

Durham E-Theses

Understanding magma genesis through analysis of melt inclusions: application of innovative micro-sampling techniques

Harlou, Rikke

How to cite:

Harlou, Rikke (2007) Understanding magma genesis through analysis of melt inclusions: application of innovative micro-sampling techniques, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3728/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way
- The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

UNDERSTANDING MAGMA GENESIS THROUGH ANALYSIS OF MELT INCLUSIONS: APPLICATION OF INNOVATIVE MICRO-SAMPLING TECHNIQUES

APPENDIX VOLUME

The copyright of this thesis rests with the author or the university to which it was submitted. No quotation from it, or information derived from it may be published without the prior written consent of the author or university, and any information derived from it should be acknowledged.

Ph.D. Thesis by Rikke Harlou Department of Earth Sciences, Durham University, UK

&

Danish Lithosphere Centre, Copenhagen, DK

March 2007

1 2 FEB 2008

TABLE OF CONTENTS

Appendix A: Relates to Chapter 1

Appendix A1: Detailed geological map of Iceland

Appendix A2: Experimental homogenization of olivine-hosted MIs

Appendix A3: Preparation of 25 mm epoxy grain mounts for MI micro-sampling work

Appendix A4: LA-ICPMS instrumentation

Appendix A5: Electron microprobe data collected on standard glasses

Appendix A6: LA-ICPMS data collected on standard glasses

Appendix A7: Vestfirdir ankaramites - whole rock data

Appendix A8: Vestfirdir ankaramites - olivine and clinopyroxene phenocryst data

Appendix A9: Vestfirdir ankaramites - olivine-hosted MI data

Appendix B: Relates to Chapter 2

Appendix B1: Micro Sr dissolution and column chemistry

Appendix B2: Sr and Sr-Pb column calibrations

Appendix B3: Loading of sub-ng Sr loads on Re filaments

Appendix B4: Oxide production check on the ELEMENT2

Appendix B5: ELEMENT2 method files

Appendix B6: USGS rock standards

Appendix B7: Standard data collected during MI sessions on the ELEMENT2

Appendix B8: Sr isotope data collected on sub-ng NBS 987 standard loads by TIMS

Appendix B9: TPB archive

Appendix C: Relates to Chapter 3

Appendix C1: Standard element data collected by ELEMENT2 during Vestfirdir MI session
Appendix C2: TPB associated with the Vestfirdir MI study
Appendix C3: Sr isotope data collected on sub-ng NBS 987 standards by TIMS
Appendix C4: BIP MIs - normalized trace element content to a 100 µm-sized MI
Appendix C5: Parameters used in the modelling of Figure 3.8

Appendix D: Relates to Chapter 4

Appendix D1: Sr isotope data collected on sub-ng NBS 987 loads by TIMS during BIP MI study

Appendix D2: Standard trace element data collected during ICPMS BIP MI study

Appendix D3: TPB associated wit the BIP MI study

Appendix D4: Standard and TPB data collected by ICPMS during BIP whole-rock study

Appendix D5: Sr isotope data collected by MC-ICPMS during BIP whole-rock study

Appendix D6: BIP - isotope, major and element data

Appendix D7: Selected crustal rocks of Baffin Island - Sr isotope and element data

Appendix D8: Olivine phenocryst of the BIP - major element data

Appendix D9: Normalized MI trace element concentrations to 100 µm-sized MI

Appendix E: Ph.D. abstracts, posters and papers

Appendix E1: Conference abstracts

Appendix E2: Conference posters

Appendix E3: Scientific papers in press or in preparation

APPENDIX A

Contents of Appendix A:

Appendix A1: Detailed geological map of Iceland

Appendix A2: Experimental homogenization of olivine-hosted MIs

Appendix A3: Preparation of 25 mm epoxy grain mounts for MI micro-sampling work

Appendix A4: LA-ICPMS instrumentation

Appendix A5: Electron microprobe data collected on standard glasses

Appendix A6: LA-ICPMS data collected on standard glasses

Appendix A7: Vestfirdir ankaramites - whole rock data

Appendix A8: Vestfirdir ankaramites - olivine and clinopyroxene phenocryst data

Appendix A9: Vestfirdir ankaramites - olivine-hosted MI data

Geological map of Iceland (http://www.geophysik.uni-frankfurt.de/iceland/geologyl.gif)

Homogenization of the melt inclusions (MIs) is necessary when MIs have crystallized after being entrapped. The MIs are preserved as glass inclusions under rapid cooling, however if cooling of the system is slow crystallization of the MIs may occur due to the physical and chemical changes. Heterogeneous or crystallized MIs may be spotted by the presence of tiny daughter crystal and shrinkage/fluid bubbles (e.g. Figure 2.2b). Less obvious are the crystallization of the host crystal phase on the wall of the MIs. The crystallization of the host mineral and other daughter phases within the MIs can be experimentally reversed by homogenization during heating experiments (details in Danyushevsky et al., 2000). Care must be taken to ensure that the MIs are not over heated or under heated, as this will affect the relationship between the MI composition and the host mineral phase (e.g. Nielsen et al., 1998; Danyushevsky et al., 2000). If under heated, the daughter crystals and olivine rim grown on the inclusion wall may fail to melt completely. Over heating may result in an over-contribution of the host olivine to the melt, but it may also result in degassing. In particular, MgO, FeO, and Ni are affected by over- and under-heating, since these elements are strongly compatible in olivine. However, based on the assumption that the MI is in equilibrium with its host olivine at the time of entrapment it is possible to recalculate the original composition by using the FeO-MgO exchange between melt and olivine (Danyushevsky et al., 2000). The problem is less serious for the incompatible elements as their concentrations are controlled by dilution of the liquid by major constituents, and thus the trace/trace element ratios should remain unaffected. In general, only primary well-preserved MIs should be chosen for analytical work. Nevertheless, it is a difficult microscoping task to see whether or not MIs have breached or degassed. However, these can be screened out from electron microprobe measurement of their volatile content e.g. monitoring of the Cl and S content.

The homogenization of the MIs in olivine during this study was done using a vertical furnace at the Department of Geography and Geology - Geology Section (University of Copenhagen). Handpicked olivine phenocrysts hosting MIs and free of adhering groundmass glass were put in a carbon crucible mixed with fine grained carbon powder. Carbon is used in order to maintain reducing conditions during heating, and hereby ensures a non-oxidizing atmosphere. At first preliminary heating experiments are carried out to establish an approximate liquidus temperature of the entrapped melts, and to establish the length of the heating period needed to homogenize the MIs. Heating experiments were carried out over a temperature range of 1200°C to 1280°C.

Appendix A2: Continued

"Homogenization experiments by the batch" as described here - where multiple olivine grains hosting MIs are heated in "one go" ensures a large number of homogenous MIs. A different approach for homogenization experiments is the use of a heating stage where individual olivine grains are homogenized one by one. Using a 'heating stage on a microscope' entails the visual monitoring of individual MIs during heating, and that heating can be stopped as the liquidus temperature is reached. However, it is a very time consuming procedure to prepare a larger number of MIs for analytical work, as it also requires a great deal of sample preparation (see details in Nielsen et al., 1998).

Procedure for homogenization of olivine-hosted MIs 'by the batch'

- The furnace is pre-heated to the desired temperature, and wait until the temperature is stable.
- · The crucible i preheated for approximately 10 minutes
- The sample material (olivine grains) are mixed with fine-grained carbon powder in a glass disc.
- The mixture of sample material and carbon powder is transferred to the crucible, and placed in the furnace
- The crucible is heated for 15-30 minutes
- The crucible is swiftly taken out of the furnace, and the sample-carbon powder mixture is quickly cooled, by pouring onto a clean metal plate.
- Once cooled down, the olivine crystals are removed from the carbon powder by hand picking or sieving.
- After cleaning of the olivine grains by ultrasonic baths in dilute acid and MQ-water, they are ready for mounting.

References:

- Danyushevsky, L. V., McNeill, A. W. & Sobolev, A. V. (2002): Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chemical Geology, 183: 5-24.
- Nielsen, R. L., Michael, P. J., & Sours-Page, R. (1998): Chemical and physical indicators of compromised melt inclusions. Geochimica et Cosmochimica Acta, 62(5): 831-839.

Appendix A3: Preparation of 25 mm epoxy grain mounts for MI micro-sampling work

Equipment for making grain mounts

- Hot plate
- Balance
- Vaseline
- SpeciFix Resin
- SpeciFix-40
- Disposable paper cups
- · 25 mm mounting ring plus plate
- Tweezers
- Wooden stick (lolly stick)
- Gloves
- Safety glasses

Equipment for polishing grain mounts

- · Rotating polishing table equipped with running water supply
- Silicon-carbide paper for wet grinding e.g. Struers SiC-paper #320, #500, #1200, and #4000
- Struers AP-A powder (a 0.3 μm Alumina, agglomerated powder)

Procedure for making epoxy grain mounts

- 1. Put on safety glasses and gloves.
- 2. Put a thin layer of Vaseline on the inside of the mounting ring plus plate. Vaseline will prevent the epoxy from sticking to the mounting cup. If not Vaseline is applied the mounting cup will easily brake as you try to get your mount out!
- 3. Place the pre-cleaned crystals on the mounting plate using a tweezer approximately 5 mm from the edge. Try to place the crystals with the largest leveled crystal-surface facing down; doing this will prevent displacement of the sample material, as epoxy is pure over. Place the mounting ring on the plate, and make sure that it fits tightly.

- 4. Mix exactly 10 g SpeciFix Resin with exactly 4 g of SpeciFix-40 curing agent in a paper cup. This is enough epoxy for 3 grain mounts. It is important to mix the resin and curing agent in the appropriate amount, if not in these proportions the mounts do not cure. Stir the epoxy mixture carefully for 3 minutes using a wooden stick, and place the epoxy mixture on the 80°C hot plate for 2 minutes to help release the air bubbles.
- 5. Pour the epoxy mixture carefully over the crystals, by letting the epoxy mixture flow down along wooden stick hold against the wall of the mounting ring. Do it slowly - to prevent the sample material to move!
- 6. Place the grain mounting cups on the heating plate for 3 to 4 hours at 80°C to cure.
- 7. Leave the grain mounts to cool down to room temperature. Tap the bottom of the mounting cup gentle with a hammer and remove the bottom plate. Tap the ring gently on the side whereby the epoxy loosens from the mounting cup, and the grain mount can be taken out. Please be careful not to break the mounting cups!
- 8. Hereafter the grain mounts are ready for polishing. This is best done using a rotating polishing plate equipped with running water supply and on silicon carbide paper. Start by using coarse grinding paper (e.g. #320 Struers SiC-paper for wet grinding). Importantly, the grain mount should frequently be expected under the microscope, once a level is reached which has multiple melt inclusions (MIs) close to the surface, proceed to grinding paper (e.g. #500, #1200, and # 4000). Again the grain should be frequently inspected so MIs are not lost. The final polished of the mount is done using Stuers AP-A powder (0.3 µm Alumina, Agglomerated powder). The polishing steep is very important, and the better the polishing is done the easier it is to spot the MIs. It does take time so remember to be patient!
- A detailed photographic map is generated of each grain mount to be used for navigation during analytical work. The grains are examined under the microscope, and each MI is inspected in detail. Only primary MIs are map out for analysis.

Appendix A4: LA-ICPMS instrumentation

Instrumentation:	(after Kent et al., 2004)	
ICPMS	VG Elemental Excell quadrupole ICPMS	
LA	NewWave DUV 193nm ArF Excimer laser	

Analyzer conditions:

.

Aerosol carrier gas flow	0.75 l/min (He)
Nebulizer gas flow	0.95 l/min (Ar)
Outer (cool)gas flow	13.00 l/min (Ar)
Detector mode	Dual (pulse counting and analogue)
RF power	1350 W
Vacuum pressure	8.0x10-7 mbar (analyzer)
	1.6 mbar (expansion chamber)
Mass table	⁴³ Ca, ⁴⁵ Se, ⁴⁷ Ti, ⁸⁵ Rb, ⁸⁸ Sr, ⁸⁹ Y, ⁹⁰ Zr, ⁹³ Nb, ¹³¹ Cs, ¹³⁷ Ba, ¹³⁹ La, ¹⁴⁰ Ce, ¹⁴¹ Pr,
	146Nd, 147Sm, 153Eu, 157Gd, 163Dy, 166Er, 172Yb, 178Hf, 181Ta, 208Pb, 232Th, and
	238U
Dwell time/mass/scan	10 ms
Total scan time	~300 ms

Laser conditions:

Wavelength	193 nm	
Frequency	3 Hz	
Pulse duration	15 ns	
Spot diameter	50 µm (melt inclusions and BHVO-2)	
	70 µm (BCR-2)	
Lateral translation rate	5 µm (total distance ~225 µm)	
Ablation duration	45 s	
Output energy	200 mJ at 193 nm (~15 J/cm ²)	

Internal standard	⁴³ Ca	
Calibration standard	BCR-2 standard glass	
Secondary standard	BHVO-2 standard glass	

Appendix A5: Electron microprobe major, trace, and volatile element data collected on standard glasses

Standard ID	: BHVO-2														
Unprocessed	electron r	nicroprobe	data (oxide	wt.%)											
Oxide	Al ₂ O ₃	MnO	K20	CI	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P2O3	Total
n	148	148	148	148	148	148	148	148	148	148	135	148	148	13	148
wt. % Ave	13.55	0.17	0.51	0.07	2.35	50.10	10.96	11.44	0.00	7.30	0.02	2.77	0.05	0.26	99.24
±2SD	0.48	0.10	0.05	0.01	0.15	1.45	0.47	0.36	0.07	0.31	0.05	0.13	0,05	0.05	
±2SD (%)	3.55	58.47	9.51	110.15	6.42	2.89	4.27	3.17	300.33	4.28	252.40	4.64	106.81	20.85	1
BHVO-2 _{Rec}	13.50	0.17	0.52		2.22	49.90	11.07	11.14	-	7.23	0.02	2.73	0.05	0.27	
Δ%	0.35	-0.11	-2.07		5.77	0.40	-1.01	2.73	-	0.97	22.74	1.62	-11.22	-3.22	3
Processed ele	ectron mic	roprobe dat	a - recalcul	ated to 100 v	vt.%										
Oxide	Al ₂ O ₃	MnO	K20	Cl	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P2O3	Total
n	148	148	148	148	148	148	148	148	148	148	135	148	148	13	148
wt. % Ave	13.65	0.17	0.51	0.01	2.37	50.48	11.04	11.53	0.00	7.36	0.02	2.80	0.05	0.26	100.00
±2SD	0.41	0.10	0.05	0.01	0.15	0.85	0,42	0.36	0.01	0.31	0.05	0.13	0.05	0.06	
±2SD (%)	3.04	58.46	9.68	110.18	6.45	1.68	3.84	3.13	301.58	4.15	252.06	4.60	107.40	21.23	1
BHVO-2Rec	13.50	0.17	0.52	4	2.22	49.90	11.07	11.14	-	7.23	0.02	2.73	0.05	0.27	-
Δ%	1.13	0.51	-1.25		6.58	1.16	-0.28	3.52	-	1.74	25.03	2.43	-10.71	-3.20	

Table A5.1a: Electron microprobe data collected on USGS standard glass BHVO-2 using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of analyses, wt.%_{Ave} the average wt.% obtained, $\pm 2SD$ is the 2SD error on wt.%_{Ave}, BHVO-2_{Rec} is the recommended values for BHVO-2 given by USGS (http://minerals.cr.usgs.gov/geo_chem_stand/basaltbhvo2.html). Δ % gives the difference in percent between BHVO-2_{Rec} and wt.%_{Ave} obtained.

Standard ID: BCR-2

Unprocesse	d electron n	nicroprobe	data (oxide	wt.%)											
Oxide	Al ₂ O ₃	MnO	K ₂ O	Cl	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P2O3	Total
n	146	146	146	146	146	146	146	146	146	146	133	146	146	13	146
wt. % Ave	13.46	0.19	1.76	0.01	3.20	54.41	12.17	7.17	0.01	3.69	0.01	2.30	0.01	0.36	98.43
±2SD	0.62	0.09	0.30	0.02	0.50	2.64	0.62	0.97	0.05	1.05	0.03	0.15	0.04	0.06	
±2SD (%)	4.58	48.19	17.11	277.60	15.77	4.84	5.11	13.51	432,96	28,56	306.43	6.49	277.49	16.43	-
BCR-2 _{Rec}	14	0.20	1.79	-	3.16	54.10	12.47	7.12		3.59		2.26		0.35	
Δ%	-0.30	-4.38	-1.52	~	1.23	0.57	-2.41	0.76	-	2.72	÷	1.97	+	1.64	-

Processed electron microprobe data - recalculated to 100 wt.%

Oxide	Al ₂ O ₃	MnO	K20	Cl	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P2O3	Total
n	146	146	146	146	146	146	146	146	146	146	133	146	146	13	146
wt,%Ave	13.67	0.19	1.79	0.01	3.25	55.28	12.36	7.29	0.01	3.75	0.01	2.34	0.01	0.36	100.00
±2SD	0.44	0.09	0.31	0.02	0.52	1.48	0.60	1.00	0.05	1.08	0,03	0.15	0.04	0.06	
±2SD (%)	3.23	47.49	17.23	279 95	15.93	2.68	4.82	13.75	436.15	28.81	326.61	6.33	278,17	17.26	-
BCR-2Rec	13.50	0.20	1.79		3.16	54.10	12.47	7.12	-	3.59		2.26	-	0.35	
Δ%	1.30	-2.93	0.07	+	2.87	2.17	-0.84	2.39		4.38	-	3.61	-	1.97	-

Table A5.1b: Electron microprobe data collected on USGS standard glass BCR-2 using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of analyses, wt.%_{Ave} the average measured wt.% obtained, \pm 2SD is the 2SD error on wt.%_{Ave}, BCR-2_{Rec} is the recommended values for BCR-2 given by USGS (http://minerals.cr.usgs.gov/geo_chem_stand/basaltbcr2.html). Δ % gives the difference in percent between BCR-2_{Rec} and wt.%_{Ave} obtained.

Standard ID:	LO-02-04		_												
Unprocessed	electron n	icroprobe	data (oxide	wt.%)											
Oxide	Al ₂ O ₃	MnO	K20	CI	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P ₂ O ₃	Total
n	140	140	140	140	140	140	140	140	140	140	128	140	140	12	140
wt. % Ave	12.04	0.17	0.55	0.14	2.52	48.51	10.87	10.91	0.11	8.85	0.02	2.41	0.07	0.26	98.43
±2SD	0.50	0.09	0.05	0.01	0.31	2.64	0.48	0.38	0.04	0.43	0.05	0.13	0.07	0.05	-
±2SD (%)	4.19	50,96	8.47	7.54	12.36	5.43	4.46	3.52	33.64	4.90	205.82	5.34	96.62	18.71	
LO-02-04 Rec	12.17	0.16	0.56	0.14	2.48	49.30	10.84	10.53	0.07	9.03		2.24	0.07	0.30	-
∆%	-1.07	4.48	-2.55	-2.05	1.44	-1.60	0.27	3.65	57.46	-2.01		7.37	2.66	-11.91	-
Processed ele	ctron micr	oprobe dat	a (oxide wt.	%)											
Oxide	Al ₂ O ₃	MnO	K ₂ O	Cl	Na ₂ O	SiO ₂	FeO	CaO	S	MgO	NiO	TiO ₂	Cr ₂ O ₃	P2O3	Total
n	140	140	140	140	140	140	140	140	140	140	140	140	140	12	140
wt. % Ave	12.24	0.17	0.55	0.14	2.56	49.31	11.05	11.09	0.11	8.99	0.02	2.44	0.07	0.27	100.00
±2SD	0.52	0.09	0.05	0.01	0.31	2.67	0.44	0.35	0.04	0.41	0.05	0.13	0.07	0.05	
±2SD (%)	4.27	50.99	8.92	7.53	12.24	5.41	3.96	3.15	33.71	4.58	223.72	5.32	96,57	18.02	+
LO-02-04Rec	2.17	0.16	0.56	0.14	2.48	49.30	10.84	10.53	0.07	9.03	-	2.24	0.07	0.30	
Δ%	0.57	6.21	-0.93	-0.42	3.11	0.03	1.92	5.37	60.08	-0.39	-	9.15	4.35	-10.59	4

Table A5.1c: Electron microprobe data collected on standard glass LO-02-04 using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of analyses, wt.%_{Ave} the average measured wt.% obtained, ± 2 SD is the 2SD error on wt.%_{Ave}, LO-02-04_{Rec} is the recommended values for LO-02-04 given by Kent et al. (1999). Δ % gives the difference in percent between LO-02-04_{Rec} and wt.%_{Ave} obtained.

References

Kent, A. J. R., Norman, M. D., Hutcheon, I. D., & Stolper, E. M. (1999): Assimilation of seawater-derived components in an oceanic volcano: evidence from glasses and glass inclusions from Loihi seamount, Hawaii. Chemical Geology, 156, 299-319.

Appendix A6: LA-ICPMS	trace element data	collected on standard glasses
-----------------------	--------------------	-------------------------------

Standard ID	: BCR-2					
Element	n	BCR-2Ave	±2SD	±2SD%	BCR-2 _{Rec}	Δ%
Sc	81	34.31	0.93	2.70	34.30	0.02
Ti	81	13503.87	214.27	1.59	13500.00	0.03
Rb	81	48.05	1.94	4.03	48.00	0.11
Sr	81	346.92	12.24	3.53	346.00	0.27
Y	81	37,18	1.83	4.93	37.00	0.50
Zr	81	188.85	8.19	4.34	188.00	0.45
Nb	81	13.61	0.54	4.00	13.60	0.05
Cs	81	1.17	0.12	10.65	1.18	-0.65
Ba	81	672.08	23.89	3.56	674.00	-0.29
La	81	25.23	0.80	3.19	25.26	-0.12
Ce	81	53.56	2.01	3.76	53.75	-0.35
Pr	81	6.84	0.40	5.78	6.88	-0.60
Nd	81	28.56	2.04	7.13	28.82	-0.91
Sm	81	6.51	0.63	9.74	6.57	-0.93
Eu	81	1.93	0.19	9.73	1.95	-1.14
Gd	81	6.70	0.81	12.10	6.79	-1.22
Dy	81	6.35	0.80	12.54	6.45	-1.51
Er	81	3.67	0.41	11.10	3.72	-1.37
Yb	81	3.29	0.45	13.54	3.34	-1.53
Hf	81	4.73	0.55	11.70	4.80	-1.36
Ta	81	0.85	0.14	16.51	0.86	-1.87
Pb	81	10.70	2,31	21.58	11.00	-2.72
Th	81	6.06	1.00	16.59	6.20	-2.28
U	81	1.65	0.30	17.94	1.69	-2.25

Table A6.1a: LA-ICPMS trace element data collected BCR-2 using the VG Element Excell quadrupole ICPMS fittedwith a New Wave DUV 193nm ARF Excimer laser at Oregon State University. 'n' denotes number of analyses,BCR-2_{Ave} is the average measured trace element content given in ppm, ±2SD is the 2SD error on BCR-2_{Ave}, BCR-2 2_{Rec} istherecommendedvaluesforBCR-2givenbyUSGS(http://minerals.cr.usgs.gov/geo_chem_stand/basaltbcr2.html). Δ % gives the difference in percent between BCR-2_{Rec}and BCR-2_{Ave} obtained.

Standard ID:	standard ID: BHVO-2										
Element	n	BHVO-2 _{Ave}	±2SD	±2SD%	BHVO-2 _{Rec.}	Δ%					
Se	23	30.59	2.50	8.17	30.80	-0.67					
Ti	23	16458.80	431.94	2.62	16300.00	0.97					
Rb	23	9.89	0.96	9.71	9.80	0.93					
Sr	23	402.68	31.34	7.78	389.00	3.52					
Y	23	23.78	1.90	7.98	26.00	-8.54					
Zr	23	155.81	10.61	6.81	172.00	-9.41					
Nb	23	19.64	1.73	8.81	19.20	2.29					
Cs	+	-			0.10	-					
Вя	23	133.66	8.36	6.25	129.00	3.61					
La	23	14.65	0.81	5.52	15.28	-4,12					
Ce	23	39.05	1.78	4.55	37.91	3.01					
Pr	23	5.28	0.33	6.26	5.34	-0.99					
Nd	23	23.16	1.79	7.72	24,40	-5.09					
Sm	21	5.56	0.69	12.41	6.03	-7.77					
Eu	23	1.99	0.27	13.46	2.04	-2.13					
Gd	18	5.45	0.80	14.58	6.23	125					
Dy	20	4.73	0.63	13.35	5.31	10.89					
Er	19	2.28	0.38	16.53	2.55	-10.33					
Yb	20	1.82	0.39	21,44	1.96	-6.93					
Hf	22	3.87	0.80	20.75	4.10	-5.52					
Ta	23	1.13	0.21	18.58	1.19	-5.26					
Pb	20	1.83	0.26	14.05	1.66	10.00					
Th	21	1.16	0.22	19.04	1.20	-3.29					
U	17	0.42	0.08	18.75	0.41	2.12					

Table A6.1b: LA-ICPMS trace element data collected BHVO-2 using the VG Element Excell quadrupole ICPMS litted with a New Wave DUV 193nm ARF Excimer laser at Oregon State University. 'n' denotes number of analyses, BHVO-2Ave is the average measured trace element content in ppm obtained, ±2SD is the 2SD error on BHVO-2Aver BHVO-2Rec given is the recommended values for BHVO-2 by USGS (http://minerals.cr.usgs.gov/geo_chem_stand/basaltbhvo2.html). A% gives the difference in percent between BHVO-2Rec and obtained BHVO-2Ave. Concentrations, which were not obtained within 10% of the recommended values, are marked in grey italic.

Appendix A7: Vestfirdir ankaramites - whole rock data

Sample ID	408611	408624	408772	SEL.97
Rock type	Ankaramite	Ankaramite	Ankaramite	Ankaramite
Latitude	65.85	66.06	65.7646	
Longitude	-23.25	-23.30	-24.0419	
Location	Lambadahar	Burfell	Selardahur	Selardalur
Major elemen	nt concentration	s (oxide wt.%)		
SiO ₂	44.94	47.08	45.13	45.94
TiO ₂	0.63	1.07	0.90	1.19
Al ₂ O ₃	9.87	9.61	7.70	9.72
MgO	25.17	18.89	25.66	18.74
CaO	7.35	10.85	7.54	10.15
Fe ₁ O ₃	2.07	2.03	2,16	-
FeO	8.23	8.46	9.154	
Cr2O3	0.39	0.27	0.44	0.51
NiO	0.13	0.08	0.13	0.10
MnO	0.17	0.17	0.17	0.15
Na ₂ O	0.81	1.29	0.87	1.18
K ₂ O	0.13	0.12	0.05	0.05
P2O5	0.11	0.10	0.09	0.06
Total	100	100	100	-
Mg#	84.0	79.4	82.9	77.3
FeOtotal	10.09	10.29	11.10	11.53
K ₂ O+Na ₂ O	0.94	1.40	0.92	1.23
Selected PM	normalized trace	element ratios		
(Ce/Sm) _N	1.43	1.12	1.44	1.36
(La/Y) _N	2.00	2.02	2.95	2.18
(Rb/Sr) _N	1.14	0.23	0.09	0.48
(Sr/Nd)N	1.06	1.26	1.16	2.12
(Ti/Zr)N	0.63	0.95	0.99	0.82
(Sm/Nd) _N	0.89	0.88	0.84	0.88
(Ba/Zr) _N	0.70	0.66	0.58	0.71
ANb	0.03	-0.02	0.11	0.13

Table A7.1: Major and trace element compositions of the Vestfirdir ankaramites - samples 408611, 408624, and 408772 (Breddam et al., in prep). All data reported on SEL97 is from Hilton et al. (1999). The selected trace element data is normalized to primitive mantle (PM) using values from McDonough & Sun (1995). For details on the Δ Nb notation see Fitton et al. (1997).

Appendix A7: Continued

Sample ID	408611	408624	408772	SEL97
Trace element	concentrations	(ppm)		
Cr	1287	902	1496	1728
Ni	998	593	982	759
Rb	3.044	1.155	0.318	2.7
Sr	88.65	165.34	118.00	185
Cs	0.009		0.014	
Ba	21.5	24,0	17.0	33
Th	0.206	0.256	0.351	-
U	0.081	0.086	0.070	
Pb	0.247	0.455	0.323	-
Nb	3.60	3.70	4.52	10
Ta	0.30	0.27	0.34	-
Zr	49.0	58.1	46.6	75
Hf	1.12	1.45	1.27	-
Y	11.7	14.3	10.0	12
La	3,55	4.37	4.47	3.95
Ce	8.89	10.88	10.31	8.8
Pr	1.22	1.65	1.40	1
Nd	5.35	8.43	6.51	5.61
Sm	1.56	2.43	1.78	1.62
Eu	0.59	0.85	0.65	0.84
Gd	1.83	2.77	2.03	1.94
Th	0.32	0.44	0.33	-
Dy	1.90	2.49	1.94	1.82
Ho	0.42	0.51	0.38	
Er	1.12	1.28	0.99	
Tm	0.16	0,18	0.14	
Yb	1.09	1.11	0.85	0.84
Lu	0.17	0.17	0.12	0.12

Table A7.1: Continued

Appendix A7: Continued

References

- Breddam, K., Stecher, O., Harlou, R., Peate, D. W., & Kurz, M. D. (in prep): Miocene high-³He/⁴He ankaramites in NW-lceland: Trace element constraints on the common component in mantle plumes.
- Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S.; & Taylor, R. N. (1997): Thermal and chemical structure of the Iceland plum. Earth and Planetary Science Letters, 153: 197-208.
- Hilton, D. R., Gronvold, K., Macpherson, C. G., & Castillo, P.R. (1999): Extreme ³He/⁴He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth and Planetary Science Letters, 173: 53-60.
- McDonough, W. F. & Sun, S. -s. (1995): The composition of the Earth. Chemical Geology, 120: 223-253.

OI. ID	Al ₂ O ₃	MnO	K20	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408611Bol4	0.02	0.23	0.01	10.0	39.15	16.11	0.22		44.02	0.17	0.04	0.01	100	1322	83.0	0.37
408611Bol5	0.02	0.20	-	0.01	39.45	14.81	0.24	-	44,97	0.22	0.02	0.05	100	1699	84.4	0.33
408611Bol6	0.03	0.21	-	0.00	39.16	15.57	0.20	-	44.61	0.17	0.01	0.03	100	1337	83.6	0.35
408611Bol7	0.05	0.15	-	0.02	40.29	10.52	0.28	. +	48.31	0.30	0.01	0.06	100	2347	89.1	0.22
408611Bol8	0.03	0.23		0.01	39.49	14.16	0.22		45.58	0.23	0.02	0.02	100	1817	85.2	0.31
408611Col6	0.03	0.29	0.01	-	39.35	14.71	0.26	-	45.07	0.25	0.01	0.02	100	1981	84.5	0.33
408611Eol1	0.04	0.24	-	0.01	39.01	17.04	0.22		43.26	0.14	0.01	0.02	100	1070	81.9	0.39
408611Fol1	0.06	0.28		0.01	39.54	16.89	0.20	0.01	42.69	0.27	0.02	0.03	100	2111	81.8	0.40
408611Tel11	0.12	0.10	-	-	39.02	11.24	0.29	-	48.87	0.31	0.01	0.05	100	2426	88.6	0.23
408611Iol5	0.08	0.21			38.17	15.76	0.27		45.18	0.27	0.04	0.01	100	2124	83.6	0.35
408611Iol7	0.06	0.20	-		38.18	15.20	0.27	+	45.76	0.27	0.02	0.03	100	2107	84.3	0.33
408611Jol1	0.11	0.15	+	5	38.55	12.80	0.32		47.64	0.35	0.02	0.06	100	2765	86.9	0.27
408611Jol1	0.01	0.25	-	0.01	37.25	14.42	0.31	-	47.38	0.33	0.01	0.04	100	2580	85.4	0.30
408611Jol7	0.06	0.23	-		37.80	16.87	0.33	-	44.45	0.21	0.03	0.01	100	1647	82.4	0.38
408611Jol8	0.08	0.24	-	-	37.82	17.51	0.19		43.89	0.23	0.03		100	1797	81.7	0.40
408611Jol9	0.07	0.14	-	÷.	39.20	10.35	0.25		49.55	0.38	0.02	0.05	100	3008	89.5	0.21
408611Lol3	0.07	0.18	-		38.63	14.64	0.26	4	45.88	0.28	0.03	0.02	100	2202	84.8	0.32
408611Lol4	0.08	0.21	-		38.11	17.33	0.21		43.76	0.26	0.04	0.01	100	2059	81.8	0.40
408611Aol1	0.03	0.24	-	0.01	39.27	15.05	0.20	-	44.88	0.26	0.02	0.03	100	2081	84.2	0.34
408611Aol10	0.07	0.23	0.01	0.02	40.18	11.26	0.28		47.51	0.36	0.01	0.07	100	2846	88.3	0.24

Appendix A8: Vestfirdir ankaramites - olivine and clinopyroxene phenocryst data

Table A8.1: Olivine (OL) phenocryst compositions from ankaramite 408611 (expressed as wt.% oxides) obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of ol. analyzed, each analysis represents an average of 3.

Appendix A8: Continued

OI. ID	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408611Aol11	0.07	0.21	-	74	40.00	11.14	0.27	-	47.93	0.31	0.01	0.06	100	2459	88.5	0.23
408611Aol12	0.06	0.20	-	0.02	40.03	12.82	0.29		46.16	0.33	0.01	0.07	100	2611	86.5	0.28
408611Aol13	0.07	0.20	-		39.29	16.15	0.26	-	43.82	0.19	-	0.02	100	1499	82.9	0.37
408611Aol2	0.07	0.22	-		40.31	10.64	0.26		48.04	0.37	0.02	0.07	100	2906	88.9	0.22
408611Aol3	0.06	0.10	0.01	0.01	39.97	9.77	0.24	0.01	49.35	0.36	0.05	0.08	100	2828	90,0	0.20
408611Aol4	0.05	0.28	-	-	39.33	16.30	0.23		43.62	0.18	-		100	1384	82.7	0.37
408611Aol5	0.05	0.17	0.01	14	40.45	9.38	0.26	0.01	49.24	0.37	0.03	0.03	100	2932	90.3	0.19
408611Aol6	0.04	0.22	-	0.01	39,16	15.70	0.22	0.01	44.32	0.26	0.02	0.03	100	2081	83.4	0.35
408611Aol7	0.04	0.32	-	-	38.87	17.76	0.21	-	42.55	0.19	0.03	0.02	100	1497	81.0	0.42
408611Aol8	0.04	0.14		-	40.42	9.99	0.23		48.77	0.33	0.03	0.06	100	2574	89.7	0.20
408611Aol9	0.09	0.29	+		39.27	18.04	0.19	*	41.87	0.20	0.02	0.03	100	1567	80.5	0.43
408611Bol1	0.04	0.25	-	0.02	39.08	16.20	0.27	4	43.82	0.25	0.03	0.04	100	1942	82.8	0.37
408611Bol2	0.07	0.14	0.01		39.22	13.25	0.30	-	46.60	0.31	0.02	0.07	100	2431	86.2	0.28
408611Bol3	0.03	0.23			39.00	16.01	0.20	0.01	44.27	0.21	0.02	0.02	100	1645	83.1	0.36
408611Col1	0.05	0.16	0.01	0.01	40.26	10,23	0.29	+	48.53	0.41	0.00	0.06	100	3224	89,4	0.21
408611Col2	0.04	0.26	0.01	0.00	39.52	14.05	0.23	-	45.55	0.26	0.03	0.04	100	2036	85.2	0.31
408611Col3	0.04	0.16	4	0.01	40.11	12.40	0.25		46.66	0.29	0.01	0.06	100	2296	87.0	0.27
408611Col4	0.01	0.17	-	0.01	39.51	14.61	0.26	-	45.15	0.23	0.01	0.03	100	1823	84.6	0.32
408611Col5	0.05	0.19		0.02	39.42	14.05	0.30	-	45.55	0.35		0.06	100	2731	85.2	0.31
408611Col7	0.09	0.31	-	0.01	39.74	14.33	0.26	0.01	44.81	0.32	0.02	0.09	100	2530	84.8	0.32
408611Col8	0.10	0,22	-	-	39.56	14.55	0.27		44.88	0.33	0.03	0.07	100	2599	84.6	0.32
408611Col9	0.03	0.20	-		39.93	12.33	0.30		46.79	0.33	0.02	0.05	100	2612	87.1	0.26
408611Eel2	0.03	0.23	-	0.01	39.16	15.04	0.22	0.01	44.99	0.26	0.03	0.02	100	2025	84.2	0.33
408611Eol3	0.09	0.24		0,02	39.39	15.42	0.27	0.01	44.24	0.28		0.04	100	2163	83.6	0.35
408611Eol4	0.02	0.25	0.00	0.00	39.47	14.94	0.28	0.01	44.68	0.28	0.02	0.05	100	2214	84.2	0.33

Table A8.1: Continued

Appendix A8: Continued

OI. ID	Al ₂ O ₃	MnO	K20	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	F0%	FeO/MgO
408611Fol2	0.02	0.18	0.01	-	40.26	16.04	0.20	0.01	43.07	0.19	0.01	0.01	100	1481	82.7	0.37
408611Fol3	0.03	0.24	0.00	0.01	39.76	15.30	0.24	-	44.13	0.24	0.01	0.03	100	1865	83.7	0.35
408611G+ol1	0.04	0.18		-	38.72	13.92	0.33	-	46.49	0.29	-	0.03	100	2273	85.6	0.30
408611Gol1	0.04	0.14	-	0.03	40.41	11.23	0.28	0.01	47.39	0.39	0.02	0.07	100	3054	88.3	0.24
408611Gol2	0.03	0.30	0.01		39.42	16.44	0.25	0.01	43.29	0.17	0.02	0.04	100	1349	82.4	0.38
408611Hol1	0.03	0.26	+	0.01	37.94	16.51	0.28	-	44.69	0.24	0.01	0.04	100	1855	82.8	0.37
408611Hol2	0.22	0.30		0.01	37.27	19.08	0.24	~	42.62	0.22	0.03	0.02	100	1726	79.9	0.45
408611Hol3	0.16	0.27	14	0.01	37.60	18.84	0.31		42.55	0.24	-	0.04	100	1850	80.1	0.44
408611Hol3	0.16	0.27	-	0.01	37.60	18.84	0.31	-	42.55	0.24	~	0.04	100	1850	80.1	0.44
408611Hol3	0.16	0.27		0.01	37.60	18.84	0.31	÷	42.55	0.24	-	0.04	100	1850	80.1	0.44
408611Hol3	0.16	0.27	-	0.01	37.60	18.84	0.31	-	42.55	0.24	÷	0,04	100	1850	80.1	0.44
408611Hol4	0.21	0.21	-	0.01	38.46	14.87	0.29	-	45.66	0.28	0.01	0.01	100	2162	84.6	0.33
4086111ol7a	0.06	0.19	-	-	38.44	14.61	0.27	+	46.16	0.24	0.02	0.01	100	1894	84.9	0.32
408611Lol3	0.07	0.18	18	12.1	38.63	14.64	0.26	+	45.88	0.28	0.03	0.02	100	2202	84.8	0.32
408611Lol3	0.07	0.18			38.63	14.64	0.26		45.88	0.28	0.03	0.02	100	2202	84.8	0.32
408611Lol3	0.07	0.18	2	-	38.63	14.64	0.26	-	45.88	0.28	0.03	0.02	100	2202	84.8	0.32
408611Lol6	0.12	0.11		-	39.30	10.21	0.30	- 2 -	49.48	0.42	0.02	0.04	100	3277	89.6	0.21

Table A8.1: Continued

Appendi	ix A8:	Continued
---------	--------	-----------

OL ID	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NIO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408624Aol2	0.04	0.16	-	0.01	40.09	12.48	0.28	-	46.61	0.28	0.01	0.04	100	2209	86.9	0.27
408624Aol3	0.03	0.17		0.01	40.06	13.14	0.32	-	45.96	0.24	0.01	0.05	100	1911	86.2	0.29
408624Bol2	0.05	0.22	-		40.39	12.72	0.27	-	46.05	0.27	-	0.02	100	2100	86.6	0.28
408624Dol2a	0.06	0.16	÷	0.00	39.31	12.22	0.35	-	47.55	0.27	~	0.07	100	2115	87.4	0.26
408624Dol2b	0.05	0.15	-	0.02	38.91	12.32	0.32	-	47.89	0.28		0.06	100	2189	87.4	0.26
408624Dol3	0.06	0.16	-	0.01	39.14	13.09	0.32		46.88	0.27		0.07	100	2101	86.5	0.28
408624Fol1.1	0.05	0.18	-	~	38.61	13.76	0.32	-	46.74	0.27	0.02	0.04	100	2158	85.8	0.29
408624Fol7.1	0.04	0.21	-		38.54	13.58	0.32		46.97	0.28	0.01	0.06	100	2215	86.0	0.29
408624Fol2a.1	0.07	0.16	-	-	38.65	14.03	0.36	-	46.37	0.28	0.01	0.07	100	2180	85.5	0.30
408624Gol3.1	0.04	0.17		-	39.24	12.77	0.29	-	47.21	0.23		0.03	100	1820	86.8	0.27
408624Gol6a.1	0.03	0.16	-	*	39.76	12.21	0.31		47.25	0.24	-	0.04	100	1858	87.3	0.26
408624Hol7.1	0.18	0.18	-		38.56	13.43	0.29	4	47.09	0.26		0.01	100	2008	86.2	0.29
408624Hol4.1	0.04	0.19		4	38.39	14.66	0.31	-	46.10	0.24		0.06	100	1909	84.9	0.32
408624Hol2.1	0.03	0.17	-	-	39.49	11.58	0.28	~	48.08	0.32	0.01	0.05	100	2509	88.1	0.24
408624Hol1.1	0.05	0.15		1.4	39.04	11.44	0.27	-	48.65	0.33	-	0.07	100	2604	88.3	0.24
408624Hol1a.1	0.04	0.13		-	39.18	11.57	0.27	-	48.36	0.33	0.02	0.10	100	2576	88.2	0.24
408624Aol1	0.04	0.16	0.01		40.34	11.89	0.30	-	46.95	0.22	0.01	0.06	100	1744	87.6	0,25
408624Bol3	0.05	0.18	0.01	0.01	40.20	12.54	0.32		46.35	0.29	0.01	0.04	100	2314	86.8	0.27
408624Bol4	0.03	0.19	-	0.01	40.07	12.86	0.30	0.01	46.21	0.25	0.03	0.06	100	1930	86.5	0.28
408624Col1	0.02	0.17	0.01	0.01	39.46	12.05	0.28	-	47.64	0.28	-	0.08	100	2182	87.6	0.25

Table A8.2: Olivine (Ol.) phenocryst compositions from ankaramite 408624 (expressed as wt.% oxides) obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of ol. analyzed, each analysis represents an average of 3.

Ol, ID	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408624Dol1	0.03	0.16	0.01	0.01	39.97	13.72	0.28	-	45.49	0.28	0.01	0.03	100	2193	85.5	0.30
408624Dol4a	0.12	0.17		0.02	38.70	12.82	0.34		47.54	0.21	0.01	0.07	100	1659	86.9	0.27
408624Dol4b	0.54	0.20		0.01	38.84	12.90	0.36	-	46.84	0.23	0.01	0.08	100	1805	86.6	0.28
408624Iol1	0.10	0.22	. (F. 1	-	37.83	18.59	0.21	-	42.82	0.20	-	0.01	100	1566	80.4	0.43
4086241ol2a	0.06	0.16		0.01	38.81	12.96	0.33	-	47.40	0.24	0.01	0.04	100	1901	86.7	0.27
4086241o12b	0.08	0.16	-	-	38.99	12.93	0.34		47.22	0.24	-	0.05	100	1866	86.7	0.27
4086241ol3	0.86	0.21		0.10	37.95	19.39	0.71	-	40.42	0.19	0.14	0.04	100	1473	78.8	0.48
408624Iol4.1	3.69	0,19	-	0.15	36.47	17.06	1.86	-	40.39	0.17	-	0.01	100	1328	80.8	0.42
408624Iol4.2	0.05	0.23	+	4	37.95	19.14	0.22		42.23	0.16	0.01	-	100	1260	79.7	0.45
4086241ol5a	0.04	0.15	-	0.01	38.99	11.90	0.30		48.27	0.30		0.04	100	2338	87.9	0.25
408624Iol5b	0.08	0.15		0.01	38.74	13.20	0.27	-	47.18	0.28	0.01	0.07	100	2227	86.4	0.28
408624Eol1	0.02	0.31	0.01	-	38.62	20.25	0.29		40,29	0.17	0.01	0.03	100	1341	78.0	0.50
408624Eol2	0.05	0.17	-	0.01	40.04	12.95	0.27	÷	46,19	0.25	0.02	0.05	100	1955	86.4	0.28

Table A8.2: Continued

Appendix A8: Continued

Olivine phenoc	ryst maj	or elemer	nt compo	sitions of	408772 ex	pressed a	as wt.% o	xides (n=	=73)							
OL ID	Al ₂ O ₃	MnO	K20	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
208772A206a	0.08	0.16		0.00	38.44	13.98	0.30		46.75	0.26		0.02	100.00	2012	85.6	0.29
208772A2ol1	0.05	0.18	-	0.01	38.52	14.69	0.29	-	45.98	0.26	0.01	-	100.00	2076	84.8	0.30
208772A2ol11	0.05	0.16	-	0.00	38.44	14.52	0.29	-	46.29	0.24	+	0.01	100.00	1872	85.0	0.32
208772A2012a	0.05	0.19		0.01	38.30	16.29	0.29	~	44.65	0.22	0.01	-	100.00	1761	83.0	0.31
208772A2ol2b	0.06	0.25		0.01	37.93	16.28	0.29		44.95	0.22		-	100.00	1761	83.1	0.36
208772A2ol3	0.05	0.18		0.01	38.37	14.91	0.28		45.94	0.24		0.02	100.00	1897	84.6	0.36
208772A2ol4a	0.04	0.18		0.01	38.40	14.92	0.29	1.00	45.95	0.21	0.01	-	100.00	1682	84.6	0.32
208772B2ol10	0.10	0.16		0.01	38.53	13.82	0,29	-	46.80	0.26		0,02	100.00	2058	85.8	0.32
208772B2ol3a	0.06	0.16	-	0.01	38.29	14.05	0.28	-	46.86	0.26	-	0.02	100.00	2064	85.6	0.30
208772B2ol3b	0.05	0.15		0.01	38.63	13.97	0.27		46.62	0.29	4	0.01	100.00	2276	85.6	0.30
208772B2ol5a	0.06	0.18	-	0.01	38.98	13.86	0.30		46.31	0.26	0.01	0.03	100.00	2023	85.6	0.30
208772B2ol7a	0.07	0.16	-	0.01	38.79	13.92	0.29	-	46.45	0.28	-	0.02	100.00	2224	85.6	0.30
208772B2ol7b	0.08	0.18	-	0.01	38.46	14.45	0.33	-	46.22	0.24		0.04	100.00	1869	85.1	0.30
408772Aol1	0.04	0.24	-	-	40.26	13.80	0.29	÷.	45.07	0.23	0.02	0.04	100.00	1833	85.3	0.31
408772Aol1	0.03	0.20	0.01	-	39.58	11.23	0.26	0.01	48.24	0.29	0.04	0.12	100.00	2284	88.5	0.31
408772Aol2	0.03	0.23	-	-	39.60	15.72	0.28		43.89	0.22	-	0.02	100.00	1702	83.3	0.23
408772Aol2	0.09	0.15	-	0.02	39.25	12.33	0.26	-	47.47	0.33	0.01	0.07	100.00	2590	87.3	0.36
408772Aol3	0.06	0.15	-	0.01	40.10	14.23	0.32		44.87	0.20	0.01	0.04	100.00	1588	84.9	0.26
408772Bol4	0.05	0.17	0.01	-	39.96	13.05	0.28		46.13	0.28	0.03	0.03	100.00	2223	86.3	0.32
408772Bol7	0.05	0.22		0.01	40.10	13.16	0.32		45.83	0.26	0.01	0.03	100.00	2068	86.1	0,28

Table A8.3: Olivine (Ol.) phenocryst compositions from ankaramite 408772 (expressed as wt.% oxides) obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. 'n' denotes number of ol. analyzed, each analysis represents an average of 3.

Appendix A8: Continued

OL ID	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408772Col3	0.03	0.21	-		39.64	13.72	0.28	0.01	45.79	0.24	0.03	0.05	100.00	1917	85.6	0.29
408772Dol1	0.05	0.25	0.01	0.01	39.73	14.05	0.25	0.01	45.34	0.26	0.02	0.02	100.00	2012	85.2	0.30
408772Dol5	0.04	0.21	0.01	0.01	39.71	13.67	0.28		45.77	0.27		0.04	100.00	2085	85.6	0.31
408772Dol7	0.07	0.17	0.01	0.01	39.68	13.05	0.26	-	46.42	0.26	0.01	0.08	100.00	2024	86.4	0.30
408772Dol8	0.03	0.21		0.02	39.69	13.59	0.28		45.85	0.26	0.02	0.04	100.00	2060	85.7	0.28
408772Dol10	0.04	0.19	0.01	0.02	39.60	13.44	0.27		46.15	0.25	0.01	0.02	100.00	1971	86.0	0.30
408772Gol1	0.04	0.27	-	0.01	40.32	14.09	0.28	0.01	44.68	0.25	0.01	0.03	100.00	1992	85.0	0.29
408772Gol3	0.02	0.14	-	1.0	40.57	13.31	0.30	0.01	45.37	0.23	0.02	0.04	100.00	1800	85.9	0.32
408772Gol5	0.03	0.09	-	0.02	40.48	12.67	0.29	~	46.00	0.31	0.03	0.07	100.00	2458	86.6	0.29
408772Gol8	0.08	0.20	0.01	0.01	40.28	13.62	0.30	0.01	45.13	0.28	0.03	0.06	100.00	2162	85.5	0.28
408772Bol1	0.05	0.12	0.01	0.02	40.71	10.67	0.25	-	47.70	0.37	-	0.10	100.00	2926	88.9	0.30
408772Bol2	0.05	0.14	-	0.02	39.94	14.04	0.28		45.26	0.22	0.02	0.03	100.00	1713	85.2	0.22
408772Bol3	0.05	0.21	-	0.01	40.04	12.96	0.30	-	46.11	0.26	0.01	0.06	100.00	2070	86.4	0.31
408772Bol5	0.06	0.17		-	40.13	13.83	0.29	0.01	45.20	0.24	0.02	0.03	100.00	1913	85.3	0.28
408772Bol6	0.05	0.20	0.02	-	39.86	14.02	0.31	-	45.21	0.24	0.05	0.04	100.00	1891	85.2	0.31
408772Bol8	0.06	0.23	0.00	0.01	40.12	12.99	0.26	-	46.03	0.26		0.05	100.00	2024	86.3	0.31
408772Col1	0.03	0.24	0.01	4	39.55	13.50	0.30		46.04	0.29		0.04	100.00	2260	85.9	0.28
408772Col2	0.06	0.19	-	-	39.80	13.63	0.29		45.70	0.28	0.01	0.03	100.00	2227	85.7	0.29
408772Dol2	0.06	0.15			39.80	13.46	0.29		45.91	0.24	0.01	0.06	100.00	1897	85.9	0.30
408772Dol3	0.05	0.19	+		39.83	13.26	0.28	0.01	46.06	0.29	-	0.02	100.00	2277	86.1	0.29
408772Dol4	0.06	0.20			39.54	13.74	0.30		45.84	0.27	0.01	0.02	100.00	2152	85.6	0.29
408772Dol6	0.10	0.20	0.01		39.97	12.71	0.29	÷	46.39	0.29	0.01	0.04	100.0	0 2246	86.7	0.30
408772Dol9	0.11	0.21	0.01	0.01	39.84	13.68	0.27		45.53	0.28	0.01	0.05	100.0	0 2229	85.6	0.27
408772Eol1	0.06	0.23	-	0.02	39.51	13.71	0.30	0.01	45.91	0.22	-	0.04	100.0	0 1758	85.7	0.30
408772Eol2	0.04	0.20	0.01	0.02	40.09	12.14	0.26	0.01	46.94	0.25		0.04	100.0	0 1933	87.3	3 0.30

Table A8.3: Continued

Appendix A8: Continued

OL ID	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
408772Eol3	0.06	0.24		0.01	39.93	12.76	0.30		46.32	0.29	0.03	0.05	100.00	2288	86.6	0.26
408772Eol4	0.05	0.19			39.37	13.64	0.28	0.01	46.20	0.23	0.02	0.02	100.00	1803	85.8	0.28
408772Eo15	0.06	0.17	0.01		40.01	13.22	0.28	0.01	45.88	0.27	0.03	0.05	100.00	2109	86.1	0.30
408772Eol6	0.06	0.12		0.01	40.40	10.05	0.20	-	48.65	0.40	0.03	0.09	100.00	3104	89.6	0.29
408772Eol7	0.05	0.13	0.02	-	39.81	13.07	0,29	0.01	46.30	0.25	0.03	0.03	100.00	1929	86.3	0.21
408772Eol8	0.06	0.18		0.01	39.57	13.60	0.30		45.99	0.24		0.04	100.00	1857	85.8	0.28
408772Eel9	0.07	0.19		-	39.70	13.63	0.27	-	45.82	0.26	0.01	0.03	100.00	2076	85.7	0.30
408772Gol4	0.04	0.28	*	-	40.51	13.46	0.31		45.08	0.26	0.01	0.03	100.00	2038	85.7	0.30
408772Gol2	0.04	0.19		× .	40.54	13.89	0.28	-	44.77	0.24		0.05	100.00	1862	85.2	0.30
408772iol1	0.08	0,19		0.01	39.61	14.13	0.28	0.01	45.39	0.23	0.02	0.04	100.00	1847	85.1	0.31
408772iol2	0.05	0.21	0.01	0.01	40.14	13.17	0.27	+	45.82	0.25	0.02	0.05	100.00	1973	86.1	0.31
408772iol3	0.03	0.21			39.54	14.30	0.20	-	45.43	0.23	0.01	0.04	100.00	1806	85.0	0.29
208772A2o4b	0.11	0.18	~	-	38.19	14.75	0.29		46.22	0.22	0,01	0.01	100.00	1714	84.8	0.31
208772A2ol12	0.11	0.16	4	-	38.79	12.97	0.30		47.32	0.32	0.01	0.01	100.00	2553	86.7	0.32
208772A2ol13	0.06	0.16	-	0.02	38.59	13.81	0.29	-	46.77	0.28	+	0.02	100.00	2183	85.8	0.27
208772A2o6b	0.06	0.16	5	10.0	38.40	13.96	0.30	+	46.78	0.29	*	0.02	100.00	2306	85.7	0.30
208772A2ol7	0.06	0.18		0.01	39.01	14.08	0.29	-	46.11	0.24	-	0.02	100.00	1897	85.4	0.30
208772Abol2.1	0.05	0.16	-	0.01	38.37	14.34	0.28		46.48	0.28	0.01	0.01	100.00	2211	85.2	0.31
208772B2ol6	0.08	0.16			38.66	13.80	0.30		46.72	0.26		0.01	100.00	2020	85.8	0.31
208772B2ol3c	0.05	0.15		0.01	38.62	13.49	0.28	-	47.04	0.28	+	0.07	100.00	2212	86.1	0.30
208772B2ol11	0.04	0.18	-	0.01	38.94	13.58	0.29	+	46.72	0.23	4	•	100.00	1842	86.0	0.29
208772B2ol1a	0.05	0.17	-	0.01	38.47	14.47	0.30	*	46.26	0.24	-	0.03	100.00	1915	85.1	0.29
208772B2ol1b	0.06	0.19	-	0.01	38.44	14.63	0.28		46.11	0.27	-	-	100.00	2143	84.9	0.31
208772B2ol4	0.05	0.17	-	0.01	38.85	14.10	0.30	-	46.24	0.26	0.01	0.02	100.00	2009	85.4	0.32
408772A2018	0.06	0.17	-	0.02	38.73	12.98	0.34	-	47.40	0.24	0.01	0.07	100.00	1877	86.7	0.31
408772A2ol14	0.05	0.17	-		38.65	13.34	0.27	-	47.16	0.30	0.01	0.04	100.00	2342	86.3	0.27
408772Gol6	0.07	0.19	0.01	-	39.92	14.08	0.30	-	45.13	0.25	0.02	0.04	100.00	1941	85.1	0.28
408772Gol7	0.05	0.23	0.01	0.01	40.47	13.45	0.27	-	45.20	0.24	0.01	0.07	100.00	1869	85.7	0.31

Table A8.3: Continued

Append	lix A	8: C	ontin	ued
--------	-------	------	-------	-----

Average ouv	ine paeno	cryst con	iposition	01 40001	I (II=02)		-	-	-		_	-				
	Al ₂ O ₃	MnO	K20	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
Average	0.07	0,21	0.00	0.01	39.10	14.60	0.26	0.00	45.42	0.27	0.02	0.04	100.00	2147	84.7	0.32
±2SD	0.09	0.10	0.01	0.01	1.69	5.07	0.07	0.01	4.04	0.13	0.02	0.04	0.00	1007	5.59	0.14
Max wt.%	0.22	0.32	0.01	0.03	40.45	19.08	0.33	0.01	49.55	0.42	0.05	0.09	100.00	3277	90.34	0.45
Min wt.%	0.01	0.10	0.00	0.00	37.25	9.38	0.19	0.00	41.87	0.14	0.00	0.00	100.00	1070	79.93	0.19
Average oliv	ine pheno	cryst con	position	of 40862	4 (n=33)			_		_					-	
	Al ₂ O ₃	MnO	K20	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/MgO
Average	0.20	0.18	0.00	0.01	39.07	13.70	0.30	0.00	46.16	0.25	0.01	0.05	100.00	1986	85.68	0.30
±2SD	1.30	0.07	0.01	0.06	1.70	4.75	0.07	0.00	4.55	0.09	0.05	0.05	0.00	682	5.54	0.14
Max wt.%	3.69	0.31	0.01	0.15	40.39	20.25	0.36	0.01	48.65	0.33	0.14	0.10	100.00	2604	88.35	0.50
Min wt.%	0.02	0.13	0.00	0.00	36.47	11.44	0.21	0.00	40.29	0.16	0.00	0.00	100.00	1260	78.01	0.24
Average oliv	ine pheno	cryst con	nposition	of 40877	2 (n=73)					-			-			_
	Al ₂ O ₃	MnO	K ₂ O	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NIO	TIO ₂	Cr ₂ O ₃	Total	Ni ppm	Fo%	FeO/Mg
Average	0.06	0.19	0.00	0.01	39,41	13.67	0.29	0.00	46.08	0.26	0.01	0.04	100.00	2052	85.7	0.30
±2SD	0.04	0.07	0.01	0.01	1.49	1.94	0.04	0.01	1.65	0.07	0.02	0.05	0.00	523	2.04	0.05
Max wt.%	0.11	0.28	0.02	0.02	40.71	16.29	0.34	0.01	48.65	0.40	0.05	0.12	100.00	3104	89.61	0.36
Min wt.%	0.02	0.09	0.00	0.00	37.93	10.05	0.20	0.00	43.89	0.20	0.00	0.00	100.00	1588	83.01	0.21

Table A8.4: Summary table of average olivine phenocryst compositions of each of the three Vestfirdir ankaramites (408611, 408624, and 408772) presented in Table A8.1, A8.2, and A8.3, respectively. 'n' gives the number of olivine phenocrysts analyzed. Average wt.% is given, and the ±2SD standard error on each of the three ol. averages. The compositional range is given by the maximum (Max. wt.%) and minimum (Min. wt.%) wt.% of the each elements analyzed.

Appendix	A8:	Con	tinued	
----------	-----	-----	--------	--

Major elen	nent conce	entrations	(oxide wt.	%) of cline	opyroxene	phenocryst	s of the V	estfirdir an	karamites	(n=21)							
Cpx. ID	Al ₂ O ₃	MnO	K20	Cl	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Mg#	Ni ppm	CaO/Al ₂ O
408407-a	3.74	0.15			0.29	51.89	5.31	20.72		16.82		0.47	0.62	100	85.0		5,54
408407-b	3.90	0.05		-	0.28	51.50	5.13	21.19	0.01	16.95	0.01	0.46	0.53	100	85.5	63	5.43
408407-с	3.81	0.17			0,30	51.71	5.02	20.88		16.85	0.06	0.53	0.68	100	85.7	454	5.47
408407-d	3.74	0.09	0.01	0.01	0.33	51.66	5.24	20.86	-	16.80	0.10	0.50	0.66	100	85.1	794	5.58
408407-е	3.63	0.09		-	0.26	51.68	4.51	21.29	0.02	16.66	0.03	0.62	1.20	100	86.8	258	5.87
408407-f	2.74	0.14	-	0.01	0.22	52,43	4.40	21.19		17.83	0.02	0.43	0.58	100	87.8	164	7.73
408407-g	3.11	0.17		-	0.21	52.32	4.49	21.25	0.02	17.37		0.53	0.53	100	87.3		6.82
408407-h	2.96	0.14		-	0.22	52.70	4.51	20.55	-	17.96	0.06	0.34	0.57	100	87.7	453	6.94
408407-i	2.78	0.13	10.0	0.01	0.22	52.23	5.61	20.94	0.02	17.11	0.02	0.70	0.26	100	84.5	126	7.54
408407-j	3.48	0.06	-	-	0.24	52.32	4.88	20.33	-	17.60	0.06	0.44	0.60	100	86.5	454	5.85
408407-k	3,59	0.16	-	-	0.28	52.06	4,70	20.45	0.01	17.70		0.43	0.63	100	87.0		5,70
408407-1	3.48	0.10			0.22	52.19	4.68	20.51	0.01	17.66	0.09	0.51	0.55	100	87.1	714	5.90
408407-n	3.87	0.23	0.01	-	0.22	51.12	4.40	21.65	0.03	16.51	0.06	0.67	1.24	100	87.0	486	5.60
408407-0	3.14	0.18	-	-	0.20	51.85	5.90	21.03	0.02	16.65		0.85	0.19	100	83.4		6,70
408419-a	5.17	0.15		0.01	0.32	50.74	4.61	20.74	-	16.56	0.05	0.58	1.06	100	86.5	383	4.01
408419-b	5.11	0.15		-	0.31	50.42	4.77	20,79		16.63	0.04	0.58	1.20	100	86.2	288	4.06
408419-с	4.59	0.14	-		0.29	50.86	4.79	20.93		17.07	0.03	0.57	0.73	100	86,4	257	4.56
408419-d	4.97	0.08	-	-	0.28	50.84	4.82	20.67	-	16.68	0.02	0.58	1.06	100	86.0	133	4.16
408419-е	5.32	0.07			0.33	50.31	5.02	20.59		16.59	0.05	0.57	1.15	100	85.5	418	3.87
Ave. Cpx.	Al ₂ O ₃	MnO	K20	CI	Na ₂ O	SiO ₂	FeO	CaO	SO3	MgO	NiO	TiO ₂	Cr ₂ O ₃	Total	Mg#	Ni ppm	CaO/Al2
Ave.	3.85	0.13	0.00	0.01	0.26	51.62	4.88	20.87	0.01	17.05	0.05	0.54	0.74	100	86.16	287	5.65
±2SD	1.63	0.09	0.00	0.01	0.09	1.43	0.82	0.67	0.02	0.96	0.05	0.23	0.64		2.29	480	2.32
Max	5.32	0.23	0.01	0.01	0.33	52.70	5.90	21.65	0.03	17.96	0.10	0.85	1.24	100	87.83	794	7.73
Min wt.%	2.74	0.05	4	-	0.20	50.31	4.40	20.33		16.51	0.01	0.34	0.19	100	83.42	63	3.87

Table A8.5: Clinopyroxene (Cpx.) phenocryst compositions of ankaramite 408772 (expressed as wt.% oxides) obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology - Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University.

Appendix A8: Continue	ed
-----------------------	----

Car ID	409674 1	109634 3	109634 3	109634 4	109674 5	108634 6	409772 1	409772 2	409772 2	409772 4	100772 5	409772 6	409611.1	409611 7	408611.3	408611.4	409611.5
Cpx. ID	400024-1	408024-2	400024-3	400024-4	400024-3	400024-0	400//2-1	406772-2	400/12-3	400//2-4	400/14-3	400772-0	400011-1	400011-2	400011-3	400011-4	400011-5
Sc	77.69	90.75	82.26	79.27	95.75	72.90	79.36	81.03	97.70	81.17	75.83	84.25	107.29	87.58	113.35	104.93	98.45
Ti	3357	3417	3049	2658	3496	2831	2918	2753	3909	3277	2719	3295	3200	2234	3338	3355	2706
Sr	22.62	18.26	18.57	19.86	19.45	20.09	20.49	18.82	18.47	21.05	20.42	23.20	15.50	12.99	13.98	15.25	13.81
Y	9.30	8.71	8.94	7.52	10.16	7.89	8.26	7.48	12.60	8.90	7.23	8.60	11.26	8.57	12.69	12.56	10.15
Zr	10.12	9.42	8.18	8.18	10.47	8.39	8.90	7.78	11.65	10.56	7.90	9.81	13.05	7.27	13.74	12.99	10.77
Nb	0.17		-	0.04	-	-	0.04	0.05			-	0.04	0.05		0.04	0.04	
La	0.41	0.36	0.29	0.27	0.34	0.29	0.35	0.28	0.53	0.36	0.31	0.48	0.59	0.34	0.51	0.62	0.49
Ce	1.87	1.61	1.42	1.20	1.68	1.45	1.67	1.35	2.53	1.60	1.47	2.19	2.98	2.00	2.93	3.02	2.38
Pr	0.42	0.39	0.37	0.31	0.41	0.35	0.37	0.30	0.59	0.38	0.37	0.48	0.58	0.41	0.59	0.61	0.46
Nd	2.77	2.49	2.43	1.92	2.81	2.40	2.48	2.08	3.64	2.43	2.25	3.11	3.42	2.39	3.45	3.50	2.75
Sm	1.13	1.01	0.97	0.94	1.18	1.01	1.20	0.99	1.53	1.17	0.93	1.22	1.19	1.05	1.34	1.32	1.14
Eu	0.43	0.41	0.37	0.36	0.45	0.39	0.37	0.35	0.56	0.43	0.36	0.46	0.56	0.35	0.61	0.55	0.43
Gd	1.63	1.63	1.60	1.54	1.62	1.61	1.47	1.49	2.47	1,67	1.43	1.59	1.91	1.65	2.12	2.15	1.79
Dy	1.79	1.69	1.90	1.56	2.28	1.50	1.59	1.53	2.46	1.74	1.47	1.74	2.11	1.64	2.30	2.47	1.91
Er	0.91	0.78	0.89	0.72	1.02	0.84	0.86	0.73	1.30	0.93	0.70	0.88	1.28	0.89	1.43	1.24	1.09
Yb	0.77	0.67	0.80	0.65	0.80	0.58	0.54	0.67	0,92	0.70	0.45	0.67	1.00	0.68	1.08	1.08	0.85
Hf	0.37	0.39	0.35	0.42	0.41	0.41	0.42	0.39	0.53	0.47	0.34	0.53	0.63	0.35	0.52	0.63	0.54

Table A8.6a: Trace element compositions (ppm) of clinopyroxene phenocryst cores of the Vestfirdir ankaramites obtained by LA-ICPMS using the VG Element Excell quadrupole ICPMS fitted with a NewWave DUV 193nm ARF Excimer laser at Oregon State University.

App	endix	A8:	Contin	ued
-----	-------	-----	--------	-----

Trace ele	ment conce	ntration o	f clinopyro	xene phen	ocryst rim	s (ppm), (r	n=17)				_		-				
Cpx. ID	408624-1	408624-2	408624-3	408624-4	408624-5	408624-6	408772-1	408772-2	408772-3	408772-4	408772-5	408772-6	408611-1	408611-2	408611-3	408611-4	408611-5
Sc	76.05	81.63	87.25	79.27	80.32	77.49	80.17	79.81	112.30	82.10	85.40	73.41	108.31	85.29	112.60	112.53	92.81
Ti	2825	3137	3246	2833	2775	3151	3047	2388	4872	3339	3134	2771	4200	2214	3376	3871	3080
Sr	19.21	19.44	19.65	20.75	17.40	21.00	21.05	16.85	20.08	21.45	19.94	20.67	16.50	13.07	14.10	14.83	14.48
Y	8.08	8.32	9.88	8.03	7.83	9.08	8.18	7.41	14.62	9.30	8.82	7.05	16.81	8.74	12.46	16.00	13.45
Zr	7.15	7.99	10.75	9.21	6.36	8.90	9.61	6.27	16.17	10.65	9.39	8.05	15.63	6.95	13.72	14.59	9.13
Nb	4	0.02	0.03	-	2	0.04	0.04	-	-	+	-	0.04	0.05	-	0.06	0.05	1
La	0.24	0.30	0.33	0.27	0.28	0.33	0.40	0.21	0.66	0.33	0.34	0.35	0.81	0.36	0.60	0.76	0.61
Ce	1.33	1.50	1.59	1.43	1.40	1.71	1.73	1.05	3.17	1.72	1.77	1.67	4.28	1.93	3.05	3.62	2.93
Pr	0.33	0.32	0.39	0.33	0.33	0.42	0.38	0.24	0.71	0.40	0.43	0.36	0.84	0.40	0.60	0.69	0.59
Nd	2.06	2,15	2.76	2.16	2.13	2.69	2.46	1.68	4.58	3.00	2.66	2.50	4.92	2.34	3.47	4.14	3.71
Sm	0.94	0.98	1.13	0.96	1.02	1.12	1.02	0.78	1.87	1.12	1.17	0.92	1.86	1.04	1.31	1.76	1.44
Eu	0.38	0.42	0.43	0.40	0.38	0.48	0.40	0.31	0.63	0.44	0.42	0.34	0.63	0.38	0.57	0.62	0.49
Gd	1.33	1.47	1.77	1.63	1.35	1.53	1.55	1.32	2.62	1.94	1.68	1.16	2.75	1.49	2.15	2.65	2.38
Dy	1.59	1.67	2.03	1.62	1.58	1.86	1.47	1.49	2.91	2.04	1.65	1.43	3.26	1.67	2.41	3.09	2.72
Er	0.74	0.84	0.96	0.82	0.86	0.94	0.77	0.80	1.44	0.93	0.89	0.75	1.69	0.88	1.32	1.68	1.40
Yb	0.60	0.71	0.70	0.61	0.49	0.68	0.57	0.56	1.27	0.75	0.75	0.43	1.38	0.79	1.12	1.31	1.13
Hf	0.36	0.31	0.53	0.36	0.29	0.50	0.38	0.35	0.69	0.47	0.42	0.33	0.78	0.36	0.69	0.68	0.43

Table A8.6a: Continued. Trace element compositions (ppm) of clinopyroxene phenocryst rims of the Vestfirdir ankaramites obtained by LA-ICPMS using the VG Element Excell quadrupole ICPMS fitted with a New Wave DUV 193nm ARF Excimer laser at Oregon State University.

Averag	e clinopyros	tene core	compositi	ion	Average	clinopyroxe	ne rim com	position	
n=17	CoreAve	±2SD	Max	Min	n=17	RimAve	±2SD	Max	Min
Trace e	lement conc	entration	ns (ppm)		Trace e	ement concer	atrations (p	pm)	
Sc	88.80	24.17	113.35	72.90	Sc	88,63	27.60	112.60	73.41
Ti	3089	814	3909	2234	Ti	3192	1286	4872	2214
Sr	18.40	6.14	23.20	12.99	Sr	18.26	5.57	21.45	13.07
Y	9.46	3.65	12.69	7.23	Y	10.24	6.30	16.81	7.05
Zr	9.95	3.99	13.74	7.27	Zr	10.03	6.35	16.17	6.27
Nb	0.06	0.09	0,17	0.04	Nb	0.04	0.03	0.06	0.02
La	0.40	0.23	0.62	0.27	La	0.42	0.38	0.81	0.21
Ce	1.96	1.21	3.02	1.20	Ce	2.11	1.86	4.28	1.05
Pr	0.44	0.20	0.61	0.30	Pr	0.46	0.33	0.84	0.24
Nd	2.72	1.05	3.64	1.92	Nd	2.91	1.88	4.92	1.68
Sm	1.14	0.32	1.53	0.93	Sm	1.20	0.67	1.87	0.78
Eu	0.44	0.17	0.61	0.35	Eu	0.45	0.20	0.63	0.31
Gd	1.73	0.56	2.47	1.43	Gd	1.81	1.03	2.75	1.16
Dy	1.86	0.68	2.47	1.47	Dy	2.03	1.22	3.26	1.43
Er	0.97	0.44	1.43	0.70	Er	1.04	0.65	1.69	0.74
Yb	0.76	0.36	1.08	0.45	Yb	0.81	0.61	1.38	0.43
Hſ	0.45	0.19	0.63	0.34	Hf	0.47	0.31	0.78	0.29

Table A8.6c: Summary table of average core and rim compositions of the Vestfirdir clinopyroxene phenocryst compositions presented in Table A8.6a and A8.6b. 'n' gives the number of clinopyroxene phenocrysts analyzed. Average ppm is given, and the ± 2 SD standard error on the core and rim averages. The compositional range is given by the maximum (Max. ppm) and minimum (Min. ppm) ppm of the each elements analyzed.

MI ID	Ami14	Bmi4	Bmi5	Cmi6	Emi1	F+mi1	G+mi1	Imi11	Imi5	Imi7	Jmi1.2	Jmi3	Jmi7	Jmi8	Jmi9	Lmi3	Lmi4	Lmi6
Rock ID	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611
Major ele	ment conc	entration	s (oxide w	t.%)														
Al ₂ O ₃	14.59	18.30	13.08	13.82	15.22	12.18	13.61	15.64	13.93	12.51	14.14	12.32	15.08	16.28	13.10	14.41	13.15	15.63
MnO	0.18	0.13	0.11	0.16	0.21	0.11	0.16	0.07	0.16	0.21	0.13	0.17	0.17	0.15	0.16	0.17	0.21	0.09
K20	0.13	0.15	0.42	0.09	0.18	0.09	0.08	0.08	0.38	0.20	0.09	0.51	0.20	0.48	0.15	0.48	0.02	0.24
CI	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.02	0.00	0.02	0.00	0.01
Na ₂ O	2.29	2.67	3.40	2.19	1.89	2.79	1.97	2.04	2.04	1.45	2.01	1.94	1.80	1.67	1.81	1.84	1.47	1.75
SIO ₂	49.07	48.63	51.52	49.55	47.56	50.94	48.65	50.36	49.58	49.27	52.75	49.94	50.03	48.53	52.78	52.08	46.21	51.83
FeO	9.21	8.22	9.32	9.08	12.53	10.08	10.49	6.79	11.59	12.00	9.34	11.39	10.35	11.90	7.89	8.89	14.01	6.01
CaO	12.49	12.07	10.13	12.35	10.31	10.83	11.96	12.04	9.22	12.05	12.81	9.92	11.94	9.51	10.73	10.15	8.61	13.07
SO3	0.07	0.04	0.09	0.07	0.07	0.05	0.07	0.09	0.10	0.04	0.05	0.07	0.08	0.13	0.07	0.07	0.07	0.06
MgO	10.52	8.86	9.14	11.22	10.43	11.78	11.91	11.66	10.76	10.69	7.55	10.89	8.82	7.70	10.88	9.01	13.40	9.09
NIO	0.01	0.03	0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TiO ₂	1.14	0.76	2.71	1.20	1.55	0.86	0.90	1.04	1.73	1.31	0.93	2.35	1.33	2.93	1.95	2.27	1.60	1.51
Cr2O3	0.30	0.14	0.06	0.23	0.02	0.18	0.12	0.09	0.03	0.16	0.12	0.07	0.01	0.03	0.22	0.13	0.07	0.17
P2O5	0.00	0.00	0.00	0.00	0.00	0.10	0.06	0.10	0.48	0.10	0.08	0.43	0.20	0.66	0.25	0.50	1.18	0.54
Total	100.00	100.00	100.00	100.00	100.00	100.00	00.001	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
±01.	-11.00	-9.60	-5.70	-12.80	-7.50	-7.30	-9.30	-12.00	-7.00	-4.80	4.30	-4.40	-5.80	0.00	-3.30	-5.50	-14.50	-4.60

Appendix A9: Vestfirdir ankaramites – olivine-hosted MI	data
---	------

Table A9.1: Major, trace, and volatile element archive of olivine-hosted MIs of 408611 (Vestfirdir ankaramite). Major and volatile (S and Cl) are obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology – Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. Trace element composite ons are obtained by LA-ICPMS using the VG element Excell quadrupole ICPMS fitted with a New Wave DUV 193nm ARF Excimer laser at Oregon State University. PM normalization is after McDonough & Sun (1995). For details on the Δ Nb terminology and boundaries see Fitton et al. (1997), [Δ Nb = 1.74+log(Nb/Y)-1.92log(Zr/Y)].

Appendix A9: Continued

MI ID	Ami14	Bmi4	Bmi5	Cmi6	Emil	F+mi1	G+mi1	Imi11	Imi5	Imi7	Jmi1.2	Jmi3	Jmi7	Jmi8	Jmi9	Lmi3	Lmi4	Lmi6
Rock ID	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611
Trace eler	nent conc	entrations	(ppm)															
Se	35.55	33.37	50.38	32.70	43.23	70.88	45.18	26.85	31.18	-	4	37,52	33.71	23.77	48.66	32.59	54.72	24.87
Ti	6574	4735	15820	6658	9823	5275	5371	5928	10509	-		13904	8471	18078	11545	14033	9763	9027
Rb	2.65	-	4.90	1.39	2.16		1.01	1.43	5.13		-	7.96	2.69	8.77	2,10	8.03		3.40
Sr	221.67	614.80	542.81	207.28	388.49	132.76	137.81	142.96	238.92	-		247.01	216.08	271.52	221.67	334.04	253.41	258.56
Y	23.21	13.06	30.99	27.46	23.46	19.94	19.65	20.77	24.13		*	27.67	23.46	31.15	24.59	24.40	19.98	22.13
Zr	65.94	68.16	296.97	62.69	93.61	64.91	49.71	51.77	175.09	+	*	189.16	78.48	345.13	132.73	203.81	145.51	156.88
Nb	6.15	4.69	26.70	6.16	9.90	6.31	4.45	5.86	15.73	-	+	27.98	8.18	48.95	7.49	31.70	8.81	13.71
Ba	29.71	37.31	114.26	19.38	34.44	17.07	13.57	12.82	66.29		+.	106.00	33.72	87.56	34.54	95.08	1.4	54.42
La	5.89	4.75	28.09	5.38	8.18	5.06	3.02	4.62	14.77		-	17.74	7.36	23.52	11.92	21.56	13.20	15.10
Ce	15.71	15.29	67.05	14.88	20.80	13.95	11.89	13.61	36.36	+		44.08	19.99	65.30	30.18	58.60	42.49	42.17
Pr	2.17	1.68	8.08	2.08	3.01	1.79	1.45	1.63	4.65			5.30	2.56	7.55	3.49	6.56	4.62	5.43
Nd	10.22	8.07	36.17	10.32	11.47	7.75	5.99	7.12	18.89		-	23.46	11.72	30.16	15.91	28.34	19.46	19.81
Sm	2.18	-	6.85	3.50		-	1.84	2.05	4.93	-	-	4.92	2.83	6.48	3.70	6.36	-	2.64
Eu	1.05	-	2.33	1.06	1.37	-	0.79	0.71	1.50	4.	-	1.71	1.09	1.73	1.45	1.84	1.62	1.47
Gd	3.26		7.83	4.06	4.50		2.04	2.25	5.12	+	-	4.02	3.60	5.47	4.22	5.22		3.09
Dy	4.27	-	6.47	5.09	4.18	-	3.42	3.31	4.09	14	~	4.24	4.02	5.86	3.69	4.99		4.25
Er	2.41	-	3.06	2.87	2.65	4	1.82	2.02	2.07		4	2.67	2.27	3.32	2.61	2.30	-	2.33
Yb	2.42	-	-	2.96	-	-	1.97	1.56	1.71	1.2	÷.	1,65	2.27	2.28		2.25	+	1.88
Hf	1.85	-	6,53	1.76	-	-	1.47	1.09	3.46	-	-	4.35	2.62	7.41	2.99	5.37	-	3.53
Та	0.46		1.61	0.41	~	-	-	0.35	1.00	-		1.51	0.44	2.44	-	1.97		
Pb	3.35		1.74	0.61	1.43	-	0.28	0.26	1.07		+	1.39	0.66	1.67	-	1.53	-	1.11
Th		-	1	-	4	-	-	-	0.93		-	1.52		2.60		1.38	-	-
U		-		-	-		-		0.34	4		-	-	0.98	2	0.39		

Table A9.1: continued

Appendix A9: Continued

MI ID	Ami14	Bmi4	Bmi5	Cmi6	Emi1	F+mi1	G+mi1	Imi11	Imi5	Imi7	Jmi1.2	Jmi3	Jmi7	Jmi8	Jmi9	Lmi3	Lmi4	Lmi6
Rock ID	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611	408611
Selected I	M-norma	lized trac	e element	ratios and	ΔNb													
Ce/Sm	1.81	19.1	2.45	1.06	-		1.62	1.66	1.84			2.24	1.77	2.52	2.04	2.30	•	4.00
La/Y	1.68	2.41	6.00	1.30	2.31	1.68	1.02	1.47	4.05	-	~	4.25	2.08	5.00	3.21	5.85	4.37	4.52
Rb/Sr	0.40	-	0.30	0.22	0.18	-	0.24	0.33	0.71		-	1.07	0.41	1.07	0.31	0.80	-	0.44
Sr/Nd	1.39	4.89	0.96	1.29	2.17	1.10	1.48	1.29	0.81	+	-	0.68	1.18	0.58	0.89	0.76	0.84	0.84
Ti/Zr	0.86	0.60	0.46	0.92	0.90	0.70	0.93	0.99	0.52	-	*	0.63	0.93	0.45	0.75	0.59	0.58	0.50
Sm/Nd	0.65	-	0.58	1.03	-		0.94	0.88	0.80	+	-	0.64	0.73	0.66	0.71	0.68	-	0.41
Ba/Zr	2.05	4.58	5.91	1.13	2.35	1.37	1.11	0.99	4.40	- ÷.	-	6.14	2.30	4.50	2.25	6.25	-	3.94
ΔNb	0.29	-0.08	-0.21	0.40	0.21	0.26	0.32	0.43	-0.10	*	-	0.14	0.28	-0.07	-0.18	0.08	-0.27	-0.10

Table A9.1: continued
MIID	Ami2	Ami2b	Ami2c	Ami2d	Ami3	Bmi2	Dmi2b	Dmi3	Emil	Emi2	Emi2a	Fmil	Fmi1+	Fmi2a	Fmi5.1	Fmi5a	Fmi7a	Emi2a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624
Major ele	ment conc	entration	s (wt.%)															
Al ₂ O ₃	14.75	14.96	15.11	7.67	7.17	7.52	14.31	15.70	12.75	14.21	16.39	13.48	13.48	14.05	13.95	13.88	14.74	16.39
MnO	0.11	0.13	0.13	0.15	0.18	0.18	0.12	0.13	0.24	0.10	0.16	0.16	0.16	0.15	0.14	0.14	0.12	0.16
K20	0.18	0.12	0,11	0.05	0.09	0.08	0.18	0.18	0.23	0.24	0.22	0.31	0.31	0.18	0.19	0.24	0.15	0.22
CI	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.03	0.03	0.01	0.01	0.01	0.00	0.01
Na ₂ O	2.09	2.13	2.13	1.08	0.89	0.94	1.92	1.73	2.32	2.02	2.13	1.93	1.93	1.71	1.70	2.03	1.80	2.13
SiOz	49.11	49.10	48.97	44.48	44.57	44.72	49.16	49.16	49.00	49.47	50.06	48.59	48.59	47.52	48.16	49.26	49.08	50.06
FeO	8.18	8.13	8.33	10.42	11.34	10.59	7.23	8.49	11.81	7.37	7.94	9.85	9.85	10.33	9.95	8.24	9.28	7.94
CaO	12.78	13.16	13.19	6.82	6.94	6.64	13.49	13.26	10.51	12.54	13.57	11.64	11.64	12.31	11.83	11.45	11.26	13.57
SO3	0.12	0.12	0.12	0.06	0.05	0.08	0.06	0.06	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.11	0.06	0.11
MgO	10.93	10.37	10.07	28.17	27.74	28.24	11.36	8.77	10.97	11.81	7.43	11.87	11.87	11.84	12.05	12.62	11.80	7.43
NiO	0.02	0.02	0.04	0.17	0.13	0.15	0.00	0.00	0.02	0.05	0.03	0.00	0.00	0,00	0.00	0.00	0.00	0.03
TíO ₂	1.55	1.59	1.61	0.83	0.77	0.81	1.76	1.73	1.97	1.95	1.90	1.62	1.62	1.51	1.66	1.68	1.43	1.90
Cr ₂ O ₃	0.17	0.15	0.17	0.10	0.13	0.04	0.24	0.29	0.01	0.13	0.06	0.15	0.15	0.08	0.13	0.05	0.15	0.06
P2O5	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.49	0.00	0.00	0.00	0,25	0.25	0.20	0.15	0.27	0.13	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	00.001	100.00	100,00	100.00	100.00	100.00	100.00	100.00
±01.	-9.50	-8.00	-6.50	-74.70	-72.20	-76.10	-12.60	-3.10	-16.60	-14.70	0.20	-6.70	-9.90	-9.90	-10.60	-17.00	-11.10	0.20

Table A9.2: Major, trace, and volatile element archive of olivine-hosted MIs of 408624 (Vestfirdir ankaramite). Major and volatile (S and Cl) are obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology – Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. Trace element compositions are obtained by LA-ICPMS using the VG element Excell quadrupole ICPMS fitted with a New Wave DUV 193nm ARF Excimer laser at Oregon State University. PM normalization is after McDonough & Sun (1995). For details on the Δ Nb terminology and boundaries see Fitton et al. (1997), [Δ Nb = 1.74+log(Nb/Y)-1.92log(Zr/Y)].

MI ID	Ami2	Ami2b	Ami2c	Ami2d	Ami3	Bmi2	Dmi2b	Dmi3	Emil	Emi2	Emi2a	Fmil	Fmi1+	Fmi2a	Fmi5.1	Fmi5a	Fmi7a	Emi2a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624
race eler	nent conce	entrations	(ppm)															
Se	51.82	28.59	30.35	15.27	21.94	25.68	33.70	+	30.30	30.62	-	÷.	*	27.91	51.51	32.67	29.51	-
11	9666	9540	9571	5279	5010	8346	10517		11339	10947	-	-	+	10083	8696	9088	8279	
ds	1.57	2.29	1.83	1.84	1.50	2.49	2.64	-	3.83	3.15	•	÷	-	2.07	2.50	3.39	1.44	
r	205.19	266.25	258.74	147.28	134.11	206.94	267.35	-	267.38	257.89	-	-		244.13	245.33	242.80	197.94	
7	19.53	18.18	18.79	9.72	10.01	15.06	19.85		23.76	17.25		-		17.91	19.06	16.47	17.80	
Sr	82.10	79.43	80.67	45.10	46.27	65.03	93.32	-	104.61	106.56	-	+	÷.,	77.19	84.74	90.65	81.05	-
tb	4.95	5.46	4.74	3.84	4.05	5.45	8.40	-	9.05	9.23	-	-	*	7.58	7.34	8.80	5.50	
a	21.53	22.98	21.45	15.83	21.35	29.91	28.63	-	42.26	40.92	-		-	29.91	26.45	39.56	19.16	-
.8	4.24	5.34	5.25	3.20	3.28	4.72	6.48	-	7.96	8.17		-	2	6.21	5.81	7.75	4.96	
Če –	15.15	18.23	17.44	9.83	10,79	14.66	20.73		24.18	24.47		+	-	17.09	18.04	19.74	16.61	-
r	2.29	2.60	2.50	1.48	1.45	1.67	2.86		3.60	3.16				2.32	2.81	2.67	2.32	
d	10.45	12.64	11.38	6.41	5.50	10.11	13.85	-	14.71	15.13	~	1	-	10.82	9.62	11.95	10.56	1.21
m	4.21	3.94	4.14	2.04	2.12	1-	3.51	-	4.48	3.38	-	-	-	2.61		3.49	2.81	÷.
Cu.	1.24	1.29	1.42	0.79	1.04	0.95	1.45	-	1.82	1.71		-		1.11	0.95	1.18	1.06	1
Gd		5.02	3.32	1.86	-	-	3.97		4.47	4.39	-	-	4	3.67		3.47	3.87	
y	3.74	3.91	4.12	1.92	2.24	3.58	3.81	*	4.77	4.07	-		-	3.28	3.73	2.96	3.42	
r	+	1.62	1.65	0.89	-	-	2.06	+	2.60	1.52	-	-	1	1.41	4	1.63	1.82	-
b	-	1.86	-	-	-		1.48	-	1.91	1.23	-	-		1.44	1.1	1.24	1.35	-
If	4	1.88	1.77	1.34	-	-	2.43	-	2,62	2.74	-	-	-	2.09		2.62	2.07	
ľa –	-	-	-		× .	-	0.52		0.37	0.54		6	-	0.48		0.62	1	
b	+		×.	-	-	-	0.51	-	0.52	0.74		-	-	0.45		0.76		-
Th	-				-		0.49				-		-		-	0.69	-	
J		-			-			2					-			100		

MI ID	Ami2	Ami2b	Ami2c	Ami2d	Ami3	Bmi2	Dmi2b	Dmi3	Emi1	Emi2	Emi2a	Fmi1	Fmi1+	Fmi2a	Fmi5.1	Fmi5a	Fmi7a	Emi2a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624	408624
Selected I	PM-norma	lized trac	e element	ratios and	AND													
Ce/Sm	0.90	1.16	1.05	1.20	1.28		1.48	14	1.35	1.81	-		*	1.64	8.	1.42	1.48	-
La/Y	1.44	1.95	1.85	2.18	2.17	2.07	2.16	~	2.22	3.14	-	-		2.30	2.02	3.12	1.85	-
Rb/Sr	0.25	0.29	0.23	0.42	0.37	0.40	0.33	~	0.48	0.41	2	-	-	0.28	0.34	0.46	0.24	
Sr/Nd	1.26	1.35	1.46	1.48	1.56	1.31	1.24		1.17	1.09				1.45	1.64	1.30	1.20	
Ti/Zr	1.01	1.03	1.02	1.01	0.93	1.11	0.97	-	0.93	0.89			-	1.13	0.88	0.86	0.88	-
Sm/Nd	1.23	0.95	1.11	0.97	1.17		0.77	-	0.93	0.68			-	0.73		0.89	0.81	
Ba/Zr	1.77	2.03	1.83	2.61	3.42	3.18	2.31	-	2.85	3.80	-			2.68	2.22	3.85	1.73	- F
ΔNb	-0.05	-0.01	-0.07	0,06	0.07	0.08	0.08		0.08	-0.05			-	0.15	0.08	0.05	-0.03	×4

MI ID	Gmi3	Gmi6a	Hmil	Hmila	Hmi2	Hmi4a	Hmi7	Imi2a	1mi5a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624
Major elen	nent concent	trations (wi	.%)						
Al ₂ O ₃	13.66	13.87	12.13	12.91	13.46	9.85	14.89	13.23	13.29
MnO	0.13	0.12	0.19	0.07	0.12	0.23	0.12	0.11	0.09
K20	0.19	0.09	0.10	0,24	0.22	0.11	0.22	0.19	0.27
CI	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.01
Na ₂ O	1.77	1.51	1.45	1.88	1.97	1.36	1.73	1.55	1.71
SiO ₂	49.28	50.21	48.29	50.60	49.90	45.72	48.00	48.37	49.10
FeO	9.05	9.42	8.94	7.01	6.98	13.54	9.71	9.13	8.09
CaO	11.55	11.08	8.86	12.11	12.91	7.93	11.67	12.63	12.77
SO3	0.09	0.04	0.05	0.07	0.08	0.04	0.09	0.09	0.08
MgO	12.51	11.86	18.60	12.91	12.11	20.17	11.94	12.99	12.37
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TiO ₂	1.47	1.60	1.17	1.84	1.91	0.84	1.40	1.46	1.79
Cr ₂ O ₃	0.10	0.10	0.13	0.13	0.17	0.12	0.05	0.10	0,22
P205	0.18	0.08	0.08	0.23	0.16	0.08	0.16	0.15	0.21
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
±Ol.	+11.90	-7.30	-27.80	-15.70	-13.50	-32.60	-9.90	-13.90	-12.10

MI ID	Gmi3	Gmi6a	Hmi1	Hmila	Hmi2	Hmi4a	Hmi7	Imi2a	Imi5a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624
Trace elen	ient concen	trations (p)	om)						
Sc	36.51	43.74	+					35.85	30.94
Ti	9115	8881	+		-	-		8451	10807
Rb				*				2.55	4.62
Sr	431.64	324.36		+			-	243.74	287.03
Y	17.54	15.20				2.1		19.18	19.44
Zr	73.53	51.14		*		-		74.98	89.61
Nb	2.43	2.33		-				5.65	9.27
Ba	11.48	19.56	-	-	+		*	30.41	39.71
La	3.26	2.54		-	-	+		5.37	7.22
Ce	14.07	11.25			+			17.32	22.00
Pr	2.52	1.56						2.53	2.90
Nd	11.54	7.44			*	4		10.12	14.50
Sm	3.26					÷.	-	3.01	4.25
Eu	0.82	0.69						1.55	1.35
Gd	2.59	3.80						3.46	4.32
Dy	2.99	2.78		-				3.49	4.15
Er	1.63	-		-		+	-	1.69	2,19
Yb				-				1.24	1.48
Hf	1.95			+	-			2.14	2.88
Та	+			+				0.49	0.78
Pb				4.1	-	-		0.59	0.67
U				-		-			

MI IÐ	Gmi3	Gmi6a	Hmil	Hmila	Hmi2	Hmi4a	Hmi7	Imi2a	1mi5a
Rock ID	408624	408624	408624	408624	408624	408624	408624	408624	408624
Selected PM	1-normalize	ed trace ele	ment ratios	and ΔNb					
Ce/Sm	1.08			-		-		1.44	1.30
La/Y	1.23	1.11						1.86	2.46
Rb/Sr					-			0.35	0.54
Sr/Nd	2.40	2.80		-			-	1.55	1.27
Ti/Zr	1.07	1,50						0.97	1.04
Sm/Nd	0.86						+	0.91	0.89
Ba/Zr	1.05	2.06		+				2.54	3,27
ANb	-0.31	-0.09	+					0.07	0.14

MIID	A2mi1	A2mi11	A2mi2a	A2mi2b	A2mi4a	A2mi6a	A2mi9	Ami1	Ami2	Ami3	B2mi10	B2mila	B2mi1b	B2mi3a	B2mi3b	B2mi5a	B2mi7a	B2mi7b	Bmi4
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Major el	ement con	ncentratio	ns (wt.%)															
Al ₂ O ₃	14.33	10.79	11.34	12.64	15.08	16.17	14.78	14.33	13.86	14.81	14.85	14.36	14.24	16.21	15.23	15.14	14.71	15.02	15.06
MnO	0.21	0.19	0.18	0.14	0.18	0.19	0.12	0.13	0.14	0.18	0.19	0.12	0.14	0.15	0.18	0.15	0.15	0.10	0.21
K ₂ O	0.32	0.16	0.23	0.25	0.26	0.25	0.12	0.28	0.25	0.16	0.28	0.34	0.33	0.16	0.19	0.30	0.22	0.27	0.22
CI	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Na ₂ O	1.99	1.43	1.86	1.94	1.86	2.30	1.77	2.32	2.35	2.34	1.97	2.08	2.07	1.72	1.88	1.95	2.06	2.17	1.50
SiO ₂	48.81	45.34	46.10	46.58	46.67	49.27	48.33	48.88	49.32	49.02	48.45	48.37	48.25	48.58	48.62	46.88	46.70	48.03	47.16
FeO	9.62	10.20	11.45	11.15	10.91	8.47	8.66	9.67	10.63	9.81	9.09	9.43	9.42	8.72	9.08	9.53	9.61	9.35	10.15
CaO	13.47	8.59	7.67	8.97	13.29	13.86	13.15	12.70	10.95	13.37	12.72	13.61	13.07	14.21	13.13	13.49	13.83	13.41	14.18
SO3	0.08	0.04	0.05	0.07	0.14	0.07	0.06	0.18	0.19	0.12	0.09	0.09	0.08	0.07	0.06	0.07	0.09	0.08	0.22
MgO	8.53	21.78	19.68	16.72	9.13	7.43	11.39	9.31	10.55	8.18	10.61	9.01	10.12	8.03	9.73	9.59	9.47	9.39	9.01
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
TiO ₂	2.21	1.36	1.20	1.33	2.21	1.64	1.46	2.12	1.68	1.94	1.52	2.19	1.90	1.91	1.63	2.37	1.76	1.75	2.15
Cr ₂ O ₃	0.03	0.01	0.08	0.01	0.00	0.06	0.03	0.03	0.05	0.03	0.04	0.06	0.06	0.15	0.09	0.25	1.23	0.25	0.07
P2O5	0.39	0.11	0.16	0.20	0.25	0.28	0.12	0.00	0.00	0.00	0.19	0.34	0.30	0.10	0.17	0.27	0.16	0.18	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
±Ol.	-2.80	-48.60	-41.30	-29.80	-2.00	-0.60	-12.00	-3.70	-9.40	-0.60	-8.50	-4.20	-8.00	-2.00	-6.20	-4.80	-4.30	-5.60	0.30

Table A9.3: Major, trace, and volatile element archive of olivine-hosted MIs of 408772 (Vestfirdir ankaramite). Major and volatile (S and Cl) are obtained by electron microprobe using the JEOL JXA-8200 Superprobe at the Department of Geography and Geology – Geology Section (University of Copenhagen) and the Cameca SX-50 at Oregon State University. Trace element compositions are obtained by LA-ICPMS using the VG element Excell quadrupole ICPMS fitted with a New Wave DUV 193nm ARF Excimer laser at Oregon State University. PM normalization is after McDonough & Sun (1995). For details on the Δ Nb terminology and boundaries see Fitton et al. (1997), [Δ Nb = 1.74+log(Nb/Y)-1.92log(Zr/Y)].

MIID	A2mi1	A2mi11	A2mi2a	A2mi2b	A2mi4a	A2mi6a	A2mi9	Ami1	Ami2	Ami3	B2mi10	B2mi1a	B2mi1b	B2mi3a	B2mi3b	B2mi5a	B2mi7a	B2mi7b	Bmi4
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Trace ele	ment cond	centration	ıs (ppm)																
Sc	67.15	-	57.19	55.40		95.62	37.76	37.41	33.15	37.41	36.14	39.82	39.21	-	-	55.95	45.94		40.78
Ti	13086		5936	7339	1	10306	9146	11951	10014	11951	9225	12737	11983		+	15311	12789	-	12930
Rb	4.58	-	2.64	3.81	-	3.59	1.77	5.94	4.38	5.94	4.77	6.41	6.58	-	-	3.40	3.26	-	4.31
Sr	375.91	-	147.71	184.08	-	303.55	265.38	336.99	256.59	336.99	294.14	206.28	209.95			1003.58	284.61	-	262.13
Y	25.75		13.75	16.45	-	22.39	18.84	23.27	21.31	23.27	20.61	22.54	22.03		-	26.65	20.18		20.18
Zr	109.11	+	58.35	71.06		111.65	83.22	112.83	104.20	112.83	98.81	98.02	93.50	-		135.19	95.42	-	117.05
Nb	11.93		7.23	9.12	-	11.74	4.94	15.87	11.95	15.87	15.28	16.68	17.94			9.37	8.41		13.70
Ba	54.01	14	28.61	29.73	-	41.84	16.51	59.43	40.77	59.43	49.36	58.27	61.75	+		58.38	33.44		52.73
La	8.13	4	5.07	6.71	-	8.75	6.57	10.50	9.49	10.50	10.68	10.71	11.82	-	-	9.85	8.03	-	9.00
Ce	28.21	-	13.78	16.75	-	26.47	23.51	29.32	26.50	29.32	25.67	26.16	27.08	-	-	28.18	24.07		27.66
Pr	3.59	-	1.55	2.25		2.71	2.88	3.96	3.57	3.96	3.13	3.18	3.22	•	-	4.04	3.20	-	3.50
Nd	14.86	-	7.15	10.65	-	11.61	13.82	18.96	14.36	18.96	14.69	15.80	14.81	+	-	22.72	14.38		17.67
Sm	-	-	-	-	-	-	3.47	5.09	3.89	5.09	3.87	3.98	4.68	~	-	5.85	4.24		4.00
Eu	1.61		0.66				1.26	1.57	1.40	1.57	1.46	1.54	1.31	+	-	1.94	1.53	÷.	1.54
Gd	-	4	2.41				2.16	4.37	3.37	4.37	3.60	4.06	4.10	-	-	6.24	3.82		4.81
Dy	5.06		2.37	-	-		3.59	4.42	3.67	4.42	4.06	4.16	3.52		-	4.81	3.74	+	4.20
Er	-	1.4	-	4	4	4	2.07	2.83	2.14	2.83	1.92	2.23	1.74	-	-	2.62	1.76		1.77
Yb	-	-	-	-	-		1.60	2.38	1.79	2.38	1.63	2.16	2.00			2.18	1.58	-	2.09
Hf	2		-	1.	4.1	-	2.41	3.21	2.51	3.21	2.61	2.30	2.50	-	-	3.22	2.40		2.78
Та	÷	-				-		0.95	0.64	0.95	1.05	1.21	1.22	-		0.72	0.62	-	0.90
Pb					+	-	0.43	2.80	0.79	2.80	0.82	1.02	1.18	•.	+	0.97	-	-	1.26
U		-	-	-	-	4		-	-		0.86	0.89	0.84	-	-		-	-	

MIID	A2mi1	A2mi11	A2mi2a	A2mi2b	A2mi4a	A2mi6a	A2mi9	Amil	Ami2	Ami3	B2mi10	B2mi1a	B2mi1b	B2mi3a	B2mi3b	B2mi5a	B2mi7a	B2mi7b	Bmi4
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Selected I	PM-norm	alized tra	ce elemer	it ratios a	nd ANb														
Ce/Sm		*	+	+	-		1.69	1.44	1.70	1.44	1.66	1.65	1.45		+	1.20	1.42	-	1.73
La/Y	2.09	-	2.44	2.70	-	2.59	2.31	2.99	2.95	2.99	3.43	3.15	3.55	-	-	2.45	2.64	4	2.95
Rb/Sr	0.40	-	0.59	0.69	-	0.39	0.22	0.59	0.57	0.59	0.54	1.03	1.04	-	-	0.11	0.38	1	0.55
Sr/Nd	1.62		1.32	1.11		1.68	1.23	1.14	1.15	1.14	1.28	0.84	0.91	-		2.83	1.27		0.95
Ti/Zr	1.03	-	0.88	0.89	+ -	0.80	0.95	0.91	0.83	0.91	0.80	1.12	1.10	-		0.98	1.15		0.95
Sm/Nd						-	0.77	0.82	0.83	0.82	0.80	0.77	0.96			0.79	0.90	-	0.69
Ba/Zr	3.36		3.33	2.90	-	2.99	1.40	4.09	3.07	4.09	3.84	4.14	4.49		-	3.51	2.66	-	4.19
AND	0.20		0.26	0.26	1	0.12	-0.08	0.26	0.17	0.26	0.30	0.38	0.45	-	-	-0.07	0.06	-	0.11

MI ID	Bmi7	Cmi3b	Cmi3c	Dim8a	Dmil	Dmi10	Dmi5a	Dmi5b	Dmi5d	Dmi7	Gmil	Gmi3	Gmi5	Gmi6	Gmi7	Gmi8a
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Major ele	ment conc	entration	s (wt.%)													
Al ₂ O ₃	15.02	14.54	14.40	14.43	15.32	14.29	15.37	14.75	15.03	14.13	15.01	14.90	13.65	15.15	14.60	16.68
MnO	0.16	0.10	0.20	0.22	0.15	0.16	0.16	0.22	0.17	0.22	0.19	0.18	0.14	0.09	0.14	0.19
K ₂ O	0.26	0.20	0.16	0.28	0.28	0.23	0.24	0.20	0.14	0.28	0.25	0.27	0.28	0.19	0.20	0.06
CI	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Na ₂ O	2.18	1,82	1.87	2.13	2.47	2.09	2.53	2,32	1.60	2.10	2.13	2.06	2.14	1.14	2.06	0.57
SiO ₂	49.15	47.89	47.91	48.13	48.74	48.47	49.10	48.40	47.48	48.27	49.62	48.73	49.36	47.06	48,93	49,21
FeO	8.96	9.19	9.37	9.55	9.30	9,41	8.93	9.47	9.87	9.51	9.65	10.19	8.91	10.79	9.39	8.42
CaO	12.46	12.92	12.93	12.34	12.37	12.23	12.12	12.24	12.09	12.17	12.12	13.23	12.92	12.73	12.86	11.43
SO3	0.17	0.17	0.17	0.16	0.16	0.19	0.17	0.16	0.16	0.15	0.13	0.15	0.14	0.15	0.16	0.05
MgO	10.16	11.07	11.06	11.04	9.30	10.86	9.63	10.56	11.63	11.36	9.17	8.40	10.08	10.77	10.04	11.44
NiO	0.02	0.04	0.03	0.05	0.02	0.02	0.03	0.03	0.04	0.05	0.01	0.03	0.03	0.03	0.02	0.03
TiO ₂	1.42	1.96	1.82	1.66	1.84	2.00	1.68	1.59	1.76	1.69	1.69	1.80	1.95	1.87	1.55	1.83
Cr ₂ O ₃	0.05	0.10	0.07	0.02	0.03	0.05	0.03	0.05	0.04	0.06	0.02	0.05	0.38	0.02	0.04	0.09
P ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
±01.	-6.70	-10.20	-9.70	-8.80	-5.10	-8.10	-6.10	-7.70	-10.10	-8.50	-4.40	0.90	-5.90	-6.30	-6.40	-13.00

Appendix A9: Continued

MI ID	Bmi7	Cmi3b	Cmi3c	Dim8a	Dmi1	Dmi10	Dmi5a	Dmi5b	Dmi5d	Dmi7	Gmil	Gmi3	Gmi5	Gmi6	Gmi7	Gmi8a
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Trace eler	ment conc	entrations	(ppm)													
Sc	29.08	46.74	42.15	29.79	50.45	33.87	60.85	33.81	39.89	36.74	34.95		33.11	33.76	31.36	
Ti	8526	11396	13960	10347	11274	11807	9629	9845	12374	10414	9763	-	11780	11564	8469	-
Rb	5.07	4.73	5.51	5.81	6.82	3.54	3.65	2.98	1.73	6.23	4.54		5.93	3.51	2.80	-
Sr	248.25	330.27	348.33	244.99	283,33	304.48	314.95	329.81	91.62	208.20	286.22	-	348.36	220.13	263.59	~
Y	16.83	26.17	26.57	19.41	23.32	23.12	25.07	24.85	25.12	20.13	19.84	-	20.85	19.39	18.81	-
Zr	82.77	136.63	128.83	99.43	114.30	113.61	118.85	103.69	117.80	102.84	100.89		147.54	111.99	87.57	+
Nb	11.34	16.61	19.11	13.77	12.25	9.52	12.78	12.59	13.87	17.74	12.78		18.71	14.04	7.72	
Ba	46.93	72.13	67.00	60.74	61.39	39.28	39.36	38.27	36.74	55.98	50.35	-	68.14	56.77	31.40	+
La	8.11	14.79	16.52	11.09	8.07	8.37	10.30	10.41	2.99	11.49	9.13		12.80	7.17	7.46	1.
Ce	22.26	30.75	32.73	31.23	28,32	25.67	24.21	26.05	9.74	29.52	25.25	**	36.27	21.68	19.85	
Pr	2.86	4.29	4.75	3.55	3.48	3,69	2.71	3.30	1.76	3.32	3.11	-	4.77	2.77	2.50	-
Nd	14.01	18.25	21.05	15,21	16.49	18.33	14.30	16.77	9.99	14.53	15.02		21.84	13.08	12.77	4
Sm	2.81	4.98	4.52	4.42		4.12		4.19	3.03	3.51	2.98		4,48	2.95	2.88	-
Eu	1.27	1.65	1.74	1.54	-	1.79	4	1.51	1.02	1.39	1.29	4	1.21	1.16	1.08	4
Gd	3.75	5.11	5.97	4.42	4	4.67		4.20	4.87	3.96	3.53	4	4.77	3.27	3.22	-
Dy	3.22	4.33	4.63	3.40		4.23	-	4.77	5.18	4.04	2.89		3.36	3.72	3.10	
Er	1.52	2.93	3.08	1.64	-	2.08	*	2.11	2.47	2.19	1.85		2.37	2.01	2.26	-
Yb	1.65	4	2.68	1.61	-	1.74	. +	2.15	1.75	1.98		-	2.24	1.62	1.45	-
Hf	1.85	4.03	3.54	2.25		2.94	-	2,67	3.31	3.01	1.57	-	3.34	3.10	2.18	-
Та	0.69	0.83	1.09	1.12	-	0.84		0.80	1.00	1.68	0.64	-	0.84	0.67	0.43	
Pb	1.09	-		1.36	-	0.81	-	0.86	+	0.99	+		0.86	+	0.81	-
U	-	-			1.0		~	-	-	1.36		-		-	-	

MI ID	Bmi7	Cmi3b	Cmi3c	Dim8a	Dmil	Dmi10	Dmi5a	Dmi5b	Dmi5d	Dmi7	Gmi1	Gmi3	Gmi5	Gmi6	Gmi7	Gmi8a
Rock ID	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772	408772
Selected F	PM-norma	lized trac	e element	ratios an	d ∆Nb											
Ce/Sm	1.98	1.54	1.81	1.77	*	1.56		1.55	0.80	2.10	2.12		2.03	1.84	1.72	-
La/Y	3.19	3.74	4.12	3.78	2.29	2.40	2.72	2.77	0.79	3.78	3.05	÷	4.07	2.45	2.63	
Rb/Sr	0.68	0.48	0.53	0.79	0.80	0.39	0.39	0.30	0.63	0.99	0.53	1	0.57	0.53	0.35	-
Sr/Nd	1.14	1.16	1.06	1.03	1.10	1.07	1.41	1.26	0.59	0.92	1.22		1.02	1.08	1.32	
Ti/Zr	0.89	0.72	0.93	0.90	0.85	0.90	0.70	0.82	0.90	0.87	0.83	+	0.69	0.89	0.83	-
Sm/Nd	0.61	0.83	0.65	0.89	-	0.69		0.76	0.92	0.74	0.60	-	0.63	0.69	0.69	-
Ba/Zr	4,47	4.42	4.04	5.01	4.22	2.72	2.52	2.47	2.34	4.46	4.07	-	5.24	4.69	2.67	
ΔNb	0.24	0.16	0.28	0.23	0.13	0.03	0.15	0.25	0.19	0.33	0.19	-	0.06	0.14	0.07	

Table A9.3: Continued

Reference:

- Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S., & Taylor, R. N. (1997): Thermal and chemical structure of the Iceland plum. Earth and Planetary Science Letters, 153: 197-208.
- McDonough, W. F. & Sun, S. -s. (1995): The composition of the Earth. Chemical Geology, 120: 223-253.
- Sun, S. -s. & McDonough, W. F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, No. 42: 313-345.

APPENDIX B

Contents of Appendix B

Appendix B1: Micro Sr dissolution and column chemistry
Appendix B2: Sr and Sr-Pb column calibrations
Appendix B3: Loading of sub-ng Sr loads on Re filaments
Appendix B4: Oxide production check on the ELEMENT2
Appendix B5: ELEMENT2 method files
Appendix B6: USGS rock standards
Appendix B7: Standard data collected during MI sessions on the ELEMENT2
Appendix B8: Sr isotope data collected on sub-ng NBS 987 standard loads by TIMS
Appendix B9: TPB archive

Appendix B1: Micro Sr dissolution and column chemistry

Dissolution	Single MI	Single grain	Multiple grains
 29M HF + 16M HNO₃ Dissolve overnight on hotplate Dry to paste 	100 μL + 30 μL	200 μL + 50 μL	750 μL + 250 μL
 6M HCI Dissolve overnight on hotplate Dry to paste 	100 μL.	200 µL	500 µL
 16M HNO₃ Dissolve overnight on hotplate Dry to paste, do not over dry! 	100 µL	200 µL.	500 µL.
M HNO ₃ Dissolve on hotplate	200 µL	200 µL	200 µL
Centrifugation	No	Yes	Yes
Aliquoting			
10% for ICPMS analysis	20 µL	20 µL	20 µL
90% for TIMS analysis	180 µL	180 µL	180 µL
Column setup		1	
Rinse clean columns with MQ H ₂ O thoroughly inside and out before being placed in the column rack			
Rinse the pre-cleaned columns with MQ H2O	3 CV	3 CV	3 CV
Add pre-cleaned Sr spec resin	60 µL	60 µL	60 μL
Remove bubbles using a 1 mL pipette		1	
Rinse of resin with 6M HCl	1 CV	1 CV	1 CV
Rinse of resin with MQ H ₂ O	3 CV	3 CV	3 CV

Table B1: Flow sheet for micro Sr sample dissolution and column chemistry aimed at olivine-hosted MIs. 'Single MI' procedure is used for MIs sampled by micro-milling, 'Single grain' for single olivine grains hosting several MIs, and 'Multiple grains' for when multiple olivine grains hosting MIs are pooled. The total volume of MQ H₂O used for Sr elution depends on the latest column calibration see example in Appendix B2. CV equals a column volume. Temperatures used for the hotplate range between and 60-120°C. Aliquoting is double checked by weighing.

Pre-condition			
3M HNO3	2x100 μL	2x100 µL	2x100 μL
Load sample dissolved in 3M HNO ₃ Collect in to beaker and reload	180 µL	180 µL	180 µL
Add 250 µl, 6M HCL to empty beaker and let it sweat on the hot plate			
Wash on 3M HNO3	50 µL	50 µL	50 µL
Wash on 3M HNO3	100 µL	100 µL	100 µL
Wash on 3M HNO3	2x150 µL	2x150 μL	2x150 μL
	Sr Elution*		
Recover beaker from hotplate and rinse out with MQ H ₂ O, use for collection			
Sr elution by MQ H2O	2x50 µL	2x50 μL	2x50 μL
Continued elution by MQ H2O	200 µL	200 µL	200 µL
Dry down, and ready for loading			

Table B1: Continued

Appendix B2: Sr and Sr-Pb column calibrations

Figure B2.1: Sr column calibration. Sample is loaded in 3M HNO₃. Elution of Rb happens within the fist 350 μ L of 3M HNO₃. Also Ca, Al, and Nd are washed off within the first 350 μ L (see Figure B2.2b). Sr collections in MQ H₂O begins at 650 μ L and finish at 950 μ L.

Figure B2.2a: Sr-Pb column calibration. Sample is loaded in 3M HNO₃, and Rb is washed off during the elution with 150-700 μ L. Sr is collected in 0.05M HNO₃ in the interval between 700 and 1000 μ L. Previous column calibrations suggest the Sr collection is followed by 250 μ L 2.5M HCl elution, which is followed by collection of Pb in 8M HCl. However, this calibration shows that Pb may be collected straight after the Sr collection.

Figure B2.2b: Sr-Pb column calibration. This diagram nicely demonstrates that Ca, Al, and Nd are washed of during the 3M HNO₃ elution. This particular example is from the Sr-Pb column calibration example in Figure B2.2a.

- Two strips of Parafilm is melted onto the surface of the Re filaments leaving a 1 mm loading gab free in the center of the filament. This is done by running a 1.0-1.2 A current through the filament, while gently touching the filament with the Parafilm. The current is here after turned off.
- Both for standards (NBS 987) and samples 0.5 μL TaF₅ activator is used. The activator is pipette into the gab on the filament.
- The filaments are loaded one by one! When ready to load the standard the filament is heated by sending 1A current through the filament. The appropriate volume (no more then 1-2 µL) of standard NBS 987 dissolved in concentrated UpA HNO₃ is loaded onto the droplet of activator. The current that is send through the filament ensures that the activator is well mixed with the standard solution. The current is turned off as the droplet dries out.
- Samples are loaded in a similar manner. However, the dried down Sr cut is picked up from the 3 mL Teflon beaker by pipetting 1 µL concentrated UpA HNO₃ into the beaker. Move the droplet around with the tip of the pipette to make sure that the total sample mass is picked up. Hereafter the procedure for loading is as described above.
- Finally, the current is slowly increased from 0 A to about 1.8 A at which stage the Parafilm burns off. As all the Parafilm is burn off the current is further increased to about 2.2-2.4 A this causes the filament to glow orange/red and the current is kept at this level for a few seconds, where after the current is slowly turn off. The loaded filament is now ready to be mounted in the magazine.

Element	1 ppb solution (Cps)	Blank (Cps)	Δ (1 ppb-blank)	Interference (%)
Ba	138799	2123.7	136675.3	0.046
Eu	81	18.5	62.5	
La	1086135	237	1085898	0.008
Gd	93.6	10.7	82.9	
Ce	1043758.5	338.3	1043420.2	0.024
Gd	258	10.7	247.3	
Pr	1390277.8	45.4	1390232.4	2,122
Gd	29501.7	7.3	29494.4	
Nd	163080.1	26.6	163053.5	1.530
Dy	2497.8	3.8	2494	
Nd	163080.1	26.6	163053.5	1.042
Er	1702.7	4.2	1698.5	
Sm	193728.3	17.4	193710.9	0.148
Er	291.1	4.2	286.9	
Gd	178100.2	7.3	178092.9	1.367
Yb	2436.9	2.7	2434.2	

Appendix B4: Oxide production check on the ELEMENT2

Table B4: Interferences due to oxide production during low concentration trace element analysis on the Thermo ELEMENT2 (double focusing magnetic sector field ICPMS) at *AHIGL* (Department of Earth Sciences, Durham University) Oxygen have the 3 isotopes ¹⁶O, ¹⁷O, and ¹⁸O, which in combination with the isotopes of the elements listed *italic* generates certain interferences, on the element listed below. This means that e.g. 0.046% of the Eu signal is due to Ba oxides (¹³⁵Ba¹⁶O, ¹³⁴Ba¹⁷O, ¹³⁷Ba¹⁶O, ¹³⁶Ba¹⁷O, and ¹³⁵Ba¹⁸O). This was accounted for incorporation of simple corrections algorithms into the analytical method.

Appendix B5: ELEMENT2 method file A

							(min	secin	us] []	min:sec	-]									
						L	ow 00:	12:28	16 0	0:00:2	1									
Runs/F	Pass	ses (Eva	as.): al.):	3.3	+0-0	+0.0 H	ligh 00:	00 : 00	0 0	0:00:00	D									
Res. St	witc	ch Delay	/[s]=	2			Tota	Time	0	0:00:2	1									
Entry	L	ocked	Isotope	Call	b A	Mass	Method	M	ass N	255	Magnet	Settling	Sample	Samp	les Segment	Search	Integration Window	Scan	Detection Mode	integratie
				mest	IOID.		Mass Onsei	TAR	HOOM IN	ange-	maak	· · · · · ·	THINE	but re	Park Lour-action					· ype
Low																	20	-	Dette	
	1	NQ	Rb85	0		84.9113	0.000	0	20 54.883	- 64.940	82.914	0.00	0.0100	50	0.10	60	80	EScan	Both	Averag
	2	No	Rb87	0		86.9086	0.000	0	20 86.880	- 86.938	82.914	0.00	0.0100	50	0.10	00 0	30	EScan	not	Averag
	3	No	Sr86	0		85,9087	6,000	0	20 85.880	- 85,937	82.914	0.00	0.0100	50	0.10	0 60	80	EScan	Bolh	Averaç
	4	No	Sr87	0		86.9084	0.000	0	20 86.875	- 56.937	82.914	0.00	0.0100	50	0.100	0 60	80	EScan	Both	Averag
	5	No	5/68	G		87.9051	0,000	0	20 87.870	- 87.934	82.814	0.00	1 0.0100		0,10	0 60	80	EScan	Both	Averag
	6	Na	Nd143	0		142.9093	0.000	0	20 142.862	- 142.95	7 142.909	0.04	1 0.0100	50	0.100	00 60	80	EScan	Both	Averas
	7	No	Nd145	0		144,9120	0.000	6	20 144.864	-144.98	0 142.905	0.00	1 0.0100	50	0.10	60	80	EScan	Both	Averag
	8	No	Nd148	0		145.9126	0.000	0	20 145.854	- 145.96	1 142.908	0.00	0.0100	50	0.10	03 60	80	EScan	Both	Averag
	9	No	Hf177	0		176.9427	0.000	0	20 176.884	- 177.00	2 176,943	0.01	9 0.0100	50	0.100	60	80	EScan	Both	Averag
1	10	No	H1178	0		177.9432	6,000	0	20 177.884	-178.00	2 176.943	0.00	1 0.0100	50	0.100	0 60	80	EScan	Both	Avera
1	11	No	H#179	a		178,9453	0.000	0	20 178,886	-179.00	5 176,943	0.00	0.0100	50	0,100	60	80	EScan	Both	Avera
1	12	No	Pb206			205,9739	0.000		205.905	- 205.04	3 205,974	0.01	5 0.0100	50	0.100	06 0	80	EScan	Both	Avera
1	13	No	Pb207	0		206,9753	0.000	0	206.906	- 207.04	4 205.974	0.00	1 0.0100	50	0.10	08 60	86	EScan	Both	Avera
1	4	No	Pb208	0		207.9761	0.000	0	20 207.907	- 208.04	5 205.974	0.00	0.0100	50	0.10	0.8	80	EScan	Both	Avera
1	15	No	Kr#3	0		82.9136	0.000	0	20 82,886	- 82.941	82.914	0.30	0 0.0100	50	0.100	60	80	EScan	Both	Averaç
Entri		nekad	Inclose	15	15	Regress	on Program	med	Correction	Apper	ided Equ	ation DC	Correla	ation	or	00	Detection		Shift	Min
EINLY	-	-ucaeu	(solopa	Index	Nanie	Type	Equali	on	Equation	for Corr	rection Ac	tive Acth	Coeff. [-	Limit	ini 15td. (-) % in	nL.Std. (+)	% Limit	Peak	Center [u]	Resolut
Low	ι.		-							114			0.000	000					000001	
	1	No	Rb85			Linea			0.0348"5158			140	0.000	000	0.000000	0.000000	0.000000		000000	
	2	No	Rb87			Linea	Kr		1.5043"Kr83			NO NO	0.000	000	0,000000	0.000000	0.000000		000000	0
	3	No	Sr86			Linea			0 3857"Rb8		5	No No	0.000	000	0.000000	0.000000	0.000000	0.0.	000000	0
	4	No	Br87			Linea	no	1.1		im		es No	0.000	000	0.000000	0.000000	0,000000	0.0	000000	0
	6	No	5188			Linea				-us	• Y	es No	0.000	000	9.000000	0.000000	0.000000	0.	000000	0
	8	No	Nd143			Linea	P				T	va No	0.000	000	0.000000	0.000000	0.000000	0 0.	000000	0
	7	No	Nd145			Linea	N				Y	es No	0,000	000	0.000000	0.000000	0.000000	0 0.	000000	D
	8	No	Nd146			Linea					Y	es No	0.000	000	0.000000	0.000000	0.000000	0 0,	000000	0
		No	H#177			Lines	51 C				Y	es No	0,000	000	0.000000.0	0.000000	0.000000	0 0.	000000	0
7	10	No	HP178			Linea	K.				Y	es No	0.000	000	0.000000	0.000000	0.900000	0 0.	000000	0
7	11	No	H/179			Lines	t)				Y	es Yes	0.000	000	0.000000.0	0.000000	0.000000	0 0.	000000	0
	12	No	Pb206			Linea	F				Y	es Yes	0.000	000	0.000000	0.000000	0.000000	0 0.	000000	0
	-		01.907			1 100.0					Y	es Yes	0.000	000	0.000000	0.000000	0.00000	0 0.	000000	0
	13	NO	PDZUC			the set of the set										and the second s				
	13	No	Ph208			Linea					Y	es Yes	0.000	000	0.000000.0	0.000000	0.000000	0 0.	000000	0

Appendix B5: ELEMENT2 method file B

Time per Pass Time per Res. [min:sec:ms] [h:min:sec] Low 00:04:367 00:00:52 Med. 00 ; 00 ; 000 00:00:00 Runs/Passes (Meas.) : 4*3+0*0+0*0 High 00 : 00 : 000 00:00:00 Runs/Passes (Eval.) 4*3+0*0+0*0 Res. Switch Delay [s] : **Total Time** 00:00:52 Entry Locked isotope Callb Accurate Magnet Settling Sample Samples Segment Search Integration Scan Calib Accurate Mass Mass Method Threshold Mass Mass Offset Window Time Time per Peak Duration Window Window Type Threshold Range Mass Mass LOW! No **Ti49** 48,9473 0 48.9473 0.0003 60 43.898 - 43.996 48.947 0.300 0.0100 20 0.120 80 40 EScan 0 No Rb85 2 0 84.828 - 84.996 0.034 0.0300 20 0.360 80 40 EScan 54.9113 84.9113 0.0031 60 84.911 0 No Sr88 3 0 87.817 - 87.993 20 0.360 80 40 EScan 87.9051 \$7,9051 0.0050 80 0.001 0.0300 ð. 84,911 No 4 Y89 0.120 40 EScan 88.9053 ٥ 88.816 - 88.994 0.001 20 80 88,9053 0.0035 60 0.0100 0 64.911 5 No 7:90 20 0,180 80 40 EScan 89,9042 0 89,9042 0.0032 60 89.814 - 89.994 54,911 0.001 0.0150 0 6 No Nb93 0 20 0.350 80 40 EScan 92,9058 92,9058 0.0040 60 92.513 - 92.999 0.001 0.0300 0 84,911 No 7 Ba137 0 60 138.768 - 137.042 0.036 0.0150 20 0.180 80 80 EScan 136.9053 135,9053 0.0104 136.905 0 No La139 8 0 20 0.180 80 40 EScan 138.9058 138.9058 0.0088 60 138.767 - 139.045 0.001 0.0150 136,905 0 .9 No C0140 40 138,9049 0 80 139.765 - 140.045 0.001 20 0.180 80 EScan 139,9049 C800.0 136,905 0.0150 0 10 No Pri41 50 0.030 80 40 EScan 140,9071 15 140,9071 -0.0033 6 140.895 - 140.919 136,905 0.001 0.0100 0 11 No Nd143 12 20 0.180 80 40 EScan 142,9093 0.001 142,9093 0.0095 60 142.766 - 143.052 138,905 0.0150 0 12 No Sm147 0 20 0,180 80 40 EScan 146.9144 0.0115 60 145.767 - 147.061 0.001 0.0150 146.9144 136,005 8 13 No Eu1S1 0 80 150.768 - 151.070 0.001 0.0150 20 0,180 80 40 EScan 150,9193 0.0116 150,9193 135,905 0 14 No Gd157 σ 0,0115 50 156,767 - 157,080 0.001 0.0200 20 0.240 80 40 EScan 156.9234 158,9234 136,905 75 15 No Dv161 80 160.9264 0 160.9264 0.0055 60 160.765 - 161.087 180 928 0.014 0.0200 20 0.240 40 EScan n 16 No Er166 165,9298 0,240 80 40 EScan 0 185.9298 0.0068 80 165.764 - 166.096 0.001 0.0200 20 160.926 Ø 17 No. Yb172 0 60 171.764 - 172.106 160.926 20 0.240 80 40 EScan 171.9359 0.0087 0.001 0.0200 171.9359 n Entry Locked Inotope Mass Magnet Settling Sample Samples Segment Search Integration Scan Detection Integration Regression Programmed Method Mass Window Mass Time Time per Peak Duration Window Window Type Mode Type Mass Offset Range Type Equation LOW 1 No **Ti49** 60 48.898 - 48.996 48.947 0.300 0.0100 40 EScan Bolh Average Thru Zero 0.0003 20 0.120 80 2 No Rbh5 60 84.911 0.0300 40 EScan Average 0.0031 84.826 - 84.995 0.034 20 0.360 Both Thru Zero BD No 3 SIRR 60 87.817 - 87.993 84,911 0.001 0.0300 40 EScan Average Thru Zero 0.0050 20 0.360 BD 800 No Y89 60 Average 4 84,911 40 EScan 0.0033 88.816 - 88.994 0.001 0.0100 20 0.120 80 Both Thru Zero 5 NO 2190 60 84,911 0.0150 40 EScan Average 0.0032 89,514 - 89,994 0.001 20 0.180 80 Both Thru Zero 8 No Nb93 60 84.911 0.0300 40 EScan Average 82,813 - 92,999 0.001 Both Thru Zero 0.0040 20 0.360 80 7 No Ba137 0.0104 60 136,768 - 137.042 135.905 0,035 0.0150 20 0,180 40 EScan Both Average Thru Zero 80 18 No La139 0.0086 00 138.767 - 139.045 135.905 0.001 0.0150 20 0,180 BO 40 EScan Both Average Thru Zero . No Ce140 60 Average 136,905 0.0150 0.0083 139.765 - 140.045 0.001 20 0.180 80 40 EScan Both Thru Zero 10 No Pr141 Average 5 136,905 0.0100 EScan -0.0033 140.895 - 140.919 0.001 50 0.030 50 40 Both Thru Zero 11 No Nd143 60 138.905 0.0150 40 EScan Average 0.0095 142,768 - 143,052 0.001 20 0,190 80 Both Thru Zero 12 No Sm147 60 136.905 0.0150 Average 0.0116 146,767 - 147,061 40 EScan Thru Zero 0.001 20 0,180 Both 80 13 No Eu151 60 150,768 - 151,070 138,905 0.0150 40 EScan Average 84 0.0116 0.001 20 0,150 80 Both Thru Zero 14 No Gd157 60 0.0115 156.767 - 157.080 138.905 0.001 0.0200 20 0.240 80 40 EScan Both Average Thru Zero La.Ce.Pr 15 No Dy161 60 160,926 0.0200 40 Average No 0.0055 160,755 - 161.087 0.014 20 0.240 80 EScan Both Thru Zero 18 No Er166 60 160.926 0.0200 40 Average Nd.Sm 0.0068 165,764 - 166,095 EScan 0.001 20 0.240 80 Both Thru Zero 17 No Yb172 80 0.0200 Average 0.0057 171,784 - 172,105 160.926 40 EScan Thru Zero Gd(La,Ce,Pr) 0.001 20 0.240 80 Both

Appendix B5: ELEMENT2 method file B continued

Entry	L	ocked	isotope	Correction Equation	Appended for Correction	Equation Active	QC Active	Correlation Coeff. (-) Limit	QC Int_Std. (-) %	QC Int.Std. (+) %	Detection Limit	Shift Peak Center	Min. (u) Resolution
Law								a section.					
	τ	No	T149			No	Yes	0,000000	0.000000	0.000000	0.000000	0.000000	0
	2	No	Rb85			No	Yes	0.000000	0.000000	0.000000	0.0000000	0.000000	0
	3	No	5/88			No	Yes	0.000000	0.000000	0.000000	0.000000	0.000000	0
	4	Na	Y89			No	No	0.000000	0.000000	0.000000	0.000000	0.000000	0
	5	No	Zr80			No	No	0.000000	0.000000	0.000000	0.000000	0,00000,0	0
	8	No	MD93			No	Yes	0.0000000	0.000000	0.000000	0.000000	0.000000	0
	7	No	Ra137		use	Alco	Yes	0.000000	0.000000	0.000000	0.000000	0.000000	0
	÷.	No	1 1 1 1 1		use	Rico.	Yes	0.000000	0.000000	0.000000	0.000000	0.000000	D
	5	No	Catan		USe	Alco	Yes	0.000000	0.000000	0.000000	0.000000	0.000000	0
	*0	No	Detat		11548	Peter.	No	8.000000	0.000000	0.000000	0.000000	0.000000	D
	10	NO	11.14.15		115.6	Parca	Van	0 000000	0.000000	0.000000	0.000000	0.000000	
		NO	NG143		Lines	NC	Ver	0.000000	0.000000	0.000000	0.000000	0.000000	
	12	NO	5m147	0.000750-157	4.94	NO	Ver	0.000000	0.000000	0.000000	0.000000	0.000000	
	13	No	Eu151	-0.000/~Ba13/	5.45	Yes	res	0.000000	0.000000	0.0000000	0.000000	0.000000	0
	14	No	Gd157	-0.000042"La139 -0.00058"Ce140 -0.02165"Pr141	use	Yes	Yes	0.000000	0.000000	0.000000	0.000000	0.000000	0
	15	No	Dv161	-0.016*Nd143		Yes	Yes	0.000000	6.000000	0.000000	0.000000	0.000000	0
	18	No	Eriss	-0.01137*Nd143 -0.00184*Sm147		Yes	Yes	0.000000	0.000006	0.000000	0.0000000	0.000000	0
	17	No	Vb172	-0.01898*Gd157		Yes	Ves	0.000000	0.000000	0.000000	0.000000	0.000000	0

Two ELEMENT2 method files are shown in this appendix. *Method file A* (first page) is used for routine analysis of reagent blanks where concentration of the following elements are of interest: Rb, Sr, Nd, Hf, Pb, and K. *Method file B* (last two pages) is used of MI work where a larger spectrum of elements are analyzed: Ti, Rb, Sr, Y, Xr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, And Yb.

USGS rock standards used for calibration on the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). Concentrations are given in ppm with one exception - TiO₂ is given in wt.%. The recommended values for each of the three USGS rock standard can be find via the webpages listed below. The concentrations of the elements of each of the rock standards of interest for this work are listed in the table below.

Standard ID	W2	BHVO-1	AGV-1
TiO ₂	1.1	2.71	1.06
Rb	20.36	9.6	67
Sr	193.31	403	662
Y	21.36	27.6	21
Zr	92.87	179	225
Nb	7.76	19.5	14.4
Ba	167.08	139	1221
La	10.61	15.8	38
Ce	23.03	39	66
Pr	2.94	5.7	6.5
Nd	13.22	25.2	34
Sm	3.36	6.2	5.9
Eu	1.12	2.06	1.66
Gd	3.63	6.4	5.2
Dy	3.71	5.2	3.8
Er	2.23	2.4	1.61
Yb	2.03	2.02	1.67
Rb/Sr	0,105	0.024	0.101

W2: http://minerals.cr.usgs.gov/geo_chem_stand/diabase.html BHVO-1: http://minerals.cr.usgs.gov/geo_chem_stand/basaltbhvo1.html AGV-1: http://minerals.cr.usgs.gov/geo_chem_stand/andesite1.html

Isotope	1	п	ш	IV	v	VI	VП	VIII	IX	Average	±2SD	AGV-1 Ret	Δ%
Ti	0.19	0.19	0.18	0.22	0.23	0.23	0.23	0.22	0.22	0.21	0.04	0.21	0.58
Rb	14.71	13.93	13.80	14.22	14.59	14.74	14.39	14.06	13.84	14.25	0.74	13.40	6.35
Sr	146.02	138.58	135.62	156.47	160.55	162.69	158.63	158.63	156.48	152.63	19.95	132.40	15.28
Y	4.52	4.25	3.96	4.75	4.77	4.88	4.83	4.91	4.75	4.62	0.65	4.20	10.06
Zr	48.35	47.82	46.62	53.21	52.85	53.88	53.74	54.05	53.44	51.55	6.04	45.00	14.55
Nb	3.04	3.03	2.89	3.46	3.48	3.40	3.58	3.53	3.53	3.33	0.53	2,88	15.47
Ba	276.36	251.82	245.85	271.22	288.02	289.35	280.55	282.35	286.77	274.70	31.63	244.20	12.49
La	8.54	7.98	8.35	8.69	8.90	8.98	8.98	8.68	8.63	8.64	0.64	7.60	13.65
Ce	14.82	13.75	15.69	15.85	16.06	16.05	16.08	16.18	15.82	15.59	1.60	13.20	18.10
Pr	1.91	1,75	2.04	1.92	2.13	2.00	1.87	1,94	1.92	1.94	0.22	1.30	49.44
Nd	8.00	7.23	9.77	7.91	8.64	8.57	8.27	8.41	7.80	8.29	1.42	6.80	21.87
Sm	1.30	1.16	1.50	1.54	1.54	1.33	1.47	1.35	1.51	1.41	0.26	1.18	19.47
Eu	0.42	0.32	0.37	0.42	0.41	0.43	0.41	0.43	0.46	0.41	0.08	0.33	23.03
Gd	1.25	0.97	1.02	1.31	1.22	1.60	1.33	1.34	1.50	1.28	0.40	1.04	23.41
Dy	0.99	0.68	0.77	0.89	1.01	0.76	1.01	0.83	0.86	0.87	0.24	0.76	13,99
Er	0.36	0.31	0.32	0.41	0.51	0.40	0.41	0.41	0.48	0.40	0.13	0.32	24.71
Yb	0.49	0.40	0.39	0.40	0.43	0.43	0.45	0.46	0.49	0.44	0.08	0.33	30.81
Rb/Sr	0.101	0.101	0,102	0.091	0.091	0.091	0.091	0.089	0.088	0.094	0.011	0.101	-7.449

Appendix B7: Standard data collected during MI sessions on the ELEMENT2

Table B7.1: Standard data collected on AGV-1 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The AGV-1 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the average concentrations of Rb and Sr plus the average Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and average Rb/Sr ratios and the reference values (Δ %).

Rock star	idard ID: 50) ppb AGV	-1 (n=7)								
Isotope	1	п	ш	IV	v	VI	VII	Average	±2SD	AGV-1 Ret	Δ%
Ti	0.44	0.43	0.41	0.45	0.42	0.40	0.40	0,42	0.04	0.42	-0.76
Rb	27,42	26.61	26.44	29.62	26.45	25.19	27.91	27.09	2.81	26.80	1.08
Sr	268.97	264.82	260.00	282.38	254.79	248.58	246.40	260.85	25.06	264.80	-1.49
Y	7.37	7.87	7.22	8.31	7.80	7.37	7.10	7.58	0.86	8.40	-9.77
Zr	94.69	95.49	89.67	96.65	88.50	87.70	83.23	90.85	9.82	90.00	0.94
Nb	6.41	6.32	6.14	6.62	6.81	7.13	6.53	6.56	0.66	5.76	13.95
Ba	500.68	499.25	485.15	522.65	482.82	467.59	449.33	486.78	47.78	488.40	-0.33
La	15.89	15.33	15.60	16.21	15.32	14.51	14.23	15.30	1.42	15.20	0.64
Ce	28.00	27.29	27.41	29.02	27.21	26.27	25.18	27.20	2.44	26.40	3.03
Pr	3.07	3.31	2.91	3.35	3.32	3.18	2.99	3.16	0.35	2.60	21.59
Nd	12.91	12.25	12.12	13.98	12.83	12.94	11.57	12.66	1.54	13.60	-6.93
Sm	2.44	1.95	2.12	2.18	2.48	1.82	1.95	2.13	0.51	2.35	-9.54
Eu	0.61	0.57	0.61	0.61	0.68	0.60	0.58	0.61	0.07	0.66	-8.31
Gd	1.93	1.43	1.58	1.54	1.82	1.79	1.72	1,69	0.36	2.08	-18.87
Dy	1.27	1.36	1.22	1.32	1.28	1.39	1.39	1.32	0.13	1.52	-13.37
Er	0.72	0.64	0.67	0.72	0.68	0.66	0.60	0.67	0.09	0.64	3.95
Yb	0.69	0.53	0.54	0.65	0.56	0.65	0.60	0.60	0.12	0,67	-10.05
Rb/Sr	0.102	0.100	0.102	0.105	0.104	0.101	0.113	0.10	0.01	0.10	2.676

Table B7.1: Continued

Rock sta	ndard ID	: 250	ppb A	GV-1 (n=6)
*******			property and		

Isotope	1	п	ш	IV	v	VI	Average	±2SD	AGV-1Ret	Δ%
Ti	1.96	2.12	2.11	1.82	1.69	2.11	1.97	0.36	2.12	-7.15
Rb	124.54	150.27	149.30	139.64	123.88	150.34	139.66	25.25	134.00	4.23
Sr	1217.72	1541.92	1534.67	1383.60	1261,06	1531.07	1411.67	293.18	1324.00	6.62
Y	37.94	46.27	45.71	41.50	38.42	45.80	42.61	7.68	42.00	1.44
Zr	404.62	508.79	506.04	452.50	422.22	506.23	466.73	93.45	450.00	3.72
Nb	26.90	32.72	32.79	29.26	27.67	32.78	30.35	5.49	28.80	5.39
Ba	2278.01	2791.57	2766.63	2621.43	2396.16	2786.58	2606.73	442.44	2442.00	6.75
La	70.74	84.97	84.94	79.32	74.94	85.12	80.00	12.23	76.00	5.27
Ce	123.01	152.34	151.81	139.77	132.03	153.27	142.04	25.22	132.00	7.60
Pr	14.61	19.31	18.91	17.49	16.46	19.94	17.79	4.02	13.00	36,82
Nd	62.23	80.86	79.64	75.45	68.95	78.79	74.32	14.63	68.00	9.29
Sm	11.88	14.71	14.67	13.34	12.04	14.31	13.49	2.58	11.80	14.33
Eu	3.28	4.23	4.18	3.78	3.57	3.94	3.83	0.74	3.32	15.36
Gd	9.83	12.81	12.87	12.46	11.33	12.40	11.95	2.35	10.40	14.91
Dy	7.76	8.78	8.55	8.21	7.45	8.31	8.18	0.99	7.60	7.58
Er	2.08	4.33	4.18	3.75	3.47	4.24	3.67	1.69	3.22	14.08
Yb	2.67	4.42	4.15	4.00	3.80	4.28	3.89	1.27	3,34	16,42
Rb/Sr	0.102	0.097	0.097	0.101	0.098	0.098	0.099	0.004	0.101	-2.121

Table B7.1: Continued

Isotope	I	п	ш	IV	V	Average	±2SD	AGV-IRec	Δ%
Ti	4.40	4.19	4.23	4.34	4.54	4.34	0.28	4.24	2.41
Rb	297.36	262.47	264.19	276.78	296.45	279.45	33.73	268.00	4.27
Sr	2832.87	2573.03	2603.11	2639.41	2774.31	2684.54	226.19	2648.00	1.38
Y	82.79	77.13	77.26	79.97	82.28	79.88	5.35	84.00	-4.90
Zr	992.63	952.44	964.58	1010.88	980.63	980.23	45.94	900.00	8.91
Nb	64.56	62.14	73.57	71.26	69.56	68.22	9.49	57.60	18.43
Ba	5200.80	4901.82	4803.69	4814.14	4980.64	4940.22	324.88	4884.00	1.15
La	162.93	150.76	150.57	156.37	156,94	155.51	10.24	152.00	2.31
Ce	284.54	268.89	266,90	272.34	275.08	273.55	13.80	264.00	3.62
Pr	34.72	31.06	30.72	29,83	31.45	31.56	3.74	26.00	21.38
Nd	137.98	130.55	130.61	129.45	135.33	132.78	7.37	136.00	-2.37
Sm	22.69	22.39	22.90	24.68	23.78	23,29	1.87	23.60	-1.33
Eu	7.14	5.91	6.61	6.72	6.67	6.61	0.88	6.64	-0.47
Gd	19.84	18.52	19.34	20.08	20.07	19.57	1.32	20.80	-5.91
Dy	13.98	14.40	14.06	14.41	14.25	14.22	0.39	15.20	-6.44
Er	7.34	6.10	6.66	6.93	7.13	6.83	0.96	6,44	6,10
Yb	6.99	6.38	6.17	6.78	6.61	6.59	0.65	6.68	-1.41
Rb/Sr	0.105	0.102	0.101	0.105	0.107	0.10	0.00	0.10	2.794

Table B7.1: Continued

Rock stand	dard ID: 25	ppb BHVO)-1 (n=4)					
Element	1	п	ш	IV	Average	±2SD	BHVO-1Rec	∆%
Ti	0.44	0.51	0.47	0.46	0.47	0.06	0.54	-12.87
Rb	1.91	1.91	2.15	2.14	2.03	0.27	1.92	5.65
Sr	78.83	73.93	83.26	80.48	79.13	7.83	80.60	-1.83
Y	5.58	5.67	6.01	5.85	5.78	0.39	5.52	4.66
Zr	33.23	33.05	35.91	35.51	34.42	2.99	35.80	-3.85
Nb	3.66	3.64	3.78	3.71	3.70	0.13	3.90	-5.18
Ba	27.76	25.42	29.05	27.01	27.31	3.03	27.80	-1.77
La	3.07	2.95	3.25	3.17	3.11	0.26	3.16	-1.62
Ce	7.36	7.00	7.72	7.42	7.37	0.59	7.80	-5.47
Pr	1.18	1.00	1.03	1.10	1.08	0.16	1.14	-5.45
Nd	5.74	4.91	5.84	5.63	5.53	0.84	5.04	9.70
Sm	1.43	1.05	1.38	1.38	1.31	0.35	1.24	5.58
Eu	0.50	0.42	0.48	0.42	0.46	0.08	0,41	10.60
Gd	1.35	1.34	1.53	1.52	1.44	0.21	1.28	12.15
Dy	1.25	I.18	1.29	1.19	1.23	0.10	1.04	17.99
Er	0.49	0.28	0.43	0.51	0.43	0.20	0.48	-10.73
Yb	0.51	0.34	0.53	0.45	0.46	0.17	0.40	12.89
Rb/Sr	0.024	0.026	0.026	0.027	0.026	0.002	0.024	7.60

Table B7.2: Standard data collected on BHVO-1 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The BHVO-1 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and the average Rb/Sr ratios and the reference values (Δ %).

Elemen	1	п	ш	IV	v	VI	VП	VШ	Average	±2SD	BHVO-1Re	Δ%
Ti	1.16	1.08	1.13	1.04	1.09	1.05	1.12	1.02	1.08	0.09	1.08	0.09
Rb	4.33	3.73	3.03	2.93	2.72	3.68	3.85	5.37	3.71	1.72	3.84	-3.45
Sr	168.02	154.02	158.26	146.43	154.28	146.34	155.83	143.79	153.37	15.77	161.20	-4.86
Y	11.59	10.77	10.52	10.05	10.80	10.67	10.90	10.06	10.67	0.99	11.04	-3.35
Zr	71.18	67.41	69.78	66.24	70.31	63.68	69.10	60.64	67.29	7.25	71,60	-6.01
Nb	8.40	8.04	8.25	7.80	8.14	8.50	9.34	8.12	8.32	0.93	7.80	6.71
Ba	55.55	53.36	52.70	51.01	49.66	48.35	52.01	47.56	51.27	5,36	55.60	-7.78
La	6.60	6.19	6.14	5.76	6.08	5.86	6.30	5.71	6.08	0.60	6.32	-3.82
Ce	16.24	15.43	15.28	14.61	14.74	14.38	14.99	13.59	14.91	1.57	15,60	-4.45
Pr	2.32	2.17	2.22	1.83	1.95	2.02	1.89	2.03	2.05	0.34	2.28	-9.90
Nd	11.58	9.71	9.44	9.31	9.71	10.32	10.73	9.67	10.06	1.54	10.08	-0.20
Sm	2.87	2.11	2.73	2.28	2.58	2.23	2.38	2.15	2.42	0.56	2.48	-2.56
Eu	0.85	0.92	0.79	0.71	0.88	0.76	0.79	0.79	0.81	0.14	0.82	-1.70
Gd	2.75	2.22	2.02	1.92	2.27	2.54	2.18	2.15	2.26	0.54	2.56	-11.86
Dy	2.48	2.08	2.31	1.86	1.94	2.14	2.20	1.96	2.12	0.41	2.08	1.91
Er	1.06	0.90	0.96	0.92	0.84	0.83	0.93	0.81	0.91	0.16	0.96	-5.54
Yb	0.88	0.75	0.77	0.81	0.80	0.76	0.79	0.73	0.79	0.09	0.81	-2.81
Rb/Sr	0.026	0.024	0.019	0.020	0.018	0.025	0.025	0.037	0.02	0.01	0.02	1.85

Element	I	п	ш	IV	Average	±2SD	BHVO-1Rec	Δ%
Ti	11.18	11.71	10.92	11.52	11.33	0.71	10.84	4.54
Rb	37.40	37.58	37.28	40.90	38.29	3.49	38.40	-0.29
Sr	1565.21	1602.45	1502.51	1601.75	1567.98	93.97	1612.00	-2.73
Y	107.66	112.57	106.36	109.86	109.11	5.44	110,40	-1.17
Zr	741.04	746.17	718.82	722.49	732.13	27.00	716.00	2.25
Nb	79.17	85.13	90.78	87.67	85.69	9.85	78.00	9.86
Ba	540.79	543.86	504.00	531.89	530.13	36.30	556.00	-4.65
La	61.46	63.80	60.40	61.73	61.85	2.84	63.20	-2.14
Ce	149.78	153.46	146.38	149.27	149.72	5.81	156.00	-4.02
Pr	19.87	19.93	19,82	19.65	19.82	0.24	22.80	-13.08
Nd	100.25	106.40	101.26	102.57	102.62	5.39	100.80	1.80
Sm	22.77	24.46	24.80	24.55	24.15	1.85	24.80	-2.63
Eu	8.41	8.18	8.50	8.20	8.32	0.31	8.24	1.02
Gd	23.90	25.88	26.16	25.88	25.46	2.09	25.60	-0.56
Dy	20.94	21.46	20.96	21.37	21.18	0.54	20.80	1.84
Er	9.35	9.45	9.13	9.70	9.41	0.47	9.60	-2.01
Yb	7.51	7.63	8.31	8.13	7.89	0.77	8.08	-2.29
Rb/Sr	0.024	0.023	0.025	0.026	0.024	0.002	0.02	2.52

Isotope	1	11	Average	±2SD	W2 _{Rec}	Δ%
Ti	0.18	0.17	0.17	0.03	0.22	-20.91
Rb	4.43	4.09	4.26	0.49	4.07	4.67
Sr	44.42	40.32	42.37	5.80	38.66	9.59
Y	5.20	4.87	5.03	0.47	4.27	17.80
Zr	20.25	18.80	19,52	2.06	18.57	5.11
Nb	1.58	1.47	1.53	0.16	1.55	+1.71
Ba	36.66	33.89	35.28	3.93	33.42	5.56
La	2.36	2.19	2.27	0.23	2.12	7.12
Ce	5.03	4.62	4.82	0.57	4.61	4.73
Pr	0.63	0.66	0.64	0.05	0.59	9.35
Nd	3,23	3.15	3.19	0.12	2.64	20.67
Sm	0.91	0.83	0.87	0.12	0.67	29.32
Eu	0.24	0.23	0.24	0.02	0.22	5.80
Gd	0.96	0.73	0.85	0.32	0.73	16.39
Dy	0.86	0.80	0.83	0.08	0.74	11.86
Er	0.49	0.49	0.49	0.00	0.45	10.09
Yb	0.49	0.50	0.49	0.01	0.41	21.80
Rb/Sr	0.100	0.101	0.101	0.002	0.105	-4.459

Table B7.3: Standard data collected on W2 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The W2 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and the average Rb/Sr ratios and the reference values(Δ %).

Rock sta	ndard ID	: 50 ppb \	W2 (n=9)								_		
Isotope	1	п	ш	iv	v	VI	VII	vш	IX	Average	±2SD	W2 _{Rec}	Δ%
Ti	0.40	0.44	0.43	0.39	0.39	0.44	0.41	0.40	0.43	0.41	0.04	0.44	-5.94
Rb	7.93	8.18	7.54	6.86	6.69	8.30	7.64	7.85	8.20	7.69	1.15	8.14	-5.61
Sr	74.96	84.07	80.56	75.64	75.92	84.68	79.11	77.75	82.00	79.41	7.30	77.32	2.70
Y	8.46	9.32	8.93	8.48	8.47	8.95	9.18	8.56	9.34	8.86	0.74	8.54	3.65
Zr	33.83	38.11	36.81	35.80	34.93	36.94	34.03	35.39	37.35	35.91	2.99	37.15	-3.33
Nb	2.80	3.23	3.15	2.97	2.79	3.35	3.22	3.55	3.57	3.18	0.58	3.10	2.50
Ba	65.50	74.93	67.65	65.43	65.79	73.22	71.65	67.06	71.80	69.23	7.35	66.83	3.58
La	3.80	4.56	4.39	4.19	4.01	4.45	4.31	3.97	4.21	4.21	0.50	4.24	-0.78
Ce	8.45	9.40	9.30	8.62	9.12	9.30	9.16	8.81	9.27	9.05	0.68	9.21	-1.78
Pr	0.94	1.25	0.98	0.96	0.94	1.27	1.03	1.05	1.23	1.07	0.28	1.18	-8.85
Nd	4.83	5.68	5.18	5.20	4.31	5.55	5.34	5.06	5.70	5.20	0.88	5.29	-1.58
Sm	1.39	1.46	1.41	1.21	1.25	1.22	1.27	1.16	1.39	1.31	0.21	1.34	-2.83
Eu	0.32	0.46	0.42	0.40	0.34	0.53	0.44	0.44	0.50	0.43	0.14	0.45	-4.69
Gd	1.23	1.43	1.39	1.18	1.10	1.39	1.77	1.32	1.37	1.35	0.39	1.45	-6.72
Dy	1.50	1.59	1.41	1.54	1.58	1.55	1.60	1.59	1.43	1.53	0.14	1.48	3.21
Er	0.68	0.92	0.76	0.78	0.83	1.01	0.87	0.82	0.83	0.83	0.19	0.89	-6.54
Yb	0.67	0.96	0.87	0.86	0.70	0.76	1.00	0.71	0.81	0.82	0.23	0.81	0.44
Rb/Sr	0.106	0.097	0,094	0.091	0.088	0.098	0.097	0.101	0.100	0.097	0.011	0.105	-8.112

Isotope	1	П	Average	±2SD	W2Rec	Δ%
Ti	1.78	1.87	1.83	0.13	2.20	-16.98
Rb	39.57	41.30	40.44	2.45	40.72	-0.69
Sr	395,58	412.06	403.82	23.30	386.62	4.45
Y	44.71	46.37	45.54	2.35	42.72	6.60
Zr	173.21	178.69	175.95	7.76	185.74	-5.27
Nb	14.72	15.20	14.96	0.67	15,52	-3.61
Ba	353.82	364.69	359.25	15.38	334.16	7.51
La	21.19	22.04	21.61	1.21	21.22	1.85
Ce	46.18	46.86	46.52	0.96	46.06	0.99
Pr	6.10	6.21	6.15	0.14	5.88	4.66
Nd	29.76	30.62	30.19	1.22	26.44	14.19
Sm	7.28	7.24	7.26	0.06	6.72	8.02
Eu	2.52	2.59	2.56	0.10	2.24	14.08
Gd	8.80	9.51	9.16	1.00	7.26	26.11
Dy	8.62	9.27	8.94	0.92	7.42	20.53
Er	4.46	4.61	4.54	0.21	4.46	1.70
Yb	4.99	4.98	4.99	0.01	4.06	22.80
Rb/Sr	0.10	0.10	0.10	0.00	0.11	-4.923

Rock standard ID: 250 ppb W2 (n=2)

Isotope	1	п	ш	Average	±2SD	W2 _{Rec}	Δ%
Ti	4.17	4.44	4.27	4.29	0.28	4.40	-2.42
Rb	74.93	81.04	82.06	79.35	7.71	81.44	-2.57
Sr	741.46	784.95	761.95	762.79	43.52	773.24	-1.35
Y	84.71	90.54	87.55	87.60	5.83	85,44	2.53
Zr	357.73	386.99	359.82	368.18	32.65	371.48	-0.89
Nb	30.43	36.29	32.94	33.22	5.88	31.04	7.02
Ba	669.70	677.61	657.11	668.14	20.68	668.32	-0.03
La	41.19	43.00	40.96	41.71	2.24	42,44	-1.71
Ce	87.95	90.95	88.66	89.19	3.14	92.12	-3.18
Pr	10.88	10.35	10.72	10.65	0.55	11.76	-9.40
Nd	53.65	54.05	50.87	52.86	3.46	52.88	-0.05
Sm	12.40	13.30	13.49	13.06	1.17	13.44	-2.82
Eu	4.06	4.53	4.24	4.27	0.47	4.48	-4.60
Gd	12.83	15.85	14.65	14.44	3.05	14.52	-0.52
Dy	14.78	15.51	15.16	15.15	0.73	14.84	2.09
Er	8.01	8.69	8.52	8.41	0.71	8.92	-5.71
Yb	8.31	8.26	8.20	8.26	0.11	8.12	1.72
Rb/Sr	0.101	0.103	0.108	0.104	0.007	0.105	-1.25

Rock standard ID: 500 ppbW2 (n=3)

Synthetic	1:10 Rb-	Sr solutio	on (n=3)					
Element	i	п	ш		Average	±2SD	Rec	Δ%
Rb	1.01	0.91	0.94		0.96	0.11	1.00	-4.49
Sr	12,39	10.51	11.16		11.36	1.91	10.00	13.56
Rb/Sr	0.082	0.086	0.085		0.084	0.005	0.100	-15.77
			1	Fable B7.	4:			
Synthetic	5:50 Rb	-Sr solutio	on (n=1)	_		-		_
Element	1				Average	±2SD	Rec	Δ%
Rb	4.73					*	5.00	-5.46
Sr	45.59					-	50.00	-8.82
Rb/Sr	0.104				•		0.100	3,68
			Table	B7.4: Co	ntinued			
Synthetic	20:200 H	Rb-Sr solu	tion (n=4)		-		
Element	I	п	ш	IV	Average	±2SD	Rec	Δ%
Rb	19.12	18.75	16.59	18.98	18.36	2.39	20.00	-8.20
Sr	177.21	184.81	168.62	184.82	178.86	15.43	200.00	-10.57
Rb/Sr	0.108	0.101	0.098	0.103	0.103	0.008	0.100	2.61

Table B7.4: Standard data collected on synthetic Rb-Sr solutions by TIMS at *AHIGL* (Department of Earth Sciences, Durham University). Listed are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also listed is the average difference in % between the average obtained concentrations and the average Rb/Sr ratios and the reference values (Δ %).
Rock standard ID	AGV-J	BHVO-I	W2	Rb-Si
n	27	16	17	8
Elements (۵%)				
Ti	-1.15	-2.04	-8.90	-
Rb	4.13	-0.39	-3.49	-6.47
Sr	6.43	-3.57	3.19	-1.30
Y	0.23	-0.80	5.81	
Zr	7.57	-3.41	-2.27	
Nb	13.38	4.52	2.22	+
Ba	5.79	-5.49	3.87	-
La	6.31	-2.85	0.31	÷
Ce	9.18	-4.60	-0.99	
Pr	34.22	-9.58	-5.54	-
Nd	7.12	2.77	3.36	-
Sm	6.96	-0.54	2.37	
Eu	8.85	2.06	-1.31	
Gd	5.13	-3.03	1.01	
Dy	1,71	5.91	6.45	
Er	13.52	-5.96	-3.69	
Yb	11.05	1.25	6.17	
Rb/Sr	-1.74	3.46	-6.48	-4.15

Table B7.5: Summary table giving the average difference in percent (Δ %) for each element between the obtained concentrations and the recommended values (listed in Appendix B6). Notice, that these values are weighted average according to the number (n) of each different dissolutions were analyzed.

Appendix B8: Sr isotope data collected on sub-ng NBS 987 standard loads by TIMS

For Sr isotope standard, we used NBS 987 (equals to SRM 987), which is a strontium carbonate standard citified by the National Institute of Standards and technology (http://www.nist.gov.srm).

Run order	Load (ng)	MI Session	87Sr/86Sr	±2SE
1	0.6	Vestfirdir	0.710267	0.000053
2	0.6	Vestfirdir	0.710242	0.000042
3	0.6	Vestfirdir	0.710240	0.000043
4	0.6	Vestfirdir	0.710293	0.000048
5	0.6	Vestfirdir	0.710258	0.000022
6	0.6	Vestfirdir	0.710272	0.000022
7	0.6	Vestfirdir	0.710243	0.000019
8	0.6	Vestfirdir	0.710249	0.000033
9	0.6	Vestfirdir	0.710260	0.000029
10	0.6	Vestfirdir	0.710257	0.000028
11	0.6	Vestfirdir	0.710293	0.000025
12	0.6	Vestfirdir	0.710225	0.000031
13	0.6	Vestfirdir	0.710257	0.000032
14	0.6	Vestfirdir	0.710255	0.000028
15	0.6	Vestfirdir	0.710265	0.000032
16	0.6	Vestfirdir	0,710239	0.000046
17	0.3	Vestfirdir	0.710245	0.000046
18	0.3	Vestfirdir	0.710254	0.000039
19	0.3	Vestfirdir	0.710272	0.000032
20	0.3	Vestfirdir	0.710298	0.000039
21	0.6	Vestfirdir	0.710256	0.000026
22	0.6	Vestfirdir	0,710267	0.000026
23	0.6	Vestfirdir	0.710268	0.000022
24	0.6	Vestfirdir	0.710212	0.000039
25	0.6	Vestfirdir	0.710281	0.000033
26	0.3	Vestfirdir	0.710295	0.000037
27	0.3	Vestfirdir	0.710219	0.000073
28	0.3	Vestfirdir	0.710279	0.000074
29	0.3	Vestfirdir	0.710265	0.000065
30	0.6	Vestfirdir	0.710290	0.000030
31	0.6	Vestfirdir	0.710251	0.000026
32	0.6	Vestfirdir	0.710279	0.000026
33	0.6	Vestfirdir	0.710265	0.000034
34	0.3	Vestfirdir	0.710269	0.000076
35	0.3	Vestfirdir	0.710245	0.000045

Table B8.1: Continues on the next two pages. See caption below the last part of the table.

Run order	Load (ng)	MI Session	⁸⁷ Sr/ ⁸⁶ Sr	±2SE
36	0.3	Vestfirdir	0.710252	0.000041
37	0.3	Vestfirdir	0.710280	0.000055
38	0.3	Vestfirdir	0.710261	0.000077
39	0.3	Vestfirdir	0.710299	0.000131
40	0.1	Vestfirdir	0.710243	0.000134
41	0.1	Vestfirdir	0.710227	0.000154
42	0.3	Vestfirdir	0.710255	0.000079
43	0.3	Vestfirdir	0.710263	0.000066
44	0.3	Vestfirdir	0.710302	0.000097
45	0.6	Vestfirdir	0.710245	0.000025
46	0.6	Vestfirdir	0.710288	0.000028
47	0.3	Vestfirdir	0.710262	0.000054
48	0.3	Vestfirdir	0.710251	0.000056
49	0.3	Vestfirdir	0.710222	0.000070
50	0.1	Vestfirdir	0.710261	0.000100
51	0.1	Vestfirdir	0.710267	0.000089
52	0.3	Vestfirdir	0.710238	0.000091
53	0.3	Vestfirdir	0.710245	0.000077
54	0.6	Vestfirdir	0.710245	0.000049
55	0.6	Vestfirdir	0.710261	0.000092
56	0.3	Vestfirdir	0.710313	0.000058
57	0.1	Vestfirdir	0.710299	0.000297
58	0.6	Vestfirdir	0.710263	0.000049
59	0.3	Vestfirdir	0.710276	0.000088
60	0.3	Vestfirdir	0.710250	0.000108
61	0.3	Vestfirdir	0.710243	0.000057
62	0.3	BIP	0.710258	0.000047
63	0.3	BIP	0.710280	0.000042
64	0.1	BIP	0.710266	0.000068
65	0.1	BIP	0.710267	0.000058
66	0.1	BIP	0.710272	0.000056
67	0.3	BIP	0.710279	0.000116
68	0.3	BIP	0.710298	0.000060
69	0.3	BIP	0.710237	0.000004
70	0.1	BIP	0.710269	0.000137
71	0.3	BIP	0.710291	0.000057
72	0.3	BIP	0.710278	0.000121
73	0.3	BIP	0.710269	0.000044
74	0.3	BIP	0.710265	0.00004
75	0.1	BIP	0,710255	0.00011

Table B8.1: Continued.

Run order	Load (ng)	MI Session	87Sr/86Sr	±2SE
76	0.3	BIP	0.710247	0.000025
77	0.3	BIP	0.710268	0.000027
78	0.3	BIP	0.710271	0.000033
79	0.3	BIP	0.710256	0.000036
80	0.1	BIP	0.710263	0.000063
81	0.3	BIP	0.710280	0.000072
82	0.3	BIP	0.710255	0.000039
83	0.1	BIP	0.710268	0.000111
84	0.1	BIP	0.710235	0.000098
85	0.1	BIP	0.710243	0.000147
86	0.3	BIP	0.710246	0.000042
87	0,3	BIP	0.710240	0.000051
88	0.3	BIP	0.710245	0.000037
89	0.3	BIP	0.710214	0.000038
90	0.3	BIP	0.710244	0.000042
91	0.1	BIP	0.710289	0.000063

Table B8.1: Table including 91 NBS 987 sub-ng loads analyzed in association with MI work presented in this Ph.D. thesis. Data is ordered in accordance with the run order. The first 61 standards were analyzed in association with the Vestfirdir MIs (*Chapter 3*), and the following 30 analyses with the BIP MIs (*Chapter 4*). The data was colleted using the ThermoFinnigan TIMS at *AHIGL* (Department of Earth Sciences, Durham University).

Load size	0.1 ng	0.3 ng	0.6 ng
n	15	46	30
87 Sr/86 SrAve	0.710262	0.710262	0.710260
±2SD	0.000038	0.000045	0.000039
±2SD	43	63	54
Sub-ng	Long term	Vestfirdir MI	Baffin Island M
Sub-ng	Long term	Vestfirdir MI	Baffin Island M
Sub-ng	Long term 91	Vestfirdir MI 61	Baffin Island MI 30
Sub-ng n Interval	Long term 91 I through 91	Vestfirdir MI 61 1 through 61	Baffin Island M 30 62 through 91
Sub-ng n Interval ⁸⁷ Sr/ ⁸⁶ Sr _{Ave}	Long term 91 1 through 91 0.710261	Vestfirdir MI 61 1 through 61 0.710261	Baffin Island M 30 62 through 91 0.710262
Sub-ng n Interval ⁸⁷ Sr/ ⁸⁶ Sr _{Ave} ±2SD	Long term 91 1 through 91 0.710261 0.000042	Vestfirdir MI 61 1 through 61 0.710261 0.000044	Baffin Island MI 30 62 through 91 0.710262 0.000038

Table B8.2: Statistic overview of the NBS 987 Sr isotope data collected over a 9 month period using the ThermoFinnigan TIMS at *AHIGL* (Department of Earth Sciences, Durham University). These standards were analyzed in connection with the Vestfirdir and BIP MI work presented in the Ph.D, thesis. 'n' gives the number of analyses.

Test Session	Statistics	Load (ng)	87Sr/86Sr	±2SE
87 Sr/86 SrAve	0.710205	0.01	0.710195	0.000441
±2SD	0.000041	0.01	0.710228	0.000821
±2SD (ppm)	57	0.01	0.710191	0.001422
n	3			
Test Session	Statistics	Load (ng)	⁸⁷ Sr/ ⁸⁶ Sr	±2SE
Test Session	Statistics 0.709908	Load (ng) 0.025	⁸⁷ Sr/ ⁸⁶ Sr 0.710204	±2SE 0.000104
Test Session ⁸⁷ Sr/ ⁸⁶ Sr _{Ave} ±2SD	Statistics 0.709908 0.000531	Load (ng) 0.025 0.025	⁸⁷ Sr/ ⁸⁶ Sr 0.710204 0.709691	±2SE 0.000104 0.000068
Test Session ⁸⁷ Sr/ ⁸⁶ Sr _{Ave} ±2SD ±2SD (ppm)	Statistics 0.709908 0.000531 747	Load (ng) 0.025 0.025 0.025	⁸⁷ Sr/ ⁸⁶ Sr 0.710204 0.709691 0.70983	±2SE 0.000104 0.000068 0.000131

Table B8.3: A few test were done to run 0.025 ng and 0.010 ng NBS 987 standard loads on the ThermoFinnigan TIMS at *AHGIL* (Department of Earth Sciences, Durham University).

Trace eler	ment conce	entrations	of 12 indiv	idual TPB	s (pg)									
Element	M14-43	M14-44	M14-45	M14-46	M14-47	M14-48	M14-49	M14-50	M14-51	M14-52	M14-53	M14-54	TPB _{M14}	±2SD
Ti	0.27	0.35	0.50	0.11	0.19	0.18	0.18	0.31	0.68	0.27	0.25	0.59	0.32	0.35
Rb	0.41	4.36	4.62	0.71	-0.19	1.22	4.02	0.87	2.25	2.40	2.54	2.50	1.41	2.06
Sr	0.55	22,60	13.70	0.86	4.18	8.98	11.50	3.37	6.50	8.04	6.23	4.86	4.84	5.87
Y	-0.32	0.39	1.31	-0.41	-0.45	-0.25	0.40	-0.55	-0.16	0.25	0.69	0.32	0.10	1.11
Zr	36.65	96.89	323.93	33.05	123.17	71.38	63.49	118.33	116.72	86.82	64.11	75.90	80.59	62.32
Nb	6.52	5.53	15.26	11.12	21.20	4.21	53.89	12.51	9.04	9.55	4.42	6.45	9.62	10.38
Ba	33.99	29.95	4.39	8.81	9.01	9.93	26.61	7.24	12.30	14.41	9.59	11.73	9.71	5.86
La	0.31	0.91	5.69	0.38	0.35	1.15	2.18	0.38	1.36	1.32	0.60	1.80	0.86	1.28
Ce	0.66	1.86	9.23	0.42	0.38	0.74	2.21	0.68	2.29	3.13	1.24	1.43	1.37	1.81
Pr	0.05	0.13	0.79	-0.11	0.03	0.13	0.21	-0.02	0.08	0.10	0.17	0.40	0.16	0.47
Nd	-0.21	0.28	3.87	0.08	-0.28	0.20	0.69	0.17	0.56	1.18	0.35	0.96	0.36	0.91
Sm	-0.24	-0.08	0.38	0.02	0.00	0.01	0.06	0.10	0.06	0.06	0.09	-0.05	0.00	0.20
Eu	-0.18	-0.14	-0.09	-0.07	-0.06	-0.10	-0.12	-0.07	-0.12	-0.04	0.04	0.11	-0.07	0.16
Gd	-0.83	-0.83	-0.27	-0.85	-0.83	-0.69	-0.94	-0.71	-0.74	-0.51	-0.05	0.08	-0.60	0.68
Dy	-0.10	0.03	0.29	-0.15	-0.11	0.02	-0.07	-0.03	0.00	0.10	0.19	0.05	0.02	0.26
Er	-0.03	-0.04	0.12	-0.04	-0.02	-0.07	-0.04	0.00	0.00	0.00	0.02	0.03	-0.01	0.10
Yb	0.02	0.01	0.18	-0.06	-0.01	0.00	0.03	0.02	0.02	-0.04	0.09	0.06	0.03	0.13

Table B9.1: Trace element data collected on 12 individual total procedural blanks (TPB) processed in association with the BIP MIs data set presented in *Chapter 4*. The data is collected using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The average TPB composition or the TPB-M14 is the composition used for blank correction of the data presented in *Chapter 4* in combination with the Sr isotope composition of TPB60 (Table 2.6). Data in grey is rejected.

Trace ele	ement concentrati	ons of 8 indiv	idual TPBs					_		
	M14-55 19	M14-56 21	M14-57 23	M14-61 32	M14-62 34	M14-64 51	M14-65 53	M14-66 55	TPB14-55	±2SD
Ti	0.13	0.17	0.29	0.12	0.19	0.16	0.09	0.12	0.16	0.12
Rb	1.88	2.01	1.70	2.03	2.04	1.41	1.09	0.79	1.62	0.95
Sr	6.39	4.98	6.16	6.14	5.91	5.12	3.53	1.77	5.00	3.21
Y	0.14	0.00	0.23	0.28	0.43	0.04	0.30	0.07	0.19	0.30
Zr	9.39	99.41	253.99	159.52	15.06	9.62	16.26	79.50	80.34	177.58
Nb	1.59	6.66	2.02	3.41	2.88	2.94	2,56	3.47	3.19	3.09
Ba	35.83	2.88	6.63	11.19	7.15	2.56	7.43	3.65	9.67	21.91
La	2.03	0.09	0.12	0.23	0.07	0.42	0.05	0.12	0.39	1.35
Ce	0.64	0.14	0.27	0.45	0.27	0.15	0.16	0.13	0.28	0.36
Pr	0.21	0.00	0.10	0.06	0.00	0.13	-0.03	-0.03	0.06	0.18
Nd	0.72	0.23	0.30	0.26	0.35	0.26	0.28	0.55	0.37	0.35
Sm	-0.03	-0,18	-0.04	-0.12	-0.20	-0.11	-0.11	-0.16	-0.12	0.12
Eu	-0.03	0.02	0.01	0.01	0.04	0.04	0.01	-0.01	0.01	0.04
Gd	-0.17	-0.02	-0.03	-0.02	-0.14	-0.21	0.00	-0.03	-0.08	0.16
Dy	0.10	0.05	-0.01	0.00	0.06	0.00	-0.01	-0.04	0.02	0.09
Er	-0.03	-0.02	-0.02	-0.03	-0.04	-0.05	-0.03	0.00	-0.03	0.03
Yb	0.00	0.00	0.04	0.00	0.04	-0.01	0.00	0.00	0.01	0.04

Table B9.2: Another example of TPB compositions collected in association with MI work using the Thermo ELEMENT2 at AHIGL (Department of Earth Sciences, Durham University).

TPB 1D	TPB _{M14}	TPB _{M11}	TPB14-55	TPBAve	±2SD	LOD
n	9	12	8	29		10
Ti	0.31	0.11	0.16	0.20	0.22	0.01
Rb	1.41	0.94	1.62	1.32	0.69	0.41
Sr	4.84	4.75	5.00	4.86	0.26	0.73
Y	0.10	0.19	0.19	0.16	0.10	0.40
Zr	80.59	48.01	80.34	69.65	37.47	0.41
Nb	9.62	3.64	3.19	5.48	7.17	0.15
Ba	9.71	9.64	9.67	9.09	1.97	2.06
La	0.86	0.84	0.39	0.73	0.59	0.10
Ce	1.37	1.00	0.28	0.98	1.39	0.11
Pr	0.16	0.10	0.06	0.11	0.10	0.15
Nd	0.36	0.34	0.37	0.36	0.03	0.32
Sm	0.00	0.00	-0.12	-0.04	0.14	0.29
Eu	-0.07	0.00	0.01	-0.02	0.09	0.09
Gd	-0.60	-0.13	-0.08	-0.27	0.57	0.26
Dy	0.02	0.03	0.02	0.02	0.02	0.11
Er	-0.01	0.00	-0.03	-0.01	0.03	0.05
Yb	0.03	0.02	0.01	0.02	0.02	0.07
Rb/Sr	0.292	0.198	0.324	0.271	0.130	

 Table B9.3: Summary table of TPB collected in association with MI work using the Thermo ELEMENT2 at AHIGL
 (Department of Earth Sciences, Durham University). LOD gives the limit of detection (See Table B9.4b)

Trace ele	ment conce	entrations	of 10 analy	te blanks ((3% UpA 1	HNO ₃) ana	lyzed with	the BIP N	Пs (pg/ml	.)	Average
Element	Blank 1	Blank 2	Blank 3	Blank 4	Blank 5	Blank 6	Blank 7	Blank 8	Blank 9	Blank 10	(n=10) Blank _{ave}
Ti	0.00	0.01	0.00	0.00	-0.01	-0.01	0.00	0.00	0.00	0.02	0.00
Rb	1.21	0.24	-0.13	-0.66	-0.67	-0.84	-0.01	-0.03	0.00	2.22	0.13
Sr	-0.19	0.58	-0.21	0.69	-0.84	-1.09	0.29	-0.06	1.23	3.78	0.42
Y	-0.17	0.13	-0.15	-0.26	-0.32	-0.31	0.04	0.05	-0.07	0.10	-0.10
Zr	0.54	0.60	0.11	0.30	0.02	-0.28	-0.24	-0.24	-0.14	-0.25	0.04
Nb	0.04	-0.03	-0.03	0.06	-0.13	-0.14	-0.07	-0.05	-0.03	-0.03	-0.04
Ba	0.62	0.35	1.85	2.35	0.29	0.84	0.17	0.49	0.52	1.11	0.86
La	-0.01	0.05	0.00	0.08	0.03	0.07	0.00	-0.02	0.02	0.05	0.03
Ce	0.07	0.06	0.01	0.03	0.03	-0.01	0.01	-0.01	0.07	0.24	0.05
Pr	0.00	-0.06	-0.02	0.04	0.00	-0.03	0.00	-0.02	-0.02	0.10	0.00
Nd	-0.28	-0.28	-0.26	-0.15	-0.25	-0.24	-0.04	-0.05	-0.01	0.19	-0.14
Sm	-0.09	-0.05	-0.10	-0.07	-0.07	-0.01	-0.11	-0.08	-0.16	-0.06	-0.08
Eu	-0.05	0.01	-0.04	-0.04	-0.05	-0.07	0.00	0.00	-0.02	0.01	-0.03
Gd	-0.28	-0.27	-0.29	-0.34	-0.31	-0.33	0.02	-0.05	-0.05	0.03	-0.19
Dy	-0.05	-0.03	-0.03	0.00	-0.04	-0.04	0.01	-0.02	-0.01	0.00	-0.02
Er	-0.02	-0.03	-0.04	-0.02	-0.05	-0.04	-0.01	-0.01	-0.01	0.01	-0.02
Yb	0.02	-0.04	-0.03	0.00	-0.03	-0.01	0.01	0.00	-0.02	0.00	-0.01

Table B9.4a: Trace element compositions of 10 analyte blanks (3% UpA HNO3) analyzed by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) at AHIGL (Department of Earth Sciences, Durham University) in association with MI work. Concentrations are given in pg/mL. Marked in light grey is the average composition of 10 analyte blanks.

-	-										(n=10)	
Element	Blank 1	Blank 2	Blank 3	Blank 4	Blank 5	Blank 6	Blank 7	Blank 8	Blank 9	Blank 10	1SD	LOD
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Rb	0.19	0.23	0.09	0.18	0.13	0.09	0.11	0.07	0.03	0.26	0.14	0.41
Sr	0.27	0.18	0.12	2.95	0.39	0.47	0.20	0.14	0.36	0.05	0.24	0.73
Y	0.17	0.16	0.14	0.15	0.12	0.18	0.10	0.09	0.11	0.11	0.13	0.40
Zr	0.25	0.25	0.13	0.23	0.03	0.09	0.10	0.09	0.09	0.11	0.14	0.41
Nb	0.02	0.05	0.06	0.14	0.03	0.05	0.02	0.07	0.03	0.05	0.05	0.15
Ba	0.17	0.76	1.10	2.13	0.92	0.88	0.46	0.24	0.07	0.15	0.69	2.06
La	0.03	0.01	0.05	0.07	0.05	0.04	0.02	0.02	0.02	0.02	0.03	0.10
Ce	0.01	0.05	0.05	0.08	0.02	0.01	0.05	0.03	0.02	0.04	0.04	0.11
Pr	0.05	0.02	0.05	0.09	0.08	0.03	0.04	0.01	0.02	0.11	0.05	0.15
Nd	0.07	0.14	0.11	0.22	0.16	0.17	0.04	0.03	0.04	0.07	0.11	0.32
Sm	0.10	0.09	0.08	0.09	0.17	0.17	0.05	0.07	0.06	0.08	0.10	0.29
Eu	0.05	0.02	0.03	0.03	0.04	0.02	0.02	0.03	0.02	0.04	0.03	0.09
Gd	0.09	0.17	0.05	0.11	0.08	0.11	0.10	0.07	0.03	0.05	0.09	0.26
Dy	0.03	0.05	0.07	0.06	0.05	0.03	0.03	0.01	0.01	0.03	0.04	0.11
Er	0.03	0.03	0.00	0.03	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.05
Yb	0.03	0.02	0.03	0.03	0.02	0.01	0.04	0.02	0.03	0.02	0.02	0.07

Table B9.4b: Internal precision (1SE) for each of the 10 analyte blanks in pg/mL presented in Table B5.4a. The reproducibility (1SD) of the analyte blanks equals the average of the internal precision (1SE) of the 10 blanks. Marked in light grey is the lower detection limit (LOD) for each element calculated as 3 times the average standard deviation (1SD).

APPENDIX C

Contents of Appendix C

Appendix C1: Standard ICPMS data collected during Vestfirdir MI session

Appendix C2: TPB associated with the Vestfirdir MI study

Appendix C3: Sr isotope data collected on sub-ng NBS 987 standards by TIMS

Appendix C4: BIP MIs - normalized trace element content to a 100 µm-sized MI

Appendix C5: Parameters used in the modelling of Figure 3.8

Appendix C1: Standard ICPMS data collected during Vestfirdir MI session

Standard ID: 25 ppb AGV-1 (n=9)

Trace	element	compos	sition (p	g/mL)									
No.	1	п	Ш	IV	V	VI	VII	VIII	IX	AGV-1Ref	AGV-1Ave	±2SD	Δ%
Ti	0.19	0.19	0.20	0,21	0.21	0.21	0.21	0.22	0.22	0.21	0.21	0.02	-2.78
Rb	15.34	15.20	14.13	13.08	12.78	12.59	12.93	13.27	13.41	13.40	13.64	2.05	1.77
Sr	140.18	137.22	140.90	127.25	127.24	125.52	125.52	128.78	130.50	132.40	131.46	12.50	-0.71
Y	4.28	3.98	4.50	4.18	4.25	4.11	4.11	4.13	4.22	4.20	4.20	0.29	-0.07
Zr	49.56	48.36	50.14	44.47	44.73	44.22	44.04	43.74	44.59	45.00	45.98	5.17	2.18
Nb	3.08	2.94	3.10	2.91	2.87	2.87	2.81	2.83	2.76	2.88	2.91	0.23	0.96
Ba	286.12	280.15	304.06	234.90	236.40	240.10	227.08	241.15	242.27	244.20	254.69	55.28	4.30
La	8.34	8.70	8.90	7.58	7.33	7.29	7,34	7,52	7,59	7.60	7.84	1.26	3,18
Ce	14.37	16.31	15.43	12.87	12.95	12.66	12.68	12.86	12.85	13.20	13.66	2.74	3.51
Pr	1.77	2.07	1.95	1.38	1.43	1.41	1.42	1.57	1.47	1.58	1.61	0.52	1.80
Nd	7.37	9.91	8.06	6.42	6.53	6.05	6.14	6.71	6.65	6.80	7.09	2.46	4.33
Sm	1.15	1.48	1.26	1.14	1.04	1.16	1.19	1.19	1.03	1.18	1.18	0.27	0.18
Eu	0.33	0.38	0.40	0.30	0.31	0.34	0.31	0.30	0.32	0.33	0.33	0.07	-0.09
Gd	0.97	1.02	1.23	0.91	0.92	1.03	0.90	0.84	1.10	1.04	0.99	0.24	-4.76
Dy	0.67	0.76	0.97	0.86	0.70	0.73	0.75	0.85	0.64	0.76	0.77	0.21	1.09
Er	0.31	0.33	0.37	0.04	0.04	0.05	0.04	0.05	0.04	0.23	0.14	0.30	-39.30
Yb	0.39	0.39	0.47	0.32	0.32	0.34	0.28	0.30	0.30	0.33	0.35	0.12	3.58
Rb/Sr	0.109	0.111	0.100	0.103	0.101	0.100	0.103	0.103	0.103	0,101	0.104	0.01	2.50

Table C1.1a: Standard data collected on AGV-1 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The AGV-1 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and average Rb/Sr ratios and the reference values (Δ %).

Standard ID: 250 ppb AGV-1 (n=6)

Trace e	lement con	mposition	(pg/mL)						
No.	1	п	ш	IV	v	VI	AGV-1 _{Ref}	AGV-1Ave	±2SD	Δ%
Ti	1.94	1.69	1.84	1.99	1.99	1.99	2.12	1.91	0.24	-10.07
Rb	111.69	123.88	139.07	136.68	135.79	136.73	134.00	130.64	21.46	-2.51
Sr	1203.29	1261.06	1378.48	1236.86	1231.04	1228.15	1324.00	1256.48	125.12	-5.10
Y	37.71	38.42	41.48	40.07	39.58	39.66	42.00	39.49	2.63	-5.98
Zr	389.47	422.22	454.29	421.07	418.80	418.96	450.00	420.80	41.12	-6.49
Nb	26.43	27.67	29.31	26.61	26.66	26.66	28.80	27.22	2.23	-5.49
Ba	1972.11	2396.16	2649.14	2337.29	2316.40	2333.11	2442.00	2334.03	433.09	-4.42
La	67.63	74.94	79.68	71.76	71.72	71.88	76.00	72.94	8.08	-4.03
Ce	117.54	132.03	140.38	121.92	121.49	122.66	132.00	126.00	17.04	-4.54
Pr	14.33	16.46	17.52	14.23	13.93	14.70	15.80	15.20	2.90	-3.82
Nd	60.91	68.95	75.52	62.78	61.83	61.17	68.00	65.19	11.74	-4.13
Sm	12.04	12.04	13.30	11.37	11.34	11.06	11.80	11.86	1.63	0.48
Eu	3.18	3.57	3.76	3.09	3.05	2.87	3.32	3.25	0.68	-2.00
Gd	9.84	11.33	12.44	8.78	8.83	8.50	10.40	9.96	3,20	-4.27
Dy	7.87	7.45	8.19	7.41	7.21	7.01	7.60	7.52	0.87	-1,02
Er	2.00	3.47	3.76	0.42	0.47	17.42	2.32	1.75	3.15	-24.73
Yb	2.71	3.80	3.99	3.10	2.91	3.00	3.34	3.25	1.04	-2.66
Rb/Sr	0.093	0.098	0.101	0.111	0.110	0.111	0.101	0,10	0.02	2.77

Table C1.1a: Continued

Standard	ID;	25	ppb	BH	VO-1	(n=4)	Ĭ
----------	-----	----	-----	----	-------------	-------	---

Trace e	race element composition (pg/mL)											
No.	1	п	Ш	IV	BHVO-1Ref	BHVO-1Ave	±2SD	Δ%				
Ti	0.51	0.47	0.46	0.49	0.54	0.48	0.05	-11.10				
Rb	2.49	1.68	1.40	1.57	1.92	1.78	0.97	-7.08				
Sr	74.01	75.92	73.64	78.14	80.60	75.43	4.13	-6.42				
Y	5.65	5.87	5.58	6.00	5.52	5.77	0.39	4.58				
Zr	33.25	37.18	35.07	37.70	35.80	35,80	4.09	-0.01				
Nb	3.61	3.74	3.75	3.83	3.90	3.73	0.19	-4.28				
Ba	46.08	54.31	55.14	56.75	27.80	53.07	9.54	90,90				
La	3.14	3.52	3.41	3.61	3.16	3.42	0.41	8.30				
Ce	7.22	8.05	7.96	8.33	7.80	7.89	0.95	1.15				
Pr	1.01	1.13	1.21	1.06	1.14	1.10	0.17	-3.25				
Nd	4.90	5.73	5.83	5.90	5.04	5.59	0.93	10,92				
Sm	1.09	1.33	1.39	1.35	1.24	1.29	0.27	3.94				
Eu	0.42	0.40	0.47	0.46	0.41	0.44	0.06	6.35				
Gd	1.34	1.49	1.32	1.51	1.28	1.41	0.20	10.35				
Dy	1.18	1.18	1.25	1.27	1.04	1.22	0.09	17.52				
Er	0.28	0.52	0.50	0.44	0.48	0.43	0.22	-9.47				
Yb	0.34	0.45	0.50	0.51	1.04	0.45	0.16	-56.69				
Rb/Sr	0.034	0.022	0.019	0.020	0.024	0.02	0.01	-0.49				

Table C1.1b: Standard data collected on BHVO-1 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The BHVO-1 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and Rb/Sr ratios and the reference values (Δ %).

No.	1	П	W2 _{Ref}	W2Ave	±2SD	Δ%
Ti	0.18	0.20	0.22	0.19	0.02	-14,70
Rb	3.43	3.86	4.07	3.65	0.60	+10:43
Sr	35.23	39.30	38.66	37.26	5.76	-3.62
Y	4.85	5.18	4.27	5.02	0.48	17.42
Zr	20.41	22.04	18.57	21,23	2.31	14.28
Nb	1.51	1.63	1.55	1.57	0.18	1.08
Ba	61.18	64.37	33.42	62.77	4.51	87.85
La	2.54	2.71	2.12	2.63	0.24	23.89
Ce	5.24	5.64	4.61	5.44	0,56	18:06
Pr	0.68	0.66	0.59	0.67	0.03	14.34
Nd	3.22	3.30	2.64	3.26	0.12	23.25
Sm	0.82	0.87	0.67	0.85	0.08	26.02
Eu	0.20	0.22	0.22	0.21	0.04	-6.32
Gd	0.69	0.93	0.73	0.81	0.34	11.91
Dy	0.79	0.84	0.74	0.81	0.07	9.68
Er	0.50	0.50	0.45	0.50	0.00	11.96
Yb	0.50	0.48	0.41	0.49	0.03	19,62
Rb/Sr	0.098	0.098	0.105	0.10	0.00	-7.09

Standard ID: 25 ppb ppt W2 (n=2)

Table C1.1b: Continued

No.	1	11	W2 _{Ref}	W2 _{Ave}	±2SD	Δ%
Ti	1.80	1.88	2.20	1.84	0.13	-16.36
Rb	39.06	40.73	40.72	39.89	2.36	-2.03
Sr	390.38	406.94	386.62	398.66	23,41	3.11
Y	44.71	46.35	42.72	45.53	2.33	6.58
Zr	175.05	180.48	185.74	177.76	7.68	-4.29
Nb	14.82	15.25	15.52	15.03	0.61	-3.15
Ba	381.20	392.40	334.16	386.80	15.83	15.75
La	21.53	22.40	21.22	21.97	1.22	3.52
Ce	46.78	47.47	46.06	47.13	0.97	2.31
Pr	6.13	6.24	5.88	6.19	0.15	5.20
Nd	29.85	30.69	26.44	30.27	1.19	14.48
Sm	7.24	7.20	6.72	7.22	0.05	7.43
Eu	2.49	2.57	2.24	2.53	0.11	12.92
Gd	8.77	9.48	7.26	9.13	1.01	25.71
Dy	8.62	9.25	7.42	8.93	0.89	20.42
Er	4.47	4.62	4.46	4.54	0.21	1.90
Yb	4.98	4.97	4.06	4.98	0.02	22.54
Rb/Sr	0.100	0.100	0.105	0.10	0.00	-4.99

Standard ID: 250 ppb W2 (n=2)

Table C1.1c: Standard data collected on W2 using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The W2 reference values are marked in solid grey, however recalculated accordingly to degree of dilution of each solution (either 25, 50, 250, or 500 ppb). The undiluted reference values are listed in Appendix B6. Marked in light grey are the concentrations of Rb and Sr plus the Rb/Sr ratio obtained for each analysis. Also marked in light grey is the average difference in % between the average obtained concentrations and Rb/Sr ratios and the reference values (Δ %).

Appendix C2: TPB associated with the Vestfirdir MI study

n	12	
TPB ID	TPBMII	±2SE
Ti	0.11	0.01
Rb	0.94	0.15
Sr	4.75	0.59
Y	0.19	0.08
Zr	48.01	5.23
Nb	3.64	0.09
Ba	9.64	0.33
La	0.84	0.09
Ce	1.00	0.16
Pr	0.10	0.05
Nd	0.34	0.03
Sm	0.00	0.05
Eu	0.00	0.02
Gd	-0.13	0.05
Dy	0.03	0.07
Er	0.00	0.03
Yb	0.02	0.07
Rb/Sr	0.198	

Table C2.1: Trace element composition (pg/sample) of TPB_{M11} obtained by double focusing magnetic sector field ICPMS using the Thermo ELEMENT2 at *AHIGL* (Department of Earth Sciences, Durham University). The trace element composition of TPB_{M11} and the Sr isotope composition of TPB60 (Appendix B9) was used for the blank correction of the Vestfirdir MI data set.

Blan	ID: Up	A 3% HI	NO3 (n=2	20)																		
Trac	element	compos	ition (pg	/mL)																		
No.	1	п	m	IV	V	VI	VII	VIII	IX	х	XI	XII	хш	XIV	XV	XVI	XVII	XVIII	XIX	XX	BlankAve	±2SD
Ti	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
Rb	0.84	0.75	0.77	1.59	-	-		-		1.51	1.47	1.65	1.35	+	-		0.28	0.47	0.54	0.67	0.99	0.49
Sr	1.01	1.09	0.95	1.69		-		-	-	2.13	1.90	1.95	1.94	0.59	0.56	0.37	-		-		1.29	0.65
Y	0.02	0.03	0.02	0.03	0.03	0.00	× .	0.00	-	0.04	0.05	0.03	0.02	0.08	0.07	0.07	-	-	0.01	0.02	0.03	0.02
Zr	1.60	1.51	1.57	1.68	1.66	1.62	1.68	1.72	1.67	1.11	0.47	0.53	0.30	8.94	8.92	8.97	1.33	1.02	0.98	0.79	2.40	2.85
Nb	0.05	0.03	0.03	0.05	0.03	0.03	0.04	0.09	0.05		~	-	+	+	-		0.01	0.00	-	0.03	0.04	0.02
Ba	24.41	24.33	24.29	1.59	16.20	16.23	11.95	13.85	14.01	6.74	6.13	6.44	6.90	2.13	0.34	-	1 G	-	-	-	11.70	8.28
La	0.33	0.33	0.33	0.31	0.33	0.32	0.34	0.30	0.31	0.23	0.07	0.05	0.07	6.41	6.43	6.35	-	-	-	Ŧ	1.41	2.48
Ce	0.56	0.55	0.56	0.60	0.59	0.59	0.60	0.54	0.54	0.14	0.06	0.04	0.07	3.45	3.51	3.58	~			-	1.00	1.27
Pr	0.03	0.02	0.03	0.03	0.03	0.03	0.02	0.03	0.03		0.04	0.00		0.55	0.64	0.74		-	0.00	-	0.15	0.26
Nd	0.12	0.09	0.09	0.12	0.11	0.07	0.06	0.07	0.05	0.11	+		-	1.65	1.33	1.59	+	-	-	-	0.42	0.63
Sm	0.07	0.01	0.01			-	-	-					-	0.06	0.06	0.08		0.00		-	0.04	0.03
Eu	0.01	0.01	0.02	0.01	+	-	-		-	0.02	0.00	0.03	0.03	0.01	0.01	0.03	0.00	0.01	0.00	0.03	0.02	0.01
Gd	0.00	0.00		0.00	+	-		-	-	0.09	0.05	0.05	0.01	0.48	0.53	0.52	0.02	0.01	0.01	0.00	0.13	0.21
Dy	-					2	-	0.00	-	0.00	0.02	0.02	0.01	0.05	0.04	0.04		0.00	0.03	-	0.02	0.02
Er	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Yb	0.00	0.00	-	-	0.00	0.00	0.00	0.00		0.01	0.01	0.02	0.00	0.01	0.02	0.02	0.00	0.01	0.01	0.00	0.01	0.01

Table C2.2a: Trace element compositions of 20 analyte blanks (3% UpA HNO3) analyzed by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) at AHIGL (Department of Earth Sciences, Durham University) in association with MI work. Concentrations are given in pg/mL.

Blank ID	: UpA	3% F	$INO_3($	n=20)
----------	-------	------	----------	-------

1 SE on trace element composition (pg/mL)

No.	1	п	ш	IV	v	VI	VII	VIII	IX	х	XI	XII	хш	XIV	XV	XVI	XVII	XVIII	XIX	XX	LOD
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rb	0.08	0.09	0.09	0.16	0.05	0.12	0.12	0.05	0.03	0.19	0.12	0.07	0.13	0.19	0.13	0.10	0.16	0.26	0.11	0.07	0.17
Sr	0.15	0.16	0.10	0.15	0.03	0.10	0.10	0.04	0.02	0.37	0.25	0.14	0.16	0.12	0.24	0.15	0.07	0.13	0.22	0.34	0.28
Y	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.05	0.03	0.02	0.04	0.03	0.03	0.05	0.03	0.05	0.06	0.01	0.05
Zr	0.04	0.04	0.03	0.14	0.06	0.07	0.10	0.07	0.08	1.02	0.29	0.16	0.23	0.42	0.30	0.64	0.37	0.07	0.14	0.24	0.73
Nb	0.04	0.01	0.01	0.03	0.02	0,01	0.03	0.02	0.04	10.0	0.02	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.02
Ba	0.24	0.25	0,26	0.04	0.17	0.31	0.11	0.16	0.08	1.67	1.41	2.03	0.50	1.73	0.92	0.96	3.79	0.80	0.35	1.91	2.87
La	0.02	0.02	0.01	0.01	10.0	0.00	0.01	0.01	0.01	0.32	0.02	0.02	0.03	0.11	0.10	0.30	0.08	0.01	0.03	0.02	0.28
Ce	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.00	0.01	0.14	0.05	0.03	0.03	0.06	0.17	0.14	0.08	0.03	0.04	0.06	0.15
Pr	0.01	0.00	0.02	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.05	0.04	0.01	0.13	0.13	0.26	0.02	0.02	0.06	0.03	0.19
Nd	0.04	0.02	0.05	0.04	0.02	0.01	0.01	0.02	0.03	0.19	0.08	0.05	0.07	0.11	0.20	0.26	0.06	0.04	0.03	0.05	0.21
Sm	0.06	0.02	0.02	0.02	0.01	0.04	0.03	0.03	0.01	0.01	0.05	0.11	0.06	0.03	0.09	0.05	0.07	0.07	0.03	0.03	0.08
Eu	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.00	0.01	0.04	0.02	0.03	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Gd	0.03	0.03	0.01	0.03	0.01	0.01	0.01	0.02	0.02	0.08	0.04	0.06	0.03	0.08	0.14	0.16	0.03	0.01	0.02	0.03	0.13
Dy	0.02	0.01	0.01	0.01	0.01	0.02	0.00	0.02	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.03	0.01	0.02	0.01	0.01	0.02
Er	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Yb	0.00	0.01	0.01	0.03	0.01	0.01	0.01	0.02	0.00	0.02	0.01	0.01	0.00	0.02	0.03	0.02	0.01	0.01	0.02	0.01	0.02

Table C2.2b: Internal precision (ISE) for each of the 20 analyte blanks in pg/mL presented in Table C2.2a. The reproducibility (ISD) of the analyte blanks equals the average of the internal precision (ISE) of the 10 blanks. Marked in light grey is the limit of detection (LOD) for each element calculated as 3 times the average standard deviation (ISD).

Appendix C3: Sr isotope composition of sub-ng NBS 987 loads analyzed by TIMS

Run order	Load (ng)	MI Session	⁸⁷ Sr/ ⁸⁶ Sr	±2SE
I.	0.6	Vestfirdir	0.710267	0.000053
2	0.6	Vestfirdir	0.710242	0.000042
3	0.6	Vestfirdir	0.710240	0.000043
4	0.6	Vestfirdir	0.710293	0.000048
5	0.6	Vestfirdir	0.710258	0.000022
6	0.6	Vestfirdir	0.710272	0.000022
7	0.6	Vestfirdir	0.710243	0.000019
8	0.6	Vestfirdir	0.710249	0.000033
9	0.6	Vestfirdir	0.710260	0.000029
10	0.6	Vestfirdir	0.710257	0.000028
11	0.6	Vestfirdir	0.710293	0.000025
12	0.6	Vestfirdir	0.710225	0.000031
13	0.6	Vestfirdir	0.710257	0.000032
14	0.6	Vestfirdir	0.710255	0.000028
15	0.6	Vestfirdir	0.710265	0.000032
16	0.6	Vestfirdir	0.710239	0.000046
17	0.3	Vestfirdir	0.710245	0.000046
18	0.3	Vestfirdir	0.710254	0.000039
19	0.3	Vestfirdir	0.710272	0.000032
20	0.3	Vestfirdir	0.710298	0.000039
21	0.6	Vestfirdir	0.710256	0.000026
22	0.6	Vestfirdir	0.710267	0.000026
23	0.6	Vestfirdir	0.710268	0.000022
24	0.6	Vestfirdir	0.710212	0.000039
25	0.6	Vestfirdir	0.710281	0.000033
26	0.3	Vestfirdir	0.710295	0.000037
27	0.3	Vestfirdir	0.710219	0.000073
28	0.3	Vestfirdir	0.710279	0.000074
29	0.3	Vestfirdir	0.710265	0.000065
30	0.6	Vestfirdir	0.710290	0.000030
31	0.6	Vestfirdir	0.710251	0.000026
32	0.6	Vestfirdir	0.710279	0.000026
33	0.6	Vestfirdir	0.710265	0.000034
34	0.3	Vestfirdir	0.710269	0.000076
35	0.3	Vestfirdir	0.710245	0.000045
36	0.3	Vestfirdir	0.710252	0.000041
37	0.3	Vestfirdir	0.710280	0.000055
38	0.3	Vestfirdir	0.710261	0.000077
39	0.3	Vestfirdir	0.710299	0.000131
40	0.1	Vestfirdir	0.710243	0.000134

Table C3.1a: See caption on next page.

Run order	Load (ng)	MI Session	⁸⁷ Sr/ ⁸⁶ Sr	±2SE
41	0.1	Vestfirdir	0.710227	0.000154
42	0.3	Vestfirdir	0.710255	0.000079
43	0.3	Vestfirdir	0.710263	0.000066
44	0.3	Vestfirdir	0.710302	0.000097
45	0.6	Vestfirdir	0.710245	0.000025
46	0.6	Vestfirdir	0.710288	0.000028
47	0.3	Vestfirdir	0.710262	0.000054
48	0.3	Vestfirdir	0.710251	0.000056
49	0.3	Vestfirdir	0.710222	0.000070
50	0.1	Vestfirdir	0.710261	0.000100
51	0,1	Vestfirdir	0,710267	0.000089
52	0.3	Vestfirdir	0.710238	0.000091
53	0.3	Vestfirdir	0.710245	0.000077
54	0.6	Vestfirdir	0.710245	0.000049
55	0.6	Vestfirdir	0.710261	0.000092
56	0.3	Vestfirdir	0.710313	0.000058
57	0,1	Vestfirdir	0.710299	0.000297
58	0.6	Vestfirdir	0.710263	0.000049
59	0.3	Vestfirdir	0.710276	0.000088
60	0.3	Vestfirdir	0.710250	0.000108
61	0.3	Vestfirdir	0.710243	0.000057

Table C3.1a: Table including 61 NBS 987 sub-ng loads analyzed in association with the Vestfirdir MI work presented in *Chapter 3*. Data is ordered in accordance with the run order. The data was colleted using the ThermoFinnigan TIMS at *AGHIL* (Department of Earth Sciences, Durham University).

n	Load size (pg)	87 Sr/86 SrAve	±2SD	±2SD (ppm)
5	0.1	0.710259	0.00005	76
26	0.3	0.710264	0.00004	68
30	0.6	0.710260	0.00003	54
61	Total	0.710261	0.00004	61

Table C3.1b: Statistical summary of the NBS 987 standard data collected on sub-ng (0.1, 0.3, and 0.6 ng) load sizes presented in Table C3.1a. 'n' denotes number of analyzes. See also Figure 2.8 (*Chapter 2*).

MI ID	M11-1	M11-2	M11-3	M11-4	M11-5	M11-20	M11-21
Sample ID	408611	408611	408611	408611	408611	408611	408611
Trace elemen	t content nor	malized to a l	00 µm-sized N	41 (pg)			
Ti (ppm)	10987.14	4484.28	3741.42	2263.30	4188.15	3938.35	3036.42
Rb	13.21	2.09	3.25	1.46	2.78	1.82	2.46
Sr	985.70	41.07	66.97	24,19	38.09	35.34	19,36
Y	44.24	6.98	4.47	5.49	6.58	3.34	6.19
Zr	140.82	18.30	82.49	7.17	47.91	195.35	38.79
Nb	2.42	0.14	-0.27			1,33	-
Ba	2.68	34.94	104.16	159.09	37.58	29.17	31.01
La	9.13	2.16	2.26	2.10	2.42	0.74	1.86
Ce	19.84	6.54	7.42	3.91	6.35	3.05	4.84
Pr	2.77	0.86	0.56	0.42	0.66	0.17	0.46
Nd	11.30	3,90	3.02	1.82	2.79	1.45	1.69
Sm	104.92	1.12	1.64	0.61	0.76	0.67	0.64
Eu	2.12	0.31	0.26	0.16	0.19	0.12	0.19
Gd	4.13	1.37	0.72	0.70	0.77	0.62	0.74
Dy	5.67	1.12	0.70	0.89	0.96	0.59	0.85
Er	4.69	0.53	0.35	0.47	0.59	0.34	0.53
Yb	11.20	1.06	0.59	0.77	0.93	0.36	1.08

Appendix C4: BIP MIs - normalized trace element content to a 100 µm-sized MI

Table C4.1: BIP MIs - normalized trace element content to a 100 µm-sized MI. Concentrations obtained by double focusing magnetic sector field ICPMS at *AHIGL* (Department of Earth Sciences, Durham University).

MI ID	M11-6	M11-7	M11-8	M11-9	M11-15	M11-16
Sample ID	408624	408624	408624	408624	408624	408624
Trace elemen	nt content no	ormalized to	a 100 µm-siz	ed MI (pg)		
Ti (ppm)	18709.07	53920.43	10637.52	8820.89	7884.37	5562.67
Rb	10.52	4.11	5.04	4.75	2.88	5.15
Sr	135.48	342.57	92.59	144.66	382.09	126.40
Y	20.10	83.19	8.90	14.19	9.70	2.48
Zr	167.29	394.30	98.56	59.80	31.83	46.26
Nb	5.22	12.40	11.86	2.57	+	+
Ba	129.65	191.50	399.40	267,05	33.67	47.78
Lu	8.21	12.59	4.07	3.02	1.73	1.25
Ce	14.94	41.49	10.93	8.75	5.67	5,49
Pr	2.06	7.33	1.21	1.18	0.69	0.38
Nd	9.15	44.15	4,07	5.74	4.04	2.11
Sm	3.78	13.54	1.62	1.99	1.67	0.66
Eu	0.61	5.04	0.41	0.64	0.52	0.20
Gd	2.76	18.14	1.74	2.41	1.89	0.57
Dy	3.06	16.59	1.55	2.62	1.70	0.57
Er	1.68	5.54	0.69	1.03	1.11	0.26
Yb	2.95	6.48	0.92	1.38	1.45	0.29

Table C4.1: Continued

MIID	M11-10	M11-11	M11-12	M11-13	M11-14	M11-17
Sample ID	408772	408772	408772	408772	408772	408772
Trace eleme	nt content n	ormalized to	a 100 µm-siz	ed MI (pg)		
Ti (ppm)	2648.24	22500.53	8586.84	16345.74	16138.68	3213.53
Rb	1.17	9.48	2.02	6.54	10.06	3.37
Sr	30,78	481.35	201.32	303.95	344.51	73.67
x	3.03	31.88	11.71	25.52	28.20	4.31
Zr	16.08	170.30	141.92	168.76	154.59	15.10
Nb	2.48	0.99	2.76	4.76	14.74	+
Ba	27.75	55.49	27.78	46.78	107.26	41.48
La	0.57	13.01	3.77	10.76	11.40	1.73
Ce	4.04	37.33	10.28	29.97	26.66	4.57
Pr	0.18	4.22	1.30	3,53	3,80	0.35
Nd	1.15	18.76	5.41	17.33	16.08	1.69
Sm	0.47	5.51	1.58	4.91	4.20	0.49
Eu	0.08	1.84	0.48	1.46	1.44	0.11
Gd	0.57	6.26	1.76	5.25	4.58	0.54
Dy	0.67	5.45	2.02	4.24	4.28	0.52
Er	0.24	3.09	1.25	2.55	2.75	0.56
Yb	0.40	4.14	1.63	3.30	3.89	0.95

Table C4.1: Continued

End-members	³ He/ ⁴ He	⁸⁷ Sr/ ⁸⁶ Sr	143Nd/144Nd	Sr (ppm)	Nd (ppm)	Sample ID
DMIow 3He/4He	8	0.70275	0.513184	90	7.3	ID1
DMhigh 3He/4He	60	0.70275	0.513184	90	7,3	
REM,	5	0.70854	0.512188	30.34	4.25	GP101
REM	5	0.70417	0.512614	46.35	9.35	GP33
HRDM	52	<0.70320	0.51312			
PRIMhigh 3He/4He	60	0.70475	0.51265	19.9	1.25	

Appendix C5: Parameters used in the modelling of Figure 3.8

Table C5.1a: He-Sr-Nd isotope ratios and Sr-Nd concentrations of end-members used in the modeling in Figure 3.8. The Sr-Nd isotope composition of the low ³He/⁴He depleted mantle (DM) is from Thirlwall et al. (2004), which is also used for the high ³He/⁴He DM, while the Sr-Nd concentrations of PM and DM are from McDonough & Sun (1995). Sr-Nd isotope compositions of the high ³He/⁴He primordial mantle (PRIM) is from Hofmann (1997). Proxies for low ³He/⁴He recycled, enriched mantle (or subducted oceanic lithosphere) components are pyroxenites #GP101 (REM_a) and #GP33 (REM_b) from Pearson et al. (1993). HRDM (*He-recharged* DM) is from Ellam & Stuart (2004).

Label	KI	K2	[He]X/[He]y		
A	100	129.78	22.22		
в	50	64.89	11.11		
C	10	13.74	2.35		

Table C5.1b: Parameters used the modeling HRDM by binary mixing between $DM_{low JHe/4He}(x)$ and PRIM (y) (Figure 3.8a-b). Both endmembers have Sr/Nd equal to 1. $K I = ([He]_x/[Sr]_x)/([He]_y/[Sr]_y)$ and $K2 = ([He]_x/[Nd]_x)/([He]_y/[Nd]_y)$. [He]_x is calculated using the equation for KI and the values listed in Table C5.1a for $[Nd]_x$, $[Nd]_y$, and $[He]_Y$ is calculated. Following K2 is calculated. Values calculated are rounded off to two decimal places. See Ellam & Stuart (2004) for modeling details on HRDM.

Label	K1	K2	[He]x/[He],	
A	100	248.70	194,17	
В	50	124.35	97.09	
C	10	24.87	19.42	
D	1	2.49	1.94	
E	0.2	0.50	0.39	
F	0.01	0.02	0.02	

Table C5.1c: Parameters used for the modeling of binary mixing between $DM_{high 3He/4He}(x)$ and $REM_a(y)$ in Figure 3.8c-d). $K1=([He]_s/[Sr]_s)/([He]_y/[Sr]_y)$ and $K2=([He]_s/[Nd]_s)/([He]_y/[Nd]_y)$ Values calculated are rounded off to two decimal places. Calculations as described in Table C5.1b.

Label	K1	K2	[He]x/[He]y		
A	100	172.74	296.64		
в	50	86.37	148.32		
C	10	17.27	29.66		
D	1	1.73	2.97		
E	0.2	0.35	0.59		
F	0.01	0.02	0.03		

Table C5.1d: Parameters used for the modeling of binary mixing between $DM_{high 3He/4Ha}(x)$ and $REM_h(y)$ (Figure 3.8e-f). K1=([He]_x/[Sr]_x)/([He]_y/[Sr]_y) and K2=([He]_x/[Nd]_x)/([He]_y/[Nd]_y) Values calculated are rounded off to two decimal places. Calculations as described in Table C5.1b.

References

- Ellam, R. M. & Stuart, F. M. (2004): Coherent He-Nd-Sr isotope trends in high ³He/⁴He basalts: implications for a common reservoir, mantle heterogeneity and convection. Earth and Planetary Science Letters, 228: 511-523.
- Hofmann, A.W. (1997): Mantle geochemistry: the message from oceanic volcanism. Nature, 385: 219-229.
- McDonough, W. F. & Sun, S. -s. (1995): The composition of the Earth. Chemical Geology, 120: 223-253.
- Pearson, D. G., Davies, G. R. & Nixon, P. H. (1993): Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera Peridotite Massif, North Morocco. Journal of Petrology, 34(1): 125-172.
- Thirlwall, M. F., Gee, M. A. M., Taylor, R. N.; & Murton, B.J. (2004): Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Gechimica er Cosmochimica Acta, 68(2): 361-386.

APPENDIX D

Contents of Appendix D

Appendix D1: Sr isotope data collected on sub-ng NBS 987 loads by TIMS during BIP MI study

Appendix D2: Standard trace element data collected during ICPMS BIP MI study

Appendix D3: TPB associated wit the BIP MI study

Appendix D4: Standard and TPB data collected by ICPMS during BIP whole-rock study

Appendix D5: Sr isotope data collected by MC-ICPMS during BIP whole-rock study

Appendix D6: BIP - isotope, major and element data

Appendix D7: Selected crustal rocks of Baffin Island - Sr isotope and element data

Appendix D8: Olivine phenocryst of the BIP - major element data

Appendix D9: Normalized MI trace element concentrations to 100 µm-sized MI

Load (ng)	⁸⁷ Sr/ ⁸⁶ Sr	±2SE	±2SE (ppm)	Load (ng)	87Sr/86Sr	±2SE	±2SE (ppm)
0.1	0.710266	0.000068	96	0.3	0.710258	0.000047	66
0,1	0.710272	0.000056	79	0.3	0.710280	0.000042	59
0.1	0.710267	0.000058	82	0.3	0.710279	0.000116	163
0.1	0.710269	0.000137	193	0.3	0.710298	0.000060	84
0.1	0.710255	0.000114	161	0.3	0.710237	0.000004	6
0.1	0.710263	0.000063	88	0.3	0.710291	0.000057	80
0.1	0.710268	0.000111	157	0.3	0.710278	0.000127	179
0.1	0.710235	0.000098	139	0.3	0.710269	0.000044	62
0.1	0.710243	0.000147	208	0.3	0.710265	0.000041	57
0.1	0.710289	0.000063	88	0.3	0.710247	0.000025	35
				0.3	0.710268	0.000027	38
				0.3	0.710271	0.000033	46
				0.3	0.710256	0.000036	51
				0.3	0.710280	0.000072	102
				0.3	0.710255	0.000039	55
				0.3	0.710240	0.000051	71
				0.3	0.710245	0.000037	52
				0.3	0.710246	0.000042	59
				0.3	0.710214	0.000038	53
				03	0 710244	0.000042	59

Appendix D1: Sr isotope data collected on sub-ng NBS 987 loads by TIMS during BIP MI study

Table D1.1a: Sr isotope composition 0.1 and 0.3 ng NBS987 standards analyzed by TIMS (Thermo-Electron Triton) together with the olivine-hosted MIs of BIP at *AHIGL* (Department of Earth Sciences, Durham University).

Load (ng)	n	⁸⁷ Sr/ ⁸⁶ Sr	±2SD	ppm
0.1	10	0.710263	0.000030	42.9
0.3	20	0.710261	0.000041	58.1
Total	30	0.710262	0.000038	52.8

Table D1,1b: Statistical overview of the sub-ng NBS 987 loads run on the AGHIL TIMS listed in Table D.1a.

Std. ID	AGV-1Rec	AGV-11	AGV-12	AGV-13	AGV-14	AGV-15	AGV-1Ave	±2SD	Δ%
							(n=5)		
500 ppb AG	V-1: Trace eleme	ent concenti	rations (ppn	n)					
Ti	4.24	4.34	4.54	4.19	4.23	4.40	4.34	0.25	2.41
Rb	268.00	276.78	296.45	262.47	264.19	297.36	279.45	30.17	4.27
Sr	2648.00	2639.41	2774.31	2573.03	2603.11	2832.87	2684.54	202.31	1.38
Y	84.00	79.97	82.28	77.13	77.26	82.79	79.88	4.79	-4.90
Zr	900.00	1010.88	980.63	952.44	964.58	992.63	980.23	41.09	8.91
Nb	57.60	71.26	69.56	62.14	73.57	64.56	68.22	8.49	18.43
Ba	4884.00	4814.14	4980.64	4901.82	4803.69	5200.80	4940.22	290.58	1.15
La	1.52.00	156.37	156.94	150.76	150.57	162.93	155.51	9.16	2.31
Ce	264.00	272.34	275.08	268.89	266.90	284.54	273.55	12.34	3.62
Pr	26.00	29.83	31.45	31.06	30.72	34.72	31.56	3.34	21.38
Nd	136.00	129.45	135.33	130.55	130.61	137.98	132.78	6.59	-2.37
Sm	23.60	24.68	23.78	22.39	22.90	22.69	23.29	1.67	-1.33
Eu	6.64	6.72	6.67	5.91	6.61	7.14	6.61	0.79	-0.47
Gd	20.80	20.08	20.07	18.52	19.34	19.84	19.57	1.18	-5.91
Dy	15.20	14.41	14.25	14.40	14.06	13.98	14.22	0.35	-6.44
Er	6.44	6.93	7.13	6.10	6,66	7.34	6.83	0.86	6.10
Yb	6,68	6.78	6.61	6.38	6.17	6.99	6.59	0.58	-1.41
Rb/Sr	0.101	0.105	0.107	0.102	0.101	0.105	0.104	0.004	2.79

Appendix D2: Standard trace element data collected during ICPMS BIP MI study

Table D2.1: AGV-1 data collected by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) during low concentration BIP MIs session at *AHIGL* (Department of Earth Sciences, Durham University) The solid grey column lists the recommended concentrations the rock standard. The recommended concentration values for AGV-1 can be found on the following webpage: http://minerals.cr.usgs.gov/geo_chem_stand/andesite1.html. The average, 2SD reproducibility, and the difference in percentage (Δ%) from the recommended value are given.

Std. ID	AGV-1Rec	AGV-16	AGV-17	AGV-18	AGV-19	AGV-110	AGV-111	AGV-112	AGV-1Ave	±2SD	Δ%
50 ppb AGV	/-1: Trace eleme	nt concentra	tions (ppm)						(n=7)		
Ti	0.42	0.44	0.40	0.43	0.41	0.42	0.45	0.40	0.42	0.03	-0.76
Rb	26.80	27.42	27.91	26.61	26.44	26.45	29.62	25.19	27.09	2.60	1.08
Sr	264.80	268.97	246.40	264.82	260.00	254.79	282.38	248.58	260.85	23.20	-1.49
Y	8.40	7.37	7.10	7.87	7.22	7.80	8.31	7.37	7.58	0.80	-9.77
Zr	90.00	94.69	83.23	95.49	89.67	88.50	96.65	87.70	90.85	9.10	0.94
Nb	5.76	6.41	6.53	6.32	6.14	6.81	6.62	7.13	6.56	0.61	13.95
Ba	488.40	500.68	449.33	499.25	485.15	482.82	522.65	467.59	486.78	44.24	-0.33
La	15.20	15.89	14.23	15.33	15.60	15.32	16.21	14.51	15.30	1.32	0.64
Ce	26.40	28.00	25.18	27.29	27.41	27.21	29.02	26.27	27.20	2.26	3.03
Pr	2.60	3.07	2.99	3.31	2.91	3.32	3.35	3.18	3.16	0.32	21.59
Nd	13.60	12.91	11.57	12.25	12.12	12.83	13.98	12.94	12.66	1.42	-6.93
Sm	2.36	2.44	1.95	1.95	2.12	2.48	2.18	1.82	2.13	0.47	-9.54
Eu	0.66	0.61	0.58	0.57	0.61	0.68	0.61	0.60	0.61	0.06	-8.31
Gd	2.08	1.93	1.72	1.43	1.58	1.82	1.54	1.79	1.69	0.33	-18.87
Dy	1.52	1.27	1.39	1.36	1.22	1.28	1.32	1.39	1.32	0.12	-13.31
Er	0,64	0.72	0.60	0.64	0.67	0.68	0.72	0.66	0.67	0.08	3.95
Yb	0.67	0.69	0.60	0.53	0.54	0.56	0.65	0.65	0.60	0.11	-10.05
Rb/Sr	0.101	0.102	0.113	0.100	0.102	0.104	0.105	0.101	0.104	0.008	2.68

4.

Table D2.1: Continued

Std. ID	BHVO-1Rec	BHVO-11	BHVO-12	BHVO-13	BHVO-14	BHVO-1Ave	±2SD	Δ%
						(n=4)		
500 ppb BH	IVO-1: Trace elen	nent concent	rations (pp)	m)				
Ti	10.84	10.92	11.18	11.71	11,52	11.33	0.61	4.54
Rb	38.40	37,28	37.40	37.58	40.90	38.29	3.03	-0.29
Sr	1612.00	1502.51	1565.21	1602.45	1601.75	1567.98	81.38	-2.73
Ŷ	110.40	106.36	107.66	112.57	109.86	109.11	4.71	-1.17
Zr	716.00	718.82	741.04	746.17	722.49	732.13	23.38	2.25
Nb	78.00	90.78	79.17	85.13	87.67	85.69	8.53	9.86
Ba	556.00	504.00	540.79	543.86	531.89	530.13	31.44	-4.65
La	63.20	60.40	61.46	63.80	61.73	61.85	2.46	-2,14
Ce	156.00	146.38	149.78	153,46	149.27	149.72	5.03	-4.02
Pr	22.80	19.82	19.87	19.93	19.65	19.82	0.20	-13.08
Nd	100.80	101.26	100.25	106.40	102.57	102.62	4,67	1.80
Sm	24.80	24.80	22.77	24.46	24.55	24.15	1.61	-2.63
Eu	8.24	8.50	8.41	8.18	8.20	8.32	0.27	1.02
Gd	25.60	26.16	23.90	25.88	25.88	25.46	1.81	-0.56
Dy	20.80	20.96	20.94	21,46	21.37	21.18	0.47	1.84
Er	9.60	9.13	9.35	9.45	9.70	9,41	0.41	-2.01
Yb	8.08	8.31	7.51	7.63	8.13	7.89	0.66	-2.29
Rb/Sr	0.024	0.025	0.024	0.023	0.026	0.024	0.002	2.52

Table D2.2: BHVO-1 data collected by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) during low concentration BIP MIs session at *AHIGL* (Department of Earth Sciences, Durham University). The solid grey column lists the recommended concentrations the rock standard. The recommended concentration values for BHVO-1 can be found on the following webpage: http://minerals.cr.usgs.gov/geo_chem_stand/basaltbhvo1.html. The average, 2SD reproducibility, and the difference in percentage (Δ %) from the recommended value are given.

Std. ID	BHVO-1Ree	BHVO-15	BHVO-16	BHVO-17	BHVO-18	BHVO-19	BHVO-110	BHVO-111	BHVO-112	BHVO-1Ave	±2SD	$\Delta ^{0}/_{0}$
	and the second se									(n=8)		
50 ppb BHV	O-1: Trace elem	ent concentr	ations (ppm)	_			_	_		_	_
Ti	1.08	1.13	1.02	1.04	1.09	1.05	1.08	1.12	1.16	1.08	0.09	0.09
Rb	3.84	3.03	5.37	2.93	2.72	3.68	3.73	3.85	4.33	3.71	1.72	-3.45
Sr	161.20	158.26	143,79	146.43	154.28	146.34	154.02	155.83	168.02	153.37	15.77	-4.86
Y	11.04	10.52	10.06	10.05	10.80	10.67	10.77	10.90	11.59	10.67	0.99	-3.35
Zr	71.60	69.78	60.64	66.24	70.31	63.68	67.41	69.10	71.18	67.29	7.25	-6.01
Nb	7.80	8.25	8.12	7.80	8.14	8.50	8.04	9.34	8.40	8.32	0.93	6.71
Ba	55.60	52.70	47.56	51.01	49.66	48.35	53.36	52.01	55.55	51.27	5.36	-7.78
La	6.32	6.14	5.71	5.76	6.08	5.86	6.19	6.30	6.60	6.08	0.60	-3.82
Ce	15.60	15.28	13.59	14.61	14.74	14.38	15.43	14.99	16.24	14.91	1.57	-4.45
Pr	2.28	2.22	2.03	1.83	1.95	2.02	2.17	1.89	2.32	2.05	0.34	-9.90
Nd	10.08	9.44	9,67	9.31	9.71	10.32	9.71	10.73	11.58	10.06	1.54	-0.20
Sm	2.48	2.73	2.15	2.28	2.58	2.23	2.11	2.38	2.87	2.42	0.56	-2.56
Eu	0.82	0.79	0.79	0.71	0.88	0.76	0.92	0.79	0.85	0.81	0.14	-1.70
Gd	2.56	2.02	2.15	1.92	2.27	2.54	2.22	2.18	2.75	2.26	0.54	-11.86
Dy	2.08	2.31	1.96	1.86	1.94	2.14	2,08	2.20	2.48	2.12	0.41	1.91
Er	0.96	0.96	0.81	0.92	0.84	0.83	0.90	0.93	1.06	0.91	0.16	-5.54
Yb	0.81	0.77	0.73	0.81	0.80	0.76	0.75	0.79	0.88	0.79	0.09	-2.81
Rb/Sr	0.024	0.019	0.037	0.020	0.018	0.025	0.024	0.025	0.026	0.024	0.012	1.85

Table D2.2: Continued

Std. ID	W2 _{Rec}	W21	W22	W23	W24	W2Ave	±2SD	Δ%
500 nnh W2	· Trace clamont	concontratio	ne (nnm)			(n=4)		
200 bbn w7	: Trace element	concentratio	us (ppm)		1.83	1.40		
II DI	4.40	4.44	4.27	4.17	4.24	4.28	0.20	-2.70
RD	81.44	81.04	82.06	14.93	82.18	80.05	5.98	-1.70
Sr	773.24	784.95	761.95	741.46	775.45	765.95	32.67	-0.94
Y	85.44	90.54	87.55	84.71	88.19	87.75	4.15	2.70
Zr	371,48	386.99	359.82	357.73	375.73	370.06	24.00	-0.38
Nb	31.04	36.29	32.94	30.43	31.82	32.87	4.33	5.90
Ba	668.32	677.61	657.11	669.70	681.79	671.55	18.80	0.48
La	42.44	43.00	40.96	41.19	42.47	41.90	1.71	-1.27
Ce	92.12	90.95	88.66	87.95	90.30	89.46	2.42	-2.88
Pr	11.76	10.35	10.72	10.88	11.12	10.77	0.56	-8.41
Nd	52.88	54.05	50.87	53.65	53.09	52.91	2.46	0.06
Sm	13.44	13.30	13.49	12.40	12.93	13.03	0.83	-3.08
Eu	4.48	4.53	4.24	4.06	4.90	4.43	0.64	-1.08
Gd	14.52	15.85	14.65	12.83	14.42	14.44	2.15	-0.56
Dy	14.84	15.51	15.16	14.78	15.07	15.13	0.52	1.95
Er	8.92	8.69	8.52	8.01	8.20	8.36	0.53	-6.31
Yb	8.12	8.26	8.20	8.31	8.35	8.28	0.11	2.00
Rb/Sr	0.105	0.103	0.108	0.101	0.106	0.104	0.005	-0.79

Table D2.3: W2 data collected by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) during low concentration BIP MIs session at *AHIGL* (Department of Earth Sciences, Durham University). The solid grey column lists the recommended concentrations the rock standard. The recommended concentration values for W2 can be found on the following webpage: http://minerals.cr.usgs.gov/geo chem stand/diabase.html. The average, 2SD reproducibility, and the difference in percentage (Δ %) from the recommended value are given.

Std. ID	W2 _{Rec}	W25	W26	W27	W28	W29	W210	W211	W2 ₁₂	W2 ₁₃	W2 _{Ave}	±2SD	Δ%
	100 m										(n=9)		
50 ppb W2: "	Trace element c	oncentration	s (ppm)										
Ti	0.44	0.43	0.43	0.39	0.44	0.39	0.41	0.44	0.40	0.40	0.41	0.04	-5.94
Rb	8.14	8.20	7.54	6.86	8.30	6.69	7.64	8.18	7.85	7.93	7.69	1.15	-5.61
Sr	77.32	82.00	80.56	75.64	84.68	75.92	79.11	84.07	77.75	74.96	79.41	7.30	2.70
Y	8.54	9.34	8.93	8.48	8.95	8.47	9.18	9.32	8.56	8.46	8.86	0.74	3.65
Zr	37.15	37.35	36.81	35.80	36.94	34.93	34.03	38.11	35.39	33.83	35.91	2.99	-3.33
Nb	3.10	3.57	3.15	2.97	3.35	2.79	3.22	3.23	3.55	2.80	3.18	0.58	2.50
Ba	66.83	71.80	67.65	65.43	73.22	65.79	71.65	74.93	67.06	65.50	69.23	7.35	3.58
La	4.24	4.21	4.39	4.19	4.45	4.01	4.31	4.56	3.97	3.80	4.21	0.50	-0.78
Ce	9.21	9.27	9.30	8.62	9.30	9.12	9.16	9.40	8.81	8.45	9.05	0.68	-1.78
Pr	1.18	1.23	0.98	0.96	1.27	0.94	1.03	1.25	1.05	0.94	1.07	0.28	-8.85
Nd	5.29	5.70	5.18	5.20	5.55	4.31	5.34	5.68	5.06	4.83	5.20	0.88	-1.58
Sm	1.34	1.39	1.41	1.21	1.22	1.25	1.27	1.46	1.16	1.39	1.31	0.21	-2.83
Eu	0.45	0.50	0.42	0.40	0.53	0.34	0.44	0.46	0.44	0.32	0.43	0.14	-4.69
Gd	1.45	1.37	1.39	1.18	1.39	1.10	1.77	1.43	1.32	1.23	1.35	0.39	-6.72
Dy	1.48	1.43	1.41	1.54	1.55	1.58	1.60	1.59	1.59	1.50	1.53	0.14	3.21
Er	0.89	0.83	0.76	0.78	1.01	0.83	0.87	0.92	0.82	0.68	0.83	0.19	-6.54
Yb	0.81	0.81	0.87	0.86	0.76	0.70	1.00	0.96	0.71	0.67	0.82	0.23	0.44
Rb/Sr	0.105	0.100	0.094	0.091	0.098	0.088	0.097	0.097	0.101	0.106	0.097	0.011	-8.11

Table D2.3: Continued

Rb-Sr solution	Std. 21	Std. 22	Std. 23	Std. 24	Std. 25	Std. 26	Std.Ave	±2SD	Δ%
							(n=6)		
Trace element co	oncentration	ns (ppm)							
Ti	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4
Rb	0.89	1.12	1.04	1.18	0.82	0.75	0.97	0.34	-3.48
Sr	12.05	11.77	11.41	12.39	10.42	11.06	11.52	1.42	15.18
Y	0.02	-0.07	0.01	0.09	-0.18	-0.09	-0.04	0.19	
Zr	-0.13	-0.25	-0.22	0.00	-0.93	-1.33	-0.48	1.06	-
Nb	-2.01	0.01	-0.23	-1.19	-1.83	-2.54	-1.30	2.04	-
Ba	0.33	0.80	-0.68	0.53	-0.91	-1.01	-0.16	1.59	-
La	0.03	0.00	0.04	-0.01	0.00	-0.02	0.01	0.04	191
Ce	-0.01	-0.03	-0.01	0.00	0.00	-0.02	-0.01	0.02	-
Pr	0.07	-0.03	-0.03	-0.01	0.05	-0.01	0.01	0.09	-
Nd	-0.06	-0.02	-0.08	0.13	0.00	0.09	0.01	0.17	
Sm	-0.01	0.11	0.03	0.04	-0.02	0.05	0.03	0.09	
Eu	0.05	-0.02	0.03	0.02	-0.01	0.00	0.01	0.05	-
Gd	0.03	0.03	0.05	0.02	0.09	-0.06	0.03	0.10	-
Dy	0.00	-0.02	-0.01	0.02	0.02	-0.02	0.00	0.03	
Er	0.02	-0.02	0.01	0.01	0.02	0.00	0.00	0.03	-
Yb	-0.01	0.00	-0.04	0.00	0.00	0.01	-0.01	0.03	-
Rb/Sr	0.074	0.095	0.091	0.095	0.079	0.068	0.08	0.02	-16.44

Table D2.4: Synthetic Rb-Sr solution data colleted by double focusing magnetic sector field ICPMS (Thermo ELEMENT2) during low concentration BIP MIs session at *AHIGL* (Department of Earth Sciences, Durham University). Three synthetic 1:10 Rb-Sr solutions were made respectively Std. 2 (1:100), Std. 3 (5:50) and std. 5 (20:200). For each standard the average, 2SD reproducibility, and the difference in percentage (Δ %) from the '*recommended*' value are given.

Rb-Sr solution	Std. 31	Δ%	Rb-Sr solution	Std. 51	Std. 52	Std. 53	Std. 54	Std. 5Ave	±2SD	Δ%				
	(n=1)	_						(n=4)						
Trace element concentrations (ppm)			Trace element co	Trace element concentrations (ppm)										
Гі	0.00	-	Ti	0.01	0.00	0.00	0.00	0.00	0.01					
Rb	4.73	-5.46	Rb	19.12	18.75	16.59	18.98	18.36	2.39	-8.20				
Sr	45.59	-8.82	Sr	177.21	184.81	168.62	184.82	178.86	15.43	-10.57				
Y	0.48	-	Y	1.96	1.81	1.60	2.00	1.84	0.36					
Zr	-0.31		Zr	0.30	0.11	0.15	0.08	0.16	0.20	4				
Nb	-0.01		Nb	0.14	0.14	-0.02	0.13	0.10	0.16	-				
3a	1.04		Ba	1.84	0.18	-0.20	0.00	0.46	1.87	-				
a	-0.05	1	La	0.04	0.01	-0.05	-0.02	-0.01	0.07					
Ce	-0.05	-	Ce	-0.02	-0.06	-0.11	-0.06	-0.06	0.08	-				
Pr	-0.01	- 2.00	Pr	-0.03	-0.06	-0.02	-0.03	-0.03	0.03	+				
Nd	-0.04		Nd	-0.15	-0.26	-0.32	0.13	-0.15	0.40	+				
Sm	-0.10		Sm	0.00	0.05	-0.15	-0.07	-0.04	0.17	-				
Eu	-0.02		Eu	0.10	-0.05	-0.04	0.01	0.00	0.14	-				
Gd	-0.06		Gd	-0.11	-0.39	-0.33	-0.04	-0.22	0.34	4				
Dy	0.04		Dy	0.14	0.08	0.09	0.12	0.11	0.05					
Er	-0.03		Er	0.01	-0.05	-0.04	0.00	-0.02	0.05	-				
Yb	0.00		Yb	-0.03	-0.04	-0.03	-0.01	-0.02	0.03					
Rb/Sr	0.104	3.68	Rb/Sr	0.108	0.101	0.098	0.103	0.103	0.008	2.61				

Table D2.4: Continued
Trace eler	ment conce	entrations	of 12 indiv	idual TPB	s analyzed	with the M	Is of BIP	(pg)					Average	
Element	M14-43	M14-44	M14-45	M14-46	M14-47	M14-48	M14-49	M14-50	M14-51	M14-52	M14-53	M14-54	(n=12) TPB _{ave}	(n=9) TPB _{M1}
Ti	0.27	0.35	0.50	0.11	0.19	0.18	0.18	0.31	0.68	0.27	0.25	0.59	0.32	0.32
Rb	0.41	4.36	4.62	0.71	-0.19	1.22	4,02	0.87	2.25	2.40	2.54	2.50	2.14	1.41
Sr	0.55	22.60	13.70	0.86	4.18	8.98	11.50	3.37	6.50	8.04	6.23	4.86	7.61	4.84
Y	-0.32	0.39	1.31	-0.41	-0.45	-0.25	0.40	-0.55	-0.16	0.25	0.69	0.32	0.10	0.10
Zr	36.65	96.89	323.93	33.05	123.17	71.38	63.49	118.33	116.72	86.82	64.11	75.90	100.87	80.59
Nb	6.52	5.53	15.26	11.12	21.20	4.21	53.89	12.51	9.04	9.55	4.42	6.45	13.31	9.62
Ba	33.99	29,95	4.39	8.81	9.01	9.93	26.61	7.24	12.30	14.41	9.59	11.73	14.83	9.71
La	0.31	0.91	5,69	0.38	0.35	1.15	2.18	0.38	1.36	1.32	0.60	1.80	1.37	0.86
Ce	0.66	1.86	9.23	0.42	0.38	0.74	2.21	0.68	2.29	3.13	1.24	1.43	2.02	1.37
Pr	0.05	0.13	0.79	-0.11	0.03	0.13	0.21	-0.02	0.08	0.10	0.17	0.40	0.16	0.16
Nd	-0.21	0.28	3.87	0.08	-0.28	0.20	0.69	0.17	0.56	1.18	0.35	0.96	0.65	0.36
Sm	-0.24	-0.08	0.38	0.02	0.00	0.01	0.06	0.10	0.06	0.06	0.09	-0.05	0.03	0.00
Eu	-0.18	-0.14	-0.09	-0.07	-0.06	-0.10	-0.12	-0.07	-0.12	-0.04	0.04	0.11	-0.07	-0.07
Gd	-0.83	-0.83	-0.27	-0.85	-0.83	-0.69	-0.94	-0.71	-0.74	-0.51	-0.05	0.08	-0.60	-0.60
Dy	-0.10	0.03	0.29	-0.15	-0,11	0.02	-0.07	-0.03	0.00	0.10	0.19	0.05	0.02	0.02
Er	-0.03	-0.04	0.12	-0.04	-0.02	-0.07	-0.04	0.00	0.00	0.00	0.02	0.03	-0.01	-0.01
Yb	0.02	0.01	0.18	-0.06	-0.01	0.00	0.03	0.02	0.02	-0.04	0.09	0.06	0.03	0.03

Table D3.1a: Trace element composition of 12 TPB determined by double focusing magnetic field ICPMS (ELEMENT 2) at AHIGL (Department of Earth Sciences, Durham University) during the BIP MIs session. Average TPB_{M14} is used for the blank correction of the BIP MI data set in combination with TPB60 (see Chapter 2, Appendix B9). Values in grey are rejected.

Trace element concentrations of 10 analyte blanks (3% UpA HNO ₃) analyzed with the BIP MIs (pg/mL)											Average
Element	Blank 1	Blank 2	Blank 3	Blank 4	Blank 5	Blank 6	Blank 7	Blank 8	Blank 9	Blank 10	(n=10) Blank _{Ave}
Ti	0.00	0.01	0.00	0.00	-0.01	-0.01	0.00	0.00	0.00	0.02	0.00
Rb	1.21	0.24	-0.13	-0.66	-0.67	-0.84	-0.01	-0.03	0.00	2.22	0.13
Sr	-0.19	0.58	-0.21	0.69	-0.84	-1.09	0.29	-0.06	1.23	3.78	0.42
Y	-0.17	0.13	-0.15	-0.26	-0.32	-0.31	0.04	0.05	-0.07	0.10	-0.10
Zr	0.54	0.60	0.11	0.30	0.02	-0.28	-0.24	-0.24	-0.14	-0.25	0.04
Nb	0.04	-0.03	-0.03	0.06	-0.13	-0.14	-0.07	-0.05	-0.03	-0.03	-0.04
Ba	0.62	0,35	1.85	2.35	0.29	0.84	0.17	0.49	0.52	1.11	0.86
La	-0.01	0.05	0.00	0.08	0.03	0.07	0.00	-0.02	0.02	0.05	0.03
Ce	0.07	0.06	0.01	0.03	0.03	-0.01	0.01	-0.01	0.07	0.24	0.05
Pr	0.00	-0.06	-0.02	0.04	0.00	-0.03	0.00	-0.02	-0.02	0.10	0.00
Nd	-0.28	-0.28	-0.26	-0.15	-0.25	-0.24	-0.04	-0.05	-0.01	0.19	-0.14
Sm	-0.09	-0.05	-0.10	-0.07	-0.07	-0.01	-0.11	-0.08	-0.16	-0.06	-0.08
Eu	-0.05	0.01	-0.04	-0.04	-0.05	-0.07	0.00	0.00	-0.02	0.01	-0.03
Gd	-0.28	-0.27	-0.29	-0.34	-0.31	-0.33	0.02	-0.05	-0.05	0.03	-0.19
Dy	-0.05	-0.03	-0.03	0.00	-0.04	-0.04	0.01	-0.02	-0.01	0.00	-0.02
Er	-0.02	-0.03	-0.04	-0.02	-0.05	-0.04	-0.01	-0.01	-0.01	0,01	-0.02
Yb	0.02	-0.04	-0.03	0.00	-0.03	-0.01	0.01	0.00	-0.02	0.00	-0.01

Table D3.1b: Trace element compositions of 10 analyte blanks (3% UpA HNO3) analyzed double focusing magnetic field ICPMS (ELEMENT 2) at AHIGL (Department of Earth Sciences, Durham University) with the BIP MIs. Concentrations are given in pg/mL.

						Di-L.C	Dial 7	Pl1.0	Direk 0	DI	100	(n=10)
Element	Blank I	Blank 2	Blank 3	Blank 4	Blank 5	Blank o	Blank /	Blank 8	Blank 9	Blank 10	150	LOD
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Rb	0.19	0.23	0.09	0.18	0.13	0.09	0.11	0.07	0.03	0.26	0.14	0.41
Sr	0.27	0.18	0.12	2.95	0.39	0.47	0.20	0.14	0.36	0.05	0.24	0.73
Y	0.17	0.16	0.14	0.15	0.12	0.18	0.10	0.09	0.11	0.11	0.13	0.40
Zr	0.25	0.25	0.13	0.23	0.03	0.09	0.10	0.09	0.09	0.11	0.14	0.41
Nb	0.02	0.05	0.06	0.14	0.03	0.05	0.02	0.07	0.03	0.05	0.05	0.15
Ba	0.17	0.76	1.10	2.13	0.92	0.88	0.46	0.24	0.07	0.15	0.69	2.06
La	0.03	0.01	0.05	0.07	0.05	0.04	0.02	0.02	0.02	0.02	0.03	0.10
Ce	0.01	0.05	0.05	0.08	0.02	0.01	0.05	0.03	0.02	0.04	0.04	0,11
Pr	0.05	0.02	0.05	0.09	0.08	0.03	0.04	0.01	0.02	0.11	0.05	0.15
Nd	0.07	0.14	0.11	0.22	0.16	0.17	0.04	0.03	0.04	0.07	0.11	0.32
Sm	0.10	0.09	0.08	0.09	0.17	0.17	0.05	0.07	0.06	0.08	0.10	0.29
Eu	0.05	0.02	0.03	0.03	0.04	0.02	0.02	0.03	0.02	0.04	0.03	0.09
Gd	0.09	0.17	0.05	0.11	0.08	0.11	0.10	0.07	0.03	0.05	0.09	0.26
Dy	0.03	0.05	0.07	0.06	0.05	0.03	0.03	0.01	0.01	0.03	0.04	0.11
Er	0,03	0.03	0.00	0.03	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.05
Yb	0.03	0.02	0.03	0.03	0.02	0.01	0.04	0.02	0.03	0.02	0.02	0.07

Table D3.1c: Internal precision (ISE) for each of the 10 analyte blanks in pg/mL presented in Table D3.1b. The reproducibility (ISD) of the analyte blanks equals the average of the internal precision (ISE) of the 10 blanks. Marked in light grey is the limit of detection (LOD) for each element calculated as 3 times the average standard deviation (ISD).

Appendix D4: Standard and TPB data collected by ICPMS during BIP whole-rock study

Standard ID	GP13			W2			BHVO-1		
n	7	-		3	-		3		
Element	Ave.	±2SD	Δ%	Ave.	±2SD	Δ%	Ave.	±2SD	Δ%
Sc	14.98	0.80	5.99	35.45	1.60	0.18	30.65	1.42	-3.61
Ti	741.13	18.05	5.70	6382.55	135.61	-3.18	16300.96	16.95	0.37
V	69.50	1.26	4.78	267.06	0.88	1.11	315.46	2.35	-0.49
Cr	2537.08	41.12	4.84	90.97	0.70	-8.57	294.58	6.90	1.93
Mn	0.11	0.00	-11.34	0.17	0.00	1.18	0.18	0.00	3.24
Co	98.41	2.19	0.51	45.42	0.88	-0.10	45,23	0.29	0.50
Ni	1989.52	27.05	-1.99	81.47	1.15	-16.47	134,33	1.61	11.01
Cu	24.90	0.86	6.45	104.24	0.67	-1.42	137.05	1.11	0.77
Zn	40.41	1.05	0.00	73.77	0.52	-4.53	109.63	0.55	4.41
Ga	2.68	0.10	6.92	17.19	0.29	-1.91	20.80	0.24	-0.94
Rb	0.32	0.02	-1.58	19.54	0.31	-4.03	9.20	0.05	-4.14
Sr	10.71	0.56	-4.52	187.53	6.02	-2.99	371.45	4.86	-7.83
Y	3.38	0.08	2,21	22.45	0.20	5.11	27.37	0.07	-0.83
Zr	5.66	0.18	5.86	87.44	0.50	-5.85	172.39	1.23	-3.69
Nb	0.12	0.01	-13.57	7.53	0.02	-3.02	19.14	0.12	-1.84
Cs	0.07	0.01	15.00	0.90	0.02	3.56	0.10	0.01	827.27
Ba	0.72	0.11	0.00	174.39	5.15	4.37	134.99	0.73	-2.89
La	0.19	0.01	2.73	10.62	0.57	0.12	15.42	0.33	-2.43
Ce	0.58	0.02	-2.22	22.75	0.98	-1.22	37.13	0.51	-4.79
Pr	0.11	0.00	0.44	3.14	0.12	6.73	5.59	0.03	-1.98
Nd	0.67	0.03	2,78	13.83	0.12	4.59	26.06	0.17	3.40
Sm	0.25	0.02	0.94	3.39	0.02	0.86	6.31	0.09	1.73
Eu	0.10	0.00	-0.32	1.12	0.00	-0.40	2.10	0.03	2.01
Gd	0.41	0.03	2.87	3.89	0.21	7.07	6.47	0.08	1.11
Tb	0.08	0.00	-0.88	0.65	0.02	4.44	0.98	0.01	1.61
Dy	0.50	0.01	-2.31	3,84	0.01	3.54	5.31	0.01	2.06
Ho	0.11	0.00	0.15	0.80	0.01	7.84	0.98	0.00	-1.26
Er	0.33	0.01	-0.25	2.14	0.03	-4.16	2.39	0.00	-0.31
Tm	0.05	0.00	3.85	0.33	0.00	-3.38	0.34	0.00	3.18
Yb	0.35	0.01	-0.63	2.06	0.02	1.34	2.00	0.01	-0.88
Lu	0.06	0.00	2.59	0.33	0.00	-0.15	0.30	0.00	3.45
Hf	0.17	0.01	2.12	2.38	0.03	-4.59	4.45	0.03	1.51
Ta	0.01	0.01	-46.83	0.49	0.01	-10.09	1.25	0.02	1.87

Table D.1a: Average trace element compositions of an *in-house* (GP13) and five USGS rock standards (W2, BHVO-I, AGV-1, BE-N, SRM688, and BIR-1) analyzed during ICPMS (Perkin Elmer Sciex Elan 6000) BIP whole rock session at *AHIGL* (Department of Earth Sciences, Durham University). Listed is the 2SD error for each rock standard plus the deviation in % from the recommended values are available from USGS, NIST, and Ottley et al. (2003). 'n' denotes number of analyses.

Standard ID	AGV-1			BE-N	-		SRM688		
n	3			3			3		
Element	Ave.	±2SD	Δ%	Ave.	±2SD	Δ%	Ave.	±2SD	∆%
Se	11.61	0.99	-4.08	22.27	1.11	1.20	36.08	1.19	-5.06
Fi	6268.68	237.31	-1.32	15551.84	169.51	-0.57	6945.89	84.75	-0.94
V	120.99	3.34	-1.63	232.73	0.62	-0.97	249.62	1.09	3.15
Cr	8.94	0.29	-25.53	360.50	4.16	0.14	323.40	2.99	-2.59
Mn	0.09	0.00	-10.94	0.20	0.00	1.75	0.17	0.00	0.90
Co	15.63	0.52	3.48	61.80	1.91	1.30	49.17	0.54	0.34
Ni	20,56	0.34	20.95	290.50	5.61	8.80	178.10	2.53	12.72
Cu	58.00	2.70	-3.34	71.84	0.80	-0.22	88.01	1.29	-8.32
Zn	84.74	1.17	-3.70	123.67	1.97	3.06	71.75	0.04	-14.58
Ga	20.32	0.51	1.59	17.84	0.10	4.95	15.72	0.09	-7.55
Rb	67.23	0.32	0.34	47.92	1.61	1.96	1.91	0.06	0.24
Sr	678.02	18.51	2.42	1446.97	51.77	5.62	162.26	2.88	-4.10
Y	20,20	0.26	-3.81	30.90	0.40	3.01	21.01	0.03	23.57
Zr	230.44	5.07	2.42	272.68	2.77	2.90	55.18	0.72	-9.54
Nb	14.86	0.27	3.16	118.18	0.21	18.18	4.66	0.05	-6.75
Cs	1.26	0.04	-0.20	0.76	0.02	-5.44	0.04	0.00	-84.38
Ba	1229.63	26.74	0.71	1035.40	3.58	1.01	171.32	2.18	-14.34
La	38.19	0.38	0.49	80.91	1.31	-1.33	5.09	0.04	-4.00
Ce	67.34	1.03	2.03	145.87	3.63	-4.03	11.56	0.05	-11.11
Pr	8.78	0.21	35.01	17.91	0.07	5.99	1.79	0.01	-25.23
Nd	33.63	1.34	-1.08	69.57	0.46	-0.62	8.77	0.04	~8.69
Sm	5.91	0.31	0.19	12.39	0.16	3.25	2.44	0.12	-2.43
Eu	1.64	0.06	-0.93	3.71	0.04	3.01	0.99	0.07	-2.28
Gd	4.89	0.12	-5.97	10.01	0.16	11,17	3.14	0.01	-1.75
Tb	0.67	0.02	-5.21	1.31	0.01	0.96	0.54	0.02	3.17
Dy	3.56	0.13	-6.19	6.29	0.04	0.01	3.37	0.03	-0.90
Ho	0.69	0.02	-5.68	1.07	0.01	4.13	0.73	0.00	-9.81
Er	1.75	0.05	8.77	2.41	0.05	-2.66	2.04	0.03	-3.07
Tm	0.26	0.00	-17.97	0.33	0.01	-12.03	0.33	0.01	12.07
Yb	1.67	0.05	-0.12	1.85	0.02	2.61	2.08	0.06	1.24
Lu	0.27	0.01	-3.75	0.26	0.01	9.38	0.34	0.00	-2.14
Hf	5.17	0.17	1.46	5.72	0.02	5.94	1.48	0.03	-4.34
Ta	0.91	0.01	-0.65	6.10	0.05	10.99	0.29	0.01	-5.32

Table D.4.1a: Continued

Standard ID	BIR-1		_
n	3		
Element	Ave.	±2SD	Δ%
Sc	42.39	2,38	-3.65
Ti.	5753.28	118.66	0.00
V	324.41	9.97	3.65
Cr	396.86	4.67	3.89
Mn	0.18	0.00	4.09
Co	54.38	0.35	5.81
Ni	196.23	4.04	18.21
Cu	120.55	1.09	-4.33
Zn	67.84	4.47	-4.45
Ga	15.06	0.33	-5.90
Rb	0.21	0.01	-24.07
Sr	105.70	1.11	-2.13
Y	16.45	0.12	2.83
Zr	14.74	0.19	-33.01
Nb	0.65	0.01	-67.50
Cs	0,01	0.01	-97.67
Ba	6.81	0.07	-11.51
La	0.62	0.00	-29.38
Ce	1.88	0.02	-24.82
Pr	0.39	0.01	-22.60
Nd	2,55	0.10	1,94
Sm	1.14	0.03	5.21
Eu	0.53	0.01	-1.76
Gd	2.00	0.03	5.47
Tb	0.39	0.02	-5.98
Dy	2.59	0.08	7.79
Ho	0.58	0.02	15.20
Er	1.64	0.02	-9.10
Tm	0.26	0.01	-4.81
Yb	1.67	0.03	-1.90
Lu	0.27	0.01	5.58
Hf	0.58	0.01	-0.39
Та	0.04	0.00	-30.65

Table D4.1a: Continued

TPB ID	TPB 1		TPB 2		TPB 3		TPB 4		Avera	ge TPB
n	6		2		2		3		13	-
Element	Ave.	±2SD	Ave.	±2SD	Ave.	±2SD	Ave.	±2SD	TPB	LOD
Sc	0.14	0.26	-0.07	0.58	-0.16	0.57	-0.23	0.64	-0.08	0.77
Ti .	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	-0.02	0.08	-0.05	0.15	-0.07	0.14	-0.05	0.15	-0.05	0.19
Cr	1.12	0.20	0.03	0.20	-0.06	0.35	-0.15	0.43	0.23	0.44
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Co	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01
Ni	1.79	0.14	-0.33	0.10	-0.32	0.01	-0.14	0.40	0.25	0.24
Cu	0.00	0.62	-0.21	0.98	-0.30	0.93	-0.30	0.84	-0.20	1.26
Zn	0.67	0.12	-0.27	0.43	-0.23	0.16	0.01	0.02	0.05	0.27
Ga	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01
Rb	0.00	0.02	-0.01	0.01	-0.01	0.00	0.00	0.00	0.00	0.01
Sr	0.02	0.02	0.01	0.00	0.01	0.02	0.00	0.01	0.01	0.02
Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lr	0.00	0.02	0.00	0.00	+0.01	0.01	0.00	0.00	0.00	0.01
Nb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cs	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01
Ba	0.02	0.04	0.01	0.06	0.12	0.14	0.02	0.05	0.04	0.11
La	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ть	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dy	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
Ho	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Er	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Yb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hf	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table D4.1b: Trace element compositions of 4 different TPBs analyzed 'n' times during ICPMS (Perkin Elmer Sciex Elan 6000) BIP whole rock session at *AHIGL* (Department of Earth Sciences, Durham University). Listed is the 2SD error on the average of each TPB, and also the limit of detection (LOD equals 3 times SD). Negative values and zero values indicate concentrations near the LOD.

Appendix D5: Sr isotope data collected by MC-ICPMS during BIP whole-rock study

No.	⁸⁷ Sr/ ⁸⁶ Sr	±2SE		
1	0.710255	0.000010		
2	0.710260	0.000010		
3	0.710249	0.000011		
4	0.710259	0.000010		
5	0.710258	0.000011		
6	0.710257	0.000011		
7	0,710252	0.000010		
8	0.710257	0.000010		
9	0.710261	0.000011		
10	0.710253	0.000011		
11	0.710262	0.000012		
12	0.710267	0.000011		
13	0.710264	0.000012		
Standard ID	n	87Sr/86Sr	±2SD	±2SD (ppm)
NBS 987	13	0.710258	0.000011	15

 Table D5.1a: Sr isotope data collected on NBS 987 during whole-rock Sr isotope MC-ICPMS session on the AHIGL

 Neptune (Department of Earth Sciences, Durham University).

No.	⁸⁷ Sr/ ⁸⁶ Sr	±2SE		
1	0.703491	0.000014		
2	0.703505	0.000020		
3	0.703495	0.000013		
4	0.703494	0.000014		
5	0.703478	0.000010		
6	0.703485	0.000014		
Standard ID	n	⁸⁷ Sr/ ⁸⁶ Sr	±2SD	±2SD (ppm)
BHVO-1	6	0,710491	0.000014	20

 Table D5.1b: Sr isotope data collected on BHVO-1 during whole-rock Sr isotope MC-ICPMS session on the AHIGL

 Neptune (Department of Earth Sciences, Durham University).

Appendix D6: BIP - isotope, major and element data

Sample ID	Pd3	Pd6	Pd12	Pd23	Pd26	Pd66
Rock	Picrite	Picrite	Picrite	Picrite	Picrite	Picrite
Туре	E-type	N-type	N-type	E-type	E-type	E-type
87Sr/86Sr isoto	pe ratios					
87Sr/86Srmean	0.703287	0.703129	0.703097	0.703309	0.703300	0.703689
87Sr/86Srnorm	0,703269	0.703111	0.703079	0.703291	0.703282	0.703671
87Sr/86Sri	0.703266	0.703104	0.703075	0.703286	0.703278	0.703662
±2SE	0.000012	0.000012	0.000015	0.000013	0.000012	0.000013
Major elemen	nts in wt.% fr	om Yaxley el	al. (2004)			
SiO ₂	45.95	45.46	45.87	46.38	47.13	÷
TiO ₂	0.90	0.77	0.82	1.06	1.03	-
Al ₂ O ₃	12.04	10.83	11.40	13.55	13.35	-
MgO	18.16	21.36	19.83	14.02	14.56	
FeO _{total}	10.68	10.59	10.64	10.83	10.78	
MnO	0.18	0.17	0.17	0.18	0.18	
CaO	10.32	9.12	9.83	11.55	11.34	
Na ₂ O	1.16	1.01	1.09	1.42	1.41	
K ₂ O	0.02	0.02	0.02	0.03	0.04	÷
P2O5	0.07	0.06	0.06	0.09	0.09	
LOI	0.53	0.82	0.24	0.43	0.31	
Total	100.01	100.21	99.97	99.54	100.22	*
Mg#	74.87	77,95	76.56	69.41	70.30	1
Primitive ma	ntle normaliz	ed trace elen	ient ratios			
(La/Sm) _N	0.95	0.57	0.58	0.97	0.94	1.09
(La/Y) _N	1.23	0.66	0.69	1.14	1.25	1.20
(La/Yb) _N	1.28	0.66	0.70	1.27	1.30	1.31
(Rb/Sr) _N	0.04	0.10	0.05	0.06	0.05	0.12
(Sr/Nd) _N	1.01	1.03	1.08	0.92	1.00	1.09
(Ba/Y) _N	0.54	0.34	0.27	0.53	0.71	1.08
(Zr/Y)N	1.24	1.07	1.14	1.12	1.23	1.07

Table D6.1: See caption on next page

Sample ID	Pd3	Pd6	Pd12	Pd23	Pd26	Pd66
Rock	Picrite	Picrite	Picrite	Picrite	Picrite	Picrite
Туре	E-type	N-type	N-type	E-type	E-type	E-type
Trace elemen	t composition	ı (ppm)				
Sc	45.10	38.70	42.40	40.78	45.90	37.28
Ti*	5394.59	4615.37	4915.07	6353.63	6173.81	5435.65
V	278.00	229.00	258.00	291.61	284.00	253.83
Cr	575.00	741.00	678.00	889.15	626.00	927.89
Mn*	1394.02	1316.58	1316.58	1394.02	1394.02	1394.02
Co	72.40	89.50	49.80	64.87	71.40	63.53
Ni	484.00	1087.00	836.00	402.22	400.00	418.28
Cu	139.00	101.00	119.00	133.41	141.00	100.11
Zn	89.30	84.20	84.90	82.57	89.20	76.86
Ga	15.30	12.10	13.90	14.12	15.40	13.80
Rb	0.14	0.23	0.15	0.21	0.20	0.40
Sr	118.00	77.10	94.00	115.00	125.00	112.13
Y	19.40	15.50	17.20	21.50	20.20	18.90
Zr	58.90	40.40	47.90	59.01	60.70	49.37
Nb	3.67	1.21	1.58	3.85	3.73	4.56
Cs	-		*			0.01
Ba	16.00	8.12	7.23	17.65	22.10	31.26
La	3.61	1.53	1.80	3.70	3.77	3,41
Ce	9.21	4.84	5.84	9.05	9.57	8.13
Pr	1.39	0.81	0.94	1.52	1.49	1.28
Nd	7.37	4.68	5.45	7.81	7.89	6.44
Sm	2.37	1.69	1.96	2.39	2.52	1.97
Eu	0.85	0.63	0.72	0.90	0.90	0.76
Gd	2.96	2.26	2.52	3.21	3.04	2.72
ть	0.55	0.43	0.48	0.56	0.57	0.48
Dy	3.46	2.77	3.04	3.47	3.63	3.00
Ho	0.76	0.61	0.68	0.74	0.78	0.64
Er	2.04	1.66	1.84	2.00	2.19	1.81
Tm		-		0.32	*	0.29
Yb	1.92	1.57	1.74	1.98	1.97	1.77
Lu	0.28	0.24	0.26	0.33	0.30	0.29
Hf	1.52	1.09	1.28	1.61	1.63	1.33
Ta	0.21	0.08	0.10	0.24	0.22	0.26
Pb				1.41		1.16
Th	0.28	0.08	0.11	0.31	0.28	0.31
U	0.04	0.02	0.02	0.05	0.04	0.06

Table D6.1: ⁸⁷Sr/⁸⁶Sr isotope, major and trace element composition of the Baffin Island picrites. Sr isotope ratios are obtained by MC-ICPMS, and trace element concentrations by ICPMS at *AHIGL* (Department of Earth Sciences, Durham University) Major element compositions are from Yaxley et al. (2004). Ti* and Mn* are calculated from wt.% except for Pd66. Subscribed i indicates initial or the formation age, which for the BIP are 61 Ma.

Sample 1D	JD70-250	JD70-272-1	JD70-E256	JD70-214-1	JDC70-280	JDC70-E418
Rock	Charnockite	Charnockite	Charnockite	Gneisses	Gneisses	Gneisses
Frace elemen	ts (ppm)					
Se	7.91	12.93	14.36	11.88	0.87	1.16
гі	3206	3919	7863	1912	264	797
V	37.27	64.62	91.73	28,28	7.11	13.45
Cr	33.41	39.25	11.87	8.33	1.82	17.67
Mn	0.03	0.07	0.09	0.08	0.01	0.01
Co	4.54	9.49	14.97	8.23	0.81	3.24
Ni	10.35	14.00	13,58	10.67	3.00	10.58
Cu	11.01	22.66	15.38	5.77	1.74	6.20
Zn	47.98	74.06	99.55	53.30	10.60	17.71
Ga	20.65	19.79	23.40	21.53	14.59	13.95
Rb	249.78	249.69	57.16	33.63	165.12	171.28
Sr	140.15	126.68	484.24	286.80	362.43	276.37
Y	42.75	54.12	29.63	46.77	0.51	0.65
Zr	346.18	310.25	180.90	59.43	57.47	38.58
Nb	18.81	17.35	22.55	9.31	0.44	1.83
Cs	8.56	3.78	0.32	0.02	0.50	1.27
Вв	1045	953	1689	356	1474	1847
La	59.05	58.97	83.65	37.71	3.29	2.78
Ce	117.35	121.59	181.31	75.66	9.93	4.97
Pr	14.30	15.41	22.46	10.27	0.60	0.47
Nd	51.89	56.93	85.27	40.86	1.86	1.59
Sm	9.17	10.40	13.23	8.66	0.28	0.26
Eu	1.27	1.37	2.85	1.46	0.36	0.42
Gd	7.39	8.70	8.81	7.90	0.19	0.19
Tb	1.17	1.41	1.16	1.29	0.02	0.02
Dy	6.61	8.16	5.68	7.21	0.09	0.11
Ho	1.34	1.66	1.00	1.41	0.01	0.02
Er	3.53	4.43	2.39	3.72	0.04	0.05
Tm	0.55	0.69	0.34	0.56	0.01	0.01
Yb	3.40	4.30	1.97	3.32	0.04	0.05
Lu	0.53	0.67	0.30	0.50	0.01	0.01
Hf	8.63	7.38	4.24	1.40	1.61	1.10
Тв	1.53	1.16	0.96	0.35	0.02	0.11
Pb	34.56	41.30	19.92	13.34	27.63	41.24
Th	28.64	27.48	4.09	0.64	1.72	0.54
U	3.93	2.61	0.78	0.15	0.29	0.21

Appendix D7: Selected crustal rocks of Baffin Island - Sr isotope and element data

Table D7.1: ⁸⁷Sr/⁸⁶Sr isotope and trace element composition of selected crustal rocks of Baffin Island. Sr isotope ratios are obtained by MC-ICPMS, and trace element concentrations by ICPMS at *AHIGL* (Department of Earth Sciences, Durham University) Subscribed i indicates the initial or the formation age (61 Ma), which the possible age for the interaction between the crustal rocks and the BIP.

Sample ID	JD70-197-2	JD70-318-2	JDC70-304	JD70-D239-2
Rock	Granitoid	Granitoid	Granitoid	Mafic
Frace elemen	ts (ppm)			
Sc	4.19	4.51	8.85	17.57
Ti	1650	2421	2721	4357
v	22.75	18.67	35.53	124.75
Cr	11.22	11.09	23.86	151.88
Mo	0.02	0.01	0.03	0.07
Co	3.59	13.67	6.24	18.81
Ni	5.02	28.84	9.76	64.15
Cu	3.20	29.17	10.03	14.74
Zn	32.52	16.89	48.32	109.67
Ga	16.45	16.10	19.22	21.72
Rb	143.27	142.58	142.03	158.56
Sr	177.29	121.87	163.20	160.86
Y	13.82	20.35	17.91	21.94
Zr	107.55	229.32	183.61	140.10
Nb	11.04	11.53	13.43	12.95
Cs	0.59	0.29	3.42	11.91
Ba	521	927	624,42	593.96
La	28.29	17.61	34.34	33.64
Ce	52.58	32.67	77.42	66.50
Pr	6.08	4.03	8.35	8.48
Nd	20.91	16.02	30.28	32.79
Sm	3.74	3.47	5.04	6.00
Eu	0.73	0.92	0.93	1.28
Gd	2.79	3.42	3.56	4.83
ТЬ	0.44	0.55	0.53	0.71
Dy	2.40	3.16	2.92	3.93
Ho	0.43	0.63	0.57	0.76
Er	0.95	1.62	1.41	2.04
Tm	0.11	0.24	0.21	0.32
Yb	0.59	1.41	1.21	2.09
Lu	0.09	0.22	0.19	0.33
Hf	3.25	5.98	4.66	3.86
Ta	0.57	0.85	1.41	1.04
Pb	61.61	13.67	13.67 22.46	
Th	20.24	7.24	13.32	11.84
U	4.26	1.71	1.34	3.69

Sample ID	JD70-258-1	JD70-294-2	JD70-303-2	JD70-304-1	JD70-E236-1	JD70-E294-1
Rock	Metasediment	Metasediment	Metasediment	Metasediment	Metasediment	Metasediment
Frace eleme	nts (ppm)					
Sc	4.21	0.61	4.04	18.80	10.88	10.69
ri -	2421	473	2985	4213	3506	3020
V	31.95	1.34	31.56	135.26	89.89	68.12
Cr	2.38	0.30	8.87	219.40	120.12	73.04
Mn	0.01	0.01	0.03	0.08	0.03	0.03
Со	4.13	0.52	5.77	16.01	13.53	10.73
Ni	2.89	0.34	7.00	49.51	56.31	32.65
Cu	5.90	1.95	6.53	32.20	43.95	3.53
Zn	30.97	11.04	48.73	130.32	127.88	71.12
Ga	18.11	14.79	20.96	17.61	16.63	19.24
Rb	157.95	178.31	115.97	126.07	176.37	185.67
Sr	486.86	88.91	336.22	77.14	134.31	50.57
Y	3.84	3.62	8,31	21.26	25.45	19.54
Zr	285.14	77.13	113.63	159.41	205.83	156.92
Nb	4.62	1.73	5,68	10.22	11.79	11.70
Cs	0.55	1.32	0.78	9.93	3.39	8.06
Ba	4717.55	381.01	1266.90	429.17	212.56	652.42
La	154.10	42.70	26.73	23.31	34.00	37.94
Ce	247.18	77.28	175.85	45.85	67.78	68.84
Pr	24.78	8.26	7.09	5.80	8.57	8.49
Nd	72.70	26.03	22.78	22.04	32.38	30.75
Sm	6.17	2.84	3,58	4.05	6.53	5.39
Eu	1.88	0.71	0.92	0.85	0.83	1.07
Gd	1.63	1.05	2.02	3.37	5.59	4.11
ТЬ	0.17	0.12	0.31	0.53	0.86	0.63
Dy	0.77	0.60	1.63	3.21	4.54	3.26
Ho	0.13	0.11	0.30	0.69	0.84	0.63
Er	0.28	0.24	0.69	2.04	2.00	1.67
Tm	0.04	0.03	0.09	0.35	0.28	0.26
Yb	0.28	0.18	0.51	2.35	1.59	1.66
Lu	0.05	0.03	0.08	0,38	0.24	0.27
Hf	6.13	2.26	2.70	4.21	5.31	4.26
Тя	0.12	0.07	0.15	0.81	0.85	1.02
Pb (total)	35.92	44.15	28.69	20.80	16.47	17.71
Th	32.21	23.00	31.65	8.29	12.82	10.74
U	0.65	2.48	0.59	2.13	2.62	2.45

Tabel D7.1: Continued

Sample ID	JD70-250	JD70-272-1	JD70-E256	JD70-214-1	JDC70-280	JDC70-E418
Rock type	Charnockite	Charnockite	Charnockite	Gneisses	Gneisses	Gneisses
Map unit	Pcc	Pcc	Pcc	Agn	Agn	Agn
87Sr/86Srmeas	0.841779	0.855917	0.715122	0.728072	0.748264	0.760999
87Sr/86Srnorm	0.841761	0.855899	0.715104	0.728054	0.748246	0.760981
87Sr/86Sr61 Ma	0.837234	0.850885	0.714808	0.727759	0.747099	0.759419
±2SE	0.000011	0.000016	0.000017	0.000011	0.000010	0.000011
(La/Sm) _N	4.03	3.55	3.96	2.73	7.43	6.68
(La/Y) _N	9.17	7.23	18.73	5.35	42.76	28.40
(La/Yb) _N	11.81	9.34	28.86	7.72	51.52	34.69
(Rb/Sr) _N	59.11	65.37	3.91	3.89	15.11	20.56
(Sr/Nd) _N	0.17	0.14	0.36	0.44	12.23	10.90
(Ba/Y) _N	15.92	11.47	37.13	4.97	1879.73	1854.57
$(Zr/Y)_{>}$	3.32	2.35	2.50	0.52	46.05	24.34

Table D7.1: Continued

Sample ID	JD70-197-2*	JD70-318-2	JDC70-304	JD70-D239-2	
Rock type Map unit	Granitoid	Granitoid	Granitoid Pcg1	Mafic PHB	
87Sr/86Srmeas	0.774056	0.771383	0.794484	0.777997	
87Sr/86Srnorm	0.774038	0.771365	0.794466	0.777979	
87 Sr/86 Sr61 Ma	0.771999	0.768413	0.792265	0.775491	
±2SE	0.000011	0.000010	0.000013	0.000011	

Selected PM normalized trace element ratios

(La/Sm) _N	4.74	3.18	4,27	3.51
(La/Y)N	13.59	5.74	12.72	10.18
(La/Yb) _N	32.38	8.50	19.32	10.96
(Rb/Sr) _N	26.80	38.80	28.86	32.69
(Sr/Nd) _N	0.53	0.48	0.34	0.31
(Ba/Y) _N	24.58	29.68	22.71	17.64
(Zr/Y) _N	3.19	4.62	4.20	2.62
And the second se				

Table D7.1: Continued

Sample ID	JD70-258-1	JD70-294-2	JD70-303-2	JD70-304-1	JD70-E236-1	JD70-E294-1
Rock type	Metasediment	Metasediment	Metasediment	Metasediment	Metasediment	Metasediment
Map unit	PHmb	PHmb	PHmb	PHma	PHma	PHma
87Sr/86Srmean	0.730154	0.901624	0.743830	0.820062	0.800911	0.978878
87Sr/86Srnorm	0.730136	0.901606	0.743812	0.820044	0.800893	0.978860
87Sr/86Sr61Ma	0.729321	0.896482	0.742944	0.815901	0.797571	0.969410
±2SE	0.000016	0.000015	0.000010	0.000013	0.000013	0.000012
Selected PM n	ormalized trace e	element ratios				
Selected PM n (La/Sm) _N	ormalized trace e	element ratios 9.43	4.67	3.61	3.26	4.41
Selected PM n (La/Sm) _N (La/Y) _N	ormalized trace e 15.65 266.57	9.43 78.34	4.67 21.35	3.61 7.28	3.26 8.86	4.41 12.89
Selected PM n (La/Sm) _N (La/Y) _N (La/Yb) _N	ormalized trace e 15.65 266.57 368.61	9.43 78.34 157.94	4.67 21.35 35.88	3.61 7.28 6.76	3.26 8.86 14.58	4.41 12.89 15.53
Selected PM n (La/Sm) _N (La/Y) _N (La/Yb) _N (Rb/Sr) _N	ormalized trace e 15.65 266.57 368.61 10.76	9.43 9.43 78.34 157.94 66.52	4.67 21.35 35.88 11.44	3.61 7.28 6.76 54.20	3.26 8.86 14.58 43.55	4.41 12.89 15.53 121.77
Selected PM n (La/Sm) _N (La/Y) _N (La/Yb) _N (Rb/Sr) _N (Sr/Nd) _N	ormalized trace o 15.65 266.57 368.61 10.76 0.42	9.43 9.43 78.34 157.94 66.52 0.21	4.67 21.35 35.88 11.44 0.93	3.61 7.28 6.76 54.20 0.22	3.26 8.86 14.58 43.55 0.26	4.41 12.89 15.53 121.77 0.10
Selected PM n (La/Sm) _N (La/Y) _N (La/Yb) _N (Rb/Sr) _N (Sr/Nd) _N (Ba/Y) _N	ormalized trace e 15.65 266.57 368.61 10.76 0,42 801.24	9.43 78.34 157.94 66.52 0.21 68.63	4.67 21.35 35.88 11.44 0.93 99.34	3.61 7.28 6.76 54.20 0.22 13.15	3.26 8.86 14.58 43.55 0.26 5.44	4.41 12.89 15.53 121.77 0.10 21.76

Table D7.1: Continued

Olivine 1D	Pd6-4 (E)	Pd6-4 (C)	Pd6-2 (E)	Pd6-1 (E)	Pd6-1 (C)	Ave. 01-Pd6	n=15
MIs contained	M14-3	M14-3	M14-12,13,14	M14-1	M14-1	¥.	±2SD
Major elements	s (wt.%)						
Al ₂ O ₃	0.06	0.06	0.06	0.09	0.05	0.06	0.03
MnO	0.16	0.18	0.19	0.19	0.17	0.18	0.03
T102	0.00	0.01	0.01	0.00	0.00	0.01	0.01
Cr201	0.07	0.09	0.08	0.10	0.08	0.08	0.03
MgO	48.33	48.27	48.13	47.54	47.77	48.01	0.68
SiO2	40.44	40.66	40.76	40.78	40.77	40.68	0.29
FeO	11.37	11,17	11.29	11.16	11.17	11.23	0.19
CaO	0.31	0.30	0.33	0.32	0.29	0.31	0.03
NiO	0.35	0.37	0.34	0.35	0.38	0.36	0.03
Na ₂ O	0.00	0.00	0.01	0.00	0.00	0.00	0.00
K20	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	101.10	101.10	101.20	100.54	100.67	100.92	0.59
Al ₂ O ₃	0.06	0.06	0.06	0.09	0.05	0.06	0.03
MnO	0.15	0.18	0.19	0.19	0.16	0.18	0.03
TiO ₂	0.00	0.01	0.01	0.00	0.00	0.00	0.01
Cr2O3	0.07	0.09	0.08	0.10	0.07	0.08	0.03
MgO	47.81	47.74	47.56	47.28	47.45	47.57	0,43
SiO ₂	40.00	40.21	40.28	40.56	40.50	40.31	0.45
FeO	11.24	11.04	11.16	11.10	11.09	11,13	0.15
CaO	0.31	0.29	0.32	0.32	0.29	0.31	0.03
NiO	0.35	0.37	0.34	0.35	0.38	0.36	0.03
Na ₂ O	0.00	0.00	0.01	0.00	0.00	0.00	0.00
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	0.00
Fo	88.2	88.3	88.2	88.2	88,2	88.2	0.14

Appendix D8: Olivine phenocryst of the BIP - major element data

Table D8.1a: Major element composition of olivine phenocrysts from the BIP, which contained the MIs that were sampled by micro-milling are presented in Table D8.1a through D8.1e.. Concentrations are determined by electron microprobe at the Department of Geography and Geology – Geology section (University of Copenhagen) and are given in wt.%. Concentrations in italic are the untreated data, while the concentrations in regular are normalized to a 100 wt.%. Each analysis represents an average of three analyses. The *E*, *C*, and *P* in parentheses after the 'Olivine ID' denotes that the olivine was probed at the edge, centre, or near the mill pit. 'MIs contained' refer to which MIs was sampled at each particular grain. 'Fo' is the fosterite content of the olivine. The two columns to the right list the average composition of 'n' olivine phenocrysts analyzed, and the 2SD error on the average concentration.

Olivine ID	Pd12-1 (P)	Pd12-1 (E)	Pd12-1 (C)	Pd12-2 (E)	Pd12-2 (C)	Pd12-3 (C)
MIshosted	M14-4	M14-4	M14-4	M14-5	M14-5	M14-30,31
Major element	s (wt.%)					
Al ₂ O ₃	0.29	0.07	0.07	0.09	0.09	0.07
MnO	0.22	0.19	0.21	0.18	0.16	0.15
TIO2	0.02	0.00	0.00	0.00	0.00	0.01
Cr203	0.10	0.07	0.07	0.10	0.11	0.14
MgO	47.67	47.78	48.21	46.94	48.31	47.82
SiO ₂	40.36	40.55	40.59	40.49	40.56	40.07
FeO	11.41	11.51	10.96	11.46	10.51	11.60
CaO	0.32	0.32	0.31	0.29	0.29	0.30
NiO	0.36	0.38	0.41	0.35	0.42	0.38
Na ₂ O	0.01	0.01	0.02	0.00	0.01	0.01
K20	0.00	0.00	0.00	0.00	0.00	0.00
Total	100,75	100.87	100.85	99.92	100.47	100.53
Al ₂ O ₃	0.29	0.07	0.07	0.09	0.09	0.07
MnO	0.22	0.19	0.20	0.18	0.16	0.15
TiO ₂	0.02	0.00	0.00	0.00	0.00	0.01
Cr ₂ O ₃	0.10	0.07	0.07	0.10	0.11	0.14
MgO	47.31	47.37	47.80	46.98	48.08	47.57
SIO ₂	40.05	40.20	40.25	40.52	40.37	39.85
FeO	11.32	11.41	10.87	11.47	10.46	11.53
CaO	0.31	0.32	0.31	0.29	0.29	0.30
NiO	0.36	0.37	0.41	0.35	0.41	0.38
Na ₂ O	0.01	0.01	0.02	0.00	0.01	0.01
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00
Fo	88.0	87.9	88.5	87.8	89.0	87.9

Table D8.1b: Continues on next page.

Olivine ID	Pd12-3 (E)	Pd12-4 (E)	Pd12-4 (C)	Pd12-4 (P)	Aveoi-Pd12	n=30
MIshosted	M14-30,31	M14-20,21	M14-20,21	M14-20,21	2	±2SD
Major element	ts (wt.%)					
Al ₂ O ₃	0.15	0.07	0.05	0.08	0.10	0.14
MnO	0.16	0.18	0.16	0.16	0.18	0.04
TIO2	0.01	0.00	0.00	0.00	0.00	0.01
Cr_2O_3	0.11	0.08	0.12	0.10	0.10	0.04
MgO	48.49	47.63	47.71	47.65	47.82	0.88
SiO ₂	41.02	40.65	40.51	41.21	40.60	0.64
FeO	10.61	11.47	11.88	11.31	11,27	0.88
CaO	0.30	0.31	0.30	0.33	0.31	0.03
NiO	0.39	0.35	0.38	0.36	0.38	0.05
Na ₂ O	0.01	0.01	0.00	0.01	0.01	0.01
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Total	101.26	100.75	101.09	101.21	100.77	0.80
Al ₂ O ₃	0.15	0.07	0.05	0.08	0.10	0.14
MnO	0.16	0.18	0.16	0.16	0.18	0.04
TiOz	0.01	0.00	0.00	0.00	0.00	0.01
Cr ₂ O ₃	0.11	0.08	0.12	0.10	0.10	0.04
MgO	47.89	47.28	47.19	47.08	47.45	0.74
SiO ₂	40.51	40.34	40.07	40.72	40.29	0.52
FeO	10,48	11.38	11.75	11.17	11.18	0.88
CaO	0.29	0.31	0.29	0.33	0.30	0.02
NiO	0.39	0.34	0.37	0.36	0.37	0.05
Na ₂ O	0.01	0.01	0.00	0.01	0.01	0.01
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	0.00
Fo	88.9	87.9	87.6	88.0	88.1	0.96

Table D8.1b: Continued

Olivine ID	Pd23-3 (P)	Pd23-3 (C)	Pd23-3 (E)	Pd23-2 (P)	Pd23-2 (C)	Pd23-2 (E)	Pd23-1 (E)
MIshosted	M14-11	M14-11	M14-11	M14-8,9,10	M14-8,9,10	M14-8,9,10	M14-6,7
Major eleme	nts (wt.%)						
Al ₂ O ₃	0.07	0.06	0.07	0,07	0.06	0.06	0.07
MnO	0.19	0.20	0.16	0.16	0.19	0.23	0.18
TiO2	0.01	0.01	0.01	0.01	0.01	0.00	0.01
Cr203	0.06	0.06	0.07	0.06	0.08	0.08	0.06
MgO	46.93	47.11	46.16	46.99	47.33	47.25	46.60
SiO ₂	40.15	40.82	40.28	40.14	39.75	39.81	40.08
FeO	12.23	12.00	12.53	12.01	11.99	12.21	13.33
CaO	0.30	0.30	0.32	0.30	0.31	0.32	0.33
NiO	0.34	0.31	0.34	0.34	0.32	0.32	0.28
Na ₂ O	0.01	0.00	0.01	0.00	0.01	0.00	0.00
K20	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.28	100.88	99.94	100.08	100.05	100.28	100.94
Al ₂ O ₃	0.07	0.06	0.07	0.07	0.06	0.06	0.07
MnO	0.19	0.20	0.16	0.16	0.19	0.23	0.18
TiO ₂	0.00	0.01	0.01	0.01	0.01	0.00	0.01
Cr203	0.06	0.06	0.07	0.06	0.08	0.08	0.06
MgO	46.80	46.70	46.19	46.95	47.31	47.12	46.17
SiO ₂	40.04	40.46	40.30	40.11	39.73	39.69	39,70
FeO	12.19	11.89	12.54	12.00	11.98	12.18	13.20
CaO	0.30	0.30	0.32	0.30	0.31	0.32	0.32
NIO	0.34	0.31	0.34	0.34	0,32	0.32	0.28
Na ₂ O	0.00	0.00	0.01	0.00	0.01	0.00	0.00
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Fo	87.0	87.3	86.6	87.3	87.4	87.2	86.0

Table D8.1c:

Olivine ID	Ave _{OI-Pd23}	n=21
MIshosted	÷	±2SD
Al ₂ O ₃	0.07	0.01
MnO	0.19	0.05
TiO ₂	0.01	0.01
Cr203	0.07	0.02
MgO	46.91	0.82
SiO ₂	40.14	0.70
FeO	12.33	0.96
CaO	0.31	0.02
NiO	0.32	0.04
Na ₂ O	0.01	0.01
K20	0.00	0.00
Total	100.35	0.81
AI2O3	0.07	0.01
MnO	0.19	0.05
TiO ₂	0.01	0.01
Cr ₂ O ₃	0.07	0.02
MgO	46.75	0.87
SiO ₂	40.01	0.62
FeO	12.28	0.92
CaO	0.31	0.02
NiO	0.32	0.04
Na ₂ O	0.01	0.01
K ₂ O	0.00	0.00
Total	100.00	0,00
Fo	87.0	1.02

Table D8.1e: Continued

Olivine ID	Pd26-1 (E)	Pd26-1 (C)	Pd26-2 (C)	Pd26-2 (E)	Pd26-3 (E)	Pd26-3 (C)	Ave. 01-Pd26	n=18
MIshosted	M14-22,23	M14-22,23	M14-24,25	M14-24,25	M14-32,33,34	M14-32,33,34	~	±2SD
Major elem	ients (wt.%)							
AI203	0.06	0.05	0.07	0.08	0.11	0.05	0.07	0.04
MnO	0.20	0.18	0.19	0.22	0.18	0.19	0.19	0.03
TIO2	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
Cr203	0.07	0.08	0.06	0.07	0.08	0.05	0.07	0.02
MgO	46.82	47.62	46.94	46.59	46.68	47.57	47.04	0.90
SiO2	40.67	40,75	40.97	40.64	40.97	40.48	40.75	0.39
FeO	12.59	12.08	12.32	13.00	12.02	12.16	12.36	0.75
CaO	0.32	0.32	0.30	0.31	0.33	0.32	0.32	0.02
NiO	0.32	0.33	0.31	0.31	0.31	0.33	0.32	0.02
Na ₂ O	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
K20	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Total	101.06	101.41	101.17	101.25	100.70	101.17	101.13	0.48
Al ₂ O ₃	0.06	0.05	0.07	0.08	0.11	0.05	0.07	0.04
MnO	0.19	0.18	0.19	0.21	0.18	0.19	0.19	0.03
TiO ₂	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
Cr203	0.07	0.08	0.06	0.07	0.08	0.05	0.07	0.02
MgO	46.32	46.95	46.39	46.02	46.35	47.02	46.51	0.79
SiO ₂	40.25	40.18	40.49	40.13	40.69	40.01	40.29	0.50
FeO	12.46	11.91	12.18	12.84	11.94	12.01	12.22	0.72
CaO	0.32	0.31	0.30	0.30	0.32	0.31	0.31	0.02
NiO	0.31	0.33	0.30	0.30	0.31	0,33	0.31	0.02
Na ₂ O	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
K20	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00
Fo	86.7	87.4	87.0	86.3	87.2	87.3	87.0	0.83

Table D8.1d:

Olivine 1D	PD66-3 (E)	PD66-3 (E)	PD66-2 (E)	PD66-1 (E)	Aveoi-Pd66	n=12
MIshosted	M14-28,29	M14-28,29	M14-35,36,37	M14-26		±2SD
Major eleme	ents (wt.%)					
Al2O3	0.06	0.05	0.15	0.08	0.08	0.09
MnO	0.22	0.23	0.23	0.23	0.23	0.01
TiO ₂	0.01	0.02	0.01	0.00	0.01	0.01
Cr203	0.05	0.07	0.06	0.07	0.06	0.02
MgO	46.55	45.42	44.21	45.56	45,43	1.92
SiO2	39.50	41.18	40.71	40.16	40.39	1.42
FeO	14.43	14.65	14.42	14.41	14.48	0.23
CaO	0.33	0.33	0.34	0.36	0.34	0.03
NiO	0.23	0.23	0.24	0.21	0.23	0.02
Na ₂ O	0.00	0.00	0.01	0.01	0.00	0.01
K20	0.00	0.00	0.01	0.01	0.00	0.01
Total	101.37	102.18	100.37	101,11	101.26	1.49
Al ₂ O ₃	0.06	0.05	0.15	0.08	0.08	0.09
MnO	0.22	0.22	0.23	0.23	0.23	0.01
TiO ₂	0.01	0.01	0.01	0.00	0.01	0.01
Cr2O3	0.05	0.07	0.06	0.07	0.06	0.02
MgO	45.92	44.45	44.04	45.06	44.87	1.63
SiO ₂	38.97	40.31	40.56	39.72	39.89	1.41
FeO	14,24	14.34	14.37	14.25	14.30	0.13
CaO	0.32	0.33	0.34	0.35	0.34	0.03
NiO	0.23	0.22	0.24	0.21	0.22	0.03
Na ₂ O	0.00	0.00	0.01	0.01	0.00	0.01
K ₂ O	0.00	0.00	0.01	0.01	0.00	0.01
Total	100.00	100.00	100.00	100.00	100.00	0.00
Fo	85.0	84.5	84.3	84.7	84.6	0.58

Table D8.1e:

MI ID _{MI4}	M14-1	M14-12	M14-13	M14-14	M14-2	M14-3	M14-4	M14-5
Host Rock	Pd6	Pd6	Pd6	Pd6	Pd6	Pd6	Pd12	Pd12
Size (µm)	100x50	100x80	100x80	75	80	125	75	125x150
n	1	1	1	1	1	1	1	1
Туре	N (I)	E (II)	N (II)	E (11)	N (II)	N(I)	N (11)	N (I)
Trace elemen	nt content n	ormalized to	100 µm-size	d MI (pg)				
Ti	13238.90	2139.90	3411.02	536.92	14752.50	4728.06	56175.99	15299.03
Rb	4.68	2.09	3.80	1.79	3.35	2,39	25.38	8.81
Sr	181.27	17.91	47.30	17.43	176.53	77.42	675.32	204.97
Y	40.44	3.39	6.84	2.87	43.09	17.89	148.41	43.13
Zr	128.91	19.22	19.89	42.41	152.17	43.83	481.24	117.17
Nb	-	4.52	4.42	16.10	+	+	9.77	
Ba	119.58	26.47	52.62	26.67	79.83	62.57	127.90	906.33
La	4.19	1.05	0.79	0.94	4.51	1.44	16.19	3.91
Ce	12.16	2.38	1.77	2.57	13.03	4.60	64.72	13,43
Pr	2.01	0.36	0.24	0.04	2.21	0.60	7.61	2.58
Nd	11.14	1.18	2.25	0.79	10.76	4.46	45.68	10.87
Sm	3.99	0.28	0.59	0.12	3.82	1.77	13.91	3.54
Eu	1.73	0.24	0.25	0.10	1.62	0.62	6,09	1.63
Gd	5.15	0.50	0.75	-0.01	5.40	1.77	19.07	4.81
Dy	6.18	0.40	1.04	0.39	6.11	2,45	22.79	6.54
Er	4,03	0.30	0.63	0.34	4.44	2.02	15.03	4.72
Yb	5.21	0.32	0.83	0.62	5.50	2.43	17.24	5.76

Appendix D9: Normalized MI trace element concentrations to 100 µm-sized MI

Table D9.1: Trace element concentrations are obtained by double focusing magnetic sector field ICPMS at AHIGL (Department of Earth Sciences, Durham University). Here the concentrations are normalized to a 100 µm-sized MI (pg). See also Table 4.10.

MIIDaux	M14-31	M14-21	M14-20	M14-6	M14-7	M14-8	M14-9	M14-10
Host rock	Pd12	Pd12	Pd12	Pd23	Pd23	Pd23	Pd23	Pd23
Size (µm)	Zone	Zone	Zone	40x80	40x80	100x80	100	50x70
Number of	м	м	М	1	1	1	1	1
Туре	N (II)	N (II)	N(1)	E (I)	E (I)	E (II)	N (II)	E (?)
Trace eleme	nt content n	ormalized to	0 100 μm-size	ed MI (pg)				
Ti	1763,36	1764.57	1219,55	11975.51	12590.68	4112.52	2869.47	4273.58
Rb	0.85	5.41	-0.29	3.85	5.54	6.79	3.19	3.25
Sr	20.61	47.98	11.14	157.21	127.86	91.35	11.51	38.68
Y	6.82	7,46	3.91	28.74	22.56	11.23	3.68	4.77
Zr	17.33	22.67		67.54	88.38	48.04	2.95	
Nb	2.94	9.56	7.72		2.71	17.03	13.08	4.09
Ba	28.58	34.91	9.34	79.72	39.88	75.43	13.54	43,69
La	0.60	1.03	0.48	4.82	4.07	2.96	0.29	0.97
Ce	1.44	2.46	0.05	13.63	18.05	6.75	1.30	4.91
Pr	0.36	0.24	0.03	1.52	1.33	0.84	0.08	0.27
Nd	1.24	1.40	0.42	10.78	6.90	4.24	1.00	1.90
Sm	1.06	0.83	0.10	2.53	2.21	1.43	0.40	0.48
Eu	0.04	0.19	0.13	1.01	1.06	0.66	0.15	0.17
Gd	0.25	0.43	0.12	3.80	2.75	1.47	0.46	0.54
Dy	0.92	1.01	0.57	4.22	3.80	1.63	0.18	0.74
Er	0.73	0.74	0.40	2.92	2.58	1,13	0.34	0.54
Yb	1.31	1.31	0.86	3.27	2,65	1.20	0.75	0.74

Table D9.1: Continued

MI ID _{M14}	M14-11	M14-23	M14-22	M14-25	M14-24	M14-34	M14-32	M14-33
Host rock	Pd23	Pd26	Pb26	Pd26	Pd26	Pd26	Pd26	Pd26
Size (µm)	75	60	40	Zone	70	Zone	75	70
Number of	1	1	3	М	J.	м	1	1
Туре	E (11)	N (11)	N (II)	E (I)	E (11)	N (II)	N (II)	N (II)
Trace eleme	nt content n	ormalized to) 100 µm-siz	ed MI (pg)				
Tì	722.58	1328.78	4797.14	41488.85	2239.99	8138.22	1465.62	1096.16
Rb	1.39	0.67	0.64	5.29	0.45	3.41	0.70	0.23
Sr	23.29	16.70	11.39	561.68	35.58	66.89	30.35	19.67
Y	2.99	4.11	4.03	109.45	5.47	14.71	4.32	1.33
Zr	14.60	26.36	1.29	389.68	9.11	95.43		
Nb	9.76	+	19.27	34.13	12.37	6.72	6.90	8.14
Ba	28.64	35.77	29.22	210.86	24.38	36.16	12.45	12.29
La	0.73	0.81	0.24	21.57	1.46	2.91	25.14	0.01
Ce	5.07	8.35	0.70	51.25	3.22	3.82	5.45	0.75
Pr	0.25	0.13	0.24	6.50	0.35	0.68	2.75	-
Nd	1.25	1.31	0.85	37.49	1,89	2.88	7.23	0.22
Sm	0.45	0.72	0.23	10.87	1.13	1.20	0.87	0.60
Eu	0.18	0.15	0.11	4.43	0.25	0.35	0.23	0.05
Gd	0.24	0.42	0.23	14.68	0.72	0.88	0.51	0.08
Dy	0.36	0.55	0.58	16,98	0.96	1.99	0.72	0.16
Er	0.27	0.35	0.43	10.88	0.46	1.63	0.52	0.16
Yb	0.30	0.48	0.69	12.21	0.74	2.82	0.50	0.23

Table D9.1: Continued

MI ID _{M14}	M14-26	M14-35	M14-36	M14-29	M14-37	M14-38
Host rock ID	Pd66-1	Pd66-2	Pd66-2B	Pd66-3	Pd66-2	Pd66-3
Size (µm)	160	60	60	225	Zone	Zone
n	1	2	2	1	М	М
Туре	E (I)	N (I)	N (II)	E (I)	E (I)	E (I)
Trace element	content in p	opm recalcula	ted to 100 µm	sized MI		
Ti	22858	2422	1516	31436	535885	26195
Rb	9.04	1.71	0.86	13.84	3.54	1.48
Sr	337.78	47.81	44.51	430.11	791.23	513.48
Y	71.95	6.68	7.90	52.02	121.47	80.00
Zr	203.80	4.58	29.80	264.00	432.83	236.49
Nb	10.57	6.69	4.49	22.50	3.43	14.69
Ba	168.53	20.24	24.21	152.17	193.73	108.73
La	14.60	1.17	1.02	11.34	23.43	16.29
Ce	34.76	2.67	4.93	31.74	59.43	34.76
Pr	4.73	0.38	0.59	3.63	7.52	4.81
Nd	24.16	2.18	1.76	17.32	38.14	24.98
Sm	7.37	1,26	0.86	5.44	11.21	7.44
Eu	2.75	0.19	0.22	2.18	4.60	2.91
Gd	9.53	0.56	0.76	6.95	15.77	10.15
Dy	11.27	0.85	0.85	7.75	19.28	12.35
Er	6.90	0.69	0.73	4.85	11.44	6.79
Yb	7.70	0.80	1.04	5.22	12.21	7.43

APPENDIX E

Contents of Appendix E

Appendix E1: Conference abstracts

Appendix E2: Conference posters

Appendix E3: Scientific papers in press or in preparation

- Kent, A. J. R., Harlou, R. & Peate, D. W. (2003): Volatile-rich slab-derived fluxes in backarcs: Insights from melt inclusions and glasses from the Valu Fa ridge, Lau Basin. (SOTA 2003 Conference abstract, http://terra.rice.edu/sota/sotaabstracts.html)
- Harlou, R., Kent, A. J. R., Breddam, K., Davidson, J. P. & Pearson, D. G. (2003): Origin Of Extreme ³He/⁴He Signatures In Icelandic Lavas: Insights From Melt Inclusion Studies. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract V32A-1006. (See poster 1 in Appendix E2)
- Harlou, R., Bernstein, S., Brooks, C. K., Pearson, D. G. & Davidson, J. P. (2004): The origin of the extreme Ti-rich melilitites and nephelinites of the Nunatak Region ~ 74°N in Northeast Greenland: Preliminary insights from melt inclusions. (Kent Brooks symposium 2004 abstract)
- Harlou, R., Kent, A. J. R., Breddam, K., Davidson, J. P. & Pearson, D. G (2004): Origin Of Extreme ³He/⁴He Signatures In Icelandic Lavas: Insights From Melt Inclusion Studies. Geochim. Cosmochim. Acta, 68 11S, A579.
- Harlou, R., Pearson, D. G., Nowell, G. M, Davidson, J. P. & Kent, A. J. R. (2005): Sr isotope studies of melt inclusions by TIMS. Geochim. Cosmochim Acta vol 69/10S, A380. (See poster II in Appendix E2)
- Davidson, J., Morgan, D., Chertkoff, D., Font, L., Jerram, D., Harlou, R. & Martin, V. (2006): New perspectives in understanding magma sources and differentiation. (VMGS abstract 2006)
- Harlou, R., Pearson, D. G., Davidson, J. P., Kamenetsky, V. S. and Yaxley, G. M. (2006): Source variability and crustal contamination of the Baffin Island picrites – coupled Sr isotope and trace element study of individual melt inclusions. Geochimica et Cosmochimica Acta Supplement 1, Vol. 70, Issue 18, supplement 1, page 11.

Volatile-rich components in back-arcs: Insights from melt inclusions and glasses from the Valu Fa ridge, Lau Basin

A.J.R. Kent¹, R. Harlou^{2,3} and David W. Peate²

¹Department of Geosciences, Oregon State University, Corvallis, Oregon, USA ²Danish Lithosphere Centre, Øster Voldgade 10, Copenhagen 1350-K, Denmark ³Dept of Geological Sciences, University of Durham, South Road, Durham, UK

We present the results of an ongoing investigation of volatile, major and trace element abundances in melt inclusions and matrix glass from primitive lavas erupted along the Valu Fa Ridge, southern Lau Basin. The chemical and isotopic compositions of back arc lavas provide important information regarding the role of slab-derived fluxes in convergent margins and the evolution of slab and mantle source components during subduction. Many back arc magmas are also erupted in submarine environments at higher confining pressures than subaerial lavas from arc fronts, and thus may be particularly useful for investigating volatile element fluxes and for elucidating the important roles these elements play in mass transfer and arc magma genesis (e.g. Stolper and Newman, 1994; Kent et al., 2002). The study of melt inclusions provides a useful extension of this work. Melt inclusions in early-formed phenocryst phases are typically less affected by low pressure fractionation and/or crustal assimilation, and preserve more primitive magma compositions than erupted lavas. Inclusions may also trap melts before final melt aggregation and thus preserve a broader range of primitive melt compositions, including those that are petrologically interesting, but may have relatively poor preservation potential during aggregation. Finally, even though they are erupted underwater, many volatile-rich back arc magmas are still volatile-saturated at the pressures of eruption (Newman et al., 2000). Melt inclusions trapped at higher confining pressures may preserve abundances of volatile elements closer to primitive, pre-degassing levels. The Lau Basin, and in particular the Valu Fa Ridge, is recognized as an excellent natural laboratory for studying the relationship between subduction and back arc magmatism, although much of the previous work has been conducted on whole rock or matrix glass compositions.

Olivine- and clinopyroxene-hosted melt inclusions from three lavas from the Valu Fa Ridge were analyzed by EMPA, SIMS and LA-ICP-MS for major, volatile (H₂O, CO₂, Cl, S, F) and trace element compositions (LILE, HFSE, REE). The chemical and isotopic composition of the host lava samples are well known from previous studies (e.g. Peate et al., 2001; Kent et al., 2002). All lava samples have relatively high matrix glass MgO contents (>7 wt.%) and compositions consistent with significant contributions from a slab-derived fluid component (e.g. Ba/Nb 130-355; H₂O 1.2 – 1.3 wt.%, Cl – 700 ppm). Olivine and clinopyroxene phenocrysts that host inclusions have Mg# between 0.82 – 0.88, suggesting that they preserve melts trapped at the relatively early stages of magmatic differentiation (host glasses are in equilbrium with olivine with Mg# – 0.79 – 0.83). Melt inclusions in olivine phenocrysts range in size from $-30 > 200 \mu$ m, are naturally glassy, and are characterized by an unusual absence of shrinkage bubbles. Clinopyroxene-hosted inclusions typically contain shrinkage bubbles (occupying ~10-20 volume% of the inclusion) and plagioclase daughter crystals.

Melt inclusions from Valu Fa lavas are more primitive than host lavas, with MgO contents (corrected for host crystallization) of 8-12 wt.%. Inclusions also show considerable variation in volatile element and LILE abundances (e.g. Cl 600-4500 ppm, S 200-1600 ppm, K₂O 0.1-0.4 wt.%). Using a simple flux melting model the calculated Cl/K₂O slab (the Cl/K₂O ratios of slab-derived material added to the mantle wedge) varies from 0.2-0.7 for melts trapped in inclusions (Fig. 1). Large variations in this ratio are also evident in inclusions from other arc and back-arc suites, suggesting that the composition of slab-derived inputs to arc and back are magma systems not only vary within and between different arc and back-are systems, but also within individual arc melting systems. We also note that even larger compositional variations are observed in inclusions from Valu Fa seamounts (Kamenetsky et al., 1997) compared to samples from this study taken from the ridge, mirroring the large compositional diversity observed at off-axis seamounts along mid-ocean ridges. Overall the inferred slab-fluid heterogeneity must occur on scales smaller than the melting region, but large enough to be manifest in individual melt batches); and/or (2) variations in fluid composition induced during fluid transport within the mantle wedge.

References: Kamenetsky, V. S. et al. 1997 EPSL 151, 203-233; Kent, A.J.R. et al. 2002 EPSL 361-377; Newman, S. et al. 2000 GGG 1 1999GC000027; Peate, D.W. 2001, J. Pet. 42, 1449-1470; Stolper, E.M. & Newman, S. 1984 EPSL 121, 293-325.

The origin of the extreme Ti-rich melilitites and nephelinites of the Nunatak Region ~ 74°N in Northeast Greenland: Preliminary insights from melt inclusions

Rikke Harlou^{1,2}, Stefan Bernstein^{2,3}, Kent Brooks^{2,4}, Adam Kent⁵, D. Graham Pearson¹, Jon P. Davidson¹

¹Department of Earth Sciences, University of Durham, Durham, UK;
 ²Danish Lithosphere Centre, Copenhagen, DK;
 ³Geological Survey of Denmark and Greenland, Copenhagen, DK;
 ⁴Geological Institute, University of Copenhagen, DK;
 ⁵Department of Geosciences, Oregon State University, Corvallis, OR.

Melt inclusions represent droplets of melt entrapped during the growth of a crystal, and thus provide samples of the melt compositions present during the growth of the particular crystal phase. In this study we report analyses of the major, volatile (Cl, S) and trace element compositions of melt inclusions hosted in olivine phenocrysts from Tertiary alkaline ultrabasic lavas from the Nunatak Region at ~74°N in Northeast Greenland. The Nunatak lavas are highly alkaline and range from melilitite, nepehelinite to basanite - notable are extreme melilitite compositions with up to 8.8 wt% TiO₂. The compositions of melt inclusions provide new insights into the origin of such extreme compositions. Inclusions were examined from two olivine phyric lavas - a Ti-rich melilitite and a nephelinite. These two lavas represent two of the major melt types present within the Nunatak lavas. Melt inclusions compositions advocate the existences of an additional enriched component in the source region of these lavas, such as a packet of recycled oceanic lithosphere.

Previous studies of the Nunatak lavas show that:

- These lavas formed during a short magmatic event at 50 Ma shortly after the continental breakup and the formation of the East Greenland flood basalts. Eruption of the Nunatak lavas occurred some 200-300 km west of the line of continental breakup.
- Lavas types range from melilitites through nephelinites and basanites to more evolved composition such as basalts, trachybasalts and basaltic trachyandesites. The melilitites are dominantly olivine phyric, the nephelinites contain olivine plus clinopyroxene, whereas more evolved lavas contain olivine, clinopyroxene, ±plagioclase, and ±amphibole. The groundmass assemblages are dominated by clinopyroxene plus microlites of oxides and plagioclase is present in the groundmass of the more evolved lavas. In addition phlogopite is also abundant in the melilitites and some nephelinites, whereas perovskite is only observed in the melilitites.

- Whole rock major and trace element data show large chemical variation. Overall, the chemistry of the Nunatak lavas is distinctly different from the East Greenland flood basalts by at a given MgO-content having much lower SiO₂ and Al₂O₃ significantly higher FeO_{total} and TiO₂, and also higher CaO, K₂O, and Na₂O. These lavas also have extremely high levels of incompatible elements. Primitive mantle normalized multi element diagrams are characterized by depletion of the most incompatible elements Cs, Rb, Ba, Th, U, and K relative to the more compatible elements such as Nb, La, and Ce. Also Pb, Sr and P are depleted compared to the neighboring REE, and some lavas have positive Tī-anomalies whereas others have negative Zr-anomalies.
- Corrections for olivine (±clinopyroxene) fractionation to melt compositions in equilibrium with residual
 mantle olivine with 3500 ppm Ni suggests there were several different primary melt types among the
 Nunatak lavas. Examination of melt modifying processes suggests that these do not explain the overall
 chemical variation observed among these lavas. These contrasts are more likely due to heterogeneities in
 the source region rather than variation in the melting systematic.

Insights from melt inclusions:

The range of compositions of olivine phenocrysts from the nephelinite and Ti-melilitite samples are distinctly different. The olivine from the nephelinite sample ranges widely from Fo75 to Fo89, whereas the melilitie shows a narrower range from Fo_{83.4} to Fo_{86.5}. Overall, the major element compositions of the melt inclusions overlap those of the whole rocks, but also extend to more extreme compositions. The TiO₂-content of the melt inclusions from the nephelinite have TiO₂-contents lower than 6 wt%. The melilitite melt inclusions also have lower FeO₁₀₀₄ at a given MgO-content compared to the nephelinite population, but much higher K₂O and Na₂O. S and Cl are typically quite high in these melt inclusions – up to 5300 ppm and 3500 ppm in melilitite and nephelinite hosted inclusions.

The trace element concentrations of the melt inclusions are also typically higher than their respective host lavas, and the melilitite inclusions sample the most enriched compositions. The REE-patterns and primitive mantle normalized multi element diagrams of melt inclusions from the two samples are similar to their host lava, though shifted towards higher values. The lower concentrations of incompatible trace elements in the host lavas can be explained by accumulation of olivine in the host lava. Variations within the melt inclusion populations could also reflect various degree of olivine fractionation from a primary melt.

The major and trace element systematic suggests that the lavas are generated by low degree of melting within the stability field of garnet - thus indicating a high pressured mantle melting regime. The concentrations of incompatible elements in the Nunatak lavas are higher by an order of magnitude than melts produced by aggregated melting of a garnet peridotite with a primitive mantle signature. This suggests the existence of an additional enriched component in the source region of these alkaline lavas, such as recycled oceanic lithosphere. It is suggested that the alkaline Nunatak lavas were generated by melting of packets of recycled oceanic lithosphere present in the ancestral Iceland mantle plume, and variation of melting conditions resulted in a spectrum of different alkaline melt types – such as Tirich melilitite, melilitite, and nephelinite. It is further suggested that the small degree alkaline melts rapidly ascended through existing weaknesses in the lithosphere, perhaps aided by low viscosity and/or high volatile contents. Rapid ascent is consistent with the low observed degree of contamination by crustal rocks.

Origin of Extreme ³He/⁴He Signatures in Icelandic Lavas: Insights from Melt Inclusion Studies

Rikke Harlou^{1,2}, Adam J.R. Kent^{2,3}, Kresten Breddam², Jon P. Davidson¹ & D. Graham Pearson¹

¹Dept of Geological Sciences, University of Durham, South Road, Durham, UK ²Danish Lithosphere Centre, Oester Voldgade 10, Copenhagen 1350-K, Denmark ³Department of Geosciences, Oregon State University, Corvallis, Oregon, USA

Helium isotopes are considered a powerful tool for tracking different mantle domains. Yet, the origin of He isotope variations in many basaltic suites remains enigmatic and often difficult to link with more lithophile chemical and isotopic tracers. One problem is that He isotope ratios are measured from crushed olivines and thus reflect prior fluid and melt fluxes trapped in inclusions within the olivine grains, whereas the lithophile elements mainly reflect the host lava. In an attempt to link He and lithophile element variations, we have characterized the major and trace element composition including volatile elements, of olivine-hosted melt inclusions from three ankaramitic lavas from Vestfirdir, NW-Iceland.

Previous studies have reported extreme ³He/⁴He ratios from NW-Iceland and one ankaramite (SEL97) has been suggested to provide the most precise estimate of the radiogenic (Sr-Nd-Pb) isotopic composition of a relatively undegassed (high ³He/⁴He) mantle component (C or FOZO) common to several ocean islands (Hilton et al. 1999, EPSL 173, 53-60). The samples investigated here exhibit amongst the highest ³He/⁴He ratios observed in terrestrial rocks (42.9 and 34.8 R/R_a). A detailed account of the trace element signature of melt inclusions in these samples may thus help explain the origin of FOZO. One sample of similar composition to these, has a lower He content and a relatively poorly defined He isotope composition of 8.15 +/- 5.1 R/R_a (Breddam & Kurz, 2001, EOS, 82, F1315).

In terms of major elements, the whole rock data reflect olivine accumulation, whereas the melt inclusion data reflect ol + cpx fractionation. The melt inclusions are generally basaltic (Mg#: 52-62), with primitive mantle normalised trace element concentrations that are broadly parallel the host lavas. There is little compositional difference between melt inclusion populations from high and low ³He/⁴He lavas, although inclusions of the low ³He/⁴He lava have lower S and moderately lower Cl. The observed range of trace element ratios: [La/Sm]_N 1-4, [La/Yb]_N 1-5, Sr/Nd 14-24, Ba/Rb 9-23, and Ce/Pb 5-46, covers much of the range observed in Icelandic alkali basalts.

The compositional similarities between inclusions and host lavas suggest that bulk rock compositions are petrogenetically related to the melts sampled by melt inclusions. If He predominantly resides in these inclusions, it suggests that the whole rock composition is an aggregate derived from the same melts that contain the measured He.

Origin of Extreme ³He/⁴He Signatures in Icelandic Lavas: Insights from Melt Inclusion Studies

R. Harlou^{1,2}, A. J. R. Kent^{2,3}, K. Breddam², J. P. Davidson¹, & D. G. Pearson¹.

¹Department of Earth Sciences, University of Durham, UK ²Danish Lithosphere Centre, DK; rh@dlc.ku.dk ³Department of Geosciences, Oregon State University, OR

The variation in He-isotopes in many basaltic suites remains enigmatic and often difficult to link with lithophile chemical and isotopic tracers. One problem is that He-isotopes, commonly measured from crushing olivine separates, reflect the composition of fluids and melts trapped within the olivine grains, while the lithophile elements measured in glass or bulk rock reflect the composition of the host lava. Previous studies from NW-Iceland have reported extreme ³Her⁴He [1], [2]. SEL97 (ankaramite) is suggested to provide the most precise estimate of the Sr-Nd-Pb isotopic ratios of a relatively undegassed (high ³He/⁴He) mantle component (FOZO) [1]. To link He-isotope and lithophile element variations, we characterize major, volatile and trace element compositions of olivine-hosted melt inclusions from 3 ankaramitic lavas from Vestfirdir, NW-Iceland. These samples exhibit amongst the highest ¹He/⁴He observed in terrestrial rocks (42.9 and 34.8 R/Ra). Host lavas and melt inclusions are basaltic (Mg# 52-62). Melt inclusions have higher trace element concentrations than host lavas but parallel REE-patterns. ANb of the melt inclusions from a single lava span a large range from -0.08 to 0.45 (most >0) with (La/Sm)_N from 0.65 to 2.65. This contrasts with negative ΔNb and $(La/Sm)_N <1$ for the high ${}^{3}He/{}^{4}He$ Baffin Island basalts [3]. Major and trace element systematics suggest that each melt inclusion population and their host lavas are related by a combination of accumulation and fractionation of olivine and clinopyroxene. Variations in incompatible trace element ratios within each melt inclusion population reflect variations in the degree and depth of melting. Lack of fluid inclusions in the olivine phenocrysts suggests that these melt inclusions are the major host of He, suggesting that the trace element signatures and He-isotopes in these lavas derive from the same mantle source. Strong links between melt inclusion and whole rock chemistry could also imply that the extremely high ³Her⁴He and FOZO-like Sr-Nd-Pb isotopic compositions originate in the same lower mantle source.

References

[1] Hilton D.R., Gronvold K., Macpherson K., and Castillo P.R. (1999). EPSL 173, 53-60.

[2] Breddam K. and Kurz M.D. (2001) EOS 82, F1315.

[3] Stuart F.M., Lass-Evans S., Fitton, J.G., and Ellam R.M. (2003) NATURE 424, 57-59.

Sr isotope studies of melt inclusions by TIMS

R. Harlou^{1,2}, D.G. Pearson¹, G.M. Nowell¹, J.P. Davidson¹, & A.J.R. Kent³

¹Department of Earth Sciences, University of Durham, Durham, UK. (rikke.harlou@durham.ac.uk, d.g.pearson@durham.ac.uk, g.m.nowell@ durham.ac.uk, and J.P.Davidson@durham.ac.uk) ²Danish Lithosphere Centre, Copenhagen, DK

³Department of Geosciences, Oregon State University, Corvallis, OR. (adam.kent@geo.orst.edu)

In-situ measurements by SIMS have revealed considerable variation in the Pb isotope compositions of melt inclusions from single magmas (Saal et al. 1998). Variations among such inclusions have important implications for melt aggregation processes and source variations. To examine further the potential for isotopic studies on melt inclusions we focus on Sr isotope compositions of olivine hosted melt inclusions found in the extreme (high) ³He/⁴He picrites of Vestfirdir (NW Iceland).

Our previous study of the major, trace, and volatile element systematics of these melt inclusions and their picritic host lavas suggests that melt inclusions and lavas are related by a combination of accumulation and fractionation of olivine and elinopyroxene. Furthermore, the variations in incompatible trace element ratios within each melt inclusion population reflect either (1) variations in the degree and depth of melting or (2) originate from a heterogeneous mantle source. We aim to test these alternative hypotheses using high precision Sr isotope analyses on the melt inclusions.

Melt inclusions hosted in the olivine phenocrysts range in size between 50 and 150 µm and have Sr concentrations (by LA-ICPMS) of 200 to 700 ppm. Such melt inclusions should have total Sr contents of 0.04 to 4 ng. Preliminary experiments carried out on whole olivine grains containing visible melt inclusions show the potential for analyzing single grain and possibly single melt inclusions for high precision ⁸⁷Sr/⁸⁶Sr (50 to 100 ppm 2-sigma internal errors).

Using miniaturized micro-Sr chemistry techniques based around Sr spec resin (Charlier et al., in prep.), this technique gives total procedural blanks as low as 3 pg, enabling the analysis of sub- 0.5 ng samples. Samples are run using a TaF5 activator using a Triton TIMS.

A.E. Saal, S.R. Hart, N. Shimizu, E.H. Hauri, and G.D. Layne (1998), Science Vol. 282 pages 1481-1484.

New perspectives in understanding magma sources and differentiation

Jon Davidson, Dan Morgan, Dan Chertkoff, Laura Font, Dougal Jerram, Rikke Harlou and Victoria Martin,

Department of Earth Sciences, University of Durham, Durham, DH13LE, UK, contact; j.p.Davidson@durham.ac.uk

Geochemists, petrologists and volcanologists all want to know how magma systems work. For the most part our approach involves interrogating the rocks that are formed by igneous processes, using a diverse array of analytical tools. Elemental and mineralogical studies can be used to constrain processes of differentiation – most of which involve the effects of crystallisation and separation or aggregation of crystals and liquids. Isotope ratios serve as a sort of rock "DNA" enabling us to determine the sources of magmas, such as different mantle or crustal domains. Insitu element data used to inform diffusive models, along with short-lived isotope data, are now shedding light on the timescales of magmatic processes. Integration of all of these approaches is helping us to understand where magmas come from, by what processes they are generated and evolve, and over what timescales. At Durham, this principle underpins the research focus of TiMAG (Textural and Isotopic Micro Analysis Group).

Recent analytical advances have enabled us to determine in-situ isotope ratios, in the context of textural features in individual crystals. A surprising result is that considerable isotopic heterogeneity has been identified among and even within crystals from a single rock. This calls into question the utility of whole rock isotopic data in identifying mantle sources. Core-rim isotopic variation in crystals records the changing composition of the magma as the crystal grew. Processes such as contamination and recharge can be identified – the latter commonly associated with textural features such as resorption horizons. The rims of crystals can be used to ascertain the degree to which crystals have equilibrated with the magma in which they have erupted, which itself is a function of time. An overall view is developing of multi-level open system processing, at least among arc magmas.
Source variability and crustal contamination of the Baffin Island picrites – coupled Sr isotope and trace element study of individual melt inclusions

R. Harlou^{1,2}, D.G. Pearson¹, J.P. Davidson¹, V.S. Kamenetsky³, & G.M.Yaxley⁴

¹Department of Earth Sciences, University of Durham, UK; rikke.harlou@durham.ac.uk, d.g.pearson @durham.ac.uk, and j.p.davidson@durham.ac.uk

²Danish Lithosphere Centre, Copenhagen, DK

³CODES, University of Tasmania, AUS; dima.kamenetsky@utas.edu.au

⁴Research School of Earth Sciences, the Australian National University, AUS; greg.yaxley@anu.edu.au

Baffin Island picrites are among the most primitive post-Archean magmas erupted and are thought to have escaped major melt-modifying processes en route to the surface. Recent whole rock geochemical studies show remarkable coherence between radiogenic and He isotopes that infer varying contributions from mantle reservoirs ranging from a high 3He primordial endmember, through "primitive-enriched" material to depleted MORB source mantle [1]. Early-formed olivine-hosted melt inclusions (MIs) may sample undiluted melt fractions from these components prior to melt aggregation and mixing. Sr isotope and trace element measurements of single MIs [2] may thus provide a higher resolution picture of these source contributions. 30 individual olivine-hosted MIs from 5 picrites reveal substantial Sr isotope variations (0.7031-0.7103), which contrast the narrow range of the host picrites (0.7031-0.7037). REE fractionation of MIs [(La/Sm)_N 0.36-2.38] is comparable to the picrites [(La/Sm)_N 0.57-1.09], but (Rb/Sr)_N of the MIs extend to more extreme values (0.1-9.19 vs. 0.04-0.12). Mixing of mantle-derived melts fails to reproduce such elemental and isotopic variations. This suggests, that the Baffin Island MIs witness an overprint of crust that masks the source variations. We derive a model involving interaction of magma with various crustal endmembers to produce a complex spectrum of MI isotopic compositions. This agrees with the model based on trace elements [3]. The extensive nature and complexity of this high level interaction of olivine-hosted MIs suggests that caution should be applied to the interpretation of Sr and Pb isotope variations in oceanic magmas as being solely of mantle origin.

[1] Ellam, R., Stuart, F. (2004) EPSL 228, 511-523.

[2] Harlou, R., et al. (2005) GCA, 69/10S, A380.

[3] Yaxley, G., et al. (2004) Contrib Mineral Petrol, 148. 426-442.

Appendix E1: Conference poster I

Appendix E3: Scientific papers in press and in preparation

- Breddam, K, Stecher, O., Harlou, R., Peate, D.W. & Kurz, M.D. (paper in prep): Miocene high-³He/⁴He ankaramites in NW-Iceland: Trace element constraints on the common component in mantle plumes.
- Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R., and Hora, J. M. (in press): Microsampling and isotopic analysis of ignous rocks: Implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences, 35.
- Harlou, R., Kent, A. J. R., Pearson, D. G., Davidson, J. P. & Breddam, K. (in prep): Origin of Extreme ³He/⁴He Signatures in Icelandic Lavas: Insights from Melt Inclusion Studies.
- Harlou, R., Pearson, D. G., Nowell, G. M., Ottley, C. J., & Davidson, J. P. (in prep): Precise and accurate Sr isotope and trace element analysis of melt inclusions at sub-ng levels using micro-milling and TIMS and ICPMS
- Harlou, R., Pearson, D. G., Kamenetsky, V. S., Yaxley, G. M., Davidson, J. P., & Jackson, G. (in prep): Source variability and crustal contamination of the Baffin Island picrites – coupled Sr isotope and trace element study of individual melt inclusions.
- Harlou, R., Pearson, D. G., Davidson, J. P., Kent, A. J. R. (in prep): Substantial Sr isotope heterogeneity revealed by olivine-hosted melt inclusions from NW Iceland.

