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Superconducting Pb1.xEuxMo6S8 measured between 300 mK 

and Tc in high magnetic fields, using a field-gradient torque 

magnetometer 

Nicola Ann Morley 

Abstract 

A field-gradient torque magnetometer has been designed and constructed which 

measures the magnetic moment of isotropic superconductors using a Quantum Design 

torque chip. The magnetometer fits onto the base of an Oxford Instruments Heliox 

probe; thus the temperature range is 300 mK to 20 K, in magnetic fields up to 15 T. 

The superconductors measured on the torque magnetometer in vacuum were NbTi 

wire, PbMo6Ss, and Pbo.1sEUo.2sMo6Ss as a function of magnetic field, magnetic field­

gradient and temperature. The utility of the torque magnetometer was demonstrated 

by determining the critical current density ( Jc) and the upper critical field ( Bc2 ( 0)) 

of the samples. These superconducting properties were compared with the vibrating 

sample magnetometer (VSM) values, for the same samples. 

The change in the superconducting parameters and properties of Pb 1-xEuxMo6Ss, for x 

= 0.0 & 0.25 were investigated. The samples were fabricated using two different heat 

treatment methods, which finished with hot isostatic pressing (HIP'ing) at 2000 bar 

and 800 °C for 8 hours. To characterise the superconductors, ac resistivity, ac 

susceptibility, specific heat and magnetic measurements were carried out, as a 

function of magnetic field and temperature. From the magnetisation data, the GL 

parameter ( K) and the Sommerfeld constant en were determined for the magnetic 

superconductor x = 0.25 . For both samples, K was determined in the temperature 

range 6 K to Tc, from the magnetisation data. For x = 0.0 & 0.25, the critical 

temperature ( ~ ) , the upper critical field ( Bc2 ( 0)) , the critical current density ( Jc) 

and the irreversibility fields ( B;rr) were determined from the experimental data. 
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The following list contains the variables and constants, which occur in this thesis: 

av- voltage calibration constant of the QD torque chip 

aR- resistance calibration constant of the QD torque chip 

ap - variable in the flux pinning scaling law 

aK - constant in the Kramer law 

A - The magnetic potential vector 

A - Area in vector form 

A -Area 

a- radius of model sample 

a(T)- parameter in the Ginsburg-Landau equation 

Bc2(IJ - The upper critical field of a type II superconductor, at temperature T. 

Bc1(F) - The lower critical field of a type II superconductor, at temperature T. 

Bc(F)- The critical field for a type I superconductor, and the thermodynamic critical 

field for a type II superconductor, at temperature T. 

Bc3 - upper critical field at the superconductor-insulator boundary 

Bin- The internal magnetic field within a superconductor. 

Birr- the irreversible magnetic field of a type II superconductor. 

Btoc - magnetic field experienced by the sample when in a field gradient 

Bapp - external magnetic field 

B*- characteristic field from the Bean's model 

BJ(y)- Brillouin function 

b - the reduced magnetic field; the ratio of the applied magnetic field to the 

irreversible magnetic field. 

bmax - the reduced field at which the peak in the normalised flux pinning force occurs 

b(T)- parameter in the Ginsburg-Landau equation 

dB 
- - magnetic field gradient 
dz 

dB. 7 h . h . . 1 fi ld . h -"-- - c ange m t e upper cnttca 1e w1t temperature 
dT 

fJA - Abrikosov constant 
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C - Curie's constant 

c - specific heat 

~c - discontinuity in the specific heat 

d- position of the wavefunction 

D - demagnetisation factor 

~(T) - energy gap at temperature T 

0- diameter 

e - electron charge 

e* - effective electron charge 

E - electric field strength 

lPo - quantised magnetic flux 

tPo - one quanta of magnetic flux 

tjJ - magnetic flux 

Fp -the volume flux pinning force 

Fpmax- the maximum volume flux pinning force 

Fs - Helmholtz free energy in the superconducting state 

Fn- Helmholtz free energy in the normal state 

'fsj shape factor, used to determine the critical current density 

Ym - mass anisotropy ratio 

y - Sommerfeld constant 

rep - Sommerfeld constant determined from specific heat measurements 

r t»m - Sommerfeld constant determined from the BSC equation, using the weighted 

phonon frequency 

r 11 - Sommerfeld constant determined from the BSC equation, using the energy gap 

g, - Lande factor 

Gs - Gibbs free energy in the superconducting state 

0 11 - Gibbs free energy in the normal state 

Happ -the applied magnetic field strength 

H1oc- local magnetic field 

Happ-loc - applied local magnetic field 

He - thermodynamic critical field 

Hc1 - lower critical field 
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Hc2 - upper critical field 

dH ;;P -applied magnetic field gradient 

dH,,><. - local magnetic field gradient 
dz 

h - the half the length of a cylindrical sample 

n- reduced Planck's constant 

lex- excitation current through the calibration loop of the QD chip 

I- current 

rp- angle between the normal to the QD chip platform and the applied magnetic field 

Jc- The critical current density of a superconductor. 

Jell - critical current density measured for the field parallel to the symmetry axis 

Jc_1 - critical current density measured for the field perpendicular to the symmetry axis 

Js - current density in a superconductor 

J- critical current density 

Jm- angular momentum 

K- the ratio between the Ginsburg-Landau penetration depth and the coherence 

length; also known as the GL parameter. 

K1 - GL parameter determined from the upper critical field 

K 2 - GL parameter determined from the magnetisation 

k - wavevector of an electron 

kb- Boltzman's contstant 

AL - the London penetration depth. 

AcL -the Ginsburg-landau penetration depth. 

A{O) -penetration depth at 0 K 

Ax -fraction of the susceptibility, used to determine the internal field of a 

paramagnetic material 

I- the distance between the centre of the magnetic moment and the centre of the 

torque chip stage. 

Jlo - permeability of free space 

JIB - Bohr magnetron 

m - magnetic moment 
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11m+- -difference in magnetic moment across the torque magnetometry hysteresis 

loop 

m 1 - magnetic moment due to the excitation current around the calibration loop on 

the QD chip platform 

mz - magnetic moment in the z-direction 

me - electron mass 

me* - effective electron mass 

ma.b- effective electron mass in the a,b plane 

me- effective electron mass in the c-direction 

M;- ionic mass 

M- magnetisation 

M+ - magnetisation measured for increasing magnetic field 

M_ - magnetisation measured for decreasing magnetic field 

Mrev - reversible magnetisation 

M;rr- irreversible magnetisation 

I1M - difference in magnetisation across the hysteresis loop 

N- the number of filaments within a wire. 

N M- the number density of magnetic ions within a sample. 

N0 - density of electronic levels for a single spin population in the normal level 

N- demagnetisation tensor 

N - demagnetisation constant 

N11- demagnetisation constant parallel to the applied magnetic field 

N .1 - demagnetisation constant perpendicular to the applied magnetic field 

n - electron density in the superconductor 

n -temperature scaling variable of the flux pinning force scaling law 

n -unit vector perpendicular to the chips' platform 

11 - parallel to 

l_ - perpendicular to 

p - exponent in the flux pinning force scaling law 

B-angle between the samples' magnetic moment and the applied field 

q - exponent in the flux pinning force scaling law 

p- the density of a sample 

PN- normal resistivity of the superconductor 
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r - the radius of a cylindrical sample 

f..R+- - difference in resistance across the f..R hysteresis loop 

cr - surface energy 

S -entropy 

§ - unit vector parallel to the direction of the torque 

r- The torque applied by the superconducting magnetic moment in a magnetic field. 

Tc- The critical temperature of a superconductor. 

t- reduced temperature (T!Tc) 

V- voltage 

Vac- applied ac-voltage ofthe Stanford lockin 

~V -change in voltage across the QD chip's Wheatstone bridge 

~V+- -change in voltage across the ~V hysteresis loop 

vol - volume of a sample 

Vo - electron-electron potential 

w - the width of a rectangular sample 

roo - Debye frequency 

win - weighted phonon frequency 

X - susceptibility 

x' -ac lossless susceptibility 

x" -ac loss susceptibility 

Xm- mass susceptibility 

Xvot - volume susceptibility 

If!- order parameter 

If!*- complex conjugate of the order parameter 

If! oo- order parameter at infinity 

lf/H- angle between the symmetry axis of a sample and the applied magnetic field 

Y- Young's modulus 

~- coherence length 

r;(O) - coherence length at 0 K 

z- height from the sample to the magnet field centre for the torque magnetometer 

experiment 
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In this thesis superscripts are used to describe variables determined from different 

experiments. 

B~;PN (0) -upper critical field determined at 90% of the normal resistivity 

B~i5PN (T)- upper critical field determined at 50% of the normal resistivity 

B;-;=0 (T) -upper critical field determined when the transport Jc is zero 

B~ ~0 (0) - upper critical field determined from the VSM magnetic moment data 

B::r ~o (T) - irreversibility field determined from the VSM magnetic moment data 

B;~, (r) -irreversibility field determined from the torque magnetometer data 

J~sM - critical current density determined from the VSM data 

J; -critical current density determined from the torque magnetometer data 

y cp - Sommerfeld constant determined from the specific heat data 

r~:PN - Sommerfeld constant determined from the weighted phonon BCS equation, 

using the resistivity data 

y ~~o - Sommerfeld constant determined from the weighted phonon BCS equation, 

using the VSM data 

y~·9PN - Sommerfeld constant determined from the energy gap BCS equation using 

the resistivity data 

r:~o -Sommerfeld constant determined from the energy gap BCS equation using 

the VSM data 
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Chapter 1 

Introduction and Motivation 

Superconductivity is an exciting and very interesting area of solid state physics. 

Superconductors are distinguished by two fundamental properties, and these are zero 

resistance and expelling all magnetic flux. One of the main commercial areas, they 

are used in is high-field magnets. These magnets are used in particle accelerators, 

magnetic resonance imaging (MRI) and the levitating trains (Maglev). At the moment 

superconductors such as NbTi and Nb3Sn are used in these applications. They are 

limited by their upper critical field, which means the highest magnetic fields reached 

are 22 T. Thus as technology moves on, new superconductors are being researched in 

to with the aim of increasing the magnitude of the magnetic fields possible for a 

continuous superconducting magnet. These materials include the low temperature 

superconductors MgB2, Nb3Al and Chevrel phase superconductors, and the high 

temperature superconductors YBa2Cu307 and BhSr2Ca2Cu3010. 

Chevrel phase materials are isotropic, polycrystalline, low temperature 

superconductors. PbMo6S8 has a critical temperature (Tc) of 15 K and an upper 

critical field (Bc2(0)) of 60 T. This makes it an ideal candidate for the next generation 

of superconducting magnets. PbMo6S8 limiting property is its critical current density 

(Jc), which is a factor 5 lower than Nb3Sn. Research is continuing to increase Jc to 

the required standard for industry. Chevrel phase superconductors are also studied as 

magnetic ions can be introduced into the lattice in the place of the Pb ion. This means 

superconductivity and magnetism are observed in these materials. They are one of the 

few materials where this interaction occurs. Part of this thesis investigates how the 

properties such as Tc, Jc and Bc2(0) of PbMo6Ss change with the addition of the 

magnetic europium ions. To determine whether doping with a 2+ magnetic ion 

improves the intrinsic and extrinsic superconducting properties of the material. Also 

studied is the interaction between the magnetism and the superconductivity. 

The main part of this thesis was to design and construct a new magnetic technique, 

which would measure the critical current density of isotropic superconductors. The 
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main methods used to measure the Jc of superconductors, are transport and magnetic 

measurements. For the magnetic measurements the two commercial instruments most 

commonly used are the vibrating sample magnetometer (VSM) and the 

superconducting quantum interference device (SQUID). Both methods have 

disadvantages in measurements of the magnetic moment. For commercial VSMs the 

base temperature is 4.2 K, while for SQUIDs the maximum field that can be applied is 

7 T. The magnetic technique used in this thesis was torque field-gradient 

magnetometry, using a silicon piezoresistive cantilever. It was designed to work 

below 2 K, and in magnetic fields up to 15 T. Thus bridging the gap between the 

other two techniques. 

In chapter 2 the general theories of superconductivity are presented. These include 

the microscopic theory by Bardeen, Cooper and Schrieffer (BCS) and the 

phenomenological Ginsburg-Landau theory. The behaviour of type 11 

superconductors in the mixed state is described. This includes the Abrikosov lattice, 

Bean's model and the volume flux-pinning force. Chapter 3 reviews the different 

magnetic techniques used to measure the magnetic moment of superconductors. This 

includes the VSM, SQUID and Faraday force balance. Torque magnetometry is 

reviewed from the original torque balances to the new cantilever techniques. The 

different piezoresistive and capacitance cantilevers are described and compared. The 

theory behind the torque field-gradient magnetometer is also derived, including the 

definitions of the demagnetisation factor and the shape factor. 

The investigation into the introduction of Eu ions in the Chevrel phase superconductor 

PbMo6S8 is presented in chapter 4. This includes a description of the heat treatments 

used to fabricate the samples and the measurements carried out to characterise them. 

These measurements included resistivity, ac susceptibility and VSM. N Leigh also 

measured the specific heat of the samples. From the measurements the upper critical 

field (Bc2(0)), the fundamental parameters (BcJ(O), Bc(O), ;(O) & A(O)), the GL 

parameter ( K) and the Sommerfeld constant (n were determined. How these 

parameters and variables change with the addition of Eu ions is discussed. 

The design and circuitry of the torque field-gradient magnetometer, which fits on to 

the base of an Oxford Instruments Heliox probe, are described in chapter 5. The 

problems, which occurred with the torque magnetometer and their solutions are 
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discussed. The experimental procedure to measure the critical current density of the 

isotropic superconductors as a function of magnetic field and temperature is 

described. The preliminary measurements were carried out on NbTi wire as a 

function of angle in liquid helium. The critical current densities of NbTi wire as a 

function of magnetic field and temperature are compared with the corresponding 

critical current densities measured on the VSM. The advantages and disadvantages 

including the sensitivity of each technique are presented. 

The critical current densities of 1 mm length samples of NbTi wire, PbMo6Ss and 

Pb0.75Eu0.25Mo6S8 as a function of temperature and magnetic field measured on the 

torque field-gradient magnetometer and the VSM are presented in chapter 6. On the 

torque magnetometer these were measured in the temperature range 300 mK up to 1 0 

K, in fields up to 15 T. On the VSM the critical current densities were measured with 

the field parallel to the c-axis, and perpendicular to the c-axis. Also determined from 

the VSM data were the critical current densities of the 4 mm length bulk samples of 

PbMo6Ss and Pbo.75EUo.2sMo6Ss. The different flux pinning mechanisms in NbTi wire 

are discussed using the torque data taken from 0.3 K to 8 K. The upper critical field 

was also determined from the torque magnetometer and VSM measurements. 

The temperature dependence of the magnetic moments of titanium alloys and copper­

beryllium are presented in chapter 7. This work is an independent study, which does 

not relate to the other chapters in this thesis. It was carried out to investigate, which 

of these high-strength materials had the smallest change in susceptibility with 

temperature, as it is important in magnetic measurements. The magnetic moments of 

CuBe, Ti-64 and Ti-550 were measured as a function of magnetic field and 

temperature on the VSM. The change in magnetic moment with temperature is 

compared for the three samples. In chapter 8, there is a summary of the work, and the 

future work that could be carried out based upon the findings in this thesis. 

3 



2. ~ ~ll1l~li'OidiiUIC~DOil1l 

This chapter introduces the general theories of superconductivity. The history and the 

fundamental properties of superconductors are described in section 2.2. The two main 

theories are presented, which describe the behaviour and properties of low 

temperature superconductors. The first theory is BCS microscopic theory in section 

2.3. It predicts the properties including the energy gap, the critical temperature and 

the thermodynamic critical field. The thermodynamic theory (section 2.4) and the 

London equations (section 2.5) are presented. The second main theory is Ginzburg­

Landau phenomenological theory (section 2.6), which introduces the GL parameters, 

type I & 11 superconductors and Abrikosov's lattice. Section 2.7 presents the critical 

state model proposed by Bean, and the Flux pinning force scaling laws. These are 

important as they describe the behaviour of type II superconductors in an external 

magnetic field. The on going theories for high-temperature superconductors are 

reviewed in section 2.8. 
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Figure 2.2. The behaviour of a superconductor in an applied magnetic field, for Happ 

less than the thermodynamic critical field (He) (a) T> Tc(b) T< Tc. 

2.2 History of superconductivity 

Kamerlingh Onnes discovered superconductivity m 19111, since then the area of 

research has expanded greatly. The range of superconductors has grown from just the 

elements to the ternary isotropic superconductors and layered high-Tc 

superconductors. The critical temperature of superconductors has increased from 4.2 

K (mercury) 1 up to 133 K (HgBa2Ca2Cu30 8+s) 2, in the last hundred years. 

2.2.1 Intrinsic properties of superconductors 

All superconductors have two fundamental properties. The first property is they have 

no resistance, at temperatures below their critical temperature (Tc). They are perfect 

conductors. 

The second property is they expel magnetic flux4 below the critical field (He). This 

effect is known as the Meissner effect (fig. 2.2). Superconductors are perfect 

diamagnets (X= -1 ), below He and Tc. 

2.2.2 Critical Parameters of superconductors 

Superconductors are characterised by three critical parameters. The critical 

temperature (Tc), is the temperature at which the superconducting phase transition 

occurs, in zero field. The upper critical field (Bc2) is the magnetic field at the 

superconducting phase transition, at constant temperature. The critical current density 

is the maximum current density (Jc) that a superconductor can sustain at a given field 

and temperature. 

5 



2.3 BCS theory 

2.3.1 Cooper pairs 

In 1956, CooperS proposed a model based on two electrons, pairing up in a bound 

state. The first electron, with wavevector +k, deforms the lattice, by attracting the 

positive ions. This creates a phonon, which propagates through the lattice (range ~ 

coherence length) and interacts with another electron, with wavevector -k. The 

overall interaction is attractive. The effective attractive interaction is strong enough to 

override the Coulomb repulsion between the electrons. Cooper pairs have anti­

parallel spins. They have zero net spin and zero net angular momentum. All Cooper 

pairs are in the ground state, as the total wavevector is zero. This is a condensation in 

k-space. The ground state is separated from the first excited state by an energy gap. 

The pairs have charge 2e and effective mass 2me *. 

2.3.2 Microscopic Theory 

Bardeen, Cooper and Schrieffer first proposed BCS theory in 19576. It is a 

microscopic theory, which qualitatively predicts the properties of low temperature 

superconductors. BCS theory involves Cooper pairs and is supported by experimental 

observations. From experiments the critical temperature is proportional to the ionic 

mass M. BCS theory predicts the empirical law: 

T oc M-a 
C I 

(2.1) 

where a = 0.5, which holds for most non-transition metals. Eqn. 2.1 is known as the 

isotope effect. BCS theory predicts the critical temperature and the energy gap. The 

critical temperature is the temperature where the energy gap tends to zero 

( ~(T) ~ 0 ). In zero field, the critical temperature is given by: 

where his the reduced Planck's constant and the energy gap at 0 K by: 

~(0) = 2fzOJDe-l/NoVu 

(2.2) 

(2.3) 

where N" is the density of electronic levels for a single spin population in the normal 

metal, OJD is the Debye frequency and V0 is the electron-electron potential. The weak­

coupling approximation isN
0
V

0 
<<I. Equating eqns 2.2 & 2.3, gives a relation 

between critical temperature and the energy gap: 

(2.4) 
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Eqn 2.4 is in terms of 2~( 0), as it is measured in tunnelling experiments. Eqn 2.4 is 

independent of any phenomenological parameters. The energy gap near the critical 

temperature, in zero field, is an universal law, from mean-field theory, given by: 

~(T) ( T) 112 

Mo) = 1.74 1- r;, (2.5) 

The thermodynamic critical field Hc(I'), is predicted from BCS theory. It is taken 

from the empirical law: 

(2.6) 

BCS theory predicts the discontinuity in the specific heat from the normal phase to the 

superconducting phase. It is a first order transition. The size of the discontinuity is 

given by: 

(2.7) 

2.4 Thermodynamic theory 

Thermodynamics is used to describe the phase transition from the normal state to the 

superconducting state3. 

The Gibbs free energy is minimised with respect to temperature and magnetic field, at 

the transition: 

dG = -SdT- .UoM · dH (2.8) 

) ~' 
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E 
"'C 
.~ 
Ci 
a. 
<( 

Temperature (7) 

Figure 2.3. The (H, T) phase diagram for a type I superconductor 3. 
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The Gibbs potential is integrated along the vertical line in fig. 2.3. In the 

superconducting state it is a perfect diamagnet ( H = -M), and thus: 

H, H2 
Gs(T,He)- G,(T,O) = f.uoMdH = .Ua f (2.9) 

0 

Across the transition, the Gibbs energy is constant Gs ( T, He) = Gn ( T, He) . In the 

normal state, the magnetisation is zero (neglecting paramagnetism and diamagnetism.) 

If the sample was normal below He, then the Gibbs energy is given by: 

(2.10) 

Equating eqns 2.9 & 2.10, the difference in free energy between the superconducting 

state and normal state is given by: 

(2.11) 

The minimised Gibbs free energy is lower in the superconducting state. Therefore it is 

thermodynamically stable. 

From F = G- .UoHM, with H = 0, the equation for the Helmholtz free energy is given 

by: 

H2 
F (T 0)- F (T 0) = -~ 

s ' n ' 2 (2.12) 

The quantity J.l
0
H; /2 is the condensation energy per unit volume. It is an important 

in determining the surface energy. 

2.5 London Equations 

In 1935 the London brothers presented a theory, which describes the Meissner effect7. 

dJ (ne 2
) dA 

They assumed that the time derivatives in the equation dt = - -----;;; dt could be 

neglected, where J is the current density, A is the magnetic vector, n is the number of . 

electrons, e is the charge of an electron and m is the mass of an electron. This gives 

the relation: 

(2.13) 

where AL is the London penetration depth, A is the magnetic vector potential and Js is 

the surface current density. Taking the curl of both sides of equation 2.13 gives: 

(2.14) 
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This equation describes perfect diamagnetism. The second equation is derived from 

V x E = -dB , by applying the London gauge V· A = 0 and eqn 2.13, to give: 
dt 

(2.15) 

This equation describes perfect electrical conductivity. The London penetration depth 

2 

A.L is obtained by comparing the classical current density relation ( J = ne r E) with 
m 

eqn 2.15 to give: 

(2.16) 

where m* is the effective mass of an electron, e * is the effective change of an 

electron. The London penetration depth is the distance the magnetic field 

exponentially decays away from the surface in the Meissner state. 

2.6 Ginzburg~Landau equations 

2.6.1 Theory 

In 1950 Ginzburg and Landau (GL) proposed a phenomenological model to describe 

the behaviour of superconductors 8' 9. GL theory describes superconductivity in terms 

of an order parameter If/, which characterises the superconducting state near Tc. The 

order parameter is a function of position (d) and phase ( rp), If/( d,rp) =If/ ( d)e;rp. In the 

normal state (T > Tc), If/ is zero, while in the superconducting state (T < Tc), If/ is non­

zero. Below the critical temperature, If/ increases as the temperature decreases. The 

superconducting electron density is proportional to llfll2• 

GL theory assumes that the Gibbs free energy per unit volume (G), near the transition 

temperature (Tc), can be expanded as a function of the order parameter. 

(2.17) 

where Gn is the Gibbs free energy in the normal state, A is the magnetic vector 

potential and a, b are variables, which only depend on temperature. For a 
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superconductor in equilibrium, the currents are distributed, so that the total free 

energy is minimised. Close to Tc the parameters a, b are taken to be: 

a(r)~a.[~ -1] (2.18a) 

b(T) >::j bo (2.18b) 

where a0 and b0 are positive constants, so that a(I') is zero at Tc and negative below Tc. 

The first GL equation is determined, by minimising the Gibbs free energy ( eqn 2.17) 

with respect to the complex conjugate order parameter If/ ( d r ' while holding If/ ( rll) 

constant. It is then expanded and the London gauge (V · A = 0) applied which gives: 

2~. ( li 2V 21f/- 2iliA ·V If/- e •
2 
A

21f/)- alf/- bllf/12 If/= 0 (2.19) 

The second GL equation is derived, by minimising the free energy (eqn 2.17) with 

respect to the vector potential A, and B = V x A . Maxwell' s equation ( V x B = J1
0 
J ) 

is substituted in, to give the equation in terms of the superconductor's supercurrent: 
• .2 

ihe ( *) e 2 
Jlo JT = --

2 
• If/ * V If/ - lfiV If/ - -. Allf/1 

m m 
(2.20) 

These two-coupled equations are used to determine the properties of the 

superconducting state. The boundary condition for no current flow through the 

surface is given by: 

(2.21) 

2.6.2 GJL parameters 

The GL equations have a characteristic length known as the coherence length({;L). 

The coherence length is the distance into the superconductor from the 

superconducting-normal interface, for the order parameter to reach If/"' . If the first 

GL equation is written in ID, assuming no magnetic field is applied (A = 0), it is 

given by: 

(2.22) 
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The solution near a superconducting-normal interface 1s 1f1 (d)= 1f1 oo tanh( i J 
2~GL 

( lal) i ( 1z2 J~ where If/ oo = b , and the coherence length ~(,L = 
2

m. I a I 

The GL equations also determine the penetration depth ~L • If one assumes the phase 

constant lfl•v 1f1 = vfV If!• , and the magnetic field is along the z-direction of the 

interface. The second GL eqn (eqn 2.20) reduces to: 

(2.23) 

where A,(x) ~A. ex~- ~J which is the vector potential in they-direction. This is 

only valid in the bulk of the material when the order parameter has reached If/ oo • The 

• 
penetration depth is defined as ~L = .~ 2 • It is valid as long as ~GL << AaL. 

f-loe llfl oo I 
The GL penetration depth has the same temperature dependence as the GL coherence 

length ( -\,,. oc {I - ~ ) -i) . Thus at T0 both lengths become infinite, and the magnetic 

flux penetrates the entire sample. The ratio of ~L and ~'- is known as the GL 

parameter or kappa (K) and is given by: 

K= AcL 
~GL 

(2.24) 

Abrikosov showed that the difference between a Type I and Type II superconductor is 

K = 1/ .J2 . The critical fields of type II superconductors can be derived in terms of 

the thermodynamic critical field (Bc(F)). 

The upper critical field, Bc2(IJ is given by: 

B =~= A.LB(2 =..fiKB 
c2 27r~~L <1>

0 
c 

(2.25) 

where the quantised magnetic flux <I>" = ;e , and h is Planck's constant. The lower 

critical field, Bci(F) is given by: 

(2.26) 

11 



Tc Bc:z(O) BcJ(O) rt: kL ~GL 

(K) (II') (mm 'f) (llllm) (llllllllll) 

NlDTn 9.5 1510 4010 130.611 4.85ll 

lP!DMo6§s 14.812 5613 6.413 13013 23013 2.113 

MgB2 38 3.18 63 8.1 370 2.3 

14.514 2214 37.114 8214 10.214 

YBa2Cun307 92 15 122 53 2334 7000 3 

67416 1817 18 14518 16.416 

BhSil"2Ca2Cu30to 110 15 39 33 10750 10,000 0.93 

121019 Jl20 7 20021 2919 

TalDRe 2.1. Comparison of the critical parameters for a selection of superconductors. 

Numbers in normal type are for the c-axis, numbers in italics for the a, b plane. 

There is a third critical field Bc3 for a superconductor-insulator interface. When a 

magnetic field is applied parallel to the interface, superconductivity occurs in a 

surface layer of thickness c;. It occurs for applied fields up to Bc3, which is given by: 

Bc3 = 1.69Bc2 = 1.695(JlxBJ (2.27) 

Table 2.1 gives a summary of the critical parameters of the most commonly used 

superconductors. The high T c superconductors (YBCO & BSCCO) and MgB2 are 

anisotropic. The critical parameters for the c-axis and the a, b plane are given. 

2.6.3 Type K & HH super«=olllll[]luctm·s 

From K (eqn 2.24), the two different types of superconductors are described. The 

surface energy ( 0') at the superconducting-normal interface has contributions from 

the positive flux exclusion energy (length scale of AaL) and the negative condensation 

energy ( eqn 2.12) (length scale c;oL). 
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Figure 2.4. The magnetisation (M) of a type I and type II superconductor, with the 

same He as a function of applied magnetic field (H0 ). inset: The phase diagrams of 
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superconducting-normal interface for a Type I superconductor (a) and Type II 

superconductor (b). In (a) K< 1 (A-< q) and in (b) K> 1 (A.>~-
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From fig 2.5a, there is a region where no magnetic field penetrates, but the order 

parameter has not reached '1/ro- This region has positive surface energy ( (]' > 0) , as all 

flux is excluded. This describes Type I superconductors (fig 2.4), such as the 

elements Al, Sn and Mo. From fig. 2.5b, the order parameter reaches lf/oo. before the 

magnetic flux has decayed away. The surface energy is negative ( (]' < 0) . These 

boundaries are energetically favourable. They occur at fields greater than Bc1 (fig. 

2.4). These are Type II superconductors, such as 'dirty' elements (Nb), alloys (NbTi), 

secondary and ternary compounds (Nb3Sn, PbMo6S8), and high-temperature 

superconductors (BhSr2Ca2Cu30to, YBa2Cu307). 

2.6.4 Abrikosov Lattice 

Abrikosov proposed that magnetic flux in the mixed state (Hc 1 < H < Hc2) is 

quantised22. The magnetic flux penetrates in single vortices (<I> o = ;J , rather than 

continuously. Abrikosov used the first GL equation (eqn 2.18) to determine the 

vortex formation array. The order parameter is taken to be a superposition of 

solutions. Abrikosov found that the lowest energy state for the flux-line lattice gave a 

square lattice22, with the Abrikosov constant, fJA = 1.18. This work was corrected by 

Kleiner24, who found a triangular lattice for the ground state with fJA = 1.16. 

Figure 2.6. The hexagonal Abrikosov flux lattice: Image from a tunnelling electron 

microscope upon the superconductor NbSe2 (1 T, 1.8 K) from Hess et a[23. 
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Figure 2.7. (a) The penetration of magnetic flux as a function of distance from the 

surface and magnetic field. (b) The critical current density across the superconductor, 

as a function of applied magnetic field. The applied magnetic field is in units of the 

characteristic field B *. 

Abrikosov determined a relation between the magnetisation (in the reversible region 

near Hc2) and the applied magnetic field, by solving the full GL equations using a 

perturbative method25. The solution is given by: 

2.7 Bean's model and Flux pinning 

2.7.1 Bean's Model- Critical state 

(2.28) 

When an external magnetic field (Bapp) is applied to the superconductor, magnetic flux 

enters at the surface. The field decreases with distance from the surface. Critical 

currents flow in the magnetic field region. This is known as the critical state. There 

are different models, which describe this state, such as the Bean's model26, the fixed 

pinning modeJ27 and the Kim's modei28_ Bean's model assumes that the critical 

current density has magnitude Jc in the magnetic flux region and is zero everywhere 

else. 

From figure 2.7a, a slab of superconductor is considered with width 2a in the x­

direction and infinite in they- & z- directions and Bapp is along the z-axis. Using 

V x B = -poJ the internal magnetic field B;n(x)is given by: 
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(a'+x) B (x) = B -- -a ~ x ~ -a' 
111 app 1 a-a 

B;n (X)= 0 -a'S x ~a' (2.29) 

where a' is the furthest distance the magnetic field penetrates. 

The characteristic field, B* = floJca, is the applied field when the whole sample is 

penetrated. For Bapp > B *, the current density is Jc (fig.2. 7b ), but B;n(x) is given by: 

(
a+x) B (x)=B -B* -- -a~x~O 

m app a 

(
x-a) B (x)=B +B* -- Osx~a 

m app a (2.30) 

The magnetisation is determined from B = J1
0
(H +M). From Maxwell's boundary 

conditions, H is continuous across the interface, thus J1
0
H = Bapp. The volume 

average of the internal magnetic field ((B)), gives the average magnetisation to be 

floM =(B)- Bapp. 

For the high-field limit ( Bapp >> B *),the magnetisation is given by: 

11 M =.lB* ro + 2 

Jl M =-.lB* 
0 - 2 

(2.31) 

where M+ and M_ are the magnetisation for increasing and decreasing magnetic field. 

The difference in magnetisation across a high-field hysteresis loop is given by: 

(2.32) 

Rearranging eqn 2.31, gives the relation between the measured magnetisation and the 

critical current density to be: 

(M+ -M_) 
Jc = -'-------'- (2.33) 

Y,j 

where Ys! is a geometric factor determined from the shape of the superconducting 

sample, (cf. section 3. 7 .2). For a parallelepiped the shape factor is r,r = a [ 1-
3
: l 

where a is the thickness and b is the width of the sample29. 
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2. 7.2 FRun:l! piimllllillllg s~anillllg Uaws 

From section 2.6.4, the flux enters the superconductor in single vortices. The flux 

vortex experiences a Lorentz volume pinning force: 

(2.34) 

The force causes the vortices to move. This flux motion increases the resistance, thus 

decreases the magnitude of the transport current that can be sustained. To increase the 

transport current, the flux vortices have to be pinned. The flux pinning force fixes the 

vortices to be stationary. Pinning is caused by any spatial inhomogenities, such as 

impurities, grain boundaries and voids. For strong pinning, the flux motion is small. 

It is then assumed to be a perfect conductor. 

Fietz and Webb30 proposed the first scaling law for the flux pinning force. They 

measured Jc for different NbTi and NbTa samples, over a wide range of fields and 

temperatures, to give the scaling relation: 

(2.35) . 

where b is the reduced magnetic field, B!Bc2, and ap, n, p & q are sample dependant 

constants. Kramer's modePI also predicts the pinning force density. It predicts p = 

1/2 and q = 2. These variables are substituted into eqn 2.35, to give Kramer scaling 

law FP(B,T) = aABc2 ,T)b112 (1-b)2
• This equation can be re-arranged to giVe 

J:12 B114 = aK (Bc 2 )(1- B). From this relation Bc2 can be predicted. 

2.7.3 Anisotropic Materials 

GL theory can be generalised for anisotropic materials. For each axes there is a 

different effective mass (ma,mb,mc). The coherence length and the penetration depth 

are mass dependent. From eqns 2.25 & 2.26 the upper and lower critical fields are 

anisotropic. For a high-Tc superconductor the effective masses in the a,b plane are 

similar, but differ from the c-axis (ma ~ mb <<me). The upper critical field of 

anisotropic superconductors, in an applied field, at angle ()to the a,b plane is given 

by32: 

(2.36) 
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Figure 2.8a. Schematic diagram for the tricrystal (1 00) SrTi03 substrate, with four 

epitaxial YBa2Cu307..o rings. b. Scanning SQUID microscope image of the four 

YBa2Cu30 7..o rings on the tricrystal. Images were taken by Tsuei34 . 
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2.8 Ongoing Theory 

The theories presented in this chapter describe low temperature superconductors such 

as NbTi and Chevrel phase. High temperature superconductors such as YBa2Cu307 

and BbSr2Ca2Cu3010 were discovered 17 years ago33. They have critical temperatures 

of92 K for YBa2Cu30715 and of 110 K for BbSr2Ca2Cu30w15. BCS theory has to be 

modified to describe High-Tc superconductors. The cuprates are layered 

superconductors. This means the superconductivity occurs in the Cu02 planes. 

Therefore the theory would have to introduce anisotropy. 

Another property is they are d-wave superconductors35. This means that the energy 

gap is zero at points on the Fermi surface. This phenomenon can be observed by 

experiments. Tsuei et a/ demonstrated this by using a tricrystal ring magnetometry, 

which is sensitive to the order parameter symmetry35· 34. In fig. 2.8a, the basic set-up 

considers of tricrystal SrTi03 substrate, which has three distinct directions for the 

(100) plane. Four YBa2Cu30 7..o rings were deposited on top. The whole set-up was 

then cooled in a 0.5 f.lT field. Fig. 2.8b, shows the results when a SQUID microscope 
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was scanned across the surface. The ring where all 3 junctions meet has 1t geometry, 

which means if half-integer flux quantisation is observed, the superconductor is d­

wave. Thus high-Tc superconductors are d-wave superconductors, as flux was 

measured in the centre ring. The mechanism of cuprates is as yet not understood. It is 

uncertain to whether the electrons pair up due to phonon coupling. This has lead to a 

number of different models being proposed which describe the some areas of 

behaviour of High-Tc superconductors. These include nearly antiferromagnetic Fermi 

liquid modeP6, marginal Fermi liquid theory37, the stripes' modet38 and electron 

fractionalisation theory39. None of these theories completely explain 

superconductivity in High-Tc superconductors. 
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Chapter 3 

Literature review of magnetic techniques 

3.1 Introduction 

Magnetic measurement techniques are an important analytical tool in experimental 

physics. They provide a method of measuring magnetic moments in solid state 

materials. The measurements are generally non-contact. This means that damage to 

the sample is avoided. They are also useful for measuring the magnetisation and thus 

the critical current density of superconductors!. The magnetic techniques available 

today are reviewed in section 3.2. The major forms of magnetism are presented in 

section 3.3. The original method of measuring torque is described in section 3.4. 

This includes the measurement ofNbTi wire, to determine the critical current density. 

The more recent method of measuring the magnetic moment using cantilever torque 

magnetometry is reviewed in section 3.5. This includes the different types of 

cantilever available e.g. piezoresistive and capacitance. A comparison of the 

cantilevers is also presented. The different experimental results obtained on 

superconductors are presented in section 3.6. A description of the terminology for the 

torque magnetometry experiments performed in this thesis is presented in section 3.7. 

3.2 Review of magnetic techniques 

3.2.1 Vibrating sample magnetometer 

The vibrating sample magnetometer (VSM) was developed by Foner in 1956 2. Over 

the last forty-five years, alteration and modifications have been made to the original 

design3, 4. The VSM now works at temperatures below 300 mK 5, fields up to 23 T, 

and pressures as high as 8 kbar6. 

The VSM consists of a solid rod, which vibrates between two pick-up coils. The 

sample is fixed to the bottom of the rod. It is aligned in the plane of the DC magnet. 

The sample is positioned in the centre of the pick-up coils, which are in the centre of 

the DC magnet. As the sample is vibrating between the pick-up coils the magnetic 

field is swept. The change in flux produces a voltage in the coils. 
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Figure 3.1. Magnetic moment of patterned NiFe film as a function of magnetic field, 

at 300 K- This is state of the art VSM data, taken by the latest Lakeshore VSM 

(Model 7400) 7. The conversion to SI units for magnetic moment is 1 emu= 10-3 Am2 

and for magnetic field is 1 G = 10-4 T. 

This voltage is measured using a lock-in amplifier, which is proportional to the 

magnetic moment. The sensitivity of a commercial VSM is 1 x 10-10 Am2 (fig 3.1). 

The advantage of a VSM is they run in fields up to 23 T. They give faster hysteresis 

loops than SQUIDs. VSMs are easy to use. The sample size is mm, they are 

therefore used for bulk samples. The disadvantages are that commercial VSMs 

cannot go below 1.9 K. The vibrating rod causes heating. They are less sensitive than 

SQUIDs and torque cantilevers. 

magneto meter. 

3.2.2 SQUIDS 

In conclusion VSMs are the most used 

Superconducting quantum interference devices (SQUIDs) are based on Josephson 

tunnelling and flux quantisation8. There are two different types of SQUIDs. The frrst 

is the d.c. SQUID. It consists of two Josephson junctions in a superconducting loop. 

The junctions are damped separately by a resistor. The loop is biased by a current 

source. The voltage is then read across the parallel junctions. The second type is the 

RF SQUID. It consists of a superconducting loop with one Josephson junction. The 

loop is inductively coupled to a resonant LC circuit. 
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Figure 3.2. The magnetic moment and standard error value, for Er203 as a function of 

magnetic field, at 300 K. This is state of the art SQUID data taken by a Quantum 

Design SQUID9. 

The average voltage is read across the LC circuit. For both SQUIDs the voltage is 

periodic with the magnetic flux applied. The magnetic flux is applied to the loop, 

using a superconducting flux transformer loop. It transfers the flux induced into the 

pick-up coils to the SQUID loop. SQUIDs are made out of both low-Tc and high-Tc 

superconductors. For magnetic measurements, the sample is lowered through the 

pick-up coils. 

SQUIDS can measure magnetic fields of the order 10-14 T and magnetic moments of 

the order 10-12 Am2 (fig 3.2). Furthermore SQUIDS can work down to 10 mK. They 

are used to measure small samples. The disadvantage is that the maximum field they 

work in is 7 T. This is due to the necessity of shielding the Josephson junctions from 

the magnetic field. The other disadvantage is that the distance the sample is moved is 

centimetres. As a consequence the sample experiences an inhomogeneous field, 

which reduces the sensitivity ID_ 

3.2.3 AC susceptibility 

The AC susceptibility experiment consists of a primary coil with two secondary coils, 

which are wound in opposite directions. The sample is fixed in the centre of one of 
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the secondary coils. A lockin amplifier is used to provide an ac current in the primary 

coil. The lockin then measures the difference in voltage across the secondary coils. 

The coils are balanced with no sample present. The change in flux is measured as the 

difference in voltage across the secondary coils, which is proportional to the 

susceptibility. 

3.2.4 Faraday force balance 

The Faraday balance is based on the force experienced by a magnetic moment in an 

inhomogeneous magnetic field. The basic design consists of the sample suspended 

from a rod in the centre of a homogenous field gradient 11. There are different 

methods to produce a field gradient. These include adding a set of gradient coils into 

the centre of a homogenous magnet or having oblique pole faces. The force exerted 

by the sample is measured on an analytical balance. 

Magnetic technique Moment sensitivity at 1 T accuracy 

(Am2
) 

VSM7 12 1 x w-w 0.05% 

SQUID9 1 X 10-J I 0.01% 

AC susceptibilityl3 1 X 10-IU 0.1% 

Faraday force balancel4 1.8 x w-9 0.05% 

Durham's Torque 1.2 x w-~~ 5-15% 

Magneto meter 

Table 3.1. Comparison of sensitivity and accuracy of the magnetic techniques used 

to measure the magnetic moment of isotropic materials. The sensitivity and accuracy 

are for the state of the art instruments available commercially. 
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3.3 Magnetic materials 

In materials there are five major forms of magnetism. These are diamagnetism, 

paramagnetism, ferromagnetism, anti-ferromagnetism and ferrimagnetism. They are 

discussed in turn below. 

Diamagnetism occurs in all materials. It is the weak magnetic moment induced by the 

orbiting electrons, when they experience a magnetic field. Diamagnetism is observed 

in materials where the atoms have completely paired electrons. 

Paramagnetism occurs in materials where the local magnetic moments have no long­

range interactions. The magnetisation of a paramagnet is given by: 

(3.1) 

where BJ(y) is the Brillouin function, with y = (gf18 J 111 B/khT), gJ is the Lande factor, 

Jm is the angular momentum, flB is the Bohr magnetron and N is the number of atoms. 

The Brillouin function is given by: 

BJ(y)={(
2

Jm +
1
)coth[(

2
Jm +

1
) y]-(-

1 
)coth[_L]} (3.2) 

2JIII 2JIII 2JIII 2Jm 

For zero magnetic field, the magnetisation is zero. For B/T ~ oo, the Brillouin 

function (eqn 3.2) tends towards one. This leads to the saturated magnetisation 

M max = NgflBJ m. Saturation occurs at high magnetic fields, and low temperatures. 

For small magnetic fields (y << 1 ), eqn 3.2 is expanded in the form coth(y) = ~ +;. 
The magnetisation then becomes: 

M= Ng;fl~J~~~ (Jm +l)B 

3khT 
(3.3) 

For the paramagnetic susceptibility, the internal field is B ~ f1
0
H, thus the 

susceptibility is given by: 

(3.4) 

where C is Curie's constant. 

Ferromagnetism, anti-ferromagnetism and ferrimagnetism are all forms of magnetism, 

which occur below a material dependant critical temperature. Above this temperature 

the material is paramagnetic. 
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Ferromagnetism is the spontaneous alignment of magnetic dipoles in the same 

direction. It occurs below the Curie temperature (Tc). Ferromagnetism is seen in 

metals such as iron, cobalt and nickel. 

Anti-ferromagnetism is the spontaneous alignment of magnetic dipoles in anti­

parallel. This leads to a net magnetisation of zero. The spontaneous magnetisation 

occurs below the Neel temperature (TN). 

Ferrimagnetism is the spontaneous alignment of different strength magnetic dipoles in 

anti-parallel. For example, if a set of magnetic dipoles are aligned anti-parallel in a 

line, with the dipoles pointing upwards having a larger moment than the dipoles points 

downwards, then the net magnetic moment is in the upwards direction. 

3.4 History of Torque magnetometry 

Torque magnetometry is an established experiment. John Michell invented the torsion 

balance in the 1700's. The design consists of two masses attached to a torsion fibre. 

The masses would rotate due to an external field (magnetic, electric) inducing a 

torque. The angle of rotation is proportional to the torque. In 1785, Coulomb used a 

similar torsion balance to determine the force relationship between two electrostatic 

charges 15. In 1 798 Cavendish used a torsion balance to measure the gravitation 

constant a•s. 

3.4.1 Mathur's torque magnetometry 

In 1979, Mathur measured the critical current density of NbTi wire, using a torque 

torsion balancel6. The experimental set-up consisted of a cylindrical NbTi sample 

attached to the bottom of a fixed torsion wire. The sample was fixed perpendicular to 

the field direction, with the axis along the torque balance axis. A horizontal iron 

magnet was rotated around the sample at constant speed. The maximum torque was 

measured. 

3.4.1.1 Theory 

The torque was measured as a function of angle. Using Friedel's expressionl7, the 

critical current density (Jc) is related to the volume density pinning force (Fp): 

F = BJ dHe(B) 
p cf.lo _d_B __ (3.5) 
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where B is the magnetic field and He(B) is the reversible constitutive equation for the 

material without pinning. 

From Wipfs expression, the torque is related to the pinning force per unit length (FJ). 

The maximum torque is given by: 

4F1vol.RB 
r =-.:..,._ __ 

max 3 ·A. 
7rro 

(3.6) 

where t/Jo is one flux quantum. The expression is for a cylinder of volume vol and 

B 
radius R. Thus using the relation between the pinning forces FP = --;p: F1 = nFr , 

where n is density of pinning sites. The critical current density with relation to the 

maximum torque is given by: 

J = 3nrmax 
c 4vol.RB 

(3.7) 

3.4.1.2 Experimental Results 

Using eqn 3.7, the critical current density was determined for the NbTi wire. It was 

found to be in excellent agreement with the transport datal6. 

3.5 Piezoresistive and capacitance cantilevers 

3.5.1 History of piezoresistive cantilevers 

In 1990, piezoresistive cantilevers were developed for atomic force mtcroscopy 

(AFM) 18. The cantilevers have a sharp point on the end of the platform, which is 

pulled across the surface of the sample. The change in topography of the surface is 

measured by the change in position of the cantileverl9. This is done by a number of 

different methods. These include measuring the change in resistance across a 

Wheatstone bridge l9 where the cantilever is one of the resistors in the bridge, 

measuring the change in position of a laser beam reflected off the chip20 and 

measuring the position via capacitance. Piezoresistive cantilevers are also used in 

conjunction with a SEM2l. 

3.5.2 Piezoresistive cantilever design 

The original piezoresistive cantilevers used in torque magnetometry were also used in 

AFM22. They are made commercially by Parks Scientific. 
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Figure 3.3a. Diagram of the two-leg piezoresistive cantilever, designed for AFM. 

Diagram taken from the Brugger et al paper23. Figure 3.3b. Diagram of the three-leg 

piezoresistive cantilever, designed by Brugger for torque magnetometry 

measurements 23. 

Cantilevers were developed to have either two or three legs23, 24 (fig 3.3). They are 

made from a single crystal of silicon. The silicon is etched away to leave the platform 

and legs. The legs are fabricated in the <11 0> direction. Boron is doped on to the 

surface of each leg. Boron is an acceptor ion, thus creates a p-type piezoresistor, on 

each leg. The change in resistance is linear with deflection. In fig. 3.3b, the third leg 

carries the calibration loop to the platform. The calibration loops provides an absolute 

way of calibrating the cantilever. It unfortunately decreases the sensitivity of the 

cantilever, as it adds extra stiffness. 

The cantilevers can work in either torsion mode or flexion mode24. The torsion mode 

measures the torque in the x-direction. It measures ~( R1 - R2 ) , which is the torque 

about the centre of the lever (fig. 3 .3a). The flex ion mode measures the torque in the 

y-direction. It measures ~( R1 + R2 ) , which is the torque along both of the legs. The 

cantilevers are used in either the static regime or resonance regime22. In the static 

regime the cantilever is stationary. The change in deflection due to the torque is 

measured across the Wheatstone bridge arrangement. The resonance regime uses a 

bimorph to vibrate the cantilever, at an appropriate frequency and amplitude24. The 

cantilever and sample are driven into resonance. A lockin amplifier measures the 

change in phase or amplitude due to a change in the magnetic field. The advantage 

with the resonance regime is that it has a higher sensitivity than the static regime. 
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/ 
Piezoresistor 

Figure 3.4. Diagram of the Quantum Design piezoresistive torque chip. A protective 

silicon barrier surrounds the chip's platform25. 

Quantum Design has developed a torque chip25, which is depicted in fig. 3.4. The 

chip consists of a 25 Jliil thick sample stage of area 2 x 2 mm2
. The chip is etched 

from a silicon (100) wafer, with the legs along the <110> direction. On each ofthe 

legs a constantan resistor is patterned. The gravitational force is minimised, by the 

Wheatstone bridge circuit patterned on the chip. The change in resistance across the 

Wheatstone bridge is linearly proportional to the torque. The chip is calibrated using 

the calibration loop on the stage. The thick border of silicon around the stage protects 

it. It also makes it easier to handle the chip. 

3.5.3 Capacitance cantilever design 

There are two different designs for capacitance cantilevers. The first design has a 

fixed base plate. Above the base plate is the top plate, which can only move in the 

direction of the base plate. This is defined as the z-direction26· 27. The sample is 

mounted on top of the top plate. For angular measurements, a horizontal magnet is 

rotated about the cantilever. The change in capacitance is measured at different 

angles. It is directly proportional to the applied torque. A variation of this cantilever 

is the silicon cantilever magnetometer (SCM). It is used in pulsed magnetic fields28· 

29 The SCM consists of a silicon cantilever plate with a conductive surface, 

suspended over a fixed conducting plate. The SCM is used down to 20 mK, in pulsed 

fields up to 36 T. 

The second design consists of a torsion beam in the centre of two capacitance plates30· 

31 . The sample is mounted on the end of the beam. The torque from the sample 
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moves the beam. This changes the capacitance, which is proportional to the torque. 

The design was miniaturised, by using a microfabricated silicon torsion beam between 

two electrodes32. The sample is glued in the middle of the torsion balance. The 

whole set-up is placed in a magnetic field. The change in capacitance between the 

electrodes is linearly proportional to the applied torque32. The advantage over the 

plate design is that the torsion meter is symmetrical. This means it can be mounted on 

a horizontal axis. This is useful for vertical superconducting magnets. 

3.5.4 Advantages and Disadvantages 

Sample Sensitivity Sensitivity accuracy Size 

(Nm) (Am2) (tJ.m3) 

Piezoresistive ThBazCu06+d33 1.1 X 10-1422 ~ 10-12JJ ~1 %22 200 X 10 

cantilever BhSrzCaCuzOs X 424 

- 2legs 22 

Piezoresisti ve Calibration loop 1 o-!2 (static )23 1.2 x w-11 1%22 240 X 10 

cantilever area ~ 1.2 X 10-S 1 o-14 X 424 

-3 legs mz24 (dynamic )24 

QD torque BhSrzCaCuOs+d 2 X 10-Y 2 X 10-W at 1% 2000x 

magnetometer 25 10 T 2000 X 25 

Silicon YBazCu30128 2.8 x w-928 2.5 x w-1228 2000x 

capacitance 1000 X 

cantilever 528 

Torsion beam Pb 2.4 x 10-12 3.4 x 1 o-13 19000 X 

cantilever30 Ndz-xCexCU04-d 1000 X 29 

Silicon Fez03 3 X 10-U 3 x w-u ~3% 5250 X 

torsion beam NdFeB32 1500 X 40 

cantilever 

Table 3.2. Comparison of torque magnetometers used to measure anisotropic 

materials, including superconductors. 
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A summary of the torque magnetometers is presented in table 3.2. The sensitivities 

for each method are given in torque as well as magnetic moment. The size of each 

magnetometer is also included. 

Piezoresistive cantilevers are small devices (200 x 117 x 5 11m\ This means the 

strength of the diamagnetic background is reduced. It also means that small samples 

such as single crystals can be measured. The cantilevers can be rotated about the 

horizontal axis, as the capacitance of the leads is unimportant. They are used in 

solenoid magnets, in fields up to 23 T. They are stand-alone devices. They have been 

used in dilution fridges34. 

The piezoresistors on the legs of the cantilever are strongly field and temperature 

dependant. A second cantilever is measured in situ. This cantilever is used as a 

background reference. The cantilevers are very fragile. 

Capacitance cantilevers are temperature and field independent. This means a second 

cantilever is not required in situ. In addition they are more robust than piezoresistive 

cantilevers. This is because they are larger in size. 

Capacitance cantilevers are hard to miniaturise. This means it is more difficult to 

obtain the same sensitivity as a piezoresistive cantilever. The cantilevers are sensitive 

to movement in the twisted pair leads, which produces additional capacitance. They 

are fixed in position for rotation measurements. The magnet used is a horizontal split 

magnet with maximum field 8 T. The capacitance bridge required to balance these 

devices is very expensive. 
1.0 .----~-~~~-----~-----~-----, 
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~y=1 
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Figure 3.5. Torque as a function of angle and anisotropy, plotted using Kogan's 

equation35. 
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3.5.5 Other applications for cantilevers 

Piezoresistive cantilevers have been used for other applications. This is because any 

external perturbation such as chemical, thermal or magnetic can be converted into a 

mechanical motion. The cantilevers are useful due to they're small size. They are 

also stand-alone devices. The applications include measurements of magnetic 

moments36 and magnetic anisotropy37. They have also been used in measurements of 

Fermi surfaces by Haas-van Alphen experiments34· 38. 

3.6 Torque cantilever measurements on superconductors 

3.6.1 Kogan's equation 

In 1988, Kogan derived an equation, which related the torque of a sample in a 

magnetic field to the anisotropy (rm)35. The equation is derived from the internal 

energy of an anisotropic superconductor, as a function of angle (e), and applied 

magnetic field (H) 39. The torque as a function of angle, for constant magnetic field 

& temperature is given by: 

(e)= t/J"Hvol r,:, -1 sin2e ln Ym17Hc 2 

' 64Jr
2.-l2 r,;/ 3 &(e) H&(e) 

(3.8) 

1/2 
where £ (e)= ( sin2 e + y; cos2 e) , vol is the volume of the sample, His the applied 

magnetic field, t/Jo is one flux quanta, A, is the penetration depth and 17 :;:,; 1 . The 

dependence of the torque on the anisotropy is shown in fig. 3.5. For y m = 1, the 

torque has sin 2e dependence. 

3.6.2 Measurements of the an isotropy 

Piezoresistive cantilevers have been used to measure the anisotropy of 

superconductors. The temperature and applied magnetic field are held constant, while 

the sample is rotated in the field. The torque is measured as a function of angle. The 

anisotropy is determined using Kogan's equation (eqn. 3.8). The temperature and 

magnetic field are calculated for the superconductor's reversible magnetisation region. 

The measurement has been carried out on a range of different superconductors 

including MgB240, YBa2Cu307-<141 · 42, La1.9Sr0.1Cu0443, BhSr2CaCuOs27 and 

ThBa2Cu06+d33. At temperatures below Tc, high-Tc superconductors show 2D 

behaviour, due to their layered structure. At temperatures close to Tc they show 3D 
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behaviour. By measuring the change in anisotropy as a function of temperature, the 

2D - 3D crossover temperature is determined41. 

3.6.3 Irreversibility field and irreversible magnetisation 

In the irreversible magnetisation region, the torque data is hysteretic as a function of 

angle. The angle at which the hysteresis loop starts is the irreversible angle (e;"). If 

the anisotropy is large (Yrn > 40), the irreversibility field is given by33: 

(3.9) 

The irreversible magnetisation is derived from the hysteretic torque as a function of 

angle44 45. The irreversible part of the magnetisation is given by: 

/'J.:r 
(3.10) 

Thus the current density isJ =M,,, (eqn 2.33). Eqn 3.10 is valid if it is assumed that 
r,, 

the magnetisation component is only in the c-direction. Another way of measuring 

the magnetisation is to apply a magnetic field (Happ) along the c-axis, and a second 

constant field (H11 ) parallel to the a, b plane46. The torque is measured in the c­

direction, while Happ is swept. The magnetisation hysteresis curves are then used to 

determine the irreversible field (H;rr) and the transformation field (Hm)· 

In the irreversible magnetisation region, the reversible and irreversible torque 

components as a function of angle can often be calculated from47: 

Trev(e) = t[ rJe) + T_ (e)] 
r,rr(e) = t[ rJe)- r_ (e)] 

(3 .11) 

where T + is the torque for the up field sweep, and T _ is the torque for the down field 

sweep. The irreversible torque component is the difference across the hysteresis loop. 

It is a measure of the effective pinning force47. The reversible torque component is 

the average value of the torque signal. It is proportional to the magnetisation, thus the 

fundamental superconducting parameters can be calculated47. 

3.6.4 Other measurements in the literature. 

The capacitance cantilever was used to measure the re-entrant behaviour of 

DyNhB2C48, at 0.4 K. For a swept magnetic field, the change in capacitance was 

35 



proportional to the applied torque. The different phases of DyNhB2C were 

determined by the changes in the torque. The capacitance cantilever was used to 

investigate the flux jump avalanches in YBa2Cu30 7-049. At 5 T, the torque was 

measured as a function of angle. Between 15 - 30° jumps were observed in the torque 

hysteresis loop. These jumps were attributed to the crossover from a tilted to a kinked 

vortex structure. 

3.7 Terminology of magnetic torque 

3.7.1 Torque theory 

In this thesis a field-gradient torque magnetometer was used to measure the critical 

current density of isotropic superconductors. The following section introduces the 

theory behind the field-gradient torque magnetometer. It also includes a summary of 

demagnetisation factors and shape factors. 

When a current loop is placed at an angle e, in a uniform magnetic field (B), the 

torque experienced by the loop is: 

r = IABsinBs = LixB = mxB (3.12) 
~ 

where the moment is defined as m= !A, and I is the current around the loop of area 

A and s is an unit vector perpendicular to the area and the magnetic field. In a 

uniform magnetic field the force experienced by the loop is zero. However when the 

current loop is placed in a field gradient, it experiences a force and a torque. The 

torque is the same as in a uniform field r = m x B . The force is given by: 

F=(m·V)B 

Therefore in a field gradient the total torque on the current loop is: 

r=lxF+mxB 

r= lx((m·Y')B)+m xB 

where I is the distance between the force and the axis of rotation. 

(3.13) 

(3.14a) 

(3.14b) 

3. 7.2 Angular dependence of the magnetic moment of an anisotropic reversible 

superconductor 

From Cape et al paper50, when an anisotropic, reversible superconductor is placed in 

an applied local magnetic field, with the field along one of its symmetry axis, the 

magnetic moment ( ms) is parallel to the field. 
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Figure 3.6. Diagram of an anisotropic, reversible superconductor in an applied, local 

magnetic field (Happ-loc). The field is not aligned with the symmetry axis of the super 

conductor. The angle If/ is between the symmetry axis and the field, the angle v is 

between the reversible magnetisation (M) and the symmetry axis, and the angle B is 

between the magnetisation and the field. 

When the field is not aligned with the symmetry axis, then the magnetisation is not 

parallel to the field (fig. 3.6). Thus the sample experiences a torque, which is 

described by50 i: 

r = flo voz( M _j_ Happ-tocll - Mn Happ-toc_L) (3.15) 

where _l and 11 represent the perpendicular and parallel directions in relation to the 

symmetry axis respectively so that Happ-tod is the component of the applied local 

field perpendicular to the symmetry axis and Happ-tocll is the component of the applied 

local field parallel to the symmetry axis. For a type-11 superconductor in the mixed 

state, the angle between the magnetisation and the symmetry axis is v, this means the 

magnetisation components can be expressed as: 

(3.16) 

(H-H ) 
where Mm= ( J j2 

, Hc2 is the upper critical field, K is the GL parameter and 
2K- -1 {JA 

fJA is the Abrikosov's constant (cf. eqn. 2.28). 

In the Cape paper50, the torque experienced by the sample is given by 
r = " vat( M H - M H ) , rather than the correct version which is eqn 3.15. 

ro j_ app-loc.l n app-lot:l_ 
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The magnetisation components can also be written in terms of the local field, and the 

demagnetisation factor ( N) so: 

M = Happ-loc COS If/- Hc 2 COSV 

11 r+N 

M - H app-/oc sin If/ - Hc2 sin V 

_I_- r+(1-N)12 
(3.17) 

where If/ is the angle between the symmetry axis and the local field, r = ( 2K2 
- 1) PA • 

The relation between the angles is v =If/+(}, where (} is the angle between the 

magnetisation and the local field. Combining eqn 3.16 and 3.17 gives: 

( ) 
H app-lt><· COS If/ 

COS V = COS If/ + (} = ( ) 
r+ N Mrev + Hc2 

. . ( B) Happ-'"'- sin If/ 
smv = sm If/+ = ( ( _) ) 

r+ 1-N 12 Mrev +Hc2 
(3.18) 

Eqn 3 .18, Happ-locll = Happ-toc cos If/ and Happ-/ocj_ = Happ-loc sin If/ are substituted in eqn 

3 .15, to g1ve the general torque on a superconducting sample: 

r = fl ,vol.( 3N -1) app-loc 'I' X m - ( H
2 

sin2m) M
2 

' 4 [(r+ N)Mrev + Hc2 ]{[r+(N -112)]Mm· + Hc2} 

(3.19) 

Thus if the magnetic field is not aligned with a symmetry axis, the magnetisation is 

not parallel to the field, and a torque experienced by the sample. When the sample is 

rotated in the field, the angular dependence of the torque is sin21f/. 

Happ-loc 

chip's centre~~~~~~--
axis of rotation 

sample 

Figure 3.7. Schematic diagram of the experimental set-up ofthe QD torque chip, in 

an applied local magnetic field, Happ-loc· In the figure fi is normal to the chip, I is the 

distance between the sample and the centre of rotation of the chip and ms is the 

sample moment. The angle (} is between the sample moment and the magnetic field 

and the angle rp is between the normal to the chip and the magnetic field. 
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3. 7.3 Torque magndometry fum a field gntdiew~ fmr a supell"comhnctmr with 

piimming 

From fig. 3.7, and eqn 3.14b, the torque for a reversible sample (i.e. with no pinning 

and neglecting shape and anisotropy effects) is given by: 

I 
dllapp-Joc 

T=llm X 
ro z dz (3.20) 

Eqn 3.20 describes the behaviour of the superconducting moment in the field gradient, 

when the moment is aligned with the local field. The torque is measured as the 

!1V 
change in resistance (M) across a Wheatstone bridge ( -

1
- = M = aRT), where 

aR is the sensitivity of the chip. It is measured as the change in resistance as the 

Wheatstone bridge is not zero. Thus the change in resistance is given by: 

!J.R I I dH app-loc - = Jlo ms cosBI cosrp -~-
aR ~ 

(3.21) 

If we now consider an isotropic superconductor with pinning, the magnetic moment 

(ms) would be parallel to the applied local field (Happ-loc). The angle rp = 0, and B 

changes by 180°. Thus the difference in resistance across the magnetic hysteresis loop 

(M+- = M+ -M_) is given by: 

f'1R+ I I dHapp-loc --- =I !1m f1 ---
aR s+- o dz 

(3.22) 

where lt1mH-1 = lmH I+ lm.,-1, which are the magnitude of the moments for the field 

sweep up (lms+ I) and the field sweep down (lms-1) . Rearranging eqn. 3.22 in terms of 

the moment gives: 

(3.23) 

From Bean's modeP, the critical current density is the difference in magnetisation 

across the hysteresis loop divided by the shape factor (eqn 2.33). The magnetisation 

of a sample is the magnetic moment divided by the samples' volume. Thus the 

critical current density is given by: 

(3.24) 
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Now consider an anisotropic hysteretic sample, at the reversible angle ( e = 0°), the 

magnetic moment is aligned with the local field (cf. eqn. 3 .14b ), but cp need not be 

zero. Thus the critical current density of an anisotropic superconductor taken at the 

reversible angle is given by: 

(3.25) 

3. 7.4 Demagnetisation factors 

The shape of a sample is important when measuring its magnetic moment. The 

demagnetisation factor relates the internal field (B;m) to the external field strength 

(Happ) and the uniform magnetisation (M)Sl. The internal magnetic field (B;m) for a 

magnetic material with uniform magnetisation is given by52: 

Bint = Jlo (H +M) (3.26) 

The field strength (H) can be written in terms of the applied magnetic field and the 

demagnetisation field (Hd)· It is given by: 

(3.27) 

The demagnetisation factor N has the form of a tensor in eqn 3.28. Thus substituting 

equation 3.27 into equation 3.26, the internal magnetic field of the material is: 

(3.28) 

If the field is taken to be along the c-direction of a sample, where the axis lengths are 

defined as a = b ;e c, the demagnetisation factors for each axis are Ne = N
11 

and 

N a = N 6 = N j_ • The factors are bound by the constraint N 11 + 2 N j_ = 1 . 

The simplest shapes to determine demagnetisation factors for are ellipsoids. They 

have known demagnetisation factors, which were derived by Osborn 53. For a prolate 

ellipsoid54 (c >a), the demagnetisation factor is given by: 

J [ ( ) ] [ J ]l/2 1- c- 1 1 +& a-
~1 =--?!- -ln --" -1 where&"= 1-2 

&" 2&" 1-c" c 
(3.29) 

and for an oblate ellipsoid54 (c <a): 

[ 
']1/2 If? 

1 1-c- [ 2] -d • -1 c 
N

11 
= 2 - 3 sm &"where&"= 1-2 
~ ~ a 

(3.30) 
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Eqns 3.29 & 3.30 can be approximated for other shapes. For a long rod (c > a)54, the 

demagnetisation factors are given by: 

a
2 [1 (2c

2

) ] 1 ( a
2 [~J2cJ ] N=--ln--1 &N =-1-- ---1 

11 2c2 2 a 2 
j_ 2 c2 a 

(3.31) 

1 
Equation 3.31 is approximated for a wire (c>>a)54 to be N

11 
= 0, N j_ = 2. Eqn 3.30 

is approximated for a flat disc ( c < < a )54 to be N~ ~ 1 , N j_ ~ 0 . 

The Meissner effect in a superconductor is a special case. The internal magnetic field 

is zero, thus Happ = -(1- N)M. It is assumed that there are no demagnetisation 

effects, thus is N 11 = 0, and Happ =-M 54_ 

3.7.5 Shape Factors 

The shape factor ( Ysf) 1s used to determine the critical current density of 

superconductors. The shape factor differs from the demagnetisation factor as the 

magnetisation is not uniform. The magnetisation is taken to be a function of the 

applied magnetic field and the internal magnetic field. 

For isotropic superconductors in an applied magnetic field, the critical currents flow 

in a direction perpendicular to the applied field. The critical current density is 

proportional to the difference in magnetisation across a hysteresis loop, divided by the 

shape factorl. The shape factor is determined for applied magnetic fields greater than 

the characteristic field55 ( B* = l'oJ) ). 

a. 2h b. 2h 

2a db r 

2 I 

Figure 3.8a. Diagram of a superconducting cylinder with an applied field along the 

radius. Figure 3.8b. A view of a cross-sectional area of the cylinder, with a current 

loop flowing through it. 
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From fig. 3.8a the magnetic field is applied perpendicular to the long axis of the 

cylinder. This means the width and the height of the current loops change with radius. 

An average radius is determined between 0 and 90 degrees. It is given by: 

f {~dr a 
(r) = =-

f fdr 2 
(3.32) 

This means the average height of the whole cylinder in the radial direction is 2a. The 

magnetic flux will penetrate the same distance from all sides. This leads to the relation 

between the radius (r) and the length(/) being /- h = r- a. The critical current 

density is a constant Jc. From fig. 3.7b, the area enclosed by the loop is 2r21. The 

current flowing around the loop is I = Jc 2adr . Therefore the moment of the current 

loop is dm =lA= Jc2a2r2ldr = Jc8ar(r- a+ h)dr. 

The total moment for the cylinder is: 

m= Jdm = fsJcar(r- a+ h)dr 

m= 4Jca
3
h[l- ;h] 

(3.33) 

Substituting the volume of the cylinder (m/2h) into eqn 3.33. The moment for one 

field direction is m = 2aJ. vol [1-~] . The difference in moment across the 
' 7r 3h 

hysteresis loop is given by: 

!:1m =m -m = 4J -a 1--vol [ a] 
+ - c 7r 3h (3.34) 

Rearranging eqn. 3.34, to give the critical current density: 

J = !:1m = I1M 7r 

' 4a •;1[1- ;h] a[!-3aJ4 
(3.35) 

This gives the shape factor y,1 = ~ [ 1- 3~]. For a wire (2c >> 2a), the shape factor 

is y,1 = 4a . For a cylinder with radius a, with the field along the long axis the shape 
. 7r 

factor is r,, = 23a . For a rectangular parallelepiped ( vol = 2a X 2b X 2c ), with the 

field along the c-axis, the shape factor is y .1 = a [1- ~]56. 
' 3b 
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3.8 Conclusions 

In superconductivity, magnetic techniques are important as they are used to 

characterise superconductors. They provide a damage free method of measuring the 

magnetic moment. The magnetic moment as a function of magnetic field, is used to 

determine the critical current density, the upper critical field, and the GL parameter 

(K). Torque cantilever magnetometry has been used to measure the anisotropy, and 

magnetisation of superconductors. The advantage it has over commercial VSMs is it 

is a factor 100 more sensitive. Torque cantilever magnetometers also work in fields 

up to 23 T and temperatures down to 1 0 mK. This makes then ideal devices to 

measure the magnetic properties of superconductors. 
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Chapteli' 4 

The Superconducting Parameters of (Pbo.7sEuo.2s)MosSa 

4.1 Introduction 

Chevrel phase superconductors are one of the next generation of materials that could 

be used for high field magnets. This chapter reviews the critical and fundamental 

parameters of Chevrel phase superconductors from the literature in section 4.2. 

Section 4.3 describes the two different methods which were used to fabricate (Pb1_ 

xEux)Mo6Ss, for x = 0.0, 0.25 & 0.5. Both methods finished with hot isostatic pressing 

(HIP'ing) at 2000 bar, 800 °C, for 8 hours. The different experiments carried out to 

characterise the samples are described in section 4.4. These include resistivity, ac 

susceptibility and magnetic moment measurements, as a function of magnetic field 

and temperature. Specific heat data was also taken by N. Leigh, as a function of 

magnetic field and temperature. The results from these experiments are presented in 

section 4.5. These results are analysed to determine the upper critical field (Bc2(0)), 

the fundamental parameters (BcJ(O), Bc(O), 2(0) & ~(0)) and the Sommerfeld constant 

(r) of the samples. The temperature dependence of K is determined from the 

vibrating sample magnetometer (VSM) measurements, in section 4.6. In section 4.7, 

the results are discussed and compared for the different measurements. The effect of 

adding europium ions into PbMo6S8 is discussed in terms of how the critical and 

fundamental parameters change. In section 4.8, the conclusion on the characterisation 

of (Pbi-xEux)Mo6Ss is presented. 

The motivation for this chapter was to investigate the change in the properties of 

PbMo6Ss, when magnetic europium ions were inserted on to the lead sites. As Eu 

valence is 2+, which is the same as lead, the overall electronic structure may not be 

affected. The inter-relation between magnetisation and superconductivity has been 

observed in rare earth Chevrel phase superconductors, and in PbMo6S8 doped with 

rare earth ions. (Pbl-xEux)Mo6Ss is a magnetic superconductor, so the interaction 

between superconducting and magnetic magnetisation can be investigated. 
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X • Mo 0 s 

Figure 4.1. Lattice structure of the Chevrel phase superconductors, with the chemical 

formula XMo6Ss where X is a metallic atom. 

Also presented in this chapter is a method of determining K from VSM measurements, 

in the temperature range 4.2 K to Tc. Kis normally determined for temperatures close 

to the critical temperature. This is when the superconductor is in the reversible 

magnetisation region. The method used reduces the irreversible magnetisation, which 

increases the range oftemperatures over which Kcan be measured for. The Kvalue for 

a magnetic superconductor is difficult to extract from the measured magnetisation. 

This method is used to determine Kfor (Pbi-xEux)Mo6Ss. 

4.2 Review of Chevrel Phase materials 

Chevrel phase superconductors were discovered m 1971 1
• They are a ternary 

superconductor with the formula X0 Mo6Ss where X is a metal such as lead, tin or any 

of the rare earth ions. For large metallic ions e.g. Ph, Sn, n = 1, while for small 

metallic ions e.g. Cu, Gd n is in the range 1 < n < 2.5. The critical temperature is 
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dependant on the metallic ion, e.g. for X= Pb, the Tc is 15 K2
' 

3 and for X= Sn the Tc 

is 14.3 K4
• While for the rare earth ions the critical temperature tends to be lower, e.g. 

X = Gd, the Tc is 1.4 K5
• There is also a relation between the cl a ratio and the critical 

temperature of PbMo6Ss. The larger the cl a ratio the higher the critical temperature6. 

Chevrel phase superconductors have high upper critical field, making them suitable 

for high field applications e.g. for X= Pb the Bc2(0) is 56 T7
• 

8
, and for X= Sn, the 

Bc2(0) is 30 r. 
Below Tc, magnetism and superconductivity are observed in rare earth Chevrel phase 

superconductors. The lattice structure (fig. 4.1) suggests there are two independent 

lattices present. The Mo6Ss is in a FCC structure which sits in the body centre of the 

BCC metal X lattice. Superconductivity occurs in the Mo6Ss, while the magnetic 

lattice is the RE ions, in the place of the metal ions. The rare earth Chevrel phase 

superconductors such as DyMo6Ss have anti-ferromagnetic ordering in the 

superconducting phase9
. Adding rare earth ions into PbMo6Ss and SnMo6Ss has also 

been researched10
• ll, 

12· 13
•• Zheng added Gd ions into PbMo6Ss14. The intrinsic 

properties such as the critical temperature and the upper critical field increased. The 

extrinsic properties such as the irreversibility field and the critical current density 

decreased14· 15. 

4.3 Preparation of materials 

Two different methods were used to fabricate the Pb1-xEuxMo6Ss samples, with 

doping levels of x = 0.0, 0.25 & 0.5. The samples were made from pure elements in 

powder form, except for the europium, which was in ingot form. The purity of each 

element was Pb- 99.99 %, Mo- 99.95 %, S- 99.99% and Eu- 99.9 %. To increase 

the purity of the molybdenum, it was heat treated at 1000 °C, for 4 hours. The gas 

flowing through the furnace was Ar - 98 % H2 - 2 % gas. This removed any oxygen 

present in the powder. The elements were stoichiometrically added together to make 

12.5 g of the final superconductor. Europium in ingot form can not be ground. Thus 

for the europium to be evenly distributed through the sample, europium sulphide was 

made. The europium and sulphur were mixed together and placed in a molybdenum 

crucible. They were reacted together in a tube furnace with the following heat-

process: 
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Room Temperature -10 °C.hr-1 -+ 80 °C- 3 hr-+ 80 °C- 33 °C.hr-1 -+ 420 °C- 8 hr 

-+ 420 °C - 33 °C. hr-1 -+ 650 °C- 10 hr -+ 650 °C and switch off furnace 

The chemical reaction that took place during the fabrication of (Ph1-xEux)Mo6Ss was: 

x Eu + x S ~ x EuS 

(1- x) Ph+ x EuS + 6 Mo + (8- x) S ~ Pbl-xEuxMo6Ss 

The powder elements and EuS were ground together using a pestle and mortar for 

over forty minutes. They were then pressed into tablets using a hydraulic press. The 

tablets were put into a molybdenum crucible16. The crucible was sealed with a 

graphite o-ring. A specially designed molybdenum cage16 was used to hold the lid 

shut. This was to ensure that sulphur did not leak from the crucible during the 

reaction. 

-
~ 11;t 
.a 20 
~ 
Q) 
c.. 
E 
Q) 
1--

80 
20~ 

0 

420 

40 minute grind 

1000 

50 

40 minute grin<1. 

100 
Time, t(hours) 

• • Method a 
• • Method b 

1150 

150 

Figure 4.2. The two different heat-sintering methods used to fabricate the samples as 

a function of time and temperature. 
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From fig. 4.2, two different heat-sintering methods were used to fabricate the samples. 

The first was method (a), which was the original method used to fabricate Chevrel 

phase superconductors. The second was method (b), which was devised by Niu17
• 

Method (b) gave higher critical temperatures for PbMo6Ss17
• It was used to see 

whether 1000 °C was higher enough to insert Eu ions, as well as increasing the critical 

temperature. To insert rare earth ions into PbMo6Ss, temperatures above 1000 °C are 

normally required18
• A third method was used to fabricate PbMo6Ss. The heat 

sintering took place at the same temperatures as method (b), but the reaction times 

were a factor four longer. For all methods, the grinding of the chemicals and sealing 

of the molybdenum crucible took place in the argon glove box. This ensured no 

oxygen could contaminate the samples. 

-rn m UNHIPX 

c:: 
-~ UNHIPX 
c:: 
Q) HIPX~l__Mc__ _ _j 

E 0 UNHIP _______ _ -~ .HIP ________ ----c''--~--''"'~--;----''-----'.'---"-' 

S UNHIPX 

~ HIPX 
rn 
ffi UNHIP -c:: 

HIP 
"'0 

-~ UNHIPX 
eo E HIP 

~ UNHIP 

5 25 65 

Fipre 41.3. X-ray diffraction pattern for the seven unHIP'ed samples and the five 

HIP'ed samples. The samples were fabricated using either method (a) or (b), as 

shown in figure 4.2. The label (b)I denotes the longer heat-treatment similar to 

method (b). A cross denotes that the samples' majority phase is Chevrel phase. The 

dash lines are for the molybdenum peaks. 
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Oxygen is known to degrade Chevrel phase superconductors19
' 

20. It reduces both the 

critical temperature and upper critical field20. This is because the oxygen replaces the 

sulphur in the lattice. All precautions were taken to make sure the samples were 

fabricated without being oxidised. The samples were sintered in a leak tight tube 

furnace, with argon gas flowing through during the entire reaction process. 

Five of the samples fabricated were hot isostatically pressed (HIP' ed), to improve the 

density of the material21 . The samples were x = O.O(b), O.O(b)i, 0.25(a), 0.25(b) and 

0.5(a). They were HIP'ed at 800 °C and 2000 bar, for 8 hours. 

All the unHIP'ed and HIP'ed samples were X-ray powder diffracted, using a Broker 

DSOOO powder diffractometer. The wavelength of the x-rays was 1.5409 A. The X­

ray powder diffraction (XRD) was performed by Dr A E Goeta, from the Department 

of Chemistry at Durham University. 

XRD patterns (fig. 4.3) were used to determine whether a sample was single phase or 

mixed phase. Single phase means there were only Chevrel phase peaks in the XRD 

pattern. Hence there was less than 5 % impurities in the sample, as this was the 

resolution of the XRD. Mixed phase means that there were other compounds in the 

sample. The formation of these second phases was probably a result of sulphur 

leaking from the crucible, leading to an excess of molybdenum and lead. Mo2S3 

formed if the fabrication temperature was too low to insert the metal ions into the 

lattice. 

Sample x = O.O(b)i, was still mixed phase after HIP'ing. From the XRD pattern (fig. 

4.3), the majority phase was molybdenum. HIP'ing decreased the critical temperature 

of x = O.O(b)i. The critical temperature and c/a ratio of x = 0.25(b), increased after 

HIP'ing. This suggests that HIP'ing continued the reaction process, to form 

(Pbo.?sEUo.2s)Mo6Ss. 

4.4 Experimental set-up 

All the unHIP'ed and HIP'ed samples were measured using the resistivity-ac 

susceptibility (Ressus) probe in a helium dewar. For the resistivity measurement, the 

sample tablets were dense enough to be cut into blocks of volume 2 x 1 x 4 mm3. 

Four wire contacts were made to the top of the sample. Silver paint was used, as it 

provided a good electrical contact for the wires, but did not permanently damage the 

sample. The outer two wires were the current leads, and the inner two wires were the 

voltage taps. The distance between the voltage taps was measured, so the resistivity 
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could be determined. For the ac susceptibility measurement, a set of coils was used, 

which are described in section 3.2. The sample was GE-vamished onto a notch in a 

wooden stick. The notch position was centred in the middle of one of the secondary 

coils. The Ressus probe was used in a specially designed outer can. The whole can 

was filled with helium gas when cooled down to 4.2 K in the helium dewar. When 

the probe had reached 4.2 K the gas was pumped out. The experiment involved 

ramping the temperature from 4.2 K to above Tc. The resistivity and ac susceptibility 

voltages were measured on a Stanford lock-in as a function of temperature. This 

measurement provided the critical temperature of the sample. 

For the magnetic field measurements, the Oxford Instrument variable temperature 

insert (VTI) was used in the Oxford Instrument superconducting 15 T magnet. In the 

VTI, the resistivity, ac susceptibility and specific heat measurements were carried out 

on the HIP' ed samples. The Ressus probe was used to measure the resistivity and ac 

susceptibility, while the VTI controlled the temperature of the probe. The magnetic 

field was held constant, and the temperature was swept from 4.2 K to above Tc. The 

resistivity and ac susceptibility voltages were measured as a function of temperature. 

The magnetic fields used in the experiment were 0, 3, 6, 9, 12 & 15 T. This 

measurement gave the critical temperature as a function of magnetic field. 

The vibrating sample magnetometer (VSM) in Birmingham was used to measure the 

magnetic moment of the HIP'ed x = O.O(b) and x = 0.25(a) samples. These samples 

were measured as they were both single phase and had the highest critical 

temperatures, for each fabricated superconductor. The magnetic moments were 

measured at fixed temperatures, from 4.2 K to above Tc, as a function of magnetic 

field. The magnetic field was swept from -0.5 T to 12 T, and then back to 0 T. The 

sweep rate was 150 Oemin-1
• 

The samples x = O.O(b), O.O(b)/ & 0.25(b), were powders before HIP'ing. They were 

only measured using ac susceptibility. The resistivity, ac susceptibility and VSM 

measurements were made on bulk samples. They were cut from the large HIP'ed 

tablets. The VSM bulk samples were then ground up into a powder, which was glued 

together with GE-varnish to form the powder sample. This ensured the same sample 

was measured, and any inhomogeneities in the large HIP'ed tablet, were not 

measured. 
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Criterion used 0.5{JN o.sx· x''(peak) c!a ratio 

forTe (K) (K) (K) 

Eu content 

x = 0.0 (a) 12.73 12.16 12.24 1.2453 

x= 0.0 {b) - 14.4 14.26 1.2503 

X= 0.0 {b)/ - 14.06 13.95 -

x = 0.25 (a) 11.89 10.84 10.98 1.2478 

X= 0.25 (b) - 9.26 8.39 1.2558 

x = 0.5 (a) <6 <6 <6 1.2508 

x= 0.5 (b) <6 <6 <6 1.2538 

Table 4.1. The critical temperature and c/a ratios for all the unHIP'ed samples. The 

critical temperatures were all measured in zero field, in a helium dewar. 
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Figure 4.4. Resistivity of PbMo6Ss as a function of temperature and applied magnetic 

fields. The material was produced using method (b). 

54 



250 

200 
e 
0 

g_ 150 
IS: 
~ 
~ 100 
1/) 

"iii 
Q) 
0:: 

50 

7 

v~-v 15T 
D 0 12T 
)( )( 9 T 
+-----+ 6T 
Qe------<0 3 T 
b. 8 OT 

9 11 
Temperature, T(K) 

1.5 

0 

13 
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temperature and applied magnetic field. The material was produced using method (a). 
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4.5.1 Resistivity, me susceptibility & specific heat measurements 

The unHIP' ed samples were measured in zero field to determine their critical 

temperature. The c/a ratios were determined from the XRD (fig. 4.3). From table 4.1, 

the c/a ratio increased as europium was added in to the PbMo6Ss. The critical 

temperature decreased as Eu ions were added. 

From fig. 4.4, x = O.O(b) had one of the highest critical temperatures (15.16 K) 

measured for a Chevrel phase superconductor17 (cf. Table 4.2). From table 4.2, the 

highest Tc in the literature was measured by Miihlratzer, thus the Tc of x = O.O(b) is a 

good sample. The critical temperature of x = 0.25(a) decreased, due to the doped 

europium ions (fig 4.5). The specific heat data taken by N. Leigh, shows that 

magnetism and superconductivity occurred simultaneously in x = 0.25(a) (fig.4.6). 

This is seen as the increase in c/T at temperatures below 5 K. 

The criterion for determining the critical temperatures were 90 % and 50 % of the 

normal resistivity transition, the peak of the loss susceptibility (z' '), and 50 % of the 

lossless susceptibility transition (%'). All critical temperatures are for the zero field 

measurements. The width of the lossless susceptibility (L1z') gave a measure of the 

homogeneity of the samples. 

Criterion 0.9/)N 0.5/)N o.5z' L1z' x''(peak) c/a ratio 

used for Tc (K) (K) (K) (K) (K) 

X= 0.0 (b) 15.16 14.72 14.17 0.9 14.32 1.2495 

X= 0.0 (b)/ 13.70 13.32 13.14 0.4 13.20 1.2394 

x = 0.25 (a) 12.62 11.99 11.00 0.7 11.09 1.2479 

x= 0.25 (b) 12.82 10.00 - - 10.90 1.2577 

x=0.5 (a) 5.37 2.17 - - - 1.2541 

MUhlratzer - 14.7 - - - 1.25 

x=0.02 

Table 4.2. The critical temperatures & cla ratios for the HIP'ed Chevrel phase 

samples. The critical temperatures were all measured in the 15 T magnet at zero field. 
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Table 4.2 gives a summary of the critical temperatures and cl a ratios for the HIP'ed 

samples. Method (b) gave higher cla ratio than method (a). This means the lattice was 

strained more, thus less isotropic. The width of the transitions for x = O.O(b) and x = 

0.25(a) were less than 1 K. HIP'ing did not change the critical temperature of the 

single phase samples. The critical temperature decreased as the percentage of Eu ions 

was increased. 

4.5.2 VSM Meastnremenm 

The magnetic moments were measured for the single phase HIP' ed x = O.O(b) and x = 

0.25(a) samples. They were measured in bulk and powder forms. The magnetisation 

(M) for the bulk x = O.O(b) was calculated by dividing the magnetic moment (m) by 

the samples' volume (vol) (M= ,:;;,). The bulk x = 0.25(a) magnetisation was 

calculated by dividing the magnetic moment by the volume minus the porosity of the 

sample. The x = O.O(b) and x = 0.25(a) powder magnetisations were calculated by 

determining the overall volume of the sample, which was then divided into the 

measured magnetic moment. 

The x = 0.25(a) magnetisation is plotted as a function of internal magnetic field,(B;n). 

This was determined from the expression Bin= .uJH+M) = .ua(Happ +(1- .N)M), 
where N is the demagnetisation tensor. From section 3.7.2, the demagnetisation 

factors for the bulk x = 0.25(a) were N
11 
= 0.76 & N .i = 0.12. For the powder, the 

grains were assumed to be spherical, thus the demagnetisation factors were 

N
11
=N.l=t. 

The bulk x = O.O(b) magnetisation has symmetric half hysteresis loops, at low 

temperatures (fig. 4.7a). The powder magnetisation has asymmetric hysteresis loop, 

at all temperatures (fig. 4.7b). The bulk and powder x = 0.25(a) magnetisation has 

hysteresis due to the superconducting contribution, as well as the reversible 

paramagnetic contribution (fig. 4.7c & d). The hysteresis is reduced in the x = 

0.25(a) powder sample compared to the bulk sample, which makes it almost 

reversible. For the high temperature x = O.O(b) data (fig. 4.7a), the background 

magnetisation (15 K data) is subtracted away before any analysis is carried out. 
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Figure 4.8. The upper critical field of (Pb1.xEux)Mo6Ss with x = 0.0 and x = 0.25, as 

a function of temperature and applied magnetic field. The open shapes denote the 

resistivity data, the closed shapes denote the VSM bulk data, the shapes with crosses 

inside denote the VSM powder data, and the crosses denote the specific heat data. 

The squares with a line inside denote the ac susceptibility lossless data. The x = 

0.25(a) VSM values were determined from Arrott plots. The solid lines are the 

straight-line fits through the data. The samples were produced using one of the 

different methods denoted (a) or (b). 

Eu Tc PJv{16 K) RRR - dBcl I _ dBc11 Bc2(0) Bc2(0) 
dT T=T< dT T=T< 

Content (0.9PN) (JJO.cm) (VS M) (0.9pN) (VS M) 
(0.9PN) 

(K) 
{T.K-1

) (T.K-1
) 

(T) (T) 

x=O.O 15.16 240 3.7 4.83 4.4 51.2 50 

(b) 

x=0.25 12.62 260 4.3 6.41 3.34 56.8 30 

(a) 

Table 4.3. Tc, j)N, RRR, -d.Bc2/dT {at Tc) and Bc2(0), for transport and magnetic 

measurements of the HIP'ed x = O.O(b) and x = 0.25(a). RRR is the ratio of the 

resistivity at 16 K and 300 K. The VSM data is for the powder samples. 
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41.6.1 Upper critical field9 Bc1(0) 

The resistivity, ac susceptibility and specific heat measurements were taken at fixed 

magnetic field, whilst the temperature was ramped. The critical temperatures were 

found by using the criterion in section 4.5.1 and plotted against the fixed field. For 

the VSM magnetisation data there were two possible methods for determining Bc2(F). 

Method i involved drawing a straight line through the reversible magnetisation data 

and determining Bc2(/') by extrapolating to M= 0. The equation ofthe line is given by 

Abrikosov's magnetisation equation23
: 

(4.1) 

where PA is Abrikosov's constant. For method ii, Bc2(/') was the field at which the 

magnetisation became zero on fig. 4.7a. For the powder data, the method i was used 

to calculate Bc2(/') at all temperatures. 

From Werthamer, Helfand and Hohenberg (Wllli) theori4 the upper critical field at 0 

K, Bc2(0), for type 11 superconductors is given by: 

(4.2) 

where _ dBcli is the solid straight line through the data on the fig. 4.8 and Tc is the 
dT T=T. 

temperature where Bcl(O) = 0 T. From fig. 4.8, _ d!llr=r. ofx = O.O(b) were consistent 

for the different experiments. For x = 0.25(a), _ d:; ir=r. had a wide range of values 

from 1.54 for the bulk magnetic data to 8.17 for the specific heat data. The RRR for 

. p (300K) 
each of the HIP' ed samples was determmed from RRR = N ( ) , the normal 

PN 16K 

resistivity (PN) was measured above Tc at 16 K. The resistivity at 16 K, for x = 

O.O(b) & x = 0.25(a) was almost the same (table 4.3). 

From table 4.3, the resistivity n:i9PN (0) of X = 0.25(a) is 6 T larger than X = O.O(b), 

while the VSM ~---0 (0) ofx = 0.25(a) is 20 T smaller. Also_ dBcli decreases by a 
dT T=T. 

factor 2 between the resistivity and the VSM powder data for x = 0.25(a). The x = 

O.O(b) resistivity (0.9PN) and the VSM powder upper critical fields and _ d!l ir=r. are in 

good agreement (fig.4.8). 
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.:fl.6.2 Awu:mge mm:mgnnem:mltiam. & ~IMilti~:m» J!ll:lllnmell:e!l"§ 

At temperatures above 12 K, the average magnetisation, (M av = M+ +M_ where M+ 

& M_ are the magnetisation for the upwards and downwards field sweep respectively) 

for the bulk and powder x = O.O(b) samples were similar (fig. 4.9a & b). For all 

temperatures, the x = O.O(b) powder average magnetisation had similar curve shape. 

At temperatures above 8 K, the average magnetisation for the x = 0.25(a) bulk sample 

showed paramagnetism (fig. 4.9c). At these temperatures, the sample was in the 

reversible magnetisation region. The x = 0.25(a) powder sample magnetisation was 

almost reversible at all temperatures, and paramagnetism was observed at all fields. 

The low temperature bulk data for x = O.O(b) and x = 0.25(a) have peaks at 0.25 T. 

K and the fundamental parameters, for x = O.O(b) were determined from the high 

temperature bulk average magnetisation (fig. 4.13a), and from all the temperature 

powder average magnetisation (fig. 4.9b). The low temperature average 

magnetisation for the bulk sample gave a non-physical negative gradient. K was 

determined by fitting a straight line to the linear reversible region, close to Tc. The 

dM 
gradient dB was substituted into eqn 4.1. From section 2.6.2, the fundamental 

parameters (Bc~(O), Bc(O), A,(O)& ;(O)) were derived from the Ginsburg-Landau 

equations. The parameters are obtained using the following expressions. For the 

thermodynamic critical field, Bc(I') the relation with the upper critical field is: 

(4.3) 

where the superscript means the equation is valid for temperatures close to Tc. For all 

h dBcl(T) r;; dBc(T) 
ot er temperatures the equation dT = -v 2K dT is used. This is because 

Bc2(D and Bc(D have different temperature dependencies away from Tc. The 

temperature dependence of Bc(I') is given by the microscopic expression25
: 

(4.4) 

The lower critical field, Bc1(0) from the GL equations for temperatures close to Tc, is 

given by: 

(4.5) 
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The temperature dependence is given by: 

The coherence length, ;(O)in terms ofthe upper critical field is given by: 

<1> 
B (T)- V 

c2 - [ 21r;2 {T)] 

(4.6) 

(4.7) 

I 

and the temperature dependence close to T" is S'""4 ( T) = ,;{ 0 l( I - ~ r2 
, thus the 

relation between the upper critical field and the zero field coherence length is: 

BT"'~(T)- <1> 0 (1-2:_) 
c2 - 27r;2(o) 1',; 

This expression is only true for temperatures close to the critical temperature25 . 
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Figure 4.10a. Average magnetisation squared of the bulk (Pbo.7sEUo.2s)Mo6Ss, as a 

function of internal magnetic field divided by the average magnetisation, and 

temperature. The solid lines are the best-fit calculated paramagnetic magnetisation 

for above Bcln. 
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Figure 4.10b & c. Average magnetisation squared of powder (Pbo.7sEUo.2s)Mo6Ss, as 

a function of internal magnetic field divided by the average magnetisation, and 

temperature, for (b) low temperature data and (c) high temperature data. In (b) the 

solid lines are the best-fit calculated magnetisation for all the temperatures. In (c) the 

dashed lines are the best-fit calculated magnetisation for all temperatures with N = 

3.77 x 1026 m-3
, and the solid lines are the best-fit calculated magnetisation for the 

high temperatures only, with N = 3.87 x 1026 m-3
. The best-fit curves were fitted to 

the data above Bc2(n. The upwards arrows denote the Bc2(n for the high temperature 

fit lines, and the downwards arrows denote BcJ...n for the all temperature fit lines. 

These are graphs are known as Arrott plots26
• 
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Figure 4.11a &. b. Superconducting magnetisation of (Pbo.7sEUo.2s)Mo6Ss as a 

function of temperature and internal magnetic field for (a) bulk and (b) powder 

samples. The solid lines in both figures are the best-fit lines through the linear part of 

the data. The dashed line in both figures is y = 0. In (b) the open shapes denote the 

superconducting magnetisation determined from the best-fit magnetisation to the high 

temperatures only, and the closed shapes denote the best-fit magnetisation to all the 

temperatures. 

68 



x = 0.25(a) showed magnetic as well as superconducting contributions, due to the 

europium ions (fig. 4.9c & d). The magnetisation shows paramagnetic behaviour 

described by the Brillouin function, which is given by: 

{(
2J+1) +J(2J+1) ] ( 1) +J y ]} 

BJ(y) = --z;- COul 2J y - 2J COuL2J (4.9) 

where y = (gJf.tsJmB/khT), gJ is the Lande number, Jm is the angular momentum and 

/.In is the Bohr magneton. B is a function of internal field and magnetisation, 

described by B = B;n + ).zM . Az is a fraction of the overall susceptibility, and is 

related to the ordering temperature (To), by ).x = i~ , where C is Curies' constant (eqn 

3.4). The magnetisation, for a paramagnetic material is given by: 

(4.10) 

where NM is the number density of magnetic ions. Equation 4.10 was fitted to the 

average magnetisation for the bulk (fig. 4.9c) and the powder (fig. 4.9d) samples, at a 

field above the upper critical field for each temperature. The fitting was carried out in 

excel using the solver programme. For eqn 4.10, the Eu ions were assumed to be free 

ions 2+ state with Jm = 3.5 and gJ = 2.016, thus the variables NM and ).z were 

determined. The theoretical paramagnetic magnetisation was calculated using Maple. 

The best-fit paramagnetic magnetisation was plotted against the VSM data, in M vs. 

B;,/M space26
• The superconducting contribution is seen in the Arrott plots, as the 

deviation between the data and the theory (fig. 4.10a, b & c). The best-fit calculated 

paramagnetism was subtracted from the total average magnetisation, leaving the 

average superconducting magnetisation. 

From fig. 4.11a & b the temperature dependant Kand Bc2(T) were determined for the 

bulk and powder x = 0.25(a) data. A straight line was put through the linear part of 

the data, at each temperature and substituted into eqn 4.1. The fundamental 

parameters (BcJ(O), Bc(O), ~0) & ).(0)) were calculated using equations 4.3 - 4.8, 

using the Bc2(0) (fig. 4.8) and Kdetermined from the Arrott plots. From figs. 4.11a & 

dM 
b, a linear -d is observed at low fields, but as the field increases the error bars 

'Bin 

increase because the superconducting magnetisation is the result of subtracting away 

two numbers, which are two orders of magnitude larger than the result. 
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Jm g, NM(m-3
) Az To(K) 

x= 0.25 3.5 2.016 3.20xl<i6 -17 -0.003 ± 0.002 

bulk 

x=0.25 3.5 2.016 3.77x10lb -3.1 -0.02 ± 0.004 

powder 3.87xlrf6 -9.9 -0. 006 ::t 0. 003 

x= 0.25 3.5 2.0 9.0 xHY0 - -0.35 

Cp data22 

'fmble 41.41. Summary of the Jm the total angular momentum, gJ the Lande parameter, 

NM the number density, and To, the ordering temperature of (Pbo.7sEUo.2s)Mo6Ss, for 

the different measurements. The specific heat magnetic variables were determined by 

Leigh22. The powder data variables in normal type are for the best-fit magnetisation 

to all temperatures, and the variables in italics are the high-temperature data fit. 

4.6.3 Mmgneltic pmrmmeteirn o1f x = 0.25 

The magnetic parameters CJm, gJ, N M & A.z) of the europium ions were determined 

from the best-fit paramagnetic magnetisation (eqn 4.10), which was fitted to the x = 

0.25(a) data above the upper critical field at each temperature. 

In figure 4.11a & b, the data lines have oscillations in, which were caused by the noise 

and thermal oscillations occurring when using the VSM. This added errors into the 

determination of Bc2(/') and K. 

Another problem was the temperature control of the VSM. The temperature during 

the experiment oscillated about the set temperature by ± 0.1 K. This caused problems 

for the higher temperature data, as the fitting was done to the accuracy of 0.1 K, hence 

oscillations were seen in the data from the temperature instability. 

From table 4.4, there was a difference in the value of NM determined from the VSM 

and specific heat experiments. The ordering temperatures ( T8 ) for the three 

measurements were negative, and were within 0.5 K of each other. The ordering 

temperatures for the bulk data and the powder high temperature data agree within 

errors. 
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Temperature NM = 3.77x1026 m-3 N M = 3.87 x 1026 m-3 NM =3.77x1026 m-3 

(K) 
A.z =- 3.1 K A.z =- 9.6 K A. =-34K z . 

Bel (F) K Bel (F) K Bcl(F) K 

(T) (T) (T) 

10.1 3.3 98 1.63 91 2.7 90 

10.4 3.5 82 1.3 88 2.5 74 

10.7 3 94 1.24 96 2.1 65 

Table 4.5. Bc2(I) and re for the different values of NM (m-3
) & A.z in the paramagnetic 

magnetisation (eqn 4.12). Bc2(I) and rcwere determined using equation 4.1. 

There are two different methods of determining the errors for the VSM magnetic 

variables. One method was to use the standard error analysis for fitting parameters. 

From fitting the Brillouin function to the average magnetisation of the powder data 

the error for NM is ± 1.4 x 1024 m-3 and the error for T6 was± 0.006 K, while the errors 

for the bulk data variables are± 1 x 1025 m-3 for NMand ± 0.002 K for T6 • 

From fig. 4.10c, two different best-fit magnetisation were plotted with the VSM 

average magnetisation data for x = 0.25(a). The NM =3.87x1026 m-3 is for the best-

fit magnetisation to the high temperature data, and NM = 3.77x1026 m-3 is for the 

best-fit magnetisation to all the temperature data. The two different superconducting 

contributions due to the two best-fit magnetisations are shown in fig. 4.llb. The 

difference in changing N M by 1 % is observed in the different shapes of the 

superconducting magnetisation curves. 

Using eqn 4.1, Bc~-+0 (0) and K were determined for the different superconducting 

magnetisations in fig. 4.11 b, and presented in table 4.5. The difference in B:; .... o (0), 

for the two different N M values is about 50 %, while the difference in K is about 7 %. 

When A.z was changed by 10%, K changed by less than 10 % compared to the other K 

values in table 4.5, while Bc~-+0 (0) was about a third smaller than the contribution for 

the same NM. The major error in the best-fit magnetisation calculation is on the value 

of NM. Thus the error on B:;-+0 (0) for x = 0.25(a) is± 5 T, and the error on Kis ± 10. 
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CO 
~ 

100 
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v-----v x = 0.25(a) bulk 
"' " x = 0.25(a) Cp 
A-----A x = 0.25(a) powder 
• • x = O.O(b) Cp 
l!l---tll x = O.O(b) powder 
13---£1 x = O.O(b) bulk 

9 11 13 15 
Temperature, T(K) 

Figure 4.12. The GL parameter (K), of x = O.O(b) and x = 0.25(a) as a function of 

temperature. The open shapes denote the VSM data and the closed shapes denote the 

specific heat data. The specific heat data taken by N. Leigh22
. The x = 0.25(a) Kwere 

determined from Arrott plots. 

4.6.4 GL parameter 

From the specific heat data taken by N. Leigh (fig. 4.6), the discontinuity in the 

specific heat ( ~) is used to determine 1< from the thermodynamic equation: 

(4.11) 

dB.2 where d~ is taken from fig. 4.8. Thus at each magnetic field the specific heat Kwas 

determined as a function of critical temperature, for x = 0.0 and x = 0.25(a). The 

specific heat data measured the x = 0.0 sample fabricated by D N Zheng. 

From fig. 4.12, the powder x = O.O(b) and x = 0.25(a) K values increases as the 

temperature decreases. The x = 0.0 specific heat K has the same temperature 

dependence as the VSM data. The x = 0.25(a) specific heat data Kat 0 T, is the same 

order of magnitude as the bulk and powder K values. 
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4.6.5 §ommerfeid constant, y 

The Sommerfeld constant y is the electronic contribution to the heat capacity. It can 

be determined from specific heat measurements, and magnetic measurements. 

For the specific heat data, the ratio of the superconducting to the normal state 

electronic contribution is given by the modified BCS relation27, which is: 

{ ( ) 2 ~ )] 
ll.c T,_. (i} In 

--=14 1+53- -
Ycp 1;, . w," 31;, 

(4.12) 

where w," is a weighted average phonon frequency and y cp denotes the Somm.erfeld 

constant has been determined from the discontinuity in the specific heat. win is 

determined from eqn 4.12, when y and /l.c are known for the superconductor. In the 
1;, 

weak coupling limit w1" = ao 28, thus ~ = 1.43. In the strong coupling limit wtn is 
YcpJ', 

finite, thus is characterised by ( T,_ ) • From the literature, Leigh22 determined the w1" w,n 

value for PbMo6S8, using equation 4.14. The range of values include w1" = ao 28 in the 

weak limit to win = 181 K29 and 185 K30
, in the strong coupling limit. For x = O.O(b), 

the ratio ~has the value 2.15, if win = 183 K22, in the strong coupling limit. 
YcpJ', 

Another method is to use the modified BCS relation27' 31
• 

25 in terms of the 

thermodynamic critical field, the critical temperature and the weight average phonon 

frequency. The relation is given by: 

(4.13) 

where y llJ~n denotes the Sommerfeld constant was determined using the weighted 

average phonon frequency and the thermodynamic critical field. Therefore 

substituting Bc2 (0) = J2xBc ( 0) ( eqn 4.3) into the above equation, gives: 

rllJm = B(~2 \0) 2 2.11[1-122(:E_)

2

ln(w'")] (4.14) 
2 Po 1', K w," 31', 
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This means in the weak coupling limit where mtn = oo , the Sommerfeld constant is 

2.11B;2(0) 22 r = While in the strong coupling limit, taking mtn = 183 K for x = 
""" 2J..vc2T;,2 

. 1.86B;2(0) 
O.O(b ), the Sommerfeld constant 1s y m = 2 2 

In 2j.Jol( 7;; 

The third method uses the thermodynamic relation, involving the thermodynamic 

critical field, in the weak coupling limit: 

Bc(O) = 7.65 X 10--4 y 112 Tc (4.15) 

Thus substituting equation 4.3 into the above equation gives: 

Bc2 (0) = 1.08x 10-3rq 112 T;, (4.16) 

where Bc2(0) and Tc, can be from either the resistivity or the magnetic measurements. 

In the strong coupling limit, equation 4.15 becomes: 

7.65 x 10--4 r~2 ~. 

Bc(O) = [t-!(~-7_)]112 
5 kbT.: 2 

(4.17) 

where !!:.. is the energy gap and r ~ denotes the Sommerfeld constant determined from 

the energy gap and the thermodynamic critical field. Substituting eqn 4.3 into eqn 

4.17 gives: 

1.08 x 1 o-3 KY ~2 ~· 

Bc2 (0) = [
1

- !(~ _'}_)]1/2 
5 kb7;; 2 

(4.18) 

From literature the energy gap of PbMo6Ss is 2.4 meV32
• The energy gap of 

Gdo.tPbo.9Mo6Ss is 5.2 meV33
, thus introducing magnetic ions to PbMo6Ss increases 

the energy gap. It therefore was not possible to assume a value of !!:.. for the x = 

0.25(a) sample, so the Sommerfeld constant was only determined for eqn 4.18, in the 

weak coupling limit. 

These three different methods were used to determine the Sommerfeld constant of x = 

O.O(b) and x = 0.25(a). For x = O.O(b), the Sommerfeld constant was determined from 

eqns 4.14 & 4.18 in both the strong and the weak coupling limit. The Sommerfeld 

constant was also determined for the 90% resistivity Bc2(0) and Tc values as well as 

the powder magnetic measurement values (cf. table 4.3). The Kvalue was taken to be 

129. For eqn 4.14, mtn = 183 K, while for eqn 4.18,!!:.. = 2.4 meV. 
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rep 0.9pN M-+0 0.9pN r:-+o rt»m rt»m rll 
(JK-Im-3) (JK-Im-3) (JK-•m-3) (JK-Im-3) (JK.-Im-3) 

(~J w s w s w s w s 

x=O.O - 575 507 576 508 575 541 575 541 

(b) 

x= 0.25 251 823 - 276 - 823 - 276 -
(a) 

1fmbllce 41.6. The Sommerfeld constant y, determined from equations 4.12, 4.14 & 

4.18. In the table w stands for the weak coupling limit (with win = oo) and s stands 

for the strong coupling limit (with Win = 183). rep represents the Sommerfeld 

constant calculated from the discontinuity in the specific heat data (eqn 4.12), 

determined in the weak limit. r t»m represents the Sommerfeld constant calculated 

from the modified BCS theory, using the weighted average phonon frequency (eqn 

4.14). rll represents the Sommerfeld constant calculated from BCS theory, using the 

energy gap of the superconductor ( eqn 4.18). r 0·
9

PN denotes the Sommerfeld 

constants determined from the 90 % resistivity values of B~i9PN (0) and Tc while 

rM-+o denotes the Sommerfeld constants determined from the powder VSM values of 

B:i-+0 (0) and Tc. 

For x = 0.25(a), win & ~were unknown, thus y could only be determined for the weak 

coupling case in equations 4.12, 4.14 and 4.18. In the weak coupling limit eqns 4.14 

and 4.18 are the same. The Kvalue taken was 144, and the powder B:i-+0 (0) and Tc 

were used. 

From table 4.6, the Sommerfeld constants (r:_--.o & r:-+0) for x = 0.25(a) are a 

factor 2 smaller than the x = O.O(b) values for eqns 4.14 & 4.18 in the weak coupling 

limit. For X= 0.25(a), the specific heat rep is the same order of magnitude as r::-+O 

& r:--.o. For x = O.O(b), the Sommerfeld constants agree for the resistivity and VSM 

values, for each different equation. 
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Eu content -dB,, I B~2(0) Bc~(O) Bc(O) K ~(0) A(O) 
dT T~T, 

(T.K-1
) 

(T) (mT) (mT) (nm) (nm) 

x= O.O(b) 

bulkVSM 5.3 54 4.5 196 132 2.1 277 

method ii 

X= O.O(b) 

bulk VSM 4.8 48 6.9 224 129 2.1 282 

method i 

X= O.O(b) 

powderVSM 4.4 50 6.8 205 129 2.3 291 

methodi 

x = 0.25(a) 

bulk 1.54 12 0.9 39 160 4.4 739 

VSM 

x = 0.25 (a) 

powder 3.34 30 1.6 78 144 2.13 307 

VSM 

x = 0.25 (a) 

Specific 5.0 73.8 0.9 35 148 2.11 313 

heat 

Table 4.7. The fundamental parameters (Bc~(O), Bc(O), Bc2(0), ~ (0) & A (0)) for x = 

O.O(b) and x = 0.25(a), determined from the VSM magnetisation data and the specific 

heat data taken by N. Leigh. For x = O.O(b) and x = 0.25(a), the VSM bulk and 

powder data is presented. For method i, Bc2(F) was determined using 

jt
0

M =aB- Bc2 through the average magnetisation data. For method ii, Bc2(/') was 

determined from the average magnetisation graphs for M= 0. The difference values 

of Bc2(F) were then used to determine the fundamental parameters. The K values were 

determined from eqn 4.3, for temperatures close to Tc. The specific heat values of 

Bc~(O), Bc(O), ~ (0) & A (0) were determined using the Bc2(0) and Kfrom Leigh's data. 
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41.6.6 §unmmmm:!llry 

A summary of the fundamental parameters, critical fields and K are presented in table 

4.7, for the bulk and powder, x = O.O(b) & x = 0.25(a) VSM data. The specific heat 

data was taken by N. Leigh for the x = 0.25(a) sample. From table 4.7, for x = O.O(b) 

bulk and powder samples, the BelT) and K agree. The addition of Eu ions in to x = 

0.25(a) has reduced BcJ(O) and Bc(O), but K is the same order of magnitude the x = 

O.O(b) values. 

4.1 !Oi~C~$$0Ctnl 

41.7.11. M:!llteri:!llls P~ropemes 

The properties of PbMo6Ss and EuMo6Ss are well known34. Decroux measured the 

properties of EuMo6Ss, and found that it was not superconducting at ambient 

pressure35' 36, and only became superconducting at pressures above 13 kbat6. In this 

chapter, the properties of (Pbt-xEux)Mo6Ss for x = 0.0 and 0.25, were investigated. 

Therefore a decrease in critical temperature for an increase in Eu ions was expected. 

The critical temperature of PbMo6Ss was 15.16 K compared with 12.6 K for 

(Pbo.7sEUo.2s)Mo6Ss, hence the critical temperature of (Pbt-xEux)Mo6Ss does decrease 

as the value of x is increased. 

The fabrication process of Chevrel phase superconductors is important, as it affects 

the superconducting parameters of the material4' 37 . It is known that temperatures 

higher than 1 000 °C are required to insert rare earth ions into the Chevrel phase 

lattice18
• 

13
• Two different fabrication methods were used to fabricate (Pbt­

xEux)Mo6Ss. For method (a), the highest temperature was 1150 °C. From the XRD 

patterns, x = 0.25 and x = 0.5 were both single phase samples. For method (b), the 

highest temperature was 1000 °C. The method was tried as it produced higher critical 

temperatures in PbMo6Ss. The samples x = 0.25 and x = 0.5 were not pure Chevrel 

phase and had lower critical temperatures compared to method (a), which confirms 

temperatures above 1000 °C were required to insert the Eu ions into PbMo6S8. The 

cl a ratio increased as the concentration of Eu ions increased. The values are broadly 

consistent with a linear increase between the two ternary end compounds. The change 

is due to the Eu ions having smaller radii than the Pb ions, this changes the strain on 

the lattice. 
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The superconducting properties of Chevrel phase materials are degraded at the surface 

of the grains, and across the grain boundaries37. The degradation is caused by second 

phase materials forming38
, which leads to a different value of Bel(!') in the grains 

compared to in the grain boundaries, hence gives a distribution in Bel(T) over the 

whole sample. Thus the upper critical field (Bel(O)) will differ in value for each of 

the measurements. For magnetic measurements, the distribution in Bel(!') changes the 

gradient of the average magnetisation close to Be1(T), as the different parts of the 

dM d. th 'bl superconductor become normal. For eqn 4.1, dB was measure m e revers1 e 

magnetisation region between B;" and Bel(!') (fig. 4.9a). In this region the 

superconductor was still. superconducting, but no critical current was flowing. Thus 

the field gradient ~~ was measured below the magnetic field where the gradient 

changed, so the calculated values of K and Bc~-+0 (T) were not affected by the Bel(!') 

distribution. For specific heat measurements, a distribution in Bel(T) reduces the 

height and sharpness of the discontinuity, which made it difficult to determine the size 

of the discontinuity and the critical temperature. Hence the accuracy of the measured 

parameters decreased. For the resistivity measurement, the percolative path through 

the superconductor was measured. A distribution in Bel(!'), will broaden the transition 

width, as the grain boundaries will become normal before the grains. The critical 

temperature at 0.9pN remains unchanged as it is the Te of the grains, while the 

0.5pN will change depending on the distribution of Be1(T) in the sample. The 

distribution in Be1(T) for the x = 0.25(a) sample was observed in the resistivity and ac 

susceptibility data, as the data taken at field have a wider transition width compared to 

the zero field transition. Therefore the specific heat critical temperatures and upper 

critical field (B;f(O))are expected to be higher than the magnetic measurements 

( B!;i-+0 (0)). For the (Pbo.7sEUo.2s)Mo6Ss sample the specific heat measurement B~f (0) 

had the highest value of 71 T, compared to the lowest value of 12 T for the bulk 

VSM measurement of B!;i-+0 (0). 

4.7.2 Upper critical field, Bc2(0) 

There are three factors, which control the upper critical field (Be2(0)) in magnetic 

superconductors. They are the compensation effect, the normal state resistivity {/JN), 
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and the electronic contribution to the specific heat (y). The compensation effect is due 

to the magnetic nature of the Eu ions opposing the paramagnetic limiting, which 

causes Bc2(T) to be higher in a magnetic superconductor, than in a non-magnetic 

superconductor39
• 

From GL theory, the upper critical field, (Bc2(0)), is described in terms of the normal 

state resistivity and the electronic contribution to the specific heat. It is given by: 

(4.19) 

where y is the Sommerfeld constant, which is the electronic contribution to the 

specific heat. The normal resistivity of the samples fabricated was ~ 250 ~.cm. 

From eqn 4.19, the upper critical field (Bc2(0)) will increase if the normal resistivity is 

increased. From table 4.3, at 16 K, x = 0.25(a) has a larger resistivity than x = O.O(b). 

The Bc2(0) of x = 0.25(a) for the resistivity measurement was 6 T higher than the 

Bc2(0) determined for x = O.O(b). 

The Sommerfeld constant was determined for x = O.O(b) from the BCS equations (eqn 

4.14 & 4.18). From table 4.6, for x = O.O(b), for eqn 4.14 in the strong limit the 

r~:PN = 507 JK.-lm-3 and Y~40 = 508 JK-lm-3
. Similarly for eqn 4.18 in the strong 

limit r1·9PN =r:--.oN = 541 JK.-1m-3
• Thus the Sommerfeld constants for each equation 

agree for the resistivity and VSM data, which suggest the distribution in Bc2(T) across 

the sample is negligible. Leigh determined the Sommerfeld constant of PbMo6Ss from 

the discontinuities in the specific heat measurements and equation 4.1222
. In the 

weak coupling limit he determined Ycp = 498 JK-1m-3 and for the strong coupling 

limit Ycp = 339 JK.-1m-3
• The weak coupling limit Sommerfeld constant is in 

agreement with the measured values from the BCS equations in this work. The strong 

coupling limit Sommerfeld constant is a third smaller for the specific heat compared 

with a tenth smaller for the BCS equations. This was expected from the modified 

BCS equations (eqns 4.12 & 4.13), as the strong coupling limit parts were different 

functions of (~In). The literature suggests PbMo6S8 is a strongly coupled 

superconducto~3 . 

The Sommerfeld constant ofx = 0.25(a), in the weak coupling limit, determined from 

the discontinuity in the specific heat (eqn 4.12) was Ycp = 251 JK.-1m-3 and from the 

BCS equations in terms of the thermodynamic critical field (eqns 4.14 & 4.18) were 
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r:.40 = r ~40 = 276 JK-lm-3
• They are the same order of magnitude (table 4.6). 

Hence the addition of europium ions to PbMo6Ss has decreased the Sommerfeld 

constant. From table 4.6, the values determined from the resistivity data, ( eqn 4.14 & 

4.18) Were r~·9PN = r~ 9PN = 823 JK-lm-3
, WhiCh are 4 timeS larger than 

In 

the r M-40 values, due to the upper critical field of the resistivity data ( B~i9PN (0)) being 

a factor two greater than the VSM B:J.40 (0). The Tc of x = 0.25(a) changed by less 

than 1 K between the different measurements. The change in r between the different 

measurements was due to the grains and grain boundaries having different Bc2(F) 

values, which lead to a distribution in Bc2(F). The magnetic measurement of 

B:J.40 (0) was unchanged by the distribution, as the VSM measured the properties of 

the grains. From XRD (fig. 4.3) the grains were single phase (Pbo.7sEUo.2s)Mo6Ss. 

The specific heat discontinuity at 0 T r cp has the same order of magnitude 

Sommerfeld constants determined from the VSM data, which suggests the distribution 

in Bc2(T) did not affect the discontinuity in the specific heat measurement at 0 T, but 

only affected the discontinuities in the specific heat data taken in an applied magnetic 

field. For x = 0.25(a), the VSM B:J.40 (0) decreased as the critical temperature and 

Sommerfeld constant decreased in comparison with the x = O.O(b) values (eqn 4.19). 

The resistivity measurements were dependent on the properties of the grains and grain 

boundaries. The resistivity values of B~i9PN (0) and y 0
·
9

PN increased for x = 0.25(a), 

compared with the VSM values, hence the sample had impurities in the grain 

boundaries. This means the normal resistivity of the boundaries was greater than the 

grains, thus B~i9PN (0) of x = 0.25(a), was higher than the x = O.O(b) value. This 

increase in normal resistivity across the grain boundaries compensated for the 

decrease in y 0
·
9

PN and Tc for X= 0.25(a). 

4. 7.3 Average Magnetisation and critical parameters 

The difference in the shape of magnetisation loops measured for the bulk samples and 

the powder samples was due to different pinning mechanisms. The bulk x = O.O(b) 

symmetric magnetisation loops were characteristic of flux being pinned at pinning 

centres. The pinning centres for bulk polycrystalline materials are at the grain 

boundaries40
• The powder x = O.O(b) magnetisation (fig. 4.7b) shows the 

80 



characteristic asymmetric shape of the Bean-Livingston surface barrier41
, as in 

grinding up the sample, the grain boundaries were destroyed, thus the pinning centres 

no longer existed. Above 12 K, the average magnetisation of the bulk and powder x = 

O.O(b) samples had the same magnitude. Also for all temperatures, the powder x = 

O.O(b) average magnetisation had the same curve shape, therefore it was assumed that 

the surface pinning did not affect the average magnetisation. Thus equation 4.1 was 

fitted to the linear region of the powder average magnetisation at all temperatures. 

For x = O.O(b) and x = 0.25(a), the bulk data were used to determine the critical 

current density. The powder data were used to find the temperature dependant upper 

critical field, B:J.-.0 (D and K, over the temperature range 4.2 K to Tc. 

The equations used to determine the fundamental parameters (Bc(O), BcJ(O), A.(O) and 

1;(0)) were derived from the GL equations42 (eqn 4.3 - 4.8), and are valid for 

temperatures close to Tc. The bulk and powder values of B:i-.o (0) and K were used 

to determine these parameters for x = O.O(b) and x = 0.25(a). From table 4.7, two 

different methods were used to determine B}'i_---.0 {0) for x = O.O(b). The first method 

determined B:i-.o (0) by fitting a straight line through the reversible data (fig 4.9), 

and solving for M= 0, while the second method took Bc~-.o (0) to be the field on fig 

4.9, where M= 0. For method i B:i-.o (0) = 48 T and for method ii B:J-.o (0) = 54 T, 

the difference is due to the distribution in Bc2(1) in the sample changing the average 

magnetisation gradient below Bc~-.0 (D. 

From table 4.7, the coherence length ;{0) and penetration depth 1!.(0) of the x = 

0.25(a) bulk sample were a factor 2 larger than the bulk x = O.O(b) sample. While 

c;(o) and lt(O) of the powder sample were unchanged by the addition ofEu ions. For 

both the bulk and powder x = 0.25(a) samples, the Bc1(0) and the Bc(O) decreased 

compared with the x = O.O(b) values, which suggests the Eu ions produced an internal 

magnetic field in the superconductor, which opposed the critical fields. 

4.7.4 Magnetic parameters ofx = 0.25(a) 

The magnetic parameters (N M and ltx) were determined from the best-fit paramagnetic 

magnetisation (eqn 4.8) to the x = 0.25(a) VSM data. The parameters are presented in 

table 4.4, including the parameters determined from the specific heat data by Leigh. 
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For all three measurements, the Jm and gJ were assumed to be the free Eu ion values. 

The number density of magnetic ions (NM) calculated for the bulk sample was 

32 x 1026 m"3
• For the powder data there were two different paramagnetic 

contributions. For the high temperature data (above 9.8 K) NM = 3.87 x 1026 m·3 and 

A,x =- 9.6 K, while for the low temperature data (below 9.5 K) NM = 3.79 x 1026 m·3 

and A,x = -9.9 K. The difference occurred between the two different sensitivities of 

the VSM amplifier. Then fitting to all the data gave NM = 3.77 x 1026 m·3 and 1x =-

3.1 K. The difference in N M between the bulk and the powder data is about 15 %, and 

is probably due to errors in the analysis and the determination of the different volumes 

of the samples. The specific heat calculation assumed NM = 9 x 1026 m·3 22
, which is 

the N M value, which gives 25 % Eu ions from the lattice parameters. The VSM bulk 

and powder magnetisation data seemed to have only measured a third of the total 

number of Eu ions present in the sample. One reason for this is the sample only 

contained x = 0.08 ions rather than 0.25, which is unlikely as the XRD data contained 

no europium peaks nor any other second phase materials (fig 4.3). Another reason 

could be the Eu ions were clustered within the large HIP' ed sample. At the moment 

the reason for the reduction in N M for the magnetisation calculations is unknown. 

From table 4.4, To varied by two orders of magnitude between the different 

measurements. The To values of the bulk data and the high temperature powder data 

were in good agreement. 

4.7.5 GL parameter, K 

From GL theory, the parameter Kis independent of temperature close to Tc. Maki43 

introduced two Kparameters, K1(F) and K2(F), which have different temperature 

dependencies away from Tc. K1(F) is related to the upper critical field, and K2{T) is 

related to the magnetisation. From experiment it was discovered that K1(F) and K2(T) 

increased as the temperature was decreased44
' 

45
• In the clean limit K2{T} is greater 

than KJ(F), while in the dirty limit K 1(T) ~ K2(T) 45
• Using Abrikosov equation (eqn. 

4.1 ), K2{T) is determined from the VSM. For the specific heat measurements eqn 4.11 

was used to determine K2{T}. A rough approximation of the temperature dependence 

is /(' ac ( 1 + n -I 
46

, therefore K(T) can be taken to be slowly varying with temperature. 
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From fig. 4.12 the K(/') values determined from the powder magnetic data, increased 

with decreasing temperature for x = O.O(b) and x = 0.25(a), so are consistent with the 

literature. 

From fig. 4.12, for x = O.O(b) the bulk K= 129 ± 2 and the powder K= 133 ± 2, at 13 

K. The K values agree within the errors. The specific heat and magnetic 

measurements of K have similar temperature dependence for PbMo6Ss (fig. 4.12). 

The specific heat data is 1.3 larger than the magnetisation data. For x = 0.25(a), 

although N varied between the bulk and the powder data, the K values were consistent 

for the two samples. For the bulk sample K= 108 ± 10 and the powder sample K= 98 

± 10 at 10.1 K (fig. 4.12). For the specific heat measurement at 0 T, Kwas 148. From 

table 4.7, the powder VSM Kwas 144, and the bulk Kwas 160 hence K was 

consistent for all three measurements. As the distribution in Bel(/') affected the 

specific heat measurements in fields, it was expected that K measured in magnetic 

fields would be higher. From fig. 4.12, the specific heat K increased more rapidly 

with decreasing temperature than the magnetic K. At 11.6 K, the specific heat K = 

260, which is a factor 2 larger than the powder K at 7 K. Thus the specific heat K(O 

T) value and the VSM K values for x = O.O(b) and x = 0.25(a) are in agreement. The 

method of measuring the magnetisation of powder samples provides a way of 

determining K for a wider temperature range. 

4.8 Conclusion 

The Chevrel phase superconductors PbMo6Ss and (Pbo.7sEUo.2s)Mo6Ss were fabricated 

and characterised. To add Eu ions onto the lead sites of the Chevrel phase lattice, the 

samples have to be fabricated at temperatures higher than 1000 °C. The addition of 

Eu ions increases the resistivity upper critical field (Bc2(0)) and the cla ratio. The 

Bc2(0) determined from the resistivity experiments increased by 6 T from 51 T to 57 

T, by doping with Eu ions. The (Pbo.7sEUo.2s)Mo6Ss critical temperature was 12 K 

compared to 15.16 K for PbMo6S8, which is equal to the highest reported critical 

temperatures of a single phase PbMo6Ss sample. The Sommerfeld constant for x = 

O.O(b) was r~---.0 = 508 JK-1m-3 in the strong coupling limit. The addition ofEu ions 

reduced the constant to r ~-.o = 276 JK"1m-3
• Thus the increase in B~i9PN (0) was due 

to the increase in the resistivity across the grain boundaries in x = 0.25(a). 
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(Pbo.7sEUo.2s)Mo6Ss is a magnetic superconductor. Its fundamental parameters were 

Bc1(0) = 1.6 mT, Bc(O) = 78 mT, c;(O) = 2.13 nm and A.(O) = 307 nm. 

For PbMo6S8, K was determined for bulk and powder samples from the VSM 

measurements in the temperature range 6 K to Tc. At 13 K the bulk K= 129 ± 2 and 

the powder K= 133 ± 2, thus are the same within errors. For x = O.O(b) the powder 

K= 133 at 13 K, and increases to K= 153 at 6 K. The specific heat data taken by 

Leigh had a similar temperature dependence to the magnetic data, but K was a factor 

1.3 higher. For x = 0.25(a) Kwas determined from Arrott plots for the bulk and the 

powder samples. At 10.1 K, the bulk K= 108 ± 10 compared to the powder K= 98 ± 

10. Although NM changed between the samples the Kvalues were within errors. 

Similarly K increased as the temperature was decreased, for the powder sample K = 92 

at 10.4 K, which increases to K= 180 at 8 K. From the specific heat data taken by N. 

Leigh the x = 0.25(a) data Kincreased more rapidly as the temperature was decreased 

compared to the VSM powder K value. For x = 0.25(a), the specific heat zero field 

Kwas 148, which is in good agreement with the VSM powder Kof 144 and the bulk K 

of 160. 

For x = 0.25(a), the measured magnetisation was the sum of the magnetic contribution 

and the superconducting contribution. The magnetic contribution was determined for 

both the powder and the bulk samples, by fitting a Brillouin function to the average 

magnetisation, which gave the magnetic parameters for x = 0.25(a) powder samples to 

beg,= 2.016, Jm = 3.5, NM = 3.77 x 1026 m-3 and order temperature= -0.02 K. The 

average magnetisation of the powder samples was used to determine the fundamental 

parameters and Kin the temperature range 4.2 K to Tc. 
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Magnetic measurements are used to determine the critical current density of 

superconductors 1• A new method of measuring the magnetic moment of anisotropic 

superconductors is torque magnetometry using silicon cantilevers2
' 

3
• This chapter 

covers the design, construction and calibration of the field-gradient torque 

magnetometer, which measures the magnetic moment of isotropic superconductors in 

magnetic field gradients. Commercial vibrating sample magnetometers (VSMs) 

measure magnetic moments in the temperature range 4.2 K to 300 K, in fields up to 

12 r. The torque magnetometer was designed to measure magnetic moments in the 

temperature range 300 mK to 100 K, in fields up to 15 T. The torque is measured 

using a Quantum Design (QD) silicon torque chip5
• The field-gradient torque 

magnetometer fits on to the base of the helium-3 pot of the Oxford Instruments Heliox 

probe. This means for temperatures above 2 K, the temperature control is better than 

± 50 mK, and below 2 K, it is better than ± 10 mK. The whole torque chip can be 

rotated about the horizontal axis through 360°. 

Section 5.2, describes the experimental procedure for using the Heliox probe. The 

section also includes the problems that can arise when using the Heliox. The final 

design, including the external circuitry for the torque magnetometer is presented in 

section 5.3. The alterations that were made and the problems that arose are included. 

The calibration of the torque magnetometer components including the QD torque 

chips, the Hall chip and the RuOz thermometer are presented in section 5.4. In section 

5.5, the calibration of the field-gradient torque magnetometer using NbTi wire is 

described. For the field-gradient torque magnetometer, the change in voltage across 

the Wheatstone bridge on the QD chip was measured as the magnetic field was swept. 

The voltage was then plotted as a function of magnetic field, to give the voltage vs. 

field sweep loop. In section 5.6, the results from measuring the NbTi wire sample 

(filament dimensions: 1 mm x 28 J.1ffi 0) on the torque magnetometer and the VSM 

are presented. 
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The NbTi wire sample was measured on two different chips as the first chip broke. 

The calibration constant of chip 3 was an order of magnitude larger than chip 4. The 

measurements on chip 3 were taken in liquid helium. The first set of measurements 

was taken at the field centre. The change in magnitude ofthe hysteresis of the voltage 

loops was measured as a function of angle. The second set of measurements was 

taken at the four angles where the voltage loops were reversible at the field centre. 

The voltage vs. field sweep loops was measured as a function of local magnetic field 

and magnetic field gradient. 

On chip 4 the measurements were taken in liquid helium and in vacuum. In liquid 

helium, the first measurements were taken at the field centre, and measured the 

change in magnitude of the hysteresis in the voltage loops as a function of angle. At 

0° the change in magnitude of the hysteresis in the voltage loops as a function of 

magnetic field and magnetic field gradient were measured. In vacuum, the sample 

was fixed at 180°, using a stationary holder. The change in magnitude of the 

hysteresis in the voltage loops as a function of local magnetic field and field gradient 

were measured in the temperature range 300 mK to 10 K. A second set of voltage 

loops was measured as a function of magnetic field, field gradient and temperature, in 

vacuum. For this data set, at each field gradient, the voltage loops were measured for 

every temperature, before the probe was moved to the next field gradient. 

From the voltage loops measured as a function of local magnetic field and field 

gradient, the critical current density for the NbTi wire sample are determined in 

section 5.7. The critical current densities from the VSM data are also presented. The 

errors for the critical current densities measured are discussed. In section 5.8, the 

comparison between the field-gradient torque magnetometer and the VSM is 

discussed, including the advantages and disadvantages of both magnetometers. The 

overall performance of the torque magnetometer is presented in section 5.9. 
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Figure 5.1. Schematic diagram of the Oxford Instruments Heliox probe. 
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5.2 Heliox probe 

The field-gradient torque magnetometer was designed to attach to the bottom of the 

helium-3 pot of an Oxford Instruments Heliox probe. The Heliox was used to control 

the temperature of the whole experiment. The temperature range of the Heliox was 

250 mK to 100 K. It was designed to work in the Oxford Instruments 15 T magnet. 

The Heliox used liquid helium-3, to reach temperatures below 2 K. The helium-3 gas 

was sealed in a self-contained vessel, so none of the gas could escape. 

The lower part ofthe probe was covered with a brass vacuum can (IVC) (see fig. 5.1). 

To prepare the probe for cool down, a few preliminary checks were made. All the 

wires were either glued or tied down, the charcoal sorb was checked and all the old 

vacuum grease was removed. This was to make sure there were no touches to the 

IVC. 

The IVC was connected to the IVC plate (fig. 5.1) using silicon vacuum grease. The 

IVC plate and IVC opening were sandpapered to remove any scratches. The IVC 

plate was thickly covered in vacuum grease, to create a good seal. The IVC opening 

was lightly smeared with grease. The IVC was gently and carefully slid over the 

lower part of the probe, so no vacuum grease touched the probe. The IVC was pushed 

hard on to the IVC plate. The IVC was then pumped out to a rough vacuum for 15 

minutes, or until it did not move when pulled. The 1 K plate pick -up tube was taped 

down onto the IVC. This meant it was secure and would not hit the baffies when 

lowered into the magnet. Helium gas was blown through the pick-up tube via the 1 K 

plate connector for 1 0 - 20 minutes. This removed any water in the tube, and checked 

it was not blocked. The helium gas was kept connected to the pick-up tube during the 

cool down. This meant the pick-up tube was under positive pressure, so a blockage 

was less likely to form. 

The whole probe was slowly lowered into the magnet. The helium boil off was kept 

low. In the magnet the Heliox head rested on the neck fitting. The whole probe could 

be lifted up in the magnet. A clamp was used above the neck fitting to hold the probe 

in position. As the IVC was under a rough vacuum, it was left overnight to cool 

down. If the vacuum was too strong, a small amount of helium gas was added to help 

the cool down. At 4.2 K, the charcoal sorb on the 1 K plate absorbed the helium gas 

in the IVC, which created a vacuum. 
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Figure 5.2. Schematic diagram of the external circuitry of the Oxford Instruments 

Heliox probe. 

At 4.2 K, the probe could be cooled down to 250 mK. The vacuum pump was 

attached to the 1 K plate connector and the 1 K plate needle valve was opened. The 

vacuum pump pulled liquid helium through the pick-up tube and around the 1 K plate. 

This cooled the 1 K plate down to 1.6 K. The reading on the vacuum pump pressure 

controller was 2 mbar. The sorb was then heated to 30 K. This released the helium-3 

gas stored in the sorb. The boiling point ofhelium-3 is 3.2 K. This meant the helium-

3 gas was condensed by the 1 K plate. The liquid ran down into the helium-3 pot. 

The helium-3 pot temperature was the same as the 1 K plate. The probe was left for 

half an hour for all the helium-3 gas to condense. The sorb temperature was then 

reduced to 2 K. At temperatures below 30 K, it absorbed the helium-3 vapour, which 

reduced the pressure above the liquid helium-3. The temperature of the liquid and thus 
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the helium-3 pot temperature decreased down to the base temperature of 250 mK. 

The base temperature was held for 3 - 6 hours. 

The temperature of the helium-3 pot was controlled using the Oxford Instruments 

Intelligent Temperature Controller (ITC). The ITC read the four thermometers and 

controlled the two heaters on the Heliox. On the sorb was a carbon resistor, which 

was thermometer 1 on the ITC. Its temperature was controlled by heater 1. The 1 K 

plate temperature was read by a Ru02 thermometer, which was thermometer 2 on the 

ITC. The helium-3 pot had a cemox thermometer for temperatures above 2 K, and a 

Ru02 thermometer for temperatures below 2 K. On the ITC the cemox was 

thermometer 3, and the Ru02 was thermometer 2. The two Ru02 thermometers had 

different connectors. During the condensation process the 1 K plate Ru02 

thermometer was connected to the heater controller (fig. 5.2). During the 

experiments, the heater controller read the helium-3 pot Ru02 thermometer. For 

temperatures above 2 K, the temperature of the helium-3 pot was controlled by heater 

3, which was sunk into the pot. For temperatures below 2 K, the temperature was 

controlled by heater 1. This controlled the temperature of the sorb, and thus the 

vapour pressure above the liquid helium-3. The PIDs for the experiment were P = 15 

%, I = 2.0 s and D = 0.1 s, and were used at all temperatures. 

Before the probe was removed from the magnet, the speedivalves on the vacuum 

pump and the 1 K plate were closed. The vacuum pump was removed. The 1 K plate 

needle-valve was then closed. A rubber bladder was put on to the IVC relief valve, 

and the valve opened. This meant any liquid which evaporated, would not build up 

pressure in the IVC. The probe was then removed slowly from the magnet. It was 

left under vacuum to warm up. When the IVC was opened to atmosphere, the air was 

let in slowly, to avoid damaging the chip. The IVC was removed from the bottom of 

the probe using a sliding hammer. 

A few problems occurred when using the Heliox. One of the main problems was a 

touch to the IVC from the helium-3 pot. When a touch occurred, the cool down to 4.2 

K took less than an hour. As the IVC was in the liquid helium bath, it was at 4.2 K. 

When there was a touch the IVC acted as a heat link, so the helium-3 pot was at 4.2 

K. The helium-3 pot temperature would not decrease down to 1.6 K nor increase 

when heater 3 was applied. To remove the touch, the probe was warmed to room 

temperature and the IVC removed. The touch was generally a wire, which was not 

tied down. 
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When there was too much helium gas in the IV C, the temperature of the 1 K plate was 

not stable at 1.6 K, when the sorb temperature was increased to 30 K. The 1 K plate 

temperature increased, as the sorb heated the helium gas. The gas moved the heat 

around the IVC. It was not possible to condense the helium-3 gas, as the temperature 

ofthe 1 K plate was above 3.2 K, but the helium-3 pot temperature could be increased 

above 4.2 K. The helium gas was removed by vacuum pumping the IVC out for 2 - 3 

hours. The sorb was held at 30 K, during the pumping, to evaporate some of the 

excess liquid helium. If after three hours of pumping, there was still gas in the IVC, 

the vacuum seal had probably broken. This meant the probe had to be warmed up to 

room temperature, and the seal remade. 

Another problem was blockages in the pick-up tube. The blockages were caused by 

water or vacuum grease freezing in the tube. When a blockage occurred, the 1 K plate 

stayed at 4.2 K, and was under vacuum. This was because the liquid helium could not 

be drawn through the pick-up tube, by the vacuum pump. If the blockage was small, 

it was pulled through the system by the vacuum pump. For large blockages the probe 

had to be warmed up. At room temperature the blockage was removed by putting 

high pressure helium gas through the pick-up tube for an hour. 

The end of the pick-up tube was about 5 cm above the top of the magnet. For the 

Heliox to operate, the end of the pick-up tube had to be in liquid helium. If the pick­

up tube's end was not in the liquid helium, the temperature of the helium-3 pot was 

not stable. The base temperature of the helium-3 pot was dependent on the 

temperature of the 1 K plate and the mass of the material attached to it. The lower the 

1 K plate temperature, the lower the base temperature. For the field-gradient torque 

magnetometer, the mass of copper attached to the helium-3 pot, meant the base 

temperature was stable for three hours before slowly rising. This meant that 

recondensation of the helium-3 occurred at least twice in the experiment. 
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Figure 5.5. Photograph of the field-gradient torque magnetometer copper cage end 

piece, with the rotational set-up inside. The QD torque chip is in the centre of the 

tufnol chip holder. The sample on the platform is Pbo.1sEUo.2sMo6Ss, and is glued on 

using GE varnish. 

5.3 Design of the field-gradient torque magnetometer 

5.3.1 Final design of the field-gradient torque magnetometer 

Figures 5.3 & 5.4 show the final design of the field-gradient torque magnetometer. 

The field-gradient torque magnetometer was designed to be a separate unit, from the 

Heliox. It attached onto the bottom of the helium-3 pot. All the wiring for the torque 

chip and components were connected into a male 25 pin connector. On top of the 

helium-3 pot was the corresponding female connector. This meant the torque 

magnetometer could be removed, without taking apart any of the commercially built 

Heliox. 

The torque magnetometer main structure was made from copper (figs. 5.4 & 5.5). 

Copper was used as it has a thermal conductivity of 5 W(cm K)"\ at 4.2 K. The 

torque magnetometer consisted of a 29 mm diameter cage, where the tufnol chip 

holder was fixed, a 211 mm long copper tube of diameter 11 mm, which was attached 

to a copper pot of diameter 31.5 mm. The copper pot was tightly bolted onto the 
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helium-3 pot using five 5 mm screws, ensuring there was good contact between them. 

Inside the top of the copper pot was a 20 mm spur gear attached to a stainless steel 

rod. The rod was inside the copper tube, and went to a bevel gear. The bevel gears 

moved the rotation from the vertical axis to the horizontal axis. The bevel gears had a 

ratio of 1:1. Attached to the second bevel gear was an 8.5 mm diameter spur gear. 

The spur gear was one of three along the side of the cage. Attached to the last spur 

gear was a copper holder. On the other side of the cage was a second copper holder. 

The copper holders were designed to hold the QD tufnol torque chip holder in the 

cage. They also rotated the tufnol chip holder through 360 degrees. The wires for the 

experiments entered the cage through the centre of the screw attached to the second 

copper holder. This reduced the rotation of the wires, in the magnetic field. It also 

meant the wires did not get wrapped around the tufnol chip holder. 

At the top of the Heliox was the rotator dial piece, which was attached to a line of 

sight port. The dial was connected to the drive shaft. The dial could be rotated in 

both directions. The drive shaft went to the bottom of the probe through the line of 

sight port, to just below the helium-3 pot. The drive shaft was made from a 6.5 mm 

diameter seamless stainless steel tube. At the bottom it was connected to an 8.5 mm 

spur gear, which met with the larger spur gear. These two gears were required to 

change the rotation from the side of the probe to the centre. The line of sight ports 

went from the top to the helium-3 pot. They did not go to the centre of the sample 

space. The ratio of the rotation from the rotator dial to the tufnol chip holder was 

2.7:1. 

The field-gradient torque magnetometer was used under two different configurations. 

These were in liquid helium and in vacuum. For the liquid helium measurement, a 

specially designed brass can was used. The can was screwed on to the IVC plate. 

The bottom of the can had holes in, so when in the magnet, the whole of the lower 

part of the probe was in liquid helium. For the measurements in vacuum the set-up 

and procedure is described in section 5.2. 

The external circuitry of the field-gradient torque magnetometer is shown in fig. 5.6. 

The temperature of the sample was measured by two thermometers, which were glued 

on to the tufnol chip holder. The zero field temperature was determined from the 

Ru02 thermometer, as the resistance ofthe RuOz thermometer changed with magnetic 

field. A cemox thermometer was used to measure the temperature when in field. The 

RuOz thermometer and the cemox were both measured using four terminal resistance 
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measurements. For the Ru02 thermometer, a Lakeshore current source provided a 1 

J.lA de current, and a Keithley 196 voltmeter measured the voltage. For the cernox, a 

Lakeshore temperature controller measured the resistance. 

The angle between chip and the applied magnetic field was measured using a Hall 

chip. The Hall chip was attached to the copper holder. A Lakeshore current source 

provided a 10 J.1A de current, and the voltage was measured by a Keithley 196 

voltmeter. 

The torque chip had a Wheatstone bridge patterned on it (cf. fig. 3.4). A Stanford 

SR850 DSP lock-in amplifier was used to provide an ac current through the bridge. 

The lock-in read the corresponding voltage across the bridge. The ac current went 

through a 10 Q resistor box. This was used to phase the lock-in at the beginning of 

the experiment. The voltage across the 10 Q resistor box was read by a Keithley 2001 

voltmeter. This meant the current through the Wheatstone bridge could be 

determined. The measured voltages were amplified by a Stanford x 100 amplifier. 

To increase the sensitivity of the experiment, a variable resistor was put in parallel 

with one of the resistors in the Wheatstone bridge. The resistance of the variable 

resistor was set so the voltage across the Wheatstone bridge was zero. 

The whole experiment was controlled by a LABview program, which was run from a 

computer. The voltages of the components were recorded on the computer. 

The QD torque chip was placed in the tufnol chip holder using tweezers. It was held 

in the holder by a gold plate underneath it, and the contact legs on top. The samples 

measured on the field-gradient torque magnetometer were cylindrical. They were 

glued on the 2 x 2 mm2 platform of the torque chip with GE-varnish (fig. 5.5). The 

long axis of the sample was parallel to the side edge of the platform. The sample was 

positioned a distance I from the centre of rotation of the platform. 

5.3.2 Problem solving and trouble shooting 

The original design of the magnetometer had to be altered due to problems arising 

from the cool down process and the experimental procedure. The problems that arose 

included thermal heating, mounting the sample and movement of the sample in the 

magnetic field. All these problems are discussed. 
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5.3.2.ll. 1lhermaU Heating 

One of the main concerns was the heat transfer during the experiment. The Heliox 

was designed so the helium-3 pot at temperatures below 1.5 K was isolated from the 

rest of the probe. Any heat that entered the IVC would warm up the helium-3 pot and 

the sample. The three ways heat could have entered the IVC were convection, 

conduction and radiation. The heating effects were most noticeable below 1 K. 

Originally the helium-3 pot would reach 300 mK, while the platform would be at 350 

-400 mK. To reduce the temperature difference, the isolation of the helium-3 pot and 

torque magnetometer was improved. 

To reduce the radiation reaching the chip, superinsulation was used. It was wrapped 

tightly around the torque magnetometer, seven or eight times. It covered from just 

below the helium-3 pot to beyond the bottom of the copper cage. This made sure it 

did not touch the IVC, but as much radiation as possible was reflected. This reduced 

the temperature of the platform by ~ 20 mK. 

If there was helium gas in the IVC, convection occurred between the IVC and the 

helium-3 pot. The gas caused instability in the temperatures above 4.2 K, which 

reduced the accuracy of the measurement. The temperature of the helium-3 pot would 

not decrease below 4.2 K. The charcoal sorb could only absorb a small amount of 

helium; thus the excess gas was pumped out. The IVC was kept in vacuum to reduce 

convection. 

Conduction occurred through the drive shaft and the copper wires. To reduce the heat 

conduction, the wires were heat sunk to the helium-3 pot. The wires were then 

epoxied onto the copper tube with sty cast epoxy. On the copper cage, they were 

glued down with GE-vamish. As the wires were heat sunk, they were at the same 

temperature as the helium-3 pot. This meant when cooling down below 1 K, the heat 

was removed from the platform via the copper wires. This reduced the temperature of 

the platform ~ 30 mK. 

The drive shaft conducted the most heat into the IVC. It was connected from the 

rotator dial to the spur gear just below the helium-3 pot (fig. 5.4). It went through the 

helium-3 pot and the 1 K plate. This meant it had a temperature gradient from 300 K 

to 300 mK over 1.5 m. The drive shaft also had to be rigid enough to transmit the 

rotational motion from the dial, to the spur gear. Originally the drive shaft was made 

from a stainless steel rod of 5 mm diameter, which had a 20 cm tufnol section just 

above the helium-3 pot. The tufnol section was a thermal break, which reduced the 

101 



heat reaching the helium-3 pot. Tufnol is an insulator, with a thermal conductivity of 

0.1 mW(cm Kr1 at 4.2 K, which is a factor 30 smaller than stainless steel. The 

stainless steel rod and tufnol piece were rigid enough to transmit the rotation. The 

base temperature of the helium-3 pot with this drive shaft was 300 mK, while the 

platform was 350 mK. This was 50 mK higher than the base temperature without the 

drive shaft. The second thermal break was a plastic tube, which had a lower thermal 

conductivity than the tufnol. The problem with the plastic tube was it bent under 

rotation. The final drive shaft was made from thin walled stainless tube of outer 

diameter 6.5 mm, with a connector above the helium-3 pot. The tube was rigid to 

transmit the rotational motion, when connected. The heat conducted down the tube 

was a factor 1.25 less than down the rod. For the measurements below 1 K, the 

rotator dial and drive shaft were lifted up 2 cm, breaking the connection, thus leaving 

the helium-3 pot and the torque magnetometer in isolation. The lowest helium-3 pot 

temperature reached with this drive shaft was 275 mK with the platform at 300 mK. 

5.3.2.2 Mmmtimlg tllne sample 

There were problems with mounting the sample on the chip's platform. The whole 

process was viewed down a microscope. The QD chip was tightened into the tufnol 

chip holder, which was in the copper cage. This provided a secure position for the 

chip. Initially the sample was placed on the platform by hand using tweezers, but this 

method proved unreliable. The sample would either not be vertical or the platform 

would break as too much force was applied by the tweezers. To solve this problem a 

micro-manipulator was built. The micro-manipulator consisted of a pair of tweezers 

mounted on a platform at a 45 degree angle. The platform could move in all three 

directions using vernier gauges. The sample was held in the end of the tweezers, by 

having one leg fixed, and tightening a screw against the other. A syringe was used to 

place the GE-vamish onto the platform. The consistency of the GE-vamish was thick 

enough so it did not run over the platform, but was not too thick to stay attached to the 

syringe. If any GE-vamish ran onto the legs, it was soaked off using isopropanol. If 

the GE-vamish was left on the legs, during the cool down, it would freeze. GE­

vamish contracts at a different rate to the silicon. This put stress on the legs, which 

caused them to break. If the GE-vamish was too thick it would stick to the platform 

and the syringe. This meant it was difficult to remove the syringe without pulling the 

platform up, which added extra stress to the legs. Once the GE-varnish was on the 
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platform, the micro-manipulator was moved, so that the sample was at the correct 

angle. The tweezers were then lowered down slowly. When on the platform the 

tweezers were opened and the sample positioned. The tweezers were then lifted away 

from the platform. The GE-varnish was left for 12 hrs to dry. 

5.3.2.3 §ample movement m the magnetic field 

Another problem was the sample moving in the magnetic field. The movement could 

have been caused by the tufnol holder, the chip or the sample. The movement was 

observed as discontinuities in the voltage vs. field sweep loops. These were either in 

the form of a peak, which decayed back to the voltage loop or as a jwnp where 

voltage moved from one value to another. The discontinuities degraded the data. 

To ensure the sample did not move on the platform, the GE-varnish was left overnight 

to dry. The torque chip was held tightly in the tufnol chip holder by a gold plate 

underneath it, and the six contact legs on top. There was about a 1 mm gap between 

the chip and the holder. To stop the chip moving, vacuum grease was put in the gap. 

When the grease froze, the chip was fixed in place. The tufnol chip holder was glued 

into the copper holders with GE-varnish, to stop any movement. 

The backlash of the gears caused the tufnol chip holder to move. When on the bench, 

the tufnol holder was set at 90°, if the edge of the holder was touched, it moved about 

five degrees. This movement was due to the gears not being perfectly interlocked, 

and was a major problem. For the rotational holder, a grub screw was put into the 

cage. It was tightened up against the lowest spur gear, thus holding the spur gear in 

position, reducing its movement. The only problem was the Heliox had to be warmed 

up and the IVC removed, for the grub screw to be tightened. The tufnol holder could 

then be rotated against the grub screw, which also reduced the movement. To stop all 

movement of the tufnol holder, a stationary copper holder was made, which fitted into 

the copper cage. It screwed into the existing holes on the side of the cage. The 

stationary holder held the tufnol holder and thus the chip at 180 degrees. 

5.4 Calibrations 

Some of the components used on the field-gradient torque magnetometer were 

calibrated, before the main experiments were carried out. These include the Ru02 

thermometer, the Hall chip and the Quantwn Design torque chips. 
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Two solenoid magnets were used in this work. The first magnet was a copper 

solenoid magnet, which was used submersed in liquid nitrogen. It was used for 

preliminary calibration measurements of the QD torque chips. The Oxford 

Instruments power supply (IPS 120-10) provided the current through the magnet. The 

magnet was calibrated by measuring the magnetic field at the centre, for different 

currents through the coil. The magnetic field was measured using a Hall probe. The 

magnetic field was then plotted as a function of current. 

From figure 5.7, the calibration equation for the copper solenoid magnet is: 

B=5.29x10-3 I (5.1) 

where I is the current through the magnet and B is the magnetic field in the centre. 

The field profile of the copper magnet was also measured. The magnetic field for I= 

16 A was measured using the Hall probe as a function of distance from the centre of 

the magnet. Figure 5.8 shows that the magnetic field was almost homogenous about 

the magnet centre. 

The second magnet was an Oxford Instruments 15 T superconducting magnet. It was 

also controlled by the Oxford Instruments IPS. The field profile at five different 

fields was measured using a Hall chip. The magnetic field was measured every two 

cm from the top of the magnet. The local magnetic field at a distance z from the field 

centre was determined from fig. 5.9. This was the magnetic field experienced by the 

sample at height z. The field gradients were calculated by taking the gradient of the 

field in fig. 5.9, and plotting them against z. The field gradients for each of the 

magnetic fields as a function of height z are in fig. 5.1 0. The maximum change in 

gradient occurs between 5 cm to 8 cm. From fig. 5.11, the form ofthe field gradient 

at each field is the same as a function of distance z. For the torque magnetometry 

experiment, the field gradients as a function as magnetic fields, for constant height z 

are required. Fig. 5.12 shows the relation between the field gradient and the magnetic 

field at height z is linear as expected. 

§.4.2 Ru02 Tbermometell" 

The ruthenium oxide resistor was used to measure the temperature of the sample 

between 250 mK and 15 K. The Ru02 resistor was bought from Lakeshore 

Cryotronics Ltd, and arrived uncalibrated. The Ru02 thermometer was calibrated on 
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the Heliox, using a copper holder. The holder consisted of a thick walled copper tube, 

the outer diameter of which was 7 mm and the inner diameter was 3.5 mm. The Ru02 

thermometer was held in the tube with vacuum grease. The holder was screwed into 

the base of the helium-3 pot. The wires were glued onto the holder using stycast 

epoxy and on to the helium-3 pot using GE-varnish. Hence the Ru02 resistor was in 

good thermal contact with the helium-3 pot. The resistance of the Ru02 resistor was 

measured using a four terminal measurement. A de current of 1 J.LA was applied by a 

Lakeshore current source. The voltage was measured by a Keithley 196 voltmeter. 

The voltage was measured for both directions of the current. The resistance was 

determined using Ohm's law. The Ru02 thermometer was calibrated against the 

thermometers on the helium-3 pot. 

The Heliox was cooled down to 250 mK, as described in section 5.2. The resistance 

was measured at every 20 mK from 250 mK. up to 500 mK, then every 50 mK 

between 500 mK and 1 K. Between 1 K and 4 K, the resistance was measured every 

250 mK, then every 500 mK between 4 K and 15 K. For each temperature the 

average resistance from both current directions was calculated. The calibration 

equation for a Ru02 thermometer is given by: 

(5.2) 

where Ro is the resistance of the Ru02 thermometer at room temperature. The 

constants a; were determined for the Ru02 thermometer by plotting equation 5.2, and 

applying a fourth order polynomial to the data. 

A calibration LABview programme was written for the Ru02 thermometer. The 

programme measured the resistance, subtracted R0 , then used the variables a; and 

equation 5.2, to calculate the temperature of the resistor. The calibration of the Ru02 

thermometer was checked a year later. It was found that the Ru02 thermometer still 

had the same a; variables. The Ru02 thermometer was also strongly field dependent, 

hence the cemox thermometer was used to measure the temperature of the sample 

during the field sweeps. The problem with the cemox was the leads had to be silver 

epoxied on each time, which could change the measured resistance. Thus the 

temperature of the cemox read by the Lakeshore did not always agree with the Ru02 

resistor. Therefore the Ru02 thermometer was used to determine the zero field 

temperature, while the cemox was used to check the temperature did not increase 

during the field sweep. 
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Figure 5.14. The measured Hall voltage as a function of angle, at 3 T & 5 T, at 4.2 

K. The angle was determined from the sine curves in figure 5. 13. 
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5.41.3 llil.aDJI Cllnip 

The Hall chip was used to measure the angle between the chip and magnetic field. It 

was fabricated by Prof. Robin Nicholas at Oxford University. It was calibrated as a 

function of angle, at 4.2 K, 3 T using the rotation set-up, on the torque magnetometer. 

A single loop of copper wire of area 14 x 22 mm2 was glued around the edge of the 

tufnol chip holder. The Hall chip was glued on to one of the copper holders. The 

brass can with holes in was screwed on to the IVC plate. The Heliox was cooled 

down in liquid helium, thus the Hall chip and wire loop were immersed. The magnet 

was swept at a faster sweep rate, as any eddy heating, which occurred, was removed 

by the liquid helium. The sweep rate was 1.5 Tmin-1
• The magnetic field was swept 

up to 5 T and back down to zero. The voltage induced in the loop (i.e. V = - Z ) was 

measured on a Keithley 2001 voltmeter. The induced voltage was amplified by a DC 

nanovolt amplifier, with amplification x 50000. The voltage across the Hall chip was 

measured as a function of magnetic field. The tufnol chip holder was initially 

positioned at 0 degrees. The measurement was repeated every 20°, over 360 degrees. 

The angle of the tufnol chip holder was roughly determined from the rotator dial. 

Fig. 5.13 shows the sine dependence of the flux through the loop. The solid lines are 

sin() curves plotted through the data. At each of the measured angles, the angle of 

the tufnol chip holder was taken from the sine curve. The Hall voltage was then 

plotted as a function of this angle. Fig. 5.14 is the calibration curve of the Hall chip, 

at 3 T, 4.2 K. The Hall chip does not have sine dependence with angle. The Hall chip 

was more sensitive to angles at low resistances. It was mounted on the copper holder, 

so at 0° & 180°, the lowest resistances were measured. This meant the Hall chip was 

most sensitive to the change in angle around 0° & 180°, thus this improved the 

accuracy of determining the reversible angle. The Hall voltage was also used to 

determine whether the platform had moved. The voltage was measured as a function 

of magnetic field. If the platform moved the Hall voltage would change, due to the 

change in angle. The disadvantage was at fields below 2 T, the voltage was the same 

at all angles. 
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5.4.4 Quantum Design silicon toll"que chip§ 

The piezoresistive torque chips used in this experiment were brought from Quantum 

Design (cf. section 3.5.2). To calibrate the QD chips, two separate experiments were 

carried out. The first calibration was a preliminary measurement to ensure that the 

chip was not broken or faulty. The second calibration was the full calibration of the 

QD chip. 

From torque theory (cf. section 3.7), when a current flows around a loop, a magnetic 

moment is produced perpendicular to the area (A) of the loop. For both experiments 

the chip was calibrated by putting an excitation current Uex) through the loop around 

the edge of its platform. The chip's platform was parallel to the applied magnetic 

field. From section 3.7, the torque on the current loop was: 

r = m 1 x B = IexA x B = IexABsinBs (5.3) 

where m1 is the magnetic moment due to the excitation current and § is a unit vector 

perpendicular to the platform. This meant the maximum torque was measured. The 

magnetic field was swept up to a set field and then back down to zero. The change in 

voltage across the Wheatstone bridge was measured as a function of the applied field 

(~V). The Wheatstone bridge was unbalanced at the start, so there was an initial 

voltage across it. For each applied excitation current the change in voltage is denoted 

by ~V1". 

The first calibration used the copper solenoid magnet in liquid nitrogen. The torque 

chip was fastened into the tufnol chip holder. The brass can with holes in was screwed 

on to the IVC plate. The probe was then slowly lowered in to the liquid nitrogen. 

The chip was positioned in the centre of the magnet. The magnetic field was swept up 

to 0.32T. 

For no current through the loop Uex = 0 mA), the change in voltage measured was 

taken to be the background voltage of the Wheatstone bridge. The experiment was 

repeated for lex=± 30 mA. The measured background ~V0A was subtracted away 

from the excitation current ~ V1" • This gave the calibration of the chip as a function 

of magnetic field. The change in voltage ~vi.,. - ~ VOA ' is linearly proportional to the 

applied magnetic field (fig. 5.15). The equation relating the applied torque to the 

change in voltage, and thus the change in resistance is a function of the excitation 

current ( !1R1 .. ) is given by: 
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11VI M/ 
'r" - __ .. _- --"'-.- - (5.4) 

av aR 

where av is the voltage calibration constant (V(Nmr1
) and aR is the resistance 

calibration constant (Q(Nmr1
). 

Comparing equations 5.3 and 5.4, the calibration constant aR is proportional to the 

gradient of the lines in the figure 5.15. It is given by: 

( d(f1RI .. d~ fj.ROA)) 

aR=------- (5.5) 

The calibration constant aR is also a measure of the sensitivity of the measurement. 

This first calibration gave the order of magnitude of aR, and checked the chip had a 

linear response to an applied torque. 

From eqn. 5.3, the applied torque has sme dependence with angle. This was 

investigated by measuring the change in voltage across the Wheatstone bridge as a 

function of angle, for lex = 0, ± 30 mA. 
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Figure 5.17. The calibration graph of a QD torque chip, in liquid helium. Change in 

resistance 11R1 .. , for lex=± 30 mA as a function of applied magnetic field, at 4.2 K 

and 90 degrees. The background change in resistance has been subtracted away from 

the data. The solid lines are the best-fit straight lines through the data. The gradient 

of the lines is used to determine aR. The calibration constant aR for this chip is 2.22 

x 104 n(Nmr• 
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In fig. 5 .16, the sine dependence of the torque is observed. Thus the chip was not 

faulty as it obeyed equation 5.3, when an excitation current flowed through the 

calibration loop. 

For the second calibration, the chip was immersed in liquid helium, at the centre of 

the 15 T superconducting magnet. The procedure was the same as for the liquid 

nitrogen calibration. The calibration took place in liquid helium, rather than in 

vacuum as the resistance of the calibration loop was 10 0. At 4.2 K, for an excitation 

current of 30 mA, the power dissipated was 9 m W. This was enough to increase the 

temperature of the chip by 20 K. Thus the calibration was carried out in liquid, so any 

heat dissipated from the current through the loop was removed. This meant the 

temperature was constant through the whole calibration. The magnetic field swept 

was swept to 12 T. The excitation currents were 0, ± 30 mA. 

As shown in figure 5.17, the chip had a linear response to the torque up to 12 T. The 

calibration constants aR and av were determined from the gradient of the lines and 

eqn 5.5. In liquid nitrogen av = 45 V(Nmr1
, while in liquid helium the calibration 

constant was av = 20 V(Nmr1
, thus the calibration constants were about a factor 2 

smaller at 4.2 K compared to 77 K. 

5.4.5 Faulty QD torque chips 

As the torque chips were bought from Quantum Design, there was no control over the 

manufacture process, the size or the linearity of the calibration constant. This meant 

there were often problems with the chips. These problems included an imbalance in 

the Wheatstone bridge resistors. This occurred when one of the resistors was either 

larger or smaller by at least 100 ohms compared with the other three. This introduced 

a large background resistance to the measurement. Thus the relationship between the 

applied torque and the difference in M 1 .. was not linear. The imbalance in the 

resistance leads to unrepeatable calibration constants (fig. 5.18(a)). Another problem 

was the voltage calibration constant ( av) having a value less than 20 V (Nmr 1, which 

reduced the sensitivity of the measurement. The signal to noise ratio of the chip was 

about 1. If the chip was not manufactured correctly, there was excess silicon attached 

to the platform. This increased the noise on the voltage, and reduced the signal to 

noise ratio. Another problem was the chip having a different calibration constant 
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Figure 5.19. Voltage across the Wheatstone bridge, as a function of excitation 

current and angle to the magnetic field, at 5 T, 4.2 K and z = 0 cm. The solid line is a 

linear-fit through the data between- 30 mA and + 30 mA. 

for each torque directions (fig. 5.18b). Any of the above problems meant the QD chip 

was unusable for the experiment. 

Problems were experienced when removing the sample from the chip. The sample 

and chip were originally soaked in acetone. After the third soaking, the acetone 

damaged the silicon and constantan on the chip. The damage to the resistors affected 

the resistance of the Wheatstone bridge, which caused a non-linear response to the 

torque. The problem was solved by soaking the chips in isopropanol, which was a 

less strong solvent than acetone. 

5.5 Experimental Set~up 

5.5.1 Field-gradient torque magnetometer 

The excitation current Uex) chosen to calibrate the QD torque chips was ± 30 mA. 

This was because the change in voltage across the Wheatstone bridge due to the 

applied torque was large enough to be measured on the lock-in amplifier, but not too 

large for the response of the chip to be non-linear. From fig. 5.19, for excitation 

currents between - 30 mA and + 30 mA, the change in voltage across the Wheatstone 
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bridge with respect to the 0 mA voltage was linear. For excitation currents greater 

than ± 30 mA, the change in voltage across the Wheatstone bridge with respect to the 

0 mA voltage was non-linear. 

For the measurements in liquid helium the sweep rate of the superconducting magnet 

was 1 Tmin-1
• For the measurements in vacuum the sweep rate of the 15 T magnet 

was 0.45 Tmin-1
• These were the highest sweep rates for each condition that could be 

used before the thermometers on the platform increased in temperature, due to Eddy 

heating occurring. 

The magnetic field gradients and thus the height from the magnet centre were chosen 

from fig 5.11. They were chosen so the increment between the field gradients were 

the same. The temperatures were chosen so they were evenly spaced between the base 

temperature (300 mK) and the critical temperature of the superconductor. The 

number of temperatures and field gradients were chosen so a complete data set could 

be taken in the time available. The length of time for the whole experiment was 

dependent on the amount of liquid helium available for the superconducting magnet. 

The superconducting samples on the torque magnetometer were cylindrical in shape. 

The samples were glued onto the chip's platform with the long axis of the cylinder 

parallel to the edge of the platform. This meant through 360 degrees the magnetic 

field was always along the radial direction of the sample. The volume of the samples 

was measured using digital micrometer callipers. 

The voltage applied by the lock-in across the Wheatstone bridge was 0.01 V. This 

was the highest voltage, which could be applied without heating occurring. The 

current through the Wheatstone bridge was measured. This was to ensure the current 

did not change during the measurement. It also meant the change in resistance across 

the Wheatstone bridge was determined, which is proportional to the applied torque. 

The procedure of the experiment for the torque magnetometer involved finding the 

angle where the voltage loops measured at field centre were reversible. To do this the 

sample was rotated about the 0 or 180 degrees position. At every 2 degrees, the 

magnetic field was swept up to 5 T and then back to zero. The change in voltage 

across the Wheatstone bridge on the torque chip was measured. The change in 

voltage (.~V) was then plotted against the applied magnetic field, the loops obtained 

were the voltage vs. field sweep loops. The angle where the voltage loops at field 

centre were reversible was the reversible angle. 
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At the reversible angle, the voltage vs. field sweep loops were measured at each field 

gradient. This involved sweeping the magnetic field up to a set field, and then back 

down to zero. The first loop was measured at z = 0 cm, the Heliox was then lifted out 

of the magnet to the furthest height, and the voltage vs. field sweep loops measured at 

every field gradient, back down to z = 0 cm. The loop at z = 0 cm was re-measured to 

check that the platform had not moved during the measurements. This procedure was 

repeated for every temperature. The heights were the same for each temperature, as 

height markers were used, which fitted between the neck fitting and the Heliox head 

(fig. 5.1 ). The voltage vs. field sweep loops measured as a function of field gradient 

and magnetic field, were plotted as a function of the local magnetic field. This is the 

field experienced by the sample, at the height z from the magnet centre. The local 

fields are determined from fig. 5.8. 

The superconductor measured was a NbTi wire sample, which consisted of three 1 

mm lengths of wire, which were glued together with GE-varnish, in a pyramid shape. 

The NbTi wire consisted of 61 filaments in a copper matrix. Each filament radius was 

14 !liD. The ends of the wires were sandpapered, to ensure they were flat. NbTi wire 

was measured as it has known superconducting parameters. 

5.5.2 Vibrating sample magnetometei" ('V§M) 

For a good comparison between the field-gradient torque magnetometer and the VSM, 

the same NbTi sample was measured on both. 

The critical current densities of the NbTi wire sample was measured on the VSM in 

Birmingham. The magnetic moment was measured as a function of the magnetic 

fields up to 12 T and temperatures at 4.2 K, 6 K, 8 K and 10 K. 

The NbTi wire sample measured on the VSM was still attached to the platform of the 

torque chip. This meant it was easier to align on the vibrating rod. The sample was 

measured with the field perpendicular and parallel to its long axis. The sample was 

held onto the sample rod using double-sided sticky tape, with PTFE tape wrapped 

around on top to secure the sample. 
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Figure 5.20. Voltage vs. field sweep loops for NbTi wire as a function of magnetic 

field, and angle, at 4.2 K & z = 0 cm, taken on chip 3 (av = 200 V(NmY\ The loops 

were offset along the y-axis, so the change in the magnitude of the voltage hysteresis 

was observed. The arrows indicate the increasing or decreasing magnetic field. 

0.25 

> ..,. 
0 ...... 
S' 
<] 0 
a) 
C) 

.! 
~ 
~ -0.25 
0 

~-50 
+----t- -20 
"1----V -10 
G-----0 10 
A-------8 go 

-0.50 L-...~--~~~-~~~~~~-~~---~ 
0 1 2 3 4 5 

Applied magnetic field, B(T) 

Figure 5.21. Voltage vs. field sweep loops (~V) for NbTi wire as a function of 

magnetic field and angle, at 4.2 K & z = 0 cm, taken on chip 4 (av = 20 V(NmY1
). 

The loops were offset along the y-axis, so the change in the voltage hysteresis was 

observed. The arrows indicate the increasing or decreasing magnetic field. 
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5.6 Experimei'it.ai results- NbTi wire 

5.6.1 Change in the voltage vs. field sweep loops as a function of angle 

The ftrst set of measurements on NbTi wire were taken in liquid helium. The voltage 

calibration constant of chip 3 was av = 200 V(Nmr1
, thus the resistance calibration 

constant was aR = 2.28 x 105 Q(Nm)"1
• The sample was rotated through 360 degrees, 

at the field centre, to investigate the change in magnitude of the hysteresis in the 

voltage loops with angle. At every 20 degrees, a voltage vs. field sweep loop was 

measured (fig. 5.20). The magnetic field was swept up to 5 T and back down to 0 Tat 

a sweep rate of 1 Tmin-1
• Fig. 5.20 shows the change in magnitude of the hysteresis 

in the voltage vs. field sweep loop over 180°. At 90° and 180° the voltage loops were 

almost reversible. The voltage vs. field sweep loops for angles below the reversible 

angle were in the opposite direction to the loops at angles above the reversible angle. 

An equivalent data set was measured about 0°. 

The second set of NbTi wire measurements were carried out in liquid helium using 

chip 4, with voltage calibration constant of av = 20 V(Nm)"1
, thus the resistance 

calibration constant was aR = 2.22 x 104 Q(Nm)"1 (fig. 5.17). 
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Figure 5.22. Difference in torque across the field sweep loops as a function of angle, 

and QD chip, at 4.2 K, 4 T and z = 0 cm. The solid line is through the av = 200 

V(Nm)"1 data, and the dashed line is through the av = 20 V(Nm)"1data. The sample 

on chip 3 was 30° from the platform edge, and the sample on chip 4 was parallel to the 

platform edge. 
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The change in magnitude of the hysteresis in the voltage vs. field sweep loops was 

measured as a function of angle over 360°. The data were taken every 20°, for fields 

up to 5 T. Around the reversible angles the loops were measured every 2° to 

determine the reversible angle (fig. 5.21). 

The difference in voltage across the voltage vs. field sweep loop (/!,.V+- = /!,.V+ - /!,.V_) 

was determined for the data taken on chip 3 and 4 (fig. 5.20 & 5.21). This difference 

in voltage (/!,.V+-) is converted into the difference in torque /!,. r = r + - r _ across the 

loops from the eqn: 

t:,.V+_ M+_ 
/!,.r=--=-- (5.6) 

a1. aR 

where av and aR are the chip's calibration constants. From fig. 5.22, the difference in 

torque across the field sweep loops as a function of angle has sin28 dependence. The 

/!,. r reversible angles occur at 0, 90, 180 and 270 degrees. The difference in torque 

across the field sweep loops at z = 0 cm was independent of the QD chip. 

1.1 

0.8 

+-----+ 6.5 cm 
A--------8. 6 cm 
v-------v 5 cm 
G----£J 4.1 cm 
G-----EJ 2. 5 cm 
~ocm 

0 4 8 12 
Local magnetic field, B

1
oc(T) 

Figure 5.23. Voltage vs. field sweep loops for NbTi wire as a function of local 

magnetic field and height from the magnet centre at 4.2 K, 0°, taken on chip 3 (av = 

200 V(Nmr1
). The loops were offset along they-axis, so the change in the magnitude 

of the voltage hysteresis was observed. The arrows on the data indicate the increasing 

or decreasing magnetic field, during the measurement. 
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lFigun §.24i. Voltage vs. field sweep loops for NbTi wire as a function of local 

magnetic field and height from the magnet centre at 4.2 K, 180°, taken on chip 3 (av 

= 200 V(Nmr1
). The loops were offset along the y-axis, so the change in the 

magnitude of the voltage hysteresis was observed. The arrows indicate the increasing 

or decreasing magnetic field. 
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lFigwure §.2§. Voltage vs. field sweep loops (~V) for NbTi wire as a function of local 

magnetic field and height from the magnet centre at 4.2 K and 270 degrees, taken on 

chip 3 (a.v = 200 V(Nmr1
). The arrows on the data indicate the increasing or 

decreasing magnetic field, during the measurement. 
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Figmre 5.26. Voltage vs. field sweep loops (.~V) for NbTi wire as a function of local 

magnetic and height from the magnet centre, fixed at 180 degrees and (a) 300 mK and 

(b) 4.2 K, taken on chip 4 (a.v = 20 V(Nmr1
). The loops were offset along they-axis, 

so the change in magnitude of the hysteresis was observed. The arrows on the data 

indicate the increasing or decreasing magnetic field, during the measurement. 
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1Figull"e §.27. Voltage vs. field sweep loops (~V) forNbTi wire as a function of local 

magnetic field and height from the magnet centre at 4.2 K and 0°, taken on chip 4 (av 

= 20 V(Nmr1
). The loops were offset along they-axis, so the change in magnitude of 

the hysteresis was observed. The arrows on the data indicate the increasing or 

decreasing magnetic field, during the measurement. 
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1Fig11D.Jre §.28. Voltage vs. field sweep loops (~V) for NbTi wire as a function of local 

magnetic and height from the magnet centre at 4.2 K, fixed at 180°, taken on chip 4 

(av = 20 V(Nmr1
). At each field gradient, all the voltage loops were measured for 

each temperature, before the sample was moved to the next height. The loops were 

offset along the y-axis, so the change in magnitude of the hysteresis was observed. 
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§.6.2 Cllnmnngte fum ttllne voR~gte vs. :I!Dell«ll swtete]lll Roops ms m 1l'l!DmHctllonn of JffieR«ll gndnenn1l: 

For the NbTi wire sample on chip 3, the voltage vs. field sweep loops were measured 

at the angles where the loops were reversible at the field centre (0, 90, 180 & 270 

degrees (fig. 5.22)). At each of the six field gradients, the magnetic field was swept 

up to 12 T and back down to 0 T (fig. 5.23). The NbTi wire sample was positioned at 

about 30 degrees to the platform edge. For figs. 5.23 & 5.24, the voltage vs. field 

sweep loops were offset from each other along they-axis. This meant the change in 

magnitude of the voltage hysteresis with field gradient could be observed. For the 

loops taken at 0 degrees, the magnitude of the voltage hysteresis increased as the field 

gradient was increased (figs. 5.23), while at 180 degrees the magnitude of the 

hysteresis in the voltage vs. field sweep loops decreased as the field gradient 

increased (fig. 5.24). From fig. 5.25, the 270 degrees voltage vs. field sweep loops 

had almost no change in the voltage hysteresis as the field gradient was increased. A 

similar data set was measured at 90 degrees. 

The NbTi wire on chip 4 was measured in vacuum at 180 degrees using the stationary 

holder (figs 5.26) and in liquid helium at 0° (fig. 5.27). The voltage vs. field sweep 

loops were measured at eight gradients, which were at the following heights from the 

magnet centre 0, 2.5, 4, 4.5, 5, 5.5, 6.2 and 7 cm. In vacuum the temperatures 

measured at were 300 mK, 2 K, 4.2 K, 6 K, 8 K and 10 K. The voltage vs. field 

sweep loops for 300 mK and 4.2 K are presented in fig 5.26a & b. For the other 

temperatures, similar voltage vs. field sweep loops were measured, as a function of 

local magnetic field and field gradient. At 180°, the magnitude of the voltage 

hysteresis in the loops decreased as the height from the magnetic field centre 

increased (fig. 5.26a), while at 0°, the magnitude of the hysteresis in the voltage vs. 

field sweep loops increased, as the height from the magnet centre increased (fig 5.27). 

In vacuum, the voltage loops measured using the stationary holder were non­

reversible at the field centre (fig. 5.26). At 4.2 K and 4 T, the difference in the 

voltage across the loop (~V+_) at the field centre was converted into tu ( eqn. 5 .6). 

From the ~r vs. angle graph (fig. 5.22), the sample was at an angle about 2° away 

from the reversible angle. The stationary arrangement held the tufnol chip holder and 

QD chip at 180°, which suggests the chip platform was not parallel with the outside 

edge of the chip. Hence the sample was not at 180 degrees to the field, thus the 

voltage vs. field sweep loop was non-reversible at z = 0 cm. 
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The NbTi wire on chip 4 was then measured in vacuum on the stationary holder again. 

For this measurement instead of measuring all the field gradients at constant 

temperature, the voltage loops were measured at every temperature at one field 

gradient, before the probe was moved to the next height. This procedure was repeated 

at every field gradient. For each loop, the sample was left for twenty minutes for the 

temperature to stabilise. The temperatures measured at were 300 mK, 2 K, 4.2 K (fig. 

5.28), 6 K, 8 K and 10 K, at each of the following heights (z) from the magnet centre 

0, 2.5, 3.2, 4, 4.5, 5, 5.5, & 6.2 cm. In fig. 5.28, the change in magnitude of the 

hysteresis between consecutive voltage vs. field sweep loops was difficult to observe, 

at 4.2 K. Only the 4.2 K data are presented, the other temperatures have similar 

voltage vs. field sweep loops as a function of local magnetic field and field gradient. 

The NbTi sample on chip 4 was parallel to the edge ofthe chips' platform. 

5.6.3 VSM 

The magnetic moment of the NbTi wire with the magnetic field perpendicular to the 

long axis has different field dependence to the magnetic moment when the field was 

applied perpendicular to the long axis (fig. 5.29). The data at 4.2 K shows oscillations 

due to the liquid-gas transition of helium in the VSM. 
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Figure 5.29. Magnetic moment of NbTi wire as a function of magnetic field and 

temperature measured on the VSM. The open shapes denote the field parallel to the 

long axis, and the closed shapes denote the field perpendicular to the long axis. 
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Background Sample Signal to Field Temp. 

Sensitivity at Noise Ratio Range Range 

5T 4.2 K, 5T (T) (K) 

(Am2) (8 K) 

Vibrating 

sample 2.64 x w-s NbTi 211(136) 0- 12 4.2-300 

magneto meter 

Field-gradient 

torque 2 x w-s NbTi 12 (J) 0- 15 0.25-20 

magnetometer 

Table 5.1. The sensitivity, signal to noise ratio (SNR), field and temperature range of 

the VSM and the field-gradient torque magnetometer. The background sensitivity is 

double the noise of the data taken with no sample attached to the magnetometer. The 

sensitivity for the torque magnetometer is for chip 4, at the field centre. The field and 

temperature ranges are for the Oxford Instruments VSM in Birmingham University. 

For the torque magnetometer, the NbTi wire was measured on chip 4 ( av = 20 

V(Nmr1
). The SNR in italics is for the data taken at 8 K. 

5.6.4 Signa& to noise ratno 

For the torque magnetometer the signal to noise ratio (SNR) and the sensitivity 

depended on the calibration constant ( av) of the QD torque chip and the applied field. 

The background sensitivity of the torque magnetometer was determined from the 

measured voltage across the Wheatstone bridge for chip 4, for no sample attached to 

the platform, at 4.2 K. The moment was then determined from the torque equation 

(eqn 5.3). The sensitivity of the torque magnetometer decreases as the magnetic field 

decreases (fig. 5.31). 

The VSM background moment has a linear dependence with field (fig. 5.30). The 

background measured for the VSM was the sample holder, PTFE tape and double­

sided sticky tape. The sensitivity for each magnetometer was taken to be double the 

background noise at 5 T from figs. 5.30 and 5.31. The torque magnetometer moment 

sensitivity is the same order of magnitude as the VSM moment sensitivity (table 5.1). 

The SNR for each magnetometer were determined from the data measured for the 

sample. The SNR for the torque magnetometer is dependent on the noise of the 
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background, and the noise from the sample. For the NbTi wire at 4.2 K, chip 4's 

calibration constant was av = 20 V(Nmr1
, and the SNR at 5 T was 12 (fig. 5.27), 

while for chip 3 av = 200 V(Nmr1
, and the SNR at 5 T was 70 (fig. 5.23). Hence as 

av increases, the SNR increases, so the sensitivity of the measurement improves. As 

the sensitivity of the torque magnetometer depends on the applied field (fig. 5.31 ), the 

SNR will also depend on the applied field. At 0 T the signal to noise ratio is zero. 

5.1 Criticam cMrmll1f£ density .Arn~a9ysh~ 

5. 7.1 Determination of the critical currelllltt density 

The critical current density of an anisotropic superconductor measured at the 

reversible angle (B= 0), is given by eqn 3.24. In the equation, the local applied field 

gradient, J.lo( dH;;-toc), at each height z was determined from fig. 5.11. The 

difference in resistance across the field sweep loops ( !lR.+-) , as a function of 

magnetic field gradient is plotted for each magnetic field, as the gradient of each line 

is proportional to the difference in magnetic moment (lfun+_l) for that field ( eqn 

3.24). The magnetic moment was determined using two LABview programs 

(appendix 3). For each height z, the local magnetic field, the field gradient and 

!lR+_ were put into a data file. The LABview program Gccal.vi) read the data file, for 

each magnetic field. The program put the field gradient and !lR.+_ into a new data 

file, for that field. This procedure was repeated for each height z. At the end of the 

programme, each field had a file, which contained eight field gradients and the 

corresponding !lR.+- . The gradcal. vi program then read each field data file and put a 

straight line fit through the points. The gradient of the line and the magnetic field 

were then written to another file. This process was repeated for every field data file, 

until the end file contained all the fields and corresponding gradients. The last data 

file was then plotted in Easyplot. The critical current density was determined by 

dividing the data by the variables in eqn 3.24, which were the same for all 

temperatures. 
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3 (av = 200 V(Nmr1
). The lines are offset by M+_ = (0.02B), where B is the 

magnetic field for the line. The solid lines are the best-fit lines through the data. 
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JFigmre 5.33. Difference in resistance across the field sweep loops (M+-) for NbTi 

wire as a function of field gradient and local magnetic field, at 4.2 K and 0°, taken on 

chip 4 (av = 20 V(Nmr1
) in liquid helium. The lines are offset by M+- = (0.005B), 

where B is the magnetic field for the line. The solid lines are the best-fit lines through 

the data. The error bars were determined from the SNR (12). 
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IFigwure 5.341. Difference in resistance across the field sweep loops (M+_) for NbTi 

wire as a function of field gradient and local magnetic field, at (a) 300 mK and (b) 4.2 

K and 180°, taken on chip 4 (a.v = 20 V(Nmr1
) in vacuum. The lines are offset by 

!J.R+- = (O.OOSB), where B is the magnetic field for the line. The solid lines are the 

best-fit lines through the data. 
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lFigmre 5.35. Difference in resistance across the fiefd ~eep loops M+- for NbTi 

wire as a function of magnetic field gradient and local magnetic field, at 4.2 K, 180°, 

taken on chip 4 (av = 20 V(NmY1
). At each field gradient, the voltage loops were 

measured for every temperature, before the Heliox was lifted to the next height. The 

lines are offset by M+- = ( 0.005B), where B is the magnetic field for the line. 

The analysis to determine the critical current density CJc) removes any systematic 

errors, such as gravity and the torque due to the field not being along a symmetry axis 

of the sample, as they were the same at each field gradient. The only torques, which 

contributed to the critical current density were those that changed with magnetic field 

gradient. 

The critical current densities of the VSM data were determined from the equation 

2.33, with the same y st for the field perpendicular to the long axis and Yst = 2; , for 

the field parallel to the long axis. 

In figs. 5.32- 5.35, the lines were offset along the M+- axis, so they did not overlap 

with each other, hence the spreading out of the lines was observed as the magnetic 

field increases. 

At 0°, the data lines for chip 3 (fig. 5.32) are decreasing in the opposite direction to 

the data lines for chip 4 (fig. 5.33). The direction in which the gradients decrease 

depends on whether the lower or upper part of the voltage vs. field sweep loop was 

measured for the increasing field sweep. For the chip 3 data, the lower leg of the 
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loops were measured as the field increased, while for the chip 4 data, the upper leg of 

the loops were measured as the field was swept to the max values. This gives the 

difference in resistance across the loops to be either negative (chip 3) or positive (chip 

4), thus the direction the gradients decrease will be different. The modulus of the 

gradient is taken, when determining the critical current density. 

The error bars on the data taken in liquid helium on chip 4 were determined from the 

SNR of the voltage loops in fig. 5.31. For the data taken on chip 4 in vacuum (figs. 

5.34a & b), the gradients decrease in the same direction as the chip 4 gradients taken 

in liquid helium, but the lower leg of the voltage loops were measured as the magnetic 

field increased (fig. 5.26). This is because the change in the magnitude of the 

hysteresis in the voltage loops decreased with increasing field gradient for the data 

taken at 180°, while at 0° the change in magnitude of the hysteresis in the voltage 

loops increased with increasing field gradient. 

For the measurements on chip 4, where the loops were measured at every temperature, 

before the field gradient was changed, the gradients of the solid lines through the data 

above 6 Tare almost the same value (fig. 5.35). 
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FigUJre 5.36. Critical current density ofNbTi wire as a function of magnetic field and 

experiment at 4.2 K. The circles denote the VSM data for the sample perpendicular to 

the long axis and the squares denote the VSM data for the field parallel. The torque 

data was taken on chip 3 in liquid helium. 
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Figure 5.39. Critical current density ofNbTi wire as a function of magnetic field and 

temperature. The closed shapes and the crosses are the torque data, and the open 

shapes are the VSM data. The sample was on chip 4. 

5. 7.2 Critical current density 

For the measurement of NbTi wire on chip 3, the torque critical current density taken 

at 0° has the same order of magnitude and similar curve shape to the VSM critical 

current density, with the field parallel to the long axis (fig. 5.36). The critical current 

density ( J;) measured at 180° has a similar curve shape to the parallel J;su, but is 

an order of magnitude smaller. Both J; were offset by 2 T along the x-axis, 

compared to the Jr;su. Also both J; have a peak at about 3.5 T. Jungst investigated 

the change in critical current density ofNbTi wire as a function of magnetic field, and 

the angle tjJ between the long axis of the sample and the magnetic field7
• He found 

the shape of the Jc curve was dependent on the angle between the field and the long 

axis. For tjJ = 90 (perpendicular to long axis), the critical current density has the same 

shape as the JcVSM perpendicular data (fig. 5.37), while for tjJ = 0 (parallel to long 

axis), the critical current density peaked at low fields and then decreased to zero as the 

field was increased, which is consistent with the Jr;su parallel data (fig. 5.36). As tjJ 

decreased towards 0°, the peak appeared in the Jc data, at low fields (< 2 T). The 
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shape of the J; curves at 0° & 180° were consistent with angle between the field and 

the long axis of the sample not being 90°7
• In this case the sample on chip 3 was at 

roughly 30 degrees to the platform edge, hence the angle of the NbTi sample to the 

edge of the platform affected the shape of the J; curve. The change in Jc shape with 

angle is due to the anisotropy of the pinning centres in NbTi wire8
. 

For the measurements on chip 4, the J; taken in liquid helium and the J; in vacuum 

are the same order of magnitude as the J~sM with the field perpendicular to the long 

axis (fig. 5.37). The vacuum J; has different field dependence and is 65 %of the 

magnitude of J; measured in liquid helium (fig. 5.37), which is assumed to be due to 

Eddy currents induced in the copper matrix. In liquid helium any heat that occurred 

was removed from the sample by the liquid, while in vacuum, the heat was removed 

from the sample via the copper leads and the annealed copper wire fixed to the chip. 

Hence it would have taken longer time to remove heat from the sample. From fig. 

5.39, the torque critical current density of NbTi wire has similar field dependence for 

all temperatures, thus heating occurred at all temperatures. The 10 K voltage vs. field 

sweep loops were reversible for all temperatures, thus no background was subtracted 

away from the NbTi J;. 
For the measurement where the voltage loops were measured at every temperature 

before the field gradient was changed, the torque critical current densities are the 

same order of magnitude as the VSM critical current densities, but at all temperatures 

J; had a different field dependence (fig. 5.38). These loops were measured to try 

and remove one of the errors from the experiment, hence the probe was only moved 

eight times, rather than the 40 times it was moved in a normal measurement. This 

should have reduced the error on the calculated field gradient, thus improve the 

accuracy of the critical current density measured. The magnitude of J; at 4.2 K, 5 T 

was 8.4 % of the J~SM , and the J; for temperatures above 4.2 K went negative at 2 

T, and then returned positive at higher fields. The reason for the different magnitude 

and field dependence of J; was because the change in magnitude of the hysteresis in 

the voltage vs. field sweep loops was not linear with field gradient (cf. fig. 5.35). 

Hence the difference in resistance across the field sweep loops changed randomly 

between the different heights. Thus the best fit lines through the data were almost 
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constant for all magnetic fields above 6 T. The irregular change in the voltage 

hysteresis may have been due to the temperature of the sample being unstable at each 

field gradient. 

5. 7.3 Errmrs fmr tllne clliticaU cui!Tellll~ del!llsi~ 

When using the field-gradient torque magnetometer to determine Jc of an isotropic 

superconductor, a number of errors have to be included. These are discussed below. 

The first error is the height of the sample from the centre of the magnet (z). It is 

important in determining the field gradient experienced by the sample (fig. 5.9). The 

height was measured externally from the Heliox head to the magnet neck fitting. The 

probe was designed so the sample was in the magnet centre when the Heliox head 

rested on top of the magnet neck fitting (fig. 5.1 ). The height was kept fixed for each 

field sweep loop by using a height marker. These markers were made to fit between 

the Heliox head and the neck fitting. They reduced the error on the measured height. 

Therefore the error for the measured height of the sample (z) is± 1 mm. 

The second error occurred from the temperature control of the whole experiment. The 

magnetic moment of a superconductor is temperature dependent, so large changes in 

the temperature will affect the measurement. The temperature control is better than± 

10 mK at temperatures below 2 K, and ± 50 mK for temperatures above 2 K. This 

means that if the probe is working correctly, i.e. the pick-up tube is in the liquid 

helium, the temperature stability of the experiment should not pose a problem. 

The third error is the position of the sample on the torque chip. The distance between 

the centre of the sample and the middle of the torque chip platform (f) is difficult to 

measure. It was found by photographing the whole chip platform down a microscope, 

hence digital micrometer callipers were not placed near the chip, which reduced the 

risk of breaking the platform. From the photograph of the platform the enlargement 

factor is known, as the width of the platform is 2 mm. The enlarged I is measured 

using a ruler off the photograph. The scaling factor is then used to determine the 

actual/, and the error for it. The error for I is± 0.05 mm. 

The fourth error is the angle between the chip and the magnetic field measured using 

the Hall chip. The error for the Hall voltage depends on the angle between the Hall 

chip and the field. At angles close to 0 degrees, the change in Hall voltage at 3 T, for 

a change of 1 degree in angle is± 2 x 10-5 V. From fig. 5.12, this is where the Hall 
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chip is the most sensitive to a change in angle. For angles close to 90 degrees, the 

change in Hall voltage, for a change of 1 degree in angle is± 3.6 x 10-7 V. Around 90 

degrees the Hall chip is the least sensitive to a change in angle, which means the 

sensitivity of the angle is reduced by two orders of magnitude over 90 degrees. 

Therefore the error on the angle increases as the angle increases towards 90 degrees. 

The angle between the sample and the applied field is taken to be 0 or 180 degrees, 

when the measured voltage vs. field sweep loop at z = 0 cm is reversible. 

Material Sample & Experiment Critical current density 

Jc(4.2 K, 5T) 

(Am-2) 

I mm length VSM 1.232 ± 0.0} X }09 

NbTi wire Transport 8.05 X }08 

Torque (liquid) 8.79 ± 0.8 X }08 

Torque (vacuum) 5375 ± 05 X 108 

.. 
'fable 5.2. Companson of the cnttcal current densities of NbTt wue for the dtfferent 

experiments. The errors for the torque magnetometer data and the VSM data were 

determined using standard error analysis. The NbTi wire transport data was taken by 

C Friend6
. 

The error for Jc is determined from standard error analysis. For equation 5.7, the error 

for J; for the torque magnetometer data is given by: 

where &(x) is the error for the variable x. The error for an was found from the 

calibration graph (fig. 5.17). The error for 1 was determined from the method 

described above. The errors for the volume ( &( vol)) and the shape factor ( s(y)) were 

determined from the error for the lengths of the samples. 

From the experiment, the error for any dimension of a sample was ± 0.02 mm. This 

was because the samples were fragile, so care had to be taken when measuring them 
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with the digital micrometer callipers. 
dR+ 

The error for J~ ;; was taken from the 
d 'J/>C 

signal to noise ratio of the corresponding voltage vs. field sweep loops. The error for 

the angle cp was negligible compared to the other errors, as the data were taken at the 

reversible angle, so cp was either 0° or 180°. These angles are where the Hall voltage 

was most sensitive to the change in angle. A similar equation was used to determine 

the error for the VSM data. 

The errors for the J; are determined at 5 T. For the torque magnetometer the errors 

are field dependent, which means at 0 T, the error on the data is infinite, as the SNR is 

zero. Hence for fields lower than 2 T, the critical current densities determined from 

the torque magnetometer data, were either an order of magnitude larger than the Jc 

above 2 Tor negative (fig. 5.37), due to the voltage vs. field sweep loops for all field 

gradients being either reversible or having the same voltage up to 2 T. 

When determining the error for J;, using standard error analysis (eqn. 5.7), the 

dllR 
largest error was for the gradient (d ;-). This is because the calibration constant d 'Jlo loc 

dz 

of the chip limits the sensitivity, and thus the SNR. The error bars on the M+- vs. 

field gradient graph for NbTi wire in liquid helium (fig. 5.34) were determined from 

the SNR of the NbTi wire voltage vs. field sweep loops measured (fig. 5.26). The 

error bars show how much the gradient could change due to the noise on the signal. 

This error could be reduced, by measuring more voltage vs. field sweep loops at 

different field gradients or by using a QD chip with a calibration constant ( av) 
greater than 100 V(Nmr1

• The next largest error was for the dimensions of the 

sample. This meant the overall error for the NbTi wire J; was larger than the SNR 

of the measured voltage data. For the VSM J:SM , the uncertainties in the dimensions 

of the samples were the largest contributing errors. 

For the NbTi wire measured on chip 4 in liquid helium, at 5 T J; = 

8.79 ±0.8 x 108 Am-2 compared to J:SM = 1.232 ±0.01 x 109 Am-2 for the VSM data 

taken with the magnetic field perpendicular to the long axis (fig. 5.37). For the torque 

magnetometer, the SNR at 5 T was 12 (fig. 5.27), hence the largest contribution to the 
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error for J; was from (~R;_) (fig. 5.33). For the same sample and chip measured 
d l'a loc 

dz 

in vacuum at 5 T, 4.2 K, J; = 5.375 ± 05 x 108 Am-2 (fig. 5.37). Again the largest 

contributing error was from (~;- ) , due to the small SNR of the voltage vs. field 
d pdz loc 

sweep loops (fig. 5.26). 

5.8 Discussion 

5.8.1 Change in voltage vs. field sweep loop area with angle 

From Bean's model 1
, if an isotropic superconductor is placed in a uniform magnetic 

field, with the field along one the symmetry axes, the magnetic moment is in the same 

direction as the field. Therefore at the field centre (z = 0 cm), for a cylinder when the 

field is applied along the radial direction, the field should be along a symmetry axis, 

thus there should be no torque. The superconducting samples were all nominally 

cylindrical shapes. They were glued onto the chip's platform parallel to the edge of 

the platform (fig. 5.5). This meant the local magnetic field Jl
0
H1oc, should have been 

perpendicular to the long axis, thus parallel to the radial axes, for every angle during 

the rotation. Therefore at the field centre, the loops should have been 

the sample was rotated through 360 degrees. 

reversible, as 

Happ-loc 

symmetry 
aXlS 

sample 

Figure 5.40. Diagram of an anisotropic, irreversible superconductor in an applied 

local magnetic field (Happ-Ioc), when the field is not aligned with a symmetry axis of 

the sample. The angle between the symmetry axis and the local field is lf/H, the angle 

between the irreversible magnetisation (Mirr) and the symmetry axis is v, and the 

angle between the magnetisation and the field is B. 
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From the NbTi wire voltage vs. field sweep loops the change in 11 r over 360° was 

determined to be sin20 (fig. 5.22), with reversible angles at 0°, 90°, 180° and 270°. 

From fig. 5.40, the torque experienced by an anisotropic, irreversible superconductor 

when the applied local field is not aligned with the symmetry axis is: 

(5.8) 

where Mirrll is the component of the irreversible magnetisation parallel to the 

symmetry axis, and M;rrl_ is the component of the irreversible magnetisation 

perpendicular to the symmetry axis. The components of the applied local field are 

H app-locU = H app-loc cos 'I' H and H app-/ocl_ = H app-loc sin 'I' H ' where lf/H is the angle 

between the symmetry axis and the local field. The magnetisation components are 

MirrU = M;rr cos V and Mirrl_ = M;" sin v, where V is the angle between the 

magnetisation and the symmetry axis. The relation between the angles is 'I' H = v + e , 

where e is the angle between the magnetisation and the local field. If there are two 

symmetry axes perpendicular to each other, then the magnetisation can lie along either 

of them, depending on the angle lf/H· Thus the measured torque will have sin 2'1' H 

dependence rather than sin 'I' H dependence, and is given by: 

(5.9) 

The change in torque across the field sweep loops is l':..r = r+ - r_. In eqn 5.9, the 

irreversible magnetisation depends on the field direction. Therefore the change in 

torque across the field sweep loops as a function of angle is: 

(5.10) 

where I':..Mirr is the change in irreversible magnetisation across the field sweep loop. 

This suggests the samples behaved as parallelepipeds rather than cylinders during the 

experiment. This is because there were two distinct symmetry axes in the radial 

directions, as the angular dependence of the change in torque was sin 2'1' H (fig. 5.22). 

When the platform was at 0 or 180 degrees, the distance l was perpendicular to the 

local field. If the reversible angle coincided, then at the field centre !':.. r was zero, and 

the voltage loop was reversible (fig. 5.23). When the platform was at 90 or 270 

degrees, the distance l is a parallel to the magnetic field, hence at field gradients to the 

dH 
first order, there is no contribution from R x mzJ.lo app-loc , where mz is the magnetic 

dz 
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moment in the z-direction. Thus the voltage vs. field sweep loops are almost 

reversible at every field gradient consistent with fig. 5.25. 

The change in 1'1 r across the Nb Ti wire field sweep loops, as a function of angle (fig. 

5.22) is independent of the QD chip, and the angle between the long axis of the 

sample and the platform edge. The angle between the long axis of NbTi wire 

measured on chip 3 and the platform edge was 30 degrees compared with the angle 

between the sample on chip 4 and the platform edge, which was less than 10 degrees. 

5.8.2 Advantages and disadvantages of the fiend-gradient torque magnetmneter 

and tbeVSM 

The field-gradient torque magnetometer has many advantages. These include having 

a base temperature of 300 mK and operating in fields up to 15 T. The torque 

magnetometer also has a temperature stability of ± 1 0 mK for temperatures below 2 

K, and ± 50 mK for temperatures above 2 K. This is because it is fixed to the base of 

the helium-3 pot of the Heliox probe. The Heliox operates in vacuum, which 

increases the temperature stability of the experiment. The background sensitivity of 

the torque magnetometer is 2 x 1 o-8 Am2 at 5 T and field centre. The sensitivity is 

field dependent, and decreases with decreasing magnetic field (fig. 5.31 ). The torque 

magnetometer measures isotropic superconductors. The sample can be rotated 

horizontally through 360°, in the magnetic field. The torque magnetometer can be 

used to determine the anisotropy of a superconductor, the critical current density and 

the upper critical field (BelT)). The size of the QD chip platform means it could be 

used to measure single crystals. 

The disadvantages of the torque magnetometer are that samples, which are heavier 

than 10 mg or have a magnetic moment greater than 1 x 10-5 Am2 (1 T), cannot be 

measured. This is because the QD chips' 25 J..Lm thick legs are very fragile. This 

limits the torque, which can be applied before the legs break or the elastic limit of 

silicon is reached. The noise on the data is dependent on the calibration constant 

( av) of the QD chip and the superconducting sample. The noise on the measured 

voltage increases, as the value of av decreases. The SNR also limits the accuracy of 

the Jc measured. Another disadvantage is changing a sample on the chip's platform 

takes at least 48 hours. This means the torque magnetometer is useful for measuring 
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one sample at many temperatures, rather than measuring a series of samples at only a 

couple of temperatures. 

The vibrating sample magnetometer (VSM) is a reliable technique for measuring 

magnetic moments4
. It is easy to use. The sample change over time is about 2 hours. 

This means it is convenient for measuring a series of samples, and hardly any helium 

is wasted, as the measurements are almost continuous. The VSM can be used to 

measure samples, which are heavier than 10 mg, and moments as large as 3 x 1 o-3 

Am2
• The noise on the data is normally at least two orders of magnitude smaller than 

the signal. VSMs will work in fields up to 17 T9 and in the temperature range 4.2 K-

300 K 10
. 

The VSM has the disadvantage that the base temperature is 1.8 K. This is because the 

vibrating rod and sample are cooled by helium gas. At 4.2 K the gas-liquid transition 

for helium occurs, which causes instabilities in the temperature. This is seen as 

periodic oscillations in the magnetic moments measured (fig. 5.29), which makes the 

data unreliable. The temperature control of a VSM is ± 0.1 K. This is a large enough 

change in temperature to affect the measurement of the magnetic moment. Another 

disadvantage is the ac-field, which penetrates into the sample, due to the vibrating of 

the sample in a magnetic field gradient11
• The VSM measurements of Jc and B;rr 

become inaccurate for small samples, and at high magnetic fields. 

The VSM background magnetic moment (fig. 5.30) affects measurements taken on 

the highest amplification. The measured background has a linear dependence with 

magnetic field, and is only weakly temperature dependent. At 8 K, 5 T the 

background moment of the VSM is- 6.7 x 10-7 Am2
, hence any magnetic moment 

smaller than 1 x 1 o-6 Am2
, will have the background moment superimposed on top. 

The background has to be subtracted away from the measured moment, before any 

calculations are carried out, which increases the noise on the measured moment. Thus 

the moments measured on the highest amplification at high fields have lower SNR 

than the moments at low fields. 

5.8.3 Specifications of the VSM and the torque magneto meter 

For the VSM, magnetic moments can be measured in the range 3 x 1 o-3 to 3 x 1 o-8 

Am2
• The background noise is 3 x 10-8 Am2 (fig. 5.30). The moment sensitivity is 

independent of the applied magnetic field. 
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For anisotropic superconductors, the Quantum Design PPMS Torque Magnetometer 

can be used to measure the magnetic moment. The QD chips used are the same chips 

as used for the field-gradient torque magnetometer. The magnetic moment is 

determined from r = m x lB . The dimensions of the maximum sample that can be 

measured are 1.5 x 1.5 x 0.5 mm3
. The maximum weight of the sample is 10 mg. 

The moment sensitivity of the instrument is dependent on the applied field. At 5 T, 

the range of moments that can be measured is from 2 x 10"10 Am2 to 2 x 10·6 Am2
. 

The background noise is 2 x 10"10 Am2
. The sensitivity of the moment increases as 

the field increases. At 0 T, no moment can be measured on the instrument. 

For isotropic superconductors, the field-gradient torque magnetometer is used to 

measure the magnetic moment. The QD chips are used to measure the torque. The 

maximum sample size is 1.5 x 0.5 x 0.5 mm2
, and the maximum weight is 10 mg. 

From eqn 3.14b (r = n x (m· V)B +m x B) the ideal moment sensitivity of the torque 

magnetometer can be calculated for our experimental arrangement assuming optimum 

noise. In an ideal set-up, I = 0.5 mm and m x lB = 0. From fig. 5.1 0, the field 

gradient at 5 T, 6 cm is~ 25 Tm-1
• Taking torque limits to be the maximum applied 

torque (1 x 10·5 Nm) and the minimum applied torque (1 x 10·9 Nm) from the QD chip 

specification. At 5 T, the moment ideal range is from 8 x 10·8 Am2 to 8 x 104 Am2
. 

The achieved specifications of the torque magnetometer were determined from the 

error on the critical current densities and the eqn 5.7. For NbTi wire the sensitivity 

was 1 x 10·7 Am2 at 5 T. The sensitivity of the field-gradient torque magnetometer is 

field dependent (eqn 3.14b). Thus as the applied local field is increased the sensitivity 

increases. As the field is decreased to zero (below 2 T), the error for the data 

increases towards infinity. 

5.9 Conclusions 

A field-gradient torque magnetometer has been designed and constructed, which uses 

a QD torque chip to measure the magnetic moment of isotropic superconductors. The 

magnetometer works in the temperature range 300 mK to 20 K and in fields up to 15 

T. 

If the local field is not along one of the symmetry axes of a superconductor, then the 

sample's moment is not parallel to the field, and the sample experiences a torque. The 

angular dependence of the torque for an almost isotropic superconductor is sin 21f/ 11 , 
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where f/IH is the angle between the symmetry axis and the field. For NbTi wire on the 

torque magnetometer, the angular dependence of the change in torque across the loop 

was sin 2'1' H • This means the cylindrical samples had two distinct symmetry axes in 

the radial direction. It was found that the sin 2'1' H dependence was independent of the 

QD chip and the angle between the long axis of the sample and the platform edge. 

The critical current density of NbTi wire was determined using the field-gradient 

torque magnetometer, for the voltage vs. field sweep loops measured at the reversible 

angle. The critical .current densities were compared with VSM measurements made 

on the same sample. It was found that the calibration constant of the QD chip 

determined the sensitivity, SNR and accuracy of the data taken on the magnetometer. 

The SNR was also dependent on the sample being measured and the applied field. 

For the NbTi wire measured on chip 4 in liquid helium J; = 8.79 ± 0.8 x 108 Am-2 and 

in vacuum J; = 5.375 ± 05 x 108 Am-2
• The difference in the magnitude of the J; 

was due to heating occurring during the vacuum measurement. For the same NbTi 

wire sample J:SM = 1.232 ± 0.01 x 109 Am-2 for the VSM data taken with the magnetic 

field perpendicular to the long axis. The difference in Jc between the VSM and the 

torque data, was due to the difference in the SNR of each measurement. The SNR of 

the VSM at 5 T was 217, compared to 12 for the torque data. The decrease in the 

SNR of the torque magnetometer meant the error for the J; increased. 

For the VSM, magnetic moments can be measured in the range 3 x 1 o-8 to 3 x 1 o-3 

Am2
• The field-gradient torque magnetometer ideally should measure magnetic 

moments in the range 8 x 10-8 to 8 x 104 Am2
, at 5 T. From the error for the J; of 

NbTi wire, the measured sensitivity is 1 x 10-7 Am2 at 5 T. 
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Critical current density of PbMosSa, Pbo.1sEUo.2sMosSa and Nbfi 

wire on the temperature range 300 mK to Tc 

6.1 llliltroduction 

This chapter details the use of a field-gradient torque magnetometer to measure the 

magnetic moment of a 1 mm length PbMo6Ss sample, a 1 mm length NbTi wire 

sample and a 1 mm length Pbo.15Euo.25Mo6Ss sample, from 300 mK to Tc, in fields up 

to 15 T. From the torque data the critical current density (Jc) and the upper critical 

field (Bc2(0)) are determined. 

A vibrating sample magnetometer (VSM) was also used to measure the magnetic 

moments of the 1 mm length samples. The magnetic moments of 3 other lengths 

NbTi wire samples (2 mm, 3.83 mm & 5 mm), and 4 mm length PbMo6Ss and 

Pbo.7sEu0.2sMo6Ss samples were measured using the VSM. For the torque samples 

measured using the VSM, the magnetic moments were measured with the field 

parallel to and perpendicular to the long axis. 

In section 6.2, the experimental procedures for measuring the upper critical field, 

using the torque magnetometer, VSM and resistivity are described. In section 6.3 are 

presented the results from measuring the NbTi wire samples, the PbMo6Ss samples 

and the Pbo.75EUo.25Mo6S8 samples by both magnetometers. For the torque 

magnetometer measurements, the voltage vs. field sweep loops were measured at the 

reversible angle as a function of magnetic field, field gradient and temperature. Using 

the VSM, the magnetic moment of each sample was measured as a function of 

magnetic field and temperature. The resistivity of the NbTi wire was measured on the 

Heliox probe from 300 mK to 10 K as a function of magnetic field. 

In section 6.4, the critical current densities of the 1 mm length PbMo6Ss sample, 1 

mm length Pbo.7sEu0.25Mo6Ss sample and the 1 mm length NbTi wire sample were 

determined from the torque magnetometer data. Similarly the critical current 

densities for both field directions of all the samples were obtained from the VSM data. 

The critical current densities and the irreversibility fields from the VSM data for the 4 

mm bulk samples of PbMo6Ss and Pbo.1sEuo.2sMo6Ss are compared. For the NbTi 

wire samples, and the PbMo6Ss samples, the flux pinning forces were determined 
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from the VSM and the torque data. The flux pinning forces for the 4 mm length 

Pb0.75Eu0.25Mo6Ss sample were calculated. The upper critical fields of PbMo6Ss and 

NbTi wire were determined from the torque magnetometer, VSM and resistivity 

measurements. In section 6.5, the critical current densities of NbTi wire, PbMo6Ss 

and Pb0.75EUo.2sMo6S8 are discussed. For the NbTi samples and the PbMo6Ss samples, 

the anisotropy between the critical current densities for the field parallel to and 

perpendicular to the long axis are discussed. The flux pinning force of NbTi wire is 

discussed in terms of the different mechanism, as a function of temperature and 

reduced magnetic field, and are compared with the literature. The 4 mm length 

PbMo6S8 and Pbo.1sEuo.2sMo6Ss samples critical current densities and flux pinning 

forces are compared. The upper critical field at 0 T of NbTi wire is presented, and 

compared with the literature. The conclusions are presented in section 6.6. 

6.2 Experimental Procedure 

6.2.1 Field-gradient torque magnetometer 

For the field-gradient torque magnetometer, the voltage vs. field sweep loops were 

measured as a function of local magnetic field, field gradient and temperature, at the 

reversible angle, as described in section 5. 5. 

The same samples were measured on the torque magnetometer and VSM. The bulk 

PbMo6S8 sample had dimensions of 0.32 x 0.4 x 1 mm3
, and was roughly cylindrical. 

Similarly for Pbo.1sEUo.2sMo6Ss the sample was cylindrical with dimensions 0.15 x 

0.15 x 1 mm3
. For the NbTi wire sample, three 1 mm lengths of wire were glued 

together with GE-varnish, to form a pyramid. The end of the each wire was 

sandpapered to obtain a flat surface. 

6.2.2 Vibrating sample magnetometer (VSM) 

The VSM measured the magnetic moments of the samples as a function of magnetic 

field and temperature (section 4.4). Each of the cylindrical samples measured on the 

torque magnetometer was measured with the magnetic field parallel and perpendicular 

to the long axis. The Pbo.1sEuo.2sMo6Ss sample measured on the torque magnetometer 

was on the limit of the VSM resolution hence a second cylindrical sample was 

measured with dimensions 0.3 x 0.3 x 1 mm3
. Four different NbTi wire samples 

were measured using the VSM. They were all made from three pieces ofNbTi wire, 
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which were glued together with GE-varnish, in a pyramid arrangement. The different 

lengths were 1 mm, 2 mm, 3.83 mm, and 5 mm. 

6.2.3 Resistivity 

The Heliox probe was used to measure the resistivity of the NbTi wire. A standard 

four terminal resistance measurement was conducted. The voltage taps were a 

distance 12 mm apart. All the wires were GE varnished and tied down with dental 

tape to the torque magnetometer copper cage. This ensured they were thermally sunk 

to the helium-3 pot. To determine the critical temperature at zero field, the Heliox 

was used in a helium dewar. The Heliox temperature was swept from 6 K to 12 K. 

The Stanford lock-in provided the applied ac voltage (Vac = 0.1 V) across the wire, 

and measured the resistivity voltage. 

In the Oxford Instruments superconducting magnet, the resistivity of the NbTi wire 

was measured as a function of magnetic field and temperature. The magnetic field 

was applied perpendicular to the long axis of the wire. At each temperature (300 mK, 

1 K, 1. 5 K, 2 K, 4 K 6 K, 8 K and 10 K), the magnetic field was swept through the 

superconducting transition. The Stanford lock-in was used to provide the two 

different applied voltages across the wire. The voltages were 0.1 V and 0. 01 V. This 

was to check for heating effects. 
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6.3 Results 

6.3.1 Field-gradient torque magnetometer 

In figs. 6.2, the voltage vs. field sweep loops are offset along the y-axis, so they do 

not overlap. This means the change in the magnitude of the hysteresis in the voltage 

vs. field sweep loops between the different heights could be observed. 

The initial measurements were carried out on Pbo.1sEuo.2sMo6Ss. For the first 

measurement the calibration constant av of the torque chip 1 was not measured. This 

was because the method of calibrating a torque chip had not yet been determined. 

From the magnitude of the hysteresis in the voltage vs. field sweep loops and the 

magnitude of the VSM critical current density for Pbo.1sEUo.2sMo6S8, the voltage 

calibration constant was taken to be av ~ 200 V(NmY1
. The experiment took place in 

vacuum, with the tufnol chip holder fixed at 0° using the grub screw. The voltage vs. 

field sweep loops were measured at 5 K, 6 K and 8 K, and at four magnetic field 

gradients (figs. 6.1). From figs. 6.1a, b & c, the data measured at 0°, were not 

reversible at z = 0 cm. The magnitude of the hysteresis in the voltage vs. field sweep 

loops decreased as the temperature was increased, which is observed between the data 

at 5 K (fig. 6.1a) and the data at 8 K (fig. 6.1c). 

For the second measurement on Pbo.7sEuo.2sMo6Ss, the torque chip 2 was calibrated 

using the method described in section 5 .4 .4. The voltage calibration constant was av 

= 160 V(NmY1
. This measurement also took place in vacuum, but at the angle where 

the voltage loop at z = 0 cm was reversible. The voltage vs. field sweep loops were 

measured at 4.2 K (fig. 6.1d) and 10 K, at four magnetic field gradients. From fig. 

6.1d, the magnitude of the hysteresis in the voltage vs. field sweep loops increased as 

the height from the magnet centre increased. At 10 K, the voltage vs. field sweep 

loops were reversible at all field gradients. For both measurements the sample was 

aligned within 10 degrees of the platform edge. 

The PbMo6Ss sample was measured at 300 mK, 2 K, 4.2 K, 6 K, 8 K and 12 Kat the 

reversible angle, with the platform at 0°. The voltage vs. field sweep loops for 2 K, 8 

K and 12 K are similar to the other temperatures' data (figs 6.2). For the PbMo6S8 the 

magnitude of the hysteresis in the voltage vs. field sweep loops increased as the field 

gradient increased (fig 6.2a). The voltage vs. field sweep loops for the 1 mm length 

NbTi wire sample are in section 5.6 (figs 5.28). The calibration constant for the chip 

which measured the PbMo6Ss and the NbTi wire samples was 2.22 x 104 Q(NmY1
. 
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6.3.2 Vibrating sample magmetometer (VSM) 

Using the VSM, the magnetic moments as a function of magnetic field (,uoHapp) and 

temperature for Pbo.1sEuo.2sMo6Ss, PbMo6Ss, and NbTi wire were measured. 

Three Pbo.1sEuo.2sMo6Ss samples were measured on the VSM. The 4 mm length 

sample (dimensions 2 x 1 x 4 mm3
) data are found in chapter 4, the 300 IJ.m 0 sample 

was only measured on the VSM (fig 6.4), while the 150 !J.m 0 sample (fig 6.3) was 

also measured on the torque magnetometer. The magnetic moment of the 150 IJ.m 0 

sample has the background moment of the VSM superimposed on top of the 

superconducting magnetic moment. For the 4 mm length PbMo6Ss sample, the results 

are found in chapter 4, (fig. 4. 7). The 1 mm length PbMo6Ss sample was measured at 

4.2 K, 6 K, 8 K and 10 K. For both field directions, the magnetic moments were 

almost symmetric about the x-axis (fig. 6.5). The drop below the x-axis at the higher 

fields was due to the background of the VSM (fig. 5.30). The 4.2 K perpendicular 

data were not plotted as the background changed during the measurement. 
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The 1 mm length NbTi wire sample VSM data are in chapter 5 (fig. 5.29). The other 

three NbTi wire samples were measured at 4.2 K and 8 K to check the consistency of 

the critical current density (figs. 6.6 & 6.7). The 5 mm length NbTi wire sample was 

measured with the field perpendicular to the long axis only. The magnetic moments 

of the NbTi wire samples with the field perpendicular to and parallel to the long axis, 

have different field dependencies. The magnetic moments hysteresis loops for the 

field perpendicular to the long axis were symmetric about the x-axis. As the length of 

the NbTi wire increased, the magnetic moments increased as expected (figs. 6.6 & 

6.7). 

6.3.3 Upper critical field, Bc2(0) 

The torque magnetometer was also used to determine the upper critical field ( B c2 ( T)) 

of the samples. The voltage vs. field sweep loops were measured at temperatures 

close to the critical temperature with the sample at the centre of the magnet. 
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For PbMo6S8, the temperatures measured at were 11.5 K, 12 K, 12.5 K, 13 K, and 14 

K. The sample was measured at 5° from the reversible angle, hence the voltage vs. 

field sweep loops were non-reversible (fig. 6.1 0) . This decreased the error for the 

upper critical field. The resistivity and magnetisation of the 4 mm length PbMo6Ss 

sample are presented in chapter 41 (fig. 4.4 & 4.7). For NbTi wire, the voltage loops 

measured at 180° were used, as the loops were non-reversible at z = 0 cm (fig. 6.9). 

For the torque magnetometer data, the voltage vs. field sweep loops ofNbTi wire and 

PbMo6S8 were offset along the y-axis, so the change in magnitude of the voltage 

hysteresis with temperature can be observed (figs. 6.9 & 6.10). From figs 6.9 & 6.10, 

the magnitude of the hysteresis in the voltage vs. field sweep loops decreased as the 

temperature increased. The direction of the magnetic field during the measurement 

for each of the loops' legs was the same for all temperatures. 

For the NbTi wire, the resistivity as a function of magnetic field and temperature was 

measured (fig. 6.8). The upper critical field B~i5PN (1) of the NbTi wire, at 300 mK is 

14.8 T. The normal state resistivity ofNbTi wire has a linear dependence with field . 
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for Pbo.75Euo.25Mo6Ss as a function of local magnetic field (HLoc) and magnetic field 

gradient, at 4.2 K. The solid lines are the best-fit lines through the data. 
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10
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magnetic field. The solid lines are the best-fit lines through all the data. The dashed 

lines are the best-fit lines through the z = 0, 2.5, 4.5, & 6 cm M+- points. 
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Figure 6.13b. 
Magnetic field gradient, IJ. dH

1 
/dz(Tm-1

) 

Difference in resistance across 
0

the field sweep loop, (M+-) of 

PbMo6S8 as a function of magnetic field gradient and local magnetic field, at 0°, 4.2 

K. The field lines are offset by L\V+- = ( 0. 5 X 1 o-5 floHloc)' where (floHloc) is the 

magnetic field for the line. The solid lines are the linear best-fit for the data. The data 

at z = 0 cm are not plotted on the figure. 
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Difference in resistance across the field sweep loop, (M+-) of 

PbMo6S8 as a function of magnetic field gradient and local magnetic field, at 0°, 8 K. 

The field lines are offset by L\V+- =(O.Sxl0-5 f.LoHJoc), where (J.L
0
H 1oc) is the 

magnetic field for the line. The solid lines are the linear best-fit for the data. The data 

at z = 0 cm are not plotted on the figure. 

6.4 Analysis 

6.4.1 Field-gradient torque magnetometer 

6.4.1.1 M+_ vs. field gradient 

The critical current density of an isotropic superconductor measured at the reversible 

angle using the torque magnetometer is given by eqn 3.24, using the shape factor 

y sf = ~ [ 1-~ J . As described in chapter 5, the critical current densities were 

determined using the LABview programs jccal.vi and gradcal.vi (appendix 3). For 

each temperature, he difference in resistance across the field sweep loop (M+-) was 

plotted as a function of local magnetic field gradient f.Lo ( ~oc ) and magnetic field. 

In the figs. 6.12 & 6.13, the data lines are offset along the M+- axis, so they do not 

overlap, and the splaying out due to the increase of magnetic field is observed. 

For Pbo.1sEuo.2sMo6Ss, L\V+- was calculated rather than M+-, as a function of 

magnetic field gradient and local magnetic field, as the current through the 
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Wheatstone bridge was not measured. For the later measurements on NbTi wire and 

PbMo6Ss, the current through the bridge was measured. Hence if there was a change 

in current, it could be accounted for by taking the M+_ across the loops rather than 

the ~V+-. The current changed by less than 1.5% during a field sweep. The 8 K data 

had a similar ~V+- vs. field gradient graph. For fig 6.11, the lines were not offset as 

the z = 0 cm loop was reversible. 

For the PbMo6Ss data (figs. 6.13b & c), the z = 0 cm M+- points are not plotted on 

the graphs, as the z = 0 cm M+- data were larger than the z = 2. 5 cm and z = 4 cm 

M+- data. In fig. 6.13a, all the loops M+- are plotted as a function of magnetic 

field and field gradient at 300 mK. There are two distinct gradients for each field 

below 4 T. The first gradient is through the z = 0, 2.5, 4.5 and 6 cm M+- points 

(dashed lines on fig. 6.13a), and the other gradient is through every heights' M+­

data (solid line on fig. 13a). Above 4 T, the two different gradients are less distinct, 

thus one line through all the heights' M+_ data can be taken. The M+- vs. field 

gradient graphs for the NbTi wire sample are in section 5.7 (figs. 5.33). 
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Figure 6.14. Critical current density of Pbo.7sEuo.2sMo6S8 as a function of magnetic 

field and temperature. The closed shapes are the ISO ~-tm 0 torque data, the open 

shapes are the 4 mm samples' VSM data, and the shapes with crosses inside are the 

300 ~-tm 0 samples' VSM data. The 300 ~-tm 0 sample was not measured at 5 K. 
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Figure 6.15. Critical current density of Pbo.15Euo.25Mo6Ss as a function of magnetic 

field and experiment, at 4.2 K. For the VSM data the open shapes denote the field 

perpendicular to the long axis, and the shapes with the cross inside denote the field 

parallel to the long axis. 
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Figure 6.16. Critical current density of PbMo6Ss, as a function of magnetic field and 

temperature. The open shapes are the VSM data and the closed shapes are the torque 

data. The 8 K data were the measured background for the sample, so the data were 

subtracted away from the other temperature critical current densities. 
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Figure 6.17. Critical current density of the 1 mm length NbTi wire sample, as a 

function of magnetic field and temperature, measured using the VSM. The open 

shapes are for the magnetic field parallel to the long axis, and the closed shapes are 

for the magnetic field perpendicular to the long axis. 
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Figure 6.18. Critical current density of NbTi wire, as a function of magnetic field 

and direction of the magnetic field to the long axis at 4.2 K, measured using the VSM. 

The samples measured were 1 mm (upwards triangle), 2 mm length (circle), 3. 83 mm 

length (square), and 5 mm length (downwards triangle). The open shapes are for the 

magnetic field parallel to the long axis, and the closed shapes are for the magnetic 

field perpendicular to the long axis. 
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Figure 6.19. Critical current density of NbTi wire, as a function of magnetic field, 

and direction of the magnetic field to the long axis at 8 K, measured using the VSM. 

The sample lengths were 1 mm (upwards triangle), 2 mm (circle), 3.83 mm square, 

and 5 mm (downwards triangle). The open shapes are for the field parallel to the long 

axis, and the closed shapes are for the field perpendicular to the long axis. 
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temperature and direction of the magnetic field to the long axis, measured using the 

VSM. The open shapes are for the magnetic field parallel to the long axis of the 1 

mm length sample, and the closed shapes are for the magnetic field perpendicular to 

the long axis of the 1 mm length sample. The shapes with crosses are for the 4 mm 

length sample. 
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Figure 6.21. Critical current densities of (Pbi-xEux)Mo6Ss with x = 0.0 (open shapes) 

and x = 0.25 (closed shapes), as a function of magnetic field and temperature. 

6.4.1.2 Critical current density 

The initial torque 1; were determined for Pbo.7sEUo.2sMo6Ss at 0°, as if the sample 

was at the reversible angle. 1; has the same order of magnitude as the 300 J..l.m 0 

and the 4 mm length Pbo.7sEUo.2sMo6Ss VSM critical current densities but have 

different field dependencies (fig. 6.14). For the measurement at the reversible angle 

and 4.2 K, the torque critical current density has the same order of magnitude and 

similar field dependence as the VSM critical current density for the 300 J..l.m 0 sample 

(fig. 6.15). At 10 K, the voltage vs. field sweep loops were reversible, so no 

background moment was subtracted from the torque data. 

The torque critical current densities of PbMo6Ss have similar field dependence for all 

temperatures except for 2 K (fig. 6.16). For the PbMo6Ss data, the 12 K and 8 K 

critical current densities were similar in magnitude, thus the 8 K data were taken to be 

the background of the experiment. J: ( 8K) was subtracted away from the other 

temperatures' critical current densities. The 300 mK 1; was determined from the 

dashed lines in fig. 6.13a. 

The critical current densities of NbTi wire measured using the torque magnetometer 

have the similar field dependence for all temperatures (fig. 5.39). At 7 T, the 4.2 K 

and 2 K have the same magnitude of critical current density. At 10 K, the NbTi wire 
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data were reversible, so no background Jc was subtracted away from the other 

temperatures' data. 

6.4.2 Vibrating sample magnetometer 

6.4.2.1 Critical current density, Ic 

The critical current densities for the VSM data were determined from Bean's modef 

(eqn 2.33). The shape factors for a cylindrical sample with the field parallel to the 

long axis and perpendicular to the long axis are in section 3. 7. 3. The measured 

background magnetic moment of the VSM (fig. 5.30) was subtracted away from the 

samples' magnetic moments measured on the highest amplification of the VSM. 

For the NbTi wire and PbMo6Ss samples measured using the VSM, the critical current 

density for the magnetic field parallel to the long axis ( Jcn) , has a different field 

dependence compared with the critical current density for the magnetic field 

perpendicular to the long axis ( Jc1_) (figs. 6.17-6.20). 

At 4.2 K, the NbTi wire moment data has oscillations in due to fluctuations in the 

VSM temperature. The magnitude of the 1mm length NbTi wire critical current 

density was 70% of the magnitude of the 5 mm length J~SM, at 4.2 K (fig. 6.18). 

The critical current densities of the 1 mm length PbMo6Ss sample for both field 

directions have different field dependence compared with the 4 mm length sample 

(fig. 6.20). For the Pbo.1sEUo.2sMo6Ss 4 mm length and the 300 J..lm 0 samples, the 

VSM critical current densities have different field dependencies at 6 K, but almost the 

same irreversibility field (fig. 6.14). For the 150 J..lm 0 sample, the VSM critical 

current density is unreliable after 2 T, due to the noise on the signal (fig. 6.15). 

From figs 4.7, the critical current densities of the 4 mm bulk PbMo6Ss and 

Pbo.1sEuo.2sMo6Ss sample were determined (fig. 6.21 ). The PbMo6Ss sample J~SM 

was a factor 5 larger than the Pbo.7sEuo.2sMo6Ss J~SM. Both samples have similar 

field dependence. 

6.4.2.2 Average Magnetisation of the 1 mm length NbTi wire 

The VSM average magnetisation data of the 1 mm length NbTi wire were determined 

by adding the magnetic moment across the hysteresis loops at each field to give the 

average moment (fig. 6.6). The average moments were then divided by the volume of 
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the sample (M= v:r). From fig. 6.22, the gradient ( :J of the solid lines through 

the linear region data close to Bc2(T) were detennined. Also from fig. 6.22, the upper 

critical field (BcdTJ) was taken to be the field at which the average magnetisation was 

zero. 
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Figure 6.22. Average magnetisation of 1 mm length NbTi wire as a function of 

magnetic field and temperature. The solid lines are the best-fit lines for the 

magnetisation region close to the upper critical field. The symbol 11 and .l represent 

the field parallel to and perpendicular to the long axis of the sample respectively. 

Tc Bc2{0} I( Bc(O) Bc1(0) .;ro; A{O) 

(K) (T) (T) (T) (nm) (nm) 

NbTi 9.0 13 30 0.52 0.031 4.32 131 

(11) 

NbTi 8.7 13.3 32 0.51 0.023 4.3 135 

(.l) 

Table 6.1. The critical parameters (Bc2(0), Bc(O), Bc1(0), .;(o) & A{O)) ofNbTi 1 mm 

length wire, for the magnetic field parallel (11) to and perpendicular (.l) to the long 

axis. 
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For each field direction to the long axis of the 1 mm length NbTi wire sample, K was 

determined from Abrikosov equation (cf eqn 2.28): 

t~.('!) = p.{2~' -1) (6.1) 

where {JA is the Abrikosov constant and K is the GL parameter. Using Bc2(0), K and 

the GL equations (eqn 4.5 - 4.10), the lower critical field BcJ(O), thermodynamic 

critical field Bc(O), coherence length ~(0), and penetration depth A(O), of the 1 mm 

length NbTi wire sample were determined for the field parallel and perpendicular to 

the long axis. 

The average magnetisations for the field parallel to and perpendicular to the long axis 

have similar field dependence (fig. 6.22). The 8 K data for both field directions to the 

long axis were the same order of magnitude. The perpendicular field data at 6 K had 

a similar shape curve to the parallel field data. The 4.2 K average magnetisation was 

not plotted, due to the oscillations in the data. From table 6.1, both field directions are 

in good agreement for the fundamental parameters ofNbTi wire. 
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Figure 6.23. Kramer plots (1;'2 B 114
) for PbMo6S8, as a function of magnetic field 

and temperature measured using the VSM. The open shapes are for the 1 mm length 

sample with the field parallel to the long axis and the closed shapes are for the 1 mm 

length sample with the field perpendicular to the long axis. The shapes with crosses 

inside and the crossed shapes are for the 4 mm length sample. 

170 



-:t .,.. 

J"" .,.. -C';l 
E 
<t:: -...,. 
0 ...--:t .,.. 
ID 

£:! .,.. 0 -, 

3 

Oo 

0 
oo 

2 

2 4 6 
Magnetic Field, B(T) 

X 

0 

0 

8 

300 mK 
2K 
4.2 K 
6K 

10 

Figure 6.24. Kramer plots (1~12 B114
) for PbMo6Ss as a function of magnetic field 

and temperature, for the 1 mm length sample measured using the torque 

magnetometer. 
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Figure 6.25. Kramer plot 1~12 B114
, as a function of magnetic field and temperature, 

for the 4 mm bulk Pbo.1sEUo.2sMo6Ss sample. 
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Birr at 4.2 K Birr at 6 K Birr at 8 K 

(T) (T) (T) 

4 mm length 24.2 ± 0.1 18.7 ± 0.03 12.1 ± 0.03 

sample VSM 

1 mm length 19.2 ± 0.1 14.2 ± 0.02 9.1 ± 0.04 

sample VSM (..L) 

1 mm length 21.7 ± 0.04 13.8 ± 0.03 8.8 ± 0.03 

sample VSM (11) 

1 mm length 19.8 ± 0.2 18.0 ± 0.9 -
sample torque 

1I'a!DUe 6.2. Table of the irreversibility fields (B;") of the different size PbMo6S8 

samples, measured using the VSM and the torque magnetometer. The irreversibility 

fields were determined from Kramer plots where J;12 B 114 = 0. The errors were 

determined from standard error analysis. 

6.~.3 llirrevell'§n!DillDzy fnelltdls, JBirr 

For the PbMo6Ss data measured on both magnetometers and the 4 mm bulk 

Pbo.1sEUo.2sMo6Ss sample measured on the VSM , the Kramer scaling law3 
( J;12 B 114

) 

against magnetic field were plotted (figs 6.23 - 6.25). For each temperature, the 

irreversibility field (B;") (cf. section 2. 7 .2) was determined from the equation: 

Jlt2 Blt4 =a (B -B) 
c K rrr (6.2) 

where aK is a constant. The irreversibility field is the field at which the critical 

current density is zero. For the torque data and the VSM data, B;rr was determined 

from the Kramer plots, by fitting a straight line through the data at each temperature. 

The VSM 1 mm length PbMo6Ss sample data had different field dependence to the 4 

mm length sample data (fig. 6.23). From fig. 6.24, the torque 300 mK and 4.2 K data 

have similar field dependence. From table 6.2, the B;rr of the 4 mm length VSM 

sample and the 1 mm length torque sample agree at 6 K. The torque B;" is 18 T, 

which is 4 T larger than the B;rr of the 1 mm length VSM sample for both field 

directions. From fig. 6.23 & 6.25, the 4 mm bulk PbMo6Ss and Pbo.1sEuo.25Mo6Ss 

samples have straight lines for the Kramer plots, which are equidistant. NbTi does 

not have a reversible magnetisation region (fig. 6.22). 
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Figure 6.26. Normalised flux pinning force of the 1 mm length NbTi wire sample, as 

a function of reduced magnetic field, field direction to the long axis and temperature, 

measured using the VSM. The open shapes are for the field parallel to the long axis 

and the closed shapes are for the field perpendicular to the long axis. 
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Figure 6.27. Normalised flux pinning force of NbTi wire, as a function of reduced 

field and field direction to the long axis, at 4.2 K. The sample lengths were 1 mm 

(upwards triangle), 2 mm (circle), 3.83 mm (square), and 5 mm (downwards triangle). 

The open shapes are for the field parallel to the long axis, and the closed shapes are 

for the field perpendicular to the long axis. 
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Figure 6.28. Normalised flux pinning force of NbTi wire, as a function of reduced 

field and field direction to the long axis, at 8 K. The sample lengths were 1 mm 

(upwards triangle), 2 mm (circle), 3.83 mm (square), and 5 mm (downwards triangle). 

The open shapes are for the field parallel to the long axis, and the closed shapes are 

for the field perpendicular to the long axis. 
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Figure 6.29. Normalised flux pinning force of the 1 mm length NbTi wire as a 

function of reduced magnetic field at 4.2 K. The solid line represents 

FP I Fpmax = aP (Bc2 )b(1-b). C. Friend took the transport data4
. The VSM, transport 

and torque data are taken from fig. 5. 3 7. 
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Figure 6.33. Maximum flux pinning force (at different temperatures) for NbTi wire 

as a function of Bc2. The solid lines are linear fit to the 1 mm length sample data. The 

gradients of the solid lines gave n, for each sample and experiment. 
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Figure 6.34. Maximum flux pinning force (at different temperatures) for PbMo6S8 as 

a function of irreversibility field (B;rr). The solid lines are the linear fit to the data. 

The gradients of the solid lines gave n, for each sample and experiment. Inset: Max 

flux pinning force for Pbo.1sEuo.2sMo6Ss and PbMo6Ss as a function of irreversibility 

field. The solid lines are the linear fit to the data. 

6.4.4 Flux pinning scaling law 

6.4.4.1 General considerations 

For the NbTi wire samples, the PbMo6S8 samples and the 4 mm bulk 

Pbo.1sEUo.2sMo6Ss sample, the normalised flux pinning force was determined from the 

VSM and torque magnetometer data. Fietz-Webb scaling law5 for the volume flux 

pinning force is given by: 

(6.3) 

where ap. n, p and q are variables that depend on the pinning mechanism of the 

superconductor and b is the reduced magnetic field. For the PbMo6S8 and the 

Pbo.1sEuo.2sMo6Ss data, B;" was used instead of Bc2(1), as they have high Bc2(0) (- 60 

T), which means that Bc2(1) can only be determined for temperatures close to Tc. 

From the Kramer plots (figs. 6.23 - 6.25), the irreversibility field (B;rr), can be 

determined over a wider temperature range, so is a convenient magnetic field limit to 

use. For the NbTi wire the reduced magnetic field was b = f , while for PbMo6S8 c2 
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and Pb0.7sEuo.25Mo6Ss the reduced magnetic field was b == { . The flux pinning force 

is a maximum at the reduced field bmax = __.!!_. Eqn 6.3 was fitted to the NbTi wire, 
p+q 

PbMo6S8 and Pbo.1sEUo.2sMo6S8 data as a function of reduced magnetic field, b. 

n p q 

NbTi wire 2-2.3 1 (4.2 K) 1 (4.2 K) 

r 6 tterature 0.5 (8 K) 1.5 (8 K) 

NbTi 2.0(4.2K-6K) 1.08 ± 0.01 (4.2 K) 0.87 ± 0.01(4.2 K) 

(VSM- _L) 1.7 (6 K- 8 K) 1.04 ± 0.04 (8 K) 2.18 ± 0.04 (8 K) 

NbTi 4(4.2K-6K) 1.11 ± 0.03 (4.2 K) 1.37 ± 0.03 (4.2 K) 

(VSM-11) 2.3 (6 K- 8 K) 0.92 ± 0.03 (8 K) 1.94 ± 0.03 (8 K) 

NbTi - 1.62 ± 0.07 1.49 ± 0.06 

(torque -liquid) 

NbTi 1.7 (300 mK- 6 K) 0.2 ± 0.01 (4.2 K) 0.23 ± 0.01 (4.2 K) 

(torque -vacuum) 0.4 (6 K- 8 K) 0.15 ± 0.01 (8 K) 0.72 ± 0.03 (8 K) 

Chevrel Phase 2.3 0.5 2 

literature7 

PbMo6Ss 2.9 ±0.3 0.57 ± 0.005 2.15 ± 0.02 

(VSM-4mm) 

PbMo6Ss 1.75 ± 0.2 0.57 ± 0.01 2.13 ± 0.01 

(VSM- 1 mm ID 
PbMo6Ss 2.1±0.04 0.59 ± 0.01 2.18 ± 0.02 

(VSM -1 mm _L) 

PbMo6Ss 2.62 ± 0.3 0.55 ± 0.01 1.42 ± 0.04 

(torque - vacuum) 

Pbo.1sEuo.2sMo6Ss 2.75 ± 0.02 0.56 ± 0.006 2.08 ± 0.02 

(VSM-4mm) 

Table 6.3. A summary of normalised flux pinning force variables for the 1 mm 

length NbTi wire and PbMo6S8 determined from the torque magnetometer and the 

VSM data. For NbTi wire, the p & q variables were determined for 4.2 K and 8 K. 

The n values were determined for fig. 6.27, for the two distinct gradients. The 

PbMo6S8 p & q variables were determined at all temperatures, excluding 300 mK. 
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6.4.4.2 NID'fi wire 

For the 1 mm length NbTi wire the reduced field at the maximum volume pinning 

force moved from bmax = 0.65 at 4.2 K to bmax = 0.53 at 8 K for the field perpendicular 

to the long axis (fig. 6.26). Similarly the reduced field at the maximum volume 

pinning force for the 2 mm, 3.83 mm and 5 mm length samples was at bmax = 0.54 for 

4.2 K, and at bmax = 0.32 for 8 K (figs. 6.27 & 6.28). For the torque data, the 

maximum volume pinning force moved from bmax = 0.8 at 300 mK to bmax = 0.3 at 8 

K. The torque data normalised flux pinning force curves have a different shape to the 

VSM data. The 1 mm length NbTi wire torque data taken in liquid helium was in 

good agreement with the 1 mm length VSM sample at 4.2 K (fig. 6.29). 

The maximum volume pinning force for the parallel field data were at different 

reduced fields to the perpendicular field data. For the 1 mm length sample at 6 K, the 

perpendicular field data maximum force was at bmax = 0.55, while the parallel field 

data maximum force was at bmax = 0.44. 

The variable n was determined for NbTi wire by plotting the log of the max volume 

pinning force against the log of the upper critical field Bc2(T) (fig. 6.33). Then values 

for the parallel field data differed from the perpendicular field data. There were two 

different n values for each field direction to the long axis. This was because of the 

temperature dependence of the flux pinning force peak. For each field direction the n 

values for the lower temperatures (below 6 K) were larger than the higher temperature 

n values. 

From table 6.3, the p & q values for NbTi wire change with temperature and the field 

direction to the long axis. For the 1 mm length sample with the field perpendicular to 

the long axis at 4.2 K, the p value is slightly higher and the q value is slightly lower 

than the values in the literature. The 1 mm length torque data, the p & q values differ 

from the literature and the VSM data. 

6.4.4.3 

For the VSM 1 mm length PbMo6Ss data for both field directions, the normalised 

volume pinning curves had similar form for all temperatures (fig. 6.30), the solid line 

is proportional to b 112 (1- b) 2 
. For the field parallel and perpendicular to the long axis 

of the PbMo6S8 sample, the flux pinning force peaks occurred at bmax = 0.22. 
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For the torque magnetometer data, the volume pinning force curves have different 

shapes to the VSM data. In fig. 6.31, the solid line through the data is proportional to 

b 0 5 
( 1 - b) 142 

. For all temperatures above 2 K, the reduce field at the maximum 

volume pinning force was bmax = 0.24 (fig. 6.31). At 300 mK, the maximum volume 

pinning force was at bmax = 0.15. 

To determine then value for each data set, the irreversibility field was plotted instead 

of the upper critical field. From fig. 6.34, then value was dependant on the size of the 

sample and the direction of the field to the long axis. For the samples measured using 

the VSM, then values range from 1.75 to 2.95. The literature n value and the torque 

magnetometer data n value are within this range. The errors on n were determined 

from the best-line fit through the data on fig. 6.34. For the 4 mm length and 1mm 

length samples measured using the VS M, the p & q values are in agreement (table 

6.4). The p & q values are slightly higher than the literature values. 

6.4.4.4 Comparison between Pbo.1sEuo.2sMo6Ss and PbMo6Ss 

For the 4 mm bulk PbMo6S8 sample p = 0.57 ± 0.005 and q = 2.15 ± 0.02 and for the 

4 mm bulk Pbo.1sEUo.2sMo6Ss sample p = 0.56 ± 0.006 and q = 2.08 ± 0.02 (table 6.3). 

The normalised flux pinning curve was the same shape at each temperature. From 

figs 6.30 & 6.32 the pinning mechanisms for both samples are the same, as they have 

the same flux pinning constants. 

The constant n is the temperature-scaling component of the flux pinning scaling law. 

The values of n were found by plotting the maximum flux pinning force against the 

irreversibility field, for each temperature (fig. 6.34). The gradient of the line gave n 

for the sample. For PbMo6Ss, n was 2.95 ± 0.01 and for Pbo.1sEuo.2sMo6Ss, n was 

2.75 ± 0.02. As the log of the maximum flux pinning has a linear relation with the log 

of the irreversibility field, the pinning mechanism is the same at all temperatures. The 

high temperature data for both samples did not fit on the same flux pinning curve, as 

the irreversibility field for each temperature was less than 1 T. 
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"1--------V transport (J = 0) 
e---------e Resistivity(~ V) 
o----------0 Resistivity (0.1 V) 
lir------4. torque (t.R = 0) 
G----£J VSM (1 mm ID 
11 • VSM (1 mm .l) 

o~--------~----~--~~------------------~~ 
0 2 4 

Temperature, T(K) 
6 8 

Figure 6.35. The upper critical field of NbTi wire as a function of temperature and 

experimental technique. The torque data and the VSM data are for the 1 mm length 

sample. C. Friend took the transport data4
. 

liil VSM (powder) 
o 0.5 resistivity 
o VSM (bulk) 
.., Torque 

12 13 14 15 

Critical temperature, T (K) c 

Figure 6.36. The upper critical field of PbMo6Ss as a function of temperature and 

experimental technique. The VSM data are for the 4 mm length sample. The solid 

lines are the linear fit to the data. 

181 



6.4.5 Upper critical field, Bc2(0) 

For NbTi wire, different criteria were used for the determination of Bc2(T) from the 

data. For the resistivity data, B~:}PN (D was the field at 50 % of the superconducting 

transition for each temperature (fig. 6.8). For the transport data, the field at which 

Jc = 0 was taken to be B:.z=0 (D. For both magnetometers' data the irreversible 

fields were determined, for the NbTi wire. For the VSM data, B~__.0 (T)was the field 

at which the average magnetisation was zero on fig. 6.22. For the torque data, 

B;~ (T)was the field at which the voltage vs. field sweep loop became reversible at z = 

0 cm (fig. 6.9). The upper critical field of NbTi wire at 0 K, was determined by 

extrapolation from the high temperature data to 0 K. From the resistivity data, the 

Bc2(0) was 15 T. The torque B;~ (T)data are in good agreement with the VSM data 

(fig.6.35). No heating occurred during the resistivity measurement, as the Vac= 0.1 V 

data and the Vac= 0.01 V data, have the same B~7.5PN (D at each temperature. 

For PbMo6Ss, the criterion for the torque data B;~ (T) (fig. 6.10), thus B;~ (T) and the 

4 mm length bulk and powder VSM data B:i.__.0(D are the same as the NbTi wire 

methods. For the 4 mm length sample resistivity data, B~7.5PN (D and VSM data 

B:i.__.o (D the values are determined in section 4.6.1. 

For the Chevrel phase superconductors, Willi theory8 is used to determine the upper 

critical field at 0 K. The theory gives the upper critical field to be: 

(6.4) 

dB 
where the gradients d; are the solid lines through the data in figure 6.36. In fig. 

6.36, the gradients for the different data sets are consistent. 

From the upper critical field vs. temperature graphs (figs. 6.35 & 6.36), the critical 

temperature for each measurement were determined by extrapolating the line back to 

0 T. From table 6.4, for the NbTi wire, the upper critical fields from the VSM and 

torque experiment are in good agreement. Similarly for PbMo6S8, the Tc, Bc2(0) and 

le are consistent for the different measurements. The errors for Tc, and Bc2(0) were 

determined by standard error analysis. 
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Critical Upper critical Critical current dBc2 - --
temperature field density dT 

(Tc) (Bc2{0)) (Jc(4.2 K, 5 T)) (TK-1) 

(K) (T) (Am-2) 

NbTi wire 8.7 ±0.7 13.4 ± 0.5 1.232 X 109 1.849 ± 0.11 

(VSM 1 mm_L) 

NbTi wire 9.2 ± 1 15 ± 0.1 - 1.65±0.17 

(resistivity) 

NbTi wire 11.2±0.9 15.5 ± 0.5 8.05 X 108 1.64 ± 0.12 

(transport)4 

NbTi wire 10.5 ± 0.5 13.8 ± 0.8 5.375x 108 1.47 ± 0.06 

(torque) 

PbMo6Ss 14.3 ± 0.7 43 ± 2.7 1.44x108 4.26 ± 0.16 

(VSM- bulk) 

PbMo6Ss 14.8 ± 0.4 45 ± 1.6 - 4.32 ± 0.1 

(VSM- powder) 

PbMo6Ss 14.7 ± 0.16 47 ±0.7 - 4.52 ± 0.04 

(resistivity) 

PbMo6Ss 13.9 ± 1 51± 5 1.38x108 5.22 ± 0.5 

(torque) 

Pbo.1sEUo.2sMo6Ss 10.7 ± 0.5 12 ± 5 1.55xl07 1.54 ± 0.3 

(VSM-bulk) 

Pbo.1sEuo.2sMo6Ss 11.5 ± 0.5 30 ± 5 - 3.34 ± 0.35 

(VSM - powder) 

Pbo.1sEUo.2sMo6Ss - - 5.66x107 -

(torque) 
.. . . .. 

Table 6.4. Companson of the cntlcal temperature, upper cntlcal field and cnttcal 

current density of NbTi wire, PbMo6Ss and Pbo.1sEUo.2sMo6Ss. The experimental 

technique for each data set is given in the brackets. For the NbTi wire, the VSM data 

and the torque data are for the 1 mm length sample. For PbMo6S8 and 

Pbo.1sEUo.2sMo6Ss, the VSM data and the resistivity data are for the 4 mm length 

sample, and the torque data are for the 1 mm length sample. 
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~.5 DiSCIJIS~DO>II'i 

6.5.1 Critical current Density 

6.5.1.1 Field-gradient torque magnetometer 

The initial measurements on the torque magnetometer were made on 

Pb0.75EUo.25Mo6Ss at 0°. For 5 K & 6 K, the critical current densities have similar 

order of magnitude but different field dependence compared to theJ;SM (fig. 6.14). 

The measurements were made before the proper calibration of the torque chips. One 

reason for the different field dependence at 5 K, & 6 K could be due to the fact that 

voltage vs. field sweep loops taken at 0° and z = 0 cm were non-reversible (figs. 6.1 ). 

The 8 K data had different field dependence to other temperatures, as the moment was 

on the limit of the sensitivity of the torque magnetometer. 

At the reversible angle the J; measured at 4.2 K (fig. 6.15), has different field 

dependence to the 5 K & 6 K data. This could be due to improvements having been 

made to the experiment, including the calibration of the QD chip, better thermal 

linking to the sample, and the data being taken at the reversible angle. The 

Pbo.1sEUo.2sMo6Ss sample was not measured at 300 mK. 

For PbMo6Ss, measured at the reversible angle, the field dependence of the critical 

current density was similar for 300mK, 4.2 K and 6 K to the VSM data (fig. 6.16). 

The 2 K critical current density had different field dependence below 5 T compared to 

the other temperatures. At 300 mK, if the gradient was taken through all the M+_ 

points (solid line on fig. 6.13a), the J; determined had a similar low field dependence 

to the 2 K data. During the 300 mK measurement the liquid helium-3 had to be re­

condensed four times, as the hold time at 300 mK was ~ 5 hours. The loops measured 

directly after each re-condensation were at z = 0, 2.5, 4.5 & 6 cm. For these four 

voltage loops, the magnitude of the difference in voltage across the loop below 4 T 

increased linearly with field gradient (dashed lines in fig. 6.13a). Hence the J; 
determined has similar field dependence to the 4.2 K data. For the voltage vs. field 

sweep loops taken at the other heights, the difference in voltage across the loops were 

similar up to 4 T, hence the voltage vs. field sweep loops taken at z = 0, 2.5, 4.5 & 6 

cm were used to determine J; . The reason for this difference between the hysteresis 

in the voltage loops is still uncertain. When the temperature of the helium-3 pot and 

the sample is 300 mK, the 1 K plate temperature is 1.6 K, thus any helium gas in the 
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IVC will condense on to the sample, as it is at the lowest temperature. Hence the first 

voltage loops measured at 300 mK after re-cooling were not affected by heating, due 

to the condensed helium on the sample. For consecutive loops, heating of the sample 

could have caused the helium to evaporate, thus cause the data under 5 T to be 

inaccurate. When the helium-3 pot and the sample are at 2 K, the 1 K plate 

temperature is 1.6 K, so any helium gas in the IVC will condense onto the 1 K plate 

rather than the sample. Any heating which occurs will affect the voltage loops 

measured. Above 5 T, the excess heat appears to have been removed for both 

temperatures, so the critical current densities had the correct field dependence. For 

the 6 K J; the field dependence above 8 T, differs from the VSM data, due to the 

large SNR noise on the data at high fields. The 8 K and 12 K data were the same 

order of magnitude, as the noise was greater than the signal, at these temperatures, 

hence the 8 K data were taken to be the background of the chip in the magnetic field. 

At 300 mK, the critical current densities of NbTi wire and PbMo6S8 were measured. 

The critical current density of PbMo6S8 bulk sample had been measured at 4.2 K9
' 

10 

and for PbMo6S8 wire at 1.9 K11
' 

12
' 

13
. The critical current density was 2.98 ± 0.67 x 

108 Am"2, at 300 mK, 5 T (fig. 6.16). 

From literature the critical current density ofNbTi has been measured at 2 K14
. Thus 

the critical current density ofNbTi wire at 300 mK was 8.34 ± 1.7 x 108 Am-2, at 5 T 

(fig. 5.39). The critical current density at 4.2 K was 50 % of the J;SM. The lower 

value may have been due to Eddy heating and the small signal to noise ratio (SNR). 

6.5.1.2 VSM- Pbo.7sEuo.zsMo6Ss 

For the Pbo.1sEUo.2sMo6S8 4 mm length sample and the 300 J..Lm 0 sample measured on 

the VSM, the field dependence and magnitude of the critical current densities were 

different (fig. 6.14). The difference was not due to the ac-field associated with the 

VSM15
, as the irreversibility fields at 6 K, for both samples were 6.5 T, hence the 

difference was due to the shape of the samples. The 4 mm length sample was a 

parallelepiped, while the 300 J..Lm 0 sample was a cylinder. Also the samples were 

taken from different parts of the large HIP' ed sample, which also means the 

difference could be due to inhomogeneity in the large sample. Therefore the 300 J..Lm 

0 sample had a larger J;SM than the 4 mm length sample at lower fields. At 4.2 K, 

the 150 J..Lm 0 sample magnetic moment was on the limit of the sensitivity of the 
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VSM, so for fields above 2 T, the background noise was greater than the signal. Thus 

the J:SM for the 150 Jlm 0 sample had a different field dependence and magnitude 

than the 4 mm length and 300 Jlm 0 samples. 

6.5.1.3 VSM - PbMo6Ss 

For PbMo6S8, the critical current densities determined from the VSM data of the 1 

mm length sample differed from the 4 mm length samples (fig. 6.20). From Bean's 

model2 the critical current density should be the same for both samples, as they were 

taken from the same large HIP' ed sample. The difference in the magnitude of the 

critical current densities could have been due to the ends of the samples not being 

perfectly flat. This would alter the critical currents which flowed, thus the shape factor 

used in the calculations would be incorrect. Another reason could be due to the 

samples being different shapes. The 4 mm length sample was a parallelepiped, while 

the 1 mm length sample was a cylinder. If there were any inhomogeneity of the 

superconducting parameters in the large HIP' ed sample, this would also change the 

critical current density between the samples. This is because the samples were cut 

from different parts of the large HIP' ed sample. 

The difference in the field dependence of the critical current densities between the 4 

mm length sample and the 1 mm length sample was due to the ac-field associated with 

the VSM (fig. 6.20)15
. The ac-field completely penetrated the 1 mm length sample at 

lower fields than the 4 mm length sample, which caused the critical current density of 

the 1 mm length sample to reduce to zero at a lower field, than the 4 mm length 

sample. 

6.5.1.4 Anisotropy of the PbMo6Ss critical current density 

For the 1 mm length PbMo6S8 sample, the critical current density measured with the 

field perpendicular to the long axis, Jcl. was lower in magnitude than the critical 

current density measured with the field parallel to the long axis, Jell (fig. 6.20). The 

anisotropy ratio ( Jen I Jc.L) between the critical current densities decreased as the 

temperature was increased. At 10 K, between 0 T and 3 T, the ratio was a constant of 

value 1.15, and at 8 K the ratio was 1.26, between 0.5 T and 5 T. At fields close to 

B;rr, the ratio decreased towards zero. At 6 K, the ratio decreased linearly from 1.33 at 
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0. 5 T to 1. 18 at 10 T, then decreased non-linearly to zero. At 4. 2 K, the ratio was less 

well defined, due to noise on the parallel field data, thus the ratio at 4.2 K, between 

0. 5 T and 6 T, linearly increased from 1.41 to 1. 49. 

Anisotropy in le is often due to the flux pinning mechanism in the superconducting 

sample16, which is unlikely for PbMo6S8, as the pinning centres are at the grain 

boundaries 7. The grain boundaries should be isotropic, as the material was hot 

isostatically pressed (HIP' ed), hence the grains were pushed together with the same 

pressure from all direction. If during IDP'ing, one direction was more favourable 

than the others, this would introduce anisotropy into the structure of the material. The 

more probable reason is the shape of the sample. If the 1 mm length sample was not 

perfectly cylindrical, this would change the critical current density. 

6.5.1.5 Comparison between the PbMo6Ss and lPbo.7sEuo.:zsMo6Ss 

The critical current density is limited by two material properties in bulk Chevrel phase 

superconductors. The first is the connectivity of the grains10· 17· 18. Ramsbottom et al, 

showed that HIP'ing improved the density of Chevrel phase superconductors, and 

thus increased the critical current density10
. This was because the HIP' ed samples had 

better homogeneity and connectivity across the grains. The second is the flux pinning 

in the sample19· 7• 20. Wordenweber proved the magnetic flux was pinned at the grain 

boundaries in Chevrel phase superconductors21, hence reducing the size of the grains 

or increasing the number of pinning sites, will increases the critical current density19. 

From the data, at 4.2 K, 4 T, the critical current density ofPbo.75Euo.2sMo6S8was 2.23 

x 107 Am"2 compared with l.f8 x 108 Am"2 for PbMo6S8. The critical current density 

decreased by a factor 5, with the addition ofEu ions, which means either the Eu ions 

decreased the connectivity of the grains or reduced the pinning at the grain 

boundaries. From the resistivity measurements the Eu ions formed second phase 

materials on the edge of the grains and in the grain boundaries (section 4. 7. 2), which 

produced dirty boundaries, so reduced the critical current density. Another reason 

could have been the Eu ions repelled the magnetic flux, rather than attracted. If the 

Eu ions had acted as pinning sites, by attracting the flux the critical current density 

would have increased, in comparison with the critical current density of PbMo6S8. 

The critical current densities of PbMo6S8 and Pbo.1sEuo.2sMo6S8 had similar field 

dependence (fig. 6.21), which suggests the pinning mechanism was the same. 
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6.5.1.6 VSM- NbTi wire 

The critical current density of NbTi wire is a well documented subject16
' 

22
. It 

depends on the percentage of titanium in the wire14
' 

23
, the microstructure of the 

sample24
' 

25 and the fabrication process26
. From the literature, the optimum 

composition, which has the largest Jc is Nb50.4%Ti. For this composition, Bc2(0) = 

15 T, Tc ~ 9 K and Jc = 2.7 x 109 Am-2 (4.2 K, 5 T)14
' 

23
. Reducing the percentage of 

Ti, decreases the Jc, but increasesBc2 (0) 14
, while increasing the percentage of Ti, 

decreases the Jc and Bc2 (0) 14
. The composition of the NbTi wire used in this 

experiment was Nb46.5wt%Ti in a multi-filamentary wire. 

For NbTi wire, with the field perpendicular to the long axis at 4.2 K, the 3.83 mm 

length and 5 mm length NbTi wire samples critical current densities were the same 

magnitude (fig. 6.18). The 1 mm length NbTi wire critical current density was 70% 

of the 5 mm length critical current density. One reason for the reduction could be due 

to the ends of the wire not being perfectly flat, which would affect the critical current 

density, by changing the loop around which the current flows. Another possible 

reason is the ac-field associated with the VSM15
. As the length of the wire decreases, 

the ac-field will fully penetrate the smaller samples at lower magnetic fields. Thus the 

ac-field will penetrate the 1 mm length sample at fields lower than the 5 mm length 

sample. At 4.2 K, the Bc2(T) for all the samples were similar, suggesting that the ac­

field did not penetrate the 1 mm length sample completely. At 8 K, for both field 

directions, the Bc2(T) decreased, as the length of the sample was reduced. For the 1 

mm length sample perpendicular to the magnetic field, Bc2(T) was 1.3 T, while for the 

5 mm length sample, Bc2(1) was 1. 7 T, hence the ac-field associated with the VSM 

did completely penetrate the 1 mm length sample. 

6.5.1.7 An isotropy of the NbTi critical current density 

For the NbTi wire samples, the Jcl. had different field dependence compared with the 

Jell (fig. 6.17). Jungst investigated the change in NbTi wires' critical current as a 

function of the angle between the long axis of the sample and the magnetic field27
. 

The shape of the critical current curves for the field parallel to and perpendicular to 

the sample's long axis are similar to those determined in this chapter. Thus the 

difference in curve shape is a generic result, rather than a heating problem. 
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Mathur et a/ investigated the anisotropy of the critical current density of Nb Ti wire28
. 

They found that the critical current density was larger with the field parallel to the 

long axis, compared with the field perpendicular to the long axis. The anisotropy 

ratio(Jc
11 
I Jc.L) increased as the field magnitude was increased, up to the maximum 

applied field of3.5 T. From the Jc VSM data for the NbTi wire (figs. 6.17- 6.19), the 

anisotropy ratio between Jc.L and Jell increased to a maximum value and then 

decreases down to zero at Bc2(T). The ratio was larger for the 3. 83 mm length NbTi 

wire sample compared to the 1 mm length sample. The ratio for both samples 

decreased as the temperature was increased. At 4.2 K, the maximum ratio was over 

the field range 2.5- 3.2 T. For 6 K the maximum ratio was in the field range 1.4-2.1 

T. At 8 K, the ratio gradually increased with field, as the Bc2(T) and Jc for the field 

parallel were higher than the Bc2(T) and Jc for the field perpendicular to the long axis. 

The peak ratio value at 4.2 K ranged from 3.17 for the 1 mm length sample to 4.96 for 

the 3.83 mm length sample. They are slightly higher than the Mathur's values, which 

ranged from 1. 8 to 3.4 at 3 T. 

The anisotropy in the NbTi wire critical current density is due to the pmrung 

mechanism. The flux is pinned on the dislocated cell well structure and the ribbon­

like a-Ti precipitates22
, which are along the long axis, hence the pinning centres have 

an anisotropy associated with them. 

The anisotropic microstructure does not affect the fundamental parameters measured 

for the two different magnetic field directions to the long axis. The GL parameter and 

the critical fields (Bc(O) & BcJ(O)) were in agreement between the parallel field data 

and the perpendicular field data, for the 1 mm length sample (table 6.1 ). 

6.5.2 Irreversibility fields 

The irreversibility field (B;") of a superconductor is the field at which the critical 

current density goes to zero. Daniel et al, suggests that the irreversibility field (B;:) 
measured from VSM magnetisation measurements was not the actual irreversibility 

field (B;") of the sample15
. In a VSM, the sample is vibrated over a throw distance at 

the magnet centre. The magnetic field is not homogenous over the whole throw 

distance, so the sample experiences a field gradient. The movement in the field 

gradient produces an ac-magnetic field, which penetrates the sample. When the ac-
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field fully penetrates, it cancels out the self-field ( B sf = ,U
0 
J er m) of the 

superconductor. This reduces the measured magnetic moment to zero. The 

irreversibility fields ( B;:) for both samples were determined from the Kramer plots 

(fig. 6.23 & 6.25). For PbMo6Ss the irreversibility fields (B;:) were a factor 2 or 

higher, less than the Bc2(TJ, for the same temperature. For PbMo6Ss, the reversible 

region was 11 T, at 12 K, thus PbMo6Ss has a large reversible magnetisation region, or 

the measured B;: was not the actual B;rr, due to the ac field associated with the VSM. 

The irreversibility fields, for PbMo6Ss were determined from the Kramer plots for 

both magnetometers' data (figs 6.23 & 6.24). At 4.2 K, the irreversibility fields 

measured were in the range 19.2 T to 24.2 T (table 6.2). The wide range of values 

was due to the inaccuracy of the VSM measurements at 4.2 K. Thus the 1 mm length 

perpendicular sample B;" was 5 T lower than the 4 mm length samples' B;rr, but was 

in agreement with the B;" of the torque measurement. At 6 K, the torque 1 mm length 

sample and 4 mm length VSM sample irreversibility fields were 18 T, while the 1 mm 

length VSM irreversibility fields for both field directions were 14 T. This difference 

of 4 T was due to the ac-field fully penetrating the 1 mm length sample at a lower 

magnetic field15
. Hence the torque magnetometer gave a more reliable value of B;,, 

than the VSM for the same sample, and the ac-field due to the vibration of the sample 

in the VSM does affect the data taken for samples smaller than a certain size. 

From the torque magnetometer measurement (fig. 6.24), the irreversibility field of 

PbMo6Ss at 300 mK was 28.8 ± 0.2 T. This is roughly two thirds the size of the 

Bc2(0), for the sample (table 6.4), which suggests PbMo6S8 has a large reversible 

magnetisation region. 

6.5.3 Flux pinning force scaling law 

6.5.3.1 PbMo6Ss 

For PbMo6Ss the VSM 4 mm length sample and 1 mm length sample values of p & q 

were consistent with each other (table 6.3). From section 6.5.3.1, they are slightly 

higher than the literature values of p = 0.5 & q = 27
' 

17
, which suggests the flux 

pinning was at the grain boundaries21
' 

10
' 

29
. Then values differ between the 4 mm 

length VSM data, the 1 mm length VSM data and the torque data. The range of VSM 

values was n = 1.75 to 2.9, with the literature value ofn = 2.5, and the torque value of 
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n = 2.62 in this range. As n is the temperature dependant variable in the scaling law, 

the different irreversibility fields for each sample due to the VSM ac-field reducing 

Bir/5
, caused n to vary between the torque data and the VSM data. From table 6.3, 

the torque sample and the 4 mm length sample n values are consistent within errors. 

The torque flux pinning variables were p = 0.55 & q = 1.42, hence the p value is in 

agreement while the q value differs from the VSM values as the highest temperature 

measured on the torque magnetometer was 6 K. Hence the Birr for all the 

temperatures were greater than the maximum applied field (- 13 T), so there was no 

data at high reduced fields (fig. 6.31), which meant the scaling law (eqn 6.3) was 

fitted to the normalised volume pinning force data, at low reduced fields. The 

maximum volume pinning force for the 1 mm length VSM data was at bmax = 0.22 ± 

0.01, and the torque data max volume pinning force was at bmax = 0.24 ± 0.01. These 

reduced fields are in agreement with each other and with the literature10
. As the 

perpendicular field and parallel field VSM data have the same reduced field for the 

max volume pinning force, the pinning centres must be isotropic. 

6.5.3.2 Comparison between PbMo6Ss and Pbo.7sEuo.zsMo,Ss 

Wordenweber proposed the modified flux line shear (FLS) model, which describes 

the pinning of flux in weakly pinned channels21 . These channels are assumed to be at 

the grain boundaries in bulk polycrystalline materials20. Cattani et a/ also suggested 

there was strong intragrain pinning as well as intergrain pinning in Chevrel phase 

materials18. From the Kramer plots (fig 6.23 & 6.25) both PbMo6Ss and 

Pbo.1sEUo.2sMo6Ss have straight-line plots at each temperature, which were equidistant 

apart. From theory3 the straight lines means there was only one pinning mechanism in 

the samples. The normalised flux pinning curves, were fitted to the Fietz-Webb5 

scaling law for bulk pinning (figs 6.30 & 6.32). The constants for PbMo6Ss were p = 

0.58 and q = 2.15 and for Pbo.7sEUo.2sMo6Ss were p = 0.56 and q = 2.07, with the 

errors less than 1 %. Hence these values of p & q are higher than the theory29, and 

experimental7· 9 values ofp = 0.5 and q = 2 found in the literature. At all temperatures 

the normalised flux pinning curve have the same shape, with a peak at the reduced 

field bmax = 0.21 for PbMo6Ss and bmax = 0.23 for Pbo.1sEUo.2sMo6Ss, which again is 

consistent with the flux model with pinning at the grain boundaries20. The constant n 

is the temperature scaling component for the scaling law. The constant n for PbMo6S8 
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was 2.9 and for (Pbo.7sEUo.2s)Mo6Ss was 2.75. From the Kramer scaling law the 

theory value of n is 2.53. The measured values in the literature range from 1.830 to 

2.410
. Thus the measured n values were slightly higher, which suggests the 

distribution of Bc2(T) in the samples has increased the n value. 

6.5.3.3 NbTi wire - variatioll1l will:ln temperature 

The volume flux pinning mechanisms in NbTi are dependent on the microstructure24' 
25 and the fabrication process26. In NbTi wires, the pinning centres are due to the 

material having a dislocation cell structure of subgrain boundaries, and fine scale 

a-titanium precipitation16 along the long axis of the wire. The dislocation cell 

structure is achieved by the extensive cold work on the wire, while the a-Ti 

precipitates have to be about 5 to 20 nm in size to act as flux pinning sites. 

Anisotropy in the microstructure ofNbTi is used to explain the change in position of 

the maximum volume pinning force with temperature, magnetic field direction to the 

long axis and sample length (figs. 6.26 - 6.28). 

Meingast and Larbalestier suggested there were two types of flux pinning, which 

occur in NbTi wire31 . They proposed the different pinning mechanisms had different 

temperature dependencies. These pinning mechanisms are OK pinning and &/ c 

pinning and are due to the fabrication process of the NbTi. The OK pinning is due to 

the dislocation cell structure, which pins at high reduced fields, while &/ c pinning is 

due to a-Ti precipitation in the sample, which pins at low reduced fields. From this 

chapter, for an i!!crease in temperature, the NbTi wire maximum volume pinning 

force moved to lower reduced fields in both the VSM data and the torque data (fig. 

6.26). From the perpendicular field VSM data, the max volume pinning force of the 2 

mm length sample was at bmax = 0.54 at 4.2 K, and moved to bmax = 0.3 at 8 K (figs. 

6.27 & 6.28), which is consistent with the measurements taken by Meingase1
. The 

reason is at low temperatures both pinning mechanisms occur, hence the volume flux 

pinning force has two contributions, which broaden the curve, and the max force is at 

b = 0.5. Close to Tc, the &le pinning dominates, thus the flux is pinned on the a-Ti 

particles, and the pinning occurs at low reduced fields. The move max volume 

pinning force as a function of temperature was also observed in the 3. 83 mm and 5 

mm length samples' perpendicular data (figs. 6.27 & 6.28). For the 1 mm length 

sample the max force was at bmax = 0.65 at 4.2 K and moved to bmax = 0.53 at 8 K. 
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Figure 6.37. The reduced field at the max volume pinning force, of NbTi wire as a 

function of temperature and experiment. For the VSM data the field was 

perpendicular to the long axis. The error bars were determined from the errors for the 

reduced field peaks and the upper critical field data. 

From the torque normalised flux pinning force data, the reduce field at the max 

volume pinning force moves from bmax = 0.84 at 300 mK to bmax = 0.3 at 8 K. The 

high temperature data agrees with theory31 and the VSM data. At 300 mK, the max 

volume pinning force is at bmax = 0.84 (fig. 6.37), which suggests the OK pinning is the 

prmcipal mechanism, as OK pinning occurs at high reduced magnetic fields. The 8H c 

pinning probably does not contribute. The shape of the curve at 300 mK is given by 

b(1- b) 114
. Hampshire et at found for NbTi wire which had been annealed at 250 °C 

for 1 hr, the flux peak was at bmax = 0. 73, while the wire annealed at 500 °C for 1 hr, 

had a peak at bmax = 0.3. The second set data has an inflexion at bmax = 0.8. 

Hampshire et at concluded that the OK pinning was the weaker pinning mechanism, 

but was seen at low temperatures and high reduced fields, which is consistent with the 

torque data at 300 mK. Therefore the torque data shows the change in pinning 

mechanisms in NbTi wire as a function of temperature. Also the torque data value of 

n = 1.65 at low temperatures is consistent with Hampshire's n value6
. For the torque 
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data taken in liquid helium (fig. 6.29) the maximum volume pinning force is at bmax = 

0.59, which is consistent with the VSM data (fig. 6.37). 

The error for the reduced field at the max volume pinning force, bmax, at each 

temperature was determined from the error for the B;,,{T) from the data and standard 

error analysis. Thus the change in the reduced field at the max volume pinning force 

is a definite result, rather than an error in calculating B;,,(T) (fig. 6.37). For the torque 

magnetometer data, the error for B;: (T) increased as the temperature increased, as at 

higher temperatures the magnitude of the hysteresis in the voltage loop at z = 0 cm 

was reduced. Thus it was more difficult to determine the field at which the loop 

became reversible (fig. 6.9). At the low temperatures, B;:(r) was easier to determine 

as the magnitude of the hysteresis in the loop was large compared to the noise. The 

errors for the VSM B::_~0 (T) at 4.2 K were due to the oscillations in the data (figs 6.6 

- 6. 7), which made it difficult to determine the exact field at which the average 

magnetisation was zero. Hence the error at 4.2 K for the torque data and the VSM 

data in determining the reduced field at the max volume pinning force was ± 0.2 T. 

At 8 K, the error for B::_~0 (T) from the VSM was due to the VSM amplifier being on 

the highest amplification possible. The noise on the data increased on this setting. 

Thus the error for the reduced field from the torque measurement was smaller than the 

VSM error. Hence the movement of the max volume pinning force from bmax = 0.8 to 

0. 3 as the temperature increases is a generic result. It also proves that there are two 

different pinning mechanisms in NbTi wire. These mechanisms have different 

temperature and reduced field dependence. 

For the VSM data, the p & q values also change as the temperature is increased, and 

the principal pinning mechanism changes. At 4.2 K for the 1 mm length 

perpendicular field data p = 0.86 & q = 0.93 (table 6.3). Thus the curve shape is 

b(1- b), which is consistent with the literature6
. While at 8 K, p = 1.04 & q = 2.18, 

which differs from the Meignast 8 K values31
. Meignast showed the curve shape was 

b 112 
( 1 - b) 2 

at 8 K, due to the OH c pinning being the principal mechanism31
. At 8 K 

the p & q variables are consistent with the McKinnell high concentration Ti data23
. 

McKinnell et a/ determined for 62% Ti the shape of the pinning curve was b( 1 - b) 2 
, 

which was due to the OHc pinning being the principal mechanism, as the high 
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concentration of Ti increased the a-Ti particles' size23
. Thus for the data at 8 K, the 

mechanism was OH c pinning, as the data have the curve shape b( 1 - b) 2 
• 

6.5.3.4 NbTi wire -variation with applied magnetic field direction 

The normalised flux pinning scaling curves were different for the parallel VSM data 

and perpendicular field VSM data. Kuepfer and Matsushita32 investigated the 

difference in volume flux pinning force when the NbTi wire long axis was parallel to 

and perpendicular to the magnetic field. The difference was due to the highly 

anisotropic pinning centres. Kuepfer expected that for the field parallel to the long 

axis, the flux motion would be along the cell wall, which would mean the volume flux 

pinning force with the field parallel to the long axis would be less than the 

perpendicular field volume flux pinning force. Kuepfer et al found the volume flux 

pinning force was larger for the field parallel to the long axis, which is consistent with 

the volume flux pinning forces determined in this work. From Kuepfer data, at 4.2 K 

the field at the maximum volume pinning force taken from the paper, were 5 T for the 

parallel field data and 6.25 T for the perpendicular field data. Both field directions 

had the same BclD, hence the max force occurred at bmax = 0.47 for the parallel field 

data and bmax = 0.58 for the perpendicular field data. From this chapter the max 

volume pinning force, at 4.2 K was at 4 T for all the samples with the field parallel to 

the long axis, and at 5 T for all the samples, with the long axis perpendicular to the 

field excluding the 1 mm length sample. From fig. 6.27, the max volume pinning 

force peak for the field parallel to the long axis was at bmax = 0.45 ± 0.03 compared to 

bmax = 0.54 ± 0.03 for the field perpendicular to the long axis. These reduced fields 

are in good agreement with Kuepfer's32
. The pinning force mechanisms for each field 

direction were independent of the length of the sample. 

At 4.2 K, the variables p & q were different for the two field directions. For the 

perpendicular field direction, p = 0.86 and q = 0.93, while for the parallel field 

direction p =1.16 and q = 1.5. The perpendicular data has the classic b(1- b) shape6 

that occurs at low temperatures in NbTi. While the parallel data has the shape 

b(1- b) 312
, due to the anisotropy of the pinning centres in the NbTi wire. 

The exponent n is the temperature dependence parameter of the flux pinning scaling 

law. Due to the change in the principal pinning mechanism with temperature, there 

were two distinct gradients seen for the torque data and the VSM parallel data (fig. 
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6.33). For NbTi wire the variable n in the literature varies from 1.76
' 

31 to 2.55
. The 

measured n values for both field directions below 6 K lie within these limits (table 

6.3). Then values for the data below 6 K were higher than the values for the data 

above 6 K. For the 2 mm and 3.83 mm length samples, the data taken with the field 

parallel to the long-axis, the 4.2 K data points lie about the 1 mm length parallel data 

line. Similarly the perpendicular 4.2 K for both samples data are on the 1 mm length 

perpendicular line. At 8 K, the 2 mm, 3.83 mm and 5 mm length samples parallel 

field data points and the perpendicular field data points lay close to their respective n 

line, which suggests the n values were constant for the different sample lengths in 

each field direction. 

6.5.4 Upper critical field, Bc2(0) 

From fig. 6.36, the upper critical field of PbMo6Ss was determined using WHH 

theorl. The torque data were in good agreement with the resistivity and VSM data 

(table 6.4). Thus the upper critical field of the 1 mm length PbMo6S8 sample 

measured by the torque magnetometer was B ;2 ( 0) = 51 T. 

From fig. 6.35, the upper critical field of NbTi wire was determined, for the different 

experimental techniques. The torque data were in good agreement with the resistivity 

and VSM data. From the resistivity measurement, the NbTi wire upper critical field 

Bc2(0) is 15 T, which is in good agreement with data in the literature16
• 

33
. From the 

literature, the lowest temperature that Bc2(T) was measured at was 2 K33
• 

14
. Using the 

Heliox probe, the resistivity B~i5PN (D at 300 mK was 14.8 T and the 1 mm length 

torque data B;~(T)was 13.6 T. These experiments have confirmed that Bc2(0) for 

NbTi wire is 15 T, rather than the GLAG theory value of 18 T16
. 

The field-gradient torque magnetometer is a reliable method of determining the upper 

critical field of isotropic superconductors. 

Friend measured the Bc2(T) dependence on magnetic field direction to the long axis 

from resistivity measurements4
. He found the ratio of the B~i5PN (D, for the field 

parallel to the long axis by the field perpendicular to the long axis was a constant 

value of 1.1, between 2 K and 7 K, and then increased as Tc was approached. From 

the VSM data the ratio of B::!40 (T) at 4.2 K is 1 for the 1 mm length, 2 mm length 

and 3.83 mm length samples, due to the oscillations in the moment data introducing 
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errors into determining Bt,!-->0 (T). At 6 K, for the 1 mm length sample the ratio is 

1.17, which is consistent with Friend's measurements. Similarly at 8 K, the ratio has 

increased, for the 1 mm length sample the ratio is 1.23, compared to 1.64 for the 3.83 

mm length sample. The reason for this anisotropy in the Bt,!-->0 (T) is again due to the 

microstructure of the NbTi wire, having elongated a-Ti precipitates along the long 

axis of the wire. 

6.6 Conclusioli'il 

The field-gradient torque magnetometer was used to determine the critical current 

density at 300 mK, 5 T, for PbMo6S8 J; = 2.98 x 108 Am-2 and for NbTi wire J; = 

8.34 X 108 Am-2
. 

The upper critical field (Bc2(0)) of NbTi wire is 15 T, which was determined from 

resistivity measurements from 300 mK up to Tc and in fields up to 15 T. The field­

gradient torque magnetometer was also used to determine the upper critical field. For 

NbTi wire B;::,.(T)is 13.8 T which agrees with the VSM Bt,!-->0 (T) = 13.4 T. 

Similarly for PbMo6S8 B;2 (0) is 51 T, which is slightly higher than with the VSM 

BM-->O(O) = 45 T 
c2 • 

The irreversibility fields (Birr) ofPbMo6S8 were determined from the VSM and torque 

magnetometer Kramer plots. At temperatures above 6 K, the VSM ac-field reduced 

the 1 mm length sample's Birr by 4 T in comparison to the VSM 4 mm length sample 

and the 1 mm length torque data value of 18 T. The Birr of PbMo6S8 at 300 mK is 

28.8 T. This is a third smaller than the B :2 ( 0) measured, thus PbMo6S8 has a large 

reversible magnetisation region. 

From the VSM data, the critical current densities of the 1 mm length PbMo6S8 

sample, for both field directions, had different field dependencies compared to the 4 

mm length sample. Similarly the 1 mm length Pbo.1sEuo.2sMo6Ss sample had a 

different field dependence to the 4 mm length sample. This was due to the ac-field 

associated with the VSM completely penetrating the 1 mm length samples at lower 

fields than the 4 mm length samples. At 4.2 K the magnitude of critical current 

density of the VSM 1 mm length PbMo6S8 sample measured with the field 

perpendicular to the long axis, was 70 % of the magnitude of the critical current 
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density for the field parallel to the long axis. The critical current density of 

Pbo.?sEUo.2sMo6Ss was a factor 5 lower than PbMo6Ss. 

The maximum volume pinning force for the VSM PbMo6Ss 4 mm length and 1 mm 

length samples and the torque 1 mm length sample were at bmax ~:::~ 0.2, which is 

consistent with pinning at the grain boundaries. As the reduced field at the max 

volume pinning force for the VSM 1 mm length sample for both field directions was 

0.2, the grain boundaries in the sample are isotropic. The VSM 4 mm length and 1 

mm length samples p & q values were in agreement with each other. The values were 

p = 0.57 and q = 2.15, which are slightly higher than the literature values. The torque 

magnetometry values were p = 0.55 & q = 1.42. For both magnetometer 

measurements, the n values were in the range 1.75 to 2.9. While for 

Pbo.75Euo.2sMo6Ss, p = 0.56, q = 2.08 and n = 2.75, hence the pinning for both 

materials was at the grain boundaries. 

From the VSM measurements, the critical current density of NbTi wire decreased, as 

the length of wire samples decreased. At 4.2K, 5T, for the field applied perpendicular 

to the long axis, the 1 mm length NbTi wire critical current density was 70 % the 5 

mm length wire Jc. The critical current density field dependence and magnitude 

depended on the direction of the field to the long axis ofthe wire. At 4.2 K, 5 T, the 

magnitude of the perpendicular critical current density was 45 % of the parallel Jc. 

The difference in Jc was due to the anisotropic pinning centres in the NbTi wire. 

For NbTi wire, the normalised flux pinning force curves were temperature dependent, 

due to the two pinning mechanisms in NbTi wire having different temperature 

dependencies. They are observed as a change in the reduced field at the max volume 

pinning force. At 300 mK, the mechanism is OK pinning, as the max force is at bmax 

= 0.84, while at 4.2 K, both mechanisms contribute to the flux pinning, so the max 

force is at bmax = 0.5. At 8 K, OHc pinning is the principal mechanism, so the max 

force is at bmax = 0.3. The change in the reduced field at the max volume pinning 

force, as a function of temperature is observed in the torque magnetometer data. The 

data confirms that the OK pinning is the principal pinning mechanism for 

temperatures below 4.2 K. From the VSM data, the movement ofthe max force from 

bmax = 0.54 at 4.2 K to bmax = 0.3 at 8 K is observed in the 2 mm and 3.83 mm length 

samples' data. 
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For NbTi wire, the flux pinning force was also dependent on the direction of the 

magnetic field to the long axis of the wire. For the 2 mm length wire with the field 

perpendicular to the long axis the max volume pinning force was at bmax = 0.54, while 

for the field parallel the max force was at bmax = 0.45. This change in reduced field is 

due to the anisotropy of the pinning centres in the NbTi wire. For each field direction 

to the long axis, the flux pinning force was independent of the sample length. 
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Compcmrison between CliiBe and Ti alloys magnetic 

susceptibility 

This chapter reviews the magnetic susceptibility measurements of titanium and 

copper-beryllium (section 7.2). It is an independent piece of work, which is unrelated 

to the previous three chapters. The mass susceptibility temperature dependence of 

two titanium alloys and copper-beryllium were measured (section 7.3, 7.4 & 7.5). 

The difference in mass susceptibility is discussed with relation to the change in 

absolute magnitude from room temperature to 5 K (section 7.6). 

Titanium, titanium alloys and copper-beryllium are some of the strongest metals 

available. Titanium is used in the aerospace industry and for medical application. 

This is because it is strong and lightweight. Copper-beryllium is used for springs and 

resistance welding electrodes. It has high strength and high conductivity. Both 

metals are corrosion resistant. Cryogenic magnetic measurements involving high­

pressuresl· 2 or strain3 require high strength metals with small magnetic susceptibility. 

The Durham group has experience in using CuBe. In this chapter in order to 

investigate whether other materials are more suitable, the susceptibilities as a function 

of temperature of titanium and titanium alloys were measured and compared with the 

CuBe susceptibility. 

7.2 Review of magnetic susceptibility in the literature 

Collings measured the mass susceptibility of titanium as a function of temperature4. 

Titanium is a paramagnetic metal. At 300 K the mass susceptibility is 3.99 x 10-8 

m3kg-1
• At 100 K the mass susceptibility is 3.71 x 10-8 m3kg-1

• This is a change of 

2.89 x 10-9 m3kg-1
, over 200 K. At temperatures from 100 K down to 4.2 K, the 

susceptibility is almost constant with temperatureS. Adding impurities changes the 

strength of the alloy. It also changes the magnetic behaviour. The impurities added 

into titanium form either a., a./13 or 13 Ti alloys. Copper-beryllium is diamagnetic at 

300 K, with a susceptibility of -2 x 10-10 m3kg-1
2. At 4.2 Kit is paramagnetic6 with a 

susceptibility of 4 x 10-9 m3kg-1
2. This is a change of 4.02 x 10-9 m3kg-1 over 300 K. 
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Material Impurities Alloy type Density Sample Tensile 

percentage (103 kgm-3) volume strength 

(10-8 m3) (MP a) 

Pure a 4.51 3.22 X 3.05 270-350 

Titanium - X 0.73 

Ti-64 Al-6%, a/(3 4.42 3.04 X 3.09 960-1270 

V---4% x0.74 

Ti- 550 Al-4%, Mo-4%, a/(3 4.60 3.30 X 3.25 1100- 1280 

Sn-2%, Si-0.5% x0.85 

Ti-21S Mo-15%,~-3%, f3 - 3.27 X 3.30 -

Al-3%, Si-0.2% x0.72 

Ti-75 0<1% a 4.51 3.29x 3.27 570-730 

X 0.75 

Cu-Be ~ 1% Ni or Co - 8.25 3.38 X 3.46 500- 1300 

X 0.87 

'll'mi!Dlle 7.L Summary of the titanium alloys and copper-berylhum mvesttgated m this 

chapter 

The change in magnetism is because magnetic ions (either nickel or cobalt) are doped 

into the alloy. They are added as precipitation-hardening impurities. 

7.3 fEit(pl®li'DIMSIT\l~~ !P>Ii'CC®dJIUIIi'e ~IT\l~ $SliM\P)~S$ meaSIUIIi'®~ 

The samples measured were copper-beryllium, pure titanium, and the titanium alloys 

Ti-64, Ti-550, Ti-75, and Ti-21S. The titanium and titanium alloys were from 

TIMET AL, who specialise in titanium. The mechanical properties were taken from 

the TIMET AL technical specification. The copper-beryllium was from Brush­

Wellman. The copper-beryllium mechanical properties were taken from the 

Goodfellows Ltd website. 

From the TIMET AL documentation the strength of titanium improves by adding 

impurities (table 7.1). The magnetic moments were measured on the VSM at 

Birmingham. The temperature dependent susceptibilities of Ti-64, Ti-550 and CuBe 

were measured. The susceptibilities of the other three titanium alloys were measured, 
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Figure 7.1. Magnetic moment as a function of applied magnetic field and 

temperature, for the background components of the VSM. 
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and temperature. 

204 



500.-----~--~----~~------~~--~--------~--~~ 

400 

-";"E 
<( 

~300 
c 
0 
~ 
nJ 
(/) 

~ 200 
c 
C> 
nJ 
~ 

100 

G----B 5 K 
G---El 10 K 
~20K 
+-----1- 50 K 
A--£, 80 K 
~290K 

1 2 

Internal Magnetic Field, B(T} 
3 

Figure 7 .3. Magnetisation of Ti - 64 alloy as a function of internal magnetic field 

and temperature. 
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alloy and Ti - 21 S alloy at 290 K. 
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Figure 7.5. Magnetisation of Copper-beryllium as a function of internal magnetic 

field and temperature. 

at 290 K. At each temperature, the magnetic field was swept to 3 T, and back to zero. 

The magnetic moment was measured at different sweep rates, at 290 K. The field 

sweep rate used to obtain all data shown was 100 Oemin-1
• This was the highest 

sweep rate, which showed no Eddy current heating. The samples were attached to a 

clear plastic straw, using double-sided sticky tape, with PTFE tape wrapped three 

times around. The straw was attached to the bottom of the VSM rod. 

7.4 Results 

The magnetic moments were measured on the highest sensitivity of the amplifier. 

They were of similar magnitude to the background. The magnetic moment from the 

background was due to the plastic straw, with the double-sided sticky tape and PTFE. 

From fig. 7.1 this magnetic moment changes with temperature. The background 

magnetic moment was subtracted away from the samples' magnetic moments. The 

magnetization was calculated by dividing the moment by the volume ( c.f. eqn 3 .18). 
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Figure 7.6. The mass susceptibility of the titanium alloys (open shapes) and CuBe 

(closed shapes) as a function of magnetic field and temperature. 

The demagnetisation factor for a flat disc was used to calculate the internal field of the 

samples (cf. section 3.8.2). The factors are given by: 

N
11 
= 0.73 & N _]_ = 0.13 (7.1) 

From figs. 7.2 & 7.3 the magnetisation of the titanium alloys is almost constant with 

temperature. The magnetisation for each of titanium alloys is dependent on the 

impurities added. This is seen in fig. 7 .4, where the magnetisation of the two alloys 

and pure titanium differ with field. From fig. 7.5 the magnetisation of copper­

beryllium changes from paramagnetic to diamagnetic over the temperature range. 

The magnetisation of copper-beryllium is a factor 1 0 smaller than the titanium, at 5 K. 

7.5 Analysis 

The mass susceptibilities for the samples are determined from 7: 

(7.2) 

where pis the density. 

At temperatures below 50 K, CuBe has a positive susceptibility (fig. 7 .5). A 

Brillouin function (eqn 3.2) has been fitted to the data at 5 & 10 K. The variables for 

the magnetic ions are J = 4.38, gJ = 1.27 and N = 1.46 x 1020 m-3
• 
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Mass Mass Tensile Elongation Young's 

susceptibility susceptibility strength (%) Modulus 

290 K (m3kg-1
) 5 K (m3kg-1

) (MPa) (GPa) 

CuBe -2.88 X 10-IU 3.27 X 10-9 500- t300 <50 t20- t60 

Pure Ti 4.05 X 10-11 - 230-460 25 115 

Ti-64 4.7 X tO-IS 4.5 X tO-IS 960- t270 8 t05- t20 

alloy 

Ti- 550 4.7 X tO-ll 4.25 X 10-11 t100- t280 9 110- 130 

alloy 

Ti-75 3.68 x to-~~ - 570-740 t5 t05- t20 

alloy 

Ti- 2t5 5.86 X 10-11 - - - -

alloy 

Table 7 .2. The magnetic susceptibilities and mechanical properties of CuBe, Ti and 

Ti alloys. The tensile strength, elongation, and Young's modulus for the Ti alloys 

were taken from the TIMET AL document. CuBe values were taken from the 

Goodfellows Ltd web page. 

This suggests that the impurity ion is Co2
+, where J = 4.5 and gJ = 1.337. At 

temperatures below 50 K, the mass susceptibility (fig 7.6) of CuBe has been fitted to 

Curie's law (eqn 3.4). This gives the Curie constant to be C = 1.744 x 10-8 Km3kg-1
• 

This is in agreement with the Curie constant calculated from the Brillouin function, 

which gives 1.75 x 10-8 Km3kg-1
. 

7.6 Discussion 

Copper-beryllium contains magnetic ions (either Ni or Co ), to help stabilize it. At 

290 K, the susceptibility of CuBe is negative, as the magnetic ions have no long-range 

order. At low temperatures, the susceptibility of CuBe is positive6, as the magnetic 

ions interact. This changes the mass susceptibility by two orders of magnitude. From 

literature2, the mass susceptibility at 300 K is -2 x 10-10 m3kg-1 compared with our 

measurement of -2.88 x 10-10 m3kg-1 (table 7 .2). The mass susceptibilities are in 
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Figure 7.7. The mass susceptibility for various elements, as a function of 

temperature. Taken from KitteF. 

good agreement. The small difference is due to the slight difference in the percentages 

of impurities. 

Titanium metal is paramagnetic. The measured mass susceptibility of pure Ti is 4.05 x 

10"8 m3kg"1 (fig. 7.6). The value in the literature4 is 3.99 x 10·8 m3kg-1
. The titanium 

alloys are also paramagnetic at all temperatures. The ions added to form the alloys 

give different temperature dependant susceptibility. The alloys do not obey Curies' 

law. 

From fig. 7.7, the temperature dependent susceptibilities of some elements are plotted. 

The susceptibility of titanium4 decreases with temperature whereas the susceptibility 

of vanadium and aluminium8 increases with temperature. In fig. 7.6 the susceptibility 

for Ti-64 (which contains Al and V) decreases with temperature from 300 K to 20 K, 

and then increases from 20 K to 5 K. This is due to the competition between the V 

susceptibility, the Ti susceptibility and the Al susceptibility. 

Both Ti and CuBe are used for their strength in cryogenic measurements. They are 

often used in high magnetic fields, therefore the magnetic susceptibility is important. 
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Their susceptibility has to be as small as possible. From table 7 .2, CuBe and the Ti 

alloys are both paramagnetic at 5 K. The mass susceptibility of CuBe is a factor 1 0 

smaller than the Ti alloys. At 290 K, CuBe has a negative susceptibility, and all the 

Ti alloys are paramagnetic. The magnitude of the mass susceptibility of CuBe is a 

factor 100 smaller than all the Ti alloys measured. For magnetic measurements taken 

at a single temperature eg 4.2 K, 300 K, copper-beryllium has the lowest 

susceptibility so should be used. 

For magnetic experiments, over a temperature range (5 K - 20 K), the absolute 

change in susceptibility is important. Ideally the susceptibility is constant. The 

change in susceptibility for CuBe between 5 K and 20 K is 2.261 x 10"9 m3kg-1
, 

compared with 5.4 x 10"10 m3kg-1 for Ti-64 and 4 x 10-10 m3kg"1 for Ti-550. Thus the 

Ti alloys susceptibilities are almost constant with temperature. For variable 

temperature measurements the Ti alloys should be used. 

1.1 ConchJJ$ions 

At 5 K, the mass susceptibility of copper-beryllium is a factor 10 smaller than the 

titanium alloys. However between 5 K and 20 K, the change in mass susceptibility 

for CuBe is a factor 5 larger than the Ti alloys. Hence CuBe has a smaller mass 

susceptibility, but the Ti alloys should be used for variable temperature magnetic 

measurements. 
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Chapter 8 

Conclusions & Future Work 

8.1 Conclusions 

A field-gradient torque magnetometer has been constructed which can measure the 

magnetic moment of isotropic superconductors in the temperature range 300 mK to 20 

K, in magnetic fields up to 15 T. The probe uses a QD silicon piezoresistive torque 

chip to measure the moment in magnetic field gradients. The torque magnetometer 

data is used to determine the critical current density and upper critical field Bc2 (0). 

For NbTi wire and PbMo6Ss, the critical current densities were determined from 300 

mK to Tc in fields up to 15 T. For the same PbMo6Ss sample, the torque 

magnetometer' s critical current densities were consistent with the vibrating sample 

magnetometer' s (VS M) critical current densities. 

The field-gradient torque magnetometer data was also used to determine the upper 

critical field. B<:2 (T) was determined from voltage vs. field sweep loops measured at 

the field centre, for temperatures close to Tc. For PbM06Ss B<r2 (0) =51 T which is 

slightly higher than the VSM B;~~0 (0) = 45 T. For NbTi wire at 300 mK the 

resistivity B~i5PN (T) = 14.8 T, thus the B~j5p,, (0) is 15 T. The torque magnetometcr 

B,~2 (0) = 13.8 T, which is slightly lower than the resistivity value. 

The temperature dependence of the different pinning mechanisms in Nb Ti \'\rire were 

observed in the torque magnetometer normalised flux pinning force data. The peak of 

the normalised pinning force moved from bmax = 0.8 at 300 mK to bmax = 0.3 at 8 K. 

This means at low temperatures (below 2 K ), bK pinning is dominant, and at 

temperatures close to Tc, 8H" pinning is dominant. This result \Vas confinncd by the 

VSM data, where the bmax = 0.55 at 4.2 K and moves to bmax = 0.3 at 8 K. 

From the VSM data, the irreversibility fields (B1" )of the 4 mm length PbMo6S8 

sample and the 1 mm length PbMo6Ss sample were different values due to the ac-field 

associated with the VSM. At 6 K,. for the 1 mm length sample measured on the torque 

magnetometer B;rr = 18 T, which agreed with the VSM measured value for the 4 mm 

length sample B;"= 18.7 T rather than the 1 mm length sample B;"= 14 T. 
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The change in the superconducting parameters of t;he Chevrel phase superconductor 

PbMo6S8 with the addition of Eu ions have been investigated. The superconductor 

Pbo.1sEUo.2sMo6Ss, the magnetisation and specific heat data had paramagnetic and 

superconducting contributions. The addition of Eu ions into PbMo6Ss decreased the 

critical temperature from 15.16 K to 12.6 K, and decreased the critical current density 

from 2.23 x 107 Am-2 to 1.18 x 108 Am-2. The Sommerfeld constant (r) was reduced 

by a factor 2, to 276 JK-1m-3 for Pbo.1sEUo.2sMo6Ss. The upper critical field measured 

from resistivity measurements B~i5PN (0) increased from 51 T to 56 T, while 

Bc~~o (0) measured from magnetisation data decreased from SO T to 30 T. This 

difference was due to a distribution of Bc2(I') in the Pbo.1sEUo2sMo6Ss sample. For 

Pbo.1sEUo.2sMo6Ss and PbMo6Ss the powder samples were used to determine K over the 

temperature range 6 K to Tc. 

8.2 Future work 

From this thesis there are two areas for which future work could be considered. The 

first area is expanding the different types of samples or superconductors measured by 

the field-gradient torque magnetometer. 

The different types of samples could include single crystals. This is because the QD 

torque chip platform area is 2 x 2 mm2
, which means small samples (mass < 10 mg) 

can be measured. Thus it is ideal for materials such as PbMo6Sg and DyMot$h whose 

single crystal volume is of order 1 x 0.8 x 0.3 mm3
• The measurement of the critical 

current density of single crystals is important. There are no grain boundaries in the 

crystal. Thus only the intragrain flux pinning in the ChevTCl phase superconductors 

will be measured. Other samples. which could be measured include magnetic 

superconductors such as DyMo6Ss- These materials have critical temperatures below 

2 K. As the torque magneto meter's base temperature is 300 mK. the critical current 

density and upper critical field can be determined. The behaviour of DyMo6Ss in a 

magnetic field can also be investigated using the torque magneto meter. 

The torque magnetometer could also be used to investigate the critical current 

densities of anisotropic superconductors. Anisotropic superconductors have only 

been measured at the field centre using piezoresistive cantilevers, to determine their 

anisotropy. The critical current densities measured were direction dependent. The 

field-gradient torque magnetometer provides a method of measuring the critical 
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current density at different angles to the magnetic field, by measuring the magnetic 

moment of the superconductors at different field-gradients. This would be useful to 

observe how the anisotropy affects Jc as a function of angle. 

The second area is to improve the field-gradient torque magnetometer. These 

improvements could include decreasing the base temperature further by using 

adiabatic demagnetisation. In decreasing the temperature below 250 mK, the 

behaviour of the superconductors and their critical current density could be observed. 

For materials such as NbTi wire this could give an increased insight to whether Bc2(0) 

= 15 T, or if it increases rapidly to 18 T as predicted by GLAG theory below 250 mK. 

It would also be used to determine whether the flux pinning mechanisms in 

superconductors such as NbTi and PbMo6Ss changes at very low temperatures, or 

whether they are consistent for the whole temperature range. The critical current 

density can also be investigated to determine if it increases linearly at temperatures 

below 250 mK. 

The second improvement would be to improve the thermal linking between the 

sample and the helium-3 pot. This would reduce the possibility of heating occurring 

in the sample. It would also improve the base temperature of the sample. One 

method could be to directly attach a wire to the sample rather than the QD chip. 

Another method could be to attach a thermometer to the thick outside edge of the QD 

chip. The thermometer leads would act as the thermal link from the helium-3 pot to 

the sample. The other advantage would be that the actual temperature of the sample 

would be kno~ rather than the temperature of the tufnol platform. 

Other improvements could include reducing the backlash of the gears on the rotator 

platform. Using the grub screw tightened against the lowest gear decreased the 

backlash, although it was not perfect. Therefore using anti-backlash gears, or an 

arrangement where the gears are held stationary at the required angle, could be 

investigated. 
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Apjp®fi'ildlo~ 3. C<OHT1T1l!P~t@li" fPlli"Ogjli"~llm~ 

This appendix contains a comprehensive description of the LABview computer 

programs required to run the torque field-gradient magnetometer, and the Ressus 

probe. Also included is the Maple VI program used to calculate the best-fit 

paramagnetic magnetisation. 

U\Bview torque field~grradient magnetometry programs 

For the torque magnetometer experiments each have their own front program, which 

is made up of separate subprograms. These subprograms read and write to the 

different instruments and carry out analysis. For most of the experiments carried out 

the instruments are the same and therefore the same subprograms are used for each. 

Instruments programs 

The following programs are used for the IPS magnet power supply: 

Setupd.vi 

Sets the power supply up at the beginning of an experiment 

SwitchMbc.vi 

Switches the superconducting magnet switch on 

Setcur.vi 

Writes a current value to the power supply 

Setfield. vi 

Writes the maximum/target magnetic field to the power supply 

Readfield. vi 

Reads the magnetic field of the magnet from the power supply 

Chkspeedsuperbcrot. vi 

Reads the magnetic field of the magnet, and checks the ramp rate is correct for 

that field. Changes ramp rate at set magnetic fields. 

The following programs are used for the Oxford Instruments ITC: 

Settemprot. vi 

Writes the fixed temperature to the ITC. Sets the correct thermometer, for the 

temperature range. 
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PIDhe.vi 

Writes the PID parameters to the ITC 

Buscmd.vi 

Is a control vi, which can be used to read or write from the ITC 

The following programs are used for the Stanford 850 lockin amplifier: 

SetupG.vi 

Sets up the lockin amplifier for the experiment including the frequency and the 

voltage range. 

SR850data. vi 

Reads the voltage of each of the output channels ofthe lockin amplifier 

The following programs are used for the Keithley voltmeters: 

SetupB.vi 

Sets the Keithley voltmeters up for the experiment 

Keidata.vi 

Reads the Keithley voltage - for torque experiment it was the voltage across 

the Ru02 thermometer 

Keidata3. vi 

Reads the Keithley voltage - for torque experiment it was the voltage across 

the Hall chip 

Keidata5. vi 

Reads the Keithley voltage - for torque experiment it was the voltage across 

the 10 Ohms resistor, used to determine the current through the Wheatstone 

bridge. 

The following programs are used for the Lakeshore temperature controller: 

Setupf.vi 

Sets the Lakeshore up for the experiment 

Readtempche. vi 

Reads the resistance off the Lakeshore - for the torque experiment the 

resistance was the cemox thermometer 

218 



Analysis programs 

The following programs are used in the torque magnetometer experiment to display or 

analysis the data from the instruments. 

Chartres.vi 

In real time plots the temperature of the helium-3 pot, and the sample against 

magnetic field. Also plots the change in voltage across the Wheatstone bridge 

as a function of magnetic field. 

Cx2rot.vi 

Converts the resistance across the cemox thermometer into the temperature of 

the cemox 

Calruo2.vi 

Converts the resistance of the Ru02 thermometer into the temperature of the 

thermometer 

Rotdata.vi 

This subprogram runs the reading of the different instruments. Every 30 

seconds, the program runs the following sub programs and commands: 

Ckspeedsuperbcrot.vi - Readfield.vi - reads the temperature of the 

helium-3 pot - Keidata.vi - Readtempche.vi - Keidata3.vi -

KedataS.vi- SR850data.vi- chartres.vi- writes all the read data to the 

opened data file. 

This is repeated until the target magnetic field is reached. 

Zerorotdata. vi 

This sub program sets the target magnetic field to 0 T, then runs the Rotdata. vi 

Experiment front programs 

Each experiment has a front program, which is the program opened from the main 

LABview menu. This front program is generally made up of a sequence of 

subprograms, which run one after the other during the experiment process. The front 

program has a screen where experimental information is typed in. 

For the calibration of the torque chips in liquid nitrogen using the copper solenoid 

magnet, the following program is used: 

Chipcal.vi 

On the operung screen the maximum current though the magnet and data 

filename are typed in. 

219 



The program runs the following sub programs every 30 seconds (similar to the 

Rotdata.vi): 

Readfield.vi - setcur.vi - Keidata.vi - Readtempche.vi - Keidata3.vi -

KeidataS.vi- SR850data.vi- chartres.vi-writes all the read data to file. 

This is repeated until the max current is reached. 

For the experiments in the superconducting magnet, the general program structure is 

the same; the only thing, which changes between the liquid helium and vacuum 

measurements, is the ramp rate of the magnetic field. Thus the front programs for the 

two experiments are: 

In liquid helium the program is: G03rota.vi 

In vacuum the program is: G03rotc.vi 

On the opening screen the number of runs, the target field, the temperatures at 

which the experiment is being carried out, and the data filename are entered. 

The sequence the sub programs and commands are carried out is: 

Settemprot.vi- PIDhe.vi- Setfield.vi- Rotdata.vi- Zerorotdata.vi 

The program is then repeated for the next temperature. 

LABview resistivity and ac-susceptibility program 

The resistivity and susceptibility experiment is also controlled usmg LABview 

programs. As the same instruments are used to measure the temperature and voltages 

as for the torque magnetometry experiment, the same sub programs are used to read 

and write to the instruments. 

The front program for the Ressus probe in the superconducting magnet is: 

GoBC.vi- The program is split into three large sub programs, which are: 

Setup.vi 

This program set-up all the instruments in the experiment in the following 

order: 

SetupB.vi- SetupC- Setupd- switchmc.vi- setupf.vi- setupG.vi 

where setupc. vi set up the EG&G lockin amplifier 

GOl.vi 

This program asks for the following information: set field, temperature range, 

temperature ramp rate, number of points, data filename. 
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G02BC.vi 

This program runs the maJor part of the experiment, for every field the 

program sequence is: 

PID.vi- Setfield.vi- settempbase.vi- takedata.vi- settempbase.vi 

The settempbase.vi writes the start temperature to the ITC. Settemp.vi writes 

the set point temperature to the ITC. takedata.vi is the subprogram, which 

reads and writes to the instruments, with the following sequence: 

Settemp.vi Keidata.vi SR850data.vi EGGdata.vi 

Readtempche. vi - chartres. vi - writes all data to file. 

This program repeats this sequence every 30 seconds until the max 

temperature is reached. 

LABview critical current density programs 

LABview programs are used to calculate the critical current density of the 

superconductor from the data. Two different programs are used. The initial data sets 

have the following columns of data, for a fixed temperature and height z: magnetic 

field (B), magnetic field gradient at B, corresponding M+- across the loop. 

Jccal.vi 

Reads the initial data file. For each B, writes the magnetic field gradient and 

corresponding M+- to a separate data file for that field. The program is 

repeated for each height. 

Gradcal.vi 

Reads the jccal.vi data file for each magnetic field. Puts a straight line through 

the M+_ vs. magnetic field gradient points for each file. Writes the magnetic 

field and corresponding gradient ( d~_) into the final data file. 

Maple VI 

Maple VI was used to calculate the best-fit paramagnetic magnetisation. 

Mag4.mws 

Adapted from N. Leigh's' param.mws program, it calculates and determines 

the magnetisation of a paramagnetic material, as a function of magnetic field 

and temperature. 
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