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Abstract

Representations of the space of n-theta functions.

Israel Moreno Mejia

Let X be a smooth complex projective curve with group of automorphisms G;. In
this thesis we apply the Holomorphic Lefschetz Theorem in certain cases to compute
the decomposition of the space H%(Jy, O(n®)) into a sum of irreducible representa-
tions of G, where Jy is the Jacobian variety of X and O(©) is the theta line bundle
of Jy. Namely we compute this decomposition in the cases when X is the Klein

quartic curve, the Bring curve of genus 4 and the Macheath curve of genus 7.
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Chapter 0

Introduction

Throughout this work all curves will be assumed to be smooth projective curves over
C and we sometimes will make no distinction between a curve and its corresponding
compact Riemann surface. For any smooth projective curve X there is an abelian
variety, the Jacobian .Jy and a divisor © of .Jx. We briefly mention some well known
facts about Jacobians of curves and we refer to [13] or [2] for some background
reading. We can say that the Jacobian is the moduli space of line bundles of degree
0 on X', that is, Jy parametrizes isomorphism classes of line bundles of degree 0
on the curve X. Let S®X denote the symmetric product of the curve X. For each

positive integer b, there is a morphism
a:S"X - Jx

called the Abel-Jacobi map. Let g denote the genus of X. If b < ¢ then « is
generically injective and if b = ¢ then « is a birational map. By tensoring with a
fixed line bundle of degree g —1 we get an isomorphism of Jy with the moduli space
J;‘(fl of line bundles of degree ¢ — 1 on X. The theta divisor can be defined as the
image of the map

a: S = It
That is, the theta divisor is the reduced divisor supported on the set

{LeJi | ro(L) > 0}.

Riemann proved that the singular locus of © is the set of line bundles for which

hO(L) > 1. The space H(Jyx,O(nO)) of global sections O(n®) can be identified
1




Introduction. 2

with certain quasi-periodic functions on the universal cover of .Jx, the theta functions
of order n, the dimension of H°(Jy, O(n®)) is n9, the linear system | n© | is base
point free for n > 2 and very ample for n > 3.

Although we do not talk about vector bundles, the motivation for this work initially
was to study moduli spaces of vector bundles. Let SUy(n) be the moduli space of
semi stable rank n vector bundles with trivial determinant. In [4] Beauville surveys
some problems about these moduli spaces and one can find there the following

situation. Given L € .]5"\»_1 the set
O, = {E € SUx(n) | h°(X,E® L) # 0}

is a Cartier divisor on SUyx(n) and the associated line bundle £ = O(©,) is the

generator of the Picard group of SUy(n) . There is a rational map
U : SUx(n) — PH®(Jx,O(n®©)) =| nO |

given by W(E) = {L € J4 " | h°(X, E ® L) # 0}. Tt is known that W(E) is cither a

.. . . -1 . . . .
divisor in the linear system | n© | or equal to J§, . There is a canonical isomorphism
0 ) ~ 0¢ y9—1 *
H°(SUx(n), L) = H (JY ,0(nO))

making the following diagram commutative:

L]

/ 2
T

|nO |

SUx (n)

So the base points of the linear system | £ |* are the vector bundles E € SUy(n)
such that W(E) = J4 .

Suppose that the curve X has a non trivial group of automorphisins G. By functo-
riality G acts on SUx(n). Our initial intention was to study the behavionr of the
fixed points of G in SUy (n) with respect to the map W, in particular we wanted to
know whether these fixed points are base points for the linear system | £ |* when

n > 3. Thus one first has to find a way to compute these fixed points.
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The group G acts on H%(Jx, O(n®)). Dolgachev computed the decomposition of
HO(Jyx,0(20)) as a sum of irreducible representations of G when X is the Klein
quartic and used this decomposition to prove the existence of fixed points of G in
SUx (2), see proof of corollary 6.3 in [7]. So we thought that it might be useful to
have the decomposition of H°(Jy, O(n©)) as a sum of irreducible representations of
G. The problem of finding this decomposition for a given curve X is interesting in its
own right and this is the central problem of this work. In the first chapter we describe
the strategy and tools to find this decomposition. As one may suspect the problem
is reduced to computing the traces of automorphisms h € G on H°(Jy, O(n©)) for
which we make use of the Holomorphic Lefschetz Theorem 1.4 . One notices that
it is enough to compute the trace of b on H(S9~'X, K", ), where S97'X is the
g — 1 symmetric product of the curve X and ¢ is the genus of X. In the second
chapter we give some information about curves with non trivial automorphisms and
then we present examples of curves on which we have computed the decomposition,
namely the Klein quartic, the Macbeath curve of genus 7, and Bring’s curve of genus
4. In the appendix there is a Maple worksheet which contains a program code that
computes the trace of h € G on H°(S?7'X, K&, ) if h has prime order and if
(h) \ {1} is contained in a conjugacy class of G. We used this program to compute

some of those traces and the values obtained have been verified by hand.



Chapter 1

1.1 Decomposition of H°(J,nO).

Let X be a complex smooth curve with group of automorphisms G. Let .J be the
Jacobian of X and let © be the theta divisor of J. Then G acts on .J and © is
invariant under the action of G.

Our goal will be to find the decomposition of H(.J, O(n©)) as sum of irreducible
representations of G.

We will do it by induction. Consider the exact sequence

0—= O0MnO) - O((n+1)0) = Og((n+1)0) = 0. (1.1)

By the Kodaira Vanishing Theorem we have

H° (J,0((n+1)0)) = H (J,0(n®)) & H* (O, O((n + 1)0))

for n > 1. Then all we have to do is to compute the decomposition for H*(0, O(n©)).
Let o : S97'X — © be the Abel-Jacobi map and let £ = o*Og(0).

Lemma 1.1. We have L™ = K&", ..

Proof. (See [2] pg. 258) Let W be the singular locus of © and let D = o~ (W).

Then W has codimension at least 3 in © (see [2] pg. 250 ) and therefore D has

codimension at least 2 in SY~'X. Consider the inclusion of © in .J97'. The tangent
7 G

bundle of J9~! is trivial and by adjunction we see that K gim = L" away from

D. Now by Hartogs’ theorem, two line bundles that are isomorphic on an open set,
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whose complement has codimension at least 2 are isomorphic on the whole variety.

Lemma 1.2. a) x(K3", ) =n? — (n— 1)4.

b) For n. > 2 we have H'(©,0(n0O)) = HY(S9"' X, L").

We need the theorem below to prove Lemma 1.2.

A line bundle A on a variety XX is called semi-ample, if for some g > 0 the sheaf A*
is generated by global sections.

Let X be a projective variety and X be an invertible sheaf on X. If H°(X, M) # 0,

the sections of A* define a rational map
bu = ¢ 1 X — P(H (X, A)*).

The Litaka dimension k(A) of A is given by

—00 if HY(X,M™)=0 VY pu

K(A) =
max{dim ¢,(X) | H°(X, M) # 0} otherwise.

Theorem 1.3. Let X be a projective manifold defined over a field K of characteristic
zero and let X be an invertible sheaf on X. If X is semi-ample and k(A) =n = dim X,

then

HY(X,A™"Y=0 for b<n.
Proof. See corollary 5.6 b) in [10]. =

Proof of Lemma 1.2. We postpone the proof of a) to section 1.3. For b), notice that

since a is surjective the natural map
o H'(O,0(n0)) — H (S 'X, a*O(nO))

is injective. From the exact sequence (1.1) we see that h%(0, O(n©)) = n? —(n—1)9,
then by a), x(£") = h%(©,0(nO)). On the other hand, since O(nO) is ample,

a*Og(nO) is semi-ample. Notice that the litaka dimension of L™ is ¢ — 1 =



1.2. THE FIXED POINT THEOREM 6

dim S9! X because « is a birational map between SY!'X and ©. Then by The-

orem 1.3 and Serre Duality Theorem we have
H"(S"’_IX, a"O(nO) ® Kgo-1x) =0 for ¢>0 and n>1.
So «* is an isomorphism for n > 2. M

To compute the decomposition of HY(S97!X, L) we first need to compute the
trace on HY(S97'X, L) of one element in each conjugacy class of G. Once we have
these traces we only have to solve a system of linear equations (if we know the

character table of GG). The traces will be computed using Lefschetz theorem 1.4.

1.2 The fixed point Theorem

Let E be a vector bundle on a smooth variety X. Let GG be a finite group acting on
X. We say that G acts on F if for each ¢ € G there is an isomorphisiu of vector
bundles ¢, : ¢*F — E such that given g,h € G we have ¢ ), = ¢, o h*(p,) (see
definition of G-linearized vector bundle in [7]).

Suppose that X is a variety with a trivial action of a finite group G, i.e. every
element of G acts as the identity. Let V|,--- V}, be the irreducible representations
of G. Then any vector bundle £ on X with action of G is isomorphic to a vector

bundle of the form
PvisE,

where E; is a unique vector bundle (which of course depends on E) with trivial

action of G. Moreover if we have an exact sequence of vector bundles on X
0 >A—->B—->C—0
with action of G, then for each 7 we have an exact sequence
0-5V.®A4 -5 V.B, - V;C;, — 0.

This how the exact sequence (1.19) below is obtained.

For h € G and E as before define
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chy(E X xi(h) - ch(E (1.2)

where ch(E;) is the Chern character of F; and x;(h) represents the trace of h|V; (see
definition of ch u(g) in [3] just before 3.1).

If G acts on E and h € G acts trivially on X then E has a decomposition
E = EB.;-I:OE(I/].), where E(17) is the subvector bundle of E on which h acts as

2im/n

vy =e and n is the order of h. For each vector bundle E(v') define the

characteristic class

. -1
. 1-¢-~2
UEW)) = H( — ) , (1.3)

where {z;}
For instance, if 1+ Z?:l ¢; is the total Chern class of E(r) and the variety X has

j—1 are the Chern roots of E(v*), see (4.5) in [3].

cdimension at most three we have

(c* —3cica+3c3) (V2P +4v+1) + 6¢y
6(r—1)3

uEw) = (-

3w+ ((¢f —2¢c)e; — e’ + 3¢y — 3ey) 3
6(r—1)3 '

+ (612—262) (V+1)+2CQ f2-— Clt
2(v —1)2 /

If v is a cube root of unity then

1 ) 1 2 1 . 1 . .
U(E(I/)): <_E(3+ECI 2+(—§Cg+§cl(2—ﬁ(’l{> l/—6(.’13> f.'i

c(lervrla) s (LavaZa) i
= C — C -CL v =C j .
6 3" 3t T3

If v = —1 then

UB(-1) =14 LG a e (1.4)
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Theorem 1.4. ( Holomorphic Lefschetz Theorem) (see [3] Theorem 4.6). Let X
be a compact complex manifold, V a holomorphic vector bundle over X, and g be «
finite order automorphism of the pair (X, V). Let X9 denote the fized point set of g.

Then we have

; : chy(V |x4) - TILU(N (7)) - td (X9
Z(—l)"trace(g|HL(X,V)):/Xg of Ad()gt,(lj—;l(](\;y))v))t ( ).

Assume that the set of fixed points of ¢ on X is finite. Then for each fixed
point & we have td(z) = 1, N = Tx,. So (N9)¥ = Qyx,, U(N(¥'))=1. We have
ch(E |;)(g) = trace(g) | Ey, where E, is the fibre of E at . Then we have

Corollary 1.5. (Atiyah-Bott fixed point Theorem). Let g be an automorphism of
a compact complex manifold X with a finite set fiz(g) of fized points. Suppose that
g acts on a holomorphic vector bundle E — X. Then

trace(g) | £y

D o(-V'traceg | HY(X,B) = 37 G

x€ fizg
where dg,, is the automorphism induced by g on the fibre of the cotangent bundle €y

of X at x.

1.3 Preliminaries on symmetric products

In this section we summarize some facts about symmetric products of curves. We
refer to [20] for more details. Let X be a compact connected Riemann surface of

genus g. We have

HYX,Z)=7, HYX,Z)=12%, H*X,Z)=17p,

where 3 represents the fundamental class of a point p € X. The ring structure of

H*(X,Z) can be described as follows: One can choose a basis
Ay, Qg

of H'(X,Z) such that,

e =0 unless 7 —j = £g; ooy =~ =5 (1 <4< g). (1.5)
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Then (1.5) is a complete set of relations for H*(X,Z). These relations imply
aiﬁ:/@ai:(L ﬁ2:0

If K is any field then H*(X,K) = H*(X,Z) ®z K, and if X" is the product of n
copies of X, then H*(X", K) = H*(X, K)®". We shall assume that K is a field of
characteristic 0. Let

-

=10 ®1®4ele -®lcH (X" K),

kth place

Bk:i®...®1®ﬁ®l®--'®l€H2(‘¥nal\7)-

Then H*(X", K) is generated as a ring by the ayu’s and the gis (1 < i < 2g,

1 < k < n) subject to the relations

a0 = 0 unless 1 — j = +y;
CikQiygr = —Qipgrtur = Pe(l < i < g);
Qi) = — O G,
We also have that
0B = Broar = 0; B = 0;
and that each fx commutes with every element of H* (X", K). The symmetric group

S, acts on H*(X", K) by the rule

g(ufik) = G g-'(k), g(ﬂk) = ﬁg“(k) for g€ Sn'

The ring H*(S" X, K) can be identified with the ring H*(X™, K)%* of S, -invariants of
H*(X", K). The ring H*(X", K)®" is generated as a K-algebra by n and &;,--+ , &,

where
§i =Dy for 1<i<2g,

(1.6)
n=>B
The §&’s anticommute with each other and commute with n. Moreover, let o; =

Eiivg € HX(S'X,Z), for i =1, -, g; then from (5.4) in [20] we have

_ 2 _qn . b . d
0,0; = 004, of =0, and 0,04, - 05, 1° =7, (1.7)
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for d =a+b, a,b > 0, and distinct 21, -, 7,.
Then if ,
U= Z o (1.8)
i=1
and a + b = d, we have

9°1° = a! (q) n?. (1.9)
a

In general the total Chern class of SYX is given by

9t

ch(SX) = (1 +nt)d 9t e Thr, (1.10)

where g is the genus of X (see [2] pg 339). Now can we prove Lemma 1.2 a):

Proof of Lemma 1.2 a) . ( See Proposition 10.1 (3) in [23] ) We have

td(S1X) = (=) I (1 + o),

l—e—n
1.11
— ( ] )d—g+l g Ty ( )
- l—e—" i=0 7!
where
_meTT4+eT—1
n(l —e™n)
By formula (1.10) the Chern class of K5,  is 1+ nd, therefore the Chern character
of K5, is
g
ch(KS", ) =€ = H(l + noy).
i=1
So by Hirzebruch-Riemann-Roch
g9
X(K5w, ) = deg H(l+ai(7+n))} .
1=1 g—1
Notice that none of the terms of the expression
9
H(l +oi(7 +n))
i=1
is divisible by a square of a g;, so by (1.7) we can assume o, = --- = g, = 1. Then

what we want to compute is the coefficient of 797! in the following expression

) 0= ey

n

1 —em

ety =

that is

n—(n-— 1)6"’)”

1] —e 7

X (K?gn—l x) = Res;= <

setting z = 1 — e77 the last is equal to
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Res, o220 — s~ () (n—1) =n? — (n - 1) ]

9(1<z)
The universal effective divisor of degree d on X is the divisor
ACXxS'X
that, for any D € S4X, cuts on X 2 X x {D} exactly the divisor D. Let
f:8— 8X

be a morphism and consider the divisor A’ = (Idy x f)*A on X x S. Let ¢ :

X xS > Sand 7: X x S2X — S%X be the natural projections.

Idfo

X xS X x StX
¢ ™
S 54X

We will need the following Lemma to prove Lemma 1.16 below.

Lemma 1.6. We have
a) .0~ (A") is locally free and m,Op(A) = Tguy.
b) f*r.Oa(A) = . Oa(A') and f*R'7,O(A) = R, 0(A).

Proof. See [2], IV,52. &

1.4 Fixed points in the symmetric products

Suppose that X is a curve with an automorphism h. In order to apply Theorem
1.4 when h is acting on the symmetric product S*X we will need some information
about the fixed point set of h at S®X and its normal bundle at S®X. For instance,
we need to know the Todd class of the fixed point set and the product ILiU/(N (v/)).

Suppose that i has order p. If we consider the map

fro: SFX — SPEX
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p—1
D~ Y kD,
i=0
then fo(S*X) is a subset of fixed points of h in SP*X. Let D be an effective divisor

of degree d invariant under the action of h. Consider the embedding
Ap : SPEX s SPRHIY

u—u+ D.

The image of S*X under the map fi p = Ap o frp is a subset of fixed points of h
in SP*+4X . Notice that when k = 0 the image of f p is the divisor D.
Now we will describe the fixed point set fix (h) of h in S°X. If b = 1 then see

Theorem 2.1 below. Take m, [ such that
b=pm+1

andm >0and p>1[02>0.

For each integer k such that m > k > 0, let dy = b — kp. Let (S%X)" denote the
fixed point set of h in S% X . Define A as the set of divisors D € (S% X )" satisfying
the following property: if « is a point in the support of D then D — Y77 hiz is not
an effective divisor.

Now consider the set

Fe= | fen(S5X).

DeAy,
Notice that F;NF; =0 and fp,(S*X) N fp,(S'X) =0 for D\, D, € A;. Tt is easy to

verify the following:

Lemma 1.7.

m

U Fx = fix (h).

Notice that if p is a pritne number, then

A = {D:a1:1;1+--~+a5:1:s|03aj <p-1 and Zu,_,-:dk},

j=l1

where x,, ..., 2, are the fixed points of h in X and there are

m—k .
s\ (s 1+dk - ]p) N
21 (])( di — jp (1.12)

=0
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divisors in Ay.
If p is not a prime number then the divisors in Ay are not necessarily supported on
the fixed points of h in X. For instance there are situations in which h has no fixed
points in X but A? has finitely many fixed points.

Let f : X — Y be a morphism of degree p of smooth curves. Then there is an
embedding i : S¥Y — SP*X which sends D € S*Y to the divisor f*D € SPEX.

If we take f to be the quotient map
f: X > X/(hy=Y,

then the map fi ¢ splits as

Feo: SEX 5 SFY & grkx,

where @ is the natural map induced by f on the symmetric product. From this we
see that the fixed point set of A in S®X is a disjoint union of varieties which are
isomorphic to symmetric products of the quotient curve Y.

Remember from section 1.3 the definition of the cohomology classes 5, ¥ on the
svmmetric product of a curve. The proof of the following Lemma involves at least
two different symmetric products and we will use the same notation to represent
these cohomology classes regardless of the symmetric product on which they are

defined as this will be clear from the context.

Lemma 1.8. Consider the induced map i* : H*(SP*X,Z) — H*(S*Y,Z). Then we

have i*n =n and i*9 = pv.
Proof. Consider the maps
fro: HY(S™X,2) 5 H*(S*Y,2) & H*(S*X,Z).

We first will show that «* is injective and that a*n = pn, then we will see that
fro¥ = pa™d and fFm = pn. From this we deduce that "5 = 7 and "9 = pJ.

Notice that the natural map
f* H(Y,C) » H(X,C)

is injective by (1.2) in [20]. The commutative diagram
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SkX — SkY

induces another commutative diagram

H*(S*Y,C) -5 H*(S*X,C)

H*(Y* C) — H*(X* C)

where the vertical maps and the lower map are injective, therefore a* is injective.

Now fix a symplectic basis
Qp, - 7a’)'aa’y+la v aOf'Z’y

for H,(Y,Z). Above each cycle «; there are p cycles 7, hr;,--+ ,hP"'r; on X, and

they satisfy
rir; = ozo if m=1
h""rih’rj = oI Y (1.13)
0 otherwise.
The set A= {h"r; |m=0,---,p—1landi=1,---,2v} forms part of a symplectic

basis

—_ /, « . VI I . .. I
B—‘ {ala aagvag+1a aa2g}

of H(X,Z) in which

ro_ i
o, = W1y

’ — 1o
am+g =h Tg+14y

form =gp+ 7, where 1 <j<pand0 < g <+vy-—1. Abusing our notation we will

write ay, instead of a,. Consider the map
fFH(Y,Z) > H (X,Z).

Under this map we have
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p—1 p—1
¥ — . — o :
ffa; = E hir, = E iy pli=1) (1.14)
j=1 J=0
and
p—1 p—1
* o E P — E .
f Qjpy = h Tity = Qjypi—1)+g-

j=0 J=l1

Claim: If ; € B\ A then
p—1
Z hea; =0.
5=0
We first prove the claim. If a; € B\ A then we have
a-a; =0 Ya e A
The automorphism /A is compatible with the product - , so
a-Wa;=0 Vae A and j=0,--- ,p— 1.
Now Z;’;é Wa; € HY(X,C)™, By (1.2) in [20], H'(X, C) is the image of the map
f*HY(Y,C) - H(X,C)
which is obtained by tensoring the map
frHYY,Z) » H'(X,Z)

with C. Thus H'(X,C)® is generated by

p—1 p—1 p—1 p—1

Iy ¥ J Jo
E hfrl,---,g hrﬁ,,g h,r7+1,---,5 Wry, ¢
j=1 j=1 F=1 J=1

Notice that H'(X,Z)™ is not necessarily the image of the map

frHYY,Z) » H' (X, 7).

Since
p—1
Q- E Mo, =0Va € A,
3=0
we see that
p—1
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And this proves the claim.
We refer to section 1.3 for the definition of the cohomology classes 1), «;, 3, and &;.

Using the relations (1.13) we have

p—1
F1(8) = (@) = (Z}r)([ﬁmﬂ):w. (1.15)
=0

Now under the map

o' H*(Y*,Z) —» H*(X* 7)

we have from (1.14)

ﬂzl E A p(i—1),

and
a* (1) = pBi.
Suppose 7 < «v. Then using the definition of &, we get
p—1
fz = Z G p(i—1),
=1 j=0

Notice from the definition of B that

p—1

Z h o = Zaj+p(z 1),

Then
p—1
(&) =Y Wé
7=0
and

k p-1 p—1

E E — = E Jg
SH—"/ Qjip(i—1)+g,l = B &pigy-

=1 j=0 7=0

From the definition of n and from (1.15) we have

k
) = pb=pn.
=1

Consider the map

fro: H'(X™,Z) — H'(X*,Z).
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In this case fro: X*¥ — (X*)? is defined by the rule D — (D, hD,--- ,h?~'D). Now

we will compute f,(&xr). We first will compute f; ((cy). Notice
H*(XP* 7) = H* (X, Z)%"F = H*(X* 7)%P

In particular

H'(X™,7) =

p
PHE X" 2)e @ H(X"7)® H'(X",Z)9H (X", 2)® .- ® H'(X*.Z)

A —

ith place

(% éHl(X’“,Z)) :

Suppose that | = sk + j, where s, j are non-negative integers and 1 < 5 < k. We
now can see that

f;,o(a,;,) = R a

and
feo(B) = P (i jaiyg ) = h°B; = B;.
Thus
Jro(n kao B) —I)Zﬁj—pn
and
p—1 k p—1 ‘ k p—1
fk 0 fl fk 0 (Z (8] 1) = Z h® Z Q5 = Z h,jgi = Z Z "LS():',,']J'.
s=0 7=1 3=0 j=1 s=0

From this we see that if a,,, € B\ A then

fl:,o(gm) =0

Let m < ¢ such that a,, € A. Write m = gp+ j with 1 < j <p. So
p—1

fk() Em) = Zh’ Ep(g+1) = @ "(€gt1)-

j=0
and
fk 0 fm—!—y Z h £p(q+l)+’)’ =4a (&H—H—’Y)
7=0
Then we have

y—1
fk o(?) Z fr 0 §m£m+q)) Z a* (g(q+1)€((1+l)+7) = pa*(V).m
q=0

m=1
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1.5 Normal bundles of the fixed point sets

In this section we will consider the normal bundles of the components of the fixed
point set of h in S°X. The aim will be to find a way to compute the characteristic

classes of their eigenvector bundles as defined in (1.3). Consider the quotient map
X —=X/(h)y=Y.

Let g and v be the genus of X and Y respectively and let R be the ramification
divisor of f at X.

From section 1.4 we know that these components are symmetric products of the
quotient curve Y. A component of dimension & is the image of S*X under the map
fe.p for some D € Ay and we identify it with S*Y, the embedding of S*Y into S*X

1s given by the composition map

ShY <L grkx 88 grktde (1.16)

We will use the following notation:

e N, for the normal bundle of S*Y in SP*X,
® N4, 0i for the normal bundle of S*¥Y in SP**% X and

e N, for the normal bundle of SP*X in SPF+e X

The total Chern class of V; is given by
i*c(SPEX)
o(Ni) = — o
c(S*Y)
Using formula (1.10) and Lemma 1.8 we obtain

p—1

c(N;) = ((1 +nt)? e‘%) : (1.17)

where

Y—g deg(R)
A=k+ 12 —py1 -y OV
p—1 i 2(p—1)

In particular when k£ = 1 the normal bundle has degree
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Let D € S?X. Using (1.10) and that A%n = n and ALY = 9 we see that the normal

bundle N4, has total Chern class

¢(Nap) = (1+n)2 (1.18)

Lemma 1.9. Let 2 € X be a fized point of an automorphism h of X of order p.
Let d be a positive integer and let Q = dx € S*X. Suppose that h acts as v* on the

2a
/ ’...

tangent space T, of v at X. Then hy(Tciy)o has eigenvalues 12,1 vt where
g z WLsdx )@ ) ; ;

v = 621'7r/p.

Proof. In a neighbourhood of (z,z,--- ,x) € X4 choose coordinates (z,,--- ,x4) S0
that (x,2,---,x) is the origin. Then in a neighbourhood of Q = dx € S¢X there
are coordinates (oy,--- ,04) (see [2] chap. IV, §2) defined by the property that the
natural morphism

X4 5 5ix
is given in a neighbourhood of (z,xz,--- ,z) by
oi(zy, - ,zq) = 1" symmetric function of (z,-- -, z,).

Now, if x is a fixed point of an automorphism h of X, we can assume that, in a
neighbourhood of z, the action of A is the multiplication by a scalar A. Then in our
system of coordinates

hx; = Az;
implies

ho, = Mo, ]
Lemma 1.10. Consider the map fio of section 1.4. Let

Q=x+hz+ -+ h'y

be a point in the image of this map (that means v € S¥X ). Then h | (Tgp v )g has

eigenvalues 1,v,---vP~1 v = /P and the eigenspace of v* has dimension k.
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Proof. The automorphism h acts on the vector bundle ¢*T¢u v, and since h acts

trivially on S*Y we have

p—1

U Tomx = @(’i*Tsmf}x')(’/j),

i=0
so it is enough to consider a fibre of i*Tguy at a general point x of S*X. Let
T =p+ ...+ pr € S¥X such that all the p;’s belong to different h-orbits and the
orbit of p; has exactly p elements for allz =1,--- k.

For each 1, j choose disjoint open neighbourhoods V; ; of h'p; in X. So

in S?*X. Then
(Tsoex)q = @ Thipj
1

i=0,1- ,p—
1:1) 7k

From this we see that i | (Tser x ) is @ matrix conjugate to

B O --- 0\
0 B O .
0
0
0 B 0
KO S 0 B)

where B is a cyclic matrix of dimension p x p i.e.

0 0 1)
10 0
01 0
0
0
10

0 --- 010)
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The characteristic polynomial of B is A? — 1, so the characteristic polynomial of

h| (Temx)gis (AP —1)F. m

Lemma 1.11. Consider the divisor D = dyx| + - - -+ dyx,, where x; is a fixed point
of hin X (x; # x;) and d; is a positive integer. Suppose that h acts as v™ (notice
(a;,p) = 1) on the tangent space Tx ,, of x;. Consider the composition map (1.16).
Let Q = x4+ hx + -+ k7l + D be a point in the image of this map. Then the
dimnension of the eigenspace for v' of h | (Tsuwrax)q s k+ri, where v; is the number

of times that v* appears in the following list

I/al,I/Qal’___ ’l/d1(11,
ay 2a; daas
vELpERE e )
I/as’l/2as’_“ ,I/dsas‘

Proof. Let 2 be a general point of S¥X (as in proof of Lemma 1.10) and put Py =
@+ hx +---4+ h?~'z. Then one can choose neighbourhoods V; of Py € SP*X and V;
of d;z; € S%“ X such that if D, D, belong to different neighbourhoods then D,, D,

have no common points in their supports. In this way

1=0

is isomorphic to a neighbourhood of Q@ = Py + D € SP**+¢X . So

!
(Tsprvax )@ = (Towex)py @ @(Tsdf X)dipi

i=1

and we can apply Lemmas 1.9 and 1.10. =

The normal bundle N4, ., has a decomposition

p—1
Napoi = € Napei(v').
1=0

We will need to know the Chern classes of the vector bundles N 4 DO,;(I/i) in order to

compute their characteristic classes. We have an exact sequence

0= Ny = Ngpoi > 0" Nyg, =0



1.5. NORMAL BUNDLES OF THE FIXED POINT SETS 22

from which we obtain exact sequences
0= N;(") = Napoi(v) = i* Ny, (V) — 0. (1.19)
Remark 1.12. Consider the exact sequence
0= Tory — (Ap 0 2) Tgurrax — Napoi — 0.
Since h acts trivially on Tgey we have
(Ap 0 1) Tonkrax (') = Napoi ()

for 1/ # 1. Then from the exact sequence (1.19) and from Lemma 1.11 we see that

the rank of (:*Na,)(v7) is r;, where r; is the number of times that 17 appears in

the list
a1 2(1] dya
17 ,1/ R ,V 1 1’
a 2a, dya;
I/Z,I/ za"’al/zla
(g 2a dsa
,/ §7I/ S’,,. ,I/ s 5‘

Lemma 1.13. Let r be the rank of (i* N4, )(v*). Then
((Nag) (7)) = (14 )

Proof. Tt is enough to notice that the Chern class of i* N4, is (1 +7)? by (1.18) and

Lemma 1.8. 1

Lemma 1.14. Suppose that h is an automorphism of X of order p such that h is

conjugate to b7 in Aut(X). Then N;(v*) = N;(v).

Proof. Let h be an automorphism of a variety W and suppose that 7 = u='hu
where u € Aut(W). If Z is a subvariety contained in the fixed point set of h at W
such that u acts on Z, then the action of v on the tangent bundles of W and Z
extends to an action on the normal bundle Nz,v. From this one can see that under
the isomorphism u : Nz/w — Nz;w the eigenvector bundle Nz (/%) is mapped to
Nzpw(v™).

In our case the embedding of Z = S¥Y into W = SP*X is equivariant with

~1 - . . P
respect to u because fyo(uz) = Y_F_, uh¥z and since (p,j) = 1, this is equal to
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ufro(x). Notice that the composition map (1.16) is not necessarily equivariant with

respect. to u. M

Lemma 1.15. Let h be an automorphism of X of order prime p. Assume that
(h)y \ {1} is contained in a conjugacy class of Aut(X). Then

A —t\ -~
unn = (1-2) (12 ) el

14 14

where v # 1 18 a power of e*™/P.

Proof. Using Lemma 1.14 and (1.17), the Chern class of N;(v*) is given by
(1+ tn)Ae%.

The last can be written as

Y
(14 tn)*= H (1 +tny —toy).
i=1

So using (1.3), the characteristic class of N;(v) is given by

1— e—tn 7—A ¥ 1— Pm,—rq -1
UNi(v)) = (f> H( T ) .

Using (1.7) we have

elimtny — =t — e~liyg, v—e e~ tg,
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pglu(Ni(lj]‘)) = pAm(e_Ul)—Aetﬂq(e"”)

j=!
A (taemm))
i=0 il .

(1.20)

= pim(e )"
We have no method to compute U (N; (7)) for any h € Aut(X), not even in the case
when A has order prime (unless it satisfies the condition that (h) \ {1} is contained
in a conjugacy class of Aut(X)). In what follows we will explain a way to compute
it if enough information about the quotient map f : X — Y is known and for the

case when N; is the normal bundle of the curve ¥ in X under the embedding

1:Y — SPX.

Lemma 1.16. Let f : X = Y be a degree p morphism of smooth curves. We have
*Torx = fof (K'Y = Ky' ® f.O0x.
Proof. Consider the graph map

' X —-XxY

5 (2, ().
Let A be the universal divisor of degree p on X and let A" denote (Idy x)*(A). By
Lemma 2.1 in [2], IV,§2 we have A’ =['(X) = X. Thus by the adjunction formula
we have
Oa(A") = f*K

The result follows from Lemma 1.6. ®

Using the following Lemma we can compute the degrees of the eigen line bundles
of i*Tgny and since i*Tgny (1) = N;(17) for 17 # 1, that is all we need to compute
U(N;(1?)). Let Z be a smooth projective variety defined over C and let £ be a
line bundle on Z such that a positive power £P admits a global section s and its
corresponding divisor D has normal crossings. Write D as C + Y_ a;E; where C

denotes the components of multiplicity 1 and E; is a component of multiplicity a;.
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For every real number z, [z] represents the integral part of z, defined as the only
integer such that

[z] <o <[z]+ 1

Consider the line bundles

L0 = fig O, (—Z [%] Ej> . (1.21)
J

The sheaf of Oz-modules

admits a structure of Oz-algebra, given by the inclusion
V. p-p
s LTP— Oz.
Let
p—1
Z' = Spec, (@ E_i) ,
i=0

let 7/ : Z' — Z be the associated morphism and n : Z — Z' the normalization of Z'

and 7 the composition of n and 7'.

Lemma 1.17. With the previous notation we have

p—1
T*OZ = @ E(i)_l .
=0

Moreover T is a galois cyclic cover of degree p, then we have an automorphism

_ , . . -
h of Z which acts on 7,0z and h acts as multiplication by v* on L9 where
v = ¥/ If Z is irreducible then Z is nothing but the normalization of Z in

K(Z)(Y/f), where K(Z) 1is the function field of Z and f is a rational function

giving the section s.
Proof. See Lemma 2 in [11]. m

Example. Let X be the Klein quartic curve. If A is an automorphism of order 7
then we have that i, h%, k' are in the same conjugacy class whereas h3, h3, h® belong

to another conjugacy class of PSLy(F7). In this case we have

X/(h) = P!
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and if we consider the normal bundle N of
i Pl S7X

then we see that the eigenvector bundles of N don’t have the same degree because
the number A in formula (1.17) is not an integer.

We know that X can be constructed by adding a seventh root of a polynomial
q(z) (see formula (2.6)) to C(z). The divisor defined by ¢(z) at P! has the form

dpg + 2py + po, then by Lemma 1.16 and by Lemma 1.17 we have that

6
N = R'ﬂ;ll ® @ E(’i)"l.

i=1

Using (1.21) we see that

Opi(—1) for i=1,2,4
Opi(—=2)  i=3,5,6.

Notice this agrees with Lemma 1.14. Using these values the degree of /V is 3 which

Lo =

also agrees with the value obtained using formula (1.17).

1.6 The computation

Now we shall assume that h is an automorphism of prime order p. Let K denote
the canonical line bundle Kgy of S°X. In the appendix there is a Maple worksheet,

which computes

Z(—l)itrace (h | H(S* X, K™)).

Notice that if n > 2 then by Lemma 1.2 this is trace (b | H*(S°X, K™)). The only
assumption made there is that (h)\ {1} is contained in a conjugacy class of Aut(.X).
The data required is

e The dimension b of the symmetric product S°X,

e the order p of the automorphism A,

e the genus g of the curve X,

e 5 the number of fixed points of h on the curve X and

e a vector u = (a,---,as) in which a; is a positive integer such that the

automorphism h acts as v* on the tangent space T}, of the fixed point x; € X.
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To apply the Theorem 1.4 we first need to know the fixed point set fix(h) of the
automorphism h in S*X. So let b = mp + I such that m > 0 and 0 <1 < p. From

section 1.4 we have
m
fix(h) = | Fi
k=0

where

Fe=J frn(8¥X)

DeAy,
and

Ay={D=az1+ - +a2,|0<a; <p-1 and Zaj:b—k:p}.

i=1

Since F; N F; =0 and f; p,(S*X) N fi,p,(S°X) =0 for Dy, D, € A;, we have

> (—1)'trace (b | HY(S"X,£") =Y Y Ak, D),

k=0 D€ Ay
where
Ak, D) =
chi(K™ |5, p(skx)) - [LUN@Y) - td(fr.p(S*X))
-/;Jﬂst) det(1 — hy.) '

So we need to compute all the divisors D € Ag. This is done by monadd()
and exponents() in the appendix. The idea is the following: a divisor > «,x;
can be seen as a monomial [[_, zj". The terms of the expanded polynomial
q(zy, -, xg) = (005, 2:)™ are (ignoring their coefficients) all the monomials of de-
gree dy, in the variables x;,- -, z,. Then taking residues modulo z¥ fori=1,--- s
we obtain a polynomial monadd(s, p,d;) whose terms represent all the elements
of A (taking di, = b — kp). So exponents(monadd(s,p, di), s) returns (matrix,
number of divisors), a matrix whose rows are the coefficients of the divisors D € A;.

Now, given D € Ay how to compute A(k, D) ? The tangent space T guy x), of

D € T 4a, yy has a decomposition

p—1
T(Sde)D = @ T(sde)D(VZ)'
i=1

Let r; = dim T{gu X)D(z/’) we call (ry, -+ ,7,_1) the class of D, notice 1y = 0. The
class of D = dyx1+- - -+d;z, is computed using Lemma 1.11, that is r; is the number

of times that v* appears in the list
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1/‘“,1/2‘“,~~ ,l/dlal’
ax ,,2a3 ., daa;
v ’l/ ) 71/ 2 27
I/as7u2us,_” 7]/(15115.

From the following remark it should be clear how to compute A(k, D) if we have

the class of the divisor D.

Remark 1.18. Assunie that the class of D is (ry, - ,rp_).

1) fr.p(S*X) can be identified with S*Y" | where Y is the quotient curve of X
by the automorphism h, so td(fp(S¥X)) does not depend on the divisor D. In
the appendix the function tdsdx(d, g} computes the Todd class of the symmetric
product S?C, where C' is a genus g curve, it is defined using formula (1.11).

2) N is the normal bundle of f;(S*X) in S®X. Now, b = pk + dy and dj is
the degree of D. If we consider the composition map (1.16) then N is the normal

bundle N 4,.;. Notice from remark 1.12 and Lemma 1.11 we have

p—1
det(1 — hy,,) =pF (1 = v"7)".

j=1

3) From the exact sequence (1.19) we have

[Tuven) = (Huwi(uf‘))) (Hu(z‘*mn)(w))) .

The first factor is independent of D and if A is conjugate to h' for : = 1,--+ ,p —
1 then it can be computed using formula (1.20), in the appendix the function
charclass1(k, p, v, g) computes it.

As for the second factor, from Lemma 1.13 we have

U (i*(Nap) () = (}{_—L) .

In the appendix this is equal to precharclass(k,p, j)™.
4) Now, h acts on Kj;, stxy = (Ap 0 i)"K as det(h(Ap o i)*Teox )~ ' From
Lemma 1.11 this is equal to

AL (1.22)
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where
koif p=2
=
0 otherwise.
Using formula (1.2) we have
cha(K! )= (W ZI=m)eh((Ap o i) KO™). (1.23)
fp(skX)

The Chern class of Kgqx is 1 + [(g — 1 — b)n + Y]t so using Lemma 1.8 we see
that (Ap o¢)*K has Chern class 1 + [(g — 1 — b)n + pI]t. Thus

ch((Ap 0 i)* K®") = ellos=1=bm+pilnt.

Example. Let X be a hyperelliptic curve of genus ¢. In this case h has order 2,

the quotient curve is P' and h has 2g + 2 fixed points on X. We assume h = g — 1.

29+ 2
g—1-2k

elements and all the divisors have the same class because there is only one eigenvalue,

Each set A4, has

in fact, ) = g — 1 — 2k(= dim T(Sde)D(I/i)). For each component of dimension &
of the fixed point set of h in S97'X we have, following the points of the previous
remark:

1) Because P! has genus 0, the 9 class is 0 in the cohomology ring of SFP!' = p*

and 7 is the class of a hyperplane. The Todd class of S¥P! is given by
k+1
Ui
1—e '

det(1 — thv) _ ok+ri _ 99-1-k

3) For the first factor in remark 1.18 3) we have A = k — g, so it is equal to

2\

(1 + e"’) '
1 4 en\ 2b+1-9
()

The second factor is equal to
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chi(Koipy ) = (=)™ ™eh(KD, p ),

Iskpl |5A:n>1
. n —
ch( 59“P‘|Skp1) =
So
n _ —n(g—1-k
C}LII(KA y_llP_\l'ngl) — (—1) (!] )

Then we have

-7 k+1
AMk,D) = / 2—9(_1)-n(g-l—k) (ie_) ,,.’lc+1.
. Sklpl

1—em

_ k41
/ l1+e™ s
Skpt 1—e"

k+1
. . L. -1
is the coefficient of n* in (1+“" ’) n*+l. So

1—e—7

. _ k+1 _ k+1 k+1
14+e™ kel 1+e™ 2—-2 dz
N = Res,— = Res,_
./.sml (1—6_"> I Cm=0\ T e 9z=0 z 1—-=z

=1—(—1)*".

Now

Then

Z(—l)":trace (h| H(S*"'X,K™)) =

[£5] 99+ 9
2—g _1 —7L(g—1—k) 1 o _1 k+1 P ’ i

> (1) (1-(-1) )g_l_%
k=0

An induction shows that for n > 2,

trace (h | H'(J, O(n©))) =

14279 & (-D9F-tp1  (—pnle=k-1) k| (1 1)k+! 29+2

+ kzo n 5 + 2 + (-1) (1-(-1) )(g—l—le:)

With respect to this involution, we have
H(J, 0(n0©)) = C*™ g VAR,

where

a(n) = = [n? + trace (b | H*(J,0(n©)))]

N | =
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and

B(n) = % [n? — trace (h | H(J, O(n®)))] ,

and C and V are the 1 dimensional representations on which A acts as 1 and —1

respectively.



Chapter 2

2.1 Curves with automorphisms.

Let X be a smooth complex curve of genus g > 1. Let Aut(X) be the group of
automorphisms of X. For every g > 2, there is a maximum order ;(g) for an

automorphism group of a curve of genus g. Hurwitz proved that
| Aut(X) |< 84(g — 1). (2.1)

He also proved that a finite group can be realized as a group of 84(g — 1) automor-
phisms of a curve of genus ¢ if and only if the group is generated by elements ¢, u

such that #2 = u® = (tu)” = 1. In fact we have
8g +8 < u(g) < 84(g — 1).

Macbeath (see [19] §6) has proved that there is an infinite number of ¢ for which
it(g) = 84(¢g — 1), on the other hand Accola [1] and Maclachan [21] have found
infinite families of ¢ with u(g) = 8¢ + 8.

The following information about Fuchsian groups and curves with automor-
phisins comes from {17] and as an application of it we will see how to prove (2.1).
For a different proof of (2.1) and other details about curves with automorphisms
see [2] pg 45.

Let H be the upper half plane. Let I' be a discrete subgroup of Aut(H) =
PSL,(R) such that acts freely on H, that is, the only element of I" with fixed points
on H is the identity. Then the orbit space H/I' can be given an analytic structure
such that the quotient map H — H/I is holomorphic. We will say that " is a

32
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Fuchsian group if H/T" is a compact Riemann surface. This is a particular case of
the so-called Fuchsian groups of the first kind (see [25] pg 19).

Curves with automorphisms can be characterized in terms of their uniformization
by the hyperbolic plane: any Riemann surface of genus > 1 can be identified with
H/m (X); conversely any Fuchsian subgroup N of PSLy(R) that acts freely on H
produces a Riemann surface H/N of genus > 1 whose fundamental group is N. The
automorphism group of H/N is I'/N, where I' is the normalizer of N in PSL,(R).

An element of a Fuchsian group I' has a fixed point in H if and only if it has
finite order, and the stabilizer of a point of H in I' is always a finite cyclic subgroup
of I'. An element of I' cannot fix more than one point of H, so every eclement of
finite order in I' belongs to a maximal finite cyclic subgroup. There are inﬁnitely
many of these maximal finite cyclic groups if there is one, and they fall into a finite
number of conjugacy classes. The orders of these maximal finite cyclic subgroups
are called the periods of . The multiplicity of a period is the number of distinct
conjugacy classes of maximal finite subgroups with that period for their order.
The algebraic structure of I' is completely determined when the periods and the
genus of the orbit space H/T" are known. In fact, if m,,--- ,m, are the periods of T’
in some order, each one repeated according to its multiplicity (we call (my,--- ,m,)
the period partition of H/T'), and if v is the genus of the surface H/T', then T is

defined by generators

Ty, Tr alablv"'7a”)’7b’y
and relations

L e L ey o e -1 _1... —lp—1 _ ¢
"t =yt = =2l =2y T biay by aybyal bl = 1. (2.2)

The following Theorem tells us how to count the number of fixed points of an
automorphism of a Riemann surface. Assume that our Riemann surface is H/N has
automorphism group G = I'/N, where N is a Fuchsian group acting freely on H

and T is the normalizer of N in PSLy(R).

Theorem 2.1. Let xy,...,z, € ' of orders my,...,m, be generators of maximal

finite cyclic subgroups of U, wncluding exactly one for each conjugacy class. Let
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q:T = T/N =G be the quotient map. For 1 # h € G let &(h) be 1 or 0 according
as h is or not conjugate to a power of q(x;). Then the number |fix(h)| of points of

H/N fized by h is given by the formula
|fix(h) | = Ne((h)| ifi(h)/mi,
i=1
where Ng((h)) is the normalizer of (h) in G.
Proof. See Theorem 1 in [18]. B

Assume that I' is a Fuchsian group and let » be the sum of the multiplicities of the

periods of T'. Then there are r points of H/I" at which the covering map

H— H/T (2.3)

is branched. If N is a normal subgroup of I acting freely on H, then it gives rise to

a covering map

H/N — H/T. (2.4)

Since

H — H/N

is unbranched, the r points at which the covering (2.3) branches are the same points
at which the branching of (2.4) occurs and the orders of the branching will be the
periods my,mg--- ,m, of T.

A fundamental domain for a discrete subgroup I' C PSLy(R) is an open subset F
of H, such that no two points are I'-equivalent and every point in H is ['-equivalent
to a point in the closure of F'.

If N is a subgroup of I' of index &, a fundamental region for N can be obtained by
taking the union of k£ copies tF' of a fundamental region for I', where the elements ¢

form a complete system of representatives of cosets Nt of N in I'. Hence

A(N) = kA(D).
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The area of a fundamental region for I' is given by the formula (see Theorem 2.20

in [25]):

T 1 i
A(D) = 27 (27-2+;(1— H)> (2.5)

In particular if N acts freely on H and g is the genus of its orbit space, we have

A(N) =dn(g—1).
So

|G|:A(N): 47{(9_1) .
ADY om (2724 0,00 1))

™m;

This formula can also be obtained using the Riemann-Hurwitz theorem. A theorem
of Siegel (Theorem 5 in [26]) states that A(I') > J- and that the equality occurs
only if I' is the triangle group with period partition (2,3,7) and orbit space of genus

0. Notice in this case that from (2.2) I' is defined by generators ¢, u and relations

t?=ud = (tu)" = 1.

From this it follows that |G| < 84(g — 1).

2.1.1 Equations of curves with automorphisms.

In general there is no algorithm to find equations of curves with known group of
automorphisms. In [17] Macbeath proposes the following idea in order to find equa-
tions of curves with automorphisms. The group of automorphisins G acts on the
function field K(X) of X: suppose that the field of invariant functions is the field

of a rational curve, that is the quotient map

X — X/G=P

is induced by a field extension C(z) C K(X). If G is a soluble group, then by
the theory of Galois K(X) is an extension by radicals of C(z). If enough is known

about the branch points of the quotient map this will enable us to compute equations
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defining the curve. We illustrate this idea by computing the equation for the Klein

quartic.

The Klein quartic.

This curve was discovered by Felix Klein in the 1870s and is better known for
being the only curve of genus 3 with automorphism group G of size 168, namely
G = PSLy(F7), the maximum for its genus. Klein computed the ring of invariants
of G for a 3-dimensional irreducible representation of GG: the equation of this curve
is the only quartic invariant for G in this representation. In [16] one can find several
survey articles about this curve.

We reproduce from [5] some information about G and the character table of
G. This group has 6 conjugacy classes, say 1A, 2A, 3A, 4A, 7TA, 7B. The number
of elements in each conjugacy class is 1, 21, 56, 42, 24 and 24 respectively, an
element in each conjugacy class has order 1, 2, 3, 4, 7, 7 respectively. Therefore
there are 6 irreducible representations of PSLy(F;). If h € 7A then h?, h1 € 74 and
h3,h®, h® € 7B.

CHARACTER TABLE OF PSLy(F;).
1A 2A 3A 4A 7A 7B
X1 1 1 1 1 1 1

X3 3 -1 0 1 o a
Bl 3 -1 0 1 a a

J

il 7 -1 1 -1 0 0

| 8 0 -1 0o 1 1

Now to follow Macbeath’s idea, a way to start could be this: from [6] one knows

that G is generated by elements ¢, u such that
t? =’ = (tu)” = 1.

Thus from the previous section there is a curve X admitting G as its automorphism



2.1. CURVES WITH AUTOMORPHISMS. 37

group. Let T be the triangle group with period partition (2, 3, 7) and orbit space of
genus 0. There is a normal subgroup N of T acting freely on the upper half plane
H such that X =2 H/N and G = T/N.

Let Gy be a subgroup of G of order 7. Let GG, be the normalizer of G, in G. Then
(7, has order 21.

Consider the quotient map ¢ : T'— T/N. Let

[y =¢"(G1), T2 =¢""(Ga).
Since the order of G; is 21, it has periods of order 3 and 7. So

g Ay _ 2m(2y — 24 &2 4 &)
A(T) . '

21

Then one sees that v =0, m = 1 and n = 2. Similarly I's has periods (7,7,7) and
v=0.

Consider the following maps
X — X/Gy — X/G;.
Notice GG /G4 is a group of order three acting on X/Gs and the map
X/Gy — X/Gy

is the quotient map of X/Gy by G,/Gy. Let h be a generator of G,/Gy. Since
X/Gy = P!, we can assume that the two fixed points of h in X/G; are 0 and oo and

that h acts on X/G9 by the rule z — w2z where w is a cube root of unity. Notice if

a is a branch point in C\z for X — %, then a,wa,w?a are the three branch points
for X — (—\; Therefore a # 0, co.

Let K(X) be the function field of X. The map X — X/G, corresponds to a field
extension C(z) C K(X) with Galois group Gs.

Then K(X) = C(2)(/q(2)), where q(z) € C[z]. Notice ¢(w'a) = 0 since these are
the only points where the branching occurs. Since the action of h on C(z) extends
to K(X), we have that if v € C(z) with v € K(X) then h - u” = o7 for some
v e K(X).



2.1. CURVES WITH AUTOMORPHISMS. 38

A natural candidate for ¢(z) should be 23 — a®, however this makes oo a branch
point. So one can choose

q(z) = AjA% Ay, (2.6)

where A; = w'z — a.

We have y” = ¢(z). Notice

o (5)

wo = (L)
“os =\ aza,

One can define a curve with field of functions K(X) in A* as the set of points

(',E07 Ty, Ta, Z)

satisfying the following equations

and for i=1,2

Ain

The last equation is valid for ¢« = 0 (modulo 3). Then we have

wlrzy wy ol
2.2 1 — PR R o 3 1N =0
T x; Wizt | = —(wotretaa’ +xp1”) (w—1) =0.
e 2
Wiy T9 WI
The expressions x;dz are abelian differentials on the curve and notice that the set
{xg, 21, xg, 23, x5, 25,1} forms a basis of K(X) as a C(z)-vector space. Therefore
xodz, x1dz, r9dz are three linearly independent abelian differentials over C, and since
3 is the genus of the curve, the ratios (zg : ; : z2) determine the canonical embed-

ding of the curve in P2,
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2.2 Decomposition for the Klein quartic.

Let X be the Klein quartic curve. Now we present the information about the fixed
points of an automorphism of X that we need in order to compute the decomposition.
The number of fixed points of h € G = PSLy(F;) in X acording to its conjugacy
class can be worked out using Theorem 2.1 knowing that the Fuchsian group that

vields G and X has period partition (2,3,7):

¢}

if h € 1.4. The whole curve is the fixed point set of the identity.

if h € 2A, then h has 4 fixed points on X.

if h € 3A, then h has 2 fixed points.

@

if h € 4A, then A has no fixed points on X.
o if h € 7A then h? h* € 7A too, and h3 h°, h% € 7B. In this case h has 3 fixed
points and these are the fixed points of any power of A.

Now let z be a fixed point of h € G, then h acts on the fibre Ky, at 2 of the
cotangent bundle Ky of X as
o 1lif h € 14.
o —1if h € 2A.
o If h € 34, let w be the primitive cubic root of unit. There are two fixed points
and h acts as w on the fibre of one of them and as w? on the other.
e If h € 4A there are no fixed points so this case does not apply.
e If h € TA or 7B, let ( be a primitive seventh root of unity. There are 3 fixed points,
the action of h on the fibre of the cotangent bundle at these points is multiplication
by ¢%, ¢* and ¢ .
For an element h € 7B the action of h on the cotangent space at its three fixed
points are multiplication by ¢, ¢? and ¢*.
As an example we can use these values in 1.5, for the trivial line bundle £ = O.

We have

If g e 24
1 — trace (g | HI(X,O)) = Z % = 4(%) = 2.
zefix(g)
If g € 34
1 — trace (¢ | H'(X,0)) = ! + ! =1

l—w 1—w?
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Ifge74

1 1 1 1 /7
= + + R
1—3 " 1-¢5 " 1-¢8 2 2

1 — trace (¢ | H'(X,0))

If g€ 7B
1 1 1 1 /7

1—trace(g|H1(X,O)):1_C+1_C2+1_§4—1+2+T

Let HY(X,0)=x1D XD X D XD xED xg. So from the charcter table we have:

a +3b +3c +6d +7e +8f = trace(g| HY(X,0)) =3, ge€l4

a —b —c +2d —e = -1, ge€24
a +e —f = 0, ge34
a +ab +ac  —d +f = —% -+ %7, geTA
a +ab +ac —d +f = —% — %, g € 71B.

Since dim HY(X,0) = 3 we have d = ¢ = f = 0. Therefore b =1, a = ¢ = 0, i.e
HO(‘Ya [{A) = X3-

Now to compute the decomposition of H%(Jx, O(n®)) into irreducible representa-

tions of G we first have to compute
> (—1)'trace (b | H'(SY™'X, K™)).

For h € 24 and 3A this can be done using our program:

SN (—1)'trace (b | H(S97' X, K™)) =3+ B g0 e 24

S (=1)race (b | HY(S9'X,K™)) =1 for h € 34.

Although not all the powers of an automorphism of order seven belong to the same
conjugacy class, we can use our program because its fixed point set in S?X has
dimension 0.

So for h in 7A we obtain:
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2C4n 2{271

7 . i -1v T __ 20"
Yo (=1)trace (b | HY(S*X K%)= i=@yizen + monzen + mohion

= 20" (7 4+ 20+ 3¢ - 20— 2¢Y)
+ 20" (560 = 3¢7 = 3¢ — 1 - 4¢7)
+ 20 (= = 3¢° = 3¢ - B - 40— 50,

For i in 7B we have:

i i i n _ 2{311 2(611 2(511
Z(—l) trace (h | H (Sg )&,K )) = (I—CI)(I‘Cz) + (1_C2)(1_<4) + (1_<4)(1_<l)

=20"(3 + 70+ 3¢+ 3¢+ 50
+20" (7 + 3¢ = 3¢ - 2+ 50
+207(3 4+ 70+ 3¢ + 2+ 30).
For h in 4A, let pi,--- , psy be the four fixed points of h? in X. We can assume that
ps = hp, and ps = hpy. Then the fixed points of h in S2X are p, + hp, and py + hp,.
We have
(Ts2x)py+hpr = Txpy, © Txp,
and h induces two linear maps o : Ty, = Txpp,, B Txpnp, — Txp,-

Then the automorphism induced on (Ts2x )y, +1p; has a matrix conjugate to

0 a
A=
b 0
Since p; + hpy is a fixed point of h* €2A, we see that A*> = —Id(r,, ),. Since

trace (4) = 0 we see that A is conjugate to

T %
0 —1
Thus we see that
h | ]{S'Z/\’pj—i-’lpj =1.

Using Atiyah-Bott fixed point Theorem (Corollary 1.5) we have

Z(~1)itrace (h | H(S*'X,K™)) = 1.
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Now using an induction we see that on the Jacobian of X we have:

Y (—1)trace (h | H'(J,0(n©®))) =n? for h € 14

_ DY g ,
=g for h € 214,

=n for h € 34,

=7 for h € 4A4.

Let o= ("' and ¢ = €*"/7 then for h € 74

S (~ftrace (h | HY(J,0(n0))) = (~2¢% = ¢t — 47 — 2y
+ (%C5 + %C‘l + %C + %C})/[z

For he 7B

o (=1)trace (R | H'(J,0(n®))) = (53¢ +2¢+ 3¢ +30)uf
R I T
TR e e YO
TR Y
Now the general solution of

a +3b +3c +6d +7e¢ +8f = trla 1A

¢ —b —c +2d —e = tr2a 24
a 4+e —f = tr3a 34
a +b +c —e = trda 44
a +ab +ac —d +f = tr7a 7A
a +ab +ac —d +f = tr7b 7B

(where o = i*é——"ﬁ) is given by
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a

_ fr2a + iria __

tr7b

168 8 7 4

ivVTtr7a + iV7ir7h _ ir7b
14 14 14

a6

tr7 3 5
Lr]a_+_tr2a_+_ - + 'ru._l_ Tz{a_*_tr‘Ja

3

ir7a irja
14 + 4

tr2a

_ tTa WTirta  tr?b T

14 14 14 14

tria + tr2a ir7h tria

28 4 7 7
tria + tria _ tr2a _ tria
3 24 8 4

tr7b + trlla + tr7a tr‘3a

7 2 7~ 3

iria
8 + 56

Then it H'(J5", 00)) = ;™ & 3™ @ ¥ & xa™ @ x5 & ¥, we have for

n=1,---,10:

1 2244 6 710
00113 4 6 9
0600113 4 8 9
012 46 11 14 22
0 01 25 8 14 20
00024 8 14 22

11
14
14
28
30
32

14
18
18
41
40
44
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2.3 Decomposition on the Macbeath curve.

There exists a Hurwitz curve of genus 7 with group of automorphisms G = PS L, (Fy).
Equations for this curve were first computed in [17] by Macbeath and we refer to
his paper for more details. The group G is simple and has 504 elements. There are
9 conjugacy classes 1A 2A, 3A, 7TA, 7B*2, 7C*4, 9A, 9B*2, 9C*4. An element in
each class has order 1, 2, 3, 7,7, 7,9, 9, 9 respectively. We reproduce from [5] the

character table of GG.

Character table of PSL,(Fg).

1A 2A 3A 7A B*2 C* 9A B*2 C¥4

X1 1 1 1 1 1 1 1 1 1
X2 7 -1 =2 0 0 0 1 1 1
X3 7 -1 1 0 0 0 —a; —ap —oy
X4 [ —1 1 0 0 0 —ay —a —ay
X5 7 -1 1 0 0 0 —ap —04 —a

xe | 8 0 -1 1 1 1 -1 -1 -1
x| 9 1 0 B B B 0 0 0
xs| 9 1 0 B B B 0 0 0
xo| 9 1 0 B Bs B 0 0 0

Here a; = pit + p=%, = e®™9 and B; = ¢+ (7, ¢ = e27/7,

Now we will compute trace (h| H°(S®X, K™)) for an element h in each conjugacy

class of GG.

2.3.1 Case 1A.

By Lemma 1.2 we have

> (=1)'trace (h | H(S®X, K™)) =n" — (n — 1)
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2.3.2 Case 2A.

An element h of order 2 has 4 fixed points {py, - - - , p4+} on X. Then using our program

we have

> (—1)'trace (b | H'(S°X, K™)) =
Cn—-1)R*—n+1)(-1)" 3 9n 9n?

2 +2 2+2

2.3.3 Case 3A.

An automorphism h of order 3 has 6 fixed points at X. Since there is only one
conjugacy class of order 3, all we need to now to apply our program is the following:

2im /3

Lemma 2.2. Let py,--- ,pg be the fized points of h. Then h acts as w = ¢ on

2

the tangent spaces of three points and as w* on the tangent spaces of the other three

points.

Proof. Let p € X be a fixed point of h. We first will see what are the other fixed
points of h. Let H = (h). The normalizer N(H) of H has order 18. Choose
t € N(H) such that > = 1, then tht = h? because G has elements of order 2,3, 7
and 9 only. We can assume that h = 2%, with z an element of order 9. N(H) =
( z,t )Y and N(H)/H = {t,1z,t22,22, 2,1} (= S3). Then the 6 fixed points of h are
tp, tzp,t2%p, zp, 2*p and p.

Now one can verify the lemma, for instance, if h acts as w on T,, consider the
composition

t h =1
T, = Ty — Ty — 1,

. bt o~ h ot
induced by X - X 5 X 5 X. Then one sees that h acts as w? on T, =

So

> (=1)'trace (h | H'(S°X, K™)) =

S 87 w+8n (W™)? + 8+8n w 8+16n w"+11
—— N = ——+ - — =4 — —.
3 3 3 3 3 3 3 3
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2.3.4 Case 7TA,B,C

Let h € G be of order 7. Let H = (h). Since h has 2 fixed points on X, the
normalizer N(H) of H has order 14. Let t € N(H) be of order 2. We have N(H) =
(t,h). Soif p is a fixed point of h, then the other fixed point is tp,. Now tht = h*.
Notice k # 1, otherwise N(H) would be cyclic and there is no element of order
14 in G. So k = —1 mod 7. From this we see that if h acts as (“ on T, then h
acts as (" on Ty, . The value of o depends on the conjugacy class of h, we do not
know these values, however in this case we obtain the same result for any value of
a(=1,2,3,4,5,6).

Although not all the powers of h belong to the same conjugacy class, we can
apply our program because the fixed point set of & on S®X has dimension 0 i.e.
the normal bundles of the components of the fixed point set have total Chern class

equal to 1. In this case we obtain

> (=1)'trace (b | H'(S°X, K™)) = 1.

2.3.5 Case 9A,B,C

Let z € G has order 9. The 6 fixed points of 2% at X have the form p, zp, 2%p, p,
22, z°pe, where 2° acts on T, as w and as w? on T,,,. The fixed point set of z at SX
consists of the 3 points 2p + 2zp + 222p, 2p; + 22py + 22%py and p+ z2p + 2%p +py +
zpy + 2%py. So we need to know the action on the tangent spaces of these points at
S6X. If we identify the tangent spaces T, T,, and T2, with C then we can assume
that the induced maps T, — T, T;, — T2, and T2, — T}, are mulptiplication by
scalars a, b and ¢ respectively. Since z* acts as w on T, we have abc = w. Similarly
we choose scalars d, e, f such that edf = w? for the case py, 2py, 2%py. From this we
see that the action on the tangent space of p + zp + 22p 4+ pa + zpy + 2%y is given

by the matrix



2.3. DECOMPOSITION ON THE MACBEATH CURVE.

47

[~ .

0 0 ¢

o o O o o

0
0
0
f
0
0

S o o O O

a
0
000
0

0

(&

whose determinant is 1 and its characteristic polynomial is ¢(\) = (A —w)(A*—w?)

A+ A% + 1. Now, for the other 2 points, let V|, V5, V3 C S?X be disjoint open
p

neighbourhoods of 2p, 2zp, 222p respectively. Then V; x V, x V4 is isomorphic to a

neighbourhood of 2p + 22p + 2z?p. Choosing coordinates o,, oy for S2X as in the
g g

proof of Lemma 1.9, one can see that the action on the tangent space of this po

is given by the matrix

(000 00 ¢ 0]
00000
@« 000 0 0
0 a2 000 0
00 b 00 0
000 08 0 0]

int

which also has determinant 1 and characteristic polynomial ¢(A). Now we can use

1.5 to obtain

_ . 1
Z(—l)ltmce(z | H(S*X,K™)) =3 (5) =
2.3.6 Final result.
Let HO(J, O(Tl@)) — (o (n) ® VZM(”) & V;’aa(n) ® - vaag(n), then

16 1 1 1
= —n+=tiry —trjl + = trj2
ay 2171+9113+504 ] +8r],

1 1 1 2
ay = ﬁt’l‘jl — gt’l’_]2+ Sn — §t7]3,

1 1 1
a3 = a4 = a5 = 5 tT]g + 7—2 tT_]l - g trj2,
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ag = 51714— 1 trql 1t"3
ST 1" T ez T gt

1 1 1
ay = ag = Qg — —?’I’L+ %t’l‘_]l+gt1]2,

where
tril =n’,
. 1 3 n
trj2 = g ((=1)" + 3),

8 ; 11
tryd = 5w"n+ % (w™)4n + 3

For the first 10 values of n we have

=
!
1

4 13 52 175 620 1683 4296 9597
0 22 212 1070 3824 11396 29000 66324
0 30 212 1070 3840 11396 29000 66348
0 30 212 1070 3840 11396 29000 66348
0 30 212 1070 3840 11396 29000 66348
2 32 260 1240 4438 13072 33288 75912
4 42 308 1410 5052 14748 37576 85500
4 42 308 1410 5052 14748 37576 85500
4 42 308 1410 5052 14748 37576 85500

)
So2 L 2 LA 2R o
L L L L LoD
Il
O O O O D o o O &

20100
138640
138640
138640
138640
158730
178820
178820
178820
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2.4 The Bring curve of genus 4.

The Bring curve is the only genus 4 curve admiting the symmetric group G := S; as
its group of automorphisms. It is another example of a curve with maximal group of
automorphisms. Some information about this curve can be found in [24], [8] or [9].
This curve can be defined in P! using the equations
5 5 5

in =0, Zr? =0, er = 0.

i=1 i=1 i=1
The group acts permuting coordinates. We use [12] to produce the character table
of S5 and some information about its subgroups. There are 9 conjugacy classes for
G, say 1, (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5) of orders
1,2,2,3,6,4,5 and sizes 1,10,15,20,20,30,24 respectively. Denote by 1a, 2a, 2b, 3a, 6a, 4a, 5a

the conjugacy classes of G. The character table of Ss

la 2a 2b 3a 6a 4a 5a
x|/ 1 1 1 1 1 1 1
x| 1 -1 1 1 -1 -1 1
x3;|! 4 -2 0 1 1 0 -1
xe| 4 2 0 1 -1 0 -1
xs| 1 1 -1 1 -1 0
x¢| 5 -1 1 -1 -1 1 0
x| 6 0 -2 0 0 0 1

The Fuchsian group which yields X and G has period partition (2,4,5). Next we

will compute trace(h | H°(S?X, K™)) for an element A in each conjugacy class of G.

2.4.1 Case 1la.

By Lemma 1.2 we have
> (—1)'trace (h | H'(S*X, K™)) = n'* — (n— 1)".
On the Jacobian we have

trla := trace (h | H'(Jx, O(n®))) = n'.
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2.4.2 Case 2a.

The normalizer of ((1,2)) in G is H = ((4,5),(3,4),(1,2)), H has order 12. An
element in this class is the image of a maximal cyclic subgroup of order 2 of the
Fuchsian group that yields Ss as the group of automorphisms of X. So an element

in this class has 6 fixed points in X.

Z(—l)itrace (h| H(S*X,K™)) = 5(_1;—_3 + 3n.
Then on the Jacobian we have
3 5(-1) 3 1 3In
tr2a := trace (b | H(Jyx, O(n®))) = 1 + (4 ) + 2 (T;+ ) _ 377?

2.4.3 Case 2b.

The normalizer of {(1,2)(3,4)) is H = ((3,4),(1,2),(1,3)(2,4)), H has 8 elements.
An element in this class is the saquare of an element in 4a, so it is the image of an
element in a maximal cyclic subgroup of order 4 of the Fuchsian group that vields
Sy as the group of automorphisms of X. Therefore there are 2 fixed points in X for

an automorphism in this class.
Z(—l)itra.ce (h | H(S*X,K™)) = 2n — 1.
Then on the Jacobian we have

tr2b .= trace (h | H*(Jx,O(n®))) =n(n-+1) —n.

2.4.4 Case 3a.

The automorphisms in this class have no fixed points in X. So we have
> (~1)'trace (b | H'(S*X, K™)) = 2n— 1.
Then on the Jacobian we have

tr3a := trace (h | H*(Jx,O(n®))) =n(n+1) — n.



2.4. THE BRING CURVE OF GENUS 4. 51

2.4.5 Case 6a.

An element in this class has no fixed points at X. If h € 6a then h* € 2a. So the
fixed points of h* at X are of the form py, hp,, h*py, p2, hpa, h?p, and the fixed points
of h at S?X are p; + hp, + h®p1, pe + hps + h%p,. The action on the tangent spaces

at these points is given by matrixes of the form

0 0 ¢
a 0 0 3
0 b 0
where abc = —1. This matrix has characteristic polynomial A\* + 1. So using

Corollary 1.5 we get
> (=1)'trace (| H'(S*X, K")) = (—=1)".

Then on the Jacobian we have

w
—_

—1)"

T

tr6a := trace (h| H*(Jx, O(n©))) =

N |

2.4.6 Case 4a.

The normalizer of {(1,2,3,4)) is ((1, 2, 3,4), (2,4)) and has 8 elements. So if h € 4a
then the 2 fixed points p;, p, of h? are the fixed points of h in X. Since h and h®
are conjugate to each other we see that h acts as ¢ and —i on the tangent spaces of
the two fixed points. The fixed points of h in S3X are 3p(, 2py + p2, p1 + 2p2, 3ps.
From Lemma 1.11 we see that the eigenvalues of h on the tangent spaces of these
points are —1, —7,7. So h acts as —1 on the fibres of the canonical line bundle at

these points. Using 1.5 we get
> (—1)'trace (h| H'(S*X, K™)) = (—-1)".

Then on the Jacobian we have

trda := trace (h| H*(Jx, O(n©))) = = +
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2.4.7 Case 5a.

The normalizer of ((1,2,3,4,5)) is {((1,2,3,4,5),(2,5)(3,4),(2,4,5,3)) and has 20

elements. So there are 4 fixed points in X for an automorphism 4 in this class and

since the 4 powers of h belong to this same class we see that h acts as v',---,v*

2'i7r/5)

(v=oe on the tangent spaces of these points.

S (< 1)trace (h| HI(SYX, K™)) = 4 ) (v -1) 4 ) (v—-1)(v+1)

=4 24

5 , 5
4w (v—-1D) W +v+1)

)
+4u"(2+1/3+l/2+u)

5
Then on the Jacobian we have
9 4 4 4 2,3 4 3 ’2
trda .= trace (h| H°(Jx,O(n®))) ==+ AL -
5 5 5 5
iy 4, 4 4 4 2)
— - — -y — -V
5 5 5 57 M

where y = "L,

2.4.8 Final result.

Let HO(.], O(n@)) = Co (n) @ V2a2(n) @ Vz}as(n) - Vf)w(n)- Then

tria tréa tr5a trja tr2b tr2a tr3a
120+6+5+4+8+I2+6
. _ tr2a trla _ trba trba _ tr4a ir2b irda
ai(n) 12 T 120 5 T s s % T
o\
2( ) tria + tr6a _ ir2a 4 ir3a _ trba
30 6 6 6 5
az(n)
— __trba irla tréa ir3a _ trba
as(n) et 5 + 5%+ 5% -
a1
5( ) __trda + tria + tr2h _ ir4a + tr2a + tr6a
6 24 8 4 12 6
(1,6(7?,)
) ir4a irla _ tr2a tr2b _ tr6a _ tr3a
| az(n) i Y 2 T8 6 6
trba iria tr2b
| 5 + 20 4 3
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Forn=1,.---,10 we have

—

a(n)

=

2(77/

az(n

=

=

5

=

g\ T

)

)
4(n)
(n)
(n)
(n)

az\n

-

-~

-

o o o o o o 9=

N O O W

17
10
18
30
28
22
26

27
16
40

o7
48
96

41
28
76
100
104
92
108

62

44
131
163
176
160
189

89

68
212
252
280
260
308




Appendix A

The program.

Although from what is said in section 1.6 it would not be difficult to write a program
to compute

D (—1)'trace (h | H'(S"X, K™))
we present one here. The program is for Maple and we will explain what some of
its subprograms do.
We start with some notation and we refer to section 1.6 for this. What we want to

compute is

iZ/\kD

k=0 De Ay

> Ak, D).

DeA,

/ sumO(k).
Sky

Let sum1(k) represent

This can be written as

Now sum0(k) can be written as

sum0(k) = tdsdz(k,y)charclassl(k,p,v, g Z prod(D
DeE Ay

where

Chh(K’” 'fk,D(Skf\) 1_[ Ll NAD (IIJ))
det( thv) '

There can be several divisors with the same class, and prod(D) depends only on

prod(D) = (A.1)

the class of D. If we compute the set of classes Ay /class of divisors in 4, and the

o4
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number of elements #class(D) in each class, then we have

Z prod(D) = Z #class(D)prod(class(D)).

DeAy class(D)E Ay /class

The function classpts() computes the classes of the divisors D € 4, and the

function classes() counts number of classes and the number of divisors in each
class. We use several subprograms, namely trg, sum1l, lefpts, newnops, newop,
monadd, exponents, classpts, classes, tdsdx, charclassl, inverslmnu, precharclass,
ptstheta. Now we are going to explain three of these maple programs, namely, trg,
suml and lefpts.

etrg. This is the main program, that is
trg(g, s,u,p,b) = Z(—l)’trace (h | H'(S* X, K™)).

What trg does is to compute

m

Zptstheta(suml(j), v)-

§=0
We use ptstheta because sum1(y) is a homogeneous polynomial of degree j in the
variables 1, 8 and to make sense of it we use formula (1.9), that is, ptstheta converts
Y a0 to Y ars (Z)v‘!, where 7 is the genus of the quotient curve Y = X/ < h >
and a,, is free of n or 6.
esuml. Roughly what this program does is to compute the classes of divisors
Aj/class and then use them to compute | siy sumO0(j). Let nfiz denote the number
of fixed points of the automorphism A on the curve X.
If

a = monadd(nfir,p,b —p* j)

then

exponents(a, nfix)
is a matrix of dimension A x nfir whose rows represent all the divisors in A4;, i.e.
if (cvy, ..., npiz) is a row of this matrix , then it represents the divisor Z:ZIT o,
where z; are the fixed points of the automorphism A at the curve X . Notice A is

the number of divisors in A; and it can be computed using (1.12), notice also that

b — p*j is the degree d; of the divisors in A;.
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Now B:=classpts(u,nfix,exponents(a,nfix),p) computes the class of each divisor
in A,. Here a matrix of dimension A x (p — 1) is produced; each row of this matrix
represents the class of a divisor in A;.

With classes(B,p) we obtain a matrix cc of dimension ¢t x p. The first p — 1
coordinates of each row of this matrix represent the class of a divisor in 4; and the
p" coordinate is the number of divisors with that class. There are ¢ different classes
of divisors in A;.

At the end sum0 is computed and the coefficient of # of sum0 is what we called
Joiy 5umO(j).

Notice classpts is a function of five arguments but since exponents returns
two values, then classpts(u,nfix,exponents(a,nfix),p) is well used. Notice also that

classpts and classes return two values.

elefpts. This program is to compute

Z #class(D)prod(class(D)).

class(D)E A /class

Here there is a cycle in which ¢ runs over the number of of classes of divisors in the
A; in question. Inside this cycle there is another cycle in which j runs from 1 to

p — 1. The final value of {[7] in the cycle for j will be the factor
Hu (Nap) ()

in formula (A.1).

The final value of invdtr(i] will be see 2) in remark 1.18. The final

1
det(I—h[NV)"
value of aali] will be the exponent of v in formula (1.22).

The corresponding value of formula (1.23) for a divisor D in the i class of our
A, is chgli].

Since ccfi, p] is the number of divisors in the i class,
l[7] * tnudtr(i] x chg[i] * cc[t, p]

is what we called #class(D)prod(class(D)).

The final value of 77 is the sum that we want to compute.
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Just a final note: when we are using Maple we do not use the complex value
of v. Every time we have a polynomial g(v) we use rem(q(v), 1’:—01 V', v), where
rem(a, b, x) is a maple function that computes the residue of the polynomial a
modulo b. The third parameter makes rem regard a and b as polynomials in the x

variable. In some cases (for instance in precharclass()) we use the formula

1 1 Ny
= - Z(p -1 -5 (A.2)

which is true for v # 1 such that »? = 1.
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> trg:=proc(g,nfix,A,p,b)

> #trg computes the trace of an automorphism h of

> #order prime p on "H"0(Sym(b,X),K"n)",

> # b can be any positive integer.

> #We assume that all the powers of h belong to

> #the same conjugacy class;

> #b is the dimension of the symmetric product

> #where we are working,

> #g is the genus of the curve X where the automorphism is acting;
> #nfix is the number of fixed points

> #(pl...p[nfix]) of the automorphism in the curve;

> #A is a vector with nfix positive entries(al,a2,...)
> #and h acts on the tangent space

> #of pi as nu”(ai),where nu represents a

> #pth-root of unity,

> 1local j,ld,mdim,val,gamma,ffff;

> mdim:=iquo(b,p):

> #gamma is the genus of the quotient curve, we

> #are using Riemann-Hurwitz

> #theorem to compute it.

> gamma:=(2%(g-1)-(p-1)*nfix)/2/p+1:

> val:=0:

> for j from 0 to mdim do

> val:=val+ptstheta(suml(j,p,g,nfix,A,b),gamma)

> od;

> val:=collect(val,yyy);

> ffff:=unapply(val,yyy):

> #Here we are replacing yyy by nu"n as anounced in lefpts,
> #sometimes is better not to replace it

> #because it makes it easier to perform some algebraic operations.
> ffff(nu™n);

> end proc:
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suml
> suml := proc(dim,p,g,nfix,A,b)
> local a,B,sum0,gamma,intsum0;
> #p,g,nfix,A,b are as defined in trg
>  #so0
> #suml is a function of dim.
> a:=monadd(nfix,p,b-p*dim):
> 1f a = 0 then 0 else
> gamma:=(2x(g-1)-(p-1)*nfix) /2/p+1:
> B:=classpts(A,nfix,exponents(a,nfix),p):
> sumO:=charclassl(dim,p,gamma,g)*tdsdx(dim, gamma) *
> lefpts(classes(B,p),p,dim,b,g):
> intsumQ:=coeff (suml,t,dim);
> rem(intsumO,sum(nu”i,i=0..p),nu) fi;
> end proc:
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lefpts
> lefpts:=proc(cc,h,p,dim,b,g)
> #leftpts first computes " \Sigma #class(D)prod(class(D))",
> # where the sum #"\Sigma" runs over
> #the classes of divisors in $A_{dim}$.
> # cc is a matrix of dimension hxp,
> # it is the matrix of classes of points, to be more
> # precise the first p-1
> #coordinates of each row of cc represent a class of
> # a divisor and the p-coordinate
> #is the number of divisors in that class,
> #h should be
> #the number of classes of divisors in $A_{dim}$
> #(not the number of elements in #$A_{dim}$);
> #b 1s supposed to be the dimension of the space where
> #the v.b we are interested in is defined
> 1local i,j,1l,pol,invdtr,ff,aa,chg,rr;
> rr:=0;
> pol:= sum(nu~i,i=0..p-1);
> ff:=unapply(inversimnu(p),nu);
> #ff(nu) is the inverse of (1- nu) if nu"p=1;
> #this(combined with rem( ,pol,nu)) will be used
> #just to simplify nu where it is possible.
> for i from 1 by 1 to h do 1[i]:=1;
> invdtr(lil:=1/(p~dim);
> 1if p = 2 then aal[i] :=dim else aa[i]:=0 end if;
> for j from 1 by 1 to p-1 do
> 1[i]:= rem(
> precharclass(dim,p,j) " (ccli,jl)*1[i],t" (dim+1),t);
> 1[i] :=rem(1[i],pol,nu);
> invdtr[i]:=rem(ff(nu~(p-j)) ~(ccli, jl)*invdtr(i],pol,nu);
> aalil:=aalil-j*ccli,j];
> end do;
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> aali] :=modp(aalil,p);

> chgli] :=convert(

> series(exp(n*((g-1-b)*eta+p*theta)*t),t=0,dim+1) ,polynom
> )*yyy~aalil;

> #at the end yyy will be replaced by nu’n;

> rr:=rr+l[i]l*invdtr[i]l*chglil*cc[i,p] od;

> rr:=rem(rr,pol,nu);

> rr:=rem(rr,yyy p-1,yyy);

> rem(rr,t”~(dim+1),t);

> end proc:

newnops
> newnops:= proc(a)

> #newnops returns the number of sumands of a;

> #we do not use the maple function nops because
> #if "a" is a single monomial

> #then nops returns the number of factors.

> 1f a=0 then 1:

> else nops(a+ZZZ)-1: fi:

> end proc:

newop

> newop:=proc(i,a)
> #mewop returns the i"th summand of a.
> if newnops(a)=1 then a: else op(i,a): fi:

> end proc:
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monadd

>

monadd: =proc(m,p,d)

> #monadd computes a polynomial whose terms are all
> #the monomials of degree d in m variables;
> #and the degree of each variable is at most p-1;
> #The monomials in monadd correspond to divisors
i #supported on the fixed point set
> '#m = number of fixed points;
> #p 1s the order of the automorphism;
> #d is the degree of the monomials;
> local a,j;
> a:=sum(x[i],i=1..m)"d;
> for j from 1 to m do a:=rem(a,x[jl"p,x[jl1) od;
> return expand(a);
> end proc:
exponents
> exponents:= proc(a,m)
> #a must be a polynomial in the variables x[1],...,x[m].
> #a must be expanded when entered;
> 1local h,i,j,k;
> h:=newnops(a);
> k:=Matrix(h,m);
> for 1 from 1 to h do
> for j from 1 to m do
> k[i,j]:= degree(newop(i,a),x[j]1) od od;
> return(k,h);
> end proc:
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classpts
> classpts := proc(A,m,k,h,p)
> #this computes the class of a point;
> #A is a vector with m entries, where m=number of fixed points;
> #the automorphism g acts as v~ (A[i]) on
> #the tangent space at the i-th point, where
> #v is a primitive p-root of unity;
> #p is the order of the automorphism;
> #k is an hxm matrix;
> # h = newnops(monadd(m,p,some d)) = number of fixed point
> components in Sym~d(X)
> #each row of k represents a point;
> #there are h points;
> local 1i,j,1,B;
> B:=matrix(h,p-1);
> for i from 1 to h do
> for j from 1 to p-1 do
> B[i,j]1:=0 od:
> for j from 1 tom do
> if (k[i,j]1>0) then
> for 1 from 1 to k[i,j] do
> B[i,modp(A[jl*1,p)]:=B[i,modp(A[j]1*1,p)]+1;
> od fi od od:
> return(B,h);
> end
> proc:
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classes
> classes := proc(B,h,m)
> #this counts the multiplicity of the
> #rows of the matrix B;
> #B is a matrix of dimension h x m-1;
> #m 1s the order of the automorphism;
> local c¢,cc,i,j,e,r,s,ss,t;
> for i from 1 to m-1 do c[1,i]:=B[1,i] od;
> for i from 1 to h do c[i,m]:=0 od;
> t:=1;
> for 1 from 1 to h
> do"dol";
> 1r:=1:8:=0:
> while((s = 0)and(r < (t+1))) do "do2";
> s8:=1:j:=1:
> while((ss=1)and(j < m))do "do3";
> if B[i,jl= clr,j]l then j:=j+1;
> else ss:=0 fi od;"end od3";
> #ss=0 means the row i of B[] is
> #different from the row r of c[]
> #(more precisely least the m-1 entries of the r row of c[]);
> if (ss = 1) then s:=1;
> clr,m]:=c(r,m]+1;
> #we put s=1 to break the while cycle,
> #s=0 means the row i of B[] is not equal to
> #any of the classes we have so far
> # i.e the first r rows(or sub rows of lenght m-1) of c[];
> else r:=r+1 fi od;"end do2";
> 1f s = 0 then t:=t+1;
> clt,m]:=1;
> #Here since the i row of B 1s not one of
> #the classes we had, we register it.
> for j from 1 to m-1 do
> c[t,j]:=B[i,j] od fi od;"enddol";
> c¢c:= matrix(t,m);



Appendix. 65

tds
>
>

>

for 1 from 1 to t do

for j from 1 to m do

ccli,jl:=cli,j] od od;

#the last coordinate cc[i,m] represents the order of

#the class i. Remember m is the order of the automorphism;
return(cc,t);

end proc:

dx

tdsdx := proc(d,g)

#tdsdx computes the todd class of a

#d-symmetric product of a curve of genus g;

local pl,p2,p3,p4,tau;

if d=0 then 1 else
tau:=convert(series((t*etaxexp(-eta*t)+exp(-eta*t)-1)/
(t*etax(1-exp(-eta*t))),t=0,(d+1)*(g+1)+1) ,polynom);
pl:=sum((t*theta*tau)~j/(j!),j=0..g);
p2:=convert(series((etaxt/(1-exp(-eta*t))) ~(d-g+1),
t=0, (d+1)*(1+g)+1) ,polynom) ;

#notice we are using a very large order for

#the expansion of the series,

#namely (g+1)*(d+1)+1 rather than d+1,

#because d+1 does not produce correct values

#for tdsdx(1,g).

#This makes the program too slow.

#For instance for d=1, g=11,

#the calculation lasted 2444.370 seconds.

#The problem is the expansion of tau, I think.
p3:=series(p2*pl,t=0, ((g+1)*(d+1))+1);

p4:=convert (p3,polynom) ;

return(rem(p4,t~(d+1),t)) fi;

end proc:
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charclassl
> charclassl := proc(m,n,gamma,g)
> #See section "The computation" for
> #the definition of charclassi;
> #m = dimension of symmetric product;
> #n= order of automorphism(a prime number);
> #gamma = genus of quotient curve;
> #g genus of curve;
> local A,p,q,U1,U2,U3,U4;
> A:= m+(gamma - g)/(n-1);
> p:= unapply(sum(z~i,i=0..n-1),z);
> q:= unapply(-zxdiff(p(z),z)/p(z),2);
> Ul:= (n~A)*p(exp(-etaxt)) (-A);
> U2:=sum((t*theta* q(exp(-t*eta)))~j/(j!),j=0..gamma);
> U3:= series(U1xU2,t=0, (gamma+1)*m+n) ;
> #try to find the best value for the order in U3,
> #maybe (gamma+1)*m+n is not the best value,
> #it makes the program slow;
> U4:=convert (U3,polynom) ;
> return(rem(U4,t” (m+1),t));
> end proc:
inverslmnu
> inversimnu :=proc(p)
> #computes the inverse of 1-nu, if nu”p=1.
> sum((p-1-j)*nu”(j),j=0..p-2)/p

>

end proc:
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3

precharclass
> precharclass := proc(d,p,pow)
> #See section "The calculation" for the
> #definition of this function.
> #d is the dimension of the symmetric product;
> #pow is the exponet of nu, i.e it nupow is the eigenvalue;
> local pl,p2,p3,p4,p5,f,pol,];
> if pow = 0 then 1 else pol:=sum(nu”j,j=0..p-1);
> pl:=series((1-1/nu)/(1-exp(-eta*t)/nu),t=0,d+1);
> p2:=convert(pl,polynom);
> #factor(p2) is a polynomial in nu divided by (1-nu)"d;
> #the inverse of (1-nu)~d is p3:
> p3:=rem((inversimnu(p))"d,pol,nu);
> #S5So0 multipliying p2 by 1:
> p4:=p3*factor((1-nu) “d*p2);
> p5:=rem(p4,pol,nu);
> f:=unapply(p5,nu);
> f(nu~pow) fi;
> end proc:
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ptstheta
> ptstheta := proc(a,g)
> #g is the genus of the quotient curve;
> #a must be a polynomial in the variables theta,eta;
> #a must be expanded when entered;
> #this program makes each term of the form
> #theta r*etaxt to r'!'binomial(g,r)x*t;
> local aa,b,i,j.k,ff;
> aa:=expand(a);
> k:=0;
> for i from 1 by 1 to newnops(aa) do
> k =
> degree(newop(i,aa),theta)!
> *binomial(g,degree(newop(i,aa),theta))*newop(i,aa)+k od:
> ff:=unapply(k,theta,eta):
> return(£ff(1,1));

end proc:
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