current state or all the states up to that point? Do the user annotations and abstractions want to be

50

preserved between different executions of the software or do they only apply to certain executions or

inputs? There are no defmitive answers to these questions and they can depend very much on the task and

user requirements. However, it is important for the system to maintain a consistent approach and try and

reduce user disorientation. Navigation is complicated in a runtime visualisation system, as not only can

the user navigate through the information but also through time. The user may have to navigate through a

large amount of runtime information in order to find an item or event of interest and it may only occur

under certain conditions or at certain points in the program's execution. For instance, the execution of

some functionality may be hidden behind the code for the user interface and may prove difficult to locate.

Some systems allow the program's execution to be back stepped e.g. ZStep [Lieb97], however, this

requires the preservation of previous states or the steps required to restore those states if the visualisation

is using an online approach. This is obviously unsuitable for large programs and techniques that allow the

visualisation to show previous states without affecting the execution of the program can lead to user

disorientation with the visualisation and program being at different points in the execution. These

problems do not apply to offline approaches where the visualisation is purely based on a trace, however,

in such systems disorientation can occur if two views are presenting different pieces of the program's

execution. The evolution of the visualisation is also affected by the dynamic nature of the software. Not

only can the source code change but also the software's runtime behaviour can vary hugely depending on

data inputs. The visualisation must be able to cope with changes in both aspects, yet try and preserve

some consistency between the cases.

The changing state of the software can increase user disorientation due to the large information space and

the possible lack of consistency. This is especially true for certain information, such as a call stack of a

thread, which are in a state of constant change. The sheer speed of change of such details means that it is

impossible to watch them in real time regardless of the representation. Such details are needed for low­

level investigation when the program's execution is paused and summary information is needed to present

the bigger picture. Such as summarising method calls from a particular method instead of requiring the

use of the call stack to find the information.

Problems can also exist in generalising findings. The visualisation only shows how the software behaves

for that particular execution and data set. Therefore, more investigation may be needed to allow items

under study to be fully understood. Some generalisations may not hold for all executions of the program.

This is an important factor for the user to consider, especially if the software only loads certain sections of

code dependent on its input or environment. In this situation the software may appear simpler than it

actually may be!

The performance of runtime visualisation systems can also be a major challenge. The usability of such

systems requires that the user can feasibly extract and visualise the software without prohibitive

performance overheads. This performance issue is not as important for visualisation systems based on

static analysis where the data can be extracted pre-visualisation time using efficient parsing techniques. In

this case, the data is static so it does not need updating or monitoring while the user investigates the

visualisation. The main performance issue for static analysis visualisation tools is dealing with the large

volumes of data generated by substantial software systems. However, when visualising information

51

extracted using dynamic analysis, i.e. runtime visualisation, even small software systems can generate

vast amounts of dynamic information. This performance issue is especially important for online

approaches where the visualisation occurs alongside the program under study. In this case the software

can generate a very large number of events and the visualisation must aim to interpret and incorporate this

information into its presentation within an acceptable overhead.

4.8 Conclusions

This chapter has presented details of the existing approaches to software visualisation at runtime. The

viewing ofruntime information takes its most basic form through the use of debuggers to inspect a

program's internal state. However, specific runtime visualisation tools have been developed that allow a

greater insight into the structure of a program. A summary of some of the main work in the field has been

presented allowing an overview of the common techniques and problems to be seen. The issues with

current approaches were discussed, followed by features which are considered desirable in a runtime

visualisation system. This chapter has highlighted the need for greater research and as Jeffery states

"Monitoring and visualizing the dynamic behaviour of programs is a major area of research that has not

been fully explored". [Jeff99 p3)

52

Chapter 5 The DJVis Approach

53

5. 1 Introduction

This chapter presents the approach taken in the development of a visualisation of the runume execution of

object-oriented software. The aim oftbis visualisation is to aid the comprehension ofOO software by

visualising both static and dynamic details of it. Firstly, the chapter provides a definition of terminology,

The choice of language to target using the visualisation is then discussed before the actual constructs of

the language are presented. This allows the mapping to the representations within the visualisation to be

fully detailed. Alongside these descriptions of the representation and mappings, the aim of each of

the visualisation is detailed. The visuahsations presented make up the DJYis visualisation and this is

discussed as a single visualisation and as a combination of specific visualisations, each focusing on

showing certain aspects of the executing program.

5.2 Terms

The description of the DJVis visualisation uses a specific terminology, which is defined here for clarny.

These definitions are defined with the purpose of being used for the description of DJVis

• Representation: A representation is the graphical items that make up an image for some data item in

the sot'hvare.

• Mapping: The mapping defines the relationship between the data items and the mdlv1dual

representations.

• Vis ualisation: A visualisation is a combination of representations and the mapping of these to Items

of data, along with an interaction method.

• View: A view, in the context of DJ Vis, is a visualisation of some specific aspect of the program's

execution.

• Abstraction : The abstraction is the level of detail shown of an item or in a view. Higher levels of

abstraction present less infom1ation on an item.

5.3 Language Choice

There are many different languages based on the object-oriented paradigm. Each language prondes 1ts

own variations and therefore tbe choice of language to be visualised influences the resulting VISualisation

For example, C++ allows multiple inheritance of non-abstract classes and code and variables can be

outside of classes. whilst Java does not. Issues such as this influence the resulting visualisations. This

work focuses on the visualisation of Java software. The reasons for this are:

• Java does not allow code to be outside the scope of classes. Therefore, the visualisations can exploit

this object-oriented nature of all code in the representation.

• There is growing use of Java and it has a large existing user base. Titerefore, there will be a need to

maintain this software and there is large scope for the application of the resulting VISUalisations.

Ho we\ er, the visualisations are not restricted to Java alone and could be apphed to other languages,

though changes would be needed to take into account differences in thetr support for the 00 paradigm

from Java.

5.3.1 Language Constructs

The visuahsauon w11l be based on the language constructs of Java. The follo\\1ng are the elements of a

Java program that are useful for providing information about the program's runtime behaviour

Class

Object

Name

Methods

Fields

Name

Access Rights (public, private, protected)

Arguments

Return Type

Local Variables

Number of Calls

Calls which other methods and classes

Called by which other classes and methods

Length

Coverage

Lines defined at

Final

Name

Type

Access Rights (public. private. protected)

Values for objects of class

Accessed by which other classes and methods

Is it used to reference a sub type of the actual field type.

Package defined in

lnhents

Implements

Number of instances created

Created by which other classes

Jnner, Abstract, Final

File defined 111

Class of object

Values of fields

Interface

Package

Name

Inherits

Implemented By

Methods

Fields

Name

Name

Access Rights (public, private, protected)

Arguments

Return Type

Name

Type

Classes within package

Classes in this package used by which other packages I classes

Local Variables and Method Arguments

Name

Thread

Type

Scope

Value

Name

Thread Group it belongs to

Call Stack

State (Running, Sleep, Wait, Zombie, Monitor, Suspended)

Owned Monitors

Currently Contented Monitor

Thread Group

Name

Threads it contains

Thread groups it contains

Parent thread group

56

The Java thread architecture imposes a bierarchjca1 structure on some of these constructs as it executes

the software. Java is a multi threaded language, so one basic element for the runtime visualisation is that

of threads. Each thread belongs to a thread group, which can contain threads and other thread groups.

therefore forming a hierarchical relationship. Each thread has a call stack, which comprises of all the

methods that the thread is executing. Java code has to belong to a class and each method on the stack is

part of a class. This outlines the runtime aspects of the Java thread architecture. At this level the

representation is quite procedural in nature. However, due to the object-oriented nature of Java there are

also higher level relationships between the active objects. These form a network of communicating

objects, each being an instance of a particular class. There is also a static hierarchical structure between

some items. Java code cannot exist outside of a class and all classes belong to a package. Classes. which

are not defrned as part of an explicit package, are loaded as part of a default package. Therefore. each

package contains classes, which then have methods and fields. These relationships allow natural

abstraction levels and the use of these are discussed in the detailed descriptions of the DJVis views. Using

the language constructs a number of relationships can be extracted from the program under study: The

following list is not exhaustive and other relationships exist. such as field belongs to class. Table 5- l lists

the main relationships.

From Relationship To

Class Creates Class

Class Created by Class

Class References (Statically) Class

Class Referenced by (Statically) Class

Class References (Dynamically- through a base class or Class

interface)

Class Referenced by (Dynamically) Class

Class Calls method of Class

Class Methods called by Class

Class Field accessed by Class

Class Inherits Class

Class Inherited by Class

Class Implements Interface

Interface implemented by Class

interface Inherits lnterface

interface Inherited by Interface

Method Calls Method

Method Is called by Method

Method Calls method of Class

Method Is called by method of Class

Method Accesses field of Class

57

Field Accessed by Method

Field Accessed by Class

Thread Group Contains Thread Group

Thread Group Contained by Thread Group

Thread Group Contains Thread

Thread Contained by Thread Group

Table 5-1 Dynamic relationships between Java items in an executing Java program

The focus of the DN is visualisation is to concentrate on showing class level and threading details of an

executing program. The visualisation of object level details is not considered in the visualisation.

Therefore, the above table does not include relationships involving objects. which are defined in Table

5-2.

From Relationship To

Object References (Statically) Object

Object Referenced by (Statically) Object

Object References (Dynamically - through a base class or interface) Object

Object Referenced by (Dynamically) Object

Object Instance of Class

Object Creates Object

Object Created by Object

Object Accesses field of Object

Table 5-2 Object level relationships

5.4 DJVis

This section describes the DJYis visualisation. This is presented as an overview of the DJYis visualisation

followed by a detailed summary of the individual views that combine to make up DJVis.

5.4.1 Overview

The DJVis visualisation is composed of a number of views, each of which aims to show some aspect of

an executing Java program. It would be impossible to try and show all aspects of a piece of software

within one view or using a single representation, and therefore interconnected views are used within an

integrated environment. Table 5-1 highlights the different relationship types, and it can be seen that the

infom1ation can be separated into three main categories based on class, method and thread relationships.

The visualisation was developed using tlus separation of information, with a specific view for showing

each information type. Thjs allowed tbe different relationships to be logically separated, thus reducing the

amount of infom1ation that each view needs to display. There is some overlap between the views, as some

relationships follow logically from others, however, the main aim was to reduce the amount of

infornJation in each view and use co-operating views to allow the user to easily use multiple views to

investigate the different relationships. These main views of the executing program are:

58

• Runtime View

• Class View

• Variable Watch View

• Method Pixel View .

• Query View

The Runtime View and Class View have been introduced in work by Smith and Munro [Smit02]

However, this chapter offers a full description of the views and their features. DJ Vis also provides a

syntax highlighted text view for showing source code and a number of textual displays that are used by

the main views and described in the relevant view description. The views each have different objectives

However, as previously mentioned some details of the program's execution are shown in more than one

view. Table 5-3 highlights which views show each of the relationships previously identified Table 5- I.

From Relationship To Shown In

Class Creates Class Class View

Class Created by Class Class View

Class References (Starically) Class Class Vie\\

Class Referenced by (Statically) Class Class View

Class References (Dynamically - through a base class or Class Class View

interface)

Class Referenced by (Dynamically) Class Class View

Class Calls method of Class Method Pixel View.

Class View

Class Methods called by Class Method Pixel View,

Class Vit.>w

Class Field accessed by Class Variable Watch View

Class Inherits Class Class View, Query View

Class inherited by Class Class View. Query View

Class Implements interface Class View, Query View

Interface Implemented by Class Class Vie\\

Interface Inherits interface Class View, Query View

Interface Inherited by Interface Class View, Query View

Method Calls Method Method Pixel Vtew

Method Is called by Method Method Pixel View

Method Calls method of Class Method Ptxel View

Method Is called by method of Class Method Pixel View

Method Accesses field of Class Variable Watch View

59

Field Accessed by Method Variable Watch View

Field Accessed by Class Variable Watch View

Thread Contains Thread Runtime View

Group Group

Thread Contained by Thread Runtime View

Group Group

Thread Contains Thread Runtime View

Group

Thread Contained by Thread Runtime View

Group

Table S-3 Viewing the different relationships in the different views

Each view is defined in full in the following sections, though it must be noted that the views are not

restricted to only showing the information displayed in Table 5-3. Additional information from the

language constructs is also shown, but Table 5-3 shows how the main relationships identified in Table 5-1

are displayed. The description of each view takes the form of the aim of the view, followed by the full

mapping and a discussion ofhow each view can demonstrate concepts of interest. A summary of the

information obtainable from each view is also provided. Once the specifics of the views have been

described individually, some other aspects of the visualisation are presented that apply to the whole

visualisation and aim to provide consistent features across all views.

Vanablc Watch Vie\\

Figure 5-t An overview of the information shown by each view.

Figure 5-1 shows an overview of the information presented in each view and summarises the information

shown in Table 5-3. The Query View is not shown on this overview since it presents information from the

other views and therefore can show all information types presented in the overview.

60

5.4.2 DJVis Views

There are 5 main views that make up DJVis. each of which is presented here usmg a template that

describes the aim, mapping and summary of each of the views. Each of the main views also includes

other helper views that provide additional information. The main five views can be summarised as:

• Runtime View

• Class View

• Varia ble Watch View

• Method Pixel View

• Quer y View

Presents the threading aspects of the software using a 3D representation.

Provides details on the classes and their relationships using an augmented

graph representation.

Presents information on the access types and frequency of accesses for a

field variable.

Presents the method calling relationships of a class' methods using a pixel

based representation.

Acts as a grouping mechanism for mfonnation from other vtews.

The first four views provide their own representations of the information being displayed, whilst the

Query View is distinct in that it provides a mechanism for the user to group infonnation from the other

views. In most instances the representation used is the same as in the original views.

5.4.2.1 The Runtime View

Aim

The aim of the Runtime View is to present the low-level runtime information about the software's

execution. Tltis inc:ludes details such as the programs call stack(s), as we11 as information such as control

flow and variable values. Much of this nmtime infom1ation can be thought of as hierarchical , due to the

thread architecture. Here, the executing program is made up of one or more thread groups. These

structures can contain threads and/or other thread groups giving a hierarcltical division of threads into

groups. Each of these threads then has a stack, which contains method calls and local variable values.

Each method being executed on tbe stack gives information on conn·ol flow and variable access.

Mapping

The mapping of the Runtime View takes an approach which follows the basic levels of abstraction of the

executing program, in tenns of thread groups, threads and their call stacks. This alloY. s a natural

abstraction of the program, which will be familiar to users through its use in debugging tools. Also, Jt

reduces infonnation overload by restricting the amount of information that it is necessary to display at

once. Using this, a visualisation was devised to display the information at each of these levels and to

allow coherent changes between them. The visualisation used by the Runtime View initially presents the

program abstractly in tenns of an overview of its thread groups and the threads strucn1re.

61

The call stack of a thread A single thread

Figure 5-2 The Thread Group Hierarchy

Figure 5-2 shows the thread group hierarchy as a tree of thread groups (each turquoise platform). On top

of these sit the smaller green platforms of each thread in the thread group. From this overview of the

thread groups and threads, the user can focus on items of interest. As the user moves the viewpoint closer

to an item, then more details on the item become available.

Link to
creation
details

Figure 5-3 A single thread

The thread's call stack

Thread History

Blocked resource the thread is waiting for

Figure 5-3 shows the details ofthe view of a single thread. This view presents and allows access to a

variety of information on the thread. Most importantly perhaps is the call stack of the thread. At a

distance this indicates the number of methods on the call stack and provides greater information on the

actual methods when zoomed in upon. The view also gives an indication of when the thread is in

contention for a monitor. This could allow threads that are frequently being blocked to be seen. The view

could also provide links to thread creation details, such as the code where it was created and the parent

thread, as we11 as details of thread history, such as common blocking etc.

62

Problems can exist with this representation when the thread's call stack is large. This would result in a

very tall call stack, which could make it difficult to observe in its entirety and it may occlude other

objects above it in another Thread group. Such a large structure would also be difficult to navigate. A

possible solution to this would be to use a logarithmic scale upon the call stack as demonstrated in Figure

5-4

Top of stack

First 1 0 methods
on stack

Next 1 00 methods

Next 1000 methods

Figure 5-4 A possible scaling of methods on the stack

This approach would allow the user to easily see the approximate number of methods on the stack due to

the colour coding, whilst being able to handle a large number of methods without problems of scale. With

a suitably chosen scale factor it should also prevent the stack from growing too large and intersecting

objects above it.

From the view of an individual thread platform, the user can focus further, if desired, by zooming in on

the thread call stack. This uses Level Of Detail (LOO) to reveal more information as the user zooms in.

The stack changes from the coloured rectangle, to reveal the individual methods on the stack as is shov•n

in Figure 5-5.

Primitive types

Figure 5-5 Methods on a eaU stack

63

Method names
and

argument types

The use of a logarithmic scale for the stack representation prevents all the methods from being shown at

once in order to maintain a constant size for the stack. Instead, the top ten methods on the call stack are

displayed as normal. However, any remaining methods in the stack are scaled and presented using the

logarithmic scale by maintaining the colour coded rectangle about them. This introduces issues in

navigating the call stack, in particular to methods that are in the modified scale sections. A possible

approach would be to allow the user to move the expanded section up and down the stack to inspect the

area, in which they are interested, whilst other areas remain in the shaded logarithmically scaled

rectangle. However, this prevents the entire stack from being seen at once and prevents the comparison of

different sections of the stack at the same time. A text list of the methods on the stack could be optionally

presented in a pop up window alongside the graphics to allow quick scanning of method names and as an

aid to navigating the stack.

Th is level of abstraction presents an overview of the methods on the call stack and the objects that they

take as arguments. In order to find more details on a method the user can zoom in further on a single

method.

Objects passed to method as arguments

Overview of the control flow of the method

Figure 5-6 Details of a metbod on tbe stack

The zoomed in details of the method are revealed using level of detail, to fade from the original method

box to the additional details shown in Figure 5-6. The argument objects are scaled as the view is zoomed,

in order for them to remain a constant visual size and prevent them from appearing dominant. This view

of a method presents an overview of the control flow of the method.

64

Return
points

scope of "for" and
"while" loops

conditional "if' branch

r-----"else A branch

Figure 5-7 Presenting an overview of control flow information

Figure 5-7 shows bow the scope of the code in the method is presented, with the scope indentations

coloured according to type. The scope is shown from the start of the method down to its completion.

allowing the basic control flow of the method to be seen without browsing the source code and showing

the proper scoping for source code that has been badly indented. The green signifies a conditional block

of code from an "if' statement, while red shows the "else" conditional code. The purple code blocks

represent looping and the blue block represents the entire method body. The arrows to the left of the

method scope show return points for the method, thus allowing the user to easily observe possible return

points and associated values.

This view is only intended to give an overview of the scope and as all method boxes are the same size, the

scoping information is mapped at different ratios dependent on the length of the method. This means that

for large methods only the general pattern will be visible. In order to allow the size of the method to be

seen a scale is placed to the left of the scoping information. This is colour coded similarly to the call stack

scale. This gives an approximate size for the method at a glance. The scoping information has the

advantage that the correct scoping information can be presented even if the actual source is not indented

properly. This could allow a rough guide to the complexity of the method to be gained and set up

expectations for the user, which could be checked against the source code to highlight any scoping errors.

The actual source code for the method is presented in the Source View, which is displayed beneath the

RWltime View. The large free space to the right of the scoping information in Figure 5-6 could be used to

show additional information, such as indicating any lines of break points, or highlighting if there are any

user annotations, comments or hypothesis on the method.

Summary

This section has given a detailed description of the Runtime View. The view provides access to low-level

details of the software's execution. The representation closely maps to the underlying information and the

view uses level of detail to allows the user to obtain detailed information on an item of interest. 1t allows

a user to obtain the following information:

65

• Thread groups

• Name

• Parent and child thread groups

• Threads in thread group

• Name

• Status

• History and creation details

• Call stack

• Methods on stack

• Name

• Arguments

• Execution position

• Local Variables

• Scope and control flow information

The Runtime View was not designed in isolation, but to be combined with the Query View in order to

improve its usability.

5.4.2.2 The Class View

Aim

The aim of this Class View is to present details on the classes and their relationships. The view aims to be

customisable thus allowing the user to investigate different relationships within a common framework.

The aim of the view is to show the structure of the software at the class level. The user should be able to

see which classes are involved and get an impression of a class· structure.

Mapping

The Class View is based on an augmented graph representation. The nodes represent the classes in the

software whilst the edges represent relationships between the classes. The representations used in the

Class View are summarised in Table 5-4.

Representation Meaning

0 Class (shading represents number of instance created)

© [nterface

© Inner Class (shading represents number of instance created)

66

Methods (length and shading represent user selectable metrics)

Fields (shading represents user selectable metrics)

,'- ..
' . Type yet to be loaded

'
J

' '. '

0 Package type belongs to (Colour coded by package)

Table 5-4 Class View Representations

The circular nodes represent classes and are coloured to represent the nwnber of instances of each class,

from the start of the program's execution or from a specific point. Around the circular node of the class,

the methods of that class are represented as lines coming out from the node. This allows the number of

methods each class has to be easily seen. Methods that are inherited by the class are not displayed, as they

are displayed for the parent class. These method lines can be shaded and altered in length to represent

information. such as the method length, complexity, number of calls and the access rights of the method.

For example, Figure 5-8 shows the Graph Desktop class, with the method line length representing the

length of each method and the shading representing the number of times that the method has been called.

The class has eleven methods (four that haven't been called (shown as white), four that have been called a

few times (shown as light blue), two that have been called slightly more (shown as blue) and one that has

been called many times (shown as dark blue)). Two of the methods are long in length whilst the other

nine are short.

GraphDesktop

Figure 5-8 Viewing the GrapbDesktop class in Class View

Figure 5-8 shows the representation of a single class. These class representations are connected by edges

dependent on the relationship the user wishes to investigate. A number of relationships exist between the

classes as Table 5-l highlighted. These can all be shown in the Class View, using a drop down list to

allow ease of changing between them. Class references can be displayed both in terms of the traditionally

displayed static references, for example as with UML class diagram and also dynamic references through

a base class or interface.

67

Q Parselist

PtuseHead

ParseBody

Figure 5-9 Class View showing static and dynamic references

Parse Row

Figure 5-9 shows an example of dynamic and static references. 1n this figure the method lines represent

the length of the methods and the colouring represents the access rights of the method (green for public

methods, orange for protected methods and red for private methods). The Parserlmpl class has nine

references to the interface Parser. However, at run time these nine reference fields are used to reference

the Parse* classes. The red edges represent the dynamic references to these classes, whilst the static

references are shown by the black edges. A black and red dashed line would show composite dynamic

and static edges, though none are present in Figure 5-9. Figure 5-9 also demonstrates how interfaces (grey

square within the class node e.g. Parser) and inner classes (inner circle within node e.g. ParseRow) are

represented The Parserimpl class can be seen to be static, as it has no instances (shown by the white

node). It contains the nine inner classes Parse*, each of which implement the Parser interface, which can

be seen by changing the edge mapping. The Parserimpl class acts as an interface to the functionality of

these inner classes to the rest of the program. This is also suggested visually by its Class View

representation, as the Parserlmpl class has many very short methods and it is the only class to reference

these inner classes.

The examples presented so far have all used the length of the method lines to represent the length of the

method. This mapping allows an impression of the method to be gained in terms of the amowtt of code it

involves, thus allowing classes with a lot of functionality to be easily spotted. However, the length ofthe

method lines can be used to represent other metrics, such as complexity metrics or even for representing

the number of calls of the method. Using the method line to represent the number of calls allows the user

to gain an indication of which sections of the code are being executed as the program rwts. This can help

in the localisation of functionality, for example by tracing the method calls whilst the program performs

some functionality, it is then easy to observe which methods and therefore classes were involved. The

method lines could also be used to represent metrics extracted from other sources than the visualisation

tool itsel£ For example, version control information could be used to show the number of changes in a

method by changing the shading or length of the method line. This could give a higher level indication of

68

where changes have occurred, between this and another specified version, thus allowing the user to

investigate changes of interest.

The Class View uses a similar representation to show the field variables of the presented classes. Lnstead

of using method lines the fields of the class are represented using triangles. This allows the user to easily

distinguish them from the method presentation in order to reduce any possible disorientation as both

methods and fields are shown in the same view with the user able to simply toggle between them. As with

the method lines, the user has control over the shading and length of the field triangles in order to show

different information. The shading of the field triangles can represent the number or type of accesses, type

of the field and access rights. The distance the triangle comes out from the class node can be either fixed

or it can r,epreseot the number of accesses of the field. Figure 5-10 shows an example of the

representation in use. Here, the DisplayFrame class {left) is shown using the access rights shading

mapping. This class has a number of private fields shown as red and two public fields, shown as green.

The GraphCanvas class (right) shows an example of the field type mapping. Here, the blue shading shows

fields that are based on Java primitive data types, whilst the purple shows fields of Java API class

reference types and the yellow shows fields that are user class reference types.

QplayFrame

Figure 5-10 Showing field variables in the Class View

Figure 5-11 Showing data encapsulation using the Oass View

69

Figure 5-11 illustrates the Class View showing the field data using the access type mapping for the

shading of the field triangles. This view allows the user to observe how variables are used across the

software and aids them in their comprehension of the classes. It allows the user to gain an impression of

the data hiding that has been employed in the implementation of the software. For example, Figure 5-11

shows an example with a cluster of classes where nearly all the fields are private {shaded red). This

suggests good data hiding, while a large number of green i.e. public fields would suggest areas where data

hiding is limited and the classes may be heavily coupled to other classes which rely on these public fields.

The Class View visualisation is based on a graph representation. Graph representations offer an intuitive

representation for software engineers, although, they suffer from problems of scale and complexity as the

number of nodes and edges increase [Knig99b]. In order to improve the representation the view supports

grouping of the nodes in order to abstract known or unrelated modules in the view. For example, classes

responsible for the user interface may be grouped so the user can focus on the underlying processing

classes, which they are investigating. Classes can also be filtered from the view in terms of being

removed or being presented but highlighted as filtered (and no usage, instance or calling information is

available for them). The view indicates that there are hidden classes, so the user does not forget that they

have hidden some classes and therefore that they are not seeing the true picture.

Figure 5-12 Displaying User Abstractions

Ah!ltr.u.-tlun Name -

•• •
Figure 5-12 shows how user abstractions are displayed in the Class View. The left image shows the

abstraction collapsed i.e. just showing its name, whereas the right abstractioo is expanded allowing the

circular nodes of the six classes it contains to be seen. This gives an impression of the contents of the

abstraction and the names can be obtained using a mouse over operation. The method lines are not shown

for the classes inside the abstraction and as the number of classes increases, then the size of their nodes

becomes smaller to prevent the abstraction node from becoming e.xcessively large. The abstractions can

be removed from the display in order to allow the details of the nodes to be inspected. The user can also

display a node in all its detail in a sub window by right clicking on the node in the abstraction and

choosing the "Details" menu option. This option can also be used to show a zoomed in versioo of the

node for any node in the Class View, in order to allow detailed inspection without needing to change an)

of the graph display options. The edge relationships of nodes within the abstractioo are not shown, and

only edges to nodes outside the abstraction are displayed. Abstractions can contain other abstractions and

these are displayed as embedded abstractions as Figure 5-13 demonstrates.

70

Figure S-13 Embedded Abstractions

The use of user abstractions and filtering allow the complexity of the view to be reduced. Other filtering

options could also be supported, such as the ability to hide inner classes. or to remove static references to

a base class or interface that are also shown as a dynamic references to a sub class.

The Class View provides an overview window to allow the entire structure of the graph to be seen and to

aid in the navigation of the graph. This overview window highlights where the user is currently focusing

in the context of the whole graph, thus helping the user orientate themselves. Nodes in the view can also

be located by searching using their name or the start of their name.

Java files are located in packages representing the directory structures in which they are found This

offers a natural separation of the code and the packages are highlighted in visualisation by using a lightly

coloured circle behind the class oode.

essageCatalog

@
XMLReader

Figure S-14 Sbowiog Package Inclusion in tbe Oass View

Figure 5-14 shows the class MessageCatalog and the interface XMLReader, which are from different

packages. The light coloured circle behind the node shows the package the node belongs to, with each

package being allocated a unique colour based upon its name. This provides a consistent colouring

scheme across each run of the visualisation and even between programs that use some overlapping

packages. The package circles provide an easy way to see how the package is used within the program.

Packages can also be used to filter items in the view, allowing packages of no interest, e.g. utility code, to

be filtered from the current view, or by al lowing all items in a package to be grouped into a single

abstraction node.

To aid the user in navigating the graph, the Class View provides an additional helper view that displays

the names of the classes and interfaces that have been loaded. The classes and interfaces are displayed

using a tree control where the package structure is used for the branching of the tree structure and the leaf

nodes are the classes and interfaces. This allows the user to quickly see the contents of a package and

which packages the program is using. The packages are displayed next to a coloured icon which shows

71

the colour used for the package circle on the graph's nodes. The tree control allows the user to quickly

navigate to a class in the Class View by selecting it in the tree control.

The Class View supports interactive customisation, allowing the nodes to be zoomed in upon to show

more detail and to allow classes with a large number of methods to be seen more clearly. The Class View

also acts as a navigation method allowing classes to be inspected in other views such as in the Method

Pixel View and in the source code viewer. The view supports mouse over and selection pop ups of

additional information such as method or field names. The user can also have the option of having the

source code displayed in the pop information to reduce user disorientation in having to change views.

This is demonstrated in Figure 5-15. Alongside these features is the ability to annotate the items (classes,

interfaces, methods, packages and abstractions) with user comments to allow the current hypothesis to be

recorded or acquired information to be stored. This information would then be accessible in other

inspections of the source code or by other users. For example, annotated comments recorded on classes in

a package would be available when any software using that particular package is visualised. Annotations

can be made in all views and this is discussed in section 5.4.3.

ode
,. •••• j

H r-st •w& l
CWt"fllll ""fl l
lfofttt•

Figure S-15 Displaying the method name and source code in the Oass View

The Class View presents only a single relationship at a time. However, it is often the case that a

maintainer may wish to investigate multiple relationships at once, such as references and inherits. In order

to allow this, multiple instances of the Class View can be opened and existing views cloned or saved. To

provide ease of use the views can be linked together so that the selection of a node in one view results in

all the other views focusing on that node. Views that are saved and then loaded are indicated as such by

having a grey background This same technique is used for snapshot views, where the view is frozen and

no longer updated as the data changes. These loaded and snapshot views have their data fixed. This

allows a user to compare the current state with a previous state.

The Class View presents a large amount of information and due to this the visual complexity of the view

may be high for large software systems. In order to reduce this, the view supports multiple filtering

facilities to allow the user to remove items of no interest. The filtering of items is provided at multiple

levels of abstraction, namely filtering based on user abstractions. package structures, classes, methods and

72

fields or any combination of these. The user can define a filter using a simple tree control that lists each of

these characteristics and then has the filtering options below it. This filter creation is managed in a popup

dialog window as shown below in Figure 5-16.

(.:_ CJP..lff" .1 New fdiN 0

FllrO O...Fllr

.- Use. Abstradion Flers
N.- JDilla Slrucll.le Oaues rteri) s-

.,- Package File.s ("'...,..in ViM J)d!dllnn Name
Aegt.j"' E>PesSIOn on package name Uter Abstraction Filers (0)

= Class Filer: Package Fileu (01
Name = Class Fl"'s (4)
Regt.jar [liPfesSIOn on elMs name = N<IITled(3)
lnherts from Li*ed..ist

Cortains field
- Mello:f File.s fnh..Wfrom (l)

Name Mello:f FJeu (0)
E on method Field Filer• (0)

Acc=Twe
Called by

Callc:Olrt
• FieldFile.s

11

I OK In_ c.al -1

Figure S-16 Creating a user filter

The user can add an item to the filter based on the filter characteristics and this is added to the current

filter. These filters can be named and saved to allow the user to quickly change between different filters

and return to previous settings without the overhead of having to create the filter afresh each time. The

current filter is displayed in a drop down list at the top of the Class View so the user can quickly see

which filter, if any, is active and also change between filters. The definition of the filter allows the user to

include or exclude items that fit the current filter characteristics. This provides a powerful mechanism for

the user, allowing them to quickly focus on items of interest and reducing the volume of information they

are presented with.

The method Line idea allows the number of method calls to be seen by using the shading or the length of

the line to represent the number of calls. The mapping of these values will depend on the program and

task the user is oodertaking. For example, a linear mapping function may be the most useful when the

program is small and has a small number of method calls, or when the user is slowly stepping through a

program observing the method calls from some particular point. However, when the time span of

execution is longer and the method calls are high a logarithmic function may be more suitable. Otherwise,

the method lines could quickly become shaded to the maximum intensity and the length of the lines

become too long and start obscuring the view. This logarithmic scale allows the method line

representation to scale up. However, the user may be looking for some distinct calling frequency or may

want to make some particular values more important. In order to support this, a custom mapping mode is

provided, where the user can define the mapping function between the method calls and length and

shading intensity. This allows the user to easily create custom mapping functions that relate to their

particular task, or to features in which the user is interested. For example, if the user simply wants to

73

know if a method has been called and they are not interested in the number of times, rhey could set all

values except zero to map to a set length or shading intensity. This modification of the mapping function

would be supported through the use of graphical manipulation of a graph as \\ell as the ability to enter

simple mathematical equations for the mapping function.

Method L1nc length

'''"''"'

(a)

(c)

IO
I

()

Valu"

I me Length
fpl\thl

/ ,., /
() 10

Value

Figure 5-17 Length Mapping Modes

\;lcthotl L tnc l ength

(b)

tO

()I

V.i)Ue

Method I tnc I cngth
trl\tl>t

(d)

\() -----------
/

I

V:tluc

Figure 5-17 demonstrates four possib le mapping modes that could be useful for differem tasks. Graph (a)

would show only items of values x and over and these would be represented with a constant length of ien

pixels. This could be used for showing methods over a certain size, or highlighting frequently called

methods. Graph (b) maps all values to the same value, except zero, whilst graph (c) shows the default

linear mapping mode. Finally. graph (d) restricts the method lines to a maximum length of thirty whilst

making smaller changes more prominent.

This approach can also be used for the other represenrations of the method line, such as the method length

or complexity, which can be shown in terms of the length or shading of the merhod lines. This can allow

the user to set values to effectively hide small or simple methods and highlight methods above some

threshold of length or complexity. This can be useful for preventative maintenance tasks where there is a

desire to ftnd and improve complex methods.

Summary

The Class View presents details of the software under study at the level of classes and their relationships.

It provides access to a variety of iJlformation on the software and due to the key role of classes in the

design and implementation of object-oriented software the Class View is essential in the comprehensiOn

74

of the software under study. The view uses an augmented graph representation with method lines and

field triangles for showing the details of classes. The view is highly customisable, providing drop down

lists for changing how the underlying information is presented in the view, as well as facilities for

creating user defined filtering and mapping modes. The view presents information on:

• Classes

• Name

• Methods

• Name

• Access type

• Return type and arguments

• Method Metrics (length, number of calls (total, from user defined point),complexity)

• Fields

• Name

• Type

• Relationships (inherits, implements, creates, references (static and dynamic))

• Package inclusion

• Number of instances

• Type (inner, interface)

The representations used for the nodes in the Class View are summarised in Table 5-4. The Class View

also provides an effective means of navigating the other information sources such as driving the Method

Pixel View or the source code browser.

5.4.2.3 The Variable Watch View

Aim

The aim of this view is to present information on the use of field variables. The view aims to provide the

user with details of the use of individual class fields, allowing them to see the type of accesses (read,

write or mixed) and the frequency of accesses. The overall purpose is to allow users to follow variable

changes and locate dependent code. Therefore, the view aims to help users gain an understanding of how

and where a field variable is used, as well as helping in tasks such as impact analysis by allowing the user

to assess how tightly coupled the field variable is to the rest of the code.

Mapping

The view uses a radial layout of the information with the watched field variable being in the centre of the

layout. The view offers three levels of abstraction by showing the accesses at different levels of

abstraction. Initially, the view displays the classes that access the field variable and these classes are

represented as small circles arranged evenly around the central field in a radial layout. The distance of the

class circles from the centre of the main circle is used to represent the number of accesses that that class

has performed on the field variable. Coming out from the central point are background circles which are

designed to allow the user to easily compare the number of accesses between different classes and

75

provide them with an indication of the magnitude of accesses. These "scale" circles are displayed in the

background using subtle shading so they do not obscure or distract from the data items. The mapping of

the scale circles can be customised, with a logarithmic scale provided by default, starting with a single

access on the outside of the layout and with increasingly high numbers of accesses towards the central

point. The colouring of the data items (in this case representing classes) is used to show the type of the

accesses. Red represents write accesses, blue represents read accesses, whilst purple represents an item

that both reads and writes to the field variable. These colours can also be changed according to user

preferences. The ordering of the data items can also be changed between alphabetical ordering, type of

access and number of accesses.

•

•

•

•
•

•

• •
•

_ Access Type

•= Read •= Write
• = Read & Write

•

Figure 5-18 The Variable Watch View showing field access by type and frequency

Figure 5-18 shows an example of the Variable Watch View showing a field (the black centred square)

being accessed by ten different items represented by the small coloured circles. The items are arranged

alphabetically, hence the random spread of items in terms of access type and number of accesses. Using

this view the user can identify bow heavily coupled a field variable is and how the rest of the program

uses that variable. For example, in Figure 5-1 8 it can be seen that field variable under study is accessed by

ten items: two of which are write only accesses; three read only accesses; and five read and write

accesses. It can seen that the field is accessed a high number of times especially by the two inner items.

while there are three outer items that access it a small number of times.

The view offers a number of abstraction levels as previously mentioned. After the presentation of the

accesses at the class level, the user may drill down on one class and see the accesses in terms of the

number of methods of that class that access the field. This allows the user to gain a more detailed view of

the usage and if more details are needed the view can be drilled down upon again to show the accesses in

terms oflines for a single method of a class. When the user uses this drill down mechanism the depth of

the current view is presented at the top left of the view above the radial layout. This lists the abstraction in

terms of the selected items using a path like structure where the user can select to jump back to previous

76

levels similar to a web page position bar. For example. "AllClasses \ ClassA \ Method.B"

would be displayed when the users had drilled down on ClassA and then on MethodS. Field variables that

are private will only be accessed by the local class, and therefore the first level of abstraction is

unnecessary, although it is still provided for consistency.

The items in the view can be displayed with or without text labels, depending on user preference. The

view also supports more detailed information using mouse over, which presents the name of the item and

details of the accesses. This information varies depending on the abstraction level being displayed. At the

class level the popup information displays the class name, the number of access and the nwnber of

methods accessing the variable, whilst at the individual line level the actual line of the source code is

presented, along with two lines before and after to provide context.

a)

•

•

c)

• •

• •

•

b)

• •

•
•

•

'

d)

Figure S-19 Multiple patterns in tbe Variable Watcb View

•

•

•

•

• • • • • •
•
•

11 '

•
• • • • •

• • • • t • • • •
• • • • •

• • • I •

Figure 5-19 illustrates some ofthe patterns that could be found using the Variable Watch View and the

possible interpretation of these can be found below in Table 5-5.

Pattern Possible Interpretation

a) In this case the field is read often by six items. However, it is only set by one item and its

value has been set only a small number of times in the previous execution.

b) This offers a more complex case of pattern a) with more classes involved and some mixed

read and write accesses. In this case the items are ordered by the number of accesses, which

77

results in the spiral pattern present. The accesses seem to be in three groups. One group of

items that all read from the field a large number of times along with two that both read and

write. The next group of four items access the field a medium number of times with two

reading and two both reading and writing to the field. Finally, there is a group of three items

that only access the field once or twice. The field variable is used by a number of items and

therefore could prove problematic if it needs its type modifying. However, if the user is trying

to trace down a bug in which the value is being set incorrectly, then this view would be useful

as there are only six items that update the field as most access are just read accesses.

c) Pattern c) illustrates a situation where there is one item reading the field a large number of

times and one item writing to the variable slightly less times. If this view were at the class

level then there would be two classes involved, one of which could be local class that the field

belongs to. This field is therefore in a high state of change as the writing accesses are high.

This pattern could occur for a number of reasons such as a producer I consumer situation or

maybe in a data structure class that is updated by one class and read from another. If the view

was at the method level (showing the class that contains the field) then this would show one

method for write access.and one for read access which could suggest a GetFieldO and

SetFieldO method. This pattern, could also have a number of writes from constructor

functions. At either level of abstraction the view suggests that the field is not highly coupled to

the rest of the program, though this would need further investigation at the class level to make

sure the accesses are not widespread through the classes methods.

d) This would represent a highly accessed field that is extensively used by classes or a class'

methods depending on the abstraction level shown by the view. Either way it represents a

highly coupled variable that could prove problematic, if it needed modifying. Its usage is

typically mixed, with most items showing both read and write accesses.

Table 5-5 Possible interpretations of patterns from Figure 5-19

The Variable Watch View can also utilise the method lines concept from the Class View. This allows the

user to get an impression of the number of methods involved in the access for a particular class while still

being at the class abstraction level. At this point the class doing the accessing is represented as a small

circle with the distance from the field being watched representing the number of accesses. For these

classes, the number of methods accessing the field can be indicated using the method lines idea, with the

length representing the percentage of accesses for that method out of the total for the class. Figure 5-20

shows a simple example of this, with the view showing class accesses using the small circles which then

have method lines to give an impression of the methods of that class involved in the access.

78

•

Figure 5-20 Displaying class and method accesses through the use of method lines

figure 5-20 shows the method lines and how they can be used to gain an impression of the method usage

across multiple classes without the need to drill down on a single class. the method lines are shaded

using the same colour coding as the class circles so the user can tell the type of accesses in that method.

This additional method line detail can be turned on and off at user preference and may need to be off

when there are a large number of classes accessing a field in order to reduce visual complexity and

prevent the occlusion of other classes. As Figure 5-20 shows, the method lines allow the user to easily see

if the accesses are restricted to a few methods of the class, or whether the field is widely used by multiple

methods in the class.

The view offers support for showing variable accesses up to the current program execution point from the

creation of the field or from a user specified point in the program ·s execution. This allows the user to

view the entire history of the field accesses, or just the accesses for some particular part of the execution,

for example, accesses in a piece of functionality that is of interest to the user.

Summary

The Variable Watch View displays information on the use of field variables. The view can be used to gain

information on the frequency and location of field variable accesses at various levels of abstraction. The

view uses a radial layout with a high number of accesses towards the centre. The view presents

information on:

• Field Access

• Type (read, write, mixed)

• Number of accesses

• Accessed by Class, method or line.

This information is only available on fields that are explicitly watched.

79

