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Abstract

Software 1s a complex and invisible entity, yet one which is core to modern life. The development and
maintenance of such software includes one staple task, the need to understand the software at the
implementation level. This process of program comprehension is difficult and time consuming. Yet,

despite its importance, there remains very limited tool support for program comprehension activities.

The results of this research show the role that runtime visualisation can play in aiding the comprehension
of object-oriented software by highlighting both its static and dynamic structure. Previous work in this
area is discussed, both in terms of the representations used and the methods of extracting runtime
information. Building on this previous work, this thesis develops new representations of object-oriented
software at runtime, which are then implemented in a proof of concept tool. This too! allowed the
representations to be investigated on real software systems. The representations are evaluated against two
feature-based evaluation frameworks. The evaluation focuses on generic software visualisation criteria,
due to the lack of any specific frameworks for visualising dynamic information. The evaluation also

includes lessons learnt in the implementation of a prototype visualisation tool.

The object-oriented paradigm continues to grow in popularity and provides advantages to program
comprehension activities. However, it also brings a number of new challenges to program comprehension
due to the discrepancies between its static definition and its runtime structure. Therefore, techniques that
highlight both the static definition and the runtime behaviour of object-oriented systems offer benefits to

their comprehension.

Software visualisation offers an approach to aid program comprehension activities through providing a

means to deal with the size and complexity of the software and its invisible nature.

This thesis highlights the generic issues that software visualisation faces, before focusing on how the
visualisation of runtime information affects these issues. Many of the issues are compounded by the
dynamic nature of the information to be visualised and the explosive growth in the volume of information

that this dynamism can bring.

Wider results of this research have allowed the proposal of the necessary concepts that should be

considered in the design and evaluation of runtime visualisations.

Software visualisation at runtime is still a relatively unexplored area and there remains many research
challenges within it. This thesis aims to act as a first step to addressing these challenges and aims to

promote interest and future development within this area.
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Chapter 1 Introduction




1.1 Introduction

The objective of this thesis is to investigate the issues involved in understanding object-oriented code.
This takes the form of showing the execution behaviour of object-oriented code using visualisation

techniques.

The task of comprehending software is central to the majority, if not all, of software engineering tasks.
This is particularly true for understanding the software’s implementation details. Program comprehension
is not an easy task and it can be time-consuming and problematic, even for experts. Software is highly
complex and program comprehension requires gaining an understanding of the complex and varied
relationships between its constructs. This understanding of the software is typically based on its source
code and documentation. However, documentation and designs can often be out-of-date and differ from
the actual structure of the software. The pressures of deadlines, poor coding standards and unrecorded
changes can often mean that software is significantly different in its implementation and structure
compared to that defined in the documentation on the software. However, it is difficult to understand a
program from the source code alone, due to the complexity and size of source code that defines real world
software and the low-level nature of its description. Relationships between source code constructs are not
obvious and it can be difficult to find the particular piece of source code of interest that implements a
particular feature, or follow the code in a logical manner, such as through the calling structure, Good
coding practices, structuring, encapsulation and cross-referencing and searching facilities in source code
editors can all help, but they cannot solve the problem due to the inherently complex and abstract nature

of software.

Software development is a team activity and therefore each team member will often need to understand
the code developed by other members of the team, for example, if it interacts with their code, or there is a
bug that needs fixing. Thus there is a need for program comprehension of unfamiliar code as well as their
own. High staff turnover can compound this problem, especially if additional programmers join a project
in the middle of its development stage as they will have no existing knowledge of the software. These
new programmers will need to gain an understanding of the current structure of the software, before they
can be most effective. Loss of existing staff also means that a large amount of typically undocumented
knowledge and experience is lost. It will take a new employee a significant amount of time to reach this

level of knowledge and experience. These issues also affect the maintenance of the software.

Software maintenance is:
“The process of modifying a software system or component after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a modified environment.” [IEEE]

Software maintenance can be categorised in to four subsections [Benn91]:

e Perfective maintenance: Enhancing the original program by adding new
functionality.

e  Corrective maintenance: The fixing of errors and bugs in the original program.

¢  Adaptive maintenance: The adaptation of the original program to a changed




environment e.g. Operating system.
e Preventative maintenance: Reengineering the original program to improve its structure

and quality in order to allow for easier future maintenance.

All of these maintenance activities require some level of program comprehension and they can also offer
increased challenges compared to development activities. The people maintaining a piece of software will
normally not have developed it. Therefore, they have no initial experience or knowledge of its structure or
design to aid them in their initial maintenance activities. Existing documentation will often be out-of-date,
especially if the software has already undergone maintenance by another team. Software maintenance
consumes a large amount of resources in the software lifecycle and much of the time involved in software
maintenance is spent on program comprehension activities. Program comprehension is needed in order to
carry out maintenance tasks, for instance in a corrective maintenance task it may be necessary to
understand at the code level when an unhandled exception is thrown. Therefore, any improvements
offered to program comprehension tasks will be of substantial benefit to the development and

maintenance of software.

The Object-Oriented (OO) paradigm has grown increasingly popular in recent years and it has brought a
number of advantages. Its supporters claim that it allows increased reusability and understanding by
maintainers, due to its ability to encapsulate and provide inheritance of existing classes. Such facilities
allow developers to focus their program comprehension activities and reduce the understanding they need
of other classes, often to just the class' interface and the functionality it provides. However, the object-
oriented paradigm is certainly not a silver bullet and program comprehension of OO systems is still a
difficult and time-consuming task. With its benefits to program understanding come new challenges. OO
programs are comprised of a network of communicating objects at runtime and this results in a large
discrepancy when compared to the static class descriptions of the program. This discrepancy is increased
by the use of inheritance and dynamic binding. The latter make it impossible to see the actual calling
structure based on the static source code alone, because the actual call is only resolved at runtime. When
there are a large number of objects inheriting from a class, it can be difficult to ascertain which actual
object type is referenced by variables of that type. For instance, is it an object of the variable type, or an
object of one of the classes, which inherit from it? The aforementioned techniques are beneficial to a
developer, as for example, the same data structure can be used for all objects by simply storing references
to a base class and this reduces the need to understand and debug multiple variations of the same data

structure. However, this makes it increasingly difficult to see how each instance of the data structure is

used.

Visualisation is defined as [OED]:

"The process of forming a mental picture or vision of something not actually present to the sight”
This is a generic dictionary definition of visualisation, however it captures the goal of building a mental
picture. Visualisation involves the representation of data in order to aid the user's understanding and this
representation is typically based on graphical representations. Sophisticated visualisation techniques are
increasingly available on desktop PCs, as graphical hardware has become very powerful and affordable

due to its growth in areas such as games and entertainment. Visualisation has been applied to a number of



areas, such as information and scientific visualisation and has proved successful in aiding such tasks, for
example, in visualising airflow in aerodynamic studies. Software visualisation is the application of
visualisation techniques to aid in software understanding tasks, and provides an approach to assist with
program comprehension tasks. One of the problems in program comprehension is dealing with the vast
amount of information and trying to understand the complex and often hidden relationships between
software constructs. Software visualisation can aid such tasks by presenting information on the program
in a different form to its source code. This may be achieved by using techniques such as abstraction,
filtering and pattern recognition to help the user understand the software’s structure and behaviour.
However, software offers a number of challenges to visualisation techniques. Software is an abstract
entity and massively complex, encompassing a vast number of varied relationships between different
constructs. Therefore, the application of visualisation techniques to software is not an easy task and
designing a suitable representation is difficult and problematic. Software visualisation cannot rely on
intuitive real world representations, as is often the case in scientific visualisation, where the data typically
represents some physical item. Much research is therefore needed into software visualisation

representations.

Runtime visualisation is defined, for the purposes of this thesis, to be the visualisation of the runtime
behaviour of software. Software visualisation can be applied to both the statically available details of
software and the dynamic details available as the program executes. Runtime visualisation offers a way to
aid the understanding of maintainers and developers by showing the actual behaviour and structure of the
software as it executes, using dynamically extracted facts. Runtime visualisation provides an approach to
deal with the discrepancies between the static description of the software and its runtime behaviour. It is
therefore particularly useful when applied to object-oriented software where these discrepancies are
especially prevalent. Runtime visualisation faces the generic software visualisation challenges, however,
the dynamic aspects together with the vast volume of information available on an executing program

result in new intricacies in these challenges, such as those of scale and representation.

1.2 Objectives

Program comprehension is an area that offers significant potential for improvements through tool support.
It is a major task in many software engineering activities and it is currently time-consuming and therefore
costly. This research aims to focus on the application of visualisation techniques in order to aid program
comprehension tasks. This will specifically focus on the visualisation of object-oriented systems, due to
the growth of this paradigm. Object-oriented software also offers additional challenges due to the
discrepancies between its static specification and its dynamic structure. Therefore, it is the dynamic
structure that will be visualised in order to highlight the dynamic nature of the paradigm. Effective aids to

program comprehension will help to maximise the benefits of object-oriented development.

This research will investigate the current state of runtime visualisation research and highlight the research
issues and challenges that the field still faces. These issues will then drive the development of new
representations of object-oriented programs, whose aim is to improve program comprehension tasks on
object-oriented software. These representations will need to take into account the issues and challenges
for runtime visualisation, as well as generic software visualisation challenges. Issues, such as scale and
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the abstract nature of software, will need to be considered in the design of the new representations. The
developed representations will need to be able to show the structure of the software as it executes and at

various levels of abstraction, in order to allow the user to deal with the large volume of information.

An important aspect of a software visualisation, and in particular, a runtime visualisation, is the ability to
generate the visualisation automatically without the need to modify the original source code of the
program. This allows the visualisation to be applied to real world programs. This research discusses the
possible information extraction techniques for gaining access to details of the software’s execution. The
visualisations developed as part of this research will be incorporated into a proof of concept tool, which
will allow both the visualisations and the information extraction technique to be evaluated. This will

focus on the investigation of debugging techniques for runtime visualisation.

The visualisations produced by this research will aim to aid program comprehension activities. However,
they will only be one step towards addressing the issues involved. Therefore, this research also aims to
discuss issues that should be considered in the design and evaluation of runtime visualisations as a means
of driving future research. Areas for future development both in terms of the ideas presented in this thesis,

and in runtime visualisation generally, will also be discussed at the end of the thesis.

1.3 Criteria for Success

This research aims to investigate the applicability of visualisation to the runtime behaviour of software in
order to aid in maintenance tasks. The success of the research will be judged against the following

criteria:

a) Address the visualisation issues of representing an object-oriented language such as Java at runtime.
b) Develop new visual representations of object-oriented system at runtime.

¢) Provide various levels of abstractions in visualisations of runtime information.

d) Develop a proof of concept prototype tool to demonstrate visualisations.

e) Show the applicability of these concepts to maintenance tasks using this proof of concept tool.

f) Demonstrate that the visualisations can be generated automatically with the programmer needing no

knowledge of the structure of the software under study.

These criteria are revisited in chapter 9, where they are compared against the research achieved.

1.4 Thesis Overview

This thesis is structured into a number of chapters, each of which addresses a different aspect of the

research and its background. The remaining 8 chapters can be summarised as follows:

Chapter 2 introduces the program comprehension field and presents an overview of the main concepts
involved. Key work within the field is presented, thus allowing an understanding of the current state of

research to be gained.




Chapter 3 introduces software visualisation. The different definitions and sub areas of software
visualisation are presented, followed by the benefits that software visualisation can offer. This chapter
also provides the definition of software visualisation as used by this research. The chapter provides an
overview of what the field entails by summarising three of the major taxonomies on software
visualisation and thus showing where this research fits into the larger field. A number of existing
visualisations are also presented to show the current state of the field and demonstrate some of the
representations that exist. Finally, software visualisation faces a number of generic challenges and issues

and these are outlined in this chapter.

Chapter 4 goes on to focus on software visualisation at runtime. This chapter presents an overview of the
existing work that has been performed in this area through the presentation of a number of runtime
visualisations. A summary of the different techniques for information extraction is also presented which
outlines the respective benefits and drawbacks of each. The chapter outlines why this research focuses on
visualising object-oriented software and the particular benefits that can be gained for aiding the
understanding of object-oriented software. The chapter concludes with a discussion of the specific issues

and challenges that runtime visualisation presents.

Chapter 5 introduces the DJVis approach and defines a number of visualisations of runtime information
that aim to address the issues identified in the previous chapter. Each of these visualisations forms a view
that shows some particular aspect of the executing software. Each of these views is discussed along with

issues that affect all views and the interoperation of the views.

Chapter 6 discusses the implementation of the prototype tool version of DJVis. The techniques and
technologies used are briefly described, as well as, a guide on how the prototype too! can be used to

visualise Java programs without the need for programmer intervention.

Chapter 7 introduces the evaluation of DJVis. The chapter outlines the different evaluation techniques
that could be applied, providing details of the advantages and disadvantages of each. From this, the
chosen approach of two feature-based frameworks and multiple usage scenarios are described in more

detail.

Chapter 8 goes on to show the application of the evaluation approach to DJVis. This is preceded by an
informal discussion of the merits and issues of the main aspects of DJVis and the implementation
techniques used for the prototype tool. The feature-based frameworks are then applied followed by five

usage scenarios and one in-depth case study.

Chapter 9 draws the thesis to a conclusion by providing an overview of the research and discussing its
contributions. The criteria for success defined in chapter 1 are also re-examined against the achieved

results. Finally, areas for future research are outlined for both DJVis and runtime visualisation in general.




Chapter 2 Program Comprehension



2.1 Introduction

Program comprehension is the task of understanding how a program is constructed and how it operates.
Therefore, program comprehension is essential to the task of modifying or maintaining a program. It is a
major component of any software maintenance task, occupying 50-90% of the maintenance time
according to some estimates [Stan84]. It is also present in the initial software development process,
through tasks such as code reviews, debugging and some testing strategies. There are a number of
theories on the methods used in program comprehension, varying between top-down and bottom-up
techniques. An introduction to the main terminology and ideas will be presented, followed by summaries

of the main work in the field.

2.2 Key terminology

A number of terms are used in the various program comprehension theories, however Von Mayrhauser
and Vans [Mayr95] provide a summary of the key theories and draw similarities between them. All the
approaches use existing knowledge, combined with a comprehension strategy in order to acquire new

knowledge and understanding of the program. A brief summary of the general terminology is presented
below, this includes the cognitive model, mental model, knowledge base and assimilation process. The

key theories are then summarised to show the individual approaches.

2.2.1 Cognitive model

A key term is that of the cognitive model, which refers to the complete set of processes, mental models,
knowledge and heuristics used in program comprehension. This is composed of three main components: a

mental model, a knowledge base and an assimilation process.

2.2.2 Mental model

The mental model is the programmer’s internal, working representation of the software and is
continuously updated as the comprehension process proceeds. It is made up of semantic constructs and a
number of definitions for these exist within the different theories, which are summarised by Von

Mayrhauser and Vans [Mayr95].

Text structure knowledge is made up from the program text and its structure. Examples of this include

conditional constructs, such as IF constructs, variables and function definitions and looping constructs.

Chunks are constructed from various levels of text structure abstractions. Macrostructures are text
structure chunks identifiable by a label. For example, a sort routine macrostructure is simply its label sort,
representing the abstracted code microstructures (individual code statements) that make up the sort code

block. Chunking is the process of creating new higher level abstractions from existing lower level

abstractions.




Plans are “program fragments that represent stereotypic action sequences in programs” [Solo84]. Von
Mayrhauser and Vans [Mayr95] define plans as “knowledge elements for developing and validating
expectations, interpretations and inferences” and define them as either slot types or slot fillers. Slot types
describe generic objects, for example data structures such as trees, whilst slot fillers are specialised for a
specific task, with specific program fragments being an example of these. Von Mayrhauser and Vans
further classify plans as programming plans or domain plans. Programming plans relate to programming
knowledge and can vary in abstraction from high (e.g. abstract program functionality), to intermediate
(e.g. data structures and algorithms), to low level (e.g. individual control statements). Domain plans
contain knowledge of the problem area, such as knowledge on the real world operations of the software.

This excludes low-level details of the code and algorithms.

Hypotheses [Broo83], is the method by which Brooks suggests that maintainers build a mapping between
the problem domain (top level) and the programming domain (bottom level). They drive the direction of

future investigations as they are refined, rejected or accepted.

Conjectures are how Letovsky [Leto86] refers to hypotheses. Letovsky classifies these, identifying three
main types:

o  Why conjectures, e.g. why a certain design choice?

e How conjectures, e.g. how a program goal is achieved?

e  What conjectures, e.g. what does a variable do?
Associated with each conjecture is a degree of certainty, ranging from almost certain to uncertain guesses.

2.2.3 Knowledge base

The knowledge base is the maintainer’s understanding of the domain. It consists of both general
knowledge and task specific knowledge and this can be existing knowledge or that newly acquired in the
comprehension processes. General knowledge is things that do not relate directly to the task. An example
of this is general knowledge about software engineering, such as general data structures and programming
language knowledge. Task specific knowledge is knowledge that relates directly to the software under
study, such as system goals or implicit business rules used by the system. If the maintainer has worked on
the software before, they will have some (partial) mental model. Variations exist across the key theories

over how this knowledge base is structured and the different levels of abstraction used.

2.2.4 Assimilation process

The assimilation process is the glue that binds the knowledge base to the mental model. This is the
process by which the maintainer refines and updates their mental model using their knowledge base. A

number of aids and strategies exist for knowledge acquisition.

Rules of programming discourse are rules of conventions in programming [Solo84] and these rules

produce expectations with the maintainer on what should be in the program.



Beacons are idioms in programming or stereotypical code, which are typically associated with some
functionality or operation [Broo83], for example, a function name. They act as cues that index into

knowledge and allow a high-level understanding to be gained.

Cross-referencing is the process by which different abstraction levels are related allowing mappings from

program parts to functional descriptions.

2.3 Key Theories

This section presents some of the main theories on program comprehension and shows how some of the

concepts in the terminology section were devised.

2.3.1 Shneiderman and Mayer

Shneiderman and Mayer [Shne79] believe that comprehension relies on semantic and syntactic
knowledge. This is stored in long term memory, each with differing levels of abstraction. Syntactic
knowledge is knowledge of the programming language syntax and any specific issues of that
programming language, such as library functions etc. It is more specific and detailed than semantic
knowledge, and therefore, more easily forgotten. However, they suggest that it is easier for humans to
learn a new syntactic representation for an existing semantic structure, than to learn a new semantic
structure. As an example of this, they highlight learning a programming language. The first is difficult,
because it requires both semantic and syntactic learning, whilst learning a subsequent language (of the
same semantic structure e.g. imperative) is easier as only the syntax needs learning. Semantic knowledge
consists of general programming concepts that are independent of a specific language. This can vary in
abstraction from low level details, such as what data types are, to higher level concepts, such as searching
techniques. Higher than this there may be domain knowledge, for example, knowledge to solve problems

in an application area such as airline reservation systems.

Shneiderman [Shne80] then goes on to suggest that programmers abstract program information into
chunks, which are used to build an internal semantic structure that represents the program. Chunks are
syntactic or semantic abstractions of text structures within the source code. Sections of the source code
are abstracted into chunks by the maintainer and then these chunks can be abstracted into higher level

chunks. This represents a bottom-up approach to comprehension.

2.3.2 Brooks

Brooks [Broo83] suggests a top-down approach to comprehension based on the hypothesis of a mapping
between the problem domain (top level) and the programming domain (bottom level). The theory
suggests that maintainers form a number of increasingly refined hypotheses about the program function
instead of reading the program line by line. The initial hypothesis is formed from the first information on
the program known by the maintainer. This can be a brief description of its purpose, or simply just its
name. This initial hypothesis then sets up expectations with the maintainer of objects and operations to
see in the program. Through comprehension the maintainer verifies the hypotheses from information on

the program and rejects or modifies any which are not supported. This occurs until the maintainer has
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sufficient knowledge to perform the maintenance task required. Brooks [Broo83] believes that a notion of
beacons is used in the process of hypothesis verification by the maintainers, rather than them studying
individual lines of code. Beacons are idioms in programming or stereotypical code, which are typically
associated with some functionality or operation. For example, the common example is the swapping of

two variables, which could be a beacon for a sorting routine.

2.3.3 Wiedenbeck

Wiedenbeck expanded on Brooks’ notion of beacons and investigated them empirically in a number of
studies [Wied86a, Wied86b, Wied91]. The results of these suggest an association between
comprehension of programs, programmer expertise and beacon recognition [Wied91]. One study
[Wied86a] found a significant difference in the number of lines containing beacons that could be recalled
depending on the programmer’s experience. Novices recalled only 14%, compared to 79% for
experienced programmers, whereas there was not a significant difference for non-beacon lines. However,
Wiedenbeck [Wied91] found a much smaller percentage of recall of a standard, non-disguised swap
beacon by advanced programmers (33%), compared to the 78% in previous work [Wied86b]. The results
must be viewed with caution as pointed out in the paper, due to design difficulties in the experiment. For
example, the shellsort code used [Wied91] may have been familiar to some of the subject population.
Despite this, Wiedenbeck believes that the accumulation of the results supports the role of beacons in
program comprehension by stating “ the meaning of these findings is that the idiomatic or stereotypical
code did appear to play a large role in the initial high level comprehension of programs” [Wied91].
However, the studies also showed that a strong beacon can lead to miscomprehension, as discrepancies
between the beacon and surrounding context information are not often noticed at the initial stage of

comprehension.

2.3.4 Soloway and Ehrlich

Soloway and Ehrlich [Solo84] suggest that expert programmers use two types of programming
knowledge, which novice programmers typically do not have.
1) Programming plans.

2) Rules of programming discourse.

They define programming plans as “program fragments that represent stereotypic action sequences in
programs” [Solo84], for example, an item search loop plan. They take inspiration from work in the field
of text comprehension where there is a notion of schemas which “are generic knowledge structures that
guide the comprehender’s interpretations, inferences, expectations and attention when passages are
comprehended” [Grae81]. They view programming plans as corresponding directly to schema.

Rules of programming discourse are the rules of convention in programming. These rules produce
expectations with the maintainer on what should be in the program. They identify the following rules of

discourse: (Fig. 2 from Soloway and Ehrlich [Solo84])

(1) Variable name should reflect function.
2) Do not include code that will not be used.
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(2a) If there is a test for a condition, then the condition must have the potential to be true.

3) A variable that is intialized via an assignment statement should be updated via an assignment
statement.

4) Do not do double duty with code in a non-obvious way.

5 An IF should be used when a statement body is guaranteed to be executed only once and a

WHILE when a statement body may need to be repeatedly executed.

Using this, they view programs as being composed from programming plans altered to suit a specific
problem, with the rules of programming discourse specifying how the plans are composed. They believe
that programs that conform to these rules of discourse (plan-like programs) are easier to understand for
expert programmers (who possess knowledge of plans and rules of discourse) than those that do not
conform to the rules (unplan-like programs). They investigated this empirically, proposing that expert
programmers are much better at understanding plan-like programs than novice programmers. However,
when programs are unplan-like, the performance of the expert programmers reduces to that of novice
programmers, due to the confusion caused by their strong expectations being broken by rule violations.
Novice programmers are less sensitive as their lack of knowledge means they have fewer expectations.
This theory was supported by the study’s results showing that programming plans and rules of
programming discourse have an impact on program comprehension, with the strong expectations of
expert programmers and the subsequent drop in performance when these expectations are broken by rule
violations. Later work [Solo88] also supported the use of plans in comprehension, with shallow reasoning
occurring in plan like programs. Here, plans are matched to code without significant reasoning about
relationships within the code. In unplan-like programs they suggest deep reasoning is employed, which
involves reasoning casually about the goals of the program and how they relate to the code of the

program.

2.3.5 Pennington

Pennington [Penn87a, Penn87b] describes a bottom-up comprehension process, which develops two

different mental representations.

e  Program model. Pennington suggests that when new code is presented to a programmer they initially
try to build a control flow model. This is built up using beacons in a bottom-up manner. Text
structures e.g. control primes such as loops and plans are used in the program model development, as
microstructures are chunked together to give macrostructures. Cross-referencing is used to link
knowledge.

o  Situation model. This is also built bottom-up and it uses real world knowledge of the domain to

represent the code in terms of real world objects. This model is built using cross-referencing and

chunking.

Cross-referencing is used to link the mental representations, allowing mappings from statement level

representations, to a functional abstract program view.
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2.3.6 Littman et al.

Littman et al. [Litt86] investigated program comprehension through experiments with expert
programmers implementing an enhancement to a small existing system. Their studies suggest that there

are two basic approaches to program comprehension: the systematic strategy and the as-needed strategy.

e  Systematic strategy. Here the maintainer examines the program in depth, performing extensive
symbolic execution on the control and data flow paths. Using this study of the dynamic and static
aspects of the program, the casual interactions between components of the program are understood.
This knowledge allows the maintainer to take these interactions into account when modifying the
program. With the systematic strategy the aim is to understand the program before modifying it.

e  As-needed strategy. With this approach, the maintainer attempts to minimise the study of the
program. This is done by localising the parts of the program that need to be modified, in order to
make the change. When the change is made the maintainer will then typically be required to
investigate further on an as-needed basis, to gather additional information to make the change. This
can be problematic as the maintainer may not understand sufficiently the casual interactions and are

therefore unlikely to detect any unforeseen side effects of their changes.

The results of the study also suggest that the approach a maintainer uses to study a program heavily
influences the knowledge they acquire about the program. This knowledge then directly determines if
they can successfully make the change to the program. However, the applicability of each approach is
dependent on the system size, as it is unfeasible to use the systematic strategy on larger programs
although it may still be possible to subdivide the program into sections, which can then be tackled with

the systematic strategy. Larger programs cause problems for both strategies, due to the vast amount of

information involved.

2.3.7 Letovsky

Letovsky [Leto86] performed an empirical study of the cognitive processes in program comprehension.
This was done by encouraging the maintainers to "think aloud” whilst trying to add an enhancement to an
unfamiliar piece of code. These responses were classified into questions and conjectures. Letovsky
[Leto86] suggests a cognitive model with three main components: a knowledge base, 2 mental model and
an assimilation process. The knowledge base contains all the maintainer’s programming expertise,
domain knowledge, goals, plans and rules of programming discourse. The mental model is split into three
layers: specification, implementation and annotation layers. The specification layer contains the program
goals and is the highest level of abstraction. The implementation layer is the description of the program’s
actions and data structures and therefdre is the lowest level of abstraction. The final annotation layer
represents a mapping between corresponding parts of the code and goals. The assimilation process uses
any available information from the program code or the maintainer’s knowledge base to construct the
mental model of the program. Letovsky believes that this assimilation process is opportunistic, with the
maintainer using either a top-down or bottom-up approach, depending on the situation. They use

whichever they believe will give them the highest knowledge gain.
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2.3.8 Von Mayrhauser and Vans

Von Mayrhauser and Vans [Mayr95] offer a summary of these approaches and define an integrated
metamodel which incorporates aspects of Soloway, Adelson and Enrlich’s [Solo88] top-down model
with Pennington’s [Penn87a, Penn87b] program and situation models. The integrated metamodel has
four main components: the top-down (or domain) model; the situation model; the program model and the
knowledge base. The knowledge base is used to build the other three model components, which are
related to the comprehension process. Their experiments showed that programmers frequently switch
between the three types of comprehension model components defined in the integrated model. When a
programming language or code is familiar, a top-down (or domain) model approach may be used, for
example if the programmer spots a beacon. This includes domain knowledge describing the program's
functionality and this can be used for formulating hypotheses. An opportunistic or as-needed strategy is
often used to develop the top-down model. When faced with unfamiliar code, the programmer may switch
to developing a program model i.e. control flow abstractions. The situation model describes functional
attractions and data flow within the program and unlike Pennington’s model [Penn87a, Penn87b], they
suggest that a situation model can be developed after only a partial program model has been formed,
rather than the complete program model as suggested by Pennington . This was because they felt that
developing a complete program model was unrealistic for large programs [Mayr93]. Structures built by a
model component are also accessible to the other model components. Finally, a knowledge base stores the

information needed to build up the other three model components.

Vans et al. [Vans99] also specifically investigated their integrated metamodel within program
understanding behaviour during corrective maintenance of large scale software. A small study was
undertaken observing four experienced professional programmers debugging software. They investigated
how maintainers go about debugging software, looking at the work process and information needs. Their

conclusions can be summarised as [ Vans99]:

e Actions: Knowledge use and hypothesising are important actions at all levels of abstraction.
Chunking and knowledge storage are common at lower levels.

e  Process: Comprehension will occur at lower levels when there is little experience in the domain, until
enough domain experience allows connections to be made at higher levels. When there is little
knowledge of the software but the maintainer has domain knowledge, then comprehension will again
occur at low levels but use direct connections to the domain model. Knowledge of both the domain
and software allows connections between all levels of abstraction.

e Information needs: Connected program, situation and domain knowledge are important during
corrective maintenance, along with domain concepts. Existing tools do not normally support domain
concepts and connect model information, meaning that anything above the program model has to be
searched for and connected manually.

o  Hypotheses are made at code, algorithm and application domain levels, which suggests that the

software must be understood at all levels of abstraction.
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The small sample size of the study means that these conclusions are working hypotheses, however they
do support the integrated model. They suggest the need for knowledge support at multiple levels of
abstraction and mechanisms to allow tool support for working at different abstraction levels and ease of

changing between abstraction levels.

2.4 Summary

A number of program comprehension theories exist and commonalties exist between them, as highlighted
by Von Mayrhauser and Vans [Mayr95]. All the theories define a cognitive model and they all use
existing knowledge, combined with a comprehension strategy in order to acquire new knowledge and
understanding of the program. The most pertinent approach will of course depend on the task at hand and
the experience of the maintainer with the program, domain and implementation language. All
maintenance activities require some understanding of the program and this is typically from the source
code, due to the common problems of poor, inaccurate, or even missing documentation. Therefore,
program comprehension is a major task and could thus benefit from tool support. This could take the form
of tools for increased cross-referencing between source code and documentation, or improved methods
and support for documentation maintenance. Visualisation offers a way to help maintainers construct their
mental models by helping to abstract out the semantic constructs which they use in its construction.
Visualisation allows them to easily explore the large amount of data that the source code contains, in

order to aid in verification of hypotheses.
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3.1 Introduction

This chapter introduces software visualisation. Various definitions of software visualisation are presented
in order to show the variations within the field. The main taxonomies are then summarised to allow the
context of this work to be seen. An overview of current visualisation systems is then presented, which
provides examples of the different application areas of software visualisation, as well as examples of
some of the representations that have been used within the field. Issues and challenges that are faced by

all software visualisations are discussed.

3.2 Definition

Visualisation is defined as the "process of forming a mental picture or vision of something not actually
present to the sight" [OED]. This generic English language definition specifies the goal of visualisation,
that is the forming of a mental picture of some phenomenon. However, the application of visualisation
techniques not only attempts to provide a mental image, but also improve the understanding of the item
under study. The formation of a mental picture is the important feature and this does not have to occur
purely through visual means, for example techniques using sound have been tried in order to aid program
comprehension [Baec97]. However, most software visualisation systems focus entirely on using visual

stimulus to present information on the software.

The visualisation field can be subdivided into a number of distinct areas, of which software visualisation
is one. Software visualisation is therefore the application of visualisation techniques with software as the
item under study. Many authors have provided their own definitions of software visualisation based on
the idea of forming a mental image of software. For instance, Price et al. define software visualisation as
“the use of the crafts of typography, graphic design, animation and cinematography with modern human-
computer interaction and computer graphics technology to facilitate both the human understanding and
effective use of computer software” [Pric93). However, Knight goes further and includes the goal of
reducing complexity, by defining software visualisation as "a discipline that makes use of various forms
of imagery to provide insight and understanding and to reduce complexity of the existing software system

under consideration.” [Knig99a]

To confuse matters there exist a number of related terms that are often used instead of software
visualisation. Program visualisation is a commonly used term especially for the early taxonomies. For
example: “Program visualisation uses graphics to illustrate some aspect of the program or its run-time
execution, where the program is specified in a conventional, textual manner” [Myer90] or “program
visualisation as a mapping from programs to graphical representations” [Roma93]. However, the term
software visualisation shall be used for this work as it encompasses all aspect of a piece of software,
rather than just the code and executable properties that the term program visualisation can suggest. The

other terms used can be briefly summarised as:

+  Computation visualisation is introduced by Stasko and “is the use of computer graphics to

explain, illustrate and show how computer hardware and software function “[Stas92b].

17




o  Algorithm animation or algorithm visualisation shows the behaviour and abstract operation of an
algorithm.
e  Code visualisation focuses on displaying the source code and its attributes.

¢ Data visualisation illustrates the data structures and values used in the program.

Visual programming is also often confused with software visualisation. However, these are distinct areas,
with visual programming being the use of graphics to allow program code to be specified and developed.
Whereas software visualisation is based upon aiding the understanding of programs that have already

been written.

3.3 The Need for Visualisation

Understanding existing programs is a significant overhead in the software maintenance process. The
majority of time used by maintenance, debugging and code re-use processes is spent on understanding
existing programs [Stor97a]. Here, visualisation can be beneficial by aiding maintainers, allowing them to
interact with large volumes of data, in a fast and effective manner and in an attempt to discover hidden
characteristics and patterns. Visualisation offers a way to cope with the massive information overload that
can occur with traditional techniques, such as simple code browsing. Many authors see it as a way to
interact with programs and indeed computers in general, in a more natural way. For example, Walker
states “the traditional interface of mouse, keyboard and screens of text allows us to work on computers,

while techniques such as visualisation will truly enable us to work with computers” [Walk95].

Program comprehension is a major component of any software maintenance task, occupying 50-90% of
the maintenance time according to some estimates [Stan84]. Therefore, any improvements in
comprehension activities, due to the use of software visualisation, will have a large impact on improving
maintenance activities. This is combined with the growing size and complexity of software, as systems
are required to perform more and more functionality and are increasingly interconnected. Modern
software is also moving towards more rapid development and deployment and in this environment of high
paced change, tools are need to allow software to be understood quickly and reliably. Software
visualisation offers a solution for this problem and can help developers keep pace with the rapid change
as it is no longer possible for users to maintain a detailed mental model of the software they are working

on, unless all their tasks are highly localised.

Software visualisation offers a chance for developers to see an otherwise invisible item. However, Brooks
defines software as “invisible and unvisualizable” [Broo87]. He highlights the difficulty in visualising
software and argues that one sees only one dimension of the software through the different views, yet
superimposing these views together makes it difficult to extract any global overview. It may be true that
each view of an aspect of the software, such as control flow or variable cross-referencing, presents only a
one dimensional view and simply adding the views together results in a lack of global overview.
However, software visualisation does not aim to present a single picture that allows an entire piece of
software to be understood in all its intricacies. It instead aims to aid the understanding of software by

humans by presenting details on the software in a more easily understood form. As Myers [Myer90]
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highlights the “The human visual system and human visual information processing are clearly optimized
for multi-dimensional data. Computer programs, however, are conventionally presented in a one-
dimensional textual form, not utilizing the full power of the brain”. Software visualisation has moved on
since Brooks’ statement. It still remains a major challenge for which there are no easy answers, however
software is no longer represented as simple flow charts and graphs. Visualisation offers a way for humans
to utilise their natural visual skills using techniques such as pattern matching and by allowing the greater
depth of information that graphical representations can present over textual representations. Software
visualisation offers views of the different facets of software and overviews can be presented for some
information, such as higher-level design patterns or overview graphs. It must be remembered that
understanding a piece of software from simply reading its source code presents a huge effort and is
problematic. Therefore, any help that visualisation can provide is beneficial, even if this still requires
significant effort in acquiring the understanding, provided that it is quicker or more reliable than
traditional approaches. Software visualisation is often judged as failing, because the users do not suddenly
understand the software under study when they use it. However, despite their desire of instant
understanding from software visualisation systems, they are still willing to invest a significant amount of
effort in studying the code using traditional methods. Software visualisation also offers the advantage of
surprising users and making them think about the software, even if they have existing knowledge of it.
This questioning of the users mental model can help them build a more detailed and reliable model and
highlight anomalies in the data, such as redundant code or overly complex sections that they had not
considered. These things can often be overlooked when simply reading the source code. For instance, De
Pauw et al. state that “animated visual displays let users assimilate information rapidly and help them

identify trends and anomalies” [DePa97].

3.4 Existing Taxonomies

There have been a number of taxonomies on software visualisation. The most notable are those by Myers
[Myer90], Price et al. [Pric93] and Roman and Cox [Roma93]. They aim to classify the types of software
visualisation tools and a number of similarities exist between the taxonomies particularly between Price et
al. and Roman and Cox. This section aims to give a summary of these taxonomies whilst comparing and
contrasting their differences. This will allow some of the variations in approaches to software

visualisation to be seen, as well as allowing this research to be placed in context.

3.4.1 Myers

Myers [Myer90] provides one of the earliest taxonomies on software visualisation and clearly separates
visual programming from program visualisation. Stating that program visualisation systems “try to make
programs more understandable by using graphics to illustrate the programs after they have been

created” [Myer90]. Myers classifies software visualisation systems into:

e  Static code visualisation
¢ Dynamic code visualisation
e Static data visualisation

¢ Dynamic data visualisation
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e  Static algorithm visualisation

¢  Dynamic algorithm visualisation

This can be represented as two axes: area of code being visualised (code, data, algorithm) and the
program state during visualisation (static or dynamic). Systems can belong to multiple categories within

this classification.

3.4.2 Price et al.

Price et al. [Pric93] define a taxonomy of software visualisation with six distinct categories. The six main
categories are then sub divided in minor categories, which may themselves be sub divided. These
categories are structured hierarchically, to allow the taxonomy to be extended and revised as software

visualisation develops, with the easy addition of new categories or sub categories. The six main

categories are:

A. Scope: The range of programs that can be input and visualised by the program.

B. Content: The subset of information from Scope that is actually used in the visualisation.
C. Form: The parameters and limitations that govern the output.

D. Method: How the visualisation is specified.

E. Interaction: Characterises the system interaction methods.

F. Effectiveness: Does the system meet it objectives?

Each of these categories can then be summarised:

A: Scope

The scope is the range of programs that can be input and visualised by the program. Price et al. see a
division in this, into generality and scalability. The generality of the visualisation is the range of programs
it can visualise based on hardware, operating system, language and application type. The scalability of the
program is classified in terms of the largest program it can handle in terms of program and data size. This
idea of scalability is purely the fundamental limit and not related to the effectiveness of the visualisation,

which is assessed in section F of the taxonomy.

B: Content

The content is the subset of information from Scope that is actually used in the visualisation. The authors
split this into a number of categories, namely: Program, Algorithm, Fidelity and Completeness and Data
Gathering Time. The program subsection classifies on the amount of the implemented program that is
visualised in terms of its code and data and their flows. The algorithm subsection looks at the amount of
the “higher level” algorithm(s) that is visualised, again in terms of its instructions and data. The fidelity
and completeness category classifies on the extent to which a true and complete a picture of the system is
presented by the visualisation and whether the visualisation modifies the behaviour of the program under

study. Finally, the data gathering time categorises visualisations on when the data on the program is
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gathered. If this is at runtime then the details of the mapping of program time to visualisation time is also

used in the classification.

C: Form

The form is the parameters and limitations that govern the output of the visualisation system. This is
divided into a number of sections classifying on: the medium used for the visualisation; the presentation
styles used in terms of colour, dimensions, animation and sound; the granularity of the visualisation in
terms of at what level is the program shown; the use of multiple views; and the abilities of the

visualisation to synchronise and view multiple programs at the same time.

D: Method
The method is how the visualisation is specified. This is divided into two areas, how the visualiser

specifies the visualisation and how the visualisation system and the source code are connected.

E: Interaction

The interaction section characterises the system interaction methods. Price et al. [Pric93] identified three
main facets to this, which they say fundamentally affect the design of the visualisation system. These
facets are: Style (how the user gives commands to the systems); Navigation (how can the user navigate
the visualisation and hide information of no interest); and scripting facilities (does the visualisation allow

the interactions to recorded or scripted and viewed at a later date).

F: Effectiveness

The effectiveness section investigates how well the system meets its objectives and how well it
communicates information to the user. This section is highly subjective and the authors split it into the
following sections; purpose (What purpose is the system suited for? This is needed to see how effective it
is at achieving its intended purpose); appropriateness and clarity (How well do automatic visualisation
communicate information?); empirical evaluation (To what extent has the system been evaluated

experimentally?); and production use (To what extent are people using the system?).

3.4.3 Roman and Cox

Roman and Cox see “program visualisation as a mapping from programs fo graphical representations”

[Roma93]. They classify program visualisation into five main categories:

1. Scope. What aspect of the program (code, data, control and execution behaviour) is to be visualised?
Visualisation systems often limit their scope to a subset of these program aspects.
2. Abstraction. What level of information presentation is supported by the visualisation? The taxonomy
distinguishes three levels of abstraction, though the boundaries between them are blurred.
o Direct representation. Some aspect of the program is mapped directly to a picture giving the
most basic graphical representation. For example, a flow chart may represent control flow, or an
array can be colour coded to show the magnitude of the stored values. These direct

representations have the advantage of being easy to produce automatically (without needing
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programmers intent) and are easy to relate to the program. However, the lack of any real
abstraction can lead to excessive amounts of visual information for large data sets.

Structural representation. Here greater abstraction is used by highlighting “important”
information, or alternatively by encapsulating or concealing information and using a direct
representation for the rest. For example, encapsulating the bodies of classes and their member
functions in the representation.

Synthesised representation. These representations show information that is not explicitly
represented in the program, but can be derived from it. For example, there may be higher level

abstractions of an algorithm, which are not explicitly contained in the program.

Specification Method. How is the visualisation specified? This can be by a number of methods:

Predefinition. The mapping is highly constrained or fixed. While this constrains the visualisation
it has the advantage of speed and allows automatic generation.

Annotation. The input program is augmented with calls to the visualisation system typically at
the point of “interesting events” which pass in the required program state and cause the
visualisation to be updated. This method has the major disadvantage of having to modify the
input code.

Declaration. A mapping is specified between the program state and the visualisation so that
changes in state are immediately reflected in the image. For example a variable mapped to an
attribute of a visual object.

Manipulation. Visualisations are specified through the use of examples, which the system tries to

capture and link to a program event.

Interface. This category focus on what the user sees and how they can interact with the system. This

is split into two sub-categories:

Graphical Vocabulary. This specifies the types of graphical objects and their operations as
supported by the system in the construction of the visualisation.

Interaction. How does the user control the system?

Presentation. How the system conveys information through the visualisation.

Interpretation of graphics. How is the visualisation understood and explained?
Analytical presentation. How is the analytical reasoning of a program, rather than its mechanics

presented. For example formal correctness properties.

3.4.4 Summary of Taxonomies

Price et al. [Pric93] believe that Myers' [Myer90] taxonomy, while being a good starting point, is not
detailed enough due to the variety of systems, goals and techniques available. Myers' axes do define some
of the most important aspects of a software visualisation system, however they miss other attributes that
are important for distinguishing systems. Price et al. and Roman and Cox’s taxonomies offer a more
detailed set of attributes to distinguish systems and some parallels can be drawn between these two

taxonomies. Many themes appear in both taxonomies, but under slightly different classifications, for
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example visualisation specification (Specification method category in Roman and Cox and in the Method
category in Price et al.). However, these taxonomies, while being broad, are not particularly well suited to
some aspects of 3D visualisation due to the differences introduced by the extra dimension on areas such

as navigation.

The taxonomies all use a number of example systems to illustrate their classification method and this also
showed areas that many visualisation systems have failed to exploit. For example, Price et al.
categorisation showed that relatively few systems made extensive use of colour in visualisations. Things
have moved on since the taxonomy was completed with the increase in computer power, although colour
is still not always used to its maximum effect. Price et al. also noted that intelligence is sorely lacking
among automatic software visualisation systems and visualisation systems suffer from a lack of empirical
evaluation. This is mainly due to the lack of methods to reliable compare techniques, due to the poor state
of the art in software psychology. However, such evaluation is needed as it would show the effectiveness
of a system and help to guide research efforts and system developments. Much of the evaluation done on
systems at present, if any is done, is informal. Myers also identifies the need for experimental results for
visualisation systems and mentions the problems with the scale of large programs that visualisation

systems typically struggle with.

3.5 An Overview of Current Software Visualisation Systems

Software visualisation presents a breadth of different approaches, despite still being in its infancy. This
section outlines a number of software visualisations, which are broadly categorised on the representations
they use. The presented visualisations provide a glimpse of the different problem areas and
representations that have been investigated within the field. However, the focus of this research is the
visualisation of real software systems and not on algorithm animation systems, such as Tango [Stas90],
Balsa [Brow85], Pavane [Roman92] and Eliot [Laht98] which all require some level of modification to
the software and focus on small-scale sections of code. These systems focus on aiding a user's
understanding by presenting them with an animation. This animation typically requires a specification to
map program events to animation constructs. Therefore, these techniques do not allow a user to apply the
visualisations to arbitrary programs of the supported programming language, and due to this, they are not

presented in this summary.

The traditional focus of software visualisation has been the use of graphs to display information about
programs, such as call graphs, control flow graphs and variable access graphs. These graphs can often be
very closely mapped to the source code, for example, a control flow graph of the code. Therefore, they
suffer from the same information overload issues as simply reading the source code itself. To alleviate
these issues, there has been work on reducing the complexity of such graphs through filtering and
clustering, as well as using hierarchical graphs and fish eye techniques. One such example is SHriMP
(Simple Hierarchical Multi-Perspective) [Stor97b, Stor97c]. It uses a nested graph representation to
present the structure of the software. The graph has composite nodes, which contain other nodes. This
therefore provides the hierarchical structure. The composite nodes are typically used to represent software
subsystems. The graph may be laid out in SHriMP using a grid, tree, spring or Sugiyama layout. The
system uses fisheye and pan and zoom navigation techniques in order to try and retain context and reduce
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FileVis and Software World demonstrate two novel approaches to software visualisation where the use of

3D representations has been investigated for none graph-based representations.

This section has attempted to provide an overview of software visualisation by highlighting some of the
different approaches within the field. This is obviously not a definitive list and many other representations

and visualisations exist.

3.6 Issues and Challenges

Software visualisation offers a way to support program comprehension and therefore maintenance
activities. However, this is not to say that this approach is not problematic and a number of challenges
exist for software visualisation research. These general issues are faced by all software visualisation
systems, regardless of which specific aspects of software they are representing. They can be summarised

as.

s  Representation: One of the main problems is that of representation. Software is made up of abstract
constructs that have no geometric representation, therefore, there are no intuitive representations of
such data. This contrasts to some other visualisation fields, where the data often maps to real world
phenomena, such as flow visualisation. This abstract nature of software and the complexity of the
relationships involved has lead some authors to suggest that software is unvisualisable [Broo87].
Representations need to be consistent and allow incremental change as the software is modified.
Traditionally, node and arc based representations have been used to show all aspects of a piece of
software. However, while it is an easily accessible representation to users, it suffers from problems of
scale as the size and complexity of the program increases. Therefore, research into new

representations is needed to enhance or replace the existing techniques.

e  Abstraction: In order to handle the volume and complexity of software, abstraction is necessary.
This offers challenges in finding visualisations that allow multiple levels of abstraction and provide
coherent changes between them. This need for abstraction is supported by the program
comprehension theories such as Von Mayrhauser and Vans integrated metamodel [Mayr95], where
understanding occurs at different levels of abstraction. However, the extraction of meaningful
abstractions can be difficult, and furthermore these abstractions must be supported within the

representation which introduces effects on layout, presentation, navigation and interaction.

e Scale: Software is constantly growing in size and in order to be useful software visualisation
systems must be able to handle the scale of real world problems. Typically “toy” programs are used
to demonstrate visualisation systems, especially algorithm animation systems. Scale introduces many
challenges, especially in terms of providing a representation that can scale up coherently and

navigation methods to easily explore and locate information.

e Interaction: Not only must the data be represented in an understandable way, but it must also

support ease of interaction. The user must be able to navigate the data easily and in a number of
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forms dependent on their task. Support is needed for browsing and searching to allow rapid access to
information. The interaction must be intuitive and consistent, so as not to increase the cognitive load
on the user. The user should be thinking about the data and not having to think about how to use the

interface to explore it. Research is needed into navigation techniques to aid user interaction.

¢ Customisation: Understanding is an individual process, dependent on person, task, time-scale and
the information present. To support this, software visualisation tools need to provide customisation
features to allow different users to tune the display to their information needs. For example, filtering
information that is unnecessary for the current task and support for multiple views, as well as for the

addition of new views.

¢ Integration and Acceptance: In order for software visualisation to be accepted and integrated into
software lifecycle processes, software visualisation tools need to be designed specifically to support
these processes. This means that the visualisations need to be generated automatically with very little
or no intervention from the user. It must support the software as it occurs in its original form and not
forcing it to use specific environments, libraries or language subsets. Many current systems have
restrictions that prevent them from being used on real world programs. This is not to say that
prototype systems should necessarily support all features. However, in order to show the usefulness
of software visualisation to real world problems, systems are needed to demonstrate that the

techniques are applicable to such problems and can be integrated into current environments.

e Evaluation: Currently, evaluation is a major problem in software visualisation with few real
evaluation frameworks existing and very little evaluation occurring of prototype systems. Research
into evaluation is needed to identify the contributions provided by systems and to direct future
visualisation research. It would also benefit the acceptance of visualisation, by providing scientific

results on its benefits allowing industry to make informed choices.

This is not a definitive list, but it highlights some of the main problems faced by the software
visualisation field. These issues must be considered in the design of all software visualisations and are
critical to the success of a visualisation. However, there may be trade-offs between different issues, for
example the graph representation is widely accepted in the software engineering community and therefore
a visualisation using this representation may gain more acceptance because of this, despite the scale
issues of graph representations. Conversely, a visualisation based on more novel techniques such as an
abstract three-dimensional representation may be better for large-scale problems, but face acceptance

problems due to the unfamiliar nature of the representation.

3.7 Conclusions

This chapter has presented a summary of software visualisation and discussed some of the definitions that
exist for software visualisation, as well as highlighting related areas. The three main taxonomies on
software visualisation were briefly summarised to give an overview of the field and to show how the

subsequent work fits into the larger software visualisation arena. An overview of some of the existing

32



approaches and trends within software visualisation was then presented. Finally, some of the main issues
to be faced by the software visualisation field were discussed, highlighting the need for further research
within the field.
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Chapter 4 Software Vis ualisation at

Runtime
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4.1 Introduction

This chapter provides an overview of the visualisation of the runtime behaviour of software, and this is
defined as ‘runtime visualisation’ for the purposes of this work. A number of approaches to runtime
visualisation exist and these are presented here, some of the existing runtime visualisation tools are also
summarised. Runtime visualisation introduces many issues and challenges and these are discussed in this

chapter, the desirable features of runtime visualisation tool are then considered.

Runtime visualisation can show how a program executes in terms of both control flow and data flow. It
can benefit program comprehension activities and therefore maintenance and debugging, by providing
insights into how the software actually executes. Many program errors and attributes are only visible at
runtime and as Lieberman and Fry indicate what “makes programming cognitively difficult is that the
programmer must imagine the dynamic process of execution while he or she is constructing the static
description” [Lieb95]. Traditionally, there has been little support for demonstrating to a programmer how
the program executes. Few runtime visualisation tools exist and their acceptance is very low, therefore,
traditional debugging techniques are often used to inspect the program. Nevertheless, despite
developments in program development environments, debugging techniques are still fairly basic and
debugging is often viewed as a second class activity. A common technique for observing how a program
is executing is to simply add trace code to the existing program code to give an execution trace. For
example, “First, the bad news. Adding printf() calls to your code is still a state-of-the-art methodology”
[Geis94] is a common case. Even when debuggers are used, they have typically changed very little in
overall design over the years. This makes understanding the execution, and therefore behaviour of a piece
of software, a difficult task. The current state and shortcomings of runtime visualisation tools are

discussed in this chapter.

4.2 Debugging Tools

A common approach by programmers when trying to understand the runtime behaviour of a piece of
software is to use a debugging tool to inspect the program's structure at points in the execution. Java
debuggers focus on the level of the virtual machine, which is in terms of threads and methods. This is,
therefore, very similar to the information that is presented for a procedural language. Often the same
debuggers are used across procedural and object-oriented languages, such as C and C++. Even for
languages such as Java, the debugging interface has changed little. The debuggers show variables in terms
of objects, and functions in terms of methods on those objects, however, it is difficult to get an impression
of how the classes interact and the object-oriented nature of the program is often hidden. This view is also
very different to that of the low level design views, such as UML class diagrams, which are commonly
used by software engineers in the design and implementation of object-oriented software. Some
debuggers have been expanded to have visual elements [Hans97][DDD]. The GNU Data Display
Debugger is a prime example [DDD], with support for displaying data structures graphically and
displaying values of arrays in a graph. However, there is no specific object-oriented support and as with
all debuggers they are more suitable for investigating specific data structures or details, rather than for

gaining an overview of the software.
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Another common approach by some programmers is to place print statements in their code to allow them
to see which parts of the code are being executed and to print out key values. Trace code such as this can
be valuable when developing a system to record the progress of the program at key sections. However, in
order to understand such trace code the programmer needs knowledge of their placement within the
program and the relevance of the values being outputted. Also, such trace code output offers no support

for aiding the programmer in understanding the structure of the program or its OO nature.

4.3 Extracting runtime information

The visualisation of the runtime behaviour of software requires runtime information to be extracted.
Therefore, dynamic analysis of the program is needed. There are numerous methods of extracting

dynamic information on a running program and these are summarised below.

One technique is to augment the code of the program to be analysed. The simplest approach to this is the
hand coding of the visualisation by adding event notification or drawing code to the original source code.
This is the method used by many of the Algorithm Animation systems, such as Tango[Stas90] and Balsa
[Brow85]. These systems typically show the operation of particular algorithms, such as sorting routines.
The hand coding of the visualisation allows the person doing the augmentation to encode higher level
information and focus the representation to that specific algorithm. However, this approach is obviously
unsuitable for real world application, due to the lack of automation and the huge investment needed to
produce the visualisations. It is also very intrusive to the source code of the program under study, which

can require significant additions.

An alternative technique is the declarative approach. Here, a set of graphic objects is supplied by the
system. These objects are then used in the program to be visualised, for example, a binary tree data
structure. As these structures change state, the visualisation is updated accordingly. Thus, there is
mapping between computational objects and graphical objects. This has the advantage of separating the
program code from the animation code, however, the original program may still need to be changed
significantly. New graphical objects may also need to be defined, if there are no suitable ones present in

the system. An example of this approach is the Eliot system [Laht98].

An approach to these restrictions is the automatic augmentation of the code. In this case, the source code
is augmented using some automatic means, such as using a pre-processor to augment C/C++ code. The
augmentation is not seen by the programmer, however, extra code is added and complied into the final
executable to capture events such as method calls. This additional code communicates these events to a
visualisation tool, which then produces the visualisation. This approach has the advantage of being able to
produce the visualisations with no user intervention. However, the source code must be recompiled in
order for it to be visualised. A number of tools use this method, such as HotWire [Laff94] (pre-processor
annotation) and Program Explorer [Lang95] (tool annotation). Standard compilers can also be modified to
augment the code with tracing functionality. Languages such as Java do not have a pre-processing stage
before compilation, however, Java offers another variation on this approach. Java loads the classes of the
program dynamically using a class loader. This class loader can be modified to automatically augment the
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byte-code as it is loaded. This has the advantage of not needing to modify the source code, or even have

access to it.

The approaches discussed so far have all modified the code of the program in some way. However, this is
not necessary in order to extract runtime information. Debuggers offer a way for software engineers to
inspect the internal state of a program. Therefore, they can be used by visualisation tools to access
runtime information. Some debuggers offer graphical representations of the program. A notable example
1s the GNU Data Display Debugger [DDD]. A visualisation tool can simply communicate through an
existing debugger, such as gdb [gdb], by parsing the textual output and generating textual commands to
request information. This approach has been used by systems such as DDD, however, it can suffer from
performance issues of having to go through the textual conversion and it is highly dependent on
consistency within the textual display. A more efficient solution is to use the underlying debugging
mechanism, but to access it directly, either through a debugging interface, if one exists, or through the
modification of an existing debugger. The use of debugging techniques means that the source code is not
necessary and the source code does not need to be changed. It also allows information to be extracted on
demand, unlike some augmentation methods where it must be decided which events to record, before the
program is complied. The only constraint with this method is that the code is complied with debugging

information included.

Code that is run on a virtual machine, such as Java, offers another avenue for extracting runtime
information. In this case, the virtual machine can be used to record information on the program. This is
the technique used by Jinsight [Jins], which uses a modified version of a virtual machine to record events

to a trace file, this is then viewed in Jinsight.

4.4 Online Vs. Offline Approaches

Visualisation of runtime events can take either an online or offline approach. The offline approach is
when information on runtime events, such as method entries, is extracted to some store, such as a trace
file or database. Once the program has completed its execution, the stored information is then visualised.
The online approach is when the visualisation is connected to the live program and is generated in real-
time as events occur in the program under study. Each approach has its own advantages and
disadvantages. The offline approach allows the trace file to be visualised many times for a single run of
the program, which can be especially useful if the execution of the program is long, or places a large
demand on resources. The use of a store of the execution also means that a complete record of the
execution is present at the point of generating the visualisation, which can be used to provide a more
optimal layout. The complete record of events also allows summary information to be extracted that could
be used to give summary information and views within the visualisation. In addition, it allows the events
to be easily replayed in reverse as well as forward. The separation between the extraction of the runtime
information and the visualisation of that information allows the information to be processed in its whole,
without the performance constraints of having to update the visualisation inline with the events. Thus,
complex analysis can be performed without affecting the speed of interactivity of the visualisation. The
offline approach can therefore have a performance advantage; when the program is running, events only
need to be recorded and these can be processed before the visualisation is displayed. However, the offline
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approach also has a number of disadvantages. The record of the execution can be substantial even for a
small program, due to the large number of runtime events, such as method calls, that are present. The
recording of events means that the runtime events of interest must be known before the program is
executed. Problems can occur when a particular piece of information is desired at only one point in the
program. For example, if the value of a field is wanted at a particular point, its value must be record for
the whole trace. This can lead to a massive increase in the recorded information and a performance issue,
if that value is modified frequently. In order to tackle this issue, some offline approaches allow the tracing
to be switched on and off from within the program, however, this means that the source code for the

program must be modified.

Online approaches are tightly coupled to the execution of the program under study. They allow the
monitoring of different events to be changed on the fly as the user sees fit, for example, inspecting a
field’s value. This allows the visualisation to provide additional services, such as setting breakpoints on
the use of a field for example. The visualisation acts on events as they occur which means that only
events that make up the current state must be recorded and not necessarily all events to that point.
However, this makes it more difficult to reverse some of the execution as the program is then not at the
same point as the visualisation and items that are queried on demand, such as field values, will be
unavailable. The tight coupling to the program under study also brings disadvantages. In order to view the
visualisation, the program under study must be running which may not always to feasible or desirable, if
the program is substantial or requires a particular set up that is unavailable. The visualisation can also be
under greater performance constraints than offline approaches, as it must compete with the program under
study for resources when they are running on the same machine. The visualisation must also try to "keep
pace" with the program under study in terms of the events it shows. This makes the speed of generation of
the visualisation an issue, especially as the complete record of the execution is never available as in
offline approaches. This means that only the current state information can be used when generating the
visualisation, so information on future states cannot be used, for example, to optimise the layout.

Both approaches have been used by current runtime visualisation systems as the next section highlights.

4.5 Dynamic Software Visualisation Tools

A number of runtime visualisation systems have been developed and this section aims to provide an
overview of the different approaches tried within the field. The presented systems are not a definitive list

but aim to demonstrate the main features that existing approaches display.

4.5.1 NestedVision3D (NV3D)

NestedVision3D is a system by Parker et al. [Park98] for visualising large nested graphs in 3D. The paper
[Park98] considers the problem of focus and context, where one wishes to provide detail on an area whilst

providing the context of that detail, i.e. the bigger picture. The techniques presented for this are (for

graphs):
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e Distortion Techniques. The graph is distorted spatially to make the area of focus more prominent, for
example, by giving more room in the graph and making other points less prominent. For example, the
fish eye effects and the hyperbolic lens [Lamp95].

¢ Rapid Zooming Techniques. A large amount of information is present but only a small amount is
visible at any one time. However, it is possible to quickly zoom in and out on a point of interest,
giving smooth changes between context and focus, although both cannot be seen at the same time.

o Elision Techniques. Parts of the structure are hidden, typically using a collapse and expand idea, for
example on sub-graphs. These elided structures then provide context whilst others can be expanded
to provided detail.

e  Multiple Windows. Separate windows are used to provide focus and context. However, visual cues
are needed to show how the windows interrelate. E.g. which area of the overview is showed zoomed
in another window.

¢ 3D Interactive Visualisation. Focus and context is provided through the use of perspective, with
distant objects being less detailed than the foreground, especially if level of detail is used in the
display. However, the context is very dependent on the layout and the orientation of the view leading

to arbitrary context.

The authors argue the use of 3D over 2D, using Robertson et al. Cone Trees [Robe91] as an example

where a 3D representation allows the viewing of larger structures than 2D.

NV3D is a 3D data visualisation tool for large relational information structures. The system uses the
typical node and arc representation, with the nodes being colour coded or texture mapped according to
type. The system uses elision with nodes able to represent sub-graphs that can be expanded or collapsed.
This is key to the system and only through this is it able to deal with large data structures in real time. The
graph can be explored using navigation widgets and rapid zooming and also non-spatially through queries
and layout variations. The graph can be queried dynamically on relationship type from a node. A slider
then controls the depth of this query from the start node. The layout can also be used to explore the graph
by changing which relationship are used for layering the graph and relationships can be weighted

according to importance.

The system allows the viewing of static data such as calling structures and object relations, however the
system also supports dynamic behaviour, mainly to provide an outlet for viewing execution threads. The
system uses a notion of snakes to visualise execution threads. These are animated heads and tails, where
the head shape represents the type of action and the tail shows the recent history of the process as well as
attracting the users attention. The viewpoint can also be attached to a snake to provide automatic tracing
of the snake. In order to view the details of a snakes passage, for example the calling arguments, data
probes can be attached to nodes which show the message when the snake arrives at the node. These work
on a hierarchy so messages are passed up to any other probes allowing a sub hierarchy to be monitored by
placing a probe at the top of the hierarchy. The notion of snakes provides a novel way to represent
process execution. However, it would appear to suffer from the problem of scale, since it could be

difficult to maintain a viewpoint that allows multiple snakes to be observed in a large graph.
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The execution model (shown top right in Figure 4-2) is represented by showing the call graph of each
activity and the memory mapping of objects. Activities are represented as pulsing spirals, which grow
with each method call and have a segment pointing to the object being called. Thus recursion is easy to
observe with segments going to the same object. The concurrent aspects are shown (shown top left in
Figure 4-2) as a horizontal grid representing each activity and all objects linked in its context. Within this,
the call graph is shown by an animated coloured line passing through objects on the grids. Object sharing
is shown when the same instance is stored in multiple grids. The evolution of the stacks of program
execution is shown in the activity stack view (shown bottom right in Figure 4-2). Here, the circle
represents the application with the activities placed on the circle. Objects used by each activity are

stacked above it in the order they are called.

4.5.3 VizBug++

VizBug++ [Jerd94] is a simple prototype for the visual debugging of C++ programs. It is based on
previous work on GROOVE [Shil92], a visual design tool using the same visual paradigm. The view
contains three basic entities: a tree structure representing class hierarchies, rectangular nodes representing
global functions and circular nodes representing instances. Classes are represented as upside-down
triangles, while arrows from the bottom of a class to the top of another class represent inheritance. The
view shows the message passing that occurs during execution by drawing arrows between instances.
From implementing this prototypical view, the authors found that the necessary information to construct a
useful visualisation is difficult to gather and that view layout and information overload were major
problems with the simple view. They suggest that multiple views with different levels of abstraction may

be needed to present information in an organised and informative way [Jerd94].
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Figure 4-3 VizBug++ showing class and instance relations [Jerd94]

Through the development of VizBug++, Jerding and Stasko [Jerd94] define four main objectives that they
suggest a visualisation of object-oriented software must fulfil.
e Little or no programming intervention. The visualisation should take no all little

programmer overhead.
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e  Present the "right” things. The most important aspects of the software system should be
presented.

e Allow viewers to focus quickly. The visualisation should support navigation so that users
can focus on a particular concern.

e Handle real world problems. The visualisation must be applicable to large-scale systems.

These are presented in the context of visualising object-oriented systems, however they can be applied to
the general software visualisation case. Oudshoorn et al. [Ouds96] refine the requirement of presenting
the “right” things. Suggesting that:
e  The system should provide feedback and allow the user to discover new information, not just
confirming what they already know.
¢  The graphical representation must provide information and not just act as decoration.
e  The visualisation should also allow users to focus quickly on areas of information and allow

customisation over the views.
Oudshoorn et al. also state the need for:

e  Scalability. The tool should be sufficiently scalable in terms of the problem sizes it can handle.

o  Extensibility. The tool should be flexible to change. For example, allowing the modification or
addition of views.

¢ DPortability. The tool or its concepts implemented on one platform should not restrict porting to

another platform.

4.5.4 Look!

Look! is a runtime visualisation and debugging tool for C++ originally developed by Objectives Software
Technology Ltd [Look]. It offers a number of views for displaying runtime information on C++

programs, including object creation and destruction, object relationships, inter-object communication and
memory usage. The views allow graphical selection giving point and click access to source code, data and

breakpoint setting.

The Reference View shows the reference relationships between objects in the system. It displays objects
as they are created and destroyed, allowing pointer relationships and object interactions to be easily seen.
All reference relationships to, or from, a selected object can be optionally shown to aid debugging.
Threads in the application are visible and mapped to the objects that they use. The system also offers the
ability to filter the view, for example by excluding objects of a particular class. Figure 4-4 shows an

example of the reference view.
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problems as the method calls are decided at runtime and not at compile time. Therefore, it is impossible
for the calling structure to be extracted using static analysis in cases when dynamic binding is used. It can
be very difficult to work out which class is referenced and/or called when the reference type is to a base
class or interface that has a large number of classes derived from it. In this case, the possible structure or
behaviour of the program can be very different dependent on which class is actually referenced. Problems
also occur with “invisible connections” between classes. For instance, in Java every class inherits from a
base class Object. Therefore, the standard data structure classes just need to store references to the Object
class in order to be able to store objects of any class. When these data structures are used it is then very
difficult, or even impossible, to see which classes are being stored in them. It can also be very difficult to
see how the classes are used from the source code alone, for example in terms of the number of instances
of the class and what other objects the instances reference. Inheritance, dynamic binding and
polymorphism introduce new challenges into the comprehension process. Inheritance allows a large
amount of functionality to be provided by an object, with the possibility of overloading methods of the
inherited classes. Therefore, in order to understand a class, one must understand the classes it inherits
from and observe which, if any, methods are overloaded. Runtime visualisation of OO software can
therefore help with these challenges and allow a better idea of the structure of a piece OO software to be

gained. It is for these reasons that this work focuses on visualising object-oriented systems using runtime

information.

As with any code, a number of bugs can exist in an OO system. These can include traditional control
flow errors, such as looping unexpectedly and also errors to do with the object-oriented nature of the
program, such as creating too many instances of an object. A number of these are summarised by [Laff94]
and highlight another area where QO specific visualisations can be beneficial, as such errors are only

apparent at runtime.

4.7 Current Trends and Issues and Challenges

Current runtime visualisation systems come under a number of trends. They can be broadly categorised

into:

e  Educational tools. These systems are designed to aid the teaching and learning of programming. They
include systems such as JavaVis [Oech02] and VisiVue™ [Visi]. These systems therefore focus on
the details of the running programs and are useful for very small "learning" programs. A number of
systems have also been developed for demonstrating specific data structures by having specific
layouts for trees and lists, or by allowing the user to declare the visualisation of these, for instance
work by Korn and Appel [Korn98].

e Debugging tools. These systems focus on aiding the debugging and development of OO software.
They are often based on debugging techniques allowing control over the execution of the program
under study. They allow detailed inspection of specific sections of the code and often offer support
for other views of the software. Systems designed for this include Look {Look], Program Explorer
[Lang95] and VisiVue [Visi].

o Higher level performance and architectural aids. These systems focus on presenting summary

information on the program’s execution to aid in performance tuning tasks and showing more
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abstract views of the program. They typically use an offline approach. Jinsight [Jins] is an example of
such as tool though it focuses on lower level class and object interactions. Other systems include
work by Walker et al. [Walk98], who use high-level models to visualise dynamic information about

OO systems at the architectural level.

These are not exclusive categories and some systems could be classified as focusing on more than one
area, such as educational and debugging uses. However, these categories aim to show the main trends in
the field. This shows the current focus of the different systems. There is also growing use of UML
representations to show dynamic features of the software. For instance, sequence diagrams and statechart
diagrams have been used, examples of this can be seen in work by Mehner [Mehn01]}[Mehn02] and in

work by Systé [Syst00] where variations on these diagrams are presented.

One of the main focuses of the existing tools is showing low level details with the aim of aiding
debugging tasks. Tools such as VisiVue, can be useful for investigating specific parts of the software or
for demonstrating how smaller programs and data structures work. However, it is not their aim to aid
comprehension of large-scale software of which the user has no previous knowledge. Therefore, there is
potential for higher level views combined with showing such low level details in order to aid program
comprehension. The current tools provide limited levels of abstraction and typically use only one or two
representations to represent the software. Progress could be made by using multiple representations to
display different aspects of the system in a common environment. This combined with user abstractions
and annotation and an increasing linkage to external data sources, such as JavaDoc, could aid program
comprehension activities. Many tasks require both high level and low level information in order to
complete them successfully. For instance, debugging tasks may require the user to first gain an overview
of the software in order for them to localise their search to the problem area, once the search has been

refined, then low level information may be needed to see which elements are actually causing the error.

Runtime visualisation systems face the generic software visualisation challenges discussed in section 3.6.
However, the runtime aspects can introduce new intricacies and difficulties. Scale is a major issue for
software visualisations in terms of dealing with the massive amounts of information that are present on a
real world piece of software. This is a particular problem for runtime visualisation, as there can be even
more information, making it difficult to mange let alone visualise! This is due to the combination of the
large amount of static information available, plus the state of constant change that is introduced by the
dynamic nature of the software. This runtime information also introduces temporal relationships between
items and a large amount of new information may need to be presented at once in a coherent manner. This
dynamism affects all aspects of the visualisation, from layout, to representation and evolution. The layout
cannot be known in advance (for online systems) resulting in added complications for the layout of items
within views. Many issues arise when incorporating the new information in existing views. Should the
layout try to maintain as much consistency as possible with the old layout? Or should the items be laid
out in the best possible way given the new data? How shall changes in the data be presented? When the
user is focusing on a specific item of interest how shall changes in the rest of the data be presented? What
about changes that affect views other than the one the user is currently using? Does the user want to see

just the current state or all the states up to that point? Do the user annotations and abstractions want to be
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preserved between different executions of the software or do they only apply to certain executions or
inputs? There are no definitive answers to these questions and they can depend very much on the task and
user requirements. However, it is important for the system to maintain a consistent approach and try and
reduce user disorientation. Navigation is complicated in a runtime visualisation system, as not only can
the user navigate through the information but also through time. The user may have to navigate through a
large amount of runtime information in order to find an item or event of interest and it may only occur
under certain conditions or at certain points in the program’s execution. For instance, the execution of
some functionality may be hidden behind the code for the user interface and may prove difficult to locate.
Some systems allow the program's execution to be back stepped e.g. ZStep [Lieb97], however, this
requires the preservation of previous states or the steps required to restore those states if the visualisation
is using an online approach. This is obviously unsuitable for large programs and techniques that allow the
visualisation to show previous states without affecting the execution of the program can lead to user
disorientation with the visualisation and program being at different points in the execution. These
problems do not apply to offline approaches where the visualisation is purely based on a trace, however,
in such systems disorientation can occur if two views are presenting different pieces of the program's
execution. The evolution of the visualisation is also affected by the dynamic nature of the software. Not
only can the source code change but also the software’s runtime behaviour can vary hugely depending on
data inputs. The visualisation must be able to cope with changes in both aspects, yet try and preserve

some consistency between the cases.

The changing state of the software can increase user disorientation due to the large information space and
the possible lack of consistency. This is especially true for certain information, such as a call stack of a
thread, which are in a state of constant change. The sheer speed of change of such details means that it is
impossible to watch them in real time regardless of the representation. Such details are needed for low-
level investigation when the program’s execution is paused and summary information is needed to present
the bigger picture. Such as summarising method calls from a particular method instead of requiring the

use of the call stack to find the information.

Problems can also exist in generalising findings. The visualisation only shows how the software behaves
for that particular execution and data set. Therefore, more investigation may be needed to allow items
under study to be fully understood. Some generalisations may not hold for all executions of the program.
This is an important factor for the user to consider, especially if the software only loads certain sections of

code dependent on its input or environment. In this situation the software may appear simpler than it

actually may be!

The performance of runtime visualisation systems can also be a major challenge. The usability of such
systems requires that the user can feasibly extract and visualise the software without prohibitive
performance overheads. This performance issue is not as important for visualisation systems based on
static analysis where the data can be extracted pre-visualisation time using efficient parsing techniques. In
this case, the data is static so it does not need updating or monitoring while the user investigates the
visualisation. The main performance issue for static analysis visualisation tools is dealing with the large

volumes of data generated by substantial software systems. However, when visualising information
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extracted using dynamic analysis, i.e. runtime visualisation, even small software systems can generate
vast amounts of dynamic information. This performance issue is especially important for online
approaches where the visualisation occurs alongside the program under study. In this case the software
can generate a very large number of events and the visualisation must aim to interpret and incorporate this

information into its presentation within an acceptable overhead.

4.8 Conclusions

This chapter has presented details of the existing approaches to software visualisation at runtime. The
viewing of runtime information takes its most basic form through the use of debuggers to inspect a
program's internal state. However, specific runtime visualisation tools have been developed that allow a
greater insight into the structure of a program. A summary of some of the main work in the field has been
presented allowing an overview of the common techniques and problems to be seen. The issues with
current approaches were discussed, followed by features which are considered desirable in a runtime
visualisation system. This chapter has highlighted the need for greater research and as Jeffery states
"Monitoring and visualizing the dynamic behaviour of programs is a major area of research that has not

been fully explored”. [Jeff99 p3]
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Chapter 5 The DJVis Approach
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5.1 Introduction

This chapter presents the approach taken in the development of a visualisation of the runtime execution of
object-oriented software. The aim of this visualisation is to aid the comprehension of QO software by
visualising both static and dynamic details of it. Firstly, the chapter provides a definition of terminology,
The choice of language to target using the visualisation is then discussed before the actual constructs of
the language are presented. This allows the mapping to the representations within the visualisation to be
fully detailed. Alongside these descriptions of the representation and mappings, the aim of each aspect of
the visualisation is detailed. The visualisations presented make up the DJVis visualisation and this 1s
discussed as a single visualisation and as a combination of specific visualisations, each focusing on

showing certain aspects of the executing program,

5.2 Terms

The description of the DIVis visualisation uses a specific terminology, which is defined here for clarity.

These definitions are defined with the purpose of being used for the deseription of DJVis

* Representation: A representation is the graphical items that make up an image for some data item in
the software.

Mapping: The mapping defines the relationship between the data items and the individual
representations.

e Visualisation: A visualisation is a combination of representations and the mapping of these to items
of data, along with an interaction method.

¢ View: A view, in the context of DJVis, is a visualisation of some specific aspect of the program's
execution.

¢  Abstraction: The abstraction is the level of detail shown of an item or in a view. Higher levels of

abstraction present less information on an item.

5.3 Language Choice

There are many different languages based on the object-oriented paradigm. Each language provides its

own variations and therefore the choice of language to be visualised influences the resulting visualisation

For example, C++ allows multiple inheritance of non-abstract classes and code and variables can be

outside of classes, whilst Java does not. Issues such as this influence the resulting visualisations, This

work focuses on the visualisation of Java software. The reasons for this are:

e Java does not allow code to be outside the scope of classes. Therefore, the visualisations can exploit
this object-oriented nature of all code 1n the representation.

e  There is growing use of Java and it has a large existing user base. Therefore. there will be a need to

maintain this software and there is large scope for the application of the resulting visualisations,



However, the visualisations are not restricted 1o Java alone and could be applied to other languages,
though changes would be needed to take into account differences in their support for the OO paradigm

from Java.

5.3.1 Language Constructs

The visualisation will be based on the language constructs of Java. The following are the elements of a

Java program that are useful for providing information about the program’s runtime behaviour.

Class
- Name
- Methods
- Name
- Access Rights (public, private, protected)
- Arguments
s Return Type
- Local Variables
- Number of Calls
- Calls which other methods and classes
- Called by which other classes and methods
- Length
- Coverage
- Lines defined at
- Final
- Fields
Name
Type
Access Rights (public, private, protected)
- Values for objects of class
- Accessed by which other classes and methods
- Is it used to reference a sub type of the actual field type.
- Package defined in
- Inherits
- Implements
- Number of instances created
- Created by which other classes
- Inner, Abstract, Final
- File defined in
Object

- Class of object

- Values of fields

n
L



Interface

- Name
- Inherits
- Implemented By
- Methods
- Name
- Access Rights (public, private, protected)
- Arguments
- Return Type
- Fields
- Name
- Type
Package
- Name

- Classes within package

- Classes in this package used by which other packages / classes

Local Variables and Method Arguments
- Name

- Type

- Scope

- Value

- Name

- Thread Group it belongs to

- Call Stack

- State (Running, Sleep, Wait, Zombie, Monitor, Suspended)
- Owned Monitors

- Currently Contented Monitor

Thread Group

- Name

- Threads it contains

- Thread groups it contains

- Parent thread group
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Field Accessed by Method
Field Accessed by Class
Thread Group Contains Thread Group
Thread Group Contained by Thread Group

Thread Group Contains Thread
Thread Contained by Thread Group

Table 5-1 Dynamic relationships between Java items in an executing Java program

The focus of the DJVis visualisation is to concentrate on showing class level and threading details of an
executing program. The visualisation of object level details is not considered in the visualisation.

Therefore, the above table does not include relationships involving objects, which are defined in Table

R ) Object

5-2

Object eferences (Statically

Object Referenced by (Statically) Object
Object | References (Dynamically — through a base class or interface) Object
Object Referenced by (Dynamucally) Object
Object Instance of Class
Object Creates Object
Object Created by Object
Object Accesses field of Object

Table 5-2 Object level relationships

5.4 DJVis

This section describes the DJVis visualisation. This is presented as an overview of the DJVis visualisation

followed by a detailed summary of the individual views that combine to make up DIJVis.

5.4.1 Overview

The DJVis visualisation 1s composed of a number of views, each of which aims to show some aspect of
an executing Java program. It would be impossible to try and show all aspects of a piece of software
within one view or using a single representation, and therefore interconnected views are used within an
integrated environment., Table 5-1 highlights the different relationship types, and it can be seen that the
information can be separated into three main categories based on class, method and thread relationships.
The visualisation was developed using this separation of information, with a specific view for showing
each information type. This allowed the different relationships to be logically separated, thus reducing the
amount of information that each view needs to display. There is some overlap between the views, as some
relationships follow logically from others, however, the main aim was to reduce the amount of
information in each view and use co-operating views to allow the user to easily use multiple views to

investigate the different relationships. These main views of the executing program are:
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5.4.2 DJVis Views

There are 5 main views that make up DJVis, each of which is presented here using a template that

describes the aim, mapping and summary of each of the views. Each of the main views also includes

other helper views that provide additional information. The main five views can be summarised as:

¢ Runtime View Presents the threading aspects of the software using a 3D representation.

* Class View Provides details on the classes and their relationships using an augmented
graph representation,

¢ Variable Watch View  Presents information on the access types and frequency of accesses for a
field variable.

»  Method Pixel View Presents the method calling relationships of a class' methods using a pixel
based representation.

s Query View Acts as a grouping mechanism for information from other views.

The first four views provide their own representations of the information being displayed. whilst the
Query View is distinct in that it provides a mechanism for the user to group information from the other

views. In most instances the representation used is the same as in the original views,

5.4.2.1 The Runtime View

Aim

The aim of the Runtime View is to present the low-level runtime information about the software's
execution. This includes details such as the programs call stack(s), as well as information such as control
flow and variable values. Much of this runtime information can be thought of as hierarchical, due to the
thread architecture. Here, the executing program is made up of one or more thread groups. These
structures can contain threads and/or other thread groups giving a hierarchical division of threads into
groups. Each of these threads then has a stack, which contains method calls and local variable values,

Each method being executed on the stack gives information on control flow and variable access.

Mapping

The mapping of the Runtime View takes an approach which follows the basic levels of abstraction of the
executing program, in terms of thread groups, threads and their call stacks. This allows a natural
abstraction of the program, which will be familiar to users through its use in debugging tools. Also, it
reduces information overload by resfricting the amount of information that it is necessary to display at
once. Using this, a visualisation was devised to display the information at each of these levels and 1o
allow coherent changes between them. The visualisation used by the Runtime View initially presents the

program abstractly in terms of an overview of its thread groups and the threads structure.
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know if a method has been called and they are not interested in the number of times. they could set all
values except zero to map to a set length or shading intensity. This modification of the mapping function
would be supported through the use of graphical manipulation of a graph as well as the ability to enter

simple mathematical equations for the mapping function.

Method Line Length Method Line Length

Ipinwls) Ipivelsi

(a) (b)

10 10

Value Value

Method Line Length Method Line Length
Ipinels) Ipinels)

(C) /’; (d)

/ "

1 f/ Ve %

Value Vilue

Figure 5-17 Length Mapping Modes

Figure 5-17 demonstrates four possible mapping modes that could be useful for different tasks. Graph (a)
would show only items of values x and over and these would be represented with a constant length of ten
pixels. This could be used for showing methods over a certain size, or highlighting frequently called
methods. Graph (b) maps all values to the same value, except zero, whilst graph (¢) shows the default
linear mapping mode. Finally. graph (d) restricts the method lines to a maximum length of thirty whilst

making smaller changes more prominent.

This approach can also be used for the other representations of the method line, such as the method length
or complexity, which can be shown in terms of the length or shading of the method lines. This can allow
the user to set values to effectively hide small or simple methods and highlight methods above some
threshold of length or complexity. This can be useful for preventative maintenance tasks where there 1s a

desire to find and improve complex methods.

Summary
The Class View presents details of the software under study at the level of classes and their relationships.
It provides access to a variety of information on the software and due to the key role of classes in the

design and implementation of object-oriented software the Class View is essential in the comprehension
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of the software under study. The view uses an augmented graph representation with method lines and
field triangles for showing the details of classes. The view is highly customisable, providing drop down
lists for changing how the underlying information is presented in the view, as well as facilities for

creating user defined filtering and mapping modes. The view presents information on:

e C(lasses
e Name
e  Methods
¢ Name

e Access type
e  Return type and arguments
®  Method Metrics (length, number of calls (total, from user defined point),complexity)

e Fields
¢ Name
e Type

e Relationships (inherits, implements, creates, references (static and dynamic))
e Package inclusion
¢ Number of instances

¢  Type (inner, interface)

The representations used for the nodes in the Class View are summarised in Table 5-4. The Class View
also provides an effective means of navigating the other information sources such as driving the Method

Pixel View or the source code browser.

5.4.2.3 The Variable Watch View

Aim

The aim of this view is to present information on the use of field variables. The view aims to provide the
user with details of the use of individual class fields, allowing them to see the type of accesses (read,
write or mixed) and the frequency of accesses. The overall purpose is to allow users to follow variable
changes and locate dependent code. Therefore, the view aims to help users gain an understanding of how
and where a field variable is used, as well as helping in tasks such as impact analysis by allowing the user

to assess how tightly coupled the field variable is to the rest of the code.

Mapping

The view uses a radial layout of the information with the watched field variable being in the centre of the
layout. The view offers three levels of abstraction by showing the accesses at different levels of
abstraction. Initially, the view displays the classes that access the field variable and these classes are
represented as small circles arranged evenly around the central field in a radial layout. The distance of the
class circles from the centre of the main circle is used to represent the number of accesses that that class
has performed on the field variable. Coming out from the central point are background circles which are

designed to allow the user to easily compare the number of accesses between different classes and
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results in the spiral pattern present. The accesses seem to be in three groups. One group of
items that all read from the field a large number of times along with two that both read and
write. The next group of four items access the field a medium number of times with two
reading and two both reading and writing to the field. Finally, there is a group of three items
that only access the field once or twice. The field variable is used by a number of items and
therefore could prove problematic if it needs its type modifying. However, if the user is trying
to trace down a bug in which the value is being set incorrectly, then this view would be useful

as there are only six items that update the field as most access are just read accesses.

Pattern c) illustrates a situation where there is one item reading the field a large number of
times and one item writing to the variable slightly less times. If this view were at the class
level then there would be two classes involved, one of which could be local class that the field
belongs to. This field is therefore in a high state of change as the writing accesses are high.
This pattern could occur for a number of reasons such as a producer / consumer situation or
maybe in a data structure class that is updated by one class and read from another. If the view
was at the method level (showing the class that contains the field) then this would show one
method for write access.and one for read access which could suggest a GetField() and
SetField() method. This pattern, could also have a number of writes from constructor
functions. At either level of abstraction the view suggests that the field is not highly coupled to
the rest of the program, though this would need further investigation at the class level to make

sure the accesses are not widespread through the classes methods.

3

This would represent a highly accessed field that is extensively used by classes or a class'
methods depending on the abstraction level shown by the view. Either way it represents a
highly coupled variable that could prove problematic, if it needed modifying. Its usage is

typically mixed, with most items showing both read and write accesses.

Table 5-5 Possible interpretations of patterns from Figure 5-19

The Variable Watch View can also utilise the method lines concept from the Class View. This allows the

user to get an impression of the number of methods involved in the access for a particular class while still

being at the class abstraction level. At this point the class doing the accessing is represented as a small

circle with the distance from the field being watched representing the number of accesses. For these

classes, the number of methods accessing the field can be indicated using the method lines idea, with the

length representing the percentage of accesses for that method out of the total for the class. Figure 5-20

shows a simple example of this, with the view showing class accesses using the small circles which then

have method lines to give an impression of the methods of that class involved in the access.
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