
Durham E-Theses

Stereoselective routes to cyclic β-amino acid

derivatives

Masesane, Ishmael Baperi

How to cite:

Masesane, Ishmael Baperi (2003) Stereoselective routes to cyclic β-amino acid derivatives, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3700/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3700/
 http://etheses.dur.ac.uk/3700/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


STEREOSELECTIVE ROUTES TO CYCLIC 

p .. AMINO ACID DERIVATIVES 

Ishmael Baperi Masesane, MSc 

Ph.D Thesis 

University of Durham 

Department of Chemistry 

August 2003 
A copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without his prior written consent 
and information derived from nt 
should be acknowledged. 

~ 2 DEC 2003 



COPYRIGHT 

The copyright of this thesis rests with the author. No quotation from it should be 

published without prior written consent and information derived from it should be 

acknowledged. 

DECLARATION 

The work discussed in this thesis was conducted in the Department of Chemistry at 

the University of Durham between October 2000 and July 2003. It is the work of the 

author and results generated in collaboration with other people are indicated. The 

work has not been submitted for a degree at this or any other university. 



ACKNOWLEDGEMENTS 

I wish to thank my supervisor Dr Patrick G. Steel for providing many valuable 

insights and constructive suggestions over the three years. I also wish to thank all 

chemists who worked in CGl (Darren, Ganesh, Simon, Anne, Dan, Amel, Wendy, 

Pete, Chris and Jun) for advice and assistance. Special thanks to: Dr Les Oates, Dr 

Grayson and Pete Scott for proof reading this thesis; Mr Steve Jackson for help with 

the preparative HPLC, Dr Alan Kenwright, Ian McKeag and Catherine Heffeman 

(NMR); Dr Mike Jones and Lara Turner (MS), Malcom and Peter (Glassblowers), 

Elizabeth, Joe, Jim, and Tony (stores). 

I'm deeply indebted to my friends; Poppie, Zibisani, Lesh, Tachi, Emma, Tsholo, 

Bongs, LBD, Baagi, Bontle, Roya, Karen, who provided a lot over the three years of 

my studies, including love, support and tolerance. My family (Mom; Ntukunu, my 

brothers; Aupa and Tando, and my sisters; Unaswi, Wedu and Dzikamani) has 

contributed much to the success of the work described in this thesis, both tangible and 

intangible and for that I'm grateful. 

This thesis is dedicated to the memones of my late grandparents (Gopolang and 

Masesane Tema) who brought me up and taught me very valuable lessons that kept 

me going when things were tough during my studies. 

I also wish to thank the University of Botswana for funding. 

11 



Ac 

acac 

ACHC 

AIBN 

ACPC 

APC 

APiC 

Bn 

Boc 

bp 

br 

nBu 

1Bu 

Bz 

cat. 

Cl 

d 

DBU 

DCC 

DEAD 

DHAA 

DMF 

DMSO 

DIPEA 

EDCl 

El 

ES 

Et 

GC 

HATU 

HPLC 

ABBREVIATIONS 

:Acetyl 

: Acetylacetonate 

: 2-Aminocyclohexane-1-carboxylic acid 

: 2,2' -Azoisobutyronitrile 

: 2-Aminocyclopentane-1-carbox ylic acid 

: 3-Aminopyrrolidine-4-carboxylic acid 

: 4-Aminopiperidine-3-carboxylic acid 

:Benzyl 

: tert-Butyloxycarbonyl 

: Boiling point 

:Broad 

:Butyl 

: tert-Butyl 

:Benzoyl 

:Catalytic 

: Chemical ionisation 

:Doublet 

: 1 ,8-Diazobicyclo[2.2.2]octane 

: N,N-Dicyclohexylcarbodiimide 

: Diethyl azodicarboxylate 

: 5,6-Dihydroanthranilic acid 

: N,N-Dimethylfmmamide 

: Dimethyl sulphoxide 

: N,N-Diisopropyl-N-ethylamine 

: N-ethyl-N' -(3-dimethylaminopropyl )carbodiimide hydrochlmide 

: Electron impact ionisation 

:Electron spray 

:Ethyl 

:Gas chromatography 

: 0-(7-azabenzotriazol-1-yl)-1, 1 ,3,3-tetramethyluronium 

hexafl uorophosphate 

:High performance liquid chromatography 

Ill 



IR 

KHMDS 

LiHMDS 

m 

mCPBA 

Me 

Ms 

MS 

NMM 

NMO 

NMR 

Pd/C 

PLE 

ipr 

PTAB 

PyBOP 

q 

s 

TBAF 

TBHP 

TBS 

TEA 

TFA 

THF 

TLC 

TMEDA 

TMS 

Ts 

: Infra red 

:Potassium 1,1,1,3,3,3-hexamethyldisilazide 

: Lithium 1,1, 1 ,3,3,3-hexamethyldisilazide 

: Multiplet 

: meta-Chloroperbenzoic acid 

:Methyl 

: Methanesulphonyl 

: Mass spectrometry 

: 4-Methylmorpholine 

: N-Methylmorpholine-N-oxide 

: Nuclear magnetic resonance 

: Palladium on activated carbon 

: Pig liver esterase 

: iso-Propyl 

: Phenyltrimethylammonium tribromide 

: benzotriazol-1-yl-oxy-trispyrrolidino 

phosphonium hexaflourophosphate 

:Quartet 

:Singlet 

:Triplet 

: Tetrabutylammonium flouride 

: tert-Butyl hydroperoxide 

: tert-Butyldimethylsilyl 

:Triethylamine 

: Triflouroacetic acid 

: Tetrahydrofuran 

: Thin layer chromatography 

: N,N,N' ,N' -tetramethyl-1,2-ethylenediamine 

: Ttimethylsilyl 

: p-Toluenesulphonyl 

IV 



ABSTRACT 

Ishmael Baperi Masesane 

PhD-August 2003 

The literature structure of the natural product oryzoxymycin and an array of 3-mono-, 

3,4-di- and 3,4,5-tri-hydroxylated derivatives of 2-aminocyclohexane-1-carboxylic 

acid (ACHC) were stereoselectively prepared from oxanorbomene adducts derived 

from the Diels Alder reaction of ethyl (E)-3-nitroacrylate and furan. The central 

reaction for these syntheses was the base mediated P-elimination of the oxygen btidge 

of the oxanorbomene adducts or their derivatives. 

The asymmettic synthesis of the literature structure of oryzoxymycin involved chiral 

HPLC or enzyme catalysed kinetic resolution of the endo-carbamate oxanorbomene 

adduct. KHMDS promoted P-elimination of the oxygen bridge of the optical pure 

adduct afforded a 5,6-dihydro-5-hydroxyanthranilate which was converted to 

oryzoxymycin through CsF mediated coupling to a lactate and deprotection. 

Alternatively, the double bonds of the dihydrohydroxyanthranilates were 

stereoselectively reduced to give the 3-hydroxylated ACHC derivatives. The di- and 

trihydroxylated ACHC derivatives were prepared from the oxanorbomene adducts 

through selective oxidation sequences that took advantage of substrate 

stereocontrolled processes. The oxidation reactions which feature in the synthesis of 

the polyhydroxylated ACHC derivatives were epoxidation and Os04 catalysed 

dihydroxylation. 

The structures of intermediates and final products were characterised by NMR, IR and 

MS. The X-ray-structures of the crystalline compounds were also recorded. 
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1.1 INTRODUCTION 

The central theme of this thesis is the description of asymmetric routes employed in 

the synthesis of the natural product oryzoxymycin 4 and an anay of hydroxylated 

cyclohexane based P-amino acid derivatives of type 5 based on the Diels-Alder 

reaction of ethyl (E)-3-nitroacrylate 1 and furan as summarized in Figure 1.1. 

1 

~O!fOH 
y··,,,NH

3 
+ -o

2
CCF

3 

OH 

4 

2 

Figure 1.1: Overview of the project 

\ 
r(lC02Et 

y··,,,NHBoc 

OH 

3 

RYI,C02Et 

R~·.,,,NHBoc 

OH 
5 

Numerous methodologies for the synthesis of cyclic P-amino acid derivatives have 

emerged over the last ten years and these are reviewed in Chapter 1 together with the 

uses of 3-nitroacrylates in Diels-Alder reactions. Subsequent Chapters are devoted to 

the discussion of the work directed towards oryzoxymycin chemistry and 7-

oxanorbomene routes to cyclic P-amino acid derivatives of type 5. Chapter 5 

documents the reaction procedures employed in the study together with spectroscopic 

and analytical data. 

1.2 USES OF 3-NITROACRYLA TES IN DIELS-ALDER REACTIONS 

3-Nitroacrylates are potent dienophiles, and they generally reqmre low reaction 

temperatures for the Diels-Alder reaction to occur. Several examples reported in 

literature have shown that the nitro group is also very effective at controlling the 

regiochemistry of the reaction with unsymmetrical dienes. 1
•
2 
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Danishefsky and eo-workers have studied the Diels-Alder reaction of nitroacrylate 6 

with vanous heteroatom-substituted dienes. 3 Cycloaddition of trans-1-

trimethylsilyloxy-1,3-butadiene 7 to 6 gave the corresponding adduct 8 in good yield 

with high regioselectivity, Figure 1.2. Subsequent treatment of 8 with DBU gave the 

dihydrobenzene derivative 9 in 71 % yield. This sequence of reactions was used as an 

alternative method for the Diels-Alder reaction of methyl propiolate with 7. The 

advantage of using methyl ~-nitroacrylate lies in the ability of the nitro function to 

control the regiochemistry. 

OSi(Meb 

C , Benzene, 25°C 

7 

92% 

Figure 1.2: Danishefsky's synthesis of 9 

OSi(Meb 

~N02 DBU u .. ,,C02Me 70% 
8 

Similarly, the Diels-Alder reaction of nitroacrylate 6 with amino substituted dienes 

has been applied to the synthesis of isogabaculine 13.4 To this end, the reaction of t­

butyl 1,3-butadiene-1-carbamate 10 with 6 gave the adduct 11 in good yield, Figure 

1.3. Treatment of 11 with DBU gave the dihydrobenzene derivative 12, which upon 

hydrolysis afforded isogabaculine 13 in moderate yield.4 

Hydrolysis 

Figure 1.3: Synthesis of isogabaculine 13 

3 

12 

11 

/nBU,THF 
70% 



Corey's reaction of 2-trimethylsilyloxy-1,3-butadiene 14 with nitroacrylate 6 at 

room temperature gave adduct 15 as the only isomer in quantitative yield.5 

Treatment of 15 with aqueous acetic acid afforded trans-4-nitro-3-

carbomethoxycyclohexanone 16 in 72% yield. Reaction of 16 with DBU in THF 

afforded the cyclohexenone 17 in good yield, 5 Figure 1.4. 

DBU, THF 
99% 

Figure 1.4: Corey' s synthesis of 17 

Further studies by Corey involved the Diels-Alder reaction of nitroacrylate 6 with the 

hindered 1,1-dimethoxy-3-trimethylsilyloxy-1,3-butadiene 18 and this afforded 

cyclohexenone 19.5 DBU mediated elimination of nitrous acid from 19, then gave the 

resorcinol detivative 20 in excellent yield, Figure 1.5. 

6 19 

Figure 1.5: Synthesis of the resorcinol derivative 20 

;:(Meb 

HOA)lC02Me 

20 

Starting with the Diels-Alder reaction of nitroacrylate 6 and furan, Just and 

coworkers have reported the synthesis of 3,4-isopropylidene-2,5-anhydroallose 27 

in 14% overall yield.6 The Diels-Alder reaction at room temperature gave a 3:1 

4 



mixture of adducts 22 and 21 respectively, Figure 1.6. This mixture was 

dihydroxylated with Os04 and then treated with acetone in the presence of p­

toluenesulfonic acid to give acetonides 23 and 24. Subsequent DBU mediated 

elimination of nitrous acid gave 25. Ozonolysis of 25 and subsequent reduction 

with NaBRt gave the trio! 26, which was converted into 3,4-isopropylidene-2,5-

anhydroallose 27.6 

6 

25 

1. 03 
2. NaBH4 

36% 

21 22 

1. Os04 
2. Acetone, H+, 95% 

~~N02 
+ 

C02Me 
24 

~0>-l~ 
o~Lo 

OH 

27 

+00 
02Qco2Et 

N02 

23 

Figure 1.6: Synthesis of 3,4-isopropylidene-2,5-anhydroallose 27 

1.3 SUMMARY OF APPLICATIONS OF 3-NITROACRYLATES 

It is evident from the examples discussed above that the sequence of the Diels­

Aider reaction of 3-nitroacrylates and elimination of nitrous acid has been used as 

an alternative method for the Diels-Aider reaction of methyl propiolates. The 

advantages of using 3-nitroacrylates is their greater reactivity as dienophiles and 

ability of the nitro group to control the regiochemistry. Even though it is 

conceivable that the reduction of the nitro group would give entry to P-amino acid 

intermediates, to the best of our knowledge this chemistry has not been explored. 

5 



1.4 SYNTHESIS OF CYCLIC ~-AMINO ACIDS-A LITERATURE REVIEW 

1.4.1 INTRODUCTION 

The last few years have seen a surge of interest in cyclic ~-amino acids and this has 

been accompanied by a proliferation of novel procedures for their synthesis.7 This 

class of compounds have received so much attention due to their biological activity 

and lately because of the properties of their oligopeptides. There are a few naturally 

occurring cyclic ~-amino acids with various biological properties, hence the interest 

m synthesis of derivatives. (JR, 25)-2-Aminocyclopentanecarboxylic acid 

(cispentacin) 28 is found, for example, in the antibiotic amipurimycin 29 and has also 

been isolated in the free form from strains of Streptomyces and Bacillus. S-ll A 

synthetic derivative of cispentacin with a 3-exo-cyclic double bond (compound 30) 

has been shown to have a favourable activity-tolerability profile against yeast cells 

and has been selected for clinical studies as a novel antifungal agent for the oral 

treatment of yeast infections. 12 In contrast, tilidine 31, a cyclohexenyl synthetic ~­

amino acid derivative is an opioid analgesic used to control moderate to severe pain. 11 

Another synthetic cyclic ~-amino acid 32 showed a less favourable toxicogical profile 

but higher activity against the yeast Candida albicans. 12 

28 29 30 

31 

Figure 1.7: Biologically active cyclic ~-amino acid derivatives 

In recent years interest in cyclic ~-amino acids has resulted from the pioneering work 

of Gellman 13
.

17 and Seebach 18
•
19 who have found that oligomeric structures derived 

from ~-amino acids adopted defined secondary structures analogous to those observed 
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in proteins. Gellman has gone further and shown that ~-17 oligomer 33 has significant 

activity against four species of bacteria including vancomycin resistant Enterococcus 

faecium and methicillin resistant staphylococcus aureus.20 

H H 
N~N H H 
"'---!'!---\ 11 ~ _,...N~N H 

H 0 ~IT ~!'!---\ 11 ~/N 
o H o~TI 

0 0 

33 
3 

Figure 1.8: Gellman' s ~-17 oligomer 33 

Given the significance of cyclic ~-amino acids, it is not surpnsmg that the 

development of synthetic routes to these compounds has become an important 

challenge for organic chemists. Numerous methodologies for the synthesis of ~-amino 

acids have emerged and in this review these will be summarised under five broad 

approaches, namely; reductive amination, Curtius rean-angement, Michael addition, 

cycloaddition approaches and miscellaneous strategies. 

1.4.2 REDUCTIVE AMINA TION 

Cyclic ~-amino acids have been prepared by the reduction of enamines prepared 

easily from the corresponding cyclic ~-ketoesters. The reductive amination studies of 

Xu and eo-workers culminated in the preparation of the enantiopure ethyl cis-2-

amino-1-cyclohexanecarboxylate 36, Figure 1.9.21 To this end, ~-ketoester 34 was 

allowed to react with with (S)-a-methylbenzylamine in the presence of acetic acid, 

and the resulting enamine 35 was reduced in situ with NaBH4 . The highest 

diastereoselectivity was achieved when the reaction was run in isobutyric acid with 

NaBH4 as the reducing agent?1 The diastereomeric purity of 36 was enriched through 

recrystallization as its HBr salt. 

7 



Figure 1.9: Xu's synthesis of 36 

NaBH4/Acid 

67% from 34 
99% de 

Inspired by Xu's work, Gellman and coworkers have intensively exploited the 

reductive amination methodology in the synthesis of 3-aminopyrrolidine-4-carboxylic 

acid (APC) 39 and 2-aminocyclopentanecarboxylic acid (ACPC) 44 using optically 

pure (R)-a-methylbenzylamine as a chiral auxiliary.22
•
23 For the synthesis of 44, the 

reduction of the enamine with sodium in THFiPrOH afforded the amino alcohol 42 

and after the removal of the auxiliary and protection of the resulting amino group, 

oxidation of the primary alcohol provided 44, Figure 1.11.22 This route was found to 

suffer from low yields in the enamine reduction step and to overcome this difficulty, 

NaBH3CN was used instead as the hydtide donor in the synthesis of 39, Figure 1.10.23 

)-Nwco2Et 
Ph (_-) 

37 

2. NaH3BCN 
3. HCl 
4. Recrystallization 

40% 

~ 
Boc 

38 

Figure 1.10: Gellman's synthesis of APC 39 

O"f-{C02Et _P_h_/'--._._N_H_
2 
-~prNwC02Et 

V TsOH V 
1. NaiPrOH/THF 
2. HCI 

85% 

40 

-
_1_. _H_c_o_z_NH_4_FmocHN,Q·-. oH 10% PclJC ·. 

2. Fmoc-OSu 
NaHC03 

85% 43 

41 

3. Recrystallization 
20% 

NaOCI, nBu4NBr 
TEMPO, NaCI, K.Br 

NaHC03 

70% 

Figure 1.11: Gellman' s synthesis of ACPC 44 
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------------------

In his most recently published work, Gellman has extended his reductive amination 

protocol to the synthesis of trans-4-aminopiperidine-3-carboxylic acid (APiC) 47.24 

Starting with commercially available B-oxo ester 45, a short, practical and scalable 

synthesis of APiC was achieved. Thus, hydrogenolytic removal of the benzyl group of 

45 and reaction with di-tert-butyl dicarbonate provided the Boc-protected B-oxo ester, 

which was allowed to react with (R)-( + )-a-methylbenzylamine in refluxing benzene in 

the presence of a catalytic amount of p-toluenesulphonic acid to afford enamine 46 in 

71% yield, Figure 1.12. Reduction of the enamine with NaBfu gave a 4:1 ratio of the 

two cis diastereomers of the expected B-amino ester. This mixture was then treated 

with sodium ethoxide in ethanol, causing epimerisation to the trans-B-aminoester 47. 

Through a two-stage crystallization protocol, a single trans diastereomer was isolated 

in 16% yield from enamine 46 and its absolute configuration was established by 

crystallographic analysis. 24 

--l 
0 1. 10% PcVC, HC07NH4 Ph NH 

aCO,Et 2. Boc20, NaHC03- &C02Et 

~ .HCI 3. ~ 'p-TsOH ~ 
Bn Ph NH2 Boc 
45 71% 46 

/ 

1. NaBH4, isobutyric acid 
I 2. Na, EtOH 

Ph~NH +cl· 3. HCl/diox_ane_ 

6
2 4. recrystalhzat10n 
_,,,D02Et 16% 

~ 
Boc 
47 

Figure 1.12: Gellman's synthesis of 47 
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1.4.3 CURTIS REARRANGEMENT AND HOFMANN DEGRADATION 

Cyclic 1 ,2-dicarboxylates are ideal precursors for the synthesis of cyclic P-amino 

acids by conversion of one of the carboxy groups into an amine by Curtis or Hofman 

reanangements. The Curtis protocol, which involves alkyl migration to an electron­

deficient nitrogen is one of the most popular procedure employed by chemists in the 

synthesis of cyclic P-amino acids. 

Kobayashi and eo-workers have investigated the Curtis methodology in the 

preparation of P-amino acid 50 from cyclic diester 48.25 Kobayashi's strategy was 

adopted by Gellman and eo-workers in the synthesis of 51.26 To this end, the PLE­

catalysed hydrolysis of the meso diester 48 furnished the monoester 49 quantitatively 

and with excellent enantioselectivity (>96 % ). The monoester 49 was then converted 

to the P-amino ester 51 by the Curtis protocol followed by reduction of the double 

bond,25
·
26 Figure 1.13. Optically pure monoesters of type 48 could also be accessed by 

cinchona alkaloid mediated enantioselective desymmetrization of meso-anhydrides. 27 

It is worth noting that 51 could be converted to its trans isomer by base mediated 
. . . 26 

ep1mensat10n. 

PLE/pH 8.0 phosphate 
buffer, 10% acetone 

1. H2 , Pd-C, MeOH 
2. Boc20, K2C03 

31% from49 

1. ClC02Et, Et3N, Acetone 
2. NaN3 

3. C6H6, reflux 
4. BnOH, cat. p-TsOH 

C6H6 reflux 

(XNHC02Bn 

C02 Me 
so 

Figure 1.13: Kobayashi-Gellman's synthesis of 51 

Kobayashi and eo-workers then went further and prepared a monohydroxyl derivative 

53 of P-amino acid 52.28 To this end, hydrolysis of ester 52 and iodolactonization 

under two-phase conditions gave an iodolactone which upon base-mediated 
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dehydrohalogenation and methanolysis furnished the allylic alcohol 53. Starting with 

53, Gellman and eo-workers prepared P-amino acid 55 with an extra amino group in 

place of the hydroxyl group.26 The key steps included the SN2 reaction of an activated 

hydroxyl derivative of 53 with an azide, reduction and protection, Figure 1.14. 

1. Hydrolysis 
2. lz, NaHC03, 

H20-CH2Cl2, 98% 

3. DBU/C6H6, retlux, 
94% 

ONHBoc 

HO C02Me 

4. NaOMe, MeOH 
99% 

53 
1. MsCl, NEt3 
2. Bu4N+ N3-

3. P(nBuh, H20 
4. Boc20, 88% from 53 

(X
NHBoc 

BocHN''··· C02Me 
54 

100% 

Figure 1.14: Kobayashi-Gellman's synthesis of 55 

In their approach to the hydroxylated trans-aminocyclohexane P-amino acid 59, Wipf 

and Wang began with adduct 57 available from the titanium catalysed asymmetric 

Diels-Alder reaction of butadiene and asymmetric fumarate 56.29 The Curtis 

rearrangement proceeded with retention of stereochemistry to give unsaturated P­

amino acid 58, Figure 1.15. In three steps, namely hydrolysis, epoxidation and 

methanolysis, 58 was elaborated to the polyhydroxyl P-amino acid derivative 59. 

0 0 
Butadiene )lNJ1 ... 0 .. 

. o0 I 
Ti(O-'Pr)2Cl2 Meo

2
c 

56 T AD DOL, 97% 
57 

Ph Ph 

Ph o-._/<-oH 
X J... = T AD DOL 

0 )<OH 
Ph Ph 

Figure 1.15: Wipf and Wang's synthesis of 59 
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Recently, Couche and eo-workers have developed a method for the synthesis of 

monohydroxylated cyclohexyl P-amino acid derivative 64 as outlined in Figure 

1.16.30 Starting from bicyclic hemiester 60 obtained by enzymatic hydrolysis of the 

corresponding mesa diester, the polyfunctionalised cyclohexane 64 was prepared with 

high stereoselectivity. The synthetic strategy involved a Cmtis reaction followed by 

retro-Michael ring opening reaction and reduction to give 64 in good yield. 30 

60 

i. CIC02Et, NEt3 
Acetone CON 

i. Refluxing Toluene NHCO CH G( 3 3h G( 2 3 

° C02Me ii. MeOH, reflux ° C02Me 

61 66% from60 62 

LiHMDS, THF 
-10°C, 53% 

~ Pd/C, H2, CH3C02Etl 
UNHC02Me _M_eo_H_C_ll_l_),_8_7_%_ 

C02H 

64 

Figure 1.16: Couche's synthesis of 64 

The Curtis reatTangement protocol was also employed by Mangelinckx and De Kimpe 

in the synthesis of the strained a-substituted cyclopropyl P-amino acid derivatives 67. 

Starting from the corresponding 1-aryl and 1-alkylcyclopropane-1 ,2-dicarboxylates 

65, selective monosaponification and subsequent Curtis reaction led to cyclopropyl P­

amino acids derivatives of type 67 in moderate yields, Figure 1.17.31 It is worthwhile 

to note that the regioselective monosaponification is controlled by steric effects, hence 

the bigger the a-substituent R, the better was the regioselectivity. 31 

D_,R Hydrolysis D_,R 
Me0

2
C''··· ···,co

2
Me 

65a: R =Me (42%) 
65b: R = Et (82%) 
65c: R = Ph (82%) 

HO C',,.· ···,eo Me 
2 66 2 

1 equiv. DPPA 
1 equiv. Et3N 
tBuOH 
90-95°C, 5 h 
38-40% 

&R 
BocHN''··· ···'C0

2
Me 

67 

Figure 1.17: Mangelinckx and De Kimpe's synthesis of 67 
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Berkessel has utilised a Hofmann degradation approach in the synthesis of 71 as 

illustrated in Figure 1.18.32 The diacid precussor 68 was readily obtained m 

enantiomerically pure form by crystallization of the commercially available racemate 

with the auxiliary (R)-1-phenylethylamine. The advantage of this route is that all three 

steps from the diacid 68 to the amino acid 71 could be carried out in a one-pot 

procedure. First, the diacid 68 was heated to reflux in acetyl chloride and then 

concentrated. The residue was taken up in dichloromethane and conversion into the 

amide 70 was effected within minutes by pumping gaseous ammonia through the 

solution. Subsequent treatment of amide 70 with the oxidant phenyliodine (Ill) 

bis(trifluoroacetate) (PIFA) led to the Hofmann degradation product 71 in good 

yields, Figure 1.18. 

CXC02H ---------­AcCI 

'C02H 92% 
68 

2. NH3 l.AcCl L~ 
3. PIFA 

74% 

Figure 1.18: Berkessel' s synthesis of 71 

1.4.4 MICHAEL ADDITION 

Conjugate addition of chiral amine nucleophiles to cyclic a,p-unsaturated carboxylic 

acid de1ivatives represents one of the most attractive methods for the stereoselective 

synthesis of cyclic P-amino acids. Therefore, it is not surprising that asymmetric 

synthesis of cyclic P-amino acids via conjugate addition of chiral metallated amines 

has attracted the interest of several research groups. 

Davies and eo-workers have studied the stereoselective conjugate addition of 

homochiral lithium (a-methylbenzyl)benzylamide to tert-butyl 1-cyclopentene-1-

carboxylate and 1-cyclohexene-1-carboxylate. 33 These studies culminated in the 

synthesis of cis-2-aminocyclopentane-1-carboxylic acid and cis-2-aminocyclohexane-
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!-carboxylic acid derivatives with over 98 % diastereomeric selectivity, Figure 1.19. 

This methodology also provided the trans isomers since the cis-products 72 and 74 

were isomerised to their C-l epimers 73 and 75 respectively in good yield and 

excellent d.e. 33 

72 73 74 75 

Figure 1.19: Davies's conjugate addition studies. 

In a similar manner, Enders and eo-workers have developed a highly enantioselective 

protocol for the conjugate addition of lithiated (S)-(-)-2-methoxymethyl-1-

trimethylsilylamino-pyrrolidine (TMS-SAMP) to eo-halo-substituted a,p-unsaturated 

enoates followed by subsequent ring closure of the intermediate ester enolate to give 

trans-2-aminocycloalkanecarboxylic acid derivatives of type 79, Figure 1.20.34 This 

method therefore provides a direct entry to the trans-isomers while the Davies method 

is cis selective. 

1. TMS-SAMP, nBuLi CCOCH 
THF -78°C 3 

0 2. HMPA, -78°C N,N/Si(CH3b 
~ ~)l 3. NaHC03, H20 = 

Br \)n ~ OR qco,R 

76 77 

j 
Si07 , EtOAc 
38-54% from 76 

Raney-Ni!H2, MeOH H CO 
69 7117£ 3 1 lrll C02R 

- 0 GN~:·q 
Figure 1.20: Enders synthesis of cyclic P-amino acids of type 79 
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1.4.5 CYCLOADDITION APPROACHES 

The [4 + 2] cycloaddition (Diels-Alder reaction) remains one of the most frequently 

employed synthetic methods for the construction of six-membered ring systems. The 

high regio- and stereoselectivity typically displayed by this reaction and the ease of 

execution have contributed towards its popularity. Therefore, it is not suprising that 

the reaction of 1-aminodiene and acrylate derivatives has been explored by a large 

number of chemists as a route to cyclohexyl ~-amino acid derivatives. 

Overman and eo-workers have employed the Diels-Alder approach utilizing 

carbamate 80c as the diene in the synthesis of analgesic tilidine Sla, Figure 1.21.35 

The cycloaddition of diene 80c with ethyl atropate was stereospecific and afforded a 

single crystalline cycloadduct Slc in 84% yield. Cleavage of the amino protecting 

group in Slc and subsequent methylation yielded tilidine Sla in 64% overall yield 

starting from SOc. Use of benzyl trans-1,3-butadiene-1-carbamate gave adducts Slb 

and 82b in yields of 71 and 20% respectively. In contrast, the cycloaddition of trans-

1-(dimethylamino)-1,3-butadiene 80a with ethyl atropate occurred in the opposite 

stereochemical sense to afford tilidine as the minor stereoisomer in a 3:1 mixture with 

isomer 82a. 35 

+ 
Toluene, 
80-ll0°C 

78-85% 

y02Et 
' Ph 

CXNR1R2 

+ 

8la: R 1 = R2 =Me 82a: R
1 

= R
2 

=Me 
8lb: R 1 = H; R2 = C02CH2Ph 82b: R 1 

= H; R
2 

= C02CH2Ph 

81c: R 1 = H; R2 = C02CH2CCI3 

Figure 1.21: Overman's synthesis of tilidine derivatives 82 and their isomers. 

In a related study, the dihydroxylated trans-aminocyclohexane ~-amino acid 86 was 

recently prepared in three steps by Wipf and Wang from the asymmettic Diels-Alder 

reaction of oxazolidinone 83 and aminodiene 84?9 In the presence of Kobayashi 's 

chiral scandium catalyst the endo product 85 was isolated in 92% yield and 90% ee, 
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Figure 1.22. After saponification of 85 and benzyl ester formation, dihydroxylation 

proceeded smoothly to give diol 86 in 74% yield from aminodiene 84.29 

83 84 

Sc(OTfh 
(R)-BINOL 

92% 

Figure 1.22: Wipf and Wang's synthesis of 86 

0 0 ~HCBz o)l,o 
85 

j 
l.Transesteri fication 
2. Dihydroxylation 

In their approach to a potential inhibitor of the chorismate-utilizing enzymes, 

Kozlowski and eo-workers featured the Diels-Alder reaction of aminodiene 87 and 

ethyl propiolate 88 to give unsaturated intermediate 89, Figure 1.23?6 Compound 89 

is a potentially versatile intermediate to an array of cyclohexyl P-amino acid 

derivatives of type 90 through reduction oxidation of the double bonds. 

R 

85°C CCC02Et qco,Et 
~ + C02Et 

TeocHN 89% NHTeoc R NHTeoc 

R 
87 88 89 90 

Figure 1.23: Potential of Kozlowski's Diels-Alder reaction of 89 and 90. 

Aitken and eo-workers have described a shmt synthesis of cis-2-amino-1-

cyclobutanecarboxylic acids 94 on the basis of the photochemical [2 + 2] 

cycloaddition reaction between ethylene and uracil 91, Figure 1.24.37 To this end, 

irradiation of a solution of uracil 91 under an ethylene atmosphere afforded the 

expected cyclobutane adduct 92 in 75% isolated yield. Hydrolysis of the heterocyclic 

moiety and the resulting urea function gave cyclobutane P-amino amino acid 94 in 

52% overall yield.37 This short synthesis from readily available starting materials 
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illustrates a useful strategy which could be developed further to give ring substituted 

cyclobutane B-amino acids through use of other uracils and/or olefins. 

Acetone-H20 
uv light, 3 h 
75% 

H q:co,H 
H NH2 

NaN02, 

3.5 MHCl 

rt, 12 h 
85% 

94 

Figure 1.24: Aitken's synthesis of 94 

1.4.6 MISCELLANEOUS STRATEGIES 

c[za 
H H 

92 
0.5Mjrt,l2h 
NaOH 82% 

H 
r--Yco2H 

L} NH2 

H ~~0 
93 

The obvious route to ACHC 96 involves the reduction of anthranilic acid 95, Figure 

1.25. Indeed, when a solution of anthranilic acid in iso-amyl alcohol was treated with 

sodium, amino acid 96 was isolated?2 However, the method has been reported to be 

tedious and low yielding necessitating the need for more effective methods. 

Na 
iso-amyl alcohol 

20-40% 

Figure 1.25: Reduction of anthranilic acid 96 

Among the variety of synthetic methods for cyclic B-amino acids classified as 

miscellaneous, the most interesting and having the greatest potential for general 

application is the ring closing metathesis approach recently reported by Abell and 

Gardiner.38 This methodology was used to prepare the unsubstituted trans cyclic B­
amino acid derivative 100 from the precursor 97 which is readily available from 

allylation reactions, Figure 1.26. Treatment of 97 with Grubbs ruthenium catalyst 98 

afforded 99 as a single diastereoisomer in 96% yield. Hydrogenation in the presence 
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of 10% Pd/C followed by re-protection with benzyl chloroformate gave the trans 

ACHC derivative 100 in good yield?8 

CbzHN& 
C02 Me 

97 

Cl-< rcy3 
Ru~ 

er·· ~cy3 Ph 
_B_e_n_z-:-n!-,-r_e_fl_u_x_,._ CbzHND 

96% C02Me 

99 

H2, Pd/C, MeOH 
then DIPEA, CbzCl 
CH2Cl2, 84% 

CbzHND 
C02 Me 

100 

Figure 1.26: Abell and Gardiner's synthesis of ACHC derivative 100 

Another interesting protocol for the synthesis of cyclic ~-amino acids by Miyata and 

eo-workers involved sulfanyl radical addition-cyclization of oxime ethers connected 

with alkenes. 39 In this method the sulfanyl radical attacks the terminal alkenyl group 

in the substrate 101 to give the cyclic species 104, Figure 1.27. The reaction proceeds 

via the aminyl radical 103 which is a product of 5-exo-trig cyclization of 102. 

Subsequent reduction of the oxime function and conversion of the 

phenylsulfanylmethyl group into a carboxyl group gives the desired cyclic amino 

acids of type 105 including ( -)-cispentacin and 4-amino-3-pyrrolidinecarboxylic 

acid. 39 This approach has the potential to provide routes to both carbocyclic and 

heterocyclic cyclic ~-amino acids. 
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PhSo) SPh 
SPh 

,f\IQR ~ 0f~OR l f. _A_d_d_i_ti_o_n_l l :/". Cyclisation 

X X 

:UN oR 

101 102 

HOOC~NH2 ---------­
X 

105 

X 
103 

PhSHj 

SPh bNHOR 
X 
104 

Figure 1.27: Miyata's synthesis of cyclic P-amino acid derivatives of type 105 

Ftilop and eo-workers have reported the synthesis of the cispentacin benzologue 1-

aminoindane-2-carboxylic acid 110 starting from an intact ring structure.40 Addition 

of chlorosulphonyl isocyanate (CSI) to indene 106 followed by ring opening and 

isomerization gave both cis- and trans-1-aminoindane-2-carboxylic acids 108 and 

110, Figure 1.28. 

1. CSI eo 2.Na2S03 

106 

H 
N 

~-_):::: aq. HCI l)J 0 __ _ 

107 

j 
EtOH/HCl 

NH2 ·HCI 

~C02 Et 

109 

1. NaOEt 
2. aq. HCI 

Figure 1.28: FUIOp's synthesis of 108 and 110 

NH2 ·HCI 

~co,H 
108 

NH2 ·HCI 

cO·"oC02H 
110 

In contrast to Flilop's method, a Smlz-promoted aziridine ting opening protocol was 

described by Kawahata and Goodman in the synthesis of P-amino acids 112 and 

113.41 To this end, treatment of aziridine 111 with with Sml2 and subsequent 

protection of the resulting amine gave a 1: 1 mixture of the two P-amino acids 112 and 

113 (Figure 1.29), separated by column chromatography. 
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1. Sm12 

C02Bn 
2

· ~6o/;0 
~,, 
VV··'''NH 

111 

Figure 1.29: Kawahata and Goodman Aziridine ring opening reaction 

Also starting from a pre-formed ring, Matthews and eo-workers have prepared novel 

cyclic sila-substituted ~-amino acids through nucleophilic ring opening of an 

intermediate aziridine with an umpolung synthon for the carboxylate anion.42 This 

route involved the Sharpless aziridination43 of the silacyclopent-3-ene 114 followed 

by ring opening to give the cyano compound 116, Figure 1.30. Amine deprotection 

and nitrile hydrolysis afforded the target ~-amino acid 117. 

114 

Chlorarnine-T 
cat.PTAB ~ 
------- Ph2Si~NTs 

MeCN, rt 
5 h, 81% 115 

Et2AICN 
PhMe, 100°C 
17 h, 73% 

Figure 1.30: Matthews' synthesis of 117 

1.4.7 SUMMARY OF SYNTHETIC METHODS REVIEW 

Considerable progress has been made in the synthesis of cyclic ~-amino acid 

derivatives. Many strategies are now available for the preparation of these ~-amino 

acids and each of the strategies discussed has its own advantages and limitations. 

Rapid progress is therefore expected in the synthesis of substituted and optically 

active derivatives of cyclic ~-amino acids in the next decade. 
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CHAPTER TWO 

STEREOSELECTIVE SYNTHESIS OF THE 

STRUCTURE OF ORYZOXYMYCIN 

OH 
4 

0 
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2.1 INTRODUCTION 

In 1968, Hashimoto and eo-workers reported the isolation of a novel anthranilate, 

oryzoxymycin 4 from a soil sample of Streptomyces venezuelae, var. 

oryzoxymyceticus and this compound was shown to exhibit moderate activity against 

Xanthomonas oryzae.44 On the basis of spectroscopic and degradation studies, the 

structure of oryzoxymycin was elucidated as a composite of (R)-lactic acid and (SS, 

6S)-dihydrohydroxyanthranilic acid 118 (DHAA), a compound previously isolated 

from Streptomyces aureofaciens.45
'
46 The absolute stereochemistry of oryzoxymycin 

was also established through degradation reactions and subsequent comparison with 

known substances.47 Oryzoxymycin is structurally interesting in that the position of 

the lactate moiety differs from the common C-5 enoylpyruvate substitution of related 

structures 119 and 120 (Figure 2.1) which are intetmediates in the biosynthesis of 

anthranilates.48
-
50 The proof of the structure of oryzoxymycin therefore presents a 

special synthetic challenge. 

4 118 

Figure 2.1: Structure of Oryzoxymycin 4 and related structures 

2.2 RETROSYNTHETIC ANALYSIS FOR ORYZOXYMYCIN 

Our general strategy for the synthesis of oryzoxymycin is based on the retrosynthetic 

analysis shown in Figure 2.2. Disconnection at the ester bond furnished the lactic acid 

unit and dihydroanthranilic acid 118 as key building blocks. Dihydroanthranilic acid 

118 could be generated from the base induced fragmentation of the bicyclic amino 

ester 2 which in turn could be derived from a Diels-Alder reaction between ~­

nitroacrylate 1 and furan. From this retrosynthetic analysis, a plan for a stepwise and 

stereocontrolled total synthesis of oryzoxymycin was evolved. 
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Figure 2.2 : Retrosynthetic analysis for oryzoxymycin 4 

2.3 PREVIOUS WORK ON ORYZOXYMYCIN IN OUR GROUP 

Prior to this work, a PhD student in our group did some preliminary work on the 

synthesis of oryzoxymycin based on the retrosynthetic analysis shown in Figure 2.2.51 

To this end, nitroacrylate 1, prepared through a modification of the McMurry 

method52
, reacted with furan in CHCh at room temperature to give a mixture of 

oxanorbornenyl adducts favouring the required endo-nitro isomer 123. Enhanced 

selectivity was obtained by running the reaction at -20 °C to give a separable 4:1 

mixture of the two isomers in over 90% yield. Subsequent selective conversion into 

the protected aminoester 2 was achieved in a single pot by reduction with Zn/HCl 

followed by addition of a large excess of iPr2NEt and (BochO. KHMDS induced 

fragmentation of 2 allowed the isolation of cyclohexadiene 3 in a reproducible 71% 

yield together with variable amounts of ethyl 3-hydroxybenzoate. 
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1 

Furan, CHC13, 0 
-20°C 120 h a=rC02Et , I 

90% 
(123:124; 81:19) N02 

+ 

123 
1. Chromatography 

n. Zn/HCl, EtOH 

0 
iii. iPr2NEt, (BochO, 77% 

a=rco,Et 

NHBoc 

2 

Figure 2.3: Synthesis of diene 3 

Although the transformation summarised in Figure 2.3 secured the correct relative 

stereochemical relationship of the hydroxyl and amine groups in the cyclohexadienyl 

moiety of oryzoxymycin, all the chiral intermediates described thus far were racemic. 

It was apparent, however, that the racemic material could be resolved after the 

introduction of the chiral lactate side chain of oryzoxymycin. To this end, anthranilate 

ester 3 was hydrolysed with KOH and the resultant acid treated with CsF and 

mesylate 126 in DMF to give the desired lactate coupled product 127 as a mixture of 

two diastereoisomers, which, unfortunately proved impossible to separate. It is 

instructive to draw attention to the fact that attempts to couple the Hoc-protected 

dihydroanthranilic acid 125 to lactic acid methyl ester in the presence of DCC or 

EDCI proved unsuccessful. 51 

NC02Et 

y··''NHBoc 

OH 

KOH, THF, 
H?O, 68% 

3 

- 0 = 
CO H 126: (S)-MsOCH(CH3)C02Me, ~ : N 2 CsF, DMF, 50 °C, 83% I ~ . O~C02Me 

y··,,'NHBoc .,,'NHBoc 

OH OH 
125 127 

Figure 2.4: Racemic synthesis of oryzoxymycin 
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2.41 SYNTHETIC CHALLENGE§ 

Asymmetric synthesis was among the tasks remaining m the preparation of 

oryzoxymycin and the bicyclic adduct 2 presented a very convenient opportunity to 

carry out resolution at that stage of the synthesis. Indeed, there are numerous literature 

examples of resolution of bicyclic adducts similar to 2 by enzyme mediated kinetic 

resolution or chiral HPLC.53
·
54 Another challenge was to select a protecting group for 

the lactic acid which could be removed selectively. 

Building on the work already done in our laboratory, efforts towards addressing the 

listed challenges will be discussed in subsequent sections of this chapter. 

2.5 SYNTHESIS OF ETHYL (E)-3-NITROACRYLATE 1 

The general strategy for the synthesis of oryzoxymycin (see retrosynthetic analysis in 

Figure 2.2) identified nitroacrylate 1 as a major intermediate from which the bicyclic 

adduct 2 could be generated. Consequently, the first experiment to be undertaken was 

the synthesis of 1 on the basis of precedent in our laboratory. 51 It was also known 

from the work of McMurry that 1 could be prepared in two steps from acrylates.52 

Thus, treatment of ethyl acrylate 128 with iodine and N20 4 gave iodonitro ester 129 in 

quantitative yield (93%), Figure 2.5. Elimination of HI with Hunig's base in ether 

afforded exclusively the title compound in 73% yield. The selectivity for the Z-isomer 

can be explained by considering the relative stability of conformations 129a and 129b 

that are suitable for anti-elimination, Figure 2.6. Thus, on the basis of the 

confotmations of 17, it was anticipated that the Z-isomer ought to be the major 

product. With this sequence of reactions, nitroacrylate 1 could be generated in 10-20 g 

batches and contrary to repotts that highlights the instability of nitroalkenes,55 ethyl 

(E)-~-nitroacrylate 1 was found to be stable for months when stored in a refrigerator. 

The NMR ('H, 13C) spectra of both compounds 1 and 129 were consistent with the 

proposed structures and comparable to those reported in literature.52 The 1H NMR 

spectrum of compound 1 showed the presence of two vinylic hydrogens with a 

characteristic trans-coupling (J = 13.6 Hz) assigned to H-2 and 3. 
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Figure 2.5: Synthesis of nitroacrylate 1 

iPr2NEt, Et20 

84% 

1 

Bulky groups eclipsing 
in the transition state­
Unfavoured 

Figure 2.6: Conformations leading to the (E)- and (Z)-isomers 

2.6 REACTION OF NITROACRYLATE 1 AND FURAN 

The preparation of nitroacrylate 1 set the stage for the crucial cycloaddition reaction 

with furan as the diene. The ability of furan to undergo [4+2]-cycloadditions with 

various n-bonds is well established56
·
57 and has attracted the attention of many 

research groups as it allows for the construction of valuable synthetic intermediates. 

The initial cycloaddition affords a substituted 7-oxabicyclo[2.2.l]hept-5-ene (7-

oxanorbomene) that can be manipulated with impressive selectivity to give interesting 

target molecules. In the event, execution of the Diels Alder reaction of 1 and furan 

proceeded smoothly and delivered the target molecule efficiently and 

stereospecifically. Thus, subjection of nitroacrylate 1 to cycloaddition reaction with 

furan in CH2C]z at -20°C for five days afforded an 80:20 mixture of adducts 123 and 

124 respectively in 90% yield, Figure 2.3. When the temperature of the reaction was 

increased to room temperature, considerable acceleration of the reaction was observed 

but was accompanied by a significant reduction in diastereoselectivity (2: 1 mixture of 

123 and 124 respectively). The two isomers were easily separated by column 

chromatography. 
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.---------------------------------------------------------------------

Having achieved the expedient synthesis of bicyclic intermediate 123, we were in a 

position to address the reduction of the nitro group to an amine. To this end, treatment 

of 123 with concentrated hydrochloric acid and zinc powder afforded the bicyclic ~­

amino ester 121. Subsequent addition of a large excess of iPr2NEt and Boc20 gave 

protected aminoester 2 in 77% yield over the two steps. 

The 1H and 13C spectra of 2 exhibited all the features consistent with the bicyclic 

structure including the singlet at 8 1.30 assigned to the Boc protons and two doublets 

at 8 6.46 and 6.59 with coupling constant J = 5.7 assigned to the vinylic protons. The 

proposed structure of 2 was finally confirmed by X-ray crystallography (see X-ray 

structure in Appendix 1) 

0 
~C02Et 

N02 
123 

1. Chromatography f ;;~~co2Ej 
11. Zn/HCl, EtOH ~ 

NH2 

121 

iii. iPr2NEt, (BochO 

77% from 123 

0 
~C02Et 

NHBoc 

2 

Figure 2.7: Reduction of the nitro group of adduct 123 

2.7 RESOLUTION OF THE OXANORBORNENE ADDUCT 2 

2.7.1 ENZYME-CATALYSED KINETIC RESOLUTION 

Enzymes, as biocatalysts, have captured an impmtant place in orgamc synthesis. 

Arguably, esterases, such as pig liver esterase (PLE), have proved to be the most 

widely successful enzymes in asymmetric synthesis.53 Esterases are cheap, stable, do 

not require a coenzyme and tolerate a wide range of substrates and chemical 

conditions. It appeared of interest therefore to examine the use of these enzymes for 

the resolution of the oxanorbornene adduct 2. 
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To set the stage for the kinetic resolution of the oxanorbomene adduct 2, screening 

reactions were first examined with PLE in various solvents (i.e. CH30H, CH3CN, 

(CzHs)zO and CH2Ch). Among the solvents studied, diethyl ether proved suitable for 

the PLE enantioselective hydrolysis of substrate 2. Thus, treatment of a solution of 2 

in diethyl ether and pH 7.8 phosphate buffer with PLE at room temperature afforded 

acid (-)-130 and ester (+)-2, Figure 2.8. The reactions were stopped at 50% 

conversion and the products were purified by column chromatography. The success of 

this resolution hinged on the ability of the enzymes to react preferentially with the(-)-

ester. 

0 
~co,Et 

NHBoc 
2 

PLE 
pH 8 phosphate buffer 0 

Et20, r.t, 4 d ~co,H + 

NHBoc 
(-)-130 

42% 
22 [a] 0 -57 (c,l; CHC13) 

Figure 2.8: PLE mediated kinetic resolution of 2 

0 
Eto,c~ 

NHBoc 
(+)-2 

48% 

[a]0
22 +136 (c,l; CHC13) 

2.7.2 CHIRAL HIGH-PERFOMANCE LIQUID CHROMATOGRAPHY 

RESOLUTION 

High perfmmance liquid chromatography (HPLC) on chiral stationary phase has 

become a reliable method for the separation and determination of optically active 

isomers. Direct chiral separation using cyclodextrin-based and macrocyclic antibiotic­

based HPLC columns continue to be common and enantioseparation on many novel 

chiral stationary phases has also been reported.54 Successful HPLC methods for the 

resolution of cyclic ~-amino acids include chiral crown ether stationary phases58 and 

glycopeptide antibiotic teicoplanin stationary phases. 59 On the basis of these literature 

observations, and to complement the enzyme mediated resolution, we turned our 

attention to an investigation of the enantiomer separation of bicyclic ~-amino ester 2 

using preparative chiral HPLC method. To this end, subjection of 2 to a Chiralpak AD 

HPLC column eluting with a 95:5 mixture of hexane and ethanol gave both 

enantiomers of 2 together with the retro-Diels Alder product 131 (see Appendix 2 for 
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the chromatogram). The chiral HPLC separation was done in collaboration with Mr 

Steve Jackson at GlaxoSmithKline. 

Figure 2.9: Retro Diels-Alder product 131 

2.8 SYNTHESIS OF THE STRUCTURE (-)-ORYZOXYMYCIN 

In the event that the oxygen bridge of oxanorbomene systems could be eliminated, 

optically pure (+)-2 could serve as a potential precussor to the cyclohexadiene moiety 

of oryzoxymycin. Indeed, LiHMDS induced fragmentations of oxanorbomane 

systems were first reported by Brion.6° Further work by Campbell and eo-workers 

demonstrated that the LiHMDS induced fragmentation can also be effected on 

oxanorbomene 132 and the substituted oxanorbomane adduct 134 to give 

cyclohexadiene 133 and cyclohexene 135 respectively, Figure 2.10.61
-
65 On the basis 

of these important precedents, it was presumed that adduct (+)-2 could be fragmented 

using LiHMDS or related bases. 

132 

-t~CO,Me LiHMDS, THF, -78 "C 

49% 

134 

YC02Me 

OH 
133 

Figure 2.10: Campbell's fragmentation of bicyclic adducts 132 and 134 

Using a protocol previously established in our laboratory,51 the oxygen bridge of 

adduct (+)-2 was eliminated using KHMDS, which was found to be more effective 

that LiHMDS. In the event, treatment of (+)-2 with KHMDS in THF afforded 

substituted diene (-)-3, ([a] 0
22 -269) in acceptable yields together with ethyl 3-

hydroxybenzoate as a by-product, Figure 2.11. The 1 H NMR of (-)-3 showed 
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characteristic resonances at (:) 6.26 integrating for two protons and a doublet at (:) 7.17 

with coupling constant J = 4.8 Hz assigned to H-3, H-4 and H-1 respectively. It is 

instructive to note that the product from this easily executed fragmentation reaction 

already has much in common with the targeted cyclic intermediate 118. To set the 

stage for the crucial esterification reaction, ester (-)-3 had to be hydrolysed. To this 

end, treatment of (-)-3 with excess KOH in THF and water afforded acid (-)-125 

([a] 0
22 -332) in 68% yield. 

0 
Eto,c? 

NHBoc 

(+)-2 

KHMDS, THF Et02C:y 
-50 to 25°C I 

,,~·· 

71% BocHN 
OH 

(-)-3 

Figure 2.11: Synthesis of acid (-)-125 

KOH, THF, H02C:y 
H20, 68% I 

BocHN'''. 

OH 

(-)-125 

In a parallel sequence of reactions, the hydroxyl group of t-butyllactate was activated 

to make it amenable to the esterification step. Thus, treatment of a solution of 

commercially available lactate 136 in CH2Ch with triethylamine followed by cooling 

(0°C) and addition of MsCl afforded mesylate 137, [a] 0
205 +49 in 99% yield. 

MsCI, Et3N, CH2Cl2 
99% 

Figure 2.12: Synthesis of mesylate 137 

Having achieved the expedient synthesis of intermediates (-)-125 and 137, attention 

was then focused on formation of the ester bond between the two substances by a 

procedure developed in our laboratory in the preliminary studies towards 

oryzoxymycin.51 Consequently, treatment of acid (-)-125 with CsF and mesylate 137 

in DMF gave the desired lactate coupled product 138 as a single isomer, [a] 0
22

; -171 

(c; 1, CHCh), Figure 2.13. It is instructive to discuss the mechanistic profile of the 

CsF mediated coupling reaction. Otera and eo-workers suggested that the reaction 

proceeds on the surface of solid CsF, since fluoride anions could not be detected 

during the course of the reaction.66 Hydrogen bonding between CsF and an active 
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hydrogen of the nucleophile (the acid hydrogen m this case) was thought to be 

responsible for the smooth reaction. 

Both the 1D and 2D NMR spectra of 138 displayed all the features consistent with the 

proposed structure. Most noticeable was the HMBC correlations between the 

cyclohexadienylcarboxylate carbonyl carbon and the lactate H-2 which confirmed the 

point of attachment of the lactate unit, Figure 2.14. 

H02CY) 

BocHN''··Y 

OH 
(-)-125 

137, CsF, DMF, 50 °C 

83% 

Figure 2.13: Coupling of the lactate 137 to (-)-125 

Figure 2.14: Selected HMBC correlations of 138 

0 ~ 
~o co,'Bu 

, NHBoc 

OH 
138 

As indicated in Section 2.4, the selection of the t-butyl protecting group for the lactic 

acid was not arbitrary; it was reasoned that since it is acid labile, its removal would be 

coupled to that of the Boc group. Indeed, exposure of 138 to TFA in CH2Ch achieved 

complete deprotection to afford(-)-oryzoxymycin salt 139 in good yield, [a] 0
21 -199 

(c; 1, H20). Unlike the literature natural product, 139 showed appreciable stability 

when stored at 0°C or in solution of water at room temperature. However, when kept 

at room temperature in a dry state, 139 gradually decomposed, but, unlike the 

literature compound, no dimeric product was detected.45 One characteristic of the 

synthetic (-)oryzoxymycin comparable to that of the literature compound was its 

solubility in methanol and water, but insolubility in most organic solvents. 

High resolution mass spectrometry established the molecular formula C 10H 11N04 for 

structure 139. TheIR spectrum featured a hydroxyl band at 3413 cm- 1
, a broad acid 
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band at 3550-2800 cm- 1 and bands at 1726 and 1679 cm- 1 due to the carbonyls of the 

ester and the acid. The 1H NMR spectrum exhibited a doublet integrating for three 

protons at 8H 1.57 with coupling constant h_3 7.2 Hz and this was assigned to lactate 

methyl hydrogens. A multiplet at ()H 4.44 integrating for two hydrogens was assigned 

to H-5' and H-6', whilst a quartet at ()H 5.17 with coupling constant h_3 7.2 Hz was 

assigned to H-2. A multiplet at ()H 6.49 integrating for two hydrogens was assigned to 

H-3' and H-4' while a doublet at 8H 7.57 with coupling constant J = 5.5 Hz was 

assigned to H-2 of the cyclohexadiene moiety. The 13C NMR spectrum was also 

consistent with the proposed structure with the two carbonyls resonances at be 166.2 

and 176.3. 

0 ~ 
~o co,'su 

, NHBoc 

OH 
138 

TFA,DCM 

89% 

Figure 2.15: Deprotection of both the Boc and t-butyl groups 

The processes desctibed thus far have culminated m the first synthesis of the 

enantiomer of the structure of the reported in literature as oryzoxymycin. 

Unfortunately, as the results show, the optical rotation values of the two compounds 

were inconsistent (139 [a] 0
21 -199 (c; 1, H20); Literature oryzoxymycin [a] 0

21 +349 

(c; 1, H20)).47 Significant differences were also observed in the infrared spectrum 

both in the carbonyl region and the characteristic fingerprint region, Figures 2.16 and 

2.17. 

4000 3000 2000 1800 16"00 14{.)0 1200 rooo aoo cm-' 

Figure 2.16: Literature IR spectrum of oryzoxymycin44 
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Figure 2.17: IR spectrum of oryzoxymycin 

On the basis of these results, the assumption at this stage was that the correct structure 

for oryzoxymycin was the isomeric C-5 lactate ester 140, Figure 2.18. It is instructive 

to draw attention to the fact that related structures have this pattern of substitution.48
-
50 

Another possibility considered was a diastereomeric structure isomeric at C-2 of the 

lactate side chain. 

0 

c(oH 
-'rrc) NH2 

0 
140 

Figure 2.18: Possible structure of oryzoxymycin 

To test the assumption stated above, a study towards the synthesis of 140 was 

undertaken. During the planning stages of this synthesis, the task of achieving the 

coupling of the lactate unit to the cyclic moiety was not regarded as being too 

difficult. After all, in situ activations of the carboxylic groups with coupling reagents 

like EDCI followed by reaction with nucleophiles are routinely carried out in organic 

synthesis.67
·
68 Below we repmt preliminary results towards synthesis of 140. 
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To set the stage for the crucial coupling reaction, the hydroxyl-function of (S)-lactic 

acid 141 had to be protected. To this end, addition of TBSCl and imidazole to a stirred 

solution of acid 141 afford the OH-TBS protected lactic acid 142 in good yield, 

Figure 2.19. The choice of the HF labile TBS protecting group was based on the 

assumption that its removal could be coupled to that of the Boc group. 

TBSCl, imidazole QTBS 

CH2Cl2 ~C02H 
88% 142 

Figure 2.19: Protection of the (S)-lactic acid 142 

Unfortunately, when ester 3 was treated with lactic acid 142 in the presence of EDCI 

and DMAP at 25 °C, all that was isolated was the fully protected anthranilic acid 

derivative 144 in 82 % yield, Figure 2.20. Repeating the reaction at low temperature 

(0 °C) did not change the outcome. This results suggested that intermediate 143 was 

itself an unstable substance under the reaction conditions, hence the aromatisation to 

144. Repeating the reaction with acid 125 instead of ester 3 led to isolation of N-Boc 

protected anthranilic acid. 

Et02C)) 

BocHN''··y 

OH 

3 142 

EDCI, DMAP, DCM 

82% 

Figure 2.20: EDCI Coupling of the lactate 142 to 3 
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The disappointing results forced us to look at other ways of activating the carboxylic 

acid of the lactic acid 142. One of the widely used methods for the activation of 

carboxylic groups is conversion into acid chlorides using thionyl chloride.69
· 

70 In the 

context of the synthesis of intermediate 143, acid 142 was treated with thionyl 
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chloride in THF and after 12 h 3 was added to the reaction mixture. Unfortunately, the 

only detectable product was again the protected anthranilic acid derivative 144. The 

instability of the coupled product 143 was attributed to steric interaction between the 

bulky Boc group and the lactate side chain. Indeed, when the less sterically 

encumbered isobutyric acid 145 was used instead of lactic acid 142 ester 146 was 

isolated in 90% yield, Figure 2.21. 
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Figure 2.21: Synthesis of 146 
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At this point, we suspended the attempts towards synthesis of 140 and with the 

appropriate intermediates and strategy in hand, we set out to synthesise the ( + )­

diastereoisomer of the literature structure of oryzoxymycin. The results of this work 

will be discussed in the subsequent section. 

2.9 SYNTHESIS OF (+)-DIASTEREOISOMER OF ORYZOXYMYCIN 

The readiness of oryzoxymycin to dimerize into 147 was reported by Hashimoto and 

co-workers.45 On the other hand, the synthesised (-)-oryzomycin salt 139 showed 

appreciable stability at low temperature and in solution but still decomposed when 

kept at room temperature as a solid. In the search for a more stable structure of 

oryzoxymycin, we considered the synthesis of its (+)-analog, isomeric at C-2 of the 

lactic acid. Below, we therefore report the synthesis of (+)-diastereoisomer of 

oryzoxymycin that took advantage of the versatile methodologies developed during 

the synthesis of (-)-oryzoxymycin. 
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Figure 2.22: Diels-Aider Dimer of oryzoxymycin 

Through our previously established synthetic pathway, oxanorbomene system (-)-2 

could be fragmented in the presence of a base to give a cyclohexadiene system. In the 

event, treatment of the bicyclic adduct (-)-2 with KHMDS in THF afforded diene (+)-

3, [a] 0
22 +266 (c; 1, CHCh) in 71% yield. Hydrolysis of the ester of(+ )-3 with KOH 

in THF/H20 gave acid (+)-125, [a] 0
22 +348 (c; 1, CHCh) in 68% yield, Figure 2.23. 

° CO E KHMDS, THF y:C02Et 2 t -50 to 25°C I 
71% .. ,,NHBoc 

NHBoc OH 
(-)-2 (+)-3 

Figure 2.23: Synthesis of the acid (+)-125 

KOH, THF,y:C02H 
H20, 68% I 
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OH 
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With the required building blocks in hand, attention was then turned to the convergent 

union of lactate 137 and intermediate (+)-125 on the basis of the procedure 

established in the synthesis of (-)-oryzoxymycin. To this end, treatment of acid(+)-

125 with lactate 137 in the presence of CsF in DMF at elevated temperature (50°C) 

gave the protected (+)-isomer of oryzoxymycin 148 [a]0 +181 (c; 1, CHC13) in 

excellent yield. The point of attachment for the lactate, as in the previous case, was 

confirmed by HMBC correlation experiments. Final deprotection of both the Boc and 

t-butyl groups was effected by treatment with TFA in CH2C]z to give the (+)-isomer 

salt of oryzoxymycin 149 [a] 0 +165 (c; 1, H20), Figure 2.24. Unfmtunately, this salt 

also decomposed when left in a solid state at room temperature. 

Oryzoxymycin isomer 149 was confirmed as the product of the sequence of reactions 

described above by elemental analysis which established the molecular formula 

C10H 13NOs.CzH02F3. TheIR spectrum featured two bands at 1703 and 1677 cm·' due 

to the two carbonyls, whilst a broad band at 3350-2800 cm·' was characteristic of the 
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acid group. The 1H and 13C spectra displayed all the features consistent with the 

proposed structure. 

NC02H 

y··''NHBoc 

OH 

(+)-125 

137, CsF, DMF, 50 °C, 

83% 

Figure 2.24: Synthesis of ( + )-diastereomer of oryzoxymycin 149 

It is appropriate, at this juncture, to note that the synthesis of both compounds 139 and 

149 did not achieve our aim of proving the reported structure of oryzoxymycin. While 

the literature oryzoxymycin was characterised as an HCl salt, 139 and 149 were 

characterised as TFA salts. Whether this discrepancy could be responsible for the 

differences observed between the optical rotations of the synthesised compounds and 

the literature oryzoxymycin is not obvious. It is worth noting that addition of a few 

drops of 5 M HCl to a water solution of either 139 or 149 did not significantly change 

the observed rotation. 

Among the tasks remammg m this synthesis was ascertaining the absolute 

stereochemistry of the cyclohexadiene moiety of oryzoxymycin. It was known from 

the work of McCorrnick and coworkers that (+)-trans-2,3-dihydro-3-

hydroxyanthranilic acid (DHAA) can be hydrogenated in the presence of Palladium to 

give 2-amino-3-hydroxycyclohexane-1-carboxylic acid [a]0
21 -35 (c;l, H20).71 The 

reduction was repeated by Hashimoto to prove the absolute stereochemistry of 

oryzoxymycin.47 Thus, on the basis of these precedents, acid (+)-125 was reduced by 

treatment with Pd/C in ethanol under a hydrogen atmosphere and subsequently treated 

with TFA to remove the Boc and give substituted cyclohexane 151 [a] 0
21 -32 (c;l, 
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H20) in excellent yield. Alternatively, 125 was treated with TFA to give 152 [a] 0
21 + 

339 (c;l, HzO) and subsequent reduction gave 151 in 93% from 125. On the basis of 

the consistency of the results with literature data, the absolute structure of 149 must 

be (2S)-[(5S, 6S)-6-arnino-5-hydroxy-1,3-cyclohexadiene-l-carbonyloxy ]-propionic 

acid TFA salt. 

y:C02H 
Pd/C, H2, ethanol 

'NHBoc 

OH 
(+)-125 

]
TFA, CH2Cl2 

95% 

Figure 2.25: Reduction and deprotection of (+)-125 

2.10 SUMMARY 
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The reaction processes described in this chapter have culminated in the synthesis of 

the enantiomer and the ( + )-diastereoisomer of the literature structure of 

oryzoxymycm. This is the first reported synthesis of the structure described by 

Hashimoto as oryzoxymycin.72 Memorable highlights of this route include the 

demonstration of the Diels-Alder reaction of nitroacrylates and furan as an efficient 

method for the construction of highly functionalised cyclohexyl rings, the utility of 

enzymes in kinetic resolution and the use of CsF in the formation of ester bonds in the 

presence of a free hydroxyl group. This achievement bodes well for the future 

application of this chemistry to the total synthesis of other related structures of· 

biological or structural interest. 
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CHAPTER THREE 

SYNTHESIS OF THE 3,4,5-TRIHYDROXYL 

DERIVATIVES OF ACHC 

44 



3.1 INTRODUCTION 

During the course of the synthesis of the structure of oryzoxymycin discussed in 

Chapter 2, it was recognised that cyclohexadiene 125 could be functionalised in a 

controlled and selective fashion taking advantage of substrate stereo-controlled 

processes to give derivatives of 2-aminocyclohexane-1-carboxylic acid (ACHC). In 

this chapter, the synthesis of an array of 3,4,5-trihydroxyl derivatives of ACHC, 

which took advantage of the above observations will be discussed. 

Trans-2-aminocyclohexane-1-carboxylic acid (trans-ACHC) 96 is a member of a new 

class of compounds called cyclic ~-amino acids. Along side 2-

aminocyclopentanecarboxylic acid (ACPC) 153 and 4-aminopyrrolidinecarboxylic 

acid (APC) 154, ACHC 96 represent an interesting structure that has been the target 

of a number of syntheses. 11
'
73 As discussed in Chapter 1, most of the published 

syntheses of trans-ACHC and its derivatives are based on the following reactions; 

d . f h 'l' 'd 32 c . 26 d . . 23 d re uctwn o ant ram 1c ac1 , urt1s rearrangement, re ucti ve ammatwn an 

Diels Alder reaction of amino dienes and acrylates. 29 

aC02H 

''NH2 

ACPC 153 

Figure 3.1: Trans-ACHC 96 and related structures 

~C02H 
HN\.--J. 

-.. ,,NH
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APC 154 

Much of the interest in ACHC 96 and related compounds is a consequence of the 

ability of their oligomers to form well-defined secondary structures analogous to 

those of natural peptides.15 In this respect, Gellman and eo-workers have recently 

examined the tetramer 155 and the hexamer 156 (Figure 3.2) of optically active tram;­

ACHC, using crystallography and 2D NMR and these revealed perfect 14-helical 

conformations. 13 Oligomers of ACHC and other cyclic ~-amino acids therefore have a 

particular appeal for extending our understanding of protein structure and 

stabilization. 
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Qo'fo [ll 1~ 
~~l ~~rO,C(CH,), 

Tetramer 155, n = 3 and hexamer 156, n = 5 

Figure 3.2: Gellman' s tetramer 155 and hexamer 156 

Recently, increasing work has been devoted to the synthesis of cyclic ~-amino acids 

with extra functionalities appended at specific positions around the rings. A few 

examples of these substituted cyclic ~-amino acids were discussed in Chapter 1. 

Subsequent studies will undoubtedly be focused on the effects of the functionalities 

on the stability of the oligomers derived from the substituted cyclic ~-amino acids. 

In view of the importance of ~-peptides, there is a need for the synthesis of their 

building blocks, ~-amino amino acids. In particular, water-soluble hydroxylated or 

aminated derivatives of ACHC have attractive properties and a high intrinsic 

. f h 1· I f Id. 14 17 26 C 1 . h h h propensity or e tea o mg. ' · onsequent y, we report m t is c apter t e 

synthesis of an array of 3,4,5-trihydroxy derivatives of ACHC that took advantage of 

the Diels-Alder reaction of (E)-3-nitroacrylate and furan described in Chapter 1 for 

synthesis of the structure of oryzoxymycin. 

3.2 PREPARATION OF THE OXANORBORNENE INTERMEDIATES 

In Chapter 1, the endo-nitro adduct was accessible as the major product through a 

reaction of nitroacrylate 1 and furan in CHCh at -20 °C. Realising that the exo-nitro 

adduct was as important in the synthesis of DHAA derivatives, a study of the effects 

of temperature and solvents on the Diels Alder reaction was conducted in the hope of 

shifting selectivity towards the exo-nitro adduct. Thus, repeating the reaction of 

nitroacrylate 1 and furan at 25 °C and 40 °C gave a 2:1 mixture of adducts 123 and 

124 respectively. When the reaction was carried out in other solvents such as CH3CN, 

MeOH, (CF3)2CHOH and toluene at both 25 °C and elevated temperatures, the 2: 1 

ratio was maintained, Figure 3.3. These observations can be attributed to the preferred 

endo-nitro transition state geometry. Just and eo-workers have reported the preference 

for the exo-nitro adduct when the reaction of methyl 3-nitroacrylate and furan was 
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canied out without a solvent.6 However, in our case, this reaction afforded a 3:1 

mixture in favour of the endo-nitro adduct 123. 

Furan, solvent 
0 0 

02N~C02Et 
temperature 

qco,Et 
£l2No I 2 

N02 C02 Et 
1 123 124 

Yield of 

Solvent Tem~erature {°C} 123{% }/124 {% l 
CHCb -20 72 18 

CHCh 25 60 30 

CHCI3 40 60 30 

CH3CN 25 60 30 

Toluene 25 60 30 

Toluene 80 60 30 

Me OH 25 60 30 

(CF3)CHOH 25 60 30 

Fur an 25 68 22 

Figure 3.3: Solvents and temperature effects on the Diels Alder reaction 

The Diels Alder adducts were separable by column chromatography and subsequent 

reduction of the nitro group for each adduct as described in Chapter 1 afforded 

oxanorbomene intermediates 3 and 158, Figure 3.4. It was assumed at planning stages 

that it should be possible to functionalise the double bonds of intermediates 3 and 158 

in a controlled and selective fashion by taking advantage of the tigid shape of the 

substrates. The functionalised adducts could then be elaborated to cyclohexyl 

detivatives by base mediated elimination of the oxygen bridge. A complementary 

route would be the reversal of the functionalisation and fragmentation sequence of 

reactions, Figure 3.4. 
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0 
y:C02Et HOqCO,Et 

~C02Et 
'NHBoc HO ... ,,NHBoc 

NHBoc OH OH 
2 3 157 

0 VCO,Et HOqC02Et 

GNHBoc NHBoc HO NHBoc 
C02 Et OH OH 

158 159 160 

Figure 3.4: General strategy for elaboration of adducts 2 and 158 into ~-amino acids 

of type 157 a,nd 160 

In the first section of this chapter, results on the use of Os04 mediated 

dihydroxylation for the elaboration of bicyclic adducts 2 and 158 to 3,4,5-trihydroxy 

derivatives of trans-ACHC will be discussed. Subsequent sections will then document 

our work towards trihydroxy derivatives of ACHC using epoxidation reactions. 

3.3 CIS DIHYDROXYLA TION 

3.3.1 INTRODUCTION 

Osmium tetraoxide (Os04) is the most reliable reagent available for the cts 

dihydroxylation of alkenes to give the corresponding cis-diols. Although 

stoichiometric osmylation has been reported in the literature,74 it is more usual, for 

reasons of cost and safety, to use osmium tetraoxide catalytically in the presence of 

inexpensive eo-oxidants. Inorganic cooxidants such as sodium or potassium chlorate 

and hydrogen peroxide were the first to be used, but have the disadvantage that 

appreciable over-oxidation can occur to give keto or acid products.75 Amine N-oxides 

and organic peroxides on the other hand have been found to be very effective as eo­

oxidants in the dihydroxylation reactions.74
'
75 Minato and eo-workers have also 

described the use of K2Fe(CN)6 in the presence of K2C03 for the osmium catalysed 

dihydroxylation of alkenes.76 

Figure 3.5 presents a succinct summary of the catalytic cycles in the osmium­

catalysed dihydroxylation of alkenes using NMO as the eo-oxidant. Through the work 
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of Sharpless and eo-workers, two catalytic cycles were deduced.77 Under 

homogeneous conditions the eo-oxidant has constant access to all the catalytic 

intermediates, therefore the turnover for the dihydroxylation is locked into the second 

cycle. Kwong found that that this second catalytic cycle was virtually eliminated by 

performing the reaction under biphasic conditions.78 Under these conditions, 

osmylation takes place in the organic layer and the resulting osmium (VI) 

monoglycolate ester 163 undergoes hydrolysis releasing the diol to the organic layer 

and the Os (VI) to aqueous layer where it is oxidised back to Os (VIII). Entry of the 

osmium glycolate into the second cycle is therefore prevented. 

R 

R 
~ 

HO 161 

RJ--yR 
H20 

164 OH 
02P-:( // \ 
0 0 

163 R R 0 

o, ~P First ~:l Second x_oy5o~( 
'Os, cycle cycle R 0 b Qt '0 

165 R 
o_ pxR 'Os 0/ \ ... 

0 R 
H20 162 

HO 
R 

RJ--yR ~ 
R 161 OH 

164 

Figure 3.5: The two catalytic cycles for osmium catalysed dihydroxylation 78 

3.3.2 SYNTHESIS OF THE ANTI-ANTI-ANTI-SYN ACHC DERIVATIVE 168 

On the basis of the exceptional scope and reliability of the osmmm catalysed 

dihydroxylation reaction, we decided to feature this reaction in the synthesis of 

polyhydroxylated derivatives of ACHC using oxanorbornene systems 2 and 158 as 

starting materials. Thus, on the basis of the precedence set in Chapter 2, adduct 2 was 

treated with KHMDS in THF to give cyclohexadiene 3 in 71% yield. Treatment of 3 

with catalytic Os04 in the presence of Me3NO.H20 as the eo-oxidant afforded the 
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substituted cyclohexene 166 as a single diastereoisomer, which was then characterised 

as its triacetoxy derivative 167, Figure 3.6. 

It is instructive to address the interesting stereochemical outcome of the above 

dihydroxylation reaction. The delivery of the diol on the same face as the carbamate 

and on the face opposite to the allylic hydroxyl group in the osmium catalysed 

dihydroxylation of 3 was certainly not suprising. Dihydroxylation of alkenes that 

contain chiral centres can lead to high levels of stereoselectivity. Indeed, Kishi has 

reported that the Os04 mediated oxidation of cyclic allylic alcohols led to formation 

of a syn-anti triol with high levels of stereoselectivity.79
' 

8° Furthermore, the ability of 

cyclic homoallylic carbamates to give high levels of syn selectivity in the osmium 

mediated dihydroxylation reactions is well documented. 81 Cyclohexadiene 3 has these 

two chemical processes acting in cooperation, hence the high level of 

s tereose 1 ecti vi ty. 

0 
~C02 Et KHMDS, THF, -50 to 25°C 

71% 

NC02Et 

y··.,,NHBoc 

OH NHBoc 
2 

AcO,,::N,C02Et __ A_c_2o_, _p_yn_· d_i_n_e __ 

AcO'' y···'NHBoc 68% from 3 

OAc 
167 

Figure 3.6: Synthesis of cyclohexene 167 

3 

Os04, Me3NO.H20, 
Acetone 

HO,,::N,C02Et 

HO'' y··,,,NHBoc 

OH 
166 

To complete the synthesis, it was necessary to reduce the double bond in a selective 

fashion. It was anticipated that substrate-stereocontrolled processes could secure the 

vicinal stereochemical relations in the reduction step. Gratifyingly, when a solution of 

167 in ethanol was treated with a catalytic amount of Pd/C under a hydrogen 

atmosphere, ACHC derivative 168 was the only detectable product, Figure 3.7. It is 

noteworthy that the addition of the hydride during the reduction took place on the 

more hindered diastereo-face of the alkene probably due to the coordination of the 

50 



palladium to the carbamate. It was known from the work of McCormick and eo­

workers on similar systems that the hydride adds preferentially on the same face as 

the amino group.71 Thus, on the basis of this precedent, the selective formation of 168 

was not suprising. The same stereoselective reduction was observed when 166 was 

used as the substrate to give 169, Figure 3.7. Triol 169 was then acetylated under the 

standard conditions to give 168. 

High-resolution mass spectrometry established the molecular formula C20H31 N0 10 for 

ACHC derivative 168. The 1H and 13C NMR featured all the peaks consistent with the 

cyclohexane structure. The relative stereochemistry was confirmed by across the ring 

NOESY correlation between H-1 and and H-3 and that between H-2 and H-4, Figure 

3.8. 

Ac0,,::11:C02Et 

AcO'' y··,,'NHBoc 

OAc 
167 

HO,,:::Il:C02Et 

HO'' y··,,'NHBoc 

OH 
166 

H2, Pd!C, EtOH 

98% 

H2, Pd/C, EtOH 

98% 

Ac0,,:::r"(C02Et 

AcO'' y·'''NHBoc 
OAc 
168 

1Acz0, pyridine 

HO,,:::r"(C02Et 

HO'' y··,,'NHBoc 

OH 
169 

Figure 3.7: synthesis of anti-anti-anti-syn triacetoxy ACHC derivative 168 

Ac00H 

AcO#C02Et 
NHBoc 

OAc 
H H 

\__; 
Figure 3.8: Selected NOESY interactions for 168 
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3.3.3 SYNTHESIS OF THEANTI-ANTI-SYN-SYN ACHC DERIVATIVE 178 

Having achieved the stereoselective synthesis of the anti-anti-anti-syn triacetoxy 

ACHC derivative 168, attention was turned on setting the stereochemistry of the C-4 

and 5 syn-hydroxyl groups on the same face as the allylic hydroxyl group and anti to 

the homoallylic carbamate. Donohoe and eo-workers have carried out extensive 

studies on the directed dihydroxylation of cyclic allylic alcohols and have found that 

the OsO,JTMEDA oxidant delivered the syn-syn isomer through hydrogen-bonding 

mediated processes, Figure 3.9.82 This reaction proceed through a five membered 

chelate of TMEDA with Os04 thereby increasing the electron density on the oxo 

ligands and making them better hydrogen bond acceptors. 

Q 
Os04, TMEDA, CH2Cl2 

-78oC HOX) --
98% ( 171:172; 8:1) HO 

+ HO,,,:Q 

HO''' 

OH 
170 

OH 
171 

OH 
172 

Figure 3.9: Donohoe's OsO,JTMEDA dihydroxylation of 170 

In the context of intermediate 3, hydrogen bonding could either be between the 

chelate and the allylic alcohol or the chelate and the homoallylic carbamate. In the 

event, treatment of a solution of cyclohexadiene 3 in CH2Cb or acetone with one 

molar equivalent of Os04 m the presence of TMEDA afforded 

trihydroxylcyclohexene 166 as the only detectable product, Figure 3.10. The 

dihydroxylation still occurred preferentially on the same diastereoface as under the 

previous conditions without TMEDA. 

NC02Et 

y··''NHBoc 

OH 
3 

Os04, TMEDA, CH2Cl2 
-78 °C 

78% 

HO,,, __ NC02Et 

HO'''. y··,,,NHBoc 

OH 
166 

Figure 3.10: OsOJTMEDA mediated dihydroxylation of 166 

Next, we examined the Prevost reaction62 as a route to dihydroxylation of 3 on the 

upper diastereoface. It is instructive to preface this reaction with a few remarks. The 
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Prevost reaction involves heating the alkene with iodine and a silver salt (usually the 

benzoate or acetate). In this reaction, iodine reacts with the n: bond on the less 

sterically hindered face to afford a transient iodonium ion, which is then intercepted 

by the nucleophilic silver carboxylate to give a trans-iodo-ester. The iodo-ester is then 

hydrolysed to give the cis-diol on the more hindered face. In the case at hand, 

treatment of cyclohexadiene 3 with iodine and silver acetate in acetic acid and water 

gave a synthetically useless mixture of products including diiodo isomers. The above 

observation can be attributed to non facio-discrimination of the iodination reaction 

and the opening of the iodonium ring by an iodide ion. 

The disappointing results forced us to modify our synthetic strategy towards 

functionalising bicyclic adduct 2 before the elimination of the oxygen bridge. 

Employing a known procedure,64 2 was dihydroxylated from the exo-face by 

treatment with catalytic Os04 in the presence of Me3NO.H20 to give diol 173. With 

diol 173 in hand, attention was turned towards elimination of its oxygen bridge. 

Andrio and eo-workers have reported a LiHMDS mediated fragmentation of a 

comparable oxanorbornane system with unprotected hydroxyl groups.83 

Unfortunately, all attempts at the use of either KHMDS or LiHMDS in variable 

equivalences to eliminate the oxygen bridge of 173 failed to give any of the 

anticipated cyclohexenyl products. 

0 Os04, Me3NO.H20, HO 0 
ci~C02Et _A_c_e_to_n_e _____ HOIUri~C02Et 
~ 77% ~ -------No Reaction 

Base, THF, 
-50 to 25°C 

NHBoc NHBoc 

2 173 

Base: LiHMDS or KHMDS 

Figure 3.11: Synthesis of 173 and attempts towards its fragmentation 

The failure of the fragmentation reactions of diol 173 was certainly not suprising. The 

addition of the base must have led to the deprotonation of the hydroxyl groups, 

placing more negative charge on the substrate and making the formation of the 

enolate, which leads to ~-elimination of the oxygen bridge very difficult. Diol 173 

therefore had to be converted into a form amenable to the fragmentation step. To this 

end, a solution of 173 in acetone was treated with 2,2-dimethoxypropane in the 
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presence of p-TsOH to give acetonide 174 in 61% yield, Figure 3.12. Although 

fragmentation of related acetonide systems has been reported,65 acetonide 174 was 

inert to both LiHMDS and KHMDS. It seemed reasonable to conclude that the cyclic 

acetonide moiety increased the rigidity of 174 and therefore made the elimination of 

the oxygen bridge less likely. 

o Me2C(OMe)2, 

HOriYC02Et p-TsOHAcetone 

HO~ 61% 
NHBoc 

173 

~~eo, Et 
Base, THF, 
-50 to 25°C . 
----No ReactiOn 

NHBoc 

174 

Base: LiHMDS or KHMDS 

Figure 3.12: Synthesis of 174 and attempts towards its fragmentation 

At this point, a persilylated derivative of 173 was considered as a possible less rigid 

substrate for the base mediated fragmentation reaction. To prepare this derivative, a 

solution of 173 in CH2Ch was treated with TBSCl in the presence of imidazole to 

give 175 in excellent yield. Initial attempts to fragment 175 using KHMDS were 

futile. Gratifyingly, LiHMDS gave the desired substituted cyclohexene 176 albeit 

accompanied by the unexpected loss of the Boc protecting group, Figure 3.13. It is not 

clear to what the discrepancy between KHMDS and LiHMDS should be attributed. 

The 1H NMR spectrum of 176 exhibited all the features consistent with the proposed 

structure including a characteristic doublet at o 6.87 with coupling constant J = 3.2 Hz 

assigned to H-2. 

0 
Ho'>-lyco2Et 
HO~ 

NHBoc 

173 

TBSCl, CH2Cl2 
imidazole 

86% 

0 
TnsoriYco2Et 
TBSO~ 

NHBoc 

175 

j 
LiHMDS, THF, 
-50 to 25°C, 48% 

TBSOYY.C02Et 

TBSO~·,,,NH2 
OH 
176 

Figure 3.13: Persilylation of 173 and fragmentation of bis TBS ether 175 
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In spite of the moderate yields for the fragmentation reaction, 176 was elaborated to 

anti-anti-syn-syn triacetoxy derivative of ACHC through the sequence of reactions 

shown in Figure 3.14. Thus, TBAF mediated desilylation of 176 and subsequent 

peracetylation afforded 177 in 52% over the two steps. Reduction of the double bond 

by treatment of a solution of 177 in EtOH with a catalytic amount of 10% Pcl/C under 

a hydrogen atmosphere proved to be facio-selective and afforded the anti-anti-syn-syn 

isomer 178 as the only product. The hydrogen was delivered to the double bond on 

the same face as that occupied by the carbamate and opposite to the C-3 acetoxy 

group. 

The 1H and 13C spectra of 178 displayed all the features consistent with the proposed 

structure. The relative stereochemistry around the ring was suggested by the NOESY 

interactions shown in Figure 3.15. 

TBSO~C02Et 

TBSO~··,,,NH2 
OH 

176 

i. nBu4NF, THF 
ii. Pyridine, Ac20 

52% 

AcO~C02Et 

AcO~·.,,NHAc 
OAc 

177 
H2, Pcl/C, EtOH 

99% 

AcOYI,C02Et 

AcO~·.,,NHAc 
OAc 
178 

Figure 3.14: synthesis of anti-anti-syn-syn triacetoxy ACHC derivative 178 

~ 
Acoil=fco2Et 

NHBoc 
OAc 

OAc H 

Figure 3.15: Selected NOESY interactions of 178 
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3.3.4 SYNTHESIS OF THE SYN-SYN-SYN-SYN ACHC DERIVATIVE 182 

The cis dihydroxylation chemistry discussed thus far employed the endo carbamate 

adduct 2 as the starting material and therefore gave the 2,3-anti geometry in the 

subsequent ACHC derivatives. It therefore appeared attractive to apply the cis 

dihydroxylation protocols on the exo carbamate adduct 158 as a route to ACHC 

derivatives with a 2,3-syn relationship. Thus, subjection of adduct 158 to the action of 

KHMDS in THF afforded cyclohexadiene 159 in 71% yield. Attempts to procure 159 

from 3 through a Mitsunobu reaction84 were thwarted by aromatisation which gave 

the N-Boc protected ethyl anthranilate. Having obtained 158, Os04 mediated 

dihydroxylation and peracylation afforded cyclohexenyl 179 as the only isomer, 

Figure 3.16. It is evident from this reaction that the ability of the homo-allylic 

carbamate to direct delivery of the diol on the upper face overrides the anti preference 

of the allylic alcohol. 

Another route to the cyclohexenyl intermediate 179 involved the sequence of 

reactions shown in Figure 3.16. Thus, dihydroxylation of bicyclic adduct 158 and 

subsequent protection of the resulting diol gave 180. LiHMDS mediated 

fragmentation afforded intermediate 181 and contrary to 176 without the loss of the 

Boc group. Desilylation and acetylation under standard conditions gave the desired 

intermediate 179 in acceptable yield. 
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KHMDS, THF, 
-50 to 25°C 
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i. Os04, Me3NO.H20, 
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ii. TBSCI, CH2C12 
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YNHBoc 
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159 

i. Os04, Me3NO.H20, 
acetone 
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Ac0yyC02Et 

AcO~NHBoc 
OAc 
179 

TBSnO LiHMDS0 THF, TBSOx;:cCOzEt 
TBSO -50 to 25 C 

NHBoc _____ _.. TBSO NHBoc 

C02Et 56% OH 

i. nBu4NF, THF 
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Figure 3.16: Two routes to cyclohexenyl intermediate 179 
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The preparation of intermediate :B. 79 set the stage for the reduction of the n: bond to 

afford the triacetoxy derivative of ACHC. Considering the chiral environment around 

the n: bond and results from the previous reduction reactions, it seemed reasonable to 

expect that the reducing agent would discriminate between the two diastereotopic 

faces of the ring. However, predicting from which side of the molecule the reduction 

would occur was difficult. In the event, treatment of a solution of 179 in ethanol with 

a catalytic amount of 10% w/w Pd/C under a hydrogen atmosphere gave the syn-syn­

syn-syn ACHC derivative 182, Figure 3.17. The hydrogen was delivered to the 

double bond from the less hindered face of the molecule and in contrast to related 

systems discussed in the preceding sections, the carbamate did not direct the 

hydrogenation. 

The 1H and 13C spectra of 182 were consistent with the proposed structure. The 

relative stereochemistry was confirmed by NOESY correlations shown in Figure 3.18. 

Acoyyco2Et 

AcO~~Boc 
OAc 

179 

H2, Pd/C, ethanol, 98% AcOYIC02Et 

AcO~~Boc 
OAc 

182 

Figure 3.17: Synthesis of the syn-syn-syn-syn ACHC derivative 182 

irl HrH~ Aco-f-~~co2Et 
~~ 

OAc NHBoc 

Figure 3.18: Selected NOESY interactions of 182 

In summary, Os04 catalysed dihydroxylation was found to be an effective method for 

the stereoselective synthesis of cyclohexyl P-amino acids 168, 178 and 182 from 

bicyclic adducts 2 and 158. 
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3.4 EPOXIDATION AS A ROUTE TO TRANS DIHYDROXYLA TION 

3.4.1 SYNTHESIS OF THE ALL ANTI ACHC DERIVATIVE 188 

The dihydroxylation processes described thus far have culminated in the synthesis of 

derivatives of ACHC with a 4,5-syn-dihydroxyl relationship. To introduce 

stereochemical diversity in this synthetic approach, it appeared reasonable to explore 

routes towards the corresponding anti diols. Our strategy towards these intermediates 

with a 4,5-anti relationship identified epoxidation as a central reaction. Thus, 

treatment of a solution of cyclohexadiene 3 in CH2Ch with mCPBA and NaHC03 

resulted in a highly selective oxidation of the remote 1t bond to give a separable 9:1 

mixture of epoxides 183 and 184 respectively, Figure 3.19. Preliminary acetylation of 

the hydroxyl group enhanced the selectivity and allowed the isolation of epoxide 186 

as the only isomer, Figure 3.20. 

There have been sporadic reports on the stereoselective epoxidation of 4-

aminocycloalkenes. For example, highly stereoselective amide-directed epoxidation 

of 4-aminocyclopentenes has been reported by Barrett and co-workers.85 On the other 

hand, the peracid epoxidation of cyclic olefins with allylic directing hydroxyl groups 

is well documented. 86 In the context of the results of the epoxidation of 3, the 

stereochemistry of the peroxide attack and the configuration of the resulting epoxide 

was directed by the homoallylic carbamate. 

C02Et mCPBA, ~aH~O~, CH2Cl2 

'NHB (183.184, 9.1) 

OH 
oc 77% 

3 

Figure 3.19: Epoxidation of 3 
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Figure 3.20: Synthesis and epoxidation of 185 
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With intermediate 186 in hand, attention was turned towards the opening of the 

epoxide ring. To this end, treatment of epoxide 186 with aqueous perchloric acid led 

to a single trans diol isomer, albeit accompanied by loss of the Boc group, Figure 

3.21. Characterisation of the fully acetylated derivative 187 suggested that 

nucleophilic attack had occurred at the allylic position. This was subsequently 

confirmed by ring opening of the epoxide with ZnCh in the presence of acetic acid to 

give the crystalline chlorohydrin 189, Figure 3.22. The structure of 189 was 

confirmed by X-ray crystallographic analysis (see Appendix 3). Finally, the reduction 

of the rr bond under the conditions described previously afforded the all anti isomer 

188 in excellent yield. 

,,,··c;xC02Et 
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Figure 3.21: Synthesis of the all anti isomer 188 

CH2Cl2 ClnC02Et 

HO',,··y··,,NHBoc 

OAc 
189 

Figure 3.22: Opening of epoxide 186 with acetic acid in the presence of ZnClz 

The structural assigment of the all anti isomer 188 was based on ID and 2D NMR 

experiments. The observation of 10.0 Hz HaHb coupling constants in the 1H NMR 

spectrum of 188 for the ring protons (H-1, H-2, H-3, H-4 and H-5) was indicative of 

HaHb anti diaxial relationships and supported the indicated stereochemistry. This was 
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subsequently confirmed by NOESY interactions between H-1 and H-3, H-1 and H-5 

and also H-2 and H-4, Figure 3.23. 

Figure 3.23: Selected NOESY interactions for the all anti isomer 188 

3.4.2 SYNTHESIS OF THEANTI-ANTI-SYN-ANTI ACHC DERIVATIVE 195 

The initial strategy to procure the alternative epoxide involved selective exo face 

epoxidation of the oxanorbomene system 2 and subsequent P-elimination of the 

oxygen bridge. To this end, a solution of adduct 2 in CH2Ch was treated with mCPBA 

and NaHC03 to give a 61% yield of epoxide 190, Figure 2.24. Unfortunately, epoxide 

190 decomposed under the basic conditions required for the P-elimination of the 

oxygen bridge. 

0 mCPBA, NaHC03, 0 Base, THF, 
J/~~co2Et _c_H_2_c_l2 _____ o;l~co2Et -50 to 25oc 

~ 61% ~ 
NHBoc NHBoc 

2 190 

Base=KHMDS 

Figure 3.24: Synthesis of epoxide 190 

Decomposition 
products 

In the event that a regioselective opening of the epoxide ring could be achieved, 

adduct 190 could serve as a precursor to the anti-anti-syn-anti ACHC derivative. 

Unfortunately, when epoxide 190 was subjected to the action of a mixture of acetic 

acid and water, cyclic carbamate 191, which was inert to the action of sodium 

ethoxide, was isolated in 75 % yield, Figure 3.25. Attempts to eliminate the oxygen 

bridge of this system with a large excess of KHMDS were also futile. 

60 



Ac0HIH20 (9:1) 

75% 

Figure 3.25: Opening of epoxide 190 

The disappointing results forced us to modify our synthetic strategy and methods 

which could override the dominant directing effect of the carbamate group of 

cyclohexadiene 3 were considered. It was known from the work of Sharpless and eo­

workers that the vanadium-based epoxidation of allylic alcohols with t-butyl 

hydroperoxide (TBHP) had a more syn-directive effect than mCPBA. 87
· 

88 Thus, on 

the basis of these precedents, a solution of cyclohexadiene 3 and catalytic VO(acac)z 

in refluxing benzene was treated with TBHP and the reaction was monitored by TLC. 

Unfortunately, the protected anthranilate 144 was the only product isolated from this 

reaction, Figure 3.26. The readiness of cyclohexadienes related to 3 to aromatise has 

been documented,36 therefore isolation of 144 as the sole product was not suprising. 

Repeating the reaction at low temperature did not change the results. 

NC02Et 

y··.,,NHBoc 

OH 
3 

VO(acach PhH, 
1BuOOH 80°C C(C02Et , I 

77% /:-
NHBoc 

144 

Figure 3.26: Reaction of 3 with 1BuOOH in the presence of VO(acac)z 

Next, a range of polar solvents were surveyed for the epoxidation of 3 on the 

assumption that they may disrupt the directing effect of the carbamate group. 

Gratifyingly, when a solution of the cyclohexadiene 3, mCPBA and NaHC03 in 

CH3CN was stin-ed at room temperature for 16 h, a separable 2:1 mixture of isomers 

favouring the desired syn epoxyalcohol 184 was isolated in excellent yield, Figure 

3.27. However, when the reaction was carried out in other solvents, such as DMF, 

THF, MeOH, IPA or CF3CH20H instead of CH3CN, a 1:1 mixture of the epoxides 

was isolated. It was known from the work of Shu and Shi on epoxidation in CH3CN 

that the actual oxidant was peroxyimidate 193, formed by nucleophilic attack on the 
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solvent by mCPBA,89 Figure 3.28. The modified steric and electronic properties of the 

oxidant were most likely responsible for the observed reversed stereoselectivity. 

,,.··c;xC02Et 
o,,,,, 

·.,,'NHBoc 

C02Et MCPBA NaHCO CH CN 
' 3' 3 

NHBoc 95% (183:184; 1:2) 

OH OH 
3 183 

Figure 3.27: Epoxidation of cyclohexadiene 3 in CH3CN 

Figure 3.28: Possible route to peroxyimidate 193 
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Among the tasks remaining was the opening of the epoxide ring of 184 and reduction 

of then: bond to give hopefully the anti-anti-syn-anti derivative of ACHC. Thus, acid­

catalysed opening of the epoxide ring in 184 was regioselective and after acetylation, 

194 was isolated as the only detectable product in 69 % yield, Figure 3.29. Reduction 

of the double bond under the previously described protocol afforded the anti-anti-syn­

anti ACHC derivative 195 in excellent yield. 

The analytical and NMR data of 195 were consistent with the proposed structure. The 

relative configurations of the cyclohexane substituents were suggested by the 

observation of NOESY effects between H-1 and H-3, and also H-3 and H-4, Figure 

3.30. 
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Figure 3.29: Synthesis of the anti-anti-syn-anti ACHC derivative 195 
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Figure 3.30: Selected NOESY interactions for 195 

3.4.3 SYNTHESIS OF THE ANTI-SYN-SYN-ANTI ACHC DERIVATIVE 198 

It was considered interesting to compare the facio selectivity of the epoxidation of 

cyclohexadiene 3 to that of 159. With both the carbamate and hydroxyl groups on the 

same face in cyclohexadiene 159 and therefore operating in cooperation, it was 

presumed that epoxidation would occur preferentially on the upper face. Thus, 

subjection of a solution of 159 in CH2Ch to the action of mCPBA in the presence of 

NaHC03 at room temperature resulted in the formation of only isomer 196 in 70% 

yield, Figure 3.31. Unlike 3, alternative solvents such as CH3CN, DMF, MeOH and 

H20/acetone or prior acetylation of the hydroxyl group did not affect the facio 

selectivity of the epoxidation of 159. Attempts to protect the hydroxyl group with the 

bigger TBS group led to aromatisation giving the ethyl anthranilate 144. 

Cyclohexadiene 159 was itself a rather unstable substance. Under acidic conditions, 

159 undergoes aromatisation to give again the ethyl anthranilate 144. 
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Figure 3.31: Epoxidation of cyclohexadiene 159 

As with the previous related systems, acid-catalysed opening of the epoxide ring in 

196 was regioselective and after acetylation gave cyclohexene 197 in good yield, 

Figure 3.32. Subsequent reduction of the double bond gave the anti-syn-syn-anti 

ACHC derivative 198. The hydrogen was delivered on the same face as that occupied 

by the carbamate and opposite to the 3-acetoxy group. 

Initial relative stereochemical assignments of 198 were based on the observed 

NOESY interactions as shown in Figure 3.33. The structure of 198 was subsequently 

confirmed by X-ray crystallographic analysis (see Appendix 4). 
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Figure 3.32: Synthesis of the anti-syn-syn-anti ACHC derivative 198 
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Figure 3.33: Selected NOESY interactions for 198 
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In conclusion, epoxidation has proved to be an effective reaction in the synthesis of 

trihydroxyxlated ~-amino acid derivatives 188, 195 and 198 from the Diels-Alder 

adducts of (E)-3-nitroacrylate 1 and furan. 

3.4 SUMMARY 

The stereoselective syntheses of six 3,4,5-trihydroxyl derivatives of ACHC described 

in this chapter are distinguished by the use of substrate-stereocontrolled processes to 

secure stereochemical relationships around the cyclohexane rings. The enforced 

reliance of the syntheses on simple classic reactions at ambient conditions is another 

positive attribute of the strategy worth mentioning. The key reactions employed in 

the syntheses are Diels Alder reaction, Os04 mediated cis-dihydroxylation and 

epoxidation as a route to trans-dihydroxylation. Through these reactions, novel 

trihydroxylated ACHC derivatives were prepared and reported for the first time.90 

This strategy has potential for future application in the synthesis of aminocarbasugars 

and aminoshikimic acid derivatives. 
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CHAPTER FOUR 

FURTHER CHEMISTRY OF ADDUCTS 2 AND 158 
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4.1 INTRODUCTION 

The synthesis of trihydroxyl ACHC derivatives featuring the base mediated B­
elimination of the oxygen bridges of oxanorbomene adducts 1 and 158 as one of the 

main reactions was discussed in Chapter 3. During these studies, interesting 

observations suggested that the oxanorbomene strategy possessed potential as a 

stereoselective approach to mono and dihydroxylated cyclohexyl P-amino acid 

derivatives. It was also realised that employing a transition metal-catalysed ring­

opening reaction for the fragmentation of the oxabicyclic compounds would add 

structural diversity to our oxanorbomene route to cyclohexyl P-amino acid 

derivatives. 

The results of the synthesis of mono and dihydroxylated P-amino acids will be 

discussed in the first section of this chapter. Subsequent sections will document 

results of the reaction of adduct 2 with catalytic amount of palladium complexes in 

the presence of zinc and organic acids. 

Figure 4.1: Oxanorbomene adducts 2 and 158 
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158 

4.2 SYNTHESIS OF THE 3-HYDROXYL DERIVATIVES OF ACHC 

4.2.1 INTRODUCTION 

The P-elimination of the oxygen bridges of adducts 2 and 158 to give cyclohexadienes 

3 and 159 respectively and subsequent reduction of the double bonds of these 

cyclohexadienes would furnish 3-hydroxyl ACHC de1ivatives of type 199 and 200. 

The oxanorbomene adducts were derived from the reaction of ethyl (E)-3-

nitroacrylate 1 and furan, Figure 4.2. On the basis of precedence delineated in Chapter 

3, it was anticipated that substrate stereo-controlled processes would control the 
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reduction of the ~ 1 
'
2 double bond and therefore set the stereochemistry of C-1 in the 

ACHC derivatives 199 and 200. 
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Figure 4.2: Plan for the synthesis of 3-hydroxyl ACHC derivatives 199 and 200 

4.2.2 SYNTHESIS OF THE ANTI-ANTI 3-ACETOXY ACHC DERIVATIVE 

203 

As discussed in Chapters 2 and 3, base mediated ~-elimination of the oxygen btidge 

of adduct 2 to give cyclohexadiene 3 (R = H) was accompanied by variable amounts 

of ethyl-3-hydroxybenzoate. It seemed reasonable to infer that the reduction of the 

double bond of adduct 2 prior to ~-elimination of the oxygen bridge would eliminate 

the by-product. In the event, treatment of a solution of adduct 2 in ethanol with Pd/C 

under a hydrogen atmosphere afforded 201 in 98% yield. Subsequent ~-elimination of 

the oxygen bridge of 201 with KHMDS in THF and acetylation of the crude product 

gave substituted cyclohexene 202 in 68% over the two steps, Figure 4.3. 

The 1H HMR spectrum of 202 showed all the peaks consistent with the proposed 

structure including a singlet at o 2.01 assigned to the acetyl group and the multiplet at 

o 7.14 assigned to H-2. To complete the synthesis, the n bond of 202 was reduced 
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under the standard conditions to give the anti-anti ACHC derivative 203 in 97% yield. 

The relative stereochemistry was assigned on the basis of NOESY correlations, Figure 

4.4. 
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y··.,,NHBoc 
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Figure 4.3: Synthesis of the anti-anti ACHC derivative 203 

Figure 4.4: Selected NOESY interactions for 203 

The importance of cyclohexyl P-amino acid derivatives as building blocks for P­

peptides was discussed in Chapter 3. ACHC derivative 203 was considered as the 

simplest member of the oxanorbornene derived ACHC derivatives. Model studies 

were therefore conducted on its suitability in peptide synthesis. As a prelude to 

involvement of 203 in the synthesis of peptides, the reactivity of its amine 

functionality with benzoic acid was investigated. First, 203 had to be converted to a 

form amenable to the crucial coupling step. To this end, a solution of 203 in CH2Ch 

was treated with TFA to give 204 in quantitative yield. Subsequently, a solution of 

204 and benzoic acid in CH2Ch was treated with PyBop in the presence of 

triethylamine (TEA) to give 205 in 84 % yield. The structure of the coupled product 

was confirmed by elemental analysis, mass spectrometry and NMR spectroscopy. 
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Figure 4.5: Synthesis of 205 

Benzoic acid, A 
0 

;------; 
PyBop, TEA, c ~C02Et 

CH2Cl2 60 NH 

84% '/"" 
~I 

205 

To study the reactivity of the acid group of 203 with amines, it was decided to take 

advantage of the chemistry already discussed in Chapter 1. Consequently, adduct 2 

was subjected to the action of KHMDS to give a cyclohexadienyl intermediate which 

was hydrolysed to afford the acid 125, Figure 4.6. Subsequent acetylation and 

reduction of the n: bonds gave the anti-anti-3-acetoxy ACHC derivative 206 in 75% 

yield from 125. 
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Figure 4.6: Synthesis of the anti-anti ACHC derivative 206 

With B-amino acid 206 in hand, attention was turned to its reaction with amines in the 

presence of coupling reagents. To this end, a solution of 206, benzylamine and 

triethylamine (TEA) in CH2Ch was treated with PyBop to give the coupled product 

(detected by GC-MS), which proved impossible to purify. Fortunately, when the 

coupling reagent HATU was used instead of PyBop, the coupled product 207 was 

isolated as a white solid in 83% yield. The overall process involved initial in situ 

activation of the carboxylic group of 206 by HATU followed by subsequent reaction 

with benzyl amine to give the amide 207, Figure 4.7. One characteristic of amide 207 

worth mentioning is that it was found to be sparingly soluble in most organic solvents. 

The 1H NMR spectrum of 207 displayed all the features consistent with the coupled 

product including a multiplet at o 2.45 assigned to the H-1 proton and two doublets at 

71 



8 4.25 and 4.47 with coupling constant J = 14.8 Hz assigned to the two prochiral 

benzylic protons. 
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Figure 4.7: Synthesis of the coupled product 207 

For a more relevant model study, acid 206 was coupled to cyclohexylamine in the 

presence of HA TU under the conditions described above to give the coupled product 

208 in 72 %. Surprisingly, 208 was found to be insoluble in most organic solvents 

and its NMR spectra were measured in DMSO. 
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Figure 4.8: Synthesis of couple product 208 

The processes described thus far have culminated in the synthesis of anti-anti ACHC 

derivative 203 and ascertained its suitability as a building block in peptide synthesis. 

The insolubility of amides 207 and 208 in most organic solvents was somewhat 

supnsmg. 

4.2.3 SYNTHESIS OF THE SYN-SYN 3-ACETOXY ACHC DERIVATIVE 

210 

The synthesis of the anti-anti ACHC derivative 203 discussed in the preceding section 

employed the endo carbamate adduct 2 as the starting material. To increase the 

stereochemical diversity of our strategy, it seemed logical to involve the exo 

carbamate adduct 158 as a starting material. To this end, the oxanorbomene adduct 

158 was opened as described in Chapter 2 and subsequent acetylation gave 

cyclohexadiene 209 in good yield, Figure 4.9. Catalytic hydrogenation of the double 

bonds was performed in the presence of catalytic amount of 10 % Pd/C under a 
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hydrogen atmosphere at room temperature to give the syn-syn ACHC derivative 210. 

It was assumed that hydrogen added to the double bond from the least hindered side 

of the molecule. The syn-syn configuration was supported by NOESY correlations 

shown in Figure 4.10 and comparison with literature data of related structures.30 
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Et02C 

78% OAc 
158 209 

Figure 4.9: Synthesis of the syn-syn ACHC derivative 210 
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Figure 4.10: Selected NOESY correlations for 210 
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4.3 SYNTHESIS OF THE 3,4-DIHYDROXYL ACHC DERIVATIVES 

4.3.1 INTRODUCTION 

Through a previously established synthetic pathway (Chapter 3), epoxides 183, 184 

and 196 could be selectively prepared in good yields using oxanorbomene adducts 2 

and 158 as starting materials. Provided that a regioselective reductive ring opening 

could be achieved, these epoxides could serve as precursors to dihydroxyl ACHC 

derivatives. It was known from the work of Danishefsky and eo-workers that 

treatment of vinylic epoxides with Pd/C under a hydrogen atmosphere led to 

homoallylic alcohols. 91 In the course of the synthesis of baccatin Ill and taxol, 

Danishefsky and eo-workers showed that treatment of a solution of epoxide 211 in 

ethanol with Pd/C under a hydrogen atmosphere at low temperature selectively 

opened the epoxide ring without reducing the double bond to give 212 in excellent 

yield, Figure 4.12. The palladium catalysed epoxide opening reaction involves 

oxidative addition of hydrogen to palladium, coordination of the palladium to the 

double bond of the substrate and subsequent opening of the epoxide through 
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---------

formation of the palladium n-allyl cation complex 214. The product is then released 

from the palladium through P-hydrogen elimination, Figure 4.12. 

On the basis of this precedent, it was decided to feature the reductive epoxide ring 

opening reaction as one of the strategies in the synthesis of 3,4-dihydroxyl ACHC 

derivatives using epoxides 183, 184 and 196. Alternative strategies included the use 

of the hydroxyl group of the cyclohexadiene systems to direct oxygenation of the ~3 ·4 

double bond and hydroboration of the oxanorbomene adducts prior to P-elimination 

of the oxygen bridge. 
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Figure 4.11: Epoxides 183, 184 and 196 
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Figure 4.12: Danishefsky's opening of the epoxide ring of 211 
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4.3.2 SYNTHESIS OF THE ANTI-ANTI-ANTI ACHC DERIVATIVE 217 

Initial attempts towards the anti-anti-anti 3,4-dihydroxyl ACHC derivative involved 

setting the relative stereochemistry of the functionalitics on the bicyclic adduct 2 p1ior 
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to the elimination of the oxygen b1idge. To this end, a solution of adduct 2 m 

acetonitrile was treated with iodine to give the tricyclic iodocarbamate 215 m 

moderate yield. The yield was improved by performing the reaction in acetic acid. In 

this reaction, the iodine engages the double bond in adduct 2 from its less hindered 

convex face and elicits an intramolecular attack by the proximal carbamate. A radical 

abstraction of the iodine was then conducted with 2,2' -azobisisobutyronitrile (AIBN) 

as the radical initiator to give tricyclic carbamate 216 in 46% yield. Tris­

(trimethylsilyl)silane served as the chain transfer reagent. With the anti-anti-anti 

stereochemistry around the six membered ring set, attention was turned towards 

hydrolysis of the cyclic carbamate and ~-elimination of the oxygen bridge. As matters 

transpired, attempts to use 216 as an intermediate in the synthesis of the anti-anti-anti 

ACHC derivative were thwarted by the resistance of the cyclic carbamate to the 

action of sodium ethoxide. Attempts to eliminate the oxygen bridge of the tricyclic 

carbamate 216 were also futile, probably due to the extra rigidity conferred by the 

carbamate ring. 
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Figure 4.13: Synthesis of tricyclic carbamate 216 
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The disappointing results forced us to modify our synthetic strategy and consider 

epoxide 183 as an intermediate in the synthesis of the anti-anti-anti ACHC derivative. 

Epoxide 183 was prepared in good overall yield from oxanorbomene adduct 2 by ~­

elimination of the oxygen bridge, acetylation and mCPBA epoxidation, Figure 4.14. 

When a solution of epoxide 183 in ethanol was treated with 10 % Pd/C under a 

hydrogen atmosphere followed by acetylation, the anti-anti-anti 3,4-diacetoxy ACHC 

derivative 217 was isolated in 88% yield over the two steps. 

The structure of the ACHC derivative 217 was determined by IR, MS, 1H and 13C 

NMR. The stereochemical elucidation was based on the analysis of the 1H NMR 

spectrum and NOESY interactions. The 1H NMR spectrum exhibited a doublet at o 
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4.88 with coupling constant J = 9.5 Hz assigned to H-3. The observation of the 9.5 

Hz HaHb coupling constant in the 1H NMR spectrum of 217 was consistent with anti 

diaxial relationships between H-3 and both H-2 and H-4 and this supports the 

indicated stereochemistry. The relative stereochemistry was supported by NOESY 

interactions shown in Figure 4.15. 
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Figure 4.14: Synthesis of the anti-anti-anti ACHC derivative 217 

Figure 4.15: Selected NOESY interactions for 217 

4.3.3 SYNTHESIS OF THE ANTI-ANTI-SYN ACHC DERIVATIVE 218 

With the favourable results on the synthesis of the anti-anti-anti ACHC derivative 

217 in hand, we moved on to apply the epoxide route developed in the preparation of 

the anti-anti-syn ACHC 218 from epoxide 184. The conditions for the procurement of 

epoxide 184 were delineated in Chapter 3. Consequently, treatment of a solution of 

the cyclohexadiene system derived from adduct 2 in acetonitrile with mCPBA and 

NaHC03 gave a 2:1 mixture of isomers favouring the desired syn epoxyalcohol 184. 
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Subjection of epoxide 184 to the action of Pd/C under a hydrogen atmosphere 

followed by acetylation afforded the trans-trans-syn ACHC derivative 218 in good 

yield. It is worth noting that hydrogen added to the enoate double bond exclusively on 

the lower face of the molecule and it seemed reasonable to assume that the carbamate 

was involved in directing this process. 

The 1H NMR spectrum of 218 displayed all the features consistent with the proposed 

structure including the doublet of doublets at 8 4.86 with coupling constants J = 11.5 

and 2.5 Hz assigned to H-3. The big coupling constant (J = 11.5 Hz) was indicative of 

an anti diaxial relationship between H-3 and H-2 while the smaller one (J = 2.5 Hz) 

was consistent with a syn equatorial-axial relationship between H-3 and H-4. The 

stereochemical relationships of 218 were also supported by the NOESY interactions 

shown in Figure 4.17. 
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Figure 4.16: Synthesis of the anti-anti-syn ACHC derivative 218 
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Figure 4.17: Selected NOESY interactions for 218 

An alternative route to the anti-anti-syn ACHC derivative 218 involved the subjection 

of oxanorbornene adduct 2 to the hydroboration/oxidation reaction. Hydroboration 
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was expected to occur on the exo face of adduct 2 but predicting the regiochemistry of 

the reaction was difficult. In the event, a solution of adduct 2 in THF with 9-BBN was 

stirred for 24 h and then 3 M NaOH and H20 2 were added to the reaction mixture to 

afford a 1:1 mixture of the two hydroxyl adducts 219 and 220 in 65 % yield, Figure 

4.18. Unfortunately, these adducts proved impossible to separate. The lack of 

regioselectivity in the hydroboration reaction also made pursuing this strategy less 

attractive. 
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Figure 4.18: Hydroboration oxidation of 2 
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Another alternative method considered for the anti-anti-syn ACHC derivative 218 

was to use the allylic hydroxyl group to direct the substitution of the ~3 •4 double 

bond. It was thought that diethyl phosphate 221 or ethyl formate 222 might react with 

iodine in a manner similar to those observed for substrates studied by Bartlet and 

Jemstedt,92 Figure 4.20. The reaction involves the addition of iodine to the double 

bond eliciting an intramolecular attack by the phosphoryl oxygen to furnish cyclic 

phosphate 225 which would be amenable to fmther transformation. 
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Figure 4.19: Phosphate 221 and ethylformate 222 
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Figure 4.20: Bartlett's synthesis of 225 
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However, attempts to append the diethyl phosphoryl group to the hydroxyl group of 

cyclohexadiene 3 in the presence of K2C03 or triethylamine as the base were 

unsuccessful. Using chloroethylformate led to aromatisation in under 1 h and the 

completely protected anthranilic acid 144 was isolated in 83%. Attempts to perform 

the reaction at low temperatures also led to 144. 

OH 
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'NHBoc 83% 

Figure 4.21: Reaction of 3 with chloroethylformate 

144 

4.3.4 SYNTHESIS OF THE SYN-SYN-SYN ACHC DERIVATIVE 226 

The synthesis of dihydroxyl ACHC derivatives discussed thus far employed endo 

carbamate 2 as the starting material and therefore gave the 2,3-anti geometry in the 

ACHC derivatives. The P-elimination of the oxygen bridge of the exo carbamate 

adduct 158 and subsequent elaboration into dihydroxyl ACHC derivatives would 

secure a 2,3-syn configuration. Through a previously established synthetic pathway 

(Chapter 3), epoxide 196 was prepared in three steps from adduct 158, Figure 4.22. 

With epoxide 196 in hand, the palladium catalysed opening of the epoxy ring and 

subsequent reduction of the double bond proceeded smoothly and gave the syn-syn­

syn ACHC derivative 226 as the only product. A stereochemical issue of great 

importance presented itself here. In the reduction of the enoate double bond, the 

addition of the hydrogen took place on the opposite side of the molecule to which the 

carbamate was located. This observation suggested that placing the 3-hydroxyl group 

on the same face as the carbamate completely reversed the directing ability of the 

latter. 

Both the 1H and 13C spectra of 226 displayed all the features consistent with the 

proposed structure. The relative stereochemical relationships around the ring were 

based on the NOESY interactions shown in Figure 4.23. 

79 



158 

i. KHMDS, THF, 
-50 to 25°C, 69% 

ii. Ac20, pyridine YC02Et 
78% 0 

iii. mCPBA, NaHC03 NHBoc 
CH2Cl2, 82% OAc 

196 

j 
iv. H2, Pd/C, EtOH 

97% 

IYC02Et 

HO~NHBoc 
OAc 
226 

Figure 4.22: Synthesis of the syn-syn-syn ACHC derivative 226 
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Figure 4.23: Selected NOESY interactions for 226 

4.3.5 SUMMARY 

The stereoselective syntheses described in the preceding sections revealed the power 

of oxanorbomene adducts derived from the Diels Alder reaction of ethyl (E)-3-

nitroacrylate and furan in the preparation of oxygenated ACHC derivatives. The most 

interesting feature of the strategy is its reliance on basic reagents to carry out non­

trivial structural transformations. Whilst the chemistry described above was 

conducted on a racemic series, it is pertinent to note that the oxanorbomene adduct 2 

is amenable to an efficient enzyme mediated kinetic resolution and chiral HPLC 

resolution.72 
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4.4 REACTION OF ADDUCT 2 WITH CATALYTIC AMOUNT OF 

PALLADIUM IN THE PRESENCE OF ZINC AND ORGANIC ACIDS 

4.4.1 INTRODUCTION 

The reductive ring opening of oxanorbomene systems catalysed by Ni (II) and Pd (Il) 

complexes in the presence of organic acids and zinc powder was recently reported by 

Cheng and eo-workers, Figures 4.24 and 4.25.93 Prior to Cheng's report, Lautens 

reported a rhodium-catalysed ring opening reaction in the presence of an organic acid 

in which the carboxylate group added to the olefin as a nucleophile.94
-
96 In Cheng's 

case, the carboxylic acid was the hydrogen source. The key steps for Cheng's 

reductive ring opening reaction are shown in Figure 4.26. The reaction is initiated by 

the reduction of Pd (Il) to Pd (0) by the zinc powder. Oxidative addition of the 

organic acid to Pd (0) led to the generation of the Pd (II) hydride species.97 

Coordination of the double bond of adduct 229 to the Palladium and subsequent 

insertion of the double bond to the Pd-hydride bond led to the formation of 

intermediate 232. ~-Elimination of the oxygen bridge of adduct 232 followed by 

protonation afforded the product 230 and the Pd (Il) species which was reduced to Pd 

(0) by the zinc. 

Ni(binap )12, Zn, 
Me3CCH2C02H 
toluene, 25 °C 

53% 

Figure 4.24: Cheng' s Ni (Il) reductive ring opening of 227 

0 

tto 
229 

Figure 4.25: Cheng's Pd (II) reductive ring opening of 229 
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Pd (0) 

QH CO ~d(O,CR), 

0 

~ 
229 

~ 0 
P?-~::~~ 
RCOO~ 

231 
230 A_ 

RCO,H QPd(02CR) ) 

CO 0 o 
233 ~ (RC02)Pd~ 

232 

Figure 4.26: Catalytic cyclic for Cheng's Pd catalysed reductive ring opening of229 

4.4.2 REACTION OF OXARBORNENE ADDUCT 1 WITH PALLADIUM 

On the basis of the precedent discussed above, it was considered reasonable to apply 

the reductive ring opening conditions to the oxarnorbornene adduct 2 as an alternative 

to the base mediated fragmentation discussed in Chapters 2 and 3. The advantage of 

this approach over the base mediated fragmentation is that all the stereochemical 

relationships set by the Diets-Alder reaction would be preserved. In the event that the 

reductive ring opening reaction is successful, adduct 2 would furnish either 

cyclohexene 234 or 235 (Figure 4.27) which could then be elaborated to ACHC 

derivatives by functionalising the double bond. 

° CO Et Pd(II), Zn, RC02H 
2 toluene, 25 °C 

-----------------------· 

NHBoc 

2 

OH 

~C02 Et 

u.,,'NHBoc 

234 

Figure 4.27: Potential cyclohexene systems from 2 
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Initial attempts to reductively open 2 usmg (Ph3P)2NiCh or (CH3CNhPdCh in 

toluene were unsuccessful. Suspecting that solubility was responsible for the failure of 

the reaction, it was decided to use a more polar solvent. When acetonitrile was used as 

the solvent, the nickel complex still showed no activity on the oxanorbomene adduct 

2. However, in the presence of benzoic acid, zinc metal and palladium chloride, the 

double bond of 2 was reduced when acetonitrile was used as the solvent and 201 was 

isolated in 94% yield, Figure 4.28. On the basis of the catalytic cycle for the Pd 

catalysed reductive ring opening reaction shown in Figure 4.26, the interesting 

reduction was not suprising. Instead of P-elimination of the oxygen bridge in 

intermediate 236, protonation occmTed and gave oxanomomane system 201, Figure 

4.28. Control experiments indicated that no reaction occurred in the absence of zinc 

powder, benzoic acid or palladium catalyst. 

0 
~C02 Et 

NHBoc 
2 

IfB j 
(PhCO~~~C02Et 
e)~ 

PhCO NHBoc 
2 

236 

cat. PdC12, Zn, PhC02H, ~~~CO Et 
acetonitrile, 25 °C ~ 2 

94 % NHBoc 

201 

Figure 4.28: Transfer hydrogenation of 2 

On the basis of the results so far, it seemed PdC}z was an effective catalyst for transfer 

hydrogenation using benzoic acid as the hydride source and zinc as the reducing 

agent. To test if the hydride source had any effect on the reaction, several organic 

acids were tested in the transfer hydrogenation protocol and all afforded adduct 201 in 

excellent yields, Figure 4.29. The type of the organic acid did not affect the yield or 

the duration of the reaction. No reaction was observed when the reaction was 

performed in the presence of either methanol, benzyl alcohol or phenol. Alcohols 

were therefore not appropriate hydride sources for the PdC}z catalysed transfer 

hydrogenation protocol. 
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0 cat. PdC12 , Zn, acid, 0 
qco,Et acetonitrile, 25 °C, 16 h qco,Et 

NHBoc NHBoc 

2 201 

Entr,Y Organic acid ,Yield 

1 HCOzH 96 

2 CH3COzH 94 

3 CH3COzN& 97 

4 PhCOzH 93 

Figure 4.29: Effect of various acids on the yields of the transfer hydrogenation of 2 

The palladium catalysed transfer hydrogenation can be extended to other substrates. 

To this end, cinnamic acid 237 was successively reduced to 3-phenylpropanoic acid 

238 in 84 % yield using CH3C02H as the hydride source, Figure 4.30. It is instructive 

to note that cinnamic acid was not reduced in the absence of another organic acid. 

Cinnamic acid could not therefore act as a hydride source to reduce itself under these 

reaction conditions. 

The 1H NMR spectrum of 238 showed the characteristic triplets at 8 2.61 and 2.89 

with coupling constant J = 8.4 Hz assigned to H-3 and H-2 protons respectively. MS 

and IR data were also consistent with the proposed structure. 

10% PdC12, Zn, CH3C02H 
acetonitrile, 25 °C 

84% 

Figure 4.30: Reduction of cinnamic acid 237 

In a similar way to cinnamic acid, eugenol 239 was reduced to give 240 in 98% yield, 

Figure 4.31. The discrepancy in yields of the reduction of cinnamic acid and eugenol 

can be attributed to the different purification steps. While hydroeugenol 240 was 

purified by washing with 2 M HCl, flash chromatography was necessary for the 

purification of 238. 
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The 1H NMR spectrum of 240 displayed all the features consistent with the proposed 

structure including a triplet at o 0.95 with coupling constant J = 7.6 Hz assigned to H-

3', a multiplet at o 1.63 assigned to H-2' and another triplet at o 2.53 with coupling 

constant J = 7.6 Hz assigned to H-1 '. 

~ 
HO~ 

OMe 

239 

10% PdC12, Zn, CH3C02H, 
acetonitrile, 25 °C ~ 

98% HO~ 

OMe 

240 

Figure 4.31: Reduction of eugenol239 

The results discussed above suggested that the transfer hydrogenation protocol can be 

used for substrates with electron deficient double bonds comparable to cinnamic acid 

and terminal un-activated double bonds exemplified by eugenol. It is also reasonable 

to conclude that aromatic systems are inert to the transfer hydrogenation conditions. 

It was conceivable that Pd/C could be used as the catalyst instead of the more 

expensive palladium chloride. Treatment of a solution of adduct 2 with a catalytic 

amount of Pd/C, zinc powder and f01mic acid afforded adduct 201 in 97% yield. 

Control reactions indicated that no reaction occurred in the absence of the Pd/C 

catalyst or formic acid. However, when the reaction was performed using a 

quantitative amount of Pd/C, the reduction preceded smoothly in the absence of zinc 

powder. Interestingly, when either benzoic acid or acetic acid was used as the hydride 

source in the Pd/C catalysed transfer hydrogenation, no reaction was observed. 

0 
qco,Et 

NHBoc 
2 

Pd/C, Zn, HC02H, 
acetonitrile, 25 °C, 16 h 

97% 

0 
qco,Et 

NHBoc 
201 

Figure 4.32: Pd/C catalysed transfer hydrogenation in the presence of formic acid 

85 



4.4.3 SUMMARY 

On the basis of the processes described in the above section, PdC}z has proved to be 

an effective catalyst for transfer hydrogenation with organic acids as hydride sources 

and zinc as the reducing agent. Pd/C is only effective as a transfer hydrogenation 

catalyst when formic acid is used as the hydride source. The reaction conditions 

discussed above should be suitable for the reduction of a wide variety of organic 

substrates. The procedure also offers an economical, safe and convenient alternative 

to available procedures. Future work in this area will include using chiral ligands to 

test the asymmetric version of the catalytic reaction. 
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CHAPTERS 

EXPERIMENTAL PROCEDURES 
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5.1 GENERAL EXPERIMENTAL CONDITIONS 

All reactions were carried out in clean oven-dried glassware (110°C) under a Nitrogen 

or Argon atmosphere. Solvents were purified and dried by standard methods prior to 

use. Cited reaction temperatures refer to the external bath temperatures. The phrase 

'removed under reduced pressure' refers to solvent removal with a BUchi rotary­

evaporator using a laboratory vacuum pump and a bath temperature of 30°C. 

IR spectra were scanned on a Perkin Elmer 1720X Ff Infra-red spectrophotometer. 

Melting points were measured using a Gallenkamp melting point apparatus and are 

uncorrected. All reactions were followed by TLC on 60 F254 silica gel sheets with 

visualization effected by UV illumination and/or KMn04 solution followed by heating 

or iodine vapour. Silica gel 60, 40-63u was used for flash chromatography. 

All Nuclear Magnetic Resonance spectra eH and 13C) were recorded on Varian 

Oxford (300 MHz or 400 MHz or 500 MHz) spectrometers. Chemical shifts are 

reported in ppm (8) relative to tetramethylsilane. 1H NMR data are reported as 

follows: chemical shift (number of protons, multiplicity, coupling constant, proton 

identity) and 13C as: chemical shift (carbon identity). The 1H NMR spectra were fully 

assigned by the use of COSY experiments while those for 13C were assigned by 

HETCOR experiments. NOESY was employed to determine the relative 

stereochemistry where applicable. 

5.2 EXPERIMENTAL PROCEDUCES 

1 

Ethyl (E)-3-nitropropenoate 1: 

A solution of DIPEA (5.8 g, 45mmol) in diethyl ether (10 cm3
) was added dropwise 

to a vigorously stirred and cooled (0 °C) solution of compound 129 (10.0 g, 37 mmol) 

in diethyl ether (200 cm3
) and the mixture was stirred for 15 minutes. The resulting 

suspension was filtered through a plug of silica. The silica was flushed with 10 % 

diethyl ether in petroleum ether and the solvent was removed under reduced pressure 
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to give an orange solid. The orange solid was passed through a short column of silica 

gel using petroleum ether/diethyl ether (9: 1) as the eluent to afford title compound 1 

(4.00 g, 73 %) as a yellow solid; m.p 36-38 °C. Vmax (KBr disk): 3415, 1736, 1638, 

1542 cm- 1
; oH (200 MHz, CDCh): 1.35 (3H, t, J = 7.0 Hz, OCH2CH3), 4.32 (2H, q, J 

= 7.0 Hz, OCfuCH3), 7.09 (1H, d, J = 13.6 Hz, H-2), 7.68 (1H, d, J = 13.6, H-3). oc 
(75 MHz, CDCh): 13.9 (OCH2CH1), 62.4 (OCH2CH3), 127.6 (C-2), 148.9 (C-3), 

162.6 (C-l); MS (El): mlz 145 (M+), 100 (100%). 

0 

~co2Et 
NHBoc 

2 

E thy I endo-3-tert-butoxycarbonylamino-7 -oxabicyclo[2,2, 1 ]hept-5-ene-exo-2-

carboxylate 2: 

Concentrated HCl (28 cm3
) was added to a solution of Diels-Alder adduct 123 (3.5 g, 

18 mmol) in EtOH (200 cm3
) at room temperature and this was followed by 

portionwise addition of zinc powder (26.6 g, 407 mmol). The mixture was stirred at 

room temperature for 12 hours and then filtered. The filtrate was treated with iPr2Net 

(36.4 g, 282 mmol) and di-tert-butyldicarbonate (7 .0 g, 32mmol). The mixture was 

stirred at 25 °C for 20 hours. The solvent was removed at reduced pressure to about 

10 cm3
. The reduced solution was partitioned between ethyl acetate (50 cm\ sat. 

NaHC03 (30 cm3
) and water (30 cm\ The organic layer was separated, dried 

(MgS04) and removal of the solvent under reduced pressure gave a white solid which 

was purified by flash chromatography using petroleum ether/Et20 (7:3) as the eluent 

to give the title compound 2 (406 mg, 89%) as a white solid, mp 88-90°C; Dmax (KBr 

disk): 3353, 2982, 1737,1700 cm- 1
; oH (500 MHz, CDCh): 1.27 (3H, t, J = 7.2 Hz, 

OCH2Cfu), 1.30 (9H, s, OC(CH3) 3), 2.05 (lH, d, J = 3.0 Hz, H-2), 4.20 (2H, q, J = 
7.2 Hz, OCfuCH3), 4.32 (lH, br, NH), 4.52 (lH, br, H-3), 5.08 (lH, br, H-4), 5.11 

(lH, s, H-1), 6.46 (lH, d, J = 5.7 Hz, H-5), 6.59 (1H, d, J = 5.7 Hz, H-6); oc (125 

MHz, CDCh): 14.5 (OCH2CH3), 28.7 (OC(CH3) 3), 52.6 (C-2), 53.6 (C-3), 61.6 

(OCH2CH3), 75.0 (C-4), 79.3 (OC(CH3)3), 82.4 (C-1), 134.7 (C-5), 138.0 (C-6), 157.4 

(NC02), 172 ( COzCzH5); m/z (El): 283 (M+), 57 ( 100% ). 
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(YC02Et 

Y''INHBoc 
OH 
3 

Ethyl trans -6-tert-butoxycarbonylamino-5-hydroxy -1 ,3-cyclohexadiene-1 

-carboxylate 3: 

To a solution of KHMDS (530 mg, 2.64 mmol) in THF (10 cm3) at -50 °C was added 

a solution of adduct 2 (250 mg, 0.88 mmol) in THF (2.5 cm\ The solution was then 

warmed up to room temperature (20 minutes) and quenched with a mixture of ethyl 

acetate and ethanol (50 cm3, 19:1). The mixture was washed with sat. NI-4Cl (25 

cm\ dried (MgS04) and concentrated under reduced pressure. The resulting residue 

was purified by flash chromatography eluting with petroleum ether/ethyl acetate 

mixture (3:2) to give cyclohexadiene 3 (359 mg, 72%) as a pale yellow gum. Vmax 

(KBr disk): 2979, 2931, 1716, 1700 1584 cm- 1
; 8H (500 MHz, CDCh): 1.28 (3H, t, J = 

7.0 Hz, OCHzCfu), 1.42 (9H, s, OC(CH3)3), 4.20 (2H, q, J = 7.0 Hz, OCfuCH3), 4.36 

(lH, s, H-5), 4.48 (lH, br, NH), 4.76(1H, m, H-6), 6.26 (2H, m, H-3 and 4), 7.17 (lH, 

d, J = 4.8 Hz, H-2); 8c (125 MHz, CDCh): 14.1 (OCH2CH3), 28.3 (OC(CH3)3), 50.0 

(C-6), 60.8 (OCH2CH3), 67.7(C-5), 80.0 (OC(CH3)3), 124.5 (C-3), 132.6 (C-2), 133.5 

(C-4), 155.4 (NC02), 165.9 (C02C2H5); MS m/z (Cl): 284 (M++ 1); Anal. calcd. For 

C14H21 N05 : C, 59.35; H, 7.47; N, 4.94. Found: C, 59.20; H, 7.53; N, 4.80. The major 

by-product of the reaction was ethyl 2-hydroxybenzoate identified by comparison 

with authentic sample. 

Diels-Alder Reaction: 

0 £trco,Et 
N02 

123 

0 

bN02 

I 
C02Et 

124 

Furan (5.4 cm3, 74mmol) was added to a solution of a,~-unsaturated ester 1 (5.38g, 

37mmol) in chloroform (20 cm3
) at -20°C. The reaction was stitTed at -20°C for five 

days. Removal of the solvent under reduced pressure afforded a mixture of the endo­

nitro isomer and the exo-nitro isomer (4:1) as a yellow oil. The oil was subjected to 

flash column chromatography using petroleum ether/diethyl ether (7:3) as the eluting 
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solvent to afford the Endo-nitro adduct 123 as a white solid (68%) and Exo-nitro 

isomer 124 as yellow oil (17% ). 

Ethyl endo-3-nitro-7 -oxa-bicyclo[2,2,1] hepta-5-ene-exo-2-carboxylate 123: 

mp 54-56°C; Umax (KBr disk): 2982, 1722, 1587 cm-1
; 8H (300 MHz, CDCh): 1.32 

(3H, t, J = 7.2 Hz, OCH2C.fu), 3.23 (1H, d, J = 3.0 Hz, H-2), 4.27 (2H, q, J = 7.2, 

OCH2CH3), 5.34 (lH, s, H-1), 5.48 (1H, d, J = 5.0 Hz, H-3), 5.54 (lH, dd, J = 5.0 and 

4.0 Hz, H-4), 6.39 (lH, dd, J = 5.8 and 1.6 Hz, H-5), 6.73 (lH, dd, J = 5.8 and 1.6 Hz, 

H-6). 8c (75 MHz, CDCh): 14.4 (OCH2CH3), 49.2 (C-2), 62.4 (OCH2CH3), 79.3 (C-

4), 83.5 (C-1), 84.5 (C-3), 133.9 and 139.1 (C-5 and C-6), 169.9 ~02C2H5). 

Ethyl exo-3-nitro-7 -oxa-bicyclo[2,2,1] hepta-5-ene-endo-2-carboxylate 124: 

Umax (Liq. Film): 2990, 1733, 1549 cm- 1
; 8H (300 MHz, CDCl3): 1.28 (3H, t, J = 7.2 

Hz, OCH2C.fu), 3.94 (lH, t, J = 3.8 and 2.8 Hz, H-2), 4.16 (2H, J = 7.2 Hz, 

OCfuCH3), 4.82 (1H, d, J = 2.8 Hz, H-1), 5.32 (lH, d, J = 3.8 Hz, H-3), 5.50 (lH, bs, 

H-4), 6.54 (2H, m, H-5 and H-6). 8c (75 MHz, CDCh): 14.3 (OCH2CH3), 49.9 (C-2), 

61.9 (OCHzCH3), 79.3 (C-4), 84.2 (C-1), 134.5 (C-6), 138.5 (C-5), 168.9 ~02C2H5 ); 

OH 
125 

Trans-6-tert-Butoxycarbony lamino-5-hydroxycyclohexa-1 ,3-diene-1-carboxylic 

acid 125: 

To a solution of ester 3 (300 mg, 1.06 mmol) in THF (10 cm3) was added KOH (595 

mg, 10.60 mmol) in H20 (2 cm\ The mixture was stirred at 40°C for six hours, then 

diluted with water (20 cm3) and extracted with ethyl acetate (20 cm\ The aqueous 

solution was adjusted to pH 1 with 5M HCl and further extracted with ethyl acetate (3 

x 30 cm\ The organic layers were mixed, dried (MgS04) and concentrated under 

reduced pressure to give 125 as a white powder (200 mg, 74%); m.p. 165-167°C; Vmax 

(KBr disk); 3361 (br), 2922, 1689, 1650 cm-1
; 8H (500 MHz, (CD30D): 1.47 (9H, s, 

(OC(CH3)3), 4.19 (lH, d, J = 3.5 Hz, H-5), 4.75 (lH, d, J = 6.5 Hz, H-6), 5.72 (lH, d, 

J = 6.5 Hz, NH), 6.28 (2H, m, H-3 and 4), 7.15 (lH, d, J = 5.0 Hz, H-2). 8c (125 

MHz, CD30D): 28.4 (OC(CH3)3), 50.2 (C-6), 67.7 (C-5), 78.8 (OC(CH3)3), 124.9 (C-
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3), 128.0 (C-1), 134.5 (C-4), 156 (NC02), 167.4 (C02H); MS m/z (Cl): 256 (MW), 

217 (lOO%). 

Ethyl2-iodo-3-nitropropaniate 129: 

N20 4 (9.5 cm3, 271 mmol) was added to a stirred and cooled (0°C) mixture of ethyl 

acrylate 128 (44.5 cm3
, 4l0 mmol) and iodine (31 g, 122 mmol) in diethyl ether (400 

cm\ The reaction mixture was stirred for 1 hour at 0°C and then at room temperature 

for 4 hours. The resulting dark solution was washed with saturated NazS20 3 solution 

(5 x 200 cm\ The aqueous layer was extracted with diethyl ether (200 cm3) and the 

organic layers were combined and dried over magnesium sulphate. The solvent was 

removed under reduced pressure and excess ethyl acrylate was distilled off under 

vacuo at room temperature to give the ti tie compound 129 (31.1 g, 93 %) as a yellow 

oil; Umax (Liq. film): 2984, 1731, 1560 cm- 1
; OH (250 MHz, CDC13): 1.31 (3H, t, J = 

7.0 Hz, OCHzCfu), 4.27 (2H, m, OCf:IzCH3), 4.67 (lH, dd, J = 14.8 and 4.3 Hz, H-3), 

4.88 (lH, dd, J = 10.8 and 4.3 Hz H-3), 5.09 (lH, dd, J = 15.0 and 11.0 Hz, H-2); Oc 

(50 MHz, CDCI3): 8.5 (C-2), 14.1 (OCH2CH3), 63.4 (OCHzCH3), 77.4 (C-3), 169.6 

(C-1); MS (El): m/z 273 (M+), 227 (100%). 

0 

~co,H 

NHBoc 
130 

Endo-3-tert-butoxycarbonylamino-7 -oxabicyclo[2,2,1]hepta-5-ene-exo-2-

carboxylic acid 130; 

To a solution of racemic 2 (500 mg, 1.77 mmol) in diethyl ether (2.0 cm3) was added 

pH 8 phosphate buffer (50 cm\ Porcine Liver Esterase (100 mg) was then added and 

the mixture was stirred at room temperature for 5 days. Ethyl acetate (30 cm3) was 

then added to the reaction mixture and the layers were separated. The aqueous layer 

was further extracted with ethyl acetate (2 x 20 cm3) and the organic layers were 

mixed, dried (MgS04) and concentrated under reduced pressure. The residue was 

subjected to flash chromatography eluting with petroleum ether/ ethyl acetate (1: 1) to 
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give the ester (+)-2, [a]0
22 +136 (245 mg, 49%) and acid 130 (218 mg, 48 mg ); m.p. 

136-138°C; [a]o22 -58 (c,l; CHCh); Vmax (KBr disk): 3210 (br), 1712, 1526 cm-1
; OH 

(500 MHz, CDCh): 1.44 (9H, s, OC(CH3) 3), 2.23 (1H, d, J = 3.2 Hz, H-2), 4.28 (lH, 

d, J = 4.8 Hz, H-3), 4.61 (lH, br, NH), 5.05 (1H, d, J = 2.9 Hz, H-4), 5.39 (lH, s, H-

1), 6.47 (1H, d, J = 4.5 Hz, H-5), 6.67 (1H, d, J = 4.5 Hz, H-6), 7.94 (1H, br, C02H); 

oc (125 MHz, CDC13): 28.3 (OC~H3)3), 53.6 (C-2), 54.1 (C-3), 78.6 (C-4), 79.2 

(OC(CH3)3), 82.0 (C-1), 133.4 (C-5), 139.1 (C-6), 157.4 (NC02), 173.9 (C02H); m/z 

(ES+): 256 (~, 100%), 278 (MNa+), 34%); Anal. cald for C12H 17N05: C, 56.46; H, 

6.71; N, 5.49. Found: C, 56.50; H, 6.74; N, 5.43. 

BocHN 

~ 
131 

C02 Et 

Ethyl (E)-3-tert-butoxycarbonylaminoacrylate 131: 

Racemic oxanorbomene adduct 2 was subjected to Prep. HPLC, column 2" x 20 cm 

chiralpak AD eluting with Hexane/ethanol (85:15) to give (+)-2; [a] 0
20

·
8 +143, (-)-2; 

[a] 0
208 -140 and Light yellow solid 131 as a by-product; m.p. 92-94°C; Vmax (KBr 

disk): 3298,2979, 1750, 1691, 1636, 1516 cm- 1
; OH (500 MHz, CDC13): 1.25 (3H, t, J 

= 7.20 Hz, OCH2Cfu), 1.47 (9H, s, OC(CH3)3), 4.15 (2H, q, J = 7.20 Hz, OC_fuCH3), 

5.30 (1H, d, J = 13.8 Hz, H-2), 7.12 (lH, br, NH), 7.78 (1H, dd, J = 13.8 and 12.9 Hz, 

H-3); oc (125 MHz, CDCh): 14.6 (OCI-hCH3), 28.5 (OC~H3)3), 60.2 (OCHzCH3), 

82.5 (OC(CH3)3), 99.0 (C-2), 140.1 (C-3), 152.0 (NC02), 167.8 (C02); MS mlz (Cl): 

233 (MNH4+, 88%), 216 (MH+, 100%); Anal. calcd. For C10H 17N07 : C, 55.80; H, 

7.96; N, 6.51. Found: C, 56.27; H, 8.11; N, 6.14. 

OMs 

Aco2C(CH3h 
137 

t-Butyl (2R)-( + )-2-methanesulphonyloxypropionate 137: 

To a solution of t-butyl lactate 136 (400 mg, 2.74 mmol) in CH2C}z (10 cm3) was 

added triethylamine (496 111, 3.56 mmol). This solution was cooled (0 °C) and to it 

was added MsCl (233 110- The mixture was stirred at 0°C for 45 minutes and then 

partitioned between CH2Ch (20 cm3
) and 1 M HCI (10 cm\ The aqueous layer was 

washed with CH2Clz (2 x 5 cm\ The organic extracts were combined, dried (MgS04) 
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and concentrated under reduced pressure to give mesylate 137 as a white solid (770 

mg, 99%); mp 41-42°C; [a]o20
'
5 +49 (c; 1.02 in CHCl3); Vmax (KBr disk): 2984, 1742, 

1459,1360 cm- 1
; 8H (500 MHz, CDCb): 1.49 (9H, s OC(CH3)3), 1.57 (3H, d, J = 6.9, 

H-3), 3.14 (3H, s, SCH3), 5.00 (lH, q, J = 6.9 Hz, H-2); 8c (125 MHz, CDCb); 18.8 

(C-2), 28.2 (OC~H3)3 ), 39.4 (SCH3), 75.0 (C-2), 83.6 (OC(CH3)3), 168.7 (C02); MS 

rnlz (Cl (NH3)): 242 (MH+, 100%), 186 (25%), 102 (22%); Anal. cald. For 

C8H 160 5S: C, 42.84; H, 7.19. Found: C, 42.87; H, 7.23. 

OH 
138 

Tert-Butyl (- )-2-[trans-6' -tert-butoxycarbonylamino-5' -hydroxycyclohexa-1 ',3'­

diene-1 '-carboxyloxy ]propionate 138: 

CsF (240 mg, 1.57 mmol) was dried under vacuum at 150°C for 5 hours. A 

suspension of the dried CsF in DMF (5 cm3) was stirred at 25 °C for 30 minutes. To 

this suspension was added acid (-)-125 (200 mg, 0.78 mg) and the mixture was stirred 

at 25°C for 30 minutes. Mesylate 137 was then added and the reaction mixture was 

stirred at 50°C. After 24 hours the reaction mixture was partitioned between ethyl 

acetate (3 x 50 cm3) and water (50 cm\ The combined organic extracts were washed 

with brine, dried (MgS04) and concentrated under reduced pressure to give a yellow 

oil. This was subjected to column chromatography eluting with petrol/ethyl acetate 

(6:4) to give 138 as a white gum (204 mg, 68%); [a] 0
216 -171 (c 1, CHCI)); 8H (500 

MHz, CDCb): 1.43 and 1.46 (18H, s, 2 x OC(CH3)3), 1.51 (3H, d, J = 6.9 Hz, H-3), 

2.90 (lH, br, OH), 4.55 (1H, br, H-5'), 4.76 (lH, m, H-6') 5.06 1H, q, J = 6.9 Hz, H-

2), 6.30 (2H, m, H-3' and 4'), 7.22 (lH, d, J = 5.5 Hz, H-2'); 8c (125 MHz, CDC13): 

17.1 (C-3), 28.2 and 28.4 2 x OC~H3)3), 51.2 (C-6'), 68.9 (C-5'), 69.4 (C-2), 80.2 

and 80.4 (2 x OC(CH3)3), 125.3 (C-3'), 125.3 (C-1'), 133.5 (C-4'), 152.1 (NCOz), 

169.4 and 170.1 (2 x C02); MS rn/z (ES+): 406 (MNat. 
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c{o~co,H 
.:. NH2.TFA 

OH 
139 

(- )-2-[trans-6' -amino-5' -hydroxy-l' ,3' -cyclohexadiene-1 '-carboxyloxy ]propanoic 

acid 139: 

To a solution of ester 138 (140 mg, 0.37 mg) in dichloromethane (5 cm3
) was added 

trifluoroacetic acid (112 ~tl, 1.46 mmol). This mixture was then stirred until all the 

starting material was consumed (TLC ea. 12 h). The solvent was removed under 

reduced pressure to give a brown gum which was dissolved in water (20 cm3
) and 

washed with ethyl acetate (20 cm\ The aqueous phase was concentrated under 

reduced pressure to give 139 as a yellow gum (75 mg, 89%); [a] 0
208 -199 (c, 1; H20); 

HRMS (ES+): Calcd. For CtoH11NOs: M+ - HzO, 209.0688. Found: 209.0690; Vmax 

(KBr disk): 3413, 3550-2800 (br), 1726, 1679, 1580 1271 cm-1; 8H (500 MHz, DzO): 

1.57 (3H, d, J = 7.2 Hz, H-3), 4.42 (lH, m, H-6'), 4.45 (1H, d, J = 1.2 Hz, H-5'), 5.16 

(1H, q, J = 7.2 Hz, H-2), 6.49 (2H, m, H-3' and H-4'), 7.57 (lH, d, J = 1.5 Hz, H-2'); 

8c (125 MHz, D20): 16.4 (C-3), 48.4 (C-6'), 63.9 (C-5'), 71.2 (C-2), 121.2 (C-1'), 

125.3 (3'), 132.5 (C-4'), 138.8 (C-2'), 166.2 (C02), 176.3 (C-1), MS rn/z (Cl): 228 

(MH+). 

OTBS 

~C02H 
142 

(S)-2-Tert-Butylsilyloxypropanoic acid 142: 

To a stirring solution of (S)-lactic acid 141 (500 mg, 5.56 mmol) in CHzClz was 

added imidazole (760 mg, 11.10 mmol) and TBSCl (1.26 g, 8.33 mmol). The reaction 

mixture was stirred at room temperature for 24 h and then 1 M HCl (100 cm3
) and 

ethyl acetate (100 cm3
) were added. The organic layer was removed. The aqueous 

phase was washed with ethyl acetate (2 x 50 cm3
) and the organic fractions were 

combined and concentrated. The residue was subjected to column chromatography 

eluting with petroleum ether/ethyl acetate (6:4) to give 142 as a yellow oil (996 mg, 

88%); Vmax (thin film): 3430, 2941, 1731, 1463 cm-1; ()H (400 MHz, CDCh): 0.10 (3H, 

s, CH3Si), 0.14 (3H, s, CH3Si), 0.91 (9H, s, (CH3) 3CSi), 1.45 (3H, d, J = 6.8 Hz, H-3), 
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---------------------------------

4.36 (1H, q, J = 6.8 Hz, H-2); 8c (100 MHz, CDCh): 0.5 ((CH3)2Si), 1.62 

((CH3) 3CSi), 26.3 (C-3), 30.9 (~H3)3CSi), 73.8 (C-2), 180.9 (C-1); m/z (Cl): 205 

(MW, 75 %), 159 (lOO%). 

C:::CC02Et 
NHBoc 

144 

Ethyl N-tert-butoxycarbonylanthranilate 144: 

To a solution of 142 (240 mg, 1.18 mmol), EDCI (150 mg, 1.18 mmol) and DMAP 

(140 mg, 1.18 mg) in CH2Ch (10 cm3
) was added cyclohexadiene 3 (220 mg, 0.78 

mmol) and the reaction mixture was stirred at room temperature and monitored by 

thin layer chromatography. After 6 h 144 was isolated as a yellow gum (169 mg, 82 

%); Ymax (thin film): 3255, 2975, 1728, 1693, 1598 cm3
, 8H (400 MHz, CDC13) 1.40 

(3H, t, J = 7.2 Hz, OCH2Cfu), 1.52 (9H, s, OC(CH3)3), 4.36 (2H, q, J = 7.2 Hz, 

OCfuCH3), 6.98 (1H, dt, J = 7.2 and 1.2 Hz, H-5), 7.49 (lH, dt, J = 7.2 and 2.0 Hz, 

H-4), 8.01 (lH, ddd, J = 7.2, 2.0 and 0.4 Hz, H-3), 8.44 (lH, dd, J = 7.2 and 1.2 Hz, 

H-6), 10.34 (1H, br, NH); 8c (100 MHz, CDC13): 14.4 (OCH2CH3), 28.5 (OC(CH3)3), 

61.4 (OCH2CH3), 80.7 (OC(CH3)3), 114.7 (C-2), 118.9 (C-6), 121.3 (C-5), 131.1 (C-

3), 134.6 (C-4), 142.5 (C-1), 153.1 (NC02), 168.3 (C02); m/z (ES+): 288 (MNa+, 

100%). 

Mitsunobu reaction: 

A solution of cyclohexadiene 3 (730 mg, 2.58 mg) and Ph3P (810 mg, 3.10 mmol) in 

THF (10 cm3) was added dropwise to a solution of 95% DIPAD (0.54 cm3, 3.10 

mmol) and benzoic acid (390 mg, 3.10 mmol) in THF (10 cm3) at room temperature. 

After stirring for 12 h, the reaction mixture was neutralised with NaHC03 solution 

and extracted with ethyl acetate (3 x 50 cm\ The combined organic layers were 

washed with H20 (10 cm\ dried MgS04) and concentrated under reduced pressure. 

The residue was subjected to flash chromatography eluting with petroleum ether/ 

ethyl acetate (7:3) to give 144 (320 mg, 47%) and an unidentified mixture 
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(YC02Et 

Y''INHBoc 

)-l 
0 

146 

Ethyl trans-6-tert-butoxycarbony lamino-5-iso-butoxyloxy -1 ,3-cyclohexadiene-1-

carboxylate 146: 

A solution of 142 (540 mg, 2.65 mmol) and thionyl chloride (0.19 cm3, 2.65 mmol) in 

(THF 10 cm3) was stirred at room temperature for 8 h and then cyclohexadiene 3 (250 

mg, 0.88 mmol) and triethylamine (0.61 cm3, 4.4 mmol) was added. The reaction 

mixture was stirred for 3 h and then poured into a conical flask with 1M HCl (20 

cm\ This was extracted with ethyl acetate (3 x 20 cm\ dried (MgS04) and 

concentrated. The residue was subjected to column chromatography eluting with 

petroleum ether/ ethyl acetate (4:1) to give 146 as pale yellow gum (280 mg, 90%); 

Vmax (KBr disk): 3353,2978, 1717, 1701, 1513 cm- 1
; OH (400 MHz, CDCh): 1.09 (6H, 

m, (Cfu)zCH), 1.29 (3H, t, J = 7.2 Hz, OCH2Cfu), 1.41 (9H, s, OC(CH3)3), 2.46 (lH, 

m, (CH3)2Ctl), 4.23 (2H, q, 1= 7.2 Hz, OC.fuCH3), 4.37 (1H, d, J = 7.6 Hz, NH), 4.82 

(lH, d, J = 7.6 Hz, H-6), 5.22 (1H, br, H-5), 6.32 (2H, m, H-3 and 4), 7.16 (lH, m, H-

2); oc (100 MHz, CDCh): 14.4 (OCHzCH3), 19.1 (~H3)zCH), 28.5 (OC(CH3)3), 33.9 

((CH3)2CH), 46.5 (C-6), 61.2 (OCH2CH3), 68.8 (C-5), 80.2 (OC(CH3)3), 126.7 (C-4), 

128.2 (C-1), 129.2 (C-3), 133.3 (C-2), 154.9 (NC02), 166.8 (C02Et), 176 

((CH3)zCHCOz); rn/z (ES+): 376 (MNa+). 

~o_J._co2'B" 
Y''/NHBoc 

OH 
148 

Tert-Butyl ( + )-2-[trans -6' -tert -butoxycarbornylamino-5' -hydroxycyclohexa-

1 ',3' -diene-1 '-carboxyloxy ]propionate 148: 

Using acid (+)-125 (200 mg, 0.78 mmol) in the coupling procedure described for 138 

gave 148 as a yellow gum (205 mg, 68%); [a] 0
2

1.
6 +181 (c, 1; CHCh); OH (500 MHz, 

CDC13): 1.43 and 1.46 (18H, s, 2 x OC(CH3)3), 1.49 (3H, d, J = 6.9 Hz, H-3), 2.78 

(1H, br, OH), 4.40 (lH, br, NH), 4.52 (lH, br, H-5'), 4.78 (1H, m, H-6'), 5.04 (lH, q, 
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J = 6.9 Hz, H-2), 6.27 (2H, m, H-3' and 4'), 7.24 (1H, d, J = 5.5 Hz, H-2'); oc (125 

MHz, CDCh): 17.2 (C-3), 28.2 and 28.6 (2 x OC(CH3)3), 50.6 (C-6'), 68.4 (C-5'), 

69.7 (C-2), 80.2 and 82.3 (2 x OC(CH3)3), 124.6 (C-3'), 125.2 (C-1), 133.5 (C-4'), 

134.5 (C-2'), 152 (NC02), 170.0 and 170.1 (C02); m/z (ES+): 406 (MNat. 

~20T:C02H 
OH 
149 

( + )-2-[trans-6' -amino-5' -hydroxy-l' ,3' -cyclohexadiene-1 '-carboxyloxy ]propanoic 

acid 149: 

Deprotection of 148 (140 mg, 0.37 mmol) using the procedure described for 139 

afforded 149 as a white solid (74 mg, 89%); m.p. 106-108°C, [a]n213 +165 (c, 1; 

CHCh) Vmax (KBr): 3425 (br), 2927, 1703, 1677, 1589 cm- 1
; OH (500 MHz, DzO): 1.55 

(3H, d, J = 7.0 Hz, H-3), 4.39 (lH, d, J = H-6'), 4.43 (lH, dd, J = 3.0 and 1.5 Hz, H-

5'), 5.18 (lH, q, J = 7.0 Hz, H-2), 6.47 (2H, m, H-3' and 4'), 7.55 (lH, d, J = 5.5 Hz, 

H-2'); oc (125 MHz, D20): 16.2 (C-3), 48.5 (C-6'), 63.9 (C-5'), 70.5 (C-2), 121.0 (C­

l'), 125.3 (C-3'), 132.8 (C-4), 139.1 (C-2'), 166.1 (C02H), 175.3 (C-1); m/z (Cl): 228 

(MH+, 100%), 210 (96%), 138 (42%); Anal. Calcd. For C 10H 13N05.C2HOzF3: 

C,46.61; H, 4.96; N, 4.53; F, 25.87. Found: C, 46.60, H, 5.34; N, 4.64. 

(-)-Anti-anti-2-amino-3-hydroxycyclohexane-1-carboxylic acid TFA salt 151: 

A solution of 152 (100 mg, 0.39 mmol) in CH3CH20H was treated with catalytic 

amount of Pd/C and the solution was stirred for 48 h to give 151 as a colourless gum 

in 98% yield. [a] 0
21 

- 32 (c, 1; H20); OH (500 MHz, D20): 1.40 (2H, m, H-6), 1.81 

(2H, m, H-5), 2.05 (2H, m, H-4), 2.58 (lH, m, J = 8.0 and 4.0 Hz, H-1), 3.18 (lH, t, J 

= 8.0 Hz, H-2), 3.58 (lH, m, H-3); oc (125 MHz, D20): 22.5 (C-6), 28.2 (C-5), 32.7 

(C-4), 45.6 (C-1), 56.7 (C-2), 70.1 (C-3), 176.4 (C02); mlz (Cl): 160 (MH+, 10 %), 

116 (100 %). 
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( + )-Trans-2,3-dihydro-2-amino-3-hydroxyanthranilic acid TF A salt 152: 

To a solution of (+)-125 (500 mg, 1.77 mg) in CH2Clz (20 cm3) was added TFA (1.40 

cm3
, 14.12 mmol). The solution was stirred at room temperature for 4 h to give 152 

(273 mg, 100%) as a white solid; m.p. 137-139 °C;. [a]o21 + 339 (c, 1; H20); OH (500 

MHz, D20): 4.35 (1H, d, J = 3.0 Hz, H-6), 4.43 (lH, t, J = 3.0 Hz, H-5), 6.44 (2H, m, 

H-3 and 4), 7.44 (lH, d, J = 5.5 Hz, H-2); oc (125 MHz, D20): 48.8 (C-6), 64.1 (C-5), 

122.1 (C-1), 125.4 (C-3), 132.1 (C-2), 138.0 (C-4), 168.5 (C02), mlz (Cl): 156 (MH+, 

16 %), 138 (100%). 

0 

bNHBoc 
I 

158 C02Et 

E thy I exo-3-tert-butoxycarbony lamino-7 -oxabicyclo[2.2.1 ]hept-5-ene-endo-2-

carboxylate 158: 

Employing the reduction and protection procedure described for the synthesis of 2, 

124 (5.00 g, 23.5 mmol) was elaborated to give 158 as a white solid (5.5 g, 83%) mp 

50-52 °C, Dmax (KBr disk): 3291, 2978, 1738, 1703 cm- 1; OH (500 MHz, CDCh): 1.24 

(3H, t, J = 7.2 Hz, OCH2CH3), 1.45 (9H, s, OC(Ctb)3), 2.69 (1H, t, J = 4.8 and 3.2 

Hz, H-2), 4.02 (lH, br, H-3), 4.12 (2H, q, J = 7.2 Hz, OCfuCH3), 4.78 (1H, s, H-4), 

4.82 (lH, br, NH), 5.12 (lH, d, J = 4.8 Hz, H-1), 6.37 (lH, dd, J = 5.2 and 1.6 Hz, H-

5), 6.46 (1H, dd, J = 5.2 and 1.6 Hz, H-6); oc (125 MHz, CDCh): 14.0 (OCH2CH3), 

28.2 (OC(CH3) 3), 52.1 (C-2), 54.3 (C-3), 60.8 (OCH2CH3), 78.4 (C-1), 79.6 (C-3), 

85.1 (C-4), 135.2 (C-6), 135.4 (C-5), 155.3 (NC02), 170.2 ([OC2Hs); mlz (El): 

283(M+), 57(100%). 
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Ethyl syn -6-tert-butoxycarbonylamino-5-hydroxy -1 ,3-cyclohexadiene-1 

-carboxylate 159: 

Employing the KHMDS mediated ~-elimination procedure described for the synthesis 

of 3, 158 (500 mg, 1.76 mmol) was used instead of 2 to give 159 as a yellow gum; 

(340 g, 68%) Vmax (KBr disk): 3389 (br), 2982, 1689, 1523 cm-1
; OH (500 MHz, 

CDCh): 1.28 (3H, t, J = 7.0 Hz, OCH2CH3), 1.42 (9H, s, OC(CH3) 3), 3.48 (1H, br, 

OH), 4.22 (2H, q, J = 7.0 Hz, OCfuCH3), 4.64 (lH, t, J = 7.5 Hz, H-5), 4.67 (lH, br, 

NH), 4.77 (lH, d, J = 7.5 Hz, H-6), 6.05 (1H, t, J = 5.5 Hz, H-3), 6.11 (lH, d, J = 7.5 

Hz, H-4), 7.10 (1H, d, J = 5.5 Hz, H-2); oc (125 MHz, CDCh): 14.4 (OCH2CH3), 28.5 

(OC(CH3)3), 46.9 (C-6), 61.6 (OCH2CH3), 71.4 (C-5), 81.6 (OC(CH3)3), 122.2 (C-3), 

127.9 (C-1), 135.2 (C-2), 138.8 (C-4), 157.5 (NC02), 166.1 (C02); m/z (Cl): 284 

(MW, 13%), 182 (100%). 

General procedure for hydroxylation 

To a solution of substrate (1.0 equivalent) m acetone (15 cm3) was added 

Me3NO.H20 (1.1 equivalent) and 4 wt % Os04 in water (0.01 equivalent). The 

resulting mixture was stirred and monitored by TLC until all the starting material was 

consumed (12 hours). The solvent was then removed under reduced pressure and the 

residue was dissolved in ethyl acetate (10 cm\ The acetate solution was washed with 

saturated NaHS03 (5 cm3) and the aqueous phase was extracted with ethyl acetate (5 

cm3 x 3). The organic layers were combined, dried over MgS04 and the solvent was 

removed under reduced pressure to give the crude diol. 
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HO//,,Q:C02Et 

~,. '11 
HO NHBoc 

OH 

166 

Ethyl syn-anti-anti-6-tert-butoxycarbonylamino-3,4,5-trihydroxycyclohex-1-ene-

1-carboxylate 166: 

Using the general procedure for Os04 dihydroxylation, Me3NO.H20 (93 mg, 0.84 

mmol), 4% wt. Os04 in water (50 !ll) and diene 3 (120 mg, 0.42 mmol) gave a crude 

product which was subjected to column chromatography eluting with petroleum 

ether/ethyl acetate (7:3) to give 166 as a colourless oil (104 mg, 78%); Vmax (thin 

film): 3424, 2980, 1710,1513 cm- 1
; 8H (400MHz, CDCh): 1.26 (3H, t, J = 6.8 Hz, 

OCH2Cfu), 1.40 (9H, s, OC(CH3)3), 3.83 (1H, br, H-4), 4.05 (lH, br, H-5), 4.18 (2H, 

q, J = 6.8 Hz, OC_fuCH3), 4.35 (lH, m, H-6), 4.45 (lH, br, H-3), 5.61 (1H, br, NH), 

6.82 (1H, s, H-2); 8c (100 MHz, CDCh): 14.3 (OCH2CH3), 28.6 (OC(CH3)3), 51.5 

(C-6), 61.3 (OCH2CH3), 66.0 (C-3), 70.5 (C-4), 71.7 (C-5), 80.2 (OC(CH3)3), 131.7 

(C-1), 132.2 (C-2), 156.3 (NC02), 166.3 (C02Et); mlz (Cl): 318 (MW, 49%), 182 

(100%). 

AcO//t.Q:C02Et 

~,· '1'1 AcO~ NHBoc 

OAc 
167 

Ethyl syn-anti-anti-3,4,5-triacetoxy-6-tert-butoxycarbonylamino-cyclohex-1-ene-

1-carboxylate 167: 

166 (lOOmg, 0.30 mmol) was dissolved in pyridine (2.5 cm3, 31.0 mmol) and acetic 

anhydride (2.5 cm3, 26.5 mmol) and stirred at room temperature for 16 h. Water (20 

cm3) was then added and the mixture was stirred for further 3 h. The mixture was 

extracted with ethyl acetate (3 x 20 cm\ The combined organic extracts were washed 

with 2M HCl (30 cm\ sat. NaHC03 (30 cm3) and water (30 cm\ dried (MgS04) and 

concentrated under reduced pressure. The residue was purified by flash 

chromatography eluting with petroleum ether/ethyl acetate (7:2) to give tri-acetate 

167 as a thick yellow oil (127 mg, 68%). 8H (500 MHz, CDCh): 1.28 (3H, t, J = 7.2 

Hz, OCH2CH3), 1.42 (9H, s, OC(CH3)3), 2.07 (9H, s, 3 x CH3CO), 4.23 (2H, q, J = 
7.2 Hz, OC_fuCH3), 4.42 (lH, br, NH), 4.70 (lH, br, H-6), 5.26 (lH, br, H-5), 5.32 
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(1H, dd, J = 6.6 and 4.2 Hz, H-4), 5.67 (lH, t, J = 3.6 Hz, H-3), 6.76 (lH, br, H-2); be 

(125 MHz, CDCh): 14.0 (OCH2CH3), 20.5 and 20.7 (3 x CH3CO), 28.2 (OC~H3)3), 

48.3 (C-6), 61.4 (OCH2CH3), 65.6 (C-3), 66.1 (C-4), 70.2 (C-5), 79.9 (OC(CH3)3), 

133.0 (C-1), 134.3 (C-2), 154.4 (NC02), 164.6 (C02C2H5), 169.1, 169.3 and 169.8 (3 

x CH3CO); m/z (Cl): 444 (MW); Anal. calcd. For C2oHz9NOw: C, 54.42; H, 6.59; N, 

3.16. Found: C, 54.23; H, 6.52; N, 3.18. 

AcOff,,Q:co2Et 

i\\'' 'If AcO NHBoc 

OAc 
168 

Ethyl anti-anti-anti-syn-3,4,5-triacetoxy-2-tert-butoxycarbonylaminocyclo 

hexanecarboxylate 168: 

Using the general acetylation procedure, ttiol169 (400 mg, 1.41 mmol) in pyridine (5 

cm3) and acetic anhydride (5 cm3
) afforded triacetate 168 as a pale yellow gum (502 

mg, 90%); bH (500 MHz, CDCl3): 1.29 (3H, t, J = 7.0 Hz, OCH2Cfu), 1.40 (9H, s, 

OC(CH3)3), 1.74 and 1.96 (2H, m, 6-HH), 2.93 (lH, dd, J = 8.5 and 4.4 Hz, H-1), 3.94 

(1H, br, H-5), 4.11 (2H, q, J = 7.0 Hz, OCfuCH3), 4.22 (1H, br, H-4), 4.53 (lH, br, 

H-3), 4.59 (1H, br, H-2), 5.64 (lH, br, NH); be (125 MHz, CDCh): 14.4 (OCH2CH3), 

21.0 (3 X CH3CO), 24.9 (C-6), 28.4 (OC(CH3)3), 41.8 (C-1), 48.5 (C-5), 54.1 (C-2), 

61.5 (OCHzCH3), 77.0 (C-4), 79.8 (H-3), 81.2 (OC(CH3) 3), 155.0 (NC02), 169.8 

(COz), 171.1, 172.8 and 173.2 (3 x CH3CO); m/z (Cl): 463 (MNH/, 3%), 446 (MH+, 

5%), 346 (100%), 232 (93%). HRMS (ES+): C 17H25N09Na requires M+ 468.1846 

Found: 468.1849. 168 was also prepared from 167 by Pd/C catalysed hydrogenation. 

HO/lt·f(C02Et 

Ho\'''Y''INHBoc 

OH 
169 

Ethyl anti-anti-anti-syn-2-tert-butoxycarbonylamino-3,4,5-trihydroxycyclo 

hexanecarboxylate 169: 

To a solution of ester 166 (500 mg, 1.57 mmol) in ethanol (20 cm3
) was added 10% 

Pd/C (lOO mg) and the suspension was stirred under hydrogen for 48 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 
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to give 169 as a white solid (490 mg 98%); m.p. 36-38°C; Vmax (K.Br disk): 3420 (br), 

2979, 1722, 1515 cm-1; 8H (500 MHz, (CD3)2CO): 1.21 (3H, t, J = 7.0 Hz, OCH2Cfu), 

1.37 (9H, s, OC(CH3)3), 1.64 and 1.96 (2H, m, 6-HH), 2.50 (lH, dt, J = 12.0 and 3.5 

Hz, H-1), 2.90 (1H, br, H-5), 3.31(1H, t, J = 3.6 Hz, H-3), 3.46 (1H, br, H-4), 3.58 

(1H, m, H-2), 4.05 (2H, q, J = 7.0 Hz, OCfuCH3), 5.98 (lH, br, NH); 8c (125 MHz, 

(CD3)2CO): 13.9 (OCH2CH3), 25.3 (C-6), 28.0 (OC(GH3)3), 42.9 (C-5), 48.3 (C-1), 

55.9 (C-2), 60.2 (OCH2CH3), 75.2 (C-4), 77.5 (H-3), 81.2 (OC(CH3)3), 155.3 (NC02), 

173.1 (C02); MS mlz (Cl): 320 (MH+, 62%), 264 (100%); Anal. calcd for C,4H2sN07: 

C, 52.65; H, 7.89; N, 4.39. Found: C, 52.48; H,7.75; N, 4.25. 

{-2trC02Et 
174 

NHBoc 

Ethyl endo-3-tert-butoxycarbonylamino-5,6-0,0-isopropylidine-5,6-dihydroxy-7-

oxabicyclo[2,2,1]heptane-exo-2-carboxylate 174: 

Diol 173 (500 mg, 1.58 mmol) was dissolved in acetone and to this solution was 

added dimethoxypropane (221 mg, 2.51 mmol) and p-TsOH (15 mg, 0.08 mmol). The 

mixture was stirred and monitored by TLC. The solvent was removed under reduced 

pressure and the residue was dissolved in ethyl acetate (15 cm\ The solution was 

then washed with saturated NaHC03 (5 cm3
) and the aqueous layer was extracted with 

ethyl acetate (10 cm3 x 3). The combined organic layers were washed with brine (10 

cm\ dried over MgS04 and concentrated under reduced pressure. The resulting 

residue was purified by flash column chromatography eluting with a 

(CH3CH2)20/petroleum ether mixture (7:3) to give the title compound 174 (390 mg, 

61 %) as a white solid, mp 118-120°C; Umax (K.Br disk): 3269, 2983, 1741, 1683, 

1667,1546 cm-1; 8H (500 MHz, CDCh): 1.23 (3H, t, J = 7.2 Hz, OCH2CH3), 1.39 (6H, 

s, C(CH3) 2), 1.42 (9H, s, OC(CH3) 3), 2.13 (1H, d, J = 5.4 Hz, H-2), 4.15 (3H, m, 

OCfuCH3 and H-3), 4.32 (lH, d, J = 5.4 Hz, H-5), 4.43 (lH, br, H-6), 4.56 (1H, s, H-

1), 4.72 (1H, br, H-4), 4.97 (1H, br, NH); 8c (125 MHz, CDCh): 14.3 (OCH2CH3), 

26.0 (C(GH3)2), 28.5 (OC(CH3)3), 49.8 (C-2), 53.2 (C-3), 61.7 (OCH2CH3), 78.4 (C-

4), 80.8 (C-6), 81.9 (C-5), 82.6 (C-1), 111.8 ((CH3)2C02), 155.5 (NC02), 171.5 

(G02C2H5); mlz (El): 357 (M+), 57 (100%); Anal. Calcd for CnH1sN07: C, 57.13; H, 

7.61; N, 3.92. Found: C, 57.05; H, 7.66; N, 3.81. 
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0 
TBSO-riYC02Et 

TBSO~ 

NHBoc 
175 

Ethyl endo-3-tert-butoxycarbonylamino-5,6-0,0-bis(tert-butyldimethylsilyl)-5, 6-

dihydroxy-7 -oxabicyclo[2,2,1]heptane-exo-2-carboxylate 175: 

To a solution of diol 173 (500 mg, 1.58 mmol) in anhydrous DMF (20 cm3) were 

added DMAP (583 mg, 4.78 mmol) and TBSCl (600 mg, 4.00 mmol). The mixture 

was then stirred over night, quenched with sat. N~Cl solution (10 cm3), and 

extracted with ethyl acetate (10 cm3 x 3). The combined organic extracts were washed 

with water (10 cm\ dried (MgS04) and concentrated to leave a residue, which was 

purified by flash chromatography eluting with petroleum ether/(CH3CH2hO (7:3) to 

give disilyl ether 175 as a white solid (860 mg, 86%), mp 150-152°C; Dmax (KBr disk): 

3372, 2959, 1737, 1699, 1677, 1520 cm·'; OH (500 MHz, CDCh): 0.09, 0.12 (12H, s, 

2 x Si(CH3])2), 0.91 (18H, s, 2 x SiC(CH3) 3), 1.26 (3H, t, J = 7.0 Hz, OCH2Cfu), 1.44 

(9H, s, OC(CH3)3), 2.08 (lH, d, J = 4.6 Hz, H-2), 3.92 (lH, d, J = 5.3 Hz, H-6), 4.09 

(1H, br, H-3), 4.18 (lH, q, J = 7.0 Hz, OC_fuCH3), 4.25 (lH, br, H-5), 3.47 (1H, s, H-

1), 4.52 (lH, br, H-4), 4.63 (1H, br, NH); oc (125 MHz, CDCh): -4.9, -5.0 (2 x 

Si(CH3h), 14.1 (OCH2CH3), 18.5, 18.6 (2 X SiC(CH3)3), 26.0 (SiC(CH3)3), 28.3 

(OC(£:.H3)3), 49.8 (C-2), 53.2 (C-3), 61.4 (OCH2CH3), 71.6 (C-5), 77.3 (C-6), 80.3 (C-

4), 80.4 (OC(CH3)3), 85.4 (C-1), 155.4 (NC02), 171.1 (C02C2H5); m/z (El): 547(M+), 

376 (100 %); Anal. calcd. for C26Hs 1N07Si2: C, 57.21; H, 9.42; N, 2.57. Found: C, 

57.14; H, 9.38; N, 2.59. 

TBSO~C02Et 

TBSo~'ljNH2 
OH 
176 

Ethyl syn-syn-anti-6-amino-3,4-bis-(tert-butyldimethylsilyloxy)-5-hydroxycyclo 

hex-1-ene-1-carboxylate 176: 

To a solution of LiHMDS (231 mg, 1.38 mmol) in THF (20 cm3
) at -50°C was added 

a solution of oxanorbornene 175 (250 mg, 0.46 mmol) in THF (5 cm\ The solution 

was stirred at 25°C for 2 hours. The reaction mixture was then quenched with ethyl 

104 



acetate/ethanol (9: 1) and stirred for 5 minutes. Saturated Nf4Cl solution was added to 

the reaction mixture and the resulting two layers were separated. The organic layer 

was dried (MgS04) and concentrated under reduced pressure to give the crude 

product. Flash chromatography eluting with ethyl acetate/petroleum ether (3:2) 

afforded 176 as a light yellow oil (98 mg, 48%); Ymax (KBr disk): 3410, 2985, 1734, 

1538 cm- 1
; oH (400 MHz, CDCh): 0.14 (12H, s, 2 x Si(CH3)3), 0.90 (9H, s, 

SiC(CH3)3), 0.91 (9H, s, SiC(CH3)3), 1.33 (3H, t, J = 7.2Hz, OCH2Cfu), 3.25 (1H, br, 

OH), 4.02 (lH, dd, J = 5.6 and 5.0 Hz, H-5), 4.08 (1H, dd, J = 7.4 and 5.6 Hz, H-6), 

4.13 (IH, t, J = 2.4 Hz, H-4), 4.26 (2H, q, J = 7.2 Hz, OCfuCH3), 4.41 (1H, dd, J = 

3.2 and 2.4 Hz, H-3), 4.68 (2H, br, NH2), 6.87 (lH, d, J = 3.2 Hz, H-2); oc (lOO MHz, 

CDCb): 0.1 (Si(CH3)2), 18.8 (OCHzCH3), 23.0 (SiC(CH3)3), 30.6 (SiC~H3)3), 55.8 

(C-6), 66.3 (OCH2CH3), 73.8 (C-3), 76.4 (C-4), 77.4 (C-5), 118.7 (C-1), 132.1 (C-2), 

170.2 (C02). mlz (Cl): 446 (MH+, 8%), 297 (100%). 

AcO~C02Et 

'IJ AcO NHAc 

OAc 
177 

Ethyl syn-syn-anti-3,4,5-triacetoxy-6-N -acetylaminocyclohex-1-ene-1-carboxylate 

177: 

Tetra-n-butylammonium fluoride (0.5 cm3 of 1M solution in THF, 0.5 mmol) was 

added to a stirred solution of disilyl ether 176 (90 mg, 0.20 mmol) in THF (2.5 cm\ 

After 16 hours, the mixture was concentrated under reduced pressure to afford yellow 

oil. The oil was dissolved in pytidine (1.5 cm3
, 18.6 mmol) and acetic anhydride (1.5 

cm3
, 15.9 mmol) and the solution was stirred for 20 hours. Water (5 cm3) and ethyl 

acetate (10 cm3
) were added to the reaction mixture and the resulting layers were 

separated. The aqueous layer was extracted with ethyl acetate (2 x 10 cm\ The 

organic extracts were combined, washed with 2M HCl (10 cm\ saturated NaHC03 

(10 cm\ water (lOcm\ dried (MgS04) and concentrated under reduced pressure. 

The residue was purified by flash chromatography eluting with petroleum ether/ethyl 

acetate (7:3) to give tri-acetate 177 as a yellow gum (41 mg, 52%). Ymax (KBr disk): 

3343, 2977, 1711, 1639, 1521 cm-1
; oH (500 MHz, CDC13): 1.27 (3H, t, J = 7.2 Hz, 

OCH2CH3), 1.97 (3H, s, CH3CO), 2.03 (3H, s, CH3CO), 2.06 (3H, s, CH3CO), 2.15 

(3H, s, CH3CO), 4.25 (2H, q, J = 7.2 Hz, OCfuCH3), 5.13 (IH, dd, J = 5.5 and 2.0 
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Hz, H-5), 5.44 (lH, br H-6), 5.62 (lH, br, H-4), 5.65 (2H, m, H-3 and NH), 6.79 (lH, 

br, H-2); oc (125 MHz, CDCh): 14.3 (OCH2CH3), 20.7 ~H3CO), 20.8 (CH3CO), 

21.2 (!;;:_H3CO), 23.5 (!;;:_H3CO), 43.6 (C-6), 61.8 (OCH2CH3), 66.4 (C-5), 67.8 (C-3), 

68.8 (C-4), 132.0 (C-1), 136 (C-2), 164.3, 169.2, 169.6, 169.8 (carbonyls); m/z (Cl): 

386 (MW, 100%). 

AcO¥C02Et 

'lj AcO NHAc 

OAc 
178 

Ethyl anti-anti-syn-syn-3,4,5-triacetoxy-2-N-acetylaminocyclohexane-1-

carboxylate 178: 

To a solution of cyclohexene 177 (100 mg, 0.26 mmol) in ethanol (10 cm3) was added 

10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 24 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 

to give 178 as a colourless gum (98 mg, 99%); Vmax (KBr disk): 3408, 2982, 1741, 

1668, 1538 cm- 1
; oH (400 MHz, CDCh): 1.23 (3H, s, J = 7.2 Hz, OCH2CH3), 1.97 

(3H, s, CH3CO), 2.00 (3H, s, CH3CO), 2.01 (3H, s, CH3CO), 2.10 (2H, m, HH-6), 

2.19 (3H, s, CH3CO), 2.75 (1H, dd, J = 10.2 and 9.2 Hz, H-1), 4.12 (2H, q, J = 7.2 Hz, 

OCH2CH3), 4.91 (lH, m, H-3), 4.92 (lH, m, H-2), 4.96 (lH, m, H-4), 5.54 (lH, m, H-

5), 6.24 (lH, br, NH); oc (100 MHz, CDC13): 14.2 (OCH2CH3), 20.9 (CH3CO), 21.0 

(!;;:_H3CO), 21.2 (2 X CH3CO), 23.7 (C-6), 38.5 (C-1), 47.2 (C-2), 61.7 (OCH2CH3), 

68.0 (C-4), 68.6 (C-3), 70.6 (C-5), 169.1, 169.6, 169.8, 170.0, 170.9 (carbonyls); m/z 

(Cl): 388 (MW, 100%). HRMS (ES+): C 17H25N09Na requires M+ 410.1427. Found: 

410.1388. 

AcO~C02Et 

AcO~NHAc 
OAc 
179 

Ethy I syn -syn -sy n -3,4,5-triacetoxy-6-N -acetylaminocyclohex -1-ene-1-carboxy late 

179: 

Using the same procedure as that employed for the preparation of compound 166, 

diene 159 (120 mg, 0.23 mmol) in acetone (10 cm\ Me3NO.H20 (52 mg, 0.47 
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mmol), 4% wt Os04 in water (50 ~-tl), pyridine (2.5 cm3
, 31.0 mmol), and acetic 

anhydride (2.5 cm3
, 26.5 mmol) gave a crude product. The cmde product was purified 

by flash chromatography eluting with petroleum ether/ethyl acetate (7:3) to afford 

compound 179 (llO mg, 75%) as a white gum; Vmax (KBr disk): 3463, 2980, 1755, 

1721, 1507 cm- 1
; oH (500 MHz, CDCh): 1.28 (3H, t, J = 7.0 Hz, OCHzCfu), 1.44 

(9H, s, OC(CH3)3), 2.04 (3H, s, CH3CO), 2.06 (3H, s, CH3CO), 2,14 (3H, s, CH3CO), 

4.26 (2H, q, J = 7.0 Hz, OCfuCH3), 4.85 (lH, br, NH), 5.07 (2H, m, H-4 and 6), 5.61 

(2H, m, H-3 and 5), 6.75 (lH, br, C-2); oc (125 MHz, CDC13): 14.3 (OCH2CH3), 20.8 

(2 x CH3CO), 21.1 ~H3CO), 28.5 (OC~H3)3), 45.1 (C-6), 61.7 (OCHzCH3), 66.8 

(C-4), 67.9 (C-3), 68.7 (C-5), 79.7 (OC(CH3)3), 132.2 (C-1), 136.1 (C-2), 155.2 

(NC02), 164.5 (C02), 169.6, 169.7, 169.9 (3 x CH3CO); m/z (ES+): 466 (MNa+). 

TBSO'\.._ I)..__ 
TBso--.L-l-L1-NHBoc 

I 

Et02C 
180 

Ethyl exo-3-tert-butoxycarbonylamino-5,6-0,0-bis(tert-butyldimethylsilyl)-5, 6-

dihydroxy-7 -oxobicyclo[2,2,1]heptane-endo-2-carboxylate 180: 

By employing the general procedure for dihydroxylation, adduct 158 (500 mg, 1.77 

mmol) afforded a diol which was treated with imidazole (324 mg, 4.78 mmol) and 

TBSCI (600 mg, 4.00 mmol). The mixture was then stirred over night, quenched with 

2M HCI (10 cm\ and extracted with ethyl acetate (10 cm3 x 3). The combined 

organic extracts were washed with water (10 cm\ dtied (MgS04) and concentrated to 

leave a residue, which was purified by flash chromatography eluting with petroleum 

ether/(CH3CH2) 20 (7:3) to give disilyl ether 180 as a white solid (860 mg, 86%), mp 

108-ll0°C; Umax (KBr disk): 3368, 2951, 1730, 1698, 1672, 1528 cm-1
; OH (500 MHz, 

CDCh): 0.11, 0.12 (12H, s, 2 x Si(CH3])2), 0.91 (18H, s, 2 x SiC(CH3)3), 1.28 (3H, t, 

J = 7.0 Hz, OCH2Cfu), 1.42 (9H, s, OC(CH3)3), 2.63 (lH, d, J = 4.6 Hz, H-2), 3.95 

(1H, d, J = 5.3 Hz, H-6), 3.97 (lH, s, H-1), 4.09 (lH, q, J = 7.0 Hz, OCfuCH3), 4.22 

(lH, br, H-5), 4.48 (lH, dd, J = 6.5 and 1.5 Hz, H-3), 4.52 (lH, br, H-4), 4.78 (lH, 

br, NH); Oc (125 MHz, CDCh): -4.9, -5.0 (2 x Si(CH3)2), 14.1 (OCH2CH3), 18.5, 18.6 

(2 X SiC(CH3)3). 26.0(SiC(CH3)3), 28.3 (OC(CH3)3). 49.8 (C-2), 53.2 (C-3), 61.4 

(OCH2CH3), 71.6 (C-5), 77.3 (C-6), 80.3 (C-4), 80.4 (OC(CH3)3), 85.4 (C-1), 155.4 

(NC02), 171.1 (C02C2Hs); mlz (El): 547(M+). 376 (100 %). 
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TBSO~C02Et 

TBSO~NHBoc 
OH 
181 

Ethyl syn-syn-syn-6-tert-butoxycarbonylamino-3,4-bis(tert-butyldimethyl 

silyloxy )-5-hydroxycyclohex-1-ene-1-carboxylate 181: 

To a solution of LiHMDS (231 mg, 1.38 mmol) in THF (20 cm3) at -50°C was added 

a solution of oxanorbomene 180 (250 mg, 0.46 mmol) in THF (5 cm\ The solution 

was stirred at 25°C for 2 hours. The reaction mixture was then quenched with ethyl 

acetate/ethanol (9: 1) and stirred for 5 minutes. Saturated Nf4Cl solution was added to 

the reaction mixture and the resulting two layers were separated. The organic layer 

was dried (MgS04 ) and concentrated under reduced pressure to give the crude 

product. Flash chromatography eluting with ethyl acetate /petroleum ether (3:2) 

afforded 181 as a pale yellow oil (129 mg, 56%); Vmax (KBr disk): 3412, 2987, 1732, 

1688, 1534 cm-1
; oH (400 MHz, CDCh): 0.12 (12H, s, 2 x Si(CH3)3), 0.92 (9H, s, 

SiC(CH3) 3), 0.93 (9H, s, SiC(CH3)3), 1.28 (3H, t, J = 7.2Hz, OCH2Cfu), 1.43 (9H, s, 

OC(CH3)3), 3.70 (1H, br, OH), 4.05 (lH, m, H-5), 4.08 (lH, m, H-6), 4.13 (lH, t, J = 

2.4 Hz, H-4), 4.26 (2H, q, J = 7.2 Hz, OCfuCH3), 4.52 (lH, dd, J = 3.2 and 2.4 Hz, 

H-3), 4.84 (2H, br, NH2), 6.72 (lH, d, J = 3.2 Hz, H-2); Oc (100 MHz, CDCh): 0.1 

(Si(CH3)z), 18.8 (OCH2CH3), 23.0 (SiC(CH3)3), 30.6 (SiC~H3)3), 55.8 (C-6), 66.3 

(OCH2CH3), 73.8 (C-3), 76.4 (C-4), 77.4 (C-5), 118.7 (C-1), 132.1 (C-2), 170.2 

(C02). m/z (ES+): 568 (MNa+). 

AcO~C02Et 

AcO~NHBoc 
OAc 
182 

Ethyl syn-syn-syn-syn-3,4,5-triacetoxy-2-tert-butoxycarbonylamino-cyclo 

hexanecarboxylate 182: 

To a solution of cyclohexene 179 (100 mg, 0.26 mmol) in ethanol (10 cm3) was added 

10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 24 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 

to give 182 as a yellow oil (98 mg, 98%); Vmax (thin film): 3455, 2979, 1747, 1513 cm· 
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1
; 8H (500 MHz, CDCb): 1.22 (3H, t, J = 7.5 Hz, OCH2Cfu), 1.41 (9H, s, OC(CH3)3), 

2.00 (3H, s, CH3CO), 2.01 (6H, s, 2 x CH3CO), 2.06 (2H, m, HH-6), 2.16 (3H, s, 

CH3CO), 2.73 (lH, m, H-1), 4.22 (2H, q, J = 7.5 Hz, OC_fuCH3), 4.63 (1H, m, H-2), 

4.87 (2H, m, H-4 and 5), 5.16 (lH, d, J = 11.0 Hz, NH), 5.53 (lH, s, H-3); Be (125 

MHz, CDCh): 14.2 (OCH2CH3), 20.8 ~H3CO), 21.0 (2 x CH3CO), 22.8 (C-6), 28.5 

(OC(CH3)3), 41.8 (C-1), 48.7 (C-2), 61.5 (OCH2CH3), 68.6 (C-4), 68.7 (C-5), 70.5 (C-

3), 79.7 (OC(CH3)3), 155.8 (NC02), 169.4, 169.7, 170.1, 170.8 (carbonyls); m/z 

(ES+): 468 (MNa+). 

·y.C02Et 
ot' ''· .,, 

~"NHBoc 

OH 
183 

Epoxidation of diene 3: 

0<;xC02Et 
''If NHBoc 

OH 
184 

To a solution of diene 3 (1.00 g, 3.53 mmol) in CH2Ch (20 cm3) was added mCPBA 

(1.23 g, 7.06 mmol) and NaHC03 (890 mg, 10.6 mmol). The mixture was stirred at 

room temperature for 36 hr. The mixture was then partitioned between concentrated 

NaHC03 solution (25 cm3) and ethyl acetate (25 cm3) and the layers were separated. 

The aqueous layer was extracted with ethyl acetate (2 x 25 cm3) and the organic 

extractions were mixed, dried (MgS04) and concentrated under reduced pressure to 

give the crude product of 9:1 mixture of epoxides 183 as a colourless oil (721 mg, 

68%) and 184 as a white gum (90 mg, 9% ). The two isomers were separated by flash 

chromatography eluting with petroleum ether/ethyl acetate (7:4). 

Ethyl anti-anti-6-tert-butoxycarbonylamino-3,4-epoxy-5-hydroxycyclohex-1-ene-

1-carboxylate 183: 

Vmax (thin film): 3439 (br), 2979, 1718, 1499 cm- 1
; 8H (500 MHz, CDCl3): 1.27 (3H, t, 

J = 7.0 Hz, OCH2Cfu), 1.40 (9H, s, OC(CH3)3), 3.54 (lH, t, J = 4.0 Hz, H-3), 3.74 

(lH, br, H-4), 4.24 (2H, q, J = 7.0 Hz, OCfuCH3), 4.41 (1H, br, H-5), 4.73 (lH, d, J = 

10.0 Hz, NH), 4.87 (1H, d, J = 10.0 Hz, H-6), 7.32 (1H, d, J = 4.0 Hz, H-2); Be (125 

MHz, CDCb): 14.3 (OCH2CH3), 28.6 (OC(CH3)3), 46.4 (C-3), 49.3 (C-6), 58.1 (C-4), 

61.4 (OCH2CH3), 67.0 (C-5), 80.2 (OC(CH3)3), 133.0 (C-1), 137.3 (C-2), 155.3 

(NC02), 165 (C02); mlz (Cl): 300 (Mft, 25%), 261 (100%). 
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Ethyl syn-anti-6-tert-butoxycarbonylamino-3,4-epoxy-5-hydroxycyclohex-1-ene-

1-carboxylate 184: 

Ymax (thin film): 3435 (br), 2972, 1725, 1492 cm-1; bH (500 MHz, CDCh): 1.28 (3H, t, 

J = 7.0 Hz, OCH2Cfu), 1.41 (9H, s, OC(CH3)3), 3.50 (lH, t, J = 4.0 Hz, H-3), 3.70 

(1H, dd, J = 4.0 and 1.5 Hz, H-4), 4.18 (4H, m, OCfuCH3, H-5, and H-6), 5.49 (lH, 

br, NH), 6.92 (1H, d, J = 4.0 Hz, H-2); be (125 MHz, CDCh): 14.3 (OCHzCH3), 28.5 

(OC(CH3)3), 48.3 (C-3), 52.5 (C-6), 55.6 (C-4), 61.5 (OCH2CH3), 71.6 (C-5), 80.6 

(OC(CH3)3), 130.1 (C-1), 133.4 (C-2), 156.7 (NCOz), 165.5 (COz); mlz (Cl): 300 

(MH+, 20%), 166 (100%). 

OAc 

185 

Ethyl anti-5-acetoxy-6-tert-butoxycarbonylamino-1,3-cyclohexadiene-1-

carboxylate 185: 

To a solution of cyclohexadiene 3 (500 mg, 1.77 mmol) in anhydrous pyridine (5 cm3, 

64.5 mmol) was added acetic anhydride (5 cm3, 53.0 mmol). The reaction mixture 

was then stirred at room temperature for 20 hours. 2M HCl (20 cm3
) and ethyl acetate 

(20 cm3) were added and the resulting layers were separated. The aqueous layer was 

extracted with ethyl acetate (2 x 20 cm3) and the organic layers were combined, dried 

(MgS04) and concentrated under reduced pressure. The crude product was purified by 

flash chromatography eluting with petroleum ether/ethyl acetate (4:1) to give acetate 

185 as a white solid (550 mg, 96% ), mp 42-44°C; Umax (KBr disk): 3285, 2983, 1737, 

1717, 1679, 1648, 1527 cm-1; bH (500 MHz, CDCh): 1.30 (3H, t, J = 7.0 Hz, 

OCH2Cfu), 1.42 (9H, s, OC(CH3)3), 2.00 (3H, s, CH3CO), 4.28 (2H, q, J = 7.0 Hz, 

OCfuCH3), 4.37 (1H, br, NH), 4.46 (lH, br, H-6), 5.25 (lH, br, H-5), 6.34 (2H, br, 

H-3 and 4), 7.17(1H, br, H-2); be (125 MHz, CDCh): 14.1 (OCH2CH3), 20.8 

(GH3CO), 28.2 (OC(GH3)3), 46.2 (C-6), 61.0 (OCH2CH3), 68.8 (C-5), 80.0 

(OC(CH3) 3), 126.6 and 127.8 (C-3 and 4) 128.7 (C-2), 133.1 (C-1), 154.6 (NC02), 

165.5 (CH3CO), 169.8 (C02C2H5); m/z (Cl): 326 (MW, 100%) Anal. calcd. For 

C 16H23N06: C, 59.06; H, 7.13; N, 4.31. found: C, 58.79; H, 7.11; N, 4.30. 
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·y.C0
2
Et ~,, 

o,,,. 
.,/. 

i'NHBoc 

OAc 
186 

Ethyl anti-anti-5-acetoxy-6-tert-butoxycarbonylamino-3,4-epoxy-5-

acetoxycyclohex-1-ene-1-carboxylate 186: 

To a solution of diene 185 (200 mg, 0.59 mmol) in CH2Ch (10 cm3) was added 

mCPBA (310 mg, 1.77 mmol) and NaHC03 (300 mg, 3.52 mmol). The mixture was 

stirred at room temperature for 36 hours. The mixture was then partitioned between 

concentrated NaHC03 solution (25 cm3) and ethyl acetate and the layers were 

separated. The aqueous layer was extracted with ethyl acetate (2 x 25 cm3) and the 

organic extractions were combined, dried (MgS04) and concentrated under reduced 

pressure to give the crude product. Flash chromatography eluting with petroleum 

ether/ethyl acetate (7:3) gave epoxide 186 as a colourless oil (136 mg, 65% ); Vmax 

(thin film): 3442, 2979, 1653, 1494 cm-1
; 8H (400 MHz, CDC13): 1.25 (3H, t, J = 7.2 

Hz, OCH2Cfu), 1.38 (9H, s, OC(CH3)3), 2.00 (3H, s, CH3CO), 3.50 (lH, dd, J = 7.5 

and 3.9 Hz, H-3), 3.79 (lH, br, H-4), 4.19 (2H, q, J = 7.2 Hz, OCfuCH3), 4.16 (lH, 

d, J = 9.9 Hz, NH), 4.87 (lH, d, J = 9.9 Hz, H-6), 5.32 (lH, br, H-5), 7.28 (1H, br, H-

2); 8c (100 MHz, CDCh): 14.3 (OCH2CH3), 21.0 (CH3CO), 28.5 (OC~H3)3), 46.3 

(C-3), 46.8 (C-6), 55.6 (C-4), 61.5 (OCH2CH3), 68.7 (C-5), 80.0 (OC(CH3)3), 133.4 

(C-1), 136.6 (C-2), 154.4 (NC02), 164.8 ~02C2Hs), 169.9 (CH3CO); m/z (CD: 342 

(MH+), 303 (100%); Anal. Calcd. For C 16H23N07 : C, 56.30; H, 6.79; N, 4.10. Found: 

C, 56.27; H, 6.85; N, 4.11. 

AcO~C02Et 

Aco~''Y''INHAc 
OAc 

187 

Ethyl anti-anti-anti-3,4,5-triacetoxy-2-N -acetylaminocyclohex-1-ene-1-

carboxylate 187: 

A solution of epoxide 186 (270 mg, 0.79 mmol) in H20/Acetone (1:1) was treated 

with HC104 (5 fll, 0.08 mmol). The solution was stirred at room temperature for 24 h 

and the solvent was removed under reduced pressure. The residue was stirred in 

pyridine (5 cm3
) and acetic anhydride (5 cm3

) for 24 h and then partitioned between 
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2M HCl (20 cm3) and ethyl acetate (20 cm\ The organic layer was washed with 

saturated NaHC03 (20 cm\ dried (MgS04) and concentrated under reduced pressure. 

The resulting residue was columned using petroleum ether/ ethyl acetate (7:3) as the 

eluting solvent to give 187 as a pale yellow gum (226 mg, 74% ); Vmax (KBr disk): 

3387, 2935, 1752, 1663, 1537 cm-3; bH (500 MHz, CDCh): 1.27 (3H, t, J = 7.0 Hz, 

OCH2Ctb), 1.93 (3H, s, CH3CO), 2.05 (3H, s, CH3CO), 2.06 (3H, s, CH3CO), 2.08 

(3H, s, CH3CO), 4.21 (2H, q, J = 7.0 Hz, OCfuCH3), 5.01 (lH, m, H-6), 5.32 (2H, m, 

H-4 and H-5), 5.58 (lH, br, NH), 6.72 (lH, d, J = 4.5 Hz, H-2); be (125 MHz, 

CDCb): 14.3 (OCH2CH3), 20.9, 21.0 and 23.4 (4 x CH3CO), 49.7 (C-6), 61.7 

(OCH2CH3), 69.7 (C-3), 70.4 and 71.3 (C-4 and C-5), 132.0 (C-1), 135.0 (C-2), 164.6 

(C02), 169.6, 169.7, 170.1 and 170.4 (4 x CH3CO); m/z (Cl): 386 (MW), 208 

(100%). 

AcO~~C02Et 

Aco~''Y''INHAc 
OAc 

188 

Ethyl anti-anti-anti-anti-3,4,5-triacetoxy-2-N -acetylaminocyclohexane-1-

carboxylate 188: 

To a solution of ester 187 (100 mg, 0.26 mmol) in ethanol (10 cm3) was added 10% 

Pd/C (20 mg) and the suspension was stirred under hydrogen for 24 h. The suspension 

was then filtered and the filtrate was concentrated under reduced pressure to give 188 

as a white gum (98 mg, 98%); Vmax (KBr disk): 3247, 2947, 1741, 1660, 1565 cm- 1
; bH 

(500 MHz, CDCb): 1.23 (3H, t, J = 7.0 Hz, OCH2Cfu), 1.88 (lH, m, H-6), 1.90 (3H, 

s, CH3CON), 2.01 (3H, s, CH3CO), 2,03 (3H, s, 2 x CH3CO), 2.28 (1H, t, J = 13.0 Hz, 

H-6), 2.57 (lH, dt, J = 13.0 and 3.5 Hz, H-1), 4.12 (2H, q, J = 7.0 Hz, OCfuCH3), 

4.33 (lH, q, J = 10.0 Hz, H-2), 4.88 (lH, m, H-5), 4.96 (1H, t, J = 10.0 Hz, H-3), 5.21 

(lH, t, J = 10.0 Hz, H-4), 5.49 (1H, d, J = 10.0 Hz, NH); be (125 MHz, CDCh): 14.3 

(OCH2CH3), 20.9 and 21.1 (3 x CH3CO), 23.4 (GH3CON), 30.3 (C-6), 44.4 (C-1), 

52.5 (C-2), 61.8 (OCH2CH3), 70.6 (C-5), 72.9 (C-4), 73.2 (C-3), 169.8, 170.4, 170.8 

and 171.3 (carbonyls); m/z (Cl): 388 (MH+, 100%); HRMS (ES+): C 17H25N09Na 

requires M+, 410.1427. Found: 410.1467. 
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CIYYC02Et 

Ho~''Y''/NHBoc 
OAc 

189 

Ethyl anti-anti-anti-5-acetoxy-6-tert-butoxycarbonylamino-3-chloro-4-hydroxy-1-

cyclohexene-1-carboxylate 189: 

To solution of epoxide 186 (240 mg, 0.75mmol) in dichloromethane was added acetic 

acid (120 111, 2.10 mmol) and ZnC}z (102mg, 0.75mmol). The mixture was stirred at 

room temperature until all the starting material was consumed (TLC ea. 12 h). The 

solvent was remove under reduced pressure and the residue was subjected to column 

chromatography eluting with petroleum ether/ethyl acetate (7:3) to give 189 as a 

white solid (200 mg, 83%); m.p 158-160°C; Vmax (KBr disk): 3447 (br), 2979, 1765, 

1703, 1652, 1536 cm- 1
; oH (500 MHz, CDCh): 1.30 (3H, t, J = 7.0 Hz, OCH2CH3), 

1.42 (9H, s, OC(CH3)3), 2.10 (3H, s, CH3CO), 2.86 (lH, br, OH), 4.12 (lH, m, H-4), 

4.24 (2H, q, J = 7.0 Hz, OCfuCH3), 4.61 (2H, m, H-3 and 6), 4.80 (lH, br, NH), 5.16 

(lH, br, H-5), 6.81 (lH, s, H-2); 8c (125 MHz, CDCh): 14.3 (OCH2CH3), 21.1 

~H3CO), 28.5 (OC~H3)3), 50.3 (C-3), 57.3 (C-6), 61.7 (OCH2CH3), 72.8 (C-4), 

73.7 (C-5), 80.9 (OC(CH3)3), 131.7 (C-1), 136.5 (C-2), 155.2 (NC02), 165.0 (C02), 

170.9 (CH3CO); m/z (ES+): 400 (MNa+). 

0 

0~C02Et 

NHBoc 
190 

Ethyl endo-3-tert-butoxycarbonylamino-5,6-epoxy-7 -oxabicyclo[2,2,1]hexane-2-

carboxylate 190: 

To a stirred solution of the bicyclic alkene 2 (500 mg, 1.77 mmol) in CH2C}z(10 cm3) 

was added solid NaHC03(300 mg, 3.54 mmol) and mCPBA (305 mg, 1.77 mmol). 

After 28 hours the reaction was quenched with 20% aqueous solution of Na2S03 (5 

cm3) and the resulting layers were separated. The aqueous layer was extracted with 

CH2C}z (10 cm3 x 2) and the combined organic extracts were washed with H20, dried 

(MgS04) and evaporated under reduced pressure. The resulting residue was purified 

by flash chromatography eluting with (CH3CH2)z0/petroleum ether (7:3) to give 
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epoxide 190 as a white solid (322 mg, 61 %), mp 34-36°C; Dmax (KBr disk): 3378, 

2979, 1717, 1521 cm-1
; oH (500MHz, CDCh): 1.28 (3H, t, J = 7.0 Hz, OCH2CH3), 

1.44 (9H, s, OC(CH3)3), 2.25 (lH, d, J = 4.5, H-2), 3.47 (lH, d, J = 3.5, H-6), 3.59 

(lH, d, J = 3.5, H-5), 4.21 (2H, q, J = 7.0 Hz, OCfuCH3), 4.42 (1H, m, H-3), 4.74 

(3H, br, C-1, C-4, NH). oc (125 MHz, CDCh): 14.4 (OCH2CH3), 28.5 (OC(CH3)3), 

48.4 (C-5), 49.5 (C-6), 52.4 (C-2), 57.8 (C-3), 61.9 (OCH2CH3), 75.0, 77.0 (C-1, C-

4), 81.0 (OC(CH3)3), 155.4 (NC02), 170.8 (C02C2Hs); mlz (El): 299 (M+), 57 

(100%); Anal. Calcd. for C 14H21 N06: C, 56.18; H, 7.07; N, 4.68. Found: C, 56.17; H, 

7.21; N, 4.47. 

0 

HO~C02Et 

OYNH 

0 
191 

Ethyl 2-hydroxy-5-oxo-4,9-dioxa-6-azatricyclo[3,3,1,11
'
8]decane-10-carboxylate 

191: 

A solution of epoxide 190 (200 mg, 1.01 mmol) in Ac0H/H20 (9:1, 10 cm3) was 

stirred at room temperature for 30 minutes. The reaction was quenched with sat. 

NaHC03 (10 cm\ The resulting solution was extracted with ethyl acetate (10 cm3 x 

3). The combined organic layers were dried (MgS04) and concentrated under reduced 

pressure to afford the crude product. Purification of the crude product by flash 

chromatography eluting with ethyl acetate/hexane (7:3) gave 191 (120 mg, 75%) as a 

white solid, mp 37-39°C; Dmax (KBr disk): 3448 (br), 2979, 1733, 1681, 1463 cm-1
; OH 

(400 MHz, CDCh): 1.29 (3H, t, J = 7.2 Hz, OCH2Cfu), 2.59 (lH, d, J = 2.4 Hz, H-

10), 3.83 (lH, d, J = 1.2 Hz, H-2), 4.21 (2H, q, J = 7.2 Hz, OCfuCH3), 4.32 (1H, m, 

H-7), 4.54 (lH, t, J = 1.2 and 1.5 Hz, H-8), 4.61 (2H, m, H-1 and 3), 5.98 (lH, br, 

NH); oc (100 MHz, CDCI3): 14.1 (OCH2CH3), 53.1 (C-7), 54.3 (C-10), 61.9 

(OCH2CH3), 67.2 (C-8), 75.6 (C-2), 79.1 (C-2), 85.1 and 85.5 (C-1 and 3), 150.1 (C-

5), 170.1 (C02C2H5); m/z (El): 243 (M+), 98 (100%); Anal. Calcd. For C 10H 13N06: C, 

49.38; H, 5.39; N, 5.76. Found: C, 49.22; H, 5.15; N, 5.84. 
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AcO:Q:f,, ~ C02Et 

'If AcO NHAc 

OAc 

194 

Ethyl anti-syn-anti-3,4,5-triacetoxy-6-N-acetylaminocyclohex-1-ene-1-

carboxylate 194: 

A solution of epoxide 184 (270 mg, 0.79 mmol) in H20/Acetone (1:1) was treated 

with HCI04 (5 !J.l, 0.08 mmol). The solution was stirred at room temperature for 24 h 

and the solvent was removed under reduced pressure. The residue was stirred in 

pyridine (5 cm3
) and acetic anhydride (5 cm3) for 24 h and then partitioned between 

2M HCl (20 cm3) and ethyl acetate (20 cm\ The organic layer was washed with 

saturated N aHC03 (20 cm\ dried (MgS04) and concentrated under reduced pressure. 

The resulting residue was columned using petroleum ether/ ethyl acetate (7:3) as the 

eluting solvent to give 194 as a pale yellow gum (226 mg, 74% ); Vmax (KBr disk): 

3379, 2996, 1744, 1663, 1543 cm-1
; 8H (500 MHz, CDCb): 1.26 (3H, t, J = 7.0 Hz, 

OCH2Cfu), 1.97 (3H, s, CH3CO), 2.01 (3H, s, CH3CO), 2.06 (3H, s, CH3CO), 2.08 

(3H, s, CH3CO), 4.27 (2H, q, J = 7.0 Hz, OC_fuCH3), 4.97 (lH, dd, J = 8.5 and 3.5 

Hz, H-6), 5.28 (1H, dd, J = 8.5 and 2.5 Hz, H-4), 5.39 (lH, dd, J = 8.5 and 3.5 Hz, H-

5), 5.57 (lH, dd, J = 8.5 and 2.5 Hz, H-3), 5.85 (lH, d, J = 8.5 Hz, NH), 6.87 (1H, d, J 

= 2.5 Hz, H-2); be (125 MHz, CDCh): 14.3 (OCH2CH3), 21.0 (CH3CO), 21.1 (2 x 

CH3CO), 23.3 (CH3CO), 47.7 (C-6), 61.8 (OCH2CH3), 68.9 (C-4), 69.0 (C-3), 70.4 

(C-5), 130.5 (C-1), 138.0 (C-2), 164.6, 169.6, 169.7 and 170.5 (carbonyls); m/z (Cl): 

386 (Nllr, 100%). 

AcO/:x;c'· C02Et 

.,, 
AcO NHAc 

OAc 
195 

E thy I anti-anti-syn -anti-3,4,5-triacetoxy-2-N -acetylaminocyclohexane-1-

carboxylate 195: 

To a solution of cyclohexene 194 (100 mg, 0.26 mmol) in ethanol (10 cm3) was added 

10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 48 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 

to give 195 as a colourless gum (98 mg, 99%); Vmax (KBr disk): 3379, 2981, 1743, 
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1549 cm- 1
; 8H (500 MHz, CDCl3):1.24 (3H, t, J = 7_0 Hz, OCH2Cfu), 1.90 (3H, s, 

CH3CO), 2.00 (3H, s, CH3CO), 2.03 (lH, m, H-6), 2.10 (3H, s, CH3CO), 2.16 (3H, s, 

CH3CO), 2.17 (lH, m, H-6), 2.71 (1H, dt, J = 11.5 and 4.0 Hz, H-1), 4.14 (2H, q, J = 

7.0 Hz, OCfuCH3), 4.52 (lH, q, J = 11.5 Hz, H-2), 5.04 (lH, m, H-5), 5.14 (lH, dd, J 

= 11.5 and 3.0 Hz, H-3), 5.25 (1H, t, J = 3.0 Hz, H-4), 5.50 (lH, d, J = 11.5 Hz, NH); 

&c (125 MHz, CDCl3): 14.4 (OCH2CH3), 21.0 ~H3CO), 21.3 ~H3CO), 23.5 

~H3CO), 27.8 (C-6), 43.8 (C-1), 49.4 (C-2), 61.6 (OCH2CH3), 68.6 (C-5), 68.8 (C-

4), 70.3 (C-3), 169.4, 169.8, 170.0, 171.3 and 171.8 (carbonyls); mlz (Cl): 388 (MW, 

100%); HRMS (ES+): Found M+, 410.1417. C17H25N09 requires 410.1427. 

~CO?Et 
0

~NHDoc 
OH 
196 

Ethyl syn-syn-6-tert-butoxycarbonylamino-3,4-epoxy-5-hydroxycyclohex-1-ene-1-

carboxylate 

To a solution of diene 159 (1.00 g, 3.53 mmol) in CH2Ch (20 cm3) was added 

mCPBA (1.23 g, 7.06 mmol) and NaHC03 (890 mg, 10.6 mmol). The mixture was 

stirred at room temperature for 36 hr. The mixture was then partitioned between 

concentrated NaHC03 solution (25 cm3) and ethyl acetate (25 cm3) and the layers 

were separated. The aqueous layer was extracted with ethyl acetate (2 x 25 cm3) and 

the organic extractions were mixed, dried (MgS04) and concentrated under reduced 

pressure to give the crude product 196 as a white gum (865 mg, 82% ); Ymax (KBr 

disk): 3437, 2979, 1720, 1498 cm-1
; 8H (500 MHz, CDCh): 1.27 (3H, t, J = 7.5 Hz, 

OCH2Cfu), 1.41 (9H, s, OC(CH3)3), 3.24 (lH, br, OH), 3.53 (1H, dd, J = 4.5 and 4.0 

Hz, H-3), 3.67 (lH, m, H-4), 4.21 (3H, m, OCfuCH3 and H-5), 4.80 (lH, d, J = 8.5 

Hz, NH), 4.98 (lH, dd, J = 8.5 and 4.5 Hz, H-6), 7.16 (lH, d, J = 4.0 Hz, H-2); &c 

(125 MHz, CDCi}): 14.3 (OCH2CH3), 28.5 (OC~H3)3), 47.8 (C-6), 48.3 (C-2), 59.0 

(C-4), 61.6 (OCH2CH3), 68.4 (C-5), 80.2 (OC(CH3)3), 135.6 (C-1), 136.8 (C-2), 156.9 

(NC02), 164.7 (C02); m/z (ES+): 322 (MNa+, 100%). 
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AcOn,,(Yco2Et 

AcO~NHAc 
OAc 

197 

Ethyl anti-syn -syn -3,4,5-triacetoxy-2-N -acetylaminocyclohex -1-ene-1-carboxylate 

197: 

A solution of epoxide 196 (270 mg, 0.79 mmol) in H20/Acetone (1:1) was treated 

with HC104 (5 ~tl, 0.08 mmol). The solution was stirred at room temperature for 24 h 

and the solvent was removed under reduced pressure. The residue was stirred in 

pyridine (5 cm3) and acetic anhydride (5 cm3) for 24 h and then partitioned between 

2M HCl (20 cm3) and ethyl acetate (20 cm\ The organic layer was washed with 

saturated NaHC03 (20 cm\ dried (MgS04) and concentrated under reduced pressure. 

The resulting residue was columned using petroleum ether/ ethyl acetate (7:3) as the 

eluting solvent to give 197 as a pale yellow gum (218 mg, 72%); Vmax (KBr 

disk):3377, 2989, 1745, 1675, 1535 cm-1
; oH (500 MHz, CDCh): 1.26 (3H, t, J = 7.0 

Hz, OCH2CH~), 1.96 (3H, s, CH3CON), 2.08 (3H, s, CH3CO), 2.09 (3H, s, CH3CO), 

2.10 (3H, s, CH3CO), 4.23 (2H, q, J = 7.0 Hz, OCfuCH3), 5.22 (lH, dd, J = 5.5 and 

2.0 Hz, H-4), 5.46 (2H, m, H-5 and 6), 5.58 (2H, m, H-3 and NH), 6.82 (1H, d, J = 2.5 

Hz, H-2); Oc (125 MHz, CDCh): 14.3 (OCH2CH3), 21.0 (CH3CO) 21.1 (2 x CH3CO), 

23.4 (CH3CON), 44.8 (C-6), 61.8 (OCH2CH3), 68.0 (C-3), 68.4 (C-5), 70.6 (C-4), 

133.2 (C-1), 135.0 (C-2), 164.9 (CH3CON), 169.1, 169.3, 169.9, 170.0 (carbonyls); 

m/z (ES+): 408 (MNa+, 100%). 

AcOn,,(I·'~C02Et 

AcO~NHAc 
OAc 
198 

Ethyl anti-syn-syn-anti-3,4,5-triacetoxy-2-N -acetylaminocyclohexane-1-

carboxylate 198: 

To a solution of cyclohexene 197 (100 mg, 0.26 mmol) in ethanol (10 cm3
) was added 

10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 24 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 

to give 198 as a white solid (98 mg, 98 %); m.p. 196-198°C; Vmax (KBr disk): 3271, 

2986, 1747, 1651, 1556 cm- 1
; oH (500 MHz, CDCh): 1.23 (3H, t, J = 7.0 Hz, 
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OCH2Cfu), 1.79 (2H, m, H-6), 1.91 (3H, s, CH3CO), 1.97 (3H, s, CH3CON), 2.03 

(3H, s, CH3CO), 2.16 (3H, s, CH3CO), 2.77 (1H, m, H-1), 4.12 (2H, q, J = 7.0 Hz, 

OCfuCH3), 4.50 (1H, m, H-2), 5.05 (2H, m, H-4 and 5), 5.50 (lH, br, H-3), 5.56 (lH, 

d, J = 8.0 Hz, NH); 8c (125 MHz, CDCh): 14.3 (OCH2CH3), 20.8 ~H3CO), 21.2 

(CH3CO), 21.2 (CH3CO), 23.3 ~H3CON), 30.0 (C-6), 42.7 (C-1), 49.6 (C-2), 61.7 

(OCH2CH3), 68.5 (C-5), 71.5 (C-3), 71.8 (C-4), 169.3, 169.9, 170.0, 170.7, 171.4 

(carbonyls); mlz (ES+): 410 (MNa+). 

0 d:(co2Et 

NHBoc 
201 

Ethyl endo-3-tert-butoxycarbonylamino-7-oxabicyclo[2,2,1]heptane-exo-2-

carboxylate 201: 

Bicyclic alkene 2 (400 mg, 1.40 mmol) was stirred with 10% Pd/C (80 mg) in ethanol 

(15 cm3) under hydrogen over night. After the reaction, Pd/C was filtered off and the 

filtrate was concentrated under reduced pressure to give the saturated adduct 201 (390 

mg, 98%) as a white solid, mp 92-94°C; Dmax (KBr disk): 3346 (br), 2992, 1739, 1709, 

1523 cm- 1
; 8H (500 MHz, CDC13): 1.26 (3H, t, J = 7.2 Hz, OCH2Cfu), 1.43 (9H, s, 

OC(CH3)3), 1.84 (4H, m, H-5 and 6), 2.14 (lH, d, J = 5.0 Hz, H-2), 4.17 (2H, q, J = 

7.2 Hz, OCfuCH3), 4.22 (lH, br, H-3), 4.72 (2H, br, H-1 and 4), 5.40 (1H, br, NH); 

8c (125 MHz, CDCh): 14.1 (OCH2CH3), 30.0 (C-5 and 6), 28.3 (OC~H3)3), 55.0 (C-

2), 56.2 (C-3), 61.1 (OCH2CH3), 78.3 and 79.6 (C-l and 4), 80.1 (OC(CH3) 3), 155.2 

(NC02), 172.0 (C02C2H5); mlz (El): 285 (M+), 57 (100%); Anal. calcd. for 

C 14H23N05: C, 58.93; H, 8.12; N, 4.91. Found: C, 58.23; H, 8.07; N, 4.74. 

(YC02Et 

Y'''INHBoc 
OAc 

202 

Ethyl trans-5-acetoxy-6-tert-butoxycarbonylaminocyclohex-1-ene-1-carboxylate 

202: 

To a solution of KHMDS (530 mg, 2.64 mmol) in THF (10 cm3
) at -50 °C was added 

a solution of adduct 201 (250 mg, 0.88 mmol) in THF (2.5 cm\ The solution was 
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then warmed up to room temperature (20 minutes) and quenched with a mixture of 

ethyl acetate and ethanol (50 cm3
, 19:1). The mixture was washed with sat. ~Cl (25 

cm3
), dried (MgS04) and concentrated under reduced pressure. The resulting residue 

was purified by flash chromatography eluting with petroleum ether/ethyl acetate 

mixture (3:2) to give cyclohexene 202 as a pale yellow gum (359 mg, 68% ). Vmax 

(KBr disk): 3361, 2969, 1713, 1652, 1515 cm- 1
; oH (500 MHz, CDCh): 1.28 (3H, t, J 

= 7.0 Hz, OCH2Cfu), 1.44 (9H, s, OC(CH3) 3), 1.71 (2H, m, H-4), 2.03 (3H, s, 

CH3CO), 2.25 (2H, m, H-3), 4.20 (2H, q, J = 7.0 Hz, OCfuCH3), 4.40 (1H, br, NH), 

4.49 (lH, br, H-6), 5.08 (lH, br, H-5), 7.19 (1H, dd, J = 4.2 and 2.3 Hz, H-2); oc (125 

MHz, CDCiJ): 14.1 (OCH2CH3), 20.7 (C-4), 21.1 (C-3), 21.3 (CH3CO), 28.3 

(OC~H3)3), 47.0 (C-6), 60.7 (OCH2CH3), 70.5 (C-5); 79.7 (OC(CH3) 3), 128.1 (C-1), 

143.0 (C-2), 154.5 (NC02), 165.9 (CH3CO), 170.0 (C02); m/z (Cl): 328 (MH+, 

100%). 

(!C02 Et 

Y''JNHBoc 
OAc 
203 

Ethyl anti-anti-3-acetoxy-2-tert-butoxycarbonylaminocyclohexanecarboxylate 

203: 

To solution of cyclohexene 202 (500 mg, 1.77 mmol) in ethanol (20 cm3
) was added 

10% Pd/C (100 mg) and the solution was stined under hydrogen for 48 h. The 

reaction mixture was then filtered and the filtrate was concentrated under reduced 

pressure to give ACHC derivative 203 as a colourless oil (498 mg, 99%); Vmax (liq. 

film): 3367 (br), 2938, 1727, 1688, 1535 cm- 1
; oH (500MHz, CDCh): 1.23 (3H, t, J = 

7.5 Hz, OCH2Cfu), 1.40 (9H, s, OC(CH3) 3), 1.52 and 1.77 (2H, m, HH-5), 1.54 and 

1.87 (2H, m, HH-6), 1.55 and 2.05 (2H, m, HH-4), 2.08 (3H, s, CH3CO), 2.36 (1H, dt, 

J = 12.3 and 3.9 Hz, H-1), 3.22 (lH, br, OH), 3.42 (lH, br, H-3), 3.49 (1H, br, H-2), 

4.12 (2H, q, J = 7.5 Hz, OCfuCH3), 4.81 (lH, br, NH); oc (125 MHz, CDCh): 14.4 

(OCH2Cfu), 23.1 (C-6), 28.5 (OC~H3)3), 28.8 (C-5), 33.9 (C-4), 48.6 (C-1), 58.3 (C-

2), 60.9 (OCH2CH3), 74.1 (C-3), 80.2 (OC(CH3) 3), 157.0 (NC02), 173.4 ~OzEt); m/z 

(Cl): 330 (MH+, 53%), 232 (100%). 
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205 

Ethyl anti-anti-3-acetoxy-2-N-benzoylaminocyclohexane-1-carboxylate 205: 

To a solution of 202 (200 mg, 0.61 mmol) in CH2Ch (10 cm3) was added TFA (0.1 

cm3, 1.31 mmol) and the mixture was stirred at 25 °C for 5 h. The solvent was then 

removed under pressure and the residue was suspended in CH2Cl2, treated with 

triethylamine (1.0 cm3
, 7.22 mmol), benzoic acid (lOO mg, 0.73 mmol) and PyBop 

(455 mg, 0.875 mmol) and the mixture was stirred for 16 h. The reaction mixture was 

then washed with 1 M HCl (20 cm3
) and the solvent was removed under pressure. The 

residue was recrystalized from CHC13 to give 205 as colourless crystals (171 mg, 84 

%); m.p. 176-178°C; Vmax (KBr disk): 3268, 2943, 1731, 1645, 1558 cm- 1
; DH (500 

MHz, CDC13): 1.11 (3H, t, J = 7.0 Hz, OCH2Cfu), 1.40 (lH, m, H-5), 1.63 (lH, m, H-

4), 1.70 (lH, m, H-6), 1.86 (lH, m, H-5), 1.93 (lH, m, H-6), 1.95 (3H, s, CH3CO), 

2.01 (lH, m, H-4), 2.48 (lH, dt, J = 11.5 and 3.0 Hz, H-1), 4.07 (2H, q, J = 7.0 Hz, 

OCfuCH3), 4.40 (1H, m, H-2), 4.87 (1H, dt, J = 11.5 and 4.5 Hz, H-3), 6.20 (lH, d, J 

= 9.5 Hz, NH), 7.38 (2H, t, J = 7.5 Hz, H-3' and 5'), 7.45 (lH, t, J = 7.5 Hz, H-4'), 

7.67 (2H, d, J = 7.5 Hz, H-2' and 6'); De (125 MHz, CDCl3): 14.3 (OCH2CH3), 21.3 

~H3CO), 23.1 (C-5), 28.3 (C-6), 31.0 (C-4), 49.6 (C-1), 54.5 (C-2), 61.3 

(OCH2CH3), 74.1 (C-3), 127.1 (C-2' and 6'), 128.8 (C-3'and 5'), 131.7 (C-4'), 134.8 

(C-1'), 167.0 (C02), 171.9 (CH3CO), 172.7 (PhCON); m/z (ES+): 356 (MNa+, 100%); 

Anal. calcd. For C18H25N05 : C, 64.85; H, 6.95; N, 4.20. Found: C, 64.88; H, 6.96; N, 

4.21. 

0 
A eO~ 
BocHN ~v 

207 

N-Benzyl-[anti-anti-3-acetoxy-2-tert-butoxycarbonylamino-cyclohexane-1-

carboxyl]amide 207: 

A solution of 206 (250 mg, 1.09 mmol), benzylamine (0.14 cm3, 1.31 mmol), and 

triethylamine in CH2Ch (10 cm3) was treated with HATU (501 mg, 1.31 mmol) and 

the reaction was stirred for 16 h. 1 M HCI (20 cm3) was added to the reaction mixture 
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and the layers were separated. The orgamc layer was then dried (MgS04), 

concentrated under reduced pressure and recrystalisation from ethyl acetate afforded 

207 as a white solid (360 mg, 87%); m.p. 182-184 QC; Ymax (K.Br disk): 3450, 2933, 

1734, 1689,1644 cm-1
; 8H (500 MHz, CD30D): 1.39 (9H, s, OC(CH3)3), 1.45 (2H, m, 

HH-4), 1.57 (2H, m, HH-5), 1.83 (2H, m, HH-6), 2.00 (3H, s, CH3CO), 2.45 (1H, dt, J 

= 11.6 and 3.2 Hz, H-1), 3.74 (1H, t, J = 11.6 Hz, H-2), 4.25 (1H, d, J = 14.8 Hz, 

NCH2Ph), 4.47 (1H, d, J = 14.8 Hz, NCH2Ph), 4.75 (1H, m, H-3), 7.28 (5H, m, 

aromatic protons); 8c (100 MHz, CD30D): 19.9 (CH3CO), 22.8 (C-5), 27.6 

(OC~H3)3), 29.1 (C-6), 30.8 (C-4), 42.9 (NCH2Ph), 49.4 (C-1), 54.6 (C-2), 74.9 (C-

3), 78.7 (OC(CH3) 3), 126.9, 127.3, 128.4, 138.7 (Ph carbons), 156.5 (NC02), 174.1 

(NCO), 174.4 (CH3CO); m/z (ES+): 413 (MNa+) 

4 o D AcO~ 4' 
BocHN 1 ~ 1' 

208 

N-CyclohexyD-[anti-anti-3-acetoxy-2-tert-butoxycarbonylamino­

cydohexanecarboxyl]amide 208: 

Employing the same procedure as that described for the synthesis of 207, 206 (250 

mg, 1.09 rnmol) afforded 208 as a white solid (292 mg, 72%); m.p. 260-262 QC; Ymax 

(KBr disk): 3311, 2933, 1738, 1693, 1645, 1547 cm-1
; 8H (400 MHz, DMSO): 1.12 

(lH, m, H-4'), 1.23 (4H, m, HH-3' and 5'), 1.35 (9H, s, OC(CH3)3), 1.41 (2H, m, HH-

5), 1.63 (4H, m, HH-2' and 6'), 1.84 (4H, m, HH-4 and 6), 2.01 (3H, s, CH3CO), 2.53 

(lH, dd, J = 9.0 and 10.2 Hz, H-1), 3.48 (2H, m, H-1' and H-2), 4.57 (lH, m, H-3); 8c 

(lOO MHz, DMSO): 21.4 (C-3'), 23.2 (C-6), 23.6 (C-4'), 24.8 (C-5'), 25.9 (C-5), 28.8 

(OC~H3)3), 31.2 (C-2'), 31.5 (C-6'), 32.8 (C-4), 38.9 (C-1), 46.4 (C-2), 48.3 (C-1 '), 

76.0 (C-3), 79.3 (OC(CH3)3), 152.3 (NCOz), 166.3 (NCO), 170.5 (CH3CO); m/z 

(ES+): 405 (MNa+). 
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(YC02Et 

~NHBoc 
OAc 

209 

Ethyl syn-5-acetoxy-6-tert-butoxycarbonylamino-1,3-cyclohexadiene-1-

carboxylate 209: 

To a solution of cyclohexadiene 159 (500 mg, 1.77 mmol) in CH2Clz anhydrous 

pyridine (0.5 cm3, 6.45 mmol) was added acetic anhydride (0.5 cm3, 5.30 mmol). The 

reaction mixture was then stirred at room temperature for 20 hours. The solvent was 

removed under reduced pressure and the crude product was purified by flash 

chromatography eluting with petroleum ether/ethyl acetate (4: 1) to give acetate 209 as 

a yellow solid (449 mg, 78%); m.p. 76-78°C; Vmax (KBr disk): 3330, 2984, 1710,1522 

cm- 1
; ()H (500 MHz, CDCh): 1.27 (3H, t, J = 7.0 Hz, OCH2Cfu), 1.41 (9H, s, 

OC(CH3)3), 2.09 (3H, s, CH3CO), 4.25 (2H, q, J = 7.0 Hz, OC.fuCH3), 4.56 (lH, d, J 

= 10.0 Hz, NH), 5.00 (lH, dd, J = 10.0 and 7.5 Hz, H-6), 5.66 (lH, d, J = 7.5 Hz, H-

5), 6.00 (lH, d, J = 9.5 Hz, H-4), 6.16 (lH, dd, J = 9.5 and 5.5 Hz, H-3), 7.12 (lH, d, J 

= 5.5 Hz, H-2), be (125 MHz, CDCh): 14.3 (OCH2CH3), 21.2 (CH3CO), 28.5 

(OC~H3)3 ), 43.7 (C-6), 61.2 (OCH2CH3), 71.6 (C-5), 79.7 (OC(CH3)3), 124.0 (C-3), 

128.6 (C-1), 134.0 (C-2), 134.3 (C-4), 155.2 (NC02), 165.8 (C02), 170.5 (CH3CO); 

m/z (Cl): 326 (MH+, 100% ). 

IIC02Et 

~NHBoc 
OAc 

210 

Ethyl syn-syn-3-acetoxy-2-tert-butoxycarbonylaminocyclohexanecarboxylate 210: 

To solution of cyclohexene 209 (250 mg, 0.77 mmol) in ethanol (20 cm3) was added 

10% Pd/C (100 mg) and the solution was stin·ed under hydrogen for 48 h. The 

reaction mixture was then filtered and the filtrate was concentrated under reduced 

pressure to give ACHC derivative 210 as a white solid (243 mg, 96%); m.p. 53-55 °C; 

Vmax (KBr disk): 3373,2982, 1744, 1715, 1524 cm- 1
; ()H (500 MHz, CDCh): 1.23 (3H, 

t, J = 7.0 Hz, OCHzCH3), 1.40 (9H, s, OC(CH3)3), 1.56 (2H, m HH-5), 1.72 (2H, m, 

HH-4), 1.81 (2H, m, HH-6), 1.99 (3H, s, CH3CO), 2.62 (lH, dd, J = 10.5 and 5.5 Hz, 

H-1), 4.16 (2H, q, J = 7.0 Hz, OC.fuCH3), 4.47 (1H, m, H-2), 4.83 (lH, m, H-3), 4.98 
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~--------------------------------------------------

(1H, br, NH); 8c (125 MHz, CDCl3): 14.3 (OCH2CH3), 21.2 (C-6), 21.3 ~H3CO), 

22.9 (C-4), 26.5 (C-5), 28.5 (OC~H3)3), 43.9 (C-1), 49.8 (C-2), 60.9 (OCH2CH3), 

72.4 (C-3), 79.6 (OC(CH3) 3), 155.6 (NC02), L 70.5 and 172.7 (carbonyls); m/z (ES+): 

352 (MNa+, 100%). 

0 
1~co2Et 

OYNH 

0 

215 

Ethyl exo-2-iodo-5-oxo-4,9-dioxa-6-azatricyclo[3,3,1,11
'
8]decane-exo-10-

carboxylate 215: 

To a solution of bicyclic adduct 2 (500 mg, 1.77 mmol) in acetonitrile (15 cm3
) was 

added iodine (1.35 g, 5.31 mmol). The reaction was stirred at room temperature and 

monitored by TLC (16 hours). The reaction was quenched with ethyl acetate (100 

cm3) and then washed with sat. NaS20 4 (100 cm3
) The resulting two layers were 

separated and the aqueous layer was extracted with ethyl acetate (50 cm3 x 2). The 

organic layers were combined, dried (MgS04) and concentrated under reduced 

pressure. The resulting residue was purified by flash chromatography eluting with 

Et20/petroleum ether (6:4) to give the tricyclic iodocarbamide 215 (298 mg, 48%) as 

a white solid, mp 164-166°C; Dmax (K.Br disk): 3448, 2979, 1733 cm-1; 8H (400 MHz, 

CDCi]): 1.29 (3H, t, J = 7.2 Hz, OCH2Cfu), 2.59 (1H, d, J = 2.4 Hz, H-10), 3.83 (lH, 

d, J = 1.2 Hz, H-2), 4.21 (2H, q, J = 7.2 Hz, OCfuCH3), 4.32 (lH, m, H-7), 4.54 (lH, 

t, J = 5.1, H-8), 4.61 (2H, m, H-1 and H-3), 5.98 (1H, d, J = 5.2Hz, NH); 8c (100 

MHz, CDCh): 14.1 (OCH2CH3), 53.1 (C-7), 54.3 (C-10), 61.9 (OCH2CH3), 67.2 (C-

8), 75.6 (C-2), 79.1 (C-2), 85.1, 85.5 (C-1 and C-3), 150.1 (C-5), 170.1 (C02C2H5); 

mlz (El): 353 (M+), 194 (100%); Anal. calcd for C 10H 12N051: C, 34.01; H, 3.43; N, 

3.97. Found: C, 34.19; H, 3.50; N, 3.81. 

Prevost Reaction: 

A mixture of AcOAg (620 mg, 3.6 mmol) and iodine (450 mg, 1,77mmol) in glacial 

acetic acid(lO cm3
) was stirred at room temperature until all the iodine was consumed. 

At this point, the bicyclic alkene 2 (500 mg, 1.77 mmol) in CH3COOH (5 cm3
) was 

123 



added. The reaction mixture was heated at 60°C for 30 minutes before a mixture of 

CH3COOH/H20 (50:1, 5 cm3
) was added. The reaction mixture was then heated at 

80°C for 5 hours. The reaction was quenched with sat. NaHC03 (15 cm3
) and the 

yellow precipitate of Agl was filtered off. The filtrate was extracted with AcOEt (10 

cm3 x 3), dried (MgS04) and concentrated under reduced pressure. The resulting 

residue was purified by flash chromatography eluting with (CH3CH2)20/Petroleum 

ether (6:4) to give tricyclic carbamide 215 as a white solid (470 mg, 76%). 

0 p::rco,Et 
OYNH 

0 

216 

Ethyl 5-oxo-4,9-dioxa-6-azatricyclo3,3,1,11
'
8]decane-exo-10-carboxylate 216: 

To a solution of the tticyclic iodocarbamide 215 (500 mg, 1.42 mmol) in benzene was 

added (Me3Si)3SiH (525 mg, 2.12 mmol) and ATBN (20 mg, 0.014mmol) at 60°C. 

The reaction mixture was stirred and monitored by TLC (48 hours) and then quenched 

with water (50 cm\ The solution was then extracted with ethyl acetate (50 cm3 x 3). 

The organic layers were combined, dried (MgS04) and concentrated under reduced 

pressure. The resulting residue was purified by flash chromatography eluting with 

ethyl acetate/petroleum ether (7: 1) to give tricyclic carbamide 216 (150 mg, 46%) as a 

white solid; mp 156-158°C; 8H (500 MHz, CDCb): 1.29 (3H, t, J = 7.5 Hz, 

OCH2CH3), 1.74 (lH, dd, J = 14.1 and 3.4 Hz, H-2), 2.53 (1H, m, H-2), 2.68 (1H, d, J 

= 2.5 Hz, H-10), 4.21 (2H, q, J = 7.5 Hz, OCfuCH3), 4.38 (lH, m, H-7), 4.54 (lH, t, J 

= 4.5 Hz, H-8), 4.87 (2H, m, H-1 and 3), 6.30 (lH, br, NH); 8c (125 MHz, CDCh): 

14.1 (OCH2CH3), 37.6 (C-2), 53.5 (C-7), 57.6 (C-10), 61.7 (OCH2CH3), 68.0 (C-8), 

75.7 and 79.2 (C-1 and 3), 150.5 (NC02), 170.6 (C02C2H5); mlz (El): 227 (M+), 115 

(100%); Anal. calcd. For C 10H 13N05: C, 52.86; H, 5.77; N, 6.16. Found: C, 52.66; H, 

5.84; N, 6.05. 
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IICO,Et 

Aco~''Y''/NHBoc 
OAc 

217 

Ethyl anti-anti-anti-3,4-diacetoxy-2-tert-butyicarbonylaminocyclohexane-1-

carboxylate 217: 

To a solution of epoxide 186 (100 mg, 0.29 mmol) in ethanol (10 cm3) was added 

10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 48 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure. 

The residue was dissolved in pyridine (2.5 cm3) and treated with Ac20 (2.5 cm\ 

After stirring for 24 h, 1 M HCl (10 cm3) was added and the layers were separated. 

The organic layer was dried (MgS04), concentrated under pressure and subjected to 

column chromatography eluting with petroleum ether/ethyl acetate (7:3) to give 217 

as a colourless gum (98 mg, 99%); Vmax (KBr disk): 3319, 2979, 1732, 1692, 1543 cm· 
1
; oH (500 MHz, CDCl3): 1.23 (3H, t, J = 7.0 Hz, OCHzCfu), 1.37 (9H, s, OC(CH3)3), 

1.70 ( LH, m, H-6), 1.94 (lH, m, H-6), 2.00 (3H, s, CH3CO), 2.02 (3H, s, CH3CO), 

2.14 (2H, m, HH-5), 2.47 (1H, dt, J = 9.0 and 3.0 Hz, H-1), 3.88 (lH, m, H-2), 4.13 

(2H, q, J = 7.0 Hz, OCfuCH3), 4.88 (lH, d, J = 9.5 Hz, H-3), 4.98 (1H, m, H-4); oc 
(125 MHz, CDCb): 14.3 (OCH2CH3), 20.9 and 21.2 (2 x CH3CO), 24.9 (C-6), 28.4 

(OC(CH3)3), 28.8 (C-5), 48.5 (C-1), 54.1 (C-2), 61.3 (OCH2CH3), 72.6 (C-3), 75.0 (C-

4), 79.9 (OC(CH3)3), 155.0 (NC02), 170.3, 171.0, 172.2 (C02 and 2 x CH3CO); m/z 

(Cl): 405 (MNH/, 71 %), 388 (MH+, 36%), 349 (100%). 

~~C02Et 

Aco~''INHBoc 
OAc 
218 

Ethy I anti-anti-syn -3,4-diacetoxy-2-tert-butylcarbony laminocyclohexane-1-

carboxylate 218: 

To a solution of epoxide 184 (100 mg, 0.33 mmol) in ethanol (10 cm3) was added 

Pd/C (20 mg) under a hydrogen atmosphere and the mixture was stirred for 48 h. The 

solvent was then removed under reduced pressure and the residue was dissolved in 

pyridine (2.5 cm3) and treated with Ac20 (2.5 cm\ After stirring for 24 h, 2 M HCl 

(10 cm3) was added to the reaction mixture and the layers were separated. The organic 
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layer was dried (MgS04), concentrated under reduced pressure and subjected to 

column chromatography eluting with petroleum ether/ethyl acetate (7:3) to give 218 

as a white gum (107 mg, 84%); Vmax (KBr disk): 3385, 2975, 1737, 1525 cm-1
; bH (500 

MHz, CDCh): 1.25 (3H, t, J = 7.2 Hz, OCH2Cfu), 1.39 (9H, s, OC(CH3)3), 1.64 (lH, 

m, H-5), 1.81 (lH, m, H-6), 1.95 (2H, m, H-5 and 6), 2.01 (3H, s, CH3CO), 2.13 (3H, 

s, CH3CO), 2.51 (lH, t, J = 11.5 Hz, H-1), 4.16 (3H, m, OCfuCH3 and H-2), 4.45 

(lH, d, J = 9.5 Hz, NH), 4.86 (lH, dd, J = 11.5 and 2.5 Hz, H-3), 5.32 (1H, br, H-4); 

be (125 MHz, CDCh) 14.4 (OCHzCH3), 21.0 (CH3CO), 21.5 (CH3CO), 23.1 (C-6), 

27.8 (C-5), 28.5 (OC(CH3)3), 48.8 (C-1), 50.7 (C-2), 61.2 (OCH2CH3), 69.4 (C-4), 

73.3 (C-3), 79.7 (OC(CH3)3), 155.1 (NC02), 170.6, 171.0, 172.8 (carbonyls); mlz 

(Cl): 388 (MH+, 100%). 

"C02 Et 

HO~NHBoc 
OAc 

226 

Ethyl syn -syn-syn -3-acetoxy-2-tert-butylcarbonylamino-4-hyd roxycyclohexane-1-

carboxylate 226: 

To a solution of epoxide 196 (R = Ac) (100 mg, 0.29 mmol) in ethanol (10 cm3) was 

added 10% Pd/C (20 mg) and the suspension was stirred under hydrogen for 48 h. The 

suspension was then filtered and the filtrate was concentrated under reduced pressure 

to give 226 as a colourless gum (97 mg, 97%) Vmax (KBr disk): 3438, 3374, 2975, 

1729, 1699, 1513 cm-1
; bH (500 MHz, CDC13): 1.23 (3H, t, J = 7.0 Hz, OCH2Cfu), 

1.40 (9H, s, OC(CH3)3), 1.57 (lH, m, H-5), 1.63 (lH, m, H-6), 2.02 (2H, m, H-5 and 

6), 2.07 (3H, s, CH3CO), 2.60 (lH, m, J = 11.5 and 3.5 Hz, H-1), 4.07 (2H, m, H-4 

and OH), 4.13 (2H, q, J = 7.0 Hz, OCfuCH3), 4.52 (lH, br, H-2), 4.85 (lH, m, H-3), 

5.72 (lH, br, NH); be (125 MHz, CDCh): 14.3 (OCH2CH3), 17.4 (C-6), 21.2 

~H3CO), 28.5 (OC~H3)3), 28.9 (C-5), 44.4 (C-1), 50.0 (C-2), 61.0 (OCH2CH3), 

68.9 (C-4), 72.6 (C-3), 79.4 (OC(CH3)3), 155.9 (NC02), 170.2 (C02), 172.3 

(CH3CO); m/z (ES+): 368 (MNa+). 

General procedure for PdCh catalysed transfer hydrogenation 

To a solution of substrate (1.0 equivalent) was added an organic acid (3.0 equivalent), 

PdCh (0.1 equivalent) and zinc (3.0 equivalent). The reaction mixture was stirred for 
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16 h and then filtered. The filtrate was concentrated under reduced pressure to give 

the product. 

3-phenylpropanoic acid 238: 

Using the general procedure for PdCh catalysed transfer hydrogenation, cinnamic 

acid (250 mg, 1.69 mmol) was reduced in the presence of acetic acid (0.29 cm3
, 5.07 

mmol) to give 238 as a white solid (213 mg, 84%); Vmax (KBr): 3029-2290 (br), 1697, 

1415 cm-1
; 8H (400 MHz, CDCI3): 2.61 (2H, t, J = 8.4, HH-3), 2.89 (2H, t, J = 8.4 Hz, 

H-2), 7.15 (5H, m, PhH); 8c (100 MHz, CDCh): 30.8 (C-3), 35.9 (C-2), 126 (C-4), 

128.5 (C-2 and 6), 128.8 (C-3 and 5), 140.4 (C-1), 179.6 (C02H); m/z (ES-): 150 (M-) 

HO 

2-rnethoxy-4-propylphenol: 

OMe 
240 

Using the general procedure for PdCh catalysed transfer hydrogenation, eugenol (430 

mg, 2.82 rnmol) was reduced in the presence of acetic acid (0.48 cm3
, 8.46 mmol) to 

give 240 as a yellow oil (459 mg, 98%); Vmax (KBr disk): 3450, 2959, 1607, 1516 cm-

1; 8H (400 MHz, CDCh): 0.95 (3H, t, J = 7.6 Hz, CfuCH2CH2), 1.63 (3H, m, 

CH3CfuCH2), 2.53 (2H, t, J = 7.6 Hz, CH3CH2Cfu), 3.87 (3H, s, OCH3), 5.55 (lH, s, 

OH), 6.70 (2H, m, H-3 and H-6), 6.85 (1H, d, J = 7.2 Hz, H-5); 8c (lOO MHz, 

CDCh): 14.1 (CH3CH2CH2), 25.1 (CH3CH2CH2), 38.0 (CH3CH2CH2), 56.1 (OCH3), 

111.3 (C-3), 114.3 (C-5), 121.2 (C-6), 134.9 (C-4), 143.7 (C-2), 146.5 (C-1); m/z 

(El+): 166 (M+, 43 %), 137 (100 %). 
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X-ray structure of oxanorbomene adduct 2 

130 

......-
0 



Table I. Crystal data and structure refinement for 03RMDO 19. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 27.49° 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on p2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

131 

03rrnd0 I 9 

Ct4 H21 NOs 

283.32 

120(2) K 

0.710731\ 

Monoclinic 

P2( I )In 

a= 8.5458(2) A 
b = 11.2435(2) A. 
c = 15.3706(3) A 
1468.51(5) f\3 

4 

1.281 Mglm3 

0.097 mm· 1 

608 

0.32 x 0.24 x 0.18 mm3 

2.25 to 27 .49a. 

~= 96.1040(10) 0
• 

y = 90°. 

-ll<=h<=lO, -14<=k<=14, -19<=1<=19 

14755 

3367 [R(int) = 0.02721 

99.9% 

None 

Full-matrix least-squares on F2 

3367101265 

1.056 

RI = 0.0402, wR2 = 0.1050 

RI= 0.0439, wR2 = 0.1072 

0.410 and -0.284 e.t\-3 



Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for 03RMD019. U(eq) is defined as one third of the trace of the onhogonalized Uii tensor. 

X y z U(eq) 

N(1) -803(1) 3909(1) 2016(1) 21(1) 

0(1) -442(1) 3119(1) 4483( I) 37( I) 

C(8) -2167(2) 4290(2) 5543(1) 40(1) 

C(13) 1968(2) 6500(1) 539(1) 31 (I) 

0(2) -2695(1) 4077( 1) 4616(1) 33(1) 

C(12) 2674(2) 4385( I) 267( I) 31( I) 

0(4) 805(1) 4990(1) 1296( I) 21(1) 

C(5) -3415(2) 2088( I) 1652(1) 25(1) 

0(5) -2399(1) 1275( I) 2969(1) 20(1) 

C(7) -1699(1) 3481(1) 4168(1) 22(1) 

0(3) 1638(1) 3190(1) 1863( I) 26(1) 

C(ll) 2308(1) 5287( I) 952(1) 21 (I) 

C(l4) 3611(2) 5396( I) 1700(1) 27( I) 

C(2) -2389(1) 3318(1) 3226(1) 19(1) 

CO) -3507(1) 2206(1) 3117(1) 20(1) 

C(6) -4431(1) 2323(1) 2224( I) 24( I) 

C(lO) 650(1) 3964(1) 1736( I) 19(1) 

C(4) -1871(1) 1806(1) 2191(1) 21( l) 

C(3) -1147(1) 2973( I) 2613(1) 18( l) 

C(9) -3176(3) 5220(2) 5854( I) 61( I) 
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Table 3. Bond lengths [A] and angles [0
] for 03RMD0!9. 

N(l)-C(10) 1.3572(14) C(l)-0(5)-C(4) 95.61(8) 

N(I)-C(3) 1.4479(14) 0(1 )-C(?)-0(2) 123.73(1 1) 

0(1)-C(7) 1.2013(15) 0( I )-C(7)-C(2) 125.81(11) 

C(8)-C(9) 1.467(2) 0(2)-C(7)-C(2) 1 10.46(10) 

C(8)-0(2) 1.4677(16) 0(4)-C(l 1)-C(l2) I 10.39(9) 

C(l3)-C( 11) 1.5197(17) 0(4)-C(l1)-C(l4) 110.03(9) 

0(2)-C(7) 1.3312(15) C(12)-C(l 1)-C(14) 1 12.98(1 I) 

C(I2)-C(11) l.5 I 77(17) 0( 4 )-COl)-C(l3) 102.55(9) 

0(4)-C(10) 1.3505(13) C(l2)-C(l I )-C(l3) 110.77( 11) 

0(4)-C(l1) 1.4788(12) C(l4)-C(ll)-C(l3) 109.62(11) 

C(5)-C(6) 1.3270( 18) C(7)-C(2)-C(3) 113.00(9) 

C(5)-C(4) 1.5161(17) C(7)-C(2)-C( I) 111.61(9) 

0(5)-C(l) 1.4454( 13) C(3)-C(2)-C( 1) 100.60(9) 

0(5)-C(4) 1.4503(13) 0(5)-C(l)-C(6) 102.00(9) 

C(7)-C(2) 1.5154(16) 0(5)-C( I )-C(2) 101.10(8) 

0(3)-C(IO) 1.2143(14) C(6)-C(l )-C(2) 106.26(9) 

C(l1)-C(l4) 1.5179(17) C(5)-C(6)-C( 1) 105.59(10) 

C(2)-C(3) 1.5427(15) 0(3)-C( 10)-0(4) 126.10(10) 

C(2)-C(1) 1.5722(15) 0(3)-C(lO)-N(l) 124.11(10) 

C(l)-C(6) 1.5 138( 16) 0(4)-C(l 0)-N(l) 109.79(9) 

C(4)-C(3) 1.5614(16) 0(5)-C(4)-C(5) 101.99(9) 

0(5)-C(4)-C(3) 98.54(8) 

CO 0)-N( I )-C(3) 119.17(10) C(5)-C(4)-C(3) 109.57(9) 

C(9)-C(8)-0(2) 107.58(14) N(l )-C(3)-C(2) 113.79(9) 

C(7)-0(2)-C(8) 115.90(11) N(l)-C(3)-C(4) !16.49(9) 

C(10)-0(4)-C(Il) 120.49(9) C(2)-C(3)-C(4) 101.36(8) 

C( G)-C(5)-C( 4) 105.75(10) 

Symmetry transformations used to generate equivalent atoms: 
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Table 4. Anisotropic displacemem parameters (A2x 1Q3) for 03RMD019. The anisotropic 

displacement factor exponent takes the form: -2:rr2[ h2 a* 2U11 + ... + 2 h k a* b* U12 J 

U" U22 U33 U23 uu u12 

N(l) 18(1) 18(1) 27(1) 6(1) 6(1) 2(1) 

0(1) 27(1) 54(1) 27(1) -3(1) -3(1) 7(1) 

C(8) 53(1) 42(1) 24(1) -7(1) 2(1) 6(1) 

C(l3) 26(1) 31( I) 38(1) 11(1) 9(1) -4( I) 

0(2) 37(1) 37(1) 23(1) -5(1) 4(1) 12(1) 

C(l2) 30(1) 36(1) 29(1) -9(1) 12(1) -8(1) 

0(4) 17(1) 20(1) 26(1) 5(1) 7(1) -1 (I) 

C(5) 27(1) 24(1) 22(1) 2(1) -2(1) -4(1) 

0(5) 21(1) 17(1) 24(1) 4(1) 5(1) 0(1) 

C(7) 24( I) 19( I) 24( I) 0(1) 5(1) -2(1) 

0(3) 21{1) 23(1) 37(1) 5(1) 9(1) 4(1) 

C(ll) 17(1) 24(1) 24(1) 0(1) 7(1) -5( I) 

C(l4) 22(1) 28(1) 31 (I) -2(1) I (I) -6( I) 

C(2) 18(1) 17(1) 21( I) 2(1) 3(1) I ( 1) 

C(l) 16( I) 20( I) 24(1) 3(1) 4(1) 0(1) 

C(6) 20(1) 23( 1) 29(1) 3(1) -2(1) -2(1) 

C(IO) 19( I) 18(1) 20( I) -1 (I) 3(1) -2(1) 

C(4) 23(1) 19( I) 22(1) 2(1) 6(1) 0( I) 

CO) 17(1) 17(1) 21(1) 3( I) 4( I) I (I) 

C(9) 98(2) 53(1) 31( I) -10(1) 5(1) 27(1) 
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Table 5. Hydrogen coordinates (X 104) and isotropic displacement parameters cA2x 10 3) 

for 03RMD019. 

X 

H(8B) -990(30) 

H(8A) -2280(20) 

I-I(13C) 1090(20) 

H(l3B) 1710(20) 

H(l3A) 2930(20) 

H(12C) 1770(20) 

H(l213) 2920(20) 

H(12A) 3580(20) 

H(5) -3562(19) 

H(14C) 3850(20) 

H(14B) 4520(20) 

H(14A) 3326( 19) 

H(2) -2983( 17) 

H(l) -4070(16) 

H(6) -55! 0(20) 

H(4) -1114(18) 

H(3) -177(16) 

H(9C) -2800(20) 

H(9B) -4220(40) 

H(9A) -3260(30) 

H(1N) -1370(19) 

Table 6. Torsion angles [0
] for 03RNID019. 

C(9)-C(8)-0(2)-C(7) 

C(8)-0(2)-C(7)-0( 1) 

C(8)-0(2)-C(7)-C(2) 

y 

4550(20) 

3548(19) 

6466(16) 

7091(16) 

6782(15) 

4279(16) 

3616(18) 

4660(16) 

2124(15) 

4651(17) 

5679(15) 

5997( 15) 

4028(13) 

2039(12) 

2581(14) 

1290(14) 

2761(12) 

5420(19) 

4910(30) 

5910(30) 

4543(15) 
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z 

5597(15) 

5832(13) 

82(12) 

995(12) 

299(11) 

-179(12) 

526(12) 

-21(11) 

1037(11) 

1990( 11) 

1467(10) 

2143(11) 

3036(9) 

3610(9) 

2117(10) 

1945(10) 

2970(9) 

6460(14) 

5810(20) 

5470(20) 

1987( 10) 

164.31(16) 

0.45( 19) 

179.74(11) 

U(eq) 

80(7) 

54(5) 

43(5) 

43(5) 

38(4) 

45(5) 

46(5) 

40(4) 

36(4) 

42(5) 

34(4) 

33(4) 

21(3) 

18(3) 

31(4) 

26(4) 

16(3) 

59(6) 

101(10) 

100(9) 

29(4) 



C( 1 0)-0( 4 )-C( I 1 )-C( 12) 

C( 10)-0(4)-C( 11)-C( 14) 

C(10)-0(4)-C(l1)-C(13) 

0( 1)-C(7)-C(2)-C(3) 

0(2)-C(7)-C(2)-C(3) 

0( 1 )-C(7)-C(2)-C( 1) 

0(2)-C(7)-C(2)-C( 1) 

C(4)-0(5)-C( 1 )-C(6) 

C(4)-0(5)-C( 1)-C(2) 

C(7)-C(2)-C( 1 )-0(5) 

C(3)-C(2)-C( 1 )-0(5) 

C(7)-C(2)-C( 1 )-C(6) 

C(3 )-C(2)-C( 1 )-C( 6) 

C(4)-C(5)-C(6)-C( 1) 

0(5)-C( I )-C( 6)-C(5) 

C(2)-C( 1 )-C(6)-C(5) 

C( 11 )-0( 4 )-C( 1 0)-0(3) 

C(l1 )-0( 4 )-C(l 0)-N ( 1) 

C(3)-N( 1 )-C( 1 0)-0(3) 

C(3 )-N(l )-C(l 0)-0( 4) 

C( 1 )-0(5)-C( 4 )-C(5) 

C( 1 )-0(5)-C( 4 )-C(3) 

C(6)-C(5)-C( 4 )-0(5) 

C( 6)-C(5)-C( 4 )-C(3) 

C(lO)-N(l )-C(3)-C(2) 

C(lO)-N(l )-C(3)-C(4) 

C(7)-C(2)-C(3)-N(l) 

C(1)-C(2)-C(3)-N(l) 

C(7)-C(2)-C(3)-C( 4) 

C(l )-C(2)-C(3)-C( 4) 

0(5)-C( 4)-C(3)-N(l) 

C(5)-C( 4 )-C(3)-N( 1) 

0(5)-C( 4 )-C(3)-C(2) 

C(5)-C( 4 )-C(3)-C(2) 

Symmetry transformations used to generate equivalent atoms: 
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63.40(13) 

-61.97(13) 

-178.55(10) 

-17.54(17) 

163.18(10) 

94.99(14) 

-84.28(11) 

50.10(9) 

-59.38(9) 

-88.23(10) 

31.90(10) 

165.64(9) 

-74.24(10) 

0.89(13) 

-33.03(12) 

72.46(12) 

-3.00( 17) 

177.65(9) 

9.81(17) 

-170.82(9) 

-49.49( 10) 

62.74(9) 

3 1.36( 12) 

-72.33(12) 

150.80(10) 

-91.80(13) 

-109.15(11) 

131.74(10) 

125.00(10) 

5.88(10) 

-165.77(9) 

-59.73(12) 

-41.72(10) 

64.32(11) 



6.2 APPENDIX 2 

CHIRAL HPLC CHROMATOGRAM 
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Current Chromatogram(s) __ ---·---

1 
DAD1 C, Sig=215,4 Ref=550,100 (HPTEST'iiPTEST13.D) 
DAD1 C, Sig=215.4 Ref=550,100 (HPTEST'iiPTEST15 D) 

Norm 

400 ' 
Prep Method 

Heptane : EtOH 

350 
95 : 5 

f=20ml/min 

300 · Column 2cm x 25cm Chiralpak AD 

No.ADOOCJ-JA001 

250 ~ 

200 -
R4012-70-1 

484mg 

150 -

100 

50-

0 1 

-----~2 4 6 

Chiral HPLC chromatogram 

138 

R4012-7 

777mg 
I 

! I 

·V 

I 

\ 

8 j _O _ 12 14 



6.3 APPENDIX 3 

XaRAY DATA FOR CHLOROHYDRIN 189 
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• 
X-ray structure of chlorohydrin 189 
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Table l. Crystal data and structure refinement for 02srv008. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

8 range for data collection 

Index ranges 

Reflections collected 

T ndcpendent reflections 

Reflections with 1>2a(I) 

Completeness to 8 = 29.00° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Largest final shift/e.s.d. ratio 

Goodness-of-fit on r 
Final R indices [l>2a(I)l 

R indices (all data) 

Largest diff. peak and hole 
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fiei.-l:fa(;(str 101 

C16 H24 Cl N 07 

377.81 

120(2) K 

o.7to73 A 

Monoclinic 

P211c (No. 14) 

a= 9.927(1) A 

h=S.811(1)A 

c = 22.579(3) A 

1963.6(4) A3 

4 

1.278 g/cm3 

0.229 mm· 1 

800 

0.38 x 0.11 x 0.09 mm3 

1.81 to 29.000. 

B= 96.14(1) 0 

y= 90° 

-13S hS 1L-12S kS 12.-29-<: lS 30 

17291 

5173 [R(int) = 0.0408] 

3731 

99.3% 

Integration 

0.9843 and 0.9380 

Full-matrix least-squares on F2 

5173 I Of 322 

0.001 

1.024 

R1 = 0.0372. wR2 = 0.0784 

R1 = 0.0642, wR2 = 0.0895 

0.317 and -0.232 e.A-3 



Table 2. Atomic coordinates ( xl04) and equivalent isotropic displacement parameters (A2 x104) 

for 02srv008. U(cq) is defined as one third of the trace of the orthogonalized Uij tensor. 

X y z U(eq) 

Cl 2589.0(4) 4612.1(5) 3163.1(2) 280(1) 

0(1) 4429(1) 6939(1) 5178.2(4) 190(2) 

0(2) 3477(1) 9237(1) 5280.8(6) 412(3) 

0(3) 4113(1) 7215(1) 3940.9(5) 224(2) 

0(4) -129(1) 2345(1) 4815.3(5) 266(2) 

0(5) 1604(1) 2345(1) 5543.7(5) 239(2) 

0(6) 3678( 1) 4358(1) 6391.8(5) 255(2) 

0(7) 1918(1) 5778(1) 6661.0(4) 248(2) 

N 2169(1) 5553( l) 5708.3(5) 187(2) 

C(l) 1689(1) 4122(2) 4776.4(6) 179(3) 

C(2) 1453(2) 4338(2) 4188.9(6) 200(3) 

C(3) 2223(2) 5463(2) 3857.0(6) 202(3) 

C(4) 3545(2) 5956(2) 4212.4(6) 176(3) 

C(5) 3215(1) 6390(2) 4836.1(6) 170(3) 

C(6) 2724(2) 5025(2) 5173.9(6) 169(3) 

C(7) 4410(2) 8387(2) 5392.0(7) 245(3) 

C(8) 5689(2) 8714(2) 5784.6(10) 389(4) 

C(9) 942(2) 2859(2) 5041.2(7) 200(3) 

C(IO) 1008(2) 1025(2) 5813.9(8) 313(4) 

C(l1) 1883(3) 685(2) 6384.5(9) 454(5) 

C(l2) 2684(2) 5157(2) 6264.2(6) 194(3) 

C(13) 2393(2) 5771(2) 7304.1(6) 269(3) 

C(l4) 2467(3) 4157(2) 7541.9(9) 415(5) 

C(15) 3728(2) 6618(3) 7407.7(9) 440(5) 

C(16) 1264(2) 6635(2) 7562.8(8) 351(4) 
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Table 3. Selected bond lengths [A] and angles [0
] for 02srv008. 

Cl-C(3) 1.8084(15) C(1)-C(2) 1.336(2) 

0( I)-C(7) 1.3649(1 7) C(I)-C(9) 1.497(2) 

0( I)-C(5) 1.4439(17) C(l)-C(6) 1.515(2) 

0(2)-C(7) 1.1967(19) C(2)-C(3) 1.500(2) 

0(3)-C(4) 1.4139(17) C(3)-C(4) 1.527(2) 

0(4}-C(9) 1.2157(18) C(4)-C(5) 1.5281(19) 

0(5)-C(9) 1.3284(18) C(5)-C(6) 1.5315( 19) 

0(5)-C(lO) 1.4672(18) C(7)-C(8) 1.497(2) 

0(6)-C( 12) 1.2212(18) C(10)-C(11) 1.505(3) 

0(7)-C(l2) 1.3515(17) C(13)-C(I5) 1.517(3) 

0(7)-C(13) 1.4780(18) C(I3)-C(14) 1.519(3) 

N-C(12) 1.3496(18) C(I3)-C(I6) 1.523(2) 

N-C(6) 1.4552(18) 

C(7)-0( 1)-C(5) 1 17.39(11) N-C(6)-C(5) 109.31(11) 

C(9)-0(5)-C( I 0) 1 16.15(12) C( 1 )-C( 6)-C(5) 110.43(1 I) 

C( 12)-0(7)-C( 13) 120.42(12) 0(2)-C(7 )-0( 1) 123.41( 14) 

C(I2)-N-C(6) 123.32(12) 0(2)-C(7)-C(8) 126.30(15) 

C(2)-C( I )-C(9) 117.43(13) 0( I )-C(7)-C(8) 110.28(14) 

C(2)-C( I)-C(6) 123.30(13) 0(4)-C(9)-0(5) 124.19(13) 

C(9)-C( l)-C(6) 119.17(12) 0( 4 )-C(9)-C( I) 123.88(14) 

C( I )-C(2)-C(3) 123.08(13) 0(5)-C(9)-C( I) 111.91(12) 

C(2)-C(3)-C(4) 112.37(12) 0(5)-C( 1 0)-C( 11) 107.00(15) 

C(2)-C(3)-Cl 108.63(10) 0(6)-C( 12)-N 125.77(14) 

C( 4 )-C(3 )-Cl 109.40(10) 0(6)-C( 12)-0(7) 125.10(13) 

0(3)-C( 4 )-C(3) 110.87(12) N-C( 12)-0(7) 109. 13( 12) 

0(3)-C( 4 )-C(5) 109.76(11) 0(7)-C( 13 )-C( 15) 109.33(14) 

C(3)-C(4)-C(5) 107.37(12) 0(7)-C(13)-C(14) 110.47(13) 

0(1 )-C(5)-C(4) 109.14(11) C(15)-C( 13)-C(l4) 113.43(17) 

0( I)-C(5)-C(6) 106.77(11) 0(7)-C(l3)-C(I6) 101.77(13) 

C(4)-C(5)-C(6) 111.93(11) C(l5)-C( 13)-C( 16) 111.23(15) 

N-C(6)-C(l) 111.49(12} C(14)-C(l3)-C(l6) 109.99(15) 
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Table 4. Anisotropic displacement parameters (f\2 x104) for 02srv008. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] 

U11 U22 u33 U2J Un ul2 

Cl 349(2) 336(2) 156(2) -41(2) 29( I) -23(2) 

0(1) 207(5) 164(5) 192(5) -11(4) -13(4) -7(4) 

0(2) 343(7) 263(6) 605(9) -158(6) -63(6) 65(5) 

0(3) 253(6) 204(5) 225(5) 37(4) 76(5) 0(5) 

0(4) 209(5) 210(5) 370(6) 20(5) -12(5) -21(4) 

0(5) 293(6) 205(5) 216(5) 41(4) 9(4) -44(4) 

0(6) 247(6) 319(6) 194(5) -4(4) -2(4) 61(5) 

0(7) 270(6) 329(6) 148(5) -16( 4) 36(4) 54(5) 

N 195(6) 216(6) 151 (6) 3(5) 25(5) 44(5) 

C(l) 164(7) 166(6) 207(7) -8(5) 23(5) 18(5) 

C(2) 175(7) 223(7) 196(7) -22(6) -8(6) -1(6) 

C(3) 231(7) 230(7) 144(6) 3(6) 13(5) 33(6) 

C(4) 199(7) 166(6) 163(7) 17(5) 15(5) 8(6) 

C(5) 171(7) 175(6) 160(6) -9(5) 1(5) 4(6) 

C(6) 180(7) 190(7) 139(6) 0(5) 20(5) 17(5) 

C(7) 289(8) 193(7) 249(8) -38(6) 14(6) -10(6) 

C(8) 422(11) 267(9) 439(11) -99(8) -133(9) -39(8) 

C(9) 203(7) 164(7) 239(7) -8(5) 51(6) 27(6) 

C(10) 387(10) 206(8) 356(9) 72(7) 79(8) -31 (7) 

C(11) 737(17) 321(10) 298(10) 100(8) 25(10) -57(10) 

C(12) 201(7) 210(7) 172(7) -22(5) 27(6) -26(6) 

C(l3) 337(9) 333(9) 135(7) -45(6) 15(6) 1(7) 

C(14) 616(14) 423( 11) 216(9) 55(8) 92(9) 104(10) 

C(l5) 370(11) 624(14) 327(10) -209(10) 38(8) -76(10) 

C(I6) 424(11) 40 I (I 0) 244(9) -89(8) 109(8) -6(9) 
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Table 5. Hydrogen coordinates ( xl03) and isotropic displacement parameters (A2 x 103) for 02srv008. 

X y z U(iso) 

H(03) 481 (2) 690(2) 383.2(9) 38(6) 

H(lN) 151(2) 617(2) 567.1(8) 32(5) 

H(2) 83(2) 376(2) 395.5(7) 24(4) 

H(3) 167(2) 634(2) 375.1(7) 17(4) 

H(4) 416(2) 510(2) 424.3(6) 11(4) 

H(5) 254(2) 718(2) 481.4(6) 11(4) 

H(6) 347(2) 438(2) 529.6(7) 14(4) 

H(81) 573(2) 976(2) 589.2(9) 43(6) 

H(82) 645(3) 852(3) 557.2(11) 65(8) 

H(83) 575(3) 804(3) 614.6(12) 80(8) 

H(l01) 99(2) 20(2) 552.3(8) 31(5) 

H(l02) 7(2) 132(2) '585.6(8) 36(5) 

H(lll) 286(3) 48(3) 631.3(12) 81(9) 

H(ll2) 149(2) -19(3) 655.0(10) 52(6) 

H(113) 185(2) 149(3) 666.0( 11) 65(7) 

H(141) 155(2) 364(3) 741.9(10) 56(7) 

H(142) 258(2) 417(3) 796.2( 12) 69(7) 

H(143) 323(2) 361 (3) 739.9(10) 53(6) 

H(151) 444(2) 604(2) 726.8(9) 45(6) 

H(l52) 398(2) 680(3) 782.5( 11) 62(7) 

H(153) 364(2) 766(3) 721.1( 11) 72(8) 

H(l61) 121 (2) 769(3) 741.6(9) 46(6) 

H(162) 148(2) 671(2) 800.4(9) 43(5) 

H(l63) 41(2) 611(3) 748.2(10) 52(6) 
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Table 6. Torsion angles [0
] for 02sn•008. 

C(9)-C( 1)-C(2)-C(3) -174.18(13) 0(1)-C{5)-C(6)-N 72.10(14) 

C(6)-C( I )-C(2)-C(3) 2.2(2) C(4)-C(5)-C(6)-N -168.54(11) 

C(I)-C(2)-C(3)-C(4) 17.6(2) 0( 1)-C(5)-C(6)-C( I) -164.90(11) 

C( I )-C(2)-C(3)-CI 138.74(13) C(4)-C(5)-C(6)-C( I) -45.54( 16) 

C(2)-C(3)-C(4 )-0(3) -168.84(12) C(5)-0( I )-C(7)-0(2) -4.5(2) 

CI-C(3)-C(4)-0(3) 70.41(13) C(5)-0( I)-C(7)-C(8) 174.33(14) 

C(2)-C(3 )-C( 4)-C(5) -48.95(15) C( I 0)-0(5)-C(9)-0( 4) 3.2(2) 

Cl-C(3 )-C( 4 )-C(5) -169.69(9) C(l 0)-0(5)-C(9)-C( I) -1 75.35(13) 

C(7)-0(1 )-C(5)-C(4) 120.16(13) C(2)-C( 1 )-C{9)-0(4) -24.0(2) 

C(7)-0( l)-C(5)-C(6) -118.68(13) C( 6 )-C( l )-C(9)-0( 4) 159.46(14) 

0(3)-C(4)-C{5)-0( l) -56.49(14) C(2)-C( I )-C(9)-0(5) 154.46(13) 

C(3)-C(4)-C(5)-0( 1) -177.09(11) C(6)-C( I )-C(9)-0(5) -22.03(17) 

0(3)-C( 4)-C{5)-C(6) -17 4.46(12) C(9)-0(5)-C(l 0)-C(ll) -177.70(15) 

C(3)-C( 4 )-C(5)-C( 6) 64.95(15) C(6)-N-C( 12)-0(6) 2.0(2) 

C( 12)-N-C(6)-C( I) 119.19(15) C(6)-N-C( 12)-0(7) -177.58(12) 

C(I2)-N-C(6)-C(5) -118.44(14) cc 13)-0(7)-C( 12)-0(6) 12.0(2) 

C(2)-C{l)-C(6)-N 133.47(14) C( 13)-0(7)-C( 12)-N -168.48(12) 

C(9)-C( 1)-C(6)-N -50.25( 17) C( 12)-0(7)-C( 13)-C( 15) 59.71(19) 

C(2)-C( 1)-C(6)-C(5) I 1.75(19) C(I2)-0(7)-C( 13)-C( 14) -65.80(19) 

C(9)-C( 1)-C(6)-C(5) -171.97(12) C(l2)-0(7)-C(13)-C( 16) 177.43( 14) 

Table 7. Hydrogen bonds for 02srv008 [A and 0
]. 

D-1-I...A d(D-H) d(H ... A) d(D ... A) <(DHA) 

0(3)-1-1(03) ... 0(6)# I 0.81(2) 1.97(2) 2.765(2) 166(2) 

N-H(lN) ... 0(4)#2 0.85(2) 2.11(2) 2.902(2) 154(2) 

Symmetry transformations used to generate equivalent atoms: # 1 -X+ 1.-y+ 1 ,-Z+ I #2 -x,-y+1,-z+1 
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6.4 APPENDIX 4 

XDRAY DATA FOR ACHC DERIVATIVE 198 

AcO,,,,,_(J···'''C02Et 

AcO~NHAc 
OAc 
198 
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Table 1. Crystal data and structure refinement for 03rmd015. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Retlections collected 

Independent ret1ections 

Completeness to theta= 27 .so a 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)j 

R indices (all data) 

Largest diff. peak and hole 

149 

2,3-cistriol 

C17 H25 N 09 

387.38 

120(2) K 

0.71073 A 
Orthorhombic 

Pbca 

a= 19.3864(7) A 

b = 9.4800(4) A 
c = 21.6482(8) A 
3978.6(3) 'A3 

8 

1.293 Mgfm3 

0.105 mm·1 

1648 

0.44 x 0.36 x 0.24 mmJ 

1.88 to 27.50°. 

-25<=h<=25, -12<=k<=l2, -28<=1<=28 

41625 

4566 [R(int) = 0.0820] 

100.0% 

None 

Full-matrix least-squares on F2 

4566/ 0 I 344 

1.070 

Rl = 0.0498, wR2 = 0.1116 

RI= 0.0752, wR2 = 0.1267 

0.553 and -0.260 e.A-3 



Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (r\2x 103) 

for 03rmd015. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

X y z U(eq) 

0(4) 546(1) 4088(1) 1121(1) 25(1) 

0(1) 1594(1) 3920(2) 3234(1) 36(1) 

0(6) 1270(1) 2016(1) 466(1) 27(1) 

0(8) 2612( I) 2522(2) 922(1) 30(1) 

0(2) 2001(1) 5946(2) 2831(1) 34(1) 

N(l) 307(1) 3784(2) 2398(1) 22(1) 

0(7) 864(1) -153(2) 687(1) 41(1) 

C(2) 929( I) 3232(2) 2111 (I) 21(1) 

0(9) 2660( I) 3909(2) 74(1) 44( 1) 

0(3) -42(1) 1660(2) 2740(1) 43(1) 

CO) 1516(1) 4310(2) 2133(1) 22( I) 

C(3) 769(1) 2820(2) 1439(1) 22(1) 

C(4) 1411( I) 2258(2) 1115(1) 24(1) 

C(5) 2014(1) 3270(2) 1151(1) 25(1) 

C(IO) -153(1) 2930(2) 2671(1) 27(1) 

C(7) 1694(1) 4686(2) 2798(1) 25(!) 

C(6) 2164(1) 3691(2) 1819(1) 25(1) 

0(5) -542( I) 3251 (2) 1059(1) 59(1) 

C(l2) -134( I) 4186(2) 978(1) 33(1) 

C(14) 996( I) 747(2) 313(1) 30( I) 

C(16) 2863( I) 2903(2) 358(1) 30(1) 

C(l5) 873(1) 649(3) -371(1) 39(1) 

C(l1) -815(1) 36l3(3) 2881(1) 40(1) 

C(9) 2916(2) 5793(3) 3611(1) 49(1) 

C(S) 2228(1) 6394(3) 3449( I) 41( I) 

C(l3) -303(1) 5626(3) 741(1) 39(1) 

C(l7) 3400(1) 1881(3) 155(1) 41(1) 
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Table 3. Bond lengths [AJ and angles [0
) for 03rmd0 15. 

0(4)-C(l2) 1.359(2) N(l )-C(2)-C(l) 111.30( 14) 

0(4)-C(3) 1.451(2) N(l )-C(2)-C(3) 109.21{14) 

0(1)-C(7) 1.208(2) C(l)-C(2)-C(3) 110.43(14) 

0(6)-C(I4) 1.356(2) C(7)-C( 1 )-C(2) 110.76(14) 

0(6)-C(4) 1.449(2) C(7)-C(l )-C(6) 108.70(14) 

0(8)-C(16) 1.363(2) C(2)-C( 1 )-C(6) 109.71(15) 

0(8)-C(5) 1.447(2) 0(4)-C(3)-C{4) 108.32(14) 

0(2)-C(7) 1.337(2) 0(4)-C(3)-C(2) 107.34(14) 

0(2)-C(S) 1.472(2) C(4)-C(J)-C(2) 111.10(14) 

N(l)-C(10) 1.341(2) 0(6)-C(4)-C(5) 107 .20(14) 

N( 1 )-C(2) 1.453(2) 0(6)-C(4)-C(3) 110.36(14) 

0(7)-C(l4) 1.204(2) C(5)-C(4)-C(3) 112.62(15) 

C(2)-C(l) 1.531(2) 0(8)-C(5)-C( 4) 106.88(15) 

C(2)-C(3) 1.538(2) 0(8)-C(5)-C(6) 107.48(14) 

0(9)-C(16) 1.201(2) C(4)-C(5)-C(6) 111.22(15) 

0(3)-C(IO) 1.232(2) 0(3)-C{IO)-N(l) 121.83(18) 

C(I)-C(7) 1.52 1(2) 0(3)-C(IO)-C(ll) 122.11(18) 

C(l)-C(6) !.544(2) N(I)-C(10)-C(11) 116.06(18) 

C(3)-C(4) 1.524(2) 0(1 )-C(7)-0(2} 124.53(17) 

C(4)-C(5) 1.515(3) 0( I )-C(7 )-C( I) 124.27( 17) 

C(5)-C(6) 1.528(2) 0(2)-C(7)-C( 1) 111.15(15) 

C( I 0)-C{Il) 1.508(3) C(5)-C(6)-C{ I) 111.16(15) 

0(5)-C(l2) 1.200(3) 0(5)-C(l2)-0(4) 123.73(19) 

C(12)-C( 13) 1.494(3) 0(5)-C( 12)-C(l3) 125.5(2) 

C(l4)-C(l5) 1.501(3) 0( 4)-C(12)-C( 13) 110.71( 18) 

C(16)-C(17) 1.488(3) 0(7)-C( 14)-0(6) 123.19(17) 

C(9)-C(8) 1.491(4) 0(7)-C(l4 )-C(l5) 125.7(2) 

0(6)-C(l4)-C(I5) 111.05( 17) 

C( 12)-0(4)-C(3) 117.00(15) 0(9)-C( 16)-0(8) 123.49(18) 

C(14)-0(6)-C(4) 116.83(14) 0(9)-C( 16)-C(I7) 126.53(19) 

C( 16)-0(8)-C(5) 117.6S(14l 0(8)-C(l6)-C{ 17) 109.97(18) 

C(7)-0(2)-C{8) 116.10(16) 0(2)-C(8)-C(9) 111.82(19) 

eo OJ-NO )-CC2l 121.49(16) 
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Symmetry transformations used to generate equivalent atoms: 

------------------------------------- ----------------------------- ---------------------------------------------------

Table 4. Anisotropic displacement parameters CA2 x 103) for 03rmd015. The anisotropic 

displacement factor exponent takes the form: -2n2[ h2 a*2U 11 + ... + 2 h k a* b* u12] 

u11 un UJ3 u23 u13 u12 

0(4) 24( I) 29(1) 21( 1) 3(1) 0(1) 5(1) 

0(1) 51(1) 38(1) 20(1) 1(1) -1(1) -10( I) 

0(6) 36(1) 31(1) 16( I) -2(1) 1(1) 3(1) 

0(8) 29(1) 36( L) 25(1) 4(1) 8(1) 9(1) 

0(2) 42(1) 32(1) 29( 1) -3( L) -2(1) -8(1) 

N(l) 27(1) 17( I) 21(1) 0(1) 6(1) I (I) 

0(7) 60(1) 37( I) 28(1) 0(1) 2(1) -8(1) 

C(2) 25(1) 20(1) 18( I) 0(1) 2( I) 2(1) 

0(9) 48(1) 49(1) 35(1) 14(1) 15(1) 10(1) 

0(3) 54(1) 23(1) 51(1) I (I) 20(1) -7(1) 

C(l) 25( I) 22(1) 20(1) 2(1) I (I) 0(1) 

C(3) 25(1) 20(1) 20( I) 0(1) 1(1) 1(1) 

C(4) 30( I) 27(1) 14( I) -I (l) I (I) 6( I) 

C(5) 26(1) 28(1) 20( I) 3(1) 4(1) 6(1) 

C(IO) 34(1) 23( I) 25(1) -5(1) 7( I) -7(1) 

C(7) 25(1) 26(1) 24(1) -3(1) 1(1) 0(1) 

C(6) 23(1) 31(1) 23(1) 0( I) 0(1) I (I) 

0(5) 42(1) 59(1) 77(1) 18(1) -30( 1) -14(1) 

C(12) 31( I) 42(1) 27(1) 3(1) -9(1) 1(1) 

C(l4) 32(1) 33(l) 25(1) -5( I) 2{1) 5( I) 

C(16) 30(1) 35(1) 26(1) I (I) 8(1) -2(1) 

C{IS) 52(1) 42(1) 23( I) -5(1) -3( I) 3(1) 

C( 11) 40(1) 34(1) 45(1) -7( I) 20(1) -6(1) 

C(9) 58(2) 49(2) 40(1) -4( 1) -12( 1) -9(1) 

C(8) 48(1) 39(1) 35(1) -14( 1) -1(1) -12( I) 

C(13) 33(1) 49(1) 34(1) 7(1) -5(1) 10(1) 

C(17) 40(1) 40( I) 44(1) 1(1) 20(1) 4(1) 
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A.lx 10 3) 

for 03m1d015. 

X y z U(eq) 

H(3) 41 0( 10) 2150(20) 1414(9) 20(5) 

H(5) 1925(9) 4070(20) 917(9) 17(4) 

H(2) 1076(9) 2370(20) 2321(8) 16(4) 

H(l) 1378(9) 5160(20) 1913(9) 20(5) 

H(4) 1536(10) 1370(20) 1308(9) 24(5) 

H(lN) 209(10) 4640(20) 2364(9) 24(5) 

H(6B) 2294(10) 2850(20) 2039(10) 26(5) 

H(6A) 2546(11) 4360(20) 1829(9) 26(5) 

H(8B) 2227(12) 7400(30) 3399(11) 47(7) 

H(l1B) -848(14) 4590(30) 2802(13) 63(9) 

H(l1C) -1203(18) 3100(40) 2720(16) 81 (I 0) 

H(15C) 1252(15) 1050(30) -591(13) 58(8) 

H(l5B) 821(14) -340(30) -482( 14) 61(8) 

H(l7C) 3177(14) 1040(30) 29(12) 50(7) 

H(8A) 1849(15) 6140(30) 3728(13) 58(8) 

H(l7B) 3644(14) 2250(30) -174(14) 58(8) 

H(l5A) 436(15) 1150(30) -465(13) 58(8) 

H(l7A) 3691(17) 1620(30) 466(16) 72( l 0) 

H(9C) 2907(14) 4750(40) 3640(13) 64(8) 

H(9B) 3271(15) 6050(30) 3291(14) 61 (8) 

H(IIA) -864(18) 3320(40) 3272(18) 86( ll) 

H(9A) 3094(16) 6190(30) 40 16(15) 70(9) 

H(l3C) -700(15) 5570(30) 481(14) 61(8) 

I-I(l3B) 69(14) 6040(30) 504(13) 54(7) 

H(l3A) -382( 15) 6210(30) 1084(15) 68(9) 
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Table 6. Torsion angles [0
] for 03rmd015. 

C(10)-N(1)-C(2)-C(1) 

C( 10)-N( 1)-C(2)-C(3) 

N( 1)-C(2)-C(1)-C(7) 

C(3)-C(2)-C( 1 )-C(7) 

N(l)-C(2)-C(l)-C(6) 

C(3 )-C(2)-C( 1 )-C( 6) 

C( 12)-0( 4 )-C(3 )-C( 4) 

C(l2)-0( 4)-C(3)-C(2) 

N(l )-C(2)-C(3)-0( 4) 

C( 1 )-C(2 )-C(3 )-0( 4) 

N(l )-C(2)-C(3)-C( 4) 

C( 1 )-C(2)-C(3 )-C( 4) 

C( 14)-0(6)-C(4)-C(5) 

C( 14)-0(6)-C(4)-C(3) 

0( 4 )-C(3 )-C( 4)-0( 6) 

C(2)-C(3)-C( 4 )-0(6) 

0(4)-C(3)-C( 4)-C(5) 

C(2)-C(3)-C( 4 )-C(5) 

C(l6 )-0(8)-C(5)-C( 4) 

C( 16)-0(8)-C(5)-C(6) 

0(6)-C( 4 )-C(5)-0(8) 

C(3)-C( 4 )-C(5)-0(8) 

0( 6)-C( 4 )-C(5)-C( 6) 

C(3 )-C( 4 )-C(5)-C( 6) 

C(2)-N(l)-C(l 0)-0(3) 

C(2)-N(l)-C(l 0)-C( 11) 

C(8)-0(2)-C(7)-0( 1) 

C(8)-0(2)-C(7)-C( 1) 

C(2)-C( 1 )-C(7)-0( 1) 

C( 6)-C( 1 )-C(7)-0( 1) 

C(2)-C( 1)-C(7)-0(2) 

C( 6 )-C( 1 )-C(7)-0(2) 

0(8)-C(5)-C( 6)-C( 1) 

C(4 )-C(5)-C(6)-C(l) 
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-150.78(16) 

87.03(19) 

60.51 (19) 

-178.02(14) 

-179.48(14) 

-58.0 I (18) 

132.31(16) 

-107 .65(17) 

60.76(17) 

-61.94(17) 

179.02(15) 

56.31(19) 

150.68(15) 

-86.34(18) 

-56.26(18) 

-173.93(14) 

63.49(18) 

-54.18( 19) 

1 08.03(17) 

-132.49( 17) 

-67.79(17) 

170.65(13) 

175.18(14) 

53.6(2) 

6.4(3) 

-172.71(18) 

0.3(3) 

-177 .13( 16) 

25.8(2) 

-94.8(2) 

-156.75( 15) 

82.64(!8) 

-171.98(15) 

-55.3(2) 



C(7)-C( 1 )-C(6)-C(5) 

C(2)-C( 1 )-C( 6)-C(5) 

C(3 )-0(4)-C(12)-0(5) 

C(3 )-0( 4 )-C( 12 )-C( 13) 

C( 4 )-0(6)-C( 14 )-0(7) 

C(4)-0(6)-C( 14)-C( 15) 

C(5)-0(8)-C( 16)-0(9) 

C(5)-0(8)-C( 16)-C( 17) 

C(7)-0(2)-C(8)-C(9) 

Symmetry transformations used to generate equivalent atoms: 
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179.06(16) 

57.8(2) 

-5.6(3) 

171.42(16) 

0.7(3) 

179.49(16) 

7.8(3) 

-170.96(18) 

83.4(2) 


