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Abstract 
Nephrotoxicity is one of the major causes for compound failure late in the 

drug development process. Pharmaceutical companies are interested in 

identifying biomarkers of nephrotoxicity which can be used to identify 

potential toxic compounds earlier in the development process and hence 

reduce the overall time and costs involved in bringing a drug to market. 

I developed a cellular model of nephrosis, in NRK cells, using the well 

characterized nephrotoxicant compound puromycin aminonuceloside 

(PAN). Using this cellular model I examined the expression of kidney 

specific genes. Two podocyte specific proteins, podoplanin and 

podocalyxin were found to be specifically down-regulated. Podoplanin 

showed an almost universal 65% reduction in the level of gene 

expression after PAN treatment. Podocalyxin showed a dose-dependent 

reduction in expression, which reached a peak of 85% reduced 

expression at the highest PAN dose tested. 

A cell aggregation assay was developed to quantify the effect of PAN 

induced nephrosis on the cell adhesion properties of the NRK cells. lt was 

found that PAN nephrosis had a significant effect on the cells ability to 

aggregate and to remain adhesive. However cells which lost the ability to 

adhere were still found to be viable. lntegrin a3 protein expression was 

found not be altered in response to PAN treatment as determined by 

immunofluorescence microscopy however Laminin ~2 was found to form 

aggregates in response to PAN treatment. The actin cytoskeleton was 

also found to be severely disrupted as a result of PAN induced nephrosis. 

Based on these studies podocalyxin has been identified as a potential 

genetic biomarker of nephrosis, however further study of podocalyxin 

expression in other models of nephrosis is required before podocalyxin 

can be routinely used as a predictor of nephrotoxicity. 
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Chapter 1 

1.1. Kidney Structure 

1.1.1. Gross Kidney Anatomy 

The kidneys are a pair of organs situated in the posterior section of the 

abdomen behind the peritoneum and located either side of the spine. In 

humans the kidneys lie between the twelfth thoracic vertebra and the third 

lumbar vertebra. An average human kidney ranges between 125 - 170 g 

in men and 115 - 155 g in women. The kidney is approximately 11 - 12 

cm in length 5- 7.5 cm in width and a minimum thickness of 2.5 cm [1]. 

Located on the medial surface of each kidney is a slit called the hilum, 

through which passes the renal artery and vein, the renal nerve, the 

lymphatics and the renal pelvis. The renal pelvis is the funnel shaped 

upper end of the ureter, it is lined by transitional epithelium. Extensions of 

the pelvis, the calices, extend towards the papilla of each pyramid. 

If a kidney is bisected longitudinally, the cut surface shows two distinct 

regions. A dark outer region, called the cortex, and a pale inner region, 

the medulla. The medulla is further divided into renal pyramids, where the 

apex of each pyramid extends towards the renal pelvis, forming a papilla 

(Figure 1.1) [2]. 

On the tip of each papilla are small openings which represent the distal 

ends of the collecting ducts. Striations can be seen on the renal pyramids, 

these are medullary rays, which are attributed to the collecting ducts, 

loops of Henle and blood vessels in this region. 

2 



Renal { Medullary Rays 
Pyramid Papilla 

Figure 1. 1. Schematic Representation of a Bisected Kidney 

Adapted from fig 2.1 Principles of Renal Physiology [2]. 
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In contrast to humans, rats only posses a single renal pyramid and are 

therefore termed unipapillate. In a unipapillate kidney, the papilla is 

directly surrounded by the renal pelvis. Other than this difference rat 

kidneys resemble human kidneys in their gross anatomy. 

The kidneys of rat, as in all mammals, are mainly involved in homeostasis 

through the regulation of fluid volume, electrolyte composition and 

acid-base balance. lt also has endocrine and metabolic functions, 

including detoxification. The main functional unit of the kidney is the 

nephron [1, 2]. 

1.1.2. The Nephron 

Each human kidney contains 1 - 1.5 million nephrons, while a rat has 

approximately 30,000 - 34,000. A nephron is a blind-ended tube; the 

blind end forms the Bowman's capsule around a knot of capillaries, the 

glomerulus. The remaining components of the nephron are the proximal 

tubule, the loop of Henle and the distal tubule (Figure 1.2). The collecting 

duct is not classed as part of the nephron because it arises 

embryologically from the ureteric bud, while the remaining components all 

originate from the metanephric blastema [1, 2]. 

There are two main populations of nephron; the juxtamedullary nephrons 

have long loops of Henle, which pass deeply into the medulla while the 

cortical nephrons have very short loops of Henle (Figure 1.2). In humans 

only 15% of nephrons are juxtamedullary, in rats this figure increase to 

30%. The length of the loop of Henle is related to the position of the 

glomerulus. Although there are two basic types of nephron many 

variations exist depending on their position within the cortex. 
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Proxim 
Tubule 

Cortical Nephron 

Loop of Henle 

Juxtamedullary Nephron 

Cortex 

Medulla 

Figure 1. 2. Schematic diagram showing the main components of the two main classes of nephron. 

Adapted from fig 2.2 Principles of Renal Physiology [2]. 
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1.1.3. Proximal Tubule 

The proximal tubule is the first section of the nephron after the Bowman's 

capsule. lt starts convoluted (pars convoluta) but becomes straight (pars 

recta) and passes down towards the medulla where it becomes the 

descending limb of the loop of Henle. lt is generally 12 - 25 mm in length 

with an outside diameter of 70 IJm. 

The convoluted section of the proximal tubule consists of 

cuboidal/columnar cells, which have a 'brush border' on their luminal 

surface; this increases the surface area available for absorption. The cells 

of the straight part of the proximal tubule are very similar to those of the 

convoluted section, but have a less dense brush border and fewer 

mitochondria [2]. 

Loop of Henle/ Distal tubule: 

The loop of Henle is composed of the straight portion of the proximal 

tubule (pars recta), the thin limb segments, and the straight portion of the 

distal tubule. The cells of the thin part of the loop of Henle are squamous, 

and resemble capillary endothelial cells. The ascending thin segment of 

the loop is up to 15 mm long and the external diameter is 20 IJm. The 

thick ascending segment of the loop is a cuboidal/columnar epithelium, 

with cells similar in size to those of the proximal tubule. However the cells 

are lacking a brush border and have few basal infoldings but many 

infoldings and projections on the luminal surface. 

Collecting duct: 

Most cells are cuboidal, with a much less granular cytoplasm than that of 

the proximal tubule cells. In the cortex, each collecting duct receives 6 

distal tubules, and as the ducts enter the medulla they join each other in 

successive pairings to form the duct of Bellini, which drains into a renal 

calyx. 

6 
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1 .1.4. Glomerulus 

The glomerulus also referred to as the renal corpuscle is composed of a 

capillary network lined by endothelial cells, a central region of mesangial 

cells, the visceral epithelial cells (podocytes) and the associated 

basement membrane. The role of the glomerulus is to act as the filtration 

barrier creating the plasma ultrafiltrate. The average diameter of a human 

glomerulus is approximately 200 !Jm while for rats it is 120 !Jm. 

Juxtamedullary nephrons have glomeruli which are approximately 20% 

greater in diameter. The mean area of the filtration surface per 

glomerulus has been reported to be 0.136 mm2 in humans and 0.184 

mm2 in rats. Ultrafiltration occurs across the glomerulus into the 

Bowman's capsule. The filtrate must sequentially cross the fenestrated 

endothelium, the glomerular basement membrane (GBM) and finally the 

podocyte slit diaphragms (Figure 1.3) [1]. 
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Figure 1. 3. The main components of the glomerular filtration barrier. 
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1.1.5. Glomerular Basement Membrane 

The glomerular basement membrane (GBM) is composed of three 

layers, a central layer called the lamina densa, which is surrounded 

by two thinner layers the lamina rara externa and the lamina rara 

interna. The layered configuration is the result in part of the fusion of 

endothelial and epithelial basement membranes during development. 

The GBM is a molecular scaffold consisting of type IV and type V 

collagen, laminin, fibronectin, proteoglycans and nidogen which are 

tightly cross-linked. Several estimates of the thickness of the normal 

human GBM have been made: Osawa [3] reported it to be 315 nm, 

Jorgenson [4] 329 nm and Osterby [5] 310 nm, the rat has been 

found to be 132 nm in thickness. 

lt is commonly believed that the GBM is the principal structure 

responsible for the permeability of the glomerulus because it is both 

a charge-selective and size-selective barrier, however there is 

increasing evidence that the podocyte slit diaphragms also play a 

significant role in permeability. 

As previously mentioned the glomerular filter functions as both a size 

and charge-selective barrier, however size is the main factor 

determining filtration. The filter is freely permeable to molecules with 

a molecular weight less than 7,000 and is impermeable to molecules 

of 70,000 or greater, very small quantities of albumin with a 

molecular weight of 69,000 can pass through the filter [2]. 

1.1.6. Podocytes 

Podocytes also referred to as glomerular visceral epithelial cells 

(GVEC), are the largest cells in the glomerulus and are unique in 

location and architecture [6]. Podocytes consist of a cell body and 

primary processes which extend from the main cell body and form 
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individual foot processes which come into direct contact with the 

glomerular basement membrane (GBM) [7]. 

Podocytes are highly differentiated polarized epithelial cells, 

consisting of an apical or luminal membrane domain and a basal 

membrane domain, which corresponds to the sole of the foot 

processes. The apical membrane domain and the slit diaphragm (SD) 

are covered by a thick negatively charged glycocalyx rich in 

sialoglycoproteins including podocalyxin (See Section 1.2.2) and 

podoendin. The basal cell membrane mediates the interaction 

between the podocytes and the GBM. Both membranes are 

heterogeneous with regard to lipid composition and contain 

cholesterol-rich domains which support the findings of Schwarz [8] 

and Simons [9] that some podocyte membrane proteins are arranged 

in lipid rafts. 

In the normal glomerulus there is a gap of 25 - 60 nm between 

adjacent foot processes. This gap referred to as the filtration slit is 

bridged by the slit diaphragm (SD). 

The slit diaphragm is a continuous structure that bridges the filtration 

slit between neighbouring foot processes. The SD is the only point of 

cell-cell contact between foot processes of neighbouring podocytes. 

Detailed studies of the slit diaphragm by Rodewald and Karnovsky in 

197 4 [1 0], revealed a zipper-like structure with rows of pores 4 x 14 

nm separated by a central bar (Figure 1.4 ). 

The SD also functions to define the boundary between the apical and 

basolateral membranes of the podocyte [11 ]. The SD is composed of 

a growing number of proteins including nephrin, podocin, FAT, Z0-1 

and CD2AP which are believed to be critical in maintaining correct 

structure and function. 
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lt has been suggested that the SO is a modified tight junction {T J) based 

on (1) the identification of Z0-1, a tight-junction associated protein, on the 

cytoplasmic side of the SO, (2) during renal development the SO evolves 

from the T J and (3) the T J-like function of the SO to divide the podocyte 

apical and basal domains [13]. 

The podocytes are believed to have several distinct functions, not only do 

they maintain the size and charge of the glomerular filtration barrier along 

with the GBM and endothelial cells but they also maintain the GBM by 

contributing to matrix synthesis, and also have a endocytic function [14]. 

The podocyte cell body contains a prominent nucleus and lysosomes, 

mitochondria, a well-developed Golgi apparatus and abundant 

endoplasmic reticulum, in contrast the cell processes contain very few 

organelles. The levels of organelles within the cell body indicate a high 

level of catabolic and anabolic activity and the ability to synthesize the 

components of the GBM [7]. 

lt is critical for correct podocyte function that the structural integrity of the 

foot process is maintained, this has resulted in the development of a 

specialized cytoskeletal organization. To respond to the challenges of the 

glomerular filtration barrier the podocyte cytoskeleton has a complex 

structural conformation [7]. The cytoskeleton has to serve both static and 

dynamic functions and consists of three ultrastructural elements: 

microfilaments, intermediate filaments and microtubules [15]. 

The cell body contains a large number of microtubules, microfilaments 

and intermediate filaments. The foot processes contains a contractile 

structure consisting of several proteins, including a-actinin, myosin, talin 

and vinculin and a dense network of actin filaments connected by an 

array of linker proteins including Z0-1 and C02AP to the SO complex. 

The complex is linked to the glomerular basement membrane by a3~ 1-

integrin and dystroglycan (Figure 1.5). F-actin is a highly dynamic 
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structure with a polar orientation allowing for rapid elongation, branching 

and disassembly [7, 15]. 

Podocytes are the injury target of many glomerular diseases including 

minimal change nephropathy (MCN), chronic glomerulonephritis, focal 

segmental glomerulosclerosis (FSGS) and diabetes mellitus [6]. 

Regardless of the underlying disease the initial events of podocyte injury 

are characterized by either alterations in the molecular composition of the 

SD without any visible morphological changes or by a visible 

reorganization of FP structure resulting in filtration slit fusion and apical 

displacement of the SD. 
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1.2. Podocyte Proteins 

1.2.1. Podoplanin 

Podoplanin is a 43 kDa integral membrane glycoprotein, with a single 

membrane spanning domain, a short 9 amino acid intracytoplasmic tail 

and at least 6 0-glycosylation sites in the mucin-like ectodomains. 

Podoplanin has 2 potential phosphorylation sites, one for protein kinase C 

and one for cAMP-dependent protein kinase, in the intracytoplasmic tail 

which also contribute to the larger observed molecular weight, [17]. 

Molecular cloning showed that the open reading frame of podoplanin is 

498 bp long, and encodes for 166 amino acids which should give a 

protein of approximately 18 kDa [18]. 

Podoplanin is localized predominantly within the cytoplasm of podocyte 

foot processes at their origin from the parent processes but also on the 

apical surface of the parietal epithelial cells of Bowman's capsule [18]. lt 

is believed to have a role in maintaining glomerular permeability and 

maintaining the structure of podocyte foot processes, which are essential 

for the correct function of the glomerular filtration barrier, as any 

effacement of foot processes results in proteinuria [17, 19]. 

Podoplanin shows extensive sequence identity with glycoproteins in 

unrelated tissues, including T1 a in rat lung, fetal kidney cortex and brain 

[20], E11 and OTS-8 in rat and mouse osteoblasts [21, 22], gp40 in 

canine kidney cells, gp36 in humans [23] and GP38 in mouse thymus 

epithelium [24, 25]. 

Podoplanin is also found in the lymphatic endothelia and is a promising 

selective marker for lymphatic endothelium [26] and benign tumour 

lesions; it is highly expressed in the endothelial cells of Kaposi's sarcoma 

[27]. 
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lt has been shown that in the PAN nephrosis animal model, (see section 

1.3.3.1 ), podoplanin is down-regulated at the transcriptional m RNA level 

by 70%, these results were supported at the protein level by quantitative 

immunogold electron microscopy and Western blotting [18]. 

1.2.2. Podocalyxin 

Podocalyxin was originally identified by Kerjaschki et al. [28] as the 

predominant sialoprotein on the apical surface of podocytes, lt has 

subsequently been shown to be expressed on vascular endothelia [29] 

including high endothelial venules [30] and more recently in 

hematopoietic cells [31], megakaryocytes and thrombocytes, [32]. Based 

on its structure podocalyxin has been postulated to have an anti-adhesive 

role at these locations with the exception of high endothelial venules, 

where it is proposed to have an adhesive function. 

Podocalyxin is a 140 - 165 kDa type 1 transmembrane protein with 

features typical of membrane-associated mucins, including serine-, 

threonine-, and proline-rich ectodomains, it is heavily sialylated and 

extensively 0-glycosylated [33]. Structurally it belongs to the sialomucin 

family, a large family of highly sulphated cell surface glycoproteins of 

poorly understood function. The amino acid and protein sequence 

suggest that podocalyxin is most closely related to CD34 and endoglycan 

[34]. lt has been established based on structural similarities that these 

three proteins belong to the CD34 family of sialomucins [35, 36]. 

Podocalyxin-like proteins have been successively cloned from rabbit 

(PCLP1) [37], chicken (thrombomucin) [38], mouse [39] and human 

(PCLP) [30, 40]. All of these proteins share a high degree of homology in 

the intracellular and transmembrane domains, while the ectodomain is 

more heterogeneous by only preserving the mucin-like structure and four 

conserved cysteines [32]. Using FISH the gene for PCLP, PODXL has 

been assigned to the long arm of chromosome 7, 7q32-q33 [41]. 
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As mentioned earlier in order for the glomerular filter to work correctly it is 

critical to maintain the structural integrity of the foot process, this is 

achieved by podocalyxin. Podocalyxin is the major sialoprotein in the rat 

glomerulus and accounts for more than 50% of the total glomerular sialic 

acid content. This gives the glomerular epithelial a very high negative 

charge which acts to maintain an open filtration pathway between 

neighbouring foot processes, as well as maintaining the architecture of 

foot processes and filtration slits [33]. Therefore podocalyxin is proposed 

to act as an anti-adhesive molecule by charge repulsion, this was 

subsequently confirmed by Takeda et al. [42]. Takeda et al. showed that 

podocalyxin inhibits cell-cell adhesion in an expression dependent 

manner and this effect was the result of charge repulsion caused by the 

sialic acid residues, if the sialic acid was removed the cells showed 

normal adhesion. 

In PAN rats, foot process effacement and disorganization of the slit 

diaphragm is accompanied by a 70% reduction in the sialic acid 

composition of podocalyxin [43]. 

Furthermore it has also been shown that podocalyxin associates with the 

actin cytoskeleton through an interaction with NHERF2 and ezrin (Figure 

1.6) [44, 45]. Functional or structural disruption to podocalyxin or to the 

associated cytoskeletal linker proteins, ezrin and NHERF2 could be a 

cause of glomerular disorders and serve as viable targets for future 

studies. 
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1.2.3. Ezrin 

Ezrin is a member of the ezrin/radixin/moesin (ERM) family, which is a 

subfamily of the protein 4.1 superfamily. ERM proteins have been 

classically defined in the literature as membrane-cytoskeleton linkers. 

ERM proteins can bind directly or indirectly to the plasma membrane 

through the FERM domain. The FERM domain is a 300 amino acid 

domain found in the N-terminal domain [46]. 

Ezrin displays 75% amino acid homology to moesin and radixin, and like 

moesin and radixin interacts with the actin cytoskeleton and the plasma 

membrane. Members of the ERM family are believed to be critical for 

cell-cell adhesion and microvilli formation and are characteristically 

located in dynamic structures that undergo changes in cell shape [47]. 

Although members of this family have very striking structural and 

functional similarities, there is a major difference in tissue distribution, 

ezrin is located primarily in epithelial cells while moesin primarily in 

endothelial cells. This difference implies that these proteins may have 

adapted distinct functions to the specific cell types [47]. 

ERM proteins contain two conserved domains, a NH2-terminal domain 

containing the membrane targeting domain and the COOH-domain 

containing the F-actin binding domain [48]. 

ERM proteins are recruited to the plasma membrane via their NH2-

terminal domain which contains both protein and phosphatidylinositol 4, 

5-bisphosphate (PIP2) binding sites. The actin binding site is the last 34 

amino acids in the COOH-terminal domain. ERM proteins are maintained 

in the cytoplasm in an inactive conformation [49]. 

The inactive conformation is due to a masking of both binding sites, 

caused by an intramolecular N- to C- ERM association domain (ERMAD) 

interaction. The N-ERMAD has been mapped to the first 296 amino acids 
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while the C-ERMAD to the last 107 [48]. To generate the active 

conformation of ERM proteins requires the binding of PIP2 and the 

phosphorylation of a conserved threonine residue in the C-ERMAD, T567 

in the case of ezrin [50]. 

Ezrin is specifically expressed by podocytes in the glomerulus. Ezrin 

protein expression is altered in glomerular disease; there is a decrease in 

the puromycin aminonucleoside model of nephrosis but an increase in the 

passive Heymann model. However under no circumstances was there a 

change in mRNA levels [47]. Podocytes undergoing injury and/or 

proliferation showed strong ezrin expression. The observation that ezrin 

expression was highest in mitotic, polynucleated podocytes or podocytes 

completely or nearly detached from the GBM may reflect the need to 

adapt to injury. If adaptation fails podocytes may become completely 

detached round up and die. This pathway maybe of relevance to 

glomerular disease, since loss of podocytes is believed to predispose to 

progressive scarring [4 7]. 

1.2.4. Na + /H+ Exchange Regulatory Factor 

Na+/H+ exchange regulatory factor (NHERF) was originally identified from 

renal brush-border membranes and identified as a cofactor in cAMP 

regulation of the renal apical Na+/H+ exchanger isoform 3 (NHE3) [51]. 

There are two isoforms, NHERF-1, also known as ezrin-binding protein of 

approximately Mr 50,000 (EBP-50) and NHERF-2, also known as NHE3 

kinase A regulatory protein (E3KARP) [52]. NHERF-1 and NHERF-2 

share an overall homology of 57%, but the two tandem PDZ domains 

have a much higher degree of identity. 

The isoforms have a significantly different distribution in the kidney; in fact 

there are no areas of overlap, suggesting the proteins have important 

differences in physiological effects [53]. NHERF-1 is located in the 

proximal tubule and no expression was detected in the glomerulus. In 
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contrast NHERF-2 is strongly expressed in the glomerulus and not in the 

proximal tubule [53]. 

Takeda et al. [45] showed that NHERF-2 was a member of the 

podocalyxin-actin complex. Podocalyxin binds to the PDZ2 domain of 

NHERF-2 via its C-terminal PDZ binding domain DTHL. NHERF-2 binds 

to the N-terminus of ezrin via its C-terminal ERM-binding domain. Ezrin 

links the complex to the actin cytoskeleton via its C-terminal actin binding 

domain [15, 18, 19, 28, 42] (Figure 1.6). 
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1.2.5. Nephrin. 

Nephrin is a transmembrane protein of the immunoglobulin (lg) 

superfamily of cell adhesion molecules (CAMS), which is encoded for by 

the gene NPHS1. Nephrin was identified in 1998 by Kestila et al. [54] as 

the gene responsible for congenital nephrotic syndrome of the Finnish 

type. Nephrin was mapped to chromosome 19q 13.1 and the gene spans 

29 exons [54, 55]. 

Exon 1 codes for the signal peptide, exons 2 - 20 encode for the 8 

extracellular lg type-c2 motifs, each motif is encoded for by two exons 

except lg2 which is encoded by three. Exons 22 and 23 code for a 

fibronectin type Ill-like domain. Exon 24 codes for the transmembrane 

domain and exons 25 - 29 the intracellular cytoplasmic domain, which 

contains 9 potential tyrosine phosphorylation sites, and 3' UTR [55, 56]. 

Nephrin contains 1241 amino acids and has a predicted molecular mass 

of 136 kDa, however extensive N-glycosylation, of the ten potential N­

glycosylation sites, contributes to the actual size of 180 kDa. Northern 

blotting and in situ hybridization showed nephrin to be uniquely expressed 

at the podocyte slit diaphragm, [54, 57-60]. Recent studies have shown 

that nephrin is also expressed in the brain, testis and pancreas_[61-63]. 

Following the identification and cloning of human nephrin, the rat and 

mouse homologues were successively cloned [57, 59, 64, 65]. Sequence 

analysis showed that rat and mouse are 93% identical but only share 

83% identity with human nephrin [64, 65]. In addition, nephrin has been 

identified in C. elegans [66]. 

Kawachi et al. [57] showed that nephrin was critical for maintaining the 

barrier function of the slit diaphragm but was not critical for maintaining 

the correct ultrastructural morphology of the slit diaphragm. A recent 

study by Simons et al. [9] showed that nephrin was associated with lipid 

rafts. 
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From its predicted structure it was suggested that nephrin could 

homodimerize with neighbouring molecules in an antiparallel, head to 

head fashion, this was proved in 2003 by Khoshnoodi et al. [67], it has 

also been shown that nephrin can form heterodimers with NEPH1, a 

recently identified nephrin homologue [68-70]. 

Two splice variants of nephrin, termed alpha and beta have been 

identified in both humans and rats. The alpha form produces a soluble 

truncated, 166 kDa, form of nephrin. The function of the truncated alpha 

isoform is as yet unknown but has been identified in the urine of rats with 

PAN induced nephrotoxicity but not in normal rats [11]. 

Cytoskeletal integrity and N-linked glycosylation are critical for correct 

nephrin membrane localization [71]. Nephrin, podocin and CD2AP are 

functionally linked to the cytoskeleton at the cell periphery [72, 73] (Figure 

1.7). 
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Nephrin expression was found to be reduced in several experimental 

proteinuric diseases including; passive Heymann nephritis (PHN) [74, 75], 

puromycin aminonuceloside nephrosis (PAN) [76-78] and experimental 

diabetic nephropathy [79]. 

Nephrin expression is differentially expressed in human glomerular 

diseases. In childhood cases of minimal change nephropathy and FSGS 

nephrin expression was reduced [80]. Doublier et al. [81] found a 

reduction and redistribution of nephrin in minimal change nephrotic 

syndrome, FSGS and membranous nephropathy (MN). Wang et al. [75] 

also found a reduction in nephrin expression in membranous nephropathy 

and lgA nephropathy. However Patrakka et al. [82] found no change in 

nephrin expression in minimal change nephropathy, FSGS and MN. 

Although there are differences between these studies, these studies did 

use differing techniques and patient samples, which could account for the 

variability in observed nephrin expression. A recent study by Huh et al. 

[83] offers another explanation of the observed discrepancies in nephrin 

expression. They found that nephrin expression was only reduced if the 

foot processes were effaced. As foot process effacement is not uniform in 

glomerulonephritis, this could result in the differing results observed. 

1.2.6. NEPH1 

Little has been published regarding NEPH1 but what is known is that 

NEPH1 is a type-1 transmembrane protein, with important similarities to 

nephrin. NEPH1 belongs to a family of three closely related proteins; the 

other members are named NEPH2 and NEPH3. All three proteins belong 

to the lg superfamily, and share common domain architecture, consisting 

of an extracellular domain of 5 lg-like domains, a transmembrane region 

and an intracellular region which can interact with podocin [84]. NEPH1 is 

localized to the slit diaphragm of podocytes and eo-localizes with nephrin 

[68, 70]. 
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Recent studies by Barletta et al. [68], Gerke et al. [69] and Liu et al. [70] 

have shown that nephrin and NEPH1 are able to form homodimers, but 

can also interact via their cytoplasmic domains to form a cis-interacting 

hetero-oligomeric complex, which is believed to be significant in 

maintaining the slit diaphragm. 

Deletion of NEPH1 in mice results in an almost identical phenotype to 

that observed in nephrin deficient mice [85] suggesting that nephrin and 

NEPH1 participate in overlapping pathways. 

1.2.7. Podocin 

A novel gene encoded for by NPHS2 was identified recently [86] by 

positional cloning, to region 1q25-q31, as the gene mutated in autosomal 

recessive steroid resistant nephritic syndrome (SRNS) (see section 

1.3.1.1 ). The protein, named podocin due to specific expression in 

podocytes, is a member of the stomatin protein family of lipid raft­

associated proteins [87, 88]. The rat homologue of podocin was cloned in 

2003 by Kawachi et al. [89] showed 84% identity to human podocin and 

93% to mouse. The domain structure of podocin is highly conserved 

between species. 

Podocin is a 42 kDa integral membrane protein of 383 amino acids with a 

single membrane domain and both N and C-terminals located in the 

cytosol, [90, 91]. 

Podocin forms high-order oligomers and was shown to be associated with 

lipid rafts and hence may act as a scaffold protein in lipid rafts, recruiting 

nephrin and CD2AP to these microdomains [8, 9]. 

Podocin is located at the cytoplasmic face of the slit diaphragm, where it 

is suggested that it acts as a membrane protein anchor and binds via its 

COOH-terminal domain with the intracellular domain of nephrin and 

CD2AP [8, 91] (Figure 1.5). 
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In PAN nephropathy of the rat, podocin showed a shift in localization and 

a decrease in protein expression but no corresponding decrease in 

mRNA. This suggests that podocin is either degraded or secreted in urine 

in proteinuric state [89]. 

Lipid rafts 

Lipid rafts are specialized liquid-ordered membrane microdomains with 

unique protein and lipid compositions. Lipid rafts are usually enriched in 

cholesterol and glycosphingolipids [92, 93]. Lipid rafts are biochemically 

defined as membrane complexes insoluble in non-ionic detergents at low 

temperatures, because of this definition lipid rafts are also referred to as 

detergent-insoluble glycosphingolipids (DIGs), detergent-insoluble 

complexes (DIGs) and detergent-resistant membranes (DRM). Lipid rafts 

are dynamic structures in living cells, which are important in modulating 

and integrating signals by providing a signalling micro-environment to 

produce specific biological responses. In vivo the only well defined 

membrane structures with lipid raft microdomains are caveolae. 

1.2.8. CD2-Associated Protein 

CD2-associated protein (CD2AP) is an 80 kDa cytoplasmic protein that is 

expressed in all tissues, but primarily in epithelial cells. The human 

homologue of CD2AP was identified as Cas ligand with multiple SH3 

domains (CMS ). 

CD2AP contains three SH3 domains at the N-terminus, followed by a 

proline-rich mid-region, which has weak homology to intermediate 

filaments, a coiled-coil domain and a potential monomeric actin binding 

domain at the C-terminus. SH3 domains are conserved protein modules 

of 60 - 70 amino acids that mediate specific protein-protein interactions. 

Coiled-coil domains are also known to mediate protein-protein 

interactions [94, 95]. 
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In the kidney CD2AP is expressed in the glomerulus, and specifically the 

podocyte in a pattern of expression consistent with expression at the foot 

processes [96]. In vivo CD2AP has been shown to interact with 

polycystin-2 and nephrin [95, 97, 98]. CD2AP may therefore act as a 

scaffolding protein in various signalling cascades controlling processes 

dependent on the actin cytoskeleton for example cell adhesion, 

morphology and motility [99]. 

Interestingly mice lacking CD2AP develop nephrotic syndrome [97] 

resembling diffuse mesangial sclerosis, an infantile nephrotic syndrome 

[94]. 

1.2.9. Glomerular Epithelial Protein 1 

Glomerular epithelial protein 1 (GLEPP-1) also referred to as protein 

tyrosine phosphates receptor type 0 (Ptpro ), is a member of the 

fibronectin type Ill receptor protein tyrosine phosphatases (RPTP) family 

and is only located in the kidney and brain. In the kidney it localizes 

specifically to the apical cell membrane of podocyte foot processes, and 

has therefore been suggested to have a role in regulating podocyte 

structure and function [1 00-1 02]. 

GLEPP-1 has a single transmembrane domain, a single intracellular 

phosphatase domain and a large extracellular domain containing 8 

fibronectin type Ill-like repeats. lt is highly conserved in human, rat, 

mouse and rabbit [1 02]. 

GLEPP-1 was first cloned and characterized from rabbit in 1994 by 

Thomas et al. [1 03] and subsequently identified and cloned in human 

[104] and more recently in mouse [101]. Nucleotide sequence 

comparison showed that human and mouse GLEPP-1 are approximately 

90% and 80% identical to rabbit; while deduced amino acids analysis 

indicated higher identity, 97% and 91% [1 01, 1 04]. 
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In some forms of human disease, including the collapsing form of focal 

segmental glomerulosclerosis (FSGS) and crescentic nephritis, GLEPP-1 

is completely lost from the podocytes [1 05] however this is not the case in 

congenital nephritic syndrome and minimal change disease [1 00]. Using 

the established model of puromycin aminonucleoside nephrosis in the rat, 

which has similarities to minimal change disease and focal segmental 

glomerulosclerosis, both the studies by Kim [100] and Wang [101] 

showed that during the early stages of foot process effacement the 

expression of GLEPP-1 mRNA and protein levels are significantly 

reduced. Suggesting GLEPP-1 is a sensitive marker of podocyte injury 

and could be a useful clinical marker for glomerular injury [101]. 

1.2.10. Synaptopodin 

Synaptopodin, previously named "pp44", was first identified as a novel 

actin binding protein in 1991 by Mundel et al. [106] and was subsequently 

cloned and characterized in 1997 [1 07]. Synaptopodin is exclusively 

expressed in podocytes foot processes and dendritic spines in a subset 

of telencephalic synapses in the brain. 

Based on its amino acid composition and tissue distribution, 

synaptopodin is different from all previously described actin-associated 

proteins. lt is a basic protein encoded by a 685 amino acid polypeptide in 

humans with a calculated molecular mass of 73.7 kDa. In mice it is 690 

amino acids which encode a 74 kDa protein. However due to 

posttranslational modifications it appears as a 110 kDa band on Western 

blotting from kidney glomeruli and a 100 kDa band from brain [1 07]. 

Synaptopodin is a linear, proline-rich protein without any globular domain. 

This may result in a side to side arrangement along actin microfilaments 

similar to that for dystrophin. Synaptopodin shares some properties with 

VASP, another proline-rich actin-associated protein [1 07]. 
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Barisoni et al. and Kemeny et al. reported loss of synaptopodin 

expression in collapsing focal segmental glomerulosclerosis (FSGS) and 

HIV nephropathy [1 08] and the early stages of idiopathic focal segmental 

glomerulosclerosis [1 09]. In a later study Srivastava et al. [11 0] showed 

the expression levels of synaptopodin decrease with increasing severity 

of nephrotic syndrome. Srivastava also proposed that changes in 

synaptopodin expression is a secondary effect that reflects the magnitude 

of damage and as such synaptopodin could be a potential marker to 

predict steroid response and podocyte damage in idiopathic nephrotic 

syndrome including minimal change disease (MCD) and focal segmental 

glomerulosclerosis (FSGS). 

1.2.11. FAT 

FAT was originally identified as a tumour suppressor gene in Drosophila 

called fat, its mammalian homologue FAT has been identified in humans 

and rats. There is 88% amino acid conservation over the entire molecule 

between the three species [111]. 

FAT is a novel member of the cadherin superfamily. The extracellular 

domain of FAT contains 34 tandem cadherin-like repeats, 5 EGF-Iike 

(epidermal growth factor) repeats and a laminin A-G domain, which is the 

same as the extracellular domain motif of protocadherins. The 

cytoplasmic domain of FAT contains sequences homologous to the ~­

catenin binding region of the classic cadherins. lt is concentrated mainly 

at cell-cell contacts as a huge 500 kDa transmembrane protein, 

comparable in size to megalin [111 ]. 

FAT is expressed predominantly in epithelial cell layers and in the central 

nervous system but there is also some expression in endothelial cells and 

smooth muscle cells. Most FAT expression disappears in adult tissues, 

suggesting that it is developmentally regulated. However FAT expression 

remains widely distributed in the kidney and specifically in the podocyte. 

Using immunoelectron microscopy lnoue et al. [111] showed that the FAT 
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cytoplasmic domain was located at the base of the slit diaphragm and eo­

localized with Z0-1, based on these findings and the molecular structure 

of FAT it has been concluded that FAT is a component of the slit 

diaphragm [111]. 

1.2.12. Zonula Occludens-1 

Zonula Occludens 1 (Z0-1) was first identified by Stevenson et al. [112] 

as a 225 kDa polypeptide, specifically located at the tight junction (T J). lt 

was subsequently shown that Z0-1 was also expressed at the slit 

diaphragms of podocytes [113), which therefore reinforces the hypothesis 

that the SD is a modified T J. 

Willott et al. [114] identified two RNA splice variants of Z0-1, which differ 

in the expression of an 80 amino acid region termed "motif-a". These 

differing isoforms, Z0-1 a+ and Z0-1 a-, are expressed differentially within 

the kidney, suggesting different functional properties. Both isoforms are 

expressed in renal tubule epithelia but only Z0-1 a- is expressed in the slit 

diaphragms and between the glomerular and peritubular capillary 

endothelia junctions [115). lt is believed the a-motif has no effect on 

function but is involved in binding Z0-1 to other proteins associated with 

the T J and maintaining their attachment to the tight junction [115). 

Z0-1 is a large, asymmetric, monomeric phosphoprotein tightly 

associated with the tight junction as a peripheral membrane protein. Z0-1 

is concentrated at the points of cell-cell contact [116, 117]. 

Z0-1 has a species-dependent relative mass between 210 and 225 kDa, 

[112, 116] and is localized at the cytoplasmic face of intercellular 

junctions. Z0-1 and its homologue Z0-2 are members of the membrane­

associated guanylate kinase (MAGUK) protein family. MAGUK proteins 

share a multidomain organization including one or three PDZ domains, an 

SH3 domain and a region of homology with the enzyme guanylate kinase 

[118]. 
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Z0-1 has been demonstrated to interact with the components of cell-cell 

junctions including occludin and the actin-binding protein spectrin [118]. 

In mice, Z0-1 and nephrin are closely eo-localized in the mature 

glomerulus, but it has been suggested that they may arrive at their final 

positions from opposite directions [119]. 

1.2.13. a-actinin-4 

There are four mammalian a-actinin genes ACTN 1 - 4, encoding four 

highly homologous 100 kDa actin cross-linking proteins. These proteins 

exist as dimers in a head-to-tail configuration. a-actinin-1 and a-actinin-4 

are both expressed in the kidney, but a-actinin-4 expression is more 

prevalent [120]. 

a-actinin-4 is an actin binding protein with a role in cross-linking actin 

filaments into bundles and anchoring actin to the plasma membrane at 

focal contacts. a-actinin-4 binds to the cytoplasmic domain of 131-integrin, 

one of the proteins responsible for anchoring podocytes foot processes to 

the GBM. Redistribution of a-actinin-4 has been observed in nephrotic 

rats [121 ]. Indirect evidence that alterations to the expression and/or 

localization of podocyte cytoskeletal proteins, including a-actinin-4, are 

responsible for the observed foot process effacement characteristic of 

nephrotic syndromes was provided by Smoyer et al. [122]. 

Mutations in ACTN4 have been linked to the familial autosomal dominant 

form of FSGS. These mutations increase the affinity of a-actinin-4 for 

filamentous actin (F-actin) causing dysregulation of the actin cytoskeleton 

[123]. Clinical cases of ACTN4-associated FSGS have a mild onset of 

proteinuria in the teenage years with slow but progressive loss of renal 

function, some cases do develop end-stage renal disease (ESRD) later in 

life. This syndrome is not fully penetrant, as some carriers do not develop 

proteinuria, similarly not all ACTN4 mutant mice were proteinuric [123]. 
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1.2.14. a3P1 lntegrin 

lntegrins are type 1 transmembrane glycoproteins composed of an a and 

a ~ subunit and play a critical role in providing the link between the 

extracellular matrix and the actin cytoskeleton. Currently 18 a and 8 ~ 

subunits have been described, the subunits combine to form dimers 

which have distinct but often overlapping functions and ligand-binding 

properties [124]. 

The extracellular domains of the subunits are the ligand binding domains 

while the cytoplasmic domains are involved in promoting cell anchorage. 

lntegrins are involved in both "outside-in" signalling and "inside-out" signal 

transduction. Therefore integrins are able to pass signals across the 

plasma membrane in both directions making them very important 

signalling receptors. lntegrins are involved in modulating cell adhesion, 

shape, polarity, growth, differentiation and motility which are in turn 

regulated by and can regulate both gene expression and cell function 

[124]. 

a3~1 integrin is an enigmatic member of the integrin family. Due to its 

basolateral membrane localization in many epithelial cell types, it is 

suggested to function as a basement membrane receptor [125]. a3~1 

integrin was originally identified as a receptor for types I and VI collagen, 

laminin-1, fibronectin and nidogen. a3~1 integrin is expressed in the skin, 

brain and kidney. a3~1 is the predominant integrin expressed by 

podocytes, but a6~1 is also expressed in much lower levels [125, 126]. 

1.2.15. Wilms' Tumor Suppressor-1 

Wilms' tumor, also called nephroblastoma, is a pediatric kidney cancer 

that affects 1 in 10,000 children with onset usually at 5 years of age, but 

with genetic predisposition may develop earlier. lt is very rare for Wilms' 

tumor to affect adults [127, 128]. The Wilms' tumor suppressor-1 (WT1) 

gene was identified as a tumor suppressor gene in a subset of Wilms' 

tumor patients. 
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WT1 is one of the transcription factors involved in nephrogenesis, and is 

crucial for correct kidney development. WT1 expression persists in the 

podocytes of mature glomeruli [129]. A direct role for WT1 in podocytes 

function has not been found. 

The Wilms' tumor suppressor-1 (WT1) gene was mapped by positional 

cloning in 1990 to chromosome 11p13 [130, 131]. The WT1 gene 

contains 10 exons and encodes a protein of 52 - 54 kDa [132]. This 

protein has two functional domains, 4 C-terminal Kruppel-type Cys2His2 

zinc finger domain, which shares homology to the early growth response 

gene 1 (EGR-1) family and a N-terminal proline-glutamine rich domain, 

typically found in regulatory regions of transcription factors [127, 133]. 

WT1 is extremely complex and encodes for between 16 and 24 different 

isoforms [132-134]. The different isoforms are created through a 

combination of alternative splicing, alternative translational start sites and 

RNA editing. Two important isoforms are alternative splice I and 11. 

Alternative splice I is generated by an insertion of 17 amino acids 

encoded for by exon 5 between the transactivation and DNA-binding 

domains. Alternative splice 11 results in the insertion of 3 amino acids, 

lysine, threonine and serine (KTS), between exons 9 and 10, which 

encode for the third and fourth zinc fingers. The two KTS splice variants, 

localize to different nuclear compartments, -KTS localizes with the other 

transcription factors while +KTS associates with components of the pre­

mRNA-splicing machinery [135]. The ratio of splice variants is highly 

conserved, in fact changes in the ratio between WT1 +KTS and WT1 -

KTS can lead to developmental abnormalities and Frasier syndrome [132, 

135, 136]. 

Niksic et al. [137] showed that both KTS isoforms of WT1 could shuttle 

from the nucleus to the cytoplasm and both are associated with functional 

polysomes, suggesting a role in translation. Depending on the cell type, 

10 - 50% of total cellular WT1 can be found in the cytoplasm. This result 

combined with previous knowledge suggests that WT1 may in fact 
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regulate three steps of gene expression: transcription, RNA processing 

and translation [137]. 

WT1 -KTS has been shown to cause a specific up regulation of 

podocalyxin, other podocytes proteins including podoplanin, nephrin, 

podocin, CD2AP and a-actinin-4 are not induced by WT1. The rapid and 

reversal induction of podocalyxin suggests a direct transcriptional 

mechanism [138]. Recent research by Guo et al. [139] and Wagner et al. 

[140] have identified nephrin as a direct transcriptional target of WT-1. 

WT1 mutations have been associated with human disease including 

WAGR syndrome (Wilms' tumour, aniridia, genitourinary abnormalities 

and mental retardation), Denys-Drash syndrome (DOS) [141, 142] (See 

Section 1.3.1.2) and Frasier syndrome [143] (See Section 1.3.1.3). 

WAGR syndrome is due to hemizygous deletion of a chromosomal 

segment encompassing WT1 and is associated with late onset renal 

failure [136]. 
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1.3. Nephrotic Syndromes 

Podocyte injury occurs in many forms of experimental, including PAN and 

PHN animal models and human glomerular disease, including minimal 

change disease (MCD), focal segmental glomerulosclerosis (FSGS), 

membranous glomerulopathy and diabetes mellitus [14, 144-146]. 

Regardless of the underlying disease the initial events are characterized 

by disruption to the slit diaphragm, which can result in a visible 

reorganization of the foot process structure, including foot process 

effacement. 

If these early changes are not reversed, progressive severe damage 

occurs, including podocyte vacuolization, pseudocyst formation and 

podocyte detachment, these irreversible changes ultimately lead to 

segmental glomerulosclerosis and end-stage renal failure [147, 148]. 

Four major causes of foot process effacement and subsequent 

proteinuria have been proposed by several groups, [14, 144-146, 149]: 

1. Interference with the SO complex and/or the lipid rafts 

2. Interference with the GBM or podocyte-GBM interaction 

3. Direct interference with the actin cytoskeleton and the 

associated protein a-actinin-4 

4. Interference with the glycocalyx or GLEPP1 

Morphological changes in podocytes resulting from nephrotic syndrome 

include foot process effacement, cell swelling, occurrence of occluding 

junctions and detachment of podocytes from the GBM [13]. Nephrotic 

syndrome also results in changes to the filtration slits and slit diaphragms, 

resulting in fewer and narrower slits [13]. 
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In 2003 Barisoni and Mundel [149] proposed a new classification for 

podocytes diseases based on histology Table 1. 1, while Table 1. 2 

shows the genetic causes of the common forms of nephrotic syndromes. 

Histology Disease Targets 

Normal Minimal Change Disease Dystroglycan 
Congenital Nephrotic Nephrin/ Podocin 

Syndrome 
Diffuse Mesangial Denys-Drash Syndrome WT1 

Sclerosis Frasier Syndrome 
Focal Segmental Primary (Idiopathic) Podocin, CD2AP, 

Glomerulosclerosis Genetic a-actinin-4, 
Hyperfiltration ~1-integrin 

Collapsing HIV-1 associated Collapsing 
Glomerulopathy Glomerulopathy . . 

Table 1. 1. Proposed new Class1ficat1on for Podocyte Disease based 
on Histology [149]. 

Disease Gene Locus Gene Protein 

CNF 19q12-13 NPHS1 Nephrin 

SRNS 1q25-32 NPHS2 Podocin 

FSGS1 19q13 ACTN4 a-actinin-4 

FSGS2 11q21-22 Unknown Unknown 

DOS 11p13 WT1 WT1 
. . 

Table 1. 2. Outlining the Genetic causes of Common K1dney 
Diseases. Adapted from [150]. 
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Congenital nephrotic syndrome (CNS) comprises a heterogeneous group 

of renal diseases that result in defects of the glomerular barrier resulting 

in massive proteinuria. CNS is primarily associated with defects in the 

structure and function of podocytes. The onset of clinical symptoms in 

CNS can vary dramatically between different forms of the disease. 

Congenital Nephrotic Syndrome of the Finnish Type (NPH51) 

Congenital Nephrotic Syndrome of the Finnish Type (CNF) is the best 

characterized of the nephrotic syndromes, it was first described by 

Hall man et al. in 1956. lt is an inherited autosomal recessive trait that has 

a very high prevalence in the Finnish population [150]. CNF affects 1 1n 

8200 in the Finnish population. 

Affected patients exhibit massive proteinuria in utero and develop 

nephrosis soon after birth. The only successful long term form of 

treatment is renal transplantation. The gene responsible for CNF has 

been mapped to chromosome 19q13.1 and named NPHS1, it codes for 

the slit diaphragm protein nephrin (See Section 1.2.5). 

To date more than 50 mutations, including deletions, insertions, 

nonsense, mis-sense, splice site and promoter mutations have been 

reported in patients suffering from both Finnish and non-Finnish forms of 

CNF [55, 151, 152]. 

Kestila et al. [54] found that there were two common mutations found in 

the Finnish population, which account for 90% of the CNS cases in 

Finland. Fin major, a 2-bp deletion in exon 2 resulting in a truncated 90 

residue protein and Fin minor a nonsense mutation in exon 26 resulting in 

a premature stop codon in the cytoplasmic domain. 
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Autosomal Recessive Steroid-Resistant CNS (NPHS2) 

Autosomal Recessive Steroid-Resistant CNS (SRNS) is an inherited 

autosomal recessive trait, which is commonly observed in children aged 

between 3 months and 5 years. As the name suggests patients do not 

respond to steroid treatment and once proteinuria has developed there is 

a rapid progression towards end-stage renal disease. The gene 

responsible, NPHS2, has been mapped to chromosome 1q25-q32 and 

was isolated by Antignac [153] in 2001, it codes for the podocyte protein 

podocin (See Section 1.2. 7). 

Mutations in NPHS2 results in severe glomerular disease commonly 

referred to as autosomal recessive steroid-resistant nephrotic syndrome 

(SRNS). SRNS is characterized by early onset nephrotic syndrome with 

foot process effacement, steroid resistance and progression to end-stage 

renal disease (ESRD). Subsequently NPHS2 mutations have been 

identified in sporadic cases of SRNS [154]. 

In all NPHS2 patients, the defective podocin resulted in significant 

changes to nephrin and CD2AP localization, shifting from along the GBM 

to a prominent location in the podocyte cell body [154] [155]. Therefore 

confirming that podocin is responsible for nephrin and CD2AP targeting to 

the slit diaphragm. 

When first characterized SRNS was described as an autosomal recessive 

disease, a recent study by Karle [156] showed mutations were 

heterozygous implying an autosomal dominant mode of inheritance, 

however based on the family pedigree this is unlikely, what is more likely 

is that these patients have other mutations in the NPHS2 gene. 

R229Q is the most common form of mutation but many novel mutations 

have been identified, including A284V, R196P, R138Q [86, 156-161]. 
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1.3.1.2. Denys-Drash Syndrome 

Denys-Drash syndrome (DOS) is characterized as congenital or early 

onset nephrotic syndrome associated with malformations in male 

pseudohermaphroditism and Wilms' tumor. 

DOS involves severe early-onset nephropathy and is due to dominant 

intragenic WT1 mutations, which can be mis-sense or nonsense and 

primarily affect the C-terminal zinc finger domain [136]. The most 

common mutation is R394W within the third zinc finger domain, but other 

point mutations in zinc finger domains 2 and 3 have a similar phenotype 

[127]. Although only a few deletions, insertions and nonsense mutations 

result in a truncated protein, all mutations alter the structure of the DNA­

binding domain, reducing the ability to bind both DNA and RNA [133]. 

Increasing evidence shows the mutated protein acts in a dominant -

negative way, actively suppressing and inactivating the influence of the 

wild type allele. 

The main feature of DOS is diffuse mesangial sclerosis, a distinct form of 

glomerulopathy. lt is characterized by rapid progression of 

glomerulosclerosis with end-stage renal failure before the age of 5 years, 

thickening of the GBM, severe hypertension, podocyte hypertrophy and 

vacuolation [133]. DOS can in some cases be associated with XY 

pseudohermaphroditism and predisposition to Wilms' tumourgenesis 

[136]. 

1.3.1.3. Frasier Syndrome 

Frasier syndrome (FS) is caused by heterozygous intronic mutations that 

lead to a disruption in the +KTS/-KTS isoform ratios. Frasier syndrome is 

characterized by an adolescent nephropathy involving focal mesangial 

sclerosis, predisposition to gonadoblastoma and male -to -female sex 

reversal [136]. 
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Frasier syndrome is a rare disease affecting phenotypic females, it is 

characterized by the association of male pseudohermaphroditism and 

progressive glomerulopathy related to FSGS [162, 163). Proteinuria is 

detected in children usually aged 2 - 6. lt progresses with age to end­

stage renal disease and currently there is no treatment [164]. 

Mutations have been found in exon 9 of WT1 [143, 165, 166] these 

mutations resulted in the loss of the +KTS isoform. 

Recently a mutation in exon 9 which didn't affect the isoform ratio was 

identified in two patients diagnosed as having FS [167]. Similarly 

mutations characteristic of FS have been described in DOS patients. 

These observations have fuelled a controversy regarding the correct 

classification of FS and DOS and it has been suggested that FS is an 

atypical subtype of DOS. The majority of published research distinguishes 

the syndromes on both clinical and molecular grounds, Table 1. 3. The 

similarities between the two phenotypes, makes distinction difficult but if 

classification is done at the molecular level instead of on observed 

phenotype then classification is possible [133]. 
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Denys-Drash Syndrome Frasier Syndrome 

Kidney Diffuse mesangial sclerosis FSGS 

Pathology Kidney failure age 0 - 3 yrs Kidney failure 10- 20 yrs 

Gonadal Variable impairment of development, Complete sex reversal in 46, XY individuals, little or 

Development broad spectrum of intersex phenotypes . no impairment in 46, XX females 

Partially developed gonads Streak gonads in 46, XY 

Tumor Risk High risk of Wilms' tumor No Wilms' tumor reported 

Gonadoblastomas are rare High risk of gonadoblastomas 

WT1 Gene Mis-sense mutations in the zinc finger Mutations in splice donor site in intron 9 

domains and premature stop codons 

<50% WT1 protein function No mutant WT1 protein but altered ratio of isoforms 

. 
Table 1. 3. Differences between Denys Crash Syndrome and Frasier Syndrome. Adapted from [143]. 
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Minimal change nephrotic syndrome (MCNS) is also referred to as 

minimal change nephropathy (MCN) minimal change disease (MCD) and 

minimal change glomerulonephropathy. 

Minimal change nephrotic syndrome (MCNS) is a clinical and pathological 

entity defined by selective proteinuria and hyboalbuminaemia that occurs 

in the absence of glomerular infiltrates or immunoglobulin deposits. The 

only detectable abnormality is podocyte foot process effacement. 

However vacuolization has also been reported when podocytes were 

examined under electron microscopy [168]. Foot process effacement is 

typical of nephrotic syndrome and not specific to MCNS [169]. 

Minimal change nephrotic syndrome (MCNS) is the most common form of 

nephrotic syndrome in children, accounting for 90% of cases of nephrotic 

syndrome in children. MCNS only accounts for 15% of cases in adults 

[168]. The pathophysiology of MCNS is unknown but has been related to 

abnormal cytokines [168]. 

1.3.2.2. Focal Segmental Glomerulosclerosis 

Focal Segmental Glomerulosclerosis (FSGS) is a mild form of nephrotic 

syndrome. This disease is representative of a group of heterogeneous 

autosomal dominant kidney diseases, which are manifested by 

proteinuria and slow progression towards segmental sclerosis and finally 

end-stage renal disease in adulthood [150]. Two loci have been mapped, 

FSGS 1 to 19q 13 and FSGS2 to 11 q21-22. The gene for FSGS 1 has 

been cloned by Kaplan et al. [170] and shown to encode a-actinin-4. 

FSGS is believed to be responsible for end-stage renal disease in 5% of 

adults and 20% of children suffering from ESRD. Both autosomal 

dominant and recessive forms of familial FSGS have been described [171, 

172]. Patients with the autosomal dominant form of the disease tend to 
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have less severe symptoms and present at a later age [173]. Because 

FSGS is common occurrence in diverse forms of renal injury, its 

pathogenesis has been extremely difficult to define and is why the 

molecular basis is still unknown. 

The fact that FSGS and NPHS1 both map to the same reg1on on 

chromosome 9 is very interesting, because they share similar pathology 

and clinical manifestations. They both result in foot process effacement 

and tubular atropathy. 

Unlike other conditions, for example minimal change disease, proteinuria 

and foot process effacement, (podocyte damage) are not reversible in 

FSGS. This is because the mechanism of podocytes damage differs 

between these diseases, in MCD the foot process effacement is caused 

by the reorganization of the actin cytoskeleton while in collapsing FSGS it 

is the result of the loss of cytoskeletal elements [1 08]. 

1.3.2.3. Diabetic Nephropathy 

Diabetes 1s the most common metabolic disorder with an estimated 

worldwide prevalence of between 1 - 5%. Diabetic nephropathy is one of 

the most serious complications of diabetes mellitus. Diabetic nephropathy 

has become the most important cause of terminal renal failure in the 

world. Diabetic renal disease is the single most common cause of ESRD 

in the United States, accounting for 43% of new cases [174] [175]. Type 2 

diabetes is the single most common cause of End-stage renal disease 

(ESRD) in diabetic patients [176, 177]. Worryingly the numbers of 

patients suffering from diabetic nephropathy has been steadily increasing 

over the past decade. 

The earliest sign of diabetic nephropathy is microalbuminuria, which 

progresses to overt proteinuria or nephrotic syndrome and a subsequent 

decline in renal function leading to ESRD. Even though the progression of 

diabetic nephropathy is very slow, 10 - 20 years, many of these patients 
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require dialysis treatment as a result of ESRD. The prognosis for patients 

suffering from diabetes nephropathy is not good due to the associated 

cardiovascular complications [178]. 

Diabetic nephropathy is characterized by the thickening of the GBM and 

by an increase in the mesangial matrices. GBM thickening starts 2 - 5 

years after the onset of diabetes but doesn't become obvious until after 5 

- 1 0 years. The increase in mesangial matrix leads to mesangial 

expansion and glomerulosclerosis, which results in the deterioration of 

glomerular dysfunction. Another morphological change is the thickening 

of the proximal tubule basement membrane [178]. 

Until recently it was believed that diabetic nephropathy was progressive 

and once a patient's excreted urinary protein levels reached 0.5 - 1.0 

g/day or higher it was irreversible [178], however increasing evidence 

suggests that with appropriate and timely intervention diabetic 

nephropathy is preventable [177]. 
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1.3.3. Experimental Models of Nephrosis 

There are several types of model, animal model e.g. PAN nephrosis, 

perfused rat kidney model or cell culture m·odel, and I will briefly discuss 

the advantages and disadvantages of each model system before 

focussing on the PAN nephrosis animal model. 

Whole Animal Model 

The major advantage of whole animal models over in vitro models is that 

all the components of the kidney are maintained in their natural 

environment, giving the most accurate model for studies. Furthermore the 

kidney remains under the influence of the neurohumoral network of the 

organism which allows the study of nephrotxins whose effects are 

dependent on extrarenal factors. However this is also the major 

disadvantage as it is impossible to control all the factors which could 

influence renal function. Therefore any conclusions based on changes in 

renal function maybe biased to an unknown extent by functional changes 

induced independent of the intervention being studied [179]. 

Isolated Perfused Kidney Model 

Originally developed to study renal physiology by Nishiitsuj-Uwo et al. 

(180) and modified by Ross et al. (181), the isolated perfused kidney 

model has contributed substantially to the knowledge of kidney injury 

susceptibility. The isolated perfused kidney model contains all the 

structural elements of the kidney, but is missing the extrarenal and 

neurohumoral influences. The main disadvantage is the model is only 

functional for a few hours and so can't be used to study chronic renal 

injury or prolonged pathophysiological processes. lt is a relatively simple 

model but requires a skilled technician, takes three hours per experiment 

and only one experiment can be run at a time. lt is also a costly 

procedure with each experiment costing $60 [179]. 
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Cell Culture Model · 

The cellular model can be used to study individual components of the 

kidney. The advantages of this model are; the ease of use of this model, 

that it can be used on a large scale to study numerous parameters and 

can be used to study long term effects. The disadvantage is that it is an 

isolated model and so doesn't take into account other parameters which 

could also affect the observed results [179]. 

1.3.3.1. Puromycin Aminonucleoside 

Puromycin aminonuceloside (PAN), a well characterized antibiotic with 

nephrotoxic properties, has been used since the 1950s to study the 

mechanisms of proteinuria in rats [180]. The resulting experimental model, 

called PAN nephrosis of the rat, is similar to the human diseases minimal 

change nephrosis (MCN) and focal segmental glomerulosclerosis (FSGS) 

[181]. 

Despite being a well studied model of nephrosis, the exact mechanism of 

PAN-induced proteinuria is not fully understood. The two main features of 

PAN nephrosis are foot process effacement and focal detachment of the 

podocyte from the glomerular basement membrane [182-184]. 

Puromycin aminonucleoside consists of puromycin and adenosine, which 

themselves have toxic effects. Puromycin causes decreased amino acid 

transport and decreased protein synthesis. Adenosine causes increased 

cell membrane permeability and increased adenyl cyclase activity and 

decreased protein and nucleic acid synthesis, however neither 

constituent alone can cause nephrosis [182, 184]. PAN is known to cause 

a decrease in protein and RNA synthesis. 

Studies by Fishman and Karnovsky [184] and Coers et al. [183] showed 

that PAN resulted in morphological changes to podocytes in culture and a 

reduction in cell adhesion. A recent study by Luimula et al. [78] showed 

that both podocin and nephrin had reduced protein levels in response to 
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PAN nephrosis but 131 integrin showed an increase in protein expression, 

but there was no significant change in mRNA level. Takeda et al. [45] 

showed that PAN disrupts the podocalyxin/NHERF2/ezrin interaction to 

the actin cytoskeleton, ezrin disassociates from the actin cytoskeleton. By 

disrupting the sialylation of podocalyxin PAN causes a reduction in the 

anionic charge, which has been suggested to be the cause of increased 

permeability leading to proteinuria. PAN nephrosis results in a 70% 

reduction in the sialic acid composition of podocalyxin [43]. 

Disialoganglioside expression is also greatly reduced in PAN nephrosis 

[185]. 
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1.4. Biomarkers of Nephrotoxicity 
A biomarker has been defined by the Biomarkers Definitions Working 

Group as "a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or 

pharmacological responses to a therapeutic intervention" [186]. 

Although biomarkers have the greatest value in early efficacy and safety 

evaluations, for example providing a basis for lead compound selection or 

dosing, as well as being substitutes for clinical responses. They also have 

applications as diagnostic tools for the identification of patients, and 

disease progression, as an indicator of disease prognosis and for 

predicting and monitoring the response to therapeutic intervention [186]. 

There has been varying levels of success in identifying and developing 

biomarkers of renal disorders, including acute renal failure, chronic renal 

failure and polycystic kidney disease [187]. 

Biomarkers can be any biological entity which shows changes in 

response to disease or drug treatment therefore a biomarker could be a 

gene, protein or metabolite, because of this variety several approaches 

are used to identify potential biomarkers including Genomics, 

Pharmacogenetics, Proteomics and Metabolomics/Metabonomics [188]. 

Genomics: 

Genomics is the study of gene expression in cells, tissues or an organism 

under specific conditions. The main techniques are PCR based or micro­

array analysis. Micro-arrays for gene expression analysis has become a 

very important tool for identifying potential biomarkers, due to the high 

level of data generated [188]. 

Pharmacogenetics/Pharmacogenomics: 

Pharmacogenetics is an emerging scientific discipline arising from the 

merging of genetics, biochemistry and pharmacology [189]. 
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Pharmacogenetics studies the role and effect genetic differences have in 

response to pharmaceutical treatment. T oxicogenetics is the study of 

individual response to a non-therapeutic foreign substance (xenobiotic). 

Pharmacogenomics is the fusion of pharmacogenetics with genomics to 

provide high-throughput data and allows the determination of an 

individual's genetic profile in respect to disease risk and drug response. 

Ultimately the goal of pharmacogenetics is to predict a patient's response 

to a specific treatment and hence therefore provide the best 

"personalized" medical treatment possible. 

Pharmacogenomics correlates phenotypic biomarkers with genetic 

characterization allowing researchers to identify the actual genetic basis 

of individual and interracial variation in drug efficiency, metabolism and 

transport [189]. Individualizing drug therapy with the use of 

pharmacogenomics holds the potential to revolutionize medicine in the 

near future and finally allow the doctors to treat the individual rather than 

the disease. Whether or not this technology does become routine clinical 

practice, one thing is certain pharmacogenomics has become an 

increasingly valuable tool in clinical research [189]. 

Proteomics: 

Proteomics has been defined as "the systematic analysis of proteins for 

their identity, quantity and function" [190]. Proteomics is a rapidly 

developing field of research, which is a by-product of the human genome 

project [191]. 

Proteomics is the study of total protein expression in a cell, tissue or 

organism under specific conditions. Proteomics provides information on 

protein abundance, location, modifications and interactions. Proteomics 

relies on a co-ordinated approach of protein isolation and identification. 

Common techniques are 20 PAGE, HPLC and mass spectroscopy [192, 

193]. 
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Proteomics holds great promise for renal research and clinical nephrology, 

due to the high-throughput nature of the developing techniques and 

approaches in identifying proteins and protein interactions [191 ]. 

Metabonomics: 

Metabonomics is a new area of study, it is a systems approach for 

studying in vivo metabolic profiles and provides information on drug 

toxicity, disease processes and gene function complementary to other 

profiling approaches [194]. Metabonomics provides a chemical or 

biochemical profile of a specific body fluid, organ or tissue over a 

specified time-course. Overall metabonomics can facilitate the 

determination of metabolic profiles and the mapping of interactions 

between metabolic pathways [188]. 

There is considerable scope for the use of metabonomic approaches in 

the pharmaceutical industry, from discovery through to clinical 

development. Metabonomics is now widely recognized as an independent 

technique for evaluating drug-candidate compound toxicity and has been 

incorporated into the drug development process by several 

pharmaceutical companies [194]. 

Several published studies by pharmaceutical companies have used the 

approaches outlined above to examine kidney nephrosis models in rats in 

an attempt to gain a better understanding of the nephrosis process and to 

identify possible biomarkers of nephrosis to aid compound development 

and future studies. 

GlaxoSmithkline used a proteomic approach, to identify proteins which 

showed differential expression in compound induced nephrotoxic rats. 

Two compounds were chosen, puromycin [193] and gentamicin [195]. 

Puromycin is an aminonuceloside antibiotic which specifically targets 

glomerular podocytes, causing damage to the glomerular filtration barrier 

resulting in severe proteinuria. Gentamicin is an aminoglycoside antibiotic 

which targets the renal proximal tubule causing tubular degeneration. 
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More than 20 proteins were identified which showed differential 

expression after gentamicin induced toxicity and could therefore be 

potential biomarkers. They fall into one of four categories, they are 

involved in 1) gluconeogenesis and glycolysis 2) fatty acid transport and 

utilization 3) the citric acid cycle and 4) stress responses [195]. 

A similar study [196] was conducted by a consortium of universities and 

pharmaceutical companies. They used genomics to identify genetic 

markers in compound induced nephrotoxicity of rats. In this study they 

used puromycin, gentamicin and cisplatin. Cisplatin is an antineoplastic 

agent, used to treat solid tumours, however its use is limited because it 

causes severe renal toxicity [197]. This study identified several potential 

biomarkers, which were up-regulated in a dose and time-dependent 

manner, they included KIM-1, osteopontin and several ESTs [196]. 

An Example of a Nephrotoxic Biomarker: 

Kidney injury molecule 1 (KIM-1) was first identified and characterized in 

1998 by lchimura et al. [198] in humans and rats. The human and rat 

genes show 44% overall identity, but the similarity increases to 68% in 

the immunoglobulin (lg) domain [198]. KIM-1 is a type-1 transmembrane 

glycoprotein with an ectodomain that contains immunoglobulin and highly 

0-glycosylated mucin subdomains and multiple N-glycosylation sites. 

KIM-1 is minimally expressed in the normal rat kidney proximal tubule 

epithelium but is dramatically up-regulated in the S3 segment of the 

proximal tubule in the postischemic kidney (199]. lchimura et al. 

examined KIM-1 expression in three models of nephrotoxicant-induced 

kidney injury in rats, in addition to seeing increased expression, the KIM-1 

ectodomain and fragments of the domain were found in the urine of each 

model. This indicated that nephron injury resulted in shedding of the 

ectodomain which would allow for non-invasive monitoring of 

nephrotoxicity [200]. Taken together the results suggest that Kl M-1 is a 

general biomarker of nephrotoxic injury and maybe used for detection 

and monitoring of nephrotoxicants as well as for monitoring disease 

states [200]. 
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As part of a wider nephrotoxicity project, GlaxoSmithkline used TaqMan ™ 

real-time PCR to investigate changes in the expression of selected genes 

from rat glomeruli subjected to PAN induced nephrosis. The genes 

chosen for investigation included podoplanin, podocalyxin, nephrin and 

GLEPP-1. 

In brief kidney samples were taken from rats subjected to puromycin 

aminonuceloside at either low (1 Omg/kg/day), mid (30mg/kg/day), high 

( 1 OOmg/kg/day) doses or saline control animals. The kidney samples 

were sectioned, mounted and stained prior to laser capture 

microdissection (LCM). LCM was used to isolate the glomeruli which 

were subsequently used for RNA isolation. RT-PCR was used to 

generate cDNA for each sample. TaqMan TM real-time PCR was then 

used to quantify the levels of each gene present after normalization with 

~-actin. 

The results from this study correlated with published work, in that 

podoplanin and podocalyxin both showed a decrease in gene expression 

at the highest PAN dose. GLEPP-1 showed down-regulation but this 

result was ambiguous. Based on these experiments, we predicted that 

podoplanin and podocalyxin could be potential biomarkers of 

nephrotoxicity and warranted further in vitro studies to test this. These 

studies formed the basis of my hypothesis. 
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1.5. Aims and Hypothesis 
The aims of this thesis are: 

1. To develop a cellular model which mimics PAN induced nephrosis 

2. To use the cellular model of PAN nephrosis to examine the 

expression and localization of two podocyte specific proteins, 

podoplanin and podocalyxin. Evaluate if podoplanin and 

podocalyxin would be suitable biomarkers of nephrotoxicity. 

3. To identify any other potential biomarkers of nephrotoxicity. 

4. To use our cellular model to gain a better understanding of the 

mechanisms involved in PAN induced nephrosis. 

To this end our hypothesis is: 

PAN causes disruption to the cytoskeletal linked proteins in the 

podocyte resulting in nephritic injury, but the exact mechanism is 

unknown. Can a cellular model which mimics PAN nephrosis be 

developed which would allow us to study and further characterize the 

mechanism of PAN nephrosis and potential biomarkers of 

nephrotoxicity. 
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Chapter 2. 

Materials and Methods 
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2.1. Cell Culture 

2.1.1. N RK Cell Maintenance 

NRK (Normal Rat Kidney) cells, a fibroblast cell line derived from normal 

Rattus norvegius kidney cells, were a kind gift from GlaxoSmithkline, 

were routinely cultured and maintained in 75 cm2 filter-capped flasks 

(Greiner # 658175), in a humidified 5% C02 atmosphere at 3TC. The 

cells were cultured in D-MEM (Dulbecco's modified Eagle medium, high 

glucose, with 4500mg/L D-Giucose and sodium pryruvate, without L­

Giutamine) (Gibco # 21969-035) supplemented with 10% heat inactivated 

foetal bovine serum (FBS) (Gibco # 10108-165) and 1% 200 mM 

Glutamine (Gibco # 21969). The cells were passaged when 70% 

confluent. 

2.1.2. Generating an in vitro PAN Nephrosis Model 

Based on previous published literature, [182-184] a range of PAN doses 

were chosen, O~g/ml, 10~g/ml (3.4 mM), 40~g/ml (13.6 mM), 80~g/ml 

(27.2 mM), to generate a cellular model of PAN nephrosis. NRK cells 

were grown for 48 hours under normal conditions, after 48 hours the 

media was removed, the cells were washed with PBS and fresh media 

containing PAN at the above doses were added. The cells were cultured 

as normal in a humidified 5% C02 atmosphere at 3TC for 48 or 72 hours. 

2.1.3. Cell Viability 

Two methods were used to determine cell viability, trypan blue uptake 

and DAPI staining. For the trypan blue uptake experiments, after PAN 

treatment the cells were removed from each flask by treatment with 

trypsin/EDTA and washes in PBS. The cells were centrifuged at 1000 

rpm for 5 minutes, the supernatant was discarded. Cells were 

resuspended in 5 ml of PBS and a 20 ~I aliquot of cells was diluted with 

20 ~I of trypan blue and mixed thoroughly. 10 ~I was loaded onto both 

grids of an improved Neubauer haemocytometer (Figure 2.1.) and 
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counted in duplicate. Cells which stained blue are dead cells and cells 

which are not stained are viable. A percentage of viable cells can be 

calculated by: 

(Number of non-stained cells/ total number of cells) X 100 

DAPI staining examines DNA damage as the result of PAN treatment. 

Cells were cultured on 13 mm coverslips under PAN conditions as 

previously described. The coverslips were inverted and mounted onto 

slides using Mowiol Mountant (See appendix 1) containing DAPI (Sigma 

D-9542) which was visualized using the Zeiss LSM51 0 confocal 

microscope at Durham University. 
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2.1.4. Cell Aggregation Assay 

A cell aggregation assay was established based on the classic cell­

aggregation assay first described by Takeichi [201]. NRK cells (passage 

number 15) were cultured in 0-MEM supplemented with 10% FBS and 

5% glutamine on 90 mm dishes until 75% confluent. Cells were then 

cultured in PAN media, as previously described for 48 or 72 hours. At 

each time point the cells were detached by trypsin/EDTA treatment and 

re-suspended in Hank's Balanced Salt Solution (HBSS) (Gibco # 14185-

045) + 1% BSA following four passages through a 19 gauge syringe, to 

ensure single cells. Cells were counted on a haemacytometer and 35 X 

104 cells in a total volume of 1 ml were incubated in 12 well plates coated 

with HBSS + 2% BSA. The cells were allowed to aggregate for 180 min in 

the presence of 1 mM CaCb on a rotating shaker (1 OOrpm) at 3TC. The 

reaction was stopped by the addition of 0.25 ml 25% glutaraldehyde. 

Aggregation was quantified by counting six replicates in duplicate of each 

sample on a haemacytometer using phase-contrast optics, as previously 

described, section 2.1.3. 

%Cell aggregation was estimated by: 

(No. of aggregates >3/ total no. of cells) X 100 

A paired T-Test was used to analyze PAN treated groups against the 

control group. All p-values <0.05 were deemed to be statistically 

significant. 

2.1.5. Re-culturing detached NRK cells 

After PAN treatment, detached NRK cells were collected from the media 

by centrifugation. Cells were resuspended in 0.5 ml of media and a viable 

count was performed. 12 well tissue culture plates were coated with a rat 

collagen gel (8.5ml collagen solution (kindly supplied by Or Jahoda, 

Section 2.1.6), 1mi10X MEM pH 7.4) at an approximate concentration of 

1 01Jg/cm2 and allowed to set. Equal cell numbers (7.5 x 104 cells/m I) at 

each PAN dose was added to duplicate coated and non-coated plates. 
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The volume of each well was made up to 1 ml with media. The cells were 

examined every 24 hours to se if cells were re-attaching to the tissue 

culture plates and if so were the cells proliferating as normal. Control cells, 

cells which hadn't detached from the tissue culture plates, were also 

included for comparison. 

2.1.6. Preparation of Collagen from rat tails 

This method is based on a protocol by Elsdale and Bard [202]. Rat tails 

were removed and after washing in non-scented soap were frozen at -

20°C. Six tails were defrosted in 70% ethanol and the skin removed. The 

tendons were stripped and UV irradiated overnight in 70% ethanol. The 

tendons were weighed and stored in 500 ml 0.5M acetic acid at 4 oc for a 

couple of days. The collagen/acetic acid solution was sterile filtered 

through gauze and centrifuged at 2000g for 3 hours. The clean collagen 

solution was decanted -~:md the collagen precipitated using an equal 

volume of 20% NaCI solution. The solution was centrifuged and the 

precipitate was redissolved in an equal volume of 1 M acetic acid. Store at 

4 OC for a couple of days. The solution was dialyzed against distilled water 

for 24 hours. Centrifuged at 2000g for 3 hours. 1 ml of fungizone and 

gentamicin were added per 100 ml of collagen. 
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2.2. Gene Expression Analysis 

2.2.1. Cell Culture 

NRK cells were cultured as previously described with the following 

alterations. The cells were seeded at 1 x 1 06 and cultured in 90 mm 

dishes (Greiner) in triplicate for each PAN dose. At each time point the 

media was removed and the cells were flash frozen in liquid nitrogen and 

stored at -80 °C. 

2.2.2. mRNA Extraction 

m RNA was extracted from triplicate plates of 1 x 106 NRK cells at each 

PAN dose, using Quickprep® Micro mRNA Purification kit from Qiagen. In 

brief 0.4 ml Extraction buffer was added to the plates sequentially and the 

cells were detached by scraping. 0.8 ml Elution buffer was added and the 

samples were vortexed. A cleared cellular homogenate was prepared by 

centrifugation and placed on top of an Oligo(dT)-Cellulose pellet and 

gently mixed by inversion. Samples were centrifuged and the supernatant 

discarded. Five High-Salt Buffer washes followed by two Low-Salt Buffer 

washes were performed. The pellet was re-suspended in 0.3 ml of the 

Low-Salt Buffer and transferred to a Microspin ™ column and following 

three washes with Low-Salt Buffer mRNA was eluted in 0.4 ml of pre­

warmed Elution Buffer. 10 IJI of Glycogen Solution and 40 IJI potassium 

acetate Solution was added to each sample. The samples were stored 

overnight in 95% ethanol at -20 °C. 

2.2.3. cDNA Synthesis 

mRNA was reverse transcribed using the First Strand cDNA Synthesis Kit 

from Roche following the recommended protocol. Briefly, a mastermix 

consisting of 1 IJg of m RNA, 1 OX Reaction Buffer, 5 mM MgCI2, 1 mM 

dNTP mix, 3.2 IJg Random Primer, 50 units RNase inhibitor, 20 units 

AMV Reverse Transcriptase and sterile DEPC treated water to a total 

volume of 20 IJI, was mixed and centrifuged briefly prior to being 

incubated at 25°C for 10 minutes, 4TC for 60 minutes and 94 oc for 4 

61 



Chapter 2 

minutes. The cDNA was stored at -20°C overnight and subsequently used 

for RT-PCR (see below). 

2.2.4. Polymerase Chain Reaction (PCR) 

A PCR reaction mix was set up containing cDNA, 1 OX Reaction Buffer, 

1.5 mM MgC12, 10 mM of each dNTP, 10 ~M of both forward and reverse 

primers and 0.5 units of Taq polymerase. All reagents were supplied by 

Promega, the primers were made to order from TAGN and MWG, Table 

2.1. 

The PCR reactions were carried out using an Omn-E thermal cycler 

(Hybaid) using the following programme: 

94°C 4min 
94°C 1 min 

} xoc 1 min 
35 cycles 

72"C 1 min 

72"C 10 min 

X is the hybridization temperature of the primers being used. 

2.2.5. Gel Electrophoresis 

PCR products were analysed on 2% agarose gels. Gels were made by 

dissolving 2% agarose (Bioline) in warm 1X TAE buffer, containing 1 

IJg/ml ethidium bromide. The gels were poured into BioRad pre-cast gel 

trays containing a gel comb. Once the gel had set, the comb was 

removed and the gel was submerged in 1 X TAE Buffer. 10 iJI of each 

PCR product was mixed with 5 ~I of loading buffer and was 

electrophoresed in 1 X T AE buffer at 60 volts for 45 minutes. Each gel 

contained 5 units of a DNA ladder (Promega) and a concentration marker 

to quantify both size and intensity of the PCR product. The DNA was 

visualized using the BioRad Gel-Doe Ultra Violet Transilluminator at 366 

nm, the results were recorded and analysed using the Gel-Doe software. 
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Gene Ace. Forward Primer 5' - 3' Reverse Primer 5' - 3' Product Hybridization 

Number size bp Temp. 

Podoplanin U96449 AATGGTGCAAAAACCGAGAC AACTGAAGGCAGTGGATGCT 304 55°C 

Podocalyxin AF109393 GTTCATTTGTGTCCATCCCC ACCCACCCTTTAGGCAGACT 301 50°C 

Nephrin AF161715 TTCTTCTGATCTCCATGGGC CACGCCCCTTTTAATTCTGA 271 50°C 

Podocin AY039651 GGGCGAGTGGACAAGAGTAA TGAATGATGAGACGACCCAC 214 55°C 

WT-1 X69716 GTCCCAGGCAAGAAAGTGTG CGGCAAACCTGATAGGACTC 154 55°C 

G3PDH AB01780t CTCAGTTGCTGAGGAGTCCC GGGTGCAGCGAACTTTATTG 153 55°C 

Table 2.1. Primers for RT -PCR 
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2.3. Protein Expression Analysis 

2.3.1. Cell Culture 

NRK cells were cultured as previously described in 90 mm dishes with 

the following alterations. After PAN treatment the cells were trypsinized, 

centrifuged at 1000 rpm for 5 minutes and resuspended in 1 ml of PBS, a 

10 J.JI aliquot was counted, as previously described. The cells were 

transferred to a sterile 1.5 ml microfuge tube and centrifuged for 30 

seconds at 13000 rpm, the supernatant was removed and the cells re­

spun. Cells were snap-frozen in liquid nitrogen and stored at -80 °C. 

2.3.2. Protein Extraction 

The frozen cell pellets were re-constituted in 200 !JI of cell lysis buffer 

(50mM Tris.HCI pH 7.5, 150mM NaCI, 1% NP40, 0.25% Sodium 

deoxycholate and 1 X Protease inhibitor cocktail Sigma # P-8340) per 1 x 

106 cells and incubated on ice for 10 minutes prior to acetone 

precipitation. 800 !JI 100% acetone ( -20 OC) was added to each cell 

aliquot and incubated at room temperature overnight. The cells were 

centrifuged at 13000 rpm for 10 minutes. The pellet was washed three 

times with 80 % acetone (-20 OC) and a final wash in 100 % acetone 

(-20 OC). The pellet was air-dried for 3 minutes and left to re-hydrate for 3 

hours in 200 !JI Sample Buffer (BM Urea, 2M Thiourea and 4% CHAPS). 

2.3.3. Protein Quantification 

The protein levels at each PAN dose were determined by the Bradford 

Assay. A stock solution of 5 mg/ml BSA (Bovine Serum Albumin) was 

used to generate a standard curve. Each protein sample was mixed as 

described (Table 2.2) and analyzed in duplicate. Each sample was mixed 

thoroughly and incubated for 20 minutes at room temperature. The 

absorbance was read at 595 nm (A595 ) using a spectrophotometer and 

the mean results plotted graphically. 
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Using the standard curve, the unknown protein concentrations can be 

calculated using: Y= m X 

Where Y is the protein concentration in IJg/IJI, m is the gradient of the line 

and X is the Abs at 595 nm 

BSA (IJg) 0 5 10 20 40 80 -

BSA stock (IJI) 0 1 2 4 8 10 -

Sample (IJI) - - - - - - 10 

Lysis Buffer (IJI) 10 9 8 6 2 0 0 

0.1 M HCI (IJI) 10 10 10 10 10 10 10 

dH20 (IJI) 80 80 80 80 80 80 80 

Diluted Biorad Reagent (IJI) 900 900 900 900 900 900 900 

Table 2. 2. BSA Standard Curve for protein quantification. 

2.3.4. Western Blotting 

Proteins were separated by SOS-PAGE according to size using a Mini­

Protean 3 gel system (BioRad). The concentration of the acrylamide 

resolving gel was dependent upon the size of the protein of interest. A 6% 

gel was used for Podocalyxin (165 kDa) and Laminin 132 (200 kDa), 8% 

for Ezrin (80 kDa) and 12% for G3PDH (30 kDa) and Podoplanin (40 

kDa). See Table 2.3 for constituents of each SOS-PAGE gel. 

Equal volumes of 10 IJg protein from each PAN dose were mixed with 

equal volume of 2X Sample Buffer (see Appendix 1) and electrophoresed 

for 3 hours at ?Ov through a mini-gel of 6% acrylamide resolving gel and 

5% stacking gel (see Appendix 1 ), alongside a prestained protein size 

marker (BioRad). The gels were removed from the plates, rinsed in 

Transfer buffer (see Appendix 1) and placed into Transfer kit. A sandwich 

was formed as illustrated in Figure 2.2. 
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6% 8% 12% 5% 
Resolving Resolving Resolving Stacking 

Sterile dH20 5.8 ml 5.3 ml 4.3 ml 2.72 ml 

Acrylamide 1.5 ml 2.0 ml 3.0 ml 625 IJI 

1.5M Tris pH 2.5 ml 2.5 ml 2.5 ml -
8.8 

O.SM Tris pH - - - 650 IJI 
6.8 

10% SOS 100 IJI 100 IJI 100 IJI 50 IJI 

10% APS 100 IJI 100 IJI 100 IJI 50 IJI 

TEMEO 4 IJI 4 IJI 4 IJI 5 IJI 

Total Volume 10 ml 10 ml 10 ml 5 ml 

Table 2. 3. Constituents of SOS-PAGE electrophoresis gels. 
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+ 
Blotttng Pad 

c::=======================::J 3MM Whatman Paper 
£=:=======================:::=J Nitrocellulose 
------------ Gel 
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Blotting Pad 

Figure 2. 2. Schematic Representation of Transfer Gel Sandwich. 

Protein transfer was performed for 2.5 hours at room temperature at 50v 

The nitrocellulose membranes were removed and placed into Block 

Buffer (see appendix 1) for 2 hours at room temperature. The membranes 

were incubated w1th the primary antibody (see table 2.4) diluted in 

Incubation Buffer (see appendix 1 ), overnight at 4·c. The nitrocellulose 

was washed 3X with Washing buffer (see appendix 1) and incubated with 

the secondary antibody, either donkey anti-mouse or anti-rabbit (see 

table 2.4} lgG-HRP (Jackson lmmunoResearch) diluted 1:5000. The 

nitrocellulose was again washed 3X with Wash Buffer and a final PBS 

wash prior to detection. Detection was carried out in the dark using ECL 

detection Kit (Amersham) following the recommended protocol. In brief 

equal volumes of ECL solution 1 and 2 were mixed and Incubated for 

approximately 1 minute. Dunng this time excess PBS was dra1ned from 

the blot. 0.75 ml of mixed ECL solution was added onto the blot, and 

spread to cover the whole area. Following two minutes incubation excess 

reagent was removed and the blot exposed to X-ray film. Depending on 

the results the exposure time was adjusted accordingly. 
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Antibody Concentration Secondary Ab Size kDa %SOS Gel Supplier Cat.# 

G3PDH 1:16000 Monoclonal 40 12 Abeam Ab8245 

Podoplanin 1:500 Polyclonal 38 12 Sigma P-1995 

Podocalyxin 1:1000 Monoclonal 165 6 Chemicon MAB430 

Ezrin 1:4000 Monoclonal 80 8 Sigma E-8897 

lntegrin a3 1:250 Monoclonal 135 6 BD Biosciences V76720-050 

Laminin 132 1:250 Monoclonal 220 6 BD Biosciences L59920-050 

Laminin 132 Monoclonal 220 6 
Hybridoma 

D 18 -
Collection 

Table 2. 4. Antibody Details for Western Blotting 
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2.4. Sub-Cellular Fractionation Studies 

2.4.1. Cell Culture 

NRK cells were cultured as previously described with the following 

alterations. NRK cells were cultured in twenty-five 90 mm dishes. The 

dishes were seeded at 1 x 106 and cultured as normal for 48 hours, after 

48 hours the normal culture media was removed and PAN media was 

added. Only the highest dose of 80~-Jg/ml for 72 hours was chosen for this 

analysis. 

2.4.2. Sub-Cellular Fractionation 

The sub-cellular fractionation method was based upon an original method 

first described by Simpson et al. [203] to identify the distribution of 

glucose transporters in rat adipocytes. At 4 OC the NRK cells were 

removed from the plates by scraping and homogenised in 5 ml of HES 

buffer by hand using a domed homogeniser for a final volume of 25 ml. 

1 00 1-JI of the homogenate was snap-frozen in liquid nitrogen and stored at 

-80°C. The remaining homogenate was centrifuged at 19,000g for 20 

minutes at 4 OC using a Beckman JA-20 rotor. The supernatant is used to 

prepare the intracellular fractions and the pellet was retained on ice for 

preparation of the plasma membranes. 

Intracellular Fractions: 

The 19,000g supernatant is re-centrifuged at 40,000g for 20 minutes at 

4 OC using a Beckman JA-20 rotor. The pellet obtained containing the 

high-density microsomes (HDM), including the endoplasmic reticulum, 

was resuspended in 100 1-11 of HES buffer and protease inhibitors and 20 

1-JI aliquots were snap-frozen in liquid nitrogen and stored at -80°C. The 

40,000g supernatant was transferred to Beckman Ultracentrifuge tubes 

and centrifuged at 180,000g for 90 minutes at 4 OC in a SW-41 rotor. The 

pellet, containing the low-density microsomes (LDM) predominantly golgi, 

was resuspended in HES buffer as previously described. 
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Preparation of Plasma Membranes: 

The 19,000g pellet from the initial spin was re-suspended in 800 IJI HES 

buffer and layered onto 10 ml of 1.12 M sucrose (see Appendix 1 ). The 

samples were centrifuged at 1 OO,OOOg for 60 minutes at 4 OC in the SW-41 

rotor. The fluffy white layer at the interface between the sucrose layers 

contains the plasma membrane and was carefully aspirated and 

resuspended in 20 ml of HES buffer. The pellet at the bottom of the 

sucrose gradient is the nuclei/ mitochondria fraction and was 

resuspended and stored as previously described. The washed sucrose­

free pellets of plasma membranes were obtained by centrifugation at 

40,000g for 20 minutes at 4 OC in the JA-20 rotor. The pellet was stored as 

previously described. 

2.4.3. Western Blotting 

Western blotting was performed on the fractions as previously described 

for SOS-PAGE with the following alterations to the method. 10 IJI of each 

sub-cellular fraction was mixed with 1 0 IJI of 2X Sample Buffer and 10 IJI 

was loaded onto the gel. The gel was transferred and probed with 

podocalyxin, podoplanin and ezrin as previously described. 
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2.5.1mmunolabelling 

2.5.1. Cell Culture 

NRK cells were cultured as previously described with the following 

alterations. NRK cells were cultured on 13 mm coverslips (SLS # 

MIC3306) in 90 mm dishes (Greiner # 633171) until 50% confluent. The 

media was changed for PAN media and the cells were cultured for 48 or 

72 hours. 

2.5.2. lmmunolabelling 

The cells were fixed in 4% PFA/ PBS for 20 minutes at 4 °C, washed 

three times in PBS. To permeabilize, the cells were incubated in 0.2% 

Triton X /PBS for 5 minutes at 4 OC, after three washes in PBS the cells 

were incubated in Blocking Buffer (5% FBS/ PBS) for 30 minutes. The 

cells were dried and briefly incubated with Primary Antibody for 1 hour. 

Following three washes in blocking buffer the cells were incubated with 

secondary antibody for 1 hour followed by a further three washes in 

blocking buffer. The cells were mounted in MOWIOL containing DAPI. 

The cells were examined using the Olympus Fluoview FV300 laser 

scanning confocal microscopy system at GlaxoSmithKiine. 
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Antibody Concentration Secondary Ab Supplier Cat.# 

Podoplanin 1:50 Mono Angiobio Co 11-012 

Podocalyxin 1:50 Mono Chemicon MAB430 

Ezrin 1:100 Mono Sigma E-8897 

lntegrin a3 1:100 Mono Hybridoma collection Ralph 3.1 

Laminin J32 1:100 Mono Hybridoma collection D 18 

J3 -Tubulin 1:100 - Sigma C-4585 

Actin 1:100 Mono ICN 691002 

EEA-1 1:100 Poly Abeam Ab2900 

Dr A Benham. 
PDI 1:750 Poly -

Durham University 

Cellubrevin 1:50 Poly Abeam Ab2102 

Syntaxin 7 1:100 Poly Synaptic Systems 110-072 

Caveolin 2 1:300 Poly BD Biosciences 557859 

Table 2. 5. Antibody details for Immunofluorescence microscopy 
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2.6. Confocal l·maging 
All images were obtained at GlaxoSmithkline using the Olympus Fluoview 

V3.3 FV300 laser scanning microscopy system and methods developed 

by Susanne Moore. 

Obtaining a 30 Image 

The specimen was focused under brightfield conditions. The appropriate 

fluorophore and objective, X1 00 Uplan Apo, were selected and the image 

size set to 1024 x 768. An initial fast scan of the specimen was used to 

optimize the image for fluorescence intensity by adjusting the laser 

intensity, photomultiplier (PMT), gain and offset settings. Once the 

conditions were optimized an image was obtained using a slow scan 

speed for increased resolution. The resolution can be further increased 

by increasing the "Kalman" averaging value upto 16. 

A 30 image is obtained by focusing through the specimen until you reach 

the last visible image, this image is set as zero. Within the "Z -stage" 

window 0 is entered in the "start Z" box and a value equivalent to the 

sample thickness in the "stop Z" box. The thickness of sections was set at 

0.5 1-1m and the Kalman value to 4. The "XYZ" option was selected and 

image capture initiated. Once the Z series was complete the images were 

saved appropriately. The images can now be viewed as a single image of 

the merged layers or as a movie showing expression through each layer 

of the cell. 

Obtaining a Dual-stained Image 

This follows the same protocol as for a single fluorophore with the 

exception that two fluorophores are initially selected. The fluorophore with 

the emission wavelength <570nm was assigned to Channel 1 and the 

second fluorophore with an emission wavelength >570nm was assigned 

to Channel 2. The conditions each fluorophore were optimized in turn, 

using the "Seq123" option and a 30 image obtained as previously 

described. The images can be saved for each fluorophore independently, 
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as well as a merged image of both fluorophores to highlight any eo­

localization. 
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Chapter 3. 

Establishing a Cellular Model 
which Mimics PAN Nephrosis 
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3.1. Introduction 
Although there are several in vivo animal models for studying nephrosis, 

there are very few in vitro models. The two most common in vitro models 

are the isolated perfused rat kidney model and the cell culture model 

(both primary and immortalized cell lines). Both have advantages and 

disadvantages as previously discussed, (see Section 1.3.3 Experimental 

Models of Nephrosis). As we require a model to study the mechanisms of 

nephrosis and to identify and further characterize potential nephrotoxic 

biomarkers a cellular model is the most appropriate to use. 

There are limitations to using primary or immortalized cultured renal cells. 

Firstly there are between 15 and 20 cell types within the kidney, before 

any experiment is initiated it must be ensured that homogeneous cultures 

have been obtained. Secondly there is little information regarding 

markers which could be used to identify cell origins/ancestry/lineage. 

Thirdly, there is always the problem of cells differentiating or 

dedifferentiating during cell culture. Despite these limitations a cellular 

model represents a viable alternative to study renal cellular functions and 

their responses to experimental changes [179]. 

Unfortunately none of the currently commercially available continuous 

renal epithelial cell lines fully express all the differentiated functions of 

their ancestor cells in vivo. There are however two experimental models 

which can be used; (1) Primary cultures of isolated epithelial cells from 

defined origin and (2) continuous renal epithelial cell lines [179]. 

Primary cells are less well suited for in vitro nephrosis studies as they do 

not maintain their state of differentiation for more than a few passages. 

Although primary cultures may be immortalized by transfection, the 

induced changes in cell function and characteristics have not been fully 

defined. For this reason it is commonly believed that the well 

characterized immortalized continuous renal epithelial cell lines are the 

most suitable for in vitro nephrosis studies. Several cell lines are available 
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including MOCK, OK, A6 and LLC-PK, but we chose to use normal rat 

kidney (NRK) cells. NRK cells are a fibroblast cell line with epithelial 

morphology that has been derived from normal Rattus norvegius kidney 

cells [179]. 

The most common model of nephrosis, uses the antibiotic puromycin 

aminonuceloside, (PAN), (see Section 1.3.3.1 ). The PAN nephrosis 

model of glomerular disease has been extensively studied since the 

1950's. However the majority of these studies have been in vivo animal 

studies, in comparison there have been very few in vitro studies [182]. 

Table 3.1 is a brief summary of the key in vitro studies using PAN 

nephrosis. 

Using the published data on in vitro and in vivo models of PAN nephrosis, 

we established an in vitro cellular model which mimics PAN nephrosis in 

NRK cells. 
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Group Cell Type PAN Doses Key Findings Ref 

100 and 500j.Jg/ml PAN effects the ultrastructure of podocytes, including FP and cell 
Bertram et al. Kidney slices body flattening, plasma membrane blebbing and a loss in the [182] for 1-3 days 

number of microvilli on cell bodies 

Rat GVEC's 
10, 20 and 

PAN caused cell rounding and detachment, decrease in cell 
Goers et al. 

(podocytes) 
50j.Jg/ml for 1 - 2 

proliferation and a loss of 131-integrin focal adhesions [183] 
days 

Rat GVEC's 
10, 20, 40 and 

PAN caused cell rounding, surface blebbing, cells lost ability to 
Fishman & Karnovsky 

(podocytes) 
80j.Jg/ml for 1 - 3 

adhere to plastic but detached cells remained viable [184] 
days 

0.5, 5 and 50j.Jg/ml PAN caused reduced viability at 50j.Jg/ml only, reduced cell 
Krishnamurti et al. 56/10 A1 numbers, focal detachment of cells from plastic, reduced expression [181] for 1-2 days 

of a3131-integrin and increased expression of podocalyxin 

Rat GVEC's 
5, 10, 20, 50, 100, 

PAN enhances apoptosis in a dose and time dependent manner. Sanwal et al. 
(podocytes) 

200, 500j.Jg/ml for 
PAN induces necrosis at doses >100j.Jg/ml [204] 

1-2 days . . 
Table 3. 1. A Brief summary of the key observations in previous m v1tro models of PAN nephrosis. 
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3.2. Determining PAN Doses 
Data from three papers, Bertram et al. [182], Coers et al. [183] and 

Fish man and Karnovsky [184] (see Table 3.1) which had used PAN to 

generate nephrosis in cultured renal cells and kidney slices was used to 

select the range of PAN doses for our studies in NRK cells. 

The studies of Goers et al. used PAN doses of 10, 20 and 501-Jg/ml for up 

to 48 hours to study cytoskeletal organisation and extracellular matrix 

protein expression in cultured glomerular epithelial cells. These studies 

showed disturbed cytoskeletal organisation and reduced expression of 

laminin and 131 integrin protein expression. The PAN doses used were not 

toxic, cells were found to be >90% viable. Higher PAN doses of 100 and 

500j.Jg/ml have been used on rat kidney slices by Bertram et al. [182]. 

Electron microscope (EM) studies showed flattening of podocytes and an 

increased number of glomeruli which showed membrane blebbing on 

podocytes. Fishman and Karnovsky [184] showed changes to podocyte 

ultrastructure by EM using cultured glomerular epithelial cells and PAN 

doses of 501-Jg/ml. At this dose membrane blebbing was evident as early 

as three hours after drug treatment and at twenty hours cell rounding 

occurred and cells began detaching from the culture plates although they 

remained viable. These changes mimic PAN nephrosis in vivo. 

For our studies it is essential we use PAN doses which display 

characteristics of nephrosis but without causing cell toxicity. Too high a 

dose or over exposure of PAN will result in the detection of non-specific 

effects as a result of toxicity and not nephrosis. We examined the 

expression of two podocyte markers, podoplanin and podocalyxin, known 

to have reduced gene expression in the PAN nephrotic rat model. 
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3.3. Examining Podoplanin and 

Podocalyxin Gene Expression in 

NRK cells following PAN Treatment 
Podoplanin and podocalyxin have been identified by GlaxoSmithKiine as 

being down-regulated in the rat model of PAN-induced nephrosis. For our 

cellular model to be an accurate model of PAN nephrosis then these 

genes must be down-regulated following PAN treatment in our model. 

3.3.1. Primer Design 

Primers were designed in the specific 3' UTR region for each gene, using 

Primer3 software (http://www-genome. wi.mit.edu/cgibin/primer/primer3 ). The 

primers were designed to give a product between 150 - 300 bp in length, 

primer details are given in Table 3.2. 

3.3.2. Normalization 

The house-keeping gene glyceraldehyde-3-phosphate dehydrogenase 

(G3PDH) was used to normalize our panel of cDNA generated from each 

PAN dose. The PCR products were electrophoresed on a gel with a DNA 

marker of known concentration and analysed using the 810-RAD Geldoc 

software. Volume analysis software was used to generate a standard 

curve of DNA concentrations and this curve used to calculate the amount 

of DNA present in each sample and normalized the panel accordingly. 
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Gene Accession Number Forward Primer 5' - 3' Reverse Primer 5' - 3' 

Podoplanin U96449 AATGGTGCAAAAACCGAGAC AACTGAAGGCAGTGGATGCT 

Podocalyxin AF109393 GTTCATTTGTGTCCATCCCC ACCCACCCTTTAGGCAGACT 

Nephrin AF161715 TTCTTCTGATCTCCATGGGC CACGCCCCTTTTAATTCTGA 

Podocin AY039651 GGGCGAGTGGACAAGAGTAA TGAATGATGAGACGACCCAC 

WT-1 X69716 GTCCCAGGCAAGAAAGTGTG CGGCAAACCTGATAGGACTC 

G3PDH AB017801 CTCAGTTGCTGAGGAGTCCC GGGTGCAGCGAACTTTATTG 

Table 3. 2. Summary of primers for RT -PCR of podocyte genes. 
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3.3.3. Testing PAN doses of 5 and 1 O~g/ml 

Initially PAN doses of 51Jg/ml and 101Jg/ml were chosen and cells were 

exposed for 24 or 48 hours. However with these doses no changes were 

observed in cell morphology or cell numbers after 24 hours and only 

1 01Jg/ml had a limited effect after 48 hours. The lack of any significant 

changes between the PAN treatments suggested the PAN doses were 

too low to be causing substantial nephrotic effects. 

We found that podoplanin showed little variation in expression at time 0 

with PAN treatment but did show an increase in gene expression with 

increasing PAN doses at both 24 and 48 hours, but a decrease in 

expression at a given dose between 24 and 48 hours. Podoplanin also 

showed a large increase in expression at 1 01Jg/ml after 48 hours when 

compared to control cells (Figure 3.1 ). Published data shows that 

podoplanin gene expression is greatly reduced in both the in vitro and in 

vivo models of PAN nephrosis [18]. In our model podoplanin expression 

appears to initially increase with response to PAN treatment, peaking 

after 24 hours before starting to decrease, further time points and higher 

PAN doses are required to establish exactly how PAN affects podoplanin 

gene expression. 

Podocalyxin showed an initial dose dependent decrease in expression at 

time 0. At 24 hours there was a decrease in expression at 1 01Jg/ml but at 

48 hours there was an increase in expression. Expression of podocalyxin 

was increased at 101Jg/ml over time. Krishnamurti et al. [181] found that 

podocalyxin mRNA expression was increased at 48 hours after PAN 

treatment with 0.5 or 51Jglml. This was confirmed at 1 01Jg/ml in my 

experimental results, but this is in contrast to the results obtained at 

GlaxoSmithKiine, who found podocalyxin gene expression was reduced 

in the in vivo model of PAN nephrosis. 

The fact we didn't observe any of the reported in vitro effects associated 

with PAN nephrosis and the inconsistent data from our initial study of 
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podoplanin and podocalyxin gene expression suggested that these PAN 

doses were too low to elicit nephrotic like responses. We therefore 

increased the PAN doses to 401Jglml and 801Jglml and the exposure time 

to 48 and 72 hours at each dose. We also tested the dose 1 01Jg/ml at the 

above exposure times. 
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Podocalyxin 

Podoplanin 

G3PDH 

Figure 3. 1. Changes in podoplanin and podocalyxin gene expression in NRK 
cells following PAN treatment. 
Podocalyxin shows decreased expression with respect to PAN treatment at t=O, but 
shows an increase in expression after 48hrs at the highest (1 01-Jg/ml) PAN dose 
Podoplanin shows similar initial levels of expression at t=O. which increase with 
Increasing PAN doses at 24hrs. At 48hrs there is a low level of expression in 
control cells but PAN (1 01-Jg/ml) treated cells still have increased expression. 



Chapter 3 

3.3.4. Gene Expression at Increased PAN doses of 

401Jg/ml and 801Jg/ml 

The new cDNA panel was normalized as before using G3PDH (Figure 

3.2). Increasing the PAN doses to 40j.Jg/ml and 80j.Jg/ml and increasing 

the exposure time resulted in the downregulation of both podoplanin and 

podocalyxin genes. Podocalyxin showed a greater reduction in 

expression and a dose dependent change which wasn't seen for 

podoplanin (Figure 3.3). Podoplanin showed an almost universal 65% 

decrease in expression (Figure 3.4 ), which correlated with the published 

results of Breitender-Geleff et al. [18] who showed that podoplanin was 

reduced by almost 70% in the PAN nephrosis rat model at the mRNA 

level. A summary of the reduction in expression of podoplahin and 

podocalyxin following PAN treatment is shown in Table 3.3. 

PAN Dose % Reduction in % Reduction in 
Podoplanin Podocalyxin 
Expression Expression 

1 Oj.Jg/ml 48hrs 65% 63% 

40j.Jg/ml 48hrs 65% 78% 

80j.Jg/ml 48hrs 65% 80% 

1 Oj.Jg/ml 72hrs 25% 68% 

40j.Jg/ml 72hrs 65% 85% 

80j.Jg/ml 72hrs 65% 86% 

Table 3. 3. A summary illustrating the decrease in podoplanin and 

podocalyxin expression following PAN treatment. 
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Figure 3. 3. Reduced gene expression of podocalyxin in NRK cells following PAN treatment. 
Podocalyxin shows a dose-dependent decrease in expression as a result of PAN treatment at both 
time points. 
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Figure 3. 4. Reduced gene expression of podoplanin in NRK cells following PAN treatment. 
Podoplanin shows a dose dependent reduction in expression following PAN treatment at 72 hours. 



100% 

~ 0 
90% 

c 
80% 0 ·u; 
70% f/) 

Q) ... 
60% Q. 

)( 

w 50% 
Q) 
c 40% Q) 

(!) 
30% Q) 

> .. 20% 
IV 
Qi 10% 
0::: 

0% 

01Jglm I 
4 Bhrs 

48hrs 

nnn 
1 Ollg/m I 401Jg l m I 801Jglm I O~Jglm I 

48hra 48hrs 418hrs 72hrs 

PAN Dose 

72hrs 

1 01Jglm I 401Jglm I 801Jg/m I 
72 hrs 72hrs 72hrs 

Figure 3. 4. Reduced gene expression of podoplanin in NRK cells following PAN treatment. 
Podoplanin shows a dose dependent reduction in expression following PAN treatment at 72 hours. 
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3.4. Examining changes in Expression of 

other Kidney genes Following PAN 

Treatment 
To show that the reduction in gene expression of podoplanin and 

podocalyxin was specific and not due to toxicity, we also examined the 

gene expression of two slit diaphragm proteins, podocin [8, 86, 91] and 

nephrin [54, 57-60], and the transcription factor WT-1 [129, 138]. 

Podocin showed reduced gene expression, with a dose response 

decrease up to the mid PAN dose, but no subsequent reduction in 

expression from the mid, (401-Jg/ml), to high, (801-Jg/ml), doses, (Figure 

3.5). However the amplified PCR products did show a mobility shift 

between the control (OIJg/ml) and PAN treated samples, (Figure 3.6), 

suggesting a change in the size of sequence of the DNA fragment as a 

result of PAN exposure. To examine whether PAN treatment does result 

in alterations to the DNA sequence of podocin we sequenced PCR 

products obtained from cDNA isolated at OiJg/ml and 1 OiJg/ml PAN 

exposed for 48 hours. 

The OiJg/ml DNA product had an additional two nucleotides which were 

not in the 1 OiJg/ml product and were not in the published sequence 

(AY039651) however such a small difference should not account for the 

observed shift, suggesting the observed mobility shift was an artefact. 

However a consistent G - A change was identified between the 

sequences and the published rat sequence, which is shown in Appendix 

2. This is probably a single nucleotide polymorphism (SNP) but can not 

account for the shift in mobility as it is observed in both the OiJg/ml and 

1 OiJg/ml sequences. 

Nephrin amplification was also examined from two replicate experiments 

in duplicate but despite redesigning the primers and repeating the 

experiment nephrin expression remained inconsistent. Despite the 
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inconsistency no significant trend of reduced or increased gene 

expression was evident for nephrin following PAN treatment, (results not 

shown). From these results we conclude that nephrin gene expression in 

our model is not affected by PAN treatment. The podocalyxin 

transcription factor WT-1, also showed inconsistent PCR amplification. 

Figure 3.5 shows two gels which were representative of the varying 

results observed. Overall our results suggest that PAN does not cause a 

significant increase or decrease in WT-1 gene expression. 
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Podocin 

WT1 

WT1 

G3PDH 
Figure 3. 5. Examining gene expression of podocin and WT-1 in NRK cells following PAN treatment. 
Podocin shows a mobility shift between control and PAN treated samples and a small reduction in 
expression following PAN treatment. WT-1 amplification was inconsistent but overall no significant changes 
in gene expression following PAN treatment were observed . 
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Podocin 

Figure 3. 6. Mobility shift in podocin DNA following PAN treatment 
after 48hrs. The change in size is highlighted by the two arrows, blue for 
PAN doses, green for control. 

The fact that we are not seeing a reduction in expression of all the genes 

examined (Table 3.4) suggests that the doses of PAN we are using are 

not toxic and that the reduction in gene expression of podoplanin and 

podocalyxin are specifically as a result of PAN treatment. 

..-
Expression Changes 

-
Gene 

Podoplanin Reduction of 65% 
f- . -

Podocalyx1n Dose-dependent Reduction 
f- -Podocin Small Reduction 
-

Nephrin No change 

WT-1 No change 
'--

Table 3. 4. The affect of PAN treatment on podocyte specific gene 
expression in NRK cells. 
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3.5. Examining Cell Viability following 

PAN treatment of NRK cells 
As mentioned earlier it is critical that the PAN doses we use mimic 

nephrosis but do not promote apoptosis. At doses of 401-Jg/ml and 

801-Jg/ml we observed reduced gene expression of known markers of PAN 

nephrosis however we are yet to confirm if this reduction is a specific 

effect of nephrosis. To confirm that the above doses are not toxic and the 

reduced expression is a result of nephrosis we examined the viability of 

the NRK cells after PAN treatment. 

There are several methods of determining cell viability and cell death. 

DAPI staining was used to detect DNA damage and a trypan blue 

exclusion assay was used to determine cell viability levels. There was no 

DNA damage detected at the PAN doses tested using DAPI staining 

(Figure 3.7). However we did detect a decrease in cell number (see 

section 3.6). 

There was no change in the trypan blue exclusion by adherent NRK cells 

at any of the PAN doses tested, and the cells were found to be >90% 

viable. Although there was a small reduction in the viability of detached 

cells at each PAN dose, this value was not statistically significant when 

analyzed using the t-Test (Figure 3.8). Overall the detached cells were 

>65% viable, while the detached cells from the mid and high PAN doses 

still had a viability level of >80%, this suggested that PAN at these doses 

is not toxic. 
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Figure 3. 7. Examining DNA damage by DAPI staining in NRK cells following PAN treatment. 

The arrows highlight damaged nuclei. 
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3.6. Changes in Cell Number 
Although the PAN doses were not causing cell death of the attached NRK 

cells, as shown by trypan blue uptake and DAPI staining, fewer cells were 

present at the higher PAN doses, (Figure 3.9). 

The cells were found to be floating in the media and appeared to be 

healthy viable cells, suggesting that they were not adhering to the tissue 

culture plates as efficiently. Using trypan blue staining we performed a 

viable count upon these floating cells and found that they were indeed still 

viable (Figure 3.8). 

We measured the total number of cells present both attached and 

detached at each PAN dose and used this total number of cells to 

calculate the cell proliferation rate, (Table 3.5). As expected a dose 

dependent decrease in the number of attached cells and a corresponding 

dose dependent increase in detached cells were observed in response to 

PAN treatment. PAN also caused a reduction in the cell proliferation rate. 

The low (10j..Jg/ml) and mid (40j..Jg/ml) PAN doses showed almost identical 

levels of reduction, 45% after exposure for 48 hours rising to 70% after 72 

hours. The high (80j..Jg/ml) PAN dose showed the least reduction in cell 

proliferation rate 38% and 47% after 48 and 72 hours respectively. The 

high PAN dose also showed the least reduction in cell proliferation as 

results to increased exposure to PAN. This suggests that at this dose the 

effects of PAN on NRK cells are occurring in the first 48 hours, whereas 

for the lower doses of 1 Oj..Jg/ml and 40j..Jg/ml the effects are cumulative 

over a longer time course. 

95 



120 

100 

!E. 80 
Q) 

u 
c: 
~ 60 
.c 
nl 

> 
~ 40 

20 

0 

T 

01Jg/ml 

% Viable Cells in Extracted Media 

r-"-

101-Jg/ml 

PAN Dose 

o 48hrs 

c 72hrs 

Figure 3. 8. PAN treatment results in non-significant changes in the viability of detached NRK cells. 
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Figure 3. 9. PAN treatment causes a dose-dependent decrease in the number of attached NRK cells. 



Total Cell Cell Proliferation Rate 
PAN dose Attached Cells Detached Cells 

Numbers cells/hr 

O~g/ml48hrs 168.34 X 104 
26 X 104 194.34 X 104 3.27 X 104 

10~g/ml48hrs 88.69 X 104 39.5 X 104 128.19 X 104 1.89 X 104 

40~g/ml 48hrs 57.94x104 88.75 X 104 146.69 X 104 2.27 X 104 

80~g/ml 48hrs 45.38 X 104 115.75 X 104 161.13 X 104 2.58 X 104 

1 O~g/ml 72hrs 77.78 X 104 44 X 104 121.78 X 104 1.17 X 104 

40~g/ml 72hrs 49.13x104 58.5 X 104 107.63 X 104 0.97 X 104 

80~g/ml 72hrs 28.56 X 104 166 X 104 194.56 X 104 2.18 X 104 

. 
Table 3. 5. Total cell numbers present and cell proliferation rates after PAN-treatment . 
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3.7. Conclusions 
A cellular model using NRK cells which mimics PAN nephrosis has been 

established. Using a range of PAN doses we show reduced gene 

expression of podoplanin and podocalyxin similar to that observed in the 

in vivo rat model of PAN nephrosis [GiaxoSmithKiine unpublished] [18]. 

The changes in gene expression are specific and are not the result of 

toxicity as determined by the cell viability assay and the observed 

differential expression of the selected genes. This cellular model will allow 

us to further study the mechanisms of PAN nephrosis and to identify and 

characterize biomarkers which subsequently could be used clinically to 

determine the nephrotoxicity of compounds. 

We found no changes in the viability of adherent NRK cells within our 

model at any of the PAN doses used. This is in agreement with the 

results published by Coers [183] who found cells were ~ 95% viable, 

when treated with PAN doses of 10, 20 and 50 1-Jg/ml for 48 hours and 

Fishman and Karnovsky [184] who found cells were ~ 85% viable at PAN 

doses of 10, 20, 40 and 801-Jg/ml. Krishnamurti [181] found PAN doses of 

0.5 and 51-Jg/ml for 24 or 48 hours resulted in viability levels of ~ 97% 

however 501-Jg/ml caused a substantial reduction in cell viability and 

Sanwal [204] found that PAN caused dose dependent apoptosis at doses 

< 1 001-Jg/ml and necrosis at doses > 1 001-Jg/ml. However even though 

there is a dose-dependent reduction in cell viability as a result of PAN 

treatment, the cells are still 80% viable when treated with 501-Jg/ml PAN 

for 48 hours. The variations in levels of cell viability are probably the 

result of varying exposures of PAN treatment and the differing cell lines 

used. Sanwal also uses a different method to determine apoptosis, which 

may result in the lower cell viability observed. 

Coers et al. [183] and Fishman and Karnovsky [184] both reported a dose 

and time dependent loss of adhesion, Krishnamurti et al. [181] only 

observed a change in adhesion at the highest dose of 51-Jg/ml. We 

observed a reduction in adherent cells in response to PAN treatment in a 
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dose-dependent fashion and the detached cells were still viable 

suggesting that PAN is causing a loss of adhesion in a dose and time 

dependent manner in our model, however this loss of adhesion is yet to 

be confirmed. 

As in my model Fishman and Karnovsky [184] found that detached cells 

were still viable but would not reattach and grow. On the other hand 

Coers et al. [183] found that detached cells were only 15% viable after 

PAN treatment of 50f.Jg/ml for 48 hours. Petermann et al. found that in 

both the Passive Heymann Nephritis (PHN) [205] and diabetic 

nephropathy [206] rat models of nephrosis, that podocytes collected from 

the urine could be cultured ex vivo, thus proving that the detached or 

shed podocytes remain viable. This has also been shown to be the case 

in human diseases including diabetic nephropathy [207] and glomerular 

inflammatory diseases [208]. lt is proposed that podocyte excretion could 

be used as a marker to estimate severity of glomerular injury and a 

predictor of disease progression. 

As previously mentioned the reduction of podoplanin and podocalyxin 

gene expression observed in my model supports the results obtained 

from the rat model of PAN nephrosis by GlaxoSmithKiine. For podoplanin 

the decrease in expression of 65% shows a very similar level of reduction, 

-70%, to that published by Breitender-Geleff in 1997 [18]. Podocalyxin 

gene expression has previously been reported to be increased following 

PAN treatment [181] which is in contrast to our findings and those of 

GlaxoSmithKiine. 

In PAN nephropathy of the rat podocin has been shown to shift to a 

redistributed granular staining pattern upon developing proteinuria and to 

have decreased protein expression which does not result from a 

corresponding decrease in mRNA levels [89]. Horinouchi et al. [90] found 

that podocin protein expression was reduced only in FSGS and remained 

unchanged in minimal change disease and lgA nephropathy. They also 

discovered a mutated form of the human podocin gene NPHS2, which 
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contained a 200bp deletion. Podocin has been shown to be 

downregulated at the protein level in acquired human diseases [209] and 

in the PAN nephrosis rat model [78] but to show an increase in mRNA 

expression. We did not examine podocin protein expression but did 

observe a small reduction in mRNA levels following PAN treatment. The 

shift in the podocin PCR product we observed appeared to be an artefact 

as the sequences of the PCR products were 99% similar. 

Varying results have been reported regarding changes in nephrin gene 

and protein expression in human diseases and in experimental models. 

Nephrin gene expression was found to be reduced in several 

experimental proteinuric diseases including; passive Heymann nephritis 

(PHN) [74, 75], puromycin aminonuceloside nephrosis (PAN) [76-78] and 

experimental diabetic nephropathy [21 0]. However Aaltonen et al. [79] 

found that nephrin expression was increased in diabetic nephropathy at 

both the mRNA and protein level. 

Nephrin protein expression has been reported to be reduced in minimal 

change nephropathy, FSGS, [80], [211], membranous nephropathy, [81], 

[212] and lgA nephropathy [75]. lt has also been reported that nephrin 

expression is unchanged in minimal change nephropathy, FSGS and 

membranous nephropathy [82, 213]. We observed variable nephrin gene 

expression but conclude based on the results as a whole that nephrin 

expression was not significantly reduced by PAN treatment in our model. 

WT-1, a transcription factor, which regulates podocalyxin expression in 

the kidney, showed no significant change in gene expression levels in 

response to PAN treatment. Although WT-1 has been associated with 

several human diseases, including WAGR syndrome, Denys-Drash 

syndrome and Frasier syndrome, it is believed that mutations in the WT-1 

gene are responsible for these disorders rather than changes in levels of 

mRNA expression, [136, 141-143, 214]. 
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Only Guo et al. [134] has shown reduced WT-1 expression to be the 

cause of crescentic glomerulonephritis or mesangial sclerosis. However 

Guo et al. also showed that podocalyxin and nephrin expression was 

reduced which may ultimately have been the cause of glomerulosclerosis 

observed. 

The work in this chapter provides clear evidence that we have 

successfully established an in vitro cellular model which mimics PAN 

nephrosis. With this model we can further study the mechanisms of PAN 

nephrosis and the potential nephrotoxic biomarkers podoplanin and 

podocalyxin. Table 3.6 is a summary of our cellular model as compared 

to other in vitro models and the in vivo rat model of PAN nephrosis. Our 

model combines the key observations of previous in vitro models with that 

of the in vivo model, to give us a model which we can use to further 

characterize the mechanisms of PAN nephrosis. 

In the following chapter we will investigate the apparent effect of PAN on 

the adhesive properties of the NRK cells in our model. 
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Characteristic Our Cellular Other in vitro models GSK in vivo rat 

Model model 

Cell Viability Unaffected Unaffected [183, 184] N/A 

Cell Detachment Yes Yes [ 181 , 183, 184] N/A 

Podocyte Ultrastructure Changes N/A FP flattening, Cell rounding, N/A 

Membrane blebbing 

[182, 183, 184] 

Reduced Podoplanin Gene Yes 65% reduction Yes -70% reduction [18] Yes 

Expression 

Reduced Podocalyxin Gene Yes Increased expression in 56/10 A 1 cells Yes 

Expression [181] 

Non-specific Gene Expression No N/A No 

Changes 

Table 3. 6. Comparison of in vitro and in vivo models of PAN Nephrosis. 
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Chapter 4. 
PAN Induced Changes in 

Adhesive Properties of NRK 
Cells 
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4.1. Introduction 
In establishing a cellular model which mimics PAN nephrosis we found 

that PAN treated NRK cells were detaching from the surface of the tissue 

culture plates and floating in the tissue culture media. When these cells 

were stained with trypan blue they were found to be viable, (section 3.5), 

suggesting that PAN causes a reduction in cell adhesion in cultured cells, 

as had previously been reported [183, 184]. 

Focal detachment of podocytes from the glomerular basement membrane 

is a prominent morphological feature of PAN-induced nephrosis in the rat 

model [215, 216], [217 -219] and has also been observed in in vitro 

models of PAN nephrosis. Loss of cell adhesion has been shown to occur 

in cellular models of PAN nephrosis by Coers et al. [183], Fishman and 

Karnovsky [184] and to a lesser extent by Krishnamurti et al. [181]. lt has 

also been shown that viable podocytes are shed into the urine of two 

experimental rat nephrotic models, the diabetic nephropathy model [205, 

207] and the PHN induced rat model [206]. Podocytes shed into the urine 

can be cultured in vitro under normal culture conditions [205, 206]. 

Recently Vogelmann et al. [220] showed that podocytes were present in 

the urine of both healthy individuals and patients suffering from 

glomerular disease. They observed a difference in the excreted 

podocytes ability to be cultured in vitro. Cells from patients showed the 

same morphology and growth patterns as glomeruli isolated from whole 

kidney however cells from healthy subjects had significantly less growth 

capability and died much sooner. These results suggest that viable 

podocytes were shed into the urine in diseased states while the 

podocytes from healthy subjects are shed principally when they are 

senescent and thus results in their limited ability for replication in culture. 

These workers don't address the mechanisms by which viable podocytes 

are shed into the urine in diseased states but it does highlight that the 

shedding is a response to a sub-lethal damaging stimulus. 
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lt has subsequently been identified that not just podocytes are shed from 

the glomeruli into the urine, but also podocyte related structures including 

podocalyxin-positive granular structures (PPGS) and the podocyte apical 

cell membranes [221]. 

4.1.1. lntegrin 

lntegrin and dystroglycan complexes provide a critical role in linking 

podocytes to the glomerular basement membrane (GBM), (Figure 4.1 ). 

Both integrins and dystroglycans are coupled via adapter molecules to 

the podocyte cytoskeleton [222]. If podocytes become detached from the 

GBM and are shed, then it is highly probable that integrin and/or 

dystroglycan are involved in whatever changes occur, with experimental 

evidence indicating that integrins are the most likely molecules to be 

predominantly responsible. 

There is genetic and experimental evidence [223-225], [226] that 

disruptions of the integrin - mediated podocyte matrix interaction are 

capable of inducing proteinuria [222]. lntegrins have many roles in cells 

including modulating cell shape, polarity, growth, differentiation and 

motility but here we will only focus on the modulation of cell adhesion 

through homophilic and heterophilic interactions. 

Ligand binding induces clustering of integrins to form focal adhesions and 

recruitment of intracellular cytoskeletal proteins. Within the focal adhesion, 

integrins are connected to the actin cytoskeleton by a number of adapter 

molecules including, paxillin, vinculin and talin [222]. Focal adhesions 

have been identified as points of cellular attachment to the underlying 

matrix [227]. 

a3~1 is the predominant integrin expressed by podocytes, but a6~1 is 

also expressed in much lower levels [125, 1_26]. a3~1 integrin is 

concentrated at the "sole" of the foot processes facing the GBM and is 
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thought to be largely responsible for foot processes attachment to the 

GBM [125] (see Figure 4.1 ). 

107 



Focal 
Contact {

Vinculin 

Paxillin --­
Talin 

lntegrin 

GBM Laminin 

Utrophin 

Podocyte 

Dystroglycan 

Agrin GBM 

Figure 4.1. Schematic representation showing the podocyte - GBM interaction. 
X undefined dystroglycan associated molecule. Adapted from Fig.2. Kretzler et al. [223] 
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a3 integrin deficient mice die the first day after birth with severe kidney 

and lung abnormalities, highlighting the crucial role of a3~1 integrin in the 

development of the kidney and lung [223, 228]. They also develop skin 

blisters as a result of severe disorganization of the epithelial basement 

membrane extracellular matrix [229]. Although a3 integrin deficient mice 

are unable to form mature foot processes, in one case of congenital 

nephrotic syndrome, a disease characterized by lack of foot processes, 

a3~1 integrin was found to be present in the patient's glomeruli. These 

results imply that a3~1 integrin maybe necessary but not sufficient for foot 

process formation. Unfortunately the lethality of the a3 integrin deficient 

mice precludes using this model for a long-term study on kidney disease 

[223]. 

Podocytes deficient in a3~1 integrin are unable to form mature foot 

processes instead cytoplasmic projections from the podocytes cell body 

are flattened against the GBM [223]. This is a phenotype more consistent 

with increased adhesiveness, which may indicate a role for a3~1 integrin 

in modulating other adhesion receptors, possibly including dystroglycan, 

so that if there is a defect in a3~ 1 integrin these other adhesion receptors 

mediate excess attachment to the GBM [125]. However there is no direct 

evidence of a relationship between integrin and dystroglycan in 

podocytes. 

Research by Wang et al. [227] proved that integrins are required to form 

the sub-cortical cytoskeleton but integrins are not required to mediate 

cell-cell contacts. Primary cultures of a3~1 integrin deficient kidney 

collecting duct cells are indistinguishable from wild type cells, in that they 

both exhibit the regular cobblestoned appearance of epithelial cells, 

indicating that cell-cell contacts were unaffected. However cells failed to 

form the sub-cortical cytoskeleton and instead actin stress fibers were 

formed. 

The concept of integrins as simple adhesion receptors is over simplified, 

instead integrins can be thought of as receptors that transduce signals on 
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contact with the extracellular matrix that elicit a specific response. That 

response could be adhesion, migration and in the case of podocytes foot 

process assembly, all these responses involve cytoskeletal 

rearrangement. There is an emerging understanding of how integrin -

ECM interactions affect cytoskeletal assembly through the activation of 

Rho family GTPases [126]. 

lt was initially proposed that integrin activity could be modulated, by 

phosphorylation, to change the adhesive properties of cells [224]. lt was 

hypothesized by Krishnamurti et al. [181] "that the mechanism of PAN­

induced detachment involves the inhibition of expression of a3~1 integrin". 

They found that integrin expression was reduced at both the mRNA and 

protein levels. As such we would expect to observe a similar pattern of 

reduced integrin expression in our model and for this reduction to be 

greatest at the highest PAN dose. 

Several studies have examined integrin expression in a variety of 

diseases and have produced conflicting results regarding a3~ 1 integrin 

levels or distribution. Regele et al. [230] found no significant changes in 

~1 integrin expression levels in human minimal change nephrosis (MCN) 

or focal segmental glomerulosclerosis FSGS. Baraldi et al. [231] also 

detected no changes in MCN or membranous glomerulonephritis. 

However Shikata et al. [232] found a decrease in a3~ 1 integrin in MCN 

and Kemeny et al. [233] found reduced staining for a3 integrin in FSGS, 

however only one case was examined. Although Jin et al. [234] found 

there was an increase in integrin staining in human diabetic nephropathy, 

Chen et al. [235] showed a significant reduction in a3~ 1 integrin 

expression in both human and rat podocytes with diabetes mellitus and 

this reduction preceded any observed morphological changes. Regoli et 

al. [236] also found a3~ 1 integrin was expressed along the luminal 

membrane as well as the basal plasma membrane and this expression 

was reduced in diabetic rats. 
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Similar contradictory results were observed for integrin expression in the 

PAN nephrosis model. Krishnamurti et al. [181) found a dose dependent 

reduction in integrin expression at both the mRNA and protein levels in 

PAN induced nephrosis of 56/10 A1 cells at a PAN dose treatment of 

0.51-Jg/ml and 51-Jg/ml for 48 hours. Smoyer et al. [122] found no 

statistically significant changes in either a3 integrin or ~1 integrin protein 

expression except an increase in a3 integrin expression ten days after 

induced PAN nephrosis in male Sprague-Dawley rats. Conversely Kojima 

et al. [237] found decreased a3 integrin expression four days after PAN 

induced nephrosis in male Wistar rats but expression levels returned to 

normal at day ten, and Luimula et al. [78] found a two-fold increase in ~1 

integrin protein expression at day three and ten after PAN induction in 

female Sprague-Dawley rats but no corresponding change in mRNA 

levels. The contradictory results can possibly be explained by variations 

in each model. Not only were there variations in animal species and sex 

but also significant variations in the PAN doses. Smoyer et al. [122] used 

a high dose (150mg/kg body weight), Luimula et al. [78] a mid dose of 

(1 OOmg/kg body weight) and Kojima et al. [237] a low dose of (50mg/kg 

body weight). This three-fold change in PAN concentration is likely to 

have an effect on the severity of nephrosis and hence a subsequent 

effect on any protein levels affected by PAN. 

lntegrin Linked Kinase (ILK) 

ILK is an ankyrin-repeat containing serine/threonine protein kinase, 

encoded by a 1 .8 kb transcript that is widely expressed in human tissues. 

ILK interacts with the cytoplasmic domains of ~1, ~2 and ~3 integrin. ILK 

is involved in "inside-out" and "outside-in" integrin signalling [238]. 

ILK has been shown to be induced in congenital nephrotic syndrome of 

the Finnish type. Kretzler et al. [239] identified ILK as a candidate 

signalling molecule linking podocyte function to cell - cell and cell -

matrix interaction and if disturbed can lead to proteinuria. The 

identification of ILK as a potential mediator of glomerular disease has 

highlighted a novel focus for future drug discovery targets. 
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4.1.2. Lam in in 

Laminins are a growing family of heterotrimeric proteins, consisting of one 

a, one ~ and one y chain arranged in a cruciform structure. Fifteen 

different laminin isoforms have so far been identified, laminin-1 to laminin-

15, based on the assembly of the five a, three ~ and three v chains. 

Laminins are mainly localized in basement membranes and have a range 

of functions, including cell growth and migration, cell adhesion and cell 

differentiation. 

Most laminin chains have been identified in the kidney by 

immunohistochemical methods, but few laminin heterotrimers have been 

isolated. lt is possible to predict which laminin trimer is present in a given 

tissue by immunohistochemically colocalizing a, ~and v chains, but this is 

not proof that the chains assemble into the predicted trimer. 

Based on these predictions the following laminin trimers have been 

"identified" in the kidney. Laminin-1 has been found in proximal tubular 

basement membranes (TBMs) in the cortex and in the loops of Henle 

basement membranes in the medulla [240, 241]. Laminin-2 is found in a 

subset of TBMs at low levels and in the mesangial matrix in mice and 

humans [241, 242]. In rats laminin-4 is found in the mesangial matrix not 

laminin-2 [241-244]. Laminin-1 0 is probably the most abundant trimer in 

the mature kidney. lt is located in all tubular and collecting duct basement 

membranes [241, 242]. Laminin-11 is only found in GBM and arteriolar 

basement membranes and is the only trimer which has been shown to be 

important for correct renal function [245]. Due to its localization at the 

GBM and its role in maintaining renal function, we will be focussing on 

Laminin-11. However the existence of laminin-11 in the GBM has been 

questioned based on in situ hybridization studies which showed that aS 

and ~2 RNAs were not detected within the same cells and so could not 

form the a5~2y1 trimer [246]. lt is also important to note that only a5, ~2 

and y1 chains have been detected in the GBM [240, 242-244, 247, 248] 

and so based on current knowledge only laminin-11 is possible to be 
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formed in the GBM. This issue could be resolved by either identifying 

other laminin chains present at the GBM, therefore giving more possible 

trimers or by isolating laminin-11 from the glomeruli [249]. 

Laminin-11 was first identified in rat lung extract [242], but clarification of 

the specificity of the 4C7 antibody has now identified the heterotrimer 

originally thought to be laminin-3 [250] from human placenta as now 

being laminin-11. To examine the function of laminin-11 knockout mice 

lacking either the ~2 or a5 chain have been developed. Mice lacking the 

~2 chain develop severe morphological and physiological defects at the 

neuromuscular junction and altered filtration properties of the renal 

glomerular basement membrane [251], [245]. However with a multi­

subunit protein complex it is difficult to assign function. lt is not known if 

the neuromuscular and glomerular filtration defects are the result of the 

absence of laminin-11 or the absence of the ~2 chain. Similarly 

compensation occurs where ~1 substitutes for the missing ~2 chain to 

form a morphologically normal basement membrane [252], [245]. 

4.1.3. Dystroglycan 

Another class of adhesion proteins, the a- and ~- dystroglycans have also 

been localized to the "soles" of podocyte foot processes [230, 253, 254]. 

lt appears that podocytes adhere to the GBM via a dystroglycan complex, 

consisting of a-dystroglycan, ~-dystroglycan, agrin and utrophin, (Figure 

4.1 ). 

Dystroglycan consists of two polypeptide chains, which are synthesized 

as a single precursor and prost-translationally cleaved to form the 43 kDa 

transmembrane ~ subunit and the 156 kDa extracellular a subunit. The a 

subunit has several 0-linked sialomucin-like side chains that provide 

binding sites for laminin G subunits, which are also present in the GBM 

proteoglycans agrin and perlecan. The a subunit is non-covalently bound 

to the ectodomain of the ~ subunit. In the glomerulus ~-dystroglycan 
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binds to the dystrophin homologue utrophin, which directly interacts with 

actin [230, 255]. 

Dystroglycan has shown reduced expression in human minimal change 

nephrosis (MCN) but not in focal segmental glomerulosclerosis (FSGS), 

two podocyte diseases characterized by extensive foot process 

effacement and proteinuria. Both Regele et al. in 2000 [230] and Kojima 

and Kerjaschki [254] in 2002 reported that a-dystroglycan protein 

expression was reduced to 25% and 13-dystroglycan to 50% of controls in 

MCN only. Dystroglycan expression and the reformation of foot 

processes could be returned to normal with steroid treatment, thus it 

maybe that dystroglycan levels control foot process formation. The fact 

that the changes in dystroglycan only occur in MCN suggests that MCN 

and FSGS have different pathogenic mechanisms of podocyte 

attachment and foot process deformation. 

The expression of the dystroglycan complex is negatively correlated with 

disease activity in proteinuria in animal models [253] and patients with 

minimal change disease [230]. 

In this chapter several techniques are used to analyse the adhesive 

properties of NRK cells and if these properties are affected by PAN 

treatment. A cell aggregation assay was developed and used to examine 

the adhesive properties of NRK cells following PAN treatment. We have 

also examined if detached cells can be re-cultured in vitro and we have 

determined the expression of two cell adhesion markers a3 integrin and 

laminin 132 in our cellular model of PAN nephrosis. 
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As was previously reported during the establishment of our cellular model 

(see section 3.2), PAN appeared to have a significant effect upon cell 

adhesion, causing cells to loose the ability to adhere to the tissue culture 

plastic, this effect was greatest at the highest doses of PAN treatment 

causing almost three quarters of the cells to become detached. 

We developed a cell aggregation assay based on the classic cell­

aggregation assay first described by Takeichi [201] and subsequently 

developed by Takeda et al. [42] (section 2.1.6) to examine any changes 

in cell adhesion as a result of PAN treatment. 

Cadherins comprise a large subfamily of Ca2
+ -dependent glycoproteins 

that mediate cell-cell adhesion through homophilic interactions. 

Cadherins can be classified into four main subfamilies; classical 

cadherins, desmosomal cadherins, protocadherins and cadherin-like 

proteins [256]. The classical cadherin subfamily consist of the well 

characterized cadherins; E-cadherin (epithelial cadherin), P-cadherin 

(placental cadherin) and N-cadherin (neural cadherin). Classical 

cadherins are found in adherens junctions and typically consist of a highly 

conserved carboxy-terminal cytodomain, a single transmembrane domain 

and five extracellular cadherin-motif subdomains, C1-C5. The C1 domain 

contains a highly conserved tripeptide sequence His-Aia-Val essential for 

cell-cell adhesion [257, 258]. 

The cadherins are important for establishing and maintaining intercellular 

connections. Generally cells with fewer cadherin molecules are less 

adhesive. As long as cadherins are functioning, inactivation of other 

adhesion molecules has little effect on cell-cell adhesion, cadherins are 

therefore the cell-cell adhesion receptors that are most important for the 

formation of cell-cell associations [259]. 
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Before we were able to develop the cell aggregation assay to meet our 

needs we needed to determine what was the best way to remove the 

cells from the tissue culture flasks without damaging the adhesive 

properties. We tested various concentrations of EGTA, 0.5, 1, 2.5, 5 and 

10mM, but we found more cells were damaged using EGTA than our 

standard protocol of Trypsin/EDTA. 

lt was found that 2.5 x 1 os was insufficient to observe significant cell 

numbers to determine the effects of PAN treatment on cell aggregation. 5 

x 1 os did give significant numbers to perform the assay however after the 

mid (40~g/ml) and high (80J,Jg/ml) dose treatments of PAN the cell 

numbers were too low to perform the assay in enough replicates to 

perform accurate statistical analysis. Therefore a compromise of 3.5 x 1 os 
cells was used, this number provided enough cells to observe significant 

cell numbers but also allowed us to perform the assay in six replicates for 

statistical analysis. 

Next was determining the length of time needed for the cells to aggregate, 

Takeda et al. [42] observed significant aggregation after 1 hour with the 

results increasing up to 3 hours. Initially, 3.0 x 1 os cells were incubated 

for 1, 3 and 6 hours. Results are shown in Table 4.1. 

Incubation Time 

PAN Treatment 1 hr 3 hrs 6 hrs 

O~g/ml 48hrs 78% 68% 100% 

1 OJ,~g/ml 48hrs 21% 51% 47% 

40J,~g/ml 48hrs 21% 15% 0% 

BOJ,~g/ml 48hrs 4% 6% 0% 

Table 4. 1. Percentage cell aggregation observed after varymg 
incubation times. 
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Based on these results, it was determined that an incubation time of three 

hours was the most suitable. 

The speed of rotation during incubation was also tested. 80 rpm was too 

slow, the cells aggregated together too much and formed large clumps of 

cells and it was very difficult to gain an accurate count of cells and a true 

representation of the effects of PAN treatment on the adhesive properties 

of NRK cells. Similarly above 120 rpm was too fast and cells were not 

able to aggregate. 100 rpm gave a balance between the two, with both 

single cells and aggregates and thereby giving a true representation of 

the effects of PAN treatment on the adhesive properties of NRK cells. 
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4.3. Changes in cell adhesion properties 

of NRK cells after PAN nephrosis 
We developed a cell aggregation assay (sections 2.1.6 and 4.2) to 

examine the extent of reduction in cell adhesion and if this reduction was 

indeed related to the level of PAN. 

Briefly at each time point PAN-treated NRK cells were detached by 

trypsin/EDTA treatment and resuspended in Hank's Balanced Salt 

Solution (HBSS) + 1% BSA. Cells were separated into single cells by 

passing through a 19 gauge syringe. 35 X 104 cells in a total volume of 

1 ml were incubated in 12 well plates coated with HBSS + 2% BSA. The 

cells were allowed to aggregate for 180 minutes in the presence of 1 mM 

CaCI2 on a rotating shaker (1 OOrpm) at 3TC. Aggregation was quantified 

by counting six replicates in duplicate of each sample. An aggregate was 

deemed to be a group of cells greater than three. The percentage cell 

aggregation was estimated by: 

(No. of aggregates ~3 cells I total no. of cells) X 100 

A paired t-Test was used to analyze PAN treated groups against the 

control group to determine statistical significance (defined asp< 0.05 *, p 

< 0.01**, p < 0.001 ***). 

As expected PAN caused a reduction in the number of cells which 

aggregated, implying that PAN did result in a reduction in the adhesive 

properties of NRK cells. This reduction was found to be a dose 

dependent decrease in cell aggregation (Figure 4.2 and Table 4.2). The 

reduction in cell aggregation was found to be significant for all doses at a 

given time point, when analysed using the independent t-Test (Figure 4.2 

and Table 4.3). 
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PAN Treatment % Cell Aggregation 

OjJg/ml 48hrs 40.78 ± 15.27 

1 OjJg/ml 48hrs 25.41 ± 11.49 

40jJg/ml 48hrs 24.45 ± 8.74 

80jJg/ml 48hrs 16.87± 13.42 

OjJg/ml 72hrs 55.85 ± 14.91 

1 OjJg/ml 72hrs 31.45 ± 12.30 

40jJg/ml 72hrs 30.57 ± 10.38 

80jJg/ml 72hrs 11.77 ± 8.46 

Table 4. 2. PAN treatment results in a decrease in cell aggregation in 
NRK cells. Data is mean (n = 12) ±SO. 

PAN Treatment Comparison p-value 

O!Jg vs 101-19 0.001 *** 

48hrs O!Jg vs 401Jg 0.001 *** 

O!Jg vs 801Jg 0.001 *** 

01-19 vs 101-19 0.001 *** 

72hrs O!Jg vs 401Jg 0.001 *** 

O!Jg vs 801Jg 0.001 *** 

O!Jg vs O!Jg 0.01 ** 

1 O!Jg vs 10!-lg 0.25 

40jJg vs 40jJg 0.05 * 

80jJg vs 80jJg Not 

Table 4. 3. Statistical significance of cell aggregation assay data. 
Significant values (* p < 0.05, ** p < 0.01, *** p < 0.001) are highlighted in 
bold. 
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Figure 4. 2. PAN causes a dose dependent decrease in cell aggregation. 
PAN causes a significant (*** p < 0.001 versus control) decrease in cell aggregation 
at every dose tested. 
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4.4. Can PAN treated detached NRK cells 

be recultured in vitro? 
As previously reported we found that PAN treatment caused a reduction 

in NRK cells ability to adhere both to each other and to the tissue culture 

plastic. We found that cells which detached from the surface of the tissue 

culture plates were still viable when examined by trypan blue exclusion 

(section 3.5).Therefore we developed a method of testing if these viable 

cells could recover and reattach to the tissue culture plastic. Briefly 

detached NRK cells were collected and resuspended in 0.5 ml of media. 

Equal cell numbers (7.5 x 104 cells/ml) at each PAN dose was added to 

duplicate non-coated and rat collagen coated 12 well plates and cultured 

as normal. The cells were examined every 24 hours to see if cells were 

able to reattach to the tissue culture plates and proliferate as normal. We 

included cells which had not detached as a positive control to further aid 

comparisons between control and PAN treated cells. 

We found that the cells at the PAN doses of OiJg/ml and 1 OiJg/ml treated 

for 48 hours reattached to the collagen coated plates and grew as a 

cluster of cells (Figure 4.3a and b), while very few of the cells reattached 

at 40j.Jg/ml and 801Jg/ml and those which did, appeared to attach and 

grow as a normal monolayer but displayed a very slow rate of 

proliferation (Figure 4.3c and d). 

We found that no cells reattached after exposure to PAN for 72 hours. 

We initially thought this was the result of more severe disruption to the 

cells adhesive properties from greater exposure to PAN but control non­

treated cells also did not attach indicating the loss of ability to adhere was 

not the result of PAN treatment. A possible cause was the higher PAN 

doses resulted in a lower number of viable cells and maybe the number 

of cells was too low, to observe a result. However this would not account 

for why the control cells did not reattach. 
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There was no difference in cell attachment between coated and non­

coated plates, cells attached and formed a monolayer on both, however 

cells appeared to proliferate faster on non-coated plates after PAN 

treatment of 101Jg/ml and 401Jg/ml (Figure 4.4). 

We also tested the growth characteristics of control cells, which hadn't 

been subjected to PAN treatment and which had not detached. These 

cells formed a confluent monolayer on both collagen coated and non­

coated plates (Figure 4.5). On the collagen coated plates the NRK cells 

formed a confluent monolayer and then started to form a second layer of 

cells on top of the original layer. 
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Figure 4. 3. Detached NRK cells can be recultured in vitro after PAN treatment. 
Phase contrast image (x20) of NRK cells after 48hrs a) Oj.Jgml b) 1 Oj.Jg/ml c) 40j.Jg/ml d) 80j.Jg/ml. 
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Figure 4. 4. Comparison of NRK cell growth after 72hrs on non-coated {a) and collagen coated {b) plates following 
401Jglml PAN treatment. 
Phase contrast image of NRK cells (x20) replated onto coated and non-coated collagen plates after exposure to 40~g/ml PAN 
treatment for 48hrs. Cells formed a monolayer on each plate, but the cells appeared to attach and replicate faster on the non­
coated plate. 



Figure 4. 5. Control NRK cells form a confluent monolayer on both (a) non-coated and (b) collagen coated plates. 
Phase contrast image of NRK (x20) cells after 48 hours. The cells appeared to be proliferating faster on the collagen coated 
plates. 
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4.5. Changes in Protein Expression of a3 

lntegrin 
Since the cell aggregation assay showed that PAN was causing a dose 

dependent decrease on the cell adhesive properties of NRK cells, we 

examined the adhesive properties further by determining the protein 

expression of a3 integrin. lt is believed that disruption to the cytoskeleton 

in nephrotic syndromes can be caused by a disruption or loss of integrin 

expression [126, 181, 223, 235, 236]. Therefore we hypothesize that PAN 

treated cells would show a dose dependent decrease in integrin protein 

expression. 

We found a reduction in a3 integrin protein expression by Western 

blotting at the mid (401Jg/ml) and high (801Jg/ml) PAN doses, (Figure 4.6). 

At 48 hours no integrin protein was detected at the mid and high doses, 

but at 72 hours there were very low levels of integrin protein expression 

at the mid and high doses of PAN. lt is possible that PAN causes an initial· 

decrease in expression which is followed by a period of recovery which 

results in increased expression. Kojima et al. [237] found decreased a3 

integrin expression four days after PAN induced nephrosis in male Wistar 

rats but expression levels returned to normal at day ten, supporting our 

finding of an initial decrease in expression followed by a subsequent 

return to normal levels. Similarly Smoyer et al. [122] found no statistically 

significant changes in a3 integrin protein expression except an increase 

in a3 integrin expression ten days after induced PAN nephrosis in male 

Sprague-Dawley rats. However Krishnamurti et al. [181] found a dose 

dependent reduction in integrin expression at both the mRNA and protein 

levels in PAN induced nephrosis of 56/10 A1, an immortalized human 

glomerular visceral epithelial cell line, at a PAN dose treatment of 

0.51Jg/ml and 51Jg/ml for 48 hours. However only one time point was 

examined and so any subsequent increase in expression would not have 

been observed. 
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Alternatively the contradictory results can possibly be explained by 

variations in each model. Smoyer [122] and Kojima [237] used a rat 

model of PAN induced nephrosis while Krishnamurti [181] used 56/10 A1, 

an immortalized human glomerular visceral epithelial cell line. There were 

also variations between the two rat models in rat species and PAN doses. 

We found no changes in a3 integrin distribution in NRK cells by 

immunofluorescence microscopy (Figure 4.7). a3 integrin localized 

diffusely within the NRK cells with slightly increased perinuclear staining 

at the mid (401-Jg/ml) and high (801-Jg/ml) PAN doses, but this was more 

likely to be the result of a change in cell shape and size as oppose to a 

genuine increase in expression. There was an increase in a3 integrin 

expression at 801-Jg/ml 48hr PAN treatment at the edge of the cell where 

the cell was detaching from the coverslip. Krishnamurti et al. [181] 

observed no changes in integrin expression by FACS analysis at a PAN 

dose of 0.51-Jg/ml for 48 hours but 51Jg/ml for 48 hours resulted in a 

significant reduction in cell-surface expression and overall cell expression 

of a3 and ~1 integrin in 56/10 A 1 cells, an immortalized human 

glomerular visceral epithelial cell line, as detected by FACS analysis and 

quantitative Western blotting. 

The variations we observed between our Western blot data and 

immunofluorescence data maybe explained by variations in antibody 

specificity. The antibody we used for immunofluorescence is raised 

against the extracellular domain of integrin a3 and is specific for rat. 

While the antibody used for Western blotting is designed against a region 

towards the N-terminus of mouse VLA-3a (very late antigen) and cross 

reacts with mouse, rat and dog. 
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Figure 4. 6. lntegrin expression is reduced in NRK cells following PAN treatment. 
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Figure 4.7. lntegrin localization in NRK cells is not affected by 
PAN treatment. 
NRK cells (p4) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the medium was replaced with medium containing PAN. The 
cells were fixed/permeabilized and stained with Ralph3.1 mAb to 
localize a3 integrin. The cells were then imaged by confocal 
microscopy at 519nm. Images are merged composite images of 
layered sections throughout the cell, magnification x200. All 
microscope and laser settings have been kept constant to allow an 
accurate comparison of staining intensity. Scale bar 10j..Jm. 
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Figure 4. 7. lntegrin localization in NRK cells is not affected by PAN treatment. 



4.6. Changes in Cell Localization of 

Laminin ~2 

Chapter 4 

We next examined the expression and distribution of laminin ~2, another 

protein involved in cell adhesion, and the effects of PAN treatment in 

permeabilized NRK cells. We used an antibody raised to the IV domain, 

the collagen binding domain, of laminin ~2. The antibody was specific for 

human and rat laminin ~2 and supplied by BD Biosciences, full 

experimental and antibody details are provided in section 2.5. 

Laminin ~2 localization was disrupted and protein expression levels were 

reduced. Laminin showed a predominantly perinuclear staining pattern in 

control cells. PAN treatment also resulted in the formation of laminin 

deposits at the cell periphery, (Figures 4.8 and 4.9). As reported earlier, 

(section 3.6), PAN treatment results in a loss in cell numbers. Control 

cells were most confluent and 801-Jg/ml were the least confluent, the 

formation of laminin deposits and the change in laminin expression, are 

not the result of changes in cell density as the deposits are formed after 

1 01-Jg/ml 48 hours PAN treatment when the cells are almost as confluent 

as control cells. lt is more likely that the changed laminin expression is 

the result of altered cell morphology. 

We were unsuccessful in our attempts to quantify the levels of laminin 

protein expression by Western blotting. Initially we tried a rat specific 

monoclonal laminin ~2 antibody supplied by The Hybridoma Collection. 

After numerous experiments proved unsuccessful we tested a second 

monoclonal laminin ~2 antibody supplied by BD Biosciences. Again we 

were unsuccessful in our attempts. 
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Figure 4.8. Laminin expression is disrupted in NRK cells after 
PAN treatment. Laminin expression is reduced and disrupted by 
PAN treatment. Laminin deposits form at the cell periphery, 
highlighted by arrows, after PAN treatment. 
NRK cells (p4) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the medium was replaced with medium containing PAN. The 
cells were fixed/permeabilized and stained with a mAb to localize 
laminin ~2. The cells were then imaged by confocal microscopy at 
519nm. Images are merged composite images of layered sections 
throughout the cell, magnification x150. All microscope and laser 
settings have been kept constant to allow an accurate comparison of 
staining intensity. Scale bar 201-Jm. 
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Figure 4. 9. Magnified view of the laminin 
deposits formed in NRK cells after PAN 
treatment (40J,~g/ml 72hrs). As a result of PAN 
treatment laminin expression was reduced from 
control levels and the localization changed from 
perinuclear staining to more diffuse staining 
throughout the cell with laminin deposits at the cell 
periphery. 
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4. 7. Conclusions 
There are conflicting data on the effect of PAN on integrin protein 

expression in both animal and cellular models. Krishnamurti et al. [181] 

hypothesized that "the mechanism of PAN-induced detachment involves 

the inhibition of expression of a3B1 integrin" and found that integrin 

expression was reduced at both the mRNA and protein levels in PAN 

induced nephrosis of 56/10 A 1 cells at a PAN dose treatment of 0.51-Jg/ml 

and 51-Jg/ml for 48 hours. They also showed that PAN resulted in 

decreased cellular content of a3B 1 integrin rather than redistribution from 

the cell surface to the cytoplasm. Our results supports the findings of 

Krishnamurti et al. [181] that the adhesive changes observed in kidney 

cells following PAN treatment may result from reduced integrin 

expression rather than a redistribution of integrin within the cell. 

Smoyer et al. [122] found no statistically significant changes in either a3 

integrin or B1 integrin protein expression except an increase in a3 integrin 

expression ten days after induced PAN (150mg/kg body weight) 

nephrosis in male Sprague-Dawley rats. Conversely Kojima et al. [237] 

found decreased a3 integrin expression four days after PAN (50mg/kg 

.. body weight) induced nephrosis in male Wistar rats but expression levels 

returned to normal at day ten. Luimula et al. [78] found a two-fold 

increase in B1 integrin protein expression at day three and ten after PAN 

(1 OOmg/kg body weight) induction in female Sprague-Dawley rats but no 

corresponding change in mRNA levels. 

The contradictory results can possibly be explained by variations in each 

model. Not only were there variations in animal species but also sex as 

well as variations in the PAN doses. Between these studies there are 

three-fold differences in the concentration of PAN. This is likely to have 

an effect on the severity of nephrosis and hence a subsequent effect on 

any proteins affected by nephrosis. 
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Our results showed decreased a3 integrin protein expression by Western 

blotting at mid (40~g/ml) and high (80~g/ml) doses of PAN, which caused 

the greatest level of cell detachment, and no changes in cellular 

distribution of integrin. This supports the findings of Krishnamurti et al. 

[181] and Kojima et al. [237] that PAN nephrosis results in reduced 

integrin expression which is responsible for the loss of cell adhesion. 

Recently another hypothesis has been proposed regarding the role of 

integrin in podocyte adhesion. Reiser et al. [260] proposed that a3 

integrin is not needed for podocytes to adhere to the GBM, but rather a3 

integrin is downregulated to increase podocyte attachment. The down­

regulation of a3 integrin results in prolonged adhesion and protects 

against podocyte detachment. Our results do not support this hypothesis. 

Detailed quantified results are required to confirm that reduced integrin 

expression prolongs podocyte adhesion. Based on our results and other 

published data showing reduced integrin expression after PAN treatment 

of kidney cells I believe that reduced integrin expression results in a loss 

of adhesion rather than prolonging adhesion. 

We found a change in the staining pattern of laminin ~2 in response to 

PAN nephrosis. With increasing PAN dose there was an increase in 

laminin deposits forming around the edge of the cells. Goers et al. [183] 

also reported similar patterns of change in laminin expression in response 

to puromycin aminonucleoside and adriamycin treatment of cultured 

glomerular epithelial cells. They found that the intercellular "pearl chain"­

like staining pattern of laminin was lost after 48 hours following treatment 

of 20~g/ml and 50~g/ml PAN or for 24 hours with 2~g/ml or 5~g/ml ADR. 

They also showed that ~1 integrin focal adhesion formation was disrupted 

by induced nephrosis. 

The work in this chapter provides further evidence that the cellular model 

I have established mimics PAN-induced nephrosis and that NRK cells 

adhesive properties are altered after PAN treatment. 
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In the following chapter we will investigate the effects of PAN on the 

expression and localization of two podocytes proteins, podoplanin and 

podocalyxin, which are believed to be potential biomarkers of nephrotic 

injury. 
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Chapter 5. 
PAN Mediated Effects on 

Podocyte Proteins 

138 



Chapter 5 

5.1.1ntroduction 
As previously discussed PAN-induced nephrosis specifically targets the 

podocytes and results in several key findings, including; changes in cell 

morphology, reduced adhesive ability and changes to podocyte proteins 

[18, 43, 78, 181-184, 204, 261]. We have shown changes in cell 

morphology and reduction in adhesive properties of NRK cells in previous 

chapters. In this chapter we will examine if PAN treatment affects the 

expression of podocyte proteins. 

The genes encoding several podocyte proteins have been identified as 

showing differential expression in in vivo rat models of PAN-induced 

nephrosis. GlaxoSmithKiine using Taqman real-time PCR identified two 

potential nephrotoxic biomarkers, podoplanin and podocalyxin, which 

were down-regulated in a rat model of PAN nephrosis. Podoplanin was 

also shown to be downregulated at the transcriptional mRNA level by 

70% and at the protein level by quantitative immunogold electron 

microscopy and Western blotting by Breiteneder-Geleff et al. [18] in the 

PAN nephrosis animal model. In PAN rats, foot process effacement and 

disorganization of the slit diaphragm is accompanied by a 70% reduction 

in the sialic acid composition of podocalyxin [43]. lt has also been 

proposed that functional or structural disruption to podocalyxin or to the 

associated cytoskeletal linker proteins, ezrin and NHERF2 could be a 

cause of glomerular disorders and serve as viable targets for future 

studies [44, 45]. 

Other podocyte specific proteins including nephrin [76-78], podocin [89], 

KIM-1 [198, 199] and GLEPP-1 [100, 101] have also been identified as 

being differentially expressed in the PAN nephrosis model and in 

nephrotic diseases including minimal change nephropathy and focal 

segmental glomerulosclerosis. 

Of these podocyte proteins nephrin and podocin have been extensively 

studied and characterized due to their involvement in several diseases, 

139 



Chapter 5 

including diabetic nephropathy, minimal change nephropathy, 

membranous nephropathy and focal segmental glomerulosclerosis. KIM-

1 has previously been identified as a potential biomarker of nephrotoxic 

injury [200]. GLEPP-1 has been proposed to be a sensitive marker of 

podocyte injury and therefore could be a useful clinical marker for 

glomerular injury [1 01 ]. Podoplanin and podocalyxin are the least well 

studied podocyte proteins and show substantial decreases in expression 

in the rat model of PAN nephrosis and as such we believe they are good 

candidates for new potential nephrotoxic biomarkers and as such we will 

focus our studies on their expression and localization in this chapter. 

Using several techniques, including Western blotting and 

immunofluorescence microscopy we analyzed the expression and 

localization of podoplanin and podocalyxin, to determine if their 

expression and localization is affected in NRK cells by PAN treatment. 
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5.2. Podoplanin Expression 
We have previously reported a decrease in mRNA expression of 

podoplanin in response to PAN treatment. Here we examine the 

corresponding protein expression by Western blotting. Briefly NRK cells 

were cultured on 90 mm tissue culture dishes as normal. Protein was 

extracted from each PAN dose overnight by acetone precipitation. Each 

protein sample was quantified by a Bradford Assay and equal volumes of 

1 01Jg of protein were subjected to electrophoresis. Proteins were 

transferred to a nitrocellulose membrane and incubated with podoplanin 

antibody overnight, subsequently washed and incubated with secondary 

antibody. Proteins were detected in the dark by ECL (see section 2.3 for 

full method). 

We only observed a reduction in podoplanin protein expression at the 

highest dose of 801-Jg/ml at both 48 and 72 hours, (Figure 5.1 ). This did 

not correspond to the level of mRNA reduction we had earlier observed or 

to the previously published results of Breiteneder-Geleff et al. [18] who 

observed a 70% reduction in expression for both mRNA and protein 

levels. The two bands observed at the theoretical size, 38 kDa, for 

podoplanin are believed to be the result of post-translational modification, 

most likely differing glycosylation or phosphorylation states [18]. 

We also examined the sub-cellular localization of podoplanin after sub­

cellular fractionation of control (OIJg/ml) and PAN treated (801-Jg/ml) NRK 

cells after 72 hours. Briefly equal NRK cell numbers were subjected to 

homogenisation followed by fractionation to yield membrane fractions, 

each fraction was resuspended in 1 001-JI HES buffer, 1 01JI of each fraction 

was loaded per well for Western blotting and probed with podoplanin. In 

control cells podoplanin was detected predominantly in the low density 

microsome (LDM) and endoplasmic reticulum/nuclei (ER/N) fractions with 

very low expression in the plasma membrane fraction. After PAN 

treatment no podoplanin protein was detected in the LDM and plasma 

membrane fractions and was greatly reduced in the endoplasmic 
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reticulum/nuclei fraction in comparison to control cells (Figure 5.2). 

Although this would suggest a change in localization of podoplanin we 

believe that this result is more representative of an overall reduction in 

protein expression rather than a translocation. We will confirm if this is the 

case by examining podoplanin expression by immunofluorescence using 

our cellular model of PAN nephrosis. 
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Podoplanin 38kDa 

G3PDH 40kDa 

Figure 5. 1. PAN results in decreased podoplanin protein expression as examined by Western blotting. 

1 Oj.Jg total protein was loaded per well. Podoplanin expression is greatly reduced at the highest (80j.Jg/ml) 
PAN dose only. 



Control 38kDa 

PAN • 38kDa 

Figure 5. 2. Sub-cellular fractionation of podoplanin after PAN (80J,Jg/ml 72hrs) 
treatment. Horn homogenate, HDM High density microsome, LDM Low density microsome, 
PM Plasma membrane, ER/N endoplasmic reticulum/nuclei fractions. An equal volume of 
sample, 1 01-JI , based on an equal number of cells was loaded per well , for expression level 
comparison. 

Podoplanin showed a shift in localization from control to PAN treated cells. Podoplanin 
expression was lost from the LDM fraction and greatly reduced in the ER/N fraction after 
PAN treatment. 
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5.3. Podoplanin Localization 
We examined the distribution of podoplanin in NRK cells after PAN 

treatment by immunolabelling followed by confocal microscopy. We 

examined both intracellular expression and the cell surface expression of 

podoplanin at all the PAN doses tested. 

We found that podoplanin was expressed both at the cell surface, as 

expected for a membrane glycoprotein but was also observed to be 

expressed throughout the cellular interior with expression concentrated at 

the perinuclear regions. Expression became more concentrated around 

the nucleus with PAN treatment (Figure 5.3). 

This pattern of expression can be seen more clearly when we examine 

cell surface expression in NRK cells that have not been permeabilized 

(Figure 5.4 ). More intense podoplanin expression is observed 

concentrated around the nucleus at 40~-Jg/ml and 80~-Jg/ml PAN treatment 

for 48 or 72 hours. 

Figures 5.5 and 5.6 show podoplanin expression throughout the cell of 

control (Figure 5.5.) and PAN (80~-Jg/ml 48hrs) treated (Figure 5.6.) NRK 

cells as visualized by immunofluorescence microscopy. In control cells 

there is clearly defined podoplanin staining at the perinuclear region 

(Figure 5.5. c-e). After PAN treatment this staining pattern is lost (Figure 

5.6. c-e). 
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Figure 5.3. Podoplanin localization changes in NRK cells in 
response to PAN treatment. Podoplanin showed a diffuse staining 
pattern throughout the cell with increased staining at the perinuclear 
region at the low (1 O~g/ml) dose of PAN. 
NRK cells (p4) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a mAb to localize 
podoplanin. The cells were then imaged by confocal microscopy at 
519nm. Images are merged composite images of layered sections 
throughout the cell, magnification x100. All microscope and laser 
settings have been kept constant to allow an accurate comparison of 
staining intensity. Scale bar 20~m. 
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Figure 5.4. Podoplanin expression in non-permeabilized NRK 
cells after PAN treatment. 
NRK cells (p7) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed and stained with a mAb to localize podoplanin. The cells 
were then imaged by confocal microscopy at 519nm. Images are 
merged composite images of layered sections throughout the cell, 
magnification x1 00. All microscope and laser settings have been kept 
constant to allow an accurate comparison of staining intensity. Scale 
bar 201Jm. 
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30 Image 

Figure 5. 5. Podoplanin localization in NRK cell layers. 
NRK cells (p4) were cultured for 48hrs in 0 -MEM + 10% FBS. The 
cells were fixed/permeabilized and stained with a mAb to localize 
podoplanin. The cells were then imaged by confocal microscopy at 
519nm. Images (a-g) are individual layers 0. 75~m thick throughout 
the cell , (h) is the composite image of these layers, magnification 
x200. All microscope and laser settings have been kept constant to 
allow an accurate comparison of staining intensity. Scale bar 20~m. 
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3D Image 

Figure 5. 6. Podoplanin localization in NRK cell layers after PAN 
treatment. 
NRK cells (p4) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing 801Jg/ml PAN 
and cultured for 48hrs. The cells were fixed/permeabilized and 
stained with a mAb to localize podoplanin. The cells were then 
imaged by confocal microscopy at 519nm. Images (a-g) are 
individual layers 0.751Jm thick throughout the cell , (h) is the 
composite image of these layers, magnification x200. All microscope 
and laser settings have been kept constant to allow an accurate 
comparison of staining intensity. Scale bar 201Jm. 
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5.4. Podocalyxin Expression 
We observed a dose-dependent decrease in podocalyxin expression at 

the mRNA level following PAN treatment. However like podoplanin we did 

not observe a corresponding reduction in protein expression. Briefly 

Western blotting was carried out on protein extracted from NRK cells after 

PAN treatment. Equal volumes of 101-Jg of protein from each sample as 

determined by a Bradford Assay were loaded into each well. Proteins 

were transferred to a nitrocellulose membrane and incubated with 

podocalyxin antibody overnight, subsequently washed and incubated with 

secondary antibody. Proteins were detected in the dark by ECL (see 

section 2.3 for full method). 

As with podoplanin we only observed a significant reduction in 

podocalyxin protein expression at the highest (801-Jg/ml) PAN dose at both 

48 and 72 hours (Figure 5. 7). The two bands observed at the theoretical 

size, 165 kDa, for podocalyxin are believed to be the result of post­

translational modifications, based on podocalyxin's structure probably 

differing glycosylation or sialylation states [33]. 

We also examined the localization of podocalyxin after sub-cellular 

fractionation of control (O!Jg/ml) and PAN treated (801-Jg/ml) cells after 72 

hours. Briefly equal NRK cell numbers were subjected to homogenisation 

followed by fractionation to yield membrane fractions, each fraction was 

re-suspended in 1 OO!JI HES buffer, 1 O!JI of each fraction was loaded per 

well for Western blotting and probed with a podocalyxin antibody. In 

control cells podocalyxin was detected predominantly in the endoplasmic 

reticulum/nuclei (ER/N) fractions and with some expression in the plasma 

membrane fraction. After PAN treatment no podocalyxin was detected in 

the plasma membrane fraction and levels were greatly reduced in the 

ER/Nuclei fraction and also detected increased expression in the LDM 

fraction compared to control cells (Figure 5.8). This would suggest that 

PAN alters the targeting of podocalyxin protein. We will confirm this result 
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by examining intracellular podocalyxin expression after PAN treatment by 

immunofluorescence within our cellular model. 
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Figure 5. 7. PAN results in decreased podocalyxin protein expression as examined by 
Western blotting. 

1 O~g total protein was loaded per well. Podocalyxin expression is greatly reduced after PAN 
treatment of 80~g/ml for 48hrs and almost completely lost after 72 hrs. 



Control 165kDa 

PAN 165kDa 

Figure 5. 8. Sub-cellular fractionation of podocalyxin after PAN (80~g/ml 72hrs) 
treatment. Horn homogenate, HDM High density microsome, LDM Low density 
microsome, PM Plasma membrane, ER/N endoplasmic reticulum/nuclei fractions. An 
equal volume of sample, 1 0~1. based on an equal number of cells was loaded per well , 
for a comparison of expression levels. 

Podocalyxin expression is reduced in the ERIN fraction and shows a shift in localization 
from the plasma membrane to the LDM fraction after PAN treatment. 
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5.5. Podocalyxin Localization 
We examined changes iri podocalyxin protein localization in NRK cells 

after PAN treatment using immunofluorescence microscopy. We 

examined both intracellular and ceii surface expression. 

Podocalyxin expression changed dramatically with changing cell 

morphology (Figure 5.9), showing progressively increased expression at 

48 hours with increasing PAN doses. As the cells develop filapodia at the 

highest PAN dose (80J.Jg/ml 72hrs) podocalyxin expression is greatly 

increased. Like podoplanin podocalyxin is concentrated around the 

nucleus. However podocalyxin does show a more granular pattern of 

expression. The granular pattern of expression is more clearly shown at 

the cell surface (Figure 5.1 0) and in the magnified image (Figure 5.11 ). 

The intracellular granular staining pattern led us to investigate if 

podocalyxin was expressed within vesicles in the cell and not just 

expressed at the cell surface as previously reported [28, 37, 40]. 

Figures 5.11 and 5.12 show podocalyxin expression throughout the cell of 

control (Figure 5.11) and PAN (80J.Jg/ml 48hrs) treated (Figure 5.12) NRK 

cells as visualized by immunofluorescence microscopy. In both control 

and PAN treated cells there is clearly defined podocalyxin staining within 

the golgi complex, but the staining is reduced after PAN treatment. This 

shows that PAN is not affecting podocalyxin localization but is reducing 

the levels of podocalyxin expression. This result also adds to our belief 

that changing cell morphology is responsible for the increased levels of 

podocalyxin observed after PAN treatment of 80J,Jg/ml for 72hrs rather 

than a direct result of PAN treatment. 

Podocalyxin is heavily sialylated and extensively 0-glycosylated, both 

processes occur when the protein passes through the golgi complex. 

0-glycosylation occurs in the golgi stack while the addition of sialic acid 

occurs in the trans-golgi network just prior to the protein being exported 

from the golgi complex. 
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Therefore we would expect to see strong podocalyxin expression within 

the golgi complex. However podocalyxin is a trans-membrane protein and 

so we would also expect to see strong podocalyxin expression at the cell 

surface. The fact we see only weak surface expression is most likely a 

result of using a fibroblast cell line which is phenotypically different from 

glomerular epithelial cells. However we would encounter a similar 

problem if we used a podocyte cell line as podocytes in culture do not 

express cell surface podocalyxin (262]. 
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Figure 5.9. Podocalyxin localization changes in NRK cells in 
response to PAN treatment. 
NRK cells (p4) were cultured for 48hrs' in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a mAb to localize 
podocalyxin. The cells were then imaged by confocal microscopy at 
519nm. Images are merged composite images of layered sections 
throughout the cell, magnification x1 00. All microscope and laser 
settings have been kept constant to allow an accurate comparison of 
staining intensity. Scale bar 201-Jm. 
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Figure 5. 10. Cell surface localization of podocalyxin in NRK cells after PAN treatment. 
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Figure 5.10. Cell surface localization of podocalyxin in NRK cells 
after PAN treatment. 
NRK cells (p7) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed and stained with a mAb to localize podocalyxin. The cells 
were then imaged by confocal microscopy at 519nm. Images are 
merged composite images of layered sections throughout the cell, 
magnification x100. All microscope and laser settings have been kept 
constant to allow an accurate comparison of staining intensity. Scale 
bar 20~m. 
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30 Image 
Figure 5. 11 . Podocalyxin localization in NRK cell layers. 
NRK cells (p4) were cultured for 48hrs in 0-MEM + 10% FBS. The 
cells were fixed/permeabilized and stained with a mAb to localize 
podocalyxin. The cells were then imaged by confocal microscopy at 
519nm. Images (a-h) are individual layers 0.75j.Jm thick throughout 
the cell , (i) is the composite image of these layers, magnification 
x200. All microscope and laser settings have been kept constant to 
allow an accurate comparison of staining intensity. Scale bar 20j.Jm. 
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30 Image 
Figure 5. 12. Podocalyxin localization in NRK cell layers after 
PAN treatment. 
NRK cells (p4) were cultured for 48hrs in 0 -MEM + 10% FBS. After 
48hrs the media was replaced with media containing 801-Jg/ml PAN 
and cultured for 48hrs. The cells were fixed/permeabilized and 
stained with a mAb to localize podocalyxin . The cells were then 
imaged by confocal microscopy at 519nm. Images (a-h) are 
individual layers 0.751-Jm thick throughout the cell , (i) is the composite 
image of these layers, magnification x200. All microscope and laser 
settings have been kept constant to allow an accurate comparison of 
staining intensity. Scale bar 201-Jm. 
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5.6. Go-localization Studies 
The granular intracellular staining pattern of podocalyxin suggested it was 

expressed within intracellular vesicles. We wanted to establish if this was 

the case and also wanted to examine any changes in possible vesicle 

trafficking within the cell in response to PAN treatment. Initially we 

needed to identify which vesicle podocalyxin was expressed in. To 

achieve this we carried out dual staining immunofluorescence microscopy 

using a selection of known characterized vesicle markers including, 

caveolin for clathrin coated vesicles, cellubrevin for recycling vesicles, 

EEA-1 for early endosomes, syntaxin7 for late endosomes and 

lysosomes and protein disulfide isomerase (PDI) for endoplasmic 

reticulum. In brief NRK cells were cultured, fixed and permeabilized as 

normal but were then exposed to a primary antibody mixture containing 

either podoplanin or podocalyxin and a vesicle marker. Subsequently the 

cells were exposed to both secondary antibodies. The cells were then 

visualized at both 519nm and 573nm wavelengths to observe the 

independent staining of each antibody. eo-localization was observed by 

using software to combine the two images (See Section 2.5.3). 

5.6.1. Podoplanin 

In each case podoplanin expression was as previously described, 

staining was in a perinuclear pattern with staining intensity increasing 

after PAN treatment. Caveolin showed staining around the cell periphery 

and syntaxin 7 staining was throughout the cell with a concentration at 

one end of the cell around the nucleus, neither showed any changes in 

localization or expression and neither eo-localized with podoplanin 

(results not shown). Therefore podoplanin is not expressed in clathrin 

coated vesicles or late endosomes. 

PDI showed increased intensity after 80f..Jgml PAN treatment for 48 hours 

but no change in localization was detected (Figure 5.13. b, e). There was 

no eo-localization observed at Of..lg/ml but due to the increased 
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concentration of perinuclear podoplanin and increased levels of PDI at 

80~g/ml there was a degree of overlapping expression (Figure 5.13. f). 

EEA-1 expression became more concentrated at the nucleus after PAN 

treatment (Figure 5.14. e). There was no eo-localization observed 

between podoplanin and EEA-1 (Figure 5.14. f). As there is no eo­

localization podoplanin is not present in early endosomes. 

Cellubrevin a marker for recycling vesicles showed diffuse staining 

throughout the cell with marginally increased staining around the nucleus 

(Figure 5.15. b). Cellubrevin staining was increased within the fila podia of 

cells after PAN treatment (Figure 5. 15. e). There was partial eo­

localization within these branching cells but not in normal cells (Figure 

5.15. f). 

165 



Podoplanin PDI Merged 

O~g/ml 

80~g/ml 

Figure 5. 13. Podoplanin (green) shows partial eo-localization (yellow) with PDI (red) in NRK cells 
after 48hrs PAN treatment. 
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Figure 5.13. Podoplanin (green) shows partial eo-localization 
(yellow) with PDI (red) in NRK cells after 48hrs PAN treatment. 
NRK cells (p6) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podoplanin (green) and a polyclonal Ab (PDI) to the ER (red). The 
cells were then imaged by confocal microscopy at 519nm and 573nm. 
(a, d) show podoplanin expression (b, e) show PDI expression and (c, 
f) show the eo-localization of podoplanin and PDI before and after 
PAN treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 20~m. 
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Podoplanin EEA-1 Merged 

Oj..Jg/ml 

80j..Jg/ml 

Figure 5. 14 Podoplanin (green) does not eo-localize (yellow) with EEA-1(red) in NRK cells after 72hrs PAN treatment. 
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Figure 5.14. Podoplanin (green) does not eo-localize (yellow) 
with EEA-1 (red) in NRK cells after 72hrs PAN treatment. 
NRK cells (p6) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podoplanin (green) and a polyclonal Ab (EEA-1) to the early 
endosomes (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podoplanin expression 
(b, e) show EEA-1 expression and (c, f) show the eo-localization of 
podoplanin and EEA-1 before and after PAN treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 20~m. 
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Podoplanin Cellubrevin Merged 

Oj..Jg/ml 

801-Jg/ml 

Figure 5. 15. Podoplanin (green) partially eo-localizes (yellow) with cellubrevin (red) after 72hrs PAN treatment. 
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Figure 5.15. Podoplanin (green) partially eo-localizes (yellow) 
with cellubrevin (red) in NRK cells after 72hrs PAN treatment. 
NRK cells (p6) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podoplanin (green) and a polyclonal Ab (cellubrevin) a marker of 
recycling vesicles (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podoplanin expression 
(b, e) show cellubrevin expression and (c, f) show the eo-localization 
of podoplanin and cellubrevin before and after PAN treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 201Jm. 
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5.6.2. Podocalyxin 

As described earlier podocalyxin localization was predominantly in the 

perinuclear region with some staining around the edges of the cell with 

increased staining at 80~g/ml as compared to non-treated cells. The 

staining pattern is very granular which suggests that podocalyxin is 

located within a vesicle within the cell. 

Like podoplanin, podocalyxin was discretely expressed from EEA-1, with 

no eo-localization observed in normal cells. Go-localization was observed 

in PAN treated cells which were detaching from the tissue culture surface 

(results not shown). There was also no eo-localization detected for 

podocalyxin and PDI. 

Caveolin was expressed around the cell periphery outlining the cells 

(Figure 5.16. b, e) with a slight increase in intensity after PAN treatment. 

Podocalyxin was localized throughout the cell in a granular pattern with 

increased expression after PAN treatment (Figure 5.16. d). No eo­

localization was observed at any PAN dose (Figure 5.16. c, f). 

Cellubrevin showed diffuse staining throughout the cell with marginally 

increased staining around the nucleus (Figure 5.17. b). After PAN 

treatment when the cells elongated and started to form filapodia 

cellubrevin expression was greatly increased (Figure 5.17. e). This led to 

almost complete eo-localization with podocalyxin (Figure 5.17. f). 

However this eo-localization was only observed when the cells were 

elongated with filapodia, which was only observed after 80~g/ml PAN 

treatment for 72 hours (Figure 5.18.). 

Syntaxin 7 staining was concentrated at one end of the nucleus and 

showed no changes in response to PAN treatment (Figure 5.19. b, e). 

There was some overlap between syntaxin 7 and podocalyxin but no 

signs of eo-localization (Figure 5.20. c, f). 
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Podocalyxin Caveolin Merged 

01-Jg/ml 

Figure 5. 16. Podocalxyin (green) does not eo-localize (yellow) with caveolin (red) in NRK cells after 72hrs PAN treatment. 
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Figure 5.16. Podocalxyin (green) does not eo-localize (yellow) 
with caveolin (red) in NRK cells after 72hrs PAN treatment. 
NRK cells (p5) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podocalyxin (green) and a polyclonal Ab (caveolin) a marker for 
clathrin coated vesicles (red). The cells were then imaged by 
confocal microscopy at 519nm and 573nm. (a, d) show podocalyxin 
expression (b, e) show caveolin expression and (c, f) show the eo­
localization of podocalyxin and caveolin before and after PAN 
treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 20J..1m. 
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Podocalyxin Cellubrevin Merged 

O~g/ml 

80~g/ml 

Figure 5. 17. Podocalyxin (green) eo-localizes (yellow) with cellubrevin (red) in NRK cells after 48hrs PAN treatment. 
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Figure 5.17. Podocalyxin (green) eo-localizes (yellow) with 
cellubrevin (red) in NRK cells after 48hrs PAN treatment. 
NRK cells (p5) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podocalyxin (green) and a polyclonal Ab (cellubrevin) a marker of 
recycling vesicles (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podocalyxin 
expression (b, e) show cellubrevin expression and (c, f) show the eo­
localization of podocalyxin and cellubrevin before and after PAN 
treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 201Jm. 
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Podocalyxin Cellubrevin Merged 

01-Jg/ml 

Figure 5. 18. Podocalyxin (green) eo-localizes (yellow) with cellubrevin (red) in NRK cells after 48hrs PAN treatment. 
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Figure 5.18. Podocalyxin (green) eo-localizes (yellow) with 
cellubrevin (red) in NRK cells after 48hrs PAN treatment. 
NRK cells (p5) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podocalyxin (green) and a polyclonal Ab (cellubrevin) a marker of 
recycling vesicles (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podocalyxin 
expression (b, e) show cellubrevin expression and (c, f) show the eo­
localization. of podocalyxin and cellubrevin before and after PAN 
treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x200. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 1 01-Jm. 
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Podocalyxin Syntaxin 7 Merged 

Oj..Jg/ml 

801-Jg/ml 

Figure 5. 19. Podocalyxin (green) shows partial eo-localization (yellow) with syntaxin7 (red) after 48hrs PAN treatment. 
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Figure 5.19. Podocalyxin (green) shows partial eo-localization 
(yellow) with syntaxin7 (red) in NRK cells after 48hrs PAN 
treatment. 
NRK cells (p5) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podocalyxin (green) and a polyclonal Ab (syntaxin7) a marker for late 
endosomes (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podocalyxin 
expression (b, e) show syntaxin7 expression and (c, f) show the eo­
localization of podocalyxin and syntaxin7 before and after PAN 
treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 20j..Jm. 
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Podocalyxin Syntaxin 7 Merged 

OjJg/ml 

80jJg/ml 

Figure 5. 20. Podocalyxin (green) shows partial eo-localization (yellow) with syntaxin7 (red) after 48hrs PAN treatment. 
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Figure 5.20. Podocalyxin (green) shows partial eo-localization 
(yellow) with syntaxin7 (red) in NRK cells after 48hrs PAN 
treatment. 
NRK cells (p5) were cultured for 48hrs in 0-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a monoclonal Ab to 
podocalyxin (green) and a polyclonal Ab (syntaxin7) a marker for late 
endosomes (red). The cells were then imaged by confocal 
microscopy at 519nm and 573nm. (a, d) show podocalyxin 
expression (b, e) show syntaxin7 expression and (c, f) show the eo­
localization of podocalyxin and syntaxin7 before and after PAN 
treatment. 

Images are merged composite images of layered sections throughout 
the cell magnification x200. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 1 O!Jm. 
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5.7. Conclusions 
In this chapter we have analyzed the effects of PAN treatment on the 

podocyte specific proteins podoplanin and podocalyxin, examining both 

expression and localization in an attempt to provide further evidence that 

these proteins have the potential to be biomarkers of nephrotoxicity. 

We only observed a significant reduction in podoplanin and podocalyxin 

protein expression at the highest dose of 801-Jg/ml for both 48 and 72 

hours. This did not correspond to the previously observed dose­

dependent reduction in mRNA expression. Or to the previously published 

70% reduction in podoplanin protein expression as determined by 

quantitative immunogold electron microscopy, immunoblotting and 

Northern blotting [18]. 

Podoplanin was found to be expressed both at the cell surface, as 

expected for a membrane glycoprotein, but also intracellularly. lt was 

found that podoplanin expression was lost from the low density 

microsome and plasma membrane fractions and greatly reduced in the 

endoplasmic reticulum/ nuclei fraction after PAN treatment 801-Jg/ml for 72 

hours. However rather than this being an indication of a shift in 

podoplanin localization as a result of PAN nephrosis, it is more likely to 

be a reflection of the greatly reduced podoplanin expression overall. This 

was confirmed by immunofluorescence microscopy. Podoplanin 

expression intensity levels were changed, with an increase in perinuclear 

staining, in response to PAN treatment but no shift in localization was 

observed. This was further confirmed by eo-localization studies with 

vesicle markers. Podoplanin did not eo-localize with any of the markers 

used and showed no shift in localization as a result of PAN treatment. 

Podocalyxin was found to be expressed at the cell surface and 

intracellularly with perinuclear staining. Podocalyxin showed a defined 

granular pattern of staining suggesting it was expressed within vesicles. 

Podocalyxin expression was greatly increased when NRK cells 
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developed filapodia at the highest PAN dose. Podocalyxin was found to 

be eo-localized with cellubrevin in branching NRK cells, which showed 

filapodia after the highest PAN treatment. There was no eo-localization in 

control cells or in cells not morphologically altered. This implies that in 

morphologically altered NRK cells podocalyxin is expressed in recycling 

vesicles. 

Podocalyxin also showed changes in its sub-cellular localization as 

determined by sub-cellular fractionation and Western blotting. 

Podocalyxin was lost completely from the plasma membrane fraction and 

greatly reduced in endoplasmic reticulum fraction but was increased in 

the low density microsome fraction. In contrast to podoplanin, the 

expression of podocalyxin is both increased and decreased within the 

profile and therefore it is more likely that this is a true representation of a 

shift in localization as a result of PAN nephrosis. 

In the next chapter we will analyze the effect PAN treatment has on the 

cytoskeletal structure of NRK cells. 
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Chapter 6. 
PAN Mediated Effects on the 

Cytoskeleton 
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6.1.1ntroduction 
Podocytes are the injury target of many glomerular diseases including 

minimal change nephropathy (MCN), chronic glomerulonephritis, focal 

segmental glomerulosclerosis (FSGS) and diabetes mellitus [6]. 

Regardless of the underlying disease the initial events of podocyte injury 

are characterized by either alterations in the molecular composition of the 

slit diaphragm (SO) without any visible morphological changes or by a 

visible reorganization of FP structure resulting in filtration slit fusion and 

apical displacement of the SO [145]. Based on this common response 

regardless of the cause of injury it has been suggested that there is a 

final common pathway which results in foot process effacement [263]. 

As previously mentioned it is critical for correct podocyte function that the 

structural integrity of the foot process is maintained. To date four major 

causes of foot process effacement have been identified; (1) changes in 

the SO complex and its organization by lipid rafts, (2) interference with 

the GBM or GBM-podocyte interaction, (3) interference with the 

negatively charged apical domain of podocytes and (4) reorganization of 

the actin cytoskeleton and its associated proteins. 

We have analyzed the first three causes in previous chapters, in this final 

chapter we will examine how PAN treatment affects the cytoskeletal 

organization of NRK cells, paying particular attention to how PAN affects 

podocalyxin's link to the cytoskeleton as this has been identified by 

Orlando et al. [44] and Takeda et al. [45] as a possible cause of 

glomerular disorders. 

The actin cytoskeleton ultimately determines and maintains the structure 

of the filtration slits. The actin cytoskeleton changes from co-ordinated 

stress fibers into a dense network with foot process effacement and loss 

of the filtration slits [264, 265]. Proteins regulating the actin cytoskeleton 

are of critical importance for sustained glomerular filtration [45, 265, 266]. 

A growing number of actin-associated proteins have been identified in 
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podocytes over the last decade, including a-actinin-4, synaptopodin and 

HSP27, demonstrating the importance of a dynamic actin cytoskeleton in 

maintaining a functioning intact filtration barrier [265]. 

Cytoskeleton rearrangement is crucial for tissue remodelling both during 

kidney development [267] and as a result of pathological conditions [264, 

268]. The major cytoskeleton components in foot processes consist of 

dense actin filament bundles, found predominantly at the central portion 

of the cytoplasm above the level of the slit diaphragm or cortical actin 

filament network at the cell periphery, sparse in the apical cytoplasm and 

dense in the basal cytoplasm [268]. 

a-actinin-4 

a-actinin-4 is an actin binding protein with a role in cross-linking actin 

filaments into bundles and anchoring actin to the plasma membrane. 

Induction of a-actinin-4 precedes foot process effacement in the 

experimental PAN nephrosis rat model [122]. a-actinin-4 has also been 

shown to be redistributed in nephrotic rats [121] and mutations in the 

gene encoding a-actinin-4, ACTN4, have been linked to the familial 

autosomal dominant form of FSGS [123, 269]. In the PAN nephrotic rat 

model, a-actinin-4 appears to be a target protein for PAN nephrotoxicity 

[270]. 

There is also growing evidence that alterations to the expression and/or 

localization of podocyte cytoskeletal proteins, including a-actinin-4, are 

responsible for the observed foot process effacement characteristic of 

nephrotic syndromes [122, 270]. 

a-actinin-4 can interact with components of the integrin complex at the 

GBM and with the ~-catenin molecule of the SO complex, hence a­

actinin-4 may link the two compartments of the FP together, thereby 

providing a molecular explanation for the observation that the actin 

cytoskeleton serves as the "common final pathway" organizing FP 
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effacement independent of the underlying cause of podocyte damage 

[145, 265]. 

Synaptopodin 

Synaptopodin is a novel actin binding protein which is highly expressed in 

podocytes [106, 271). Although synaptopodin was first identified in 1991 

and subsequently characterized in 1997 by Mundel et al. [1 07] the 

precise molecular role for synaptopodin has not been determined. 

Barisoni et al. and Kemeny et al. reported loss of synaptopodin 

expression in collapsing focal segmental glomerulosclerosis and HIV 

nephropathy [1 08] and the early stages of idiopathic focal segmental 

glomerulosclerosis [1 09). In a later study Srivastava et al. [11 0] showed 

the expression levels of synaptopodin decrease with increasing severity 

of nephrotic syndrome. Srivastava also proposed that changes in 

synaptopodin expression is a secondary effect that reflects the magnitude 

of damage and as such synaptopodin could be a potential marker to 

predict steroid response and podocyte damage in idiopathic nephrotic 

syndrome including minimal change disease (MCD) and focal segmental 

glomerulosclerosis (FSGS). 

Hsp27 

Small heat shock protein hsp27 is a stress protein with many reported 

functions including resistance to thermal and metabolic stress, signal 

transduction, protection from apoptosis and as a molecular chaperone, 

however it's most well characterized function is that of actin 

polymerization regulator. Hsp27 has been shown to be an actin­

associated protein [272] that inhibits actin polymerization both in vivo [273] 

and in vitro [27 4). Its inhibition of polymerization has been correlated to its 

phosphorylation state [275, 276]. 

Based on the increase in expression and phosphorylation of hsp27 

observed in rats with PAN induced foot process effacement [13] it has 

been hypothesized by Smoyer et al. [266] "that hsp27 via regulation of 
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the actin cytoskeleton has an important role in regulating both normal 

podocyte structure and the dramatic structural changes in podocytes that 

occur during nephrotic syndromes" [277]. 

Podocalyxin 

Podocalyxin associates with the actin cytoskeleton through an interaction 

with NHERF-2 and ezrin. Disruption of this linkage could be a cause of 

glomerular disorders and serve as viable targets for future studies [44, 

45]. 

NHERF-2 is a Na+/H+ exchange regulatory factor which is strongly 

expressed in the glomerulus [53]. Podocalyxin binds to the PDZ2 domain 

of NHERF-2 via its C-terminal PDZ binding domain DTHL. In turn 

NHERF-2 binds to the N-terminus of ezrin via its C-terminal ERM-binding 

domain. Ezrin links the complex to the actin cytoskeleton via its C­

terminal actin binding domain (Figure 6.1) [15, 45]. 
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F-Actin 

Figure 6. 1. The components of the podocalyxin-actin complex. 
Adapted from Fig.1 0 Takeda et al. [45] 
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Ezrin 

Ezrin is a member of the ezrin/radixin/moesin family more commonly 

known as the ERM family, which is a subfamily of the protein 4.1 

superfamily. ERM proteins have been classically defined in the literature 

as membrane-cytoskeleton linkers. Ezrin like moesin and radixin 

interacts with the actin cytoskeleton and the plasma membrane either 

directly or indirectly through the FERM domain [46]. Members of the ERM 

family are believed to be critical for cell-cell adhesion and microvilli 

formation and are characteristically located in dynamic structures that 

undergo changes in cell shape [47]. 

ERM proteins are maintained within the cytoplasm in an inactive 

conformation [49]. To generate the active conformation of ERM proteins 

requires the binding of PIP2 and the phosphorylation of a conserved 

threonine residue in the C-terminus ERM associated domain (C-ERMAD), 

T567 in the case of ezrin [50]. 

Although members of this family have very striking structural and 

functional similarities, there is a major difference in tissue distribution, 

ezrin is located primarily in epithelial cells while moesin primarily in 

endothelial cells. This difference suggests that these proteins may have 

adapted distinct functions for these specific cell types [47]. 

Ezrin is specifically expressed by podocytes in the glomerulus. Ezrin 

protein expression is altered in glomerular disease; there is a decrease in 

the puromycin aminonucleoside model of nephrosis but an increase in the 

passive Heymann model. However ezrin mRNA levels remained constant 

in both PAN and PHN glomeruli as determined by in situ hybridization 

[4 7]. Podocytes undergoing injury and/or proliferation showed strong 

ezrin expression. The observation that ezrin expression was highest in 

mitotic, polynucleated podocytes or podocytes completely or nearly 

detached from the GBM may reflect the need to adapt to injury. If 

adaptation fails podocytes may become completely detached round up 

and die. This maybe of relevance in glomerular disease, since loss of 
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podocytes is believed to lead to glomerulosclerosis and progressive renal 

failure [47, 145, 278]. 

In this chapter we will analyze the effects of PAN treatment on the 

cytoskeletal structure of NRK cells, and confirm the suggested link 

between podocalyxin and the actin cytoskeleton through ezrin. 
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6.2. Ezrin Expression 
Briefly NRK cells were cultured on 90 mm tissue culture dishes as normal. 

Protein was extracted from each PAN dose overnight by acetone 

precipitation. Each protein sample was quantified by a Bradford Assay 

and equal volumes of 1 Oj.Jg of protein were subjected to electrophoresis. 

Proteins were transferred to a nitrocellulose membrane and incubated 

with ezrin antibody overnight, subsequently washed and incubated with 

secondary antibody. Proteins were detected in the dark by ECL (see 

section 2.3 for full method). 

A dose dependent reduction in ezrin protein expression was observed at 

both 48 and 72 hours, (Figure 6.2), as has been reported in the 

puromycin aminonucleoside model of nephrosis by Hugo et al. [47]. At 72 

hours we observed slightly increased expression at 1 Oj.Jg/ml, which could 

either be caused by injured cells having greater ezrin expression or could 

be an artefact of the overall increased protein expression at this dose. 

We also examined the sub-cellular localization of ezrin after sub-cellular 

fractionation of control (Oj.Jg/ml) and PAN treated (80j.Jg/ml) cells after 72 

hours. Briefly equal NRK cell numbers were subjected to homogenisation 

followed by fractionation to yield membrane fractions, each fraction was 

re-suspended in 1 OOj.JI HES buffer, 1 Oj.JI of each fraction was loaded per 

well for Western blotting and probed with Ezrin as previously described. 

Ezrin was present in all fractions, with greatest expression in the low 

density microsome fraction. The same pattern of expression was evident 

in both control and PAN treated cells. In PAN treated cells overall 

expression was reduced significantly in all fractions except the PM 

fraction which remained constant. Ezrin expression was almost 

completely lost from the homogenate and high density microsome 

fractions (Figure 6.3). The overall distribution profile of ezrin was not 

altered in response to PAN treatment. 
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48hrs 

Ezrin 

G3PDH 

Figure 6. 2. Ezrin expression is reduced in NRK cells after PAN treatment, as 
determined by Western blotting. 

1 Ol-JQ total protein was loaded per well. Ezrin expression shows a dose-dependent 
reduction after PAN treatment. 

80kDa 

• 
40kDa 



Control 80k0a 

PAN 80k0a 

Figure 6. 3. Sub-cellular fractionation of ezrin after PAN (SO.,.g/ml 72hra) 
treabnent. HDM High density microsome, LDM Low density microsome, PM 
Plasma membrane, ER/N endoplasmic reticulum/nuclei fractions. 1 OIJI of each 
sample was loaded per well. 
The overall distribution profile of ezrin was not altered in response to PAN 
treatment. 
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6.3. Ezrin Localization 
Ezrin localization was examined in NRK cells by immunofluorescence 

microscopy at each PAN dose, as previously described. 

The localization of ezrin was unaffected by PAN treatment at the lowest 

dose ( 1 01-Jg/ml) at both 48 and 72 hours. What was noticeable was the 

increase in cell size at this dose, the cells have approximately doubled in 

size (Figure 6.4). The morphology of the NRK cells changes again at the 

mid (401-Jg/ml) and high (801-Jg/ml) PAN treatments. At 48 hours the cells 

become smaller and more elongated and at the points of elongation there 

is an increase in the staining of ezrin intensity (highlighted by arrows), this 

is probably due to the level of ezrin expression remaining constant but 

being expressed in a smaller cell area resulting in the increased intensity 

and not a true reflection of an increase in ezrin expression. After 401-Jg/ml 

PAN treatment for 72 hours the cells have remained larger in size than in 

control (01-Jgml) cells. 
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Figure 6.4. Ezrin localization is unchanged in NRK cells in response 
to PAN treatment. 
NRK cells (p4) were cultured for 48hrs in D-MEM + 10% FBS. After 48hrs 
the media was replaced with media containing PAN. The cells were 
fixed/permeabilized and stained with a mAb to localize ezrin. The cells 
were then imaged by confocal microscopy at 519nm. Images are merged 
composite images of layered sections throughout the cell, magnification 
x1 00. All microscope and laser settings have been kept constant to allow 
an accurate comparison of staining intensity. Scale bar 201-Jm. Arrows 
show increased ezrin staining at tips of cells. 
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6.4. Cytoskeletal changes as a result of 

PAN treatment. 
The actin cytoskeleton ultimately determines and maintains the structure 

of the filtration slits. The actin cytoskeleton has been shown to change 

from co-ordinated stress fibers into a dense network with foot process 

effacement and loss of the filtration slits in Masugi Nephritis [264] but 

cytoskeletal rearrangement is believed to be one of the major causes of 

foot process effacement in nephrotic syndromes [144, 145, 149, 265]. 

Proteins regulating the actin cytoskeleton are of critical importance for 

sustained glomerular filtration [45, 265, 266]. 

We used antibodies to actin and tubulin to visualize the effects of PAN 

treatment upon the cytoskeleton by immunofluorescence techniques. 

At control (01-Jg/ml) and low (101-Jg/ml) PAN doses after either 48 or 72 

hours, actin is visualized in a co-ordinated structure consisting of stress 

fibers which run longitudinally through the cells, this is especially easy to 

see after 72 hours (Figure 6.5). At mid (401-Jg/ml) and high (801-Jg/ml) 

doses PAN resulted in a reduced level of expression of actin and a 

change in the actin cytoskeletal architecture was clearly visible. At the 

mid and high PAN doses actin distribution changes from co-ordinated 

stress fibers to a dense network of fibers with no defined structure (Figure 

6.5). The disruption of the actin cytoskeleton is highlighted in Figure 6.6. 

There appears to be reduced staining of the longitudinal stress fibers and 

the actin staining appears weakly at the cell periphery. Therefore PAN 

treatment is causing a structural rearrangement of the actin cytoskeleton. 
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Chapter 6 

Figure 6.5. Actin expression is both reduced and disrupted in 
NRK cells in response to PAN treatment. 
NRK cells (p7) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a mAb to localize actin. 
The cells were then imaged by confocal microscopy at 519nm. 
Images are merged composite images of layered sections throughout 
the cell, magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 20~m. 
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Figure 6. 6. Enlarged image highlighting the disruption to actin caused by 
PAN treatment. 
NRK cells (p7) were cultured for 48hrs in 0-MEM + 10% FBS. After 48hrs the 
media was replaced with media containing 801Jg/ml PAN and cultured for 72hrs. 
The cells were fixed/permeabilized and stained with a mAb to localize actin. The 
cells were then imaged by confocal microscopy at 519nm. Images are merged 
composite images of layered sections throughout the cell , magnification x1 00. All 
microscope and laser settings have been kept constant to allow an accurate 
comparison of staining intensity. Scale bar 201Jm. 
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The microtubule cytoskeleton was also affected by PAN treatment but the 

results I obtained were more ambiguous. Overall the tubulin expression 

was reduced and altered by PAN treatment (Figure 6.7). Initially tubulin 

was expressed throughout the cell with a concentration of expression 

around the nucleus 01Jg/ml 48 hours. However there was a huge increase 

in expression at the low PAN (101-Jg/ml 48 hours) dose. This increase in 

expression was so large the microscope laser settings had to be reduced 

to visualize the expression of tubulin accurately. I can not account for this 

variation in staining expression, but the results were consistently obtained 

at this dose and time point. At 72 hours 1 01Jg/ml PAN treatment resulted 

in the lowest expression observed. At 401-Jg/ml and 801-Jg/ml tubulin 

expression was reduced from control levels and also shifted in expression 

from within the cell to the cell periphery. A similar pattern of shifting 

expression was observed when the cells were treated for 72 hours. With 

the cell filapodia at 801-Jg/ml showing the highest levels of expression (see 

Figure 6.7 arrows). 
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Chapter 6 

Figure 6.7. Tubulin localization is disrupted in NRK cells after 
PAN treatment. 
NRK cells (p5) were cultured for 48hrs in D-MEM + 10% FBS. After 
48hrs the media was replaced with media containing PAN. The cells 
were fixed/permeabilized and stained with a pAb to localize tubulin. 
The cells were then imaged by confocal microscopy at 51 9nm. 
Images are merged composite images of layered sections throughout 
the cell, magnification x1 00. All microscope and laser settings have 
been kept constant to allow an accurate comparison of staining 
intensity. Scale bar 201-Jm. 
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6.5. Conclusions 
Regardless of the underlying cause/disease the initial events of podocyte 

injury are consistently characterized by molecular alterations to the slit 

diaphragm or by a visible reorganization of the foot process structure 

[144-146, 149]. lt has been suggested that there is a common 

pathomechanism involved in podocyte injury. Identification of this 

mechanism is vital to the development of treatments which would be 

effective against all causes of podocyte damage. lt is believed that the 

cytoskeleton is a key target leading to podocyte injury pathways and as 

such the cytoskeleton is regarded as the target for treatment. 

Reorganization of the actin cytoskeleton has been shown to be one of the 

four major causes of foot process effacement [14, 144-146, 149]. 

However the other causes have also been linked to the cytoskeleton and 

so the cytoskeleton is a key step in podocyte injury either directly or 

indirectly. To this end we examined how the actin cytoskeleton is affected 

by PAN treatment in our cellular model which mimics PAN nephrosis. 

We examined the expression of ezrin, part of the multimeric protein 

complex which links podocalyxin to the actin cytoskeleton [15, 44]. The 

multimeric protein complex consisting of podocalyxin, NHERF2 and ezrin 

has previously been shown to be disrupted during podocyte injury [45). 

We have previously observed a reduction in podocalyxin protein 

expression in our cellular model of PAN nephrosis (Section 5.4). 

lt was found that ezrin showed a dose dependent decrease in protein 

expression by Western blotting at both 48 and 72 hours, corresponding to 

the previously published data by Hugo et al. [47]. No change was found in 

the sub-cellular distribution profile of ezrin. This appears to be in contrast 

to the distribution profile of podocalyxin which was predominantly 

expressed in vesicles with little expression in the plasma membrane 

fraction. 
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Ezrin expression became increased at the cell periphery and at filapodia 

at several PAN doses (401-Jg/ml and 801-Jg/ml). However this maybe the 

result of the change in cell morphology due to fewer numbers of cells 

being present as a result of a loss of cell adhesion rather than a direct 

response to PAN treatment. The membrane filapodia maybe an adaptive 

response to try to maintain cell - cell contacts to increase survival. 

Podocalyxin also showed increased expression when cells were 

elongating and branching and so ezrin and podocalyxin maybe showing a 

similar pattern of expression due to the linkage between them which has 

been proposed not to be disrupted in PAN nephrosis [45]. 

The actin cytoskeleton showed a dramatic change from an organized 

structured array of fibers running longitudinally through the cells in control 

and low (1 01-Jg/ml) PAN dosed cells to a more disorganized dense 

network of fibers at the mid (401-Jg/ml) and high (801-Jg/ml) PAN doses, 

which accounts for the greatly reduced staining observed for F-actin. This 

dramatic change in the cytoskeleton was first reported by Shirato et al. 

[264] in 1996 and last year by Oh et al. [265]. 

In conclusion podocalyxin and ezrin show similar patterns of expression, 

which differ from the expression of actin, which supports the model 

proposed by Takeda et al. [45] that the podocalyxin/NHERF2/ezrin 

complex remains intact and separates from the actin cytoskeleton during 

PAN nephrosis. However we were unable to prove this was the case as 

we were unable to perform dual labelling studies with podocalyxin and 

ezrin as they were both monoclonal antibodies. 

The dramatic change in the actin cytoskeleton structure suggest that 

reorganization of the actin cytoskeleton maybe a major cause of foot 

process effacement in PAN nephrosis. Although other models of 

nephrosis, such as the PHN rat model and Masugi nephritis are also 

characterized by a less severe disruption to the actin cytoskeleton [261, 

264, 265, 279, 280]. 
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There is indirect/circumstantial evidence that the actin cytoskeleton is 

involved either directly or indirectly in all causes of foot process 

effacement. Mundel et al. [145] and Oh et al. [265] have provided a 

molecular explanation of how the actin cytoskeleton serves as the 

"common final pathway" organizing FP effacement independent of the 

underlying cause of podocyte damage, based upon the ability of a­

actinin-4 being able to interact with both the integrin complex at the GBM 

and with components of the SD complex and hence be a link between the 

two compartments of the foot processes. Furthermore I don't believe it is 

possible to have a change in cell shape as substantial as the effacement 

of foot processes and the loss of slit diaphragms without the cytoskeleton 

being involved. 
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Chapter 7. 

Final Discussion 
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Overview 

The main aim of my thesis was to develop an in vivo cellular model which 

mimics PAN nephrosis and to use this model to identify and characterize 

any biomarkers of nephrotoxicity. I have successfully developed a cellular 

model which mimics PAN nephrosis, an experimental model for human 

minimal change nephropathy and have used this model to analyze the 

expression of two potential biomarkers of nephrosis, podoplanin and 

podocalyxin, and to identify other potential biomarkers of nephrosis. 

There have been very few studies based on in vitro models of PAN 

nephrosis and the majority of studies used isolated rat podocytes. In our 

study we used a rat kidney fibroblast (NRK) cell line. Our model combines 

the key observations of previous in vitro models [181-184] with that of the 

in vivo model used at GlaxoSmithkline. Our model exhibited the 

previously reported effects of PAN nephrosis in vitro; cells lost the ability 

to adhere to the tissue culture plastic but the cells which detached were 

found to be viable. We also observed a dose dependent reduction in 

gene expression of two podocyte specific genes, podoplanin and 

podocalyxin, but other genes expressed in the kidney were not affected. 

Although we did not examine ultrastructural changes in cell shape we did 

observe changes in cell morphology within our cellular model. These 

observations provide the evidence that we have successfully developed a 

cellular model which mimics PAN nephrosis. 

Using the cellular model, I examined the expression and distribution of 

two podocyte specific proteins, podoplanin and podocalyxin, potential 

nephrotoxic biomarkers. Podoplanin and podocalyxin were initially 

chosen as they had been marked as potential biomarkers after a 

GlaxoSmithkline nephrotoxicity study showed they were down-regulated 

in rats in response to PAN treatment. Our studies showed that podoplanin 

and podocalyxin were down-regulated at the mRNA level. Podoplanin 

was down-regulated in a dose-dependent manner after exposure to PAN 

for 72 hours while podocalyxin showed a dose-dependent decrease in 

expression after 48 and 72 hours. We also found a significant decrease in 
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protein expression for podoplanin and podocalyxin at the highest dose 

tested only. There were no significant changes in protein localization of 

podoplanin and podocalyxin as a result of PAN treatment as determined 

by immunofluorescence microscopy however podocalyxin did show a 

change in sub-cellular localization after the highest PAN (801Jg/ml 72hrs) 

treatment. 

Mechanisms of Nephrosis 

lt has been suggested that there is a common pathomechanism involved 

in podocyte injury. Identification of this mechanism is vital to the 

development of treatments which would be effective against all causes of 

podocyte damage. There is indirect evidence that the actin cytoskeleton 

is involved either directly or indirectly in all causes of foot process 

effacement. Mundel et al. [145] and Oh et al. [265] have provided a 

molecular explanation of how the actin cytoskeleton serves as the 

"common final pathway" organizing FP effacement independent of the 

underlying cause of podocyte damage, based upon the ability of a­

actinin-4 being able to interact with both the integrin complex at the GBM 

and with components of the SO complex and hence be a link between the 

two compartments of the foot processes. 

Our model of nephrosis highlighted dramatic changes in the cytoskeleton 

in response to PAN treatment, adding experimental results to the belief 

that cytoskeletal changes lead to PAN nephrosis. However this is just one 

form of nephrosis and so based on these results it is impossible to prove 

that the cytoskeleton is the "common final pathway" of nephrosis. I 

personally believe that the cytoskeleton is the final part of the pathways to 

nephrosis, as you can not have FP effacement without changing 

cytoskeletal dynamics. More studies are required to examine the 

organisation of the cytoskeleton in different models of nephrosis resulting 

from differing mechanisms to definitively show that cytoskeletal changes 

is the "common final pathway" and hence is the key to developing a 

universal treatment of nephrosis. 
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Biomarkers 

As for whether podoplanin and podocalyxin are nephrotoxic biomarkers, 

we must first consider what constitutes a biomarker. A biomarker has 

been defined by the Biomarkers Definitions Working Group as "a 

characteristic that is objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or 

pharmacological responses to a therapeutic intervention" [186]. Or put 

more simply a biomarker is a molecule that indicates an alteration in the 

physiological state in response to disease or drug treatment [281]. What 

also must be considered is how easy it is to monitor the biomarker, the 

most accurate biomarker is of no use if it can't be accessed in a non­

invasive manner [282]. Ideally the attributes of a biomarker as defined by 

the FDA [283] should include: 

1. Clinical relevance. The biomarker provides evidence to support 

its use, it is influenced by exposure to a drug which is believed to 

be related to the intended clinical effect. 

2. Sensitivity and specificity to treatment effects. The ability to 

detect the intended change in the target population via a given 

mechanism. 

3. Reliability. The ability to analytically measure the biomarker with 

acceptable accuracy, precision and reproducibility. 

4. Practicality. How invasive a protocol to obtain the required 

measurements. 

5. Simplicity. Can be utilized without the need for sophisticated 

equipment or skills. 

For the case of podoplanin I would have to say it is not an accurate 

biomarker of nephrotoxicity in that its responses to the severity of 

modelled nephrosis was not sufficiently dose-dependent. Podocalyxin 

could be used as genetic biomarker of nephrotoxicity as it showed a good 

range of dose-dependent expression in response to PAN treatment. 

However I'm not sure how non-invasive it is to monitor gene expression 
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and so it may fail at this hurdle to become a clinical biomarker, it could be 

used as a diagnostic biomarker of nephrosis in research. 

Kanno et al. [284] used an ELISA test to quantify the levels of urinary 

sediment podocalyxin to act as a reliable and more accurate marker, than 

podocyte number, for the estimation of severity of glomerular injury.The 

patients in this study were children suffering from a variety of glomerular 

diseases including minimal change nephrosis, membranous nephropathy 

and lgA nephropathy. As this study covered several diseases it confirms 

that podocalyxin has a use as a biomarker of glomerular disease. 

Overexpression of podocalyxin has been found to be tightly correlated 

with a poor outcome in a distinct subset of breast tumors and it has 

subsequently been shown that podocalyxin overexpression is a novel 

predictor of breast cancer [285]. 

Our study did highlight other potential research biomarkers of 

nephrotoxicity. lntegrin a3 was found to be down-regulated at the protein 

level at mid and high doses of PAN treatment. With further study the 

range of doses which illicit this response could be expanded to give a 

good dose-dependent range. Laminin ~2 and actin localization were 

found to be severely disrupted by PAN treatment but this is not a 

quantifiable marker of severity of nephrosis. A further characteristic which 

could be used as a marker of nephrotoxicity is the number of cells which 

loose their ability to adhere. lt has been proposed that podocyte excretion 

could be used as a marker to estimate severity of glomerular injury and a 

predictor of disease progression [207, 208]. Urine samples can be 

collected from patients and analysed to determine podocyte number, 

which would offer a non-invasive determination of the severity of 

glomerular injury, thereby acting as a useful clinical biomarker. 

This study only examined one form of nephrotic injury and so any 

potential biomarkers identified from this study would need to be examined 
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in other forms of nephrosis arising from different mechanisms e.g. 

diabetic nephrosis. 

There has been varying levels of success in identifying and developing 

biomarkers of renal disorders, including acute renal failure, chronic renal 

failure and polycystic kidney disease [187]. Kidney Injury Molecule 1 

(KIM-1) is to date the only nephrotoxic biomarker to be identified. KIM-1 

has been shown to be expressed in three models of nephrotoxicant­

induced kidney injury in rats [200], in addition to seeing increased 

expression, the KIM-1 ectodomain and fragments of the domain were 

found in the urine of each model. This indicated that injury resulted in 

shedding of the ectodomain which would allow for non-invasive 

monitoring of nephrotoxicity [200]. Therefore suggesting that KIM-1 is a 

general biomarker of nephrotoxic injury and maybe used for detection 

and monitoring of nephrotoxicants as well as for monitoring disease 

states [200]. 

There is a high level of interest in biomarkers within the pharmaceutical 

industry, which is faced with increasing research and development costs, 

and with the growing pressure to accelerate the rate of bringing new 

drugs to the market. The biggest cost in drug development in financial 

and time terms is the late point at which the compounds fail due to safety 

and efficacy concerns. This cost has been recently estimated to be a 

quarter of the overall cost of drug development at approximately $200 

million [282, 286]. The earlier these common biologically-driven failure 

modes can be detected, the more likely the cost of failure can be reduced 

[282]. In this context biomarkers show considerable promise for improving 

the efficiency of drug development [283]. The potential benefit of 

developing reliable and specific biomarkers that act as early predictors of 

efficacy or long-term toxicity is to allow earlier, more robust drug safety 

and efficacy measurements thereby reducing attrition of drugs during 

clinical phases of development and hence reduce the overall time, size 

and cost of drug development [281, 282, 287]. 
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The development of new pharmaceutical therapies can be improved with 

the application of biomarkers in the drug discovery phase and in 

preclinical and clinical safety assessment phases [288]. In drug discovery 

the compound screening process can benefit from biomarkers of toxicity. 

These biomarkers only require internal evaluation within the 

pharmaceutical company and have inherent intellectual property value for 

pharmaceutical companies [288]. In preclinical and clinical safety 

assessment, biomarkers as surrogate endpoints can reduce the time and 

costs involved in testing but biomarkers must conform to the strict US 

Food and Drug Administration (FDA) regulations. 

Pharmaceutical interest in using biomarkers as surrogate end-points to 

reduce sample size and duration of phase 3 clinical trials has been high. 

Actually very few biomarkers have ever attained the status of surrogate 

end-point for drug approval due to the very stringent regulations of 

biomarker validation. This fact reflects an underlying biological complexity 

that makes it unlikely that a biomarker will capture all of the desired and 

undesired effects of a treatment in a quantitatively predictive manner. A 

high level of stringency is required when a biomarker is used as a 

surrogate end-point for a clinical outcome and is used as the basis for 

regulatory approval of an application for a new drug. However this does 

not reduce the value of biomarkers in drug development; rather, they 

must be used in a more sophisticated manner [289]. Biomarkers need not 

be as rigorously validated in order to play other important roles in drug 

development, such as improving understanding of disease mechanisms, 

expediting the development of new drugs and addressing regulatory 

concerns [283]. 

In general biomarkers have a much wider range of uses than surrogate 

end-points. Highly innovative biomarkers used primarily for internal 

decisions early in drug development do not need to be as thoroughly 

evaluated as those selected as end-points in clinical trials [289]. 
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There is a general unawareness of the complexity involved in developing 

biomarkers for the marketplace [289). Before a biomarker can be 

introduced to the market, it must be successfully evaluated and validated, 

this involves costly extended clinical studies, and so the issues regarding 

medical need and potential return of investment must be considered [281). 

Typically validation of a biomarker takes into account; 

1. Sensitivity. Is the biomarker sensitive enough to reflect a 

meaningful change in important clinical end-points. 

2. Specificity. The extent to which the biomarker explains the 

changes of the clinical end-point. 

3. Reliability. Bioanalytical assessment of the biomarker in terms of 

accuracy, precision, reproducibility, range of use and variability. 

4. Probability of false positives. 

5. Probability of false negatives. 

6. A PK-PD (pharmacokinetic-pharmacodynamic) model is 

required. This establishes the correlation between changes in the 

biomarker and changes in drug exposure. 

There are also patient factors, (age, gender, race and genetics), disease 

factors (stage and progression) and drug factors (metabolism) that also 

need to be considered as they may modify treatment effects upon 

biomarkers but are not directly effected by the treatment [283]. 

Although biomarkers have the greatest value in early efficacy and safety 

evaluations, for example providing a basis for lead compound selection or 

dosing, as well as being substitutes for clinical responses. They also have 

applications as diagnostic tools for the identification of patients, and 

disease progression, as an indicator of disease prognosis and for 

predicting and monitoring the response to therapeutic intervention as 

surrogate end-points [186] [282]. 

216 



Chapter 7 

The use of genomic biomarkers could have an earlier impact on 

compound efficacy and an assessment of developability hence increasing 

the probability of success in the preclinical studies by identifying profiles 

characteristic of unwanted toxicity in early drug candidate screening [287]. 

Future Experiments 

As mentioned above the characteristics I have identified as potential 

biomarkers are only biomarkers for this model of PAN induced nephrosis, 

if they are to have a true value as biomarkers of nephrotoxicity they must 

be shown to be affected in all forms of nephrotic injury. Therefore ideally I 

would like to replicate theses experiments in other models of nephrotic 

injury particularly a model of diabetic nephropathy, as this is believed to 

have a different mechanism of nephrosis. Alternatively these studies 

could prove a common mechanism exists in all forms of nephrotic injury. 

lt would also be beneficial to examine a larger dose range of PAN to see 

at exactly what dose PAN is having an effect. The dose range I chose 

showed a spectrum of nephrotic characteristics from mild at the low 

( 1 O~g/ml) dose to severe at the high (80~g/ml) dose, but there is a lot of 

leeway in between these doses. These dose ranging points are very 

limited and I think a dose range of 5, 10, 20, 40, 60, 80, 1 OO~g/ml of PAN 

would give a more detailed picture of the effects of PAN. I did look briefly 

at a lower PAN dose of 5~g/ml after 24 and 48 hours exposure but found 

no change in cell morphology and very limited changes in podoplanin and 

podocalyxin expression, but I did not examine changes in protein 

expression or localization, which would be very interesting as several 

proteins showed increased expression after 10~g/ml PAN treatment. I 

believed that 80~g/ml was the maximal dose I could use to gain enough 

cell numbers to carryout my experiments, but this wasn't tested. 

Similarly I think a larger time course is required to give a true 

representation of the effects of PAN and to prove if as I suggested for 

integrin a3 expression that there is a recovery period between 48 and 72 
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hours. A time course of 24, 48, 60 and 72 hours would address the issue 

of recovery and show any earlier effects of PAN treatment. 

I would also like to use this model of PAN nephrosis to examine other 

podocyte proteins which have been shown to be differentially expressed 

in kidney diseases. Nephrin and podocin have both been identified as 

being genes responsible for forms of congenital nephrotic syndromes, my 

initial studies examining nephrin gene expression were inconclusive but 

suggested there was no change in nephrin expression. Podocin 

expression did show a dose dependent change in expression as a result 

of PAN treatment and this resulted in changes in protein localization in 

steroid-resistant nephrotic syndrome (SRNS). 

If I could change any part of the work I have done, I would have ideally 

used a rat podocyte cell line. This was not feasible as a podocyte cell line 

is not commercially available. In addition, I do not have the experience, 

time or facilities to generate a podocyte cell line from lab animals. But as 

it was it worked out as I was able to generate a model of nephrosis using 

NRK cells which may not be as accurate as using a podocyte cell line but 

these cells are easier to use and therefore could be more beneficial if it 

was to be developed into an assay to test for compound nephrotoxicity. I 

would also have liked to have given definitive quantified results for 

varying protein localization levels. 
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Appendix 1 

Mowiol Mountant: 2.4 g MOWIOL 4-88, 6 g Glycerol mixed well by 

stirring. Add 6ml of dH20, leave for 4 hours at room temp. Add 12ml 0.2 

M Tris pH 8.5 and heat to 50oc for 10 minutes. Centrifuge 5000g for 15 

minutes. Add OABCO to 2.5% and 5 1-11 OAP I 2 mg/ml stock to 1 Omls. 

Aliquot into sterile micofuge tubes and store at -20°C. 

HES Buffer: To 500ml dH20 add the following; 255 mM Sucrose, 20 mM 

HEPES and 1mM EOTA, pH to 7.4 and store at 4°C. 

Cell Lysis Buffer: 50 mM Tris.HCI pH 7.5, 150 mM NaCI, 1% NP40, 

0.25% Sodium deoxycholate and 1X Protease Inhibitor Cocktail. 

Protease Inhibitor Cocktail: 104 mM AEBSF, 80 !JM Aprotinin, 2 mM 

Leupeptin, 4 mM Bestatin, 1.5 mM Pepstatin A, 1.4 mM E-64 

Protein Sample Buffer: 8 M urea, 2 M Thiourea and 4% CHAPS 

2X Sample Buffer: 0.303 g Tris base, 0.40 g SOS, 6.2 mg OTT, 4ml 

Glycerol made up to 20ml with dH20, pH to 6.8. Add solid bromophenol 

blue until solution is dark blue in colour. Filter through Whatman no.1 

paper. Aliquot into sterile micofuge tubes and store at -20°C. 

Transfer Buffer: 3.03 g Tris base, 14.41 g Glycine, 200ml Methanol in 1 

L dH20, pH to 9.2 

Block Buffer: 5% milk, 0.2% Tween20 in PBS 

Incubation Buffer: 2.5% milk in PBS 

Wash Buffer: 2.5% milk, 0.2% Tween20 in PBS 
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Appendix 2 
Sequence Comparison OJ,~g/ml vs 1 OJ,~g/ml Podocin + 

strand 

OJJg/ml 
10Jjg/ml 

OJJg/ml 
10Jjg/ml 

OJJglml 
10JJg/ml 

ccatatnaaoccgtatccctgc agcgaggcattcggtccccocg 
ccatataaagccgtatccctg~agcgaggcatLcggtccccacg 

cccaggcccaccctgcccttgttgtttgccttttgagtgtatca 
cccaggcccaccctgcccttgttgtttgccttttgagtgtatca 

'' tgtcacaagt atggacacacgcatgagaacacagtgaaatggca 
tgtcacaag- atggacacacgcatgagaacacagtgaaatggca 

gagaagacatccagccacacaagtgggtcgtctcatcattca 
gagaagacatccagccacacaagtgggtcgtctcatcattca 

Sequence Comparison O~g/ml vs 1 O~g/ml Podocin ­

strand 

OJJg/ml 
10Jjg/ml 

OJJg/ml 
10J,~g/ml 

OJJg/ml 
10JJg/ml 

gcnggatgtcttctcti ccatrtcactqtgttctcatgcgtgtgt 
gcnggatgtcttctct~ccatttcactgtgttctcatgcgtgtgt 

ccatcttgtgacatgatacactcaaaaggcaaacaacaagggcag 
ccatcttgtga catgata cactcaaaaggcaaacaacaagggcag 

ggtgggcctgggcgtggggaccgaatgcctcgctcagggatacgg 
ggtgggcctgggcgtggggaccgaatgcctcgctcagggatacgg 

ctttatatggtgtattcccattactcttgtccactcgccca 
ctttatatggtgtattcccattactcttgcccactcgccca 

Differences between the two podocin sequences after PAN treatment for 

48 hours are htghlighted 
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Appendix 

Sequence Alignment of published Podocin sequence with 
the sequences we obtained after PAN treatment. 

Podocin 
OJ,~g/ml 

10J,Jg/ml 

Podocin 
OJ,Jg/ml 
10J,Jg/ml 

Podocin 
OJ,Jg/ml 
10J,Jg/ml 

Podocin 
OJ,Jg/ml 
10J,Jg/ml 

ccatataaagccgtatccctg- agcgaggcattcggtccccacg 
ccatataaagccgtatccctgcagcgaggcattcggtccccacg 
ccatataaagccgtatccctg- agcgaggcattcggtccccacg 

cccaggcccaccctgcccttgt tgtttgccttttgagtgtatca 
cccaggcccaccctgcccttgttgtttgccttttgagtgtatca 
cccaggcccaccctgcccttgttgtttgccttttgagtgtatca 

,. 
tgtcacaag-atggacacagcatgagaac~cagtgaaatggca 

tgtcacaagtatggacacagcatgagaaca cagtgaaatggca 
tgtcacaagtatggacacagcatgagaaca cagtgaaatggca 

gagaagacatccagccacacaagtgggtcgtctcatcattca 
gagaagacatccagccacacaagtgggtcgtctcatcattca 
gagaagacatccagccacacaagtgggtcgtctcatcattca 

A consistent G- A change was observed between our PCR products for 

podocin and the published sequence (AY039651) for rat podocin. 
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