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ABSTRACT 

This thesis aims at presenting results and remarks concerning the study of 

subvarieties of the projective space 1281 associated to a smooth projective curve 

C of genus at least 3 and its connections to the moduli space SUc(2) of rank 2 

semi-stable vector bundles with trivial determinant. 

In the first part of the thesis, I present a review of Narasimhan and Ramanan's 

embedding of SUc(2) in 1281 for non-hyperelliptic curves of genus 3 ([N-R2]). 

In particular, I clarify some of the points of their construction (2.3.6) and give 

complete proofs of lemma 5.1 and lemma 5.2 (see 2.3.4 and 2.3.17). Moreover 

in section 2.3 I show that lemma 5.4 of [N-R2] is false, providing an extensive 

counterexample (2.4.3). 

In the second part, I discuss the Abel-Jacobi stratification of 1281 for non

hyperelliptic curves of genus at least 3 as introduced in [0-P], which generalises 

classical subvarieties of 1281 such as the Kummer variety. I show that the top 

element of these stratifications is always a hypersurface and compute its degree 

(3.2.5), then I provide insight into the characterisation of the general element 

of the stratification (§3.3). 
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Chapter 1 

Introduction 

The aim of this thesis is to present some results and remarks concerning the 

study of subvarieties of the projective space J28J and the moduli space SUc(2) 

associated to a non-hyperelliptic curve C of genus at least 3. 

This chapter presents all those notions which are essential to the development 

of this thesis, such as Jacobians, the moduli space SU c(2) and extension spaces. 

The description is by no means exhaustive and has, as its main objective, that 

of providing definitions and results, while references are given for proofs and 

further reading. Sections 1.4 and 1.5 are the only ones where more proofs and 

details are provided, since they will often be referred to in the successive chap

ters. In particular, section 1.5 is the key to understanding the counterexample 

of §2.3. 

Chapter 2 is the central part of the thesis. It presents a very detailed review of 

[N-R2] of Narasimhan and Ramanan, in particular the proof that the natural 

map 6 from SUc(2) to J28J is an embedding for non-hyperelliptic curves of 

genus 3. The motivation for this is twofold. On the one hand, the original 

paper is in many parts unclear and sketchy, many steps of the proof are either 

only hinted or not given at all and the central statement, i.e., lemma 5.2 goes 

1 



Introduction 2 

unproved. Hence I have striven to produce a coherent interpretation of section 

5 of [N-R2]. On the other hand, I show that lemma 5.4 of [N-R2] is false and 

produce a counterexample (see proposition 2.4.3). In more detail, I show that 

there exist 64 cones over some Veronese surfaces in SU c ( 2) of vector bundles 

that fail to satisfy the above mentioned lemma. 

Chapter 3 presents the construction of the Abel-Jacobi stratification of 1281 

for curves of genus at least 3, as first done by Oxbury and Pauly in [0-P]. 

This construction partially mirrors and formalises the one used by N arasimhan 

and Ramanan in [N-R2]. In this section I prove that the top element of every 

Abel-Jacobi stratification for non-hyperelliptic curves of genus at least 4 is a 

hypersurface and compute its degree (see proposition 3.2.5). 1\tloreover, recent 

results by Pareschi and Popa, see [Pa-Po], allow me to make some remarks on 

how to study the general element of the stratification. 

Finally, the Appendix presents some results concerning the intersection rings of 

the d-th symmetric product of a given curve, Cd, and the product variety Cd x Jd. 

In particular, I consider a generalisation of the gamma class, 1 E H 2 
( C x .!, Z) 

(see [ACGH], p.335) and show how to compute integrals that contain powers of 

it. Moreover, I construct a Poincare line bundle parametrising line bundles of 

Cd induced by line bundles on the curve C and compute its first Chern class. 

These computations are interesting in their own right and are also used in the 

course of chapter 3 to give some explicit results and examples. 

1.1 Basic notions and notation 

In the whole thesis, the underlying field will always be C, though in many cases 

any algebraically closed field of characteristic zero would do. In general, for 

any given C-vector space V, V* denotes the dual and IP'V the space of one-
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dimensional subspaces of 11. 

C will always be a smooth projective curve of genus g ~ 2, although the main 

definitions hold for curves of any genus. Knowledge of basic properties of sheaves 

and vector bundles on algebraic curves is assumed throughout the thesis, in 

particular we shall make the usual identification of invertible sheaves with line 

bundles and of locally free sheaves with vector bundles. We will denote by 

Oc the trivial line bundle, i.e., the sheaf of regular functions on C, while Kc 

will be the canonical line bundle, i.e., the dual of the tangent bundle of C. 

\iVhen no confusion can arise, we will write 0 and J( for Oc and Kc. A theta 

characteristic will be a line bundle K, over C which is a square root of the 

canonical line bundle, i.e., /'\, 2 = K. If C is a curve of genus g the set of all theta 

characteristics, !?(C), consists of 229 elements (see [L-B], p.331), as they are in 

one to one correspondence with the sets of two-torsion points of Pic0 (C). 

For any given vector bundle E on a variety X we denote by H 0 (X, E) the space 

of global sections and by h0 (X, E) its complex dimension. Similar notions hold 

for sheaves and higher cohomology spaces. Moreover, for a given line bundle L 

on X we shall write ILl to denote the projective space IPH0 (.X, L). Ifs is a non 

zero global section of L and Ds is the corresponding divisor, then we identify 

ILl with the linear series IDsl· 

Finally, when tensoring line bundles we shall often drop the tensor product 

symbol, in particular for any line bundle~ on C and divisor D of C, ~(D) will 

indicate the tensor product ~ 0 O(D). 

1.1.1 The Jacobian 

A principally polarised abelian variety is a pair consisting of a complex torus 

A of dimension g, the abelian variety, together with the (first) Chern class TJ of 

an ample line bundle e on A such that h0 (A, 8) = ? f4 TJ9 = 1, the principal 
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polarisation. Thus a principal polarisation 17 on A is the fundamental class of 

a divisor, which we still denote e and call theta divisor. This divisor is unique 

up to translation and can be explicitly constructed (see [ACGH], chapter 1, §4 

for this and the other relevant notions). 

A smooth projective curve C gives rise to a canonical principally polarised 

abelian variety, the Jacobian, where the abelian variety is defined as J( C) = 

H 0 (C,K)*/H1(C,7l), while the theta divisor e(C) is defined as the zero set of 

Riemann's theta function () (see [ACGH], p.23). From the definition it is also 

clear that J (C) is a g-dimensional variety, since H 0 ( C, K) has dimension g. 

For all relevant notions on Jacobians the main references are Arbarello et al. 

([ACGH]) and Mumforcl ([M1], lecture Ill). 

For every non negative integer d one denotes by Jd the Picard variety Pied( C) 

of degree d line bundles over C identified with the J acobian J (C) (see [ ACG H], 

p.19 and recall that the isomorphism depends on the choice of a point of C). For 

each positive integer d, vVd is the image in Jl1 of the d-fold symmetric product 

of C, Cd, via the Abel-Jacobi map ud : Cd ~ Jd given by D ~-----+ O(D), 

i.e., vVd is the set of degree d line bundles over C with non zero global sections 

(see [M1], lecture Ill, pp.261-164 for low genus examples). When d = g- 1, 

the divisor e is identified with vV9 _ 1 , the divisor of degree g - 1 line bundles 

with non zero global sections. This is the identification which we will take as 

natural, J9- 1 and e = lV9 _ 1. Another isomorphism which will often be used 

is that of Vic0 (C) with J(C), in which case the theta divisor is denoted by 

eo. It is important to notice that e and eo are non-canonically isomorphic, 

an isomorphism being given by any choice of a theta characteristic r;, E 19( C), 

eo= e~~: = {17 E } 0 
: h0 ('r7 ® r;,) > 0}, where for given~ E Jd the convention is 

to denote bye~ the divisor in Jg-t-d with support {'17 : h0 (C, 17 ® 0 > 0}. 
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The divisor e is ample, yet since h0 (J, e) = 1 not much information on C can be 

gained by studying the associated linear map rP1e1· The divisor ne is very ample 

for n ~ 3 and, hence, the associated linear map rPin81 is an embedding of J in the 

projective space lnel* (see [K], p.16). vVe will focus our attention on the base

point-free linear series 12e1 (see [K], p.15). It is worth remembering that this 

system has been particularly studied in connection to the Schottky problem, i.e., 

the problem of characterising the g-dimensional principally polarised abelian 

varieties that arise as Jacobians of curves of genus g. For further notions on the 

Schottky problem we refer to [M1 J (lecture IV and the Survey) with its very 

exhaustive list of publications on this problem by Beauville, Debarre, Donagi, 

van Geemen, vVelters and many others (pp.299-304). 

Note that 12e1 has dimension 29 - 1 (see [K], p.27) so that r;b1 2e1 is a regular 

map to IP29 
-t. Finally, to keep in line with conventions we will use the symbol 

[, to denote the line bundle 2e0 and I[, I for the corresponding linear series. 

Remark 1.1.1. It is possible to describe some of the divisors in the linear 

series 12e1 and 1£1 explicitly. For each ( E J9- 1 one has e( + eK(-1 E 1£1 and 

similarly for each 7] E 1°, 8,1 + e11 -1 E 1281. 

The first part of the statement is just a consequence of the Theorem of the 

Square (see [K], p.14), that is, eo+ eo is linearly equivalent to e~ + e~-~ for 

any~ E 1°. In particular, if eo= 8~~: and~= ( 0 t£-
1 one obtains the required 

result. As for the second part, this is proved by translating by the given theta 

characteristic. 

From here onward, we will call split 2e divisors the divisors in 12e1 of the above 

form. As remarked above, e and eo are non-canonically isomorphic, yet the 

following holds. 

Lemma 1.1.2. Wirtinger Duality (see {M2], pp.335-336) There is a canonical 

isomorphism between 12e1 and 1£1*. 
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Proof. Consider the map 

{J : J9-l X jO ------+ ]9-1 X ]9-1 

and use the symbol I:8J for the tensor product of pull-backs of line bundles living 

on the "factor" varieties J9- 1 and ] 0
. One can see that {3* ( 8 I:8J 8) = 28 I:8J £, as 

if one denotes V= 8 I:8J 8 then, for 17 E 1°, {J*(V)I 1 g-1x{11} = 8 11 + 8 77-1 rv 28 

and similarly, for ~ E ]9-
1

, {J*(V)i{OxJo = 8( + 8K(-1 rv .C by the previous 

remark. 

Let 0 be a generator of H 0 
(19-

1
, 8) and denote by {si} and { t j} two bases 

of H 0 (J9- 1 , 28) and H 0 (J0 , .C) respectively. Then the above equality can be 

written as 

for a matrix { ci,j} of coefficients. In turn, this says that for any pair of line 

bundles (C 17) E JY- 1 x 1° one has 

0(~1J)0(~1J- 1 ) = Lci,jsi(~) 0tj(1J). (1.1.1) 
i,j 

Recall (see [M3], §1) that one can associate a group, denoted H(.C), to the line 

bundle £: H(.C) is the set of points X E 1° such that r;.c ~ .C, where Tx 

denotes the translation by x. The group H(.C) has cardinality 229 (see [M3], 

p.289) and can be identified with the group Jg of 2-torsion points of ] 0 (see 

[M3], proposition 4, p.310). One can then define a set the elements of which 

are pairs (x, cp) where x E H(.C) and cp is an isomorphism of .C with r;.c. This 

is denoted Q(.C) and it can be shown to be a group. The map that "forgets" 

the isomorphism induces a short exact sequence 

0 ------+ C* ------+ Q (.C) ------+ H ( .C ) ------+ 0 

where one can verify that the kernel is C* since it is the group of automorphisms 

of .C (see [M3], p.290). The group Q(.C) acts on the vector space H0 (J0
, .C) in 
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the following way: let z = (x, cp) E 9(£), then one defines Uz : H0(J0, £) ~ 

H 0 (J0 ,£) by Uz(s) = r;(cfJ(s)) for all sections sE H 0 (J0 ,£) (see [M3], p.295). 

Note that in this action C* acts by its natural character: if o: E C* then the 

action is multiplication by o:. There is a unique irreducible representation of 

9(£) in which C* acts in this way ([M3], theorem 1, p.295) and it is precisely 

the one described above (see [M3], theorem 2, p.297). 

A similar construction and equivalent results can also be applied to 28 and the 

vector space H 0 (J9- 1, 28), where again H(28) can be identified with Jg since 

the translation maps on J9- 1 are given by tensoring with points of J 0
. 

The construction can be repeated once more for the product abelian variety 

J9- 1 x J 0 and the line bundle 28 ~ £, and one obtains a short exact sequence 

0 ~ C* ~ 9(28 ~ £) ~ H(28 ~ £) ~ 0 

as well as an action of 9(28~£) on H 0 (J9- 1 x J 0 , 28~£), which by the Kiinneth 

decomposition can be thought of as H 0 (J9- 1
, 28) ® H 0 (J0

, £). Considering 

again the map f3 defined at the outset of this proof, this is a map of degree 

229 ([M3], p.322) and its kernel J( can be naturally identified with the set of 

2-torsion points of J 0
• 

By the general theory described by Mumford ([M3], p.290), K can be thought of 

as a proper subgroup of H(28 ~ £) and can hence be lifted to a subgroup K of 

9(28 ~ £). Then K acts on H 0 (J9- 1
, 28) ® H 0 (J0

, £) with the action induced 

by 9(28 ~ £) and one can note that {3*(() ® 0) is invariant under the action of 

K. Moreover, since the action of K restricts to that of 9(28) on H 0 (J9-
1

, 28) 

and is hence irreducible (and similarly on H0 (J0
, £)), {3*(() ® 0) cannot lie in 

any proper subspace i\1 ® i\2 of H 0 (J9- 1, 28) ® H 0 (J0
, £). This implies that 

det { ci,j} f. 0 and, hence, that { ci,j} defines a non-degenerate bilinear form 

H 0 (Jg-I, 28) ® H0 (J0 , £) --t C, i.e., H0 (J9- 1, 28) is canonically isomorphic to 

D 
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Remark 1.1.3. Note that equation (1.1.1) implies that ~ E J9- 1 belongs to 

the support of 8,1 + 81)-l if and only if it lies in the zero set of Ei,j ci,j t1 ( 17) si ( ·). 

1.1.2 The Kummer map 

The Kummer map is defined as the map J 0 ---+ 1281 such that 17 ~ 81) + 81)-l. 

It is a regular map whose quotient by the natural involution 1- : rJ ~ TJ- 1 is an 

embedding (see [L-B], p.lOl, theorem 8.2). 

It is also customary to consider a map from J 0 to I .Cl* induced by the base-point

free linear system I.CI, '~1\q : J 0 ----+ I.CI*. This, again, can be composed with 

the natural involution 1- on J 0 to give an embedding of ] 0 
/" in I .Cl*. vVirtinger 

duality allows one to identify these maps. 

Corollary 1.1.4. (see [M2}, pp. 335-336) The following diagmm is commutative 

Proof. By using notation and construction from the proof of vVirtinger duality 

(see lemma 1.1.2), it is known that 

hence, what one needs to show is that the set of global sections of .C which 

are zero at 17, i.e., I.C-1)1 is dual to 8,1 + 81)-l. Yet note that, by remark 1.1.3, 

~ E J9- 1 lies in the support of 81) + 81]-l if and only if Ei,j Ci,jtj(ry)si(O = 0, 

i.e., if and only if Ei,j ci,j si(Ot1(-) is a section of .C which vanishes at TJ. Hence 

the duality is proved. 0 

In particular this lemma explicitly describes Wirtinger duality for split 28 eh

visors, i.e., divisors of the form 8,1 + 8,1-1 with '17 E ] 0
. 
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Note that in the following we may use the expression Kummer map to indicate 

either of the above maps on J 0
• Moreover similar results hold for p-l, its 

natural map to 1281* and an analogous Kurnmer map to ILl 

It is a well known result (see [L-B], chapter 10, §3) that for curves of genus 2, 

this map embeds J / i as a quartic in JP3 which has 16 nodes and is Heisenberg 

invariant, the Kummer surface. 

1.2 SUc(2) and SUc(2, K) 

Recall that a vector bundle E of rk n on a curve C of genus g 2:: 2 is defined 

to be (semi)stable if d:f: < d~gf (resp. ::;) for every proper vector subbundle 

F of E. The quotient ~ is called the slope of a vector bundle, hence a vector 

bundle E of slope fJ, is stable if and only if every vector subbundle of E has slope 

strictly less than tt (see [LP], p.73). In particular every line bundle is stable, 

while a rk 2 vector bundle E is stable if and only if deg ~ < ~ deg E for every 

line subbundle ~ of E. 

Following the work of Seshadri (see [S]), the set of semi-stable vector bundles 

can be given an equivalence relation, S-equivalence, which we will now briefly 

sketch. Let E be a semi-stable vector bundle of 'fk n and slope p, it admits an 

increasing sequence (SE) of vector subbundles 

such that E 1 and all the quotients Ei+l / Ei are stable of slope p, called a Jordan

Holder series for E (see [LP], chapter 5, p.76). The vector bundle gr(E) d~ 

E 1 EB Ed E 1 EB · · · EB Em/ Em-l is unique up to isomorphism and is called the 

graded quotient of E (see [S], theorem 2.1). Two semi-stable vector bundles E 

and E' are said to be S-equivalent if gr(E) ~ gr(E'), in which case we write 

[E] = [E']. In particular two stable vector bundles E and E' are S-equivalent if 
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and only if they are isomorphic as vector bundles, sinee in this case E ~ gr(E) 

and similarly for E'. 

Remark 1.2.1. A semi-stable, non stable rank 2 veetor bundle E admits a 

Jordan-Holder series L1 c E where L 1 is a line bundle of degree equal to the 

slope /-LE of E, i.e., deg L 1 = ~ deg E and henee gr(E) = L 1 EB L2 , where 

L2 = E / L 1 and deg L2 = ttE· Thus E is S-equivalent to a direct sum L 1 EB L2 

if and only if there exists an extension 0 ----+ L 1 ----+ E ----+ L2 ----+ 0 (see § 1.3) 

with deg Li = f.LE, yet E is not isomorphic: to L 1 EB L2 unless the above sequence 

splits. Moreover all extensions of L2 by L 1 give rise to S-equivalent semi-stable 

veetor bundles of slope ttE· 

Let SUc(2, L) be the moduli space of (S-equivalence classes of) semi-stable 

rank 2 vector bundles with determinant L E P'ic( C). It is well known that 

SU c (2, L) has dimension 3g - 3. For example, a stable veetor bundle E E 

SUc(2) = SUc(2, 0) admits line subbundles of degree at most -1, while a 

semi-stable, non stable vector bundle admits also line subbundles of degree 0. 

vVe will only consider vector bundles with determinant either trivial, SUc(2), 

or canonical, SU c ( 2, K). Note that these moduli spaces are isomorphic though 

not canonically, hence for the time being we will make some remarks only on 

SUc(2, K). Let ~ be the Cartier divisor on SUc(2, K) whose support is the 

subvariety of vector bundles with non zero seetions and 8 = 0(~) the associ

ated ample line bundle, then SUc(2, K) has Picard group isomorphic to Z and 

8 is a generator, i.e., Pie (SUc(2, K)) ~ Z(8) (see [Bl], proposition 3.1, p.442 

or [D-N], theorem B, p.55). vVe will often identify the line bundle 8 with the 

divisor ~ and call either a generalised theta divisor. Now consider the map 

1j; : JY- 1 ----+ SUc(2, K) 

7J f-------+ [ 7J EB f{ 7J - t J . 

It is easy to verify that TJ EB f{ ry- 1 is a semi-stable vector bundle. It was shown 
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by Beauville (see [B1], proposition2.5) that '1/J*(G) = 28, where 7/J* denotes the 

pull-back map associated to 7/J, and that there exists a canonical isomorphism 

Similar results hold for SUc(2) and 1£1, in which case one denotes by £' the 

ample generator of Pie (SUc(2)). 

1.3 Extensions 

Given vector bundles G and F over a curve C, an extension of F by G is a 

short exact sequence 0 ----* G ----* E ----* F ----* 0. Every extension gives rise to an 

element 6(E) E H 1 (C, Hom(F, G)) which is the image of the identity homomor

phism in H 0 (C, Hom(F, F)) by the connecting homomorphism of cohomology 

6: H0 (C, Hom(F, F)) --t H 1(C, Hom(F, G)). Two extensions ofF by G are 

said to be equivalent if the corresponding exact sequences are isomorphic, i.e., 

if there is a commutative diagram 

o~G--E--F~o 

!le ! !IF 
o~G~E'~F~o 

where 10 and lp are the identity map of G and F, respectively. Atiyah proved 

(see [At], proposition 2, p.184) that there is a 1 to 1 correspondence between the 

set of equivalence classes of extensions ofF by G and H 1(C, Hom(F, G)), with 

the trivial (split) extension corresponding to the zero element. The following 

remark was made by Narasimhan and Ramanan (see [N-R1], lemma 3.3). 

Remark 1.3.1. If E and E' are two extensions ofF by G, then E and E' are 

isomorphic as bundles if 6(E) = )..6(E') for some ).. E C*, 

It is important to notice, however, that the converse does not hold in general. 

The following lemma will be used in remark 1.5.2. 
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Lemma 1.3.2. (see [N-Rlj, lemma 3.2) Let 0 ----+ G ----+ E ----+ F ----+ 0 be an 

extension ofF by G, W a vector bundle and f a homomorphism vV -----+ F. 

Then f can be lifted to a homomorphism f : vV -----+ E if and only if 

6(E) E Ker[H 1(C,Horn(F,G))-----+ H 1 (C,Horn(vV,G))]. 

We conclude this section with some remarks on maximal line subbundles of 

given bundles, which we will need in section 2.2 (see the proof of theorem 

2.2.4). 

Lemma 1.3.3. (see {N-Rlj, lemma 5.3) Let E be a vector bundle and ( a line 

bundle on C. A morph ism cp : ( ----+ E fails to be injective at p E C if and only 

if it factorises through a map ( (p) ----+ E. 

The following result on maximal line subbundles ts a consequence of lemma 

1.3.3, however since no explicit reference is available we give a complete proof. 

Lemma 1.3.4. If E is a rank 2 (semi)stable vector bundle and 77 is a line 

bundle of maximal degree with respect to E, i.e., deg 17 = rnax deg ~ where ~ 

varies among all line subbundles of E, then ''7 is a maximal line subbundle of E 

if and only if h0 ( C, E ® 77- 1
) ;::: 1. 

Proof. If 77 is a maximal line sub bundle of E then h0
( C, E ® 17-1 ) ;::: 1. On the 

other hand, if h0 (C, E ® 77- 1
) 2:: 1, there is a non-zero morphism 77----+ E. Lemma 

1.3.3 assures that this morphism fails to be injective only if it factorises through 

an injective map 77(D) ----+ E, where D is a suitable effective divisor of positive 

degree on the curve C. In this case the vector bundle E would have a maximal 

line subbundle, 77(D), of degree strictly higher that deg77. This contradicts the 

hypothesis that deg 77 is the maximal degree of a line subbundle of E, so the 

original morphism ·17 ----+ E has to be an injection of vector bundles. 0 

Recall that a vector subbundle of a given vector bundle E can be thought of 

as a pair ( F, cp) consisting of a vector bundle, F, and an embedding cp of F in 
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E. In particular if E is a rank 2 vector bundle over a curve C, then there is 

a natural map from the set of all its line subbundles to Pic(C), the map that 

forgets the embedding. By considering its restriction to the set of maximal line 

subbundles one has the following. 

Proposition 1.3.5. (see {L-Nj, lemma 2.1) If Eisa stable rank2 vector bundle, 

the natural map from the set of maximal line subbundles of E to Pie( C) is 

injective. 

Remark 1.3.6. This means that the condition in lemma 1.3.4 becomes simply 

h0 (C, E 0 77- 1
) = 1. In fact, a line bundle ·r7 that has maximal degree with 

respect to a given stable bundle E is a maximal line subbundle of E if and only 

if there is a unique homomorphism, up to a multiplicative factor, of 77 in E. 

Note that such a map is necessarily an embedding by lemma 1.3.3. 

1.4 A result of Lange and Narasimhan 

In this section we will review some results on maximal line subbundles of given 

rank 2 stable vector bundles, presented by Lange and Narasimhan in [L-N], 

§§1 and 2, with particular emphasis on the aspects that will be needed in the 

following chapters. 

If E is a rank 2 vector bundle, one defines the Segre invariant of E to be 

s(E) = deg E- 2 ma:r deg(ry) 

where the maximum is taken among all line subbundles ·ry of E. By comparing 

with the notion of (semi)stability, E is (semi)stable if and only if s(E) > 0 

(resp. :;::=: 0). Note, moreover, that according to the definition s(E) is congruent 

to d = deg(E) (mod 2). 

Remark 1.4.1. The Segre invariant is an invariant with respect to tensoring 

with line bundles, so to study s(E) one may always assume that the given vector 
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bundle admits Oc as a maximal line subbundle. 

To see this consider an extension (f) of a rank 2 vector bundle F: 

0 ----+ T/ ----+ F ----+ L I ----+ 0 

tensoring it with 77- 1 gives an extension (e): 

0----+ Oc ----+ E = F 0 r7- 1 ----+ L = L'77- 1 ----+ 0 

and so s(E) = s(F). Moreover (f) and (e) can be identified as points in the ex

tension space JP'H 1(C,Hom(L'7]-1,0)) = !P'H1(C,L- 1
) = JP'H 1 (C,Hom(L',7J)) 

which we denote simply by !P'L ~ JP'H0(C, I<L)*. 

From now onward, in order to study the Segre invariant of a vector bundle E 

we will always make the above assumption. In the following we will describe 

some results of Lange and Narasimhan (see [L-N]) which allow us to study s(E) 

for a given rank two vector bundle E admitting an extension (e) of the form 

0 ----+ Oc ----+ E ----+ L ----+ 0 in terms of the corresponding point e in the projective 

extension space JP' L. 

Remark 1.4.2. We will denote the linear map induced by the linear series 

I I< L I by cjJ L : C ----+ JP' L. Recall moreover, that if C is a smooth curve and c/J: 

C ----+ IF is a regular mapping, for every effective divisor D on C one denotes by 

cjJ(D), or just by D, the intersection of all the hyperplanes H such that either 

cjJ(C) c H or the pull-back of H satisfies c/J*(H) ~ D (see [ACGH], p.12). In 

particular if the mapping is non-degenerate the first condition is empty, while 

if cjJ is an embedding and D = L nixi then D is the linear subspace spanned by 

the nf1-osculating spaces at cjJ(xi) to cjJ(C). 

Moreover, if the mapping cPL is non-degenerate, a point f E !P'L belongs to 

D if and only if the corresponding line in H 0 ( C, I< L) * lies in the kernel of 

the map H0 (C,I<L)* --+ H0 (C,I<L(-D))*, i.e., if and only if every H E 

JP'H0 (C,I<L(-D)), a hyperplane containing D, vanishes at f. 
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p 

·e 

</JL 
q 

c 

IP'L 

Figure 1.4.1: The span of a degree two divisor D. 

If deg L = d, for any j such that 0 :::; j :::; d - 1 one denotes by Secj (C) the 

union of all the linear spaces (h(D) = D of lP'L as D varies among all effective 

divisors of degree j on C. The variety Secj (C) in called the /h-secant variety 

of C with respect to <PL· 

Recall that all secant varieties form a flag in lP'L 

In [L-N], Lange and Narasimhan prove a basic result which links the Segre 

invariant of a vector bundle E isomorphic to an extension (e) (see remark 1.4.1) 

to the index j such that the corresponding extension point e E JP' L lies on 

S ec1 (C) but on no smaller secant variety. 

Proposition 1.4.3. (see [L-N}, proposition 1.1, p.57) Let L be a line bundle 

of degree d > 0 and E a vector bundle given as an extension 

(e) : 0--+ 0--+ E--+ L--+ 0, 

i.e., E is parametrised by a point e in the extension space JP' L. For any integer 

s - d (mod 2) with s :::; d and s ~ 4 - d the following are equivalent 
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1. s(E) 2 s; 

2. e t/: Sec(d+s-2)/2 (C). 

Remark 1.4.4. In particular, if d = 2, the Segre invariant s(E) has to be even, 

so it is positive if and only if it is at least 2. Therefore, if deg(L) = 2, E is 

stable if and only if e tf. Sec1 (C). 

Moreover, Lange and Narasimhan show how to find all maximal line bundles 

of a stable vector bundle E with an extension of type (e). If deg L = d, then 

e E IPL corresponding to E must lie in the span of some degree d divisor D of 

c. 

Theorem 1.4.5. {see [L-N}, proposition 2.4, p.59) Let E be a rank 2 stable 

vector bundle corresponding to a point e in the extension space IPL where deg L = 

d 2 1. There is a bijection between 

1. maximal line subbundles ~ of E different from Oc; 

2. line bundles O(D) of C such that D is a degree d divisor on C and e E D; 

given by O(D) = L 0 ~-t, i.e., ~ = L( -D). 

This theorem will be extremely useful in the rest of this thesis. 

1.5 An example: curves of genus 3 

The aim of this paragraph is to give a concrete example of how the previous 

results can be applied to curves of genus 3. This will turn out to be very useful 

throughout the following chapter. Moreover this section is a key to understand

ing the counterexample in §2.3. 

In this final section, C will be a non-hyperelliptic curve of genus 3. In this 

context, every non trivial equivalence class of extensions (e) of~ E Jl by ~-L 

can be identified with a point e in the projective space JP(~)= IPH 1 (C,~-2 ). 
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Lemma 1.5.1. (see [N-R2}, lemma 4.2) Let~ be a degTee 1 line bundle on C. 

Let 0 ----+ ~- 1 ----+ E ----+ ~ ----+ 0 be a non trivial extension of~ by ~- 1 , then 

the vector bundle E is semi-stable. 

Proof. First note that by construction the determinant of E is Oc, so all we 

have to show is semi-stability. Assume that the vector bundle E is not semi

stable, i.e., there is a line subbundle fl C E of positive degree, then defining 

17 = E / fl one has the extension 0 --t fl --t E --t T} --t 0. So there exists a non zero 

homomorphism a : fl --t ~ and this implies deg Jl ::::; deg ~ = 1, i.e., deg {L = 1. 

As the only non trivial homomorphisms between line bundles of same degree 

are isomorphisms J-L ~ ~ and the original extension 0 --t ~- 1 --t E --t ~ --t 0 

splits, against the hypothesis. D 

We will often denote bye a point in JP(O and byE the corresponding semi-stable 
, .. 

rank two vector bundle with trivial determinant given by the extension (e), o'r :. 

rather its S-equivalence class. Moreover we will call ct, the regular extension 

map JP(O ----+ SUc(2) given by the correspondence e f----t E. It is well known 

that ct, is a regular injective map (see [Be], p.430 and p.461, corollary 4.4) and. 

that 0(8) pulls-back to OIP(t,)(l), that is, it is linear. The extension map ct, 

embeds JP(O as a 3 dimensional projective subspace of SUc(2). 

Note that there always exists a regular map from C to JP(~) ~ JPH0 (C, Ke)* 

given by the linear series IKel and denoted by cpf.. 

Remark 1.5.2. One can describe exactly which points of JP(~) give extensions 

of semi-stable, non stable vector bundles and characterise the corresponding 

vector bundles. 

The image of C in JP(O composed with the extension map ct, gives semi-stable, 

non stableS-equivalence classes of vector bundles of the form [~( -p) EB ~- 1 (p)] 

as p varies in C. 
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p 4>dP) = e 

c 
SUc(2) 

Figure 1.5.1: The composition of E~ with c/J~. 

In fact, if e = c/J~(p), i.e., e represents the hyperplane of divisors in the linear se

ries !Ke! which contain pin their support, it implies that the line corresponding 

to e lies in the kernel of H 0 (C, Ke)* --+ H 0 (C, Ke( -p))* or, by Serre dual

ity, in that of H1 (C,~-2 ) --+ H 1 (C,~-2 (p)). This, in turn, shows that a map 

~( -p) --+~lifts to a map~( -p) --+ E, by lemma 1.3.2. Finally this implies that 

~( -p) E J 0 is a maximal line subbundle of E, so E is a semi-stable, non stable 

vector bundle. Moreover, since det E = 0, it must necessarily be isomorphic to 

the vector bundle ~- 1 (p) EB ~ ( -p). 

Conversely if E is any semi-stable, non stable vector bundle with trivial determi

nant, then it must be S-equivalent to LEBL -I for some L E J0 . So, if it is isomor

phic to an extension of~ by ~- 1 , h0 (C,E~) > 0 implies h0 (C, (LEB L- 1
) 00 > 

0, which is equivalent to having either h0 (C,L~) > 0 or h0 (C,L- 1~) > 0, i.e., 

either L = ~-L (p) or L - 1 = ~-L (p). Both cases imply that E is S-equivalent to 

~( -p) EB ~-l(p). 

Note that as deg e = d = 2, by remark 1.4.4 we know that points outside the 

image of C in JP(O map to stable vector bundles. Remark 1.5.2 shows that the 

points on the image of C map to semi-stable, non stable vector bundles, and 

gives an explicit description of these bundles which will be used in chapter 2. 
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The following lemma is implied in lemmas 4.2 and 4.4 of [N-R2] and the com

ments that follow them. 

Lemma 1.5.3. The S -equivalence class of a semi-stable vector bundle is the 

S -equivalence class of an extension of~ by ~- 1 , where ~ E J1 (C), if and only if 

h0 (C, E~) > 0 for some E in the same S-equivalence class. 

Proof. One implication is just a consequence of the fact that if E is an extension 

of~ by ~- 1 there is an injection ~-l -t E and hence h0 (C, E~) > 0. 

Conversely if there is a non-zero map c/J: ~- 1 -t E, it can fail to be injective 

only if there exists a point p E C such that cp factorises as ~- 1 -t ~- 1 0(p) -t E, 

i.e., p is a point of C where the rank of the map cp drops. This cannot happen if 

E is stable since any degree -1 line bundle gives an injective map in each fibre 

(see lemma 1.3.2 and [N-Rl], lemma 5.3). If E is semi-stable but not stable, 

then the assumption implies that E is S-equivalent to~( -p) EEl ~- 1 (p) for some 

p E C. Now let F be any vector bundle obtained from a non trivial extension 

corresponding to the kernel of the map 

Hl(C, ~-2) ---+ Hl(C, ~-2(p)). 

Then F is S-equivalent to the vector bundle ~(-p)EB~- 1 (p) and hence to E. D 

The theorem of Lange and Narasimhan quoted in the previous section as theo

rem 1.4.5 can now be rephrased in this more specific context. 

Theorem 1.5.4. For every point e E JP(O \ c/Jt,( C) there is a bijection given by 

0 (D) = 17~ between 

1. maximal line subbundles ry- 1 of E such that 1] =/=- ~; 

2. degree 2 divisors D of C such that e E D. 

It is particularly interesting for future reference to observe how the theorem of 

Lange and Narasimhan can actually be used to find how many maximal line 
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subbundles there are for any stable vector bundle of a smooth non-hyperelliptic 

curve of genus g = 3. This example will be used in chapter 2, proposition 2.4.3. 

Example 1.5.5. Let C be a non-hyperelliptic, non-bielliptic curve of genus 

3, then we know that for any line bundle E, E Jl, C can be mapped to the 

3-dimensional projective space IP( 0 by the linear series 1 K e J. If .; is generic, 

i.e., h0 ( c, e) = 0 the map is an embedding of c as a smooth sextic in IP3 , 

which we still denote by C. Then projection from a general point e tf. C to a 

e 

lP'(O 

Figure 1.5.2: Bisecants of C through e give nodes of the projection C'. 

plane not containing it will be 1 to 1 onto a plane sextic C' of genus 3 having 

r nodes. Clearly each simple node of C' corresponds to a bisecant of C passing 

through e and, by theorem 1.5.4, each of these gives a maximal line sub bundle of 

E = c~ (e) distinct from .;- 1
. The number of nodes r can be computed explicitly 

using the genus formula for plane curves 

g = (d-l)id-2) - '{', 

As d = 6 and g = 3, it is clear that the general stable vector bundle will have 

7 other distinct maximal line su bbundles apart from .;-t. 
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Another possibility is that h0 (C, e) = 1 in which case e = O(p + q) with 

p, q E C uniquely determined since h0 (C, e) = 1. In general p and q are 

distinct and C maps via c/J~ to a sextic in JP3 , since the degree of I<e is 6, 

with a node given by cp~(p) = cp~(q) (see [Gr], p.59). In this case the projection 

from a general point e ~ C will still give 7 nodes one of which comes from 

the singularity of the image of C in JP(O. However, by applying theorem 1.5.4 

one can verify that the node coming from the singularity of C does not give 

a maximal line subbundle since e does not lie in the span cp~(p) + cp~(q): there 

exist planes H in JP(O that belong to JPH0 (C, I<) but don't pass through e. 

Hence in this case we obtain a total of 7 maximal line subbundles. 

A similar thing happens when p = q, in which case ~ = O(p) and C maps to 

JP(~) as a sex tic with a cuspidal singularity, the projection from a general point e 

to a plane gives 6 nodes and a cusp and the corresponding stable vector bundle 

admits 7 maximal line bundles (see [L-N], lemma 5.2). 

However, it is also of great interest to see if there are points of JP(~) from which 

the projection is not general. A priori there are two other possibilities when 

projecting C 

• C projects 2 : 1 to a plane cubic; 

• C projects 3 : 1 to a plane conic. 

The first case has, in fact, two subcases, either C projects to a smooth cubic 

of genus 1 or to a singular cubic of genus 0, however both can be ruled out by 

requiring C to be general; in particular we require C to be neither hyperelliptic 

nor bielliptic. It is easy to verify that the general smooth curve of genus 3 is 

not bielliptic by a parameter count since the space of bielliptic curves of genus 

3 has dimension at most 4 while the moduli space of curves of genus 3, M 3 , has 

dimension 6. 
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As for the second case, C projects 3 : 1 to a plane conic whenever it lies on 

a quadric cone whose generators are trisecants to the curve and it is projected 

from the vertex of the cone to a plane not containing it. In particular this 

means that C has a degree 3 pencil. Since C is a genus 3 curve all its degree 

3 pencils are of the form J( ( -p) for some choice of a point p E C (this can be 

verified by applying the Riemann-Roch formula to any degree 3 line bundle L 

on C satisfying the requirement h0 ( C, L) = 2). This implies that the required 

family of trisecants is given by the linear system IK( -p)l (see [Gr], lemma 4.1.2 

and remark 4.4.8). Hence, if C, as a curve in lP( ~), lies on such a quadric cone, 

the projection 1r e from the vertex e of the cone satisfies: 

and this implies that e =I<( -2p), i.e.,~= K( -p) with K E '!9(C) a theta cha

racteristic. Conversely, if~= K( -p) then C always lies on a quadric cone whose 

vertex e is not on C and whose generators are trisecants (see [Gr], proposition 

4.4.7, p.59). Note moreover that ~ = K( -p) implies h0 (C, e) > 0, hence c 

maps in IP( ~) as a singular sextic. 

Summarising, if ~ = K( -p) with K E '!9( C) and p E C, then there exists exactly 

one point e, namely the vertex of the quadric cone on which C lies, such that 

the projection 1r e is 3 : 1, i.e., such that the corresponding stable bundle E 

has infinitely many maximal line subbundles. Given a non-hyperelliptic, non

bielliptic curve C of genus 3, this is the only case when a stable vector bundle 

admits infinitely many maximal line subbundles. 



Chapter 2 

The Cable quartic 

The aim of this chapter is to review the construction of the natural embedding 

of SUc(2) in 1281, as originally described by Narasimhan and Ramanan in 

[N-R2] for non-hyperelliptic curves of genus 3. The motivation for reconsidering 

Narasimhan and Ramanan's results, in particular the embedding of SU c(2) as 

the Coble quartic shown in [N-R2], is strong. [N-R2], together with [N-Rl], is a 

seminal paper in the study of the moduli space SUc(2) and many results and 

generalisations for higher genus curves rest on some of the ideas presented in 

it (see [Br-V] and [vG-I]). However, the original proof presents a number of 

gaps and inaccuracies, which successive works have not clarified. Hence, the 

work presented in this chapter provides a complete and detailed analysis of 

§§4 and 5 of [N-R2], highlighting the relation between the ideas of Narasimhan 

and Ramanan and the geometry of the genus 3 case (see for example lemma 

2.3.10, which holds only for curves of genus 3). Moreover, it gives a proof of 

the central lemma 5.2 of [N-R2]. Since the hint provided in [N-R2] does not 

appear to lead to any clear understanding of how to obtain the required result 

I propose an independent proof, which still maintains the point of view of the 

work of Narasimhan and Ramanan. Throughout the chapter I have introduced 

lemmas and remarks which should help the reader in understanding the ideas 

23 
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behind [N-R2]. In addition, the paper presents a few mistakes, in particular the 

authors claim that the result relies on lemma 5.4. However I prove that that 

lemma is false by producing a 3-dimensional subvariety of SUc(2) that does 

not satisfy the claim, see proposition 2.4.3. This affects some of the original 

statements, where this is the case I prove more general results than those of 

[N-R2] (compare lemma 5.1 with lemma 2.3.4 of this thesis). 

Finally note that even the computation of the degree of SUc(2) as a subvariety 

of 1281 as presented in [N-R2] is inaccurate, however corrections to this have 

been pointed out by Oxbury and Pauly in [0-P], §7. 

Throughout the chapter we maintain notations and conventions introduced at 

the outset of chapter 1. 

2.1 The map c5 from SUc(2) to 1281 

Given a smooth curve C of genus g 2': 2, the morphism £5 : SUc(2) ----+ 1281 is 

defined in the following way. Consider the product variety C x } 9 -
1

, denote by 

p 1 and p2 the projections to the first and second factor, respectively, and let P 

be a Poincare line bundle on C x J9- 1 (see [ACGH], p.166). 

p ~ C X }9- 1 

/.~ 
c Jg-1 

Then, for any semi-stable vector bundle E E SUc(2), b(E) d;j bE is the deter-

minantal divisor associated toP 0 Pi E. 

Here we briefly review the construction of determinantal divisors in this context, 

as done by Raynaud (see [RaJ, p.109). Fix E E SUc(2) and consider the total 

direct image Rp2 * ( P 0 Pi E). All direct images of order greater than 1 are zero 
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and we can find a perfect complex M of length 2 such that ([Ra], p.109) 

where 1110 and 1\1/1 are vector bundles over p- 1
. Note that by the Riemann

Roch formula for vector bundles, the Euler characteristic of E@ (, x(E@ (),is 

zero for any line bundle ( E ]9- 1 . Hence, .A10 and !v/1 must have the same rank. 

Moreover, if (is generic h0 (C, E®() = h1 (C, E®() = 0 as a consequence of[Ra], 

proposition 1.6.2- Raynaud actually proves the result for any F E SUc(2, I<) 

and general E, E J 0 but it is enough to select a theta characteristic "' and 

translate by it so that F = E@"' and E, = ( K-
1

. Hence the map u is generically 

a bijection and one can consider its determinant, det(u). The determinant 

det(u) defines an effective divisor on J9 -
1 called the determinantal divisor and 

usually denoted det(Rph(P@ prE)) for any E E SUc(2). The support of this 

divisor is given by those line bundles ( E p- 1 for which h0 (C, (@E) ~ 1. 

This definition is independent of the representative in the S-equivalence class 

of E and of the choice of complex M. Thus for any E E SUc(2), 6(E) d_:! 6E 

is the determinantal divisor det(Rph(P@ piE)). Moreover Raynaud proves 

(see [Ra], proposition 1.8.1) that bE is linearly equivalent to 28 for all E E 

SUc(2) and so r5 is a well defined map. One can easily verify this when E is a 

semi-stable, non stable vector bundle; in fact in this case E is S-equivalent to 

77- 1 EB 77 for some 77 E J 0 by remark 1.2.1, and bE = bry-lEBry = 8 71 -1 + 8"7 since 

h0 (C, (77 EB 77- 1)@ () > 0 if and only if h0 (C, ''7@ () > 0 or h0 (C, 17- 1 @ () > 0. 

In particular this shows that (S-equivalence classes of) semi-stable bundles map 

to split 20 divisors. 

For curves of genus 2, Narasimhan and Ramanan proved in [N-R1] that r5 is an 

isomorphism and that SUc(2) is smooth. 

Remark 2.1.1. The map r5 has been defined for curves of all positive genera and 

is well known to be an embedding for every non-hyperelliptic curve of genus at 
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least 3 as a consequence of works by Laszlo, Brivio and Verra, van Geemen and 

Izadi, and many others (see [Br-V] and [vG-I]). Yet, these approaches all tackle 

the problem from a different prospective and use more general techniques, while 

the approach of N arasimhan and Ramanan is based on the specific geometry of 

genus 3 curves and precisely for this reason it is interesting to understand it in 

more detail. 

Just like in [N-R2], we start the study of the map 6 by showing it is an injective 

morphism. Before one can prove this result it is necessary to consider some 

lemmas and construct a vector bundle over Jl. First we consider a few results 

that hold for curves of any genus g ~ 2. 

Fix a smooth curve C of genus g ~ 2, for any line bundle ~ E JY-2 one can 

consider an embedding a~ : C ----t p- 1 given by p ~ O(p) 0 ~ = ~(p), the 

image of which is denoted C~. Similarly, for every degree lline bundle TJ one can 

consider an embedding {311 : C ----t J 0 defined by p ~ O(p) 0 77- 1 = ry- 1 (p), 

the image of which is denoted C,.,-1. One can then consider the restriction of 28 

along C(, or equivalently, its pull-back to C via the above morphism a(. Note 

that the following result is well known, but a proof is given for the convenience 

of the reader since no complete reference is available. 

Lemma 2.1.2. For any line bundle~ E p-2
, the Testriction of 28 to c~ can 

be identified with the line bundle K 2 ~-2 of C. 

Proof. Fix a theta characteristic "' E '!9( C) and take 77 = "'~-t a line bundle of 

degree 1, then consider the commutative diagram 

where the map ·u 1 is the Abel-Jacobi map p ~ O(p) and the composition of the 

two upper maps is just aE. Note that it is enough to show that the pull-back of 8 
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via o:~ is isomorphic to I< t;- 1
. So we start by showing that the two line bundles 

have the same degree, i.e., that deg 8lc~ is equal to deg J<f,- 1 =g. The degree 

of 8lc~ can easily be computed using Poincare's formula (see [ACGH], chapter 

1, p.25), once it has been noticed that the degree is given by the intersection 

number of 8 ~ lV9 _ 1 with the translate of lV1 c Jl in J9- 1 . Hence 

[8]9-1 [8]9 
deg8lc~ = [8]· [Wt] = [8]· (g _ 1)! = (g _ 1)! = g 

where we use [] to denote the fundamental class of a subvariety and we recall 

that since 8 is a principal polarisation the integral of its first Chern class sat-

isfies J (}9 = g! (see §1.1.1). 

If f, is general, i.e., restricting to an open set in Pic1 (C), one can assume 

h0 (C,f,) = 0, in which case h0 (C,I<f,- 1
) = 1 by the Riemann-Roch formula and 

there exists a unique degree g effective divisor Don C such that Kf,- 1 ~ O(D). 

Moreover by requiring f, to be general we can also assume that every point in 

the support of the divisor D has multiplicity one. Hence 8lc~ is isomorphic to 

I<f,- 1 if and only if one can show that they have the same support 

f,(p) E supp 8 
Q~ 
~ p E suppD. 

On the one hand, if f,(p) belongs to the support of 8, then by definition 

h0 (C, f,(p)) > 0 and there exists an effective divisor D' of degree g -1 such that 

f,(p) ~ O(D'); in particular p 1:- supp D' since h0 (C, f,) = 0. Hence, O(D) = 

K(p- D'), equivalently, K(p) = O(D + D'), where deg D + D' = 2g- 1. By 

the Riemann-Roch formula, h0 (C,O(D+D')) = g and h0 (C,O(D+D'-p)) = 

h0 ( C, K) = g, so p is in the support of D. On the other hand if p is a point 

in the support of D, it is immediate to verify that f,(p) has a non zero global 

section and hence lies in the support of 8. 

If t; is not general, consider the map: 

C X ]9-2 _m_~ J9-l 

(q, () f---~((q). 
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Then m*(8) can be thought of as a family of degree g line bundles over C. So 

we have a morphism ] 9- 2 ----+ J9 and it is known, from the above part of the 

proof, that on a Zariski open set S c J9-2 this map coincides with the map: 

( ~-----+ I< (-1
. Hence the maps coincide everywhere on ]9-2 and the result is 

proved. 0 

Remark 2.1.3. It is easy to verify that for every line bundle 77 E J 1 , the 

restriction of[, (see page 5 for the definition) to C11-1, i.e., the pull-back of[, via 

(311 (as defined on page 26), is isomorphic to I< 772 , by fixing a theta characteristic 

/'i, and applying the above result to E, = i'i,7]- 1 . 

The following lemma is just lemma 4.1 of [N-R2], but we present a more exten-

sive proof. 

Lemma 2.1.4. For any line bundle 7] E Jl the embedding {311 : C ----+ ] 0 given 

by p t----t 77- 1 (p) induces a surjective map 

Proof. We already know, by lemma 2.1.2 and the following remark, that the 

map (311 induces a cohomology map H 0(J0
, £) ----+ H 0 (C, K772). The aim is to 

prove that the induced map 1£1 ---+ I J{ 7]2 1 rv 1P9 is surjective. Consider the 

I<ummer map 

] 9- 1 1£1 
( e< + eK<-1. 

One can actually prove a stronger statement, i.e., the composed map J9- 1 ----+ 

IK772I = 1P9 , given by ( 1----t e( + eK(-1 le -1' is surjective. 
1] 

Any divisor D E IK772 I may be written as a sum of two divisors of degree g 

each, D' and D" (notice that this can be done in only a finite number of ways). 

These divisors belong, respectively, to the classes of I< 77(- 1 and17( for some line 

bundle (, E J9-
1 (e.g. choose ( = rJ- 1 

( D')). Note that by requiring D to be 
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general, i.e., by restricting attention to an open set of [K772
[, one can assume that 

h0 (C, K77(- 1
) = h0 (C, 77() = 1 so that one can identify the line bundle K77(- 1 

with the corresponding divisor D' and similarly for 77( and D". To verify that 

this is the case, note that the general degree g divisors satisfies D' satisfies the 

condition h0 (C,O(D')) = h0 (C,K772 (-D')) = 1, hence there is a Zariski open 

set in the space of degree g divisors on the curve C on which one can define a 

map to I]( 772
[ by D' 1---------+ D' + D", where D" is the only element of I I< 172 

(-D') I; 
as this map is finite to one, the image is Zariski dense. Moreover, one can also 

assume that each point in the support of D', and D", appears with multiplicity 

one. Then, to prove the statement, it is enough to show that the support of 

8([c _1 coincides with that of D' and similarly for 8[(,-l[c _1 and D". However 
ry ~ ry 

the support of 8([c _1 can be identified with the set of points p E C such that 
ry 

the line bundles 17- 1 (p) satisfy the condition that their translates by ( have 

non-zero global sections, i.e., h0 (C, (77- 1(p)) > 0 or, by the Serre duality and 

the Riemann-Roch formula, such that K(- 177( -p) has non-zero global sections. 

This simply means that pis a point of the support of D'. Analogous reasoning 

works for 8[((-llc -1 and D". Hence the map [.Cl -+ I Kr,2
[ ~ IP9 is surjective 

ry 

on its image set, a Zariski open, thus everywhere. 0 

Remark 2.1.5. Similar results hold also for 28, i.e., for any line bundle E, E 

J9- 2 the embedding a~ : C-----+ J 9 -
1 given by p 1---------+ E,(p), has the property that 

the induced cohomology map H 0 (JY- 1, 28) -----+ H 0 (C, K 2E,-2
) is surjective. 

2.2 The genus 3 case 

From now on we will restrict our attention exclusively to non-hyperelliptic, 

non-bielliptic curves of genus 3. However, throughout the chapter we will 

use results that are valid also for curves of higher genus, these results are all 
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presented in the following chapter 3 and here are only quoted in their form for 

curves of genus 3. 

The above lemmas imply that for all line bundles ~, 77 in Jl there exist short 

exact sequences 

{3* 
0-+ X: 1(ry) -+ H0 (J0

, .C)~ H0 (C, I<r72)-+ 0 

a• 
o-+ X:2(~)-+ H0 (J2

, 28) ~ H 0 (C, J<2~-2)-+ o. 

(2.2.1) 

(2.2.2) 

In particular, if 77 = 1\:~-l, where 1\: is a fixed theta characteristic, the two 

sequences are isomorphic. Moreover, from what was said above, it is natural to 

identify X:2 (~) with the space H0
( J2, Ic~ (28) ), where Ic~ is the ideal sheaf of C~, 

i.e., with the space of 28 sections which vanish along C~. A similar identification 

holds also for X:1 (77). 'vVe now consider the dual of sequence (2.2.1) 

(2.2.3) 

and compare it to (2.2.2). When 17 = ~' Oxbury and Pauly have shown in 

[0-P], §7, that by identifying H 0 (J0
, .C)* with H 0 (P, 28) via 'vVirtinger duality, 

the two sequences are canonically isomorphic. In particular H 0 (C, I<e)* is 

isomorphic to H0 (P,Ic~(28)) (see proposition 3.1.6). By allowing~ to vary in 

Jl, Narasimhan and Ramanan obtain a bundle Q with fibre H 0 (C,I<e)* at~ 

and, hence, of rank 4. This vector bundle fits into a short exact sequence 

0-+ Q-+ H 0(J2, 28) 0 0 11-+ N-+ 0 (2.2.4) 

where N is the cokernel and has fibre H 0 (C, J<2~-2 ) (see a review of Oxbury 

and Pauly's formal construction in §3.1). Finally, note that the projectivised 

vector bundle JP>Q associated to Q comes with a map f: JP>Q -+ 1281, which is 

the projectivisation of the embedding Q-+ H 0(J2, 28) 0 ojl composed with 

the natural projection to 1281. By denoting f~ the restriction off to the fibre 

JP>Q~ we have an injective map 

f~ : JP'Q~ -+ 1281 (2.2.5) 
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which is linear since it is just the projectivisation of a linear map of vector spaces. 

Hence, IP'Q~ maps isomorphically to a 3-dimensional subspace of 1281 ~ IP'7. 

By the Serre duality IP'Q~ = IP'H0 (C, Ke)* is isomorphic to the extension space 

lP'(~) = IP'H1 
( C, ~-2 ) and in this sense it has a natural linear map to SUc(2), 

the extension map described in §1.5 and denoted by E~. The following lemma 

considers the composition of E~ with 5 and compares it to f~· It was originally 

stated in [N-R2], but not proved (see lemma 4.3). 

Lemma 2.2.1. Given any line bundle~ E Jl, the diagram 

(2.2.6) 

commutes. 

Proof. The proof of this lemma relies on the fact that all the maps in the 

diagram are linear. This has already been shown for c~ in §1.5 and for f~ above. 

As for the map 5 linearity means proving that the pull back of q 281 (1) via 5 is 

G0 , the generalised theta divisor, which is the generator of the Picard group of 

SUc(2) (see §1.2). This has been shown to be true by Beauville ([B1], lemma 

2.3). Now consider the diagram 

lP'(~) c:~ SUc(2) ~ 1281 

C ~ llsem d"ality g; IIWietingecdnnWg 

lP' H 0 ( C, J( e)* ------=-'-----1£ I* 

where g~ denotes the map obtained by composing f~ of diagram (2.2.5) with 

the Wirtinger duality. Since the image of C in IP'Q~ via the regular map <P1Kel is 

non degenerate and all the maps involved are linear, it is enough to prove that 

5o E~ and g~ agree on the spanning set given by the image of C. vVe know that 

the upper line is given by p 1-----t 8~(-p) + 8~-~(P)' see remark 1.5.2. As for the 
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lower part of the diagram, a point p E C is mapped to JP'H 0 (C, Kt;,2)* by the 

linear series I Kt;,2 I; its image is the hyperplane of divisors linearly equivalent 

to Kt;,2 which contain p in their support. Now consider the map 

which is the dual of gf, and is surjective by lemma 2.1.4. The map 9( is such 

that the hyperplane I Kt;,2( -p) I pulls back to the hyperplane in I.CI of divisors 

containing~( -p) in their support, which we will denote by I.C-((-p) I· It has 

already been shown in the proof of corollary 1.1.4 that I.C- 17 1 can be identified 

with 8 17 + 8 17-1, for any 77 E J 0
, via Wirtinger duality (1.1.2). Hence the two 

maps can be identified. D 

Remark 2.2.2. It is worth noticing that Beauville's proof of the linearity of 6 

is consistent with the point of view presented in this thesis. In fact, though he 

mentions the results of Narasimhan and Ramanan in [N-R2], he makes no use 

of them in his detailed proof of the result. We refer the reader to §§ 1 and 2 of 

[B1] for the construction and proof. 

The above lemma implies that if E is a vector bundle in SUc(2) coming, as an 

extension, from an element e E JP'(~), then f((e) = 6e. 

Lemma 2.2.3. Let ~ be a degree one line bundle. A 2(} divisor D contains a 

translate C( in its support if and only if D = 6e for some E E SUc(2) and 

h0 (C, E~) > o. 

Proof. By the characterisation of sequence (2.2.2) we know that 

.{((JP'(~)) = {DE 12811 C( C supp D} 

while by commutativity of diagram (2.2.6) one also has 

f((IP'(O) = { 6E I E E SUc(2) and h0 (C, ~ 0 E) > 0} 
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from which we can deduce that Oe contains C~ in its support if and only if 

h0 (C, ~ 0 E) is not zero. D 

It is then possible to prove injectivity of o. 

Theorem 2.2.4. The morphism o is injective. 

Proof. Let E and F be two vector bundles in SUc(2) such that Oe = OF. One 

wants to show that they must lie in the same S-equivalence class. 

First of all we prove that there exists ~ E Jl such that h0 ( C, ~ 0 E) # 0. In 

fact, there is a bound for the degree of a maximal line subbundle 17 of a vector 

bundle E E SUc(2) over a curve C of genus g, [(g -1)/2]- g + 1 ~ deg77 ~ 0 

where the upper bound is reached only when E is a semi-stable, non stable 

vector bundle (see [0], p.10). Since we are working with curves of genus 3, 

if E E SUc(2) is stable, it must have a maximal line subbundle 7J of degree 

-1, hence h0 (C, 77- 1 0 E) > 0 by lemma 1.3.4 and~= 77- 1 is the required line 

bundle in Jl. ·while if E is semi-stable, non stable it admits a maximal line 

subbundle ( E 1° and hence~= (- 1(q) will do for any q E C. 

The fact that there exists a line bundle ~ such that h0 (C, ~ 0 E) # 0 implies 

that h0 (C, E 0 ~(p)) # 0 for every point p E C, i.e., C~ c suppoe = suppoF. 

It also implies that E is an extension of~ by ~-t, i.e., there exists e E IP'(~) 

such that c~(e) = [E] by lemma 1.5.3 and f~(e) = Oe by the commutativity of 

diagram (2.2.6) in lemma 2.2.1. Note, moreover, that F satisfies the assumption 

of the previous lemma and hence H0 (C, ~ 0 F) # 0, so by lemma 1.5.3 there 

exists an e' such that [F] = c~(e'). In turn this shows that f~(e) = f~(e'), but 

it is known that f~ is injective (see its definition on page 30), hence e = e'. D 

Remark 2.2.5. The fact that for every semi-stable vector bundle E E SUc(2) 

there exists a line bundle ~ E Jl such that h0 ( C, ~ 0 E) # 0 also implies that 

the map c: IP'Q ----+ SUc(2) previously defined is surjective. 
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Remark 2.2.6. The proof of theorem 2.2.4 has essentially the same argument 

as the one given by Narasimhan and Ramanan for curves of genus 2 in [N-Rl]. 

Note, moreover that it fails to be true for curves of higher genus since, in general, 

not every stable vector bundle admits a maximal line subbundle of degree -1. 

2.3 6 is an embedding 

In the following I will give a detailed proof of the fact that b is an embedding. 

As previously stated, I will prove all the results of [N-R2], §5, with the exception 

of lemma 5.4 which is not true and for which I will provide a counterexample in 

the next section. However, it turns out that lemma 5.4 is not necessary to show 

that b is an embedding. The layout of this section broadly follows that of [N-R2], 

§5, yet parts from it in order to explain in detail the construction, introduce 

additional lemmas and prove lemma 5.2, for which an original approach is given. 

As N arasimhan and Ramanan noticed, the proof follows from remarking that 

the statements in the previous section imply the commutativity of the diagram 

SUc(2) (2.3.1) 

PQ:: l• 
f 1281 

and that injectivity of the differential of b follows from proving 

The image G of SUc(2) in 1281 is a normal variety. 

In fact, once it has been proved that G is a normal variety, as a consequence 

we have 

Theorem 2.3.1. The map b : SUc(2) ----+ 1281 is an embedding for any non-

hyperelliptic curve of genus 3. 
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Proof. c5 is an injective morphism which is a bijection onto its image G, a 

normal variety, hence by Zariski's Main Theorem (see [Ml], p.209) it must be 

an isomorphism. 0 

To prove normality of G, it would be enough to know that 

The differential of f is injective at every point in IP'Q lying over a 

stable bundle E E SUc(2). 

Assuming this statement, normality of G is easily shown. 

Theorem 2.3.2. G = c5(SUc(2)) is a normal variety. 

Proof. First of all note that since SUc(2) is a variety of dimension 6 mapping 

injectively to 1281 -:::::' IP'7 , G is a hypersurface, hence a complete intersection. 

Recall that a complete intersection is normal if and only if its singular lo

cus has codimension at least 2. Assume G is singular along a divisor D and 

let D' = c5- 1 (D) c SUc(2). As SUc(2) is singular exactly along the 3 di

mensional Kummer subvariety of semi-stable, non stable vector bundles, D' 

must be smooth at its generic point. In order to have a singular image, db 

must fail to have maximal rank and, by the commutativity of diagram (2.3.1), 

this would imply that df fails to have maximal rank at the generic point of 

D" = c- 1(D') c IP'Q (note that D" f 0 since by remark 2.2.5 f is surjective). 

However, if the differential off is injective at every point in JPQ that lies over 

a stable vector bundle, it means that df is injective at the generic point of D", 

since the subvariety of JPQ mapping to non stable bundles has codimension at 

least 2 (see example 1.5.5 in the previous chapter). Hence G can't be singular 

along a divisor. 0 

Before we can proceed we need to recall some notions given in section §1.5 of the 

previous chapter. When C is a non-hyperelliptic, non-bielliptic curve of genus 3, 

we have seen that if~ E Jl is a line bundle of the form /i;( -p) where h; is a theta 



The Cable quartic 36 

characteristic and p E C, then the extension space JP(~) ~ IPQ ~ has a unique 

point e that maps to a stable vector bundle with infinitely many maximal line 

subbundles (see page 22). Moreover we saw that this is the only case in which the 

extension map c maps to a stable vector bundle with infinitely many subbundles. 

We will characterise these vector bundles in more detail at the end of this 

chapter, in §2.4. For the time being it is enough to know that there are only 

finitely many of them, one for every choice of a theta characteristic ""' and that 

if E, is such a vector bundle its maximal line sub bundles are { ""-l (p), p E C}. 

Definition 2.3.3. Throughout the chapter we will say that a point e E IPQ 

satisfies property ( *) if it does not map to one of the stable vector bundles E, 

via the extension map c. N ate that the locus of points of IPQ not satisfying ( *) 

has codimension 5. 

We now return to the diagram (2.3.1) and the study of the differential of the 

map f. The result one can prove is the following. 

Lemma 2.3.4. The differential off : IPQ -t SUc(2) is injective at every 

point e E IPQ lying over a stable bundle E and satisfying pmperty ( *). 

Note that the statement of lemma 2.3.4 differs from the analogous one present 

in [N-R2], in fact as already noticed the locus of points where we fail to show 

injectivity for df is smaller than the locus where Narasimhan and Ramanan 

fail to prove injectivity (see lemma 5.1 of [N-R2]). In particular, while in both 

cases one does not expect the differential to be injective at points that map 

to semi-stable, non stable vector bundles, i.e., to the 3-dimensional Kummer 

variety of SUc(2), outside this locus I show that df is not injective at points 

that don't satisfy property (*),a locus of codimension 5 compared to the locus 

of codimension 2 of fibres IPQ~ with e E 8 that Narasimhan and Ramanan 

exclude. Moreover, the proof that G is a normal variety is not affected, since it 
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is still true that the set of points where df is not injective has codimension at 

least 2 in IPQ. 

The proof of lemma 2.3.4 is very long and will occupy the rest of this section. 

One starts by noting that to the vector bundle Q is associated a map rjJ from the 

Jacobian Jl into the Grassmannian of 4-dimensional sub-spaces of H 0 (J2, 28), 

denoted G4 (28), and that one has the following canonical diagram 

IPQ ~ IPU !' 1281 

l ~ 1 ~/ 
Jl ~G4 (28) 

</> 

(2.3.2) 

where the bottom map sends ~ to Qr, and IPU is the projectivised universal 

sub bundle of the Grassmannian, while our map f is just the composition f' o 

~ and 7T, 7T
1 are the structural projections. In fact the left hand box is just a 

fibred square. 

This is a general construction. Let V be an n-dimensional vector space, k ::; n 

a positive integer and Gk(V) the Grassmannian of k-dimensional subspaces of 

V. Let IPU c IPV x Gk(ll) be the projectivised universal bundle over Gk(V), 

then one can consider the following diagram where 7T and f' are the natural 

projections 

IPU !' IPV (2.3.3) 

1 ~' 
Gk(V) 

By construction J' is linear when restricted to a fibre lPUx of IPU. 

\Ve start by studying df' at a general point e E IPU. Let e E IPU, .T = 7T
1 (e) 

and p = f' (e), where p is also used to indicate the corresponding line in V. 

Note that at a point e E IPU the tangent space TelPU naturally splits in a direct 

sum, TelPU = T1:Gk(V) EB TevertlPU, where T~ertpu is the tangent space to the 
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fibre Jr'-
1(x) and can be identified with the fibre of U over x. Then, clearly, if 

v E TeiPU lies in r:ertpu one has df~ ( v) =/=- 0 (since f' is linear on each fibre 

IPUx), while d1r~(v) = 0. Note, moreover, that this is the only case when d1r~(v) 

can be zero. 

Before proceeding we need to recall the characterisation of the tangent space to 

a Grassmannian at a point x. If x E X is any closed point of a scheme X over C 

the tangent space TxX can be described as the set of morphisms Mx(Spec D, X) 

where D = C[c]/(c2
) is called the algebra of dual numbers and one allows in Mx 

only the morphisms that map the closed point of Spec D to the point x E X 

(see [Sh], chapter V, §3.4). However in the context of this thesis it will be more 

useful to identify the tangent space to the Grassmannian Gk(V) at a point x 

with the open set Horn(Ux, V/Ux) of Gk(V), where Ux is the k-dimensional 

subspace of V parametrised by x. The identification of Mx(Spec D, Gk(V)) 

with H om(Ux, V/Ux) can be found in [Sh], example 3, page 100. In the following 

a descriptive interpretation of this identification is presented (see [H], pp.200-

201). Recall that the sets of the form H om(Ux, V /Ux) give an affine covering 

of G k(V). The identification can be viewed in the following way. Fix any 

vector v E T'l:Gk(V), let ~ be a complex disc centred at the origin and let T 

~ -----t Gk(V) be a holomorphic arc such that !(0) = x and ;1o(t)it=D = v. vVe 

can denote 1(t) as x 1 for every t E ~, in particular x 0 = x. Select any point 

e in the space Ux. Then, for any choice of a holomorphic arc {et} C U such 

that et E Uxt and e0 = e, we can compute e'(O) = ft(et)lt=O· This vector is not 

unique, but it is easy to check that it is unique modulo Ux and can be thought 

of as a vector in V /Ux. Hence every tangent vector v to the Grassmannian at a 

point x, can be thought of as a morphism Ux -----t V/ Ux such that e 1-------+ e' ( 0). 

In particular d1r~ ( v) is such a morphism. 

Lemma 2.3.5. With the above hypotheses, let v E TeiPU be such that d1r~(v) =/=-
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0. Then 

u E Ker df~ if and only if pC feeT d1r~(v). 

Proof. First of all note that v E Ker df~ if and only if it lies in the tangent 

space to the fibre j'- 1(p) at e. Since d1r~(v) i= 0, this is the same as saying that 

d1r~(v) E T1:(Xp), where Xp = {k-dimensional subspaces of V containing p} is 

a fixed subspace of Gk(V). As the above is a condition on the tangent space 

of Xp, we can restrict Xp to its intersection with any affine open set in Gk(V) 

containing x, in particular we can consider Hom(Ux, V/Ux), where Ux is the 

fibre of U containing e since x = 1r'(e). vVe denote this restriction also by Xp. 

In this way, Xp = {nE H om(Ux, V/Ux) :pC Kern} and can be identified with 

its tangent space at x. In particular, this happens if and only if d1r~(v) E XP, 

i.e., pC Kerd1r~(v). D 

Now, let X be a complex manifold with a morphism rf>: X -----t Gk(V), this 

defines a rank k bundle over X as lV = rf>* ( U). Then one has the following 

commutative diagram 

(2.3.4) 

Consider a point e E !Pl¥ and the composition f = f' o L., we are interested in 

studying the differential dfe of f at e. Let x = 1r(e) E X, e' = t>(e) E IPU 

and p = f(e) = J'(e') E IPV is identified with the corresponding line in V. 

Consider a vector v E TeiPvV, again note that v E r:ertlPl'V if and only if 

d1re(v) = 0, i.e, it is tangent to the fibre !PlYx, yet in this case dfe(v) is certainly 

not zero. Moreover, given v E TelPvV such that d7re(v) i= 0, one can consider 

drf>xo d1re(v) E T.p(x)Gk(V) ~ Hom(l¥x, VjvVx)· Under these assumptions the 

following holds. 
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Lemma 2.3.6. With the above notation, for every e E IP'Wx and v E TeiP'W 

such that d1r e ( v) #- 0 

v E Ke-r dfe if and only if p C Ker dc/Yxo d1r e (V). 

Proof. Notice that since diagram (2.3.4) is commutative, i.e, 7r1 
o t = cpo 1r, the 

following holds, dc/Yx o d1r e ( v) = d1r'e' o dte (v). 

Now, let w = dte ( v) E Te'IP'U. Two cases can occur 

• w #- 0 

notice that d7re(v) #- 0 implies d1r~~(w) #- 0 and that, since w = dte(v), 

v E Ker dfe if and only if w E Ker df~. Hence one can apply the previous 

lemma to w, since it is a non-zero vector in Te'IP'U: w E Ker df~ if and 

only if p C Ker d1r~' (w) = Ker d1r~' o dte ( v) = Ker dc/Yx o d1r e (v); 

• w = 0 

in this case dfe( v) = df~,('w) = 0 and, from the commutativity noticed 

above, dc/Y:r o d1r e ( v) = d1r~, o dte (v) = d1r~' ( w) is the zero map, hence its 

kernel is the whole l1Vx C V. 

Hence the statement is proved. D 

Diagram (2.3.2) is just a special case of the situation presented in the above 

lemma. In order to study the differential off: IP'Q -----+ 1281 at a point e E IP'Q 

lying over a stable vector bundle, we study instead the differential of cp: 1 1 -----+ 

G4 (28) at~= 1r(e). One aims at proving that given a line bundle~ E Jl the 

differential off is injective at all points e E IP'QE which satisfy property (*) (see 

definition 2.3.3). 

It is then necessary to study the following differential map 

(2.3.5) 
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where one knows that Q~ = H 0
( C, Ke)* (see page 30). Moreover, one can iden

tify Q~ with H0 
( J2, Ic~ (28)), where Ic~ represents the ideal sheaf of the embed

ded curve C~ in J2 (see proposition 3.1.6). Equivalently Q~ can be thought of as 

the kernel of the surjective restriction map H 0 
( J2, 28) -----7 H 0 ( C, K 2 ~- 2 ) of re

mark 2.1.5, and the fibre N~ = H0 (J2,28)/Q~ of sequence (2.2.4) is isomorphic 

to H0 (C, !(2~-2 ), i.e., we have the following 

0 ~H0(J2,Ic~(28)) ~H0(J2, 28) ~H0(C, ]{2~- 2 ) ~0 (2.3.6) 
11 11 

Q~ N~ 

To study dqy~ we need to understand, for every tangent vector v E T~Jl, the 

associated map dqy~(v) : Q~ -----7 N~. 

As suggested by Narasimhan and Ramanan, one can consider the natural short 

exact sequence 

where N (';1 Ncd 1 2 is the normal bundle of the image of C in f2 via the map 

a~ and is just the cokernel of the map L#;~ -----7 Ic~. By tensoring with 28 we 

then obtain 

(2.3.7) 

The study of the associated long exact sequence of cohomology provides results 

that are essential in proving that the differential of 4> is injective. In particular 

the approach suggested in [N-R2] relies vitally on lemma 5.3 (see lemma 2.3.10), 

which holds only for curves of genus 3. However, before it is possible to prove it, 

it is necessary to introduce some lemmas. Though both lemma 2.3.7 and lemma 

2.3.9 use well known ideas, no explicit reference is available, hence complete 

proofs are given. 
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Lemma 2.3. 7. Let E be a stable vector bundle with trivial determinant which 

is isomorphic to an extension of~ E Jl by ~- 1 , then h0 (C, E@ ~(p)) = 1 for 

general p E C. 

Proof. By assumption, ~-t E J- 1 is a maximal line subbundle of E, hence 

h0
( C, E@ 0 = 1 (see remark 1.3.6) while the Riemann-Roch formula gives 

h 1 
( C, E@ O = 3. By considering the short exact sequence 

(2.3.8) 

where Ev denotes the dual of E and the associated long exact sequence 

it is clear that the result would follow from JP being surjective as h0 ( C, c~) = 2 

and h0 (C, J(~- 1 @ Ev) = 3 as by the Riemann-Roch formula and Serre duality 

one has h0 (C, J(~- 1 ( -p) Q9 Ev) = h1 (C, ~(p) Q9 E) = h0
( C, ~(p) Q9 E). 

Assume that, for all p E C, JP is not surjective, then its rank can be at most 1. 

This means that the evaluation map H 0 (C, J(~- 1 @ Ev)@ 0 ---+ J(~- 1 @ Ev 

has as image a line subbundle L c J(~- 1 @ Ev, where h0 (C, L) = 3. By semi

stability deg L :=:; ~ deg(J<~- 1 @ Ev) = 3. This contradicts Clifford's Theorem 

(see [ACGH], p.107) as h0 (C,L) =1- 0 implies h0 (C,L) -1 :=:; ~degL, but it has 

just been shown that h0 (C,L) = 3 and degL :=:; 3. D 

Remark 2.3.8. Note that every rank two vector bundle F is isomorphic to 

pv@ det F (see [Ha], exercise 5.16 b, page 127). Hence, from now onward, we 

·will not distinguish between a semi-stable rank two vector bundle with trivial 

determinant E and its dual Ev. 

Lemma 2.3.9. Let E E SUc(2) be a stable vector bundle isomorphic to an 

extension of~ E .Jl by ~- 1 . The associated divisoT r5E is smooth at ~(p) for 

general p E C. 
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Pmof. The claim follows from a result of Laszlo (see [La], p.343) 

X E suppbE C p-l 

with equality holding if and only if the Brill-Noether map 

(2.3.9) 

s 0 t f---------~ s 1\ t 

is not identically zero. 

By lemma 2.3.7, the Riemann-Roch formula and Serre duality it is known that, 

for general p E C, h0 (C, E 0 K~- 1 ( -p)) = 1, hence one can select a non

zero global section of the bundle E 0 KE,- 1
( -p), tP. Note that this section is 

unique up to scalar. Consider the zero set of tP. This is either the empty set or a 

divisor Dv in C, in this case, however, stability of E and hence of E0K~- 1 ( -p) 

imply that deg Dv = 1, i.e., Dv is a point of C. One can treat these two cases 

separately. 

The section tP induces a short exact sequence 

and by dualising one obtains 

0---+ e(2p)K- 1 ~ E 0 f,(p) ~ K---+ 0. 

Finally one can consider the long exact sequence associated to it 

Hence, the map (2.3.9) is not identically zero if and only if h0 (C, e(2p)K- 1
) = 0 

as, by lemma 2.3.7, h0 (C,E0~(p)) = 1 for general p. This is exactly the case 

since, for given ~ E J1 and general p, e(2p)K- 1 has degree 0 and is not the 

trivial line bundle. 
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The idea is to show that for given~ and general p this case cannot occur. Again 

there is a short exact sequence induced by the section tP 

and by dualising one obtains 

By tensoring this sequence with ~-t ( -p), one obtains a maximal extension of 

E by ~(p + Dp)I<- 1 E J- 1
, 

0---+ ~(p + Dv)I<- 1 ----+ E----+ J<~- 1 ( -p- Dv) ---+ 0. 

By using theorem 1.5.4 and the fact that ~(p + Dv)I<- 1 is a maximal line 

subbundle of E, one obtains one of the following 

1. ~(p + Dp)K- 1 = ~-t, which implies e = I<( -p- Dv) and hence cannot 

occur for general p; 

2. ~- 1 
( -p - Dp)I< ® E, = O(D), 1.e., K( -p - Dv) = O(D) where D is a 

suitable divisor of degree 2 given by theorem 1.5.4. ·whenever the number 

of such allowable divisors is finite one finds that, again, the identity cannot 

hold for general p. As we \vill show in proposition 2.4.3, there are only 64 

stable vector bundles in SU c ( 2) which admit infinitely many maximal line 

subbundles and these are exactly those of the form EK = L ® K;-
1

, where 

Lis the Laszlo bundle, the unique stable vector bundle in SUc(2, I<) such 

that h0 ( C, L) 2::: 3, and K; is any theta characteristic. On the other hand, if 

EK = L ® K;-t then it follows from proposition 2.4.3 that E is isomorphic 

only to an extension of K;( -p) by K;-1 (p) with p E C and, hence, that the 

curve CK( -p) lies in the support of r5 E for every p E C. One can show 

directly that r5 E is smooth at the generic point of each of these curves. 

Consider the divisor r5~ in .]0 with support { 1J E .1°1 h0 (C, L ® 17) > 0 }; 

r5~ is just the translate of r5 E C J2 via the theta characteristic K;. By 
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proposition IV.9 of [La] we know that b~ can be identified with the surface 

C-C = {O(q- s) I q, s E C}, which is swept by the curves C_P = 

{ O(q- p) I q E C} and has a unique singularity at the origin 0 of J0 (see 

also [ACGH], p.223). The required result is then obtained by translating 

back to be, which is then smooth at every point except at K,. 

Hence the proof is completed. D 

Note that these two lemmas give as a result a proof of lemma 5.3 of [N-R2], 

but it must be remarked that the hypotheses have been weakened as it is not 

required for the line bundle E, to satisfy e ~ e. 

Lemma 2.3.10. ([N-R2j, lemma 5.3} For any E, E J', H0 (J2 ,'Pc;~(28)) = 0, 

that is, no divisor linearly equivalent to 28 can vanish along C~ with multiplicity 

2. 

Proof. Suppose there exists D E 1281 which is singular along C~, in particular 

C~ must lie in the support of D, so there is a vector bundle E E SUc(2) such 

that D = be for some extension 0 ----t E,- 1 ----t E ----t E, ----t 0 by lemmas 1.5.3 and 

2.2.3. This clearly contradicts lemma 2.3.9, which assures that be is smooth at 

the generic point of C~. D 

Remark 2.3.11. It is worth noticing that this result holds only for curves of 

genus 3. For a curve C of higher genus g it is possible to produce 28 divisors 

of the form be, where b is defined as for curves of genus 3, which vanish doubly 

along translates of the curve, C~, where now E, must be in J9- 2 (recall the 

definition of c~ given on page 26). 

At this point we are in a position to understand the differential of cjJ at E, E Jl 

(see map (2.3.5)). The following result is original, in the sense that it is neither 

stated nor proved in [N-R2], however it is the natural result one needs to have 

in order to prove lemma 5. 2. Recall that for every vector v E T~ J', dcp~ ( v) is 
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a map Q~ ---+ N~, hence for every global section s E Q~ it gives a section in 

N~ = H 0 (C, !(2~-2 ) (see page 38). 

Lemma 2.3.12. Let~ E Jl and v E T~Jl, then the map dcjJ~( v) has the following 

characterisation: for any section s E Q~ corresponding to the 2theta divisor 

D s, dcjJ~ ( v )( s) is a section that is zero on the set of points p E C such that 

V E T~(p)D8 • 

Proof. First of all note that it is possible to think of v as a tangent vector to the 

Jacobian J2 at ~(p) since all Jacobians are (non canonically) isomorphic and at 

each point the tangent space is isomorphic to T0 J 0 = H 0 (C, I<)*. So the claim 

is that v is tangent to Ds at ~(p) if and only if the section dcjJ~(v)(s) of !(2~-2 

is zero at p E C. 

Let .6. be a complex disc and let 1 be a holomorphic map from .6. to Jl such 

that 1(0) = ~ and 1n(t)lt=o = v, where t is the variable in .6.. Denote by 

~t the image oft E .6., so that ~0 = ~- Consider the composition of cjJ with 

/, this gives a holomorphic map from .6. to G4 (28). Let {Q~1 }tEil. denote the 

image of this map, in particular Q~0 = Q~. Now let { St} be any holomorphic 

arc parametrised by .6., with the only requirement that St E Q~1 and s0 = s. 

From the characterisation of the tangent space to a Grassmannian at a point, 

we know that dcjJ~(v)(s) = ftstlt=O· To compute this derivative we need to fix a 

point p E C and choose local coordinates ui in some open neighbourhood Up of 

~(p) E J2. Then, up to having to restricts to a smaller disc, St = St(ui), i.e., 

each holomorphic section St is a holomorphic function of the coordinates ui on 

Up. Notice moreover that, for each t E .6., St(~t(P)) - 0 since St is a section of 

Q~1 and hence vanishes along the curve C~1 • Using the chain rule, one can easily 

verify that 

(2.3.10) 

where vi is the i-th coordinate of v and is given by d(~~f)); evaluated at t = 0. 
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IP'U 

~~ 

'/ 

o~ 

Figure 2.3.1: Interpretation of the differential of cjy at E,. 

Hence ~lt=o(E,(p)) = 0 if and only ifl.: 08~1~~;)1u;=o·vi = 0. Note that for general 

p, the divisor Ds is smooth at E,(p), by lemmas 2.3.9 and 2.3.10 (if Ds is split 

then we will see on p.49 that it is smooth at the generic point of C()· Hence 

2.: as~~~;) lu;=O · ui = 0 is the equation of the tangent space to Ds at E,(p) and the 

statement is proved. If E,(p) is not a smooth point of Ds then the tangent space 

at E,(p) is degenerate and coincides with that of P, so any vector vis tangent 

to Ds at E,(p). On the other hand, because of equation (2.3.10), d;/ lt=o(E,(p)) is 

also zero and the claim is proved. D 

The remaining part of the section is devoted to explaining how one obtains the 

results stated in lemma 5.2 of [N-R2]. None of the following can be found in 

the paper of Narasimhan and Ramanan, though it is the natural explanation 

for the results they state. 

First note that the differential map dcjy( : T(Jl -t T1(0 G4(28) can be thought 
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of as a pairing 

Q9 H0 (P,Ic~(28)) ~ H 0 (C, K2~-2 ). 
11 11 

Q~ N~ 

Recall that the Gauss map of a smooth n-dimensional variety X embedded in 

projective space !Pm is a map 1 : X ---+ G( n, m) such that at each point p E X 

the image I(P) is just the projectivised tangent space IPTpX. The Gauss map 

is still defined if X has isolated singularities, in which case it is a rational map. 

From now onward we will denote by e a point in IPQ (see the definition on page 

30) and by se any corresponding section in Q~ (since se is identified only up to 

a multiplicative constant), by E the semi-stable vector bundle c-(e) and by De 

or bE the associated 28 divisor, while ~ = 1r(e) E Jl is the line bundle such 

that e E IPQ~. Moreover, we will denote by v the projectivisation of a non-zero 

vector v E H 0 (C,K)*. 

Remark 2.3.13. Let ID be the Gauss map of the 28 divisor D = De corre-

sponding to e E lP'Q~, restricted to the image of the curve C~ c D or, rather, 

to C. Then ID : C ---+ (lP'9 -
1 )* = IKI is such that p ~ IPT~(p)D· Under these 

assumptions the zero set of a section d</J~(v)(se) consists of those points p E C 

such that v E H 0 (C, K)* lies in the tangent space T~(p)D c H 0 (C, K)*. 

Clearly the point e E lP'Q~ = lP'H0 (P,Ic~(28)) belongs to the kernel of d</Jr.(v) 

Qf. ----f H0 (J2,28)/Q~ if and only ifv E npEclo.(p), where we think ofloe(P) 

as a hyperplane in IKI* (for those points p for which it does not degenerate to 

the whole space). 

At this point it is clear why lemma 2.3.10, i.e., lemma 5.3 of [N-R2] is so 

important. It assures that the Gauss map of any 28 divisor is well defined 

along the restriction to the translates Cr.. Without it the whole construction 

fails. \iVith this basic remark in mind it is easy to prove the next corollary. 
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Corollary 2.3.14. The kernel ofdfe can be identified with the intersection of the 

tangent planes to De along c~ and so, up to projectivising, with npEC /De (p) c 

(IP'g-1)*. 

Proof. This is just lemma 2.3.6 together with the above remark. In fact by 

lemma 2.3.6, v lies in Ker dfe if and only if e belongs to Ker de/>~ o d1r( v) = 

Kerdcf>~(v), if we denote d1r(v) by iJ. vVe have already seen (see page 38) that 

it is enough to consider vectors v that give a non-zero projection to Jl. Conse-

quently, v E Ker dfe if and only if dcf>~(iJ)(se) is the zero section of N~. This, in 

turn, is the same as stating that V lies in npEC !De (p) = npEC IP'T~(p)De. 0 

The next step consists in understanding the Gauss map /D, for any given 28 

divisor D. Clearly npEC !v(P) = 0 if and only if the Gauss map ID is non

degenerate. 

vVe shall divide the study of the Gauss map in two cases, when the divisor De 

is a split divisor and when it is not. 

Split Divisors 

Let De be a split 28 divisor, then De= Dq = 8~(-q) + 8~-l(q) for some q E C. 

In this case we also write sq instead of se for a corresponding section in Q~. One 

can easily verify that C~ c 8~(-q) as 

C~ = { ( E ] 9 -
1 

: ( = ~(p) and p E C} 

8~(-q) = {( E p- 1
: h0 (C,(0~- 1 (q)) > 0} 

and clearly if ( = ~(p) then ~(p) 0 ~- 1 (q) = O(p + q) always has sections. 

Moreover one can show that C~ n 8~-l(q) i- 0 and consists of 3 points as the 

fundamental class of C in J9-
1 is given, again, by Poincare formula, ~~~;):, and 

hence IC n 81 = (go_:_l)! = g = 3. 

It is easy to describe the map /Dq when Dq 8~(-q) + 8~-l(q). As noticed 
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above ~(p) E 8E(-q) if and only if CJ(p + q) E 8 and by Riemann-Kempf Sin

gularity Theorem (see [Ml], p.264) this is always a smooth point of 8, as C 

is non-hyperelliptic, and it is possible to explicitly describe the tangent space 

TE(P)eE(-q) ~ To(p+q)e = UvEIO(p+q)l D = pq where D is the linear span of the 

canonical image of D. Hence, the Gauss map of 8E(P) is 

/e~(-qJ : c ----IKI 
P~pq 

Clearly /e~(-qJ is a star in IKI* with centre q. The Gauss map /Dq will coincide 

with /e~(-qJ except at the 3 intersection points CEn8E-l(q) where it degenerates, 

as each of these is a singular point of Dq the projectivised tangent space is the 

whole IKI*. Hence we have that npECfDq(p) = {q}. In particular if V is a 

tangent vector to IPQ at e and v is its non zero projection to J1, then dfe( v) = 0 

if and only if v = q as a point of II<I*. 

c 

Figure 2.3.2: Tangent spaces to eE(-q) at ~(p) and ~(p') viewed in IKI*. 

Remark 2.3.15. Recalling 2.3.13 one can give a description of the zero set of 

each section dcjJE(v)(sq) in H0 (C, 1<2~-2 ). If v E H0 (C, K)* is a fixed vector 

then one of the following occurs: 

• if v E I I< I* I C then the zero set of the global section dcjJE ( v )( Sq) is given 

by { c n qv} 1 { q} plus the 3 singular points; 
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• if v E C C I K I* then the zero set of d</Jt; ( v) ( Sq) can be one of the following: 

either {C n qv}/{q} plus the 3 singular points if v # q, while, if v = q, 

then v lies in every tangent space, i.e., the corresponding global section 

in H 0 (C,K2E,-2
) is the zero section. 

Summarising, /De : C -----+ IKI is degenerate whenever De is a split divisor; in 

particular if De = 8t;(-q) + 8t;-l(q) then we have seen that npEC /De (p) = { q }. 

Note that this is not a problem since one only needs to prove the injectivity 

of the differential df at points of IPQ that map to stable bundles with finitely 

many maximal line bundles (see lemma 2.3.4), while by the commutativity of 

diagram (2.2.6) in lemma 2.2.1 it is known that split 28 divisors come from 

semi-stable, non stable vector bundles. However it is interesting to have the 

complete description of df at every point. 

Non-Split Divisors 

Now one has to describe the Gauss map associated to non-split divisors D 

corresponding to global sections of Ice (28). Fix a point e E IPQt; corresponding 

to a stable vector bundle E and to a non-split divisor De = c5E. 

Recall the Brill-Noether map introduced in lemma 2.3.9 and defined as 

Pt;(p) : H 0 (C, E,(p) ®E)® H0 (C, KE,- 1
( -p) ®E)----+ H0 (C, K) 

(s®t) sl\t 

where again E is identified with its dual (see remark 2.3.8). As in classical 

Brill-Noether theory for line bundles (see [ACGH], chapter IV), the above map 

governs the local structure of the determinantal divisor De, in the sense that 

the Gauss map of De is given by 

c--~IKI (2.3.11) 

p~ IP(Im Pt;(p))· 

With this in mind one can prove 
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Proposition 2.3.16. The Gauss map "!De is a non degenerate rational map for 

any e E IP'Q€ mapping to a stable vector bundle and satisfying property(*). 

Proof. As seen in lemma 2.3.9 the Brill-Noether map P€(p) is injective at the 

general point p E C as long as E is stable. 

Consider now the rational map induced by the global sections of the vector bun-

1 at the general point p of C (see lemma 2.3.7). This is, by definition, a map 

to the Grassmannian G2 (H0 (C, J{~- 1 0 E)*), yet it can be thought of as a map 

to IP'H0 (C, K~- 1 0 E), 

c ~H0(C, I<~-~ 0 E)*) 

~ --c1(H0 (C, J<~- 1 0 E)) 
~ 11 

1/J~ IP'H0 (C, K~- 1 0 E) 

where '1/J€ maps the general point p E C to the space of global sections of 

I< ~- 1 0 E vanishing at p. By construction '1/J€ is a non-degenerate map. One 

can consider another Brill-N oether type map 

introduced in [0], p.12. This map is injective if and only if the set of maximal 

line bundles of E is smooth in .J- 1 and has codimension 3 (see [0], proposition 

2.4). If e satisfies property (*), P€ is injective and, by a dimension count, an 

isomorphism; however if it doesn't then P€ fails to be injective. 

vVe restrict to points e that satisfy ( *) and hence can consider the diagram 

(2.3.12) 

where P is obtained by composing with a Segre embedding the projectivisation 

of P€. Hence even P is an isomorphism and the composition with '1/J€ is non-
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degenerate. So it is enough to show that the diagram (2.3.12) commutes to 

prove that /De is non-degenerate. Take a generic point p E C, then 

P('lf;~(p)) = P(IPH0 (C, J(~- 1 ( -p) 0 E)) 

= IP(P~(H0 (C, ~ 0 E) 0 H 0 (C, K~- 1 ( -p) 0 E)--+ H 0 (C, K))) 

~ IP(P~(p) (H0 (C, ~(p) 0 E) 0 H 0 (C, K~- 1 ( -p) 0 E) --+ H 0 (C, K))) 

=JP(! m P~(p)) 

=/De (p) 

where in the third step we have used the fact that the inclusion of the space 

H 0 (C, ~ 0 E) in H 0 (C, ~(p) 0 E) is an isomorphism for general p, since the two 

spaces have the same dimension. D 

Note that it is precisely during the proof of proposition 2.3.16 that we see why 

it is necessary to introduce property ( *) (see page 36). If e E IPQ fails to 

satisfy this requirement then the corresponding Gauss map is degenerate and 

one cannot show injectivity of the differential dfe· On the other hand, if e E JPQ 

satisfies ( *) and maps to a stable vector bundle then npEC /De (p) = 0 and dfe 

is injective. Now we can gather all this information in a result which is the 

analogue of lemma 5.2 in [N-R2]. 

Finally, this proves injectivity of the differential of f at e E JPQ as long as e 

maps to a stable vector bundle and satisfies property ( *), i.e., it maps to a 

stable vector bundles with only finitely many maximal line subbundles. 

We can at last conclude the proof of lemma 2.3.4. By applying corollary 2.3.14, 

v E J( er dfe if and only if any section se corresponding toe in JCer dcjJ~( v), where 

v = cl7r( v) # 0. equivalently, corollary 2.3.14 sates that v E JCeT dfe if and only 

if V E npEC /De (p). Then the previous proposition says that if e maps to a 

stable vector bundle and has property ( *), the corresponding Gauss map is non 

degenerate and hence no vector v can lie in the kernel of dfe· On the other 

hand, if e maps to a semi-stable vector bundle or does not satisfy ( *) then dfe 

is not injective. 



Tlle Cable quartic 54 

It is also worth noticing that if e maps via c to a stable vector bundle with 

infinitely many maximal line subbundles then it is easy to see directly that dfe 

cannot have maximal rank, since dce maps to zero any vector v tangent to the 

1-dimensional fibre c-1 (c(e)) ate and by commutativity of diagram (2.2.6) this 

implies that dfe(v) = 0 too. 

Moreover one can re-obtain Narasimhan and Ramanan's result concerning the 

description of the map dc/Jt; ( v) in terms of the vector v. This allows us to say 

exactly which vectors lie in the kernel of dfe, if any, in terms of their projection 

to IKI*. 

Proposition 2.3.17. Let~ E Jl and v E T~;Jl be a non-zero projection of a 

tangent vector v to JPQ. If all e E IP'Q~; satisfy property (*) or map to non-stable 

vector· bundles, then one of the following occurs: 

injective; 

• ifv E Cc IKI* then dc/J~;(v) E Hom(H0 (P,Ic~(28)),H0 (C,K2~-2)) 

has a 1-dimensional kernel and this, as a point of IP'Q~;, corresponds to the 

point mapping to the semi-stable, non stable vector bundle 8t;(-p)+8~;-t(p)· 

Proof. It is clear from the above constructions that if e E IP'Q~; represents a sta

ble bundle then npEC /De (p) = 0, while if e represents a semi-stable, IlOil Stable 

bundle then De= 8t;(-q) + 8~;-l(q) for some q E c and npECTDe(P) = {q}. 

Hence, by remark 2.3.13 and corollary 2.3.14, the map dc/J~;(v) is injective un

less v = q E C C IKI*, in which case the kernel consists of the line in Qt; 

corresponding to the semi-stable, non stable vector bundle 8~;( -q) + 8t;-t (q). 0 

Note that to require every point e E IP'Qt; to satisfy property (*) or map to a 

non stable vector bundle, implies that~ E Jl must satisfy the conditione tf:_ 8. 

In fact, there are points of IP'Qt; mapping to stable bundles with infinitely many 
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maximal line bundles only if~= K;( -p) for some choice of a theta characteristic 

K; and point p E C as will be shown in proposition 2.4.3 and in this case it is 

immediate to verify that e has non zero global sections. However the above 

description is not needed in the proof of proposition 2.3.4. 

This concludes the proof of the fact that c5 is an embedding of SUc(2) in 1281. 

Note, that contrary to [N-R2], we have given a complete account of the be

haviour of the differential df at every point e in the vector bundle JPQ. 

2.3.1 The Coble quartic 

Before ending this section I will briefly talk about the degree of SUc(2) as a 

subvariety of 1281. It is a well known result (see [N-R2] and [0-P]) that the 

image G of SUc(2) in 1281 is a degree 4 hypersurface singular along Kum(J0
). 

In fact it is the only quartic in JP7 with this property. 

Moreover it is also the only Heisenberg invariant quartic of JP7 singular along 

K um( J 0
) and it is classically known as the Cob le quartic. 

The degree of G = c5(SUc(2)) is computed using, again, the commutativity of 

diagram (2.2.6) and the fact that c5 is an embedding. In fact, G = f(JPQ) and, 

as f is a finite map, its degree is given be the well known formula (see [F], 

example 8.3.14, p.144) 

deg j · deg (!m j) = r Ct (j* 01281 ( 1) )dim !P'Q. 
IJ>Q 

From what has been said in the previous section it is clear that cleg J = deg c 

since c5 is an embedding. Moreover deg c = 8 since the general stable vector 

bundle E E SUc(2) has 8 maximal line subbundles (see example 1.5.5). 

Oxbury and Pauly showed in [0-P], p.310, that J c1 (!*01281 (1) )dim !P'Q = 32, 

from which the fact that G is a quartic immediately follows (see remark 3.2.4). 
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2.4 A counterexample to a claim ofNarasimhan 

and Ramanan 

Let C continue to be a smooth non-hyperelliptic, non-bielliptic curve of genus 

3. In order to prove the statement about the differential of f it has been 

necessary to characterise the maximal line subbundles of stable vector bundles 

E E SUc(2). In doing so, I have found a counterexample to lemma 5.4 of 

[N-R2], more precisely there are 64 Veronese cones in SUc(2) of vector bundles 

that fail to satisfy the claim. To show that this is the case, it is first necessary 

to recall some facts about SUc(2, K), the moduli space of rank two semi-stable 

vector bundles with canonical determinant. 

Remark 2.4.1. Note that in analogy to what has been done in the previous 

paragraphs, it is possible to define a map 5' from SUc(2, K) to the linear 

system I.CI such that for any F E SUc(2, K), 5'(F) has as support the set 

{17 E 1° I h0 (C, F ® 17) > 0}. Clearly this map has similar properties to 5. 

An important feature of SUc(2, K) is its Brill-Noether stratification, we will 

refer to the work of Oxbury et al. in [0-P-Pr] for the results concerning it. 

Proposition 2.4.2. (see {0-P-Pr}, §5) If Wi is the closure of the set of stable 

vector bundles E E SUc(2, K) such that h0 (C, E)> i, then for non-hyperelliptic 

curves of genus 3 the stratification consists of 3 varieties 

1. W 0 is just the generalised theta divisor of the moduli space SUc(2, K) and 

consists of those vector bundles that have non zero global sections; 

2. W 1 is a cone over a Vemnese surface, its generators are exactly the trise

cants to Kum(J2) in SUc(2, K); 

3. W2 is the vertex of the cone, i.e., there is a unique stable vector bundle in 

SUc(2, K), called the Laszlo bundle and denoted L, such that h0 (C, L) = 3 

(see {La}, p.342}. 
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Moreover it is immediate to verify that if a stable bundle E E SUc(2, K) 

satisfies h0 
( C, E) 2 2 then all its maximal line sub bundles, which by stability 

must have degree 1, are of the form O(p) for some p E C. Conversely if 

E E SUc(2, K) has no non-zero global section then none of its maximal line 

subbundles can have sections either, so they cannot be of the form O(p) with 

p E C. To verify the above statements, simply consider the long exact sequence 

associated to the extension 0 ----+ ( -----+ E -----+ K(-1 ----+ 0 where ( E Jl is a 

maximal line subbundle of E, 

Note that by the Riemann-Roch formula and Serre duality, h0 (C, K~- 1 ) 

h0 (C, ~)+1, while the exactness of the above sequence then implies that h0 (C, E) ~ 

2h0 (C, ~) + 1. Hence h0 (C, E) 2 2 forces h0 (C, ~) 2 1, i.e., ~ = O(p) for some 

choice of a point p E C. On the other hand, if h0 (C, E) = 0 then necessarily 

h0 (C,~) = 0. 

Any choice of a theta characteristic rt, E '19 (C) allows to pull-back the cone 

over the Veronese surface W 1 from SUc(2, K) to SUc(2), so that in SUc(2) 

it is possible to identify 64 = 229 distinct such cones, one for each choice of rt,. 

Moreover, the above remark allows one to conclude that every vector bundle 

on these "translated" cones admits only maximal line subbundles of the form 

O(p)@ rt,- 1 = rt,-
1(p) E J- 1, where rt, is fixed by the translation. 

Proposition 2.4.3. If C is a general non-hyperelliptic, non-bielliptic cur·ve of 

genus 3 then SU c(2) contains exactly 64 Veronese cones whose general point 

is a stable vector bundle with all maximal line subbundles ~-I E J- 1 satisfying 

e Ee. 
In particular the cone obtained by translating W 1 by rt, E '19( C) has, as vertex, a 

stable vector bundle EK = L@ rt,- 1 which admits an infinite family of maximal 

line subbundles {rt,-
1(p) : p E C}; while the general point is a stable vector 
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bundle with 7 maximal line sub bundles { K: -
1 (pi) : Pi E C}. 

Proof. The first statement is just a consequence of the above remarks, as it 

is enough to notice that if E is a vector bundle in the cone translated by K: 

then all its maximal line subbundles are of the form ~- 1 = O(p)K:- 1 and hence 

t:,2 = K( -2p) is a degree 2 line bundle with non zero global sections, i.e., an 

element of e. 

As for the second part of the proposition it is necessary to recall that if a stable 

vector bundle E E SUc(2) admits a maximal line subbundle ~- 1 = O(p)K:- 1 

then it can be thought of as a point in the 3 dimensional space of extensions lP(~). 

Moreover, as seen in example 1.5.5, the general stable bundle with this property 

has 7 maximal line subbundles. These are all of the form K:- 1(qi) since they are 

all translates of the maximal line subbundles ofF= E@ K: E SUc(2, K) with 

h0 (C, F)= 2, whose maximal line subbundles are O(qi) for some finite number 

of qi E C. 

As for the vertex, the only thing left to prove is that it admits infinitely many 

maximal line subbundles. Note that the Laszlo bundle has this property since its 

maximal line sub bundles are { O(p) : p E C}, in fact, h0 ( C, L) = 3 being strictly 

bigger than rk ( L), for every p E C there exists a non zero section s E H 0 
( C, L) 

which vanishes at p and hence 0 -t O(p) -t L -t K( -p) -t 0 is exact (see [La], 

proposition IV.7). Moreover we also know that all its maximal line subbunclles 

are of this form. Hence the vertex of the Veronese cone W 1 translated by K:- 1 

has infinitely many maximal line sub bundles { K:-
1 (p) : p E C}. 

Finally one has to verify that the 64 Veronese cones are distinct. Assume there 

are two cones intersecting at a stable point E E SUc(2), then there exist two 

distinct vector bundles F, G in the Veronese cone of SU c ( 2, K) and two distinct 

theta characteristics K:, A such that E = F@ K:- 1 = G@ -\- 1 . In particular this 

means that F = G@ 17 where TJ = _\-1K: E J 0 is a two-torsion point, i.e., 

172 = Oc. Moreover both F and G lie in the Veronese cone, hence h0 (C, F) ~ 2 
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and h0 ( C, G) ;::: 2. In particular this implies that there exists p E C such that 

O(p) is a maximal line subbundle of G, giving an exact sequence 

0 ----* O(p) ---t G ---t I< ( -p) ----* 0. 

This gives the following short exact sequence for F 

0 ----* TJ (p) ---t F ---t I< 17 (-p) ----* 0. 

Hence h0 (C, TJ(p)) ;::: 1, i.e., there exists q E C such that TJ(P) = O(q). Then 

172 (2p) = 0(2p) has to be equal to 0(2q) and since C is non-hyperelliptic this 

implies p = q and, thus, 17 = 0, i.e., r;, =.\which contradicts the hypotheses. 0 

Remark 2.4.4. Note that by example 1.5.5, we already know that each ex

tension space JP(O with ~ = r;,( -p) has exactly one point which parametrises a 

stable vector bundle with infinitely many maximal line subbundles. The above 

proof shows that this vector bundle is L ® r;,- 1
. 

Concluding, as shown above, lemma 5.4 of [N-R2] is clearly false. However, we 

have also seen that this does not affect the proof of the fact that the map <5 is 

an embedding, since there is no need to restrict attention to line bundles with 

any particular property. 



Chapter 3 

Abel-Jacobi stratification 

This chapter recalls the construction of the Abel-Jacobi stratification of 1281 

as defined by Oxbury and Pauly in [0-P] and presents some new results on the 

characterisation of some of the varieties that compose it. The idea behind the 

Abel-Jacobi stratification is to generalise the construction of the 3-ruling IPQ 

over the Jacobian Jl outlined in [N-R2] for non-hyperelliptic curves of genus 3 

(see §2.2) to curves of higher genus g. These varieties are interesting since they 

are related to classical subvarieties of 1281, for example the first element of the 

stratification, G 1, is the Kummer variety J( u:m( 1°), while the second, denoted 

G2 , contains the trisecants to the Kummer (see [0-P-Pr], §2). However, little is 

known about the general element, in fact apart from the two cases mentioned 

above, even the dimension of the other varieties is unknown. In §3.2, I '"ill 
show that the top variety of the stratification, G 9 _ 1, is always a hypersurface 

and compute its degree for all curves of genus at least 4. Finally, recent results 

by Pareschi and Popa in [Pa-Po], allow me to make some additional remarks 

and computations on the general element of the stratification. 

From now on C will be a nonsingular, complete, non-hyperelliptic curve of genus 

g ~ 3 and we will continue to use the notations and conventions of chapter 1. 

60 
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3.1 The stratification 

Recall that vVet is the image of the d-th symmetric product of C, Get, in the 

Jacobian Jet via the Abel-.Jacobi map Uet; in particular vVl ~ c and Wg-1 ~ 8 

(see [ACGH], p.25). The idea is to construct and characterise subvarieties 

described, set-theoretically, in the following way 

Get+ I = { D E \28\\ vVg-et-l,ry-1 c Stlpp D, for some T} E Jet} 

G;_et ={DE \.C\ I Wet,ry c StlppD, for some T} E Jet} 

O~d'Sg-2 

1~d~g-1 

where, for any line bundle A E Ji, Wet, .x is the translate of l1Vet to Jet-i obtained 

by tensoring with A-l. 

Remark 3.1.1. Wirtinger duality (see lemma 1.1.2), assures that \28\ and \.C\* 

are canonically isomorphic, yet an isomorphism between \28\ and \.C\ depends 

on the choice of a theta characteristic "' E ·!9( C). Once such a choice has been 

made, it is easy to verify that Get :::: G'd. 

Because of the above remark it is enough to consider the study of the varieties 

Get contained in \28\ and then translate by "' to obtain analogous results for 

the varieties G'd. 

Remark 3.1.2. It is immediate to verify that Get c Get+t, since if D E \28\ 

belongs to Get, there exists a line bundle T} E Jet-l such that vVg-et,TJ-1 c s·uppD. 

This implies that vV9 _et_ 1, 11 - 1 ( -p l c s·upp D for all line bundles TJ (p) E Jd with 

p E C. 

The defined objects constitute a stratification, the Abel-.Jacobi stratification of 

\28\ and \.C\, respectively. Some of the varieties of these stratifications are easily 

identified 

• G 1 = {D E \28\\8,1-t C suppD, r7 E J 0
} and hence is just K'U1n(J0

). 

Clearly Kum(J0
) C G 1 as every split 28 divisor 81l+81rt with tL E J 0 lies 
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in G1 . Conversely, if D E 1281 belongs to G 1 it means that D is linearly 

equivalent to 28 and there exists a line bundle TJ E J 0 such that 81)-1 

is contained in the support of D. Hence, if we denote by D' the residue 

divisor D- 81)-1, D' + 81)-t is linearly equivalent to 28, as is 81) + 81)-1 

by remark 1.1.1. This implies that D' and 87J are linearly equivalent. 

Since 8 is a principal polarisation h0(Jg-l' 81)) = 1, i.e., D' = 81) and 

D = 81) + 81)-1 E I<um(J0
). 

Similarly G;' = I<um(J9 -
1

) in 1£1. 

• If g = 3 there are only two varieties, G 1 = I<um(J0
), and G2 = {D E 

12811 C1J-1 c supp D, TJ E Jl }, which is just the embedded image of 

SUc(2) in 1281 as seen in chapter 2 (see the proof of lemma 2.2.3 and 

remark 2.2.5). 

Remark 3.1.3. One could define an Abel-Jacobi stratification for non-singular 

complete curves of genus 2, in which case the stratification would consist of just 

one element G 1 = I< um( J 0 ), the Kummer surface, as can be seen by repeating 

the argument for G 1 presented above. 

One has the following inclusions 

In particular, in the genus 3 case this reduces to 

Moreover, it is well known that G 1 is the singular locus of G2 . 

In general it is not known how these varieties are related to one another, or even 

what their dimensions are. To try to tackle some of these problems, we now 

review the formal construction of these varieties as given in [0-P], §§7 and 10. 



Abel-Jacobi stratification 63 

Consider the diagram 

(3.1.1) 

where ,6d is defined as a "difference" map f3d(17, D)= 77- 1(D), while 7rd is just the 

projection to the first factor. Note that when d = 1 and17 E Jl is fixed, (31 ( 7], ·) 

is just the map (311 of chapter 2, page 26, its image being C11-1, the 17 translate 

of the curve C = l1V1 in J0
. In general, for any line bundle 17 E Jd the image of 

!3d( 7], . ) , i.e., the restriction of !3d to {'17} X cd, is the translate lVd,l) of lVd in the 

Jacobian 1°. Then one can define a coherent sheaf on Jd, Qd d;j 7rd*f3'd.C. 

At this point we recall a result of Oxbury and Pauly. Note that from here on 

we use the notation of §A.1 of the Appendix. However, we briefly recall that xd 

and ()d are classes on the symmetric product Cd. Moreover, if L is a line bundle 

on the curve C, (L)d is the induced line bundle on Cd (see §A.3), while~ is the 

diagonal divisor on cd. 

Proposition 3.1.4. (see [0-Pj, proposition 10.1) Let £ 11 be the pull-back 

(f3'd.C) I {IJ} xcd for any line bundle 7] E Jd, then the following equalities hold: 

3. X ( C d, £ 17 ) = 'L,~1=0 ( D, where x denotes the Euler characteristic. 

The first equality implies that for every line bundle 17 E Jd 

If d = 1, the right-hand side becomes H 0 ( C, I< rJ 2
), so that this generalises the 

result of lemma 2.1.2 or, rather, the following remark 2.1.3 (Oxbury and Pauly's 
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proof is in fact based on induction on d starting from this older result). In [0-P] 

it is conjectured that the coherent sheaves Qd are locally free, i.e., vector bundles 

over Jd, for all integers d for which they are defined. This result was eventually 

proved by Pareschi and Popa in [Pa-Po] by showing that all cohomology groups 

Hi(Cd, .Cry) are zero fori ~ 1, since this result together with proposition 3.1.4 

assures that the fibres of Qd are equidimensional. In more detail, they prove 

the following proposition. 

Proposition 3.1.5. Oxbury-Pauly conjecture {see [Pa-Po}, corollary 4.3) 

With the same notation as above 

As previously said, this proposition assures that Qd is a vector bundle for every 

integer d and that for every line bundle 17 E Jd the corresponding fibre of Qd is: 

Note that for curves of genus 3 and d = 1 these results are well known as 

seen in lemma 2.1.2 and lemma 2.1.4, i.e., lemma 4.1 of [N-R2]. The cases 

d = 1, 2, g- 1 and g are mentioned in the appendix of [0-P], where a complete 

proof is given only for curves of genera 3 and 4. However, in oder to prove part 

1. when d = 2, the authors refer to [Br-V], proposition 4.9, where the statement 

is proved for curves of any genus. 

Finally, part 2. of proposition 3.1.5 is equivalent to stating that the restriction 

map 0 1 d ® H 0 (J0
, .C) ---+ Qd is surjective. Hence one obtains a short exact 

sequence of vector bundles on Jd 

(3.1.2) 

where Nd is by definition the kernel of {3d, and, as such, has fibres Nd, 11 = 

H 0 (J0
, Iwd,ry_ 1 (.C)), if we denote by Iwd,,1 the ideal sheaf of vVd, 11 • By considering 
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the projectivised bundle associated to Nd for every integer 1 < d < g - 1, 

JP>Nd c Jd x I-CI, one can define the following ruled varieties 

It is immediate to verify that these are the same as the varieties described set

theoretically at the outset of the chapter since we have just noticed that JP> Nd,,., 

consists of divisors in I .Cl which contain vVd,l) in their support, that is, the image 

of { 17} x Cd in J 0 via the map f3d· Ox bury and Pauly also consider the dual of 

sequence (3.1.2) and, by identifying the space H 0 (J0 , .C)* with H 0 (JY-
1

, 28) via 

vVirtinger duality (see proposition 1.1.2), obtain another short exact sequence 

on each .Jacobian Jd 

(3.1.3) 

Again, they consider the projective bundle JP>Q'd associated to the vector bundle 

Q'd and define ruled varieties in 1281 for every integer 0 ::; d ::; g- 2 

Gd+1 d;j im {JP>Q;t C Jd x 1281 ----+ 1281}. 

However in this case it is not so obvious that these are the same as the varieties 

considered at the beginning of this chapter, but this follows from the next 

proposition. 

Proposition 3.1.6. (see (0-Pj, proposition 7.2} For any line bundle 7] E F1 

with 0 ::; d ::; g -1, the following chamcter·isation holds: JP>Q'd,,., can be ·identified 

with { D E 12811 W9 _ 1-d,1]-i c supp D}. 

Proof. The first step consists in evaluating the ranks of the vector bundles Qd 

and Nd. The rank of Qd is given by proposition 3.1.5 (1.), since the rank is the 

dimension of the general fibre and dim Qd,l) = 2.:.:t=o (~). Moreover it is well 

known that h0 (J0
, .C) = 29, and hence using sequence (3.1.2) one can evaluate 

the rank of the bundles Nd: 
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._.L N - g ,J_ Q - '\"g (g) - '\"g-d-1 (g) - -~- Q 
'"' d - 2 - '"' d - L...i=d+l i - L...i=O i - '"' g-d-1· 

Secondly Oxbury and Pauly observe (see [0-PJ, proposition 7.2), that the iso

morphism of H 0 
( J9- 1

, 28) with H 0 ( J 0
, .C) given by a choice of a theta charac-

teristic K, restricts to 

Hence, if for any divisor DE 1281 one denotes by D,_ the corresponding divisor 

in 1£1 obtained by translating via K,, one obtains the required identity 

IP'Qd,1J ={DE l28lll¥g-d-l,7J'ct C suppD,_} 

= {DE 12811 vVg-d-I,1)-t C supp D}. 

D 

Remark 3 .1. 7. Though Ox bury and Pauly define the varieties G d and Gd 

for every integer d in the correct range, it is only because of the result of 

Pareschi and Pop a (see proposition 3 .1. 5) that the construction is proved to be 

meaningful in all cases. 

At this point it is natural to enquire about the dimension and degree of all Gd's 

as subvarieties of 1281. Apart from the trivial case of G 1 = Kum(J0
), this has 

been explicitly clone in just one case, that of G2 or, rather, c;. In his Ph.D. 

thesis, Gronow observes that proposition 3.3 of [L-N] implies that the projection 

from J9-2 x I .Cl to I .Cl is injective on an open set of lP' Ng_ 2 for any curve of genus 

at least 4 (see [Gr], remark 2.0.4). As an immediate consequence one has the 

dimension ofG; since it is that of1P'Ng_2 , dim c; = rk Ng_2 -l+clim Jg-2 = 2g. 

Moreover, he explicitly computes the degree of G2 (see [Gr], proposition 3.2.9, 

p.39) 

* ~( )k k! (g) (2g) cleg G2 = cleg G2 = (-4)g ~ -1 
2

k k k · 
k=O 

(3.1.4) 
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In order to consider the other Gd's, recall that we have the following diagram 

JPQ;t'---____,.. Jd X J28J 

lfd lIT 

Gd+t J28J 

If fd were a map of finite degree, which is a "reasonable" expectation by a 

dimension count, then the dimension of each Gd+l would be known- being the 

same as that of the corresponding JPQ;t - and the degree could be computed 

using the following classical result (see [F], example 8.3.14, p.144). 

Let xm be a variety of dimension m obtained as projectivisation of a vector 

bundle over a give variety Y and f a map of finite degree xm ----t lF, the degree 

of the image f(Xm) is given by 

For the moment we leave aside the problem of determining whether fd has finite 

degree and end this section with some remarks. 

Remark 3.1.8. The following remarks are implied in [0-P], §7: 

1. J*OIP'n(l) = OIP'Q;t(l) hence it is enough to compute the first Chern class 

of the twisted structure sheaf of JPQ;t; 

2. the self intersection of the hyperplane class in IPQ;t is the top Segre class 

of Q;t and, in turn, this is the top Chern class of Nci because of sequence 

(3.1.3); 

3. since Qd ~ N;_d-t via a choice of a theta characteristic "' (see the proof 

of proposition 3.1.6), the top Chern class of N; is the same as c9 (Qg-ct-d; 
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4. by making the substitution d +-+ (g- d- 1) the degree of Gg-d should be 

given by 

(3.1.5) 

where deg fg-d- 1 is the number of translates of lVd contained in the sup

port of the general D E G9 _d, i.e., the number of line bundles 17 E J9-d 

such that liVd,1J-l c supp D. 

3.2 The hypersurface case: Gg-1 

In this section the attention will be focused on the top element of the Abel-

J acobi stratification, G 9 _ 1 . In this case d = 1, hence we are restricting attention 

to 28 divisors which contain translates of W1 ~ C in their support. If the map 

fg-d- 1 = f 9 _ 2 can be shown to be of finite degree, then the dimension of G9_ 1 

is 29- 2, i.e., it should be a hypersurface of 1281 (see [0-P], remark 7.1). This 

is known only for non-hyperelliptic curves of genus 3, in which case G 9 _ 1 = G2 

is the embedded image of SUc(2) in 1281 and the map j 1 has degree 8 (see 

page 55). In [0-P], §7, Oxbury and Pauly show how to compute the top Chern 

class of the vector bundle Q 1. In proposition 3.2.2 I provide a closed formula 

for c9 (QI). However, [0-P] fails to prove that f 9 _ 2 is a finite degree map and 

find its degree. In proposition 3.2.5 I show that f 9 _ 2 is a map of finite degree 

map of degree 1 for all non-hyperelliptic curves of genus g 2:: 4. Moreover this 

fact and the evaluation of c9 (Qt) allow me to use formula (3.1.5) and compute 

the degree of G9 _ 1 for all g 2:: 4. 

First we give Oxbury and Pauly's computation of the top Chern class of the 

vector bundle Q1 over the Jacobian Jl, as presented in [0-P], §7. Consider the 

product variety Jl x C and denote by 1r and p the projections to Jl and C, 

respectively. Let P be the Poincare line bundle on Jl x C such that Pl 1 t x{po} 
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is trivial for some choice of a point p0 E C. Define a coherent sheaf on Jl as 

the push-forward Q' = 1r*(P2 @ p* Kc). Then consider the translation map tp0 , 

Jl --t J 0 such that 1J f----------t 1J( -p0 ) and define a line bundle on Jl as N = t;
0
£. 

p2@ p* ]( 

j n, 
Q' Jl X C-~J0 

1/ ~ 
j1 c 

One can show that Q1 and Q' @ N are isomorphic. To see this, recall that 

Q1 = 7r*(f3;£) by definition and that, hence, it is enough to show that the line 

bundle 13; £ is isomorphic to ( P 2 @ p* ](c) @ 1r* N, since the isomorphism is then 

preserved by the projection to Jl. Consider the line bundles 13; £ @ 1r* N - 1 and 

P 2 @ p* ]( c and note that whenever restricted to { 1J} x C, for any choice of a 

line bundle 1J E Jl, they are are both isomorphic to 7]2 @ K. Note that for 

P 2 @ p* Kc this follows from the properties of the Poincare line bundle, while 

for f3i £ @ 1r* N-1 it is a consequence of proposition 3.1.4 and the fact that 

7r* N - 1 is trivial on { 1J} x C. Moreover the line bundle P 2 @ p* ]( c is trivial over 

Jl x {Po}, while the line bundle N was chosen in such a way that /3; £@ 1r* N- 1 

has the same property. This is enough to assure that the two line bundles are 

isomorphic on Jl x C and hence also their push-forwards to Jl (see [Ha], exercise 

12.4, p.291). Note, moreover that this also proves that Q' is a vector bundle. 

To compute the Chern classes of Q1 , we will first compute those of Q'. The 

results presented in what follows can be found in [0-P], §7, they are presented 

here for clarity and because they will be needed again in §3.3 of this thesis. One 

starts by finding the Chern character of Q' via the Grothendieck-Riemann-Roch 

formula ([ACGH], p.333) 
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where td denotes the Todd class (see [F], p.56), while for any coherent sheaf :F 

on Jl x C, 1r!(:F) = L:i(-1)iRi1r*:F (see [ACGH], p.331). Note that td(Jl) is 

trivial since the .Jacobian has trivial tangent bundle and td(Jl x C) = td(C). 

Remark 3.2.1. One can verify that 1r{P2 ®p* I<c) = 7r*(P2 ®p* I<c) = Q'. One 

starts by noting that all higher direct images of /3~ .C are zero as by proposition 

3.1.5 in this thesis all higher cohomology groups Hi(C, .CTJ) are zero as 7] varies 

in Jl and hence one can use corollary 12.9 of [Ha], p.288, to show that Ri1r(j31.C) 

are zero for i positive. Finally, by the projection formula (exercise 8.3 in [Ha], 

p.253) the same applies to P 2 ® p* I<c, since P 2 ® p* I<c = J3~ .C ® 1r* N-1 . 

The above implies 

ch(Q') = 1r*(ch(P2 ®p*I<c) · (td(C))). (3.2.1) 

In the following \Ve will compute all the terms on the right hand side of the 

equation (3.2.1): 

• td( C) = 1 - (g- 1 );r 

This can be seen by recalling that td( C) is the Todd class of the tan

gent bundle of C, which is a line bundle with first Chern class c1 (Tc) = 

-c1 (I< c) = (2g - 2)x where x is the class of a point on C (see §A.1), 

hence (see [F], p.56) 

1 
td(C) = 1 + 2c1(Tc·) = 1- (g- 1)x . 

• ch(P) = 1 + X +I - xe 
The class 1 E H 1 (Jl,Z)®H1(C,Z) is constructed in [ACGH], p.335, 0 is 

the class of 8 in the .Jacobian (see §A.1 of the Appendix) and the proof 

of the result can be found in [ACGH], p.336. 

• ch(p* I< c) = 1 + (2g- 2)x 

This is a direct consequence of the fact that the first Chern class of I<c 

is (2g- 2)x. 
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It is then possible to compute the Chern character of Q': 

ch(Q') n*((1 + x- 1- x0) 2 (1 + (2g- 2)x)(1- (g- 1)x)) 

n*(1 + (g- 1)x- 40x + 2x + 21) 

g + 1-40 

71 

(3.2.2) 

where one uses well known identities for :c, 1 and 0 (see [ACGH], pp. 335-336) 

and the fact that n*(1) = n*('Y) = 0 while n*(x) = 1, i.e., 1r* selects only the 

coefficients of x. Hence, by applying Newton's formula (see [F], p.56) one can 

compute the Chern classes of Q' 

where p1/j! is the j-th term of the expansion of the Chern character of Q' and 

the only non-zero one is lh = -40. The i-th Chern class of Q' is then given by 

On the other hand the first Chern class of N is clearly 

Ct(N) = 20 

since N is a translate of .C. It is then possible to use classical results to compute 

the top Chern class of Q 1. In particular, the following result gives an expression 

for the top Chern class of Q1 , which cannot be found in [0-P]. 

Proposition 3.2.2. The top Chern class of Q1 is given by 

9 ( -2)i 
c9(Ql) = 2909 L -.,-(g + 1- i). 

z. 
i=O 

Proof. One can use example 3.2.2 of [F] to obtain 

c9(Q' 0 N) 

2:?=o (9;~~i) ci ( Q')ct (N) 9-i 

2:f=o (g + 1 - i) ~ ( -40)i (20) 9-i 

(20) 9 '"' 9 ( -
2

)i (g + 1 - i) L.n=O t! · 

D 
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Example 3.2.3. The top Chern class of Q1 for low genus curves is then easily 

computed 

g=3 

g=4 

g=5 

r c3(Q) = 32 
JIT>Qj 

r c4(Q) = 384 
JIT"Qj 

r c5(Q) = 4096 
JIT"Qj 

where we recall that since e is the class of the 8 divisor, I 09 = g!. Note that 

these values are consistent with those given in [0-P], p.310. 

However, to evaluate the dimension of G9 _ 1 and compute its degree via formula 

(3.1.5) it is necessary to study the map f 9 _ 2 . 

Remark 3.2.4. If g = 3 then we already know that fg-d- 1 = f 1 is a map of 

finite degree and deg h = 8, so together with the above computation this gives 

deg G2 = 4. This is the result referred to in §2.3.1 and it completes the proof 

that SUc(2) embeds as a quartic in 1281. 

The following results extend the study of f 9 _ 2 to non-hyperelliptic curves of 

genus higher than 3 in an "unexpected" way. Oxbury and Pauly had conjectured 

that at least for curves of genus 4 the degree of G9 _ 1 should be 4, i.e., deg f 9 _ 2 = 

96, however this turns out not to be the case. 

Recall that G 9 _ 1 = { D E 12811 Ct; C supp D, ~ E ] 9 -
2

} is the image of the 

vector bundle IPQ~_2 c 1281 x JY- 2 in 1281 via the natural projection fg-2 (see 

proposition 3.1.6). Hence the degree of f 9 _ 2 , if finite, corresponds to the number 

of translates of the curve C that lie in the support of the general 28 divisor 

DE G9 _ 1 . 

Proposition 3.2.5. Given a non-hyperelliptic curve C of genus g ~ 4, the map 

f 9 _ 2 has degree 1, hence G 9 _ 1 C 1281 is a hypersurface and 

deg Gg-1 = r Cg(Qt). 
JIT"Qj 
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Proof. Recall that, as seen in the course of the proof of proposition 3.1.6, the 

isomorphism between H 0 (JY- 1, 28) and H 0 (J0
, £) given by tensoring with a 

fixed theta characteristic K, E '19(C), induces an isomorphism between the fibres 

Q;_2,
77 

and N1,"77 -1 for every line bundle T/ E ] 9 -
2

. Moreover, as a consequence of 

propositions 3.1.4 and 3.1.5 as well as the characterisations on page 65, N;,"'",-1 = 

H 0 (C, K(K,TJ- 1)2) = H 1(C, K-1TJ2)*, i.e., N1,"17 -1 = H 1(C, K-1TJ2). Hence one 

has the following commutative diagram 

H 0 (J9 - 1 , 28) ~--~ Ho(Jo, £) = Ho(Jg-1' 28)* 

fg-21 1 
Q* +---------~Hl(C, K-1772) g-2,ry 

where we recall that H 0 (J0 , £) is canonically isomorphic to H 0(J9 -
1, 28)* via 

the vVirtinger duality (see lemma 1.1.2). Finally, by projectivising the em

bedding on the right hand side of the above diagram one can obtain another 

commutative diagram 

where c17 is the extension map parametrising S-equivalence classes of semi-stable 

vector bundles E isomorphic to an extension of the form 0 ~ 11 ~ E ~ K·f]- 1 ~ 

0 (see §1.4). As seen in previous sections cry is a linear moduli map, while 6' 

is an embedding (see remark 2.1.1). In this way, the problem of finding the 

degree of .f9 _ 2 becomes that of studying the intersection of the spaces lP'( 17) in 

SUc(2, K) as T/ varies in ] 9 -
2

. This latter problem turns out to be easier to 

tackle because of a result of Oxbury et al. in [0-P-Pr], proposition 1.2: 

for any non-hyperelliptic curve C and any pair of distinct line bun

dles E,, T/ E }9-2 the intersection IP'(E,) n IP'(TJ) is either empty or 
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1. the secant line pq of the curve (in either lP'( 0 or IP'('ry)) if~® 77 = 

K(-p- q); 

2. the point ~(p) tB Kry- 1( -p) E Kum (Jg-l) if h0 (C, K~- 1 77- 1 ) is 

zero and~® 77- 1 = O(q- p). 
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Hence for any choice of a line bundle 17 E p-2 , in lP'( 17) there will be a family 

of lines, parametrised by c2 (by condition 1. above) and a family of points 

parametrised by C x C (by condition 2.) where 1P'(77) intersects other extension 

spaces. As 77 varies in J9- 2, this means that there are two subvarieties in IP'Q;_2 

where the map fg-2 fails to be injective: sl, a family of lines parametrised 

by p-2 X C2, and s2, a family of points parametrised by J2 X c X C. Since 

dim s1 = g + 3 and dim s2 = g + 2, while dim IP'Q;_2 = 29 - 2 the general 

point of IP'Q;_2 fails to lie on either of them whenever g ~ 4. Equivalently, the 

general 28 divisor D E G9 _ 1 contains only one translate of the curve C in its 

support and the map f 9 _ 2 has degree one. In turn, this implies that G 9 _ 1 is a 

hypersurface whose degree can be computed using formula (3.1.5): 

deg Gg-1 = r Cg(Qt). 
J!J>Qi 

0 

Remark 3.2.6. If C has genus 3, then dim IP'Qi = 23- 2 = 6 = g + 3 = dim S1 

and hence the general 28 divisor D E G2 contains more than one translate of 

C in its support. This is consistent with what already known, i.e., that in this 

case the degree of ft is 8 (see §2.3.1). 

3.3 Remarks on the general case 

This section tackles some of the issues involved in studying the general element 

of the Abel-Jacobi stratification. In analogy with the hypersurface case there 

are two aspects to this problem. The first consists in determining the top Chern 
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class of the vector bundle Qd over Jd where there is no immediate analogous 

construction to the one used for d = 1 (see page 68 and proposition 3.2.2). 

The second consists in showing that the map fg-d- 1 is has finite degree and 

computing it, yet this time it is not possible to use a result like that of [0-P-Pr], 

proposition 1.2 or [Gr], remark 2.0.4. 

In the following I will show how to proceed in order to deal with the first 

problem. In detail, a method is given that allows to compute the top Chern 

class of all the vector bundles Qd. Note that in the case of curves of genus 4, 

where there is only one variety between the Kummer and G9 _ 1 = G3 , that is 

G2 , and the map h is already known to be finite, this gives the same result 

as [Gr] (see formula (3.1.4)) as will be verified explicitly at the end of the next 

section. 

The last section presents some remarks on other interesting questions concerning 

the Abel-Jacobi stratification and its relation to classical configurations present 

in the projective space 1281. 

3.3.1 The top Chern class of Q d 

The idea is to repeat the construction used by Oxbury and Pauly, that is, to 

compute the top Chern class of Qd by introducing a new vector bundle Q~ over 

Jd and showing that Qd differs from it only by tensoring with a line bundle 

(see page 68). One can then use Grothendieck-Riemann-Roch computations 

to compute the Chern character of Q~ and then use classical results to obtain 

the top Chern class of Qd. However, in order to define Q;1 it is necessary to 

introduce a "symmetric" Poincare line bundle, i.e., a Poincare line bundle, Pd, 

over the product space Jd X Cd parametrising line bundles of degree d on Cd 

that are induced by line bundles on C. For the details of this construction we 

refer the reader to the Appendix, §A.3. 
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Throughout the section we will use notation and results provided in the Ap

pendix. In particular, if L is a line bundle on the curve C, we denote by ( L) d 

or Ld the induced line bundle on the symmetric product Cd. 

Consider the product variety jd X cd and let 7f and p be the natural projections 

to Jd and Cd, respectively. Take the "symmetric" Poincare bundle Pd such that 

PdiJdx{Do} is trivial for some choice of a point Do E cd, where we think of cd 

as parametrising effective divisors of degree d on C. Define a coherent sheaf 

over Jd as Q~ = 1r*(P~ 0 p*(Kd( -~))), where ~ is the diagonal divisor in Cd 

(see proposition 3.1.4). Finally, consider the translation t Do : Jd -----+ 1° given 

by 77 f---------+ 77(- D0 ) and the line bundle over Jd defined as Nd = tiJ/2. Then, in 

ana.logy to the hypersurface case, one can prove the following result. 

Proposition 3.3.1. Q~ is a vector bundle. In fact, it is isomorphic to Qd0N- 1
. 

Proof. Recall that Qd = 1r*{3d£ and Q~ = 1r*(P~ 0 p*(I(d( -~))). Consider the 

line bundles {3d£ and (P~ 0 p*(Kd( -~))) 0 1r*N defined over Jd x Cd, we start 

by showing that they are isomorphic. This is equivalent to showing 

(3.3.1) 

Note that by construction and propositions 3.1.4 and 3.1.5 these two line bundles 

are isomorphic when restricted to { 77} x Cd for any choice of a line bundle 77 E Jd. 

Moreover they are both trivial when restricted to Jd x {Do} and this is enough 

to assure that they are isomorphic as bundles on Jd x Cd (see also page 69). 

Pushing-forward with the projection 1r preserves the isomorphism, hence Qd is 
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isomorphic to Q~ 0 N. Finally, since Qd and N are vector bundles, it follows 

that Q~ is a vector bundle. D 

The result presented in proposition 3.3.1 allows us to compute the Chern classes 

of Qd by finding the Chern polynomial of Q~ or, rather, its Chern character, 

using the Grothendieck-Riemann-Roch formula (see [ACGH], p.333 and page 

69 of this thesis). Let E = PJ 0 p*(I<d( -i:l)), then 

(3.3.2) 

where td( Jd) = 1 and that td( Jd x Cd) = td( Cd) is given in closed formula by 

Oxbury and Pauly in [0-P], p.316 

As in the hypersurface case discussed on page 69, eh( 7r!£) = eh( Q~) since there 

are no higher direct images of E, i.e., Ri1r*E = 0 if i 2 1 as can be verified by 

applying once more the reasoning of remark 3.2.1. One can compute the first 

Chern class of E as 

(deg I<)xd = (2g- 2)xd, 

-2(d + g- 1):rd + 2()d 

(3.3.3) 

(3.3.4) 

(3.3.5) 

where (3.3.4) and (3.3.5) are obtained in §A.1, while (3.3.3) is just A.3.2 of 

§A.3, and hence 

This in turn gives the Chern character of E 

The Grothendieck-Riemann-Roch formula then allows the computation of the 

Chern character of Q~ = 1r!£ = 1r *£ as 

ch(Q') = 7r*(e2rd+20d( xd )d-2
g+I IT9 

( Xd- ad,i )). 
d 1 - e-Xd 1 - e-xd+ad,i 

i=l 

(3.3.6) 
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Note that, though it is not too difficult to see how the push-forward 1r* acts 

and a detailed analysis of how to compute integrals is given in the Appendix 

(see §A.2), there are a number of computational difficulties when dealing with 

high genus curves and large values of d . In the following I demonstrate the 

procedure explicitly in the case d = 2. 

Example 3.3.2. The case when d = 2, which correspond to the varieties G9 _ 2 

because of formula (3.1.5), can be dealt with easily using notation and results 

of the Appendix. First of all note that since we are working on J2 x C2 all 

monomials in (h, x 2 and ri of degree higher than 2 are zero, hence one can 

explicitly express the Chern character of£. Note, moreover, that since the 

class 12 only appears in the expression of the Chern character of £ and one 

knows that all monomials containing an odd power of ~(2 map to zero under 1r * 

(as they don't lie in H*(J2,Z)0H4(C,Z), see §A.2) one can "forget" all terms 

containing an odd power of ~(2 : 

e2"fc~+20c~ L ~! (212 + 202)k 

2 2 43 2 24 
1 + 2[2 + 202 + 212 + 4[202 + 202 + 3'2 + 4[202 + 3'2 

2 2 2 2 4 
"-' 1 + 202 + 212 + 202 + 4[202 + 3'2 

where the symbol ""' denotes that one can use the expression on the last line 

instead of e2'Yc~+20d in the calculation of ch(Q~) in (3.3.6). The other two factors 

in the expression of the Todd class of C2 can also be simplified 

( 
x 2 ) 3-2g ( 1 1 2) 2g-3 2g - 3, 6g2 

- 17 g + 12 .2 = 1 - -x2 + -x = 1 - .r2 + x 
1 - e-x2 2 6 2 2 12 2 

Hence the Todd class of C2 is given by 

3-g 1 3g2 -17g+24 2 3g-8 12 
td(C2) = 1 + -

2
-x2- 202 + 

24 
x 2 + 

12 
x202 + --p/2; 
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in this case one could have alternatively used the expression for the Todd class 

of a surface which only requires the knowledge of the two Chern classes of C2 

(see [F], p.56). Altogether this gives 

In order to obtain the Chern character of Q~ it is necessary to push forward the 

above expression via 1r *. The only classes that do not map to zero are those of 

degree 2 in x2 , ()2 and ri. Moreover if a is any class of J2, identified with its 

pull-back to J2 X C2, then 

and note that these push-forwards are, in fact, known for all integers d < g, 

that is, n*(ax~e~-i) = g · · · (g- d + i + l)a for all integers 0 ~ i ~ d and classes 

a of Jd (see [ACGH], p.26). As for the push-forwards of classes that contain 

powers of ri, these have been computed in §A.2, in particular example A.2.5 of 

the Appendix deals explicitly with the case d = 2. All together this gives 

where () is the class of the theta divisor in the Jacobian. First of all note that 

the constant term of the Chern character gives the rank of the bundle Q~ and it 

is easy to verify that this value coincides with the one previously computed for 

Q2 , i.e., rk Q~ = rk Q2 = L~=o (~) (see the proof of proposition 3.1.6). Next, one 

can use Newton's formula ([F], p.56 or page 71) to compute the Chern classes 

of Q~. Let 

P1 = -4g() 
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then, denoting by ci the i-th Chern claBs of Q~, one has 

Ct P1 = -4g() 

1 
C2 2(c1P1 - P2) = 8(g2 - 1)02 

1 
Ck k(ck-lPl - Ck-2P2) k 2:: 3. 

It is possible to give a closed formula for the k-th Chern class of Q~. 

Lemma 3.3.3. The k-th Chern class of the vector bundle Q~ is given by 

4k [~] ("·)(2")' c = _ 0k ""'(-1)k-i k-2i "· ~ 
k k' ~ g 2. 2t ., . -~ ~-

i=O 

where [] denotes the integer part of a number. 
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Proof. The statement is easily checked to be true for k = 1 and k = 2. As for 

k > 2, this result can be proved by induction, though one has to pay attention to 

distinguish between two cases, k even and k odd. The main tool is the recursive 

relation 
1 

Ck = k(ck-LPl - Ck-2P2) k2::3 

which, assuming the statement to be true for integers smaller than k, gives 

1 2 
k(ck-l(-4g0)- ck_2 (16()) 

[k-1] 
1 4k-l -

2 (k- 1) (2 ")' 
- [( "'"' (-1)k-1-i k-1-2i -~-·) (-4 ) 
k (k- 1)! ~ g 2i 2ti! g + 

t=O 

[k-2] 
4 k-

2 
----:2 (k - 2) (2:)' 

-( "'"'(-1)k-2-il-2-2i . ~)(16)Jok. 
(k- 2)! ~ 2z 21·t! 

!=0 

(3.3.7) 

It is easy to see that [ k;2 ] = [~] - 1, while [ k;l J depends on the parity of k. 
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Assume k is even, in which case [ k2' J = [ k;-2
] and 

4k 1 [ [~] _1_(-1)k-il-2i(k -1) (2i)! 
k (k- 2)! L.J k- 1 2i 22i! 

z=O 

[k-2] 
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~ (- )k-i k-2-2i (k- 2) (2i)!] ()k 
L..t 1 g 2 . 2Z . f (3.3.8) 
i=O 

z z. 

4k 1 [ 1 ( )k k [I:k
22

J ( 1 ( )k-i k-2i (k- 1) (2i)! - -- -1 g + -- -1 g . -.-. 
k (k- 2)! k- 1 . k- 1 2·t 21z! 

z=l 

k-i k-2i ( k- 2) (2i- 2)! ) !£ (k- 2)! ] k 
+(-1) g 2i-2 2i- 1(i-1)! +(-1)

2
2(k-2)/2((k-2)/2)! () 

where the first term is just the value corresponding to i = 0 in the first sum 

while the last one comes from i = k22 in the second sum, moreover in the second 

sum there has been a change of variable i ~ i + 1. Rearranging these terms 

gives 

4k 1 [ 1 ( )k k 1 [2:k;-2J ( )k-i k-2i((k -1) (2i)! 
Ck - -- -1 g + -- -1 g . - .. -

k (k-2)! k-1 k-1 . 2z 21 z! 
t=l 

+(k- 1)(k-2) (2i-2)!) +(- 1 )~ (k_-2)! ]ek 
2i-2 21

-
1(i-1)! 2k2 2 (k22)! 

4k [(-1)k k (k) (2. 0)! [~l(-1)k-i k-2i ( k) (2i)! 
k! g 0 2°0! + L g 2i 21i! 

i=l 

+(-1)k-~l(~) 2kl:~~)!]ek 

4k [~] (k) (2')' 
-k,ekL:(-1)k-il-2i 2. 2iz_,· (3.3.9) 

. z z. 
i=O 

and hence one has the required result when k is an even integer. The case when 

k is an odd integer presents no conceptual difference. The main point is that at 

step (3.3.8) one only needs to take out the term corresponding to i = 0 in the 

first sum of (3.3. 7) and rearrange everything else accordingly. D 
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If C is a curve of genus 4 then the vector bundle Q; has only 4 Chern classes 

-4g() = -16() 

8(g2 - 1)()2 = 120()2 

32 3()3 32 ()3 - 1664()3 --g + g ----
3 3 

32le4 - 64g2e4 + 32e4 = 5216 e4. 
3 3 

Recall that Q2 = Q; Q9 N by proposition 3.3.1 and hence the top Chern class 

of Q2, that is, c
9

( Q2), can be computed using a classic formula (see [F], p.56), 

the above lemma 3.3.3 and the fact that c1 (N) = 2() since N is just a translate 

of the line bundle £ (see page 69): 

~ (rk- k) c9 (Q2) = ~ -k ck·c1(N) 9-k 

k=O g 

t (rk ~ :) Ck · (2()) 9-k 

k=O g 

g 2k ( k- k) [~] (k) (2')1 (2())9""- 7 (""(-1)k-il-2i . _z_. ·) (3.3.10) 
~ k! g - k ~ 2_z 2tz! 
k=O i=O 

2 
where rk = 9 +l+2 is the rank of Q2. So, if f 9 _ 3 were a finite map, one could 

use formula (3.1.5) to compute the degree of G9 _ 2 , 

deg G9-2 = cl 
1
! r c9(Q2)· 

eg 9-3 .Jrr>Q2 

In particular, if the curve C has genus 4, then rk = 11 and the top Chern class 

of Q2 is given by 

Moreover in this case G9 _ 2 = G2 and Gronow has already shown that ! 1 is a 

finite morphism of degree one ([Gr], remark 2.0.4), hence recalling that J ()9 = g! 

since it is the class of a principal polarisation one obtains 

which we already know to be true (see [Gr], proposition 3.2.9 or (3.1.4)). 
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3.3.2 Open problems 

The problem of studying the Abel-.Jacobi stratification is still full of unanswered 

questions. As previously said, there is the problem of verifying whether the 

maps !d are maps of finite degree for all integers d for which they are defined 

and, should this be the case, finding their degrees. This, together with the 

results presented in the above section would answer the question concerning 

the dimension and degree of each variety Gd. 

It would also be of great interest to see what are the relations between the 

different elements of the stratification. It is well known that for curves of genus 

3, where there are only two elements, G 1 = Kum(J0
) and G2 = SUc(2), the 

first is precisely the singular locus of the second. It is reasonable to expect, in 

general, that Gd-l will be contained in the singular locus of Gd because of the 

characterisation given at the outset of the chapter (see remark 3.1.2). However 

this problem has not been tackled, not even for curves of genus 4. 

Moreover there are questions concerning the relations between these objects and 

classical structures of 1281. For example, the variety G2 is known to contain all 

trisecants to the Kummer variety Kum(J0 ) (see [0-P-Pr], §2) and a detailed 

study of all trisecant loci has been carried out by Gronow ([Gr], chapter 4). 

Similarly, Oxbury and Pauly have shown that for all curves of genus at least 

4 the ruling of G3 cuts out all Beauville-Debarre quadrisecants (see [B-D]) to 

each Prym Kummer in 1281 ([0-P-Pr], §9). Again, however, nothing is known 

of the other objects of this stratification. 



Appendix A 

Symmetric products of a curve 

This appendix deals with classes and structures related to symmetric products 

of a given smooth algebraic curve C. The first section recalls the description 

of the integral cohomology ring of the curve C and the rational cohomology 

ring of its d-th symmetric product Cd, as done by Macdonald (see [Me]), with 

particular attention to the classes of some specific cycles. Section A.2 deals 

with product varieties of the form Cd x Jd and in particular with a special 

class, denoted /d E H 2 (Cd x Jd, Z), which generalises a well known class on 

the products C x J (see [ACGH], p.335). Most of this section is devoted to 

understanding how to compute integrals of top degree classes of Cd X Jd that 

contain powers of /d· At the end of this section we also show how one can 

generalise this class to a class of the product variety cd X Ce· Finally, section 

A.3 provides the construction of a "symmetric" Poincare line bundle, i.e., a line 

bundle pd over Cd X Jd parametrising line bundles of Cd that are induced by line 

bundles on C. Most of the notions given in this appendix are used throughout 

chapter three. In particular, §A.2 allows the computation of the integral of 

certain top Chern classes needed in formula (3.1.5), while §A.3 is essential in 

finding the corresponding Chern classes (see proposition 3.3.1). However both 

these sections carry out original computations and constructions which might 

84 
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be of interest outside the context of this thesis. 

A.l Symmetric products of C 

Let C be a complex algebraic curve of genus g. Following Macdonald, [Me], we 

consider the integral cohomology of C 

where H 2 (C, Z) has a generator x. The ring structure of H*(C, Z) is then 

determined by a selection of generators o: 1 , ... o:29 of H 1(C, Z) such that 

o:io:i+g = -o:i+go:i = :r class of a point 

O:iO:j = 0 i =1- j ± g 

where juxtaposition means "cup product". This is a complete set of relations 

for H*(C, Z) and it implies 

for all indices i. From now on we will work over the field of rational numbers Q, 

recalling that H*(C, Q) = H*(C, Z) 0 Q (see [Me], p.321). Now, let Cd denote 

the d-th direct product of C. It is possible to give an explicit description of 

the rational cohomology of Cd. The ring H* ( Cd, Q) is the cl- th tensor power of 

H* ( C, Q). In particular one can set 

o:7 = 1 0 · · · 0 O:t 0 · · · 0 1 E H 1 
( Cd, Q) 

(3k = 1 0 · · · 0 x 0 · · · 0 1 E H 2 
( Cd, Q) 

l = 1, ... '2g k = 1, ... ,d 

k = 1, ... ,d. 
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These elements satisfy the following relations 

.. ,k .. ,k - .. ,k .. ,k - j3k 
'-'i '-'i+g - -'-'i+g'-'i -

o:f j3k = j3k o:f = j3k j3k = 0 

j3k j3h = j3h j3k 

i=Jj±g 

k=Jh 

k -1 h. 

Moreover every j3k commutes with every element in H* ( Cd, Q). 
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Let Sd denote the symmetric group on d elements and consider its natural 

action on Cd; denote by cd the quotient space cd I Sd, this is the d-th symmetric 

product of the curve C. A result of Macdonald, ([Me], §4, p.322), assures that 

the cohomology ring of Cd with rational coefficients is the invariant ring of the 

cohomology ring of Cd with respect to the action of the symmetric group Sd, i.e., 

H*(Cd, Q) is isomorphic to H*(Cd, Q) 5
d via the natural map p* : H*(Cd, Q) -----t 

H*(Cd, Q) induced by the projection p : Cd -----t Cd. This implies ([Me], §5, 

p.322 and (6.3), p.325) that H*(Cd, Q) is generated by 2g + 1 elements 

d 

def "'"' k 1 ( ) ~d,i = L o:i E H Cd, Q 
k=l 

d 

def"'"' k 2( ) xd = L f3 E H Cd, Q 
k=l 

satisfying the following relations 

It is then natural to define the following classes 

g 

ed d!J I: O'd,i 

i=l 

where the ai have some immediate properties: 

i = 1, ... ,2g 

i = 1, .. . g 
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1. a~ i = 0 for any i = 1, ... , g; 
' 

Remark A.l.l. Note that the integer cohomology ring of Cd is a subring of 

H* ( C d, Q) and that since all the classes defined above are integer classes we can 

think of them as being in H*(Cd, Z). 

Remark A.1.2. One may identify the points of Cd with the effective divisors 

of degree don C, hence there is a mapping Cd_ 1 -t Cd given by D f----+ D + p 

for any choice of a point p E C (see [Me], p.329). Note that this map is an 

embedding and that Xd is the cohomology class of Cd-1 embedded in Cd (see 

[Me], proof of (14.2), p.332). 

Recall that if .6 denotes the union of the diagonals in Cd, i.e., the ramification 

divisor of p: Cd -t Cd and .6 the diagonal divisor in Cd, then 2.6 = p*(.6). 

l\tloreover the first Chern class of .6 is given by 

as proved by Macdonald (see [Me], (15.4) with s = 2). 

Finally recall that the isomorphism u* of H 1(J, Z) with H 1(C, Z), induced by 

the Abel-.Jacobi map u : C -t J, allows us to obtain a basis for the first 

integer cohomology group of the .Jacobian, J, via pull-back along u*. This basis 

is denoted by o:i, ... , a~9 (see [ACGH], p.334). Moreover one considers a class 

(} E H 2 ( J, Z) defined as (} = Li a~a~+g. This is the class of the theta divisor in 

the .Jacobian (see [ACGH], p.26). In the following we will find it convenient to 

use the symbol a~ to denote the cup products a~a~+g· 

The notation introduced above will be used throughout the rest of the chapter. 
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A.2 Classes on the product cd X Jd 

In the following we intend to describe some classes in the integer cohomology 

rings of the product variety of a symmetric product of a curve C of genus g, 

Cd, with the Jacobian Jd. There are "obvious" classes obtained by pulling back 

the classes of Cd and Jd and for which we maintain the same notation as given 

in the previous section, i.e., we identify ad,i with its pull-back to Cd X Jd etc. 

We introduce a class in H 2 (Cd x Jd, Z) which, via the Kiinneth decomposition, 

can be thought of as being in H 1 (Cd, Z) ® H 1 (Jd, Z) 

g 

def "'"'( 1 ') /d = - L ~d,i ai+g - ~d,i+g ai . (A.2.1) 
i=l 

This class is defined by analogy with the 1 class of C x J, see [ACGH], p.335, 

which is just 11 since 6,i = o:i for all i. The aim is to be able to compute the 

integrals 

(A.2.2) 

where i + j + k = d and k :::; M = m in{ d, g}, while A 9_k is the pull-back of 

any class of degree 2g - 2k on the Jacobian. Clearly, if k = 0 this integral is 

easily computed as it "splits" in two integrals over Cd and Jd. Note, moreover, 

that /d must be raised to an even power for the integral to be non zero. More 

in detail, in the course of this section we will show that the following holds: 

1 . .1 min{j,k} (k) ( _h) /, 
i J 2k - k ' J . h g k 

xd()did Ag-k- (-1) (2k).1 ( L (-1) h _ . ) () Ag-k· 
CdxJd k. h=O g J Jd 

Remark A.2.1. In order to simplify notation, the subscript d will be dropped 

from the classes a, /3, ~ and a from here until the end of the section, since no 

confusion can arise. 
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Remark A.2.2. By unraveling the definitions of xd and ()d and recalling the 

rules of multiplication for the o:; 's, one can see that what one really needs to 

compute are the integrals 

1 ait ai1 ,it+l ,-..,it+• r,,it+s+l ,-../1+2• "'~2k A 
fJ ' ' ' fJ '-']! ' ' ' L<]s '-'-]1 +g ' ' ' L<Js+9 Id g-k 

CdxJd 

(A.2.3) 

over Cd x Jd, where the indices satisfy the conditions 

l+s=d-k 

i1, ... , il+2s E { 1, ... , d} are all different 

Ji, ... ,j8 E {1, ... , g} are all different. 

Note that the condition s :S: k follows from the assumption that i1, ... il+2s 

are all different, since this is possible only if l + 2s :S: d, which, together with 

l + s = d- k, gives the bound. In fact, it is easy to verify that 

XI = ~ ait ait 
. d L.._,;fJ .. ·fJ (A.2.4) 

lll=l 

where the J's are multi-indices without repetitions of length Ill = l such that 

each ij E {1, ... , d}. Let N = min{ d- l, l} and consider the whole expression 

of ()d to verify that 

()~ = = Lait · · .ai1 
lll=l 

since a 2 = 0 
l 

L ~it ~i1 +g . · . ~i1 ~i 1 +g since ai = ~i~i+g 
lll=l 

where I is a multi-index without repetitions of length l such that each index 

ij E {1, ... , g }. Recall that ~i = I:~=l o:f and that o:~o:j = 0 unless .i = i ± g, 

hence 

d d d d 

e~ 2::.: ( 2::.: 0:~1 2::.: 0:~1 +g · · · 2::.: at 2::.: at+g) 
Ill=! k=l k=l k=l k=l 

d 

2::.: ( 2::.: o:f~~ af;~+g ... a7,1 a7,l+g) . 
Ill=! k1 , ... ,kf=l 
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Note that all the terms in the above sum such that ki = kj are zero since 

a~aj = 0 when i, j E {1, ... ,g} and similarly for the multi-index K', so one 

can write 

I: ( I: a~~~ a~;~+9 ... a~~ a~~+9 ) 
III=l IKI,IK'I=l 

I: ( I: a~~~ a~;~+9 ... a~~ a~~+9 ) 
IKI,IK'I=I III=l 

where K and K' are multi-indices without repetitions of length l such that each 

ki, k~ E { 1, ... , d}, and in the second step the order of summation has been 

inverted. Observe that if one has kj = kj then a:; a:;+9 = (3kj. So if the multi

indices K and K' have the first h indices in common, for example, one would 

obtain: 

k1 k~ k1 k\ _ (g- z +h)! (3k1 (3k I: kh+l kh+l k1 k\ a a ···a a ··· h a- a- ···a a-il i1+9 ·il i1+9- (g -l)! IJ 11+9 !f-h !I-h+9 
III=l lll=l-h 

while if the h indices in common are not the first h, the result still applies 

but one has to consider some permutation of the superscripts kJ. Note that 

two multi-indices K, K' as described above can be identical or have as few as 

l - N indices kJ = kj, where N = min{ d- l, d}. Moreover, in order for the 

corresponding term to be non-zero, it also must happen that the remaining set 

of indices kj, kj are disjoint, i.e., if J( and K' have exactly h indices in common 

and these are k1 = ki, ... , kh = k'it then the remaining kh+ 1, ... k1, k~~+ 1, ... , ki 

have to be all different (recall that a~ aj = 0 unless j = i ±g). Finally, as there 

are (h) ways of fixing h pairs ( kJ, kj) from l given pairs of indices, one has 

odt = ~ ( l) (g- l +h)! '""' (3k1 ... {3kh '""'akh+l akh+2 ... ak21-2h+1 ak21-+2h 
L......t h (g - l)! L......t L......t !j !j +9 11-h !1-h 9 

h=l-N IKI=2l+h III=l-h 

N '""'(l) (g- h)!'""' '""' (3i 1 (3i'-ho:i-'-h+1ai-'+l .. ·ail+! .. ·ai-'+h 
L......t h (g-l)! L......t L......t ... )1 11+9 11+9 1h+9 
h=O l.!l=h lll=l+h 

N 
= '""'(-1)"

2:;h(l) (g- h)!'"' '""'(3i1 .. . (3i1_hai'-h+1 .. ·ai' ai-'+1 .. ·ai_t+h 
L......t h (g-l)!L......t L......t )1 Jh 11+9 Jh+9 
h=O l.!l=h III=l+h 

(A.2.5) 
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where in the second step one exchanges h with l - h, while in the last step the 

a's have been reordered and so there is a (possible) sign change. Hence it is 

clear that once one knows how to compute integrals of the form (A.2.3) then it 

is possible to compute (A.2.2). 

One starts by expressing ~~k for any k E {1, ... ,M}, where M= min{d,g}. 

This can be clone explicitly for k = 1, 

g 

L [(~iai+9 )(~JO:J+g) + (~iai+9 )(-~J+9 aj) + (-~i+gai)(~JaJ+g) 
i,j=l 

where one observes that the first and last term are non-zero only if i =I= j, while 

up to reordering the second and third term are the same. Hence one can write 

~~ = L)~iai+g~JO:J+g)- 2 L(~iai+g~J+gaj) + L(~i+gai~J+gaj) 
ij:j i,j ij:j 

- :~::)~i~Jai+9aj+9)- 2 L)~i~J+9ajai+9)- L(~i+g~J+ga;aj) 
icf'j i,j ij:j 

If one denotes by (r~k)h the sum of the terms in the expansion of ~~k that have 

exactly h - 1 factors of the form ~J+9 , then one can see directly that: 

(r~h = 2:#1( -~i ~J a~+g a.f+9 ) 

(r~h = 2:i) -2~i ~J+g aj a~+g) 

bJh = 2:#1( -~i+g ~J+g a~ aj) 

where i, j E {1, ... , g }. One then is interested in expressing (r~k)h for every 

h E { 1, ... , 2k + 1} and this can be clone following the k = 1 case 

(r~k)h = (h 2~ 1), L (~i1 ail +g)··· (~i2k+l-h aLk+t-h+g)(~]J+gajJ · · · (~Jh-t+gaJh-1) 
Il=2k+1-h 
IJI=h-1 

( ) k ( 2k ) ~ 1 I = -1 h _ 1 ~ ~it • • · ~i2k-h+t ~h +g · · · ~Jh-1 +gaJt · · · aJh-t 
III=2k-h+l 
IJI=h-t 

·aL +g · · · ai2k-h+L +g (A.2.6) 
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where (h~1 ) counts the number of terms in the expression of ~~k that have 

exactly h- 1 factors of type ~J+g out of the 2k factors of type~' while ( -1)k 

accounts for the sign change caused by the terms being rearranged in the last 

step. 

Remark A.2.3. Note that every integral (A.2.2), or rather (A.2.3), is the sum 

of integrals 

where (!~k)h has been defined above and the indices satisfy the conditions 

l+s=d-k 

i 1, ... , it+2s E { 1, ... , d} all different 

Jt, ... ,js E {1, ... ,g} all different. 

Recall that ~i = 2.:.::~= 1 o:f and note that, if h < k + 1, the above integral will 

consist of monomials each of which will have at least 8 + k + 1 terms of the 

form af with i E {1, ... , g }, this means that one of the following must happen: 

either there are two o:f's with the same superscript k or there exist an o:f and 

a (3k with the same superscript, since l + 8 + k + 1 > d and all the k's lie 

in the set { 1, ... , d}. In turn this implies that the corresponding integral is 

zero since one knows that o:f o:j = 0 and o:f (3k = 0 for all i, j E { 1, ... , g}. 

Similarly, if h > k + 1 the same reasoning applied to the o:f+
9 
's says that the 

corresponding integral must be zero. Hence, as far as integration is concerned, 

we can substitute ~~k with the (k + l)th monomial 

in the integral (A.2.3) since all the other terms will not give any contribution. 
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Special case: 

In order to understand how to compute the integrals (A.2.3) we study first of 

all a special case, s = 0, i.e., l = d- k 

(A.2. 7) 

which, from the previous remark, is the same as 

the indices i 1 , ... , id-k are fixed, hence the only terms in the sum which might 

give a non-zero contribution are those for which the n's belong to {1, ... , d} \ 

{ i 1 , ... id-d, which is a set of cardinality k and similarly for the m's. Then the 

integral can be rewritten as 

Now observe that for every choice of two multi-indices N and J\1 of length k 

consisting of indices without repetitions picked from a fixed set of cardinality 

k (in this case {1, ... , d} \ { i 1 , ... id-d), there must be a permutation 1r such 

that ni = rn1r(i) for all i E {1, ... , k} and indices ni E N, m 1 E i\1. Next, recall 

that aj:; c/j~(il +g = 0 unless Ji = j~(i), hence the above integral becomes 

where k! accounts for all the possible permutations 1r. This can be rewritten as 
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where one uses the fact that a;>x~i+g = (3n; and that aj;aJ;+g = O"~·;, while the 

second factor k! accounts for all possible multi-indices N satisfying the above 

conditions. Finally, one obtains 

(A.2.8) 

using the expression for () given at the end of section A.l. Remembering that 

x~ = d! (31 ···(3d (see (A.2.4)), this allows to compute the integrals in which ()d 

does not appear 

r 2::: (31 ... (3d-k 'Y~k Ag-k 
JcdxJd lll=d-k 

r d 2:::: ((-1)k(2k)!(31 ... f3d)()kAg-k 
led xJ III=d-k 

r (-1)k(2k)! ~; (31 .. ·(3d()k Ag-k· 
JcdxJd · 

Since d! (3 1 · · · ,Bd generates the top integer cohomology of Cd and Cd is ad-fold 

cover of Cd, it also generates the top integer cohomology of Cd, hence 

1 X d-k "~2k A _ 
d Id g-k -

CdxJd 1 (- )k (2k)! d ()k A 
1 k' xd g-k 

cd xJd · 

1 (-1)k (2k)! ()k A 
k ' g-k 

jd • 

where the final equality is given by projection formula. 

Remark A.2.4. In particular, when d = 1 this says that 

{ 'Yl A 9 -1 = - { 2x () A 9-1 = -2 { () Ag-1 
lcxJl lcxJ 1 }Jl 

(A.2.9) 

where xis the class of a point in H 2 (C, Z). This is the same as the usual result 

that "(2 = -2x0 of [ACGH], p.335, since "(1 = 'Y· 

General case: 

We now consider the case when s > 0, i.e., we want to compute integrals like 
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(A.2.3) and as has been shown before this is the same as computing integrals 

of the form 

As before, having fixed indexes i 1, ... , i 1 for the {J's means that in each of the 

sums ~jh = 2.:::~= 1 ajh then's must belong to B = {1, ... , d} \ { i 1 , ... it}, 

where N and NI only take values in the set B. Note moreover that the sets 

{it+ 1, ... , it+s} and { it+s+ 1, ... , it+2s} are disjoint by hypothesis and l + s + k = d, 

hence each of the a~;~ must "pair" with an a;;,1~9 , i.e., rnt' = it+t and similarly 

a~;~;~ with an aj/ in order to have a non-zero term for all t = 1, ... s. Note that 

the condition s ::; k assures that such pairings are always possible and "exhaust" 

the a}r{+g)'s. The two remaining groups of (k- s) an's and am's must pair-up 

too, since the remaining n's belong to {1, ... d} \ {it+1 , ... , il+s} and them's to 

{1, ... d} \ {it+s+t, ... , it+2s} which are sets of cardinality k that intersect in a 

set of carclinality k - s, { n 1, ... nk-s}. Moreover if nt = rnt' this forces Jt = j~, 

otherwise a
1
n1 a

1
n,t is zero. The difficulty consists in evaluating in how many 

t t' 

different ways this can happen and computing the associated permutation of 
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the indices. This eventually gives 

L (-l)k(-l)(s2+s)/2(2:) k!k!(3i1 ... (3id. 

IJI=k-s 
I I I I I I I I A 

ahl ahl +g ... ahs ahs+9 . Ctjl Ct]! +g ... aJk-s aJk-s+9 g-k 

{ (-l)k(-l)(s2+s)/2 (2k)!f3'···(3dahl .. ·ahs ()k-s Ag-k· 
JcdxJd 

This allows the computation of all integrals like (A.2.2). By recalling the ex

pressions for x~ and ()~, plus the comments on 'Y~k, we will be able to prove the 

following 

To do so, first of all notice that fcdxJd x~ ()~ 'Y~k A9_k equals 

Note that the sets of indices {i1, ... , id-k-j} and {l 1 , ..• lj+h} must be disjoint, 

hence one can rewrite the above as 
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1 min{j,k} ( .) ( h)' dl 
"'""' (-l)(h2 -h)/2 J g- .. "'""'((-l)k(-l)(h2 +h)/2 . 

c Jd ~ h (g- J)! ~ (k- h)! 
dx h=O IRI=h 

(2k)! /3 1 
•.• !3d . aTj ... aTh) r;k-h Ag-k 

1 min{j,k} ( k)l ( .) ( h)l L ( -1 )k+h "2 . I J g - . ; X~ ()k Ag-k 
CdxJd h=O (k- h). h (g- J ). 

1 ·1 min{j,k} (k) ( /) 
(2k)! ~; ( L ( -l)k+h h g = ~ ) X~ ()k Ag-k 

CdxJd ,. h=O g J 

! (-l)k (2k)! i; (mi~k\-1)h(~) (g- ~)) ()k Ag-k 
Jd • h=O g- J 

which concludes the proof. 

Example A.2.5. If d = 2 this gives the following integrals 

where A is the pull-back of a class over the Jacobian J2, of the appropriate 

degree. 

Remark A.2.6. Note moreover that even if the class A E H*(Jd, Z) does not 

have degree 2g - 2k, the previous result still allows us to compute the push

forward of the class X~()~ ~~k A from cd X Jd to Jd by using Poincare duality on 

Jd. 

Remark A.2. 7. One might also consider the product variety Cd x Ce and define 

a similar degree 2 class /d,e in H 1(Cd,Z) 0 H 1 (Ce,Z) as 

g 

/d,e d:;J - L(~d,i ~e,i+g - ~d,i+g ~e,i)· (A.2.11) 
i=l 

It is not difficult to verify that all the above computations can be repeated in 

this new case, since one only needs to use the properties of classes on Cd and 
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write ~e,j wherever there was cij. Note only that in the final expressions of the 

integrals one has to write Oe = 2.:.::%= 1 ae,i instead of(} E H 2 (J, Z). These new 

classes rd,e are also useful, since the pull-back of the class (}d+e on the variety 

Cd+e via the addition map T: cd X Ce -----+ Cd+e is given by 

(A.2.12) 

as can be seen by generalising the computations of [ACGH], p.368. 

A.3 "Symmetric" Poincare line bundle 

This section deals with the construction of a "symmetric" Poincare line bundle, 

that is, a line bundle that parametrises certain line bundles over a symmetric 

product Cd. 

Let p : Cd -----+ Cd denote the quotient map described at the outset of the 

Appendix and denote by Jri the projection from Cd to its i-th factor C. For any 

line bundle 77 E Pic(C) one can define a line bundle on Cd, denoted (77)d or 77d, 

as the line bundle on Cd such that p*(77d) = 01rj(77). Moreover the Chern class 

of 77d is easily computed, c1 ( 77d) = ( deg 77 ):cd· Then, a "symmetric" Poincare line 

bundle pd over cd X Jd should parametrise precisely these line bundles. Our 

aim is to construct such a bundle and compute its Chern class. 

Let P be a Poincare line bundle on C x Jd. Then one can consider the following 

diagram 

P---~cx Jd 

P---+CxJd P 1 0···0Pd 

~t pxl 
cd x Jd --------+cd x Jd 

~ 
P---~CxJd 
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where pi d;;j (rri x l)*(P) for every choice of a factor and pis the quotient map. 

Since the action of the symmetric group Sd lifts to P 1 0 · · · 0 pd and is trivial 

On the fibres of fixed points, this diagram defines a line bundle on Cd X Jd, 

Pd. Hence the "symmetric" Poincare line bundle is a line bundle that has the 

property 

Recall that the Poincare line bundle over C x Jd is uniquely defined up to 

translation, i.e., it is unique once one asks it to be trivial on {p0 } x Jd for 

some choice of a point p0 E C (where one uses the identification used in remark 

A.1.2). The same property holds for Pd, it is uniquely defined once it is required 

to be trivial over { D0 } x Jcl for some divisor Do E Cd, where we identify effective 

divisors of degree d on C with points of Cd. 

Our aim is, now, to calculate the first Chern class of Pd. Recall that the first 

Chern class of P is given by c1 (P) = 1 + dx where 1 satisfies 1 2 = - 2x() and 

x E H 1(C, Z) is the class of a point. Then, clearly, c1(Pi) = li + dj3i, which, in 

turn, gives 

cl cl cl 
Cj(Pl 0 ... 0 pcl) = L Cj(Pi) = L li + dL j3i. (A.3.1) 

i=l i=l i=l 

Then, since both sums in (A.3.1) give classes of Ccl x Jcl, this is precisely the 

Chern class of Pcl 

(A.3.2) 

where the definition of xcl as .L:1=l j3i was given in §A.l while the class /cl was 

defined in the previous section as 

_ "cl i _ "9 [t: I {: I l 
/d - L...,i=I I - - L...,i=l <,d,i o: i+g - <,d,i+g o: i · 

These bundles are used in §3.3 in order to compute the top Chern class of the 

vector bundles Qcl, for all integers d. 
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